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ABSTRACT

Self-supporting latticed structures are used in a wide variety of civil engineering
applications, most commonly to support transmission lines that transmit and distribute
electricity. = Manitoba Hydro has approximately 10000 self-supporting latticed
transmission towers located throughout the province of Manitoba. The current method
for analyzing transmission towers among practicing engineers is to assume linear-elastic
behavior and to treat the angle members as pin-ended truss elements. This approach
ignores the effects of bolt slippage and local bolt deformation, geometric or material
nonlinearity, joint flexibility, and the bending stiffness of the angle members. When the
deflections and member axial forces measured in transmission towers in Manitoba are
compared with the predictions from linear-elastic programs, there can be a large
discrepancy. It is suspected that the bolt slippage and, to a lesser extent, the bending
stiffness in the main leg members (not accounted for in linear-elastic programs) are
causing the discrepancy between the predicted and the actual structural response. In an
effort to improve the structural analysis of transmission towers, this study investigates the
effect of bolt slippage on the deflections and member stresses of latticed self-supporting
transmission towers. The computer program developed in this study can model tower
members as truss and beam elements, can incorporate bolt slippage using an
instantaneous slippage model or a continuous slippage model, and can model the
connections as semi-rigid (flexible connections) provided moment-rotation data are
available. The slippage models require certain parameters, determined from load-
deformation experiments on typical angle members, in order to accurately incorporate the
effect of bolt slippage. Each member of the transmission tower can have its own slippage
properties (most importantly the actual amount of clearance slip and the load which
initiates clearance slip) depending on its size and connection configuration. The slippage
models are applied to several structural analysis problems: a simple one-dimensional bar
element, a double-diagonal plane truss, a double-diagonal plane frame with semi-rigid
connections, a simple three-dimensional transmission tower, and a full-scale transmission
tower. The instantaneous and continuous slippage models are compared to each other,

the no-slip case, and wherever possible, to slippage models of other authors.
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Chapter 1
INTRODUCTION

1.1 General

Latticed structures are used in a wide variety of civil engineering applications. A
latticed structure is a system of members (elements) and connections (nodes) which act
together to resist an applied load. Typical latticed structures include grids, roofing
structures, domes, and transmission towers. Latticed structures are ideally suited for
situations requiring a high load carrying capacity, a low self-weight, an economic use of
materials, and fast fabrication and construction. For these reasons self-supporting latticed
towers are most commonly used to transmit and distribute electricity. Manitoba Hydro
has approximately 10000 self-supporting latticed transmission towers located throughout
the province of Manitoba. Because one latticed tower design may be used for hundreds
of towers on a transmission line, it is very important to find an economic and highly
efficient design. The arrangement of the tower members should keep the tower geometry
simple by using as few members as possible and they should be fully stressed under more
than one loading condition. The goal is to produce an economical structure that is well
proportioned and attractive (ASCE, 1988). Typical towers have a square body
configuration with identical bracing in all faces. Towers range from 30-m to 50-m in
height and support wires spanning 200-m to 600-m. Most transmission towers are
constructed with asymmetic thin-walled angle sections that are eccentrically connected,
are sensitive to material and geometric nonlinearities, and exhibit slippage or semi-
rigidity at the joints, making the transmission tower one of the most difficult forms of
latticed structures to analyze (Kitipornchai, 1992; Al-Bermani, 1992A). As a result, most
computer programs that design and analyze transmission towers make many assumptions
to simplify the computations, and ignore any nonlinear effects.

This chapter presents a review of the literature pertaining to computer-aided
structural analysis of transmission towers. Current advances in tower analysis are

discussed, specifically: nonlinear effects such as joint slippage, semi-rigid-joints, material



and geometric nonlinearity, and sophisticated data input schemes. Finally, the scope and

objectives of the present study are outlined.

1.2 Literature Review

Before the computer was applied to structural analysis problems, highly
indeterminate transmission towers were separated into determinate planar trusses with
loads that acted in the same plane as the truss (Bergstrom, 1960). These approximate
methods (algebraic or graphical) required conservative assumptions that resulted in over-
designed towers.

Several computer programs have been developed to analyze a tower as an entire
structure, which take into account the elastic properties of the members and calculate the
displacements and axial forces using the stiffness method of analysis (Marjerrison, 1968).
These first-order linear elastic programs assumed the angle members were idealized truss
elements, pin-connected at the joints. The members were capable of carrying tension and
compression, and the loaded configuration of the structure was identical to the unloaded
configuration — the secondary effects of the deflected shape were ignored. Secondary
(redundant) members, used to provide intermediate bracing points along primary
members, need not be considered in this type of analysis since they have no effect on the
forces in the load-carrying primary members (ASCE, 1988).

The next improvement in the structural model of the transmission tower included
the tension-only member (ASCE, 1988; Rossow, 1975; Lo, 1975; Yue, 1994). Long
bracing members, with L/r ratios greater than 300, are not capable of sustaining any
significant compressive force once the member has reached its buckling load.
Consequently, the strength of such a member is not the same in compression as it is in
tension. After the compression strength of such a member is reached, the loads are
redistributed to adjacent members. The process requires several iterations to determine
which members have exceeded their buckling load, and to remove such members from
the analysis. These programs also incorporate data generating schemes to minimize the
amount of manual input. Making use of transmission tower symmetry (placing the Z-axis

vertically through the center of the tower and the X-axis and Y-axis parallel to the



transverse and longitudinal directions of the tower), the known coordinates of one node
may be used to generate the coordinates of up to three more nodes. The same data
generation also applies to tower elements. Once the geometry has been generated, most
programs produce a three-dimensional view of the tower to check the correctness of the
input. These programs often include the automatic detection of planar nodes and
mechanisms. In the space truss model, some nodes may have all of the connecting
members lying in the same plane — causing instability normal to this plane. The program
would search for such nodes and stabilize them by attaching springs normal to the planes.
This has the effect of eliminating the singular stiffness matrix, without materially
changing the characteristics of the structure (Lo, 1975).

When transmission tower displacements are large, the first-order elastic analysis
techniques can be improved by using a second-order elastic analysis (ASCE, 1988; Roy,
1984). A second order analysis (nonlinear in the geometric sense) produces forces that
are in equilibrium in the deformed geometry, not the initial geometry. The geometry of
the structure is usually updated at the end of each iteration. Self-supporting latticed
transmission towers are usually sufficiently rigid to assume small-displacement theory.
However, as the tower flexibility and the applied loads increase, the secondary effects
may become more significant.

One assumption that is often made in transmission tower analysis is that the
angle-to-angle bolted connections are pinned. If no rotation between connected members
is expected, the joint is traditionally modeled as a rigid connection. In reality, however,
the connection behavior lies somewhere in between these two idealizations, possessing
some degree of rotational stiffness as a function of the applied load. Knight (1993)
investigated the secondary effects of modeling the connections as rigid instead of pinned
and found that the secondary effects may lead to premature failure of transmission
towers. Chen and Lui (1987) developed a procedure to modify a two-dimensional beam-
column element for the presence of flexible connection springs. Al-Bermani and
Kitipornchai (1992C) extended this formulation to a three-dimensional beam-column
element. In both studies, a two node zero length connection element is used to model a

flexible joint. The connection element is attached to the end of a beam-column element



via kinetic transformation and static condensation. Both studies showed that the
structural response of a flexibly jointed structure is very sensitive to joint behavior.

Al-Bermani and Kitipornchai (1992A) have combined several nonlinear effects
into one computer program (AK TOWER) that predicts the structural response of latticed
structures up to the ultimate load. Sources of nonlinearity include geometric nonlinearity,
material nonlinearity, joint flexibility, and joint slippage. Geometric nonlinearity can be
accounted for by incorporating the effect of initial stresses and geometrical variations in
the structure during loading. Modeling of material nonlinearity for angle members is
based on a lumped plasticity model coupled with the concept of a yield surface in force
space. The angle members in the tower are treated as asymmetrical thin-walled beam-
column elements with rigid connections. The effect of joint flexibility can be
incorporated by modifying the tangent stiffness of an element using an appropriate
moment-rotation relationship for a flexible joint, provided joint flexibility information is
known. The effect of bolt slippage can also be included. This program also uses the
formex formulation to generate the geometry, the loading conditions and the support
conditions of towers. Formex algebra is used to greatly reduce the amount of manual
input, and acts as a preprocessor to the nonlinear AK TOWER program.

Bolt slippage has long been recognized as a factor that can influence the
deflections of transmission towers, but until recently no research has been conducted.
Peterson (1962) concluded that up to one-half of the measured deflection in transmission
towers could be due to bolt slippage while the remainder was due to elastic deformation.
Marjerrison (1968) realized that the deformation in holes and in the shanks of bolts could
account for the measured deflection being approximately three times the theoretical
deflection. Williams and Brightwell (1987) were the first researchers to present a
stochastic method of assessing the effect of joint deformation on bolted latticed towers.
They proposed a method for including joint movement in the axial strain of bracing or leg
members and compared their results with a linear elastic analysis. They concluded that
there was no deterministic way in which the amount of joint deformation can be specified
for each member of the structure. Their idealized bearing stress joint movement
relationship was not based on experimental data. Dutson and Folkman (1996) also

investigated the effect of bolt clearances in a cantilevered truss. The clearance in the



joints was found to significantly change the structure’s dynamic behavior by altering the
damping characteristics of the truss. Kitipornchai, Al-Bermani, and Peyrot (1994)
presented two idealized slippage models to investigate the effect of bolt slippage on the
ultimate behavior of latticed structures. They proposed an instantaneous slippage model
and a continuous slippage model. Their numerical study showed that bolt slippage
increases structural deflection, but does not significantly influence the ultimate strength

in transmission towers.
1.3 Objectives and Scope

The current method for analyzing self-supporting latticed transmission towers
among practicing engineers is to assume linear elastic behavior and to treat the angle
members as pin-ended truss elements. This approach ignores the effects of bolt slippage
and local bolt deformation, geometric or material nonlinearity, joint flexibility, and the
bending stiffness of the angle members. When the actual deflections and axial forces
measured in transmission towers in Manitoba are compared with the predictions based on
linear elastic analysis, there can be a large discrepancy. These differences are generally
accepted to be due to joint slippage and deformation. Some researches have argued that
the magnitude of the slippage may be as large as the elastic elongation of the connected
members (Kitipornchai, 1994) and therefore an accurate analysis of a latticed structure
was not possible.

Manitoba Hydro engineers have recognized the need to improve current tower
analysis practices. Some of the towers in northern Manitoba, subjected to large
differential settlements due to frost heave, are performing normally while the results from
tower analysis software indicate that some of the main legs are stressed well beyond their
load carrying capacity. It is suspected that the bolt slippage at the connections and the
bending stiffness of the main leg members, not accounted for in the software, are causing
the discrepancy between the predicted and the actual structural response. In an effort to
provide practicing engineers with a better understanding of the structural behavior of
transmission towers, this study investigates the effect of bolt slippage on the deflections

and member stresses of latticed self-supporting transmission towers. The computer



program developed in the present study (TAP) is able to model the angle members as
truss or beam elements, can incorporate bolt slippage using an instantaneous slippage
model or a continuous slippage model, and can model the connections as semi-rigid
(flexible connections) provided moment-rotation data are available. The analysis
assumes that the displacements are not large enough to warrant a computationally costly
geometrically nonlinear analysis, therefore equilibrium is based on the initial geometry.
The program was developed to include all of the important factors governing the
working-load behavior of a transmission tower since the load that typically initiates
slippage in a member is much less than the ultimate load. As a consequence, buckling
and yielding considerations are not considered. Furthermore, the material properties
remain linear-elastic throughout the loading process.

The slippage models require certain parameters, determined from load-
deformation experiments on typical angle members, in order to accurately incorporate the
effect of bolt slippage. Each member of the transmission tower can have its own slippage
properties, depending on its size and connection configuration. An independent study has
recently been conducted at the University of Manitoba to determine the load-slip
relationship of typical tower angles (Ungkurapinan, 2000). Most importantly, the
experiments are able to determine the load at which the members initiate clearance slip,
and the actual amount of clearance slip. These values can be used to model the slippage
characteristics of transmission tower members with similar connection configurations.
The validity of the theoretical slippage models can be verified with the experimentally
determined load-slip relationships.

Chapter 2 introduces the finite element method of structural analysis, with
descriptions and formulations of typical transmission tower elements including nonlinear
finite element techniques. Two models for bolt slippage are presented. Model I
represents an instantaneous slippage, with all of the slip occurring at a specified load
level and model II assumes slippage is a continuous process starting from the first load
increment. Chapter 3 describes the Tower Analysis Program (TAP) developed for
investigating the effects of bolt slippage. The main program and several subroutines are
described in detail. Chapter 4 discusses the application of the software develered in this

study to several structural analysis problems: a simple one-dimensional bar element, a



double-diagonal plane truss, a double-diagonal plane frame with semi-rigid connections,
a simple three-dimensional transmission tower, and a full-scale transmission tower. The
instantaneous and continuous slippage models are compared to each other, the no-slip
case, and wherever possible, to slippage models of other authors. The comparisons are
made in terms of nodal deflections and member stresses. The summary and conclusions

of the present study are given in chapter 5.



Chapter 2
STRUCTURAL ANALYSIS OF TRANSMISSION TOWERS

2.1 General

This chapter introduces the finite element method of structural analysis, with
descriptions and formulations of elements typically used for modeling transmission
towers. Nonlinear finite element techniques and load incrementing procedures are
discussed in preparation for the sections concerning axial bolt slippage and the semi-rigid
behavior of connections. Two models are presented to incorporate the effect of bolt

slippage into a typical structural analysis program.
2.2 The Finite Element Method in Tower Analysis

The finite element method (FEM) is a mathematical procedure, most often
computer aided, which is used to obtain approximate solutions to the governing equations
of complex problems. In some cases, solutions to these problems cannot be obtained
analytically. An analytical solution is a mathematical expression that can give an exact
value of the field variable (displacement, temperature) at any location in the body. In the
finite element method, the field variable is approximated using interpolation functions
pieced together between discrete points. Most practical engineering problems involve
complicated geometry, material properties, or loading conditions, and therefore require a
numerical solution procedure such as the finite element method.

The finite element method can be considered as an extension or generalization of
the stiffness method (with reference to framed structures) to two-dimensional and three-
dimensional continuum problems, such as plates, shells and solid bodies (Ghali, 1978).
The finite element concepts used in continuum problems can be used to formulate the
stiffness method of analysis treating the member of a framed structure as an element
(Krishnamoorthy, 1996). Therefore, the element stiffness matrices derived for truss and
beam elements using the stiffness method of analysis are identical to the stiffness

matrices derived using finite element concepts.



For each problem utilizing the finite element method, several steps must be
followed. The physical system must be discretized into smaller finite elements. The
elements may be one-dimensional, two-dimensional, or three-dimensional depending on
the nature of the problem. For transmission towers, each angle member is usually
modeled as a one-dimensional element, or line element, with one node at each end of the
element. The unknown degrees of freedom, or the primary unknowns, are evaluated at
these nodal points. An interpolation function must be selected which approximates the
distribution of the unknown variable within an element. The function is expressed in
terms of the nodal values of the element. For example, the unknown quantity within a
beam element (the transverse displacements) can be fully described once the degrees of
freedom for each end node are known. The governing equations and constitutive
relations are then defined. The element equations are formulated using the direct
equilibrium method, energy methods, or the method of weighted residuals. For the 2-
node line elements used in transmission towers, the direct equilibrium method is usually
performed. The equation of equilibrium for each element can be written as

[«]-{a}={r} (2.1a)
where [k] is the element stiffness matrix, {d} is the element displacement vector

consisting of the unknown degrees of freedom, and {f} is the element nodal force vector.
The equations for each element are assembled to obtain the global system of
equations, and appropriate boundary conditions are applied. The assembled global
system of equations can be written as
[]-{q}={F} (2.1b)
where [K] is the global stiffness matrix obtained by assembling all element stiffness
matrices [k], {q} is the displacement vector consisting of the unknown global degrees of
freedom, and {F } is the global force vector obtained by assembling all element force
vectors {f}. The primary unknowns, {q}, are determined by solving the global system
of equations, often by Gauss elimination, from which the secondary unknowns, such as
element forces and moments, can be calculated.

The same steps are followed for any type of problem; the end result is always a

matrix equation in the form of equation 2.1b. The same steps are followed for one-



dimensional heat conduction, two-dimensional flow through porous media, or three-
dimensional stress analysis. Because of its versatility, the finite element method has
become the most popular computer analysis tool available to engineers today. Chapter 3
describes the computer implementation of the finite element method, with each step
separated into a subroutine of the main computer program developed for analyzing

transmission towers.
2.2.1 Truss Elements

Latticed transmission towers are often modeled as linear-elastic truss elements,
since the angle members of the tower primarily resist axial loading with minimal bending
resistance. The joints at the ends of truss members are idealized as frictionless pins, free
to translate in any direction unless externally constrained by a specified boundary
condition. I[n reality, however, the idealized pin connection seldom occurs. Truss
elements are used in situations where the bending stresses are negligible compared to the
axial stresses. Appendix A shows the stiffness matrices for two-dimensional and three-
dimensional truss elements. Krishnamoorthy (1996) describes their formulation in detail.
If the angle members in a tower are modeied as truss elements, then they cannot resist
lateral loading. Any wind load or dead load acting over the truss element must be
distributed to the two connecting joints. It is standard practice to concentrate half of the
self-weight of the member to each of the two joints the member connects.

A problem with the truss element in modeling transmission towers is the
possibility that a collapse mode may occur. Collapse modes are caused by out-of-plane
instability at planar joints or by in-plane instability due to unstable subassemblies called
mechanisms. A planar joint occurs when all the members terminating at one joint lie in
the same plane, causing instability at the joint in the direction normal to this plane. In
Figure 2.1, joints 1, 2, 3, 4 are planar joints, and if the bracing member ab is removed,
joints 5 and 6 are also planar joints. A planar joint can displace in some direction without
resistance, resulting in a loss of equilibrium. In order to correct out-of-plane instability,
artificial restraints can be connected to planar joints, which are fixed at one end and

normal to the plane of all connecting members at the planar joint. The artificial restraint
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has a small cross-sectional area so as to provide enough stiffness to the joint to prevent
collapse, but without significantly altering the physical characteristics of the tower.

An example of an in-plane instability is shown in cross-section A-A of Figure 2.1.
The diaphragm in section A-A becomes a mechanism if the stabilizing member is
removed from the analysis. The stabilizing member, or dummy member (not actually
present in the real tower), again has a small cross-sectional area so as to provide enough
stiffness to the unstable subassembly to prevent collapse. In both cases, the minimum
number of restraints required to prevent rigid body movements have not been provided,
resulting in a singular stiffness matrix (not possessing an inverse) if artificial restraints or
dummy members are not provided. This problem is associated with pin-connected
members only, and does not occur with towers modeled with beam elements. In-plane
and out-of-plane instabilities are prevented in actual towers by the bending stiffness of

continuous members that pass through the joints (ASCE, 1988).
2.2.2 Beam Elements

The linear-elastic truss assumption is an accurate model for tower members that
are subjected to only axial tension or compression. In real transmission towers,
eccentrically applied loads, lateral wind and dead loads, initially crooked members,
connection rigidity, members not connecting at a single point, and the continuity of the
main members may cause bending moments and shearing forces to develop. The bending
moments in tower members caused by joint rigidity and member continuity, widely
ignored despite experimental evidence, can be as significant as axial stresses in certain
cases (Roy, 1984). The conventional linear-elastic truss model should be replaced with a
beam element model when significant bending stresses are present in tower members.

Some structural analysis programs allow several different types of elements to
model the same problem. The stiffer main leg members, subjected to the largest bending
stresses, could be modeled as continuous beam elements while the smaller angle
members could use the conventional truss model. Some researchers assume that the
multiple-bolted end connections offer enough restraint to regard the connection as rigid,

and model the entire transmission tower as an assembly of beam elements (Al-Bermani,
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1992A). Appendix A shows the stiffness matrices for two-dimensional and three-
dimensional beam elements. Krishnamoorthy (1996) describes their formulation in
detail. The beam elements considered here do not include the effects of shear
deformation or secondary moments (the beam-column effect). In more advanced
inelastic analysis, tower members may be modeled as general thin-walled beam-column

elements, capable of yielding and buckling.
2.2.3 Boundary Elements

Boundary elements are used to specify displacement boundary conditions (zero
and non-zero values), to provide artificial restraints at planar nodes, and to compute the
values of the support reactions. A boundary element is a spring with axial stiffness to
resist translation and torsional stiffness to resist rotation. In a three-dimensional
transmission tower problem, a boundary element is attached to each footing joint in each
of the global X, Y, and Z directions. If the specified displacements at the footing joints of
a tower are input as zero, the footings are prevented from translating or rotating in any of
the global directions. If a non-zero displacement is specified (negative translation
represents a foundation settlement and positive translation represents a foundation uplift
due to frost heave) the amount of translation or rotation is read as a property of the
boundary element.

To get the value of a reaction in the direction of one of the global axes, a very
large stiffness coefficient is added to the corresponding diagonal coefficient. This
produces a very small but finite displacement in that direction, which when multiplied by
the very large stiffness, &, gives the desired reaction (Krishnamoorthy, 1996).

When a non-zero displacement, b, is specified at a degree of freedom, ¢, the load
vector is modified as

k-g=k-b 2.2)
where k is very large (10'°). When equation 2.2 is added to the global system (equation
2.1), the solution at the degree of freedom g will always equal the specified displacement.
If the nodal displacement is specified, the external reaction cannot be specified and

remains unknown. When the boundary element is used to model an artificial restraint at a
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planar node, the stiffness must be reduced to a much smaller value, generally less than

the stiffness of the smallest tower member.
2.3 Nonlinear Finite Element Analysis

In the previous section it was assumed that the constitutive relations, used to
derive the element equations, remained linear throughout the analysis. In some cases the
stress-strain relationships do not obey the simple linear elastic assumption, and the non-
linearity of the material properties must be considered. In other problems the linear
strain-displacement relationship cannot be used accurately due to large displacements and
large strains altering the geometry of the elements. These types of problems are said to
be geometrically non-linear. This section describes non-linear finite element problems
that have only material non-linearity; the assumption of small displacements and small
strains is still made.

In nonlinear problems, the stiffness matrix depends on the unknown quantity. A
direct solution procedure is no longer possible, and an iterative solution scheme is
required. For structural analysis problems, where the stiffness is a function of the
displacements and the loading history, the tangential stiffness method is usually
performed along with a load increment procedure. The nonlinear problem is essentially
linearized over a small portion, or increment, of the total structural load. Equation 2.1 is
revised as

(k@] -{a}={F} (23)
When employing an iterative solution scheme, equation 2.3 will not be satisfied and a

system of residual forces exist, {‘I’}, that essentially measures the deviation of equation

2.3 from equilibrium (Owen, 1980)
{#}=[k@)]-{g}-{F}=0 (2.4)
Since the stiffness is a function of the displacements, so is the residual force

vector, {¥} = {¥(q)}. An initial solution vector is assumed; for structural problems the

most common initial solution is {q°}= {0}. The tangential stiffness can then be
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evaluated and the residual forces can be calculated using equation 2.4. The initial

solution must be corrected by an amount {Aq" } using

{ag7}=-lx@"H]"- @} (2.5)
to obtain an improved approximation
e t=fa}+{ag} 2.6)

This procedure is repeated until the residual forces converge to a tolerably small
value. Once convergence has occurred, the next load increment is applied and the
iterative process is repeated. The solution vector calculated in the current load increment
is added to the solution vector of the previous load increment to get the current total. The
secondary unknowns, the member forces and bending moments for example, are
accumulated in a similar fashion.

If the load increments are made small enough, the non-linear relationship within
the load increment will closely resemble a linear relationship. Consequently, the residual
forces calculated using equation 2.4 will be very small, and any iteration performed will
only slightly improve the solution. If the total load is separated into enough increments,
the residual forces can be neglected without sacrificing any accuracy in the final solution.
The program developed in this study uses this piecewise-linear technique. For a problem
using a continuous bolt slippage model, the total structural load must be divided into
small increments since the slippage is a function of the member’s axial force.

In other cases, the non-linear effect may only occur once a certain condition has
been satisfied. In these cases, such as instantaneous bolt slippage or elastic-plastic
problems, the stiffness is only modified once a prescribed load level or strain level has
been exceeded. For a problem using an instantaneous bolt slippage model, the total
structural load must be divided into small increments in order to detect when a member
first exceeds its slippage load, and to prevent a member from exceeding the specified
maximum allowable slippage in the following load increments. Any iteration scheme
performed within these small loading increments will not improve the solution

significantly.
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2.4 Modeling Joint Slippage

The bolt slippage contribution to transmission tower deflections has long been
recognized. Past research (Peterson, 1962; Marjerrison 1968) has found that bolt
slippage, and the deformation in the bolts and bolt holes, accounts for part of the large
discrepancy between observed deflections and theoretically predicted deflections. Only
recently have bolt slippage considerations been included in transmission tower analysis
software. Kitipornchai realized that the magnitude of the slippage may be as large as the
elastic elongation of the connected members and, as a result, modified the stiffnesses of
members to include the effect of bolt slippage.

The bolted connections of transmission towers always experience some degree of
slippage. Slippage occurs in bolted connections since the bolt holes punched in typical
tower angle members are oversized, in comparison to the bolt diameter, in order to
provide erection tolerance. With oversize holes, slip into bearing at or below design
loads cannot be prevented (Winter, 1956). The tolerance is usually 1.5-mm (1/16 of an
inch) for the connections used in transmission towers. This would allow a possible slip
of 1.5-mm at a joint in any direction, depending on the magnitude and direction of the
member force, and the starting position of the bolt (Kitipornchai, 1994). In a member
with a slipping connection at both ends, both joint tolerances could combine to provide a
maximum member slippage of approximately 3-mm. In order to produce the maximum
slippage at one end of a member, the bolt must be in a position of maximum clearance
(see Figure 2.2). The theoretical maximum clearance slip is unlikely to be achieved in a
multiple-bolt connection since some bolts go into bearing before others due to minor
dimension deviations. If the bolt is bearing initially against the bolt hole, a position of
zero clearance, then no clearance slippage can take place at that joint. Figure 2.3 shows
the load-slip relationship for a two-bolt connection with the bolts in a position of
maximum clearance, clearly indicating a 2 to 3-mm rigid-body slippage until bearing is
established. Before this clearance slip begins, the connection behaves linearly. As
loading is increased, the joint behavior becomes non-linear as the bolts slip through the

maximum clearance. As the displacement increases, the joints behave linearly until the
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limit of elasticity of their material is reached. Mercadal (1989) has also observed this
behavior in tension and compression tests on pinned joints.

Even in situations where the bolt is initially bearing against the bolt hole, a
deformation slip at the connection is also observed (Winter, 1956; Ungkurapinan, 2000).
Deformation slip arises from the plastic deformation of the joined elements and the bolt,
and represents a large portion of the total slip. Deformation slip occurs after clearance
slip, at loads much larger than the load that initiates clearance slip, and continues until the
metal on the bearing side of the hole begins to yield.

Many tests have been conducted on bolted connections to determine the load that
produces a significant slippage, or to determine the entire load-slip relationship of the
connection (Winter, 1956; Lobb, 1971; Gilchrist, 1979; Ungkurapinan, 2000). Past
research has indicated that the strength of a connection can be predictable and the
possibility of failure is remote if it is designed correctly. However, the possibility that
the connection will slip before ultimate load is reached is very likely (see Table 2.1).

Bolts may slip continuously throughout the loading process or instantaneously
once a certain load has been reached. Some typical load-slip relationships are shown in
Figure 2.4. The slippage load in curve A is normally defined as the maximum load
reached before major slippage begins. The slippage load in curve B is defined as the load
at which the deflection rate suddenly increases. For curve C, no obvious slippage load
can be observed, and a slip load is selected once a certain amount of slippage has
occurred (0.5-mm for example).

The load-slip relationship for bolted connections is highly variable and depends
on such factors as the applied loading, workmanship, the torque used to tighten the bolts,
the properties of the bolts and joining members, the number of bolts, the position of the
bolt relative to the bolt hole, and the friction coefficient between the slipping surfaces.
Table 2.2 shows the variability in the slippage load by comparing the minimum and
maximum values for several tests conducted by Winter.

In a real transmission tower, it is impossible to know precisely how much the
bolts actually slip and at what load level. The position of the bolt relative to the bolt hole
is not known for each tower member, and the torque used to tighten the bolts is not

identical for each connection. For this reason, certain assumptions must be made about

16



the position of the bolt relative to the bolt hole. The bolt may be initially bearing,
positioned exactly in the center of the hole, or in a position of maximum clearance. The
slippage model may assign random bolt positions for each connection in a tower, or the
model may assume each connection will slip the same amount.

Two models are presented which attempt to incorporate the effect of bolt slippage
on the behavior of latticed structures. These models require certain slippage parameters
for each element that experiences slippage. The number of bolts in the connection, the
position of the bolt with respect to the bolt hole, and the size of the angle member, affect
the maximum slippage allowed, the slippage load, and the load-slip relationship. For an
accurate model, this input must be based on experimental slippage studies. Figure 2.5
shows an idealized load-deformation curve for joints with maximum clearance at
assembly for connections with 1 to 4 bolts. The actual experimental results shown in
Figure 2.3 are represented in this idealized curve to provide the necessary input for the
slippage models. The most important parameters for the slippage models are the amount
the connection slips and the slippage load. This information can be read directly from
such an idealized curve. If the effect of bolt slippage was to be investigated in bracing
members with two-bolts per joint with the bolts in a position of maximum clearance, a
slippage load of 20.14-kN and a maximum slippage of 2.21-mm would be input into the

slippage model.
2.4.1 Model I - Instantaneous Slippage

This slippage model, proposed by Kitipornchai, Al-Bermani and Peyrot (1994),
assumes that all the slippage occurs at a certain load level. In model I, it is assumed that
the ends of the truss or beam member, under tension or compression, slip relative to one
another by an amount A; when the axial force in the member exceeds the slippage load,
P (see Figure 2.6). The member length after slipping may be expressed as

L=L+A, (2.7)

for a tension member, and

L=L-A (2.8)
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for a compression member, where L is the length before slipping and L is the length
after slipping. These changes in length are small (2 to 3 mm) when compared to the
member’s original length and their effect on the member stiffness after slippage is
complete is very small. While slippage is taking place, however, a substantial change in
the member stiffness occurs. In the instantaneous slippage model, once the force in the
member has reached or exceeded the slippage load, Ps, by adding the applied structural
load in small increments, no additional load increment is carried by the member until the
assumed slip, Ay, is completed. Essentially, the stiffness of the member is reduced to zero
and the force in the member remains equal to the slippage load as the member slips
(Figure 2.7). When a member’s stiffness is reduced to zero it is “removed” from the
structure and the load it was carrying is distributed to the other members in the structure.
Slippage model I does not work if the removal of slipping members produces a
geometrically unstable structure, creating a singular stiffness matrix. In order to correct
this problem, the stiffness of the slipping member should be reduced by two or three
orders of magnitude instead of reducing it completely to zero. The same concept is
applied when a tension-only member is subjected to a compression load. Experience has
shown that this technique is successful for modeling tension-only members and
eliminates the problem of a singular stiffness matrix (Rossow, 1975). By greatly
reducing the slipping member’s stiffness, the deflections at the joints of the slipping
member increases while the internal force in the member remains relatively constant.
Because the stiffness is not zero, but some reduced value, the internal force in the
member increases by a very small amount as the member slips. The joint deflections
continue until the assumed slip is complete. Once this occurs, the member stiffness is
restored to its original value, but the member length is based on the modified length, L .
In some cases, the total structural load is not divided into enough load increments,
causing the member to exceed the maximum specified allowable slippage, A;. When this
occurs, the number of load increments must be increased until the difference between the
computed slippage and the specified slippage is tolerably small. In other cases the
assumed slippage is not completed after the last load increment is added, and the member

stiffness remains in its reduced form.
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The total axial deformation of the slipping member is equal to the elastic
deformation before slippage occurs, the amount the member slips, and any elastic
deformation after the member has reached the specified maximum slip, if it reaches the
specified maximum slip before the last load increment. The total axial deformation for
the continuous slippage model has the same two components (elastic deformation and
slippage deformation), but they are present at all load increments and not discretized as in

slippage model I.
2.4.2 Model II - Continuous Slippage

This slippage model (Figures 2.6 and 2.7), borrowed from concepts developed by
Kitipornchai, Al-Bermani and Peyrot (1994), assumes that slippage is a continuous
process from the first load increment to the last, as opposed to a sudden slip event once
the slippage load is exceeded as in the instantaneous slippage model. A Ramberg-
Osgood type function, which has been used successfully in modeling non-linear moment-
rotation curves, is used to describe the continuous slip behavior. At any load increment,

if the axial deformation in the member is A, it is assumed that the incremental slip in the
member, A, may be expressed as

A, =A(v-v™) 2.9)
in which

DL S (2.10)

T

where P is the axial force in the member, P is the slippage load, and m and n are
parameters that control the amount of slip required and the sharpness of the curve. As m
increases, the slippage increases (Figure 2.8) and is spread out over a larger range of axial
forces. Figure 2.9 shows that at the slippage load, only 20% of the total slippage is
complete for an m value of 100, but for an m value of 4, almost 90% of the total slippage
is complete. Varying the n parameter has the inverse effect. For larger n values, the

slippage decreases (Figure 2.10) but most of the slippage occurs near the slippage load.
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As the n parameter is decreased, the force-slip relationship changes significantly,
distributing the total slippage over much larger axial forces. As seen in Figure 2.11, as
the n parameter increases, model II begins to resemble model I, with most of the slippage

occurring at or near the slippage load.
It can be shown, using equations 2.9 and 2.10, that the axial slip is always less

than the axial deformation. However, when the axial force in a slipping member is near
the slippage load and the m parameter is large, the (v—v™) term in equation 2.9
approaches unity and most of the axial deformation in this case is due to axial slippage.
Similar to elasto-plastic problems where the total strain is separated into elastic
and plastic components, in the continuous slip model the total axial deformation is
comprised of an elastic deformation component, A., and a slippage component, A;.
Therefore,
A=A, +A, 2.11)
For a non-slipping member loaded with a force P, the following relationship can be
written
P_AE
A L

For a slipping member however, the slippage component does not contribute to the axial

(2.12)

force in the member, only the elastic deformation component does. Therefore,

P= AE A, (2.13)
L
or using equations 2.9 and 2.11
P=ﬁLE—.[A—A-(V—V"')] (2.14)

The stiffness of a slipping member can now be calculated as the total axial force divided

by the total axial deformation as in equation 2.12
=2 =(-v") (215)

The stiffness of a slipping member is very similar to a non-slipping member initially, but

K

slip

decreases significantly as additional loading increments are applied and as the axial force

in the member approaches the slippage load. Once the prescribed slip has been attained
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or when the incremental slip in equation 2.9 approaches zero at axial forces much greater

than the slippage load, the stiffness returns to that of a non-slipping member. Again, as

in slippage model [, the member stiffness is now based on the modified length, L .

2.5 Semi-Rigid Connections

The angle-to-angle bolted connections in transmission towers are traditionally
modeled as pinned connections, completely free to rotate. If no rotation between
intersecting members with multiple-bolt connections is expected, the joint is traditionally
modeled as a rigid connection. In reality, however, the connection behavior lies
somewhere in between these two idealizations; a pinned joint has a certain amount of
rigidity and a rigid joint has a certain amount of flexibility. Therefore, every connection
in any structure is actually a semi-rigid connection, although most design and analysis
techniques ignore this fact. This type of joint flexibility can be considered a form of
slippage, only instead of in the axial direction as in the previous section, the joint slips
rotationally.

If a connection is to be modeled as a semi-rigid connection then the moment-
rotation relationship of the connection must be known. Mathematically, this relationship
can be expressed in a general form as

M=f(6,) (2.16)
where M is the moment transmitted by the connection and &, is the relative angle of

rotation between the connecting members. This relationship, which best fits the
experimental data available for a particular connection, is implemented into the finite
element method to model the non-linear connection stiffness. Typically the function is an
exponential function, since connection stiffness decreases as load increases, and this type
of function avoids the possibility of negative stiffness values — encountered in some
polynomial models.

The method for incorporating connection flexibility involves attaching a two-node
zero length connection element at both ends of a standard beam element. The tangent

stiffness of a connection at a particular load increment is given by
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aMm

R =
48,

(2.17)

For a three-dimensional problem, a connection element has three rotational
degrees of freedom at each node. The behavior of a connection element in its three
directions (in-plane bending, out-of-plane bending, and torsion) are governed by their
own specified moment-rotation relationship. -

By enforcing equilibrium and compatibility at the junction of a beam element and
a connection element, and by statically condensing the internal degrees of freedom (Chen
and Lui 1987, Al-Bermani and Kitipornchai 1992) a modified beam stiffness can be
computed. A semi-rigid beam element can easily represent the perfectly pinned or
perfectly rigid idealizations by modifying the parameters of the moment-rotation
relationship to produce zero connection stiffness or infinite connection stiffness
respectively.  Any intermediate connection stiffness corresponds to a semi-rigid
connection. The structural analysis program described in chapter 3 has the capability to
model semi-rigid connections. Appendix B presents the formulation of a semi-rigid beam

element in two and three dimensions.
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Gage Slip Load Ultimate Load Slip Load /
(Galvanized) (1bs) (1bs) Ultimate Load (%)
26 260 720 36
26 220 610 36
26 200 585 34
24 225 850 26
24 275 875 31
24 130 830 16
22 210 1030 20
22 275 965 28
22 170 940 18

Table 2.1: Slippage and ultimate loads for single 1/4 inch bolt specimens securing a
lap joint in tension (Gilchrist, 1979)

Gage Shear 1/4 3/8 172 5/8 3/4 |
Type
SS Min 230 600 1550 1700 2600 -
20 SS Max 900 1600 2000 2100 3300 -
DS Min 600 840 1600 1740 2690 -
DS Max 1300 2200 2300 3070 3980 -
SS Min 300 370 1200 - 2650 5530
14 SS Max 900 1060 2450 - 6540 6570
DS Min 300 640 1960 5100 3700 5680
DS Max 1240 1260 3300 6300 5800 7460
SS Min - 720 1800 - 3100 6900
10 SS Max - 1200 3600 - 5600 8000
DS Min - 600 2400 - 4200 10200
DS Max - 1900 3000 - 5100 14200

Table 2.2: Ranges of observed slip loads (Ibs) for various bolt sizes tested in single
shear (SS) and double shear (DS) for three gage thicknesses (Winter, 1956)
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Figure 2.1: Simplified transmission tower model
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Figure 2.2: Maximum clearance producing maximum slip after loading
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Figure 2.3: Load-Slip relationship for specimens with a two-bolt connection and
bolts in a position of maximum clearance (Ungkurapinan, 2000).
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Figure 2.4: Typical load-slip relationships (FHWA, 1981)
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Figure 2.5: Idealized curve for joints with maximum clearance at assembly (Ungkurapinan, 2000)
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Chapter 3
TRANSMISSION TOWER ANALYSIS PROGRAM

3.1 General

This chapter describes the Tower Analysis Program (TAP) developed for
investigating the effect of bolt slippage on the structural behavior of latticed self-
supporting transmission towers. The program was written using the Microsoft
Developer Studio, an integrated development environment used to develop Fortran 90
applications. It includes a text editor, resource editors, project build facilities, an
optimizing compiler, an incremental linker, a source code browse window, and an
integrated debugger in one application. The main program and each of the subroutines

are described in detail.

3.2 Tower Analysis Program (TAP)

The tower analysis program (TAP) calculates the nodal deflections and the
member stresses of a two-dimensional or three-dimensional structure comprised of beam
and/or truss elements. The program can consider instantaneous or continuous axial bolt
slippage and can include the effect of semi-rigid connections. Figure 3.1 shows the
structure of the program, listing all of the subroutines called by the main program. Some
of these main subroutines call other subroutines themselves, but are not shown in the
figure. TAP, like most finite element programs, uses an element library subroutine that is
called several times during the analysis. Many procedures in the finite element method
require different treatment depending on which type of element is being considered (truss
element, beam element, boundary element, or semi-rigid beam element); the element
library directs the main program to the correct element-specific procedure. Each
subroutine marked with an asterisk in Figure 3.1 calls the element library for its element-
specific procedure. Material properties (IND = 1), assembling the self-weight load vector
(IND = 2), assembling the stiffness matrix (IND = 3), and calculating stresses (IND = 4),

are all element specific. The IND parameter is a flag to indicate which segment of the
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element routine to execute. The general form of any element subroutine is shown in
Figure 3.2.

The first step of the program is to read the control data for the problem being
analyzed. The control data include the number of nodes, the number of elements, the
number of material sets, the number of dimensions, the maximum number of degrees of
freedom per node, the number of load increments, and the slippage model to be used.

After the program reads this information, the input file can be accessed.

3.2.1 Input Subroutine

The input subroutine reads and generates nodal coordinates, element connectivity
data, element material set data, and element specific material properties. All of this
information is echoed back into the output files along with the eventual nodal
displacements and element stresses of the structure at the final load increment.
Intermediate displacements and stresses can also be monitored. The generation of data
can be carried out along a straight line. For example, if the coordinates of the exterior
nodes along a straight line are specified manually, all internal nodal coordinates at a
specified interval are automatically generated. For certain transmission towers, linear
interpolation may not be the best method, and a generation scheme utilizing tower
symmetry about the Z-axis may be the most efficient. If the Z-axis is placed vertically
through the center of the tower and the X-axis and Y-axis are oriented parallel to the
longitudinal and transverse faces of the tower respectively, then when the coordinates of
one node are input manually, up to three more nodes may be automatically generated
using the tower’s symmetry. This coordinate system is highly recommended for either of
these generation schemes. This type of coordinate system assumes that gravity acts in the
negative Z-direction. This is important when considering the self-weight of tower
members. If the analyzed structure occupies only two dimensions, gravity is assumed to
act in the negative Y-direction. If the user assumes a different gravity direction, the self-
weight load vector will be incorrect.

When reading the element specific material properties, the element library must

be used. If analyzing a two-dimensional truss element, the Young’s modulus, the cross-
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sectional area, and the self-weight must be read along with all of the slippage parameters.
If analyzing a two-dimensional beam element, the program must also read the moment of
inertia from the input file. The element library is called for each material set specified in
the control data.

The input subroutine also has the important function of determining the number of
unknowns in a problem, or, the number of equations that must be solved simultaneously.
This is done by summing the number of degrees of freedom for every node of the
structure. If the structure only uses one type of element, this is a simple procedure. But
when two types of elements meet at one joint, the element with the maximum number of
degrees of freedom must be used. When these two elements are assembled into the
global stiffness matrix, special care must be taken to ensure that the matrix assembly is
performed correctly. If a member capable of transmitting moments to a node is coupled
at that node to a truss element, it is necessary to complete the stiffness matrix of the truss
element by insertion of zero coefficients in the rotation or moment positions (Zienkewicz,
0. C., 1989). By storing the maximum number of degrees of freedom at every node, the

global matrix can be assembled correctly.
3.2.2 Concentrated Load Subroutine

This subroutine reads and generates the concentrated nodal load data and
assembles the global load vector {F } One node may have up to six different
concentrated loads, one for each degree of freedom for a three-dimensional beam
element. Concentrated loads may also be generated using liner interpolation. The sign of
the applied loads are with respect to the global coordinate system. No concentrated loads
may be applied to nodes which may experience a collapse mode (at planar joints if only

modeling the tower with truss elements).
3.2.3 Distributed Load Subroutine

This subroutine computes the element force vector in global coordinates, { f },

due to the self-weight of an element and any applied distributed loads (for beam
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elements) and assembles the global force vector {F } Distributed loads may also be

automatically generated for elements with the same loading. For truss elements, since no
transverse loading is acceptable, the self-weight of the truss member (calculated by
multiplying the dead load of the member [kN/m] by its length) is concentrated equally
onto the connecting nodes. For beam elements, the self-weight and any applied

distributed loads must be added together when forming the element force vector

{F3=1r) -/ }+ {Selfveighe}} 3.1)
The member force vector, { £..}, is transformed into global coordinates by the

transformation matrix [T |, see Appendix A. The member self-weight vector must first be
converted into its equivalent nodal loads in the member axis before it is transformed into
global coordinates by the transformation matrix. It is important to realize that the self-
weight, or the dead load of the member, acts in the negative global Y-direction in two-
dimensional problems and in the negative global Z-direction in three-dimensional
problems. For a two-dimensional beam element with a linearly varying distributed load

and a uniformly distributed self-weight, the element force vector is written as

Cr < r RN

0 —sinﬁ.M_
(7-p, +3-p,)-L Sw-L
20 —~cosé-
p .72
(’2—(")'+§é')‘Lz —cosg- WL
=T 55 "+ o2 (3-2)
0 —sind- >
(B3-p+7:p,)-L Sw-L
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Dy, P2 2 Sw-[?
- —+==|-L .
L [30 20] J \cosﬁ 12 )

where p, and p, are the intensities of the linearly distributed load per unit length at

nodes one and two respectively with respect to the member y-axis, and Sw is the intensity

of the self-weight per unit length. For a three-dimensional beam element, additional
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parameters, p, and p,, are used to specify the intensities of a linearly distributed load

per unit length at nodes one and two respectively with respect to the member z-axis.

Once the self-weight and distributed load vector is computed for an element, it is
assembled into correct location in the global force vector. This process is repeated for all
elements. When this subroutine returns to the main program, the complete global force
vector, {F}, is divided into the number of load increments specified in the control data
line. The solution procedure can then begin. For each increment in load, the stiffness
matrix must be updated and the incremental displacements and stresses must be

accurmulated.
3.2.4 Assemble Subroutine

This subroutine forms the element stiffness matrix for each element (each time
calling the element library) and assembles the global stiffness matrix. If displacements
are specified for a particular problem, they are first divided into the same number of
increments as the force vector, and the global stiffness matrix and the global force vector
are modified according to equation 2.2. For every element in the structure, the length is
calculated and its material properties are either retrieved from memory or recalculated
based on the modified stiffness of slippage model I or model II. Once the element
stiffness matrix is formed, it is transformed from the member coordinate system to the
global coordinate system. Control returns to the assembling subroutine where each

element stiffness matrix is placed in the proper location in the global stiffness matrix.

3.2.5 Gauss Elimination Subroutine

This subroutine uses the gauss elimination method to solve a set of simultaneous
equations in the form [K l-{q} = {F}. The set of equations are manipulated until an upper
triangular matrix is formed. If the maximum value for any element on the main diagonal
is close or equal to zero, then the error message “no unique solution exists” appears, and
the subroutine is terminated. The program identifies which main diagonal node has a

stiffness coefficient less than 1E-10. This error occurs when the stiffness matrix is
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singular, most likely due to a planar node or a collapse mechanism in a truss structure.
The geometry of the model can be modified with stabilizing members or dummy
members once the source of instability is detected, or certain truss elements can be
replaced with beam elements. If a unique solution does exist, the values of {g} can be
determined by a process of back-substitution, starting from the last equation in the upper
triangular matrix. These solutions are accumulated to predict the nodal displacements for

the current load increment.
3.2.6 Stresses Subroutine

This subroutine calculates the incremental stress resultants (forces, bending
moments) and the incremental axial slippage of every element, which are accumulated at
every load increment. The incremental nodal displacements, {d}, calculated in the gauss
elimination subroutine, are used to calculate the incremental stress resultants in an
element by using

{st=[k,]-{a,}+{s,} (3.3)

and
{d,}=[r]-{a} (3.4)
where {So} represents the stress resultants corresponding to the nodal degrees of freedom
due to loads on the member under fully restrained end conditions (Krishnamoorthy,
1996). The axial slippage is calculated according to the specified slippage model in the
control data line (instantaneous slippage, continuous slippage, or no slippage). All results

are printed to an output file.
3.2.7 Equilibrium Subroutine

After the final load increment is applied, but before the program ends, the
equilibrium subroutine is called. This subroutine checks if each node is in equilibrium by

summing the forces and moments in the global X, ¥, and Z directions. All the element

stress resultants that contribute to the equilibrium of a particular node are added together.
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The total stress resultant for each degree of freedom at each node should equal zero if the

structure is in equilibrium.
3.3 Sample Input File

The text file shown on the following page, input.dat, illustrates the input format
required by TAP. This is the input file used for the double-diagonal truss example in the
next chapter. Only the left column of numbers is required by the program. The right
column gives the variable name that stores the data in the program, and is used to help the
programmer identify what the input represents. The input is separated into five main
components: the control data, nodal coordinates, element data, material properties, and
the loading conditions. The input file shows these components separated into five
sections for clarity, but in the actual input file no blank lines are allowed.

The control data is the first line in the input file. It stores the number of nodal
points (NUMNP), elements (NUMEL), material sets (NUMAT), dimensions (NDM),
degrees of freedom per node (NDF), load increments INCREM), and the slippage model
used (MODEL). The structure in the sample input file is a plane truss since NDM and
NDF are equal to two.

The nodal coordinates are the next component in the input file, one node per line
(unless nodal generation is used) starting with one and ending with NUMNP. The input
uses the following format: node number, node generation increment, X-coordinate, Y-
coordinate, and Z-coordinate. In the sample input file, node 3 does not generate
additional nodes, and has an X-coordinate and Y-coordinate of 250-mm. Since this
problem is only two dimensions the Z-coordinate is not required.

The element data input uses the following format: element number, element
generation increment, the element’s material set, and the nodal points {, j, and k that
define the element’s length and direction. Nodal point k is only required for three-
dimensional beam elements. It serves to orient the member about its own axis, and
therefore cannot be located along the line joining points i and j. Nodal points i, j, and &
define the member x-y plane. Point & is chosen to produce a positive y-coordinate with

respect to the member’s coordinate system. Point & must already be a defined node in the
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input.dat

4,9,4,2,2,1000,3 NUMNP , NUMEL, NUMAT , NDM, NDF , INCREM, MODEL
1,0,0,0 N,NX,X(1,N),X(2,N)

2,0,0,250 N,NX,X(1,N),X(2,N)

3,0,250,250 N,NX,X(1,N),X(2,N)

4,0,250,0 N,NX,X(1,N),X{2,N)

1,0,1,1,2,0 M,MX,MSET (M) ,NP(1,M) ,NP(2,M) ,NP (3, M)
2,0,1,2,3,0 M, MX,MSET (M) ,NP(1,M) ,NB(2,M) ,NB(3,M)
3,0,1,3,4,0 M, MX,MSET (M) ,NP(1,M),NP(2,M),NP(3,M)
4,0,2,1,3,0 M,MX,MSET (M) ,NP(1,M) ,NP(2,M) ,NP(3,M)
5,0,1,2,4,0 M, MX,MSET (M) ,NP(1,M) ,NP(2,M),NP(3,M)
6,0,3,1,0,0 M, MX,MSET (M) ,NP(1,M) ,NP(2,M),NP(3,M)
7,0,4,1,0,0 M,MX,MSET (M) ,NP (1,M),NP(2,M),NP(3,M)
8,0,3,4,0,0 M,MX,MSET (M) ,NP(1,M),NP(2,M) ,NP(3,M)
9,0,4,4,0,0 M,MX,MSET (M) ,NP(1,M) ,NP(2,M),NP(3,M)

1,1 MA, IEL

1000,10,0,0,2,4,6 E,A, SW, SLIPMAX, PSLIP,SLIPM, SLIPN

2,1 MA, IEL

1000,10,0,1,2,4,6 E,A, SW, SLIPMAX, PSLIP, SLIPM, SLIPN

3,5 MA, IEL

1,1,0,0,0,1E20 AXIS,DISP-CODE, ROT-CODE, DISP, ROT, STIFFNESS
4,5 MA, IEL

2,1,0,0,0,1E20 AXIS,DISP-CODE, ROT-CODE,DISP, ROT, STIFFNESS
2,0,10,0 N,NX,CL(1,N),CL(2,N)

3,0,10,0 N,NX,CL(1,N),CL(2,N)

0,0,0,0 N,NX,CL(1,N),CL(2,N)

0,0,0,0,0,0 M,MX,P(1,M),P(2,M),P(3,M),P(4,M)

structure. For transmission towers, angle members are oriented such that their principal
axes are in line with existing structural nodes, therefore, defining the k£ node is not
difficult. In the sample input file, elements 1-5 are truss elements (element type 1) and
elements 6-9 are boundary elements (element type 5). Element 3 belongs to material set
1 and is connected to nodes 3 and 4; nodes 1 and 4 are restrained in the X and Y-
directions.

The next component in the input file is the material properties of the elements.
Each material set is associated with one element type, and each element type has a certain
number of material properties that are needed to form the element stiffness matrix. A
two-dimensional truss element requires the following properties: Young’s Modulus,
cross-sectional area, self-weight, maximum slip, slip load, m parameter, and » parameter.

A boundary element requires the following properties: the global axis direction (1 = X, 2
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=Y, 3 = Z), displacement code (1 =restrained, 0 = free), rotation code (1 = restrained, 0
= free), specified displacement, specified rotation, and spring stiffness. In the sample
input file, element 4 has a maximum slip of 1-mm while element 5 has a maximum slip
of 0-mm.

The last component in the input file is the loading conditions — concentrated and
distributed. The format for concentrated loads is: node number, generation increment,
load at the first degree of freedom, load at the second degree of freedom, ... , load at the
maximum number of degrees of freedom. Nodes 2 and 3 have a 10-kN load applied in
the X-direction. The concentrated load data must terminate with a line of zeros —
indicating that there are no more concentrated loads. The format for distributed loads
(only applicable to beam elements) is: element number, generation increment, intensity at
node-/ in the member y-direction, intensity at node-/ in the member y-direction, intensity
at node-/ in the member z-direction, intensity at node-j in the member z-direction. The
distributed load data must terminate with a line of zeros — indicating that there are no
more distributed loads and the end of the input file has been reached. The input file is not
accessed again. With all input read and stored, the first increment of displacements can

be calculated with the first load increment.
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Figure 3.1: Flowchart of TAP program
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Chapter 4
MODEL VERIFICATION AND APPLICATION

4.1 General

This chapter verifies the slippage models developed in chapter 2 and investigates
the effect of bolt slippage on the general behavior of latticed structures. The linear no-
slip aspects of TAP are first validated followed by a comparison of the results from bolt
slippage analyses using TAP and the program AK TOWER. The comparisons are made
in terms of nodal deflections and member stresses. The number of slipping elements and
the parameters of both the instantaneous and continuous slippage models are varied in
order to investigate the effect of bolt slippage on a simple one-dimensional bar element, a
double-diagonal plane truss, a double-diagonal frame with flexible connections, and a
simple three-dimensional transmission tower using beam elements. Finally, a full-scale
transmission tower is analyzed. Before the slippage analysis was conducted on the full-
scale tower, the most suitable element configuration was determined by trying several
models (all truss elements, all beam elements, or a combination of truss and beam
elements). The effect of bolt slippage is investigated on a full-scale transmission tower

using truss and beam elements with experimentally determined slippage parameters.

4.2 Model Verification

Several example problems are analyzed in this section in order to establish the
validity of the developed TAP program. The linear no-slip results of the TAP program
are first compared to solutions obtained from PASSFEM, a program for the analysis of
structural systems by finite element method developed by Krishnamoorthy (1996) and the
popular structural analysis program SAP IV. The only program available for comparison
of the results from bolt slippage analyses was AK TOWER (Al-Bermani and
Kitipornchai, 1994). Unfortunately, this program combines several nonlinear effects into
the same program (geometric and material nonlinearity, joint flexibility, and joint

slippage). In the TAP program, only joint slippage produces the nonlinear response.
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Therefore, a direct comparison between the TAP results and the AK TOWER results is

not possible. Several conclusions can be made, however, from the results of TAP, AK

TOWER, and the no-slip case.
4.2.1 Plane Truss, Space Truss, Plane Frame, and Space Frame

Before any nonlinear effects are incorporated into a structural analysis program,
the linear-elastic capabilities must be functioning correctly. In order to verify the linear
(no-slip) aspects of TAP, several simple analyses of framed structures were conducted.
A two-dimensional truss, a three-dimensional truss, a two-dimensional frame, and a
three-dimensional frame were analyzed by TAP. The geometry, material properties and
loading conditions of the structures are given in Appendix C (taken from
Krishnamoorthy, 1996). Comparisons of axial forces and end moments from selected
members using various analysis programs are shown in Tables 4.1 to 4.4. Clearly TAP is
able to reproduce the results of standard structural analysis programs, and all truss, beam,

and boundary elements are functioning correctly.
4.2.2 Double-Diagonal Plane Truss with Slippage

The nonlinear aspects of TAP were investigated by analyzing a simple double-
diagonal truss as shown in Figure 4.1. Kitipornchai, Al-Bermani, and Peyrot (1994)
investigated the effect of instantaneous bolt slippage and continuous bolt slippage on the
same double-diagonal truss. Figure 4.1 indicates the element material properties and the
element slippage properties that Kitipornchai selected for the analysis. For this structure,
the slippage load is 2-kN and slipping members are allowed to slip 1-mm. The
continuous slippage parameters m and n for the AK TOWER program and the TAP
program were assigned values of 4 and 6 respectively.

The vertical deflection of node 2 is shown in Figure 4.2 for the no-slip case and
for slippage model I and slippage model II when the tension diagonal (element 4) slips

and when the compression diagonal (element 5) slips. The deflections are greater when
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the compression diagonal slips because it is directly connected to node 2. In other words,
node 2 would deflect more if element 5 were removed than if element 4 were removed.

The AK TOWER results along with the output from TAP are shown in Table 4.5.
AK TOWER computed the ultimate load of the truss, and the deflections shown in Table
4.5 are taken at 95% of the calculated ultimate load. Although the results from the two
programs should not be compared directly (since Kitipornchai’s program includes
geometric and material nonlinearity, and treats the angle members as general asymmetric
thin-walled beam-column elements) some observations can be made. For the no-slip
case, both programs predict the same vertical deflection at 95% of the ultimate load -
before the compression member buckles. Also, for any slippage model, the vertical
deflection of node 2 is always more than the no-slip case. The results for the continuous
slippage models are fairly similar (a 3% difference), but there is a significant discrepancy
between the instantaneous slip models. Even though the absolute difference is only 0.17-
mm, the instantaneous slip results from TAP are 50% larger when the compression
diagonal slips. The differences between the predicted deflections are most likely due to
the geometric and material nonlinearities not accounted for in the TAP program, and the
different methods used to modify the stiffness of the slipping member. Kitipornchai’s
method for updating the stiffness matrix and the actual amount of member slip was not
available for comparison (Kitipornchai, 1994).

The TAP deflections reported in Table 4.5, were the values obtained once the
solution had converged. For the relatively simple double-diagonal truss example, the
difference between the solution at 100 load increments and the solution at 10000 load
increments was [ess than 2%. In fact, the accuracy of the solution did not improve after
1000 load increments (much less than 1%). Figure 4.3 shows the solution convergence as
the number of load increments are increased for the instantaneous slip model when the

tension diagonal slips — this vertical deflection value was entered in Table 4.5.
4.2.3 Simple Transmission Tower with Slippage

A simplified model of a transmission tower is shown in Figure 4.4 along with the

angle sizes and slippage properties. Kitipornchai, Al-Bermani, and Peyrot (1994)
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investigated the effect of instantaneous bolt slippage and continuous bolt slippage on the
same structure. Four vertical loads, two transverse loads, and two lateral loads are
applied to the top of the 8-m tower. The tower cross section remains square and the
bracing is symmetrical on all faces, typical of most transmission towers. For this
structure, Kitipornchai assumed a slippage load one tenth of the yield load, which is a
fairly reasonable assumption (see Figure 2.3 or Figure 2.5), and all members are allowed
a maximum bolt slip of I-mm. The slippage load was calculated as 81.55-kN for the
members in the four main legs and 23.18-kN for all other members using the yield stress
and the cross-sectional area of each type of angle. The same m and n parameters that
were used for slippage model II in the double-diagonal truss example (4 and 6
respectively) were selected by Kitipornchai for the simplified transmission tower. All
members are modeled as three-dimensional beam elements. In the input file, the usual
two end nodes are not enough to completely define the length and orientation of each
beam element. A third node must also be entered to define the orientation of the
principal planes of bending (the member y-axis and the member z-axis). This is only
necessary for three-dimensional beam elements.

The transverse deflection at 4 is shown in Figure 4.5 for the no-slip case and for
slippage model I and slippage model II when all members of the tower are allowed to slip
I-mm. The load factor on the tower was increased to a maximum of 30; the ultimate load
of the simplified transmission tower (calculated by AK TOWER) occurred at a load
factor of 29.35. The transverse deflection at 4 at 95% of the ultimate load is shown in
Table 4.6 for the AK TOWER program and the TAP program. Again, as in the double-
diagonal truss example, a direct comparison of the deflections cannot be made since the
two computer programs use different analysis techniques. However, as seen from Table
4.6, no matter what technique or what computer program is used, instantaneous or
continuous bolt slippage produces significantly larger deflections than the no-slip case.
In this example, the transverse deflection at 4 was increased by over 30% by using the
instantaneous slippage model from TAP, and the continuous slippage model from AK
TOWER resulted in a 20% increase in transverse deflection (Kitipornchai, 1994). The
model I deflections are greater than the model II deflections in Table 4.6 (and Table 4.5)

since the low m parameter in model IT does not produce the 1-mm member slip which is
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achieved instantaneously in model I. As discussed later, when the members slip the same
amount, both models predict the same structural response.

Figure 4.6 illustrates the convergence of the transverse deflection at 4 (using
model I) as the number of load increments are increased up to 1000. The no-slip case has
been included for comparison. The solution does not change significantly (less than 1%)
for load increments greater than 1000, as shown in Figure 4.7. It is interesting to note
that the general shape of the load-deflection relationship remains fairly consistent, no
matter how many load increments are used. This implies that the tower members slip at
the same load level (the specified slippage load, P} but the members that are analyzed
with fewer load increments exceed the maximum allowable slip and cause larger
transverse deflections. When the axial force exceeds the slippage load for a member
using model I, a large stiffness change results in a large change in displacement. In some
cases, this large slip displacement exceeds the maximum aliowable slip, A;, specified in
the input file, and the analysis must be repeated with a smaller load increment. Until the
member slip is approximately equal to the specified allowable slip, the number of load
increments must be increased. This aspect of model I is shown in Table 4.7; as the
number of load increments increase, the actual member slip approaches the specified
member slip. For this simple transmission tower example, model I required 1000 load
increments before all of the member’s slipped an amount equal to the specified maximum
slippage. Because of the large slip displacement associated with instantaneous slip,
model I usually requires more load increments than model II before the solution

converges. In terms of computational efficiency, model II is superior to model I.
4.3 Slippage Effects on the General Behavior of Structures

The program verification in the previous section has shown that linear examples
analyzed with TAP produce the same results as standard structural analysis programs and
that the slippage models compared favorably to the only known solutions to structural
analysis problems incorporating bolt slippage. In this section, the number of slipping
elements and the parameters of both the instantaneous and continuous slippage models

are varied in order to observe the effect on the general behavior of several structures and
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to compare the results of the instantaneous slippage model to the continuous slippage
model. The investigations are conducted in order to arrive at a suitable slippage model

for a full-scale transmission tower.
4.3.1 Simple Bar Elements

The most basic of latticed structures, a single one-dimensional bar with one node
restrained and one end axially loaded is shown in Figure 4.8. This simple case can easily
measure the effects of bolt slippage without complicating the analysis with a large input
mesh. The bar element may be modeled as a truss or a beam — both representations give
identical results since the bar is only subjected to axial forces. The following analysis of
the simple bar element was based on 1000 load increments; no change in the output was
observed if the number of load increments was increased above this amount for either
slippage model (see Figure 4.9).

The axial force-deformation relationship shown in Figure 4.10 is based on a
single bar element with the material properties and loading conditions given in Figure
4.8. In this example, the slippage load is 10-kN (one-tenth the total load) and the
maximum amount of slip is I-mm. It can be seen that the m parameter has a significant
effect on the results, as mentioned earlier in chapter 2. If the m parameter is increased
above 135, however, the axial force-deformation relationship does not change. Any
value above 135 produces an axial slip equal to the specified slip (I-mm), and any value
below 135 produces an insufficient amount of slip (less than 1-mm). This is illustrated in
Figure 4.11. Therefore, in order to produce the same slippage effect for models I and II,
the m parameter must be at least 135.

For the no-slip case, the elastic axial deformation (A,) in the bar is I-mm at the
final load level. For a specified slippage (A;) of also 1-mm, the total axial deformation
(A) should equal 2-mm according to equation 2.11. As can be seen in Figure 4.10, both
slippage models have a final axial deformation of 2-mm (if a large enough m value is
selected for model II). Furthermore, if an additional bar is attached to the bar shown in
Figure 4.8, with the same material properties and with an m parameter that produces a 1-

mm slip in both members, then the deflection of the end node is equal to each member’s
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elastic deformation and each member’s slippage. This produces a 4-mm end node
deflection compared to only 2-mm for the no-slip case (see Figure 4.12). This
summation of elastic and slippage deformations for a structure with many members can
produce nodal displacements that are much larger than a similar structure without
connection slip. Alternatively, the same amount of slip shown in Figure 4.12 for a two-
bar assembly is produced when a single bar element is capable of slipping 2-mm instead
of I-mm. By applying this concept to a full-scale transmission tower, the tower
deflections would be considerably larger with the bolts in a position of maximum
clearance than with the bolts positioned in the center of the bolt hole or bearing against
the bolt hole.

Altering the slippage load also has a significant effect on the axial force-
deformation relationship. Figure 4.13 shows the force-deformation relationship for
model I and model II for slippage loads of 10-kN, 30-kN, and 50-kN. Altering the value
of the slippage load only effects the load which initiates slippage (model I) or the load at
which most of the slippage occurs (model II), but the end result is not affected. A
structure comprised of elements that slip at 10-kN and a structure comprised of elements
that slip at 50-kN would produce identical nodal displacements, as long as the axial force
in all members is greater than S0-kN.

Another interesting feature of a member capable of slipping is its ability to absorb
a specified displacement. To illustrate this effect, the same element in Figure 4.8 is used,
except the applied force of 100-kN is replaced with a specified displacement of 1-mm.
Since the 100-kN force produces a 1-mm displacement, a 1-mm specified displacement
should produce an internal force of 100-kN for the no-slip case. Figure 4.14 confirms
this. But if the element is allowed to slip according to either slippage model I or model
II, the internal force is greatly reduced. In Figure 4.14, most of the specified
displacement is transferred directly to the slippage component of the total deformation
and the internal force remains at or near the slippage load. In fact, if the slippage load
was reduced to zero in model I (slippage begins at the onset of loading), the entire
specified displacement would be due to slippage and the internal force in the member

would be zero. This demonstrates that a slipping connection not only increases
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deflections, but can also significantly reduce the connecting member’s internal axial

force.
4.3.2 Double-Diagonal Plane Truss

The double-diagonal truss example is revisited to investigate the effects of
slippage and to compare the results of both slippage models. Just as the results for two
different methods of analysis should not be compared directly, the results for
instantaneous slippage and continuous slippage should not be compared unless the
amount the member slips is equal for both cases. As demonstrated with simple bar
elements, the instantaneous and continuous slippage models only agree with each other
when all members slip the same amount. The amount the members actually slip was not
shown in Table 4.5, since this information was not provided in the literature. When the
slippage parameters selected by Kitipornchai are used for verification purposes (Figure
4.1), the deflections using model II are significantly less than the deflections using model
I (as seen in Figure 4.2). This does not mean the two models disagree with each other, it
means the amount of slip each model produced was not equal. The low m parameter in
model II only produced a slippage of 0.044-mm at the final load compared to the fully
completed slip of 1.0-mm when using slippage model L.

The maximum slippage, A;, should be set to the difference between the bolt hole
and the bolt diameter of a connection, 1-mm was assumed for this example. Once the
specified slip is complete, the member stiffness is restored to its original value. If a
slipping member does not reach the specified amount when using model I, nothing can be
done to increase the slip since the applied load is not large enough to complete the
clearance slip. If complete slip is achieved with model I, but not with model II, the m
parameter can be increased to achieve complete slip. If the applied load was less than
approximately 8-kN (see Figure 4.2) then both models would not be able to complete the
specified slip.

In order to produce a 1-mm slippage in the tension member for both models,
thus allowing a direct comparison, the m parameter was increased as shown in Figure

4.15. In order to complete the clearance slip with model IT, a minimum m parameter of
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210 must be selected. Any value above 210 produces an axial slip equal to the specified
slip (1-mm), and any value below 210 produces an insufficient amount of slip (less than
l-mm). Figure 4.16 shows that both models predict a very similar load-deflection
relationship when the tension member slips the same amount. From approximately 9-kN
up to the final applied load of 10-kN, the load-deflection relationship is linear for both
models. This represents the transition from slippage stiffness to original stiffness, which
occurs once the slippage has reached the maximum specified amount. When analyzing a
structure with continuous bolt slippage, it may be necessary to perform several runs of
the program, each time modifying the slippage parameters until the member slip is equal
to the specified clearance slip, A;.

An interesting consequence of allowing one diagonal to slip while leaving the
other diagonal in the no-slip case, is the load-distribution effect. Figure 4.17 illustrates
the changes that occur in the diagonal member’s axial force when member 4 is allowed to
slip according to model I, but member S is not. The axial forces of the diagonal members
in the no-slip case are included for comparison. When the axial force in tension member
4 exceeds the slippage load (2-kN in this example), the member begins to slip. While
slippage is occurring, the axial force in member 4 remains constant while member 5 must
take on additional load to maintain equilibrium. Once the prescribed slippage in member
4 has been achieved, both members share the applied force equally and the axial force
increases with the applied load at the same rate as the no-slip case (the slopes are equal in
Figure 4.17 after the applied load exceeds approximately 8-kN). In this example,
slippage of the tension member has decreased the final axial force in member 4 from
14.14-kN to 4.9-kN while the axial force in member S has increased from -14.14-kN to
-23.38-kN. Almost identical results were achieved using slippage model II.

For this simple example with only 5 members and allowing only one member to
slip, the load-distribution effect is easily observed. The effect becomes less noticeable as
the number of members in a structure is increased, and as the number of slipping
members is increased. If both diagonals are allowed to slip, the axial forces of all
members are virtually the same as the no-slip case, but the deflections are significantly
larger. Since both diagonals reach their slip load simultaneously, the applied load cannot

be distributed from one diagonal to the other, and the reduced stiffnesses only cause
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larger deflections. Likewise, if all members in the double-diagonal truss are allowed to
slip, the axial forces again are virtually the same as the no-slip case and the deflections
are even larger. The larger deflections are due to larger axial elongations comprised of

elastic elongation and 1~mm of slip. The results are summarized in Table 4.8.
4.3.3 Double-Diagonal Plane Frame with Semi-Rigid Connections

The double-diagonal truss example, shown originally in Figure 4.1, is re-analyzed
with semi-rigid connections to determine if joint slippage is influenced by joint
flexibility. The verification is based on a comparison between the perfectly pinned and
the perfectly rigid idealizations. TAP models the tangent stiffness of a semi-rigid

connection by using the following exponential function
am 6, |
R=——=C-exp| —— 4.1
a7, p( > ] (4.1)

in which « is a scaling factor, C is a curve fitting constant and &, is the relative angle of
rotation between connecting members (accumulated at each load increment). When ais
large the exponential term approaches unity and the stiffness of the semi-rigid connection
becomes equal to the constant C. In order to model a pinned connection a small C value
is selected; in this example C=1E-8 was used to represent the truss element solution (C
must be small, but greater than 1E-10 in order to prevent a singular stiffness matrix). In
order to model a rigid connection a large C value is selected; in this example C=1E20
was used to represent the beam element solution. To investigate the semi-rigid case an
intermediate stiffness is selected, in this example a constant connection stiffness of
C=1ES was used. The semi-rigid beam element can easily model nonlinear moment-
rotation behavior by decreasing the « factor.

Figure 4.18 shows the vertical deflection of node 2 of the double-diagonal frame
for the no-slip case. As expected, the deflection for the frame modeled with semi-rigid
beam elements was larger than the beam element (C=1E20) solution but smaller than the
truss element (C=1E-8) solution. Figure 4.19 shows the vertical deflection of node 2 of
the double-diagonal frame when all elements are allowed to slip 1-mm according to

model I and II. Again the semi-rigid beam element solution falls in between the beam
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and truss solution. In fact the percent increase in deflection from the beam solution to the
semi-rigid beam solution was almost the same for the slip and no-slip cases. Semi-rigid
beam elements increased the deflection by 13.9% for the no-slip case and by 12.4% for
all members slipping 1-mm. Similarly, the percent increase in deflection from the semi-
rigid beam solution to the truss solution was almost the same for the slip and no-slip
cases. A 12.0% increase was observed for the no-slip case and an 11.4% increase was
observed for all members slipping 1-mm. Model I and model II solutions were identical
at the final load — once all members had slipped the same amount. This simple example
shows that joint flexibility influences the nodal deflections, but does not influence joint

slip behavior.
4.3.4 Simple Transmission Tower

The simple transmission tower (Figure 4.4) is revisited to investigate the effects
of slippage and to compare the results of both slippage models. As previously discussed,
the instantaneous and continuous slippage models only agree with each other when all
members slip an equal amount. By arbitrarily assuming an m parameter of 4
(Kitipornchai, 1994) the amount the members in the tower actually slip is not guaranteed
to be equal to the specified 1-mm, and therefore the two models predict different results.
That explains why the model II deflection at 4 (Figure 4.5) is significantly less than the
model I deflection.

For model I, as the load factor is increased to a maximum of 30, a total of 44 of
the 69 beam elements in the tower exceed their slippage load and undergo a 1-mm
slippage. The other 25 elements do not exceed their slippage load and their stiffness does
not change. For model II, all the members slip, but the amount each member slips is
dependent on its m parameter and its axial force. Table 4.9 shows the axial slippage of
40 tower members for model I and model II. Only with large m values do members slip
the specified 1-mm with model II. Since the continuous slip model also depends on the
axial force in the member, elements with a small axial force that did not exceed their
slippage load for model I (elements 11-20 in Table 4.9 for example) produce a much

smaller slippage for model II.
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Since the member slippage using model II approaches the member slippage using
model I with higher m values, the transverse deflection at 4 using model II with an m
parameter of 100 is almost identical to the model I solution at higher load factors (see
Figure 4.20). The two models are not identical, however. For example, in Table 4.9,
element number 26 slips 0.24-mm using model II, while in model I this element does not
slip at all. Also, at low and intermediate load levels, the two models can predict
considerably different deflections (see Figure 4.20 at a load factor of approximately 13).
Only when the same members slip the same amount at the same load level, do the two
models predict identical deflections and member stresses. Although the deflections

increased considerably, the axial stresses in the simple transmission tower were

unaffected by axial slippage.
4.4 Structural Analysis of a Full-Scale Transmission Tower

A full-scale transmission tower is shown in Figure 4.21. This tower is located in
northern Manitoba and is part of Manitoba Hydro’s Nelson River DC transmission
system. It is over 60-m tall and is comprised of 494 primary members (not including 12
boundary elements restraining the footing joints in the three global directions for all four
main legs), and 217 primary nodes. The actual tower has a total of 708 angle members
and 384 connection nodes, but these totals are also including secondary members and
secondary nodes. The analysis of this tower does not include secondary members or the
joints attached only to secondary members (called secondary nodes). Secondary
members are only relevant in compression capacity calculations, since their purpose is to
reduce the unbraced length of primary members and not to provide load resistance. The
self-weight of these neglected secondary members is accounted for by multiplying the
primary member self-weight by an appropriate factor (Yue, 1994). A factor of 1.2 was
used in this example.

This tower was designed with 16 different angle sizes: from L51x51x4.8 angles
used in the transverse and longitudinal cross-bracing in the upper section of the tower to
L152x152x13 angles used in the main legs of the bottom section of the tower. The

members are typically assumed to be truss elements, but the TAP program can model the
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tower members as truss elements, beam elements, or a combination of the two. The wire
loading condition shown in Figure 4.21 is one of several worst-case scenarios tested by
Manitoba Hydro’s analysis and design program and the output from that program will be
used to verify the results of the TAP program.

4.4.1 Linear Analysis

The three-dimensional representation of the tower’s upper section, Figure 4.22,
best illustrates the staggered bracing pattern used for this tower. The bracing members
on the longitudinal face and the transverse face do not meet at a common joint, providing
additional stability and strength without increased material costs. The staggered bracing
pattern does complicate the analysis however. Each time the bracing members on each
face do not meet at a common joint, this additional joint adds three equations (if only
truss members are attached to the joint) or six equations (if a beam member is attached to
the joint) to the system of equations for the entire tower. For this particular tower, the
staggered bracing pattern adds over 60 primary joints to the analysis, or up to 360
additional equations.

These staggered joints also present a mathematical problem besides the increased
number of equations that must be solved. At each of these joints, all the members
connected to these joints are in the same plane — producing a planar joint and a singular
stiffness matrix if the connecting members can only resist an axial force (if they are all
truss elements). For example, joint 12 in Figure 4.22 is a planar joint. The elements that
are connected to node 12 (elements 6-12, 10-12, 16-12, and 23-12) all lie in the same
plane. These planar nodes are common in most transmission towers, not just towers with
staggered bracing. In order to solve such a system of equations, artificial restraints must
be provided in the direction of instability, or the truss elements must be replaced with
beam elements. Both options were tried for this tower, and the solutions were compared
with the output of the program that is currently being used by Manitoba Hydro. The
deflections for several of the tower’s nodes in the upper section (the nodes that are

subjected to the largest transverse deflections) are presented in Table 4.10.
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The maximum deflections at the very top of the tower (nodes 1-5) were very
similar for both programs no matter which element configuration was used with TAP.
The deflections are slightly different between the Manitoba Hydro truss model and the
TAP truss model since the artificial restraint procedure is not identical. The TAP
program restrains the planar node in one of the global coordinates whereas the Manitoba
Hydro program calculates the direction normal to the plane of all connecting elements
and attaches the restraint in that direction. Also, the self-weight of truss members
stabilized with artificial restraints cannot be concentrated at the end nodes since these
nodes are not strong enough to resist loading. The artificial cross-sectional area provided
at planar nodes is only large enocugh to prevent a singular stiffness matrix and any applied
load would cause very large deflections. Since no load can be applied to a planar node,
the self-weight of the connecting members must be distributed to the closest non-planar
node. This procedure of redistributing the self-weight (automatically calculated with the
Manitoba Hydro program but not with TAP) might contribute to the small discrepancies
between the two programs.

There are several serious problems with the artificial restraint method. Most
important, the computed deflections at restrained planar nodes are not accurate solutions.
The artificial restraint technique allows the program to solve for deflections at non-planar
nodes in the tower, but the deflections at restrained nodes should not be considered
accurate. For example, when the tower is modeled as a truss, nodes 12-15 and nodes 20-
23 (nodes that must be restrained artificially) only deflect 3-mm in the Y-direction using
the Manitoba Hydro program and less than I-mm when using TAP. This lack of
movement in the unstable direction is what allows the system of equations to be solved,
but this lack of movement is not consistent with the nodal deflections near these
restrained nodes. The nodes above and below these nodes (nodes that are not restrained
artificially in the Y-direction) are displacing approximately 500-mm, see Table 4.10.
When the main legs are modeled as beam elements, or when all the members are modeled
as beam elements, then nodes 12-15 and nodes 20-23 displace an amount similar to their
neighboring nodes — approximately 500-mm. When beam elements are used, the Y-
direction displacements gradually decrease from a maximum amount at the top of the

tower to smaller values near the bottom of the tower, predicting a more realistic solution
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for nodal displacements than the artificially restrained truss model. This relationship is
most pronounced in the Y-direction since the applied load causes large displacements in
this direction, but the X-displacements and Z-displacements are also more consistent
throughout the tower if beam elements are used, see Table 4.10. Because the internal
forces and stresses are calculated based on the nodal displacements, the stresses
calculated from a truss/beam model are also more accurate than an artificially restrained
truss model.

Of the two methods used, the preferred method is to model the main leg members
as beam elements rather than truss elements with artificial restraints. This easily solves
the singular matrix problem without having to search for every planar node and attach an
artificial restraint element, eliminates the need for dummy members to prevent structural
mechanisms, eliminates the incorrect displacements at planar nodes corrected with
artificial restraints, eliminates the need to redistribute the self-weight of members
attached to planar nodes, and is a more accurate model since the main leg members do
resist bending stresses and are continuous through the primary joints.

Modeling the main legs as beam elements does complicate the analysis
significantly however, since each node has six degrees of freedom (three translational and
three rotational) instead of only three degrees of freedom for truss elements. Also, a third
node must be specified for each beam element to describe its orientation completely in
three-dimensions. Modeling the main legs as beam elements increases the computation
time, but the predicted deflections and stresses are more realistic.

Since the primary members not on the main legs of the tower are also continuous
through primary and secondary joints, and can be connected with moment-resisting
multiple-bolt conﬁguratibns, they also could be accurately modeled as beam elements. In
fact, some researchers use the beam element to model all members of a transmission
tower. The differences in nodal deflections were very small between the full-scale tower
modeled with only beam elements in the main legs and the full-scale tower completely
modeled with beam elements. In both models, the most significant forces were axial
forces. The largest bending moments in members of the full-scale tower were
approximately 4-kNm, and axial forces were as high as 700-kN. The largest bending

moments occurred in the main leg members in the bottom section of the tower. The
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bending stress at the extreme fibers of these angle sections was 60-MPa, compared to the
axial stress of 190 MPa. Unlike a truss element, when a tower member is modeled as a

beam element, it must be designed to resist axial forces, shearing forces, and bending

moments.

4.4.2 Slippage Effects

In the following slippage analysis, the full-scale transmission tower is modeled
with beam elements for the main legs and any elements continuous through planar nodes
(all horizontal members), and truss elements are used for all of the primary bracing
members on the longitudinal and transverse faces. As discussed in the previous section,
the final deflections computed by the instantaneous slippage model and the continuous
slippage model are nearly identical, as long as the elements slip the same amount in each
model. Consequently, only the continuous slippage model is used for this example, with
a large m parameter to complete the clearance slip (m=100). Model II also tends to
converge with fewer load increments than model I. This tower, with 217 nodes with six
degrees of freedom at most nodes, takes about two minutes of computation time per load
increment. In order to insure solution convergence, 2000 load increments were used,
requiring almost three days of computation time. Figure 4.23 shows the transverse
deflection of node 1 converging with increasing load increments.

The slippage model for the full-scale tower assumes that the bolts are not bearing
nor in a position of maximum clearance, but that the bolts are centered in the bolt hole.
The effect that bolt position has on the analysis can easily be determined by varying the
amount of maximum slippage for certain elements. In this example, the slippage
parameters used in model II were based on experimental studies conducted by
Ungkurapinan (2000). The parameters used for the full-scale tower are summarized in
Table 4.11. It should be noted that the maximum slip for the members in the four main
legs of the tower is considered between the splicing points of the continuous main leg
angles. Since each continuous main leg angle is actually made up of several individual
beam elements separated by nodal points that connect transverse and longitudinal bracing

members, the total slip per continuous main leg angle must be divided evenly among the
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beam elements between the two splice points. For all other members, the maximum slip
value can be taken as the actual member maximum slip. It was assumed that the angle
members were bolted together using only one bolt, corresponding to a slippage load of
9.29-kN. As demonstrated with the simple bar element, the magnitude of the slippage
load does not have an effect on the final deflections, as long as the axial force in each
member exceeds the specified slippage load. The final results for a tower assembled with
four-bolt connections are the same as a tower assembled with one-bolt connections, as
long as the axial forces exceed 46.95-kN (see Table 4.11). The deflections at
intermediate load levels are not the same, however, as some elements begin to slip earlier
in the tower with only one-bolt connections.

Figure 4.24 shows the transverse deflected shape of the full-scale transmission
tower after the final load increment was applied. As expected, the deflections predicted
using slippage model II with realistic slippage parameters were greater than the no-slip
case. The greatest tower deflection (node 1) increased from 531.29-mm to 780.23-mm
when using slippage model II, an increase of over 45%. Despite the significant increases
in nodal deflections, the member stresses remained relatively unchanged. Table 4.12
shows the axial stresses of critical members in the full-scale tower. Four members were
chosen from the top section, middle section, and bottom section of the tower — these three
sections are constructed using three different angle types. The four members chosen in
each section represent each of the four main legs. The axial stresses are symmetric (two
main legs in equal compression and two main legs in equal tension) since the applied
loading does not cause any twisting about the vertical axis of the tower. As Table 4.12
indicates, connection slippage has no effect on member axial stresses, it only adds to the
overall flexibility of the tower. This was also observed with the double-diagonal truss
and the simplified transmission tower.

However, when a displacement was specified, model II (with the same
experimentally determined slippage parameters) significantly changed the axial stresses
in critical members when compared to the no-slip case. To investigate a foundation
settlement (or heave) the same full-scale transmission tower was used, except the
transverse loading was removed. The member’s self-weight and the same vertical wire

loads were applied along with a specified foundation heave of 100-mm on only one of the
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four foundations. Transmission tower foundation movements of up to 150-mm have
been observed in northern Manitoba, where seasonal frost and the formation of ice lenses
cause significant frost heave. These conditions vary greatly over short distances,
producing differential settlements between adjacent footings. Figure 4.25 shows a
transmission tower in northern Manitoba leaning to the left due to foundation movement.
The critical members for the specified displacement analysis, the members with the
highest axial stresses, were ail located in the bottom section of the tower. These
members are shown in Table 4.13.

The axial stresses in the critical members were greatly reduced when slippage
model II was used. Axial stress in the horizontal truss bracing was reduced by 55-Mpa.
The axial stresses in the truss members off the main legs were reduced by an average of
40-MPa. But the greatest change was observed in the main leg beam members — the most
important structural element in the tower. The main leg axial stresses were reduced by

almost 100-Mpa each, a decrease of over 90% in one main leg member.

4.5 Recommended Slippage Model

In the parametric study and slippage investigation in the two previous sections,

the following considerations were made:

e Comparing model I, model II, and the no-slip case

e Varying the number of load increments

e Varying the m parameter in slippage model II

e Varying the magnitude of slip, A

e Varying the magnitude of the slippage load, Ps

e Varying the number of slipping elements in a structure

e Comparing the forces induced in members with and without joint slip

o Comparing the nodal deflections of a structure with and without joint slip

e Examining the axial force-deformation relationship due to support movement with
and without slip

¢ Examining the influence of semi-rigid joints on slip behavior
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e Comparing a truss element model with artificial restraints and a beam element model

e Modeling joint slippage with experimentally determined parameters

Based on the results of the above investigations, the following model is

recommended for transmission tower analysis:

e A continuous slippage model (model II) with a large enough m parameter to complete
the required slip

e [f the element slip is less than the required bolt clearance, the m parameter can be
increased

e To accurately model the slippage behavior, the analysis should use experimentally
determined values for the magnitude of joint slip and the magnitude of slippage load

e Beam elements should be used to model the main tower legs and wherever a planar
node exists (artificial restraints should be avoided)

e The analysis should be repeated with smaller load increments until the solution

converges (fewer increments are required for the continuous slippage model)
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Element Number

Axial Forces (kN)

Method of Joints PASSFEM TAP
13 150.0 150.0 150.0
14 150.0 150.0 150.0
15 -134.2 -1342 -134.2
16 -134.2 -134.2 -134.2
23 0.0 0.0 0.0
24 0.0 0.0 0.0

Table 4.1: Comparison of axial forces in selected members of a plane truss

Element Number

Axial Forces (kN)

PASSFEM SAP IV TAP

2 -23.7 -23.7 -23.7
3 -19.8 -19.8 -19.8
4 13.0 13.0 13.0
5 16.9 16.9 16.9
22 49.7 49.7 49.7
23 -64.0 -64.0 -64.0
24 42.6 42.6 42.6
25 -71.1 -71.1 -71.1

Table 4.2: Comparison of axial forces in selected members of a space truss
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End Moments (kN-cm)

Element Number
PASSFEM SAP IV TAP
1 2921 2921 2921
7 5949 5949 5949
13 5263 5263 5263
19 -12340 -12340 -12341
25 -9256 -9256 -9256

Table 4.3: Comparison of end moments in selected members of a plane frame

End Moments (kN-cm)
Element Number PASSFEM SAP IV TAP
My Mz My Mz My Mz
1 7.35 -1170.0 7.35 -1170.0 7.35 -1169.8
11 3.27 -697.9 3.27 -697.9 3.27 -697.9

Table 4.4: Comparison of end moments in selected members of a space frame
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Node 2 Deflection (mm)
C ter Program
OmpHier TTOgT No Instantaneous Continuous

Slip Slip Slip
Tension Diagonal Slips
AK TOWER (1994) 0.301 0.345 0.339
TAP 0.301 0.467 0.328
Compression Diagonal Slips
AK TOWER (1994) 0.301 0.333 0.328
TAP 0.301 0.507 0.335

Table 4.5: Comparison of double-diagonal truss deflections at 95% of ultimate load

(F = 3.145-kN)

Transverse Deflection at 4 (mm)

Computer Program No Instantaneous Continuous
Slip Slip Slip

AK TOWER (1994) 15.76 16.44 18.51

TAP 14.54 19.14 15.48

Table 4.6: Comparison of deflections of simple transmission tower at 95% of
ultimate load (load factor, A, of 27.9)
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Number of Load Main Leg Axial
Increments Slippage As (mm)
25 6.79
50 1.68
100 1.52
150 1.25
500 1.01
1000 1.00

Table 4.7: Axial slippage in a typical member of the simple transmission tower for
various load increments (maximum slippage = 1.0-mm)

68



No Element 4 Elements All Elements

Slip Slips 4 and S Slip Slip
Node 2
X-displacement (mm) 0.25 0.41 0.25 1.25
Y-displacement (mm) 0.96 1.58 2.37 3.37
Node 3
X-displacement (mm) -0.25 -0.09 -0.25 -1.25
Y-displacement (mm) 0.96 1.75 2.37 3.37
Element 1
Axial Force (kN) 10.00 16.53 10.02 10.01
Elongation (mm) 0.25 0.41 0.25 1.25
Slip (mm) 0.00 0.00 0.00 1.00
Element 2
Axial Force (kN) 0.00 6.53 0.02 0.01
Elongation (mm) 0.00 0.16 0.00 0.00
Slip (mm) 0.00 0.00 0.00 0.00
Element 3
Axial Force (kN) -10.00 -3.47 -9.98 -9.99
Elongation (mm) -0.25 -0.09 -0.25 -1.25
Slip (mm) 0.00 0.00 0.00 -1.00
Element 4
Axial Force (kN) 14.14 491 14.12 14.13
Elongation (mm) 0.50 1.17 1.50 1.50
Slip (mm) 0.00 1.00 1.00 1.00
Element 5
Axial Force (kIN) -14.14 -23.38 -14.17 -14.15
Elongation (mm) -0.50 -0.83 -1.50 -1.50
Slip (mm) 0.00 0.00 -1.00 -1.00

Table 4.8: Output for several slippage configurations of double-diagonal truss
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Model I Model 11 Model IT
Element Model I m=a m=10 m=100

1 1.036 0.329 0.735 1

2 1.038 0.274 0.613 1

3 1.034 0.274 0.613 1

4 1.044 0.330 0.737 I

5 0 0.126 0.177 0.155
6 1.003 0.267 0.591 1

7 1.001 0.330 0.737 1

8 1.030 0.274 0.613 1

9 1.010 0.274 0.612 1
10 1.010 0.329 0.733 1
11 0 0.002 0.000 0.002
12 0 0.156 0.275 0.423
13 0 0.016 0.022 0.033
14 0 0.012 0.015 0.021
15 0 0.032 0.038 0.033
16 0 0.030 0.033 0.035
17 0 0.014 0.017 0.023
18 0 0.014 0.020 0.030
19 0 0.003 0.004 0.008
20 0 0.002 0.003 0.005
21 1.015 0.137 0.306 1
22 1.016 0.142 0.317 1
23 1.005 0.141 0.315 1
24 1.022 0.137 0.307 1
25 1.002 0.139 0.308 1
26 0 0.110 0.208 0.240
27 1.005 0.137 0.307 1
28 1.003 0.139 0.307 1
29 1.007 0.142 0.317 I
30 1.028 0.137 0.306 1
31 0 0.069 0.120 0.215
32 0 0.000 0.002 0.007
33 1.048 0.137 0.307 I
34 1.018 0.142 0.317 1
35 1.013 0.142 0.317 1
36 1.005 0.137 0.307 1
37 0 0.031 0.032 0.033
38 0 0.011 0.011 0.014
39 1.161 0.137 0.307 1
40 1.013 0.142 0.317 1

Table 4.9: Axial slippage for members of simple transmission tower (mm)
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MB Hydro program, all truss elements

TAP, all truss elements

NODE X-DISP Y-DISP Z-DISP
1 0 531.876 -17.78
2 0 531.876 2.794
3 0 531.876 2.794
4 0 531.876 -17.78
5 0 632.13 -29.972
(] 0 514.096 -17.526
7 0 514.096 2.794
8 0 514.096 2.794
9 0 514.096 -17.526
10 0 593.344 -17.78

11 0 592.074 2794
12 7.62 3.302 -50.292
13 -7.366 2.286 35.56
14 7.366 2.286 35.56
15 -7.62 3.302 -50.292
16 1.27 485.902 -19.05
17 -0.254 485.394 4.572
18 0.254 485.394 4.572
19 -1.27 485.902 -19.05
20 -8.382 3.302 -50.8
21 8.128 2.286 36.322
22 -8.128 2.286 36.322
23 8.382 3.302 -50.8
24 1.27 457.708 -20.32
25 -0.254 458.47 5.842
26 0.254 458.47 5.842
27 -1.27 457.708 -20.32

TAP, truss cross-bracing and beam main legs

NODE X-DISP Y-DISP Z-DISP
1 -0.040 531.29 -17.573
2 -0.003 531.21 3.079
3 0.003 531.21 3.079
4 0.040 531.29 -17.573
5 -0.000 531.56 -29.972
6 0.030 513.25 -17.511
7 0.007 513.3 3.022
8 -0.007 513.3 3.022
9 -0.030 513.25 -17.511
10 -0.000 513.19 -17.581
11 -0.000 513.28 3.067
12 0.377 499.02 -18.196
13 -0.226 498.74 3.833
14 0.226 498.74 3.833
15 -0.377 499.02 -18.196
16 0.398 484.94 -18.879
17 ~0.268 484.5 4.629
18 0.268 484.5 4.629
19 -0.398 484.94 -18.879
20 0.252 470.75 -19.538
21 -0.181 470.88 5.324
22 0.181 470.88 5.324
23 -0.252 470.75 -18.538
24 0.271 456.96 -20.166
25 -0.199 457.39 6.008
26 0.199 457.39 6.008
27 -0.271 456.96 -20.166

NODE X-DISP Y-DiSP Z-DiSP
1 -0.042 536.48 -16.919
2 -0.002 536.4 3.930
3 0.002 536.4 3.930
4 0.042 536.48 -16.919
5 -0.000 536.75 -29.423
6 0.029 518.28 -16.851
7 0.009 518.33 3.867
8 -0.009 518.33 3.867
9 -0.029 518.28 -16.851
10 -0.000 598.36 -16.944
11 -0.000 596.78 3.929
12 7.806 -0.015 -50.005
13 -7.472 -0.008 37.146
14 7.472 -0.008 37.146
15 -7.806 -0.015 -50.005
16 -0.001 489.75 -18.255
17 0.001 489.23 5.511
18 -0.001 489.23 5.511
19 0.001 489.75 -18.255

20 -8.477 -0.000 -50.569
21 8.298 -0.000 37.842
22 -8.298 -0.000 37.842
23 8.477 -0.000 -50.569
24 -0.000 461.4 -19.574
25 -0.000 461.98 6.881
26 -0.000 461.98 6.881
27 0.000 461.4 -19.574
TAP, all beam elements

NODE X-DISP Y-DISP Z-DISP
1 -0.039 531.1 -17.563
2 -0.003 531.02 3.076
3 0.003 531.02 3.076
4 0.039 531.1 -17.563
5 -0.000 531.37 -29.949
6 0.030 513.08 -17.502
7 0.007 513.12 3.020
8 -0.007 513.12 3.020
9 -0.030 513.08 -17.502
10 -0.000 513.07 -17.567
11 -0.000 513.12 3.062
12 0.370 498.8 -18.192
13 -0.220 498.59 3.829
14 0.220 498.59 3.829
15 -0.370 498.8 -18.192
16 0.369 484.77 -18.874
17 -0.255 484.34 4.627
18 0.255 484.34 4.627
19 -0.369 484.77 -18.874

20 0.255 470.64 -19.528
21 -0.183 470.68 5.325
22 0.183 470.68 5.325
23 -0.255 470.64 -19.528
24 0.288 456.82 -20.156
25 -0.215 457.23 6.006
26 0.215 457.23 6.006
27 -0.288 456.82 -20.156

Table 4.10: Comparison of deflections of full-scale transmission tower using
Manitoba Hydro’s program and TAP with different element configurations
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Member Type Slippage Load P; (kN) Maximum Slippage A; (mm)

Single angle main leg 43.28

members spliced together 3.5 (per continuous angle)

Single angle merpbers with 929 1.7 (per member)
one-bolt connections

Single angle members with 20.14

two-bolt connections 1.7 (per member)

Single angle members with
three-bolt connections 29.28 1.7 (per member)

Single angle members with
four-bolt connections 46.95 1.7 (per member)

Table 4.11: Slippage parameters used in full-scale transmission tower based on
load-slip experiments (Ungkurapinan, 2000)
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Axial Stress (MPa)

Element Number
No Slip Slippage Model II
Top Section Critical Members
21 -115.04 -114.78
34 83.37 83.45
47 83.37 83.45
60 -115.04 -114.78
Mid Section Critical Members
81 -188.8 -188.17
90 129.91 129.76
99 129.91 129.76
108 -188.8 -188.17
Bottom Section Critical Members
153 -191.7 -189.16
159 138.33 136.97
165 138.33 136.97
171 -191.7 -189.16

Table 4.12: Axial stress in critical members of full-scale transmission tower with

and without bolt slippage
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Axial Stress (MPa)
Element Number
No Slip Slippage Model II
Main Leg Beam Members
181 -252.74 -156.65
182 205.99 106.96
183 -265.72 -170.08
184 218.12 119.49
Truss Members off Main Legs
419 -222.36 -179.24
420 206.65 167.30
421 -215.80 -172.63
422 199.86 160.56
423 -218.06 -175.86
424 200.55 161.23
425 -219.61 -176.46
426 206.47 166.20
Horizontal Truss Bracing
455 326.14 270.78
456 -326.28 -270.93
457 -326.29 -270.93
458 326.14 270.77

Table 4.13: Axial stress in critical members of full-scale transmissien tower with a
100-mm foundation heave with and without bolt slippage
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AE = 10000-kN F =10-kN
As = l-mm Ps;=2-kN m=4 n=6
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Figure 4.1: Double-Diagonal plane truss
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Figure 4.2: Double-Diagonal truss deflection
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Figure 4.4: Simple transmission tower subassembly
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AE/L = 100-kN/mm F = 100-kN

(a) o—>p» F
A=A+ A ‘_pl A |€—
(b) *—>

Figure 4.8: 1-D bar element (a) before loading (b) after loading

F
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Figure 4.15: Axial force-slip relationship for tension member of double-diagonal truss
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Figure 4.17: Load-Distribution effect for double-diagonal truss (model )
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Figure 4.21: Full-Scale transmission tower
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Figure 4.22: Upper section of full-scale transmission tower
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Figure 4.23: Transverse deflection of node 1 of full-scale transmission tower for different load increments
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Figure 4.25: Transmission tower subjected to large foundation movement
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Chapter 5
SUMMARY AND CONCLUSIONS

5.1 Summary

This study investigated the effect of bolt slippage on the deflections and axial
stresses of latticed self-supporting transmission towers. A structural analysis program
was developed which could model structural members as truss elements or beam
elements, could incorporate bolt slippage using an instantaneous slippage model or a
continuous slippage model, and could include the effects of semi-rigid connections
provided moment-rotation data were available. The instantaneous slippage model
assumes that all of the bolt slip occurs at a certain load level. The ends of a member slip
a specified amount when the axial force exceeds the slippage load. The slipping
member’s stiffness is greatly reduced causing increased joint deflection while the internal
force remains relatively constant. The continuous slippage model assumes that bolt
slippage occurs once the first load increment is applied and follows a non-linear function
throughout the loading process. This function is used to reduce the member stiffness to
account for slippage deformation. For both slippage models, the total axial deformation
of a member is comprised of elastic deformation and slippage deformation.

The linear no-slip capabilities of the developed program were verified by
comparing the output with other structural analysis programs. The only comparison
available for verifying the bolt slippage models was the AK TOWER program. Although
the analysis techniques were different, the TAP program and the AK TOWER program
both predicted significant increases in nodal deflections as a result of bolt slippage. Also,
the instantaneous and continuous slippage models predicted identical deflections and
stresses when the members in a structure slip the same amount for both models —
establishing the validity of the TAP program. The m parameter for the continuous
slippage model can be increased until all of the members in a structure slip the specified
amount (the experimentally determined clearance if available).

The developed program investigated the slippage behavior of several latticed

structures, including a simple one-dimensional bar, a double-diagonal plane truss, a
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double-diagonal plane frame with semi-rigid connections, a simplified three-dimensional
transmission tower, and a full-scale transmission tower. The full-scale tower used
experimentally obtained slippage parameters to accurately model the bolted connections.
The most important parameters for a slipping member are the exact amount of clearance
slip allowed at a bolted connection and the load that initiates bolt slippage. Both of these

parameters can be determined experimentally.

5.2 Conclusions

The results of this study confirm the suspicions of earlier researchers and
practicing engineers: bolt slippage has a considerable effect on the behavior of latticed
structures. The investigation of slippage behavior has shown that a structure using any
bolt slippage model (instantaneous or continuous) will result in larger displacements
compared to the same structure without accounting for slippage. Furthermore, as the
number of slipping elements increase in a structure, or, as the specified slippage amount
for each member increases, slippage deformation accumulates and the nodal
displacements become even larger. Self-supporting latticed transmission towers are
usually sufficiently rigid to assume small-displacement theory, but since bolt slippage
greatly increases nodal displacements, significant secondary stresses may be induced.
Latticed towers used to transmit and receive high frequency signals for wireless
communication are also at risk. Excessive deflections caused by connection slip can
interfere with communications creating a serviceability failure. Increased flexibility, due
to the decrease in member stiffness, could also influence a structure’s vibration and
fatigue characteristics.

The axial stresses in latticed structures are also affected by bolt slippage. The
two-dimensional plané truss example illustrated the load-distribution effect caused by
bolt slippage. In structures that only experience slippage in certain members, higher
stresses are observed in non-slipping members and lower stresses are observed in slipping
members, compared to an identical structure without accounting for slippage. In the full-
scale transmission tower using realistic slippage parameters, the axial stresses were not

significantly affected by bolt slippage. However, the ability of a slipping member to
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absorb a specified displacement had a dramatic effect on -the axial stresses in the full-
scale transmission tower. Bolt slippage increased the structure’s ability to withstand
differential settlement or heave, by translating the specifie-d displacement into slippage
deformation in the tower members. Allowing the membenrs connected to the specified
displacement node to slip, greatly reduced their stresses. In the full-scale tower, the axial
stress was reduced by as much as 90% in one of the maan legs when experimentally
determined slippage parameters were used. Bolt slippage, #herefore, could explain why
the large stresses caused by foundation movements, predicted by software not including
slippage effects, do not occur in reality — slippage is redu-cing the member stresses to
realistic, elastic, pre-buckling values.

The parametric studies on the various latticed structizres revealed that varying the
slippage load effects the axial force-deformation relation:ship, but the end result is
unchanged. As long as a member exceeds its slippage load, mo matter what the value, the
deflections at the final load will be i1dentical. Members that do not exceed their slippage
load cause differences between an instantaneous slippage analysis and a continuous
slippage analysis since slippage can occur in the continuows mode! at loads below the
slippage load, but not in the instantaneous model.

Finally, the slippage analysis of the full-scale transmisssion tower revealed that the
three-dimensional truss model, normally used to analyze tramsmission towers, should be
replaced by a truss/beam model. Modeling the main legs a s beam elements eliminates
the need for dummy members to prevent structural mechanismms, eliminates displacement
errors at planar nodes when using a truss model with artificial restraints, and is a more
accurate model since the main leg members resist bending :stresses and are continuous
through bracing members. When incorporating bolt slipgppage, both models predict
identical solutions when all members slip the same amount. The continuous slippage
model is preferable ‘since it does not exceed the specified slip amount (as the
instantaneous model does with insufficient load increments)., and a portion of the total

bolt slip can occur below the slippage load, which occurs in exxperimental testing.
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5.3 Recommendations for Future Work

The program developed in this study was intended to accurately predict the
behavior of transmission towers under working load conditions. The program could be
expanded to predict the behavior up to ultimate load. Considerations for member
yielding and buckling could be included, as well as the ability to include material and
geometric nonlinearity. Such considerations would require an improved nonlinear
solution method, requiring an iteration procedure for each load increment.

The program could also be improved by developing a method to input data faster
and easier. Although a sophisticated preprocessor might not improve the efficiency of a
linear interpolation data generation scheme since each element has its own specific
slippage parameters, connection and orientation nodes, loading conditions, and material
properties.

To increase the accuracy of the proposed slippage models, continued
experimental testing on typical tower members and connection types could be conducted.
A joint element could be formulated to incorporate both rotational slippage and
translational slippage by modification of the technique used for semi-rigid joints in the
TAP program. The joint element could model the slippage characteristics of a typical
tower member up to yielding — not just modeling clearance slip but the entire load-slip
relationship. Although, such a model would more accurately represent the experimental
data, the conclusions of this study are unlikely to change as a result of a more realistic

bolt-slip model.
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Appendix A
STIFFNESS MATRICES OF TRUSS AND BEAM ELEMENTS

A.1 Two-Dimensional Truss Element

The stiffness matrix of a two-dimensional truss element in the global axes system
is given as

c: c¢c, -C* -cCcC,

EA| C.C c: -c,c, -c?
k = £y y LD 4 y A..].
[] L| =C} -C.C, C? c.C, (A-1)

2 2
-CC, -C; C.C, C,
where C_, C},, C. are the direction cosines of the element in the x, y, and z directions

respectively.

A.2 Three-Dimensional Truss Element

The stiffness matrix of a three-dimensional truss element in the global axes
system is given as

¢ c¢c, cc, -c@ -CcC, -CC,]
C.C, :  c¢c, -CcC, -C* cCcC,
EA|l C.C. C,.C. c: -cc. -c,c. -c?
kl=== =7 7 : AL : (A2)
L| -ct -cc, -cc, C? c,C. C.C,
~-c,c, -C* -c.c, CC, c:  c.C,
-c.c. -¢c,c, -c¢: c¢cC. cc.  Cto|

A.3 Two-Dimensional Beam Element

The stiffness matrix of a two-dimensional beam element in the member axes
system is given as
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[ E4 0 o _E4 o |
L L
12ET, 6ET . 12E7. 6ET,
0 3 2 0 - 3 2
L L L L
0 6ET. 4FT 6ET. 2ET,
_E4 0 £4 0 0
L L
12E7, 6EI, 12E1, 6EI.
0 - 3 T2 0 3 T T2
L L L L
6EI, 2EI, 6ET. 4ET,
0 2 0 T2 J
R L L L L

To obtain the stiffness matrix in the global axes system [k, ] must be transformed using

the following expression

[c]=[r]" -[&,]-[T] (A4)
where
[Cx G 0 0 0 0]
-C, C, 0 0 0 0
)= 0 0 1 0 0 0 (A.5)
0o 0 0 C, C, O
0 0 0 -C, C, 0
0 0 0 0 0 I

A.4 Three-Dimensional Beam Element

The stiffness matrix of a three-dimensional beam element in the member axes

system is given as
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ETA 0 0 0 0 0 %’ 0 0 0 0

0 —1254 o o0 o % o EL 4 o %L-
12E 6E. 12E. 6E.

0 0 34 h} 0 0 ;4 ——ié 0
i J; L J;

0 0 0 % 0 0 0 0 —Gf 0 0
6E. 4E. 6E. 2E,

0 0 —f o ¥, 0 f o X
Jz L L L

0 % 0 0 0 % o %L 0 0 2—?

lel= EA EA

— 0 0 0 0 o = 0 0 0 0

0 —1254 0 0 0 —Gi o ZEL 0 o %t
12E. 6E. 12E 6E

0 0 f o ¥ 0 f 0 1
L L L L

0 0 0 % 0 0 0 0 % 0 0
6E, 2E 6E 4E,

0 % 0 0 % o L 0 0 %

L J

(A.6)

To obtain the stiffness matrix in the global axes system, [,,] must be transformed using

equation A.4, where

[ o o o
0 [7] o o
[r]= 0 o [ o
o o o [r
and
C. C,
-C.-C -c ~C, -sina .,
[1]= ki JC2+C! -cosax

JCE+C?

+C,-sine—C, -cosa

JCi+C?

-JC}+C? -sina

(A7)

C.

-C,-C.-cosa+C,_ -sine

JCI+C?

C,-C.-sina+C,-cosa

JCi+C?

(A.8)
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in which

iy and  cosq=——2 (A.9)

sSin @ = ——— —_—
‘\[ylczr+z:r Vyff-*-zsz
The coordinates y, , and z, locate the point k£ (used to define the principal planes of
bending) in the y, -z plane. For more detail see Krishnamoorthy, C. S. (1996). In case

of a vertical member (parallel to the global y-axis) the transformation must be modified

as
0 c, 0

[T]en=|-C,-cosa 0 sina (A.10)
C,-sine 0 cose
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Appendix B
STIFFNESS MATRICES OF SEMI-RIGID BEAM ELEMENTS

B.1 Two-Dimensional Semi-Rigid Beam Element

The following formulation is based on the work of Al-Bermani and Kitipornchai
(1992) and Chen and Lui (1987). The tangent stiffness relation of a connection element

at end i of a beam element is given as

M R, —R, ||€
= R (B.1)
Me‘- - Ri Ri 68&'
where M. is the total end moment, M, is the element end moment, R; is the rotational

stiffness of the connection element, &, is the total nodal rotation, and &,; is the element

nodal rotation (see Figure B.1). The relative joint rotation used in equations 2.16 and
2.17 is found using

6, =6 -6, (B.2)
The tangent stiffness relationship in the global coordinates of the beam element with

connection elements at end i and end j can be written as

M, TR -R e, ]

M,| |-R R 8,

{F.}t= [&.] Hr 3t (B.3)
M, R, -R,|6,

M| oL -k, R; J6, |

where {F.}, [K.], {r.} are the element nodal forces of the beam element, the stiffness

matrix of the beam element (see Appendix A), and the beam element end displacements

respectively. Equation B.3 can be rewritten as
{Fut=la] o} B-4)
where [c K, ] is a 10 x 10 stiffness matrix of a beam element with connection elements at

both ends. The subscripts imply a connection element on the left end and right end of the

beam element.
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In order to enforce compatibility at the junctions between the connection element
and the beam element, the 10 x 10 stiffness matrix must be transformed into an 8 x 8
stiffness matrix. This transformation ensures that the element rotations at both ends of
the beam only appear once in the nodal displacement vector. The following kinematic

relations can be written

{crec}z[cz-::].{crﬁ:} (B’S)
{c Tec } = <977 gei u; Vi aei u J v 7 gejl g‘l}' gej > " (B-6)‘

6. 6,) (B.7)

{chc}:<ui Vi O u; v, Oy

where the 10 x 8 kinematic transformation matrix is given as

0 01 0 0 0 0 O]
0 000 0 0 1 0
1 00 00 0 0 O
01 00 0 0 0 O
00 00 0 01 O
["Tc]:o 001 00 0 O B8
0000 1 0 0 O
0 0000 0 0 1
00 00 01 0 O
0 0 00 0 0 0 1]

The resulting transformation gives
[CK:!C]:[CYL]T '[cKec]'[cT::] (B‘9)
where L K “] is now an 8 x 8 matrix. The stiffness relationship of the transformed semi-

rigid beam element can be partitioned as
e et -{ef

{dl}—_-(u,. Vi O u; v, €U>T (B.11)

where

and

{d,}=(6. 6,) (B.12)
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The degrees of freedom at the junction between the beam element and the connection

element (&, and &, ) are internal degrees of freedom and can be condensed out using
static condensation. Since there are no applied moments on the internal degrees of
freedom, {Q,} is a zero vector, and by using static condensation

[K]=[kll]_[kI2]'[k22]—l '[kzl] (B.13)
where [K] is the 6 x 6 stiffness matrix for a semi rigid beam element in two dimensions.

It is easier to implement the above transformations into a computer program by using an
alternate condensation procedure. It can be shown that equation B.13 is identical to the

following expression

[k)=[.c.T-[.k.}[.c.] (B.14)
where
[.C.l= [[c[gc ]] (B.15)

in which [I ] is a 6 x 6 identity matrix and [ch] is a 2 x 6 matrix containing the
condensation terms

o=k, ]" -[ks] (B.16)

Therefore the transformation from a beam element with connection elements on both

ends can be reduced to a semi-rigid beam element in one step
[kl=l.c.][r.] [k ][] [.c.] (B.17)
Now the stiffness relationship is
[k]-{a.}={2} (B.18)
and the displacements and total rotations in {d,} can be found. To solve for the element
rotations use
CAER RN INEES (B.19)

or simply

{d,}=[.0.]-{d} (B.20)
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Since the total rotation and element rotation at a semi-rigid joint are now known, the
relative rotation can be calculated using equation B.2 and the rotational stiffness of the

connection element can be updated in equations B.1 and B.3 for the next load increment.

B.2 Three-Dimensional Semi-Rigid Beam Element

The formulation of the semi-rigid beam element in three dimensions is identical to
the formulation in two dimensions, only there are now three rotational degrees of
freedom for each connection element. The tangent stiffness relation of a connection

element at end i of a beam element is now given as

ernﬁ [— Rx', _ Rn, - rgxn 3
M xet - in R xi exei
Myn| _ R, -R, Oy
3 = ] (B.21)
M'.ex - Ryi R}l’ 9}'21' T
M =T R:i - R:i 9:77
LM zei - - R:i R:i - Lg:ei J

and [cKec] in equation B.4 is now a 24 x 24 stiffness matrix. The 24 x 18 kinematic

transformation matrix is now written as
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O 0 O

0
0

0 o0
0 o

0
0

0 0 o

0

0

0 0 o

0 06 0 0 0

0

0 0 0 0 o
0 0 O 0

0 0 0 O

0

L)

Equation B.15 can also be applied to the three-dimensional semi-rigid beam, only now

the identity matrix, [/], is a 12 x 12 matrix and [CQC] is a 6 x 12 matrix. Again the

stiffness of the three-dimensional semi-rigid beam element is written as

(B.20)
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Figure B.1: 2-D Beam Element with Semi-Rigid joints at Both Ends
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Appendix C
STRUCTURES FOR LINEAR VERIFICATION

C.1 Plane Truss

|-
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soxN 21t ® 19 ® 12 @ 16 @ 20® 22 30 ¥

-+ =
| o5 o X e @ |
€0 kN ® 1o = ® 60 XX
®|&X<8l®
42150 cm 1 = 1%
SIONGE
? 13
o e<e\0
1 « @ 'y v
H’:;nbu (unz)
® @ @ ® 18 21.08
a3 ® 7 818 " aes
. o @ @ @ 17 w 30 7
2 @ e E = 20000 kN/cm®
OlON@ G
1 | ¥ " s

- 20 e —f
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C.2 Space Truss

Member No. Area (cm?)
1tob 1047
6to9 19.03
10 to 21 21.06
22 to 25 42.12
Load (kN)
Node  x-direction - y-direction z-direction
5 - =2.30 - - -
8 -2.30 - -
9 -4.50 —-45.0 -23.0
10 - —45.0 «—=23.0

115



C.3 Plane Frame

' 30 kN/m
10kN MM

19 @ 20 21
@ i
10KN 18 @ 17 18
@
10xN
. 13 14 15
@ o @ P
LOkN o @ m @ 12 8x4m
10KkN = A : @ .
® ® @
10kN
4 5 @ ]
® Q) @ -
) 1 2 3
7707 77707 mr = —_—
\;{ f x
™ 6m t 4m -

All Columns: 30 x 50em
All beams ¢ 30 x 60cm

E = 2x10° kN/cm?
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C.4 Space Frame

5
&7\N

©
e o\ ®
8\
y Q /@
e
/gl g 2

777

E = 21x10*kN/cm?

B = 03

Afea Ig y [3
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3233 100  150.0 22354

Fig. 7.37 Space frame 2 -
Node No. (for *k’ node)
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8
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