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RBSTRNCT

THE URLITIRTION OF R MODET CIINCEHNING

PRECURSORS I}F RLGEBRR

The purpose of the study was to explore the large question of

what skills, understandings, and intuitions are precursors to

learning algebra. For that purpose, a comprehensive a priori model

of precursors of algebra was created that consisted of 1 B

categories. The model was subjected to both formal and exploratory

tests of hypotheses. Linear regression methods were used for those

purposes.

The results of the formal tests suggested 1 1 central notions

that may be precursors of algebra. They may be placed into four

clusters. One cluster of notions concerns the ability to reason

deductively and inductively, and to draw analogies. A second cluster

concerns the arithmetic operators and functional principles of

arithmetic. A third cluster concerns the meanings and roles that can

be attached to symbols. A fourth cluster concerns the hierarchy for

computation and the structure of arithmetic expressions. Those

results have strong implications for elementary and middle years

mathematics curricula and instructional practices.

The results of the expltiratory tests suggested that there are

relationships between gender, achievement in algebra, and styles of

algebra teachers. Paying attention to those relationships may

enhance the learning of algebra.
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CHAPTER 1

INTRODUCTION

The Purpose of the Studv

This study explores the large question of what set of skills,

understandings, and intuitions are precursors to learning algebra.

The results of the study suggest modifications to elementary school

curricula, provide a rationale for the redesign of the middle years

curriculum, and provide a basis for diagnosis and remediation in

algebra courses.

Rationale for the Studv

It was commonplace in the 1800's that one child in ten

attended high school and algebra was not a required course until the

first year of high school (Kieran and Wagner, 1989). The

mathematical needs of that era were largely satisfied by graduates

with the ability to compute. But in an information and

microprocessor age, many desired mathematical skills depend

directly or indirectly on algebra (NCTM, 19S9). As a result, the

study of atgebra can now begin as early as in grade six. Algebra

forms a major part of the secondary university entrance

mathematics curriculum and university entrance mathematics

(appropriatety or not) serves as a screen for determining entry ¡nto

many professions. Consequently, success or failure in algebra is

often an important factor in determining students' career options.
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Assessment studies in the United States (Carpenter, et â1,

1gB1i Fey,19B9) and in Manitoba (Curriculum Branch, 1987) indicate

that atgebra has become a stumbling block for many students- The

comment of an articulate and accelerated Seventh-grade student

cited by House (1988) is tYPical.

Algebra . . . is quite hard, and although very

educational, it is very frustrating ninety percent of

the time. lt means hours of instruction that you

don't even come close to understanding. (p. 1)

It seems that there are at least three possible explanations

for students' difficulties in learning algebra; the subject may be

inherently difficult; teaching may be at fault; or we may not have

identified the precursors of algebra which may be viewed as a set of

understandings, skills and intuitions that students should acquire

prior to learning algebra.

There could be some validity to either or both of the first two

exptanations. Some students may not be able to manage the level of

mathematical abstractions required by algebra and the subject may

therefore be inherently difficult. Some teachers may not understand

the progression of abstractions involved in algebra sufficiently well

to teach them. But both of these inferences invite the curriculum

builder to abandon students to the vagaries of time and place- They

run counter to a central tenet of twentieth-century pedagogy; if

there is a lack of understanding, there is a way to remedy it. From

this point of view those inferences should be last resorts, even if
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the search for some other explanation may be supported by only an

act of faith. The accomplishments of curr¡culum builders since the

early 1BOO's suggest that this is a prudent stance; ways have often

been found. Considering all of this, a reasonable conclusion is that

identifying the precursors of algebra may be the most promising line

of inquiry concerning students' difficulties in algebra.

Prçcursols of- Alqebra

From the point of view of the mathematical skills and

concepts that students should already have acquired, ritual

algorithms and a smattering of problem solving skills have often

been thought to be a sufficient basis for learning algebra' They may

not be enough. lf ritual arithmetic and problem solving skills are, in

fact, not enough and it is possible to identify a better set, algebra

may turn out not to be inherently difficult for the bulk of students

and the teacher who is aware of that set may be more successful in

teaching ¡t.

ln view of the central role of algebra in the secondary

curriculum and its importance to the career aspirations of students,

it would be reasonable to expect that a well-formulated model of

precursors of algebra would have been developed. However, this is

not the case. The literature does not include any coherent and

comprehensive model of precursors.

At most, one finds reference to two clusters of notions that

may be thought of as precursors. The first cluster concerns

prerequisites. One must generally infer peoples' (implicit)
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precursors from their list of prerequisites. Those lists tend to

include skill in fraction and integer arithmetic, the recall of basic

facts, and strategies for problem solving restricted to a search for

an appropriate algorithm (Smorodin, 1985; Boston Public Schools

curriculum, 1983). The second cluster concerns factors and

processes that may underlie the learning of complex mathematical

tasks (Kieran and Wagner, 19S9). The literature discusses such

factors and processes as the structure of algebra (Kieran, 1989),

cognitive obstacles in learning algebra (Herscovics, 1989), and the

role of problem representation in algebra (Larkin, 1989). Those

notions tend to be conceived as distinct and are not organized into a

comprehensive model of precursors.

While psychology and learning theory cannot be expected to

provide specific rosters of precursors, learning theories reinforce

the need to determine what they are and provide some guidance.

Gestalt theorists might suggest that there are insufficient

organizing principles embedded in most contemporary algebra

teaching and that such principles are essential. Content

structuralists might suggest that the content has not been

structured and has therefore not been presented appropriately.

Developmental theorists might-suggest that children may be at the

concrete operatíonal stage, and as such, are not cognitively ready

for learning that presupposes the formal operational stage of

development, or that the disequilibrium between the children's

schemes concerning arithmetic and the structure of the algebraic
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knowledge being taught may be too great, making the development of

new and nonconflicting schemes unlikely. Cumulative learning

theorists might suggest that the precursors of algebra have not been

learned well, in an inappropriate order, or not at all. Cognitive and

information-processing theorists might suggest that the structure

of the algebra being taught is not suitably attached to children's

internal knowledge representation of arithmetic.

Each of these views may be thought of as a different lens

tending to the same operational conclusion. Seventh-grade students

and others are commonly not "ready" for algebra because they lack

conceptually laden exper¡ences, intuitions, and insights that are

important for learning algebra. ln other words, they have not

mastered a sufficient number of precursors of algebra.

The position taken in this study is that it may be possible to

determine the set of important precursors from the entire range of

concepts, principles, and relationships that inhabit arithmetic and

the transition between arithmetic and algebra and that ritual

arithmetic and algorithm-oriented problem solving skills per se are

not likely to be important precursors. Support for this position is

found in the literature. The comment of Booth (1989) serves as a

summary.

Students' difficulties in algebra, it has been

generally assumed, are largely difficulties in

learning the syntax. Over the past decade, however,

research evidence has been accumulating to indicate
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that many students have a poor understanding of the

relations and mathematical Structures that are the

basis of algebraic representation lndeed, a

major part of students' difficulties stems precisely

from their lack of understanding of arithmetical

relationships. (p. 5B)

Performance in ritual skills per se may have Some capacity to

predict performance in algebra. However, it seems most likely that

any such capacity can be attributed to them being indirect measures

of students' understandings of the notions that underlie or

accompany these skills than to performance in ritual skills per se.

For that reason measures of ritual skills are excluded from this

study.

Co-requisites of learning algebra such as teacher clarity and

student motivat¡on are also excluded as the focus of this study is

identifying potential precursors of algebra. However, broadly

defined teacher style and gender were included in an ancillary way

to broaden the scope of the study.
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The Creation of a Model

The purposes of this study, then, are:

(1) To create a generic model which might be able to

account for the range of possible precursors of algebra

and algebraic problem solving.

(2) To subject both formal and exploratory hypotheses

concerning the relationship between the components of

that model and later algebraic performance to stat¡st¡cal

test.

The generic or a priori model compresses 63 individual

elements collected into 18 tentative categories. ln this preliminary

discussion, a 'precursor' may be taken to be either an individual

element or one of the categories.

Statement . of the Problem

The specific questions are:

1. What categories of the model are precursors of algebra

and algebraic problem solving?

?. What elements of the model are precursors of algebra?

3. Are the precursors independent of gender?

4. Are the precursors independent of teacher style of

teaching algebra?

5. What relationships are there between reasoning as

defined by the model; and achievement, gender, and

teacher style?
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Questions 1 and 2 are addressed by using conventional

conservative statistical tests. Questions 3, 4, and 5 are addressed

using less conservat¡ve exploratory techniques. ln both cases, linear

regression analysis methods are used.

Overviqw of the Mod-el concerninq, Prec-ursorç o.f ,Alqebra

Since the precise nature of the precursors is not well-defined,

two approaches were taken to test¡ng the generic model - by

identifying broadly defined notions and by identifying more detailed

not¡ons. To that purpose, the model includes both categories (broad

notions) and elements (fine notions). The categories, as clusters of

elements, provide cohesiveness to those elements while the

elements themselves help define the categories.

The model is organized into 1B categories. They are; (1)

mathematical representation using symbols, (2) the passive

interpretation of symbols, (3) the structural role of symbols, (4) the

replacement role of symbols, (5) the multiple meanings of symbols,

(6) binary and unary arithmetical operators, (7) do and undo pairings

of arithmetical operators (inverse operations), (8) the locking role

of arithmetical operators, (9) the alteration of the structure of

arithmetical expressions, (10) the context ¡ndependence of

arithmetical operators, (11) unit attachment to arithmetical

operat¡ons, (12) the visual order of arithmetical computation, (13)

functional principles of arithmetic, (14) inductive reasoning, (15)

deductive reasoning, (16) isomorphic reasoning, (17) the
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relat¡onship between language and arithmetic, and (18) template

recognition in arithmetical problem solving.

Each category consists of 3 or more elements that help define

it. ln all, there are 63 elements or detailed precursors. No attempt

has been made to relate these categories and elements in a

hierarchical way as such an endeavor would be premature.

Three sources were used to develop the model; the researcher's

experiences while teaching mathematics; the literature; and logical

analysis. These increase the likelihood that the model includes the

most useful categories.

However, there are at least two areas of concern with respect

to the model. First, there are places where the domains of

categories Seem to overlap. This seems to be unavoidable when a

model is created in this way.

Second, on account of pragmat¡c considerations concerning the

students' concentration spans for completing instruments and the

time available for testing, some categories are not as well defined

as might be desired. However, that is not a serious impediment. The

model is sufficiently developed for purposes of identifying what are

likely the most important broadly defined precursors.

The model may be usefui for algebra instruction but there are

potent¡al limits to its usefulness. Algebra is a diverse field in

mathematics, including such subdivisions as matrix and Boolean

algebras. The model only concerns the algebra of real numbers, the

algebra that constitutes the major portion of the university-
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oriented mathematics curriculum taught in middle years and high

school. lt is uncertain to what extent the model may be applicable

to learning other algebras.

9verview of the Methodoloqv

An overview of critical aspects of the methodology is helpful

at this point. ln the study, four instruments were constructed to

collect data used for testing the two types of hypotheses, a priori

and post hoc.

A model knowledge instrument was constructed that reflects

the a priori model of suggested precursors above. lts purpose is to

measure students' knowledge of that model. The instrument went

through several iterations with teachers and experts in mathemat¡cs

education to establish face validity with the a priori model of

precursors.

Two achievement tests were constructed, one concerning

algebra, and the other algebraic problem solving. Both tests

measure achievement consistent with the way that Ít is done ín

schools. An Ínstrument was constructed to assess the pedagogical

styles of algebra teachers. lts purpose is to categorize students'

algebra teachers into three broad styles.

Two types of hypotheses are tested, a priori and post hoc. The

purpose of a priori hypotheses is to identify precursors of algebra.

For that purpose, precursors are identified ¡n two ways - by

considering categories as precursors and by considering elements as

precursors. Employing two levels of analysis allows for the



11

identification of both general precursors (categories) and specific

precursors (elements) and increases the likelihood of identifying

important precursors. However, for purposes of the category level

analyses, categories are determined, not from those of the model,

but from those obtained from factor analyses. The resulting

categories are therefore less subjectively determined than those of

the original model.

A priori hypotheses are tested using conventional conservat¡ve

stat¡st¡cal tests. Linear regression methods involving correlations

between achievement scores and scores for items of the model

knowledge instrument are used to identify precursors.

The purpose of post hoc hypotheses is to investigate additional

relationships, ones that concern gender, teacher style, achievement,

and identified precursors. The hypotheses are tested using less

conservative exploratory tests with a variety of methods.
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CHAPTER 2

REVIEW OF THE LITERATURE

This chapter reviews the literature relevant to the model of

precursors of algebra and a subsidiary model of the pedagogical

styles of algebra teachers.

Precursors of Algebra

The Conceptualization of Alqebra for the Studv

Arithmetic, as usually taught in elementary school, is

concerned with numbers, rules for operations, algorithms, and

situations in daily life where numbers and operat¡ons are applied.

Algebra inhabits a larger domain of more abstract

conceptualizations. These conceptualizations are; (1) generalized

arithmetic, (2) procedures for solving problems, (3) the

relationships between quantities, and (4) structures (Usiskin, 1988).

For purposes of this study, algebra is a combination of generalized

arithmetic and procedures for solving problems. This

conceptualization matches most grade 9 algebra curricula.

Pre-requisites as Precurs.ors of Alqebra

The teaching of algebra has not changed much in the last 50

years (Thorpe, 19S9). Most apparent changes have been more

cosmetic than substantial. ln the same wâY, only labels have

changed in attríbutions of the causes of difficulties in learning

algebra. Any difficulties students have in learning algebra are
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usually attributed to "not being smart enough" and weak arithmetical

s kills.

The first explanation has been expressed as "there are math

types and there are nonmath types" (Davis and Hersh, 1981). Seventy

years ago Thorndike et al (1923) concluded that measures of

numerical patterning, geometric patterning, sentence completion,

and word matching were the best available for predicting success in

algebra because such measures of 'abstract ability' were most likely

to predict success Ín algebra.

The explanation pertaining to "weak arithmetic" remains

pervasive. A statement Ín the Manitoba mathematics curriculum

guide (Manitoba Education, 1 979) serves as an exemplar of this point

of view.

Arithmetic operations must be reviewed and

maintained.

. lt is important that students operate

proficiently with integers prior to a detailed study

of algebra. Students whose ar¡thmetic skills are

good tend to do well in a study of algebra. (p. 135)

A survey of various sources strongly suggests that precursors

of algebra are conceptualized as a list of pre-requisites. We must

generally infer the precursors that are implicit from such lists.

These pre-requisites, largely computational skills, are taken to be

the conventional set of precursors.



14

Smorodin (1985), in a report of skills to be tested for the New

Jersey State Department of Education, defined skill in integer

arithmetic and skill in exponent notation and operations as the pre-

requisites of algebra. The Boston Public Schools curriculum (1983)

lists the pre-requisites of algebra as being knowledge of numbers

and numeration; computation; fractions; decimals and percent;

exponents; estimating; graphs; and the function machine. The

Louisiana State Department of Education (1982) considers a good

algebra foundation to be a knowledge of whole number, fraction, and

decimal arithmetic; number theory; ratio and percent; and integer

arithmetic.

Resear_çh of Pre-alqebra

Published research does not explicitly supply a useful model

for the study of precursors of algebra. However, the new field of

pre-algebra research implicitly pays attention to potent¡al

precursors. That literature contains four explanations as to why

students have difficulties in learning algebra. Those four

explanations concern; ( 1 ) dissonance between algebra and

arithmetic, (2) well-structured knowledge, (3) problem solving, and

(4) reasoning processes (Herscovics, 1989; Kieran, 1 989; Chaiklin,

1 989; Davis, 1989). These explanations helped shape the model

used in this study.

Dissonance between algebra and arithmetic.

A dissonance between algebra as taught in schools and

students' perceptions of arithmetic appears to be significant. Lee
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and Wheeler (1989) investigated the extent to which students in

grade 10 relate the worlds of arithmetic and algebra. The evidence

suggested to them that there is a large degree of disassociation

even among students who are successful at algebraic tasks. They

found "the track leading from arithmetic to algebra to be littered

with procedural, linguistic, conceptual, and epistemological

obstacles" (Lee and Wheeler, 1990, p. 53).

It would be difficult to dispute the inevitability of students

utilizing an aríthmetic framework when learning algebra. However,

the literature suggests that the arithmetic experiences of students

encourage the establishment of cognitive frameworl<s that are

inappropriate for learning algebra and that place cognitive obstacles

in the way (Herscovics, 1989). ln other words, many of the

difficulties students have in learning algebra may be attributable to

their misconceptions about arithmetic or their reliance upon

inappropriate informal or formal procedures. Some students seem to

be well aware of the dilemma. Chalouh and Herscovics, Collis, and

Davis (cited in Kieran, 1989) noted that the students they

interviewed were aware that the conventions they used in algebra

seem to be different from those they used in arithmetic.

A British research project (University of Bath, 1982: cited in

Booth, 1 9BB) involving students from grade I to grade 10 found that

students made similar errors at each grade level, independent of age

and experience in algebra. ln it, errors are traced to four

incongruencies between algebra and arithmetic; (1) the nature of
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acceptable answers, (2) the use of convention and notation, (3) the

notion of a variable, and (4) the kinds of relationships and methods

used. Kieran (1989) suggests a fifth source of error, incongruency

concerning the roles of structure.

One source of students' difficulties in algebra is incongruency

concerning the nature of acceptable answers. ln arithmetic, the

intent is usually to find a specific numerical answer. ln algebra this

is often not the case. Students seem to have difficulty in making

that transition (Booth, 1988). They tend to see answers ín algebra

as "not proper" and are unable to hold unevaluated expressions (such

as 'x + y') in suspension. Both Collis and Davis (cited in Kieran,

1989) note that novice algebra students tend not to view algebraic

expressions as legitimate answers; they are somehow incomplete.

Chalouh and Herscovics (1988) refer to it as an unwillingness to

accept a lack of closure.

A second source of difficulty is incongruency concerning the

uses of notation and convention. Matz (cited in Herscovics, 1989)

suggested that notational incongruencies create cognitive obstacles

to algebra. Students will substitute '2' for 'a' in '3a' by

concatenating the 2 and obtain '32'. They attribute this error to the

arithmetical convention that-concatenat¡on implies addition, not

multiplication. Two-digit numerals are sometimes not replaced by a

single letter because of the same conflict between notational

conventions in arithmetic and algebra (Booth 1988). Another source

of difficulty is differing interpretations of how to use parentheses
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(Booth, 19BB). ln arithmetic, they tend to be interpreted as "do me

first" indicators, an interpretation that is largely unworkable in

algebra. MacPherson and Rousseau (1988), and Chalouh and

Herscovics (1988) noted that students tend not to see the

distinction between the active and passive use of notations such as

'+' and ':'. ln arithmetic, expressions such as'2 + 3' tend to

represent actions linked to an instruction to add. When confronted

with algebraic expressions, students try to view them in an active

sense, a perception that is inappropriate and usually results in the

application of incorrect strategies.

A third source of difficulty is incongruency concerning the

meanings of variables. One meaning concerns variables as

replacement symbols. Usiskin (1988) found that algebra students

tend to believe that a variable is always a letter or psuedo-letter.

ln other words, such symbols as 'x' and 'A' can indicate variables

while such arithmetícal symbols as '-' and '?' cannot. This belief

suggests that students have not acquired an understanding of the

replacement role of variables. Collis and Kuchemann (cited in

Kieran, 1989) observed that students tend to view a variable in a

number sentence (such as'A + 5,= B') as an unknown whose value is

to be figured out. Students tend to substitute one specific value

after which they stop substituting. This suggests that students

ínterpret a variable as a replacement symbol that can be replaced by

only one number. Booth (1988) found that there is a strong tendency

for students to regard a variable as a symbol that represents a
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un¡que number and that different variables in a number sentence

(such as 'A + ? = 10') must be replaced by different numbers. This

arithmetic-derived conception of a variable can be referred to as

"the secret name for a number" conception. lt is incongruous with

concept¡ons in algebra. Usiskin (1988) suggested that the

arithmetical view of a variable is often inadequate and misleading

in algebra. ln algebra, a variable may be a replacement symbol, a

parameter, an arbitrary element of some structure, or a symbol

which may be manipulated. Booth (cited in Kieran, 1989)

summarizes this dissonance by saying that students often have

difficulty in interpreting letters as generalized numbers. Booth

(1988) pointed out that that can lead to difficulties when comparing

equivalence, for example, many students consider that 'x + y + z' can

never equal 'x + p + z'. To them, different letters (in this case, the

'y' and 'p') always mean different replacements. Sutherland (1982)

found that LOGO programming experiences can províde students with

a conceptual basis for variables that improves their understanding

of algebra procedures and variables. That result suggests that there

is a way of overcoming the negative effects of operating from an

inappropriate arithmetical view of a variable, a way that may guide

the development of some precursors of algebra.

Students also tend to confuse variables and labels. ln

arithmetic, letters are usually interpreted as labels. For example,

in the statement '3 m = 300 cm', 'm' represents a label not a number.

This interpretation often leads to difficulties in understanding the
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meaning of mathematical language in algebra. For example, Booth

(198S) found that students often interpret variables such as'y'in

'By' as 'B yams' or 'B yachts'.

Further difficulties related to variables occur when students

translate written language to mathematical language. Researchers

have found that some students, all the way to first courses in

engineering, translate the written statement 'There are six times as

many students as professors at this university.' into the incorrect

algebraic statement '6S = P' (cited in Lochhead and Mestre, 19BB).

Clement, Lochhead, and Monk (cited in Lochhead and Mestre, 1988)

proposed an explanation for this phenomenon. They suggest that it

stems from misconcept¡ons about the structure of algebraic

statements, the interpretation of variables contained in algebraic

statements, and the relationship between written language and

algebraic language involving variables. These misconcept¡ons may

arise from students' experiences in arithmetic where the conceptual

issues involved in the variable-label confusion are not addressed or

are treated in a way that is incongruous with algebra.

A fourth source of difficulty is incongruency concerning the

kinds of relationships and methods used. Kieran (1989) noted that

students tend to believe that the left-to-right written sequence of

operat¡ons in arithmetic determines the order in which computat¡on

is to be performed. ln algebra, this proclivity leads to errors in

writing equations that represent relationships in algebraic word

problems. Students tend to assign numbers to variables according to
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the order of occurrence of numbers and words (Lochhead and Mestre,

1988). Kieran (cited in Booth, 1988) concluded that many students

believe that the value of an arithmetical expression remains

unchanged if the order of computation is altered as long as the

written order is not changed. Further, students typically do not use

brackets because they believe that the written order of operations

determines the value of an expression. These beliefs partly explain

algebraic errors that occur when students manipulate or write

expressions involving brackets.

Further to relationships and methods, students tend to learn

and to use informal, intuitive methods in arithmetic (Booth,1988).

These informal arithmetical methods can limit their ability to

understand or produce general statements in algebra. For example,

Ekenstam and Nilsson (cited in Booth, 1988) found that using

informal procedures to solve equat¡ons limits students' success in

seemingly similar situations. Furthermore, in arithmetic

equivalency is normally determined by calculating. Cauzinille-

Marmeche, Mathieu, and Resnick (cited in Kieran, 1989) found that

when students rely on informal methods, they make more errors

when determining equivalency in algebra. These results suggest

that, in algebra, equivalency is best determined by applying a set of

principles or rules.

A fifth source of difficulty is incongruency concerning the

roles of structure. For these purposes, structure is the

arrangements of terms and operations, and the constraints on the
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order of processing. The role of structure is largely ignored in

arithmetic. Yet in algebra, students are required to recognize and

use structure. That dissonance may be an important cause of

students' difficulties in algebra. Lochhead and Mestre (1gBB)

commented that students who are not proficient in processing

algebraic expressions seem largely unable to see any consistent

structures in these expressions. Further to this, Davis, Matz,

Greeno, Rugg and clark, and Breslich (cited in Kieran, l gBg) noted

that beginning students in algebra have great difficulty imposing

structure on algebraic expressions. This failure to detect structure

is suggested as one explanation for the parsing errors that students

make. Larkin (1989) supports rhis conclusion. she found that many

students see an algebraic expression as an unstructured string with

the rules of algebra acting on arbitrary parts of the string. This may

explain why they easily misapply these rules when manipulating

expressions. Lochhead and Mestre (1988) summarize this in saying

that students do not learn to read and write mathematical symbol

strings in arithmetic. This leaves them at a disadvantage in

learning the manipulation rules of algebra.

Cumulatively, the literature strongly suggests that, as much

as assisting the learning of âlgebra, the conventional framework of

arithmetic can create cognitive obstacles. on the other hand, some

parts of arithmetic are necessary for learning algebra. The solution

to that dilemma may lie in shaping an arithmetical framework that
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is more appropriate to learning algebra; a framework within which

desired notions are embedded in arithmetic.

Those desired notions consisting of principles, concepts, and

reasoning skills form the set of precursors of algebra. Furthermore,

rote performances of algorithms, which have often driven the design

of conventional arithmetical curricula would not belong in that set

of precursors.

Well-structured knowledge.

Current pract¡ce in teaching arithmetic and algebra tends not

to encourage well-structured knowledge or well-connected evolving

knowledge of mathematics (Kieran and Wagner, 1989). Schoenfeld

and Whitney (cited in Thorpe, 1989) commented that students most

often see both arithmetic and algebra as largely a collection of

tr¡cks - a trick for this and a tr¡ck for that. That perception is

likely a cognitive barrier to learning algebra. The fourth NAEP

mathematics assessment (Brown et al., 1988) found that a large

majority of students feel that mathematics is rule-based, with

about half of them reporting that learning mathematics is mostly

memorizing. Furthermore, students do not seem to understand many

of the structures underlying -mathemat¡cal 
concepts and skills.

Those findings, along with low assessment results (Brown et al.,

1988), suggest that students' perceptions of mathemat¡cs as

disconnected bits of rules, facts, and procedures may be partly

responsible for difficulties in learning algebra. Further evidence

support¡ng that conclusion comes from Manitoba mathematics
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assessment results (Curriculum Branch, 1987) which indicate that

students' achievement in mathematics declines significantly from

grade 6 to grade 9. The mean score of all mathematícal curriculum

topics in grade 6 is 59.8; the mean score for grade 9 is 53.7. The

lower mean Score in grade 9 is pertinent as that is when students

first encounter some substantial algebra. One explanat¡on for the

decline in overall mathematics achievement ¡s that the volume of

disconnected understandings and rote skills may overwhelm some

students. They no longer can assemble those learned in arithmetic

with those being learned in algebra. All of this suggests that any

set of precursors arising out of arithmetic must provide a coherent

and connected framework for learning algebra.

Problem solving.

Rachlin (1986) suggested that a successful study of algebra

may require problem solving processes that are usually not

developed in arithmetic. MacPherson and Rousseau (1988), and

Kieran (1989), in sharpening what this may mean, have suggested

that the solution of routine word problems that are encountered in

arithmetic classrooms may best serve algebra ¡f the approach

involves a search for the structure of the problem rather than a

search for the correct algorithm to apply. Krutetskii (cited in

Rachlin, 1986) supports this position in concluding that one of the

characteristics of good problem solvers is that they seek the

structure of a problem rather than focus on its specifics. Vergnaud,

Benhadj, and Dussouet (cited in Kieran, 1989) exhibit the tension
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between problem solving in arithmetic and in algebra using the

following problem.

ln an existing forest, 425 trees were planted. A

few years later, the 217 oldest trees were cut. The

forest then contained 1063 trees. How many trees

were there before the new trees were planted?

(p. 37)

The structural approach to solving this problem would begin

with an expression like, '? + 425 - 217 = 1063' followed by

decisions as to the algorithms to employ. The expression reflects

what 'happened'. They found that many teaÖhers suggest a series of

computations like; '1063 + 2"17 = 12.80, 1280 - 425 = 855'. This

sequence of algorithms does not match what 'happened' (for example,

?17 trees were removed, not added, to the forest). At best, those

teachers have left the creation of templates implicit, moving on to

the appropriate arithmetic for obtaining answers. ln doing so, it is

likely that only the "bright" students can see the templates and

perhaps only intuitively.

The literature has not extensively addressed the question of

how well a structural approach best serves the learning of algebra,

but it does suggest that theie are implications for judging

equivalency. Kieran (cited in Kieran, 1989) found that students have

difficulty in judging equivalent equations. For example, some

students believe that 'x + 37 = 150' is equivalent to 'x = 37 + 150'.

Kieran (1989) suggests that such errors arise as a result of their
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not understand¡ng the structural relationship between addition and

subtraction. A structural approach to problem solving in arithmetic

may help establish that understanding as the approach can involve

transforming number sentences such as '? + 23 = 45' to '? = 45 - 23'.

Further to equivalency, Greeno (cited in Kieran, 1989) found that

many students do not seem to be aware that an incorrect solution,

when substituted into the original equation, will yield different

values for the two sides of the equation. ln addition, students often

do not realize that it is only the correct solution which will yield

equivalent values for the resulting left and right expressions in a

chain of transformations of an equat¡on. Whitman (cited in Kieran,

1989) suggests that this lack of awareness may best be addressed

by having students first learn intuitive processes for solving

equations. These processes are related to the structural approach to

solving arithmetical word problems.

Reasoning processes.

The literature has little to say concerning the specific

reasoning abilities that students require as they begin to learn

algebra. The "not smart enough" school of thought vaguely suggests

that an ability in abstract reasoning may be important to learning

algebra, but this is of little lrelp in determining a set of precursors.

Freudenthal (1973) has noted that while arithmetic is

intuitive and close to reality, algebra is characterized by its formal

symbolic methods and therefore demands greater attention to

thinking strategies. He suggests six thinking strategies that may be
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important to learning algebra; (1) schematizing, that is sensing

regularities, (?) detecting transitive relationships between objects

of thought, (3) seeking necessary and sufficient conditions, (4) using

indirect proofs, (5) making analogies and using analogies to gain

insights, and (6) detecting and using the 'if --> then' structure.

Freudenthal does not elaborate as to how these strategies can be

fostered but developmental psychology may provide some guidance.

Piaget has suggested that processes of reasoning which ultimately

may seem self-evident must, in the beginning, be checked against

the evidence of what one finds through doing (Donaldson, 1984).

That strongly suggests that any reasoning abilities or strategies

that may be precursors of algebra be developed initially in a domain

that requires less abstract symbolism than does algebra. The

natural domain for this purpose is arithmetic. lt would seem that

the activation and fostering of reasoning strategies that are

important to algebra must occur while students learn the concepts,

principles, and procedures of arithmetic. This suggests teaching

practice that focuses on understandings rather than rituals.
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Pedagogical Styles of Algebra Teachers

For purposes of this study, pedagogical style is the manner in

which teachers conduct lessons in algebra and algebraic problem

solving. While there does not aBpear to be any literature specific to

the pedagogical styles of algebra teachers, there is considerable

literature on the ways mathematics is taught.

Mathematics is taught in ways that fall along a continuum.

Davis and Hersh (1981) allude to one end of that continuum.

As a teacher I am constantly confronted by problem

after problem that has nothing to do with math.

What I try to do is sell math to kids on the basis

that it's fun. ln this way I get through the week.

(p. 274)

The findings of recent studíes in mathematics suggest what

may be the other end of the continuum. Goodlad (1983) and Tobin,

Espinet, and Byrd (1982) reported that the dominant teaching

procedure in mathematics was lecturing. Furthermore, that style of

teaching consistently lacked student-teacher ¡nteract¡ons, small

group work, or alternative approaches to the development of topics.

The emphasis in such mathematics classes was on recall - learning

facts and memorizing algorithms without necessarily understanding

why the algorithm works (Doyle, 1983; Tobin, Espinet, & Byrd,

1987). The Canfield Teaching Style inventory (cited in Raines,1976)

which measures general teaching styles provides a view of the

entíre continuum. The styles of teaching measured are: (1) straight
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lecture, (2) lecture with summary notes, (3) teacher questions

students, (4) student presentations, (5) small group discussion

(teacher led or student led), (6) demonstrations, (7) practice

exercises, (8) simulation/games,/problem solving, and (9)

collaboration.

It was not possible to attempt to place teachers along this

whole continuum, if that is what it is, in this study. Three broad

categories were selected - two polar styles and a blend of them.

Much of the commentary in the literature suggests thât there

are two distinct styles of teaching mathematics. They served as the

basis for developing the pedagogical style of teacher model for this

study.

Bach (198'l) provides two icons of mathematics teachers -

alphas and betas. Alphas strictly follow the text and never make

mistakes in class. Betas don't rely on texts, teach concepts, make

mistakes, and excite and confuse their students. Furthermore, Bach

(1981) and others view the styles that fall into the alpha category

as inappropriate paradigms for teaching mathematics and beta

styles as appropriate paradigms. This study begins with those two

icons as polar styles of mathemat¡cs teaching.

The literature describes the characteristics of the alpha

category in various ways. Davis and Hersh (1981) discuss

authôritarian or dogmatic teaching which may occur in classrooms

or in texts. lt can be exemplified by the statement, "Look, I tell you

this is the way it is". Tobin (1989) described one general style,
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lecturing (or chalk and talk) which is characterized by whole class

teaching, seat work consisting of repetitive practice of skills and

algorithms, and an emphasis on recall. There is little small group

work, alternate approaches, or emphasis on higher level cognitive

outcomes.

The beta category is taken to be the antithesis of the alpha

category. Davis and Hersh (1981) discuss a teaching style that

allows students to "fiddle around" mathematically so that they may

learn something of the strategies and insights that lie behind

mathemat¡cs. Tobin (1989) suggests that good teachers of

mathematics do not lecture but encourage students to part¡cipate ¡n

learning activities and encourage meaningful learning through

principles and conçepts. Pirie and Schwarzenberger (1988) describe

a mathematical discussion style which is characterized by

purposeful talk that has well-defined objectives and by pupils'

genuine contributions in the form of inputs that assist in laying out

the learning process. The NCTM standards (NCTM, 1989) for

improving the quality of mathematics instruct¡on involve a more

open teaching style where students are encouraged to invent

symbols, use trial and error, use imaginatiort, conjecture, predict,

verify, make decisions, and work in groups.
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CHAPTER 3

MODELS DEVELOPED FOR THE STUDY

Two models were developed for use in the study; ( 1 ) a model

concerning precursors of algebra and (2) a model concerning

pedagogical style of algebra teaphers.

A Model concerning Precursors of Algebra

Sackq,round to lhe Studv

The researcher's interest in the precursors of algebra was

stimulated by teaching algebra-related mathematics courses to re-

entry adults, many of whom were returning to formal schooling after

a lengthy absence.

An analysís of their difficulties in algebra suggested that the

conventional set of precursors is inadequate. For example, they

were unable to clearly identify structure-related aspects of an

algebraic statement and they did not realize that mathematical

statements need not be decoded left-to-right. Such missing not¡ons

and misconceptions seemed to partly explain some processing

errors. The researcher next attempted to create a model including

these and other non-conventional precursors of algebra and to study

the effects of using it with re-entry adults. A perception of

considerable relationship between achievement and predicting based

on this preliminary version of the model encouraged continuÍng to a

more formal version of the model and tests of these relationships.
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The literature and logical analysis provided further possible

categories and elements that might comprise a set of precursors of

algebra.

Overview of the Model

The model contains categories (broadly defined notions) and

elements (more detailed notions) that are suggested precursors of

atgebra. The categories, as clusters of elements, provide

cohesiveness to those elements while the elements themselves help

define the categories. The model was used as the basis for

constructing the model knowledge instrument.

The model is organized into five dimensions or clusters of

categories. They are; (1) symbols, (2) operators, (3) reasoning, (4)

language, and (5) problem solving. The dimensions encompass 1B

categories. Each category consists of 3 or more elements. ln all,

there are 63 elements or detailed precursors.

Some categories overlap. However, the categor¡es differ in the

specificity of emphasis or in the generality of expression of a

notion.

The following chart provides an overview of the a priori model

of precursors of algebra.
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Model of Precursors Representation

Passive interpretation

Symbols Structural role

Replacement role

Multiple meanings

Binary and unary operators

Do and undo pairings

Lockino role

Alteration of structure
Operators

Context independence

Unít attachment

Visual order

Functional principles

lnductive

Reasoning

lsomorphic

Relationship between
language and mathematics

Problem solving Template recognition
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Dimensipn 1: SyJnbols

Children encounter symbols when doing arithmetic. The way

they view these symbols may be important for learning algebra. Five

categories show promise; ( 1 ) representation , (2) passive

interpretation, (3) structural role, (4) replacement role, and (5)

multiple meanings.

Cateç¡orv: representation.

Representat¡on concerns symbols in relation to representing

not¡ons. The three elements of this category are; (1) different

symbols may be used to represent the same notion, (2) symbols are

arbitrary creations, and (3) particular symbols are used for reasons

related to utility. See Appendix A - items 10, 24, and 33.

Category: passive interp_re_tation.

Passive interpretation concerns 'another name for' (for

example, '2 + 3'is another name for'5'). The three elements of this

category are; ( 1 ) quest¡ons and answers may be interchanged in

arithmetic (6 can be a question and 2x3 can be an answer), (2)

different names can name the same number, and (3) the set of

different names for some number is large, See Appendix A - items

21 , 39, and 48.

Categorv: structural rolç.

Structure may be defined as the internal organization of

mathematical expressions; it concerns how the parts are bound

together and separated. Students' structural intuitions are rooted in

ar¡thmetic and are derived from the hierarchy of arithmetical
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operat¡ons. While there are far from uniform conventions in

arithmetic (consider 3 1 /2 = 3 + 1 /2 and 34 = 30 + 4 ), most often

the separating symbols are additive ( + and -) and the binding

symbols are multiplicative (x, divide, exponentiation, root of, and

the fraction indicator '/').
The structural role of symbols is expressed in the formation of

chunks or terms. lt involves the ability to chunk an expressíon, to

view an expression according to the terms that comprise it. The

three elements of this category are; (1) structure helps determine

what is to be done in an expression, (2) certain operators bind

chunks, and (3) certein operators separate chunks. See Appendix A -

items 7, 55, and 63.

Category: replacement role.

The replacement role concerns variables, viewed as empty

slots waiting to be filled with numbers. The empty slot can be

denoted by a letter of the alphabet or by more "primitive"

replacement symbols such as 'A' or '?'.

The six elements of this category are; ( 1 ) the replacement set

is not restricted to whole numbers, (2) replacement symbols may be

manipulated as though they were numbers, (3) the same replacement

may be used for different replacement symbols in an expression, (4)

replacement symbols may force a halt to processing (for example,

processing stops for 'A + 5' until 'A' is replaced by a number), (5)

each occurrence of a part¡cular variable in an expression requires

the same replacement, and (6) the set of possible replacements for a
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particular replacement symbol is unlimited. See Appendix A - items

5, 1 1, 1 9, 26,34, and 37.

Category: multiple meanings.

Operation symbols can have more than one meaning. ln

particular, each of the symbols '+' and '-' can be interpreted in at

least 3 ways. The symbol '+' can indicate the binary operator 'add'

(put together), a direction (for example, '+' can mean to rotate

clockwise), or it can be part of a label (as in '+5'). The symbol '-' can

have more meanings. lt can indicate the unary operator 'opposite of',

a direction that is opposite to the direction indicated by the '+'

symbol, be part of a label (as in '-5'), and the binary operator

'subtract' which can itself have at least 3 ¡nterpretations - 'take

away', 'compare', and 'change in' (in relation to measuring).

The elements in this category sample the above possible

meanings. The differing interpretations concerning the binary

operator meaning of '-' and the 'put together' ¡nterpretation for '+'

are excluded because they overlap the template recognition category

below. They are best dealt with in that category. Accordingly, only

the three renaming meanings of '+' and '-' are included. The symbols,

'+' and'-' may indicate; (1) a direction, (?) a part of a label, or (3) a

unary operation. See Appendix A - items 6, 16, and 3?.
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Dimension 2: Operators

While operators are implicitly and explicitly included in some

of the categories of the 'symbols' dimension, they warrant separate

considerat¡on. Operators in arithmet¡c indicate that some

transformation of numbers is to take place. Eight categories show

promise; (1) binary and unary operators, (2) do and undo pairings, (3)

locking role, (4) alteration of structure, (5) context independence,

(6) unit attachment, (7) visual order, and (B) functional principles.

Cateqorv: binary and unarv operators.

Operators can be classified according to the number of inputs.

Addition, subtraction, multiplication, and division are binary

operators. Square root and squaring (in general, 'finding the root of'

and exponentiation), and 'opposite of' are unary operators. The

elements of this category are based on the identification and

discrimination of those classifications. The more general operators

'finding the root of' and exponentiation are excluded. Accordingly,

the three elements are; (1)'opposite of'- an unary operator, (2)

'square root of' - an unary operator, and (3) addition, subtractíon,

multiplication, and division - binary operators. See Appendix A -

items 2, 25, and 49.

Category: do and undo paìrings.

Do and undo pairings concern the notion of an inverse operation

in the sense that an operat¡on is undone by its inverse. For example,

the effect of adding 5 to something will be undone by subtracting 5.

This is a functional approach to inverses. Addition and subtraction;
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multiplication and division; and 'finding the root of' and

exponentiation are inverse operations (dolundo pairings).'Opposite

of is its own inverse. The elements of this category are based on

those pairings except that 'finding the root of' and exponentiation

are not included. Only the specific instances of square root and

squaring are. Accordingly, the three elements are; ( 1 ) multiply and

divide - a do/undo pairing, (2) addition/subtraction and

squaring/square root - dolundo pairings, and (3) 'opposite of' - its

own inverse. See Appendix A - items 18, 54, and 57.

Category: locking role.

Over and above the other roles of operations in algebra and

arithmetic, they may be thought of as having locking and unlocking

roles. These roles provide a way of conceptualizing the order of

computation in an expression. For example, in the expression '2 x 3 +

4', '7 x 3' is locked in relation to adding 4; before addition can

proceed '2 x 3' must be unlocked. There are at least two ways to do

that; by replacing '2 x 3' with '3 + 3' or with '6'. Similarly, for '3 x

(5)2','(5)2'is locked and must be unlocked before multiplication by

3 is possible.

There is overlap between the 'locking roles' category and the

structural role (of symbols) category. The notion of locking roles,

which is derived from the hierarchy of operators, conceptualizes

hierarchical processing in a way that is readily integrated into the

structural features of an expression. This capacity to link structure

w¡th hierarchical processing seems important to algebra for at least
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two reasons. First, the líterature strongly suggests that a failure to

detect structure is an important explanation for Some algebraic

errors (Lochhead and Mestre, 1988; Larkin, 1 989; Davis, Matz,

Greeno, Rugg and Clark, and Breslich: cited in Kieran, 1989). Second,

it suggests that the Iack of coherent and connected knowledge is

also an explanation for difficulties in algebra (Kieran and Wagner,

1989; Schoenfeld and Whitney: cited in Thorpe, 1989).

Further, expressions can be viewed as having locked and

unlocked chunks (and locked portions within chunks) that provide

structure to expressions and determine the order of computation.

Before processing can continue, locked chunks must be unlocked

using valid procedures. Locks are hierarchical. Exponentiation and

'finding the root of' (unary operators) are more powerful locks than

binary operators. The unary operator, 'opposite of is an exception; it

is on par with the binary operators, multiply and divide. The

exception can be explained by viewing 'opposite of' as multiplying by

'-'l '. Multiplication and division (as well as 'opposite of') form more

powerful locks than addition and subtract¡on.

While brackets are not operators, they also play locking and

Structural roles. Because brackets visually "capture" numbers and

operators in arithmetic, students (and teachers) tend to interpret

them as "do me first" indicators. That point of view may be

inappropriate for algebra (Kieran; cited in Booth, 19BB). lt seems

more appropriate to view brackets as having the capacity to disrupt

the normal determination of locks and chunks. For example, the
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express¡ofr, 'Z x 3 + 5', contains two chunks; a locked chunk '? x 3'

and an unlocked chunk '5'. Processing must be done by first

unlocking '2 x 3'. lf brackets are placed in that expression, its

structure and processing priorities may change. For example, there

is only one chunk in '2 x (3 + 5)', the entire expression. That result

follows from viewing it in an overall way; '2 x (3 + 5)' can be

interpreted as '2 x some number'. Processing order is also affected

by the inclusion of the brackets in this case. Processing cân proceed

in at least two ways; add then multíply by '2' or use the distributive

principle. Neither of these ways has hierarchical priority.

The elements of this category are selected from what seems

to be the most cogent locking roles. The three elements are; ( 1 )

locking role of brackets, (2) locking role of additive processes, and

(3) locking role of multiplicative processes. See Appendix A - items

3, 9, and 36.

Çate.gory: alteration of structure.

Alteration of structure concerns a change in the structure of

an expression. The three elements of this category are; (1) the

complexity of processing is related to the complexity of structure,

(2) the structure of an expression changes as processing proceeds,

and (3) the numerical value for a given expression is invariant as the

structure changes through computat¡on.

For example, the expression'? x3 + 5 x 6 - 4 x (7 + 2 x 5)' has

a more complex structure than the expression '2 + 5'. See Appendix

A - items 8, 15, and 23.



40

Context independence concerns sensing arithmetical

statements as being independent of the contexts from which they

are derived. For example, the two contexts, 'Two ducks were

swlmming in the water; along came 3 more. Now there are 5 ducks

in the water.' and 'Two thoughts were in my head. Someone gave me

3 more. Now I have 5 thoughts.', both lead to the statement, '2 + 3 =

5', which can be viewed independently of the contexts that

determined it. For this category, the elements are restr¡cted to

additive (+/-) and multiplicative (x/+) examples. The three

elements are; (1) a statement involving an additive operation is

independent of context, (?) a statement involving a multiplicative

operation is independent of context, and (3) a statement involving a

combination of additive and multiplicative operations is independent

of context. See Appendix A - items 4, 12, and 52.

Categoryl unit ?ttachment.

Unit attachment concerns the various ways units can be

attached to the numbers involved in operations. Again, the elements

are restricted to additive (+/-) and multiplicative (x/+) operations.

Multiplicative operations involve no restrictions on units. For

example, 'hours' can be multiplied by 'people' obtaining 'people-

hours'. Additive operations require that numbers have the same

units attached to them. For example, 'two apples plus 3 nails' is not

allowed unless the units are subsumed under some more general

definition, Furthermore, units themselves are not added (or
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subtracted); rather, 'counts of' are added. For example, in '2 pears

plus 3 pears', the pears are not added; rather, ? and 3 are added and

these numbers concern counts of pears. The three elements of this

category are; (1) additive operators require addition or subtraction

of counts of units, (2) additive operators require identical units, and

(3) multiplicative operators do not require identical units. See

Appendix A - items 13, 44, and 60.

Catego.rv: visual order.

The order of occurrence does not determine the order of

processing in an arithmetic expression. ln part¡cular, the left-to-

right order that is normally employed in decoding language need not

be employed in processing arithmetic expressions. The three

elements of this category are; (1) computations involving additive

operat¡ons can be done in many directions, (2) computations

involving multiplicative operations can be done in many directions,

and (3) computations involving both additive and multiplicative

operations can be done in many directions. See Appendix A - items

30, 45, and 62.

Categor-v: functional principles.

The functional principles_ are analogues of the principles of

algebra that can serve functional purposes in students'

computational procedures. That is to say, functional principles

guide students in doing arithmetic in ways that enable or simplify

computational tasks. Functional principles are useful in simplifying

computational tasks, and can also provide alternative procedures or
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justify procedures. The five elements of this category are; (1) the

associative principle in additive and multiplicative processes, (2)

the commutative principle in additive and multiplicative processes,

(3) the distributive principle, (4) the equal factors principle (that it

is possible to multiply both parts of a division expression by the

same non-zero number), and (5) the equal addends principle (that it

is possible to add the same number to both parts of a subtraction

expression). See Appendix A - items 14, 17,27,42, and 61.

Functional principles are ultimately used under the aegis of

the notion that 'lf you don't like the way something looks, change it

to a more useful or convenient form.'. That notion underlies more

advanced algebraic processing, but it is not tested here.

Dimension 3: Reasoninq

Three categories of reasoning show promise; (1) inductive

reasoning, (Z) deductive reasoning, and (3) isomorphic reasoníng.

Categorv: inductive reasoning.

lnductive reasoning concerns probable induction, the faith that

an observed regularity or pattern will persist. For the purposes of

this study, the domain is restricted to arithmetical patterns in

parallel number sequences, in-individual number sequences, and in

results derived from arithmetic operations. The three elements of

this category are; ( 1 ) sensing a joint pattern in two sets of numbers,

(2) sensing a pattern in a sequence of numbers, and (3) sensing a
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pattern in arithmetic results. See Appendix A - items 28, 50, and

s8.

Categorv: deductive reasoning.

Deductive reasoning concerns some of the components of

conventional logical reasoning. Seven of what seem to be the most

useful subcategorizations of logic have been chosen for purposes of

the study. The seven elements of this category are; (1) modus poens,

(2) converse, (3) transitivity, (4) modus poens in numerical

relationships, (5) noncontradiction, (6) negation, and (7)

contrapositive.

Modus poens concerns the 'lF --> THEN' relationship. lf the

first part is true, then the second part is also true. Two types of

relationships are included for modus poens - non-arithmetic and

arithmetic.

Converse entails reversing an 'lF --> THEN' relationship. The

converse of an assertion is not necessarily true.

Transitivity concerns concatenated lF --> THEN relationships;

if a -> b, and if b -> c, then a -> c.

'Noncontradiction' as used here is the 'law of the excluded

middle'. An assertíon is true or it is not. There are no other

possibilities.

Negation concerns a 'not' notion. Both negation and

noncontradiction involve two state logic, a yes/no form of

reasoning.



Contrapositive concerns the negation of a conclusion; if P -> Q,

then not q -> not p.

See Appendix A - items 1, ?O, 41, 43,46, 56, and 59.

Category: isomorphíc reasoning.

lsomorphic reasoning concerns analogies between systems.

Whether or not two systems have superficial features in common,

they can have common features at underlying levels that make them

analogous systems. ln mathematics, it is common to use such

analogies in the sense that "working here" is like "working there".

Practice sometimes requires students to employ that sense in

connecting manipulatives (such as Dienes blocks) and pseudo-

concretes to more abstract mathematical symbols and notions.

Students are expected to draw analogies by recognizing common

features in a familiar everyday world and in the less familiar world

of mathematical ideas. Out of this arises the lowest level of

isomorphic reasoning; concluding'that working in a world of

concretes or pseudo-concretes can be supposed to be like working in

a world of mathematics.

It is also possible to search for common features that underlie

differing systems. For example, addition can be compared to

multiplication, union can be compared to add¡t¡on, arithmet¡c can be

compared to algebra, grammar can be compared to the hierarchy of

operators, and so on. This points to a higher level of isomorphic

reasoning; concluding that working in one abstract system can be

just lÍke working in different one.
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ln summary, the categories of isomorphic reasoning and

inductive reasoning overlap in that sensing a pattern is similar to

recognizing a common feature. However, isomorphic reasoning

embraces a more general notion of sensing a pattern, one that may

be intimately related to transfer of learning.

The three elements of this category are drawing analogies

between; ( 1 ) pseudo-concrete representations and mathemat¡cal

representations, (2) differing general symbolic representations, and

(3) d¡ffering mathematical representations. See Appendix A - items

35,40, and 53.

Dimension 4: Lanquaqe

There is one category in this dimension.

Cateqpry: relationship betwqen language and mathematics.

Students must simultaneously deal with two symbolic

systems, language and mathematics. lt may be useful for students

to see them as related.

Only a small subset of the many underlying relationships are

included in this category. ln particular, variables occur in both. For

example, words like 'she', and 'somebody', are, in effect, variables in

language. As well, mathematiis and language both can be used to

describe events that occur in daily life. The student must translate

mathematical notions into language and vice versa. The three

elements of this category are; (1) recognizing analogous roles

concerning replacement, (2) expressing arithmetic operations by
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means of language, and (3) expressing number sentences by means of

language. See Appendix A - items 22, 31, and 47.

Dimension 5: Probl_er4 S-olyinq

There is one category in this dimension.

CAtegory: template fecognition.

Template recognition concerns attaching arithmetic templates

to word problems. While this can be done using number sentences

and by at least two kinds of diagrammatic representation, only

number sentences (such as '12 - ? = 5') are considered for purposes

of this study. These templates are derived from the relationships

between arithmetical expressions and the contexts to which they

are attached. That is to say, a template represents a mathematical

way of representing some act¡on or state in the concrete world.

Viewing problem solving as beginning with a search for

templates differs from the viewpoint suggested in much current

theory (But see, for example, MacPherson & Rousseau (1988),

Carpenter & Moser (1982), Vergnaud (1982)). From this point of

view, a student first searches for the structure of a problem (the

template). lf one is found, the student next selects an algorithm

suited to calcutating the answer. The algorithm may or may not

involve the same arithmetic operation as the template, For example,

for the word problem, 'Mary had 3 cookies, Her friend gave her some

more. Now Mary has 11 cookies. How many cookies did Mary's friend

give her?', the template approach involves identifying the structure
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of the problem and writing the corresponding number sentence, '3 + ?

= 1 1'. This template reflects what 'happened' according to the word

problem. Next, the answer may be found by using the open addition

algorithm or by transforming the addition number sentence into a

subtraction one and subtracting.

Only three templates have been included in the model for

purposes of this study. A model of precursors based solely on

templates would require an extensive study of the relationship

between template recognition and algebra. The three elements of

this category are; (1) sensing a subtraction template (comparison),

(2) sensing a multiplication template (comparison), and (3) sensing

an addition template (put together). See Appendix A - items ?9, 38,

and 51.
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A Model concerning Pedagogical Style of Algebra Teachers

There are a large number of ways teachers' styles can be

categorized. For purposes of this study, only two polar styles and a

blend of them are identified. These styles are; (1) procedural, (2)

blend of procedural and exploratory, and (3) exploratory

Category 1: procedural.

A teacher whose style falls into this category is one who most

of the time presents students with a finished package of algorithms

that are to be mastered. lnteractive questíoning or exploration are

discouraged. Mathematics is a set of 'things you do'.

Classes conducted in this manner are characterized by whole

class teaching and individual seat work. Algorithms do not evolve.

They are delivered entire, and followed by repetitive pract¡ce. The

emphasis is on mechanical processing, not understandings. The

teacher may ask questions, but they tend to be rhetorical or at the

recall level.

Cateqory 3: exploratory.

A teacher whose style falls into this category stresses

understanding by developing principles and concepts in conjunction

with processing skills. lnductìve and deductive reasoning are

encouraged by drawing inferences from explorations and by exploring

the consequences of premises. Students may be encouraged to

devise and present not¡ons or symbols that may be appropriate to the

topic, to use trial and error, to predict and verify, to develop and
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operate from a Set of principles and concepts, to conjecture about

relationships, to pursue and develop alternate approaches, and to see

external analogies. ln short, the teacher and students act in concert

in a collaborative model of learning that emphasizes exploration and

the creation of knowledge.

Cateoory Z: blend of procedural and exploratory.

This category encompasses the large zone that lies between

the two categor¡es, procedural and exploratory. A teacher whose

style falls into category 2 exhibits a blend of the characteristics of

categories 1 and 3.
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CHAPTER 4

THE METHODOLOGY OF THE STUDY

Overview of the Methodoloqv

The study consisted of five phases. ln order,

preparat¡on, (2) collection of data, (3) scoring, (4)

analysis sets, and (5) analysis of data.

The following flowchart provides an overview

they are; (1 )

creation of data

of those phases.

Achievement

Construction of models

Construction of lnstruments
Preparation

Selection of
participants

Model knowledge
Collection of data

Teacher style

Scoring

Creation of data analysis sets (4, B, and C)

Analysis of data

Creation of categories by
factor analysis. Then the
formal testing of category
models using the analysis sets

Exploratory tests
using combined
data sets

Formal testing of element
models using the analysis sets
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Preparation

There were four stages. They were; ( 1 ) construction of a

model concerning precursors in algebra, (2) construction of a model

concerning pedagogical styles of algebra teachers, (3) construction

of instruments, (4) selection of participants.

Preliminary thinking on the categories and elements that

might be included in the model was stimulated while teaching

mathematics to adults over the span of several years príor to 1990

and by further analysis of the l¡terature. The model was constructed

in 1990 by logical analysis. The categories and elements of the

model are described in chapter 3.

Constryqlion of a Model concerninq .Pedaqoqical Stvles ot

Alqebra, feacllets
After a search of the literature, the model was constructed in

1 990.

Const!'uctioIl of lnçtrumentg

Four instruments were constructed; ( 1 ) model knowledge, (2)

achievement ¡n algebra, (3) achievement in algebraic problem

solving, and (4) pedagogical style of algebra teacher. Validity was

addressed by subjecting the instruments and items to external

scrutiny and modifying them accordingly.
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The model knowledge inst-rqment.

A model knowledge instrument was constructed that reflects

the generic model of suggested precursors. The purpose of this

instrument is to measure students' knowledge of the model. Each

item of the instrument operationalizes one element (a detailed

precursor) of the model. The instrument (Appendix A) consists of 63

multiple choice items with f¡ve choices per item including 'l DON'T

KNOW'. See Appendix E, Table E-1 , for details concerning the

relationship between the items and the categories of the model.

To address the content validity of items, the first draft of the

instrument was administered to a group of students taking a

, university level mathematics course. Each item was discussed with

that group. A second draft was then administered to sixteen grade

nine students to assess readability and item difficulty. A th¡rd

draft was reviewed by mathematics education specialists to further

assess the content validity of the items. A fourth draft was

administered to three intact grade nine classes so as to further

assess readability, item difficulty, and completion time. A f¡fth

draft was again reviewed by mathematics education specialists.

The sÍxth and final draft was used in the study to measure the model

knowledge of students.

The algebra achieve.ment instrument.

The instrument concerning achieveinent in algebra (Appendix B)

consists of items that reflect curricular objectives. For most

topics, three items (low difficulty, medium difficulty, and high
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difficulty) were used to measure knowledge. An independent panel

of nineteen teachers scrutinized the instrument to assess content

validity, difficulty level, and probable completion time.

Modifications were made as necessary.

A comparison with mid-term achievement data on a randomly

selected subset of students (n = 109) involved in the study suggests

a reasonably close relationship between results on the algebra

achievement instrument and those of the teacher-made tests. The

correlation between the two was .71.

The algebraic problem solving achievement instrument.

The achievement in algebraÍc problem solving instrument

(Appendix C) consists of items that reflect curricular objectives.

An independent panel of nineteen teachers assessed content validity,

difficulty level, and probable completion t¡me. Modifications were

made as necessary. The sixteen algebra teachers participating in

the study provided mid-term achievement data for problem solving

on a randomly selected subset of students (n = 109) involved ín the

study. The correlation between scores on the teacher-made problem

solving tests and scores on the algebraic problem solving

achievement ¡nstrument was.61. lt should be noted that in this case

the teacher-made tests tapped a broader range of understandings and

skills that did this set of items.

The pedagogical style of algebra teacher instrument.

The design of the instrument used to assess the pedagogical

styles of algebra teachers (Appendix D) was inferred from a search
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of the literature. An independent panel of nineteen teachers

assessed the instrument for item consistency and content validity.

Modifications were made as necessary.

Selection of ParticiPants

The participants in the study were selected from four school

divisions. Schools within these divisions were selected so as to

maximize variations in socio-economic status and variations of

involvement in French lmmersion. The principal of each school

selected one or two intact grade 9 classes for participation in the

study, again so as to maximize diversity in mathemat¡cs

achievement. The overall effect was to create a diverse sample of

students. The sample consisted of 375 students and 16 algebra

teachers in eighteen grade nine classes.
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Collection of Data

Four sets of data were collected. ln order, they were; (1) data

on model knowledge, (2) data on teacher style, (3) data on

mathematics achievement based on teacher-made tests, and (4) data

on achievement in algebra and algebraic problem solving.

Collection of Pata on Model Knowledoe

Student knowledge of the model was measured over a span of

two weeks in October, 1990 while teachers were revÍewing

arithmetical topics. Students were given 55 minutes to complete

the instrument.

Collection of Data on Teacher rStvle
The pedagogical style of algebra teacher instrument was sent

to teachers in February, 1991 (during the school midterm). All of

the teachers involved completed the instrument and returned it

within two weeks.

Teachers provided data on students' achievement ¡n

mathematics based on teache.r-made midterm tests. Those data

were collected from a random sample of students (n =109) in

February, 1 991 .

n Achi
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Collection of Achievement Data (the studv's instruments)

The algebra achievement instrument was administered over a

period of three weeks in late May, 1991. Students were allowed 40

minutes to complete it. Students were given a five minute breal<

after completing the instrument.

Alqebraic Problem Solving Achievemen.t.

The algebraic problem solving instrument was administered

after the algebra achievement instrument. Students were allowed

30 minutes to complete it.
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Scoring

There were four components; (1) scoring the model knowledge

test, (2) categorizing the pedagogical style of teachers, (3) scoring

algebraic problem solving achievement, and (4) scoring algebra

achievement.

Sco[inq the Model Knowledqe Test

Each item was scored either 'O' (the response was incorrect) or

'1 ' (the response was correct). See Appendix H for the answer key

and some discussion of items. A random sample of 20 completed

instruments was rescored so as to detect any possible variations in

scoring standards (see Appendix F, Table F-1, for details).

Cateqorizino the Pedaqooical Stvle of Teaphers

The instrument of 14 items, including two distractors (items

10 and 14 ), was used to categorize teacher style. A Likert scale of

five response levels was employed. Values were attached to the

Likert scale response levels:

Very rarely -> 1

Sometimes -> 3

Flalf the time -> 6

Frequently -t 9,

Almost always -> 11

For purposes of this study, items were classified as positive

or negative. ltems 1,4,5,7, B, and 9 are considered to be negative.

For those items, negative values were assigned to the Likert scale
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response levels. ltems ?,3,6, 11 ,12, and 13 are considered to be

posit¡ve. For them, positive values were assigned to the response

levets. The resulting range of values ass¡gned to the responses was

from -1 1 to +1 1.

A score for the instrument was obtained by summing the

integers that were assigned to the 12 items. The resulting scores

ranged from -15 to +12. Those scores were used to categorize the

teachers into three pedagogical styles. The criterion for inclusion

into the exploratory pedagogical style (coded '3') was a score

greater than +5. The criterion for inclusion into the procedural

pedagogical style (coded'1') was a score less than -5. The criterion

for inclusion into the blend of procedural and exploratory

pedagogical style (coded '2') was a score in the range -5 to +5

inclusive.

Scori.nq Alqebraic.. Prgþle,m - Solvinq - Ac,hievemefìt

Items on the algebraic problem solving achievement

instrument were subjectively weighted so âs to reflect the

complexity of the problems. A score on the problem solving

achievement ¡nstrument was obtained by summing those point

values.

So as to minimize any confounding of algebraic achievement

and problem solving achievement, algebraic errors in processing

were not penalized. The intent was to isolate the problem solving

component of achievement. However, processing errors (.5 points

per error) were summed and are referred to as the algeb.ra
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adjustment. The algebra adjustment was included in the assessment

of achievement in algebra.

A class-stratified random sample of 34 completed

instruments was rescored so as to discover any possible variations

in scoring standards (see Appendix F, Table F-2, for details).

Sco[inq Aloebra Achievement

Items on the algebra achievement instrument were

, subjectively weighted so as to reflect the complexity of the

questions. An initial score on the algebra achievement instrument

was obtained by summing achieved point values for items. For

purposes of this study, achievement ¡n algebra was taken to

comprise both that initial score and the algebraic processing

component of the problem solving test. Accordingly, the final score

in algebra was obtained by subtracting the algebra adjustment score

from the initial score.

A class-stratified random sample of 34 completed

instruments was rescored so as to discover any possible variations

in scoring standards (see Appendix F, Table F-3, for details).
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Creation of Data Analysis Sets

Attrition
The initial sample size was 375. Natural attrition removed 33

students who were absent for the achievement tests. Eleven further

students whose data were suspect for a variety of reasons were also

removed. The final sample size was 331, a loss of 44 students.

DaIa Analvsis Sets

The formal test of linear regression hypotheses requires at

least two separate índependent sets of data - an exploratory set in

which a regression model can be formulated and a second set for the

formal testing of that model. For this study, it proved useful to

create a third set of data for purposes of independently testing a

further formal hypothesis.

Accordingly, the 331 students were randomly assigned to three

data sets (4, B, and C). The assignments were stratified by class.

Data set A (n = 1:_6) was to be used to explore and develop

regression models (hypotheses) and to assess item consistency.

Data set B (n = 105) was reserved for the formal testing of the

hypothesis concerning achievement in algebraic problem solving.

Once that purpose was served, data set B was also used for exploring

and developing regression models concerning algebra achievement.

Data set C (n : 100) was reserved for the formal testing of

hypotheses concerning algebra achíevement.

While the stratifíed random assignment of students' scores to

sets A, B, and C can be taken to establish the equivalence of those
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sets of scores, two broad indícators were employed to test for that

equivalence. They are; (1) the means and standard deviations of

scores for model knowledge and achievement and (2) gender

composition. The results of those tests are provided in chapter 5.

Although the model knowledge instrument scarcely qualífies

as a one factor test, a lower limit of item consistency was

estimated by correlatíng each item with the total score and by

calculating a split-half consistency coefficient using odd-numbered

items and even-numbered items. For the algebra and algebraic

problem solving achievement instruments, a lower limit of item

consistency was estimated in the same way. The results of those

tests are provided in chapter 5.
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Analysis of Data

Ove!,iew of the Analvsis

There were two components of the analysis of data; (1) the

formal testing of hypotheses concerning achievement and (2) the

exploration of other hypotheses.

Formal tests.

The formal tests are discussed in this chapter. For this

purpose, data sets A, B, and C were used separately and

independently for developing regression models and for formal

testing.

As is suggested in chapter 1 and is outlined in the following

flowchart (see page 63), regression models of the precursors of

algebra were developed and tested in two ways; using the elements

as predictors and using clusters of elements, here called categories,

as predictors. For that purpose, the items of the model knowledge

instrument served to operationalize the elements of the generic

model of precursors of algebra. Employing two levels of analysis

allows for the identification of both general precursors (categories)

and specific precursors (elements) and increases the likelihood of

identifying important ones.

However, only one regression model concerning algebraic

problem solving was developed. lt was tested in one wâY, using

categories as predictors.
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lnformal _(exploratory) tests.

The details of those tests and the results are discussed in

chapter 6. ln this component, hypotheses concerning gender, teacher

style, and the reasoning dimension of the model were explored. Data

sets A, B, and C were combined for that purpose.

lhe Forrlal Testiqg qf .Hvpoçheses

The following

hypotheses tested

flowchart provides an overview of the a priori

in this study.

Model
from set
A, tested
onB

Creation of
categories:
Factor
analysis

Hlgebraic problem
soluing
achieuernent

Category
level

Creation of
categories:
Factor
analysis

ßlgebra
achieuennent

Model from set
A, tested on C

Element level
Model from set
B, tested on C

Model
from
set ,4,

tested
onC

Model
from
set B,

tested
onC
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So lvin q

Ove[view, of the, analysis.

The formal hypothesis concerning problem solving was tested

only at the category tevel. No analysis at the element level was

done because problem solving was an ancillary concern of this study,

and doing so would have called for a part¡tion of a that would

attenuate the likelihood of obtaining significant results.

The formal test of the hypothesis (a = .05) was conducted on a

regression model that consisted of categories derived from a factor

analysis, rather than from the initial categories of the generic

model of precursors. Abandoning the initial categories resulted in

more objectively-determined categories for testing the hypothesis.

The regression model was determined from data set A. The

formal test was done using data set B. The hypothesis concerning

problem solving was tested first so that data set B would be

available for exploring and developing additional regression models

concerning algebra achievement.

There were three steps. involved in determining the regression

model. First, a set of possibly useful regressors was obtained by

considering the capacity of each item, taken separately, to predict

achievement. An itern was included in the set if its contr¡bution to

pZ was greater than or equal to .05. Next, the selected set of items

were factor analyzed (using principal components) to create
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categories. The result¡ng categories were then subjected to forward

stepwise regression for purposes of determining the regression

model. The criterion for inclusion was set at a level of significance

of .1.

The regression model for data set A obtained from the

stepwise procedure was formally tested on data set B. The formal

test involved three steps. First, the regression equation derived

above was used to calculate predicted values of the dependent

variable in data set B and then those predicted values were

correlated with the actual values. The resulting correlation

coefficient was used to calculate an F-statistic using the equation

(Hays, 19BB):

n2

F -f-p- (4-r)

^r-l(-r
where 'R2' is the square of that correlation coefficient, 'K' is the

number of regressors, and 'N' is the number of achievement Scores'

The calculated F-statistic was compared to the criterion F-stat¡st¡c

(o = .05).
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Dependent Variable: Achievement in Alqebra

Overview of the analysis.

The analysis was done at both element and category levels.

Four hypotheses were tested, two at the element level and two at

the category level at a family-wise a* of .?O. That family-wise

error was partitioned with each test conducted at a = .05.

The researcher felt that since this is an exploratory study the

identification of any potential precursors of algebra is of sufficient

importance to justify the additional risk of obtainíng fortuitous

results that can arise from adopting a generous family-wise

criterion of significance.

OJerview of the element leve-l analyses.

The regression model for the test of the formal hypotheses at

the element level was generated twice, once using Set A and again

using set B after it had been used to test the formal hypothesis

concerning problem solving.

ln each case, the regression model was generated from the

individual items and the interactions of items in the model

knowledge instrument.

While they were generated independently, both models were

tested in set C, mandating the partition of overall signifÍcance

referred to above. Each regression model was tested at a = .05'



67

Creation of the element models and the formal testing of them.

There were two steps involved in creating each regress¡on

model.

First, a set of probably significant regressors was obtained'

For that purpose, the capacity of each item and interaction, taken

individually, to predict achievement was determined- An item or

interaction was included if its cgntribution to RZ was greater than

or equal to .05, Only interactions generated from items in a

category of the generic model were cons¡dered'

Second, the result¡ng Set of regressors was subjected to a

forward stepwise regression. The criterion for inclusion was set at

a level of significance of .1 .

Both regression models were formally tested on data set C in

the same way. Three steps were involved in the formal test. First,

the regression equat¡on derived above was used to calculate

predicted values of the dependent variable in data set C and then

those predicted values were correlated with the actual values- The

resulting correlation coefficient was used in equation 4.1 to

calculate an F-statist¡c. The calculated F-statistic was compared

to the criterion F-statistic (ø = .05).

There is a substantial risk that the two element level

regression models may have few or no regressors in comm6n' lt is

possible that a good number of items may account for about the

Same variance in algebra achievement and, because of random

fluctuations, promote differing sets of them for each model (Neter,
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Wasserman, & Kutner, 1985). The likelihood of that occurring is

further increased by these regressors being dichotomous.

Overview of the category level analvses.

The regression model for the test of the formal hypotheses at

the category level was generated twice, once using set A and again

using set B after it had been used to test the formal hypothesis

concerning problem solving.

ln each case, the regression model consisted of categories that

were determined by a factor analysis, rather than from the initial

categories of the generic model. Abandoning the initial categories

resulted in more objectively-determined categories for testing the

hypotheses. This approach is consistent w¡th that used for testing

the category level hypothesis concerning problem solvíng.

While they were generated independently, both models were

tested in set C, again mandating the partit¡on of overall

significance. Each regression model was tested at o = .05.

Creation of the categorlr models and the formal testing of them.

There were three steps involved in creating each regression

model.

First, a set of probably significant regressors was obtained.

For that purpose, the capacity of each item, taken individually, to

predict achievement was determined. An item was included if its

contribution to RZ was greater than or equal to .05. Next, the

selected set of items were factor analyzed (using principal

components) to create categorieS. The resulting categories were
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then subjected to forward stepwise regression for purposes of

determining the regression model. The críterion for inclusion was

set at a level of significance of .1.

Both regression models were formally tested on data set C in

the same way. The formal test was the same as that used for

testing the element level regression models. The stepwise-derived

equation was used to calculate predicted values of the dependent

variable ín data set C and those predicted values were correlated

with the actual values. The resulting correlation coefficient was

used in equation 4.1 to calculate an F-statistic. The calculated F-

statist¡c was compared to the criterion F-statistic (ø : .05).
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CHAPTER 5

RESULTS AND CONCLUSIONS - ThC FOTMAI TCSTS

This chapter conta¡ns four sets of results and conclusions.

They concern; (1) formal tests of a priori hypotheses, (2) informal

observations, (3) item consistency of instruments, and (4)

' equivalency of data sets.

Formal Tests of A Priori Hypotheses

Overview of the Formal Tests

For all formal tests of hypotheses, the initial regression

models and the descriptive stat¡stics were determined using the '

Macintosh statistical software, JMP (SAS,19B9)' The factor

analyses and the Stepwise regression analyses were done using the

Macintosh statistical software, Statview ll (Abacus Concepts,1987).

Two levels of analysis were involved in the formal tests, an

element level and a category level. The following chart provides an

overview of all formal tests of hypotheses'
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Model
from set
A, tested
onB

Creation of
categories:
Factor
analysis

fllgebraic problem
soluing
achieuement

Category
level

Creation of
categories:
Factor
analysis

fllgebra
achieuement

Model from set
A, tested on C

Category
level

Element level
Model from set
B, tested on C

Model
from
set A,
tested
onC

Model
from
set B,

tested
onC

Five formal tests were conducted. For those tests, the

dependent variable was either algebraic problem solving

achievement or algebra achievement. Furthermore, for each formal

test in this study the regression model derived from one set of data

was tested on a fresh set.

There was one test concerning algebraic problem solving. That

category level test was conducted at ø = .05.

Four tests concerned algebra, two at the element level and two

at the category level at a family-wise ar" of .2O. That family-wise

error was partitioned with each test conducted at a = .05.
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For purposes of category level analyses, categories are derived

from factor analyses (using príncipal components) and consist of at

least one element. Those categories or elements were used as

independent variables in regression models with achievement as the

dependent variable. For purposes of element level analyses, each

element is taken as an independent variable. For both levels of

analysis, the optimum predictors of achievement were obtained

using stepwise regression.

The element level analyses were done to ident¡fy any elements

as precursors whose ¡mportance may have been overlooked in the

category level analyses, to provide fine detail on the broadly defined

precusors that emerged from the category level analyses, to provide

additional information concerning the importance of identified

precursors, and to provide a way of considering the interactions of

elements as precursors.

The data allowed for three sets of formal tests of hypotheses.

They are; (1) a category level test on achievement in algebraic

problem solving, (2) two category level tests on achievement in

algebra, and (3) two item level tests on achievement in algebra.

Each formal test is based on the correlation between the predicted

values of the dependent variable derived from a regression model

and the actual values of the dependent variable. Both predicted and

actual values are derived from a data set reserved for formal

testing.
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The rejection of the null hypothesis for a regression model

resulted in those regressors, whether categories or elements, being

interpreted as likely precursors of algebra. lndividual elements

were interpreted as single precursors.

There were complications with interpreting the categories as

precursors. For purposes of this study, it was desirable to

determine a nominal notion for each category that best represents

the element(s) that comprise the category. That notion serves as a

more broadly defined precursor. To that end, it would have been

preferable if the elements comprising a category derived from

factor analysis were drawn from one category of the a priori model

of precursors.

That did not happen very often. More often, the elements

comprising a factor analysis-derived category came from two or

more a priori categories.

Slnce that was the case, nominal notions of categories were

determined by logical analysis, weighted by considering the RZ

contribution of the elements comprising the category.

The following discussion will provide the information

concerning the five formal tests, identify the categories from the

category level analyses (or tñe elements from the element level

analyses), and provide a likely explanation for what the categories

(or elements) mean.
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Cateqorv Level Test: Achievement in Alqebraic Problem

Solvinq
Data set A was used to derive a category level regression

model. A factor analysis produced 16 factors. Following a stepwise

regression, eight categories remained.

The regression model consisting of those eight categories was

formally tested at d = .05 using the data of set B (see Table 1).

Table 1

Formal Test Category Level Regression Model derived from Set A.

Dependent Variable - Achievement in Algebraic Problem Solving

Test Parameter Value

R (predicted / actual) .s68

RZ (predicted / actual) .32?

K B

N 105

Deqrees of freedom B/96
c[ .05

F - criterion 2.05

F - calculated 5,7

The null hypothesis is rejected.

It appears that the categories used in the model may be

precursors of algebraic problem solving.
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Once the formal test was completed, an informal test was

conducted that optimized on chance by allowing the regression

model to determine the ß coefficients independently in each of three

data sets; set A; set B; and sets A, B, and C combined. The results

concerning the contribution to RZ of the model in each of those sets

support the conclusion of the formal test (see Table 2).

Tabte 2

Contribution to 8Z of the Set A-derived

Model used independentl]¡.

Dependent Variable, Achievement in Algebraic Problem Solving

Data set Set A Set B Sets A, B, C combined

P2 contribution .456 .403 .366

Discussion of the suggested precursors of problem solvin&

Eight categories emerged as suggested precursors of algebraic

problem solving. Nominal names for those categories were

determined using the approach mentioned above. The resulting

precursors in order of categories are; ( 1 ) the locking role of

arithmetic operators, (2) functional principles of arithmetic, (3) the

locking role of arithmetic operatois, (4) the alteration of structure,

(5) inductive reasoning, (6) inductive reasoning, (7) inverse

operations, and (B) deductive reasoning.

The elements/items comprising those eight categories are

shown in Table 3. ltems in the outl¡ne font in Table 3 are common to
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Tables 6 and 7. Those tables concern the element organization of

the category level models for algebra achievement.

Table 3 also provides the R2 contributions of the individual

categories using data sets A, B, and C combined.

Table 3

Problem solving - Category level Regression Model:

Element organization and RZ contributions of Categories taken

individuallv in the combined sets A, B, and C

Category Elements comprising the
category: items of the model
knowledqe instrument

P2 contribution

of the category

1
3 .017

2
18, 4?. .033

3
32, 9, 27 .083

4 23 .089

5
49, 58 .091

6
11 6o 5O .120

7
v, 62, 46, 56

.1 51

B
54, 63,1 .152

The categories are discussed in order of their contr¡but¡ons to

p2 beginning with the category having the greatest contribution.

The items comprising those categories are provided in

Appendix A.
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Category 8 consists of items 63 and 54. ltem 63 concerns the

Structural role of symbols, additive operators Separate an

arithmetic expression into chunks (terms). ltem 54 concerns do and

undo pairings of operators, addition and subtraction are inverse

operations. As item 63 also has a do/undo component in its design,

it is reasonable to assume that category 7 concerns inverse

operat¡ons (dolundo pairings of operators). That notion may play a

role when students manipulate equat¡ons while solving problems.

Category 7 consists of ¡tems 7, 62, 46, and 56. ltem 7

concerns the structural role of symbols; multiplicative operators

bind chunks (terms) together. ltem 62 concerns visual order in

relation to computation; multiplicat¡on does not have to be done in a

left-to-right order. ltem 46 concerns deductive reasoning, if p

impties q then not q implies not p. ltem 56 concerns deductive

reasOning, the not¡on of negation or not. ltems 46 and 56 account

for 9Oo/o of the variance within this category. lt is reasonable to

assume that category 8 concerns deductive reasoning. lt may be that

deductive reasoning plays a role when students consider the various

relationships that might be involved in a problem.

Category 6 consists of items 1 6 and 50. ltem 16 concerns

multiple meanings of symbols; the symbol '-' can indicate the unary

operator, opposite of. ltem 50 concerns inductive reasoning, sensing

a regularity in a number sequence. As item 50 accounts for 83o/o oÍ

the variance within this category, it is reasonable to assume that

category 6 concerns inductive reasoning.
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Category 5 consists of items 49 and 58. ltem 49 concerns

binary and unary operators; square root is a unary operator. lt is

unclear how this notion relates to problem solving as square root ¡s

not involved in the achievement test. ltem 58 concerns inductive

reasoning, sensing a regularity with respect to computational

results. ltem 58 accounts for about 7Oo/o of the variance within this

category. lt is reasonable to assume that category 5, like category

6, concerns inductive reasoning.

There seem to be two categories which involve inductive

reasoning but the reason is not clear. This suggests that inductive

reasoning, whether or not it has two components, is an ¡mportant

precursor of algebraic problem solving. As inductive reasoning

tends to involve trial and error in making judgments, it may

influence students' attempts (or checks) when solving problems.

Those students who are competent in inductive reasoning will likely

be more proficient with using trial and error as a strategy for

problem solving and will likely be more successful at solving

problems.

Category 4 consists of item 23. lt concerns the alteration of

structure; the numerical value of an arithmetic expression is

invariant as the structure of the expression changes through

computation. The notion may be important when students first

consider the composition of the algebraic expression or equation

that could represent a problem. lt may be that the generation and

selection of appropriate expressions is influenced by an



79

understanding that the structure of an expression may change but its

value remains constant.

Category 3 consists of items 27,32, and 9. They appear to be

unrelated. ltem 27 concerns functional principles, the commutative

principle. ltem 32 concerns multiple meanings; the symbols '+' and

'-' can indicate opposite directions. ltem 9 concerns the locking role

of operators; square root is a more powerful lock than addition.

Slnce item 9 accounts for 77o/o of the variance within this category.

It is reasonable to assume that this category principally concerns

the locking role of operators in arithmetic, a notion related to the

hierarchy of operators. An understanding of that notion may assist

students when first considering expressions or equations that

represent problems.

Category 2 consists of items 42 and 18. Both items concern

functional principles - understanding principles such as the

distributive principle in a way that directly supports computat¡on.

Item 42 is included in the functional principle category in the

research model. ltem 1B which concerns do and undo pairings in

relation to multiplication and division can be ínterpreted as a

functional principle as well. lt is not clear how the notion of a

functional principle in ar¡thmèt¡c is related to problem solving in

algebra.

Category 1 consists of item 3. lt concerns the locking role of

operators; when an arithmetic expression contains brackets, it does

not necessarily imply that whatever is in the brackets must be done
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first. The second occurrence of this notion as a precursor supports

the conclusion that attention should be paid to students

understanding priorities of computation. lt may play a role in the

way that students organize aspects of problems before they

represent them as expressions or equations.

Three of the eight categor¡es, inductive reasoning (occurs

twice) and deductive reasoning, are part of the dimension of

reasoning in the a priori model. Furthermore, those three categories

have relatively large contribut¡ons to R2 . The "not too Smart"

school of thought concerning difficulties in algebra may interpret

that as an indicat¡on that intelligence is a factor in algebraic

problem solving. Even ¡f it is the case, the results suggest which

components of intelligence are relevant. They appear to be

teachable.

Categories 1 and 2 have lower contributions to R2 concerning

achievement ¡n algebraic problem solving than do the other

categories. lt may be that the notions contained in those categories

play some part when students translate word problems into

appropriate algebraic expressions or equations. lf the precise

mechanisms by which those notions assist problem solving cannot be

found, it would be difficult tò incorporate them ¡nto a curr¡culum

that pays attention to the precursors of algebraic problem solving.

It ¡s ¡nteresting that template recognition' category 18 of the

the a priori model, does not appear to be a predictor of algebraic

problem solving. This result is unexpected considering that the
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templates which are included in the model knowledge instrument are

well represented in the problem solving achievement instrument.

There are a variety of possible explanations but this

provocative result certainly suggests that the role of template

recognition in algebraic problem solving requires additional study.

Overview of the Formal Tests concerninq Alqebra

The researcher felt that since this is an exploratory study the

identification of any potential precursors of algebra is of sufficient

importance to justify the greater risk of obtaining fortuitous

results that may arise from additional tests of hypotheses.

Accordingly, four tests were conducted, two at the category level

and two at the element level.

Each formal test was done at a = .05. The o was obtained by

partit¡on¡ng the family-wise aFw of .20 into four equal parts.

Results based on the "one shot" determination of R2 invariably

opt¡m¡ze on chance. lt must be restated therefore that for each

formal test in this study the regression model derived from one set

of data was tested on a fresh set. For that reason, the results can

be safely generalized to the population from which this sample

came.
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Two formal tests were conducted. They involve regression

models for which the regressors are categories. One regression

model is derived from data set A, the other from set B. The results

are discussed separately.

Regression model derived from data set_ A.

Data set A was used to derive a category level regression

model.

Naturally, the same factor analysis as before is used but Since

we are now predicting algebra achievement, we obtain different

regression models.

A factor analysis produced 18 factors. Following a stepw¡se

regression, nine categories remained.

The regression model consisting of those categories was

formally tested at a = .05 using the data of set C (see Table 4).
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Table 4

Test Parameter Value

R (predicted / actual) .575

P2 (predicted / actual) .331

K 9

N 100

Degrees of freedom 9/91
cI' .05

F - criterion 2.00

F - calculated 5.00

The null hypothesis is rejected.

It appears that the categories used in the model may be

precursors of algebra.

Once the formal test was completed, an informal test was

conducted that optimized on chance by allowing the regression

model to determine the ß coefficients ¡ndependently in each of three

data sets; set A; set C; and sets A, B, and C combined. The results

concerning the contribut¡on to RZ of the model in each of those sets

support the conclusion of the formal test (see Table 5).
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Table 5

Contribution to 82 of the Set A-derive

Model used independently.

Dependent Variable. Achievement in Algebra

Data set Set A Set C Sets A, B, C combined

PZ contribut¡on .598 .416 .437

Discussion of the suggested precursors of algebra.

Nominal names for the nine categories that emerged as

suggested precursors of algebra were obtained using the approach

discussed on page 72 of this chapter. The resulting precursors in

order of categories are; (1) functional principles of arithmetic, (2)

functional principles of arithmetic, (3) the replacement role of

symbols, (4) two interpretations for this category: (a) a rich

understanding of the multiple interpretations of '-' and (b)

isomorphic reasoning (making analogies), (5) the alteration of

structure, (6) the locking role of operators, (7) inductive reasoning,

(8) inductive reasoning, and (9) inverse operations.

The elements/items comprising those nine categor¡es are

shown in Table 6. ltems in the outline font in Table 6 are common to

Table 7 which concerns the element organization of the category

level model derived from set B for algebra achievement.

Table 6 also provides the RZ contr¡butions of the individual

categories using data sets A, B, and C combined.
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Table 6

Algebra - Category level Regression Model derived from data set A:

Element organization and ,RZ contributions of Categories taken

individuall]¡ in the combined sets A, B. and C

Category Elements comprising the
category: items of the model
knowledqe instrument

P2 contribution

of the category

1
14 .053

2
1 B, 4?. ,060

3 37 .063

4 61, 4@,511 , 6 .084

5
111 , 23

.091

6 32, 9 .10?

7 49, 58 .129

I 50, 16 .136

9
63, 54,36, 47

.z?2

The categories are discussed in order of their contributions to
p2 beginning with the category having the greatest contribution.

The items comprising those categories are provided in

Appendix A.

Category 9 consists of items 63, 54, 36,47. ltem 63 concerns

the structural role of symbols; additive operators separate an

arithmetic expression into chunks (terms). However, item 63 also

includes a do/undo component. ltem 54 concerns do and undo
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pairings of operators; addition and subtraction are inverse

operations. ltem 36 concerns the locking role of multiplicative

operators, a notion related to the hierarchy of operators. ltem 47

concerns the relationship between mathematics and language,

expressing mathematical symbols by means of language. ltems 54

and 63 account for 78o/o of the variance within this category with

item 54 accounting for 560/o of it.

It is reasonable to assume that category 9 concerns the notion

of do and undo relationships between operators. lt appears that if

students understand that notion then their achievement in algebra is

likely to be greater. As category 9 accounts for 51o/o of the R2

contribution of the regression model, the notion of do and undo

concerning operators (inverse operations) seems to be an important

precursor of algebra. lt may play a role when students solve

equat¡ons and manipulate expressions.

Category B consists of items 50 and 16. ltem 50 concerns

inductive reasoning, sensing a regularity in a number sequence and it

accounts lor B4Vo of the variance within this category. ltem 16

concerns the multiple meanings of symbols; the symbol '-' can

indicate the unary operator, opposite of. lt is reasonable to assume

that category I concerns indùctive reasoning.

Category 7 consists of items 49 and 58. ltem 49 concerns

binary and unary operators; square root is a unary operator. ltem 58

concerns inductive reasoning, sensing a regularity with respect to

computational results. ltem 58 accounts for 72o/o of the variance
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within this category. lt is reasonable to assume that category 7

concerns inductive reasoning.

lnductive reasoning is the central notion in categories 7 and B

of the regression model. This strongly suggests that it is important

to learning algebra. lnductive reâsoning may play a role when

students learn concepts and principles in algebra by relating them to

number patterns derived from arithmetic. As well, inductive

reasoning tends to involve tr¡al and error. lt may be that trial and

error strategies may be important to learning algebra. They may

play a role when students determine ways to manipulate expressions

or to solve equations.

Category 6 consists of items 32 and 9. ltem 32 concerns the

multiple meanings of symbols; the symbols '+' and '-' can indicate

opposite directions. ltem 9 concerns the locking role of operators;

square root is a more powerful lock than addition. ltem 9 accounts

for 8Oo/o of the variance within this category. lt is reasonable to

assume that category 6 concerns the locking role of operators ¡n

arithmetic, a notion related to the hierarchy of operators. lt may

play a role when students make decisions concerning the various

ways to manipulate an expression.

Category 5 consists of items 23 and 1 1. ltem 23 concerns the

alteration of structure; the numerical value of an arithmetic

expression is invariant as the structure of the expression changes

through computation. lt accounts for 650/o of the variance within

this category. ltem 1 1 concerns the replacement role of symbols;
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replacement symbols (variables) may be manipulated. The design of

item 1 1 includes a component that is related to the invariance of

value as well. lt is reasonable to asSume that category 5 concerns

the alterat¡on of structure. The notion that structure changes during

computation may play a role when students try to make sense of the

alternate forms of algebraic expressions that occur aS a result of

manipulation.

Category 4 consists of items 40,61, 51, and 6. ltem 40

concerns isomorphic reasoning, making analogies between systems

of representat¡on. ltem 61 concerns functional principles; adding

the same number to both parts of a subtraction is a legitimate

strategy. ltem 51 concerns template recognition, sensing an

addition template. ltem 6 concerns multiple meanings of the symbol

'-', part of the label for a position on the number line. There appear

to be at least two ways to ¡nterpret this category.

One interpretation of category 4 concerns the many not¡ons

that can be attached to the symbol '-'. All four items of category 4

incorporate some notion related to '-'; whether explicitly or

implicitly. ltem 40 incorporates an analogy concerning direction.

Item 61 incorporates subtraction in relation to a functional

principle. ltem 51 incorporates subtraction in the guise of open

addition. ltem 6 involves the symbol '-' in relation to part of the

label for a posit¡on on the number line. That commonalty suggests

that a rich understanding of '-' is a precursor of algebra. lt may play

a role when students manipulate expressions and solve equations.
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A second interpretation of category 4 concerns the notion

conta¡ned in item 40, isomorphic reasoning - making analogies

between systems. ltem 51 can also be interpreted in that way, in

this case, making analogies between language and mathematics. As

items 40 and 51 account for 760/o of the variance within category 4,

it may be reasonable to assume that it concerns isomorphic

reasoning. From this point of view, the important notion may be that

students are able to transfer concepts and principles of arithmetic

to algebra. lt implies that teachers teach arithmetic in a way that

supports algebra. As discussed in the review of the literature, many

students tend to view arithmetic and algebra in incongurent ways.

The second interpretation of category 4 suggests that that

dissonance must be addressed in order to improve algebra

¡nstruct¡on.

Category 3 consists of item 37. ltem 37 concerns the

replacement role of symbols; the set of replacements for a

particular replacement symbol is large. ltem 37 can also be

interpreted as concerning the not¡on that replacements can be

selected from number sets other than the set of whole numbers, in

part¡cular from the set of rational numbers. Both interpretations

involve understanding variablès as symbols that indicate

replacement by numbers. That notion may be important when

students try to make sense of the various forms of algebra

expressions or when they manipulate expressions.
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Category 2 consists of items 42 and 18. The central notion of

this category concerns functional principles of arithmetic. lT.em 42

concerns functional principles. ltem 1B which concerns the do and

undo relationship between multiplication and division includes as

well a component that is related to functional prínciples. The notion

of a functional principle of arithmetic may play a role in algebra

when students solve equations or manipulate expressions.

Category 1 consists of item 14. lt concerns functional

principles, the associative, distributive, and commutative

principles. While category 2 also concerns functional principles,

item 1 4 may not have been included because it incorporates a

broader range of that notion. The second occurrence of functional

principles as the central notion suggests that it may be a more

important precursor of algebra than is indicated by the low

contributions to R2 of categories 1 and 2 taken individually.

Regression model derived from data set B.

Since this is an exploratory study, the identification of any

potential precursors of algebra is of sufficient importance to

warrant an additional test of hypothesis at the category level. For

that reason, a second category level regression model concerning

algebra was created but it was derived from a different data set

than that used for creating the regression model above.

Data set B was used to derive a category level regression

model. A factor analysis produced 16 factors. Following a stepwise

regression, seven categories remained.
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The regression model consisting of those categories was

formally tested at o = .05 using the data of set C.

The null hypothesis is rejected (see Appendix G, Table G-1).

It appears that the categories used in the model may be

precursors of algebra.

Once the formal test was completed, an informal test was

conducted that optimized on chance by allowing the regression

model to determine the ß coefficients independently in each of three

data sets; set B; set C; and sets A, B, and C combined. The results

concerning the contribution to RZ of the model in each of those sets

support the conclusion of the formal test (see Appendíx G, Table G-

2).

Discussion- of the suggested precursors of algebra.

Seven categories emerged from the formal testing as

suggested precursors of algebra. Nominal names for those

categories were determined using the approach discussed on page 72

of this chapter. The resulting precursors in order of categories are;

(1) deductive reasoning, (?) the structural role of symbols, (3) the

replacement role of symbols, (4) binary and unary operators, (5) the

structural role of symbols, (6) deductive reasoning, and (7) inductive

reasoning.

The elements/items comprísing those seven categories are

shown in Table 7. ltems in the outline font in Table 7 are common to

Table 6 which concerns the element organization of the category

level model derived from set A for algebra achievement.
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categor¡es using data sets A, B,
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p2 contributions of the individual

and C combined.

Table 7

Category Elements comprising the

category: items of the model

knowledqe instrument

p2

of

contribution

the category

1
59 .010

2
55 .047

3
5ï, 111 .o67

4
/+9, 4.@ .101

5
41, 7, 63 .112

6
B, 56 .1 38

7
36, 4.2,50 .237

Naturally, it is preferable that the precursors of algebra

obtained from the test of a second hypothesÍs would be the same as

those obtained from the first test. That was the case to some

extent.

There seem to be common precursors identifíed in the two

category level regression models concerning algebra' The

Element orqanization and RZ contributions of Categories taken
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confirmation of precursors in some instances is direct and in other

instances it is indirect.

There are two instances of the direct confirmation of

precursors.

First, inductíve reasoning has been identified in both models

as a precusor in both models. lt accounts for about the same

variance in the models when the double occurrence of inductive

reasoning in the first model is taken into consideration. The sum of

the R2 contribution for each occurrence provides an upper estimate

of the capacity of inductive reasoning to predict algebra

achievement ¡n the first regression model. That sum compares

favourably with the RZ associated with inductive reasoning in the

second model (.129 + .136 compared to .237).

Second, the replacement role of symbols has been identified as

a precursor in both models. That not¡on accounts for about the same

variance in algebra achievement in the models (.063 compared to

.047).

There is one instance of the indirect confirmation of

precursors.

For the first regression model, categories 5 and 6, the

alteration of structure and the locking role of operators, have a

common underlying not¡on - the intuitive understanding of the

structure of arithmetic expressions. That notion is reflected as

well in categories 2 and 5 of the second model which both concern

the structural role of symbols. Further, using the sum of the R2
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contr¡butions as an upper estimate, the variance accounted for by

categories 5 and 6 of the first regression model is about the same

as that accounted for by categories Z and 5 of the second model

(.091 +.1O? compared to.O47 + .112).

The second regression model provided additional insight

concerning precursors of algebra.

The ability to reason deductively was identified twice as a

precusor (categories 1 and 6). As an upper est¡mate, it accounts for

'1 .ilo/oof the variance in algebra achievement (.010 +.13S). it ¡s not

clear how deductive reasoning is important to learning algebra. One

explanation concerns intelligence. Deductive reasoning may be

perceived as a factor of intelligence and therefore in some way

intelligence may be important to learning algebra. Another

explanation concerns using deductive reasoning to determíne the

best course of act¡on for an algebraic purpose. The latter

explanation seems to have the most promise for teaching purposes.

The ability to discriminate between unary and binary operators

was identified as well as a precursor. lt accounts for 'l}.1o/o of the

variance in achievement. That ability may play a role when students

manipulate expressions.

Four of the nine categories of the first category level

regression model concerning algebra are found in the second

regression model. That result strongly suggests that being aware of

structure, understanding the replacement role of symbols, and being

able to sense patterns are precursors of algebra.
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The models also contain categories that are not common to

both. However, this result should not be taken as evidence that

those categor¡es are not likely precursors. The viewpoint of this

study is that the incongruence of findings suggests precursors that

may have been missed in either of the models.

A summary of the, category level analvses concerninq alqebra.

The two category level analyses have identified 1 1 central

notions as important to learning algebra. They may be placed into

four clusters.

One cluster of notions concerns reasoning skills. lnductive

reasoning, deductive reasoning, and isomorphic reasoning seem to be

important predictors of achievement ¡n algebra. Those notions

suggest that detecting patterns, using tr¡al and error strateg¡es,

reasoning logically to determine the best course of action for an

algebraic purpose, and making analogies between systems of thought

are precursors of algebra. Furthermore, these abilities must be

developed in arithmetic curricula.

A second cluster of notions concerns arithmet¡c operators.

They suggest that an understanding of the inverse relationship

between certain arithmetic operations, an understanding of the

binary or unary nature of ariihmet¡c operations, and an

understanding of arithmetic principles as functional principles for

doing computation are precursors of algebra.
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A third cluster of notions concerns symbols. They suggest that

an understanding of variables as replacement indicators and a rich

understanding of the symbol '-' áre precursors of algebra.

A fourth cluster of notions is related to the hierarchy for

computation. They suggest that the abilíties to detect terms, to do

appropriate computations in complex arithmetic expressions, and to

recognize that the structure of an arithmetic expression changes

during computation are precursors of algebra.

There is considerable overlap between the suggested

precursors of algebra and the suggested precursors of algebraic

problem solving. All of the seven notions that have been identified

as precursors of algebraic problem solving have also been identified

as precursors of algebra. This suggests that arithmetic curricula

that incorporate the suggested precursors of algebra will likely have

a positive effect on problem solving achievement as well.

Seven categories of the a priori model of precursors were not

identified as possible precursors of algebra.

They were; (1) representat¡on (mathematical symbols are

arbitrary creations), (2) passive interpretation (two equivalent

arithmetical expressions are another name for each other), (3)

context independence (arithmetical statements are independent of

the context from which they are derived), (a) unit attachment (the

various ways units can be attached to the numbers involved in

arithmetic operations), (5) visual order (the order of occurrence

does not determine the order of processing), (6) the relationship
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between language and mathematics, and (7) template recognition

(attaching arithmetic templates to word problems).

The lack of the identifícation of those seven categories as

precursors in this study suggests that they do not play a role in

learning algebra. However, for purposes of this study achievement

was measured according to proficiency in the performance of largely

automatic processes (algorithms and problem types). lt may be that

if achievement were measured according to proficiency in the

performance of non-automat¡c processes (such as creating

alternate methods or evaluat¡ng methods) then the above seven

categor¡es may turn out to be likely precursors of algebra as well.

Overview of the Element Leyel Tests, concerninq- Alqebra

Since this is an exploratory study, the identification of any

potent¡al precursors of algebra is of sufficient importance to

justify the greater risk of obtaining fortuitous results that may

arise from additional formal tests of hypotheses. Accordingly, two

element level tests concerning algebra were conducted.

For those tests, each regression model was derived from a

different set of data. lt was tested on the same fresh set mandating

the partition of the family-wise a." of .20 into four equal parts,

two for the category level tests and two for the element level tests.

The element level analyses were done to identify any elements

as precursors whose importance may have been overlooked in the

category level analyses, to provide fine detail on the broadly defined

precusors that emerged from the category level analyses, to provide
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addit¡onal information concerning the importance of identified

precursors, and to provide a way of considering the interact¡ons of

elements as precursors.

Element Level Tests: Achievement in Alqebra

Two formal tests were conducted. They involve regression

models for which the regressors are elements or interactions of

elements. One regression model is derived from data set A, the

other from set B. The results are discussed separately.

Regression model derived from data set A.

Data set A was used to derive a regression model consisting of

individual elements and interactions of elements. Following a

stepwise regression, seven elements/interactions remained.

The regression model consisting of those

elements,/interactions was formally tested ãt a = .05 using the data

of set C (see Table B).
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Table B

Formal Tesü Element Level Regression Model derived from Set A.

Dependent Variable - Achievement in Algebra

Test Parameter Value

R (predicted / actual) .497

P2 (predicted / actual) .247

K 7

N 100

Deqrees of freedom 7 /92
c[ .05

F - criterion 2.06

F - calculated 4.31

The null hypothesis is rejected.

tt appears that the elements/interactions used in the model

may be precursors of algebra.

Once the formal test was completed, an informal test was

conducted that optimized on chance by allowing the regression

model to determine the ß coefficients independently in each of three

data sets; set A; set C; and sets A, B, and C combined. The results

concerning the contribution to RZ of the model in each of those sets

support the conclusion of the formal test (see Table 9).
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Table 9

Contribution to AZ of tne Set a-derive

Model used independeqtly.

Data set Set A Set C Sets A, B, C combined

P2 contribution .56 .?_94 .363

Seven elements/interactions emerged from the formal testing

as suggested precursors of algebra. They suggest specific

precursors in contrast to the more broadly defined ones that

emerged from the category level analyses.

The RZ contributions of the individual elements and

interactions of elements using data sets A, B, and C combined is

provided in Table 10. All the items in Table 10 also appear in the

category level analyses concerning algebra.
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Table 10

n2

combined $ets A. B. and C

Element/interaction P2 contribution

18 x 54 .034

16 .051

23 .060

36 .oB?

9 .082

5B .094

50 .12,3

The elements and interactions of elements are discussed in

the one having theorder of their contributions to RZ beginning with

greatest contribution.

The items are provided in Appendix A.

Item 50 concerns sensing a regularity in a number sequence. lt

suggests that the ability to detect patterns in number sequences and

to continue them is a precursor of algebra.

Item 58 concerns sensing a regularity with respect to

computational results. lt involves more complex detection of

regularities than does item 50. ltem 58 suggests that the ability to

detect a pattern in a complex computat¡onal context is a precursor

of algebra.
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The skills suggested as precursors by items 50 and 58 may

play a role in learning algebraic procedures that are derived from

arithmetic patterns or that involve algebraic patterning in their

justification or development.

Items 50 and 58 were identified in the category level analyses

as pertaining to inductive reasoning. From the perspective of a

category level analysis, items 50 and 58 are subsumed under that

broadly defined notion. Their inclusion suggests only that a general

ability to detect patterns might be important to learning algebra.

From the perspective of an element level analysis, items 50 and 58

suggest specific kinds of learning experiences concerning pattern

detection that students should encounter in arithmetic curricula.

Item 9 concerns the notion that square root is a more powerful

lock than addition. lt suggests that the ability to discriminate

between the computational priorities of square root and addition is

a precursor. ltem 9 may also suggest that the understanding of

square root itself is a precursor. lt is likely that both possiblilites

are appropriate to learning algebra. They may play a role in

justifying and selecting appropriate algebraic processing strategies.

Item 9 was included in a category level analysis as perta¡ning

to the locking role of operators.

Item 36 concerns the locking role of multiplicative operators.

It suggests that the ability to discriminate between the

computational priorities of addition and mutiplication or of

multiplication and squaring or of addition and squaring is important
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to learning algebra. lt ¡s not clear which of the above is the

precursor. lt may be that all of them are. They may play a role in

legitimizing or deciding algebraic processing strategies.

Item 36 was identified in both category level analyses, but

was not sufficiently significant to play a role in defining the

categories. lt may be that the importance of item 36 was

overlooked. lts inclusion in this element level analysis suggests

that achievement in algebra is related to understanding a particular

processing hierarchy concerning multiplicative and additive

operators.

Item 23 concerns the notion that the numerical value of an

arithmetic expression is invariant as the structure of the expression

changes with computation. lt suggests that the ability to recognize

that computational steps, while altering the appearance of

arithmetic expressions, do not change the values of expressions.

Item 23 was included in a category level analysis as pertaining

to the alteration of structure of an arithmetic expression.

Item 16 concerns the notion that the symbol '-' can indicate

the unary operator, opposite of. lt suggests that the ability to

interpret '-' as a unary operator is useful to learning algebra.

Item 16 was identified-in a category level analysis, but was

not instrumental in defÍning the nominal notion of a category. lt

may be that its importance as a precursor of algebra was overlooked.

The interaction of items 1B and 54 provides additional insight.

Item 18 concerns the inverse relationship between multiplication
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and division. ltem 54 concerns the inverse relationship between

addition and subtraction. The identification of the interaction as a

significant precursor suggests that a set of understandings

concerning inverse operat¡ons may be important to learning algebra.

It may be that students benefit more from understanding both of

those inverse relationships than from either alone.

Both items 54 and 18 were identified in the category level

analyses. ltem 54 perta¡ned to inverse operations while item 1B

was subsumed under functional principles.

Regression model derived from data set B.

Since this is an exploratory study, the identification of any

potential precursors of algebra is of sufficient importance to

warrant an additional test of hypothesis at the element level. For

that reason, a second element level regression model concerning

algebra was created but it was derived from a different data set

than that used for creating the regression model above.

Data set B was used to derive a regression model consisting of

elements and interactions of elements. Following a stepwise

regression, eight elements/interactions remained.

The regression model consisting of those

elements/¡nteractions was foimally tested at a = .05 using the data

of set C.

The null hypothesis is rejected (see Appendix G, Table G-3).

It appears that the elements,/interactions used in the model

may be precursors of algebra.
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Once the formal test was completed, an informal test was

conducted that optimized on chance by allowing the regression

model to determine the ß coefficients independently in each of three

data sets; set B; set C; and sets A, B, and C combined. The results

concerning the contribution to RZ of the model in each of those sets

support the conclusion of the formal test (see Appendix G, Table G-

4).

Some caution is warranted concerning the importance of the

regressors derived from data set B. The family-wise error (a < .20)

for the formal tests concerning achievement in algebra suggests

that there is more than a minimal chance that at least one of the

formal tests w¡ll involve an incorrect rejection of the null

hypothesis. ln the case of the regression model derived from data

set B, the closeness in values of the calculated F - statist¡c and the

criterion F - statist¡c (2.09 compared to ?.07) suggests that the

rejection of the null hypothesis may be suspect.

Discussion of the suggested precursors of algebra.

Eight elements/interactions emerged from the formal testing

as suggested precursors of algebra. Naturally, it is preferable that

the likely precursors of algebra obtained from the test of a second

hypothesis would be the same as those obtained from the first test.

Those results were not obtained.

The first and second element level regression models do not

have any elements or interactions of elements in common, with one

except¡on. ltems 50 and 58 which appear as an interaction in the



106

second element level regression model appear as single elements in

the first element level model.

As suggested earlier, the lack of common regressors in these

two anatyses is most likely that many of the items in the model

knowledge instrument likely accounted for about the same variance

in algebra achievement and, because of random fluctuations in those

items, the selected set of regressors for each model differed. That

likelihood is increased by the dichotomous scoring of items.

The R2 contributions of the individual elements and

interactions of elements using the data sets A, B, and C combined is

provided in Table 1 1. Highlighted items in Table 1 1 also appear in

the category level analyses concerning algebra.
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Table 11

RZ contributions of Elements/interactions taken itrdividuatly in the

combined sets A. B. and C

Element,/intera ction P2 contr¡bution

13 .424

?2 X 31 .025

tô
(o) .035

49 .065

1l 1 x3V .075

"50 X 58 .094

55 X 631 .108

t56 .125

The elements and interactions of elements are discussed in

order of their contributions to R2 beginning with the one having the

highest contribution,

The items are provided in Appendix A.

Item 56 concerns deductive reasoning in relation to negation

or the notion of not. lt suggests that the ability to determine the

negation of a proposition is important to learning algebra. As

negation is related to the notion of negative or opposite, it may play

a role when students manipulate expressions involving negative

numbers and subtract¡on.
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Item 56 was identified ¡n a category level analysis as

pertain¡ng to deductive reasoning.

The interaction of 55 and 63 provides additional insight. Both

items fall into the same category in the a priori model - the

structural role of symbols, a role related to the hierarchy of

operators. ltem 55 concerns the notion that structure helps

determine what is to be done in an expression. ltem 63 concerns the

not¡on that additive operators Separate an arithmetic expression

into chunks (terms). The identification of the interaction as a

significant precursor suggests that the identification of terms or

structure ís important to the successful performance of algebraic

procedures.

Both items were identified in category level analyses as

pertaining to the structural role of symbols. However, they were

included in different categories.

The identification of the interaction of items 50 and 58 as a

significant precursor in this regression model and their

identification as individual precursors in the first model supports

the importance of inductive reasoning for learning algebra, The

interact¡on suggests that the ability to detect and continue a

pattern in both simple and complex arithmetic contexts is a

precursor of algebra.

The interact¡on of items 1 1 and 37 provides additional insight.

Both items fall into the same category in the research model - the

replacement role of symbols. ltem 11 concerns the not¡on that
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replacement symbols can be manipulated. ltem 37 concerns the

not¡on that the set of replacements for a particular replacement

symbol is large. The identification of the interaction as a

sígnificant precursor suggests that achievement in algebra is

related to the understanding that the largeness of the replacement

set applies as well when replacement symbols are manipulated.

Both items were identified in category level analyses as

pertaining to the replacement role of symbols. However, they were

included in different categories.

Item 49 concerns the notion that square root is a unary

operator. lt suggests that the knowledge that square root is a unary

operator is a precursor of algebra. That knowledge may play a role

in processing expressions involving square root.

Item 49 was identified in both category level analyses. lt was

significant in one category as pertaining to binary and unary

operators; it was not significant in the other category.

Item B concerns the notion that the complexity of computation

is related to the complexity of the structure of an expression. lt

suggests that the ability to relate processing complexity to

structural complexity is important to learning algebra. That ability

may play a role in determininþ the strategies and procedures for

processing algebraic expressions.

Item I was identified in a category level analysis but it was

not instrumental in determining the nominal notion. lt may be that

its importance as a precursor of algebra was overlooked.
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The interaction of items 22 and 31 provides additional insight.

they both fall into the categorY, the relationship between

mathematics and language in the a priori model. ltem 22 concerns

recognizing analogous roles concerning replacement. ltem 31

concerns expressing arithmetic operations by means of language.

The identification of the interaction as a precursor suggests that a

more comprehensive set of understandings concerning the

relationship between mathemat¡cs and language must be in place in

order to facilitate the learning of algebra.

Item 13 concerns the not¡on that addition involves adding

counts of objects. lt suggests that the understanding that counts

are added, not objects is important to learning algebra. That

understanding may play a role in simplifying expressions such as'2x

+ 3x' to 5x'. Success at simplifying such expressions may depend

on students' knowledge of the justification for such simplifications,

one of which can be based on the notion that addition involves adding

counts of objects.

Item 13 was not identified in a category level analysis. lt may

be that its significance as a precursor of algebra was overlooked.

A summar-v of the element level anal!¡ses concerning algebra.

The two element level iegression models do not have elements

or interactions of elements in common. Again, that result may be

expected considering that many items of the model knowledge

instrument likely account for about the same variance in algebra
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achievement and, because of random fluctuations in those items, the

selected set of regressors for each model differed.

The lack of common regressors in the two models generated

suggests that neither element level analysis is to be taken as

definitive, but the position taken in this study is that all elements

identified by the two element level tests should be considered to be

potent¡al precursors of algebra subject to the constraints imposed

by the family-wise error.

That position may be related to the possibility that the model

knowledge instrument has an underlying common factor. lf that ¡s

the case, random fluctuations in what are likely equivalent

dichotomous variables (the items of model knowledge instrument)

can result in the creation of different element level regression

models. The high split-half consistency coefficient for the model

knowledge instrument (.61) discussed on page 118 of this chapter

also suggests that the instrument may tap an underlying general

factor. A possible nominal name for that factor might be

mathematical ability. Again, the possibilty of such a factor beíng

present is not investigated in this study.

It is important to reiterate the purposes for employing the

element level analyses in this study. They were done to identify any

elements as precursors whose importance may have been overlooked

in the category level analyses, to provide fine detail on the broadly

defined precusors that emerged from the category level analyses, to

provide additional information concerning the importance of
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identified precursors, and to provide a way of considering the

interactions of elements as precursors. The discussion contained ¡n

the element level analyses suggests that those purposes appear to

have been fulfilled.

Summarv concernieo Formal Tests of A Priori Hypqtheses

The results of the study suggest that the a priori model

contains elements and categories that may be precursors of algebra.

That conclusion is strengthened by some of the characteristics of

the participants in the study. Participants were selected over a

range of socio-economic and school-related classifications. The

resulting diverse nature of the population for the study tends to

broaden the zone of generalization of conclusions.

The regression models obta¡ned in this study (both category

and element levels) seem to be strong predictors of algebra

achievement. Reasonable estimates of their capacities to predict

achievement can be determined using the contributions to R2

obtained from the informal tests that used the data of all three data

sets combined (see pages 82, 90, 98, 104). Those est¡mates are

impressive. For the two category level models, the average

contribution to RZ is .434 (see Table 5 and Appendix G, Table G-2)-

For the two element level models, the average contribution T.o RZ is

.351 (see Tabte 9 and Appendix G, Table G-4). These results strongly

suggest that the categories and elements/¡nteractions that were

identified in this study are likely and important precursors of

algebra.
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The two category level analyses identified 1 1 central notions

that are important to learning algebra. The two element level

analyses identified ten elements and five interactions that are

important. Those elements come from 1 1 categories of the a priori

model concerning precursors in algebra'

There is extensive overtap of elements/items in both levels of

analyses and that supports the conclusion that the general or

specific notions identífied in this study may be precursors of

algebra.

Furthermore, the results from the element and category levels

of analyses atso suggest that the a priori model may be a

comprehensive vehicle for investigating the notions and skills that

may be important to learning algebra.

The results from the category level analyses and the element

level analyses may be placed into four clusters.

One cluster of notions concerns the ability to reason

deductively and inductively, and to draw analogies. A second cluster

of notions concerns the relationShip between and the types of

arithmetic operators, and the functional application to computat¡on

of principles of arithmetic. A third cluster concerns the meanings

and roles that can be attached to symbols. A fourth cluster concerns

the hierarchy for computation and the structure of expressions.

The literature strongly supports one of the findings of this

study - the fourth cluster of precursors that concern hierarchy and

struçture. Kieran (1992) comments that the general conclusion that
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emerges from the research on algebra learning is that many students

do not acquire a sense of the structural aspects of algebra and that

lack appears to be a major source of difficulty for them in learning

algebra. The findings of this study concerning that suggest that the

remedy may involve sensing the structural aspects of arithmetic as

a precursor of algebra.

lmplications of the Findinqs for Mathemalics lnçtruction

The items of the model knowledge instrument that are the

important predictors of algebraic achievement identified in this

study could be used to guide students' placements in mathematics

courses. However, this study is more concerned with the

implications of the findings for curriculum and instruction in

mathematics. Given the exploratory nature of this study, it is

reasonable to speculate about those implications.

The findings may have major implications for the curricula and

instructional practices of the grades prior to those in which algebra

first becomes a significant curricular topic. Generally, those grades

can be partitioned into the elementary grades and grades 7 and B.

The implications for instruction may be about the same for both,

varying according to the speicifics of curricular topics.

The findings concerning reasoning may imply that a major

emphasis of instructíon should be hypothesizing and validating

mathematical ideas concerning arithmetic (natural number or

integer). Further, it may be that problem contexts should be used to

establish the rationales for learning necessary concepts and
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algorithms. ln both, students may benefit from opportun¡t¡es to

observe mathematical patterns and to conjecture and generalize

about them; to relate suppositions and conclusions; to explore

possibilities; and to use mathematics for modelling real events and

circumstances and to apply those models to other contexts.

The findings concerning operators, principles, symbols, and

structure may imply that learning mathematics should be similar to

learning a natural language, in a holistic way, with its symbols,

rules, and structure. lt may be that mathematical instruction

concerning arithmetic should involve explicit and frequent

discussions of the creation of and relationships between

arithmetical concepts, symbols, operators, principles, and structure.

ln doing so, students may be less likely to see those notions as

unrelated objects to be memorized, and be less likely to see

arithmetic and later algebra as two closed and separate systems.

Rather, they may begin to see mathematics (in this case arithmetic)

as a language and may be better able to use ¡t to model situations, to

express ideas, and to formulate arguments, abilitíes that may better

prepare them for algebra.

As discussed earlier, the literature strongly supports the

finding of this study concerniñg structure. lt may be useful to

speculate further on the implications of that fínding for curriculum

and instruction . Again, for purposes of this study, structure

concerns "chunking" arithmetic expressions and the locking role of

chunks. Those notions are intimately related to the hierarchy of
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arithmetic operators and to the binary and unary distinctions of

operators.

The Manitoba mathematics curriculum guide for grades 7 to 9

(Manitoba Education, 1979) is pertinent to that speculation. ln it,

there is minimal discussion (as order of operations) concerning the

hierarchy of arithmetic operations. On the other hand, there is

extensive discussion of proficiency in computational algorithms.

That bias towards algorithmic performance does not reflect the

finding of this study that understanding structure is an important

precursor of algebra.

Furthermore, the pedagogical development of the order of

operations largely concerns presents students with unconnected

examples and arbitrary rules. Often, students end up memorizing the

acronym'BDMAS' (brackets, division, multiplication, addition,

subtraction) and use it as the protocol for determining what to do

when confronted with the simplification of expressions. ln

contrast, the finding in this study suggests that a deep rather than a

superficial understanding of the hierarchy of operations (order of

operations) is important to learning algebra.

It seems then that at least one implication of the fÍnding

concerning structure is that,-before students begin to learn algebra,

they should be provided with substantial and well-connected

arithmetical experiences that develop deep understandings and

extensive computational abilities concerning the hierarchy of

arithmetic operations. To that end, it seems that some of the core
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objectives of the grade 7 and B mathematics curriculum might be

reformulated and that more appropriate pedagogical strategies for

teaching those objectives might be developed.

The above implications, both general and specific, of this

study's findings for mathematics (largely arithmetic) instruction

run counter to much of current practice. For most students,

reasoning about situations and seeking ways to validate that

thinking is seldom associated with learning mathematics (Lappan

and Schram, 19Bg). Conventional instruction seems to encourage the

belief that mathematics consists of getting answers to

computational tasks obtained from text books or work sheets.

Furthermore, students seem to acquire the belief that there is only

one way to get those answers.

There is a considerable gap between much of current

mathematics instruct¡on and the kind of instruction that may be

implied by the precursors of algebra identified in this study. lt is

clear that any changes in mathematics curricula and instructional

practices, if warranted, cannot be implemented in haste nor without

considering the attitudes and skills of the teachers presently

teaching arithmetic, However, Faculties of Education can begin to

promote, in the training and-educating of pre-service teachers,

skills and understandings that may support and encourage any such

changes.
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Limitations of the Studv

Two limitations of the study should be addressed.

The first limitation concerns the limited way in which the

elements sample the areas of concern. Since each such area is

sampled by only one item in the model knowledge instrument, it is

possible that some areas of concern are not well represented in that

instrument.

There are at least two ways to address that limitation. First,

the notions that have been identified here as being important to the

learning of algebra could form the basis for constructing new

instruments that tap the important categories more thoroughly.

Second, the tentative conclusions from the study could be examined

in field studies that investigate more directly the importance of the

identified notions in settings where algebra is being learned.

A second limitation concerns the measurement of achievement.

The algebra instrument reflects current practice. That is to say, it

measures skills that are most often ritual manipulations. Students

have pract¡ced types of questions while learning algebra and are

then expected to replicate them on an achievement instrument. Only

7%o of the algebra achievement instrument measures abilities that

can be clearly identified to be non-ritual maniputations. The

problem solving instrument measures fewer ritual skills, but much

of it can also be seen as reflecting the replication of question types.

It is slightly surprising that elements and categories that tap

understanding, as in this study, should so effectively predict
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performances with such a large ritual component. lt can be supposed

that they would be even more effective in predicting performances

that have a substantial understanding component.

The second limitation concerns future algebra curricula more

than it concerns current curricula. Societal pressure and recent

assessment results will likely bring about changes in mathematics

instruction. The current curricula that largely focus on automatic

processes may give way to curricula that focus on reflective as well

as automatic processes (Hiebert, 1990). This study has focussed on

achievement largely in relation to the replication of automatic

processes (that reflect current practice). A suggested list of

precursors of algebra has emerged. But that list may not

sufficiently address the needs of curricula that focus on reflective

processes in which understanding and meaníng tend to be more the

themes of instruction.

One way to provide a sufficient set of precursors for those

curricula is to investigate the relationship between the a priori

model of precursors and achievement ¡n algebra using other tests of

achievement. For that purpose, achievement might be measured in a

way that reflects students' understandings of the justifications and

applications of automatic processes. The researcher suspects that

if achievement were to be measured in that way a larger number of

the elements and categories of the a priori model of this study

would emerge as precursors of algebra for curricula that focus on

reflective processes.
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lnf ormal Observations

OveJview of Scores qn the lnstruments

Some general observations concerning the scores on the model

knowledge and achievement instruments are useful as they allow for

some informal conclusions. Table 12 provides information on the

model knowledge and achievement scores obtained from the 331

students partic¡pating in the study.

Table 12

Stat istic Mean

score
Standard
deviation

Maximum
score

Minimum
score

Model knowledge 25.11

ß9.9%\

7.45

fi1.8%\

46

(73o/o)

6

(e.s%)

Achievement in algebra 36.90

(48.s%)

16.04

Q1.1%\

67.5

(88.8%)

3

(3.s%)

Achievement in algebraic

problem solvinq

22.89

@6.7%\

11.00

(22.5o/o)

43.5

(88.8%)

.5

(1%)

The model knowledge scores and the achievement scores (see

Table 12) are all sufficiently distributed in the mid-range of

possible scores to encourage their use in statistical tests.

lnformal Comparispn of Model Knowledqe and Achigvement

Once the a priori tests were done, model knowledge was

compared with algebra and problem solving achievement in an
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informal way. That comparison was done in two ways; ( 1 ) using

correlations between scores on the three instruments and (2) using

all the individual items of the model knowledge ínstrument to

predict achievement. The data from all 331 students was used for

both purposes.

Correlations between students' scores on the three

instruments were determined. Table 13 provides that information.

Table 13

Correlations ( and AZ) between Total Scor

lnstrument Model

knowledqe

Algebra Problem

solvinq

Model knowledse 1

Alqebra .6? (.38) 1

Problem solvinq .s9 (.3s) ,67 (.45) 1

The high correlations between scores on the model knowledge

instrument and scores on the achievement instruments (see Table

13) suggest that there is a relationship between knowledge of the

research model, and achievement in algebra and algebraic problem

solving.

Second, all of the individual items of the model knowledge

instrument were used as predictors of achievement in two

regression models, one for achievement in algebra and the other for
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achievement ¡n problem solving. Table 14 provides information on

the R2 contribution of those items in both regression models.

Table 14

¡tZ contribution of al

with Achievement as the Independent Variable

Achievement in

alqebra

Achievement in

Problem solvinq

p2 .58 .51

The RZ contribution of the items of the model knowledge

instrument taken individually is considerably higher than the RZ

contribution of the total scores on the model knowledge instrument

and scores on the achievement instruments. This high er RZ provides

an upper estimate of the capacity of the items to predict

achievement.

The strength of the relationship between model knowledge and

algebra achievement was expected, and suggests that the notions

measured in the model may be important to learning algebra. The

strength of the relationship between model knowledge and

achievement ¡n problem solving is higher than expected, as the

model was constructed so as to identify a possible set of precursors

of algebra, not algebraic problem solving.
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Item. Consisten,cv -of lnqÈLuments

Data set A (n = 1?6) was used to estimate the item

consistencies of instruments. Tables F-4, F-5, and F-6 (see

Appendix F) provide information on item correlations and on split-

half consistency coefficients.

The split-half consistency coefficient for the model

knowledge instrument is .61. Although that instrument does not

qualify as a one factor test, the high split-half coefficient suggests

that the model knowledge instrument has an underlying common

factor. That possibility was not ¡nvestigated in this study.

EçLui)¡alence of Data Sets

An informal determination of the equivalence of the three data

sets, A, B, and C, used for creating and test¡ng the regression models

helps strengthen the results and conclusions that emerged from the

formal tests of hypotheses. Two broad indicators were employed for

that purpose; (1) the means and standard deviations of scores for

model knowledge and achievement and (2) gender composition.
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Tables 1 5, 16, and 17 provide information on the mean scores

and standard deviations for the model knowledge and achievement

instruments.

Table 15

Mean and Standard DeviatÌon of Raw Scores on the M*odel Knowledge.

Instrument

Data set Set A Set B Set C

Mean score 2s.28 24.90 25.11

Standard deviation 7.23 7.81 7.39

Table 16

Mean and Standard Deviation of Raw Scores on the Achielzement in

Algebra Instrument

Data set Set A Set B Set C

Mean score 36.46 36.49 37.88

Standard deviation 16.58 15.96 15,54

Table L7

Mean and Standard Deviation of Raw Scores on the Achiçvement in

Aleebraic Problem Solving Instrumen[

Data set Set A Set B Set C

Mean score 73.O4 22.60 ?3.O2

Standard deviation 1 1.10 11.44 10.50



125

Table 18 provides information concerning the composition by

gender of the data sets. The results suggest that females may have

a slight advantage in number across the three sets.

Table 18

Como_osition of Data Sets by G_çnder

Set Set A Set B Set C Total

Male n

rf/o

61

(48,4o/o\

50

@7.60/o\

47

G7o/o)

158

(47.7%)

Female n

rP/o

65

(s1.5%)

55

(52.3o/o\

53

(s3%)

173

(52.3o/o)

Total n 1?6 105 100 331
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CHAPTER 6

EXPLORATORY TESTS

Four sets of exploratory questions were investigated. They

concern; (1) gender, (2) teacher style, (3) interact¡ons between

gender and teacher style, and (4) reasoning ability (as defined by the

a priori model). The data sets A, B, and C were most often combined

for investigating those questions. As all hypotheses in this chapter

are exploratory and their tests may be confounded with the tests of

the formal hypotheses, no tests of statistical significance are valid.

Accordingly, test statistics and associated probability values are

provided but all conclusions are tentative.

All exploratory tests were done using the Macintosh

statistical software JMP (S4S,1989) and Statview ll (Abacus

Concepts, l 9BZ).

Since a large number of exploratory and separate tests are

included in this chapter, to avoid numerous references to appendices

there appears to be no alternative but to include all appropriate

tables here.

The following diagram provides an overview of the tests of the

exploratory hyPotheses.
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G en der

The possible effects of gender were explored in three ways;

(1) by an analysis of variance, (2) as a dependent variable in a

regression model, and (3) as an independent variable in a regression

model.

As well, gender is later investigated in other ways. Since

gender is a current concern in the literature, it is worth exploring

even though there may be a risk of over-invest¡gating relationships

between gender and other constructs.

AnalLsis of Variance

Three quest¡ons were asked:

( 1 ) ls achievement in algebra related to gender?

(?) ls achievement in algebraic problem solving related to

gender?

(3) ls knowledge concerning precursors of algebra related

to gender?

Gender and achievement in algebra.

An analysis of variance was used to investigate the

relationship between achievement in algebra and gender. For this

purpose, achievement ¡n algebra is the dependent variable'

The results suggest that the algebra scores of females are

higher than those of males (see Tables 1 and 2). The difference in

favour of females seems inconsistent with some other results

concerning gender in the literature. lt has commonly been found
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that, in courses and careers, females are not as much involved in

mathematics and the related fields of science and technology as are

males. lf what is found here is true in general, factors other than

achievement in grade nine algebra must determine females' choices

concerning mathematics, science, and technology.

Table 1

TabLe 2

Gender Male Female

Mean 45.5o/o 51.3o/o

Standard deviation 21.8 zo.1

Number of subiects 158 173

Source Df Sum of

squares

mean

squares

F - test

Between 1 2791.4 2791.4 6.37

P =.01Within 3?9 144213.1 438.3

Total s30 147004.5

An analysis of variance was

relationship between achievement

used to investigate the

in algebraic problem solving and
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gender. Achievement in problem solving is again the dependent

variable.

The results suggest that the problem solving scores of females

are also higher than those of males (see Tables 3 and 4). This

further supports the tentative conclusion that factors other than

achievement ¡n grade nine mathematics affect females' subsequent

choices concerning mathematics, science, and technology.

Table 3

Solving

Gender Male Female

Mean 44.O% 49.2o/o

Standard deviation ?3.1 ?1.6

Number of subiects 158 173

Table 4

Dependent Variable. Achievement in Algebraic Problem Solving

Source Df Sum of

squares

mean

squares

F - test

Between 1 2207.7 2207.7 4.43

P =-04Within 3?9 164146.8 498.9

Total 330 166354.5
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Gender and precursor knowledge.

An analysis of variance was used to investigate the

relationship between knowledge of precursors of algebra and gender.

For this purpose, precursor knowledge is the dependent variable.

Precursor knowledge is defined in this case as knowledge of

only those precursors that were identified in both category level

regression models as being significantly related to achievement in

algebra (see Appendix l, Table l-1). Scores for precursor knowledge

were obtained by summing the scores for the items that comprised

each of the identified categories. Since the regression models

contained categories that had common items, such items were

included only once to obtain the sum.

The results suggest that scores of females are higher than

scores of males (see Tables 5 and 6). This initial difference may

expla¡n, at least in part, the higher achievement scores of females

(see Tables 1 , 2, 3, and 4). Given the strong relationship between

precursor knowledge and achievement found in the formal tests, this

result would be anticiPated.
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Table 5

Table 6

Gender Male Female

Mean 45.8% 49.O%

Standard deviation 17.4% 14.9%

Number of subjects 158 173

Source Df Sum of

squares

mean

squares

F - test

Between 1 876.5 876.5 3.37

= .O7Within 3?.9 85504.5 259.9

Total 330 86381.0
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Gender as- the Depenctent Variable - in a Reoression Model

Two questions were investigated. They were:

(1) What is the relationship between precursors of algebra

and gender?

(2) What is the relationship between precursors of

algebraic problem solving and gender?

To address those questions, gender rather than achievement

was used as the dependent variable in a regression model' The

regression models used for that purpose are the ones obtained from

the category level analyses (see Chapter 5, formal tests on

achievement in algebra and algebraic problem solving, category

level).

The category level regression model derived from data set A

(with 9 regressors) accounts for 3.5o/o of the variance in gender. The

category level regression model derived from set B (with 7

regressors) accounts for 5.8% of the variance in gender' Neither

model seems to be an important predictor of gender. This suggests

that there are no strong sex-related qualities of any categories of

the identified precursors of algebra.

The category level regression model derived from data set A

(with B regressors) accounts for 4.8% of the variance in gender' The

model does not seem to be an important predictor of gender' This
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suggests, again, that there are no strong sex-related qualities of any

categories of the identified precursors of algebraic problem solving.

Gencler as an lndependent Variable in a Reqression Model

Two questions were investigated:

( 1 ) When included as a precursor, does gender add

significantly to our ability to account for achievement

in algebra?

(2) When included as a precursor' does gender add

significantly to our ability to account for achievement

in algebraic Problem solving?

To address these questions, gender was included as a regressor

in the regression models obtained from the category level analyses

(see Chapter 5, formal tests on achievement in algebra and algebraic

problem solving, category level).' The effect of including gender is

measured by the change in R2 and the associated F-statistic

calculated by the equation (Hays, 19BB):

(n*2-nzl"(ru-*-t,
F = t-R*Z 

(6-1)

where 'R+2' is the amount of -variance accounted for by the

regression model having a particular regressor included in that

model, 'R2' is the amount of variance accounted for without that

part¡cular regressor, 'N' iS the number of scores of the dependent

variable, and 'K' is the number of regressors in the model.
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Gender and achievement in alqebra.

The results indicate that including gender has little effect on

our ability to predict achievement in algebra (see Table 7)' Even

though a formal test at ü, = .05, would suggest that it's effect is

statistically significant in the model derived from set A, the effect

is too small to be of practical significance.

TabLe 7

Dependent Variable. Achievement in Algebra

Regression

model

P2 with
qender

P2 no

qender

Gender

contribution

df F

Derived from

set A

.447 .437 .01 1/321 5.8

p<.05

Derived from

set B

.438 .432 .oo6 1/323 3.44

p>.05
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Similarily, a category level regression model was used to

investigate the effect of including gender as a regressor in

predicting achievement ¡n algebraic problem solving'

The results indicate that including gender as a regressor

produces a negligible change in predicting achievement in algebraic

problem solving (see Table B). This suggests that gender is not a

significant predictor of algebraic problem solving.

Table B

Regression

model

P2 with

qender

P2 no

qender

Gender

contribution

df F

Derived from

SCt A

.368 .366 .ooz 1/322 1.O2

p>.05
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Teacher Style

Teacher style was explored in two ways; ( 1 ) by an analysis of

variance and (Z) as an independent variable in a regression model.

Additional caution is warranted concerning the results

associated with teacher style since the instrument used to measure

the three styles employed teachers' assessments of themselves.

Analvsis of Variance

Two questions were

( 1 ) What is the

achievement

(2) What is the

achievement

investigated. They were:

relationship between teacher style and

in algebra?

relationship between teacher style and

in algebraic problem solving?

Teacher style and achievement in algebra.

An analysis of variance was used to investigate the

relationship between teacher style and achievement in algebra. For

this purpose, achievement is the dependent variable.

The results of this exploration indicate that teacher styles 1

and 3 lead to greater achievement in algebra (see Tables 9, 10, and

1 1). lt seems that, for this test of performance in algebra, teachers

who present students with closed procedures (teacher style 1) and

teachers who encourage students to construct their own knowledge

(teacher style 3) teach algebra about as well. lt is not clear why

blending the two styles seems to be less effective.
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Table 9

Teacher St¿le: Dependent Variable. Achievement in Algebra

Teacher style 1 2 3

Mean s3.5% 44.9% 5?.50/o

Standard deviation 18.5 20.5 22.B

Number of subjects 6? 180 B9

Table 1O

ANOVA Teacher Stl¿le: Dependent Variabte' Achievement in Alggbra

Source Df Sum of

squares

mean

squares

F - test

Between 7" 5363.s ?681 .7 6.?1

P = 'OO?wirhin 328 141641.1 431.8

Total 330 147004.6

Table 11

Comparison tests for ANOVA: Teacher Slvle

Scheffe ComParison test F

l vsZ 4.00. p < .05

1vs3 .043, p > .05

2vs3 4.02, p < .05
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Similarily, an analysis of variance was used to investigate the

relationship between teacher style and achievement in problem

solving. For this purpose, problem solving achievement is the

dependent variable.

ln this area, there is no evidence that teacher styles affect

achievement (see Tables 12 and 13). lt is not clear why teacher

style does not seem to be factor in teaching problem solving but yet

it seems to be a factor in teaching algebra-

Table 12

Problem Solving

Table 13

Teacher style 1 ? 3

Mean 46% 46,70/o 47.3%

Standard deviation 20.5 ?3.O 23.o

Number of subiects 6Z 180 89

Source Df Sum of squares Mean squares F - test

Between 2 65,7 32.9 .o7

= .94w¡rh in 328 166288.7 507.0

Total 330 166354.4
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Teacher, Stvle as an lndependent Variable

Two questions were investigated. They were:

( 1 ) When included as precursors, does teacher style affect

achievement in algebra?

(2) When included as precursors, does teacher style affect

achievement ¡n algebraic problem solving?

To address those questions, teacher style was included as a

regressor in regression models. The regression models used for that

purpose are those obtained from the category level analyses (see

Chapter 5, formal tests on achievement in algebra and algebraic

problem solving, category level). The effect of including teacher

style is measured by the chan ge in R2 and the associate d F '

statistic.
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Teacher style and achievement in algebra.

Both category level regression models were used to

investigate the effect of teacher style on achievement in algebra.

The results indicate that teacher style may be of some

significance as a precursor of algebra (see Table 14).

Table 14

Effec

Dependent Variable, Achievement in Algebra

No attempt was made to determine what interactions or

independent contributions to the variance accounted for should be

explored further.

Regression

model

p2

with stvle

p2

no style

Style

contribution

df F

Derived from

SCt A

.466 .437 .o29 1/321 17.4

p<.05

Derived from

SCt B

.447 .432 .015 1/323 8.73

p<.05
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One category level regression model was used to investigate

the effect of including teacher style as a precursor of algebraic

problem solving.

Again, the results indicate that when teacher style is included

as a precursor there is a minimal but possibly significant

improvement in predicting achievement in algebraic problem solving

(see Table 15).

Table 15

Regression

model

p2

with style

p2

no style

Style

contribution

df F

Derived from

SCt A

.373 .366 .002 1/3?2 3.sB

p<.05
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lnteractions between Gender and Teacher Style

Possible interactions between gender and teacher style were

explored in three ways. They were; (1) by including gender/teacher

style interaction as a variable in a regression model, (2) by an

analysis of variance on achievement, and (3) bV an analysis of

variance on precursor efficacY.

Precursor efficacy is here defined as the quotient of

achievement and precursor knowledge. The precursors are those

identified in the category level analyses (see Chapter 5).

lnteraction Variables in a Reqression Model

Two questions were investigated. They were:

(1) When included as a precursor of algebra, does the

interaction of gender and teacher style significantly

increase our ability to predict achievement in algebra?

(2) When included as a precursor of problem solving, does

the interaction of gender and teacher style

significantly increase our ability to predict

achíevement in algebraic problem solving?

To address these quest-ions, the interaction of teacher style

and gender was included in a regression model. The regression

models used for that purpose are those obtained from the category

level analyses (see Chapter 5, formal tests on achievement in

algebra and algebraic problem solving, category level). The resulting

regression model takes the form:
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y = cat.1 +cat.Z+...+ t.l xgen + t.2xgen + t.3xgen (6-2)

where 't.f indicates style 1 (O/1),'t.2' indicates style 2 (O/1), 't.3'

indicates style 3 (O/1), 'gen' indicates gender (O - male, 1 - female),

and 'cat.i' indicates a category level precursor. The effect of

including interactions as regressors ¡n the regression model is

determined by the chan ge in RZ and the F - statist¡c.

Teacher style and achievement in algebra.

One category level regression model (derived from data set A)

was used to ¡nvestigate the effect of the interaction between gender

and teacher style on achievement in algebra.

The results indicate that when the interactions 'teacher style

1 x gender' and 'teacher style 2 x gender' are included with

precursors of algebra there is some improvement in predicting

achievement (see Table 16). This suggests that there may be some

value in further explorations of the interaction between gender and

teacher style.
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Table 16

Model p2 Chanqe in p2 F

cateqories onlY .437 0

categor¡es + t.1 x gen

+ T..2 x qen + t.3 x gen

.47 5 .038 ?3.1

p<.05

categor¡es + t.1 x gen

+ t.2 x qen

.469 .o3z 19.3

p<.05
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Tea

One

was used

ble

category level regression model (derived from data

to investigate the effect of the interaction between

set A)

gender

and teacher style on achievement in algebraic problem solving'

The results indicate that the interaction between gender and

teacher style does not lead to any improvement ¡n predicting

achievement in problem solving (see Table 17) and suggest that the

possible interaction between gender of students and teacher style is

not a concern for the learning of algebraic problem solving. Again, it

is not clear why an interact¡on effect observed for the teaching of

algebra, albeit minimal, is not observed where problem solving is

concerned.

Table 17

Model p2 Chanqe in R2 F

cateqories only .366 0

categories + t.1 x gen

+ Í.2 x qen + t.3 x gen

.370 .004 2.O3

p>.05
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The_ Effects of Gender and Teacher Stvle gn Achievemqnt

usino. Analvsis of Varia.nce

Two questions were investigated. They were:

( 1 ) Does ANOVA suggest any significant interaction

between gender and teacher style in achievement in

algebra?

(2) Does ANOVA suggest any significant interaction

between gender and teacher style in achievement ín

algebraic problem solving?

Gender and teacher style on algebra achievement.

A two-way analysis of variance was used to ¡nvestigate the

relationship between gender and teacher style where the criterion

variable is achievement in algebra. The independent variables are

gender and teacher style.

As noted earlier regarding main effects, the results indicate

that the algebra scores of females are higher than the scores of

males and that teacher styles 1 and 3 seem to lead to greater

achievement that does a blend of the two styles (see Tables 1B and

19). But there does not appear to be a significant interact¡on

effect.
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Table 18

Gender b]¡ Teacher St)¡le:

Dependent variable. Achievement in Algebra

Table 19

ANOVA fo-tGender b-v Teacher St-vle:

Style Female Male Male and

female

Teacher style 1 n

mean

3B

56.3o/o

z4

49.2o/o

6?

53.5o/o

Teacher style 2

(blend of 1 and 3)

n

mean

94

46.60/o

B6

43.Oo/o

180

44.9o/o

Teacher style 3 n

mean

41

57 -7o/o

48

48.1o/o

B9

52.5o/o

Styles 1, 2, and 3 n

mean

173

51.3%

158

45.5%

331

48.6%

Source df SS MS F p

Gender 1 ?99?.5 ?99?,5 7.O3 .008

Teacher style 2 5216.9 2608.s 6.13 .002

lnteraction 2 558.5 279.? 0.66 .s20

E rror 325 138335.3 425.6



t49

Gencler and teacher stvle on problem solving achievement.

Similarily, a two-way analys¡s of variance was used to

investigate the relationship between gender and teacher style

where the criterion variable is achievement ¡n algebraic problem

sotving. Gender and teacher style are the independent variables.

Consistent w¡th the results obtained from the analysis of

variance on each independent var¡able separately, these results

indicate that the problem solving scores of females are higher than

those of males (see Tables 20 and 21). Since there does not appear

to be a significant interaction effect, no additional information is

forthcoming from a two-way analysis of variance.
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Table 20

Gender by teacher St)¡le:

Dependent variable. Achievement in Algebraic Problem Solving

Style Female Male Female and

ma le

Teacher style 1 n

mean

38

47.9o/o

24

43.1o/o

6?

46.O%

Teacher style Z

(blend of 1 and 3)

n

mean

94

48.9o/o

B6

44.3o/o

180

46.7o/o

Teacher style 3 n

mean

41

51.2o/o

48

44,Oo/o

89

47.3o/o'

Styles 1, 2, and 3 n

mean

173

49.2%

158

44.0o/o

331

46.7%

Table 2T

ANOVA for Gender by Teacher St-vle:

Dependent variable. Achievement in Algebraic Problem Solving

Source df SS MS F p

Gender 1 2016.4 2016.4 4.00 .05

Teacher style 2 166.4 83.2 .17 .85

lnteraction z 104.4 52.? .10 .90

Error 325 163875.9 504.2
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Efficacy is defined as the quotient of achievement and

precursor knowledge (the author's definition). This definition of

precursor efficacy describes achievement in relation to students'

knowledge of identified precursors. That is to say, precursor

efficacy is the amount of achievement realized per unit of precursor

knowledge.

Precursor knowledge is defined in the same way as in an

earlier section of this chapter (see page 117). lt is knowledge of

only those precursors that were identified in the category level

regression models for achievement. Scores for precursor knowledge

were obtained by summing the scores for the items that comprised

each of the identified categories. Since the regression models

contained categories that had common items, such items were

included only once in the sum.

Two questions were investigated:

(1) What is the relationship between gender and teacher

style where the criterion variable is precursor

efficacy in algebra?

(2) What is the relationship between gender and teacher

style where thè criterion variable is precursor

efficacy in algebraic problem solving?
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Precursor efficac-v in algebra.

Scores for precursor efficacy were obtained by dividing

achievement in algebra by precursor knowledge.

An analysis of variance was used to investigate the

relationship between gender and teacher style. For this purpose'

precursor efficacy is the dependent variable. Gender and teacher

style are the independent variables.

The results indicate that teacher style t has the highest

precursor efficacy (see Tables 22 and 23) suggesting that teachers

who present students with closed procedures obtain proportionately

higher achievement scores for given levels of students'

understandings of the precursors of algebra.

That result seems reasonable. The algebra achievement test of

this study measures principally students' ability to recall and apply

procedures. For such a test, it is reasonable to expect that teachers

who stress the learning of procedures (style 1) should realize

greater achievement than teachers who stress understandings'

The results also indicate possible ¡nteract¡on effects. Teacher

style 1 seems to be most effective with female students, and

teacher style 3 least effective with male students.

This suggests some variables that may warrant further study

of the kind suggested earlier. Further, male students may have more

difficulty adjusting to the dissonance between the way algebra is

taught and the way achievement in it is measured.
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-lable 22

Gender by teacher St]¡le: Dependent variable. Precursor Efficac)¡

Style Female Male Female and

ma le

Teacher style 1 n

mean

3B

1.ZB

24

1.10

6?

1.21

Teacher style 2

(blend of 1 and 3)

n

mean

94

.98

B6

1.0s

180

1 .01

Teacher style 3 n

mean

41

1 .14

4B

.94

89

1.03

Styles 1,2, and 3 n

mean

173

1.08

158

1.03

331

1.06

Table 23

ANOVA for Gender by Teacher Stvle:

Dependent variable. Precursor Effìcacy

Source df SS MS F p

Gender 1 .663 _663 3.1 1 .08

Teacher style 2 1.39 .693 3.?s .04

lnteraction 2 1.45 .73 3.41 .03

E rror 3?5 69.34 .?13



154

Precursor efficacy in algebraic problem solving.

Similarily, an analysis of variance was used to investigate the

relationship between gender and teacher style with precursor

efficacy as the dependent variable. Scores for precursor efficacy

were obtained by dividing achievement in algebraic problem solving

by precursor knowledge.

The results suggest that teacher style 1 is the most effective

(see Tables 24 and 25) and teacher style 3 the least. This suggests

that, for given levels of students' understandings of the precursors

of algebraic problem solving, teachers who present students with

closed procedures are more effective. Teachers who encourage

students to construct the¡r own knowledge are less effective.

Again, given the test used here, this is a reasonable conclusion.

Achievement in problem solving in this study is largely a measure of

students' ability to recall specific problem types.

As would be expected given earlier results, there is no

evidence for any interaction effects.
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'lable 24

Gender by teacher Style: Dependent variable, Precursor Efficac]¡

Style Female Male Female and

male

Teacher style 1 n

mean

3B

1.28

24

1.1?

62

1.22

Teacher style 2

(blend of 1 and 3)

n

mean

94

1.03

B6

1 .14

180

1.08

Teacher style 3 n

mean

41

.95

48

.BB

B9

.91

Styles 1, 2, and 3 n

mean

173

1.O7

158

1.06

331

1.07

Table 25

ANOVA for Gender bl¡ Teacher St-vle:

Deoendent variable, Precursor Effic4c)¡

Source df SS MS F p

Gender 1 .123 .123 .34 .56

Teacher style 2 3.29s 1.65 4.53 .01

lnteract¡on ? .978 .489 1.35 .26

Error 3?.s 118.2 .364
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Reasoning as defined by the A Priori Model

Reasoning is defined here by the elements that fall into the

dimension of reasoning in the a priori model. Scores for reasoning

are obtained by summing the scores on the 13 items of the model

knowledge instrument that pertain to reasoning'

The reasoning dimension is explored in two ways; ( 1 ) by an

analysis of variance with gender as the independent variable, and (2)

by an analysis of variance on reasoning efficacy.

Reasoning efficacy is defined as the quotient of achievement

and reasoning knowledge.

One question was investigated;

( 1 ) What is the relationship between gender and

reasoning?

ln this analysis of variance, reasoning is the dependent

variable and gender is the independent variable.

The results indicate no difference in male and female

reasoning scores (see Tables 26 and 27) and that reasoning as

defined here is independent of gender.

f Varia
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Table 26

Gender: Depenclent Variable' Reasoning

Table 27

Gender Male Female

Mean 29.6% 27.4%

Number of subjects 158 173

Source Df Sum of

squares

mean

squares

F - test

Between 1 386.1 386.1 ?.zo

P =.14Within 329 s7 612.8 175.1

Total 330 57998.9
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Analvsis of Variance on Reasoninq Eff icacv

Reasoning efficacy is defined as the quotient of achievement

and reasoning knowledge (the author's definition). This definition of

efficacy describes achievement ¡n relation to students' reasoning

abilities as defined by the a priori model. That is to say, reasoning

efficacy is the amount of achievement realized per unit of reasoning

ability.

Again, reasoning is defined by the elements that fall into the

dimension of reasoning in the a priori model.

Two questions were investigated. They were;

(1) What is the relationship between gender and teacher

style, and reasoning efficacy in algebra?

(2) What is the relationship between gender and teacher

style, and reasoning efficacy in algebraic problem

solving?

Reasoninq efficacy in algebra.

Scores for reasoning efficacy were obtained by dividing

achievement ¡n algebra by reasoning knowledge.

An analysis of variance was used to investigate the

relatíonship between gender and teacher style. For this purpose,

reasoning efficacy is the dependent variable. Gender and teacher

style are the independent variables.

The results indicate that female students have the highest

reasoning efficacy (see Tables 2B and 29) suggest¡ng that, for a
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given level of reasoning abilities, females may be more efficient in

learning algebra than males.

The results also indicate that teacher style 3 has the highest

efficacy (see Tables 28 and 29). This suggests that teachers who

encourage students to construct their own krrowledge obtain

proportionately higher achievement scores for given levels of

students' reasoning abilities. Those results suggest that students'

reasoning abilities are not important for learning closed algebraic

procedures but that reasoning abilities are important for

constructing knowledge about algebraic procedures.
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Table 28

Styles Female Male Female and

ma le

Teacher style 1 n

mean

38

2.37

?.4

1.87

6?_

2.15

Teacher style 2

(blend of 1 and 3)

n

mean

94

2.23

B6

1.77

180

?.01

Teacher style 3 n

mean

41

2.98

4B

2.22

B9

2.s7

Styles 1, 2, and 3 n

mean

173

2.43

158

1.91

331

2.18

Table 29

ANOVA for Gender by Teacher Style:

Dependent variable, Reasoning Efficac]¡

Source df SS MS F p

Gender 1 22.54 22.54 7.25 .01

Teacher style 2 21.1? 10.56 3.40 .03

lnteraction 2 1 .31 .654 .?1 .81

E rror 32s 1010.75 3.11
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Reasoning efficac]¡ in algebraic problem solving.

scores for reasoning efficacy were obtained by dividing

achievement in algebraic problem solving by reasoning knowledge.

Similarily, an analysis of varíance was used to investigate the
relationship between gender and teacher style with reasoning

efficacy as the dependent variable.

The results again indicate that female students have the
highest reasoning efficacy (see Tables 28 and 29) suggesting that,
for a gíven level of reasoning abilities, femates may be more

efficient in learning algebraic problem solving than males.

For these tests, teacher style does not seem to affect
reasoning efficacy. lt is reasonable that here teacher style shoutd,

as was the case with algebra, be related to reasoning efficacy.

Teachers who stress the construction of knowledge are more likely

to encourage reasoning and realize proportionately greater

achievement.
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Table 3 0

Female Male Female and

male

Teacher style 1 n

mean

3B

2.18

24

1.77

62

?.o2

Teacher style 2

(blend of 1 and 3)

n

mean

94

?.?9

B6

1.80

180

2.O5

Teacher style 3 n

mean

41

2.55

4B

2.O3

B9

2.27

Styles 1, 2, and 3 n

mean

173

2.32

158

1.86

331

2,10

Tabte 31

ANOVA for Gender b]¡ Teacher Style:

Dependent variable. Reasoning Efficaclz

Source df SS MS F p

Gender 1 14.45 14.45 5.11 .02

Teacher stvle ? 4.53 2.27 .80 .45

lnteraction ? ,OBB .o44 .016 .98

Error 325 919.75 2.83
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Suqrmarv of the ExPloratorv Tests

The exploratory tests of this study investigated relationships

between achievement; and gender, teacher style, and reasoning. As

all hypotheses here are exploratory, no tests of statistical

significance are valid and accordingly all conclusions are tentative.

The relationship between gender and other variables was

investigated in several ways. The results suggest that there are

some gender effects. For both algebra and problem solving

achievement, females obtained higher scores than males. The

results concerning the effect of including gender as a predictor of

algebra performance are inconclusive. When reasoning efficacy is

considered, female students seem to be more efficient in learning

algebra and problem solving than male students.

The results suggest that a teacher's style affects learning

outcomes. Teachers who stress closed procedures and teachers who

stress construction of knowledge both realize greater algebra

achievement than teachers who blend those two styles. The results

concerning problem solving are inconclusive.

Concerning precursor effícacy and teacher style, teachers who

stress closed procedures are most effective teaching algebra and

problem solving when they arb measured, as was the case here, on

routine skills. For problem solving, teachers who stress

understandings are least effective. While these results may not be

preferred, it could be that when the proficient performance of

routine skills rather than the development of conceptual
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understandings is the desired goal of instruction, then the 'step one,

step two, ...' style of teaching may be most effective for achieving

that goal. However, when conceptual development is the goal that

style may not be aPProPriate.

ln the case of reasoning efficacy, the results support the

exploratory style of teaching. Teachers who stress understandings

are most effective for teaching algebra but teacher style does not

seem to be pertinent to problem solving. Since it is likely that in

the twenty-first century disconnected rules, theorems, and

techniques will not be sufficient with respect to mathematical

literacy, in the long run the exploratory teaching style may be

preferable.

The results concerning interaction effects are inconclusive for

achievement, gender and teacher style, However, there may be Some

interaction effects with respect to precursor efficacy, gender, and

teacher style.

The results suggest that further attention should be paid to

the interaction between teacher style and the gender of students'

Teachers who stress closed procedures with female students may

realize proport¡onately greater achievement in algebra than teachers

who stress understandings with male students'
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APPENDIX A

Model Knowledge lnstrument

DIRECTIONS:
All questions are multiple choice. There is only ONE CORRECT

answer for each multiple choice question. Circle the letter of the
correct answer from one of the choices 'a)' to 'd)'-
Please do not guess. lf you are not very sure about the answer or
don't know the answer, then circle the choice, 'e) I don't know.'

1 . lf a number is bigger than 10 then:
a) it could be 10. b) ¡t must equal 1 1 .

c) it is bigger than 12. d) it is bigger than 3.

e) I DON'T KNOW.

2. To find the opposite of something means that as you do the
opposite of, it must be done to:

a) only one number at a time b) two numbers at a time

c) three numbers at a t¡me

d) any amount of numbers at a time e) I DON'T KNOW.

3. When figuring out the answer to, 2x3 + 5x(18 - 10 + 1) + 7xZ
what is inside the brackets:
a) must be done before figuríng out 2 x 3.

b) must be done after figuring out 2 x 3.

c) can be done after figuring out 2 x 3'

d) must be done before figuring out 7 x 2.

e) I DON'T KNOW.

4. Thestatement, B - 3 = 5,

a) must always be about things.

b) can't be about money.

c) would look different if it were about carrots'

d) could be about a relationship between numbers.

e) I DON'T KNOW.
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5. ln the expression, A * [, the [l means that:

a) only whole numbers can replace it'
b) only letters can rePlace it.

c) any number can rePlace it.
d) nothing. e) I DON'T KNOW'

6. ln -(-7), the symbol, '-', that is inside the bracket indicates:

a) position b) something to do c) subtraction

d) opposite of e) I DON'T KNOW.

By a 'chunk', we mean a group of numbers that belong together
more strongly to each other than to other numbers'
How many chunks are in the expression:
2x3x 6- 6x7 + 4x9 x B x7 - 18 x 3 + 1

a)4 b)7 c)s d)6
e) I DON'T KNOW.

What is different about 0 + 0 - 0 and 0 - 0 ?

a) the answers b) the number of things to do c) nothing

d) the size of the numbers e) I DON'T KNOW.

7.

B.

9. The answer to, 115 + 4

a) 7 b) 14.s
IS:

e) I DON'T KNOW.

10. Thestatement, four+{JJ = eooecoo,
a) nonsense. b) impossible to work with.

d) not convenient to work with'

11. The statement, [ + I] + II - [ + 5 =

a) cannot be true at all. b) is nonsense-

d) is true only for whole numbers. e)

c) about 5.4 d)e

c) not true.
I DON'T KNOW.

?xl + 5,

c) is true.
I DON'T KNOW.

is:

e)
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12. Which one of the following statements is FALSE?

a) 125 = 4 : 31.25 could be about people.

b) Doing arithmetic is never about relationships between

numbers.
c) Doing arithmetic about horses is like doing arithmetic about

radishes.

d) 5 + 7 = 1? could be about money. e) I DON'T KNOW.

13. When you figure out the answer to, 7 pears and 3 pears, you:

a) add pears. b) add counts of pears. c) add words.

d) add symbols. e) I DON'T KNOW.

14. Which one of the following is true?

a) 2x([xA) = (2xt)x(ZxA) b) 2 ì- [ - [ + ?

c) ? + ([ + A) = (2 + [) + (2 + A)
d) 15xt = gxtl + 6xt e) IDON'TKNOW.

15. As you work out the answer to an expression such as, 2 x 3 + 4 -
18 + 3, the number of parts in the expression tends to:

a) increase. b) stay the same. c) become 1.

d) become 0. e) I DON'T KNOW.

1 6. For -(-3) x (-5) + 7, the meaning of the - outside the
brackets is?

a) take away b) less c) subtract

d) opposite of e) I DON'T KNOW.

17. There are many ways to get the right answer to the question,
53.2 :14.? Which one of the following could be done first
before doing the division?

a) Add the same number to 53.2 and to 14.2

b) Move the decÍmal point only in 14.2

c) Multiply 53.2 and 1 4.2 by the same number.

d) Multiply 14.2 by some number. e) I DON'T KNOW.
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18. A student figured out the answer to this multiplication question
thís way:

5.34
x12

1 0680
53400

64080

The srudenr then divided 64080 by 100 to get the final
a nswer.

Which one of the following is true about what the student did to get
the answer?

a) There is nothing wrong with what was done-

b) 64080 should have been divided by 1000 instead of by 100.

c) The student can't multiply the question parts by different
numbers.

d) An error was made in multiplying.

e) I DON'T KNOW.

19. For the expression, A x [, the A and the [ :

a) mean nothing.
b) must always be replaced by different numbers.

c) can never be replaced by numbers.

d) could be replaced by the same number. e) I DON'T KNOW.

20. Suppose that all geebles-are woggles. lt follows then that a

woggle:
a) must be a geeble. b) could be a dimble.

c) can't be a geeble. d) can't be a dimble.

e) I DON'T KNOW.
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?1. lf the names for two numbers are different looking, then the two
numbers:
a) could be equal. b) are always unequal.

c) must be equal. d) are opposite in value.

e) I DON'T KNOW.

2?. lf like matches with +, then the statement, She likes Bob,
is best matched by:

a)B+7 b)tl+? c)7 +[ d)il+7
e) I DON'T KNOW.

23. As you figure out the answer to an expression like,
2x3'4 +7 x5, this changes:

a) the answer to the exPression.

b) the numerical value of the expression'

c) the numerical value of the answer.

d) the number of parts in the expression.

e) I DON'T KNOW.

24. We usually write the number fifty in mathematics as 50 rather
than using the Roman numeral L because:

a) the Roman numeral for fifty is wrong.

b) the Roman numeral for fifty is more complicated'

c) the Roman numeral for fifty is no longer very useful.

d) for no good reason. e) I DON'T KNOW.

25. When you add, how many numbers do you add together at one

time?
a) Two b) One c) lt depends on the numbers.

d) As many as you want' e) I DON'T KNOW-

26. The Il in the expression, 5 x [ + 3:

a) temporarily stops you from doing the arithmetic'
b) has no effect on the result of doing the arithmetic.

c) means that you can never do the arithmetic.
d) can have only one value. e) I DON'T KNOW.
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27. Supposethat Axtlx? = nxC)xß.
lf t - ß, then ? =:
a) any number b) O c) A d) u

e) I DON'T KNOW.

28. Look at the following matching of numbers:
100

1-->0
1 /100

1 /1 000

a) -4 b) -1 c) -3 d) 4 e) I DON'T KNOW.

79. Consider the following story.
Some pennies are stacked (one penny on top of another)
into two piles. One pile is higher than the other pile by
B pennies. The shorter pile is 15 pennies high.

Which one of the following best matches what is going on in the
story?

a)15-8=? b)? -15=B c)?' B= 15

d) B + 15 = ? e) IDON'TKNOW.

30. Adding, 129.78?3 + 9654.271 + 1680.009725 + 23987.6,

a) must be done from left to right.

b) must be done from right to left.
c) in a different d¡rection results in a different answer.

d) can be done from right to left. e) I DON'T KNOW.

31 . Which one of the following best matches the arithmetic,
30=5 - 3?
a) Remove 3 from what you give to each of 5 people.

b) Remove 3 from what you give to each of 30 people.

c) Remove 3 and then give what is left to each of 5 people.

d) Remove 3 people and then divide up 5 among those who are

left.
e) I DON'T KNOW.
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32. lf the symbol, +, can be used to indicate clockwise, then a good
choice for indicat¡ng counterclockwise is the symbol:
a)< b)AM c)- d).--
e) I DON'T KNOW.

33. We write the number for counting eight things as B because it:
a) ís true.
b) happens to be the way we do it.
c) is obvious to write it this way.

d) can't be written in any other way.

e) I DON'T KNOW.

34. For the statement, [ + [ + t - 15, it is okay to:
a) replace the first I by 2, the second I by 6, and the third I

bv 7.

b) replace the first I by 5, the second t by 5, and the third u

bv 5.

c) replace each of the three tl's by 15.

d) remove one of the ['s. e) I DON'T KNOW.

35. Goingfrom cooc {r/ to ea 
^/ mostlil<elyisnotlike:

a) 42+2=21 b) 42-21 : ?1 c) 6-3 =3
d) (20 + 2) +2:11 e) IDON'TKNOW.

36. Theanswerto, 2x4"+ B+4xZ - g2, is:

a) 24 b) ?7 c) 59 d) 1 1 e) t DON'T KNOW.

37. Consider the statement, I X A = 1?. How many DIFFERENT
PAIRS of numbers will _make this statement true?
a) at least 3 pairs b) one pair c) exactly 6 pairs

d) no pairs at all e) I DON'T KNOW.
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38. Consider the following storY.
On Monday, Bob had some money in his wallet. By magic,
it tripled overnight. Now there are 15 dollars in his
wa llet.

Which one of the following best matches what is going on in the

story?
a) 3x5: ? b) 15-3 = ? c) ? + 3 = 15

d) 3x? = 15 e) IDON'TKNOW.

39. Which one of the following is FALSE about B x 3 : 24 ?

a) 24 can be the question and B x 3 can be the answer.

b) The answer to the question B x 3 is ?4.

c) The answer to the question B x 3 must be written as 24-

d) 24 is another way to say B x 3. e) I DON'T KNOW.

40. Walking seven blocks north, eíght blocks south, four blocks
north, and five blocks north is líke:

a) 7PM,8AM, 4PM, 5PM
b) right 7, left B, right 4, left 5

c) over 7, under B, over 4, over 5

d) 7 apples, B oranges, 4 apples, 5 apples

e) I DON'T KNOW.

41 . Mary is as tall as Helen. Helen is taller than Sandy, but Helen is
shorter than Christa. Sandy is taller than Kandi. Kandi is:

a) shorter than Christa.

b) taller than Christa.

c) taller than Mary.

d) as tall as Christa e) I DON'T KNOW'

42. Which one of the following is true?

a) 8375 x 125 : 8375 x 100 + 8375 x20 + 8375 x5
b) 23:(B + 7) = (23:8)+ (23+7)
c) (92*6)-B = (92*B)+(6+B)
d) 13/9 - 5?/30 : 5?/3O - 13/9
e) I DON'T KNOW.
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43. Not not understanding nothing is the same as:

a) not understanding nothing. b) understanding nothing.

c) understanding everything. d) understanding something.

e) I DON'T KNOW.

44. Which one of the following is okay to do?

a) 3dogs - 1 b) 5dogs + 3rivers c) Tdogsx3 + I
d) 15 dogs + 3 cats e) I DON'T KNOW-

45. Theanswerto, 14x5 - 7x7 + (3+4)-6,
a) must be worked out from left to right.

b) is different if worked out in a different direction.
c) can be worked out from right to left.
d) must be worked out from right to left.
e) I DON'T KNOW.

46. Suppose that all veems are vooms. lt follows that
if something is not a voom then that something:
a) is a veem b) is not a veem c) is not a fiim

d) could be a veem. e) I DON'T KNOW.

47. Which one of the following best matches the statement,
6xtl = A, ?

a) tl is 6 times as big as A. b) A is 6 times as big as II

c) A is one sixth as big as 11. d) tl equals A.

e) I DON'T KNOW.

48. Which one of the following is true?
a) 18 is another name for 1 9.

b) oaeco + oo isanOthernamefOrS'
c) The only other name for 4 x 5 is 20.
d) There are many names for 23. e) I DON'T KNOW.



180

49. To find the square root of something means that each t¡me you

do the square root, ít must be done to:
a) only one number. b) two numbers. c) three numbers.

d) any amount of numbers. e) I DON'T KNOW.

50. Think about the list of numbers, 1, 2, 3, 5, B, 1 3, tl.

Which one of the following is a likely value for E?

a)21 b)?o c)18 d)27
e) I DON'T KNOW.

51 . Consider the following story.
A metre stick, its end broken off, starts at the 21 cm
mark. Mary uses this meter stick to measure the length
of a pencil. She places one end of the pencil at the 30
cm mark on the metre stick. The other end of the pencil
is at The 47 cm mark.

Which one of the following best matches what is going on in the

story?
a)47-? =30 b)30+? =47
d)21+?-47

c)?+ 30:47
e) I DON'T KNOW.

52. One of the following statements is FALSE.

a) 4 x .?5 = 1.00 can only be about money.

b) 2x5 + 4 = 14 canbeanexampleof anumerical

relationship.
c) 2x5 + 4 = 14 canbeanexampleof afactaboutmoney.
d) 4 x 17 can be about ages. e) I DON'T KNOW.

53. The statement, ? - (7 + 5)
like:

a) Zx(7 +5)
b) ?t(7x5)
c) 2x(7:5)
d) ?+(7xS)
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54. Add is to subtract as:

a) squaring is to square root. b) minus is to subtract.

c) subtract is to divide. d) add is to multíply'

e) I DON'T KNOW.

55. lntheexpression, (2x3) + 5 + (2axS) + 2x(7 +9),
we know what to do only because of the:

a) numbers. b) brackets.

c) additions, multiplications, and brackets.

d) brackets and additions. e) I DON'T NOW.

56. Tomorrow is not Monday, then today is:

a) Sunday b) Monday c) not Sunday d) not Tuesday.

e) I DON'T KNOW.

57. How can you undo the result of doing the opposite of -3?

a) Add 0. b) Subtract 3. c) Add negative 3.

d) Do the opposite of again. e) I DON'T KNOW.

58. Look at the following multiplication results carefully.
99x99 = 9801
999 x 999 = 998 001
9 999 x 9 999 = 99 980 001

What should be the result for: 99 999 999 x 99 999 999 ?

a) 999 999 998 000 000 001

b) 99 999 980 000 001

c) I 999 999 800 000 001

d) 9 999 999 980 000 001 e) I DON'T KNOW.

59. Suppose that, ¡f whatsit then whatfor, if whatfor
then whatelse, if whatelse then whatwhere'

One possíble conclusion from all of this is:

if whatfor then whatwhere. This conclusion is:

a) wrong b) correct
c) depends on the nature of whatfor.
d) depends on the nature of whatfor and whatwhere.

e) I DON'T KNOW.
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60. Figuring out the answer to the question, 7 apples and 4
oranges,
a) is possible if the oranges or the appfes are thought of as

fruits.
b) is possible if both the apples and oranges are thought of as

things.
c) is possible without any rethinking of the quest¡on'

d) is possible if the apples are thought of as fruits.
e) I DON'T KNOW.

61 . There are many ways to get the right answer to the question,
2510 - 18. Which one of the following could be done first
before doing the subtraction?
a) Divide both 2510 and 18 by the same number.

b) Add a number to 2510 but add a different number to 18.

c) Add the same number to 2510 and to 18.

d) Add a number only to 1 8. e) I DON'T KNOW.

6?. Multiplying, 2xtx4x 3x5,
a) can be done from right to left.
b) must be done from left to right.
c) in a different d¡rection results in a different answer'

d) must be done from right to left.
e) I DON'T KNOW.

63. By a 'chunk', we mean a -group of numbers that belong together
more strongly to each other than to other numbers.
ln the expression, 3 + 6 x 52 + 12 + 4 + 52 + 15, which
operation separates chunks?

a) + b) x c) + d) squaring

e) I DON'T KNOW.
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APPENDIX B

Algebra Achievement lnstrument

fllgebra: Code:

1. Find the value of the expression, vz + 3x + 4, if x has a value
of 4.

(z)

2. Simplify the expression, a + b + a + c + b + a.
(1)

3. Simplify: (xs)(x+)
(.s)

4. SimPlifY: xl ø : xs

(.s)

5. Simplify: -(3x - 2y)
(.s)

6. Simplify: (3a)(2b)
(.s)

7. Write the opposite of: 3x
(.s)

8. Multiply: 3(x + 6)
(1)

9. Simplify: '#
(1)

10. simprify: qt+-lg
(i )
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1 1. Solve the equation: 3x + 15 = 17
(1)

12. Solve the equation: 2(x + 3) = 14
(1.s)

13. Solve the equation: ; = å
(1)

l4.Simplify: +.+
(1)

1 5. Simplify:
Aabc + 5a2 bc + 6abcz - 3abc + 7a2bc - 3abcz + abZ c

(2)

16. Simplify: (Zxs¡(3x+¡
(1)

17, Simplify: (6xa¡ + (Zxa)
(1)

18. Simplify: (2x - aY) - (2x - 4Y)
(1)

19. Simplify: (-6)(-ZxY)
(1)

20. Write the opposite of: 2x - 3Y
(1)

?1. Simplify: T#
(1.s)

2?. Simplify: 
"t\;*(?)
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23. Solve the equation: 12x + 13 = Bx - 7
(z)

24. Solvetheequation: 3(x-3) + 1 - x + 5

(3)

25. Solvetheequation: ;-+.1 - 5

(3)

zG. simplify: *++ . 1

(2)

27, Flnd the value of the expression, -xz + Z(xy)?,
if x:-3 andy:2.

(4)

28. Simplify: 25x - 2(-3x + 6)
(3)

2.9. Simplify: (3xz Y)(5xa Ys)
(1.s)

30. Simplify: (?Oxz y7) * (4xya)
(1.s)

31 . Simplifu: 9a - 3b - (-2b + 4a)
(2)

32. Simplify: (6ab)(-3az)
(1.s)

33. Write the opposite of: -(à* - V) + 5
(1.s)

34. Multiply: -5y(3y + 4xy - 5)
(2)
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35. Simplify: W
(2)

12xyz - 6xz y zLxz yz

37. Solve the equation: Bx + 14
(3)

38. Solve the equation: alx - 1) +
(4.s)

39. Solve the equation:

(s)

-3xy

1-

- (3x)(ax) - (-sxX3)

x : 10 + 2x + 4

x - 1 = -(x-3) + 4

36. Simplify:

(3)

40. Simplify:
(s)

41 . Simplify:
(3)

42. Simplify:

(2)

x-1
3

X+ ?
2' +1

-(-2xX3x)

Zx + 6

x*3



Algebraic Problem

Problem soluing:

L87

APPENDIX C

Solving Achievement lnstrument

Code:

Part

(.s )

(1)

(1.s)

(1.s)

lllrite an algebraic expression for each of the follouing:

Total cost of 7 shirts if each shirt costs x dollars:

Total cost of n cans of beans if each can costs 5t cents:

Cost of one can if 45x cans cost 5y dollars:

d) Perimeter of the rectangle

(1.5) e) Area of rectangle:

4a

fl:

a)

b)

c)

3b

(.5) f) Five more than a number:



(3) g) Area of the shaded region:

Rectangle: x bg 2x

(1.5) h) Doubling the result of subtracting

( 1 ) i) The distance from A to B:

1BB

Squore: x bg x

3 from a number:

.h 29 -----*

(2) j) The mass of a copper coin; if a silver coin having a mass of
(2b + 1) grams is three t¡mes the mass of the copper coín:

L4x
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PflBT B: Solue each problem. You must shou,r the equation that
gou used for soluing the Problem.

(3) a) Doubling a number and then adding 4 yields a result of 82.
What is the number?

(4) b) Tony has $10less than Bob. Mary has $17 dollars more than
Bob. Altogether, the three people have $250. How much
money does Bob have?

(5) c) Tom, Dick, and Harry shared a prize of $210. Dick received
twice as much money as Tom. Harry received three times
as much as Tom. How much money did Harry receive?

(4) d) Three consecutive odd numbers add up to 267. What are
the three numbers?

(6) e) A bag contains nickels and dimes having a total value of
$9.15. One more than the number of nickels is 6 times the
number of dimes. How many nickels are in the bag?

(4) f) The length of a rectangular swimming pool is 17 m
greater than the width of the pool. The perimeter of the
pool is 154 m. What is the length of the pool?

(3) g) The difference of two numbers is 13. When the two
numbers are added the result ¡s 243. What are the two

numbers?
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(6) h) A piece of wood 191 cm long is cut into 4 pieces. The
pieces are all of different lengths. How long is the
longest piece? The pieces are cut as follows:

1 cm ìonger than twiçs t-he length of the Piece
above

I cm longer than tt'vice the length of
the piece above

1cm
ì onger
t-han

twi ce
the ìength
of the
pi ece above
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APPENDIX D

Pedagogical Styles of Algebra Teachers lnstrument

Please circle Uour response to each question-

1. The homework I assign consists of questions which closely
resemble the examples that I have presented in class.

Very rarely Sometimes Half the time Frequently Almost always

2. When teaching algebra, I provide students with a rationale for
learning algebra that involves real applicatíons.

Very rarely Sometimes Half the time Frequently Almost always

3. ln algebra class, I attempt to develop a set of principles that are

appliõable to the processing techniques that are part of the
course.

Very rarely Sometimes Half the time Frequently Almost always

4. I insist that students do algebraic processing the way that I

raught it.

Very rarely Sometimes Half the time Frequently Almost always

5. My evaluation (formal and informal) of students emphasizes
processing skills.

Very rarely Sometimes Half the time Frequently Almost always

6. I encourage students to partic¡pate in the generation of
principleJand concepts that might be fundamental to doing

algebra.

Very rarely Sometimes Half the time Frequently Almost always
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Z. My foremost concern in teaching algebra is that students are able

tô get the right answers to algebra questions rather than
understanding the principles involved in getting the answers.

Very rarely Sometimes Half the time Frequently Almost always

B. I begin my algebra classes by presenting definitions and
proðessing examples rather than by developing a principle(s)
that may be applied to the processing.

Very rarely Sometimes Half the time Frequently Almost always

9. The reason that I ask questions in my algebra classes is to help

me decide if students are able to do questions similar to the
examples that I present (ignore reasons related to discipline
matters).

Very rarely Sometimes Half the time Frequently Almost always

10. I think that the students in my algebra classes care about
learning algebra.

Very rarely Sometimes Half the time Frequently Almost always

1 1. My evaluation (formal and informal) of students emphasizes
principles and concepts.

Very rarely Sometimes Half the time Frequently Almost always

12. I encourage students to seek alternate ways to do algebra
questions.

Very rarely Sometimes Half the time Frequently Almost always

13. I use a problem solving model when teaching algebra - one that
encourages students to provide a major contribution to the
development of the objective of the lesson.

Very rarely Sometimes Half the time Frequently Almost always

14. I approach algebra classes with a "spring in my step" and "joy
in my heart".

Very rarely Sometimes Half the time Frequently Almost always



APPENDIX E

Organization of the Model Knowledge

A Priori Model of Precursors

Table E-l

193

Ite ms tn the

catgeories pf the model:

Catego ry Item number on lnstrument

1 10, ?4, 33

2 21, 39, 48

3 7, 55, 63

4 5, 1 1, 1 9, 26, 34, 11
5 6,16, 37

6 2, 25, 49

7 1 B, 54, 57

B 3, 9, 36

I 8,5,23
10 4, 12, 5?

11 1 3, 44, 60

12 30, 45, 62

13 14, 17, 27, 42, 61

14 28, 50, 58

15 1, 20, 41 , 43, 46, 56r_19

16 35, 40, 53

17 ?2, 31 , 47

18 29,38, 51
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APPENDIX F

lnstrumentation Results

Table F-l

Response Scoring Erro-rs for Model Knowledge Instrument

Number of items scored Number of errors in scoring

ZOx63 =1260 5 (.4o/o)

Table F-2

Table F-3

Rescorine Data for Achieve-ment in Aleebra

Number of samples 34

Freouency of 0 change 14

Ranqe of changes - 3o/o to 5%

Mean change (absolute value) 1o/o

Standard deviation (absolute value-) 1o/o

Number of samples 34

Frequency of 0 change 14

Ranqe of changes - Zo/o to 3o/o

Mean change (absolute value) .5o/o

Standard deviation (absolute value) .7o/o
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Table F-4

Item Consistencl¡ for the lvlodel Knowledge Instrument

Lowest correlation with total score - .07

Hiqhest correlation with total score .5?

Number of neqative correlations 2

Split-half consistency coefficient .61

Table F-5

Item Consistency for the Achievement in Algebra Instrument

Lowest correlation with total score .09

Hiohest correlation with total score .81

Number of neqative correlations o

spl¡t-half consistency coefficient .BB

Table F-6

Instrument

Lowest correlation with total score .22

Hiqhest correlation with total score .87

Number of neqative correlations 0

Split-half consistency coefficient .83
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APPENDIX G

Results for Formal Tests

Table G-l

Test Parameter Value

/T (predicted / actuaÐ .5s6

P2 (predicted / actual) .309

K 7

N 100

Degrees of freedom 7 /92
c[ .05

F - criterion 2.1.3

F - calculated 5.BB

Table G-2

Contribution to BZ

Model used independentl)¡.

Dependent Variable. Achievement in Algebra

Data set Set B Set C Sets A, B, C combined

R2 contribution .522 .364 .432



Table G-3

Dependent Variable - Achievement in Algebra

r97

Test Parameter Value

R (predicted / actual) .393

P2 (predicted / actual) .t54

K B

N 100

Degrees of freedom B/9r
c[ .05

F - criterion 2.O7

F - calculated 2.O9

Table G-4

Contribution to AZ of the Set e-derive

Model used independentl)..

Depenclent Variable. Achievement in Algebra

Data set Set B Set C Sets A, B, C combined

RZ contribution .500 .235 .339
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APPENDIX H

Model Knowledge lnstrument details

Answer KeJ for. the Model Knowledge lnstrument

1.d 2.a 3.c 4.d 5.c 6.a

9.c 10.d 11.c 12.b 13.b 14.d

17.c 18.b 19.d ?O.b 21.a ?2.d

?5.a ?6.a 27.bord 28. c 29. b

3?. c 33. b 34. b 35, c 36. b 37- a

40. c 41. a 4?-. a 43. b 44. d 45. c

48. d 49. a 50. a 51. b 5?. a 53. d

56. c 57. d 58. c 59. b 60. a 61. c

7.c

15. c

23. d

30. d

38. d

46. b

54. a

62. a

8.b

16. d

24. c

31. a

39. c

47. b

55. c

63. c

A Discussion of sofne ltems of the Model Knowledge lnstrufnent

Item #16: 'Subtract' cannot be the interpretation of the symbol '-'

here because of the way the expression is written.

Item #?O: Choice (b) ¡s correct by eliminat¡on. Choice (a) is not

correct as lF -> THEN is not necessarily reversible.

Choice (c) is not correct as a woggle might be a geeble

if a geeble is a woggle. Choice (d) ¡s not correct since

there is no basis for saying that a woggle cannot be a

dimble. lr may help to think through the item from the

point of view "lf it is raining, then it is wet'".
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Item #27: There is an error in the construction of this item. Both

anSWerS are acceptable. The response 'any number' is

not correct. While n and O can be any number, once

either of them has been assigned a value , then '?' must

be that value. The commutative principle is the issue

here.

Item #30: Students may have the vertical algorithm in mind here'

That possibility makes this item somewhat flawed.

Item #35: There is an argument to be made that all of the choices

are like the example given. However, choice (c) is the

least like the example as subtraction requires the same

objects for subtracting.

Items # 29, 38, 51:

Item #40: AM and

The issue in these items is not what kind of

computation can be done to get the answer but

rather which number sentence best models what

is happening in each storY.

PM are not directional.

Item #44: The issue here is that x and - require the same objects

while x and + do not.

Item #53: The issue here is detecting the distributive pattern (one

operation applied over a different one)-
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Item #57: The functional use of inverse operations is the issue

here (dolundo). lf one begins w¡th -3, then doing the

'opposite 'of' to it yields +3. To get back to -3 (undo),

one must again do the 'opposite of' but to +3.

Item #60: Choice (b) is somewhat acceptable but the researcher

wanted a sharper understanding of the issue-
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APPENDIX I

Details concerning Exploratory Tests

Table I-1

Items used for defining Precursor Knowledge

Items in numerical order

6, 7, B, 9, 11, 14,16, 18, 23,32,36, 37,40,41,42,47,
49,50, 51, 54, 55, 56, 58, 59, 61, 63


