CYTOLOGICAI STODIES IN THE ABGILOPS

AND IN CEFRTAIN RUST FUNGI

by
 ROBERT CAAERON MCGIINIS

A Thesis
 Submitted to the Faculty of Graduate Studies and Research
 In Partial Fulfilment of the Requirements
 for the Degree of
 DOCTOR OF PHILOSOPHY

THE UNIVEPSITY OF MANITOBA
April 1954

Grateful acknowledgments are made to Dr. Ro F. Peterson, Officer-in-Charge, for the facilities provided by the Iaboratory of Cereal Breeding, Winnipeg, and for his guidance throughout this study; to Professor I. H. Shebeski, Department of Plant Science, University of Manitoba, for helpful suggestions in the preparation of the manuscript; to Drs. T. Johnson and B. Peturson, and to Mr. A. M. Brown, Laboratory of Plant Pathology, Minnipeg, for supplying the rust sporidia; and to Mr. W. E. Clark, Leboratory of Plant Pathology, Winnipeg, for the photographic plates.
by \mathbb{R}. C. McGinnis

ABSTRACT

PART I

A number of intergeneric and intrageneric F_{1} hybrids involving species of Triticum and Aegilops were studied cytologically at metaphase I of meiosis to determine the genomes present in the hexaploid Ae juvenalis (Thell.) Eig. The amount and kind of pairing exhibited was employed in establishing genome relationships. It was concluded that Ae juvenalis has the D genome of Ae Squarrosa I. only slightly altered from the D of I. aestivum I. In addition there was evidence that the C^{u} genome of Ae umbellulata Zhuk. is also present in Ae. juvenalis. The third genome was not determined. It was shown that Ae juvenalis carries one reciprocal translocation and that one of the chromosomes involved is probably located in the D genome.

The genomes of Ae. Variabilis Eig $\left(C^{u_{S}}{ }^{v}\right)$ appeared to be more closely related to each other than their genome symbols would indicate. In all crosses involving Ae variabilis a higher pairing frequency was observed than when other tetraploid species were used.

PADT II

Germinating sporidia of five species of the Uredinales were examined cytologically at mitosis to determine theix chromosome numbers. Studies at metaphase showed a haploid number of six chromosomes for

Puccinia graminis Pers. and three for P. coronata Corda. Iess clearly defined were the chromosomes of P. minussensis Thum., P. helianthi schwo and Melampsora lini (Pers.) Lev., but their haploid numbers appeared to be $n=3,6-8$, and 4 , respectively.

Prophase chromosomes of P. graminis were observed to be united to form a continuous chain. At metaphase, what were apparently residual terminal attractions were observed, the six chromosomes appearing as three loose pairs.

Evidence for the existence of two polyploid series in the Uredinales with basic chromosome numbers of three and two or four is presented and discussed.
Page
PART I
INTRODUCTION 1
REVIETV OF LITERATUPE 2
MATERTALS AND METHODS 5
Parent Species 5
F_{1} Hybrids 5
Cytological Techniques 6
RESULTS 8
DISCUSSION AND CONCIUSIONS 21
Significance of Pairing 21
Paiping in the Hybrids under study 22
The Effect of the Reciprocal Translocation 26
Future Investigations 28
PAPT II
INTRODUCTION 29
REVIEN OF LITERAIURT 29
MATPETALS AND METHODS 30
PESULIS 33
Chromosome Studies of Puccinia graminis 33
Chromosome Studies of Puccinia coronata 35
Chromosome Studies of Puccinia minussensis and P. helianthi 36
Chromosome Studies of Melampsora lini 36
DISCUSSION AND CONCIUSIONS 39
RAHERENGES 42

by R. C. McGinnis

PART I

GHNONE ANALYSIS OF AEGILOPS JUVENAIIS

INTRODUCITION

The genus Aegilops has long proven to be of interest from a eytological, genetical and phylogenetical standpoint since it is in the same sub-tribe -m Triticinae - as Triticum. It has contributed the D and possibly the B genome of comon wheat and has a similar polyploid series to Triticum with species of $n=7,14$ and 21. chromosomes. Twenty-two species are known in which five genomes have been identified. Each of these genomes is considered an entity homologous or homoeologous with the chromosomes of a particular diploid species. Belationships are based largely on the amount and kind of peiring found at meiosis in interspecific and intergeneric F_{1} hybrids.

Genome Pomulae are know for 20 of the Aegilops species. Only in the species Ae. juvenalis (Thell.) Eig and Ae sharonensis Eig is this knowledge lacking. The present study was conducted on the hexaploid Ae. juvenalis in an attempt to determine its genomic constitution.

A complete review of the literature on genome analyses In the Aegilops is too extensive to be presented here in its entirety. Only the literature pertinent to the species used in this study will be cited.

Cytological data on Ae. juvenalis are almost laeking. on a morphological and taxonomical basis this species has been placed in the section Pachystachys by previous investigators (6, 32). This section also includes Ae. squarrosa which is now known to have the D genome (18, 26, 27).

In the hybrids of Ae juvenalis x Agropyron intermedium, Favorsky (7) observed 12-14 pairs, while in the cross Ae. variabilis x A. intermedium he found llol4 pairs. This indicates that these two Aegilops species have a similar relationship to A- intermedium. Kostoff (24) points out that some of these bivalents probably result from autosyndetic pairing within the Agropyron parent and possibly also from the Aegilops, but that it is not unlikely that part of the pairing is the result of allosyndesis.

Ae. triuncialis has been investigated very extensively. In 1929 Kihara (14) reported $1-7$ bivalents (most frequently 4 or 5) in the F_{1} hybrid between Ae. triuncialis and T dicoccume when crossed with T. durum, $0-6$ bivalents were noted. Percival (30) in the cross Ae triuncialis x T. durum observed I-6 bivalents, but in erosses with other tetraploid wheat species, only l-3 bivalents. In the intergeneric cross Ae。triuncialis x T. aestivum, Kihara (14) reported a range of $0-5$ bivalents with most commonly 2 or 3 . For
the same cross Percival (30) observed l-5 pairs while Aase (1) found 0ヵ3. These workers concluded that there was no appreciable homology between the chromosomes of Ae triuncialis and species of triticum. In 1940 Kihara (17) proposed the genomes $C C^{\text {U }}$ for Ae. triuncialis based on the pairing observed in a number of interspecific crosses. Additional evidence was later presented by Kihara and Kondo (22) when they crossed Ae. triuncialis with the synthetic amphiploid Ae. caudata (C) x Ae. umbellulata $\left(C^{\mathrm{u}}\right.$) and observed a high frequency of normal pairing.

Ae. ovata has also been studied extensively in combination with many different wheat species (1, 3, 4, 5, 8, 11, 12, 14, 15, 21, 23, 29, 30, 31). In general for all crosses concerned, the number of bivalents varied from 0 to 7 per microsporocyte with 0 or 1 bivalent being most frequent. The conclusion reached was that no homology exists between the chromosomes of Ae. ovata and those of the Triticum species studied. In 1949, Kihara (20) summarized the genome analyses of most of the Aegilops species and presented the formula $c^{u} M^{\circ}$ for Ae. ovata. This formula is based largely on earlier studies of interspecific Aegilops hybrids by Kihara and Lilienfeld (23).

Ae. Variabilis has not been studied as extensively as the above two species. In 1947, Kihara (19) presented evidence from interspecific crosses showing that Ae. variabilis has the genomes $C^{u}{ }^{\nabla}{ }^{\nabla}$. The C^{u} genome was purported to have come from Ae. umbellulata as did the C^{u} of Ae. triuncialis and Ae. ovata. The S^{∇} genome was believed to have been derived originally from the s of Ae. speltoides but altered somewhat during evolutionary processes.

Several workers have reported on the meiotic behaviour in crosses involving Ae ventricosa and wheat species $(10,19,20,23$, 25, 30, 34, 37). These investigations have shown that Ae ventricosa does not carry the A or B genomes of Triticum but that one set of chromosomes is closely related to the D genome of I. aestivum. Kihara (20) has proposed the genome formula DM^{V} for Ae. Ventricosa based mainly on the pairing in crosses with Ae cylindrica, Ae ovata and $I_{\text {a }}$ aestivum $(9,14,20,23,30,34)$.

That the direction in which the cross is made has no effect on the amount of pairing in the hybrid was proven quite conclusively by Kihara (14). However, Kihara's study indicated that there were seasonal variations in the number of bivalents formed. Even eariier, Bleier (4) suggested that environment might influence pairing but had no experimental prooi to support this idea. Summarizing the work of previous investigations, Thompson (38) pointed out that eaution must be exercised in drawing inferences from pairing respecting homologies since changes in pairing frequencies can occur as a result of external conditions. More recently Sears (33) has demonstrated that the maximum pairing of which a hybrid is capable may not be expressed in certain seasons, leading to variations in pairing from year to year.

Parent Species

Three species of Triticum and five of Aegilops were used for making crosses. These parental species are listed below with their chromosome numbers and genome formulae.

2n
Chrom. No. Genomies

Triticum aestivum L. var. Redman	42	ABD*
Triticum durum Desf. var. Carleton	28	$A B$
Triticum dicoccum Schrank var. Khapli	28	$A B$
Ae. juvenalis (Thell.) Eig [Aegilops turcomanica Roshev.]	42	?
Aegilops variabilis Eig	28	$c^{u} S^{\text {V }}$
Aegilops triuncialis L .	28	$\mathrm{c}^{\mathrm{u}} \mathrm{C}$
Aegilops ovata I .	28	$\mathrm{CO}^{\mathrm{M}} \mathrm{M}^{0}$
Aegilops ventricosa Tausch	28	$\mathrm{DM}^{\text {V }}$

F_{1} Hybrids

A total of 13 interspecific and intergeneric hybrids were obtained from crosses involving the above parent species. These were as follows:

Ae. juvenalis X T. aestivum

[^0]

Cytological Techniques

Whole spikes of parents and hybrids were collected and fixed in Carnoy's solution A. for cytological examination of pollen mother cells. Fixed material was stored in the refrigerator until cytological examination could be made.

Cytological investigations were conducted on all parent species and F_{I} hybrids. Slides were prepared of pollen mother cells at metaphase I of meiosis using the aceto-carmine smear method described by Smith (36). Wherever possible, chromosome counts were made on different florets on a spike as well as on different spikes. An attempt was made to study at least 200 pollen mother cells of each hybrid. In cases where material was limited, all available cells were counted. A record was kept of the number of univalents, bivalents and multiple associations for each cell. In addition, attention was paid to the type of pairing exhibited -- whether the bivalents were open or closed.

Smear preparations were kept semi-permanent up to three
months by ringing the cover-slip with a mixture of gum-mastic and parafin. Slides mere then made permanent by the tertiary-butyl alcohol method (36).

Cytological examinations were made on a Leitz Ortholux microscope at a magnification of 600 dianeters. Photomicrogrephs were taken with a Leitz MAKAM camera on Eastman's Contrast Process Panchromatic film at 400 diameters.

RESULTS

All parent species studied with the exception or $A \in$. juvenalis showed almost completely normal chromosome pairing at metaphase I of meiosis (Figs. I, 2, 4, 5). In Ae. juvenalis, however, a reciprocal translocation was present, resulting in a chain (rarely a ring) of four in about 15% of the pollen mother cells examined (Fig. 3). The translocation would be manifested in the F hybrids as an open bivalent or multivalent depending upon the chromosome homology between the species in the cross. Ae. ventricosa exhibited a tendency toward asynapsis in a low percentage of cells where up to four univalents were present.

Pairing in the three intrageneric Triticum crosses proved to be as expected. In the cross T. aestivum X. dicoccum, there were usually $14^{I I_{r} I}$ at metaphase I with occasionally $13^{I I} 9^{I}$ or $12^{I I} 11^{I}$. Similar pairing was observed in $\xrightarrow{2}$ aestivum x. durum hybrids. In hybrids of T . dicoccum x . durum, most commonly $14^{I I}$ occurred (Fig. 6). A low frequency of cells had up to four univalents. These results are in accordance with numerous workers (1, 2, 16, 39, 40). The data concerning the pairing in the remaining 10 interspecific and intergeneric F_{1} hybrids involving Aegilops and Triticum are presented in Tables I to X. In these tables the average number of bivalent associations is based on the premise of Kihara (13) that a trivalent is equivalent to one association and a quadrivalent to two associations. In Figs. 7nj2, typical metaphase I plates for certain of these hybrids can be seen.

In order to make a direet comparison of the pairing irequencies observed in the different hybrids, the pertinent data from Tables I to X are summarized in Table XI. Standard errors of mean number of bivalents for each hybrid are also given in Table XI. In Table XII the t values for differences between means are presented.

TABLE I

Chromosome Associations in the hybrid Ae juvenalis x $\underset{\text { S }}{ }$ aestivum

TABLE II

Chromosome Associations in the hybrid Ae juvenalis x T. durum

Chromosome Associations in the hybrid Ae. juvenalis x Ae. variabilis

Number of				Tumber	ercentage
Univalents	Bivalents	Trivalents	Quadrivalents	of Cells	of Cells
21	7			1	0.48
19	8			3	1.45
17	9			10	4.83
15	10			11	5.31
13	11			15	7.25
11	12			7	3.38
9	13			4	1.93
7	14			1	0.48
3	16			1	0.48
20	6	I		1	0.48
18	7	1		2	0.97
16	8	1		17	8.27
14	9	1		24	11.59
12	10	1		16	7.73
10	11	1		9	4.35
8	12	1		9	4.35
6	13	1		1	0.48
4	14	1		1	0.48
17	6	2		3	1.45
15	7	2		4	1.93
13	8	2		15	7.25
11	9	2		13	6.28
9	10	2		12	5.80
7	11	2		1	0.48
5	12	2		2	0.97
10	8	3		4	1.93
6	10	3		1	0.48
13	9		1	2	0.97
11	10		1	3	1.45
9	11		1	1	0.48
7	12		1	1	0.48
16	6	1	1	2	0.97
12	8	1	1	1	0.48
10	9	1	1	1	0.48
8	10	1	1	1	0.48
4	12	1	1	1	0.48
15	5	2	1	1	0.48
11	7	2	1	1	0.48
9	8	2	1	1	0.48
7	9	2	1	1	0.48
5	10	2	1	1	0.48
8	7	3	1	1	0.48
Total 2595	1982	215	19	207	99.95
$\begin{aligned} & \text { Average } 12.48 \\ & \text { per cell } \end{aligned}$	9.53	1.03	0.09		

Average number of bivalent associations $=10.74$
Type of pairing - usually 3 and occasionally up to

TABLE IV

Chromosome Associations in the hybrid Ae juvenalis X Ae ovata

Number of				Number Percentageof Cells of cells	
Univalents	Bivalents	Trivalents	Quadrjvalents		
23	6			1	0.49
21	7			13	6.37
19	8			15	7.35
17	9			20	9.80
15	10			12	5.88
13	11			3	1.47
11	12			1	0.49
22	5	1		2	0.98
20	6	1		9	4.41
18	7	1		20	9.80
16	8	1		29	14.22
14	9	1		8	3.92
21	4	2		1	0.49
19	5	2		8	3.92
17	6	2		10	4.90
15	7	2		16	7.84
13	8	2		8	3.92
11	9	2		4	1.96
16	5	3		3	1.47
14	6	3		1	0.49
12	7	3		2	0.98
10	8	3		1	0.49
15	4	4		2	0.98
13	5	4		1	0.49
21	5		1	1	0.49
19	6		1	3	1.47
17	7		1	1	0.49
15	8		1	2	0.98
20	4	1	1	1	0.49
16	6	1	1	2	0.98
14	7	1	1	2	0.98
17	4	2	1	1	0.49
15	5	2	1	1	0.49
Total 3418	1527	204	14	204	99.97
$\text { Average } 16.76$ per Cell	7.49	1.00	0.07		
Average	umber of	valent as	iations $=8.63$		
Type or	pairing -	sually $2-3$ ivalents pe	d occasionall cell	4 closed	

TABIE V
Chromosome Associations in the hybrid Ae. juvenalis x Ae. ventricosa

Number of				Number	Percentage
Univalents	Bivalents	Trivalents	Quadrivalents	of Cells	of Cells
31	2			2	3.13
29	3			7	10.94
27	4			3	4.69
25	5			6	9.37
23	6			6	9.37
21	7			6	9.37
19	8			5	7.81
17	9			2	3.13
28	2	1		1	1.56
26	3	1		2	3.13
24	4	1		4	6.25
22	5	1		3	4.69
20	6	1		2	3.13
18	7	1		3	4.69
16	8	1		2	3.13
23	3	2		2	3.13
19	5	2		1	1.56
17	6	2		2	3.13
23	4		1	2	3.13
19	6		1	1	1.56
17	7		1	1	1.56
20	4	1	1	1	1.56
1 1458	339	28	5	64	100.02
$\begin{aligned} & \text { rage } 22.78 \\ & \text { cell } \end{aligned}$	5.30	0.44	0.08		

Average number of bivalent associations $=5.90$
Type of pairing m frequently $2-3$ closed bivalents per cell

TABIE VI

Chromosome Associations in the hybrid T. aestivum x Ae ovata

Number of			Number of	Percentage
Univalents	Bivalents	Trivalents	Cells	of Cells
33	1		6	7.59
31	2		24	30.38
29	3		22	27.85
27	4		9	11.39
25	5		6	7.59
30	1	1	3	3.80
28	2	1	5	6.33
26	3	1	2	2.53
24	4	1	2	2.53
2303	213	12	79	99.99

Average $29.15 \quad 2.70 \quad 0.15$ per cell

Average number of bivalent associations $=2.85$
Type of pairing - all open bivalents

TABLE VII

Chromosome Associations in the hybrid I. dicoccum X Ae ovata

$\frac{\text { Number of }}{}$	Number Onivalents	Pivalents Of Cells	Of Cells of
28	0	8	8.25
26	1	53	54.64
24	2	28	28.87
22	3	4	4.12
20	4	3	3.09
18	5	1	1.03
Total 2440	138	97	100.00

Average $25.16 \quad 1.42$
per cell

Average number of bivalent associations $=1.42$
Type of pairing - all open bivalents

TABIE VIII
Chromosome Associations in the hybrid T. aestivum X Ae. variabilis

	Number of		Number	Percentage
Univalents	Bivalents	Trivalents	of cells	of Cells
31	2		2	0.53
29	3		6	1.58
27	4		31	8.16
25	5		39	10.26
23	6		71	18.68
21	7		60	15.79
19	8		32	8.42
17	9		11	2.89
15	10		4	1.05
13	11		1	0.26
30	1	1	1	0.26
26	3	1	4	1.05
24	4	1	13	3.42
22	5	1	30	7.89
20	6	1	27	7.11
18	7	1	20	5.26
16	8	1	6	1.58
14	9	1	3	0.79
23	3	2	2	0.53
21	4	2	4	1.05
19	5	2	9	2.37
17	6	2	2	0.53
16	5	3	1	0.26
14	6	3	1	0.26
Total 8318	2275	144	380	99.98
$\begin{aligned} & \text { Average } 21.89 \\ & \text { per cell } \end{aligned}$	5.99	0.38		

Average number of bivalent associations $=6.37$
Type of pairing - occasionally one closed bivalent per cell

TABLE IX
Chromosome Associations in the hybrid T. aestivum X Ae. triuncialis

Number of				Number	Percentage
Univalents	Bivalents	Trivalents	Quadrivalents	of cells	of cells
33	1			2	0.81
31	2			1	0.40
29	3			23	9.31
27	4			46	18.62
25	5			42	17.00
23	6			47	19.03
21	7			23	9.31
19	8			13	5.26
17	9			3	1.21
15	10			1	0.40
11	12			1	0.40
26	3	1		6	2.43
24	4	1		10	4.05
22	5	1		8	3.24
20	6	1		6	2.43
18	7	1		4	1.62
21	4	2		1	0.40
25	3		1	3	1.21
23	4		1	2	0.81
21	5		1	1	0.40
19	6		1	1	0.40
15	8		1	1	0.40
24	2	1	1	1	0.40
22	3	1	1	1	0.40
15951	1270	38	10	247	99.94
$\begin{aligned} & \text { rage } 24.09 \\ & \text { cell } \end{aligned}$	5.14	0.15	0.04		

Average number of bivalent associations $=5.37$
Type of pairing - rarely 1 closed bivalent per cell

TABLE X
Chromosome Associations in the hybrid Ae. triuncialis X T. dicoccum

	Number of		Number	Percentage
Univalents	Bivalents	Trivalents	of cells	of Cells
22	3		2	2.67
20	4		9	12.00
18	5		19	25.33
16	6		12	16.00
14	7		8	10.67
12	8		4	5.33
10	9		3	4.00
8	10		1	1.33
19	3	1	1	1.33
17	4	1	5	6.67
15	5	1	7	9.33
13	6	1	2	2.67
11	7	1	2	2.67
Total 1213	418	17	75	100.00
$\begin{aligned} & \text { Average } 16.17 \\ & \text { per cell } \end{aligned}$	5.57	0.23		

Average number of bivalent associations $=5.80$
Type of pairing - all open bivalents

TABLE XI

Summary of Data on Pairing Frequencies in the F_{1} Hybrids

[^1]TABLE XII - t Values for Differences of Mean Number of Bivalents in Pollen Mother Cells of F_{1} hybrids.

Paining at metaphase I in T_{1} hybrids.

Fig. 8. Ae juvenalis x. durm. Bineq.

Piss 10 and 12 at 400 x ; all others et 600 x

DISCUSSION AND CONCLUSIONS

Significance of Pairing

Since there is apparently considerable homoeology between a great number of species within the Triticinae, it is difficult to determine accurately the nature of the pairing observed in interspecific and intergeneric hybrids. Even within a haploid where normally no synaptic mates are present, usually some pairing is observed. This may be accounted for by inter or intragenomic homoeology. O"Mara (28) points out "the possibility also exists that some seemingly homologous association between non-homologous chromosomes may actually be an expression of a tendency to rendom and irrelevant pairing which manifests itself when a true homology can not be realized." Thus it seems that pairing can be intergenomic (either autosyndetic or allosyndetic), intragenomic or irrelevant. There seems little doubt that where closed bivalents are regularly observed, the pairing is much more discrete and therefore more apt to be between chromosomes of a fairly close relationship. Furthermore, where one or more chiasmata can be clearly seen, this should be indicative of at least partial homology. of lesser significance probably, is the occurrence of stretched open bivalents where the chiasmata cannot be seen. There appears to be some evidence in this study to indicate that chromosomes can unite end-to-end merely by strong terminal attractions (Fig. Il). At metaphase the united regions stretch to form a tapered end, typical of an open bivalent but with no actual chiasma visible. Such cases can hardy be considered as true bivalents but could be a type of secondary
pairing which may or may not be an indication of segmental homology or gene specificity.

As a basis for the genome homologies to be established from this study, the following tenets should apply:

1. Where closed bivalents occur regularly, true homology must exist.
2. Up to three or four open bivalents may be accounted for through autosyndetic or intragenomic pairing.
3. In hybrids involving Ae. juvenalis, one pair may occur as a result of the reciprocal translocation present in the juvenalis parent. This pair could be homologous to one or two chromosomes of the opposite parent and hence may or may not be a true indication of intergenomic homology.
4. There seven or more pairs occur in a high frequency of cells some or all chromosomes of a genome are likely to be homologous.

Pairing in the Hybrids Under Study

In the cross Ae juvenalis X T. aestivum (Table I), the range in bivalents per cell was from 4 to 12 with an average of 7.67 as summarized in Table XI. In these cells there were frequently up to 4 closed bivalents. From these data it is concluded that the above species have one genome in common. Since pairing between 7 chromosomes of the two constituent species was not always complete and regular, it must be assumed that some chromosomal changes have occurred within each species during their evolution.

These changes must prevent complete compatibility in pairing at the present time.

On the basis of the juvenalis-aestivum cross alone, it can be hypothesized that Ae. juvenalis has either the A, B or D genome in its chromosome complement, but the actual genome involved cannot be determined. However, when Ae. juvenalis was crossed with T. durum which has only the A and B genomes, the average bivalent frequency was 3.72 per cell (Table II) and the range was 0 to 8 (Table XI). The amount of pairing observed in this hybrid can be easily accounted for on the basis of non-homologous association. These two species, therefore, do not have a homologous genome. Consequently, the pairing observed in the Ae. juvenalis x T. aestivum hybrid must have been between chromosomes of the D genome and this genome must be common to both species. This cytological study, therefore, supports the morphological evidence used by prevlous investigators to place juvenalis in the same section as squarrosa which has the D genome.

In the cross Ae. juvenalis \times Ae. Variabilis (Table III) there was an average of 10.74 bivalents per cell. of these, usually 3 and occasionally 4 or 5 were closed bivalents, signifying considerable allosyndetic pairing. The genomes in Ae. variabilis have been previously identified as $C^{u_{S}}{ }^{\nabla}$. From the amount and kind of pairing in the above hybrid, it is concluded that Ae. juvenalis also carries one of these genomes.

Ae. ovata has the genomes cini. Studies of Ae. juvenalis x Ae. ovata (Table IV) showed an average of 8.63 pairs per cell with
usually 2 or 3 and occasionally 4 closed bivalents per cell. These data are again indicative of a single genome cormon to the two species.

The genome homologies observed in the above two crosses can be explained in two ways. Since the C^{u} genome is common to both Ae. ovata and Ae. variabilis, it could also be the one in comnon with Ae. juvenalis. Such a hypothesis would satisfy the pairing behaviour observed. On the other hand should Ae. juvenalis contain S^{V} and M^{0}, the pairing in the hybrids could be equally as well reconciled. On the basis of morphology, however, the former explanation would seem more valid. Furthermore, the probability of choosing two species out of the 22 available for crossing which would reveal the S^{∇} and M°, is very low. It therefore seems more likely that Ae. juvenalis contains the C^{u} genome.

Pairing in Ae. juvenalis x Ae. ventricosa (Table V) proved to be the most erratic and least conclusive in the entire study. An average of 5.90 bivalents per cell was observed with frequently 2 or 3 closed ones. Kihara (20) has suggested that Ae. ventricosa carries the D genome, although earlier Kihara and Lilienfeld (23) concluded that the set is not intact. The present investigation indicates that the D genome of A. ventricosa is not completely homologous with that of Ae. juvenalis since a relatively low number of bivalents was observed. The presence of 2 or 3 closed bivalents per cell, however, is probably evidence of a close relationship between certain of the chromosomes of the \mathbb{D} genome. In this regard, Sears (34) has already demonstrated that it is not homologous to the D of T. aestitum but that it has considerable
homoeology with it.
In the hybrids T. aestivum X Ae. ovata and I . dicoccum X Ae ovata, only 2.85 and 1.42 pairs per cell, respectively, were observed (Tables VI and VII). All were open bivalents indicating no real homology between species. The larger number of pairs in the aestivum-ovata cross probably resulted from the 7 chronosomes of the D genome being available for pairing. These chromosomes were absent in the dicoccum-ovata cross.

Somewhat less easily explained is the high average frequency of bivalents (6.37) in the \underline{T} aestivum x Ae Variabilis hybrid (Table VIII)。 Since these parents reportedly do not have any genomes in common the pairing must be attributed to autosyndesis particularly since only rarely was a closed bivalent observed. Furthemore, since the aestivum-ovata hybrid gave such a low number of bivalents, the pairing in the aestivum-variabilis cross most likely resulted mainly from autosyndesis within or between the variabilis genomes. Supporting such a hypothesis is the high number of bivalents observed in Ae. juvenalis x Ae. Variabilis (10.74) as compared with the number found in Ae. juvenalis X Ae. ovata (8.63). These data would suggest that at least four variabilis chromosomes have an affinity for forming two pairs when their normal homologues are absent. In addition, it raises some doubt as to the discreteness of the genomes as formulated by Kihara. Quite possibly the C^{U} and S^{V} genomes are more closely related than their symbols would indicate.

The intergeneric crosses I. aestivum X Ae triuncialis and Ae. triuncialis π. dicoccum proved to be in somewhat the same
category as the aestivum-rariabilis cross in regard to pairing behaviour. These hybrids had 5.37 and 5.80 bivalents per cell, respectively (Tables $I X$ and X). Only rarely in the aestivum-triuncialis hybrid and never in the triuncialis-dicoccum cross was a closed bivalent observed. Since Ae. triuncialis has the genomes $C^{u} C$, the C^{u} supposedly having been modified from the C, the pairing in these hybrids may be largely attributed to homoeology between the triuncialis chromosomes. Sears (35), however, points out that the cytological and morphological data show no closer relationship of C to C^{U} than O to the IN of Ae. comosa and concluded that Kiharas formulae tend to overemphasize the closeness of this relationship. The present study indicates that some homoeology exists between certain chromosomes of Ae. triuncialis. In both crosses studied the average pairing was almost the same. If the number of Triticum chromosomes present had a major influence on the number of bivalents formed, a marked reduction in pairs would have been noted in the triuncialis-dicoccum hybrid. Such a reduction was not observed; in fact a slight increase was noted.

The Effect of the Reciprocal Translocation

Of interest in this study is the effect that the reciprocal translocation in Ae. juvenalis has on the pairing in progeny involving this species. Presumably in hybrids where no homology exists between genomes, such a translocation would be manifested as an open bivalent. In crosses where a chronosome homologous to one of the translocated chromosomes is present, a trivalent would frequently result, and
where both homologues are present, either a quadrivalent or two open bivalents would be observed.

There appears to be some evidence from the data in this study to indicate that at least one chromosome involved in the translocation is located in the D genome. In the hybrid Ae. juvenalis X T. aestivum, 7. 66 bivalents per cell were observed while in the Ae. juvenalis x. durum cross, there were 3.72 bivalents per cell. This represents a difference of only 4 bivalents per cell, between the two crosses, a relatively small difference when the amount of genome homology involved in the two crosses is considered. In the first case, there is considerable homology of the D genomes while in the latter, no homology exists. However, if one of the translocated chromosomes is located in the D genome, it would partially account for this discrepancy. In the cross with I. durum, one pair would be present as a result of the translocation whereas in the crosswith T. aestivum, its presence would not be revealed except as a multivalent. On this basis, the real difference between the two crosses with respect to bivalent formation would be 5 , which is much closer to the expected. Additional evidence that one of the translocated chromosomes is in the D genome, comes from a measure of the multivalents formed in each cross. The juvenalis-aestivum cross had an average of 0.84 multivalents per cell (Table I) while in the juvenalis-durum hybrid, only 0.27 multivalents were present (Table II)

This hypothesis also helps to explain the higher frequency of bivalents observed in the hybrids Ae. juvenalis x Ae. ovata and Ae. juvenalis X Ae. variabilis than in Ae. juvenalis X I. aestivum.

In the former hybrids, one extra pair from the translocation would usually be present since neither of the tetraploid Aegilops species have the D genome. Of course such a hypothesis also precludes the possibility that either of the translocated chromosomes belongs to the C^{v} genome.

Future Investigations

On the basis of the available data from this study, it is probable that Ae. juvenalis has the genome formula $C^{U} D^{-}$. The third genome remains undiscovered. In order to confirm the proposed genomes, and to determine the third genome, a number of other interspecific Aegilops hybrids should be studied cytologically. If the crosses are possible, it would be desirable to examine hybrids of Ae. juvenalis with a number of diploid species -- Ae. speltoides (S genome), Ae. squarrosa (D), Ae. caudata (C), Ae. umbellulata (C^{u}) and Ae. comosa (IV). Also of interest would be the cross with tetraploid Ae. crassa (DJ). The information obtained from these crosses should aid in definitely establishing the three genomes of Ae. juvenalis.

PART II

CYTOLOGICAI STUDIES OR CHROLOSOMES OF RUST HUNGI

IVITRODUCTIION

Many cytological investigations of the rust fungi have been reported over the past 70 years. However, because of the extremely small size of the chromosomes in these organisms, only limited researches dealing with chromosome number and behaviour have been made, and in most cases the authors have been in doubt as to the accuracy of their counts. A knowledge of chromosome numbers in different species is basic to a wider understanding of rust genetics and phylogeny. It should also prove of value to the taxonomist as an aid in proper classification.

TEVIEN OF LITEPATUEW

Literature pertinent to the chromosome numbers for members of the Uredinales is quite limited and is lacking entirely for the species concerned in this study. As early as 1898 attempts were made to count chromosomes in this group of organisms. In that year Juel (9), although unable to make a derinite count, was convinced that there were more than two chromosomes at nuclear fusion in Coleosporium campanulae. A few years later Holden and Harper (8) observed six to eight chromosomes in the first division nucleus of $\underline{\text { C. sonchimarvensis. }}$ More recently, observations made by Ashworth (2) disclosed a haploid number of eight to ten haploid chromosomes in C. tussilgginis, while 0live (11) reported eight pairs in meiotic studies on G. vernoniae.

A similar number has been observed in species of other genera. In Cronartium ribicola Colley (4) reported eight haploid chronosomes while Berliner and Olive (3) counted eight pairs in four species of Gymnosporangium.

Chromosome numbers have been reported for only two species of Puccinia. Allen (1) suggested a probable haploid number of five for P. malvacearum. Later, however, Savile (12) found four to be the haploid number in this species as well as in P . sorghi. In species of other genera, a count of four haploid chromosomes was reported in Uromyces fabae, U. hyperici and Melampsora bigelowii (12).

MATERIATS AND METHODS

The following species were available for cytological investigation, the host on which they were collected being in parentheses:

Puccinia graminis Pers.* (Agropyron trachycaulum (Iink) Malte)
P. coronata Corda f. sp. secalis Peturs. (Agropyron repens (L.) Beauvo)
P. minussensis Thum. (Lactuca pulchella (Pursh) DC.)
P. helianthi Schw. (Wild Helianthis tuberosus L_{0})

Melampsora lini (Pers.) Lev. (Linum usitatissimum Io $_{0}$)
Studies were made on sporidia (basidiospores) and are
therefore concerned with chromosomes in the haploid phase of these species since meiosis occurs in the promycelia of the teliospores

[^2]just prior to sporidial formation.
Cytological material was obtained in the following manner: Short sections of telia-bearing straws or leaves were soaked in water and pressed firmly against a wet blotting paper in the top of a petri dish. A thin microscope slide was placed on watermsoaked blotting paper in the bottom section of the Petri dish to collect the sporidia as they were discharged from the germinating teliospores. The petri dish was then placed in a cool chamber ($55-60^{\circ} \mathrm{F}$) over night. Under optimum conditions several thousand sporidia, at varying stages of germination, were present on a single slide.

Thin-walled sporidia were found to be well suited to smear preparations since they could be easily flattened. Furthermore, they adhered closely to the slide, making it unnecessary to coat the slide with an adhesive. No appreciable loss of spores occurred during the fixing process.

Fixing was accomplished by imnersing the slides with the sporidia, in either Carnoy's A (6:3:1) solution or acetic-alcohol (1:3). The two fixatives appeared equally suitable since staining properties were similar. Good smears were sometimes obtained simply by staining the fresh, unfixed material. The time of fixing was varied from a few hours to several days. So far as could be determined, the time did not appear to be critical; a short fixing time of 4 hours was equally as effective as a number of days.

Best staining was obtained with aceto-orcein (5), although aceto-carmine and aceto-lacmoid were tested. Of the three acetic stains, only orcein did not stain the cytoplasm deeply. Acetomcarmine
and aceto-lacmoid frequently gave no differentiation of nucleus and cytoplasm, staining all cell components a uniformly dark color. Acetomlacmoid, in addition, seemed to contract the cytoplasm usually toward the germ tube end of the cell leaving a large clear space at the opposite end. Aceto-orcein, therefore, was adopted for this study.

A smear technique patterned after Smith's (14) was employed in staining slides. After a drop or two of stain had been placed on the slide, a No. I cover glass ($22 \times 40 \mathrm{~mm}$) was added. Excess stain was soaked up with a blotter, and the slide was then carefully heated to near boiling several times. After heating, considerable pressure was applied to the cover glass to flatten the sporidia and to press out the excess stain. To prevent drying, the cover glass was ringed with a temporary seal of parafinin-gum mastic. The prepared slides were stored in a refrigerator and remained in good condition for periods of two months or more. It was frequently noted that greater contrast between the chromosomes and cytoplasm resulted after a few days storage at cold temperatures.

Attempts to make the slides permanent by the certiary-butyl alcohol method described by Smith (14) did not prove very satisfactory. Frequently critical cells were lost and it was often difficult to remove sufficient Canada balsam to regain the extreme thinness of the original preparation.

Cytological examinations were made with oil immersion usually at a magnification of 1350X, although occasionally a magnification of 2800 X gave clearer chromosome differentiation. Photomicrographs were taken on Eastman's Contrast Process Panchromatic
film with a Leitz MAKARI camera.

Because sporidia were discharged on each slide over a period of about 16 hours, it was possible to study sporidia at different stages of development from freshly discharged, ungerminated ones, to those having germ tubes up to 100 u in length. It was observed that normally the basidiospore nucleus divided before germination of the spore (Fig. 1). This behaviour is in accordance with the findings of Allen (1) and Savile (12) on several different rust species. In a low percentage of cells of P . graminis, germination was precocious and preceded nuclear division (Fig. 4). In contrast to this behaviour, it was observed that in P. coronata usually four nuclei and sometimes up to eight were present before germination occurred. This phenomenon might be explained on the basis of the sporidial discharge taking place under temperature and moisture conditions conducive for nuclear division but unfavorable for cell germination.

Chromosome Studies of Puccinia graminis

From an examination of the chromosomes during the first nuclear division a phenomenon not heretofore reported to the best of the writer's knowledge was observed. At late prophase the chromosomes appeared to be attached in such a manner as to form a continuous chain or "spireme" (Figs. 2 and 3). During the course of this study five such cells were observed, leaving little doubt that this chromosome association, if not the normal condition, must
occur frequently. It is believed that these cells were at late prophase. A random arrangement of the "spireme" throughout the cell is shown in Fig. 2. Presumably no polar forces were yet active. A slightly later prophase stage is shown in Fig. 3 where the forces of division have caused some orientation of the chromosomes to form a spiral arrangement. Limits of individual chromosomes could not be seen, the overall length of the configuration being about 14 u. Six sporidia at metaphase had deeply-stained chromosomes which were sufficiently distinct and spread so that a reliable chromosome count could be made (Fig. 4). On the basis of the evidence obtained from these cells, it is concluded that Puccinia graminis has a haploid number of six chromosomes. A study of several othez sporidia at the same stage of division gave no contradictory evidence, although a definite count of six could not be established in these cases. All six chromosomes appeared to be of uniform size at metaphase, but slight variations were noted between different cells. Neasurements showed the chromosomes to be from 0.8 u to 1.4 u in length and about $0.3 u$ to $0.5 u$ in width.

It is surprising that not more nuclei were observed at the metaphase or early anaphase stages of division. Although no actual count was made, it is estimated that only about one cell in 5,000 to 10,000 cells was at metaphase or early anaphase. Probably this stage of division is of very short duration, perhaps lasting not more than a few seconds. The low irequency of metaphases indicates the necessity of studying a large number of spores.

In Fig. 4 it can be seen that the six chromosomes actually
appear as three associations of two chromosomes. Although focusing showed the chromosomes to be clearly separated, residual terminal attractions appeared to be present. Similar conrigurations were observed in two other cells at the same stage of mitosis. Such pairing could be taken as further evidence that the prophase chromosomes normally form a chain. The presence of the three loose pairs would signify greater terminal attractions between specific pairs of chromosomes. Thus, under the forces set up during division, the more weakly paired ends of the chromosomes would break away first in the "spireme", resulting in three semi-united pairs.

Three cells were observed at late metaphase. The chromosomes had split longitudinally, remaining joined only at the medial centromeres. All six chromosomes were completely separated with no apparent pairing attractions which indicated that anaphase movement would progress in the conventional manner observed in higher plants. Unfortunately it was impossible to get well-spread anaphase preparations. Therefore, chromosome behaviour could not be studied in detail at this stage. The chromosomes at early anaphase were much reduced in size from metaphase (Fig. 5). Although a definite count could not be established at this stage, there appeared to be twelve chromosomes.

Chromosome Studies of Puccinia coronata
So far as could be determined, mitosis is normal in this rust. Thousands of cells were examined but in only 24 of them could chromosome counts be made at metaphase. Three chromosones were observed in all of these cells (Fig. 6). In addition, counts were
made at anaphase in 21 cells where the three chromosomes had split and the six daughter chromosomes were seen to be migrating to the poles (Fig. 7). Other stages of mitosis were not studied in detail. It is concluded from these observations that the haploid number of chromosomes is three in P coronata.

The chromosomes are extremely small. At metaphase they measured $0.6 u$ to $0.75 u$ in length, and about $0.4 u$ in width, while at anaphase they were of the order of $0.4 u$ to 0.5 u in each dinension.

Chromosome Studies of Puccinia minussensis and P. helianthi
In general, studies of these species proved unsatisfactory and no definite conclusions could be draw. The teliospores of both species discharged relatively few sporidia during the usual period allotted. Furthemore, there was considerable contamination from such fungi as Alternaria, and Sporobolomyces.

So far as could be determined, mitosis is normal in both rusts. Metaphase chromosomes appeared to be of the same general size and shape as those described above. They did not, however, spread sufficiently to allow an accurate count. On the basis of several observations, the haploid complement appeared to be $n=3$ for P. minussensis and $n=6$ to 8 for P helianthi.

Chromosome Studies of Melampsora lini

Somewhat more reliable results were obtained with M. lini than with the two last mentioned species. The sporidia were discharged copiously with little or no contamination. Unfortunately
though, the chromosomes were faintly stained in most cells. In a number of cells there appeared to be four chromosomes (Fig. 8) but in no case could this be concluded definitely.

A number of divisions appeared to be atypical in that at anaphase the nuclear components formed a large ring of chromatin material while stretching to opposite poles (Fig. 9). In these cases, no chromosome individuality could be seen.

Mitosis in sponidia of must fungi.
Fig. 1. Ungexminated sporidia of Puccinia helianthi with two nuclei in each cell. 850X.
Bigs. 2-5. Mitasis in Puceinia gramis. Fig. 2. Continuous chain of chromosomes at prophase. 5150x. Fig. 3. Later prophase; chromosones still united but oriented at plate in spiral amangement. 3150x. Fis. $4 . \quad \mathrm{Six}$ chromosomes at metaphase. 3150\%. Fig. 5. Eaxly anaphase showing probably 12 chronosomes. 3300.
Figs. 6 and 7. Metaphese and anaphase in Puccinia coronata showing 3 and 6 chronosomes, respectively. 1500 x .
Tigs. 8 and 9. Metaphase and anaphase, respectively, in Melampsora lini showing probably \& chronosones at metaphase and a ring fommtion at anaphase. Fig. 8 at 2200x; Fig. 9 at 3000X.

The fact that P coronata has $n=3$ chromosomes while P. graminis has $n=6$ chromosomes suggests that a polyploid series might exist in the genus Puccinia. Supporting such a hypothesis is the unusual mitotic behaviour in $\underline{P}_{\text {. graminis }}$ where three semi-united pairs were observed at metaphase. Three, being an odd number, would likely represent the basic chromosome number for the genus. on this basis, P. coronata would be a true diploid and P. graminis either an auto- or allotetraploid. Furthermore it is possible that P. coronata is a constituent species of P graminis in which case the two species would have at least one genome in common. Studies of meiotic chromosome pairing in the promycelium of the F_{1} hybrid between the two species -- if such a cross can be accomplished -- would reveal the existence of such chromosome homology.

Although ineonclusive, the haploid numbers suggested from the studies on P. minussensis ($n=3$) and P. helianthi ($n=6-8$) also support the hypothesis of polyploidy in Puccinia. p. minussensis would be a diploid and \underline{P}. helianthi a tetraploid. Possibly these species contain the same genomes as P. coronata and P. graminis, respectively, but have undergone chromosomal changes (inversions, deletions, translocations) of sufficient magnitude to give rise to a new host range.

The proposed number of four chromosomes for M. lini is in accordance with the work of Savile (12) on M. bigelowii. Since eight chromosomes were reported for species in a number of genera there is an indication of a second polyploid series in the Uredinales.

The basic number for this series could be either four or two. Although at present there is no evidence to support the idea of two as a basic number, such a possibility cannot be disregarded. Thus the species with $n=4$ chromosomes might be either diploid or tetraploid while the species with $n=8$ chromosomes might be tetraploid or octoploid. Of interest is the fact that if two is the basic number for this series and three for the second polyploid series, any chromosome constitution known at present or to be found in the future could be reconciled on the basis of autoploidy or alloploidy within or between the two series.

Besides the polyploidy speculation, this study has uncovered a perplexing situation with regard to the chromosome associations in P. graminis. The unusual spireme-like union of chromosomes at mitosis is very difficult to interpret and explain. Certainly in the light of present day cytological knowledge no completely satisfactory explanation can be advanced. The possibility of actual chiasmatic union of chromosomes can be almost excluded since crossing-over -- reported rarely in mitotic divisions in higher plants - could hardy involve all the chromosomes of the haploid rust organism. A second hypothesis might be that chromosomes in this organism form a true spireme. Early cytologists believed that a continuous thread of chromosomes or spireme wes formed prior to chromosome differentiation in prophase. More recently this theory has been considered untenable (6). It is not proposed that the old conception be revived, but it is suggested that this study presents some evidence to support the existence of a spireme stage in mitotic
prophase of this organism.
A third, and possibly the most valid hypothesis, would be that of a chromosome union effected by end-tomen attractions of the chromosomes. Although not usually associated with mitosis, terminal attractions have been observed in higher plants, particularly haploids, during meiosis, where up to five chromoscmes have been found to be associated in this manner (10, 13). Several workers $(7,13,15)$ have postulated that the attraction is due to genic or segmental homology between otherwise non-homologous chromosomes, and is an indication of a lower basic chromosome number for a species. In some respects, meiotic haploid chromosomes are like mitotic chromosomes since ordinarily there is no synapsis in either case. Consequently, it could be postulated that in P. graninis, forces of attraction occur between segments of different chromosomes resulting in a closely connected chain. Furthermore, if there is attraction between homologous or homoeologous segments of chromosomes it might be indicative of polyploidy in this organism.

A final consideration is that of the effect polyploidy in a fungus might have on pathogenicity and host range. It has been observed frequently in higher plants that polyploids are better adapted to more varied conditions than the constituent species. The possibility for a similar behaviour occurring in the lower organisms cannot be discounted.

The questions raised by this study indicate the need for further cytological studies of the rust fungi. To date, research in this field has served to raise as many questions as it has answered.

PART I

1. AASE, H. C. Gytology of Triticum, Secale, and Aegilops hybrids with reference to phylogeny. Research Studies, State College of Washington, 2: 1-60. 1930.
2. \qquad - Gytology of cereals. Botan. Rev. 1: 467-496. 1935.
3. BETL, G. D. H., and SACHS, LEO. Investigations in the Triticinae II. The cytology and fertility of intergeneric and interspecific F_{1} hybrids and their derived amphidiploids. J. Agr. Science, 43: 105-115. 1953.
4. BLEIER, H. Zytologische Untersuchungen an seltenen Getreideund Rubenbastarden. Zeit. ind. Abst. u. Vererbgsl. Supp1. 1: 447-452. 1928.
5. \qquad - Cytologie von Art und Gattungsbastarden des Getreides. Der Zuchter, 2: 12-22. 1930.
6. EIG, A. Monographische - kritische Ubersicht der Gattung Aegilops. Repert. Spec. nov. Regn. veg. Beih. 55: 1-228. 1929.
7. FAVORSKY, N. Ve Cytologicsl studies on Aegilops oouch grass hybrids. Cytology of Cultivated Plants. pp. 12-21. 1937.
8. KAGANA, F. Cytological studies on the pollen formation of the hybrids between Triticum and Aegilops. Japan. J. Botany, 4: 345-360. 1929.
9. \qquad , and CHIZAKI, Y. Cytological studies on the genus hybrids among Triticum, Secale and Aegilops, and the species hybrids in Aegilops. Japan. J. Botany, 7: 1-32. 1934.
10. KATAYAMA, Y. Variation in the number of bivalent chromosomes in the F_{7} hybrids between Triticum durum and Aegilops ventricosa. Bot. Mag. Tokyo, 45: 424-445. 1931.
11. KATIERRMANN, G. Ueber die Bildung polyvalenter Chromosomenverbånde bei einigen Gramineen. Planta, 12: 732-774. 1931.
12. \qquad - Genetische Beobactungen und zytologische Untersuchungen an der Nachkommenschaft einer Gattungskeuzung. II. Zytologische Untersuchungen. Zeit. ind. Abst. u. Vererbgsl. 60: 395-466. 1932.
13. TIHARA, H. Zytologische und genetische Studien bei wichtigen Getreide-Arten mit besonderer Rueksicht auf das Verhalten der Chromosomen und die Sterilität in den Bastarden. Mem. Coll. Sci. Kyoto Imp. Univ. 1: 1-200. 1924.
14. KIHARA, H. Conjugation of homologous chromosomes in the genus hybrids Triticum X Aegilops and species hybrids of Aegilops. Cytologia, 1: 1-15. 1929.
15. \qquad - Genomanalyse bei Triticum und Aegilops. II. Aegilotricum und Aegilops cylindrica. Cytologia, 2: 106-156. 1931.
16. \qquad - Gytogenetics of species hybrids. Curr. Sci. Suppl. Spec. No. on Genetics: 20-23. 1938.

17。 \qquad - Anwendung der Genomanalyse für die Systematik von Triticum und Aegilops. Japan. J. Genetics, 16: 309m320. 1940.
18. \qquad - Die Entdeckung des DD-Analysators beim Weizen. Vorlâuige Mitteilung. Agr. and Hort. 19: 889m390. 1944.
19. - Definierung und Klassifikation der Aegilops species auf Grund der Genomanalyse. Rep. Kihara Inst. Biol. Res. (Seiken Ziho) No. 3: 16-28. 1947.
20. \qquad - Genomanalyse bei Triticum and Aegilops. IX. Systematischer Aufbau der Gattung Aegilops auf genomanalytischer Grundlage. Cytologia, 14: 135-144. 1949.
21. \qquad and KATAYAMA, Y. Genomanalyse bei Triticum und Aegilops. III. Zur Entstehungsweise eines neuen konstanten oktoploiden Aegilotricum. Cytologia, 2: 234-255. 1931.
22. and KONDO, N. Studies on amphiploids of Aegilops caudata X Ae. umbellulata induced by colchicine. Rep. Kihara Inst. Biol. Res. (Seiken Ziho) No. 2: 24-42. 1943.
23. \qquad und LILTENFHED, F. Genomanalyse bei Triticum und Aegilops. IV. Untersuchungen an Aegilops X Iriticum und Aegilops x Aegilops-Bastarden. Cytologia, 3: 384-456. 1932.
24. KOSTOFF, D. Wheat phylesis and wheat breeding from a cytogenetic point of view. (Cytogenetic indices for the role of interspecific hybridization in the origin of wheat species and for applying interspecific hybridization in producing valuable wheat forms). Bib. Cenetica, 13: 149-224. 1941.
25. MATSUMOTO, K. Zur Kritik der Kryptogonomerie-Theorie von Bleier. Mem. Coll. Agr. Iyoto Imp. Univ. 25: 1-10. 1933.
26. McEADDEN, E.S., and SEARS, E. R. The artificial synthesis of Triticum spelta. Fecords Gen. Soc. Am., No. 13: 26-27. 1944.
27. \qquad - The origin of Triticum spelta and its free-threshing hexaploid relatives. J. Heredity, 37: 81-90, 107-116. 1946.
28. $0^{8} \mathrm{MARA}, \mathrm{J} . G$. The cytogenetics of Triticale. Botan. Rev. 19: 587-605. 1953.
29. PERCIVAI, J. The morphology and cytology of some hybrids of Aegilops ovata I. x wheats. J. Genetics, 17: 49-68. 1926.
30. ———Cological studies of some hybrids of Aegilops sp. x wheats, and of some hybrias between different species of Aegilops. J. Genetics, 22: 201-278. 1930.
31. SAX, K. Chromosome behaviour in Triticum hybrids. Zeit. ind. Abst. u. Vererbgsl., Suppl. $\overline{2}: 1267-1284.1928$.
32. SCHIEMANN, Elizabeth. Zytologische Beträge zur Gattung Aegilops. Chromosomenzahlen und Norphologie. Ber. deut. bot. Ges. 47: 164-181. 1929.
33. SHARS, E.R. Chromosome pairing and fertility in hybrids and amphidiploids in the Triticinae. Mo. Agric. Exp. Sta. Ees. Bul. 337, 20 pp . 1941.
34. \qquad - The amphiploids Aegilops cylindrica X Triticum durum and A. Ventricosa X. durum and their hybrids with T. aestivum. J. Agr. Research, 68: 135-144. 1944.
35. \qquad - The cytology and genetics of the wheats and their relatives. Adv. Genet. 2: 239-270. 1948.
36. SMITH, Luther. The acetocarmine smear technic. Stain Tech. 22: 17-31. 1947.
37. SOROKINA, O. N. A fertile and constant 42-chromosome hybrid, Aegilops ventricosa Tausch x Triticum durum Desf. (On the problem of synthesis of soft wheat). Bul. Appl. Bot., Genet., Plent Breed., Ser. 2, (7): 5-12. 1937.
38. THOMPSCN, W. P. Chromosome homologies in wheat, rye and Aegilops. Can. J. Research, 4: 624-634. 1931.
39. - The causes of the cytological results obtained in species crosses in wheat. Can. J. Research, C, 10: 190-198. 1934.
40. \qquad and ROBERTSON, H. T. Cytological irregularities in hybrids between species of wheat with the same chromosome number. Cytologia, 1: 252-262. 1930.

PABT II

1. AIIEN, R. F. A cytological study of the teliospores, promycelia, and sporidia in Puceinia malvacearum. Phytopathology, 23: 572-586. 1933.
2. ASHVORTH, Dorothy. Development and cytology of the uredo and teleutospores in Coleosporium tussilaginis. Ia Cellule, 43: 189-200. 1934.
3. BEFLIMER, Martha D. and OLIVE, Lindsay S. Meiosis in Gymnosporangium and the cytological effects of certain antibiotic substances. Science, 117: 652-653. 1953.
4. COIJEY, R. H. Parasitism, morphology, and cytology of Cronartium ribicola. J. Agr. Pesearch, 15: 619-660. 1918.
5. DARLINGTON, C. D. and LaCOUR, I. F. The Handling of Chromosomes. The MacMillan Company, New York. 1942.
6. De ROBEETIS, E. D. P., NOWINSII, W. W. and SARE, Francisco A. General Cytology. W. B. Saunders Company, Philadelphia and. London. 1949.
7. FLOVIK, K. Cytological studies of arctic grasses. Hereditas, 24: 265-376. 1938.
8. HOIDEN, R.J. and HARPRR, R.A. Nuclear divisions and nuclear fusion in Coleosporium sonchi-arvensis. Lev. Trans. Wisconsin Acad. Sci. 14: 63m82. 1902.
9. JUEL, H. O. Die Kerntheilungen in den Basidien und die Phytogenie der Basidiomyceten. Jahrb. wiss. Botan. 32: 361-388. 1898.
10. MeGINNIS, F. C. and UNRAU, John. A study of meiosis in a haploid of Triticum vulgare Vill. and its progenies. Can. J. Botany, 30: 40-49. 1952.
11. OLIVE, Lindsay S. Karyogamy and mejosis in the rust Coleosporium vernoniae. Am. J. Botany, 36: 41-54. 1949.
12. SAVIIF, D. B. O. Nuclear structure and behaviour in species of the Uredinales. An. J. Botany, 26: 585-609. 1939.
13. SMITFI, Luther. Haploidy in einkorn. J. Agr. Research, 73: 291-301. 1946.
14. \qquad - The acetocarmine smear technic. Stain Tech. 22: 17-31. 1947.
15. TOMETORF, G. Cytological studies on haploid Hordeum distichum. Hereditas, 25: 241-254. 1939.

[^0]: * It should be noted that throughout this study the symbol D first named by Kihara (13) is used to designate the third genome of T. aestivum. The symbol C is commonly used synonymously by many workers but in the strict sense can be applied only to certain of the Aegilops species.

[^1]: * Trivalent $=1$ bivalent association
 - Quadrivalent $=2$ bivalent associations

[^2]: * Unfortunately the variety and race were not identified on differential hosts. However, since race $15 B$ of P . graminis var. tritici was far more prevalent than any other race in the area where the collection was made, it was probably the organism concerned in this study.

