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ABSTRACT

Manitoba Hydro uses a P&H-T250 crane and an M.P. McCaffrey Inc. cable

driven claming device to remove trash from the front wall of hydro dams. Due to the

complexity of the task and lack of perception of the underwater working status,

inexperienced operators running this machine may encounter difficulties and potentially

cause damage to both the environment and the machine. To solve this problem, the

concept of coordinated-motion control with graphic human-machine interfacing is

proposed. Before any control strategy can be implemented, it is desirable that the system

be modeled mathematically. Then, any control algorithm can be tested on the model frrst.

It is also preferred that based on this model, new operators can be trained on a simulator

before they have the opportunity to run the real machine.

This research has made the following contributions. First, a mathematical model

of the claming machine was developed. Based on this model, a real-time simulation with

3D graphics and interactive features was created. Common Object Request Broker

Architecture (CORBA) technology was then employed to distribute the complex

dynamics calculations on a server while relieving the client computer to concentrate on

graphics rendering, collision detection and control signal collection. Critical Mass Lab's

simulation toolkit was also used on the client side to make the physics-based simulation

more realistic and interactive. The proposed control algorithm can be developed on this

platform, and novice operators can be trained on this interactive simulator.
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Chapter l. Introdttction

Chapter I

Introduction

1.1 Motivation

Manitoba Hydro uses P&H-T250 cranes equipped with M.P. McCaffrey Inc.

cable driven claming devices are used to remove trash from the front of hydro dams. The

trash rack is about 5 meters wide and 20 meters high. Trash may weigh up to 25 tons.

They consist of large logs and are usually jammed between the racks and./or accumulate

in front of the gate, 50 feet below the water level. Currently, control of the crane and the

claming device create problems. The operator manipulates the two cables, which are

connected to the claming device separately. The operator lowers the claw-type claming

device until it hits the bottom of the inlet gate. He/she then closes the claming device

hoping to pick up something. To remove trash from the inlet gate racks, the operator first

brings the claming device as close as possible to the inlet gate, then lowers the claming

device while closely watching the tension in the hoists. A change in the tension may

indicate collision with an object. In order to bring trash up and load it into a truck, the

operator relies on hislher experience and manipulates the two cables individually, making

them work cooperatively; otherwise, the cables might get jammed on the drum or one of

the motors driving the cables will be overloaded. Moreover, since the operator can not

see under the water, he/she can only observe the tensions on the two cables to control the

machine. The working space is also quite limited. Figure 1.1 shows the crane, the

claming device and their working environment.
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Robotics and associated technologies have recently been employed as a partial

substitute for humans in unstructured and hazardous envirorunents. For the trash-

removing tasks, a suitable computer graphics interface to enhance the operator's

perception and an algorithm of coordinated motion control are desirable; these will

relieve most of the stress of the operators in performing the work. It is therefore desired

to develop a simulation program as a platform for further studies of control algorithms of

the crane and the claming device. It is essential also that new operators be trained on a

virtual machine in order to avoid possible damage due to human error. Such a simulation

program must fulfill the following requirements:

(1) It must be built upon an accurate mathematical model. Since subsequent control

algorithms will be developed on the virrt¡al machine, the mathematical model of the crane

and claming device should be able to produce results close to real-world responses.

(2) It should be user friendly. Control of the virtual machine should give the trainee the

feeling of controlling the real machine. They will experience not only a realistic response

with the virtual machine, but also a detailed virtual environment similar to the real one.

The simulation software should also be interactive with the operator in training.

(3) It must be able to run in "real-time". Real-time reaction is very critical to this type of

simulation program. A significant time lag will impair the training effect, since the

operators will experience highly unrealistic scenarios.

(4) It should be cost effective. Although currently the price of mainframe computers or

high-end workstations has been greatly reduced, they are still expensive. Employing such

a simulation program to train operators has to be of low cost.
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(5) The graphics interface should be elaborately designed so that it is ready to be used to

facilitate the users' completion of the operations.

To meet all these requirements, especially the limited CPU capability restriction

on desktop PCs, a way to utilize existing technology to solve the problem has to be

found. Over the past decade, it has become clear that distributed object computing (DOC)

can help to alleviate many software complexities and difficulties (Attoui, i99l). DOC

represents the confluence of two major areas of software technology:

Distributed computing systems - Techniques for developing distributed systems focus on

integrating multiple computers to act as a scalable computational resource.

Object-oriented (OO) design and programmíng - Techniques for developing the OO

systems focus on reducing complexity by creating reusable frameworks and components

that reify successful design patterns and software architectures (Booch, 1994; Ishikawa

et al. 1992).

DOC is the discipline that uses OO techniques to distribute reusable services and

applications efficiently, flexibly, and robustly over multiple, often heterogeneous,

computing and networking elements. Recently the timing characteristics of data and

function components of an object have been added to OO concept to make DOC more

appropriate for real-time systems (Kim, 1997; Takashio and Tokoro, 1992). At the heart

of contemporary distributed object computing is DOC middleware. DOC middleware is

an objecroriented software that resides between applications and the underlying

operating systems, protocol stacks, and hardware to enable or simpliff the manner in

which these components are connected and interoperate (Cobb and Shaw, 2000).

Distribution middleware builds upon the lower-level infrastructure middle-ware to
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automate common network programming tasks, such as parameter

marshaling/demarshaling, socket and request demultiplexing. and fault

detectior/recovery. Common examples of distribution middleware include the Object

Management Group's (OMG's) Common Object Request Broker Architecture (CORBA)

(OMG, 1995), Microsoft's Distributed COM (DCOM), and JavaSoft's Remote Method

Invocation (RMI). In this thesis CORBA is chosen because of the nature of our

simulation program and CORBA's general acceptance in the industry.

1.2 Objectives and Scope of This Work

In this thesis, a simulation program for the crane and claming device is developed.

The system is a'Window on World (WoW)' system that uses standard desktop monitors

to display a 2D image of a 3D scene (Isdale, 1998). Users can control the virrr:al crane

with a 3-axis joystick, and control the claming device with two single-axis joysticks. The

control of the claming device is the same as on the real machine. 3D animation shows the

real-time response of the virtual machine on the screen. The Client/server structure

supports multi-users sharing the resource of a single server.

For the dynamics calculations, mathematical models of the crane and claming

device are developed. Fulfilling the Object Orientated Programming (OOP) concept

(Booch, L994), the dynamics calculation algorithm for the crane, the claming device and

the hydraulic driven units is wrapped into individual objects (classes) so that the code can

be reused. OpenGL is adopted as the 3D graphics application programming interface

(API). Since OpenGL is a renderer rather than a modeler, all 3D models are created in

AutoCAD and then imported into our program. Display lists are utilized to speed up the
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rendering process. A reusable view class and a texture importing class are developed.

With Critical Mass Lab's Dynamics Toolkit 2.0 and Collision Toolkit 1.0, real-time

swing motion is created. Finally, CORBA technology is implemented to divide the

simulation program into Service Providers (SPs) and Service Receivers (SRs). The

interfaces for the SPs and the SRs are defined with Interface Definition Language (IDL).

On the SP side, a special object called Object Factory is implemented, which produces a

dynamics calculation object corresponding to each SR connected. The newly created

dynamics calculation object continuously sends SRs the required data to construct the

scene. The SR itself acts as a server calling methods in remote SP with control signals.

The communications between an SP and SRs are all oneway calls; therefore, even when

the connection is jammed or slow, the program can still run smoothly and the time lag

effect is minimized. Concurrence models for both SP and SR are also carefully selected

in order to obtain the best performance.

The simulation program is built on a framework that can be used for other

physics-based visual simulations. The dynamics calculation module, including the

mathematical models for the crane, the claming device, and hydraulic components, are all

coded in an OOP way that they can be reused with little effort. The document/view

structure with OpenGL can also be easily used to generate animations in Windows

operating systems. The way we employ CORBA technology to distribute complex time-

consuming computation over two or more computers and obtain higher data processing

rates is also applicable to other similar problems.

The organization of this thesis is as follows. In Chapter 2 the mathematical

models for the claming device, the crane and the hydraulic components are de¡ived.
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Chapter 3 explains the SR's structure and the animation generation with OpenGL. The

detailed implementation of CORBA technology to achieve distributed computation is

presented in Chapter 4. Chapter 5 presents results of the simulation and SP and SR

performance analysis and conclusions are drawn in Chapter 6.
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Chapter 2

Modeling of the System

The machine consists of a crane and a claming device. Both of them are driven by

hydraulic actuators. In this chapter, the linkage dynamics for the claming device is hrst

described, followed by the derivation of the crane's dynamics equations. The governing

equations for the hydraulic actuators are also described.

2.1 Modeling of the Claming Device

2.1.1 Mathematical Model

An M.P. McCaffrey Inc. cable driven claming device is shown in Figure 2.1. Parr.

of the equations for the mechanism of the claming device were derived by B. Sunidge

(tee6).

The claming device is modeled as a 3-link slider mechanism. Link 1, with a

length of 1.3 meters, is a member connecting the top of the grapple to the bucket. Link 2

is the bucket with a length of 1.2 meters. Link 3 is the pulley around which cable2 curls.

The forces applied to the model are the result of tensions originating from cable 1, and

cable 2, and the gravitational force on each member. Cable l, which is responsible for

raising and lower the grapple, has a corresponding force that is referred to here as T1.

Cable 2, which is partly responsible for opening and closing the grapple, has a

corresponding force that is referred to here as T2. The angle that link I and link 2 make
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Fig.2.1: Photo of the claming device.

Fig.2.2: Notations used on claming device model.

+ve ccw



Table 2.1: Physical parameters of the claming device.

Link I Link2 Link 3

Mass (kg) 25 350 25

Size (m) t.37 t.l4

Chapter 2. Modeling of the System

with the vertical plane are referred to here as á, and 02 , respectively. The position of the

top and bottom of the grapple are noted as x, and x,, respectively. Notations used fo¡

the claming device model are shown in Figure 2.2. Note that the cables are removed as

their effective forces are included.

Figure 2.3 shows the free body diagrams of link 1,2 and 3.

(a)

CxBx

(b) (c)

Fig. 2.3: Free Body Diagrams for (a) Link l; (b) Link 2; (c) Link 3.

Dynamics equations are derived for each link respectively:

Link 1, for example:

-Ar*Br=mra,

- B, -7, + *rg = ttttdy

(2.1)

(2.2)

l0

.t, L cos(lr) + a, L 
"or, 

0,)+ Brt!sin(tt)-(Tt 
;r, )tlsin@1) = I ßt e.3)
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where A* , 8,, B,, andT , are forces acting on the bode, m, is the mass of link 1, a, and

at arelink 1's center of gravity accelerations along y and x directions, ø 
' 

is the angular

acceleration of link 1, 1, is the moment of inertia of link l, 0 ris the angle that link 1

makes with the vertical reference, and g is the acceleration due to gravity (9.81 m/s2).

For link 2 and 3, the dynamics equations are derived in the same manner.

The kinematic equation that is used for each member involves the normal and

tangential accelerations. Figure 2.4 illustrates the normal and tangential accelerations for

link 1 . Thus the acceleration of Link 1 at the centel of gravity is aG' = an + actl 
/t

A) G, /Aar'

AA
at'

ßig.2.42 Kinematics of Link 1.

This kinematic equation shows that the acceleration of the center of gravity for link 1,

aG, , is equal to the acceleration of point A, which is equal to aA plus the acceleration of

the center of gravity with respect to point A, aqtA ol"n stands for the normal

acceleration of center of gravity with respect to A, and. af'tn stands for tangential

acceleration of center of gravity with respect to A. Therefore, we have the following

equations:

ll

e1



a'j'=-ø,lsin(4r) +arllcos(O,) e.4)

ol' = on -ri Lro'ø,,)-a,l.sín(or) (2.5)

where ø, is angularvelocity of link I and ar is the acceleration of position A. Similar

kinematic equations for links 2 and 3 can be derived.

The acceleration diagram is depicted in Figure 2.5.

Chapter 2. Modeling of the System

(2.6)

(2.7)

ou, =on -our'n cos(d,) +o:'n cos(L-gr¡

ol = oc + o8, 
lc cos(d, ) + of 'c cos(Z + o-,)

a A - a, l, cos(d, ) - a rt, sn(O r) = ac + a zl z cos(0 r) + a, I 2 sin(O r)

Equation 2.7 is found by a similar manner.

- øi t, sinle r) + a rl, cos(d, ) = ai t z sin(0 r) - a 1 t, cos(d, )

So far we have a total of l7 equations, including nine dynamics equations, six kinematic

equations and two extra equations, for the 3-link-slider mechanism. Eliminating four

ac

.02

Fig. 2.5: Acceleration Diagram.

t2
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redundant equations, there are l3 equations with l3 unknowns. Hence all unknowns can

be solved.

The following table shows the known and unknown variables in the equations:

Table 2.2: Known and unknown variables for claming device.

Unknown
variables

A, al' By F, af' d2 a'

B, al' dl G.ax' C
v a^

Known
variables

Tl T2 el 02 CL, I
(ùz

0r, 0r, cù, and oJ)can be calculated based on the claming device's current positions and

velocities of points A and C. F¡om the dynamics equations derived, one can arrange the

known and unknown variables into matrix equations. All unknowns can then be solved.

The movement of the claming device is limited because of geometric restrictions.

The claming device has three working states, referred as 'Free', 'Full' and 'Distributed'.

When in the Free state, the claming device bodies rotate freely within the range of their

two extremes. The dynamic equations derived above are valid only for this working state.

As it reaches its extreme, the claming device either works in the Full or Distributed state.

While in the Full state, all th¡ee of its links are moving together as one single body. Only

one force from the connecting cables applies to either point A or C. While in the

Distributed state, the 3 links a¡e also moving together without relative movements.

Forces from two cables are applying on link 1 and 3 individually, which result in

different accelerations on each link. Notice that the two forces applied to points A and C

can only be positive because in this case cables cannot transfer negative forces to the

claming device.

l3
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When the claming device is fully closed or opened, the acceleration of all three

links is

a = -(T -(m,+m., +m3+m,)g)/(mt*ffi2+mr+ m,) (2.g)

z is the force applied to point A or c (see Figure 2.2); m,, m2, and m3 arethe masses of

links I ,2, and 3, and m, is the mass of the load of the claming device.

When the claming device is in the Distributed state, the acceleration of each link

is calculated as if they are in the Free state.

If the claming device is entering the Distributed state from the Free state, the

velocity of each link is calculated assuming the collision among the links is completely

inelastic, which is

v = (mrv, + m)v) + m3v3) /(m, + m) + m3 + m,) (2.e)

Because the claming device is symmetric along its vertical axis, when considering only

the claming device, there are no horizontal velocities. This is only a one-time-change that

happens when it enters the Distributed state from the Free state. Once the claming device

is in the Distributed state, the dynamics calculation uses equations for the Free state.

2.1.2 Algorithm of Switching among Working States

As mentioned above, the claming device has three working states and

corresponding dynamic equations: Free, Distributed and Full. Possible state changes are

listed in Table 2.3 as follows.

l4
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Table 2.3: Possible working state changes.

Previous Working States Next Possible Working States

Free

Free

Distributed

Distributed

Free

Distributed

Full

Full

Full

Distributed

In addition to a flag indicating working states, two other flags are used to reflect detaiied

working status of the claming device: one is flag 'Geo-Status', the other is flag .Load-

status'. The effect of these flags and their values are listed inTable2.4.

Table 2.4 Additional flags used in describing the working states.

Flag Name Effect Flag Status

Geo-Status Describing the geometric
status of the claming
device, either it reaches its
maximum or minimum
limit and cannot move
further.

Open

Close

In-range

Load-Status Indicating if the claming
device is carrying any load.

With-load

Without-load

l5
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Once the device is carrying load, even when it is operating within its geometry extremes,

it is still considered as working in either the Distributed state or rhe Full state depending

on its previous working state. This is because there should not be any relative movements

among the claming device's links when it is firmly carrying some load. This situation is

the same as using pliers to grip a solid object. Therefore, depending on the combinations

of working states and flags, the claming device changes its working states when certain

conditions are satisfied. This is shown in Table 2.5.

The change of the Geo-Status flag is done by examining the claming device's

geometric conditions. The change of the Load-Status flag is based on contact detection

and force monitoring. The flags are set as 'With-load' and "Distributed" when the

claming device bodies are in contact with the object and the previous working state is

Free. When it is in the Distributed state, the static force between its left bucket and right

bucket 0ink 2) is monitored. Once the force is lower than a certain value, we assume the

friction between the bucket and the load is too small to hold the object in place, so the

object is released and the claming device enters the Free state from the Distributed state.

Figure 2.6 shows the flow chart for changing the claming device's working state and

dynamics equations accordingly.

By changing the working states dynamically, the claming device can be modeled

mathematically. The behavior of the claming device is described by the dynamic

equations at any given time. Note that the dynamic equations are highly non-linear

because of collision of the claming device's bodies and the sudden changes of its working

status. For this reason we have to use avery small time step in our integrating subroutine.
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Table 2.5: conditions for the claming device to change working states.

Full

Previous Status

Flas Geo-Status

Open

Distributed

Close

In-Range

Flae Load-Status
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W ithoutload/Withoutl-oad

Free

Withoutload

Close

In-Range

WithLoad

WithoutLoad
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Tz>o

WithLoad

w

4>

thoutload

Ir=0

w

above 2 conditions violated

thoutload

T

a^ -at >o

WithLoad

:=0
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Full
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Full
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Full
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Distributed
Full
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Initialization

Change flag
'Load-Status'

Examine Previous working
state

Set flag 'Geo-status' and T¡,
T2 based on geometric

information and the cables'
status (loose, tightened)

Select appropriate set of
dynamic equations

Change working state flag as

per Table 2.3

Terminate
Simulation?

Chaprer 2. Modeling of the System

Fig.2.6: Flow chart for changing the claming device's working state and dynamics
equations.

2.2 Modeling of the Crane

The mobile crane used in this thesis is a P&H-T250 crane (see Figure 2.7a).Itis

considered as a hydraulic powered robot arm with three degrees-of-freedom. The upper
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cylinders. There are another two hydraulic motors located at the back of the carriage that

drive two winches to release or withdraw the cables connected to the claming device. By

changing the length of the two cables separately, the tasks of opening, closing, lifting and

lowering of the claming device are performed. The output power of these two motors is

different. The one with higher output power is called the main winch motor. Cable driven

by this motor is connected to point A of the claming device. This motor is responsible for

handling most of the load. The other motor drives the second cable, which is connected

with point B of the claming device through a pulley. This motor is called the auxiliary

winch motor. The boom, telescope and swing together with the main and auxiliary winch

motion are responsible for placing the claming device at the desired location in the

working environment.

2.2.1Linkage Dynamics

The dynamics model of the crane consists of the model of the linkage and the

model of the actuators driving the manipulator joints and winches. The linkages and

actuator dynamics are described in this section. Table 2.6 shows the physical parameters

ofthe crane.

Table 2.6: Physical parameters of the crane.

Swing Cab Telescopic Arm

Bounding Dimension (m)
(Length x widthx heieht)

4.0x2.4x I.4 9.7"0.4"0.6

Mass (kg) 1621 5400

Range of motion 0-360" Boom: 0-50o
Extension range: 9.7-24.4 m
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Chapter 2. Modeling of the System

The kinematics of the crane a¡e derived using the descriptive conventions

established by Denavit and Hartenburg (Schilling, 1990). Link coordinate frames

attached are shown in Figure 2.7b. The parameters for the model are shown inTable 23,

where Denavit and Hartenburg parameters, 0n, dr, dn and an are defined.

Table 2.7: Denavit-Hatenburg paramete¡s for crane model.

Link Variable en d, an dn home

0t 0t dt -A¡ 900 0

2 0z 0z 0 0 90" 900

J ds 0 Dj 0 0 dj

Using parameters defined in Table 2.7,the transformation matrix of each link is obtained

as follows:

fcosd,

o.:l'inl,

L;
f cos0,

I sin9.¿r=l 
o

Lo

0 sind,

0 -cosd,
10
00
0 sind,

0 -cos9,
10
00

-a, cosd,l

- a,sin0, I

or' 
]

(2.r0)

[r o o ol
lo I o olA.=l I' lo 0 I drl

[o o o 1]

where,4¡ is the transformation matrix that relates the coordinate frame of link i to the

coordinate frame of link t-1. Transformations { (i =1,2,3) of each link coordinate

frame with respect to the base coordinate system, {X6,,Y6,26}, are obtained by taking the

products of the .4¡ transformations.
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T, =ilA, (i =1,2,3)
I

The dynamics of the manipulator a¡e then defined by the following equations:

*oî 
o

(2.1 l)

(2.t2)

(2.r3)

(2.14)

333
r, =|Drd, +l\Duoe,eo + D, (i :r,2,3)

j=l j=t k=t

where

and

D'io = 
r=^..È*.,.r" 

* t(ffi t, #)
_ å -arD, =L-.0 g' # oro

p=i uu i

-Irro*Ioo*lrr,
2

I *v,

1.,,,

*oro

I rvo

Ior-Ior*Irr,

2

1,.
/'P

mo! 
o

Ir=, *rÍo
+l*"-1,-,

ffiozo

I-o

Jo =
.¿*

2
*oz 

o ffi,

r¡ is the joint torque/force at joint f, Jp is the pseudo-inertia matrix of link p,

g =lg, gy g= O]ris the gravitational acceleration vector in the base coordinate

system, and PÍo:bo ,, Zp O]t is the vector of the coordinates of the center of

gravity of link p with respect to the same link coordinate system. Dy represents the

coupling inertia between joints i and j. D¡r represents the Coriolis forces at joint i due to

velocities at joints j md k. Finally, D¡ represents the gravity loading at joint i (Paul,

1e8l ).
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Assuming the joint

0,çi =1,2,3¡ are known,

T=Fü
de

simultaneously for the three joint accelerations, ër, ë, and àr. These accelerations are

integrated to get the joint velocities and positions in simulation programs. Note that in

this case, d, is replaced with d, because joint 3 is a prismatic joint.

The relationship between the torque T at joinl 2 and, the effective actuation force

4 which is generated by the hydraulic cylinder, is obtained by applying the principle of

virtual work.

t .d0 = F .dX e.t5)

where d0 and dX denote the incremental changes in joint displacement at joint 2 and

piston displacement, respectively. Therefore, the joint torqu e T canbe calculated as:

Chapter 2. Modeting oJ'the System

torque/forces T,, joint positions 0, and joint velocities

the three equations obtained from (2.I2) are solved

(2.t6)

The joint displacement 0 and the piston displacement X are related by the geometrical

configuration. The mechanism ofjoint 2 is depicted in Figure 2.8. The dashed black lines

Fig. 2.8: Mechanism ofjoint 2.
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Chapter 2. Modeling of the System

denote virtual links. ä7 is the angle between AC and AE; ôz is the angle between AB and

AD. Both ä¡ and òz are constant. l, I, and l, are the length of link BC, AB and AC,

respectively. l, and /o are fixed.

In triangle ABC, we have:

I' = Ii + li +21 ol, cos(0 + 6, + ãr)

Taking the derivative of (2.17) yields:

,, # = -21 pl,sin(d + d, + 6rlff

l"l-M0.6,.Ð
t| + ti +21ol, cos(d + 6, + 6r)

Therefore, by submitting into equation (2.16) we have:

(2.17)

(2. i 8)

dl i,
dt

(2.re)

t=F (2.20)
t| + ti +2l rl,cos(d + á, + ár)

2.2.2 Actuator Dynamics

As illustrated in Figure 2.9, the hydraulic system of the P&H-T250 crane consists

of pumps and valves. An engine provides power to all pumps. As seen in Figure 2.9,

there are five individual pumps: one for the main winch, one for the auxiliary winch, one

for the swing, one for the boom hoist, and one for the telescope. Here we assume there is

no power supply limit, which means the engine is powerful enough to drive all 5 pumps

at the same time, and there is no flow constraint for each actuator. Therefore, there is no

coupling effect involved. Among the actuators, three of them are driven by hydraulic

motors. The others are driven by hydraulic cylinders.
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The hydraulic actuator model in this thesis consists of only the actuator itself and

its servo-valve (Merritt, 1967). Figure 2.10 shows a typical hydraulic cylinder with an

open center control valve. For this kind of actuator, the governing nonlinear equations

that describe the fluid flow distribution in the valve can be written in their simplest forms

as follows:

Q, = kwx (2.21)

(2.22)

(2.23)

Qu = l**

where Q" is the remaining pump flow back to the tank having an exit pressure P", p¡ and

Po are the input and output line pressure. Æ is the orifice coefficient and w is the area

gradient. The orifice dleãs ct¡, a, and ao wete assumed to be linearly proportional to the

normalized spool displacement, x.

The fluid compressibility equation is

Q,=Q-Q =k*(l-*¡rþ;r"

r=lro-e), V
p (2.24)

where P is the pressure in a control volume, C is the hydraulic compliance of the flexible

hoses connecting the valve to the actuator, / is the bulk modulus of the oil and V is the

volume of oil.

The force balance equation for a cylinder is

mX=P¡Ai-1A"-F-F, (2.2s)

where m is the mass of the cylinderrod, P¡and Poare the pressures in the two cylinder

chambers, A¡ and Ao are the piston areas on the two sides of the actuator, d is the viscous

damping of the cylinder and F, is the coulomb friction of the cylinder.
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For the hydraulic motor used for the winch and the swing, the goveming equations are:

T = D^(P,- P") (2.26)

where D^ is the volumetric displacement of the hydraulic motor and z is the torque

generated. The torque is transmitted through a gear train to rotate the winch and the upper

body of the crane. Power losses due to leakage are ignored in this thesis.

2.3 Integration of Crane and Claming Device

So far the claming device and the crane were modeled individually. However, the

claming device and the crane are related to each other. To solve this problem, based on

some assumptions, we can simplify the dynamics complexity incurred by the coupling.

The crane has an anti-swing mechanism that prevents the claming device from

swinging too much. As illustrated in Figure2.Il, the anti-swing mechanism includes a

spring roll and a steel chain connecting the claming device body. Through the steel chain,

the spring roll exerts a force on the claming device and brings it back to its neutral

position. With this mechanism, the swing motion of the claming device and the possible

rotation along the cables are greatly reduced. Furthermore, the operator can hardly

control both the crane and the claming device simultaneously. Control of the claming

device itself needs the operator to use his/her both hands. So when the crane is moving,

the status of the claming device always remains the same.

Based on the facts mentioned above, we assume that the claming device is part of

the crane arm if the length of the cables does not change. While the crane arm is moving,
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Fig. 2.1L: Anti-swing mechanism on the crane.

vertically below the crane arm tip. According to the position of the claming device

relative to the crane arïn, the inertia of link 3 of the crane model is recalculated. The

updated inerlia for link 3 is plugged in the pseudo-inertia matrix in equation (2.14)' This

means that the accuracy of the dynamics model is sacrificed in favor of simplicity of

calculation.
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Chapter 3

User Interface Design

In this chapter, the development of the simulation framework is explained in

depth. Based on the Microsoft Foundation Class (MFC), the framework adopts OpenGL

as the graphics Application Programming Interface (API) and provides interactive 3D

animation. First, the overall program hierarchy is discussed. Then, the method used to

create the scene is introduced. Reusable classes that wrap certain OpenGL functions to

hide the complexity of maneuvering primitives and texture mapping, are also described.

Finally, the method of signal collection and collision detection with Critical Mass Lab's

Simulation Toolkit is illustrated. The framework is not specific to this simulation.

Virlually any interactive simulation can be built on this structure.

3.L Overview of the Simulation Program

The goal of this thesis is to develop a simulation program with a suitable graphics

user interface. Users control the virrual machine with a set ofjoysticks in the same way

as they do on a real machine. The users are placed in the loop of a real-time simulation,

immersed in a world both autonomous of and responding to their actions. Figure 3.1

shows a picture of the whole simulator.

For shorter development time, this program is built based on the Microsoft

Foundation Class (MFC) Library and adopts the classic Document/View structure

(Microsoft, 1998). MFC is an "application framework" for programming in Microsoft

Windows. MFC provides much of the code necessary for managing windows, menus,
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technology. For the graphics, OpenGL was chosen. For the distributed computation,

Common Object Request Broker Architecture (CORBA) technology is employed.

Figure 3.2 shows the diagram of the system. Arrows represent the data flow

direction. The dynamics calculation module simply gets the control signals generated by

the view module and computes the fun¡re states of the machine. The view module is

responsible for interacting with the user. Control signals and user commands a¡e

collected via the joysticks and/or keyboard and are directed to the dynamics calculation

module. The view module also continuously updates the graphics of the working

environment and the machine on the screen, and thus produces the animation.

Dynamics Calculation Module View Module

Fig. 3.2: System diagram.
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3.2 Drawing with OpenGL

3.2.1 Introduction to OpenGL

Silicon Graphics Inc. has developed OpenGL (short for "Open Graphics Library")

as a successor to the IRIS Graphics Library (IRIS GL). IzuS GL is a hardware

independent graphics interface that has been implemented on numerous graphics devices

of varying sophistication. OpenGL has a 3D rendering philosophy similar to IRIS GL,

but it has removed outdated functionalify and replaced it with more general functionality

making it a distinctly new interface (Kilgard 1995). In 1992, OpenGL was proposed as a

standard for 3D graphics and the industry consortium known as the OpenGL

A¡chitectwal Review Board (ARB) was formed. Cunently the use of OpenGL is free of

charge. Applications developers do not need to license OpenGL. Hardware vendors that

create binaries to ship with their hardware are the only developers that require a license.

OpenGL provides a layer of abstraction between a graphics hardware and an

application program. To the programmer, it is visible as an Application Programming

Interface (APÐ consisting of about 120 distinct commands. To maintain good

performance rates the OpenGL API allows complete access to the graphics operations at

the lowest possible level that still provides device independence. As a result it does not

provide a means for describing or modeling complex geometric objects (Segal, 1993).

OpenGL commands specify how a certain result should be produced rather than what

exactly the result should look like, i.e., OpenGL is procedural rather than descriptive.

OpenGL uses immediate mode rendering; when the graphics system is used to create a

scene or object, each function and command has an immediate effect on the frame buffe¡

and the result of each action is immediately visible on the screen. The designers of
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OpenGL present the graphic system as a state machine. The routines that OpenGL

supplies provide a means for the programmer to manipulate OpenGL's state machine to

generate the desired graphics output. The programmer puts the machine in different

states/modes that remain in effect until helshe changes them. The programmer can at any

time query the system for the current value of any of the state variables. The OpenGL

API is defined in terms of the C programming language, but bindings for several other

languages exist. Currently the Architectural Review Board cont¡ols C, C++, Fortran,

Pascal, and Ada binding specifications. However, several unofficial bindings exists for

other languages, e.g., Java, Tcl/Tk, and Python (ftreider et al. 1993).

OpenGL and Direct3D are both 3D graphic APIs. Direct3D is for Windows only

while OpenGL is cross-platform. For games, both are equally fast and feature-rich. For

professional 3D graphics, OpenGL is used almost exclusively. As predicted in PC

Magazine (Ozer, 1998), currently standard desktop machines are being generally

equipped with 3D accelerator cards, with performance levels on these machines reaching

the level of performance on previous high-end workstations. Therefore, OpenGL is

becoming more popular.

Typically an OpenGL program starts by creating a window, and a corresponding

framebuffer, in which the screen picture will be drawn. Next, the programmer can display

basic geometric objects like points, lines, or polygons, and he or she can assign colors

and materials to these. More complex objects can be put into a display list, which can be

used later as a single object. OpenGL does all the display processing; it uses objects'

attributes and 3D world attributes (such as light sources or orientation) to produce a 2D

image in the framebuffer. Since it is only a renderer and not a modeler, 3D models are
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typically first modeled using modeling software such as AutoCAD or 3Dmax; and are

then imported into the OpenGL application.

3.2.2 Setting up an OpenGL Framework for Windows

Because this simulation is built upon the MFC and adopts the document/view

structure, it is very natural to take advantage of the CView Class and extend its functions

to make an OpenGL framework for Windows. Therefore the reusable COpenGLView

class and, later, the CColorView class are derived from the base CView class. Six basic

steps are required to use OpenGL in a Windows program:

. Getting a device context (DC) for the rendering location

o Selecting and setting a pixel format for the device context

o Creating a rendering context (RC) associated with the device context

o Drawing with OpenGL commands

o Releasing the rendering context

. Releasing the device context

Detailed information about device context and rendering context can be found in

Microsoft's Foundation Class technical documentation (Microsoft, 1998). The

COpenGLView class implements these steps in appropriate member functions and

provides transparent OpenGL encapsulation for programmers. Figure 3.3 shows the

schematic framework of using OpenGL in a CView derived class with MFC. The MFC

framework calls the OnCreate member function when an application requests to create

the window. This function then calls InitializeOpenGl that does most of the initialization
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Fig.3.3 Schematic framework of using OpenGL in a CView derived class.

wotk, including choosing the pixel format, obtaining the Device Context (DC), creating

an Rendering Context (RC) from the DC, and finally making the RC current. Once the

RC is created properly, the application can use OpenGL commands to draw into a

specific area in a window. Finally, when the user terminates the application, MFC

framework calls OnDestroy, which frees up the occupied resource by deleting both RC

and DC.

The setupPixelFormat (¡ function chooses a pixel format for the OpenGL

renderer. Pixel formats are the translation layer between OpenGL calls and the rendering

operation that Windows performs. The capabilities of an OpenGL window depend on the

pixel format selected. The available pixel formats depend on the implementation of

OpenGL that is running, the current video mode in which Windows is running, and the

video hardware installed. The developing environment for this simulation is as follows:

o Operating system: Windows 98
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Color mode: 32bit (true color)

. Video Card: Creative 3D Blaster Annihilator with NVDIA's GeForce 256 chipset

When the simulation program's View object is being constructed, the above pixel will be

put as an argument to the win32 function choosepixelFormat o. The

ChoosePixel-Format O function finds an appropriate pixel format supported by a

device context closest to the given pixel format. Then setpixelFormat. O is called

with the found pixel format to set it as the specified device context's current pixel format.

In this way, the simulation can always get the best possible pixel format available from

the specific platform on which the program is running.

3.2.3 Creating the Animation

Animation is a series of pictures being drawn continuously. There is more than

one way to set Windows to draw repeatedly. The first method is to use a timer within

program. For example, every 30 milliseconds the timer sends a message calling the

drawing routine to do the rendering. This method is not effective in this study. Firstly, the

Windows timer has a resolution about 55 milliseconds, i.e., the maximum refresh rate is

20 frames per second, which is insuffrcient for smooth animation. Secondly, the

Windows timer message has the lowest priority to be processed. In the application

investigated in this thesis, the user keeps sending Windows keyboard or joystick events,

thus the processing of the timer event will be delayed further. Windows does, however,

have a higher resolution timer called 'multimedia timer'. It is accurate up to I

millisecond without any time lag. Therefore, a multimedia timer was used to collect
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control signals in this thesis. Here the graphics rendering and control signal collecting are

not combined together.

This simulation employs a simple yet efficient method to generate animation. At

the end of the scene rendering, the window is invalidated and a message is sent to repaint

it. This message will be put into the message queue and processed when it is time to

repaint. The code to achieve this is:

if ( m_bAnimaLionRunning )

{

/ /draw subrout.ines
Inval-idateRect (0, FALSE) ;
GetParent O ->PostMessage (hlM PAINT) ;

)

The above code does the following tasks: if the animation is current running, after issuing

all the drawing commands, it posts a message to tell Windows that the entire client area is

invalid and needs to be redrawn. The message remains in the message queue until it is

processed. The advantage of this approach is that it allows Windows to do other

background processing while continuously updating the animation. In this simulation, it

allows other tasks like control signals collection to be performed simultaneously. This is

also an adaptive way to ensure that the animation won't cause problems on lower speed

computers. The drawback of this method is that it simply invalidates the whole client area

to force Windows to redraw the entire scene, which is sometimes inefficient. Rendering

can be faster with this method if the specific area of the scene that needs to be redrawn

can be determined and specified in the InvalidateRect O function.

3.2.4 Scene Construction

A scene may consist of many objects. Every 3D model will eventually become 2D

images in a buffer and be shown on the screen. In other words, because the screen is a
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raster device, any 3D model must be transformed into a set of points with colors in

memory. OpenGL performs this job. It accepts commands specifying how a certain result

should be drawn on the screen. Specified in OpenGL's model coordinate system, a vertex

goes through a number of steps before it turns up as a pixel on the screen. Figure 3.4

shows the steps that a vertex goes through on its way to the screen buffer. The final result

of the vertex is a combination of its color, material, lighting effects, texture if any, and

results of blending. In this sense, OpenGL is more of a renderer than a modeler. A

complex model can consist of tens of thousands of vertices, lines or polygons. Primitives

like points, lines and polygons can be drawn using OpenGL. These basic shapes are to be

combined to build the required 3D image.

Object Coordinates

Eye Coordinates

CIip Coordinates

Device Coordinates

Vertex Coordinates
(x, y, z, w)

Modelview
Transformation

Projection
Transformation

Perspective
Division

Viewport
Transformation

Fig. 3.4: Transformation of a vertex into window coordinates.
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To construct the scene, all 3D models are first created in AutoCAD and then

imported into the simulation program in form of display lists. A display list is a group of

OpenGL commands that have been stored for execution. In that list, all of the vertices,

lighting, calculations, textures, and matrix operations stored are calculated when the list

is created. Only the results of the calculations are stored in the display list. When the

display list is called, the results can be used directly. Because this program draws the

object parts repeatedly, using a display list can increase the rendering speed significantly.

Objects created in AutoCAD are saved in 3DMax's 3ds format. Then, the data is

extracted from the 3ds file. Tables are created to hold the details of the vertex

coordinates, normal coordinates, texture coordinates and different materials. The data

structure is shown in Figure 3.5. When the program creates the display list, it first

initializes all the textures. All bitmap files in the texture table are loaded sequentially.

OpenGL textures are generated from the bitmaps and bound with a texture narne for later

use. Next, the program reads data from the face table, where indices of vertex, normal

and texture coordinates are stored. Base on the data, a set of GL commands is executed to

generate the display list. The flow chart for generating the display list is shown below in

Figure 3.6.

Geometric shapes fall mainly into two categories: those that consist of a

combination of elementary geometric surfaces and those that cannot be expressed with

primitives. Since it is difficult to model the cables directly with primitives provided in

OpenGL (such as line segments), another tool is used here to represent the deforming

curves ofthe cables.
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¡ number of normals

t,t,

lpxturg/Coordinate

N: number of textu¡e
coordinates

I griangles

P: number of texture used

Material Table

Normal Coordinate

Coordinates(x,y,z)

{0.1,0.5,0.6}

Coordinates(x,y,z)

{0. 1,0.5,0.6}
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I

I
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Index Ambient, diffu se, specular, emission,alpha, te-xtttnedp
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a

Q = number of materials

Fig.3.5: Data structure for constructing triangle mesh.

40



Chapter 3. User Interface Design

Prepare all the data tables

Initialize texture

Texrure Table

Generate display list name

Begin to generate list

Are all the triangles

Process the next triangle
and select the

corresponding material

End of generating list

Material Table

Fig.3.6: Algorithm for generating display list.
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The tool is called Non-Uniform Rational B-splines (NURB) (Farin, 1990). Although the

program keeps tracking to which extent they are loosened or tightened, it doesn't make

much sense to precisely show the shape of the cables based on these values. Modeling of

loose cables can be a complicated topic in and of itself. Here the loose cables are only

graphically shown.

As illustrated in Figure 3.7(a), there are four cable segments that are represented

by the NURB curves: the lower parts of the two upper cables and two lower cables. The

NURB curve of the upper cables are modeled as curves of order 4 (Farin, 1990). As seen

in Figure 3.7(b), five control points are defined for each of them, namely cl to cs. The

knot vector is {0.,0.,0.,0.,0.5,1.,1.,1.,1.}, so the curve coincides with control points c1 and

c5. When the program detects that the cables are getting loosened, based on how much

they loosen, control points cz and c4 rnov€ from their original positions with an offset.

The offset is proportional to how much the cables are loosened. In this way, although the

lengths of loose cables are not precisely shown in the simulation, the users can still see

how much the cables are getting loosened. For the lower cables, it is almost the same.

The only difference is that the lower cables are modeled as curves of order 3 with 3

control points.

In order to construct a realistic scene, there are other tasks that have to be

completed. These involve modeling of the scene, creating light sources, selecting proper

lighting model, defining material properties, blending two or more objects to obtain

special effects, and so on.
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(a) (b)

Fig. 3.7: (a) Cables layout; (b) control points for upper cable curve.

3.2.5 Scene Viewing

Once the scene is constructed, it is very convenient to view the scene from any

desired angle. Multiple views are employed to build a better human-computer graphics

interface. Five views have been generated for this simulation. They are called Full View,

Top View, Window View, Focus View and Total View. User can switch from one to the

other very easily with only a button click. The purpose of the view design is to facilitate

the user with better knowledge of the working status of the claming device and crane so

that they can be familiarized with the machine operation more quickly. The fìve views

are described below:

<l> Full View.The crane and the claming device together with the working environment

are shown in this view. The user can view the operating machine from any angle.

Upper Cables

/

Straight line

NURB curve

Lower Cables

CNURB curves)

CT

c2H

c3+

c.¡ Ålc¡

csÅ
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3.3 Control Signal Collection

As illustrated in Figure 3.13, the user interacts with the virtual machine with

certain input devices. input devices are used to produce control signals to the crane as

well as the claming device. On the actual machine, the operator uses 5 joysticks to

control its functions. Each joystick corresponds to one of the motions of the swing. the

boom, the telescope, cable one and cable two of the claming device. The control of the

virtual claming device is done with one multi-axis joystick and two single axis joysticks.

This is analogous to the real operation of the claming device. The joystick used for

controlling the virtual crane is a WingMan Extreme Digital 3D model from Logitech Inc.

The handle of the joystick provides four axis of rotations, seven programmable buttons,

and an 8-way hat switch.. Non-occupied axis and buttons might be used for the claming

device or other usage. The single-axis joysticks are Model 220 with trigger style pistol

grip from P-Q Controls lnc. The output of the joysticks ranges from -5 volts to +5 volts.

A CIO-DASI602|16D|^-A{D board converts the analog outputs of the handles into

digital signals. The layout and functions of the joysticks are shown in Figure 3.13.

goo, -' ..1:".'.':'.:Þi:;;.---)-

View reset

ì
Swing

Vierv angle change

View change

Fig. 3.13: Joysticks used for crane and claming device control.

47



Chapter 3. User Interface Design

All control signals are collected by the PC as discrete signals. The sampling rate

should be sufficiently small and constant to ensure stable performance of the simulation.

The normal timer service provided by the MFC is not appropriate in this case because of

poor resolution (minimum 50 ms on a PC running Windows 98) and lack of consistency.

The normal timer message has a low priority so the processing of this kind of message

could be delayed. Multimedia timer services allow applications to schedule timer events

with the greatest resolution possible for the hardware platform.

Timer events are started using the timeSetevent O function. This function

returns a timer identifier that can be used to stop or identify timer events. A periodic

timer event occurs every time a specified number of milliseconds has elapsed. The

interval between periodic events is called the event delay. Here the event delay is

manually set to be 50 milliseconds. The relationship between the resolution of a timer

event and the length of the event delay is important in timer events. 'With a resolution of 5

milliseconds and an event delay of 50 milliseconds, the timer services notify the callback

function after the interval ranging from 45 to 55 milliseconds. So the sampling frequency

is approximately 20H2. When processing the timer event, the program queries the state of

each button and handles, and then converts the states into specific values. Based on these

values, the program switches the views, changes the viewpoints, and controls the virtual

crane and the virtual claming device.

3.4 Further Improvement of the Graphics

In the mathematical model of the crane and claming device, the swinging motion

of the claming device is generally ignored because of the increased complexity of the
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model despite a minor impact on the simulation results. However, without showing this

behavior, the claming device is like a rigid body attached to the crane. This seems very

un¡eal. Critical Mass Lab's simulation toolkits consist of a Dynamics toolkit and a

Collision toolkit (MathEngine, 2001). With these two toolkits, the swinging motion can

be graphically simulated, as well as more natural behavior of other objects in the

environment. Moreover, since collision detection plays a vital role in an interactive

simulation, the addition of collision detection capability can lead to much more complex

interactions between the machine and working environment. For systems where objects

are rendered as polygonal meshes, collision detection is performed by detecting

intersections between polygons (Garcia-Alonso et al.; 1994). Simulations of situations

such as picking up a log or some other object can only be implemented with collision

detection.

3.4.1 Critical Mass Lab's Simulation Toolkit

The Dynamics Toolkit (MdÐ is designed to provide a set of functions for

simulating rigid body behaviors. The Collision Toolkit (Mct) is designed to detect

contacts among geometrical bodies in a certain space, and the Simulation Toolkit (Mst)

acts as a bridge between Mdt and Mct, automates the process and manages memory

usage. In this thesis, both the dynamics and collision toolkits are used.

Dynamics Toolkit:

All bodies are treated as rigid bodies in the Mdt. Rigid bodies represent objects

that have finite extent and never deform at all. They are defìned with fundamental

physical properties as well as extra physical properties such as surface conditions.
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Physical properties are mass and inertia tensors. Surface conditions are friction and

restitution coefficients. Rigid bodies have kinematic attributes describing their position

and movement. Net applied forces and torque are also attributes of rigid bodies in the

Dynamics Toolkit.

Collision Toolkit:

The function of the Mct is quite straightforward. It determines whether any two

bodies a¡e in contact. The Mdt may then uses this contact information to make the two

bodies behave appropriately.

3.4.2 Generation of Swinging Motion

Since we are only interested in the swinging motion of the claming device, it is

not necessary to model all the objects in the scene. To generate the swinging motion, only

two Mdt bodies need to be created. As seen in Figure 3.14, Bodye is attached to the crane

arm tip, and Body¡ represents the claming device. A spring joint is used to connect these

two bodies. The spring joint is set with two hard limits, which means the spring cannot be

stretched or compressed, so that it acts like a steel cable. The position of Bodys and the

length of the spring joint are updated continuously, according to the positions of the crane

arm tip and the claming device, respectively, at every time step. The Mdt is responsible

for updating the position of Body¡ based on the intemal dynamics calculation. Body1,

which represents the claming device, can rotate freely with respect to Bodys. In this way,

the claming device is seemingly hanging below and swinging under the crane arm tip,

and a real swinging motion is generated.
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Drawing of the swinging cables and the claming device is implemented in a

subroutine. The subroutine draws the cables and the claming device along the current

coordinate system's Y axis. The upper points of cables are located at the origin of the

coordinate. When drawing the swinging claming device, the program simply rotates the

cunent coordinate and then calls the drawing subroutine. Based on the relative position

between Bodye and the Body¡, the rotation matrices are calculated. As seen in Figure

3.14, coordinate q represents the object coordinate before rotation; coordinate q

represents the object coordinate after rotation.

Bodyo oí

Zí

Spring Joint

zo

Fig. 3.14: Models for swing motion generation.

The orientation of the claming device is defined by two normalized vectors, û

and r¡. Ûaligns with vector cÉ. y' is defined as perpendicular to the plane ABC and

pointing outwards. Because the initial orientation of the claming device, which is

represented by the vector Û'and tt', is known, (Û' aligns with vector cú. rl is

perpendicular to plane ABC' andpointing outwards) The desired rotation matrix is easily

Yo

I
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obtained by combining two rotation matrices: M:M tMz, where Mt is the rotation matrix

that rotates Û' to Û , and M2 is the rotation matrix that rotates rl to rt. Note that here the

sequence of multiplication does not affect the final result because the two vectors Û, z

and u', rr' are perpendicula¡ to each other. The MathEngine toolkits provide a few

methods to facilitate the calculation of the rotation matrices M¡ and Mz. The function

MeQuaternionForRotation returns quaternion A, which rotates vector A to vector B

along a vector perpendicular to both of them. Another function,

MeQuaternionToTM O , converts the quaternion to rotation matrix.

3.4.3 Pick-and-Place Simulation

The virtual claming device should be able to perform pick-and-place tasks when

the simulation program runs. This is accomplished via contact detection using Mct. Only

some of the object pairs are of interest to perform contact detection. Currently, contact

information is required only for pairs like the claming device and the load, or the load

and the working environment (the hydro dam). Collision models for the load can be in

any shape, for example a cylinder representing a piece of wood, or a particle system

representing a pile of debris. An object with a ball shape is put into the simulation as the

load for convenience, which can be replaced by some complex models later. The

collision models' composition for the claming device and working environment are

shown in Figure 3.15. The claming device's collision model includes two identical parts,

left half clam and right half clam. Each of them is composed of four ConvexMesh type of

primitives denoted by A, B, C and D. Both parts associate with the same dynamic body,

Body1. The collision model for the working environment is composed of three Box type

52



Chapter 3. User Interface Design

and one Plane type of primitives. The working environment collision models are set as

static models because of the fact that they never move to save some computation cycles.

The claming device's collision model is much simpler than its graphics model. The

Contact detection process would be costly if the graphics model, which is composed of

thousands of triangles full of details, is used directly as the collision model. The

simulation shows that the simplified collision model coincides well with its graphic

representation.

(a) (b)

Fig. 3.15: Collision models for: (a) left part of claming device; (b) working environment.

The coordinates of the collision model have to match that of the 3D graphics

model and the associated dynamic body. This involves a three-way synchronization

among the dynamics models for dynamics calculation, the graphics model rendered on

the display, and the collision model used for determining contacts. As illustrated in

Figure 3.16, the synchronization is done by data sharing among different modules. After

the Runga Kutta integration subroutine, the dynamics calculation subroutine yields the

geometry data of the crane's status, i.e. 0r, 0,, d3, and that of the claming device, i.e. /
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and a. / is the length of the tightened cable defìning the position of the claming device,

and a describes the opening angle of the bucket. From the crane's geometric data, the

position of the crane arm tip is determined. The Mdt body dynamics calculation module

takes this information to update the position of Body6. The output of this module is the

updated position and orientation of both the claming device and the load. Finally the

geometry data of all objects in the scene is shared by the contact detection module and

the rendering module. Both modules need to know precisely the position and the

orientation of all the objects with which they interact.

Fig. 3.16: Synchronization by data sharing among different modules.

Crane Dynamics
Calculation Module

Claming Device Dynamics
Calculation Module

Claming Device Geo Info

Load Position and Orientation

Claming Device Position and Orientation

Mct Contact Detection Module
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Chapter 4

Distributed Computation with CORBA

Performance for a real-time simulation is critical. If the computation of dynamics

cannot be done within a specified time or the refresh rate is too low, users may

experience un¡ealistic visual effects. The dynamics calculation of the crane and the

claming device is very computationally heavy because of the small integration time step

required. Thus, the simulation needs to run on powerful machines. With the popularity of

computer networking, however, it is possible to share the burden with multiple

computers. This simulation can take advantage of the network and distributes the

computation to more than one computer. Therefore, employing network computation

lowers the requirement of the hardware platform on which the simulation runs.

Recent advances in commercial software have motivated the development of an

appropriate scheme for this real-time simulation. One of them is the advent of Common

Object Request Broker Architecture (CORBA) stzurdards for distributed objects. The

CORBA standards have emerged as a promising basis for enabling the development of

heterogeneous distributed object-oriented systems. The CORBA architecture provides a

high-level location-transparent language-independent software bus through which a client

object can call the operations of another object (remote or local) without any knowledge

of either the location of the server object or the way the server object is implemented

(Kim, 1998). Built on top of CORBA technology, a simulation is divided into service

provider and service receiver. As a service provider, one computer can serve many other
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computers that need the service. A well-designed structure offers both flexibility and

robustness against netw'ork time lags.

4.1 System Analysis

The system structure and data flow are shown in Figure 4.1.

Contact In

rl
It

Dynamics Calculation Module Graphics Module

Fig. 4.1: System structure and data flow.

There are two major objects in the dynamics calculation module: the crane object

and the claming device object. The dependency relationship between these two objects is

that, at each time step, the crane object needs information about the claming device's

working state in order to update its dynamic parameters. The data exchange between the

graphics module and dynamics module is also shown in Figure 4.1. The graphics module

receives the user's inputs via joysticks and keyboard, and then it sends them to the

dynamics calculation module. Contact information from the contact detection subroutine

in the graphics module is also sent together with the control signals. In return, the

dynamics calculation module sends the geometric information back to the graphics

module, which is used to construct the scene.

I Ctrl. Signal i
lt
tt
I Geo. Info. iClaming Device

Dynamics Object
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An integration subroutine is put into the dynamics calculation loop and

numerically integrates the differential equations. Because of the high stiffness. the

integration time step must be very small. Thus, the dynamics calculations are relatively

time-consuming. If the dynamics calculation and image rendering are put into a single

thread and executed sequentially, based on our tests, the results are not acceptable on a

desktop with a Pentium III 550 MHz CPU, which represents a middle class computer in

today's market. One possible solution is to use multiple threads of execution to achieve

concrurency. Figure 4.2 shows the proposed program layout.

Fig, 4.2: Simulation using multi-threads.

When implemented on the same computer, the animation refresh rate increased from 2 or

3 frames per second (FPS) to an average of 15 FPS. But the computation time for 50

milliseconds of dynamics took more than 100 milliseconds on average. In other words, it

cannot meet the real-time requirement. This configuration will greatly benefit from a

computer with multiple CPUs. The same program will run faster on more powerful

machines, but it is more cost effective to have it run on common desktops. This is

feasible with the dramatically improved efficiency and processing power offered by the

concept of distributed computing.

Distributed object computing extends an object-oriented programming system by

allowing objects to be distributed across a heterogeneous network, so that each of these

Contact
Detection

and
Rendering

Th¡ead

Crane
Dynamics

Calculation
Thread

Claming
Device

Dynamics
Calculation

Thread
Geo. Info. I fnrea¿ | Info.

57



Chapter 4. Distributed Computation with CORBA

distributed object components interoperate as a unified one. These objects may be

distributed on different computers throughout a network, Iiving within their own address

space outside of an application, and yet appeil as though they were local to an

application. The communication between the distributed objects can be implemented

using standard Transfer Control Protocol/Internet Protocol (TCpiIp) and User Datagram

Protocol (UDP). This involves low level socket programming that is buried deeply in the

source code and hard for other programmers to understand. In the case presented in this

thesis, the interface of each object is designed with less data flow use in mind. Since the

amount of data passing between the different parts is relatively small, we decided to

distribute the interacting objects at a higher level.

Th¡ee of the most popular distributed object paradigms are Microsoft's

Distributed Component Object Model (DCOM), the Object Management Group's (OMG)

CORBA and JavaSoft's JavalRemote Method Invocation (JavalRMI) (Box, lgg7,

V/ollrath et a1.,1996). Since JavalRMI can only be implemented using Java, and because

of its dynamic interpretive nature, it will probably never have the same perfornance as a

compiled CIC++ code. For an application with a critical time requirement such as the one

in this thesis, Java was not considered. CORBA and DCOM have many similarities. They

are both platform and language independent, and supporting static zurd dynamic object

invocation. The reasons for choosing CORBA are as follows:

o Binary compatibility is not needed. The only language used in this thesis is C++,

which has excellent CORBA support.

o A CORBA program is more portable on different operating systems. On the other

hand, DCOM relies on Win32 specific features such as the system registry. Using
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CORBA may increase the usability of the simulation program if later the server is

ported to a Unix system.

. CORBA is free to use on both Windows and Unix platforms, while DCOM will

incur a cost on Unix.

using coRBA, however, does have some drawbacks. current coRBA

implementations incur extra overheads from data copying, inefficient server

demultiplexing techniques, long chains of intra-ORB function calls, and non-optimized

buffering algorithms used for network reads and writes. Some investigations have been

done to alleviate this problem (Gokhale and Schmidt, 199S). In this thesis we tend to

minimize the data flow in the remote function calls, therefore reducing some of the

overhead.

4.2 common object Request Broker Architecture (coRBA)

4.2.l.Introduction

"The CORBA specification, written and maintained by the Object Management

Group (OMG), supplies a balanced set of flexible abstractions and concrete services

needed to realize practical solutions for the problems associated with distributed

heterogeneous computing" (Hewring, I 999)

The OMG rvas formed in 1989 to address the problems associated with

developing a portable, heterogeneous application distribution system. The OMG

produced a set of specifications, called the Object Management Architecture (OMA),

which has at its core the CORBA specification. The OMA specifies how distributed

objects are handled in a platform independent way and how these objects are able to
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interact with one another. The OMA is split into two related models: the Object Model

and the Reference Model.

The Object Model specifìes how the interfaces of the distributed objects may be

described in a platform-independent way. It describes an object as an encapsulated entity

with an immutable distinct identity whose services are accessed only through well-

defined interfaces. Clients use an object's services by issuing requests to the object

(Henning, 1999). The implementation of these services is not important to the calling

object and, along with the location of the object, is not directly accessible.

The Reference Model describes how the distributed object interaction is achieved

across heterogeneous networks. It provides interface categories that are general groupings

for object interfaces. An Object Request Broker (ORB) conceptually links all of these

interface categories. The ORB transparently facilitates the communications between the

objects, and activates them (if necessary) when they are requested. The Reference Model

defines several categories of interfaces. They are all linked together using the ORB

communications infrastructure.

4.2.2 General Request Flow

Figure 4.3 shows the abstract data flow model for a client application making a

request of a server application. Request passes from client to server as follows:

(1) The client has a choice of two options when making a request. The request can be

passed to the ORB through either the static stubs or the Dynamic Invocation Interface

(DII). The static stubs are compiled into the object's interface implementation whereas

the DII allows object interfaces to change during runtime. The DII also allows for an
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addition of new objects during runtime. For the majority of cases similar to this

simulation program, the static stubs are sufficient, since the object interfaces are known

at compile time.

(2) The client ORB dispatches the request to the server ORB using the networking

infrastructure.

(3) The server ORB, on receiving a request, dispatches the request to the object adapter

that is responsible for creating the target object.

(a) The client side object adapter then contacts the servant on the server

implements the target object. The server also has the choice of a static

invocation mechanism when contacting the servant.

(5) After the servant has executed the request, the retum values are passed

caller object in the client.

side, which

or dynamic

back to the

Client Application

Server ORB Core

Client ORB Core

Fig.4.3: Data flow in CORBA model.

CORBA also implements several different types of request:

Synchronozs: Dispatching a synchronous request causes the client to block until a

return value is received. This form of request is identical to a remote procedure call.
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Deferred Synchronous'. In this case, the client makes the request, continues

processing and later polls for the response.

o Oneway: This is the best effort type of request where the client is not assured that the

request will be received by the server. The client simply sends oneway requests to the

server, and then continues executing the subsequent codes.

4.2.3 Operation Invocation and Dispatch Facilities

CORBA applications operate by receiving/invoking requests on CORBA objects.

Within this context, the OMG specifies two general approaches:

' Static invocation and dispatch: Here, the IDL is translated into language specific 'stubs'

and 'skeletons', which are then compiled into the application programs. This gives the

application static knowledge of the programming language data types and functions

mapped from the IDL definitions of the remote objects. The stub is a client side object

that allows the request to be made to the remote object via a normal function call. In C++,

the stub is a member function of a class called a 'proxy' that represents the remote target

object in the local application. Similarly, the skeletoz is a server side object that processes

the request and dispatches it to the appropriate servant function.

' Dynamic invocation and dispøtch'. Here, the construction and dispatch of CORBA

requests is handled at mn-time rather than at compile-time. Information about the

interfaces and types of the remote objects is obtained either from a human operator or

from an Interface Repository (IR), which is a CORBA service that provides run-time

access to IDL definitions.
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4.2.4 lnter-ORB Protocols

The communication protocol between ORBs from different venders was

standardized with the General Inter-ORB Protocol (GIOP). GIOP specifies transfer

syntax and a standard set of message formats to allow independently developed ORBs to

communicate over any connection-oriented network. The Internet Inter-ORB Protocol

(IIOP) is a GIOP implementation over TCP/IP and must be supported by all ORBs thar

claim CORBA compliance. Additionally, ORB interoperability requires the use of a

standard object reference format. While object references are opaque to the applications

that use them, they contain information that all ORBs must be able to understand in order

to communicate with the desired object. The standard reference format is called

Interoperable Object Reference (IOR) and remains flexible enough to support any GIOP

implementation. The IOR identifies one or more supported protocols and, for each

protocol, encapsulates the data required to contact the server using that particular

protocol.

4.3 CORBA Implementation towards Real-time Simulation

4.3.1 IDL Modeling

Definitions of the interfaces to objects can be defined in two ways. Interfaces can

be defined statically in an interface definition language, called the OMG Interface

Definition Language (OMG-IDL). This language defines the types of objects by

specifying their interfaces. An interface consists of a set of named operations and the

parameters specific to those operations. Alternatively, interfaces can be added to an

Interface Repository service. This service represents the components of an interface as
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objects, permitting runtime access to these components. In this thesis, all objects are

defined using IDL.

The terms server and client have only relative meanings. A server is a passive

entity that offers a service and waits for requests from clients to perform that service. A

client is an active entity that obtains service from servers. Here, we call the application

where the computation of the dynamics takes place a Service Provider (SP) and the

application that performs mainly rendering tasks a Service Receive¡ (SR). Both the SP

and the SR can act as a client or a server.

The interfaces for the SP and SR respectively are defined in IDL as follows:

For the SP:

module CLAl,f
{

t.ypedef float ControISignal [5];

interface CraneClam
{

oneway void GetControlfnput (in ControlSignal.
vol-tages ) ;

void unsubscribe O ;
I; // interface CraneClam

interface CraneClamAdmin
{

CraneCl-am subscribe (in CraneClamCl-ient ctientRef ) ;

I; // interface CraneClamAdmin

J; // module CLAM

For the SR:

module CLAM
{

typedef fl-oat DisplayData[8] ;

interface CraneClamClient
{
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oneway void getDisplayData (in DisplayData Data) ;

\; // interface CraneCIamClient

l; // moduLe CLAM

The SP contains two interfaces: one is called craneclam; the other is called

CraneClamAdmin. CraneCl-am is the interface of the dynamics calculation object. The

operation GetControllnput takes a parameter of type Control-Signal- as its single

argument. No output parameters are provided. The ConLroISignaÌ data type is actually

an alray of five floating point numbers. The elements in ControlSignal are all voltage

signals to the proportional values of [0] crane's swing motor, [1] crane's boom cylinders,

[2] crane's telescope cylinders, [3] claming device's main hoist motor, and [a] claming

device's auxiliary hoist motor. The other operation defined in this interface is called

unsubscribe, which takes no input argument and is simply used to disconnect the existing

connection between the SP and the SR. CraneClamAdmin is an interface of a factory

object. A factory object provides access to one or more additional objects. In this

application, all SRs that want to utilize the service of the craneClam object have to ask

the factory object CraneClamAdmin to produce one for them. The operation defined in

CraneClamAdmin, subscribe ( ) , takes a reference of CraneclamClient and retums

a reference of craneclam. The CORBA reference will be explained later in this chapter.

The SR contains only one interface, CT,AM. getDisplayData is the only

operation defined in this interface. It takes in an array of floating point numbers. The

meaning of each element in the array is listed in Table 4. 1.
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The interaction among the interfaces is shown in Figure 4.4.

Subscribe( )

Fig. 4.42 Interactions between interfaces.

Operation GetControl lnput in interface CraneClam and operation

getDisplayData in interface CraneClamC1ient are defined as oneway calls.

Operations declared as oneway calls are meant to provide an unreliable send-and-forget

delivery mechanism, similar to UDP datagrams. A oneway operation may be lost and

Table 4.1: Definition of elements in type DisplayData.

Index of type
DisnlavData

Meaning of the element

0 Swing rotation angle in degree

I Boom angle in degree

2 Telescope length in meter

3 Distance between claming device and crane arm tip in meter

4 Opening angle of the claming device in degree

5 Length of cable I in meter

6 Length of cable 2 in meter

7 Mass of the load in kg. 0 indicates no load.

Operation Calls

Disconnecting Connection

GetDisplayData( )
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never be delivered to the server. For the ORB used in this application, ORBacus from

OOC Inc. (OOC, 2000) provides oneway calls that are guaranteed not to block the caller.

This non-blocking feature is very desirable in this case despite the fact that oneway calls

can be lost if the caller sends them quicker than the server can accept them. In this

application, when the client calls the server (either SP calls SR or SR calls SP), the

calling rate is 20 calls per second. The benefits of using oneway calls in this application

are obvious. First of all, it reduces the dependence between the SP and SRs. The

simulation can still mn even when network congestion happens. The client program

won't block simply because the network is not able to deliver its call to the server. In case

of heavily congested network traffic, the position information won't be updated.

4.3.2 Objects Implementation

The interfaces defined with IDL are used to generate the client stubs and the

object implementation skeletons. Stubs and skeletons are produced by the IDL compiler.

On the client side, in order to access the operations provided by the object, the client

program simply includes the source file generated by the IDL compiler. When an object

reference enters the address space of a client, the ORB instzurtiates a proxy object and

passes an object reference to that proxy to the client application code. The client can then

invoke the operations on the proxy via the reference. With language mapping from IDL

to C#, the reference is simply a Cr-r pointer to the proxy instance. The implementation

of the operation in the proxy then takes all the actions that are required to locate the

cor¡ect server, marshals the invocation onto the wire, and sends it to the server. The ORB

instantiates a proxy whenever a new reference enters a client's address space. so clients

never create proxies directly. Once the proxy is instantiated, the client can invoke
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operations on it, and the ORB locates the server and establishes network connections

transparently on behalf of the client. Once the client is finished with the remote object, it

has to inform the ORB. This enables the ORB to reclaim resources associated with a

proxy, such as memory and network connections.

On the server side, the IDL compiler generates separate skeleton header and

source files. The skeleton classes defined in those files provide an up-call interface for

the ORB into the server application code. Each skeleton class provides a pure virrual

function for each IDL operation. To dispatch an incoming request, the server-side run

time invokes the corresponding virtual function on an instance of the skeleton class.

Since skeleton classes contain pure virtual ftmctions, they cannot be instantiated directly.

These pure virtual functions are to be implemented in a servant class derived from its

skeleton. The header file of the servant class for the CraneClamClient object is as

follows:

Class CraneClamCl-ient impl:
public POA_CLAM : : CraneCtamClient,
public Portabl-eServer : : RefCountServantBase

{

CArrayTS* array_;
public:

CraneCl-amCIient impl (CArrayTS* ) ;
virtual -CraneClamCl-ient_impl ( ) ;
void getDisplayData (const DisplayData

dispJ-ay_temp);
\; / /cJ-ass CraneCl-amClient_impl

The functionality of this class is quite simple. It contains a private member, an array class

called CArrayTS, which provides thread-safe data storage for an afiay.Thread-safe data

storage is achieved by a lock implemented in its method to access the data stored. Once a

thread has access to the data, other threads that need to access the data have to wait urtil

the occupying thread releases the lock. Thread-safe data access is important. The server
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located on the SR side is a multi-threaded application. A remote SP might call the

getDispJ-ayData O operation to pass in the data for drawing, and the drawing thread

retrieves the data. Potential conflict is avoided by implementing thread-safe data access

in this case.

The servant class for the cranecl-amAdmin object does not do much. Once its

subscribeO function is called, it checks to see if the passed-in Cranectamctient

reference is valid. If the reference is valid, it creates a craneclam object in the heap and

returns the reference of this object back to the caller. The relationship between these two

objects and their life cycles is shown in Figure 4.5.

Fig. 4.5: Diagram of objects' life cycles.

The servant class for the CraneCl-am contains â CCraneClamCal object. This

object holds instances of the crane, the claming device, the motor, the cylinder, the valves

and the pumps classes. Actual calculations of the crane and the claming device's

dynamics takes place in this object's run O subroutine. Once the CraneclamAdmin

creates the craneCl-am object, an object of cCraneCl-amcal is instantiated. The SR

On CraneClamAdmin: :subscri

Runs in a new thread

Thread exits on CraneClam::unsubscribe( )

CCraneClamCal::run( )

Object persists until
application ends
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calls the CraneClamAdmin's subscribe( ) function with its Cranecl-amCÌienr

reference. This reference is passed on to the CraneClam object and further to the

CCraneClamCal object. CCraneClamCal object uses this reference to invoke the

getDisplayData O operation and sends the results back from dynamics calculation.

The algorithm implemented in the CCraneClamCal: : run ( ) subroutine for solving

dynamics is shown in Figure 4.6. Except for the initializations, the whole block of code is

placed in a while loop. The while checks the state of m_done flag, which is changed

only in CraneClam::unsubscribeO operation. The SR invokes this operation to

set the flag. After the flag is set, the th¡ead terminates its execution and exits. The

CraneCl-am object deactivates itself after it detects the termination of the thread. The

program sends out the results of the dynamics calculation every 50 milliseconds. This is

guaranteed with the use of time sequence control. Within the loop there are variables to

mark down the loop starting time and ending time. By checking the difference, the

program knows how much time is elapsed during the dynamics calculation. If the time

spent in calculation is smaller than the desired 50 milliseconds, the thread will wait until

it reaches 50 milliseconds then it continues to run. Time spans of greater than 50

milliseconds are what we try to avoid and seldom happen in our tests. The dynamics

calculation th¡ead contains two inner loops for calculating the dynamics of the crane and

the claming device. The inner loops run for a certain number of cycles, depending on

their steps, to yield results for the next 50 milliseconds. A part of the results of the

claming device is used to update parameters for the crane.
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Initialize crane and
claming device objects.

Has the flag indicating
th¡ead terminating been

Obtain current time.

Calculate claming
device's dynamics.

Update crane's Link 3.

Obtain current time and
calculate time elapsed

(e_time).

e time >50 ms?

Sleep to wait.

Call SR's CraneClamClient
object to send results.

Fig. 4.6: Flow chart of solving crane and claming device's dynamics.
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4.3.3 Concurrency Model

Th¡eads can significantly improve an application's structure and can also help

make application development more intuitive by delegating specific tasks to threads,

which otherwise would have required sophisticated mechanisms to integrate them into a

single execution flow. Multi-threading also allows complete use of CPU resources

especially in multi processor systems. Applications built upon of CORBA can adopt their

own threading strategies, as do the underlying ORBs (Object Request Broker). While an

ORB can be used to invoke methods on objects in the same application context, the most

coÍlmon case is to invoke methods on an ORB in a different application context whether

on the same system or on a remote system. By doing so CORBA applications already

exploit one level of parallelism (Schmidt et a|.,2000b). Adding a second level of parallel

execution to this by using threads on the client or the server side creates a whole new set

of problems. Choosing a good or bad concurrency model can make a big difference on

the application's perforrnance. The ORB that was chosen in this application is ORBacus

(OOC, 2000), which provides a variety of concurrency models. Each concurrency model

provides a unique set of properties with advantages and disadvantages. Based on this

knowledge, the adoption of one model for this application is explained in detail.

Since ORBacus allows different concurrency models to be established for the

client and server activities of an application, it is possible for us to choose appropriate

conculrency models for the SP and SR, respectively. The client-side concurrency models

are 'Blocking', 'Reactive' and 'Threaded'. The server-side concunency models are

'Reactive', 'Threaded', 'Thread-per-Client', 'Thread-per-Request' and 'Thread Pool'.
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The blocking model applies only to the client side. This means that the ORB is

blocked while sending requests. If the requests sent by the client are oneway calls,

sending these requests will not block the ORB. The ORB detects if sending the oneway

request can cause blocking at run-time. If it causes blocking, the ORB puts the oneway

request into a request buffer first and sends it either when it will not block or when the

next request enters the buffer.

The reactive model for servers accepts incoming requests from several clients. It

serializes all incoming requests and works by completely finishing one request before

paying attention to the next one. All incoming requests are put into a queue. This model

is still single-threaded and the server cannot respond to network events while it is busy

servicing a request. From the application's point of view, the reactive model for a client

is still blocking. Once the client sends a request, it has to wait until the server replies to

the request. However, the ORB never blocks; it simply sends out the request and uses a

'select' loop to wait for the reply. The ORB relies on an event-handler called Reactor to

work properly. Reactor is an instance in ORBacus where special objects can register if

they are interested in specific events. These events can be network events, such as an

event signaling that the data is ready to be read from a network connection. ORBacus

provides three reactors for different platforms.

A client with a threaded concurrency model uses two separate threads for each

connection to a server, one for sending requests and another for receiving replies. A

threaded seryer uses separate threads for receiving requests from clients and sending

replies. In addition, there is a separate thread dedicated to accepting incoming connection

requests, so that a threaded server can serve more than one client at a time. ORBacus's
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th¡eaded server conculrency model allows only one active thread in the user code. This

means that even though many requests can be received simultaneously, the execution of

these requests is serialized.

The th¡ead-per-client server concurrency model is very similar to the th¡eaded

server concurrency model, except that the ORB allows one active thread-per-client in the

user code. In the thread-per-request server concurrency model, the ORB creates a new

th¡ead for each request. The thread pool model uses threads from a pool to carry out

requests, so that threads are created only once and can be reused for other requests.

Note that all the concrurency models mentioned above refer to the ORB's

threading models. Application can adopts their own threading models in addition to the

ORB's threading model. In the simulation program, both the SP and the SR employ

multiple threads in their code while adopting different concurrency models for their client

and server. The SP creates a separate thread performing dynamics computation tasks

whenever there is a new SR connected to it. The object running in the newly created

thread then communicates with the SR using oneway calls. The SR can terminate the

connection at arry time. The termination of the connection also kills the th¡ead created for

the SR. The number of the SRs connected to the same SP is only limited by the power of

the computer on which the SP runs. There are two important issues that have to be

addressed:

1. The requests, both from the SR to the SP and from the SP to the SR, are all oneway

calls except the subscribe and unsubscribe calls at the beginning and the end. Oneway

calls do not block execution even the single-threaded concurrency model is used by

the ORB.
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2. For the SP and the SR, the execution time of a oneway call is relatively small, i.e. it

takes little time for the server to service the client request.

Based on these facts, blocking model is chosen for the client side of SR. The ORB does

not create threads for sending requests and receiving replies. Thus, the overhead of

creating additional th¡eads and thread context switching is reduced. This threaded model

is chosen for the client side of SP because of the concunency model's send-in-the-

background effect. On the seryer side, the situations of the SP and the SR a¡e different.

The SR's server only services one client, which is the CraneClam object created in the SP

in response to a SR's subscribe call. Therefore, the SR's ORB will not receive

simultaneous requests. But the SP's ORB has chances of receiving incoming requests

from all connected SRs as well as sending out calls at the same time. For the SR's server,

the reactive model is quite appropriate for its high efficiency. A standard reactor is used

in the program. In a Windows application, it is typical to use a Windows reactor to handle

both the Windows GUI events and the CORBA network events. However, this is not

applicable in this case, so another approach is employed. Although in ORBacus's

specification, it is said that the ORB has to be put into the main thread of the application,

this turns out to be not necessary. As such, the Windows message loop was placed in the

main thread and the ORB event loop in the second one. Therefore the reactor can

concentrate on CORBA network event only without knowing the existence of any

Windows messages.

Since more than one SR can be connected to the same SP, the server of the SP

needs to be able to handle many requests in a very short time. The SP is cunently

intended to run on a PC, which generally has the power to support 4 clients or more at a
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time. The possible request rate may be up to over 80 calls per second. The execution time

for each request is very short; in our test it is less than I millisecond in average. The

response delay to each request is so small that it can be ignored. The only noticeable

delay for incoming requests may take place when a new SR calls the subscribe operation.

Establishing the connection and initializing the new servant usually take more time.

Therefore the reactive model and the threaded model are both applicable. Each has its

own advantages over the other on different platforms. Within a single CPU environment,

the reactive model is faster because of less overhead incurred by multi-threading. The

threaded model allocates a separate th¡ead dedicated to accept incoming connection

requests to minimize the delay. For each client connected, the threaded model provides

two th¡eads for receiving requests and sending replies. Thus under a multi-CpU

environment, the threaded model yields a faster response to each request. The default

model is set as reactive in the application but can be changed with command line

arguments. The schematic diagram of the concrurency model is shown in Figure 4.7.

Figure 4.7 shows a reactive concunency model server for the SP. In the frgure we can see

that all requests are executed in the SP's main thread; therefore, the execution of the

requests must be serialized. Thread synchronization for the servants is not necessary.

There is a one-to-one relationship between the clients of the SRs and servants in the SP.

4.3.4Locating Objects with Object Reference URLs

Although the application can obtain the desired object reference from a service

call 'Naming Service', the CORBA system has the problem of the "chicken and egg", as

do all networking systems. In order for the system to operate, it needs to know the
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location of the server and most likely the first object reference. The question is how this

first reference is resolved in the network.

ORB
Th¡ead

Windows
Main

Th¡ead

Timer
Callback
Th¡ead

Service Provider Service Receiver II

Fig. 4.7: Threads used in Service Provider and Service Receiver.

Most current CORBA systems overcome this problem in one of two ways. One

way is to save the object reference in a file. The application that needs to access the

object also has access to this file. Whenever the object reference changes, the file needs

to be updated and retrieved by the application. The other way is called Resolve Initial

References. This involves the ORB itself storing details about CORBA services and

passing them on to the application as required. Both methods are effective, but they are

not very convenient in this case, because the SP is not supposed to be fixed on a specific

server. The approach chosen to this problem is to generate a relatively constant object

reference, which can be constructed on the SR side without relying on any SP-generated
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file. The first object reference remains unchanged until the SP runs on a different

machine or a different IP address of the machine where the SP is running changes. The

advantage of this approach is its simplicity and flexibility. To achieve this goal, an

understanding ofthe object reference is needed.

Interoperable Object Reference (IOR) contains a number of standardized

components that are the same for all ORBs as well as proprietary information that is

ORB-specific. To permit source code compatibility across different ORBs, clients and

servers are not allowed to see the representation of an object reference. Instead, they must

treat an object reference as a black box that can be manipulated only through a

standardized interface. An IOR contains the following basic information:

o Repository ID: This is a string identifying the derived type of the IOR at the time the

IOR is created.

Endpoint Info: This field contains all the information needed by the client ORB to

establish a network connection with the server ORB. The field contains information

about what nefwork protocol to use and the physical addressing information

appropriate to the network protocol that is chosen. The endpoint field may contain

the actual address of the endpoint server, or it may point to some other

implementation repository that contains details about the location of the server.

Object key: This field contains information that is proprietary to a particular ORB

vendor. The client side simply sends this field as a block of data even though

sometimes the client ORB may not be able to decode it.

Using IIOP, an object reference can be thought of as encapsulating several pieces of

information including the hostname, the port number and the object key. Each time a
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server is executed, the root Portable Object Adapter (POA) manager selects a new port

number on which to listen for incoming requests. Each object created by a server is

assigned a unique key. The order in which the server creates its objects may also affect

the keys assigned to those objects.

Object references can be converted to or from a string. The stringified object

reference has more than one format. In addition to the first cumbersome 'IOR:' format,

two other formats with URL-like syntax were introduced by the Interoperable Naming

Service (INS). One is called 'corbaloc:URls', the other is called 'corbaname:URls'. In

this thesis, corbaloc:URls is chosen to construct the object reference for the first object

in the SP.

The corbaloc:URl for the IIOP protocol has the following structure:

corbaloc : [iiop] : [version@] host[ :port]/obj ect-ID

The components of the URL are as follows:

' iiop - This is the default protocol for corbaloc:URls, and therefore is optional.

' version - The IIOP version number in major.minor format. The default is 1.0.

. host - The hostname of the server.

. port - The port on which the server is listening. The default is 2089.

' object-ID - A stringified object ID.

Normally, object keys contain the information necessary to uniquely identiS a

POA and a servant within the POA. However, the object ID used above does not contain

information that identifies both the POA and the servant. To solve this problem,

ORBacus defines the interfaces BootManager and Bootlocator. The

BootManager: : add-binding O operation binds an object ID to an object reference.
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The BootManager: : remove binding O operation is used to remove a binding. A

BootI,ocator object can be registered with the BootManager using the

set_locator O operation and is used to dynamically locate a reference for a given

object ID. Based on the above knowledge, if the SR has the information about the host

nalne, the port number and the object ID, it can construct the stringified object reference

in the corbaloc:URls format and then convert this string into the real object reference.

Note that this method has not been standardized by the OMG.

The host name in corbaloc:URls format can be the canonical host name or

numeric IP address. In this application the IP address of the host is used. When the SP

starts to run, it will show the host's IP address and port number on the screen. Each time

a server is executed, the Root POA manager may select a new port number on which to

listen to incoming requests. To prevent the port number from changing every time, in this

application the OAport option is set to allow the Root POA manager to use the specified

port number. The specific port number is 1015, which is not a reserved port for normal

usage. Error messages may be shown in case of the occupation of this port. The first

object in the SP is activated using POA with the PERSISTENT life span policy and the

USER_ID object identification policy. This ensures that the object references are created

with a user assigned ID and always have the same keys.
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Chapter 5

Demonstrative Results

In this chapter, various experiments have been conducted to test the performance

and reliability of the dynamics models of the claming device and the crane. A typical

pick-and-place task has been simulated using the joysticks. The service provider,s (Sp)

performance when connected to different numbers of service receivers (SR) is discussed.

The effect of using different threading strategies on the SP and the SR is also illustrated.

5.1 Dynamic Simulation Results

5.1.1 Simulation of Claming Device Model

This section shows the claming device's response to certain step inputs. The

control signals are tuned to allow the claming device to operate in all possible working

states. Figure 5.1 shows the control signals to the claming device's servo-valves. Signal I

is applied to tighten or release cable l, and signal 2 is applied on cable 2.
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Fig. 5.1: Control signal to the servo valves.
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Figure 5.2,5.3 and 5.4 illustrate the tension applied on cable I and cable 2,the angle of

0, , and the velocity of points A and C (please refer to Figure 2.2).
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Fig.5.2: Tensions applied on Cables.
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Fig. 5.4: Vertical speed of the claming device's bodies.

From Figure 5.2 to Figure 5.4, we can see the claming device can work in

different working states. In Figure 5.4, the curve is divided into 7 phases along the time

axis, each of them indicating a different working state. Phase A, C and E are the 'Free'

states; B and F is 'Fully Closed'; D is 'Fully Opened'; and G is the "Distributed' state.

Initially control signal I is negative and control signal 2 is positive. These contol signals

manipulate the hydraulic motors. One of the motors pulls up the claming device at point

A while the other releases it at point C. Therefore the claming device starts to close

(Phase A), and the absolute angle of d, becomes larger and larger. (For the notation of

02, tefer to Figure 2.2.) The claming device becomes fully closed and remains on this

working state after 3.5s (Phase B). The control signals change at the fourth second and

invert the signs. Consequently, the claming device starts to open until it is fully opened

(Phase C). In phase D, the claming device is fully opened. Later it is closed again (Phase

E and F), but this time the claming device reaches a steady stage of fully closed while

distributing the load to both two cables (Phase G). Every time the claming device

changes its working state, it has to pass the state of 'Dishibuted'. Usually this is a

transient state, which ends very quickly. But this state can also be stable. For example, in

181614
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this experiment, at the final stage this working state is maintained for a prolonged time

(Phase G).

5.I.2 Simulation of Crane Model

This section demonstrates the crane's response to a step input signal. The same

signal is applied to all three servo-valves for the swing, boom and telescope, respectively.

Figure 5.5 shows the control signal. Figure 5.6 to 5.i2 illustrate the responses of the

links.
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Fig. 5.5: Control signal to the crane model.
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Fig. 5.6: Swing rotation angle.
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Fig. 5.7: Swing angular velocity.
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Fig. 5.8: Boom rotation angle.
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Fig. 5.9: Boom angular velocity.
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Fig. 5.10: Telescopic arm length.
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Fig. 5.11: Telescopic arm moving speed.

In the above figures, we can see that some oscilations occur in the swing, boom

and telescope moving velocities. This is primarily due to the sudden change of the input

signals. The parameters of the hydraulic system were taken from a typical 2158

caterpillar excavator machine. The parameters used in the simulation a.re assurned based

on previous knowledge. The parameters, especially those of the hydraulic systems like

the valve and cylinders, have obvious and profound effects of the whole system's

response.
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5.1.3 Machine Performing Pick-and-place Task

In this experiment, the user of the simulation controls the crane and the claming

device, in an online manner, to perform a typical pick-and-place task. An object is

located on the water. The crane starts from its home position and the operator

manipulates the arm so that the claming device can be placed above the object. Next, the

operator lowers the claming device, picks up the object in the bucket, brings it to the

appropriate position and releases it. Control signals are generated with the joysticks and

control handles.
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Fig. 5.12: Control signals to claming device.
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Fig. 5.13: Position of points A and C on claming machine with respect to the water level.
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Fig. 5.16: control signal to the crane actuators: (a) swing; (b) boom; (c) telescope.
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Fig. 5.18 Joint velocity profiles: (a) swing; (b) boom; (c) telescope

5.2 Performance Analysis

The performance criterion for the Service Provider (SP) is the computation time

of the dynamics, i.e., the time needed to calculate the machine's response to certain

inputs for a specific time span. The time span is set to 50 milliseconds, which is 20

frames per second (FPS). This is the average refresh rate for the SR. If the computation

time is more than 50 milliseconds, it means that the simulation cannot achieve the real-

time goal. The performance criterion for the Service Receiver (SR) is the refresh rate. A

refresh rate of more than 30 FPS is generally desired because it provides smooth

animation to the user. Based on the average computation power of today's desktop PC, a

compromise of 20 FPS was chosen. Tests for the SP and SRs were conducted under
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different environments with different configurations. For the specific platform on which

we tested the simulation, the maximum number of clients that a server can support was

concluded from the results.

5.2.1 Service Provider's Performance

The hardware capability of the platform where the SP runs has the most

significant effect on the service provider's performance. In our tests, the SP was running

on a PC with Intel Pentium III 866 MHz CPU with l28MB RAM. Two sets of data were

logged to measure the SP's performance, the computation time (refened as C-Time)

needed to calculate the 50ms dynamics simulation and the overall time (referred as O-

Time) needed to send out the drawing data. Overall time is the same as the computation

time if the computation time is equal to or larger than the required 50ms. Otherwise an

additional waiting time, during which the computer will wait until the 50ms elapses, is

added in. In this case the computation time plus the waiting time is the overall time.

Several SRs are running on machines with different settings. Since all SRs are sending

oneway calls to the SP at a constant rate using a multimedia timer and only the calling

rate may affect the performance of the SP, only the number of SRs has effect on the SP's

performance. In addition, with different combinations of concurrency models employed,

the SP will yield different results, especially when the number of the SRs increases.

5.2.1.1SP's Performance vs. Number of SRs

The C-Time and O-Time with different numbers of the SRs connected to the SP

are presented in Figure 5.20. As the default setting, Blocking client and Reactive server
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were set as the SP's concurrency models. Each test ran for more than 15 seconds. Only

the results from the f,irst second to the tenth seconds are shown here.
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From Figure 5.20 we can see that both the computation time and the overall time increase

as more and more SRs are connected to the SP. When six SRs are connected to the Sp,

the computation time is still in the acceptable range, but the average overall time exceeds

the preset 50 milliseconds. The result shows that one SP running on the hardware

platform described above can support up to four SRs simultaneously.

5.2,1.2 SP's Performance vs. Concurrency Models

In this test, the SP was still running on the same platforn as before, but the

concturency models for the client and server were changed. With 4 SRs connected, the

SP with different combination of client and server concurency models yielded different

results.

With reference to Figure 5.21 we can see that SP with the Threaded client and the

Reactive server concurrency model performs the best, while the worst is the SP with the

Blocking client and the Thread Pool sewer concurrency model. From this test we

conclude that the bottleneck of this program is making calls instead of executing

incoming requests. For a small number (less than or equal to 4) of SRs, the SP with the

blocking client and the reactive server concurrency model provides the best performance.

For a larger number of SRs, the SP with the threaded client and the reactive server

performs the best. Use of thread-per-client or thread pool concurrency model for the

server should be generally avoided because the overhead involved in thread context

switching outweighs the benefits they provide, especially on a single CPU platform. This

simulation has never been
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Fig. 5.20: SP's performance with different Concurrency Models:
(a) computation Time; (b) overall Time.

tested on a multi-CPU platform due to lack of testing equipment. Based on the real multi-

tasking nature of a multi-CPU platform, the performance of the SP is guaranteed to be

much better. Concurrency models can be set with command line options when the SP

starts. Therefore, depending on the platform and the number of SRs to be connected, the

user of the simulation should select the best concr¡rrency model combinations.
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5.2.2 Service Receiverts Performance

As mentioned before, refresh rate is the most important criterion for measuring

the performance of a service receiver. According to our tests, the refresh rate is most

affected mostly by the hardware capability of the computer where the SR runs, especially

the rendering and 3D capability of the video card. In our tests, the SR ran on a PC with a

single Pentium III 550 MHz CPU and a GeForce256 video card with 32MB RAM.

The refresh rate changes when different views are selected and shown on the

screen. The more complex the view is, the more triangles the video card has to render,

and the longer the rendering takes. V/ith reference to Figure 5.22, refresh rates of the first

five seconds for each view under different circumstances are shown. For the definition of

each view and screen shots, please refer to section 3.2.4.

Refresh rates of over 30 FPS can be achieved for all views except view 5. View 5

actually shows all the other views together on the screen. In order to get a higher refresh

rate, a better video card with OpenGL support is needed. Fluctuation of the refresh rate

can be observed once the connection between the SR and the SP established. This is

caused by the overhead of thread context switching and remote call sending and

receiving. Refresh rates over 30 FPS are generally not necessary. In the final version of

the SP program, there is a 30 FPS limit for the refresh rate in order to save computation

power for other processes and threads.
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5.2.3 Performance Comparison between a Stand-alone Simulator and Distributed

Simulator

Before the distributed computation technology of CORBA was used, a simulation

program that includes the rendering and calculation of dynamics was developed. This

program utilizes the same algorithm to calculate the machine's dynamics, the same 3D

models and scene to render the views, and the same multimedia timer to sample the

control signals. The only difference is that instead of distributing computations over two

machines, it used multithreading to achieve the parallel computation. Because of the

limited CPU power provided by today's desktop PCs, the performance of this stand-alone

simulation was not satisfactory. Table 5.1 compares the performance of two simulations.

The stand-alone simulator ran on a machine with a Pentium III 550 MHz CPU and a

GeForce 256 video card. The same machine was also used as the service receiver of the

CORBA based simulator. The service provider ran on a PC with a Pentium III 866 MHz

CPU.

Table 5.1: Performance comparison between two simulators with different structure.

Stand-alone Simulator CORBA Based Simulator
14 SRs connected to I SP)

Average Time needed for
50 ms Dynamics (ms)

C-Time:94, O-Time:94 C-Time: 15, O-Time:50

Average Refresh Rate for
View i IFPS)

t7 50

Average Refresh Rate for
View 2 (FPS)

13 50

Average Refresh Rate for
View 3 (FPS)

l2 34

Average Refresh Rate for
View 4 GPS)

14 48

Average Refresh Rate for
View 5 IFPS)

7 20
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It is obvious that the CORBA based simulator is better in both calculation time

and refresh rates. The stand-alone simulator requires a better computer in order to provide

smooth animation and real-time response, while one SP running on a powerful computer

can serve many SRs simultaneously without compromising any performance. The only

additional requirement is a network connection, which is quite inexpensive to set up and

generally exists in today's computing environment.

5.2.4 Reliability Test

The communication between the SP and SR uses intensive oneway calls. A

oneway request is a request for which no reply is received. Therefore a oneway request

cannot return any results and there is no guarantee that the oneway request is properly

executed by a server. A oneway operation may be lost and never delivered to the server.

The specification guarantees that it will be delivered at most once. Therefore, the

reliability of receiving and processing of one way calls poses a potential problem to the

CORBA based simulator. ORBs from different vendors provide distinct implementations

for oneway calls. Since no documentation was found about ORBacus's oneway call

reliability, we ran the simulator under several conditions to test the lose-rate of oneway

calls.

For those tests, one SP was connected with 4 SRs. The numbers of oneway calls,

which were sent from one side and received and executed at the other side, were

recorded. Results are presented in Table 5.2. From the table we can see that, in our

experiments, none of the oneway calls are lost. It seems that the delivery of oneway calls

in ORBacus is guaranteed.
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Table 5.2: Oneway call sent and received for different SP concuffency model combinations.

B.R SP

SP to SR

T-R SP

SRI

S.

B-T SP

t724

R.

B-P3 SP

3169

SR to SP

1724

4898

S.

3 169

t673

4532

4898

R.

309 I

SP to SR

t673

4532

SR2

480 I

S.

309 I

t0t2

4t52

480 I

R.

2428

SR to SP

l0l2

4t52

4559

S.

2428

4068

955

4559

R.

2357

SP to SR

955

4068

4367

SR3

S.

2357

368

3846

4367

R.

1745

SR to SP

368

3846

266t

S.

1745

2477

330

2661

R.

t63 I

SP to SR

2477

330

SR4

2382

S.

l63l

3309

2124

2382

R.

345

SR to SP

3309

2t24

o\o'

2t76

S.

345

32t7

t822

2176

R.

221

S.: Sent

32t7

t822

2002

22t

1702

2002

R.: Received
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Chapter 6

Conclusions

6.L Achievements

In this thesis, a CORBA based distributed simulation of a claming machine with

3D graphics visualization has been developed. The simulation is built upon the

mathematical models of both the crane and the claming device, together with the model

of hydraulic driven units. All models are programmed in an Object-Oriented

Programming (OOP) manner so that these models can be reused with the dynamics

complexity hidden from the user.

An interactive user interface with 3D animation has also been designed. 3D

models of the crane, the claming device and the objects in the scene were constructed

using AutoCAD and were later imported into the program. Several ways to produce the

animation have been discussed and an infrastructure for fast animation under the

V/indows operating system has been built. OpenGL was employed to render rich and fast

animation. Different views aiming to facilitate the operators in accomplishing the task

was designed and implemented. Critical Mass Lab's simulation toolkits were

incorporated to contribute to the realistic physics based behaviors among objects in the

scene.

The smooth animation and real-time dynamics calculations are computationally

heavy. Therefore a trial stand-alone program could not produce satisfactory results.

CORBA is ideally suitable for abstracting away network-specific details in object

oriented programming. Using CORBA and the predefined interfaces, the restrictions of
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tight computation power requirement were removed and this allows the separation of the

dynamics calculation and animation ¡endering to a service provider and service receivers

respectively. The main problem encountered when using CORBA for real-time

applications is the extra overhead introduced by the abstraction layer. With deliberately

designed independent hybrid client/server structure and object factory facility, request

executions were distributed in calculation objects with their own th¡eads. Non-blocking

message sending/receiving allow the program to endure occasional large time lags.

The main contributions of this work are: (l) the development of mathematical

models of the claming device and the crane together with the hydraulic driven units; (2)

the utilization of the OpenGL graphics Application Programming Interface (API) and

Microsoft Foundation Classes (MFC) to form an animation platform on the Windows

operating system; (3) the incorporation of MathEngine's toolkits to produce physics

based natural behavior of interacting objects; and (4) the implementation of CORBA

technology to distribute the dynamics calculation over the network to achieve a real-time

effect.

This simulation software can be used to train new operators and let them become

familiar with real machine control and task performance. It also lays a foundation for

future controller design and human-machine interface, which can assist operators in

accomplishing their tasks.

6.2 Future Development

Possible future development could include the incorporation of a controller in

controlling such a claming machine. Controller designs can be done on the simulator.

l0l
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Furthermore, the dynamics model of the crane can be extended to allow tipping over of

such machines. If the operators can be trained on such an animated simulator, chances of

misoperation can be greatly reduced.

More interactive features can be added to the simulator. Sound effects that will

provide more realistic presence experience can be incorporated. Graphics elements that

mimic real world objects like a wood log or debris floating on the water can also be

added to the scene. The claming device should be able to interact properly with these

objects. This allows users of the simulator to perform more realistic pick-and-place tasks.
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