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,&bstract

A new technique for the construction of constrained error control codes is

presented. The main emphasis is on runlength limited (RLL) codes. RLL

codes, commonly known as (d,,k) constrained codes, where d is the minimum

run of zeroes and fr the maximum, are routinely used in magnetic and optical

digital storage systems. Traditional RLL codes leave the task of combatting

errors to separate error control codes. The combined construction of forward

error correction (FEC) and RLL codes has leceived attention recently. Here

a graph search technique motivated by the work of Ferreira to construct

combined RLL/FEC codes is discussed. Ferreira's Hamming map is viewed as

a subgraph embedded in a distance graph and graph algorithms are exploited

to find Hamming maps if they exist. The graph search algorithm chooses a

set of 2'constrained codewords at a time representedby matchi,ng edgæ of

the distance graph and rearranges them into a Hamming map by an efficient

combinatorial technique termed canonical ordering algorithm. Being able to

find many Hamming maps, this graph search technique has been used to

find good Hamming maps which result in a large free distance and small À-

constraint. This technique is applicable to dc-balanced codes as well. Several

new codes are presented and compared to known codes.

1X



C&aapter k

åxatroductåora

Runlength limited (RLL) codes are utilized by a class of input restricted

binary symmetric channels such as digital data storage systems, whether

magnetic [L4, 34,, 35, 46, 52], or optical [31]. RLL sequences possess the

property that the allowable number of consecutive "0" symbols in a sequence,

called zero runlength, is constrained between two predefined parameters d

and å, where 0 < d < k. The significance of these constraints are discussed

later.

Since the avoidance of undesirable sequences was the primary concern of

RLL codes, the error handling aspect has not been reflected in traditional

construction techniques of RLL codes. For this reason RLL codes are often

referred to as recording or modulation codes to emphasize that their roles

are different from that of an error control code. Error correction capability is

achieved by a separate code specifically designed for this purpose. Therefore

a practical system employs two "concatenated" codes with the error control

code being the "outer code" and the RLL code being the "inner code." For



the error correction task, a vast variety of efficient linear block codes and

convolutional codes have been developed 120,22,60]. Excellent discussions

on error correction codes can be found in many texts such as Blahut [9], Lin

and Costello [+S], etc., or in a collection of papers edited by Berlekamp [8].

The combined construction of error correction and RLL code as an en-

tity has received attention starting from the mid 1980's. The so called RLL

forward error correction (RLL/FEC) codes try to achieve two goals simul-

taneously: the given runlength constraints and also that the code should be

capable of correcting errors. This thesis considers the problem of combined

construction of RLL/FEC codes and tries to answer how to construct them

in some systematic fashion. In the following sections, a brief historical survey

is presented, the thesis goal is elaborated, and the thesis outline is described.

3- " 1- Ðarlier R f,L aodes

The importance of runlength constraints is due to the particular way infor-

mation is ascribed to the behavior of certain physical devices with two states.

In the writing (sending) mode one causes a transition from one state to the

other to occur at specified time intervals. In the reading (receiving) mode the

time intervals between transitions are measured. This measurement is made

in terms of integral multiples of a unit of time called a clock unit. If. there

are / * 1 clock units between two transitions, then the symbol 1 is assigned



to the first clock unit and 0 to the remaining /. The appearance of ld,k)

constraints with this scheme is natural. In order to detect transitions prop-

erly and to avoid potential intersymbol interference, transitions cannot occur

too close together, so a minimum allowable time, say t^;n, between them is

prescribed. If. t*;n - d + 1 clock units, then one gets a lower bound d for

the ¡unlength of 0. On the other hand, transitions provide synchronization

information to the clock which is an imperfect device. Clocks drift and lose

power to discriminate the number of clock units between transitions which

are far apart. Requiring that transitions be separated by no more than k + 1

clock units places an upper-bound lc on the run of 0.

When the RLL codes are used in magnetic recording devices, the transi-

tions are magnetic ones occurring in circular tracks on disks. The quantity

t^;n cãÍr be equated to the reciprocal of maximum density of magnetic tran-

sitions (flux changes) on a track, and the following formula can be a measure

of recorded i,nformation densi,ty E as the amount of information per unit time

(unit distance along a track).

,l-L1
E : E[d,k): plq 

=,Lmin

where plq is the code rate.

Since RLL codes, in their general form, were pioneered by Franaszek

124,25]1in the late 1960's, a considerable amount of engineering and mathe-

matical literature has been written on the subject. In 1970, Tang and Bahl

[58] described many important properties of [d,k] constrained sequences and



also devised several RLL codes implemented in block code form. Survey pa-

pers given by Siegel [S6], and l{obayashi [+t] describe properties and design

techniques for the practical construction of RLL encoders and decoders.

One of the techniques used in RLL code construction is the sequence state

method originated by Franaszek[24,25]. It was improved by various forms of

look-ahead (future-dependent) techniques. Look-ahead (LA) techniques have

been studied by many authors including Patei [52], Jacoby [34], Franaszek

[26], Cohn and Jacoby [14], Lempel and Cohn [+0], and Jacoby and Kost

[35]. One objective of look-ahead codes, as described in [46], is to overcome

the codeword length restriction encountered in the sequence state methods.

Look-ahead encoding rules allow several alternative encodings for given input

words. The alternative chosen to encode the input word depends on a finite

number of future input words (iook-ahead), as well as finite look-back.

Originally these techniques were to a large extent ad hoc. Recently (1983),

Adler, Coppersmith, and Hassner have placed them on a firm mathemati-

cal basis with the sliding block algorithm [t]. The sliding block algorithm,

derived from the branch of mathematics known as symbolic dynamics, repre-

sents a theoretical breakthrough in code construction, with significant prac-

tical implications. For the first time, the algorithm provides an explicit for-

mula, backed by rigorous mathematical proofs, for the construction of simple,

efficient RLL codes with lirnited error propo.gation. The method incorporates

many of the key ideas which appear in the preceding work of Franaszek, Patel,



Jacoby, Cohn and Lempel, generaiizes them and makes precise the construc-

tion steps. It is an extension of a coding theorem of Marcus 150], who used

techniques developed independently of the recording terminology. This pro-

cedure successfully constructs a code of any rate pf q ( C, where C is the

channel capacity of runlength constrained systems. It iater was extended to

handle variable-length sequence state methods [2]. Some related results have

followed subsequentiy [4, 37, 51].

Nleanwhile, Burkhardt [11], and lVood and Peterson [62] have proposed

the use of maximum likelihood sequence estimation (MLSE) on the mag-

netic recording channels to detect constrained code sequences. In MLSE

detection, the free distance of the code plays an important role in the perfor-

mance evaluation of code. Defined as the minimum value of the Hamming

or Euclidean distances between all possible sequences of codewords, the free

distance determines the error performance in MLSE detection [2i]. Close ex-

amination of traditional RLL codes in use today, however, invariably reveals

unity free distances, and thus leave the task of combatting errors to separate

error control codes.

3-.2 Goal of Thesís

As stated earlier, the combined construction of error correction and RLL

code as an entity has begun to receive attention starting from the mid 1980's.

It is commonly believed that the combined RLL/FEC codes are possible at



the expense of coding rates. For these types of codes, two rather different

approaches have been taken. One method exploits the rich distance structure

of known error control codes such as linear convolutional codes to construct

RLL/FEC codes. The idea is to lower bound the Euclidean distance of a

trellis code by the Hamming free distance of a linear convolutional code.

This approach has been used by lVolf and Ungerboeck [61], and Calderbank,

Heegard, and Lee [13]. Wolf and Ungerboeck described [0,À] error correct-

ing codes for partial response channels with discrete-time transfer functions

(1 + ,), where D is the unit-delay operator. They demonstrated that us-

ing well known convolutional codes in conjunction with precoding before the

partial response channel yields the desired trellis codes. The trellis codes

prevent unlimited runs of identical signals at the channel output and have

a minimum squared Euclidean distance between channel output sequences

which is bounded below by the Hamming free distan.., d,f,"", of the convolu-

tional code. Calderbank, et al. [13] describe binary convolutional codes for a

partial response channel with the discrete-time transfer function (1 - DN) 12,

where the minimum squared Euciidean distance between channel outputs

corresponding to distinct inputs is bounded below by the free distance of a

convolutional code which they calied magni,tude code. To limit the runlength

of the channel output, they employ a coset of the binary convolutional code

(called sign code) to generate channel inputs.

The other approach is exemplified in papers by Ferreira, et al. [17, 18, 19],



Lee and Wolf [aa], and Song and Shwedyk [57], who try direct construction

of runlength constrained codes. Ferreira, Hope, and Nel described a rate 4f 8

runlength constrained error correcting code with free distance three [18]. Lee

and Wolf introduced two simple [d, ,t] tlellis codes of free distance three which

consequently have error correction capability [44]. Ferreira [f 9] developed a

tree search algorithm to find a so called Hamming distance preserving map-

ping, an ordered set of constrained sequences, which substitute codewords of

a punctured convolutional code [tZ] to obtain an RLL/FEC code.

However, the construction of combined error correction and recording code

as an entity is generally a young problem. As the goal of this thesis, a graph

search technique is investigated. The graph search technique is motivated by

the work of Ferreira [19]. Ferreira's Hamming map is viewed as a subgraph

embedded in a distance graph and graph algorithms are exploited to find (vir-

tually) all Hamming maps if they exist. Therefore this approach enables one

to single out the optimum Hamming map(s) which result(s) in the greatest

free distance with the least k-constraint.

As shall be seen, the problem of searching for a desirable mapping is noth-

ing more than a maximum matching in a graph and that this technique is

applicable to dc-balanced codes as well.



l-.S tutline of T'hesis

Chapter 2 refines the necessary conditions developed by Ferreira for a Ham-

ming distance preserving map to exist. The refinements lead to a reduction

in the computation. The Hamming map search is formulated as a graph the-

ory problem, and the linear graph str-ucture is analyzed in terms of mafuhing

and adjacency. Chapter 3 describes the algorithms for listing the maximum

matchings and arranging the constrained sequence pairs (matching edges)

into a Hamming map. A summary of the [d,,L]-constrained codes as well as

some dc-baianced codes are presented in Chapter 4. The codes are compared

to known codes. Chapter 5 presents the conclusions and recommendations.
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One technique of RLL/FEC code construction is to translate the code-

words of a linear convolutional code into constrained codewords such that

pairwise Hamming distances are preserved [19]. in this way, the free dis-

tance of the constrained trellis code is inherited from (bounded below by the

free distance of) the base convolutional code. Fig. 2.1 iilustrates this.

The trellis in Fig. 2.1(a) depicts a well-known linear convolutional code

of rate kfn: Il2 with constraint length u :2----<orrespondingly having

4-states-and free distance du, : 5. Note that the same symboi k is used

to denote either the maximum zero runlength or the number of information

bits of convolutional codes. The meaning should be clear from the context.

The [d, k] : [1,5]-constrained codeword labeis in Fig. 2.1(b) are concatenable

without violating runlength constraints. As can be checked easily, Hamming

distances between any two constrained codewords in each frame in Fig. 2.1(b)

are bounded below by the corresponding counterparts of Fig. 2.I(a) and so

are the free distances. The actual free distance d" of the trellis code in
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Fig.2.1(b) is six, yielding a [d,k] : [1,5], rate ll4P.LL|îEC code. The

correspondence between constrained and unconstrained codewords is called

a Hamming distance preseraing n-¿ap,) or simply Hatnming map.

In the following, the precise definition of the problem and terminology is

given first. A refinement to the necessary conditions for the existence of a

Hamming map is made and compared to those presented by Ferrreira. The

chapter concludes by formulating the determination of the Hamming map as

a graph problem.

2.L Froblern definítion

Consider the RLL/FEC code scheme shown in Fig. 2.2. The runlength

limited forward error correction code consists of a rate ru : lc ln binary linear

convolutional code followed by a mapper. The mapper translates an n-bit

convolutional codeword into an /-bit [d, k]-constrained codeword, / > n, such

that the Hamming distance is preserved under this mapping. The resulting

trellis code constructed in this way will have rate r.: kll and free distance

d", > dy- where dY is the free distance of the base convolutional code.
J- J

Denote the finite set of integers from 0 to 2n - 1 by [/, where each integer i

is represented as an n-bit binary sequence u;. Note that codewords of a rate

kf n binary convolutional code are contained in the set U.

U : {uor'ttrr,t. . . ruq-t}

11



Figure 2.2: Schematic representation of an RLL/FEC code.

wirere Q : 2n. Let C denote the set of d-constrained binary codewords of

length /.

C : {co, crt . . ., c¡¿o(¿)-r }

where ,ni¿(/) is the cardinality of set C. Here only the d-constraint is specified.

The maximum runlength k is determined after the convolutional codewords

are replaced with the constrained codewords.

Assuming that the last d bits of a codeword are the symbol "0" to ensure

concatenability, the number ¡/r(/) of all d-constrained binary codewords of

length / can be computed with a slight modification by the recursive formula

of Tang and Bahl [58] as:

^/¿(/) 
= lt forl(/(d '|^'=t trf,-1) + N¿(t-d.- r) for/>d.-* (2'r)

This formula is based on the following obselvation. When the first bit of an

/-bit sequence is zero, the next / - 1 bits is any d-constrained sequence of

length I - 7. If the first bit is nonzero, the next d bits are all zeros followed

I2



Table 2.1: Number of binary d-constlained sequences with last d-zero bits.

d:l 7 2 3 4 5 6 7 8 I 10 i1 1.2 13 14

1

2

J

4

5

7 2 3 5 8 13 21 34 55 89 r44 233 377 610
723+69131928

L23
I2

1

571014
4568
3456

47 60 88 729
19 26 36 50

11 15 20 26

791216

4

J

2

by any d-constrained sequence of length I - d- 1. Table 2.1 shows the values

"f ¡/d(/) for various parameters.

To transform a rate ru: kln linear convolutional code with free distance

d| into a rate r.: kll constrained trellis code with free distance d'¡, where

d", ) di. it is necessary that:J - J]

Nd(l) > 2" (2.2)

It is easy to see that / ) n. For efficient code rates only mappings with the

smallest / satisfying the inequaLity (2.2) are investigated.

To determine the mapping associate a qx q Hamming distance matrix Du

with the unconstrained set [/:

Du: ldi¡l: ld(ut,u¡)1, i,j : 0,1,. .. , q - L.

Similarly, an ,n/¿(/) x ¡/d(/) Hamming distance matrix D" is associated with

the d-constrained set C:

D": [d?¡]: ld(c¿,cj)1, i, j :0,1,. . . , ¡/d(/) - 1.

13



Example: When d :

elements.

{uorur,.,u2ruz} :

{ror"rrc2rcarca} :

101 1

,": 
I I i 3

\21 1

I and n:2, [/ has 4 elements and C has (N1(¿) : S)

(2.3 )

It is convenient to define an index (slot) set 1 : (0,1,...,q - 1), Q:2".
Without loss of generality, it will be assumed that ui : i, Yuo e [/. In this

sense, the symbols U and I will be used interchangeabiy.

Definition 2.1 (Hamming map) Let V be a q-tuple of constrained se-

quences:

V : (uo,'t)L¡...,uq-t), u; e C, Vi e I.

Then an one-to-one rnapping f t U --+ V is called a Han¿ming map if the

Hamming distance is preseraed under this map, i.e.,

d,(u;,u¡) : d(Í(u¡), f ("¡)) ) d(u¿,u¡), Vi,i e I.

This inequality can be written in m,atrir fortn as:

(2.4)

Du ) D,,

where Du is e qx q distance rnatrir wi,th d(u¿,u¡) as its ij-th entry.

{oo(o), o1(1), io(2), 11(3)}

{0000(0H ), 001 0(2¡r ), 0100(4}r), 1 000(8H), 10

?l l?å 
"t ilil ':liiii: 

I

1o(A¡r)Ì

T4



Table 2.2: Computational requirement for an exhaustive search, d.: 7.

k n I q:2" N¿(l) ru:kln r":kll Computations

1

2

2

J

4

4

2
Dd

J

4

5

5

4

5

6

7

8

I

4

õ

I
16

32

32

5

8

13

2I
34

55

rl2
,1,)L/¿

213
314
415

rl4
215
216

ð/t
418

120
40,320

51,891 ,840
+.257579 x 107
7.476164 x 1d8
4.911185 x 1do415 +19

The problem is io find øil Hamming maps / or q-tuples I/ provided a

Hamming map exists. After all Hamming maps are collected, one can single

out the optimum Hamming map(s) r,vhich yields the greatest free distance

with the least k-constraint. To do this with an exhaustive search would

require ( *':') ) f n ! ) trials-all q-combinations out of ¡/d(/) and q!' \q)
permutations for each combination. Table 2.2 lists the required computation

for various n when d : I and the base convolutional code has rate r, :

kf n: kl(k+I). As can be seen, the computation grows rapidly even for

parameters of moderate values.

Ferreira [19] developed a so called tree search algorithm to find a single

Hamming map, if one exists. The q-tuple V that is found is dependent on how

the elements of set C are chosen. Before applying the tree search algorithm,

three necessary conditions were applied to the chosen elements to determine

whether this could result in a map. The algorithm and necessary conditions

are reviewed next.
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2"2 T'ree Seanah Algorithna

The tree search algorithm finds a suitable vector V by choosing the first

element uo e C arbitrarily, next the second element u1, and so forth. At

depth å, one needs to look back to assure lhat dir2 di¡,0 < j < h- 1. This

is done by computing a metric function t(h,c¿) for each constrained /-tuple:

h-1
t(h,c¿): IÏ l"(d'n¡ - di)1, (2.5)

j=o

where s(i) is the unit step function with s(O) : 1. Assign any one of the

constrained /-tuples with l(å, 
"n) 

: L to u¡, and proceed to depth h + I.

Repeat this procedure until at some depth z I Ç, t(2, c¿) : 0 for all i. If this

happens, retreat one step and assign some other c¿ with t(z - I,c;) : 1 to

u"-1, then again proceed forward to depth z.

The case of U : (0,I,2,3) is illustrated in Fig. 2.3. It produces a vec-

tor V : (0100(4¡¡),0010(2Ir),1000(8¡¡),1010(A¡r)) which has the required

distance matrix: i.e., di,, ) di,, lor alI i, j.

/0 2 2 3\
o.:13 i 3 î I

\t 1 1 o)
Thus the map "f : U -+ V transforms

code into a rate 1/4 nonlinear constrained

bounded below by the free distance of the

/01 1 2\o,:lli ; il e6)
\r 1 1 o)

the rate If 2 linear convolutional

trellis code whose free distance is

underlying convolutional code.
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ci =o

(0,e)=l

Figure 2.3: Tree search
words of length (l : 4)

for desired permutation of (d : l)-constrained code-

[Ferreira, 1989].
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2.2"'J" H.efinement to the Necessary Conditions for the
Existence of a Ïlamming map

Because the tree search can require a vast amount of computation, Fer-

reira performed several preliminary tests to determine whether a Hamming

map exists. The three necessary conditions NC1, NC2, and NC3 are restated

without proof as they follow immediately from the inequality (2.a). A refined

necessary condition is described that leads to a reduction in the computation.

NCl. Matrix sum test

For a set C of constrained sequences to produce a Harnming map, it is nec-

essary that
Nd(¿)-l Nd(¿)-l q-r q-7

NC2. Matrix row sum test

For a constrained sequence q to be a mernber of a Hamming map, it is nec-

essary that
Nd(¿)-l q-1

Ð d?¡
j--O t=0

Note that NCl is applied to a set C and NC2 is to a sequence ci in the

set C. Also note that NC2 is stronger than NCl. To discuss NC3 and the

refinement of it, the following terms are introduced.

Ð
i=O

18



Definition 2.2 (Degree sequence) Let B denote the set of L-bit sequences.

For a sequence u e. B, denote the set of sequences at Hamming distance

r,0(rlL,fromuas:

S(u;r) : {w e B I d(u,w) : r}

The cardinality of the set

the r-th degree of u. The

of u, where

S(u;r) is represented by the symbol 6[ and called

set A.u of sequences 6[ is called the degree sequence

A,: (6o,,6t,r...,6:).

The notation ói is a generalization of the number of. adjacenú symbols

at distance r from a sequence u. To compute the degree sequence of an

unconstrained codeword is trivial. For any unconstrained codeword, the r-th

degree is the binomial coeffi.cient, i.e.,

/\
6i:(n ), r:0,1,...,r2, independent of ue U." \ r /'

In general no systematic result is available when the set consists of con-

strained sequences. For the d-constraint case, since the last d-bits are as-

sumed to be all zeros,

A,: (61,6:,...,6t-o), ue C.

Definition 2.3 (n-sequence) A binary sequence u € C is called an n-

sequence if

å(
tt' l, i:0, 1,'..,n.r/

19



In short, a sequence is an n-sequence if it has a rninimum number of neigh-

boring sequences at a far enough Hamming distance.

The third necessary condition can be stated as:

NC3. Degree sequence test

For a sequence u e C to be a rnernber of a Hamming map, i,t is necessary

that u be an n-sequence.

When NC3 is applied to each sequence as in [19], it requires N¿(/) com-

putations. To reduce this computation, the set C is partitioned into smaller

sets C¿ as:

CorCtr. . . ,C*,

where ," : l#) and u € Ci ll and only if the Hamming map weight of v,

u+(u): i. The symbol lrl denotes the floor function of x, i.e., the greatest

integer not exceeding r. If each u € C¿ is an n-sequence, set C; is called an

n-set. Note every sequence in an n-set passes NC3. The following theorem,

the proof of which is given in Appendix A, results in a reduced amount of

computation.

Theorem 2.L (n-set) If C¿ is ann-set for sorne i > 0, then so is C¡a1.

To exploit this propert¡ the third tesi can be restated as follows.

NC3'. Refined degree sequence test

Apply NCS to the paúitioned sets in the order Co, Ct, ... until an n-set C¿

20



is reached for some i (hopefully small enough). Then all other sets C¡, j ) i

will be n-sets by Theorem 2.1.

To show the improvement, Table 2.3 tabulates the partitioned sets for the

case of d : I and / : 7. The set C1, having 6 out of 21 sequences, turned

out to be an n-set and thus the test is not required for the rest of the sets

Cz, Cs, and Ca-a saving of about 67% . Table 2.4 lists the actual number

of sequences tested for various values of / when d : I.

)1



Table 2.3: Partitioned sets and degree sequence when d : 7 and / : 7.

C, U:A,, 01 2345 6

Co 0000000 1610 40 0 0

C1

n-set

0000010
0000100
0001000
0010000
0100000
1000000

86100
67 3 0 0

7 7 20 0

7 7 20 0

67 3 0 0

86100

15
T4
L4
L4
I4
15

C2

n-set

0001010
0010010
0100010
1000010
0010100
0100 100

1000100
0101000

1001000
1010000

r 4 6 5 41 0

13 6 7 4 0 0

13 6 6 47 0

14 76 300
13 5 5 52 0

12 5652 0

13 6 6 41 0

13 5 5 52 0

13 67 40 0

t4 65 410
Cs

n-set

0101010
1001 010

1010010
10 10 100

13
13
13
13

45 4 31
5 6 42 0

56 420
45 431

22



Table 2.4: Number of sequences tested for NC3 when d, :7.

n I I n-set NC3 NC3'
2 4 Cs 5 I
3 5 Ct 8 ô

3 6 Co 13 10

4 I C1 2I 7

5 8 C2 34 22

5 I c1 55 I
6 10 C2 89 38
n
I 11 c2 L44 113

8 12 C2
r\c c
L¿t) 5f

8 13 Cs 377 188

I 14 c4 610 455

L.>



2.& Graph Search Technique

The tree search algorithm is useful to find a single Hamming map if it

exists. An efficient technique which employs a graph theoretic algorithm to

find all Hamming maps is now introduced. The motivation for this graph

search arises from the following observation. In the iinear distance matrix

Du,lhe largest entries n appear along the main cross diagonal, i.e.,

d2
x7

: d(u¿,uî) : n, î : q - L - i, i -- 0, 1,.. .,Q - 7

This pair of indices (2, â) is called a rnatched slot pair. In the matched slot

are the complementary pair of codewords (z;, u;), where z; is obtained from

u¿ by negating each bit.

At this point, a question can be raised. Instead of choosing one codeword

at a time as in the tree search algorithm, is it more efficient to choose a set

of g codewords as a whole? The investigation of this problem is a major part

of the research. The answer entails the determination of efficient ways to:

1. Choose a set M;

2. Evaluate the set M.

As was pointed out, choosing such a set arbitrarily involves ( "Í" )
combinations. This difficulty is alleviated by exploiting a graph theoretic

problem known as maximum matching to select a set of g constrained

sequences. To avoid the enormous computation of q! permutations needed to

24



test the set, an efficient method termed canonical ordering algorithm is

developed in a subsequent chapter. First, simple examples are presented to

illustrate the idea of maximum matching and its relationship to the problem

of determining a Hamming map.

2.3.1- Examples

Let G. denote the weighted complete graph of the unconstrained set [/

where: the vertices represent the unconstrained codewords of U; every pair of

distinct vertices (u, u) is connected by an edge weighted with the Hamming

distance d(u,u) between the two unconstrained codewords u and u. The

weighted complete graph G" of the constrained set C is defined similarly.

The mapping between U and V now becomes a mapping between G., and

a subgraph Gu of G". Fig. 2.4, for example, shows the weighted complete

graphs G, and G" when d : I, ttr : 2, I : 4, and 1/a(/) : 5. Noting that

any edge weight is at least unity, one can eliminate all the unit-weight edges

from graphs without losing information. This elimination, howevet, greatly

facilitates the task of locating a subgraph G,. This can be seen by realizing

that after the elimination of unit-weight edges, the edge reduced graph-two

solid edges e1 and e2-is simply a rnarimum matching of Gu.

Maximum matching of a graph is an well-known subject in graph theory.

Extensive discussion on this subject can be found in many texts such as

Bondy and Murty 110]. For completeness, the applicable graph theoretic
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0010(a) i000(e)00(0)
G"qcc

/l\
r lr

t I \
r | \

t e. I \I rt \tl\,' A r rrsl,
l.\\

t .t t. \
l/\\

l.t 'a\f ¿ \\

0r(l) e2 t0(2)

0100çc) t
lulL1t r

or0v'

weighr 1

weight 2

weight 3

Figure 2.4: The weighted complete graphs Gu and G.: d:7,n:2,1 :4,
and ¡/d(/) : 5.

terminology is summarized.

A matching M of a graph G is a set of edges such that no two are adjacent

in G. The two vertices of an edge in M are said to be matched. A matching

M saturates a vertex u, and u is said tobe M-saturated, if some edge of .L/ is

incident with u. If every vertex of G is /V/-saturated, the matching is perfect.

M is a n'Larin'Lurn matchi,ng if G has no matching M' wilh I fuI' | > | M l. To

determine the size of a matching, either the edges or vertices in the matching

are counted.

Returning to the example, note that the desired Hamming mapping may

be obtained from a maximum matching M" of the edge reduced graph Gc.

By inspection, one can easily verify that there are four different maximum

matchings for this goal, from M1 through M+, as illustrated in Fig. 2.5.

Consider the matchingMl: {"f1, ft}: {(o,"),(",ó)} as an example. Note

0000(d)
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M,+

o-t-o
o*-2€

G" with edges of

I'b

@-i€
o-i-@

w

c-¡-o
O-:€

M1

o-r--c
o-2-o

Figure 2.5: Maximum matchings of constrained graph
weight two or more: MrM,t

that the weights of edges êL¡€2t fi, and f2 are two or more. The mapping

f' t Mu: {"r,ez} - Mt: {fr, fr} described by

(a, e) : f '("t) : //(0, 3)

(c,b): Í'("r): f'(I,2) (2.e)

determines a Hamming map we are looking for. The Hamming mup ,f : U ---+

I/ induced by the above *up .f' becomes:

"f ' 
(0, 3,L,2) --+ (a, e, c,b). (2.10)

That is, replacing convolutional codewords (00,01, 10, 11) with constrained

codewords (0010,0100,1010,1000) in that order preserves the free distance.

It is interesting to note that the edges of a matching can be reordered-

flipping and interchanging edges-to produce many other Hamming maps.

This is best illustrated by the example shown in Fig. 2.6, where the matching

ft

f"

27



8838
HHHr@

3838
HHHH

Figure 2.6: Eight mappings produced from the matching M1.
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M1 produces I different Hamming maps. In this way) a total of 32 (4 x

8) different mappings can be obtained which corresponds to an exhaustive

search. This property is generalized later with the introduction of conjugate

maps.

For an arbitrary codeword iength n, the graph map search becomes non-

trivial because the reduced graph G, contains edges of different weights

2,.. . ,fl. This difñculty can be seen by taking the n : 3 case, as ilius-

trated in Fig. 2.7. The reduced graph G, norv consists of twocopies of I{a (a

4-vertex complete graph) with edges of weight two, and a perfect matching

M. which spans the two /{a's by the use of four edges of weight three.

In the constrained counterpart, it is not obvious how to locate these com-

ponents properly. Nonetheless, it turns out that no perfect matching of the

constrained graph, which uses edges of weight three or more, exists. This

means that there is no Hamming mapping from a rate Zll (kln) convolu-

tional code to a rate 215 (kll) constrained code. When this happens, suffix

and/or prefix construction [tO] could be used. That is, adding 00 or 10 to

either one of the two copies of the Hamming map for length / - 1 creates a

rate kl(l f 1) trellis code. In Chapter 3, the two problems-choosing and

evaluating the maximum matchings-are investigated in detail.
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2
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-weight4

c
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4(læ) 3(0u)

7(111) 0(000)

2(010) 5(101)

a(0r010) h(10000)
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0
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(a)

(b)

Figure 2.7: The weighted complete graphs G, and G":
and 1Vi(/) : a.

d :|rn :3rl :5,
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ChapËer ffi

Camoxaåaaå ffi ndenåxag,&ågonå6hra's

The problem of determining Hamming maps, as shown in Chapter 2, canbe

cast as that of examining each matching. This chapter describes a depth-fi,rst

search (DFS) algorithm which lists each maximum matching, and a canonical

ordering algorithm which evaluates the maximum matching. The canonical

ordering algorithm produces a Hamming map through a rearrangment of the

matching edges. Prior lo canonical ordering, the distance matrix associated

with codewords represented by the vertices of the maximum matching is

balanced so that it is both symmetric and cross-symmetric. This process of

balancing reduces the computation required for canonical ordering.

3.3- Gnaph Ðefinition

The various graphs discussed in this thesis are characterized in graph the-

oretic terms. A weighted graph G is a triple (y(G), E(G),W(E)) consisting

of a set V(G) of vertices, a set E(G) of edges, and a function W frorn E

into Z+, the positive integers. An edge e of. G is an unordered pair of joined
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Table 3.1: Graph parameters.

Graph V(G) ,(G) E(G) e c)

G, {uo,.. .,uq-r} u, e U Ç :2n (u¿u¡) Yi, j q

2

L;C {.0,.. .¡cr-t} 
", 

e C r : Nr(/) (c;c¡) Vi, j T

2

G, {r0,...,up-t} u¿e C p < N¿(t) W(e)2n r
2

vertices z and D,'i.e., e: Lr,u: u'u,. For an edge e, W(") is called the weight

of e. Symbols z(G) and e(G) denote the number of vertices and edges in

graph G. Using these symbols, the complete weighted graphs Gu and G.

introduced in Chapter 2 are parameterized in Table 3.1. Note that ,(G")

is the number p of. d-constrained sequences which have passed the necessary

conditions NC2 and NC3. Because e € E(G") if and only if W(") ) n, the

subgraph G, will have considerably fewer edges than the complete graph G",

reducing the search effort consequently. When a maximum matching M of

G, is found, each edge of M, a pair of d-constrained sequences at distance n

or greater, will replace an edge of weight n in Gu (See Fig. 2.7 in Chapter 2

for example).
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Set of d-constrained sequences

Figure 3.1: Conjectured relationship between tests.

The Hamming map algorithm consists of two steps:

Step 1. M-test Find a maximum matching M of G, using a known algo-

rithm. If lMl 1 q :2" then stop.

Step 2. Canonical Arrangement Evaluate each matching M of. Gu.

It is interesting to note that the ,4¿[-test can be used as a necessary condition

for the existence of a Hamming map. It is suspected that this M-iest is

stronger than NC3. That is, it is conjectured that failure of NC3 implies

failure of M-test, whereas failure of the M-test may or may not imply faiiure

of NC3, as illustrated in Fig. 3.1. No counter example has been found to

disprove this conjecture. Table 3.2 and 3.3 support this claim by showing test

results for various conditions. The strength of the M-tæt is demonstrated

by verifying the nonexistence of a Hamming map for rates 7/13 and 8/14

when d, : l, and rates 2f 7,5f 13, and 6/15 when d :2.

The Canonical arrangement step consists of two algorithms which respec-

33



Table 3.2: Test results from llC3 and M-tests when d : 1: Y-Hamming
map may exist, N-Hamming map does not exist.

Itn 2n ¡ir(/) rc NC3 M-tæt
21 4 54 712 r l4 5(Y) 4(y

2

2

J

.'t

r
(J

6

88
8 13

5

213 216

232 7(N) 6(N)
13(Y) rz(Y)

34 7 16 21 3l 4 317 2o(Y) 18(Y)
4

4

5

5

8

9

32 34

32 55

418
4ls

415
415

2e(N) 22(N)
54(Y) 48(Y)

5610 64 89 516 5lr0 83(Y) 66(Y
6

6

777
712

r28 144
r28 233

b 1176

617 6112
123(N) 82(N)
226(Y) 184(Y)

137 8 256 377 718 7113 34e(Y) 252(N)x
T48 I 512 610 8le 8l14 525(Y) 310(N)x

Table 3.3: Test results from NC3 and M-tests when d : 2: Y-Hammino
map may exist, N-Hamming map does not exist.

kn I 2n ¡\/d(/) Tu rc NC3 M-tæt
12 6 4 6 rl2 rl6 6(Y) 6(Y)

7

I
3

3

2

2

89
813

213 217
213 218

8(Y) 6(N)*
12(Y) 12(Y)

3

3

49
410

16 19

16 28
I

314 slto
I,

d+,) 15(N) 12(N
27(Y) 22(Y

4

4

5 11

572
32 41

32 60

415 4lrr
415 4l12

31(N) 2o(N)
55(Y) 42(Y)

5

5

613
614

64 88

64 r29 516 5l14
13.)65 70(Y) 44(N)*

116(Y) 86(Y)
6715 r28 189 617 6lr5 141(Y) 72(N)*

Q,1u=



tively list and evaluate the matchings M. The evaluation algorithm takes

a matching lvI and examines each submatching H of size q for a possible

canonical arrangement. The algorithm that lists the matchings has been

developed using a depth-first search as described in the following section.

&.2 l,isting the rnaximlrrrr matchings

A recursive algorithm based on a depth first search has been developed to

list all maximum matchings of the constrained graph G. Given a maximum

matching, a partition on the set of all maximum matchings into two disjoint

sets is made once per each matching edge e: a set of maximum matchings

M" which contain edge e and a set of maximum matchings M'" which do not

contain edge e. After each partition, the problem of listing all maximum

matchings of rn edges is divided into two smaller problems: listing all max-

imum matchings of (rn - 1) edges from a vertex reduced graph and that of

rn edges from an edge reduced graph. Terminology and some fundamental

results for the maximum matching problem are described first.

3"2.1- FrelimiTr.ary

As introduced in section 2.3, a matching M of a graph G is a set of edges

with no common endpoints. Ãn M-alternating path P is a path whose

edges are alternately in M ard not in M. See Figure 3.2. Note that the

ternn alternating is relative to a specific matching M . When M is empty, for
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M-alternating path P

ffi

matching edges of M edges of G/lvI

Figure 3.2: An &I-alternating path.

instance, then any single edge is an M-alternating path. An alternating path

P with both endpoints unsaturated (unmatched) is called an augmenting

path relativeto M, or an M-augmenting path.

Given an augmenting path P, a bigger matching M' can be obtained by

an erclus'iue-O7 operation on the edges, M' : M @ P. The exclusive-OR

operation is known as an augmenting operation. The new matching M'

consists of those edges that are in M or P, but not in both. In this way

M'has one more edge than M, i.".,lM'l:lMl * 1. Figure 3.3 illustrates a

bigger matching M' : {(1,8), (2,6), (3,7), (4,9)} obtained by the augmenting

operation.

The determination of a maximum matching is greatly facilitat"d by a theo-

rem, proven by Berge([7],1957): A matching M in G is a maxirnum matching

if and only if G contains no M-augmenti,ng paths.
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(a) Matching M (c) Larger matching M'

(b) M-augmenting path P

Figure 3.3: A graph and an M-augmenting path.

.1 {



The search for an M-augmenting path with origin u involves growing an

fuI-alternating tree ã rooted at z. A tree 7 is a connected graph that

contains no cycle. A subtree H ç G is called an M-alternating tree -Ël

rooted at u if (1) u € V(H); (2)Vu € -ÉI, the unique (z,u)-path in.ÉI is an

M-alternating path. A maximum matching algorithm follows the alternating

paths as outlined below.

Step 1. Start with an empty matching M : ó.

Step 2. Find an M-augmenting path P and replace M by M @ P.

Step 3. Repeat step 2 until no further augmenting paths exists, at which
point M is a maximum matching.

For the the purpose of Hamming maps, trvo maximum matching algorithms

are used in this thesis: The Hungarian algorithm [t0] and Edmonds algorithm

[15] The Hungarian algorithm can find a maximum matching in bipartite

graphs. A bipartite graph is one whose vertex set can be partitioned into two

subsets X and Y, so that each edge has one end in X and the other end in Y.

Edmonds algorithm can find a maximum matching in nonbipartite graphs.

Both are based on a breadth-first search.

In a breadth-fi,rst search, vertices are visited in order of increasing distance d

from the starting point u, where d is simply the number of edges in a shortest

path. Beginning with d : 0, the breadth-f,rst search considers in turn each
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vertex r of distance d ftol:rr u. This is repeated until no new vertices are

found. By examining all edges incideni with r, all vertices of distance d + 1

from u are processed.

On the other hand, the depth-first search is a generalization of a preorder

traversal of a tree as illustrated in Fig. 3.4 [5]. The starting vertex may be

determined by the problem or may be chosen arbitrarily. When each new

vertex u is visited, a path is follor,ved as far as possible, aisiting or processing

all the vertices along the way, until a dead end is reached. A dead end is

a vertex all of whose neighbors (vertices adjacent to it) have been visited

aiready. At a dead end the search backs up along the last edge traversed and

branches out in another direction. This has the effect of visiting all vertices

in one subgraph adjacent to u, say G1, before going to a new one.

To describe the various algorithms, control structures similar to Pascal

and C languages are used. In the following algorithm, the instruction marlç

r uisited is used when the desired processing of the vertex r is completed.
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Figure 3.4: Depth-first search.
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Thebreadth-f,rst, search uses a queue Ç to store and process vertices in the

order of arrival.

Algorithm Breadth-First Search

Procedure BFS (u: VerterType);
J
I

var
Q : Queue;
t)Lt) i VertexType;

Q ,: ö; {begin with an empty queue}
place u in Q and mark u visited;
d"{

select r ftom Q;
for each unmarked vertex u.' adjacent to r {

place w in Q and mark r'll visited;

] {end for}
) while Q is not empty; {until all of Q has been processed}

] {end BFS}

Since a depth-first search does not back up from a vertex ¿ until every

edge from z has been examined, it has a very simple recursive description.

Algorithm Depth-First Search

Procedure DFS (u: VertexType);

{
var

w : VertexType;

mark u visited;
while there is an unmarked vertexT.o adjacent to u {

DFS(w);
] {end while}

] {end DFS}
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3"2"2 T,isting the maximum matchings

Consider an edge e: rU of G as depicted in Fig. 3.5. A maximum match-

ing M of G may or may not contain the edge e. In an edge reduced graph

G - ", no maximum matching can contain the edge e. The end vertices ¿

and y, however, can be contained in some maximum matchings of the graph

G - e. On the other hand, in the aertex reduced graph G - {r,g}, no maxi-

mum matching (perhaps smaller) can contain u and y. Fig. 3.6 shows graphs

reduced by an edge or its end vertices.

Based on this observation, the strategy for listing maximum matchings is to

partition the set of all maximum matchings according to whether a maximum

matching uses a particular edge. Suppose that a maximum matching M

called a base matching has rn edges (2rn constrained sequences), i.e.,

M : {"or€rt. . .t€n-l}, e¿: (rrrt,o) (3.1)

When lMl : rn, it will be called an rn-matching M to save notation. The

set of all r¿-matchings {M} of G is partitioned into two mutually exclusive

groups:

{M} : {Mo} u {M¿} (3.2)

The first group {Mo} contains matchings which use the edge es and the

second group {Må} contains matchings which do not use the edge e6. In

other words, a matching M is in {Ms} if eo e M, otherwise, it is in {Mj}.
This hierarchy is depicted in Fig. 3.7 as a partition tree.

/1,



Figure 3.5: A graph with edge e: rU.

(a) G - e(xy) (b) G - [x,y] and G(e)

Figure 3.6: An edge or vertex reduced graph.
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Figure 3.7: A partition tree of the set of maximum matchings.
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Consider the right branch of the partition tree first, i.e., the set {tvlj} of

matchings that do not use edge e¡. Each of these rr¿-matchings is in the

edge reduced graph, Ga:: G - eo. Let M¡ denote a part of rn-matching

M as M¡ :: M - "o. 
Note that the trvo end vertices u 6 and ls ate still in

the reduced graph G¿, albeit they have become unsaturated. Therefore the

reduced matching M¡ is no longer a maximum or rn-matching in either G

or G¡. The determination of all rn-matchings in G¿ involves growing M¡-

alternating trees rooted at one of the end vertices zs or !s, and is described

later as a depth-first search.

Now consider the left branch of the partition tree, the set of maximum

matchings that do use edge e6. Let a two-tuple(Ga,MB) denote the graph

with a base maximum matching obtained from M by the removal of the end

vertices 16 and 96:

;:G-{"o,yo}

:: M - €o : {"rr"rr... re^-t} (3.3)

It should be emphasized that the (rn - 1)-matchÁg M6 is a maximum

matching of this vertex reduced graph G¡. This can be seen by realizing

that Gs has lost two vertices which rvere previously M-saturated in G. Con-

sequently, the size of a maximum matching MB of. GB is one less than that

of M. The rn-matchings in the left branch of the partition tree are obtained

as the union of {es} and all (m - l)-matchings of this vertex reduced graph

Gn

lulp
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GB.

{Mo} : {LI"} -F {"0} (3.4)

The task of listing (* - l)-matchings {fuIB} of the vertex reduced graph

GB is the same as that of listing rn-matchings {M} of the original graph

G. Therefore with the (m - l)-matching MB as the base matching of graph

GB, a new partitioning of the set of (rn - 1)-matchings {Mo} into {M61} and

{fuIot,} is made to move further down along the partition tree based on the

edge e1. In the same v/ay, a matching in {Ms1} uses both edges e¡ and e1

and a matching in {Ms1,} uses €6 but not e1.

This partitioning is repeated for the left branch until all the edges in the

base rn-matching M have been examined, each time producing two disjoint

sets of matchings. At depth d of the partition tree, the left branch denotes

the set of all rn-matchings which contains the base edges {"o,"r,...,e¿-t},

and the right side branch {"o,"t,...,e¿-z} but not e¿-1. In this way, all

rn-matchings of the graph G can be listed without repetition.

To explain the DFS-algorithm for the new rn-matchings of. Gt: G - eo,

consider the bipartite graph G of Fig. 3.8. The graph has 11 vertices with a

5-edge matching U : {(1,6),(2,7), (3,8), (4,9), (5,10)} as a base. The edge

reduced graph G-e(7,6) in Fig. 3.8(b) is redrawn as an Mralternating tree

rooted at vertex 1, one end of e: (1,6). Note that the link edges f1,f2,, and

/3 are not part of the tree. Two M¡-augmenting paths P-(I1,4,9,1) and

(6,3,8,4,9,1)-can bring about new rr¿-matchings of G.
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Figure 3.8: A

@) BFS tree of G - e(16)

bipartite graph and an M¡-alternating tree.
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The M¡-aiternating tree of Fig. 3.8(b) was based on a breadth-fi.rst search

tree. The BFS tree structure depends on the initial implementation of a

graph, represented as an adjacency linked list. For example, if the link edge

/3 were encountered earlier than the edge (2,10), the path (6,3,8,2,7,1) would

be an Ma-atgmenting path. In this respect, BFS trees are useful when an

exhaustive search for augmenting paths is not required.

On ihe other hand, DFS trees extend as far as possible until an M¡-

augmenting path from a vertex u is found. After the new matching from this

augmenting path is evaluated, the vertex u is marked as unaisiúed (removed

from the tree). Also when each adjacent vertex u to root vertex u is examined

u is marked as unvisited because it might be in another alternating path,

perhaps from some other branches of the tree.

Now consider the M¡-augrnenting path P : (11,4,9,I) again. The rn-

matching M obtained by the augmenting operation can be expressed as a

union of two sets of matching edges:

M : M¡ØP:M(P)+M(GAIP)

: {(11,4), (9,1)} + {(2,7), (3,8), (5, 10)} (3 5)

The two matching edges of M(P) are the direct result of the augmenting

operation. The three edges of. M(G¡lP), however, remained unchanged by

the augmenting operation. This situation illustrates the foliowing important

consideration:

There may be other m-matchings which could be rni.ssed if the
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Ge(P)

Figure 3.9: Temporary removal of P for possible children matchings.

search baclcs up irnmediately from the M¡-augmenting uertex, say

11.

A close examination indeed reveals many such hidden matchings which are

termed child matching. Fig. 3.9, 3.10 illustrates two child matchings, for

example.

M(Pr): {(11,4), (e,1)}

M(Pr): {(11,4), (9,1)}

{(2,8), (3,6), (5, 1o)}

{(2,7), (3,6), (5,1o)}

+

+
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M(cAÆ)

8Y

r:t:

Figure 3.10: Child matchings.
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To find the child rn-matchings, the portion of the M¿-augrnenting path P

is removed temporarily. The rest of the graph C ¿lP will have a maximum

matching of size at most lMl - lPl : m - p edges. The listing oL (m -
p)-matchings of the two-tuple (GolP,M(GolP)) again becomes the same

problem as that of m-matchings of (G, M(G)), the original graph.

The following description summarizes the listing algorithm in three proce-

dures: Main, DFS-L,[atch, and Process-luIatch.

The proced:ure Main merelystates the strategy described before: partition-

i,ng and building Mn-alternating trees, once for each matching edge. To begin

the enumeration, Edmonds algorithm is used to find a base m-malching M

from G.

The procedure DF^9-Match invokes the procedure Process-L[atch, when a

new M¡-augmenting path (thus a new rn-matching) is found. The procedure

Process-Matchfrrst eualuates the new rn-matching M in an attempt to pro-

duce a Hamming map(s) from the set of constrained sequences represented

by the matching edges. This eualuation procedure will be described later

in a separate section. It then begins to look for child (m - p)-matchings.

Each child matching, if it exists, is added lo M(P), yielding an rn-matching

of. G¡. Note that a child (m - p)-matching of G¡lP may exist only when

lMl > lPl. That is, if all of Zrn vertices of the new matching are in the

augmenting path, there cannnot be a separate matching edge which is not in

a marimurn matching.
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Algorithm 1: Main

Procedure Mai,n;

{
Var

G : (V, E): GraphType;

find a maximum matching fuI; {by Edmonds algorithm}
M :: {"o, "tr. 

. ., e*-t} re¿ :: (x¡ry¡)
for each edge ry of M {

remove edge ry; {G¡:: G - e(xy)}
for each unsaturated vertex u do DFS-I[atch(u);
delete vertices z and y; {Gn:: G - {r,y}}

) {end for}

) {end Main}
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Algorithrn 2: All M a-argmenting paths (recursive)

Procedur e DFS -Match(u: VertexType);

{
var

PreuPt: array of VerterType;
M: Matching;
u)LD : VerterType;
mark u visited;

for each unmarked vertex u adjacent to u {
PreuPt[u): u; {representing P}
if u is matched to tr.' {

mark u visited;
DFSJ,Iatch(-);
mark u unvisited;

) {end for}
else {

Augment(u); {an M¡-augmenting path from u}
{we have a new maximum matching ,421}

ProcessJl,[atch(M);
mark u unvisited {backs up };

) {end else}

i {end for}
mark z unvisited;

] {end DFS-Match}
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Algorithm 3: Process matching

Procedure ProcessJ[atch(M : Maximum Matching);

{
first, evaluate matching M; {Canonical Ordering}
P :: augmenting path;
if lPl < lMl { {take care of child matchings};

G :: G - P; {temporary removai of the augmenting path}
M :: M - M(P)i
for each edge ny of M {

remove edge ry; {G :: G - e(xy)}
for each unsaturated vertex u do DFS-\ttatch(u);
delete vertices u and y; {G :: G - {r,y}}

) {end for}
M :: M + M(P); {restore matching}
G :: G { P;{restore graph}

] {end if}

] {end Process}
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3.3 Canonícal Crdering

In the previous section, a systematic way of listing the maximum match-

ings of a constrained distance graph has been developed. To determine the

Hamming map, the set of q codervords (q12 edges) of an m-matching lu[ has

to be ordered properly. An exhaustive trial would require q! examinations

for each submatching-8! : 40320 when kf n:213, 16! x 2.09 x 1013 when

kfn:3f4, etc.

In the follorving, an efficient algorithm termed canonical ordering which

determines a Hamming map is described. Note that when kf n : If 2, no ad-

ditional ordering is required since then any subset of 4 codewords represented

by 2 matching edges in any orde¡ produces a Hamming map.

3.3.1- Matrix balancing

The key idea is to make a constrained Hamming distance matrix cross-

symmetric by balanci,ng the distances between pairs of matched codewords.

This balancing greatly facilitates the proper arrangement of matched code-

words into an Hamming map when one exists. It is convenient to define two

kinds of matrix symmetries.

Definition 3.1 (symmetry) A q x q rnatrix A is called symmetric if a;¡ :

a¡;, Yi, j, and cross-symmeftic if aij tr¡;, where pairs (i,î) and (¡,¡) are

matched slot pairs, that is,î: q-L _ i, and j - q- 1_ j, Vi, j.
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u1

Figure 3.11: A butterfly of two complementary pairs of
words.

Let (u1,û1), and (ur,ttr) be complementary pairs

words of length n. Consider the butterfly pattern

d(u1,,u2) and d2 : d(ur,û1). Then it is obvious that

of

in

convolutional code-

convolutional code-

Fig. 3.11. Let fi -

ù I dz : d(ttt,ttr) : n. (3.6)

Because the above equality holds for any complementary pair (ui,û1) and

ãn! u2, it foilows by interchanging the loles of z1 and u2 that

ú+d(ut,ttr):n.

From the equations (3.6) and (3.7), dz: d(ut,û2), and in general

d(u1,u2) : d(tl.-,tL2)

(3.7 )

d(u1,ù2) : d(tr'1,u2) (3.8)

i.e., the weights of the side edges or the cross edges are identical. This

property contributes to the cross-symmetry of the standard Hamming matrix

Ðu.
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0100010

0i010101001 4

(a) unconstrai¡ed

4

(b) constrained

0000100

Figure 3.12: Butterfly patterns with d: l, kf n:3f 4, and kll:317.

However, this symmetry need not hold for a constrained counterpart, as

can be seen below. Consider Fig. 3.12(b) which shows two matched pairs of

constrained codewords of 7 bits in length, (rt, ût) : (0100010,1001000), and

(rr,ûr) : (0101010,0000100). The distance pair in the given constrained but-

terfly is not symmetric-d(rr,rr) :1 and d(ù,ôz): 3. However these pairs

(ro,ûo), i : I,2, carr replace t,he convolutional codeword pairs of Fig. 3.12(a),

since the corresponding Hamming distances are preserved. Note that the

butterfly of Fig. 3.12(a) is the only kind which can be replaced by that of

Fig. 3.12(b). Therefore the distance d(û1,,û2): 3 in (b) can be regarded to

be equivalent to the corresponding distance d(t¡,ùz): 1 in (u), i.e., it can

be reduced to one.

This reducing or balancing of edge weights has the important effect of

making the constrained distance matrix cross-symmetric. In other words, for

the purpose of Hamming maps, the butterfl.y weights can be reduced so that

ihe distance matrix becomes cross-symmetric.
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0101010 m0100

@^*

0010100

Figure 3.13: A strongly balanced butterfl.y: d : 1, k l, - 3 f 4., and k I I : 3 ¡7 .

Various forms of weight balancing are illustrated in Fig.3.13 through

Fig.3.15. Consider a butterfly in Fig.3.13 whose balanced weights on the

cross edges satisfy the equality (3.6). When this is the case, the balanced

butterfly is termed strongly balanced.

On the other hand, the butterfly in Fig. 3.14 cannot be balanced uniquely,

as above. The unbalanced weights ah'eady satisfy the symmetry of Eq. 3.8.

It is not certain which butterfly can be replaced by these pairs of matched

codewords. This kind is termed wealcly balanced. The butterfly of Fig. 3.15

has different weights on the matching edges. Balancing the different kinds

of butterflies is based on the following rules.

Rl d(u, û) : r.
R2 ù: min(d(ut,uz),d(fi,û2)) < n

dz: rnin(d(ur,õr),d(fi,u2)) < n
R,B d1 * dz : n * 4 for an even value c'
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0101010

rmlm0

00001@

0010010

,/\

Figure 3.14: Ã weakly balanced butterfly: d -- I, kf n:3f 4, and kll:317.

<4-

Figure 3.15: A strongly balanced butterfly (mixed matching edges): d : l,
kfn:3f4,,andklI:317.
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3.3.2 Canonical trdering

The canonical ordering algorithrn is used to place a set of codeword pairs

into a set of slot pairs subject to a restriction termed. adjacency. Necessary

terms and symbols are given first.

Suppose M: {elo,e't,...,e}-r}, m} qf 2, is a maximum matching of G.

Denote a subset of ql2 edges (q vertices) as H (V):

H : {"or"r,... r"n¡r-r},

V : {("0, ôo), ("r, ôr),. . ., (co¡z-t,èo¡r-r)},, e¿: (c;,êl) e M.

Assume that the Hamming distance matrix D, has been balanced accord-

ing to rules R1-R3.

Definition 3.2 (Slot rnap) Let I denote the set of slots, or the domain of

a Harnrning map.

1: {to,slr...,sq-r}, 0 ( s;1q- 1.

Call the function h : I --+ V , whose ualue h(s) denotes the codeword occupying

a slot s, a slot map. Similarly, the inuerse map g:V --+ I is called a codeword

map, whose ualue g(u) represents the slot occupied by a codewordu:

The adjacency of codewords and slots plays a vital role in the canonical

ordering algorithm.

Definition 3.3 (Adjacency) A pair of codewords (ut,uz) are called d-adja-

cent to each other if d(u1,uz): d. On the other hand, a pair of slots (sr,sz)
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Table 3.4: Adjacent slots A(s) when n :2,3.

s Ss 51 32 s Sg S1 S2

are called d-adjacent to each other if 4r,"r: d in the unconstrained distance

matrfu Du.

It should be noted that adjacency on s/oús applies to the unconstl-z,ined case

while adjacency of codewords applies to the constro,ined case.

Because the balanced matrix is both symrnetric and cross-symmetric, the

codeword pair (u1,u2) are d-adjacent if and only if (ûr,t,") are d-adjacent to

each other. Let Á.(s) be the set of (n - 1)-adjacent slots to a slot s € 1 and

f(o) the set of (n - l)-adjacent codewords to a codeword u € V.

u\'(") : {"0,"r,...,s,-r}

f(r) : {ro,rr,...,uçt}
/_\

Note that the cardinality of set Á,(s) equals ( ", ), th" (n - l)-th\ / \ n-r /' \ /

degree 6!-1 f.or an unconstrained codeword u € U. The necessary condition

NC3 requires that the cardinality ú of l(u,n- 1) be n or greater for u to be a

member of a Hamming map. Table 3.4 and 3.5 shows (n - 1)-adjacent slots

for n :2r3, and 4.

The canonical ordering is greatly facilitated by the following theorem.
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Table 3.5: Adjacent slots A(s) when n :4.

s 56 51 32 53 s 56 51 32 33

0

1

2

3

7IL1314
6 10 72 15

5 I 12 15

481314

8

I
10

11

,)

2

i
0

5 615
4 774
4 713
5 6t2

4

5

6

7

3 91015
281114
1 8 11 13

0 91012

72

13

T4

15

1

0

0

i

2 7 11

3 610
359
248

Theorem 3.L (Canonical matrix: unconstrained) Suppose that each

matched codeword pair (u,ù) are placed in a matched slot (row) pair such

that all entries o.f Du whose ualue is ("-t) fall inthe (n-I)-adjacent slots.

Then the resulting matrix is ø canonical matrir, which corresponds to the set

of unconstrained codewords arranged in natural order.

Froof The proof uses a recursive statement based on the size q of matrix

Do. Suppose that all (n - 1)-adjacent codewords are in (n - l)-adjacent slots.

It follows from the triangle equality of (3.6) and the symmetry (3.8) that all

1-adjacent codewords are in their 1-adjacent slots.

Write the matrix D, as a2 x 2 block matrix:

f ,å.]
n I Dq/z Dqlz 

Iuq- I /- I

I D|t, D'rt, )

The main cross-diagonal entries of. Dr¡z and D'o¡z ate n - 1 since their corre-

sponding slots are (n - 1)-adjacent in Dn. As a consequence, in each subma-
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trix Dr¡z and D'n¡2, all (n - 2)'. are in the (n - 2)-adjacent slots, and thus all

2's are in the 2-adjacent slots of Do again by 3.6 and 3.8. That is, a correct

placement of the (n - 1)'s of. Do forces the correct placement of the (n - 2)'s

of Dq¡z and D'n¡2. The same argument applys to the submatrices Dq/2, Dq/t,

etc., until the submatrix becomæ Dz, which is the identity matrix.

To demonstrate the usefulness of the theorem, the following procedure

unscrambles a set of mixed codewords into a Hamming map.

Example: IJnscrambling codewords

Consider a set of 8 convolutional codewords (4 matched pairs) which are

scrambled in an arbitrary way:

{("0, ôo), ("t, ôt), (rr,ôr),("r, êr)} (3.9)

where ê,;: cit î: q_ L -i:7 -i,0 < i < q-I:7. The distance matrix

Du for these codewords are given in Table 3.6. Note that e¿ch codeword

is a 3-sequetce,, i.e., it passes the necessary test NC3. Note also that the

main cross entries (d;¡): d(c;,ô';): n:3. The matrix, however, is not in

canonical form yet.

The task is to determine whether a Hamming map exists and, if the answer

is yes, to find a proper arrangement of these 8 codewords so that their matrix

is canonical.

Procedure: All the 8 slots {(to,3o), ("r,3t), ("r,3r),(tr,3r)} are empty ini-

tially. Choose a pair of matched codewords from Table 3.6, say, (ru,ôu) :

c9Ud



Table 3.6: An 8 x 8 distance matrix D,.

VV Cs Cy C2 C3 C4 Cs C5 C7

cs ô.2 010

c1 ê.6 111

c2 ¿.5 011

cs ôa 110

0

2

1

1

2

0

1

1

1

1

0

2

1

1

2

0

2

2

1

J

2

2

J

1

1

3

2

2

3

1

2

2

ô,s c4 001

¿2 c5 100

Q c6 000

ô.o c7 101

2213
2231
1322
3122

0

2

1

1

2r1
011
102
720

(cs,cz). Place this pair of codewords into a matched slot pair, say, (ss,.ô¡),

i.e.,

å(s6) : cs, å(.ço) : h(sz) : cz.

This placement leaves 6 slots unoccupied.

s Sg 51 52 53 34 5s 55 37

å('o) Cg C2

The 2-adjacent slots of so and 2-adjacent codewords of c5 are determined.

Â(ro) : {se, s¡, so} [Table 3.a]

f(c5) : {cs,c1,ca} [Table 3.6]

Placement of the codewords of {l(c5), f (¿r)} into the slots of {Â("0), 
^(30)},

in any order, accomplishes the desired arrangement. One such placement

is shown below:
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s Sg S1 S2 S3 54 35 56 37

å("0) C5 C2

å(l\(s6)) Cg c1 c4

å(^(30)) c3 c6 C7

The resultant matrix, as shown in Table 3.7 is indeed a canonical matrix and

a 1:1 map f :U --+ I/, where

U : (000,001,010,011,100,101,110,111)

V : (rrr""rC6tCo,tC7,tCttc+rcz),

is a Hamming map.

The number of steps required for unscrambling 8 codewords was 1, in sharp

contrast to 8! : 40320, which an exhaustive trial may require. In general,

2"/8 steps are required for unscrambling 2' convolutional codewords into a

canonical form, since each step will effectively assign 4 pairs of codewords at

a time.

To extend this technique to the constrained case, further terms need to be

defined. Let p be a slot called a piuot and u : h(p).Suppose

n(p) : {"0, tr,. . ., s,,-1}, and

l(r) : {ro, rr, ...rut-t), t } n.

Definition 3.4 (Assignment graph) Let G : (X, Y) be a bipartite graph

ter¡ned øn assignment graph. Tl'te uerter setV(X,Y) is

X : {XorXt¡...tXn,-7}, n'1n, and

oi)



us c5 100

uy cs 110

u2 c6 000

us cs 010

0

1

1

2

1

0

2

1

1

2

0

1

2

1

i
t,

1

2

2
tJ

2

1

J

2

2

3

1

2

t
L,

2

2

1

u4 c7 101

u5 c1 111

u6 c4 001

u7 c2 011

1223
2L32
23r2
3221

0112
1021
1201
2710

Table 3.7: An 8 x 8 canonicai distance matrix D,.

U V l.r c3 c6 colcz c1 c4 c2

Y : {Yo,Y,...,Yr,_r}, t' 1 t,

where X¿ is the set of assigned codewords in filled slots that a,re (n - 1)-

adjacent to the i-th empty slot s¿ of Ìv(p), end Y is the set of assigned code-

words that are (n - I)-adjacent to the i-th non-assigned codeword u; of l(u).

The uertices X¿ and, Y¡ are joined i,f and only if X¿ is contained i.n \, i.e.,

e: (X;,Y¡) is an edge of E(X,Y) ,f and onlg if the codeword u¡ is quølifi,ed

to take the slot s¿.

A maximum matching A: {(Xu,yr,)} of the bipartite graph G : (X,Y)

defines a possible assignment of codeword pairs (rr,îtu) of l(u) into slot

pairs (s¿,,.ô;,) of ,4,(p). This assignment is based on the reasoning that for a

codeword u to be placed into a slot s, the codeword u should be at distance

(" - 1) from other codeword w,if.w has already taken a slot of .4,(s).

In contrast to the standard matrix Du of convolutional codewords, the



balanced matrix Du of constrained codewords has l¡oth strongly and weakly

balanced butterflies. This fact prevents the canonical ordering algorithm

from finding a Hamming map ín 2 f 8 steps, the number of steps required for

unscrambling convolutional codervords into a standard form. Thus for the

constrained case, each maximum matching (assignment) from the assignment

graph has to be examined in general. The following algorithm reflects this.

\, I



Algorithm Canonical Ordering

Procedur e CanOrder(p: SlotType): Boolean;
i

var
G : Bipartite graph;
A: Assignrnent;
u : CodewordType;
p: SlotType;

if all slots have been filled return completed;
u ,: h(p);
build the assignment graph G :: (X,Y) for (f(r),n(p)) by Def. 3.3;
find an assignment A of. G; {bV Hungarian maximum matching}
if lÁl < lXl return not completed;

for each assignment A of G {
do assignment A;
choose new pivot p; {say, every 4-th slot from s6}
if (CanOrder(p)) : completed return completed;
else cancel assignment A;

] {end for}
return not completed;

) {end CanOrder}

Procedure Main;

{
var

c, è : CodewordType;
p, þ : SlotType;

pick (c, ô);

initialize pivot; {p,: s6 and p :: sq-r}
assign (c, ô) into (p, i,);
if ( CanOrder(p): completed ) save Hamming map;
else signal "no Hamming map exists";

] {end Main}

AR



This algorithm can be improved by trying strongly adjacent codewords first

for assignment and lhen wealtly adjacent codewords if necessary.

Definition 3.5 (Strength) Asszme that the distance matrix has been bal-

anced. Diuide the codewords of l(u) into two sets of (n - l')-adjacent code-

words, f (u) : .S(u) U W(r), where

s(r) : {ue r(u) ld(r,w)+d(û,u):n},,

W(u) : {u.'e l(u) ld(r,u;)+d(û,w)>n}.

Note that pairs (u,ù) and (*,rî,) fonn a strongly balancedbutterfl'y if w is in

S(u), and u is terrnedstrongly (n-I)-adjacent to u. Similarly, u €W is

termed weakly (n - I)-adjacent to u.

Note that each strongly adjacent codeword should be assigned from the

assignment graph. Otherwise weakly adjacent codewords will occupy the

slots reserved for strongly adjacent codewords. This in turn will result in a

violation of NC3 due to extra 1 entries from one side of the missed strongly

balanced butterflies.

The example in the following section, which is rather long and complicated,

has been designed to trace the details of the assignment procedure. An

excessive number of tables and figures are presented to indicate the labour

involved in finding a Hamming map.

ÁôUJ



3"3.3 An example: canonical arrangement

1. Parameters:

d: I,ru: kln:314,r" -- kll:317,¡/r(/) - 2I,p:20,m:9. The

symbol p denotes the number of codewords which have passed test NC3 and

m the number of edges in a maximum matching M of constrained graph G,.

2. A subset of an rn-matching M:

Consider the set of 8 pairs of codewords as shown in Table 3.8. Each pair

(";,"i), î: 15 -i, having weight n:4, represents a matching edge in M.

The Edrnonds maximum matching algorithm has been used to find an n'¿-

matching with rn : 9, out of which 8 edges have been chosen randomly. The

Table 3.8 lists (n - l)-adjacent codewords as a union of strong and weak sets

from each codeword c. Note that the constrained matrix has been balanced

before making the decision on adjacency.

3. Canonical Ordering:

STEP O:

It shall be convenient to use å(s,3) : (o,ô) to mean the assignment of a

pair of codewords into a pair of slots at the same time, i.e., å(s) : u, h(3) :

ô. Choose a pair of codewords, say, (r"rrtr). Because no slot has been oc-
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Table 3.8: (n - l)-adjacent codewords f (c), n : 4.

c c W hex binary

0 7 11 i3 74 0A 0001010

1 10 l2 15 6 9 2A 0101010

2 5 915 .) T2 08 0001000
t
t) 814 2 4 l1 13 22 0100010

4 9 10 15 3 I2 4A 1001010

5 2 8 11 I4 42 1000010

6 t1 l3 1 7 814 48 1001000

I 0 10 T2 6 I 20 0100000

8 3 515 6 I 54 1010100

9 2 4 1 7 814 12 0010010

l0 r 4 713 74 0010100

l1 0 5 6 3 t2 t0 0010000

72 1 7 2 4 11 13 44 1000100

l3 0 610 .) t2 52 1010010

t4 0 3 5 6 I 04 0000100

15 1 2 4 8 24 0100100
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cupied yet, the codeword pair can be freely assigned into any slot pair, say,

("0, 3o), with adjacency considerations ignored.

A(ss,.ô6) : å(so, srs) : (r",rtr)

Call the slot pair P : so and p : .ôo a piuot slot pair. Observe that all slots

but the piuot slot pair (p, p) are left unoccupied.

STEP 1:

Consider the (n - 1)-adjacent slots A(p) of the pivot slot p. These slots to-

gether with their matched slots À(p) are to be occupied by the (n-1)-adjacent

codewords f(u), and f(ô), respectively. From Table 3.5 and Table 3.8,

A(p) : z\("0)

l(u) : ¡1"r¡

{"r, "r., 
sre, sr+} (3.10)

{.o,.t,. . .} : {.r, .rn} I {"rr c4¡ cTtt crs} : S U W.

These adjacency relationships are depicted in Fig. 3.16. All the slots Â(p) are

empty, and therefore the assignment graph G : (X,Y) for step 1 becomes a

complete bipartite graph 1(,,¿ which has n x I edges, where f :l f (u) l. This

yields too many assignments for examination.

For this initial step, however, it should be noted that the strongly ad-

jacent codewords in ,S can take any empty slots. To exploit this fact, the

codewords in ,5 are assigned arbitrarily to obtain an assignment. The graph

based on weak set W , (very) much smaller lhan Kn¿, may then be considered

if necessary.
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t7

sll

w0

w1

nz

w3

v = h(p)

(a).{(p) (b) r(v)

Figure 3.16: Adjacency for pivot p : so.

Since the assignment of strongly adjacent codewords is arbitrary, the graph

shown in Fig.3.17(a) need not be constructed at all. As the assignment is

not complete, each maximum matching (assignment) from graph G(W) of

Fig. 3.17(b) has to be examined fol a possible codeword assignment to empty

slots s7 and s11. Note thaf G(W) has 8 edges, and is much smaller than the

24 edges of the whole graph G. In terms of number of maximum matching,

the comparison becomes significant, 12 versus 360.

An assignment A(ss) : {(st,cz),(srr,c11)} corresponding to a maximum

matching of. G(W) in Fig. 3.17(b), is shown in Table 3.9, which also compiles

all the assignments made to this point-lO out of 16 slots in a single step M.

The symbols, spade-heart (&,9), mark the adjacent slots (s,.ô) for s e ,4.(p).

s13

s14

n-

n-1

I

t,5



hxls7 sr1
\x3
s13 s14

h
s7

@

xl
s1r

@

cr4 c8

Yo Yl

(a) strong S

cz cr3 c4 
"11Y2 Y3 Y4 Y5

(b) weak'W

Figure 3.17: An assignment A(ss) of graphs G(.9) and G(W) for pivot p: so.

Table 3.9: An assignment A(s6) from pivot p: so.

s Ss 51 32 A3 34 55 S6 37 Sg S9 sto stt stz sls st¿ sts

z\("0) cs99 I @ v @ @ @ ctz

A("0) c1 c7 C4 C2 C:.S ctt cg ct¿
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STEP 2:

Note that each of the unoccupied slot pairs is (n - 1)-adjacent to the slot

pair (sa,34). With this in mind, choose a new pivot p : s¿ and set u : h(p).

A similar process to that in step 1 is performed with the new pivot.

In contrast to the initial step, some slots are already filled and some code-

words have been used (assigned). In this step the construction of the as-

signment graph is not a simple task. See the schematic assignment graph in

Fig.3.i8.

The task is to put available codewords {rn,"ro,c15} into slots {s3,ss,sro}

such that the resulting arrangement conforms to the adjacency consideration.

First the assignment graph is constructed as described in Definition 3.3:

A(p) : ,\("r) : {"s, se,.s1s,s6} (3.11)

f(u) : f(ca) : {r0,rr,...} : {"n,"ro,crs} * {ft,ftr} : S UW,

where the slot s15 has been filled, and the codewords {"","tr} have been used

(assigned) by the assignment A(s6) for pivot s6. These adjacency relation-

ships are depicted in Fig. 3.19.

With the aid of Table 3.5 and Table 3.8, the bipartition (X,Y) can be

determined to be:

{xo, x|, x2}

codewords of Â(s3) : {å(sa), å("r), å(tt.), å("tn)} : {c¿,cß,cs,qa}

codewords of Á,(se) : {h(s2),å(tn), h(tr),å("tr)} : {c2,c4,c2,,e4}

/\

X

Xs

Xt



r(p)

Figure 3.18: Assignment gr h, G : (X,Y) for pivot p: s¿.
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s3

s9

slo

írs

v=h(p

h(s2)

h(s¿)

tt(v)

h(srd

x¡h(¡(sn))

(c) hß (Á,(p)))

Adjacency for pivot p : s+.

uo

u1

,2

3

h(s4 )

h(sg )

h(s13)

h(s14)

slosg

h(s1 )

h(sa )

h(v )

h(srd

x6h(4(sr)) xth(Â(s rd)

Figure 3.19:

(a).tþ)

77



x)
s1õ

c15

Y0

Figure 3.20: An incomplete assignment A(sa) for pivot P : s4,leaving the
slot pair (rr,3r) unoccupied.

htgl'pJ
@

@
clo
Y2

"g
Y1

X2

Y

Yo

YT

Y,

codewords of Â(s1s) : {å(s1), å(tn)r h(tr),ä("t.)} : {cr, c4,c2,cs}

{Yo,Y,Yr}

assigned l(.tu) : {ct,c2,c4rcs}.

assigned f(ca) : {"rr.r, c4¡ c7 ¡ ca, qq}

assigned f("to) : {cr,c4,c7,c13}

The set relations are: X1 C Y, Xz C Yo, Xz C Yt. As an example codewords

(rn, 
"ru) 

can take slots (se, s1s). The assignment graph for this adjacency

relation is shown in Fig. 3.20. Note that the assignment graph is no longer

a complete bipartite graph. This results in a reduced number of possible

assignmenÍs, a highly desirable feature. It can be seen immediately that slots

(.r,3r) cannot be assigned at this stage. Table 3.10 shows an incomplete

assignment A(sa).

Two possibilities can be considered: a Hamming map does not exist, or

the assignment A(ss) in ihe previous step is incorrect. To see if ,4(ss) is

na
¡ ()



Table 3.10: An incomplete assignment
,4(s6): the slot pair (s3, s12), marked as

A("n) from pivot sa resulting from
n, are not filled.

xo xl
s7 s1l

xz x3
s13 s14

x0
s7

@

c2
Y2

x1
sr1

@

cr4 c8

Yo Yl

(a) srong S

c13 c4 Ç11

Y3 Y4 Y5

(b) weak W

Figure 3.21: An alternate assignment A'(ss) of G(W) for pivot p : so.

incorrect, algorithm retreats to step 1 and examines alternate assignments.

STEP 1-' (retreat from STEP 2):

This time, as depicted in Fig. 3.21 and Table 3.11, a new assignment,A'(ss)

is employed: ,4'(ss) : {(rt, c13), (s11, ca)}

s 56 51 52 53 54 55 56 37 Sg S9 sto srr stz sra st¿ sts

A("0) cs I I I @ I & & @ Cn

A("0) c1 c7 C4 C2 cra ctL cg ctq

Â("n) @ c4VV @@cu m

A(tn) tr cg c6 cg cts tr

STEP 2' (back to pivot sa):

n^
IJ



Table 3.11: An alternate assignment A'(s6) from pivot p: so.

Now u : tt(p): cu and the assignment graph G' is based on the alternate

assignment A'(ss).

^(p) 
: z\("n) : {ss, se, s1s, s-15} (3.12)

f(u) : l(.tt) : {u0,ur,...}: {co, ce,cs} + {ø,en}: S¿W.

X : {Xo, Xl, X2}

Xo : codewords of Ä.(s3) : {å(s+), å(tr), å(trr), å(rtn)} : {c¡, c2,cs,ea}

Xr : codewords of .4.(se) : {A(s2), å(tn), h(tr),å(ttn)} : {cz,c11,cs,ea}

X2 : codewords of Â(s16) : {å(sr), å("n), h(tr),å(tt.)} : {cr, cÍ,c1s,cs}

Y : {Yo,Y,Yr}

Yo : assigned f(ø) : {rr,rrr,crs, cr¿}

Y : assigned f("u) : {"r,"r,c8¡crTtctz,h+}

Y, : assigned f(c5) : {"r,"",cn,e+}

The set relations are:

XoCYz, XtCYo, XtCYr, XzCY.

s Sg 51 52 33 54 55 56 57 Sg S9 sro stt stz 3r3 3t¿ sts

Ä("0) c3 I I & @ @@ctz
,4'(so ) c1 c7 ctt cr¡ C2 C4 cg ct-a
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Io fit3 
"9

c6

Y1

x)
srõ

co

Y0
c5

Y2

Figure 3.22: A complete assignment A'(sa) for pivot P: sq.

The assignment graph G' for this adjacency relation is shown in Fig. 3.22.

Now there is an assignment A'(tn) which assigns the slots completely:

A'(tn): {(tr, cs), (sg, cs), (s16, c6)}

The overall assignment A(s) accomplished through step 1' and step 2' is

shown in Table 3.12.

A(s) :A'(to) *A'(sa)

The canonical ordering algorithm thus took 2 steps to find a Hamming

map.

To check whether it is indeed a Hamming map, the corresponding distance

matrix is shown below.
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s S6 S1 .9o .9c 54 55 56 37 Sg S9 slo stt stz sra sr¿ srs

A("0) CsVV cî
@ @ @ @ ctz

A'(so) c1 c7 ctt crg C2 C4 cg ctq

Â(rn) @ C11VV @ & C4 c,

A'(tn) Cg cg cts cg c6 cto

,a(") Cg C1 C7 C5 ctt C9 cts ctz C2 Cg C6 C4 CtO Cg Ctq CtZ

Table 3.12: A complete assignment A(s), consisting of A'(s6) and A/(sa).

Constrained canonical distance matrix D"

31221 0112 3223 3243 4534
1 [2A] 702 3 4334 2732 s64s
7120f 1203 23r4 2334 3423
5 [42] 2330 3247 322L 4332

3223 2334 0112 3423
2t32 3243 rO21 4534
4332 3443 1207 4332
3241 4352 2Lt 0 5443

:11[10] 342 3 0132 2334 7223
:9[12] 2332 t04r 3243 2334
z15l24l 23L 4 3405 3445 23L2
:13[52] 344 1 2150 4332 3243

ht 0l
ht 1l
ht 2l
ht 3l

ht 4l
ht sl
hi 6l
ht 7l

:10[14] 4534 1223 3445 0112
:8[s4] 5643 2332 4534 LO2L
:14[04] 3423 2314 2334 t2o!
z72l44f 4s32 3423 342 3 2110

ht 8l
h[ e]
h[10]
h[11]

h[12]
h[13]
hh4l
h[1s]

2 [08]
0 [0A]
6 [48]
4 [4A]

This example leads to several important observations.

1. If any element in a strong set can not be used, it means that a Hamming

map does not exist.
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When separate graphs G(5) and G(W) are used in turn, a great deal

of computation is saved, especiaily in the initial step 1 from pivot s6.

3. From step 2, assignment graphs generally have a very small number

of edges, reflecting adjacency consideration from slots which have been

assigned in earlier steps.

4. If every possible graph assignment from pivot ss has been tried without

resulting in a complete assignment in the subsequent steps, it means

that a Hamming map does not exist.

5. This process is repeated until all slots are completely assigned.

The improved algorithm based on these observations is outlined below.

The procedure CanOrder is divided into two proceduresl. Begin-CanOrder

for the initial pivot p: so and Co.nOrder for pivots other than ss.

In the procedure Begin-CanOrder, the strongly adjacent codewords of S(u)

are assigned arbitrarily (no ass'ignment graph built), and the slots left unoc-

cupied are tried by the weakly adjacent codewords of W(u) with the aid of

the assignment graph G(W).

On the other hand, in the procedure CanOrder,, an assignment graph G(,9)

with the codewords of S(u) is constructed and a maximum assignment A(S) is

sought first. When A(S) fails to fill all the adjacent slots, another assignment

graph G(W) with the weakly adjacent codewords of W(u) is added to the

strong assignment graph G(S), from which each assignment is examined.

2.
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Procedure Main;

{
var

c, ô : CodewordType;
p, þ : SlotType;

pick (c, ô);

initialize pivot; Ip t: s6 and þ:: sq-r]¡
assign (c, ô) into (p,ft);
if (Begin-CanOrder(p)) : completed save Hamming map;
else signal "no Hamming map exists";

) {end Main}
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Algorithm Initiate Canonical Ordering

Procedur e B egin-CanOrder(ss: SlotType): Boolean;
{

var
G(W) : Bipartite graph;
A(W) : Assignrnent;
u : CodewordType;
p: SlotType;

p i: S0, u ,: h(p);
assign .9(u) into Â(p) arbitrarily;

if l.s(u)l : ln(p)l {
choose new pivot p i: sai

if (CanOrder(p)):ç6mpleted return completed;
else signal "no Hamming map exists";

] {end if}
else { {assignment not complete}

build assignment graph G(W): (X(W),Y(W));
find an assignment A(W) of G(W);
if lA(W)l < lX(W)l return not completed;
for each assignment A(W) of G(W) {

do assignment A(W);
choose new pivot p: sai
if (CanOrder(p)) : completed return completed;
else cancel assignment A(W);

] {end for}
return not completed;

] {end else}

) {end Begin-CanOrder}
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Algorithrn Canonical Ordering

Procedure CanOrder(p: SlotType): Boolean;
Jt

var
G, G(.S) : Bipartite graph;
A, A(S) : Assignment;
u : CodewordType;
p : SlotType;

P i: SOrU t: h(p);
build strong assignment graph G(S) : (X(.9), y(S));
find an assignment A(.9) of G(S);

if 1,4(s)l : lx(s)l {
for each assignment A(S) of G(S) {

do assignment A(S);
choose new pivot p;{say, every 4-th slot from ss}
if (CanOrder(p)) : completed return completed;
else cancel assignment A;

) {end for}
return not completed;

] {end if}
else {

add G(W) to G(W) to form assignment graph ç 7 (X,Y);
find an assignment A of G;
if lAl < lxl return not completed;
for each assignment A of G {

do assignment A;
choose new pivot p;
if (CanOrder(p)) : completed return completed;
else cancel assignment A;

] {end for}
return not completed;

] {end else}

] {end CanOrder}
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3"3"4 Conjugate F{amming maps

Closely associated with one Hamming map is a class of maps termed con-

jugate Hamming maps. Once a Hamming map is found from the canonical

ordering, 2n x nt. conjugate Hamming maps can be obtained from it. Each

of the conjugate maps use the same set of matching edges but arranged in

different order and orientation. Of course, these could be found from the

canonical ordering algorithm if one consiciers every possible assignment from

strong and weak graphs and chooses different pivot slot pairs, or codeword

pairs, etc. The following theorem shows that given a Hamming map, conju-

gate Hamming maps may be found analytically.

Theorem 3.2 (Conjugate maps) Suppose that the mapping f , U --+ V

def,ned by

Í , (uo,llr,¡.. .,us-t) * (uo, 'urt.. ., os-r), e:2n

is a Hamrning map. Then a different Hamming map, temned ø conjugate

map of f , can be obtained by a permutation operation P on the inder set I :

P: I: (0,1,...,e- 1) + (is,it,...,iq_t), i,¡ € I.

The new Hamming rnap f" : U ---+ V <+ f : P(U) --+ V is achieaed by:

f , (utoruit¡...,,uiq-t) - (ro, u1 r.. . ,,uq-t).

The number Cn of such pennutations P can be computed by the recursiue

equation:

Cn:2n' Cn-t, with C1 : l.
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Proof: The proof is completed by showing that

matrices Dn and Õn : P(D") with two q-tuples U

i.".,

d(u¿,u¡): d(u¿,,u;,) V i, j e

Choose the q codewords for the set U as

the associated distance

and P(U) are identical,

I,

(,0,,t, . " , 'o-r)t

Then the matrix

where

(0. . .0,0. . . 1,.. .,1... 1)'

(0110), 11ro),. ..,q12 - r,Çl2,qlz + 1,..., q - r)'++

. The g-tuple

.0

.1

.1

.0

.1

.1

: d:l v u,-t

: í:-lv (Jn-t

11
(2-1) bits

88

The symbol i de

(J can be decom

Dn canbe writtenï, r ot."u matrix 
ttr"'r

I D,-, i + n,-r lD(u") - Dn: 
I i +'D)_, o"_;-' l

notes a ql2x qf 2 matrix with all ones as entries

posed into two q/2-tuples:

rr-lo-l-i vu.-tf
": I ii:i v u^-, l

(n-r) bits

U6

U1

unir-,

uq/2

uq/z+t

ul_,

0

0

ò

1

1

t

00
00

11
00
00



and the symbol "V" denotes the operation of column stuffing. Define

, i:0r1,...,n- I

rvith 0'i-1 ,iL-, columns stuffed in the i-th position. It is easy to see that

D(V;) : D(U,) since the stuffed column vectors dl-r,i'.-, do not affect the

Hamming distances within smaller sets [/,,-1.

As a special case, when n: I, the matrix simply becomes a scalar, either

0 or 1, and thus Ct : 2. The above relation holds for any Un for n ) 2.

Therefore the number Cn can be comput"d by the recursive equation:

Cn:2n. Cn-L, Ct :2, n ) 2

The number 2n corresponds to the colum¡ vectors (dL-r, i;-r), counted twice

per stuffed position, since they can be put in each other's place.

A closed form for C, is easily obtained as:

Cz:22 X2:22 x2!
Cs:23x3x2!:23x3!
C¿:2aX4X3l:2ax4!

i

Cn:2" x n!.

As a simple example to illustrate the usage of conjugate maps, consider a

Hamming map .f : U2 -+ V:

P(U^) : v:: 
I i;_l Y'¿_:

00
01
10
11

f:
01
00
10
10

00
10
00
10
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Then g : Vz -+ I/ is also a Hamming map, one of the 8 conjugate maps.

r0 0l l-0 1 0 0

lr ol lo o l oe'l o r l- I r o o o

Lr 1l Lr o 1o
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Claapten 4

ffi,esa-ã.åÉs arad Ðåscr-åssåosa

This chapter presents Hamming maps found by applying the algorithms of

Chapter 3. The first two sections briefly describe the strategy and the last

section summarizes the results for [d, È]-constraint and dc-balanced codes.

4.X. Runlength lïmited codes

Two cases of the [d, È]-constrained codes-d : 1 and d : Z-'have been

investigated. The necessary test NC3 is first applied to each constrained

sequence. Using the set of p constrained codewords which have passed the

NC3 test, a p-vertex graph G, is constructed with the edges (zu) where

dø(u,u) ) n. From this constrained graph G,, ã single maximum matching

M of rn edges is first found by Edmonds algorithm. The all rn-matchings

are found using the recursive ÐFS algorithm described in Chapter J. For

each rn-matching, the canonical ordering algorithm takes g :2n codewords

kl2 matching edges) and re¿rranges them using assignment graphs to find a

Hamming map if one exists. Once a Hamming map .f has been found, 2" x n!

rr1
JL



conjugate maps are computed.

After all Hamming maps from the maximum matchings have been found,

the best Hamming maps are selected based on the following criteria:

ø lVlinimum k-constraint

ø Maximum free distance

The minimum k-constraints are computed after the constrained sequences

have replaced the codewords of a base convolutional code. Realizing

that the last d-zeros do not carry any information, one of them is converted

into a "1" whenever appropriate, i.e., when the conversion does not violate

the d-constraint. In this respect, some tables have two columns LA, or LA',

indicating that the k-constraints are computed with or without "look-ahead",

i.e., with or without considerations of the upcoming codewords in the trellis.

The base convolutional codes of rate r": lcl(k { 1) are taken from the

Table 11.1 of Lin and Costello [AS]. In the tables, the generator sequences are

expressed in hexadecimal form. For instance, the best (n, Ic,m) : (2,1,5)

code has G(D):lDt + D3 + D +7,Ds + pa ¡ þz + D2 + 1]. Its generator

sequences are.Çs: (101011) and gi : (111101). These are listed as ls:)8,,

9r : 3D.

For the generator sequences of rate 2f3 and 3/4 convolutional codes, n

i,nterleaued fonns are used, instead of k x n generators. The interleaved
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generator sequence gj corresponding to output j is obtained as foilows. Let

g!ù : tg[il gli|-,, . . ., gÍ,'J)

be the generator sequence corresponding to input i and output 7. Interleave

fr generators to form g;:

4.2

sj(D) : sg)@\ + Ds:i) @r) + .. . + Dk-l s|)r@k)

g¡ : (g[l*1),r-r' gÍl*rto-r,. . .,sg))

ÐC-halanced cod.es

The main emphasis of research has been on the [d, k]-constrained codes.

The canonical arragement algorithm, however, is applicable to other classes of

constrained codes such as dc-balanced codes [32], [59]. Two cases (l : 4

and / : 6) of dc-balanced codes have been investigated. A dc-balanced

sequence u of length / has an equal number ll2 of 1's and 0's. The number

N¿.(l) of such sequences is equal to a binomial coefficie "t ( ,',r), vietdins

for example 1/¿"(a) : 6, 1/¿"(6) : 20. Since each sequence has the same

parity, the degree sequence has only even degree terms.

In contrast to the [d, k]-constraint case, the degree sequence is independent

of a particular dc-balanced codeword and the test NC3 is not required for an

individual codeword. It can be shown by simple combinatorial analysis that

its 2i-thdegree equals ( 'lr')t, o: 0,1,.. .,tlz.
\ z /'



Case l:4: N¿"(l):6,kln: I12,kll :1¡a.

A,: (61,6'",6Ð: (t,+, t)

In this case, any set of 4 codewords arranged in any order will produce a

Hamming map. Ther " ur. ( I ) " 
4! : 360 such maps. If the complementary

\4/
pairs are used as matching edges, better Hamming maps could be obtained.

That is,

M : {"o,"t,"r} : {(ro, ûo), (rr,ûr), (rr, ôr)}

: {(0011, 1100),(0110, 1001),(0101,1010)}

maps and each produces C¡ : 8 different conju-

Hamming maps from this set of codewords are

Case / : 6: ¡/d"(/) - 2o,kf n :3l4,kll :316.

A, : (61,63,6:,6ï : (1, 9, 9, 1)

Again the 10 complementary pairs are used as matching edges without

finding a maximum matching from the graph. In the assignment graph for

the canonical arrangement, 4-adjacent codewords are used. The results are

tabulated in Table 4.8.

/o\
Thereare f I ì:3such

\2 )
gate Hamming maps. The

tabulated in Table 4.7.
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4"& R esults

Tables 4.I, +.2, and 4.3 list [d, A]-constrained trellis codes for various values

of k when d : I. The symbol /y' denotes the actual number of Hamming

maps found through the canonical arrangement algorithm.

it has been found that the k-constraint is almost nearlg independent of

a particular base convolutional code chosen. This is true in most cases be-

cause goodconvolutional codes use codewords very euenly, i.e., each codeword

follows and is followed by any codeword including itself. Since there is no de-

pendency of k upon constraint length of the base convolutional codes chosen,

only the trellis resulting from the smallest constraint length is tabulated.

Similarly Tables 4.4, 4.5, and 4.6 tabulate ld, : 2,k]-constrained codes.

Because this class of codes is more constrained than fd,:7,fr]-constrained

case, the code rates are smaller as expected.

However, as can be seen in free distance tables, some 12, k]-constrained

codes reveal excellent free distances. For example, Tables 4.9 lists a ld :

2,k:5(LA)], ratelf 6, and free distance 12 trellis code. Table 4.10 also

has a very good dc-balanced trellis code of ratelf 4 and free distance 14.

Tables 4.1L, 4.I2, and 4.13 list the trellis codes which yield the largest

free distance when d : I. In general, the variation of the free distance for

a given constraint length is very small. This is especially true for longer

constraint length trellis codes. This fact reflects that the number of mini-

mum distance paths of convoiutional codes increases exponentially with the
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constraint length. The free distance itself does not reflect the actual distance

distribution which could be mor-e important in the determination of error

performance. In this respect, the distance distribution or profile can be a

good criterion for selecting a Hamming map.

The trellis codes in Tables 4.14 and 4.15 are obtained from conjugate

Hamming maps. It is interesting to see that a larger free distance can be

obtained by a simple rearrangement of the codewords of a Hamming map.

Of special interest are the trellis codes in Table 4.16. Each of the 4 codes

is a [d : 7,k : 4(LA),7(LA')], rate 2f 6 trellis code with free distance 4,

a slightly higher distance than the best known trellis code, such as the one

in Table 4.18 or in Table 4.19, recently described by Woifl1989] and Fer-

reiraIrSa9], respectively.
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Table4.1: À-constraints: d : 1,r" : Il4,N : 32,go : 7,gt : 5.

LAIL/'', t^ ¡/(å) Ds U1 D2 U3

LA 3 8 4284
Ð 24 o24A

LA' 5 8 4284
8 24 0244

Table 4.2: lc-constraints: d : l,r" : 216,N : 4800,g0 : D, gt : 7,, gz : 6.

LAILA' k N(,1) Uo Ur 1)z Ug U4 U5 U6 U7

LA
4 96 24 10 08 0A 04 12 22 2A
5 2304 10 12 0A 02 24 04 08 22

7 2400 00 08 04 24 02 0A 12 2A

LA/

7 288 24 08 04 28 02 0A 72 2A
I 960 L4 08 04 22 10 0A 72 20

I 1752 74 20 04 12 08 0A 24 20

T2 2400 00 08 04 24 02 0A 12 2A
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Table 4.3: k-constraints: d:1,r":3f 7,/y' :9984, go: II5,,h - 707,
gz : 0331 9e : 001.

LAILA' k ¡ú(,k) Ug U1 U2 'Dc U4 u5 U6 U7

Ug U9 uro utt Un utz utq uts

LA
5 3840 12 4A 52 42 08 0A 28 2A

10 T4 50 54 24 04 20 44

6 6144 54 0A 50 52 14 2A 10 12

44 4^ 40 42 04 28 24 20

LA'

I 3840 12 4A 52 42 08 0A 28 2A
10 t4 50 54 24 04 20 44

l0 5376 54 44 50 4A 14 04 52 42

28 08 2A 0A 20 24 22 02

l1 768 54 T4 44 04 50 52 40 l2
28 2A 20 22 4A 0A 48 02

Table 4.4: k-constraints: d :2,r" : Il6, N :72, go : 7, gt : 5.

LAILA' k N(fr) Us U1 U2 U3

LA 5 24 08 04 10 20

8 48 00 04 10 24

LA' 8 24 08 04 10 20

T2 48 00 04 10 24

Table 4.5: k-constraints: d:2,r":219,Iy' : 4800,g0 : D, gt :7,g2:6.

LAIL/^', k ¡/(k) Us U1 U2 U3 U4 U5 U6 1)7

LA 6 288 24 08 10 88 20 48 84 40

7 4512 08 90 88 10 48 20 04 84

LA'

10 912 08 90 88 10 48 20 04 84
I1 tE72 24 04 20 48 10 88 90 40
12 2016 44 10 20 90 04 88 48 80
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LAILA' k N(,1) D4Ug U1 U2 'l )c Ug U6 D7

utzDg Dg Dto utt 1)ts ut¿ uts

Table 4.6: k-constraints: d :2,r" :3lI0,l/ : 38400,
go : 115, h : I07,92 : 033,9s : 001.

Tabie 4.7: lc-constraints: (l,l 12) : (4,2),r" : I I 4, N : 24, go : 7, 9t : 5.

k N(k Ug U1 U2 U3

2 8 5694
4 16 369C

Table 4.8: k-constraints: (l,Il2): (6,3), r":316,try' : 1152,
go : 115, h :707,g2 :033,gs : 001.

k ¡/(,b) U6 U1 U2 U3 U4 U5 U6 U7

Ug Ug ?Jr o urr 'ùtZ urg ut+ Dts

4 768 0D 1C 25 15 29 19 31 13

2C 0E 26 16 2A 1A 23 32

6 384 07 16 23 13 25 t5 31 19

26 0E 2A 1A 2C lC 29 38

LA I 38400 248 108 204 224 110 100 124 L20

2r0 008 244 088 010 090 084 020

LA' L4 38400 248 108 204 224 110 100 r24 120
270 008 244 088 010 090 084 020
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9o 9t dy d'r

7 5 5 6 5

F B 6 8 6

19 t7 I l0 7

3D 2B I L2 8

Table 4.9: Free distances: d:2,r": ll6,
best : (08,04, 10,20); worst - (00,04,\0,24).

Table 4.10: Free distances: dc,r. - 1/4, best : (5,6,9,4).

Table 4.11: Free distances: ru: I12, go:7,gt :5,di : S.

constraint T'c Ug U1 U2 U3 d",

d:l rl4 4 2 I A 6

114 0 2 4 A 5

Table 4.12: Free distances: ru:2f 3,go: D, gt:7¡gz:6,di : l.

constraint T'c U6 U1 U2 U3 U4 D5 D6 'U7 d",

d,:7 216 L4 08 04 22 10 0A 72 20 4

216 10 24 0A 08 12 04 02 22 3

a:z 218 44 10 20 90 04 88 48 80 4

218 08 90 88 10 48 20 04 84 3

9o 9t di d'¡

I 5 5 10

F B 6 L2

l9 17 7 L4
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Table 4.13: Free distances: r,:3l4,go: Il5,gt:107,92 - 033,

9s :001, di : +.

Table 4.14: Best conjugate maps:

ld,:I,k : (3,5)],r" : ll4,go:7,gt:5,di: S.

V lro u1 u2 "sldi

constra.int rc U6 U1 U2 U4 U5 U5 U7
d"f

?3 Dg ?Jr o utt 1)t-z ul,z Dt¿ uts

d:I Dli¿/ t
20 24 OA 08 22 10 2A 12 4
44 04 4A 48 54 50 42 52

d:2 3/ 1o 248 108 204 224 110 100 r24 r20 4
270 008 244 088 010 090 084 020

dc 316 0D 1c 25 15 29 19 31 13 42C 0¡i 26 16 2A IA 23 ¿z

V6

vl
v2

V3

4

4

I
2

I
2

4

4

2

I
A
A

A
A
2

8

6

6

6

6

Va

Vs

V6

V

2

8

A
A

A
A
2

8

4

4

8

2

I
2

4

4

5

.f

5

5
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V U6 D1 U2 U3 di
V6

vt
v2

Vs

5496
A.569
9654
6945

8

8

8

8

v4

v5

v6

V7

5946
956A'
4659
6495

6

6

6

6

Table 4.15: Best conjugate maps: dc,(l,l12) : (4,2),
go:7,gt:5,di:5,k:2.

Table 4.16: Best trellis: d : I,2l6, go : D, gt :7, g2 : 6,di :3.

V 1)g D1 U2 D3 U4 U5 U6 U7 LA LA' d.,

Map 1

Map 2
Map 3
Map 4

24 08 04 28 10 22 72 2A
10 22 12 2A 74 08 04 28

10 22 14 2A 12 08 04 28

04 28 24 2A 72 08 10 22

4

4

4

4

7
I

I

I

4

4

4

4

Table 4.17: Hamming map 1: [d : I,k, : (4,7)l,I'":216,di : +.

State so(oo) .s,(oi) s2(10) s3(11)

so
.91

S2

,Sg

100100 i00010 001010 010010
101010 010000 000100 001000
000100 001000 101010 010000

001010 010010 100100 100010

1^cl
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Table 4.18: Wolf, 1989: fd,:1,k :7f,1'":216,4 : S.

State I So ,9r Sz ,Sg

s6 | 100010 010000 010100 001000
sl | 101000 101010 100010 010000
sz | 10oi0o o001oo 101000 101010

.93 | 010100 001000 100100 000100

Table 4.19: Ferreira, 1988: ru : If 2,(go, gt): (7,5);
ru:213,(go, gt,, gz) : (D,7,6);
ru : 3l 4,(go, gt, 92, h) : (115, 107,033, 001).

constraint Tc
Ug Uy U2 U3 U4 U5 U6 U7 d'i d"f

k
Ug U9 uLo utt utz uts uta uts LA LA'

d:7

rl4 4284 5 6 3 5

216 04 02 08 0A 24 22 28 2A 3 3 5 7

216 04 10 22 12 24 08 2A 0A 3 3 4 7

317 04 0A 14 4^ 22 2A 54 42 4 4 5 q

24 08 10 48 20 28 50 52

dc
Ll4 5946 5 6 2 2

316 OB OD OE 19 16 13 1A 15
3 4 4 4

26 29 2A 2C 32 25 34 31
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Runlength limited (RLL) codes, commonly known as [d, Ë]-constrained

codes, where d is the minimum run of zeroes and k the maximum, are rou-

tinely used in magnetic and optical digital storage systems. Traditional RLL

codes in use today invariably reveal unity free distances, leaving the task of

combatting errors to separate error control codes. The combined construc-

tion of error correction and RLL code has received attention recently.

Here a graph search technique motivated by the work of Ferreira to con-

struct combined FEC/RLL codes has been investigated. Ferreira's Hamming

map is viewed as a subgraph called marimum matching embedded in a dis-

tance graph and graph algorithms are exploited to find all Hamming maps if

they exist. The graph search algorithm chooses a set of 2' constrained code-

words at a time represented by matching edges of the distance graph, and

rearranges them into a Hamming map by a combinatorial technique termed

the canonical ordering algorithm. The canonical ordering algorithm has been

used to find good Hamming maps under which base convolutional codes can
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be translated into [d, k]-constrained or dc-balanced treilis codes with free dis-

tances, equal to or greater than those of the base convolutional codes. One

of the key ideas is to make the constrained distance matrix cross-symmetric

by an operation termed the weight balancing. From this balanced matrix,

the adjacency relationships between codewords are determined. The ac-

tuai assignment (arrangement) of codeword pairs are made with the aid of a

bipartite graph termed an assignment graph, which is constructed based

on the adjacency consideration.

The major contributions of the research can be summarized as follows:

CODE DESIGN

Development of a systematic way for constrained error control
codes design.

Addition of new RLL/FEC and DC/FEC codes.

Better understanding of Hamming maps.

GR-APH THEORY

An algorithm which determines all maximum matchings of a general
graph using the depth-first search technique.

An algorithm which unscrambles a set of constrained sequences into a
Hamming map.

This research has entailed a depth first search algorithm for listing all

maximum matchings of a graph, bipartite or nonbipartite. The problem of

@

@
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iisting all maximum matchings is of interest in its own right. Also an analytic

way of finding conjugate maps from a Hamming map has been developed.

The determination of a Hamming map may be approached differently. One

approach could be to keep refining a given maximum matching rather than

choosing the matchings independently. That is, when a given maximum

matching fails to produce a Hamming map, removing and/or adding another

vertex pair(s) could be tried in such a way that the adjusted matching is

better than the initial matching.

Another approach might be to examine a matching of. Harnrning map size

2', instead of a maximum matching whose size is larger than 2" in general.

This would produce many more matchings to be evaluated. Because a match-

ing of Hamming map size may not be a subset of a maximum matching, some

Hamming maps might be missed. It is expected, however, that these maps

would produce similar trellis codes to those presented since the variation of

the parameters-k and d!-has been found to be small. In this regard, this

approach would be of interest for completeness only.

The other task might be to use lhe distance prof,le of the trellis codes as a

selection criterion in addition to the k-constraint and free distance. Although

the free distances resulting from various Hamming maps are narrowly dis-

tributed, the distance profiles may have a great variation since it has been

observed that many elements of the constrained distance matrix oversatisfy

the preseruing inequality.
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Another important problem is a complexity analysis of the canonical algo-

rithms and the depth first search algorithms for listing maximum matchings.

This should be of theoretical interest as it lvould serve as a formal basis in

measuring algorithm efficiency.
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Appendix A: Fnoof of Theonerw 2,3-

Let C(l) denote the set of d-constrained sequences of length / and have

been partitioned as {Cs, Ct,...,C*} according to sequence weight.

Theorem 2.1 (n-set)If Ci is an n-set for some i>0, then so is C;¡1.

Proof The proof is based on d:1. Extension to other values of d is trivial.

Suppose C¿ is an n-set, i> 0. Then every u e C; is an n-sequence, and by

definition u¡7(u) : i.

Let u be a sequence in C;.'1. Then -r(u): i + 1. If a 'f is removed

from z, the sequence z becomes a sequence of weight i. Therefore after a

cyclic shift operation on the bits, u caî be written as L¿ : 10u, where u is a

sequence of length I - 2 and the augmented sequence r, : 00u is in C¿.

Let A, and A- denote the degree sequence of u and u.r, respectively. The

proof is completed by showing that u is an n-sequence if t¿ is an n-sequence.

That is, the sequence of the accumulated degree sum of A, satisfies the

inequality of NC3 provided that A- does.

Recalling the recursive formula 2.1 for N¿(l), each sequence u of C(/) can

be obtained by adding a 0 to a sequence of C(l-1) or adding 10 to a sequence

of C(l-2). Thus the degree sequence of u € C(/) can be expressed as a sum

of two degree sequences:

d(w, C (l)) : d(00u, C (I)) : {o + d(ou, C (l - t))} + i1 + d(r.', C (l - 2))} (.1)
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d(u,C(t)) : d(70u,C(t)) : {t + d(ou, C(t - t))} + {o + d(o, C(t -2))} ( 2)

where d(æ,C) denotes the degree sequence of ¿ in a set C.

Assume that d(u, C(l * 2)) : (do,dr,...,d'^), where d'^ is the maximum

degree of u. For simplicity of notation assume) with no ioss of generality,

that m' : 4. Then it is obvious that

d(\u,cQ- 1)) : (do,dr, dr, dr, dn) * L,, (.3)

where A : (Ar, Az, As, An, As) is a nonnegative sequence. It follows from

the above equations that

L- : d(oou, C (l)) :

d.s ú d,z d,s d,a

Al L2 A3 A¿ As
doúd2úd4

A1 L,2 A3 A¿ As

Accumulated sum : da * A5
ds*2d¿*A¿*As

dz*Zdsl2d¿*As*A¿*As
ù + 2d2 I 2de * Zda* az * as * a¿ * as

A,: d(7ou,c(l)):
doùd2d3d4

Ar L.2 As A4 A5
do ú d.2 ds d4

d,o do*ù ù*dz dz*ds dstda d,+

A1 A,z A3 Aa A5
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Accumulated sum : d+ * A¿ * As
ds*2d¿*As*A¿*As

dz + 2ú I 2d+* Az * A3 + A4 + As

ù + 2d2l2da l2da, * ar * az * a¡ * a¿ * as

By a direct term by term comparison, it follows that 10u has a better degree

sequence than 00u. That is, u : I}u is an n-sequence if u :00o is. This is

true for any u of. C¡a1. Therefore when C; is an n-set, C¿11 is also an n-set.
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