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Abstract. Species have specific tolerances to a variety of environmental variables including 

temperature, dissolved oxygen (DO) and turbidity. Changes in either of these variables can 

therefore be expected to affect predator-prey interactions in shallow water ecosystems. 

Temperature drives the metabolic rates of poikilotherms, including fish. Hypoxic conditions 

generally affect larger fishes to a greater degree than smaller fishes, though the presence of 

physostomous swim bladders in certain species can alter that relationship. Finally there are 

species of fish that rely on vision for food acquisition while other species rely on other senses 

such as chemical cues. Changes in turbidity levels could therefore affect foraging efficiency of 

visual foragers. This thesis examines the role that each of these environmental variables 

(temperature, DO and turbidity) can have on community composition and therefore predator prey 

interactions, with a specific focus on the role of temperature in structuring predator-prey 

interactions. 

 Laboratory, field and theoretical studies suggest that as temperature increases, encounter 

rates between predators and prey will increase. Prey are more active, spend more time foraging, 

and increase their use of risky habitats in warmer environments in laboratory experiments. In the 

field, prey and predator activity and/or abundance is positively related to temperature. These 

laboratory and field studies suggest that temperature increases should result in increased 

predation rtes of prey. Finally, the results of a dynamic state dependent optimization model also 

suggest that periods of warming will result in a lowering of the probability of survival of the 

fathead minnow, Pimephales promelas, a prey species, over the-ice free season.  

 A reduction in DO levels in aquatic ecosystems results in a reduction in the number of 

and/or activity of predators present. This should result in a reduction in predation risk to prey. 

However, when endothermic predators are factored in to this equation, this reduction in risk may 
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not occur. The presence of avian predators of small forage fish are directly related to the level of 

DO in the water, regardless of the abundance of prey fish present. This relationship is likely a 

result of behavioural decisions of prey that occurs in hypoxic conditions. In periods of low DO, 

prey fishes may exploit areas of higher DO that are closer to the surface of the waters. While 

their piscine predators may not be able to tolerate the low DO levels regardless of the position of 

prey in the water column, avian predators appear to be able to cue in to this increase in 

availability of potential prey, reducing any benefits that might occur by occupying surface areas 

where DO levels might be slightly higher than lower in the water column.  

 As compared to temperature and DO, turbidity does not appear to affect the potential risk 

of predation to forage fish. The catch per unit effort (CPUE) of foragers who rely on vision and 

those that rely on chemical cues to forages, were not related to turbidity levels. Turbidity levels 

were also not related to the abundance of avian predators. This suggests that in this generally 

turbid, shallow water ecosystem, changes in turbidity do not affect the overall species 

composition of the system. Predator-prey interactions in the system are also not likely to be 

affected by turbidity. 

 In contrast to this, temperature and DO are likely to influence the interactions between 

predators and their prey in a shallow water ecosystem. Both increases in temperature and 

decreases in DO may result in increases in predation pressure on prey. While temperature 

increases will likely result in increased predation on prey by piscine predators, a reduction in 

DO, which often occurs as temperature increases, will likely result in increased predation on prey 

by avian predators, even as predation pressure by piscine predators decrease.  
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Chapter 1: General Introduction 

Theoretical framework linking temperature and predator-prey interactions: 

Temperature and fish distribution. In North America, there are three thermal guilds of fishes: 

cold-, cool- and warm-water. General upper lethal limits of these three guilds of fishes are 25°C, 

32°C and 40°C respectively, though species-specific exceptions occur (Magnuson and de Stasio 

1997). These thermal preferences of fishes are likely the result of recent evolutionary histories 

(Johnson and Kelsh 1998). For example, fishes of the family Salmonidae belong to the cold 

water guild; percids and esocids, which are closely related phylogenetically, are both cool water 

species; Siluriformes and Cypriniformes, which are more closely related to each other than to the 

percids and esocids generally belong to the warm water guild (thermal guilds: Magnuson et al. 

1979). Given that thermal microhabitats do not generally exist in aquatic ecosystems - the 

thermal conductivity of water is 24.5 times greater than that of air (Hammel 1955) - the 

temperatures under which fishes persist may play a large role in the structuring of community 

composition and the interactions between predators and their prey.  

It is this quality of the aquatic environment, the fact that microhabitats of significantly 

different temperatures do not typically exist (save for within lakes that thermally stratify), that 

make changes in the thermal regime of an aquatic ecosystem potentially challenging for the 

organisms that live there. Temperature of both the land and the oceans are on the rise with an 

observed increase in air temperature of 0.6 °C in the past three decades and 0.8 °C in the past 

100 years (Hansen et al. 2006). Concerns associated with changes in temperature in aquatic 

ecosystems are primarily associated with thermal preferences of fishes. Unfortunately the impact 

of this climate change on fish populations and interactions between fish species, including 

predators and their prey, is unknown. As fishes are poikilotherms, their body temperature will 
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follow the temperature of their environment. As their body temperature changes, so will their 

metabolic rates. It is therefore probable that temperate aquatic ecosystems may be among the 

most affected by a changing thermal environment. To better predict the responses to warming 

waters, we must first understand the role that the current temperature regime plays on 

community composition and interactions between predators and their prey. 

Predator-prey interactions: the potential influence of the abiotic environment. Consumption 

of prey by predators occurs as a result of consecutive interactions between predator and prey in 

which the predator is successful. Initially there is detection and encounter of the prey by the 

predator. After the prey has been detected by the predator an attack occurs - this attack must lead 

to capture if the predator is to consume the prey. After capture of the prey the predator then 

handles and finally ingests the prey which completes the predation event (sensu Holling 1959). 

The purpose of this thesis is to determine how temperature, dissolved oxygen and turbidity 

influence piscine predator-prey interactions including instances where the predators are birds.  

In a natural ecosystem, the very first step in a predation event requires the spatial overlap 

of predators and their prey. This means that the current conditions of the aquatic ecosystem have 

to be able to support both predators and prey. If measures of temperature, dissolved oxygen or 

turbidity fall outside of the ranges necessary to support populations of given species, predator-

prey interactions may be altered. Even if species are able to survive under given conditions, 

those conditions may not be optimal for foraging therefore changing the interactions between 

species. For example, temperature and dissolved oxygen can influence encounter rates of piscine 

predators and their prey as these fishes will generally have different optimal and lethal 

temperatures and dissolved oxygen levels in which they can inhabit (Chapman et al. 1995).  
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Encounter and detection rates on a small scale can also be influenced by the abiotic 

environment, including temperature. There is the potential for temperature to influence foraging 

and activity rates of prey, as well as risk taking by prey in the presence of predators. This likely 

occurs through the influence of temperature on hunger levels via the effect of temperature on the 

energetic cost of metabolism (Sogard and Olla 1996). Metabolic rate increases with increasing 

temperature, though not necessarily in a linear pattern. Metabolism generally peaks at a given 

temperature and then decreases (Wootton 1990; Holker 2003), suggesting that Q10 values are not 

applicable throughout a range of temperatures for all fishes.  This implies that in response to 

increased temperatures, fishes may forage more to meet the demands of increased metabolism 

(Weetman et al. 1998), though this depends on the range of temperatures encompassed by the 

increase.  

As metabolism may not be linear, feeding rates may also be non-linear and interactions 

between species may be temperature dependent. Bergman (1987) suggests that ectothermic 

animals, which appear to have temperature-dependent foraging rates for a range of temperatures 

found naturally, may mediate coexistence of species by altering feeding rates as well as the 

temperatures selected to inhabit. In fact, Bergman (1987) determined that while both perch 

(Perca fluviatilis) and ruffe (Gymnocephalus cernuus) experienced increased capture rate and 

decreased handling times of prey with an increase in temperature, routine swimming 

performances increased with temperature for perch only. As in many lakes, perch occupied a 

much narrower temperature range than ruffe, which suggests that the foraging abilities of ruffe 

are less temperature dependant than perch. The temperature-dependent foraging and swimming 

abilities of different species will have differential effects on prey, especially if the species of prey 

differ between species of ectotherms.   
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Temperature can also affect predator-prey interactions by affecting growth rates.  

Anderson et al. (2001) determined that temperature influenced growth rate of tadpoles (Hyla 

regilla); at increased temperatures, growth rates also increased.  However, high temperatures 

during periods of starvation may lead to a redistribution of energy away from growth and 

towards functions such as maintenance (van Dijk et al. 2002).  As well, after the optimal 

temperature for growth has been reached, escalating metabolism can reduce the rate of growth 

(Morgan and Metcalfe 2001); in times of starvation it is thought that fish prefer to use cooler 

water habitats to reduce metabolic demands (behavioural hypothermia). In fact, Sogard and Olla 

(1996) ascertained that fish avoided cold water when satiated, however as rations decreased, the 

use of cold water increased. This result is not consistent however, as others have observed the 

preferred temperature increasing during periods of starvation (Javaid and Anderson 1967; 

Morgan and Metcalf 2001).  With redistribution of energy from growth to maintenance functions 

with changes in rations present, increased temperature does not necessary result in an increased 

growth rate.  

Influencing the growth rate at given temperatures are the associated feeding rates at 

various temperatures. As aforementioned, feeding rates can be temperature dependent. Van Dijk 

et al. (2002) determined that roach (Rutilus rutilus) feeding rates increased until a temperature of 

18°C was reached. After the maximum feeding rate was reached at that temperature, feeding 

rates leveled off and then declined. However, van Dijk et al. (2002) did not determine if weight 

loss occurred with the decrease in feeding rates. Contradicting the study by van Dijk et al. (2002) 

is the study by Meeuwig et al. (2004). Meeuwig et al. (2004) observed no real pattern in feeding 

rates with temperature in juvenile cutthroat trout (Oncorhynchus clarki henshawi) with feeding 

rates greatest at 18°C. Feeding rates were less at 12°C than at 18°C, but greater at 12°C than 
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24°C; growth rates were highest for cutthroat trout at 12°C. In a marine ecosystem, at increased 

temperatures fishes foraged more (Smith 2008); in a freshwater ecosystem the same result was 

also observed (Ojanguren et al. 2001). However, in both aforementioned studies the amount of 

food available was not controlled for, a factor that can influence growth of individuals in a 

natural setting under various temperature regimes. 

 The relationship between temperature and growth can influence predator-prey 

interactions because of the role size plays on capture and consumption rates of prey by predators. 

Different sized prey, differ in energetic availability to predators and they differ in their visual 

availability to predators. In order for a predator to consume a prey, the predator must first 

observe/encounter the prey; the prey has to be large enough for the predator to see, given the 

particular environment (turbid water or structurally complex environments make prey harder to 

see). The predator must then capture the prey – larger prey, with longer body lengths are faster 

than smaller prey (though smaller prey are capable of greater changes in angular velocity) 

(Wootton 1990). The predator must then manipulate the orientation of the prey so that it can be 

ingested.  While large prey may provide more energetic value to the predator, the prey cannot be 

too large for the gape size of said predator. In fact, Lundvall et al. (1999) demonstrated that there 

is an optimal size selection with predators selecting mid-sized prey. This is likely due to the 

predators being unable to see the small prey, and the large prey being too costly to chase.   

Given that foraging and activity (Krause and Godin 1995) of fishes increase with 

temperature and influence growth rates, and encounter rates are influenced by the activity of 

predators and prey, predation risk is also likely to change with changes in temperature. Changes 

in behaviour of the prey fishes in response to changes in temperature and predation risk can also 

affect the predators themselves. If predators are more interested in more active prey (Krause and 
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Godin 1995), and activity and foraging of prey increase with temperature, the relationship 

between temperature and risk of predation may be further exacerbated.  

Dissolved oxygen has also been implicated as an environmental factor that can influence 

fish distribution, thus affecting predator-prey interactions. Large and small fishes (as well as 

different species) also have different requirements for dissolved oxygen and different rates of gas 

exchange with the environment (Abrahams 2006). Therefore dissolved oxygen can influence the 

spatial overlap of prey and their predators, thereby affecting the encounter rates of said predators 

and prey. In summary, larger fish are generally observed in areas of highest oxygen 

concentration, while smaller bodied fishes are generally observed in more oxygen deprived 

areas, both in the lab (Burleson et al. 2001) and in natural environments (Suthers and Gee 1986, 

Chapman and Chapman 1998; Chapman et al. 2002). Areas of low dissolved oxygen may 

therefore provide small fishes refuge from predation by piscine piscivores in these instances. 

However, Almeida-Val et al. (2000) determined that for the Astronotus ocellatu, an Amazonian 

hypoxia tolerant fish, tolerance to hypoxia increased with fish size. Lactate dehydrogenase and 

malate dehydrogenase were used as indicators of oxidative flux capacity and experiments were 

run on survivorship at differing levels of hypoxia. Both enzyme activity and survivorship 

increased with increasing body mass (Almeida-Val et al. 2000) suggesting that hypoxic areas of 

the Amazon floodplain inhabited by Astronotus ocellatu would not necessarily provide a refuge 

for smaller fishes when larger fishes with adaptations to low dissolved oxygen are present. There 

are species-specific tolerances to hypoxia, as well as a relationship between size of the fish and 

hypoxia tolerance.   

Finally, dissolved oxygen can also affect the relationship between piscine prey and their 

avian predators. As dissolved oxygen decreases, there is the potential for prey fishes to exploit 
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areas closest to the air water interface where dissolved oxygen is highest (Kramer 1987, 

Chapman and Chapman 1998). This use of waters with higher levels of dissolved oxygen may be 

physiologically advantageous for small fish, but it may also make them more easily detected, 

encountered and captured by their plunge diving avian predators.  

In shallow water ecosystems, turbidity may also play a role in the interaction between 

predators and prey. Turbidity can reduce a prey’s chances of being eaten by a predator, but 

turbidity can also reduce the prey’s ability to observe the predator, as well as the prey’s own 

prey/food items. Nilsson et al. (2009) describe how an increase in turbidity levels reduces the per 

capita prey consumption by northern pike when the pike are foraging in a group. While foraging 

alone, increases in turbidity results in an increase in the consumption rates of prey by the pike. 

De Robertis et al. (2003) found the reduction in visibility to result in a decrease in the absolute 

mortality rate on prey by piscivores, while Abrahams and Kattenfeld (1997) found no difference 

in the absolute mortality rates from clear to turbid water; Abrahams and Kattenfeld (1997) 

instead observed predators consuming small size fishes in clear water, while in turbid water, 

there was no preference of any size range of fishes. The feeding rates of planktivorous fishes are 

not necessarily negatively affected by turbidity (Bonner and Wilde 2002; De Robertis et al. 

2003). The effect of increasing turbidity on foraging ability of both predators and prey is 

therefore not consistent between systems. 

The response to turbidity, as measured by foraging success, is species-specific and 

dependent on the sensory mechanisms of the species, including the presence of a tapetum 

lucidum. The tapetum lucidum is a reflecting layer found in some species of fishes. It acts to 

reflect light back towards the retina, providing photoreceptors with another opportunity for 

stimulation, enhancing the sensitivity of eye; acuity may be reduced (Braekeveklt 1980). For 
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example, pikeperch (Sander lucioperca), which have tapetum lucidum, are not affected by 

increases in turbidity, while European perch (Perca fluviatilis) foraging efficiency declines with 

increasing turbidity (Ljunggren and Sandström 2007). Morphologies of fishes can therefore 

influence their ability to forage under different turbidity levels. 

 

Overview of research conducted: 

My research addresses four questions pertaining to the role of the abiotic environment in 

predator-prey interactions:  

1) Temperature: Given what is known regarding the increase in energetic demands in 

poikilothermic individuals with increasing temperature, as temperatures increase what are the 

behavioural responses of prey? Do these responses change in the presence of a predator? Do the 

prey, in order to meet increased metabolic demands, increase their activity and foraging rate as 

temperature increases? Are those prey then willing to increase their risk taking, foraging in the 

presence of a predator in order to meet metabolic demands (Chapters 2 and 3)? 

2) Temperature, dissolved oxygen and turbidity: In a natural, shallow water ecosystem, what is 

the role of temperature, dissolved oxygen and turbidity in structuring the fish community 

composition? Does the community composition of predators change with the changing 

environment, altering the predation risk to prey (Chapter 4)?  

3) Temperature: Given what is known regarding the role of temperature in determining the 

energetic requirements of prey and predators, the role temperature plays in determining 

population doubling times of zooplankton and algae - photosynthesis can be temperature 

dependent - (minnow forage), and the influence temperature has on activity rates of fishes, does 
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the probability of survival of prey fishes over the ice-free season change with changing 

temperatures (Chapter 5)?  

4) Temperature, dissolved oxygen and turbidity: Behavioural responses to a changing aquatic 

environment can affect not only fish predator – fish prey interactions but also avian predator- 

fish prey interactions. In response to physiological demands under differing abiotic conditions, 

do fishes alter their behaviours in such a way as to change their interactions with avian 

predators? Specifically, I am interested in whether or not a numerical response in the number of 

Forster’s terns (Sterna forsteri) occurs as a result of changes in the aquatic environment (Chapter 

6).  

 

Addressing the role of the environment in predator-prey interactions. The research 

conducted to address the above mentioned questions ranged from large scale monitoring of 

aquatic ecosystems, to small scale laboratory experiments to computer modeling. The influence 

of temperature on the activity and foraging rates of fathead minnows (Pimephales promelas) was 

determined by a series of laboratory experiments. As temperature increased, both the activity and 

foraging rates of the fathead minnows increased. Laboratory experiments using yellow perch 

(Perca flavescens) as predators and fathead minnows as prey fish were also conducted to 

examine the influence of temperature on a) risk-taking in prey fish and b) the response of 

predators to changes in prey behaviour. Fathead minnows in this experiment were given food at 

two locations, a safe and a risky location. In control trials, the risky feeder was next to an empty 

aquarium while in the predator treatment trials the aquarium contained a perch predator. 

Increases in temperature increased the number of fishes foraging, but the number of foragers at 

each temperature did not change with the addition of a predator. However, in the presence of a 
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predator only fishes held at the warmest temperature did not change their use of the feeder in the 

risky location. In response to increased numbers of fish foraging and an increase in the use of the 

risky feeder with temperature, at the warmest temperature the predators spent more time oriented 

towards the prey.  

Field work examining the potential for temperature, dissolved oxygen and turbidity to 

control the spatial overlap of predatory fish and their prey (thereby influencing encounter and 

detection rates of these predators and prey) was conducted in Blind Channel, Delta Marsh, 

Manitoba, Canada. Blind Channel is a shallow water ecosystem found just south of Lake 

Manitoba and is connected to the lake via one passage. Fish community composition was 

monitored by gillnetting and minnow trapping from May through August in 2006, 2007 and 

2008 and environmental variables (temperature, dissolved oxygen and turbidity) were monitored 

every 30 minutes via YSI data sondes throughout the entire sampling period. As temperatures 

increased, the catch per unit effort (CPUE) of both cool- and warm- water fishes increased. 

Dissolved oxygen (DO) levels were significantly related to two groups of fish with different 

physiologies. As DO increased, there was an increase in the CPUE of fishes with physostomous 

swim bladders (those fish that have the potential to perform aerial surface respiration); CPUE of 

fishes without that capability were negatively related to DO levels. Turbidity levels were not 

related to the CPUE of either fish species. 

Building on the results from my field and laboratory studies to further understand how 

temperature changes may affect the overall survival of a population of fathead minnows, a 

computer model was developed that integrated results from field studies with those from the 

literature. Specifically, the model was developed to incorporate temperature into the costs and 
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benefits of selecting a specific patch. Temperature increases consistently resulted in a reduction 

in the probability that an individual survives the ice-free season.  

To examine the role of temperature, dissolved oxygen and turbidity on prey fish – avian 

predator interactions in the field, monitoring of Blind Channel was conducted not only to 

measure environmental variables and prey fishes as mentioned above, but also to determine 

Forster’s terns, Sterna forsteri presence. Only DO was a significant predictor of tern presence; 

there was no relationship between tern abundance and the abundance of their prey suggesting 

that it is the availability of the prey and not their abundance that drives the presence of terns.  

There are obviously complex interactions that occur between organisms and the 

temperature as well as the dissolved oxygen and turbidity levels of the habitats they occupy. 

Future research should attempt to disentangle the role that each of the measured environmental 

variables plays in predator-prey interactions in a natural ecosystem. This would also allow for 

more accurate measures of parameters that were used in the model, and the development of more 

specific predations to be tested. Overall, research conducted for this dissertation predicts that as 

temperature increases, prey will experience an increase in the risk of mortality.  

All experiments and field research described in this thesis were conducted under 

approved protocols F08-013 and F03-041 by the protocol management review committee at the 

University of Manitoba as per the guidelines of the Canadian Council for Animal Care. All 

sampling conducted in Blind Channel was approved by Manitoba Conservation. 
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Chapter 2: Activity rates and foraging attempts of fathead minnows (Pimephales promelas) 

at three temperatures: implications for predator-prey interactions 

 

Abstract. There is general consensus that the earth is in a warming phase. Fishes in temperate 

ecosystems are ectothermic and there is potential that this could significantly modify the nature 

of predator-prey interactions.  In particular, I expect that in a warmer environment increasing 

energetic demands upon both predator and prey will result in a reduction in the indirect effects of 

predation (e.g., changes in the behaviour to avoid being killed by a predator).  To determine 

whether this is likely to occur I directly measured the how the behaviour of a common prey 

species, the fathead minnow, changed with temperature. Fish were held at one of three 

temperature regimes: 4, 15, and 24˚C and their activity and foraging rates were determined from 

30 minute trials during which food was administered remotely at the 15 minute mark. Fish were 

significantly more active at 15°C than at 4°C and significantly more active at 24°C than at 15°C. 

There was also a significant effect of temperature on the foraging rates of the fathead minnow. 

Significantly more foraging attempts were undertaken at 24°C than at both 15°C and 4°C. No 

differences in foraging attempts were observed between 15°C and 4°C treatments. The results of 

this study demonstrate that temperature does influence the foraging behaviour of small fish in a 

manner that suggests that the influence of predation risk will be reduced at higher temperatures.  
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Introduction 

Studies of predator-prey interactions stress the importance of predation in structuring aquatic 

environments (Brodeur and Pearcy 1992, Caley 1995, Jackson et al. 2001, Baum and Worm 

2009, Palkovacs and Post 2009) through both direct (consumption) and indirect (habitat use 

patterns, group vigilance, competition, etc) effects (Sih 1987, Mittelbach and Chesson 1987). 

Short-term responses to predation risk are common and include hiding and “waiting out” a 

predator (Johansson and Englund 1995) and a reduction in prey activity (Rahel and Stein 1988, 

Eklöv and Werner 2000). However, individuals cannot hide indefinitely. They must acquire 

enough energy to meet their metabolic demands, as well as growth, reproduction, and predator 

avoidance. The presence of predators in the environment imposes the constraint that food be 

obtained without becoming food for others. In aquatic ecosystems where fishes are ectothermic 

(Wootton 1990), energy requirements for both predator and prey should be strongly affected by 

temperature.  

There is an obvious role of physiology in predator-prey interactions as the mechanism 

that links the physical environment to changes in behaviour (Abrahams 2006). For ectothermic 

individuals, as temperature increases energetic demands the requirement for food should also 

increase, which in turn should increase foraging rates. At high temperatures, prey should be 

increasingly affected by these energetic considerations: the hungrier an individual, the more 

energy it will devote to finding food (Dill and Fraser 1984, Godin and Crossman 1994). A field 

study (Smith 2008) conducted over a temperature difference of 8 C° (21.1 – 29.4°C) suggested 

that the feeding rate of a herbivorous fish increases with increasing temperature, though this 

result was not consistent across sites and the amount of food available was not measured. A 
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mean temperature increase of 2°C was also enough to increase the feeding rate of another 

subtropical fish (Mendes et al. 2009).  

However, an increase in foraging with increasing temperature does not appear to be a 

strictly linear relationship, and in some studies, there does not appear to be any relationship at all 

between temperature and feeding. Van Dijk et al. (2002) determined that roach (Rutilus rutilus) 

feeding rates increased until a temperature of 18°C was reached. Beyond that temperature, 

feeding rates leveled off and then declined. Similarly, Meeuwig et al. (2004) found that feeding 

rates in juvenile cutthroat trout (Oncorhynchus clarki henshawi) peaked at 18°C relative to those 

observed 12 and 18°C. 

Vital rates in ectotherms are strongly dependent on temperature. Temperature, therefore, 

has the potential to constrain functions such as energy acquisition, physiological adaptation and 

behaviour (Schultz and Connor 1999, Biro et al. 2005, Larsson et al. 2005). Both Krause and 

Godin (1995) and Hurst and Duffy (2005) observed an increase in the activity levels of fishes 

with increasing temperature, in the absence of food. Under increasing temperatures, it is 

therefore expected that in the presence of food, activity of fishes might increase further. 

Understanding how temperature, through its effect on energetic demands of fishes, influences the 

foraging and activity of these fishes is important to our understanding of how predator-prey 

interactions will change in response to a changing thermal regime. 

 

 

Materials and Methods 

Study animals. Fathead minnows (Pimephales promelas) were used for these experiments.  They 

are common across central North America and are distributed in Canada from New Brunswick in 
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the east west into Alberta. They average 51 mm total length (Scott and Crossman 1998). Within 

their range, the minnows may experience a wide range of temperatures both seasonally and daily. 

Approximately 60 fathead minnows (mean ± SE length: 48 ± 0.8 mm) for this experiment were 

obtained from small ponds in southern Manitoba, Canada, in the spring of 2007 (at a water 

temperature of 10°C) and held in 200-l aquaria. The water temperature of all three aquaria was 

increased to 26°C for a period of two weeks. After that period, the temperature of the aquaria 

was decreased at a rate of approximately 1°C per day, until one aquaria was at each of three 

temperatures (4, 15 and 24˚C). Fish were held at these temperatures under a 12 hour light:12 

hour dark regime at the Animal Holding Facility at the University of Manitoba for at least two 

weeks prior to commencement of the experiment. They were fed ad libitum Nutrafin flakes and 

frozen bloodworms. 

 

Experimental protocol. Approximately 24 hours before the start of the experiment, a randomly 

(haphazardly) selected group of three fish was removed from each of the three tanks and placed 

in a 76-l aquarium containing water of the same temperature (4, 15 or 24°C). Fish were not fed 

after being placed in the aquaria until the feeding component of the experiment. Aquaria were 

covered on three sides preventing visual contact between individuals occupying separate aquaria. 

A ruler was placed along the bottom edge of each aquarium to allow for measurements of 

distances travelled (see below for methods). All trials were conducted in an environmental 

chamber, which minimized disturbance to the fish.  Experiments were conducted between 1400 

and 1500 hours and lasted for 30 minutes. 

The effect of temperature on the activity rate (distance covered/frame) and foraging 

attempts (number of bites made at the surface/frame) of fathead minnows was observed during 
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thirty-minute trials. The first 15 minutes recorded baseline information in the absence of food. 

The second 15 minutes provided foraging information in the presence of 0.5 g of Nutrafin flakes. 

This food was dispersed remotely; a burst of air was delivered from outside the environmental 

chamber through tubing that entered the chamber. This tubing was connected to a small piece of 

polyvinyl chloride with two holes – a large hole was used as a means of placing food into the 

device, which was covered during the trial, and a small hole through which the food exited upon 

administration of the burst of air (Figure 2.1). Six trials, each consisting of three fish, were 

conducted at each temperature. A single Panasonic CCTV WV-CP484 SDIII camera with Pentax 

3.5-8mm F/1.4 CS auto iris lenses was used to record each trial. Video data were recorded to 

Digital Video Disc (DVD) via a Toshiba 1080P UP Conversion D-R7. All tanks were emptied 

and rinsed between trials to eliminate any remaining food. All video data were converted to 

stacked frames using VirtualDubMod (Version 1.4.10, Lee 2006) and saved as bitmap files. 

These files were then imported as a sequence to ImageJ (version 1.38, 2007) for further analysis. 

 

Foraging attempts. I recorded the number of foraging attempts conducted by the most active 

fathead minnow (hereafter, focal individual) during the 15 minutes post food addition. Foraging 

attempts were classified as movement by the minnow to the surface of the water followed by 

mouth opening and closing after food was administered (no observation of this behaviour 

occurred before addition of the food). Nutrafin flakes remained floating at the 
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Air hoses – connected to external 
air source. Circle represents 
opening from outside to inside of 
the environmental chamber. 

 

 

 

 

 

Figure 2.1: Diagram of the experimental set-up. The large box represents the environmental 

chamber as a whole. Food is located at the end of the air hoses and is delivered to fish in the 

aquaria when the external air source is turned on. 
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surface of the aquaria for the remainder of the trial. A single factor ANOVA using log10(number 

of attempts +1) as the dependent variable and temperature as the independent variable was used 

to statistically analyze data. 

 

Distance travelled. The distance travelled (a proxy measure of activity) by the focal individual in 

each aquarium was measured using the position of the minnow in the aquaria at 5 sec intervals 

(every 150th frame). Analysis of each trial began with a calibration of the ruler tool in ImageJ 

using the ruler on the bottom edge of the aquarium. Next, the position of the focal individual was 

marked in ImageJ, again using the ruler tool at time one. After advancing to the next frame (5 

seconds later), I marked the new position of the focal individual using the software tool. This 

continued until the end of the trial. At the end of the trial, the total distance travelled per total 

time of the trial was determined.  

As the presence of food may influence the activity of individuals, an initial analysis was 

conducted using Student’s t-test to determine if there were differences in distances 

travelled/frame before and after a feeding bout.  If there were no differences in activity of fish 

before and after feeding at any of the temperatures, the average total distance travelled at each 

temperature for the entire 30 min of the trial would be used in subsequent analysis. A single 

factor ANOVA with distance travelled as the dependent variable and temperature as the 

independent variable was used to test for differences in distance travelled/frame among the three 

temperatures.  

Each trial represented a single, independent observation as fish were only used once in 

the experiment. All data were tested for normality and homogeneity of variance, and any non-

normal data were transformed to meet normality standards. Alpha values were set at 0.05 for all 



23 

 

analysis and all analyses were conducted using STATISTICA software (StatsSoft Software, 

STATISTICA version 8, 2007).  

 

Results 

Foraging attempts. There was a significant effect of temperature on foraging attempts made by 

fathead minnows (F2, 15 = 21.69, P = 0.00001, Figure 2.2). Post hoc analysis determined that 

significant differences were observed between mean foraging attempts at both 4˚C and 15°C 

temperatures when compared to mean foraging attempts at 24°C (Table 2.1). No difference was 

observed between mean foraging attempts of minnows held at 4°C and those held at 15˚C (Table 

2.1). The magnitude of change in foraging attempts was greatest between 4˚C and 24˚C water 

treatments (a five-fold increase in foraging attempts at 24˚C when compared to 4˚C). There was 

an approximate two-fold increase in foraging attempts between the 15 and 24˚C treatments. 

 

Distance travelled. The initial two-way ANOVA indicated that there were no significant 

differences in activity of fish before and after feeding at any of the temperatures (paired t-test: 

4˚C: t = 0.276, P = 0.785; 15˚C: t = -1.03, P = 0.315; 24˚C: t = -0.717, P = 0.481; df = 10 for all 

analysis; Figure 2.3). With no differences in distance travelled (cm) per frame  
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Figure 2.2: Mean number of foraging attempts per frame of fathead minnows at three 

temperature regimes. Bars represent standard error around the mean. Letters above the bars 

represent significant differences at α = 0.05 using Tukey post hoc tests. 
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Table 2.1: Summary of Tukey’s HSD post hoc test of the influence of temperature on foraging 

attempts of minnows. Significant differences were observed between foraging attempts made at 

both cold and cool temperatures when compared to mean foraging attempts/ frame made at warm 

temperatures. Significant differences are indicated with bold values. No difference was observed 

between mean foraging attempts/ frame made under cold and cool water treatments. 

Treatment 4°C 15°C 24°C 

4°C - 0.252 0.00359 

15°C  - 0.0890 
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Figure 2.3: Mean distance travelled (cm) per frame of fathead minnows, pre- and post- 

administration of food, at three temperature regimes. Bars represent standard error around the 

mean. Letters above the bars represent significant differences at α = 0.05 using Tukey post hoc 

tests. 
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Figure 2.4: Mean (pre- and post- feeding) distance travelled (cm) per frame of fathead minnows 

at three temperature regimes. Bars represent standard error around the mean. Letters above the 

bars represent significant differences at α = 0.05 using Tukey post hoc tests. 
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before and after feeding, the average distance travelled/frame for the entire 30 min duration of 

the trial for each temperature was used in a single factor ANOVA to determine the effect of 

temperature on activity rates of fathead minnows. There was a significant effect of temperature 

on activity rates (F2,15 = 81.37, P < 0.0001; Figure 2.4) and a Tukey’s HSD (honestly significant 

difference) test determined that there were significant differences between each temperature 

treatment (Table 2.2).  There was a six-fold increase in activity rates between 4˚C and 15˚C, and 

a 1.5 times increase between 15˚C and 24˚C.   

 

 Discussion 

In this study, both foraging and activity rates increased with increasing temperature. When 

compared to fishes occupying 4˚C water, fishes held at 24˚C increased their distance travelled 

per frame by a magnitude of nearly nine-fold. A ten-fold increase in foraging attempts was 

observed between fishes held at 4˚C and those held at 24˚C. In measures of both foraging and 

activity, fish held at 15˚C displayed intermediate foraging and activity levels. These increases in 

foraging as temperatures increase is similar to that observed in an herbivorous marine fish 

foraging under different thermal regimes (Smith 2008). Increased foraging with temperature has 

also been observed in juvenile brown trout, Salmo trutta (Ojanguren et al. 2001) and brook trout, 

Salvelinus fontinalis (Taniguchi et al. 1998). Increases in activity with temperature agrees with 

the results of Krause and Godin (1995) who also observed fishes held at warmer temperatures 

moved more rapidly and made quick turns. 
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Table 2.2: Summary of Tukey’s HSD post hoc test of the influence of temperature on activity 

rates of minnows. Significant differences were observed in activity rates between all 

temperatures as indicated by bold values. 

Treatment 4°C 15°C 24°C 

4°C - 0.000126 0.000126 

15°C  - 0.000133 
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These results suggest that temperature is a driving force influencing the activity and energy 

budgets of fathead minnows, and that the effect of temperature may be exacerbated by positive 

feedback.  At warmer temperatures fish are required to increase their foraging to meet their 

higher energetic demands. To do so, they increase their level of activity. The increased 

requirements for food mean they are less likely to integrate predation risk into their decision-

making processes (Dill and Fraser 1984, Godin and Crossman 1994) as incorporating risk of 

predation into the decision to forage or not is a state-dependent decision (Magnhagen 1988, 

Gregory 1993). A satiated individual is less likely to take a risk to obtain food as compared to a 

hungry individual; the satiated individual can rely on its energetic reserves, which negates the 

need to forage under risk of predation. Hungry individuals are therefore more likely to take the 

risk and forage while predators are present which in turn may result in increased detection and 

capture rates by predators.  

 Anderson et al. (2001) found that increasing temperatures increased growth of larval 

anurans (Hyla regilla), which was expected to reduce the mortality rates of these larger 

individuals as their predators were gape limited; growth decreases the number of gape limited 

predators that can consume prey (Magnahagen and Heibo 2001) and offers a potential refuge for 

prey (Urban 2007). However the increase in growth of larval anurans in the study by Anderson et 

al. (2001) resulted in the observed increase in mortality of anurans held at higher temperatures. 

While activity and foraging rates were not measured in that study, it is probable that the increase 

in growth rates at high temperatures were a result of increased foraging and activity levels of the 

larval anurans, which in turn resulted in the higher morality of anurans. This in itself is likely a 

result of increased encounters between prey and predators as foraging/activity of prey increased 

with increased temperature.  Increased activity has also been linked to increased mortality rates 
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in the damselfly, Coenagrion hastulatum (Brodin and Johansson 2004) and flounder, 

Pseudopleuronectes americanus (Taylor and Collie 2003) when predators are also ectothermic. 

 The study by Anderson et al. (2001) suggests that high temperatures results in higher 

predation risk. However there is a possibility that low temperatures and the resulting low activity 

rates as observed in this study may not necessarily result in a reduction in predation risk. Muscle 

function and swim speed are reduced when temperatures are low (Claireaux et al. 2006, Jones et 

al. 2008) and may result in a reduction in the ability to escape faster swimming predators. 

Johnston et al. (2004) observed the activity of young-of-year Atlantic salmon (Salmo salar) and 

determined that at low temperatures (< 7˚C) salmon become less active (as observed in this 

study) and spend more time hiding – they also become nocturnal at low temperatures. If only the 

prey are ectothermic, a reduction in muscle function and swim speed may actually increase the 

vulnerability of fish to predation – a possible explanation for the observation of a switch to 

nocturnal behaviour of the salmon to avoid their endothermic predators at low temperatures 

(Johnston et al. 2004).  

 If increased temperature results in increased encounters between predators and their prey, 

the potential detrimental effects to prey as a result of increased temperatures will likely be 

beneficial to a predator. Prey are more active at higher temperatures and therefore less cryptic 

(Gotceitas and Godin 1991) and predators have demonstrated a preference for active prey 

(Krause and Godin 1995). With an increase in activity and foraging rates with temperature, it is 

expected that fathead minnows would experience an increase in predation risk with increasing 

temperature. Mitigating effects of increased predation risk might include increased mobility and 

escape capabilities at increased temperatures (Persson 1986) as muscle function and swim 

performance are temperature dependent (Logue et al. 1995).  



32 

 

 How individual prey tradeoff increasing energy acquisition against decreased safety from 

predators can dictate the flow of energy within an ecosystem (Trussell et al. 2006). The energy 

flow within an ecosystem is itself determined by prey being consumed by predators and the rate 

of food consumed by these prey. Both of these factors are affected by temperature and both of 

these factors interact with one another. As temperature increases, food consumption and activity 

rates of prey increase making it increasingly difficult to meet their energetic demands. It is likely 

that these individuals will be less concerned with predation risk when it comes to decision 

making as their efforts are focused on food consumption. And not only are these individuals 

likely not incorporating predation risk as fully into decision making as individuals inhabiting 

cooler temperatures, but the increased activity observed at high temperatures likely renders these 

individuals more easily detected by predators. As aquatic ecosystems warm in response to 

climate change, prey will likely experience an increase in mortality as consumption rates by 

predators increase in response to their own increase in metabolic demands and in response to an 

increase in availability (through increased movements and therefore detection) of prey to 

predators. 
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Chapter 3: Risk-taking and temperature: what deviations from the ideal free distribution 

tell us about the influence of temperature on predator-prey interactions 

 

Abstract. As temperatures increase, the metabolic rates of fishes increase. It was hypothesized 

that prey would take greater risks to achieve increased foraging payoffs to meet these increased 

energetic demands. To test this hypothesis, prey were provided opportunities to feed in low and 

high risk locations at three temperature regimes in the presence and absence of a predator held at 

a constant temperature. In the absence of predators, prey distributed themselves between feeding 

locations as predicted by the Ideal Free Distribution (IFD) at all temperatures with the highest 

feeding activity at 23°C.  Only at 23°C did the presence of a predator not significantly alter this 

distribution. The behaviour of the predators was also affected by temperature with their time 

spent oriented towards the prey greatest at 23°C. These results suggest that increasing 

temperatures will generate increasing mortality rates of prey due to more prey willing to take 

greater risks to obtain food in combination with their predators also requiring more food to meet 

their elevated energy demands.  
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Introduction 

The best-known role of predators within ecosystems is their consumption of prey; they also have 

indirect effects as prey modify their behaviour to avoid being consumed (Mittelbach 1984, 

Mittelbach and Chesson 1987, Sih 1982, Werner et al. 1983). Prey however, cannot spend all of 

their time avoiding predators as their energetic requirements must be met in order to avoid 

starvation. Habitat choices made by prey must therefore balance the benefits of avoiding 

predators with the net energy benefits of the food obtained (MacArthur and Pianka 1966, Werner 

and Gilliam 1984). Since both these parameters will vary in space and time, these decisions will 

constantly need to be updated (Sih 1987; Abrams 1991; Dill and Fraser 1984). Important factors 

affecting the prey’s decisions include energetic state (Dill and Fraser 1984; Godin and Crossman 

1994), predation pressure by gape-limited predators (Urban 2007) and the possibility of future 

foraging opportunities under reduced predation risk (Lima and Bednekoff 1999).  

 A large number of theoretical studies have been devoted to predicting the distribution of 

prey among habitat patches that have inherent risks and rewards (food) associated with them. 

Empirical and theoretical studies that suggest prey distribution among patches is dependent upon 

both resource distribution and predation risk (Gilliam and Fraser 1987, Abrahams and Dill 1989, 

Lima and Dill 1990, Grand and Dill 1997). In fact, Abrahams and Dill (1989) suggest that prey 

will use an inherently risky patch if the level of food is increased to a point at which risk of 

predation is offset. It is unknown if the abiotic environment will affect the distribution of fishes 

between habitat patches when these patches differ in risk but have equal quantities of food 

present.  

Environmental parameters such as dissolved oxygen (Kramer et al. 1983, Wolf and 

Kramer 1987, Robb and Abrahams 2002), light level (see Lima and Dill 1990), turbidity 
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(Abrahams and Kattenfeld 1997), and temperature (Krause and Godin 1995) can have an impact 

on the behavioural decisions made by prey and their predators. Of particular interest in this paper 

is temperature, since metabolic rates of fishes will increase with temperature, (Wootton 1990). It 

is assumed that these increases in metabolic rates result in increased energy demands which will 

in turn increase the risk they are willing to incur to feed (Magnhagen 1988, Gregory 1993).  

Anderson et al. (2001) found that increased temperatures increased the growth of larval 

anurans (Hyla regilla). As body size decreases the number of predators increases, (Magnahagen 

and Heibo 2001), meaning that a large size offers a potential refuge for prey (Urban 2007). 

Anderson et al. (2001) therefore expected that increased temperatures would result in a reduction 

in the mortality risk of the individuals reared at higher temperatures. However, they observed an 

increase in the number of anurans consumed by predators at higher temperatures. While activity 

and foraging rates were not measured in that study, it is probable that the increase in growth rates 

at high temperatures were a result of increased foraging and activity levels of the larval anurans, 

which in turn resulted in the higher mortality of anurans. This might be a result of increased 

encounter rates between predator and prey; foraging prey are less cryptic (Gotceitas and Godin 

1991) and predators have demonstrated a preference for active prey (Krause and Godin 1995). 

The expectation is that as temperatures increase, in order to meet increased energetic demands, 

prey will increase their use of risky habitats which will in turn increase their mortality rate.  

  Previous work has demonstrated that fathead minnows (Pimpehales promelas) increase 

their activity levels with increasing temperature (Chapter 2), suggesting that the minnows will be 

more vulnerable to predators (sensu Krause & Godin 1995).  The goal of this study is to 

determine whether prey also become more willing to take greater risks to obtain food at warmer 

temperatures, and whether their predators simultaneously increase their foraging behaviour as 
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prey become more active.  Ultimately this information will allow me to determine whether the 

risk of predation within aquatic ecosystems will vary depending upon the temperature of the 

environment.  

 

 

Material and Methods 

Study species. Fathead minnows and yellow perch (Perca flavescens), a predator of the fathead 

minnow, were used in this experiment to determine the effect of temperature on risk taking by 

prey. Fathead minnows (mean ± SE weight: 2.10 ± 0.48g) for this experiment were obtained 

from small ponds in southern Manitoba, Canada in the fall of 2009 using minnow traps when the 

water temperature was approximately 7°C. The water temperature of all three aquaria was 

increased to 26°C for a period of two weeks. After that period, the temperature of the aquaria 

was decreased at a rate of approximately 1°C per day, until one aquaria was at each of three 

temperatures (5, 15 and 25˚C). Yellow perch (mean ± SE weight: 101.01 ± 1.56g) were collected 

from Delta Marsh at the University of Manitoba Field Station at the southern tip of Lake 

Manitoba (50°11’N, 98°23’W) in 2006, again using minnow traps. Fish were held at their 

experimental temperatures under a 12 hour light:12 hour dark regime at the Animal Holding 

Facility at the University of Manitoba for at least two weeks prior to commencement of the 

experiment. yellow perch were housed in 200-l aquarium at 15˚C. The fathead minnows were fed 

ad libitum Nutrafin flakes and frozen bloodworms while the yellow perch were fed squid and 

fish. 
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Experimental design. In an environment free of risk, where there is a continuous input of food, 

under predictions of the Ideal Free Distribution (IFD: Fretwell and Lucas 1970) it is expected 

that the spatial distribution of foragers will match the spatial distribution of food in the 

environment. The IFD assumes that individuals have “ideal” (e.g., perfect) knowledge of the 

resource distribution and are “free” to compete equally in any location. When these assumptions 

are met, deviations from the IFD can be used to quantify the impact that the risk of predation has 

on habitat quality (Abrahams and Dill 1989).  

To determine the potential effects of temperature on predator-prey interactions, I 

designed an experiment to test the relative risk-taking (feeding in a risky location) by minnows 

held at three temperatures (5, 15 and 23°C), while the temperature of the predator remained 

constant. Changing the temperature of the predators would affect their metabolic rates, hunger 

levels, and likely their ‘interest’ in the prey, their potential food. This in turn could potentially 

alter the responses of the prey as prey can assess risk of predation based on inspection of their 

predators (Dugatkin and Godin 1992) and changing temperatures may change that risk. 

Temperature of the predators was therefore kept constant to allow for the direct effect of 

temperature on risk taking by the fathead minnows to be discerned without the confounding 

factor of changes in the riskiness of the predator.  

The experimental apparatus consisted of a 40-l aquarium containing the fathead minnows 

and a 10-l aquarium housing the yellow perch adjacent to the end of the large aquarium. Before 

the experiment commenced, a solid divider was placed between the two aquaria to prevent visual 

contact of predator and prey (fathead minnows) and the potential habituation of the prey to a 

predator that is not an actual threat. Control treatments were trials with no predators; the solid 

divider was also placed between those two aquaria in the trials. The small aquarium was 
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randomly placed on either the right or left side of the aquarium to control for any potential side 

effect in both control and treatment trials. In the minnow’s aquarium, two automated feeders 

were set up to provide equal amounts of food. One feeder was placed 5 cm from the 10-l 

aquarium (when predator present in the small aquarium, this was designated as the high risk 

location), the other 5 cm from the end of the opposite end of the aquarium (low risk). Each 

feeder provided 0.25 g of frozen bloodworm over an approximate 15 minute time period (see 

Abrahams and Dill 1989 for a description of the feeders) (Figure 3.1).  

Both the predator and groups of six similar sized prey were randomly selected and placed 

in the apparatus 24-h before the experiment started. Once the trial was ready to begin, cameras 

were activated, the solid divider removed and the automated feeders were then turned on. The 

feeder was the only source of food for the minnows for the duration of the experiment. Upon 

completion of the trial, the water was changed and the aquarium cleaned. At each temperature, 

six replicates of each treatment (predator present or absent) were completed for a total of 36 

trials. Groups of fish were used in one trial only (either predator present or predator absent). All 

trials were completed over 24 days with trials being performed once per day, every second day, 

in three aquaria.  
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Figure 3.1: Diagram of the experimental apparatus used to determine the effects of temperature 

on response of minnows to a predator. F1 represents the high-risk feeder, F2 the low-risk feeder; 

they are located approximately 5 cm from the side of the 40-l aquarium. The solid divider 

prevented the minnows from becoming habituated to the presence of the predator.  
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Data collected during all trials. All trials took place between 1100 and 1130 and ran for 

approximately 15 minutes. The total number of minnows using the feeders and their location 

with respect to the feeders (whether the minnows were feeding at the high risk feeder close to the 

predator – the 10-l aquarium location – or the safe feeder at the  

opposite end of the 10-l aquarium) were observed every 30 seconds for the 15 minute duration of 

the trial. The mean proportion of minnows occupying the high risk location was calculated in 

both the predator and no predator treatments. A feeding minnow was considered to be any 

individual that had consumed or was consuming bloodworms within approximately 5 cm of 

either side of the feeder. To determine if the predators were affected by the behaviour of the prey 

among temperature treatments, the proportion of the time spent oriented towards the minnows in 

the 40-l aquaria during approximately the last 10 minutes of the 15 minute trial was assessed. 

Omitting the first 5 minutes of the trial allowed for any disturbances associated with the removal 

of the solid divider to be accounted for in the analysis.  

 

Statistical analysis. For descriptive statistics, each group of minnows represented a single 

experimental unit. For statistical analysis, each unique combination of minnows and predator at 

each temperature was considered an independent observation, since observations depended both 

upon group identity and the response of the predator to the temperature manipulation (prey 

behaviour at the various temperatures). A single observation for each experiment was determined 

by taking the mean of all sequential observations within a trial. The effects of temperature and 

predator on the mean number of minnows feeding and the proportion using the high-risk feeder 

(dependent variables) was determined using a two-way factorial ANOVA.  
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 Finally, to determine if the temperature of the prey affected the proportion of time the 

predators spend oriented towards the prey a single factor ANOVA was used with temperature as 

the independent variable and the proportion of time the predator spent oriented towards the prey 

as the dependent variable. To further examine the potential relationship between the orientation 

of the predators toward the prey and the prey behaviour, two regression analyses were run. The 

first regression analysis included the average number of minnows foraging as the independent 

variable and the proportion of time the predator spent oriented towards the prey as the dependent 

variable. The second regression analysis used the mean proportion of minnows using the risky 

feeder as the independent variable and the proportion of time the predator spent oriented towards 

the prey as the dependent variable. All data were tested for normality and homogeneity of 

variance, and any non-normal data were transformed to meet normality standards. All data in the 

form of proportions were arc-sine square root transformed prior to analysis. Results were 

considered significant at α = 0.05. Alpha values were set at 0.05 for all analysis which were 

conducted with the STATISTICA software.  

 

Results 

At 23˚C, there were significantly more minnows foraging than at either of the two cooler 

temperatures (two-way factorial ANOVA: F 2, 30 = 35.31, P < 0.00001, Table 3.1; Figure 3.2a; 

Tukey’s HSD post hoc comparisons, Table 3.2); there were almost three times as many minnows 

foraging at 23°C as compared to both 5 and 15°C. As compared to the  

 



47 

 

Table 3.1: Results of the two-way factorial ANOVA examining the relationship between 

temperature and predator presence or absence (independent factors) on the mean number of 

minnows foraging. Significant differences are indicated with bold values. 

Source of variation df F P 

Temperature 2 35.31 0.00001 

Treatment 1 0.2464 0.6232 

Temperature*Treatment 2 0.17876 0.8372 
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Table 3.2: Summary of Tukey’s HSD post hoc test of the influence of temperature on number of 

minnows feeding. Significant differences are indicated with bold values. 

Treatment 5°C 15°C 23°C 

5°C - 0.858 0.000217 

15°C  - 0.000145 
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Figure 3.2: The mean response of the fathead minnows to the presence of a predator as measured 

by (a) the average total number of fish feeding per trial and (b) the mean proportion of fish 

feeding on the treatment (aquarium) side, at each temperature in the presence and absence of a 

predator. Bars represent standard error around the mean.  
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number of minnows feeding in the absence of predators, the number of individuals using the 

feeders did not change at either of the three temperatures when predators were present (two-way 

factorial ANOVA: F 1, 30 = 0.2464, P = 0.6; Table 3.3; Figure 3.2a). The proportion of minnows 

feeding in the presence of the predator was affected by temperature, with the predator having 

little influence on the spatial distribution of minnows at 23°C (Figure 3.2b).  There was no effect 

of predator treatment on the number of minnows feeding; the interaction between predator 

treatment and temperature was also not significant (Table 3.1, Figure 3.2a).  

As predicted by the IFD, in the absence of predators, fishes distributed themselves 

equally between the two feeders regardless of the temperature at which they were held (Figure 

3.2b). However, there was a significant interaction between temperature and predator treatment 

on the proportion of feeding minnows using the risky feeder (two-way factorial ANOVA: F 2, 30 

= 8.626, P = 0.001, Table 3.3, Figure 3.2b). In the presence of a predator, minnows that were 

held at 5˚C used the risky feeder significantly less than minnows at every other temperature – 

predator present/absent combination (Tukey’s HSD post hoc test, Table 3.4). As well, the 

proportion of feeding fish using the risky feeder at 15˚C in the presence of a predator was 

significantly less than the proportion of fish at 15˚C using the risky feeder in the absence of a 

predator (Tukey’s HSD post hoc test, Table 3.4). Overall, the presence of a predator resulted in a 

lower proportion of the feeding minnows using the risky feeder at 15˚C. At 23˚C there were no 

differences in the proportion of fish using the risky feeder in the presence versus absence of the 

predator.  

Temperature had a significant effect on predator behaviour, whereby predators spent 

significantly more time oriented towards the prey when the prey were at warmer  
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Table 3.3: Results of the two-way factorial ANOVA examining the relationship between 

temperature and predator presence or absence (independent factors) on the mean proportion of 

minnows using the risky feeder. Significant differences are indicated with bold values. 

Source of variation df F P 

Temperature 2 8.451 0.001228 

Treatment 1 40.29 0.000001 

Temperature*Treatment 2 8.626 0.001098 
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Table 3.4: Summary of Tukey’s HSD post hoc test of the influence of the interaction between 

temperature and predator presence on the proportion of minnows using the risky feeder. 

Significant differences are indicated with bold values. 

   Treatment Combination 

Treatment 

Combination 

Temperature Predator  

Treatment 

2 3 4 5 6 

1 5˚C Predator 0.00014 0.013 0.00014 0.00019 0.00013 

2 5˚C No predator - 0.065 0.66 0.70 0.99 

3 15˚C Predator  - 0.0082 0.088 0.0070 

4 15˚C No predator   - 0.061 0.43 

5 23˚C Predator    - 0.89 

6 23˚C No predator     - 
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Table 3.5: Summary of Tukey’s HSD post hoc test of the influence of temperature on the 

proportion of time a predator spends oriented towards its prey. Significant differences are 

indicated with bold values. 

Treatment 5°C 15°C 23°C 

5°C - 0.980 0.000471 

15°C  - 0.000611 
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Figure 3.3: The mean response, as measure by the amount of time the predators spent oriented 

toward the prey, of predators to prey foraging at three temperatures. Letters above the bars 

represent significant differences at α = 0.05 using Tukey post hoc tests. Bars represent standard 

error around the mean.  
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Figure 3.4: The relationship between prey activity and predator orientation towards the prey as 

measured by (a) the relationship between the number of fish active per trial and the proportion of 

time the predator spent oriented towards the prey and (b) the relationship between the proportion 

of fish using the risky feeder and the proportion of time the predator spent oriented towards the 

prey.  
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temperatures  (one-way ANOVA: F 2, 17 = 60.96, P < 0.000001; Figure 3.3; Tukey’s HSD post 

hoc test, Table 3.5). In fact, predators spent almost double the proportion of time oriented 

towards the prey at 23°C than at either 5 or 15°C. Both the mean number of fathead minnows 

feeding (R2 = 0.3063, F1, 16 = 7.064, P = 0.02; Figure 3.4a) and the proportion of fathead 

minnows using the risky feeder (R2 = 0.4242, F 1, 16 = 11.79, P =  

0.003; Figure 3.4b) were significant predictors of the proportion of time the yellow perch spent 

oriented towards their prey.  

 

Discussion 

This study has demonstrated that the temperature of prey affected the behavior of both predator 

and prey, even when the water temperature in which the predator is housed remains constant. 

Significantly more fathead minnows fed at warmer temperatures, even in the presence of 

predators and their distribution conformed to the IFD in the absence of the predator. In the 

presence of a predator, the proportion of feeding minnows using the risky feeder declined with 

the greatest decrease in use of the risky feeder occurring at 5°C. In fact, at 5°C in the presence of 

a predator, a significantly smaller proportion of foraging minnows use the risky feeder than any 

other temperature-predator treatment combination.  

As temperatures increased, the proportion of time the predator spent oriented toward the 

prey also increased. This result is likely a result of the direct linear relationship between the 

proportion of time a predator spends oriented toward the prey, and both the average number of 

minnows foraging and the average proportion of foraging minnows using the risky habitat to 

forage. Taken together, these data suggest that higher temperatures will result in increased 

predation risk to prey. The increased activity and willingness to forage in risky habitats, 
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presumably to meet increased metabolic demands at high temperatures (Wootton 1990), will 

likely increase the encounters between predators and their prey. In natural ecosystems, where the 

temperature of the predators will also increase as prey temperatures increase, this effect will 

likely be exacerbated as predators increase their activity and foraging to meet their increased 

metabolic demands as well.  

Both theoretical (Hugie and Dill 1994, Sih 1998) and empirical (Gilliam and Fraser, 

1987, Abrahams and Dill 1989, Lima and Dill 1990, Bouskila 2001, Alonzo 2002) studies have 

suggested that habitat choice by prey is dependent upon the costs – predation risk, and benefits – 

foraging payoffs, of the available habitats. Prey are less likely to use risky habitats where 

predators are present. Abrahams and Dill (1989) suggested that prey could be encouraged to use 

risky locations by increasing the amount of food available in that habitat, essentially offsetting 

the cost of predation by increasing the benefit. In this study, at both 5° and 15°C, the potential 

cost of predation was enough to offset the potential foraging gains that would be acquired by 

using the risky habitats. However, at 23°C, minnows were as likely to use the risky feeder in the 

presence of a predator as they were in the absence of a predator. This suggests that the abiotic 

environment, specifically temperature, can affect the risk-taking decisions of the fathead 

minnow.  

Observations of increased foraging with increased temperature have been observed in 

both marine (Smith 2008) and freshwater fishes (juvenile brown trout, Salmo trutta: Ojanguren 

et al. 2001; brook trout, Salvelinus fontinalis: Taniguchi et al. 1998; fathead minnow: Chapter 2) 

as well as in this study. As temperature increases, the metabolic rate of fishes increases (Wootton 

1990) which increases their energetic demands. This increase in energetic demands with 

temperature is likely the mechanism resulting in the observed increase in foraging with 
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temperature in this study. At high temperatures, foraging increases to meet these energetic 

demands. Under risk of predation, this requirement to meet increased demands at high 

temperatures likely offsets the risk of predation – there was no difference in either the number of 

individuals feeding or in the proportion of feeding individuals that use the risky feeders.  

With increasing temperature of the prey, not only did the overall number of individuals 

foraging increase and the proportion of individuals using the risky feeder in the presence of a 

predator increase, but the proportion of time the predator spent oriented towards the prey also 

increased. Krause and Godin (1995) observed that predatory cichlids (Aequidens pulcher) 

preferentially attacked small groups of guppies (Poecilia reticulata) that were held at high 

temperatures as opposed to large groups of guppies held at lower temperatures. In previous 

experiments, when groups were held at constant temperatures, predators preferentially attacked 

large groups of guppies. They attributed the increased attacks on smaller, warmer groups to the 

fact that at warm temperatures, guppies were more active and more active prey are less cryptic. 

In this study, similar observations were made. As number of individuals foraging increased, the 

proportion of time a predator spent oriented towards the prey increased. The relationship was 

even stronger when the proportion of individuals utilizing the risky feeder was used as the 

predictor of the proportion of time the predator spent oriented towards the prey. Many studies 

examine the role that the presence of predators and the proximity of predators to prey have on 

prey behaviour, growth rates, morphology and life histories (Lima and Dill 1990, Reznick et al. 

1990, Lima 1998, Tollrian and Harvell 1999, Turner and Montgomery 2003). This study 

suggests that the actual risk to these prey by predators in close proximity to them may be 

affected by prey behaviour. Less active prey may experience lower mortality rates.  
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In Chapter 2, I demonstrated that as temperatures increased, the activity and foraging 

rates of the fathead minnow increased. I then suggested that in natural ecosystems, as 

temperatures increase, prey would experience an increase in encounter rates with predators as 

they attempt to meet increased energetic demands. Anderson et al. (2001) measured an increase 

in mortality rates of anuran larvae at increased temperatures and attributed it to increased 

foraging rates by individuals held at warmer temperatures (though this was not measured). My 

study suggests that both temperature and the presence of a predator have an effect on the number 

of individuals feeding and their distribution between feeders offering equal amounts of food. 

Temperature directly affects the number of individuals foraging and the temperature and 

presence versus absence of a predator interact to influence the decisions of prey to use a risky 

habitat. Prey are more willing to take risks and feed in the presence of a predator at warm 

temperatures, likely increasing their probability of being captured and consumed by a predator. If 

predators also increase their foraging at warm temperatures, and experience an increase in 

capture efficiency at warm temperatures (Persson 1986), prey are likely to experience higher 

rates of mortality as temperatures increase.  
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Chapter 4: Fish communities in a changing aquatic environment: implications for 

predator-prey interactions 

 

Abstract. Fishes living in a shallow water ecosystem often experience a wide range of 

temperatures, dissolved oxygen levels, and turbidity. I tested the hypothesis that the fish 

community structure will vary as the aquatic environment changes and that these changes will be 

related to the morphology and physiology of the species. To test this hypothesis, I collected 

measures of temperature, dissolved oxygen and turbidity from a shallow, blind ending channel 

from which fishes could leave if conditions became unfavourable. I also sampled the relative 

abundance of predator and prey species. Regardless of whether fishes are classified as cool- or 

warm- water, there was a significant positive relationship between fish CPUE and temperature. 

CPUE of fishes with physostomous swim bladders were positively related to DO levels, while 

those with a physoclistous swim bladder were negatively related to DO levels. Turbidity was not 

a significant predictor of species that rely on either vision or chemosensory mechanisms for 

foraging. With respect to the role the environment plays in mediating predator-prey interactions, 

increases in temperature increases CPUE of all fish sampled, with the possibility of increased 

predator-prey interactions as a result of increased encounter rates. Periods of low DO may 

provide prey with a reduction in risk of predation by piscine predators as the two dominant 

predators of small fish, northern pike and bullhead species, have a positive relationship with 

measures of DO.  
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Introduction 

Describing patterns in the structure of fish assemblages has been the focus of many ecologists 

with the goal of understanding the mechanisms that regulate communities (Moyle and 

Vondracek 1985, Jackson and Harvey 1989, Gilliam et al. 1993, Matthews et al. 1994, Jackson et 

al. 2001, Kennard et al. 2007, Mitchell and Knouft 2009). These studies have often focused 

solely on the species present (Matthews et al. 1994, Mitchell and Knouft 2009), but have also 

included physical habitat measures (Gilliam et al. 1993, Kennard et al. 2007), or waterbody 

morphology measures (Jackson and Harvey 1989). However, it is important to also consider 

environmental factors such as temperature, dissolved oxygen (DO) and turbidity, as these 

variables have the potential to mediate interactions between species and/or limit the ability of 

species to persist in a given area (Persson 1986, Chapman et al. 2002, Robb and Abrahams 2003, 

Bonner and Wilde 2002, De Robertis et al. 2003), thereby influencing the structure of fish 

assemblages. In a waterbody that experiences a wide range of environmental conditions it is 

possible that as conditions change they become more or less favourable to certain species, a 

factor dependent upon species-specific physiology and morphology. If changes to the aquatic 

environment affect predators and prey differently, understanding how the environment 

influences community composition may be a critical component for understanding predator-prey 

interactions.  

This paper has two goals: 1) to determine the role the environment plays in structuring 

both the species composition and the size distribution of predators within an ecosystem and to 

determine whether the abundances of predators can influence the abundance of the prey and 2) to 

determine how changes in the fish community in response to changes the environment may 

affect predator-prey interactions, testing the various predictions of Abrahams et al. (2007). 
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Abrahams et al. (2007) set out to theoretically predict the effect of a changing aquatic 

environment on fish communities. Specifically, the authors attempted to predict if predators or 

prey would benefit under changing environmental conditions.  

Most fishes are poikilotherms and temperature plays a role in structuring the distribution 

of these fishes based on their tolerances to temperatures. Documented are species-specific upper 

and lower thermal limits, as well as thermal optima (Neill 1979). In North America there are 

three thermal guilds of fishes: cold-, cool- and warm- water with general upper lethal limits of 

25, 32 and 40˚C respectively although species-specific exceptions do occur (Magnuson et al. 

1997). Conversely, it is not only the species of an individual that determines its temperature 

tolerance. The size of the individual may also affect tolerances to high water temperatures and 

metabolic rates of larger fish are higher at a given temperature than those of smaller fish of the 

same species (Hölker 2003).  

Given that species and size are determinants in temperature preference and thermal 

optima of individuals, it is not surprising that temperature has been demonstrated to influence 

predator-prey interactions of poikilotherms (Persson 1986, Anderson et al. 2001).  Temperature 

influences the energetic requirements of fish through their metabolism, (Wootton 1990) activity, 

(Weetman et al. 1998, Krause and Godin 1995, Chapter 2) and foraging rates (Chapter 2, 

Chapter 3). Temperature also influences the propensity of individuals to forage in a risky habitat 

to increase the amount of food received (Chapter 3). It can therefore be expected that 

temperature will also influence encounter rates between predators and their prey in natural 

ecosystems, increasing predation risk to prey. However as temperatures increase, Abrahams et al. 

(2007) predict that the presence of large piscivores, specifically cold-water species, will decline. 
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Results of their theoretical study suggest that increasing temperatures may result in a net benefit 

to the prey. 

As with temperatures, fishes of different species and sizes will have different tolerances 

to dissolved oxygen levels (Robb and Abrahams 2003), which may play a role in structuring fish 

community composition. Unlike temperature where both extremes (highs and lows) influence 

physiology, the important factor influencing the ability of fishes to inhabit specific areas is the 

lower measure of DO - hypoxia. Hypoxia is widespread in many shallow water ecosystems and 

persistent extreme hypoxia (< 2 mg/l O2) can result in extreme mortality rates (83% of fish) in 

small pools (Tramer 1977). Research by Fischer et al. (1987) and Chapman et al. (2002) suggest 

that differential tolerances to low levels of DO can influence community structure.  

If DO levels become very low, there is the possibility that species that have a low 

tolerance for hypoxia will migrate out of the areas with low DO and into larger bodies of water 

that in general are more oxygenated (Chapman et al. 1996). Morphology of individuals can 

influence their tolerance to hypoxic conditions (Burleson et al. 2001, Robb and Abrahams 2003, 

Hedges 2007). Specifically, those species with physostomous swim bladders may be able to 

obtain oxygen with air gulped from the surface (Seymour et al. 2007). Being able to use a 

physostomous swim bladder in this way may enable these fishes to exploit areas with low levels 

of DO. With regards to size, larger individuals may be more susceptible to low levels of DO 

(Chapman et al. 2002) though the opposite has also been observed (see Nilsson and Östlund-

Nilsson 2008 for a review). This suggests DO levels as well as the temperature of the 

environment may influence species composition and size distribution of individuals within a 

water body.  
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The response of both predators and prey (and therefore predator-prey interactions) to 

changes in measures of dissolved oxygen is predicted by Abrahams et al. (2007) to depend 

critically upon the specific physiology of the species present. This is because the physiology of 

individuals will influence their tolerance to hypoxic conditions. With smaller individuals being 

more tolerant of hypoxic conditions (Robb and Abrahams 2003), Abrahams et al. (2007) 

predicted that under periods of low oxygen levels, prey will be afforded benefits of a reduction in 

predation risk due to reductions in the number of piscivores present. As mentioned above 

however, the presence of a physostomous swim bladder in predators may alter that predicted 

predator-prey dynamic.  

Aquatic ecosystems that experience turbid conditions are often home to fishes that use a 

variety of senses to detect food. Some fish, such as those that rely heavily on chemical cues 

while foraging, may be better than others at foraging in turbid water bodies (Bonner and Wilde 

2002, De Robertis et al. 2003). For example, members of the family Ictaluridae are 

chemosensory feeders and are able to forage in turbid waters; they do not rely on vision to forage 

and as such have reduced visual acuity (Caprio 1982). With respect to fish species that do rely on 

vision, larger eyes imply increased visual acuity. As well, larger and longer eyes increases the 

distance between the cornea/lens and the retina which increases the size of the image (Howland 

et al. 2004). In fishes, eye size increases with the body length. It is therefore expected that fishes 

relying primarily on vision for foraging may be affected to a greater degree by changes in 

turbidity levels within an aquatic ecosystem than those that rely on chemical cues (Nilsson et al. 

2009). Extrapolating responses of species to changes in turbidity levels of aquatic ecosystems to 

the potential effects of turbidity on predator-prey interactions, Abrahams et al. (2007) predict 

that as turbidity levels increase, it becomes energetically more expensive to forage. Individuals 
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increase their movement rates to increase encounter rates with their food in turbid conditions. 

However, as mentioned above, the mechanism by which individuals locate their food (chemical 

versus visual) may affect activity (foraging) of predators and their prey under turbid conditions, 

and therefore the encounter rates between predators and prey.  

While looking at the role that the environment plays in structuring fish communities and 

predator-prey interactions, it is also important to recognize the potential dynamic between the 

abundances of predators and their prey. In aquatic ecosystems, the abundance of prey can 

fluctuate with the abundance of predators (Clark et al. 2003). During periods of high predator 

abundance, prey are known to increase their use of refuges and/or decline in abundance (Clark et 

al. 2003, Baum and Worm 2009, Vonesh et al. 2009). In a system where the abiotic environment 

may be a factor in structuring the predator community, any changes in the predator community 

may then affect the abundance of prey in the ecosystem. As this study focuses on a system in 

which both predators and prey can both enter and leave the study area, presence of fish in the 

system indicates a choice for that system. Given the preceding information the following 

predictions, based on the three environmental variables and the potential relationship between 

the abundance of predators and their prey were tested: 

1) Temperature: I predicted that the two guilds of fish present (cool- and warm- water species) 

will respond differently to changes in temperature. As temperature increased, I expected the 

abundance of cool- water species (northern pike, Craig 2008) to decrease while the abundance of 

warm- water fishes (brown and black bullhead, freshwater drum, and fathead minnow) should 

not be affected by temperature (bullhead species: Richards and Ibara 1978; freshwater drum and 

fathead minnows: Wei et al. 2004). Temperature is also expected to influence the species-

specific length of piscivorous fish. I predicted, based on the fact that metabolic costs increase 
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with temperature and size (large fish of a given species will have higher metabolic rates than 

smaller fish of the same species), that as temperature increased the size of individuals of a given 

species will decrease. Given the above predictions, an increase in temperature is expected to 

result in a reduction in predation risk to prey fish, as also predicted by Abrahams et al. (2007).  

2) Dissolved oxygen: I predicted that dissolved oxygen will differentially affect those species 

with physostomous swim bladders (black and brown bullheads, northern pike and fathead 

minnows) and those who have physoclistous swim bladder (freshwater drum). Decreased DO 

levels should not affect the abundance of species with physostomous swim bladders; a decrease 

in DO is likely to result in a reduction in abundance of freshwater drum which has a 

physoclistous swim bladder. As well, within a given species, DO should affect individuals of 

various sizes differently (Robb and Abrahams 2003, Hedges 2007), though this effect is not 

expected to impact all species equally. A relationship between DO and body size is expected to 

be observed in fishes with physoclistous swim bladders, but is less likely to be observed in those 

individuals with physostomous swim bladders. It is predicted that larger individuals will be more 

susceptible to low levels of DO. While Abrahams et al. (2007) suggest that a reduction in 

predation risk will occur as DO levels decrease, if the primary predators in this ecosystem 

(northern pike) are able to utilize aerial respiration to compensate for a reduction in the DO in 

the water, I predict that a reduction in DO levels will not result in lowered predation pressure.  

3) Turbidity: I predicted that the effect of turbidity on the abundance of fish will be dependent 

upon the sensory mechanism used for foraging. Visual foragers (northern pike, freshwater drum 

and fathead minnows) are predicted to decline in abundance as turbidity increases. Non-visual 

foragers such as brown and black bullheads rely primarily on chemical cues for foraging and 

should not be affected by turbidity. As eye size and therefore visual capabilities increase with 
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body length, larger visual foragers should be better able to forage under high levels of turbidity 

than smaller individuals. I predicted that as turbidity increases the size of visual foragers 

(northern pike and freshwater drum) should also increase. As predicted by Abrahams et al. 

(2007), as turbidity increases, the cost of foraging (increasing activity to increase encounter rates 

with prey) will increase. I predict that prey should experience a reduction in predation risk with 

increasing turbidity. 

4) With the potential for predators to impact the abundance of prey and their potential predators 

to track the abundance of their prey, I also predicted that as the total abundance of predators 

increase the abundance of prey would decline.  

 

Materials and methods 

To test the predictions that fish community composition, as well as the size of the fishes present, 

change with changes in the abiotic properties of the aquatic ecosystem, field surveys were 

carried out in the summers of 2006, 2007 and 2008. During these field surveys, both predatory 

and prey fishes were sampled in Blind Channel, Delta Marsh, Manitoba, Canada (98°23’W, 

50°11’N) (Figure 4.1). Blind Channel is a small, blind ending channel south of Lake Manitoba. 

Approximately 3.5 km long, the average depth of Blind Channel is 1 m. The community 

composition of the channel is able to change throughout the summer months as the channel is 

connected via one waterway to Lake Manitoba. This connection to Lake Manitoba also means 

that seiches in the lake (a consequence of strong winds from either the north or south) change the 

water levels in the channel. North winds increase water levels and a slight lowering of water 

temperature occurs. 
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Figure 4.1: Aerial photograph of Blind Channel, Delta Marsh, Manitoba. ‘The Cut’ provides the 

connection between Blind Channel and other regions of Delta Marsh and/or from Lake 

Manitoba.  
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With the water exchange, an increase in the DO levels is also observed. A strong southerly wind 

will reduce water levels.    

 Taken with the fact that Blind Channel experiences large variation in measures of 

temperature, DO and turbidity, the connection between Blind Channel and Lake Manitoba 

renders Blind Channel an ideal system to address questions pertaining to the influence the 

environment has on community composition. It means that during periods of unfavourable 

conditions, individuals that are currently residing in Blind Channel do not have to remain there – 

they can exit the Channel and enter Lake Manitoba, a more stable ecosystem. It also means that 

if conditions become favourable within Blind Channel, individuals from Lake Manitoba can 

move into the system.  

 

Measures of the aquatic environment. Over the course of the ice-free period Blind Channel 

experiences a wide range of turbidity (1.3 to 85 nephelometric turbidity units, NTU), 

temperatures (peaking at around 28-30 °C) and dissolved oxygen levels (ranging from 

approximately 0.1 to 10.0 mg/L). To record DO (mg/L), temperature (°C) and turbidity (NTU), 

three YSI 6920 data sondes were placed at the bottom, middle, and surface of the water column 

in Blind Channel from May through August. The sondes collected data every 30 minutes, which 

were then averaged to provide a daily value to correspond with measures of fish abundances. 

Only measures of temperature were collected for all days. DO measures were not included when 

the charge on the data sonde fell beyond the accepted range (below 25 or above 100 amps) and 

turbidity measures were not included when the measured NTU was above 500, a value indicative 

of debris obstructing the sensor.  
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Measures of fish abundance. Sampling of both large and small fishes in Blind Channel occurred 

from May to August in all three survey years. Large fish were sampled daily with gillnets that 

were set for 1.5 hours. The gillnets were 15.25 m long and 1 m in height (approximately the 

same depth as the water) with a stretched mesh size of 5.08 cm. Three gillnets were set per day at 

0.5 hour intervals in locations that were randomly distributed throughout the channel. I recorded 

species and the length to the nearest cm of all captured individuals. All fish were released at their 

site of capture. Daily catch per unit effort (CPUE) was calculated as the average number of fish 

captured per hour per day. CPUE was determined for northern pike (Esox lucius), freshwater 

drum (Aplodinotus grunniens) and bullhead species (both black, Ameiurus melas, and brown, A. 

nebulosus, bullheads). While walleye (Sander vitreus) and yellow perch (Perca flavescens) were 

also captured, only two and four individuals, respectively, were captured over the three year 

study and were not included in calculations of CPUE. An average daily CPUE for total predators 

was also calculated.   

To sample the small prey fishes in Blind Channel, 10 minnow traps were set just below 

the surface of the water at 10 locations within the channel. Five of these traps were deployed on 

the north side of the channel while the other five were set on the south side. This arrangement 

ensured that one side of the marsh with minnow traps would be relatively sheltered in high wind 

events. This study design was important as minnows were observed to aggregate in sheltered 

areas when winds were high and sampling only one side of the marsh would have resulted in 

inaccurate estimates of minnow abundance. All traps were set at permanent locations and 

checked after 24 hours. All captured fish were identified to species and counted. CPUE values 

were calculated for all species together, as the dominant fish in the traps (fathead minnows, 

Pimephales promelas) comprised over 95 % of the total number of minnows captured. CPUE 



76 

 

was calculated as the average (of the 10 minnow traps) number of fish captured in a 24 hour 

period. 

 

Data analysis. For statistical analysis, environmental data was averaged to provide a daily 

measure. These data were tested for autocorrelation using Durbin-Watson tests for 

autocorrelation. I used parametric analyses on translated data (environmental variables as well as 

CPUE and length data; yi` = (yi - ¯ y)/s, where s is the standard deviation of the mean of y). 

Quinn and Keough (2002) suggest that translations of data in regression analyses allow variables 

to be on similar scales. As well the translated data approached normality and met assumptions of 

homogeneity of variances necessary for parametric analysis of regression analysis. Quinn and 

Keough (2002) state that regression analyses are robust to violations of normality if data meet 

assumptions of homogeneity of variance. The translated data were also used in the canonical 

correspondence analysis as it allows comparisons between canonical weights (Hair et al. 2005). 

For each series of analyses pertaining to a particular environmental variable, it was first 

determined if there were significant differences among years in the measured variable using a 

single factor analysis of variance (ANOVA). If differences among years existed in any of the 

analyses, year was included as a categorical predictor variable and the analysis was that of a 

general linear model (GLM). All analyses were conducted using STATISTICA software. Alpha 

levels were set at 0.05 for all analysis. 

To determine if temperature affected cool- and warm- water guilds of fishes differently, 

two separate general linear models were run. The first used northern pike (a cool- water fish) 

CPUE as the dependent variable and temperature as a continuous predictor variable. The second 

GLM used the warm- water fish species (brown and black bullheads, fathead minnows, 
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freshwater drum) CPUE as the dependent variable and temperature as the continuous predictor 

variable. The relationship between the species-specific length of predatory fish and temperature 

was examined using a GLM with temperature as the predictor variable. In this analysis the length 

of the fish was the dependent variable and each species was run separately.  

A second series of GLMs were run to examine the effect of dissolved oxygen on 

community composition. In the first GLM, CPUE measures of species with physostomous swim 

bladders (northern pike, brown and black bullheads and fathead minnows) were used as the 

dependent variables. The second GLM used the CPUE of species with physoclistous swim 

bladders (freshwater drum) as the dependent variable. DO measures were the continuous 

predictor values in both analyses. The third GLM used DO as the continuous predictor variable 

and employed length of individuals as the dependent variable. Each species was analyzed 

separately to determine if DO levels affected the species-specific size of individuals present.  

Measures of turbidity were used as the continuous predictor variables in the next series of 

general linear models. The first GLM included CPUE measures of visual foragers (northern pike, 

freshwater drum, and fathead minnows) as the dependent variable. The second GLM included 

CPUE measures of brown and black bullheads, foragers that rely on chemosensory cues, as the 

dependent variable. A second series of general linear models were employed with turbidity as the 

predictor variable and length of a given species as the dependent variable; each species was 

analyzed separately. 

Lastly, to determine if the suite of environmental variables taken as a whole affected the 

abundance of piscine predators as well as prey fish (with daily average CPUE of predators and 

prey used as indices of abundance), a single canonical correlation analysis was employed. The 
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analysis incorporated all data from all years which were combined to determine if broad-scale 

patterns in fish activity could be related to their environment.  

Finally, the biotic as well as abiotic environment was hypothesized to affect community 

structure (specifically, that the abundance of predators can affect the abundance of prey). A 

GLM was run using total predator CPUE as the predictor variable and prey CPUE as the 

dependent variable. If there were differences in CPUE measures of predators or prey among 

years (as determined by single factor ANOVAs), year would be included in the analysis as a 

categorical predictor variable.   

 

 

Results 

Between year differences in the abiotic environment. Daily measures of environmental data were 

considered independent observations in 2006, 2007 and 2008 based on Durbin-Watson tests for 

autocorrelation. All measures of environmental data were used in subsequent analyses. There 

were significant differences in measures of temperature among years; temperature differences 

existed between 2006 and 2008, and 2007 and 2008 with 2008 being significantly cooler than 

both 2006 and 2007 (single factor ANOVA: F 2,131 = 8.29, P < 0.001; paired comparisons: 

significant differences occurred between 2006 and 2008, and 2007 and 2008; Figure 4.2). As 

differences existed among years in measures of temperature, year was used as a categorical 

predictor variable in further regression analyses involving temperature.  

 Significant differences in measures of DO levels also existed among years (single factor 

ANOVA: F 2,121 = 22.7, P < 0.00001; Figure 4.3). Lowest average DO levels were measured in 

2006 (1.47 ± 0.99 mg/L O2) while highest average DO levels were measured during the sampling  
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Figure 4.2: Average daily measures of water temperature in Blind Channel, Delta Marsh for the 

summer sampling period in 2006, 2007 and 2008.  
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Figure 4.3: Daily minimum and maximum measures of dissolved oxygen in (a) 2006, (b) 2007, 

and (c) 2008 and (d) the average daily measures of dissolved oxygen by year in Blind Channel, 

Delta Marsh for the summer sampling period.  
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Figure 4.4: Average daily measures of turbidity in Blind Channel, Delta Marsh for the summer 

sampling period in 2006, 2007 and 2008.  
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period in 2007 (5.44 ± 1.2 mg/L O2). As differences existed between all years in measures of 

DO, year was used as a categorical predictor variable in further regression analyses involving 

DO. 

Differences in turbidity existed between 2006 and 2008, and 2007 and 2008 with 2006 

and 2007 being significantly less turbid than 2008 (single factor ANOVA: F 2,120 = 4.66, P = 

0.0113; Figure 4.4; paired comparisons: significant differences occurred between 2006 and 2007 

only). As a result of these yearly differences in turbidity measures, year was included as a 

categorical predictor variable in regression analyses involving turbidity. 

 

Temperature and community composition. When CPUE of northern pike, a cool-water fish, was 

used in a regression analysis with year as a categorical predictor value and temperature as a 

continuous predictor variable, there was a significant positive relationship with temperature; year 

was not a significant predictor (Table 4.1) of pike CPUE. Temperature was also a significant 

positive predictor of warm-water fish CPUE (brown and black bullhead, freshwater drum and 

fathead minnows, Table 4.1). Again, year was not a significant predictor of warm water fish 

CPUE. When the effect of temperature on fish length was examined, there was a significant 

negative relationship between temperature and length of freshwater drum; there was no 

relationship between temperature and length of any other fish species. Year was not a significant 

categorical predictor of fish length for either species. 

  

Dissolved oxygen and community structure. There was a direct significant relationship between 

DO level and the CPUE of fish with physostomous swim bladders (Table 4.2); as DO levels 

increased, the CPUE of fishes with physostomous swim bladders also increased. There was a 
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significant positive relationship between DO levels and fishes with physoclistous swim bladders; 

as DO levels increased, the CPUE of freshwater drum (the only fish in this study with a 

physoclistous swim bladder) increased (Table 4.2). However, the length of fishes with 

physostomous swim bladders were not significantly influenced by DO levels (Table 4.2); the 

length of freshwater drum was affected by DO. As DO levels increased, the size of freshwater 

drum captured also increased. Year was not a significant predictor in either of the regression 

models. 

 

Turbidity and community structure. Turbidity levels did not significantly predict the abundance 

of visual foragers (fathead minnows, freshwater drum, and northern pike; Table 4.3) or the 

abundance of non-visual foragers (brown and black bullhead, Table 4.3). Vision is linked to eye 

size which in turn is a function of body size but neither year nor turbidity was a significant 

predictor of the body length of either of the visual predators (freshwater drum and northern pike; 

Table 4.3). The previous regression analysis was then repeated for non-visual foragers (bullhead 

species) and again, no relationship was observed between turbidity levels and length of non-

visual foragers.  

 

 

The abiotic environment taken as a whole. The canonical correlation analysis indicated a 

significant relationship between the environment and measures of fish CPUE (Canonical R = 

0.6161, P < 0.0001, n = 106) with the first canonical function as the only significant function. 

The first canonical function is therefore the only function for which results are discussed. Given 
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Table 4.1: Results of regression analyses using temperature as the continuous predictor variable 

and year as a categorical predictor variable. Year was not a significant predictor in either 

regression model. Model df = 3. BH spp = bullhead species, FWD = freshwater drum, NPK = 

northern pike; S.E. = standard error. Significant differences are indicated with bold values. 

Dependent variable 

 

Β S.E. β 

 

F - value 

 

P –value Residual df 

Matches 
predicted 
relationship 

Cool water fish CPUE 0.402 0.0663 16.5 < 0.00001 128 No  

Warm water fish CPUE 0.627 0.246 6.45 0.0003 373 No 

Length of BH spp -0.0987 0.158 0.403 0.7 53 No 

Length of FWD -0.701 0.167 7.57 0.00007 297 Yes 

Length of NPK -0.128 0.0952 1.60 0.2 379 No 
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Table 4.2: Results of regression analyses using dissolved oxygen as the continuous predictor 

variable and year as a categorical predictor variable. Year was not a significant predictor in either 

regression model. Model df = 3. BH spp = bullhead species, FWD = freshwater drum, NPK = 

northern pike. S.E. = standard error. Significant differences are indicated with bold values. 

Dependent variable 

 
 

 
Β 

S.E. β 

 
 
 
F - value 

 
 
 

P –value Residual 
df 

 
Matches 
predicted 
relationship 

Physostomous swim bladders 0.333 0.115 6.04 0.0005 373 No  

Physoclistous swim bladders 0.238 0.0986 4.89 0.003 128 Yes 

Length of BH spp 0.0355 0.157 0.213 0.9 55 No 

Length of FWD 0.408 0.148 6.43 0.0003 279 Yes 

Length of NPK -0.000627 0.0246 0.00503 0.9 379 No 

 

 

 

 

 

 

 

 

 

 

 

 



86 

 

the abiotic environment, 27.9% of the variance in measured CPUE is explained. When the 

measures of the simple linear correlation between the independent variables and the respective 

canonical variates are determined, there is a negative correlation between the first canonical 

correlation (CC1) which includes temperature, DO and turbidity, and northern pike CPUE 

(canonical loading = -0.9108). Freshwater drum is positively correlated to CC1 (canonical 

loading = 0.4207) while bullhead species CPUE and minnow CPUE show the lowest correlations 

(canonical loadings: bullhead species CPUE = 0.1566; minnow CPUE = 0.2630). Both bullhead 

species and fathead minnows are positively correlated to CC1, though the relationship is not 

strong (Table 4.4). This demonstrates that the environment, as an explanatory variable, affects 

the CPUE of northern pike. The environment also affects the CPUE of freshwater drum but to a 

lesser degree. Based on CC1, bullhead species CPUE and minnow CPUE are essentially not 

affected by the measured environmental variables.  

 

Predators and prey. When the daily average CPUE measures were compared for individual 

species of predatory fish among the sampling seasons of 2006, 2007 and 2008, northern pike and 

bullhead species CPUE measures did not differ among years (single factor ANOVA: northern 

pike: F 2, 131 = 4.37, P = 0.074; bullhead species: F 2, 131 = 1.78, P = 0.173; Figure 4.5). In the 

between year comparison of total predatory fish CPUE, significant differences were only 

observed between the years 2006 and 2008, with a significantly higher CPUE observed in 2008 

than in 2006; no differences were observed between 2006 and 2007, 2007 and 2008 (single 

factor ANOVA: F 2, 131 = 9.75, P = 0.00014; multiple paired comparisons P < 0.05, Figure 4.5). 

In the comparison of freshwater drum CPUE among years, significant differences were observed 

 



87 

 

 

 

Table 4.3: Results of regression analyses using turbidity as the continuous predictor variable and 

year as a categorical predictor variable. Year was not a significant predictor in the regression 

model. Model df = 3. BH spp = bullhead species, FWD = freshwater drum, NPK = northern pike. 

S.E. = standard error. Significant differences are indicated with bold values. 

 
 
 
Dependent variable 

 
 
 
Β 

 
 
 

S.E. β 

 
 
 

F - value 

 
 
 

P –value 

 
 

Residual 
df 

 
Matches 
predicted 

relationship 

Visual foragers -0.0467 0.0987 0.236 0.9 358 No 

Non-visual foragers -0.0327 0.102 0.234 0.9 105 No 

Length of BH species 0.178 0.161 1.33 0.3 55 No 

Length of FWD -0.128 0.0953 0.537 0.7 297 No 

Length of NPK -0.193 0.153 0.246 0.9 379 No 
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Table 4.4: Results of a canonical correlation analysis examining the relationship between 

environmental variables (temperature, DO and turbidity) and CPUE measures of predatory and 

prey fish species in Blind Channel, Delta Marsh. Bold values indicate those variables with strong 

contributions of the canonical correlation. Only the first canonical correlation (CC1) was found 

to be significant and is the only canonical correlation reported here.  

 Variable  CC1 

 Canonical R 0.6161 

Dissolved oxygen -0.8447 

Temperature 0.9145 

Turbidity -0.4556 

Variance explained 0.5858 

Explanatory set 

Redundancy 0.2223 

Total predator CPUE -0.5415 

Northern pike CPUE -0.9108 

Freshwater drum CPUE 0.4207 

Bullhead spp 0.1566 

Response set 

Fathead minnow 0.2630 
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Figure 4.5: Differences in catch per unit effort for fish sampled in 2006, 2007 and 2008 from 

Blind Channel, Delta Marsh. Letters above the bars represent significant differences at α = 0.05 

using Tukey post hoc tests. Bars represent standard error around the mean.  
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between the years of 2007 and 2008 only (single factor ANOVA: F 2, 131 = 11.5, P < 0.000026; 

multiple paired comparisons between 2007 and 2008, P < 0.05; Figure 4.5) with significantly 

more freshwater drum captured per hour in 2008 than 2007. No differences were observed 

between 2006 and 2007, 2006 and 2008.  

When the same among year comparison was made for fathead minnows, the predominant 

prey fish of Blind Channel, a significant difference in CPUE was observed (single factor 

ANOVA: F 2, 131 = 26.7, P < 0.000001; Figure 4.5). Significantly more  

minnows were captured per hour in 2006 and 2007 than 2008 (multiple paired comparisons P < 

0.05); no differences existed in fathead minnow CPUE between the years 2006 and 2007. As 

differences existed among years in measures of CPUE for both predators and prey, year was used 

as a categorical predictor variable in a regression analysis relating prey to predator abundances.  

There was no relationship between total predator CPUE and prey CPUE in a regression 

analysis that included year as a categorical predictor variable, total predator CPUE as the 

continuous predictor variable and prey CPUE as the dependent variable     (F 3,127 = 3.19x10-5, P 

= 0.9). However, there is an inverse relationship between the total predator CPUE (bullhead 

species, freshwater drum and northern pike) and prey (fathead minnow) CPUE when seasonal 

averages of CPUE were compared. In 2006 when predator abundance was the lowest of the three 

years, prey abundance was highest while in 2008 when predator abundance was at its highest, 

prey abundance was the lowest recorded for the three years.  

 

 

 

Discussion 
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Linking environmental conditions that communities experience to the interactions of species 

within the community is a difficult task to do in situ. However, it is only in natural ecosystems 

that the effects of possible interactions of various environmental measures on multiple species 

can be elucidated. This study examines whether in an open ecosystem, where individuals can 

leave if the environmental conditions become unfavourable, the abiotic environment can be used 

as predictors of the abundance of various fish species. This study also examines whether predator 

and prey abundances are directly linked in such a system. Given the responses of these fishes to 

the environment, I also suggest how the environment may mediate predator-prey interactions, 

commenting specifically on the predictions of Abrahams et al. (2007).  

 The three years during which this study was undertaken experienced significantly 

different environmental conditions, as well as different measures of CPUE of both predatory and 

prey fish. This variability in environmental conditions meant that fishes experienced different 

combinations of temperature, DO and turbidity across the three years of study. If any 

relationships between environmental variable and fish CPUE or fish length were observed it 

would provide strong support that the particular environmental variable of interest was driving 

the abundance and/or length of the fish species or group of interest. It should be noted that 

sampling via gill net and minnow trap requires that fishes be active and swim into the net or trap. 

This means that it will not only be the abundance of fish that drives the observed CPUE, but also 

the activity of the fish present that influences fished CPUE. Both abundance and activity rates 

(through the relationship between activity and encounter rates) will likely have similar effects on 

predator-prey interactions and as such will be discussed together.  

The relationship between temperature and fish CPUE was not dependent upon the 

temperature guild classification of fishes. For both cool- and warm- water fishes, there was a 
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significant positive relationship between temperature and CPUE. While it was expected that 

warm-water fish activity and/or abundance would increase with increasing temperature an 

increase in northern pike (a cool-water fish) activity and/or abundance with increasing 

temperature was unexpected. Cool-water fish generally have upper thermal limits of 20˚C 

(Magnuson et al. 1997) and Blind Channel typically reaches 20˚C in mid-June. However, 

temperature preferences are species-specific (Magnuson et al. 1997) and northern pike are 

known to tolerate a wide range of environments (Casselman and Lewis 1996); Flinders and 

Bonar (2008) also observed northern pike inhabiting areas outside their optimal temperature for 

growth (19˚C, Casselman 1978). It is probable that a cool-water species lacking in the ability to 

tolerate a wider range of temperatures would not have demonstrated a positive relationship with 

temperature, however there were no other species classified as cool-water in the system studied.  

These observed positive relationships between temperature and fish CPUE could affect 

predator prey relationships as it suggests fish become either more active, more abundant, or both 

more active and more abundant when temperatures increase (minnow traps and gillnets are 

passive traps and increased catches suggest increased activity and/or abundance). Moore and 

Townsend (1998) and Anderson et al. (2001) suggest that the increase in activity of prey in 

response to increased temperatures (likely as prey increase foraging to meet increased metabolic 

demands) is responsible for the increase in mortality of prey observed at high temperatures. 

Taken with the observation that fathead minnows increase activity and foraging (Chapter 2) as 

well as their propensity to forage in risky locations (Chapter 3), temperature increases are likely 

to result in an increase in predation on small forage fish, a result that does not agree with 

predictions made by Abrahams et al. (2007). Given that predators have been observed to increase 

their attack rates on more active groups versus those groups who were less active (Krause and 
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Godin 1995) and that capture efficiency, attack coefficient, and swimming speed of fish can 

increase with increasing temperatures, temperature increases are likely to result in increased 

mortality of prey. 

Temperature was also expected to influence the length of predatory fish through its 

impact on metabolic costs which are affected by the size of fishes. Large fish of a given species 

will have higher metabolic rates than smaller fish of the same species, making it more 

energetically costly for large fish to forage in warmer waters. In this study, only freshwater drum 

lengths were significantly related (negatively) to temperature. The lack of relationship between 

species length and temperature with the exception of freshwater drum (for either cool- or the 

other warm- water fish) may be a result of the ability of fishes that may be physiologically or 

energetically stressed to leave Blind Channel and move into Lake Manitoba, which is a large 

lake that is deeper and likely cooler than Blind Channel. The negative relationship between 

temperature and length of freshwater drum may be a result of larger, more physiologically 

stressed individuals leaving Blind Channel for Lake Manitoba. Any effect of temperature on 

predator-prey relationships will therefore be a result of the increase in activity and/or abundance 

of fishes with temperature, and not a result of changes to predation risk which could happen with 

changes in the size (length) of the potential predators (Byström and Andersson 2005). 

As dissolved oxygen increased, CPUE of fishes with the ability to air breath also 

increased. As the ability to remove oxygen from air gulped in at the surface should negate (or 

reduce) the necessity of individuals with physostomous swim bladders to occupy waters of high 

DO levels, a relationship between CPUE of fish with physostomous swim bladders and DO was 

not expected. This observation might be a result of lengthy periods of time where the water was 

hypoxic.  
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When faced with periods of extreme hypoxia, it is possible that increased air breathing by 

these large predators would increase the risk of them being predated on by avian predators 

(Randle and Chapman 2004). As avian predators are present in Blind Channel, increased air 

breathing may increase risk of predation. Forster’s terns, Sterna forsteri, prey upon small prey 

fish (Fraser 1997) such as fathead minnows and their presence over Blind Channel is directly 

related to DO levels (Chapter 6). American white pelicans, Pelecanus erythrorhynchos, and 

double-crested cormorants, Phalacrocorax auritus, have been observed to consume fish as long 

as 40 cm (personal observation). With the connection to Lake Manitoba, it is possible that large 

individuals migrate from Blind Channel to Lake Manitoba where DO levels are likely higher as a 

trade-off against risk of predation that they would experience exploiting surface waters in Blind 

Channel in periods of low DO.  

With regards to the relationship between fish length and DO, if fishes have physostomous 

swim bladders and could air breath, there is no expectation that the length of individuals of these 

species would decrease with decreasing DO levels. The results of this study support the 

prediction that body size of species with physostomous swim bladders do not vary with DO. 

Observed was a positive relationship between freshwater drum length and DO. Freshwater drum 

have a physoclistous swim bladder and are reliant upon the oxygen content of the water for gas 

exchange. Smaller individuals of the same species require less oxygen to maintain body function 

and so the relationship was expected (Almeida-Val et al. 2000, Robb and Abrahams 2003).  

Hypoxic regions have been suggested to be refuge areas for small fish (Chapman et al. 

1998) and Abrahams et al. (2007) suggest that periods of low DO levels should result in a 

reduction in the predation risk to prey fish. This study supports that concept as the abundance 

and/or activity of fishes are highest when DO levels are highest and lowest when DO levels are 
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lowest. Predator-prey interactions may be lessened through a reduction in encounter rates when 

DO levels are low. As with temperature, any effects DO levels have on community structure and 

predator-prey relationships are expected to be a result of changes in CPUE that occur with DO 

levels and not with changes in predation pressure that would occur with changes in fish length 

and DO levels. It should also be noted however, that under periods of low DO, avian predation 

on these small prey will likely increase as abundance of terns is significantly, positively related 

to DO (see Chapter 6).   

The predatory fish community of Blind Channel is comprised primarily of northern pike, 

a visual, ambush predator (Craig 2008). The other predator that relies primarily on vision for 

foraging is the freshwater drum. Fathead minnows, the primary prey in Blind Channel, also rely 

on vision for foraging. It was expected that as turbidity levels increased visual foragers such as 

northern pike, freshwater drum and fathead minnows would seek out clearer waters, potentially 

in Lake Manitoba, in which to forage, resulting in a negative relationship between turbidity and 

visual foragers. However, this prediction is based on the assumption that the decision of fish to 

remain in Blind Channel under given turbidity conditions is based only on foraging 

considerations and not on other physiological conditions resulting from changes in temperature 

and/or DO. Visual predators remained abundant in periods of high turbidity levels. This suggests 

that turbidity levels in the channel were 1) not high enough to affect foraging efficiency, 2) did 

not vary enough to cause changes in foraging efficiency, or 3) the abundance of forage fish 

within the channel was sufficient enough to offset the reduction in foraging ability of predators 

as turbidity increased. As well, it could be that the other option (Lake Manitoba) did not provide 

a decrease in turbidity levels and/or increased foraging opportunities. One final option is that 

under low turbidity levels fishes present that rely on vision for foraging will be able to see the 
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traps present and be able to avoid them. This too would result in a lack of relationship between 

turbidity level and CPUE of visual foragers.  

Turbidity levels were also not a predictor of the length of fishes for either visual or non-

visual foragers. It was expected that turbidity levels would not affect the length of non-visual 

foragers. Body length is related to eye size and therefore size of the sighted image; as non-visual 

predators are not reliant on sight for foraging, there is no expectation that increased turbidity 

would reduce foraging abilities, necessitating the movement out of highly turbid environments 

by smaller individuals. While it was expected that body size of visual foragers would increase 

with increasing turbidity levels (again, as smaller visual predators migrate out with increasing 

turbidity), given that the only location fishes can migrate is Lake Manitoba, a turbid 

environment, it may be that no other option is available.  

In general, Blind Channel is a turbid environment. While studies have found reactive 

distances (Miner and Stein 1996) and antipredator behaviour (Abrahams and Kattenfeld 1997) 

decrease with increasing turbidity, in the range of turbidity values observed during the majority 

of this study, mortality of prey is expected to remain consistent (Abrahams and Kattenfeld 1997). 

As initially suggested by Abrahams et al. (2007), I predicted that increased turbidity should 

result in a reduction in predation risk to prey when predators rely on vision. However, this study 

found no relationship between activity and/or abundance of either visual foragers or foragers that 

rely on other senses to forage, and turbidity levels. This suggests that within this system it is the 

effects of temperature and DO on fish species that drive community composition, a fact further 

supported by results of the canonical correlation analysis. 

Northern pike are significant predators on forage fish (He and Kitchell 1990) and have 

been shown to exclude small fish from small pools (Labbe and Fausch 2000). Fish also comprise 
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a large component of the diet of the two bullhead species as well (Keast 1985). Freshwater drum 

forage primarily on crustaceans and insects and rely to a much lesser extent on forage fish as a 

prey item (Scott and Crossman 1998). Northern pike, brown and black bullheads and freshwater 

drum were considered predators to small forage fish. However, unlike previous studies that 

determined predatory fish reduced prey abundance (Vonesh et al. 2009) there was no relationship 

between total predator CPUE and CPUE of prey fish in this study. This result is not entirely 

unexpected as a reduction in prey biomass in response to predation has not been a consistent 

result across studies (Åbjörnsson et al. 2002, Eitam and Blaustein 2004, Pink et al. 2007). It is 

possible that the densities of predators were not great enough to have an effect on prey density. It 

is also possible that on a small temporal scale, trends would not be evident. In this study, while 

daily measures of prey abundances were not related to daily measures of predator CPUE, on a 

larger scale (entire three month sampling period) when predator abundance (measured as average 

summer CPUE) was highest, prey abundance (measured as average summer CPUE) was lowest.   

In summary, the results of this study suggest that in a shallow, turbid freshwater 

ecosystem the environmental variables that consistently influence community structure are 

dissolved oxygen and temperature. High temperatures may increase predation risk through 

increased encounter rates between predators and prey – CPUE of both predators and prey 

increase with increasing temperatures. Increased hypoxic conditions, which are linked to a 

reduction in CPUE of fishes may provide increased refuges for small fish from larger aquatic 

predators, though this may not carry over when aerial predators are considered and a decrease in 

DO results in increase predation risk. 
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Chapter 5: Using a dynamic state variable model to predict the effect of temperature on 

survival probabilities of fathead minnows over an ice-free season 

 

Abstract. In shallow water ecosystems, fathead minnows (Pimephales promelas) experience 

temperatures ranging from near 0 to above 30˚C over the ice-free season, which ranges typically 
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from March to November in temperate regions. Over this period there is an annual survival rate 

of approximately 65%. Since these fish are poikilothermic, their energetic demands will be 

strongly driven by their thermal environment. High temperatures increase energetic demands and 

understanding the role of temperature in behavioural decisions made by prey may play an 

important role in understanding how survival rates are driven by the temperature of the 

environment. At high temperatures, individuals may be more likely to starve, resulting in them 

taking greater risks to obtain more food.  To better understand this process I developed a state-

dependent optimization model that required individuals to make foraging decisions that balanced 

the risk of starvation against the risk of predation in a dynamic thermal environment.  Results 

from this model predict that temperature increases will have a detrimental outcome on the 

survival probabilities of adult fathead minnows, at least in the short term, regardless of the 

relationship between probability of receiving food and the amount of food present and 

irrespective of a reduction in predation risk with temperature. With many climate change 

predictions suggesting rising temperatures across the prairies, the results from this study suggest 

that populations of minnows may experience a reduction in numbers. As fathead minnows are a 

dominant forage fish in many shallow water ecosystems, any reductions in population size will 

affect community dynamics. 

 

Introduction 

For a poikilothermic animal such as a fish, the temperature of the environment it inhabits will 

influence rates of biological processes at scales from the molecular-level to the whole organism 

(Logue et al. 1995). The influence of temperature can be observed as changes in metabolic, 

assimilation and consumption rates of fishes (Wootton 1990) as well as in changes in activity 
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(Krause and Godin 1995, Johnston et al. 2004, Chapter 2), foraging (Chapter 2 and Chapter 3) 

and swimming performance (Logue et al. 1995). This relationship between temperature and 

metabolic processes is not a direct linear relationship, but instead fishes have a temperature 

optimum (Huey and Kingsolver 1989) outside of which performance of the individual is reduced. 

Treating temperature as an ecological condition, thermal habitats should therefore be selected to 

optimize physiological performance. However, with the thermal conductivity of water 24.5 times 

that of air (Hammel 1955), the availability of thermal microhabitats within a shallow body of 

water will be limited and changes in environmental temperature will rapidly change body 

temperature.  

The temperature of the environment in which a fish resides is related to the metabolic 

rates of the fishes, and therefore their energetic demands (Elliott 1976). Increasing energetic 

demands should therefore result in an increased requirement for food. Because of this 

relationship between temperature and energetic demands, temperature can drive many aspects of 

the decision making and behaviour of small fishes: foraging to meet energetic demands are 

balanced against risk of predation. Larval anurans respond to increasing temperatures (and 

therefore energy requirements) by increasing their foraging rates (Anderson et al. 2001). A 

similar response was observed in studies of the fathead minnow (Chapter 2, Chapter 3). If these 

increased energetic demands can be met, increased temperatures should also lead to increases in 

growth rates (Elliott 1976, Keast 1984, Anderson et al. 2001). With body size and risk of 

predation being inversely related (Nilsson and Brönmark 2000) individuals may experience a 

reduction in predation risk at increased temperatures. As well, Abrahams et al. (2007) described, 

via a model, changes in population abundance of brown trout (Salmo trutta) as a result of 

temperature increases. They described an overall reduction in risk of predation through a 
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reduction in the number of large bodied individuals, and an overall general reduction in the 

abundance of these trout. Predation risk may therefore decrease with increases in temperatures. 

As long as temperatures remain below the lethal limit and energetic demands are met, increases 

in temperature should be linked to increases in the probability of survival of prey. However, 

there is a caveat. In the study by Anderson et al. (2001), accompanying the increase in foraging, 

consumption and growth rates of prey, were increased mortality rates at higher temperatures. As 

movement rates increase, it becomes more likely that an encounter occurs between predator and 

prey. Coupled with an observed decrease in capture and handling time of prey by predators as 

temperature increases (Persson 1986), it becomes less clear if increases in temperature will result 

in an increase or decrease in the probability of survival.  

 Adding to the uncertainty of the relationship between temperature and survival is the 

amount of available food and the probability of consuming that food. Food availability is linked 

to temperature and the probability of encountering and consuming that food is linked to the 

amount of food available. As mentioned above, if temperature increases cause excess food 

availability growth rates also increase (Elliott 1976, Keast 1984, Person-Le Ruyet et al. 2004). 

However, if high temperatures do not coincide with high abundances of prey, weight loss will 

occur (Gibbons et al. 1978). Starvation is therefore of concern if an increase in metabolic 

demand cannot be met via consumption of food. 

 For a small minnow, prey abundance is linked to temperature (Goldman and Carpenter 

1974, Walls and Ventelä 1998, Gillooly 2000, Gillooly et al. 2002, Savage et al. 2004, Verbitskii 

et al. 2009). The doubling time for both algae and zooplankton, primary foods for fathead 

minnows (Scott and Crossman 1973), decrease as temperatures increase (Goldman and Carpenter 

1974, Gillooly et al. 2002). The overall result is that while increasing temperatures may increase 
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energetic demands of small fish, if their prey abundance increases at a rate that allows them to 

meet energetic demands, growth and possibly survival will likely increase. However, if the rate 

of increase in prey abundance and availability does not match that of the rate of metabolic 

increase, an increased probability of starvation may occur. The goal of this paper is to examine 

the possible changes in the probability of survival over the ice-free period of a typical, non-

breeding fathead minnow, Pimephales promelas. The fathead minnow is an ideal model as it is a 

fish that experiences a wide range of thermal variation over the course of the ice-free season. 

Further manipulations of the state-dependent optimization model will allow for predictions 

regarding survival of the fathead minnow to be made when the overall environment warms, 

including whether there will be changes in probabilities of starvation and predation.  

 

Methods 

The model overview. A dynamic state variable model examining the probability of survival over 

the ice-free season was constructed for a typical, non-breeding, fathead minnow under a normal 

temperature regime (see Clark and Mangel 2000, McNamara and Houston 1986, for the 

principles of stochastic dynamic programming). This model describes the role temperature 

variation plays on habitat selection decisions of the fathead minnow through the development of 

rules necessary for decision making. The environment that was modeled was Blind Channel, 

Delta Marsh, MB, a location that has been used to study fathead minnows for approximately 20 

years. To address the question of the role of temperature on the survival of fathead minnows, it 

was first necessary to model a temperate environment that experiences variability in 

temperatures. This variation in temperature allows for the role of temperature variation on habitat 

selection to be determined via a state-dependent optimization model.  
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Blind Channel is a small, turbid, shallow water ecosystem located just south of Lake 

Manitoba, Manitoba, Canada (98°23’W, 50°11’N). Approximately 3.5 km long, its average 

depth is 1 m and recorded summer temperatures have reached 29°C. Temperatures can fluctuate 

up to 4°C daily (personal observation). It is the thermal environment of Blind Channel that is the 

basis for the temperatures of the habitats present in the model. By modifying the overall 

temperature (i.e. the temperature of all patches), the responses, as measured by changes in 

survival probabilities of the fathead minnow, can be elucidated. The fish community of Blind 

Channel is comprised of large piscivores (northern pike, Esox lucius, dominate; brown and black 

bullhead, Ictalurus nebulosus and I. melas and freshwater drum, Aplodinotus grunniens are also 

common) as well as small forage fish, of which fathead minnows dominate numerically. 

Common across central North America, the fathead minnow, in Canada, is distributed east to 

New Brunswick and west into Alberta and averages 51 mm total length (Scott and Crossman 

1998). Across their range, including within Blind Channel, fathead minnows experience a wide 

range of temperatures seasonally.  

With bioenergetics and risk of predation linked to temperature, it is expected that changes 

in temperatures will alter the behaviour of fish through their habitat selection decisions as 

individuals try to meet increasing energetic demands. The development of a state-dependent 

optimization model allows for manipulation of model parameters such as available food and 

predation risk while keeping all other parameters and rules of habitat selection unchanged. This 

allows for the development of rules necessary for making decisions under the state-dependent 

optimization model. The use of these rules can then be used to better understand sources of 

mortality over the ice-free period, assuming that animals continue using the same rules. Overall, 
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the model allows for the effect of changes in parameters such as predation, amount of food, 

probabilities of finding food, as well as temperature, to be uncovered. 

 

The model parameters. 

Temperature of patches: 

Temperatures of patches were based on measured temperatures at Delta Marsh, MB, Canada, and 

were constant within patches for the duration of one time step in the model, one 24 hour day. As 

water temperatures were directly measured only from 11 May through 07 August I determined 

the water temperature for the remainder of the ice-free season using the relationship between 

water temperature (TW) and air temperature (TA), which were both measured at Delta Marsh, 

using: 

TW = 0.6414TA + 10.794                                         (1) 

(regression analysis: R2 = 0.8175, P < 0.00001) 

This initial temperature calculation corresponds to the temperature (EnvTemp) of Patch 1. 

Temperature of Patch 2 is equal to EnvTemp + 2˚C, and the temperature of Patch 3 equals 

EnvTemp – 1˚C. For all descriptions of the model parameters, the use of the term temperature 

refers to the patch specific temperature. To understand how thermal variation affects the survival 

of fathead minnows due to the impact of temperature upon state-dependent parameters, I 

increased the temperature of the ecosystem by 2C˚ (+2˚C Increased Temperature Regime, 

+2ITR) and 4 C˚ (+4˚C Increased Temperature Regime, +4ITR).  

 

Metabolic cost of residing in a patch (αi): 



111 

 

The metabolic cost of inhabiting a patch is based on the temperature of that patch as the 

metabolic rate of poikilotherms is directly related to temperature. Metabolic rates of fathead 

minnows at a variety of temperatures were obtained from MacLeod and Smith (1966) and 

Klinger et al. (1982).  These data were then graphed and a log function was used to produce the 

equation used to predict metabolic cost (αi) from water temperature (R2 = 0.9992, P < 0.00001).  

αi = 2.0141 * Ln(TW) – 0.0217     (2) 

This equation was rounded to the nearest whole number within the model to describe the role of 

temperature on the energetic state of the individual. There are always metabolic costs associated 

with the occupied patch and therefore if a fish fails to find food, its energetic state declines by 

the calculated cost of metabolism associated with the patch. 

 

Probability of death due to predation, βi 

The equation describing probability of death due to predation was based on work by Persson 

(1986) who determined capture rate of prey by the Eurasian perch, Perca fluviatilis, over a range 

of temperatures. The Eurasian perch is a cool-water fish (Persson 1983), as is northern pike, Esox 

lucius, the dominant predator in Blind Channel, the system after which this model is based. It is 

therefore expected that the effect of temperature on the capture efficiencies of pike in Blind 

Channel would be similar to those of the Eurasian perch. The data from Persson (1986) described 

the relationship (R2 = 0.8172, P < 0.001) between mortality rate of prey in a patch (βi) and water 

temperature as: 

βi = 1.415-4 TW + 2.25-3       (3) 

A model derived by Abrahams et al. (2007) suggests that as temperatures increase, the 

abundance of piscivorous fishes decrease. In their model, temperature increases of 3 and 7˚C 
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resulted in a reduction in the population of predatory brown trout (Salmo trutta) by 

approximately 0.78 and 2.3% respectively. Given those results, I was also interested in the 

probability of survival of fathead minnows over the ice-free season if predation risk decreased 

with temperature, instead of increased. To do this I simulated a reduction in predator population 

size similar to that observed by Abrahams et al. (2007) by reducing the probability of prey 

capture by predators (βi) by 1.5%. As the dominant predator in Blind Channel is a cool water fish 

(northern pike, Esox lucius) and a 4°C increase in temperature could result in temperatures of 

nearly 34°C, I also reduced the probability of prey capture by 10% and determined the 

probability of fathead minnow survival in response to these changes in predation risk.  

 

Probability of consuming food, λi 

The probability that a fish consumes food is related to the density of the available food (Mols et 

al. 2004, Ruxton 2005, Ioannou et al. 2008). Using published data (Ioannou et a. 2008), the 

relationship between the probability of consuming food in patch i (λi) and prey density in that 

patch (Yi)  (R
2 = 0.6810, P < 0.01) is:  

λi = 0.0783Yi
-0.663      (4) 

While Ioannou et al. (2008) determined that the probability of consuming the first encountered 

prey decreases with increasing density, it would be expected that in times of increased energetic 

demands, these initially encountered prey items would be consumed. A second equation based 

on data from Kawabata et al. (2006) was also used in the model (R2 = 0.3536, P < 0.025): 

λi = 4Yi
0.5038       (5) 

Under both scenarios, if a fish receives food, its energetic state increases by the amount of food it 

receives. The use of these two equations allowed me to determine if the pattern of survival 
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between temperature regimes would remain the same given different relationships between the 

amount of food present and the probability of receiving that food. These equations were used in 

two separate versions of the model and the outcomes compared.  

Amount of food received if found, Yi 

Scott and Crossman (1998) suggest that fathead minnows primarily eat algae but also consume 

zooplankton and detritus (Herwig and Zimmer 2007). To incorporate multiple prey items into the 

model, I arbitrarily assigned 75% of the diet of the minnows to be algae; the other 25% was 

assumed to be zooplankton. As the population size of both algae (Goldman and Carpenter 1974) 

and zooplankton (Verbitskii et al. 2009) vary with temperature, I again used published data 

relating population doubling times to temperature to generate an equation to predict the amount 

of food available in the patches for algae (Yia) (R
2 = 0.9261, P < 0.00001): 

Yia = 0.75 * (5.9085 * (2.71830.0644Tw))    (6) 

and zooplankton (Yiz) (R
2 = 0.9998, P < 0.000001) : 

Yiz = 0.25 * (5.95Tw– 6.9715)      (7) 

The model assumes that algae and zooplankton have equal energetic content. These equations 

were rounded to the nearest whole number within the model. If temperature increases resulted in 

an increase in the probability of starvation, the model was used to determine how much food 

would be necessary to offset this risk of starvation. 

 

Backward iteration. State-dependent optimization models are based on maximizing a measure of 

fitness. In this model, patches are selected to maximize the probability of survival for the fathead 

minnow. The model then moves backwards 181 time steps (each time step is a day), the 

calculated number of ice-free days in the study system. The backward iteration equation (a 
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stochastic dynamic programming equation) used in this model is based on patch selection to 

maximize survival, where Vi (x, t) is a measure of fitness associated with visiting patch i on day 

t. F(x, t) is the maximum expected survival probability between day t and the end of the ice-free 

season (or the end of the organisms life), given that X(t) = x. 

Vi (x, t) = (1 – βi){ λiF (x – αi + Yi, t + 1) + (1 – λi) F(x – αi, t + 1)} (8) 

 

Forward iteration. The probabilities of being eaten by a predator and receiving food based on the 

previously described patch parameters are calculated (see Table 5.1 for model parameters) 

during the forward iteration based on the patch selection rules arising from the backward 

iteration. If the fish survives the first time step, at the next time period (i.e. the next day) the next 

patch is selected based on the new state of the fish. At states below 30, the fish is considered to 

not have enough energy for survival and dies. One hundred is the maximum state of the fish, 

which represents the greatest amount of energy reserves a fish can have. The forward iteration 

allows for a direct calculation of survival probabilities of fathead minnows over the ice-free 

season. Overall, the use of the dynamic state optimization model allows for a better 

understanding of sources of mortality that fathead minnows experience over the course of the 

ice-free season.  

 

Table 5.1: Definitions of model parameters and variables. 

Parameter Definition 

λi Probability of receiving food in patch i 

Y i Amount of food in patch i 

αi Metabolic cost of residing in patch i 
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βi Probability of predation in patch i 

x_crit Critical energetic state necessary for survival; if x_crit < 30 the fish dies 

x_max Maximum energetic state; no fish can exceed an energetic state of 100 

T Time period over which the model runs; it is the total number of ice-free 

days = 181 

 

 

 

 

 

 

 

 

 

 

 

 

Model output.  I used the model to determine the survival rate of a population of 10 000 fathead 

during the ice-free period within Delta Marsh. Because I tracked sources of mortality and kept 

the decision making rules of the minnows in the backward iteration the same, I could also 

determine the relative impact of predation (and changes in risk of predation) and starvation on 

the population. I could also determine the effect of temperature on predation and starvation. 

Finally, if increased temperature indeed increased risk of starvation, both the amount of food 
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necessary to offset the energetic cost of increased temperature could be estimated in the model. 

The effect of temperature (both +2ITR and +4ITR), changes in overall predation risk, and the 

relationship between food density and the probability of receiving food on the probability of 

predation, probability of starvation and overall probability of survival are discussed. 

  

Sensitivity analysis. Sensitivity analyses were conducted on the key parameters used in this 

model. Each parameter (λi, Yi, βi, and αi) was increased by 5% and the resulting change in the 

probability of survival, calculated as a percent change, was determined. The percent change in 

the survival probability, was then divided by 5%, the change in the parameter value, and a 

dimensionless elasticity was calculated. I also determined that the model was not sensitive to my 

arbitrary assignment of 75% of the forage of the fathead minnows being comprised of algae with 

the other 25% of the forage arising from zooplankton (elasticity = -0.18) Elasticities were 

calculated for one parameter at a time; all other model parameters were kept unchanged while 

the parameter of interest was varied (Clark and Mangel 2000). The results of this analysis were 

used to determine which parameters were the most important to model predictions as well as to 

determine whether model predictions are heavily reliant upon parameters that are estimated and 

uncertain (Clark and Mangel 2000). As well, parameters that were determined to have large 

calculated elasticities were further manipulated to determine how changing these parameters 

would affect the model outcome.   

 

Results 

Sensitivity analysis. The parameter that had the largest calculated elasticity was βi, the risk of 

predation. A 5% increase in the risk of predation reduced the probability of survival 
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approximately 2.25%. When βi was then increased in the increased temperature regime iterations 

of the model, the resulting increase in probability of death was exacerbated – a 5% increase in 

risk of predation decreased the probability of survival by as much as 5% under the +2ITR and 

nearly 10% under the +4ITR. This reduction in survival was primarily a result of an even greater 

impact on mortality due to predators. The results of changing predation risk (specifically a 

reduction in risk) were further examined with respect to temperature. The parameter with the 

smallest calculated elasticity was αi, the metabolic rate of the fish. A 5% increase in the 

metabolic cost, resulted in the smallest change in the probability of survival, a 0.35% decrease. 

All calculated elasticities were less than 0.5 and ranged from -0.47 to 0.23 (Table 5.2).  

 

Model output and the natural ecosystem (normal temperature regimes) 

Under the current temperature regime, the model predicts that the fathead minnow has between a 

64 and 67% probability of surviving the ice-free season given the probability of consuming food 

decreases or increases, respectively, with food density. In both  

Table 5.2: Calculated elasticities for the probability of survival when the indicated model 

parameter is increased by 5%. Changes to the risk of predation result in the greatest change in the 

probability of survival.  

Model parameter Elasticity 

λi 0.181 

0.232 

βi -0.47 

αi -0.06 

Y i 0.137 
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Starvation 0.643 

1From Equation 5(a) 

2From Equation 5(b) 

3Starvation combines Yi, αI and λi 
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Figure 5.1: The average probability of surviving, dying due to predation and dying due to 

starvation during the ice-free season regardless of initial state under three different temperature 

regimes (current, NTR; +2°C increase, +2 ITR; and +4°C increase, +4 ITR) with (a) negative, 

and (b) positive relationship between probability of finding food and food density. Error bars 

represent the standard error around the mean.  

Temperature regime 
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scenarios, the primary cause of mortality is predation (28.5 and 29.5% chance of predation) 

while less than 7% of the population will succumb to starvation (Figure 5.1). Even at the lowest 

energetic state when the probability of receiving food declines with food density, the probability 

of surviving the ice-free season is 30%. When the probability of receiving food increases with 

food density, the probability of survival increases to approximately 45% (Figure 5.2) when 

individuals are at their lowest energetic state. The probability of death due to starvation 

approaches 60% at the lowest energetic states when the probability of receiving food decreases 

with food density. When the probability of receiving food increases with food density the 

probability of starvation declines to approximately 40% (Figure 5.3). Under the current 

temperature regime, the minimum probability of death due to predation occurs when there is a 

positive relationship between the probability of receiving food and food density. When this 

occurs, there is approximately a 10% probability of death due to predation (Figure 5.4). For all 

energetic states, risk of predation is lower when individuals have a greater probability of 

receiving food as food density increases – these individuals do not have to occupy the most risky 

patches to meet energetic demands.  

 

Temperature and survival. Regardless of the iteration of the model compared, more fish die as 

temperature increases (Figures 5.1 and 5.2). The probability of survival declines from 

approximately 64% under the normal temperature regime to 34% under +4ITR when there is an 

inverse relationship between prey density and probability of consuming food. The probability of 

survival under a +4ITR when prey density and probability of consuming food are positively 

linked does not decrease as much; fathead minnows have a  
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Figure 5.2: The probability that an individual fish survives the ice-free season, given the initial 

energetic state of the individual and the temperature regime (current, NTR; +2°C increase, +2 

ITR; and +4°C increase, +4 ITR) with (a) negative, and (b) positive relationship between 

probability of finding food and food density. 



122 

 

P
ro

ba
b

ili
ty

 o
f d

ea
th

 d
u

e 
to

 s
ta

rv
at

io
n

0.0

0.2

0.4

0.6

0.8

1.0

NTR
+2 ITR
+4 ITR

P
ro

b
ab

ili
ty

 o
f 

d
ea

th
 d

u
e 

to
 s

ta
rv

at
io

n

0.0

0.2

0.4

0.6

0.8

1.0

   NTR
+2 ITR
+4 ITR

Energetic state

40 60 80 100

 

Figure 5.3: The probability that an individual fish dies due to starvation given the initial 

energetic state of the individual and the temperature regime (current, NTR; +2°C increase, +2 

ITR; and +4°C increase, +4 ITR) with (a) negative, and (b) positive relationship between 

probability of finding food and food density. 
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Figure 5.4: The probability that an individual fish dies due to predation given the initial energetic 

state of the individual and the temperature regime (current, NTR; +2°C increase, +2 ITR; and 

+4°C increase, +4 ITR) with (a) negative, and (b) positive relationship between probability of 

finding food and food density. 
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59% probability of survival under those conditions. In fact, the probability of survival decreased 

more under the +2ITR (54%) when there was a negative relationship between food density and 

probability of consumption than under the +4ITR when food density and consumption 

probabilities were positively related.  

The change in probability of survival when there is an inverse relationship between prey 

density and the probability of consuming food reflects the increase in the probability of dying 

due to starvation (Figures 5.1 and 5.3).  Under NTR, the probability of death due to starvation is 

less than 7%; under the +2ITR, this probability increases to approximately 18%. With a doubling 

of the temperature increase (+4ITR), there is over a doubling of the probability that an individual 

fish will die due to starvation (41%). This increase in probability of death as temperature 

increases is greater than the reduction in the risk of death due to predation that occurs with an 

increase in temperature. When there is an inverse relationship between prey density and 

probability of consumption of the prey, the probability of survival increases through the decrease 

in risk of death as a result of a predation event (Figures 5.1 and 5.3).  

Comparing the results of the second iteration of the model (where there is a positive 

relationship between prey density and the probability of consuming prey) to the iteration where 

there is a negative relationship between prey density and the probability of consuming prey 

suggests that while the probability of survival still decreases with temperature, the mode of death 

responsible for this observed drop in survival probability changes. The probability that an 

individual will die due to starvation still increases as temperature increases (+4ITR) under the 

iteration with a positive relationship between food availability and probability of consuming it 

(Figures 5.1 and 5.3). The extent of the increase in probability of starvation however, is much 

less (less than 10%, as compared to 41%). There is an increased risk of death with temperature 
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increases as a result of a slight increase in risk of predation (2% overall). The risk of predation 

under the NTR is similar between the two iterations of the model but when there is a positive 

relationship between the density of food and the probability of consuming food, the probability 

of death due to predation increases with a 2°C increase and further increases when the 

temperature is increased by 4°C.  

When mode of death is explored and there is a negative relationship between the 

probability of consuming food and prey density, in the NTR and +2ITR more individuals die due 

to predation than starvation. Risk of starvation outweighs risk of predation almost 2:1 under the 

+4ITR. When the relationship between successful foraging and forage density is positive, more 

fish again succumb to predation versus starvation, this time under all temperature regimes.  

When there is an inverse relationship between the probability of consuming food and the 

amount of available food, there was an increase in probability of death due to starvation as 

temperature increased. In order to offset this risk, the amount of food available to individuals 

would have to increase by nearly 3.5 times. This would reduce the probability of starvation when 

the probability of consuming food decreases with increasing density under the +4ITR to similar 

values (near 10%) as in the other model outputs. If the probability of consuming food increases 

with increasing food density, an increase in the amount of food by approximately two and a half 

results in a further reduction of the probability of starvation to less than 2%.  

 

Temperature and survival when predation risk is reduced. If predation risk declines slightly 

(1.5%) as temperatures increase (through a reduction in the number of predators present), the 

survival probabilities of the fathead minnow increase approximately 3% under a +2ITR 

regardless of the relationship between consuming food and the amount of food available (Figure 
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5.5). An approximate 10% reduction in risk increases by approximately 20% the survival 

probabilities of the fathead minnow over the ice-free season (18% when the relationship between 

consuming food and amount of available food is negative, 22% when that relationship is 

positive) (Figure 5.6). A slight reduction in predation risk under the +4ITR, results in an overall 

increase in the probability of survival for the fathead minnow. This includes a 2% reduction in 

mortality risk when the relationship between amount of food and the probability of finding food 

is negative and a 4% reduction when the relationship between amount of food and the probability 

of finding food is positive. Given a 10% reduction in predation risk, under the +4ITR there is an 

approximate 13% and 22% increase in the probability of survival when the relationship between 

the amount of food present and the probability of consuming the food is negative and positive 

respectively.  

 

Discussion 

The results of the sensitivity analysis suggest that changes in βi, the risk of predation, 

results in the greatest amount of change in survival. As this variable is estimated from published 

data on the Eurasian perch (Persson 1986) and influences the overall survival probabilities of the 

fathead minnow, it is important that future research examines the specific influence of 

temperature on risk of predation for a variety of predators. A better estimate of how risk of 

predation changes with temperature would increase the accuracy of the model. The influence of 

temperature on the probability of finding food (λi) ranks second in importance based on 

elasticities. Again, these variables were estimated from published data and are not specific for 

the probability of fathead  
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Figure 5.5: The average probability of surviving, dying due to predation and dying due to 

starvation during the ice-free season regardless of initial state under three different temperature 

regimes assuming the risk of predation declines slightly (1.5%) with temperature (current, NTR; 

+2°C increase, +2 ITR; and +4°C increase, +4 ITR) with (a) negative, and (b) positive 

relationship between probability of finding food and food density. Error bars represent the 

standard error around the mean. 
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Figure 5.6: The average probability of surviving, dying due to predation and dying due to 

starvation during the ice-free season regardless of initial state under three different temperature 

regimes assuming the risk of predation declines 10% with temperature (current, NTR; +2°C 

increase, +2 ITR; and +4°C increase, +4 ITR) with (a) negative, and (b) positive relationship 

between probability of finding food and food density. Error bars represent the standard error 

around the mean.  
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minnows consuming food given the density of available food in the environment and suggest 

future research is necessary. 

Under the current temperature regime, the dynamic state dependent model constructed to 

examine survival probabilities of a small minnow predicts that a typical, non-breeding fathead 

minnow has an approximate probability of survival of 64%. This survival probability is similar 

to survival probabilities published from field data (58-73%) on a population of fathead minnows 

in Alberta, Canada that experience a similar temperature regime as those used in the model 

(Divino and Tonn 2007). The fact that the model output is in agreement with published data 

gives support to the model’s ability to predict responses to changing environment.  

The results of this study suggest that an average daily temperature increase as low as 2 C˚ 

over the course of the ice-free season results in a reduction in the probability of survival for 

fathead minnows. Depending on the iteration of the model (there can be either a positive or 

negative relationship between density of prey items and the probability of consuming prey), the 

range of reduction in survival is 4-10%. A more significant temperature increase reduces the 

probability of survival another 4-20%. While it is unrealistic to expect the model to have the 

accuracy to predict, to a specific percentage, the result of increasing temperature on the 

probability of survival of the fathead minnow over the ice-free season, what the model does 

demonstrate is the fact that increasing temperature by 2 C˚ decreases the likelihood of survival of 

a fathead minnow, and an additional increase of 2 C˚ further decreases the minnow’s probability 

of survival.  

In temperate climates where bodies of water freeze during the winter months, survival 

during the ice-covered period depends on lipid content of fishes, a measure correlated with size 

of the fish (Biro et al. 2004). For poikilotherms, in both field (Anderson et al. 2001) and 
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laboratory (Keast 1984, Vigg and Burley 1991, Person-Le Ruyet et al. 2004) studies increased 

temperature results in increased growth rates and therefore larger fish. An increase in 

temperature could be thought to increase the probability of survival not only over the ice-covered 

period, but also during the ice-free season as larger fish have increased energetic reserves and 

can afford to refuge at the expense of feeding if predation risk is high. In the model described in 

this paper, an increase in predation risk with temperature is observed when probability of 

consuming food is positively related to temperature. When the relationship between the 

probability of finding food and food density is negatively related, there is a slight decrease in 

predation risk with temperature however, risk of starvation appears to be the driving factor in the 

overall reduction in likelihood of survival.  

In this model, fish have a choice of three patches that differ in temperature. When there is 

a negative relationship between temperature and the probability of consuming food, the patch 

that will be energetically superior will be the patch that is coolest. As risk of predation increases 

with temperature, this cool patch will also be the patch that is less risky. Examining the outcomes 

of the model under increased temperature regimes it is observed that the fish consistently chose 

the low risk patch with the greatest amount of food and the lowest probability of death due to 

predation. Risk of predation decreases as temperature increases. Yet probability of survival 

continues to decrease even though fish are occupying the patch with the highest probability of 

receiving food and the lowest risk of predation. In this iteration of the model, the increase in the 

probability of death is due to the increase in the probability of death due to starvation. In much 

the same way as fishes without adequate food stores do not survive the winter even though they 

have eaten (Biro et al. 2004), under an increased temperature regime even though fish are eating, 

they are not consuming enough to meet metabolic demands. Further examination of the model 
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suggests that the predicted amount of food available would have to increase three and one half 

times in order for fish to reduce the probability of survival to those predicted under the normal 

temperature regime.  

If food availability increased with temperature it might be expected that survival rates 

would also increase as metabolic demands would be met. Nevertheless, in the second iteration of 

this model where there is an increased probability of receiving food with increased temperature, 

the probability of survival still decreased with increasing temperature, though to a lesser degree 

than in the first iteration of the model. In this second iteration, the result of an increased 

likelihood of receiving food with increasing temperature can be observed in the model output. 

The probability of death due to starvation increases 6% over the 4°C temperature increase 

(versus a 34% increase when the relationship between the amount of food and the probability of 

consuming that food is negative). The probability of predation increases with increasing 

temperature. While fish can meet energetic demands through the use of the warmest patches 

doing so puts them at an increased risk of predation. It is this increase in risky behavior 

(selecting patches with both high food and high risk) that causes the overall reduction in survival 

probabilities.  

The use of a state dependent stochastic dynamic model to predict survival probabilities 

under different temperature regimes has the benefit of not only being able to predict general 

survival patterns and overall averages of probabilities of death due to starvation and predation, 

but it also demonstrates the role of state in decision making processes. At low energetic states, 

very few fish die as a result of a predation event. Death at low energetic states is most often the 

result of starvation. However, if an individual can increase their energetic state so that they enter 

the ice-free period with large amounts of energetic reserves the probability of death due to 
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starvation decreases to almost zero in the NTR. Under all temperature regimes, when prey 

density is positively related to probability of obtaining food, the probability of death due to 

starvation is again almost zero. When there is an inverse relationship between prey density and 

probability of receiving food, fish must be at higher energetic state in order to reduce their risk of 

starvation to essentially zero under the + ITR. Under the +4ITR, regardless of the state at which 

the fish begins the ice-free season, there is always the probability of dying as a result of 

starvation.  

Abrahams et al. (2007) suggest that an increase in temperature will result in a reduction 

in the predator population, as well as a reduction in the number of large predators present. 

Taking this result into consideration, I reduced the risk of predation in the model. Overall 

survival for fathead minnows over the ice-free season increased to over 80% when the risk of 

predation was reduced approximately 10%. When risk of predation is reduced, the probability of 

death due to both predation and starvation is reduced as compared to initial model iterations. The 

reduction in risk of predation allows the fish to exploit the more energetically profitable patches 

while not incurring a greater risk of predation thereby increasing their overall probability of 

survival.  

This paper highlights the importance of temperature to the survival of poikilotherms, and 

specifically fathead minnows. Temperature is an ecological condition in that it can drive the 

underlying habitat selection decisions of individuals. When choosing patches, individuals must 

balance the costs and benefits of each habitat and select the one that best suits its current state 

and potential future success. Under environmental conditions predicted by climate change 

models (Meehl et al. 2007), the future success of minnows as measured by survival over the ice-

free season declines under both the conservative temperature increase estimate and the more 
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extreme temperature increase predictions. The results from this study suggest that populations of 

minnows may experience, at least initially, a reduction in numbers. As fathead minnows are a 

dominant forage fish in many shallow water ecosystems, any reductions in population size may 

affect community dynamics. 

 

References 

Abrahams, M.V., Mangel, M., Hedges, K. 2007. Predator-prey interactions and changing  

environments: who benefits? Philosophical Transactions of the Royal Society B: 

Biological Sciences 362: 2095-2104. 

Anderson, M. T., Kiesecker, J.M., Chivers, D.P., Blaustein, A.R. 2001. The direct and  

indirect effects of temperature on a predator–prey relationship. Canadian Journal of 

Zoology 79: 1834-1841. 

Biro, P. A., Morton, A.E., Post, J.R., Parkinson, E.A. 2004. Over-winter lipid  

depletion and mortality of age-0 rainbow trout (Oncorhynchus mykiss). Canadian Journal 

of Fisheries and Aquatic Sciences 61: 1513-1519. 

Clark, C.W., Mangel, M. 2000. Dynamic State Variable Models in Ecology: Methods and  

Applications. New York: Oxford University Press. 289 pp.  

Divino, J.N., Tonn, W.M. 2007. Effects of reproductive timing and hatch date on 

fathead minnow recruitment. Ecology of Freshwater Fish 16: 165-176.  

Elliott, J.M. 1976. The energetic of feeding, metabolism and growth of brown trout  

(Salmo trutta L.) in relation to body weight, water temperature, and ration size. Journal of 

Animal Ecology 45: 923-948.  



134 

 

Gibbons, J.W., Bennett, D.H., Esch, G.W., Hazen, T.C. 1978. Effects of thermal effluent on 

body condition of largemouth bass. Nature 274: 470-471.  

Gillooly, J.F. 2000. Effect of body size and temperature on generation time in zooplankton. 

Journal of Plankton Research 22: 241-251.  

Gillooly, J.F., Charnov, E.L., West, G.B., Savage, V.M., Brown, J.H. 2002. Effects of size and 

temperature on developmental time. Nature 417: 70-73.  

Goldman, J. C., Carpenter, E.J. 1974. A kinetic approach to the effect of temperature on  

algal growth. Limnology and Oceanography 19: 756-766. 

Hammel, H.T. 1955. Thermal properties of fur. American Journal of Physiology 182:  

369-376.  

Herwig, B.R., Zimmer, K.D. 2007. Population ecology and prey consumption by fathead  

minnows in prairie wetlands: importance of detritus and larval fish. Ecology of Freshwater 

Fish 16: 282-294.  

Huey, R.B., Kingsolver, J.G. 1989. Evolution of thermal sensitivity of ectotherm performance. 

Trends in Ecology and Evolution 4: 131-135. 

Ioannou, C.C., Payne, M., Krause, J. 2008. Ecological consequences of the bold-shy continuum: 

the effect of predator boldness on prey risk. Oecologia 157: 177-182.  

Johnston, P., Bergeron, N.E., Dodson, J.J. 2004. Diel activity patterns of juvenile Atlantic 

salmon in rivers with summer water temperature near the temperature-dependent 

suppression of diurnal activity. Journal of Fish Biology 65: 1305-1319.  

Kawabata, K., Narita, T., Nishino, M. 2006. Predator-prey relationship between the landlocked 

dwarf ayu and planktonic Crustacea in Lake Biwa, Japan. Limnology 7: 199-203. 



135 

 

Keast, A. 1984. Growth responses of the brown bullhead (Ictalurus nebulosus) to temperature. 

Canadian Journal of Zoology 63: 1510-1515.  

Klinger, S.A., Magnuson, J.J., Gallepp, G.W. 1982. Survival mechanisms of the central 

mudminnow (Umbra limi), fathead minnow (Pimephales promelas) and brook stickleback 

(Culaea inconstans) for low oxygen in winter. Environmental Biology of Fishes 7: 113-

120.  

Krause, J., Godin, J.-G.J. 1995. Predator preference for attacking particular prey group sizes: 

consequences for predator hunting success and prey predation risk. Animal Behavior 50: 

465-473. 

Logue, J., Tiku, P., Cossins, A.R. 1995. Heat injury and resistance adaptation in fish. Journal of 

Thermal Biology 20: 191-197.  

MacLeod, J.C., Smith, L.L. Jr. 1966. Effect of pulpwood fiber on oxygen consumption and 

swimming endurance of the fathead minnow, Pimephales promelas. Transactions of the 

American Fisheries Society 95: 71-84.   

McNamara, J.M., Houston, A.I. 1986. The common currency for behavioral decisions. The 

American Naturalist 127: 358-378.  

Meehl, G.A., Stocker, T.F., Collins, W.D., Friedlingstein, P., Gaye, A.T., Gregory, J.M.,  

Kitoh, A., Knutti, R., Murphy, J.M., Noda, A., Raper, S.C.B., Watterson, I.G., Weaver, 

A.J., Zhao, Z.-C. 2007. Global Climate Projections. In: Climate Change 2007: The 

Physical Science Basis.Contribution of Working Group I to the Fourth Assessment Report 

of the Intergovernmental Panel on Climate Change. Solomon, S.,D. Qin, M. Manning, Z. 

Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller, Editors. Cambridge 

University Press, Cambridge, United Kingdom and New York, NY, USA. 



136 

 

Mols, C.M.M., van Oers, K., Witjes, L.M.A., Lessells, C.M., Drent, P.J., Visser, M.E. 2004. 

Central assumptions of predator-prey models fail in a semi-natural experimental system. 

Proceedings of the Royal Society of London Series B: Biological Sciences 271: S85-S87.  

Nilsson, P.A., Brönmark, C. 2000. Prey vulnerability to a gape-size limited predator: behavioural 

and morphological impacts on northern pike piscivory. Oikos 88: 539-546.  

Person-Le Ruyet, J., Mahé, K., Le Bayon, N., Le Delliou, H. 2004. Effects of temperature on 

growth and metabolism in a Mediterranean population of European sea bass, 

Dicentrarchus labrax. Aquaculture 237: 269-280.  

Persson, L. 1983. Effects of intraspecific and interspecific competition on dynamics and size 

structure of a perch Perca fluviatilis and a roach Rutilus rutilus population. Oikos 41: 126–

132. 

Persson, L. 1986. Temperature induced shift in foraging ability in two fish species, roach 

(Rutilus rutilus) and perch (Perca fluviatilis): implications for coexistence between 

poikilotherms. Journal of Animal Ecology 55: 829-839. 

Ruxton, G.D. 2005. Increasing search rate over time may cause a slower than expected increase 

in prey encounter rate with increasing prey density. Biology Letters 1: 133-135. 

Savage, V.M., Gillooly, J.F., Brown, J.H., West, G.B., Charnov, E.L. 2004. Effects of body size 

and temperature on population growth. The American Naturalist 163: 429-441. 

Scott, W.B., Crossman, E.J. 1998. Freshwater fishes of Canada. Bulletin of the Fisheries 

Research Board of Canada 184:1-966. 

Verbitskii, V.B., Verbitskaya, T.I., Malysheva, O.A. 2009. Population dynamics of  



137 

 

Daphnia longispina (O.F. Müller, 1785) and Diaphanosoma brachyurum (Lievin, 1948) 

(Crustacea, Cladocera) under stable and graded temperature regimes. Biology Bulletin 36: 

66-73.  

Vigg, S., Burkley, C.C. 1991. Temperature-dependent maximum daily consumption of  

juvenile salmonids by northern squawfish Ptychocheilus oregonensis from the Columbia 

River. Canadian Journal of Fisheries and Aquatic Sciences 48: 2491-2498.  

Walls, M., Ventelä, A.-M. 1998. Life history variability in response to temperature and  

Chaoborus exposure in three Daphnia pulex clones. Canadian Journal of Fisheries and 

Aquatic Sciences 55: 1961-1970.  

Wootton, R.J. 1990. Ecology of Teleost Fishes. London: Chapman and Hall. 404 pp.   

 

 

 

 

 

 

 

 

 

 

 

 

 



138 

 

 

Chapter 6: Can the abiotic environment of a shallow water ecosystem influence the 

dynamics of avian predation on prey fishes? 

 

Abstract. Shallow water aquatic ecosystems may be considered discrete feeding patches for 

foraging terns. A unique feature of these ecosystems are that their physical conditions can 

change dramatically in a short period of time, particularly temperature, turbidity, and dissolved 

oxygen. Based on previous research I predicted that increasing turbidity will reduce the 

availability of fish (minnows) to plunge diving terns through reduction of visibility of the fish, 

while increasing temperature and decreasing dissolved oxygen will increase their availability 

through increases in activity and movement towards the more oxygenated surface areas 

respectively. I also predicted that overall abundance of minnows should increase feeding activity 

by terns. I measured these environmental variables, tern activity, and minnow abundance from 

May to August from 2006 to 2008 in a marsh in southern Manitoba. My results demonstrated 

that only variation in dissolved oxygen levels affected tern feeding activity. Since there was no 

relationship between tern and minnow abundance either within or among years, these results 

suggest that it is the availability of prey (i.e. the movement by prey fishes up into the water 

column) and not their abundance that influences the number of predators present and hence the 

risk of predation.  
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Introduction 

The dynamic interactions between predators and their prey have the ability to structure aquatic 

environments (Paine 1966).  Predators consume prey thus controlling populations, altering 

relative abundances, and changing the size structure of prey populations (Crowder and Cooper 

1982, Tonn and Magnuson 1982, Werner and Gilliam 1984, He and Kitchell 1990).  Predators 

can also exert indirect effects on prey populations; the risk of predation can affect prey 

morphology, physiology, life history traits and behaviour (see Mittelbach and Chesson 1987 for 

a review). Prey faced with a risk of predation can have reduced growth rates and survivorship 

(Werner and Anholt 1996) because they may trade-off food rich habitats for food poor habitats 

that offer cover from predators (Werner et al. 1983).  

In freshwater ecosystems, the study of predator-prey interactions, from small scale 

experiments to large scale manipulations, has focused primarily on piscivorous fish and their 

prey (Tonn and Magnuson 1982, Crowder and Cooper 1982, Werner et al. 1983, Turner and 

Mittelbach 1990, Eklöv and Persson 1996, Wazenbock et al. 2006). The study of the effects of 

avian predation on prey communities in a completely natural setting has been widely overlooked 

even though some research has demonstrated that the presence of avian predators can change the 

size structure, behaviour and abundance of prey populations (Milinski and Heller 1978, Harvey 

and Stewart 1991, Allouche and Gaudin 2001, Collis et al. 2001, Hodgens et al. 2004, Steinmetz 

et al. 2008). More importantly, the effects of prey populations on the abundance and/or presence 

of avian predators in these freshwater ecosystems has not been studied as much of the research 

has focused on changes in abundance of fishes as a result of avian predation. This research has 

been focused primarily in hatcheries or stocked ponds or streams (Collis et al. 2001, Hodgens et 

al. 2004). 
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The purpose of this study is to address whether changes in the abiotic aspects of the 

aquatic environment (i.e. temperature, dissolved oxygen and turbidity) can influence the avian 

predator population through the effect of the environment on prey behaviour. It is thought that 

changes in the aquatic environment may lead to changes in the behaviours of prey fishes or, as 

with changes in turbidity may lead to direct changes in the visibility of the prey to the predators, 

which would then mediate the presence of predators through changes in prey conspicuousness 

and/or availability. As presence of avian predators have been used as indicators of available prey 

in marine ecosystems (Monaghan et al. 1989, Weimerski et al. 2005), it is reasonable to expect 

that avian predators will respond in the same manner in a freshwater ecosystem by becoming 

more abundant in areas where prey are available.  

 Experiments examining the role of dissolved oxygen (DO) in risk of waterbird predation 

to their fish prey has demonstrated that in times of low oxygen, use of surface waters by fish 

increases their risk of capture by green heron, Butorides striatus (Kramer et al. 1983) and pied 

kingfisher, Ceryle rudis (Randle and Chapman 2004). In periods of low DO the movement of 

fish up into the water column to areas close to the surface to meet oxygen demands (Kramer 

1987) is the probable factor that increases the vulnerability of the fish to predators, both avian 

(Randle and Chapman 2004) and piscine (Wolf and Kramer 1987), as prey are more easily 

detected while active (Krause and Godin 1995) and near the surface of the water. While these 

small scale experiments provide useful information as to possible responses of prey to predators 

and how the habitat of the prey can influence predation risk it is important to determine how 

these results translate on a large scale where prey are not constrained to a small area. It is 

predicted that in response to low DO levels there will be the potential for movement of prey 

fishes to positions higher in the water column where DO levels are higher (Kramer 1987), avian 
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predators will react to an increase in prey availability by increasing their presence in the area 

during that time.  

 The role that environmental variables other than DO play in the risk of avian predation to 

small bodied fishes is not well studied in either small or large scale experiments or observational 

studies (though see Eriksson 1985, Gwiazda and Amirowicz 2006 for studies incorporating 

turbidity with risk of avian predation). The effects of temperature and turbidity on fish behaviour 

and mortality under piscivorous predation risk are studied to a greater extent (turbidity: Gregory 

1993, Abrahams and Kattenfeld 1997, Reid et al. 1999, Bonner and Wilde 2002, Snickars et al. 

2004, temperature: Krause and Godin 1995, Weetman et al. 1998, Weetman et al. 1999). 

Through the results of these studies it is possible to predict how the changing environment will 

directly affect probability of detection of the prey by the predators (and therefore presence of 

predators), or how the changing environment indirectly influences the risk of predation through 

the behavioural responses of prey fish to the changes in temperature and turbidity.  

Studies of the influence of turbidity on piscivory has suggested that moderate turbidity 

levels (11 and 20 NTU) do not affect capture of prey by predators (Reid et al. 1999, Abrahams 

and Kattenfeld 1999), while a study on great cormorants, Phalacrocorax carbo sinensis, found 

that their probability of detecting a prey fish declined significantly as turbidity increased (Strod 

et al. 2008). Observations of grey heron, Ardea cinerea, predation among water bodies that 

differed in turbidity levels demonstrated favourable foraging in highly turbid areas (Gwiazda and 

Amirowicz 2006). Given that the predators in this study are plunge divers and take prey from the 

top 30 cm of the water column (Forster’s terns, Sterna forsteri, hereafter referred to as terns), it is 

predicted that turbidity will be less important in moderating availability of prey to predators than 
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low dissolved oxygen levels which may result in prey fishes moving up into the water column to 

exploit waters with higher levels of DO.  

The direct role of temperature in studies of aquatic predator-prey interactions has 

received little attention (Krause and Godin 1995, Moore and Townsend 1998, Weetman et al. 

1998, Weetman et al. 1999, Anderson et al. 2001, Lass and Spaak 2003, Taylor and Collie 2003). 

In a study on anurans and their invertebrate predators, Anderson et al. (2001) suggest that 

increased temperatures may lead to increase capture rates and decreased handling times. With 

respect to the behavioural responses of fish to changing temperatures, it is expected that fish will 

become more active with increasing temperatures (Atkinson 1994, Krause and Godin 1995, 

Chapter 2). As well, with metabolic rates of fishes increasing with temperature (Clarke and 

Johnston 1999) there is an increase in the rate at which fish consume energy, likely resulting in 

an increased willingness to risk exposure to predators to gain access to food (Godin and 

Crossman 1994). Increased activity increases the probability of being selected for attack by a 

piscine predator (Krause and Godin 1995) and it is likely true for avian predators as well. 

Therefore increased water temperature should provide more productive feeding areas for avian 

predators.  

 Four predictions were tested in this study: 1) the number of terns observed will increase 

as the abundance of their prey increase, 2) an increase in water temperature will result in an 

increase in the number of observations of terns, 3) a decrease in dissolved oxygen content will 

increase observations of terns and 4) a decrease in turbidity will result in an increase in the 

number of terns observed. The last three predictions arise from the interaction between 

environmental variables and prey fish behavior (which is not measured) and it is the resulting 

changes in the behaviours of minnows that the terns would in fact be responding to. It was 
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hypothesized that DO, turbidity and temperature would influence abundance of terns through 

either direct effects that alter the ability of the predators to observe their prey (turbidity) or via 

indirect effects of the aquatic environment on prey fish behaviour (temperature and DO). DO 

was hypothesized to have the greatest affect since hypoxic conditions would force minnows to 

shallow depths making them available to plunge diving terns. Since fathead minnows are the 

most abundant species in this location, and they are known to tolerate moderate hypoxia (defined 

as oxygen concentrations ranging from 2.35 – 2.74 mg/L) (Robb and Abrahams 2003), I 

predicted that the effect of DO on tern abundance would be most pronounced with extreme 

hypoxia (< approximately 2 mg/L DO). 

 

Materials and Methods 

To test the aforementioned predictions the environmental variables of interest were measured 

and averaged on a daily basis. These measures were then related to the presence of terns which 

was established via recordings of the study area during the same time period as the 

environmental variable measurements were collected.  

The aquatic environment. Measures of DO, temperature and turbidity were taken in Blind 

Channel, Delta Marsh, Manitoba, Canada (98°23’W, 50°11’N) from May to August of 2006 to 

2008. Blind Channel is a shallow (~1.5 m), turbid, slow moving blind ending channel. The marsh 

itself is a 21 870 hectare wetland located on the southern shore of Lake Manitoba with a single 

narrow passageway connecting the lake to Blind Channel. Blind Channel is a relatively protected 

area, and many piscivorous fishes use the channel for spawning and feeding during the spring 

and summer months (Suthers and Gee 1986). Water levels in Blind Channel are primarily 

controlled by seiches as a result of prevailing winds; a strong northerly wind rising and a strong 
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southerly wind lowering water levels.  As the water entering Blind Channel does so from Lake 

Manitoba, temperatures generally decrease with a northerly wind bringing cooler, more 

oxygenated lake water into the channel. Over the course of the ice-free period Blind Channel 

experiences a wide range of turbidity, temperatures (peaking at around 28-30 °C) and dissolved 

oxygen levels (ranging from normoxia to extreme hypoxia) (Robb and Abrahams 2003). 

To record DO, temperature and turbidity YSI 6920 data sondes were placed at the 

bottom, middle, and surface of the water column in Blind Channel. The sondes collected data 

every 30 minutes that was averaged to provide a daily value to correspond with measures of 

predator and prey abundances. 

 

Measures of prey abundance. The primary prey for Forster’s terns in Blind Channel is the 

fathead minnow, the numerically dominant forage fish in the Channel. Common across central 

North America, the fathead minnow, in Canada, is distributed east to New Brunswick and west 

into Alberta and averages 51 mm total length (Scott and Crossman 1998). Prey abundance 

(primarily fathead minnows, Pimephales promelas) was measured using ten minnow traps set 

just below the surface of the water. Five of these traps were deployed on the north side of the 

channel while the other five traps were set on the south side. This arrangement ensured that one 

side of the marsh with minnow traps would be relatively sheltered in high wind events. This was 

important as minnows were observed to aggregate in sheltered areas when winds were high and 

sampling only one side of the marsh would have resulted in inaccurate estimates of minnow 

abundance. All traps were set at permanent locations within the area that was surveyed for avian 

predators.  
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 Minnow traps were checked every morning from May to August in all three study years. 

All captured fishes were identified to species and a count of the number of individuals of the 

species present was recorded. The number of fish captured among all traps at each location was 

averaged to provide a single measure of catch per unit effort (CPUE) that represented the 

abundance of fish during that 24 h period.  

 

Measures of risk of avian predation. The most common avian predator in this system is the 

Forster’s terns. Forster’s terns are plunge divers and generally take fish in the top 30 cm of 

water. They capture one fish approximately once every 3 to 6 dives (Salt and Willard 1971), and 

so must dive often to feed on small fish. At least six known locations within Delta Marsh are 

used as tern colonies, though not every site is used each year (McNicholl 1971). Previous studies 

of Forster’s terns in Delta Marsh have suggested that the number of nests at a given colony may 

vary year to year, though on average, the number of nests in the marsh is relatively stable 

between years (McNicholl 1971). During this study, no colonies were observed within Blind 

Channel itself, or Forster’s Bay, the known location closest to Blind Channel. Given that 

Forster’s terns are known to forage for distances averaging over 6 km (Bluso-Demers et al. 

2008), terns from colonies throughout Delta Marsh are likely to forage within Blind Channel.  

To measure presence of these predators, three Panasonic CCTV WV-CP484 SDIII 

cameras with Pentax 3.5-8mm F/1.4 CS auto iris lenses were set up overlooking portions of the 

southern end of Blind Channel. I used this portion of the channel as it allowed me to film without 

worry of glare from either the setting or rising sun.  

Cameras recorded to a March Networks mobile digital video recorder (MDVR) during 

daylight hours from May to August during all three years of the study. For each camera’s 
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recording, the daylight hours were broken down into 15 minute sections. From each 15 minute 

block, two minutes were randomly chosen for viewing (the same two minutes of each camera 

were chosen for each day) and the number of Forster’s terns present in each two minute block 

was recorded. The number of birds observed in each two-minute block were totaled and then 

divided by the number of hours of daylight recorded for that day. The number of terns observed 

per hour was then averaged across the three recordings. These daily averages were then used as 

measures of predator abundance in further analysis.  

 

Data analysis. For statistical analysis, data averaged to provide a daily measure (the average of 

48 measures of each environmental variable – one measure every 30 min) were considered 

independent observations in 2006, 2007 and 2008 based on Durbin-Watson tests for 

autocorrelation. Periodic technical issues, primarily in the first year of study, meant that there 

were not equal observations of daily averages of environmental variables, tern and minnow 

abundance across years. In 2006, there were 13 sets of data; in 2007, 55 and in 2008, 33.  

I used parametric analyses on transformed data (Box – Cox transformations for 

environmental data and log10(x +1) for both minnow and tern observations) as the transformed 

data met assumptions for normality and homogeneity of variances necessary for parametric 

analysis. All analyses were conducted using STATISTICA software. Alpha levels were set at 

0.05 for all analysis. 

To test the prediction that increases in prey abundance would result in increased 

observations of terns I used a generalized regression model. Due to perceived high interannual 

variation in the CPUE of minnows between the three years I first compared tern and minnow 

abundance between years using an ANOVA. If differences between years were observed, year 
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would be included as a categorical predictor variable in the generalized regression model. The 

model itself included tern abundance as the dependent variable and minnow abundance as the 

continuous predictor variable. If there were no differences in minnow and tern abundance 

between years the regression model would be run without year as a categorical predictor 

variable.   

To test the prediction that the environmental variables measured would influence tern 

observations through changes in prey fish behavior, I first determined if there were differences in 

DO, temperature and turbidity between years using an ANOVA. If differences existed, I would 

include year as a categorical predictor model in a generalized regression model using tern 

abundance as the dependent variable and dissolved oxygen, temperature, and turbidity as 

continuous predictor variables. If no differences existed between years, the regression model 

would be run without year as a predictor variable.  

The final prediction of this study was that it will be during periods of extreme hypoxia 

that prey fish will increase their use of surface waters (that have higher levels of DO than the 

underlying water) resulting in an increase in the observation of terns when conditions are 

hypoxic as compared to when conditions are normoxic. To test this prediction a student’s t-test 

using data from periods of extreme hypoxic (< 2.0 mg/L) and normoxic (> 4.0 mg/L) values of 

DO was conducted. If the previously mentioned ANOVA determined that differences existed 

between years in tern abundance, this analysis would be conducted for each year separately. 

Otherwise, data from all three years would be combined.  
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Results 

 

Prey abundance as a predictor of predator abundance. The abundance of minnows differed 

significantly between years (ANOVA: F2, 97 = 22.13, P < 0.0001). Minnow abundance in 2006 

was significantly greater than the abundance in either 2007 or 2008 while no differences in 

abundances existed between 2007 and 2008 (Tukey’s HSD post hoc test was significant for the 

comparison between 2006 and 2008, 2006 and 2007). Tern abundance also differed significantly 

between years with number of terns observed per hour in 2006 and 2008 significantly greater 

than the number observed in 2007; no differences were observed between 2006 and 2008 

(ANOVA: F2,95 = 7.301, P < 0.00001; Tukey’s HSD post hoc tests significant for 2006 and 2007, 

2007 and 2008; no differences between 2006 and 2008).  On the scale of the study period, tern 

abundance did not mirror minnow abundance. In 2008, when minnows were on average the 

lowest recorded, tern abundance was at its highest.   

Within the generalized regression model, which included year as a categorical predictor 

variable and minnow abundance as the continuous predictor variable, only year was a significant 

predictor of tern abundance (Table 6.1). Comparing tern and minnow abundance on a seasonal 

scale, it can be observed that summers that have high abundances of prey fish do not necessarily 

have high abundances of terns (Figure 6.1). On a smaller scale, a scatterplot of daily minnow 

CPUE and daily averages of the number of terns observed again indicate that there is no 

relationship between the two (Figure 6.2). Predatory terns are therefore not tracking abundance 

of prey on either a small (daily) or large (annual) scale, suggesting that prey abundance is not a 

good predictor of tern presence, counter to earlier predictions.  
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Conformity at broad scales: Environmental variables across years. Significant differences were 

observed in daily average measures of DO when compared between years (ANOVA; DO: F2,106 

= 8.937, P = 0.0003); while no differences were found when temperature and turbidity measures 

were compared (ANOVA: temperature: F2,109 = 2.726, P = 0.07;  turbidity: F2,102 = 0.1809, P = 

0.8).  Dissolved oxygen differed between 2006 and 2007, 2007 and 2008; no differences were 

found between 2006 and 2008 (Tukey’s HSD post hoc test significant for comparisons between 

2006 and 2007, 2007 and 2008; no difference between 2006 and 2008). DO levels were 

significantly lower in 2006 and 2008 when compared to 2007 (Figure 6.3). The warmest year 

during the three year study period was 2006 followed by 2007 and then 2008 which was, on 

average, approximately 4°C cooler than 2006 and 2°C cooler than 2007 (Figure 6.3). No 

significant differences existed in average turbidity levels across years, though 2006 was slightly 

more clear than 2007 which was slightly more clear than 2008 (Figure 6.3).  

 

Impacts within years: Dissolved oxygen, temperature and turbidity as predictors of predator 

abundance. Results of the generalized multiple regression model with year as the categorical 

predictor variable, environmental variables (DO, temperature and turbidity) as the continuous 

predictor variables and log10 (average number of terns + 1) as the dependent variable suggest that 

only year and dissolved oxygen were significant predictors of tern abundance (Table 6.2). As DO 

levels decreased an increase in tern abundance was observed. To further examine the role of DO 

in structuring the relationship between predators and prey, given the physiological significance 

of extreme hypoxia (versus moderate hypoxia) for the primary prey species in the system (i.e. 

testing prediction 5), student’s t-test using only using tern abundances associated with extreme 

hypoxia (<  2 mg/L DO) and normoxia (> 4 mg/L DO) separated by year was conducted.  
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Table 6.1: Results of generalized regression model with year as the categorical predictor 

variable, log10 (minnow abundance +1) and log10 (mean number terns observed/hr + 1) as the 

dependent variable. Generalized regression results: Adjusted R2 = 0.198, F2,88 = 8.49, P = 5.2 x 

10-6. S.E. = standard error. Significant differences are indicated with bold values. 

Predictor variable β S.E. β F-value P-value 

Year   12.72 0.00002 

Minnow abundance 0.0578 0.102 0.3199 0.5731 
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Figure 6.1: Average minnow abundance (CPUE) and measures of tern abundance across the 

three sampling years. Error bars represent measures of standard error. When measures of 

minnow CPUE are compared across years 2008 is significantly different from both 2006 and 

2007. A comparison of number of terns observed/hr across years found 2007 to differ from both 

2006 and 2008.  

 

 

 

a 

b 
b 

a 

a 

b 



152 

 

Average daily minnow CPUE

0 20 40 60 80 100 120 140

A
ve

ra
ge

 d
a

ily
 te

rn
 a

b
un

da
n

ce

0.0

0.2

0.4

0.6

0.8
2006 
2007
2008

 

 

Figure 6.2: Daily average measures of minnow CPUE and tern abundance across all three years. 

The solid line represent the trendline for 2006 data, dotted line represents the trendline for 2007 

and the dashed line represents the trendline for 2008 data. Significant differences occur between 

years with respect to average number of terns observed per hour, but there is no relationship 

between minnow CPUE and tern abundance.  
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Figure 6.3: Interannual variation in three measures of the abiotic aquatic environment: summer 

averages of dissolved oxygen (mg/L), temperature (°C) and turbidity (NTU). Error bars represent 

measures of standard error. There is a significant difference between each of the three years 

when DO values are compared while no differences exist in turbidity levels between years. 

When temperature is compared across the three years only 2006 and 2008 significantly differ.  
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Table 6.2: Results of the generalized multiple regression model with year as the categorical 

predictor variable and log10 (tern abundance + 1) as the dependent variable. Measured 

environmental variables (dissolved oxygen, temperature and turbidity) are continuous predictor 

variables (generalized regression model: Adjusted R2 = 0.3486,     F4, 97 = 11.49, P < 0.000001). 

S.E. = standard error. Significant differences exist in the tern abundance between years. 

Dissolved oxygen is the only significant continuous predictor variable. Significant differences 

are indicated with bold values. 

Predictor variable β S.E. β F-value P-value 

Year 

Dissolved oxygen 

 

-0.532 

 

0.136 

10.28 

15.38 

 0.00009 

 0.0002 

Temperature -0.263 0.106 2.204  0.06 

Turbidity 0.0748 0.102 0.5340  0.5 
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Figure 6.4: A comparison of tern abundance, in each year of the study, on days when the water 

had high levels of dissolved oxygen (normoxic conditions are those days > 4mg/L DO) to the 

number observed per hour during times of low dissolved oxygen levels (extreme hypoxic 

conditions are those days < 2 mg/L DO); 2006 was a low DO level year, 2007 a high DO level 

year and 2008 a moderate DO level year. Error bars represent standard error (a). Relationship 

between DO and tern abundance across all years and all DO levels (b); solid horizontal line 

represents 2 mg/l DO levels.  
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Significant differences existed in tern abundance during periods of hypoxia as compared to 

periods of normoxia in 2006 and 2008 (t-test; 2006: t = -3.74, P = 0.003, df = 12; 2007: t = -

0.161, P = 0.874. df = 52; 2008: t = -3.82, P = 0.00046, df = 31; Figure 6.4) with significantly 

more terns observed during periods of extreme hypoxia. When DO levels are compared across 

years, 2006 and 2008 have the lowest average DO levels, with the average DO level in 2006 

falling in the hypoxic range (1.914 ± 0.15 mg/L, lowest DO level recorded was 0.23 mg/L); 2006 

is also the year in which tern abundance was highest in times of low DO. In 2007 there was no 

difference in tern abundance in times of hypoxia as compared to times of normoxia; 2007 was 

the year in which the average summer DO levels reached hypoxic conditions for the fewest 

number of days and the average summer DO levels was the highest (6.235 ± 0.21mg/L).  

 

Discussion 

Changes in the aquatic environment are linked to changes in the abundance of avian predators in 

a predator-prey system where the predators are plunge divers and the prey are small minnows. 

While DO, temperature and turbidity were thought to potentially alter the availability of prey 

fishes to their avian predators, and in turn influence the presence of these avian predators, only 

DO was a significant predictor of tern abundance. 

 Low levels of dissolved oxygen have been linked to both increases (Pihl et al. 1992) and 

decreases (Nestlerode and Diaz 1998) in predation risk in fish – invertebrate predator-prey 

interactions; in predator-prey systems that involve only fish, decreases in dissolved oxygen level 

result in an increase in predation in experimental manipulations (Wolf and Kramer 1987).  In 

small scale experiments, hypoxic conditions resulted in greater consumption of prey by avian 

predators (Randle and Chapman 2004). In this study where both predators and prey are free to 
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move about in the environment, hypoxia increased the number of avian predators. As predation 

events require detection and encounters of the prey by the predators, increasing the numbers of 

predators will likely increase the predation risk of minnows.  

Demonstrating that the increased risk of predation is a direct result of behavioural 

changes in the prey fish as a result of changing DO levels and not the absolute number of prey 

fish, this study measured CPUE of the minnows throughout all levels of DO and found no 

relationship between CPUE and number of terns present. Further support for this hypothesis is 

evident in data collected in the same channel in 2005 where the position within the water column 

where minnows forage under differing oxygen levels were analyzed. In that study, at times of 

low (hypoxic) DO levels, minnows feed primarily at the extremes of the water column (surface 

and near bottom, ANOVA: surface F1,27 = 18.08, p < 0.0014; bottom F1,27 = 4.735, p < 0.038; p > 

0.1 for the two middle depths; (Hedges 2007), with more foraging occurring near the air water 

interface than elsewhere in the water column. This provides a direct link between a change in 

fish behaviour as a result of decreased oxygen levels, which in turn made the fish more available 

to their avian predators; fish are more easily taken by avian predators when they inhabit shallow 

waters or areas close to the surface (Whitfield and Blaber 1978, Kramer et al. 1983).  

 Temperature, as well as dissolved oxygen, has been shown to influence predation risk in 

fish predator-prey interactions (Krause and Godin 1995) as well as invertebrate -anuran tadpole 

predator-prey interactions (Anderson et al. 2001, Moore and Townsend 1998).  In these studies, 

as temperature increased attack rate by predators on their prey increased (Krause and Godin 

1995) and/or mortality rate of the prey increased (Anderson et al. 2001, Moore and Townsend 

1998). In this study however, no relationship was observed between temperature and abundance 

of predators. It was hypothesized that as temperature increased the activity and foraging levels of 



158 

 

the minnows would increase in response. This increase in activity would make them more easily 

observed by their avian predators, resulting in an increase in abundance of these predators. 

However, if the response of the minnows in response to lowered DO is taken into consideration 

it is understandable why an increase in temperature does not result in an increased risk of avian 

predation; there may be an increase in activity level of the fishes but if they are not active at 

surface they are not available to their predators. This same rationale can also be applied to the 

lack of response by the avian predators to reductions in turbidity levels.  

 Previous work has demonstrated the variable affects of turbidity on predator-prey 

interactions. Gregory and Levings (1998) found a decrease in predation risk in fish predator-prey 

interactions while Abrahams and Kattenfeld (1997) demonstrated that at moderate turbidities, 

there was no difference in risk of predation. The same variability in risk of predation under 

differing turbidities can also been found in literature pertaining to avian predation; both increases 

(Strod et al. 2008) and decreases (Gwiazda and Amirowicz 2006) in predation risk were 

observed. In this study, no relationship between turbidity and predator abundance, and hence 

predation risk, was observed. Blind Channel is a turbid environment throughout the summer, 

though variation does arise. Again, unless the prey are occupying areas close to the air water 

interface they will not be available to their avian predators.  

The risk of predation by Forster’s terns to minnow prey, as determined by the abundance 

of terns is not directly related to either abundance of prey, temperature or turbidity of aquatic 

environment. There is a relationship between dissolved oxygen and tern abundance with an 

increase in dissolved oxygen resulting in a decrease in the abundance of terns present. When 

only physiologically significant levels of dissolved oxygen are considered the relationship 

between DO levels and tern abundance becomes even more apparent. Another interesting trend 
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occurs when DO levels over the course of the three sampling years are considered. In 2007, 

when Blind Channel became hypoxic for only seven days during the sampling period, tern 

abundance was lowest overall and there was no relationship between DO and tern abundance. In 

2006 and 2008 when hypoxic conditions occurred for 32 and 19 days respectively, the 

relationship between tern abundance and DO was obvious. This suggests that it is not only the 

daily level of DO that is important in predator-prey relationships but also the trend in DO over 

the course of a longer time frame. This observation is likely a result of availability of prey; if the 

prey are available to predators for only a short period of time, energetically it is not feasible for 

predators to continually search in areas where prey are not available. In times when DO levels 

are routinely low, prey are available more often, and for a predator the food source becomes 

more reliable. Overall tern abundances are higher during periods when dissolved oxygen levels 

are hypoxic for extended period of time; this occurs regardless of the number of prey present. 

The abundance of the prey does not matter if prey are not available to the predator.  

In larger lakes, use of these shallow littoral zones by forage fish would make them 

available to plunge diving predators such as Forster’s terns. In areas such as Delta Marsh, water 

bodies generally do not have gently sloping shorelines that may be occupied by small bodied 

fish. In these instances, there is the potential for the DO content of the water to have important 

effects on energy budgets for adult Forster’s terns, as well the success of their fledglings. This is 

a result of the observation in this study: that it appears as if it is not the abundance of prey, but 

their availability to predators that is important. Under normoxic conditions, if prey are using 

deeper waters as a refuge from predation and are not physiologically stressed because DO levels 

are high, terns may have to increase their search area as these prey are not available in this 

location. Increased searching and travel distance to a new food patch increases the terns own 



160 

 

energetic requirement for food. This could lead to a reduction in the amount of food provisioned 

to their fledglings, and a potential reduction in successful fledging. Future research examining 

the effects of dissolved oxygen levels on foraging success (not just presence) of terns, as well as 

its impact on the amount of food provisioned to young chicks would provide further insight into 

the consequences of a variable environment of the overall success of tern colonies.  
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Chapter 7: General Discussion 

In ecological studies of aquatic systems, our attempts to understand the role that the abiotic 

environment plays in both the composition of the fish community present are complicated. While 

it is not always possible to disentangle the role that each environmental variable exerts on the 

structure of the community in isolation, measuring each variable and attempting to find patterns 

between the abiotic environment and measures of the fish community is one method available. 

The laboratory provides a means to determine the effect of a single variable on species 

interactions. While many of the intricacies of the natural ecosystem are removed, the direct effect 

of that one variable can be determined. Another tool that ecologists can implement as a means to 

determine the influence of the environment on the aquatic community is theoretical modeling. In 

a mathematical model, parameters are included that incorporate findings from both the field and 

laboratory experiments, essentially allowing a simulation of the role these parameters have on 

the outcome of interest.  

 This thesis implements all of the aforementioned techniques in an attempt to uncover 

how the abiotic environment both structures the natural community and influences the 

interactions between species, specifically between predators and their prey. Within this thesis, 

the field research focuses on temperature, dissolved oxygen and turbidity and the role that these 

environmental factors play in community structure – specifically interactions between predators 

and their prey. The laboratory work, as well as the theoretical model, both focus on the role that 

temperature plays in aquatic ecosystems. However, the focus of the two studies differ: the 

laboratory studies allow for the determination of the direct effect of temperature of the activity 

and foraging rates of small fish. The laboratory experiments also allowed me to determine the 

effect of temperature, via its effect on metabolic rates and therefore energy consumption, on risk-
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taking (propensity to forage in the face of predation risk). The theoretical study is more broad in 

that it incorporated the role temperature plays on metabolic rates, food acquisition and risk of 

predation to predict the overall survival probabilities of the fathead minnow over the course of 

the entire ice-free period. 

 Results of the work conducted for this dissertation demonstrate that the environment does 

play a role in both structuring aquatic communities and in mediating the interactions between 

predators and their prey. As demonstrated in the lab, with an increase in temperatures, fathead 

minnows increase their distance travelled over a given time period (Chapter 2) and increase their 

foraging (Chapter 2, Chapter 3). The fathead minnows also were more likely to use risky habitats 

to increase their foraging returns at warm (23°C) versus cooler (5 and 15°C) temperatures 

(Chapter 3). Likely as a result of increased overall foraging and increased use of risky feeders, as 

temperatures increased so to did the proportion of time the predator spent oriented towards their 

prey. The driving force behind these observations is likely the relationship between temperature 

and metabolic rates and therefore energetic demands (Wootton 1990). As temperatures and 

energetic demands increase, individuals increase their activity, likely as they increase their 

search efforts for food. Foraging increases as individuals attempt to meet increases in energetic 

demands. Risk taking also increases as the potential gains (food required to offset higher 

metabolic rates) are weighed against potential costs (probability of being consumed by a 

predator). As predators are more interested in more active prey (Krause and Godin 1995, Chapter 

3) as temperatures increase encounter rates between predators and prey are likely to increase. 

Therefore under increased temperature conditions, predation risk to prey is expected to increase. 

 Results of field work where I sampled temperature, dissolved oxygen and turbidity and 

related those variables to the CPUE of fishes provide further evidence that temperature plays a 
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role in species interactions, this time in a natural ecosystem. Regardless of the thermal guild 

classification of fishes, as temperatures increase the CPUE of fishes also increase. Whether this 

is a result of an increase in the abundance of fishes present (including predatory fishes) or a 

result of increases in the activity and movement rates of fishes (as was observed in laboratory 

studies: Chapter 2), it suggests that encounter rates between predators and prey will increase. 

Further support for this was observed in the propensity of prey to forage in risky habitats under 

the warmest temperature treatments (Chapter 3). If there are increased encounter rates between 

predators and their prey, it should also be expected that mortality rates of prey will also increase. 

This would be similar to what was observed by Anderson et al. (2001) when they studied the 

effect of temperature on growth and mortality rates of anuran larvae and their insect predators. In 

their study, Anderson et al. (2001) observed an increase in growth rates with temperature, but 

also mortality rates of the anuran larvae increased. This likely was a result of increased foraging, 

and therefore activity rates by these larvae, which in turn increased their encounters with their 

predator.  

 Previous laboratory (Abrahams and Kattenfeld 1997) and field (Gregory and Levings 

1998) studies suggest that turbidity will reduce predation risk by piscivorous predators on their 

piscine prey. However, my research suggests that turbidity does not affect measures of CPUE of 

either visual predators as expected, or those that rely on chemical cues were influenced. It is 

possible that this is a result of confounding effects that happen as turbidity levels increase. An 

increase in turbidity levels reduces the foraging efficiency of fishes (Gregory and Northcote 

1993). In a turbid environment, in order to meet energetic demands, it is expected that 

individuals will have to increase their foraging rates. This should therefore be expected that 

CPUE of visual foragers should increase with turbidity as CPUE is reflective of both the 
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abundance and activity of individuals. However, if the increase in activity is coupled by an 

emigration into Lake Manitoba where conditions may be more favourable, there might not be 

any perceivable relationship between turbidity and CPUE of visual foragers.  

 Research has suggested that hypoxic areas may provide a physiological refuge for small 

fish (Randle and Chapman 2004). Large fishes generally have a lower tolerance to hypoxic 

conditions than smaller fishes (Robb and Abrahams 2003, Hedges 2007) and as a result, under 

hypoxic conditions, spend less time interested in their prey when DO levels are low (Robb and 

Abrahams 2002). Fishes with physostomous swim bladders were positively related to DO levels, 

while freshwater drum, with a physoclistous swim bladder were negatively related to DO levels. 

Periods of low DO may provide prey with a reduction in risk of predation as the two dominant 

predators of small fish, northern pike and bullhead species, have a positive relationship with 

measures of DO. Taken with an observed increase in the presence of avian predators with a 

decrease in DO levels (Chapter 6) periods of low dissolved oxygen may reduce the piscine 

predator pressure, but that may be offset by an increase in the avian predator pressure. 

  An increase in mortality rates as a result of increased temperature was also the outcome 

of the state-dependent optimization model that I created using Visual Basic (Chapter 5). 

Increasing temperature is not always the result of increased predation rates, in general risk of 

predation also increase with temperature (Chapter 5). Increasing metabolic demands results in an 

increased requirement for energy. If individuals cannot meet this increased demand either 

because the food they require is not available or because they cannot acquire energy at the pace 

necessary to meet demands, individuals succumb to starvation. Regardless of the mode of death, 

an increase in temperature appears to be detrimental to small prey fishes. This effect may be 
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exacerbated further by the fact that prey fishes are more likely to take risks and forage in the 

presence of predators as temperatures increase (Chapter 3).  

It is obvious from the results of the studies conducted as part of this dissertation that the 

abiotic environment influences fishes. In the field, temperature and dissolved oxygen were 

related to CPUE measures of fishes present, suggesting that these variables play a role in the 

structuring of aquatic environment. The relationship between temperature, dissolved oxygen and 

the CPUE of various fishes suggests that these factors can influence interactions, including 

predator-prey interactions, of species. The results from Chapter 6 suggest that these effects 

extend past aquatic predator-prey interactions. In periods of hypoxia, aerial predators become 

more common. Given that fathead minnows increase their use of surface waters under periods of 

hypoxia, it is likely that the behavioural responses of these small fish put them at increased risk 

of predation. The interaction between behaviour of individuals and temperature can also play a 

role in predator-prey interactions. Temperature affects activity rates and foraging rates of the 

fathead minnow. It also affects their propensity to take risks. Taken together, dissolved oxygen 

and temperature are likely to play a large role in structuring predator-prey interactions in aquatic 

environments.  
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