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Abstract

The information on the volume of traffic flowing between all possible origin and des-

tination pairs in an IP network during a given period of time is generally referred to

as traffic matrix (TM). This information, which is very important for various traffic

engineering tasks, is very costly and difficult to obtain on large operational IP network,

consequently it is often inferred from readily available link load measurements.

In this thesis, we evaluated 5 TM estimation techniques, namely Tomogravity (TG),

Entropy Maximization (EM), Quadratic Programming (QP), Linear Programming (LP)

and Neural Network (NN) with gravity and worst-case bound (WCB) initial estimates.

We found that the EM technique performed best, consistently, in most of our simula-

tions and that the gravity model yielded better initial estimates than the WCB model.

A hybrid of these techniques did not result in considerable decrease in estimation er-

rors. We, however, achieved most significant reduction in errors by combining iterative

proportionally-fitted estimates with the EM technique. Therefore, we propose this tech-

nique as a viable approach for estimating the traffic matrix of large-scale IP networks.
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Chapter 1

Introduction

1.1 General Background

An IP network typically consists of IP routers and interconnecting links between the

routers, under a single administrative domain or autonomous system (AS). Internet

Service Providers (ISPs) usually divide their IP network functionally into two parts - the

edge and the backbone as shown in Figure 1.1. The network edge provides connectivity

to customers, via customer access links, as well as to other ISPs via peering links. The

backbone of the network performs high-speed routing and switching functionality from

one edge of the network to another. The network backbone may be sub-divided logically

into a core and distribution layer for ease of administration and enforcement of policies

and security.

1
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Figure 1.1: Simplified 4-POP ISP Topology

Geographically, ISPs often segment a large IP network into smaller units, each unit

is referred to as a point-of-presence (POP). A POP typically provides connectivity to

customers residing in an area or geographical location through access links. It also

provides connectivity to other areas through high-speed backbone links. A POP may also

have one or more peering links. In large IP networks such as those managed by ISPs, the

flow of traffic is determined by forwarding/routing table on each router. Routers build

routing tables based on configured parameters of the routing protocols and use these

tables in making decisions on how to forward packets within the network or autonomous
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system or from the network to other autonomous systems. An interior gateway protocol

(IGP) such as Open Shortest Path First (OSPF) or Intermediate System - Intermediate

System (ISIS) is an intra-domain routing protocol, while the Border Gateway Protocol

(BGP) - an exterior gateway protocol (EGP) - is the typical routing protocol used for

inter -domain routing.

IP traffic matrix (TM) measures the total amount of traffic that goes from any entry

(ingress) node to any exit (egress) in an IP network during a given period of time.

The information provided by the TM is an essential input for many network design and

traffic engineering tasks such as load balancing, routing protocol configuration, capacity

planning, link failure analysis, Quality of Service (QoS) provisioning and anomaly de-

tection. The choices that IP network operators make in managing the network depend

on the knowledge of how much traffic flows through the network, which is captured by

the TM.

In spite of its importance, TM is difficult to obtain on large IP networks, and has to be

inferred from readily available link counts obtained using simple network management

protocol (SNMP). SNMP is part of the Internet Protocol suite and it is designed for

management and monitoring of network devices. Most of the challenges associated with

direct measurement of TM on IP networks is due to poor support in network equipment

and high cost of extracting the information from large amount of data that flows through

the network [13]. This cost, which consists primarily of the storage, computational and
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communication overheads associated with the collection and processing of traffic flow

data across the network depends on the granularity and frequency at which the TM is

being estimated.

IP traffic matrix can be estimated at various levels of granularity: POP, router, link, or

prefix levels, in increasing order of complexity and size [1]. For example, in the simplified

4-POP ISP topology shown in Figure 1.1, estimating TM at POP level would involve

determining the volume of traffic flowing from one POP to each of the other POPs (that

is POP1 → POP2, POP1 → POP3, POP1 → POP4, POP2 → POP1, POP2 →

POP3, ...., POP4 → POP3) resulting in a 12-element POP-to-POP traffic matrix.

On the other hand, estimating the TM at backbone or core router (CR) level for the

same network would involve determining the volume of traffic flowing from each of

the 8 core routers to the others (that is, CR11 → CR12, CR11 → CR21, CR11 →

CR22, ...., CR42→ CR41), resulting in a 56-element router-to-router traffic matrix. At

link and prefix levels, the complexity and size of the matrix increases proportionally.

Typical Tier-2 ISPs have POPs in the order of tens with core/backbone routers ranging

from hundreds to a few thousands and TM for most traffic engineering applications are

measured at POP and router levels [4, 7, 9].

In terms of frequency, TM can be estimated every 5-minutes, every 15-minutes, hourly,

over the busy-hour (high traffic) period of the day, daily, weekly, etc. The time scale or

frequency of estimation is usually dependent on the time-scale at which link load data
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is measured.

1.2 Purpose of Thesis

The goal of this thesis is to perform a thorough, independent evaluation of major IP

traffic matrix estimation techniques proposed in the literature to date and provide rec-

ommendation and guidelines to ISPs on suitable approaches and techniques to adopt

in performing TM estimation on their IP network. Another motivation is that, since

most service providers do not have accurate TM information and they are not willing to

measure it directly on their network, our evaluation of TM estimation techniques on a

similar network using real Internet traffic data will provide them an idea of the expected

accuracy of the techniques and enable them to account for these errors when using es-

timated TM for traffic engineering purposes. In addition, many estimation techniques

often perform well or poorly depending on topology and traffic distribution within the

network. By capturing these parameters that affect the results of TM estimation in

our evaluation, we provide a way for ISPs to assess which technique or combination

of techniques is more suitable for TM estimation of their networks, without having to

experiment with each method on an operational network.
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1.3 Thesis Outline

The rest of this thesis is organized as follows. In Chapter 2, we reviewed various estima-

tion techniques that have been proposed in the literature. In Chapter 3, we described

our evaluation methodology as well as the data/parameters used. We evaluated 5 of

the major estimation techniques using 3 different network topologies and real Internet

traffic data from Abilene research network [33]. We also evaluated the performance of

hybrid techniques, formed by combining any two of the well-known techniques in esti-

mating the traffic matrix, and proposed a new method of TM estimation from previous

measurements. Numerical results for each evaluation is presented in Chapter 4. Finally

we concluded the thesis in Chapter 5 with recommendations to ISPs based on our com-

parative study. We also discussed the relevance of thesis to Engineering and provided

some directions for future work in this area.



Chapter 2

Literature Review:

IP Traffic Matrix Estimation

Techniques

2.1 Introduction

The problem of estimating origin-destination (OD) traffic matrix has been well-studied

in the literature for telephone networks and road transportation network dating as far

back as the 1930s. It was not until 1996 that the problem was addressed for IP networks.

Vardi [10] in 1996 was the first to study the problem of estimating traffic intensity

between all OD pairs in an IP network from repeated measurement of traffic flow along

the directed links connecting the nodes. He coined the term “network tomography” for

7
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the problem, perhaps due to its similarity with tomographic problems in medicine and

other sciences.

2.2 Problem Definition and Notations

Consider a network with n nodes and r directed links. On an IP network, each node

corresponds to a router or POP and each link corresponds to the physical communication

media carrying the traffic. Each node generates traffic (data, voice or video) destined

for other nodes in the network. For this network, there are typically c = n2 or n(n− 1)

OD traffic elements. The path through the network is defined by the routing matrix, A,

whose elements, Ai,j, denote the fraction of traffic for the OD pair j, j = 1, 2, ...., c that

is carried by link i, i = 1, 2, ..., r. Figure 2.2 shows a 4-node (4-router) network with 3

bidirectional or 6 unidirectional links (solid lines) and 12 OD pairs (dashed lines).

The objective of IP traffic matrix estimation is to estimate c OD traffic demands given r

link load measurements and the routing matrix A. A is a r× c matrix and it is assumed

to be constant and known. The relationship between the demands and the link counts

is often represented by the following linear equation,

Y(k) = AX(k) (2.1)

where
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Figure 2.1: Relationship between Nodes and OD pairs

Y
(k)
i is the measured traffic on link i, 1 ≤ i ≤ r during the time interval k, and

Y(k) = [Y
(k)
1 , Y

(k)
2 , ...., Y (k)

r ]T is the measured traffic on all links of the network at time

period k, written as a column vector.

Similarly, X
(k)
j is the demand for OD pair j, 1 ≤ j ≤ c during the time interval k

and X(k) = [X
(k)
1 , X

(k)
2 , ...., X(k)

c ]T is a column vector of OD traffic matrix elements that

we aim to estimate. [.]T denotes the transpose operator. The measurement time period

k can be 5-minute, 15-minute or an hour. We used hourly measurements in this work

and assumed that a total of K measurements are available, that is, k = 1, 2, ...., K. It
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has been shown that fanouts are generally more stable over the space of an hour and

most traffic engineering applications are targeted toward long time scales [7, 13].

The total number of links, r, may range from O(n) to O(n2), but generally of O(n)

implying that c > r. This implies that 2.1 is an under-determined system of equations

in which, c, the number of unknowns is much greater than, r, the number of known,

hence, there is no unique solution. The inability to obtain a unique solution stems

from the fact that it is not possible to find the exact inverse of the rectangular routing

matrix, A, whose rank is usually less than or equal to the number of links, r. The traffic

matrix estimation problem therefore, finding the “best” solution to an under-constrained

problem. This involves choosing one solution (out of many plausible solutions) that is

consistent with observed link loads and is closest to the actual traffic that generates the

link loads.

Several techniques have been proposed for estimation of traffic matrices from link loads.

Experience in solving similar large-scale ill-posed inference problems described by equa-

tion 2.1 requires the incorporation of additional (side) information and assumptions

about the nature of the problem, in order to make the problem less under-determined or

to guide in the selection of the most probable solution out of all possible estimates [4].

The process of introducing additional information in order to solve an ill-posed problem

is generally referred to in mathematics as regularization. Regularization in TM estima-

tion takes the form of computing an initial estimate or prior distribution of the traffic



CHAPTER 2. LITERATURE REVIEW: IP TM ESTIMATION TECHNIQUES 11

matrix, which is then refined by some statistical or optimization algorithm.

2.3 Initial Traffic Estimate or Prior Distribution

We consider some of the various choices of possible initial estimates proposed in the

literature namely - the gravity model, the worst case bound (WCB) and the fanout

estimates.

2.3.1 Gravity Model

The gravity modelling is based on the Newton’s law of gravitation and has been used

by social scientists to predict the movement of people, goods, services and information

between cities or geographical locations by taking in the consideration the population

and distance factors. Gravity model has also been used in estimating telephone de-

mands. An application of this model to IP traffic matrix estimation was first proposed

by Roughan et. al [2] and is based on the total amount traffic entering and leaving each

node in the network and the total traffic in the network. The model estimates Xi,j, the

volume of traffic between ingress node i and egress node j as

Xi,j =
Nin(i) ∗Nout(j)∑n

k=1Nin(k)
(2.2)

or

Xi,j =
Nin(i) ∗Nout(j)∑n

k=1Nout(k)
(2.3)
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where

Nin(i) is the total amount of traffic originating from node i;

Nout(j) is the total amount of traffic destined for node j.

In an ideal network,
∑n
k=1Nin(k) and

∑n
k=1Nout(k) should yield the same result based

on flow conservation principle. However, in practice, due to packet losses, delay and

other network errors, the total traffic into and out of the network do not match, hence,

equations 2.2 and 2.3 do not yield the same result. Furthermore, the gravity model

is rarely used in isolation, but in combination with (or as the starting point of) other

techniques, because its estimates are often poor and generally inconsistent with link load

constraint equation (2.1). We implemented this procedure using a simple MATLAB

code.

2.3.2 Worst-Case Bound

An alternative choice of initial estimate of the TM is the worst-case bound (WCB)

approach proposed by Gunnar et. al [7]. This technique is based on computing the

mean of the lower and upper bound of each traffic demand using linear programming

(LP). In particular, X−
p , the lower bound of demand for each OD pair p is found by

solving the LP formulation:

min {Xp} (2.4)
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subject to AX = Y

X ≥ 0

Similarly, X+
p , the upper of bound of demand for each OD pair p is found by solving

the LP formulation

max {Xp} (2.5)

subject to AX = Y

X ≥ 0

Xp ≤ max{Yl},∀l ∈ L(p)

where

L(p) is the set of all links traversed by the traffic of OD pair, p.

One drawback of this technique is that it is computationally demanding, in terms of the

number of computations to be performed and time required to obtain a TM estimate,

because it involves solving two linear programming problems for each OD pair over a

single set of link load measurement. Furthermore, the bounds (that is upper bound

and lower bound of each demand) tend to be loose, especially for large demands. We

implemented this procedure in MATLAB using the optimization toolbox [30].
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2.3.3 Constant Fanout Model

Gunnar et. al [7] proposed the estimation of fanout from time-series of link load mea-

surement. Fanout is the proportion of traffic flowing from a node to all other nodes. It is

equivalent to the probability of a node sending traffic to all other nodes captured in the

network (or included in the TM), hence the sum of fanout for a node is equal to 1. The

fanout estimate is based on the assumption that the fanout of each node is relatively

constant over a period of time and that link load fluctuations are caused by the changes

in the total traffic generated by each node . The constant fanout model estimates

the traffic matrix by solving the following equality-constrained quadratic optimization

problem.

min
K∑
k=1

||AS(k)P−Y(k)||22 (2.6)

∑n
j=1 pij = 1

1 ≤ i ≤ n

0 ≤ pij ≤ 1

We implemented this procedure using MATLAB optimization toolbox. However, we

found that, for most of our data sample, it was difficult to find a feasible solution

satisfying the objective and constraints. Consequently, we did not include this technique

in our evaluation.
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2.3.4 Choice Model

Medina et. al [9] proposed the “choice” model which is similar to the constant fanout.

This model employs multinomial logistic regression to estimate fanout based on the total

incoming and outgoing traffic of each node. A knowledge of the fanout of each node is

required in order to obtain the parameters that provide the best fit to the model, which

is equivalent to the TM estimation problem itself. We did not include this model in

our evaluation. Furthermore, since we use real data for our simulations, we can easily

obtain fanouts directly from the data as explained in Section 3.2.4.

2.3.5 Iterative Proportional Fitting

Iterative proportional fitting (IPF) is one of the techniques that have long been used by

researchers to adjust two-dimensional tables to known marginals [27,28]. The technique

is a simple two-step arithmetic procedure. In the first step, each element of the matrix

is multiplied by a factor that makes the sum of each row equal to the known marginal

of each row. In the second step, each element is multiplied by a factor that makes the

sum of each column equal to the known marginal of each column. The two steps are

repeated until convergence is reached, either when the difference in value of each cell

or marginal becomes less a predefined threshold, δ or a maximum number of iterations,

MaxIter, has been performed.

In the context of IP TM estimation, the known marginals are the link loads. Given an
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initial estimate which is inconsistent with link load constraint equation 2.1, we iteratively

adjust this estimate to the known link loads. The initial estimate is often the output of

a traffic matrix estimation technique, such as tomogravity or artificial neural network,

that contains negative values. However, since traffic matrix elements are non-negative,

the negative values are set to zero and the IPF technique is used to adjust the resultant

estimate to link loads. IPF has been used as a post-estimation technique in [3,19], but it

can also be used to obtain an initial estimate of traffic distribution from sampled traffic

matrix as proposed in Section 3.2.4. We implemented this procedure in MATLAB with

δ = 0.01 and MaxIter = 20, 000.

2.4 Traffic Matrix Estimation Techniques

2.4.1 Tomogravity

The tomogravity technique proposed by Zhang et al. [3] is a combination of two tech-

niques, the tomography estimation and the gravity modelling. This technique attempts

to solve the traffic estimation problem by solving a quadratic programming problem

formulated below.

min ||X(k) −X(k)
g ||22 (2.7)

subject to AX(k) = Y(k)
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where X(k)
g is the vector of prior estimate obtained using gravity model discussed in

Section (2.3.1) and || • ||22 is the square of the L2 norm of a vector.

Although the problem is formulated as an optimization, the solution is obtained using

Singular Value Decomposition (SVD) of the routing matrix was employed to find a least

square solution to the quadratic programming problem. In MATLAB, this is achieved by

computing the pseudo-inverse or the Moore-Penrose inverse [22,23] of the routing matrix.

The resulting solution sometimes contain negative values, hence, iterative proportional

fitting (IPF) procedure, described in Section 2.3.5 is applied after setting the negative

values to zero, to ensure a non-negative solution which satisfies the link load constraint

is achieved. The authors also investigated weighted least square (WLSE) solution to the

problem and found that the square-root weight provided the best estimates, although

the difference in performance to other was not too significant.

2.4.2 Entropy Maximization

Zhang et al. [4] also applied regularization in solving the traffic estimation problem,

drawing from experience in solving similar ill-posed problems in other scientific and

engineering fields. On the assumption of conditional independence of source and des-

tination on the network, they employed a regularization functional that minimizes the

mutual information of each OD pair. We refer to this approach as Entropy Maximization

technique. The formulation is
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||Y(k) −AX(k)||22 + λ2I(S,D) (2.8)

subject to X
(k)
i ≥ 0; for i = 1, 2, ..., c

where

I(S,D) =
∑
j:gj>0

X
(k)
j log

X(k)
j

X
(k)
gj

 (2.9)

and X(k)
gj

is the gravity model estimate of the demand X
(k)
j .

2.4.3 Quadratic Programming

Tebaldi and West [11] proposed the use of Bayesian statistics for solving the TM estima-

tion problem. Their approach entails finding the joint posterior distribution p(X(k)|Y (k))

for all OD pairs X(k) given the observed link loads Y (k). They assumed the prior distri-

bution p(X(k)) is Poisson. Gunnar et al. [7] however, have shown that, if one chooses a

Gaussian prior distribution model instead of Poisson, and assumes that the link loads

are subject to white noise with unit variance, the maximum a posteriori estimate of the

traffic matrix can be found by solving the quadratic program below.

min ||Y(k) −AX(k)||22 + σ−2||X(k) −X(k)
p )||22 (2.10)

subject to X
(k)
i ≥ 0; for i = 1, 2, ..., c
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where X(k)
p is a prior estimate of the traffic matrix X(k)

2.4.4 Linear Programming

We evaluated the Linear Programming(LP) proposed by Conway and Li [5], which is

a form of fanout estimation. This technique estimates the traffic matrix by finding the

fanout factors, pij, which is the probability of a random packet leaving the network

through node j given that it enters through node i. Using the notation in sec 2.2, the

problem is stated using the following set of equations.

Y(k) = AS(k)P(k) (2.11)

X(k) = S(k)P(k) (2.12)

and

n∑
j=1

pkij = 1; 1 ≤ i ≤ n; 0 ≤ pij ≤ 1, (2.13)

where S(k) is a c × c diagonal scaling matrix, whose elements are total traffic entering

the network at each node, replicated n times and P(k) is the column vector of fanouts

pkij ordered according to X(k). We solved the LP problem using linear goal programming

approach proposed in [8]. The final estimated is computed using equation 2.12.
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2.4.5 Artificial Neural Network Approach

A new class of methods was recently introduced into traffic estimation techniques reper-

toire from the field of artificial intelligence. These techniques, which are based on various

artificial neural network (ANN) model, attempt to provide a functional approximation

to the inverse relationship and/or recognize any pattern between link counts and actual

OD traffic matrix. Typically, an ANN model is developed and representative data from

the IP network is used to “train” the ANN model. The resultant trained artificial neural

network can be used for future estimation and prediction.

The task of using ANN model to estimate IP traffic matrix involves identifying which

model to use, selecting appropriate training/learning algorithm and generating repre-

sentative data for supervised training of the model. The last of these tasks is the most

challenging, since actual traffic matrix of the network are not available. To date, all

published research that employed this technique have used data from Abilene research

network [33] on which actual TM measurement has been carried, hence, it is doubtful

if anyone has applied this technique on a real ISP network. Some of the ANN mod-

els that have been proposed include the feedforward backpropagation neural network

(BPNN) [19], radial basis function neural network (RBF) [20] and multilayer recurrent

neural network (RNN) [21]. These techniques often incorporate an iterative proportional

fitting (IPF) procedure at the end to handle negative results generated in the estimation

process. Figure 2.2 shows the block diagram of the artificial neural network used in this
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work.
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Figure 2.2: Block diagram of the Artificial Neural Network Model

2.4.6 Other Techniques

A few other techniques have been proposed in the literature, which were not evaluated

in this thesis. Most of these techniques exploit the statistical properties of the readily

available SNMP link counts in the estimation of OD traffic matrix. These are often

augmented with an assumption about the prior distribution of each OD traffic. We

refer the interested reader to the original references cited for each technique for details.
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We only provide a summary of these other techniques here.

Vardi [10], on the assumption that OD traffic matrix elements follow a Poisson distri-

bution, proposed the use of covariance of link counts to generate additional constraint

equations, which can be used to augment equation (2.1). He argued that under this

assumption, the mean rates of OD flows are identifiable. Medina et. al however showed

to that Poisson assumption is not generally valid [9]. Gunnar et. al also showed, using

measured traffic from an ISP network, that it is difficult to find mean rates satisfying this

set of equations even when the system of equations is no longer under-determined [7].

Tebaldi and West [11] improved on Vardi’s work, following the same assumption, but

using Markov chain monte-carlo (MCMC) to find the mean rates (as well as traffic esti-

mates for a subset of the traffic demand and them computing the remaining demands by

matrix inversion. Their method is based on a combination of QR decomposition of the

routing matrix A and Bayesian inference using “Metropolis-within-Gibbs” algorithm.

Vaton and Bedo [12] improved on the works of Tebaldi and West by assuming that the

traffic matrix is a mixture of Gaussian distributions. Their approach known as itera-

tive bayesian estimation technique in which the initial distribution is based on either the

gravity model or the method of moments. These techniques require extensive simulation

and often yield inaccurate results when the underlying assumptions are violated. [8].

The authors in [17] combined non-linear programming with the pseudo-inverse of the

routing matrix. Using two sets of synthetic data drawn from Poisson and Gaussian
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distributions, and a 4-node network, they showed that this method is better than the

bayesian approach. Authors in [18] however, combined linear programming with the

pseudo inverse approach and validated their method with Abilene data. [33]. Nucci et.

al [25] proposed a method of changing the IGP link weights in order to obtain a set of

measurements that makes equation 2.1 full rank so that the the routing matrix becomes

invertible and a direct solution can be obtained. The authors in [14] also proposed a

method for estimating variance of OD flows as well OD flow estimate using the pseudo-

inverse approach. This method assumes a full-rank routing matrix obtained using the

IGP link weight change technique proposed in [25]. Considering the potential impact of

routing changes on large IP network, it is doubtful if service providers would be willing

to implement both techniques.

Some authors have assumed that a general power-law or generalized-scaling relationship

exists between the mean and variance OD traffic flows. This relationship states that, if

the mean of traffic rate for an OD pair is λ and the variance is Σ, then a relationship of

the form Σ = Φλc exists, where Φ and c are parameters to be determined. In [16], the

authors proposed a technique for estimating the mean and variance of OD flows from

the covariance of link loads based on the generalized scaling law. The final TM final

TM estimate is then calculated using a projection method to ensure consistency with

link loads. The authors in [7] and [9] proved, using both real and synthetic data, that

the power-law relationship is generally not valid.



Chapter 3

Evaluation of Traffic Matrix

Estimation Techniques

We compared the performance of 5 traffic matrix estimation techniques namely Tomo-

gravity (TG) [3], Entropy Maximization (EM) [4], Quadratic Programming (QP) [4],

Linear Programming (LP) [5] and Artificial Neural Network (NN) [19]. These techniques

were chosen as representative of most of the techniques proposed in the literature today

based on their reported performance. We evaluated the tomogravity technique using the

WLSE code published by the authors in [3] with square-root weight and also applied

the IPF procedure to ensure non-negativity of results. We implemented the EM and QP

technique using the same PDSCO code [32] used by the authors [4] and a regularization

parameter λ = 0.01. LP and NN techniques were implemented using MATLAB’s opti-

mization toolbox [30] and neural network toolbox [29] respectively. Table 3.1 contains

24
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important parameters used for the neural network simulation.

Table 3.1: Neural Network Simulation Parameters

Parameter Value

Model Feedforwarded BackPropagation (newff)
Number of Layers 2

Number of Neurons in Hidden Layers Layer 1 = size of link loads
Layer 2 = size of OD pairs

Training Algorithm 4 Node = Levenberg-Marquardt (trainlm)
12/14 Node = Scaled Conjugate Gradient (transcg)

Learning Algorithm Gradient Descent with Momentum (learngdm)
Number of Epochs 4 Node = 500

12/14 Node = 1000
Pre-Processing Function Zero-mean normalization (mapstd)
Post-Processing Function Reverse zero-mean normalization (mapstd)

Goal 1.00E-03

3.1 Network Topology, Data Set and Performance

Measures

3.1.1 Network Topology

We performed our evaluation using three networks of different sizes and topologies - a

4-node network, a 12-node Abilene network and a 14-node network. Figures 3.1, 3.2 and

3.3 show the 4-node, 12-node and 14-node network topologies respectively. We used the

4-node network to gain an insight into the performance of the estimation techniques.

The small size of the network also allowed us to observe the details of each estimation

technique.
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The 12-node network is a typical POP network whose IGP weights have been tuned to

ensure an “all-or-nothing” routing. Typically, routing protocols, such as OSPF would

distribute the traffic for an OD pair over multiple paths, if those paths have equal cost.

However, in all-or-nothing routing assignment, all traffic for an OD pair is forced to flow

through only a single path either by tweaking the parameters that the routing protocol

uses in computing the cost and consequently determine the best path or by manually

defining the path for that OD pair’s traffic.

The 14-node network [8] is a variant of the ISP POP topology used by other researchers

[9] and implements a pure OSPF routing, which allows traffic for an OD pair to travel

over multiple paths if the paths have equal cost. This combination of topology enables

us to capture the effect of topology and routing dynamics in our evaluation.

3.1.2 Routing Matrix

The routing matrix for the 4-node and 14-node network were computed using shortest

path first (SPF) algorithm based on the topology in Figures 3.1 and 3.3. In computing

the SPF routing matrix, we assume that all links have equal capacity and consequently

assign them a weight of 1 unit. The routing matrix for the 12-node network was obtained

as part of the evaluation data set.
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POP1

POP2

POP3

POP4

Figure 3.1: Topology of the 4-node Network

3.1.3 Evaluation Data Set

Many of the previous works [6, 8, 9] have used synthetic data, generated using a prede-

termined probability distributions and parameters, to evaluate the accuracy of traffic

matrix estimation techniques, because real matrices were not available. These authors

showed that most of the traffic estimation techniques are generally biased toward the

distribution used and that any assumption of a particular probability distribution con-

cerning OD flows in real matrix is generally not valid.

Nucci et. al [24] addressed this problem by attempting to fit some measured Inter-
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Figure 3.2: Topology of the 12-node Network

net traffic data to about 12 well-known distributions, including the uniform, Gamma,

Weibull,LogLogistic, Lognormal and Inverse-Gaussian distributions, and concluded that

none of these distributions provided a perfect fit. However, the lognormal distribution

was found to provide the best fit to the aggregated data set (which is intuitive consider-

ing the aggregated nature of Internet traffic) and was therefore recommended. In [26],

the author proposed a synthesis or real traffic matrix using the gravity model. He also

showed that this method is simpler and provided similar traffic matrix to those generated

using the LogNormal distribution.
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Figure 3.3: Topology of the 14-node Network

In this work, we avoided the problems discussed in [24] by using real network traffic

data obtained from Abilene network [33]. Abilene network, which was created by the

Internet2 community and is currently part of the Internet2 network, is a large-scale, high-

speed IP backbone network, connecting several universities and affiliated institutions in

the United States [34]. The network provides U.S. research and academic community

with scalable, cost-effective and innovative hybrid optical and packet network. The data

set used in our evaluation consists of real OD traffic matrices for 144 OD pairs, were

collected at fixed intervals of 5-minutes, on the 12-node Abilene network shown in 3.2,
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over a period of 24 weeks starting from March 1, 2004 on 12 routers by Professor Y.

Zhang of the University of Texas at Austin [33]. Table 3.2 lists the names of the routers

and their locations. This data has been made available to the Internet community for

research purposes and has been used by several authors [19,21,24,26].

Table 3.2: List of Abilene Network Routers and Locations as of March 1, 2004 [33]

Router Name City

ATLA-M5 Atlanta GA
ATLAng Atlanta GA
CHINng Chicago IL
DNVRng Denver CO
HSTNng Houston TX
IPLSng Indianapolis IN

KSCYng Kansas City MO
LOSAng Los Angeles CA
NYCMng New York NY
SNVAng Sunnyvale CA
STTLng Seattle WA
WASHng Washington DC

The files containing this data are labelled “Xuv”, where “uv” is a two-digit number

representing the week. For example, the file X01, contains measurement for week 1

starting March 1, 2005 while the file X22 contains measurement for week 22 starting

August 21, 2004. Each row of the file contains a single traffic matrix, hence there are

12 × 24 × 7 = 2016 (corresponding to 12 measurements by hour at 5-minutes interval,

24 hours per day, 7 days per week) measurement of OD pair traffic matrices in each

file. Each row contains 720 columns, however, only the first column and subsequent 5th

columns contain the real traffic matrix. Others contain results of estimation using some
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estimation techniques. A “readme.txt” file that provides additional details about this

data can be found at [33]. First, we extracted only the required data from each file.

Thereafter, we converted this 5-minute traffic matrix to hourly average traffic matrix

by taking an average of the 12 sample measurements for each hour.

In evaluating the 12 node network, we used the hourly traffic matrix as it is. For the

4-node network simulations, we select by random permutation, traffic matrix for only 12

of the 144 OD pairs. Random permutation is done using MATLAB function randperm,

which yields a random ordering of the 144 OD pairs from which we select the first 12

indices. In the case of 14-node network, where we require 182 OD pair, we duplicated

the traffic matrix thus yielding a matrix of 288 OD pairs. We use the same random

permutation as in the 4-node network to select the first 182 OD pairs.

3.1.4 Performance Measure

Several measures have been adopted by various authors in evaluating the accuracy of

traffic matrix estimation techniques. One popular measure is the Root Mean Square

Error (RMSE) used in [3, 6, 8]. This measure is often combined with the root mean

square relative error (RMSRE) in order to obtain a proper assessment of nature and

distribution of the error. In this work, we measure error in terms of the absolute relative

error. We prefer this method because of its simplicity and physical meaning compared

to other error measures. The value defined by the relative absolute error defines how
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much the estimate differs from the actual data in terms of ratio or percentage of the

original matrix. For example, a MRE of 0.0 implies perfect estimation of all traffic

matrix elements, that is without any error, while a MRE of 0.1 implies that the estimate

deviates from the actual demand by 10%. In general, the closer the MRE value is to

0, the more accurate the estimated traffic matrix is. However, when the mean of the

errors are considered, the result may not give a proper perspective of the errors when a

few large errors dominate the mean. Thus, an additional measure, such as the standard

deviation, the coefficient of variation or a probability distribution plot may be required

to effectively characterize the errors in such cases.

Given K sample TMs of a network, each containing c OD pairs, we define the error ε
(k)
j

in estimating jth OD pair of traffic matrix sample k as

ε
(k)
j =

∣∣∣∣∣∣X
(k)
j − X̂

(k)
j

X
(k)
j

∣∣∣∣∣∣ (3.1)

where X
(k)
j is the actual value and X̂

(k)
j is the estimated value of OD pair j. ε

(k)
j repre-

sents the absolute value of the relative error. In evaluating each technique, we primarily

use the mean of the relative error,MRE, denoted as εµ, calculated over the entire sample.

We define

MRE = εµ =
1

cK

K∑
k=1

c∑
j=1

∣∣∣∣∣∣X
(k)
j − X̂

(k)
j

X
(k)
j

∣∣∣∣∣∣ (3.2)
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3.2 Evaluation Methodology

For each simulation, we compute the link loads from the real traffic matrix and the

routing matrix using equation 2.1. The link load and routing matrix formed the input

to the traffic matrix estimation process. The output of the estimation process is then

evaluated against the original traffic matrix using the performance measure discussed

in section 3.1.4.

We conducted our evaluation of the traffic matrix estimation techniques through four

main comparative analysis as follows:

• Comparison of Gravity and WCB initial estimates

• Comparison of 5 TM estimation techniques using both gravity and WCB initial

estimates

• Comparison of hybrid techniques of two each of the 5 TM estimation techniques

• Comparison of 5 TM estimation techniques using a previously measured TM sam-

ple

3.2.1 Comparison of Gravity and WCB Initial Estimates

We compared two choices of initial starting point or prior distribution of the traffic

matrix - the gravity and the worst-case bound. We evaluated each model on the 3

topologies using all the 24 samples in our data set.
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3.2.2 Comparison of 5 Estimation Techniques using Gravity

and WCB Initial Estimates

We evaluated the performance of 5 techniques - TG, EM, QP, LP and NN - using the

gravity prior distribution. In evaluating the TG, EM and QP techniques, the gravity

and WCB estimates served as initial solutions, whereas the LP technique utilized them

as starting points. NN technique employs these estimates as training data sets for the

artificial neural network model.

3.2.3 Comparison of 5 Hybrid Techniques

We evaluated a hybrid approach to traffic matrix estimation in which the estimate of

one technique serves as a prior estimate for another technique, with the goal of further

driving down the estimation errors. Soule et. al [14] have noted that some ISPs have

indicated that they would not use traffic matrices whose errors are above 10% mark

(corresponding to an MRE of 0.1) for traffic engineering purposes. Although, it is not

clear what performance measures are desired, we believe the MRE used in this work

provides a reasonable measure.

EM hybrid techniques leverage on the estimates of the TG, QP, LP and NN techniques

as initial estimate in the original Entropy Maximization technique. We expect an im-

provement in the overall estimation since these new initial estimates are better than the

gravity model estimates. In the QP hybrid techniques, the gravity model estimates is
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replaced with the estimates obtained using the TG, EM, LP and NN techniques.

We re-evaluated the linear programming technique using the estimates from TG, EM,

QP and NN as starting points to obtain what we called the LP hybrid techniques.

In NN hybrid techniques, we investigated the benefit, if any, of training the artificial

neural network model with TG, EM and QP and LP estimates and then using the

trained network to estimate the traffic demands from link loads.

3.2.4 Comparison of Traffic Matrix Estimation Techniques us-

ing Previous Demand Measurements

Finally, we explored the effect of using a known traffic matrix to estimate current and

future traffic matrices from link load data. This is a technique that has been widely

adopted in road transport traffic forecasting where a sample of today’s traffic is adjusted

to estimate the full matrix for the day. This estimate is then used to predict future traffic

demands. This is different from the technique investigated by other authors such as [7–9]

where some demands are measured and incorporated into the traffic matrix estimation

process to make the system of equations less under-constrained and thus obtain better

estimates. Whereas, in their own case, known demands is combined with link load

measurements from the same period to estimate traffic matrix, here, we use complete

measured demands or its estimates from a different period to predict future estimates

given the link loads. We considered three possible uses of the previously measured
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demands - raw data, fanout from raw data and iterative proportionally-fitted data.

In the raw-data approach, we use the first sample in our 24-sample data set as an initial

estimate in estimating the other 23 samples (weeks) of traffic matrix. We know that this

initial estimate is not consistent with current link loads, in the same way the gravity

model estimate is inconsistent with network link loads. Our goal is to assess how a

knowledge of past demands affects current demands or its estimate.

The fanout approach evaluated here computes fanout estimate from the hourly data of

sample 1. This is different from the constant fanout model described in Section 2.3.3.

The goal is to ascertain if fanouts are constant over a long range of time, in which case,

it should translate into more accurate estimation if known. In our simulation, we first

compute the fanout estimate using the fanout factor computed from sample 1. The

fanout factor is then combined with current edge link load (production) of each node to

determine a fanout-based estimate of current demand. The estimated demand served

as initial estimate to the 5 techniques being evaluated.

In the iterative proportionally-fitted estimation approach, first, we adjusted the previ-

ously measured traffic matrix (Sample 1) to current link loads (Samples 2 - 23) using

iterative proportional fitting. Note that this procedure produces estimates that are con-

sistent with current link loads. The samples can be fitted to either the core/backbone

link loads or to both core and edge link loads. Then, the adjusted is used as initial
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estimates in each of the 5 techniques evaluated.

Most of the results of our comparisons are presented in Chapter 4. The remaining results

can be found in Appendix B.



Chapter 4

Numerical Results

4.1 Comparison of Gravity and WCB Initial Esti-

mates

Table 4.1 compares the mean relative error for the gravity and WCB estimate for the

4-node network. The WCB model was more accurate in estimating the TM for the

4-node network, yielding an average MRE of 0.48 over the 24 samples (weeks) of hourly

data used, than the gravity model with an MRE of 7.99.

This may not be unexpected, due to the fact that the technique is based on linear

programming, which is well known to estimate traffic matrix of small networks with

relatively high accuracy and the fact that it utilizes the link load constraint information.

Furthermore, by computing the MRE over only OD pairs that account for 95% and 90%

of total network traffic, the error drops significantly to an average of 0.08 and 0.05

38
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Table 4.1: MRE of Gravity and WCB Estimate for 4-Node Network

Sample Gravity WCB Gravity-95 WCB-95 Gravity-90 WCB-90

1 0.92 0.18 0.59 0.09 0.57 0.05
2 4.76 0.23 0.47 0.09 0.44 0.05
3 60.33 2.38 0.56 0.07 0.54 0.03
4 34.18 0.67 0.44 0.07 0.42 0.01
5 47.50 0.72 0.58 0.06 0.55 0.01
6 0.87 0.22 0.34 0.05 0.26 0.04
7 1.13 0.41 0.35 0.09 0.32 0.06
8 1.98 0.47 0.35 0.06 0.30 0.04
9 3.24 0.35 0.36 0.06 0.34 0.04

10 4.44 0.30 0.36 0.05 0.33 0.02
11 3.52 0.48 0.35 0.07 0.35 0.04
12 7.08 0.32 0.35 0.06 0.35 0.03
13 2.31 0.30 0.44 0.08 0.40 0.05
14 1.56 0.43 0.40 0.09 0.36 0.05
15 1.71 0.31 0.41 0.07 0.35 0.04
16 1.42 0.26 0.50 0.06 0.44 0.03
17 1.88 0.35 0.46 0.05 0.40 0.03
18 2.18 0.80 0.42 0.08 0.38 0.05
19 2.03 0.35 0.45 0.09 0.38 0.05
20 2.32 0.27 0.42 0.06 0.39 0.04
21 3.17 0.48 0.46 0.08 0.41 0.05
22 1.28 0.56 0.43 0.10 0.38 0.07
23 1.02 0.29 0.38 0.11 0.35 0.08
24 0.92 0.43 0.38 0.14 0.33 0.12

Mean 7.99 0.48 0.43 0.08 0.39 0.05

respectively. However, the gravity model outperformed the WCB in estimating the TM

for 12-node and 14-node network as shown in Table 4.2 and 4.3. Although, both errors

are large, on the average, the MRE computed using top 95% and 90% of OD flows shows

a significant reduction in errors, indicating that small OD flows were the most poorly

estimated by both techniques.
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Table 4.2: MRE of Gravity and WCB Estimate for 12-Node Network

Sample Gravity WCB Gravity-95 WCB-95 Gravity-90 WCB-90

1 1.28 6.40 0.45 1.04 0.40 0.73
2 7.70 12.40 0.47 0.95 0.43 0.70
3 91.55 46.43 0.54 0.34 0.49 0.30
4 77.03 33.32 0.66 0.36 0.60 0.31
5 51.61 39.63 0.45 0.37 0.41 0.32
6 1.67 8.32 0.63 0.82 0.56 0.59
7 5.14 23.76 0.53 0.84 0.49 0.62
8 3.64 22.45 0.58 0.82 0.53 0.62
9 4.45 23.11 0.55 0.88 0.49 0.66

10 4.74 24.52 0.55 0.87 0.48 0.66
11 4.49 29.89 0.54 0.88 0.48 0.67
12 4.57 25.52 0.58 0.91 0.53 0.69
13 5.00 27.30 0.58 0.94 0.53 0.70
14 8.33 35.46 0.53 1.00 0.49 0.77
15 8.49 37.93 0.55 1.04 0.52 0.79
16 8.04 33.03 0.52 1.07 0.48 0.80
17 10.36 39.28 0.51 1.09 0.47 0.80
18 9.50 36.71 0.50 1.09 0.45 0.79
19 9.47 36.54 0.57 1.05 0.52 0.78
20 15.35 47.39 0.55 1.09 0.49 0.82
21 18.51 65.34 0.56 1.14 0.49 0.84
22 12.30 51.12 0.55 1.14 0.48 0.82
23 5.86 32.83 0.61 1.08 0.57 0.81
24 6.48 111.00 0.50 0.98 0.47 0.75

Mean 15.65 35.40 0.54 0.91 0.49 0.68

4.2 Comparison of 5 Techniques with Gravity and

WCB Initial Estimates

Tables 4.4, 4.5 and 4.6 show the MRE for the five techniques evaluated using the 4-node,

12-node and 14-node network topology respectively.

The EM technique performed best of all the 5 techniques compared, regardless of topol-



CHAPTER 4. NUMERICAL RESULTS 41

Table 4.3: MRE of Gravity and WCB Estimate for 14-Node Network

Sample Gravity WCB Gravity-95 WCB-95 Gravity-90 WCB-90

1 16.76 42.14 0.62 1.77 0.51 1.14
2 77.45 171.67 0.60 1.57 0.51 0.96
3 374.92 730.29 0.62 0.81 0.58 0.61
4 355.14 588.15 0.74 1.09 0.66 0.80
5 370.36 765.65 0.55 0.90 0.53 0.59
6 28.44 72.72 0.87 1.72 0.61 1.01
7 98.86 232.25 0.70 1.54 0.56 0.93
8 102.40 254.44 0.81 1.68 0.60 1.03
9 105.92 278.36 0.78 1.52 0.61 1.01

10 112.00 279.56 0.67 1.39 0.57 0.94
11 98.46 247.25 0.64 1.46 0.54 0.94
12 90.43 244.98 0.66 1.46 0.57 0.95
13 90.17 233.33 0.66 1.44 0.57 1.00
14 81.73 250.04 0.65 1.47 0.55 0.98
15 98.59 274.27 0.65 1.48 0.57 0.99
16 70.46 207.26 0.64 1.48 0.54 1.00
17 84.11 270.39 0.61 1.43 0.53 1.01
18 82.96 230.85 0.62 1.45 0.53 0.98
19 117.37 287.88 0.69 1.41 0.59 0.93
20 102.33 295.42 0.64 1.41 0.53 0.93
21 106.16 326.42 0.66 1.45 0.55 0.94
22 71.69 213.53 0.68 1.55 0.55 1.04
23 71.67 141.26 0.65 1.55 0.56 1.12
24 62.66 239.83 0.59 1.53 0.50 1.05

Mean 119.63 286.58 0.67 1.44 0.56 0.95

ogy. It is however interesting to know that, the errors for the 12-node and 14-node

were much higher than those of the 4-node network. While the errors for the 4-node

network were typically between 0.28 and 0.49, the best performing technique, EM, had

an average error of 8.02 and 69.10 for the 12-node and 14-node networks respectively.

We therefore plot the empirical cumulative distribution (ECDF) of one of the samples
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Table 4.4: MRE of 5 Techniques using Gravity Prior Distribution for 4-Node Network

Sample TG EM QP LP2 LP1 NN

1 0.32 0.08 0.11 0.67 0.76 0.28
2 0.33 0.11 0.13 1.65 2.31 0.34
3 1.37 1.01 0.81 27.04 38.14 2.72
4 1.27 2.09 2.13 3.40 1.69 1.29
5 1.52 0.62 0.50 1.96 2.17 1.43
6 0.24 0.10 0.11 0.93 0.94 0.40
7 0.30 0.16 0.24 0.97 1.05 0.22
8 0.24 0.14 0.21 1.44 1.07 0.30
9 0.32 0.13 0.15 1.42 0.90 0.39
10 0.26 0.14 0.15 0.74 0.92 0.28
11 0.23 0.14 0.15 1.02 1.17 0.29
12 0.31 0.19 0.22 0.74 0.89 0.30
13 0.32 0.14 0.18 1.58 1.97 0.32
14 0.34 0.13 0.15 1.30 1.48 0.26
15 0.34 0.17 0.19 0.80 0.78 0.29
16 0.35 0.13 0.13 0.79 0.78 0.32
17 0.34 0.15 0.16 0.98 0.98 0.27
18 0.26 0.18 0.13 1.86 1.86 1.84
19 0.40 0.16 0.19 0.83 0.80 0.22
20 0.30 0.15 0.18 0.79 0.76 0.40
21 0.32 0.21 0.20 1.45 1.72 1.07
22 0.28 0.20 0.19 1.37 1.44 0.33
23 0.20 0.11 0.12 0.85 1.09 0.32
24 0.20 0.11 0.11 0.97 1.23 0.20

Mean 0.43 0.28 0.29 2.31 2.79 0.59

(sample 1) for the EM technique to understand the distribution of the errors. Figure 4.1

shows the plot of ECDF of MRE for EM estimation of sample1 using the three network

topologies.

The error distribution appeared to have a heavy tail, especially for the 4-node and 12-

node network, where more than 80% of the errors were well below an MRE value of 1,
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Figure 4.1: Empirical CDF of MRE for Entropy Technique with Data Sample 1
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Table 4.5: MRE of 5 Techniques using Gravity Prior Distribution for 12-Node Network

Sample TG EM QP LP2 LP1 NN

1 0.81 0.86 0.94 1.56 1.39 1.20
2 1.89 2.32 2.91 16.10 18.04 1.72
3 23.40 25.07 24.41 114.11 101.06 16.44
4 27.48 27.54 44.53 91.33 94.67 20.20
5 16.84 16.26 10.59 102.43 87.53 10.26
6 1.16 1.21 1.57 1.91 1.64 1.02
7 3.58 3.63 4.12 7.12 8.72 4.79
8 3.19 3.26 4.48 5.36 7.38 3.84
9 3.31 3.49 4.49 5.80 5.79 3.14
10 4.05 4.24 5.83 7.32 6.57 2.45
11 3.85 3.98 6.08 7.65 7.08 4.20
12 3.40 3.50 4.38 6.60 5.88 2.80
13 3.84 3.96 4.37 6.82 4.73 3.14
14 6.89 6.80 8.07 8.80 7.33 12.13
15 7.87 7.67 9.41 10.73 10.12 6.23
16 6.66 6.25 6.48 7.42 5.45 5.89
17 11.08 9.06 10.27 8.33 4.79 7.73
18 10.06 8.53 9.74 7.72 5.76 8.26
19 8.22 7.75 8.54 8.56 7.33 27.91
20 12.81 12.13 12.97 12.01 10.41 14.16
21 13.99 13.63 13.32 15.49 10.24 11.64
22 10.14 9.65 8.94 11.24 6.61 12.76
23 5.46 5.28 5.48 9.06 3.66 4.89
24 6.28 6.39 22.18 201.17 4.08 33.58

Mean 8.18 8.02 9.75 28.11 17.76 9.18

which is far less than the average error shown earlier in tables 4.5 and 4.6. Consequently,

we would endeavour to report the errors for the top 90% and 95% of OD flows in

subsequent analysis, as a means of checking the distribution of errors in the estimate

and evaluating the errors of large OD flows in the traffic matrix.

Table 4.7 gives a summary of the errors for the 5 techniques over the entire data set
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Table 4.6: MRE of 5 Techniques using Gravity Prior Distribution for 14-Node Network

Sample TG EM QP LP2 LP1 NN

1 9.22 8.17 7.56 7350.95 16.30 10.74
2 45.59 41.53 42.32 65.25 55.13 50.72
3 278.20 249.83 300.04 299.68 312.39 287.64
4 222.35 209.98 253.60 273.74 233.25 278.44
5 277.82 260.24 295.20 1955.82 266.85 254.91
6 19.51 15.40 15.49 18.83 18.14 19.81
7 58.70 49.70 57.14 47.96 44.46 74.97
8 63.56 48.93 50.27 59.31 55.93 66.16
9 71.82 56.07 56.78 3436.72 50.47 62.16
10 75.38 59.60 64.35 61.74 54.85 63.23
11 62.06 47.73 51.39 51.41 40.42 109.96
12 57.75 45.64 49.34 46.63 53.12 67.51
13 54.93 43.12 46.18 52.41 64.77 37.92
14 57.14 45.31 44.87 41.10 47.11 59.82
15 64.75 51.64 58.00 45.35 46.46 70.57
16 46.86 38.52 40.99 2693.57 39.43 72.22
17 62.42 50.26 50.26 1558.53 45.53 78.61
18 55.80 45.23 45.96 39.31 35.17 41.91
19 70.47 53.61 58.87 58.83 53.87 64.11
20 77.11 56.65 61.56 60.64 56.38 66.14
21 86.51 65.69 68.76 65.96 57.50 97.79
22 50.89 41.77 40.05 39.85 34.16 42.36
23 35.05 29.21 29.89 32.53 26.57 31.98
24 50.61 44.66 50.55 908.68 435.12 49.88

Mean 81.44 69.10 76.64 802.70 89.31 85.82

of 24 samples using gravity prior distribution. The EM technique produced the best

estimate resulting in MRE values 0.01, 0.32 and 0.49 for the 4-node, 12-node and 14-

node network topologies respectively using the top 90% OD flows. TG and QP have

errors that were slightly higher but much better than the rest of the techniques.

Table B-1 provides a summary of the result for each of the network topology. The
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Table 4.7: MRE of 5 Techniques using Gravity Prior Distribution

TG EM QP LP1 LP2 NN
4-Node 0.43 0.28 0.29 2.31 2.79 0.59
12-Node 8.18 8.02 9.75 28.11 17.76 9.18
14-Node 81.44 69.10 76.64 802.70 89.31 85.82

Top 95% of Demands
TG EM QP LP1 LP2 NN

4-Node 0.07 0.02 0.03 0.48 0.50 0.11
12-Node 0.39 0.37 0.46 0.53 0.60 2.61
14-Node 0.63 0.57 0.72 163.36 1.16 0.85

Top 90% of Demands
TG EM QP LP1 LP2 NN

4-Node 0.04 0.01 0.02 0.45 0.44 0.07
12-Node 0.34 0.32 0.39 0.49 0.51 3.03
14-Node 0.52 0.49 0.59 139.11 0.98 0.71

summarized MRE is based on all the 24 samples. Generally, the WCB model results in

slightly higher MRE than the gravity model for most of the techniques and the different

topologies. The only exception being the NN technique which estimates the 4-node

network better using the WCB initial estimate than using gravity estimate. The other

techniques performed equally well or worse using the WCB prior than the gravity prior.

LP with gravity prior also performed much better than the original LP. This may be due

to the fact that the approach used here is not the classical linear programming approach

but goal programming and the results may not be exact solutions but approximate.
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4.3 Comparison of Hybrid Techniques

Table 4.8 presents the result of comparing the MRE of TG hybrid techniques. In com-

parison with the original tomogravity technique, use of estimates from other techniques

as starting point yielded only marginal decrease in error, with the exception of neural

network. Computing the error over top 90% demands reveals an interesting result - the

marginal improvements of using these techniques as prior had been lost, except in the

case of the EM technique. This implies that the improvement in performance was due

to better estimation of small OD flows, which originally had high errors, at the expense

of producing worst estimates of some large OD flows.

Table 4.8: MRE of Tomogravity Hybrid Technique using EM, QP, LP and NN as Prior
Estimates

TG TG-EM TG-QP TG-LP2 TG-LP1 TG-NN
4-Node 0.43 0.19 0.19 0.64 1.25 0.62
12-Node 8.18 7.50 7.97 10.44 8.19 837.80
14-Node 81.44 68.86 74.88 65.48 63.47 85.03

Top 95% of Demands

TG TG-EM TG-QP TG-LP2 TG-LP1 TG-NN
4-Node 0.07 0.02 0.03 0.11 0.16 0.11
12-Node 0.39 0.37 0.46 0.49 0.55 86.58
14-Node 0.63 0.57 0.71 0.85 1.11 0.86

Top 90% of Demands

TG TG-EM TG-QP TG-LP2 TG-LP1 TG-NN
4-Node 0.04 0.01 0.02 0.07 0.10 0.07
12-Node 0.34 0.32 0.39 0.49 0.51 3.03
14-Node 0.52 0.49 0.59 0.73 0.95 0.72
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Table B-2 shows the result of the hybrid EM technique. None of the techniques produced

a better estimate than the original EM. This may be due to the regularization parameter,

λ. There may be need to adjust this parameter to put more weight on the prior estimate

in the computation.

The result of the QP hybrid techniques shown in Table B-3 shows that the EM technique

consistently resulted in better estimates, especially for the top 90-95% OD flows as well

the 12- and 14-node network topologies. TG only produced better estimate consistently

for the 14-node network. All other techniques resulted in worse estimates of the TM

when combined with the QP technique.

Table B-4 summarizes the result of the LP hybrid techniques. None of the techniques

could improve the result of estimation of the 4-node network using the LP technique,

confirming that LP is best at estimating TM for small networks. There were significant

reduction in errors for the 12 and 14 node networks by all the other technique, however,

the overall error is still much higher than those achieved by those techniques individually,

especially the EM, TG and QP techniques.

Table B-5 shows the average error of the final estimate obtained using the 24 samples of

data. Only the EM technique consistently produced better overall estimates when used

to train the neural network model. The TG resulted in better estimation of large OD

flows and networks only, while all other techniques produced worse estimate than the
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gravity model used earlier.

4.4 Comparison of Traffic Matrix Estimation Tech-

niques using Previous Demand Measurements

Table 4.9 shows that all the techniques, except LP improved their estimates using a pre-

viously measured matrix. MRE for both EM and TG decreased by approximately 81%,

while NN and QP experienced a reduction in overall error of 75% and 43% respectively.

Contrariwise, the LP produced worse estimates with the known demands. Furthermore,

these gains appeared to have greater impact on smaller OD flows as the top 90% of

OD flows only witnessed a maximum of 43% reduction in average error using the EM

technique - which appeared to benefit most from the previous measurement.

Table 4.10 shows that the fanout-estimate itself performed poorly in the estimation of

the 4-node network demands, consequently, all the techniques performed worse by using

it as prior instead of the gravity prior estimates. The converse is true with the 12-node

and 14-node network, where similar reduction in average errors as in the case of using

the raw estimates were obtained.

Table 4.11 compares the performance of the 5 techniques using the proportionally-fitted

data as prior estimate. Both the EM and NN consistently produced better estimates

across the three topologies and over all demands; the estimates for the 4-node network
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Table 4.9: MRE of Estimation using Past Measurement as Initial Estimate

TG EM QP LP2 NN
4-Node 2.46 0.26 0.42 2.54 0.92
12-Node 6.19 4.12 8.50 12.72 6.39
14-Node 15.31 13.13 43.98 305.41 21.41

Top 95% of Demands
TG EM QP LP2 NN

4-Node 0.08 0.02 0.03 0.50 0.14
12-Node 0.49 0.32 0.49 0.62 0.75
14-Node 0.45 0.33 0.53 1.19 0.65

Top 90% of Demands
TG EM QP LP2 NN

4-Node 0.05 0.01 0.02 0.43 0.10
12-Node 0.43 0.28 0.42 0.54 0.66
14-Node 0.38 0.28 0.44 1.02 0.55

were worse using the TG, QP and LP techniques. Over the 12 and 14-node network,

all the techniques seemed to produce better estimates comparable to those obtained

using the raw data or fanout of previous measurement. Although the errors of the NN

technique are higher than those of EM, TG and QP techniques, the proportionally-

fitted estimate provided the best means of training the network, compared to using

the raw data or fanout estimates. Note that, using the iterative proportionally-fitted

estimate with tomogravity did not result in any improvement, which shows that the

initial estimate is very good.
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Table 4.10: MRE of Estimation using Fanout Estimate of Previous Measurement

TG EM QP LP2 NN FO
4-Node 2.46 0.26 0.42 2.54 0.79 9.39
12-Node 3.94 4.15 9.07 15.18 5.33 24.96
14-Node 16.42 13.13 44.57 134.83 23.32 16.95

Top 95% of Demands
TG EM QP LP2 NN FO

4-Node 0.08 0.02 0.03 0.49 0.17 0.89
12-Node 0.37 0.32 0.43 0.58 1.21 0.45
14-Node 0.44 0.33 0.54 1.20 0.70 0.66

Top 90% of Demands
TG EM QP LP2 NN FO

4-Node 0.05 0.01 0.02 0.43 0.11 0.84
12-Node 0.33 0.28 0.37 0.50 1.29 0.40
14-Node 0.37 0.28 0.45 1.02 0.59 0.60

Table 4.11: MRE of Estimation using IPF Estimate of Previous Measurement

TG EM QP LP2 NN PF
4-Node 0.64 0.22 0.31 2.66 0.31 0.64
12-Node 4.91 3.63 8.28 17.80 13.72 4.91
14-Node 14.49 14.38 25.89 94.59 21.28 14.49

Top 95% of Demands
TG EM QP LP2 NN PF

4-Node 0.08 0.02 0.02 0.50 0.05 0.08
12-Node 0.44 0.32 0.39 0.57 0.52 0.44
14-Node 0.42 0.35 0.39 1.15 0.48 0.42

Top 90% of Demands
TG EM QP LP2 NN PF

4-Node 0.04 0.01 0.01 0.43 0.03 0.04
12-Node 0.39 0.28 0.34 0.49 0.47 0.39
14-Node 0.36 0.29 0.32 0.98 0.41 0.36



Chapter 5

Conclusion and Recommendations

5.1 Conclusion

Traffic Matrix of IP networks is a vital information required by network providers for

various traffic engineering tasks. TM estimation from link loads is preferred on large-

scale IP network because of the huge overhead of direct measurement. In this thesis, we

have evaluated five important traffic matrix estimation techniques namely, tomograv-

ity (TG), entropy maximization (EM), quadratic programming (QP), linear program-

ming(LP) and artificial neural network (NN) using three topologies and real Internet

traffic data. We conclude that EM technique is the best among these techniques as it

performs consistently well on both small and large networks. We also found TG and QP

techniques to produce good estimates, thought with slightly higher MRE values than

the EM technique. The LP technique is only appropriate for small networks, because

52
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the MRE value of its estimates on the 12 and 14 node networks were so high that,

sometimes, we had to round them off to only 4 significant values for the purpose of

comparison with other techniques. We found out that a more accurate initial estimate

than the gravity and WCB estimates, like those obtained from previous measurement or

flow samples is required to train the artificial neural network model in order to generate

estimates with reasonable accuracy on both small and large-scale IP networks.

We recommend that ISPs choose the EM over other techniques in performing large-scale

IP traffic estimation. Our results on the use of past measured demands provides insight

into the value of such measurements. We therefore recommend the use of available

tools on routers to obtain a sampled traffic matrix or fanout, which could be adjusted

to link load measurements using IPF in order to obtain an initial estimate of the TM.

Sampling interval can be set in such a way that the processing and computational

overhead is minimal. This would provide a better prior estimate for any TM estimation

technique, compared to the gravity and WCB prior estimates, thus reducing the error

in estimation.

5.2 Summary of Contributions

In this work, we have shown that, of all the techniques that we evaluated, the EM

technique is the best and most robust technique for estimating traffic matrix of large-

scale IP networks. We also showed that, if ISPs can invest a considerable effort and
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money into measuring of traffic matrix once, the overhead of continuous measurement

can be avoided by using simple iterative proportional fitting procedure to estimate future

demand from link loads with a guaranteed reduction of up to 80% in mean relative error,

compared to just applying the techniques without any reasonable prior information

about the OD flows. However, we observed that, achieving an upper bound of 10% on

the estimated demand may be difficult, if not impossible to achieve using this technique

or any other technique that we evaluated. We have also shown that, given a previous

measurement or sampled flow, the best way to use this data for traffic estimation using

artificial neural network is to first iteratively fit the data to link loads and use the

resultant traffic matrix to train the network.

5.3 Proposal for Future Work

We have found the EM technique to be very accurate in estimating traffic matrix of large

network. However, it would be interesting to investigate how to determine the optimal

parameter of the regularization parameter based on the initial distribution. The authors

have recommended a value of 0.01 which we utilized in this work, but when the initial

estimate is more accurate than the gravity model provides, a slightly higher value may

produce better estimate.

We would also like to evaluate other neural network models to see if they produce

better TM estimates than the basic feedforward backpropagation model evaluated in
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this work. Currently, no author has compared these models in terms of their accuracy

in measuring IP traffic matrices. Further research would also be needed to determine

the optimal parameters as well as training and learning algorithms for neural network

models employed in traffic matrix estimation large-scale IP networks.

Finally, it would be interesting to find better methods of utilizing past demands or fairly

accurate estimates of past demands in predicting future demand other than the three

approaches we have adopted here.

5.4 Relevance of Thesis to Engineering

One of the goals of engineering is to apply employ theoretical principles, mathematical

techniques and scientific methods in the design, implementation and optimization of

systems. This research is focused on a telecommunication system - a large-scale IP

network operated by an Internet service provider. The objective of this thesis is to utilize

readily available (SNMP link loads and network routing information) in providing a a

non-existent information (the traffic matrix).

The information provided by the traffic matrix is critical for optimal design and man-

agement of IP networks, however, as it is many real life problems, there are constraints

to acquiring this desired information. The constraints include the adverse effects of

measurement on user traffic, such as network delay, packet losses and quality of service
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degradation. In addition, there are cost constraints to frequent upgrade and replace-

ment of network equipments (both hardware and software) as well as links in order to

overcome the difficulty of direct measurement. there are cost constraints to frequent

upgrade and replacement of network equipments (both hardware and software) as well

as links in order to overcome the difficulty of direct measurement.

Mathematically, there is no exact solution to an under-constrained system of linear

equations. However, as engineers, we have proposed a technique in this research that

significantly reduced the errors in estimating TM from link loads by combining existing

optimization tools with sampling and extensive computer simulations. This approach

has a minimal impact on network traffic and does not require costly network equipment

upgrade or replacement.
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Appendix A:

Generalized Inverse Approach

The problem of traffic matrix estimation can be viewed as an ill-posed linear inverse

problem arising from inability to accurately compute the inverse of the rank-deficient

routing matrix. A quick method of solving equation (2.1) would be to compute the

generalized inverse of the routing matrix, A, since the actual inverse does not exist.

Given a real matrix A of arbitrary rank and order m× n, the generalized inverse of A

is an n × m matrix G such that X = GY is a solution of the equation AX = Y for

any Y which makes the equation consistent [22]. Unfortunately, for the kind of routing

matrix encountered in this problem, rank(A) ≤ m < n, consequently, there are so many

matrices satisfying this property. However, all such generalized inverse matrix of A must

satisfy at least the first of the conditions.

AGA = A (A-1)
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GAG = G (A-2)

(AG)T = AG (A-3)

(GA)T = GA (A-4)

A one-condition generalized inverse matrix, denoted as G1−inverse satisfies only Equa-

tion A-1, while a two-condition generalized inverse matrices, denoted as G2 − inverse

(also known as reflexive inverse) satisfies only Equations A-1 and A-2. A necessary and

sufficient condition for G to be a reflexive inverse of A is that rank(G) = rank(A).

A three-condition generalized inverse matrices, denoted as G3 − inverse satisfies either

Equations A-1, A-2 and A-3 or A-1, A-2 and A-4. The last class of generalized inverses,

which is more widely used, is the Moore-Penrose inverse (also known as the generalized

inverse or the pseudo-inverse) which satisfies all the four conditions. Unlike other gener-

alized inverses, the pseudo-inverse can be uniquely determined by this property. Thus,

for a given matrix A, the pseudo-inverse, denoted as G∗, satisfies all four conditions

given by Equations (A-1, A-2, A-3 and A-4). Furthermore, G∗ has the property that

G∗Y is the minimum norm least-squares solution of AX = Y [22].

The general form of a generalized inverse is given by

A−1 = G∗ + U−G∗AUAG∗ (A-5)
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where G represents the generalized inverse of A and U is any arbitrary n×m matrix.

Given a generalized inverse, the general solution of the equation AX = Y is given by

X = GY + (I - GA)Z (A-6)

where Z is an arbitrary vector [22], [23].

In addition to generalized inverses, one may also compute right and left inverses, denoted

as A−1
R and A−1

L respectively, depending on the rank of the matrix. For a rectangular

matrix A of dimension m × n, if rank(A) = m, there exists a right inverse, A−1
R , of A

which satisfies the property

AA−1
R = Im (A-7)

where Im is the identity matrix of order m. Similarly, if rank(A) = n, then a left inverse

A−1
L of A exists satisfying the property

A−1
L A = In (A-8)

where In is the identity matrix of order n. Clearly, right and left inverses exists only

when the rank of the m × n matrix is either m or n and unless m = n, both inverses

cannot exist. It is important to mention that most of the routing matrices encountered

in IP traffic estimation problems are rectangular matrices with full row rank, hence the

right inverse exists and can easily be computed.
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We compared the estimates produced by the Moore-Penrose generalized inverse (MPInv)

with those of other inverses namely the right inverse (RInv), two-condition generalized

inverse (G2Inv) and three-condition generalized inverse (G3Inv). We also compared the

result of using these inverses in the tomogravity (WLSE) technique with the original

Moore-Penrose inverse. Our comparison is based on 10 different routing matrices gen-

erated from 10 topologies each of the 4-node and 14-node network used by the authors

in [8].

Table A-1: MRE of Generalized Inverses for 10 topologies of 4-Node Network

Top RInv G2Inv G3Inv MPInv TG+RInv TG+G2 TG+G3 TG+MPInv

1 0.88 0.88 0.88 0.88 1.37 1.00 44.92 1.37
2 112.23 112.23 48.93 112.23 23.16 1.00 126.20 23.16
3 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
4 74.17 74.17 11.36 74.17 25.40 1.00 NaN 25.40
5 34.45 34.45 59.32 34.45 21.85 1.00 NaN 21.85
6 12.74 12.74 12.74 12.74 1.94 1.00 12.35 1.94
7 79.94 79.94 14.77 79.94 55.52 1.00 NaN 55.52
8 13.63 13.63 54.57 13.63 10.47 1.00 18.46 10.47
9 43.14 43.14 189.35 43.14 41.88 1.00 NaN 41.88
10 59.12 59.12 59.74 59.12 46.02 1.00 119.72 46.02

Tables A-1 and A-2 show the MRE of the estimates obtained using sample 3 of our

data set for the 4-node and 14-node respectively. In the case of the 4-node network, all

the generalized inverses yielded the same estimate when applied solely. When combined

with the tomogravity technique, RInv and MPInv produced the same result, G2Inv

yields an MRE of 1 because all the estimates are 0s while the G3Inv yields estimates

with higher or invalid (NaN) MRE values.
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Table A-2: MRE of Generalized Inverses for 10 topologies of 14-Node Network

Top RInv G2Inv G3Inv MPInv TG+RInv TG+G2 TG+G3 TG+MPInv

1 264.04 264.04 197.05 264.04 278.20 1.00 310.71 278.20
2 271.62 271.62 526.48 271.62 291.93 1.00 313.66 291.93
3 266.83 266.83 285.76 266.83 278.28 1.00 283.03 278.28
4 249.47 249.47 160.39 249.47 284.47 1.00 289.23 284.47
5 337.68 337.68 307.07 337.68 333.01 1.00 312.38 333.01
6 289.15 289.15 491.85 289.15 277.57 1.00 243.25 277.57
7 228.53 228.53 207.22 228.53 248.10 1.00 258.47 248.10
8 293.68 293.68 267.63 293.68 304.21 1.00 295.08 304.21
9 388.98 388.98 818.61 388.98 375.00 1.00 378.53 375.00
10 360.25 360.25 421.19 360.25 318.64 1.00 430.23 318.64

Similar results were obtained in the case of the 14-node network, except that the G3Inv

consistently produced estimates with higher MRE when applied solely or combined with

the WLSE technique. We conclude that other generalized inverses are not better than

the Moore-Penrose inverse in estimating IP traffic matrices.
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Additional Simulation Results

Table B-1: MRE of 5 Techniques using WCB Prior Distribution

TG EM QP LP1 LP2 NN
4-Node 0.48 0.30 0.41 2.31 2.66 0.30
12-Node 14.34 9.30 9.92 28.11 20.01 10.06
14-Node 107.78 69.77 76.26 802.70 74.52 99.39

Top 95% of Demands
TG EM QP LP1 LP2 NN

4-Node 0.08 0.03 0.04 0.48 0.50 0.03
12-Node 0.59 0.36 0.40 0.53 0.59 0.42
14-Node 0.75 0.57 0.72 163.42 1.19 0.81

Top 90% of Demands
TG EM QP LP1 LP2 NN

4-Node 0.05 0.02 0.02 0.45 0.44 0.02
12-Node 0.48 0.32 0.35 0.49 0.50 0.37
14-Node 0.62 0.50 0.60 139.03 1.00 0.68
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Table B-2: MRE of Entropy Maximization Hybrid Techniques

EM EM-TG EM-QP EM-LP2 EM-LP1
4-Node 0.28 0.19 0.19 0.64 1.25
12-Node 8.02 8.11 7.67 9.17 17.76
14-Node 69.10 69.69 73.47 848.95 89.33

Top 95% of Demands
EM EM-TG EM-QP EM-LP2 EM-LP1

4-Node 0.02 0.04 0.02 0.23 0.43
12-Node 0.37 0.39 0.45 0.41 0.60
14-Node 0.57 0.59 0.70 688.45 1.16

Top 90% of Demands
EM EM-TG EM-QP EM-LP2 EM-LP1

4-Node 0.01 0.02 0.02 0.21 0.37
12-Node 0.32 0.33 0.38 0.37 0.51
14-Node 0.49 0.51 0.58 756.48 0.97

Table B-3: MRE of Quadratic Programming Hybrid Techniques

QP QP-TG QP-EM QP-LP2 QP-LP1
4-Node 0.29 0.42 0.27 0.32 1.10
12-Node 9.75 10.21 10.75 10.99 8.72
14-Node 76.64 69.69 68.99 818.94 75.41

Top 95% of Demands
QP QP-TG QP-EM QP-LP2 QP-LP1

4-Node 0.02 0.04 0.02 0.03 0.14
12-Node 0.46 0.39 0.37 0.50 0.48
14-Node 0.72 0.63 0.57 749.49 0.95

Top 90% of Demands
QP QP-TG QP-EM QP-LP2 QP-LP1

4-Node 0.02 0.03 0.01 0.02 0.10
12-Node 0.39 0.34 0.32 0.44 0.41
14-Node 0.59 0.53 0.49 668.64 0.80
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Table B-4: MRE of Linear Programming Hybrid Techniques

LP2 LP2-TG LP2-EM LP2-QP LP2-NN
4-Node 2.31 2.65 2.64 2.64 2.65
12-Node 28.11 19.40 19.02 18.14 18.77
14-Node 802.70 101.02 97.24 92.93 76.07

Top 95% of Demands
LP2 LP2-TG LP2-EM LP2-QP LP2-NN

4-Node 0.48 0.50 0.50 0.50 0.50
12-Node 0.53 0.56 0.55 0.60 0.68
14-Node 163.36 1.15 1.14 1.16 1.20

Top 90% of Demands
LP2 LP2-TG LP2-EM LP2-QP LP2-NN

4-Node 0.45 0.44 0.44 0.44 0.44
12-Node 0.49 0.48 0.47 0.51 0.59
14-Node 139.11 0.97 0.96 0.98 1.02

Table B-5: MRE of Neural Network Hybrid Techniques

NN NN-TG NN-EM NN-QP NN-LP2
4-Node 0.59 1.83 0.16 0.72 0.72
12-Node 9.18 8.54 7.99 12.64 12.64
14-Node 85.82 78.01 68.77 104.07 104.07

Top 95% of Demands
NN NN-TG NN-EM NN-QP NN-LP2

4-Node 0.11 0.06 0.02 0.19 0.19
12-Node 2.61 0.96 1.50 3.86 3.86
14-Node 0.85 0.67 0.58 1.23 1.23

Top 90% of Demands
NN NN-TG NN-EM NN-QP NN-LP2

4-Node 0.07 0.05 0.01 0.13 0.13
12-Node 3.03 1.04 1.70 4.43 4.43
14-Node 0.71 0.57 0.50 1.07 1.07


