DISTRIBUTED QUASI-MONTE CARLO ALGORITHM FOR
OpTiON PrICING ON HNOWS UsIiNG MPC

Gong Chen

A dissertation submitted in partial fulfillment of the

requirements for the degree of
Master of Science

Department of Computer Science

Faculty of Graduate Studies
University of Manitoba

Copyright (© 2005 by Gong Chen

THE UNIVERSITY OF MANITOBA
FACULTY OF GRADUATE STUDIES

COPYRIGHT PERMISSION

Distributed Quasi-Monte Carlo Algorithm for Option Pricing on HNOWs Using mpC

BY

Gong Chen

A Thesis/Practicuam submitted to the Faculty of Graduate Studies of The University of
Manitoba in partial fulfillment of the requirement of the degree

of

Master of Science

Gong Chen © 20405

Permission has been granted to the Library of the University of Manitoba to lend or sell copies of
this thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend or sell
copies of the film, and to University Microfilms Inc. to publish an abstract of this thesis/practicum.

This reproduction or copy of this thesis has been made available by authority of the copyright
owner solely for the purpose of private study and research, and may only be reproduced and copied
as permitted by copyright laws or with express written authorization from the copyright owner.

This thesis is dedicated to my parents and brothers.

Abstract

Monte Carlo (MC) simulation is one of the popular approaches for approximating the
value of an option or other derivative security in addition to binomial lattice techniques.
However, plain MC simulation produces only approximate solutions. Absence of straight-
forward closed form solutions for many financial models for pricing option has given rise
to use of numerical approaches. The introduction of low-discrepancy (LD) sequences
in MC simulation provides a way to improve the accuracy and reliability of MC meth-
ods. The use of LD sequences in MC method leads to what is known as Quasi-Monte
Carlo (QMC) method. Several studies have investigated efficiency of such methods on
serial computers. This research will focus on the parallelization of the QMC method
on a heterogeneous network of workstations (HNOWSs) for option pricing. HNOWs are
machines with different processing capabilities and have distinct execution time for the
same task. So it is very important to allocate and schedule the tasks depending on the
performance and resources of these machines. Some of the existing parallelization of
traditional MC approach use SPMD (Single Program Multiple Data) manager-worker
paradigm and communication between the machines is by message passing using stan-
dard MPI (Message Passing Interface) library. On heterogeneous machines, MPI is not
the appropriate programming library. It does not consider the underlying features of the

machines while scheduling the tasks.

In this research, we have developed an adaptive, distributed QMC algorithm for
option pricing, taking into account the performance of processors and communication

latencies. On heterogeneous networks, performance gains are potentially available for

ii

algorithms if they are designed to fully exploit the hardware features. This is the very
peculiarity of our parallel algorithim, which takes into account the actual performances
of both processors and communication links. We implemented the algorithm using mpC,
an extension of ANSI C language for parallel computation on HNOWs. mpC addresses
issues related to heterogeneous computing environments and is an ideal language for our
problem. An outstanding feature of using mpC is that a programmer can specify the
topology of the application under study and mpC system can map the topology to real
network system based on processors’ processing speeds and network bandwidths in run
time. By comparing with other parallel algorithims and implementations, the speedups

exhibited by our algorithm presented in this thesis are promising.

il

Acknowledgements

I would like to express my thanks to all those who gave me the possibility to complete
this thesis.

First of all, T would like to express my sincere gratitude and appreciation to my super-
visors Dr. Parimala Thulasiraman and Dr. Ruppa K. Thulasiram (Tulsi} for their con-
stant advice, guidance, encouragement, and efforts in helping with preparing this thesis.
Dr. Thulasiraman is an active Researcher in High Performance Computing and Algo-
rithms; she introduced me the parallel programming language mpC and its programming
environment. Dr. Tulsi is a reputable specialist in Computational Finance and Scientific
Computing; he taught me the Quasi-Monte Carlo method for Option pricing. Both of
them helped me to establish the overall direction of the research and spent numerous
hours in every phase of my research and patiently answered all my questions, and helped
me to move forward progressively to the accomplishment of the M.Sc program. This
thesis would have not been possible without them.

I would like to thank my thesis committee members, Dr. Ben Pak-Ching Li (internal)
and Dr. Saumen Mandal (external), for managing to read the whole thing so thoroughly
and attending my defense. Thank-you to Dr. Dean Jin for the time in serving as the
Chair of my thesis defense.

I am grateful to Mr. Gilbert Detillieux for helping to install the mpC programming
system. Without his help, my algorithm cannot be implemented.

I am thankful to Mr. Santan Challa who helped me to run the first mpC program

“Hello, world!”. Without this initial help, I cannot run my mpC program. I have also

v

benefited from the discussions with him about mpC programming.

I would also like to thank many developers in mpC system team, especially, Dr.
Mikhail Posypkin and Dr. Alexey Kalinov, for their remote help in configuring the mpC
programming environment and answering questions.

I also thank all members of the Parallel Algorithm Research In Manitoba’s ALgo-
rithms and Application (PARIMALA) Lab for all kinds of help.

Thanks to all my friends for their help and the days we spent together.

Finally, I am forever indebted to my parents and brothers for their understanding,

endless patience, support, and encouragement. This thesis is dedicated to them.

YV

Contents

1 Introduction
1.1 Goalof the Thesis

1.2 Organization of the Thesis

2 Parallel and distributed computing
2.1 Classification of Architectures
2.1.1 Single Instruction Multiple Data.
2.1.2 Multiple Instruction Multiple Data
2.2 Message Passing Libraryo
2.2.1 Parallel Virtual Machine

2.3 mpC . .

2.4 Methodology for Creating Parallel Programs

3 Monte Carlo and Quasi-Monte Carlo Methods
3.1 Monte Carlo Method o oo
3.2 Quasi-Monte Carlo Method
3.3 Sobol Sequence

3.4 Generating Sobol’s LD Sequence

vi

.

w1y Oy O

10
11
12
13
15

4 Option pricing and related work

4.1 Definitions
4.2 Option Pricing
4.3 Related Work
4.3.1 DBinomial Trees
4.3.2 Finite Difference

4.3.3 Monte Carlo Simulation

4.3.4 Quasi MC Simulation . .

5 Quasi-Monte Carlo Method for Option Pricing

5.1 Monte Carlo Method
5.2 A Numerical Example
5.3 Quasi-Monte Carlo Method . .

6 Parallel Quasi-Monte Carlo Method for Option Pricing

6.1 Tasks Partition
6.2 mpC
6.3 Implementation Detail

7 Results and Evaluation

7.1 Analytical Results.

7.2 Experimental Results

8 Conclusions and future work

References

vil

26
26
27
28
28
31
33
34

35
35
38
40

43
45
46
48

55
95

67

68

List of Tables

5.1

9.2

7.1
7.2
7.3
7.4

A spreadsheet for estimating the expected present value of the payoff of a
Furopean call option L

Numerical example for Monte Carlo valuation of a European Call option

Relative performance of 7 heterogeneous workstations
Distribution of 1,000,000 simulations to 7 heterogeneous workstations . .
Time to do QMC simulations inseconds

Time to do 1,000,000 simulations using three schemes

viii

List of Figures

2.1
2.2
2.3

3.1
3.2
3.3

4.1
4.2
4.3

o
)

7.1
7.2

7.3

The SIMD architecture 7
The MIMD architecture 8
Shared memory machines and distributed memory machines 8
Plot of 500 Paris of Random Numbers 18
The first 16 number of sequence distributed over the interval [0,1) 20
Plot of 500 Paris of Sobol LD Numbers 21
Payoff function of the calloption 28
A four-step Binomial tree foranasset 29
Grid for finite difference approach oL 0oL 32
Simulated asset price Lo o 39

Relative pricing error for a Furopean Call option using pseudo-random

numbers and Sobel LD numbers o L oo 42

Execution time with respect to various processors and simulations 61
Speedups computed relative to sequential code running on workstation
CadmiumO1 o 62

Manager-worker scheme with different amount tasks per request 65

1X

Chapter 1

Introduction

In recent years, there has been increasing use of numerical methods in computational
finance. This is due to the fact that most financial models lack straight-forward closed
form solutions. There are three popular mumerical methods used for option pricing,
namely, the binomial lattice [21], the finite difference [14], and the Monte Carlo (MC)
simulation [10]. In the real world, financial market is full of uncertainties in trends, price,
ete. To obtain accurate results, a large number of state variables will be involved to
imitate the real-world. Due to the complexity of these random factors invelved, hinomial
lattice and finite difference methods become costly in terms of computational cost when
three or more variables are involved [39]. In this case, MC simulation is a promising
alternative method to evaluate options since the method is flexible and modern computing
power ensures a quicker result, though MC simulations is known to provide less accurate

solutions.

The MC method is a stochastic technique based on the use of random numbers and
probabilistic methods to generate market conditions. The basic idea of using MC simula-
tion to value option is to generate a large number of random configurations and evaluate
the option value as the average of the sample [39). The error in the MC estimation
decreases at the order O(N~1/2) where N is the number of simulations [31]. Hence, the

estimation tends to the actual value as the simulations tend to infinity. Therefore, for

CHAPTER 1. INTRODUCTION 2

high order accuracy, large number of simulations are required. To improve efficiency
and accuracy, mathematicians have found that using uniformly distributed deterministic
numbers rather than random (or pseudo-random) numbers can obtain faster conver-
gence with known error bounds. The error bounds in these methods are in the order of
(log N)¢. N~1 [51] where d is the problem dimension and N is the number of simulations.
The uniformly distributed deterministic numbers is known as low discrepancy sequence
(LD sequence). The use of LD sequences in MC method leads to what is known as
Quasi-Monte Carlo (QMC) method. There are several methods for generating such LD
sequences and these procedures are generally based on number theoretic methods. For a

comprehensive survey of QMC methods, please refer to the monograph [51].

Due to the replicative nature, QMC simulation often consumes large amount of com-
puting time. Solution on a sequential computer will require hours and may be even days
depending on the size of the problem [56]. In financial markets, there is a high premium
on rapid solution. Any rapid solution in information processing can be translated into
potential gains. Therefore, parallel computing is an ideal choice since it provides a solu-
tion for large computational problems in a reasonable amount of time using more than
one processing units. QMC simulations are well suited to parallel computing since it
is an embarrassingly parallel problem (no communication between processors [61]). We
can employ many processors to simulate various random walks and produce their values,
then average these values to produce a final answer. Therefore, minimizing the whole

simulation time.

Parallelization of QMC technique has gained importance in recent years and there’s
a growing trend fowards using inexpensive workstations and PCs for parallel computing.
These PCs, workstations, servers and sometimes supercomputers connected together form
a heterogeneous network. Due to the varying processing capabilities of the processors,
different operating systems and user load, these machines have different execution time
for the same task and making the maximum benefits of the various processors is one

of the important issues in heterogeneous networks. To ensure a successful and efficient

CHAPTER 1. INTRODUCTION 3

QMC simulation in such a distributed environment, it is very important to allocate and

schedule the tasks depending on the performance and resources of these machines.

This research addresses issues on parallelizing QMC on a heterogeneous computing
environment. Some of the existing parallelization approaches (e.g. a manager-worker
paradigm) are implemented using standard MPI (Message Passing Interface) library. On
heterogeneous machines, MPI is not the appropriate programming library [46]. It does

not consider the underlying features of the machines while scheduling the tasks.

In this research, mpC is used to implement the QMC algorithm on heterogeneous
network of computers. mpC is an extension of the ANSI C language for programming
parallel computations on heterogeneous computers. mpC addresses issues related to
heterogeneous computing environments and is an ideal tool for this problem. We will

also compare and analyze the performance results on a homogeneous network using MPI.

1.1 Goal of the Thesis

The goal of this research is to develop and implement an adaptive, distributed QMC
algorithm on heterogeneous network of workstations (HNOWS) using mpC. The term
“adaptive” has two meanings: (1) this algorithm can be performed on any number of
processors. That is, the general assumption that the number of processors is a factor of
the number of simulations is relaxed; and (2} the tasks will be distributed to processors
based on processors’ processing capabilities. These runtime issues are not generally
considered in previous studies of parallel QMC simulations. This is, in fact, the main
goal of this project, as there has been relatively little done on HNOWs for the option
pricing problem. Despite a growing need for efficient algorithms and implementations for
option pricing problem, the parallel and distributed computing issues in option pricing

are seldom addressed in the literature.

CHAPTER 1. INTRODUCTION 4

1.2 Organization of the Thesis

The rest of the thesis is organized as follows. The background on parallel and distributed
computing is provided in Chapter 2. Monte Carlo and Quasi-Monte Carlo methods
as well as concepts of low-discrepancy sequences are introduced in Chapter 3. The
background and related work on computational finance which includes three popular
numerical methods is presented in Chapter 4. Next, we address the sequential QMC
algorithm in Chapter 5 followed by a detailed description of our parallel QMC algorithm
and implementation details in Chapter 6. In Chapter 7, we show the analytical and
performance results of our algorithm. Finally, we present our conclusions and future

work in Chapter 8.

Chapter 2

Parallel and distributed computing

Parallel and distributed computing are widely used in a variety of areas ranging from
academic to industry, such as computational simulations for scientific and engineering
applications, commercial application in data mining and transaction processing. With the
rapid enhancement of the bandwidth of interconnection networks and performance of PCs
and workstations, as well as the continuous arrival of new languages and improvement
of operation systems, parallel and distributed computing can achieve relatively very high
performance with low cost for information processing; almost every application domain

can profit.

Parallel computing is the simultaneous execution of a single task (split up and spe-
cially adapted) on multiple processors in order to obtain faster results, while distributed
computing studies the coordinated use of physically distributed computers [47]. In the
literature, these two terms are loosely used though the issues and research problems in-
volved in these two paradigms are completely different. However, the common output in
both cases is fast execution of an application. Performance of an application is therefore
an important issue. In this chapter, we will review some of the architectures and relative

programming models and environments for parallel computers.

CHAPTER 2. PARALLEL AND DISTRIBUTED COMPUTING 6

2.1 Classification of Architectures

All computers, whether sequential or parallel, operate by executing instructions on data.
Based on the number of streams of instructions performing on the data, Flynn [24]

proposed a classification of computer architectures:
¢ Single Instruction Single Data Stream (SISD)
e Multiple Instruction Single Data Stream (MISD)
e Single Instruction Multiple Data Stream (SIMD)
e Multiple Instruction Multiple Data Stream (MIMD)

SISD corresponds to the classical von Neumann machine which consists of a storage
unit (memory) and a central processing unit (CPU). The CPU executes a single instruc-
tion that specifies a sequence of read and write operations on the data stored in memory.
SISD does not contain any parallelism. The personal computer (PC) is an example of
SISD architecture.

In MISD the processors execute different instructions on the same data. This is not
commonly used and applications on this are very few.

Nowadays, most parallel and distributed applications are running on SIMD and

MIMD architectures. We briefly describe them below.

2.1.1 Single Instruction Multiple Data

The SIMD model involves executing a single instruction on multiple data sets. A SIMD,
as shown in Figure 2.1, consists of n processor elements (PEs) with their own local
memories (LM) where it can store data, a global control unit (CU}, and an interconnection
network. All PEs work under the control of a single instruction stream (IS) issued by
CU. There are n data streams (DSs), one per PE. The PEs operate synchronously: at

each step, all processors execute the same instruction on a different data in their own

CHAPTER 2. PARALLEL AND DISTRIBUTED COMPUTING 7

Glcocbal Control Unit

3 ~

T .f’f - e
D el __r. T
PE PE | ------- PE
| |
DS ' DS DS
v Y Y
LM LM | eeeeeee LM
DS DS DS
¥ Y r
Interconnection network

Figure 2.1: The SIMD architecture

local memories.

The first SIMD machine, ILLIAC 1V, was developed at the University of Illinois in 1960s.
It consisted of a control unit (CU} and 64 PEs. Each PE had two thousand (2K) 64-bit
words of memory associated with it (see [7] for detail). The research on ILLIAC IV
led ways for constructing more powerful SIMD machines such as the Thinking Machines

CM-1 and CM-2.

2.1.2 Multiple Instruction Multiple Data

The class of MIMD computers is the most general and most powerful in Flynn’s classi-
fication. The MIMD machines, unlike SIMD machines, do not have the global control
unit. Each PE has its own control unit and local memory, the PEs communicate with
each other via an interconnection network, thereby making them more powerful than
those used in SIMD computers (see Figure 2.2). Each PE works under the control of an
instruction stream issued by its own control unit. Therefore, when the PEs work together
to solve different subproblems of a single problem, they usually operate asynchronously.

When all PEs execute the same program on different data, MIMD machines can also be

CHAPTER 2. PARALLEL AND DISTRIBUTED COMPUTING 8

cu L CU | eeeeees cy
Is IS 15
' o
PE [OPE | eeeeees PE
DS DS | DS
A o 4
| H c ———
M | D 7 R . LM
*__.J —_ H ;
DS DS | DS
I S) Y

Interconnection network

Figure 2.2: The MIMD architecture

referred to as SPMD (Single Program Multiple Data) model. Depending on whether data
are communicated implicitly by way of memory storage and retrieval or explicitly from
PE to PE, MIMD machines can be categorized as shared memory machines(Figure 2.3

(a)) and distributed memory machines (Figure 2.3 (b)).

! ! P f] ;
CPU! | CPU| _...... | CPU| | CPU| | CPU| CPU,
" 1 ET T i
Y Y LA LA B L
Interconnect ! § LM] LTJ

1 Iy L e T T
i i | | i
X Y ¥ L 4 ¥ ¥
Global memory | Interconnect
{(a) Shared memory (b} Distributed memory
machines machines

Figure 2.3: Shared memory machines and distributed memory machines

In the shared memory configuration of Figure 2.3(a}, the memory is shared in the
sense that any of the processors can access the memory locations; that is, the memory
is shared by the processors. One drawback of the globally shared memory is that locks
and semaphores are necessary to synchronize the access to shared data. Examples of
representative machines are SGI Origin 3800 series [62].

In the organization of Figure 2.3(b), processors communicate data to other proces-

CHAPTER 2. PARALLEL AND DISTRIBUTED COMPUTING 9

sors via message passing and processors can only access their own private memories. If
the constitution machines in a distributed system house different hardware and software,
the distributed system is known as heferogeneous. Distributed memory machines can be
composed of common off-the-shelf components and this has been a major contributing
factor to their recent popularity. It is possible to extend this design to hold thousands
of processors. One drawback of this architecture is its inter-node latency when exchang-
ing data between nodes. Compared with the shared memory machines, the distributed
memory machines are inexpensive to build and are very easily scalable.

The class of distributed memory machines is undoubtedly the fastest growing part in
the family of high-performance computers nowadays. When designing and implement-
ing algorithms on distributed memory machines, a programmer has to partition and
distribute the data over the processors and also the data exchange between processors
has to be performed explicitly. Unlike shared-memory systems, the data distribution is
completely transparent to the user. However, because the class of distributed memory
machines is able to outperform all other types of machines and they are inexpensive to
build, this type of machines is very popular in industries and academics. Hence, this is
the platform of choice for our current research. As reviewed above, distributed memory
environments do not share physical or virtual memory, data are exchanged via message

passing. In the follow sections, we review some popular message passing libraries.

2.2 Message Passing Library

In distributed memory machines, every memory module is associated with some indi-
vidual processor; the processors do not have a common memory. Computing tasks or
data are partitioned and distributed explicitly, each running on a separate processor in
parallel and communicate with each other through message passing. Message passing
may serve different purposes. The most obvious purposes are communication and syn-

chronization [6]. Communication occurs when a processor requires data from another

CHAPTER 2. PARALLEL AND DISTRIBUTED COMPUTING 10

processor and must wait for it to arrive. Synchronization arises when processors ex-
change messages to indicate that they have reached a certain point of program execution
or certain requirement has been met.

Message passing is currently the prevailing model in writing performance-oriented
applications on a wide variety of distributed memory architectures. When implementing
program using message passing model, it is the programmer’s responsibility to manage
all details of data distribution and task scheduling, load balancing, as well as communi-
cation between processors. Since the communication will affect the overall performance,
programmers are strongly encouraged to develop algorithms that maximize local compu-
tations while minimizing communications. Also, everything is under the programmer’s
contrel, the programmer can achieve close to optimum performance if the programmer
just spends enough time in performance tuning.

There are two popular message passing libraries that allow programmers to explicitly
write message passing programs: Parallel Virtual Machine (PVM) and Message Passing

Interface (MPI). We briefly outline them below.

2.2.1 Parallel Virtual Machine

Parallel Virtual Machine (PVM) is a message passing system that enables a network
of computers to appear as one large virtual machine to be used as a single distributed
memory parallel computer. The PVM project began in early 1990s at Oak Ridge Na-
tional Laboratory. The overall objective of the PVM system is to enable a collection
of computers to be used cooperatively for concurrent or parallel computation. Detailed
descriptions and discussions of the concepts, logistics, and methodologies can be found
in [28] or online website available at: http://www.csm.ornl.gov/pvm/pvim_home.html.
A portable version of PVM (PVM 2.0) was released in 1991. In 1993, PVM 3.0 was
released with a new user application interface (API), which specifically enables PVM
applications to run on multiple massive multiprocessors. Meanwhile, PVM research group

are trying to keep the PVM interface simple to use and understand. In PVM system,

CHAPTER 2. PARALLEL AND DISTRIBUTED COMPUTING 11

there is a console through which a user can create and terminate processes at run time
on specific hosts and can add and delete hosts. Any process may communicate and/or
synchronize with any other.

In PVM system, a computing task is written as a collection of cooperating subtasks.
Tasks access PVM resources through a library of standard interface routines. Program
is compiled on different hosts and executed concurrently. PVM programs are portable,
which implies that youn can run a PVM program on a different architecture, once it
has been compiled on that system. Besides, a PVM program written in Fortan on one
machine can communicate with a C program running on another machine.

PVM is known primarily for its support of multi-platforms, such as UNIX and Win-
dows/ NT. The PVM system has gained widespread acceptance in the high-performance
scientific computing community. Despite its popularity, the PVM message passing en-
vironment is not a particularly elegant method for expressing many parallel algorithms.

PVM has been replaced by MPI in many cases.

2.2.2 Message Passing Interface

Message Passing Interface (MPI) is a library specification for message-passing, proposed
as a standard by a broadly based committee of vendors, implementors, and users [49]. The
official version of the MPI documents can be found at http://www.mpi-forum.org/docs/.

An MPI program consists of autonomous processes, executing their own code in its
own address space in an SPMD style. Note that the number of processes can actually be
larger than the number of physical processors, since more than one MPI process can be
run on each processor. The processes in MPI are ordered and numbered consecutively
from 0, the number of each process being known as its rank. The code executed by
different processes is identical except for a small number of processes (e.g. the “host”
process). All the processes execute their tasks asynchronously. This makes it possible to
implement any parallel algorithm. Sometimes, synchronization may be needed between

processes depending on the applications under implementation.

CHAPTER 2. PARALLEL AND DISTRIBUTED COMPUTING 12

All MPI communication calls require a communicator argument and MPI processes
can only communicate if they share a communicator. Communicator is a key concept
used throughout MPI. A communicator consists of a list of processes. The rank of each
process identifies each other within the communicator. For example, the rank can be
used to specify the source or destination of a message. A default communicator in MPI
is MPI_COMM_WORLD which allows all the processes to communicate with each other.
In some cases, a programmer can define his own communicators for some special purposes.
Hence, a process may belong to several different communicators.

The MPI library contains over 120 routines, making it the richest message-passing
library. The routines are used to initialize and terminate the MPI library, to get infor-
mation about the parallel computing environment, and to send and receive messages.
MPI library has been standardized in 1995 as MPI 1.1. Some extensions to MPI 1.1
known as MPI 2.0 were released in 1997. In addition, there exists some freely avail-
able, high-quality and portable implementation of MPI such as LAM MPI from Ohio
Supercomputing Center and MPICH from Argonne National Laboratory. MPI supports
parallel programming in C and Fortran on distributed memory architectures and various

platforms such as Unix, Linux, and Windows NT.

2.2.3 Advantages and Disadvantage of MPI and PVM

PVM and MPI are both message passing libraries that can be used for parallel computing,.
A feature-by-feature comparison of these two libraries is given by Geist et al. [29], and
the the reasons why solutions from PVM and MPI are different are stated by Gropp
and Lusk {33]. Some relationships between PVM and MPI can be found at [35]. PVM
and MPI are message-passing packages providing, in fact, the assembler level of parallel
programming for networks of computers [46]. Scientific programmers find that it is
tedious and error-prone in writing really complex and useful parallel applications in
PVM/MPI [46]. In addition, PVM and MPI are not designed to support development

of adaptable parallel applications, that is applications distributing computations and

CHAPTER 2. PARALLEL AND DISTRIBUTED COMPUTING 13

communications in accordance with the features of underlying heterogeneous machines.

These observations by scientific programmers led to the development of mpC.

2.3 mpC

The mpC is a high-level parallel language, which is designed specially to develop portable
adaptable application for heterogeneous networks of computers. The main idea under-
lying mpC is that a programmer can define an abstract network for his/her application
and describe in details all the computations and commumications to be performed on
this abstract network. The mpC programming system uses this information to map the
abstract network to any real executing network in such a way that ensures efficient run-
ning of the application on this real network. This mapping is performed in run time and
based on information about performances of processors and links of the real network,
dynamically adapting the program to the executing network.

As a newly invented parallel programming tool, mpC has many advanced features [45]:
it allows programmer to define at runtime the total number of participating parallel
processes, the total volume of computations to be performed by each of the processes, the
total volume of data to be transferred between each pair of the processes, and how exactly
the processes interact during the execution of the algorithm. mpC has the following

important features [50]:

e Portability: once developed, an mpC application will run as efficiently as possible

on any heterogeneous network of computers without any changes of its source code.

o Adaptability: the mpC language allows to write applications adapting not only
to nominal performances of processors but also to redistribute computations and
communications dependent on dynamic changes of workload of separate computers

of the executing network.

e Advancement: mpC is the unique tool having no research or industrial analogs.

CHAPTER 2. PARALLEL AND DISTRIBUTED COMPUTING 14

(There are some tools executing some functions of an distributed operating system
and trying to take inte consideration the heterogeneity of processor performances
in commodity networks of computers when scheduling tasks in order to maximize
throughput of the corresponding network. Unlike such tools, mpC is aimed at min-
imization of the running time of an application on the executing network. The
feature is the most important for end-users, while the network throughput is im-

portant for network administrators.)
e Applicability: It is a standard, highly portable and freely available software.

The first version of the mpC programming system for networks of workstations and
PCs became available early in 1997. The latest version 2.2.0 was released in November
2001. The current mpC programming environment contains a compiler, run-time support
system (RTSS), libraries and a command-line user interface. For detailed information
about mpC language, programming environment and samples, please refer to [4, 45, 46}
or online website available at http://www.ispras.ru/~mpc/.

The following is an mpC programming example:

#Hinclude <mpc.h>
#include <stdlib.h>
##define N 3
int [*]main() {
net SimpletNet (N) mynet;

char ={mynet]host_name;

[mynet]| host_name=MPC_Get_processorname ();
[mynet | MPC_Printi(’ 'Hello , world! Host process runs on %s.\n” ,host_name};

return0 ;

}

The mpC routines are stored in the Hbrary mpe.h, and this file must be included in all
mpC programs. The number of participating processes, N = 3, is defined by the program-

mer and does not depend on the total number of processes of the parallel program. The

CHAPTER 2. PARALLEL AND DISTRIBUTED COMPUTING i5

[¥] construct before main means the main function will be executed by all processes of the
parallel program. An abstract network “mynet” is defined which consists of N munber of
abstract processors. The parallel computations are then described on this network. The
execution of this program consists of parallel call to function MPC_Get_processor_name
and MPC_Printf by the N processes of the program to which abstract processors of

network “mynet” has been mapped. This mapping is performed at runtime.

2.4 Methodology for Creating Parallel Programs

Foster [25] suggests that the methodology of parallel implementations should follow a

four step method:
1. Partitioning.
2. Communication.
3. Agglomeration.
4. Mapping.

Partitioning can refer to the decomposition of tasks or the data with which computatioﬂs
are to be performed. The breakdown of the computation inte disjoint tasks is termed
functional decomposition; the partitioning of data amongst the nodes of parallel compu-
tation is termed domain decomposition. The partitioning stage of a design is intended to
expose opportunities for parallel execution.

Communication patterns as noted by Foster [25] are categorized as: local/global,
structured /unstructured, static/dynamic, and synchronous/asynchronous. In local com-
munication a node communicates within a small set of nodes, while global communication
requires that each node have the ability to communicate with all available nodes. Struc-
tured communications are built in a regular pattern such as a tree or a grid and do not

change over time, while unstructured communications can be an arbitrary arrangement.

CHAPTER 2. PARALLEL AND DISTRIBUTED COMPUTING 16

Static communication are arranged at initialization, while dynamic communication are
arranged at runtime. In synchronous communication, both producers and consumers
are aware when communication operations are required, and producers explicitly send
data to consumers. In asynchronous situations, nodes need not be synchronized for data
transfer.

Agglomeration is the process of combining into coarser-grained tasks, if necessary,
to reduce communication requirements or other costs to improve performance. This
combining of tasks is also known as increasing the granularity of program structure.

Partitioning, communication and agglomeration lead to the mapping of the parallel
program onto a particular architecture. The goal is to maximize local computations while
minimizing communications to cut down on total execution time. Foster [25] proposed
two conflict strategies to reach this goal: (1) Place tasks that can execute concurrently on
different processors, and (2) Place tasks that communicate frequently on same processor.
In general, finding optimal solution to this tradeoff is NP-complete, so heuristics are used

to find reasonable compromntise.

Chapter 3

Monte Carlo and Quasi-Monte Carlo
Methods

In the field of computational finance, many problems require numerical evaluation of
an integral. However when the dimension of the problem is large, numerical integration
methods become intractable. In these cases, the Monte Carlo method is the only practical
way to evaluate integrals of arbitrary functions in six or more dimensions [55]. Monte

Carlo has been one of the early approaches for option pricing problem {10].

3.1 Monte Carlo Method

In general, Monte Carlo (MC) and quasi-Monte Carlo (QMC) methods are applied to
estimate the integral of function f{z) over the [0,1)¢ unit hypercube where d is the

dimension of the hypercube.

I= flz)dz (3.1)

[0.1)¢
In MC methods, 7 is estimated by evaluating f(z) at N independent points randomly

chosen from a uniform random distribution over [0,1)¢ and then evaluating the average
PN
i=1

17

CHAPTER 3. MONTE CARLO AND QUASI-MONTE CARLO METHODS 18

From the law of large numbers,] — I as N — 0o. The standard deviation is

1 N

o 2L w) = I (3:3)

=1

The standard error can be estimated as the standard deviation divided by v/N. Therefore,
the error of MC methods is proportional to ﬁ In practical implementation, those
points are usually generated from a deterministic algorithm. It is expected that these
numbers generated in such a deterministic manner to imitate the true randomness of

random numbers. These sequences are called pseudo-random sequences. Figure 3.1

depicts generation of 500 pairs of random numbers.

0.8 Y

#
+ s . 30 ¥ ey, .
() AR S Y S SENN S, A S 5./ S AN, A 5 S—
: * X2 *

0.4

o2 MR I SRR s)X .8 * . * +
) » ¢ 0. oy NPV ¢ RN
+ *

Figure 3.1: Plot of 500 Paris of Random Numbers

{t is unnecessary to show random sequences for other dimensions because they will look
similar to Figure 3.1, thanks to randomness.
Several advantages make MC method popular among finance and other practitioners.

First, MC method is currently the only practical way to deal with numerical integrals

CHAPTER 3. MONTE CARLO AND QUASI-MONTE CARLO METHODS 19

with high dimensionality. Most financial models are high dimensional. For example,
pricing a mortgage backed security requires a 360 dimensional space. Current technol-
ogy only allows the solution of up to 6 dimensions. Second, the standard error of MC
simulation does not depend on the dimension of the problems. This property ensures
good performance on high-dimensional problems. Last but not least, MC method is easy
to apply to many problem and is easy to implement. On the other hand, Monte Carlo
method is not perfect, it has several deficiencies that may complicate its usefulness [51}.
Limitations include but are not restricted to the following: First, the error of MC meth-
ods is proportional to ﬁ Hence, decreasing the error by 10 order of magnitude will
require an increase in the number of simulation runs N by 100 orders. Second, the MC

method is inherently statistical in nature, the result could be wrong, and there are only

probabilistic error bounds.

3.2 Quasi-Monte Carlo Method

QMC methods compute the integral (3.1) based on low-discrepancy (LD) sequences. The
elements in a LD sequence are “uniformly” chosen from [0, 1)¢ rather than “randomly”.
The discrepancy is a measure to evaluate the uniformity of points over [0, 1)¢. Let {g,} be
a sequence in [0,1)?, the discrepancy D} of g, is defined as follows, using Niederreiter’s
notation [51]:

* A B, dn
Dy(gn) = sup | AB, g.) N)
BE[O,l)d

— vg(B) | (3.4)
where B is a subcube of [0,1)? containing the origin, A(B, ¢,) is the number of points
in g, that fall into B, and vy(B) is the d-dimensional Lebesgue measure 'of B. The
elements of ¢, is said uniformly distributed if its discrepancy Dy — 0 as N — oco. From

the theory of uniform distribution sequences [44], the estimate of the integral using a

uniformly distributed sequence {q,} is I= —1,1\—, Zf:l (g}, as N — oo then I — 1. The

'In mathematics, the Lebesgue measure is an extension of the classical notions of length, arca or
volume to subsets of Euclidean space [67].

CHAPTER 3. MONTE CARLO AND QUASI-MONTE CARLO METHODS 20

integration error bound is given by the Koksman-Hlawka inequality:

|1 ~>:f(qn) 1< V(/)D5(4n) (3.5)

where V(f) is the variation of the function in the sense of Hardy and Krause [44], which
is assumed to be finite. The inequality suggests a smaller error can be obtained by using
sequences with smaller discrepancy. The discrepancy of many uniformly distributed
sequences satisfies O((log N)¢/N). These sequences are called low-discrepancy (LD)
sequences [51]. Inequality (3.5) shows that the estimates using a LD sequence satisfy the
deterministic error bound O((log N)?/N). Niederreiter [51] proposed a general principles
of generating LD sequences. The best known LD sequences are Halton [34], Sobol [60]
and Faure [23]. This is a growing research area and new sequences are being proposed.
The following is an example (see figure 3.2 below) of the first 16 numbers of LD se-
quence? distributed over the interval {0,1): 0.0000, 0.5000(Z), 0.75000(12), 0.2500(),
0.3750(%), 0.8750(13), 0.6250(12), 0.1250(&), 0.1875(5%), 0.6875(13), 0.9375(32), 0.4375(:%),
0.3125(-3), 0.8125(12), 0.5625(:%), 0.0625(15). These values are obtained from the online

— -+ - -
0 V16 /16 3/16 4/16 5/16 6/t6 7/16 8/16 916 10/16 1V/16 1216 13/16 14/16 15/16 1

0 15 7 8 3 12 4 11 1 14 6 9 2 13 5 10

Figure 3.2: The first 16 number of sequence distributed over the interval [0, 1)

GNU Scientific Library that generates LD sequence (http://www.gnu.org/software/gsl/).
It can be seen that successive points progressively fill-in the spaces between previous
points. QMC methods can be viewed as deterministic version of MC methods {51]. The
use of LD sequences improves the performance of MC simulations and offers higher ac-
curacy for a similar computational effort compared with standard MC.

LD sequences have been widely used in many disciplines, such as, weather prediction,

growth pattern of agriculture. The difference between pseudo-random sequence and

2This is a 1-dimensional Sobol sequence. The interval closed at 0 because 0 is included in the sequence,
but it is open at 1 because the sequence never reach the number 1.

CHAPTER 3. MONTE CARLO AND QUASI-MONTE CARLO METHODS 21

LD sequences is given by [22]: “ Although the ordinary uniform random numbers and
quasirandom sequences both produce uniformly distributed sequences, there is a big
difference between the two. A uniform random generator on [0, 1} will produce outputs
so that each trial has the same probability of generating a point on equal subintervals, for
example [0,1/2) and {1/2,1). Therefore, it is possible for n trials to coincidentally all lie
in the first half of the interval, while the (n + 1)st point still falls within the other of the
two halves with probability 1/2. This is not the case with the quasirandom sequences, in
which the outputs are constrained by a low-discrepancy requirement that has a net effect
of poiuts being generated in a highly correlated manner (i.e., the next point “knows”
where the previous points are).”

In finance, several examples [1, 11, 27, 53] have shown that the Sobol’s sequence is

superior to others especially in high dimension problems.

+
+
0.8 ‘0—0—0'4—-;———’—*5

0.6

0.4 [

0.2

Figure 3.3: Plot of 500 Paris of Sobol LD Numbers

For example, Galanti and Jung [27] observed that “the Sobol sequence outperforms the

Faure sequence, and the Faure marginally outperforms the Halton sequence. At 15,000

CHAPTER 3. MONTE CARLO AND QUASI-MONTE CARLO METHODS 22

simulations, the random sequence exhibits an error of 0.07%; the Halton and Faure
sequences have errors of 0.1%; and the Sobol sequence has an error of 0.03%. These
errors decrease as the number of simulations increases”. Hence, in this research, we use
Sobol’s LD sequence for the QMC simulations. Figure 3.3 plots 500 paris of Sobol LD
numbers, compare with Figure 3.1 and notice how the Sobol points are much more evenly

distributed but still appear somewhat random.

3.3 Sobol Sequence

Sobol sequence is one of the classical LD-sequences which satisfies smaller discrepancy
bounds than others. It has certain advantages over other LD sequences for the compu-
tation of high dimensional integrals. This leads to efficient algorithms for pricing option
and complex derivative securities.

The Sobol sequences can be viewed as an extension from one-dimensional van der
Corput sequence to multi-dimension sequences. The van der Corput sequence is the
simplest one-dimensional LI} sequence. Let p be any prime number; to obtain the n-th

point z, of the van der Corput sequence, first expand the integer n in terms of p:
m
w3) x o (35)
i=0

then reflect the expansion in base p about the “decimal point” to get the corresponding

quasi-random number:

b = dy(n) = 3) (3.7)

i+1
i=0 p

Only a finite number of these a;(n) will be zero. For example, let p =3 and n = 11. We

can write 11 in base 3 as:
11=1x3>4+0x3" +2x3"= 102 (3.8)

When reflecting 102 (in base 3} about the “decimal point”, we obtain:

2 0 1 19
11 =¢)3(11)= §+§+'2’? = é—? (39)

CHAPTER 3. MONTE CARLO AND QUASI-MONTE CARLO METHODS 23

This is clearly a number in [0,1). The next number in the sequence is ¢3(12) = 3= and
the first 12 number in this sequence, excluding zero, are

(9188 1221 6 1524 1 1019 4, (3.10)
277272772727 277 27727 277 277 277 27
Notice that the new points added tend to fill in the gaps in the existing sequence.

The Sobol sequence use the least prime number 2 as the base. The first dimension
of Sobol sequence is a van der Corpt sequence in the base 2 and higher dimensions are
permutations of the first dimension following the same procedure. Permutations depend
on a set of “direction numbers” v; which satisfy »; = % where the m; are odd positive

integers less than 2°. In order to generate direction numbers, a primitive (irreducible)

polynomial over binary arithmetic is selected. This is a polynomial:
pz)=z"+caz" + ez + 1, (3.11)

with coefficients ¢; in {0,1}. For dimension j, the v/ and m/ are generated using the

following recurrence formula:

m! =2eml | @ Peml , &+ + Qq"lcq_lmf_qH & 2"mf_q, i>d, (3.12)
and
v =200 @ v, &+ + cq_lv.f_qﬂ & vf_q ® v, /29,1 > d, (3.13)

where @ denotes the bit-by-bit exclusive-or operation such that 10 =041 =1 and
11 = 00 = (. The initial value m{ , m%, Sl mg can be chosen freely provided that each
m] is odd and less than 2/ (more details see [31]). The Sobol sequence z in dimension
7 is generated by:

2l = bl ©bvl @@ boo? (3.14)
where w is number of bits with binary fractions of n. Note that for generating each
dimension of Sobol sequence, a different primitive polynomial is needed. This is Sobol’s

original method. Antonov and Saleev [3] provided a faster method using expression:

T =g Dby ® gavs @ - - (3.15)

CHAPTER 3. MONTE CARLO AND QUASI-MONTE CARLO METHODS 24

where - - - g3g241 1s the binary representation of the Gray code, i. e.,
- g3G201 = <+ b3baby B -+ - bybsbs. (3.16)
Formula 3.15 can then be transformed as
Tyl = Tn D Ve (3.17)

where ¢ is the position of the least significant zero bit in the binary representation of
n, i.e., b, is the least significant zero bit in ---b3byb;. Bratley and Fox [13] gave an

implementation of this method.

3.4 Generating Sobol’s LD Sequence

Sobol sequence is one of the classical LD-sequences which satisfies smaller discrepancy
bounds than others. Sobol [60] has proposed an algorithin for generating quasi-random
sequences. Some discussions about implementing Sobol’s algorithm can be found in {13,
40]. Bratley and Fox [13] implemented Sobol’s algorithm in Fortran 77. The popular
Numerical Recipes (see for example [54]) gives routines implemented in C, Fortran
77, or Fortran 90, but the routines allow the generation of Sobol’s sequences in up to
six dimensions only. Paskov and Traub [53] from Columbia University implemented a
software named FinDer which can generate Sobol sequence up to 370 dimensions, but it
is a licensed software.

In this research, we are going to use 10 dimensional (number of time steps, here}
Sobol sequence, though we do not have any restriction or limitation in the use of higher
dimensions in our algorithm. The whole project will be implemented using mpC which
is an extension of ANSI C and the simulations will be performed on machines running
Unix/Linux. It will be good for us using C routines which can generate high dimension
Sobol sequence. The GNU Scientific Library (http://www.gnu.org/software/gst/) offers
such free routines for generating arbitrary dimensions Sobol sequence. GNU Scientific

Library is a collection of numerical routines for scientific computing. The main routines

CHAPTER 3. MONTE CARLO AND QUASI-MONTE CARLO METHODS 25

for generating Sobol sequence are gsi_grrg_olloc which returns a pointer to a newly-
created instance of Sobol sequence generator and dimension, gsi_grng_get which returns
the next point from the sequence generator, and gsl_grng._free which frees all the memory
associated with the generator. Using these routines, the LD sequences can be generated

in arbitrary dimensions.

Chapter 4

Option pricing and related work

Options on stocks were first traded on Chicago Board of Options Exchange in 1973.
Since then, huge volume of options have been widely traded throughout the world. The
underlying assets of an option could include stocks, stock indices, foreign currencies, debt
instruments and commodities [39]. We introduce in this chapter some basic definitions on
option pricing first followed by discussion on some numerical techniques generally used

in the literature.

4.1 Definitions

An option is an agreement between two parties to buy or sell an asset at a certain time

in the future for a certain price. There are two commonly traded options:

o Call Option: A call option [39} is a contract that gives its holder (i.e. buyer) the
right to buy a prespecified underlying asset at certain date for a predetermined
price without creating an obligation. If the option can be exercised only at its
expiration (i.e. the underlying asset can be purchased only at the end of the life of
the option} the option is referred to as an European style Call Option (or European
Call). If it can be exercised at any date before its maturity, the option is referred

to as an American style Call Option {or American Call).

26

CHAPTER 4. OPTION PRICING AND RELATED WORK 27

s Put Option: A put option [39] is a contract that gives the right to its holder without
creating the obligation, to sell a prespecified underlying asset at certain date for a
predetermined price. If the option can be exercised only at its expiration (i.e. the
underlying asset can be sold only at the end of the life of the option) the option
is referred to as an FEuropean style Put Option (or European Put). If it can be
exercised any date before its maturity, the the option is referred to as an American

style Put option {or American Put).

The price in the contract is known as exercise price or strike price; the date in the

contract is known as the expiration date or maturity date.

4.2 Option Pricing

In computational finance, some of the parameters required to price options are: K the
strike price; 7' the life time (expiration date) of the option; S; the stock price at time ¢;
r the interest rate, p the drift rate of the stock (a measure of the average rate of growth
of the asset price); o the volatility of the stock; and C the option value.

Here is an example to illustrate the option pricing problem. Suppose an investor
enters into a call option contract to buy a stock at price K after six months. After six
months, the stock price is Sp. If S+ > K then he can exercise his option by buying the
stock at price K, and by immediately selling it in the market he can make a profit of
St — K. On the other hand, if S < K he is not obligated to exercises the option (that
is, buy the stock).

From the above example, an option to buy an underlying asset at time T at price K
will get payoff (St — K)*, where (St — K)* = max(0, St — K). Figure 4.1 illustrates the
payoff graphically. Similarly, a put option will get payoff (K — Sr)*. Now, the pricing
problem is: given the current stock price §, the strike price K, the time to expiry 7,

risk-free interest rate r, how can one find the present value of the option?

CHAPTER 4. OPTION PRICING AND RELATED WORK 28

A
Payoff

v

Figure 4.1: Payoft function of the call option

4.3 Related Work

Innovative financial instruments are constantly created in financial markets. Financial
models developed to study theses instruments are getting more complex. However, little
attention has been paid in the published literature to numerically solve these models to
ensure the tractability of these models for various market conditions. Most option pricing
models can not be solved to provide exact solution in closed form. Hence, numerical
methods have come to play an important role in computational finance. Binomial trees,
Finite difference and Monte Carle simulations are three popular numerical methods that

are used to value options.

4.3.1 Binomial Trees

Binomial method is perhaps the simplest and the most intuitive numerical method. It
was first proposed by Cox, Ross, and Rubinstein in 1979 {21]. The binomial model for
option pricing is based upon a special case in which the price of a stock over some period
is assumed to either go up or down by a given proportionate value. When the lattice

is built to cover the price movement over the life of the option, it looks like a tree with

CHAPTER 4. QPTION PRICING AND RELATED WORK 29

root node representing the current date and the leaf nodes representing the possible asset
(stock) prices on the maturity date (see Figure 4.2). Each node in the lattice represents

a possible price of the underlying asset at a particular point in time.

0 At 2At 3AL 4Nt T

Figure 4.2: A four-step Binomial tree for an asset

Consider a call option on a stock with a current price of Sy which follows a binomial
process. Suppose T is divided into n equal intervals of length At = % At the first
time period At the asset price can go up to Spp with probability p or down to Spd
with probability (1 — p). The parameter g and d determine the average behavior and
the volatility of the asset, (x > 1; d < 1). Cox, Ross, and Rubinstein [21] impose the
condition 4 = ;17 to force the trees to recombine. Hence, at time 2A¢{ for the recombing
trees, the possible asset prices are Sy ;52, So 1t d, and Spd?. The price Sy i+ d may come from

an upward movement followed by a downward movement or from a downward movement

followed by an upward movement. Hence, at the i-th (0 < ¢ < n) time period ¢Af, there

CHAPTER 4. QOPTION PRICING AND RELATED WORK 30

will be ¢ -+ 1 possible prices, which we label
St =8yl d; §=0,1,---,i. (4.1)

Hence, at the expire time T, there will be n -+ 1 possible stock prices. Let C! denote
the option value at T corresponding to the n + 1 stock price, then we have C! =
max{S, ' diJ — K,0}. Options are evaluated by starting at time T of the tree and
working backward to time zero. Under the risk-neutral measure!, the value of the j-th

node at time iA# before expiry is {39)]:

1 1

C] = e ™M pCi1 + (1 - p) CLl (4.2)

Using equation 4.1 and 4.2 we can compute the value of the option at every node at time
step n — 1. We can then reapply equation 4.2 at every node at every time step, working
backwards through the tree to compute the value of the option at every node in the tree.
This procedure computes the value of the European option at every node in the tree.
The parameter p,d and p are computed using the formula below (39]:

[AY d
VB g = goVBl e__d_ (4.3)
!L——

=

Binomial model brings useful intuition about complicated problem despite its limita-
tions in terms of accuracy. Various implementations of Binomial method can be found
in the literature. For example, Higham [36] summarized nine ways of implementing
the binomial method for option valuation in MATLAB. Gerbessiotics [30] introduced
an architecture independent parallel binomial tree approach for option price valuations.
This algorithm achieves optimal theoretical speedup but it doesn’t handle options with
multi-assets®. Thulasiram and Bondarenko [63] developed and implemented parallel al-

gorithms for pricing options with both single and multi-assets employing binomial lattice

approach. Although binomial lattice method is very popular, it has been demonstrated

1Rigk-neutrality means that the investment on options is assumed to yield at least equivalent to the
returns from a bank investment at a fixed interest rate [39)].
2Multi-assets means an option with several underlying assets

CHAPTER 4. OPTION PRICING AND RELATED WORK 31

that there are difficulties when this approach is applied directly to many complex op-
tion pricing problems (see, for example [12, 37, 64]). In addition, with the increase in
the number of state variables, the computational cost of binomial model grows exponen-
tially. The parallel implementation becomes challenging for complex options as explained

in [37, 63, 64].

4.3.2 Finite Difference

Finite difference methods are more general than lattice methods and can be applied to
price a wide variety of exotic options (see, for example [2, 18, 68, 69]). Finite difference
methods value options by solving the differential equations that the options satisfies. The
idea is to discretize the differential equation into a set of difference equations and solve
the difference equations iteratively [39].

Consider the Black-Scholes partial differential equation for option evaluation [9]:
acC oc 1 ,0°C
il L Lt = 4.4
ot "as "% a5z T (4.4)
To solve this equation, suppose the time T is divided into n equal intervals of length
At = L. And the stock price S has m steps to reach a maximum value Sp. which is

sufficiently large, then these points define a grid as shown in Figure 4.3. The (¢,7) point
on the grid is the point that corresponds to time At and the stock price jAS. We use
C'f to denote the value of the option at the (7,) point. In the following, we illustrate an

implicit finite difference approach to compute each item of equation 4.4. For an interior

point (z,7) on the grid, g—g can be approximated (forward difference) as
ac ot -
i S 4.5
as AS (45)
or backward difference as _ .
oc C!-0Cl”
T _ T 4
55 = AS (4.6)

A more symmetrical approximation is to average equation 4.5 and equation 4.6 which

gives (central difference):
ac ittt

35 NG (47)

CHAPTER 4. OPTION PRICING AND RELATED WORK 32

}Stock price
Smax [. . L) . . . » . .
+
4 s
¢ N
)
1
225 ¢ . -
ASe
Time
O . Py - » ' Py 'y 'Y Py .
t t+at t+H2at T

Figure 4.3: Grid for finite difference approach

%—f can be approximated as:

ac Gl -0l

4.
ot At (48)
Similarly, %27— at node (7, 7) can be approximated as:
oit—cl _ ci-ar
BQC — AS — AS (49)
NE AS
or _ _
Fc citty ol 20
S i (4.10)

a5? AS?
Substituting equations (4.7), (4.8), and (4.10) into the differential equation (4.4) gives:
Cl, — ! gtt-c 1 citt w7 2]

i 7 - 1 S22 2
Al + riAS SAS —|—20'j AS

NG rC? (4.11)

Hence, for j =1,2,---,m—1land ¢ =0,1,---,n — 1, the value at each node of the grid
can be computed. Option value can then be obtained by working back from the end of

the life of the option to the beginning just like the tree approach.

CHAPTER 4. OPTION PRICING AND RELATED WORK 33

Finite difference approach was first applied for valuing options in [15, 58). More re-
cent examples can be found in [18, 19, 65]. There are several finite differencing schemes
available in the literature, such as, forward-differencing, backward-differencing, central-
differencing, McCormack scheme etc {39]. However, both finite difference methods and
binomial lattice methods are computationally intensive and sometimes practically infea-

sible.

4.3.3 Monte Carlo Simulation

The MC simulation as a numerical method in pricing options was first introduced by
Boyle {10] in 1977. Since then, MC simulation has become a popular method for estimat-
ing the value of financial options and other derivative securities. There is a vast literature
about MC simulation in computational finance. For example, Hull and White [38] em-
ployed MC method in stochastic volatility application and obtained more accurate result
than using Black-Scholes model [9]; the latter often overprices options about ten per-
cent and the error will be exaggerated as the time to maturity increase. Schwartz and
Torous [59] use MC method to simulate the stochastic process of prepayment behavior
of mortgage holders and the results matched closely to that actually observed. Fu [26]
gives introductory details concerning the use of Monte Carlo simulation techniques for
options pricing. Even though the prevailing belief that American-style options cannot be
valued efficiently in a simulation model, Tilley [66], Grant et al. [32], as well as Broadie
and Glasserman [16] and some others, have proposed MC methods for American-style
options and obtained good results. Examples about valuing exotic options can be found
in [43]. The literature on MC methods in valuing options keeps growing. More examples
can be found in [11, 31, 56]. The traditional MC methods have been shown to be a

powerful and flexible tool in computational finance.

CHAPTER 4. QOPTION PRICING AND RELATED WORK : 34

4.3.4 Quasi MC Simulation

While the ordinary MC methods are widely applied in option pricing, however, their
disadvantages are well-known. In particular, for some complex problems which require
a large number of replications to obtain precise results, a traditional MC method using
pseudo-random numbers can be quite slow because its convergence rate is only O(N~1/2)
where N is the number of samples. Different variance reduction techniques have been
developed for increasing the efficiency of the traditional MC simulation; such as con-
trol variates, antithetic variates, stratified sampling, Latin hypercube sampling, moment
matching methods, and importance sampling. For detail about these techniques, please
refer to [31]. Another technique for speeding up the MC methods and obtaining more
accurate result is to use LD sequences instead of random sequences.

Birge (8] presented how quasi-Monte Carlo sequences can be used in option pricing
in 1994 and demonstrated improved estimates through both analytical and empirical
evidence. In 1995, Paskov and Traub [53] performed tests about two low-discrepancy
algorithms (Sobol and Halton) and two randomized algorithms (classical Monte Carlo and
Monte Carlo combined with antithetic variables) on Collateralized Mortgage Obligation
(CMO). They obtained more accurate approximations with QMC methods than with
traditional MC methods and concluded that for CMO the Sobol sequence is superior
to the other algorithms. Acworth et al. [1] compared some traditional MC methods
and QMC sequences in option pricing and drew similar conclusion. Boyle et al. [11]
also found that QMC outperforms traditional MC and Sobol sequence outperforms other
sequences. Galanti and Jung [27] used both pseudo-random sequences and LD sequences
(Sobol, Halton and Faure) with MC simulations to value some complex options and
demonstrated that LD sequences are a viable alternative to random sequences and the
Sobol sequence exhibits better convergence properties than others. Today, QMC methods
are successfully used in computational finance as an alternative to MC method. In next
chapter, we present details of MC and QMC methods for option pricing followed by
parallelization of QMC for option pricing in chapter 6.

Chapter 5

Quasi-Monte Carlo Method for
Option Pricing

5.1 Monte Carlo Method

According to Boyle et al. [11], the Monte Carlo methods for option pricing can be divided
into three basic steps: (1) Simulate sample paths of the underlying state variables (e.g.,
underlying asset prices and interest rates) over the relevant time horizon. Simulate
these according to the risk-neutral! measure; (2) Evaluate the discounted cash flows of a
security on each sample path, as determined by the structure of the security in question;
(3} Average the discounted cash flows over the sample paths.

The following is a European Call option [39] to be evaluated in this research. This

option gives its holder a payoff defined by:
max(0, St — K} (5.1)

In order to determine the price of the option, a Black-Scholes [9] option pricing model

1Risk-neutrality means that the investment on options is assumed to vield at least equivalent to the
returns from a bank investment at a fixed interest rate [39].

35

CHAPTER 5. QUASI-MONTE CARLO METHOD FOR OPTION PRICING 36

gives the following stochastic differential equation:
dSt = ﬂS;dt*}*O'Stth, (52)

where W is a standard Wiener process {also called Brownian motion). Under the risk-

neutral measure, g is set to u = r. Equation (5.2) can be rewrite as:

‘% = rdt + o dW;, (5.3)
t

This equation may be interpreted as modelling the percentage changes %% in the stock
price as the increments of a Brownian motion [31]. The random variable W, is normally
distributed with mean 0 and variance ¢, it can be simulated by random samples of /7
where 7 is a standard random variable, i.e., Z ~ (0,1). Knowing the initial value Sy of
the underlying asset, the MC simulation can estimate the value of S;, and subsequently
gives estimation of the payoff from that price.

To simulate the path followed by S, suppose the life of the option has been divided
into n short intervals of length At (At = T /n), the updating of the stock price at ¢+ Af
from ¢ is [39):

Sirar — 8 = 1S AL+ 0 S, ZVAL, (5.4)

This enables the value of Sa; can be calculated from initial value Sy at time A¢, the value
at time 2A¢ to be calculated from Sa¢, and so on. Hence, a completed path for S has
been constructed.
In practice, in order to avoid discretization errors, it is usually to simulate (In.S)
rather than S. From It6’s lemma, the process followed by In S of (5.4) is [39]:
2

dlnS = (r — E;—)dt + odz (5.5)

so that

2
InSira; — InS; = (r — %)dt +oZVAL (5.6)

or equivalently:

St+At = Stexp[(r—az/Q)At+av AiZ] (57)

CHAPTER 5. QUASI-MoONTE CARLO METHOD FOR OPTION PRICING 37

Substituting independent samples Z;,..., Zy from the normal distribution into (5.7)
yields independent samples Srf-f}, ¢ = 1,..., N, of the stock price at expiry time T.

Hence, the option value is given by

N N
1 1 _r i
0= 2 Gy 2 o7 max{Sy — 1,00} (5.8)

The Standard deviation of C is

T L 1y 26 = O (5.9)

Please note that the several mathematical descriptionis of MC method presented in Sec-

tion 3.1 is discretely related to this formula. For example, 7 in equation (3.1) corresponds

to C' and f(z) in equation {3.1) corresponds to the right hand side of equation (5.8).
The following algorithm illustrates the steps in simulating M paths of n timesteps

each.

Algorithm 1 Monte Carlo Algorithm
1. Initialize the parameters such as 5,7, X, T, o,

2. for i =1 to M do /*M = number of simulations. i.e., for each simulation*/

3. forj=1ton

4 generate standard normal sample

5. simulate sample paths of the stock prices.

6 next j

7. for each simulated path, compute the pay-off of the option.
8. next i

9. Compute the discounted average of above simulated pay-ofts.

Table 5.1 gives a schematic illustration of a spreadsheet implementation of this method.
The S; in the spreadsheet denotes the underlying asset price at the j-th timestep along
the i-th path. The spreadsheet has M rows where each row is a path of the underlying

asset, and each path consists n steps. From each path, the spreadsheet computes a value

CHAPTER 5. QUASI-MONTE CARLO METHOD FOR OPTION PRICING 38

Path \ Step | 1 2 3 |..| n
1 Su 312 813 Sln Cl = exp(—rT) * maX(O, Sln — I()
2 521 522 323 Sgn 02 = exp(—TT) * max(O, Sgn - f{)
M SMl SMQ SMg SMn C’M = exp(—rT) * ma.x((), SMn — I()
C =Average(Cy, Gy, -+, Car)

Table 5.1: A spreadsheet for estimating the expected present value of the payoff of a

Furopean call option

of 5;, and a value of discounted payoff C;. The C; are averaged to produce the final result
€. In practical implementation, we can view exp(—r7') as a constant. So in each path,
we compute the pay-off of the call option max(0, S;, — K); and finally we compute the

discounted average of these simulated pay-offs: C = exp(—rT)Average(Cy, Cs, - -+, Cr)-

5.2 A Numerical Example

Suppose there is a one-year maturity European call option with the current asset price
at $20.00 and volatility of 20%. The continuously compounded interest rate is assumed
to be 6% per annum, this option pays no dividend. The simulation has 10 timesteps and
100 simulations; K = 20.00, T' =1, S = 20.00, ¢ = 0.2, n = 10, M = 100.

Firstly, the parameters; At,0v/At and In S are pre-computed:

At =T =1 —0.01;

n 0
oVAL = 0.2 x 0.1 = 0.0632;
In 5; =2.9957;

(r — 302}At = 0.004.
For each simulation j = 1 to M, where M = 100, In S; is initialized to In Sy =2.9957.

Then for each timestep 7 = 1 to 10, In S; is simulated. For example, let £ denote standard

CHAPTER 5. QUASI-MONTE CARLO METHOD FOR OPTION PRICING 39

nermal sample, for 7 =1 and i = 1:

In 5);

=In S + (r — 302 At + oVAt x £=2.9957 + 0.004 + 0.0632 * 0.1635 = 3.0101.

and for i=2

In Sio

=1In Sy + (r — 6?)At + o/AL x £=3.0101 + 0.004 + 0.0632 * 0.0184 = 3.0152.

And so on.

At i = 10, In Sy, = 3.0338, Sy = exp(In 53,) = 20.78, Cr = max(0,Sy — K) =
max{0, 20.78 — 20) = 0.78

The sum of the values of Cr and the squares of the values of C'r are accumulated:
LM Cr = 252,59 and EM,C} = 14361.67. The estimate of the option value is then
given by €' = 252.59/100 x exp(—0.06 = 1) = 2.3788. The standard deviation (SD} is:
\/ﬁ STM (Cy— C)2 = 11.08816 and so the standard error is % = 11.08816/10 =
1.108816. Figure 5.1 illustrated a set of M = 100 simulated paths:

Simulated Asset Price Paths

Agset price

Time step

Figure 5.1: Simulated asset price

CHAPTER 5. QuUaASI-MONTE CARLO METHOD FOR OPTION PRICING 40

Table 5.2 illustrates the numerical results of InS; and value of S;. In the table,
SUMCT denotes the sum of the value of the Call option given by each path; SUMCT?2
denotes the sum of the squares of the values of the call option given by each path; SD

denotes the standard deviation; SE denotes standard error.

In order to get an acceptably accurate estimate of the option price, a very large
number of simulations has to be performed, typically in the order of millions [20]. To
reduce the computational burden and improve the efficiency of MC simulation, quasi-

random numbers are suggested instead of pseudo-random numbers in MC simulation.

5.3 Quasi-Monte Carlo Method

The slow convergence rate, O(N~Y2) for N number of samples of the MC method has
motivated research in QMC techniques. QMC simulation is the traditional Monte Carlo
simulation but using LD sequences. The use of LD sequences in MC simulation improves
the performance of MC simulations offering less computational effort or higher accuracy.

Consider generating the LD sequences for the MC simulation of the path of an asset
price with n steps as usual. With one source of uncertainty, we can think the number
of dimension as the number of discrete time intervals of one sample path. The number
of iterations M is the number of sample paths and hence the number of LD points. The
pseudo-code is illustrated in Algorithm 2.

Figure 5.2 illustrates the prices obtained from pricing a European call option using
pseudo-random numbers and Sobol sequence. It is clear that the prices using the Sobol
LD sequences converge much faster as a function of the number of simulations than the

prices using pseudo-random numbers.

41

QUASI-MONTE CARLO METHOD FOR OPTION PRICING

CHAPTER 5.

uonydo [[e) wesdoang ® jo uOIenyes O[Ie)) SJUOIN 10§ S[dUWexs [OLIOWNN 7'C 91qBL,

00'0
1981
0L'Zv

200

861

699
000
L0'8
00°0
oroe
090
LOx1D

00000
98L9'¢
PPES9
£921°0
680V°1

99¢8°¢
0000°0
LIST'E
0000°0
TEE0°9
§844°0
LD

91880°11
as

19°81
89°€C
£8'92
£1°02
1v'1g

L4°T8
29l
5822
P8I
£0'9%
84°0C
IS

8301°1
s

L9°T9¢P1
SLDNNS

Qee6'c
¥ror'e
¥8lge
0z00'e
8£60°E

9o1T'E
686.°C
veot'e
£L69°2
P6See
8LE0'E
01

88LE°C
anlea (e

69°65%
JLOWNS

L8°2%
£r91
sraad
V8Y1
£0°92
01

9898°2
291%'e
§e8T'e
2816°C
£L90°¢

geel'e

Pe6L'T

69€0°'E

0¥08°¢

gree’e

[42 X4
6

4102
G091
88°81
8C'E1T
££°91

[484:84
£rre'e
6PVE'e
02262
6690

£ETT'E

48720

€910

9298C

S80E°C

£986'C
8

89°¢€T
¥ 1
L1°22
jiag!
122

9216'e
0ov1i'e
Sivee
orre'e
28e1°e

9£86°'C

8096°C

8800°¢

Z868°C

avoe'e

1646°C
L

e
10°ee
8%'61
99°LT
v 0T

GeEs'Z
6£60'¢
1991°¢€
7826'¢
9180'e

0L¥6°2

L0E6'T

0.L90°¢

P116'2

9E6%°E

S6¥6°'C
9

oot

Ly've
Z6've
£8°02
VLLT
ov'Le

[4 9244
9671°%
LLBO'E
8870°E
TEIT'E

€862

SIv6'Z

0250°e

ET6°T

9vEL'E

9660°¢
g

0L L1
yO'1Z
8T°AT
FAG)S
89°G1

SLIB'E
0L21°¢
£98T'e
69.0°€
ST0T°E

1916°¢

9810°¢

8T60°'¢

0EV6'T

[Agras

Gg90°e
¥

00°0
ap

68°0T
0861
£9'81
8191
VO've

6546
)20
8880°E
¥020°¢
$060°€

£096'2

0886'¢

9LL0'¢

1896'C

848T'E

02208
€

00900

o

(4874
yert
ST'1C
12741
6102

SIvG'T
PYe0'e
g991'¢
[A:rARY
9re0'e

60408

8196'7

990°€

6006'2

L060°¢

e810°e
g

S$L866'2
su

z0
o

6261
8¥'LT
8C°LT
LL'ST
80°1Z

[4 7144
L9%0°C
T1L0e
[Atan
£Lv0'e

9260t

91862

£286°T

eEL6T

880°¢

1010°e
T

128900
wpo

0z

EL'ET
1671
66,2
09°81
Z0'1e

L966°C
LS66'2
L4662
L566'C
L866°C

L866'T

L866°T

L866°C

LS66°C

A966°'T

L866'T
0

66
86
L6
96

LB B <o B = o i o |

doys / N

10
Y

0z

CHAPTER 5. QUASI-MONTE CARLO METHOD FOR OPTION PRICING 42

Algorithm 2 Quasi-Monte Carlo Algorithm
1. Initialize the parameters such as S,r, K, T, o,

2. generate n dimensional Sobol sequence
3. for i =1to M do /*M = number of simulations. i.e., for each simulation*/
forj=1ton
simulate sample paths of the stock prices using Sobol sequence.
next j

4

5

6

7. for each simulated path, compute the pay-off of the option.
. /

9

- Compute the discounted average of above simulated pay-offs.

Pseudo
~8— Sobol

Standard error

O C O u o A T o e I T T U BT T BT O o B T B < BT, | LR TP BT T3) W uny
© 2 0 00 CcC OO0 o000 0 O00C o000 00c 0 00 o o [= =1 =
o o + £ + + + 3+ + i+ + + + + + + F ¥ F i I + ¥ ¥ * +
LS B C N < S c R I < I & T & B & S < I - B T T < 2 T X X | @opl W o1 2]
— & o NN N M M Mmooy s T R R R Y T T = S o W (=23

Humber of simulations

Figure 5.2: Relative pricing error for a European Call option using pseudo-random num-

bers and Sobol LD numbers

Chapter 6

Parallel Quasi-Monte Carlo Method
for Option Pricing

Monte Carlo techniques lend itself easily to parallelization since each simulation can be
implemented independent of each other. Most serial MC codes are readily adaptable
to a parallel environment as explored in one of the application of MC [56]. One ap-
proach is to have each processor execute the sequential algorithm with different pseudo
random number sequences and combine the final results from all the processors at the
end of the execution. Other techniques involve parallelizing the pseudo random number
generators {55, 61].

QMC technique converges faster than MC method and has proven to be advantageous
in a number of financial applications (see for example [1, 8, 11, 27, 48, 53]). However, the
1ssues of parallelizing QMC are different from MC parallelization due to the deterministic
nature of LD sequences. There has been some recent interests in parallelizing QMC [17,
48, 52, 57]. Given P processors, if we select N; points on processor P; (0 < i < P—1), then
the discrepancy of these points must be similar to the discrepancy of Ef:_olNi points [61].
We need to have the results of parallel computation same as the results of the sequential
computations. There are three popular techniques for parallelizing LD sequences [61]:

Leapfrog, Blocking, and Parameterization.

43

CHAPTER 6. PARALLEL QUASI-MONTE CARLO METHOD FOR OPTION PRICING 44

Leapfrog is a method to assign N elements of the sequence to P processors in the
same way as a deck of cards is dealt in turn to players in a card game. Let 2y, 7y, - - -, 2y
be the elements of the sequence. Using this method, the processor will have elements
Tiy Tit-P, Tigap, - - - where 0 < 4 < P — 1. The disadvantage of this method is that even if
the elements of the original sequence have low correlation, the elements of the leapfrog
subsequence may be correlated. Also, it has been noted [61] that in the Leapfrog method,
the processors have to be synchronized after a few iterations to get accurate results. This

adds to the computational cost.

Blocking is a scheme with which the elements of a sequence are divided into equal-
sized blocks [61]. Suppose there are P processors and z,-- -, zy be an m-dimensional
random sequence (each element z; is m-dimensional vector). With blocking scheme,
each processor will be assigned N/P elements. The elements in each block are contigu-
ous, each block has size B = N/P. Therefore, the processor i will have the elements
5B, TiB+1, TiB+2, -+ - Where 0 < i < P — 1. This scheme also suffers from the drawback of

required synchronization [61].

Parameterization of LD sequence is in some sense similar to that of parameterization
in parallelizing random number sequence, where independent sequences are used on each

processor. In general, it is difficult to avoid inter-processor correlations [5].

All above strategies try to obtain maximum speedup by evenly distributing compu-
tations over available processors. On a homogeneous network, where all machines have
the same processing speed, distributing N /P points is reasonable. However, in practice,
the above strategies will result in poor performance even among homogeneous networks.
This is because, processors might run at different speeds; some may also be used for
other computations and may be involved in other communications. Hence, those faster
processors or light-load processors will finish their computation tasks quickly and wait
for slower ones at points of synchronization; the overall computation time will be de-
termined by the time elapsed on the slowest processor. Because of synchronization of

processors, the most powerful processors will run at the speed of the slowest processor.

CHAPTER 6. PARALLEL QUASI-MONTE CARLO METHOD FOR OPTION PRICING 45

It is not a desirable scenario since the parallel computing does not take full advantage of
the potential computing power.

Srinivasan [61] compares the effectiveness of these three strategies in pricing financial
derivatives and concluded that blocking is the most promising method if there are a large
number of processors running at unequal speeds. However, the disadvantages of blocking
scheme are well pronounced. First, if a processor consumes more LD elements than it
was assigned, then the subsequences could overlap. Second, if a processor consumes
less LD elements than it was assigned, then some elements will be wasted. The final
result will be the same as the sequential computation that use the same LD sequence
with some “gaps”. Hence, a good parallel MC algorithm should distribute computations
based on the actual performance of processors at the moment of the execution of the
program. The more powerful a processor, the more tasks it will be assigned and will be
able to handle. That is, data, computations, and communications should be distributed
unevenly among processors to achieve the best execution performance. In the following

sections, we discuss development of such an algorithm.

6.1 Tasks Partition

An ideal parallel QMC algorithm should distribute computation tasks to processors pro-
portional to processors’ actual computing powers. Otherwise, the load of processors will
be unbalanced, resulting in poor performance.

Having known the power of each processors, the computation tasks assigned to each
processor can be computed by performing the following partition algorithm (Algorithm
3). With this partition algorithm, the QMC simulations are unevenly distributed across
processors based on the actual performance of each processor.

Having known the tasks of each processor, we can decide the points will be executed
by each processor. Suppose each simulation consumes ¢ elements of the given LD se-

quence, and processor ¢ has {; tasks, then the whole number of elements will be consumed

CHAPTER 6. PARALLEL QUASI-MONTE CARLO METHOD FOR OPTION PRICING 46

Algorithm 3 Partition
1. Given N is the total tasks, p is the number of processors, power; is the i-th processor’s

power. then, the tasks assigned to the i-th processor is:

power;

task; = [N x] (6.1)

P o power;

2. After stepl, if there are tasks left, then assign them to host Processor.

by processor ¢ is B; = f; x ¢. Note that B; is not necessarily N /P where N is the number
of points and P is the number of processors. Hence, the LD sequence is partitioned
into uneven blocks. This partition of LD sequence is somewhat like the general block-
ing scheme, but it is superior to general blocking scheme, in which the LD sequence is
partitioned into equal size or the burden is on the programmer to determine the block
size B. In the literature, B is usually chosen to be greater than N /P to avoid overlap-
ping of subsequences. Therefore, there is a chance that the result produced from the
blocking scheme of QMC is not the same as that of a sequential computing [61]. Using
Algorithm 3, there is no overlapping in sub-sequences and that the sequential run and
the parallel run results match. '

To implement this algorithm, the program must provide information of the entire
computing space and relative performances of actual processors in the run time. Cur-
rently, no parallel programming tool can implement such parallel algorithm except mpC.
As a new parallel programming tool, mpC offers a very convenient way to obtain the
statistics information of the computing space and the power of each processor. By using
mpC, a programmer can explicitly specify the uneven distribution of computations across

parallel processors.

6.2 mpC

The mpC programming tool is specially designed for writing high performance parallel

computation programs on networks of heterogeneous computers; it is an extension of

CHAPTER 6. PARALLEL QUASI-MONTE CARLO METHOD FOR OPTION PRICING 47

the ANSI C language. In section 2.3 we introduced some features of mpC. For detailed
information about mpC language, programming environment and samples, please refer
to [4, 45, 46] or online website available at http://www.ispras.ru/~mpc/.

The mpC offers mechanisms that other parallel programming languages do not have,
through which a programmer can describe (dynamically) a virtual network topology for
the application under study. At run time, the mpC environment will map the virtual
network to real executing network based on information about performances of processors
and links of the real network. This can be done by defining a network object in mpC
program. A network object, or simply network is a basic notation of mpC language,
which comprises virtual processors and links. The nefwork in mpC program is just like a
user-defined datatype in general programming language. Allocating network objects and
discarding them is performed in similar way as allocating data objects and discarding
them. In mpC, a processor which creates the network is called a parent of the created

network. For example, the type declaration

[*line 1 */ nettype Ring(n) {

/*line 2 */ coord I = n;

/*line 3 */ link {

/*line 4 */ I>0: [I]e— [l -1];
/*line 5 */ I ==0:[0] «— [n —1);
/*line 6 */ h

/*line 7 */ parent [0];

/*line 8 */ 5
introduces a topology named Ring that corresponds to networks consisting of n processors
interconnected with undirected links in a ring structure. Note that the real network is
not necessarily connected as a ring. The Ring is the topology of the application under
study. The Line 1 is a header of the network type declaration. It introduces the name
of the network type. Line 2 is a coordinate declaration, declaring the coordinate system
to which processors are related. It introduces the integer coordinate variable I ranging

from 0 to n — 1. Line 3 to line 6 are a link declaration. They specify links between

CHAPTER 6. PARALLEL QUASI-MONTE CARLO METHOD FOR OPTION PRICING 48

processors. Line 4 stands for the predicate: for all I > 0 there exists undirected links
connecting processors with coordinates [— 1] and [I], and line 5 stands for the predict:
for I == 0 there exists an undirected link connecting processors with coordinates [0] and
[n — 1]. Line 7 is a parent declaration. It specifies that the parent has coordinate [0)].

With the network type declaration, one can declare a network object identifier of this
type. For example, the declaration:

net Ring(5) r

introduces the identifier r of the network object of the type Ring. Once the network is
defined, a programmer can start describing parallel computation on the network. Sec-
tion 6.3 gives detail information on implementing the parallel QMC algorithm using

mpC.

6.3 Implementation Detail

Suppose we have m processors doing QMC simulations. One processor (host processor)
distributes tasks to the other processors and collects their results. In QMC simulations,
each simulation is independent, there is no communications between processors except
with the host processor. Hence, this QMC simulations has a star topology where the
host processor is the central node and the other processors (nodes) connected directly to
the central node. The computing and commuhication are based on this topology. The
following network declaration describes this topology.

/*line 1 */ nettype Star(m, p[m]) {

/*line 2 */ coord I = m;

/*line 3 */ node {

[*line 4 */ I>0: plI};

/Fline 5 */ J%

/*line 6 */ link {

/*line 7 */ I>0:[0) & [I-1];

/*line 8 */ 4

CHAPTER 6. PARALLEL QUASI-MONTE CARLO METHOD FOR OPTION PRICING 49

-~ [*line 9 */ parent [0];
/*line 10 */ h
The header (Line 1) introduces parameters of the topology Star, nanely, the integer
parameter m and the vector parameter p consisting of m integers. Vector p is used to store
the relative performances of the m processors. Line 2 introduces a coordinate declaration
declaring the coordinate system to which virtual processors are related. The integer
coordinate variable 7 ranges from 0 to m—1. Lines 3-5 are node declaration. Line 4 stands
for the predicate (for all 7 > 0), that the virtual processor, whose relative performance
is specified by the value of p[[], is related to the point with coordinate [I], and so on.
Lines 6-8 are link declaration, which specify links between virtual processors. Line 7
stands for the predicate for 7 > 0 and I < m there exists undirected links connecting
virtual processors with coordinates [0] and [I-1]. Line 9 is a parent declaration. It

specifies that the parent has coordinate [0]. After the network is created in mpC program,

Algorithm 4 Parallel Quasi-Monte Carlo Algorithm
. Initialize the parameters such as S,r, K, T, o,

Compute relative performances of actual processors

Partition tasks according to the performance of each processor (Algorithm 3)

Assign elements of LD sequence to processors according to their tasks (Scatter blocks)
Broadcast options’ parameters

Execute the sequential algorithm on each processor

Gather the results of each processors

A S AN LR S

Produce the final result on host processor.

-

t executes the rest of computations and communications. A call to library function
MPC_Processors_static_info made on the entire computing space returns the number
of actual processors and their relative performances. Based on relative performances
of actual processors, Algorithm 3 computes the number of simulations which should
be computed by every processor. Then the subsequences for each processor can be

determined using the method mentioned in section 6.1. Further, the steps to follow

CHAPTER 6. PARALLEL QUASI-MONTE CARLO METHOD FOR OPTION PRICING 50

are: a) broadcast option’s arguments; b) scatter subsequences, ¢) perform sequential

computing on each processor, and finally d) the host processor gather the results from

each processor and produce the final result. Algorithm 4 illustrates this procedure.

The following functions are part of the mpC code implementing the QMC simulations:

*/
=/ {
*/
«/
+/
+/
v/
«/
/= 10%/
S 11x/
/2 12x/
Sx 13%/
[14x/
[15x/
[16%/
e 17/
/2 18%/
Sx 19%/
S 20x/
S 21x/
S 22%/
S 23%/
/x 24x/
Sx 25%/
Sx 26x/
Se 2T=/
Jx 28%/
S5 29%/

S
TG A Ty Uy B Lo D

#/ void [#]Simulation{float =x[host]option, float #[host]sequence,

float *{host|results, int [host]n)

repl nprocs, tasks[MAXNPROCS], dn;
repl double xpowers;

dn=n;

MPC _Processors_static_info(&nprocs, &powers);

Partition(nprocs, powers, tasks, dn);

int [host]i;
for (i=0; i<[host]nprocs; i++)
([host] printf)(”proc=Wd._.__tasks=%d\n"”, i, ([host]tasks)[i]};

net Star(nprocs, tasks) mynet;
float s*[mynet]doption, #[mynet]dsequence, =[mynet]dresults;
repl [mynet]n;

int [mynet]myn, [mynet]sof;

sof=[mynet](sizeof(float));
n=[mynet] dn;

myn=([mynet] tasks)[I coordof doption];

dsequence={{mynet] calloc){myn*steps, sof);
([host]frec }{[host]dsequence);

[host] dsequence=({void =)}sequence;

doption=([mynet] calloc)(6, sof};
([host] free)([host]doption);

CHAPTER 6. PARALLEL QUASI-MONTE CARLO METHOD FOR OPTION PRICING 51

Sx 30%/ [host] doption=(void x)option;

Sx 3=/

S 32x/ dresults=([mynet] calloc}(l, sof);

/% 38x/ ([host]free)([host]dresults);

S 84/ [host] dresults=(void =*)results;

Sx 85/

/% 36x/ {[([mynet] nprocs)mynet|)

Sx 8Tx/ ParCompute{doption , dsequence, dresults, [mynet]tasks);
/x 88/}

S= 39x/ }

/* 40/ void inet SimpleNet(p)v]

[41x/ ParCompute(float =doption, float sdsequence,
Sr 2%/ float sdresults, repl =r)
/o 485/ |

[x 44dx/ repl s=0;

/x 45%/ int myn, i;

/¥ 46x/ int xd, snold, c,xdisp,*rct;
[4T/

/x 48%/ myn=r[I coordof r};

/5 49%/ ([(0)v])MPC_Beast(&s, doption, 1, 6, doption, 1};
S 80/

/x 51x/ d=calloc(p, sizeof(int));
/= 52%/ nold=calloc(p, sizeof(int));
/% 83x/ disp=calloc(p, sizeof(int));
/x 54{=/ rct=calloc(p, sizeof(int));
/* 55x/ for(i=0, di0i=0; i<p; i++)

/= 6%/ {

/5 5T/ nold[i]=r[i]*steps;

jr 58x/ disp [i]=1;

Sx 59%/ ret [i]=1;

[x 60x/ if{i+l<p)

/% 61x/ d[i+1]=nold [i]+d[i];

CHAPTER 6. PARALLEL QUASI-MONTE CARLO METHOD FOR OPTION PRICING 52

/¥ 063/ c=nold [1 coordof c];

/x 4=/ ([(0)v])MPC_Scatter(&s, dsequence, d, nold, ¢, dsequence};

/% 65%/ ([v]SegCompute)({doption, dsequence, dresults, myn);

f= 66=/ ([(0)v])MPC_Gather(&s, dresults, disp, rct, 1, dresults);

/e 67/}

Line 1 defines function Simulation with four arguments belonging to the virtual host
processor: pointer option to the the option arguments, pointer sequence to the Sobol
LD numbers, pointer results to the computing results from parallel processors, and n
the simulation numbers. Function Simulation is called a basic function. In mpC, there
are three types of functions: basic, network, and nodal functions. Basic function can be
called and executed on the entire computing space. Only in basic functions networks can
be defined. Network function is called and executed on a network object. Nodal function
can be called and executed by any virtual processor. In mpC, the ANSI C functions are
considered nodal functions.

Line 4 defines integer variable nprocs and array tasks and integer dn. The three vari-
ables are declared replicated (repl) over the entire computing space. In mpC, the keyword
repl means all distributions of the value of the variable equal to each other. Line 5 define
pointer powers distributed over the entire computing space and specifies that it points to
a replicated data object. Line 7 calls library nodal function MPC_Processors_static_info
on the entire computing space returning the number of actual processors and there rel-
ative performances. After this call the variable nprocs will hold the number of actual
processors, and replicated array powers will hold the relative performances. Line 8 calls
function Pertition which computes the number of tasks of each processor based on their
performances. Line 10 to line 12 prints the partition results.

Line 15 defines a network object mynet which is an instance of the network Ster and
executes most of the rest of computations and communications. It consists of nprocs
virtual processors, the computing task of the i-th virtual processor being characterized
by the value of tasks[i]. Having known the computing tasks of each processor, we can

compute the number of LD numbers needed for each processor. Variable myn denotes the

CHAPTER 6. PARALLEL QUASI-MONTE CARLO METHOD FOR OPTION PRICING 53

number of simulation assigned to each processor. After execution line 22, each component
of myn will contain the number of simulations of corresponding virtnal processor. Line
24 allocates memory for variable dsequence which will be used to store the assigned LD
numbers of each processor. Line 28 allocates memory for variable doption which is used
to store the Option’s arguments. Line 32 allocates memory for variable dresults which
is used to store the computing results of the virtual processor. Then at line 36, call the

parallel computing function ParCompute.

Function ParCompute is a basic function, which has four arguments belonging to the
virtual processor: pointer doption to the Option's arguments, pointer dsequence to the
LD numbers, pointer dresults to the computing result, and replicated variable pointer
to the tasks. In lines 40-42, the header of the definition of function PerCompute declares
identifier v of a network being a special network formal parameter of the function. In
the function body, special formal parameter p is treated as an unmodified variable of
type int replicated over network v. p holds the number of virtual processor of network
v. The rest of formal parameters of the function are distributed over v. Line 48 gives

the computing tasks of a virtual processor with coordinate 7.
Line 49 calls to the embedded network function MPC_Bcast which is declared in the

header as follows:

int [net SimpleNet{n) w]MPC_Bcast(
repl const xsource,
<s.type> xs_buffer ,
int const s._step,
repl censt count,
<d_type> x=d_buffer ,

int const d_step};

This call broadcasts option’s arguments from the parent of v to all virtual processors of
v. As a result, each component of the distributed array pointed by doption will contain
this option’s arguments.

Statements in lines 51-64 are asynchronous. They form four p-member arrays d,

CHAPTER 6. PARALLEL QUASI-MONTE CARLO METHOD FOR OPTION PRICING 54

nold, disp, and rct distributed over v. After this, nold|[i] will hold the number of LD
numbers assigned by Partition algorithm for virtual processor with coordinate 7, and d|i}
will hold the displacement which corresponds to this portion of LD numbers. displj]
holds the displacement which corresponds to the computing result from virtual processor
i. rctfi] holds the receive counts from virtual processor 4. Line 63 is also asynchronous.
After this execution, each component of ¢ will hold the number of LD numbers which

will be used by corresponding virtual processor.

Line 64 calls to network function MPC_Scatter which is declared as:

int [net SimpleNet(n) w] MPC_ Scatter(
repl comst xsource,
<s_-type> =s_buffer ,
int const =disps,
int const xlengths,
repl const count,

<d_type> =d_buffer);

This call scatter LD sequence from the parent of v to all virtual processors of v. As a
result, each component of doption will point to an array containing the corresponding
portion of LD sequence. Line 65 is to execute a sequential computing, and finally line

66 is to gather the computing results by calling network function MPC_Gather which is
declared as follows:

int [net SimpleNet(n) w]MPC_Gather(
repl const sxdestination ,
<d_-type> =xd.buffer,
int const =disps,
int const xlengths,
repl const count,

<s_type> xs_buffer};
This call gathers results from each virtual processor of v.
We have presented the most interesting part of the mpC code implementing the

parallel QMC algorithm for option price. We will present the experimental results and

comparison with other implementations in next chapter.

Chapter 7

Results and Evaluation

In this chapter, we present the analytical results first followed by the experimental results.

7.1 Analytical Results

We first show that the performance of our parallel QMC algorithm is better than general
parallel algorithms (e.g. blocking scheme).

Suppose we have m processors doing N parallel QMC simulations. Let us denote
the m processors as py, ps, -+, pm- Without loss of generality, we sort the processors in

ascending order based on their processing speed as follows:
PPLEpP2SP3 < P (7.1)

11 is the slowest processor, and p,, is the fastest. We denote the processing power of
processor i as power;. Then the tasks ¢; assigned to processor i using formula 6.1 is

t; =[N x Z—’-’I‘J%]’ hence, we must have
w

Because the tasks assigned to each processor is proportional to its speed, the load of each -

processor is balanced. This means that the processors will finish their tasks at the same

55

CHAPTER 7. RESULTS AND EVALUATION 56

amount of time. Let us denote the computing time by 7,,, and communication time

Tem- Then the overall computing time is
Ttotai = Tcp + Tcm (73)

Now let us consider the general parallel schemes doing parallel QMC on the same
architecture. In general schemes, each processor will be assigned the same number of
tasks NV /m. Due to varying processing speeds of the processors, the time spent on each
processor is different. The overall computing time is determined by the slowest processor.
In the case of 7.1, p; is the slowest processor. Suppose p; spends T;, time to finish its
task. We assume the communication time is still T.,,. This assumption is acceptable for
our parallel QMC algorithm, due to (1) in parallel QMC simulations, the communication
operations’ contribution to the total execution time of the algorithm is negligibly small
compared to that of the computation; and (2} in parallel QMC stmulations, parallel
processes do not communicate frequently sending and receiving messages. Hence, the

overall computing time using general schemes is
total TI + Tcm (74)

To show T,y = Tiotat, we need to show T, > T,. We know T, and T, are the times

otal —

the processor p; takes to execute the tasks. Hence, to show T, > T,, we only need to
cp 74

power| . 1 power]
show N/m > N x S e that is to show % - > S

Suppose Z'-EO& > %, then we must have:
1

—g powery
N=ti+ty+ - +tn
= N x DoWerL | N 5 powen 4 .} N oy BowEm

> oin power; Y oin power; > s powery
— powery powerz powerm
= N X (Z;iopower‘ + Zm power; + + E”lﬂpﬂwE'ﬁ)
1 1
>Nx(£+ -+ +m)

=Nx{mxLi)=
We get contradiction N > N, hence <22 =~ L js jmpossible. We must have
oL g power; m

1 powery _powery ! 3 -
PR Then N x = > N X S oy > SO T,, 2 Tcp. That is, the general

CHAPTER 7. RESULTS AND EVALUATION 57

parallel schemes will spend more time than our parallel algorithm running on the same

architecture.

7.2 Experimental Results

This section presents some results of experiments of the QMC algorithm presented in
Chapter 6. In our experiments, we price a one-year maturity (7 = 1) at the money
European call option with current asset price, S = $20, and strike price K = $20; the
risk-free rate of interest is 6 percent (r = 0.06), and the volatility of the asset is set at
twenty percent (o = 0.2) and the asset pays no dividend. We divide the time period over
which we wish to simulate St into 10 intervals {timesteps=10). We save these parameters
into a file. For each experiment including MPI implementations, we use the same input
parameters.

We decide to run 1,000,000 simulations. For each simulation, we need a 10 dimensional
Sobol point. Hence, we should have 1,000,000 Sobol points, each point is 10-dimension.
Since these Sobol points are deterministic, it is unnecessary to generate them each time
for every experiment. We save the 1,000,000 points into a file. The file size is about 81
mega bytes! Saving option’s parameters and LD points into files makes our programs
more flexible: we can value different options without changing mpC code; and we can
use different LD sequences and even random sequence.

A small local network of 7 Solaris workstations (named Cadmium01, Cadmium02,
Cadmium03, Cadmium04, Cadmium05, Cadmium06, and Cadmium08) and 18 Linux
machines {canary-01, - - -, canary-08, and 10 other bird-named machines) running Fedora
Core 2 are used for the experiments. Here we present the experiment results on the 7
Solaris workstations !. The names of the workstations are manually written in a VPM

(virtual parallel machine) file. A VPM file contains the real distributed memory machines.

1There exists cross-platform problems between Solaris and Linux machines in mpC version 2.3.0 [42].
The mpc runs fine on individual clusters.

CHAPTER 7. RESULTS AND EVALUATION 58

The format of a vpm file is:
machine_name number_of_processes.
The contents of our vpm file are:
cadmium(01 1

cadminm02 1

cadmium(8 1
We set the number of processes as 1 to each workstation, because we will compare
the performance of our algorithm with those implemented using MPI. In MPI, though
more than one MPI process can be run on each processor, it is difficult for a programmer
to assign a fixed number of processes running on a specified workstation.
By executing the mpC command mpccreate vpmfile, we obtain the initial static struc-

ture information of the network, which is saved in the form of ASCII file as the following;:

cadmiumO1
sl p883 nl ¢l ¢l cl
cadmium02
sl p930 nl cl ¢l cl
cadmium03
s1 p879 nl ¢l ¢l cl
cadmium04
s1 p999 nl ¢l el ¢l
cadmium05
sl p959 nl cl cl ¢l
cadmium06
sl p870 nl ¢l cl cl
cadmium08
sl p899 nl cl cl ¢l

This information will be used by mpC runtime system (RTS). Here, each computer is

CHAPTER 7. RESULTS AND EVALUATION 59

Processors | pl | p2 | p3 | pd | p5 | pb6 | p7
Performance | 883 | 930 | 879 | 999 | 959 | 870 | 899

Table 7.1: Relative performance of 7 heterogeneous workstations

characterized by six parameters. The first parameter, s, shows the number of proces-
sors. sl means the computer has only one processor. Thus, in our experiments, all the

workstations are uniprocessor computers.

The second parameter, p, shows the performance of the computer. We can see that
cadmium(is the most powerful computer. Note that at each time when one executes
the command mpecreate vpmfile, the performance values are different; and at runtime the
execution of the recon statement updates the value of the parameter for each participated
computer. Hence, we should know that each time the same program running on these

computers will spend different time.

The third parameter, n, shows the total number of processes of the parallel program

to run on the computer. In our experiments, each computer runs 1 process.

Finally, the last three parameters are used by mpC system to determine the speed
of point-to-point data transfer between processes running on the same computer as a
function of size of the transferred data block [45]. The first of them specifies the speed of
transfer of a data block of 64 bytes, and the second and the third specify that of 642 and
643 bytes respectively. The speed of transfer of an arbitrary size data block is calculated
by interpolation of the measured speeds. In our experiments, each computer has only one

process, so there is no communication between processes running on the same computer.

Using above parameters, we measure the time to compute an option price. Timing is
obtained via the mpC wall clock function, MPC_Wtime(). We don’t include the time the
program takes in reading the LD sequence file and arguments file. For convenience, we
list the relative performance of the 7 processors in Table 7.1. The 1,000,000 simulations

are distributed to the 7 processors based on their performance as shown in Table 7.2

CHAPTER 7. RESULTS AND EVALUATION 60

Processors pl p2 p3 pd ph 6 p7
of Tasks | 137563 | 144882 | 136937 | 155631 | 149400 | 135535 | 140052

Table 7.2: Distribution of 1,000,000 simulations to 7 heterogeneous workstations

number of processors

simulations 1 2 3 4 5 6 7
100000 0.02 | 0.13] 0.24 | 0.35; 0.44 | 0.60 | 0.43
200000 224 | 2.06 | 1.95|1.76| 1.32 | 1.04 | 0.76
300000 526 | 3.18 | 205|194 | 187|140 (121
400000 711 | 541 | 3.25 (244|210 1.78 | 1.34
500000 948 | 6.71 | 430 {271 |234}2.19|1.68
600000 11.89 | 810 | 592 3.84 | 2.64 | 2.45 | 1.89
700000 1422 | 812 16.61 [4.11 299|291 |2.28
800000 17.25 | 9.60 | 7.29 | 4.97 | 3.07 | 3.11 | 3.07
900000 19.11 | 10.25 | 8.02 | 5.62 | 3.31 | 3.29 | 3.16
1000000 | 20.13 | 11.60 | 8.49 | 5.71 | 4.82 | 3.53 | 3.31

Table 7.3: Time to do QMC simulations in seconds

using Algorithm 6.1. The computing time is 3.3054 seconds. For comparison purpose,
we have implemented a sequential QMC algorithm and obtained the running time with
the same input parameters and LD sequence.

Table 7.3 lists the the computing time of different combinations of simulations and
processors. Note that for different number of simulations, we have different LD sequence
files. The experiments are started from single workstation Cadmium0!. We add other
computers { Cadmium02, Cadmium08, - - -, and Cadmium08) to increase the applications
performance. In the table, the single processor is the machine Cadmium(1; the 2 proces-

sors are Cadmium01 and Caedmium02; 3 processors are Cadmium{1, Cadmium02, and

CHAPTER 7. RESULTS AND EVALUATION 61

Cadmium03; and so on. A more intuitive figure is given in Figure 7.1.

25

; 4 of
processcrs
/./
- —B— 1
A 2
- 3

Time
H

100000 200000 300000 400000 500000 600000 700000 800000 200000 1000000

Simulations

Figure 7.1: Execution time with respect to various processors and simulations

From Figure 7.1 and Table 7.3, we notice that, initially, with a 100,000 simulations, the
single processor machine gives better results than seven processors. However, for large
input sizes, having more number of processors is beneficial. With 1,000,000 simulations,
seven processors gives an execution time of 3.31 seconds compared to 11.60 seconds with
two processors. This is a significant decrease in execution time.

Figure 7.2 illustrates the speedup achieved by using different processors. Note that
the running time of the mpC program substantially depends on the workload of the
workstations. We can see that the speedup curves have some ups and downs. This
is due to the fact that the workload of each workstation is dynamic (the workstations
are accessible to other students in Computer Science department). At certain time,
the workstations are involved in other computations, and the low performance of some

workstations substantially increases the whole computing time. We took the average

CHAPTER 7. RESULTS AND EVALUATION 62

of the execution times after running the simulations for several iterations. With seven
processors, the relative speedup is approximately 6x. Overall, the mpC program ensures

good speedup.

of
Processors

-3
4
o 5

—%—§

Speedup

[

100000 200000 300000 40000¢ 500000 60000C 700000 800000 900000 1000000

Simulations

Figure 7.2: Speedups computed relative to sequential code running on workstation Cad-

minum{1

To get a better estimation of our mpC program, we developed two versions of the MPI
programs: 1) static distribution tasks among processors {general blocking (BK) scheme);
2) a manager-workers (MW) approach which simulates load balancing scheme to some
extent.

Using general blocking (BK) scheme, the tasks (N) and the LD sequence are equally
distributed among the m processors. In this experiment, usually the number of proces-
sors must be a factor of the number of simulations (i.e. N/m is an integer); otherwise,
the result will be different from a sequential algorithm’s result using the same arguments.

In section 7.1, we analytically showed that this scheme is not efficient on heterogeneous

CHAPTER 7. RESULTS AND EVALUATION 63

environment where the processors exhibit different processing speeds and resources com-
paring to our parallel QMC algorithm. Algorithm 5 and Algorithm 6 represents the

manager-worker’s algorithm.

Algorithm 5 Manager
1. Initialize parameters: Options arguments, LD sequence

2. Broadcast Option’s arguments
3. While work> 0 do
4 Receive a result from any worker and dispatch a new worktag

together with a new subsequence;

5. Manager assign tasks to itself and consume necessary subsequences;
6. Record each processor’s tasks.
6. Next

7. Receive results for outstanding work requests.
8. Tell all the workers to exit.

9. Print result.

Algorithm 6 Worker

1. Do

2. Accepts work requests

3. Do sequential computing
4. Returns results

5. Until a termination request is received.

Table 7.4 gives the execution time for 1,000,000 simulations on 7 processor on three
different implementations: mpC, blocking scheme (BK) with MPI and manager-worker
scheme (MW) with MPIL The table also indicates the number of tasks distributed to
each processor in each of the three schemes. In BK scheme, since the task distribution
is static, each processor receives 142857 tasks. In the MW scheme, each processor is

assigned one task per request. If’s interesting to see in the table that though processor 4

CHAPTER 7. RESULTS AND EVALUATION 64

Processors’ | Processor’s MPI
D performance | mpC BK MW

1 883 137563 | 142857 | 500000
2 930 144882 | 142857 | 133597
3 879 136937 | 142857 | 81659
4 999 155631 | 142857 | 77377
5 959 149400 | 142857 | 74096
6 870 135535 | 142857 | 67771
7 899 140052 | 142857 | 65500

time (Sec.) 3.31 4.67 95.48

Table 7.4: Time to do 1,000,000 simulations using three schemes

has better computing performance than processor 1, processor 1 is assigned more number
of tasks in total. This is done by the scheduler. The MW scheme in MPI does not take
the performance of the processors into consideration. Finally, with mpC, we notice that
the processors are given tasks according to their performance. Processor 4 gets the most
number of tasks, 155631, since it is the fastest; while processor 6 gets 135535 number of
tasks since it is the slowest. From experiments, we find the mpC scheme outperforms BK
scheme because the load of mpC scheme is balanced; the B scheme outperforms MW
scheme because there are too many communications in MW scheme, though MW scheme
simulates load balance to sone extent. Overall, our algorithm implemented in mpC is the
most efficient one while the MW scheme is the most inefficient one since the workload is
unbalanced and communications dominate the whole computing (sending requests and

results to manager, receiving tasks from manager).

In the MW program, instead of assigning one task per request, we tried to assign
arbitrary number of tasks to each request, thereby simulating mpC to some extent. Let

pt be the number of tasks assigned to a processor per request. When pt = 1, the

CHAPTER 7. RESULTS AND EVALUATION 65

100

900 |
1700
2500
3300
4100
4900
5700
6500
7300
8100
8900
9700
10500
11300
12100
12900
13700
14500
15300
16100
16900
17700
18500
19300
20100
20900
21700
22500
23300
24100
24300
25700
26500 :
27300
28100
28300
29700

Task per request

Figure 7.3: Manager-worker scheme with different amount tasks per request

computing time is 95.48 seconds as seen in Table 7.4. We experimented from pt = 100

till pt = 30000, with 100 tasks in each increment. Figure 7.3 illustrates the test results.

From the test, we found in some cases the MW performs better than mpC program
and in some cases it does not. For example, when pt = 500, the runtime is 2.70764
seconds; and when pt = 4300, the run time is 3.81360 seconds. We cannot find any
trend about the value of p¢ that will give the best performance. Hence, when designing
MW algorithm, it would be tedious to find a suitable value for pf which is user-defined.
In addition, the MW scheme is not portable when some conditions are changed. For
example, if the number of processors is changed or the workload of some processors is
changed, the pt value must also be changed manually. Unlike mpC program, the number
of tasks will be automatically changed based on the processors’ performance when the

number of processors is changed.

From the experiments, advantages of using mpC programming system are especially

CHAPTER 7. RESULTS AND EVALUATION 66

clear when programming for heterogeneous distributed memory machines. The mpC
parallel language allows the programmer to define all the main features of the algorithm
under study, such as, the total number of participating parallel processes, the total
volume of data to be transferred on each process, and the topology of the application. In
addition, mpC system has its own mapping algorithms to ensure each process to perform
computations at the speed proportional to the volume of computation it performs. Hence,

these features lead to a more balanced and faster parallel program.

Chapter 8

Conclusions and future work

In this research, we presented a distributed parallel QMC algorithm for pricing options
that is adaptable to heterogenous network of workstations. The parallel algorithm dis-
tributes the data depending on the architectural features of the machines. We used the
Sobol LD sequence for the QMC technique and implemented the algorithm in mpC. Its
good performance is justified theoretically and verified experimentally.

As discussed in chapter 6, QMC simulations are well suited for parallel computing.
Simulations can be performed on different processors, and the results can be combined
finally. Traditional parallel methods try to obtain maximum speedup by evenly distribut-
ing computations over available processors, where the underlying features of the machines
are not considered while scheduling the tasks. On heterogeneous networks, performance
gains are potentially available for algorithms if they are designed to fully exploit the
hardware features. This is the very peculiarity of our parallel algorithm, which takes
into account the actual performances of both processors and communication links. By
comparing with other parallel algorithms and implementations, the speedups exhibited
by our algorithm presented in this thesis are promising.

The implementation has demonstrated that mpC and its programming environment
are suitable tools for implementing adaptive algorithms on heterogeneous networks. Like

MPI, mpC supports writing efficient parallel program running on specified distributed

67

CHAPTER 8. (CONCLUSIONS AND FUTURE WORK 68

memory machines. Like MPI, the mpC program is portable to other distributed memory
machines without rewriting and recompiling. Unlike MPI, the mpC and its programming
environment can specify application performance model and ensure the efficiency while
porting program to other distributed memory machines. An outstanding feature of using
mpC is that a programmer can specify the topology of the application under study and
mpC system can map the topology to real network system based on processors’ processing
speeds and network bandwidths in run time. Some other features of mpC programming
system are that such as it allows both data parallelism and task parallelism as well as
vector computing. All these factors make mpC programming system unparalleled among
known parallel programming tools.

In future, we would like to extend our parallel algorithm to price American and Asian-
style options and options with multi-assets. For American-style options, one has to deal
with the possibility of an early exercise to achieve an optimal value. For Asian-style
options, one has to calculate the average value of the underlier on a specific set of dates
during the life of the option. For option with multi-asserts, one has to take into account
the correlation between securities.

In this research, we use Sobol sequence in our QMC method. However, other LD
sequences may have advantages over Sobol sequences. In particular, Joy, Boyle and
Tan [41] use Faure sequences to value a range of complex derivative securities and obtain
good results. The application of LD sequences to problems in finance is also a topic of
current interest [41]. Future work will consider using alternative LD sequences for option
pricing and comparison of their performance and accuracy.

Although this research has concentrated on QMC method for option pricing problem,
the technique used in this research can be adopted to other areas of QMC research. We
believe our research will offer new understanding of QMC methods and would open up

a new venue for QMC application developers in other areas of research.

Bibliography

(1

[2]

[6]

[7]

P. Acworth, M. Broadie, and P. Glasserman. A comparison of some Monte Carlo
and quasi Monte Carlo methods for option pricing. In H. Niederreiter, P. Hellekalek,
G. Larcher, and P. Zinterhof, editors, Monte Carlo and Quasi-Monte Carlo Methods
1936, pages 1-18. Springer-Verlag, Berlin, 1998.

J. Andreasen. The pricing of discretely sampled Asian and lookback options: a
change of numeraire approach. The Journal of Computational Finance, 2(1):5-23,
1998.

I. A. Antonov and V. M. Saleev. An economic method of computing LP r_sequences-
USSR Computt. Math. Phy., 19:252-256, 1979.

D. Arapov, V. Ivannikov, A. Kalinov, A. Lastovetsky, I. Ledovskih, and T. Lewis.
A parallel language for modular distributed programming. In Proceedings of the
2nd Aizu International Symposium on Parallel Algorithms/Archilectures Synthesis,
pages 248-255, Aizu, Japan, March 1997. IEEE Computer Society.

Online article. Parallel Random Number Generators. Scien-
tific Computing ot NPACI, 3(7), March 1999 Available at
http://www.npaci.edu/online/v3.7/SCAN1.html.

Arvind and R. A. [annucei. Two fundamental issues in multiprocessing. In R. Dier-
stein, H. Wacker, and D. Mler-Wichards, editors, 4th International DFVLE Semi-
nar on Foundations of FEngineering Sciences on Parallel Computing in Science and
Engineering, pages 61-88, Bonn, Germany, 1988. Springer-Verlag New York, Inc.

G. H. Barnes, R. M. Brown, M. Kato, D. J. Kuck, D. L. Slotnick, and R. A. Stokes.
The ILLIAC IV Computer. IEEE Transactions on Computers, 8(17):746-757, Au-
gust 1968,

J. R. Birge. Quasi-Monte Carlo approaches to option pricing. Technical report 94—
19, Department of Industrial and Operations Engineering, University of Michigan,
1994.

F. Black and M. Scholes. The pricing of options and corporate liabilities. Journal
of Political Fconomy, 81:637-654, 1973.

69

BIBLIOGRAPHY 70

[10] P. Boyle. Options: A Monte Carlo approach. Journal of Financial Economics,
4:323-338, 1977.

[11] P. Boyle, M. Broadie, and P. Glasserman. Monte Carlo methods for security pricing.
Journal of Economic Dynamics and Control, 21:1267-1321, 1997.

[12] P. P. Boyle and S. H. Lau. Bumping up against the barrier with the binomial
method. Journal of Derivatives, 1:6-14, 1994,

[13] P. Bratley and B. L. Fox. Algorithm 659: Implementing sobol’s quasirandom se-
quence generator. ACM Trans. Math. Sofiw., 14(1):88-100, 1988.

{14] M. J. Brennan and E. E. Schwartz. The valuation of American put options. Journal
of Finance, 32:449-462, 1977,

[15] M. J. Brennan and E. S. Schwartz. Finite Difference Methods and Jump Processes
Arising in the Pricing of Contingenet Claims: A Synthesis. Journal of Financial
and Quantitative Analysis, pages 461-474, September 1978.

[16] M. Broadie and P. Glasserman. Pricing American-Style Securities Using Simulation.
Technical Report 96-12, Columbia - Graduate School of Business, 1996. available
at http://ideas.repec.org/p/fth/colubu/96-12.html. '

[17] B. C. Bromley. Quasirandom Number Generators for Parallel Monte Carlo Algo-
rithms. Journal of Parallel and Distributed Computing, 38(0132):101-104, 1996.

(18} A. Chhabra, P. Thulasiraman, and R. K. Thulasiram. FLEET: A Framework for
evaLuating European options in parallEl and disTributed environment. IntlJ. of
High Performance Computing and Applications, (to appear).

{19] 1. J. Clark. Option pricing algorithms for the Cray T3D supercomputer. In Pro-
ceedings of Computational and Quantitetive Finance 98 Conference, New York,
September 1998.

[20] L. Clewlow and C. Strickland. Implementing Derivatives Models. John Wiley &
Sons, New York, 1998,

[21] J. Cox, S. Ross, and M. Rubinstein. Option pricing: A simplified approach. Financial
FEeonomics, 7:229-263, 1979.

[22] E. W. Weisstein et al. Quasirandom Sequence. From MathWorld-A Wolfram Web
Resource. Available at http://mathworld.wolfram.com/QuasirandomSequence.htiml.

[23] H. Faure. Discrepance de suites associees a un systeme de numeration (en dimension
s). Acta Arithmetica, 41:337-351, 1982.

BIBLIOGRAPHY 71

[24] M. J. Flynn. Some computer organizations and their effectiveness. JEEE Transac-
tions on Computing, C-21(9):948-960, September 1972.

[25] 1. Foster. Designing and Building Parallel Programs. Addison Wesley, USA, 1st
edition, 1995.

[26] M. C. Fu. Pricing of financial derivatives via simulation. In C. Alexopoulos, K. Kang,
W. Lilegdon, and D. Goldsman, editors, f'n Proceedings of the 1995 Winter Wim-
ulation conference, pages 126-132, Piscataway, New Jersey: Institute of Electrical
and Electronics Engineers, 1995.

[27] S. Galanti and A. Jung. Low-discrepancy sequences: Monte Carlo simulation of
option prices. Journal of Derivatives, 5(1):63-83, 1997.

[28] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM:
A Users’ Guide and Tutorial for Networked Parallel Computing. MIT Press, 1994.

[29] G. A. Geist, J. A. Kohla, and P. M. Papadopoulos. PVM and MPI: A Comparison
of Features. Calculateurs Paralleles, 8(2):137-150, 1996.

[30] A. V. Gerbessiotis. Architecture independent parallel binomial tree option price
valuations. Parallel Computing, 30:301-316, 2004.

[31] P. Glasserman. Monte Carlo Methods in Financial Engineering. Springer, New York,
2004,

{32] D. Grant, G. Vora, and D. Weeks. Path-Dependent Options: Extending the Monte
Carlo Simulation Approach. Manegement Science, 43(11):15689-1602, Nov 1997.

[33] W. D. Gropp and E. Lusk. Why are PVM and MPI so different? In M. Bubak,
J. Dongarra, and J. Wasniewski, editors, Recent Advances in Parallel Virtual Ma-
chine and Message Passing Interface, volume 1332 of Lecture Notes in Computer
Science, pages 3-10. Springer Verlag, 1997.

[34] J. H. Halton. On the efficiency of certain quasirandom sequences of points in eval-
uating multidimensional integrals. Numerische Mathematik, 2:84-90, 1960.

[35] R. Hempel. The status of the MPI messsage-passing standard its relation to PVM.
volume 11566 of Lecture Notes in Computer Science, pages 14-21. Springer Verlag,
1996.

[36] D. J. Higham. Nine ways to implement the binomial method for option valuation in
MATLAB. SIAM Review, 44{4):661-677, 2002.

BIBLIOGRAPHY T2

[37] K. Huang and R. K. Thulasiram. Parallel algorithm for pricing American Asian
options with multi-dimensional assets. In Proc. 19th Intl. Symp. High Performance
Computing Systems and Applications (HPCS), pages 177-185, Guelph, ON, Canada,
May 2005.

[38] J. Hull and A. White. The Pricing of Options on Assets with Stochastic Volatilities.
Journal of Finance, 42:281-300, 1987.

(391 J. C. Hull. Options, Fulures, and Other Derivatives. Prentice Hall, Upper Saddle
River, NJ, 5th edition, 2003.

[40] Stephen Joe and Frances Y. Kuo. Remark on algorithm 659: Implementing sobol’s
quasirandom sequence generator. ACM Trans. Math. Softw., 29(1):49-57, 2003.

[41] C. Joy, P. P. Boyle, and K. S. Tan. Quasi-Monte Carlo Methods in Numerical
Finance. Management Science, 42(6):926-938, June 1996.

[42] A. Kalinov. mpc problem with cross-platforming. Personal email communications.

[43] A. G.Z. Kemna and A. C. F. Vorst. A Pricing Method for Options Based on Average
Asset Values. Journal of Banking and Finance, 14:113-129, 1990.

[44] L. Kuipers and H. Niederreiter. Uniform Distribution of Sequences. John Wiley &
Sons, New York, 1974.

[45] A. Lastovetsky. Adaptive parallel computing on heterogeneous networks with mpC.
Parallel Computing, 28:1369-1407, 2002.

[46] A. Lastovetsky. Parallel Computing on Heterogeneous Networks. John Wiley &
Sons, 2003.

[47) C. Leopold. Parallel and Distributed Computing: A Survey of Models, Paradigms,
and Approaches. John Wiley & Sons, Inc., New York, USA, 2001.

[48] J. X. Li and G. L. Mullen. Parallel computing of a quasi-monte carlo algorithm for
valuing derivatives. Parallel Computing, 26(5):641-653, 2000.

[49] ANL Mathematics and Computer Science. The Message Passing Interface (MPI)
standard. 2005. http://www-unix.mcs.anl.gov/mpi/.

{50] mpC Team. About mpC Parallel Programming Environment. Online article. Avail-
able at http://www.ispras.ru/~mpc/mpc_descr.html.

[61] H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods, vol-
ume 63 of CBMS-NSF Regional Conference Series in Appl. Math. STAM, Philadel-
phia, PA, 1992.

BIBLIOGRAPHY 73

[52] G. Okten and A. Srinivasan. Parallel quasi-Monte Carlo methods on a heteroge-
neous cluster. In H. Niederreiter et al., editor, Proceedings of Fourth International
Conference on Monte Carlo and Quasi-Monte Carlo, pages 406-421, Hong Kong,
2000.

[53] S. H. Paskov and J. F. Traub. Faster valuation of financial derivatives. Journal of
Portfolio Management, 22(1):113-120, Fall 1995.

[54] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical
Recipes in C: The Art of Scientific Computing. Combridge University Press, New
York, second edition, 1992.

[55] M. J. Quinn. Parallel programming in C with MPI and OpenMP. McGraw-Hill,
2004.

[56] S. Rakhmayil, I. Shiller, and R. K. Thulasiram. Cost of Option Pricing Errors
Associated with Incorrect Estimates of the Underlying Assets Volatility: Parallel
Monte Carlo Simulation. IMACS J. Mathematics and Computers in Simulation,
(under review).

[571 W. Schmid and A. Uhl. Techniques of parallel quasi-Monte Carlo integration with
digital sequences and associated problems. Mathematics and computers in simula-
tion, 55:249-257, 2000.

[58] E.S. Schwartz. The Valuation of Warrants: Implementing a New Approach. Journal
of Financial Economics, 4(1):77-93, 1977.

[39] E. S. Schwartz and W. N. Torous. Prepayment and the Valuation of Mortgage-
Backed Securities. Journal of Finance, 44(2):375-392, 1989.

[60] 1. M. Sobol. On the distribution of points in a cube and the approximate evaluation of
integers. U.5.5.R. Computational Mathematics and Mathematical Physics, 7(4):86—
112, 1967.

[61] A. Srinivasan. Parallel and distributed computing issues in pricing financial deriva-
tives through quasi monte carlo. In Proc. (CD-RoM) 16th International Parallel and
Distributed Processing Symposium (IPDPS 2002), Fort Lauderdale, FL, USA, 2002.
IEEE Computer Society.

[62] SGI. Technical Publications. SGI - C Language Reference Manual, June 2003.

[63] R. K. Thulasiram and D. A. Bondarenko. Performance evaluation of parallel algo-
rithms for pricing multidimensional financial derivatives. In IEEE Computer Soci-
ety Proceedings of the Fourth International Workshop on High Performance Scien-
tific and FEngineering Computing with Applications, pages 306-313, Vancouver, BC,
Canada, August 2002.

BIBLIOGRAPHY 74

[64] R. K. Thulasiram, L. Litov, H. Nojumi, C. Downing, and G. R. Gao. Multithreaded
Algorithms for Pricing a Class of Complex Options. In Proceedings (CD-RoM) of the
IEEE/ACM International Parallel and Distribued Processing Symposium (IPDPS),
San Francisco, CA, USA, April 2001.

[65] R. K Thulasiram, C. Zhen, and A. Gumel. A second order Ly stable algorithm for
evaluating European options. fntl. J. of High Performance Computing and Network-
ing (IJHPCN), (to appear).

[66] J. A. Tilley. Valuing American Options in a Path Simulation Model. Transactions
of the Society of Actuaries, 45:83-104, 1993.

[67] E. W. Weisstein. Lebesgue Measure. From MathWorld-A Wolfram Web Resource.
Available at http://mathworld.wolfram.com /LebesgueMeasure.html.

[68] R. Zvan, P. A. Forsyth, and K. R. Vetzal. Robust numerical methods for PDE
models of Asian options. Journal of Computational Finance, 1(2}:39-78, 1998.

[69] R. Zvan, K. R. Vetzal, and P. A. Forsyth. PDE methods for pricing barrier options.
Journal of Economic Dynamics and Control, 24(11-12):1563-1590, 2000.

