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Inter-host communication has always been a performance bottleneck for Dis- 

tributed Computing Systems exchanging large amounts of data between hosts. This 

is due to the the low speed, and low shared bandwzdth pmvided by the networking 

technologies that are currently used, such as Ethernet and Token Ring. With the 

emergence of seveml high-speed and high-bandwidth networks like ATM and Gigabit 

Ethemet, fast inter-host communication for solving real time problerns, has becorne 

possible. 

Almost al1 software systems that support distributed concurrent computing 

use a process based computing mode1 and a message-passzng based communication 

model. However, recent research developments suggest that a thread based model for 

computzng and scheduling has specific advantages over the traditional model. 

In  this thesis, we have implemented a thread based computing model and a 

thread based intra-host communicata'on model and haue tested two networking tech- 

nologies namely ATM and Ethernet for supporting these models. We implernent a 

recvrsive dzstributed matriz multiplication algorithm and the results are very encour- 

aging, indzcating the feasibility of developing portable and better perforrning thread 

based s ystems for distributed concurrent computing. 
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Chapter 1 

Introduction 

The Internet, developed in the mid 1960s, has proved to be a benchmark of the 

information revolution that  is leading us into the new rnillennium. The World Wide 

Web (WWW), as a resdt of the Internet, is the fastest powing ocean of information 

and knowledge that man has ever created. Internet, or "internetworking" deds with 

connecting a large number of same or dXerent computers on a network, and can ex- 

change information amongst themselves. One of the several advantages of connecting 

a number of computers together is that they can collectively work in a shared envi- 

ronment, with increased efficiency for distributed applications. In this thesis, we have 

examined the role of the Internet and computer networks for performing large-scale 

engineering and scient ific computationd tasks. 

Problems such as weather forecasting, engineering simulations, numerical scien- 

tific computations, etc. require immense computational power and CPU tirne. Such 

computations are solved on Massively Parallel Processor (MPP) machines, or Super- 

computers. MPPs are the most powerfd computers in the world. These machines 

combine a few hundred to a few thousand CPUs in a single cabinet comected to 

hundreds of gigabytes of memory. As simulations become more realistic, the com- 



putational power required to execute them grows rapidly. Thus, researchers on the 

cutting edge tuni to MPPs and parallel processing in order to get the most compu- 

tational power possible. 

One of the major developments aEecting scientific problem solving is Distributed 

Computzng. Distributed computing is a method in which a set of computers con- 

nected by a network are used collectively to solve a single large problem. As more 

and more organizations have high-speed Local Area Networks (LANs) interconnect- 

ing many general-purpose workstations, the combined computational resources may 

exceed the power of a single high-performance computer. Although computers dis- 

tributed on a network do not provide the raw computationd power of a large MPP, 

they are able to solve problems that are several times larger than the ones for which 

a single workstation is designed. Thus, MPPs can be substituted by a collection of 

workstations scattered across a network. In this thesis, we have used a collection of 

workstations connected by a network to collectively solve a scientific problem, such 

as a pa rde l  matrix multiplication computation. 

Until now, distributed computing lacked the speed for interprocess communication 

between the cooperating processes, if the processes ran on hosts that were located 

a t  very large geographical distances from one another. However, with the emergence 

of several high-speed switch-based networks, such as the High Performance Paral- 

le1 Interface (HIPPI), Fiber Channel, and Asynchronous Tkansfer Mode (ATM), the 

possibility of networks effectively supporting communication intensive parallel appli- 

cations rnay soon become a reality. ATM has emerged as the most standard and 

widely used networking paradigm for high-speed, high bandwidth communication. 

So, if the workstations that are used for distnbuted computation are connected by 

an ATM network, the performance bottleneck of fast interprocess communication can 

be significantly reduced. 

A common feature between MPP and distributed computing is message passzng. 



In all pardel  processing systems, data must be exchanged between the cooperating 

tasks. Several paradigms have been tried including shared mernories, parallelizing 

compilers, and message passing. The message-passing model has become the most 

popular model fiom the perspective of the number and variety of multiprocessors that 

support it, as weIl as in terms of applications, Ianguages, and software systems that 

use it. 

The Pardel  Virtual Machine (PVM) [Il] has been developed as a joint research 

effort by the Oak Ridge National Laboratory at the University of Tennessee at  

Knoxville, Emory University, and Carnegie Mellon University. It uses the message- 

passing model to allow programmers to exploit distributed computing across a wide 

variety of computer types, including MPPs. PVM makes a collection of computers 

appear like one large vzrtual machine. It has proved to be the de-facto standard 

for Heterogeneous Network Computing. A number of computers connected through 

a high-speed network, and running PVM cm be made to act as a single parallel 

machine, that can be used to solve computationaily intensive problems. 

When a number of computers are connected to form a virtual machine using PVM, 

each machine is referred to as a node. In distributed computing, a single problem is 

divided up into several tasks and each task is given to a node for computation. In this 

case, the node where the subtasks are invoked is called a master node and the nodes 

that receive the subtasks are called the slave nodes. After the slaves have hished 

their work, they send back the results to the master. PVM helps in passing the tasks 

between the machines and also in passing messages between the tasks. 

As mentioned above, the workstations a d a b l e  today such as Sun SPARC sta- 

tions, SGI workstations, IBM RISC machines, etc. have one or more than one pro- 

cessors in them ranging from 1 processor to over 1000 processors mounted inside one 

cabinet (121. So if a task is given to such a multiprocessor machine, only one of its 

processors, to which the task will be given by its operating system, wili be utilized 



[16]. The reason being that the individual task wilI always be in the form of a se- 

rial procedure. This feature of simple workload allocation in the form of serial tasks 

to individual nodes, which are multiprocessor machines, greatly reduces the actual 

amount of computational power that can be obtained fkom them. Therefore, it would 

be of great interest for researchers to come up with algorithms that not ody divide 

the given problem into several tasks, but also to fully utilize the available resources, 

by parallelizing the individual tasks too. These tasks concurrently execute on indi- 

vidual slave nodes and also exchange information with other tasks, either by message 

passing, or by operating in a Distributed Shared Memory (DSM). 

Multithreading is a relatively new approach in designing distributed applications. 

Modem Operating System (OS) platforms Iike Windows NT, OS/2, IBM's AM, 

and several flavors of Unix, provide extensive library and system c d  support for 

rnultithreaded applications. Multithreading, unlike Multitasking or Multiprocessingl 

d o w s  a single process to perform more than one task at the same tirne. Each task 

that is executing within a single process is called a thread. A thread is a lightweight 

process that resides in its parent process's address space. It is a lighter burden on 

the operating system compared to a process. When a process uses more than one 

thread, the process is said to be multithreaded. Multithreading allows a programmer 

to divide a process into a series of threads that can be executed at the same time. If 

the process is running on a computer that has several processors, each thread may 

be executed on a separate processor. This allows the programmer to irnplement tasks 

that can be executed in paralle1 within a single program. 

This thesis deals with evaluating the performance of different high-speed networks 

for running computationally intensive distributed applications using PVM. The algo- 

nthm must be written in such a way that the application forks several threads at each 

'Multitasking means an operating system can handle more than one tasks at the same time 

using context switching while Multiprocessing means that multiple processes can be executed 

simultaneously. 



node, thereby parallelizing the subtasks (provided that that the subtasks are paral- 

lelizable). The improved performance of pardel multithreaded algonthms is studied 

against simple pasdel aigorithms, and thereby different networking paradigms are 

compared for ninning complex scientific and engineering simulations that are multi- 

threaded in nature. 

1.1 Organization ofthe thesis 

The rest of the thesis is organized as follows. Chapter 2 gives a detailed review of the 

related research done in this area. Chapter 3 gives an overview of Cluster Comput- 

hg, in which different networking technologies such as Ethernet, FDDI, ATM and 

Gigabit Ethernet are discussed, dong with the feasibility of building Local Area Net- 

works (LAN) using them. The PVM message passing Library is also explained dong 

with its extensions like the Migration based PVM (MPVM), and Lightweight Thread 

Based PVM (LPVM), and how they can be uses for performance improvement. The 

dgonthms used in this thesis are discussed in Chapter 4 and their rutirne resdts on 

ATM and Ethernet (10 base-S) are given and analyzed in Chapter 5. We finish off 

with the conclusions and possible future research directions in Chapter 6. 



Chapter 2 

Related Research 

This chapter surveys past work related to Distnbuted Network Computing. We 

have done the review separately for each sub-area. In Section 2.1, we discuss the work 

done in evaluating network performance for distributed applications. Most commonly, 

we talk about using various high-speed networking technoiogies Like ATM, HIPPI, and 

Fiber Channel for faster message passing. In Section 2.2, we talk about work done 

in improving the present PVM research, and how the PVM mode1 has been modified 

by adding new features for improved performance- 'In Section 2.3 we discuss some 

research in paralle1 matrix multiplication that we have used for this thesis. Lastly, 

in Section 2.4, we discuss work done in distnbuted computing using other paradigms 

such as the Berkeley Network of Workstations (NOW) project. 

2.1 High-speed Distributed Computing 

The Distributed Multimedia Research Centre (DMRC) at  the University of Minnesota 

is doing active research in improving performance of distnbuted systems d g  on 

high-speed backbones. Lin et al [21] have performed experiments with ATM net- 

works t O examine t hei .  performance for solving computationally intensive pro blems. 



They have studied the end-teend communication performance in terms of latency 

in an environment consisting of Sun workstations (with Fore Systems' ATM inter- 

face cards) connected through a Fore Systems' ASX-100 switch. They compare the 

performance of four different Application Programming Interfaces (API) such as Sun 

Microsystems' Remote Procedure C a b  (RPC), BSD socket programming interface, 

PVM message passing library, and Fore Systems' ATM APL They conclude that 

BSD sockets and Sun RPC/XDR are not highly suitable for implernenting high per- 

formance computing applications over a cluster of networked workstations. PVM is 

very efficient in developing these applications because of its features like data-type 

encapsulation, process group communication, remote process spawn, and dynamic 

process control. However, the PVM implementation on ATM (pvm-atm) ' introduces 

more protocol overhead than the Fore Systems' API. Thus, the latter is most efficient 

for computationaily intensive distribut ed applications. 

Chang et al [6] have studied the performance of PVM over a local ATM network. 

They conclude that a high-speed network such as ATM, as opposed to a conventional 

network such as Ethernet, does provide increased communication bandwidth. They 

have achieved maximum bandwidth of 27.202 Mbps. at  the application layer, which 

is far below the "raw" a d a b l e  bandwidth of 100 Mbps. provided by the TAXI 

interface cards. 

Hsieh et al [14] at the DMRC have also extended PVM capabilities over a HIPPI 

LAN. They have compared the performance of PVM implementation over Ethernet 

with that over HIPPI. Similar to the Fore Systems' API for ATM networks, Hewlett 

Packard has the Link Level Application (LLA) programming interface. They have 

used the LLA API for implementing PVM over HIPPI and Ethemet, and thereby 

pvm-atm is an implementation of PVM for ATM networks so that PVM programs can run over 

ATM networks. It gives an option of message passing using either ATM AAL3/4, ATM AAL5, or 

original PVM (TCP/UDP), and is implemented on Fore Systems' API instead of the BSD socket 

interface. It is avaiiable at Rp://ftp.cs.umn.edu/users/du/pvm-atm/- 



replacing the overhead of PVM's default protocol stack (namely UDP) for inter- 

daemon communication and TCP for inter-task commwiication. They have achieved 

superior performance because of the high-speed network medium offered by HIPPI, 

and due the replacement of PVM protocols by lower layer protocols (LLA AH). 

Huang et al [15] have presented the results of an investigation of collective commu- 

nication operations for distributed computing across ATM networks. They have stud- 

ied the performance of a thread-based software for ATM hardware features like ATM 

multicast channels. They propose a software fkmework based on reliable multicart 

connections, which are implernented on top of the unreliable ATM multicast (one-to- 

many) virtual channels. They have used threads within a single process, as against 

the conventional Unix process for implementing this. Hence they have combined the 

connection oriented nature of ATM and the ATM multicast virtual charnels. This 

has been implemented using threads. They have incorporated this combination as a 

basic building block in a multicast virtud topology. Other related papers and techni- 

cal reports of the Communications Research Group at the Michigan State University, 

which deal with aspects like hardware Mprovement of ATM multicast, or efficient I/O 

mechanisms for faster communication, are a d a b l e  at ftp://ftp.cs.msu.edu/pub/crg. 

2.2 PVM Modifications 

In this section, we discuss the work which has been done to improve the presently 

available PVM mode1 for faster, and more efficient performance. Zhou and Geist 

[27] have developed a faster message passing route named PvmRouteAtm to exploit 

the bandwidth of an ATM network based on the socket-like application programming 

interface from Fore Systems. The cornparison of this route is done with the standard 

route PvmRouteDirect. Test results show that PvmRouteAtm succeeds to reach a bet- 

ter bandwidth for large amounts of data but fails to gain any latency improvement 

over its counterpart route PvmRouteDirect. For this thesis, we have used PvmRoute- 



Direct as it is inbuilt in the pvm-atm a t  DMRC. Implementation of PvmRouteAtm in 

the present pvm-atm will be our future work. 

In another work, Zhou and Geist [26] have proposed a Light-weight process based 

implementation of PVM called LPVM, as explained later in section 3.2.3. The current 

PVM a d a b l e  has a process based computing model. LPVM has been designed to  

examine potential performance improvements by multithreaded message passing sys- 

tems. The major disadvantage of LPVM model is its implementation only on a single 

SMP machine. Currently, research is being done at  the Oak Ridge National Labora- 

tory, Tennessee for extending this LPVM irnplementation to a cluster of SMPs that  

have completely disjoint address spaces. Another major drawbadc is the portability 

issue. Since LPVM is a modified version of PVM with added features Like thread 

safety and with a different user interface, programs already written for PVM can not 

be transparently ported to LPVM systems. 

Before the development of LPVM, a similar thread based message passing library 

was proposed by Ferrari and Sunderam [IO] called TPVM. The major Merence be- 

tween TPVM and LPVM is that TPVM is built on top of the PVM system and no 

change is made to the underlying PVM system. This definitely is good for porta- 

bility, but has a large added overhead. TPVM has been implemented over a cluster 

of SMPs, and threads operating in different processes communkate using explicit 

message passing. Subsequent work added the concepts of Remote Memory and Data 

Driven Programrning. In TPVM, processes are spawned in the same way as PVM, 

but they are not themselves the computational units of parallelism and/or scheduling. 

The PVM system exports the entry points of the thread subroutines that decide the 

action of the threads. In this thesis, the thread model used is a combination of LPVM 

and TPVM in the sense that we have not built our system over PVM, but have kept 

the original PVM interface with sub-task based thread computations. This means 

that the multithreading occurs only on the slave processes and is transparent to  the 



master process and to the overd  system. This approach does not impose any extra 

overhead, however it increases the programming complexity, because any distributed 

application has to be separately implemented to incorporate thread based parallelism. 

This is not a major drawback with the availability of easy and simple to use thread 

packages like Solaris, Posix, Java or Win32. Java and Posix specifications are being 

made portable so that they can be used on heterogeneous platforms. 

2.3 Mat rix Multiplication 

We have irnplemented Strassen's Matrix Multiplication algorithm [17] and Block Ma- 

trix Multiplication aigorithm [13] for doing sub-task computations, and the Scalable 

Universal Matrix Multiplication Algorithm (SUMMA) [25] for workload allocation. 

There has been some research for the parallel irnplementation of the Winograd's vari- 

ant of Strassen's algorithm. Bjgrstad et al [3] have recently corne up with techniques 

to efficiently implement matrix multiplication algorithms on SIMD cornputers. They 

have chosen the cutoff dimension, no=128, and implemented it on a 8192 proces- 

sor machine. They achieve superior performance of the algorithm for different size 

and shapes of matrices. Bailey [2] has also impiemented Strassen's algorithm on a 

CRAY-2 and reported speedups of up to 2.01 for n=2048, where n is the matrix size. 

Compared to Bailey's results, Bjgorstad et al report that their algorithm was faster 

than the block methods for any levels of recursion on the one processor C M - 2  ma- 

chine using the CRAY MXM library. For our parallel implementation of Strassen's 

algorithm, we have parallelized the S trassen's algorithm according to the tedinique 

s h o w  by Bjgrstad et al [3]. 

Kleinman et al (181 from SunSoft Inc., Moutain View, Calûornia give a multi- 

threaded implementation of matrix multiplication where each thread multiplies one 

row by one column in a cyclic fashion. Each iteration cornputes the results of one 

entry in the resultant matrix. They offer a flexible implementation whereby one 



thread can compute a whole row of the resultant matrix, if the amount of work is 

not s&icient to justify the overhead of synduonization. We use this coding style for 

implementing our Block Matrix Multiplication algorithm. 

An MPI implementation of SUMMA is done by Van De Geijn and Watts [25]. We 

use SUMMA for workload allocation at  the master node, where a matrix is divided 

up into equivalent tasks according to the mesh configuration. After implementing 

SUMMA, the authors of [25] discuss some cases where SUMMA can be less efficient 

than its counterpart PUMMA (Pardel  Universal Matrix Multiplication Algori th) .  

Regardless, we have used SUMMA as our task allocation algorithm and have imple- 

mented it in PVM using a similar scheme as the MPI irnplementation. SUMMA has 

been selected against PUMMA because it is cornpetitive or faster, and given its sim- 

plicity and flexibility, warrants consideration even though it is slightly more sensitive 

to communication overhead compared to PUMMA.. 

Lastly, Huss-Lederman (171 show a parallel implementation of Strassen's algorithm 

that deab with matrices having odd numbered dimensions using either dynamic peel- 

ing and/or dynamic padding. They stop the recursions a t  an early stage and revert 

to a standard algorithm for more efficiency. We have implemented dynamic peeling 

based on t heir implement ation. 

2.4 Other Related Work 

The Network of Workstaions (NOW) [Il project a t  the University of California, Berke- 

ley, also deals with connecting a cluster of workstations on a network for collective 

high-performance computation. The NOW project seeks to  harness the power of 

clustered machines connected via high-speed networks. A specid operating system, 

GLUniz, is used on the workstations participating in the LAN. GLUnLz is built as a 

layer on top of existing operating systems and provides superior performance for both 

parallel and sequentid applications. For this, it  supports features like gang-scheduling 



of parallel progarns, identifying idle resources in the network, allowing for process 

migation to  support dynamic load balancing (this is still under development), and 

providing support for fast inter-process communication for both the operating system 

and the user-level applications. NOW also uses a special programming laquage  called 

Split-C, which is a parailel implementation of C and is also called the SPMD imple- 

mentation of C. More details of NOW are a d a b l e  a t  http://now.cs. berkeley.edu. 

Another major development at the NOW project is Fast Sockets [23]. Fast Sockets 

is a user-level library that provides the Berkeley Sockets API and facilitates high- 

performance communication. The main reason for developing this library is to  get 

performance gains for networked applications over high speed networks like ATM and 

Myrinet. It solves the problem of package processzng overhead like the t h e  spent in 

preparing packets and receiving them off the network. 



Chapter 3 

Cluster Computing on High-Speed 

Networks 

Communication between processors has long been the performance bottleneck 

of distributed network computing. However, the recent progress in swïtch-based 

high-speed LANs has opened up a new possibility to reduce this problem. Fore- 

most amongst the ernerging networking technologies is the Asynchronous Transfer 

Mode (ATM), which shows great promise to increase the performance in terms com- 

munication for Distributed Network Computing. The basic purpose of this thesis is to 

evaluate the performance of presently available high-speed networking technologies 

for performing large-scale scientiflc computations in a distributed environment. In 

this chapter, we overview some of the networking technologies available today that 

can be used for distributed network computing. 

We also discuss the Pardel  Virtual Machine (PVM) message passing library that 

we have used for explicit message passing between the cooperating tasks residing on 

the same or different hosts in the LAN. Some furtber extensions of PVM, namely 

M W M  and LPVM, are also discussed dong with the new MPI specifications. 



3.1 Networking Technologies 

High-Performance Distnbuted Applications require communication media that can 

provide high data transfer rates a t  lower latencies, which are scalable, and have 

superior paradigm flexibility in the sense that the network should not only have 

high data shipment capability for applications such as visualization, it should also 

have muhicasting capability for applications using distributed shared memory, which 

involves frequent changes in multiple data copies. In this section, we briefly discuss 

the various circuit-based and switch-based networking technologies available today 

and examine their feasibility to support large-scale distributed computations. 

3,l.l Ethernet 

Ethemet [24] is a LAN technology that transmits information a t  speeds of 10 and 

100 Mbps. Currently, the most widely used version is the 10 Mbps twisted-pair 

one. Ethernet was invented at  Xerox corporation, Palo Alto, California. Formal 

specifications were published in 1980, which turned the experimental Ethernet into an 

open, production-quality Ethernet system that operates a t  10 Mbps. The Institution 

of Electrical and Electronics Engineers (IEEE) standard was first published in 1985, 

with the title "IEEE 802.3 Carrier Sense Multiple Access with Collision Detection 

(CSMAICD) Access Method and Physical Layer Specification." The IEEE standard 

has since been adopted by the International Organization for Standardization (ISO), 

which makes it a worldwide networking standard. 

A major criticism about Ethernet is that it is nondeterministic ie. you c a n o t  

guarantee bandwidth to a user of a shared Ethemet segment. This is one of the 

reasons why Ethernet is undesirable for large-scale simulations, as these applications 

usually require a large bandwidth with an extremely high Quality of Service. How- 

ever, with the advent of switching, the problem of bandwidth allocation has been 

somewhat reduced. Each user is assigned dedicated ports, and has his/her own Eth- 



emet segment. This greatly improves the responsiveness of the network as there will 

be no collisions with other users on that segment. In the Department of Electrical 

and Cornputer Engineering, a 3Com switch is used. 

Standard Ethernet provides 10 Mbps shared bandwidth, shared among all users on 

a common communication channel. In traditional LANs, this communication channel 

is called a bus, which is a segment of cable to which rnany devices connect dong the 

way. In a switched environment, the physical topology used is a star configuration, 

where all devices connect back to a common connection point using a separate length 

of cable. A hub (or a repeater) can be used to fan out more ports from the switch port, 

but in this case, the devices connected on the hub ports will share the bandwidth, 

and the collision domain is presented by the number of active users at  any one time 

attached to the hub. When a switched port is dedicated to a wcrkstation, the user's 

collision domain is limited to the single workstation. Figure 5.1 shows an example of 

an Ethernet LAN installation. 

Fast Ethernet 

Fast Ethernet is essentially the same as Ethernet, but ten times faster in raw trans- 

mission speed. This is achieved by increasing the dock speed and using a dinerent 

encoding scheme, both of which require a better grade of wire than the standard 

Ethernet. Fast Ethernet also provides full-duplex communication. Full-duplex Fast 

Ethemet provides 200 Mbps aggregate bandwidth - 100 Mbps in each direction. 

One elegant feature of Fast Ethernet is autonegotiation. Autonegotiation is a 

scheme that facilitates automatic adaptation to the highest possible communication 

speed found at  both ends of the cable. This results in easy migration from standard 

Ethernet to Fast Ethernet. 



Database Server Database Server 

- 
101 1 O O 0  0 1  I O 1 

Switch 

Hub f 
œ 
I O I l 0  O O oollool 

Shared blw 

PC PC PC Workstation Workstation 

Figure 3.1: A Typical Ethernet LAN 

3.1.2 FDDI 

Fiber Distributed Data Interface (FDDI) [4] is a mature backbone technology that 

provides 100 Mbps communication. Unlike Ethernet, FDDI provides fault tolerance 

by incorporating a dual communication path scheme. This scheme includes two s e p  

arate communication media (primary and secondary rings) that are run between 

devices. FDDI guarantees access by using a token passing-access method and con- 

tains a built-in network management. These features have made FDDI well suited 

as a backbone technology. FDDI is, however, much more expensive and significantly 

more complex to manage, and hence it is not widely deployed to the desktop. 

Figure 3.2 shows the physical topology of a typical FDDI network. It uses a token 

to arbitrate communication, similar to a token ring network. Essentially, a token is 

created during ring initialization, and it continuously circulates around the ring. A 



station must grab the token to communicate. Once it acquires a token, it puts an 

FDDI fiame on the ring and reclaims it when it cornes back to the station. By using 

a token-passing mechanism for communication, FDDI is able to provide a guaranteed 

bounding waiting tirne for transmission. This rnakes the technology more suitable 

than Ethernet for multimedia, since it can guarantee bandwidth for voice and video. 

FODl DAC 
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Figure 3.2: A Typical FDDI LAN 

FDDI is considererl to be very reliable and has low error rates. In addition to the 

flexibility of fault-tolerance attachments discussed above, FDDI provides a significant 

amount of self-management to achieve its reliability. This includes the Token Rotation 

Tirner (TRT) to ensure that the ring is resilient to token loss, and Station Management 

(SMT) that includes a test for Link Quality (LCT) when a station attaches to the 

ring and periodic Monitoring of the Link Quality (LEM) for each station. 



3.1.3 ATM 

Asynchronous Transfer Mode (ATM) 15,191 provides a common communication medium 

that simult aneously supports multiple types of data (multimedia) at high transmis- 

sion rates across switched LAN or WAN backbones. Unlike Ethernet or FDDI, ATM 

is not a shared medium. The performance of the network does not degrade signifi- 

cantly as the number of users increase. ATM is connection oriented, meaning that an 

end-to-end c o ~ e c t i o n  is set up pnor to communication, enabling ATM to provide a 

way to guarantee delivery with a negotiated set of parameters. This feature is called 

the Quality of S e ~ c e  (QoS). 

ATM runs at  different speeds. Three of the popular speeds are 52 Mbps, 155.52 

Mbps (OC-31, and 622 Mbps (OC-12). It uses the notion of Permanent and Switched 

Circuits (PVCs and SVCs) to d e h e  communication paths within the LAN. Penna- 

nent Virtual Circuits are staticdy configured by the network manager for commonly 

used communication paths such as a highly used backbone. Switched Virtual Cir- 

cuits are set up dynamically on an as-needed basis. When a user desires to establish 

a connection, he sends a message specifying the desired bandwidth and QoS. There 

is a fair amount of overhead with setting up a switched virtual circuit, especially if 

the connection is going to be there oniy for a short period of time. 

LAN Emulation (LANE) was defined to incorporate ATM in existing networks 

consisting of Ethernet and Token Ring. LANE provides the normal connection-less 

service and multicast service characteristic to traditional LANs. LANE emulates 

the Media Access Control (MAC) protocol used by the connection-less technologies, 

enabling one to support legacy LAN technologies over ATM. LANE defines two major 

software components:The LAN emulation Client (LEC), which acts as a proxy ATM 

end-station for LAN stations, and the LAN emulation Server (LES), which resolves 

MAC address to ATM addresses. A typical ATM emulated LAN is shown in Figure 

3.3- 
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Figure 3.3: A Typical ATM LAN 

Figure 3.4 shows the layered architecture of an ATM network. The ATM mode1 

is divided into three layers: the physical layer, the ATM layer, and the ATM Adap 

tation Layer (AAL). The physical layer defines a transport method for ATM cells 

between two ATM entities. It encodes and decodes the data into suitable electri- 

cal/opticd waveforms for transmission and reception on the communication medium 

used. The ATM layer is responsible for ceil relaying between ATM-layer entities, cell 

multiplexing of individual connections into composite Bow of cells, cell demultiplexing 

of composite flows into individual connections, cell rate decoupling or unassigned ceil 

insertion and deletion, priority processing and scheduling of cells, ceil loss priority 

marking and reduction, cell rate pacing and peak rate enforcement, explicit forward 

congestion marking and indication, cell payload type marking and differentiation, and 

flow control access. Lastly, the purpose of the ATM Adaptation Layer (AAL) is to  

provide a link between the services required by higher network layers and the generic 

ATM cells used by the ATM layer. Four service classes have been defined based on 

three parameters: time relation between the source and the destination, constant or 
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Figure 3.4: ATM architecture 

variable bit rate, and connection mode. The classes are, 

Class A: A time relation exists between the source and the destination, the bit 

rate is constant, and the service is comection-onented (eg. a voice chamel). 

The class will use the AAL 1 protocol, defined by the ATM specifications. 

Class B: A tirne relation exists between the source and the destination, the bit 

rate is variable, and the service is connection-oriented (eg. a video or audio 

charnel). Class B will use AAL 2 protocol. 

aass C: No time relation exists between the source and destination, the bit rate 

is variable, and the service is connection-oriented (eg. a connection oriented file 

transfer). This class will use either the AAL 314, or AAL 5 protocol. 

k s  D: No time relation exists between the source and destination, the bit 

rate is variable, and the seMce is connection-less (eg. LAN intercomection and 

electronic mail). This class will use either the AAL 314, or AAL 5 protocol. 

For this thesis, we have used Class C service, and have used both AAL 314 and AAL 

5 protocols, given by the Fore Systems' specifications. 



3.1.4 Gigabit Ethernet 

Gigabit Ethernet [22] is an emerging standard that retains much of the simplicity of 

the traditional Ethemet. It uses CSMAICD, provides full and half-duplex commu- 

nication at  1000 Mbps, and retains the hame format/size. It is very easy to scale 

beyond Fast Ethernet, and since it is still Ethemet, troubleshooting and network 

management is similar. Gigabit Ethernet adds carrier extension and packet bursting. 

Carrier extension increases the number of bits that travel simultaneously through a 

connection without increasing the minimum frame length. Packet bursting allows 

end stations to send many fiames at once, increasing bandwidth efficiency. Carrier 

bursting is a problem, specifically because of the carrier extension requirement. 

Gigabit Ethernet is often compared with ATM because it is the first technology 

that rivals both 155 Mbps and 622 Mbps connections. Ethernet is more popular in 

the LAN because it has been around a lot longer. It is estimated at 80 percent of all 

desktops and servers within LANs use Ethernet. However, ATM% biggest strength iç 

the built-in QoS. This enables ATM to offer performance guarantees when commu- 

nication is established (as ATM is comection oriented), making it very attractive for 

real time data like multimedia. Ethernet has no guaranteed QoS; it must rely on the 

layers above to provide this kind of tr&c management. Secondly, Ethemet allows 

variable-length fiames (unlike fked 53-bye ATM kames), thus making it diflicult to 

regulate real-time flows that may get caught in the middle of a file transfer of con- 

secutive 1500f byte kames. Finally, Gigabit Ethernet is less expensive by about 50 

percent, than the 622 Mbps ATM. This coupled with the fact that Ethemet is well 

understood and simple makes Gigabit Ethernet very attractive as an alternative to 

ATM in the LAN. 

For this thesis, we used ATM because of its availability both at the Department 

of Electical and Computer Engineering, and at TRLabs, Winnipeg, Manitoba, and 

the adab i l i ty  of the pvm-atm package. However, in future we do plan to extend the 



PVM implementation to Fast and Gigabit Ethernets and compare their performance 

with ATM. 

3.2 PVM 

Zn this section, we t a k  about the PVM system, its design architecture, and its routing 

schernes. We also address some of PVM's extensions like MPVM and LPVM, and 

the new MPI specifications. 

3.2.1 The PVM System 

For testing OUI algorithm in a distributed environment, we used the PVM [II] message 

passing library. PVM is a widely-used software system that allows a heterogeneous 

set of pardel  and serial cornputes (running same or different operating systems) 

to be programmed as a single distributed-memory parallel machine. It is portable 

and runs on a wide variety of platforms. PVM is a mainstay of the Heterogeneous 

Network Computing research project, a collaborative venture between the Oak Ridge 

National Laboratory, the University of Tennessee, Emory University, and Carnegie 

MeUon University. We present a brief o v e ~ e w  of PVM, its architecture, and its 

computing model. We also ta& about MPVM (a Migration transparent version of 

PVM) , which supports transparent process migration among the multiple hosts that 

constitute the virtual machine, and LPVM (Lightweight Thread-based PVM) which 

is another extension to PVM where heavyweight processes are replaced by lightweight 

processes. 

PVM provides a unified computational fkamework for a network of heterogeneous 

computing resources. As mentioned before, computing resources may include work- 

stations, muitiprocessors and special purpose processors, and the underlying network 

may be a conventional Ethemet, the Internet, or rnay be a high-speed network such as 



ATM. Computing resources are accessed by applications via a suite of PVM d e h e d  

user-interface primitives. The PVM suite provides a standard interface that supports 

common pardel  processing paradigms, such as message passing and shared memory. 

An application would embed well-defined PVM primitives in their procedural host 

language, usudy  C, C++, or FORTRAN. Recently a Java based PVM (JavaPVM), 

and Perl based PVM (Perl-PVM), have also been proposed, however they are still 

untested. The PVM suite provides primitives for such operations as point-to-point 

data transfer, message broadcasting, mutual exclusion, process control, and bamer 

synchronization. In most cases, the user views PVM as a loosely coupled, distributed 

memory computer with message passing capabilities, that is programmable in C, 

C++, or FORTRAN. 

Ln a PVM "virtual machine" environment, there exists a support process, called 

a pvmd, or a daemon process, which executes on each host. These daemons execute 

independently fkom one another. During normal operation, they are considered equal 

peer processes. However, during startup, recodigurations, or operations such as 

multicasting, there exists a master-slave relationship between pvmds. Each pvmd 

serves as a message passing router and a controller. They are used to exchange 

network configurable information, and dynamically allocate memory to store packets 

traveling between distributed tasks. They are also responsible for all application 

component processes (tasks) executing on their host . 

Figure 3.5 depicts a network of three hosts. Eadi host has a local pvmd and 

a number of local ta&. Communication between hosts may occur as a task-task, 

task-pmd-pvmd-task, or pvmd-pvmd interaction. Communication within a host, 

task-pvmd, occurs via Unix domain sockets. 

As seen in Figure 3.5, ouzo has two tasks, task 6 and a console program. A console 

program may be used to perforrn tasks such as configuring the virtual machine, start- 

ing and killing processes, and checking and collecting status information of processes. 
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Figure 3.5: PVM task and daemon configuration (Adapted from Lin et al [21]) 

The network of independent PVM pvmds form the basis for support of important fea- 

tures for a network-based computing environment. These features include dynamic 

reconfigurability, fault-tolerance and scalability. 

PVM allows dynamic reconfigurability by dowing hosts to enter and exit the host 

pool via notification messages. PVM version 3 also supports the notion of dynamic 

process groups. Processes can belong to multiple named groups, and groups can 

be changed dynamically at any t h e  during a computation. hinctions that logically 

deal with groups of tasks such as broadcast and b d e r  synchronization use the user's 

explicitly defined group names as arguments. Routines are provided for processes to  

join and leave a named group. This dynamic reconfigurabüity ability also provides 

support for scalability and fault tolerance. 

PVM provides two routing mechanisms for application messages; indirect and di- 



rect routing. The choice of routing mechanism to use is controiled by the application 

code. By default, messages are routed indirectly. Using indirect routing, as illustrated 

in Figure 3.6, a message fkom task T2 to T3 passes through T2's local p m d  ( p m d  on 

host l), through T3's local pvmd (pvmd on host 2), and finaily to T3. Pmd-to-Pvmd 

communication uses UDP (User Datagram Protocol) sodcet c o ~ e c t i o n s  while task- 

to-task communications uses TCP (Tkansmission Control Protocol) socket connection 

which is established during task start-up. In direct routing (PvmRouteDirect), a mes- 

sage fiom Task T2 to T4, also iUustrated in Figure 3.6, uses a TCP socket connection 

between T2 and T4, by-passing the pvmds altogether. TCP connections between 

tasks are created "on-demand". A TCP comection is established only when a task 

bas set its routing option to direct routing. 

Host 1 

- TCP - - UDP PVM task 

Figure 3.6: PVM Routing 

In indirect routing (the default routing mechanism) , the connection-less UDP 

sockets guarantee scalability, since a single UDP socket can communicate with any 

number of tasks (local or remote). Because the communication between tasks is routed 



through the p m L ,  however, messages need three hops to  reach their destination. 

This is not very efficient. In the case of direct routing (task-to-task), connection- 

oriented TCP sockets are used for direct communication between the tasks. The use 

of TCP sockets tends to exhaust the limited number of file descriptors in a system. 

Since TCP connections establish a direct co~ll~~lunication link between the tasks, 

however, messages reach their destination in a single hop. 

In PVM 3.3.4 and above, it is possible to designate a specid task as the resource 

manager. The resource manager, also called the global scheduler (GS), is responsible 

for decision making policies such as task-to-processor allocation for sensibly schedul- 

ing multiple p a r d e l  applications. Using a global scheduler makes it convenient to 

experiment with diffèrent scheduhg policies. In MPVM, the interface between the 

pumds and the GS has been extended to accommodate task migration, allowing the 

GS to use dynamic scheduling policies. 

3.2.2 MPVM 

MPVM is an extension of PVM, where tasks/processes ninning on one machine are 

allowed to be suspended, and then executed on another machine. MPVM makes this 

migration transparent to the user or the application programmer, whereby the user 

or the programmer does not know if a migration has occurred. MPVM is also M y  

compatible with PVM, in the sense that any applications written under PVM can be 

nui under MPVM with minimal changes. MPVM is also M y  portable. 

Task migration may be required for the foliowing reasons: excessively high ma- 

chine load, a faster and more suitable machine becoming available, etc. When a 

task migrates, a major requirement is that the correctness of the task should not 

be destroyed. When a task needs to be migrated, it is first suspended on the ma- 

chine where it is currently running, and then is reconstructed on another machine. 

The entire process, known as the migration protocol, is a four stage procedure. The 



first stage addresses "when" the migration wilI occur, while the other three stages 

correspond to the state capture, transfer, and state-reconstruction of the task. 

The Global Scheduler (GS) decides whether the task has to be rnigrated or not. 

If it decides in favor of migration, it sends a control message (CM) to the pvmd of 

the host on which the task is alteady riinning. CMs are invisible to the application 

code (eg. S U G ,  in which SM stands for scheduler message, and MIG stands for 

migrate). Upon receipt of SMXIG, the pvmd on the host currently nuining the task 

verifies the tid (task number) to ensure that the it is a locdy nuining task. The 

migration initialization is divided into two components, that occur in pardel. The 

first component, executed locally involves flushing all the TCP socket connections 

fkom the pvmd to the task to avoid any loss of information that may be buffered. The 

second component is a skeleton process initialization on the remote host, that WU 

run in the context of the onginal task. The state transfer of a task from one host to 

another involves capturing the task's state (ie. text, stack, data, etc.) on the local 

host, and transferring it to the remote host, where the skeleton process assimilates 

it in its own virtual address space. The state transfer is done via a TCP socket 

comection between the current task and the skeleton task. Before the skeleton task 

starts ninning, it c d e d  the pvm-mytid() routine to re-enroll in the PVM system. 

The task migration, however, can occur only between homogeneous machines, and 

if the migration is implemented at user-level, then additional transparency is required 

if the current task uses Unix facilities like semaphores, mutexes, shared libraries, etc. 

LPVM 

LPVM (Lightweight-process based PVM) [26] system is an extension of PVM that 

supports the use of lightweight processes, or threads as the basic unit of parallelism. 

The basic idea was to improve the performance of the system by using multithreaded 

message passing systems, and study the effect of using multiple threads on SMP 



(Symmetric Multiprocessors) in terms of latency. The idea of shared memory, and ease 

in thread management compared to process management, motivated the developers 

of PVM to implement a thread-based PVM. 

Before LPVM was proposed, the designers of PVM had tried to build a s u b  

system that uses threads, c d e d  TPVM (Thread based PVM) (101. TPVM was a 

system b d t  on top of the PVM system, which did not require any change in the 

underlying PVM system. TPVM had a problem of portability, as most of the thread 

packages available today are not compatible with each other, and due to its CPU 

dependent feature (context switching depends on the handling of stack and frame 

pointed by a particular CPU), it is difncult to keep a thread package portable to all 

platforms, which makes thread-based software di£Ecult to write if it is gohg to be 

used on distinct platforms. Recently, Posix has released the Posix.4a standard that 

has been implement on selected platforms. 

As LPVM was developed as an extension to PVM, the user interface of both 

systems was approximately the same. However, PVM is not MT-safe (Multithreaded 

safe) ', therefore LPVM interface was slightly modified to incorporate thread safety, 

but the changes were minimal. However, the current version of LPVM is designed 

for a single SMP machine with a shared memory, and so it cannot be used in a 

distributed environment with disjoint address spaces. The experimental LPVM was 

implernented on SMP systems because they are stable, multiprocessor (MP) d e ,  and 

MP efficient. The results showed improved latency compared to PVM and TPVM, as 

the threads ran in the same address space unlike TPVM, where the communication 

was still socket based. 

For our work, we implemented a distributed thread based mode1 which was MT- 

d e ,  and used threads for sub-task cornputations ie. the spawned processes export 

thread entry points describing the actions of the threads executing the routines, sim- 

'MT-de means that the data does not get corrupted when multiple threads operate on the sarne 

data structure 



ilar to TPVM. However, unlike TPVM, which is built on top of PVM and thereby 

imposes an additional overhead, we implemented the multithreaded algorithm using 

the PVM interface. 

MPI 

The Message Passing Interface (MPI) [SI is the latest development in message passing 

systems and is reported to be more efficient than PVM. MPI is expected to be façter 

within a large multiprocessor. It has many more point-to-point and collective com- 

munication options than PVM. This can be important if an algorithm is dependent 

on the existence of special communication option. MPI also has the ability to spec* 

a logical communication topology. The motivation behind developing MPI was that 

each MPP vendor was creating his own proprietary message-passing API. In this sce- 

nario, it was not possible to write a portable pardel  application. MPI is intended to 

be a standard message-passing specification that each MPP vendor would implement 

on their system. MPI  has the following main features, 

A large set of point-to-point communication routines. 

A large set of collective communication routines for communication among 

groups of processes. 

A communication context that provides support for the design of safe pardel  

software libraries. 

The ability to specify communication topologies. 

The ability to create derived datatypes that describe messages of non-contiguous 

data. 



A new concept introduced by MPI is the cornmunicator. The communicator can 

be thought as a binding of a communication context to a group of processes. Com- 

munication context allows library packages written in message passing systems to 

protect or mark their messages so that they are not received by the user's code in- 

correctly. Context is assigned by the operating environment and cannot be made a 

wild-card by any user program. When a program starts, all tasks are given a "world" 

communicator and a (static) listing of aU the tasks that started together. When a 

new group (context) is needed, the program makes a syndironizing call to derive the 

new context from an existing one. This derivation of context becomes a synchronous 

operation across all the processes that are forming a new communicator. The advan- 

tages because of this are that no servers are required to dispense a context as the 

processes need only decide among themselves on a mutually safe context tag- 

Unlike PVM, MPI does not have the concept of a virtual machine. However, MPI 

provides a higher ievel of abstraction in terms of message-passing topology. Commu- 

nication among a group of tasks in MPI can be arranged in a specific logical inter- 

connection topology. The communication thereafter, takes place inside that topology. 

This is in contrast to PVM in which the programmer is required to manually arrange 

the tasks into groups with the desired communication organization. 

The fault-tolerance capability of MPI is lower than that in PVM, maidy because 

of the synchronous way that communicators are created and freed in MPI. The ear- 

lier version of MPI, MPI-1 did not even have any notification capabilities, like that 

a d a b l e  in PVM, whereby a task gets notified if the status of the virtual machine 

changes. The recent version of MPI, has added this capability. 

Currently, the University of Tennessee and Oak Ridge National Laboratory are 

investigating the possibilities of merging PVM and MPI, and the project has been 

named PVMPI [9]. The idea is to access the virtual machine features of PVM and the 

message passing features of MPI. The duties that PVMPI is intended to perform are: 



to use vendor implementations of MPI that are a d a b l e  of multiprocessors, to  allow 

applications to access PVM's virtual machine fault tolerance and resource control, 

and to use PVM's network communication transparently for data transfer between 

Merent vendor's MPI implementations. 

In summary, if an application is intended to be executed on a single MPP, then 

MPI is expected to give better communication performance. It would also be portable 

to other vendor's MPP. MPI aIso has a very rich set of communication functiom, and 

therefore it is favored for applications requiring specid communication modes that 

are u n a d a b l e  in PVM, such as the non-blocking send. However, MPI lacks interop- 

erability, in the sense that one vendor's MPI cannot communkate to another vendor's 

MPI. MPI also lach fault tolerance. On the other hand, PVM is advantageous if the 

application is designed to run over a networked collection of heterogeneous hosts, 

because of its concept of a virtual machine. PVM also has resource management and 

fault tolerance, which makes it attractive for continuously running large applications 

even if hosts or tasks fail, or if loads change dynamically, which is very common in 

heterogeneous distributed computing. 

For this thesis, the main reason for using PVM was its built-in f ad t  tolerance 

capabilities, and for performing dynamic load scheduüng based on the availability and 

load on the machines. Secondly, PVM has already been successfully implemented over 

Fore Systems' ATM API (pvm-atm), at the University of Minnesota, for evaluating 

the performance of an ATM LAN, 



Chapter 4 

Distributed Multit hreaded Matrix 

Multiplication 

In this chapter, we discuss the implementation details of the matrix multipli- 

cation algorithms that we have used for testing. The need for multithreading in 

such applications is discussed initially, followed by a brief summary of the concept of 

multithreading. We explain the Scdable Universal MatIUr Multiplication Algorithm 

(SUMMA), which we have used for workload allocation. This algorithm is executed 

on the master processor and two other algorithms, namely Block Matrix Multiplica- 

tion (BMM), and Strassen's algorithm with Winograd's variant are used for sub-task 

computations. Chapter 5 gives the performance of the algorithms on various network- 

ing media and compares them to a simple distnbuted algorithm and a serial algorithm 

(executed on a SUN SPARC Ultra) in terms of bandwidth and latency improvement. 



4.1 Mult ithreading 

Multithreading (MT) is a technique that allows one program to do multiple tasks 

concurrently. As an example, in case of a Graphical User Interface (GUI), one thread 

can download images, while a second thread can take care of the 110, while a third 

thread can be responsible for doing some background calculations. A thread is a 

lightwezght pmcess compared to a Unix Process (heuvywezght process), and uses the 

address space of the process in which it is ninning. Multithreading is a new approach 

in designing distributed applications where performance is the key aspect. Modem 

OS platforms like Windows NT, OS/2, and several flavors of Unix provide extensive 

library and system call support for mdtithreaded applications. With the ready a d -  

ability of several thread packages (such as Posix, Java threads), multithreading has 

set a trend for efficient and easy concurrent computing. 

Mdtithreaded programming offen several benefits over serial procedural program- 

rning. Primary amongst them are, 

Performance improvement for multiprocessor architectures. 

Better throughput as one blocked thread does not halt the entire application. 

0 Avoiding process-to-process communication which is a heavier burden on the 

operating system compared to thread-to-thread communication. 

Optimum use of system resources, for instance in an SMP machine, a mul- 

tithreaded application will use the available computationd power to  its fÙll 

capacity. 

0 Ability to use the inherent concurrency of distributed objects. 

Computers with more than one CPU offer the potential for enormous applica- 

tion speedups. By making the application multithreaded, dinerent threads can nui 



on diaerent processors simultaneously with no extra effort from the programmer (ie. 

a multithreaded application written for a machine with one CPU also works for a 

machine with multiple CPUs). Most of the workstations available today are multi- 

processor machines [20]. These machines, when given serial tasks to m, utilize only 

one processor and thereby give suboptimal performance, compared to when they are 

ninning concurrent tasks, where each thread is executed on a different processor. A 

schematic diagram is shown in Figure 5.1 

Threads 

Processors 

Figure 4.1: Different threads on different processors 

For our matrix multiplication application, we have used this idea. The algorithm 

dynamically generates threads at runtime, according to the number of processors in 

the machine on which the task is spawned. Apart fiom that, the aigorithm also 

detects the shape of the input matrices, and makes decisions as to how the threads 

will operate. A detailed explanation is given in the following sections. This approach 

is extremely efficient for SMP machines as the CPU idling time will decrease. This 

not only increases the speed of computation, but also improves the latency of the 

system. 



4.1.1 What is a thread? 

A thread is a lightweight process. Compared to a regular Unix process (also h o w n  as 

a heavywezght process, a thread is a lighter burden on the operating system to create, 

maintain, and manage, because very little idormation is associated with a thread. 

In case of a process, when one process is removed Çom the processor and another 

process is activated, a context switch occurs. When a context switch occurs from one 

process to another, the operating system must keep track of all relevant information 

needed to restart the process that was running. This information involves the pointer 

to the executable, the stack, and the memory for statically and dynamicdy allocated 

variables. This information is required by the processor when it again takes charge 

of the process. Therefore a process uses many system resources and causes a large 

overhead. Threads also have context. When preempted, a context switch must occur 

between the threads. But unlike a process, a thread does not have its own address 

space but uses the address space of the process in whidi it is ninning. Therefore, 

the information required to reinstate a thread is much less than that for a process. 

The information that is required is only a stack, a register set, and a priority that is 

given to each thread for execution. The text of the thread is contained in the text 

segment of its process. The data segment of the thread is shared with its process. A 

thread can read or write to the memory locations of its process and the process has 

access to the data. The stack of the thread is contained in the stack segment of the 

process. Threads can create other threads in the process and all the threads nuining 

in a process are called peers. All the threads share the resources and memory of the 

process, but do not own any of them, which make them very easy to handle. All they 

need is a thread ID, a set of registers that define the state of thread, and a priority. 

Threads are like a set of tenants living with a common host, which is a process. 
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Figure 4.2: Communication between threads and pro cesses 

Similarities between Processes and Threads 

Processes and threads have a fked ID, a set of registers that maintain their state, 

and a pnority. They both share resources with parent processes, and are independent 

entities when they are created. Processes and threads can exdiange attributes after 

creation, and they can create new resources. Finally, they cannot directly access 

resources and memory of other unrelated processes or threads. 

Dissimilarities between Processes and Threads 

Threads unlike processes do not have an address space. For communication, parent 

and child processes use interprocess communication, such as sockets or pipes. In con- 

trast, peer threads communicate by writing and reading data to the process variables. 

Child processes do not exercise control over other child processes from the same par- 



ent process, while threads in a process are considered peers and have control over 

each other. Lastly, child processes do not have control over the the parent process, 

but a secondary thread can control the main thread, and thereby the entire process. 

Figure 4.2 austrates communication between processes and threads. As seen, if 

process A talks to process B, a pipe has to created. On the other hand, two threads 

tl and ti taUc using common memory space, and thereby do not need any explicit 

communication medium. 

4.2 Distributed Matrix Multiplication 

Distributed Matrix Multiplication computation is a standard coarse-granular paral- 

le1 application that is used for performance measurements of a distributed system. 

We have implemented a Distributed multithreaded matrix multiplication algorithm 

based on three algorithms. SUMMA is executed by the master node, and is used 

for workload division, and Block Matrix Multiplication and Strassen's multiplication 

algorithm, that are executed on the slaves, are used for sub-task computations. The 

three algorithms are explained in this section and their combined thread based parallel 

algorithm is discussed at the end of the section. 

4.2.1 SUMMA 

The Scalable Universal Matrix Multiplication Algorithm (SUMMA) [25] is a very 

simple algorithm for matrix multipiication, and we have implemented this algorithm 

for workload allocation. The master node uses SUMMA to divide the input matrices 

into blocks and the correspondhg blocks of both matrices are then transferred to the 

slave nodes. 

The machines in a PVM LAN are always assumed to form a mesh type architec- 

ture. The nodes of the LAN are the tasks that are spawned on the machines and not 



the actual machines, so that there may be only three machines in the actual LAN, 

but these three machines can be ninning 2 tasks/processes each and thereby forming 

a 3 x 2 virtual mesh. The input matrices are divided according the mesh configura- 

tion, and SUMMA does it in such a way that the matrices on each node satisfy the 

row-column requirement for matrix multiplication. 

The initial assumption is that the nodes of the pa rde l  machine (formed by ma- 

chines in the PVM pool) form a r x c mesh. The total number of nodes, denoted 

by p = m, are indexed by their row and column index such that the (i, j) node will 

be denoted by P,. The data decomposition for input matrices A and B, and output 

rnatrix C occurs as below; 

X =  

If a &en matrix X is of size m x n, where X E (A, B, C), is to be divided on 

a mesh of r x c logical nodes, then the portion Xij would be assigned to node Pij -  

Sub-matrix X, has dimensions mix x n j x ,  with Cmx = m and C q X  = n. 

For doing the multiplication, we require mA = m, nA = mB = k, and nB = n. If 

qj, bG and c, denote the (2, j) elements of the matrices respectively, then the elements 

of C are given by 

As seen, the rows of C are calculated fiom the rows of A, and the columns of C 

are calculated from the columns of B. Therefore, the rows of A and C are assigned to 

the same row of nodes and colurnns of B and C are assigned to the same column of 

B nodes. Hence, = miA and njc = nj . 



As seen, is entirely assigned to node row i, while Ëj is entirely assigned to node 

column j. By putting, 

we see that , 

Hence the math-matr ix  multiplication can be formulated as a sequence of rank-one 

updates. 

SUMMA can be improved by using the level-3 BLAS (Built-in Linear Algebra 

Subprograms) provided by major vendors of high performance microprocessors. An 

optimized version of the algorithm can do the matrix multiplication by a c c d a t i n g  

several col- of Ai and rows of B, before updating the local rnatrix. The advan- 

tage gained here is that it reduces the number of messages incurred, thereby reducing 

communication overhead. We have not implemented this possibility because of the 

unavailability of BLAS routines. Our main objective is to evaluate the network per- 

formance for multithreaded computations, and hence this feature of SUMMA is not 

addressed. 



SUMMA is simpler than other dgorithms that use broadcast-mdtiply-roll algo- 

rithm. However SUMMA is more fieible, its memory usage for work arrays is much 

lower and hence SUMMA was used for implementing the work-load division. 

4.2.2 BMM 

Block algorithms are very popular parallel algorithms for matrix computations. BMM 

(Block Matrix Multiplication) [13] algonthm is an efficient matrix multiplication al- 

gorithm, where the input matrices are divided into sub-blocks and then individual 

sub-block (or sub-matrices) from each input matrix are used for calculating the cor- 

responding sub-block of the resultant matrix. 

If two input matrices A and B (assuming square matrices with dimensions n x 

n), are to be mdtiplied to form the resultant n x n matrix C, then the multiplication 

process can be devised in the following manner. Assuming that n = NI, where N and 

I are positive integers, and where N is the number of sub-blocks of the matrices or 

dimension 1 x 1, such that, 

where a = 1 : N ,  and p = 1 : N. ' The algonthm is shown on the next page. 

'Block matrices are designated by the colon notation, whereby if A is an m x n matrix, and if 1 

5 i l  5 iz 5 m, and 1 jl 5 j2 < n, then A(il : i2 ,  jl : j2 )  is the sub-rnatrix obtained by extracting 

rows i l  through i2 and coliimnc; ji through j2. 



for a = l:N 

i = (a - 111 + 1 : al 

f o r p = l : N  

j = (p - 1)1+ 1 : pl 

f o r y = l : N  

k = (y - 1)l + 1 : yz 

C(i ,  j) = A(i, k ) B ( k ,  j )  

end 

end 

end 

If 1 = 1, then a = i , p  = j ,  and y r k and we revert to the standard b e r  dot- 

product matrix multiplication algorithm. For parallelizing this aigorithm by forking 

multiple threads to compute individual sub-matrices, we use the foilowing criteria, 

Number of Processors: O n  a SMP machine, the most optimum performance 

is obtained if all the CPU's available are used for doing computationd work 

concurrently. Our algorithm makes sure of this, and forks as many threads as 

there are number of processors in a machine. For a Unix workstation, this can 

be accomplished by calling the system configuration routines and checking the 

number of processors online, and for Windows NT workstations, a method called 

GetSystemInfo() which is included in the system routines, is called which retums 

the number of processors. The algonthm takes this value and dynamically forks 

equivalent number of threads. 

2. Shape of the input sub-matrices: The shape of the input sub-matrices &O 

play and important role in deciding on how to  fork up threads and how to 

operate them on the matrices. If the two matrices are primarily rectangular, 

then o d y  one of the two matrices is divided into sub-matrices. If both the 



matrices are primarily square, then both the matrices are divided into sub- 

matrices. 

Out of the two matrices A and B, A is always divided into sub-matrices regardless 

of the shape of A, if we are doing A x B. By the âist criteria, the number of threads 

to be forked is decided. The total number of rows of A are divided by the number 

of threads to be forked, and each resultant block is computed by one thread. If 

the number of rows in A are such that they cannot be divided equally amongst the 

threads, then the thread which becomes free tirst after doing its share of work takes up 

the computation of the last residual part that could not be allocated to any thread. In 

case if the matrices are primarily rectangular, then matrix B is not divided, and each 

thread multiplies one block of A by the entire B matrix. In this case, if the matrix 

A was divided into four parts, then ideally the algorithm will work four times faster 

then a simple multiplication, as there will be four concurrent multiplications going 

on at  a time. On the other hand, if the matrices are primarily square in shape, then 

A is again divided in the same way, and B is also divided in the similarly, however, it 

is divided column-wise. In other words, the total number of columns of B are divided 

by the number of threads to be generated. Therefore a block of A is multiplied by the 

corresponding block in B by one thread. This type of dual partitionhg will reduce 

the amount of work on the threads, and thereby increase the latency. Shown below 

are the sub-blocks of the two matrices. 

When performing the matrix multiplication, the mai in thread creates threads for 

each CPU. The main thread also sets up a counter of work available to do, and 

then uses a condition variable to signal the threads to start the computation. Each 



individual thread acquires the mutex lock, and after doing its work, updates the 

counter, and releases the mutex lock. Hence the second thread can start fiom the 

point where the first thread stopped. 

Whenever a condition arises when one thread depends on the data that is com- 

puted by some other thread, a condition variable (such as semaphores) is used for 

signaling purposes. Strassen's algorithm extensively uses data transfer between the 

worker threads, as explained in the next subsection, and these condition variables are 

used for that purpose. 

4.2.3 Strassen9s Algorithm 

S trassen's algont hm is a fast recursive matrix multiplication algorithm. The advan- 

tage of this algorithm is that it uses fewer multiplications compared to any standard 

matrix multiplication algorithm. For multiplying two m x m matrices, nz3 scalar 

multiplications and m3 - ma scalar additions are required, which results in a total 

arithmetic count of 2m3 - rn2 and a general algorithm complexity of 8 ( m 3 )  [17]. This 

means that a 2 x 2 matrix will require 8 multiplications and 4 additions. Strassen's al- 

gorithm, proposed in 1969, multiplies two 2 x 2 matrices using 7 multiplications and 18 

additionfsubtractions. It has a general complexity of 0(m2-807). Apart from that, the 

algorithm does not depend on the commutativity of the component multiplications, 

so it can be used for block matrices and used recursively. Thus, Strassen's algo- 

rit hm reduces the number of multiplications, and increases the number of additions. 

However, in a large rnatrix multiplication problem, addition can be accomplished 

in parallel with more ease than multiplication. The total number of operations for 

multiplying 2 x 2 matrices whose elements are m/2 x m/2 blocks will be, 

The ratio of this operation count to that of the standard aigorithm, therefore, is, 



If m gets large, the operation count approaches 718, which means that for large 

matrices, one recurçion of Strassen's algorithm gives an improvement of 12.5% over 

regular matrix multipücation. Therefore, if Strassen's algorithm is applied recursively 

to large matrices, the performance improvement is significant. 

For this thesis, we have implemented Winograd variant of Strassen's algorithm 

(which is an improved version of Strassen's algorithm) that uses 7 multiplications 

and 15 additions/subtractions. The algorithm partitions the input matrices A and B 

into 2 x 2 blocks and cornputes C, as shown below. 

( "' "'2 ) = ( A n  A" ) (BI'  B" ) 
c 2 1  c 2 2  A21 A22 B21 B22 

The computation process in one recursion consists of four stages. Stages (1) and 

(2), as shown on the next page, which compute the S and T matrices are shown below. 

S and T are temporary matrices. 

Similady, stages (3) and (4) compute the P and U matrices which are also tem- 

p o r q  matrices. The two stages are shown on the next page. 



It can be seen that Czi = Ul, CI2 = &, C21 = U4, and C22 = U5- 

Strassen's algorithm can also be applied to rectangular matrices. As mentioned 

earlier, the recursion should be stopped when the component matrices reach a cutoff 

minimum size. At this point, the standard algorithm should be used, as it is more 

efficient for s m d  matrices. It has been proved that for multiplying two matrices of 

dimensions rn x n, and n x k, the cutoff dimensions are obtained by solving the 

following inequality, 

Therefore for a square matrix (m = n = k), the dimension should be less than or 

equal to 12. In other words, Strassen's algorithm should be used recursively until the 

component matrices are reduced to a size less than or equal to 12 x 12, after which 

the standard algorithm should be used for the optimum performance. 

4.2.4 Our Algorithm 

Our algonthm takes in matrices of any shape, size, and dimensions. It recursively uses 

the Strassen's algonthm until the cutoff dimensions (in our case, used 12 as the cutoff 

dimension) are reached, after which it switehes to a standard block multiplication 

algorithm. Dynamic Peeling (as explained in the next subsection) is used for matrices 

that are rectangular, and have odd dimensions. In cases where the input matrices 



are primarily rectangular, the algorithm uses BMM directly, and &O decides on how 

to divide the matrices into sub-blocks. Finally, the algorithm detects the machine 

architecture on which the code is executing, as weIl as the number of processors 

present and forks the equivalent number of threads to perform the calculations. The 

operating system is &O detected which calls a specific thread library (eg. for Unix 

machines, either Solaris or Posix thread packages are called, while for PCs d g  

Windows NT, the Windows NT thread libraries are called.) 

For initial work-load allocation, we use SUMMA, which uses the mesh topology, 

and divides up the rows and columns of the matrices accordingly. After this, the 

pvm-pack() routine is called, which packs the mat+ data to be sent to the slave 

nodes. pvm-sendo is called to transmit this data to the remote machine (slave), 

where pm-recv and pvm-upack routines are called to receive, and unpack the data. 

At this point, the algorithm also detects the machine architecture of the slave, and 

spawns an equivalent number of threads. The shape and size of the matrices are also 

used to decide as to which algorithm should be used for sub-rnatrix computations ie. 

individual matrix multiplication at the nodes. If the matrices are primarily square 

(where the number of rows and columns are approximately the same), then we use 

Strassen's algorithm, and if they are primarily rectangular (where the number of rows 

or columns is greater than the other by more than twice), then we use BMM. 

For matrices with an odd number dimension, either dynamic padding, or dynamic 

peeling is used. Dynamic padding involves adding an extra row or columns of zeros 

to the matrix to make the dimensions even. Dynamic peeling on the other hand 

deals with odd dimensions by stripping off the extra row andior column, and adding 

their contribution to the ha1  result later. For our algorithm, we have implemented 

the dynamic peeling method for two reasons. Firstly, dynamic padding increases the 

time of computation, as an extra row and/or column is added to the matrix, and 

this row/column is dso multiplied dong with the original matrix, which can cause a 



performance overhead. Secondly, dynarnic peeling method had not been previously 

tested through actual implementation, and we wanted to see the advantages of this 

method. Dynamic peeling is explained briefly below. 

Dynamic Peeling 

Let A be an m x n matrix, and B be a n x k matrix, where m, n, k are odd integers. 

Then the matrix division takes place as below, 

and B = 

where All is a (m - 1) x (n - 1) matrix, al2 is a (m - 1) x 1 matrix, a21 is a 

1 x (k - 1) matrix, and a2z is a 1 x 1 matrix. Similarly, B is also divided in the Save 

way. The product C = AB is computed as, 

Here, Strassen's algorithm is used for computing All B12, and the other computa- 

tions are added later. The Strassen's computation, then again starts recursively, and 

dynamically peels off rows and columns whenever an odd number is encountered, tül 

the cutoff dimension (determined at runtime) is reached, at which point the standard 

algorithm is used. After this, the algorithm starts putting the extra row and column 

computations, and ends up with the final C matrix. 

We have also implemented dynamic peeling for the case when only one dimension 

is odd, or when the odd dimension is greater than the even dimension, or when the 

odd dimension is smaller than the odd dimension. The peeling in this case involves 



stripping off two rows or columns when the even dimension is smaller, and only one 

row or coliimn if the odd dimension is smaller. 

The complete algorithm is given below. 

1. The input matrices, A and B are read by the algorithm dong with the mesh 

configuration of the virtual machine (in the form of an r x c mesh. Based on 

the mesh configuration, the matrices are divided (A is divided row-wise and B 

is divided column-wise). The division is such that the column-row condition 

necessary for matrix multiplication is satisfied a t  each node. 

2. The node which will run the PVM console will act as the master node, and it 

will spawn processes on the slave nodes. pm-spawn() routine is used for this 

purpose. This routine will spawn a user defined process on the slave. In our 

test case, the process spawned will be Matmult. 

3. PVM's interna runtime libraries will open connection with the specified hosts, 

and cal1 the pvm-pk*() routines to pack the data to be sent to the hosts, which 

wiil be sent by the pvm-mcast() routine. This routine will spawn processes 

on the slaves in a round-robin fashion. In case of Ethernet as the underlying 

network, a socket based TCP/IP connection will be established between the 

hosts. On the other hand, if the underlying network in ATM, then Fore Systems' 

ATM API will be used to utilize the AAL 5 protocol, and thereby using Class 5 

service. After packhg and sending the data to the slaves, the master will wait 

for the results fiom the slaves. 

4. At the slaves, the pwn-recv() routine will receive the data from the master, 

followed by pvm-unpk*() which will unpack the data items. At the slaves, the 

algorithm will detect two things. 

Number of Processors: For a Unix machine, the routine sysconf() will be 

used, and for a Windows NT machine, GetSystemInfo() will be used. These 



routines will determine the number of processors online, and the algorithm 

will create equivalent number of threads. The priorities of the threads can 

assigned in such a way so that each thread is ninning concurrently on each 

processor (We have not implemented this facility as the the machines on 

which we tested the algorithm were mostly single processor machines). If 

the machine haç a uni-processor architecture, then by default, four threads 

will be created (this number c m  also be changed, although through trial- 

and-error, we concluded than for a uniprocessor machine, 4 threads gives 

the best performance). 

Shape of the Sub-matrices: This will determine how the sub-matrices have 

to be divided. As explained earlier, this will depend on whether the matri- 

ces are rectangular or square. In this case, if the number of rows/co1llmn~ 

are more than twice the number of columns/rows, then the matrix is said 

to be rectangular, and only the sub-matrix of A will be divided. Otherwise, 

both sub-matrices will be divided as explained earlier. 

5. S trassen's algont hm will be called recursively for multiplying the sub-matrices. 

This algorithm will dynamically peel off extra rows and columns should they 

be odd in number, and bring out the largest square matrix in the remaining 

part. If the dimensions of this square matrix are above the cutoff, a second 

recursion will take place where the same procedure will be repeated. As the 

dimension of the largest square reaches the cutoff, the standard algorithm will 

be used (a multithreaded block algorith).  After which, the algorithm will 

add the results of the extra rows and columns that were peeled off during each 

recursion, starting from the last recwsion. 

6. After the sub-matrix Chas been verified, it calls the pvm-pkf(), and pmsend() 

routines to pack and send the data back to the master and quits. 



7. The master receives the data fiom the slaves, as they finish computation, and 

then assembles the final m a t h  C and quits. 

This algorithm has been tested on different matrix sizes on two underlying net- 

works namely ATM, and Ethernet. A correctness check is done at each node during 

the sub-matrix computation, and ha l ly  at the master node for the entire matrix. 

This accomplished by arbitrarily generating the elernents of matrix A using the Unix 

rand() facility. The matrix B, is made an Identity matrix (where all the elements 

except the diagonal are zero, and the diagonal elements are ail 1). This results in the 

matrix C to be exactly same as matrix A. 

The Performance results of both the networks are shown and discussed in the next 

chapt er. 



Chapter 5 

Network Performance - Results 

The main objective of this thesis is to evaluate the performance improvement of 

difTerent cornputer networks for supporthg a thread based computing system and a 

thread based communication system. The performance is measured in terms of the 

latency, and the throughput. Two networks were tested as a part of this thesis. In the 

first case, an Ethernet LAN was constructed and a distributed matrix multiplication 

application was run on it. This was followed by running a multithreaded version of the 

distribut ed application. The performance of bot h the aigorithms was examined. The 

latency of the network and the workstations, and the throughput of the network was 

studied. Foilowing this, the same two algorithms were run on an ATM LAN, and the 

performance of the ATM network, the machines in the LAN, and the algonthms were 

evaluated. Lastly, we tested the performance improvement by using multithreading 

in a single machine and compared our algorithm with a serial matrix multiplication 

algorithm running on a single host 



Test-bed Setups 

We used the Ethernet testbed a t  the ECE Department and at  TRLabs, Winnipeg, 

for running our distributed algorithm. For the ATM testbed, we used the existing 

OC-3 network in the ECE Department. A brief description of the experimentd setup 

is given in the following subsections. 

5 1 1  Ethernet 

The standard 10 Mbps Ethernet, a d a b l e  in the Electrical and Cornputer Engineering 

(ECE) department was used for testing purpose. The network configuration, as shown 

in Figure 5.1, was used. The workstations in the Ethernet LAN were connected via 

a 3Com switch, and two hubs. PVM's round robin allocation scheme was used for 

workload allocation among the hosts. PvmRouteDirect was used as the default route 

between two daemons for faster message passing. Results and analysis of the nintime 

performance of our algorithm are given in the subsequent sections. The time measured 

anywhere during the experiments is the average time obtained after 3 or 5 nuis of the 

algorit hm. 

For the tests, we used only four dedicated machines as we wanted to compare the 

performance of the Ethernet LAN with ATM LAN, and o d y  these machines had the 

Fore Systems' ATM Interface cards, although PVM allows any number of machines 

to be added to  the host pool. All the tests were conducted a t  three different times of 

the day, namely in the earty morning, when the network t r a c  is not very high, in 

the late morning, when the network is fully loaded, and in the evening, when again 

the network is not ninning a t  its full capacity. This was done to get the mean test 

results. For each case, the latency and throughput of the network was calculated. 

Apart from that, we also tested our algonthm in t e m s  of CPU usage, speed of 

computation, and how it reduces the latency of the SMP machines. For measuring 

the network load, we used a simple bandwidth ailocation ratio, which was the ratio 
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Figure 5.1: Workstations on the Ethernet LAN at the ECE Dept. 



of the allocated bandwidth to the achieved bandwidth. Later, we discovered the 

adability of SNMP on the workstations, and the results extracted after ' ' s d k g "  

the network yielded approximately the same network loads. 

The communication between hosts occurs in two ways: (i) when a master process 

spawns a slave process on a remote host , the communication occurs between the two 

PVM daemons in the form of message passing, and (ii) when a thread in one process 

communicates with a thread in another process. This happens when a thread ninning 

in one process requires a data item computed by some other thread in some other 

process. This is also accomplished by explicit message passing for this research, and is 

done several times during the execution of the algorithm. Algorithms with h e r  gran- 

ularity are supposed to give sub-optimal performance compared to course granular 

algorithms. The main reason being the usage of the interconnecting network be- 

tween the hosts should be minimum. By using high-speed, high-bandwidth networks, 

and uçing thread spawning and inter-thread communication, as opposed to process 

spawning, and interprocess communication, this drawback c m  be reduced. Hence in 

this thesis, we evaluate the performance of the networks for both these cases, namely 

single-threaded execution and multithreaded execution. We have tried to determine 

the rnacimum achievable throughput, and the end-to-end communication latency for 

each case, and the results are plotted and detailed discussion of the results is given 

in the Section 5.7. 

5.1.2 ATM 

We use the existing ATM testbed in the ECE department, which is an OC-3 (155 

Mbps) network operating on a Fore Systems' ASX-200 switch. Four machines are 

comected in the LAN through the switch, each having Fore Systems' ATM API 

and using SBA-200 Sbus adapter boards from Fore Systems. The machines, namely 

Ouzo, Cider, ic18, and icli, are comected to the ATM network. Their ATM cards 



have different IP addresses, such as 204.112.157.*, than the regular ECE domain 

addresses of 130.179.8.*. Figure 5.2 shows the network layout for the test. PVM was 

implemented on the API by using the purn-atm package, developed by The Distributed 

Multimedia Research Centre (DMRC) at the University of Minnesota, which directly 

uses the Fore Systems' AAL 314 and AAL 5 protocols. We tested both the protocols 

for this thesis. 

5.2 Network Performance 

We evaluate the network performance in terms of end-to-end communication latency, 

and maximum achievable throughput. h the following Sections, we describe the tests 

and the echo programs used for latency measurements. 

5.3 End-To-End Communication Latency 

The communication latency for sending a M-byte message can be estimated as half 

of the round trip time required for sending and receiving this data from one host to 

another. We used a standard a d a b l e  echo program for doing t h ,  which is provided 

with the PVM 3.3.11 package. In the echo program, a client sends a M-byte (Mranges 

from 20 bytes to 250 Kbytes) message to the semer and waits to receive the M byte 

message badc. This client/server interaction iterates N times, and we note the timing 

for each iteration, and determine the average timing for each value of M. We repeat 

this procedure four to five times and select the best three observations corresponding 

to difFerent network loads during difierent times of the day. The start-up latency is 

also an important performance parameter for network performance. It is the time 

required to send extremely short messages. The start-up latency for Ethernet and 

ATM is used as a performance cornparison parameter and is discussed in Section 5.7. 
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5.3.1 Ethernet 

We Mned the data size from 20 bytes to 204 kbytes for the echo program, and 

observed the Round-Trip timing (RTT) for dinerent Network Loads. We took 5 to 

7 trial u s  and selected the best three runs for network loads that were distributed 

uniformly, namely 90% load, 50% load, and 20% load. The underlying protocol stack 

used was the default TCP/IP and UDP/IP. The results are plotted in Table 5.3. A 

detailed discussion of all the results is given in Section 5.7. 
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Figure 5.3: Communication Latency for PVM over Ethernet 

5.3.2 ATM AAL 314 

We used ATM AAL 314 protocol as well as the ATM AAL 5 protocol as the underlying 

protocol on our tests on the ATM network. The results obtained for three network 

loads are plotted in Figure 5.4. 
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Figure 5.5: Communication Latency for PVM over ATM AAL 5 



5.3.3 ATM AAL 5 

ATM AAL5 was also tested in the similar fashion for three different runs of the echo 

program. The results of the runs are shown in Figure 5.5. There is not much clifference 

in the performance of PVM-AAL 314 and PVM-AAL 5 as clearly seen in Figure 5.6, 

however AAL5 provides slightly lower latency. Therefore, ATM AAL 5 has a superior 

latency characteristic compared to either Ethemet or ATM AAL 314. 

For cornparison purpose, we also plotted the results of the nins for Ethernet 

(PVM/TCP/UDP) with the ones with ATM (PVM/AAL 314 and PVM/AAL 5) 

together, to see the merence in values. Figure 5.6 shows the combined plots. 
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Figure 5.6: Communication Latency for PVM over Ethernet and ATM 

5.4 Performance of the Serial Algorithm 

We also ran a unthreaded matrix multiplication program on a single workstation, 

for comparing the speed of computation of a serial multiplication against a multi- 



threaded rnatrix multiplication, and the gain in latency that can be obtained by 

using concurrent thread based computing. We ran both the algorithms ie. a simple 

matrix multiplication algorithm and our algorithm (implemented for a single host in 

this case) on Ouzo (SPARC Ultra), and we saw the computation times of both the 

algonthms for different m a t e  sizes, and with two, four and eight spawned threads. 

As clearly seen, the serial code was the slowest as compared to a threaded code. The 

maximum number of threads that the machine we used were 4, hence the computation 

t h e  was minimum for 4 threads. When 8 threads were imposed, the thread man- 

agement overhead became very high, and thereby the time of computation increased. 

We have plotted the results in Figure 5.7. 
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Figure 5.7: Co~ll~llunication Latency for a Sun SPARC Ultra for serial and multi- 

threaded codes 

As clearly seen, a multithreaded algorithm performs better than a serial dgorithm. 

The workstation, Ouzo, is a single processor workstation, so the threads are context 

switched. If however, the workstations has a multiprocessor architecture (like an 



SMP), then threads can be concurrently executed on individual processors, and the 

performance of the algorithm would improve further. By using advanced features 

like priority scheduling, and functions like thr-setconcurrency() in implementing the 

algonthm, a better performance can be achieved. 

Thread Spawning against Process Spawning 

For mission critical applications, the time required to spawn a process either l o c d y  

on the same host or remotely on another host is an important performance parameter. 

We measured the times required to spawn a process and a thread. The Unix fork() 

utility was used to spawn a process, and the total time for a spawn was measured- 

For threads, we used the thr-create() function, and measured the time. The results 

are shown in Table 5.1 and plotted Figure 5.8. 

It can be clearly seen that the t h e  required to spawn threads is much less than 

the time required to spawn a process. For our case, we spawned threads only on 

a single host, however, results fiom TPVM over PVM [IO], and LPVM (261 show 

that spawning remote threads also requires much less time than spawning remote 

processes. This adds a lot to improving the latency of the overall system. 

Thread and Process Communication Times 

We also determined the communication time required for two processes to ta& with 

each other, and two threads to talk with each other. The threads resided on processes 

that were running on the same host. This was accomplished using the the pvmsend() 

and pvm-recv() functions for processes, and by using inter-process condition variables 

in case of threads. The time for communication is shown in Table 5.2 and plotted in 

Figure 5.9. 

AS clearly seen, the time for message passing between threads is significantly less 

compared to processes. The time for remote threads for communication has also 



Time (msec) 

Number Spaumed P VM Processes P VM Threads 

1 57.75 1.75 

Table 5.1: Spawning Times for a Process and Thread 

Number Spawned 

Figure 5.8: Spawning Times for Process and Thread 
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been proved to be Iess in TPVM, although usage of a Distributed Shared Memory 

can improve the performance in case of remote thread communication. The reason 

being, the threads do not need to use the network every t h e  for accessing a remote 

data item, if it is stored in the DSM, and if the DSM uses the hosts memory map. 

5.5 Maximum Achievable Throughput 

The maximum achievable throughput (r-)  is obtained by transmitting very large 

messages. It is an important parameter for applications that require large amounts 

of data transfer between the hosts and is a performance metnc for networks. We ran 

our algorithm for diEerent m a t e  sizes on a 2 x 3 mesh (total 6 nodes), and noted 

the bandwidth. Like before, we conducted our tests at different network loads. 

5.5.1 Ethernet 

For rneasuring the communication bandwidth, and thereby the maximum achievable 

throughput, we measured the round trip tirne required for sending messages of fixed 

sizes between two hosts. This was similar to  the echo program that we used for 

measuring latency, wherein a message is sent fkom one machine to another, and 

received back repeatedly N number of tirnes. The average communication time for 

a fixed message size is determined, and this gives the bandwidth that the network 

can operate for that particular message size. This is repeated for different message 

sizes, and the bandwidths achieved for each message size is plotted. The maximum 

bandwidth or the maximum achievable throughput is the peak of the cuve obtained. 

As the time measured is the average time, the maximum throughput is the average 

maximum achievable throughput . 
We have tabularized (Table 5.3) the observations for Ethernet, ATM AAL 314 

and ATM AAL 5 and have plotted them in Figure 5.10. 



Bandwidth (Mits(sec)  

Message Size (KB) Ethernet ATM AAL 3/4 
-- - 

ATM AAL 5 

Table 5.3: Bandwidth for PVM over Ethernet and ATM for different message sizes 

Figure 5.10: Bandwidth and Maximum Throughput for Ethernet and ATM networks 



5.5.2 ATM AAL 3/4 

The same procedure was repeated for an ATM network with AAL 314 protocol. 

The bandwïdths obtained for AAL 5 for different message sizes was higher than the 

bandwidths for Ethernet. Table 5.3 and Figure 5.10 show the results. 

5.5.3 ATM AAL 5 

Similar runs were given for the ATM AAL 5 network, and the results are shown in 

Table 5.3 and are plotted in Figure 5.10. It can be clearly seen that  ATM AAL 5 

gives the highest throughput among the three networks. 

5.6 Overall Real-Time Performance 

We also measured the ove rd  real-time performance of a distributed multithreaded 

matrix multiplication algorithm (our algorithm) against a distributed unthreaded ma- 

trix multiplication algorithm. The overd  real-time included the total commuaication 

time, computation t h e ,  packing and unpadgng tirne, and the time for doing 110. 
The time was measured using the high-resolution time facility in Unix, that gives the 

real-the in nano-seconds. We did this performance analysis on an Ethemet network, 

and then on an ATM network with AAL 314 and AAL 5 protocols. The results are 

shown in Table 5.4 and are plotted in Figure 5.11. 

5.7 Analysis of Results 

The previous sections and subsections give plots and tables of the results that we 

obtained by running the algorithms mentioned in this thesis in dinerent environments 

under Merent  conditions. 

As we can clearly see, the ATM AAL 5 protocol gives the most supenor perfor- 



Real- Time (sec) 
- - 

Ethernet ATM AAL 3/4 ATM AAL 5 

Table 5.4: Real-time speedup of a Mdtithreaded (MT) Algorithm over a Serial Al- 

gorithm on Ethernet and ATM networks 

Matrix Size 

Figure 5.11: Total Execution Time for a MT and Serial Algorithm on Ethernet and 

ATM 



mance as far as latency is concerned. The AAL 3/4 protocol is highly efficient but 

gives a slightly higher latency than ATM, while Ethernet gives the highest latency 

amongst the three. However, the start-up latency to of Ethernet is the minimum 

followed by ATM AAL 314 and AAL 5 respectively as seen in Table 5.5 The Q is 

measured by a 4 byte message from one host to  another and calculating the round 

trip time required. 

Start-up latency is half of the round trip t h e  required for sending a small message 

from one host to another and then receiving it back. This is a performance metric for 

extremely short messages. The overhead in terms of latency for the ATM network 

can be due to two reasons namely, 

P VM Enuironrnent 

The device driver for ATM is considered to be slower than the one for Ethernet, 

and this can be costly when sending short messages. The firmware for Ethernet 

has been optimized for better communication latency [7]. 

to psec 
I 

There is also an overhead in case of ATM for preparing packages for transmission 

and receiving them off the network, or in other words the ATM incurs a package 

processing overhead. 

TabIe 5.5: Start-up Latency for PVM Environments 

When multithreading is used for computing, the latency of the workstation de- 

creases by nearly half the value. As seen in Figures 5.7 and 5.11, using multiple 

threads for computing makes the program faster, and thereby decreasing the latency 



of the machine as weU as reducing the overall mal tzme for the execution of the al- 

gorithm. By using more than one thread on a workstation, the number of virtual 

slaves are increased, and thereby the algorithm is executed concurrently. However as 

noted in Figure 5.7, when the number of threads are changed h m  1 to 2, the time 

for computation decreases. If the number of threads are further increased to  4, then 

the algorithm still computes faster. If we increase the number of threads to 8, then 

as seen, the speed of computation decreases. The main reason is that by increasing 

the number of threads beyond a certain limit increases the thread management over- 

head on the operating system. The machines that we used for our experimentation 

were all uniprocessor machines that gave an optimum performance for 4 threads (and 

therefore we have used the default number of threads as 4 in our implementation 

Strassen's a igor i th) ,  but if the number of processors are more (as in an SMP), then 

by increasing the number of concurrent threads, the speed of execution can increase 

by a large magnitude [16]. 

We also observed that the spawning of a process is more expensive than spawning a 

of a t hread. For this thesis, we implemented only an intra-host thread spawn program 

(that spawns threads only within a single host), but experimental results show that 

even remote thread spawning (using a Thread-semer, and remote memory) is less 

expensive than spawning a process (101. This, dong with the fact that high-bandwidth 

networks such as ATM can support very frequent communications between hosts, 

suggest that thread based distributed applications can be extremely performance 

efficient, 

Lastly, we discuss the maximum achievable throughput (T-). Table 5.6 shows 

the maximum available throughput for Ethernet and ATM networks. 

As clearly seen, ATM AAL 5 gives the maximum throughput of 29.26 Mbitslsec 

indicating its high-bandwidth characteristic, while Ethernet provides a maximum 

throughput of 9.12 Mbitslsec. This is a very important dinerence for large computa- 



/ PVM-ATM on AAL 314 

Table 5.6: Maximum Communication Throughput for Ethernet and ATM networks 

PVM-ATM on AAL 5 

tionally intensive problems like complex simulations, number crunchkig, etc. where 

large amounts of data tramfer is required between hosts. 

29.26 



Chapter 6 

Conclusions and Future Research 

Directions 

Until now, Distributed Network Computing was used mostly for those applica- 

tions that require a minimum use of the intercomecting network between the partic- 

ipating hosts (ie., Distributed Network Computing was suitable for course-granular 

problems.) Due to the low bandwidth and high latency characteristics of existing 

networks like Ethemet, interprocessor comrnUIfication across a network was avoided. 

However, with the recent developments in the area of high-speed networks, and with 

the emergence of highly efficient and fast networks like ATM, Gigabit Ethernet, etc., 

we are seeing a whole new horizon for large-scale computing across a network with 

hosts separated by large geographical distances, such as on the Internet. In this thesis, 

we explored the possibility of solving problems with extensive inter-processor com- 

munication using underlying high-speed networks and thread based communication 

instead of task based communication. The results are positive and encouraging. 

Our main aim was to  improve the real-the performance of a distnbuted comput- 

ing system. We used multithreading for this purpose as thread management is much 



easier and simpler compared to process management, thereby reducing the overhead 

on the operating system and the CPU. We implernented a thread based computation 

model and a intra host communication model. We observed a marked improvement 

in the latency of the workstations due to the thread based computing model. Our 

second aim was to show that high-speed, high-bandwidth network technologies like 

ATM can be used without any concerns about its maximum achievable throughput 

for applications/computations that use extensive message passing between tasks. Our 

implementation of the Strassen's algorithm proved this premise. Hence an ATM LAN 

can be used for large simulations with fine-grandarity and give excellent performance 

over other regular networks like Ethernet or Fiber Channel. The main reason ATM 

is very efficient in large scale data transfers is that it is not a shared medium (ie. 

the bandraidth allocated to any segment is not shared). Therefore, if desired, an 

important task can be executed without any obstructions from other network trafnc. 

The second reason is the inbuilt QoS in ATM which is a very attractive feature for 

mission critical applications where extremely accurate results are desired. Hence, mul- 

tithreaded prograrnming implemented on an ATM backbone can be a very effective 

combinat ion for Distributed Scientific Computing. 

6.1 Ideas for Future Research 

Our work can be extended in several ways. Some of the possible directions that we 

envision are listed below. 

We have used the PVM implementation on ATM (pvm-atm) for process manage- 

ment and synchronization on ATM. Further improvement in the results can be 

achieved if the application is developed using Fore Systerns' ATM API directly. 

This can give better performance because the protocol overhead of pvm-atm 

(as it is implemented on PVM 3.3.2) is eliminated. 



0 During our workload allocation, we export thread entry points to the slaves 

kom the master, when the master spawns a process. Therefore, threads are 

used for subtask computations on the slaves. This was shown to have several 

benefits over process based subtask cornputations. However, additional perfor- 

mance improvement can be obtained if the master can spawn threads on the 

slaves directly instead of spawning processes. This idea has been proposed in 

the LPVM standards [26], but LPVM has still not been developed for a dis- 

tributed environment, and is used only for SMP machines. TPVM on the other 

hand does utilize indirect thread spawning by calling the tpvm-spawn() routine. 

However, this routine in turn caUs the pum-spawn() routine, which in reality 

spawns processes on the slaves, although it appears to the user that it spawns 

threads on the slaves. The TPVM irnplementation on ATM can prove to be sig- 

nificant work, if TPVM's mmote memory model (remote memory model maps 

one memory space into an another disjoint mernory space) is developed fùrther. 

For our implementation, we used used explicit message passing for inter- 

thread communications. For this, if there is a Distributeci Shared Memory 

(DSM), which can be a common memory for all the machines participating in 

the PVM LAN, then the threads can communkate by writing and reading vari- 

ables in the DSM, and synchronize with each other using mutexes, semaphores, 

condition variables, etc. This can significantly irnprove the communication over- 

head on the network. The reason being, threads do not have to use the network 

each time for accessing a data object , as the DSM may be using the local hosts 

memory as a part of the Global Shared Memory. 

0 We tested our algorithm on a network that consists only of homogeneous hosts, 

ie. Sun SPARC stations ninning Solaris. In an actual corporate environment, a 

network/LAN usually consists of heterogeneous hosts with completely different 

platforms, and ninning distinct operating systems. Hence this algorithm can 



also be tested by introducing other hosts like PCs (ruMing Wmdows 95 or NT), 

or a Macintosh machine, and the performance of the network should be studied 

for servicing a hybrid network. As far as we c m  envision, the performance will 

be slightly inferior compared to a homogeneous network because of the added 

overheads of data-type rnatching, address mapping, etc. 

Lastly, this algorithm can also be tested on the High Performance Network 

(HPCNet), which is a high-speed ATM backbone comecting several Supercom- 

puters across Canada. Testing this sort of network topology would give a more 

broader view of the problems that Network Engineers are facing today, and 

possibly corne up with solutions to solve them. 
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