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ABSTRACT 
 

Many soft food materials, including vegetable shortening, exhibit complex rheological 

behaviour with properties that resemble those of a solid and a liquid simultaneously.  The 

fundamental parameters used to describe the rheological response of vegetable shortening 

were obtained from uniaxial compression tests, including monotonic and cyclic 

compression, as well as creep and stress relaxation tests.  The fundamental parameters 

obtained from the various compression tests were then used in two mechanical models 

(viscoelastic and elasto-visco-plastic) to predict the compression and conical indentation 

response of vegetable shortening.  The accuracy of the two models was studied with the 

help of the commercially available finite element analysis software package Abaqus.  It 

was determined that the viscoelastic model was not suitable for the prediction of the 

rheological response of shortening.  On the other hand, the proposed elasto-visco-plastic 

model predicted with reasonable accuracy the uniaxial compression and indentation 

experimental response of vegetable shortening. 
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1.1.0 General Introduction 

Vegetable shortening and many other semisolid foods can be classified as particle gels, 

since they consist of a network of weakly bonded particles comprised of solid lipid 

crystals suspended within a fluid (primarily liquid lipids) (Rzepiela et al, 2002; Kloek et 

al, 2005).  Vegetable shortening is an important ingredient in the food industry; its uses 

include providing structure, lubrication, aeration, emulsification and moisture retention to 

a great variety of baked goods. In addition, it has beneficial heat transferring uses 

particularly when used as a frying agent (O’Brien, 1998).  The main ingredients of 

vegetable shortening are liquid oils and solid fats from different sources.  The choice of 

the type of oils and fats used, as well as their storage and processing conditions affect the 

structure of vegetable shortening and as a consequence its rheological properties and final 

applications (de Man et al, 1992; Schaink et al, 2007).  Measuring the rheological 

properties of shortening is an important method of determining the quality and possible 

applications of the different types of vegetable shortening (Steffe, 1996; Afoakwa et al, 

2008).  The rheological response of shortening, as with other materials, can be measured 

by instrumental methods classified into two major categories: empirical and fundamental 

tests.  Empirical tests are more commonly used in the food industry for the simplicity and 

economy that they provide.  However, empirical methods do not provide rheological 

results in fundamental units and therefore they are difficult to compare with other 

empirical tests (Anand, 2001).   

 

Indentation is one of the preferred methods of measuring the rheological response of 

shortening because it is generally inexpensive, no standard specimen is required, 
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measurements can be done on highly localized regions and the results are less dependent 

on the geometry of the specimen (Anand, 2001; Huang et al, 2002).  Quality control 

parameters for the shortening industry can be derived from indentation measurements; an 

example of a quality control parameter is the relative hardness obtained from cone 

penetration, which can be used to determine whether a specific shortening has the right 

quality for a particular application (Metzroth, 2005).  Even though indentation tests are 

very simple to perform, the results are not easy to interpret due to the non-uniform 

application of forces to the specimen under the indenter. Because of the complexity of 

indentation results it is difficult to derive fundamental parameters from them and 

therefore indentation results are generally interpreted empirically (Huang et al, 2002; Goh 

et al, 2004a).  So if indentation is to be used to determine mechanical properties in 

fundamental units, it is necessary to know the properties of rheologically complex 

materials such as shortening in fundamental parameters before an attempt can be made to 

measure such parameters from indentation.  

 

The rheological response of vegetable shortening can be described by measuring 

fundamental material properties, which are independent of the measuring method (Steffe, 

1996).  Vegetable shortening is a very complex material showing a rheological response 

that combines the behaviour of a solid and a liquid.  Therefore, the fundamental material 

properties used to describe the rheological behaviour of vegetable shortening include the 

modulus of elasticity, Poisson’s ratio, yield stress, viscosity, relaxation time, creep 

compliance, retardation time and relaxation time.  Since these fundamental parameters 
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are independent of the measuring method they can be used in mechanical models, such as 

the elasticity, plasticity and viscoplasticity equations (Menard, 1999). 

 

Fundamental material properties can be obtained from a variety of mechanical tests; some 

examples include simple shear, triaxial tension and uniaxial compression (Steffe, 1996).  

The first part of the current research was dedicated to obtaining the fundamental material 

properties of vegetable shortening from a variety of uniaxial compression tests.  Uniaxial 

compression tests were chosen because they are simple to perform, their results are 

relatively easy to interpret, and Universal Testing Machines are commonly available 

(Gunasekaran and Ak, 2003).  Fundamental material parameters, such as the modulus of 

elasticity and yield point, can be extracted from monotonic and cyclic compression, while 

the remaining parameters, the time-dependent parameters, can be obtained by performing 

compressive creep and stress relaxation tests.   

 

Ascertaining correct values for the fundamental mechanical properties of vegetable 

shortening can be affected by how the compression test is carried out. An example of 

artefactual effects is the presence of frictional effects (Charalambides et al, 2001). Also 

for many complex materials, the rate at which compression tests are performed can affect 

the values of the fundamental mechanical properties measured (Meyers and Chawla, 

1999; Goh et al, 2005). Therefore it is important to quantify the frictional effects and the 

rate-dependent behaviour of materials, especially for complex materials, like vegetable 

shortening, which show rate-dependency in their rheological response (Goh and Scanlon, 

2007).  Once the fundamental properties of vegetable shortening are known and the rate-
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dependency behaviour is characterized, this information can be used in mathematical 

models to predict the indentation response at different rates and so attempt to measure the 

fundamental parameters of vegetable shortening directly from indentation measurements, 

thereby turning indentation from an empirical tool into a means of providing 

measurements of mechanical properties in fundamental units. 

 

One of the major objectives of this research was to develop and test the accuracy of the 

mathematical models developed.  Due to the rheological complexity of the indentation 

response of vegetable shortening, testing the accuracy of the developed model requires 

the use of numerical solutions using the finite element method.  The finite element 

method is used to solve complex problems by dividing the solution region into smaller 

sub-regions, called finite elements, for which the solution can be approximated (Rao, 

1982).  Many commercially available software packages are currently available in the 

market that can implement the finite element method for the solutions of complex 

mechanical problems; for this current research project Abaqus was selected due to its 

wide material capability and its ability to be customized (Abaqus, 2008). 

 

In summary, the two main objectives of the current research project include the 

measuring of the fundamental material properties of vegetable shortening with a variety 

of uniaxial compression tests, and the development of a constitutive model for shortening 

that is able to predict the indentation response of shortening with the help of the 

commercially available finite element analysis software package, Abaqus.  
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2.1.0 Introduction 

Particle gels are formed by a network of weakly bonded particles surrounded by a fluid. 

The bonds between the particles are of several types and have different energy levels, but 

it is current thinking that the particles are bonded primarily with Van der Waals forces 

(Kloek et al, 2005). Many semisolid food products can be considered particle gels, 

including vegetable shortening.  Vegetable shortening is a major ingredient in baked 

goods, and is also used as a frying agent. Its numerous applications in the food industry 

greatly depend on its rheological properties, which are a reflection of its composition and 

structure after processing.  Understanding and predicting the rheological properties of 

vegetable shortening would be of great utility to the food industry because it could help 

in the development of new products with different functionality or improve the quality of 

existing products and the efficiency of the manufacturing process.  A powerful tool in 

understanding and simulating the rheological response of complex materials, such as 

vegetable shortening, is the finite element method. The purpose of this literature review is 

to provide the background information necessary to define a model to simulate the 

rheological response of vegetable shortening using the finite element method. 

 

2.2.0 Lipid-based Particle Gels 

In particle gels weak forces maintain the solidity of the solid network and the network is 

interpenetrated by a suspended fluid (Rzepiela et al, 2002). The solid matrix in gels holds 

water, lipids, sugars, flavours and other ingredients useful in a great number of 

applications (Xiong et al, 1991). Many materials of great industrial importance are 

particle gels including paints, drilling muds, colloidal ceramics, some personal care 
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products, and many food products (Yanez et al, 1999; Goh and Scanlon, 2007). Of 

special importance to the food industry are lipid-containing particle gels which include a 

great number of semisolid foods such as chocolate, butter, yogurt, margarine and 

shortening (Lucey, 2002; Goh and Scanlon, 2007; Tang and Marangoni, 2007).  

 

2.2.1 Structure of Lipid-based Particle Gels   

The structure and the functional properties of foods and materials are determined by the 

physical state of their components. For example, the texture of chocolate and margarine 

are determined by the physical phase of their lipid components. At a given temperature 

the lipid components of lipid-based particle gels are present in either liquid or solid phase; 

a balance between the liquid and the solid state is what controls the crystalline structure 

of lipid-based particle gels (Duval et al, 2006). Lipid-based particle gels possess a 

network consisting of weakly bonded fat crystals arranged into different shapes that 

provide solid-like behaviour to the mixture of solid and liquid components (Awad et al, 

2004). 

 

Structurally, lipid-based particle gels are similar to crystallized colloidal gels; in both 

types of gels, crystals of different sizes (2 to 200 µm) aggregate and grow into clusters, 

these clusters aggregate forming microstructures called flocs and finally the flocs arrange 

themselves in a three dimensional network (Tang and Marangoni, 2006); a schematic 

representation is shown in Figure 2.1 (Tang and Marangoni, 2007). 
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The manner in which flocs bind to each other by van der Waals forces to form a three-

dimensional network is very important in determining the rheological properties of 

particle gels. Current thinking suggests that the interfloc links carry most of the stress 

load and the failure of such bonds limits the elastic region of particle gels (Awad et al, 

2004; Goh and Scanlon, 2007). 

 

 

Figure 2. 1 Structural hierarchy of lipid gels (adapted from Tang and Marangoni, 2007) 
  

Flocs forming the fat crystal network have different shape, size and strengths; as a result 

the network cannot be considered homogeneous. The weakest flocs will act as stress 

concentrators when the crystal network is subject to deformation (Tang and Marangoni, 

2007), and the area around these weak flocs in the crystal network is probably the place 

where fractures can originate after large deformations (Kloek et al, 2005). 

 



 10 

2.3.0 Shortening 

The term shortening was originally used to describe the function performed by solid fats 

such as butter and lard on baked foods (Senanayake and Shahidi, 2005).  Shortenings 

inhibit the formation of long gluten strands in wheat-based doughs and possess a high 

level of stability at elevated baking temperatures (Litwinenko et al, 2002).  Shortenings 

are important industrial food ingredients because of their low cost of production, no need 

of refrigeration for storage, and desirable functional characteristics. These almost 100% 

fat products offer special functional utility to baking, confectionary and cooking 

applications (Ghotra et al, 2002) because they provide structure, improve shelf life and 

texture in baked goods and confectionary and when used as frying agents they offer a 

stable heat transfer medium.   

 

Shortenings are a very important ingredient for the baking industry; they comprise from 

10 to 50% of many baked goods (O’Brien, 1998).  Shortenings are commonly used in 

dough and batter formulations where the fats need to be mixed with other ingredients at 

room temperature.  The texture of breads, pastries and other baked goods is greatly 

affected when using shortening; breads, pastries and cookies become tender, flaky and 

fluffier when shortening is used in their formulation (Tecstra Systems, 2007).  Shortening 

affects the properties of cake batters by improving aeration since shortening contains 

evenly distributed air or nitrogen cells, so that the cake batter will rise more. Staling can 

be retarded by using shortening in baked goods because shortening separates starch from 

coagulating protein that otherwise will stick together to give the sensation of hardness 

and toughness when chewed (Dogan et al, 2007).  Shortening has also a lubricating effect 
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that provides moisture retention for shelf life improvement and smoother mouthfeel 

(Dogan et al, 2007).     

 

Besides their use in baked goods, shortenings are used as frying or cooking agents 

because they allow for quick, uniform heat transfer during cooking and help in the 

formation of a moisture barrier on the fried food (Ghotra et al, 2002).  Shortenings have a 

higher frying stability due to their lower content of unsaturated fatty acids, so that the 

oxidation rate of the frying oil is decreased (Choe and Min, 2007). Frying shortenings 

differ from all-purpose shortenings because they contain a higher amount of additives to 

increase stability such as antifoam (silicones) and antioxidant (BHA, BHT, PG, and 

TBHQ) agents; therefore frying shortenings have different functionality and can have 

adverse quality effects when used in food products such as baked goods (O’Brien, 1998; 

Choe and Min, 2007). 

 

In this literature review the term shortening refers to processed vegetable fats and oil 

products that affect the stability, flavour, storage quality, and texture of food, as well as 

its visual appearance by providing structure, lubrication, aeration, emulsification, and 

moisture retention. Shortening also refers to the oil-base heat transfer medium used in 

cooking and frying (O’Brien, 1998). 

 

2.3.1 Composition of Vegetable Shortening 

The main ingredients in shortenings are vegetable oils and solid fats. The composition of 

such oils and fats plays an important role determining the physical properties of 
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shortening, such as its structural and thermal behaviour. At the same time the structural 

behaviour depends on the fatty acid composition and distribution on the glycerol of each 

single lipid (Schaink et al, 2007).  

 

Vegetable edible oils, like the ones extracted from corn, soybean, cottonseed, sunflower, 

canola and palm, are the main ingredient in vegetable shortenings. These oils are mainly 

(95-96%) composed of triglycerides. Minor amounts of mono- and diglycerides from 

incomplete triglyceride biosynthesis or products of hydrolysis are also present in 

vegetable oils. Other minor lipid constituents comprise tocopherols, phytosterols and 

their fatty acid esters phospholipids, free fatty acids, fatty alcohols, waxes and long chain 

hydrocarbons (Andrikopoulos, 2002).  Processing and blending several vegetable oils is 

necessary to obtain shortenings with the required functionality and quality.  The simplest 

shortening consists of a fully hydrogenated fat blended with liquid oils; these products 

are marketed as “all-purpose” shortening and are generally suitable for pan frying and 

baking operations at home. Other shortenings with creamier qualities and greater 

resistance to oxidation generally include emulsifiers and other ingredients such as 

antioxidants (Martini and Herrera, 2008). 

 

In the USA, the main liquid vegetable oil used for the manufacturing of shortenings is 

soybean oil due to its high availability. A fully hydrogenated fat is added (5 to 10%), 

which in the past used to be made mainly from palm oil.  However due to the bad image 

of palm oil in the USA, shortening manufacturers have been forced to replace hard palm 

fat with cottonseed hard fat, even though hard palm fat produces a more stable crystal 
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network and replacing palm with cottonseed fat does not decrease the total saturates plus 

trans fatty acid content (deMan et al, 1992), components that are associated with 

cardiovascular disease. 

 

In Canada, the most abundant vegetable oil is canola oil and after hydrogenation it is 

widely incorporated into shortenings as the main solid ingredient. However, it is 

generally mixed with hydrogenated soybean or palm oil because hydrogenated canola oil 

alone tends to form a coarser crystal structure that is undesirable for many applications 

(deMan et al, 1991). 

 

The fatty acid composition of shortenings is highly variable due to the differences in the 

sources of fat, processes and desired final applications such as bakery, ice cream, and 

chocolate coating (Alonso et al, 2002).  Table 2.1 shows the composition of major fatty 

acids in some vegetable shortenings produced in Canada and the USA. 

 
 
Table 2. 1. Composition of major fatty acids in some North-American vegetable 
shortenings (deMan et al, 1992) 

Major Fatty Acids (%) 
Oils in 
shortening 16:0 18:0 18:1 18:2 Trans 

Saturates 
+ trans 

Soy-palm 14.0–16.1 10.9–11.2 42.8–46.9 25.9–26.7 13.4–19.4 40.6–44.3 

Soy-
cottonseed 

13.2–13.6 7.1–11.5 42.2–45.6 30.0-30.2 20.3–21.0 41.0–45.7 

Canola-
soy- palm 

11.1–11.3 10.5–10.8 64.5–66.2 8.2-9.5 18.5-37.3 40.6–41.7 
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By looking at Table 2.1 one can see that, depending on the type of vegetable oil used in 

the formulation of vegetable shortening, the percentages of major fatty acids vary 

considerably.  

 

In some cases emulsifier agents, such as saturated diacylglycerols, unsaturated 

diacylglycerols, and sorbitan tristearate are added to the vegetable oil and fat blends 

during the manufacturing of shortenings. The addition of emulsifier agents greatly affects 

the rheological properties of vegetable shortening because emulsifiers affect the 

crystallization behaviour of fat blends by changing the type of crystals formed and by 

changing the amount of crystals formed. It has been shown that the use of emulsifiers in 

vegetable shortening creates a “softer” texture as measured by cone penetrometer 

following AOCS official method Cc 16-60 (Martini and Herrera, 2008). 

 

2.3.2 Manufacturing of Vegetable Shortening 

Shortenings are manufactured from a mixture of oils from different sources commonly 

soybean, palm, sunflower, corn, cottonseed, and canola. The choice of oils used in a 

blend to manufacture shortening is more a function of empirical experience than 

scientific knowledge, but this choice affects the macroscopic physical functional 

properties of the final product (Dogan et al, 2007). Other factors that affect the 

macroscopic behaviour of shortenings include processing conditions, such as rate and 

degree of cooling, mechanical working and final product temperature (Ghotra et al, 2002). 
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During the manufacturing of vegetable shortenings, vegetable oil blends are solidified in 

various ways, such as by using hydrogenation and interesterification, and mixed with 

emulsifiers and other additives to produce a solid fat at room temperature with 

predetermined functionality and quality (Narine and Humphrey, 2004). The most 

common solidification techniques used with vegetable oils, as well as the processing 

steps involved during the manufacturing of vegetable shortening will be discussed in the 

following three subsections. 

 

2.3.2.1 Hydrogenation of Vegetable Oils 

Vegetable oils can be solidified by converting some of the double bonds present in 

triglycerides into single bonds.  This process is achieved by adding hydrogen atoms 

across the unsaturated double bonds of specific triglycerides with the help of a catalyst, 

typically a nickel compound; this saturation process is called hydrogenation.  

Hydrogenation increases the solidity of a vegetable oil by increasing the percentage of 

saturated fatty acids (LaBell, 1997).  Hydrogenation has been used since the beginning of 

the 20th century to produce solid fats from mainly liquid oils.  Depending on the starting 

point of saturation of liquid oils and the degree of hydrogenation, solid and semi-solid 

fats can be produced. Hydrogenated oils impart firmness to margarines, and plasticity and 

emulsion stability to shortenings (Wassell and Young, 2007).  During hydrogenation not 

all of the double bonds are converted into single bonds, instead some are converted from 

the cis orientation with both hydrogen atoms on the same side of the plane to the trans 

orientation with hydrogen atoms on both sides of the plane (Ledux et al, 2007); this 

isomerization gives rise to the formation of trans fatty acids which have been linked to 
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cardiovascular disease (Mensik and Catan, 1990; Han et al, 2002; Kummerow et al, 

2004). 

 

2.3.2.2 Interesterification of Vegetable Oils 

The formation of trans fatty acids during hydrogenations has encouraged research for 

developing alternative methods to produce solid vegetable oils.  One of these alternative 

methods is interesterification.  During interesterification the distribution of fatty acids is 

rearranged on the glycerol backbone in a random or controlled manner without changing 

the chemical composition of fatty acids, and this rearrangement can be done chemically 

or enzymatically.  Interesterification is an effective technique that can be used to produce 

fat products that are soft and spreadable as well as free of trans fatty acids (Wassel and 

Young, 2007).  However, interesterification is harder to control and therefore is less 

efficient and more expensive than hydrogenation (Grün, 2004); also, interesterification 

does not improve the oxidative stability of fat and oils in the same way that 

hydrogenation does (Basturk et al, 2007). 

 

2.3.2.3 Processing of Vegetable Shortening 

Processing steps, such as mechanical working and super-cooling during the 

manufacturing process of shortening, are equally important in determining the physical 

properties and performance of shortening as are the design of the oil blend and the 

solidification process of such oil blends (Ghotra et al, 2002). 
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The basic industrial shortening manufacturing procedure starts by weighing hard and 

liquid oils as well as other ingredients though a series of scale tanks or mass flow meters.  

Once all the ingredients are measured they are introduced into a feed tank where they are 

thoroughly blended.  Nitrogen is injected in precise controlled quantities, normally 12 to 

14% by volume, into most shortenings to increase workability and provide a creamy and 

white appearance (O’Brien, 2005).  Then the mixture is introduced to a scraped surface 

heat exchanger, typically called Unit A, where it is quickly cooled down so that a super-

cooled oil is formed.  Super-cooling is important in order to start crystal nucleation for 

the formation of fine crystals or the β’ polymorphs.  The super-cooled mixture then 

passes through a working unit consisting of a number of projecting fingers on a rotating 

shaft commonly known as Unit B.  Unit B is used to plasticize and control the 

crystallization process of the product.  Later the plasticized material is homogenized by 

passing through an extrusion valve and the product is packaged in bulk or into smaller 

consumer packages. After packaging many producers temper shortening for 1 to 10 days 

at temperatures slightly higher than the packaging temperature. During tempering the 

crystals transform to the preferred and more stable polymorphic form; lack of tempering 

produces shortening with undesirable functional properties (Ghotra et al, 2002).  The 

quality of shortenings strongly depends on the storage and handling conditions from the 

moment the product leaves the manufacturing facility until it reaches the consumer 

(Martini and Herrera, 2008), and for this reason shortenings are generally stored and 

shipped at controlled temperatures between 21 and 27 °C to avoid crystal change and loss 

of plastic properties.  Figure 2.2 summarizes the shortening manufacturing procedure 

(Anderson, 2005).   
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Figure 2. 2. Industrial manufacturing of shortening (adapted from Anderson, 2005) 
 

2.3.3 Structure of Vegetable Shortening after Processing 

Edible fat products, such as shortenings appear to be soft homogeneous solids, but 

microscopically they are a network of very small crystals (2 to 200 µm) in which liquid 

oil is enmeshed (O’Brien, 2005; Tang and Marangoni, 2006).  Crystal structure is very 

important in shortenings because it will determine functionality and quality (deMan et al, 

1991).  Product attributes like spreadability, hardness and work softening are at least 

partially determined by the shape and size of individual fat crystals and also by the way 

these crystals interact to form clusters, flocs and networks (Heertje and Leunis, 1997). 
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Shortenings are polymorphic because their major components, triglycerides, occur in 

three crystal forms (Podmore, 2002).  The three crystal forms present in shortenings are 

designated as α, β and β’. The α crystalline form is very fine and needle shaped, and 

forms a loosely packed and unstable network (Carden and Basilio, 2004); this crystal 

form has the lowest melting point (Podmore, 2002).  During tempering α crystals remelt 

and slowly recrystalize into the β’ form (Reigel and McMichael, 1966), which is the most 

desirable crystal structure for all-purpose shortenings (Senanayake and Shahidi, 2005).  

β’ crystals are small, uniform and tightly knit and therefore produce smooth textured 

shortenings with good plasticity, heat resistance and creaming properties that can be use 

to make cakes and icing (Thomas, 1978).  β crystals are larger than β’ crystals and can 

produce shortenings with sandy and brittle consistency that results in poor baking 

performance.  However, β crystals are desirable in some applications such as in pie crusts 

or when used as a frying agent (O’Brien, 2005).  

 

The source of the fat used for the manufacturing of shortening plays a very important role 

in determining the structure of the final product because the crystalline habit and 

polymorphic form is determined by the triglyceride composition.  In a mixture of 

triglycerides the individual triglycerides do not behave independently but take a totally 

new character in terms of crystallization behaviour (Podmore, 2002).  For this reason, in 

order to attain the appropriate crystalline form, vegetable shortening is produced by 

blending base stocks of different origin.  For example, when the solid portion of a 

shortening is comprised of glycerides that are stable in the β’ form, the rest of the 

glycerides present in fat system will tend to crystallize in a β’ form; thus producing 
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shortening with desirable characteristics.  Hydrogenated fat from butter oil, cottonseed, 

modified lard, palm, rapeseed, and tallow tends to crystallize in a β’ structure, while 

hydrogenated fats from cocoa butter, coconut, corn, olive, palm kernel, safflower, and 

soybean tend to form β crystals (Thomas, 1978). 

 

2.4.0 Quality Attributes of Vegetable Shortening 

The acceptability of shortenings, like any other food, is dependent on a number of criteria, 

in particular sensory impact; perceived qualities such as aroma, taste, visual appearance 

and texture are the reflection of the chemical and physical properties of their components 

and how these components interact during processing, preparation and consumption 

(Kinsella, 1987). During the production of vegetable shortening many analytical 

measurements are taken in order to determine the quality of the final product.  

 

2.4.1 Conventional Industry Quality Indices for Vegetable Shortening 

In order to obtain consistent shortenings and have good quality control during 

manufacturing, it is important to understand the principles, and apply the processes that 

influence cooling, texturizing and crystallizing (Metzroth, 2005).  In order to understand 

and investigate the efficacy of manufacturing process analytical methods are required.  In 

the shortening industry analytical methods are conducted to measure crystal size, colour, 

solid fat content, iodine value, refractive index, thermal properties, rancidity, viscosity, 

hardness, consistency and texture (Metzroth, 2005).  
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Crystal size and distribution is currently measured using light or x-ray scattering. 

Information on the crystal structure and distribution can be obtained using a revolving 

laser beam coupled with a computer.  Crystal size distribution affects the rheological 

properties and texture of lipid-based soft products.  For example, a soft material with a 

great amount of large crystals will have a larger viscosity and coarser texture, as 

compared with a material with small crystals, limiting its applications (Do et al, 2007).  

Nuclear magnetic resonance can be used to measure the solid fat index (Metzroth, 2005), 

which is the ratio of solids to liquids present in a fat at a given temperature, and this 

parameter is regularly used to determine quality and functionality of shortenings.  For 

example, an all-purpose shortening is considered to have an acceptable plasticity if the 

solid fat index at room temperature is between 10 and 25 (Carden and Basilio, 2004).  

High performance liquid chromatography and gas chromatography can both be used to 

determine triglyceride and fatty acid analysis (Metzroth, 2005).  Differential scanning 

calorimetry (DSC) can be used to determine the melting behaviour of shortenings.  

Crystal form can be correlated to DSC measurements but these results are not absolute 

indicators of the crystalline structure (deMan et al, 1991).  

 

Hardness and plasticity of shortenings is measured using compression devices; from 

these devices a force-deformation curve is obtained.  Initially the curve is straight, 

followed by flat sections and finally a break (Figure 2.3).  Shortenings that are hard and 

brittle have a narrow flat section which is related to the plasticity, and the breaking point 

occurs after little deformation.  Shortenings with larger viscous behaviour and plasticity 

show a curve that round off with long flat sections (Metzroth, 2005).  
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Figure 2. 3. Schematic force-deformation curve for two types of vegetable shortenings 

  

Another common method of determining hardness is by using cone penetration; a cone of 

specified mass and dimensions is dropped into a sample, the penetration depth is 

measured and the relative hardness (θ) of the material is determined by dividing the mass 

of the cone (m) by the penetration depth (δ) (Metzroth, 2005). 

δ
θ m=                  [2.1] 

A soft shortening will have a smaller relative hardness because the cone will penetrate 

further than in a hard shortening.  A shortening with a narrow difference in relative 

hardness values at low and high temperatures indicates that the shortening possesses a 

wide plastic range while very large differences indicate a narrow plastic range.  

Shortenings with different applications can be obtained by changing the formulation and 

processing conditions, and these shortenings will have different hardness values 

(Metzroth, 2005).  
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Many of the conventional quality indices used by the shortening industry are empirical in 

nature and depend on the utilization of a particular measuring device; this is the case, for 

example, of hardness as measured by cone penetration.  Alternatively, the quality of 

shortening can also be quantified by measuring fundamental rheological properties.  In 

theory, fundamental rheological properties are independent of the instrument which is 

used to measured them so different instruments will produce the same results for the 

same product (Steffe, 1996).  Parameters such as the modulus of elasticity, Poisson’s 

ratio, and yield stress are considered to be fundamental rheological properties that apply 

to all solid materials.  These and other rheological properties will be discussed in detail in 

the following section. 

 

2.5.0 Rheological Properties of Materials 

Rheology is a part of mechanics that studies the deformation and flow of matter that 

occurs as a response to an applied stress or strain.  All materials have rheological 

properties and therefore rheology is relevant in many fields of study, including Food 

Science (Steffe, 1996).  In lipid-rich food products, including vegetable shortening, 

rheological properties are a direct result of the composition and structure of the product 

and the processing and storage conditions that it has been subjected to.  Therefore, 

understanding and measuring rheological properties can be used to improve the quality of 

final products and improve the efficiency of the manufacturing process (Afoakwa et al, 

2008). 
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The type of rheological response that is observed depends on the physical state of the 

material (liquid or solid).  If the material is viewed as a solid then rheological properties 

such as the modulus of elasticity, Poisson’s ratio and plasticity can be used to describe its 

deformation behaviour.  If the material is viewed as a liquid, properties such as viscosity 

will be very important in describing its rheological behaviour.  However if the material 

shows characteristics of a liquid and solid at the same time, viscoelastic parameters such 

as creep compliance, relaxation modulus, relaxation and retardation time, as well as loss 

and storage moduli become the parameters used to describe its rheological response 

(Steffe, 1996). 

 

2.5.1 Modulus of Elasticity 

The elasticity of a material can be quantified using the modulus of elasticity or Young’s 

modulus.  The force required to deform a material can be measured during rheological 

tests. From the measured force and deformation, stress and strain can be calculated.  If 

the deformation is small and within the elastic region of the material, stress and strain can 

be approximated by the engineering stress (σE) and strain (εE) using the following 

equations: 

0A

F
E =σ                             [2.2] 

H

h

H

Hh
E

∆=
−

=ε              [2.3] 

where F is the reaction force exerted by the specimen on the measuring device, A0 is the 

initial cross-sectional area of the specimen, H is the initial specimen height, and h is the 
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current height which is equal to the initial height (H) minus the current deformation of 

the specimen (∆h). 

 

If the specimen is subject to a large deformation then true, or Hencky, strain (ε) and stress 

(σ) should be used to calculate the modulus of elasticity rather than the engineering stress 

and strain.  Equations [2.4] and [2.5] show how Hencky stress and strain can be 

calculated respectively for a specimen (Charalambides et al, 2001), 

A

F=σ   [2.4] 

H

h
ln=ε   [2.5] 

where A is the cross-sectional area of the specimen after a force (F) has been applied to it 

and h is the current height which is equal to the original height (H) minus the current 

deformation of the specimen (or plus the deformation if subject to tension).  Measuring 

the actual value of A is not an easy task; therefore true stress is hard to calculate.  An 

approximation of the true stress can be obtained if the material is assumed to have no 

change in volume when deformed by stresses, i.e., the material is incompressible; this 

assumption has been used for food materials like cheese, dough, shortening, butter, and 

margarine (Charalambides et al, 1995; Charalambides et al, 2001; Charalambides et al, 

2006; Goh and Scanlon, 2007).  Assuming incompressibility, stress at large deformations 

of a cubic specimen can be calculated using equation [2.6]: 

HL

Fh
2

=σ                       [2.6] 
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where L is the original side length of the cubic specimen and other parameters are as 

previously defined. 

 

Once the stress and strain are calculated, they can be used to determine the modulus of 

elasticity (E) as shown in equation [2.7] (Steffe, 1996; Ribeiro et al, 2004): 

ε
σ=E    [2.7] 

The modulus of elasticity is an important parameter that describes the deformability of a 

food material, and is related to the sensory attributes of such a material when one deforms 

it in the mouth (Narine and Marangoni, 2000).  The Young’s modulus is a measure of the 

resistance to strain of a material.  A small value of E means that a small stress produces a 

large deformation in a material, while a higher value of the modulus of elasticity 

corresponds to a higher material stiffness (White, 1999).  The Young’s modulus is 

usually calculated from the initial linear part of a stress-strain diagram (Figure 2.4a), but 

for highly non-linear stress-strain diagrams it can be expressed as the 5% strain secant 

modulus (Figure 2.4b) as done by Charalambides et al (1995).  
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Figure 2. 4. Schematic stress-strain curve showing how to calculate (a) the Young’s 
modulus and (b) the secant modulus at 5% strain 

 

2.5.2 Yield Stress and Plasticity 

The linear proportionality of stress and strain remains only if the stress is less than a 

certain value, a value that is referred to as the yield stress (Narine and Marangoni, 2000).  

The yield stress (σy) represents the amount of stress required to cause permanent 

deformation in a given material.  In other words, the yield stress marks the end of the 

elastic region of a material (Figure 2.4a).  When dealing with a perfectly elastic material 

no yield stress will ever be reached because any deformation is reversible in this type of 

(a) 

(b) 
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theoretical material.  However most real materials have a yield point that, once exceeded, 

causes a permanent strain, and when the stress is removed the material remains deformed 

(White, 1999).  

 

The yield stress is one of the most important macroscopic properties of economically 

important food products like chocolate, butter and shortening, since it strongly correlates 

to the sensory attributes of hardness and spreadability, as well as to material stability 

(Marangoni and Rogers, 2003).  However, the determination of the yield stress for a soft 

food material is a difficult task, since many food materials show rate-dependency. Rate-

dependency is observed when a high loading rate produces a different value of the 

apparent yield stress as compared to a lower loading rate (Marangoni and Rogers, 2003). 

 

Many plastic materials also have an elastic region at low strains and for this reason they 

are called elasto-plastic materials.  In the plastic region the total strain increment (dε) is 

the sum of the elastic strain increment (dεe) and the plastic strain increment (dεp) (Yu et 

al, 2006): 

pe ddd εεε +=        [2.8] 

The initial yield point (σy1) differentiates the elastic and the plastic regions (Yu et al, 

2006).  After a material has been deformed beyond its initial yield point, the subsequent 

deformation is also affected by a behaviour known as strain-hardening (Dasgupta and Hu, 

1992). So it can be seen that the fundamental elements of plastic deformation include 

initial yielding of the material, strain-hardening and subsequent yielding (Bulatov et al, 

2006; Yu et al, 2006). 
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Plasticity of crystalline materials, such as vegetable shortening can be explained on the 

basis of mechanisms at an atomic or molecular level.  In crystalline materials, the primary 

units are organized in uniform planes.  During large strain deformation, slip occurs which 

implies that one plane is sliding across a neighbouring plane.  Once slip occurs the 

primary units cannot return to their original position causing the deformation to be 

irreversible, i.e., plastic deformation (de With, 2006). 

 

Defects in a perfect crystal are called dislocations and during plastic deformation these 

dislocations can move (Gottstein, 2004).  During the first stage of plasticity, right after 

the yield stress is reached (Figure 2.5 stage I), dislocations on primary slip planes can 

move long distances and even reach specimen boundaries.  As the deformation continues 

secondary slip planes develop; these secondary slip planes also have dislocations, which 

can move along the secondary slip planes in different directions than the primary 

dislocations. Secondary and primary slip planes can overlap at certain points, so it is 

possible for the primary and secondary dislocations to interact with one another.  The 

interaction between primary and secondary dislocations causes immobility of some of the 

dislocations.  For each immobile dislocation another mobile dislocation has to be 

generated in order to maintain the applied strain rate (during uniaxial compression for 

example).  In order to maintain the strain rate constant, the internal stress has to increase 

more rapidly to allow the development of new mobile dislocations; this behaviour is what 

causes strain hardening (Figure 2.5 stage II) in crystalline materials.  During the third 

stage of plastic deformation (Figure 2.5 stage III), the rate of strain hardening starts to 
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decrease.  The decrease in hardening rate is related to the formation of dislocations that 

do not have a defined sliding plane and can change their sliding plane; these dislocations 

are called screw dislocations.  Screw dislocations tend to avoid interactions with other 

dislocations by changing sliding planes, so they can move long distances and eventually 

reach the specimen boundary.  However, during stage III, the generation of dislocations 

occurring in stage II is still taking place; therefore strain hardening is still possible but to 

a lesser extent (Gottstein, 2004).  

 
Figure 2. 5. Schematic stress-strain diagram showing three stages during plastic 

deformation (adapted from Gottstein, 2004) 
 

2.5.3 Poisson’s Ratio 

When a material is compressed in one direction by a force (F) from original height (H) to 

a final height (h) it tends to get wider in the other two directions. In the case of the 

cylinder shown in Figure 2.6 the specimen goes from an original diameter (D0) to a final 

diameter (Df). The extent of this behaviour is characterized by the Poisson’s ratio (ν). 
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Strain 

S
tr

es
s 

σy 



 31 

 

 

 

Figure 2. 6. Parameters used to calculate Poisson’s ratio of a cylindrical specimen under 
compression (adapted from Gunasekaran and Ak, 2003) 

 
 

Poisson’s ratio is defined as the negative ratio between the strain normal to the applied 

load (transverse strain) and the strain in the direction of the applied load (axial strain) 

(Hjelmstad, 2005).  The negative sign indicates that the lateral dimension increases as the 

axial dimension decreases under compression and vice versa during tension.  The 

following equation summarizes the concept of Poisson’s ratio for the cylindrical 

specimen shown in Figure 2.6 (Gunasekaran and Ak, 2003): 
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F 
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Most materials have a Poisson’s ratio between 0.0 and 0.5, but there are materials with 

negative values and even with values higher than 0.5.  A perfectly incompressible 

material will have a Poisson’s ratio of 0.5; rubber is an example of a material that 

approximates to an incompressible solid, while cork is a common example of a 

compressible solid with a Poisson’s ratio close to zero.  Based on energy arguments, the 

theoretical allowable range of Poisson’s ratio for isotropic three dimensional materials is 

-1 to 0.5 (Lee and Lakes, 1997).  However until 1987 it was believed that materials with a 

negative Poisson’s ratio were non-existent.  Negative values for Poisson’s ratio have been 

reported in specially-constructed polymeric and metallic foam structures (Lakes, 1987; 

Friis et al, 1988; Choi and Lakes, 1992) and Poisson’s ratio greater than 0.5 were 

reported for specially-manufactured open-cell polyurethane foams (Lee and Lakes, 1997).  

Most biological materials including food have a Poisson’s ratio between 0.2 and 0.5 

(Steffe, 1996). 

 

The Poisson’s ratio is one of the four common elastic constants and can be used to relate 

the modulus of elasticity (E) to the shear modulus (G) and to the bulk modulus (K).  The 

latter two moduli describe the change in dimensions of materials under shear stress and 

hydrostatic pressure respectively, by the following equations (Ferry, 1970): 

)1(2 ν+= GE            [2.10] 

)21(3 ν−= KE             [2.11] 
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and for a perfectly incompressible solid (Ferry, 1970): 

E= 3G                          [2.12] 

 

2.5.4 Liquid Parameters 

In previous sections the material parameters that are used to describe the rheological 

response of solid materials have been discussed.  Other parameters are used to describe 

the rheological response of liquids.  When a force is applied to a liquid, flow starts to 

occur.  The Newtonian model is used to characterize the flow of many liquids.  Flow of a 

liquid material is dependent on the rate at which strain is applied to it; therefore liquids 

are rate-dependent materials.  Newton defined the stress-strain rate relationship using the 

dashpot as a model, which consists of a plunger with small holes through which a fluid is 

forced through; an example of a dashpot is a French coffee pot (Bodum) or an 

automobile’s shock absorber.  As the stress is applied the material starts to slowly flow 

through the holes and the speed at which the fluid flows through the holes (i.e., strain rate) 

increases with stress.  For a Newtonian fluid this increase is linear and is summarised by 

the following equation (Menard, 1999): 

εησ &=                                        [2.13] 

where the stress (σ) is related to strain rate (ε& ) through viscosity (η).  For a Newtonian 

fluid the viscosity is independent of the strain rate and is the slope of the stress-strain rate 

curve (Figure 2.7 curve (a)).  Examples of Newtonian fluids include water, tea, coffee, 

beer, carbonated beverages, filtered juices, edible oils, sugar syrups, most honeys and 

milk (Bourne, 2002).  However, most food materials are non-Newtonian; therefore their 
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stress-strain rate diagrams are not straight lines and their viscosity is not a constant 

independent of the strain rate (Menard, 1999); so that equation [2.13] becomes: 

εεησ &&)(=                             [2.14] 

For many non-Newtonian fluids, as the strain rate increases their apparent viscosity 

decreases; liquids that behave in this manner are called pseudoplastic or shear thinning 

fluids (Figure 2.7 curve (b)).  Common examples of pseudoplastic fluids include ketchup, 

whipped cream, latex paint and polymer melts.  In contrast, liquids for which the 

viscosity increases with increasing strain rate are called dilatant or shear thickening 

(Figure 2.7 curve (c)) (Böhme, 1987).  At low to moderate strain rates, it is more 

common to encounter liquids showing pseudoplastic behaviour, but at very high rates it is 

more common to observe shear thickening behaviour as shown Figure 2.8 (Faber, 1996). 

 

Figure 2. 7. Stress-strain rate curves for (a) Newtonian fluid, (b) pseudoplastic fluid and 
(c) dilatant fluid (Adapted from Böhme, 1987) 

(a) 

(b) 

(c) 
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Figure 2. 8. Stress-strain rate curves for a fluid showing pseudoplastic and dilatant 

behaviour at different strain rates (Adapted from Faber, 1996) 
 

2.5.5 Viscoelastic Parameters 

Most food materials are not ideal and are strain-rate dependent because of their liquid and 

solid components, making them viscoelastic materials (Kinsella, 1987).  The viscoelastic 

behaviour of materials can be modelled by a system of connected springs and dashpots 

(visualized as pistons moving in oil).  When a spring is connected in series to a dashpot a 

Maxwell model is formed (Figure 2.9a), and when the spring is connected in parallel to 

the dashpot, the model is called the Kevin-Voigt model (Figure 2.9b).  The spring 

represents the elastic component of the response that instantaneously deforms upon the 

application of a load and immediately relaxes upon the release of the load.  The dashpot 

represents the viscous component that increases with time as long as the load is applied.  

In the case of the Maxwell model; the dashpot is permanently displaced by the applied 

load. 
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Figure 2. 9. Basic (a) Maxwell and (b) Kelvin-Voigt elements consisting of a spring and a 
dashpot 

 

For a Maxwell element the total stress is the same as the stress acting concurrently on the 

spring and on the dashpot, but the total strain (ε) is a summation of the strain on the 

spring (εs) plus the strain on the dashpot (εd) (Hiemenz, 1984): 

ds εεε +=               [2.15] 

The strain in the elastic component (spring) is given by Hooke’s law (equation [2.7]). 

However, there is no direct expression for the strain in the viscous component (dashpot), 

only for the way the strain varies with time, which is given by Newton and shown in 

equation [2.13]; therefore it is not possible to develop equation [2.15] any further as an 

explicit equation, but only as a differential equation (Hiemenz, 1984).  Expressing 

equation [2.15] as a differential equation with respect to time (t) leads to the equation of 

motion for a Maxwell element of the following form (Cowie, 1991; Roylance, 1996): 

η
σσεε

η
σσε +=+=+=
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where E is the elasticity constant of the spring and η  is the viscosity of the dashpot, sε&  

and dε&  are the strain-rates of the spring and dashpot respectively, and σ& is the change in 

stress with respect to time (Findley et al, 1989; Steffe, 1996).  For a Kelvin-Voigt 

element the total stress is the summation of the stress on the spring and the stress on the 

dashpot, but the strain is identical in both components; therefore, for a Kelvin-Voigt 

model the stress is related to strain and strain rate by the following equation (Meyers and 

Chawla, 1999): 

εηεσ &+= E       [2.17] 

 

Other parameters related to the viscoelasticity of materials include the relaxation modulus, 

creep compliance, relaxation time and retardation time.  The relaxation modulus is a 

measurement of how much the stress will decay in time when a constant strain is applied, 

while the relaxation time is the time needed for the stress to fall to e-1 of its initial value 

when the material is subject to constant strain, both of which can be measured during 

stress relaxation tests (Roylance, 1996).  Creep compliance is a measurement of how 

much the strain will change with time when a constant stress is applied and retardation 

time is the time needed to strain a sample specimen by 1-e-1, both of which can be 

obtained after performing creep tests (Menard, 1999; Rao, 2007).  Stress relaxation tests 

and creep tests can be performed under shear, bulk compression and uniaxial 

compression.  These types of mechanical testing will be discussed further in the 

following section. 
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2.6.0 Measuring Rheological Properties 

Experimental measurements of the rheological properties of materials are usually made 

by observing external forces and changes in external dimensions of a specimen of a given 

shape (Ferry, 1970).  Lipid-based particle gels, and food in general, exhibit a broad range 

of rheological characteristics; for this reason a variety of measuring techniques have been 

developed to characterize their rheological properties.  These measuring techniques can 

be classified according to the type of deformation they apply to the sample either as shear, 

uniaxial compression or tension, triaxial tests or a combination of these (McClements, 

2003; Körstgens et al, 2001). 

 

2.6.1 Shear-based Tests 

Most of the techniques used to measure the rheological properties of particle gels have 

been shear-based (Shukla and Rizvi, 1995) because of the fluid-like behaviour of these 

gels. Shear-based test are generally performed to very small strain (<5%) because small 

strains do not greatly modify the original structure of materials; therefore these 

measurements can be related to the structure and structure development of materials 

(Gunasekaran and Ak, 2003).  Simple shear deformation occurs when two opposite faces 

of an element of length L are displaced by a distance ∆L after opposite forces are applied 

on the faces of this element (Figure 2.9).  During simple shear a change in shape is not 

accompanied by any change in volume and this can be useful when interpreting the 

mechanical behaviour of materials in molecular terms (Ferry, 1970) 
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Figure 2. 10. Schematic representation of simple shear deformation 

 

Shear can be generated by drag flow and pressure-driven flow. In drag flow a sample is 

placed between a sliding or rotating surface and a fixed solid surface (tractive 

displacement), so that the movement of a rigid surface causes the shearing of the sample, 

like in Figure 2.10.   In pressure driven flow, pressure is used to force a sample to flow 

through a straight channel which may be a capillary or a slit in which a sample is sheared 

as it passes through the channel (Ouriev and Windhab, 2002; Gunasekaran and Ak, 2003).  

Shear tests are generally performed in machines called rheometers.  Rheometers that rely 

on drag flow can be used to determine a variety of material functions including the shear 

loss (G’) and storage (G” ) moduli, the shear creep compliance (J) as a function of time, 

and the viscosity (η) as a function of shear-rate.  Pressure-driven rheometers are 

primarily used for the measurement of viscosity at high-shear rates (Hatzikiriakos and 

Migler, 2004). 

 

 

 

∆L 
Force 

Force 

H 

L 



 40 

2.6.1.1 Dynamic shear tests 

Since particle gels have a viscoelastic nature most shear-based rheological tests are 

dynamic in order to measure the frequency-dependency effects.  Some dynamic tests 

consist of applying a sinusoidal simple shear, sometimes called an oscillatory test, 

although more often pure shear rotational displacements are applied in oscillatory tests.  

In a simple shear test a sample is placed between two parallel plates; one is fixed while 

the other one moves back and forth (Figure 2.11a), and by measuring the amplitude ratio 

(stress amplitude divided by strain amplitude) and the phase shift between stress and 

strain during the harmonic deformation (Figure 2.11b), rheological parameters such as 

the storage (G’) and loss (G” ) moduli can be obtained (Ferry, 1970; Higaki et al, 2004; 

Rao and Quintero, 2003).  The storage modulus is a parameter that directly relates to the 

elasticity of a material under shear, while the loss modulus relates to the viscous 

behaviour after shear is applied (Rao and Quintero, 2003). 

 

Figure 2. 11. Schematic representation (a) and time profile (b) of dynamic shear test with 
sinusoidally varying shear (adapted from Ferry, 1970) 
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2.6.1.2 Shear Tests to Measure Viscoelastic Properties 

There are two types of experiment that can be used to study the time-dependent 

viscoelastic behaviour of materials; these experiments are stress relaxation and creep tests, 

and both can be performed under shear generated by drag-flow.  During stress relaxation 

tests a constant shear strain (γ0) is imposed in a short period of time into a sample 

material and the shear stress (σs) is monitored for a given amount of time (t).  The shear 

stress and the shear strain are related by the relaxation modulus (G(t)) in the following 

manner (Ferry, 1970): 

)()( 0 tGts γσ =             [2.18] 

 

During a creep test, a shear stress (σs0) is applied within a brief period of time and is 

maintained constant for a given amount of time while the shear strain (γ) is monitored. 

Similar to the stress relaxation test, the shear strain and the shear stress in the creep test 

are related by the shear creep compliance (J(t)) using the following equation (Ferry, 

1970): 

)()( 0 tJt sσγ =           [2.19] 

 

Apparent viscosity (η) of a viscoelastic solid is commonly measured using a rotational 

viscometer.  The sample is placed between two symmetrical rotating bodies (plates, 

cylinders or cones); the force that deforms the sample material is defined by the applied 

torque. The material exerts a resistance to the applied torque which is related to its 

viscosity; from the resistance force the shear stress can be obtained, while the shear rate 

is calculated from the rotational frequency and the geometry of the measuring device. 
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The viscosity of the material is then calculated as the ratio of the shear stress (σs) to the 

shear rate (γ& ) (Brummer, 2006). 

γ
ση
&

s=            [2.20] 

 

2.6.2 Triaxial Tests 

Other methods used to characterize the stress-strain-strength behaviour of materials are 

triaxial tests, also known as bulk or volumetric tests.  Triaxial tests consist of subjecting a 

sample of material to a pressure on all of its axes.  By doing this the shape of the 

specimen is conserved and the volume increases or decreases depending on the direction 

of the pressure.  The pressure is generally achieved by submerging the sample material 

into a surrounding fluid and it is controlled by an electrohydraulic loading piston and a 

pressure cell (Richter-Menge et al, 1986; Linton et al, 1988).  

 

The relative change in volume of the specimen under triaxial tests is called the voluminal 

strain (∆V/V). Assuming that the hydrostatic pressure, PH, surrounding the specimen is 

the same on all of the axes and that the initial voluminal strain, (∆V/V)0, is accomplished 

in a very small time interval, a bulk relaxation test can be performed.  During bulk 

relaxation tests the hydrostatic pressure is related to the initial voluminal strain by the 

following equation (Ferry, 1970):  

)()(
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 ∆−=       [2.21] 
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where K(t) is called the bulk relaxation modulus, which is analogous to the shear 

relaxation modulus, G(t), from shear-based tests. 

 

Also as with shear measurements, if a pressure P0 is applied suddenly and held constant 

on all of the axes of the specimen, while the volume change as a function of time is 

followed, a bulk creep experiment can be performed.  During bulk creep tests the relative 

volume change is related to the applied pressure by the creep bulk compliance function, 

B(t), as shown by the following equation (Ferry, 1970): 

)()( 0 tBPt
V

V −=∆
       [2.22] 

 

2.6.3 Uniaxial Compression-based Tests 

Uniaxial compression tests can provide valuable information that relates the mechanical 

characteristics of food materials with data obtained from sensory analysis (Di Monaco et 

al, 2008); compression methods are used routinely in the shortening industry to measure 

quality parameters such as hardness and plasticity (Metzroth, 2005).   

 

Uniaxial compression tests can be carried out using the versatile instrument commonly 

known as a Universal Testing Machine; this machine provides precise control of 

deformation while accurately measuring force.  A universal testing machine has this 

name because it can also be used to perform tension, bending and shear tests by using 

different attachments (Gunasekaran and Ak, 2003). 
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During compression tests a sample is prepared typically in the shape of a cylinder or a 

prism and it is placed between two parallel rigid flat platens on the universal testing 

machine.  Using this set-up produces a uniform stress at the top and bottom of the 

specimen, if frictionless conditions can be achieved and the specimen contact surfaces are 

completely parallel to the compression platens (Charalambides et al, 2001). 

 

Compression-based tests include monotonic compression, cyclic compression, creep tests, 

and stress relaxation tests.  During monotonic compression tests the top platen moves 

down on the top sample surface at a constant rate of travel until a certain distance is 

reached (Wright et al, 2001).  Cyclic compression is similar to monotonic compression 

with the added difference that the same specimen is subject to loading and unloading 

several times. The deformation and the force as a function of time are recorded during 

these two tests.  Creep tests are performed by applying a constant compressive load to the 

top platen and the deformation over time is recorded.  And, during stress relaxation tests 

the top platen is moved to a fixed distance and the force is recorded as a function of time.  

 

2.6.3.1 Uniaxial monotonic compression 

Uniaxial monotonic compression tests have been widely used to study the mechanical 

properties of materials and are one of the most popular tests for determining rheological 

properties of foods; the main reason for their popularity is cost, since compression 

specimens are cheaper to prepare than tensile specimens and there is no need for sample 

gripping and therefore they are very easy to perform (Gunasekaran and Ak, 2003).  Also 

for soft and brittle materials, it is very hard to prepare and grip tensile specimens; for this 
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reason compression tests are a better option for soft materials such as food products 

(Riviere and Castaing, 1997).  However, compression tests are affected by the friction 

between fixtures and material samples (Charalambides et al, 1995).  The presence of 

friction leads to inhomogeneous deformation; if the material adjacent to the compression 

platens is restrained from radial movement then the material appears to be stiffer than it 

truly is (Charalambides et al, 2006).  The use of lubricants, such as low viscosity oils, can 

help reduce frictional effects.  An alternative to deal with friction is to bond the samples 

to the compression platens using adhesives such as cyanoacrylate (Casiraghi et al, 1985), 

but for soft food materials such as shortening it would be very difficult to bond the 

specimens without damaging them. 

 

2.6.3.2 Uniaxial cyclic compression tests 

Cyclic compression consists in loading and unloading a single specimen more than one 

time. This type of compression test can be used to study the fatigue of materials, 

especially metals for which this type of loading is very common during their applications 

(Hakamada et al, 2007). For soft materials like food, cyclic loading tests can be used to 

study the onset of plastic behaviour and the amount of elasticity remaining after 

compression has occurred (Goh and Scanlon, 2007).  

 

Fatigue is defined as the progressive damage to the structure of materials when subjected 

to cyclic loading. When measuring the fatigue of materials it is common to plot the cyclic 

loading results as a diagram of the strain (ε) versus number of loading cycles (N).  An 

important feature of ε-N diagrams (Figure 2.12) is the point where the strain starts to 
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increase at a faster rate, a phenomenon called “strain jumping”.  Strain jumping marks the 

point where fatigue of materials starts to occur (Hakamada et al, 2007).   

 

Figure 2. 12. Strain versus number of loading cycles for theoretical material showing 
strain jumping (adapted from Hakamada et al, 2007) 

 

The amount of elasticity exhibited by a material after it has been subject to a specific 

amount of compression can be estimated by calculating the unloading modulus (EU) (Goh 

and Scanlon, 2007).  The unloading modulus is the slope of the tangent to the unloading 

stress-strain curve right after the load is removed (Figure 2.13).  If the deformation is 

completely within the elastic region of a material the unloading modulus (EU) and the 

Young’s modulus (E) will have the same values.  On the other hand if the strain is large, 

causing the material to suffer permanent deformation during compression, the unloading 

modulus will be different from the modulus of elasticity, since the overall structure of the 

solid is modified by the onset of plasticity (de With, 2006). 
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Figure 2. 13. Schematic loading-unloading curve showing the modulus of elasticity (E) 
and the unloading modulus (EU) (adapted from Goh and Scanlon, 2007) 

 

2.6.3.3 Compressive Stress Relaxation Tests 

Stress relaxation is one of the most important tests to determine the viscoelastic 

properties of materials (Cenkowski et al, 1992).  The ability of a material to alleviate 

stress under conditions of constant strain as a function of time is called stress relaxation 

(Hassan et al, 2005).  Depending on the material being tested, different behaviours can be 

observed during stress relaxation; an ideal elastic material (Figure 2.14 curve (a)) will 

reach a finite and constant stress with no stress relaxation over time (Del Nobile et al, 

2007).  A perfect elastic solid material will store all the energy input during straining and 

use this energy to return the specimen to its original shape and size after the strain is 

removed (Gunasekaran and Ak, 2003).  In contrast, an ideal viscous liquid material 

(Figure 2.14 curve (b)) will instantaneously show stress decay to zero, since viscous 

liquids do not store energy or have a memory of their initial state (Del Nobile et al, 2007; 

Gunasekaran and Ak, 2003).  Viscoelastic solid materials (Figure 2.14 curve (c)) 
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subjected to stress relaxation tests will gradually relax and reach an equilibrium stress (σe) 

greater than zero, a behaviour that can be observed in permanent gels with covalent 

crosslinks (Steffe, 1996).  In contrast, viscoelastic liquids (Figure 2.14 curve (d)) will 

show a residual stress vanishing to zero, and this can be observed in gels with non-

permanent crosslinks. This total dissipation of strain energy is generally very hard to 

observe since the relaxation to zero occurs within times far beyond experimental time 

scales (Steffe, 1996).  

 
Figure 2. 14. Stress relaxation curve for (a) elastic solid, (b) viscous liquid, (c) 

viscoelastic solid, and (d) viscoelastic liquid (adapted from Gunasekaran and Ak, 2003) 
 

The stress relaxation experiment can be viewed as consisting of two parts: the straining 

stage when the material is being squeezed up to a set displacement or strain, and the 

relaxation stage.  Ideally the straining stage should be instantaneous but in reality it takes 

time, and since stress relaxation of materials is affected by the history of deformation, the 

time it takes for the material to be deformed to the specified strain will affect the stress 

relaxation results (Gunasekaran and Ak, 2003). 
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During compressive stress relaxation tests, the stress (σ) and the strain (ε0) are related in 

the following manner: 

0)()( εσ tEt R=                               [2.23] 

where ER(t) is the compressive relaxation modulus. It is important to note that if the 

material is an elastic solid ER(t) is a constant and is called the Young’s modulus (E) or 

modulus of elasticity (Ferry, 1970).  

 

If the material can be considered an incompressible solid, which is the case for many 

food materials and polymeric systems, the compressive relaxation modulus (ER(t)) can be 

converted into a shear relaxation modulus (GR(t)) using the following equation (Ferry, 

1970): 
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R =                              [2.24] 

Stress relaxation behaviour for viscoelastic solids is generally described using equations 

that were derived from the generalized or discrete Maxwell model, using a combination 

of basic Maxwell elements that are shown in Figure 2.9a. The mathematical 

representation of the generalized Maxwell model is (Peleg and Pollak, 1982; 

Nussinovitch et al, 1989; Hassan et al, 2005): 

( ) ( )it
n

i
ie eEt τσσ ′−

=
∑+=

1
        [2.25] 

where σ is the stress as a function of time; σe is the equilibrium stress; n is the number of 

Maxwell elements; Ei is the stress relaxation constant for each Maxwell element; t is time; 
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and iτ ′  is the relaxation time for each Maxwell element.  The stress relaxation constant Ei 

represents the contribution of each of the Maxwell elements to the overall stiffness of the 

material and the relaxation time iτ ′  is related to the viscous contribution of each Maxwell 

element to the overall viscous behaviour of the material. The relaxation time,iτ ′ , is 

related to the viscous contribution of each Maxwell element, ηi, through the relaxation 

constant, Ei, in the following manner (Ferry, 1970): 

i

i
i E

ητ =′                          [2.26] 

 
The generalized Maxwell model for viscoelastic behaviour of solids can be visualized as 

a spring connected in series to a dashpot and these two elements connected in parallel to 

other Maxwell elements (Figure 2.15). 

 
Figure 2. 15. Generalized Maxwell model for viscoelastic behaviour of solids (adapted 

from Ferry, 1970; Gunasekaran and Ak, 2003) 
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2.6.3.4 Compressive Creep Tests 

In general the mechanical properties and performance of materials change with time and 

environmental conditions; even hard metals show time-dependent deformations 

especially when heated to temperatures beyond about half way to their melting 

temperature (Illston and Domone, 2001).  For softer materials like food, time-dependent 

behaviours like creep can be observed at ambient temperatures.  In a compressive creep 

experiment an undeformed sample is suddenly compressed to a constant stress while the 

strain is monitored within a given time frame (Rao, 2007). 

 

Materials can be classified according to their creep behaviour; for example, an ideal 

elastic solid material (Figure 2.16 curve (a)) will have a constant strain as time passes due 

to its inability to flow and a complete recovery of the strain will occur after the load is 

removed.  On the other hand an ideal viscous liquid material (Figure 2.16 curve (b)) will 

show a linear change of the strain as time passes due to its steady flow and will exhibit 

zero recovery after unloading (Steffe, 1996).  Most food material will show simultaneous 

viscous and elastic behaviour, and for this reason they are called viscoelastic materials.  

Therefore the creep test can provide valuable information on the viscoelastic behaviour of 

food materials.  In a viscoelastic liquid material (Figure 2.16 curve (c)) strain will 

increase with time until it approaches a steady state where the strain-rate is constant, in 

other words, there is a linearly increasing deformation with time.  A viscoelastic solid 

material (Figure 2.16 curve (d)) will eventually reach an equilibrium strain, this 

equilibrium strain remains constant in time; therefore the strain rate is equal to zero 

(Ferry, 1970).  Viscoelastic solids and liquids will show a certain amount of recovery 
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after the load is removed due to their ability to store energy (Gunasekaran and Ak, 2003; 

Rao, 2007).  

 
Figure 2. 16. Creep curve for (a) elastic solid, (b) viscous liquid, (c) viscoelastic liquid, 

and (d) viscoelastic solid (adapted from Gunasekaran and Ak, 2003) 
 

Performing creep tests on soft solids like lipid-based particle gels using a universal 

testing machine is a very simple and convenient procedure.  The response during 

compressive creep tests can be related to shear and bulk creep tests and this is important 

since most of the theory of creep was developed after shear or bulk studies on polymers 

and other non-food materials.  During a compression-based creep test a sudden 

compressive constant stress (σ0) produces time-dependent strains which are related in the 

following manner (Ferry, 1970): 

)()( 0 tDt σε =                    [2.27] 

where D(t) is the compressive creep compliance which is defined as the compressive 

strain divided by the initial compressive stress (Rao, 2007).  During uniaxial compression 

of materials a simultaneous change in volume and shape occurs and for this reason D(t) is 
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related to the bulk creep compliance (B), which is related to the change in volume, and 

also to the shear creep compliance (J), which is related to the change in shape.  Since 

during uniaxaial compression there is no lateral stress, the following equation 

summarizes the relationship between the bulk and shear results and the uniaxial 

compression results (Ferry, 1970):  
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For viscoelastic materials such as food materials and polymers in a certain broad range of 

time scale, the volumetric creep compliance B(t) is very small compared to the shear 

creep compliance J(t); therefore equation [2.28] can be simplified in the following 

manner: 
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Therefore it can be said that shear and compression creep tests give results that are 

interconvertible by virtue of equation [2.29].  It is important to remember that equation 

[2.29] is only valid for materials in which the change in volume during compression is 

negligible compared to the change in shape, in other words it is applicable to an 

incompressible material (Ferry, 1970). 

 

Material parameters such as compressive creep compliance (D(t)), retardation time (τ) 

and biaxial viscosity (ηb) can be derived from creep tests and are useful in describing the 

viscoelastic behaviour of many materials and will be defined later in this section.  The 

compressive creep compliance (D(t)) is defined as the ratio of the strain (that is changing 

with time) relative to the constant applied stress.  The retardation time (τ) is the time 
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required to deform a material by approximately 63% (1-e-1) of its total deformation 

during a creep test (Menard, 1999). 

 

In certain occasions, the results of a creep test can be presented as a compliance-time 

curve (Figure 2.17).  Several parameters can be obtained from the compliance-time 

diagram such as the instantaneous compliance D0, which represents the region where the 

bonds between the different structural units are stretched elastically and is the inverse of 

the modulus of elasticity (D0 = E-1). Another parameter that can be obtained from the 

compliance-time curve is the biaxial compliance (Db). In the long-time region the bonds 

between the structural components break and flow past one another. The biaxial 

compliance is related to biaxial viscosity (ηb) and time (t) through the following equation 

(Rao, 2007): 

b
b
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D

η
=                [2.30] 

 
Figure 2. 17. Schematic compliance-time curve for a viscoelastic material (adapted from 

Rao, 2007) 
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From Figure 2.16 curve (d), one can see that if a creep test is done on a viscoelastic solid, 

the change in biaxial compliance will vanish to zero since the material would reach an 

equilibrium stress; therefore the biaxial viscosity will approach a value of zero.  On the 

other hand, if the material is a viscoelastic liquid the change in biaxial compliance will 

have a value different than zero (Figure 2.17) since the strain would keep increasing with 

time (Figure 2.16 curve (c)) and the biaxial viscosity would also have a value different 

than zero. 

 

The creep behaviour of materials can be visualized as a dashpot connected in parallel to a 

spring as shown in Figure 2.9b, this is called the Kelvin-Voigt model.  However, most of 

the creep results cannot be accurately predicted using a single Kelvin-Voigt element, and 

for this reason several Kelvin-Voigt elements are connected in series to one another and 

to an individual spring and a dashpot to obtain a better approximation to the experimental 

creep test data of many viscoelastic materials; this model is called the generalized 

Kelvin-Voigt model and it is shown in Figure 2.18.  Compliances (Di) are assigned to 

each of the springs to describe their stiffnesses and viscosities (ηi) are assigned to each of 

the dashpots. 

 

Figure 2. 18. Generalized Kelvin-Voigt model for creep behaviour (adapted from 
Gunasekaran and Ak, 2003) 
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The Kevin-Voigt model is summarized with the following mathematical expression: 
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where D0 is the instantaneous compliance, t the time, ηb the biaxial viscosity of the 

generalized Kevin-Voigt model and τi the retardation time of each Kelvin-Voigt element 

(Gunasekaran and Ak, 2003).  The Generalized Kelvin-Voigt model can be used to 

simulate the creep response of both viscoelastic solids and liquids by assigning the 

appropriate values to the different parameters in equation [2.31].  For a viscoelastic solid 

the biaxial viscosity would have a value of zero, so Figure 2.18 would not have the last 

dashpot connected in series to the rest of the Kelvin-Voigt elements (Betten, 2005). 

 

2.6.4 Indentation tests 

Indentation tests are a convenient method of measuring the mechanical properties of 

solids; they are generally inexpensive (Huang et al, 2002; Ma et al, 2003) and no standard 

specimen preparation is required as with compression and tension measurements.  

Indentation is an ideal method for the evaluation of texture in localized areas of a given 

specimen and is less dependent on the geometry of the specimen (Anand, 2001).  

Indentation has proven to be a useful technique for assessing the mechanical properties of 

fragile materials such as food colloids and particle gels (Goh and Scanlon, 2007).  

Although indentation tests are easy to perform, interpretation of their results is not 

straightforward due to the complex strain field produced by the indentation process 

(Huang et al, 2002).  For this reason many of the results are interpreted empirically (Goh 

et al, 2004).  Depending on the material to be tested, indenters can be made of diamond, 
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hard carbon steel, tungsten carbide and even hard polymers.  The geometry of indenters is 

also diverse, the most common ones include conical (Vandamme and Ulm, 2006), 

cylindrical (Liu and Scanlon, 2003), prismatic (Bae et al, 2006), pyramidal (Mencik, 

2007), and spherical (Beghini et al, 2006). 

 

During indentation tests the force required to push an indenter (in the food industry 

known as probe, punch or die) into a material is measured (Anand, 2001); therefore the 

most important quantities given by an indentation test are the indentation load, Pi, and 

penetration depth, hi.  The results of an indentation test are generally presented as a Pi-hi 

curve and different sections of the curve are analyzed to obtain various mechanical 

properties (Anand, 2001).  It is customary to condense the indentation results into two 

parameters: Hardness (κ) and the indentation modulus (M) (Vandamme and Ulm, 2006). 

 
Hardness (κ) is defined as the maximum indentation force (Pmax) divided by the projected 

contact area (Ac) (Vandamme and Ulm, 2006): 

cA

Pmax=κ               [2.32] 

while the indentation modulus (M) is the parameter that relates the slope of the initial part 

of the unloading curve (S) with the projected contact area (Ac).  For a conical indenter M 

can be obtained with the following equation (Vandamme and Ulm, 2006): 
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Many equations have been proposed to relate the indentation force and the indentation 

depth, but they are dependent on the geometry of the indenter and the type of material 

being tested.  For example, in indentation tests done using sharp indenters, such as cones, 

the relationship between load (F) and penetration depth (hi) is usually expressed as a 

parabolic relation known as Kick`s law:  

2
ihF α=                       [2.34] 

where α is a constant depending on the geometry of the indenter and the indented 

material properties (Ma et al, 2003).  For rate-independent materials research has shown 

that the indentation response follows equation [2.34] (Ma et al, 2003).  However, for rate 

dependent materials, such as viscoelastic materials, the force–deformation response can 

be better described with a model that includes the static response indentation and material 

constants that relate to the geometry of the specimen and rate dependent behaviours.  

 

The static indentation response is assumed to be the non-rate dependent response of a 

material.  In order to study the static response of a material, the deforming load is applied 

at very slow rates as done by Kajberg and Wikman (2007).  Once the static response of a 

material is obtained, it can be modified to take into account the rate dependency of such 

material using a power law.  An example of a power law is the overstress power law 

( wkεσ &= ) in which the stress (σ) is related to the strain rate (ε& ) by a multiplier constant 

(k) and an exponent constant (w). The two constants can be described as material 

constants (Ma et al, 2003; Beghini et al, 2006; Goh and Scanlon, 2007). 

 
A model that appropriately describes the indentation response of a rate dependent 

material was given by Goh and Scanlon (2007) and it has the following equation form: 
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where F0 is the static indentation response, ξ is a dimensionless number which represents 

the ratio of the indentation strain rate (ih& ) over the fluidity of the material (0ε& ) and the 

height of the specimen (H), w is the overstress power law constant for a given material 

and C(w) is an empirical function (Goh and Scanlon, 2007).  The fluidity ( 0ε& ) is a 

material property that relates the viscous behaviour to the plastic behaviour of solid 

materials, a concept that was introduced by Perzyna in 1963 (Adams et al, 1996; Tong 

and Tuan, 2007; Ubachs et al, 2007). 

 

The force-depth curve produced during indentation tests is related to the stress-strain 

curve of the material being tested, just like in simple compression tests.  However, this 

relation is not as simple as with compression tests due to the complexity of the 

deformation process in the indentation region.  The indentation region of the material is 

subjected to multiaxial stresses with high gradients and large strains (Beghini et al, 2006).  

As an example, the stress distribution under a flat surface cylindrical indenter penetrating 

an elastic material has been approximated by the Boussinesq equation: 
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where σ(r) is the stress at a distance r from the center of the indenter, b is the radius of 

the indenter and Pi is indentation load.  Equation [2.36] predicts that the stress at the 

center of the indenter (r=0) has a finite value, while at the edge of the indenter (r=b) the 

stress is infinite (Anand, 2001). 
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2.7.0 Finite Element Method 

The Finite Element Method (FEM) is used to find approximate solutions to complex 

problems by visualizing the solution region as being composed of many small, 

interconnected subregions called finite or discrete elements (Rao, 1982).  FEM was 

developed as means of doing structural analysis in geometries that were different than 

rectangles and solving complex elasticity problems in civil and aeronautical engineering.  

In January 1954 Ray W. Clough presented the idea that a two-dimensional structure 

could be represented with discrete elements connected at more than two joints or nodes 

and that this representation could be used to solve problems in aeronautical engineering 

(Figure 2.19).  Later Argyris (1954) and Turner et al (1956) published on the use of small 

discrete elements to describe the overall behaviour of simple elastic bars that could be 

used in components for the aeronautical industry (Pepper and Heinrich, 1992). 

 

Figure 2. 19. Simplified airplane wing divided into triangular elements (adapted from 
Clough and Wilson, 1999) 

 

In 1960 Clough coined the term Finite Element Method for any analysis done on models 

of both continuous structures and frame structures modeled as a system of elements 
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interconnected at nodes (Clough and Wilson, 1999).  Nowadays, the finite element 

method has been generalized into a branch of applied mathematics for numerical 

modeling of physical systems and can be used to solve complex problems of solid 

mechanics, fluid dynamics, electromagnetism, and heat and mass transfer (Liu and 

Scanlon, 2003; Roduit et al, 2005; Bermudez et al, 2007; Farhloul and Zine, 2008). 

 

The Finite Element Method has become an essential step in the design or modeling of 

physical phenomena occurring in a continuum of matter (solids or fluids) involving 

several field variables.  Field variables are physical attributes that can change during the 

course of an experiment and according to position within a continuum of matter; some 

examples include stress, strain, pressure, temperature and chemical potential (Trigg et al, 

1999).  A continuum of matter is a continuous distribution of matter in space that can be 

subdivided into small elements with properties equal to the ones of the entire body (Fung, 

1969); if a continuum has known boundaries then it is called a domain.  A domain can be 

an entire physical object or a portion of it depending on the boundaries that are known.  

Within a domain there are an infinite number of solutions to the field variables since they 

change from point to point within the domain and the number of points within a domain 

can be infinite.  The Finite Element Method relies on the decomposition of the domain 

into a finite number of elements for which an approximating function can be used to 

solve for a finite number of unknown field variables.  The approximating functions are 

defined in terms of the values at specific points along the boundaries of elements, which 

are called nodes. Nodes also connect adjacent elements as seen in Figure 2.19 (Madenci 

and Guven, 2006). 



 62 

2.7.1 Steps in FEM 

The Finite Element Method can be divided into six major steps (Madenci and Guven, 

2006): 

1. Discretization of the domain into a finite number of elements 

2. Selection of interpolation functions 

3. Development of the element matrices or element equations for individual 

elements 

4. Assembly of the element matrices for each element to obtain the global 

equilibrium matrix of the entire domain, also known as overall equilibrium 

equations 

5. Determination of the boundary conditions of the domain 

6. Solution of the equations in the global matrix and global vectors.  Note that the 

global matrix and the global vectors form a system of equations that describe the 

desired physical phenomena within the domain. 

 

A simple mechanical problem consists of calculating the stress in a stepped bar that is 

axially loaded (Figure 2.20).  This will be used to illustrate the steps of the finite element 

method.  The bar is made of a material with a modulus of elasticity E, has cross-sectional 

areas of A1 and A2 over the lengths L1 and L2 and is subjected to a load P. A1= 2m2, 

A2=1m2, L1= L2=10m, E=2×106 Pa, and P= 1N (Rao, 1982). 
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Figure 2. 20. Stepped bar axially loaded (adapted from Rao, 1982) 

 

2.7.1.1 Discretization 

The first step in the finite element method is the discretization of the domain, or the 

division of the solution region, into elements.  During this step the domain that has an 

infinite number of degrees of freedom is replaced by a system that has a finite number of 

degrees of freedom. The shape, size, number and configuration of the basic elements that 

form the domain are selected during the discretization step; care must be taken while 

choosing these characteristics so that the original body is simulated as closely as possible 

without increasing calculation efforts needed to obtain the solution (Rao, 1982). 

 

In the example shown in Figure 2.20 the domain is the bar and is going to be divided into 

two elements (element 1 and 2) with two nodes each (node 1, 2, and 3 because element 1 

and 2 are connected at node 2; both elements use node 2 in their discretization).  Since 

the load is axial the change of nodal position or displacement (d) will also be in the axial 

direction; therefore each element has only one degree of freedom which is displacement 

in the x-direction.  Figure 2.21 shows the discretization for the stepped bar problem. 
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Figure 2. 21. Discretization of stepped bar into two one dimensional elements; dots 1, 2 

and 3 are nodes while d1, d2 and d3 are the potential-displacements of these nodes 
(adapted from Rao, 1982) 

 

2.7.1.2 Selection of Interpolation Functions 

Once the domain has been discretized, simple functions for the solution of each element 

must be selected.  The functions used to simulate the behaviour of the solution within 

each element are called interpolation functions; such functions are formulated to act at 

the nodes of each element.  The most common type of interpolation functions used in the 

finite element method are polynomials, because it is easier to perform differentiation and 

integration with polynomials and the accuracy of the results can be increased by 

increasing the order of the polynomial function.  Several conditions must be met by the 

interpolating functions: these functions are expressed in terms of the nodal degrees of 

freedom (in mechanics the number of displacements and rotations that a node can have).  

The nodal degrees of freedom should not change with a change in the local coordinate 

system, should converge to the exact solution if the size of the element is reduced 

successively, and the number of unknown coefficients in the polynomial equation should 

be equal to the number of nodal degrees of freedom (Rao, 1982). 

 

Since the interpolation functions do not change from element to element within a given 

domain, each of the elements shown in Figure 2.21 can be generalized as shown in Figure 

d1 d2 d2 d3 
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2.22 and will be called element ‘e’, the interpolation functions are assigned to each of the 

nodes. 

 
Figure 2. 22. Nodal positions (d) and loads (P) for generalized element ‘e’ (Rao, 1982). 
Notice that nodes are labelled i and j but only in the element local coordinate system, 

since both elements of the entire domain have two nodes. So for element 1, i is equal to 1 
and j is equal to 2, but for element 2, i is 2 and j is 3 

 

In each of the elements of the stepped bar problem the position of each node (di and dj) 

can be thought to vary in a linear fashion as the axial load is applied, such that a 

polynomial of first degree can be used to describe this behaviour: 

cxaxd +=)(                                   [2.37] 

where a and c are constants.  The nodal position at the left hand side of each element 

(x=0 in the element local coordinate system) is di(e) and the nodal position at the far end 

of each element (x=L(e) in the element local coordinate system) is dj(e); therefore a=di(e) 

and  c=(dj(e)-di(e))/L.  The interpolation function [2.37] can be expressed in terms of the 

nodal positions at each element as follows: 
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Notice that equation [2.38] has only one unknown since each node has only one degree of 

freedom, which is the displacement in the horizontal direction (x), since the load is only 

applied in the x-direction. 

 

2.7.1.3 Development of Matrix for Individual Elements 

The third step in the finite element method involves the formulation of matrices and 

vectors characteristic of each element.  Depending on the complexity of the problem the 

development of the matrix for each element can be accomplished by direct physical 

reasoning if the problem is very simple; by the variational approach if the problem can be 

stated in variational form involving calculations associated with maxima and minima 

(Mura and Koya, 1992); and, by a weighted residual approach which can be used to 

obtain approximate solutions to linear and nonlinear governing differential equations 

(Rao, 1982).  

 

The sample problem presented in Figure 2.20 is simple and the element matrix can be 

derived directly from the principle of minimum potential energy.  The potential energy of 

the stepped bar (I) is given by the difference between the strain energy in element (u(e)) 

and the work done by external forces (W): 

∑
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e
euWI                                         [2.39] 

The strain energy (u) of each element ‘e’ is related to the strain difference at each of the 

nodes and it can be calculated by the following equation: 
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where A(e) is the cross-sectional area of each element, L(e) is the length of each element, 

ε(e)
 is the strain of each element and E(e) is the modulus of elasticity of each element.  The 

strain of each element can be derived from the interpolating function [2.38] since 
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To apply this solution to the domain (i.e., all elements), it makes sense to express 

equation [2.42] in matrix notation.  In order to follow the rules of matrix multiplication, it 

is necessary to transpose the displacement vector ()(ed
r

) into a matrix ( T
ed )( )(

r
).  Equation 

[2.42] is then given as half the product of the element nodal position vector transpose 

times the element stiffness matrix times the element nodal position vector or: 
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The work done by external forces (W) on the whole stepped bar can be expressed as: 
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If the system is in equilibrium then the summation of the forces must equal to zero; 

therefore P1 is the reaction at the fixed node 1 in the global coordinate system, P2 =0, 

since there is no external force applied at node 2, and P3= P= 1N.  Also due to 

equilibrium, the stepped bar shown in Figure 2.20 has a potential energy I equal to zero, 

since the work done by force P must be equal to the total strain energy of the system as 

per equation [2.39]. Therefore, the equilibrium equation (I=u (e)-W=0) can be expressed in 

matrix notation as follows: 
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Note that if one is adding and subtracting vectors, like in equation [2.45], the result has to 

be a vector, and even if the vector is full of zeroes it is appropriate to use the vector sign 

on top of a zero, in order to comply with matrix and vector notation. 

 

2.7.1.4 Development of Global Matrix 

After the characteristic matrices and vectors for each element have been defined in a 

common global coordinate system, the next step of the finite element method is the 

construction of the overall or system equations.  This procedure is based on the 

requirement of compatibility at each of the element nodes, which means that the values of 

the variables are the same for all elements joined at that node (Rao, 1982). 
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In the stepped bar problem (Figure 2.20), the global stiffness matrix ([K]) is the 

summation of the stiffness matrices of two elements ( [ ]∑
=

2

1
)(

e
eK ).  For the values assigned 

in this example (A1=2m2, A2=1m2, L1=L2=10m, E= 2×106Pa and P = 1N) the element 

stiffness matrices are:  
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Each of the rows and columns in the element stiffness matrices are related to the 

displacement of each node (1, 2 and 3). These nodes can be used as coordinates for 

assembling the global stiffness matrix, and for this reason they are usually written around 

each row and column as shown in equations [2.46] and [2.47].   In the global stiffness 

matrix, the stiffness matrix of element 1 overlaps with the stiffness matrix of element 2 at 

node 2 of the global coordinate system, and so at node 2 the strain energy should have 

some contributions from both elements; therefore the global stiffness matrix becomes: 
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In the equilibrium equation [2.45], the stiffness matrix is multiplied by the summation of 

the displacement vectors of each element (∑
−

2

1
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), which can be called the global 

displacement vector (d
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), and finally subtracted by the summation of the applied load 

vector of each element (∑
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r
), which can be called the global applied load vector (P

r
). 

Therefore the equilibrium equation [2.45] can be written in terms of the global matrix and 

the global vectors as PdK
rr

=][ , and substituting the given numerical values one obtains:  
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2.7.1.5 Determination of Boundary Conditions 

Before solving the equations on the global matrix it is necessary to specify some 

restrictions so that the system does not have an infinite number of solutions.  It is 

necessary to specify the value of at least one and sometimes more than one boundary 

condition, i.e., restrict the motion or degrees of freedom of certain nodes.  The number of 

boundary conditions that need to be specified is dictated by the physics of the problem 

(Rao, 1982). 
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The overall equilibrium equations [2.49] cannot be solved since there are four unknowns 

and only three equations, so the equations would have an infinite number of solutions. 

However looking closely at Figure 2.20, one can see that the bar is fixed at global node 1; 

therefore the position of this node is fixed and d1 =0.  This is the only boundary condition 

needed to be specified in order to solve the overall equilibrium equations, since now there 

are three unknowns and three equations.  The system of equations [2.49] then becomes: 
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2.7.1.6 Solving Global Matrix 

Once the global matrix has been constructed and the boundary conditions have been 

established, the equations in the global matrix can be solved.  If the equations in the 

global matrix are linear they can be solved by the different variations of the Gaussian 

elimination method.  If the problem is nonlinear then the global matrix will be formed of 

nonlinear equations and would have to be solved by some sort of iterative procedure, 

such as Newton-Raphson, continuation, minimization or perturbation methods (Rao, 

1982).  All of these numerical solving methods have been implemented in computer 

software packages, which greatly simplify the solution of complex problems. 

 

The global equilibrium equations defined for the stepped bar problem (Figure 2.20) are 

linear so they can be solved by the Gaussian elimination method, which consists in 

eliminating unknowns by expressing them in terms of the remaining unknowns until only 
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one unknown appears in the system of equations. The system of equations [2.50] can be 

solved using the Gaussian elimination method in the following manner. 

 

The first equation of the system is ;))(2(102 12
5 Pd =−×  solving for d2 one gets 

;104/ 5
12 ×−= Pd  substituting d2 into the second equation of the system, one gets 

;0))104/(3(102 3
5

1
5 =−×−× dP  solving for d3, the second equation becomes 

;104/3 5
13 ×−= Pd  substituting d2 and d3 into the last equation allow us to get 

;1))104/(3)104/((102 5
1

5
1

5 =×−×× PP   therefore P1=-1 N, d2=2.5×10-6 m, and 

d3=7.5×10-6 m.  With these values the strains in each of the elements that form the 

stepped bar can be calculated using equation [2.41]: 
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And the stresses in each element are calculated with )()( ee Eεσ =  to give the numerical 

results of Pa5.0)1( =σ  and Pa0.1)2( =σ . 

 

2.7.2 Computer Implementation of Finite Element Method 

Finite element methods are primarily used when hand calculations cannot provide 

sufficiently accurate and detailed results or when the problem to be solved is too complex 

for hand calculations to be appropriate (Baran, 1988).  The utilization and popularity of 

the Finite Element Method has greatly increased with the improvement and increased 
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availability of general purpose digital computers (Cooke et al, 1976).  Until 

approximately 1980 almost all the finite element analyses (FEA) were performed on 

mainframe computers which had a cost well over $1 million and required separate air-

conditioned rooms and high level of maintenance and vendor support (Baran, 1988).  

Nowadays complex FEA can be performed using personal computers and the results can 

be expected in minutes, instead of hours or even days.  As computers became more 

powerful and cheaper, finite element software has also become more powerful and more 

accessible. 

 

FEA software first became commercially available in the early 1970’s and it was 

primarily used in the nuclear and aerospace industries.  Examples of commercially 

available finite element software that were available in the 1970’s are ANSYS and 

MSC/NASTRAN (Baran, 1988).  Table 2.2 shows a list of some of the finite element 

analysis software packages available today. 

 

Nowadays FEA software is very much user friendly with the provision of graphic 

interfaces (that facilitate the setup of the problem) and drop down menus (where many 

choices can be selected to properly set up realistic situations eliminating the need to write 

lengthy codes which was the norm in the past).  Today the finite element method has 

been integrated with other computer applications such as computer aided design to give 

rise to what is now called Computer Aided Engineering or CAE. 
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Table 2. 2. Examples of Finite Element Analysis software packages currently available 
Software Name Company Website 

Abaqus 
Dessault Systemes S.A. 

Suresnes, France 
www.simulia.com 

ALGOR 
ALGOR Incorporated 
Pittsburgh, PA, USA 

www.algor.com 

ANSYS 
ANSYS Incorporated 
Canonsburg, PA, USA 

www.ansys.com 

CalculiX 
Open source code started 
and maintained by Guido 
Dhondt and Klaus Wittig 

www.calculix.de 

COMSOL Multiphysics 
COMSOL AB 

Stockholm, Sweden 
www.comsol.com 

Femap 
Siemens PLM Software 

Plano, TX, USA 
www.femap.com 

LS-DYNA 
Livermore Software 

Technology Corporation 
Livermore, CA, USA 

www.lstc.com 

MSC Nastran (Adams, 
Patran, Marc, Dytran, 
Easy5) 

MSC Software 
Corporation 

Santa Ana, CA, USA 
www.mscsoftware.com 

Strand7 
Strand7 Pty Limited 

Sidney, Australia 
www.strand7.com 

 

One of the most popular FEA software packages is Abaqus. Abaqus has been preferred 

by many academic and research institutions due to its wide material capability and its 

ability to be customized, but it is also used in the automotive, aerospace, and product 

manufacturing industries.  One of the versions of Abaqus is called Abaqus/CAE and this 

provides a graphic interface that facilitates the visualization of the problem to be solved, 

as well as the results after the analysis has been completed.  Abaqus/CAE prepares an 

input file from the parameters entered into the graphic interface, which is submitted into 
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analytical software packages which can be Abaqus-Standard or Abaqus-Explicit where 

the solutions are calculated (Abaqus, 2008). 

 

2.7.3 Finite Element Method and Rheology of Food Materials 

Food materials have a complex rheological response due to their complex composition 

and structure.  Because of such complexity the finite element method is an appropriate 

tool in the study of the rheological properties of various food products.  Early finite 

element analysis done on food materials arose from the need to try to predict the 

mechanical damage done to agricultural products during harvesting and processing (Puri 

and Anatheswaran, 1993), while current research has been focussed on obtaining models 

that accurately describe the rheological response of processed food such as butter, cheese, 

bread, dough, margarine and shortening.  

 

Rumsey and Fridley (1977) used a viscoelastic finite element computer model developed 

by Herrmann and Peterson in 1968 at the Aerojet General Corporation to predict stresses 

resulting from contact loads on fruits and vegetables after harvesting.  The fruits and 

vegetables were simulated as perfect spheres.  It was concluded that the finite element 

model was in agreement with the analytical solutions formulated for viscoelastic 

materials as long as the deformation was small since the viscoelastic theory used during 

the experiment was developed for small strains only. 

 

In 1991 two finite element elastic deformation models, axysimmetrical and three-

dimensional, were implemented by Cardenas-Weber et al (1991) on the commercially 
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available FEA software ANSYS to analyze the compression of a melon by a robot 

gripper.  The two models predicted lower stresses than the ultimate strength of the melon 

tissue for a v-shaped robot gripper and higher stresses for a flat gripper.  It was concluded 

that the model could be used to predict the maximum force which could be applied to a 

melon before bruising by a gripping device, but a clear definition of bruising was needed 

to be established through research because it was not known what force magnitude 

produces damage to melons and other soft fruits that can be considered as bruising. 

 

Frictional effects on the stress-strain data obtained during the uniaxial compression of 

gruyere and mozzarella cheeses and bread dough were studied by Charalambides et al 

(2001; 2006) using the commercial finite element software package Abaqus.  Simulations 

of uniaxial compression tests on cylindrical cheese specimens of different heights were 

set up in Abaqus and, using an iterative method developed by Parteder and Bünten in 

1998, Charalambides et al (2001) found a correction factor as a function of strain for the 

force measured during unlubricated compression tests.  The analytical solution was based 

on equation [2.51] and its numerical approximation using a Maclaurin series expansion 

[2.52]: 
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where σA is the average stress in the specimen, a is the radius of a cylindrical specimen, 

σz is the axial compressive stress, r is the radial distance, σy is the yield stress, µ is the 
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coefficient of friction, R is the radius of the cylindrical specimen before compression, H 

is the original height of the specimen and ε is the true strain.  It was concluded that 

iterative finite element analysis can be used as a more accurate alternative to 

extrapolation of the analytical solution to very large specimen heights in order to convert 

the results of unlubricated compression into frictionless compression.  The finite element 

method yielded values for the coefficient of friction (µ) of cheeses in agreement with 

values obtained from analytical method based on the assumption that the friction is a 

Coulomb friction that can be obtained from the slope of plots of the average stress (σA) 

versus the inverse of the initial height (1/H) of the specimen (see equation [2.52]). 

 

Liu and Scanlon (2003) used finite element analysis to study the rheological properties of 

white bread crumb.  Using the material model Abaqus HYPERFOAM, based on the 

Ogden (1972) strain energy function, Liu and Scanlon (2003) were able to correlate the 

modulus of elasticity and the critical stress of the experimental data to the predicted 

values obtained by finite element analysis.  The Poisson’s ratio for bread crumb was 

assumed to be 0 or 0.21 (highly compressive) during the simulations and it did not affect 

the prediction of the results at lower strains (<0.35).  The Abaqus simulations were set up 

as axisymmetrical simplifications in which a two-dimensional drawing was used, where a 

similar shape and properties on both sides of the axis of symmetry were assumed.  The 

use of an axisymmetric indentation finite element simulation allowed good prediction of 

the load-displacement curves produced by cylindrical indenters of various sizes, but 

under-predicted the measurements produced by spherical indenters. Liu and Scanlon 

(2003) concluded that finite element analysis is a robust tool useful in assisting 
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researchers to study the role of various factors contributing to the textural quality of food 

materials. 

 

By using the Abaqus finite element software package and Microsoft Excel Solver 

function, Goh et al (2004b) were able to extract the parameters that define the 

viscoelastic response of materials after being subjected to a stress relaxation test with a 

finite initial loading rate. The analytical model used to describe the viscoelastic behaviour 

of materials subject to finite loading stress relaxation tests is a convolution integral that 

cannot be solved analytically.  However, it is possible to solve the integral using an 

algorithm based on finite increments of time first suggested by Taylor et al in 1970.  This 

algorithm can be implemented in the finite element method to extract the viscoelastic 

parameters of materials.  Goh et al (2004b) indicated that the use of finite element 

analysis is a simple and quick method that facilitates the extraction of viscoelastic 

constitutive constants of materials to approximate experimental data under any arbitrary 

strain history.  

 

In 2005, Goh et al studied the use of a model to predict the response of cheese wire 

cutting with the help of Abaqus finite element analysis software.  The numerical model 

consisted of two parts: the first part dealt with indentation until crack formation caused 

by a cylindrical wire and the second part dealt with crack propagation as the indentation 

was continued to cut the specimen. Goh et al (2005) were able to accurately predict the 

indentation part of the wire cutting procedure of cheddar and gruyere cheese.  This model 

showed reasonable success in predicting the cutting force, especially for cuts made with 
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small diameter wires.  The numerical method was able to incorporate strain-rate 

dependent effects into the wire cutting simulation that closely matched experimental 

results.  The numerical model was simpler, computationally cheaper to use, and more 

successful in predicting the cutting force than current analytical methods.  However it 

was not successful in predicting the fracture toughness of cheese during wire cutting, a 

parameter which can be calculated analytically. 

 

A two dimensional finite element model was developed by Ressing et al (2007) to 

simulate the puffing of a dough ball during vacuum microwave drying. The finite element 

model was written in Matlab and implemented in ANSYS.  This model enabled the 

coupling of heat and mass transfer effects with solid mechanics effects.  The combination 

of thermodynamic and mechanic effects provided an insight into the two puffing 

mechanisms of food products during vacuum microwave dehydration: the pressure 

difference between the inside of the dough and the drying chamber and the pressure 

created by formation of vapour due to the temperature rise of the dough. 

 

Using Abaqus finite element analysis software, Goh and Scanlon (2007) were able to 

develop a viscoplastic model to simulate the compression and conical indentation 

response of three lipid-based particle gel systems (margarine, butter and shortening). In 

general the viscoplastic model predicted reasonably well the indentation response, but the 

load at a given displacement was underpredicted for shortening and butter while it was 

overpredicted for margarine.  Using the viscoplastic model Goh and Scanlon (2007) were 

able to back predict the stress-strain properties from the conical indentation response, and 
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these stress-strain properties were consistent with results from other studies performed on 

these three particle gels.  There were some discrepancies between the results predicted 

from the finite element model and the experimental data due to the lack of knowledge of 

the large strain compression and time-dependent behaviours of the lipid gels; Goh and 

Scanlon (2007) suggested that large strain, stress relaxation and creep tests should be 

performed to better understand the rheological response of lipid-based particle gels and to 

develop a more accurate model. 

 

The use of finite element analysis software packages can be of great help in 

understanding the complex rheological response of food materials due to the ability of 

finite element analysis to add complex features to simple mechanical models without the 

need to solve complex mathematical equations. Understanding the rheological response 

in turn can be used to predict the quality of foods as the composition and structure is 

changed to provide better nutrition or functionality.  Also the finite element method can 

be used to combine thermal, mass transfer and mechanical effects to realistically simulate 

processing of raw materials into food products. 
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3.1.0 Materials 

All purpose vegetable shortening (Crisco® Smucker Foods of Canada Co., Markham ON, 

Canada) was selected as the material to be tested due to its homogeneity and stability at 

room temperature as compared with other lipid-based particle gels, like margarine and 

butter.  Vegetable shortening appears to be very homogeneous to the naked eye and is 

one of the simplest fat systems being composed of nitrogen gas dispersed throughout a 

semi-solid triacylglycerol matrix (Goh and Scanlon, 2007).  Ingredients listed in the 

package of this shortening were soybean oil, hydrogenated cottonseed and soybean oils.   

 

Preliminary mechanical testing was performed on two other lipid-based particle gels: an 

experimental shortening manufactured by blending the high melting fraction of Ghee 

butter (extracted as per Marangoni and Lencki, 1998) with canola oil, and a commercially 

available shortening (No Name® all-vegetable shortening Loblaws Inc., Calgary, AB, 

Canada), whose ingredients were listed as hydrogenated vegetable oils (canola and/or 

soybean and/or palm), mono- and diglycerides, BHA, BHT and citric acid. The 

mechanical properties derived from compression testing of both these sample materials 

varied substantially and so further testing was discontinued. 

 

3.2.0 Physical Characteristics of Shortening 

From the literature review it has been learned that all purpose vegetable shortening 

maintains its solid state within the temperature range at which the laboratory can be 

maintained (deMan et al, 1991).  Also the literature suggests that all-purpose vegetable 

shortening contains approximately 13% of nitrogen gas per volume uniformly distributed 
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in bubbles (Shahidi, 2005).  It is important to determine these two physical characteristics 

for the particular shortening studied (Crisco®), since they could affect the results 

obtained during the mechanical testing and the finite element modelling of the results. 

 

3.2.1 Solid Stability of Shortening 

According to deMan et al (1991), North American vegetable shortenings have melting 

points that range from 49.0 to 50.2 °C, which are much higher than room temperature (19 

to 23 °C); therefore it can be assumed that the vegetable shortening chosen in this study 

is stable at room temperature. However since the formulations of vegetable shortenings 

of different brands is very diverse it was necessary to confirm this assumption.  The 

Differential Scanning Calorimetry (DSC) thermogram can provide valuable information 

on the melting profile of fats and can be correlated to how they melt in the mouth during 

mastication (Dian et al, 2006).  DSC was performed using a micro-calorimeter (Micro 

DSC III high sensitivity DSC and isothermal calorimeter, SETARAM Inc., Pennsauken, 

NJ, USA), in order to investigate the solid stability of the selected vegetable shortening at 

room temperature (19 to 23 °C).  Vegetable shortening blocks were stored at 4 °C until 

tested.  Three sequences were set up for the calorimeter, first the calorimeter internal 

temperature was dropped from room temperature to 4 °C at 3 °C min-1, then the 

calorimeter was run isothermally for 60 min at 4 °C, and finally the calorimeter was 

ramped from 4 to 40 °C at 1 °C min-1.  The test was performed on triplicate, from three 

different blocks of the same lot (Crisco® Lot# 7232 420 1936 1).  The mass of the 

specimens placed on the DSC machine was 118±4 mg.  The measurements were repeated 

on the same shortening blocks nine weeks later (time it took to finish all mechanical 
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testing) to observe whether time and storage conditions affected the melting 

characteristics of shortening. 

 

3.2.2 Void Fraction of Shortening 

The void fraction of vegetable shortening was estimated by calculating the density of 

solid shortening as sold at room temperature (20.5 °C), this density was then compared to 

the solid shortening density after de-gasification had occurred.  Three 30x30x30 mm 

cubes were cut and their respective masses were measured.  The three replicates were 

melted (50±2 °C) and agitated under vacuum to release the nitrogen gas from the liquid 

shortening. The liquid shortening was transferred into a graduated cylinder so that the 

volume could be measured.  The liquid shortening was allowed to cool down to room 

temperature (20.7 °C) inside the graduated cylinder and its volume and its mass were 

measured once again.  The void fraction, Φ, was calculated using the following equation: 

sρ
ρ−=Φ 1                        [3.1] 

where ρ is the density of vegetable shortening as sold and ρs is the density of solid 

vegetable shortening after de-gasification. 

 

 

3.3.0 Mechanical Testing of Shortening 

In order to obtain the constitutive parameters used to define a material’s rheological 

behaviour a series of mechanical test were performed on standardized cubic shortening 
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specimens using a Universal Testing Machine.  Specimen preparation and mechanical 

testing set-up are described in the following sections.  

 

3.3.1 Sample Preparation for Mechanical Testing 

Blocks of vegetable shortening (Crisco® Lot# 7080 420 0702 2) weighing 454 g each 

were bought from a local supermarket and were stored at 4±2°C until testing.  A 

minimum storage time of 10 hours after purchase was given to the shortening blocks so 

they hardened, making cutting of specimens easier.  Specimens were cut into rectangular 

prisms of three different sizes to investigate the effects of friction between the 

compression set-up and vegetable shortening.  Three different sizes were used to 

investigate the frictional effects.  By increasing the dimensions of the specimens parallel 

to the compression plates (contact area), the stress results during compression should 

increase due to the presence of friction or should remain the same within experimental 

error if there is an absence of friction (Gunasekaran and Ak, 2003). 

 

Sizes used were 15x15x15, 22.5x22.5x15, and 30x30x15 mm.  These were nominal 

dimensions; the exact dimensions of each specimen were recorded to an accuracy of ±0.5 

mm prior to testing.  The cutting was done using a modified wire cheese cutter, 

consisting of a marble base, a wooden stopper, and a metallic arm that stretched a steel 

wire (Figure 3.1). The block of shortening was placed on the marble base and rested 

against the wooden stopper to form a 90° angle, while the metallic arm swivelled up and 

down cutting the shortening that was not resting on the wooden stopper. 
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Figure 3. 1. Modified cheese wire cutter used during specimen preparation 
 

The shortening blocks were cut immediately after they were removed from the 

refrigerator.  Mineral oil (Light white oil EEC No 232-455-8, Sigma Chemical Co., St. 

Louis, MO, USA) was used on the steel wire to facilitate specimen preparation.  About 

seven 30x30, seven 22.5x22.5 and twenty one 15x15 mm by mm specimens were 

prepared from each block of shortening.  Specimens were rejected if large air bubbles or 

damage at the edges were observed.  The specimens were carefully placed on square 

sheets of weighing paper (Fisher Scientific Corporation, Ottawa ON) for easy transport 

and to reduce further handling of specimens.  Specimens were covered with a second 

sheet of weighing paper and allowed to equilibrate to room temperature (19 to 23°C) for 

a minimum of 3 h. The temperature equilibration time of 3 h was selected on the basis 

that it took approximately 1 h for the core of a 30x30x15 mm specimen to reach room 

temperature; the extra 2 h was chosen in order to allow all the cut specimens to reach 

room temperature, since specimens were randomly selected for testing.   
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3.3.2 Temperature Measurements during Mechanical Testing 

The ambient temperature was measured using a digital thermometer (TEGAM 871A, 

Tegam Inc., Geneva, OH, USA) with an insulated thermocouple (Chromega®-Alomega®, 

Omega Engineering Inc., Laval, PQ, Canada).  Temperature readings were taken at the 

beginning and at the end of each set of mechanical tests. Mechanical tests were not 

performed if the room temperature was below 19 °C or above 23 °C, to minimize 

variation in the results due to temperature.  

 

3.3.3 Mechanical Testing Set-up 

All mechanical tests were performed on a Zwick materials testing machine (Zwick USA, 

Kennesaw, GA, USA) with a 100 N load cell (resolution of 0.0002 N).  Tests were 

controlled and data were compiled using the software TextXpert II (Zwick GmbH, Ulm, 

Germany).  For compression based tests (simple compression, cyclic compression, creep 

test and stress relaxation) a layer of mineral oil was applied to both compression platens, 

sheets of overhead transparency were placed on top of the mineral oil and more mineral 

oil was applied to the upper face of both transparencies.  Specimens were carefully taken 

from their weighing paper and placed on top of the mineral oil, as shown in Figure 3.2.  

Application of mineral oil and the use of stiff transparency sheets in between platens and 

specimen were utilized to reduce the frictional effects during testing.  For indentation 

tests, a conical indenter with a half angle of 45° was used.  The indentation set-up was 

similar to the compression one with the exception that no transparency was placed on top 

of the specimen, but the indenter surface was lubricated with mineral oil to reduce 

friction between indenter and specimen. 
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Figure 3. 2. Specimen set-up for compression testing of vegetable shortening 
 

3.3.3.1 Treatments per Mechanical Test Type 

In order to observe the rate dependent behaviour of shortening four monotonic loading 

rates were used during simple compression tests (0.4, 4, 40, and 400 mm min-1) and three 

during cycling loading (4, 40 and 400 mm min-1).  The initial compression in cyclic 

loading was 1 mm and in the next cycles the compression distance was increased by 2 

mm until a maximum compression distance of 7 mm was reached.  An additional cyclic 

compression test was done with smaller compression distances (minimum compression 

0.3mm, increments of 0.3 mm up to a maximum of 1.2 mm) at a crosshead speed of 4 

mm min-1.  During the creep tests, specimens were subjected to three loads (0.5, 2.5 and 5 

N) for a period of 30 min.  For stress relaxation tests, specimens were subjected to three 

different compression displacements (0.5, 2.0 and 5.0 mm) that were reached by 

crosshead movement either at 4 or 40 mm min-1, and the displacements were held for 20 

Compression platen 

Compression platen 

Specimen Transparencies Mineral Oil 
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min.  In the indentation tests, monotonic loading at 0.4, 4, 40, and 400 mm min-1 up to a 

depth of 2.5 mm were performed.  All the tests were done in triplicate.  For compression-

based tests specimens of three different contact areas were used (225, 506.25 and 900 

mm2) while for indentation, specimens with two different contact areas (225 and 900 

mm2) were used.  Table 3.1 summarizes the treatments done for each type of test. 

 

Table 3. 1. Summary of tests and treatments for vegetable shortening 
Test Monotonic 

Compression 
Cyclic 

Compression 
Creep test Stress 

Relaxation 
Monotonic 
Indentation 

Treatments 

Four  
constant 

compression 
rates: 0.4, 4, 
40, 400 mm 

min-1 

Three constant 
compression 

rates: 4, 40, 400 
mm min-1 

Three fixed 
loads: 0.5, 
2.5, and 5.0 

N 

Three fixed 
displacement
s: 0.5, 2.0, 
and 5.0 mm 

 
Two 

crosshead 
speeds: 4 and 
40 mm min-1 

Four 
constant 

indentation 
rates: 0.4, 4, 
40, and 400 
mm min-1 

Limit 
conditions 

Maximum 
compression: 

9.75 mm 

Maximum 
compression: 
1.2* or 7 mm 

Holding time: 
30 min 

Holding time: 
20 min 

Indentation 
depth: 2.5 

mm 

Specimen 
Sizes  
(mm) 

15x15x15 
22.5x22.5x15

30x30x15 

15x15x15 
22.5x22.5x15 

30x30x15 

15x15x15 
22.5x22.5x15

30x30x15 

15x15x15 
22.5x22.5x15 

30x30x15 

15x15x15 
30x30x15 

Replicates 
per 
treatment 

3 3 3 3 3 

Replicates 
per test 

36 30 27 54 24 

* Maximum compression of 1.2 mm was performed on three specimens 15x15x15 at the 
compression rate of 4 mm min-1, so that the total replicates for cyclic compression is only 
30. 
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3.3.3.2 Universal Testing Machine Control Parameters 

A master test program from TextXpert II called “Cyclic Tests” version 1.41 was used to 

control the test.  The parameters needed for each type of test are specified in Table 3.2. 

 

Table 3. 2. Test control parameters inputted into TextXpert II version 1.41 
Parameter Monotonic 

Compression 
Cyclic 

Compression 
Creep Test Stress 

Relaxation 
Monotonic 
Indentation 

Tool 
separation at 
start position 

60 mm 60 mm 60 mm 60 mm 20 mm 

Speed to 
reach start 
position 

200 mm  
min-1 

200 mm  
min-1 

200 mm  
min-1 

200 mm  
min-1 

200 mm  
min-1 

Approach 
travel to a 
initial tool 
separation 

Specimen 
height plus 

1.0 mm 

Specimen 
height plus 

1.0 mm 

Specimen 
height plus 

1.0 mm 

Specimen 
height plus 

1.0 mm 

Specimen 
height plus 

1.0 mm 

Speed of 
approach 

200 mm  
min-1 

200 mm  
min-1 

200 mm  
min-1 

200 mm  
Min -1 

200 mm 
 min-1 

Type of 
measurement 
phase 

Cyclic 
loading 

Cyclic 
loading 

Creep test / 
Creep 

Creep test / 
Creep 

Cyclic 
loading 

Number of 
cycles 

2 4 1 1 2 

Cycles 
controlled by 

Position Position Force Position Position 

Speed of 
cycles 

0.4, 4.0, 
40.0, or 400 
mm min-1 

4.0, 40.0, or 
400.0 mm 

min-1 
400 N/s 

4.0 or 40.0 
mm min-1 

0.4, 4.0, 
40.0, or 400 
mm min-1 
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Point 
marking the 
end of  first 
cycle 

Standard 
travel: 65% 
of the initial 

tool 
separation  

(mm) 

Standard 
travel: 2.0 or 

0.3 mm  

Not 
applicable 

Not 
applicable 

Standard 
travel:  25% 
of the initial 

tool 
separation 

(mm) 

Point 
marking the 
beginning of 
holding time 

Not 
applicable 

Not 
applicable 

Standard 
force: 0.5, 

2.5, or 5.0N 

Standard 
travel: 1.5, 
3.0, or 6.0 

mm 

Not 
applicable 

Increase 
after each 
cycle 

0.2 mm 
2.0 or 0.3 

mm 
Not 

applicable 
Not 

applicable 
0.2 mm 

End test 

End of 
cycles or 
maximum 

extension of 
14.0mm 

End of 
cycles or 
maximum 

extension of 
14.0mm 

After 30 
min of 
holding 

load  

After 20 min 
of holding 

displacement 

End of 
cycles or 
maximum 

extension of 
14.0mm 

Travel save 
interval 
standard 
extensometer 

10.0 µm 10.0 µm 10.0 µm 10.0 µm 10.0 µm 

Time save 
interval  

0.1 s 0.1 s 0.1 s 0.1 s 0.1 s 

Force 
shutdown 
threshold 

80 N 80 N 80 N 80 N 80 N 

 

3.3.3.3 Conversion of Force-Displacement to Stress-Strain  

The force and displacement measurements obtained were converted to total true stress, σ, 

and total true strain, ε, by assuming incompressibility of the materials following 
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equations discussed in the last chapter (equations [2.5] and [2.6]) (Charalambides et al, 

2001), rewritten here for convenience: 

 

H

dH )(
ln

−=ε                     [2.5] 

 

HL

dHF
2

)( −=σ                       [2.6] 

 
where F is the force measured by the load cell, H is the original height of the specimen 

(15 mm), d is the displacement measured by testing machine and L is the original side 

length of the specimen (15, 22.5, and 30 mm). 

 

3.3.3.4 Replicates Selection after Mechanical Testing 

The order in which the tests were performed was randomized using a random number 

generation function in MS Excel.  All the compression-based tests were grouped together 

since no change of fixtures was needed to perform the tests; therefore indentation test’s 

treatments were randomized separately from compression-based tests and were 

performed after all the compression-based tests were finished. 

 

Once three replicates per treatment were performed it was determined if the replicates 

were significantly different from each other by calculating the coefficient of variance of 

the total true stress at the end of loading for stress relaxation, simple and cyclic 

compression.  For the creep test, the coefficient of variance was calculated for the strain 

at the point where the load was removed.  And for indentation the coefficient of variance 

was calculated for the maximum force at the point of unloading.  If the coefficient of 
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variance was smaller than 8% then the replicates were deemed not to be significantly 

different.  If the coefficient of variance was higher than 8%, new specimens were 

prepared and tested; the new coefficient of variance was calculated for the specified 

parameter using only three replicates but mixing the older replicates and the newly 

acquired replicates randomly until the coefficient of variance was below 8% for three of 

the replicates.  It was observed that most of the variability in the results arose from the 

way the specimens were cut rather than from temperature differences in the testing 

environment. 

 

3.4.0 Visual Analysis during Compression 

It is important to relate the data collected during the compression tests to the visible 

response of the specimen.  For this reason it was decided to continuously photograph two 

specimens during simple compression at 40mm min-1.  Two 15x15x15 shortening 

specimens were prepared as previously described.  One specimen at a time was placed on 

the compression platen as shown in Figure 3.2 and a black piece of cardboard was placed 

behind the specimen to increase the contrast between sample and background.  Two 

incandescent lamps with tissue paper diffusers were placed at both sides of the specimen 

to properly illuminate the specimen and reduce shadows when the compression platens 

were close to each other.  A digital single-lens reflex camera (Nikon D80, Nikon Canada, 

Mississauga, ON, Canada) was placed directly in front of the specimen on a tripod.  The 

continuous shooting option was selected in order to take three frames per second.  As 

soon as the top compression platen was in contact with the specimen, photographs were 

taken until the compression test completed the loading cycle.  The photographs were later 
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matched to specific points of the stress-strain curve by relating the time at which a picture 

was taken as recorded by the digital camera to the time the force was measured by the 

load cell and recorded by universal testing machine software. 

 

3.5.0 Modelling Mechanical Tests by Finite Element Analysis 

Finite element analysis has proven to be a useful tool for studying the complex 

mechanical behaviour of metals, polymers and even food materials.  One of the 

advantages of finite element analysis is its capacity to carry out ‘virtual’ experiments that 

cannot be readily performed experimentally (Liu and Scanlon, 2003), but in order to 

check the validity of such virtual experiments they must be verified with simulations of 

standard experiments.  

 

During this study the rheological response of vegetable shortening after compression and 

indentation was modelled using Abaqus/CAE finite element analysis package version 6.6 

and 6.7 (Abaqus Inc., Providence, RI, USA).  Abaqus/CAE provides a user-friendly and 

consistent interface for creating and interpreting finite element simulations (Abaqus Inc., 

2007).  Abaqus/CAE is divided into eight modules that are necessary to create a 

simulation; these modules are Part, Property, Assembly, Step, Interaction, Load, Mesh, 

and Job. 
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3.5.1 Part Module 

The Abaqus Part module is used to define the geometry of the parts involved in the 

simulations.  Three two-dimensional axisymmetric parts were used for the simulations in 

this study.  According to Goh and Scanlon (2007) the difference between 2-D and 3-D 

analytical results shows little difference, while the computation time is significantly 

longer for 3-D models.  A DEFORMABLE part represented the shortening specimen 

while two ANALYTICAL RIGID parts were the fixtures in contact with the shortening 

specimen during mechanical testing, a fixed support platen and a compression platen or 

conical indenter.  The ANALYTICAL RIGID option was used due to the geometric 

simplicity of the fixtures, and because stainless steel and aluminium plates are perfectly 

rigid when compared to vegetable shortening. A reference node was assigned to the rigid 

parts where constraints were applied (Figure 3.3). 

 

3.5.2 Property Module  

The Abaqus Property module is used to define the material properties to be assigned to 

the parts drawn in the Part module. The material properties include physical properties 

such as density, and mechanical properties arranged into different models such as elastic, 

viscoelastic, and plastic.  For this study several material models and different 

combinations of them were tried; a comparison of the different models is shown in the 

results section of this thesis (Sections 4.9.0 and 4.10.0). 
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3.5.3 Assembly Module 

In Abaqus/CAE the parts drawn are independent from each other until they are put 

together in the Assembly module; the relative position to each other is assigned in the 

assembly module.  Just like in the experimental tests, during simulations the shortening 

specimen was placed on top of the support platen and the indenter or compressor on top 

of the shortening specimen (Figure 3.3). 

 

 

Figure 3. 3. Parts and assembly used during compression simulations 
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3.5.4 Step Module 

The step module is used to define the type of analysis to be performed, the simulated time, 

the frequency and number of data points to be collected and the techniques used to solve 

the different constitutive equations.  In this study a VISCO or STATIC type of analysis 

was selected in order to model viscoelastic or elastic, plastic and elastoplastic behaviours.  

The simulated time was adjusted according to the different compression rates used during 

experimental tests.  One hundred data points at even intervals were collected throughout 

the step for most of the simulations.  

 

3.5.5 Interaction Module 

The interaction module is used to determine the type of interactions between the different 

parts in an assembly.  For the test simulations a SURFACE TO SURFACE contact was 

selected between the fixtures and the specimen.  A FRICTIONLESS contact was 

assigned between the fixtures and the specimen because no apparent frictional effects 

were observed experimentally; see results section of this thesis (Section 4.4.2). 

 

3.5.6 Load module 

The load module is used to apply direct loads and boundary conditions to the assembly 

used during simulations.  No direct or point loads were used to cause the deformation of 

DEFORMABLE parts during compression or indentation simulations, but rather the 

RIGID parts movement onto the DEFORMABLE parts caused the deformation, so that 

all simulations mimicked actual experimental protocols.  The support platen was 
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completely fixed by selecting the ENCASTRE (U1=U2=U3=UR1=UR2=UR3=0) 

boundary condition at the reference node, so that no movement along any of the axes (U1, 

U2, U3) and no rotation around any of the axes (UR1, UR2, UR3) was allowed for the 

reference node of the support platen. Rollers that allow only movement in the vertical 

direction (U1=UR3=0) were placed on the axis of symmetry of the sample and on the 

reference node of the compression platen.  The vertical displacement (U2) of the 

compression platen was assigned in the load module accordingly to simulate the different 

treatments done during experimental compression and indentation (Figure 3.4). 
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Figure 3. 4. Constraints used during compression and indentation simulations 
 

3.5.7 Mesh module 

The mesh module is used to assign the type and number of elements used to analyse the 

mechanical behaviour of a simulated material.  The element type used during all the 

simulations was a 4-node bilinear axisymmetric quadrilateral, with reduced integration 

and hourglass control (CAX4R), which is the default when axisymmetric stress analysis 
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is selected.  For frictionless compression simulations a uniform mesh with 120 elements 

of the same size was used, since the load is evenly distributed and there is no stress 

concentration as a result of the crosshead squeezing the specimen (Figure 3.5a).  For 

frictionless indentation simulations a mesh with 315 elements of different sizes had to be 

used in order to increase accuracy of the results without greatly increasing the 

computational time.  Smaller elements were used right underneath the indenter because 

this section is subjected to a greater deformation than any other part of the sample and 

more accuracy is required here than at other points in the mesh, this is in agreement to the 

simulations done by Bucaille and Felder in 2002 (Figure 3.5b).  

 

               

Figure 3. 5. Meshes used for compression (a) and indentation (b) simulations 
 

3.5.8 Job module 

Once the simulation has been set up in the previous modules it can be submitted for 

analysis and monitored using the Job module. An appropriate name was assigned to the 

(a) (b) 
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simulations and a general description was added before submitting a job for analysis. All 

jobs were assigned a DOUBLE Abaqus/Explicit precision and a FULL nodal output 

precision. 
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4.1.0 Introduction 

The two main objectives of the research project are the measurement of the fundamental 

material parameters of shortening and the development of a mechanical model that is able 

to accurately predict the indentation response of vegetable shortening.  Since the 

rheological response of vegetable shortening is affected by its composition, differential 

scanning calorimetry and the void fraction of the selected vegetable shortening were 

performed to better characterize the material; the results of these two measurements are 

shown in sections 4.2.0 and 4.3.0 of this chapter.  Sections 4.4.0 to 4.8.0 deal with the 

extraction of the fundamental material parameters of vegetable shortening from the 

different uniaxial compression tests, which include monotonic compression, cyclic 

compression, creep test and stress relaxation tests.  The last two sections (4.9.0 and 4.10.0) 

of this chapter are devoted to an assessment of the suitability of two different mechanical 

models (viscoelastic and elasto-viscoploastic) that could be used to predict the 

rheological response of complex materials such as vegetable shortening, and its 

application to predicting the mechanical response in an indentation test.  

 

4.2.0 Solid Stability of Shortening 

Differential Scanning Calorimetry (DSC) was used to determine if phase changes were 

occurring in the shortening samples during mechanical testing due to fluctuations in room 

temperature. Since the mechanical properties of shortening are extremely sensitive to 

solid fat content (Carden and Basilio, 2004; Marangoni and Narine, 2002), it is important 

to ascertain potential variability in mechanical properties that might be brought about 

temperature variability. The results of a DSC test are generally presented in a curve that 
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shows the heat flow as a function of temperature. If an exothermic process such as 

crystallization occurs during the test, the curve will show a peak in the positive direction, 

and if an endothermic process such as melting occurs a peak in the negative direction will 

appear. If the heat flow remains constant as the temperature increases this means there is 

no change in phase.  A DSC curve was produced for vegetable shortening between 4 and 

40 °C (Figure 4.1). 
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Figure 4. 1. Average DSC curves for vegetable shortening at two storage times. Error 
bars represent ± 1 standard deviation 

 

As one can see in Figure 4.1 vegetable shortening remains in the same state at the 

temperatures in which the mechanical test were performed (19 to 23 °C) since the DSC 

curve is almost horizontal.  Melting starts to occur beyond 30 °C and it appears that 

further crystallization occurs below 10 °C.  The shape of the curve did not change as the 
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storage time progressed, however the heat flow increased with storage time. The increase 

in heat flow can be attributed to an increase in the solid fat content (Metzroth, 2005).  

Based on these results it can be assumed that the rheological properties of vegetable 

shortening were not changing as a result of ambient temperature fluctuations in the 

laboratory, but some of the variability between replicates can be attributed to the changes 

that occurred during refrigerated storage. 

 

4.3.0 Void Fraction of Vegetable Shortening 

Vegetable shortening as sold has a white and creamy appearance which can be attributed 

to the presence of evenly distributed nitrogen bubbles (Shahidi, 2005).  Once the 

shortening was melted, agitated and re-solidified its appearance can be described as 

opaque and yellowish in colour; therefore one could partially explain this change in 

appearance to the removal of nitrogen bubbles from the shortening matrix.  In order to 

calculate the void fraction (Φ) of vegetable shortening the density of solid shortening as 

sold (ρ) and the density of degasified solid shortening (ρs) were measured.  The density of 

shortening as sold at 20.5°C was measured to be 0.834 ± 0.002 g cm-3 while the density 

of solid degasified shortening at 20.7°C was 0.895 ± 0.009 g cm-3; therefore the void 

fraction was calculated as 0.068 ± 0.008 as per equation [3.1] in the methodology section: 

sρ
ρ−=Φ 1 .     

This void fraction is smaller to what Shahidi (2005) records as the added nitrogen to most 

shortenings (12-14% by volume), but it is important to remember that there are many 

formulations for shortening and it is possible that during the manufacturing of Crisco® 
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all-purpose vegetable shortening only 7% of nitrogen is added to increase workability and 

to provide a white and creamy appearance. 

 

4.4.0 Uniaxial Monotonic Compression 

All purpose vegetable shortening was subjected to uniaxial monotonic compression in 

order to observe its rheological behaviour and try to classify the material as elastic, 

plastic, viscoelastic, or a combination of the above.  In general, uniaxial compression 

tests are used to obtain some fundamental rheological properties of materials, such as the 

modulus of elasticity (E) and yield stresses (σy), which are necessary to create a model 

for the simulation of their rheological response.  

 

4.4.1 Classification of Shortening from Monotonic Compression Response 

Goh and Scanlon (2007) noted that the compression response of vegetable shortening can 

be divided into three sections, a linear elastic region at the beginning, followed by a 

plastic region with strain hardening and finally a perfectly plastic region.  Because of this 

rheological response, vegetable shortening can be classified as an elasto-viscoplastic 

material.  The experimental compression results shown in Figure 4.2 suggest that 

vegetable shortening has a perfectly elastic region at very small strains and it appears that 

at large strains a perfectly plastic region is present just as reported by Goh and Scanlon 

(2007).  However in the intermediate region a stress-overshoot region develops which 

suggests strain hardening as well as strain softening, as opposed to just strain hardening. 
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Figure 4. 2.  Monotonic uniaxial compression true stress- true strain schematic curve for 

vegetable shortening; three different sections are visible: Linear elasticity (1), stress 
overshoot hardening/softening (2), and perfect plasticity (3) 

 

An attempt to quantify the value for the modulus of elasticity was made by fitting a 

straight line through the stress-strain data at strains greater than 0.5% and below 5%. 

Using this technique the modulus of elasticity was found to be the values in Table 4.1.  

 
Table 4. 1.  Modulus of elasticity of shortening obtained after monotonic compression at 
different crosshead speeds. 

Crosshead speed (mm min-1) Average modulus of elasticity (kPa) 
0.4 248.3 ± 9.7 
4.0 360.3 ± 5.5 
40.0 306.7 ± 105.4 
400.0 246.3 ± 6.5 

 

The variability in the modulus of elasticity (E) can be attributed to the variability in 

specimen shape, rather than being a true rate-dependent effect, because there is not a real 

pattern as the loading rate increases.  This behaviour was expected since the modulus of 

1 

2 3 
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elasticity is a rate-independent parameter since it is used to describe purely elastic 

behaviour which is always non rate-dependent.  The specimen shape variation was pretty 

hard to eliminate. Even though great care was taken during the cutting process to have 

flat contact areas there was a variation in height, maximum of ±0.5mm (or 3.3% of 

specimen height), between the different sides of the same cubic specimens.  This uneven 

contact area affects the compression results by changing the initial slope of the stress-

strain diagram as discussed by Gunasekaran and Ak (2003).  If the specimen contact 

surface is uneven (Figure 4.3), the initial force value measured during compression would 

be smaller than if the compression platen was in contact with the entire face, this in turn 

leads to the underestimation of the modulus of elasticity.  

 

Figure 4. 3.  Schematic representation of uneven contact between specimen and 
compression platen leading to underestimation of modulus of elasticity 

 

4.4.2 Frictional Effects during Monotonic Compression 

The frictional effects were also studied during uniaxial monotonic compression by 

varying the area of the specimens in contact with the compression and support platens. 

Altering the dimensions of specimens is a common method of studying the frictional 

Shortening 
specimen 

Compression platen 

Support platen 

Uneven contact 
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effects during compression (Charalambides et al, 2001).  In order to study fictional 

effects during compression, Charalambides et al (2001) varied the specimen height and 

Gunasekaran and Ak (2003) suggested the variation of the contact area of the specimen.  

Charalambides et al (2001) observed that when no lubricant was used, shorter cheese 

cylindrical specimens appear stiffer than taller specimens due to the presence of friction. 

On the other hand Gunasekaran and Ak (2003) stated that if frictional effects are 

significant during compression tests, one could expect the stress at a given strain to 

increase as the contact area of specimens increases, because a larger contact area will 

contribute to more friction than a smaller contact area. 

 

The compression results of shortening specimens with different contact areas are shown 

in Figure 4.4.   One would expect the 30x30 mm2 specimens to have larger stresses at a 

given strain independently of the compression rate, if there were significant frictional 

effects during compression. However, as seen in Figure 4.4 this trend is not visible in the 

experimental data especially at strains below 0.5.  For example at a compression rate of 4 

mm min-1 (Figure 4.4a) the 30x30 specimens appear to have the smaller true-stress values 

than the 15x15 and 22.5x22.5 specimens at true strains below 0.5, while at 40 mm min-1 

the stress values for the three specimen sizes are close to each other and within the error 

bars at strains below 0.5 (Figure 4.4b).  At strains larger than 0.5 there is a slight increase 

in the true-stress values as the size of the specimen increases but at strains larger than 0.5 

the specimen shape starts to greatly deviate from its cubical shape and it appears that 

shear fractures start to appear as discussed in section 4.4 of this chapter, so the stress 

increase may not be attributed to friction alone. 
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Figure 4. 4. True stress-true strain diagram from uniaxial monotonic compression of 

vegetable shortening cubic specimens with three different contact areas (dimensions in 
mm2) and at two crosshead speeds (a) 4 and (b) 40 mm min-1. Each curve is the average 

of three specimens with similar dimensions and error bars are the average standard 
deviation of three specimens 

 

(a) 4 mm/min 

(b) 40mm/min 

 

 



 111 

Specimens with different contact areas were not only used during monotonic 

compression but also during other uniaxial compression tests, which included cyclic 

compression.  In order to observe if the stress measurements were affected by frictional 

effects, a student t-test (95% confidence, 2 tails) was performed using MS Excel between 

the true-stress results of specimens with different contact areas at different true strain 

values (at the end of the loading of each type of test) during monotonic and cyclic 

compression tests.  The results of the t-tests are shown in Tables 4.2 and 4.3. 

 

Table 4. 2. Student t-test comparison between stress values at strain values larger than 0.5 
after monotonic compressions for specimens of different sizes.  

Crosshead speed 
(mm min-1) 

Specimen size 
comparison (mm) 

t-test value (95% 
Confidence, 2 tail) 

Significantly 
different (Yes/No) 

0.4 15 vs. 22.5 0.0478 Yes 
0.4 15 vs. 30 0.0263 Yes 
0.4 22.5 vs. 30 0.2040 No 
4.0 15 vs. 22.5 0.0006 Yes 
4.0 15 vs. 30 0.0062 Yes 
4.0 22.5 vs. 30 0.0492 Yes 
40.0 15 vs. 22.5 0.0692 No 
40.0 15 vs. 30 0.0012 Yes 
40.0 22.5 vs. 30 0.1761 No 
400.0 15 vs. 22.5 0.0996 No 
400.0 15 vs. 30 0.1650 No 
400.0 22.5 vs. 30 0.4584 No 

 

The t-test comparisons for monotonic compression (Table 4.2) at strain values larger than 

0.5 indicate that at low crosshead speeds (0.4 and 4 mm min-1) there is a significant 

difference between the measured true stresses of specimens of different sizes.  However 

at higher crosshead speeds (40 and 400 mm min-1) there is no significant difference 

between specimens of different sizes. In order to conclude if the specimen size had an 
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effect on the measured stress cycling compression test results were subjected to t-test 

comparisons (Table 4.3).  

 

Table 4. 3.  Student t-test comparison between stress values at strain values larger than 
0.5 after cyclic compressions for specimens of different sizes.  

Crosshead speed 
(mm min-1) 

Specimen size 
comparison (mm) 

t-test value (95% 
Confidence, 2 tail) 

Significantly 
different (Yes/No) 

4.0 15 vs. 22.5 0.2308 No 
4.0 15 vs. 30 0.0834 No 
4.0 22.5 vs. 30 0.1125 No 
40.0 15 vs. 22.5 0.2919 No 
40.0 15 vs. 30 0.5479 No 
40.0 22.5 vs. 30 0.9428 No 
400.0 15 vs. 22.5 0.3539 No 
400.0 15 vs. 30 0.3260 No 
400.0 22.5 vs. 30 0.6132 No 

 

By looking at Table 4.3 one can conclude that changing the specimen size during cycling 

compression test of vegetable shortening did not cause a significant difference in the 

measured stress at  strains larger than 0.5.  

 

The student t-test showed that 71% of all the comparisons were not significantly different; 

the t-test results indicate that there was more variability among specimens with similar 

dimensions than between specimens with different dimensions.  Based on the 

observations done on Figure 4.4 and the statistical analysis (Table 4.2 and 4.3), one can 

conclude that at all strains, the measured stress is not significantly different as a result of 

compressing specimens of different sizes when the crosshead speed is either 40 or 400 

mm min-1.  However if compression tests are carried out at either 0.4 or 4 mm min-1 there 

is a significant difference between the true stress values measured at strains larger than 

0.5. Therefore it is only safe to neglect frictional effects during compression tests at 
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strains lower than 0.5; therefore one can assume frictionless behaviour at strains lower 

than 0.5 during finite element analysis simulations, which will be discussed later in this 

thesis. 

4.4.3 Monotonic Compression Rate-Dependent Behaviour  

The literature review revealed that most lipid-based particle gels are rate-dependent 

materials (Wright et al, 2001; Goh and Scanlon, 2007); therefore in order to investigate 

the rate-dependent behaviour of vegetable shortening, cubic specimens were compressed 

at four different crosshead speeds (0.4, 4.0, 40 and 400 mm min-1).  The results of 

uniaxial monotonic compression of shortening at different crosshead speeds are shown as 

a true stress-true strain diagram in Figure 4.5. 

0

2

4

6

8

10

12

14

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

True Strain

T
ru

e 
S

tr
es

s 
(k

P
a)

0.4mm/min
4mm/min
40mm/min
400mm/min
Series5
Series6
Series7
Series8

 
Figure 4. 5. True stress- true strain diagram from uniaxial monotonic compression of 

vegetable shortening at four different loading rates. Each curve is the average of 9 
specimens with three different contact areas and error bars are 95% C.L from 9 

specimens at each data point 
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Figure 4.5 suggests that vegetable shortening has a rate-dependent response to uniaxial 

compression; however it is not seen as an increase in the stress values as the compression 

rate increases as reported by Goh and Scanlon (2007), but a change in the shape of the 

stress-strain curve.  As the compression rate increases the perfectly plastic region is only 

reached at greater strain values.  In addition, the stress peak broadens significantly, the 

maximum stress appears to increase but the difference between different crosshead 

speeds is not significant due to the variability of the results (Figure 4.5).  The increases in 

the value of the plateau stress with loading rate are not as pronounced as described by 

Goh and Scanlon (2007) and are within the error bars for each of the different crosshead 

speed compression tests, so they are also not significantly different. 

 

4.4.4 Visual Analysis during Monotonic Compression 

Continuous photographs were taken during uniaxial monotonic compression and then 

matched to specific points in the stress-strain curve.  This was done in an attempt to 

understand the macroscopic effects of uniaxial compression and to try to understand what 

was causing the stress overshoot at intermediate strain seen in Figure 4.2.  The results are 

summarized in Figure 4.6.  

 

If a material is subject to predominantly compressive stresses, failure occurs on planes 

that are inclined to the planes of normal stress and more aligned with planes of maximum 

shear. Failure at the shear planes is common for brittle solid materials such as cast iron 

and concrete (Dowling, 2007). By looking at Figure 4.6 it appears that shortening 

undergoes failure along the planes of maximum shear, which is inclined to the 
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compressive plane. Many materials usually contain, or easily develop, small flaws or 

other geometric features that are equivalent to small cracks.  In vegetable shortening 

these flaws might be the nitrogen bubbles in the solid matrix (O’Brien, 2005) that 

account for the void fraction discussed in section 4.3.0.  Failure in materials generally 

occurs as a result of these flaws joining or growing, and such a process is often time 

dependent; therefore shear failure is dependent on the loading rate (Dowling, 2007).  

 

 
Figure 4. 6. Stress-strain curve from uniaxial monotonic compression of a 15 mm cubic 

shortening specimen at 40 mm min-1 and photographs of macroscopic behaviour of 
shortening specimens at a given strain. Inset shows another shortening specimen 

compressed to 0.46 strain 
 

By looking at Figure 4.6, one can see that the stress overshoot region is related to the 

formation of a shear failure almost at the centre of the cubic specimen.  At the maximum 

stress of the stress overshoot the shear-failure becomes visible and the failure becomes 

more pronounced as the stress decays.  When stresses are applied to a material specimen 
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work must be done, and during purely elastic deformation all the work is stored as 

potential energy (Dowling, 2007). For materials that undergo plastic deformation (e.g., 

shortening) there is an expenditure of potential energy prior to failure (Liu, 2005). 

Materials that undergo plastic deformation are called ductile materials.  Failure of ductile 

materials usually occurs by glide or slip, whereby one part of the body is sheared against 

the other (Liu, 2005).  By looking at Figure 4.6 one can see that vegetable shortening 

seems to be failing by slip, so that the strain energy is converted into plastic work. 

 

It is important to emphasise that ductile, not brittle failure, occurred in the cubic 

shortening specimens.  In Figure 4.6 it appears that separation of parts of the specimen 

has occurred.  This is actually an artefact associated with illumination of the specimen as 

a result of shadows forming due to displacement of one part of the specimen relative to 

another about the slip plane.  In the inset to Figure 4.6 another specimen deformed to 

0.46 strain is shown, and no separation of the specimen into two parts is observed.  

Further evidence of the absence of crack formation is apparent in the elastic recoil of the 

entire specimen in Figure 4.12. 

 

Also from Figure 4.6 one can see that the final shape of the compressed specimen is no 

longer a cube since one of the sides is no longer at 90 degrees from the compression 

platen and the lower contact surface appears to be larger than the upper contact surface.  

The change in shape of the specimen suggests that the material’s Poisson’s ratio is no 

longer close to 0.5 when the strain is larger than 0.4 and from the photographs in Figure 

4.6 it appears that there might be some frictional effects on the upper compression platen, 

since the specimen does not slide as much as in the bottom surface. 
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4.4.5 Conclusions from Monotonic Compression 

From monotonic uniaxial compression of vegetable shortening it can be concluded that 

the rheological behaviour of shortening can be characterized by three distinct behaviours, 

purely linear-elastic at small strains, strain hardening and softening at intermediate strains 

and pure plasticity at large strains.  The Young’s modulus of vegetable shortening 

obtained from monotonic compression is in the range of 185 to 371 kPa.  Rate-

dependency effects were observed during the monotonic compression of vegetable 

shortening, and these effects were shown as a change in the shape of the stress-strain 

curve rather than just an increase in the stress values as the crosshead increases.  Also the 

frictional effects of the experimental set-up can be considered negligible at strains below 

0.5.  It appears that the stress overshoot present in the compression stress-strain diagram 

is related to the formation and propagation of a shear failure at the center of the 

shortening specimen. 

 

4.5.0 Cyclic Uniaxial Compression 

Cyclic uniaxial compression tests can be used to determine the elasticity region of a 

material.  If a material is truly elastic the loading and unloading curve would overlap, but 

if the material has already suffered permanent deformation and is therefore in the plastic 

region the unloading curve will not overlap the loading curve (i.e., hysteresis occurs) and 

the strain will not return to zero when the load is removed from the material (i.e., plastic 

deformation).  The unloading modulus gives a purely elastic modulus whereas the 

loading modulus is comprised of the elastic and plastic compliance (de With, 2006; Goh 

and Scanlon, 2007).  Furthermore the loading curve for subsequent cycles will start at 
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strains larger than zero and will run parallel to the other loading curves i.e., the loading 

curves will not overlap due to the permanent deformation. 

 

4.5.1 Determination of Initial Yield Strain 

Two types of cyclic compression were performed during this research project: with an 

initial compression of 0.3 mm and increments in compressive distance of 0.3 mm (Figure 

4.7); initial compression of 1.0 mm with increments in compressive displacement of 2.0 

mm (Figure 4.8 and Figure 4.9).  It was observed that vegetable shortening exhibits 

permanent deformation even at the small strain of 2% (Figure 4.7a), since the loading and 

unloading paths do not overlap and there is a residual strain when the load is removed as 

shown in cycle 1 of Figure 4.7a; this is in agreement with the results of Goh and Scanlon 

(2007) who reported that the yield strain of shortening was well below 2%.  A yield strain 

below 2% is difficult to measure with the current experimental set up, because results 

obtained from compression tests with strains below 2% are likely not accurate due to the 

variability of the height within a specimen; Kloek et al (2005) found that having test 

pieces lacking complete flat ends caused scatter in the values of the yield strain. The 

specimens used in the current research are not completely flat on the top and bottom 

contact surfaces causing the stress to be non-homogeneous at small strains and to lead to 

an increase in compliance, which is readily apparent in Figure 4.7.  Due to the specimen 

preparation technique and the measuring instruments used, the specimen height could 

only be kept within 0.5 mm (3.3%) of the target height of 15 mm, and this potential 

variability is already bigger than 2% strain (0.3mm). 
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Figure 4. 7. Average cyclic uniaxial compression of vegetable shortening at 4 mm min-1. 
(a) First two cycles up to 4% strain and (b) four cycles up to 8% strain. Error bars are one 

standard deviation 
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From Figure 4.7a it can only be concluded that the initial yield strain (εy1) is below 0.02. 

This upper limit for εy1 should be taken into account when trying to develop a model to 

predict the rheological response of vegetable shortening, which is discussed later in this 

thesis. 

 

4.5.2 Rate-Dependency Effect during Cyclic Compression 

Similar to monotonic compression, cyclic compression exhibits the rate-dependency of 

vegetable shortening (Figure 4.9).  The cyclic compression results are in agreement with 

the monotonic compression results; for vegetable shortening the true stress does not 

increase as the crosshead speed increases, all the curves lay within each other’s error bars 

so that the stress peaks are not significantly different between the various crosshead 

speeds (Figure 4.9).  However, the stress overshoot area extends over a larger strain range 

as the crosshead speed increases, just as it happens during uniaxial monotonic 

compression tests. 

 

Also as with the monotonic compression the largest drop in stress in the overshoot region 

occurs at the lowest crosshead speed (4mm min-1).  Looking at Figure 4.8, one can see 

that a maximum stress of approximately 12 kPa in cycle 2 drops down to approximately 

10 kPa in cycle 3 at 4 mm min-1, this values correspond to stress values at equivalent 

strains during monotonic compression (Figure 4.8). 
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Figure 4. 8. Comparison between average cyclic and monotonic compression of 

vegetable shortening at 4 mm min-1
.  Each curve is the average of 9 specimens with three 

different contact areas and error bars are one standard deviation 
 

From Figure 4.9, it appears that the rate of unloading does not affects the slope of the 

unloading curve.  From the unloading curve the unloading modulus can be calculated and 

be used as a measurement of the elasticity of a material.  The following section describes 

how the unloading modulus was calculated. 
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Cycle 4 

Cycle 1 
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Figure 4. 9. Average cyclic uniaxial compression of vegetable shortening at three 

crosshead speeds.  Each curve is the average of 9 specimens with three different contact 
areas and error bars are one standard deviation at selected strain values 

 

4.5.3 Determination of Unloading Modulus 

The unloading modulus can be used as a measure of the elasticity remaining in a material 

after it has been deformed.  If the deformation is smaller than the yield strain then the 

unloading modulus and the modulus of elasticity (E) are equivalent (de With, 2006).  

However for large strains the loading modulus (E) has elastic and plastic components, 

unless the material is completely elastic, which is not the case of vegetable shortening. 

  

 The unloading modulus (EU) is the tangent of the unloading portion of a stress-strain 

curve (Gunasekaran and Ak, 2003).  Theoretically, the unloading process should be done 

in a continuous manner at constant rates, but in reality it is impossible to change the 

Cycle 1 

Cycle 2 

Cycle 3 

Cycle 4 
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direction of the compression-crosshead without first slowing down and stopping.  Under 

the current experimental conditions, it was observed that at the end of each loading cycle 

the crosshead of the universal testing machine was starting to slow down and later 

stopping for a period of approximately 2 s, before unloading and starting to travel in the 

upward direction.  Therefore a procedure to determine the unloading modulus was 

formulated to remove this systematic error: 

1. The values of true-stress (σ) against the values of true-strain (ε) for cyclic loading 

at different crosshead speeds were plotted.  When the crosshead is not moving the 

strain does not change, but the stress starts to decrease and this behaviour is 

shown essentially as a vertical drop in the stress-strain diagram (Figure 4.10).  

The lowest point of the vertical drop at the beginning of the unloading portion of 

the strain-stress curve was located and the corresponding time was found in the 

raw data given by the universal testing machine.  The time period in which the 

strain remains constant should be less than or equal to 2.0s depending on the 

crosshead speed used during testing (4, 40 or 400mm min-1).  

2. The last data point of the vertical drop on the strain-stress curve was selected as 

well as the next 20, 10 or 3 data points to plot a line. The number of data points 

selected depended on the crosshead speeds, since less data points were collected 

at faster compression rates; so that at 4 mm min-1 20 data points were used to plot 

a line, while at 40 mm min-1 10 data points and at 400 mm min-1 3 data points.  

3. A linear trend line was fitted to the stress-strain data described in step 2 using MS 

Excel (Figure 4.10); the equation and the R-squared-value for the linear trend 

were displayed.  If the R-squared-value was greater or equal to 0.99, the slope of 
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this equation represented the unloading modulus.  If the R-squared-value was 

smaller than 0.99 then the data described in step 2 was shifted to the next or 

preceding data point (move up or down in Figure 4.10), until the R-squared-value 

was greater than or equal to 0.99.  

4. This procedure (steps 1 to 3) was repeated for the three unloading cycles to which 

each 15x15 specimen was subjected and the average value over three replicates of 

the unloading modulus was calculated for each crosshead speed.  
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Figure 4. 10. Schematic representation of one cycle of loading-unloading curve 

 

Using steps 1 to 4 a plot of unloading modulus against true strain was obtained (Figure 

4.11).  By looking at Figure 4.11, one can see that the unloading modulus of elasticity 

changes as the strain on the shortening increases.  The maximum value for the unloading 

modulus (743 kPa) was found at approximately 4% true strain and after this strain the 

unloading modulus decays as the strain increases regardless of the crosshead speed.  

Last data 
point of 
vertical drop 

Slope = EU 
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Since from Figure 4.11 one can see that the unloading modulus is not rate dependent with 

the error bars of the unloading modulus overlapping with one another at the different 

crosshead speeds. The non rate dependency of the unloading modulus is expected since 

the unloading modulus is related to the elastic response of shortening and elasticity is a 

rate independent behaviour.   
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Figure 4. 11.  Average unloading modulus for vegetable shortening as a function of true 
strain. Each curve is the average of three 15x15 shortening specimens and the error bars 

are one standard deviation 
 

The unloading modulus calculated from the cyclic experimental compression cannot be 

used to describe the purely elastic response of vegetable shortening in its undisturbed 

native structure, since EU is changing as the strain increases as a result of shortening 

having a plastic component.  However this unloading modulus is a measurement of how 

elastic is the material after it has been subjected to large deformations.  The values 
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obtained give a range of values that can be used to estimate the purely elastic modulus 

(Young’s Modulus) of vegetable shortening. As seen in Figure 4.11, the value of the 

unloading modulus obtained from cyclic compression tests is between 216 and 743 kPa. 

This range of values was assumed to cover the range of values for the modulus of 

elasticity (E) when developing a model to simulate the rheological response of shortening 

(Sections 4.9.0 and 4.10.0 of the current chapter).  

 

The change in the unloading modulus as a function of strain could be attributed to a 

change in the microscopic structure of vegetable shortening, similar to the structural 

change that occurs in metals and other crystalline solids when subject to excessive plastic 

deformation, such as dislocations or shear-banding (de With, 2006).  The actual 

mechanisms occurring in vegetable shortening has not been determined yet. 

 

4.5.4 Visual Analysis during Cyclic Compression 

Photographs were taken during the unloading process of 15x15 shortening specimens, 

after being compressed by 6.5 mm, which is enough to cause shear failure.  The results 

are shown in Figure 4.12.  By looking at Figure 4.12 one can see that even after 

shortening has been compressed by 6.5 mm (Figure 4.12b), it retains a significant degree 

of elasticity since as soon as the compression platen starts to go up (Figure 4.12c) there is 

a recovery in height.  If vegetable shortening did not have any elasticity left after 

compression, the specimen would not be able to recover any height. Approximately 31% 

(2/6.5 *100%) of the compressed distance is rapidly recovered after the compression 
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platen is removed from the vegetable shortening specimen, and this occurs after the 

specimen has experience shear failure (Figure 4.12d). 

 

       

      

Figure 4. 12. Unloading process of a 15x15 shortening specimen. (a) Undeformed 
specimen, (b) specimen compressed by 6.5 mm, (c) specimen unloaded by 1 mm and (d) 

specimen after completely unloaded 
 

4.5.5 Conclusions of Cyclic Compression 

Cyclic compression of vegetable shortening revealed that the yield strain is below 0.02.  

The unloading modulus is not rate dependent and has a value between 216 and 743kPa 

which was dependent on the strain at which the modulus was calculated having a 
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maximum value at a strain of 0.04.  By taking photographs during the unloading part of 

cyclic loading, one is able to conclude that despite the shear failure observed during 

larger strain compressions, vegetable shortening specimens are still very elastic.  

 

4.6.0 Compressive Creep Test 

Materials can be categorized by their creep response; a truly elastic material when subject 

to a constant stress would show a constant strain as time passes, a viscous material on the 

other hand would show a linear increase in strain as time passes (Steffe, 1996).  The 

creep response of vegetable shortening (Figure 4.13) is something in between a truly 

elastic and a viscous material and for this reason vegetable shortening is sometimes 

classified as a viscoelastic material (Rao, 2007). 

 

Shortening samples were subjected to different stresses by changing the applied load (0.5, 

2.5 and 5.0N) and the specimen contact area (15x15, 22.5x22.5 and 30x30mm); sample 

results are shown in Figure 4.13. The load was applied at a rate of 400 N s-1, since the 

load should be applied instantaneously during creep tests.  The shape of the creep curves 

are very similar no matter what the loading conditions were as shown in Figure 4.13.  The 

curves in Figure 4.13 show the true strain increasing with time but the rate of change 

becomes smaller as time passes and the strain approaches a constant value or equilibrium 

strain, which is a characteristic behaviour of a viscoelastic solid (Kinsella, 1987; Steffe, 

1996; Rao, 2007).  
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Figure 4. 13.  Average compression creep test results for vegetable shortening subjected 

to three different stress conditions. Each curve is the average of three specimens and error 
bars are one standard deviation calculated from the same three specimens 

 

The equilibrium strain was measured as the y-intercept of the fitted straight line to the last 

200 data points of a strain-time curve obtained during creep tests.  The general trend is 

that as the applied force increases and the size of the contact area decreases (i.e., the 

applied stress increases) the equilibrium true-strain increases; this was an expected result 

due to the direct relationship between stress and strain.  The equilibrium true-strain 

values range from 0.02 when shortening is subjected to 0.56 kPa (0.5N applied to a 

30x30 specimen) to 1.00 when subjected to 22.2 kPa (5N applied to a 15x15 specimen); 

the range of values for the equilibrium strain are shown in Figure 4.14. 
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Figure 4. 14.  Creep test results for vegetable shortening specimens subjected to three 
loading conditions, showing the maximum, intermediate and minimum equilibrium strain. 

Each curve is the average of three curves and error bars are one standard deviation 
 

4.6.1 Compliance and Viscosity from Creep 

Creep tests results are commonly shown in a curve of compressive creep compliance (D) 

as a function of time.  Creep compliance is the ratio of strain as a function of time divided 

by the constant stress.  After sufficient time has passed it can be assumed that the creep 

response is purely viscous and two material parameters can be obtained from the linear 

portion of the compliance versus time curve; these parameters are the biaxial viscosity 

(ηb) and the biaxial compliance (Db) (Rao, 2007).  Biaxial viscosity is the inverse of the 

slope of the linear portion of the compliance-time curve that is reached after a certain 

amount of time has passed in a creep test. For a viscoelastic solid the slope would be zero 

(a horizontal line) and the biaxial compliance is the y-intercept of the linear portion of the 
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compliance time curve (Steffe, 1996; Rao, 2007).  In order to obtain the biaxial viscosity 

and biaxial compliance from the creep tests data, a procedure was followed that is 

described here: 

1. The first step to find ηb and Db was to convert the true-strain versus time curve 

into compliance-time curve.  Compliance was calculated by dividing the strain 

values at a given time by the stresses at the same time.  Note that the stress was 

not constant during creep test, since the contact area was changing with time even 

though the force remained constant. 

2. Once the compliance was calculated for each of the replicates, the values were 

averaged. The last 20 seconds of the average compliance-time data 

(approximately 200 data points) were plotted and a linear trend line was fitted 

through them using MS Excel.  The equation for the linear trend was displayed. 

3. From the equation of the linear trend the slope and the y-intercept were extracted. 

The inverse of the slope was reported as the biaxial viscosity (ηb) and the y-

intercept was reported as the biaxial compliance (Db).  

 

Following steps 1 to 3 the biaxial viscosity and biaxial compliance for vegetable 

shortening subjected to the different loading conditions were calculated; the values for ηb 

and Db are shown in Figures 4.15 and 4.16 respectively. 
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Figure 4. 15. Average biaxial viscosity of shortening as a function of engineering stress 
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Figure 4. 16. Average biaxial compliance of shortening as a function of engineering 

stress 
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The biaxial viscosity values of vegetable shortening are dependent on the amount of 

stress at which they are measured.  The highest value measured was at approximately 2.8 

kPa.  At stresses higher than 10 kPa, the viscosity appears to be approaching a constant 

small value, but further testing is required to be conclusive.  The biaxial compliance also 

varies with the stress, between 0.5 and 10 kPa the compliance decays as the stress 

increases, beyond 10 kPa the compliance increases as the stress increases.   By looking at 

Figure 4.15 one can see the viscous-like behaviour of vegetable shortening.  Shortening is 

getting more resistant to flow as stress increases to a certain value (2.8 kPa), but once 

exceeded shortening starts to behave more like a liquid than a solid, hence the decrease in 

viscosity (Figure 4.15). This increase and decrease in viscosity is reminiscent of the 

change in elastic modulus values observed in section 4.5.3. From Figure 4.16 one can 

conclude that increasing the stress applied to shortening increases the compliance, and 

higher compliance is a characteristic of materials that can be classified as liquids (Steffe, 

1996). 

 

4.6.2 Conclusion from Compressive Creep Tests 

Vegetable shortening can be classified as a viscoelastic solid, since its true strain-time 

curve obtained during compressive creep tests seems to be approaching an equilibrium 

stress in the long term, but this equilibrium stress changes with the amount of stress 

applied to specimens.  The biaxial viscosity and the steady state compliance are not 

constant as the applied stress increases. Increasing the applied initial strain causes 

shortening to behave more like a liquid with lower viscosity and higher compliance.  
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4.7.0 Compressive Stress Relaxation Test 

During stress relaxation tests a constant deformation or strain is held for a period of time.  

As time passes the stress in the material starts to decay until an equilibrium point is 

reached which can be zero or greater than zero, depending on whether the material being 

tested is liquid or solid.  The stress relaxation curve is different depending on the type of 

material tested; a perfectly elastic material will show no relaxation, an ideal viscous 

material will show instantaneous relaxation, while a viscoelastic material will show a 

gradual decay in stress with time (Steffe, 1996). 

 

4.7.1 Specimen Size Effect during Stress Relaxation Tests 

The effect of the specimen size was also investigated during stress relaxation tests. 

Student t-test comparisons (95% confidence interval, 2 tail) were done between the 

different specimens size in order to determine if the stress after 20 minutes was 

significantly different between specimens of different sizes compressed to the same 

initial true strain. The results of the different t-test comparisons are shown in Table 4.4. 

 

A total of 18 comparisons were made and 10 of them were not significantly different, so 

it was concluded that the specimen size did not affect the stress measurements during the 

stress relaxation tests and therefore the stress-time curves were plotted from the average 

of 9 specimens (3 replicates and 3 different sizes). 
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Table 4. 4. Student t-test comparison between stress values at 20 minutes of stress 
relaxation tests for specimens of different sizes. 

Crosshead 
speed 

(mm min-1) 

Initial true 
strain 

Specimen size 
comparison (mm) 

T-test value (95% 
Confidence, 2 tail) 

Significantly 
different 
(Yes/No) 

4.0 0.0339 15 vs. 22.5 0.00883 Yes 
4.0 0.0339 15 vs. 30 0.00517 Yes 
4.0 0.0339 22.5 vs. 30 0.00199 Yes 
4.0 0.1431 15 vs. 22.5 0.13458 No 
4.0 0.1431 15 vs. 30 0.98645 No 
4.0 0.1431 22.5 vs. 30 0.12502 No 
4.0 0.4055 15 vs. 22.5 0.01617 Yes 
4.0 0.4055 15 vs. 30 0.00789 Yes 
4.0 0.4055 22.5 vs. 30 0.08189 No 
40.0 0.0339 15 vs. 22.5 0.01640 Yes 
40.0 0.0339 15 vs. 30 0.08334 No 
40.0 0.0339 22.5 vs. 30 0.00728 Yes 
40.0 0.1431 15 vs. 22.5 0.05423 No 
40.0 0.1431 15 vs. 30 0.00306 Yes 
40.0 0.1431 22.5 vs. 30 0.51956 No 
40.0 0.4055 15 vs. 22.5 0.59166 No 
40.0 0.4055 15 vs. 30 0.29454 No 
40.0 0.4055 22.5 vs. 30 0.05010 No 

 

4.7.2 Classification of Shortening from Stress Relaxation Response 

According to the stress relaxation test results obtained for vegetable shortening, 

shortening can be classified as a viscoelastic solid because there is a gradual decay 

towards an equilibrium stress which is greater than zero (Figure 4.17).  Vegetable 

shortening specimens were subject to three different deformations (0.5, 2.0 and 5.0 mm) 

and the basic shape of the relaxation curve is the same for these different loading 

conditions, but the equilibrium stress is different depending on the loading conditions.  If 

the applied strains were in the linear viscoelastic region of shortening the stress relaxation 

curves would overlap one another (Steffe, 1996), but this is not the case for the selected 

compressive strains. 
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Figure 4. 17. Average stress relaxation curves for vegetable shortening after three 
compression distances applied at an initial rate of 40 mm min-1. The curves are the 

average of nine specimens and error bars are one standard deviation 
 

The equilibrium stress for the different stress relaxation treatments was calculated 

following the next steps: 

1. The true stress-time curve was plotted for each of the 18 treatments of stress 

relaxation tests. 

2. The last 20 seconds of the stress relaxation tests were selected and a linear trend 

line was fitted through these data points, using MS Excel. The equation of the line 

was displayed. 

3. The y-intercept of the fitted linear trend line was reported as the equilibrium stress. 

The average of the three replicates per treatment was calculated and plotted 

against the initial applied true strain (Figure 4.18)   
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The equilibrium stress increases as a function of applied initial strain. By looking at 

Figure 4.17, one can see that when the initial applied strain increases from 3.4% to 14.3% 

there is a three-fold increase in the final stress value (equilibrium stress). However when 

the initial applied strain increases from 14.3% to 40.5% the increases is not significantly 

different since the two curves lie within each other’s error bars.  The equilibrium stress 

appears to remain constant after the strain increases beyond 14% (Figure 4.18). Because 

the equilibrium stress of vegetable shortening remains constant in a large range of 

stresses (14 to 41%) and is not equal to zero, this implies that vegetable shortening 

behaves like a viscoelastic solid even at large deformations. 
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Figure 4. 18.  Equilibrium stress as a function of strain; each hollow data point represents 
the average result of three replicate treatments. The solid data points are the average at a 

given applied strain and the error bars are one standard deviation 
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4.7.3 Rate Dependency during Stress Relaxation 

During a stress relaxation test, theoretically the constant deformation should be applied 

instantaneously (Menard, 1999) but this is impossible in real life due to physical 

limitations of the universal testing machine or any other measuring device.  Two initial 

loading rates were investigated (4 and 40 mm min-1) to try to qualify the rate dependency 

of shortening during the stress relaxation test.  Figure 4.19 shows that as the initial 

loading rate increases there is also an increase in the true-stress at a given time during the 

holding period (18 minutes) of the stress relaxation tests.   
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Figure 4. 19.  Stress relaxation curve for vegetable shortening after compression to two 
distances (0.5, 5.0 mm) at two initial loading rates (4, 40 mm min-1). The curves are the 
average of three 15x15 specimens and the error bars are one standard deviation from the 

same three specimens 
 

The results of Figure 4.19 suggest that a higher loading rate (40 mm min-1) can cause 

shortening to undergo more hardening and for this reason the stress at a given time is 
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higher as compared to a lower loading rate (4 mm min-1).  This result is not uncommon of 

rate-dependent materials which can show higher stresses when subjected to higher 

loading rates (Gunasekaran and Ak, 2003; Goh and Scanlon, 2007). 

 

4.7.4 Stress Relaxation Time 

The stress relaxation time (τ ′ ) is defined as the time (t) it takes for the stress to decay to 

e-1 of its initial value (σI); this definition is derived from the Maxwell model for 

viscoelastic materials which predicts the decay of a material from σ0 to zero stress and is 

given by the following equation (Steffe, 1996): 

τσσ ′
−

=
t

I et)(                 [4.1] 

The stress relaxation experiments revealed that when a shortening specimen was 

subjected to large true strains (14 and 40%) its stress was not able to decay e-1 (~36.8%) 

in 20 minutes; therefore the stress relaxation time could not be obtained for these 

specimens.  Only when the strain was kept at approximately 3.3% (compression by 

0.5mm) were shortening specimens able to decay e-1 of their initial stress.  During small 

strain experiments the overall structure of materials is less affected and it is possible for 

bonds to break and reform which may result in relaxation and flow (Kloek et al, 2005) in 

a shorter period of time.  When large deformation is applied to food products such as 

vegetable shortening, the initial structure is irreversibly altered, bonds are permanently 

broken and the structural elements may rearrange in a new manner (Kloek et al, 2005); 

therefore the relaxation behaviour is changed due to structural changes undergone during 

large deformations. 
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The relaxation time for shortening at low strain (3.3%) is shown in Table 4.5.  Table 4.5 

shows that the size of the specimen affects the relaxation time.  In general it can be said 

that increasing the contact area increased the relaxation time, except for one of the 

treatments (30x30 at 4mm/min).  As discussed earlier, 0.5mm was the limit of accuracy 

during the preparation of specimens; therefore it is not advisable to derive any definite 

conclusions from measurements done after compressing samples by 0.5 mm. It is 

possible that the lack of homogeneity in dimensions can account for the variability in the 

relaxation time.  

 
Table 4. 5. Parameters used to calculate relaxation time of vegetable shortening at 3.3% 
constant strain (0.5mm deformation) 

Specimen 
Dimensions (mm) 

Initial Loading Rate 
(mm min-1) 

Average decay 
stress of σIe

-1 (kPa) 
Average Relaxation 

Time (s) 
15 x 15 x 15 4 2.15 117.5 

22.5 x 22.5 x 15 4 3.11 552.6 
30 x 30 x 15 4 1.64 31.3 
15 x 15 x 15 40 2.35 132.0 

22.5 x 22.5 x 15 40 2.59 438.8 
30 x 30 x 15 40 2.16 530.7 

 

4.7.5 Compressive Relaxation Modulus 

The compressive relaxation modulus (ER(t)) is a factor that relates the stress to the strain 

during stress relaxation tests (cf equation 2.23).  The compressive relaxation modulus can 

be calculated by dividing the measured stress during the relaxation test by the applied 

strain, and then these values can be plotted as a function of time (ER(t) vs. t). To 

characterize the relaxation modulus behaviour of shortening, the y-intercept of this plot 

extrapolated from the almost horizontal portion of the curve obtained from the last 20 

seconds of the stress relaxation test was taken as the long term compression relaxation 

modulus.  The general trend for the long term compression relaxation modulus shows a 
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decrease in the relaxation modulus as the applied strain increased (Figure 4.20).  This 

decay in relaxation modulus as the applied strain increases is similar to the unloading 

modulus decay seen during cyclic compression testing.   
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Figure 4. 20. Long term relaxation modulus as a function of initial true strain; each 

hollow data point represents the average result of three replicate treatments. The solid 
data points are the average at a given applied strain and the error bars are one standard 

deviation 
 

4.7.6 Conclusions from Stress Relaxation Tests 

From its stress relaxation response, vegetable shortening can be classified as a 

viscoelastic solid because an equilibrium stress greater than zero is reached no matter the 

amount of strain applied to the specimens.  The equilibrium stress value is dependent on 

the amount of strain applied to the specimen.  Rate dependency was observed during 

stress relaxation of shortening; the faster the initial loading the higher the value of the 

true stress at a given time.  The long term relaxation modulus of vegetable shortening 
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decreases as the applied strain increases.  The stress relaxation data can be used to 

calibrate viscoelastic models and this is the focus of section 9 of this chapter.   

 

4.8.0 Uniaxial Monotonic Indentation 

Uniaxial indentation testing has been widely used to estimate material mechanical 

properties (Habbab et al, 2006).  Indentation tests can be done on specimens of any size 

even micromaterials and materials in service while compressive and tensile test require 

the preparation of standard specimens, and since indentation is essentially non-

destructive it can be performed on very specific local areas (Jeon et al, 2006), it has a 

great potential to be used as a routine test for quality control of materials, including 

vegetable shortening.  

 

4.8.1 Specimen Size Effects during Indentation 

Results of a typical indentation test are presented as a load-depth curve, which records 

the continuous variation of indentation depth with load applied by an indenter of specific 

shape. For this particular study a self similar 45° (half angle) conical indenter was 

selected.  The indentation was carried out on specimens of two different contact areas to 

observe specimen size effects.  Figure 4.21 shows the load-depth curve for vegetable 

shortening specimens of two contact areas. 
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Figure 4. 21. Indentation response of vegetable shortening specimens of two different 

contact areas at indentation rate of 400 mm min-1. Curves are the average of three 
replicates and error bars represent one standard deviation 

 

According to Anand (2001) the specimen dimensions can in fact affect the indentation 

results, but only if the indentation depth is very large compared to the lateral dimension 

of the specimens.  As seen in Figure 4.21, the average reaction force at indentation depths 

below 0.75 mm is very close between specimens of various sizes, but as the indentation 

depth increases beyond 0.75 mm the force of the 15x15 specimens is higher than that of 

the 30x30 specimens.  However, the variability in the reaction force between specimens 

of the same size was greater for 15x15 specimens than for the 30x30 specimens, as seen 

by the error bars in Figure 4.21. The data points for the 15x15 specimen curve have error 

bars that include the values for the force response of the 30x30 specimens, and the error 

bars of the 30x30 specimen data points are within the error bars of the 15x15 specimen 
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curve; therefore it can be concluded that specimen size during the indentation of 

vegetable shortening does not affect the indentation response. 

 

4.8.2 Rate Dependency during Indentation 

As seen in the monotonic and cyclic uniaxial compression, vegetable shortening has a 

rate-dependency that affects the shape of the stress-strain curve rather than just increasing 

the stress values at a given strain as the loading rate increases.  The rate-dependency 

during uniaxial monotonic indentation was also investigated during conical indentation 

and the results are shown in Figure 4.22.  
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Figure 4. 22.  Indentation response of vegetable shortening 15x15 cubic specimens 

loaded at four different crosshead speeds. Each curve is the average of three replicates 
and the error bars are one standard deviation 
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By looking at Figure 4.22, one can conclude that no rate dependency is apparent during 

the conical indentation of vegetable shortening, since the force error bars of each of the 

curves overlap at almost every given indentation depth.  In order to confirm the rate 

independence during indentation a student t-test (2 tails, paired, 95% Confidence Interval) 

was done at an indentation depth of 2.5 mm between the forces measured during the 

indentation of vegetable shortening at different indentation rates. The results of the t-tests 

are shown in Table 4.6. 

 
Table 4. 6. Student t-test comparison between force measurements obtained from 
indentation of cubic 15x15 vegetable shortening specimens at four indentation rates 

Comparison between 
indentation rates (mm min-1) 

Student T-test value (95% 
confidence interval, 2 tails) 

Significantly Different 
(Yes or No) 

0.4 vs. 4.0 0.609639 No 
0.4 vs. 40.0 0.043913 Yes 
0.4 vs. 400.0 0.129851 No 
4.0 vs. 40.0 0.020304 Yes 
4.0 vs. 400.0 0.142573 No 
40.0 vs. 400.0 0.652971 No 

   

Looking at Table 4.6 one can see that six comparisons were made from which four are 

not significantly different; therefore confirming the observations made in Figure 4.22 that 

no rate dependency was observed in the indentation of vegetable shortening. 

 

4.9.0 Simulation of Vegetable Shortening as a Viscoelastic Material 

It has been suggested in the literature that lipid-rich foods have viscoelastic behaviour 

(Shellhammer et al, 1997; Wright et al, 2001; Goh et al, 2004a; Rao, 2007), and for this 

reason it was decided to investigate the use of a viscoelastic model to simulate the 

mechanical response of all purpose vegetable shortening. 
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Viscoelastic behaviour can be observed in a number of tests, but most clearly when 

performing tests such as creep and stress relaxation.  Creep and stress relaxation tests can 

be performed under shear, uniaxial or triaxial tension and compression.  Uniaxial 

compression tests were used because of their simplicity to perform and the availability of 

a universal testing machine. 

 

4.9.1 Abaqus Viscoelastic Model 

Time-dependent viscoelastic materials, in which dissipative losses are primarily caused 

by internal damping or viscous effects, can be modeled using the VISCOELASTIC 

option in the material properties section of Abaqus.  The viscoelastic material model 

describes isotropic rate-dependent material behaviour; it has to be used with elastic 

models, such as ELASTIC, HYPERELASTIC and HYPERFOAM; it can be used in 

large-strain problems and can be calibrated using creep test data, relaxation test data, or 

frequency-dependent cyclic test data (Abaqus, 2006).  

 

For this particular study ELASTIC and VISCOELASTIC models were selected from the 

mechanical models available in Abaqus/CAE version 6.6. The Abaqus elastic model is 

just a general linear elastic model that is completely defined by two parameters, the 

Young’s modulus or modulus of elasticity (E) and the Poisson’s ratio (ν). The elastic 

model is visualized as a spring in which the stress (σ) is directly proportional to the strain 

(ε), with the proportionality constant being the modulus of elasticity, as shown in 

equation [2.7], which can be rewritten as: εσ E= .    
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The Abaqus viscoelastic model is based on the generalized Maxwell model (Peleg and 

Pollak, 1982) that is generally visualized as a dashpot connected in series to a spring and 

is mathematically described with the following equation: 

( ) )(tYt e += σσ        [4.2] 

where t is time, σe is the equilibrium stress and Y(t) is the relaxation function that is 

generally modeled as a Prony series, which has a mathematical expression of the 

following form (Chen, 2000): 

∑
′
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tp
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G
ieg

1

)/( τ       [4.3] 

where p
ig  and G

iτ  are  material constants in the viscoelastic model, N ′  is the total 

number of elements in the series and t is time, which is not a constant. 

 

4.9.2 Abaqus Viscoelastic Model Input 

Abaqus can be used to evaluate the behaviour of viscoelastic materials by automatically 

creating a response curve based on creep or stress relaxation test data. However Abaqus 

can only use creep and stress relaxation data from volumetric (triaxial) deformation tests 

or shear deformation tests or by using data from both sets of these tests.  

 

Volumetric deformation occurs when a material specimen is subjected to uniform normal 

forces on all of its faces (Ferry, 1970). A schematic representation of a volumetric test is 

shown in Figure 4.23.  
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Figure 4. 23. Volumetric or triaxial compression of cubic material specimen 
 

If a constant pressure (P0) is suddenly applied on all of the faces of a specimen and the 

volume change (∆V) is followed as a function of time (t), a bulk or volumetric creep 

experiment is being performed and the bulk creep compliance (B) can be calculated using 

the equation [2.22], repeated here for convenience (Ferry, 1970): )()( 0 tBPt
V

V −=∆
. 

 

The left hand side of equation [2.22] is called voluminal strain and is defined as the 

relative change in volume of the body. Positive change in volume is called dilatation 

while negative change is compression (Ferry, 1970). 

 

One of the disadvantages of bulk tests is that they require complex measuring devices and 

for this reason are generally used in materials that during their applications are subjected 

to homogeneous forces on all of their faces simultaneously such as soils and structural 

components under hydrostatic pressure; the volumetric test is rarely used in food 
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materials because it is harder to correlate the results with textural attributes (Gunasekaran 

and Ak, 2003). 

 
Simple shear deformation occurs when two opposite faces of an element are displaced by 

sliding (Figure 4.24a), while uniaxial compressive deformation occurs when an element 

is compressed by two forces of equal magnitude acting perpendicularly on two of the 

faces of the specimen (Figure 4.24b).   

 

Figure 4. 24.  Simple shear deformation (a) and compressive deformation (b) of a square 
specimen 

  

Simple shear tests and uniaxial compressive tests can be performed with universal testing 

machines.  According to Ferry (1970) simple compression tests, such as uniaxial 

compressive stress relaxation and creep tests can be related to shear stress relaxation and 

creep tests using equations [2.24] and [2.29] respectively, provided the material is 

homogeneous and incompressible: 
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where t is time,  G(t) is the shear stress relaxation modulus function,  ER(t) is the 

compression stress relaxation modulus function, J(t) is the shear creep compliance 

function and D(t) is the compression creep compliance function.  

 

Raw compressive experimental data were recorded as force and displacement, the 

displacement was converted into strain using the true strain [equation 2.5] and the force  

into stress assuming incompressibility [equation 2.6].  Then the compressive stress and 

the compressive strain were converted into the stress relaxation modulus (ER(t)) for stress 

relaxation tests and into the compressive creep compliance (D(t)) for creep tests.  The 

compressive modulus and compliance were converted into their shear counterparts using 

equations [2.24] and [2.29]. Once the test compression data were converted into shear test 

data, Abaqus requires the experimental data to be normalized to create dimensionless 

data; only then can Abaqus calculate the parameters required to simulate the viscoelastic 

behaviour of materials.  The normalized parameters for stress relaxation test data were 

calculated using equation [4.4] and for creep tests using equation [4.5]  

0

)(
)(

G

tG
tgR =              [4.4] 

)()( 0 tJGtj s =            [4.5] 

where gR is the normalized shear modulus (0 ≤ gR ≤ 1),  js is the normalized shear creep 

compliance (js ≥ 1), and G0 is the instantaneous shear modulus.  The instantaneous shear 

modulus (G0) is the ratio of the stress at time zero divided by the constant strain that is 

applied in a stress relaxation test  (Figure 4.25a) and the constant stress divided by the 

initial strain in a creep test (Figure 4.25b) (Abaqus, 2007).  G0 is a measurement of the 

elasticity of a viscoelastic material during the shear stress relaxation and creep tests (Rao, 
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2007).  G0 was obtained after converting the compressive data into shear data using 

equations [2.24] and [2.29]. 

 

Figure 4. 25. Schematic representation of stress relaxation test (a) and creep test (b) 
results for a viscoelastic solid (adapted from Ferry, 1970 and Abaqus, 2007) 

 

For stress relaxation data, Abaqus assumes that the viscoelastic material is a Maxwell 

solid and gR is defined by a Prony series expansion of the following form: 

(a) 

(b) 
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where N is the number of Prony elements used to get convergence, P

i
g , and G

iτ  are 

material constants that can be directly specified or that can obtained by inputting into 

Abaqus the normalized shear modulus, gR, as a function of time, t, in a tabular form. 

Abaqus uses a nonlinear least-square fit to obtain the parameters of the Prony series 

(Abaqus, 2006).  Another parameter required by Abaqus is the long-term normalized 

shear relaxation modulus, gR(∞).  The Abaqus curve fitting procedure uses the value of 

gR(∞) to constrain the numerical solution so that: 

)(1
1

∞=−∑
=

R

N

i

P
i gg         [4.7] 

As with the stress relaxation test data, Abaqus can calculate the Prony series parameters 

directly from a table of the normalized shear compliance, js, at a given time and using as a 

constraint for the fitting solution the long-term normalized compliance, js(∞).   The 

normalized shear compliance and the normalized shear relaxation modulus are related by 

equation [4.8] (Abaqus, 2006): 

)(

1
)(

tg
tj

R
s =                [4.8] 

 

4.9.3 Evaluation of Abaqus Viscoelastic Model 

In order to evaluate the Abaqus viscoelastic model, cyclic and simple compression tests 

on a 15x15 specimen were simulated in Abaqus/CAE version 6.6-5. The simulations 

were two-dimensional and axi-symmetrical; just like in the cyclic compression 

experimental data, three different crosshead speeds (4, 40, and 400 mm min-1) were used 
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to observe the rate dependency of the material.  The model was calibrated with the 

experimental data collected during creep and stress relaxation tests.   

 

4.9.3.1 Calibration of Viscoelastic Model with Creep Data 

During compressive creep tests a specimen is commonly subjected to a constant stress for 

a given amount of time. However during the current research project, creep tests were 

done by applying a constant force and measuring the displacement; the stress and the 

strain can be derived from the force and displacement at a given time and a compressive 

compliance, D(t), can be calculated by dividing the true strain over the true stress at a 

given time, equation [4.9] (Rao, 2007).  

)(

)(
)(

t

t
tD

σ
ε=           [4.9] 

This compressive compliance is then multiplied by the instantaneous shear modulus G0 

and a factor of three (because of incompressibility) to obtain the normalized shear 

compliance, js, as shown in equation [4.10] (Abaqus, 2006; Ferry, 1970).  

0)(3)( GtDtj s =     [4.10] 

The instantaneous shear modulus G0 is related to the instantaneous compressive 

compliance, D0, in the manner shown in equation [4.11] (Rao, 2007; Ferry 1970).  

0
0 3

1

D
G =             [4.11] 

The experimental data from three compressive creep tests carried out on 15x15x15 mm 

vegetable shortening specimens subjected to a constant load of 2.5N were averaged and 

used to calibrate the ABAQUS VISCOELASTIC model. These experimental data were 

selected because the force was high enough that the material was deformed well past its 
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elastic region, but low enough that the overall structure of the specimen was not 

completely destroyed.  Theoretically, the instantaneous compressive compliance, D0, 

should be calculated at the beginning of a creep test when the time is zero as shown in 

Figure 22b, but experimentally it was calculated at around 4 s, which was the time 

needed to achieve a constant load of 2.5N by the universal testing machine.   

 

Once the normalized shear compliance, js, was calculated it was entered into Abaqus as a 

table of normalized shear compliance values against time. The ELASTIC and 

VISCOELASTIC models were selected. The modulus of elasticity, E, used in these 

models was obtained using the Excel Solver function and monotonic uniaxial 

compression test data (further described in Section 4.10). Vegetable shortening was 

assumed to be an incompressible solid following the work of Goh and Scanlon (2007); 

therefore, the Poisson’s ratio, ν, was taken to be almost 0.5. For the VISCOELASTIC 

model the number of Maxwell elements needed was selected on a trial and error basis.  

An initial value of 1 was input into Abaqus and since there was no convergence between 

the input data and the solution to the Prony series, the number of Maxwell elements was 

incremented manually by one, until Abaqus found convergence between the input data 

and the solutions to the Prony series.  The long term normalized shear compliance, js(∞), 

was the value of the normalized shear compliance at 30 minutes from the time the creep 

test was started, which was the time the load was held constant during the compressive 

creep tests.  The following parameters were entered into the Graphic User Interface of the 

Property Module of Abaqus/CAE: 

• Material Behaviour 1: Elastic 
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o Type: Isotropic 

o Number of field variables: 0 

o Moduli time scale (for viscoelasticity): Long-term 

o Young’s Modulus: 593 kPa 

o Poisson’s Ratio: 0.4999 

• Material Behaviour 2: Viscoelastic 

o Domain: Time 

o Time: Creep test data 

o Maximum number of terms in the Prony series: 6 

o Allowable average root-mean-square error: 0.01  

o Test Data: Shear Test Data 

o Long term normalized shear compliance js(∞): 3.05 

o Data: js and Time entered as eleven discrete points (Table 4.7) 

Table 4. 7.  Normalized shear compliance as a function of time, js(t), used to 
calibrate Abaqus viscoelastic model. 

js Time (s) 
1.19329 8.26 
1.73432 34.52 
2.06826 87.38 
2.13545 107 
2.21074 134.26 
2.36744 220.76 
2.47253 311.26 
2.53897 386.9 
2.6191 502.58 
2.78787 853.98 
3.03235 1726.18 
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4.9.3.2 Calibration of Viscoelastic Model with Stress Relaxation Data 

A stress relaxation test consists of deforming a specimen to a specific displacement and 

holding this displacement for a given amount of time, while recording the force.  From 

the force and the displacement the true stress and strain can be derived so that a 

compressive stress relaxation modulus, ER(t) can be calculated by using equation [2.23] 

(Rao, 2007), which can be rewritten as: 
0

)(
)(

ε
σ t

tER = .  

 

The compressive stress relaxation modulus, ER(t), needs to be converted into a 

normalized shear relaxation modulus, gR(t), by using equation [4.12], so that the value of 

gR(t) should be greater or equal to zero and smaller or equal to one (Abaqus, 2006; Ferry, 

1970): 

03

)(
)(

G

tE
tg R

R =         [4.12] 

where G0 is the instantaneous shear relaxation modulus. The instantaneous shear modulus, 

G0, is related to the instantaneous compressive relaxation modulus, E0, as given by 

equation [4.13] (Ferry, 1970): 

3
0

0

E
G =            [4.13] 

The instantaneous compressive relaxation modulus (E0) was taken to be the compressive 

relaxation modulus at time zero (ER(0)) obtained from the data collected during 

compressive stress relaxation tests. 
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The experimental compressive stress relaxation data from three 15x15x15 mm vegetable 

shortening specimens subjected to a constant deformation of 0.5mm imposed by means 

of an initial loading rate of 4mm min-1 were converted into shear data and normalized to 

obtain gR, and these values were averaged.  Once the normalized shear relaxation 

modulus, gR, was calculated it was input into Abaqus as a table of shear relaxation 

modulus values as a function of time.  The ELASTIC and VISCOELASTIC material 

behaviours were selected from the list of mechanical models available in Abaqus.  The 

elastic parameters were the same as the parameters used when the VISCOELASTIC 

model was calibrated with creep test data.  As with the creep test data the maximum 

number of terms in the Prony series was determined in a trial and error basis until Abaqus 

provided an output without error messages.  The long term normalized shear modulus, 

gR(∞), was the value of normalized shear modulus at 20 minutes after the relaxation test 

had started, which was the maximum time that the deformation was held during the 

compressive stress relaxation tests.  The following parameters were input into the 

Graphic User Interface of the Abaqus property module: 

•  Material Behaviour 1: Elastic 

o Type: Isotropic 

o Number of field variables: 0 

o Moduli time scale: Long-term 

o Young’s Modulus: 593 kPa 

o Poisson’s Ratio: 0.4999 

• Material Behaviour 2: Viscoelastic 

o Domain: Time 
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o Time: Relaxation test data 

o Maximum number of terms in the Prony series: 3 

o Allowable average root-mean-square error: 0.01  

o Test Data: Shear Test Data 

o Long –term normalized shear relaxation modulus gR(∞): 0.224 

o Data: gR and Time entered as eleven discrete points (Table 4.8) 

Table 4. 8. Normalized shear modulus as a function of time, gR(t), used to 
calibrate the Abaqus viscoelastic model 

gR(t) Time (s) 
0.991 0.02 
0.871 0.4 
0.556 5.02 
0.471 10.14 
0.4 20.24 

0.339 41.46 
0.294 82.26 
0.25 187.26 
0.243 227.38 
0.225 467.36 
0.225 1134.7 

 

4.9.4 Results from the AbaqusViscoelastic Model 

The Abaqus viscoelastic model predicts perfect elastic recovery when the load is 

removed from the sample, or in other words, there is no permanent or plastic deformation.  

However this elastic recovery is not instantaneous after the sample is subject to large 

strains, so if a loading cycle starts immediately after unloading has been completed, it 

may look like there is some permanent deformation; this behaviour is shown in Figure 

4.26 using a constitutive model which was derived from creep test experimental data, 

where a cyclic compression test at a crosshead speed of 40 mm min-1 was simulated.  The 

specimen was subjected to a 1 mm compression, then unloaded to 0 mm, subject to 3 mm 
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compression, unloaded and compressed by 5mm, followed by a final unload to 0 mm.  

The stress in loading cycle #3 shows zero value until approximately 0.03 strain and the 

loading curve of this cycle runs parallel to the previous loading cycles.  In reality, if a 

new loading cycle does not start immediately after unloading to 0mm, but starts after 

some resting time has passed, then this permanent deformation is not observed and all the 

loading curves overlap as shown in Figure 4.27.  This is classic viscoelastic behaviour in 

which the stress relaxation is time dependent. 

0

100

200

300

400

500

600

700

800

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

True Strain

T
ru

e 
S

tr
es

s 
(k

P
a)

Cycle 1: Compression to 1mm

Cycle 2: Compression to 3mm

Cycle 3: Compression to 5mm

 

 Figure 4. 26. Cyclic compression at 40 mm min-1 without resting time between loading 
cycles of viscoelastic material modeled by Abaqus using creep test data 
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Figure 4. 27. Cyclic compression as in Figure 4.26, but with resting time of 2000s 
between loading cycles of viscoelastic material modeled by Abaqus using creep test data 
 

Additionally, it can be seen that since the elastic recovery is not instantaneous after the 

load is removed, the stress-strain curve obtained from the viscoelastic simulations shows 

hysteresis during the unloading part of the cyclic compression. The hysteresis is more 

visible as the strain increases and this is related to the viscous component of the Abaqus 

model, which becomes more dominant at larger strains (Peleg and Pollak, 1982; Abaqus, 

2006).  

 

Complete recovery after deformation cannot be seen during the cyclic loading of real 

vegetable shortening; even at compressions smaller than 1mm real vegetable shortening 

specimens show permanent deformation (Figure 4.28).  The viscoelastic model on the 

other hand shows complete elastic recovery after unloading from 1mm (0.07 strain) and 
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hysteresis is barely visible at these low strains. Basically at strains between 0 and 0.07 the 

viscoelastic material simulated by Abaqus behaves pretty close to a linear-elastic material.  

The viscoelastic model also overpredicts the experimental stress values by at least one 

order of magnitude as seen in Figure 4.28.  
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Figure 4. 28. Loading-unloading curve obtained from compression at 40 mm min-1 of a 
15x15x15 vegetable shortening and simulation using Abaqus viscoelastic model 

calibrated with creep test data 
 

4.9.5 Comparison between Creep and Relaxation Data Calibration 

Similar results were obtained regardless of whether creep or stress relaxation data were 

used to calibrate the Abaqus viscoelastic model (Figure 4.29): stresses at a given strain 

have similar values especially in the loading part of the cycle, and the overall shape of the 

stress-strain curve for cyclic compression is very similar. However, when running 

Abaqus with the viscoelastic model calibrated by creep test data at least six Prony 
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elements had to be used in order to get convergence in the simulation. On the other hand, 

when calibrating the viscoelastic model with stress relaxation test data only three Prony 

elements had to be used.  Tables 4.9 and 4.10 show the values of the material constants, 

P
ig and G

iτ  calculated by Abaqus from the stress relaxation and creep test data 

respectively.  
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Figure 4. 29. Cyclic compression at 40 mm min-1 comparing viscoelastic materials 
simulated by Abaqus viscoelastic model calibrated with stress relaxation or creep test 
data. Cyclic simulation was done as described for Figure 4.26 but the first cycle is not 

shown for clarity 
 

 
Table 4. 9. Prony series constant values calculated by Abaqus from stress relaxation data 
I 1 2 3 

P
ig  0.32107 0.28416 0.17077 
G
iτ  (s) 0.88734 9.451 97.255 
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Table 4. 10. Prony series constant values calculated by Abaqus from creep test data 
I 1 2 3 4 5 6 

P
ig  -0.13453 4.02160 -5.83480 2.53510 0.51040 -0.42566 

G
iτ  (s) 1.6966 28.548 38.621 50.288 1862.1 2447.7 

 

It is important to notice that the dimensionless constants P
ig  can take the value of any 

real number since they don’t have a direct physical meaning like the modulus of elasticity 

and the Poisson’s ratio, and are just constants that give the desired curve shape when used 

in a Prony series which is part of the Maxwell or Kelvin models that can be used to 

mathematically describe the viscoelastic behaviour of materials. 

 

Using the values shown in Tables 4.9 and 4.10, the normalized data entered into Abaqus 

to calibrate the VISCOELASTIC model can be back calculated, and these results are 

shown in Figures 4.30 and 4.31.  By looking at Figure 4.30 one can see that when the 

viscoleastic model is calibrated with stress relaxation test data, the Abaqus input and the 

values predicted using equation [4.6] and the Prony constants from Table 4.9, almost 

completely overlap with one another (Figure 4.30), but when the model is calibrated with 

creep test data and the constants from Table 4.10, the prediction is not as good, but still 

acceptable (Figure 4.31).   When using the stress relaxation data, the root-mean-square 

error for the fit was 0.23%. On the other hand, when using the creep test data the root-

mean-square error was 0.46%. 
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Figure 4. 30. Comparison between input stress relaxation test data (experimental) and 
prediction of input data with Prony constants calculated by Abaqus 
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Figure 4. 31. Comparison between input creep test data (experimental) and prediction of 
input data with Prony constants calculated by Abaqus 
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Another difference between the model calibrated with stress relaxation and creep test data 

was that the model calibrated with stress relaxation test data shows a slower recovery 

after deformation; this can be seen in Figure 4.29 as a larger hysteresis during unloading 

and a larger ‘apparent’ permanent deformation following 5mm of compression.  This is to 

be expected based on an inspection of the time constants in Table 4.9 compared to Table 

4.10.  The larger time constants in the creep test calibration make the stress decay faster 

than when the time constants are small (Abaqus, 2006). It is important to notice that the 

deformation only appears to be permanent but in reality the model predicts a very slow 

but total recovery. If not enough time is allowed to pass then one might think that the 

deformation is permanent, when in reality the viscoelastic model does not predict any 

permanent deformation (Abaqus, 2006). 

 

Abaqus provides a visual representation of the results that shows the viscoelastic model 

calibrated with stress relaxation data has an ‘apparent’ permanent deformation after 

compression to 3mm (Figure 4.32b), but after the load is removed there is a rapid partial 

recovery of 2.3 mm (Figure 4.32c) and then a complete recovery after 870s of waiting 

time.  
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Figure 4. 32. Cyclic compression at 40mm min-1 simulated by Abaqus viscoelastic model 
calibrated with stress relaxation data: (a) undeformed specimen 15.0mm in height, (b) 

specimen being compressed to 3.0mm, and (c) specimen after load is removed showing a 
rapid recovery of 2.3mm 

 

In contrast, the model calibrated with creep test data shows a rapid partial recovery after 

3mm compression to 2.6 mm (Figure 4.33c) and a complete recovery after 420 s. The 

rapid recovery is attributed to the elastic component of the model, while the time-

dependent recovery is due to the time dependent component of the model which is related 

to the Prony series of the mathematical model.  Therefore it can be stated that the 

viscoelastic model calibrated with creep test data appears to have more elasticity than the 

model calibrated with stress relaxation test data because of the larger time constants in 

Prony series and the model calibrated with stress relaxation test data requires more time 

to flow (i.e. more viscous) than the model calibrated with creep test data because of the 

smaller time constants in its Prony series. 
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Figure 4. 33. Cyclic compression at 40mm min-1 simulated by Abaqus viscoelastic model 
calibrated with creep test data: (a) undeformed specimen 15.0mm in height, (b) specimen 

being compressed to 3.0mm, and (c) specimen after load is removed showing a rapid 
recovery of 2.6 mm 

 

The viscoelastic model calibrated with stress relaxation test data is more robust at larger 

deformations than when calibrated with creep test data, since it is able to handle 

compression up to 7 mm without aborting the results due to excessive deformation of the 

elements in the mesh. This behaviour appears to be rate-dependent because at 4 mm min-1 

even the model calibrated with relaxation data is unable to handle the unloading after 

being compressed to 7 mm, but at 40 and 400 mm min-1 the model is capable of 

simulating unloading after 7 mm of compression. The Abaqus viscoelastic model cannot 

deal with excessive distortion at slow rates because it requires very small iteration times 

which cannot be handled by its current version (Abaqus, 2006). 
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4.9.6 Rate Dependency of Abaqus Viscoelastic Model 

The literature review showed that vegetable shortening is a rate dependent material, since 

its stress-strain curve varies depending on the rate of compression (Goh and Scanlon, 

2007).  An appropriate mechanical model for vegetable shortening should predict rate 

dependency during compression testing. The Abaqus viscoelastic model is a rate 

dependent model (Abaqus, 2006).  In order to make visible the rate dependent behaviour 

of the Abaqus viscoelastic model, simulations of cyclic compression at different 

crosshead speeds (4, 40 and 400 mm min-1) were done.  An example of the results is 

shown in Figure 4.34.  By looking at Figure 4.34, one can see an increase in the predicted 

stress at a given strain as the crosshead speed increases.  During the current research 

project, rate dependent behaviour can also be observed during experimental cyclic 

compression of the chosen vegetable shortening, but the effect is not an increase in the 

stress as the crosshead speed increases but rather a change in the shape of the curve with 

a larger stress overshoot range (Figure 4.9); in other words the onset of what can be 

considered as perfect plasticity occurs at larger strains as the crosshead speed increases. 

Therefore, one can say that some modifications need to be done to the Abaqus 

viscoelastic model in order to properly predict the rate dependency of the vegetable 

shortening used in the current research. 
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Figure 4. 34. Loading-unloading curve after compression to 5 mm, showing the rate-
dependency of the Abaqus viscoelastic model calibrated with stress relaxation test data 

 

4.9.7 Comparison between Abaqus Viscoelastic Model and Experimental Results 

The viscoelastic constitutive model calibrated from creep and stress relaxation data was 

applied to predict the compression test. During the simple compression simulation the 

Abaqus viscoelastic model predicts a fast increase in the stress at low strains just as seen 

in the experimental results (Figure 4.35).  However the Abaqus viscoelastic model 

overpredicts the stress values by two orders of magnitude (note logarithmic scale on y-

axis of Figure 4.35). Also, the Abaqus viscoelastic model shows the stress increasing in 

an exponential manner as the strain increases, something that does not occur in vegetable 

shortening in which the stress seems to be reaching a maximum stress at approximately 

Crosshead speeds: 
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0.05 strain that later decays until it reaches a constant stress beyond the 0.2 true-strain 

mark (see Figure 4.35 and experimental compression results in section 4.4.0).  

0.01

0.1

1

10

100

1000

10000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

True Strain

T
ru

e 
S

tr
es

s 
(k

P
a)

Experimental (Compression)

Viscoelastic (Relaxation Test) 

Viscoelastic (Creep Test)

 

Figure 4. 35. Simple compression of 15x15x15 specimen of vegetable shortening at 40 
mm min-1 and Abaqus simulation as a viscoelastic material calibrated with creep and 

stress relaxation test data 
 

Figure 4.28 shows a linear stress-strain loading response with barely visible hysteresis 

and perfect deformation recovery during unloading of an Abaqus viscoelastic simulated 

material, while the linear elastic region for vegetable shortening is almost not visible.  

The lack of hysteresis of the viscoelastic prediction shown in Figure 4.28 implies that the 

Abaqus viscoelastic material remains perfectly elastic for only small strains (up to 

approximately 7 x 10-2).  On the other hand it has been estimated that vegetable 

shortening has a linear elastic region up to a strain of only 7.19 x 10-4 (Goh and Scanlon, 

2007) which is two orders of magnitude smaller than the viscoelastic prediction by 
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Abaqus.  This delay in the onset of permanent deformation may contribute to the 

overprediction of the stress values by the Abaqus viscoelastic model. 

 

Comparing the results of the Abaqus viscoelastic model with the experimental results, 

one can say that the Abaqus viscoelastic model retains a higher level of elasticity even 

after larger deformations; the highly elastic behaviour of the viscoelastic model can be 

seen in the rapid partial recovery during unloading as shown in Figures 4.32 and 4.33.  In 

order to quantify the amount of height rapidly recovered during the viscoelastic 

simulations, the ‘rapid recovery percentage’ was calculated (Table 4.11).  The ‘rapid 

recovery percentage’ was calculated by dividing the rapidly recovered height over the 

initial compression distance and then multiplied by 100.  As the compression distance in 

the viscoelastic simulations increases the rapid recovery percentage decreases, as shown 

in Table 4.11.   

 

Table 4. 11. Percentage of rapidly recovered height after cycling compression as 
predicted by the Abaqus viscoelastic model calibrated with stress relaxation data. 

Compression 
Distance (mm) 

Initial Specimen 
Height (mm) 

Rapidly Recovered 
Height (mm) 

Rapid Recovery 
Percentage (%) 

3.0 15 2.3 77 
5.0 15 3.8 76 
7.0 15 5.0 71 

  

Continuous photographs were taken during the unloading process of vegetable shortening 

(Figure 4.36). In the continuous photographs of vegetable shortening, the rapid partial 

recovery in height is also visible, although not to the same extent as the predictions 

obtained by the Abaqus viscoelastic model. Figure 4.36 shows vegetable shortening 

before being compressed by 6.5 mm (a) and after it has gone through rapid recovery (b).  
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The initial height of the cubic vegetable shortening specimen was 15 mm and the rapidly 

recovered height was measured to be 10.5 mm which gives a recovery percentage of 31% 

(2/6.5*100%) which is significantly lower than the predicted viscoelastic value of 71% 

(5/7*100%). 

  

Figure 4. 36. Cubic vegetable shortening specimen before compression (a) and vegetable 
shortening specimen after being compressed to 6.5 mm (b) 

 

4.9.8 Conclusion for Viscoelastic Simulation of Shortening 

The Abaqus viscoelastic model can be calibrated by using compressive stress relaxation 

and creep test data, after they have been converted into shear test data and normalized to 

obtain dimensionless parameters.  This model can be used to simulate the rheological 

behaviour of materials that show hysteresis during unloading and rate dependency.  

Using stress relaxation data gives the ability to predict the stresses at higher strains than 

when using creep test data.  The viscoelastic model predicts elastic recoil even at the 

large strain of 46%, and it was observed that the recoil was greater when using the creep 

test data. 

 

(a) (b) 

15.0 mm 10.5 mm 
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When compared to the vegetable shortening experimental data, the Abaqus viscoelastic 

model greatly overpredicts the stress at a given strain, and does not show permanent 

deformation even at greater strains, as well as greater increase in stress values as the 

speed of compression increases.  Elastic recoil is also observed during experimental 

unloading of vegetable shortening but it is also overpredicted by the viscoelastic model 

used here.  The Abaqus viscoelastic mode is incapable of predicting a behaviour that 

resembles a perfectly plastic deformation, which consists of reaching a constant stress 

after passing a given strain value.  The Abaqus viscoelastic model needs to be modified 

in order to include perfect plasticity behaviour in order to better predict the rheological 

response of vegetable shortening.  The information shown here supports the idea that 

vegetable shortening could be better described as an elastic-viscoplastic material (Goh 

and Scanlon, 2007) rather than just a viscoelastic material.  

 

4.10.0 Development of Mechanical Model for Vegetable Shortening 

Goh and Scanlon (2007) developed a rate independent model to describe the static 

rheological response of vegetable shortening.  This model had three distinct regions: a 

linear elastic region, a strain hardening plastic deformation region and a region of perfect 

plasticity.  The model can be summarized with the following equations: 
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where σst is the static stress, E is the modulus of elasticity, εy1 is the true strain at first 

yield, εy2 is the strain which marks the onset of perfect plasticity, and z is the power law 

strain hardening constant.  The basic shape of the compression stress-strain diagram for 

the static Goh and Scanlon (2007) model is shown in Figure 4.37.  When one compares 

the Goh and Scanlon (2007) model to the experimental compression data obtained at 0.4 

mm min-1 (which is the closest experimental trial to being static), one can see that the 

model does not accurately predict the middle section of the diagram, because the 

experimental data shows a region with hardening followed by a region of softening 

before reaching perfect plasticity.  Therefore some modifications to the model shown in 

equation [4.14] are needed to take into account the stress overshoot shown by all 

experimental results. 
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Figure 4. 37. Compression stress-strain curve for vegetable shortening as obtained during 
compression at 0.4 mm/min and as predicted by static model formulated by Goh and 

Scanlon (2007) 
 

In order to take into account the stress overshoot region seen in the experimental data, 

equation [4.14] was modified to include a function that will increase and decrease the 

stress value as the strain increases in the middle section of the model; an exponential 

function similar to that present in a Prony series was added to the Goh and Scanlon (2007) 

model, since the exponential function provided the rapid decay in stress observed in the 

experimental compression data.  The raising part of stress overshoot region seen in the 

experimental results is related to the strain hardening process caused by the movement of 

defects in crystalline solids after the onset of plasticity (Gottstein, 2004; de With, 2006), 

while the descending part of the stress overshoot is related to the shear failure that occurs 

at large compressive strains due to the presence of macroscopic defects in the solid 

εy2 εy1 
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matrix (Dowling, 2007), such as nitrogen bubbles in vegetable shortening.  In order to 

take into account strain hardening and shear failure equation [4.14] can be modified as 

follows: 

if 1yεε ≤ , εσ E= ,  
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where ω is a stress decaying factor (a material constant), and all other variables are as 

previously defined. The elastic region of the model was kept unchanged, but an 

exponential function was added to the other two sections.  The added exponential 

function is analogous to the exponential function used in the Maxwell model to describe 

viscoelastic behaviour of materials and therefore ω is a strain dependent analogy to the 

relaxation time in the Maxwell model.  Therefore it can be said that the modified model 

has elastic, viscous and plastic components.  

 

Equation [4.15] was calibrated using the material constants obtained during monotonic 

and cyclic compression test in an Excel spread sheet following the procedure described 

by Goh and Scanlon (2007).  The value for E was restricted to be a numbers in the range 

of results obtained during monotonic and cyclic compression (185kPa≤E≤743kPa).  The 

value for εy1 was limited to be a number greater than zero and smaller than 0.02, which 

was the smallest strain measured during cyclic compression at which permanent 
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deformation was already visible.  The initial values for E and εy1 were the values given by 

Goh and Scanlon (2007) (E = 315 kPa and εy1 =1.53x10-4), since they were within the 

ranges of values obtained during compression tests.  The initial value of εy2 was taken 

directly from the average stress-strain curve from monotonic compression tests at a given 

loading rate (εy2 = 0.22, 0.32, 0.36 and 0.46 at 0.4, 4, 40 and 400 mm/min respectively) 

and it was the largest strain in the stress overshoot, just before the onset of perfect 

plasticity.  The initial value of z was the value found by Goh and Scanlon in 2007 (z = 

0.468) and ω was just limited to be a number smaller than one and larger than zero 

(0<ω<1) in order to create an exponential decay before reaching εy2 (initial value was 

guessed to be ω = 0.1).  The predictions of the model using the initial values for the 

parameters in equation [4.15] were matched to the experimental compressive data in a 

least square error method via the Excel Solver function.  After several iterations of the 

Solver function the following numerical values for the constitutive parameters at four 

loading rates were obtained (Table 4.12): 

 

Table 4. 12. Numerical values of constitutive parameters of shortening model shown in 
Equation [4.15] 
Loading Rate 
(mm min-1) 

0.4 4.0 40.0 400.0 

E (kPa) 593.2 593.2 593.2 593.2 
εy1 7.19 x 10-4 7.19 x 10-4 7.19 x 10-4 7.19 x 10-4 
εy2 0.226 0.300 0.350 0.436 
Z 0.798 0.784 0.751 0.721 
ω 0.146 0.180 0.234 0.302 
 

The numerical values of Table 4.12 were inputted into equation [4.15] and plotted in 

order to verify the accuracy of the modified Goh and Scanlon model, these results are 

shown in Figure 4.38.  



 178 

0

2000

4000

6000

8000

10000

12000

14000

0.00 0.10 0.20 0.30 0.40 0.50

True strain (m/m)

T
ru

e 
S

tr
es

s 
(P

a)

Experimental compression at 0.4mm/min
Experimental compression at 4mm/min
Experimental compression at 40mm/min
Experimental comprssion at 400mm/min
Modified model at 0.4mm/min
Modified model at 4mm/min
Modified model at 40mm/min
Modified model at 400mm/min

 

Figure 4. 38. Comparison between experimental compression data and results from the 
modified constitutive model 

 

By looking at Figure 4.38, one can see that the modified Goh and Scanlon model 

(equation [4.15]), closely predicts the experimental data using the values obtained from 

the Solver function.  However as the crosshead speed increases the accuracy of the model 

decreases, especially in the hardening section of the model.  

 

The model formulated by Goh and Scanlon (2007), equation [4.14], provided adequate 

prediction of the compression response of shortening, margarine and butter up to a true 

strain of 0.3.  However, Goh and Scanlon did not take into account the stress overshoot 

that is particularly visible in their experimental results for margarine and butter and did 

not try to fit the model past the 0.3 true strain mark.  The modified model, equation [4.15], 

is capable of simulating the stress overshoot that is more visible in the shortening used in 
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the current research project and adequately predicts the compression response of 

vegetable shortening up to a true strain of 0.5. 

 

4.10.1 Testing Constitutive Model with Indentation 

In order to check the robustness of equation [4.15] in predicting the rheological response 

of vegetable shortening, conical indentation simulations were set up in Abaqus/CAE. As 

previously stated in the methodology section of this thesis, indentation was simulated 

with a two dimensional axisymmetrical model in order to save on computational time.  

Figure 4.39 shows the schematic representation of the conical indentation simulation set 

up in Abaqus/CAE. 

 

Figure 4. 39. Conical indentation (45° half angle) set-up in Abaqus/CAE 
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The visual representation during indentation provided by Abaqus is shown in Figure 4.40.  

By looking at Figure 4.40, one can see that the deformation under the indenter is 

extremely large and a concentration of stresses occurs around the indentation area. 

 
Figure 4. 40. Visual representation of indentation response of vegetable shortening 

simulated using Abaqus with model shown in equation [4.15]. (a) Undeformed specimen, 
(b) indentation to 1.2 mm, and (c) indentation to 2.5 mm 

 

4.10.1.1 Material Properties Used during Virtual Indentation 

During the simulations in Abaqus it was assumed that vegetable shortening is an isotropic, 

homogeneous, and incompressible solid just as Goh and Scanlon did in 2007.  The 

ELASTIC and PLASTIC models were selected in the Properties Module of Abaqus.  For 

the ELASTIC Abaqus model two parameters are required: the modulus of elasticity (E) 

and the Poisson’s ration (ν); these two parameters are used to describe the purely elastic 

behaviour shown by shortening at strains below εy1 (first part of equation [4.15]).  For the 

Abaqus PLASTIC model the yield stress and the non-elastic strain (εp) are required; in 

order to take into account the material’s hardening and softening shown by shortening at 

(a) (b) (c) 
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strains between εy1 and εy2 (middle part of equation [4.15]), the yield stress as a function 

of non-elastic strain (plastic and viscous strain) was entered as 15 discrete points in a 

tabular form.  The non-elastic strain (εp) is defined as the total strain (ε) minus the elastic 

strain (εe) and the elastic strain is the strain prior to the first yield strain (εy1), which is 

equal to the yield stress (σy) divided by the modulus of elasticity (E): 

1y
y

ep E
εε

σ
εεεε −=−=−=       [4.16] 

It is important to notice that the non-elastic strain at the yield stress is equal to zero and 

that the 15th data point is the stress at εy2; εy2 marks the onset of perfect plasticity 

predicted by the third part of equation [4.15].  Different values of yield stress as a 

function of non-elastic strain were used at different indentation rates (Figure 4.41), since 

εy2 was rate dependent.  The parameters entered in the Abaqus Graphic User Interface can 

be summarized as follows: 

•  Material Behaviour 1: Elastic 

o Type: Isotropic 

o Number of field variables: 0 

o Moduli time scale (for viscoelasticity): Long-term 

o Young’s Modulus: 593 kPa 

o Poisson’s Ratio: 0.4999 

• Material Behaviour 2: Plastic 

o Hardening: Isotropic 

o Number of field variables: 0  

o Data: Yield stress as function of non-elastic strain as shown in Figure 4.41 
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Figure 4. 41. Yield stress as a function of non-elastic strain; data used to calibrate strain 
hardening/softening part of the constitutive model for shortening 

 
 

4.10.1.2 Comparison between Abaqus Indentation and Experimental Data 

After the virtual indentation at different crosshead speeds (0.4, 4, 40 and 400 mm min-1) 

was set-up in Abaqus/CAE with the modified Goh and Scanlon (2007) model as the 

constitutive model (equation [4.15]), the forces and the displacements were plotted and 

compared with the experimental data (Figure 4.42).  As seen in Figure 4.42, the model 

shown in equation [4.15] can be used to predict the indentation response of vegetable 

shortening.  The prediction is best at the lower crosshead speed of 0.4 mm min-1 (Figure 

4.42a).  As the crosshead speed increases the model increasingly under predicts the 

reaction force from indentation (Figure 4.42b) and in addition as the indentation depth 

increases the Abaqus results deviate more from the experimental results. 
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Figure 4. 42. Average indentation response of vegetable shortening at (a) two slower and 
(b) two faster speeds and simulated results from Abaqus calibrated using equation [4.15]. 

Error bars on experimental data are one standard deviation 
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4.10.2. Manipulating Abaqus Simulation Parameters 

The force predicted by the Abaqus indentation becomes smaller as the crosshead speed 

increases; this is the opposite of what occurs in indentation of vegetable shortening 

experimentally.  In order to understand what factors were responsible for the inability of 

the constitutive model to accurately predict the indentation response, Abaqus 

experimental simulations were manipulated to bring the predicted indentation response 

closer to the experimental data. The conditions that were manipulated were the following: 

1. Increase the value of the modulus of elasticity of the material, and adjust other 

material constants accordingly so that equation [4.15] still provides an adequate 

fit to the experimental monotonic compression (Figure 4.38). 

2. Simulate the effect of friction between the conical indenter and the shortening 

specimen in the simulation. 

3. Change the geometry of the specimen, so that the top of the specimen is not 

completely horizontal. This permits us to simulate the experimental conditions in 

which the ±0.5 mm variation in specimen height cannot be controlled.    

 

4.10.2.1 Effect of Increasing the Modulus of Elasticity in Model 

Increasing the value of the modulus of elasticity (E) can increase the value of the 

predicted stress (Goh and Scanlon, 2007), since the modulus of elasticity is multiplying 

all other parameters in equation [4.15].  However, the increase must still be limited by the 

values obtained during experimental monotonic and cyclic compression tests (E ≤ 

743kPa). In order to maintain an adequate fit between the predicted curve and the 

experimental data, all other parameters in equation [4.15] have to be adjusted if the value 
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of the modulus of elasticity is increased. The new parameters obtained from the Solver 

function are shown in Table 4.13. 

 

Table 4. 13. Numerical values of constitutive parameters of shortening model shown in 
Equation [4.15] after modulus of elasticity was deliberately increased to 732 kPa 
Loading Rate 
(mm min-1) 

0.4 4.0 40.0 400.0 

E (kPa) 732.2 732.2 732.2 732.2 
εy1 7.50 x 10-4 7.50 x 10-4 7.50 x 10-4 7.50 x 10-4 
εy2 0.208 0.286 0.397 0.433 
Z 0.752 0.740 0.674 0.669 
ω 0.145 0.181 0.299 0.326 
 

Using the values in Table 4.13 into equation [4.15] and running indentation simulations 

at an indentation rate of 0.4mm min-1 with Abaqus, Figure 4.43 was obtained. 
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Figure 4. 43. Comparison between experimental indentation at 0.4mm min-1 and 

simulated indentations with different values of the material properties used in equation 
[4.15]. Error bars on experimental data are one standard deviation 
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By looking at Figure 4.43 one can see that increasing the modulus of elasticity from 593 

to 732 kPa slightly increased the predicted reaction force. The increase in predicted 

reaction force is more apparent after the indentation depth of 1.25 mm, but in all cases the 

increased modulus does not improve the match between experimental and simulation; 

therefore, it can be concluded that increasing the value of the modulus of elasticity within 

the experimental values does not significantly improve the simulation indentation 

response.  

 

4.10.2.2 Effect of Increasing Friction during Simulations 

Friction increases the force recorded during compression testing (Gunasekaran and Ak, 

20003).  Therefore, it is necessary to investigate the effects of friction on the indentation 

simulations. In order to investigate the frictional effects during indentation, conical 

indentation simulations were performed in Abaqus using equation 4.15 as the constitutive 

model with the parameter values shown in Table 4.13, and the ROUGH option as the 

friction condition between the indenter and the specimen. In Abaqus, the ROUGH option 

assigns a coefficient of friction of 10,000 (Abaqus, 2006). The results of the indentation 

simulations with friction are shown in Figure 4.44.   Adding friction to the indentation 

simulation causes the indentation curve to be jagged due to the slip and stop effect 

(Abaqus, 2006) caused by the excessive resistance (Figure 4.44). Also adding friction to 

the indentation simulations, the force is even more under-predicted than when frictionless 

conditions are used (Figure 4.44). Therefore one can say that the experimental 

indentation occurred in frictionless conditions, since the indentation curve is smooth, and 
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the presence of friction is not the factor that causes the force under-prediction of the 

model shown in equation [4.15]. 
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Figure 4. 44. Comparison between experimental indentation curve at 0.4 mm min-1 and 

simulated indentation with rough friction and frictionless conditions. Error bars on 
experimental data are one standard deviation 

 

4.10.2.3 Effect of Changing the Geometry of Simulated Specimen 

The geometry of the contact area of the specimen can affect the results of mechanical 

tests, particularly during compression testing (Gunasekaran an Ak, 2003). It has been 

reported that indentation is less susceptible to the change in geometry of specimens, but 

is not completely exempt from its effects (Anand, 2001).  Indentation simulations were 

set up in Abaqus in which the top part of the specimen was not completely horizontal but 

rather had a triangular shape with an excess height of 0.25 mm (Figure 4.45a), which is 
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within the maximum permissible height variation (±0.5 mm) in experimental shortening 

specimens. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 45. Conical indentation setup in Abaqus/CAE with non-flat contact specimen 
surface (a) and stress contour of indented specimen to 2.9 mm (b). The stress values are 

in Pascals 
 

Having a specimen with a triangular top part caused the predicted force to be closer to the 

experimental indentation results (Figure 4.46). The triangular top specimen has excess 

material that accumulates on the sides of the indenter and this accumulation of the excess 

material is what produces higher forces at a given indentation depth when compared to a 

(a) (b) 

0.25 mm 
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simulated specimen with a perfectly horizontal top contact surface.  Therefore one can 

conclude that a change in geometry of the specimen can in fact affect the indentation 

results, and the deviation of the predicted curve from the experimental curve can be 

attributed to the unevenness of the shortening specimens during experimental indentation.   
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Figure 4. 46.  Comparison between experimental indentation of shortening at 0.4 mm 

min-1 and simulated results with equation [4.15] on specimens with different geometry. 
Error bars on experimental data are one standard deviation 

 

Looking at Figure 4.45b, one can see that after indentation to 2.9 mm the edge of the 

specimen is not undisturbed since the stress is no longer dark blue (2.5 to 3.2 kPa) but 

rather green (6.1 to 8.2 kPa).  This stress change at the edge indicates that ‘edge effects’ 

are increasing the overall value of the measured force and can make indentation 

measurements on specimens with different lateral dimensions vary, as discussed by 

Anand (2001).  
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5.1.0. Conclusion and Recommendations 

Vegetable shortening shows a complex rheological response between that of a solid and a 

liquid.  However, from uniaxial compression tests it was seen that plastic or permanent 

deformation in vegetable shortening occurred even at very low strains.  As the strain 

increases during compression the plastic response of vegetable shortening can be 

characterized by a section undergoing strain hardening followed by a section where 

failure in shear mode occurs before finally reaching a section where shortening displays 

perfect plasticity.  This rheological behaviour can be attributed to shortening’s 

composition which consists of weakly bonded solid fat particles comprised of highly 

crystalline material surrounded by fluid oil (Rzepiela et al, 2002; Goh and Scanlon, 2007).  

Using uniaxial compression stress relaxation and creep tests, it was shown that the 

complex rheological response of vegetable shortening cannot be described only by a 

viscoelastic model based on the generalized Maxwell model (Peleg and Pollak, 1982).  

The generalized Maxwell model is able to predict liquid and solid behaviour of materials 

but it greatly overpredicts the stress at any given strain for vegetable shortening and it 

lacks the ability to predict the extensive permanent deformation of shortening.  

 

The rheological response of shortening can be better described as elasto-visco-plastic 

with rate dependency. Modifying a model proposed by Goh and Scanlon (2007), an 

elasto-visco-plastic constitutive model was developed and calibrated using the data from 

uniaxial compression tests (equation [4.15]).  The viscous component can be described by 

an exponential function just like in the Maxwell or Kelvin-Voigt models (Steffe, 1996). 

The rate dependency cannot be described by a simple power law as previously proposed 
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by Goh and Scanlon, 2007. The model proposed in this thesis was capable of predicting 

with reasonable accuracy the uniaxial compression and indentation of vegetable 

shortening. However, the model accuracy declined as the rate of deformation increased. 

Further research is required to further refine the elasto-visco-plastic model to better 

predict the rate dependency of vegetable shortening observed during compression and 

indentation tests. Taking into account microstructural changes occurring during the 

plastic deformation responsible for strain hardening and understanding the shear failure 

mechanisms in vegetable shortening could be used to improve the accuracy of a 

rheological model for vegetable shortening.  

 

The constitutive model developed from compression tests was then used to predict the 

indentation response of shortening.  The indentation force was underpredicted at all 

indentation depths for all indentation speeds.  A number of numerical simulations were 

performed to determine potential mechanisms for the discrepancy.  Slight modification of 

geometry at the top plane of the specimen allowed good correspondence between 

experimental and model results to be obtained. 

 

It has been suggested that indentation is less susceptible to specimen shape variation than 

compression (Menčik, 2007) is, and as it has been shown using finite element simulations 

the indentation response is indeed sensitive to slight variations in the geometry of the 

specimen. Having specimens with an uneven contact surface between the indenter and 

the specimen can produce higher force values at a given indentation depth due to pile-up 

of this excess material at the sides of the indenter. Therefore it is important that the 
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specimen preparation method be improved.  Different cutting techniques besides wire 

cutting should be investigated, such as core cutters with plungers and mechanized blade 

cutters, to reduce unevenness in horizontal and vertical surfaces of the specimen.    
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