
Performance Of Multithreaded Comput at ions On

High-Speed Networks

AJAY KIRIT PANDYA

A Thesis

Submitted to the Faculty of Graduate Studies

in Partial Fulfillment of the Requirements

for the Degee of

MASTER OF SCIENCE

Department of Electrical and Cornputer Engineering

University of Manitoba

Winnipeg, Manitoba

Canada

National Library I*l ofCrnada
Bibliothèque nationale
du Canada

Acquisitions and Acquisitions et
Bibliographie Services seMces bibliographiques

The author has granted a non- L'auteur a accordé une licence non
exclusive licence allowing the exclusive permettant à la
National Lïbrary of Canada to Bibliothèque nationale du Canada de
reproduce, loan, distribute or sel1 reproduire, prêter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thèse sous
paper or electronic formats. la forme de microfiche/nim, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L'auteur conserve la propriété du
copyright in this thesis. Neither the droit d'auteur qui protège cette thèse.
thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels
may be printed or otherwise de celle-ci ne doivent être imprimés
reproduced without the author's ou autrement reproduits sans son
permission. autorisation.

FACULTY OF GRADUATE STUDIES
+****

COPYRIGHT PERMISSION PAGE

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University

of Manitoba in partiai fulflllment of the requirements of the degree

of

HASTEE OP SCIENCE

Ajay K i r i t Pandyaa1998

Permission has been granted to the Library of The University of Manitoba to Iend or seii
copies of this thesidpracticum, to the National Library of Canada to microfilm this thesis

and to lend o r sel1 copies of the film, and to Dissertations Abstracts International to pubtish
an abstract of this thesis/practicum.

The author reserves other publication rights, and neither this thesis/practicurn nor
extensive extracts from it rnay be printed or othemise reproduced without the author's

written permission.

Inter-host communication has always been a performance bottleneck for Dis-

tributed Computing Systems exchanging large amounts of data between hosts. This

is due to the the low speed, and low shared bandwzdth pmvided by the networking

technologies that are currently used, such as Ethernet and Token Ring. With the

emergence of seveml high-speed and high-bandwidth networks like ATM and Gigabit

Ethemet, fast inter-host communication for solving real time problerns, has becorne

possible.

Almost al1 software systems that support distributed concurrent computing

use a process based computing mode1 and a message-passzng based communication

model. However, recent research developments suggest that a thread based model for

computzng and scheduling has specific advantages over the traditional model.

In this thesis, we have implemented a thread based computing model and a

thread based intra-host communicata'on model and haue tested two networking tech-

nologies namely ATM and Ethernet for supporting these models. We implernent a

recvrsive dzstributed matriz multiplication algorithm and the results are very encour-

aging, indzcating the feasibility of developing portable and better perforrning thread

based s ystems for distributed concurrent computing.

Acknowledgment

1 wouid like to express my sincere gratitude to Dr. David Blight and Dr. Bob

McLeod, my advisors, for their encouragement and help during my research. 1 would

also like to thank Dr. Randal Peters, rny external examiner, for his useful comments

which were a valuable contribution for this thesis.

1 thank Mi. Anindya Maiti for his useN ideas, and a part of this thesis was a

joint effort between us. A special thanks goes to Mr. Guy Jonatschick for his help in

setting up the network. I wodd like to adcnowledge TRLobs, Winnipeg, for letting us

use their network. 1 would also like to thank the Faculty of Graduate Studies for their

financiai support (in the form of the University of Manitoba Graduate Fellowship),

and Dr. R. S. Azad, Department of Mechanical and Industrial Engineering for the

financial support during the &st year of my course.

I also thank all my friends who made my stay in Winnipeg a mernorable one.

Finally, 1 thank God, and rny parents for their blessings in making this dream into a

reality. This thesis is dedicated to them.

Contents

1 Introduction 1

1.1 Organization of the t hesis . 5

2 Related Research 6

. 2.1 High-speed Distributed Cornputing 6

. 2.2 PVM Modifications 8

. 2.3 Matrix Multiplication 10

. 2.4 Other Related Work 11

3 Cluster Computing on High-Speed Networks 13

3.1 Networking Technologies . 14

3.1.1 Ethernet . 14

. 3.1.2 FDDI 16

. 3.1.3 ATM 18

. 3.1.4 Gigabit Ethernet 21

3.2 PVM . 22 .

. 3.2.1 The PVM System 22

. 3.2.2 MPVM 26

. 3.2.3 LPVM 27

3.3 MF1 . 29

iii

4 Distributed Multithreaded Matrix Multiplication 32

. 4.1 Multithreading 33

. 4.1.1 Whatisathread? 35

. 4.2 Distributed Matrix Multiplication 37

. 4.2.1 SUMMA 37

. 4.2.2 BMM 40

. 4.2.3 Strassen's Algorithm 43

. 4.2.4 Our Algonthm 45

5 Network Performance . Results 51

. 5.1 Test-bed Setups 52

. 5.1.1 Ethernet 52

5.1.2 ATM . 54
. 5.2 Network Performance 55

. 5.3 End-To-End Communication Latency 55

5.3.1 Ethernet . 57

5.3.2 ATM AAL 314 . 57

5.3.3 ATM AAL 5 . 59

5.4 Performance of the Serial Algorithm 59

. 5.5 Maximum Achievable Throughput 64

. 5.5.1 Ethernet 64

. 5.5.2 ATM AAL 3/4 66

. 5.5.3 ATM AAL 5 66

. 5.6 Overall Real-Time Performance 66

. 5.7 Analysis of Results 66

6 Conclusions and Future Research Directions 71

6.1 Ideas for Future Research . 72

List of Figures

. 3.1 A Typical Ethernet LAN 16

. 3.2 A Typical FDDI LAN 17

. 3.3 A Typical ATM LAN 19

. 3.4 ATM architecture 20

3.5 PVM task and daemon configuration (Adapted £tom Lin et al [21]) . 24

. 3.6 PVM Routing 25

4.1 Dinerent threads on dinerent processors 34

. 4.2 Communication between threads and processes 36

5.1 Workstations on the Ethernet LAN at the ECE Dept 53

. 5.2 Workstations on the ATM LAN at the ECE Dept 56

. 5.3 Communication Latency for PVM over Ethernet 57

5.4 Communication Latency for PVM over ATM AAL 314 58

5.5 Communication Latency for PVM over ATM AAL 5 58

5.6 Communication Latency for PVM over Ethernet and ATM 59

5.7 Communication Latency for a Sun SPARC Ultra for serial and multi-

. threaded codes 60

. 5.8 Spawning Times for Process and Thread 62

. 5.9 Communication Times for Processes and Thread 63

5.10 Bandwidth and Maximum Throughput for Ethernet and ATM networks 65

5.11 Total Execution Time for a MT md Serial Algorithm on Ethernet and

ATM . 67

List of Tables

5.1 Spawning Times for a Process and Thread 62

5.2 Communication Times for Processes and Threads 63

5.3 Bandwidth for PVM over Ethernet and ATM for different message sizes 65

5.4 Real-time speedup of a Multithreaded (MT) Algonthm over a Serial

Aigorithm on Ethernet and ATM networks 67

5.5 Start-up Latency for PVM Envïronments 68

5.6 Maximum Communication Throughput for Ethernet and ATM networks 70

vii

Chapter 1

Introduction

The Internet, developed in the mid 1960s, has proved to be a benchmark of the

information revolution that is leading us into the new rnillennium. The World Wide

Web (WWW), as a resdt of the Internet, is the fastest powing ocean of information

and knowledge that man has ever created. Internet, or "internetworking" deds with

connecting a large number of same or dXerent computers on a network, and can ex-

change information amongst themselves. One of the several advantages of connecting

a number of computers together is that they can collectively work in a shared envi-

ronment, with increased efficiency for distributed applications. In this thesis, we have

examined the role of the Internet and computer networks for performing large-scale

engineering and scient ific computationd tasks.

Problems such as weather forecasting, engineering simulations, numerical scien-

tific computations, etc. require immense computational power and CPU tirne. Such

computations are solved on Massively Parallel Processor (MPP) machines, or Super-

computers. MPPs are the most powerfd computers in the world. These machines

combine a few hundred to a few thousand CPUs in a single cabinet comected to

hundreds of gigabytes of memory. As simulations become more realistic, the com-

putational power required to execute them grows rapidly. Thus, researchers on the

cutting edge tuni to MPPs and parallel processing in order to get the most compu-

tational power possible.

One of the major developments aEecting scientific problem solving is Distributed

Computzng. Distributed computing is a method in which a set of computers con-

nected by a network are used collectively to solve a single large problem. As more

and more organizations have high-speed Local Area Networks (LANs) interconnect-

ing many general-purpose workstations, the combined computational resources may

exceed the power of a single high-performance computer. Although computers dis-

tributed on a network do not provide the raw computationd power of a large MPP,

they are able to solve problems that are several times larger than the ones for which

a single workstation is designed. Thus, MPPs can be substituted by a collection of

workstations scattered across a network. In this thesis, we have used a collection of

workstations connected by a network to collectively solve a scientific problem, such

as a pa rde l matrix multiplication computation.

Until now, distributed computing lacked the speed for interprocess communication

between the cooperating processes, if the processes ran on hosts that were located

a t very large geographical distances from one another. However, with the emergence

of several high-speed switch-based networks, such as the High Performance Paral-

le1 Interface (HIPPI), Fiber Channel, and Asynchronous Tkansfer Mode (ATM), the

possibility of networks effectively supporting communication intensive parallel appli-

cations rnay soon become a reality. ATM has emerged as the most standard and

widely used networking paradigm for high-speed, high bandwidth communication.

So, if the workstations that are used for distnbuted computation are connected by

an ATM network, the performance bottleneck of fast interprocess communication can

be significantly reduced.

A common feature between MPP and distributed computing is message passzng.

In all pardel processing systems, data must be exchanged between the cooperating

tasks. Several paradigms have been tried including shared mernories, parallelizing

compilers, and message passing. The message-passing model has become the most

popular model fiom the perspective of the number and variety of multiprocessors that

support it, as weIl as in terms of applications, Ianguages, and software systems that

use it.

The Pardel Virtual Machine (PVM) [Il] has been developed as a joint research

effort by the Oak Ridge National Laboratory at the University of Tennessee at

Knoxville, Emory University, and Carnegie Mellon University. It uses the message-

passing model to allow programmers to exploit distributed computing across a wide

variety of computer types, including MPPs. PVM makes a collection of computers

appear like one large vzrtual machine. It has proved to be the de-facto standard

for Heterogeneous Network Computing. A number of computers connected through

a high-speed network, and running PVM cm be made to act as a single parallel

machine, that can be used to solve computationaily intensive problems.

When a number of computers are connected to form a virtual machine using PVM,

each machine is referred to as a node. In distributed computing, a single problem is

divided up into several tasks and each task is given to a node for computation. In this

case, the node where the subtasks are invoked is called a master node and the nodes

that receive the subtasks are called the slave nodes. After the slaves have hished

their work, they send back the results to the master. PVM helps in passing the tasks

between the machines and also in passing messages between the tasks.

As mentioned above, the workstations a d a b l e today such as Sun SPARC sta-

tions, SGI workstations, IBM RISC machines, etc. have one or more than one pro-

cessors in them ranging from 1 processor to over 1000 processors mounted inside one

cabinet (121. So if a task is given to such a multiprocessor machine, only one of its

processors, to which the task will be given by its operating system, wili be utilized

[16]. The reason being that the individual task wilI always be in the form of a se-

rial procedure. This feature of simple workload allocation in the form of serial tasks

to individual nodes, which are multiprocessor machines, greatly reduces the actual

amount of computational power that can be obtained fkom them. Therefore, it would

be of great interest for researchers to come up with algorithms that not ody divide

the given problem into several tasks, but also to fully utilize the available resources,

by parallelizing the individual tasks too. These tasks concurrently execute on indi-

vidual slave nodes and also exchange information with other tasks, either by message

passing, or by operating in a Distributed Shared Memory (DSM).

Multithreading is a relatively new approach in designing distributed applications.

Modem Operating System (OS) platforms Iike Windows NT, OS/2, IBM's AM,

and several flavors of Unix, provide extensive library and system c d support for

rnultithreaded applications. Multithreading, unlike Multitasking or Multiprocessingl

d o w s a single process to perform more than one task at the same tirne. Each task

that is executing within a single process is called a thread. A thread is a lightweight

process that resides in its parent process's address space. It is a lighter burden on

the operating system compared to a process. When a process uses more than one

thread, the process is said to be multithreaded. Multithreading allows a programmer

to divide a process into a series of threads that can be executed at the same time. If

the process is running on a computer that has several processors, each thread may

be executed on a separate processor. This allows the programmer to irnplement tasks

that can be executed in paralle1 within a single program.

This thesis deals with evaluating the performance of different high-speed networks

for running computationally intensive distributed applications using PVM. The algo-

nthm must be written in such a way that the application forks several threads at each

'Multitasking means an operating system can handle more than one tasks at the same time

using context switching while Multiprocessing means that multiple processes can be executed

simultaneously.

node, thereby parallelizing the subtasks (provided that that the subtasks are paral-

lelizable). The improved performance of pardel multithreaded algonthms is studied

against simple pasdel aigorithms, and thereby different networking paradigms are

compared for ninning complex scientific and engineering simulations that are multi-

threaded in nature.

1.1 Organization ofthe thesis

The rest of the thesis is organized as follows. Chapter 2 gives a detailed review of the

related research done in this area. Chapter 3 gives an overview of Cluster Comput-

hg, in which different networking technologies such as Ethernet, FDDI, ATM and

Gigabit Ethernet are discussed, dong with the feasibility of building Local Area Net-

works (LAN) using them. The PVM message passing Library is also explained dong

with its extensions like the Migration based PVM (MPVM), and Lightweight Thread

Based PVM (LPVM), and how they can be uses for performance improvement. The

dgonthms used in this thesis are discussed in Chapter 4 and their rutirne resdts on

ATM and Ethernet (10 base-S) are given and analyzed in Chapter 5. We finish off

with the conclusions and possible future research directions in Chapter 6.

Chapter 2

Related Research

This chapter surveys past work related to Distnbuted Network Computing. We

have done the review separately for each sub-area. In Section 2.1, we discuss the work

done in evaluating network performance for distributed applications. Most commonly,

we talk about using various high-speed networking technoiogies Like ATM, HIPPI, and

Fiber Channel for faster message passing. In Section 2.2, we talk about work done

in improving the present PVM research, and how the PVM mode1 has been modified

by adding new features for improved performance- 'In Section 2.3 we discuss some

research in paralle1 matrix multiplication that we have used for this thesis. Lastly,

in Section 2.4, we discuss work done in distnbuted computing using other paradigms

such as the Berkeley Network of Workstations (NOW) project.

2.1 High-speed Distributed Computing

The Distributed Multimedia Research Centre (DMRC) at the University of Minnesota

is doing active research in improving performance of distnbuted systems d g on

high-speed backbones. Lin et al [21] have performed experiments with ATM net-

works t O examine t hei . performance for solving computationally intensive pro blems.

They have studied the end-teend communication performance in terms of latency

in an environment consisting of Sun workstations (with Fore Systems' ATM inter-

face cards) connected through a Fore Systems' ASX-100 switch. They compare the

performance of four different Application Programming Interfaces (API) such as Sun

Microsystems' Remote Procedure C a b (RPC), BSD socket programming interface,

PVM message passing library, and Fore Systems' ATM APL They conclude that

BSD sockets and Sun RPC/XDR are not highly suitable for implernenting high per-

formance computing applications over a cluster of networked workstations. PVM is

very efficient in developing these applications because of its features like data-type

encapsulation, process group communication, remote process spawn, and dynamic

process control. However, the PVM implementation on ATM (pvm-atm) ' introduces

more protocol overhead than the Fore Systems' API. Thus, the latter is most efficient

for computationaily intensive distribut ed applications.

Chang et al [6] have studied the performance of PVM over a local ATM network.

They conclude that a high-speed network such as ATM, as opposed to a conventional

network such as Ethernet, does provide increased communication bandwidth. They

have achieved maximum bandwidth of 27.202 Mbps. at the application layer, which

is far below the "raw" a d a b l e bandwidth of 100 Mbps. provided by the TAXI

interface cards.

Hsieh et al [14] at the DMRC have also extended PVM capabilities over a HIPPI

LAN. They have compared the performance of PVM implementation over Ethernet

with that over HIPPI. Similar to the Fore Systems' API for ATM networks, Hewlett

Packard has the Link Level Application (LLA) programming interface. They have

used the LLA API for implementing PVM over HIPPI and Ethemet, and thereby

pvm-atm is an implementation of PVM for ATM networks so that PVM programs can run over

ATM networks. It gives an option of message passing using either ATM AAL3/4, ATM AAL5, or

original PVM (TCP/UDP), and is implemented on Fore Systems' API instead of the BSD socket

interface. It is avaiiable at Rp://ftp.cs.umn.edu/users/du/pvm-atm/-

replacing the overhead of PVM's default protocol stack (namely UDP) for inter-

daemon communication and TCP for inter-task commwiication. They have achieved

superior performance because of the high-speed network medium offered by HIPPI,

and due the replacement of PVM protocols by lower layer protocols (LLA AH).

Huang et al [15] have presented the results of an investigation of collective commu-

nication operations for distributed computing across ATM networks. They have stud-

ied the performance of a thread-based software for ATM hardware features like ATM

multicast channels. They propose a software fkmework based on reliable multicart

connections, which are implernented on top of the unreliable ATM multicast (one-to-

many) virtual channels. They have used threads within a single process, as against

the conventional Unix process for implementing this. Hence they have combined the

connection oriented nature of ATM and the ATM multicast virtual charnels. This

has been implemented using threads. They have incorporated this combination as a

basic building block in a multicast virtud topology. Other related papers and techni-

cal reports of the Communications Research Group at the Michigan State University,

which deal with aspects like hardware Mprovement of ATM multicast, or efficient I/O

mechanisms for faster communication, are a d a b l e at ftp://ftp.cs.msu.edu/pub/crg.

2.2 PVM Modifications

In this section, we discuss the work which has been done to improve the presently

available PVM mode1 for faster, and more efficient performance. Zhou and Geist

[27] have developed a faster message passing route named PvmRouteAtm to exploit

the bandwidth of an ATM network based on the socket-like application programming

interface from Fore Systems. The cornparison of this route is done with the standard

route PvmRouteDirect. Test results show that PvmRouteAtm succeeds to reach a bet-

ter bandwidth for large amounts of data but fails to gain any latency improvement

over its counterpart route PvmRouteDirect. For this thesis, we have used PvmRoute-

Direct as it is inbuilt in the pvm-atm a t DMRC. Implementation of PvmRouteAtm in

the present pvm-atm will be our future work.

In another work, Zhou and Geist [26] have proposed a Light-weight process based

implementation of PVM called LPVM, as explained later in section 3.2.3. The current

PVM a d a b l e has a process based computing model. LPVM has been designed to

examine potential performance improvements by multithreaded message passing sys-

tems. The major disadvantage of LPVM model is its implementation only on a single

SMP machine. Currently, research is being done at the Oak Ridge National Labora-

tory, Tennessee for extending this LPVM irnplementation to a cluster of SMPs that

have completely disjoint address spaces. Another major drawbadc is the portability

issue. Since LPVM is a modified version of PVM with added features Like thread

safety and with a different user interface, programs already written for PVM can not

be transparently ported to LPVM systems.

Before the development of LPVM, a similar thread based message passing library

was proposed by Ferrari and Sunderam [IO] called TPVM. The major Merence be-

tween TPVM and LPVM is that TPVM is built on top of the PVM system and no

change is made to the underlying PVM system. This definitely is good for porta-

bility, but has a large added overhead. TPVM has been implemented over a cluster

of SMPs, and threads operating in different processes communkate using explicit

message passing. Subsequent work added the concepts of Remote Memory and Data

Driven Programrning. In TPVM, processes are spawned in the same way as PVM,

but they are not themselves the computational units of parallelism and/or scheduling.

The PVM system exports the entry points of the thread subroutines that decide the

action of the threads. In this thesis, the thread model used is a combination of LPVM

and TPVM in the sense that we have not built our system over PVM, but have kept

the original PVM interface with sub-task based thread computations. This means

that the multithreading occurs only on the slave processes and is transparent to the

master process and to the overd system. This approach does not impose any extra

overhead, however it increases the programming complexity, because any distributed

application has to be separately implemented to incorporate thread based parallelism.

This is not a major drawback with the availability of easy and simple to use thread

packages like Solaris, Posix, Java or Win32. Java and Posix specifications are being

made portable so that they can be used on heterogeneous platforms.

2.3 Mat rix Multiplication

We have irnplemented Strassen's Matrix Multiplication algorithm [17] and Block Ma-

trix Multiplication aigorithm [13] for doing sub-task computations, and the Scalable

Universal Matrix Multiplication Algorithm (SUMMA) [25] for workload allocation.

There has been some research for the parallel irnplementation of the Winograd's vari-

ant of Strassen's algorithm. Bjgrstad et al [3] have recently corne up with techniques

to efficiently implement matrix multiplication algorithms on SIMD cornputers. They

have chosen the cutoff dimension, no=128, and implemented it on a 8192 proces-

sor machine. They achieve superior performance of the algorithm for different size

and shapes of matrices. Bailey [2] has also impiemented Strassen's algorithm on a

CRAY-2 and reported speedups of up to 2.01 for n=2048, where n is the matrix size.

Compared to Bailey's results, Bjgorstad et al report that their algorithm was faster

than the block methods for any levels of recursion on the one processor C M - 2 ma-

chine using the CRAY MXM library. For our parallel implementation of Strassen's

algorithm, we have parallelized the S trassen's algorithm according to the tedinique

s h o w by Bjgrstad et al [3].

Kleinman et al (181 from SunSoft Inc., Moutain View, Calûornia give a multi-

threaded implementation of matrix multiplication where each thread multiplies one

row by one column in a cyclic fashion. Each iteration cornputes the results of one

entry in the resultant matrix. They offer a flexible implementation whereby one

thread can compute a whole row of the resultant matrix, if the amount of work is

not s&icient to justify the overhead of synduonization. We use this coding style for

implementing our Block Matrix Multiplication algorithm.

An MPI implementation of SUMMA is done by Van De Geijn and Watts [25]. We

use SUMMA for workload allocation at the master node, where a matrix is divided

up into equivalent tasks according to the mesh configuration. After implementing

SUMMA, the authors of [25] discuss some cases where SUMMA can be less efficient

than its counterpart PUMMA (Pardel Universal Matrix Multiplication Algori th) .

Regardless, we have used SUMMA as our task allocation algorithm and have imple-

mented it in PVM using a similar scheme as the MPI irnplementation. SUMMA has

been selected against PUMMA because it is cornpetitive or faster, and given its sim-

plicity and flexibility, warrants consideration even though it is slightly more sensitive

to communication overhead compared to PUMMA..

Lastly, Huss-Lederman (171 show a parallel implementation of Strassen's algorithm

that deab with matrices having odd numbered dimensions using either dynamic peel-

ing and/or dynamic padding. They stop the recursions a t an early stage and revert

to a standard algorithm for more efficiency. We have implemented dynamic peeling

based on t heir implement ation.

2.4 Other Related Work

The Network of Workstaions (NOW) [Il project a t the University of California, Berke-

ley, also deals with connecting a cluster of workstations on a network for collective

high-performance computation. The NOW project seeks to harness the power of

clustered machines connected via high-speed networks. A specid operating system,

GLUniz, is used on the workstations participating in the LAN. GLUnLz is built as a

layer on top of existing operating systems and provides superior performance for both

parallel and sequentid applications. For this, it supports features like gang-scheduling

of parallel progarns, identifying idle resources in the network, allowing for process

migation to support dynamic load balancing (this is still under development), and

providing support for fast inter-process communication for both the operating system

and the user-level applications. NOW also uses a special programming laquage called

Split-C, which is a parailel implementation of C and is also called the SPMD imple-

mentation of C. More details of NOW are a d a b l e a t http://now.cs. berkeley.edu.

Another major development at the NOW project is Fast Sockets [23]. Fast Sockets

is a user-level library that provides the Berkeley Sockets API and facilitates high-

performance communication. The main reason for developing this library is to get

performance gains for networked applications over high speed networks like ATM and

Myrinet. It solves the problem of package processzng overhead like the t h e spent in

preparing packets and receiving them off the network.

Chapter 3

Cluster Computing on High-Speed

Networks

Communication between processors has long been the performance bottleneck

of distributed network computing. However, the recent progress in swïtch-based

high-speed LANs has opened up a new possibility to reduce this problem. Fore-

most amongst the ernerging networking technologies is the Asynchronous Transfer

Mode (ATM), which shows great promise to increase the performance in terms com-

munication for Distributed Network Computing. The basic purpose of this thesis is to

evaluate the performance of presently available high-speed networking technologies

for performing large-scale scientiflc computations in a distributed environment. In

this chapter, we overview some of the networking technologies available today that

can be used for distributed network computing.

We also discuss the Pardel Virtual Machine (PVM) message passing library that

we have used for explicit message passing between the cooperating tasks residing on

the same or different hosts in the LAN. Some furtber extensions of PVM, namely

M W M and LPVM, are also discussed dong with the new MPI specifications.

3.1 Networking Technologies

High-Performance Distnbuted Applications require communication media that can

provide high data transfer rates a t lower latencies, which are scalable, and have

superior paradigm flexibility in the sense that the network should not only have

high data shipment capability for applications such as visualization, it should also

have muhicasting capability for applications using distributed shared memory, which

involves frequent changes in multiple data copies. In this section, we briefly discuss

the various circuit-based and switch-based networking technologies available today

and examine their feasibility to support large-scale distributed computations.

3,l.l Ethernet

Ethemet [24] is a LAN technology that transmits information a t speeds of 10 and

100 Mbps. Currently, the most widely used version is the 10 Mbps twisted-pair

one. Ethernet was invented at Xerox corporation, Palo Alto, California. Formal

specifications were published in 1980, which turned the experimental Ethernet into an

open, production-quality Ethernet system that operates a t 10 Mbps. The Institution

of Electrical and Electronics Engineers (IEEE) standard was first published in 1985,

with the title "IEEE 802.3 Carrier Sense Multiple Access with Collision Detection

(CSMAICD) Access Method and Physical Layer Specification." The IEEE standard

has since been adopted by the International Organization for Standardization (ISO),

which makes it a worldwide networking standard.

A major criticism about Ethernet is that it is nondeterministic ie. you c a n o t

guarantee bandwidth to a user of a shared Ethemet segment. This is one of the

reasons why Ethernet is undesirable for large-scale simulations, as these applications

usually require a large bandwidth with an extremely high Quality of Service. How-

ever, with the advent of switching, the problem of bandwidth allocation has been

somewhat reduced. Each user is assigned dedicated ports, and has his/her own Eth-

emet segment. This greatly improves the responsiveness of the network as there will

be no collisions with other users on that segment. In the Department of Electrical

and Cornputer Engineering, a 3Com switch is used.

Standard Ethernet provides 10 Mbps shared bandwidth, shared among all users on

a common communication channel. In traditional LANs, this communication channel

is called a bus, which is a segment of cable to which rnany devices connect dong the

way. In a switched environment, the physical topology used is a star configuration,

where all devices connect back to a common connection point using a separate length

of cable. A hub (or a repeater) can be used to fan out more ports from the switch port,

but in this case, the devices connected on the hub ports will share the bandwidth,

and the collision domain is presented by the number of active users at any one time

attached to the hub. When a switched port is dedicated to a wcrkstation, the user's

collision domain is limited to the single workstation. Figure 5.1 shows an example of

an Ethernet LAN installation.

Fast Ethernet

Fast Ethernet is essentially the same as Ethernet, but ten times faster in raw trans-

mission speed. This is achieved by increasing the dock speed and using a dinerent

encoding scheme, both of which require a better grade of wire than the standard

Ethernet. Fast Ethernet also provides full-duplex communication. Full-duplex Fast

Ethemet provides 200 Mbps aggregate bandwidth - 100 Mbps in each direction.

One elegant feature of Fast Ethernet is autonegotiation. Autonegotiation is a

scheme that facilitates automatic adaptation to the highest possible communication

speed found at both ends of the cable. This results in easy migration from standard

Ethernet to Fast Ethernet.

Database Server Database Server

-
101 1 O O 0 0 1 I O 1

Switch

Hub f
œ
I O I l 0 O O oollool

Shared blw

PC PC PC Workstation Workstation

Figure 3.1: A Typical Ethernet LAN

3.1.2 FDDI

Fiber Distributed Data Interface (FDDI) [4] is a mature backbone technology that

provides 100 Mbps communication. Unlike Ethernet, FDDI provides fault tolerance

by incorporating a dual communication path scheme. This scheme includes two s e p

arate communication media (primary and secondary rings) that are run between

devices. FDDI guarantees access by using a token passing-access method and con-

tains a built-in network management. These features have made FDDI well suited

as a backbone technology. FDDI is, however, much more expensive and significantly

more complex to manage, and hence it is not widely deployed to the desktop.

Figure 3.2 shows the physical topology of a typical FDDI network. It uses a token

to arbitrate communication, similar to a token ring network. Essentially, a token is

created during ring initialization, and it continuously circulates around the ring. A

station must grab the token to communicate. Once it acquires a token, it puts an

FDDI fiame on the ring and reclaims it when it cornes back to the station. By using

a token-passing mechanism for communication, FDDI is able to provide a guaranteed

bounding waiting tirne for transmission. This rnakes the technology more suitable

than Ethernet for multimedia, since it can guarantee bandwidth for voice and video.

FODl DAC

Database Server

SAC: Single Attached StatiodConcentrator
(only one path between FDDI network
and the stationfconcentrator)

DAC: Dual Attached StatiodConcentrator
(two paths between the FDDI network
and the station/concentrator, one is
stand-by)

n n n n n n
Workstation Workstation Workçtation l I

Workstation Workstation Workstation

Switch with SAC

Figure 3.2: A Typical FDDI LAN

FDDI is considererl to be very reliable and has low error rates. In addition to the

flexibility of fault-tolerance attachments discussed above, FDDI provides a significant

amount of self-management to achieve its reliability. This includes the Token Rotation

Tirner (TRT) to ensure that the ring is resilient to token loss, and Station Management

(SMT) that includes a test for Link Quality (LCT) when a station attaches to the

ring and periodic Monitoring of the Link Quality (LEM) for each station.

3.1.3 ATM

Asynchronous Transfer Mode (ATM) 15,191 provides a common communication medium

that simult aneously supports multiple types of data (multimedia) at high transmis-

sion rates across switched LAN or WAN backbones. Unlike Ethernet or FDDI, ATM

is not a shared medium. The performance of the network does not degrade signifi-

cantly as the number of users increase. ATM is connection oriented, meaning that an

end-to-end c o ~ e c t i o n is set up pnor to communication, enabling ATM to provide a

way to guarantee delivery with a negotiated set of parameters. This feature is called

the Quality of S e ~ c e (QoS).

ATM runs at different speeds. Three of the popular speeds are 52 Mbps, 155.52

Mbps (OC-31, and 622 Mbps (OC-12). It uses the notion of Permanent and Switched

Circuits (PVCs and SVCs) to d e h e communication paths within the LAN. Penna-

nent Virtual Circuits are staticdy configured by the network manager for commonly

used communication paths such as a highly used backbone. Switched Virtual Cir-

cuits are set up dynamically on an as-needed basis. When a user desires to establish

a connection, he sends a message specifying the desired bandwidth and QoS. There

is a fair amount of overhead with setting up a switched virtual circuit, especially if

the connection is going to be there oniy for a short period of time.

LAN Emulation (LANE) was defined to incorporate ATM in existing networks

consisting of Ethernet and Token Ring. LANE provides the normal connection-less

service and multicast service characteristic to traditional LANs. LANE emulates

the Media Access Control (MAC) protocol used by the connection-less technologies,

enabling one to support legacy LAN technologies over ATM. LANE defines two major

software components:The LAN emulation Client (LEC), which acts as a proxy ATM

end-station for LAN stations, and the LAN emulation Server (LES), which resolves

MAC address to ATM addresses. A typical ATM emulated LAN is shown in Figure

3.3-

Switch with LEC Switch with LEC
interface interface

ATM Switch with LECs, LES

Figure 3.3: A Typical ATM LAN

Figure 3.4 shows the layered architecture of an ATM network. The ATM mode1

is divided into three layers: the physical layer, the ATM layer, and the ATM Adap

tation Layer (AAL). The physical layer defines a transport method for ATM cells

between two ATM entities. It encodes and decodes the data into suitable electri-

cal/opticd waveforms for transmission and reception on the communication medium

used. The ATM layer is responsible for ceil relaying between ATM-layer entities, cell

multiplexing of individual connections into composite Bow of cells, cell demultiplexing

of composite flows into individual connections, cell rate decoupling or unassigned ceil

insertion and deletion, priority processing and scheduling of cells, ceil loss priority

marking and reduction, cell rate pacing and peak rate enforcement, explicit forward

congestion marking and indication, cell payload type marking and differentiation, and

flow control access. Lastly, the purpose of the ATM Adaptation Layer (AAL) is to

provide a link between the services required by higher network layers and the generic

ATM cells used by the ATM layer. Four service classes have been defined based on

three parameters: time relation between the source and the destination, constant or

Appl icatians

Adaptation Layer

ATM Layer

Physical Layer

Figure 3.4: ATM architecture

variable bit rate, and connection mode. The classes are,

Class A: A time relation exists between the source and the destination, the bit

rate is constant, and the service is comection-onented (eg. a voice chamel).

The class will use the AAL 1 protocol, defined by the ATM specifications.

Class B: A tirne relation exists between the source and the destination, the bit

rate is variable, and the service is connection-oriented (eg. a video or audio

charnel). Class B will use AAL 2 protocol.

aass C: No time relation exists between the source and destination, the bit rate

is variable, and the service is connection-oriented (eg. a connection oriented file

transfer). This class will use either the AAL 314, or AAL 5 protocol.

k s D: No time relation exists between the source and destination, the bit

rate is variable, and the seMce is connection-less (eg. LAN intercomection and

electronic mail). This class will use either the AAL 314, or AAL 5 protocol.

For this thesis, we have used Class C service, and have used both AAL 314 and AAL

5 protocols, given by the Fore Systems' specifications.

3.1.4 Gigabit Ethernet

Gigabit Ethernet [22] is an emerging standard that retains much of the simplicity of

the traditional Ethemet. It uses CSMAICD, provides full and half-duplex commu-

nication at 1000 Mbps, and retains the hame format/size. It is very easy to scale

beyond Fast Ethernet, and since it is still Ethemet, troubleshooting and network

management is similar. Gigabit Ethernet adds carrier extension and packet bursting.

Carrier extension increases the number of bits that travel simultaneously through a

connection without increasing the minimum frame length. Packet bursting allows

end stations to send many fiames at once, increasing bandwidth efficiency. Carrier

bursting is a problem, specifically because of the carrier extension requirement.

Gigabit Ethernet is often compared with ATM because it is the first technology

that rivals both 155 Mbps and 622 Mbps connections. Ethernet is more popular in

the LAN because it has been around a lot longer. It is estimated at 80 percent of all

desktops and servers within LANs use Ethernet. However, ATM% biggest strength iç

the built-in QoS. This enables ATM to offer performance guarantees when commu-

nication is established (as ATM is comection oriented), making it very attractive for

real time data like multimedia. Ethernet has no guaranteed QoS; it must rely on the

layers above to provide this kind of tr&c management. Secondly, Ethemet allows

variable-length fiames (unlike fked 53-bye ATM kames), thus making it diflicult to

regulate real-time flows that may get caught in the middle of a file transfer of con-

secutive 1500f byte kames. Finally, Gigabit Ethernet is less expensive by about 50

percent, than the 622 Mbps ATM. This coupled with the fact that Ethemet is well

understood and simple makes Gigabit Ethernet very attractive as an alternative to

ATM in the LAN.

For this thesis, we used ATM because of its availability both at the Department

of Electical and Computer Engineering, and at TRLabs, Winnipeg, Manitoba, and

the adab i l i ty of the pvm-atm package. However, in future we do plan to extend the

PVM implementation to Fast and Gigabit Ethernets and compare their performance

with ATM.

3.2 PVM

Zn this section, we t a k about the PVM system, its design architecture, and its routing

schernes. We also address some of PVM's extensions like MPVM and LPVM, and

the new MPI specifications.

3.2.1 The PVM System

For testing OUI algorithm in a distributed environment, we used the PVM [II] message

passing library. PVM is a widely-used software system that allows a heterogeneous

set of pardel and serial cornputes (running same or different operating systems)

to be programmed as a single distributed-memory parallel machine. It is portable

and runs on a wide variety of platforms. PVM is a mainstay of the Heterogeneous

Network Computing research project, a collaborative venture between the Oak Ridge

National Laboratory, the University of Tennessee, Emory University, and Carnegie

MeUon University. We present a brief o v e ~ e w of PVM, its architecture, and its

computing model. We also ta& about MPVM (a Migration transparent version of

PVM) , which supports transparent process migration among the multiple hosts that

constitute the virtual machine, and LPVM (Lightweight Thread-based PVM) which

is another extension to PVM where heavyweight processes are replaced by lightweight

processes.

PVM provides a unified computational fkamework for a network of heterogeneous

computing resources. As mentioned before, computing resources may include work-

stations, muitiprocessors and special purpose processors, and the underlying network

may be a conventional Ethemet, the Internet, or rnay be a high-speed network such as

ATM. Computing resources are accessed by applications via a suite of PVM d e h e d

user-interface primitives. The PVM suite provides a standard interface that supports

common pardel processing paradigms, such as message passing and shared memory.

An application would embed well-defined PVM primitives in their procedural host

language, usudy C, C++, or FORTRAN. Recently a Java based PVM (JavaPVM),

and Perl based PVM (Perl-PVM), have also been proposed, however they are still

untested. The PVM suite provides primitives for such operations as point-to-point

data transfer, message broadcasting, mutual exclusion, process control, and bamer

synchronization. In most cases, the user views PVM as a loosely coupled, distributed

memory computer with message passing capabilities, that is programmable in C,

C++, or FORTRAN.

Ln a PVM "virtual machine" environment, there exists a support process, called

a pvmd, or a daemon process, which executes on each host. These daemons execute

independently fkom one another. During normal operation, they are considered equal

peer processes. However, during startup, recodigurations, or operations such as

multicasting, there exists a master-slave relationship between pvmds. Each pvmd

serves as a message passing router and a controller. They are used to exchange

network configurable information, and dynamically allocate memory to store packets

traveling between distributed tasks. They are also responsible for all application

component processes (tasks) executing on their host .

Figure 3.5 depicts a network of three hosts. Eadi host has a local pvmd and

a number of local ta&. Communication between hosts may occur as a task-task,

task-pmd-pvmd-task, or pvmd-pvmd interaction. Communication within a host,

task-pvmd, occurs via Unix domain sockets.

As seen in Figure 3.5, ouzo has two tasks, task 6 and a console program. A console

program may be used to perforrn tasks such as configuring the virtual machine, start-

ing and killing processes, and checking and collecting status information of processes.

Cider Ouzo

O Console

0 Nonal Route

UnixSocket

Direct ou te

Figure 3.5: PVM task and daemon configuration (Adapted from Lin et al [21])

The network of independent PVM pvmds form the basis for support of important fea-

tures for a network-based computing environment. These features include dynamic

reconfigurability, fault-tolerance and scalability.

PVM allows dynamic reconfigurability by dowing hosts to enter and exit the host

pool via notification messages. PVM version 3 also supports the notion of dynamic

process groups. Processes can belong to multiple named groups, and groups can

be changed dynamically at any t h e during a computation. hinctions that logically

deal with groups of tasks such as broadcast and b d e r synchronization use the user's

explicitly defined group names as arguments. Routines are provided for processes to

join and leave a named group. This dynamic reconfigurabüity ability also provides

support for scalability and fault tolerance.

PVM provides two routing mechanisms for application messages; indirect and di-

rect routing. The choice of routing mechanism to use is controiled by the application

code. By default, messages are routed indirectly. Using indirect routing, as illustrated

in Figure 3.6, a message fkom task T2 to T3 passes through T2's local p m d (p m d on

host l), through T3's local pvmd (pvmd on host 2), and finaily to T3. Pmd-to-Pvmd

communication uses UDP (User Datagram Protocol) sodcet c o ~ e c t i o n s while task-

to-task communications uses TCP (Tkansmission Control Protocol) socket connection

which is established during task start-up. In direct routing (PvmRouteDirect), a mes-

sage fiom Task T2 to T4, also iUustrated in Figure 3.6, uses a TCP socket connection

between T2 and T4, by-passing the pvmds altogether. TCP connections between

tasks are created "on-demand". A TCP comection is established only when a task

bas set its routing option to direct routing.

Host 1

- TCP - - UDP PVM task

Figure 3.6: PVM Routing

In indirect routing (the default routing mechanism) , the connection-less UDP

sockets guarantee scalability, since a single UDP socket can communicate with any

number of tasks (local or remote). Because the communication between tasks is routed

through the p m L , however, messages need three hops to reach their destination.

This is not very efficient. In the case of direct routing (task-to-task), connection-

oriented TCP sockets are used for direct communication between the tasks. The use

of TCP sockets tends to exhaust the limited number of file descriptors in a system.

Since TCP connections establish a direct co~ll~~lunication link between the tasks,

however, messages reach their destination in a single hop.

In PVM 3.3.4 and above, it is possible to designate a specid task as the resource

manager. The resource manager, also called the global scheduler (GS), is responsible

for decision making policies such as task-to-processor allocation for sensibly schedul-

ing multiple p a r d e l applications. Using a global scheduler makes it convenient to

experiment with diffèrent scheduhg policies. In MPVM, the interface between the

pumds and the GS has been extended to accommodate task migration, allowing the

GS to use dynamic scheduling policies.

3.2.2 MPVM

MPVM is an extension of PVM, where tasks/processes ninning on one machine are

allowed to be suspended, and then executed on another machine. MPVM makes this

migration transparent to the user or the application programmer, whereby the user

or the programmer does not know if a migration has occurred. MPVM is also M y

compatible with PVM, in the sense that any applications written under PVM can be

nui under MPVM with minimal changes. MPVM is also M y portable.

Task migration may be required for the foliowing reasons: excessively high ma-

chine load, a faster and more suitable machine becoming available, etc. When a

task migrates, a major requirement is that the correctness of the task should not

be destroyed. When a task needs to be migrated, it is first suspended on the ma-

chine where it is currently running, and then is reconstructed on another machine.

The entire process, known as the migration protocol, is a four stage procedure. The

first stage addresses "when" the migration wilI occur, while the other three stages

correspond to the state capture, transfer, and state-reconstruction of the task.

The Global Scheduler (GS) decides whether the task has to be rnigrated or not.

If it decides in favor of migration, it sends a control message (CM) to the pvmd of

the host on which the task is alteady riinning. CMs are invisible to the application

code (eg. S U G , in which SM stands for scheduler message, and MIG stands for

migrate). Upon receipt of SMXIG, the pvmd on the host currently nuining the task

verifies the tid (task number) to ensure that the it is a locdy nuining task. The

migration initialization is divided into two components, that occur in pardel. The

first component, executed locally involves flushing all the TCP socket connections

fkom the pvmd to the task to avoid any loss of information that may be buffered. The

second component is a skeleton process initialization on the remote host, that WU

run in the context of the onginal task. The state transfer of a task from one host to

another involves capturing the task's state (ie. text, stack, data, etc.) on the local

host, and transferring it to the remote host, where the skeleton process assimilates

it in its own virtual address space. The state transfer is done via a TCP socket

comection between the current task and the skeleton task. Before the skeleton task

starts ninning, it c d e d the pvm-mytid() routine to re-enroll in the PVM system.

The task migration, however, can occur only between homogeneous machines, and

if the migration is implemented at user-level, then additional transparency is required

if the current task uses Unix facilities like semaphores, mutexes, shared libraries, etc.

LPVM

LPVM (Lightweight-process based PVM) [26] system is an extension of PVM that

supports the use of lightweight processes, or threads as the basic unit of parallelism.

The basic idea was to improve the performance of the system by using multithreaded

message passing systems, and study the effect of using multiple threads on SMP

(Symmetric Multiprocessors) in terms of latency. The idea of shared memory, and ease

in thread management compared to process management, motivated the developers

of PVM to implement a thread-based PVM.

Before LPVM was proposed, the designers of PVM had tried to build a s u b

system that uses threads, c d e d TPVM (Thread based PVM) (101. TPVM was a

system b d t on top of the PVM system, which did not require any change in the

underlying PVM system. TPVM had a problem of portability, as most of the thread

packages available today are not compatible with each other, and due to its CPU

dependent feature (context switching depends on the handling of stack and frame

pointed by a particular CPU), it is difncult to keep a thread package portable to all

platforms, which makes thread-based software di£Ecult to write if it is gohg to be

used on distinct platforms. Recently, Posix has released the Posix.4a standard that

has been implement on selected platforms.

As LPVM was developed as an extension to PVM, the user interface of both

systems was approximately the same. However, PVM is not MT-safe (Multithreaded

safe) ', therefore LPVM interface was slightly modified to incorporate thread safety,

but the changes were minimal. However, the current version of LPVM is designed

for a single SMP machine with a shared memory, and so it cannot be used in a

distributed environment with disjoint address spaces. The experimental LPVM was

implernented on SMP systems because they are stable, multiprocessor (MP) d e , and

MP efficient. The results showed improved latency compared to PVM and TPVM, as

the threads ran in the same address space unlike TPVM, where the communication

was still socket based.

For our work, we implemented a distributed thread based mode1 which was MT-

d e , and used threads for sub-task cornputations ie. the spawned processes export

thread entry points describing the actions of the threads executing the routines, sim-

'MT-de means that the data does not get corrupted when multiple threads operate on the sarne

data structure

ilar to TPVM. However, unlike TPVM, which is built on top of PVM and thereby

imposes an additional overhead, we implemented the multithreaded algorithm using

the PVM interface.

MPI

The Message Passing Interface (MPI) [SI is the latest development in message passing

systems and is reported to be more efficient than PVM. MPI is expected to be façter

within a large multiprocessor. It has many more point-to-point and collective com-

munication options than PVM. This can be important if an algorithm is dependent

on the existence of special communication option. MPI also has the ability to spec*

a logical communication topology. The motivation behind developing MPI was that

each MPP vendor was creating his own proprietary message-passing API. In this sce-

nario, it was not possible to write a portable pardel application. MPI is intended to

be a standard message-passing specification that each MPP vendor would implement

on their system. MPI has the following main features,

A large set of point-to-point communication routines.

A large set of collective communication routines for communication among

groups of processes.

A communication context that provides support for the design of safe pardel

software libraries.

The ability to specify communication topologies.

The ability to create derived datatypes that describe messages of non-contiguous

data.

A new concept introduced by MPI is the cornmunicator. The communicator can

be thought as a binding of a communication context to a group of processes. Com-

munication context allows library packages written in message passing systems to

protect or mark their messages so that they are not received by the user's code in-

correctly. Context is assigned by the operating environment and cannot be made a

wild-card by any user program. When a program starts, all tasks are given a "world"

communicator and a (static) listing of aU the tasks that started together. When a

new group (context) is needed, the program makes a syndironizing call to derive the

new context from an existing one. This derivation of context becomes a synchronous

operation across all the processes that are forming a new communicator. The advan-

tages because of this are that no servers are required to dispense a context as the

processes need only decide among themselves on a mutually safe context tag-

Unlike PVM, MPI does not have the concept of a virtual machine. However, MPI

provides a higher ievel of abstraction in terms of message-passing topology. Commu-

nication among a group of tasks in MPI can be arranged in a specific logical inter-

connection topology. The communication thereafter, takes place inside that topology.

This is in contrast to PVM in which the programmer is required to manually arrange

the tasks into groups with the desired communication organization.

The fault-tolerance capability of MPI is lower than that in PVM, maidy because

of the synchronous way that communicators are created and freed in MPI. The ear-

lier version of MPI, MPI-1 did not even have any notification capabilities, like that

a d a b l e in PVM, whereby a task gets notified if the status of the virtual machine

changes. The recent version of MPI, has added this capability.

Currently, the University of Tennessee and Oak Ridge National Laboratory are

investigating the possibilities of merging PVM and MPI, and the project has been

named PVMPI [9]. The idea is to access the virtual machine features of PVM and the

message passing features of MPI. The duties that PVMPI is intended to perform are:

to use vendor implementations of MPI that are a d a b l e of multiprocessors, to allow

applications to access PVM's virtual machine fault tolerance and resource control,

and to use PVM's network communication transparently for data transfer between

Merent vendor's MPI implementations.

In summary, if an application is intended to be executed on a single MPP, then

MPI is expected to give better communication performance. It would also be portable

to other vendor's MPP. MPI aIso has a very rich set of communication functiom, and

therefore it is favored for applications requiring specid communication modes that

are u n a d a b l e in PVM, such as the non-blocking send. However, MPI lacks interop-

erability, in the sense that one vendor's MPI cannot communkate to another vendor's

MPI. MPI also lach fault tolerance. On the other hand, PVM is advantageous if the

application is designed to run over a networked collection of heterogeneous hosts,

because of its concept of a virtual machine. PVM also has resource management and

fault tolerance, which makes it attractive for continuously running large applications

even if hosts or tasks fail, or if loads change dynamically, which is very common in

heterogeneous distributed computing.

For this thesis, the main reason for using PVM was its built-in f ad t tolerance

capabilities, and for performing dynamic load scheduüng based on the availability and

load on the machines. Secondly, PVM has already been successfully implemented over

Fore Systems' ATM API (pvm-atm), at the University of Minnesota, for evaluating

the performance of an ATM LAN,

Chapter 4

Distributed Multit hreaded Matrix

Multiplication

In this chapter, we discuss the implementation details of the matrix multipli-

cation algorithms that we have used for testing. The need for multithreading in

such applications is discussed initially, followed by a brief summary of the concept of

multithreading. We explain the Scdable Universal MatIUr Multiplication Algorithm

(SUMMA), which we have used for workload allocation. This algorithm is executed

on the master processor and two other algorithms, namely Block Matrix Multiplica-

tion (BMM), and Strassen's algorithm with Winograd's variant are used for sub-task

computations. Chapter 5 gives the performance of the algorithms on various network-

ing media and compares them to a simple distnbuted algorithm and a serial algorithm

(executed on a SUN SPARC Ultra) in terms of bandwidth and latency improvement.

4.1 Mult ithreading

Multithreading (MT) is a technique that allows one program to do multiple tasks

concurrently. As an example, in case of a Graphical User Interface (GUI), one thread

can download images, while a second thread can take care of the 110, while a third

thread can be responsible for doing some background calculations. A thread is a

lightwezght pmcess compared to a Unix Process (heuvywezght process), and uses the

address space of the process in which it is ninning. Multithreading is a new approach

in designing distributed applications where performance is the key aspect. Modem

OS platforms like Windows NT, OS/2, and several flavors of Unix provide extensive

library and system call support for mdtithreaded applications. With the ready a d -

ability of several thread packages (such as Posix, Java threads), multithreading has

set a trend for efficient and easy concurrent computing.

Mdtithreaded programming offen several benefits over serial procedural program-

rning. Primary amongst them are,

Performance improvement for multiprocessor architectures.

Better throughput as one blocked thread does not halt the entire application.

0 Avoiding process-to-process communication which is a heavier burden on the

operating system compared to thread-to-thread communication.

Optimum use of system resources, for instance in an SMP machine, a mul-

tithreaded application will use the available computationd power to its fÙll

capacity.

0 Ability to use the inherent concurrency of distributed objects.

Computers with more than one CPU offer the potential for enormous applica-

tion speedups. By making the application multithreaded, dinerent threads can nui

on diaerent processors simultaneously with no extra effort from the programmer (ie.

a multithreaded application written for a machine with one CPU also works for a

machine with multiple CPUs). Most of the workstations available today are multi-

processor machines [20]. These machines, when given serial tasks to m, utilize only

one processor and thereby give suboptimal performance, compared to when they are

ninning concurrent tasks, where each thread is executed on a different processor. A

schematic diagram is shown in Figure 5.1

Threads

Processors

Figure 4.1: Different threads on different processors

For our matrix multiplication application, we have used this idea. The algorithm

dynamically generates threads at runtime, according to the number of processors in

the machine on which the task is spawned. Apart fiom that, the aigorithm also

detects the shape of the input matrices, and makes decisions as to how the threads

will operate. A detailed explanation is given in the following sections. This approach

is extremely efficient for SMP machines as the CPU idling time will decrease. This

not only increases the speed of computation, but also improves the latency of the

system.

4.1.1 What is a thread?

A thread is a lightweight process. Compared to a regular Unix process (also h o w n as

a heavywezght process, a thread is a lighter burden on the operating system to create,

maintain, and manage, because very little idormation is associated with a thread.

In case of a process, when one process is removed Çom the processor and another

process is activated, a context switch occurs. When a context switch occurs from one

process to another, the operating system must keep track of all relevant information

needed to restart the process that was running. This information involves the pointer

to the executable, the stack, and the memory for statically and dynamicdy allocated

variables. This information is required by the processor when it again takes charge

of the process. Therefore a process uses many system resources and causes a large

overhead. Threads also have context. When preempted, a context switch must occur

between the threads. But unlike a process, a thread does not have its own address

space but uses the address space of the process in whidi it is ninning. Therefore,

the information required to reinstate a thread is much less than that for a process.

The information that is required is only a stack, a register set, and a priority that is

given to each thread for execution. The text of the thread is contained in the text

segment of its process. The data segment of the thread is shared with its process. A

thread can read or write to the memory locations of its process and the process has

access to the data. The stack of the thread is contained in the stack segment of the

process. Threads can create other threads in the process and all the threads nuining

in a process are called peers. All the threads share the resources and memory of the

process, but do not own any of them, which make them very easy to handle. All they

need is a thread ID, a set of registers that define the state of thread, and a priority.

Threads are like a set of tenants living with a common host, which is a process.

Process B
IPC between A

and B -
I Hea p

Pipe

Text Segment
-0 €

Text Segment 1
m a i n o c t1oc

read0; 1142;

gen tl; - O *

gan ta;

1 1

Figure 4.2: Communication between threads and pro cesses

Similarities between Processes and Threads

Processes and threads have a fked ID, a set of registers that maintain their state,

and a pnority. They both share resources with parent processes, and are independent

entities when they are created. Processes and threads can exdiange attributes after

creation, and they can create new resources. Finally, they cannot directly access

resources and memory of other unrelated processes or threads.

Dissimilarities between Processes and Threads

Threads unlike processes do not have an address space. For communication, parent

and child processes use interprocess communication, such as sockets or pipes. In con-

trast, peer threads communicate by writing and reading data to the process variables.

Child processes do not exercise control over other child processes from the same par-

ent process, while threads in a process are considered peers and have control over

each other. Lastly, child processes do not have control over the the parent process,

but a secondary thread can control the main thread, and thereby the entire process.

Figure 4.2 austrates communication between processes and threads. As seen, if

process A talks to process B, a pipe has to created. On the other hand, two threads

tl and ti taUc using common memory space, and thereby do not need any explicit

communication medium.

4.2 Distributed Matrix Multiplication

Distributed Matrix Multiplication computation is a standard coarse-granular paral-

le1 application that is used for performance measurements of a distributed system.

We have implemented a Distributed multithreaded matrix multiplication algorithm

based on three algorithms. SUMMA is executed by the master node, and is used

for workload division, and Block Matrix Multiplication and Strassen's multiplication

algorithm, that are executed on the slaves, are used for sub-task computations. The

three algorithms are explained in this section and their combined thread based parallel

algorithm is discussed at the end of the section.

4.2.1 SUMMA

The Scalable Universal Matrix Multiplication Algorithm (SUMMA) [25] is a very

simple algorithm for matrix multipiication, and we have implemented this algorithm

for workload allocation. The master node uses SUMMA to divide the input matrices

into blocks and the correspondhg blocks of both matrices are then transferred to the

slave nodes.

The machines in a PVM LAN are always assumed to form a mesh type architec-

ture. The nodes of the LAN are the tasks that are spawned on the machines and not

the actual machines, so that there may be only three machines in the actual LAN,

but these three machines can be ninning 2 tasks/processes each and thereby forming

a 3 x 2 virtual mesh. The input matrices are divided according the mesh configura-

tion, and SUMMA does it in such a way that the matrices on each node satisfy the

row-column requirement for matrix multiplication.

The initial assumption is that the nodes of the pa rde l machine (formed by ma-

chines in the PVM pool) form a r x c mesh. The total number of nodes, denoted

by p = m, are indexed by their row and column index such that the (i, j) node will

be denoted by P,. The data decomposition for input matrices A and B, and output

rnatrix C occurs as below;

X =

If a &en matrix X is of size m x n, where X E (A, B, C), is to be divided on

a mesh of r x c logical nodes, then the portion Xij would be assigned to node Pij -

Sub-matrix X, has dimensions mix x n j x , with Cmx = m and C q X = n.

For doing the multiplication, we require mA = m, nA = mB = k, and nB = n. If

qj, bG and c, denote the (2, j) elements of the matrices respectively, then the elements

of C are given by

As seen, the rows of C are calculated fiom the rows of A, and the columns of C

are calculated from the columns of B. Therefore, the rows of A and C are assigned to

the same row of nodes and colurnns of B and C are assigned to the same column of

B nodes. Hence, = miA and njc = nj .

As seen, is entirely assigned to node row i, while Ëj is entirely assigned to node

column j. By putting,

we see that ,

Hence the math-matr ix multiplication can be formulated as a sequence of rank-one

updates.

SUMMA can be improved by using the level-3 BLAS (Built-in Linear Algebra

Subprograms) provided by major vendors of high performance microprocessors. An

optimized version of the algorithm can do the matrix multiplication by a c c d a t i n g

several col- of Ai and rows of B, before updating the local rnatrix. The advan-

tage gained here is that it reduces the number of messages incurred, thereby reducing

communication overhead. We have not implemented this possibility because of the

unavailability of BLAS routines. Our main objective is to evaluate the network per-

formance for multithreaded computations, and hence this feature of SUMMA is not

addressed.

SUMMA is simpler than other dgorithms that use broadcast-mdtiply-roll algo-

rithm. However SUMMA is more fieible, its memory usage for work arrays is much

lower and hence SUMMA was used for implementing the work-load division.

4.2.2 BMM

Block algorithms are very popular parallel algorithms for matrix computations. BMM

(Block Matrix Multiplication) [13] algonthm is an efficient matrix multiplication al-

gorithm, where the input matrices are divided into sub-blocks and then individual

sub-block (or sub-matrices) from each input matrix are used for calculating the cor-

responding sub-block of the resultant matrix.

If two input matrices A and B (assuming square matrices with dimensions n x

n), are to be mdtiplied to form the resultant n x n matrix C, then the multiplication

process can be devised in the following manner. Assuming that n = NI, where N and

I are positive integers, and where N is the number of sub-blocks of the matrices or

dimension 1 x 1, such that,

where a = 1 : N , and p = 1 : N. ' The algonthm is shown on the next page.

'Block matrices are designated by the colon notation, whereby if A is an m x n matrix, and if 1

5 i l 5 iz 5 m, and 1 jl 5 j2 < n, then A(il : i2 , jl : j2) is the sub-rnatrix obtained by extracting

rows i l through i2 and coliimnc; ji through j2.

for a = l:N

i = (a - 111 + 1 : al

f o r p = l : N

j = (p - 1)1+ 1 : pl

f o r y = l : N

k = (y - 1)l + 1 : yz

C(i , j) = A(i, k) B (k , j)

end

end

end

If 1 = 1, then a = i , p = j , and y r k and we revert to the standard b e r dot-

product matrix multiplication algorithm. For parallelizing this aigorithm by forking

multiple threads to compute individual sub-matrices, we use the foilowing criteria,

Number of Processors: O n a SMP machine, the most optimum performance

is obtained if all the CPU's available are used for doing computationd work

concurrently. Our algorithm makes sure of this, and forks as many threads as

there are number of processors in a machine. For a Unix workstation, this can

be accomplished by calling the system configuration routines and checking the

number of processors online, and for Windows NT workstations, a method called

GetSystemInfo() which is included in the system routines, is called which retums

the number of processors. The algonthm takes this value and dynamically forks

equivalent number of threads.

2. Shape of the input sub-matrices: The shape of the input sub-matrices &O

play and important role in deciding on how to fork up threads and how to

operate them on the matrices. If the two matrices are primarily rectangular,

then o d y one of the two matrices is divided into sub-matrices. If both the

matrices are primarily square, then both the matrices are divided into sub-

matrices.

Out of the two matrices A and B, A is always divided into sub-matrices regardless

of the shape of A, if we are doing A x B. By the âist criteria, the number of threads

to be forked is decided. The total number of rows of A are divided by the number

of threads to be forked, and each resultant block is computed by one thread. If

the number of rows in A are such that they cannot be divided equally amongst the

threads, then the thread which becomes free tirst after doing its share of work takes up

the computation of the last residual part that could not be allocated to any thread. In

case if the matrices are primarily rectangular, then matrix B is not divided, and each

thread multiplies one block of A by the entire B matrix. In this case, if the matrix

A was divided into four parts, then ideally the algorithm will work four times faster

then a simple multiplication, as there will be four concurrent multiplications going

on at a time. On the other hand, if the matrices are primarily square in shape, then

A is again divided in the same way, and B is also divided in the similarly, however, it

is divided column-wise. In other words, the total number of columns of B are divided

by the number of threads to be generated. Therefore a block of A is multiplied by the

corresponding block in B by one thread. This type of dual partitionhg will reduce

the amount of work on the threads, and thereby increase the latency. Shown below

are the sub-blocks of the two matrices.

When performing the matrix multiplication, the mai in thread creates threads for

each CPU. The main thread also sets up a counter of work available to do, and

then uses a condition variable to signal the threads to start the computation. Each

individual thread acquires the mutex lock, and after doing its work, updates the

counter, and releases the mutex lock. Hence the second thread can start fiom the

point where the first thread stopped.

Whenever a condition arises when one thread depends on the data that is com-

puted by some other thread, a condition variable (such as semaphores) is used for

signaling purposes. Strassen's algorithm extensively uses data transfer between the

worker threads, as explained in the next subsection, and these condition variables are

used for that purpose.

4.2.3 Strassen9s Algorithm

S trassen's algont hm is a fast recursive matrix multiplication algorithm. The advan-

tage of this algorithm is that it uses fewer multiplications compared to any standard

matrix multiplication algorithm. For multiplying two m x m matrices, nz3 scalar

multiplications and m3 - ma scalar additions are required, which results in a total

arithmetic count of 2m3 - rn2 and a general algorithm complexity of 8 (m 3) [17]. This

means that a 2 x 2 matrix will require 8 multiplications and 4 additions. Strassen's al-

gorithm, proposed in 1969, multiplies two 2 x 2 matrices using 7 multiplications and 18

additionfsubtractions. It has a general complexity of 0(m2-807). Apart from that, the

algorithm does not depend on the commutativity of the component multiplications,

so it can be used for block matrices and used recursively. Thus, Strassen's algo-

rit hm reduces the number of multiplications, and increases the number of additions.

However, in a large rnatrix multiplication problem, addition can be accomplished

in parallel with more ease than multiplication. The total number of operations for

multiplying 2 x 2 matrices whose elements are m/2 x m/2 blocks will be,

The ratio of this operation count to that of the standard aigorithm, therefore, is,

If m gets large, the operation count approaches 718, which means that for large

matrices, one recurçion of Strassen's algorithm gives an improvement of 12.5% over

regular matrix multipücation. Therefore, if Strassen's algorithm is applied recursively

to large matrices, the performance improvement is significant.

For this thesis, we have implemented Winograd variant of Strassen's algorithm

(which is an improved version of Strassen's algorithm) that uses 7 multiplications

and 15 additions/subtractions. The algorithm partitions the input matrices A and B

into 2 x 2 blocks and cornputes C, as shown below.

("' "'2) = (A n A") (BI' B")
c 2 1 c 2 2 A21 A22 B21 B22

The computation process in one recursion consists of four stages. Stages (1) and

(2), as shown on the next page, which compute the S and T matrices are shown below.

S and T are temporary matrices.

Similady, stages (3) and (4) compute the P and U matrices which are also tem-

p o r q matrices. The two stages are shown on the next page.

It can be seen that Czi = Ul, CI2 = &, C21 = U4, and C22 = U5-

Strassen's algorithm can also be applied to rectangular matrices. As mentioned

earlier, the recursion should be stopped when the component matrices reach a cutoff

minimum size. At this point, the standard algorithm should be used, as it is more

efficient for s m d matrices. It has been proved that for multiplying two matrices of

dimensions rn x n, and n x k, the cutoff dimensions are obtained by solving the

following inequality,

Therefore for a square matrix (m = n = k), the dimension should be less than or

equal to 12. In other words, Strassen's algorithm should be used recursively until the

component matrices are reduced to a size less than or equal to 12 x 12, after which

the standard algorithm should be used for the optimum performance.

4.2.4 Our Algorithm

Our algonthm takes in matrices of any shape, size, and dimensions. It recursively uses

the Strassen's algonthm until the cutoff dimensions (in our case, used 12 as the cutoff

dimension) are reached, after which it switehes to a standard block multiplication

algorithm. Dynamic Peeling (as explained in the next subsection) is used for matrices

that are rectangular, and have odd dimensions. In cases where the input matrices

are primarily rectangular, the algorithm uses BMM directly, and &O decides on how

to divide the matrices into sub-blocks. Finally, the algorithm detects the machine

architecture on which the code is executing, as weIl as the number of processors

present and forks the equivalent number of threads to perform the calculations. The

operating system is &O detected which calls a specific thread library (eg. for Unix

machines, either Solaris or Posix thread packages are called, while for PCs d g

Windows NT, the Windows NT thread libraries are called.)

For initial work-load allocation, we use SUMMA, which uses the mesh topology,

and divides up the rows and columns of the matrices accordingly. After this, the

pvm-pack() routine is called, which packs the mat+ data to be sent to the slave

nodes. pvm-sendo is called to transmit this data to the remote machine (slave),

where pm-recv and pvm-upack routines are called to receive, and unpack the data.

At this point, the algorithm also detects the machine architecture of the slave, and

spawns an equivalent number of threads. The shape and size of the matrices are also

used to decide as to which algorithm should be used for sub-rnatrix computations ie.

individual matrix multiplication at the nodes. If the matrices are primarily square

(where the number of rows and columns are approximately the same), then we use

Strassen's algorithm, and if they are primarily rectangular (where the number of rows

or columns is greater than the other by more than twice), then we use BMM.

For matrices with an odd number dimension, either dynamic padding, or dynamic

peeling is used. Dynamic padding involves adding an extra row or columns of zeros

to the matrix to make the dimensions even. Dynamic peeling on the other hand

deals with odd dimensions by stripping off the extra row andior column, and adding

their contribution to the ha1 result later. For our algorithm, we have implemented

the dynamic peeling method for two reasons. Firstly, dynamic padding increases the

time of computation, as an extra row and/or column is added to the matrix, and

this row/column is dso multiplied dong with the original matrix, which can cause a

performance overhead. Secondly, dynarnic peeling method had not been previously

tested through actual implementation, and we wanted to see the advantages of this

method. Dynamic peeling is explained briefly below.

Dynamic Peeling

Let A be an m x n matrix, and B be a n x k matrix, where m, n, k are odd integers.

Then the matrix division takes place as below,

and B =

where All is a (m - 1) x (n - 1) matrix, al2 is a (m - 1) x 1 matrix, a21 is a

1 x (k - 1) matrix, and a2z is a 1 x 1 matrix. Similarly, B is also divided in the Save

way. The product C = AB is computed as,

Here, Strassen's algorithm is used for computing All B12, and the other computa-

tions are added later. The Strassen's computation, then again starts recursively, and

dynamically peels off rows and columns whenever an odd number is encountered, tül

the cutoff dimension (determined at runtime) is reached, at which point the standard

algorithm is used. After this, the algorithm starts putting the extra row and column

computations, and ends up with the final C matrix.

We have also implemented dynamic peeling for the case when only one dimension

is odd, or when the odd dimension is greater than the even dimension, or when the

odd dimension is smaller than the odd dimension. The peeling in this case involves

stripping off two rows or columns when the even dimension is smaller, and only one

row or coliimn if the odd dimension is smaller.

The complete algorithm is given below.

1. The input matrices, A and B are read by the algorithm dong with the mesh

configuration of the virtual machine (in the form of an r x c mesh. Based on

the mesh configuration, the matrices are divided (A is divided row-wise and B

is divided column-wise). The division is such that the column-row condition

necessary for matrix multiplication is satisfied a t each node.

2. The node which will run the PVM console will act as the master node, and it

will spawn processes on the slave nodes. pm-spawn() routine is used for this

purpose. This routine will spawn a user defined process on the slave. In our

test case, the process spawned will be Matmult.

3. PVM's interna runtime libraries will open connection with the specified hosts,

and cal1 the pvm-pk*() routines to pack the data to be sent to the hosts, which

wiil be sent by the pvm-mcast() routine. This routine will spawn processes

on the slaves in a round-robin fashion. In case of Ethernet as the underlying

network, a socket based TCP/IP connection will be established between the

hosts. On the other hand, if the underlying network in ATM, then Fore Systems'

ATM API will be used to utilize the AAL 5 protocol, and thereby using Class 5

service. After packhg and sending the data to the slaves, the master will wait

for the results fiom the slaves.

4. At the slaves, the pwn-recv() routine will receive the data from the master,

followed by pvm-unpk*() which will unpack the data items. At the slaves, the

algorithm will detect two things.

Number of Processors: For a Unix machine, the routine sysconf() will be

used, and for a Windows NT machine, GetSystemInfo() will be used. These

routines will determine the number of processors online, and the algorithm

will create equivalent number of threads. The priorities of the threads can

assigned in such a way so that each thread is ninning concurrently on each

processor (We have not implemented this facility as the the machines on

which we tested the algorithm were mostly single processor machines). If

the machine haç a uni-processor architecture, then by default, four threads

will be created (this number c m also be changed, although through trial-

and-error, we concluded than for a uniprocessor machine, 4 threads gives

the best performance).

Shape of the Sub-matrices: This will determine how the sub-matrices have

to be divided. As explained earlier, this will depend on whether the matri-

ces are rectangular or square. In this case, if the number of rows/co1llmn~

are more than twice the number of columns/rows, then the matrix is said

to be rectangular, and only the sub-matrix of A will be divided. Otherwise,

both sub-matrices will be divided as explained earlier.

5. S trassen's algont hm will be called recursively for multiplying the sub-matrices.

This algorithm will dynamically peel off extra rows and columns should they

be odd in number, and bring out the largest square matrix in the remaining

part. If the dimensions of this square matrix are above the cutoff, a second

recursion will take place where the same procedure will be repeated. As the

dimension of the largest square reaches the cutoff, the standard algorithm will

be used (a multithreaded block algorith). After which, the algorithm will

add the results of the extra rows and columns that were peeled off during each

recursion, starting from the last recwsion.

6. After the sub-matrix Chas been verified, it calls the pvm-pkf(), and pmsend()

routines to pack and send the data back to the master and quits.

7. The master receives the data fiom the slaves, as they finish computation, and

then assembles the final m a t h C and quits.

This algorithm has been tested on different matrix sizes on two underlying net-

works namely ATM, and Ethernet. A correctness check is done at each node during

the sub-matrix computation, and ha l ly at the master node for the entire matrix.

This accomplished by arbitrarily generating the elernents of matrix A using the Unix

rand() facility. The matrix B, is made an Identity matrix (where all the elements

except the diagonal are zero, and the diagonal elements are ail 1). This results in the

matrix C to be exactly same as matrix A.

The Performance results of both the networks are shown and discussed in the next

chapt er.

Chapter 5

Network Performance - Results

The main objective of this thesis is to evaluate the performance improvement of

difTerent cornputer networks for supporthg a thread based computing system and a

thread based communication system. The performance is measured in terms of the

latency, and the throughput. Two networks were tested as a part of this thesis. In the

first case, an Ethernet LAN was constructed and a distributed matrix multiplication

application was run on it. This was followed by running a multithreaded version of the

distribut ed application. The performance of bot h the aigorithms was examined. The

latency of the network and the workstations, and the throughput of the network was

studied. Foilowing this, the same two algorithms were run on an ATM LAN, and the

performance of the ATM network, the machines in the LAN, and the algonthms were

evaluated. Lastly, we tested the performance improvement by using multithreading

in a single machine and compared our algorithm with a serial matrix multiplication

algorithm running on a single host

Test-bed Setups

We used the Ethernet testbed a t the ECE Department and at TRLabs, Winnipeg,

for running our distributed algorithm. For the ATM testbed, we used the existing

OC-3 network in the ECE Department. A brief description of the experimentd setup

is given in the following subsections.

5 1 1 Ethernet

The standard 10 Mbps Ethernet, a d a b l e in the Electrical and Cornputer Engineering

(ECE) department was used for testing purpose. The network configuration, as shown

in Figure 5.1, was used. The workstations in the Ethernet LAN were connected via

a 3Com switch, and two hubs. PVM's round robin allocation scheme was used for

workload allocation among the hosts. PvmRouteDirect was used as the default route

between two daemons for faster message passing. Results and analysis of the nintime

performance of our algorithm are given in the subsequent sections. The time measured

anywhere during the experiments is the average time obtained after 3 or 5 nuis of the

algorit hm.

For the tests, we used only four dedicated machines as we wanted to compare the

performance of the Ethernet LAN with ATM LAN, and o d y these machines had the

Fore Systems' ATM Interface cards, although PVM allows any number of machines

to be added to the host pool. All the tests were conducted a t three different times of

the day, namely in the earty morning, when the network t r a c is not very high, in

the late morning, when the network is fully loaded, and in the evening, when again

the network is not ninning a t its full capacity. This was done to get the mean test

results. For each case, the latency and throughput of the network was calculated.

Apart from that, we also tested our algonthm in t e m s of CPU usage, speed of

computation, and how it reduces the latency of the SMP machines. For measuring

the network load, we used a simple bandwidth ailocation ratio, which was the ratio

To ECE Network

- - - - - - - - - -
/

/

\

3 Corn Switch \

\
\
\
\
\

1

\
\

I
\

I
t

I A\ PVM LAN
1

1
\

\

1
\

To other To other ',
Hub Hub

machines ; - machines 1

I
'. I

I

I

1
I

t
1

I

I

I
I

I

I
I
1

1

I
Ouzo Cider icl 1 icl8 I

', (Sparc Ultra) (Sun Sparc 5) (Sun Sparc 5) (Sun Sparc 10) I I

\
\

/

\

/

-. / .
5

/ - /

/
/

----------------------------__________________________CC~

Figure 5.1: Workstations on the Ethernet LAN at the ECE Dept.

of the allocated bandwidth to the achieved bandwidth. Later, we discovered the

adability of SNMP on the workstations, and the results extracted after ' ' s d k g "

the network yielded approximately the same network loads.

The communication between hosts occurs in two ways: (i) when a master process

spawns a slave process on a remote host , the communication occurs between the two

PVM daemons in the form of message passing, and (ii) when a thread in one process

communicates with a thread in another process. This happens when a thread ninning

in one process requires a data item computed by some other thread in some other

process. This is also accomplished by explicit message passing for this research, and is

done several times during the execution of the algorithm. Algorithms with h e r gran-

ularity are supposed to give sub-optimal performance compared to course granular

algorithms. The main reason being the usage of the interconnecting network be-

tween the hosts should be minimum. By using high-speed, high-bandwidth networks,

and uçing thread spawning and inter-thread communication, as opposed to process

spawning, and interprocess communication, this drawback c m be reduced. Hence in

this thesis, we evaluate the performance of the networks for both these cases, namely

single-threaded execution and multithreaded execution. We have tried to determine

the rnacimum achievable throughput, and the end-to-end communication latency for

each case, and the results are plotted and detailed discussion of the results is given

in the Section 5.7.

5.1.2 ATM

We use the existing ATM testbed in the ECE department, which is an OC-3 (155

Mbps) network operating on a Fore Systems' ASX-200 switch. Four machines are

comected in the LAN through the switch, each having Fore Systems' ATM API

and using SBA-200 Sbus adapter boards from Fore Systems. The machines, namely

Ouzo, Cider, ic18, and icli, are comected to the ATM network. Their ATM cards

have different IP addresses, such as 204.112.157.*, than the regular ECE domain

addresses of 130.179.8.*. Figure 5.2 shows the network layout for the test. PVM was

implemented on the API by using the purn-atm package, developed by The Distributed

Multimedia Research Centre (DMRC) at the University of Minnesota, which directly

uses the Fore Systems' AAL 314 and AAL 5 protocols. We tested both the protocols

for this thesis.

5.2 Network Performance

We evaluate the network performance in terms of end-to-end communication latency,

and maximum achievable throughput. h the following Sections, we describe the tests

and the echo programs used for latency measurements.

5.3 End-To-End Communication Latency

The communication latency for sending a M-byte message can be estimated as half

of the round trip time required for sending and receiving this data from one host to

another. We used a standard a d a b l e echo program for doing t h , which is provided

with the PVM 3.3.11 package. In the echo program, a client sends a M-byte (Mranges

from 20 bytes to 250 Kbytes) message to the semer and waits to receive the M byte

message badc. This client/server interaction iterates N times, and we note the timing

for each iteration, and determine the average timing for each value of M. We repeat

this procedure four to five times and select the best three observations corresponding

to difFerent network loads during difierent times of the day. The start-up latency is

also an important performance parameter for network performance. It is the time

required to send extremely short messages. The start-up latency for Ethernet and

ATM is used as a performance cornparison parameter and is discussed in Section 5.7.

To Ethemet Backbone To Ethernet Backbone

OC-3 (155 Mbps. 1
Fibre

Fore Systems'

ASXQOO

Switch

OC-3 i 155 Mbps.)
Fibre

1
I
I

ATM LAN

To Ethemet Backbone To Ethernet Backbone

Figure 5.2: Workstations on the ATM LAN at the ECE Dept.

5.3.1 Ethernet

We Mned the data size from 20 bytes to 204 kbytes for the echo program, and

observed the Round-Trip timing (RTT) for dinerent Network Loads. We took 5 to

7 trial u s and selected the best three runs for network loads that were distributed

uniformly, namely 90% load, 50% load, and 20% load. The underlying protocol stack

used was the default TCP/IP and UDP/IP. The results are plotted in Table 5.3. A

detailed discussion of all the results is given in Section 5.7.

x 104
I 1 1 T

50% load

0
O

I
I

0
0

0

0 '

El'

Message Size(bytes) v in4

Figure 5.3: Communication Latency for PVM over Ethernet

5.3.2 ATM AAL 314

We used ATM AAL 314 protocol as well as the ATM AAL 5 protocol as the underlying

protocol on our tests on the ATM network. The results obtained for three network

loads are plotted in Figure 5.4.

-

1 1 I 1

O 0.5 1 1.5 2 2.5
Data Site (bytes) r 1n4

Figure 5.4: Communication Latency for PVM over ATM AAL 314

Figure 5.5: Communication Latency for PVM over ATM AAL 5

5.3.3 ATM AAL 5

ATM AAL5 was also tested in the similar fashion for three different runs of the echo

program. The results of the runs are shown in Figure 5.5. There is not much clifference

in the performance of PVM-AAL 314 and PVM-AAL 5 as clearly seen in Figure 5.6,

however AAL5 provides slightly lower latency. Therefore, ATM AAL 5 has a superior

latency characteristic compared to either Ethemet or ATM AAL 314.

For cornparison purpose, we also plotted the results of the nins for Ethernet

(PVM/TCP/UDP) with the ones with ATM (PVM/AAL 314 and PVM/AAL 5)

together, to see the merence in values. Figure 5.6 shows the combined plots.

i3 - O PVM-Ettiemet
PVM-AAL Y4

/
a

ô 2-
al 0
V) /

g .- /

E
0

-1.5- /-

/
Q>
E

0

i=
Q -- /

p"
1 - /

/
w
E
1

0

h a
Y

A
1 1 I

O 0.5 1 1.5 2 2.5
Message Size(bytes) Y i n4

Figure 5.6: Communication Latency for PVM over Ethernet and ATM

5.4 Performance of the Serial Algorithm

We also ran a unthreaded matrix multiplication program on a single workstation,

for comparing the speed of computation of a serial multiplication against a multi-

threaded rnatrix multiplication, and the gain in latency that can be obtained by

using concurrent thread based computing. We ran both the algorithms ie. a simple

matrix multiplication algorithm and our algorithm (implemented for a single host in

this case) on Ouzo (SPARC Ultra), and we saw the computation times of both the

algonthms for different m a t e sizes, and with two, four and eight spawned threads.

As clearly seen, the serial code was the slowest as compared to a threaded code. The

maximum number of threads that the machine we used were 4, hence the computation

t h e was minimum for 4 threads. When 8 threads were imposed, the thread man-

agement overhead became very high, and thereby the time of computation increased.

We have plotted the results in Figure 5.7.

9000 I 1 1 6 1 1 I 3

/ - A-. A 4 Threads - 2 Threads /
/

/

Matrix Size

Figure 5.7: Co~ll~llunication Latency for a Sun SPARC Ultra for serial and multi-

threaded codes

As clearly seen, a multithreaded algorithm performs better than a serial dgorithm.

The workstation, Ouzo, is a single processor workstation, so the threads are context

switched. If however, the workstations has a multiprocessor architecture (like an

SMP), then threads can be concurrently executed on individual processors, and the

performance of the algorithm would improve further. By using advanced features

like priority scheduling, and functions like thr-setconcurrency() in implementing the

algonthm, a better performance can be achieved.

Thread Spawning against Process Spawning

For mission critical applications, the time required to spawn a process either l o c d y

on the same host or remotely on another host is an important performance parameter.

We measured the times required to spawn a process and a thread. The Unix fork()

utility was used to spawn a process, and the total time for a spawn was measured-

For threads, we used the thr-create() function, and measured the time. The results

are shown in Table 5.1 and plotted Figure 5.8.

It can be clearly seen that the t h e required to spawn threads is much less than

the time required to spawn a process. For our case, we spawned threads only on

a single host, however, results fiom TPVM over PVM [IO], and LPVM (261 show

that spawning remote threads also requires much less time than spawning remote

processes. This adds a lot to improving the latency of the overall system.

Thread and Process Communication Times

We also determined the communication time required for two processes to ta& with

each other, and two threads to talk with each other. The threads resided on processes

that were running on the same host. This was accomplished using the the pvmsend()

and pvm-recv() functions for processes, and by using inter-process condition variables

in case of threads. The time for communication is shown in Table 5.2 and plotted in

Figure 5.9.

AS clearly seen, the time for message passing between threads is significantly less

compared to processes. The time for remote threads for communication has also

Time (msec)

Number Spaumed P VM Processes P VM Threads

1 57.75 1.75

Table 5.1: Spawning Times for a Process and Thread

Number Spawned

Figure 5.8: Spawning Times for Process and Thread

1 Communicatzon Time (mec)

Processes Threads (local)

A A L 3 / . A A L 5 Local

4.09 2.92 1.09

72.29 15.25

L I I I

0
0 ..'

Process Local 0

Thread 0

Message Size (KB)

Figure 5.9: Communication Times for Processes and Thread

been proved to be Iess in TPVM, although usage of a Distributed Shared Memory

can improve the performance in case of remote thread communication. The reason

being, the threads do not need to use the network every t h e for accessing a remote

data item, if it is stored in the DSM, and if the DSM uses the hosts memory map.

5.5 Maximum Achievable Throughput

The maximum achievable throughput (r-) is obtained by transmitting very large

messages. It is an important parameter for applications that require large amounts

of data transfer between the hosts and is a performance metnc for networks. We ran

our algorithm for diEerent m a t e sizes on a 2 x 3 mesh (total 6 nodes), and noted

the bandwidth. Like before, we conducted our tests at different network loads.

5.5.1 Ethernet

For rneasuring the communication bandwidth, and thereby the maximum achievable

throughput, we measured the round trip tirne required for sending messages of fixed

sizes between two hosts. This was similar to the echo program that we used for

measuring latency, wherein a message is sent fkom one machine to another, and

received back repeatedly N number of tirnes. The average communication time for

a fixed message size is determined, and this gives the bandwidth that the network

can operate for that particular message size. This is repeated for different message

sizes, and the bandwidths achieved for each message size is plotted. The maximum

bandwidth or the maximum achievable throughput is the peak of the cuve obtained.

As the time measured is the average time, the maximum throughput is the average

maximum achievable throughput .
We have tabularized (Table 5.3) the observations for Ethernet, ATM AAL 314

and ATM AAL 5 and have plotted them in Figure 5.10.

Bandwidth (Mits(sec)

Message Size (KB) Ethernet ATM AAL 3/4
-- -

ATM AAL 5

Table 5.3: Bandwidth for PVM over Ethernet and ATM for different message sizes

Figure 5.10: Bandwidth and Maximum Throughput for Ethernet and ATM networks

5.5.2 ATM AAL 3/4

The same procedure was repeated for an ATM network with AAL 314 protocol.

The bandwïdths obtained for AAL 5 for different message sizes was higher than the

bandwidths for Ethernet. Table 5.3 and Figure 5.10 show the results.

5.5.3 ATM AAL 5

Similar runs were given for the ATM AAL 5 network, and the results are shown in

Table 5.3 and are plotted in Figure 5.10. It can be clearly seen that ATM AAL 5

gives the highest throughput among the three networks.

5.6 Overall Real-Time Performance

We also measured the ove rd real-time performance of a distributed multithreaded

matrix multiplication algorithm (our algorithm) against a distributed unthreaded ma-

trix multiplication algorithm. The overd real-time included the total commuaication

time, computation t h e , packing and unpadgng tirne, and the time for doing 110.
The time was measured using the high-resolution time facility in Unix, that gives the

real-the in nano-seconds. We did this performance analysis on an Ethemet network,

and then on an ATM network with AAL 314 and AAL 5 protocols. The results are

shown in Table 5.4 and are plotted in Figure 5.11.

5.7 Analysis of Results

The previous sections and subsections give plots and tables of the results that we

obtained by running the algorithms mentioned in this thesis in dinerent environments

under Merent conditions.

As we can clearly see, the ATM AAL 5 protocol gives the most supenor perfor-

Real- Time (sec)
- -

Ethernet ATM AAL 3/4 ATM AAL 5

Table 5.4: Real-time speedup of a Mdtithreaded (MT) Algorithm over a Serial Al-

gorithm on Ethernet and ATM networks

Matrix Size

Figure 5.11: Total Execution Time for a MT and Serial Algorithm on Ethernet and

ATM

mance as far as latency is concerned. The AAL 3/4 protocol is highly efficient but

gives a slightly higher latency than ATM, while Ethernet gives the highest latency

amongst the three. However, the start-up latency to of Ethernet is the minimum

followed by ATM AAL 314 and AAL 5 respectively as seen in Table 5.5 The Q is

measured by a 4 byte message from one host to another and calculating the round

trip time required.

Start-up latency is half of the round trip t h e required for sending a small message

from one host to another and then receiving it back. This is a performance metric for

extremely short messages. The overhead in terms of latency for the ATM network

can be due to two reasons namely,

P VM Enuironrnent

The device driver for ATM is considered to be slower than the one for Ethernet,

and this can be costly when sending short messages. The firmware for Ethernet

has been optimized for better communication latency [7].

to psec
I

There is also an overhead in case of ATM for preparing packages for transmission

and receiving them off the network, or in other words the ATM incurs a package

processing overhead.

TabIe 5.5: Start-up Latency for PVM Environments

When multithreading is used for computing, the latency of the workstation de-

creases by nearly half the value. As seen in Figures 5.7 and 5.11, using multiple

threads for computing makes the program faster, and thereby decreasing the latency

of the machine as weU as reducing the overall mal tzme for the execution of the al-

gorithm. By using more than one thread on a workstation, the number of virtual

slaves are increased, and thereby the algorithm is executed concurrently. However as

noted in Figure 5.7, when the number of threads are changed h m 1 to 2, the time

for computation decreases. If the number of threads are further increased to 4, then

the algorithm still computes faster. If we increase the number of threads to 8, then

as seen, the speed of computation decreases. The main reason is that by increasing

the number of threads beyond a certain limit increases the thread management over-

head on the operating system. The machines that we used for our experimentation

were all uniprocessor machines that gave an optimum performance for 4 threads (and

therefore we have used the default number of threads as 4 in our implementation

Strassen's a igor i th) , but if the number of processors are more (as in an SMP), then

by increasing the number of concurrent threads, the speed of execution can increase

by a large magnitude [16].

We also observed that the spawning of a process is more expensive than spawning a

of a t hread. For this thesis, we implemented only an intra-host thread spawn program

(that spawns threads only within a single host), but experimental results show that

even remote thread spawning (using a Thread-semer, and remote memory) is less

expensive than spawning a process (101. This, dong with the fact that high-bandwidth

networks such as ATM can support very frequent communications between hosts,

suggest that thread based distributed applications can be extremely performance

efficient,

Lastly, we discuss the maximum achievable throughput (T-). Table 5.6 shows

the maximum available throughput for Ethernet and ATM networks.

As clearly seen, ATM AAL 5 gives the maximum throughput of 29.26 Mbitslsec

indicating its high-bandwidth characteristic, while Ethernet provides a maximum

throughput of 9.12 Mbitslsec. This is a very important dinerence for large computa-

/ PVM-ATM on AAL 314

Table 5.6: Maximum Communication Throughput for Ethernet and ATM networks

PVM-ATM on AAL 5

tionally intensive problems like complex simulations, number crunchkig, etc. where

large amounts of data tramfer is required between hosts.

29.26

Chapter 6

Conclusions and Future Research

Directions

Until now, Distributed Network Computing was used mostly for those applica-

tions that require a minimum use of the intercomecting network between the partic-

ipating hosts (ie., Distributed Network Computing was suitable for course-granular

problems.) Due to the low bandwidth and high latency characteristics of existing

networks like Ethemet, interprocessor comrnUIfication across a network was avoided.

However, with the recent developments in the area of high-speed networks, and with

the emergence of highly efficient and fast networks like ATM, Gigabit Ethernet, etc.,

we are seeing a whole new horizon for large-scale computing across a network with

hosts separated by large geographical distances, such as on the Internet. In this thesis,

we explored the possibility of solving problems with extensive inter-processor com-

munication using underlying high-speed networks and thread based communication

instead of task based communication. The results are positive and encouraging.

Our main aim was to improve the real-the performance of a distnbuted comput-

ing system. We used multithreading for this purpose as thread management is much

easier and simpler compared to process management, thereby reducing the overhead

on the operating system and the CPU. We implernented a thread based computation

model and a intra host communication model. We observed a marked improvement

in the latency of the workstations due to the thread based computing model. Our

second aim was to show that high-speed, high-bandwidth network technologies like

ATM can be used without any concerns about its maximum achievable throughput

for applications/computations that use extensive message passing between tasks. Our

implementation of the Strassen's algorithm proved this premise. Hence an ATM LAN

can be used for large simulations with fine-grandarity and give excellent performance

over other regular networks like Ethernet or Fiber Channel. The main reason ATM

is very efficient in large scale data transfers is that it is not a shared medium (ie.

the bandraidth allocated to any segment is not shared). Therefore, if desired, an

important task can be executed without any obstructions from other network trafnc.

The second reason is the inbuilt QoS in ATM which is a very attractive feature for

mission critical applications where extremely accurate results are desired. Hence, mul-

tithreaded prograrnming implemented on an ATM backbone can be a very effective

combinat ion for Distributed Scientific Computing.

6.1 Ideas for Future Research

Our work can be extended in several ways. Some of the possible directions that we

envision are listed below.

We have used the PVM implementation on ATM (pvm-atm) for process manage-

ment and synchronization on ATM. Further improvement in the results can be

achieved if the application is developed using Fore Systerns' ATM API directly.

This can give better performance because the protocol overhead of pvm-atm

(as it is implemented on PVM 3.3.2) is eliminated.

0 During our workload allocation, we export thread entry points to the slaves

kom the master, when the master spawns a process. Therefore, threads are

used for subtask computations on the slaves. This was shown to have several

benefits over process based subtask cornputations. However, additional perfor-

mance improvement can be obtained if the master can spawn threads on the

slaves directly instead of spawning processes. This idea has been proposed in

the LPVM standards [26], but LPVM has still not been developed for a dis-

tributed environment, and is used only for SMP machines. TPVM on the other

hand does utilize indirect thread spawning by calling the tpvm-spawn() routine.

However, this routine in turn caUs the pum-spawn() routine, which in reality

spawns processes on the slaves, although it appears to the user that it spawns

threads on the slaves. The TPVM irnplementation on ATM can prove to be sig-

nificant work, if TPVM's mmote memory model (remote memory model maps

one memory space into an another disjoint mernory space) is developed fùrther.

For our implementation, we used used explicit message passing for inter-

thread communications. For this, if there is a Distributeci Shared Memory

(DSM), which can be a common memory for all the machines participating in

the PVM LAN, then the threads can communkate by writing and reading vari-

ables in the DSM, and synchronize with each other using mutexes, semaphores,

condition variables, etc. This can significantly irnprove the communication over-

head on the network. The reason being, threads do not have to use the network

each time for accessing a data object , as the DSM may be using the local hosts

memory as a part of the Global Shared Memory.

0 We tested our algorithm on a network that consists only of homogeneous hosts,

ie. Sun SPARC stations ninning Solaris. In an actual corporate environment, a

network/LAN usually consists of heterogeneous hosts with completely different

platforms, and ninning distinct operating systems. Hence this algorithm can

also be tested by introducing other hosts like PCs (ruMing Wmdows 95 or NT),

or a Macintosh machine, and the performance of the network should be studied

for servicing a hybrid network. As far as we c m envision, the performance will

be slightly inferior compared to a homogeneous network because of the added

overheads of data-type rnatching, address mapping, etc.

Lastly, this algorithm can also be tested on the High Performance Network

(HPCNet), which is a high-speed ATM backbone comecting several Supercom-

puters across Canada. Testing this sort of network topology would give a more

broader view of the problems that Network Engineers are facing today, and

possibly corne up with solutions to solve them.

Bibliography

[l] Anderson, T. Culler, D. Patterson, D. and the NOW Team. The Case for

Network of Workstations. IEEE Micro., Volume 15, Number k54-64, Febmary

1995.

[2] BaiIey, D. H. Extra high speed matrix multiplication on the CRAY-2. SIAM

Journal of Science and Statistical Computing, Volume 9:603-607, 1988.

[3] Bj~rstad, P. Manne, F. Sarevik, T. and VajterSic, M. Efficient Matrix Multipli-

cation on SIMD Computers. Siam Journal of Matriz Analysas and Applications,

Volume 13, Number 1:386-401, Janiiary 1992.

[4] Bladt, D. Managing Swztched Local Area Networks - A Practical Guide. Addison-

Wesley, 1998.

[5] Boudec, J. The Asynchronous Transfer Mode: A Tutorial. Computer Networks

and ISDN Systems, VoIume 24:279-309, 1992.

[6] Chang, S. L. Du, H. C. Hsieh, J. Lin, M. and Tsang, R. Enhanced PVM

Communications over a High-Speed Local Area Network. In Proceedings of First

International Workshop on Hzgh-Speed Network Computing, Santa Barbara, Cal-

ifornia, April 1995.

[7] Clark, D. Jacobsen, V. Romkey, J. and Salwen, H. An Analysis of TCP

Processing Overhead. In IEEE Communications Magazine, pages 38-44, June

1989.

[8] Dongarra, J. Otto, S. SnV, M. and Walker, D. An Introduction to the MPI

Standard. In Unzversit y of Tennessee Technical Report CS-95-274, January 1995.

[9] Fagg, G. and Dongarra, J. PVMPI: An Integration of PVM and MPI Systems.

Calculateurs Puralleles, Volume 8, Number 2:151-166, 1996.

[IO] Ferrari, A. and Sunderan, V. S. TPVM: Distnbuted Concurrent Computing with

Lightweight Processes. In Proceedings of the 4th Hzgh-Performance Distributed

Computing Symposium, pages 211-218, Washington, DC, August 1995.

[ll] Geist, A. Beguelin, A. Dongarra, J. Jiang, W. Manchek, R. and Sunderam,

V. PVM:Parallel Virtual Machzne. A User's Guide and Tutorial for Networked

Pamllel Computing. M I T Press, 1994.

[12] Golub, G. and Ortega, J. Scientific Computing: An Introduction with Parallel

Computing. Academic Press, San Diego, CA, 1993.

[13] Golub, G. and Van Loan C. Matriz Computations. John Hopkins University

Press, 3rd edition, 1996.

[14] Hsieh, J. Du, H. C. Troullier, N. J. and Lin, M. Enhanced PVM Communica-

tions over HIPPI Networks. In Proceedings of The Second International Work-

shop on High-Speed Network Computing (HiiVet '96), pages 20-32, Honolulu,

April 1996.

[15] Huang, C. Huang, Y. and McKinley, P. K. A Thread-Based Interface for Col-

lective Communication on ATM Networks. In Proceedings of the 1995 Interna-

tional Conference on Distributed Computing Systenzs, pages 254-261, Vancouver,

British Columbia, May 1995.

[16] Hughes, C. and Hughes, T. Object-ORented Multzthreuding Using C++. John

Wiley & Sons, Inc., 1997.

[17] Huss-Lederman, S. Jacobson, E. Johnson, J. Tsao, A. and Tumbull, T. Im-

plementation of Strassens's Algorithm for Matrix Multiplication available a t

http://~.bib.informatik.th-darmstadt.de/SC96/JACOBSON. In Proceedings

of the International Conference on High Performance Computing and Commu-

nications, Pittsburg, PA, November 1996.

[18] Kleinman, S. Smaalders, B. Stein, D. and Shah, D. Writing Multithreaded

Code in Solaris. In Solaris Threads White Papers, Mountain View, California,

1993. SunSoft Inc. Press.

[19] Lea, C. What should be the goal for ATM? IEEE Network, Volume 6, Number

5:60-66, September 1992.

[20] Lewis, B. and Berg, D. Multithreaded Progmmming with Pthreads. Sun Microsys-

tems Press, 1997.

(211 Lin, M. Hsieh, J. Du, H. C. Thomas, J.P. and MacDonald, J. A. Distributed

Network Computing over Local ATM Networks. IEEE Journal on Selected Areas

in Cornmunicatzons, Special Issue of ATM LANs: Implementations and Experi-

ences wzth an Emerging Technology, Volume 13, Number 4:733-748, May 1995.

1221 Roberts, E. Gigabit Ethernet: Fat Pipe or Pipe Bomb? In Data Communica-

tions, pages 30-42, May 1997.

[23] Rodrigues, S. Anderson, T. and Culler, D. High-Performance Local Area Com-

munication wit h Fast Sockets. In Proceedings of USENIXY97, Anaheim, Califor-

nia, January 1997.

Available a t http://now.cs.berkeley.edu/Fastcomm/usenix.ps.

[24] Tanenbaum, A. Computer Networks. Prentice Hall, 3rd edition, 1996.

[25] Van De Geijn, R. and Watts, J. SUMMA:Scalable Universal Matrix Multipli-

cation Algorithm. Concumnc y: Pructice and Ezperience, Volume 9, Number

4:255-274, April 1997.

[26] Zhou, H. and Geist, A. LPVM: A Step Towards Multithreaded PVM.

Technical Report, Oak Ridge National Laboratory, July 1995. Available at

http://www.epm.ornl.gov/ - zhou/lpvm.ps.

[27] Zhou, H. and Geist, A. Faster (ATM) Message Passing in PVM. In Proceed-

ings of 9th International Parallel Processing Symposium: Workshop on Iligh-

Speed Network Computing, Santa Barbara, California, April 1995. Available a t

http://www.eprn.oml.gov/ - zhou/patm.ps.

TEST TARGET (QA-3)

APPLIED I M G E . Inc
fi 1653 East Main Street - -. - - Rochester. NY 14609 USA -- -- - - Phone: 716/482-0300 -- -- - - Fax: 7161286-5989

O 1993. Applwtd Image. Inc.. All Rights Reseived

