
A

Data-i{an a gement System

For

Rëlationa]. Ðata Bas€s

8y

Ðavi-d Harvey Scuse

A lhesis

Subnitted to the Faculty cf Ëraduate Stu¡dies

of the ûniversity cf Hanitoba
ìin partial ful-fi1lnent of the reguirements

for the degree of

Ðoctor of Philcsophy

Ðepartnant. of Conputer Scier¡ce

trtt,'fi

üniversÌ-ty

tlinn5.p.e g,

of tilanítoba

.14 ani toh a

'1979

ffi i¡s¿¡v

3/enantrs

iqa y

A DATA-MANAGIMENT SYSTEM

FOR RELATIONAL DATA BASES

BY

DAVID HARVIY SCUSE

A dissertation submitted to the Faculty of Graduate Studies of

the University of Manitoba iri partial fulfillment of the requirements

of the degree of

DOCTOR OF PHILOSOPHY

@u1979

Pernrission has been granted to the LIBRARY OF THE UNIVER-

SITY OF MANITOBA to lend or sell copies of this dissertation, to

the NATIONAL LIBRARY OF CANADA to microfilm this

dissertation and to lend or sell copies of the film, and UNIVERSITY

MICROFILMS to publish an abstract of this dissertation.

The' author reserves other publicatiort rights, and neither the

dissertation nor extensive extracts from it may be printed or other-

wise reproduced without the author's written permission.

Aþsgreç!

rn this tbesis t He define a data-managenent system

which provides efficient data-management facilities in a

chang5-ng e nvi.rcnment. The data-managenent system is
designed to'support. the relational- view of data. The system

provides several facilities that are not found in current
data-üanagement systems, both relational_ and non-relational.

Thc data-management systen is developed in four inde-
pendent subsystens. The fleyice subsystem nanipulates the
pages on which the coinponents oÉ a relatj-on are stored. The

paq€s can be stored" p€rmanent3-y and tenporariry, on a

hi-erarchy of storage d.evices. The èupres of a relation are

stored cn rogicaï rages uhich the storage subsystem maps

onto the physi-cal Fages mani.pulated by ilre device subsystern,

The storage subsysten prorides the capabirity to rol_l back

the contents of a relation ty maintai-ning mu-Ltiple copies of
tupres. .rn the access-patb subsystem, a powerf u1 access

pathn the nulÈiple-relation access path, is used to deter-
nine where tupJ-'es r¡ith gj-ve n characteri stics are stored. A

data-manipulation language uhich provides associative access

to tuples is supported by the retrieval subsystem. The

retrieval subsystem transLates the associative requests into
the necessary EequesÈs to the access-path subsystem,

i.-'

1l_

l-.:.:..:.- -:.:i

ÀcknegLedge mçn!s

ï uould like to thank professors R. G" stant.on and

c" R. zarnke foc giving theír time so freeJ-y in supervising
both tl¡is thesis anil the ¡elated research, r +¡ourd also

like to tharlc, Prof essors D. D. cotsan" R. s. Ð" Thonas, and

u. s. Ðcyle for the tine spent reading the thesj-s and

discussing improvenents.

Finally, the financial- assist,ance of the National
Research councir of canada during the preparatÍon of thi-s

thesis is g¡atefu11y acknouledged.

t_.1 1

To Barbara

J_V

te-Þåe-sÍ-gp.E!Ê!!E

A-b strac t aatt

åc knCI$r1e dge ments

Ta bl-e of Contents ¡ .

r ¡ . . . f-a

. ¡ ¡ r-13-l-

aaarataatt

Chapter ?: Data-Management Systems
1,1 Tntroduction ¡ ., ,
1.2 Îata t{anageneÐt . . . r , ¡ .1,3 Sasic Data Àccess,, .,, .
1"4 Priuary Key Data Acc€ss . . r
1,5 Data Base ilanagement. Systens

1.5. 1 lli-erarchical_ and ltetwcrk
1.5.2 The Relational Data l{ode1'1"6 current Relatíona]- Systems ,
'1 .6.1 TNG.RES -r ¡ , .
1.ñ.2 ZITÂ ¡ . . r , ¡
1.6.3 XAS , ' r t t .. , . , . I'!.6.q Systen f . r ¡ . . Ð . .'!.? Thesis tverviery ¡ ¡ , , . ,

Chapter 2= Ðevice System , r . .
2"1 Introducticn r Ð, ¡ .
2.2 Ðçvice System, .,
2.3 Page Beference l{umbers . .
2.1+ Devi,ce l{anag€ment Tables .
2.5 Physical_ Records ,

aat¡a

laata

aaata

aaaaa

aaada

araal

ModeI-s..
¡¡ta

attat

r¡aa¡

aaa

tatta

traa¡

aaaat

o....r1
......1
t....r1
...rrÐ4
....r.6
.tÐ...8
t.r..rg
t t t . r . 13
.¡!...17
. . r ¡ | . 18
. . . r r r 'l 9
t t . . r . 2A
t..r!r2O
...t.r23

taÐ¡

ÐÐaa

tata

ataÐ

ataa

aÐaa

ataa

Ð.aaa

at¡a

aaaa

a¡aa

taa¡

.r..26

.orr26
:r . . . 26
...r27
.¡.r28
t .o . . 31

Chapter 3: StCIrage Systen3,1 Tntrodüction , r , .
3. 2 Storage-st.ructure p-uoF€rties
3"3 luple Identifier prop€rti€s . .
3.4 Tupl.e ortlering , . . , Ð . { .
3,5 Tuple Format ., r . .,, . ¡
3.6 M appi ng to physical I'age . . .
3.? tcg5-cal pages , , r i , . ¡ . .
3.8 Pointers . . , . . r . | . . .
3.9 3ÀSE and UCID Files .,

3,9.1 EASE-pageFormat ., ¡. r
3,9.2 t{OÐ-page Fornat . . . , . ¡

3, I0 Data Base IntegriÈy r r . . ¡
3.10, "l Ðata Base fiecovery . . . ,
3 . 'l û.2 Ðata Base Restoratio¡ . ,
3,10.3 SeJ.ation Consistency . . .

aati

ta¡a

aaaa

la¡t

aata

aat¡

t.ai

ataa

aatt

¡aa¡

tart

aata

aaaa

aata

aaot

l¡aa

iaa

..34

..34
,,34
. r 35
.,3?
. . 39
, Ð 4'l
. . 43
. . 49
. ¡ 51

tro
JJ

t . 60
¡ . 61
,.62
. ¡,64
, . 68

:,.-: :- . -.

': i: .::l

I.i t:"'.:r.

3.'¡ 1 Be3-ation Reorganization ,.

3.12 Sp€c ia 1 leJ-a tj-cns . . . ,
3. 13 Storag€-Management Tal¡1es

Daaata¡aot

aataaaaaaa

aaaaatÐa

,.69
. . 73
. ¡ 14

. 7"ì
,77
" 7'J
.79
, -79

. B0

. 84

"85. 86
,BB
.89
"89. 91
.94
, 98
"103,105

.108

.'108

.108

.1t9

.110

.1 12

.115
, 11-1

"7 19
.719
,120
.121
.122

1?E
,125
.125

Chapter 4: Access-path System . , , . ,4.'l fntroduction . r . . . ,
4.2 Access Faths ., r r,, ! ., .
4.3 Sångle-Àttribute Àccêss paths r .

4.3,1 Primarl-Key Index ¡
4.3.2 S,ecÕndary-Key Indexes

4.1¡ !l ulti-Attribute Àccess paths " .
4,4.1 Combined Indexes, . .,, .
4.4.2 Hcdified Combined Index , . r4.4.3 Baol_ean ÀIEebra Àto$s
4.4.t{ tlulti-Àttri_bute Ðeshing , . .
4.4,5 Part j-tioning of Index Entries
4,4.6 Partiaì Conbj-ned Tnilexes , .4.5 Ilultâ-ple-Relation Acc€ss-Iaths,

4.6 Access--Path Structure ,, . , r . ,
4 "7 lulaigte narce of Àccess paths . , .
4.8 P¡j-narT-K€y Access . , . . . , .

at

¡i

aa

ta

aa

Chapter 5: fietrieval- Systen . . , ,. . .5,1 Intrcduction . ¡ . ., r ., .,
5.2 Associat:.ive Àcc€ss,, . .5.3 fielation Retrieval, . . . ù . . .5.3.'l Single-Tup1e Frocesslng r ¡ . .

5" 3.2 Plultip!-e-Tuple Prccessing , .
5.3,.3 Quotas ¡ ¡ ! r . , . , + Ð .. .
5.3,4 Ccunts , . + . ,. . | ¡ . . r r

5,4 Re]-at,ion Mocli.ficat,ion . . r . . .
5.4.1 Tuple Insertion., ¡. . | . r
5.4"2 Tuple Ðgletion . . . Ð Ð Ð . r
5.I1 ,3 Tuple t{odj_ficatic¡ Ð r . , . .

5"5 Strategy Relation ¡ ¡ . , . . :r , .

thapter 6: Iuture Research and Conclusions
6.1 Futurc Res€arch , . . r . . Ð . . .
6.2 Conclusi-ons ¡ . r ì, r . ¡ ¡ . | . ,.

Appendix I: Yariable-Iength Values

Appendix II: Syntax

aaaa

aat¡at

ta

at

I

a

. .129

, .133

Rgfgrences . , ..., r. ¡ ... Ð r . ¡ r . . :. . .135

fable cf Ref erÊncês :. t . . . T r r r140

vL

Chapter 1

qh 4!te g-l-:.--!egg: ¡{ q! a ge gen !-ÊJ s,t e g E

L . -L_ f g ! r--g
-d

g g! _i g-U

During the past 2A y€ars, the¡e has been a urajor change

i-n the data-maragenent softuare provided for computer users.

Ilntil recently, very pr5-ruiti-ve data-inanagement software vas

provided and, freguently, the usÊr wrote his o,r¡Js dat.a-

$anagêment routínes; bnt." as the amount of data increased

and the underlying data structu¡e became more complex, the

usêr had to r¡rite more sophisticated sof tware" Grad ualf.y,
it was realized that it shculd not bÊ the users r responsibi-
lity to provide data-manag€mËilt soft*a¡e; such sof,tware

should be part af the operating system with r¿hich the user

interacts" rn this chapt,err w€ examine the growt.h of data

management frcm basj-c record-oriented access to complex data

base $anagement systems vbåch provide powerful- data-

management facj. Jitles.

LZ-Ðe!e-!4leseues!
The purpcs.e of data-management systens is to nanag€

large amounts of data. By largen Ìie mean that there j-s nore

data to be processed than can ccnvenj-ently be stored i¡ main

rnemory ¡lhile the öata are being prccessed. rf thås .were not
true, the data courd be processed using standard in-core
techniques. thusr 1rÐ assun€ that only a small portion of

Data-l{anag€ment Systens

Chapter 1

the data to be processecl can be stored i-n main m€mory at a

given tine; the rest cf the data are stored on a secondary

storage ilevice. ilhen necêssar}¡, the d.ata-management rou-
tines t¡ansfer portions, which are referred to as ilpagesfl,

of the iiata between the seccndary storage d,eyåce and main

flemory,

A collection o.f pagês stored

device is r.eferred to as a lrdata

sets are stcred on each device. T

usêr ar€ col1ectively ¡eferred t
is a physicat eatity and a file is

on a secondary stcrage

setrt. Normalf y, man y dat.a

he pages processed by a

o as a |tfilerf " A data set

a logical entity, In
basic data-ftanagement systems, each file is store¿ in one

data set and each data set ccntai-ns only one file, Houever,

in the ¡Íore courplicaÈed dat.a-nafiagement systens, the Fag€s

in a file uay be stored cn se¡¡eral d.ata sets and each data

set nay contain pages from rnor€ than one f ile"
a ttphysical tr€cord.t is the amcunt of data stored on a

seconilary storage devÍce ¡dj-thout any intervening dcvj-ce

timingTsynchrcniaatisn cantro1 informatlon- rn basíc ûata-
manaqement systens" a pag€ consists of one physical- record
but in $ctre cc mFl icated systenis, a page fiay consist of
several physical r€cords. a rtrogícal recordr¡ is t.he amcunt

of data re,q{¡ircd by the programmer. The data-management

sysÈem extract,s logical records from the pages and returns
the logical r€ccrds to the Frc,grammer.

Ðata-flanagenent System s

Chapt er

Currentl yn the ¡eal time r€gu j_red to transfer a pag€

,between secondary storage and rain memory ís several orders
of magnitude greater than the time reguirecl to prccess the
page, For exanple, on an rBu 3330 disk drive, approximately

3CI.0 mil,líseconds are regui¡ed to novê the access arm cf tbc
disk tc the r'e quired cyl,inder, appcoximatel y B. 4 mj-11_ise-

conds are requåred for the required pag€ to rotate under the
access arm, and then apprcxinately 5.0 mill_iseconds are

reEuired to transËer a 4096-byte page to main $€$ory

ITB¡{?4b]. This av€rage of ¿.t3.4 mj-lliseconds is j_n contrast
to the mair¡ nenory cycre tine of only 'l 15 nanoseccnds

{.000115 míLli.seccnús) on an rBú 37a/15s IrBfl?4a]. Thus, âs

the sj-ze of data files grords frcm miLlion-character fj_les

towards bil1j-on-charac,ter tiJ-es' it becomes 'incr.easingJ_y

important that the nunber of pages tnansfer¡ed to main

IneEaEy in order to process regucsts be as sna'll as possible.
Exe cut.i-ng extra instructicns in nai n menor)¡ is usually
justifÍed if it causes the number af pages transferreil to be

re tluce d .

Records can be accesse d by ttaddressÐ or by rrk€yrr. .The

address ot a ¡ecord i-s a numeric value vhi_ch identiti€s the
record bx its position ¡Eithin the fj-re. The key of a record
is a set of charact.ers which identify the record by value

inste ad of by pcsitian. There are trlo basic types of ke¡rs:
rrprimary keysft and frsecondary keys*. å primary key is a lcey

Ðata-l1 ana gèrnent Systens

: '-1 ,-'-'. :1r:.)

; Chapter 1

which uniguery identities each record çithín a fil-e and

lrhose value is norma]-Iy used in detecmining the positicn of
the reccrd r¡ithin the file. a seccndary key is any key that,

is not the primary key. The secoartrary key need nct be

unigue, that is, nÐEe than one record nay have the san€

secondary-key va1ue"

The peEson in charge of a data-manag€ment system is the

'd,ata base aüministratotrtt (rEA) . The DBå, makes the deci-
sions as to how aui. ar€ to be structured, such as shich
access nethods are to be used tc manipulat.e t.he data and the
type of storage devíces to be used. Ile is also responsible
for ncnitoring the perforrauce of the system {occasionally
r¡ith the ire.lp of systen-generated statistics but tco often
he nust rely on his intuition) aad, if possibJ-e, making

ad just,nents to reduce any .inef f icÍe ncíes in the syst.en. f n

the future, it shculd be possible to automate many of the
decisicns noi| made bT the DEJ\ but, currently, the DBå has a

very 3-mportant rcre in rtuningrr the system so tbat i_t

operates as effici.ently as possible.

L. å-Eesås_g e!e_åsçÊss

The basic access methcds {such as IBIBrs BSAIt, QSAI{,

BÐÀlt IrBu?6], and vsAü-Es [TBt9?3a]) provide the user with a

means of accessing records {both rogi-ca1 ,records and physic-
al records) as they are physicall-y stored in a f,ile" The

records can be processe d se quenÈially or randonrly i.f the

Data-Sanagement Systems q

dlr¡;i.l
ì¡1:.:^:.1

Chapter 1

user knows the address of tbe record. The access methods

normally provide such services as grouping several tr-ogical

records together into one physical record .{'rblockingrr} in
order tc increase the utitizatlcn of the second.ary storage

öevice" {For example, on an rBM 3330 disj< drive, there is a

fi-xed device overhead of 135 byÈes peq. physical record
regardless of tbe size cf the physical record,. rf, each

physì-cal necord contains one B 0-byte logica1 record, t,hen 61

ilogicar reccrds can be stored on a track. Ho+uevêr, if each

pleysical re cord contains 80 B0-byte logI-ca1 record.s, then

16 0 logical ¡ecords can b,€ store d on each track I rBu?qb].]
Blccking aLsc reduces the the number of r_/Ð requests that
must be maile since several ì.ogica1 records are transferred
toTfrom main meßary uith €ach Ï7CI reques

basic access nethods provi_des fast access

ninina I amcunt cf CplJ overbead.

¡

to

The use of the

records with a

on€ of the major disadvantages of using a basic access

method is thal the r¡ser must be ardare of alr aspects of how

the recor'd.s are sÈored. The systens progxammer normally has

no difficuLty in manipulatiug the actuaL records in a file;
however, the appri-catj-ons programneË and the casual user

oft'en find the intricacies of, such Low-level data access

difficult tc naster" such users say not nake the suitable
choices ryhen ilesj-gning files and then must reurite portions
of their proggarns r¡hen it becones necessary to change tlie

Ðata-I{anagenent Systems

Chapter 1

file structure. It o.f ten take s these users several- vee ks to

their programs sc thatcreate thÊ file anil ryrite and debug

the records are acc€ssed. prcFerly.

.âncther problem uhich tle user of a basic acc€ss me thod

nust face is that reccrds can not be physically j-nserted

into or deleted trcm ÈÌre middl-e cf a file sithout rewråting
the entire fil.e" rf records must be inserted otr d.eleted,

special routines to perforn rogi.cat insert,ions/detetions on

the f,ile must be ryrit.ten" ïf several programs access thj-s

filen then the specia3" rcutjnes must he Íncluöed ir¡ each

progran and t.he us€r nusÈ €rsllre that any changes in the

routines are ref,lected in all copies of the routines.
The benefits that ar€ gained frcm fast record accËss

usi-ng a basj-c access met.hcd are usuall-y offset, by the amount

of time required to clesign and maintain th,e prcarans ¡¡hj-ch

access the reccrds, The basic access methods are best. used

for f,iles uhich have a v,Êry simple data structure and fron
which ¡ecords ar€ not deleted and to ¡vhj.ch records are

inserted only at the end.

?. Ir_9 giugrJ-EeI- Ð a t a_$cgg5 s

The primary-key accêss methods {such as fBH's ISAM

IrB¡{71] and vsAtf -KS I rB]1?3a l) ar€ more powenf ul and easier

to use than the basic access methcd.s. primary key accêss

methods perni-t the user Èo acc€ss records by the prinary
key, a J.ogicar identifier, Ínstead of by their addresses in

r1_r--_i:.1

i..i.

Ðata-Hanagenent. Systems

Chapter 1

the file' Erimary key access methods also permit. the usêr

to insert reccrds intc and delete ¡ecords fron any position
in the file,

?he primary-key acc€ss sethod deternines a recordrs
physical i-ccation either by l-Jo1<ing up its key in a

directcry {or index) or by perfcrming a t,ransfornation

{tfhashing'n) on the key. rt then us€s t.he equivarent cf a

basic access methcd to retrieve the record. ïnsertions are
norrna.l-1y traialen either by inserting the record in an

overf,lorù area and adding a pcinter to the j-nserted record ûr
by leaving sc r€ r.¡¡rus€d reccrd locations throuqhout the fj-le
{cal.led ,tdistributeil free space*}, and then noving som€ of
the existing records to ma]çe rocü for the new record,

The primary-key access methads require extra secondary

st.orage space if an index is used and ext.ra page accesses to
searcl¡ the index, ?he access method is also larger thar¡ a

basic access meth,od because it perf,orms üore functÍons for
the us€r. Iioìiever, these disadvantages are of fset by the
fact that it takes a us€r less time to r¿rite and derug a

progran if a prinary-key access methocl is used.
'The prinary-key acsëss nethods provide good 'data-

management facilities as lcng as the data structure of the
fi-le remains re3.atively sim¡;'1e. ilotlever, as ilata structures
become more ccn¡:lex, the primarr-key access methods fail to
provide the needed faci.l-ities, For example, as applications

Ðata-t{anagement Sys.tems

Chapter 1

become integrated, the data re gui-red by an application
prograrn may be in reco¡ds that ar€ stored j_n seyeral data

sets j-nsteaö of in just oae data sèt. rnstead. o't reading
one recoril and processing it, the applicatíon prrgramüer

must rçad reccrds fron severar data sets and bui-rd a

composite data r,ecord beÉo¡e perforrning any processi_ng"

3hus, the Frogranner beccmes responsible not only for
processing data correctr¡r, but a'1so for bu..i].ding the recc,rds

correctly"

-1. 5_eg te- Ba5 e-! aÐeggrn egg._S gg!e es

rn o¡der to shift tha responsibility for data manag€-

nent tc the cperating system r ccmprex data.-nanagerBen-t sys-
tems, called trdata hase nan,agenent systemsr {DBl{S, s} , arê

be5-ng des'igned. {For the Furposë of thi_s thesis, t{Ë vj_en

data base managenent systens only as sophistj-cated access

nethods; cther f acil-iti-es prcvided by DBUS I s such as Èhe

control af on-1ine terninals ar€ nût discussed..)

?he purBase of, a DBt{s i-s Èc extract d.at.a from a poo]- of
data or rtilata base{t, and return tbe data t,o the progranme[.

The data requested by a progranmer are referred t.o as a

fts€gm€nttr. Ä segnent is a lcaical entit.y created by the

DBlcs frorn one orr nore logical record.s in tl¡e data base.

Iii-thin limits, the detinition of a segnent can be chaaged

for each programr

Physically, the data in a data base nay be stored in

tata-$anagement Systems

Chapter 1

mÐre than one data set but only the ÐB¡ls need he concerned

r¡iÈh such deta.i-ls; the applicaÈicn progranner is cor¿cer¡led

sith the logical structure {segurents} not the physical.

structurc {r€cords} of data" This separation of the pro-
granmer from the nethcd by whicb data are physicarJ-y stored
is a major advance in data management*

L.Þ.J - 3 i gssrc åå Çe¿- ar¡ d*gËt gs-E k_gggslg

rhe data models usecl ir¡ ncst cu¡r.ent llBMSr s (such as

rBl{rs rus I rBu?5], cincomf s TorÀt lcrNc?4 I, Itfir systems I

sYsrEI{ 200CI [$Rf74], êtc.) are af two lasi-c types:
tri-erarchical model-s and n.etnark ¡nodels. The híerarchical
nof,.el, as used in rus, uses a tree structure to describe the
rel-aticnships b€tu€en segments" For exanple" the hierarch-
ical structure

lAt
1-__.-__ I

*
I

r-------¿-------'t
I
*
*

I
*
:s

f-----.-?
lBt
L_--_--J

l---- -----!tcl
L---_-___-,

def ines a tr parentrt segnent , å,, that has

B anrl C, Normaåly, a parent segment

more than cne cccurr€nce of each type

tco chii-d segment,s:

is permitted to have

of child segment:

Ðata-üanagenent Systems

-' -'""*--' _i',1-,¡l-'^¡-'r ..

Chapter 1

', ,,.' ,

this is ã on€-many rerationship. {rn the diagrams, on€

ast.erisk ís used to represent an x-one relationship and t¡so

asterisks are used to r€pr€sent as x-flany rclationship.)

Thus, the segment Ai uright. harle as its chird.ren: Bil, Bí2.
1.:,,, 1::

,.., Bim, and Ci1, Ci2r.¡r, Ci¡. ::.:.::'

The netrork dat.a nodel us€s either a simpre ¡;lex
structure or a complex plex structure to descrj-be the

',:,:,.....','j'.rel-aticnships bet¡le en segme nts" T he data structure ;-,:,,::,],,

lBt
L------_J

I
l--------T-------J

I
+

*
f------- -ìlct
l-- --__._-¡

j-s an e xample of, a simple ¡:lex structure of the type used ån

Torår [crN{74] .in which both A and I are pernitted to share

a ccnacn chj.l_dn C; thÍs is a üary-cne relationship.

The structu¡e

tÀt
t------_J

*
.*

I
*
*

lBt
| ..----_ t

¡At
t-______J

'::
i t:

i.

I

*
I

Ðata-Planagenent Systens 10
1.r..:,r:iri;,,*!ì

".4.r1-ir!'j. : -. ilr-rclrir-r*tr

Chapter 1

is an e xample of a com¡:lex plex st ructr¡re: the segment B is
a child of À' but À i-s aLso a child of B; this is a

nany-many relatíonship. T'he cc mplex plex structure j_s

difficult tc implement d.'irectly" and so many ÐBt{srs do not
permit the di¡ect. use of ccrplex plex structires.

Both the hi-erarchical and the netvork dat.a models

describe t.he logical crganization cf segnents in a data base

and the progra$mer nus't understand the segment structure in
a d.ata base bef ore he can Frccess the segments. For

exanple, in the hierarchical- model, before a child segnent

can be accessed, the cûrrespcnding parent segruent must first
be access€ o {,even t}rough the parÐnt segnent may not be

neeilerl) ,

Processíng a data base freguently invol_ves searctring

for specitic parent segments and then examining sûme or al_l-

of the segmeûtsr children. This type of processi-ng j_s

¡ef,errçd. to by Bachrnan as 'tnavigaÈingr! through a data base

IBå,cH?3].

ì .;.:.:

ItThis revo1ut.ioa in thinkir:E is changing the progra$nÊr
from a stationary vie,uer of objects passing befor^e rri¡n incore into a rnobile aavigator çho is abre to probe andtraverse a data base at ryi_ll.rt

while the proced.ure of naviga'ting through a data hase nay be

easy for the exper.i.enced programfier, 1t j-s often quite
diffi-cult for the less experJ-enced programner and aLmost

11Ða ta-ûtranagemen t Sys.t.ens

Chapt.er 1

inpossi-b1e fov. th€ casual- user of the ðata base. { Inex -

¡r!1f:1!:ri¿ t!¡

perienced progranfiers freguently
rêquired seçments properJ-y and may

$rong segments.) The actual usërs

to acc€ss the data directJ.y a ncl

ap p3-ica tion programner be comes a n

user and hj-s data.

dc not retri_eve a l1

unknowingly dei_ete the

of the data are not able

easily; insteadn the

i-nternedJ-ary between the

scst DEI{sts that us€ hierarchical cr net¡rork nodels to
describe the logical organizatj.o¡ of data also use th€ sam€

struct.ure tc store the da'ta. Thus, once the data are stored
j-n the cata base, tfte dat.a mcdel can not be changed unless
the data iase is recreated by ccpying the data base and then
using the copy to creat€ a ü€w versi.on of, the data base.

(Thi-s Frccess is referred tc as lrllnloadingr and rrreloadingr!

the data base,) rf the data nodel ís changed and the f,ata
,hase is recreated, then prcgrams r¡hich access tàe da,t.a base

may have to be moðified sc that they use the ner,¡ modeL of
the data-' some DÐt{sr s, such as r}ls I rB]t?4"1n permit lhe ÐBA

to define 'loqical data hascs* ffhjch contain segmênt types

def ined in cther clata bases b u.t v¡hich are reordered to
present a dj-fferent nvieuri af the data for the user, The

use of logical- data ,bases pernits greater flexj_bil_ity 5-n

defS-ning the r*ays in xhich the us€r seÊs the üata; houerer,
the def,initi-cn of a nel¡r rcgical data base is normalry not
trivj-al {it nray invol-ve unlcaöing and reloading Èhe existing

Ðata'I{anagement Systems 12

Chapter l

data base) and can be acccrupanied by ccnplicat+d rules as to
how segments ar€ to bc added, dereted, and ¡nodified. The

overall lack of flexibiJ-lty in the logicat data structure
prevents hierarchical and network data model_s from evclving
as the data and the us€s of the data change.

1: ëE ¿-r te-B9¿elågp-c l-P,Êlê-gSge.l

rn 19?0" codd [coDD?OJ propos.ed a nelg moder of data

called the relational data model, codd believed that the
userrs vie¡¡ of data should be independent of the manner ia
which data are physical.ly storeð. cocldrs noüe1 presents an

aþstract vie¡q cf data shich does not dj-rectly define the
relaticnshi-p-< between qegments ncr does it irnply a sp€cific
nethod of storing th€ data. The reLational data rnodel

pe rnits the user to vie*¡ data as el_ements i n a t¡¡c-

di-mensicnal table calred a rrre lationil: each row in the
tabl-e is called a tuple and describes an entity; each cclun,n

in The table is calLed a ilcnai¡ a¡d describes an attrjbute
of an €ntíty. .$e refer to the value of a column as an

attri.bute vaLue {a.3.though it is often referred to as a

donain value) ,

codd also defj-ned the fclJ.olring prope¡ties of reLai.ions

lc0ÐD?0 I,

13Ðat a-i{anagenent Systens

1.

1

Tt¡e notation used to describe a reLation is
REt.ATfC,N {Ðtitå.¿N1, DCt{AIN2 , t.., ÐOt!AINn} .

For example, cons.i.der the data describi.ng sturlents
at a university. The domains in the relation rnight
NAI9E' ÂÐÐREss, AGE. Thlrs, t,he ¡er-ation is d.efined

sls+È, NAI{8, ÀllDäEss, aGE} .

Each tuple in this relatisn describes a student and

ÐnÊ value for each of the four d.omains. The

describe"'th" students at the university.

f

4,

Chapter 1

No tvo tuples i_n a r€laticn ar€ identical.
The crderi-ng of t.uples in a relation j_s notsignificant. (ThecreticaJ_ly, the fact that tuplesar€ not ordered i-s impcrtant, but for nost pracÈic-al applicat,ions, the u*aer nust be permitted to ,,,,,,defi¡e an ordering f cr the tuples proceÃsed.) .: :':'

The o¡dering of cclumns in a relation is notsigni ficant.

Each att¡ibute va.1ue is single-valued. ,..,i;,,.

en ro1led

be: S*,

as:

co ntai-ns

re Lati-on

ïn the relati-onal data nodel, a key is a donain cr set
of, dcmains by which tuples arê acressed. a key rhich
uniquely identifies the tuples within a re.lation is reterrecl
to as a ucandidate keyrr, ûne of the candídate keys is
chosen as the pri-mary key of the ¡elation, À11 dcmains or
sets of dcnains ar€ potentÍally keys that may be used to
access tuples.

In the relaticnal data mode.l, the¡e are no explicS-t

14Ðat a-lT an agenent Sys tens

Chapter 1

re latj- cnshi ps b etween re lati_cn s as t here ar e i- n the

hierarchical and netr¡ork data mcdels. rnstead of defining a

relat.ia rship {one-one, one-many, etc. } cli-rect1-y betu,ee n tuo

re'1ations, the rerationship is def ined. iioplj-citl-y by includ-
inq t.he sam€ donain in tr¿o cr nor€ relatior¡s, The irnpor-

tance cf the implicit definitj.on cf relatÍonships is empha-

sized hy Ishitney [ÉI{IT?4].

rra parti-cularly irnportant. aspect of the relational datastructure is the use of inrpricit varue li¡ks betueen tuples
of relati-ons to indj-cate relaticnships betueen tuple it€ms"rl

Fo¡ example, the relatj-ons

s {s#, NÀ$8, cot#} and caL {cot#, cNÀtlE, ÐESCR)

are not explici-tly relatcd but there is an implicit rela-
tionship betueen them since they have the donain cor# in
common. {$e assume that $it.hin a ilata base, the use of the
sane dcmain name :in dif,fererrt relations imp3-ies that a

coflilron domai.n is being referred to,) By defining relation-
ships inplici-t]-y, the user af the rel-ational data moilel is
not Ij- nite d to already-def ined J-oqical str uctures . tdevi

loEical *=tr uct'ur'es can be rl e tined quite easiry wi thout the

probJ-ens i¡lrerent in the hlerarchical or netuo¡k data

models,

fa the neLat,ional data nodel, relations should be

defined. so that the anount of redundant. data is minimieed.

{r'ormally, it. j-s suËf icient if the relations are in 3rd or

i :.rl

l'r tr

'f5Ðat. a-Management Systems

Chapter 1

4t,h' acrmal f orn . Norna.l f orms are clescribeð, f or exa uple,

by Date [ÐATE77f.) For exanple, in the relation
sc {s*, NÀt'18, ÀÐDBES5, C#, DESCR}

which describes students anc ccurses, the studentr s ¡¡a¡ue and

aildress are rêpeateil once fcr each course in r¡hich the
student is en¡olled. The relaticn should be split intc the

equivaIent reLations

s {s#, NA¡{n, aÐDRESS)
c {c#, ÐESCRJ
sc {s#, c#)

j-o ch j.ch the studentr s name and address occur on.ly onc€.

The relation sc is a relation ¡rhose purpose is tc L:_nk

toqether tuples in tr¡o other relations. Hierarchical and

r¡etlvorlr ÐBt{sfs both contain i*farmation that i-s equivalent,

to the informaÈi*n rn the reration sc {in rHs, it Ís storeð
i-n trlcaicar chiLd segnentsn f rBü?4c l) . rn the håerarchical
and netr¡ork data models, such informaticn is not normally
avaiJ-able to the Trsêr; howevern i-n the rel_ational data

node1" the inf o¡matioa i.n sc is availabre to the user and

can be prccessed in the sa&e naÐner as aßy ot.her relation.
sr¡ch relaticns can be used ta defj_ne the eguival_ent of
hierarchical and netffork data st,ructures in the relaticnal_
data moclel,

the second. major advantage of using the relatj_ona1 data

nodel is that it does not im¡;ose e specific physica 1

structure cn th.e data, The data can be stored using a

.Ðata-l{ ar}age ment Systerns 16

Chapter 1

hj-erarchical storage structure, a netsork storage structuren
or asy ctber convenient stcrage structure. (?his rack of an

obvious Fhysical structure for relations ¡nakes the choice by

the ÐÐA of the structure used tc store each relation very

crit.ical-. .rn crder tc aiö tle ÐBA, it is important that the
ÐBtrs generate statistics which indicate hos efficiently each

reraticn ís sÈored.) fiíth the relational d.ata model_, Èha

user is not expected to knc¡¡ hc,fl a particuLar type of tuple
should be accessed {for exanple, by accessing the parent

tuple first, as in thê hierarchical model); the Eser

requests a specific tupJ-e or qroup of tupS_es and the
relati-cnal data base nanagêment syst,em {RDBIqs} deternÍnes a

¡¡ay to access the tup}e{s). Sinc€ the Ðser no longer needs

to kno¡ð t.he physical structure cf the data in the relation"
it is possible to change t Le physicar structure r¡ithout
af f ecti ng the useìr,

âncther advantage in using the relation data model is
that precise mathematicar ranguages have been d.eveloped for
'Êx pressing queries aqai-nst a rela tion" Two of the lan-
guages, the relaÈional calculus and the reraticnal algebra,
have beeri shown tc be sufficient fcr expressing any query

IcoDD?z].

L:.É,-cËs¡esÈ-Esls!¿gss¿ S.ys t€sg

rn this sÊction, we surv€y some of the majcr fiDBMSrs

that ar€ currentry berng tested, The systems examined are

ì.rìi:

17Ðata-l{anagenent Systems

Chapter 1

intended tc be r€presenèuative of rerational systems, but not

a ccmplete 1j-st. only the lcw-lever srructur€s of each

system" such, as t,ha storage me cl¡ani-sn and any data recovery
mechani-sm, are exanined; higher-level facilities, sucl¡ as

the data-nanj-pulat.icn J_anguages, are not exanined.

1. 6. 1 TNGRES

The rnteractive Graphics and Retrieval system {rNGREs)

Is1oN7ñ] is being developed at the university of carifornia
at BerkeJ-ey" rNcRns is implemented on a pDF 11/qD machine

using the uNrr cperat..ing slstefi. trNGsEs is being used to
examine tÏ¡e decomposition cf conplex gueries into gueries
involving oaly one variahle, the support cf i_ntegrity
constraints by mcdifying gueries" and. the manipulation of
da ta bases by casual users .

ï¡ùcaÐs stores tuples cn 512-byte pages; each relation
is stored in a separate data s€t" Both indexed and - hashed

access by prinary key are provided: the inrlex contains the

large*.t prinary key on each primary page; the hashing
functicn used uit,h hashe d access is a modul_o- di visicn
technigue. The internar identificr of a tuple {TrD) con-

sists cf a prinary page nunber anil an indi-rect,-address

number within th€ pag€. Tuples ar€ not. ordered by prinary
tcey within a Fage; so prrrnary-key access involves searching
the Baqe for the desired tuple. Ðages arÊ Ínitially Loaded

to apprcximately B0 percent of ca¡;acity; nhen a priurary page

Dat a-l{ anagement Sys,c€ns 18

Chapter 1

becomes fu1.j-, cverflow Fages are chainecl tc the prirnary
page. The cverflov pag€s mr,st be searched seç1uentia1-Ly so

that lccating ê t,uple that is stored on an overflow page ¡ûay

i-nvolve several F,agê acc€sses. rl{GREs rnaintains secondary

indexes to províde acc€ss tc tuples by secondar y Rey.

ïNGfiES guarantees the integrity of each relational
calcul-us ccmnand {wbi.ch nornal3.y involves nore than one

ïNGaEs command) by usi-ng dcfemed updating, that is" by

saving all nodi-tied tuples in a deferred-update fire untíl
the enti.re relatÉonar calcuLus command has been processed;

then, the actual mcüifications are made to the tuples"
sb.culil the system f aii- during the actual updating, r NGa¡s

comp3-etes the aperation by reproc€ssing the deferred-update
frle. rn crder to rcLl back a relation to the state that it
had at. an earLier time, rNGans üust use a journal fj-le to
determine thê change s made to the varior¡s tuptes, {a
journal file contains a list of all changes nadc to a

base,)

1e 6,2_ZEfA

zETÀ is a fiDBt{s t.hat i-s being developed at t he

un5-versi-ty of To¡onto [EE0D?5]. rt 'is $rÍtten in pr.r for
TBll machines uiÈh"+-he o.s. cperating systein. zETA is being

used to examine the efficiency cf relational representations
and a variety of usêr interfaces,

zErîA stores tuples in fixed-1engt.h pages; tupl es are

da ta

)i: .

':. a'. '.1- : :'

19Ðata-l{anagement Systems

Chapter 'l

always added to the erd of a reLation. The TrÐ consists of
the tuple t s sÊquence number l¡ithi n the relati-on. zETÀ

pernits the user to create nefi relations called flnaïks{

¡rhich contain tbe TrD rs of Èuples in another relation shj_ch

satisfy a qualificatlon. A mark, itself, can aI so be

markeö. A ma¡lc, hosever, is nct kept up to date and sc must

be recreated if the original rel-aÈian changes. secondary

indexes are be5-ng aclded to ZITA.

1¿6=-3-¡3ë

The Extended Relational t{enory System {XRtr) |IORI?4I is
bej-ng developed at the rBl{ cambridge sc j.ent,ific cÊnter, xRIt

is being used to test rel-ational storage structures and to
test languagçs designed for casual users of a data base,

xBH is bui-lt on top of the Eelati ona l ffenory {nü)

system which supports bínarl relations. Tuples are stored
Èn 4096-byte pages; TrÐrs consist of the !Ðage numbe¡ and an

j-nilirect-add¡ess numhe¡ wit,hi¡ tle page. xRl{ uses hashing

to determine the pag€ on ¡¡hich a tuple Í_s stored. trfithj-n a

page, tuples are linked together in ascendi_ng order. xgtu

also uaintai-ns secondary j.ndexes to perrnit access by s€con-

dary keys.

"i.6.4 System E

system R [.àsrR76] is]eing ileveloped at th e rBt'l

Res€arch rab in san Jose" rt is impleneated on an rBtl j7c

:.]:.ir::; ,::l

r:: rr:ì:.¡

Ða ta- I'lanagement S yst.ems 20

Chapter 1

machine using a sp€cia1 vll7370 operating system iuhich is
modifj-ed tc permit data to be shared by several virtuaj.
rnachines. syst.€n R ås be.i-ng used to test automatic concur-
rency cont ro1, r€covery, and integrityn and t.he suppcrt of
high-1evel languag€ interactíc¡ with data bases. system B

has features i-n connon sith the ÐB$s AÐåBAs I sorr?4],
system B stores re-I-atians ín segments: a segment is a

coll-ection of pag€s +¡hj-ch can, if nêce ssary, be shared by

more than cne relation. TrDts consis-t. of a page nunber anil

an indirect-address number rithin the page. pages are

allocated to segments frcm a ccmmon page area and system R

usÊs a page map to nap the logical page-number in a segnent,

to the physical page-number in the f,i1e. tüiien t.here j.*. not
enouEh roon in a paç€ for a Èuple, the tuple is praced in an

overflor¡ page which is f.i-nked to the primary page, syst,em R

avoids the problem .in rNGtsgs of, sêarching several_ overflou
pages by storing a po5-nter ín the prinary page to each

overflor tuple on aa overf,lcv pag€. Thus an overfl_cw tupre
can be retrieved with at most t ¡o data page accesses.

systen B uses ¡rÍmagesr, {secondary indexes) tc prcvíde
keyed access tc relatÍons, cne 'Íurage in each relation may

,be def ined as ttclustered,r
" causing system R to use primary-

key ordering to store tup]-es, Tupl_es in dífferent rel_atjons
can be jcined together over a ccnacn value us'ing the rrlink*

f,acì-lity: l-inks create a par€nt-chiLd hierarchy, system R

21Data-l9anagement Systems

::.i: iì

Chapten 1

usÐs TrÐfs to link the tupres together. one j_ink in each

re l-aticn måy be def ined as clustered, causing systen I to
store tupX_es that arê li-nke d toqether as close as possible
to eacb cthe¡. The use of cluste¡ed links caus€s the number

of pag€s accesseil to he reduced, The use of links provides

faster access tc tuples t,han the use of images, but, the
additÍon or d.eretion of an image is much easier than the
aðditicn or deleticn cf a link since the manipulatiCIn of
.i-mages does r¡.ot cause data tuples to be modified.

system R uses an ínteresting technique to maiatain the
integrity of a relation whiLe a group of transactior¡s is
being processÇd. After nahing changes to a page, the page

Ís rvritten to a ne$ locat.ion" not back on top of the o1d

versio¡ of the page. . This nêil location'ås recorded in a nêrù

copy of ihe page-map taìles. At. the end of the group of
t¡ansactions, syst€m R has twc Fage-rnap tables: the page-

map ta,b1e in secondarl¡ storage j.ndicates the state cf the
relaticn bef ore the changes ller€ made; the page-nap t.abl-e in
mair¡ n'€moxy indicates the state of the relatio¡ after all
transactj-ons are processed. By savj-ng the nea pagÊ-fl¡ap

table tc secondary storage, the rel-atj-on is brcught r¡F tc
ilate; by not savi-ng the page- map table, the ¡elation is
rolled back to the state it bad betore the transactions tiere

processed. Thc us€ of this technigue reguires system R t<¡

have ccmplete ccnÈrol of the T/o faci-lities; an r/o slsten

!: r:i Jii:;

Dat a-I{an agenent Systefis 22

Chapter 1

in $hich a file is considered to be an extension of the

userts add.ress spac€ coul_ð not be used since systen R pust

naintain cont¡o1 of ¡rhere pages are written. once the
page-map tables aEe saved" if the relat1on must be rolled
back" systen R nust use t.he same technique as TNGRES tc
restore a reLatÍcn: processing the joucnal file in order to
reverse all- chang€s nade.

1.1_3!egis_gvgEv¿eg

Às alat,a-nanagen'ent systenrs become more complex, it is
important tc analyze not only the data-nanagenent systen as

a wholer but, al-so" the facilitj,es províded by the índividu-
al- subsystems ¡vithin the data- management system. rn the
CO ÐASYL reFort ICOÐA7i] and t.he ANSI'/X3lspÀRC ir¿terim report

IÀNSr75l, an attenpt. is made to define standards for the
subsystems of data-nanagefi€nt systems, rB$rs Ðata rndêpen-

dent Àcc€ss riodet {DrÀü} alsc defines a generalized data-
managemeot model I SENK?2], I sENK?5], I sENK76]. Ho $€îetr,

these r€Iorts Èend to def,ine general systems and da nct
examine throughl-y tbe specif ic prob.lens êncoun tered c,hen

relaticna] data base manag€ment systems are implemented,

rn this thesis, ue define a data-rnanagênent system in
terms of its n€cessary subsyst€ms, The data-management

system is designed specifically tc support the relational
vj-ew cf data but it could also be l¡sed to suppcrt other
models of data. The data-üanagenent system is not basecl on

l::.:

,:.

i

i.'::.:l

iìr.;ri:

23Ðatâ-$anagenent Systens

'_- - -'----iii'lia-¡

Chapter 1

an existiag sysÈeur; iostead, the features reguired by a

reLaticnal riata base manag€$€nt systen are exanined and a

systen that provides the n€cessary fuactions is developed.

The data-nanagement sysÈem corrsis'ts of four subsystems

vhich ar€ descri-bed in the fo-Llcwing four chapters. Each

subsystem provides a service to t.he other subsystems but the
nann€r in vhich t.ìis service is perforned is initepenðent of
the other subsystenns. Thus, it is possible tp renov,e one

subsysten and replace it r¡ith a ctifferent subsyst.en which

performs the same task but in a different manner, ror
example, onÊ subsysÈem stcres and ret.rie ves tuples and only
that subsysten is pe.rmitted tc nranipurate stored tupl-es. rf
necessary, the f,ornat of stcred tu¡:1es can be changed by

modifying cn'ly the one subsystem"

The device system is tl¡e *j-ogestfr of the four subsys-
tems. This systen mavripurates the pages used. t-o stor.e the
components of a rel-ation, Tl¡e pages ftay be nov€d from one

l-ocaticn ta another {uit}rin cr betsee{ì data sets) and it is
the responsibility cf the device system to be abre to f j-nd a

particular page. The storage systeui nanipulates the tuples
r¡ithj-n a pag'e. pages are re trieved by the device system and

the storage systen extnacts the reguired. tuples from the
pag€" The storage system alsc attenpts t.o ininimize problems

€ncountered *hen a rel-ation nust be rolLed back to :lts state
at an earlier time by maintaining ccpies of the tuples in

24
i!¿r:i:;:=

Ðat a-l{anagement Sysrt.ems

i.'' '" :

Chapter 1

the relation. The access-path system is used to deternine
r+here tuples tiitb a given set at cbaracteristics are stored.
Access paths themselves ccnsist of tuples which are manipu-

lated by the storage system. The access- pat.h syste n is
designetl sc that access paths can be created, nodified, and

deleted as €asily as possÍble r¡ithout hav.i-ng to change cther
portions cf the systeur. the retrieval system is the
inter.tace through Hbich requests are made by users tc the
data-flanagetu€ nt systen. å, si-mple data-manipuJ-ation J_anguage

{DIrL} uhich permi-ts usêrs to acc€ss t,uples associa tively
instead ot by lccation is def ined. The ret.rie val syst.em

ar"so determines how a particutar r€quest can be satj_sfied
ef fj-cie rtly using the currentJ-y avail-abl-e acces-c paths.

.ì:: jr :::
i:! ..,

Ðata-$anagenenÈ Systems 25

Chapter 2

!!spJeg- ?¿__! e sise- ÞrËlea

2.j-I¿J¡gd!g!¿on

TÐ tliis chapterr $ê deveSop the d.evice system of the
data-manageflent system. This subsystem reads and wriÈes the
pages used by t.he storage systen. The device system

manipulates pages uhich nay be distributed over data sets
and devices s¡ith differS.ng characteristics"

2.2 Device Systen
D_-____--=

The device syst.em nanipurates pag€s in data sets stored
on seccndary- stcrage devices. fihen requested, the devåce

systen reads a pag€ into main neftory where it can be

nanipulated by the storage system. pages atre stored. i n inain

menory in a *buf,fer poolrrr â[r ar€a of main mencry reserved
by the device system tor Fages. Normalry, a buffer pool i_s

rarge enough to contaån many pagês at a given time. fíhen

the storage system requests a Fage' Èhe device system first
determi-nes ü¡hether or not the page is already i¡ the buffer
pool. rf the page is not in the buffer pool and all- ol the
available rccatlcns in the huffer pool are being used" the
device systeft :remÐves one af the Fages from the buËfer pool
to make rocm f or the re1¡uirerl Fage. Normally, the page in
the buff,er poor that has been least recently used i.s
selected for replacem€nt, rf the page has been nodified n ít

Ðevice SysÈem 26

Chapter 2

is written hack to the corr€spcndi-ng data set before the neil

page is read. {Thus, a pag€ that is ncdified by the s'torage

system is r¡ot necessaril-y saved immediately; it is saved

when its locati.on in the buffer pool is needed for another
page.) The device system us€s a comnon buffer poor for all
data sets Èhat are rìrrr€nt1y active. By sharing the
buf,fer-F"o] locat,ions anong data setsn the nain mÊnory used

by the buffer pocl is util-ized more effi-ciently than íf a

separate buffer pocL is al-Lccated to each data set.

3.. J_ Pa ge_n 9 åÊEÊB ge- gu g 3 eE s

The sÈorag€ system requests pages i-n a relation using a

ttpage reference numbern {pfiN) , The pRN is a nunbe¡ that
uniEuely j-dentifíes a page rithin a relation.

There ar€ manlr page-addressÍng algorithms that can be

used f,or t.he PRN" ÐirecÈ device-addressËs such as the fuLl
disk address {mBÐccBHr}, the relative track aildress {TTR),

and the relatåve record number (RaNl provide fast, access to
the required Fage, HosJev€rn the use of direct addresses has

the di-sadvantage t,hat if a pag€ must be moved, thea alJ_

references tc that page ilust be modified, To avoid having

to modif,y PRNrs" indirect pagê addresses may be used. rf
i¡rdirect addresses ar€ used, the pRN contains a pointer j-nt.o

a list cf di-rect addresses instead of containing the direct
address itself. The l,ist of dj-rect page addresses used by

the device systen is called the *d.evice nanagement tablefl

:: :::.1. I

Ðesice System 27

(DltT). Each entry in the ÐüT

the direct adCress of a pag€.

a fixed length, th'e PBN can be

DIYT. If it j-s necessary tc
the .Dl{T must be changed; t
modified,

Chapter 2

is a fixeri length and contains

Since the DtlT entries are of

used as a subscript into the

aove a page, only the entry in
he PBI{ itself need not be

2:. S-!S v! ge- gÊE ege meg!_!aÞ1ÊE

i^Ihen storing a large relation, it üay be convenient to
spread the pages ovêr severel data sets, For example" pages

vhich are frequentry referenced could be stored on a fast
de vice r¡hile pag€s whi ch ar€ less frequent3.y refe renced

coul-d be stared ctì a sl-ouer device.

rn orrler to indicate vhere a page is stored, .each Ðgr

enÈry must contain not. crly the dj-rect address of the page

wit.hin a data set but arso the *data set reference nunberrl

{DSRN) of the data set cr which the page is stored. The

data set reference nusìber is a ¡:ointer to the description of
the data set ryithio the device system, II page can be moved

lrit,hi-¡r a data set by changing cnly its direct adôress or it
can be moved between data sets by changing the ÐsRN and the

'di-rect address, only the entry in the ÐwIT is modíf ed; t.be

PBN ís never modified. The fcru¡at of, each entry ín the DI{T

is íl-lustrated in figure 2.1.

Ðevice Syst,en 2B

Chapter 2

I DSRN I Pag€ Number I
L--.----.--------l _____J

F igrre 2. 1 ÐI1T Intry Forma t

ïn a cata-managenent system, a page nay temporarily be

stored in seve¡aL different lccations. For examplen a pag€

üay be pe.rmanently stored on a slo¡l device, but, when t.he

pagê is referenced, the device systein nay temporarily
usl¿gatr the pagÊ to an i¡termediate" faster device. The

page may th.en be copied to the raí¡ memory buffer poo1. rf
the paE€ is moditj-ed and then removed from the buffer pool,
it is uritten back to the i-ntermedj-at.e device, The page is
copi-ecl back to the onì-gina1 dcvice w hen it, j-s no lcnger
require d' rn order to suppcrt such a rnigration of pages,

the device systen permits entries in the {permanent} Ðt{T Èo

point to temForary ÐMT rs. the ÐsRN in the perüanent Ðt{T

entry j-dentifÍes the tenporary Ð[îT and the direct address in
the p€rnanent Ðü? eniry is a pointer into the t€inporary Dmt.

figure 2.2 illustrates hol¡ the entry i-n a perrnan€nt DtÍT can

point tc an entry in a tenporary Ðt{T which can point to an

entry in a rcther tem¡;orary Ðl,trT, Thusn the current rocaticn
of the page being referenced is {415).

:.f-:-:

i.''
I::

Ðev.i-ce System 29

f,'...-_1,,.:.: :,1

Cbapter 2

PR }I
I
I
v

I I 2r3 I I . . . I
t ---_.--L __T__ I___._t_ __ __ ____J

I
I
L------¡

I

I
v

I I I 3"1 | . . i I
L--_-1,-___ | _T*_.¡-_.-__-____J

I
I

--l

I

I
V

| 4r5 I I | . r . I
L--t--I___--Å____ I _____-_____J

I

I
v

Current locat'ion

figure 2,2 Iiierarchy of Dt{Trs

The entrr .iÈ the tenporary ÐÌir contains the current
rocation of the page. This current rocation is either an

actual lccation (direct address) or a pcinter into another

Èemporary DIET. rn addition tc the current location of a

i.¡.'1¡,'''.':page, each temporary Ðl'1T entry must alsc contain the value '::::'':ì1'

that r¿as criginally in the Fertnanent DMT entry. .alson j-n

orüer tc be abLe to removÊ a tenporary DHT entryn each , , ,

Device System 30

Chapter 2

tenporary Ð.t']i? entry must contain a back poi-nter to t.he

corfespond.ing ÐI'1T entry that pcints to the current entry,
rf a -back link is nct includrd, then all active Dl{l'f s must

be searched fcr the refer€nc€ tc the ÐfiT entry to be
.,,,,.,,;,.,

,

ðeleted' Figure 2,3 ilrustrates the fornat of eactr tem- :' ::

porarl¡ DIET entry. The ìack 1ink, previous yalue, and

curreilt value all contain a ÐsgN and direct address.
, ,

l.:,j..: ì.. : ì:,ì,,,::

-.T----------T--
I Bàck l Preyious I Curr€nt I
I Link I I.ocation I Location I

, L_ _._¿_-________r_________J

Figure 2.3 T€mporary Ðt{t Entry

The us€ of tênporary ÐHTfs removes the need for special
buffer-pcor tables;, t,he tuf f er pool can le vj.eved as a

temporary iiata set " fihen the de vice system $oy€s a pagÊ to
the buff er pool, it moclifies t,he pointer in th.e correspoad-
ing ÐI{T to pcint to the buffer-pocl Dur. tühen it, is
necêssary to purge a pag€ frcn the .buf f er pool, the page {if
urodified) is written bacJ< to the locatíon specified in the
current DHT ent¡y, and the criginar Ðll? entry is changed to
point tc the oe¡l lccati-on"

2.5 Physical Becords

rn order to reduce the ccmprexity of the storage
systen, all pages in a reration are the same size. Houever,

the page size chosen tor a relation may not be optimal for

l.:::-.:-i:::ì

Ðevice System 31 i ,. ,,
.-it..r¡.:1.r,;

Chapter 2

al1 devices oû whj-ctr the tagês may be st.ored. To ov€rcone

this prcblen" the device systeü can break up a paEe into one

cr nore physicaJ- r€cords to prov.ide better space utilÍzation
on a particular device. These ¡ortions of a paqe are stored
contiquously on the d.evice so tbat they can be processed ir
one l/o cperation. Figure 2.4 illustrates ho¡r a page can be

vi-ewed by the device systeur as consisting of two ph Ts¿cal

records.

IFGI
L---¡---J

I

I

ir-------¡--------r
I

I

f----l----¡
I PR1 I
L----_-_J

I
I

t----t---]
lPRzl
{---_

-_-
t

Fígure 2.4 Segmenting a page

If, the page size for ã relation is smalln 'the devj-ce

system may store several pages in each physical- record in
order to increas,e the ¡umbcr of pages that can be stored on

a particular device. s'igure 2.5.i-rlustrates hov a ptrysi.cal

record (an be vie¡{ctl by t}re device system as cor¡taining tuo
pages,

Ðevice Syst.en 32

a,: .:'a.

Chapten 2

-aI
lPclllÐG2l
!-___ tr_--l L___T___J

I

I
L----___T_____ J

I

I

r--L----r
lpHl
l------_J

figure 2,5 Segmentiîg a Fhysical Record

rhis technigue far t.he efficj-ent utilization of device ,spac€

is an extension cf tl'¡e techniqu,e useil in rBI{f s vsåi'i ITBü?7].

I

Device System 33 .,.,.r¡ì

Chapter 3

cþ ap!eE -l:._ -Ë!95age_ff stg m

L-1.-IÐ!ssgggËiBg

rn this chapterr s€ develop the storag€ system cf the

data-nanagenent systen. This syst€m manipulates the tuples
in a Fage. First, ce exanine the facilities that the

storage systen shoulð provide. lle then descríbe a storage
structure rhich can be used to prcvide these facilities,

3.?_ S!SIegS:Þ"t g gç tg E e _ p rppe E r¿g5

rn thi-s section, Ír'€ descråbe some of the properties He

uoulil l-ike tc see in a strrage structure. Tl¡ese prope¡ties
descrii¡e ideal storage structures r¡hich it may not be

possi-b1e to imprernent ccmpletely, but they give us a

stanrlard .rhich can be used to .evaLuate cther structures,
Th€ amount af secor:dary stonage used to store a

relaticn shculd be mininized i-n o¡d+r to decrease the nunber

of pag€s accessad while processing reguests. However, it is
oft.en n€cessary to increase the amount of secondary storage

used in order t.o decrease th€ response tine for on-line
applications. For exampJ-e, adding índexes {as descríbed in
chapter 4) reEuires extra storage but reduces the tctal
number of page acc€ss€s. l{evetrtheless, when data bases are

large, the cost of storing the dat,a is a najor considera-
tion" ûne of the goals of the storage system is to reduce

i.':l

Storage Systen 34

lf-:aL:,-r':tr-'

Chapter 3

the ancunt cf unused spacÊ on each page thereby reducinq the
amount of s,econdary stÐrag€ spac€ and increasing the amcunt

of dat.a transferred in each Fag€.

Tùere shoulil be no {or li-ttJ-e } redundant data in order
to avoid consistency probleæs nhen modifying tuples, gor

exanp3-e, if the data ¡shi-ch desc¡ile a student are dup-l_icated

in severar tup3-es, tfien the RDEus nust reflect. the changes

nade to cne tuple i-n the other duplicate tuples. lhis oft,en

requl-res extra pointers to link tt¡e dupJ-icate tup3_es togeth-
€r (as itrustratecl by rHs in its support of logical data

bases by "physicar pairing¡i I rBH?r+cl) whích adds another
level of co mplexity 'ao the storage system, R€ducj-ng the
amcunt af redundant data alsc decreases thè amount of
secondary storage required tc stcre the relation.

J. 3_Es¡ le_J_de¡! iÉ iSt_E E q¡ E g rie s

Tn order to pernit the storage system to access tlre
tuples in each relation, each tuple is assigned an inte¡na1
identif ier or address called a ntuple ide¡rtifiern (TTD). TIe

no$ examine scme of the propertj_es that He '*ould like TtrDrs

to hav€. These prcpertj-es ar€ ideals and it. may nct be

possible tp satity all prope rti-es at once.

rn order to be able ta procÊss tuples efficientl-y, the
TrÐ shouLd jndj-cat.e where {if cnly approximatet y} the tuple
is sÈored physi-cally. rf an index is regui-red in t.he

mappíng betreen a TTÐ aad its lccation, then not only nust

35Storage System

,1,_--.4+..: \;'r

Cha pt,er 3

the lndex be searched each t
but the index nust also be

maintained.

ine that a tuple is retrieved

created, retrieved, and

The TTD should not bind the t.uple to a fj-xed tocation
if, ¡íe are tc permi-t relaticns to change over a peri_od of
time. Scme DBIISts, such as IES and TOTÀL, use ident.ifiers
shj-ch specif,y the exact pbysical lccation of dat,a ir¡ the

data bas€" ilhen physical identifiers are used, it is not

possible to reorganize portions of the data base j-n order Èo

mê€t perfor,mance standards.

Às long as a tuple remains in a relation, LLs T,ID

should ¡ot change. As ¡r€ sha13. shory in Chapter t+r the ?ID

of a tuple may be stored in ilany access paths. If we perm5_t

a tuple I s TID to change, then alJ. occurrèDce*s of that Tf Ð

must also be changed. trfi crder to avoj_d the probLems

created by changi-ng a TID, the TIÐ of each tuple shoul-d not

he changed as Lcng as the tup1e renains 5-n its relation"
Ànother tlesired propert.y of the TID is that for al_L

tuples í anri j in a relation, if pI(Eyí < pKEyj then

1IÐÍ < TIDj {where PKEY is tbe prinary key of a tuple},
This praperty of TIÐs can lc used to reduce the number of

tupJ-es that nust be examined *hen processlng complex queries

involving the prS-mary key. If the TIDfs arè ordered in the

sam€ nanner as the prj-rnary keys, then a gu€ry that involves

a range cf, primarl keys can ie reduced to the sinpler, but

36Storage System

Chapter 3

eEuivalent, query invclving TIÐs.

3,.!-Igple-gEgeE¿ns

There are three tas,íc nethcds that can be used to order
tuples i-n a ¡elation¡ sorted ordering, hashed ordering, and

chrcnclcgical ordering" sorted ord.ering inyolves storíng
Èuples irr priurary-key order. åc"ess to tuples hy primary
key ncrmally i.svoLves the üse of a directory {whicb is
dj-scussed in Chapter 4) . Sc¡ted orderi_ng permits the
sequential processing of a reLaticn in asceniling order of
prì-nary ìcey. Hashed ordering involves performing a trans-
formaticn cn the priraary key using a hashing function in
order to determi-ne the positicn of a tuple, The major
advantaçe of hashing ås that access by primary key does ¡rot
invol-ve the use of a di-rectory; àcrever, while the re-Lation
can be processed seguential3.y, the tuples are not returned
in ascending crder of primary key, Also" it the hashing
f,uncticn dces nct distribute the tuples unifornly over t,he

space available fcr Èhe relaticn, then st,orage space nay be

allocated but aot us€d" chronclcgicar ordering invclv,es
storing each nerd tuple at the er¿d of the reLation, This
netboð distribu'tes tup.Les uniformly over the avail_aì1e sFace

idith nc unused sFac€, but, again, tupJ_es can not be

processed s€gu€ntia3.ly in primary-key crd.er.

Ïle shall assume that the tuples in most relations ar€
stored in sc¡ted order. By chocsing the primarT key visery,

St.orage Systern 3?

ì:: ì

iri

,t:i

Chapter 3

it is possibJ-e to rcduce or eliæinate the sorting cf tup3-es

before they are seturned tc the user, Another reasoa for
storing tuples i-n sÐrt€d order ís to permit a guery

optimizer to reduce the scop€ of queries" when evaluatíng
complex queries ¡shich can not be resolveð witho¡-lt. scanning a

relaticn, it the query i-nvclves the primary key, then a

guery optinj-zer can reduce tl¡e scope of tbe scan to the
subset, of the reLation ånvclvi-ng the lequj_red priarary keys,

as is shonn in chapter 4, the r¡se of sortecl ordering
êl-so caìrses a reducti-on in the sise of an associatcd
prinary-key di.rect.ory. Ànd " because the directory is smal_l_-

€Er f ewer page acc€ss€s are reguired ¡irhile processing the
directc ry.

A final point in favour of sorted cråering 'is that the

r¡umber of pag€ acc€ss€s is re ôuced if a query invo l ves a

pnlmary-key frlocarity of, referenc€r. : rf requests invcrye
tuples with såmiIar prj-mary keys then the number of page

access€s reguired to process the rÊqllest is reduced since
the tuples reside on the sam€ cr nearby pages.

rn order ta provid.e a gen€ral storag€ system, the r¡ser

shouldn bovever, be peruritted tc use hashed or chronorogi_cal

orderi-ng. Existing ÐB.t{s f s us€ various conbinations of
ordering, lor exanplen ÀÐaBAS and zlrÀ use chronological
ordering *hile TorAt and xrü use hashed ordering. sone

systems such as rss and TNGRES provid.e both sorted and

: !!..

l:t i:,:i:
38StoragÈ System

Chapter 3

hashe d crderi. ng.

3," 5-Egrle-ggrLnet

rn -this and the f ollcwing secti-ons, ue i-ndicate ho u the

st.orage systen nanipulates tuples in order to provide t.he

properti-es described earlier.
The format of tuples in Èhe storage systen i-s very

simple: each tupJ-e contains a prefix and a data portion.
The tupre prefix contains tbe TrD of the tuple and various
status iuöicators, The data porticn of each tupre contains
the attribute values of the tuBre. {ln Appendix r, u€

j-ndicat-e hoc the varicì¡s pcrti-cns of a tuple can be stored
efficiently,)

T}le st,atus indicators in the tuple prefix are used to
indàcate the va.rious sÈates cf the t.up1e. Trüo of, the states
t.hat a tuple can have are: active, deleted, Âs is
indicated l-aÈer in this crrapter, uhen a tupl-e is deleted it
may aot aluays be possible to r€acve i-t inmediate.l-y f,rom rts
re lati-sn. Ilntit a t,uple can be physicalry deleted, the
status indicator is used tc nark the tup-l_e\ as being

logicaS-ly de-l-eted. The other sÈates can be used to indicate
that a tuple was insertedn updated, etc., and. are drscussed

l-ater in this chapter.

The attribute values in each tuple are allrays si.o¡ed in
the sane order; ho*evec, the stonage systen returns the
attrihuÈe values i-n the order specified by the user. Thus,

39
i.,.,rrr

i:r:':;
r't-::__':.

Storage System

Chapter 3

the user need not be a¡*arc of t.he physical ordering of the

att¡ibute values in a stored tupLe,

Since the TIÐ is not ta binå a tuple to a physical
locaticn, the pRtE caÐ not be used as the TrD" The primary

key ís not chosen to be the TrD because a¡ index j-s reguj.red

to deternine tbe physical lccatj-on of èhe èupl_e witb a given

primary key $itbin a rel-ation. tf tupi_es are assj-gned

seguence numbers as they are inserted, then the TrÐ does not
bind the tuple to a physicaL location" Holsever, these TrÐ rs

do not refl-ect. the prinary-key order. rf the tuples are
sonted before being inserted inta a relationn then the
sequence nunbers do refxect the priruary.-key ord.êr. ftÐüever,

when a tuple j-s inserteil af ter the relation is ini-tialry
created, some of ti¡e tupies mu st be regumbered., This
vi-orates the property that rfDrs shoutd not be changed,

rf the TTÐ consists of tuo parts: an original sèquenc€

number {or tuple nunber) and aD insert number, the prcblens

åescribed atove are elimi¡ated, The tupte number is
assigned to tup].es inserted wt¡en the ¡elat.ion .is created.
These tupJ-es must be ordered by prinary key before they ar€
inserted. Fûr these t.up.Ies, the iasert number is zero and

the tupJ.e number is assigned sequentially begì-nning at on€¡

I{hen a tupre is inserted at a Later tine and it.s prì-mary }rey

is grea'ter than tbe key of the tuple with Tru {n" 0) .but íts
key is]ess than the key of the tupte with TID {n+1.0} r then

Storage System 40

t-)".: x !

the neç tuple is ass.i-gned a TrÐ of {n.m) uhere m } 0"

schene is siuilar to that use d in I{Àì\îTES I rERcTsal

the Ðev€y d,ecinal no+uation I KNüT?5]. rf He assuüìe

there is no limit on the number of tuples that
insertedn ther¡ the TrÐ satisfies our basic properties
method af storing such TrÐrs is presented in Appendlx

Chapt.er 3

This

and to

that

can be

. {å

r.)

3. 6 l{a r rinq te_ghJgigÊl ggg€
--______tu____=3€SJ;

!f€ now exanine the process of deterurining a tupler s

physical lccation using the TrD. ffe shall consider it
suffícient if the nunber of the page on which a tupre
resi-des can be deternined; cnc€ a page is moyed to mai-n

me mory' it can be searched very quick3-y f,or the desired
tu p3-e.

CIne nethod useô to deternine the physicar Fag€ Õn uhich
a tuple resides is to marntaj.n a der¡se inilex of TrDrs and

their associated pages. {å dense index of TIDrs is an index
Ín vhich there is an index entry for each uniEue Tï0. a

non-d.ense i-ndex of . TrDrs contains i_nd,ex entries for on3_y

son€ of the TrDrs.) This E€thad has the advantage that all
or part of a relati-cn can b€ reorganizeil; only the index
nusÈ bc changed to reflect the n€û locatians of the tupJ.es.
Thi-s sche ne is used gui-te --uccessf ully in AÐaBAs I soFT?4],
A second advantage of, using a dense TrD index is that as

tuple-usage patterns eü€rg€, tuples that are freguently
accessed tcgether can be stored o$ the same page. such a

Storage System 41

Chapter 3

scheme has been examined by trtoffer I HOf f75],
The major disadvantage cf using a dense TrD index i_s

that it requires a J-arge ¡umber .of pag€ accesses to process

the index before tuples can be processed. For example, if
approxi*ately 1û00 page nuu,bers can be stored, in each index
pag€ and there are N tuples in a relaticn, then N/'1000 FagÊs

ar€ reguired to store the index. rn a relatíon with seyeral_

millj-on tupres, the size of sucl¡ an index is prohibitively
large' rf a relation is proc€ssed randcmLy, the numbe ¡ of
index-pag€ accesses nay apFroach the number of data-page
accesses.

The methcd used i-n the storaqe system to map Tf D rs to
pages is to include a trlogica3- page nirmber* in the TrÐ, Â

roqical page number is a nu¡¡be¡ that is assigned sequential-
1y, begj-nning at on€, .by th€ stoEage syste!û t.o each *lcgical
pagetf as the reLatíon is createä. The TIÐ becomes

{3-ogical-page numhern tupre ¡umber.inserà nu*ber)

lshere the'tuple number is the tuple segì.!êrice nurnber ,withj-n a

page instead of r¿ithin the e ntire relation. This t ype of
TrD is an exteasion of the TrD used in rNcaES I sroNz6] and

in System R I asrR?6]. since]re assume that tupl-€s are
initially loaded in ascending crder of prinary key, the TTD

ref lect s the prirnarl- key order.
For r€asons tqhich ar€,explained tater in this chapter,

the PRN is not used as the .3-cgical pag€ number. i{o uever,

liì;r: ì.::
l?-: ;l':
:: .. :ì.

I,:,. .'.'l

i..¿fu.i,.:

I

42Storage Systen

Chapter 3

sínce the PRN i-s reguired 'in crder to be able to access a

pagêr the storage systen naintains a rstorage nanagement

tabler' {sur} r¿hich co¡¡taias the pRN of each J_ogical Fage,
The sI{T contains an entry fcr each logical page in a

relaticn' Tn the fol-loÐing secti-ons, additional- informatj_on
is added to each entry 5.n the SUT,

Ti¡is TrD reflects tbe primary-key ordering hut it
vj-olates the property that. no extra page access€s be

requi-re d when retrie vi-ng a t,uple since the sl,lr m ust be

accessecl. flÐ$e?êr, the sI{T rs are sualL compare d with the
numher cf tuples that can be ref,erenced since each entry in
t.he si'tr detincs the lccati.cn of alr t.uples in a page.

3.7 Loqical Paoes

.à oajor prohlem r¿ith incruüi-ng a pagÊ number in thê TrD

is that at scne |.ine, there ryill probably be too many tup-l_es

to fít cn the page to 'whicb they have been assigned. Àt
that lirue, it would be convsnient to be able to increase t.he

size cf the page, but it is nornally ¡at possibi-e to extend
a physical- Fag€ oac€ tåe data set. is crea,ted, To get around

this psoblemn if a {logicaJ-) page is toc 3_arge to be stored
Ðn one physical pager the storage system splits the lcgi.cal
page j-nto' ¡rLc9ica1 pagÊ segmentsrr r¿hich are stored o¡
physíca1 pag€s, The tuples w-'!.thin a logical pag€ are
orrlered by TrÐ so that the tuples uithin and among logical-
page segments arê properly crdered" rn orf,et to avoid extra

Storage Systen 43

: 4""+-..tn*;*s¿l¿slit¿,:i$j;.ìi;4j

thapter 3

ï/o reguests {as ar€ regui¡ed in rNcREs and. systen ts) rhen

accessing the segment.s of a logical pa9€r the eatry 1-cr a

J-ogica.?. pag€ in the storage-managenent tables is nodj_fied to
poi'nt to a list of special logical-page-segment ent¡ies,
Each spe cial entry contai¡s a pffN and the maxim¡:m TrÐ that
is i-n the segment on that physical- page. Thus, by noûifyiag
onry the stocage-managenent taLles, the storage systen can

extend a logical FagÊ to an1 size. As long as the TTD of
the desined Èu¡;Ie is kncr*n, onry one data r/o request is
required to finil the seguent rü which the tuple is stored"

À few entries at the e¡d sf each sf{T page are left
empty for use l¡hen a logical page is split into t.uo or more

segments. Ey st.oring the split-page entríes on the sam€ sMT

pag€ as tbc orig.inal sI{T entr I, extra Sut-page accesses are
not requíred ¡*hen processiug a spLit l-ogical page.

The st,orage system allccates space for a logical pag€

only whcn the space is required. If a logical page is
small, then the logica3- pag€ is stored on the sam€ physical
page as other snall logi-cat ¡;ages. Th us, the storage system

attempts to mir¡in.ize the nunber o physical pages on shj.ctr a
relation is stored and. t€ naxiroize the amount. of data

transferred. duri-ng each f/û request.
i :: ,:;

44Storage System

Chapter 3

The format of each physical page is shc¡En in Figure
3. 'l ,

I Pag€ Ccntral. Information It------- ------{
Logical Page +1

logical Page #2

l------ ____-_t
I Frêe Space It------
I togical page Index I
L----.--- _____l

Figure 3.1 Physical Fage Fornat

At the beginning of a physical Fage i-s a small amou¡rt of
page ccntral informatj-on. Thê page control infornation
contains system infor¡nation such as the number of logical
pages in the physicar Fag€. Follcwing the page control
infornation are the logíca1 pages, The standa¡d method of
allocating free space is to store the f,ree space eithe¡ at
the end of each logical page or at the end of the physical
page. Ho¡dever, son€ logical pages, after the 'initial
changes, fiêy not bc modifj.ed sc the free space allocated to
tbem is çasted. r'f the free space is stored at the entl of
the physicar Bage instead.cf at tl¡e end of each logical

Storage System I+5 ,,,.,,:.,,.,...

Chapter 3

Page' it can be sha¡ed by al-l lcaical pages Ì-n the physical
page. Hol¿eïer, when t.uples are moved si-thin a pag=" all
l-olIowi-ng lcgical pages must a lso be moved, Tn order to
reducc the ar'ount of data ücrement r¡ithin a page, the
storage system keeps a smaLl amount of free space tlithin
each logical pag€ anü the remainder of the free space at the
end of 'each physical pag€N Thusr â smal-l nnnber of changes

can be macle to a J-ogical page rithout havi_ng to move the
otber lcgical pages, lfhen the free space r¿it.hin a rogíca1
pag€ is exhausted, sone ertra free space is nade available
from the phlsical-paEê free-space area. rf there is nc free
spac€ at the end of thc physical page, the storage system

atÈempts to .find some by taking f,ree space f,ron the cther
tr-ogical Fag€s in the physical Fage.

The ì-ogical_ page index at th€ end of, a physical Fag€
'identifies aach of the lcgicar çages ,in the physical pag€

and contains the di-splacem,ent of the logical page r,¡ithin the
physical pag€. trn crder to determine where a tuple is
stored. on a physicaì- pagêr the logical page index .is
searched to determine t.he pcsiticn o'f the logical pag€ and

then the logÍcar page itsel-f i-s searched for the tupre,

46

i a.:.;i, ì: rr::ì

,i: :.: :.

StÐrage System

Chapter 3

The fcrrnat of a log:i_cal page is shaun in

------1I Page Control Inforuration I
l------- ------{

Fi-gure 3,2.

Tuples

-----{
II free Space

I Tu¡:Ie fndex
L----_-_

Fi.gure 3.2 .lcAic al-Page Format

Àt Èhe begÍnning of, each logical page is a small amÐunt cf
page ccntrcl- infcrnation tshjch ccnt,ains information such as

the ancunt of free space j-n tiie logical page. T-he tuples in
tbe logical page ac€ stcred in ascending order of TrÐ

forlouJ-ng the pag€ contrcl informatÍon. Foltowing the
tuples is the free space fo.r the lcgical page and follcwing
th€ free space ís a rttuple indËxrr" The t.uple index is used

to rçduce the Èime required to fj-nd. a tuple i-n a page" Tl¡e

tup3-e index ccntains pairs of, TrD I s and point.ers: the
pointer contains the displacement uithin the rogicar page of
a group of 5-10 tuples; the TrÐ is the larqest TrÐ i.n the
group of tuçles. I'hus, the tuple index is a non-d.ense index
into the tuples in a logi-ca3- page. The tuple index takes up

little rccn ccmpareil ¡¡Íth the nunber of l: ytes of d.ata in a

logical Fag€.

47St.orage System

Ctrapter 3

Tuples aEe inserted intc a logical page in asc€nding

orðer by TtrD' Tbus, inserting a tuple causes the tuples
wi-th higher TrÐrs to be noved touards the end of the page

anrl deletj-ng a tuple causÊs the tuples r¿j-th higher TrÐrs to
be moved tcwards the beginning of the page, rnsertj_ons and

deleticns also cause the tuple inilex to be modified. The

free-space ar€a at the errd of the Ìogical page contracts or

ex ¡lands as tupres ar€ i-nserted or deleted. Horev€E, all
pointers rithin a logic'al page are displ-acenents from the
begi-nning of the 3-ogicar page, not from the begi-nreing cf the
physical pag€" Thusn a logical page can be moved without
having to change any of the pcj-nters r¡ithin the page; only

the pointer i-n the logical--Fage j-nclex is changed.

Tf a rel-ation is stored uslng hashed ordering, thË use

of lcaiôa1 pages provides a natural- method for resclving
collisicns. The hashÍng funct'icn generates the logical pag€

¡rumber for eacb tuple and the storaqe system o¡ders the
Èuples by primary key r+ithin the loq.ical page. {By ordering
the tupres by primary key *ithio a 3-ogical pagê, Êv€n though

the tuples aE€ nat orde red çitl-rin the relation, the time

reEuired to fj-nd a tuple in a pag€ is reduced.) rf f,eu

tuples are s'tored in a lcaical pag€, storage space is not
.üasÈed by alì-ocatin g an entire çhysical page to the -Logicar

page; instead, tbe st.orage system stores several s nal1

logical pages in the same physical page. The storage system

lr' l'

Storage Syst.em t*8

Chapter 3

does not allccate spac€ for a lcgicaJ- page until tuples are

stored j-n th€ pagê so the hashiag f uncticn ûoes not. have ta

distribute tupJ.es aser a.l-1 pcssible logical pages,

3.Ë-!gigte¡¡
Tle storage sysÈam pernits the use¡ to define not only

¡¡ormal dcmai¡s in a tuple but also flpoJ-nter öomain srr . A

point.er dcmain is a domain rhích ccntains a pointer {Tf D} t.o

another tuple" A pointer dcmair¡ is used. to províde fast

low-.l-evel access to asscci-ateü t.uples. The us€r of the

systen is not ardare of t.he existance of pointer dcmains

since tley ar€ a performanc€-criented. feature"

If a domain is def,ined as a pointer, then the storage

system, if, reguested, retrie ves bot.h the primary tupl e and

any suhordinate tuples and then concatenates the tuples.

For example, the tu¡tle structure

pri-nary: R1 (Ð 1n Tf Ð, Ð4, Ð5)

v
secon dary: n2 {Ð2 " D3)

caüses the tuple g1 {D1, Ð2, Ð,3, 04, Ð5) to be returnecl to

the user. The prccess of retrieving subordj-nate tuples is

recursive: onê subordinate t.upLe can poi-nt to another

subordinate tupJ.e. ff such a composite tuple is to be

modj-fiedn the storage system saves the TIÐrs of all- subor-

i'r:t ,: .'
r i:i l'.:l

i:::: 'r:.i'

Storage Systen 49
!ir.l¿-{::].=ri

Ili::':l

Chapter 3

dj-nate tuples 'in order tc be able to make the necêssary

changes to the cûnFonÊnt tuples efficíently.
ân iutenesting consÊguence of usi-ng a pointer in the

data portion cf a tupJ-e j-s thaÈ a relat.ion can be splåt intc
tr¡c or more parts vithout the userf s being a¡Èare of the
split. ?hi-s technigue is propos€d by severance JsEVn?6b1.

3or exanple" j.n o¡der ta increase the number of tuples that
caa be stoccal on a Fagên each tuple ia a relatíon could be

sp15-t into tuo palts, The tirst part of each tupl€ co$tains
the dcnains af the tupl-e that ar€ nost f reguently used ptus

the TrÐ of the second part cf the tuple, trühen a tuple is
access€d, if crly the fj-rst Fart of, the tuple is required,
then the primary tuple is returned to the usèr. rf both

parts arÈ reEuired, the cortresponding secondary tupl_e is
also re trie ved autcmatically by the s"torage systen. F or

example, in the student relaticn, the studeatrs previous
acad,emåc history is not needed during mcst process5-ng of the
relaticn. Thus, 1t could reasonably be stored. in a second

relaticn and retriered cnly when necessary. The storage
system makes this division of the relation invisible to the

user; each user speciti-es the domains reguired for his
processì-ng ar¡d the storag€ syste m ret¡ievës tbe secondary

information when n€cessary.

Pcínter domains can also b.c used to replace key dcmains

in order to provide faster access to associated tupLes,

50Storage System

Chapter 3

This t€chnique uas first proposed by Tsichritzis Irsrc?4]

and I tsrc?sl. HowerJer" ilie repl-acement. of, a key by a

pointer must not be visible tc the user. Thus, if the user

acc€ss€s the key dcmain, the storage syst.em must alsc
¡etrieve the associated tupre in crder to matce the key value

availa,ble. rf sufficrent. spac€ is availabJ_e, both the key

va-Lue and the equivalent pointer value could be stored in
each tuple.

!:. 9_ Eås E_eiÌ-Ë,_ggÐ-F ¿ 3es

ïn orden to guarantee tbe incegrity of a relation as

changes are made to it, tl¡e tuples in a relatåon arê stored
in two fileç" llheÐ a relat.ion is initialty loaded {or l¡hen

it is reorganized) al-l tuples are placeð in a fij-e called
the 'BÀsFrt fi-Je. This få1e {except duríng a rÊÐrganization
of the rel-ation) 1s nev'€r modif,i-ed. Tthen a tuple is
moúified, the moditied version cf tbe tupre is stored in a

second f ile, called a 'rl{oDn file" Ðhen a tuple is inse¡ted
after the relation i-s creat,ed, iL is also placed in the gtÐ

fj-l-e; flhen a tuple is deleted, a copy of, the tuple is
placed in the I'!CID fiLe and its status j-ndicator is set to
indicate that the tuple j-s lcgicatr-ly dereted. rt is the
responsibility of the storage system to be able to find a

Èuple r€gardless of which file it is stored in, The user of
the relation need. not be auar€ that the tuples are stored in
t¡¡o f i-les: the storage sÏstem makes 5_t appear as though

t....t...-.' ..:.... : : : ::\

Storage Syst,em 51

Cha pter 3

only one file is used to store the tuples.

The BåsE and t{oD fite ccncept is very powerful and has

been examj-ned recently by s€verance IsEVE76a J. The tr¡o
major ar€as ¡¡here uoÐ files simçlify t,he worl< of the RDBiqs

are in the maintenance cf systern integrity and in the
managenent of free space.

ûne of tbe majcr prcblems facing the designers of
ÐBllsrs is keeping the dat.a j-n a data base secure from both

system f ailures anil progra ru,ing errÐ.rs. rn order to nini-
ni-ze the time required to recover f rom a f ailqÐê r urost

DBIYSTS provide both a backup f acility to create a copy of
the co¡tents cf a data base at a gi-ven tine anô a l-ogging

f,acility to urj-te a copy of all changes naðe to the data

^base cn a journar tile, To r€create a data base, the backup

file and the -iournal fi1.e are nerqed to produce an up-to-
date ccpy ot the data base. creating a backup copy of a

lange data base can be v€ry expensive due to the numfte¡ of
r/t requests. Àlso, üsers nust ncrnarly be locked out of
the data base whiLe it is being backed up; thus, the data

base may not be.avaitablË fcr a substantial period of tine.
Hosever, using ¡ÀsE and ltoÐ files, the backup problem

becornes much mone manaqeabl*. since the BåsE file is n€v€r
nodified, it is necessary to create only one backup copy of
the EASE file {and Èhis copy is nade when the BASE file is
created). The HÐÐ file is similar to the journal fÍre since

;i,:i:r::-
i:ìri;¡:1;

Storage System 52

iäilt::1

Chapter 3

j-t contains changês raad€ to the 'data base aft€r a given

point in time" rf the t{oD f i1e is small compared r¿iÈh t.he

BÀsE f il-e, tben recreating it af Èe¡ a f ai l-ure is not as

great a prcblen as recreating the entire file.
trn adrlition to being able to recreate a data base after

a system failure, it is a3-sc necessary to be abte to r€cûver
data]-ost due to programmíng erroïs, Fotr examp3-e, an

appS.ication prograrnser might accidentarly delete a portion
of a data base" rn a ÐBIts such as rus I rBI{?4c]n the ilata

ar€ physically dereted f¡om the file. flowever, uhen BÀsE

and l{oÐ fil-es are used., the tuples are not physically
deleted; instead, the status indicator is used to narh the

tuples as logically deleted. To restore tuples accidenta]-ry

deLeted, only the status indicators need to be reset,.

The use of floÐ files also makes tbe data base more

secure during the testing phase of a neH operating system or
a ¡teil version of the RÐB:Û15" Tradít j.onally, r+l¡en testing a

prÐgram' it is necessary to create a copy of the data .base

and rtln Ètre test programs aqainst tbe copy. Then, the test
versio¡ and t,he prodrlcti.on version of the data base ar.€

comparetl to €nsur€ that they are the same, Ilolcever, if BASE

and lloD f iles '.r* used, many prograns can share the BAsï

f,ile but maintain different versions of the üoD file. This

process teiluces the amount of du¡lication reguired during

testing. 'lhis techniEue can aL*.o be used to pernít students

:::' ::':
,:;:,r-,:jli:

53Storage Systen

Chapter 3

to share a data base in an educational_ enyiconnent. Each

student has h:-s c$n lloÐ file rut sha¡es the BASE file with
the other students. Tt a student uishes to start again with
tbe origånal data base, he bas crly to create a neî¡, IqoÐ

fi le.

.A' major advantage of BÀsE a¡d ItûÐ f ål_es j_s that si.nce

tbe BASE file j-s never nodified, it is not necessary to
leave any tree spâc€ in it. The ouly free space is left in
the üoÐ file. we assume thaÈ the ratio of the number of
tuples in the I{t¡ file tc the nunbe¡ of tuples in the BASE

file is smal.l so the managerrent of free space becomes uuch

easier.

one of È.he interesting cûnsequences of usi-ng a t{oÐ fj_le
ís tbe €ase wíth which historical åata can be stored, rn
nany ÐB}ISrs {such as rÞts}, a p€rcentage of rti-stributed free
space j-s left in each pag€ when the data base is created.
flouever, rùith hj.sto¡ical data arranged in chronorogical
ard'er, f ree space is necessary only in that part of t.he file
that ccntains data relating tc the current year. Thus , íf a

large percentage of free space is left in each page, much of
the stcrage space allocated to tbe f,ile ís never used; but,
if little free space is ieft" performance suffers when aany

inserticns ar.e made i¡ the pages contaíning the currênt
yearr s data. Houever, when BåsE and uoD fi-]es ar€ used, the
previoüs yearsr data are stcred ån t.he BÀsr file (with no

:{

54Storage System

--_:r,:¡i :ri i :¡j.:':r_"-*:!"i-¿, :¡
l"-:a:fl"i

Chapter 3

.free space) and the current yearr s data arÉ s'tored in the

ltoÐ file whçre free space is automatically maintained. at
the end of each y€ar afte¡ all changes are made to the
current yearr s data" the relatian is reorganj_zed: the

curr'ent. yearrs data are ncved Ínto the BASE file. Th€ next
year's data are then stored in the empty HoÐ . fi.1e. (The

rêorgarìizaticn of a relatíon is dÍscussed l_ate r i n this
chapt er.)

A sonewhat unusual use of, IsoÐ fires is ta support

updating af, seguential tiles. rf a data base is always

¡rrocessed sequentj-a].ly" it is nuch cheaper to st,ore it oû a

tape i¡stead of, a d.j-rect-access storage device, Ðhen

changes are made t.o the data base, they are saved in the floÐ

f,ile. This technigue eliuinates having to rewrite the tape

Ëile far cnly a fer¡ chaages. flhen sufficient changes

accumulate j.n the t{oÐ fi1e, the sÐD file can be nerged ,uith

the tape file tc create a new tape file. '

rf a ¡elation is extrenely vclati1e, it could be stored

entirely in a t{oD file. Thus, the use of â HÐD fite wit.hout

a corresponiling BåSE file provid.es ccnr¡entional access to
the fíle, but the advantages of using bct,h a BASE f,íle and a

t{OÐ f ile ar€ nû longer pnesent.

Th ere do exisÈ t¡¡o disadrantages rdhen BAsn an d t{oÐ

files are used. The first is that r.¡hen a tuple in the BASE

file is modified Ðr deleted, a ccpy of that tupl-e is added

i.¡ . ::. .:

:.11:ììt:i.::
ì::1:t.:::-::

Storage System 55

to the üCD file; thusn extra storage is reguirêd. Nor

this extra stcrage i-s otfset by the reduction in free
requ!-red to stor€ the fiLe using BASE and moÐ f iles,

m a11 y,

sFac e

a more serious prcbren is that us5_ng a goÐ file causes

the number cf pagÊ accesses to increase, I{hen a tuple is
reguested, the storage system does nct knolg +¡hether the
tuple i.s in the ¡{tD f ile or i¡ the BASE file. rf it is
assumed that the tuple i_s j_n the BÂsE fi1e, the tuple
netrieveil may no't be up to üat.e since a nodificd versicn of
it could be in the floÐ f il-e. rf the ¡toÐ f,ire is accessed

first and the t.upte is not there, then an addit.ional- pagÊ

açcess Ís reguired to rÊtrieve the tupJ_e from the BÄsE file"
here ar€ several techniques which can be used to avoíd

ftd.ouble-f i-1€ acc€ss€sn, accessi.ng fí¡sÈ the plcD f ile and

then the EÂsE file t,o retrieve a ¡ecord that is i.n t.be BASE

file. one technigr:e ånvol ves using a dense j_ndex r¡hich
contains the location of ev€ry tuple in a relaticn. The

pointer for each tuple ¡*ould pcint intc the BASE fiLe or
into the IuoD fiLe. Howev€r, tbe use of a dense TïÐ index
T{as êxamined earli-er 'in this chapter and found to re quire
too much seconda¡y storage. severence IsEVE?6a], based on

uork by Blccur J Etûc?0I, descrj-bcs a rrf ilter,J that can be

used to i-ndicate {approximatel-y) in which fil,e a +.uple i.s
stored. The filter ìs a bit naF associated +¡j_th a reration.
rnitially, all the bits in the fil-ter are set tc zero. tlhen

:

Chapter 3

,:::t:n',i
:..:.i .
l:i::: :r

Storage System 56

Chapter 3

a tuple is added to the MoÐ file, its TrÐ is hashed {using
one or more hashing fuûcticns} and the bits in the filter
j-ndicated. by the resurt of the l:ashing tunction ar€ set to
-1r s" Then, wben searching f cr a tuple, its TrÐ is hashe d

and the correspcnding bits in the filter are examinerl. ïf
arl of t.he bits ar€ l nsn then t.he tuple ís probably in the

ltoÐ file' rf .any of the bits are not1ts, then the tu¡rle
musä be j-n thê BASE fi1e" The size on the filter, the type

and number cf hashing functions, and the number of changes

nade to the f ile deternine th e number of 1-bits in tl¡e
filler. As the number of 1-bi-ts ir¡ the f ilter increasËs,
the probability of a ûouble-page access increases" rf the
filter is large enouqh and the hashing functions ar€ uni_form

over t*e filt.er, tben it is ¡:ossj-bre to eriminate nost
doubl-e-file accesses" seï€r€nc€ shows that with a 31zs-byte

f,iLter and three hashing f ur¡cticns, it .is possi tì_e to reduce

the prcbabilit,y af donble-fi-l-e accesses in a file with 10

mi llion tuples to at uorst 0., "l níÈh an average of 0. ü3 3 3.

There are several di-sadvantages to using the filter in
the nethod proposed by sev€r€ric€, The first disadvantage is
that fcr a large cata base, tùe filter may be too large to
'fi-t on one page. This adds aa extra l-evel of complexity ta
thë storage systen ryhich must *eep the filter in main m€mory

$hile a relati-on is being Froc€ssêd. ancther problem irith
the f,ilter is that nod.ifications to a rel-ation are assuned

) i a.a;-,.:..

Storage Systeu 57

Chapter

to be uniform over the entire reration. Hovever, in many

data bases, changes j.nvolve a rìlccality of trefetrencerr" that
ls" t.here ilay be nany changes tc a smaJ-l, contiguous area of
the rlata tase. Tlese changes still af f,ect t be f ilter f or
the eatire relationn and, as flicre changes are nade" the
number of 1-bj-ts .in the fil-ter 5_ncreases, causinqr tire ¡uml:er

of double-fite accesses tc increase. A final problem is
that a rel-aticn can not be partially reorganized. without
recreating the enti-re iil-ter {which wol¡ld rRëan read-ing al_l
$oÐ pages). Irith a rarqe relation, it aay be too , time-
consuming tc reor gan.ize the en tire re lati on at one time ;
instead, the reorganization shaurd be performed page by
page" But' having to recreate the filter after each page

reorganization makes i-t too ex¡:ensive tc perf orm

reÐrgânizaticn,

To avoid these probLems" the storage syst.em na'intains
an individual filter for each lcaical page, since ttrere are
not many tuples per page, tbe filt.er can be quite smalr. By

maintaining a fitter for each page, t.he totaL space reguired
for tbe filter is increased but the f,iIter becomes nuch

easier t.o nanipurate an d changes uade to one page dc not
affect doubre-fil-e accesses û!l any other page. alson it is
possible to perforn a partial reorganízati-on of a relati_an
since cn1y the filters for the recrgani-zed pages must be

trecreated. rn o¡der Èo clininate an extra r-].o request to

a pactial

1-.,,,'

r' :.1

' i:.:

5BStorage System

_Chapter
3

prÐcess the filter, the fålter i-s stored in the storage-
nanagenenÈ tables and is extracted with lhe other sI¡tr

informatÍon for the "request€d page. Each sf{T entry for a

logica3- pagË ccntains the TrÐ fiLter and tryo pBNrs {one pBN

point,s to the associated BåsE päg€; the other ptN points t.o

the asscciated l{0Ð pagê), Figure 3.3 illustrates the use of
tb.e SllT uhen accessing a log5.cal page.

1IÐ
I

I
V

f----T---T - - -.T- - -----lst{rltlll
t.-__L___3T- T I __-___j

F'ilter | | Fi-lter
Bits offl lBits on

L_____ -¡ t _-_______J

BASE Fage HOÐ pag€

Figure 3.3 Àccess to a ï,ogical paEe

L!,.1 -"8 ÀEE: 3êe"e-ge,rs a!

llhen a relation is createil, the tuples ar€ inserted
int.o the BÀsE ¡;ages in ascending crder cf primary key. The '

Storage System 59 ,::: .,;;l

!r I .',

I

I
v

I
I
V

Chapter 3

size of each BASE ìog3-caJ- pag€ isn f or conveni_ence, norual3.y

chosen to be si-ze cf a physical ¡age. Tuples are stored in
each BåsE page until the page can nct hcld any more tuples.
Ât that t.ime, the logical page numbe¡ is i_ncreased by one

and the tuples are stoned in the next BASE page. The onty
f,ree sFacÊ left i.n each pag.e is an anount too snall_ to
perrnit a tuple to be stored in it,

3¿-9:3 _EQ!:P ggS _ F og n.eë

The ¡tÐû fire contains changes made to a relation aftes
the BilsE fi-le was loaded, The storage system sto¡€s as rnany

lloÐ pagês on each physi-cal FagÊ as possibl_e. ¡,rûÐ pages that
are not used ar€ not allocated space; instead, Èhe entry i¡
t.he stcrag€-manag'enent table indÍcates that the uûÐ pag€

does not exist. The st.onage system automatically exÈends a

¡1oÐ pag€ that becomes too rarge to f,it on a physical pag€

and notes tbe l-ocations cf the page segnent,s in the
st. orage-management table.

ås each tuple is pJ-ace d in the uoÐ file, its sta .us

indicatcr is used -to i-ndicate the purpose of the tupre. À

t.up3e\can be mar]<ed as deleted, nodifi-ed, and inserteü {for
Èup1es that ar€ ailded to the rel_ation af t.er the relaticn is
created) " These thsee indicatcr vaLues can be set in any

combination; for exanple, it is possible to mark a tuple as

inserted, then nodÍfied, then deleted. These indicator
val-ues ace used $hen the relation is reorqanized and during

S!,orage System ó0

'- - ---------'l.1jr: i../,4

Chapter 3

t.be .backupTre covery process..

J,!-1.9,-Ðe !ê - E eEs _ Is!esE ilJ
T,te norrr examine addit ional f unctions provicled by the

storage system to €nsur€ that the integri-ty of, data in a

rel-atj-o r is maintained. The ma jor areas of concern are:
recovering a r.eration af tcr the loss of data, restoring a

reration to a pre vJ-ous state {rolì.back} , and naintaining the
relation in a ccnsistent state.

Tc the user, being able to recover lost data is
extremely important" rn the event that data are lost {due

to systen error/f ailurer ?ândatism, etc.) , the RÐBt{s m ust be

able to recreate aa r:p-to-date copy of, the relation.
The restorati-on of a reLatåon to it.s slate at a

previous pci-nt, in time is an easier taslr than having to
[ecover]-ost data" The reasçn for this is t.hat lde assume

t.hat the data ín the reLaticn are cur¡e¡t1y in the corr€ct
format; the on3-y thing requined is to reü¡ove some of the
changes that' have been made tc the rel-at.ion" There are tr,iro

najor n€asûns fo¡ res'toring a ¡el_ation: a user has damag.ed

part cf the relat.ion by perforni.ng changes that Her€ not
correct; a higher-level systen has decided t,hat some changes

nade to the r€laticn must be roll-ed back {possibry cnly
temporarily).

fiaintaining the integrity of a rel-atÍcn is also
extrenely important. shoul.d the ccnputer hardware, operat-

iìì:';

51Storage System

lng system,

Chapter J

or dat.a base management system fail, the RÐBIIS

nust be able tc ¡estorê a ¡elaticn to a consistent st,ate,
that às, the stai.e the relaticn had ei.ther befo¡e a se t of
transactions Ìùas processecl cr af,ter havi_ng ccnplete d the
entire set of transactionst the relation must not be l"eft
with cr:ly scmÊ of the changes nade.

3, 10. 1_Data Base R€coverv___-__-=_

creating a backup copy cf a large relation is normarly
a very expensive task, First, the backup operat'ion itself
is ti-ne-con-.uming and arso us€s nany computer r€sou.rc€s {the
channcls to the device containing the current copy and to
the device contai-ning the backu t copy arê monÐpclized by the
backup process). secondly, dur!-ng the baclrup operation it
is usually necessarr to resÈrict or f,orbrd access t.o the
relarti-cn i¡ o¡de¡ to create a consi-stent copy of the
reration, Thj-s fieaas that nany users of a relatÍon ar€
locked cut of the ¡el-ation f,cr a period t.hat may be as long
as several- hor¡Es. Thus, t e backu p process is aften
performed infreguently in crder to mi_nimize the amount of
time that the relation i-s not avai-labre to users,

By using ÙrûD fi3-esn the stcrage system reduces the
pr oblem s associated 'uit.h cr eating a backup cÐpy ct â

relat.icn. since the BASE file is never inod.ified, it is
necessary to create a backu¡: copy of it only ¡¿hen it is
created. rt is ex¡:ected that the uoÐ file i_s guite smal_l

Sù.oraqe System 62

Chapter 3

compared with the B.âsE fj-l-e and so creating a backuF copy of
a l{oD f i.re is nuch f aster than creating a backup copy of an

entire relation" sev€rence IsEvE?6a] refers to bacjcing up a

f j-Ie wíth 10 mitl-ion tr.rpì-es. To backup the entire f ile
takes approximately 6 hcurs vhíle backing up the I'foD fil_e
after a weekrs changes at thE rat€ of 100 changes per hour

takes approximatel-y tuo mirutes. Thus, backup copies can be

created nor€ frequently and the bacirup process does not
seriously restrict the use a the relation.

The storage systen alsc uraintaj.ns a jou.rnal fil-e r¡hich

contains a copy of a tuçle befcre it is mod.ifíed {rbefore
image*! and a copy of the tuple after it is moilifi-ed {rafter
imageft). Each .entry on the jcurnar fiLe 'is also rfdat,e

stamped* in order to reccrrå the day and tine on r¿hich the
change.j-s mad€.

creating a ne',ù copy of a rel-ation i-s reasonably

straightforward, rf the f.Èsr file i-s sti11 intact, then it
need nct be restor€d, {fiåth some clevices, it is possible t.o

set the¡a so that only read acc€ss is peruritteil; thus" the
file is prctected against everything but a hardware error.)
rn a v€ry iniportant data basç, the backup copy of the tsAsr

fj-le ccul-d be kept on a mountable direct-access r¡o1une so

that in crder to restore the file, the only action requirecl

is tc nount the backup vorune in ptace of tbe ùamaged

volumÊ. Next, the MtD f ile j.s restored. (If ihe backup

il'Ìr.:1.1,:I .I
Storage Syste$ 63

:::¡:'

copy cf

Chapter 3

the ÞJoD f ile is aLsc kept on a mountable direct-
access vclune, then restoring the backup copy reguires only
that tla vci-ume be mounted.) rt is then necessary to scan

the journal fÍJ-e, searching for arl after-images o¡hich apply
to t.he reLatÍon being restcred, lrt is normally too
expensive to maintain a separaÈe journal file for each

rej-at,icn; instead, one journal file j.s maintaj-ned either for
all data bases or for each dat.a base.l since the entriËs on

tt¿e jcurnal file ar€ date stampedn i-t is possible to create
ä' new copy of tbe relation as it. existed at any point in
trne after the backup copy ras created..

3 " 1.8*2_ !e tg_EeE g-tsÊËtpreli g n

The st.crage systern üses twc nethods tc restcrç a

reraticn t.c a prçvious state. The first involv€s processing
the journar fit-e backnards {beqinning at the most-¡ecent
entries] ana ap¡;rying the bcfore-inages to the rer-aÈíon in
onder to cancel the effect. of changes made to the relati.on.
?his process, r¡hile not cverry time-consuming, involves
nanipuS-ating both the H,oÐ fil-e and the journal file,

The second net.hod used to restore a relation i_nvclves
keep5-ng before-inag.es i.n the reration as r¡ell as in the
journal file" For each relaticn" a 'rdirect recovery pe riodrt
{DRP} is defined. Ðuring this peliod, a'1} versions of, each

tuple are kept in tbe floÐ fire. Then, if necessary, a

relaticp ,can be ¡oll-ed tack t,o a previous state that is

i-. -r...1.r.

64Storage Syst.em

Chapter 3

sithin the current ÐRp yÍthout having to access the journal
fil-e. Hodifications made to a relation during a DRp are
broken up into r€cosery units {R{lrs} and each r€covêry unit
''is assigned a r€covery unit s€qü€nce number {RIrsN) . special
conmands are provided to the usÊr to permJ-t the definition
of a n€fl r€covery uait.. Ât any pcint during a DBp, the usêr

can specif y that a nelation j.s t.o be rolleü back to the
state iÈ hail at. the begJ.nning cf a previous recovery unit
r¡ithin the cur¡ent Dlg. This rcll-þack caus€s changes sìad.e

during that r€cov€ry unit and in al-1 subsequent recovery
units to be removed.

ïn order to identif,y the changes made in each reccvery
unit, the necovery-unit sequ€nc€ numbe¡ (RUSN) is acded to
the pref ix of each tuç1e in a tjCIÐ page. The f ormat of each

tuple is j-llustrated J-n Figure 3.4.

rttt II TID I STAT{iS I RUSN | Ðomain r., IL------ .---_a_.-_ __--___J

Figure 3,4 Tuple fornat

The nost recent version of a tupre is stored. first, forì_ored

by the earlier versions. By physica3-1y removing tup'les
whose RüsN is greater than or €qua1 to a specified R{ISN, tbe
state of a relation is ro11ed back t.o the state ,it had at
the beginning of that r€covesy unit. rn order to i_deotify

Storage Systen 65

Chapter 3

the t{oD pag€s uhich ccnt.ain changesn the storage-management

table also ccntains a tr€covery-unit sequence nunber for each

gûÐ pag€. rf the sam,Ê page is nodi-fied during several
recovèry un j-ts, t,ben the highest recov€ry- unit se gr¡ence

number j-s recorded i.n the storage-management tables. Trrus,

by scanning cnry thê sto¡ag€-ü¡anagement t.ables and not the

actual data FaEes, the storage systen can dete¡mine r¿hj_ch

l{oÐ pag€s ccntain tupres that must be renoved during the
rollbaci< process. åf,tec removi.ng tuples from a pa9€n the
R{lsN ån the stcrage-nanagement tabLes for that page is set
to t,he largest FüsN remaj-ning or¡ the pag€" since the
contents of a BÀsE pag,e n€ï€r change, it is not necessary to
include an früst{ j-n each BÀsE-page tr.rple. rnstÊad, the date

stanp oû r¡hich the page $ras created i" =to"*d ia each tsÀsE

pa ge.

!f hen a Ðrp is defined for a relaÈicn, a date stamp is
added to the relation. nach tloÐ page that is modified is
also gíven a date st,anp, The current Drp can be endeô a¡d a

nÊfl DRP def ine d in three pcs*cible hjays. The f i¡st method of
starting a ne$ Ðep is initiated automatically by the stcrag€
system. Each reration has defi¡ed for it the lengtb {in
d.ays) of the Ðap. !trhen the current ÐRp expires, a nes DRp

is autcnat,ically initiated by the storage system by changing
the date stamp in the reLaticn. The second nrethod of
starting a ne$ ÐEp is also initj-atecl autonaticalty by ttre

l.:':::r:';'':

l: l :._:..-. -.. .

Storage System 66

Chapt€r 3

storage systen, For each reraticn, the nunber of extra
tuples that ar€ permitted to be stored in t.he floD pages for
the cu¡rent DnF is maintained. rf this nunber beccnes
greater than the maxislus, nuuber of extra tupres pern5-tted
for this reration, then the storage system initiates a nelr
ÐRP' Fina.l-Iy, there is a special storage-systen com¡nand

r¡hich can be eruployed by a user to cause a neu DRp to be

i-nitiated. Nornalry" this ccmmand is used only by a

higber-leve1 systen based o$ statistics that it keeps,

lthen a new ÐFp 'is initiated, aIl extra tuples sayed
during the previotls ÐRP arc not inmediately removed frorn the
lloD Fag€s' rnst*ad, thê fiusNrs in the storage-nanagenent
tables are set back tc ze:rc to indicate Èhat the pages have

not been changed since the beginning of the ney Dap, tater,
when a HoÐ pag€ i-s accessed., the ilaÈe stamp ûn the page is
compared vith tü€ date stamp of tÌ¡e current DRp. rf the
pagers date .stamp is not ¡sithin the current DRp, then a.rl
extra tupres are renoveä frcm the page and all recovery-unit
sequenc€ numbers on the remaining tuples are set back to
zero. By delaying the removal- of extra tuples after the
chanqe of, a Ðap, exÈra r/t operations are nct regui.red
during the cbange frcn one ÐBp tc another. Thus, changing
the length

does not

structure.

a D8P can he performed at any tine since it
use an inmEdiate change in the actual storage

cf

ca

67StoragË System

Chapter 3

rf it is decided that the expÊnse of, keeping previous

versj-o¡s of tupres in the mcD file fo¡ a particular relaticn
can not be justified, then by settÍng either the ÐRp length
or the naximuu numbe.n of extra tuples permi-tted during a Ðap

to zerc, the user carì indicate that previous versions of
tuples are o:t to be saved, Then, hor{evÊr, the only
possible vay to roll back a ¡elaticn is through the use of
the journa] fi1e.

3r. 1,0 . 3-EeIe!1gg-Êgg s¿ SËetcl
Several methods can bc used to ensr¡re the consistency

of a ¡elation as it j-s .bei-nq modifjed. ,ât the beginaing of
a reccvery unit., a rù.relation ccnsistencyrr f lag is set to
i-ndicate that the rel-ation is consistent f or the pre vious
r.ecovery u¡it but that a n€¡i r€cÐvery unit is beginoåag"

{The setting of this flag inyclves writing a record that
indicates that tbe rel-ation is about to be modified to
secondary storage. lthen t he rnodif ications are conplete, the
record is modi-fied to indicate the successfu'l completion of
the r€ccvery unit. when the rel.ation is next processedn the
¡ecord is retri.eved in order to iletermine whether cr not t.he

modificaticns nade in the last rËcovery uni_t Here completed

successfuS-3-y, Thi-s is the strategy used guite successf ulIy
in t{al{TEs I FEac?8b],] During the recovëry uait, if it
becomes nêc€ssary to save a Fag€ fron the buffe¡ ¡oo1 back

to the file" first the corr€sponding pag€ in the stcrage-

6BStoraqe System

:¿!ç':'r.:+r?**jjif 4i¿.jli!f:,9¿:iz!:lglfr.!TÈiÍ]".i

Chapter 3

$anagement table is savedn then the nodified data page i-s

saved' rf the stcrage-nanaqenent table is aot saved fi.rstn
then in the event cf a systear faj_lure between the tine that
the data page is saved and the tine that th€ s$T page is
savedr the data Page on disk contains moclifications that are
not indicatcd ín t.h€ storag€-nauagenent tables. lhen, if
changes ar€ rclled. baciçn the chanqes to the data pag€ are
not processed, leaving tiie reLation in an inconsistent
sÈate- Thus' before a cata page can be vritten, it is
ínportant tc save the corr€spond'ing storage-management tabl-e
,en t.ry,

at the end of a r€rov€ry unit, the ¡sodif ied pages i¡
the storage-management ta bl-es are saved f i¡st" th ên an y

modifícd paçes ¡¿hích renain in the buffer area ar€ savedn

and finally the relation consistency flag is set to inrdicate
that the curr€nt r€coverr u¡it. ccmpleted succ,essfully.
shoultl the syst,em f ait at any time hefore the f,inal_ setting
of the f J-a g, it is possible to tell that t.he current
r€covery unit did not courpl-etc successfurly, Tf nece*<sary,

changes made to the relaticn d uring the aborted recovery
uni-t can, u sing the storage-management tables, be ro j.1e d

back.

Ll.l-Eçlc!i g e-EeB rg an I zg¡!i cå

The rêorganizatlcn of a nelation is one of the rnor€

crucial operaticus. t'he Furprse of reorganizing a relation

69Storage Systen

Chapt€r 3

i-s to üove tupres in orde r tc provide f aster access. For

example, the tuples in a DoÐ file can be nerged '¡ith the
tuples in the coxrespÐnding fASE fil_e tc create an updated

BÀSn file and aa empty ri0Ð file.
There are t¡so main types of reorqanization: a partíat

reorganizaLinn uhere the tuples in a relat.ion are moved from

one pagê to another but rrDrs are uot changed, and a

complete recrganization where tuptes are moved and the TTDrs

are reassigned, å parti-a1 reorganizaticn does nct affect
any othen rel-atÍcns since the TrDrs are aot changed, A

comprete Eecrgan:-zation caus€s otber relati_ons which use the

TrÐrs in the reorganized relati-cn to be updated. uith the nerv

TIÐfs"

PerfornÌ-ng a partial reorganrzation can be divided into
parts based on tbe three typ€s of tuples in tbe I{oD file.

r f a t.uple is marked as inserted and deleted, it can be

nenoved from the t{oD fj-le. rf, a tuple is marked as deleted
but. nct inserted, the correspcniling t.upte in the B,âsE f,ile
is re¡aoved. This operatj-oa caus€s some space Èo be freed in
the BÀSE page,

ff, a tuple j-s marked cnly

sorresponding tuple in the ÐÀSI

operaticn does not cause the aucunt

BASE page to change unl_ess th e

change d "

as modifie il, then the

file is reptr-aced, Thi-s

of f ree space rn t.he

length of the t.uple lras

¡.:.--

Storage System 70

.:rì

:.;':,

Chapter 3

Îf a tupSe i-s marked as i-nserted but not. dereted, then
inserting at irtc the corresponding BÀsE page reguires some

free space' rf sufficient s¡:ace is made available by sone
deleticns, then the Èupr€ can be noved to the BASE page.
lloÍêvêr, the storage syste& caî nct re.ly on there be1ng
suffici.en't rle1etÍons Èo nake rocm for arl i_nsertions" ïf
there is not enor:gh free sFacê in the BÂsE page to store alr
insertions" the tot:-àw:-ng strategy ås used by the storage
systen. First, all deletions and modif,icati_ons for a pag€

ar{: performed" Then, as aany inserteil tupres as possible
are moved to th Bå5r pag€ and thc nunb,er of tuples stitl in
the l{oÐ pagê is determined. rf only a fe w tuples remain,
they are left in the 8oD page. Hcpefully" there r+ill be

room for them i-n the EÀsE page the next time that the
rel-aticn 'is rÊorganized. rf nany tupres stirl renain, then
the BAs¡ page is extended by splitting it intc two or m,ûre

segments. Th€ sI{T entry fc¡ the BASE page is modified to
poínt to the li-st of entries for Èhe rogical page segments
so thaè tïe reguired tsÀsE-pag€ segmenÈ can be located *it.h
only one data I/O request.

Ðuring a partial reorganizatior¡, as a

UOÐ pages is reongan1zed,, acc€ss to thase
pernS-tted, Access to the remaínder of the
€rr may be pernitted.

paír of BÀS.Ë and

Fages is not

rel-atic¡, houev-

suf f,i-cient tupJ-es aEe

.:,;,.ì.:',¡,:,

ifDuring a rÊorganizaÈion,

5Èorage Syst.em 71

i:l

Chapter 3

del.eted, it may be possibJ-e to take somÊ or a].l of the
segnents of a segmented gåsr pag€ and. n€rg€ them intc one

segment. After the reorganization of a pair of BASE and floD

pages, the filter in th€ storage-management tables is
recreat€d to reflect the n€ï.ccntents of the [lGÐ page.

A complete reorganizaticn of a relation causes the
relati-c¡ tc be recreated. The ent.ire relation is loaded
into a $eu tsasE fire so that eacb BÀ,sE page firls a physj-cal
pagê' lrDrs {w.it.h their inse-rt nunbers egual to zela) are
reassigned. Às eacb tuple is inse¡teil, its previous a¡d ne¡l

?rDf s ar€ recorded in a special f ile. Àf ter the l_oading .is
complete, all otl¡er relaticns that contaia ref,erences {pcin-
ters) to the reorganized relaticn are modified using the
specíal file ct ol-d and n€w TrDrs. Ðuring tbe complete
reorganizaticn of a reration, it is necessary to lock out
arl acc€ss to the relation being reorganized. This implies
tbat relaticns that reference the relation being reorganized
must al-sc be locked.

Normarly, thé complete r€organisation of, a relation
l¡ourd rarely be n€c€ssary. since tbe storage system ¡naxi-
mizes tle amount of data stored on each physical page {by
storing small logical pag€s on the same physi_cal pagê) and

ninimizes the number of page acc€ss€s requj_red {tbrough the
ESê of lagical Fag€ segments and the storage-managenent

tables) , the complete reorgani.zaticn of a rerat.å_an rouLcl not

Storage System 72

Chapter 3

necessarily 5-mprove the st.crage st¡uctu¡e
However, a compl.ete reorEanizati_cn of a

sary i.f the definition of the ¡;rimary key

changed and tle TID is to reflect the ner{r

Ðuri-ng such a reorgani-zati_cn, tbe relation
the nei{ primary key before it is relcadeü.

of the rel- ation .

relati.on is Beces-

of the relaticn is
primary-key order.

must -be sorted by

is ttre

3-t2 Speciat Belations_____=

A type ot data t.bat has not y€t be.en exanined

descr j.pt ion cf relations and their c orn Fonênt ilomains. nach

relation ín t,he systen is describe d and j_ts description is
stored in a relaticn that ccntains a descripticn of all_

relatirns: the *relat.ion ¡elationù. Each tupre in this
reraticn ccntains the descripti cn of a relatiÐn, The

descripti-on of a r€l-ation consists o information such as

the reJatj-cn nam€, the nam€s cf the data sets on whicb the
relaticn is sto¡ed" the nam€s cf the d.onains wh.ích make up

the relatian, etc. The t,uple describing a relation a.l-so

contains syst,en info¡mation such as the date stamp of the
current ÐRP, the n¡¡mber of tuples in frûÐ pages, the number

of, tuples in BASE pages, the nuuber of extra tuples in t{cÐ

pages, the relation-consist€ncy flag, etc, sì_milarlyn the
descri-ption of each dcnain is stored in a ndomain relatio$fr"
the casual user is not pernitted to access these relations
but the ÐBA and the RÐBus itseLf can access these relati.ons
in order to aild, deleter ânc modify relatj_ons and to extract.

: i:.:
''.it.,t::.a.
ii'i,!il

Storage Syst.em 73

n

the def,initio¡ of a re].aticn. These data can

using the ¡orma1 tuple-rnalípulation routlnes,
necessary tc ¡¡rite special rcutines in order to
process the relation and domain descripticns.
of, stori-ng relati-cn descrS-ptions in a relation
relation can {i-nternally} be uniquely i.dentifi
TID in the relation reLaticn.

{In Chapter q, w€ describe additicnal i
be added to the st.orage-flaÐagenent tabJ.es

Chapt.er 3

be processed

so it is not

be ab]_e to
À consequ.€nc€

is that each

ed: by its

nf o.rmatj-on that may

in order to permit

l::-..:::.' t:".-

3rJJ_Þ! ogsg e: te eg sg g ge n r_Ieþ leq
ïn this sectioar w€ sunnarize the information that is

st,ored i-n the storage-management tabres since the tabl€s are
of major i-nço¡tance in the storage sysÈem.

For each pager the storag€-nanagement table entry
contains: the page reference uumbe¡ of the BAS.E pagc, the
page reference nunber of th€ correspondÍng I{oD pagê {nhich
is zero if tlere is no such page) r th.e TrÐ f i-lterr ând the
maximum.rËcovery-unit segu€nce number uithin t.he cu¡rent
dÍrect recov,ery period for the I{oÐ page. The fornat of each

entry in the SllT is illustrate d in pigure 3,5.

-----TI BÀsE I McÐ I rr¡ | BÀX. iI PRì{ I pRN I Filter | ftrJSN It-----__-¡____-.._J-
- _- ___¿_________,

Sigure 3. 5 SI{T Ent ry Format

t-.'

i.ii

74Storage System

r'l
5l

JjL!-,L:':::..::!.r.:..:¿-.-::--.:::-::.:¡.1.'-r'.1,jj::j.:.:i::t:i::::.::;:::::r'.¿;;i:]':jjì:'-l-:::,ì:-t1t.:/.._::i::.::1.:i.:\:

Cliapter 3

the ef ficient prccessJ_ng of tupJ-es by primary key.)

ff, a logi-car pag€ is stored in more than cne segment,
the PaN of the pagÈ is replaced by a pcinter into a list of
entries. There is one entry for each logical pag€ segnent,

and each entry contains the uaxircum TrD on the segment and

the PRN of the segment"

For each relaticn, the number of e¡tries on each pagÊ

of the sÈorage-managêment tabl-es and the size cf each table
entry are f i-xed. Thus, the logi-cal page nunber can be used

as a subscnipt inÈo the stcrag€-nanagement tables, The size
of each field i¡ each sltr entry fcr a particular relation is
fixe{l but the size may vary from reration to relation"
thr¡s, in small- files, the psrN rs !ìay b€ represented in tuo
bytes shile in "r-arger f il-es, three or four bytes may be

required for each FRN. rf nêcessary, the storage-nanaE€Íient
ta'bles ran be reorganzied in crder to change the siae of an

entry or to change the nrmber of entries rn each page in the
st orage -nanagement tabl_es.

Hith the definition cf the sÈorage-manag€nent tables,
lre have created a scccnd levet cf ind.irect page addresses
since the DHT {device $anagement t.able) used by tbe device
system also uses indi-rect Fage addressesi Horirever, in the
interests of effici€ncy, the slnr anil thê permanent Di{Î fcr a

relaticn are nerged intc one tabi-e. The pRN f s in the stBT.

are re place d by the device addresses i-n the ÐI"lr. The

.r, -:..1:::.:
:':: '.':..:]

St.orage Syst.em 75 ,r..,i ,::
I
¡).::r::-:l :;::::
...-t :: .1 :

'."-?,"-,--'.' --.' :-' : :
":!::'.tt

..'

Chapter 3

storaqe system then requests pag€s by device address instearl
of PRN- Tt is sti-]r- be pcssible f or the devi-ce acldress to
point tc an entry Ín â temForary Ði,,ir i-nstead of to an actual_
device. Houever, since both the d.evice system an d the
storage systen access the narged table, the tuo systems are
no longer independent.

Storage Systefit 76

Chapter 4

Chap!er_{t Àqçess-path System__--_______-__

4,'l Introducticn

rn this cbapterr Hê deverop the access-path system of
the data-managenent systen. Firstn {,Je exanine access paths

r-n generar. Thenr u€ indicat,e r¡hich acc€ss paths prcvide
the nost pûÌ{,Êr for relaticnal data bases.

4gZ-Àggggs-gclbE

Ti¡e purFosê of an acc€ss path is t.o provåde accêss tc
tupres in re la tíons, For €xamptre, j_f a us.Êr wi_shes to kno¡r

which students receiyed rå* grades, one or $ore access paths
are used to deÈernine shÍch tuples satisfy this
qualificat'ion.

A key domain is a domain by which access to tuples is
permitted, and access paths arç defined for key d.omains,

(Theoretically, in the rel-ational_ data node1, all domains

are key d.onains" butn for practical applications, it mar be

t,oo expensive to permit acc€ss to tuples by all d.onajns.

Thus 1 d subset of the dcmain-- nay be designaÈed as key

domains,)

¡¡iÈhi¡ a

Rey donains are either unique or nct unique

relation. Candidate leys are unique within a

rel-aticn since they uniqtiely identify each tuple. secondary

keys may'be either unigue or ilot unique.

Hsiao and Harary [HSra?O] deÈine three basic types of

i :::,ìrr;:Ìi;::-:

li::ì;ì:ì:;-.::iil

77Access-Path Systefii

Chapter 4

access paths: seguential scans" linlcs, and directories.
other access paths are usual.ly ccnbi_nations of these three
basic ¡:aths, À seguentiar scan involves examining eacÏ¡

tu ple in a subset of a relatj-on. Tï¡e seguential scan j_s

guite fast if the tuples exanined are alI or the safi€ pag€

or a very small nunber of paqes. Thê scan becomes expensive

if it. i nvcl res acc€ssing na ny page s in th e rera tion..
À link is a pcinter fron on€ tuple to another. The tuo

t,uples may be in the sail€ c¡ different relations. À link
nay r¡e used to cneate a chain of related tupì,es: the f irst
tuple in the chain 'is linked to tbe second tuple, the second

tuple is]-inkeð to the third tuple" etc, These related
tuples can be accessed quickly and eff icie nt ì.y by the
st.orage systen.

.a directory {or index) contains quarifiers and a rist
of tbe tuples ¡Ehich satisf 1 each qualifier. Each gual-J.fier

contair¡s a kel value by which tuples are accessed" The

Eualifiers are always disjoint {the attribnte value in a

specific tuple can satisf y cn-Ly one of the Eualifiersl . tt¡e
guali.fiers ure either *rlensen {all key-values currentl.y in
use ar€ stor€d in the directory) or frnon-densefr {onJ_y sone

of the key va]-ues are stored in tbe dieectory). a directory
is used because it is ncrnally much snarler than the
associated relation, and sc can be searched much faster than

the relation.

(::1)
?BAccess-Path System

Chapter q

one of the najor ccnsid.erati_ons when defining the
access paths to be used in a RDEßs is that, for a particular
relati-cn" the access paths uilL probably have to be modified
at scme ti-ne, There are tuc r€asons f,or this. The first is
that i-nitially the ¡¡rÕng chcåce of access paths may be maðe.

onry after usage patterns em€ïge can it be deèeruined

uhet.her or nct the initlal chaice uas a good Ðne. secondly,
{rsage patterns themselves change and access paths t.hat cnce

$ere suj.table may become unsuitable, Thus, it js iuportant
that the DBA he able to add, delete, and modif,y access paths
as necessary *ithout having to unload and rel0ad the
r.elat ic¡ itse.1f .

4. 3-Slng¿*¿!:gåÞeÈe_Àgces E-F a1&Þ

In this sectionr t,l€ exarj_ ne usinqS.e attribut
paths" ttiat is, access paths that are used uhen

gueri.es ,Ðith cnly one att.ribute in the gualif
exampler gualifiers of the forn

{PARf-NUHÐEB = |WfENCftr}

can be processed using a single-attribute access path.

4.3.1 Primary-K€y Index_¿_---==

A primary-key index co,ntains entries i-n the
soüe or al-l 0f the primary keys in a relation.
nelatic¡ is crdersd by prinrary key" then the index
cort.aín entriÊs of the form:

€tr access

processing

i€r. for

index for
T f tl¡e

need onJ.y

?9Access-Path Systen

.-1)
tl:l

rìi:;: ::r:::-ii.::i: :.:.I :l l:;:rj j.-i:t-lì::::i+,:::_:.+. ii

Chapter 4

<KET' PÀcE#>

where KEy i-s the highest primary key on a page and p.Ð,cE# is
the logical çage nunber of that Bage. lthen searching such a

non-dense primary-key index" ttre search Ís continued unt.il
an índex entry with a key that i-s greater than or equal to
the requi-red key 5-s f ound. The n, the correponding page is
read and is searched f,cr the tuple. This t ype of access

pa th uses both a clirectory and a seguential_ scan. The

advantage cf the non-dense pri-mary-key index is that there
is cnly cne index entry per page instead of one entry per

tup1e. This reduction of .the nunber of, j_nd.ex en tries
required results i¡ a much smaller índex than is othervise
possible. The ura jor disadvantaqe of, prj-nary- k€y inde xes is
t,hat the relat.i,cn itself nust be examined i_n oriler to
determine uhether or not a pa.rt.icurar tuple exísts.

4, -3-¿ _E Égg! ÈgEI:Key_rg deÄÊ€

There are nany different Èypes of secondary-key inde-
xes. lde shal1 exanine the t, uc nost connon typ es of
secondarl-l(ey index: the multiLÈst anil t.he i.nvertecl 1ist"

rn the {basic} multilist, there is an index entry for
each uni-gue seconrlary-key value i¡ a relation. Each index
entry is of t.he form

<KEY, TIÐ> r

rf a particular secondary key is not unique, then the tuples
sith that seccndary .key are rinked together in a chain v¡h'ich

Access-Path System BO

Chapter q

st.arts at the index ent,ry. The fornat of a multilist is
j-l-lust¡ated in E'igure 4. 1.

ïNÐEXlfiETll
L---- 'Tj

I

I

f_____.____J
I

I
v

sErÀT{c.N llTUPIE I
lrl-----------.-_-J

I

I
v

I I TUPIE I. LTå_-______________¡

I
I
v

ll T,nPlE I

. "_.t______-_._-__-_.l

Figure ¿¡.1 üultili_st

Thís tyFe of index us€s a directory and a link, The major

di-sailr¡antage of, the nultilist is that links are stored in
t.he relatícn. Thus, in o¡cle¡ to obtain the TrDr s of alr
tupres rith a specific s€condary key, it 'is nêcessary to
access both the index and the relati_on. this process

beccmes very expensive if seve¡al such chains nust be

follosed in order to fi-nd tle intersection of, the lists.
AJ-so, in crder to update the index, it may be necessary to

Access-Pat.h System B 1

!a.j
';:j

:_:!-{.:..44æ-ì{¿t;,í!tr;:iì:s,14ì?.o,íg!:ra, :a}1r;_rr:,:i¡;ì!a-,{":}i¡É7¿yÈjå-úÍ:..!it.i.'-ì1

C.hapter 4

no<lif y part of the rel-ation. Itâving to modífy both the
index and the nelation creates consistency problems. For
exanBle, if the index is ncdifieð but the reration is not
modified {due to a systen error), then tuples t.hat should be

included may be mi_ssing frcm a chain otr tuples that shou.l-cl

not be incruded may be present cn a chain. trn crder to
guarantee the integrity cf the chains t,henserves" it is
normall y nêcÐ ssary to maintain both toruard and backr¿ard

links so that. if cne link is destroyed., the chain can be

recr,eated by processíng it frcn the oth€r direction
{saRr?? l.

There ar€ many other versions of -the basic multilist"
such as the cel-rular mulÈilisÈ, etc., but they alr share
these f unilamental disadvanta g€s,

Tbe inverted list is ancther tlpe of secondary-key
inöex. l,ike the hasic multilisÈ, the inverted list also
coatains one index entry for each unique secondary-key value
in a relation, Ilou€ver, each index entry is of the fo¡m

<KEY, rrÐ-trs?>
where TrÐ-rrs? is a variabre-length l_ist. of the TrDf s at al_l

tupres ¡¡ith the gi-ven secondarr-j{ey value, The format of an

rnverted I i st is iÀlust,rate d in Fi gure 4.2.

TNDEX

Chapter if

f-----T-T-T-1
tKEYltlt
L-----¿î'T n

?-Jtttttl

I

v
I
V

RETATICN I TrJprE I
L______--___J

Figure 11.2

v

| ïuPtE I
t.----_-_-.___)

ïnverted tist

|.-------
I TrrPtE I
L----_____--J

i- :':-:..::

Because the inverted li-st ccntains mor€ infornation than the
nul-ti1ist, the inverted-list index is larger and a search of
the index requires mor€ tÈme than a search of the corrÊs-
pcnding m{¡ltilist.. Ëfo¡ievetr, t}ie Èotal amount of {index and

relaticn) space reguired is approxåmately t.he samÊ fo¡ bottr

the multilist and the inverted list. The major advantage of
the inve¡Èed list. is that the acc€ss pàth anü the data ar€
stored separately so that j.t is not necessary to accËss the
rel-aticn itself, when ret¡åeling the list of tupl_es ryith a

given secondary key or when modifyi.ng the i_nverted list.
The' separation of, acc€ss path f¡om the clata nakes it

easier to urcdify th.e data structure as old accêss paths

beccme unnecêssary and must be replaced by nefi access paths.
This type of logical reorganiaation is difficul-t when the
access paths ar€ stored uith the clata. For example" j-n r.t{s

IrBI'l?4c], to de].ete an access patb {1ogical-chi1d segm€nt)

B3Àccess-Path Systen

Chapt€r ¿t

fron one data base tÐ a¡other data base and replace it r¡ith
another accrìss path, il is n€c€ssary t.o unload the data base

aad reload it with t.tre n€ìil accêss path. Fûr a large data
base, this Frocess is very expensive, nct only because of
the CPU time ¡eguirecl tc perf,crm the operat.ion, but also
because the data base is nct avairabre to users during the
Ðperat icn.

Ê,-Ë,- S gl J!:åÈ! ei&ste-A c ses s
- l-Ê!å s

Primary-trey indexes and s€condary-key indexes pravide
fast access to tuples ¡shen a guery refers to only onê

attrÍbu te. flowever, i-f a Euery refers to more than one

attribute, then t.he proc€ssing becomes nore compJ_icated.

For exampre, if sínq1e-attribut€ access paths are used to
pr oces s

{PÀRT-N{J}IBER=rWRENCffr Àt{Ð CÐtOUR=f BL{JEr)

r-t ås nec€ssary to search the pART-¡tB,t{E access path and t.he

cof,tIJR acc€ss path, and then take the intersection of èhe

tr*o access-path TrÐ llsts" This Frocess is expensive if Èhe

individuai- TrD lists are lcng but there are only a fen
tuples in t,he intersecticn of the lists. As the number of
attrihuÈes specified in a guery increases, th€ processing

i:l

becomes even motre complicat€d'

' ïn this section, fi€ exanine rrmulti-attribut.e'
paths: access paths that can be used to process

which ref erence sev€Ea1 a-t.tributes.

Access-Path System

.Ji::,, ì:ljli

accesS

gueci-es

,'ii,¡."',¡B4

Chapter 4

9,. 4:1 !grûbfee!_Igd€AgE

a ccnhined indax is a collection of indexes {inverted
lists) f or a set of attributes I LUI!20]" Each index contaj_ns

a diff erent oraer:-ng cf the attributes sÐ that atl pos*ciblc
attribute ccuibir¡aticns occr¡r at the l_eft of one of the
indexes. For exanple, if a relaticn contains Èhree d.anaíns

À' B' and c, which ar€ all freguently r¡sed in Èhe same

qualificatioa, tben a combined index could be defined for
the three attribrtes, one cf, the indexes wourd contain
entries of tire forrn

(À, B, C: TIÐ-tISf>
lhere is one entry i-n the index for each combinaticn of the
three attributes. These entries arÐ ordered first. on the
ttart attribute, then on the ,rB* attribu:te, and f ina11y rn the
rrCtr attribute. Queries of the f crst

(å = txr and Ð - tyt and. Ç = ,zrl
can be ans¡¿ere d. easiry by s€arcbing this j_nd.ex. The index
can also be usêd to ô.ns¡{er Eueries invclving the at.t,ributes
À and B, and gueries involving only the attribute a "
ffowever, in crder to be able to ansr+er <¡ueries about the
othe¡ attribnte combinat.ions {e and c, Ð anil c, B, and c},
it 'is n€cessary to define t¡lc mcre j-ndexes:

(8, C, T.IÐ-IIST> and (C, A, B: TIÐ-I,IST> ,

The three åndexes couprise the combined index. The three
versicns of the index are di f f e rent only in the orcleri_ng of

':li.

.Access-Path System B5

Chapten u

the i-ndex entri.es; tbere is nc logical clif ference in their
contents. fiith t.hese three indexes, we can ansrrer Euerj-es
involving any combination cf the attrrbutes ^A, B, and c. rn
general, it ïe ¡¡ish to be able to index on N attrinütes,
then tle combined index cootains c {N,K) {t.he number of
conbinations of, N elements, taking K erements at a time,
where K is the snallest integer greater than or eqîlal to
N/2') indexes [litH?0J,

Íhe advantage cf a conbi-ned index is Èhat only one

index must be scarched in crder to eval-üate a query
Ínvol-ving up to and incruding the N i_ndexecl attributes,
llorcever, there ar€ tvo u.ajor disailvantages tCI using a

combj-ne d inðex, The obvious one is that a rarge amount of
storaqe is used to store the different versions of the
i-ndex' a second ilisadvantage is that when an attribute
va-Lue is rnodified, the change musÈ be nade in each version
of the indexes" ?his is a najor problen if attribute values
arê modified frequently.

4.=4 =?- n e4iEre 4- cs,s þisÊg-gsgsa
trn thi.s sectionr u€ present a nodification cf Èhe

combined index uhicb eliui¡ates the problem of having to
update each version of the index each time that a change is
nade' Tn the uorlified combined ind.ex, there are stirl
several versions of the indçx keys but there is only one

copy of the ?rÐ list f,cr each attribute combination, Each

8.6.åccess-Path System

Chapter 4

'...::: : :.

index entry contains tåe attribute values and a pointer to a

*buck€trr. The hr¡cket contains the list of TrDr s for that
attri-bute ccmbination. Thus, all indexes share a comnoa set
of b¡¡ckets- The f ormat of the mod'f,ied conbined i_nd.e x is

r,.,,,.,..,..,,,shosn in Figure 4,3.

| årB,C I | | B,c,À I I I C,.ârB I IL-_J-¡. I L_ . rT-! t__ , /
I

I

|-_____----_J
tlt
tttvvv
'1ïDr s
for

<ArBrC>
L--.---_-¡

Figure 4.3 ltrodif ied Co¡nbined Index

Since rrÐst modifications to the index invol-ve only changes

to tbe bucket.s, not to the index åtself, onJ-y one change

nusÈ be nade to the modífied index. The only time that tbe
indexes thenselves ar€ changeil is yrhen a nêï attribute
com.bination is added to the relati_on. Then, the ne1,

attrÍhute ccnbination nust be added to each index. ffhen

attribute conbinations are del-eÈed fron a relatio¡, instead
of refioving the index entries i¡ruedíaÈely, the indcx entries
are kept i¡ the index and tle bucket contains a null l_i_st. of
TïÐf s. r,ater, ät a conve$ient. ti-me, these unusÊil entries

I
I
i-

Access-Fath Syst.em 8? ,,,:.'.,:: .:i: :,....::.:t.:

are de leted f rcm al]- of the i_ndexes.

Àt the expense of one extra pointer

conbinat.ioa 'in each index, the cverall si
is reduced {since the TIÐ tists are

place) and the pr cbJ-em of havi¡ g t c modif

the åndex Êach t.ine that a change j_s nacle

Chapter 4

for each attribute
ze of the indexes

stored j-n only one

y all versions of

is eliminated.

{ " 3,'J, -E
o g le an-Àlgetge-4lg gS

1,{cng and chiang propos€ an inciex that consi_sts of
disjoint atcn*s that rrcov€r* a relati-on I rütNG71]. The atoms

are Bccrean expressions {involving the N attributes) uhich

need n€vËr he brcken dcsn. Asscciateil ¡¡i_th each atom ís a

list of the Èuples for chict¡ the expression in the atoru i_s

t.rue. Queries expressed in Esolean algebra are then b¡cken

down into the ccrresponding .gueri-es invol_ving the atoms in
the index. since the atoms are disjoint, it is not
necessary to take the istersecticn of aïy of the TrÐ lists
i-n the ind.ex.

a najor advantage of this method is that the Boclean

algebra atcns can be tairorcd to each relaticn. F,or

example, if ce¡tain attrihute ccmbinations always occur

together, then the combinations could be d,ef ined as atcns,
a disadvantage ås that taking an arbitrary Boorean expres-
sion and brealeing j-t down into Èhe cûrrÊspondi-ng aÈoms j-s

not necessarily triviaJ-.

'' ':.

Àccess-Path SysÈen 8B

ChaPter ll

4: a:É,- ä !l!¿:4! !sÂå!!s-ges h¿ss

Rctl¡nie and r.ozano deflne a method for mr:lti-attribute
retrieval which is based oa hashing I BorH?q], For each

tupS-e Ín a relation, eacÀ of t,he keyed attributes is hashed

çith a {ðåfferen't} hasbing functicn. The hashing produces a

set of values calLed the ttcharacteristic tuplerr. All tuples
with the safie characteristic tupS-e ar€ then stored in a

'çfqsi-s¡fr' {rn the sto:raqe systen, a cluster wol¡-l-å be a

roqical- page,) By using appropriate hashing f uncts-cns,

tupl-es uhicli are likely to be accessed together can be

stored ín the sane or adjacent clusters.
Two dj-sadvantages of this technigue are Èhat the tuples

are nct ordered and that the storage of t.uples is based on

the hashS-ng f,u¡ctions. rf the hashing f unctions a.re

changed, the entire rerati-on must be unloaded and then

reloade d.

3. 1.5 -8
a r!!3io s¿sE_g r_ In gÊë_ëggs¿sg

?here have becn many ather proposals i¡ r¿hich tl¡c
probJ-ens of roul-ti-attribute quer'ies are examined: Bentley
and Finkel proposed quad trees and multj_dinensional search

trees { BENr?4l; Huang prcpc-<ed data base graphs I tlu åN73];
llichaels proposed partiticned nul-tj_-attrj_bute indexes

It{ rcfl?61; Tac proposed randcn z-3 trees I yaoTg], These

schemes aad the others already examined {modif i-ed conb.ined

index, multi-attribute hashing" bcorean argebra atorns) that

Àccess-Pat,h System 89

Chapter 4

u.se only one bucket for each attribute combj_nation have a

najcr problem: hcw to partition the buckets so that access

by fewer than N attritutes does not require a large nunber

of i-ndex T./Ð requests. rror exa mple., suppose that ìúe si_sh to
index on trc attri.butes .a {+¡ith attribute val_ues Ài: í=1 ,2r.
.. ,N) and B {uith attribute values Bj: j=1, 2e. .,r}!) " If
there i-s rocm

:"
each pag€ for K buckets, then p=N*ïufi

bucket Fages are reguired. {}le assume that most of the l{*t{

combinations cccur, For practical purposes, thc number of
actual combinations nay be nuch less than N*iq,) Even thouqh
the number cf paEês nay be quite large, access by both ai_

and Bj values i-s quite fast b,ecause there is onty one bucket
for each {ÂirBi} courbinaÈirn, rf,the buckets are ordered on

Èhe Ài values, then accÐss ty Ài alane is also fasÈ since
the Ài buckets ar€ on the san€ or adjacent pages. However,

if Lre try to access by a Bj value alonen the Bj bucket.s are
spread over the p Fages and acc€ss by a Bj value involves
accessing alJ_ {cr alnnst all} p pages.

ïf the {ÀirBi} combinat:-ons are clistributed over the
bucket pag€s i-n the forn of a ï,atin square {Latin sguar€s

are descrÍbe d, for exanple" by st¡eet and^ Fa.l_l_is I srRr? 7)1 ,
then it appêa.rs that nost requests involvi.ng Ai or B j
involve accessing seET{pì bucket pagës. This number of T/o

requests i_s sÈill unacceptably large.
The probì-en cf partitioniag the buckeis becomes rDore

90.âccess-Path SysÈera

Chapter t+

compl-ex as the nr¡mber af attribut.es inctreases, thus increas-
ing the number of att.ribute comþinatj-ons. As the number of
bucket pag€s increases, the nt¡nber of pages accessed. ryhile
processing a guery involvi_ng a subset of the possi.ble
at.tributes also i¡creases.

9,. É, . 6 _ggrËreÅ_!aelieeÊ_redg x€s

ïl€ nol¡ sumflarise ¡rutti.-attribr:
indicate a preferred type af index

attribute gueries.

te guery processång and

f or processi-ng multi - :

the us€ cf singl-e-'attribute indexes for each key

attribute is êxpensr-ve if several keys ar€ freguently
specÍfied ir cÐe query si-nce the intersection of t.Í¡e TïD

lists first be dÐtermin€d" lhe advantage of singLe-attribute
indexes i-s that each key app€ars J.n only one index so that
only one index must be modified r*hen ctran-ging a hey î¡alue.

Tn the multi-attri-bute indexes shich use only one set
of buckets, the i¡dex provides fast ¡etrieval vhen a query
is of the sane form as the i-ndex entri-es. Iloi,revern if, a

qu€ry invclves a subset of the inilexecl attributes, the¡ nany

index entries may t avc to be accessed in order to satisfy a

guery and an excessive ¡uuber of page transfers nay be

reqnired if the index entries are not parti_tioned apprcpri-
ately. This type of ind.ex does proviile good facilities for
update since a particutar tupl€ appÐars ìn tne TïÐ list of
only or€ index entry.

.:,-.:.Acc€ss-Pat b System 91

i rl

Chapter q

The ccmbined index prcvi-des fast, retrieval øhether all
attribr¡tes ar€ specified or a subset of the attributes is
specif ieil. rn the case of partial attrÍbute retrÍeval_, the
TrD tr-ists are stored consecut.ively on the same or ad jacent
pages thus ni-ninizing the ¡umber of pages accessed., The

disadvantage of using conbined indexes is Èhat shen an

attribute value Ís changed, addedr or iteleted." al_l versåons

of the index must be appropiately modified"

rn oröer to provide fast. access to tuples while
avoi-dj-ng excessive update costs, the fcälovi.ng irybr'id scheme
'is ussd in the arcêss-path system to provide a muLti-
attribute query capabilit.y. TnsÈea<i of usì.ng a futt ccnbi-
ned index ui-th all requi-red attri-butes, a rrpartial combined

indexrr, severa] indexes eäch with a subset of the required
attributes is maintained. this j_dea *ras proposed by ltullin
[¡{{ttt?x] and ext.ended. by sÈcnet,raker IstoN?4 j and Berra and

Ar¡derson I BERR77].
For exanple, supprse that we require an ind.ex Õn Èhe 4

atÈ'ributes A' E, c, and D" The fuLl ccnbined Índex contains
an index for each of the ccubinations:

(Àt

(Ð"

(Ðr

(år

A>

Ð>

(Cr

(Br

Any Euery i

using cnJ.y

Ð, a, B>

D, å,, c>.
cr Ðt

c, Bt

B, C, Ð>

À, B" C>

nvclving any

one index

of the fou¡ keys can be resolved

access, but an update reguires six

92Access-Patb Systen

Chapter 4

index accesses. r:rste ad of using the f u1l- combined indexn

the f ollolring parti-al conbined index coulil be used.
(À, B> (8, A> (C, Ð> (0, C>

Tbis :-nilex provides retrie val ¡r¡1th either one i-ndex access

or tso index acc€sses çrus the intersection of tuo TrÐ lists
{an average of 1.60 a'*cesses} , and upclate of a si.ngle
attri-bute value with only tr¡o index accessìes, Thus, the
power of the ful1 con ined index is avaj_lable uith litt1e
extra nork uhen retrieving varues and at a significant
savi¡¡g rhen tle index i.s mcdifj_ed.

the partiar con.bined index can be tailcred t<¡ each

rel"at.icn and can be ¡ecreated as usage patterns change. For
exanple, the index sets

(4, B> (8" C> (c" Ð> (Ð, À>

{with alrerages of 't.4-l acc€ss€s for retrj_eval and z.a
access€s for update) and the ir¡dex sets

(å, B, C> (ts, c, Ð> (c, a> <D>

{with averages of 1" 40 access€s for reÈrieval and 2.25
access€s for update) bcth prcvide the necessary facitities
to i-ntlex on any conbi¡ation af the attri-butes Ã, B, c, and

D' but in â slightly differeut nanner than the full coubined

index. By naintaining statisti-cs ou tbe conbinati-ons of
attributes used in queries, Èha DBÂ can rËarrange ùbe

indexes as ner€ssary ín crder to mini-mize the total number

of index acc€ssÊs reguired" For exanple, if nost ind.ex

Access-Path Systen g3

Chapter 4

regtlests are retrieva] reguests" then a fulr combined index

could be used; lthile if, ncst index requests are update

requêsts" then single-attrihutç indexes on each attribute
could be used; cthernise, an appropriaÈe partíal index could
be use il ,

S.5 Hultaple-Belat.icn Àccess-paths_-_ -_____¿-___-___
In the previous sectionsr ïÊ examined rrsingle-relationrl

access paths: access patbs that provid.e access to data

¡vithi-n one relaÈion. rn this section, se in dicat.e ho¡r

access paths for several relations can be combined into o$e

access path, the rtmultiple-refationrf acc€ss path, in order
to provide a mor€ efficient acc€ss path" {A si- ni-l-a¡ but
mor€ ¡estr i.ctive verslon cf the multi_ p1e-relat.ion accêss

path has indepen ently been define d by ftaerder {H¡,ER78 l.)
À,cc€ss paths are nornally defÍned for individual- rela-

tions. flor¡ever, if s€v€ra1 retations in the same data base

have acc€ss paths def i.ned tor the sane attri-but,e, then the
acc€ss paths can be combi.ned into on€ access path. .for a

parÈicurar attributen instead of defining one acc,ess path

for each re lation in wi¡ici¡ the attribute is de fined" a

rimultipSe-retr-ation{r access path ås defined for the data
base. the nurtiple-¡elation access paÈh ccntains thc infor-
nation ÈÌ¡at is ncrmaJ-ly distributed. oïer the individual
acc€ss paths and this access path is st¡ared by the various
relations. Fûr exam¡;le" if it is necessary to def ine an

Àccess-Path Systen 94

access pat.h f or s# in both the relat,ion s and the relatÌon
sc, a multi-ple relation access path ca n be d,efined." Each

entry in tbe mul-tiple.-relation acc€ss path contains the
following inf orma tion :

(S#: 5-fTÐ-tIST; SC-T.ID-tTST>

The f irst list contains t he TrDrs of tuples in the rel-atj-on

s with the given value of s#" and. the second list contains
the T.rÐf s of tuples 1n the reLatior¡ sc *ith the given value

of s*. Both th'e lists of TrDrs nay vary in length {bol¡ever,
.i"f s+ is the primary key .f cr the relaticn s, then t-here 'is
only on€ Trn in s-TrÐ-rrsr far each value of s#). The

resulti.nq acc€ss path i.s sual.Ler than the sun of the t.ryo

individuar access paths f,or s* since the keys {s# vaìLues)

ar e sp€cif ied cnly once. fiori¡€ïer, the time required to
searcb the acceFs path nay be slightly longer becailse the
accêss path contaj-ns ilore Ínfcrmation.

An important r€asoÐ for defining mul-tipl,e pat.hs ryithin
an acc€ss paùh is the infcrnatj-on Èhat can be inferred from

the access path. l'or exauple, the access path on- s# for the
relaticns s and sc permits the RÐBFts to ðetermi_ne which

st,ud.ent*. arê Ðr arê not, enrolled in at Least o¡e course.

The access path also defines the relationat algebra ujoinu

of the ¡elations s and sc on the danain s#. (The relational
argebra join of Èwo r€lation s is descrí.hed by Ðate

[ÐÀrE??].)

: _ :!:: i-l=_,:: j.::-aLi
j jì ::j, J

'': 1',

Chapter 4

Access-Path System 95

Chapter 4

ïn general t HÊ defi-ne a muStiple-relation acc€ss path

on a trma jor keyt, ca€ or ncre att¡j-butes ín a data base for
which accÊss paths ar€ reguired. ,lie can then define
individual paths to speclfic relatíons uithin the access

path. For each path, a tminor key" üay also be defined, À

mj-nor key is one or mcre attributes which are used to
subdivid,e the l-ist cf TrDrs tor each major-key value. Each

access-pat.h entry has th.e f crnat:
(major-key-value: path-entryl; path-entry2i ".,)

vhere each path entry has the fcrmat:

TÏÐ.TIST

OT

mi-nor-key-value: t.IÐ-LIST; ...

Tuples may be retríeved by specifying any nurrber of .the

lef,t-ncst at.trj-butes in the uajor key and, optionallT" the
minor key' lf both tl¡e ma'jcu key and the ninor key are
specif ied, then t.Ì¡e l-ist cl lr.Dr s associated r¡j.th the gi.ven

najor key/ninor key pair is returned. rf only the major key

is specifieil, then t.he låsts of TrÐis assôciated vith all of,

the mincr keys far the gi-ven major key axe returned. rf
only the leftmost dc$ains in the najor key are specåfied,
then the lists of TrDrs frcn all of the access-path e¡tries
*.rith the given aajor-key prefix are returned.

Ð€pendj-Ðg on the number of entries r¿j-th a part j.cular
major-key pref,ixn ,it nay be pcssible to process queries in

ìL' l

Access-Path System 96

Chapter 4

which not all of the specified attributes are defi¡ed at ttie
left of the key, Fcr exanpl€" if the key

(KtrrK2.1<3rK4,K5>

i-s rl,ef jned {the division of t.he key into najor and ni_rior

components is not signi-ficantln then queries involving K1,

K2, and I(5 but. nct K3 or f{4 can be evaluated by examinång

all access-path entri.e s that begj.n with the specified I{1 and

K2 values, The required TrÐ lísts are no longer adjacent
but as lorg as the nunbe r ot entries ¡¡ith t.he gi-ven K1/Kz

values is not large" the reguest can be satisfied quickly,
Tle ruuJ.tiple-relation acc€ss path can be uscd to

implement a path in the partial index, For example, if a

path is required for dÀ, B, C), the attribut,es A, B, and C

ar€ di-vided to f,orm a majcr" and" optionarly, a minor key"

Normally, a is chosen as tbc najor key and B and c ar€ the
nino¡ key; this crdering permits cthæ¡ paths to be defined
in this acc€ss path for À. rf A a¡d B are chosen as the
major k*y, the access path can be shared only by paths *hich
also use A and B as the uajcr k"y; paths r¡hich use only å as

the major key nust be def,incd in a¡¡othe¡ accÐss path.
The us€ of tbe murtiple-relation access path does not

avoi-d. the probl.em of hav ing to maintain the dif,f erent
combinations of the co$bin€d index, The acc€ss patb anly
permits the merging of several- access paths sith a common

attrj-T¡uÈe pref.j-x into one access path.

.Access-Path Systen 97 ..:.-,.,,,,.
'::'tj:'::.

The

Chapter lt

nrlti¡:le-relation access path couf-d be extended to
a 'dâta basefr acc€ss path that contai-ns a-l_l acc€ss paths f or
a particular data bas.e, By adiling a ,rtype indicatorn to
each access-path entry, the entries for alr access paths i¡
a data base coul-d be uerged intc onÐ large access path.
Àccess-path entries rvould then be accessed by key value and

type. ?he data base acc€ss path w ould contain f e"¡er pages

than the associated multiple-relation access paths but r¿oulil

probably cause t.he number cf acress-path pages exanj-ned

during the processing of, a given request to inc¡eas€.

Ê,= 6 _ è g g e=*-E: pê3 þ_ g! r.-uc! ur Ê

ïn this section, rrÌe describe the structure of the
acc€ss path ryhich provj"des the foundatj-on for the access-
path systen. The access path used by the access-path syst.€m

is a directcry that is designed sc that it coul_d be used for
any of the access paths d,escribe d earrie¡ in this chapter.
one g,€n€ra1 set cf routines is needed to extract the
contents of an access.-path entry while specialized routines
for each cf tbe clesi¡ed access ¡:atbs are used to int,erpret
the access-path contents.

ïn ordær to reduce the numher of access-path pages

examined uhile searchÍng tle access path, t.he access pattr is
struc ured in the fc¡m of a B-tree {KNtr?3J" A B-treer ês

illustrated in Figure q.4, is a multj_level tree. The higher
l-evel-s cf the tree ar€ used only to reduce th€ number of

Àccess-Path Sysi.en 9B

pages ac €ss€

of the tree is

d befcre Èhe desired

found,

Chapter 4

page i-n the lowest level-

tt
Lr-r-/

I

I
L- -_-_-___-l

I
I

.:. 1t11

f- - ----ìtt
t-r-T=J

lttt
--__=_-.J 1._.______

I

I

v

I
I
v

I

I

r____l
I

I

tt
Lr-r-¡J

I

I
L---=_____l

VV

J I | 1,..
L ----J t_-___r

v

lt
I------J

9igure l¡.4

I

I

f----_J

VV
'l.-----1

I tt I
L--_-_¡ L____.¡

B- Tree

I

I

I
I

v
t--- ----ttt
L---__l

The louesÈ. level of the access path contains the actual
access-path estries: t.hese entries conta i,n ma jor-key values

and Èhe associaÈed urinor-key values and variable- length
l-ists af TTDfs. with tlis access-path fornat, it j-s

possible to ilefine priurary-key indexes, ínverted 1ists,
combined indexes, etc. Each acress-path entry is stored in
a t,uple in an access-paùh relation. -..8y stolinq entriEs in
tuples, the sto age system is used to retrieve". stor€,
deret.e, anci insert entrj-es for the access-patlr system. îhê
access-path entries are sto¡ed in asceniling order of major

Access-Patl¿ System 99

Chapt.er 4

ke y.

r.f the lcwest level- cf the access path is stor.ed - on

nore than one pager then onÊ or raore higÈrer levels are added

t.o the accËss path to form a E-tree. Each entry in the
higher levels of the access path contains the highest key on

a page in ihe next loçer 1evel of the access path and a

pointer to thaÈ pag€. The prccêss of add.ing hi_gher levels
to the access pat.h .is continue¡d untir all t.he access-pat.h

entries at the highest level. can be sto¡ed in one page.

rn general, if thêre are N öata pages in a relation and

K access-path entrics can be stored in eacl¡ access-pa.th

pag€, then the acc€ss path ccntaj_ns approximately

roc (N) / rûc {K}

levels {i.ncluding t.he lo¡¡est level- of the access path} . The

nunber of leveLs in the acc€ss path indi-cates tbe number of
accËss-path Fag€s that nusÈ be examined when retrieving a

tuple. lor exam¡;l-e, if $€ assun.e thaè a relation contains
50û1000 tuples, thaÈ 50 tuples can þe sto¡ed on each data
pager anil that 100 acc€ss-path entries can be stored on each

access-path page" then the acc€ss path is only two leve1s
deeB and sc a tuple can be located after exaninÍng only two

pages 5-n the access path,

the format cf the access-path entri-es in the higher
levels of the access path is

<KET: 1TÐ> ,

Access-Path System 1 00

;ì-----."--*-.-'"

Chapter 4

the TTD in the accÊs^s-paÈh ent,ry points to the first
acc€ss-path entry on the ccrrespcnding page at the next
-lover level i-n the access path, ?he keys Ín the higher-
l-evel access- path e ntr ies ca$ be corn pressed both at the
beginni-r:g and at the end as discussed in [BAyg??] and

IrBu73b]- For example, if the highest key on a page is
<7412O, 1 0CI, T1 0>

and the Loi¡est key on the next Fag€ is
<742C6, 2Ð0, T5>

t.hen thej key !r?¿t1zgr100rT10rr can be compresseil cn the right
to n?Ir1tt' rf reguired, this key ca also be comprêssed on

the left to remove Èhe cha.racters *7qrr. flowever, the nunbçr

of characÈers renoverl from the frcnt of the key nust be

incruded r,¡ith the key i-n order to be able to conpar€ keys

correctly. This ke.y is suffj_cient to d.istinguish bet''.,een

the tïcc l-cwer-leve1 pages. At the louest level of the
access path, J<ey conpressi-on is not used since it is
nsc€ssary tc k¡c¡E the exact value of the ì<ey.

The access-path retrieval routinc returns the lisÈ of
tuples that ccntai-n a particular attribute combination, rf
arequestinc1udeson1ythe1eadingKkeys,uhereK<

is the number cf attributes f,or which the access path is
def ined) , th en the Tr-D lists f ro¡n se¡¡erai- acces s- path

ent-ries are merged a¡d returned. Fotr example, if accëss-
path entries conta'in:

l'
lr':'

l: i -::ì..:::-i".r :,rJ
Access-Fath Systeft 101

Chapter 4

<711120, 100, I1; TID3, TID10>

<714120, 100, T3: 1105, TrÐ7, TrDg>

<-14120, zOD, T1: ?IÐ6>

then a request invclving the keys

<71+120, 100>

retuins the TID list,

TIÐ3r.T.IDs, lID?, TIÐ9, TrÐ'10

anrl a reguest involving t.he thc ke.y

<? 4'.t 2 0>

returns the TIÐ li_st

TrÐ3, TrÐ5, 1ID6, TIÐ7, TXD9, TrD10 {

an extension that cculd be made to the m r¡lti - leve1

access-path Ís the *generaJ.ized j_nd.ex* proposed by lleld

nHErÐ?s 1." Tle generarized index is a combinatiorr of the
mul-tj--Leve1 j-ndex and order-preserving functj-ons, Àt. each

ì

level in the multi-level index, there Ís one index entry for
each page at the next louer level of the index. jtith an

order- preserving f unctíon, tÈrere is only one inüex entry f or
the entire lcser LeveL {that index entry is the definit.j_on
of 'the function). Nornally" it is not possible to define
on€ order-preserving functic¡ that can elÍminate an entire
leveL in the index; so the gênerali-zed index coubiles
order-preservi-ng f,unctions and the murti-level j_ndex. BY

ilefining the appropriate f,uncti.onsn it should be possible to

,i.:'i.::::j

Àccess-Path Syst€m 102

reduce the number of higher-level i¡rdex enÈries

rn the norst case, tbe gênerali-zed index would be

as the equivalent multi-Ievel j-ndex. Iß the best
generalized index çou1d co¡tain on.l-y one order-
fu nctic n ,

Chapter 4

req t:ired.

the saa€

cas€, t be

preservi-ng

It
" Z-EeiglengÊ cg_gr_ AcceêE_Ee!!s

fle no$ examine the effects of modifying tupLes i-n

relations. Ì,Ihen a tuple is inserted in a relation n ati
access patbs for that nelation must I¡e nodified. ?his
involves either inserting a ne!{ access-path entry or adding

the TrD cf the new tuple to an existing accêss-path entry.
rf, an attribute value is modifÍed, then the old attribute
value nust b,e removed f rcm a 11 of its access-path eatrj-es
and Èhe neil va.iLue nust re added to the corrësponding
access-path entries. {rt shauld be noted that it nay be Èoo

expensive to keep ar1 access paths up io date. 'rf arì access
path is used infreguently" instead of updating it, iÈ could
be narked as no longer up tc date. Then when next neededn

i-t is rec.ceatad.)

since access paths aË€ actual3-y manipulated as rela-
ti-ons, BASE and tqoÐ Ëi-les and nlprs can be used to maintain
the int.egrity cf acc€ss paths. Thus, a masÈer copy of each

access path is s'tored in the BAsn fÍ1e and al1 changes arê
made to t.he tloD file. I{he ¡ changes are made to a t{oD pager

all copi.es of the access-pat,h e ntry r¿ithi_n th e curren t

Access-Path Systenr 103

¡

Chapt.er 4

'direct-r,Ëcovery period ar€ kept i-n the page, rf it is
ilecessatry tc }ack ouÈ some of the changes in a relation, the
correspcnding access-path changes can also be backed out of
the access path guite easily. ff a particurar access pat.h

is guite ,vo]atilen then it could be stored in onl-y a lroD

file $itb a small_ (or no) di¡ect-r€cov€ry perÍod; the extra
storage rÊquired tbe uurti¡:le ccpÍes of tuples in the goD

file is e]-iminateü..

rn a large B-tree, if nany changes are made to on.e area
of the tr€e, Ít nay be necessary to mov€ somê of the
access-pat.h entries 'to unussd pages in criler to create t.he

spac€ needeil for the changes. The moving of tuples can

car¡se the trêÊ t,o beccme unbaranced, wi.th some of the paths
in the tree being longer Lhan others. ålso, uhen entries
ar€ noved frcn cne page to ancther, one or nore higlier
levels in Èhe tree must be modif,ied to ref,tect the nev

locat icn of t he mcve d entries a nrl Èhi_s may ca use other
modifications t{) the t[ê€. Hoïever, in the accÊss-pat.h

systenn the depttr of the access path never changes. shen an

accÊss-path entry is aclded cr nodified and there Ès nct
enough tree spac€ tor Èhe change, the accêss-path page is
automatically ext,ended by the storage system {as descri.bed

in chapter 3) . Thus" the ¡cutines in the access-path system

are less complex than nost direct.ory-manipurating routines
si-nce tbey da nct have to perfcrn reorganizations caus€d by

Àccess-Path System 104

Chapter 4

changes I'rippllngn üp to higher levels. The advantages

gained are sililar tc those gai.ned in Hel-d and Stonebrakerrs
rrstatic index{f IHELD?B] but r¿ithcut the disadvantage of not
bei.ng able to rnod!_f y the static i¡dex.

since there arÈ ao pcinters into an access path, it is
possible to perform a cornplete reorganization of an access
path without affecting cther relati-ons. This type of
reorganization is perforned ¡lhenever it is convenåent
inst.ead of wlen it is nec€ssary as in .B-trees.

4- s_P g! ge EJ:Aey_4gges s

Primany-key acc€ss {using a non-dense index or a

hashing functicn) creates aildit.ioaal problens fcr the
storage systen" The index or hashi-ng funct.ion generates
only the nunber of the togical page on vhi_ch the tuple is
st'ored.' noÈ the TrD of the tuple. rn order t.o find the
tuple with the reguired priua ry ke yn the storage system nust
sequentiall y scan the tuples on tt?e $oD page {v}rich may be

stored in mor€ tl¡an one lcAical-page segment) o and." if the
tupLe is not found," the st.oragê systern must thcn scan the
tupres on the BASE page {ruhich nay aLso be sÈored in &ore

than one J-ogicaL-page segment) . rn order to rcðuce the
numben cf page accessËs reguired, tbe forlor¿ing infornation
could be added tc the storage-nanagement tabl_es to support
efficient pri.mary-key access.

To avcid accessing bcth the goÐ fite anö then the BASE

Àccess-Path Syste$l 105

Chapter 4

fire' a primary-key filter could be added t,o the storage-
nanagenent tatles. This filter is used in the same uay that
the TfD filter is usedr the primary key {or a portion of
it) is hashed and the resultíng bit string is ccmpared ,rsith

the filùer value" If t.he tuo values match, then the tuple
may be in the HoÐ pag€; if they do not match, then the tuple
{if it exists) must be ia the EåsE page. There would be one

pri-mar1-key fiJ-ter in the Süf for each IIOD page.

To determine which rogical-page seqment contains the
required tuFle, when a page is extended, the highest primary
key on each logical-page segnËît could be i¡cluded i-n the
slYT. Thus, sFlitt.Íng a pag€ into segment.s does not affect
the efficiency of prinary-key access since the reguired
rogical-page segment can be accessed with cnly one data a/s
request- $hen .bashed acc€ss is used, even though a J-arge

number of tuples nay hash tc the. sam€ logi-cal page, the
storage system ênsu[Ês that access to the reguired logical-
pab€ segnent is st.j-Il effi-cient,

The stcrage system cculd also includ.e the highest
primary key ot each groEp cf tuples in the tuple index
st'ored at the end of each lcgi-ca I page" Thi-s extra
infornation uould reduce the time required to fi_nd a tuple
in a paçe ryben accessing the tuple by pr5-nary key.

Ttrre ability of the storage systen to perforn an

efficient sea¡ch of a pagÊ by prinary key can be used

Àccess-Pat.h System 10ó

Chapter 4

effectively by the accêss-path system to retri-eve access-

paÈh entries. Each access-path entry is stored in a tuBle
aith the major key of the entry useð as the primary k.ey,

Routines to search a pag€ tcr a particular access-path entry
are not needed in th€ acc€ss-path systeur since the storage
system already prorides the reqtired function,

Àccess-Path System 1 0?

Chapter 5

cbspleÃ_Þå__Ee!Ërer el_års gs n

5.1 Introduction
rn this chapter, we develcç the retrieval system cf the

data-managenenÈ sïs.tem, Fi¡str isê define a data-
manipulation lanquage {ÐüI} which can be used to prcvide
associative ãcc€ss to the tl¡ples ín a relation. The

language is sufficiently powerf,ul to be used by itself uhen

pcocessing cne relation at a t.ine; hoHe?er" it is designed
fo.r use rn i-uplernenting Ðlgr rs such as the relaticnal
calculus cr ¡eLaticnal algebra. He arso exanine how the
retrieva-]--system requests are translated iato the nec€ssary
access-path-systeur and storagÊ-system requests.

Þ. 2_êSSgg¿g!¡¡g_$sges s

ûne of the gcars of t.he rctrievar system is to free the
user frcn havi-ng tc J<ncw the details of how rel_ation s are
stored and t.he acc€ss paths that are availabLe. The r¡ser
specifies a guery, defining uhat. he wants, and the retrieval
systen attenpts to find the 'best* {cr only) method of
processing the guery. There ar€ several reasons for usÍng
associatíve access to clata. fhe major treason is t.hat since
access paths are dynamicn thc useE probably does not knou

{and shculil not he exBected tc kncw) arl of the access paths
that currentry exist, and, nay ma]<e a pogr choice if all_cwed

ii i ii.. l

l',-

Retrieval System 108 i;:'1..: :.1':

Chapter 5

i

to choose the access paths directly, rt is expected that
many usêrs of the .Düt ar€ higher-revel systems and thes.e

sysÈens should nct have to kncw shich access paths are
available f or a given relati.cn.

rt is possib].e ttrat scme reguests can not -be processed
:sithouÈ an extremely largè anount of ncrk on the part of the
retnieval system. For exaurçle" it may be necessary to scan

a large relation one or mor€ times in orðer t.o proc€ss a

particular quexl. rt should be the responsibility of the
retrieval system to determinc which req[ests are *r€ason-

abÌ€' and r¡håcb are not; this fiay require sone knowledge of
tbe r€quest or thc user. For example, a very slow r€quest
that is run only cnc.€ a month is acceptable ¡¡hile ttre sam€

request i-s rejected {untir extra access paths are added} ít
i.t is run several times a day.

i..-

5.J-Eele!!pÊ-EÊ!gåÊse¿ ',

rn this secÈionr l¡ê describe the facilities available , :

i.',,r:,.:l:,ilÌtfor the a-'sociat.ive retrieva] of tupJ-es i¡ a single ¡el-a- i,'rr:-:..i

tion. The syntax of tbe retrieval-system commands is given t,¡,..1N,,

in .Append5.x f I. ,
The g:êrêrâl f orn of the retríeval statement is

RETRIEYI ÐflI8I {gualifier) ,

{ïn order to keep the syntax of the statements as simple as

possibl-e, it is assuned. that th€ relati-on and domains being
processed havç already been ide¡,Èifi-eil to the system.)

Re tri-eval System "¡ 09 irjiilií:ì1:trÉ

There

quaì-ifier j.

tuples in a

gualifier í
groups of

re exa ri-ne

ar€ tvo types of

s a qualifier Ïrhich

relaticn sne tuple

s a qualif.ier vhich

tuples in a reLaticn

the formats of t.hese

Chapter 5

qua3-if j-e ls: the rfsi ag14 t

is processed by examining t}:e

at a time; and the nmultipl¿rr

ís processed by €xamining

. I0 the follouing sectj_ons,

t¡so typ€s of quaì_i_fj-ers.

5. 3,.L- 5¿!g¿s: Ts-E 1e-Proce ss i¡g
we no$ exanine queries that can be processed by

examining each tuple individua,lly. The simplest, forn of the
sJ-ngle qualifier j_s

Di rclcP rYr

where trDårr j-s th€ ilcmaj-n beiag ref erenced and rrrelo¡:,r' is one

of the relatÍcnal- operatcrs. *v* is the value ui-th which

the domain j-s compared; $e refer to rrvr as a nsimpJ_e value*.
rn nost of the f,crlowing exanples, Ì'e use the relational
opÊrato¡ rr=' since it. is the op-erator nost commo¡ly used..

0uali-fiers can contain several expressions jcined
together by the standard lcgical cperators {ÀND, oB, Ntl'},
and the order in +¡bich expressi.oJ .r* to be evaluateil can

be indicaÈed by the use of parenth€ses. Thus" the gualifier
Ði=t V1 t ÀNÐ Ðj=r yl r

is true if both subexpressions ar€ true,
Thc r¡s€r nay alsc specify a'range valueË for a domain.

a range vaLue is definetl by specifying Èhe mini_mum varue in
t'he range and the raxinun raLue in the range. For exauple,

Retrieval System 110

Chaptec 5

in the qualifier

Di = rv'lr.rv2r

the tnple is accepted, if the donai¡ value

and 1rY2ü or equal to either value"

AS be t ween üv 1rt

ïn order to make rangÊs as qenerar as possiblen $Je

adopt the fcl3-owing cûnv€ntions: if the l_ower range value
is not suppli.ed, the suallest pcssåbre value is assum ed; if
the uFper range var-ue is not supplied, the largest. possible
value is assumed" Thus, tle gualifier

Di = :rlt2f

has the sam€ effect as tbe qualif5-er

Di 5 rv2'

and the qua"T.i f i er

Di = rVlt:

has the sam€ effect as the gualifier

Ði > rvlf r

ïn crder to select tr¡ples nith one o-f several attribute
varues" the user ca¡ include a domain frvalue listr! i_n an

expression. A value l-ist ccnsists of any combinatioa of
simple val-ues and/or rang,e values, separatetl by conmas if
there is mcre than cne value . (.$e assune that all elenents
in tbe value list are mutually exclusive. rf som€ erements
are not sutually exclusive, this aay cause resurts to be

unpredictable.) For examçle" the qualifier

1':' ':

i.'

Di = rVlt¡ ,V2l

Retrieval Sys"teüt 111

Chapter 5

causes the tuçle to be selected if Di

the val-ues specified. ?he gualifier
Ði = rv.lf:r\2t, rì/3rr rv4r:

ca usÊs the tuple to be selected j-f Ði

the exFressj_cns li_sted.

Ís egual to either of,

t15t, rvSl

i-s equal to any one of

attr i-
€s, it

112

.If t¡¡c or morê domains are frequently referenced
together, they can be concatcnated. The qualifier

-Di'Ðj = tTlrrrV2r
j-s equi-vaJ-enÈ to the qualifier

Ði-tV1r AND Dj=rV2r .
l{hen d<mains are concatenated, each entry in the va.lue list
must ccntaÍn tle appropri-ate nunber of concatenÈated values"
The concatenaticn cf dcmains makes it nuch easier to specify
value 1ists. For examplen tùe qualifier

ÐirÐ3 = r?j-lrrtVjlt: rl,izrrrTjZrr ryi3f rrvjSt
is nuch simpS-er than the equivarent gual-ifier vithout the
concatenaticn.

3.3 g2-r¡ u3 !g p3*3,9pÀe- P¡o c€s s-i n g

Tle faci,lities described in the preceding secticn can
be provi-ded by the retrier,¡al system by examining tuples
inrlividually. rn this sec,tionr we examine nultiple gual5_-

fiersr guêlifiers that can be used to examine sets of
tuples.

frequentlyn the tupres in a rer-ation contain an

bi¡te value that occurs in mcrê than one tupre, At tim

RetrievaJ- System

Chapter 5

is convenieut fcr the user to view such a relation as a

hierarchical sttructur€" Fcr example, tle relation
sc {s#, c#, GBADE)

could be vieued as

ls+t
t-_--_-_J

*
I

I
*
*

¡f---.----l
lc*l
L-------:l

I c# |
L---_ r

*
I

I*
+

I sä I
L_--___ ¡

{These are not the onl-y hierarchÍcal rerationships i.hat can

be defined fcr this relaticn.!
when viewíng a relatic¡ as a hierarchyn the user can

ask such Euestions as *ühich stuilents arê enrolled i¡
courses ?43c? and ?4308?rt, rt is not possible to write one

singre qualif,ier which pærnits the user to ask sucb g{¡eis-

ticns. trn general, the user ilay cish tc knos which parents

contain certain chil-dren, The notati-on used to define such

qualifíers is

Dp,Ðc = {chÍld value set}

¡rhere rrÐFrr is the parent dcuain, 'SsN is the cbild ûomai-n,

and the tf child value setü is a value rist" Both Ðp and Dc

can be concatenaÈed domains. The inilividual values in the
chi-lil value set can again be any combinatj-on cf simple
values and range values. The gualifier which corrÈsËonds to

Retri-eval System 1i 3
i1,;,.i:.::

Chapter 5

rrHhich stuöents ar€ enrolled in bcth 74307 and 74308?îr is
S#. C# = {t 7 4307, , t 74308 rJ ,

The gualifier

5*.C# = 1r742Ð0t i|-ll¡299t, r?i¡30Ct :r?4399r1

ilLustrates tbe use of rang€s in the child value set. The

quarif,ier is used to det.ermine wbich students are t.aking at
least cne second-year cours€ and at l_east one third-year
coürsÊ in departmerìt rt?4¡r.

ÍÍbÊn a chil-d value set is processed, all af the tuples
in the chiJ.d value set ar,ê returned for each quaJ- i f yJ_ng

parent" For exanple, glven the tuples

10 0 7rr3tð
1 00 743ß7
100 ?43C8
10c 74410

the qualifier

s#"c* = tt
causes the tuples

?I¡307r, r7430Br]

-:i:, !)

100 ?r¿30?
1 00 74308

to -be returned,

ïn qeneral_, the evaluatio¡ of
tains a chåld set involves examini-ng

deternini-ng whetber cr not alt the

value list cccur under tbe parent"

a gualifier rEhich con-

each parent douain and

chil-dren defined in the

it!::.:,. :1.::.,jìr:lÌì::

Retr j-evaJ- System 1?4

Chapter 5

5. 3.3 û uoÈas

rn order to extenù the Fo$rer of the Ðt{1, H€ noe,

introduce rtq 6otasn. À quota is used to specif y the exact
number of subexpressiçns in a rarue list tbat must be Èru€

fon the entire expression to be true. ^À Eualifier ryritten
uith a quota can always be vritten in an eEuivalent form
without a quota, but t.he use of quotas fre,quently simplifies
the urj.ttinq cf Eualifiers. The g€nêral form of a quota j-s

, ç {va}ue }i-st} r

The varue líst consj.st.s cf any ccmbination of sinple val-ues

and rang€ values. The forlcvi¡g qua.lifiers j_l_h¡strate the
use of guotas. Fot t.he gualif,ier

to

er
This gualifi-

s#=t1t0r ÂNÐ C#=r?430?r .

If the qualifier is changed tc

A {11 {S*=r'100r, C#=r7430?t)

then the expressã-on is true if either subexpression i_s true
but both subexpressi-ons are nct true. To get the saüe

effect as using the logical op€rator û8, the quota aust be

chanqed t,o Q { j:2i cr to 0 {1:}, the expression is then true
åf either subex¡lression is t¡ue or if both subexçressj.ons

ar€ Èruê.

especially convenient in lists

0 {2} {S#=r 1 0tt , C#=r 7q3Ð7r)

be true, lcth subexpressians nrst be trüe.
could b'e te ¡rritten as

'i;il:

Retcieval Systeu

the use of quotas is

115

Chapten 5

containing three cr moÍê suberpressions, For example" the
gua 3-if ier

Q {2:} fS*,=f 1t0t, CS=t?4307t, cAÀDE=rAr)

is expr,essed quite simply using quotas, Tbe equivaJ.ent

ex pressicn wiÈhcut r¡uotas be co mes nuch nore complex.

{s #=' 10?;-1i3,,j. $;';ii'¿; rfii=fäliE='À'))

xf the quota elzr) in the prerious qualifier ås char¡ged to
Ç-t2l , the equivalent expressíon without a guota becomes eve$

mûre ccmpJ-ex {ând unreada}}-e) , reguiring three rcaica L

€x Fressi-ons, e ach contain.ing three subexpressions,

The use of guotas is also pernit.ted in mu I t iple
¡rrocessing. The guatif ier

S*.C# = .{r?4307r, r?4308r}

can be ret¡ritten as

S#.C# = A{2) {NT4307t, r?¡1308r} ¡

The'gual_ifier

s#.c# = Q{22) {r?it3[?r, I?tt30Brr |?4410r]

specifies that a student is selected if he is enroÌled in at
l-east t.no of the thre€ coltrs€s specified..

rn general, guotas use d ¡uit h child value sets are
evaluated as fcllocs. a counter is maintained for each of
the srbexpressions in the value list. For each par€nt, eacb

child. is examined; if a c.hild satisfies a subexFression, the
counte¡ for that subexpr.ession is i¡cremented. {He assumed

,:ri
r ì

Retrieval Systeur 1 1ó :tr ,: ..,
i-.....:

that all- subexpressicns in a

Chapter 5

value list are mutuaJ-1y

excLusive sc a child sould sat.isfy only one subexpression
and the evaluation of aD expression would terninate as soon

as one subexpressi-on is found to be true. Thus, if
subexpressi-cns are nct mutually exclusive, only the counter
for the first true subexpress.icn is incremented.) Àfter the
last child. fcr a particular parent is processed" the numb,er

of, counters Èhat are non-zero is determined- This value is
then conpared with the qlioÈa value list, and, if the value
matches on€ of the quota value 1i-st subexpressions, the
result of tlhe expressåon i_s utrueu.

5, 3.4 Ccunt,s

The last addition to qualifie.rs
ttc orf Dt Ê pa ra:üete r. Coun t s ar e üs

in the DI{ t ís t he

eil to def ine chi 1d-set
queries r¡hich involve the ¡uuber of chÍldren und.er each
parent' 0ueries such as $Tthich sÈudents received cnry s,

grades?tf can not be ansrve¡çd llith the stanilard chi ld-set
qualif iers or wi-th guotas,

. The genexal fcrn of the ccunt parameter is
C {true val_ue 3.ist; f alse value list) .

BoÈh the ut,rue varue listr and the frfalse value list* ar€
value lists tihich can contain any ccmbi.nat.ion of símple
values anð rarge values. The true list is used to specify
the nunber cf children that mrst satisfy the corÐesponding

domain value List for the expression to be true, and the

i.:_:i.:.:.'-:-;.-.:

Retrieval Systen 117

Cha p-ter 5

fal-se list specif,ies the nunbe¡ of children that nÐe

satS-sfy tbe dcmain varue l'ist tcr the expression stilr
true. Iüe shal]. âssune that if the t¡ue l_isÈ or the

list is not specified, then the count for that list n

any valüe.

lle nor¡¡ examin.e som€ qualifiers that use the
parameter. The qualiÉier

s#"GaåÐE = c(1:1 lrar3
can be rsed to deterrnine r¡hich str¡dents received at least
one À grade and any ¡unber cf grades that are not Ars. The

gua3-if ier

d not

to he

false

ay be

count

can be used

gr ades. T Ìi e

S+.$BÀÐE ,= C{i:
to determine r¿ hich

gua-l-itier

;01 {'A'}
students recei-ved olrly

san be used

any F grades"

s# "sRåÐE = C {; 0) {t Fr }

to deternine $hich student.s have not received

The use of counts r¿ith sets has an interesting side
resurt. f f a us€E lvishes tc select a parent. based on the
number of children the parent bas, t.hen a count can be used

wj-t.h a nuLl child set if ve adopt the convqntion that a nurl
child set i-s aruays true. For exanple, tbe gualifier

can be used

courses.

s#.c* = C{5:} { }
ta sel-ect students enrolled in at least 5

Retrieval_ Systein 118

Chapter 5

The processing of the count parameter is perforned as

follor¡s. trcr each parentr €âch child i-s exa¡nined" For each

child that satisfies the donain vaLue 1ist, a rftrue counterr
is increme¡têd. For each chird that does not satisfy the
domain value list, a *false counter'r j_s increnented. After
the l-ast. cbi.!.d is ¡:rocessedn the true count i_s conpared r¡ith
the true value lÍst and the fal-se count is conpared xith tbe
farse value trist, rf hoth var'ues are sithin the defined
limits, then tùe expression is true; otherw!_se, the expres-
si-cn is false.

Þ.9.Bg J a! ¡!!_ gsgÅt iseÍig!
rn the previous secticnsr rd€ exanined the retrievar of,

tuples in a r€lati-cni in this section" e¡ê show how tuples
ca n be inserted , deJ_eted, a¡d nodif j-ed,

5. r+. 3-Tg-E I e_IÐSËI!¿erß

The general form of ÈTre statement used to insert tuples
is

.lNSERT nÏTlt {urodifier}
r¡here the ,t modif iern has the same basic
gualificr detined fo¡ tuple retrieyaJ-. For

insert a tuple to¡ student 100 in the SC

mo difi er

S#=t100r ANÐ C#=t743û?f AND GHAÐE:råt

can be tsed,

forn as tbe

example" to

relation, the

Setrieyal Syst.enr I19

Chapter 5

when inserting a tup3-en it is nÐcÊssatry to include at
least the primary-key donains since they unlEuely Ídentify
the tuple. ?or exainpl€, th€ ncdif ier

5# = f '100t
|.. -.t,..-... a,.-

t :.,:.:::.::i.......:....:.:

is not conplete -r¡hen inserting a tuple in the relaÈion sc

because the course number i-s not specified. {co dd has

exainined the problem of inserticns into a relation and
:,:,.. ::: :: .

concludes that pernitt.ing insertions +lhich specif,y a candid- 1,r.,;,it.,,'',;l.'-'
ate key that j-s not the primary key may permi_t duplicate ,",,,..,:,..,..;

tu pl-es to be in*eerted [coÐÐ?5].]
t :':':::: "':'":

Irf several t.uples are to be inserted at onc€, a chil
value set can be lnc-l-uded in the mcdifier, For example, the

i

I

Imodi-fier
l$#=ttQ$r ANÐ S#.C#={t?r¡30?t, t7430Br}
ii,

can be used tc insert tÍo tupSes in St, j

iThe use of quotas and counts is not permitted i-n a I l, ,

l'modifiersincethoseparametersareusedon1y¡¡henpIÐceS.

sing tu ples t hat already e xist " ;,,.,.:,,..r..:.:.,,,: ¡:,,,

j"r.l¡:':;'':t t:t..
Ðûnains ryhich are not given values in the insertion

:,...,,..,,1: ,.,,''..:

stat'enent are assi-gned frdefault valuesrr. {A defaul-t value ,'.','.'1"-'r,',',:,,'.,

for each d.omain is defined l¡hen tÌ¡e relation i_s defi_ned,l

5. Ê.? -Es E¿s-p.Ê]st isn

?he general f,orm of the statement used to ilelete tuples
is

Ðrf.ETE s HrRr {qualifier}

q-:-1

Chapter 5

where the gualifier is the same as the qualifier def,ined for
tuple ¡etn'ie val_. I'or examFf€., the qualifier

5#=r100r åND C*=r74307r

can be used to delete a tuple in the sc relation.
üihen deleting tuples" the primary_key domaj-ns dc not

need to be sp€cj.fj-ed. For eeanple, the quali-fier
GRAX'E = |Ft

can be useil to derete all tuples in sc cith a grade of r.
rf a child vai-ue s.et is incl_uileil in the qualifi-er of a

del-ete statement" for qualifying parents, the tuples in t.he

child value set are deleted. fcr exanplen the qualifier
S*.C+ = Q{2} {r?¿t3AJt, t?q3ûBr}

ceuses the tuples 'i4307 and ?4J0s Èo .be del_et,ed fron
students enrclled i.n both ccurses" The gual-ifier

S#"C* = Q(1:) f r?430?r, r?q30BrÌ

caüses ?4307 and. ?q308 tupJ_es Èo be deleteû from students
enro]-lcd in either course, '

Þ¿È:f - r w 1Ê -g
q gi€¡çalågg

The general form of the st.atement used to modify tuples
is

Ê Ep rÀCE !t HERE (gua 1J.f ier) riITH (modif I-er)

¡rhere the gualifier indicatcs the tuples to be modified and

the mcdifier specifi-es the ne* domain values for the tupJ_es

to he modified. For exarnpleo tbe statement

rÌEptÀcE #flERE {S#=r 10Sr ÀND C*=r?43û?r) {drrH(cRÂÐE-ra r)

Retrieval- System 121 ..1,',,,
r::..-: -l : .:

I

x:r-:_.-;Í,i:tijljåj::::ijï{a¡4*,:l È:::.-:;.i-.Í

Chapter 5

can be rsed to change a studentrs gcade.

rf not alr of tbe prinarJ-key domains aEe specified,
tben several tuples nay be modified. For example" the
statemeat

REPtACf fHEBE (S*=t100r) l|ITH{GRåDE=r gr¡

causes all tuples fo¡ student 100 to be modified,
rf a pricary-k€y donain is modified, then the ord tuple

'is ileleteð and a neil tuple is iuserted, yor exanpx_e, the
statement

REPtAcE IüIlEÊE {s#=t'l0sr aì{Ð c *=t-143ûTr} ÍirrH{c#=r ?q3ûgr)

causês the tuple *100r?4i07u to be deleted and the tupl_e
rt100r?430Brr tc be i-nserteü. The dcmains not specified in
the scdifier are copied frcm the deleted tuple to the neri

tu BIe.

lf a child value set is included in the gualifier of a

replace statement" for qualifying parents., alr tuples ir¡ the
child val-ue set ar€ urodif ied. Fûr exanple" the statement

REPIAcE IiHERE {s*. c*= {r?430?'r t ?q30Bt }) ÐrrH {GRADE=r¡ r
¡

causes alL stude¡ts enrotr_led in both ?4J0? and ?q30g Èo be

given À grades in boÈh courses,

5. 5_5! rg!9gl_ge1aÈ¿93

The most important part of the retrieva-l_ system is ihe
selecti"cn cf ef f ici.ent access Faths f or each request. The

seLecticn of access paths should be dynamic because the type
and number cf access Fatb-e lary with Èime, Ho$ever, tryÍng

Retrieval System 122 ,:,,:.:.,_, .,,.r,

Chapter 5

to determíne dynarnically the best set of access paths fcr a

particular request. can itself be time ccnsuming. so, in the
retrieval systen" a ccnprcnise strategy is used. For eacb

relaticn, a -.pecial relaticn, called the strategy relation,
is nair¡tained by the retrievat systen. Bach tuple in the
strategy reLaticn contains a list of dc¡nain names and a set
of, "pathstn. rach path contains the internal iclentifier of
an acc€ss pathn the type cf the access pathn and the names

of, the donains used with the access path, fihen processing a

reguesto the retri€va.¡- systen rçduces the domaíns j-n the
request to a canonical forn and t.hen retriÊî€s the asso-
ciatetl tup.le f rcm the strategy rel.atj_cn. The paths defined.
.in the strategy-reration tlrple are processed., from le f t to

)
n5-ght' untiL the d.esi-red t.uçles are retrieved. For exanFl€"
to process the reguest

8IX'RIEVI WËIRE {S#=r1Oflr ANÐ cR.ADEì=rAr)

t.he strategy relati-cn mi-ght i¡dicate that a directory f or s+

can be used to establish a pcsj-tion at the f irst tupl-e for
st.udent 100 and that a subsequ€nt seguential scan can be

used to locate all of the tuples uith an A grad.e.

The us€ of, the strategy relation pernit.s fast acc€ss to
tu pJ-es by preileterni-ned paths; this technique is ¡nore

efficien.t, than dynamåca11y ctetermining the best path for
each request. Yet, access ¡:aths can be added, deleted., and

moilifisd at any ti¡ne as rcng as the st.rategy relation is

Retrieval System 123

Chapter 5

also modÍfied tc ¡efrect the neu access paths. The spced of
predetermined paths is ¡rrovided with the flexibirity of,

beíng able to change access paths at any tj-me,

The strategy relation can also be used tc maintain
information on the frequency *ith çhåch the various domain

conbinations are used if same extra domains are stored in
each strategy-relation tuple. on€ domaån contains the date

on whj-ch the tuple Idas crcated and cther domaj,ns contain the
dates o$ shich tbe tuple r{as nost recentl_y accessed for
retrieval" ìnse¡tionr deletio¡, and modification, and the
number cf times that the tup.le $as accessed for r€trieval,
insertion, deLetion, and ncdificatíon. These dcnains can t¡e

used when evaluating the access patterns for a relation"
Idhen processing a request, if the necessary entry is

not fcund in the strategy relation, then the reqaest is
rejected. Thus" -tbe use of the strategy reLation pernits
the DBA tc prohibit certaj.n reguests by not defining the
Ðecessary ent.ries i-n the strategy relation. sinj-1arly, by

adding to the strategy relatj-cn a d.omain wtrich d.efines the
nininum number of days that must pass before a request can

-be issued again, the ÐBA can contror the f requency with
wh ich exF€ nsi ve .req uests ar e j-ssued.

Retrieval Systen 124

Chapter 6

Chapte¡_þ¡ _ Fglule_fes€êrch_aqd Ccnclusions-.____;:-=;____ _-

l¿1-EgisEe-E-Êssers!

ïn this thesi-s, the foundati_on for a generalized
data-nanagenent system has been defined. There aE€, hor,¡ev-

êÐ, several functions o data-nanag,Ênent systems that ldere

mentioned but noù examinerl in detail. r$ this sectionr wê

indicat.e some ar€as ¡ihich dcserve further examination.

Iûe havc assumed that the tuning of a data base is
performed þy the data bas€ adninistrator. I{o$ev€r, j.f the
necessary statÍstics are mai¡taåned, ít should be possibl_e

to have t}e data-managenent systen itseLf pecforn mucb of
t.he tuning. for examFle, pâg€s that arB frequently accessed

together could be stored o¡ the'=ur" ilata set; the lengttr of
the direct-r€covery period cf a relation could be modifj_ed

as the rate of access tc the reration increases or
ûecreases; the acc€ss paths for a data base couLd he

reorganized to suit current access patterns" The f,ac'¿.li-ty

to adil ancl delete access paths based on predefined future
needs courd also be supplied" {For examFle, adding te¡n-

porary acc€ss paths at the .€nd cf eacb year could ¡educe the
access-path

.
processing reguired by year-end sumnary pro-

grams.] Ðy adding such a tuning system, the d.ata-management

syst,em uouLd be abLe to clercoïr€ poor initial access-path

Future Besearch and Conclusions 125

Chapter 6

choices and provide the usêr

nanagenent services.

¡¡ith more ef f ici ent data -

Ancther probrem that needs to be examined is that of
concurrent access to the data in a rlata .base. current
operating systeins provide fær¿ facílities to aid the data-
nanagenent systen in sharing data among users. conseguent-
L!r the data-managenent system mus.t, contain a mechanism for
locking por"tions of a data base as changes are made to the
d.ata .base. Thê locking nechan.j.sm milst maintain the íntegri-
ày of the oata hase *hen se ve¡al us€.rfs at.teûpt t.o nake

changes to the sa¡nÊ area of the data base l¡j-thout prohi.hit-
ing access by users uho r+isb to access a dj-ff erent ar€a of
the data base. Such a tocJr]ng mechanisut is required j-n

order tc be abLe to us€ data bases effecti-vely. As ilorê
data are added. to each dat.a base" the number of, users +lho

require acc€ss to tt¡e data increases, rt is t.he responsibi-
lit.y of the data-managenent. systen (and the operating
systen) to €nsure that shared-data integrity i.s maintained."

É=.2-!gAcl usicgg

ïn this thesisy ïr€ have ctefined a data-managenent

syst,em that provides addressed access to pages and tuples,
keyeð access to tuples using pre-def,ined. access paths" and

associative access] to tuple s. the devj_ce system fiìa.nag€s the
pages in each relati-cn for the storage system" Through the
use of the devíce-management ta.bres, pages may be moyed f¡orn

fluture Besearcl¡ and Conclusions 126

Chapter 6

one data set to another uithout affect,ing the user, The

abilit.y to change tbe locaticn cf a page j-s important in
large data bases i¿here it is not econonicalry practical to
store all pages cn f ast clevices. rnstead, the access

freguency of a page can be used to determin.e r¡l¡ere the page

is stored. The use cf t€rporary ðevice-management tables
provides a simple method cf recoriling the current location
of a paç€ as the page is moved trcm one localion to another
duríng its plocessing,

The storage system nanipulates the tuples stored in
relaticns. The storage system reduces the secondary storage
regu.i.red for a relation by storing the ma jorj-ty of the data

in a relation in a BAsr file {wÍth no free space} and

storing changes to the relat'icn in a .t!ûÐ fi_le" The

storage-nanagement t.abres ar€ used to defi_ne the current
location of the B"Ð,sE and PtoÐ pag€s. Through the use of
dírect-recovery pericds, t.he storage system al-so prcvid.es

the facj-lity to ro11 back grouFs cf changes to a relation.
Th,Ís facili-ty Ès imporÈant i.n a multj--user environuent nhere

çhanges made by cne user nay have to be backed out in order
to pr€serve the integrity cf the data base. The stcrage
system is designed so that the üse of BÀsE and. t{oÐ fi]es and

DFPrs can b€ modified rith a mininal amount of, reorganiza-
tian of, the data base. Thus, as the üs€rsr requirements
change, the tacilities used may be changed.

ì;-,. . -.iììi -+ï.:. :: ;-iL

. .: ; : .::: :

Futu¡e Eesearch and Conclusi-ons 127

Chapter 6

The access-patb system provides a powerful access-path

structurê, the multiple-relaticn access path, Lt support
keyed access to data. The multip3.e-relation accêss path

reguires less storage and prcvldes nor€ information than t.he

equivalent. s5.ngle-relaticn access paths, By not storing
access-path links .in tte data porti_on of a relat,ion, it is
easy to add" de3-ete, and recrganize access paths,

the retrieval-systen ÐlqT, provides associative acc€ss tc
the tuples in a reration, The use of the strategy relation
provides a convenient method for translating assocÍative
guerì.es int.c tbe n.ecessary t<eyed requests to the access-path

system. The statistics that ar€ kept j-n the strategy
relation are used vhen changes must be rrade to the access-
path structure to i-nprove acc€ss tc the data bas€.

The na jor goals in t.he ilesig n of the system r{rere to
define a data-üanagement systen which provictred both effi-
cj-ent storage cf data and rapid ¡etrieval of data and to
permit the rser to change data-uanagement facil_ities used as

his data-management needs change. portj-ons of the data-
nanag€ment systen ¿*s.íin"¿ in'this thesis har¡e been imple-
mented and have been found to provide faciritiçs at reast as

powerful as {and in many cases, more powerfuJ_ than) t.he

faciliÈies provided by current data-fianagenent systems.

f'uture Rês€arch and tonclusions 128

Âppendi_x I

aepseÈi ë_r:,__g aE¿eþle -!ess! !_rc] us e

rn this appendi-x r !rê indicate hou tu ples, dou ai-ns , and

tïÐr s can be stored effíciently as variable-length character
strings.

In nost systems. variable-1engtb character strings
contain a fixed-lengt.h prefix which contains the length of
the character string. sr¡ch fixed-length prefixes either
¡est,rict the ulaximum lengtb of a character stri-ng unn€cÐs-

sari3-y fihen too small cr ¡¡aste storage space when made

larger than is necessary in crder to permit the manipulati-on
of the occasional- large character string. For example , if
the prefix ís cne byte, the maxj.uum J-ength of the associated
chacacter string is 256 bytes. rf the prefix is ùwo bytes,
t.he maxinum length of the cbaracter string is 651536 bytes;
hovever, for any string that is smalLer than 256 bytesn on€

byte of the prefåx is uast€d,

rí order to utilize sÈarage space as efficiently a,s

possible, variabre-leagth prefix€s can be used. rhe high-
order N bits cf the prefix can be used to indicate the
length of the prefix. Tf aIl N bits arê 1ts, t.heu the
prefix is stored in tflo bytes; othervise" the prefix is
st.oreil in one byÈe, Table T.1 indi_cates the naximum lengths
that can be represented in rn€- and two-byte prefixes for
various values of N.

l,::j:-: :.r : it-

.i._-' '
.::..a: :.

Variable-Length Values 129

Appenclix I

!
1

2
3
4

T able

192
224
24Q

f.1 Vari

^1
-¡-y!e-¿Ênstè Z:þzÈe_tesg-l!

128 32,-7 68
1õr384

B ,192
4,096

abJ.e-l,ength prefixes

fiit.h a vari-able-t-ength pref ix, the user is not restrj_cted to
domains uíth a small uaxinum length nor penatr_ized b€cause

so{ne dcrnains may be quite long, The proc€ssing of the
prefi-x requires the executicn cf extra instructÍons ,{appro-

xinately four Àssenbrer language instructions cn an rBü

SysÈem 3701 but t,hÍs is a sral-L psice to pay aoûsidering the
added f .lex5-bility provided,

rt. r¡ould be unusual to have tuples otr <ìonains i¡hose

lengths could nct be represented in two bytes, Hoh,eïer , fi
necessarr' the size of the prefix can be increased to aty
size using the follo.wing strategy. The fi-rst N bits of the
first byte cf the pref,ix ar€ divideit into Eroups of biÈs

with lengths ü1, fl2, ... , rf any of the first ltl bits are
Ots, then the prefix is stored in one byte. rf al-l cf the
finst llt bits arê 1ts and any of the next t{2 bj_ts are Ots,
then the pref,åx i.s stored :-n tuc bytes. rf the next nz bits
are also 'l rs but the next H3 are not all 1, s, the pref ix is
stored in three bytes. This pEccess can be contj,nued for as

Tariab-Le-t ength Values 130

Appendix I

nany bytes as necessary.

The TTI can not be manipulated as a simple variable-
length character string sincc the TTD actually contai_ns

three vaiues: the ,Fage number, tbe tuple number, and the
insert nunber. rnstead, these values a.re manipurated indj--
vidually as variable-length values. .

The page number and the tuple nunbe¡ caa ba stored uith
the higlt-order N bits indicating the nunber of, bytes used to
represent the val-ue, The ¡enai_nder of the first byte and

any remaining byÈes contain the actual valr¡e of the pagÊ or
tuple number' not the length of the value, Thus, pag€

numbers and tuple numbers cf any magnitud.e can be rÊpre-
sented ef f,ici ently.

An advantaqe of this r€prÊsentation of the pag€ number

and tle Èup't's number is that t:Èo page numbens or tuple
numbers can be cornpared by conparing the stored r€presenta-
ti.on of the nunbe¡s instead of havinq to extract t he

represented va-Lues. Íor example" when a tuo-byte page

number i-s ccmpared ¡¿,ith a one-byte page nunber" since the
leading N bits of the t*o-byte value are a1l_ 1 r s vhile the
lead:ing N hits cf Èhe one-byte varue are not all 1r s, the
two-byte vaJ-ue is designat.ed as the rarger value after only
the first N {or feirer) bj-ts ar€ €xanj_ned.

Tf t he inse¡t number is tc be conpared i_n i_ts stored
repres€$iat5-on, it should not be st.orecl in the sane nanner

: :la;:.r.r-ìVariable-Length Values 131

.1-

Appendix I

as the page and tuple numbers since the irrsert numl¡*r is a

left-justiÉj.ed value rdhile the ¡:age and tuple nunbers aEê

ight- justified.. {The f act that one insert number is store d
j-n nore bytes t.han aacther insert number does not mean lhat
the first value i-s greater than the secord value.) Thus,

for two insert numbers to be conpared efficÍentry, the
rength of the value nust not be at the front of the vaIu,e.

ïnstead, the l-ast bit of each byte can be used to indicate
*rhether or not there is ancther byte f cllowing the current
byte: if the l-ast blt is no't 1, then the cument byte is
the l-ast byte used to repr€sent. the varue; otherwise, there
is at least on.e nore byte in the val-ue. Ttsing this nethod

of representation, insert nunbers of aûy magnitude are
stored efficiently and can be compared in their stor€d
re pcesent,a tion,

Br st.oring the ccmponents ct a TrÐ adjacent to each

other in thej-r nattral order {page number, tuple number,

iasert nuub€r)n it is possibJ-e to compare TrDrs as character
strings vithont, having to ext'ract and compare each coupone6t

of tbe I'TD. EhÈs eas€ of ccmpari-scn is J-mportant in both

the storage system and the access-path system.

Variable-Iength Values 132

Àppêndix II

¡p¡es4å¡_II-:.- _åJq!eë

(statement) :: = BETSIEVE $It¡RE (<qualifÍer))DELESE IûHERs { <guãlifier))
ïNSERT TIITI1{ (modif j.er))
-8IPLÀCS FHERÏ { (qua15-f ier))

HïTIt { (modifier) }

(qualifier) :: = (stexp2)
| (ntexp2)
| <ntexB2) AND (stexp2)

(nodi-f ier) ¡: = (stexp)
| (mtexp)
I <utexp) ÀNÐ (stexpÞ

(mtexp2) ::= {parent-chi.ld) (relop) (mtlist)
I { (mtexp2) ,

(mtli-st) ::.= { (value-list) }(count) { (value-list,} }(count) { }(quota) { <valu,ê-1ist} }
(mtexp) ::= (parent-chi3d) (relop) { (vaLue-list} }I { (mtexp))

(stexp2) ::= (stc12)
(stexp2> ÂìiD (stc12)
(st,exp2) OR tst.cl2)
NOt (stexg?)
(guota) { (expli-st)

)

(stexp) :t= (sÈc1>
I (stexp) .ÀNÐ (stcl)

(explist) ::= (stc12)
| (expl j-st)

"
(stc12)

Syntax 133

(stc12) ::

(stcl) ::

(count) ::

(q uot.a) :
(parent.-chi ld) i
(domain-list) :

(value-1ist,) :

(value) :

(range-value) :

(ilomain-vaIue) :

(s5-mple-vaIue) 7

(re1op) :

(domain-nane) (characte¡ -str in g)

ÀppendÍx II

,

I

I
I

(stcl)
{ (stexç2}

)

{donain-1ist) (relop) (value-1ist)
{ (stexp} }

C { (value-1ist) ; (value-1ist}
)C{ (val-ue-1ist} ;)C{ ; (va.lue-List)

)

Q{ (va.Lue-1ist)
)

(domain-li-st) . <doma'in-]-i-st)

(doma i.n-na ne)(ðomain-l.ist), (domain-name)

(value)(value-List) , (va1ue)

{domain-yaL ue)(range- vaLue)

(domain-val-ue) : (dcmain-value)
(öomai¡-yalue):

: (dc ma in-r¡a lue)
(s5-m ple -va3- ue)
(dorna in-va lue) , (sinple- value)
t (character-string) t

=
I

I

I

I
I

I

:

Syn tax 134

References

ÀN S I?5

åsTR75

BÀClr73

Ðå YE??

BENTT I+

BERî??

8too70

88tJ Ð? 5

CTNC?4

c0 Ðå7 3

aNsr/ï3/sPÀRc, r¡study cr oüp on Ðata Base uaBag€mentSysteffis'r, ,Interim Feport" ÃCU-SIctlûÐ FD?, Volúul ê i ,N¡¡mber 2, 1975.

Àstrahan, flI. 4., +t al,, ßsysten R: RelationalÀpproach to Database I{anagementir, ACu-ToÐs, volune1, Number 2, pp, g'l-137,,June .l976.

Bachman" C.
.
ff. , tf The progranmer as N avi_ga tc.ru ¡cÀc}ln vorune 16' Number 11, pp, 653-65gr November'19?3.

Bayer, R. and Untera{¡er, fi.., frpref ix B-Treeprr r
ACI'f -Tt¡S" Volune 2, !tumbcr 1, pp. 11-26, ¡taicf,
1917.

8entl.ey, J. t. and 3inkel_" R. A., nQuad Txe€s AÐata Structure I'or Betri_eval on conpoÁite Keysrr,Acta Infornat,ica, Tolumç q, pp. 1-g, Springer_Verlag, Nec york, New yark, 1974:

Berran P. B. and Anderson, H. D., ilüi-ni_mum CostSelection of secondary rndexes For FormattedFilestr, ACIÍ-TOÐS, llolume Z, Number 1, pp, 6B-g0,
March 1977.

Brcom, El" E. '
nspac,eyÎime Traile- of fs i¡r lrashCodihg ¡uith Àl-loEablè Errorsü, CACII , VoJ.ume 13"

Number ?, pp. q22-q26, Jul_y 19?0.

Brcdie, lï. L. et a1., rfzÐTå: A prototype Felationar Data Base üanagement systenrl" Techni.calReçort tsRG-51' Department of computer scieuce,University of Toronùo, Toronto, Oatario" 1g7S "
r.,:.,.¡

cïNccu syst.ens, rtTûrår,7? ËeferencÐ planualr, crNcoM ir,;,,,:,,Systens Inc. , Cincinnat3_, Ohio, 197 4.

CCnASYL Ccmittee, tCOÐADSyL Ðata Base Task GroupReportrt, Conference on Data Systems Languages, ACI{;Ner York" New york, åçri.l 1g?1.

Eeferen ces ?35

co DÐ7 0

CO ÐD?2

CO DÐ?5

DÀTE??

FEAC?8.b

flÀ ER7 B

flEtÐ75

.HE¿D78

ltÐFF75

codd' E- F-, ttÀ Berational lgcclel of Data for rargeSbared Data Banksfr, CACfi, Volume 1j, N unl¡er 6, pó.
3? -i- 387, June 197 0 .

Codil, E" P. r *ge.laticnal Conpleteness of Data Basesuilanguagesfr, ccurant comçùter science series,
vo.l-ume 6, Database systens, Þrentice-IIall, Toronto,Ontarío, 1972.

Codd, 9._ F¡ r ,r{lnderstanding Relationsment 6nt, ÀCt{ Sr GÍ-ÐT, yolunã 7 , Nunber 1,
1 g'7 5.

trn s tal_l_-
pp, 1-4,

FERCTSa Fê.rch, H" J., Neufe tr_d, G. ignllant.es 0ser Ilanual-{, Ðe
Sci-ence" University of tvlanÍto
ba, 1g?8,

Date, C. J.., $.å.n
Spcond Eilition,
ûn tari-o , 1977 .

Held, G. , rfStorage Structures
Base üanagement systeffsrr,
Electrical Eagineering and
ûniversity of California at
Cal-if ornlan "19?5.

Introduction to Ðatabase Syst,e¡srrÀddi-sion-Wesleyn Ðon Mi-J.Is,

., and Zarnke, C, R.,partment. of Computer
ba, lfinnipeg, ¡{anito-

l'erch" Il' J' '
*Tl¡e Design and rmprementatisn cf, astructured rndexed Fi.Le systemn, Þh. o. Ði_sserta-ticnr Ðepantnent cf ccmputer scÈence, university of,úanitoba, Ði-nnipeg, ffanitoba, lg?9,

flaerdert T-, rrrmprenerrting a Generar-ized Acc.Ëss-
Pa th structure for a tselatiónal Dat.abase systen*,
ACII-TÛDS, VoJ-ume 3, Number 3, pp. 2S5- 2gg, Sep_tenbe¡ ?978.,

for Rel-ati_cna.l- Data
Ph " Ð" Dj-ssertation,

Computer Sci€nc€,
Berkel,ey, Ber]çe1ey,

He1d, t. and
examinedrr, CÀCH,
February ?9?8.

Hoffer, J.y rrA
Èícn cf Subfiles
Easelt, Ph. D.
tians Research,
York " 1975,

Stonebraker, H. , ,rts-Trees Ae-
Vclume 21, Number 2, pp. 139-143,

Clustering Àpproach to the G€n€ra-fcr the Ðesign of a Computer ÐataDissertation, D€partnent of 0pera-Cornell tiniversíty, Ithaca, New

Referen ces 136

HSI À7 O

IIUÀN?3

TB¡{? 1

TBÊ]?3A

IB l9?3b

TBH? 4A

TBI,T ? 4 b

ïBIvl7 5

TB$?6

TB T{?7

KNIJT?3

TlsÍaon Ð. and Iìarary, F., rf À Formal- Syste m f orïnformaticn RetrievaL frcm Filgsr, cac¡än vãlume'13,
Number 2, pp" b7-73, February 1g?0.

tuangf .J. C , ttA Note on fnf,ormation Organizatíonand Storagerr, CÀCl,t, Vol_ume 16, trlu¡nbei i, pp.-
406-It 10, July 1973,

:i

IBIf, ITIBI'l Systen7360 Opera
Seguenti-al Ac,cess flethod,
IÐlt corp. r Gy2B-6619, 1g'11.

ï8fl, ttCS/TS Virt,uaL storage
grammerr s Gurdeil, IBH CorF" ,

1Bm" t'0S/VS Vi_rtual Storage
f or ådvanced A ppli_caticnsr
'r973,

ting System: Indexed
Program tcAic tllanualn,

Access [1e thod: prc-
cc26 -38 1 8, 1 973.

Access l'lethodi O ptions
" IBII Corp,, GC26-3819.

IBll, flTBibt Systen/370 fiodel 159
te risticsil, IEt{ Corp" , GAZZ-? O

ïBm, nfieference üanua1 for IBll
llodel I and IBfl 333CI Ðisk
cAi6-1592,1974.

Functional_ Charac-
11, 19?4.

3830 Storage Control
Storagefrn TBll Ccrp",

IBI9?4c .IBg, rtlnfornat.iÐn Sanagement
Stcrage: 5yst.e n/âpp.lica tion Design
Corp., SH2ü-9025, 1974.

5 yst em/Y.i- rt ua I
Guidert, IBll

,/

Refesences 137

ïBI{' rrrnformation I{anagenent systen/yirtualStorag€: GeneraL lnfornat:ion ganualû, IBfu Corp,
"cfl20-12bß,19?5.

trB$' *ts/vs2 Èlvs Data Hanagement services GrJ.defr,I8U Corp., çC26-38?5, 1g?6:

rBu' *Planning Ëor Enhanced vsåÞr under oslvsr, rB¡{Cûrp., ûC26-3842, 1577 .

Knuth, Ð, 8., ttThe Àrt of Ccmputer progranming,
S o rting and Search i Dgr, , Vol ume

-
3 " å,ddisoñ-g esfeÍ,

Don flill-s, Ontario, 1973,

Knuth" Ð, 8., illh€ Àrt of Conputer prograuming,
n'unilanental algorithmsrt, volune 1, secoÊd Ðditioi,Aildison-fles1ey, Dcn üills" Ontario, 1975,

KN {t1? 5

TOB I?4

f,$ m7 û

f{A RT?7

flrcn?6

}lR T? 4

IY.ULT? 1

ROTIT?J+

SENK 72

SENK75

SENK76

Lorie, R, Â., ilXR¡1 - Àn Extended (N-ary) Rel_ati-on-
al Plenoryil, f 8fl Canbridge Scientifi_c Center, Cam-bridge, ¡{assachusetts, e ¡ZO-2095'' 1g'74.

Lum, V. Y., rrlyulti-Àtt¡ibute Retrj_eva1 Hith Cambi-
ne d Indexesfr, CACI{, Vclume -! 3, Number 1X, pt,
6ót-6Õ5, Nove¡nher 19?û.

t{artån' "1., ttccnputer Ðata-Base organÍzationrlSecond Edition, Frenti_ce-Ha11, Torontõ, Orrtario,
1977 .

{ichaels, 4., ttseccndary Indexes as Access ùoilelsfor Relational Ðata Base systensfr, ph.Ð" oisieitã:-ticn" Ðepartment cf. ccurputer science, NorthlresternUniversíty, trvanston, Illi.nois, 1916.

' :.-i'

:.. :
.:t:.. --:.:,::

¡{Aï Systems, ÌNSySîE11 2000 Ref erence t{anualil,Systens Corp", ^âustin, ,TeNas, 'lg?4. HAT

l{urlinr J' K., fr8eùrÍeva1 - Bpdate speed Tradeoffs{Jsing combineil rndíce st, . cAaH, volirne 14" i{umberX2, FF. ?T5-?75' December 19?1.

Rothnier_J. B. Jr. and f.ozanon T,n rÀttribute
Based File cEganization in a eaged I{eñory Environ-nentir, CåC!{, Volune. 17, Number Z. pp. 6J-6g,
February 1914.

Senhcn fll , 8,, et al. "
ilCgncepts of adent .Accessing llodel ßn ACm: StrGFIDET

Ðata Ðescrrption, Access anrl Ccntrol,
Denver, Co3-orado, Nov€mber 1912.

Ðata Indepen-
$orksl'¡op oil

pp, 349-362,

senkor lg" E" '
rtspecif ication of stored Data sÈruc.-tures ancl Ðesined cutpuÈ Results 'ia DTAII rr wi-t l:Fosålrr' Proceed.ings of r¡ternationar conference onVery T,arg€ Ðata Basesrrr FF. 55?-5?1, Farmj_nEham"llassachusetts, AClr, New york, New york, septèruber

1915.

S€nko, il" Ð. and Altman, E. 8", ilÐIÀ¡1 ïI andteveLs of abstracticn, The physi-cal Ðevice level;å Ëeneral Mo del f or Access Þ! et hod.s* , p roceedin gs ofthe Secand rnternatio¡al- conference on very largeÐata Easestt, pF. 79-94, Brusse1s, BeLgiun, ncrt.h-Ilolland Pr¡blishing C€. ¡ Nete Tork, N€u -york,
Sep-tenber 1976.

References 138

iì

5E VE?6a

SE IIE?6 b

s0 f'T74

sTtN?tt

STÛN?6

ST RT??

TS rC74

TSTC75

FflIT74

!üÐNG?'!

YÀO?8

Se verence, Ð, G. and .l,ohüan, G. fl
tial- I'iles: Their Açplication to the
of targe Ðatabas€sttn åCü-TûDS, Volumepp. 256-267. September 1976.

S€verence, D. G, and Eisnern fl, J.,
a3- Techniques for Ef,ficient necord Sëó
Large Sharcd Ðatabasesfr, JÀCü, Volume
pp. 6'!9-635, October 19?6.

., t'Dif f eren-
I{ ai-nt enan ce

1 , Num ber 3,

rrl{ atbe matic -nentation in
23, Number 4,

sof tware aG "
tlÀDÂEÂs rntroduc tionr, softî{are ÀG ofNorùh America, Reston, Virginì_a" 1914,

stcnebraker, ü," *The choåce of partiar rnversionsand conbined rndicesfr, Tnternati-onal Journal_ ofconputer anrl rnforuati.cn sciences, volume 3, Number2, Fp. 167- 188, plenum pless, Ne¡r¡ york, Trlew york,
t9?4,

Sto¡sbraker, _S: I €t al", rrthe Design and Imp1€men-tation cf trNGRESTr, åCfl-ïtÐS, Volume- 1, Uumåer jnpp. 189-222,' Septenber 1g?6.

StreÊt, A. anq ïiaLlis, fi., rCombinatorj-a1 Theory:Ân rntroûuctiontr" charLes Babbage Research c ent.rå,St. Pierre, ûJani tcba , 1977 -

Tsichritzis, Ð: r non rnpLement.ation of geLations*,
Terhnical Repcrt cs.RG-35, Dëpartment of computeiScience, ünÍversity cf Toronù,,o, Toronto, ûntário,
May 1974,

Tsichri-tzisr Ð" "
*lsr: .a r,i-n k a¡ld selector Lan-guagetr, TÊchni-ca1 Beport CSnG-61 , Departn ent ofcouputer Science" university of Toronto, ToronÈo"ûntaric" Novenb€r'lgT5.

Þlhitney, v. K., ñselatåonal Data uanagement rmBle-mentation Techniqües*, ptroceedings õr Àcü-src¡toD
sorkshop on Ðata Ðescription" Access and control,pp. 321- 348, AÐn Àrbor, t{ichigan, lntay 1974. -

ïlong, E. and thiang, T. C, , nCanonical Structurein åttribute Based Fi-1e organization'r, cAct{, volume
14 , Nunber 9, pF. 593-59 7, Septemtrer 19? .l .

Yac, A. "
rr0Ð Randcn 2-3 Treesfr, Acta Informatican1/olume ,9" pF- 159-170, spri.nger-ver1ag, Nerd ycrlç,

Nev Io¡k, 'l 9? B.

:1;

References 139

Table of References

3
3
4
rt

5
6
6
9
I
9

10
11
12
13
i3
15
16
16
17
1{3

19
20
20
21
23
23
23
23
23
33
35
41
4't
41
42
142

140

À5TR76 . Ð .. . r t , , , ¡ . . ¡ , , 42
SEVE?6b . r . . ¡ , . ¡ ¡ r r . ¡ 50TSIC?4 . ' , . . . , ¡ 51tSIC?5 . i . . . r . , | | . . . , 5lSEVE?6a . û . . , . . , . . , . . . r, . . , .. 52IBIlx?4C . . r r , , r . r . . . , 53SETET6a ¡. ., ¡,..,., . ,.. ,. , . . 56
Ð¿OG?0 . ¡ ¡ . ' . . e , , , . . ¡ , 56SEVE?6a . ¡ r | . o ¡ , . . . , . . , . i 63EERCTBb , ¡ . , . . . , . . . r . Ð . r . ¡ ¡ úgHSTATû , r . . . , . . T7
Û1ART7? ¡ ¡ r . . ù . . . , , , , . gz
IB$?tlC . . t , ¡ . . . r , . ¡ . r , 83l{tIW0 t . ¡ ¡ , , . ¡ , . . . , , g5
1Ul1?0 .Ð . . r . . ¡ , r . Ð . r , ¡ . 86
WÐNG71 . . | , . r ¡ , . , . Ð . , o , ¡ . I gg
RO?fl?4 . ô . . ¡ . . . Ð - Ð r . . ¡ . , , BgBENT?4r. r. . Ð r gg
Íl{tÀ}l?3 . . ! ' . ¡ , , . , ¡r r ¡ , . . . , . gg
$fCH76 . r . r r , Ð . . . r . r BgYAÐ78 ! . r . , , ¡ ¡ , , r , , . r ¡ . . . gg
STRE7? . r . ¡ r . . . , , , , ¡ ¡ . ¡ . , r , . . ¡ ¡ _ g0
¡äB.Lt71 . . Ð . . . r . . Ð ¡ ¡ . , , . . . , . . . , ¡ , 92STÛN?4.. . r r.r r.. r. rr r,, .. . gz
BERRT? . r . . ¡ .. ¡ , . . , ¡ . r r . r . . . 92HÀER7B . . . r . Ð , . , r Ð Ð . . , . . ¡ , . , 94ÐÀTE?? ¡ , ¡ , , ,, { r , , . 95K1{I]T73 . . , '. . ¡ , . r ¡ r ! . , . r . . . gB
BAYE?? .. ¡ . . . ¡ , t ¡ , , . , . , ,l

0.1IBt{?3b . . t . r , . r . r r . r i , ¡ . . 10.¡HE¿Ð?5 r Ð . . . Ð . . ir ¡ , , , Ð D , . 102HELD?* | . . . r . Ð . . . r . . , . . ¡ . | , r .. , : : iö;C0ÐÐ?5 1... . .. i r. .. r. r r .¡ ., . . rr, XZÐ

i..;:..:'...ri ..

i:.:'ìt-t'

141

