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Abstract

A new technique for the construction of constrained error control codes is
presented. The main emphasis is on runlength limited (RLL) codes. RLL
codes, commonly known as (d, k) constrained codes, where d is the minimum
run of zeroes and k£ the maximum, are routinely used in magnetic and optical
digital storage systems. Traditional RLL codes leave the task of combatting
errors to separate error control codes. The combined construction of forward
error correction (FEC) and RLL codes has received attention recently. Here
a graph search technique motivated by the work of Ferreira to construct
combined RLL/FEC codes is discussed. Ferreira’s Hamming map is viewed as
a subgraph embedded in a distance graph and graph algorithms are exploited
to find Hamming maps if they exist. The graph search algorithm chooses a
set of 2" constrained codewords at a time represented by matching edges of
the distance graph and rearranges them into a Hamming map by an efficient
combinatorial technique termed canonical ordering algorithm. Being able to
find many Hamming maps, this graph search technique has been used to
find good Hamming maps which result in a large free distance and small k-
constraint. This technique is applicable to dc-balanced codes as well. Several

new codes are presented and compared to known codes.
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Chapter 1

Introduction

Runlength limited (RLL) codes are utilized by a class of input restricted
binary symmetric channels such as digital data storage systems, whether
magnetic [14, 34, 35, 46, 52], or optical [31]. RLL sequences possess the
property that the allowable number of consecutive “0” symbols in a sequence,
called zero runlength, is constrained between two predefined parameters d
and k, where 0 < d < k. The significance of these constraints are discussed
later.

Since the avoidance of undesirable sequences was the primary concern of
RLL codes, the error handling aspect has not been reflected in traditional
construction techniques of RLL codes. For this reason RLL codes are often
referred to as recording or modulation codes to emphasize that their roles
are different from that of an error control code. Error correction capability is
achieved by a separate code specifically designed for this purpose. Therefore
a practical system employs two “concatenated” codes with the error control

code being the “outer code” and the RLL code being the “inner code.” For



the error correction task, a vast variety of efficient linear block codes and
convolutional codes have been developed [20, 22, 60]. Excellent discussions
on error correction codes can be found in many texts such as Blahut [9], Lin
and Costello [48], etc., or in a collection of papers edited by Berlekamp [8].
The combined construction of error correction and RLL code as an en-
tity has received attention starting from the mid 1980’s. The so called RLL
forward error correction (RLL/FEC) codes try to achieve two goals simul-
taneously: the given runlength constraints and also that the code should be
capable of correcting errors. This thesis considers the problem of combined
construction of RLL/FEC codes and tries to answer how to construct them
in some systematic fashion. In the following sections, a brief historical survey

is presented, the thesis goal is elaborated, and the thesis outline is described.

1.1 Earlier RLL codes

The importance of runlength constraints is due to the particular way infor-
mation is ascribed to the behavior of certain physical devices with two states.
In the writing (sending) mode one causes a transition from one state to the
other to occur at specified time intervals. In the reading (receiving) mode the
time intervals between transitions are measured. This measurement is made
in terms of integral multiples of a unit of time called a clock unit. If there

are [ + 1 clock units between two transitions, then the symbol 1 is assigned



to the first clock unit and 0 to the remaining [. The appearance of [d, k]
constraints with this scheme is natural. In order to detect transitions prop-
erly and to avoid potential intersymbol interference, transitions cannot occur
too close together, so a minimum allowable time, say #,,;,, between them is
prescribed. If £,,;, = d 4+ 1 clock units, then one gets a lower bound d for
the runlength of 0. On the other hand, transitions provide synchronization
information to the clock which is an imperfect device. Clocks drift and lose
power to discriminate the number of clock units between transitions which
are far apart. Requiring that transitions be separated by no more than & + 1
clock units places an upper-bound % on the run of 0.

When the RLL codes are used in magnetic recording devices, the transi-
tions are magnetic ones occurring in circular tracks on disks. The quantity
tmin can be equated to the reciprocal of maximum density of magnetic tran-
sitions (flux changes) on a track, and the following formula can be a measure
of recorded information density E as the amount of information per unit time
(unit distance along a track).

d+1
E = E[d, k] = p/q T,

min

where p/q is the code rate.

Since RLL codes, in their general form, were pioneered by Franaszek
[24, 25] in the late 1960’s, a considerable amount of engineering and mathe-
matical literature has been written on the subject. In 1970, Tang and Bahl

[58] described many important properties of [d, k] constrained sequences and
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also devised several RLL codes implemented in block code form. Survey pa-
pers given by Siegel [56], and Kobayashi [41] describe properties and design
techniques for the practical construction of RLL encoders and decoders.
One of the techniques used in RLL code construction is the sequence state
method originated by Franaszek [24, 25]. It was improved by various forms of
look-ahead (future-dependent) techniques. Look-ahead (LA) techniques have
been studied by many authors including Patel [52], Jacoby [34], Franaszek
[26], Cohn and Jacoby [14], Lempel and Cohn [46], and Jacoby and Kost
[35]. One objective of look-ahead codes, as described in [46], is to overcome
the codeword length restriction encountered in the sequence state methods.
Look-ahead encoding rules allow several alternative encodings for given input
words. The alternative chosen to encode the input word depends on a finite
number of future input words (look-ahead), as well as finite look-back.
Originally these techniques were to a large extent ad hoc. Recently (1983),
Adler, Coppersmith, and Hassner have placed them on a firm mathemati-
cal basis with the sliding block algorithm [1]. The sliding block algorithm,
derived from the branch of mathematics known as symbolic dynamics, repre-
sents a theoretical breakthrough in code construction, with significant prac-
tical implications. For the first time, the algorithm provides an explicit for-
mula, backed by rigorous mathematical proofs, for the construction of simple,
efficient RLL codes with limited error propagation. The method incorporates

many of the key ideas which appear in the preceding work of Franaszek, Patel,



Jacoby, Cohn and Lempel, generalizes them and makes precise the construc-
tion steps. It is an extension of a coding theorem of Marcus [50], who used
techniques developed independently of the recording terminology. This pro-
cedure successfully constructs a code of any rate p/q¢ < C, where C is the
channel capacity of runlength constrained systems. It later was extended to
handle variable-length sequence state methods [2]. Some related results have
followed subsequently [4, 37, 51].

Meanwhile, Burkhardt [11], and Wood and Peterson [62] have proposed
the use of maximum likelihood sequence estimation (MLSE) on the mag-
netic recording channels to detect constrained code sequences. In MLSE
detection, the free distance of the code plays an important role in the perfor-
mance evaluation of code. Defined as the minimum value of the Hamming
or Euclidean distances between all possible sequences of codewords, the free
distance determines the error performance in MLSE detection [21]. Close ex-
amination of traditional RLL codes in use today, however, invariably reveals
unity free distances, and thus leave the task of combatting errors to separate

error control codes.

1.2 Goal of Thesis

As stated earlier, the combined construction of error correction and RLL
code as an entity has begun to receive attention starting from the mid 1980’s.

It is commonly believed that the combined RLL/FEC codes are possible at



the expense of coding rates. For these types of codes, two rather different
approaches have been taken. One method exploits the rich distance structure
of known error control codes such as linear convolutional codes to construct
RLL/FEC codes. The idea is to lower bound the Euclidean distance of a
trellis code by the Hamming free distance of a linear convolutional code.
This approach has been used by Wolf and Ungerboeck [61], and Calderbank,
Heegard, and Lee [13]. Wolf and Ungerboeck described [0, k] error correct-
ing codes for partial response channels with discrete-time transfer functions
(1 £ D), where D is the unit-delay operator. They demonstrated that us-
ing well known convolutional codes in conjunction with precoding before the
partial response channel yields the desired trellis codes. The trellis codes
prevent unlimited runs of identical signals at the channel output and have
a minimum squared Euclidean distance between channel output sequences
which is bounded below by the Hamming free distance, dfffee, of the convolu-
tional code. Calderbank, et al. [13] describe binary convolutional codes for a
partial response channel with the discrete-time transfer function (1 — DV)/2,
where the minimum squared Euclidean distance between channel outputs
corresponding to distinct inputs is bounded below by the free distance of a
convolutional code which they called magnitude code. To limit the runlength
of the channel output, they employ a coset of the binary convolutional code
(called sign code) to generate channel inputs.

The other approach is exemplified in papers by Ferreira, et al. [17, 18, 19],



Lee and Wolf [44], and Song and Shwedyk [57], who try direct construction
of runlength constrained codes. Ferreira, Hope, and Nel described a rate 4/8
runlength constrained error correcting code with free distance three [18]. Lee
and Wolf introduced two simple [d, k] trellis codes of free distance three which
consequently have error correction capability [44]. Ferreira [19] developed a
tree search algorithm to find a so called Hamming distance preserving map-
ping, an ordered set of constrained sequences, which substitute codewords of
a punctured convolutional code [12] to obtain an RLL/FEC code.

However, the construction of combined error correction and recording code
as an entity is generally a young problem. As the goal of this thesis, a graph
search technique is investigated. The graph search technique is motivated by
the work of Ferreira [19]. Ferreira’s Hamming map is viewed as a subgraph
embedded in a distance graph and graph algorithms are exploited to find (vir-
tually) all Hamming maps if they exist. Therefore this approach enables one
to single out the optimum Hamming map(s) which result(s) in the greatest
free distance with the least k-constraint.

As shall be seen, the problem of searching for a desirable mapping is noth-
ing more than a maximum matching in a graph and that this technique is

applicable to dc-balanced codes as well.



1.3 Outline of Thesis

Chapter 2 refines the necessary conditions developed by Ferreira for a Ham-
ming distance preserving map to exist. The refinements lead to a reduction
in the computation. The Hamming map search is formulated as a graph the-
ory problem, and the linear graph structure is analyzed in terms of matching
and adjacency. Chapter 3 describes the algorithms for listing the maximum
matchings and arranging the constrained sequence pairs (matching edges)
into a Hamming map. A summary of the [d, k]-constrained codes as well as
some dc-balanced codes are presented in Chapter 4. The codes are compared

to known codes. Chapter 5 presents the conclusions and recommendations.



Chapter 2
Hamming Maps

One technique of RLL/FEC code construction is to translate the code-
words of a linear convolutional code into constrained codewords such that
pairwise Hamming distances are preserved [19]. In this way, the free dis-
tance of the constrained trellis code is inherited from (bounded below by the
free distance of) the base convolutional code. Fig. 2.1 illustrates this.

The trellis in Fig. 2.1(a) depicts a well-known linear convolutional code
of rate k/n = 1/2 with constraint length v = 2—correspondingly having
4-states—and free distance df = 5. Note that the same symbol k is used
to denote either the maximum zero runlength or the number of information
bits of convolutional codes. The meaning should be clear from the context.
The [d, k] = [1, 5]-constrained codeword labels in Fig. 2.1(b) are concatenable
without violating runlength constraints." As can be checked easily, Hamming
distances between any two constrained codewords in each frame in Fig. 2.1(b)
are bounded below by the corresponding counterparts of Fig. 2.1(a) and so

are the free distances. The actual free distance dje of the trellis code in



Input

(b)

Figure 2.1: (a). A rate 1/2 convolutional code. (b). A ratel/4 [d =1,k = 5]
RLL constrained code.
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Fig. 2.1(b) is six, yielding a [d, k] = [1,5], rate 1/4 RLL/FEC code. The
correspondence between constrained and unconstrained codewords is called
a Hamming distance preserving map, or simply Hamming map.

In the following, the precise definition of the problem and terminology is
given first. A refinement to the necessary conditions for the existence of a
Hamming map is made and compared to those presented by Ferrreira. The
chapter concludes by formulating the determination of the Hamming map as

a graph problem.

2.1 Problem definition

Consider the RLL/FEC code scheme shown in Fig. 2.2. The runlength
limited forward error correction code consists of a rate r, = k/n binary linear
convolutional code followed by a mapper. The mapper translates an n-bit
convolutional codeword into an [-bit [d, k]-constrained codeword, { > n, such
that the Hamming distance is preserved under this mapping. The resulting
trellis code constructed in this way will have rate r. = k/l and free distance
d$ > d%, where d} is the free distance of the base convolutional code.

Denote the finite set of integers from 0 to 2™ —1 by U, where each integer ¢
is represented as an m-bit binary sequence u;. Note that codewords of a rate

k/n binary convolutional code are contained in the set U.

U= {'LLO, Ui,y .- .,uq_l}

11



RLL/FEC code, df

..........................................................................

k-bits Convolutional n-bits

- u :
m, code, d¢ u; map v

Figure 2.2: Schematic representation of an RLL/FEC code.

where ¢ = 2™. Let C denote the set of d-constrained binary codewords of

length I.
C = {007 C1y- .- 7CNd(1)—1}

where Ny(!) is the cardinality of set C'. Here only the d-constraint is specified.
The maximum runlength % is determined after the convolutional codewords
are replaced with the constrained codewords.

Assuming that the last d bits of a codeword are the symbol “0” to ensure
concatenability, the number Ny4(!) of all d-constrained binary codewords of
length [ can be computed with a slight modification by the recursive formula

of Tang and Bahl [58] as:

1 for 1 <[1<d

Na(l) = { Na(l= 1)+ Ne(l—d —1) for I > d. (2.1)

This formula is based on the following observation. When the first bit of an
[-bit sequence is zero, the next [ — 1 bits is any d-constrained sequence of

length [ — 1. If the first bit is nonzero, the next d bits are all zeros followed

12



Table 2.1: Number of binary d-constrained sequences with last d-zero bits.

[d:1]1 2 3 45 6 7 8 9 10 11 12 13 14|
1 |1 2 3 5 8 13 21 34 55 89 144 233 377 610
2 |- 123 4 6 9 13 19 28 41 60 88 129
3 |- - 123 4 5 7 10 14 19 26 36 50
4 |- - 12 3 4 5 6 8 11 15 20 26
5 |- - - -1 2 3 4 5 6 7 9 12 16

by any d-constrained sequence of length [ —d — 1. Table 2.1 shows the values
of Ny(l) for various parameters.

To transform a rate r, = k/n linear convolutional code with free distance

% into a rate r. = k/l constrained trellis code with free distance d4, where

d% > d}, it is necessary that:

Na(l) > 2 (2.

o
(o]
~—

It is easy to see that [ > n. For eflicient code rates only mappings with the
smallest [ satisfying the inequality (2.2) are investigated.
To determine the mapping associate a ¢ X ¢ Hamming distance matric D,

with the unconstrained set U:
D, = [di‘]] = [d(us,uj)], 4,7 =0,1,...,¢— 1.

Similarly, an Ng({) X Ny4(!) Hamming distance matrix D, is associated with

the d-constrained set C:
D, = [dfj] = [d(ci,cj)], 1,7 =0,1,. ..,Nd(l) - 1.

13



Example: When d =1 and n = 2, U has 4 elements and C has (Ny(4) = 5)

elements.

{ug,u1,u2,us} = {00(0),01(1),10(2),11(3)}

{co,c1,c2,¢3,cst = {0000(0),0010(25),0100(45), 1000(85),1010(Ax)}
011 9 0111 2
L0091 10221
D, = D.=|120 23 (2.3)
1201
5 1 1 0 12201
2 1310

It is convenient to define an index (slot) set I = (0,1,...,g—1), ¢ =2".
Without loss of generality, it will be assumed that u; = i, Vu; € U. In this

sense, the symbols U and I will be used interchangeably.

Definition 2.1 (Hamming map) Let V be a g-tuple of constrained se-
quences:

V = (vo,v1,...,V¢-1), vi €C, V2 € I.

Then an one-to-one mapping f : U — V is called a Hamming map if the

Hamming distance is preserved under this map, i.e.,
‘d(vi,vj) = d(f(w;), f(u;)) 2 d(ui,uj), V2,7 € L. (2.4)
This inequality can be written in matriz form as:
D, z D,
where D, is a q¢ X q distance matriz with d(v;,v;) as its ij-th entry.

14



Table 2.2: Computational requirement for an exhaustive search, d = 1.

|k n 1 g=2" Ny) ru=k/n r.=k/l Computations |
1 2 4 4 5 172 1/4 120
2 3 5 8 8 2/3 2/5 40,320
2 3 6 8 13 2/3 2/6 51,891,840
3 4 7 16 21 3/4 3/7  4.257579 x 107
4 5 8 32 34 4/5 4/8  1.476164 x 10°
45 9 32 55 4/5 4/9  4.911185 x 10°°

The problem is to find all Hamming maps f or g¢-tuples V provided a
Hamming map exists. After all Hamming maps are collected, one can single
out the optimum Hamming map(s) which yields the greatest free distance
with the least k-constraint. To do this with an exhaustive search would
require ( N‘Z(l) ) -( ¢! ) trials—all g-combinations out of Ny({) and ¢!
permutations for each combination. Table 2.2 lists the required computation
for various n when d = 1 and the base convolutional code has rate r, =
k/n = k/(k + 1). As can be seen, the computation grows rapidly even for
parameters of moderate values.

Ferreira [19] developed a so called tree search algorithm to find a single
Hamming map, if one exists. The g-tuple V that is found is dependent on how
the elements of set C' are chosen. Before applying the tree search algorithm,
three necessary conditions were applied to the chosen elements to determine
whether this could result in a map. The algorithm and necessary conditions

are reviewed next.
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2.2 Tree Search Algorithm

The tree search algorithm finds a suitable vector V' by choosing the first
element vo € C arbitrarily, next the second element v, and so forth. At
depth h, one needs to look back to assure that dj; > dj;, 0 < j < h—1. This
is done by computing a metric function t(4, ¢;) for each constrained [-tuple:

h—1
t(h,ci) = jl:[o[s( R — i)l (2.5)
where s(¢) is the unit step function with s(0) = 1. Assign any one of the
constrained [-tuples with ¢(k,c;) = 1 to vs and proceed to depth A + 1.
Repeat this procedure until at some depth z < g, t(z,¢;) = 0 for all 7. If this
happens, retreat one step and assign some other ¢; with ¢(z — 1,¢;) =1 to
v,—1, then again proceed forward to depth z.

The case of U = (0,1,2,3) is illustrated in Fig. 2.3. It produces a vec-

tor V = (0100(4x),0010(2f),1000(8%),1010(Ag)) which has the required

distance matrix: i.e., df; > d; for all 7, j.

0 2 2 3 011 2
2 0 21 1 0 21

Dy = 2 2 01 Dy = 1 201 (2:6)
3110 2110

Thus the map f : U — V transforms the rate 1/2 linear convolutional
code into a rate 1/4 nonlinear constrained trellis code whose free distance is

bounded below by the free distance of the underlying convolutional code.



t(0,0)=1
¢;=0 c;=0
wWLo=1 | 20=0
ci=2 ci=
o<1 13,0=0
¢ =2 Ci= 8
t(1,2)=1 1(2,8)=1
cj=4 cj=A
1(0,4)=1 t(3,A)=1
c;=8 c;=A
w(1,8)=1 12,A=0"
c;i=8
T10,8)=1"
¢ =A
i(1,A)=1
ci=A
(0,A)=1

Figure 2.3: Tree search for desired permutation of (d = 1)-constrained code-
words of length ({ = 4) [Ferreira, 1989].
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2.2.1 Refinement to the Necessary Conditions for the
Existence of a Hamming map

Because the tree search can require a vast amount of computation, Fer-
reira performed several preliminary tests to determine whether a Hamming
map exists. The three necessary conditions NC1, NC2, and NC3 are restated

without proof as they follow immediately from the inequality (2.4). A refined

necessary condition is described that leads to a reduction in the computation.

NC1. Matrix sum test
For a set C of constrained sequences to produce ¢ Hamming map, it is nec-

essary that

Nd(l)—l Nd(l)—l q-—-l q-—l
oD dy = > Y dy =n2/2 =ng?/2 (2.7)
=0 j=0 =0 j=0

NC2. Matrix row sum test
For a constrained sequence ¢; to be a member of a Hamming map, it is nec-

essary that

Z s, > d¥ = n2""! = ng/2 (2.8)

Note that NC1 is applied to a set C and NC2 is to a sequence c¢; in the
set C. Also note that NC2 is stronger than NC1. To discuss NC3 and the

refinement of it, the following terms are introduced.
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Definition 2.2 (Degree sequence) Let B denote the set of L-bit sequences.
For a sequence v € B, denote the set of sequences at Hamming distance

r, 0<r <L, fromv as:
S(v;r)={w € B | d(v,w) =r}

The cardinality of the set S(v;r) is represented by the symbol 67 and called
the r-th degree of v. The set A, of sequences &7, is called the degree sequence
of v, where

A, = (62,88,...,8L).

v vyt

The notation 8] is a generalization of the number of adjacent symbols
at distance r from a sequence v. To compute the degree sequence of an
unconstrained codeword is trivial. For any unconstrained codeword, the r-th

degree is the binomial coeflicient, i.e.,

6T = ( " ), r=20,1,...,n, independent of v € U.

v T
In general no systematic result is available when the set consists of con-
strained sequences. For the d-constraint case, since the last d-bits are as-

sumed to be all zeros,

A, =(8%6...,65%), veC.

vy Yyr e

Definition 2.3 (n-sequence) A binary sequence v € C is called an n-

sequence if

I—d n
S > Z(Z) i=0,1,...,n.

r=j r=j
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In short, a sequence is an n-sequence if it has a minimum number of neigh-

boring sequences at a far enough Hamming distance.

The third necessary condition can be stated as:

NC3. Degree sequence test
For a sequence v € C to be a member of a Hamming map, it is necessary

that v be an n-sequence.

When NC3 is applied to each sequence as in [19], it requires N4(I) com-
putations. To reduce this computation, the set C is partitioned into smaller

sets C; as:

Co, C1y. vy Cry,

where m = LZF:-TJ and v € C; if and only if the Hamming map weight of v,
wg(v) = ¢. The symbol |z] denotes the floor function of z, i.e., the greatest
integer not exceeding z. If each v € C; is an n-sequence, set C; is called an
n-set. Note every sequence in an n-set passes NC3. The following theorem,
the proof of which is given in Appendix A, results in a reduced amount of

computation.
Theorem 2.1 (n-set) If C; is an n-set for some i > 0, then so is Ciyy.

To exploit this property, the third test can be restated as follows.

NC3'. Refined degree sequence test
Apply NC3 to the partitioned sets in the order Cy, C1, ... until an n-set C;

20



is reached for some ¢ (hopefully small enough). Then all other sets C;,j > 1

will be n-sets by Theorem 2.1.

To show the improvement, Table 2.3 tabulates the partitioned sets for the
case of d = 1 and [ = 7. The set C}, having 6 out of 21 sequences, turned
out to be an n-set and thus the test is not required for the rest of the sets
Cy, C3, and Cy—a saving of about 67% . Table 2.4 lists the actual number

of sequences tested for various values of [ when d = 1.
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Table 2.3: Partitioned sets and degree sequence when d =1 and [ = 7.

I oF | vi:A, |
Cy | 0000000
Cy | 0000010
0000100
n-set | 0001000
0010000
0100000
1000000
C, 10001010
0010010
0100010
n-set | 1000010
0010100
0100100
1000100
0101000
1001000
1010000
C; 10101010
1001010
n-set | 1010010
1010100

2
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Table 2.4: Number of sequences tested for NC3 when d = 1.

[n| [ n-set NC3 NC3'" |
4 Co 5 1
5 Cy 8 5
6 Co 13 10
7 Cy 21 7
8 C, 34 22
9 Cy 55 9

10 Cy 89 38
11 Cs 144 113
12 Cs 233 57
13 Cs 377 188
14 Cy 610 455

©| oot oo 3| o| o] o] ]| w]w|off S
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2.3 Graph Search Technique

The tree search algorithm is useful to find a single Hamming map if it
exists. An efficient technique which employs a graph theoretic algorithm to
find all Hamming maps is now introduced. The motivation for this graph
search arises from the following observation.  In the linear distance matrix

D, the largest entries n appear along the main cross diagonal, i.e.,
d¥ = d(ui,u;) = n, 1=q—1—1,i=0,1,...,q—1

This pair of indices (i,2) is called a matched slot pair. In the matched slot
are the complementary pair of codewords (u;, u;), where u; is obtained from
u; by negating each bit.

At this point, a question can be raised. Instead of choosing one codeword
at a time as in the tree search algorithm, is it more efficient to choose a set
of ¢ codewords as a whole? The investigation of this problem is a major part

of the research. The answer entails the determination of efficient ways to:
1. Choose a set M,
2. Evaluate the set M.

As was pointed out, choosing such a set arbitrarily involves ( N‘f](l) )
combinations. This difficulty is alleviated by exploiting a graph theoretic
problem known as maximum matching to select a set of ¢ constrained

sequences. To avoid the enormous computation of ¢! permutations needed to
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test the set, an efficient method termed canonical ordering algorithm is
developed in a subsequent chapter. First, simple examples are presented to
illustrate the idea of maximum matching and its relationship to the problem

of determining a Hamming map.

2.3.1 Examples

Let G, denote the weighted complete graph of the unconstrained set U
where: the vertices represent the unconstrained codewords of U; every pair of
distinct vertices (u,v) is connected by an edge weighted with the Hamming
distance d(u,v) between the two unconstrained codewords v and v. The
weighted complete graph G, of the constrained set C is defined similarly.

The mapping between U and V now becomes a mapping between G, and
a subgraph G, of G.. Fig. 2.4, for example, shows the weighted complete
graphs G, and G, when d = 1, n = 2, [ = 4, and N4(l) = 5. Noting that
any edge weight is at least unity, one can eliminate all the unit-weight edges
from graphs without losing information. This elimination, however, greatly
facilitates the task of locating a subgraph G,. This can be seen by realizing
that after the elimination of unit-weight edges, the edge reduced graph—two
solid edges e; and e;—is simply a mazimum matching of G,.

Mazimum matching of a graph is an well-known subject in graph theory.
Extensive discussion on this subject can be found in many texts such as

Bondy and Murty [10]. For completeness, the applicable graph theoretic
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Figure 2.4: The weighted complete graphs G, and G.: d = 1,n = 2,1 = 4,
and Ny(l) = 5.
terminology is summarized.

A matching M of a graph G is a set of edges such that no two are adjacent
in G. The two vertices of an edge in M are said to be matched. A matching
M saturates a vertex v, and v is said to be M-saturated, if some edge of M is
incident with v. If every vertex of G is M-saturated, the matching is perfect.
M is a mazimum matching if G has no matching M’ with | M' | > | M |. To
determine the size of a matching, either the edges or vertices in the matching
are counted.

Returning to the example, note that the desired Hamming mapping may
be obtained from a maximum matching M, of the edge reduced graph G..
By inspection, one can easily verify that there are four different maximum
matchings for this goal, from M; through My, as illustrated in Fig. 2.5.

Consider the matching M; = {f1, fo} = {(a,¢e),(c,b)} as an example. Note
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M, My My My

Figure 2.5: Maximum matchings of constrained graph G, with edges of
weight two or more: M;—Mj,.

that the weights of edges ey, ez, f1, and f; are two or more. The mapping
i My, = {e1,e2} — My = {fi, f2} described by

fi={(a,e) = f'(e1) = £(0,3)
f2 = (Cv b) = fl(e2) = f,(1’2) (2'9)

determines a Hamming map we are looking for. The Hamming map f: U —

V induced by the above map f’ becomes:
£:(0,3,1,2) — (a,e,c,b). (2.10)

That is, replacing convolutional codewords (00,01, 10, 11) with constrained
codewords (0010,0100,1010,1000) in that order preserves the free distance.
It is interesting to note that the edges of a matching can be reordered—
flipping and interchanging edges—to produce many other Hamming maps.

This is best illustrated by the example shown in Fig. 2.6, where the matching
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Figure 2.6: Eight mappings produced from the matching M,.



M; produces 8 different Hamming maps. In this way, a total of 32 (4 x
8) different mappings can be obtained which corresponds to an exhaustive
search. This property is generalized later with the introduction of conjugate
maps.

For an arbitrary codeword length n, the graph map search becomes non-
trivial because the reduced graph G, contains edges of different weights
2,...,n. This difficulty can be seen by taking the n = 3 case, as illus-
trated in Fig. 2.7. The reduced graph G, now consists of two copies of K4 (a
4-vertex complete graph) with edges of weight two, and a perfect matching
M, which spans the two Ky’s by the use of four edges of weight three.

In the constrained counterpart, it is not obvious how to locate these com-
ponents properly. Nonetheless, it turns out that no perfect matching of the
constrained graph, which uses edges of weight three or more, exists. This
means that there is no Hamming mapping from a rate 2/3 (k/n) convolu-
tional code to a rate 2/5 (k/!) constrained code. When this happens, suffix
and/or prefix construction [19] could be used. That is, adding 00 or 10 to
either one of the two copies of the Hamming map for length { — 1 creates a
rate k/(l + 1) trellis code. In Chapter 3, the two problems—choosing and

evaluating the maximum matchings—are investigated in detail.
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weight2 - __ .. weight 3 — Weight 4

1(001) 6(110)
4(100) 3(011)
7(111) 0(000)
2(010) 5(101)

a(01010) h(10000)
£(00000) b(00010)
€(10100) £(01000)
¢(10010) d(00100)

Figure 2.7: The weighted complete graphs G, and G.: d = 1,n =3,[ =5,
and Ny(l) = 8.
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Chapter 3

Canonical Ordering Algorithm

The problem of determining Hamming maps, as shown in Chapter 2, can be
cast as that of examining each matching. This chapter describes a depth-first
search (DFS) algorithm which lists each maximum matching, and a canonical
ordering algorithm which evaluates the maximum matching. The canonical
ordering algorithm produces a Hamming map through a rearrangment of the
matching edges. Prior to canonical ordering, the distance matrix associated
with codewords represented by the vertices of the maximum matching is
balanced so that it is both symmetric and cross-symmetric. This process of

balancing reduces the computation required for canonical ordering.

3.1 Graph Definition

The various graphs discussed in this thesis are characterized in graph the-
oretic terms. A weighted graph G is a triple (V(G), E(G), W(E)) consisting
of a set V(G) of vertices, a set E(G) of edges, and a function W from FE

into Z*, the positive integers. An edge e of G is an unordered pair of joined
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Table 3.1: Graph parameters.

[Graph | V(G) | v(©&) [ EG) | (9 |

Gy | {uoy.. s ugrbus €U} ¢=2" | (uuj) Vi,5

G, {coy.-sCro1} c; € C | 1= Ng(l) | (cicj) Vi, 5 (

q
2
r
2
G, {vo, ..., vp1} v €EC | p S Ny(l) | W(e)>n <<<

vertices v and v, i.e., e = uv = vu. For an edge e, W(e) is called the weight
of e. Symbols v(G) and e(G) denote the number of vertices and edges in
graph G. Using these symbols, the complete weighted graphs G, and G,
introduced in Chapter 2 are parameterized in Table 3.1. Note that v(G,)
is the number p of d-constrained sequences which have passed the necessary
conditions NC2 and NC3. Because e € E(G,) if and only if W(e) > n, the
subgraph G, will have considerably fewer edges than the complete graph G,
reducing the search effort consequently. When a maximum matching M of
G, is found, each edge of M, a pair of d-constrained sequences at distance n
or greater, will replace an edge of weight n in G, (See Fig. 2.7 in Chapter 2

for example).



Set of d-constrained sequences

NC3

NC2

NC1 C

Figure 3.1: Conjectured relationship between tests.

The Hamming map algorithm consists of two steps:

Step 1. M-test Find a maximum matching M of G, using a known algo-
rithm. If |M| < ¢ = 2™ then stop.

Step 2. Canonical Arrangement Evaluate each matching M of G,,.

It is interesting to note that the M -test can be used as a necessary condition
for the existence of a Hamming map. It is suspected that this M-test is
stronger than NC3. That is, it is conjectured that failure of NC3 implies
failure of M-test, whereas failure of the M-test may or may not imply failure
of NC3, as illustrated in Fig. 3.1. No counter example has been found to
disprove this conjecture. Table 3.2 and 3.3 support this claim by showing test
results for various conditions. The strength of the M-test is demonstrated
by verifying the nonexistence of a Hamming map for rates 7/13 and 8/14
when d = 1, and rates 2/7,5/13, and 6/15 when d = 2.

The Canonical arrangement step consists of two algorithms which respec-
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Table 3.2: Test results from NC3 and M-tests when d = 1: Y-Hamming
map may exist, N-Hamming map does not exist.

Lk n 1|20 Ny | . re | NC3  M-test |
1 2 4] 4 5 [1/2 1/4] 5(Y)  4Y)
2 3 58 8 [2/3 2/5] 1N) _ 6(N)
2 3 6|8 13 [2/3 2/6 | 13(Y) 12(Y)
3 4 7 |16 21 [3/4 3/7] 20(Y) 18(Y)
2 5 8 |32 34 [4/5 4/8 ] 29(N) 22(N)
4 5 9|32 55 |4/5 4/9 | 54(Y)  48(Y)
5 6 10|64 89 |5/6 5/10| 83(Y)  66(Y)
6 7 11 |128 144 |6/7 6/11 [123(N)  82(N)
6 7 12|128 233 |6/7 6/12 | 226(Y) 184(Y)
7 8 13 |256 377 |7/8 7/13 | 349(Y) 252(N)*
8 9 14512 610 |8/9 8/14 [525(Y) 310(N)¥

Table 3.3: Test results from NC3 and M-tests when d = 2: Y-Hamming
map may exist, N-Hamming map does not exist.

lk' n | 2" Ny(l) | Tu Te | NC3 M—test]
1 2 6] 4 6 |1/2 1/6] 6(Y) 6(Y)
5 3 78 9 |2/3 2/T| 3(Y) 8N
2 3 8|8 13 |2/3 2/8 | 12(Y) 12(Y)
3 4 9|16 19 [3/4 3/9 | 13(N) 12(N)
3 4 10|16 28 |3/4 3/10| 27(Y) 22(Y)
1 5 11|32 41 |4/5 4/i1| 31(N) =20(N)
4 5 12|32 60 |4/5 4/12] 55(Y) 42(Y)
5 6 13|64 88 |5/6 5/13| 70(Y) 44N
5 6 14| 64 129 |5/6 5/14|116(Y)  86(Y)
6 7 15128 189 |6/7 6/15 | 141(Y) 72(N)*




tively list and evaluate the matchings M. The evaluation algorithm takes
a matching M and examines each submatching H of size ¢ for a possible
canonical arrangement. The algorithm that lists the matchings has been

developed using a depth-first search as described in the following section.

3.2 Listing the maximum matchings

A recursive algorithm based on a depth first search has been developed to
list all maximum matchings of the constrained graph G. Given a maximum
matching, a partition on the set of all maximum matchings into two disjoint
sets is made once per each matching edge e: a set of maximum matchings
M. which contain edge e and a set of maximum matchings M which do not
contain edge e. After each partition, the problem of listing all maximum
matchings of m edges is divided into two smaller problems: listing all max-
imum matchings of (m — 1) edges from a vertex reduced graph and that of
m edges from an edge reduced graph. Terminology and some fundamental

results for the maximum ma,tchihg problem are described first.

3.2.1 Preliminary

As introduced in section 2.3, a matching M of a graph G is a set of edges
with no common endpoints. An M-alternating path P is a path whose
edges are alternately in M and not in M. See Figure 3.2. Note that the

term alternating is relative to a specific matching M. When M is empty, for
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M-alternating path P

matching edges of M edges of G/M

Figure 3.2: An M-alternating path.

instance, then any single edge is an M-alternating path. An alternating path
P with both endpoints unsaturated (unmatched) is called an augmenting
path relative to M, or an M-augmenting path.

Given an augmenting path P, a bigger matching M’ can be obtained by
an exclusive-OR operation on the edges, M’ = M @ P. The exclusive-OR
operation is known as an augmenting operation. The new matching M’
consists of those edges that are in M or P, but not in both. In this way
M’ has one more edge than M, i.e., |M’'| = |M| + 1. Figure 3.3 illustrates a
bigger matching M’ = {(1,8),(2,6),(3,7),(4,9)} obtained by the augmenting
operation.

The determination of a maximum matching is greatly facilitated by a theo-
rem, proven by Berge([7],1957): A matching M in G is a mazimum matching

if and only if G contains no M-augmenting paths.
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(b) M-augmenting path P

Figure 3.3: A graph and an M-augmenting path.
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The search for an M-augmenting path with origin u involves growing an
M-alternating tree H rooted at u. A tree T is a connected graph that
contains no cycle. A subtree H C G is called an M-alternating tree H
rooted at u if (1) w € V(H); (2) Yv € H, the unique (u,v)-path in H is an
M-alternating path. A maximum matching algorithm follows the alternating

paths as outlined below.

Step 1. Start with an empty matching M = ¢.
Step 2. Find an M-augmenting path P and replace M by M & P.

Step 3. Repeat step 2 until no further augmenting paths exists, at which
point M is a maximum matching.

For the the purpose of Hamming maps, two maximum matching algorithms
are used in this thesis: The Hungarian algorithm [10] and Edmonds algorithm
[15]. The Hungarian algorithm can find a maximum matching in bipartite
graphs. A bipartite graph is one whose vertex set can be partitioned into two
subsets X and Y, so that each edge has one end in X and the otherend in Y.
Edmonds algorithm can find a maximum matching in nonbipartite graphs.
Both are based on a breadth-first search.

In a breadth-first search, vertices are visited in order of increasing distance d
from the starting point v, where d is simply the number of edges in a shortest

path. Beginning with d = 0, the breadth-first search considers in turn each
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vertex z of distance d from v. This is repeated until no new vertices are
found. By examining all edges incident with z, all vertices of distance d + 1
from v are processed.

On the other hand, the depth-first search is a generalization of a preorder
traversal of a tree as illustrated in Fig. 3.4 [5]. The starting vertex may be
determined by the problem or may be chosen arbitrarily. When each new
vertex v is visited, a path is followed as far as possible, visiting or processing
all the vertices along the way, until a dead end is reached. A dead end is
a vertex all of whose neighbors (vertices adjacent to it) have been visited
already. At a dead end the search backs up along the last edge traversed and
branches out in another direction. This has the effect of visiting all vertices
in one subgraph adjacent to v, say G;, before going to a new one.

To describe the various algorithms, control structures similar to Pascal
and C languages are used. In the following algorithm, the instruction mark

x visited is used when the desired processing of the vertex z is completed.
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Figure 3.4: Depth-first search.
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The breadth-first search uses a queue @) to store and process vertices in the

order of arrival.

Algorithm Breadth-First Search

Procedure BFS(v: VertexType);
{

var
Q : Queue;
z,w : VertexType;
@ := ¢; {begin with an empty queue}
place v in @ and mark v visited;
do {
select z from Q;
for each unmarked vertex w adjacent to z {
place w in @ and mark w visited;

} {end for}
} while @ is not empty; {until all of @ has been processed}

} {end BFS}

Since a depth-first search does not back up from a vertex z until every

edge from z has been examined, it has a very simple recursive description.

Algorithm Depth-First Search

Procedure DFS(v: VertezType);
{
var
w : Vertex Type;

mark v visited;

while there is an unmarked vertex w adjacent to v {
DFS(w);

} {end while}

} {end DFS}



3.2.2 Listing the maximum matchings

Consider an edge e = zy of G as depicted in Fig. 3.5. A maximum match-
ing M of G may or may not contain the edge e. In an edge reduced graph
G — e, no maximum matching can contain the edge e. The end vertices z
and y, however, can be contained in some maximum matchings of the graph
G — e. On the other hand, in the vertez reduced graph G — {z,y}, no maxi-
mum matching (perhaps smaller) can contain z and y. Fig. 3.6 shows graphs
reduced by an edge or its end vertices.

Based on this observation, the strategy for listing maximum matchings is to
partition the set of all maximum matchings according to whether a maximum
matching uses a particular edge. Suppose that a maximum matching M

called a base matching has m edges (2m constrained sequences), i.e.,
M ={eq,e1,...,m-1}, € = (v, 0;) (3.1)

When |M| = m, it will be called an m-matching M to save notation. The
set of all m-matchings {M} of G is partitioned into two mutually exclusive
groups:

{M} = {Mo} U {Mo} (3.2)

The first group {Mp} contains matchings which use the edge ep and the
second group {M{} contains matchings which do not use the edge eo. In
other words, a matching M is in {Mo} if eg € M, otherwise, it is in {M{}.

This hierarchy is depicted in Fig. 3.7 as a partition tree.
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Figure 3.5: A graph with edge e = zy.

>

«

(@) G - elxy) (1) G - {x,y} and G(e)

Figure 3.6: An edge or vertex reduced graph.
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Figure 3.7: A partition tree of the set of maximum matchings.
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Consider the right branch of the partition tree first, i.e., the set {A}} of
matchings that do not use edge eg. Each of these m-matchings is in the
edge reduced graph, G4 := G — eg. Let M4 denote a part of m-matching
M as My := M — eo. Note that the two end vertices z¢ and yo are still in
the reduced graph G4, albeit they have become unsaturated. Therefore the
reduced matching M4 is no longer a maximum or m-matching in either G
or G 4. The determination of all m-matchings in G 4 involves growing M 4-
alternating trees rooted at one of the end vertices o or yo, and is described
later as a depth-first search.

Now consider the left branch of the partition tree, the set of maximum
matchings that do use edge eg. Let a two-tuple (Gp, Mp) denote the graph
with a base maximum matching obtained from M by the removal of the end

vertices o and yo:

GB =G - {an yO}

Mp:=M —eo = {e1,€2,...,€m-1} (3.3)

It should be emphasized that the (m — 1)-matching Mp is a maximum
matching of this vertex reduced graph Gpg. This can be seen by realizing
that Gp has lost two vertices which were previously M -saturated in G. Con-
sequently, the size of a maximum matching M p of Gp is one less than that
of M. The m-matchings in the left branch of the partition tree are obtained

as the union of {eg} and all (m — 1)-matchings of this vertex reduced graph
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Gp.
{My} = {Mg} + {eo} (3.4)

The task of listing (m — 1)-matchings {Mp} of the vertex reduced graph
Gp is the same as that of listing m-matchings {M} of the original graph
G. Therefore with the (m — 1)-matching Mp as the base matching of graph
Gp, a new partitioning of the set of (m — 1)-matchings { Mo} into {Mo; } and
{Moy:} is made to move further down along the partition tree based on the
edge e;. In the same way, a matching in {My;} uses both edges eg and e;
and a matching in {Mp;/} uses eq but not e;.

This partitioning is repeated for the left branch until all the edges in the
base m-matching M have been examined, each time producing two disjoint
sets of matchings. At depth d of the partition tree, the left branch denotes
the set of all m-matchings which contains the base edges {eo,e1,...,€4-1},
and the right side branch {eg,e1,...,€4-2} but not e;_;. In this way, all

m-matchings of the graph G can be listed without repetition.

To explain the DFS-algorithm for the new m-matchings of G4 = G — e,
consider the bipartite graph G of Fig. 3.8. The graph has 11 vertices with a
5-edge matching M = {(1,6),(2,7),(3,8),(4,9),(5,10)} as a base. The edge
reduced graph G —e(1,6) in Fig. 3.8(b) is redrawn as an My-alternating tree
rooted at vertex 1, one end of e = (1,6). Note that the link edges fi, f2, and
fs are not part of the tree. Two M4-augmenting paths P—(11,4,9,1) and

(6,3,8,4,9,1)—can bring about new m-matchings of G.
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6 7 8 9 10 11

(a) A bipartite graph G

(b) BFS ree of G -’e(16)

Figure 3.8: A bipartite graph and an M 4-alternating tree.
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The M 4-alternating tree of Fig. 3.8(b) was based on a breadth-first search
tree. The BFS tree structure depends on the initial implementation of a
graph, represented as an adjacency linked list. For example, if the link edge
fa were encountered earlier than the edge (2,10), the path (6,3,8,2,7,1) would
be an M4-augmenting path. In this respect, BFS trees are useful when an
exhaustive search for augmenting paths is not required.

On the other hand, DFS trees extend as far as possible until an M,-
augmenting path from a vertex v is found. After the new matching from this
augmenting path is evaluated, the vertex v is marked as unvisited (removed
from the tree). Also when each adjacent vertex v to root vertexu is examined,
u is marked as unvisited because it might be in another alternating path,
perhaps from some other branches of the tree.

Now consider the M4-augmenting path P = (11,4,9,1) again. The m-
matching M obtained by the augmenting operation can be expressed as a

union of two sets of matching edges:
M = Ms®P=MP)+ M(Ga/P)
= {(11,4),(9, D)} +{(2,7),(3,8),(5,10)} (3.5)
The two matching edges of M(P) are the direct result of the augmenting
operation. The three edges of M(G4/P), however, remained unchanged by
the augmenting operation. This situation illustrates the following important

consideration:

There may be other m-matchings which could be missed if the
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Figure 3.9: Temporary removal of P for possible children matchings.

search backs up immediately from the M 4-augmenting vertez, say

11.

A close examination indeed reveals many such hidden matchings which are
termed child matching. Fig. 3.9, 3.10 illustrates two child matchings, for

example.

M(Pl) = {(11’4)’ (9, 1)} + {(2>8)a(3a6)7(57 10)}

M(Py) = {(11,4),(9,1)} + {(2,7),(3,6),(5,10)}
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To find the child m-matchings, the portion of the M4-augmenting path P
is removed temporarily. The rest of the graph G 4/P will have a maximum
matching of size at most |M| — |P| = m — p edges. The listing of (m —
p)-matchings of the two-tuple (G4/P, M(G4/P)) again becomes the same

problem as that of m-matchings of (G, M(G)), the original graph.

The following description summarizes the listing algorithm in three proce-
dures: Main, DFS_Match, and Process_Match.

The procedure Main merely states the strategy described before: partition-
ing and building M4-alternating trees, once for each matching edge. To begin
the enumeration, Edmonds algorithm is used to find a base m-matching M
from G.

The procedure DFS_Match invokes the procedure Process_Match, when a
new M 4-augmenting path (thus a new m-matching) is found. The procedure
Process_Match first evaluates the new m-matching M in an attempt to pro-
duce a Hamming map(s) from the set of constrained sequences represented
by the matching edges. This evaluation procedure will be described later
in a separate section. It then begins to look for child (m — p)-matchings.
Each child matching, if it exists, is added to M(P), yielding an m-matching
of G4. Note that a child (m — p)-matching of G4/P may exist only when
M| > |P|. That is, if all of 2m vertices of the new matching are in the
augmenting path, there cannnot be a separate matching edge which is not in

a mazimum matching.



Algorithm 1: Main

Procedure Main;
{

Var
G = (V, E): GraphType;

find a maximum matching M; {by Edmonds algorithm}
M = {607 €150y em—l}7 € = (:Ei’ y,])

for each edge zy of M {
remove edge zy; {Ga =G — e(zy)} ‘
for each unsaturated vertex u do DFS_Match(u);

delete vertices z and y; {Gp := G — {z,y}}
} {end for}

} {end Main}
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Algorithm 2: All M 4-augmenting paths (recursive)

Procedure DFS_Match(u: VertezType);
{
var
PrevPt: array of VertezType;
M: Matching;
v,w: VertexType;
mark u visited;

for each unmarked vertex v adjacent to u {
PrevPt[v] = u; {representing P}
if v is matched to w {
mark v visited;
DFS_Match(w);
mark v unvisited;
} {end for}
else {
Augment(v); {an M4-augmenting path from v}
{we have a new maximum matching M}
Process_Match(M);
mark v unvisited {backs up };
} {end else}
} {end for}

mark u unvisited;

} {end DFS_Match}
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Algorithm 3: Process matching

Procedure Process_Match(M: Maximum Matching);
{
first, evaluate matching M; {Canonical Ordering}
P := augmenting path;
if |P| < |M] { {take care of child matchings};
G := G — P; {temporary removal of the augmenting path}
M = M — M(P);
for each edge zy of M {
remove edge zy; {G := G — e(xy)}
for each unsaturated vertex u do DFS_Match(u);
delete vertices z and y; {G := G — {z,y}}
} {end for}
M := M + M(P); {restore matching}
G := G + P;{restore graph}
} {end if}

} {end Process}
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3.3 Canonical Ordering

In the previous section, a systematic way of listing the maximum match-
ings of a constrained distance graph has been developed. To determine the
Hamming map, the set of ¢ codewords (¢/2 edges) of an m-matching M has
to be ordered properly. An exhaustive trial would require ¢! examinations
for each submatching—S8! = 40320 when k/n = 2/3, 16! = 2.09 x 10'* when
k/n = 3/4, etc.

In the following, an efficient algorithm termed canonical ordering which
determines a Hamming map is described. Note that when k/n = 1/2, no ad-
ditional ordering is required since then any subset of 4 codewords represented

by 2 matching edges in any order produces a Hamming map.

3.3.1 Matrix balancing

The key idea is to make a constrained Hamming distance matrix cross-
symmetric by balancing the distances between pairs of matched codewords.
This balancing greatly facilitates the proper arrangement of matched code-
words into an Hamming map when one exists. It is convenient to define two

kinds of matrix symmetries.

Definition 3.1 (symmetry) A g X ¢ matriz A is called symmetric if a;; =
aji, Vi,j, and cross-symmetric if a;; = ay, where pairs (3,2) and (j,7) are

matched slot pairs, that is, 1 =q—1—1i, and ] =q—1— 3, Vi, J.
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Figure 3.11: A butterfly of two complementary pairs of convolutional code-
words.

Let (uy, @), and (uq,%2) be complementary pairs of convolutional code-
words of length n. Consider the butterfly pattern in Fig. 3.11. Let d; =

d(u1,uz) and dy = d(uz, 7). Then it is obvious that
di + dz = d(uy,0y) = n. , (3.6)

Because the above equality holds for any complementary pair (ui,%;) and

any usg, it follows by interchanging the roles of vy and u, that
di + d(uy,ts) = n. (3.7)
From the equations (3.6) and (3.7), d2 = d(uy, t2), and in general
d(ui,uz) = d(G,0s)
d(u1,t2) = d(U1,us) (3.8)

i.e., the weights of the side edges or the cross edges are identical. This
property contributes to the cross-symmetry of the standard Hamming matrix

D,.
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1011 4 0100 0100016 4 1001000

1001 4 0110 0101010 4 0000100

(a) unconstrained (b) constrained
Figure 3.12: Butterfly patterns with d =1, k/n = 3/4, and k/] = 3/7.

However, this symmetry need not hold for a constrained counterpart, as
can be seen below. Consider Fig. 3.12(b) which shows two matched pairs of
constrained codewords of 7 bits in length, (vy,9:) = (0100010,1001000), and
(vq,02) = (0101010,0000100). The distance pair in the given constrained but-
terfly is not symmetric—d(vy,v;) = 1 and d(?y,0;) = 3. However these pairs
(vi, 0), © = 1,2, can replace the convolutional codeword pairs of Fig. 3.12(a),
since the corresponding Hamming distances are preserved. Note that the
butterfly of Fig. 3.12(a) is the only kind which can be replaced by that of
Fig. 3.12(b). Therefore the distance d(v1,02) = 3 in (b) can be regarded to
be equivalent to the corresponding distance d(d,%;) = 1 in (a), i.e., it can
be reduced to one.

This reducing or balancing of edge weights has the important effect of
making the constrained distance matrix cross-symmetric. In other words, for
the purpose of Hamming maps, the butterfly weights can be reduced so that

the distance matrix becomes cross-symmetric.
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0101010 . 0000100

1000010 0010100

Figure 3.13: A strongly balanced butterfly: d =1, k/n = 3/4, and k/] = 3/7.

Various forms of weight balancing are illustrated in Fig. 3.13 through
Fig. 3.15. Consider a butterfly in Fig. 3.13 whose balanced weights on the
cross edges satisfy the equality (3.6). When this is the case, the balanced
butterfly is termed strongly balanced.

On the other hand, the butterfly in Fig. 3.14 cannot be balanced uniquely,
as above. The unbalanced weights already satisfy the symmetry of Eq. 3.8.
It is not certain which butterfly can be replaced by these pairs of matched
codewords. This kind is termed weakly balanced. The butterfly of Fig. 3.15
has different weights on the matching edges. Balancing the different kinds

of butterflies is based on the following rules.
R1 d(v,?) = n.
R2 d; = min(d(v1,v;),d(01,02)) < n
dy = min(d(vy,q),d(01,v2)) < n
R3 dy +d; = n + ¢, for an even value c.
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0101010 . 0000100

4 4
3 1
1 1 3 3
3 1
4 4
Figure 3.14: A weakly balanced butterfly: d =1, k/n = 3/4, and &/l = 3/7.
5 4
2 2
S 2 3 D — 2 2
5 2
4 4

Figure 3.15: A strongly balanced butterfly (mixed matching edges): d = 1,
k/n=3/4, and k/l = 3/7.
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3.3.2 Canonical Ordering

The canonical ordering algorithm is used to place a set of codeword pairs
into a set of slot pairs subject to a restriction termed adjacency. Necessary
terms and symbols are given first.

Suppose M = {e}, e,...,el._1}, m > ¢/2, is a maximum matching of G.

Denote a subset of ¢/2 edges (g vertices) as H (V):
H = {60,61,...,6(1/2_.1},
V = {(Co, éo), (01,51); . --’(cq/Z—lyéq/Z—l)}, €; = (Ci,éi) eEM.

Assume that the Hamming distance matrix D, has been balanced accord-

ing to rules R1-R3.

Definition 3.2 (Slot map) Let [ denote the set of slots, or the domain of

a Hamming map.
I= {503313"'a3q—1}a 0 .<_ S S q— 1.
Call the function h : I — V, whose value h(s) denotes the codeword occupying

a slot s, a slot map. Similarly, the inverse map g : V — I is called a codeword

map, whose value g(v) represents the slot occupied by a codeword v:

The adjacency of codewords and slots plays a vital role in the canonical

ordering algorithm.

Definition 3.3 (Adjacency) A pair of codewords (vq,vs) are called d-adja-

cent to each other if d(vy,vz) = d. On the other hand, a pair of slots (s, s2)
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Table 3.4: Adjacent slots A(s) when n = 2, 3.

|s|so si| [s]so s1 safs]so s1 s2|
0 1 2 013 5 o641 2 7
110 3 1 2 4 T7T451 0 3 6
210 3 211 4 7(6] 0 3 5
3] 1 2 310 5 6711 2 4

are called d-adjacent to each other if d , = d in the unconstrained distance

matriz D,.

It should be noted that adjacency on slots applies to the unconstrained case
while adjacency of codewords applies to the constrained case.

Because the balanced matrix is both symmetric and cross-symmetric, the
codeword pair (v, v3) are d-adjacent if and only if (91, d2) are d-adjacent to
each other. Let A(s) be the set of (n — 1)-adjacent slots to a slot s € I and

I'(v) the set of (n — 1)-adjacent codewords to a codeword v € V.

A(s) = {s0,81,---,8n-1}
I'(v) = {vo,v1y-..,0¢-1}

Note that the cardinality of set A(s) equals ( ni ), the (n — 1)-th

1
degree 67~ for an unconstrained codeword u € U. The necessary condition
NC3 requires that the cardinality t of I'(v,n — 1) be n or greater for v to be a

member of a Hamming map. Table 3.4 and 3.5 shows (n — 1)-adjacent slots

forn = 2,3, and 4.

The canonical ordering is greatly facilitated by the following theorem.
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Table 3.5: Adjacent slots A(s) when n = 4.

I S I So 81 S9 83 ” S l Sp 81 S9 S3 l
0l 7 11 13 14 8 3 5 6 15
176 10 12 15|92 4 7 14
215 9 12 15|10} 1 4 7 13
314 8 13 141110 5 6 12
413 9 10 1512} 1 2 7 11
512 8 11 14,130 3 6 10
611 8 11 13|14, 0 3 &5 9
70 9 10 1215} 1 2 4 8

Theorem 3.1 (Canonical matrix: unconstrained) Suppose that each
matched codeword pair (v,0) are placed in a matched slot (row) pair such
that all entries of D,, whose value is (n —1) fall in the (n — 1)-adjacent slots.
Then the resulting matriz is a canonical matriz, which corresponds to the set

of unconstrained codewords arranged in natural order.

Proof The proof uses a recursive statement based on the size ¢ of matrix
D,. Suppose that all (n —1)-adjacent codewords are in (n — 1)-adjacent slots.
It follows from the triangle equality of (3.6) and the symmetry (3.8) that all
1-adjacent codewords are in their 1-adjacent slots.

Write the matrix Dy as a 2 X 2 block matrix:

D D
b= | 2 D
q/2 D4/2

The main cross-diagonal entries of Dy/; and Dy, are n — 1 since their corre-

sponding slots are (n — 1)-adjacent in D,. As a consequence, in each subma-
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trix Dyjo and D; 5, all (n —2)’s are in the (n —2)-adjacent slots, and thus all
2’s are in the 2-adjacent slots of D, again by 3.6 and 3.8. That is, a correct
placement of the (n —1)’s of D, forces the correct placement of the (n —2)’s
of Dy, and Dy . The same argument applys to the submatrices Dy/z, D4,

etc., until the submatrix becomes D, which is the identity matrix.

To demonstrate the usefulness of the theorem, the following procedure

unscrambles a set of mixed codewords into a Hamming map.

Example: Unscrambling codewords
Consider a set of 8 convolutional codewords (4 matched pairs) which are

scrambled in an arbitrary way:

{(co, &0), (c1, 1), (€2, &2), (€3, 83)} (3.9)
where ¢; = c;, 1=q—1—i=T7—1, 0<i< ¢qg—1="7. The distance matrix
D, for these codewords are given in Table 3.6. Note that each codeword
is a 3-sequence, i.e., it passes the necessary test NC3. Note also that the
main cross entries (d;;) = d(ci, &) = n = 3. The matrix, however, is not in
canonical form yet.

The task is to determine whether a Hamming map exists and, if the answer
is yes, to find a proper arrangement of these 8 codewords so that their matrix

is canonical.

Procedure: All the 8 slots {(sq, 30), (s1,381), (82, 2), (83, $3)} are empty ini-

tially. Choose a pair of matched codewords from Table 3.6, say, (cs,é) =
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Table 3.6: An 8 x 8 distance matrix D,.

vV Vv i Cog €C1 €3 C3 l C4y C; Cg C7 |
c ¢ 010}0 2 1 112 2 1 3
cq ¢ 1112 0 1 112 2 3 1
¢ & 01111 1 0 201 3 2 2
ez ¢ 11041 1 2 0413 1 2 2
¢z ¢4 00112 2 1 30 2 1 1
¢ ¢ 100, 2 2 3 112 0 1 1
¢t ¢ 0001 3 2 21 1 0 2
co ¢ 10113 1 2 2|1 1 2 0

(cs,cq). Place this pair of codewords into a matched slot pair, say, (so, 30),

i.€.,

h(SQ) = Cs, h(éo) = h(87) = Cog.

This placement leaves 6 slots unoccupied.

S Sg 81 S92 S3 |84 S5 S 87
h(So) Cs Co

The 2-adjacent slots of sg and 2-adjacent codewords of ¢5 are determined.

A(So) = {33, S5, 36} [Table 34]

I'(es) = {co, c1,ca} [Table 3.6]

Placement of the codewords of {I'(¢cs), ['(é5)} into the slots of {A(sg), A(30)},
in any order, accomplishes the desired arrangement. One such placement

is shown below:
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)
o)) C3 Cg cr

The resultant matrix, as shown in Table 3.7 is indeed a canonical matrix and

al:lmap f:U — V, where
U = (000,001,010,011,100,101,110,111)
V - (C5, C3, Cg, Co, C7,C1, C4, Cg),
is a Hamming map.
The number of steps required for unscrambling 8 codewords was 1, in sharp
contrast to 8! = 40320, which an exhaustive trial may require. In general,
2" /8 steps are required for unscrambling 2" convolutional codewords into a

canonical form, since each step will effectively assign 4 pairs of codewords at

a time.

To extend this technique to the constrained case, further terms need to be

defined. Let p be a slot called a pivot and v = h(p). Suppose

Alp) = {s0,51,.-.18n-1}, and

T'(v) = {vo,v1,...,v4-1}, t = n.

Definition 3.4 (Assignment graph) Let G = (X,Y) be a bipartite graph

termed an assignment graph. The verter set V(X,Y) is
X = {Xo, X1, -, Xw_1}, n' < n, and
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Table 3.7: An 8 x 8 canonical distance matrix D,,.

i U 1% l C; €3 Cg Cp { Cr €1 C4 Co I
u ¢ 10010 1 1 211 2 2 3
up, ¢g 11011 0 2 112 1 3 2
u ¢ 0001 2 0 1|2 3 1 2
ug ¢ 01012 1 1 013 2 2 1
ug ¢ 1011 2 2 3]0 1 1 2
us ¢ 11112 1 3 2|1 0 2 1
ug ¢4 0012 3 1 2|1 2 0 1
ur ¢ 01113 2 2 112 1 1 O

Y = {YO’Ka"'a}/t’—l}, tl_<.t’

where X; 1s the set of assigned codewords in filled slots that are (n — 1)-
adjacent to the t-th empty slot s; of A(p), and Y; is the set of assigned code-
words that are (n — 1)-adjacent to the 1-th non-assigned codeword v; of I'(v).
The vertices X; and Y; are joined if and only if X; is contained in Yj, ie.,
e = (X;,Y;) is an edge of E(X,Y) if and only if the codeword v; is qualified

to take the slot s;.

A maximum matching A = {(Xs,Ys)} of the bipartite graph G = (X,Y)
defines a possible assignment of codeword pairs (v, i) of I'(v) into slot
pairs (sy, §i) of A(p). This assignment is based on the reasoning that for a
codeword v to be placed into a slot s, the codeword v should be at distance
(n — 1) from other codeword w, if w has already taken a slot of A(s).

In contrast to the standard matrix D, of convolutional codewords, the
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balanced matrix D, of constrained codewords has both strongly and weakly
balanced butterflies. This fact prevents the canonical ordering algorithm
from finding a Hamming map in 2"/8 steps, the number of steps required for
unscrambling convolutional codewords into a standard form. Thus for the
constrained case, each maximum matching (assignment) from the assignment

graph has to be examined in general. The following algorithm reflects this.
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Algorithm Canonical Ordering
Procedure CanOrder(p: SlotType): Boolean;

{
var
G : Bipartite graph;
A : Assignment,
v : CodewordType;
p i SlotType;

if all slots have been filled return completed;

0= h(p);

build the assignment graph G := (X,Y) for (I'(v), A(p)) by Def. 3.3;
find an assignment A of G; {by Hungarian maximum matching}
if |[A| < |X| return not completed;

for each assignment A of G {
do assignment A;
choose new pivot p; {say, every 4-th slot from so}
if (CanOrder(p)) = completed return completed;
else cancel assignment A;

} {end for}
return not completed;

} {end CanOrder}

Procedure Main;
{
var
¢, ¢ : Codeword Type;
p, P+ SlotType;
pick (¢, &);
initialize pivot; {p:= so and p:= s4-1}
assign (c, ¢) into (p, p);
if ( CanOrder(p) = completed ) save Hamming map;
else signal “no Hamming map exists”;

} {end Main}
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This algorithm can be improved by trying strongly adjacent codewords first

for assignment and then weakly adjacent codewords if necessary.

Definition 3.5 (Strength) Assume that the distance matriz has been bal-
anced. Divide the codewords of T'(v) into two sets of (n — 1)-adjacent code-

words, T'(v) = S(v) U W(v), where

S() = {weT(v)|d(v,w)+d(®,w) = n},

=
=
i

{wel'W)|dv,w)+dd,w) > n}.

Note that pairs (v,d) and (w,w) form a strongly balanced butterfly if w is in
S(v), and w is termed strongly (n — 1)-adjacent to v. Similarly, w € W is

termed weakly (n — 1)-adjacent to v.

Note that each strongly adjacent codeword should be assigned from the
assignment graph. Otherwise weakly adjacent codewords will occupy the
slots reserved for strongly adjacent codewords. This in turn will result in a
violation of NC3 due to extra 1 entries from one side of the missed strongly
balanced butterflies.

The example in the following section, which is rather long and complicated,
has been designed to trace the details of the assignment procedure. An
excessive number of tables and figures are presented to indicate the labour

involved in finding a Hamming map.
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3.3.3 An example: canonical arrangement

1. Parameters:

d=1,r, =k/n=3/4,r. = k/l =3/7,Ny(l) = 21,p = 20,m = 9. The
symbol p denotes the number of codewords which have passed test NC3 and

m the number of edges in a maximum matching M of constrained graph G,.

2. A subset of an m-matching M:

Consider the set of 8 pairs of codewords as shown in Table 3.8. Each pair
(ciy ), : = 15 — i, having weight n = 4, represents a matching edge in M.
The Edmonds maximum matching algorithm has been used to find an m-
matching with m = 9, out of which 8 edges have been chosen randomly. The
Table 3.8 lists (n — 1)-adjacent codewords as a union of strong and weak sets
from each codeword c. Note that the constrained matrix has been balanced

before making the decision on adjacency.

3. Canonical Ordering:

STEP 0:
It shall be convenient to use A(s,$§) = (v,?) to mean the assignment of a
pair of codewords into a pair of slots at the same time, i.e., h(s) = v, h(3) =

©. Choose a pair of codewords, say, (cs,ci2). Because no slot has been oc-
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Table 3.8: (n — 1)-adjacent codewords I'(c),n = 4.

c ] S | W | hex binary I
0 7 11 13 14 0A 0001010
1 110 12 15 6 9 2A 0101010
2 5 9 15 3 12 08 0001000
3 8 14 2 4 11 13| 22 0100010
4 9 10 15 3 12 4A 1001010
5 2 8 11 14 42 1000010
6 |11 13 1 7 8 141] 48 1001000
7 0 10 12 6 9 20 0100000
8 3 5 15 6 9 54 1010100
9 2 4 1 7 8 14| 12 0010010
10 1 4 7 13 14 0010100
11 0 5 6 3 12 10 0010000
12 1 7 2 4 11 13| 44 1000100
13 0 6 10 3 12 52 1010010
141 0O 3 5 6 9 04 0000100
15 1 2 4 8 24 0100100
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cupied yet, the codeword pair can be freely assigned into any slot pair, say,

(s0, 80), with adjacency considerations ignored.
h(507 §0) = h(SOa 515) = (037 612)

Call the slot pair p = sg and p = 3¢ a pivot slot pair. Observe that all slots

but the pivot slot pair (p,p) are left unoccupied.

STEP 1:

Consider the (n —1)-adjacent slots A(p) of the pivot slot p. These slots to-
gether with their matched slots A(p) are to be occupied by the (n—1)-adjacent
codewords I'(v), and T'(?), respectively. From Table 3.5 and Table 3.8,

A(p) = A(so) = {s7,511,513, S14} (3.10)

I'(v) =T(cs) = {wo,ws,...} = {cs,c14} +{c2,cq,c11,¢13} = SUW.

These adjacency relationships are depicted in Fig. 3.16. All the slots A(p) are
empty, and therefore the assignment graph G = (X,Y) for step 1 becomes a
complete bipartite graph K,; which has n x t edges, where ¢ =| I'(v) |. This
yields too many assignments for examination.

For this initial step, however, it should be noted that the strongly ad-
jacent codewords in S can take any empty slots. To exploit this fact, the
codewords in S are assigned arbitrarily to obtain an assignment. The graph
based on weak set W, (very) much smaller than K,;, may then be considered

if necessary.



v =h(p) &

(a) A(p) ®rm
Figure 3.16: Adjacency for pivot p = sq.

Since the assignment of strongly adjacent codewords is arbitrary, the graph
shown in Fig. 3.17(a) need not be constructed at all. As the assignment is
not complete, each maximum matching (assignment) from graph G(W) of
Fig. 3.17(b) has to be examined for a possible codeword assignment to empty
slots s7 and s1;. Note that G(W) has 8 edges, and is much smaller than the
24 edges of the whole graph G. In terms of number of maximum matching,
the comparison becomes significant, 12 versus 360.

An assignment A(so) = {(s7,¢2), (s11,¢11)} corresponding to a maximum
matching of G(W) in Fig. 3.17(b), is shown in Table 3.9, which also compiles
all the assignments made to this point—10 out of 16 slots in a single step !!!.

The symbols, spade-heart (®,0), mark the adjacent slots (s, §) for s € A(p).
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o X X X

S7. 811 %13 S14

14 ©g ¢ %13 % ‘11

Yy Y; Y, Y3 Yy Yg

(a) strong S (b) weak W

Figure 3.17: An assignment A(sq) of graphs G(S) and G(W) for pivot p = sq.

Table 3.9: An assignment A(sg) from pivot p = sq.

l $ I So 81 83 33 l S4 S5 S¢  S7 l Sg S9 S10  S11 l 812 813 S14 815 |
A(sg) |es © ©Q QO & | O é® & & cpo
A(So) 1 C7 Cq C2 | C13 C11 € Ci4




STEP 2:

Note that each of the unoccupied slot pairs is (n — 1)-adjacent to the slot
pair (s4, 84). With this in mind, choose a new pivot p = s4 and set v = h(p).
A similar process to that in step 1 is performed with the new pivot.

In contrast to the initial step, some slots are already filled and some code-
words have been used (assigned). In this step the construction of the as-
signment graph is not a simple task. See the schematic assignment graph in
Fig.3.18.

The task is to put available codewords {cg, 10, ¢15} into slots {ss, sg, s10}
such that the resulting arrangement conforms to the adjacency consideration.

First the assignment graph is constructed as described in Definition 3.3:

A(p) = A(s4) = {53, 39, 510,315} (3.11)

I'(v) =T'(cs) = {vo,v1,...} = {co, 10,15} + {G3, ez} = SU W,

where the slot s15 has been filled, and the codewords {3, ¢12} have been used
(assigned) by the assignment A(sq) for pivot so. These adjacency relation-
ships are depicted in Fig. 3.19.

With the aid of Table 3.5 and Table 3.8, the bipartition (X,Y’) can be

determined to be:

X - {Xo, Xl, Xz}
Xo = codewords of A(s3) = {h(s4),h(ss),h(s13), h(s14)} = {c4, 13, cs, C1a}
X1 = codewords of A(sg) = {h(s2), h(s4), h(s7), h(s14)} = {c7,ca, 2, C14}
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<

.

v = f(p)

Figure 3.18: Assignment graph G = (X,Y) for pivot p = s4.
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v =hple A

@AD)

® h(s4 )
® h(sg )

B h(sy) ® h(sy)
® h(sg) @ h(sg)

N Norong N s
X Fh(A(s ) X FhA(sg) XFh (10

©hA (AP

Figure 3.19: Adjacency for pivot p = s4.
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Figure 3.20: An incomplete assignment A(s4) for pivot p = sy, leaving the
slot pair (s3,83) unoccupied.

X, = codewords of A(s10) = {h(s1), h(s4), h(s7), h(s13)} = {c1,ca, 2,8}

Y = {E/Oa}/laYZ}

Yo = assigned I'(e15) = {c1, 02,4, s}
Y, = assigned I'(cy) = {c1, 2, €4, C7, C8, C14}
Y; = assigned F(CIO) = {61,64, C7, 013}

The set relations are: X; C Yy, X, C Yy, X2 C Y. As an example codewords
(co,c15) can take slots (sg,s10). The assignment graph for this adjacency
relation is shown in Fig. 3.20. Note that the assignment graph is no longer
a complete bipartite graph. This results in a reduced number of possible
assignments, a highly desirable feature. It can be seen immediately that slots
(s3,33) cannot be assigned at this stage. Table 3.10 shows an incomplete
assignment A(sy4).

Two possibilities can be considered: a Hamming map does not exist, or

the assignment A(so) in the previous step is incorrect. To see if A(so) is
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Table 3.10: An incomplete assignment A(s4) from pivot s4 resulting from
A(sq): the slot pair (s3, s12), marked as O, are not filled.

] S I Sp 81 82 83 I S4 S5 S¢ S7 I 58 S9 Sio Su | S12  $13 S14  S1s |
A(sg) ez © Q © | O @ ® & cpp
A(So) ¢ Cr C4 C2 | C13 Ci1 Cg Ci4q
A(s4) &lcy O QO é & ci 1| O
A(s4) = Co  Cs Co  Cis o

XO X1 X2 X3 XO X1
7. S11 %13 S14 7. %11
@ 0 (2 &>

14 3 ¢ ©93 % ‘11

Y0 Yy Y, Yj Y, Y5
(a) strong S (b) weak W

Figure 3.21: An alternate assignment A'(sq) of G(W) for pivot p = so.

incorrect, algorithm retreats to step 1 and examines alternate assignments.

STEP 1’ (retreat from STEP 2):

This time, as depicted in Fig. 3.21 and Table 3.11, a new assignment A’(s)

is employed: A'(so) = {(s7,¢13), (511, ¢4)}

STEP 2’ (back to pivot s4):
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Table 3.11: An alternate assignment A’(sg) from pivot p = so.

l S l Sop 81 Sz 83 } 84 S5 S¢St | S8 S9  S10 Si11 | 812 513 814 S15 }
A(so) | s © Q @ 6|0 ® d & cop
A'(So) ¢ C7 C11 €13 | C2 Cy Cs Cia

Now v = h(p) = ¢11 and the assignment graph G’ is based on the alternate

assignment A’(so).

A(p) = A(s4) = {s3, 89, 510,315} (3.12)

I'(v) = I'(enn) = {vo,v1,...} = {co, 6,05} + {3, Tz} = SUW.

X = {Xo, X1, X}

Xo = codewords of A(s3) = {h(s4), h(ss), h(s13), h(s14)} = {c11, €2, €8, C14}
X1 = codewords of A(sg) = {A(s2), h(s4), h(87), h(s14)} = {c7, 11, C13, C14}
X, = codewords of A(s10) = {h(s1), h(34), h(s7), h(s13)} = {e1, c11, €13, cs}

Y = {Yo, %, Yo}

Yo = assigned ['(co) = {er, 11, C13, C14}
Y, = assigned I'(cs) = {c1, ¢7, s, €11, €13, C14}
Y, = assigned I'(cs) = {cz, cs, €11, C14}

The set relations are:

XoCY,, X CYy, X1 CH, Xp C YL
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Figure 3.22: A complete assignment A’(s4) for pivot p = s4.

The assignment graph G’ for this adjacency relation is shown in Fig. 3.22.

Now there is an assignment A’(s4) which assigns the slots completely:

A'(s4) = {(s3,¢5), (89 €0), (810, C6) }

The overall assignment A(s) accomplished through step 1’ and step 2’ is
shown in Table 3.12.
A(S) = A,(So) + AI(S4)

The canonical ordering algorithm thus took 2 steps to find a Hamming
map.
To check whether it is indeed a Hamming map, the corresponding distance

matrix is shown below.
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Table 3.12: A complete assignment A(s), consisting of A’(s¢) and A’(s4).

l S ISo 51 82 33] 84 S5 S 57 |38 S9  S10 S11 |312 $13  S14  S15 I
A(sg) |[es © O © N é® @ & o
A'(so) ¢ cr c1 3 | ¢ C4 Cg Ci4
A($4) ®|cn © Q é é Cq Y
A/(34) Cs Co C1s Co Cg Ci0

] A(S) ]Cs €1 C7 Cs |C11 €9 C15 C13 ] Ca Co € C4 | €10 €8 €14 C12
Constrained canonical distance matrix D,

h{ 0]J: 3[22] 0112 3223 3243 4534
h{ 1]: 1 [2A] 1023 4334 2132 5645
h{ 2]: 7 [20] 1203 2314 2334 3423
h[ 3]: 5[42] 2330 3241 3221 4332
h{ 4]:11 [10] 3423 0132 2334 1223
h[ 6]: 9 [12] 2332 1041 3243 2334
h{ 61:15 [24] 2314 3405 3445 2312
h[ 73:13 [52] 3441 2150 4332 3243
h[ 8]: 2 [08] 3223 2334 0112 3423
h{9]: 0[0A] 2132 3243 1021 4534
h{10]: 6 [48] 4332 3443 1201 4332
hf11]): 4 [4A] 3241 4352 2110 5443
hf{12]:10 [14] 453 4 1223 3445 0112
hf13]: 8 [54] 56 43 2332 4534 1021
h[14}:14 [04] 3423 2314 2334 1201
hli15]:12 [44] 4532 3423 3423 2110

This example leads to several important observations.

1. Ifany element in a strong set can not be used, it means that a Hamming

map does not exist.



2. When separate graphs G(S) and G(W) are used in turn, a great deal

of computation is saved, especially in the initial step 1 from pivot sg.

3. From step 2, assignment graphs generally have a very small number
of edges, reflecting adjacency consideration from slots which have been

assigned in earlier steps.

4. If every possible graph assignment from pivot so has been tried without
resulting in a complete assignment in the subsequent steps, it means

that a Hamming map does not exist.

5. This process is repeated until all slots are completely assigned.

The improved algorithm based on these observations is outlined below.
The procedure CanOrder is divided into two procedures: Begin_CanOrder
for the initial pivot p = sg and CanOrder for pivots other than so.

In the procedure Begin.CanOrder, the strongly adjacent codewords of S(v)
are assigned arbitrarily (no assignment graph built), and the slots left unoc-
cupied are tried by the weakly adjacent codewords of W (v) with the aid of
the assignment graph G(W).

On the other hand, in the procedure CanOrder, an assignment graph G(.5)
with the codewords of S(v) is constructed and a maximum assignment A(S) is
sought first. When A(S) fails to fill all the adjacent slots, another assignment
graph G(W) with the weakly adjacent codewords of W(v) is added to the

strong assignment graph G(S), from which each assignment is examined.
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Procedure Main;
{
var
¢, ¢ : CodewordType;
p,p = Slot Type;
pick (c, ¢);
initialize pivot; {p := so and p:= s4-1}
assign (¢, ¢) into (p, p);
if (Begin_CanOrder(p)) = completed save Hamming map;
else signal “no Hamming map exists”;

} {end Main}
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Algorithm Initiate Canonical Ordering

Procedure Begin_CanOrder(sq: SlotType): Boolean;
{
var
G(W) : Bipartite graph;
A(W) . Assignment;
v : Codeword Type;
p : SlotType;

p = 50,v := h(p);

assign S(v) into A(p) arbitrarily;

if |S(v) = [A(p)] {
choose new pivot p := sy;
if (CanOrder(p))=completed return completed;
else signal “no Hamming map exists”;

} {end if}

else { {assignment not complete}
build assignment graph G(W) = (X(W),Y(W));
find an assignment A(W) of G(W);
if |A(W)| < | X(W)| return not completed;
for each assignment A(W) of G(W) {
do assignment A(W);
choose new pivot p = sy;
if (CanOrder(p)) = completed return completed;
else cancel assignment A(W);
} {end for}
return not completed;
} {end else}

} {end Begin_CanOrder}
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Algorithm Canonical Ordering

Procedure CanOrder(p: SlotType): Boolean;
{
var
G,G(S) : Bipartite graph;
A, A(S) : Assignment;
v : CodewordType;
p @ SlotType;

p:= S0,V := h(p);
build strong assignment graph G(S) = (X(S),Y(5));
find an assignment A(S) of G(S);

if |A(5)] = | X(5)] {
for each assignment A(S) of G(S) {
do assignment A(S);
choose new pivot p;{say, every 4-th slot from s¢}
if (CanOrder(p)) = completed return completed;
else cancel assignment A;
} {end for}

return not completed;

} {end if}

else {
add G(W) to G(W) to form assignment graph G := (X,Y);
find an assignment A of G;
if |A] < | X| return not completed;
for each assignment A of G {
do assignment A;
choose new pivot p;
if (CanOrder(p)) = completed return completed;
else cancel assignment A;
} {end for}
return not completed;
} {end else}

} {end CanOrder}
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3.3.4 Conjugate Hamming maps

Closely associated with one Hamming map is a class of maps termed con-
jugate Hamming maps. Once a Hamming map is found from the canonical
ordering, 2™ X n! conjugate Hamming maps can be obtained from it. Each
of the conjugate maps use the same set of matching edges but arranged in
different order and orientation. Of course, these could be found from the
canonical ordering algorithm if one considers every possible assignment from
strong and weak graphs and chooses different pivot slot pairs, or codeword
pairs, etc. The following theorem shows that given a Hamming map, conju-

gate Hamming maps may be found analytically.

Theorem 3.2 (Conjugate maps) Suppose that the mapping f : U — V
defined by

fi(uoyuty .. yuge1) = (Vo, V1,0 oy Vg=1), ¢ = 2"

is @ Hamming map. Then a different Hamming map, termed a conjugate

map of f, can be obtained by a permutation operation P on the index set I:
P:I1=(0,1,...,¢—1) = (¢0,%1,---,%q-1), t; € I.
The new Hamming map f*: U -V & f:P(U)—V is achieved by:
I (g gy ooy uiyy) = (Vo 01, .., Vg1).

The number C, of such permutations P can be computed by the recursive
equation:

Cn =2n- Cn—l, with Cl = 2.
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Proof: The proof is completed by showing that the associated distance
matrices D, and D, = P(D,) with two g-tuples U and P(U) are identical,
i€,

d(us,uj) = d(ug,ui,) Vi,5 € 1
Choose the g codewords for the set U as

(woytiay . ytgr)t = (0---0,0--1,...,1---1)"

- (0(10),1(10),,Q/2~1,Q/2,Q/2+1,,q~1)t

~
Ozz..x lzz..x

Then the matrix D, can be written as a block matrix

Dy I+ D,y
T"‘ Dn—l Dn—l

D(U,) =D, = [
The symbol I denotes a q/2 X ¢/2 matrix with all ones as entries. The ¢-tuple
U can be decomposed into two g/2-tuples:
0PV U, }

Un = -
\‘ 12:% 4 Un—l

where
(n—1) bits
" w ] [07T0 0 --- 0]
Uy 0 00 -1 -
uq/2-—1 L 0 1L 11 1 |
I Ug/2 ] 1770 0 ]
(7 /241 1 00 .-+ 1 -
! . = . : = Z..% \4 Un—-l
| Ug—1 | 111 .- 1]
(n-1) bits
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and the symbol “V” denotes the operation of column stuffing. Define

i=0,1,...,n—1

P(U) =V = [ On1 V Unos } ,

iV Ups
with 0¢_,, Tt _, columns stuffed in the i-th position. It is easy to see that
D(V?) = D(U,) since the stuffed column vectors 0:_,, 1% _, do not affect the
Hamming distances within smaller sets U,—;.

As a special case, when n = 1, the matrix simply becomes a scalar, either

0 or 1, and thus C; = 2. The above relation holds for any U, for n > 2.

Therefore the number C,, can be computed by the recursive equation:
C’n:2n-C’n_1, 01:2, TLZ2

The number 2n corresponds to the column vectors (6;_1, f};_l), counted twice
per stuffed position, since they can be put in each other’s place.

A closed form for C, is easily obtained as:

Co=22%x2=2?x2!
Cy=2%x%x3x2!=23x3!
Cy=2%x4x3!=2%x4!

C,=2"xnl
As a simple example to illustrate the usage of conjugate maps, consider a

Hamming map f: U, — V:

o OO
— O = O
_ OO
OO O
O = O
OO OO
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Then g: Vo — V is also a Hamming map, one of the 8 conjugate maps.

0 0 0100
Jro|_Joo1o
910 1 100 0

11 1010
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Chapter 4

Results and Discussion

This chapter presents Hamming maps found by applying the algorithms of
Chapter 3. The first two sections briefly describe the strategy and the last

section summarizes the results for [d, k]-constraint and dec-balanced codes.

4.1 Runlength limited codes

Two cases of the [d, k]-constrained codes—d = 1 and d = 2—have been
investigated. The necessary test NC3 is first applied to each constrained
sequence. Using the set of p constrained codewords which have passed the
NC3 test, a p-vertex graph G, is constructed with the edges (uv) where
dp(u,v) > n. From this constrained graph G, a single maximum matching
M of m edges is first found by Edmonds algorithm. The all m-matchings
are found using the recursive DFS algorithm described in Chapter 3. For
each m-matching, the canonical ordering algorithm takes ¢ = 2" codewords
(¢/2 matching edges) and rearranges them using assignment graphs to find a

Hamming map if one exists. Once a Hamming map f has been found, 2" x n!
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conjugate maps are computed.
After all Hamming maps from the maximum matchings have been found,

the best Hamming maps are selected based on the following criteria:
e Minimum k-constraint
e Maximum free distance

The minimum k-constraints are computed after the constrained sequences
have replaced the codewords of a base convolutional code. Realizing
that the last d-zeros do not carry any information, one of them is converted
into a “1” whenever appropriate, i.e., when the conversion does not violate
the d-constraint. In this respect, some tables have two columns LA, or LA’,
indicating that the k-constraints are computed with or without “look-ahead”,
i.e., with or without considerations of the upcoming codewords in the trellis.

The base convolutional codes of rate r, = k/(k 4+ 1) are taken from the
Table 11.1 of Lin and Costello [48]. In the tables, the generator sequences are
expressed in hexadecimal form. For instance, the best (n,k,m) = (2,1,5)
code has G(D) = [D® + D* + D + 1,D% + D* + D3 4+ D? + 1]. Its generator
sequences are go = (101011) and ¢ = (111101). These are listed as go = 2B,
g1 = 3D.

For the generator sequences of rate 2/3 and 3/4 convolutional codes, n

interleaved forms are used, instead of k X n generators. The interleaved
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generator sequence g; corresponding to output j is obtained as follows. Let

gz(]) = (gz(,]r?w 91(,]21—1’ MR gz(,]()))

be the generator sequence corresponding to input ¢z and output j. Interleave

k generators to form g;:
gi(D) = g5 (D*) + Dgi? (D¥) + --- + D*~"g{?, (D¥)

g; = ( ((2+1)k—1v9((ir2+1)k_2’ e agt()J))

4.2 DC-balanced codes

The main emphasis of research has been on the [d, k]-constrained codes.
The canonical arragement algorithm, howéver, is applicable to other classes of
constrained codes such as de-balanced codes [32], [59]. Two cases (I = 4
and [ = 6) of dc-balanced codes have been investigated. A dc-balanced
sequence u of length [ has an equal number [/2 of 1’s and 0’s. The number
Nge(1) of such sequences is equal to a binomial coefficient ( 1/12 ), yielding
for example Ny(4) = 6, Ng(6) = 20. Since each sequence has the same
parity, the degree sequence has only even degree terms.

In contrast to the [d, k]-constraint case, the degree sequence is independent
of a particular dc-balanced codeword and the test NC3 is not required for an
individual codeword. It can be shown by simple combinatorial analysis that

172 \*
its 2:-th degree equals ( ; ) , 1=0,1,...,1/2.
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Case [ =4: Ng(l) =6,k/n=1/2,k/l =1/4.

A, = (82,62,6%) = (1,4,1)

v v Yy

In this case, any set of 4 codewords arranged in any order will produce a

Hamming map. There are ( 6 ) x 4! = 360 such maps. If the complementary

4

pairs are used as matching edges, better Hamming maps could be obtained.

That is,

M = {60,61762}:{(’007@0),(”1,{’1),(7)2’732)}

= {(0011,1100),(0110,1001),(0101,1010)}

There are ( g ) = 3 such maps and each produces C3 = 8 different conju-
gate Hamming maps. The Hamming maps from this set of codewords are

tabulated in Table 4.7.
Case [ = 6: Ng(]) =20,k/n =3/4,k/l = 3/6.

A, = (82,682,862 6%) = (1,9,9,1)

vy YurYur Yy

Again the 10 complementary pairs are used as matching edges without
finding a maximum matching from the graph. In the assignment graph for
the canonical arrangement, 4-adjacent codewords are used. The results are

tabulated in Table 4.8.
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4.3 Results

Tables 4.1, 4.2, and 4.3 list [d, k]-constrained trellis codes for various values
of k when d = 1. The symbol N denotes the actual number of Hamming
maps found through the canonical arrangement algorithm.

It has been found that the k-constraint is almost nearly independent of
a particular base convolutional code chosen. This is true in most cases be-
cause good convolutional codes use codewords very evenly, i.e., each codeword
follows and is followed by any codeword including itself. Since there is no de-
pendency of k£ upon constraint length of the base convolutional codes chosen,
only the trellis resulting from the smallest constraint length is tabulated.

Similarly Tables 4.4, 4.5, and 4.6 tabulate [d = 2, k]-constrained codes.
Because this class of codes is more constrained than [d = 1, k]-constrained
case, the code rates are smaller as expected.

However, as can be seen in free distance tables, some [2, k]-constrained
codes reveal excellent free distances. For example, Tables 4.9 lists a [d =
2,k = 5(LA)), rate 1/6, and free distance 12 trellis code. Table 4.10 also
has a very good dc-balanced trellis code of rate 1/4 and free distance 14.

Tables 4.11, 4.12, and 4.13 list the trellis codes which yield the largest
free distance when d = 1. In general, the variation of the free distance for
a given constraint length is very small. This is especially true for longer
constraint length trellis codes. This fact reflects that the number of mini-

mum distance paths of convolutional codes increases exponentially with the
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constraint length. The free distance itself does not reflect the actual distance
distribution which could be more important in the determination of error
performance. In this respect, the distance distribution or profile can be a
good criterion for selecting a Hamming map.

The trellis codes in Tables 4.14 and 4.15 are obtained from conjugate
Hamming maps. It is interesting to see that a larger free distance can be
obtained by a simple rearrangement of the codewords of a Hamming map.
Of special interest are the trellis codes in Table 4.16. Each of the 4 codes
isald =1k = 4(LA),7(LA")], rate 2/6 trellis code with free distance 4,
a slightly higher distance than the best known trellis code, such as the one
in Table 4.18 or in Table 4.19, recently described by Wolf[1989] and Fer-

reira[1989], respectively.
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Table 4.1: k-constraints: d = 1,7, =1/4,N =32,90 = 7,01 = 5.

[LA/LA' [k | N(k) [vo vi v w3 |
LA 3 8 4 2 8 A
5 24 0 2 4 A
LA’ 5 8 4 2 8 A
8 24 0 2 4 A

Table 4.2: k-constraints: d = 1,7, =2/6, N = 4800,90 = D, ¢g; = 7,9, = 6.

] LA/LA/ ] k l N(k) I Vo V1 Vg V3 V4 Vs Vs V7 I
96 |24 10 08 O0A 04 12 22 2A
2304 [10 12 0A 02 24 04 08 22
2400 {00 08 04 24 02 0A 12 2A
288 24 08 04 28 02 0A 12 2A
960 (14 08 04 22 10 OA 12 20
1152 |14 20 04 12 08 O0A 24 20
2400 |00 08 04 24 02 0A 12 2A

LA

LA’

Of 00| 3| =} O v~

o
o}
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Table 4.3: k-constraints: d = 1,7, = 3/7, N = 9984, go = 115, g; = 107,
go = 033, g3 = 001.

LA/LAI k N(k‘) Vo V1 (%) Vs V4 Vs Vs V7
Vg Vg Vo Vix Uiz Vi3 Via Vis
12 4A 52 42 08 O0A 28 2A
LA - 10 14 50 54 24 04 20 44
6 | 6144 |54 0A 50 52 14 2A 10 12
44 4A 40 42 04 28 24 20
9 | 3840 |12 4A 52 42 08 O0A 28 2A
10 14 50 54 24 04 20 44
LA’ 10 | 5376 |94 44 30 4A 14 04 52 42
28 08 2A O0A 20 24 22 02
768 54 14 44 04 50 52 40 12
28 2A 20 22 4A O0A 48 02

11

Table 4.4: k-constraints: d =2,7r. =1/6, N =72,90 = 7,91 = 5.

ILA/LA' l k ]N(k) ] Vo Ui Vg U3 |
LA S5 24 08 04 10 20
8 48 00 04 10 24
LA’ 8 24 08 04 10 20
12 48 00 04 10 24

Table 4.5: k-constraints: d = 2,r, = 2/8, N = 4800,90 = D, g1 = 7,92 = 6.

[LA/LA' | k [ N(k) [vo v1 v2 wvs vy vs we 7|
L.A 6 288 [24 08 10 88 20 48 84 40
7 14512 |08 90 88 10 48 20 04 84
10| 912 |08 90 88 10 48 20 04 84
LA’ 11 | 1872 {24 04 20 48 10 83 90 40
12 ] 2016 {44 10 20 90 04 88 48 80
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Table 4.6: k-constraints: d = 2,7, = 3/10, N = 38400,
go = 115, g1 = 107, g2 = 033, g5 = 001.

TA/LA’ | k | N(k) .%o ©1 vz vs vs vs ve

Vg V9 Vo Vir V12 Uiz V14 VUis

248 108 204 224 110 100 124 120
210 008 244 088 010 090 084 020
248 108 204 224 110 100 124 120
210 008 244 088 010 090 084 020

LA 8 38400

LA’ 14 | 38400

Table 4.7: k-constraints: (1,1/2) = (4,2),r. =1/4,N = 24,90 = 7,1 = 5.

l k l N(k‘) l Vo VY1 VU3 VU3 I
2 3 5 6 9 A
4 16 3 6 9 C

Table 4.8: k-constraints: ({,[/2) = (6,3),r. = 3/6, N = 1152,
go = 115, ¢, = 107, g, = 033, g3 = 001.

k N(k) Vo Vi1 V2 VU3 Vg Vs Ve U7
Vg Vg V1o Vi1 V12 Vi3 VUi4 VUis
4| 768 ob 1C 25 15 29 19 31 13
2C OE 26 16 2A 1A 23 32
07 16 23 13 25 15 31 19
26 O0E 2A 1A 2C 1C 29 38
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Table 4.9: Free distances: d = 2,7, = 1/8,
best = (08,04, 10, 20); worst = (00,04,10,24).

L9 | g |d7 [ d5 |

7 5 |5 |65
F | B|®6 6
19 |17 | 7 1107
3D |2B| 8 |12 |8

Table 4.10: Free distances: de,r. = 1/4, best = (5,6,9,A).

L g0 | o1 | df [ df |
75510
F B |6 |12
19 (17 | 7 |14

Table 4.11: Free distances: r, = 1/2,90 = 7,41 = 5,d} = 5.

] constraint ! Te I Vo U1 vy U | d5 l
d=1 /414 2 8 A6
/410 2 4 A5

Table 4.12: Free distances: r, = 2/3,90 = D, g1 = 7,92 = 6,d} = 3.

I constraint I T I Vo Vi Vz U3 V4 Vs Ug Ut l d$ I
d=1 2/6 |14 08 04 22 10 O0A 12 20| 4
2/6 110 24 0A 08 12 04 02 22

3
J—o |2/8]4% 10 20 90 04 88 48 80| 4
/308 90 88 10 43 20 04 84] 3
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Table 4.13: Free distances: r, = 3/4, g0 = 115, ¢, = 107, g, = 033,
g3 =001,d% = 4.

Vo V1 (% V3 Vg4 Vs Vs (%4
Vs Vg Vo V11 Vi2 Vi3 Via Uis

constraint | 7.

d—1 |37 |20 _2¢ 0A 08 22 10 2A 12
44 04 4A 48 54 50 42 52
i—2 |3/10|248 108 204 224 110 100 124 120
210 008 244 083 010 090 084 020
e 36 |0D_1C_ 25 15 20 19 31 13

2C 0B 26 16 2A 1A 23 32

Table 4.14: Best conjugate maps:
[d=1,k=(3,5),re=1/4,90=T,01 = 5ad1fi = 3.

IV Ivo V1 U2 U3ld}‘|
Wwi4 8 2 A6
Vil4 2 8 A|S
V|8 4 A 216
V3|2 4 A 816
Val2 A 4 815
V18 A 4 2135
Ve |A 2 8 415
V: 1A 8 2 415
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Table 4.15: Best conjugate maps: dc, ({,1/2) = (4,2),
9o = 7,91 :5ad7:fl =5k=2.

l 14 | Vg V1 Yy Vs I d?’
Vo
Vi
Va
Vs
Vi
Vs
Ve
Vr

B O U O O Ut

D P O D O P Ut
WUt P ot oy ©

Table 4.16: Best trellis: d =1,2/6,90 = D, g1 = 7,92 = 6,d} = 3.

[ V Jw v ws ws wy wvs we vr |LA|LA'[d5 |
Map1 |24 08 04 28 10 22 12 2A| 4 7 4
Map2 |10 22 12 2A 14 08 04 28| 4 7 4
Map3 |10 22 14 2A 12 08 04 28| 4 7 4
Map4 |04 28 24 2A 12 08 10 22| 4 7 4

Table 4.17: Hamming map 1: [d = 1,k = (4,7)],r. = 2/6,d} = 4.

[State | So(00) S5:(01) S;(10) So(11) |

So 100100 100010 001010 010010
Sy 101010 010000 000100 001000
Sa 000100 001000 101010 010000
Ss3 001010 010010 100100 100010
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Table 4.18: Wolf, 1989: [d = 1,k = T],r. = 2/6,d} = 3.

| State ’ S() 5’1 SQ 53 I
So 100010 010000 010100 001000
S1 101000 101010 100010 010000
S 100106 000100 101000 101010
Ss 010100 001000 100100 000100

Table 4.19: Ferreira, 1988: r, = 1/2,(g0,91) = (7,5);

Ty = 2/37 (90,91,92) = (D>7’6);
7o = 3/4,(go, g1, 92, g3) = (115,107,033, 001).

constraint | r, | Y0 Y1 Y2 Us U4 Us Us U7 dj% d;
Vg Vg V1o V11 Vi2 Vi3 V4 VUis LA | LAY
/414 2 8 A 51637 5
2/6 04 02 08 O0A 24 22 28 2A}|3 |3 5 7
d=1 2/6 04 10 22 12 24 08 2A O0A| 3 | 3 4 7
24 08 10 48 20 28 50 52
1/4]5 9 A 6 2
26 29 2A 2C 32 25 34 31
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Chapter 5

Conclusions

Runlength limited (RLL) codes, commonly known as [d, k]-constrained
codes, where d is the minimum run of zeroes and & the maximum, are rou-
tinely used in magnetic and optical digital storage systems. Traditional RLL
codes in use today invariably reveal unity free distances, leaving the task of
combatting errors to separate error control codes. The combined construc-
tion of error correction and RLL code has received attention recently.

Here a graph search technique motivated by the work of Ferreira to con-
struct combined FEC/RLL codes has been investigated. Ferreira’s Hamming
map is viewed as a subgraph called mazimum matching embedded in a dis-
tance graph and graph algorithms are exploited to find all Hamming maps if
they exist. The graph search algorithm chooses a set of 2" constrained code-
words at a time represented by matching edges of the distance graph, and
rearranges them into a Hamming map by a combinatorial technique termed
the canonical ordering algorithm. The canonical ordering algorithm has been

used to find good Hamming maps under which base convolutional codes can
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be translated into [d, k]-constrained or dc-balanced trellis codes with free dis-
tances, equal to or greater than those of the base convolutional codes. One
of the key ideas is to make the constrained distance matrix cross-symmetric
by an operation termed the weight balancing. From this balanced matrix,
the adjacency relationships between codewords are determined. The ac-
tual assignment (arrangement) of codeword pairs are made with the aid of a
bipartite graph termed an assignment graph, which is constructed based
on the adjacency consideration.

The major contributions of the research can be summarized as follows:

CODE DESIGN

e Development of a systematic way for constrained error control
codes design.

e Addition of new RLL/FEC and DC/FEC codes.

e Better understanding of Hamming maps.

GRAPH THEORY

e An algorithm which determines all maximum matchings of a general
graph using the depth-first search technique.

e An algorithm which unscrambles a set of constrained sequences into a
Hamming map.

This research has entailed a depth first search algorithm for listing all

maximum matchings of a graph, bipartite or nonbipartite. The problem of
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listing all maximum matchings is of interest in its own right. Also an analytic
way of finding conjugate maps from a Hamming map has been developed.

The determination of a Hamming map may be approached differently. One
approach could be to keep refining a given maximum matching rather than
choosing the matchings independently. That is, when a given maximum
matching fails to produce a Hamming map, removing and/or adding another
vertex pair(s) could be tried in such a way that the adjusted matching is
better than the initial matching.

Another approach might be to examine a matching of Hamming map size
2™, instead of a maximum matching whose size is larger than 2" in general.
This would produce many more matchings to be evaluated. Because a match-
ing of Hamming map size may not be a subset of a maximum matching, some
Hamming maps might be missed. It is expected, however, that these maps
would produce similar trellis codes to those presented since the variation of
the parameters—*k and d$—has been found to be small. In this regard, this
approach would be of interest for completeness only.

The other task might be to use the distance profile of the trellis codes as a
selection criterion in addition to the k-constraint and free distance. Although
the free distances resulting from various Hamming maps are narrowly dis-
tributed, the distance profiles may have a great variation since it has been
observed that many elements of the constrained distance matrix oversatisfy

the preserving inequality.
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Another important problem is a complexity analysis of the canonical algo-
rithms and the depth first search algorithms for listing maximum matchings.
This should be of theoretical interest as it would serve as a formal basis in

measuring algorithm efficiency.
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Appendix A: Proof of Theorem 2.1

Let C(I) denote the set of d-constrained sequences of length [ and have

been partitioned as {Cy, Ci, ..., Cr } according to sequénce weight.
Theorem 2.1 (n-set) If C; is an n-set for some 7 > 0, then so is Ciy;.

Proof The proof is based on d = 1. Extension to other values of d is trivial.
Suppose C; is an n-set, ¢ > 0. Then every v € C; is an n-sequence, and by
definition wg(v) = 1.

Let u be a sequence in C;41. Then wy(u) = ¢+ 1. If a ‘1’ is removed
from u, the sequence u becomes a sequence of weight . Therefore after a
cyclic shift operation on the bits, u can be written as u = 10v, where v is a
sequence of length [ — 2 and the augmented sequence w = 00v is in C;.

Let A, and A, denote the degree sequence of v and w, respectively. The
proof is completed by showing that u is an n-sequence if w is an n-sequence.
That is, the sequence of the accumulated degree sum of A, satisfies the
inequality of NC3 provided that A, does.

Recalling the recursive formula 2.1 for Ny(!), each sequence u of C(I) can
be obtained by adding a 0 to a sequence of C({—1) or adding 10 to a sequence
of C(I—2). Thus the degree sequence of u € C(I) can be expressed as a sum

of two degree sequences:

d(w, C(1)) = d(00v, C(1)) = {0 + d(0v, C(I — 1))} + {1 + d(v,C(I — 2))} (.1)
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d(w, C(1)) = d(10v,C(1)) = {1 + d(0v, C(I — 1))} + {0 + d(v, C(1 — 2))} (.2)

where d(z,C') denotes the degree sequence of z in a set C.

Assume that d(v,C(l —2)) = (do, ds,...,d!

'), where d/_ is the maximum

degree of v. For simplicity of notation assume, with no loss of generality,

that m’ = 4. Then it is obvious that
d(O’U,C(l— 1)) = (do,d]_,dg,dg,d4) +A, (3)

where A = (A, Az, Az, Ay, As) is a nonnegative sequence. It follows from

the above equations that

A, = d(00v,C(1)) :

do dq dy ds dy
Al AQ Aa A4 AS
do dy dy d3 dy
do do+dy di+dy do+ds ds+dy dy
AN Ag Aj Ay As
Accumulated sum : ds + As
: d3+2ds+ As+ As

d2+2d3+2d4+A3+A4+A5
di +2dy +2d3 + 2ds + Do+ Az + Ay + As

A, = d(10v,C(1)) :

do d; dy ds d4
Ay AV Aj Ay As
do dy dy ds ds
do do+dy di+dy do+ds ds+ds dy
AV AV} Az Dy As
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Accumulated sum : dy+ Ay + As
ds +2dg + Az + Ay + As
dy +2ds +2ds + Ao+ Az + Ay + As
di +2dy + 2d3 + 2ds + Ay + Ay + Az + Ay + Aj

By a direct term by term comparison, it follows that 10v has a better degree
sequence than 00v. That is, u = 10v is an n-sequence if w = 00v is. This is

true for any u of C;y;. Therefore when C; is an n-set, Ciyq is also an n-set.
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