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"ABSTRACT

THE DALIDATION OF A MODEL CONCERNING
PRECURSORS OF ALGEBRA

The purpose of the study was to explore the large question of
what skills, understandings, and intuitions are precursors to
learning algebra. For that purpose, a comprehensive a priori model
of precursors of algebra was created that consisted of 18
categories. The model was subjected to both formal and exploratory
tests of hypotheses. Linear regression methods were used for those
purposes.

The results of the formal tests suggested 11 central notions
that may be precursors of algebra. They may be placed into four
clusters. One cluster of notions concerns the ability to reason
deductively and inductively, and to draw analogies. A second cluster
concerns the arithmetic operators and functional principles of
arithmetic. A third cluster concerns the meanings and roles that can
be attached to symbols. A fourth cluster concerns the hierarchy for
computation and the structure of arithmetic expressions. Those
results have strong implications for elementary and middle years
mathematics curricula and instructional practices.

The results of the exploratory tests suggested that there are
relationships between gender, achievement in algebra, and styles of
algebra teachers. Paying attention to those relationships may

enhance the learning of algebra.-
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CHAPTER 1

INTRODUCTION

The Purpose of the Study

This study explores the large question of what set of skills,
understandings, and intuitions are precursors to learning algebra.
The results of the study suggest modifications to elementary school
curricula, provide a rationale for the redesign of the middle years
curriculum, and provide a basis for diagnosis and remediation in

algebra courses.

Rationale for the Study

It was commonplace in the 1800's that one child in ten
attended high school and algebra was not a required course until the
first year of high school (Kieran and Wagner, 1989). The
mathematical needs of that era were largely satisfied by graduates
with the ability to compute. But in an information and
microprocessor age, many desired mathematical skills depend
directly or indirectly on algebra (NCTM, 1989). As a result, the
study of algebra can now begin as early as in grade six. Algebra
forms a major part of the secondary university entrance
mathematics curriculum and university entrance mathematics
(appropriately or not) serves as a screen for determining entry into
many professions. Consequently, success or failure in algebra is

often an important factor in determining students' career options.
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Assessment studies in the United States (Carpenter, et al,
1981; Fey, 1989) and in Manitoba (Curriculum Branch, 1987) indicate
that algebra has become a stumbling block for many students. The
comment of an articulate and accelerated seventh-grade student
cited by House (1988) is typical.

Algebra . . . is quite hard, and although very
educational, it is very frustrating ninety percent of
the time. It means hours of instruction that you
don't even come close to understanding. (p. 1)

It seems that there are at least three possible explanations
for students' difficulties in learning algebra; the subject may be
inherently difficult; teaching may be at fault; or we may not have
identified the precursors of algebra which may be viewed as a set of
understandings, skills and intuitions that students should acquire
prior to learning algebra.

There could be some validity to either or both of the first two
explanations. Some students may not be able to manage the level of
mathematical abstractions required by algebra and the subject may
therefore be inherently difficult. Some teachers may not understand
the progression of abstractions involved in algebra sufficiently well
to teach them. But both of these inferences invite the curriculum
builder to abandon students to the vagaries of time and place. They
run counter to a central tenet of twentieth-century pedagogy; if
there is a lack of understanding, there is a way to remedy it. From

this point of view those inferences should be last resorts, even if
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the search for some other explanation may be supported by only an
act of faith. The accomplishments of curriculum builders since the
early 1800's suggest that this is a prudent stance; ways have often
been found. Considering all of this, a reasonable conclusion is that
identifying the precursors of algebra may be the most promising line

of inquiry concerning students' difficulties in algebra.

Precursors of Algebra

From the point of view of the mathematical skills and
concepts that students should already have acquired, ritual
algorithms and a smattering of problem solving skills have often
been thought to be a sufficient basis for learning algebra. They may
not be enough. If ritual arithmetic and problem solving skills are, in
fact, not enough and it is possible to identify a better set, algebra
may turn out not to be inherently difficult for the bulk of students
and the teacher who is aware of that set may be more successful in
teaching it.

In view of the central role of algebra in the secondary
curriculum and its importance to the career aspirations of students,
it would be reasonable to expect that a well-formulated model of
precursors of algebra would have been developed. However, this is
not the case. The literature does not include any coherent and
comprehensive model of precursors.

At most, one finds reference to two clusters of notions that
may be thought of as precursors. The first cluster concerns

prerequisites. One must generally infer peoples' (implicit)
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precursors from their list of prerequisites. Those lists tend to
include skill in fraction and integer arithmetic, the recall of basic
facts, and strategies for problem solving restricted to a search for
an appropriate algorithm (Smorodin, 1985; Boston Public Schools
curriculum, 1983). The second cluster concerns factors and
processes that may underlie the learning of complex mathematical
tasks (Kieran and Wagner, 1989). The literature discusses such
factors and processes as the structure of algebra (Kieran, 1989),
cognitive obstacles in learning algébra (Herscovics, 1989), and the
role of problem representation in algebra (Larkin, 1989). Those
notions tend to be conceived as distinct and are not organized into a
comprehensive model of precursors.

While psychology and learning theory cannot be expected to
provide specific rosters of precursors, learning theories reinforce
the need to determine what they are and provide some guidance.
Gestalt theorists might suggest that there are insufficient
organizing principles embedded in most contemporary algebra
teaching and that such principles are essential. Content
structuralists might suggest that the content has not been
structured and has therefore not been presented appropriately.
Developmental theorists might suggest that children may be at the
concrete operational stage, and as such, are not cognitively ready
for learning that presupposes the formal operational stage of
development, or that the disequilibrium between the children's

schemes concerning arithmetic and the structure of the algebraic
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knowledge being taught may be too great, making the development of
new and nonconflicting schemes unlikely. Cumulative learning
theorists might suggest that the precursors of algebra have not been
learned well, in an inappropriate order, or not at all. Cognitive and
information-processing theorists might suggest that the structure
of the algebra being taught is not suitably attached to children's
internal knowledge representation of arithmetic.

Each of these views may be thought of as a different lens
tending to the same operational conclusion. Seventh-grade students
and others are commonly not "ready” for algebra because they lack
conceptually laden experiences, intuitions, and insights that are
important for learning algebra. In other words, they have not
mastered a sufficient number of precursors of algebra.

The position taken in this study is that it may be possible to
determine the set of important precursors from the entire range of
concepts, principles, and relationships that inhabit arithmetic and
the transition between arithmetic and algebra and that ritual
arithmetic and algorithm-oriented problem solving skills per se are
not likely to be important precursors. Support for this position is
found in the literature. The comment of Booth (1989) serves as a
summary.

Students' difficulties in algebra, it has been
generally assumed, are largely difficulties in
learning the syntax. Over the past decade, however,

research evidence has been accumulating to indicate



6

that many students have a poor understanding of the
relations and mathematical structures that are the
basis of algebraic representation. . ... Indeed, a
major part of students'- difficulties stems precisely
from their lack of understanding of arithmetical
relationships. (p. 58)

Performance in ritual skills per se may have some capacity to
predict performance in algebra. However, it seems most likely that
any such capacity can be attributed to them being indirect measures
of students' understandings of the notions that underlie or
accompany these skills than to performance in ritual skills per se.
For that reason measures of ritual skills are excluded from this
study.

Co-requisites of learning algebra such as teacher clarity and
student motivation are also excluded as the focus of this study is
identifying potential precursors of algebra. However, broadly
defined teacher style and gender were included in an ancillary way

to broaden the scope of the study.



The Creation of a Model

The purposes of this study, then, are:

(1) To create a generic model which might be able to
account for the range of possible precursors of algebra
and algebraic problem solving.

(2) To subject both formal and exploratory hypotheses
concerning the relationship between the components of
that model and later algebraic performance to statistical
test.

The generic or a priori model compresses 63 individual |
elements collected into 18 tentative categories. In this preliminary
discussion, a 'precursor' may be taken to be either an individual

element or one of the categories.

Statement of the Problem

The specific questions are:

1. What categories of the model are precursors of algebra
and algebraic problem solving?

2. What elements of the model are precursors of algebra?

3. Are the precursors independent of gender?

4. Are the precursors independent of teacher style of
teaching algebra? ‘

5. What relationships are there between reasoning as
defined by the model; and achievement, gender, and

teacher style?
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Questions 1 and 2 are addressed by using conventional
conservative statistical tests. Questions 3, 4, and 5 are addressed
using less conservative exploratory techniques. In both cases, linear

regression analysis methods are used.

Overview of the Model concerning Precursors of Algebra

Since the precise nature of the precursors is not well-defined,
two approaches were taken to testing the generic model - by
identifying broadly defined notions and by identifying more detailed
notions. To that purpose, the model includes both categories (broad
notions) and elements (fine notions). The categories, as clusters of
elements, provide cohesiveness to those elements while the
elements themselves help define the categories.

The model is organized into 18 categories. They are; (1)
mathematical representation using symbols, (2) the passive
interpretation of symbols, (3) the structural role of symbols, (4) the
replacement role of symbols, (5) the multiple meanings of symbols,
(6) binary and unary arithmetical operators, (7) do and undo pairings
of arithmetical operators (inverse operations), (8) the locking role
of arithmetical operators, (9) the alteration of the structure of
arithmetical expressions, (10) the context independence of
arithmetical operators, (11) unit attachment to arithmetical
operations, (12) the visual order of arithmetical computation, (13)
functional principles of arithmetic, (14) inductive reasoning, (15)

deductive reasoning, (16) isomorphic reasoning, (17) the
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relationship between language and arithmetic, and (18) template
recognition in arithmetical problem solving.

Each category consists of 3 or more elements that help define
it. In all, there are 63 elements or detailed precursors. No attempt
has been made to relate these categories and elements in a
hierarchical way as such an endeavor would be premature.

Three sources were used to develop the model; the researcher's
experiences while teaching mathematics; the literature; and logical
analysis. These increase the likelihood that the model includes the
most useful categories.

However, there are at least two areas of concern with respect
to the model. First, there are places where the domains of
categories seem to overlap. This seems to be unavoidable when a
model is created in this way.

Second, on account of pragmatic considerations concerning the
students' concentration spans for completing instruments and the
time available for testing, some categories are not as well defined
as might be desired. However, that is not a serious impediment. The
model is sufficiently developed for purposes of identifying what are
likely the most important broadly defined precursors.

The model may be useful for algebra instruction but there are
potential limits to its usefulness. Algebra is a diverse field in
mathematics, including such subdivisions as matrix and Boolean
algebras. The model only concerns the algebra of real numbers, the

algebra that constitutes the major portion of the university-
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oriented mathematics curriculum taught in middle years and high

school. It is uncertain to what extent the model may be applicable

to learning other algebras.

Overview of the Methodology

An overview of critical aspects of the methodology is helpful
at this point. In the study, four instruments were constructed to
collect data used for testing the two types of hypotheses, a priori
and post hoc. |

A model knowledge instrument was constructed that reflects
the a priori model of suggested precursors above. Its purpose is to
measure students' knowledge of that model. The instrument went
through several iterations with teachers and experts in mathematics
education to establish face validity with the a priori model of
precursors.

Two achievement tests were constructed, one concerning
algebra, and the other algebraic problem solving. Both tests
measure achievement consistent with the way that it is done in
schools. An instrument was constructed to assess the pedagogical
styles of algebra teachers. Its purpose is to categorize students'
algebra teachers into three broad styles.

Two types of hypotheses are tested, a priori and post hoc. The
purpose of a priori hypotheses is to identify precursors of algebra.
For that purpose, precursors are identified in two ways - by
considering categories as precursors and by considering elements as

precursors. Employing two levels of analysis allows for the
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identification of both general precursors (categories) and specific
precursors (elements) and increases the likelihood of identifying
important precursors. However, for purposes of the category level
analyses, categories are determined, not from those of the model,
but from those obtained from factor analyses. The resulting
categories are therefore less subjectively determined than those of
the original model.

A priori hypotheses are tested using conventional conservative
statistical tests. Linear regression methods involving correlations
between achievement scores and scores for items of the model
knowledge instrument are used to identify precursors.

The purpose of post hoc hypotheses is to investigate additional
relationships, ones that concern gender, teacher style, achievement,
and identified precursors. The hypotheses are tested using less

conservative exploratory tests with a variety of methods.
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CHAPTER 2

REVIEW OF THE LITERATURE

This chapter reviews the literature relevant to the model of
precursors of algebra and a subsidiary model of the pedagogical

styles of algebra teachers.

Precursors of Algebra

The Conceptualization of Algebra for the Study

Arithmetic, as usually taught in elementary school, is
concerned with numbers, rules for operations, algorithms, and
situations in daily life where numbers and operations are applied.
Algebra inhabits a larger domain of more abstract
conceptualizations. These conceptualizations are; (1) generalized
arithmetic, (2) procedures for solving problems, (3) the
relationships between quantities, and (4) structures (Usiskin, 1988).
For purposes of this study, algebra is a combination of generalized
arithmetic and procedures for solving problems. This

conceptualization matches most grade 9 algebra curricula.

Pre-requisites as Precursors of Algebra

The teaching of algebra has not changed much in the last 50
years (Thorpe, 1989). Most apparent changes have been more
cosmetic than substantial. In the same way, only labels have
changed in attributions of the causes of difficulties in learning

algebra. Any difficulties students have in learning algebra are
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usually attributed to "not being smart enough” and weak arithmetical
skills.

The first explanation has been expressed as "there are math
types and there are nonmath types" (Davis and Hersh, 1981). Seventy
years ago Thorndike et al (1923) concluded that measures of.
numerical patterning, geometric patterning, sentence completion,
and word matching were the best available for predicting success in
algebra because such measures of 'abstract ability' were most likely
to predict success in algebra.

The explanation pertaining to "weak arithmetic” remains
pervasive. A statement in the Manitoba mathematics curriculum
guide (Manitoba Education, 1979) serves as an exemplar of this point
of view.

Arithmetic operations must be reviewed and
maintained.

It is important that students operate
proficiently with integers prior to a detailed study
of algebra. Students whose arithmetic skills are
good tend to do well in a study of algebra. (p. 135)

A survey of various sources strongly suggests that precursors
of algebra are conceptualized as a list of pre-requisites. We must
generally infer the precursors that are implicit from such lists.
These pre-requisites, largely computational skills, are taken to be

the conventional set of precursors.
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Smorodin (1985), in a report of skills to be tested for the New
Jersey State Department of Education, defined skill in integer
arithmetic and skill in exponent notation and operations as the pre-
requisites of algebra. The Boston Public Schools curriculum (1983)
lists the pre-requisites of algebra as being knowledge of numbers
and numeration; computation; fractions; decimals and percent;
exponents; estimating; graphs; and the function machine. The
Louisiana State Department of Education (1987) considers a good
algebra foundation to be a knowledge of whole number, fraction, and
decimal arithmetic; number theory; ratio and percent; and integer

arithmetic.

Research on Pre-algebra

Published research does not explicitly supply a useful model
for the study of precursors of algebra. However, the new field of
pre-algebra research implicitly pays attention to potential
precursors. That literature contains four explanations as to why
students have difficulties in learning algebra. Those four
explanations concern; (1) dissonance between algebra and
arithmetic, (2) well-structured knowledge, (3) problem solving, and
(4) reasoning processes (Herscovics, 1989; Kieran, 1989; Chaiklin,
1989; Davis, 1989). These éxplanations helped shape the model
used in this study.

Dissonance between algebra and arithmetic.

A dissonance between algebra as taught in schools and

students’ perceptions of arithmetic appears to be significant. Lee
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and Wheeler (1989) investigated the extent to which students in
grade 10 relate the worlds of arithmetic and algebra. The evidence
suggested to them that there is a large degree of disassociation
even among students who are successful at algebraic tasks. They
found "the track leading from arithmetic to algebra to be littered
with procedural, linguistic, conceptual, and epistemological
obstacles” (Lee and Wheeler, 1990, p. 53).

it would be difficult to dispute the inevitability of students
utilizing an arithmetic framework when learning algebra. However,
the literature suggests that the arithmetic experiences of students
encourage the establishment of ‘cognitive frameworks that are
inappropriate for learning algebra and that place cognitive obstacles
in the way (Herscovics, 1989). In other words, many of the
difficulties students have in learning algebra may be attributable to
their misconceptions about arithmetic or their reliance upon
inappropriate informal or formal procedures. Some students seem to
be well aware of the dilemma. Chalouh and Herscovics, Collis, and
Davis (cited in Kieran, 1989) noted that the students they
interviewed were aware that the conventions they used in algebra
seem to be different from those they used in arithmetic.

A British research project (University of Bath, 1982: cited in
Booth, 1988) involving students from grade 8 to grade 10 found that
students made similar errors at each grade level, independent of age
and experience in algebra. In it, errors are traced to four

incongruencies between algebra and arithmetic; (1) the nature of
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acceptable answers, (2) the use ‘6f convention and notation, (3) the
notion of a variable, and (4) the kinds of relationships and methods
used. Kieran (1989) suggests a fifth source of error, incongruency
concerning the roles of structure.

One source of students' difficulties in algebra is incongruency
concerning the nature of acceptable answers. In arithmetic, the
intent is usually to find a specific numerical answer. In algebra this
is often not the case. Students seem to have difficulty in making
that transition (Booth, 1988). They tend to see answers in algebra
as "not proper” and are unable to hold unevaluated expressions (such
as 'x + y') in suspension. Both Collis and Davis (cited in Kieran,
1989) note that novice algebra students tend not to view algebraic
expressions as legitimate answers; they are somehow incomplete.
Chalouh and Herscovics (1988) refer to it as an unwillingness to
accept a lack of closure.

A second source of difficulty is incongruency concerning the
uses of notation and convention. Matz (cited in Herscovics, 1989)
suggested that notational incongruencies create cognitive obstacles
to algebra. Students will substitute '2' for 'a' in '3a' by
concatenating the 2 and obtain '32'. They attribute this error to the
arithmetical convention that concatenation implies addition, not
multiplication. Two-digit numerals are sometimes not replaced by a
single letter because of the same conflict between notational
conventions in arithmetic and algebra (Booth 1988). Another source

of difficulty is differing interpretations of how to use parentheses
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(Booth, 1988). In arithmetic, they tend to be interpreted as "do me
first" indicators, an interpretation that is largely unworkable in
algebra. MacPherson and Rousseau (1988), and Chalouh and
Herscovics (1988) noted that students tend not to see the
distinction between the active and passive use of notations such as
'+' and '='. In arithmetic, expressions such as '2 + 3' tend to ’
represent actions linked to an instruction to add. When confronted
with algebraic expressions, students try to view them in an active
sense, a perception that is inappropriate and usually results in the
application of incorrect strategies.

A third source of difficulty is incongruency concerning the
meanings of variables. One meaning concerns variables as
replacement symbols. Usiskin (1988) found that algebra students
tend to believe that a variable is always a letter or psuedo-letter.
In other words, such symbols as 'x' and 'A' can indicate variables
while such arithmetical symbols as '_' and '?' cannot. This belief
suggests that students have not acquired an understanding of the
replacement role of variables. Collis and Kuchemann (cited in
Kieran, 1989) observed that students tend to view a variable in a
number sentence (such as 'A + 5.= 8') as an unknown whose value is
to be figured out. Students tend to substitute one specific value
after which they stop substituting. This suggests that students
interpret a variable as a replacement symbol that can be replaced by
only one number. Booth (1988) found that there is a strong tendency

for students to regard a variable as a symbol that represents a
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unique number and that different variables in a number sentence
(such as 'A + ? = 10") must be replaced by different numbers. This
arithmetic-derived conception of a variable can be referred to as
"the secret name for a number" conception. It is incongruous with
conceptions in algebra. Usiskin (1988) suggested that the
arithmetical view of a variable is often inadequate and misleading
in algebra. In algebra, a variable may be a replacement symbol, a
parameter, an arbitrary element of some structure, or a symbol
which may be manipulated. Booth (cited in Kieran, 1989)
summarizes this dissonance by saying that students often have
difficulty in interpreting letters as generalized numbers. Booth
(1988) pointed out that that can lead to difficulties when comparing
equivalence, for example, many students consider that 'x + y + z' can
never equal 'x + p + z'. To them, different letters (in this case, the
'v' and 'p') always mean different replacements. Sutherland (1987)
found that LOGO programming experiences can provide students with
a conceptual basis for variables that improves their understanding
of algebra procedures and variables. That result suggests that there
is a way of overcoming the negative effects of operating from an
inappropriate arithmetical view of a variable, a way that may guide
the development of some precursors of algebra.

Students also tend to confuse variables and labels. In
arithmetic, letters are usually interpreted as labels. For example,
in the statement '3 m = 300 cm', 'm' represents a label not a number.

This interpretation often leads to difficulties in understanding the
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meaning of mathematical language in algebra. For example, Booth
(1988) found that students often interpret variables such as 'y’ in
'8y’ as '8 yams' or '8 yachts'.

Further difficulties related to variables occur when students
translate written language to mathematical language. Researchers
have found that some students, all the way to first courses in
engineering, translate the written statement 'There are six times as
many students as professors at this university.' into the incorrect
algebraic statement '6S = P' (cited in Lochhead and Mestre, 1988).
Clement, Lochhead, and Monk (cited in Lochhead and Mestre, 1988)
proposed an explanation for this phenomenon. They suggest that it
stems from misconceptions about the structure of algebraic
statements, the interpretation of variables contained in algebraic
statements, and the relationship between written language and
algebraic language involving variables. These misconceptions may
arise from students' experiences in arithmetic where the conceptual
issues involved in the variable-label confusion are not addressed or
are treated in a way that is incongruous with algebra.

A fourth source of difficulty is incongruency concerning the
kinds of relationships and methods used. Kieran (1989) noted that
students tend to believe that the left-to-right written sequence of
operations in arithmetic determines the order in which computation
is to be performed. In algebra, this proclivity leads to errors in
writing equations that represent relationships in algebraic word

problems. Students tend to assign numbers to variables according to
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the order of occurrence of numbers and words (Lochhead and Mestre,
1988). Kieran (cited in Booth, 1988) concluded that many students
believe that the value of an arithmetical expression remains
unchanged if the order of computation is altered as long as the
written order is not changed. Further, students typically do not use
brackets because they believe that the written order of operations
determines the value of an expression. These beliefs partly explain
algebraic errors that occur when students manipulate or write
expressions involving brackets.

Further to relationships and methods, students tend to learn
and to use informal, intuitive methods in arithmetic (Booth,1988).
These informal arithmetical methods can limit their ability to
understand or produce general statements in algebra. For example,
Ekenstam and Nilsson (cited in Booth, 1988) found that using
informal procedures to solve equations limits students' success in
seemingly similar situations. Furthermore, in arithmetic
equivalency is normally determined by calculating. Cauzinille-
Marmeche, Mathieu, and Resnick (cited in Kieran, 1989) found that
when students rely on informal methods, they make more errors
when determining equivalency in algebra. These results suggest
that, in algebra, equivalency is best determined by applying a set of
principles or rules.

A fifth source of difficulty is incongruency concerning the
roles of structure. For these purposes, structure is the

arrangements of terms and operations, and the constraints on the
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order of processing. The role of structure is largely ignored in
arithmetic. Yet in algebra, students are required to recognize and
use structure. That dissonance may be an important cause of
students' difficulties in algebra. Lochhead and Mestre (1988)
commented that students who are not proficient in processing
algebraic expressions seem largely unable to see any consistent
structures in these expressions. Further to this, Davis, Matz,
Greeno, Rugg and Clark, and Breslich (cited in Kieran, 1989) noted
that beginning students in algebra have great difficulty imposing
structure on algebraic expressions. This failure to detect structure
is suggested as one explanation for the parsing errors that students
make. Larkin (1989) supports this conclusion. She found that many
students see an algebraic expression as an unstructured string with
the rules of algebra acting on arbitrary parts of the string. This may
explain why they easily misapply these rules when manipulating
expressions. Lochhead and Mestre (1988) summarize this in saying
that students do not learn to read and write mathematical symbol
strings in arithmetic. This leaves them at a disadvantage in
learning the manipulation rules of algebra.

Cumulatively, the literature strongly suggests that, as much
as assisting the learning of algebra, the conventional framework of
arithmetic can create cognitive obstacles. On the other hand, some
parts of arithmetic are necessary for learning algebra. The solution

to that dilemma may lie in shaping an arithmetical framework that
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is more appropriate to learning algebra; a framework within which
desired notions are embedded in arithmetic.

Those desired notions consisting of principles, concepts, and
reasoning skills form the set of precursors of algebra. Furthermore,
rote performances of algorithms, which have often driven the design
of conventional arithmetical curricula would not belong in that set

of precursors.

Well-structured knowledge.

Current practice in teaching arithmetic and algebra tends not
to encourage well-structured knowledge or well-connected evolving
knowledge of mathematics (Kieran and Wagner, 1989). Schoenfeld
and Whitney (cited in Thorpe, 1989) commented that students most
often see both arithmetic and algebra as largely a collection of
tricks - a trick for this and a trick for that. That perception is
likely a cognitive barrier to learning algebra. The fourth NAEP
mathematics assessment (Brown et al., 1988) found that a large
majority of students feel that mathematics is rule-based, with
about half of them reporting that learning mathematics is mostly
memorizing. Furthermore, students do not seem to understand many
of the structures underlying mathematical concepts and skills.
Those findings, along with low assessment results (Brown et al.,
1988), suggest that students' perceptions of mathematics as
disconnected bits of rules, facts, and procedures may be partly
responsible for difficulties in learning algebra. Further evidence

supporting that conclusion comes from Manitoba mathematics
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assessment results (Curriculum Branch, 1987) which indicate that
students' achievement in mathematics declines significantly. from
grade 6 to grade 9. The mean score of all mathematical curriculum
topics in grade 6 is 59.8; the mean score for grade 9 is 53.7. The
lower mean score in grade 9 is pertinent as that is when students
first encounter some substantial algebra. One explanation for the
decline in overall mathematics achievement is that the volume of
disconnected understandings and rote skills may overwhelm some
students. They no longer can assemble those learned in arithmetic
with those being learned in algebra. All of this suggests that any
set of precursors arising out of arithmetic must provide a coherent

and connected framework for learning algebra.

Problem solving.

Rachlin (1986) suggested that a successful study of algebra
may require problem solving processes that are usually not
developed in arithmetic. MacPherson and Rousseau (1988), and
Kieran (1989), in sharpening whét this may mean, have suggested
that the solution of routine word problems that are encountered in
arithmetic classrooms may best serve algebra if the approach
involves a search for the structure of the problem rather than a
search for the correct algorit‘hm to apply. Krutetskii (cited in
Rachlin, 1986) supports this position in concluding that one of the
characteristics of good problem solvers is that they seek the
structure of a problem rather than focus on its specifics. Vergnaud,

Benhadj, and Dussouet (cited in Kieran, 1989) exhibit the tension
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between problem solving in arithmetic and in algebra using the
following problem.
In an existing forest, 425 trees were planted. A
few years later, the 217 oldest trees were cut. The
forest then contained 1063 trees. How many trees
were there before the new trees were planted?
(p. 37)

The structural approach to solving this problem would begin
with an expression like, '? + 425 - 217 = 1063 followed by
decisions as to the algorithms to employ. The expression reflects
what 'happened’. They found that many teachers suggest a series of
computations like; '1063 + 217 = 1280, 1280 - 425 = 855'. This
sequence of algorithms does not match what 'happened’ (for example,
217 trees were removed, not added, to the forest). At best, those
teachers have left the creation of templates implicit, moving on to
the appropriate arithmetic for obtaining answers. In doing so, it is
likely that only the "bright" students can see the templates and
perhaps only intuitively.

The literature has not extensively addressed the question of
how well a structural approach best serves the learning of algebra,
but it does suggest that there are implications for judging
equivalency. Kieran (cited in Kieran, 1989) found that students have
difficulty in judging equivalent equations. For example, some
students believe that 'x + 37 = 150" is equivalent to 'x = 37 + 150'.

Kieran (1989) suggests that such errors arise as a result of their
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not understanding the structural relationship between addition and
subtraction. A structural approach to problem solving in arithmetic
may help establish that understanding as the approach can involve
transforming number sentences such as '? + 23 = 45' to '? = 45 - 23'.
Further to equivalency, Greeno (cited in Kieran, 1989) found that
many students do not seem to be aware that an incorrect solution,
when substituted into the original equation, will yield different
values for the two sides of the equation. In addition, students often
do not realize that it is only the correct solution which will yield
equivalent values for the resulting left and right expressions in a
chain of transformations of an equation. Whitman (cited in Kieran,
1989) suggests that this lack of awareness may best be addressed
by having students first learn intuitive processes for solving
equations. These processes are related to the structural approach to

solving arithmetical word problems.

Reasoning processes.

The literature has little to say concerning the specific
reasoning abilities that students require as they begin to learn
algebra. The "not smart enough" school of thought vaguely suggests
that an ability in abstract reasoning may be important to learning
algebra, but this is of little Help in determining a set of precursors.

Freudenthal (1973) has noted that while arithmetic is
intuitive and close to reality, algebra is characterized by its formal
symbolic methods and therefore demands greater attention to

thinking strategies. He suggests six thinking strategies that may be
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important to learning algebra; (1) schematizing, that is senéing
regularities, (2) detecting transitive relationships between objects
of thought, (3) seeking necessary and sufficient conditions, (4) using
indirect proofs, (5) making analogies and using analogies to gain
insights, and (6) detecting and using the 'if --> then' structure.
Freudenthal does not elaborate as to how these strategies can be
fostered but developmental psychology may provide some guidance.
Piaget has suggested that processes of reasoning which ultimately
may seem self-evident must, in the beginning, be checked against
the evidence of what one finds through doing (Donaldson, 1984).
That strongly suggests that any reasoning abilities or strategies
that may be precursors of algebra be developed initially in a domain
that requires less abstract symbolism than does algebra. The
natural domain for this purpose is arithmetic. It would seem that
the activation and fostering of reasoning strategies that are
important to algebra must occur while students learn the concepts,
principles, and procedures of arithmetic. This suggests teaching

practice that focuses on understandings rather than rituals.
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Pedagogical Styles of Algebra Teachers

For purposes of this study, pedagogical style is the manner in
which teachers conduct lessons in algebra and algebraic problem
solving. While there does not appear to be any literature specific to
the pedagogical styles of algebra teachers, there is considerable
literature on the ways mathematics is taught.

Mathematics is taught in ways that fall along a continuum.
Davis and Hersh (1981) allude to one end of that continuum.

As a teacher | am constantly confronted by problem
after problem that has nothing to do with math.
What | try to do is sell math to kids on the basis
that it's fun. In this way I get through the week.
(p. 274)

The findings of recent studies in mathematics suggest what
may be the other end of the continuum. Goodlad (1983) and Tobin,
Espinet, and Byrd (1987) reported that the dominant teaching
procedure in mathematics was lecturing. Furthermore, that style of
teaching consistently lacked student-teacher interactions, small
group work, or alternative approaches to the development of topics.
The emphasis in such mathematics classes was on recall - léarning
facts and memorizing algorithms without necessarily understanding
why the algorithm works (Doyle, 1983; Tobin, Espinet, & Byrd,
1987). The Canfield Teaching Style inventory (cited in Raines,1976)
which measures general teaching styles provides a view of the

entire continuum. The styles of teaching measured are: (1) straight
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lecture, (2) lecture with summary notes, (3) teacher questions
students, (4) student presentations, (5) small group discussion
(teacher led or student led), (6) demonstrations, (7) practice
exercises, (8) simulation/games/problem solving, and (9)
collaboration.

It was not possible to attempt to place teachers along this
whole continuum, if that is what it is, in this study. Three broad
categories were selected - two polar styles and a blend of them.

Much of the commentary in the literature suggests that there
are two distinct styles of teaching mathematics. They served as the
basis for developing the pedagogical style of teacher model for this
study.

Bach (1981) provides two icons of mathematics teachers -
alphas and betas. Alphas strictly follow the text and never make
mistakes in class. Betas don't rely on texts, teach concepts, make
mistakes, and excite and confuse their students. Furthermore, Bach .
(1981) and others view the styles that fall into the alpha category
as inappropriate paradigms for teaching mathematics and beta
styles as appropriate paradigms. This study begins with those two
jcons as polar styles of mathematics teaching.

The literature describes the characteristics of the alpha
category in various ways. Davis and Hersh (1981) discuss
authoritarian or dogmatic teaching which may occur in classrooms
or in texts. It can be exemplified by the statement, "Look, 1 tell you

this is the way it is". Tobin (1989) described one general style,
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lecturing (or chalk and talk) which is characterized by whole class
teaching, seat work consisting of repetitive practice of skills and
algorithms, and an emphasis on recall. There is little small group
work, alternate approaches, or emphasis on higher level cognitive
outcomes.

The beta category is taken to be the antithesis of the alpha
category. Davis and Hersh (1981) discuss a teaching style that
allows students to "fiddle around" mathematically so that they may
learn something of the strategies and insights that lie behind
mathematics. Tobin (1989) suggests that good teachers of
mathematics do not lecture but encourage students to participate in
learning activities and encourage meaningful learning through
principles and concepts. Pirie and Schwarzenberger (1988) describe
a mathematical discussion style which is characterized by
purposeful talk that has well-defined objectives and by pupils'
genuine contributions in the form of inputs that assist in laying out
the learning process. The NCTM standards (NCTM, 1989) for
improving the quality of mathematics instruction involve a more
open teaching style where students are encouraged to invent
symbols, use trial and error, use imagination, conjecture, predict,

verify, make decisions, and work in groups.
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CHAPTER 3

MODELS DEVELOPED FOR THE STUDY

Two models were developed for use in the study; (1) a model
concerning precursors of algebra and (2) a model concerning

pedagogical style of algebra teachers.

A Model concerning Precursors of Algebra

Background to the Study

The researcher's interest in the precursors of algebra was
stimulated by teaching algebra-related mathematics courses to re-
entry adults, many of whom were returning to formal schooling after
a lengthy absence.

An analysis of their difficulties in algebra suggested that the
conventional set of precursors is inadequate. For example, they
were unable to clearly identify structure-related aspects of an
algebraic statement and they did not realize that mathematical
statements need not be decoded left-to-right. Such missing notions
and misconceptions seemed to partly explain some processing
errors. The researcher next attempted to create a model including
these and other non-conventional precursors of algebra and to study
the effects of using it with re-entry adults. A perception of‘
considerable relationship between achievement and predicting based
on this preliminary version of the model encouraged continuing to a

more formal version of the model and tests of these relationships.
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The literature and logical analysis provided further possible

categories and elements that might comprise a set of precursors of

algebra.

Overview of the Model

The model contains categories (broadly defined notions) and
elements (more detailed notions) that are suggested precursors of
algebra. The categories,‘ as clusters of elements, provide |
cohesiveness to those elements while the elements themselves help
define the categories. The model was used as the basis for
constructing the model knowledge instrument.

The model is organized into five dimensions or clusters of
categories. They are; (1) symbols, (2) operators, (3) reasoning, (4)
language, and (5) problem solving. The dimensions encompass 18
categories. Each category consists of 3 or more elements. In all,
there are 63 elements or detailed precursors.

Some categories overlap. However, the categories differ in thé‘
specificity of emphasis or in the generality of expression of a
notion.

The following chart provides an overview of the a priori model

of precursors of algebra.
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Dimension_1: Symbols

Children encounter symbols when doing arithmetic. The way
they view these symbols may be important for learning algebra. Five
categories show promise; (1) representation, (2) passive
interpretation, (3) structural role, (4) replacement role, and (5)

multiple meanings.

Category: representation.

Representation concerns symbols in relation to representing
notions. The three elements of this category are; (1) different
symbols may be used to represent the same notion, (2) symbols are
arbitrary creations, and (3) particular symbols are used for reasons

related to utility. See Appendix A - items 10, 24, and 33.

Cateqgory: passive interpretation.

Passive interpretation concerns 'another name for' (for
example, '2 + 3' is another name for '5'). The three elements of this
category are; (1) questions and answers may be interchanged in
arithmetic (6 can be a question and 2x3 can be an answer), (2)
different names can name the same number, and (3) the set of
different names for some number is large. See Appendix A - items

21, 39, and 48.

Category: structural role.

Structure may be defined as the internal organization of
mathematical expressions; it concerns how the parts are bound
together and separated. Students' structural intuitions are rooted in

arithmetic and are derived from the hierarchy of arithmetical
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operations. While there are far from uniform conventions in
arithmetic (consider 3 1/2 = 3 + 1/2 and 34 = 30 + 4 ), most often
the separating symbols are additive ( + and -) and the binding
symbols are multiplicative (x, divide, exponentiation, root of, and
the fraction indicator '/").

The structural role of symbols is expressed in the formation of
chunks or terms. It involves the ability to chunk an expression, to
view an expression according to the terms that comprise it. The
three elements of this category are; (1) structure helps determine
what is to be done in an expression, (2) certain operators bind
chunks, and (3) certain operators separate chunks. See Appendix A -

items 7, 55, and 63.

Category: replacement role.

The replacement role concerns variables, viewed as empty
slots waiting to be filled with numbers. The empty slot can be
denoted by a letter of the alphabet or by more "primitive"
replacement symbols such as 'A’ or '?'.

The six elements of this category are; (1) the replacement set
is not restricted to whole numbers, (2) replacement symbols may be
manipulated as though they were numbers, (3) the same replacement
may be used for different replacement symbols in an expression, (4)
replacement symbols may force a halt to processing (for example,
processing stops for 'A + 5' until 'A' is replaced by a number), (5)
each occurrence of a particular variable in an expression requires

the same replacement, and (6) the set of possible replacements for a
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particular replacement symbol is unlimited. See Appendix A - items

5,11, 19, 26, 34, and 37.

Category: multiple meanings.

Operation symbols can have more than one meaning. In
particular, each of the symbols '+' and '-' can be interpreted in at
least 3 ways. The symbol '+' can indicate the binary operator 'add'
(put together), a direction (for example, '+' can mean to rotate
clockwise), or it can be part of a label (as in '+5'). The symbol '-' can
have more meanings. It can indicate the unary operator 'opposite of',
a direction that is opposite to the direction indicated by the '+'
symbol, be part of a label (as in '-5'), and the binary operator
'subtract’ which can itself have at least 3 interpretations - 'take
away', 'compare', and 'change in' (in relation to measuring).

The elements in this category sample the above possible
meanings. The differing interpretations concerning the binary
operator meaning of '-' and the 'put together' interpretation for '+'
are excluded because they overlap the template recognition category
below. They are best dealt with in that category. Accordingly, only
the three renaming meanings of '+' and '-' are included. The symbols,
'+' and '-' may indicate; (1) a diréétion, (2) a part of a label, or (3) a

unary operation. See Appendix\ A - items 6, 16, and 32.
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Dimension 2: Operators

While operators are implicitly and explicitly included in some
of the categories of the 'symbols' dimension, they warrant separate
consideration. Operators in arithmetic indicate that some
transformation of numbers is to take place. Eight categories show
promise; (1) binary and unary operators, (2) do and undo pairings, (3)
locking role, (4) alteration of structure, (5) context independence,

(6) unit attachment, (7) visual order, and (8) functional principles.

Category: binary and unary operators.

Operators can be classified according to the number of inputs.
Addition, subtraction, multiplication, and division are binary
operators. Square root and squaring (in general, 'finding the root of'
and exponentiation), and 'opposite of' are unary operators. The
elements of this category are based on the identification and
discrimination of those classifications. The more general operators
'finding the root of' and exponentiation are excluded. Accordingly,
the three elements are; (1) 'opposite of' - an unary operator, (2)
'square root of' - an unary operator, and (3) addition, subtraction,
multiplication, and division - binary operators. See Appendix A -
items 2, 25, and 49.

Category: do and undo pairings.

Do and undo pairings concern the notion of an inverse operation
in the sense that an operation is undone by its inverse. For example,
the effect of adding 5 to something will be undone by subtracting 5.

This is a functional approach to inverses. Addition and subtraction;
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multiplication and division; and 'finding the root of' and
exponentiation are inverse operations (do/undo pairings). 'Opposite
of' is its own inverse. The elements of this category are based on
those pairings except that 'finding the root of' and exponentiation
are not included. Only the specific instances of square root and
squaring are. Accordingly, the three elements are; (1) multiply and
divide - a do/undo pairing, (2) addition/subtraction and
squaring/square root - do/undo pairings, and (3) 'opposite of' - its

own inverse. See Appendix A - items 18, 54, and 57.

Cateqgory: locking role.

Over and above the other roles of operations in algebra and
arithmetic, they may be thought of as having locking and unlocking
roles. These roles provide a way of conceptualizing the order of
computation in an expression. For example, in the expression '2 x 3 +
4' '2 x 3' is locked in relation to adding 4; before addition can
proceed '2 x 3' must be unlocked. There are at least two ways to do
that; by replacing '2 x 3' with '3 + 3' or with '6'. Similarly, for '3 x
(5)2, '(5)2' is locked and must be unlocked before multiplication by
3 is possible.

There is overlap between the 'locking roles' category and the
structural role (of symbols) cétegory. The notion of locking roles,
which is derived from the hierarchy of operators, conceptualizes
hierarchical processing in a way that is readily integrated into the
structural features of an expression. This capacity to link structure

with hierarchical processing seems important to algebra for at least
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two reasons. First, the literature strongly suggests that a failure to
detect structure is an important explanation for some algebraic
errors (Lochhead and Mestre, 1988; Larkin, 1989; Davis, Matz,
Greeno, Rugg and Clark, and Breslich: cited in Kieran, 1989). Second,
it suggests that the lack of coherent and connected knowledge is
also an explanation for difficulties in algebra (Kieran and Wagner,
1989; Schoenfeld and Whitney: cited in Thorpe, 1989).

Further, expressions can be viewed as having locked and
unlocked chunks (and locked portions within chunks) that provide
structure to expressions and determine the order of computation.
Before processing can continue, locked chunks must be unlocked
using valid procedures. Locks are hierarchical. Exponentiation and
'finding the root of' (unary operators) are more powerful locks than
binary operators. The unary operator, 'opposite of' is an exception; it
is on par with the binary operators, multiply and divide. The
exception can be explained by viewing 'opposite of' as multiplying by
'-1'.  Multiplication and division (as well as 'opposite of') form more
powerful locks than addition and subtraction.

While brackets are not operators, they also play locking and
structural roles. Because brackets visually "capture" numbers and
operators in arithmetic, students (and teachers) tend to interpret
them as "do me first" indicators. That point of view may be
inappropriate for algebra (Kieran; cited in Booth, 1988). It seems
more appropriate to view brackets as having the capacity to disrupt

the normal determination of locks and chunks. For example, the
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expression, '2 x 3 + 5', contains two chunks; a locked chunk '2 x 3'
and an unlocked chunk '5'. Processing must be done by first
unlocking '2 x 3'. If brackets are placed in that expression, its
structure and processing priorities may change. For example, there
is only one chunk in '2 x (3 + 5)', the entire expression. That result
follows from viewing it in an overall way; '2 x (3 + 5)' can be
interpreted as '2 x some number'. Processing order is also affected
by the inclusion of the brackets in this case. Processing can proceed
in at least two ways; add then multiply by '2' or use the distributive
principle. Neither of these ways has hierarchical priority.

The elements of this category are selected from what seems
to be the most cogent locking roles. The three elements are; (1)
locking role of brackets, (2) locking role of additive processes, and
(3) locking role of multiplicative processes. See Appendix A - items
3,9, and 36.

Category: alteration of structure.

Alteration of structure concerns a change in the structure of
an expression. The three elements of this category are; (1) the
complexity of processing is related to the complexity of structure,
(2) the structure of an expression changes as processing proceeds,
and (3) the numerical value for a given expression is invariant as the
structure changes through computation.

For example, the expression '2x 3 + 5x6 -4 x (7 + 2 x 5)' has
a more complex structure than the expression '2 + 5'. See Apﬁendix
A - items 8, 15, and 23.
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Category: context independence.

Context independence concerns sensing arithmetical
statements as being independent of the contexts from which they
are derived. For example, the two contexts, 'Two ducks were
swimming in the water; along came 3 more. Now there are 5 ducks
in the water.' and 'Two thoughts were in my head. Someone gave me
3 more. Now | have 5 thoughts.', both lead to the statement, '2 + 3 =
5', which can be viewed independently of the contexts that
determined it. For this category, the elements are restricted to
additive (+/-) and multiplicative (x/+) examples. The three
elements are; (1) a statement involving an additive operation is
independent of context, (2) a statement involving a multiplicative
operation is independent of context, and (3) a statement involying a
combination of additive and multiplicative operations is independent

of context. See Appendix A - items 4, 12, and 52.

Category: unit attachment.

Unit attachment concerns the various ways units can be
attached to the numbers involved in operations. Again, the elements
are restricted to additive (+/-) and multiplicative (x/+) operations.
Multiplicative operations involve no restrictions on units. For
example, 'hours' can be muItipﬁed by 'people' obtaining 'people-
hours'. Additive operations require that numbers have the same
units attached to them. For example, 'two apples plus 3 nails' is not
allowed unless the units are subsumed under some more general

definition. Furthermore, units themselves are not added (or
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subtracted); rather, 'counts of' are added. For example, in '2 pears
plus 3 pears', the pears are not addéd; rather, 2 and 3 are added and
these numbers concern counts of pears. The three elements of this
category are; (1) additive operators require addition or subtraction
of counts of units, (2) additive operators require identical units, and
(3) multiplicative operators do not require identical units. See

Appendix A - items 13, 44, and 60.

Category: visual order.

The order of occurrence does not determine the order of
processing in an arithmetic expression. In particular, the left-to-
right order that is normally employed in decoding language need not
be employed in processing arithmetic expressions. The three
elements of this category are; (1) computations involving additive
operations can be done in many directions, (2) computations
involving multiplicative operations can be done in many directions,
and (3) computations involving both additive and multiplicative
operations can be done in many directions. See Appendix A - items

30, 45, and 62.

Cateqgory: functional principles.

The functional principles are analogues of the principles of
algebra that can serve functional purposes in students'
computational procedures. That is to say, functional principles
guide students in doing arithmetic in ways that enable or simplify
computational tasks. Functional principles are useful in simplifying

computational tasks, and can also provide alternative procedures or
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justify procedures. The five elements of this category are; (1) the
associative principle in additive and multiplicative processes, (2)
the commutative principle in additive and multiplicative processes,
(3) the distributive principle, (4) the equal factors principle (that it
is possible to multiply both parts of a division expression by the
same non-zero number), and (5) the equal addends principle (that it
is possible to add the same number to both parts of a subtraction
expression). See Appendix A - items 14, 17, 27, 42, and 61.
Functional principles are ultimately used under the aegis of
the notion that 'If you don't like the way something looks, change it
to a more useful or convenient form.". That notion underlies more

advanced algebraic processing, but it is not tested here.

Dimension 3: Reasoning

Three categories of reasoning show promise; (1) inductive

reasoning, (2) deductive reasoning, and (3) isomorphic reasoning.

Cateqgory: inductive reasoning.

Inductive reasoning concerns probable induction, the faith that
an observed regularity or pattern will persist. For the purposes of
this study, the domain is restricted to arithmetical patterns in
parallel number sequences, in individual number sequences, and in
results derived from arithmetic operations. The three elements of
this category are; (1) sensing a joint pattern in two sets of numbers,

(2) sensing a pattern in a sequence of numbers, and (3) sensing a
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pattern in arithmetic results. See Appendix A - items 28, 50, and

58.

Category: deductive reasoning.

Deductive reasoning concerns some of the components of
conventional logical reasoning. Seven of what seem to be the most
useful subcategorizations of logic have been chosen for purposes of
the study. The seven elements of this category are; (1) modus poens,
(2) converse, (3) transitivity, (4) modus poens in numerical
relationships, (5) noncontradiction, (6) negation, and (7)
contrapositive.

Modus poens concerns the 'IF --> THEN' relationship. If the
first part is true, then the second part is also true. Two types of
relationships are included for modus poens - non-arithmetic and
arithmetic.

Converse entails reversing an 'IF --> THEN' relationship. The
converse of an assertion is not necessarily true.

Transitivity concerns concatenated IF --> THEN relationships;
ifa->b,andif b -> c, thena -> c.

'Noncontradiction' as used here is the 'law of the excluded
middle'. An assertion is true or it is not. There are no other
possibilities. ‘

Negation concerns a 'not' notion. Both negation and
noncontradiction involve two state logic, a yes/no form of

reasoning.



44

Contrapositive concerns the negation of a conclusion; if p -> q,
then not g -> not p.
See Appendix A - items 1, 20, 41, 43, 46, 56, and 59.

Cateqory: isomorphic_reasoning.

Isomorphic reasoning concerns analogies between systems.
Whether or not two systems have superficial features in common,
they can have common features at underlying levels that make them
analogous systems. In mathematics, it is common to use such
analogies in the sense that "working here" is like "working there".

Practice sometimes requires students to employ that sense in
connecting manipulatives (such as Dienes blocks) and pseudo-
concretes to more abstract mathematical symbols and notions.
Students are expected to draw analogies by recognizing common
features in a familiar everyday world and in the less familiar world
of mathematical ideas. Out of this arises the lowest level of
isomorphic reasoning; concluding that working in a world of
concretes or pseudo-concretes can be supposed to be like working in
a world of mathematics.

It is also possible to search for common features that underlie
differing systems. For example, addition can be compared to
multiplication, union can be cémpared to addition, arithmetic can be
compared to algebra, grammar can be compared to the hierarchy of
operators, and so on. This points to a higher level of isomorphic
reasoning; concluding that working in one abstract system can be

just like working in different one.
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In summary, the categories of isomorphic reasoning and
inductive reasoning overlap in that sensing a pattern is similar to
recognizing a common feature. However, isomorphic reasoning
embraces a more general notion of sensing a pattern, one that may
be intimately related to transfer of learning.

The three elements of this category are drawing analogies
between; (1) pseudo-concrete representations and mathematical
representations, (2) differing general symbolic representations, and
(3) differing mathematical representations. See Appendix A - items

35, 40, and 53.

Dimension 4: Language

There is one category in this dimension.

Category: relationship between lanquage and mathematics.

Students must simultaneously deal with two symbolic
systems, language and mathematics. It may be useful for students
to see them as related.

Only a small subset of the many underlying relationships are
included in this category. In particular, variables occur in both. For
example, words like 'she', and 'somebody’, are, in effect, variables in
language. As well, mathematics and language both can be used to
describe events that occur in daily life. The student must translate
mathematical notions into language and vice versa. The three
elements of this category are; (1) recognizing analogous roles

concerning replacement, (2) expressing arithmetic operations by
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means of language, and (3) expressing number sentences by means of

language. See Appendix A - items 22, 31, and 47.

Dimension 5: Problem_Solving

There is one category in this dimension.

Category: template recognition.

Template recognition concerns attaching arithmetic templates
to word problems. While this can be done using number sentences
and by at least two kinds of diagrammatic representation, only
number sentences (such as '12 - 7 = 5') are considered for purposes
of this study. These templates are derived from the relationships
between arithmetical expressions and the contexts to which they
are attached. That is to say, a template represents a mathematical
way of representing some action or state in the concrete world.

Viewing problem solving as beginning with a search for
templates differs from the viewpoint suggested in much current
theory (But see, for example, MacPherson & Rousseau (1988),
Carpenter & Moser (1982), Vergnaud (1982)). From this point of
view, a student first searches for the structure of a problem (the
template). If one is found, the student next selects an algorithm
suited to calculating the answer. The algorithm may or may not
involve the same arithmetic operation as the template. For example,
for the word problem, 'Mary had 3 cookies. Her friend gave her some
more. Now Mary has 11 cookies. How many cookies did Mary's friend

give her?', the template approabh involves identifying the structure
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of the problem and writing the corresponding number sentence, '3 + 7
= 11'. This template reflects what 'happened' according to the word
problem. Next, the answer may be found by using the open addition
algorithm or by transforming the addition number sentence into a
subtraction one and subtracting.

Only three templates have been included in the model for
purposes of this study. A model of precursors based solely on
templates would require an extensive study of the relationship
between template recognition and algebra. The three elements of
this category are; (1) sensing a subtraction template (comparison),
(2) sensing a multiplication template (comparison), and (3) sensing
an addition template (put together). See Appendix A - items 29, 38,
and 51.
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A Model concerning Pedagogical Style of Algebra Teachers

There are a large number of ways teachers' styles can be
categorized. For purposes of this study, only two polar styles and a
blend of them are identified. These styles are; (1) procedural, (2)

blend of procedural and exploratory, and (3) exploratory

Cateqgory 1: procedural.

A teacher whose style falls into this category is one who most
of the time presents students with a finished package of algorithms
that are to be mastered. Interactive questioning or exploration are
discouraged. Mathematics is a set of 'things you do'.

Classes conducted in this manner are characterized by whole
class teaching and individual seat work. Algorithms do not evolve.
They are delivered entire, and followed by repetitive practice. The
emphasis is on mechanical processing, not understandings. The
teacher may ask questions, but they tend to be rhetorical or at the

recall level.

Cateqgory 3: exploratory.

A teacher whose style falls into this category stresses.
understanding by developing principles and concepts in conjunction
with processing skills. Inductive and deductive reasoning are
encouraged by drawing inferences from explorations and by exploring
the consequences of premises. Students may be encouraged to
devise and present notions or symbols that may be appropriate to the

topic, to use trial and error, to predict and verify, to develop and
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operate from a set of principles and concepts, to conjecture about

relationships, to pursue and develop alternate approaches, and to see
external analogies. In short, the teacher and students act in concert
in a collaborative model of learning that emphasizes exploration and

the creation of knowledge.

Cateqgory 2: blend of procedural and exploratory.

This category encompasses the large zone that lies between
the two categories, procedural and exploratory. A teacher whose

style falls into category 2 exhibits a blend of the characteristics of

categories 1 and 3.



50
CHAPTER 4

THE METHODOLOGY OF THE STUDY

Overview of the Methodology

The study consisted of five phases. In order, they are; (1)
preparation, (2) collection of data, (3) scoring, (4) creation of data
analysis sets, and (5) analysis of data.

The following flowchart provides an overview of those phases.

Construction of models

ZConstruction of Instruments

| Selection of

Preparation

participants

: — |Model knowledge
Collection of data —
Teacher style

v T~

Scoring

e

Creation of data analysis sets (A, B, and C)

v

— Analysis of data
Creation of categories by
factor analysis. Then the
formal testing of category
models using the analysis sets

Achievement

Exploratory tests
using combined
data sets

Formal testing of element
models using the analysis sets
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Preparation
There were four stages. They were; (1) construction of a
model concerning precursors in algebra, (2) construction of a model

concerning pedagogical styles of algebra teachers, (3) construction

of instruments, (4) selection of participants.

Construction of a Model concerning Precursors_in Algebra

Preliminary thinking on the categories and elements that
might be included in the model was stimulated while teaching
mathematics to adults over the span of several years prior to 1990
and by further analysis of the literature. The model was constructed
in 1990 by logical analysis. The categories and elements of the

model are described in chapter 3.

Construction of a Model concerning Pedagogical Styles of

Algebra Teachers

After a search of the literature, the model was constructed in

1990.

Construction of Instruments

Four instruments were constructed; (1) model knowledge, (2)
achievement in algebra, (3) achievement in algebraic problem
solving, and (4) pedagogical style of algebra teacher. Validity was
addressed by subjecting the instruments and items to external

scrutiny and modifying them accordingly.
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The _model knowledge instrument.

A model knowledge instrument was constructed that reflects
the generic model of suggested precursors. The purpose of this
instrument is to measure students' knowledge of the model. Each
item of the instrument operatioﬁalizes one element (a detailed
precursor) of the model. The instrument (Appendix A) consists of 63
multiple choice items with five choices per item including 'l DON'T
KNOW'. See Appendix E, Table E-1, for details concerning the
relationship between the items and the categories of the model.

To address the content validity of items, the first draft of the
instrument was administered to a group of students taking a
university level mathematics course. Each item was discussed with
that group. A second draft was then administered to sixteen grade
nine students to assess readability and item difficulty. A third
draft was reviewed by mathematics education specialists to further
assess the content validity of the items. A fourth draft was
administered to three intact grade nine classes so as to further |
assess readability, item difficulty, and completion time. A fifth
draft was again reviewed by mathematics education specialists.
The sixth and final draft was used in the study to measure the model

knowledge of students.

The algebra achievement instrument.

The instrument concerning achievement in algebra (Appendix B)
consists of items that reflect curricular objectives. For most

topics, three items (low difficulty, medium difficulty, and high
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difficulty) were used to measure knowledge. An independent panel
of nineteen teachers scrutinized the instrument to assess content
validity, difficulty level, and probable completion time.
Modifications were made as necessary.

A comparison with mid-term achievement data on a randomly
selected subset of students (n = 109) involved in the study suggests
a reasonably close relationship between results on the algebra
achievement instrument and those of the teacher-made tests. The

correlation between the two was .71.

The algebraic problem solving achievement instrument.

The achievement in algebraic problem solving instrument
(Appendix C) consists of items that reflect curricular objectives.
An independent panel of nineteen teachers assessed content validity,
difficulty level, and probable completion time. Modifications were
made as necessary. The sixteen algebra teachers participating in
the study provided mid-term achievement data for problem solving
on a randomly selected subset of students (n = 109) involved in the
study. The correlation between scores on the teacher-made problem
solving tests and scores on the algebraic problem solving
achievement instrument was .61. It should be noted that in this case
the teacher-made tests tappe‘d a broader range of understandings and

skills that did this set of items.

The pedagoagical style of algebra teacher instrument.

The design of the instrument used to assess the pedagogical

styles of algebra teachers (Appendix D) was inferred from a search
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of the literature. An independent panel of nineteen teachers
assessed the instrument for item consistency and content validity.

Modifications were made as necessary.

Selection of Participants

The participants in the study were selected from four school
divisions. Schools within these divisions were selected so as to
maximize variations in socio-economic status and variations of
involvement in French Immersion. The principal of each school
selected one or two intact grade 9 classes for participation in the
study, again so as to maximize diversity in mathematics
achievement. The overall effect was to create a diverse sample of
students. The sample consisted of 375 students and 16 algebra

teachers in eighteen grade nine classes.
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Collection of Data
Four sets of data were collected. In order, they were; (1) data
on model knowledge, (2) data on teacher style, (3) data on

mathematics achievement based on teacher-made tests, and (4) data

on achievement in algebra and algebraic problem solving.

Collection of Data on Model Knowledge

Student knowledge of the model was measured over a span of
two weeks in October, 1990 while teachers were reviewing
arithmetical topics. Students were given 55 minutes to complete

the instrument.

Collection of Data on Teacher Style

The pedagogical style of algebra teacher instrument was sent
to teachers in February, 1991 (during the school midterm). All of
the teachers involved completed the instrument and returned it

within two weeks.

Collection of Data on Achievement (teacher-made tests)

Teachers provided data on students' achievement in
mathematics based on teacher-made midterm tests. Those data
were collected from a random sample of students (n =109) in

February, 1991.
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Collection of Achievement Data (the study's instruments)

Algebra achievement.

The algebra achievement instrument was administered over a
period of three weeks in late May, 1991. Students were allowed 40
minutes to complete it. Students were given a five minute break

after completing the instrument.

Algebraic_Problem Solving Achievement.
The algebraic problem solving instrument was administered
after the algebra achievement instrument. Students were allowed

30 minutes to complete it.
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Scoring

There were four components; (1) scoring the model knowledge
test, (2) categorizing the pedagogical style of teachers, (3) scoring
algebraic problem solving achievement, and (4) scoring algebra

achievement.

Scoring the Model Knowledge Test

Each item was scored either '0' (the response was incorrect) or
'1' (the response was correct). See Appendix H for the answer key
and some discussion of items. A random sample of 20 completed
instruments was rescored so as to detect any possible variations in

scoring standards (see Appendix F, Table F-1, for details).

Categorizing the Pedagogical Style of Teachers

The instrument of 14 items, including two distractors (items
10 and 14 ), was used to categorize teacher style. A Likert scale of
five response levels was employed. Values were attached to the
Likert scale response levels:
Very rarely ->1
Sometimes -> 3
Half the time -> 6
Frequently -> 9,
Almost always -> 11 -
For purposes of this study, items were classified as positive
or negative. ltems 1, 4, 5, 7, 8, and 9 are considered to be negative.

For those items, negative values were assigned to the Likert scale
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response levels. Items 2, 3, 6, 11, 12, and 13 are considered to be
positive. For them, positive values were assigned to the response
levels. The resulting range of values assigned to the responses was H
from -11 to +11.

A score for the instrument was obtained by summing the
integers that were assigned to the 12 items. The resulting scores
ranged from -15 to +12. Those scores were used to categorize the
teachers into three pedagogical styles. The criterion for inclusion
into the exploratory pedagogical style (coded '3') was a score
greater than +5. The criterion for inclusion into the procedural
pedagogical style (coded '1') was a score less than -5. The criterion
for inclusion into the blend of procedural and exploratory
pedagogical style (coded '2') was a score in the range -5 to +5

inclusive.

Scoring _Algebraic _Problem Solving Achievement

ltems on the algebraic problem solving achievement
instrument were subjectively weighted so as to reflect the
complexity of the problems. A score on the problem solving
achievement instrument was obtained by summing those point
values.

So as to minimize any confounding of algebraic achievement
and problem solving achievement, algebraic errors in processing
were not penalized. The intent was to isolate the problem solving
component of achievement. However, processing errors (.5 points

per error) were summed and are referred to as the algebra
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adjustment. The algebra adjustment was included in the assessment
of achievement in algebra.

A class-stratified random sample of 34 completed
instruments was rescored so as to discover any possible variations

in scoring standards (see Appendix F, Table F-2, for details).

Scoring Algebra Achievement

ltems on the algebra achievement instrument were
subjectively weighted so as to reflect the complexity of the
questions. An initial score on the algebra achievement instrument
was obtained by summing achieved point values for items. For
purposes of this study, achievement in algebra was taken to
comprise both that initial score and the algebraic processing
component of the problem solving test. Accordingly, the final score
in algebra was obtained by subtracting the algebra adjustment score
from the initial score.

A class-stratified random sample of 34 completed
instruments was rescored so as to discover any possible variations

in scoring standards (see Appendix F, Table F-3, for details).
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Creation of Data Analysis Sets

Attrition

The initial sample size was 375. Natural attrition removed 33
students who were absent for the achievement tests. Eleven further
students whose data were suspect for a variety of reasons were also

removed. The final sample size was 331, a loss of 44 students.

Data Analysis Sets

The formal test of linear regression hypotheses requires at
least two separate independent sets of data - an exploratory set in
which a regression model can be formulated and a second set for the
formal testing of that model. For this study, it proved useful to
create a third set of data for purposes of independently testing a
further formal hypothesis.

Accordingly, the 331 students were randomly assigned to three
data sets (A, B, and C). The assignments were stratified by class.
Data set A (n = 126) was to be used to explore and develop
regression models (hypotheses) and to assess item consistency.
Data set B (n = 105) was reserved for the formal testing of the
hypothesis concerning achievement in algebraic problem solving.
Once that purpose was served, data set B was also used for exploring
and developing regression models concerning algebra achievement.
Data set C (n = 100) was reserved for the formal testing of
hypotheses concerning algebra achievement.

While the stratified random assignment of students' scores to

sets A, B, and C can be taken to establish the equivalence of those



61

sets of scores, two broad indicators were employed to test for that
equivalence. They are; (1) the means and standard deviations of
scores for model knowledge and achievement and (2) gender
composition. The results of those tests are provided in chapter 5.
Although the model knowledge instrument scarcely qualifies
as a one factor test, a lower limit of item consistency was
estimated by correlating each item with the total score and by
calculating a split-half consistency coefficient using odd-numbered
items and even-numbered items. For the algebra and algebraic
problem solving achievement instruments, a lower limit of item
consistency was estimated in the same way. The results of those

tests are provided in chapter 5.
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Analysis of Data

Overview of the Analysis

There were two components of the analysis of data; (1) the
formal testing of hypotheses concerning achievement and (2) the

exploration of other hypotheses.

Formal tests.

The formal tests are discussed in this chapter. For this
purpose, data sets A, B, and C were used separately and
independently for developing regression models and for formal
testing.

As is suggested in chapter 1 and is outlined in the following
flowchart (see page 63), regression models of the precursors of
algebra were developed and tested in two ways; using the elements
as predictors and using clusters of elements, here called categories,
as predictors. For that purpose, the items of the model knowledge
instrument served to operationalize the elements of the generic
model of precursors of algebra. Employing two levels of analysis
allows for the identification of both general precursors (categories)
and specific precursors (elements) and increases the likelihood of
identifying important ones.

However, only one regression model concerning algebraic
problem solving was developed. It was tested in one way, using

categories as predictors.
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The details of those tests and the results are discussed in

chapter 6. In this component, hypotheses concerning gender, teacher

style, and the reasoning dimension of the model were explored. Data

sets A, B, and C were combined for that purpose.

The Formal Testing of Hypotheses

The following flowchart provides an overview of the a priori

hypotheses tested in this study.
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Dependent Variable: Achievement in Algebraic Problem

-

Solving

Overview of the analysis.

The formal hypothesis concerning problem solving was tested
only at the category level. No analysis at the element level was
done because problem solving was an ancillary concern of this study,
and doing so would have called for a partition of a that would
attenuate the likelihood of obtéining significant results.

The formal test of the hypothesis (a = .05) was conducted on a
regression model that consisted of categories derived from a factor
analysis, rather than from the initial categories of the generic
model of precursors. Abandoning the initial categories resulted in
more objectively-determined categories for testing the hypothesis.

The regression model was determined from data set A. The
formal test was done using data set B. The hypothesis concerning
problem solving was tested first so that data set B would be
available for exploring and developing additional regression models

concerning algebra achievement.

Creation of the category model and the formal testing of it.

There were three steps. involved in determining the regression
model. First, a set of possibly useful regressors was obtained by
considering the capacity of each item, taken separately, to predict
achievement. An item was included in the set if its contribution to
RZ was greater than or equal to .05. Next, the selected set of items

were factor analyzed (using principal components) to create
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categories. The resulting categories were then subjected to forward
stepwise regression for purposes of determining the regression
model. The criterion for inclusion was set at a level of significance
of .1.

The regression model for data set A obtained from the
stepwise procedure was formally tested on data set B. The formal
test involved three steps. First, the regression equation derived
above was used to calculate predicted values of the dependent
variable in data set B and then those predicted values were
correlated with the actual values. The resulting correlation
coefficient was used to calculate an F-statistic using the equation

(Hays, 1988):

F = —=— (4-1)
N-K-1

where 'R2' is the square of that correlation coefficient, 'K' is the
number of regressors, and 'N' is the number of achievement scores.
The calculated F-statistic was compared to the criterion F-statistié
(a =.05).
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Dependent_Variable: Achievement in_Algebra

Overview of the analysis.

The analysis was done at both element and category levels.

Four hypotheses were tested, two at the element level and two at

the category level at a family-wise o, of .20. That family-wise

F

error was partitioned with each test conducted at o = .05.

The researcher felt that since this is an exploratory study the
identification of any potential precursors of algebra is of sufficient
importance to justify the additional risk of obtaining fortuitous
results that can arise from adopting a generous family-wise

criterion of significance.

Overview of the element level analyses.

The regression model for the test of the formal hypotheses at
the element level was generated twice, once using set A and again
using set B after it had been used to test the formal hypothesis
concerning problem solving.

In each case, the regression model was generated from the
individual items and the interactions of items in the model
knowledge instrument.

While they were generated independently, both models were
tested in set C, mandating the partition of overall significance

referred to above. Each regression model was tested at a = .05.
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Creation of the element models and the formal testing of them.

There were two steps involved in creating each regression
model.

First, a set of probably significant regressors was obtained.
For that purpose, the capacity of each item and interaction, taken
individually, to predict achievement was determined. An item or
interaction was included if its contribution to RZ was greater than
or equal to .05. Only interactions generated from items in a
category of the generic model were considered.

Second, the resulting set of regressors was subjected to a
forward stepwise regression. The criterion for inclusion was set at
a level of significance of .1.

Both regression models were formally tested on data set Cin
the same way. Three steps were involved in the formal test. First,
the regression equation derived above was used to calculate
predicted values of the dependent variable in data set C and then
those predicted values were correlated with the actual values. The
resulting correlation coefficient was used in equation 4.1 to
calculate an F-statistic. The calculated F-statistic was compared
to the criterion F-statistic (a = .05).

There is a substantial risk that the two element level
regression models may have few or no regressors in common. It is
possible that a good number of items may account for about the
same variance in algebra achievement and, because of random

fluctuations, promote differing sets of them for each model (Neter,
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Wasserman, & Kutner, 1985). The likelihood of that occurring is

further increased by these regressors being dichotomous.

Overview of the category level analyses.

The regression model for the test of the formal hypotheses at
the category level was generated twice, once using set A and again
using set B after it had been used to test the formal hypothesis
concerning problem solving.

In each case, the regression model consisted of categories that
were determined by a factor analysis, rather than from the initial
categories of the generic model. Abandoning the initial categories
resulted in more objectively-determined categories for testing the
hypotheses. This approach is consistent with that used for testing
the category level hypothesis concerning problem solving.

While they were generated independently, both models were
tested in set C, again mandating the partition of overall

significance. Each regression model was tested at o = .05.

Creation of the category models and the formal testing of them.

There were three steps involved in creating each regression
model.

First, a set of probably significant regressors was obtained.
For that purpose, the capacity of each item, taken individually, to
predict achievement was determined. An item was included if its
contribution to RZ was greater than or equal to .05. Next, the
selected set of items were factor analyzed (using principal

components) to create categories. The resulting categories were
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then subjected to forward stepwise regression for purposes of
determining the regression model. The criterion for inclusion was
set at a level of significance of .1.

Both regression models were formally tested on data set C in
the same way. The formal test was the same as that used for
testing the element level regression models. The stepwise-derived
equation was used to calculate predicted values of the dependent
variable in data set C and those predicted values were correlated
with the actual values. The resulting correlation coefficient was
used in equation 4.1 to calculate an F-statistic. The calculated F-

statistic was compared to the criterion F-statistic (a = .05).
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CHAPTER 5

RESULTS AND CONCLUSIONS - The Formal Tests

This chapter contains four sets of results and conclusions.
They concern; (1) formal tests of a priori hypotheses, (2) informal
observations, (3) item consistency of instruments, and (4)

equivalency of data sets.

Formal Tests of A Priori Hypotheses

Overview of the Formal Tests

For all formal tests of hypotheses, the initial regression
models and the descriptive statistics were determined using the
Macintosh statistical software, JMP (SAS,1989). The factor
analyses and the stepwise regression analyses were done using the
Macintosh statistical software, Statview Il (Abacus Concepté,1987).

Two levels of analysis were involved in the formal tests, an
element level and a category level. The following chart provides an

overview of all formal tests of hypotheses.
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Five formal tests were conducted. For those tests, the
dependent variable was either algebraic problem solving
achievement or algebra achievement. Furthermore, for each formal
test in this study the regression model derived from one set of data
was tested on a fresh set. |

There was one test concerning algebraic problem solving. That
category level test was conducted at a = .05.

Four tests concerned algebra, two at the element level and two
at the category level at a family-wise a_, of .20. That family-wise

error was partitioned with each test conducted at a = .05.
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For purposes of category level analyses, categories are derived
from factor analyses (using principal components) and consist of at
least one element. Those categories or elements were used as
independent variables in regression models with achievement as the
dependent variable. For purposes of element level analyses, each
element is taken as an independent variable. For both levels of
analysis, the optimum predictors of achievement were obtained
using stepwise regression.

The element level analyses: were done to identify any elements
as precursors whose importance may have been overlooked in the
category level analyses, to provide fine detail on the broadly defined
precusors that emerged from the category level analyses, to provide
additional information concerning the importance of identified
precursors, and to provide a way of considering the interactions of
elements as precursors.

The data allowed for three sets of formal tests of hypotheses.
They are; (1) a category level test on achievement in aigebraic
problem solving, (2) two category level tests on achievement in
algebra, and (3) two item level tests on achievement in algebra.
Each formal test is based on the correlation between the predicted
values of the dependent variable derived from a regression model
and the actual values of the dependent variable. Both predicted and
actual values are derived from a data set reserved for formal

testing.
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The rejection of the null hypothesis for a regression model
resulted in those regressors, whether categories or elements, being
interpreted as likely precursors of algebra. Individual elements
were interpreted as single precursors.

There were complications with interpreting the categories as
precursors. For purposes of this study, it was desirable to
determine a nominal notion for each category that best represents
the element(s) that comprise the category. That notion serves as a
more broadly defined precursor. To that end, it would have been
preferable if the elements comprising a category derived from
factor analysis were drawn from one category of the a priori model
of precursors.

That did not happen very often. More often, the elements
comprising a factor analysis-derived category came from twé or
more a priori categories.

Slnce that was the case, nominal notions of categories were
determined by logical analysis, weighted by considering the RZ
contribution of the elements comprising the category.

The following discussion will provide the information
concerning the five formal tests, identify the categories from the
category level analyses (or the elements from the element level
analyses), and provide a likely explanation for what the categories

(or elements) mean.



74

Category Level Test: Achievement in_Algebraic Problem

Solving
Data set A was used to derive a category level regression

model. A factor analysis produced 16 factors. Following a stepwise
regression, eight categories remained.
The regression model consisting of those eight categories was

formally tested at a = .05 using the data of set B (see Table 1).

Table 1

Formal Test: Category Level Regression Model derived from Set A,

Dependent _Variable - Achievement in Algebraic Problem Solving

Test Parameter Value

R (predicted / actual) .568
R2 (predicted / actual) 322
K 8

N « 105

Degrees of freedom 8/ 96
o .05

F - criterion 2.05

F - calculated 5.7

The null hypothesis is rejected.
It appears that the categories used in the model may be

precursors of algebraic problem solving.
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Once the formal test was completed, an informal test was
conducted that optimized on chance by allowing the regression
model to determine the R coefficients independently in each of three
data sets; set A; set B; and sets A, B, and C combined. The results
concerning the contribution to R2 of the model in each of those sets

support the conclusion of the formal test (see Table 2).

Table 2
Contribution to RZ of the Set A-derived Category Level Regression

Model used independently.

Dependent Variable, Achievement in Algebraic Problem Solving

Data set Set A Set B |Sets A, B, C combined
RZ  contribution 456 403 366

Discussion of the suggested precursors of problem solving.

Eight categories emerged as suggested precursors of algebraié
problem solving. Nominal names for those categories were
determined using the approach mentioned above. The resulting
precursors in order of categories are; (1) the locking role of
arithmetic operators, (2) functional principles of arithmetic, (3) the
locking role of arithmetic opérato‘rs, (4) the alteration of structure,
(5) inductive reasoning, (6) inductive reasoning, (7) inverse
operations, and (8) deductive reasoning.

The elements/items comprising those eight categories are

shown in Table 3. Items in the outline font in Table 3 are common to
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Tables 6 and 7. Those tables concern the element organization of
the category level models for algebra achievement.
Table 3 also provides the RZ contributions of the individual

categories using data sets A, B, and C combined.

Table 3
Problem solving - Category level Regression Model:

Element organization and RZ contributions of Categories taken

individually in the combined sets A, B, and C

Category Elements comprising the R2  contribution
category: items of the model .
knowledge instrument of the category

1 3 017
2 18, 42 033
3 e, 9, 27 083
4 23 089
5 49, 58 091
6 16, 50 120
v 7, 62, 46, 56 157
8 54 63 152

The categories are discussed in order of their contributions to
RZ beginning with the category having the greatest contribution.
The items comprising those categories are provided in

Appendix A.
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Category 8 consists of items 63 and 54. ltem 63 concerns the
structural role of symbols, additive operators separate an ‘
arithmetic expression into chunks (terms). Item 54 concerns do and
undo pairings of operators, addition and subtraction are inverse
operations. As item 63 also has a do/undo component in its design,
it is reasonable to assume that category 7 concerns inverse
operations (do/undo pairings of operators). That notion may play a
role when students manipulate equations while solving problems.

Category 7 consists of items 7, 62, 46, and 56. Item 7
concerns the structural role of symbols; multiplicative operators
bind chunks (terms) together. Item 62 concerns visual order in
relation to computation; multiplication does not have to be done in a
left-to-right order. Item 46 concerns deductive reasoning, if p
implies g then not g implies not p. ltem 56 concerns deductive
reasoning, the notion of negation or not. Items 46 and 56 account
for 90% of the variance within this category. It is reasonable to
assume that category 8 concerns deductive reasoning. It may be that
deductive reasoning plays a role when students consider the various
relationships that might be involved in a problem.

Category 6 consists of items 16 and 50. Item 16 concerns
multiple meanings of symbols; the symbol '-' can indicate the unary
operator, opposite of. ltem 50 concerns inductive reasoning, sensing
a regularity in a number sequence. As item 50 accounts for 83% of
the variance within this category, it is reasonable to assume that

category 6 concerns inductive reasoning.
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Category 5 consists of items 49 and 58. Item 49 concerns
binary and unary operators; square root is a unary operator. It is
unclear how this notion relates to problem solving as square root is
not involved in the achievement test. Item 58 concerns inductive
reasoning, sensing a regularity with respect fo computational
results. Item 58 accounts for about 70% of the variance within this
category. It is reasonable to assume that category 5, like category
6, concerns inductive reasoning.

There seem to be two categories which involve inductive
reasoning but the reason is not clear. This suggests that inductive
reasoning, whether or not it has two components, is an important
precursor of algebraic problem solving. As inductive reasoning
tends to involve trial and error in making judgments, it may
influence students' attempts (or checks) when solving problems.
Those students who are competent in inductive reasoning will likely
be more proficient with using trial and error as a strategy for
problem solving and will likely be more successful at solving
problems.

Category 4 consists of item 23. It concerns the alteration of
structure; the numerical value of an arithmetic expression is
invariant as the structure of the expression changes through
computation. The notion may be important when students first
consider the composition of the algebraic expression or equation
that could represent a problem. It may be that the generation and

selection of appropriate expressions is influenced by an
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understanding that the structure of an expression may change but its
value remains constant.

Category 3 consists of items 27, 32, and 9. They appear to be
unrelated. Item 27 concerns functional principles, the commutative
principle. Item 32 concerns multiple meanings; the symbols '+' and
'-! can indicate opposite directions. Item 9 concerns the locking role
of operators; square root is a more powerful lock than addition.
Since item 9 accounts for 77% of the variance within this category.
It is reasonable to assume that this category principally concerns
the locking role of operators in arithmetic, a notion related to the
hierarchy of operators. An understanding of that notion may assist
students when first considering expressions or equations that
represent problems.

Category 2 consists of items 42 and 18. Both items concern
functional principles - understanding principles such as the
distributive principle in a way that directly supports computation.
Iltem 42 is included in the functional principle category in the
research model. Item 18 which concerns do and undo pairings in
relation to multiplication and division can be interpreted as a
functional principle as well. [t is not clear how the notion of a
functional principle in arithmetic is related to problem solving in
algebra.

Category 1 consists of item 3. It concerns the locking role of
operators; when an arithmetic expression contains brackets, it does

not necessarily imply that whatever is in the brackets must be done
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first. The second occurrence of this notion as a precursor su'pports
the conclusion that attention should be paid to students
understanding priorities of computation. It may play a role in the
way that students organize aspects of problems before they
represent them as expressions or equations.

Three of the eight categories, inductive reasoning (occurs
twice) and deductive reasoning, are part of the dimension of
reasoning in the a priori model. Furthermore, those three categories
have relatively large contributions to RZ . The "not too smart"
school of thought concerning difficulties in algebra may interpret
that as an indication that intelligence is a factor in algebraic
problem solving. Even if it is the case, the results suggest which
components of intelligence are relevant. They appear to be
teachable.

Categories 1 and 2 have lower contributions to RZ concerning
achievement in algebraic problem solving than do the other
categories. It may be that the notions contained in those categories
play some part when students translate word problems into
appropriate algebraic expressions or equations. If the precise
mechanisms by which those notions assist problem solving cannot be
found, it would be difficult to incorporate them into a curriculum
that pays attention to the precursors of algebraic problem solving.

It is interesting that template recognition, category 18 of the
the a priori model, does not appear to be a predictor of algebraic

problem solving. This result is unexpected considering that the
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templates which are included in the model knowledge instrument are

well represented in the problem solving achievement instrument.
There are a variety of possible explanations but this

provocative result certainly suggests that the role of template

recognition in algebraic problem solving requires additional study.

Overview of the Formal Tests concerning Algebra

The researcher felt that since this is an exploratory study the
identification of any potential precursors of algebra is of sufficient
importance to justify the greater risk of obtaining fortuitous
results that may arise from additional tests of hypotheses.
Accordingly, four tests were conducted, two at the category level

and two at the element level.
Each formal test was done at a = .05. The o was obtained by

partitioning the family-wise o, of .20 into four equal parts.

F
Results based on the "one shot" determination of R invariably

optimize on chance. It must be restated therefore that for each
formal test in this study the regression model derived from one set
of data was tested on a fresh set.. For that reason, the results can
be safely generalized to the population from which this sample

came.
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Category Level Tests: Achievement in_ Algebra

Two formal tests were conducted. They involve regression
models for which the regressors are categories. One regression
model is derived from data set A, the other from set B. The results

are discussed separately.

Regression model derived from data set A.

Data set A was used to derive a category level regression
model.

Naturally, the same factor analysis as before is used but since
we are now predicting algebra achievement, we obtain different
regression models.

A factor analysis produced 18 factors. Following a stepwise
regression, nine categories remained.

The regression model consisting of those categories was

formally tested at o = .05 using the data of set C (see Table 4).
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Table 4

Formal Test: Category level Regression Model derived from Set A,

Dependent Variable - Achievement in Algebra

Test Parameter Value

R (predicted / actual) 575
R2 (predicted / actual) 331
K 9

N 100

Degrees of freedom 9/91

a .05

F - criterion 2.00

F - calculated 5.00

The null hypothesis is rejected.

It appears that the categories used in the model may be
precursors of algebra.

Once the formal test was completed, an informal test was
conducted that optimized on chance by allowing the regression
model to determine the B coefficients independently in each of three
data sets; set A; set C; and sets A, B, and C combined. The results
concerning the contribution to RZ of the model in each of those sets

support the conclusion of the formal test (see Table 5).
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Table 5
Contribution to RZ of the Set A-derived Categorv Level Regression

Model used independently.

Dependent Variable, Achievemeht in Algebra

Data set Set A Set C |[Sets A, B, C combined
RZ  contribution .598 416 437

Discussion of the suggested precursors of algebra.

Nominal names for the nine categories that emerged as
suggested precursors of algebra were obtained using the approach
discussed on page 72 of this chapter. The resulting precursors in
order of categories are; (1) functional principles of arithmetic, (2)
functional principles of arithmetic, (3) the replacement role of
symbols, (4) two interpretations for this category: (a) a rich
understanding of the multiple interpretations of '-' and (b)
isomorphic reasoning (making analogies), (5) the alteration of
structure, (6) the locking role of operators, (7) inductive reasoning,
(8) inductive reasoning, and (9) inverse operations.

The elements/items comprising those nine categories are
shown in Table 6. Items in the outline font in Table 6 are common to
Table 7 which concerns the element organization of the category
level model derived from set B for algebra achievement.

Table 6 also provides the RZ contributions of the individual

categories using data sets A, B, and C combined.
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Table 6

Algebra - Category level Regression Model derived from data set A:

Element organization and RZ contributions of Categories taken

individually in the combined sets A, B, and C

Category Elements comprising the RZ  contribution
category: items of the model
knowledge instrument of the category
1 14 053
2 18, 42 060
3 37 063
4 61, 40, 51, 6 084
5 I, 23 091
6 32, 9 102
7 49, 58 129
8 50, 16 136
9 63, 54, 36, 47 599

The categories are discussed in order of their contributions to
RZ beginning with the category having the greatest contribution.

The items comprising those categories are provided in
Appendix A. "

Category 9 consists of items 63, 54, 36, 47. Iltem 63 concerns
the structural role of symbols; additive operators separate an
arithmetic expression into chunks (terms). However, item 63 also

includes a do/undo component. ltem 54 concerns do and undo
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pairings of operators; addition and subtraction are inverse
operations. Item 36 concerns the locking role of multiplicative
operators, a notion related to the hierarchy of operators. Iltem 47
concerns the relationship between mathematics and language,
expressing mathematical symbols by means of language. Iltems 54
and 63 account for 78% of the variance within this category with
item 54 accounting for 56% of it.

It is reasonable to assume that category 9 concerns the notion
of do and undo relationships between operators. It appears that if
students understand that notion then their achievement in algebra is
likely to be greater. As category 9 accounts for 51% of the RZ
contribution of the regression model, the notion of do and undo
concerning operators (inverse operations) seems to be an important
precursor of algebra. It may play a role when students solve
equations and manipulate expressions.

Category 8 consists of items 50 and 16. Item 50 concerns
inductive reasoning, sensing a regularity in a number sequence and it
accounts for 84% of the variance within this category. Item 16
concerns the multiple meanings of symbols; the symbol '-' can
indicate the unary operator, opposite of. It is reasonable to assume
that category 8 concerns inductive reasoning.

Category 7 consists of items 49 and 58. Item 49 concerns
binary and unary operators; square root is a unary operator. ltem 58
concerns inductive reasoning, sensing a regularity with respect to

computational results. Item 58 accounts for 72% of the variance
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within this category. It is reasonable to assume that category 7
concerns inductive reasoning.

Inductive reasoning is the central notion in categories 7 and 8
of the regression model. This strongly suggests that it is important
to learning algebra. Inductive reasoning may play a role when
students learn concepts and principles in algebra by relating them to
number patterns derived from arithmetic. As well, inductive
reasoning tends to involve trial and error. It may be that trial and
error strategies may be important to learning algebra. They may
play a role when students determine ways to manipulate expressions
or to solve equations.

Category 6 consists of items 32 and 9. Item 32 concerns the
multiple meanings of symbols; the symbols '+' and '-' can indicate
opposite directions. Item 9 concerns the locking role of operators; |
square root is a more powerful lock than addition. Item 9 accounts
for 80% of the variance within this category. It is reasonable to
assume that category 6 concerns the locking role of operators in
arithmetic, a notion related to the hierarchy of operators. It may
play a role when students make decisions concerning the various
ways to manipulate an expression.

Category 5 consists of items 23 and 11. Item 23 concerns the
alteration of structure; the numerical value of an arithmetic
expression is invariant as the structure of the expression changes
through computation. It accounts for 65% of the variance within

this category. Item 11 concerns the replacement role of symbols;
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replacement symbols (variables) may be manipulated. The design of
item 11 includes a component that is related to the invariance of
value as well. [t is reasonable to assume that category 5 concerns
the alteration of structure. The notion that structure changes during
computation may play a role when students try to make sense of the
alternate forms of algebraic expressions that occur as a result of
manipulation.

Category 4 consists of items 40, 61, 51, and 6. ltem 40
concerns isomorphic reasoning, making analogies between systems
of representation. Item 61 concerns functional principles; adding
the same number to both parts of a subtraction is a legitimate
strategy. Item 51 concerns template recognition, sensing an
addition template. Item 6 concerns multiple meanings of the symbol
'), part of the label for a position on the number line. There appear
to be at least two ways to interpret this category.

One interpretation of category 4 concerns the many notions
that can be attached to the symbol '-'. Al four items of category 4
incorporate some notion related to '-'; whether explicitly or
implicitly. Item 40 incorporates an analogy concerning direction.
ltem 61 incorporates subtraction in relation to a functional
principle. ltem 51 incorporates subtraction in the guise of open
addition. ltem 6 involves the symbol '-' in relation to part of the
label for a position on the number line. That commonalty suggests
that a rich understanding of '-' is a precursor of algebra. [t may play

a role when students manipulate expressions and solve equations.
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A second interpretation of category 4 concerns the notion
contained in item 40, isomorphic reasoning - making analogies
between systems. ltem 51 can also be interpreted in that way, in
this case, making analogies between language and mathematics. As
items 40 and 51 account for 76% of the variance within category 4,
it may be reasonable to assume that it concerns isomorphic
reasoning. From this point of view, the important notion may be that
students are able to transfer concepts and principles of arithmetic
to algebra. It implies that teachers teach arithmetic in a way that
supports algebra. As discussed in the review of the literature, many
students tend to view arithmetic and algebra in incongurent ways.
The second interpretation of category 4 suggests that that
dissonance must be addressed in order to improve algebra
instruction.

Category 3 consists of item 37. Item 37 concerns the
replacement role of symbols; the set of replacements for a
particular replacement symbol is large. Item 37 can also be
interpreted as concerning the notion that replacements can be
selected from number sets other than the set of whole numbers, in
particular from the set of rational numbers. Both interpretations
involve understanding variables as symbols that indicate
replacement by numbers. That notion may be important when
students try to make sense of the various forms of algebra

expressions or when they manipulate expressions.
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Category 2 consists of items 42 and 18. The central notion of
this category concerns functional principles of arithmetic. Item 42
concerns functional principles. Item 18 which concerns the do and
undo relationship between multiplication and division includes as
well a component that is related to functional principles. The notion
of a functional principle of arithmetic may play a role in algebra
when students solve equations or manipulate expressions.

Category 1 consists of item 14. It concerns functional
principles, the associative, distributive, and commutative
principles. While category 2 also concerns functional principles,
item 14 may not have been included because it incorporates a
broader range of that notion. The second occurrence of functional
principles as the central notion suggests that it may be a more
important precursor of algebra than is indicated by the low

contributions to RZ of categories 1 and 2 taken individually.

Regression model derived from data set B.

Since this is an exploratory study, the identification of any
potential precursors of algebra is of sufficient importance to
warrant an additional test of hypothesis at the category level. For
that reason, a second category level regression model concerning
algebra was created but it wés derived from a different data set
than that used for creating the regression model above.

Data set B was used to derive a category level regression
model. A factor analysis produced 16 factors. Following a stepwise

regression, seven categories remained.
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The regression model consisting of those categories was
formally tested at « = .05 using the data of set C.

The null hypothesis is rejected (see Appendix G, Table G-1).

It appears that the categories used in the model may be
precursors of algebra.

Once the formal test was completed, an informal test was
conducted that optimized on chance by allowing the regression
model to determine the B coefficients independently in each of three
data sets; set B; set C; and sets A, B, and C combined. The results
concerning the contribution to RZ of the model in each of those sets
support the conclusion of the formal test (see Appendix G, Table G-

2).

Discussion of the suggested precursors of algebra.

Seven categories emerged from the formal testing as
suggested precursors of algebra. Nominal names for those
categories were determined using the approach discussed on page 72
of this chapter. The resulting precursors in order of categories are;
(1) deductive reasoning, (2) the structural role of symbols, (3) the
replacement role of symbols, (4) binary and unary operators, (5) the
structural role of symbols, (6) deductive reasoning, and (7) inductive
reasoning. i

The elements/items comprising those seven categories are
shown in Table 7. Items in the outline font in Table 7 are common to
Table 6 which concerns the element organization of the category

level model derived from set A for algebra achievement.
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Table 7 also provides the RZ contributions of the individual
categories using data sets A, B, and C combined.

Table 7

Algebra - Category level Regression Model derived from data set B:

Element organization and RZ contributions of Categories taken

individually in the combined sets A. B, and C

Category |Elements comprising the RZ  contribution
category: items of the model of the category
knowledge instrument

1 >3 010
2 >3 047
3 51, 11 067
4 439, 40 101
5 41, 7, 63 112
6 8, o6 138
~ 36, 42, S50 237

Naturally, it is preferable that the precursors of algebra
obtained from the test of a second hypothesis would be the same as
those obtained from the first test. That was the case to some
extent.

There seem to be common precursors identified in the two

category level regression models concerning algebra. The



93

confirmation of precursors in some instances is direct and in other
instances it is indirect.

There are two instances of the direct confirmation of
precursors.

First, inductive reasoning has been identified in both models
as a precusor in both models. It accounts for about the same
variance in the models when the double occurrence of inductive
reasoning in the first model is taken into consideration. The sum of
the RZ contribution for each occurrence provides an upper estimate
of the capacity of inductive reasoning to predict algebra
achievement in the first regression model. That sum compares
favourably with the RZ associated with inductive reasoning in the
second model (.129 + .136 compared to .237).

Second, the replacement role of symbols has been identified as
a precursor in both models. That notion accounts for about the same
variance in algebra achievement in the models (.063 compared to
.047).

There is one instance of the indirect confirmation of
precursors.

For the first regression model, categories 5 and 6, the
alteration of structure and the locking role of operators, have a
common underlying notion - the intuitive understanding of the
structure of arithmetic expressions. That notion is reflected as
well in categories 2 and 5 of the second model which both concern

the structural role of symbols. Further, using the sum of the RZ
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contributions as an upper estimate, the variance accounted for by
categories 5 and 6 of the first regression model is about the same
as that accounted for by categories 2 and 5 of the second model
(.091 +.102 compared to .047 + .112).

The second regression model provided additional insight
concerning precursors of algebra.

The ability to reason deductively was identified twice as a
precusor (categories 1 and 6). As an upper estimate, it accounts for
14.8% of the variance in algebra achievement (.010 + .138). it is not
clear how deductive reasoning is important to learning algebra. One
explanation concerns intelligence. Deductive reasoning may be
perceived as a factor of intelligence and therefore in some way
intelligence may be important to learning algebra. Another
explanation concerns using deductive reasoning to determine the
best course of action for an algebraic purpose. The latter
explanation seems to have the most promise for teaching purposes.

The ability to discriminate between unary and binary operators
was identified as well as a precursor. It accounts for 10.1% of the
variance in achievement. That ability may play a role when students
manipulate expressions.

Four of the nine categories of the first category level
regression model concerning algebra are found in the second
regression model. That result strongly suggests that being aware of
structure, understanding the replacement role of symbols, and being

able to sense patterns are precursors of algebra.



95

The models also contain categories that are not common to
both. However, this result should not be taken as evidence that
those categories are not likely precursors. The viewpoint of this
study is that the incongruence of findings suggests precursors that

may have been missed in either of the models.

A summary of the category level analyses concerning algebra.

The two category level analyses have identified 11 central
notions as important to learning algebra. They may be placed into
four clusters.

One cluster of notions concerns reasoning skills. Inductive
reasoning, deductive reasoning, and isomorphic reasoning seem to be
important predictors of achievement in algebra. Those notions
suggest that detecting patterns, using trial and error strategies,
reasoning logically to determine the best course of action for an
algebraic purpose, and making analogies between systems of thought
are precursors of algebra. Furthermore, these abilities must be
developed in arithmetic curricula.

A second cluster of notions concerns arithmetic operators.
They suggest that an understanding of the inverse relationship
between certain arithmetic operations, an understanding of the
binary or unary nature of arithmetic operations, and an
understanding of arithmetic principles as functional principles for |

doing computation are precursors of algebra.
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A third cluster of notions concerns symbols. They suggest that
an understanding of variables as replacement indicators and a rich
understanding of the symbol '-' are precursors of algebra.

A fourth cluster of notions is related to the hierarchy for
computation. They suggest that the abilities to detect terms, to do
appropriate computations in complex arithmetic expressions, and to
recognize that the structure of an arithmetic expression changes
during computation are precursors of algebra.

There is considerable overlap between the suggested
precursors of algebra and the suggested precursors of algebraic
problem solving. All of the seven notions that have been identified
as precursors of algebraic problem solving have also been identified
as precursors of algebra. This suggests that arithmetic curricula
that incorporate the suggested precursors of algebra will likely have
a positive effect on problem solving achievement as well.

Seven categories of the a priori model of precursors were not
identified as possible precursors of algebra.

They were; (1) representation (mathematical symbols are
arbitrary creations), (2) passive interpretation (two equivalent
arithmetical expressions are another name for each other), (3)
context independence (arithmetical statements are independent of
the context from which they are derived), (4) unit attachment (the
various ways units can be attached to the numbers involved in
arithmetic operations), (5) visual order (the order of occurrence

does not determine the order of processing), (6) the relationship
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between language and mathematics, and (7) template recognition
(attaching arithmetic templates to word problems).

The lack of the identification of those seven categories as
precursors in this study suggests that they do not play a role in
learning algebra. However, for purposes of this study achievement
was measured according to proficiency in the performance of largely
automatic processes (algorithms and problem types). It may be that
if achievement were measured according to proficiency in the
performance of non-automatic processes (such as creating
alternate methods or evaluating methods) then the above seven

categories may turn out to be likely precursors of algebra as well.

Overview of the Element lLevel Tests concerning Algebra

Since this is an exploratory study, the identification of any
potential precursors of algebra is of sufficient importance to
justify the greater risk of obtaining fortuitous results that may
arise from additional formal tests of hypotheses. Accordingly, two
element level tests concerning algebra were conducted.

For those tests, each regression model was derived from a

different set of data. It was tested on the same fresh set mandating

the partition of the family-wise a_, of .20 into four equal parts,

two for the category level tests and two for the element level tests.
The element level analyses were done to identify any elements

as precursors whose importance may have been overlooked in the

category level analyses, to provide fine detail on the broadly defined

precusors that emerged from the category level analyses, to provide
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additional information concerning the importance of identified
precursors, and to provide a way of considering the interactions of

elements as precursors.

Element Level Tests: Achievement in_Algebra

Two formal tests were conducted. They involve regression
models for which the regressors are elements or interactions of
elements. One regression model is derived from data set A, the

other from set B. The results are discussed separately.

Regression model derived from data set A.

Data set A was used to derive a regression model consisting of
individual elements and interactions of elements. Following a
stepwise regression, seven elements/interactions remained.

The regression model consisting of those

elements/interactions was formally tested at o = .05 using the data

of set C (see Table 8).
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Table 8

Formal Test: Element Level Regression Model derived from Set A,

Dependent Variable - Achievement in Algebra

Test Parameter Value
R (predicted / actual) 497
RZ (predicted / actual) 247
K 7
N 100
Degrees of freedom 7/92
a .05
F - criterion 2.06
F - calculated 4.31

The null hypothesis is rejected.

It appears that the elements/interactions used in the model
may be precursors of algebra.

Once the formal test was completed, an informal test was
conducted that optimized on chance by allowing the regressibn
model to determine the R coefficients independently in each of three
data sets; set A; set C; and sets A, B, and C combined. The results
concerning the contribution to RZ of the model in each of those sets

support the conclusion of the formal test (see Table 9).

i
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Table 9

Contribution to RZ of the Set A-derived Element Level Regression

Model used independently.

Dependent Variable, Achievement in Algebra

Data set Set A Set C |Sets A, B, C combined
RZ contribution .56 294 .363

Discussion of the suggested precursors of algebra.

Seven elements/interactions emerged from the formal testing
as suggested precursors of algebra. They suggest specific
precursors in contrast to the more broadly defined ones that
emerged from the category level analyses.

The RZ contributions of the individual elements and
interactions of elements using data sets A, B, and C combined is
provided in Table 10. All the items in Table 10 also appear in the

category level analyses concerning algebra.



101
Table 10

_}32 contributions of Elements/interactions taken individually in the

combined sets A, B, and C

Element/interaction RS contribution
18 x 54 034
16 051
23 .060
36 .082
9 .082
58 .094
50 123

The elements and interactions of elements are discussed in
order of their contributions to R? beginning with the one having the
greatest contribution.

The items are provided in Appendix A.

Iltem 50 concerns sensing a regularity in a number sequence. It
suggests that the ability to detect patterns in number sequences and
to continue them is a precursor of algebra.

item 58 concerns sensing a regularity with respect to
computational results. It involves more complex detection of
regularities than does item 50. Item 58 suggests that the ability to
detect a pattern in a complex computational context is a precursor

of algebra.
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The skills suggested as precursors by items 50 and 58 may
play a role in learning algebraic procedures that are derived from
arithmetic patterns or that involve algebraic patterning in their
justification or development.

ltems 50 and 58 were identified in the category level analyses
as pertaining to inductive reasoning. From the perspective of a
category level analysis, items 50 and 58 are subsumed under that
broadly defined notion. Their inclusion suggests only that a general
ability to detect patterns might be important to learning algebra.
From the perspective of an element level analysis, items 50 and 58
suggest specific kinds of learning experiences concerning pattern
detection that students should encounter in arithmetic curricula.

Item 9 concerns the notion that square root is a more powerful
lock than addition. It suggests that the ability to discriminate
between the computational priorities of square root and addition is
a precursor. ltem 9 may also suggest that the understanding of
square root itself is a precursor. It is likely that both possiblilites
are appropriate to learning algebra. They may play a role in
justifying and selecting appropriate algebraic processing strategies.

item 9 was included in a category level analysis as pertaining
to the locking role of operators.

ltem 36 concerns the locking role of multiplicative operators.
It suggests that the ability to discriminate between the
computational priorities of addition and mutiplication or of

multiplication and squaring or of addition and squaring is important
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to learning algebra. It is not clear which of the above is the
precursor. It may be that all of them are. They may play a role in
legitimizing or deciding algebraic processing strategies.

ltem 36 was identified in both category level analyses, but
was not sufficiently significant to play a role in defining the
categories. It may be that the importance of item 36 was
overlooked. Its inclusion in this element level analysis suggests
that achievement in algebra is related to understanding a particular
processing hierarchy concerning multiplicative and additive
operators.

ltem 23 concerns the notion that the numerical value of an
arithmetic expression is invariant as the structure of the expression
changes with computation. It suggests that the ability to recognize
that computational steps, while altering the appearance of
arithmetic expressions, do not change the values of expressions.

ltem 23 was included in a category level analysis as pertaining
to the alteration of structure of an arithmetic expression.

ltem 16 concerns the notion that the symbol '-' can indicate
the unary operator, opposite of. It suggests that the ability to
interpret '-' as a unary operator is useful to learning algebra.

ltem 16 was identified 'in a category level analysis, but was
not instrumental in defining the nominal notion of a category. It
may be that its importance as a precursor of algebra was overlooked.

The interaction of items 18 and 54 provides additional insight.

ltem 18 concerns the inverse relationship between multiplication
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and division. ltem 54 concerns the inverse relationship between
addition and subtraction. The identification of the interaction as a

significant precursor suggests that a set of understandings

concerning inverse operations may be important to learning algebra. -

It may be that students benefit more from understanding both of
those inverse relationships than from either alone.

Both items 54 and 18 were identified in the category level
analyses. Item 54 pertained to inverse operations while item 18

was subsumed under functional principles.

Regression model derived from data set B.

Since this is an exploratory study, the identification of any
potential precursors of algebra is of sufficient importance to
warrant an additional test of hybothesis at the element level. For
that reason, a second element level regression model concerning
algebra was created but it was derived from a different data set
than that used for creating the regression model above.

Data set B was used to derive a regression model consisting of
elements and interactions of elements. Following a stepwise
regression, eight elements/interactions remained.

The regression model consisting of those
elements/interactions was formally tested at « = .05 using the data
of set C.

The null hypothesis is rejected (see Appendix G, Table G-3).

It appears that the elements/interactions used in the model

may be precursors of algebra.

R



105

Once the formal test was completed, an informal test was
conducted that optimized on chance by allowing the regression
model to determine the R coefficients independently in each of three
data sets; set B; set C; and sets A, B, and C combined. The results
concerning the contribution to RZ of the model in each of those sets
support the conclusion of the formal test (see Appendix G, Table G-
4).

Some caution is warranted concerning the importance of the
regressors derived from data set B. The family-wise error (a < .20)
for the formal tests concerning achievement in algebra suggests
that there is more than a minimal chance that at least one of the
formal tests will involve an incorrect rejection of the null
hypothesis. In the case of the regression model derived from data
set B, the closeness in values of the calculated F - statistic and the
criterion F - statistic (2.09 compared to 2.07) suggests that the

rejection of the null hypothesis may be suspect.

Discussion of the suggested precursors of algebra.

Eight elements/interactions emerged from the formal testing
as suggested precursors of algebra. Naturally, it is preferable that
the likely precursors of algebra obtained from the test of a second
hypothesis would be the same as those obtained from the first test.
Those results were not obtained.

The first and second element level regression models do not
have any elements or interactions of elements in common, with one

exception. Items 50 and 58 which appear as an interaction in the
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second element level regression model appear as single elements in
the first element level model.

As suggested earlier, the lack of common regressors in these
two analyses is most likely that many of the items in the model
knowledge instrument likely accounted for about the same variance
in algebra achievement and, because of random fluctuations in those
items, the selected set of regressors for each model differed. That
likelihood is increased by the dichotomous scoring of items.

The RZ contributions of the individual elements and
interactions of elements using the data sets A, B, and C combined is
provided in Table 11. Highlighted items in Table 11 also appear in

the category level analyses concerning algebra.
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Table 11

_122 contributions of Elements/interactions taken individually in the

combined sets A, B, and C

Element/interaction RZ contribution
13 024
22 x 31 025
8 035
49 065
11 x37 .075
50 x 58 .094
55 x63 : 108
56 125

The elements and interactions of elements are discussed in
order of their contributions to R? beginning with the one having the
highest contribution.

The items are provided in Appendix A.

ltem 56 concerns deductive reasoning in relation to negation
or the notion of not. It suggests that the ability to determine the
negation of a proposition is important to learning algebra. As
negation is related to the notion of negative or opposite, it may play
a role when students manipulate expressions involving negative

numbers and subtraction.
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ltem 56 was identified in a category level analysis as
pertaining to deductive reasoning.

The interaction of 55 and 63 provides additional insight. Both
items fall into the same category in the a priori model - the
structural role of symbols, a role related to the hierarchy of
operators. Item 55 concerns the notion that structure helps
determine what is to be done in an expression. Item 63 concerns the
notion that additive operators separate an arithmetic expression
into chunks (terms). The identification of the interaction as a
significant precursor suggests that the identification of terms or
structure is important to the successful performance of algebraic
procedures.

Both items were identified in category level analyses as
pertaining to the structural role of symbols. However, they were
included in different categories.

The identification of the interaction of items 50 and 58 as a
significant precursor in this regression model and their
identification as individual precursors in the first model supports
the importance of inductive reasoning for learning algebra. The
interaction suggests that the ability to detect and continue a
pattern in both simple and complex arithmetic contexts is a
precursor of algebra.

The interaction of items 11 and 37 provides additional insight.
Both items fall into the same category in the research model - the

replacement role of symbols. Item 11 concerns the notion that
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replacement symbols can be manipulated. Item 37 concerns the
notion that the set of replacements for a particular replacement
symbol is large. The identification of the interaction as a
significant precursor suggests that achievement in algebra is
related to the understanding that the largeness of the replacement
set applies as well when replacement symbols are manipulated.

Both items were identified in category level analyses as
pertaining to the replacement role of symbols. However, they were
included in different categories.

Item 49 concerns the notion that square root is a unary
operator. It suggests that the knowledge that square root is a unary
operator is a precursor of algebra. That knowledge may play a role
in processing expressions involving square root.

ltem 49 was identified in both category level analyses. It was’
significant in one category as pertaining to binary and unary
operators; it was not significant in the other category.

ltem 8 concerns the notion that the complexity of computation
is related to the complexity of the structure of an expression. It
suggests that the ability to relate processing complexity to
structural complexity is important to learning algebra. That ability
may play a role in determining the strategies and procedures for
processing algebraic expressions.

ltem 8 was identified in a'category level analysis but it was
not instrumental in determining the nominal notion. It may be that

its importance as a precursor of algebra was overlooked.
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The interaction of items 22 and 31 provides additional insight.
they both fall into the category, the relationship between
mathematics and language in the a priori model. Item 22 concerns
recognizing analogous roles concerning replacement. Item 31
concerns expressing arithmetic operations by means of language.
The identification of the interaction as a precursor suggests that a
more comprehensive set of understandings concerning the
relationship between mathematics and language must be in place in
order to facilitate the learning of algebra.

ltem 13 concerns the notion that addition involves adding
counts of objects. It suggests that the understanding that counts
are added, not objects is important to learning algebra. That
understanding may play a role in simplifying expressions such as '2x
+ 3x' to 5x'. Success at simplifying such expressions may depend
on students' knowledge of the justification for such simplifications,
one of which can be based on the notion that addition involves adding
counts of objects.

ltem 13 was not identified in a category level analysis. It may

be that its significance as a precursor of algebra was overlooked.

A summary of the element level analyses concerning algebra.

The two element level regression models do not have elements
or interactions of elements in common. Again, that result may be
expected considering that many items of the model knowledge

instrument likely account for about the same variance in algebra
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achievement and, because of random fluctuations in those items, the
selected set of regressors for each model differed.

The lack of common regressors in the two models generated
suggests that neither element level analysis is to be taken as
definitive, but the position taken in this study is that all elements
identified by the two element level tests should be considered to be
potential precursors of algebra subject to the constraints imposed
by the family-wise error.

That position may be related to the possibility that the model
knowledge instrument has an underlying common factor. [f that is
the case, random fluctuations in what are likely equivalent
dichotomous variables (the items of model knowledge instrument)
can result in the creation of different element level regression
models. The high split-half consistency coefficient for the model
knowledge instrument (.61) discussed on page 118 of this chapter
also suggests that the instrument may tap an underlying general
factor. A possible nominal name for that factor might be
mathematical ability. Again, the possibilty of such a factor being
present is not investigated in this study.

It is important to reiterate the purposes for employing the
element level analyses in this study. They were done to identify any
elements as precursors whose importance may have been overlooked
in the category level analyses, to provide fine detail on the broadly
defined precusors that emerged from the category level analyses, to-

provide additional information concerning the importance of
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identified precursors, and to provide a way of considering the
interactions of elements as precursors. The discussion contained in
the element level analyses suggests that those purposes appear to

have been fulfilled.

Summary concerning Formal Tests of A Priori Hypotheses

The results of the study suggest that the a priori model
contains elements and categories that may be precursors of algebra.
That conclusion is strengthened by some of the characteristics of
the participants in the study. Participants were selected over a
range of socio-economic and school-related classifications. The
resulting diverse nature of the population for the study tends to
broaden the zone of generalization of conclusions.

The regression models obtained in this study (both category
and element levels) seem to be strong predictors of algebra
achievement. Reasonable estimates of their capacities to predict
achievement can be determined using the contributions to RZ
obtained from the informal tests that used the data of all three data
sets combined (see pages 82, 90, 98, 104). Those estimates are
impressive. For the two category level models, the average
contribution to RZ is .434 (see Table 5 and Appendix G, Table G-2).
For the two element level models, the average contribution to RZ is
.351 (see Table 9 and Appendix G, Table G-4). These results strongly
suggest that the categories and elements/interactions that were
identified in this study are likely and important precursors of

algebra.
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The two category level analyses identified 11 central notions
that are important to learning algebra. The two element level
analyses identified ten elements and five interactions that are
important. Those elements come from 11 categories of the a priori
model concerning precursors in algebra.

There is extensive overlap of elements/items in both levels of
analyses and that supports the conclusion that the general or
specific notions identified in this study may be precursors of
algebra.

Furthermore, the results from the element and category levels
of analyses also suggest that the a priori model may be a
comprehensive vehicle for investigating the notions and skills that
may be important to learning algebra.

The results from the category level analyses and the element
level analyses may be placed into four clusters.

One cluster of notions concerns the ability to reason
deductively and inductively, and to draw analogies. A second cluster
of notions concerns the relationship between and the types of
arithmetic operators, and the functional application to computation
of principles of arithmetic. A third cluster concerns the meanings
and roles that can be attached to symbols. A fourth cluster concerns
the hierarchy for computation and the structure of expressions.

The literature strongly supports one of the findings of this
study - the fourth cluster of precursors that concern hierarchy and

structure. Kieran (1992) comments that the general conclusion that
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emerges from the research on algebra learning is that many students
do not acquire a sense of the structural aspects of algebra and that
lack appears to be a major source of difficulty for them in learning
algebra. The findings of this study concerning that suggest that the
remedy may involve sensing the structural aspects of arithmetic as

a precursor of algebra.

Implications of the Findings for Mathematics Instruction

The items of the model knowledge instrument that are the
important predictors of algebraic achievement identified in this
study could be used to guide students' placements in mathematics
courses. However, this study is more concerned with the
implications of the findings for curriculum and instruction in
mathematics. Given the exploratory nature of this study, it is
reasonable to speculate about those implications.

The findings may have major implications for the curricula and
instructional practices of the grades prior to those in which algebra
first becomes a significant curricular topic. Generally, those grades
can be partitioned into the elementary grades and grades 7 and 8.
The implications for instruction may be about the same for both,
varying according to the specifics of curricular topics.

The findings concerning reasoning may imply that a major
emphasis of instruction should be hypothesizing and validating
mathematical ideas concerning arithmetic (natural number or
integer). Further, it may be that problem contexts should be used to

establish the rationales for learning necessary concepts and
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algorithms. In both, students may benefit from opportunities to
observe mathematical patterns and to conjecture and generalize
about them; to relate suppositions and conclusions; to explore
possibilities; and to use mathematics for modelling real events and
circumstances and to apply those models to other contexts.

The findings concerning operators, principles, symbols, and
structure may imply that learning mathematics should be similar to
learning a natural language, in a holistic way, with its symbols,
rules, and structure. It may be that mathematical instruction
concerning arithmetic should involve explicit and frequent
discussions of the creation of and relationships between
arithmetical concepts, symbols, operators, principles, and structure.
In doing so, students may be less likely to see those notions as
unrelated objects to be memorized, and be less likely to see
arithmetic and later algebra as two closed and separate systems.
Rather, they may begin to see mathematics (in this case arithmetic)
as a language and may be better able to use it to model situations, to
express ideas, and to formulate arguments, abilities that may better
prepare them for algebra.

As discussed earlier, the literature strongly supports the
finding of this study concerning structure. It may be useful to
speculate further on the implications of that finding for curriculum
and instruction . Again, for purposes of this study, structure
concerns "chunking" arithmetic expressions and the locking role of

chunks. Those notions are intimately related to the hierarchy of
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arithmetic operators and to the binary and unary distinctions of
operators.

The Manitoba mathematics curriculum guide for grades 7 to 9
(Manitoba Education, 1979) is pertinent to that speculation. In it,
there is minimal discussion (as order of operations) concerning the
hierarchy of arithmetic operations. On the other hand, there is
extensive discussion of proficiency in computational algorithms.
That bias towards algorithmic performance does not reflect the
finding of this study that understanding structure is an important
precursor of algebra.

Furthermore, the pedagogical development of the order of
operations largely concerns presents students with unconnected
examples and arbitrary rules. Often, students end up memorizing the
acronym 'BDMAS' (brackets, division, multiplication, addition,
subtraction) and use it as the protocol for determining what to do
when confronted with the simplification of expressions. In
contrast, the finding in this study suggests that a deep rather than a
superficial understanding of the hierarchy of operations (order of |
operations) is important to learning algebra.

It seems then that at least one implication of the finding
concerning structure is that, before students begin to learn algebra,
they should be provided with substantial and well-connected
arithmetical experiences that develop deep understandings and
extensive computational abilities concerning the hierarchy of

arithmetic operations. To that end, it seems that some of the core
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objectives of the grade 7 and 8 mathematics curriculum might be
reformulated and that more appropriate pedagogical strategies for
teaching those objectives might be developed.

The above implications, both general and specific, of this
study's findings for mathematics (largely arithmetic) instruction
run counter to much of current practice. For most students,
reasoning about situations and seeking ways to validate that
thinking is seldom associated with learning mathematics (Lappan
and Schram, 1989). Conventional instruction seems to encourage the
belief that mathematics consists of getting answers to
computational tasks obtained from text books or work sheets.
Furthermore, students seem to acquire the belief that there is only
one way to get those answers.

There is a considerable gap between much of current
mathematics instruction and the kind of instruction that may be
implied by the precursors of algebra identified in this study. It is
clear that any changes in mathematics curricula and instructional
practices, if warranted, cannot be implemented in haste nor without
considering the attitudes and skills of the teachers presently
teaching arithmetic, However, Faculties of Education can begin to
promote, in the training and educating of pre-service teachers,
skills and understandings that may support and encourage any such

changes.
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Limitations of the Study

Two limitations of the study should be addressed.

The first limitation concerns the limited way in which the
elements sample the areas of concern. Since each such area is
sampled by only one item in the model knowledge instrument, it is
possible that some areas of concern are not well represented in that
instrument.

There are at least two ways to address that limitation. First,
the notions that have been identified here as being important to the
learning of algebra could form the basis for constructing new
instruments that tap the important categories more thoroughly.
Second, the tentative conclusions from the study could be examined
in field studies that investigate 'more directly the importance of the
identified notions in settings where algebra is being learned.

A second limitation concerns the measurement of achievement.
The algebra instrument reflects current practice. That is to say, it
measures skills that are most often ritual manipulations. Students
have practiced types of questions while learning algebra and are
then expected to replicate them on an achievement instrument. Only
7% of the algebra achievement instrument measures abilities that
can be clearly identified to be non-ritual manipulations. The
problem solving instrument measures fewer ritual skills, but much |
of it can also be seen as reflecting the replication of question types.

It is slightly surprising that elements and categories that tap

understanding, as in this study, should so effectively predict
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performances with such a large ritual component. It can be supposed
that they would be even more effective in predicting performances
that have a substantial understanding component.

The second limitation concerns future algebra curricula more
than it concerns current curricula. Societal pressure and recent
assessment results will likely bring about changes in mathematics
instruction. The current curricula that largely focus on automatic
processes may give way to curricula that focus on reflective as well
as automatic processes (Hiebert, 1990). This study has focussed on
achievement largely in relation to the replication of automatic
processes (that reflect current practice). A suggested list of
precursors of algebra has emerged. But that list may not
sufficiently address the needs of curricula that focus on reflective
processes in which understanding and meaning tend to be more the
themes of instruction.

One way to provide a sufficient set of precursors for those
curricula is to investigate the relationship between the a priori
model of precursors and achievement in algebra using other tests of
achievement. For that purpose, achievement might be measured in a
way that reflects students' understandings of the justifications and
applications of automatic processes. The researcher suspects that
if achievement were to be measured in that way a larger number of
the elements and categories of the a priori model of this study
would emerge as precursors of algebra for curricula that focus on

reflective processes.
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Observations

Overview of Scores on the Instruments

120

Some general observations concerning the scores on the model

knowledge and achievement instruments are useful as they allow for

some informal conclusions.

Table 12 provides information on the

model knowledge and achievement scores obtained from the 331

students participating in the study.

Table 12

Mean Raw and Percent Scores, and Standard Deviation for all Data

Statistic Mean | Standard |Maximum| Minimum
score | deviation | score score
Model knowledge 25.11 7.45 46 6
(39.9%) | (11.8%) (73%) (9.5%)
Achievement in algebra 36.90 16.04 67.5 3
(48.5%) | (21.1%) | (88.8%) | (3.9%)
Achievement in algebraic | 22.89 11.00 43.5 .5
problem solving (46.7%) | (22.5%) | (88.8%) (1%)

The model knowledge scores and the achievement scores (see

Table 12) are all sufficiently distributed in the mid-range of

possible scores to encourage their use in statistical tests.

iInformal

Comparison of Model

Knowledge and Achievement

Once the a priori tests were done, model knowledge was

compared with algebra and problem solving achievement in an
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informal way. That comparison was done in two ways; (1) using
correlations between scores on the three instruments and (2) using
all the individual items of the model knowledge instrument to
predict achievement. The data from all 331 students was used for
both purposes.

Correlations between students' scores on the three

instruments were determined. Table 13 provides that information.

Table 13

Correlations ( and RZ ) between Total Scores on Instruments

Instrument Model Algebra Problem

knowledge solving

Model knowledge 1
Algebra .62 (.38) 1
Problem solving .59 (.35)| .67 (.45) 1

The high correlations between scores on the model knowledge
instrument and scores on the achievement instruments (see Table
13) suggest that there is a relationship between knowledge of the
research model, and achievement in algebra and algebraic problem
solving. ‘

Second, all of the individual items of the model knowledge
instrument were used as predictors of achievement in two

regression models, one for achievement in algebra and the other for
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achievement in problem solving. Table 14 provides information on

the RZ contribution of those items in both regression models.

Table 14

KZ contribution of all Items in the Model Knowledge Instrument

with Achievement as the Independent Variable

Achievement in Achievement in
algebra Problem solving
RZ .58 51

The RZ contribution of the items of the model knowledge
instrument taken individually is considerably higher than the RZ
contribution of the total scores on the model knowledge instrument
and scores on the achievement instruments. This higher RZ provides
‘an upper estimate of the capacity of the items to predict
achievement.

The strength of the relationship between model knowledge and
algebra achievement was expected, and suggests that the notions
measured in the model may be important to learning algebra. The
strength of the relationship between model knowledge and
achievement in problem solving is higher than expected, as the
model was constructed so as to identify a possible set of precursors

of algebra, not algebraic problem solving.
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item Consistency of Instruments

Data set A (n = 126) was used to estimate the item
consistencies of instruments. Tables F-4, F-5, and F-6 (see
Appendix F) provide information on item correlations and on split-
half consistency coefficients.

The split-half consistency coefficient for the model
knowledge instrument is .61. Although that instrument does not
qualify as a one factor test, the high split-half coefficient suggests
that the model knowledge instrument has an underlying common

factor. That possibility was not investigated in this study.

Equivalence of Data Sets

An informal determination of the equivalence of the three data
sets, A, B, and C, used for creating and testing the regression models
helps strengthen the results and conclusions that emerged from the
formal tests of hypotheses. Two broad indicators were employed for
that purpose; (1) the means and standard deviations of scores for

model knowledge and achievement and (2) gender composition.
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Tables 15, 16, and 17 provide information on the mean scores

and standard deviations for the model knowledge and achievement

instruments.
Table 15
Mean and Standard Deviation of Raw Scores on the Model Knowledge
Instrument
Data set Set A Set B Set C
Mean score 25.28 24.90 25.11
Standard deviation 7.23 7.81 7.39
Table 16

Mean and Standard Deviation of Raw Scores on the Achievement in

Algebra Instrument

Data set Set A Set B Set C

Mean score 36.46 36.49 37.88

Standard deviation 16.58 15.96 15.54
Table 17

Mean and Standard Deviation of Raw Scores on the Achievement in

Algebraic Problem Solving Instrument

Data set Set A Set B Set C
Mean score 23.04 22.60 23.02
Standard deviation 11.10 11.44 10.50
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Table 18 provides information concerning the composition by
gender of the data sets. The results suggest that females may have

a slight advantage in number across the three sets.

Table 18

Composition of Data Sets by Gender

Set Set A Set B Set C Total

Male n 61 50 47 158
6 (48.4%) | (47.6%) | (47%) | (47.7%)

Female n 65 55 53 173

o (51.5%) | (52.3%) (53%) | (52.3%)
Total n 126 105 100 331
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CHAPTER 6
EXPLORATORY TESTS

Four sets of exploratory questions were investigated. They
concern; (1) gender, (2) teacher style, (3) interactions between
gender and teacher style, and (4) reasoning ability (as defined by the
a priori model). The data sets A, B, and C were most often combined
for investigating those questions. As all hypotheses in this chapter
are exploratory and their tests may be confounded with the tests of
the formal hypotheses, no tests of statistical significance are valid.
Accordingly, test statistics and Aassociated probability values are
provided but all conclusions are tentative.

All exploratory tests were done using the Macintosh
statistical software JMP (SAS,1989) and Statview Il (Abacus
Concepts,1987).

Since a large number of exploratory and separate tests are
included in this chapter, to avoid numerous references to appendices
there appears to be no alternative but to include all appropriate

tables here.
The following diagram provides an overview of the tests of the

exploratory hypotheses.
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Gender

The possible effects of gender were explored in three ways;
(1) by an analysis of variance, (2) as a dependent variable in a
regression model, and (3) as an independent variable in a regression
model.

As well, gender is later investigated in other ways. Since
gender is a current concern in the literature, it is worth exploring
even though there may be a risk of over-investigating relationships

between gender and other constructs.

Analysis of Variance

Three questions were asked:
(1) Is achievement in algebra related to gender?

(2) Is achievement in algebraic problem solving related to

gender?

(3) Is knowledge concerning precursors of algebra related

to gender?

Gender and achievement in algebra.

An analysis of variance was used to investigate the
relationship between achievement in algebra and gender. For this
purpose, achievement in algeBra is the dependent variable.

The results suggest that the algebra scores of females are
higher than those of males (see Tables 1 and 2). The difference in
favour of females seems inconsistent with some other results

concerning gender in the literature. 1t has commonly been found
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that, in courses and careers, females are not as much involved in
mathematics and the related fields of science and technology as are
males. If what is found here is true in general, factors other than

achievement in grade nine algebra must determine females' choices

concerning mathematics, science, and technology.

Table 1

Gender: Dependent Variable, Achievement in Algebra

Gender Male Female
Mean 45.5% 51.3%
Standard deviation 21.8 20.1
Number of subjects 158 173

Table 2
ANOVA bv Gender: Dependent Variable, Achievement in Algebra

Source Df Sum of mean F - test
squares squares
Between 1 2791.4 2791.4 6.37
Within 329 144213.1 438.3] p =.01
Total 330 147004.5

Gender and achievement in algebraic problem solving.

An analysis of variance was used to investigate the

relationship between achievement in algebraic problem solving and
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gender. Achievement in problem solving is again the dependent

variable.

The results suggest that the problem solving scores of females
are also higher than those of males (see Tables 3 and 4). This
further supports the tentative conclusion that factors other than
achievement in grade nine mathematics affect females' subsequent

choices concerning mathematics, science, and technology.

Table 3
Gender: Dependent Variable, Achievement in Algebraic Problem
Solving
Gender Male Female
Mean 44.0% 49.2%
Standard deviation 23.1 21.6
Number of subjects 158 173
Table 4
ANOVA by Gender:

Dependent Variable, Achievement in Algebraic Problem Solving

Source Df Sljm of mean F - test
squares squares
Between 1 2207.7 2207.7 4.43
Within 329 164146.8 498.9/ p =.04
Total 330 166354.5
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Gender and precursor knowledge.

An analysis of variance was used to investigate the
relationship between knowledge of precursors of algebra and gender.
For this purpose, precursor knowledge is the dependent variable.

Precursor knowledge is defined in this case as knowledge of
only those precursors that were identified in both category level
regression models as being significantly related to achievement in
algebra (see Appendix |, Table I-1). Scores for precursor knowledge
were obtained by summing the scores for the items that comprised
each of the identified categories. Since the regression models
contained categories that had common items, such items were
included only once to obtain the sum.

The results suggest that scores of females are higher than
scores of males (see Tables 5 and 6). This initial difference may
explain, at least in part, the higher achievement scores of females
(see Tables 1, 2, 3, and 4). Given the strong relationship between
precursor knowledge and achievement found in the formal tests, this

result would be anticipated.
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Table 5

Gender: Dependent Variable, Precursor Knowledge

Gender Male Female
Mean 45.8% 49.0%
Standard deviation 17.4% 14.9%
Number of subjects 158 173

Table 6
ANOVA by Gender: Dependent Variable, Precursor Knowledge

Source Df Sum of mean F - test
squares squares
Between 1 876.5 876.5 3.37
Within 329 85504.5 259.9| p=.07
Total 330 86381.0
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Gender as the Dependent Variable in a Regression Model

Two questions were investigated. They were:

(1) What is the relationship between precursors of algebra
and gender?

(2) What is the relationship between precursors of
algebraic problem solving and gender?

To address those questions, gender rather than achievement
was used as the dependent variable in a regression model. The
regression models used for that purpose are the ones obtained from
the category level analyses (see Chapter 5, formal tests on
achievement in algebra and algebraic problem solving, category

level).

Gender and precusors of algebra.

The category level regression model derived from data set A
(with 9 regressors) accounts for 3.5% of the variance in gender. The
category level regression model derived from set B (with 7
regressors) accounts for 5.8% of the variance in gender. Neither
model seems to be an important predictor of gender. This suggests
that there are no strong sex-related qualities of any categories of

the identified precursors of algebra.

Gender and precursors of algebraic problem solving.

The category level regression model derived from data set A
(with 8 regressors) accounts for 4.8% of the variance in gender. The

model does not seem to be an important predictor of gender. This
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suggests, again, that there are no strong sex-related qualities of any

categories of the identified precursors of algebraic problem solving.

Gender as an Independent Variable in _a Regression Model

Two questions were investigated:

(1) When included as a precursor, does gender add
significantly to our ability to account for achievement
in algebra?

(2) When included as a precursor, does gender add
significantly to our ability to account for achievement
in algebraic problem solving?

To address these questions, gender was included as a regressor
in the regression models obtained from the category level analyses
(see Chapter 5, formal tests on achievement in algebra and algebraic
problem solving, category level).” The effect of including gender is
measured by the change in RZ and the associated F-statistic

calculated by the equation (Hays, 1988):

(R2-R2) x (N-K-1)

1-R2

F = (6-1)

where 'R42' is the amount of variance accounted for by the
regression model having a particular regressor included in that
model, 'R2' is the amount of variance accounted for without that
particular regressor, 'N' is the number of scores of the dependent

variable, and 'K’ is the number of regressors in the model.
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Gender and achievement in algebra.

The results indicate that including gender has little effect on
our ability to predict achievement in algebra (see Table 7). Even
though a formal test at o = .05, would suggest that it's effect is
statistically significant in the model derived from set A, the effect

is too small to be of practical significance.

Table 7

Effect of including Gender in Regression Models:

Dependent Variable, Achievement in Algebra

Regression RZ with| RZ no Gender df F
model gender | gender |contribution

Derived from 447 437 .01 1/321 5.8
set A p<.05
Derived from 438 432 .006 1/323 | 3.44
set B p>.05
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Gender and achievement in algebraic problem solving.

Similarily, a category level regression model was used to
investigate the effect of including gender as a regressor in
predicting achievement in algebraic problem solving.

The results indicate that including gender as a regressor
produces a negligible change in predicting achievement in algebraic
problem solving (see Table 8). This suggests that gender is not a

significant predictor of algebraic problem soiving.

Table 8

Effect of including Gender in Regression Models:

Dependent Variable, Achievement in Algebraic Problem Solving

Regression RZ2 with| RZ no Gender df F
model gender | gender |contribution
Derived from .368 .366 .002} 1/322 1.02
set A p> .05
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Teacher Style
Teacher style was explored in two ways; (1) by an analysis of
variance and (2) as an independent variable in a regression model.
Additional caution is warranted concerning the results
associated with teacher style since the instrument used to measure

the three styles employed teachers' assessments of themselves.

Analysis of Variance

Two questions were investigated. They were:
(1) What is the relationship between teacher style and
achievement in algebra?
(2) What is the relationship between teacher style and

achievement in algebraic problem solving?

Teacher style and achievement in algebra.

An analysis of variance was used to investigate the
relationship between teacher style and achievement in algebra. For
this purpose, achievement is the dependent variable.

The results of this exploration indicate that teacher styles 1
and 3 lead to greater achievement in algebra (see Tables 9, 10, and
11). It seems that, for this test of performance in algebra, teachers
who present students with closed procedures (teacher style 1) and
teachers who encourage students to construct their own knowledge
(teacher style 3) teach algebra about as well. It is not clear why

blending the two styles seems to be less effective.
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Teacher Stvle: Dependent Variable, Achievement in Algebra

Table 10

ANOVA Teacher Stvle: Dependent Variable, Achievement in Algebra

Teacher style 1 2 3
Mean 53.5% | 44.9% | 52.5%
Standard deviation 18.5 20.5 22.8
Number of subjects 62 180 89

Source Df Sum of mean F - test
squares squares
Between 2 5363.5 2681.7 6.21
Within 328 141641.1 431.8| p =.002
Total 330 147004.6
Table 11

Comparison tests for ANOVA: Teacher Styvle

Scheffe Comparison test F
Tvs?2 4.00, p<.05
1vs3 043, p>.05
2 vs 3 4.02, p<.05
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Teacher style and achievement in algebraic problem solving.

Similarily, an analysis of variance was used to investigate the
relationship between teacher style and achievement in problem
solving. For this purpose, problem solving achievement is the
dependent variable.

In this area, there is no evidence that teacher styles affect
achievement (see Tables 12 and 13). It is not clear why teacher
style does not seem to be factor in teaching problem solving but yet

it seems to be a factor in teaching algebra.

Table 12

Teacher Stvle: Dependent Variable, Achievement in Algebraic

Problem Solving

Teacher style 1 2 3

Mean 46% 46.7% | 47.3%

Standard deviation 20.5 23.0 23.0

Number of subjects 62 180 89
Table 13

ANOVA Teacher Style: Dependent Variable, Problem Solving

Source Df | Sum of squares | Mean squares F - test
Between 2 65.7 32.9 .07
Within 328 166288.7 507.0] p=.94
Total 330 166354.4
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Teacher Style as an Independent Variable

Two questions were investigated. They were:

(1) When included as precursors, does teacher style affect
achievement in algebra?

(2) When included as precursors, does teacher style affect
achievement in algebraic problem solving?

To address those questions, teacher style was included as a
regressor in regression models. The regression models used for that
purpose are those obtained from the category level analyses (see
Chapter 5, formal tests on achievement in algebra and algebraic
problem solving, category level). The effect of including teacher

style is measured by the change in RZ and the associated F -

statistic.
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Teacher style and achievement in algebra.

Both category level regression models were used to
investigate the effect of teacher style on achievement in algebra.
The results indicate that teacher style may be of some

significance as a precursor of algebra (see Table 14).

Table 14

Effect of including Teacher Style in Regression Models:

Dependent Variable, Achievement in Algebra

Regression RZ RZ Style df F
model with style |no style|contribution
Derived from 466 437 0291 1/321 17.4
set A p<.05
Derived from 447 432 015 1/323 8.73
set B p < .05

No attempt was made to determine what interactions or
independent contributions to the variance accounted for should be

explored further.
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Teacher style and achievement in algebraic problem solving.

One category level regression model was used to investigate
the effect of including teacher style as a precursor of algebraic
problem solving. |

Again, the results indicate that when teacher style is included
as a precursor there is a minimal but possibly significant
improvement in predicting achievement in algebraic problem solving

(see Table 15).

Table 15

Effect of including Teacher Style in Regression Models:

Dependent Variable, Achievement in Algebraic problem solving

Regression RZ RZ Style df F
model with style |no style| contribution

Derived from 373 366 .007| 1/322 3.58

set A p<.05
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Interactions between Gender and Teacher Style

Possible interactions between gender and teacher style were
explored in three ways. They were; (1) by including gender/teacher
style interaction as a variable in a regression model, (2) by an
analysis of variance on achievement, and (3) by an analysis of
variance on precursor efficacy.

Precursor efficacy is here defined as the quotient of
achievement and precursor knowledge. The precursors are those

identified in the category level analyses (see Chapter 5).

Interaction Variables in a Regression Model

Two questions were investigated. They were:

(1) When included as a precursor of algebra, does the
interaction of gender and teacher style significantly
increase our ability to predict achievement in algebra?

(2) When included as a precursor of problem solving, does
the interaction of gender and teacher style
significantly increase our ability to predict
achievement in algebraic problem solving?

To address these questions, the interaction of teacher style
and gender was included in a regression model. The regression
models used for that purpose are those obtained from the category
level analyses (see Chapter 5, formal tests on achievement in
algebra and algebraic problem solving, category level). The fesulting

regression model takes the form:
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y = cat.1 +cat.2 +..+ t.1xgen + tZ2xgen + t.3 x gen (6-2)

where 't.1" indicates style 1 (0/1), 't.2' indicates style 2 (0/1), 't.3'
indicates style 3 (0/1), 'gen' indicates gender (0 - male, 1 - female),
and 'cat.i' indicates a category level precursor. The effect of
including interactions as regressors in the regression model is

determined by the change in RZ and the F - statistic.

Teacher style and achievement in_algebra.

One category level regression model (derived from data set A)
was used to investigate the effect of the interaction between gender
and teacher style on achievement in algebra.

The results indicate that when the interactions 'teacher style
1 x gender' and 'teacher style 2 x gender’ are included with
precursors of algebra there is sovme improvement in predicting
achievement (see Table 16). This suggests that there may be some
value in further explorations of the interaction between gender and

teacher style.
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Table 16

Effect of including Gender/Style Interactions in Regression Models:

Dependent Variable, Achievement in Algebra

Model RZ Change in R? F
categories only A37 0
categories + t.1 x gen A75 .038 23.1
+t.2xgen + t.3 xgen p<.05
categories + t.1 x gen 469 .032 19.3
+ t.2 X gen p<.05
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Teacher style and achievement in algebraic_problem solving.

One category level regression model (derived from data set A)
was used to investigate the effect of the interaction between gender
and teacher style on achievement in algebraic problem solving.

The results indicate that the interaction between gender and
teacher style does not lead to any improvement in predicting
achievement in problem solving (see Table 17) and suggest that the
possible interaction between gender of students and teacher style is
not a concern for the learning of algebraic problem solving. Again, it
is not clear why an interaction effect observed for the teaching of
algebra, albeit minimal, is not observed where problem solving is

concerned.

Table 17

Effect of including Gender/Style Interactions in Regression Models:

Dependent Variable, Achievement in Algebraic problem solving

Model RZ Change in RZ F
categories only .366 0
categories + t.1 x gen 370 .004 2.03
+t.2xgen + t.3 xgen p> .05
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The Effects of Gender and Teacher Style on_ Achievement

using Analysis of Variance

Two questions were investigated. They were:

(1) Does ANOVA suggest any significant interaction
between gender and teacher style in achievement in
algebra?

(2) Does ANOVA suggest any significant interaction
between gender and teacher style in achievement in

algebraic problem solving?

Gender and teacher style on algebra achievement,

A two-way analysis of variance was used to investigate the
relationship between gender and teacher style where the criterion
variable is achievement in algebra. The independent variables are
gender and teacher style.

As noted earlier regarding main effects, the results indicate
that the algebra scores of females are higher than the scores of
males and that teacher styles 1 and 3 seem to lead to greater
achievement that does a blend of the two styles (see Tables 18 and -
19). But there does not appear to be a significant interaction

effect.
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Table 18
Gender by Teacher Style:

Dependent variable, Achievement in Algebra

Style Female | Male Male and
female
Teacher style 1 n 38 24 62

mean| 56.3% 49.2% 53.5%

Teacher style 2 n 94 86 180
(blend of 1 and 3) | mean | 46.6% | 43.0% 44.9%

Teacher style 3 n 41 48 89
mean| 57.7% | 48.1% 52.5%

Styles 1, 2, and 3 n 173 158 331
mean| 51.3% | 45.5% 48.6%

Table 19
ANOVA for Gender by Teacher Style:

Dependent variable, Achievement in Algebra

Source df SS MS F p
Gender 11 . 2992.5 2992.5| 7.03 | .008
Teacher style 2 5216.9 2608.5| 6.13 | .002
Interaction 2 558.5 279.2| 0.66 | .520
Error 325| 138335.3 425.6




149

Gender and teacher style on problem solving achievement.

Similarily, a two-way analysis of variance was used to
investigate the relationship between gender and teacher style
where the criterion variable is achievement in algebraic problem
solving. Gender and teacher style are the independent variables.

Consistent with the resuits obtained from the analysis of
variance on each independent variable separately, these results
indicate that the problem solving scores of females are higher than
those of males (see Tables 20 and 21). Since there does not appear
to be a significant interaction effect, no additional information is

forthcoming from a two-way analysis of variance.



150

Table 20
Gender by teacher Style:

Dependent variable, Achievement in Algebraic Problem Solving

Style Female | Male |Female and
male
Teacher style 1 n 38 24 62
mean | 47.9% | 43.1% 46.0%
Teacher style 2 n 94 86 180
(blend of 1 and 3) mean| 48.9% | 44.3% 46.7%
Teacher style 3 n 41 48 89
mean| 51.2% | 44.0% 47.3%°
Styles 1, 2, and 3 n 173 158 331

mean | 49.2% 44.0% 46.7%

Table 21
ANOVA for Gender by Teacher Style:

Dependent variable, Achievement in Algebraic Problem Solving

Source df SS MS F p
Gender 1{ . 2016.4 2016.4| 4.00 .05
Teacher style 2 166.4 83.2| .17 .85
Interaction 2 104.4 52.2] .10 .90

Error 325] 163875.9 504.2
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Analysis of Variance on_ Precursor Efficacy

Efficacy is defined as the quotient of achievement and |
precursor knowledge (the author's definition). This definition of
precursor efficacy describes achievement in relation to students’
knowledge of identified precursors. That is to say, precursor
efficacy is the amount of achievement realized per unit of precursor
knowledge.

Precursor knowledge is defined in the same way as in an
earlier section of this chapter (see page 117). It is knowledge of
only those precursors that were identified in the category level
regression models for achievement. Scores for precursor knowledge
were obtained by summing the scores for the items that comprised
each of the identified categories. Since the regression models
contained categories that had common items, such items were
included only once in the sum.

Two questions were investigated:

(1) What is the relationship between gender and teacher
style where the criterion variable is precursor
efficacy in algebra?

(2) What is the relationship between gender and teacher
style where the criterion variable is precursor

efficacy in algebraic problem solving?
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Precursor efficacy in algebra.

Scores for precursor efficacy were obtained by dividing
achievement in algebra by precursor knowledge.

An analysis of variance was used to investigate the
relationship between gender and teacher style. For this purpose,
precursor efficacy is the dependent variable. Gender and teacher
style are the independent variables.

The results indicate that teacher style 1 has the highest
precursor efficacy (see Tables 22 and 23) suggesting that teachers
who present students with closed procedures obtain proportionately
higher achievement scores for given levels of students'
understandings of the precursors of algebra.

That result seems reasonable. The algebra achievement test of
this study measures principally students' ability to recall and apply
procedures. For such a test, it is reasonable to expect that teachers
who stress the learning of procedures (style 1) should realize
greater achievement than teachers who stress understandings.

The results also indicate possible interaction effects. Teacher
style 1 seems to be most effective with female students, and
teacher style 3 least effective with male students.

This suggests some variables that may warrant further, study
of the kind suggested earlier. Further, male students may have more
difficulty adjusting to the dissonance between the way algebra is

taught and the way achievement in it is measured.
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Table 22

Gender by teacher Style: Dependent variable, Precursor Efficacy

Style Female| Male |Female and
male
Teacher style 1 n 38 24 62
mean| 1.28 1.10 1.21
Teacher style 2 n 94 86 180
(blend of 1 and 3) mean .98 1.05 1.01
Teacher style 3 n 41 48 89
mean| 1.14 .94 1.03 .
Styles 1,2, and 3 n 173 158 331
mean| 1.08 1.03 1.06
Table 23

ANOVA for Gender by Teacher Style:

Dependent variable, Precursor Efficacy

Source df SS MS F p
Gender 1 .663 .663] 3.11 .08
Teacher style 2| - 1.39 .693] 3.25 .04
Interaction 2 1.45 73| 3.41 .03
Error 325 69.34 213
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Precursor_efficacy in _algebraic problem solving.

Similarily, an analysis of variance was used to investigate the
relationship between gender and teacher style with precursor
efficacy as the dependent variable. Scores for precursor efficacy
were obtained by dividing achievement in algebraic problem solving
by precursor knowledge.

The results suggest that teacher style 1 is the most effective
(see Tables 24 and 25) and teacher style 3 the least. This suggests
that, for given levels of students' understandings of the precursors
of algebraic problem solving, teachers who present students with
closed procedures are more effective. Teachers who encourage
students to construct their own knowledge are less effective.
Again, given the test used here, this is a reasonable conclusion.
Achievement in problem solving in this study is largely a measure of
students' ability to recall specific problem types.

As would be expected given earlier results, there is no

evidence for any interaction effects.
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Table 24

Gender by teacher Style: Dependent variable, Precursor Efficacy

Style Female | Male |Female and
male
Teacher style 1 n 38 24 62
mean| 1.28 1.12 1.22
Teacher style 2 n 94 86 180
(blend of 1 and 3) mean | 1.03 1.14 1.08
Teacher style 3 n 41 48 89
mean 95 .88 91
Styles 1, 2, and 3 n 173 158 331
mean| 1.07 1.06 1.07
Table 25

ANOVA for Gender by Teacher Style:

Dependent variable, Precursor Efficacy

Source df SS MS F p
Gender 1 123 123 .34 .56
Teacher style 2] - 3.295 1.65| 4.53 01
Interaction 2 978 4891 1.35 .26
Error 325 118.2 .364
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Reasoning as defined by the A Priori Model

Reasoning is defined here by the elements that fall into the
dimension of reasoning in the a priori model. Scores for reasoning
are obtained by summing the scores on the 13 items of the model
knowledge instrument that pertain to reasoning.

The reasoning dimension is explored in two ways; (1) by an
analysis of variance with gender as the independent variable, and (2)
by an analysis of variance on reasoning efficacy.

Reasoning efficacy is defined as the quotient of achievgment

and reasoning knowledge.

Analysis of Variance: Gender - the Independent variable

One question was investigated,
(1) What is the relationship between gender and
reasoning?
In this analysis of variance, reasoning is the dependent
variable and gender is the independent variable.
The results indicate no difference in male and female
reasoning scores (see Tables 26 and 27) and that reasoning as

defined here is independent of gender.
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Gender: Dependent Variable, Reasoning
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Gender Male Female
Mean 29.6% 27.4%
Number of subjects 158 173

Table 27

ANOVA by Gender: Dependent Variable, Reasoning

Source Df Sum of mean F - test
squares squares
Between 1 386.1 386.1 2.20
Within 329 57612.8 175.1 p=.14
Total 330 57998.9
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Analysis of Variance on Reasoning Efficacy

Reasoning efficacy is defined as the quotient of achievement
and reasoning knowledge (the author's definition). This definition of
efficacy describes achievement in relation to students' reasoning
abilities as defined by the a priori model. That is to say, reasoning
efficacy is the amount of achievement realized per unit of reasoning
ability.

Again, reasoning is defined by the elements that fall into the
dimension of reasoning in the a priori model.

Two questions were investigated. They were;

(1) What is the relationship between gender and teacher
style, and reasoning efficacy in algebra?

(2) What is the relationship between gender and teacher
style, and reasoning efficacy in algebraic problem

solving?

Reasoning efficacy in algebra.

Scores for reasoning efficacy were obtained by dividing
achievement in algebra by reasoning knowledge.

An analysis of variance was used to investigate the
relationship between gender and teacher style. For this purpose,
reasoning efficacy is the depéndent variable. Gender and teacher
style are the independent variables.

The results indicate that female students have the highest

reasoning efficacy (see Tables 28 and 29) suggesting that, for a
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given level of reasoning abilities, females may be more efficient in
learning algebra than males.

The results also indicate that teacher style 3 has the highest
efficacy (see Tables 28 and 29). This suggests that teachers who
encourage students to construct their own knowledge obtain
proportionately higher achievement scores for given levels of
students' reasoning abilities. Those results suggest that students’
reasoning abilities are not important for learning closed algebraic
procedures but that reasoning abilities are important for |

constructing knowledge about algebraic procedures.
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Table 28

Gender by teacher Style: Dependent variable, Reasoning Efficacy

Styles Female | Male |Female and
male
Teacher style 1 n 38 24 62
mean | 2.37 1.82 2.15
Teacher style 2 n 94 86 180
(blend of 1 and 3) mean| 2.23 1.77 2.01
Teacher style 3 n 41 48 89
mean| 2.98 2.22 2.57
Styles 1, 2, and 3 n 173 158 331
mean| 2.43 1.91 2.18
Table 29

ANOVA for Gender by Teacher Style:

Dependent variable, Reasoning Efficacy

Source df SS MS F p
Gender 1 22.54 22.54| 7.25 01
Teacher style 21 - 21.12 10.56| 3.40 .03
Interaction 2 1.31 6541 .21 81
Error 325 1010.75 3.11
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Reasoning efficacy in_algebraic_problem solving.

Scores for reasoning efficacy were obtained by dividing
achievement in algebraic problem solving by reasoning knowledge.

Similarily, an analysis of variance was used to investigate the
relationship between gender and teacher style with reasoning
efficacy as the dependent variable.

The results again indicate that female students have the
highest reasoning efficacy (see Tables 28 and 29) suggesting that,
for a given level of reasoning abilities, females may be more
efficient in learning algebraic problem solving than males.

For these tests, teacher style does not seem to affect
reasoning efficacy. It is reasonable that here teacher style should,
as was the case with algebra, be related to reasoning efficacy.
Teachers who stress the construction of knowledge are more likely
to encourage reasoning and realize proportionately greater

achievement.
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Table 30

Gender by teacher Style: Dependent variable, Reasoning Efficacy

Female | Male |Female and
male
Teacher style 1 n 38 24 62
mean| 2.18 1.77 2.02
Teacher style 2 n 94 86 180
(blend of 1 and 3) mean| 2.29 1.80 2.05
Teacher style 3 n 41 48 89
mean | 2.55 2.03 2.27
Styles 1, 2, and 3 n 173 158 331
mean | 2.32 1.86 2.10
Table 31
ANOVA for Gender by Teacher Style:
Dependent variable, Reasoning Efficacy
Source df SS MS F p
Gender 1 14.45 14.45| 5.11 .02
Teacher style 21 4.53 2.27] .80 45
Interaction 2 .088 .044| .016 .98
Error 325 919.75 2.83
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Summary of the Exploratory Tests

The exploratory tests of this study investigated relationships
between achievement; and gender, teacher style, and reasoning. As
all hypotheses here are exploratory, no tests of statistical
significance are valid and accordingly all conclusions are tentative.

The relationship between gender and other variables was
investigated in several ways. The results suggest that there are
some gender effects. For both algebra and problem solving
achievement, females obtained higher scores than males. The
results concerning the effect of including gender as a predictor of
algebra performance are inconclusive. When reasoning efficacy is
considered, female students seem to be more efficient in learning
algebra and problem solving than male students.

The results suggest that a teacher's style affects learning
outcomes. Teachers who stress closed procedures and teachers who
stress construction of knowledge both realize greater algebra
achievement than teachers who blend those two styles. The results
concerning problem solving are inconclusive.

Concerning precursor efficacy and teacher style, teachers who
stress closed procedures are most effective teaching algebra and
problem solving when they are measured, as was the case here, on
routine skills. For problem solving, teachers who stress
understandings are least effective. While these results may not be
preferred, it could be that when the proficient performance of

routine skills rather than the development of conceptual
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understandings is the desired goal of instruction, then the 'step one,
step two, ...' style of teaching may be most effective for achieving
that goal. However, when conceptual development is the goal that
style may not be appropriate.

In the case of reasoning efficacy, the results support the
exploratory style of teaching. Teachers who stress understandings
are most effective for teaching algebra but teacher style does not
seem to be pertinent to problem solving. Since it is likely that in
the twenty-first century disconnected rules, theorems, and
techniques will not be sufficient with respect to mathematical
literacy, in the long run the exploratory teaching style may be
preferable.

The results concerning interaction effects are inconclusive for
achievement, gender and teacher style, However, there may be some
interaction effects with respect to precursor efficacy, gender, and
teacher style.

The results suggest that further attention should be paid to
the interaction between teacher style and the gender of students.
Teachers who stress closed procedures with female students may
realize proportionately greater achievement in algebra than teachers

who stress understandings with male students.
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APPENDIX A
Model Knowledge Instrument

DIRECTIONS:

All questions are multiple choice. There is only ONE CORRECT
answer for each multiple choice question. Circle the letter of the
correct answer from one of the choices 'a)’ to 'd)'.

Please do not guess. If you are not very sure about the answer or
don't know the answer, then circle the choice, 'e) | don't know.'

1. If a number is bigger than 10 then:
a) it could be 10. b) it must equal 11.
c) it is bigger than 12. d) it is bigger than 3.
e) | DON'T KNOW.

2. To find the opposite of something means that as you do the
opposite of, it must be done to:

a) only one number at a time b) two numbers at a time
c) three numbers at a time
d) any amount of numbers at a time e) | DON'T KNOW.

3. When figuring out the answer to, 2x3 + 5x(18 - 10 + 1) + 7x2
what is inside the brackets:

a) must be done before figuring out 2 x 3.
b) must be done after figuring out 2 x 3.
¢) can be done after figuring out 2 x 3.

d) must be done before figuring out 7 x 2.
e) I DON'T KNOW.

4. The statement, 8 - 3 = 5,
a) must always be about things.
b) can't be about money.
c) would look different if it were about carrots.
d) could be about a relationship between numbers.
e) | DON'T KNOW.
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5. In the expression, A + [, the I means that:
a) only whole numbers can replace it.
b) only letters can replace it.
c) any number can replace it.

d) nothing. e) | DON'T KNOW.

6. In -(-7), the symbol, '-', thatis inside the bracket indicates:
a) position b) something to do c) subtraction
d) opposite of e) | DON'T KNOW.

7. By a 'chunk’, we mean a group of numbers that belong together
more strongly to each other than to other numbers.
How many chunks are in the expression:
2Xx3x6-6x7+4x9x8x7-18x3+1

a) 4 b) 7 c) 5 d) 6
e) | DON'T KNOW.

8. What is different about 0 + 0 -0 and 0-07
a) the answers b) the number of things to do  ¢) nothing
d) the size of the numbers e) | DON'T KNOW.

9. The answer to, V25 + 4 is:

a) 7 b) 14.5 c) about 5.4 d) 9
e) | DON'T KNOW.

10. The statement, four + 4/a/A/ = oo eeese s
a) nonsense. b) impossible to work with. c) not true.
d) not convenient to work with. e) | DON'T KNOW.
11. The statement, 0 + 0 + 0 -0 + 5 = 2x0 + 5,
a) cannot be true at all. b) is nonsense. c) is true.

d) is true only for whole numbers. e) | DON'T KNOW.
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12. Which one of the following statements is FALSE?
a) 125 +4 = 31.25 could be about people.
b) Doing arithmetic is never about relationships between

numbers.
c) Doing arithmetic about horses is like doing arithmetic about
radishes.
d) 5+7 = 12 could be about money. e) | DON'T KNOW.
13. When you figure out the answer to, 7 pears and 3 pears, you:
a) add pears. b) add counts of pears. c) add words.
d) add symbols. e) | DON'T KNOW.
14. Which one of the following is true?
a) 2x(MxA) = (2x0)x(2x4) b) 2 + 0 =10+ 2
c) 2+ (@ +A)=@@+0+ (2+4)
d) 15x0 = 9x0 + 6x10 e) | DON'T KNOW.

15. As you work out the answer to an expression such as, 2 x 3 + 4 -
18 + 3, the number of parts in the expression tends to:

a) increase. b) stay the same. c) become 1.
d) become 0. e) | DON'T KNOW.

16. For -(-3) x (-5) + 7, the meaning of the - outside the
brackets is?
a) take away b) less c) subtract
d) opposite of e) | DON'T KNOW.

17. There are many ways to get the right answer to the question,
53.2 + 14.2 Which one of the following could be done first

before doing the division?

a) Add the same number to 53.2 and to 14.2

b) Move the decimal point only in 14.2

c) Multiply 53.2 and 14.2 by the same number.

d) Multiply 14.2 by some number. e) | DON'T KNOW.
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18. A student figured out the answer to this multiplication question

this way:
5.34 --> x 100 -—> 534
x 12 - x 10 --> x 120
10680
53400
64080

The student then divided 64080 by 100 to get the final
answer.

Which one of the following is true about what the student did to get
the answer?

a) There is nothing wrong with what was done. ,

b) 64080 should have been divided by 1000 instead of by 100.

c) The student can't multiply the question parts by different
numbers.

d) An error was made in multiplying.

e) | DON'T KNOW.

19. For the expression, A x 0, the A andthe I:
a) mean nothing.
b) must always be replaced by different numbers.
c) can never be replaced by numbers.
d) could be replaced by the same number. e) | DON'T KNOW.

20. Suppose that all geebles are woggles. It follows then that a

woggle:
a) must be a geeble. b) could be a dimble.
c) can't be a geeble. d) can't be a dimble.

e) | DON'T KNOW.
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21. If the names for two numbers are different looking, then the two

numbers:
a) could be equal. b) are always unequal.
¢) must be equal. d) are opposite in value.

e) 1 DON'T KNOW.

22. If like matches with +, then the statement, She likes Bob,
is best matched by:
a) 8 + 7 by 0 + 7 c) 7 + 10 d 0+ 7

e) | DON'T KNOW.

23. As you figure out the answer to an expression like,
2x3-4+7x35, this changes:

a) the answer to the expression.

b) the numerical value of the expression.
c) the numerical value of the answer.

d) the number of parts in the expression.

e) | DON'T KNOW.

24. We usually write the number fifty in mathematics as 50 rather
than using the Roman numeral L because:
a) the Roman numeral for fifty is wrong.
b) the Roman numeral for fifty is more complicated.
¢) the Roman numeral for fifty is no longer very useful.
d) for no good reason. e) | DON'T KNOW."

25. When you add, how many numbers do you add together at one
time?

a) Two

d) As many as you want.

b) One c) It depends on the numbers.
e) | DON'T KNOW.

26. The 0 in the expression, 5x 0 + 3:
a) temporarily stops you from doing the arithmetic.
b) has no effect on the result of doing the arithmetic.
c) means that you can never do the arithmetic.
d) can have only one value. e) | DON'T KNOW.
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27. Suppose that A xOx?7 = mxQxAB.
If 0 = B, then 7 =:
a) any number b) O c) A d) O
e) | DON'T KNOW.

28. Look at the following matching of numbers:

100 -—> 2

1 -—> 0
1/100 - -2 |
1/1000 --> 0 A likely value for 0 is:
a) -4 b) -1 c) -3 d) 4 e) | DON'T KNOW.

29. Consider the following story.
Some pennies are stacked (one penny on top of another)
into two piles. QOne pile is higher than the other pile by
8 pennies. The shorter pile is 15 pennies high.

Which one of the following best matches what is going on in the
story? '
a) 15 -8 =7 b) 7 - 15 = 8 c) ? -8 =15
d 8 + 15 =7 e) | DON'T KNOW.

30. Adding, 129.7823 + 9654.271 + 1680.009725 + 23987.6,
a) must be done from left to right.
b) must be done from right to left.
c) in a different direction results in a different answer.
d) can be done from right to left. e) | DON'T KNOW.

31. Which one of the following best matches the arithmetic,
30+5 - 37 )
a) Remove 3 from what you give to each of 5 people.
b) Remove 3 from what you give to each of 30 people.
c) Remove 3 and then give what is left to each of 5 people.
d) Remove 3 people and then divide up 5 among those who are

left.

e) | DON'T KNOW.
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36.

37.
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If the symbol, +, can be used to indicate clockwise, then a good
choice for indicating counterclockwise is the symbol:

a) < b) AM c) - d) <--
e) | DON'T KNOW.

We write the number for counting eight things as 8 because it:
a) is true.

b) happens to be the way we do it.

c) is obvious to write it this way.

d) can't be written in any other way.

e) | DON'T KNOW.

For the statement, 0 + 0 + 0 = 15, itis okay to:
a) replace the first I by 2, the second 0 by 6, and the third 0

by 7.
b) replace the first I by 5, the second 0 by 5, and the third {I
by 5.
c) replace each of the three 's by 15.
d) remove one of the [I's. e) | DON'T KNOW.
Going from eeee ./\/ to ee / most likely is not like:
a) 42+2 = 21 b) 42 - 21 = 21 c) 6 -3=23
d) (20 + 2) =2 = 11 e) | DON'T KNOW.

The answer to, 2 x 42 + 8:4x2 - 32 s
a) 24 b) 27 c) 59 d) 11 e) | DON'T KNOW.

Consider the statement, O0XA = 12. How many DIFFERENT
PAIRS of numbers will make this statement true?

a) at least 3 pairs b) one pair c) exactly 6 pairs
d) no pairs at all e) | DON'T KNOW,
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38. Consider the following story.

On Monday, Bob had some money in his wallet. By magic,
it tripled overnight. Now there are 15 dollars in his

wallet.
Which one of the following best matches what is going on in the
story?
a) 3x5 =7 b) 15+3 = 7 c)? +3 =15
d 3x? =15 e) | DON'T KNOW.
39. Which one of the following is FALSE about 8 x 3 = 24 7

40.

41.

42.

a) 24 can be the guestion and 8 x 3 can be the answer.

b) The answer to the question 8 x 3 is 24.

c) The answer to the question 8 x 3 must be written as 24.
d) 24 is another way to say 8 x 3. e) | DON'T KNOW.

Walking seven blocks north, eight blocks south, four blocks
north, and five blocks north is like:

a) 7PM, 8 AM, 4PM, 5PM

b) right 7, left 8, right 4, left 5

c) over 7, under 8, over 4, over 5

d) 7 apples, 8 oranges, 4 apples, 5 apples
e) | DON'T KNOW.

Mary is as tall as Helen. Helen is taller than Sandy, but Helen is
shorter than Christa. Sandy is taller than Kandi. Kandi is:

a) shorter than Christa.

b) taller than Christa.

c) taller than Mary.

d) as tall as Christa. . e) | DON'T KNOW.

Which one of the following is true?

a) 8375x 125 = 8375x 100 + 8375x20 + 8375x5
b) 23+(8 + 7) = (23+8)+ (23+7)

c) (92+6)+8 = (92+8)+(6+8)

d 13/9 - 52/30 = 52/30 - 13/9

e) | DON'T KNOW.
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46.

47.

48.
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Not not understanding nothing is the same as:
a) not understanding nothing. b) understanding nothing.
¢) understanding everything. d) understanding something.
e) | DON'T KNOW.

Which one of the following is okay to do?
a) 3 dogs - 1 b) 5dogs + 3rivers <¢) 7dogsx3 + 8
d) 15 dogs + 3 cats e) | DON'T KNOW.

The answer to, 14 x5 - 7x2 + (3 +4) + 6,

a) must be worked out from left to right.

b) is different if worked out in a different direction.
c) can be worked out from right to left.

d) must be worked out from right to left.

e) | DON'T KNOW.

Suppose that all veems are vooms. It follows that
if something is not a voom then that something:

a) is a veem b) is not a veem c) is not a fiim
d) could be a veem. e) | DON'T KNOW.

Which one of the following best matches the statement,

6x0 = A, 7

a) 0 is 6 times as big as A. b) A is 6 times as big as 0
c) A is one sixth as big as 0. d) 0 equals A. E
e) | DON'T KNOW.

Which one of the following is true?

a) 18 is another name for 19.

b) eeeee 4+ ee s another name for 8.

¢) The only other name for 4 x 5 is 20.

d) There are many names for 23. e) | DON'T KNOW.
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49. To find the square root of something means that each time you
do the square root, it must be done to:

a) only one number. b) two numbers. c) three numbers.
d) any amount of humbers. e) | DON'T KNOW.

50. Think about the list of numbers, 1, 2, 3, 5, 8, 13, 0L
Which one of the following is a likely value for 007
a) 21 b) 20 c) 18 d) 27
e) | DON'T KNOW.

51. Consider the following story.
A metre stick, its end broken off, starts at the 21 cm
mark. Mary uses this meter stick to measure the length
of a pencil. She places one end of the pencil at the 30
cm mark on the metre stick. The other end of the pencil
is at the 47 cm mark.

Which one of the following best matches what is going on in the

story?
a) 47 - 7 = 30 b) 30 + 7 = 47 c) ? + 30 = 47
d 21 + 7 = 47 e) | DON'T KNOW.

52. One of the following statements is FALSE.
a) 4x.25 = 1.00 can only be about money.
b) 2x5 + 4 = 14 can be an example of a numerical

relationship.
c) 2x5 + 4 = 14 can be an example of a fact about money.
d) 4x 17 can be about ages. e) | DON'T KNOW.

53. The statement, 2+((7+5) > 2+7+2+5, ismost
like: .
a) 2x(7+5) —> 2+7x2+5
b) 2+(7x5) —> 2+7+2+5
c) 2x(7=+5) > 2x7+5
d) 2+(7x5) —> 2+7x2+5 e) | DON'T KNOW.
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54. Add is to subtract as:
a) squaring is to square root. b) minus is to subtract.
¢) subtract is to divide. d) add is to multiply.
e) | DON'T KNOW.

55. In the expression, (2x3) + 5 + (24x8) + 2x(7 +9),
we know what to do only because of the:

a) numbers. : b) brackets.
c) additions, multiplications, and brackets.
d) brackets and additions. e) | DON'T NOW.

56. Tomorrow is not Monday, then today is:
a) Sunday b) Monday ¢) not Sunday d) not Tuesday.
e) | DON'T KNOW.

57. How can you undo the result of doing the opposite of -37
a) AddO. b) Subtract 3. ¢) Add negative 3.
d) Do the opposite of again. e) | DON'T KNOW.

58. Look at the following multiplication results carefully.
99 x99 = 9 801
999 x 999 = 998 001
9999 x 9999 = 99 980 001

What should be the result for: 99 999 999 x 99 999 999 7

a) 999 999 998 000 000 001

b) 99 999 980 000 001

c) 9999 999 800 000 001

d) 9 999 999 980 000 001 e) I DON'T KNOW.

59. Suppose that, if whatsit then whatfor, if whatfor
then whatelse, if whatelse then whatwhere.
One possible conclusion from all of this is:
if whatfor then whatwhere. This conclusion is:

a) wrong b) correct

c) depends on the nature of whatfor.

d) depends on the nature of whatfor and whatwhere.
e) | DON'T KNOW.
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60. Figuring out the answer to the question, 7 apples and 4

61.

62.

63.

oranges,

a) is possible if the oranges or the apples are thought of as
fruits.

b) is possible if both the apples and oranges are thought of as
things.

c) is possible without any rethinking of the question.

d) is possible if the apples are thought of as fruits.
e) | DON'T KNOW.

There are many ways to get the right answer to the question,
2510 - 18. Which one of the following could be done first
before doing the subtraction?

a) Divide both 2510 and 18 by the same number.

b) Add a number to 2510 but add a different number to 18.

¢) Add the same number to 2510 and to 18.

d) Add a number only to 18. e) | DON'T KNOW.

Multiplying, 2x0Dx4x3 x5,

a) can be done from right to left.

b) must be done from left to right.

¢) in a different direction results in a different answer.
d) must be done from right to left.

e) | DON'T KNOW.

By a 'chunk', we mean a group of numbers that belong together
more strongly to each other than to other numbers.

In the expression, 3 + 6 x 52 + 12 + 4 + 52 + 15, which
operation separates chunks?

a) - b) x c) + d) squaring
e) | DON'T KNOW.
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APPENDIX B
Algebra Achievement Instrument

Algebra: Code:

1. Find the value of the expression, x2 + 3x + 4, if x has a value
of 4.

(2)

2. Simplify the expression, a+b+a+c+b + a.
(1)

3. Simplify: (x3)(x%)

(.5)

4. Simplify: x10 + x5

(-5)

5. Simplify: -(3x - 2y)

(.5)

6. Simplify: (3a)(2b)

(.5)

7. Write the opposite of: 3x
(.5)

8. Multiply: 3(x + 6)

(M

9. Simplify: Zggd

(1

10. Simplify: 6—3’—%—1—@

(1)
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11. Solve the equation: 3x + 15 = 17

(1
12. Solve the equation: 2(x + 3) = 14
(1.5)
13. Solve th ton: X = 2
. Solve the equation: 5 = 3
(M
14. Simplify: lil + 229—
(1)
15. Simplify:
4abc + 5a2bc + 6abc2 - 3abc + 7a2bc - 3abcZ + abZc

(2)
16. Simplify: (2x5)(3x4)
(1)
17. Simplify: (6x8) + (2x%)
(M
18. Simplify: (2x - 4y) - (2x - 4y)
(1)
19. Simplify: (-6)(-2xy)
(M
20. Write the opposite of: 2x - 3y
(M

e 100m?2
21. Simplify: 10m2
(1.5)

T 25mn - 10m
22. Simplify: Tm

(2)
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23. Solve the equation: 12x + 13 = 8x-7
(2)

24. Solve the equation: 3(x-3) + 1 = x + 5
(3)

25. Solve the equation: 2(2— + %)5 +1 =25
(3)

26. Simplify: — 33, + 1

(2)

27. FInd the value of the expression, -x2 + 2(xy)2,
if x=-3 andy = 2.

(4)

28. Simplify: 25x - 2(-3x + 6)

(3)

29. Simplify: (3x2 y)(5x4y>)

(1.5)

30. Simplify: (20x2y7) + (4xy4)
(1.5)

31. Simplify: 9a - 3b - (-2b + 4a)
(2)

32. Simplify: (6ab)(-3a2)

(1.5)

33. Write the opposite of: -(3x-y) + 5
(1.5)

34. Multiply: -5y(3y + 4xy - 5)
(2) .
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-4x)2
35. Simplify: (_ 4"3
(2)
2 - 2 2 2
36. Simplify: =Y 6X_3§’(y t 24Xty
(3)

37. Solve the equation: 8x + 14 - x = 10 + 2x + 4
(3)

38. Solve the equation: 4(2x-1) + x - 1 = ~(x~-3) + 4
(4.5)

39. Solve the equation: X ; 2 + 1 = X £’> ! + 1
(5)

40. Simplify:  3+a2 + b2 - a2 + b2

(3)

41. Simplify:  -(-2x)(3x) - (3x)(4x) - (-5x)(3)
(3)

2X + 6
X + 3

42. Simplify:
(2)
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APPENDIX C
Algebraic Problem Solving Achievement Instrument

Problem solving: Code:

Part A: Write an algebraic expression for each of the following:
(.5) a) Total cost of 7 shirts if each shirt costs x dollars:
(M b) Total cost of n cans of beans if each can costs 5t cents:

(1.5) c) Cost of one can if 45x cans cost S5y dollars:

(1.5) d) Perimeter of the rectangle

(1.5) e) Area of rectangle:

da + 3

2b

(.5) f) Five more than a number:
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(3) g) Area of the shaded region:

4x

N

Rectangle: ¥ by 2x Square: ¥ by

(1.5) h) Doubling the result of subtracting 3 from a number:

(1) i) The distance from A to B:

4

<} 100

(2) j) The mass of a copper coin; if a silver coin having a mass of
(2b + 1) grams is three times the mass of the copper coin:
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PART B: Solue each problem. You must show the equation that

(3)

(4)

(3)

(4)

(6)

(4)

(3)

you used for solving the problem.

a) Doubling a number and then adding 4 yields a result of 82.
What is the number?

b) Tony has $10 less than Bob. Mary has $17 dollars more than
Bob. Altogether, the three people have $250. How much
money does Bob have?

c) Tom, Dick, and Harry shared a prize of $210. Dick received
twice as much money as Tom. Harry received three times
as much as Tom. How much money did Harry receive?

d) Three consecutive odd numbers add up to 267. What are
the three numbers?

e) A bag contains nickels and dimes having a total value of
$9.15. One more than the number of nickels is 6 times the
number of dimes. How many nickels are in the bag?

f) The length of a rectangular swimming pool is 17 m
greater than the width of the pool. The perimeter of the
pool is 154 m. What is the length of the pool?

g) The difference of two numbers is 13. When the two
numbers are added the result is 243. What are the two
numbers?
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(6) h) A piece of wood 191 cm long is cut into 4 pieces. The
pieces are all of different lengths. How long is the
longest piece? The pieces are cut as follows:

e 1 cm longer than twice the length of the piece
above

1 cm Tonger than twice the length of
the piece above

T cm
langer
than

twice

the length
of the
piece above
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APPENDIX D
Pedagogical Styles of Algebra Teachers Instrument

Please circle your response to each guestion.

1. The homework | assign consists of questions which closely
resemble the examples that | have presented in class.

Very rarely Sometimes Half the time Frequently Almost always

2.  When teaching algebra, | provide students with a rationale for
learning algebra that involves real applications.

Very rarely Sometimes Half the time Frequently Almost always

3. In algebra class, | attempt to develop a set of principles that are
applicable to the processing techniques that are part of the
course.

Very rarely Sometimes Half the time Frequently Almost always

4. 1 insist that students do algebraic processing the way that |
taught it.

Very rarely Sometimes Half the time Frequently Almost always

5. My evaluation (formal and informal) of students emphasizes
processing skills.

Very rarely Sometimes Half the time Frequently Almost always

6. | encourage students to participate in the generation of
principles and concepts that might be fundamental to doing
algebra.

Very rarely Sometimes Half the time Frequently Almost always
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7. My foremost concern in teaching algebra is that students are able
to get the right answers to algebra questions rather than
understanding the principles involved in getting the answers.

Very rarely Sometimes Half the time Frequently Almost always

8. | begin my algebra classes by presenting definitions and
processing examples rather than by developing a principle(s)
that may be applied to the processing.

Very rarely Sometimes Half the time Frequently Almost always

9. The reason that | ask questions in my algebra classes is to help
me decide if students are able to do questions similar to the
examples that | present (ignore reasons related to discipline

matters).
Very rarely Sometimes Half the time Frequently Almost always
10. | think that the students in my algebra classes care about

learning algebra.

Very rarely Sometimes Half the time Frequently Almost always

11. My evaluation (formal and informal) of students emphasizes
principles and concepts.

Very rarely Sometimes Half the time Frequently Almost always

12. | encourage students to seek alternate ways to do algebra
questions.

Very rarely Sometimes Half the time Frequently Almost always

13. 1 use a problem solving model when teaching algebra - one that
encourages students to provide a major contribution to the
development of the objective of the lesson.

Very rarely Sometimes Half the time Frequently Almost always

14. | approach algebra classes with a "spring in my step" and "joy

in my heart".
Very rarely Sometimes Half the time Frequently Almost always
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APPENDIX E

Organization of the Model Knowledge Items in the

A Priori Model of Precursors

Table E-1

Item oreanization of the model knowledge instrument in relation to

categories of the model:

Category ftem number on Instrument
1 10, 24, 33
21, 39, 48
3 7, 55, 63
4 5 11,19, 26, 34, 37
S 6, 16, 32
6 2, 25, 49
7 18, 54, 57
8 3, 9, 36
9 8, 5 23
10 4, 12, 52
11 13, 44, 60
12 30, 45, 62
13 14, 17, 27, 42, 61
14 ‘ 28, 50, 58
15 1, 20, 41, 43, 46, 56, 59
16 35, 40, 53
17 22, 31, 47
18 29, 38, 51
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Instrumentation Results

Table F-1

Response Scoring Errors for Model Knowledge Instrument

Number of items scored Number of errors in scoring

20 x 63 = 1260

5 (.4%)

Table F-2

Rescoring Data for Achievement in Problem Solving

Table F-3

Number of samples 34
Frequency of O change 14

Range of changes - 3% to 5%
Mean change (absolute value) 1%
Standard deviation (absolute value) 1%

Rescoring Data for Achievement in Algebra

Number of sam_ples 34
Frequency of O change 14

Range of changes - 2% to 3%
Mean change (absolute value) 5%
Standard deviation (absolute value) 7%
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Table F-4

Item Consistency for the Model Knowledge Instrument

Lowest correlation with total score - .07

Highest correlation with total score .52

Number of negative correlations 2

Split-half consistency coefficient .61
Table F-5

Item Consistency for the Achievement in Algebra Instrument

Lowest correlation with total score .09
Highest correlation with total score .81
Number of negative correlations 0
Split-half consistency coefficient .88
Table F-6
Item Consistency for the Achievement in Algebraic Problem Solving
Instrument
Lowest correlation with total score 22
Highest correlation with total score .87
Number of negative correlations 0
Split-half consistency coefficient .83
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APPENDIX G

Results for Formal Tests

Table G-1

Formal Test: Catesory Level Regression Model derived from Set B,

Dependent Variable - Achievement in Algebra

Test Parameter Value
R (predicted / actual) 556
RZ (predicted / actual) .309
K 7
N 100
Degrees of freedom 7/ 92
a .05
F - criterion 2.13
F - calculated 5.88

Table G-2
Contribution to R2 of the Set B-derived Category Level Regression

Model used independently.

Dependent Variable, Achievement in Algebra

Data set Set B Set C | Sets A, B, C combined
RZ contribution 522 .364 432
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Table G-3

Formal Test: Element Level, Regression Model from Set B,

Dependent Variable - Achievement in Algebra

Test Parameter Value
R (predicted / actual) 393
RZ (predicted / actual) 154
K 8
N 100
Degrees of freedom 8/91
o .05
F - criterion 2.07
I - calculated 2.09

Table G-4

Contribution to RZ of the Set B-derived Element Level Regression

Model used independently.

Dependent Variable, Achievement in Algebra

Data set Set B Set C | Sets A, B, C combined
R2 contribution | .500 | .235 339
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APPENDIX H

Model Knowledge Instrument details

Answer Key for the Model Knowledge Instrument '

1.d 2.2 3.¢ 4.d 5.¢ 6.a 7.c 8.b
9.¢c 10.d 11.¢ 12.b 13.b 14.d 15.c 16.d
17.¢ 18.b 19.d 20.b 21.a 22.d 23.d Z24.c
25.a 26.a 27.bord 28.¢c 29.b 30.d 31.a
32.¢ 33.b 34.b 35.¢ 36.b 37.a 38.d 39c
40. 41.a 42.a 43.b 44.d 45.c 46.b 47.b
48.d 49.a 50.a 51.b 52.a 53.d 54.a 55.c¢
56.c 57.d 58.c¢ 59.b 60.a 61.c 62.a 63.cC

9!

A Discussion of some ltems of the Model Knowledge Instrument

ltem #16: 'Subtract' cannot be the interpretation of the symbol '-'

here because of the way the expression is written.

ltem #20: Choice (b) is correct by elimination. Choice (a) is not
correct as IF -> THEN is not necessarily reversible.
Choice (c) is not correct as a woggle might be a geeble
if a geeble is a woggle. Choice (d) is not correct since
there is no basis for saying that a woggle cannot be a
dimble. It may help to think through the item from the

point of view "If it is raining, then it is wet.".



ltem #27:

ltem #30:

ltem #35:

items # 29,

Item #40:

item #44:

Item #53:
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There is an error in the construction of this item. Both
answers are acceptable. The response 'any number' is
not correct. While m and Q can be any number, once
either of them has been assigned a value , then '?' must
be that value. The commutative principle is the issue

here.

Students may have the vertical algorithm in mind here.

That possibility makes this item somewhat flawed.

There is an argument to be made that all of the choices
are like the example given. However, choice (c) is the
least like the example as subtraction requires the same

objects for subtracting.

38, 51: The issue in these items is not what kind of
computation can be done to get the answer but
rather which number sentence best models what

is happening in each story.
AM and PM are not directional.

The issue here is that x and - require the same objects

while x and + do not.

The issue here is detecting the distributive pattern (one

operation applied over a different one).



ltem #57:

ltem #60:
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The functional use of inverse operations is the issue
here (do/undo). If one begins with -3, then doing the
'opposite 'of' to it yields +3. To get back to -3 (undo),

one must again do the 'opposite of' but to +3.

Choice (b) is somewhat acceptable but the researcher

wanted a sharper understanding of the issue.
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Details concerning Exploratory Tests

Table I-1

Items used for defining Precursor Knowledge

Items in numerical order

6, 7, 8 9, 11, 14, 16, 18, 23, 32, 36, 37, 40, 41, 42, 47,
49, 50, 51, 54, 55, 56, 58, 59, 61, 63




