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Abstract

lvlonte Callo (lvIC) simulation is one of the populal approaches for apploximating the

value of an option ol other delivative seculity in addition to binomial lattice techniques.

Horvever', plain N,IC sirnulation produces only apploximate solutions. Absence of straight-

forrvard closed folm solutions for many financial models fol pricing option has given lise

to use of numelical apploaches. The introduction of lorv-discrepancy (LD) sequences

in IVIC simulation provides a rvay to implove the accuracy and leliability of MC meth-

ods. The use of LD sequences in IVIC method leads to rvhat is knorvn as Quasi-N,Ionte

Carlo (QNÍC) method. Several studies have investigated efficiency of such rnethods on

serial computels. This r-esearch rvill focus on the palallelization of the QIvIC rnethod

on a hetelogeneous netrvork of rvorkstations (HNOWs) for option pricing. HNOWs ale

machines rvith difierent processing capabilities and have distinct execution time fol' the

same task. So it is vely important to allocate and schedule the tasks depending on tlie

pelformance and resoulces of these machines. Some of the existing parallelization of

traditional lvIC apploach use SPNID (Single Ploglam lVlultiple Data) manager-rvorker

paradigm and communication betl'een the machines is by rnessage passing using stan-

dard NIPI (l\4essage Passing Intelface) liblaly. On lietelogeneous machines, \4PI is not

the appropriate plogramming liblary. It does not consider the undellying featules of the

machines rvhile scheduling the tasks.

In this research, ræ have developed an adaptive, distlibuted QN4C algolithm for

option plicing, taking into account the perfolmance of processors ancl communication

latencies. On heterogeneous netrvorks, perfolmance gains ale potentially available fol



algorithms if they ale designed to fully exploit the hardrvale featules. This is the very

peculiality of our palallel algorithm, rvhich takes into account the actual pelformances

of both plocessors and communication links. We implemented the algolithrn using mpC,

an extension of ANSI C language for palallel computation on HNOWs. mpC addlesses

issues related to heter-ogeneous computing envilonments and is an ideal language fol oul

ploblem. An outstanding featule of using mpO is that a plogÌanmer can specify the

topology of the application undel study and mpC system cân map the topology to leal

netivolk systen based on processoLs' pr-ocessing speeds and netrvork bandwidths in lun

time. By comparing rvith othel parallel algorithms and irnplernentations, the speedups

exhibited by oul algorithrn presented in this thesis are plomising.
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Chapter 1

Introduction

In recent years, there has been increasing use of nurnelical methods in cornputational

finance. This is due to the fact that rnost financial models lack stlaight-forrvald closed

folm solutions. Thele ale three popular numelical methods used for option plicing,

namely, the binomial lattice [21], the finite diffelence [14], and the \4onte Callo (NIC)

simulation [10]. In the leal rvorld, financial market is full of uncertainties in tlends, price,

etc. To obtain accurate results, a lalge numbel of state valiables rvill be involved to

imitate the real-rl'orld. Due to tlie complexity of these landom factols involved, binomial

lattice and finite diffelence rnethods become costly in terms of computational cost rvhen

three ol more valiables ale involved [39]. hr this case, NIC simulation is a pr-omising

alteurative method to evaluate options since the method is flexible and modeln computing

poweì'ensules a quicker result, though NIC simulations is knorvn to plovide less acculate

solutions.

The N,IC rnethod is a stocliastic technique based on the use of landom numbers and

probabilistic methods to generate market conditions. The basic idea of using l\4C simula-

tion to value option is to generâte a lalge numbel of landom configulations and evaluate

the option ralue as the average of the sample [39]. The elrol in the N,lC estir¡ation

decleases at the older O(N r/2) rvhere N is the number of simulations [31]. Hence, the

estimation tends to the actual value as the simulations tend to infinity. Therefole, for
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high oldel acculacy, lalge number of simulations ale required. To implove efficiency

and acculacy, mathematicians have found that using unifolmly distlibuted detelministic

numbels lathel than r:andom (o:: pseudo-random) numbers can obtain fastel conver-

gence rvith knorvn eLLor bounds. The error bounds in these methods a::e in the older of

(log 1V)d . .¡V-1 [51] rvhele d is the problem dimension and /ú is the number- of sirnulations.

The unifonnly distlibuted deterministic nurnbers is known as lorv disclepancy sequence

(LD sequence). The use of LD sequences in lvIC method ìeads to rvhat is knorvn as

Quasi-Nfonte Carlo (QMC) method. There are several methods for genelating such LD

sequences and these procedur-es are genelally based on number theoretic methods. Fol a

complehensive survey of QX4C methods, please refer to the monograph [51].

Due to the leplicative natule, QMC simulation often consumes lalge amount of com-

puting time. Solution on a sequential computer rvill lequile houls and may be even days

depending on the size of the problem [56]. In financial markets, thele is a high premium

on rapid solution. Any lapid solution in infolmation plocessing can be translated into

potential gains. Thelefole, parallel computing is an ideal choice since it plovides a solu-

tion fol large computational ploblems in a reasonable amount of time using mole than

one processing units. QIvIC simulations are rvell suited to parallel computing since it

is an embarlassingly parallel ploblem (no cornmunication betrveen pÌocessols [6t]). We

can employ mâny pÌocessols to simulate valious random rvalks and produce theil values,

then average these va.lues to produce a final ansrver. Thelefore, minimizing the rvhole

si¡nulation tirne.

Palallelization of Q\4C technique has gained impoltance in recent yeals and thele's

a grorving trend torvards using inexpensive rvorkstations and PCs fol parallel computing.

These PCs, ivorkstations, selvers and sometimes supercomputers connected togethel folm

a hetelogeneous netrvolk. Due to the var-ying processing capabilities of the plocessors,

difierent opelating systems and user load, these machines have diffelent execution time

for the same task and making the maximum benefits of the valious plocessols is one

of the impoltant issues in hetelogeneous netrvorks. To ensule a successful and efrcient
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QIVÍC sirnulation in such a distributed envilonment, it is vely important to allocate and

schedule the tasks depending on the perfolmance and resoulces of these machines.

This lesea¡:ch addlesses issues on parallelizing Ql\4C on â heter:ogeneous computing

envilonment. Some of the existing parallelization apploaches (e.g. a manager'-rvorker

paradigm) ale irnplementecl using standald MPI (Nlessage Passing Interface) liblary. On

hetelogeneous machines, N4PI is not the appropriate progla.mming library [46]. It does

not considel the underlying features of the machines rvhile scheduling the tasks.

In this lesearch, mpC is used to implement the QMC algolithm on hetelogeneous

netrvork of computers. mpC is an extension of the ANSI C language fol programming

palaìlel cornputations on hetelogeneous computers. mpC addlesses issues related to

heterogeneous computing environments and is an ideal tool for this ploblem. We rvill

also compare and analyze the pelfolmance lesults on a hornogeneous netwolk using IVIPL

1.1 GoaI of the Thesis

The goal of this lesearch is to develop and irnplement an adaptive, distlibuted QNÍC

algolithm on heterogeneous net¡r'olk of rvorkstations (HNOWs) using mpC. The telm

"adaptive" has trvo meanings: (1) this algorithm can be pelfolrned on any numbel of

processols. That is, the genelal assumption that the number of processors is a factor of

tìre numbel of simulations is lelaxed; and (2) the tasks rvill be distlibuted to pÌocessols

based on processols' plocessing capabilities. These luntime issues are not genelally

colisidered in previous studies of palallel QIvIC simulations. This is, in fact, the main

goal of this project, as thele has been lelatively little done on HNOWs for the option

pricing problem. Despite a glorving need fol efficient algolithms and implernentations for

option pricing ploblem, the palallel and distributed computing issues in option pricing

are seldom addlessecl in tlie litelature.
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L.2 Organization of the Thesis

The rest of the thesis is organized as follorvs. The background on palallel and distribuied

computing is plovided in Chapter' 2. IVIonte Carlo and Quasi-lvlonte Carìo methods

as rvell as concepts of lorv-disclepancy sequences a'-e introduced in Chapte;: 3. The

background and lelated rvork on computational finance rvhich includes tluee popular'

numerical methods is presented in Chapter 4. Next, rve address the sequential QIVIC

algolithm in Chapter 5 follorved by a deta.iled descliption of oul parallel QN,IC algorithrn

and implementation details in Chapter' 6. In Chapter 7, rve shorv the analytical and

pelfolmance lesults of oul aìgolithrn. Finally, rve plesent ouÌ conclusions and future

rvolk in Chapter 8.



Chapter 2

Parallel and distributed computing

Parallel and distributed conrputing a,r'e rvidely used in a variety of aleas langing from

acadernic to industly, such as computational simulations fol scientific and engineeling

applications, comrnercial application in data mining and tlansaction plocessing. With the

rapid enhancement of the bandl'idth of interconnection networks and pelformance of PCs

and rvolkstations, as rvell as the continuous arrival of new languages and implovement

of operation systems, palallel and distlibuted computing can achieve lelatively vely high

pelformance s'ith lorv cost for infolmation processing; almost evely application domain

can profit.

Pa.r allel cornputing is the simultaneous execution of a single task (split up and spe-

cially adapted) on multiple processors in order to obtain faster results, ri'hile distributed

computing studies the coordinated use of physically distlibuted computels [47]. In the

litelatule, these tivo teLrns ale loosely used though the issues and lesealch problems in-

volved in these trvo paradigrns are completely difierent. Ho*'ever', the common output in

both cases is fast execution of an application. Pelfolma.nce of an application is thelefole

an important issue. In this chapter, rve rvill levierv some of the alcliitectules and r-elative

pÌogr-amming lrodels and envir-onrnents for parallel computeÌ's.



Cn¡.prpR 2. P¡R¡.r-lor- AND DISTRTBUTED coMpurlNc

2.L Classification of Architectures

All computers, ivhether sequential or parallel, operate by executing instluctions on data.

Based on the numbel of stleams of instructions perfolming on the data, Flynn [24]

proposed a classification of computer alchitectures:

o Single Instruction Single Data Stream (SISD)

o \4ultiple Instruction Single Data Stlearn (NIISD)

o Single Instluction N,lultiple Data Stlearn (SIN4D)

o N4ultiple Instruction lvlultiple Data Stream (MIMD)

SISD corresponds to the classical von Neumann machine rvhich consists of a stolage

unit (memoly) and a central processing unit (CPU). The CPU executes a single instluc-

tion that specifies a sequence of read and rvrite operations on the data stored in memoly.

SISD does not contain any parallelism. The personal computer (PC) is an example of

SISD a¡chitecture.

In N,IISD the processors execute diffelent instluctions on the same data. This is not

commonly used and applications on this are very fel'.

Norvadays, most pa.rallel and distlibuted applications ale lunning on SIN,ID and

IVIIIVID architectules. \4/e bliefly desclibe them belorv.

2.1.L Single Instruction Multiple Data

The SINÍD model involves executing a single instruction on multiple data sets. A SI\,ÍD,

as shorvn in Figule 2.1, consists of n plocessol elements (PEs) rvith their orvn local

memories (LlvI) rvhele it can stole data, a global control unit (CU), and an intelconnection

netrvork. All PEs work under the contlol of a single instruction stleam (lS) issued by

CU. There are r¿ data stlearns (DSs), one pel PE. The PEs opelate synchlonously: at

each step, all processols execute the same instluction on a different data in their oivn
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Figure 2.1: The SIX4D alchitecture

local memories.

The fir'st SIN4D machine, ILLIAC IV, rvas deveìoped at the Univelsity of lllinois in 1960s.

It consisted of a contlol unit (CU) and 64 PEs. Each PE liad trvo thousand (2I() 64-bit

wolds of memoly associated with it (see [7] fol detail). The resealch on ILLIAC IV

led rvays for constructing more porverful SI\4D machines such as the Thinking lvlachines

CM-1 and CNl2.

2.L.2 Multiple Instruction Multiple Data

The class of l\4lMD computers is the most genelal and most poivelful in Flynn's classi

fication. The N4IlvID machines, unlike SIlvfD machines, do not have the global contlol

unit. Each PE has its own controì unit and local memoly, the PEs communicate rvith

each othel via an interconnection netrvolk, theieby making them more porvelful than

those used in SI\4D computeÌs (see Figule 2.2). Each PE rvorks undel the contlol of an

instruction strearn issued by its orvn cont¡ol unit. Therefore, rvhen the PEs work togethel

to solve difierent subproblems of a single ploblern, they usually operate asynchronously.

When all PEs execute the same program on different data, MII\ID rnachines can also be



CulprBR 2. PARALLEL AND DISTRIBUTED cotvfpurtNc

Figule 2.2: The NIIIvID architectule

referred to as SP\4D (Single Proglam lvlultiple Data) model. Depending on rvhether data

are comrnunicated implicitly by rvay of memoly storage and letlieval or explicitly fi'om

PÐ to PE, N,IIN4D machines can be categolized as shared, rnernor! machines(Figtre 2.3

(a)) and d,àstributed. metnora machi,nes (FiguLe 2.3 (b)).

] ceu, cPUi ------- cPU
"--¡- ¡ ¡

lli
-----___i-ì Interconnect 

]rii

-'"ir F"rl - -- E¡^¡++r,*l a*l ... ¡;i
] !--a-.I

_l t
! r ¡rterco¡rne.t 

i

(b) Distributed memory
machines

I clobal memory

1a) shared memory
machines

Figule 2.3: Shaled memory machines and distributed memoÌy machines

In the shaled memory configulation of Figure 2.3(a), the menory is shaled in the

sense that any of the processors can access the memory locations; that is, the mernory

is shared by the processors. One dlarvback of the globally shared mernory is that locks

and semapholes âre necessa.ry to synchlonize the access to shared data. Examples of

representative machines are SGI Oligin 3800 series [62].

In the organization of Figui-e 2.3(b), plocessors communicate data to other ploces-
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sols via message passing and pÌocessors can only access their- orvn plivate memolies. If

the constitution machines in a distlibuted system house different hardrvale and softivare,

the distributed system is knorvn as heterogeneous. Distributed memoÌy machines can be

composed of common off-the-shelf components and this has been a major contributing

factor to their recent populality. it is possible to extend this design to hold thousands

of processols. One drarvback of this architectule is its inter'-node latency rvhen exchang-

ing data betrveen nodes. Compared rvith the shared memory machines, the distlibuted

memory machines ale inexpensive to build and ale vely easily scalable.

The class of distlibuted memoly machines is undoubtedly the fastest grorving palt in

tlie family of high-perforrnance computeÌs norvadays. When designing and implernent-

ing algorithrns on distributed rnemoÌy machines, a plogÌ'arnmer has to partition and

distribute the data ovel the pÌocessors and also the data exchange between processols

has to be perfolmed explicitly. Unlike shared-memory systems, the data distlibution is

completely tlanspalent to the user'. Horvever, because the class of distributed rnemoly

rnachines is able to outpelform all othel types of machines and they âÌe inexpensive to

build, this type of macliines is vely populal in industlies and academics. Hence, this is

the platform of choice for oul cullent resealch. As revierved above, distlibuted memoly

envilonments do not shale physical ol viltual memory, data ale exchanged via message

passing. In the follorv sections, we leviel some popular message passing liblalies.

2.2 Message Passing Library

In distlibuted menrory machines, evely memoly module is associated rvith some indi-

vidual plocessor; the processols do not have a common rnemoÌy. Computing tasks or

data ale partitioned and distlibuted explicitly, each running on â sepâÌâte processol in

palallel and communicate t'ith each othel through message passing. l\4essage passing

Íìay seÌve diferent puÌposes. The most obvious pulposes ate communication and. syn-

chronization [6]. Communication occuls rvhen a plocessol lequires data fi'om anothel
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pÌocessol and must s'ait for it to arlive. Synchtonization alises rvhen processoÌs ex-

change messages to indicate that they have i'eached a celtain point of ploglam executíon

or certain requilement has been met.

Nlessage passing is currently the plevailing rnodel il rvriting perfolmance-oliented

applications on a rvide variety of distlibuted memory arcliitectuÌes. When implementing

plogrâm using message passing model, it is the proglammer's responsibility to manage

all details of data distribution and task scheduling, Ioad balancing, as rvell as communi-

cation betrveen processols. Since the communication rvill affect the ovelall perfolmance,

programmeÌs ale strongly encouraged to develop algolithms that maximize Iocal compu-

tations rvhile minimizing communications. Also, ever'¡{liing is undel the ptogtammet''s

control, the proglârnnrer can achieve close to optirnum perfolmance if the plogrammer'

just spends enough time in performance tuning.

Thele ale trvo popular message passing libralies that allorv programmers to explicitly

rvrite message passing ploglams: Parallel Virtual \4achine (PVlvl) and lvlessage Passing

Interface (MPI). We briefly outline them belorv.

2.2.L Parallel Virtual Machine

Palallel Virtual ltlachine (PVN4) is a messâge passing system that enables a netrvork

of computels to appeâr as one lalge viltual rnachine to be used as a single distlibuted

memory parallel computer. The PVNÍ ploject began in eally 1990s at Oak Ridge Na-

tional Laboratory. The overall objective of the PVN4 system is to enable a collectiou

of computers to be used coopelatively for concurrent or palallel computation. Detailed

descliptions and discussions of the concepts, Iogistics, and methodologies can be found

in [28] or online rvebsite available at: http://rv*rv.csm.ornl.gov/pvrn/pvm-home.html.

A poltable version of PVIVI (PVN,Í 2.0) rvas released in 1991. In 1993, PVi\4 3.0 rvas

released rvith a nelv usel application interface (API), rvhich specifically enables PVM

applications to lun on rnultiple massive multiprocessors. l\4eanrvhile, PVlt4 r'esealch group

are tlving to keep the PVI\4 intelface sirnple to use and undelstand. In PVÀ4 systern,

10
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there is a console thlough rvhich a usel can create and terrninate processes at run time

on specific hosts ald can add and delete hosts. Any plocess may communicate and/or

synchronize rvith any other.

In PVNI system, a computing task is rvlitten as a collection of coopelating subtasks.

Tasks access PVI\,I resoul'ces thlough a liblary of standai-d intelface routines. Plogram

is cornpiled ol different hosts and executed concullently. PVI\,I ploglams ale portable,

rvhich implies that you can lun a PVNI prograrn on a diffelent alchitecture, once it

has been cornpiled on that systern. Besides, a PVNÍ pr-oglam rvritten in Fortan on one

rnachine can communicate rvith a C plogram running on another machine.

PVNI is knorvn primalily fol its suppolt of multi-platforms, such as UNIX and Win-

dorvs/ NT. The PVX,Í system has gained rvidesplead acceptance in the high-perfolmance

scientific computing community. Despite its popula:r'ity, the PVli,I rnessage passing en-

vilonment is not a particular'ìy elegant method for explessing many parallel algorithrns.

PV\,I has been leplaced by lvfPl in many cases.

2,2.2 Message Passing Interface

lvlessage Passing Intelface (lt4PI) is a liblaly specification for- message-passing, proposed

as a standald by a bloadly based committee of vendors, irnplernentols, and users [a9]. The

official velsion of the N,IPi documents can be found at lrttp://*rvrv.mpi-folum.olg/docs/.

An N,IPI plogÌam consists of autonomous processes, executing tìrei¡: orvn code in its

orvn addless space in an SPIVID style. Note that the numbel of processes can actually be

lalger than the number of physical pÌocessors, since mole than one N,IPI process can be

lun on each plocessor'. The plocesses in \4PI ale oldered and numbeled consecutively

frorn 0, the nunibel of each process being knorvn as its rank. The code executed by

diffelent processes is identical except for a small number of processes (e.g. the "host"

process). All the plocesses execute theil tasks asynchlonously. This makes it possible to

implement any palallel algorithm. Sometimes, synchronization may be needed betrveen

processes depending on the applications under implernentation.

11
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All l\4PI communication calls lequire a communicator algument and N{PI plocesses

can only communicate if they shale a communicator'. Communicatol is a key concept

used throughout N4PL A commur.ricatol consists of a list of processes. The rank of each

plocess identifies each othel rvithin the communicator. Fol example, the rank can be

used to specify the source or destination of a message. A default comrnunicator in lvlPl

is MPI-CON4NI-WORLD rvhich alloivs all the processes to communicate rvith each other'.

In some cases, a pÌogrâmmer.. can define his orvn communicators for some speciaì purposes.

Hence, a process may belong to several diffelent communicatols.

The NÍPI liblar-y contains over 120 routines, making it the richest message-passing

library. The routines are used to initialize and telrninate the MPI liblary, to get infor'-

mation about the pa,rallel computing envilonment, and to send and receive messages.

À,IPI liblaly has been standardized in 1995 as N4Pl 1.1. Some extensions to IvIPI 1.1

knorvn as N,{PI 2.0 rvele leleased in 1997. In addition, there exists some freely avail-

able, liigh-quality and poltable implementation of \4PI such as LAIvI MPI from Ohio

Supelcomputing Centel and lr4PICH flom Argonne National Labolatory. IvIPI supports

parallel proglamming in C and Foltlan on distlibuted memoly alchitectures and various

platfolms such as Unix, Linux, and Windorvs NT.

2.2.3 Advantages and Disadvantage of MPI and PVM

PVNI and ,IPI ale both message passing libraries that can be used for parallel computing.

À feature-by-feature comparison of these trvo libraries is given by Geist et al. [29], and

the the leasons rvhy solutions from PVN4 alld lvfPl ale different ale stated by Glopp

arrd Lusk [33]. Some relationships betrveen PVN4 and N4PI can be found at [35]. Pvlvf

and MPI are message-passing packages providing, in fact, the assernbler level of parallel

proglamming fol netrvorks of computers [46]. Scientific pÌogramnrers find that it is

tedious and ellor-plone in rvriting leally cornplex and useful palallel applications in

PVN,I/IVIPI [46]. In addition, PV\4 and lvlPI are not designed to suppoÌt development

of adaptable palallel applications, that is applications distlibuting computations and

12
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communications in accordance with the features of undellying hetelogeneous machines.

These observations by scientific progr'âmmers led to the development of mpC.

2.3 mpc

The mpC is a high-level palallel language, rvhich is designed specially to develop poltable

adaptable application for heterogeneous netrvorks of computers. The main idea under'-

lying mpC is that a pl..ogrammer can define an abstlact netrvolk for his/her application

and desci-ibe in details all the computations and communications to be perfolmed on

tliis absh'act netrvork. The mpC programming system uses this infolmation to rnap the

abstlact net¡vork to any leal executing netrvork in such a ivay that ensules efficient run-

ning of the application on this leal netrvork. This mapping is perfolmed in run time and

based on information about perfolmances of processols and links of the leal netrvolk,

dynarnically adapting the proglarn to tlie executing netivolk.

As a nervly invented pa.rallel plograrnming tool, rnpC has many advanced features [45]:

it allorvs proglanrmer to define at luntime the totaÌ number of participating palallel

processes, the total volume of computations to be perfolmed by each of the plocesses, the

total volume of data to be tlansfelled betrveen each pair of the plocesses, and horv exactly

the processes interact during the execution of the algorithrn. mpC ìras the follorving

irnpoltant featules [50]:

o Portability: once developed, an mpC application rvill lun as efficiently as possible

on any hetelogeneous netrvor-k of computels rvithout any changes of its sour-ce code.

o Adaptability: the mpC language allorvs to rvlite applications adapting not only

to nominal pelformances of processols but also to ledistlibute computations and

communications dependent on dynamic changes of rvolkload of sepalate computers

of the executing netrvolk.

¡ Advancement: mpC is the unique tool having no resealch or indr.rstrial analogs.
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(Thele ale some tools executing some functions of an distributed operating system

and tlying to take into considelation the heterogeneity of plocessor perfolmances

in commodity netrvolks of computers rvhen scheduling tasks in older to maximize

throughput of the colresponding netrvork. Unlike such tools, mpC is aimed at min-

imization of the lunning tirne of an application on the executir.rg netrvolk. The

featule is the most impoltant fol end-usels, rvhile the netrvolk thloughplrt is im-

portant fol netrvolk administrators. )

o Applicability: It is a standard, highly poltable and fi eely available soft¡vale.

The fir'st version of ihe mpC proglamming system for netrvorks of rvolkstations and

PCs becarne available early in 1997. The latest version 2.2.0 rvas released in November

2001. The cuuent rnpC plogramming envilonment contains a compiler', lun-time support

system (RTSS), Iiblaries and a command-line user intelface. Fol detailed infolmation

about mpC language, programming environment and samples, please lefel to [4, a5, a6]

or online rvebsite available at http://ilrvrv.ispras.ru/-mp¡/.
The follorving is an mpC programming example:

finclude <mpc. h>

finclude <stdlib.h>
#define N 3

int [* ] main 0 {
Ììe I SirnpletNet (N) mynet,;

char x lnynet ] host-narne ;

Imynet ] ìrost -n a rne:N'I P C -G et-processor -larne ( ) ;

Imynet ] r\f P C -Plintf ( ' 'Hello , rvorld ! Host pÌocess ru¡1s on %s . \ n" , host-name ) ;

return0;

Ì

The mpC loutines ale stoÌed in the library mpc.h, and this file must be included in all

mpC proglams. The numbel of palticipating processes, N : 3, is defined by the proglam-

mel and does not depend on the total numbel of processes of the palallel program. The

14
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[x] construct beforc mai,n means the main function rvill be executed by all plocesses of the

parallel proglarn. An abstract netrvolk "mynet" is defined rvhich consists of N numbel of

abstlact processors. The palallel cornputations are then desclibed on this netivolk. The

execution of this ploglan.r consists of palallel call to function ivlPC-Get-processor-nâme

and IvIPC-Plintf by the 1{ plocesses of the plogram to rvhich abstl'act processors of

netrvork '!nynet" has been mapped. This mapping is pelformed at Ìuntime.

2.4 Methodology for Creating Parallel Programs

Foster [25] suggests that tlie methodology of parallel implementations should follorv a

foul step method:

1. Partitioning.

2. Communication

3. Agglomelation.

4. lvlapping.

Partitioning can refêr to the decomposition of tasks ol the data rvith rvhich computations

are to be pelformed. The bleakdown of the computation into disjoint tasks is telrned

functional decomposàtion; the partitioning of data amongst the nodes of pa,rallel compu-

tation is termed d,omain decornposit'ion. The paltitioning stage of a design is intended to

expose opportunities for palallel execution.

Communication pattelns as noted by Foster' [25] ale categorized as: local/global,

stluctuled/unstructuled, static/dynamic, and synch'-onous/asynchlonous. In local corn-

munication a node communicates within asmall set of nodes, rvhile global communication

lequiles that each node have the ability to communicate rvith all available nodes. Struc-

tuled communications ale built in a regular pattern such as a tree ol a glid and do not

change over time, rvhile unstructured communications can be an a:r'bitlary âùângement.

15
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Static communication ale alranged at initialization, rvhile dynarnic communication ale

arranged at luntime. In synchronous communication, both producels and consumels

are a\r'are rvhen communication opelations are lequiled, and ploducels explicitly send

data to consumers. In asyncluonous situations, nodes need not be synchlonized fol data

transfer'.

Agglorneration is the process of combining into coalser-grained tasks, if necessar¡,,

to reduce communication lecluilements ol othel costs to implove performance. This

combining of tasks is also knorvn as incleasing the glanularity of program structuÌe.

Paltitioning, communicatiou ar.rd agglomelation lead to the mapping of the palallel

ploglam onto a palticular a:rchitecture. The goal is to maximize Iocal computations rvhile

rninirnizing communications to cut dorvn on total execution time. Foster [25] proposed

trvo conflict strategies to reacÌr this goal: (1) Place tasks that can execute concurrently on

diffelent processols, and (2) Place tasks that communicate flequently on sâme pÌocessol.

In genelal, finding optirnal solution to this tladeofi is NP-cornplete, so heuristics are used

to find reasonable compromise.

16



Chapter 3

Monte Carlo and Quasi-Monte Carlo

Methods

In the field of computational finance, many problems require numerical evaluation of

an integlal. Horvevel rvhen the dimension of the problem is la.rge, numerical integlation

methods become intractable. In these cases, the iVfonte Callo method is the only plactical

rvay to evaluate integrals of arbitraly functions in six ol rnole dirnensions [55]. N4onte

Cal'lo has been one of the eally apploaches fol option plicing ploblern 110].

3.1 Monte Carlo Method

In general, N,Ionte Car-lo (MC) and quasi-N4onte Callo (QNÍC) methods are applied to

estimate the integral of function /(r) ovel the [0, 1)d unit þpelcube rvhere d is the

dimension of the hypelcube.

I: I r@)dx
J [o,t)¿

(3 1)

In N4C methods, 1 is estimated by evaluating /(ø) at N independent points randomly

chosen f¡om a unifolm ra¡rdorn distribution over' [0, 1)d and then evaluating the average

i: ¡ !rt",)

77

(3.2)
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From the larv of large numbels, 1 --* I as 1ú --+ oo. The standard deviation is

(3.3)

The standard elror can be estimated as the standald deviation divided by ráV. Therefore,

the ellor of N,IC methods is plopoltional to ;þ. In plactical irnplementation, those

points ale usually generated from a detelministic algolithm. It is expected that these

numbels generated in such a detelministic nìanner to irnitate the tlue landomness of

landom nurnbers. These sequences ale called pseud,o-random sequences. Figule 3.i

depicts generation of 500 pails of random numbels.
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Figule 3.1: PIot of 500 Palis of Random Numbels

It is unnecessary to shorv random sequences for other dimensions because they rvill look

similal to Figule 3.1, thanks to randomness.

Several advantages nake NIC method popular among finance and othel pt'actitionet's.

First, À'fC method is culrently the only plactical rvay to deal rvith numerical integlals

!Ërrr,,l-il,
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rvith high dimensionality. N,lost financial models are high dimensional. For example,

plicing a moltgage backed seculity lequir-es a 360 dimensional space. Cullent technol-

ogy only allo¡r's the solution of up to 6 dimensions. Second, the standard elrol of NIC

simulation does not depend on the dimension of the ploblems. This propelty ensules

good pelfolmance on high-dirnensional pr-oblems. Last but not least, MC method is easy

to apply to many problern and is easy to irnplement. On the other hand, N,fonte Carlo

method is not perfect, it has sevei-al deficiencies that may compìicate its usefulness [51].

Limitations include but ale not lestlicted to the folloiving: First, the error of N4C meth-

ods is plopoltional to ;þ. Hence, decreasing the error by 10 or:del of magnitude will

require an inclease in the number of simulation luns 1ú by 100 ordels. Second, the NIC

method is inheler.rtly statistical in natule, the result could be rvlong, and thele ale only

probabilistic elror bounds.

3.2 Quasi-Monte Carlo Method

QNIC rnethods compute the integral (3.1) based on lorv-discrepancy (LD) sequences. The

elements in a LD sequence are "uniformly" chosen fi'orn [0, 1)d rathel than "randomly".

The disclepancy is a measule to evaluate the uniformity of points over [0, 1)d. Let { q"} be

â sequence in [0, 1)d, the discrepancy Dfu of r1" is defined as follorvs, using Niedeneiter''s

notation [51]:

(3 4)

rvhere B is a subcube of [0, i)d containing the oligin, A(S, S") is the number of points

in q,., that fall into -8, and ø¿(B) is the d-dimensional Lebesgue rìeasuÌe lof B. The

elements of q" is said unifolrnly distlibuted if its discrepancy Di - 0 as N --+ co. Flom

the theoly of uniform distribution sequences [aa], the estimate of the integral using a

unifolmly distlibuted sequence iq") i, Î : * Di:, /(ø), as N ---+ oo then i --- 1. The

rIn rnathematics, the Lebesgue ¡neasure is ân extension of the classical notions of lelgth, alea or
volume to subsets of Euclidean space 167].

, A(8, q")onk"): sup l-# - u¿(B)l
aefo,I)d rY
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integration ellol bound is given by the l(oksman-Hlarvka inequality:

(3.5)

thele 7(/) is the valiation of the function in the sense of Haldy and l(rause [44], rvhicli

is assumed to be finite. The inequality suggests a smallel eÌ'Ìol can be obtained by using

sequences rvith smallel disclepancy. The disclepancy of many uniformly distlibuted

sequences satisfies O((logN)d/1ú). 'Ihese sequences are called lorv-discrepancy (LD)

sequences [51]. Inequality (3.5) shorvs that the estimates using a LD sequence satisfy the

detelrninistic elrol bound O((logff)d/N). Niederleiter' 151] ploposed a general principles

of genelating LD sequences. The best knorvn LD sequences are Halton [3a], Sobol [60]

and Faure [23]. T]ris is a glorving research area and new sequences are being proposed.

The follorving is an example (see figule 3.2 belorv) of the first 16 numbels of LD se-

quence2 distributed over the intelval [0, 1): 0.0000, 0.5000(å), 0.75000(r6u), 0.2500(r6a),

0.3750(*),0.8750(1614)' 0.6250(16rs)' 0.1250(16¿)' 0.1875(r6a)' 0.6375(ìå)' 0.9375(16!Þ)' 0,4375(16¿)'

0.3125(å), 0.s125(ìå), 0.5625(å), 0.0625(16!). These values are obtained from the online

20
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Figule 3.2: The first 16 number of sequence distributed over the intelval [0, 1)

GNU Scientific Library that gerìerates LD sequence (http://rvrvrv.gnu.org/softrvare/gsl/).

It can be seen that successive points plogressively fill-in the spaces betrveen plevious

points. Ql\,fC methods can be viewed as deterministic velsion of \,IC methods [51]. The

use of LD sequences improves the pelfolmance of NIC simulations and offels highel ac-

culacy for a similal computational effolt compa,r'ed rvith standald IVIC.

LD sequences have been rvidely used in many disciplines, such as, t'eathel prediction,

growth patteÌn of agliculture. The diffelence betrveen pseudo-r'andom sequence and

2This is a 1-dimensional Sobol sequence. The i¡rtelval cÌosed at 0 because 0 ìs included in the sequence,
but it is open at 1 becawe the sequence ¡rever reach the ¡rurnber 1,
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LD sequences is given by 122]: " Although the oldinary unifolm lanclom numbels and

quasi::andom sequences both produce unifolmly distributed sequences, thele is a big

diffelence betrveen the tivo. A unifolm landom genelator on [0, 1) rvill produce outputs

so that each trial has the same probability of generating a point on equal subintervals, for

example [0, 1/2) and [1/2, 1). Therefore, it is possible for z tlials to coincidentally all lie

in the first half of the interval, rvhile the (z f 1)st point still falls rvithin the other of the

tivo halves il'ith probability 1/2. This is not the case rvith the quasirandom sequences, in

rvhich the outputs ale constlained by a lorv-disclepancy lequir-ement that has a net effect

of points being generated in a highly corlelated manner (i.e., the next point "knorvs"

rvhere the previous points are)."

In finance, several examples 11, 11, 27,53] have sltorvn that the Sobol's sequence is

superior to others especially in high dimension ploblems.
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Figur:e 3.3: Plot of 500 Palis of Sobol LD Numbels

Fol example, Galanti and Jung [27] obselved that "the Sobol sequence outpelfolms the

Faule sequence, and the Faure marginally outperforms the Halton sequence. At 15,000

0.60.{
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simulations, the landom sequence exhibits an error of 0.07%; the Halton and Faure

sequences have ellols of 0.7%; and the Sobol sequence has an ellol of 0.03%. These

ellols declease as the number of simulations incleases". Hence, in this research, rve use

Sobol's LD sequence fol the Qlt4C simulations. Figure 3.3 plots 500 pa::is of Sobol LD

numbers, compare rvith Figure 3.1 a¡rd notice horv the Sobol points ar-e much mole evenly

distlibuted but still appea:: somervhat random.

3.3 Sobol Sequence

Sobol sequence is one of the classical LD-sequences rvliich satisfies srnallel discrepancy

bounds than others. It has celtain advantages ovel othel LD sequences fol the compu-

tation of high dimensional integlals. This leads to efficient algorithms for pricing option

and complex delivative seculities.

The Sobol sequences can be vierved as an extension from one-dimensional van der

Colput sequence to multi-dimension sequences. The van der Corput sequence is the

simplest one-dirnensional LD sequence. Let p be any prime number'; to obtain the n-th

point ø,. of the van der Corput sequence, filst expand the integel z in telms of p:

n:\ a,(n) x p;;

then reflect the expansion in base p about the "decimal point" to get the collesponding

quasi-r'andom number':

(3 6)

(3.7)

Only a finite number of these a;(n) rvill be zero. Fol example, Iet p : $ and z : 11. \Ã¡e

can rvrite 11 in base 3 as:

11 : 1 x 32 + 0 x 3t +2 x 30 + 102

When reflecting 102 (in base 3) about the "decimal point", rve obtain:

20119
l,1t:ò¡l11\:-+-+-:-392727

(3 8)

(3.e)
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This is clearly a number in [0, 1). The next number in the sequence is /3(12) : ,r!- and

the fir'st 12 numbel in tlìis sequence, excluding zero, are

f9 18 3 1221 6 1524 r 10 19 4ì
\ zz' n' n' 2T' n' n' n' 27' n' n' n' nJ (3.10)

Notice that the nes' points added tend to fill in the gaps in the existing sequence.

The Sobol sequence use the least prime number' 2 as the base. The fir'st dimension

of Sobol sequence is a van der Cor-pt sequence in the base 2 and highel dimensions ale

permutations of tlie first dimension follorving the same plocedure. Permutations depend

on â set of "direction numbels" u¿ rvhich satisfy u¿ : ff rvhele the m¡ are odd positive

integei-s less than 2t. In ordel to generate direction numbers, a plimitive (in'educible)

polynornial over binaly arithmetic is selected. This is a polynomial:

p(x)--xn Iclrq |* *co-ßII, (3.11)

rvith coefficients c; in {0, 1}. For dimension j, the utu a:nd m!, are generated using the

follorving Ìecurlence folmula:

mi:2qmi tØ2'czmi ro + . . . + 2q-l crami_r¡.@ 2q mi_q, i > d, (3.12)

and

al :2ctui-tØ c2u!-ro +...+ co-tui-n¡1@ a!-q@ [1)it-dl2d], i > d, (3.13)

rvhereOdenotesthebit-by-bitexclusive-oloperationsuchthatlO0:0@1:1and

1O1 :0@0:0. The initial valueml,dr,'..,mrncan be chosen fi'eely provided that each

rnf is odd and less than 2i (more details see [3t]). The Sobol sequence z{ in cìimension

j is genelated by:

rl:btul@b2ulØ."@b,al (3.14)

rvhere i.-r is number of bits u'ith binary flactions of n. Note that for generating each

dimension of Sobol sequence, a difielent primitive polynomial is needed. This is Sobol's

oliginal method. Antonov and Saleev [3] provided a fastel method using explession:

Ín: gtut@bzW@ 9¡rå O... (3.15)
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rvhere . . . gsgzgt is the binary leplesentation of the Gray code, i. e.,

:Xn+l :IñØUa

(3.16)

(3.17)

rvhele c is the position of the least significant zelo bit in the binaly leplesentation of

n, i.e., b. is the least significant zelo bit in .. fub2\. Bratley a.nd Fox [13] gave an

implementation of this method.

3.4 Generating Sobol's LD Sequence

Sobol sequence is one of the classical LD-sequences rvhich satisfies srnallel discr:epancy

bounds tlian others. Sobol [60] has proposed an algorithm for generating quasi-r'andon

sequences. Some discussions about irnplementing Sobol's algolithm can be found in 113,

40]. Blatley and Fox [13] implemented Sobol's a]gorithm in Fortlan 77. The popular

Numelical Recipes (see for example [5a] ) gives routines implemented in C, Foltran

77, ol Foltlan 90, but the loutines allorv the generation of Sobol's sequences in up to

six dimensions only. Paskov and Traub [53] from Columbia University implemented a

softrvare named FinDel rvhich can genelate Sobol sequence up to 370 dirnensions, but it

is a licensed softrvale.

In this resealch, rve ale going to use 10 dimensional (number of time steps, hele)

Sobol sequence, though rve do not have any restriction or lirnitation in the use of higher

dimensions in oul algolithm. The rvhole ploject rvill be irnplemented using mpC rvhich

is an extension of ANSI C and the simulations rvill be pelfoln.red on urachines running

Unix/Linux. It ivill be good for us using C routines rvhich can geneÌâte high dimension

Sobol sequence. The GNU Scientific Liblary (http://rvrvrv.gnu.org/sofhvare/gsl/) oflers

such fiee loutines for genelating arbitlaly dimensions Sobol sequence. GNU Scientific

Liblary is a collection of numelical r-outines fol scientific computing. The main loutines
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Folmula 3.15 can then be tlansfolmed as
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for genelating Sobol sequence ate gsl-qtng-aLloc rvhich letur:ns a pointel to a nervly-

created instance of Sobol sequence generator and dimension, gsl-qmg-get rvhich returns

the next point fi'om the sequence genelator, and gsl-qrng-free rvhich flees all the memory

associated w,ith the generator. Using these loutines, the LD sequences cal be genelated

in albitlary dimensiolis.



Chapter 4

Option pricing and related work

Options on stocks rvele fir'st tladed on Chicago Board of Options Exchar.rge in 1973.

Since then, huge volume of options have been rvidely tladed throughout the rvorld. The

underlying assets of an option could include stocks, stock indices, foleign curr-encies, debt

instruments and commodities [39]. We introduce in this chaptel some basic definitions on

option pricing fir'st follorved by discussion on some numelical techniques generally used

in the literatule.

4.L Definitions

An option is an agleement betrveen tl'o pat'ties to buy ol sell an asset at a celtain time

in the futule fol a celtain price. There âÌe two conmonly tladed options:

o Call Opti,on: A call option [39] is a contlact that gives its holder' (i.e. buyer') the

t'ight to buy a pi-especified underlying âsset at ceÌtain date fol a predetelmined

plice rvithout creating an obligation. If the option can be exelcised only at its

expiration (i.e. the undellying asset can be purchased only at the end of the life of

the option) the option is lefeued to as an European style Call Option (ol Eulopean

Call). If it can be exercised at any date before its maturity, the option is refelred

to as an Arnelican style Call Option (ol Arnelican Call).
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Put Option: A put option [39] is a contlact that gives ihe right to its liolder rvithout

cleating the obligation, to sell a prespecified underlying âsset ât celtâin date fol a

predetermined price. If the option can be exei-cised only at its expilation (i.e. the

underlying asset can be sold only at the end of the life of the option) the option

is referred to as an European style Put Option (or Eulopean Put). If it can be

exercised any date befole its matulity, the the option is referred to as an American

style Put option (ol American Put).

The price in the contlact is knotvn as erercise price ot strike price; the date in the

contract is knorvn as the expiration d,ate or natur'tty date.

4.2 Option Pricing

ln computational finance, some of the parameters lequiled to price options a.re: K the

strike price; 7 the life time (expilation date) of the option; ,9¿ the stock price at time ú;

r the intelest r:ate, p the dlift late of the stock (a measule of the average late of glorvth

of the asset price); o tlie volatility of the stock; and C the option value.

Hete is an example to illustrate the option pricing problem. Suppose an investor'

enters into a call option contract to buy a stock at plice 1l after six months. Aftel six

months, the stock plice is ,5r. If ,92 > K then he can exercise his option by buying the

stock at plice 11, and by imrnediately selling it in the malket he can make a plofit of

Sr - I{. On the other hand, if ,5r ( 1l he is not obligated to exercises the option (that

is, buy the stock).

Flom the above example, an option to buy an under-lying asset at tine 7 at plice 1(

rvill get payoff (5, - K)* , rvhere (^97' - K)+ : max(O, Sr - I{). Figure 4.1 illustlates the

payoff graphically. Similarl¡ a put option rvill get payoff (I{ - Sr)+ Norv, the plicing

ploblem is: given the culrent stock plice ,9, the strike plice 1(, the time to expiry 7,

risk-fi'ee interest rate r, how can one find the plesent value of the option?
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Figure 4.1: Payoff function of the call option

4.3 Related Work

Innovative financial instlunìents are constantly created in financial markets. Financial

rnodels developed to study theses instluments are getting mole complex. Horvever, little

attention has been paid in the published litelature to numerically solve these models to

ensure the tractability of these models fol va.rious malket conditions. N,Iost option plicing

rnodels can not be solved to plovide exact solution in closed folm. Hence, numerical

methods have come to play an impoltant role in computational finance. Binomial tlees,

Finite difielence and \4onte Car-lo simulations are three populal numelical methods that

ale used to value options.

4.3.t Binomial Tlees

Binomial method is pelhaps the simplest and the most intuitive numerical method. It

was first proposed by Cox, Ross, and Rubinstein in i979 [21]. The binornial model for

option plicing is based upon a special case in n'hich the plice of a stock over some peliod

is assumed to eithel go up ol' dolvn by a given propoltionate value. When the lattice

is built to covel the price movement ovel the life of the option, it looks like a tree rvith
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root node leplesenting the current date and the leaf nodes replesenting the possible asset

(stock) prices on the matulity date (see Figule 4.2). Each node in the lattice Ìepreselìts

a possible price of the underlying asset at a pat ticular point in time.

Figule 4.2: A four'-step Binomial tlee for- an asset

Consider a call option on a stock tvith a current plice of ,9¡ rvhich follorvs a binornial

plocess. Suppose ? is dividecl into z equal intervals of length Lt -- l. At the first

time peliod Àf the asset plice can go up to ,90p rvith plobability p ol dorvn to,9¡d

rvith probability (1 - p). The paÌameter ¡r and d determine the avelage behavior and

the volatility of the asset, (p > l; d < 1). Cox, Ross, and Rubinstein [21] impose the

condition d -- ! to folce the trees to t'ecombine. Hence, at time 2Af fol the recombingp

tlees, the possible asset plices are ,9¡ ¿r.2, .96 ¡r d, and ,9sd2. The price ,96 ¡-i, d may come ft'om

an uprvard movement follorved by a dorvnrvat'd movernent or fi'om a dorvnl'ald movement

follorved by an uplr'ard movement. Hence, at the i-th (0 < i < n) tirne peliod riAú, there
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rvill be i + 1 possible prices, rvhich rve label

Sl : So ttj di-i; i :0,1, (4 1)

Hence, at the expile time 7, ther-e l'ill be z * I possible stock plices. Let Cj denote

the option value at ? correspottding to the rzl 1 stock pi-ice, bhen rve have C,l :

ma-x{56 pi dí-i - K,0}. Options ale evaluated by starting at time ? of the tree and

rvorking backrvalcl to time zero. Uttdel the risk-neutlal measurel , the value of the j-th

node at time iAf befole expily is i39]:

C! : e-'^Llec!ll + (1- p)C!*,1. (42)

Usirig equation 4.1 and 4.2 we can compute the value of the option at every node at time

step ?¿ - 1. We can then leapply equation 4 2 at every node at every titne step, rvolking

backivar.ds thr.ough the tree to compute the value of the option at every node in the tlee.

This plocedule computes the value of the European option at evely node in the tree.

The parametet' p,,d and p are computed using the folmula belorv [39]:

Lr: e"JÑ,d: e "Æ,p:"'o'-.d
¡L'-d

(4 3)

Binomial model blings useful intuition about complicated ploblem despite its limita-

tiors in teÌms of acculacy. Various implementations of Binomial method can be found

in the literatule. For exa.mple, Higliam [36] summalized nine rvays of implementing

the binornial method for option vaìuation in IvIATLAB. Gerbessiotics [30] intloduced

an a¡chitecture independent par.aìlel binorrial tree appÌoach fol option price valuations.

This algorithrn achieves optirna.l theoretical speedup but it doesn't handle options ivith

multi-assets2. Thulasilarn and Bondaleuko 163] developed and implemented palallel al-

golithms for plicing options rvith both single and multiassets employing binomial Iattice

apploach. Although binomial lattice method is very populal, it has been demonstrated

rRisk-neutÌality means that tlìe investment on options is assumed to yield at Ieast equivalelt to the

retuL¡¡s frorn a ba¡rk investment at a fixecl interest rate [39].
2Nlulti-assets means an oÞtion rvith several underlying assets
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that thele are difficulties rvhen this approach is applied directly to many complex op-

bion plicing problems (see, for example [12, 37, 64]). In addition, rvith the inclease iu

the numbet of state var.iables, the cornputational cost of binomial rnodel glows exponen-

tially. The par.allel implernentation becomes challenging for complex options as explained

in [37,63,6a].

4.3.2 Finite Difference

Finite differ.ence methods âle moÌe general than lattice rnethods and can be applied to

price a rvide valiety of exotic options (see, fol example [2, 18, 68, 69]). Finite difiet'ence

methods value options by solving the difieÌential equations that the options satisfles. The

idea is to discr.etize the differential equation into a set of diffelence equations and solve

the difference equations iteratively {39].

Consicler the Black-Scholes paltial difierential equation fol option evaluation [9]:

ac -ac 7 "a2cat+rtìas+,o-*:rr- (4.4)

To solve this equation, suppose the time ? is divided into n equal intervals of length

Lt: +.And ihe stock plice ,9 has r¡¿ steps to reach a maximum value S-o" rvhich is

sufficiently lat'ge, then these points define a glid as shorvn in Figure 4 3. The (z,j) point

on the glid is the point that corlesponds to time iAú and the stock price jA,9 We use

C/ to denote the value of the option at the (z'j) point. In the follorving, rl'e illustrate an

irnplicit finite difference approach to compute each item of equation 4.4. Fol an intelior'

point (z,j) on the glid, ffi can be apptoximated (folrva'-d diffelence) as

ôc _cl+t-c:ôs 
^s

ac _c!-c:-'as 
^,9

ol backivald diffelence as

(4.5)

(4 6)

A more symmetlical appr:oximation is to average equation 4.5 and equatiou 4.6 rvhiclt

gives (central difielence):

*:t!-'=:91 ' Ø.7)AS 2AS
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Figule 4.3: Grid for finite difference appÌoach

ffi can be approximated as

ac:crri-c1r (4.8)
AT A¿

Sirnilally, S9 at node (2,j) can be approximated as:

A2.1 c!+t-cl _ c!-c!-tuv As 
^sas2 

^S

ôzC Ctu+, + Cl- _ZC1

asr:- LS' -
Substituting equations (4.7), (4.8), and (4.10) into the differ-ential equation ( 4 4) gives:

c!*r - c! --^.c/*t- cl-' , 1 ,,, n nrc!*l + c'-t ^ 
/''r

^¿ 
2A+, * loz¡z6szyl __fir_!!L : rCl (4.11)

Hence, fol .i :1,2,"'tm - 1 a'nd i : 0, 1, ,2 - 1, the value at each node of the glid

can be computed. option value can then be obtained by rvorking back fi'om the end of

the life of the option to the beginning just like the tree approach

2¡S

¡S

0

(4 e)

(4.10)
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Finite cìiffer.ence appr.oach rvas flrst applied for valuing options in [15, 58]. NloÌe te-

cent examples can be found in [18, 19, 65]. There are seveÌal finite difieÌencing schemes

available in the liter.ature, such as, forrvard-diffelencing, backwaÌd-difierencing, central-

differencing, I\4cCormack scheme etc [39]. Horvever', both finite diffelence methods and

binornial lattice rnethocls are computationally intensive and sometimes pÌactically infea-

sible.

4.3.3 Monte Carlo Simulation

The NIC simulation as a numer.ical method in pricing options rvas fir'st introduced by

Boyle [t0] in 1977. Since then, lvIC simulation has become a populat rnethod for estimat-

ing the value of financial options and other derivative securities. Thele is a vast literatut'e

about lr4c simulation in computational finance. For example, Hull and white [38] em-

ployed IvIC method in stochastic volatility application and obtained moÌe accurate result

than using Black-scholes model [9]; the latteÌ often ovelpÌices options about ten per-

cent and the er.r.or.rvill be exaggerated as the time to maturity incÌease. Schrva.r tz alld

Torous [59] use N,IC method to simulate the stochastic pÌocess of prepayment behavior

of mortgage holder.s ancl the lesults rnatched closely to that actually obselved. Fu [26]

gives intr.oductoly details conceÌning the use of lVfonte CaÌlo simulation techniques fol

options pr.icing. Even though the prevailing belief that AmeÌican-style options cannot be

valued efficiently in a simulation model, Tille¡' [66], Glant et al. [32], as rvell as Bt'oadie

and Gìasselman [16] and some others, have proposed NIC methods for American-style

options and obtained good results. Examples about valuing exotic options ca.u be found

in [43]. The literature on \4C methods in valuing options keeps glorving. N,Iore examples

can be found in [11, 3i, 56]. The tladitional \4C methods have been slÌown to be a

porverful and flexible tool in computational finance.
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4.3.4 Quasi MC Simulation

Wìrile the ordinary NIC methods ale rvidely applied in option pricing, horvever, their

disadvantages ale rvell-knorvn. In particulal, fol so¡ne complex problems rvhich lequile

a lalge numbel of leplications to obtain precise lesults, a traditional N4C method using

pseudo-random numbers can be quite slorv because its conveÌgence late is only O(W-rtz\

¡vhere N is the number of sarnples. Diffelent variance reduction techniques have been

developed fol increasing the efficiency of the traditional lvIC simulation; such as con-

trol valiates, antithetic va.riates, stratified sampling, Latin hypelcube sarnpling, moment

matching methods, and importance sampling. Fol detail about these techniques, please

refel to i31]. Anothe¡ technique for speeding up the lvfC methods and obtaining mole

âccurate result is to use LD sequences instead of landom sequences.

BiLge [8] presented horv quasi-Monte Carlo sequences can be used in option plicing

in 1994 and demonstrated improved estimates thlough both analytical and empilicaì

evidence. hi 1995, Paskov and Ttaub [53] pelforrned tests about two lorv-disclepancy

algorithms (Sobol and Halton) and tivo tandomized algorithms (classical lvlonte Carlo and

lVlonte Carlo combined rvith antithetic valiables) on Collatelalized N{oltgage Obligation

(CMO). They obtained more acculate approximations with QN{C methods than with

traditional IVIC rnethods and concluded that for CIVIO the Sobol sequence is superior'

to the othel algorithms. Acrvorth et al. [1] compaled some traditional MC methods

and QN4C sequences in option plicing and drerv similar conclusion. Boyle et al. [11]

also found that QX4C outpelforms traditional MC and Sobol sequence outpelfolms othel

sequences. Galanti and Jung [27] used both pseudo-randorn sequences and LD sequences

(Sobol, Halton and Faule) rvith N4C simulations to value some complex options and

demonstlated that LD sequences are a viable alternative to random sequences and the

Sobol sequence exhibits bettel convergence pÌopelties than others. Today, QI\,IC methods

are successfully used in computational finance as an altelnative to lvIC method. In next

chapter, rve present details of NIC and QMC rnethods fol option plicing folloived by

parallelization of QIVÍC for option plicing in chapter' 6.
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Chapter 5

Quasi-Monte Carlo Method for

Option Pricing

5.1 Monte Carlo Method

According to Boyle et al. [11], the N4onte Car.lo methods foÌ option pt'icing can be divided

into thr.ee basic steps: (1) Simulate sample paths of the underlying state vaÌiables (e.g.,

under.lying asset prices and intetest Ìates) oveÌ the relevant time horizon. Simulate

these according to the lisk-neutr-al1 measure; (2) Evatuate the discounted cash flolvs of a

seculity on each sample path, as deteÌmined by the stlucture of the secuÌity in question;

(3) Average the discounted cash florvs oveÌ the sample paths.

The follorving is a European call option [39] to be evaluated in this research. This

option gives its holdel a payofi defined by:

max(0, ,97 - 1l) (5.1)

In order. to deter.mine the pr.ice of the option, a Black-scholes [9] option pricing model

lRisk-neutrality means that the investneÌìt on options is assumed to yield at least equivalent to the

retu¡ns from a bank investment at a 6xed interest rate [39].
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gives the follorving stochastic difierential equation:

rl,S¿: ¡t Sftt * oStdWt, (5 2)

where tr4l is a standald Wiener process (also called Blorvnian motion). Undel the lisk-

neutlal measule, ¡-l is set to ¡t:7. Equation (5.2) can be rervrite as:

óo

This equation may be intelpreted as modelling the pelcentage changes f; in the stock

plice as the increments of a Brorvnian rnotion [31]. The landom variable I7¿ is normally

distlibuted rvith mean 0 and variance f, it can be simulated by landom samples of rÆZ

whe,-e Z is a standard random valiable , i.e., Z - (0, 1). Knorving the initial value 56 of

the underlying asset, the MC simulation can estimate the value of S¿, and subsequently

gives estimation of the payofi from that price.

To simulate the path follorved by ,9, suppose the life of the option has been divided

inton short intervals of length A, (^, : Tln),fhe updating of the stock price att*L,t
from ú is [39]:

Sr*¡, - S, : rst\t + oS¿Z t/Ñ, (5.4)

This enables the value of ,96¿ can be calculated from initial value ,9e at time Aú, the value

at time 2Af to be calculated from ,9¡¿, and so on. Hence, a completed path for ,9 has

been constructed.

In practice, in order to avoid discretization ellors, it is usually to simulate (ln 5)

rather thari ^9. Flom ltô's lemma, the process follorved by In 
^9 

of (5.a) is [39]:

#: *r-tod,w¿,

_2

dln^9: (r -" \dt + od"' 2'

In S,*¿, - ln.9¡ : (r - "^ )dt + oZ t/Ñ''z

,S,+¡, : S, exp[( r - "2 ¡z¡Lt + o\/ÑZ)

(5.3)

(5 5)

(5 6)

(5 7)

so thât

ol equivalently:
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Substituting independent samples 21, ...,2y fron the nolmal distribution into (5.7)

yielrìs independent sarnples S8), ¿ : 1,...,1{, of the stock plice at expily time ?.

Hence, the option value is given by

3t

1Nc:-fn-v-ñ/..Jwt-
t=1

The Standald deviation of C is

1\- 
"
-'" maxlfifi) - K,0.0] (5 8)

(5.e)

Please note that the several mathematical descriptionis of IVIC method presented in Sec-

tion 3.1 is discletely related to this formula. Fol example, 1 in equation (3.1) corresponds

to C and /(ø) in equation (3.1) colresponds to the light hand side of equation (5.8).

The follorving algorithm illustlates the steps in simulating M paths of z timesteps

each.

Algorithm 1 lVlonte Ca.r'lo Algorithm
1. Initialize the pa.rameters such as ,S, r, /f , ?, a,

2. fot i :1 to M do /xM : numbeÌ of simulations. i.e., fol each simulationx/

3. for j :1to n

4. generate standa:rd normal sample

5. sirnulate sample paths of the stock prices.

6. next j

7. lot each simulated path, compute the pay-off of the option.

8. next i

9. Cornpute the discounted avelage of above sirnulated pay-offs.

Table 5.1gives a schematic illustration of a spleadsheet implementation ofthis method

The ,9¿¡ in the spleadsheet denotes the underlying asset price at the j-th timestep along

the i-th path. The spreadsheet has M lorvs rvhele each rorv is a path of the underlying

asset and each path consists ¿ steps. From each path, the spreadsheet computes a value

6i¡Itø * 
"¡'
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Path \ Step 2 3 n

1 Srt 5,, Srt S," Cr : exp(-r?) x max(O,,91" - 1l)

2 Szt Szz Szs Ðzn Cz : exp(-rT) x max(0, ,5r" - 1f )

N4 Sut Suz S¡rs Su" Cu : exp(-rT) * max(O, Su" - K)

C :Average(G, Cz, "', Cv)

Table 5.1: A spleadsheet fol estirnating the expected plesent value of the payoff of a

European call option

of 5;" and a value of discounted payofi C¡. The C¿ ale avelaged to ploduce the final lesult

C. In plactical implementation, we can vierv exp(-r?) âs â constant. So in each path,

lve compute the pay-of of the call option max(O,,9¿" - K); and finally rve compute the

discounted avelage of these simulated pay-offs: C : exp(-rT)Average( C1, C",. , Cu).

6.2 A Numerical Example

Suppose thele is a one-yeal matulity European call option rvith the cuÌrent âsset pÌice

at $20.00 and volatility of 20%. The continuously compounded intelest late is assumed

to be 6% per annum, this option pays no dividend. The simulation has 10 tirnesteps and

100 simulations; K:20.00, T:7, So:20.00, o:0.2, n:10, M:100.
Filstly, the pârâmeteÌs; Lt,ot/Ñ and ln ,96 ale pre-computed:

A+-!-!-rìrì1 .

10-wvr'

o\/ñ : 0.2 x t/oJ: 0.0632;

ln,S¡ :2.9957'

(r - lo2)Lt: 0.004.

For each simulation j : 1 to M, rvhele M : 100, ln 
^9¿ 

is initialized to ln ,9¡ :2.9957.

Then fol each timestep i : 1 to 10, ln,5¿ is simulated. For example, Iet e denote standard
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nolmal sample, for j:1and i:1:
In Srt

: ln,9o* (r - |o')Lt + o',61 x e:2.9957 + 0.004 + 0.0632 x 0.1635 : 3.0101.

and for i:2
ln,9tz

: ln^9rr * (r - lo2)Lt + o{Ñx e:3.0101 + 0.004 + 0.0632 x 0.0184 : 3.0152.

And so on.

At i : 10, In ^91" 
: 3.0338, ,S" : exp(ln,S1") :20.78, Cr : max(0,,9r - I{) :

max(O,20.78-20) :673
The sum of the values of C7 and the squales of the values of C7 are accumulated:

E!4:1Cr : 252.59 and EY.CI : 14361.67. The estimate of the option value is then

given by C : 252.551100 x exp(-0.06 * 1) : 2.3788. The stardard deviation (SD) is:

^lù'lj;fc, 
- CY: 11.08816 and so the standard erÌor is ffi : 11.08816/10 :

1.108816. Figure 5.1 illustlated a set of M : 100 simulated paths:
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Figule 5.1: Simulated asset price
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Table 5.2 illustlates the numerical results of In.9¿ and value of .9¿. In the table,

SUMCT denotes the sum of the value of the Call option given by each path; SUN,ÍCT2

denotes the sum of the squales of the values of the call option given by each path; SD

denotes the standald deviation: SE denotes standa.r'd error'.

In ordel to get an acceptably accurate estimate of the option price, a ver.y large

number of simulations has to be perfolmed, typically in the o¡del of millions [20]. To

reduce the computationaì burden and implove the efficiency of NfC simulation, quasi-

landom numbels ale suggested instead of pseudo-r'andom numbels in IVIC simulation.

5.3 Quasi-Monte Carlo Method

The slorv convergence :rcte, O(N-1/2) fol 1{ number. of samples of the IVIC method has

motivated lesearch in QMC techniques. Q\4C simulation is the traditional lVlonte Carlo

simulation but using LD sequences. The use of LD sequences in lr,IC simulation improves

the perforrnance of MC simulations ofieling less computational efort or higher accuracy.

Considel genelating the LD sequences for the MC simulation of the path of an asset

plice ivith n steps as usual. With one sout'ce of uncertainty, rve can think the number.

of dimension as the numbel of disclete time intervals of one sample path. The number

of itelations M is the number of sample paths and hence the number. of LD points. The

pseudo-code is illustlated in Algolithm 2.

Figure 5.2 illustrates the plices obtained fi'om pricing a Eur.opean call option using

pseudo-r'andom numbers and Sobol sequence. It is clear that the pr.ices using the Sobol

LD sequences converge much fastel as a function of the number of simulations than the

prices using pseudo-ra.ndorn numbers.
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2. genelate z dimensional Sobol sequence

3. fol z : 1 to M do /xM : number.of simulations. i.e., for.each simulation*/

4. fol j:7ton
5. simulate sample paths of the stock prices using Sobol sequence.

6. next j

7. fot each simulated path, compute the pay-of of the option.

8. next i

9.loorputu the discounted average of above simulated pay-ofs.

Figure 5.2: Relative plicing error for a Eulopean Call option usitig pseudo-random num

bers and Sobol LD numbers



Chapter 6

Parallel Quasi-Monte Carlo Method

for Option Pricing

N'Ionte carlo techniques lend itself easily to palallelization since each simulation can be

implernented independent of each other. lvlost se.ial NIC codes are readily adaptable

to a palallel environment as explored in one of the application of lvlC [56]. One ap_

pÌoach is to have each plocessor execute the sequential algorithm ivith difierent pseudo

random numbe. sequences and combine the final results from alì the processors at the

end of the execution. othe. techniques involve parallelizing the pseudo random number

generators [55,61].

QMC technique converges faster than lvfC method and has proven to be advantageous

in a number of fi.ancial applications (see for example [1, S, 11, 27,49,58]). Horvever., the

issues of palallelizing QNfc ale different from lvIC par.allelization due to the deterministic

natu.e of LD sequences. The.e has been some .ecent inte.ests in parallelizing eÀ,lc [17,

48,52,571. Given P plocessors, if rve select /ú¿ points on pr..ocessor. fl (0 < i < p-1), then

the disclepancy of these points must be similar.to the discrepancy of Dl;li4 points [61].

we need to have the lesults of palallel computation same as the r.esults of the sequential

computations. There a.e three popular- techniques fol par.allelizing LD sequences [61]:

Leapfrog, BLoching, and Parameterizat'ion.
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LeapJrog is a method to assign N elements of the sequence to P processor.s in the

same way as a deck of calds is dealt in turn to playels in a car.d game. Let ro,q,. . . ,rN
be the elements of tlte sequence. Using this method, the plocessor. i rvill have elements

ri,ri+p,ri+2p,. rvhere 0<i< P - L The disadvantage ofthis rnethod is that even if
the elements of the original sequence have lorv correlation, the eler¡ents of the leapfrog

subsequence may be collelated. Also, it has been noted [61] that in the Leapfrog method,

the processo.s have to be syncluonized aftel a ferv ite.ations to get accul'ate .esults. This

adds to the computational cost.

Blocking is a scheme rvith rvhich the elements of a sequence ar.e divided into equal-

sized blocks [61]. Suppose there ar.e P pr.ocessors and ø1,...,2¡ be an m-dirnensional

landom sequence (each element ø¡ is rz-dimensional vector.). With ôlocfting scheme,

each processol wilÌ be assigned N/P elements. The elements in each block are contigu-

ous, each block has size B : jV/P. Therefore, the processor i rvill h¿ve the elements

riB, xtiB+l, riB+2, " rvhele0<i< P -1. This scheme also suffels from the drarvback of

required synchronization [61].

Parameterization of LD sequence is in some sense similar.to that of palameterization

in parallelizing random numbel sequence, rvhere independent sequences ar.e used on each

processor. in general, it is difficult to avoid inter.-processor. cor.relations l5].

All above strategies try to obtain maximum speedup by evenly distr.ibuting compu-

tations over available processors. On a homogeneous netrvork, rvhere all machines have

tlre same plocessing speed, distributing N lP points is leasonable. Horvever., in pr.actice,

the above stlategies rvill lesult in poor performance even among homogeneous netç,or.ks.

This is because, plocessots might run at difierent speeds; some may also be used fol

othel computations and may be involved in other. communications. Hence, those faster

processors ol lightload processors will finish their computation tasks quickly and rvait

for slorvel ones at points of synchronization; the ovelall computation time ivill be de-

telmined by the time elapsed on the slot'est processor. Because of synchronization of

plocessols, the most porverful pÌocessors rvill r.un at the speed of the slorvest processot.
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It is not a desi.able scena.io since the palallel computing does not take full advantage of

the potential computing porver.

srinivasan [61] compales the effectiveness of these th.ee strategies in pricing financial

derivatives and concluded thal blocking is the most p.omising method if there a,..e a large

numbel of p.ocessols running at unequal speeds. Hoç'ever., the disadvanta ges or btockzng

scheme ale rvell plonounced. First, if a pÌocessol consurnes more LD elements than it
rvas assigned, then the subsequences could overlap. Second, if a processor consumes

less LD elements than it rvas assigned, then some elements rvill be rvastecl. The final

Ìesult rvill be the same as the sequential computation that use the same LD sequence

rvith some "gaps". Hence, a good parallel N,IC algorithm should distribute computations

based on the actual perforurance of plocessols at the moment of the execution of the

program. The mo.e porvelful a pr..ocessol, the mole tasks it .rvill be assigned and rvill be

able to handle. That is, data, computations, and communications should be distr.ibuted

unevenly among pÌocessols to achieve the best execution per.formance. In the follorving

sections, 'we discuss development of such an algorithm.

6.1 Tasks Partition

An ideal pa.aìlel QN,IC algolithm should distlibute computation tasks to processors pro-

poltional to processors' actual computing polvels. other.rvise, the load of processors rvill

be unbalanced, r'esulting in poor. perfolmance.

Having knorvn the porve. of each plocessors, the computation tasks assigned to each

processol can be computed by peÌfoÌrning the follorving paltition algorithm (Algor.ithrn

3). with this paltition algolithm, the QN4c simulations are unevenly distr.ibuted acr.oss

plocessols based on the actual performance of each pr.ocessor'.

Having knorvn the tasks of each processor, we can decide the points ivill be executed

by each processor'. Suppose each simulation consutnes q elements of the given LD se-

quence, and plocessor i has ú; tasks, then the rvhole number of elements rvill be consumed
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Algolithm 3 Par.tition
L. Given N is the total tasks, p is the number of@
porver'. then, the tasks assigned to the z-th pr.ocessor is:

task¡:lN x -yY:r'-l),,:¡ poueri' (6.1)

2. Aftel step1, if thele ale tasks left, then assign them to host processoì..

by processor i is B¿ : ¿r x q. Note that .B¡ is not necessa'ily 1{/p rvhere 1ú is the number.

of points and P is the nurnber of processols. Hence, the LD sequence is par.titioned

into uneven blocks. This pa.tition of LD sequence is somervhat like the general òlocÈ-

ing scheme, but it is superior to general bLockàng scheme, in *hich the LD sequence is

paltitioned into equal size or the bu.den is on the plog.ammer to determine the block

size B. In the literatule, B is usually chosen to be greater tban N fp to avoid overlap-

ping of subsequences. The.efore, thele is a chance that the .esult pr.oduced fi-om the

blocki'ng scheme of QNIC is not the same as that of a sequential computing [61]. using

Algorithm 3, there is no ove.lapping in sub-sequences and that the sequential r.un and

the parallel run results match.

To implement this algorithm, the prograrn must p.ovide information of the entire

computing space and lelative perfolmances of actual pÌocesso.s in the r.un time. cur-
rently, no pa'allel p.ogramming tool can implement such parallel algorithm except mpc.

As a nerv parallel programming tool, rnpc offers a vely conve'ient way to obtain the

statistics information of the computing space and the porver. of each p.ocessor.. By using

mpc, a plogrammel can expìicitly specify the uneven distlibution of computations across

palallel plocessols.

6.2 mpc

The mpc programming tool is specially designed fo. ivriting high pe.formance parallel

computation plogÌams on netrvorks of heterogeneous computers; it is an extension of
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the ANSI c language. In section 2.3 rve int.oduced some featules of mpc. For. detailed

info.rnation about mpO language, progr.amming environment and samples, please r.efel

to [4,45,46] ol online rvebsite available at http://rvrnv.ispras.ru/-mp6/.

The mpC offels mechanisms that other pa.r'allel programming languages do not have,

through rvhich a programme' can describe (dynamically) a viltual netrvork topology for

the application undel study. At run time, the mpC environment I'ill map the vir.tual

netrvolk to leal executing netrvolk based on information about performances of pr.ocessor.s

and links of tlre leal netrvork. This can be done by defining a network object in mpC
program. Ã network object, or simply networÌe is a basic notâtion of mpC language,

rvhich comprises virtual p.ocessors and links. 'lhe netuork in mpc plogr.am is just like a

user'-defined datatype in general plogramming language. Allocating network objects and

discar-ding them is pe.folmed in similal rvay as allocating data objects and discarding

them' In mpc, a processoÌ rvhich creates the network is called a parent of the cr.eated

netrvork. For example, the type declaration

/*line t*l nettype Ring(n) {

/*line2*/ coord 1: lr;

l+Iine 3*/ link {

/+line 4al 1>0: [1] <-' [1 - t];
/atines*/ r::0.[0] .------ [n - 1];

l*I\ne 6*/ h

/+line7 +l pareni [0];

/+Iine9+/ Ì;
intloduces a topology named Àzng that corlesponds to netrvolks consisting of n processor.s

intelconnected rvith undilected links in a ling structule. Note that the real netrvork is

not necessarily connected as a ling. The Ring is the topology of the application under

study. The Line 1 is a header of the netrvork type declaration. It introduces the name

of the netrvo.k type. Line 2 is a coo.dinate declaration, decla.ring the coo.dinate system

to rvhich pÌocessols ale related. It int.oduces the intege. cooldinate variable I ranging

from 0 to z - 1. Litre 3 to line 6 are a link declarafion. They specify links betrveen



Cr¡lpr¡R 6. PARALLEL Qulsr-Morurn CeRr,o Mø'rnoD FoR OprtoN pRrcrNc 4g

processors. Line 4 stands fol the predicate: for all 1 ) 0 there exists unclir-ected links

connecting pÌocessors rvith coordinates [1 - 1] and 11], and line 5 stands for.the predict:

for'1 ::0 thele exists an undirected link connecting processors rvith coordinates [0] ancì

[n - 1]. Line 7 is a par.ent declalation. It specifies that the par.ent has coordinate [0].

with the netivork type decla.ation, one can decla.e a netrvork object identifier of this

type. For example, the decla¡:ation:

net Ring(5) r
int.oduces the identifie. r of the netivork object of the type Ring. once the netrvork is

defined, a plogÌammeÌ can start descÌibing parallel computation on the netrvolk. sec-

tion 6.3 gives detail information on implementing the pa.allel eIVIC algorithm using

mpc.

6.3 Implementation Detail

suppose rve have m pÌocessors doing Q\4c simulations. one processor (host processor.)

distlibutes tasks to the other processols and collects theil lesults. In eNIC simulations,

each simulation is independent, thele is no communications betrveen pr.ocessors except

ivith the host p.ocessor'. Hence, this QNfc simulations has a stør topology .rvhe.e the

host processor is the centlal node and the othel p.ocessors (nodes) connected directly to
the central node. The computing and communication are based on this topology. The
follorving network d.eclaration describes this topology.

/*line I*/ nettype Star(m, p[rn]) {

/*line2*l coordl:r¡¿;

/+line 3+/ node {

f*line 4*l I>0: p[I];

/+line 5 x/ 't.

/*line6+l link {

/+line 7 + / I > 0: [0] ,-+ [I - 1];

/*line 8 +/ Ì;
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' /*)ine9+/ par.ent [0];

/+line 70 */ h
The header' (Line 1) introduces pârâmetets of the topology ,Súar, namely, the integer.

parâmeter m and the vectoÌ parameter p consisting of m integers. vector p is used to stor.e

the relative perfolmances of the m processors. Line 2 intr.oduces a coordinate declaration

decla.ing the coordinate system to rvhich virtual p.ocessoìs ale related. The integer

coordinate valiable l langes flom 0 to m*1. Lines 3-5 alenode declaration. Line 4 stands

fol the predicate (fo. all 1 > 0), that the viltual processo., rvhose r.elative perfor.mance

is specified by the value of p[1], is related to the point rvith coordinate [I], and so on.

Lines 6-8 are link decla.ation, rvhich specify links betrveen vi.tual processor.s. Line 7

stands fo. the predicate for'1 > 0 and 1 < rz there exists undir.ectecì links connecting

virtual plocessols rvith coordinates [0] and [I-l]. Line 9 is a par.ent cleclar.ation. It
specifies that the palent has coordinate [0]. After. the network is cr.eated in mpC program,

1. Initialize the p

2. Compute relative performances of actual processors

3. Pa.rtition tasks according to the per.formance of each pr.ocessot (Atgorithm 3)

4. Assign elements of LD sequence to pÌocessors accolding to thei. tasks (scatter. blocks)

5. Broadcast options' par.ameters

6. Execute the sequential algorithm on each plocessor

7. Gather the results of each pr.ocessors

8. Produce the final lesult on host pt'ocessor.

it executes the rest of computâlions and communications. A call to library function

MPC-Processors-static-info made on the entir.e computing space r.etuÌns the numbel

of actuaì processo.s and their relative pe.folmances. Based on relative per.for.mances

of actual pÌocessols, Algolithm 3 computes the numbel of simulations vhich should

be computed by evely processot. Then the subsequences for each pr.ocessor. can be

determined using the method mentioned in section 6.1. F\r'ther', the steps to folloiv
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are: a) bloadcasl option's arguments; b) scattel subsequences, c) pelform sequential

computing on each processor, and finally d) the host processor gathel the lesults from

each processol and ploduce the final result. Algorithm 4 illustrates this procedule.

The follorving functions aÌe part of the rnpC code implementing the QMC simulations:

/* 1 x/ void Ix]Simulation(float *lhost]option, float * | host ] sequence ,

/+ 2 */ float +fhost]resuÌts , int Ihost]n)
/+3*/{
/* 1 r/ repl nprocs, tasks{ íÆOJPROCSI , dn;

/* 5 +/ repl double +powers;

/* 6 */ dn=n;

/* '/ */ lvfPC-Processo¡s-static-info(&nprocs , &porvers );
/,' I x/ Paltition(nprocs, powers, tasks , cln);

/* 9 */ {

/+ 10+/ int [rost ] i ;

/* 11t"/ for(i:0; i<fhost]nprocs; i++)

/+ 12*/ ([host]printf)("proc:Zd---tasks=7cd\n", i, ( [ host ] tasks ) [ i ] ) ;

/* 13+ / Ì
/* tl*/ {

/* 15*/ net Star(nprocs, tasks) mynet;

/* 16+/ float *[mynet]doption , +[rnynet]dsequence, + [ mynet ] d r e s u I t s ;

/+ 17+/ repl Imynet]n;

/* 18,/ int Imynet]myn, Imynet]sof;

/* 19x/

/+ 20*/ s6f:Irnynet ] ( sizeof( float ));
/+ 21* / ¡¡-[mynet ]dn;

/+ 22*/ myn:(lmynet ] tasks ) [l coordof doption ] ;

/x 23* /
/+ 2l*/ dsequence:([mynet]calloc)(m¡'n*steps, sof);

/* 25x/ ([host ] flee ) ( [rost ]dsequence );

/, 26+/ [host ] dsequence:(void x) sequence ;

/* 27x /
/t, 28* / doption-([mynet]calloc)(6, sof);

/* 29*/ ( [host ] free ) ([host ] dopiion );
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/+ 30+/ [host ] doption:(void *) option ;

/+ 31+ /
/,r 32*/ dÌesults:(lmynet]calloc)(1, sof );

/* 33+/ ([host ] free )( [host ] dresuìts );

/* ?lx/ [ìrost ] dresults:(void +) results ;

/* 35x /
/* 36* / ([([mynet]nprocs)mynetl)

/+ 37*/ ParCompute ( doption , dsequence, dresults , Imynet]tasks);
/+ 38* / Ì
/x 39+/ j

/+ .1,0+/ void lnet SimpleNet(p)v]

/* ,1,1+/ ParCompute ( fl oat *.doption, float *dsequence,

/* 12*/ float *d¡esults, repl *r)
/x l3*/ {

/* 44*/ repl s:0;

/* l5*/ int mlm, i;
/+ 16*/ int xd, xnold, c,xdisp,xrct;
/+ l7* /
/* ]8'r/ myr=r II coordof r];
/+ l9*/ ([(0)v])MPC-Bcast(&s, doption, 1,6, doption, 1);

/* s0* /
/+ 51*/ d:calloc (p, sizeof(int ) );
/* 52+/ nold:calloc (p, sizeof(int ) );

/* 53*/ disp:c¿1¡o" 10, sizeof(int));
/* 5l*/ ¡ct:calloc(p, sizeof(int ));
/* 55+/ for(i:0, d[0]:O; 1.o t**,
/* 56+ / {

/* 57+/ nold li l:r Ii ]* steps ;

/* 58+/ dispIi]:i;
/* 59*/ rctIi]:1;
/* 60+/ i f ( i+1<p)

/* 61*/ dIi+1]:nold Ii]+dIi ];
/* 62x/ Ì
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/+ 63*/ c:nold II coordof c ] ;

/* 6lx/ ([(0)v])À,fPO-Scatter(&s, dsequence, d, nold, c, dsequence);

/* 65*/ ([v]SeqConpute)(cloption, dsequence, dresults , myr);

/* 66*/ ( [( 0 ) v ] ) À{PC-Gather(&s , dresults, disp, rct, 1, dresults);

/+ 67+/ j

Line 1 defines function Si,mulation rvith foul atguments belonging to the viltual host

processor: pointer option to the the option arguments, pointd sequence io the Sobol

LD numbels, pointer results to the computing results from parallel processots, and n

the simulation numbers. Function Szmulation is called a basic function. In mpC, there

are three types of functions: basic, networlt, and nodaL functions. Basic function can I:e

called and executed on the entire computing space. Only in basic functions netrvorks can

be defined. Netuork function is called and executed on â netlvoÌk objecl,. Nodal function

can be called and executed by any viltual processor. In mpC, the ANSI C functions are

considered nodal functions.

Line 4 defines integer variable nprocs and array tasks and integeÌ dn. The three vali
ables are declared replàcated, (r'epl) over the entire computing space. In mpC, the keyrvold

repl means all distlibutions of the value of the variable equal to each other. Line 5 define

pointer po\¡/ers distributed over the entile computing spâce and specifies that it points to

a replicated data object. Line 7 calls library nodal function MPC-Processors-static-i,nfo

on the entiÌe computing space retulning the number of actual processot's and thete rel-

ative pelformances. After this call the variable nprocs will hold the number of actual

plocessors, and replicated array powers will hold the lelative pelfolmances. Line 8 calls

function Partiti,on rvhich computes the number of tasks of each pÌocessor based on their

performances. Line 10 to line 12 prints the partition results.

Line 15 defines a network object mynet rvhich is an instance ofthe netivolk Star and

executes most of the rest of computations and communicâtions. It consists of nplocs

viltual processor-s, the computing task of the i-th virtual ptocessor being charactelized

by the vaìue of tasks[i]. Having knorvn the computing tasks of each processot', we cân

compute the numbel of LD numbers needed for each processol. Valiable myn denotes the
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number of simulation assigned to each processor. After execution line 22, each component

of myn rvill contain the number of simulations of corresponding virtual processor. Line

24 allocates memoÌy for variable dsequence rvhich rvill be used to store the assigned LD

numbels of each processor. Line 28 allocates memory for valiable doption rvhich is used

to stole the Option's arguments. Line 32 allocates memory for variable dresults rvhich

is used to stole the computing results of the viltual plocessor. Then at line 36, call the

paraìlel computing function ParCompute.

Function ParCompute is a basic function, which has foul arguments belonging to the

virtual processor: pointer doption to the Option's arguments, pointer dsequence to the

LD numbers, pointer dresults to the computing result, and replicated variable pointer r
to the tasks. In lines 40-42, the header of the definition of function ParCompute declares

identifier ø of a netrvork being a special netrvolk folmal parameter of the function. In

the function body, special forrnal parameter p is tleated as an unmodified variable of

type int replicated over netrvolk u. p holds the number of viltual pr..ocessot of netrvork

u. The rest of folmal pâra.meters of the function ale distlibuted over ¿. Line 48 gives

the computing tasks of a virtual processor rvith coordinate i.

Line 49 calls to the embedded network function MPC-Bcast rvhich is declared in the

header as folloivs:

int I net SimpleNet (n) w] lr4PC-Bcast (

repl const *source ,

<s-type> x s-buffer ,

int const s-step ,

repl const count,

<d-type> + d -buffer ,

int const d-step );

This call broadcasts option's alguments fi'om the palent of u to all virtual processors of

a. As a result, each component of the distributed array pointed by doption rvill contain

this option's argumènts.

Statements in lines 51-64 are asynchronous. They folm four p-member arrays d,
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nold, disp, and rct distlibuted over u. After this, nold[i] rvill hold the number of LD

numbers assigned by Partition algorithm fol viltual plocessor rvith coordinate z, and d[i]

rvill hold the displacement rvhich couesponds to this portion of LD number.s. displi]

holds the displacement rvhich correspolds to the computing lesult from virtual plocessor

i. rct[i] holds the teceive counts from virtual plocessol z. Line 63 is also asynchr.onous.

Aftel this execution, each component of c rvill hold the number of LD number.s rvhich

rvill be used by collesponding virtual processot'.

Line 64 calls to netrvork function MPC-Scatter rvhich is decla¡ed as:

int I net SimpleNet (n) w] lvlPC-Scatter (

repl const *source ,

<s-type> *s-buffer,
int const + disps ,

int const {,lengths ,

repl conat count,

<d-type> +d-buffer );

This call scatter LD sequence from the pat'ent of t¡ to all viltual pt'ocessors of o. As a

result, each component of doption rvill point to ân ârlây containing the corlesponding
portion of LD sequence. Line 65 is to execute a sequentiâl computing, and finally line

66 is to gather the computing results by calling netrvolk function MPC-Gather. tvhich is

declared as follows:

int Inet SimpleNei(n) rv] NfPC-Gather(

repl const xdestination ,

<d-type> *.d-buffer ,

int const * disps ,

int const + Ìengths ,

repl const count ,

<s-type> x s -b uffer );

This call gathers results flom each viltual plocessor of u.

We have plesented the most intelesting part of the mpc code implementing the

palallel QlvfO algorithm for option price. We rvill present the experimental results and

compalison rvith other implementations in next chaptel.



Chapter 7

Results and Evaluation

In this chapter, rve plesent the analytical results first follorved by the experimental results.

7.L Analytical Results

We fir'st shorv that the perfolmance of our palallel QIvIC algorithm is bettel than general

parallel algorithms (e.g. blocki,ng scheme).

Suppose rve have r¿ pl-ocessols doing 1{ parallel QMC simulations. Let us denote

tlre rn plocessols as py,p2,. . ., p-. Without loss of generality, rve sott the plocessot's in

ascending ordel based on their processing speed as follorvs:

Pt < P2 < Ps"'1P^ (7.1)

p1 is the slorvest plocessor, and p- is the fastest. We denote the plocessing porver of

pÌocessol 'i as power¡. Then the tasks ¿i âssigned to processol z using folmula 6.1 is

f, : [/f x .+ggir' l. hence. rve must have
2¿i=î Poueri I

tt3tz<t3...< t^ (7.2)

Because the tasks assigned to each processor is proportional to its speed, the load of each

processol is balanced. This means that tlie processots tvill finish theil tasks at the same
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amount of time. Let us denote the computing time by

7"-. Then the ovelall computing time is

56

7"o, and communication time

lbtut: lîp+.Lcm (7.3)

No¡v let us consider the genelal parallel schemes doing palallel Qlt4C on the same

alchitecture. In general schemes, each plocessor rvill be assigned the same number of

tasks N/rz. Due to varying processing speeds of the processors, the time spent on each

processol is diffelent. The ovelall computing time is detelmined by the slorvest processot-.

In the case of 7.7, p1 is the slorvest processor. Suppose pt spends Tjo time to finish its

task. We assume the communication time is still Z"-. This assumption is acceptable for

our parallel QMC algorithm, due to (1) in palallel QMC simulations, the communication

opelations' contribution to the total execution time of the algorithm is negligibly small

compaled to that of the computation; and (2) in palallel QMC simulations, parallel

pÌocesses do not communicate fi'equently sending and i-eceiving messages. Hence, the

ovelall computing time using genelal schemes is

tbht: Jcp+ Jcm (7.4)

To shoiv T'r*^ ) Tr*1, we need to shorv ?jo ) ?"o. We knorv ?jo and 7"o are the times

the processor p1 takes to execute the tasks. Hence, to show ljo ) T¿p, we only need to

shoiv lV /r¿ > 1V x -ig',,!-n . that is to shorv f ) -+9!!¡1 .
2-i_opowe\ - 2¿i_o Pouefl

Suopose F*gslD > r. then rve must have:LÈaPoue\

N:¿r+h+"'+t*
- ^l - ---29y3L L 1\l v ---29!3.L -L... -L ÀI v pouern
-" ^ LLopoue, | " " Lropoúeri ' '" " DLDpoùe\
: ,t ^ \tE;ro;d -+ ti;w;e\ + " -i tE;p;Ai
> 1{ x lI + I + ...+ f )

:Nx(m"*):¡r.
We get contradiction N > 1V, hence F+=-- > | is impossible. We must have' 2¿i=opoue\ m

> :+9!e-!-. Then N x '¡. > lV x -#e!gtr-. so r]_ ) l-. That is. the sener.al
- 2,i=oPoueft Li_îPoweîl

1
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parallel schemes rvill spend more time than our parallel algorithm lunning on the same

alchitecture.

7.2 Experimental Results

This section pÌesents some results of experiments of the QMC algorithm plesented in

Chapter' 6. In our expeliments, rve price a one-year rnaturity (" : 1) at the money

European call option rvith culrent asset price, S: $20, and stlike plice 1l: $20; the

lisk-fi'ee rate of interest is 6 percent (r : 0.06), and the volatility of the asset is set at

twenty percent (o :0.2) and the asset pays no dividend. We divide the time petiod over

rvhich rve rvish to simulate ,97 into 10 intervals (timesteps:10). We save these pârâmeters

into a file. For each experiment including N,IPI implementations, n'e use the same input

paÌameters.

We decide to lun 1,000,000 simulations. Fol each simulation, rve need a 10 dimensional

Sobol point. Hence, rve should have i,000,000 Sobol points, each point is lO-dimension.

Since these Sobol points are detelministic, it is unnecessaly to generate them each time

fol evely experiment. We save the 1,000,000 points into a file. The file size is about 81

mega bytes! Saving option's parameters and LD points into files makes our programs

more flexible: rve can value difierent options rvithout changing mpC code; and rve can

use different LD sequences and even random sequence.

A small local netrvork of 7 Solalis rvolkstations (named Cadmium0l, Cadmium02,

Cadmium03, CadrniumO4, CadmiumOS, Cadmium06, and CadmiumO8) and 18 Linux

machines (canaly-O1, ..., canaly-O8, and 10 other bird-narned machines) r'unning Fedora

Core 2 ale used fol the experiments. Here we plesent the expeliment results on the 7

Solaris rvorkstations 1. The names of tìre rvorkstations are manually wlitten in a VPM

(viltual parallel machine) file. A VPIVÍ file contains the leal distlibuted memory machines.

lThere exists c¡oss-platforrn problems between Solaris and Linux machines in mpC version 2.3.0 [42].
The mpc runs fine on individual clusters.
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The format of a vpm file is:

machine-name number-of-processes.

The contents of oul vpm file are:

cadrniumOl 1

cadmiumO2 1

cadmiurnO8 1

We set the number of processes as 1 to each rvolkstation, because rve rvill compare

the performance of our algorithm rvith those implemented using MPI. In lvIPI, though

more than one MPI process can be run on each processor, it is difficult fol a programmer

to assign a fixed number of plocesses lunning on a specified 'rvorkstation.

By executing the mpC command mpccreate apmf,le, ve obtain the initial static stluc-

ture information of the netrvork, rvhich is saved in the form of ASCII file as the follorving:

f cadmiumOl

s1 p883 n1 c1 c1 c1

f cadmiumO2

s1 p930 nl cl c1 c1

f cadmium03

s1 p879 nl cl c1 c1

S cadmiumO4

s1 p999 n1 c1 c1 c1

S cadmiumOS

s1 p959 n1 c1 c1 c1

f cadmium06

s1 p870 n1 c1 c1 c1

f cadmiumO8

sl p899 nl c1 c1 c1

This infolmation rvill be used by mpC luntime system (RITS). Hele, each computer is

58
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Plocessols p1 p2 pó p4 p5 p6 p7

Performance 883 930 879 999 959 870 899

Table 7.1: Relative performance of 7 heterogeneous rvorkstations

charactelized by six parameters. The first palameter', s, shorvs the number of proces-

sors. sl means the computer has only one processor. Thus, in out expeliments, all the

lvorkstations are uniprocessor computers.

The second parameter, p, shorvs the performance of the computer. We can see that

cad,mi,um1l is the most porverful computer. Note that at each time rvhen one executes

the command mpccrez,te apmfi,le, the performance values are different; and at runtime tlie

execution ofthe recon statement updates the value ofthe parameter for each par.ticipated

computer. Hence, rve should know that each time the sâme program lunning on these

computers rvill spend different time.

The third paÌameter', n, shorvs the total number of plocesses of the parallel pr.ogram

to lun on the computer. In our expeliments, each computer runs 1 pr.ocess.

Finally, the last three parametets a.re used by mpC system to determine the speed

of point-to-point data tlansfet betrveen processes running on the same computeÌ as a

function of size of the tlansfeued data block [45]. The first of them specifies the speed of

tlansfer of a data block of 64 bytes, and the second and the third specify that of 642 and

643 bytes lespectively. The speed of transfer of an arbitrary size data block is calculated

by interpolation of the measured speeds. In oul expeliments, each computel has only one

plocess, so there is no communication bettveen plocesses lunning on the same computet.

Using above parâmeters, we measure the time to compute an option plice. Timing is

obtained via the mpC rvall clock function, MPC-Wtime). We don't include the time the

plograÌn takes in reading the LD sequence file and arguments file. Fol convenience, rve

list the relative pelfolmance of the 7 plocessols in Table 7.1. The 1,000,000 simulations

ale dist¡ibuted to the 7 plocessoß based on their perfolmance as shotvn in Table 7.2

Ão
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Plocessors p1 p2 p3 p4 p5 p6 p7

I of Tasks 137563 744882 136937 155631 149400 135535 140052

Tab\e 7.2: Distlibution of 1,000,000 simulations to 7 heterogeneous rvolkstations

simulations

number of processols

2 4 5 ll 7

100000 0.02 0.13 0.24 0.35 0.44 0.60 0.43

200000 2.24 2.06 1.95 1.76 7.32 1.04 0.76

300000 5.26 3.18 2.05 7.94 1.87 1.40 t.27

400000 7.71 5.4r 2.44 2.L0 1.78 r.34

500000 9.48 €,.71 4.30 2.71 2.34 t 1() 1.68

600000 11.89 8.10 5.92 3.84 2.64 1.89

700000 74.22 8.12 6.51 4.1.1 2.99 2.9r tte

800000 17 .25 9.60 7 .29 4.97 3.07 3.11 3.07

900000 19.11 10.25 8.02 5.62 3.31 3.29 3.16

1000000 20.73 t 1.60 8.49 5.71 4.82 3.31

Table 7.3: Time to do QMC simulations in seconds

using Algolithm 6.1. The computing time is 3.3054 seconds. For compalison putpose,

rve have implemented a sequential QMC algolithm and obtained the running time rvith

the sâme input palameters and LD sequence.

Table 7.3 lists the the computing time of different combinations of simulations and

plocessols. Note that for difierent number of simulations, rve have different LD sequence

files. The experiments ale started fi'om single rvolkstation Cad,mi,um}l. We add otlier

computels (Cadmiurn12, Cad,mi,um)9, -.-, and Cadmiurn0S) to increase the applications

performance. In the table, tlie single processor is the r¡achine Cadmium1l; the 2 ploces-

sorc are Cad,mium1l and Cadmium12; 3 processols are Cadmzum}l, CadmiumÌ2, and

60
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Cadm'iurn1?; and so on. A mole intuitive figure is given in Figure 7.1

61
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Figure 7.1: Execution time rvith Ìespect to various processo¡s and simulations

Flom Figure 7.1 and Table 7.3, rve notice that, initially, rvith a 100,000 simulations, the

single processor machine gives better results than seven processors. Horvever', for large

input sizes, having more number of processors is beneficial. WitlÌ 1,000,000 simulations,

seven processols gives an execution time of 3.31 seconds compared to 11.60 seconds with

two processols. This is a significant declease in execution time.

Figure 7.2 illustlates the speedup achieved by using diferent processot-s. Note that

the running time of the mpC plogram substantially depends on the rvorkload of the

rvorkstations. We can see that the speedup culves have some ups and dorvns. This

is due to the fact that the rvorkload of each rvolkstation is dynamic (the rvorkstations

are accessible to other students in Computel Science department). At certain time,

the rvolkstations ale involved in othel computations, and the lorv perfolmance of some

rvorkstations substantially incleases the rvhole computing time. We took the average
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of the execution times after running the simulations for sevelal iterations. With seven

plocessors, the relative speedup is approximately 6x. Overall, the mpC progrâm ensures

good speedup.
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Figure 7.2: Speedups computed relative to sequential code lunning on rvorkstation Cad-

miumO1

To get a better estimation of oul mpC proglam, rve developed trvo versions of the MPI

programs: 1) static distribution tasks among plocessors (general blocking (BI() scheme);

2) a manager-rvorkels (N,IW) approach rvhich simulates load balancing scheme to some

extent.

Using genelal blocking (BI() scheme, the tasks (1ú) and the LD sequence are equally

distributed among the r¿ plocessor-s. In this experiment, usually the number of proces-

sors must be a factor of the number of simulations (i.e. N /m is an integer'); otherrvise,

the result rvill be difierent from a sequential algolithm's result using the same atguments.

In section 7.1, rve analytically showed that tliis scheme is not efficient on heterogeneous
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environment rvhele the processols exhibit different plocessing speeds and resoulces com-

paring to oul palallel QIVIC algolithm. Algorithm 5 and Algorithm 6 represents the

manager-rvolker''s algorithm.

Algolithm 5 -\lanager'

2. Broadcast Option's alguments

3. While rvork> 0 do

4. Receive a result from any rvolkel and dispatch a new rvolktag

togethel rvith a nerv subsequence;

5. lvfanager assign tasks to itself and consume necessaly subsequences;

6. Record each processor's tasks.

6. Next

7. Receive results fol outstanding rvork requests.

8. Tell all the rvorkers to exit.

9. Print resuìt.

2. Accepts rvolk requests

3. Do sequential computing

4. Returns results

5. Until a termination request is received.

Table 7.4 gives the execution time for 1,000,000 sirnulations on 7 processor on thlee

different implementations: mpC, blocking scheme (BK) rvith N{PI and manager'-rvorkel

scheme (MW) rvith N4PI. The table also indicates the numbel of tasks distributed to

each processol in each of the three schemes. In BI( scheme, since the task distribution

is static, each processor receives 142857 tasks. In the N4W scheme, each plocessor is

assigned one task per request. It's interesting to see in the table that though processor'4

tlJ
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Processols'

ID

Processor's

pelfolmance mpc

N4PI

BI{ MW

883 137563 t42857 500000

2 930 144882 t42857 133597

.) 879 136937 r42857 81659

4 999 155631 142857

5 959 149400 t42857 74096

6 870 135535 t42857 6777r

7 899 140052 t42857 65500

time (Sec.) J.óÌ 4.67 95.48

Table 7.4: Time to do 1,000,000 simulations using three schemes

has better computing performance than processor 1, processor 1is assigned more number

of tasks in total. This is done by the schedule¡. The l\ttW scheme in lvlPl does not take

the pelformance of the processors into consideration. Finally, ivith mpC, we notice that

the processors are given tasks accot'ding to their pelformance. Plocessor 4 gets the most

number of tasks, 155631, since it is the fastest; rvliile processor' 6 gets 135535 number of

tasks since it is the slos'est. Fbom expeliments, rve find the mpC scheme outperforms BI(

scheme because the load of mpO scheme is balanced; the BI( scheme outpelforms MW

scheme because thele are too many communications in lvIW sclieme, though NfW scheme

sirnulates load balance to soùe extent. Overall, our algolithm implemented in mpC is the

most efficient one rvhile the lvlW scheme is the most inefficient one since the rvolkload is

unbala,nced and communications dorninate the rvhole computing (sending lequests and

lesults to ma.nager, receiving tasks fi'om manager').

In the lvIW plogram, instead of assigning one task per lequest, rve tried to assign

arbitra.ry number of tasks to eâch request, theleby simulating mpC to some extent. Let

pl be the numbel of tasks assigned to a processol per t'equest. lVhen pú = 1, the

ri4
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Figure 7.3: Nlanager-rvolker scheme rvith different amount tasks per request

computing time is 95.48 seconds as seen in Table 7.4. rÃie experimented from pf : i00

till pf : 30000, rvith 100 tasks in each increment. Figule 7.3 illustlates the test lesults.

Flom the test, ive found in some cases the IVIW performs better than mpO progrâm

and in some cases it does not. For example, rvhen pú : 500, the runtime is 2.70764

seconds; and when pú : 4300, the run time is 3.81360 seconds. We cannot find any

tlend about the value of pt that rvill give the best perfolmance. Hence, rvhen designing

IVIW algorithm, it rvould be tedious to find a suitable value for pú rvhich is user-defined.

In addition, the NIW scheme is not portable rvhen some conditions are changed. For

example, if the number of processors is changed or the rvorkload of some processors is

changed, the pf value must also be changed manually. Unlike mpC progrâm, the number'

of tasks rvill be automatically changed based on the plocessors' pelfolmance ivhen the

numbe¡ of processols is changed.

From the expelirnents, advantages of using rnpC ploglamming system ale especially

65
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clear rvhen plogramming fol heterogeneous distributed memory machines. The mpC

palallel language allorvs the programmer to define all the main featules of the algorithrn

undel study, such as, the total number of participating palallel plocesses, the total

volume of data to be transferled on each plocess, and the topology of the application. In

addition, mpC system has its orvn mapping algorithms to ensure each process to perfolm

computâtions at the speed proportional to the volume of computation it perfolms. Hence,

these features lead to a mole balanced and fastel palallel ploglam.
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Chapter 8

Conclusions and future work

In this lesea,rch, rve presented a distributed parallel QMC algorithm fol pricing options

that is adaptable to hetelogenous netrvork of rvolkstations. The parallel algolithm dis-

tributes the data depending on the architectulal featules of the machines. We used the

Sobol LD sequence fol the Ql\4C technique and implemented the algolithm in mpC. Its

good pelfolmance is justified theoretically and verified expelimentally.

As discussed in chapter 6, QMC simulations a.re rvell suited fol palallel computing.

Simulations can be pelformed on different ptocessot-s, and the lesults can be combined

finally. Tt'aditional palallel methods tly to obtain maximurn speedup by evenly distribut-

ing computations over available processols, rvhete the undetlying featules ofthe machines

are not consideled while scheduling the tasks. On heterogeneous netrvolks, performance

gains are potentially available fol algolithms if they a.re designed to fully exploit the

hardware features. This is the vely peculiarity of oul parallel algorithm, rvhich takes

into account the actual pelfolmances of both processols and communication links. By

comparing rvith other parallel algorithms and implementations, the speedups exhibited

by oul algorithm plesented in this thesis are plomising.

The implementation has demonstrated that mpC and its programming envilonment

ale suitable tools fol irnplementing adaptive algolithms on hetelogeneous netrvorks. Like

lvIPI, mpC supports rvriting efficient parallel proglam lunning on specified distributed

ot
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memoly machines. Like IVIPI, the mpC proglam is portable to othel distributed memory

machines rvithout rervliting and recompiling. Unlike MPI, the mpC and its plogramming

environment can specify application pelformance model and ensure the efficiency rvhile

porting proglam to other distributed memoly macliines. An outstanding feature of using

mpC is that a plogra.rnmel can specify the topology of the application under study and

mpC system can map the topology to real netrvork system based on plocessors' processing

speeds and netrvolk bandrvidths in lun time. Some othet features of mpO proglamming

system âre that such as it allorvs both data parallelism and task palallelism as rvell as

vectol computing. All these factols make mpC programming system unparalleled among

knorvn parallel proglamming tools.

In future, rve rvould like to extend our parallel algorithm to price American and Asia¡-

style options and options rvith multiassets. For American-style options, one has to deal

rvith the possibility of an eally exelcise to achieve an optimal value. For Asian-style

options, one has to calculate the average value of the underliel on a specific set of dates

during the life of the option. For option ivith multi-asserts, one has to take into account

the correlation between securities.

In this lesearch, rve use Sobol sequence in our QMC method. Horvever', othe¡ LD

sequences may have advantages over Sobol sequences. In particular, Joy, Boyle and

Tan [41] use Faure sequences to value a range of complex derivative securities and obtain

good results. The application of LD sequences to problems in finance is also a topic of

culrent interest [41]. Future rvolk will considel using alternative LD sequences for option

plicing and compa.rison of theil pelformance and accuÌacy.

Although this resealch has concentrated on QlvfO rnethod for option pricing ploblem,

the technique used in this research can be adopted to other areas of QMC lesea¡ch. We

believe our research rvill offer nerv undelstanding of QMC methods and rvould open up

a nelv venue for QNIC application developers in othel aleas of research.
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