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Self-supporting latticed structures are used in a wide variety of civil engineering 

applications, most commonly to support transmission lines that transmit and distribute 

electricity. Manitoba Hydro has approximately 10000 self-supporting latticed 

transmission towers located throughout the province of Manitoba. The current method 

for analyzing transmission towers arnong practicing engineers is to assume linear-elastic 

behavior and to treat the angle mernbers as pin-ended truss elements. This approach 

ignores the effects of bolt slippage and local bolt deformation, geometric or material 

nonlinearity, joint flexibility, and the bending stifXhess of the angle members. When the 

deflections and rnember axial forces measured in transmission towers in Manitoba are 

compared with the predictions from Iinear-elastic programs, there can be a large 

discrepancy. It is suspected that the bolt slippage and, to a lesser extent, the bending 

stiffness in the main leg members (not accounted for in linear-elastic programs) are 

causing the discrepancy between the predicted and the actual stnictural response. In an 

effort to improve the structural analysis of transmission towers, this study investigates the 

effect of bolt slippage on the deflections and member stresses of latticed self-supporting 

transmission towers. The cornputer program developed in this study can model tower 

members as truss and beam elements, c m  incorporate bolt slippage using an 

instantaneous slippage model or a continuous slippage model, and can model the 

connections as semi-rigid (flexible connections) provided moment-rotation data are 

available. The slippage models require certain parameters, determined fkom Ioad- 

deformation experiments on typical angle members, in order to accurately incorporate the 

effect of bolt slippage. Each member of the transmission tower can have its own slippage 

properties (rnost importantly the actual amount of clearance slip and the Ioad which 

initiates clearance slip) depending on its size and comection configuration. The slippage 

models are applied to several structural analysis problems: a simple one-dimensional bar 

element, a double-diagonal plane tniss, a double-diagonal plane fiame with semi-rigid 

connections, a simple three-dimensional transmission tower, and a full-scale transmission 

tower. The instantaneous and continuous slippage models are compared to each other, 

the no-slip case, and wherever possible, to slippage models of other authors. 
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Chapter 1 

INTRODUCTION 

1.1 General 

Latticed structures are used in a wide variety of civil e n g i n e e ~ g  applications. A 

latticed structure is a system of members (elements) and connections (nodes) which act 

together to resist an applied load. Typical latticed structures include grids, roofing 

structures, domes, and transmission towers. Latticed structures are ideally suited for 

situations requiring a high load carrying capacity, a low self-weight, an economic use of 

materiais, and fast fabrication and construction. For these reasons self-supporting latticed 

towers are most commonly used to transmit and distribute eIectricity. Manitoba Hyciro 

has approximately 10000 self-supporting latticed transmission towers located throughout 

the province of Manitoba. Because one latticed tower design may be used for hundreds 

of towers on a transmission Line, it is very important to find an econornic and highly 

efficient design. The arrangement of the tower members should keep the tower geometry 

simple by using as few members as possible and they should be fully stressed under more 

than one loading condition. The goal is to produce an economical structure that is well 

proportioned and attractive (ASCE, 1988). Typical towers have a square body 

configuration with identical bracing in al1 faces. Towers range fkom 30-m to 50-m in 

height and support wires spanning 200-rn to 600-m. Most transmission towers are 

constructed with asymmetic thin-walled angle sections that are eccentrically connected, 

are sensitive to material and geometric nonlinearities, and exhibit slippage or semi- 

rigidity at the joints, rnaking the transmission tower one of the rnost difficult forms of 

latticed structures to analyze (Kitipornchai, 1992; Al-Bermani, 1 WZA). As a resuk, most 

cornputer prograrns that design and analyze transmission towers make many assurnptions 

to sirnpliQ the cornputations, and ignore any nonlinear effects. 

This chapter presents a review of the literature pertaining to cornputer-aided 

structural analysis of transmission towers. Current advances in tower analysis are 

discussed, specifically: nonlinear effects such as joint slippage, semi-rigid-joints, material 



and geometric nonlinearity, and sophisticated data input schemes. Finally, the scope and 

objectives of the present study are outlined. 

1.2 Literature Review 

Before the computer was applied to structural analysis problems, highly 

indeterminate transmission towers were separated into determinate planar tnisses with 

loads that acted in the sarne plane as the truss (Bergstrom, 1960). These approximate 

methods (algebraic or graphical) required conservative assumptions that resulted in over- 

designed towers, 

Several computer programs have been developed to analyze a tower as an entire 

structure, which take into account the elastic properties of the members and calculate the 

displacements and axial forces using the stiffhess method of analysis (Marjemson, 1968). 

These first-order linear elastic programs assurned the angle mernbers were idealized tmss 

elements, pin-connected at the joints. The members were capable of canying tension and 

compression, and the loaded configuration of the structure was identical to the unloaded 

configuration - the secondary effects of the deflected shape were ignored. Secondary 

(redundant) members, used to provide intermediate bracing points along primary 

members, need not be considered in this type of analysis since they have no effect on the 

forces in the load-carrying primary members (ASCE, 1988). 

The next improvement in the structural mode1 of the transmission tower inciuded 

the tension-only member (ASCE, 1988; Rossow, 1975; Lo, 1975; Yue, 1994). Long 

bracing members, with L/r ratios greater than 300, are not capable of sustaining any 

significant compressive force once the member has reached its buckling load. 

Consequently, the strength of such a member is not the same in compression as it is in 

tension. After the compression strength of such a member is reached, the loads are 

redistributed to adjacent members. The process requires several iterations to determine 

which members have exceeded their buckling load, and to remove such members fiom 

the analysis. These programs also incorporate data generating schemes to minimize the 

amount of manual input. Making use of transmission tower symmetry (placing the 2-axis - 
vertically through the center of the tower and the X-axis and Y-axis parallel to the 



transverse and longitudinal directions of the tower), the known coordinates of one node 

may be used to generate the coordinates of up to three more nodes, The same data 

generation also applies to tower elements. Once the geometry has been generated, most 

programs produce a three-dimensional view of the tower to check the correctness of the 

input. These programs oflen include the automatic detection of planar nodes and 

mechanisms. In the space truss model, some nodes may have al1 of the comecting 

members lying in the sarne plane - causing instability normal to this plane. The program 

would search for such nodes and stabilize them by attaching springs normal to the planes. 

This has the effect of elirninating the singular stiffness matrix, without materially 

changing the characteristics of the structure (lo, 1975). 

When transmission tower displacements are large, the first-order elastic analysis 

techniques can be improved by using a second-order elastic analysis (ASCE, 1988; Roy, 

1984). A second order analysis (nonlinear in the geometric sense) produces forces that 

are in equilibrium in the deformed geometry, not the initial geornetry. The geometry of 

the structure is usually updated at the end of each iteration. Self-supporting latticed 

transmission towers are usually sufficiently rigid to assume srnall-displacement theory. 

However, as the tower flexibility and the applied loads increase, the secondary effects 

may becorne more significant. 

One assumption that is often made in transmission tower analysis is that the 

angle-to-angle bolted connections are pinned. If no rotation between comected members 

is expected, the joint is traditionally modeled as a rigid connection. In reality, however, 

the connection behavior lies somewhere in between these two ideaIizations, possessing 

some degree of rotational sti&ess as a fünction of the applied Ioad. Knight (1993) 

investigated the secondary effects of modeling the connections as rigid instead of pimed 

and found that the secondary effects rnay lead to premature failure of transmission 

towers. Chen and Lui (1987) developed a procedure to modiQ a two-dimensional bearn- 

c o l a  element for the presence of flexible comection springs. Al-Bermani and 

Kitipomchai (1992C) extended this formulation to a three-dimensional beam-column 

element. In both studies, a two node zero length comection eIement is used to model a 

flexible joint. The comection element is attached to the end of a bearn-column element 



via kinetic transformation and static condensation. Both studies showed that the 

structural response of a fl exibly jointed structure is very sensitive to joint behavior. 

Al-Bermani and Kitipornchai (1992A) have combined several nonlinear effects 

into one cornputer program (AK TOWER) that predicts the structural response of latticed 

structures up to the ultimate load. Sources of nonlinearity include geometric nonlinearity, 

material nonlinearity, joint flexibility, and joint slippage. Geometric nonlinearity can be 

accounted for by incorporating the effect of initial stresses and geometrical variations in 

the structure during loading. Modeling of material nonlinearity for angle members is 

based on a lumped pIasticity mode1 coupIed with the concept of a yield surface in force 

space. The angle members in the tower are treated as asymmetrical thin-walled beam- 

column elements with rigid connections. The effect of joint flexibility can be 

incorporated by modiQing the tangent stifiess of an element using an appropnate 

moment-rotation relationship for a flexible joint, provided joint flexibility information is 

known. The effect of bolt slippage can also be included. This program also uses the 

formex formulation to generate the geometry, the loading conditions and the suppoa 

conditions of towers. Fomex algebra is used to greatly reduce the amount of manual 

input, and acts as a preprocessor to the nonlinear AK TOWER program. 

Bolt slippage has long been recognized as a factor that can influence the 

deflections of transmission towers, but untii recently no research has been conducted. 

Peterson (1962) concluded that up to one-half of the measured deflection in transmission 

towers could be due to bolt slippage while the remainder was due to elastic deformation. 

Marjerrison (1968) realized that the deformation in holes and in the shanks of bolts could 

account for the rneasured deflection being approximately three times the theoretical 

deflection. Williams and Brightwell (1987) were the first researchers to present a 

stochastic method of assessing the effect of joint deformation on bolted latticed towers. 

They proposed a method for including joint rnovement in the axial strain of bracing or Ieg 

members and compared their results with a linear elastic analysis. They conciuded that 

there was no deterministic way in which the amount of joint deformation can be specified 

for each member of the structure. Their idealized bearing stress joint movement 

relationship was not based on experimental data. Dutson and Folkman (1996) also 

investigated the effect of bolt clearances in a cantilevered truss. The clearance in the 



joints was found to significantly change the structure's dynamic behavior by altenng the 

darnping charactenstics of the tniss. Kitipornchai, Al-Bermani, and Peyrot (1994) 

presented two idealized slippage models to investigate the effect of bolt slippage on the 

ultimate behavior of latticed structures. They proposed an instantaneous slippage rnodel 

and a continuous slippage model. Their numerical study showed that boIt slippage 

increases structural deflection, but does not significantly influence the ultimate strength 

in transmission towers. 

1.3 Objectives and Scope 

The current method for analyzing self-supporting latticed transmission towers 

among practicing engineers is to assume linear elastic behavior and to treat the angle 

members as pin-ended tmss elements. This approach ignores the effects o f  bolt slippage 

and local bolt deformation, geometric or material nonlinearity, joint flexibility, and the 

bending stiffness of the angle members. When the actual deflections and axial forces 

measured in transmission towers in Manitoba are compared with the predictions based on 

linear elastic analysis, there can be a Large discrepancy. These differences are generally 

accepted to be due to joint slippage and deformation. Some researches have argued that 

the magnitude of the slippage may be as large as the elastic elongation of t h e  c o ~ e c t e d  

members (Kitipornchai, 1994) and therefore an accurate analysis of a latt5ced structure 

was not possible. 

Manitoba Hydro engineers have recognized the need to improve current tower 

analysis practices. Some of the towers in northem Manitoba, subjected to large 

differential settlements due to frost heave, are performing normally while the  results fiom 

tower analysis software indicate that some of the main legs are stressed well beyond their 

load carrying capacity. It is suspected that the bolt slippage at the connections and the 

bending stiffhess of the main leg members, not accounted for in the software, are causing 

the discrepancy between the predicted and the actual structural response. In an effort to 

provide practicing engineers with a better understanding of the structural behavior of 

transmission towers, this study investigates the effect of bolt slippage on the deflections 

and member stresses of latticed self-supporting transmission towers. The computer 



program developed in the present study ( T M )  is able to model the angle members as 

miss or beam elements, can incorporate bolt slippage using an instantaneous slippage 

model or a continuous slippage model, and c m  model the comections as serni-ngid 

(flexible connections) provided moment-rotation data are available. The analysis 

assumes that the displacements are not large enough to warrant a cornputationally costly 

geometricaily nonlinear analysis, therefore equilibriurn is based on the initial geometry. 

The program was developed to inciude al1 of the important factors goveming the 

working-Ioad behavior of a transmission tower since the Ioad that typically initiates 

slippage in a member is much Iess than the ultirnate load. As a consequence, buckling 

and yielding considerations are not considered. Furthemore, the material properties 

remain linear-elastic throughout the loading process. 

The slippage models require certain parameters, determined fiorn load- 

deformation experiments on typical angle mernbers, in order to accurately incorporate the 

effect of bolt slippage. Each member of the transmission tower can have its own slippage 

properties, depending on its size and comection configuration. An independent study has 

recently been conducted at the University of Manitoba to deterrnine the load-slip 

relationship of typical tower angles (Ungkurapinan, 2000). Most importantly, the 

experiments are able to deterrnine the load at which the members initiate clearance slip, 

and the actual amount of clearance slip. These values can be used to rnodel the slippage 

characteristics of transmission tower members with similar comection configurations. 

The validity of the theoretical slippage rnodels can be venfied with the experimentally 

determined load-slip relationships. 

Chapter 2 introduces the frnite elernent method of structural analysis, with 

descriptions and formulations of typical transmission tower eiements including nonlinear 

finite element techniques. Two models for bolt slippage are presented. Mode1 I 

represents an instantaneous slippage, with al1 of the slip occumng at a specified load 

level and model II assumes slippage is a continuous process starting from the first load 

increment. Chapter 3 descnbes the Tower Analysis Program ( T M )  developed for 

investigating the effects of bolt slippage. The main program and several subroutines are 

described in detail. Chapter 4 discusses the application of the software develqec! in this 

study to several structural analysis problems: a simple one-dimensional bar elernent, a 



double-diagonal plane truss, a double-diagonal plane f?ame with semi-rigid connections, 

a simple three-dimensional transmission tower, and a full-scale transmission tower. The 

instantaneous and continuous slippage models are compared to each other, the no-slip 

case, and wherever possible, to slippage models of other authors. The cornparisons are 

made in tems of nodal deflections and member stresses. The sumrnary and conclusions 

of the present study are given in chapter S. 



Chapter 2 
STRUCTURAL, ANALYSIS OF TRANSMISSION TOWRS 

2.1 General 

This chapter introduces the finite element method of structural analysis, with 

descriptions and formulations of elements typically used for modeling transmission 

towers. Nonlinear finite element techniques and load incrementing procedures are 

discussed in preparation for the sections conceming axial bolt slippage and the semi-rigid 

behavior of connections. Two models are presented to incorporate the effect of bolt 

slippage into a typical structural analysis program. 

2.2 The Finite Element Method in Tower Analysis 

The finite element method (FEM) is a mathematical procedure, most ofien 

computer aided, which is used to obtain approxirnate solutions to the governing equations 

of complex problems. In some cases, solutions to these problems cannot be obtained 

analytically. An analytical solution is a mathematical expression that can give an exact 

value of the field variable (displacement, temperature) at any location in the body. In the 

finite element method, the field vanable is approximated using interpolation functions 

pieced together between discrete points. Most practical engineering problems involve 

complicated geometry, material properties, or loading conditions, and therefore require a 

numerical solution procedure such as the finite element method. 

The finite element method can be considered as an extension or generalization of 

the stiffness method (with reference to fiamed structures) to two-dimensional and three- 

dimensional continuum problems, such as plates, shells and solid bodies (Ghali, 1978). 

The finite element concepts used in continuum problems can be used to formulate the 

stiffness method of analysis treating the member of a fiarned structure as an element 

(Krishnamoorthy, 1996). Therefore, the element stiffness matrices derived for truss and 

beam elernents using the stiffness method of analysis are identical to the stiffness 

matrices derived using finite element concepts. 



For each problem utilizing the f i t e  element method, several steps must be 

followed. The physical system must be discretized into smaller fuiite elements. The 

elements may be one-dimensional, two-dimensional, or three-dimensional depending on 

the nature of the problem. For transmission towers, each angle rnember is usually 

modeled as a one-dimensional element, or line element, with one node at each end of the 

element. The unknown degrees of freedom, or the primary unknowns, are evaluated at 

these nodal points. An interpolation function must be selected which approximates the 

distribution of the unknown variable within an element. The function is expressed in 

terms of the nodal values of the element. For example, the unlaiown quantity within a 

beam element (the transverse displacements) can be fully described once the degrees of 

freedom for each end node are known. The governing equations and constitutive 

relations are then defined. The elernent equations are formulated using the direct 

equilibrium method, energy methods, or the method of weighted residuals. For the 2- 

node Iine elements used in transmission towers, the direct equilibrium method is usually 

performed. The equation of equilibriurn for each element can be written as 

[kI. {d l  = {f 1 (2.1 a) 

where [k] is the elernent stifhess matrix, { d )  is the element displacement vector 

consisting of the unknown degrees of fi-eedom, and { f } is the element nodal force vector. 

The equations for each element are assembled to obtain the global system of 

equations, and appropnate boundary conditions are applied. The assembled global 

system of equations can be written as 

[KI {d= {4 (2. lb) 

where [K] is the global stiffness matrix obtained by assembling al1 element stiffness 

matrices [k], I q }  is the displacement vector consisting of the unknown global degrees of 

freedom, and {F) is the global force vector obtained by assembling al1 element force 

vectors { f }. The primary unknowns, {q) ,  are determined by solving the global system 

of equations, often by Gauss elimination, from which the secondary unlaiowns, such as 

element forces and moments, can be calculated. 

The same steps are followed for any type of problem; the end result is always a 

matrix equation in the f o m  of equation 2. lb. The same steps are followed for one- 



dimensional heat conduction, two-dimensional flow through porous media, or three- 

dimensional stress analysis. Because of its versatility, the finite element rnethod has 

become the most popular computer analysis tool available to engineers today. Chapter 3 

describes the computer implementation of the f ~ t e  element method, with each step 

separated into a subroutine of the main computer program developed for analyzing 

transmission towers. 

2.2.1 Truss Elements 

Latticed transmission towers are often modeled as linear-elastic tmss elements, 

since the angle members of the tower primarily resist axial loading with minimal bending 

resistance. The joints at the ends of tniss mernbers are idealized as fnctionless pins, fiee 

to translate in any direction unless externally constrained by a specified boundary 

condition. ln reality, however, the idealized pin connection seldom occurs. Tmss 

elements are used in situations where the bending stresses are negligible cornpared to the 

axial stresses. Appendix A shows the stiffhess matrices for two-dimensional and three- 

dimensional tmss elements. Krishnamoorthy (1996) describes their formulation in detail. 

If the angle members in a tower are modeied as tmss elements, then they cannot resist 

lateral loading. Any wind load or dead load acting over the truss element must be 

distributed to the two connecting joints. It is standard practice to concentrate half of the 

self-weight of the member to each of the two joints the member comects. 

A problem with the tmss element in modeling transmission towers is the 

possibility that a collapse mode may occur. Collapse modes are caused by out-of-plane 

instability at planar joints or by in-plane instability due to unstable subassemblies called 

mechanisms. A planar joint occurs when al1 the members teminating at one joint lie in 

the same plane, causing instability at the joint in the direction normal to this plane. In 

Figure 2.1, joints 1, 2, 3, 4 are planar joints, and if the bracing member ab is removed, 

joints 5 and 6 are also planar joints. A planar joint c m  displace in some direction without 

resistance, resulting in a Ioss of equilibrium. In order to correct out-of-plane instability, 

artificial restraints can be connected to planar joints, which are f i e d  at one end and 

normal to the plane of al1 connecting members at the planar joint. The artificial restraint 



has a small cross-sectional area so as to provide enough stiffness to the joint to prevent 

collapse, but without significantly altenng the physical charactenstics of the tower. 

An example of an in-plane instability is shown in cross-section A-A of Figure 2.1. 

The diaphragm in section A-A becomes a mechanisrn if the stabilizing member is 

removed fiom the analysis. The stabilizing member, or dummy member (not actually 

present in the real tower), again has a srnall cross-sectional area so as to provide enough 

stiffness to the unstable subassembly to prevent collapse. In both cases, the minimum 

number of restraints required to prevent ngid body movernents have not been provided, 

resulting in a singular stifhess matrix (not possessing an inverse) if artificial restraints or 

durnmy members are not provided. This problem is associated with pin-connected 

rnembers only, and does not occur with towers modeled with beam elements. In-plane 

and out-of-plane instabilities are prevented in actual towers by the bending stifhess of 

continuous rnembers that pass through the joints (ASCE, 1988). 

2.2.2 Beam Elements 

The linear-elastic tmss assumption is an accurate model for tower members that 

are subjected to only axial tension or compression. In real transmission towers, 

eccentrically applied Ioads, lateral wind and dead loads, initially crooked members, 

comection rigidity, members not comecting at a single point, and the continuity of the 

main members may cause bending moments and shearing forces to develop. The bending 

moments in tower members caused by joint rigidity and rnember continuity, widely 

ignored despite experimental evidence, can be as significant as axial stresses in certain 

cases (Roy, 1984). The conventional linear-elastic tniss model should be replaced with a 

beam element model when significant bending stresses are present in tower members. 

Some structural analysis prograrns allow several different types of elements to 

mode1 the same problem. The stiffer main leg members, subjected to the Iargest bending 

stresses, could be modeled as continuous beam elements while the smaller angle 

rnembers could use the conventional tmss model. Some researchers assume that the 

multiple-bolted end connections offer enough restraint to regard the comection as ngid, 

and model the entire transmission tower as an assembly of beam elements (Al-Bermani, 



1992A). Appendix A shows the stiffness matrices for two-dimensional and three- 

dimensional beam elements. Knshnamoorthy (1996) describes their formulation in 

detail. The beam elernents considered here do not include the effects of shear 

deformation or secondary moments (the bearn-column effect). In more advanced 

inelastic analysis, tower members may be modeled as general thin-walled bearn-column 

elements, capable of yielding and buckling. 

2.2.3 Boundary Elements 

Boundary elements are used to speciQ displacement boundary conditions (zero 

and non-zero values), to provide artificial restraints at planar nodes, and to compute the 

values of the support reactions. A boundary element is a spnng with axial stiffness to 

resist translation and torsional stiffness to resist rotation. In a three-dimensional 

transmission tower problem, a boundary element is attached to each footing joint in each 

of the global X, Y, and Z directions. If the specified displacements at the footing joints of 

a tower are input as zero, the footings are prevented Eom translating or rotating in any of 

the global directions. If a non-zero displacement is specified (negative translation 

represents a foundation seulement and positive translation represents a foundation uplift 

due to frost heave) the amount of translation or rotation is read as a p ropeq  of the 

boundary element. 

To get the value of a reaction in the direction of one of the global axes, a very 

large stiffness coefficient is added to the corresponding diagonal coefficient. This 

produces a very srnall but finite displacement in that direction, which when multiplied by 

the very large stiffness, k, gives the desired reaction (Krishnamoorthy, 1996). 

When a non-zero displacement, 6, is specified at a degree of fieedorn, q, the Ioad 

vector is modified as 

k - q = k - b  (2.2) 

where k is very large (lOIO). When equation 2.2 is added to the global system (equation 

2.1), the solution at the degree of fieedom q will always equal the specified displacement. 

If the nodal displacement is specified, the external reaction cannot be specified and 

remains unhown. When the boundary elernent is used to mode1 an artificial restraint at a 



planar node, the stiffness must be reduced to a much smaller value, generally less than 

the stiffness of the srnallest tower member. 

2.3 Nonlinear Finite Element Analysis 

In the previous section it was assumed that the constitutive relations, used to 

derive the element equations, remained linear throughout the analysis. In some cases the 

stress-strain relationships do not obey the simple linear elastic assumption, and the non- 

linearity of the matenal properties must be considered. In other problems the linear 

strain-displacement relationship cannot be used accurately due to large displacements and 

large strains altering the geometry of the elements. These types of problems are said to 

be geometrically non-linear. This section describes non-linear finite element problems 

that have only material non-linearity; the assurnption of small displacements and small 

strains is still made. 

In nonlinear problems, the stifkess rnatrix depends on the unknown quantity. A 

direct solution procedure is no longer possible, and an iterative solution scheme is 

required. For structural analysis problerns, where the stiffness is a function of the 

displacements and the Ioading history, the tangential stifhess method is usually 

performed along with a load increment procedure. The nonlinear problem is essentially 

linearized over a srnall portion, or increment, of the total structural load. Equation 2.1 is 

revised as 

[m)I* {d = { F I  (2.3) 

When empIoying an iterative solution scheme, equation 2.3 will not be satisfied and a 

system of residual forces exist, (Y}, that essentially rneasures the deviation of equation 

2.3 fkom equilibriurn (Owen, 1980) 

W! = [ ~ ( d l -  {d- I F }  * 0 (2.4) 

Since the s t i aess  is a fimction of the displacements, so is the residual force 

vector, {Y} = {Y (q)}. An initial solution vector is assumed; for structural problems the 

most common initial solution is I q O ) =  {O). The tangential stiffhess can then be 



evaluated and the residual forces can be calculated using equation 2.4. The initial 

solution must be corrected by an arnount { ~ q ' }  using 

{w}= -[&7')r1 - {wqr)} (2.5) 

to obtain an improved approximation 

{sr+'}= {qr l+ {w) (2.6) 

This procedure is repeated until the residual forces converge to a tolerably small 

value. Once convergence has occurred, the next load increment is applied and the 

iterative process is repeated. The solution vector calculated in the current Ioad increment 

is added to the solution vector of the previous toad increment to get the current total. The 

secondary unknowns, the member forces and bending moments for example, are 

accumulated in a sirnilar fashion. 

If the load increments are made small enough, the non-linear relationship within 

the Ioad increment will closely resemble a linear relationship. Consequently, the residual 

forces calculated using equation 2.4 will be very small, and any iteration performed will 

only slightly improve the solution. If the total load is separated into enough increments, 

the residual forces can be neglected without sacrificing any accuracy in the final solution. 

The program developed in this study uses this piecewise-linear technique. For a problem 

using a continuous bolt slippage model, the total structural load must be divided into 

small incrernents since the slippage is a fbnction of the member's axial force. 

In other cases, the non-linear effect may only occur once a certain condition has 

been satisfied. In these cases, such as instantaneous bolt slippage or elastic-plastic 

problems, the stiffness is only modified once a prescribed load level or strain level has 

been exceeded. For a probiem using an instantaneous bolt slippage model, the total 

structural load must be divided into small increments in order to detect when a member 

first exceeds its slippage load, and to prevent a member from exceeding the specified 

maximum allowable slippage in the following load increments. Any iteration scheme 

performed within these small Ioading increments will not improve the solution 

significantly. 



2.4 Modeling Joint Slippage 

The bolt slippage contribution to transmission tower deflections has long been 

recognized. Past research peterson, 1962; Marjemson 1968) has found that bolt 

slippage, and the deformation in the bolts and bolt holes, accounts for part of the large 

discrepancy behveen observed deflections and theoretically predicted deflections. Only 

recently have bolt slippage considerations been included in transmission tower analysis 

software. Kitipomchai realized that the magnitude of the slippage rnay be as large as the 

elastic elongation of the connected members and, as a result, modified the stifkesses of 

rnembers to include the effect of bolt slippage. 

The bolted connections of transmission towers always experience some degree of 

slippage. Slippage occurs in bolted connections since the boit holes punched in typical 

tower angle members are oversized, in cornparison to the bolt diameter, in order to 

provide erection tolerance. With oversize holes, slip into bearing at or below design 

loads cannot be prevented (Winter, 1956). The tolerance is usually 1.5-mm (111 6 of an 

inch) for the connections used in transmission towers. This would allow a possible slip 

of 1.5-mm at a joint in any direction, depending on the magnitude and direction of the 

member force, and the starting position of the bolt (Kitipomchai, 1994). In a member 

with a slipping connection at both ends, both joint tolerances could combine to provide a 

maximum member slippage of approximately 3-mm. In order to produce the maximum 

slippage at one end of a rnember, the bolt must be in a position of maximum clearance 

(see Figure 2.2). The theoretical maximum clearance slip is unlikely to be achieved in a 

multiple-bolt comection since sorne bolts go into bearing before others due to minor 

dimension deviations. If the bolt is bearing initially against the bolt hole, a position of 

zero clearance, then no clearance slippage can take place at that joint. Figure 2.3 shows 

the load-slip relationship for a two-bolt comection with the bolts in a position of 

maximum clearance, clearly indicating a 2 to 3-mm rigid-body slippage until bearing is 

established. Before this clearance slip begins, the connection behaves linearly. As 

loading is increased, the joint behavior becornes non-linear as the bolts slip through the 

maximum clearance. As the displacement increases, the joints behave linearly until the 



limit of elasticity of their material is reached- Mercadal (1989) has also observed this 

behavior in tension and compression tests on pinned joints. 

Even in situations where the bolt is initially bearing against the bolt hole, a 

deformation slip at the connection is also observed (Winter, 1956; Ungkurapinan, 2000). 

Deformation slip arises Eom the plastic deformation of the joined elements and the bolt, 

and represents a large portion of the total slip. Deformation slip occurs afier clearance 

slip, at loads much larger than the load that initiates clearance slip, and continues until the 

metal on the bearing side of the hole begins to yield. 

Many tests have been conducted on bolted connections to detemine the load that 

produces a significant slippage, or to deterrnine the entire load-slip relationship of the 

connection (Winter, 1956; Lobb, 1971; Gilchnst, 1979; Ungkurapinan, 2000). Past 

research has indicated that the strength of a connection can be predictable and the 

possibility of failure is remote if it is designed correctly. However, the possibility that 

the connection will slip before ultimate load is reached is very likely (see Table 2.1). 

Bolts may slip continuously throughout the loading process or instantaneously 

once a certain load has been reached. Some typical load-slip relationships are shown in 

Figure 2.4. The slippage load in curve A is norrnally defined as the maximum load 

reached before major slippage begins. The slippage Ioad in curve B is defined as the load 

at which the deflection rate suddenly increases. For curve C, no obvious slippage load 

can be observed, and a slip load is selected once a certain arnount of slippage has 

occurred (0.5-mm for example). 

The load-slip relationship for bolted connections is highly variable and depends 

on such factors as the applied loading, workmanship, the torque used to tighten the bolts, 

the properties of the bolts and joining members, the number of bolts, the position of the 

bolt relative to the bolt hole, and the fiction coefficient between the slipping surfaces. 

Table 2.2 shows the variability in the slippage load by comparing the minimum and 

maximum values for several tests conducted by Winter. 

In a real transmission tower, it is impossible to know precisely how much the 

bolts actuaIIy slip and at what load level. The position of the bolt relative to the bolt hole 

is not known for each tower rnember, and the torque used to tighten the 

identical for each connection. For this reason, certain assumptions must be 

bolts is not 

made about 



the position of the bolt relative to the bolt hole. The bolt rnay be initially bearing, 

positioned exactly in the center of the hole, or in a position of maximum clearance. The 

slippage model may assign random bolt positions for each connection in a tower, or the 

mode1 may assume each connection will slip the same amount. 

Two models are presented which attempt to incorporate the effect of bolt slippage 

on the behavior of latticed structures. These models require certain slippage parameters 

for each element that experiences slippage. The number of bolts in the comection, the 

position of the bolt with respect to the bolt hole, and the size of the angle member, affect 

the maximum slippage allowed, the slippage load, and the load-slip relationship. For an 

accurate modeI, this input must be based on experimental slippage studies. Figure 2.5 

shows an idealized load-deformation cuwe for joints with maximum clearance at 

assembly for connections with 1 to 4 bolts. The actual experimental results shown in 

Figure 2.3 are represented in this idealized curve to provide the necessary input for the 

slippage models. The most important parameters for the slippage models are the amount 

the comection slips and the slippage load. This information can be read directly from 

such an idealized curve. If the effect of bolt slippage was to be investigated in bracing 

rnembers with two-boks per joint with the bolts in a position of maximum clearance, a 

slippage load of 20.14-kN and a maximum slippage of 2.2 bmrn would be input into the 

slippage model. 

2.4.1 Mode1 1 - Instantaneous Slippage 

This slippage model, proposed by Kitipornchai, Al-Bennani and Peyrot (1994), 

assumes that al1 the slippage occurs at a certain load level. In model 1, it is assumed that 

the ends of the tmss or bearn member, under tension or compression, slip relative to one 

another by an amount As when the axial force in the mernber exceeds the slippage load, 

P, (see Figure 2.6). The member length a f  er slipping may be expressed as 

E = L + A ,  (2-7) 

for a tension member, and 

E = L - A ~  



for a compression member, where L is the length before slipping and is the length 

afier slipping. These changes in Iength are srnall (2 to 3 mm) when compared to the 

member's original length and their effect on the member stiffness after slippage is 

complete is very small. While slippage is taking place, however, a substantial change in 

the member stiffhess occurs. In the instantaneous slippage model, once the force in the 

mernber has reached or exceeded the slippage load, P,, by adding the applied structural 

load in small increments, no additional load increment is carried by the member until the 

assumed slip, As, is completed. Essentially, the stifhess of the member is reduced to zero 

and the force in the mernber rernains equal to the slippage load as the member slips 

(Figure 2-71. When a member's stifiess is reduced to zero it is "rernoved" fkom the 

structure and the load it was carrying is distributed to the other members in the structure. 

Slippage model 1 does not work if the removal of slipping members produces a 

geometrically unstable structure, creating a singular stiffness matrix. In order to correct 

this problem, the stiffness of the slipping member should be reduced by two or three 

orders of magnitude instead of reducing it completely to zero. The same concept is 

applied when a tension-only member is subjected to a compression load. Expenence has 

shown that this technique is successfd for rnodeling tension-only members and 

elirninates the problem of a singular stiffness matrix (Rossow, 1975). By greatly 

reducing the slipping rnember's stiffhess, the deflections at the joints of the slipping 

member increases while the interna1 force in the member remains relatively constant. 

Because the stiffhess is not zero, but some reduced value, the intemal force in the 

member increases by a very small amount as the member slips. The joint deflections 

continue until the assumed slip is complete. Once this occurs, the member stiffness is 

restored to its onginal value, but the member length is based on the modified length, z. 
In some cases, the total structural load is not divided into enough load increments, 

causing the member to exceed the maximum specified allowable slippage, As. When this 

occurs, the nurnber of Ioad increments must be increased until the difference between the 

computed slippage and the specified slippage is tolerably srnall. In other cases the 

assurned slippage is not completed after the last load increment is added, and the mernber 

stiffiiess remains in its reduced form. 





As the n parameter is decreased, the force-slip relationship changes significantly, 

distributing the total slippage over much larger axial forces. As seen in Figure 2.11, as 

the n parameter increases, model II begins to resemble model 1, with most of the slippage 

occurring at or near the slippage load. 

It can be shown, using equations 2.9 and 2.10, that the axial slip is always less 

than the axial deformation. However, when the axial force in a slipping member is near 

the slippage Ioad and the m parameter is large, the (v -  v m )  term in equation 2.9 

approaches unity and most of the axial deformation in this case is due to axial slippage. 

Sirnilar to elasto-plastic problems where the total strain is separated into elastic 

and plastic components, in the continuous slip mode1 the total axial deformation is 

compnsed of an elastic deformation component, A,, and a slippage component, As. 

Therefore, 

For a non-slipping member loaded with a force P, the following relationship can be 

written 

For a slipping member however, the slippage cornponent does not contribute to the axial 

force in the member, oniy the elastic deformation component does. Therefore, 

or using equations 2.9 and 2.1 1 

The stiffhess of a slipping member can now be calculated as the total axial force divided 

by the total axial defoxmation as in equation 2.12 

The stiffhess of a slipping member is very similar to a non-slipping member initially, but 

decreases significantly as additional loading increments are applied and as the axial force 

in the member approaches the slippage load. Once the prescribed slip has been attained 



or when the incremental slip in equation 2.9 approaches zero at axial forces much greater 

than the slippage load, the stiffhess returns to that of a non-slipping rnember. Again, as 

in slippage mode1 1, the rnember stiffiess is now based on the modified length, E .  

2.5 Semi-Rigid Connections 

The angle-to-angle bolted connections in transmission towers are traditionally 

modeled as pimed connections, completeiy free to rotate. If no rotation between 

intersecting members with multiple-bolt connections is expected, the joint is traditionally 

rnodeled as a ngid comection. In reality, however, the comection behavior lies 

somewhere in between these two idealizations; a pinned joint has a certain amount of 

rigidity and a rigid joint has a certain amount of flexibility. Therefore, every connection 

in any structure is actually a serni-ngid connection, although most design and analysis 

techniques ignore this fact. This type of joint fiexibility can be considered a form of 

stippage, only instead of in the axial direction as in the previous section, the joint slips 

rotationally. 

If a connection is to be modeled as a semi-rigid connection then the moment- 

rotation relationship of the comection must be known. Mathematically, this relationship 

can be expressed in a general form as 

M =f (6,) (2.1 6) 

where M is the moment transmitted by the connection and 8, is the relative angle of 

rotation between the comecting members. This relationship, which best fits the 

experimental data available for a particular connection, is implemented into the finite 

element method to mode1 the non-linear comection stifiess. Typically the function is an 

exponential fixnction, since comection stifhess decreases as load increases, and this type 

of fbnction avoids the possibility of negative stiffness values - encountered in some 

polynomial models. 

The method for incorporating connection flexibility involves attaching a two-node 

zero length connection element at both ends of a standard beam element. The tangent 

stifiess of a connection at a particular load increment is given by 



For a three-dimensional problem, a connection element has three rotational 

degrees of freedom at each node. The behavior of a connection element in its three 

directions (in-plane bending, out-of-plane bending, and torsion) are governed by their 

own specified moment-rotation relationship. - 
By enforcing equilibrium and compatibility at the junction of a beam element and 

a connection element, and by statically condensing the internal degrees of freedom (Chen 

and Lui 1987, AI-Bermani and Kitipomchai 1992) a rnodified bearn stiffness can be 

computed. A semi-rigid beam element can easily represent the perfectly pimed or 

perfectly ngid idealizations by modifying the parameters of the moment-rotation 

relationship to produce zero connection stifhess or infinite connection stiffness 

respectively. Any intermediate connection stiffness corresponds to a semi-rigid 

connection. The structural analysis program described in chapter 3 has the capability to 

mode1 semi-rigid connections. Appendix B presents the formulation of a serni-rigid beam 

element in two and three dimensions. 



Table 2.1: Slippage and ultimate loads for single 1/4 inch bolt specimens securing a 
lap joint in tension (Gilchrist, 1979) 

Gage 
(Galvanized) 

26 
26 
26 
24 
24 
24 
22 
22 
22 

Gage 1 Shear 1 1/4 1 3/8 1 1/2 1 Y8 1 3/4 1 1 

Slip Load 
(Ibs) 
260 
220 
200 
225 
275 
130 
210 
275 
170 

20 

14 

Table 2.2: Ranges of observed slip loads (lbs) for various bolt sizes tested in single 
shear (SS) and double shear @S) for three gage thicknesses (Winter, 1956) 

Ultirnate Load 
(lbs) 
720 
610 
585 
850 
875 
830 
1030 
965 
940 

10 

Slip Load / 
Ultirnate Load (%) 

36 
36 
34 
26 
3 1 
16 
20 
28 
18 

SS Min 
SS Max 
DS Min 
DSMax 
SS Min 
SS Max 
DS Min 
DSMax 
SS Min 
SS Max 
DS Min 
DS Max 

230 
900 
600 
1300 
300 
900 
300 
1240 
.. 
- 

- 

600 
1600 
840 

2200 
370 
1060 
640 
1260 
720 
1200 
600 
1900 

1550 
2000 
1600 
2300 
1200 
2450 
1960 
3300 
1800 
3600 
2400 
3000 

1700 
2100 
1740 
3070 

- 
- 

5100 
6300 

- 
- 
- 
- 

2600 
3300 
2690 
3980 
2650 
6540 

- 
- 
- 
- 

5530 
6570 

3700 
5800 
3 100 
5600 
4200 
5100 

5680 
7460 
6900 
8000 
10200 
14200 



Section A-A 

Figure 2.1: Simplified transmission tower mode1 



Max SIip 

Figure 2.2: Maximum clearance producing maximum slip after loading 



Figure 2.3: Load-Slip relationship for specimens with a hvo-bolt connection and 
bolts in a position of maximum clearance (Ungkurapinan, 2000). 



Load 

Figure 2.4: Typical load-slip relationships (FHWA, 1981) 



Number of 
Bolts per A 01 P Q B R 

jolnt 

1 9.29 2731 2.21 2.74 65.03 6.04 
2 20.14 84.81 2.21 1.73 97.51 2.55 
3 29.28 113.92 2.21 2.40 152.85 2.18 
4 46.95 138.95 2.21 1.85 168,21 1-16 

i I I 
I 
I 

I 
I el\  l ! - I I 

Deformation (mm) 

Figure 2.5: ldealized curve for joints with maximum clearance at assembly (Ungkmpinan, 2000) 
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Figure 2.11: Slippage model II for several n values (m = 100) 



Chapter 3 

TRANSMISSION TOWER ANALYSIS PROGRAM 

3.1 General 

This chapter descnbes the Tower Analysis Program (TAP) developed for 

investigating the effect of bolt slippage on the structural behavior of latticed self- 

supporting transmission towers. The program was written using the Microsoft 

Developer Studio, an integrated development environment used to develop Fortran 90 

applications. It includes a text editor, resource editors, project build facilities, an 

optimizing compiler, an incremental linker, a source code browse window, and an 

integrated debugger in one application. The main program and each of the subroutines 

are described in detail. 

3.2 Tower Analysis Program (TAI?) 

The tower analysis prograrn (TAP) calcuIates the nodal deflections and the 

member stresses of a two-dimensional or three-dimensional structure compnsed of bearn 

and/or tmss elements. The program can consider instantaneous or continuous axial bolt 

slippage and can include the effect of semi-rigid connections. Figure 3.1 shows the 

structure of the prograrn, listing al1 of the subroutines called by the main program. Some 

of these main subroutines cal1 other subroutines themselves, but are not shown in the 

figure. TAP, like most finite element programs, uses an element library subroutine that is 

called several times during the analysis. Many procedures in the finite element method 

require different treatment depending on which type of element is being considered (tmss 

element, beam element, boundary element, or semi-rigid bearn element); the element 

library directs the main program to the correct element-specific procedure. Each 

subroutine rnarked with an asterisk in Figure 3.1 calls the element library for its element- 

specific procedure. Matenal properties (IND = I), assembling the self-weight load vector 

( N D  = 2), assembling the stifhess matrix (IND = 3), and calculating stresses (ND = 4), 

are al1 element specific. The IM) parameter is a flag to indicate which segment of the 



element routine to execute. The general forrn of any element subroutine is shown in 

Figure 3.2. 

The first step of the prograrn is to read the control data for the problem being 

analyzed, The control data include the number of nodes, the nurnber of elements, the 

number of rnatenal sets, the number of dimensions, the maximum number of degrees of 

freedom per node, the number of load increments, and the slippage mode1 to be used. 

M e r  the prograrn reads this information, the input file can be accessed. 

3.2.1 Input Subroutine 

The input subroutine reads and generates nodal coordinates, element connectivity 

data, element material set data, and element specific matenal properties. AI1 of this 

information is echoed back into the output files along with the eventual nodal 

displacements and element slesses of the structure at the final load increment. 

Intermediate displacements and stresses can also be monitored. The generation of data 

can be carried out along a straight line. For example, if the coordinates of the exterior 

nodes along a straight line are specified manually, al1 interna1 nodal coordinates at a 

specified interval are automatically generated. For certain transmission towers, linear 

interpolation rnay not be the best method, and a generation scheme utilizing tower 

symmetry about the 2 -a i s  may be the most efficient. If the 2-axis is placed vertically 

through the center of the tower and the X-axis and Y-axis are oriented paralie1 to the 

longitudinal and transverse faces of the tower respectively, then when the coordinates of 

one node are input manually, up to three more nodes may be automatically generated 

using the tower's symrnetry. This coordinate system is highIy recomrnended for either of 

these generation schernes. This type of coordinate system assumes that gravity acts in the 

negative 2-direction. This is important when considering the self-weight of tower 

rnembers. If the analyzed structure occupies only two dimensions, gravity is assumed to 

act in the negative Y-direction. If the user assumes a different gravity direction, the self- 

weight load vector will be incorrect. 

When reading the element specific material properties, the element library must 

be used. If analyzing a two-dimensional truss element, the Young's modulus, the cross- 



sectional area, and the self-weight must be read along with a11 of the slippage parameters. 

If analyzing a two-dimensional beam element, the program must also read the moment of 

inertia from the input file. The elemenî library is called for each material set specitied in 

the control data. 

The input subroutine also has the important function of determining the number of 

unknowns in a problem, or, the nurnber of equations that must be solved simultaneously. 

This is done by surnming the number of degrees of fieedom for every node of the 

structure. If the structure only uses one type of element, this is a simple procedure. But 

when two types of elements meet at one joint, the element with the maximum number of 

degrees of freedom must be used. When these two elements are assembled into the 

global stiffness matrix, special care must be taken to ensure that the matrix assembly is 

perfomed correctly. If a member capable of transmitting moments to a node is coupled 

at that node to a tmss element, it is necessary to compIete the stiffness matrix of the tniss 

element by insertion of zero coefficients in the rotation or moment positions (Zienkewicz, 

O. C., 1989). By stonng the maximum number of degrees of freedorn at every node, the 

global matrix can be assembled correctly. 

3.2.2 Concentrated Load Subroutine 

This subroutine reads and generates the concentrated nodal load data and 

assembles the global load vector { F ) .  One node rnay have up to six different 

concentrated loads, one for each degree of fieedom for a three-dimensional beam 

element. Concentrated loads may also be generated using liner interpolation. The sign of 

the applied loads are with respect to the global coordinate system. No concentrated Ioads 

may be applied to nodes which may experience a collapse mode (at planar joints if only 

modeling the tower with tniss elements). 

3.2.3 Distributed Load Subroutine 

This subroutine cornputes the elernent force vector in global coordinates, { f }, 

due to the self-weight of an element and any applied distributed loads (for beam 



elements) and assembles the global force vector {F}. Distributed loads may also be 

automatically generated for elements with the same loading. For tmss elements, since no 

transverse loading is acceptable, the self-weight of the tr~.~ss member (calculated by 

multiplying the dead load of the rnember Wrn] by its length) is concentrated equally 

ont0 the comecting nodes. For beam elements, the self-weight and any applied 

distributed loads must be added together when forming the element force vector 

{f) = [TlT - {{f, 1 + { ~ e h e k h t } }  (3.1) 

The member force vector, {f,}, is transfonned into global coordinates by the 

transformation matnx [T], see Appendix A. The mernber self-weight vector must first be 

converted into its equivalent nodal loads in the member axis before it is transformed into 

global coordinates by the transformation matrix. It is important to realize that the self- 

weight, or the dead load of the mernber, acts in the negative global Y-direction in nvo- 

dimensional problems and in the negative global 2-direction in three-dimensional 

problems. For a two-dimensional beam element with a linearly varying distributed load 

and a uniformly distributed self-weight, the element force vector is wrïtten as 

cos # 
sw-r2 

where p, and p, are the intensities of the linearly distributed load per unit length at 

nodes one and two respectively with respect to the member y-axis, and Sw is the intensity 

of the self-weight per unit length. For a three-dimensional beam element, additional 



parameters, p, and p,,  are used to speciQ the intensities of a linearly distributed load 

per unit length at nodes one and two respectively with respect to the member z-axis. 

Once the self-weight and distributed load vector is computed for an element, it is 

assembled into correct location in the global force vector. This process is repeated for al1 

elements. When this subroutine returns to the main program, the complete global force 

vector, {F}, is divided into the number of load incrernents specified in the control data 

line. The solution procedure can then begin. For each increment in load, the stiffness 

matrix must be updated and the incremental displacements and stresses must be 

accumu!ated. 

3.2.4 AssembIe Subroutine 

This subroutine forms the element stiffness matrix for each element (each tirne 

calling the elernent library) and assembles the global stiffness rnatrix. If displacements 

are specified for a particular problem, they are first divided into the same number of 

increments as the force vector, and the global stifhess matrix and the global force vector 

are rnodified according to equation 2.2. For every element in the structure, the length is 

calculated and its material properties are either retrieved from rnemory or recalculated 

based on the modified stiffness of slippage mode1 1 or rnodel II. Once the element 

stifmess matrix is formed, it is transformed fiom the rnember coordinate system to the 

global coordinate system. Control r e m s  to the assembling subroutine where each 

element stiffness matrix is placed in the proper location in the global stiffriess matrix. 

3.2.5 Gauss Elimination Subroutine 

This subroutine uses the gauss elimùiation method to solve a set of simultaneous 

equations in the form [KI. I q }  = {F}. The set of equations are manipulated until an upper 

triangular matrix is formed. If the maximum value for any elernent on the main diagonal 

is close or equal to zero, then the error message "no unique solution exists" appears, and 

the subroutine is terminated. The program identifies which main diagonal node has a 

stiffness coefficient less than 1E-10. This error occurs when the stiffness matrix is 



singular, most likely due to a planar node or a collapse mechanism in a tmss structure. 

The geometry of the mode1 can be modified with stabilizing members or dumrny 

members once the source of instability is detected, or certain truss elements can be 

replaced with beam elements. If a unique solution does exist, the values of iq} can be 

determined by a process of back-substitution, starting from the last equation in the upper 

triangular matrix. These solutions are accumulated to predict the nodal displacements for 

the current load increment. 

3.2.6 Stresses Subroutine 

This subroutine calculates the incremental stress resultants (forces, bending 

moments) and the incremental axial slippage of every element, which are accumulated at 

every load increment. The incremental nodal displacements, { d } ,  calculated in the gauss 

elimination subroutine, are used to calculate the incremental stress resultants in an 

element by using 

and 

where {s,} represents the stress resultants corresponding to the nodal degrees of freedom 

due to loads on the member under firlly restrained end conditions (Krishnamoorthy, 

1996). The axial slippage is calculated according to the specified slippage mode1 in the 

control data Iine (instantaneous slippage, continuous slippage, or no slippage). AH results 

are printed to an output file. 

3.2.7 EquiIibrium Subroutine 

After the final load increment is applied, but before the program ends, the 

equilibrium subroutine is called, This subroutine checks if each node is in equilibrium by 

summing the forces and moments in the global X, Y, and Z directions. Al1 the element 

stress resultants that contribute to the equilibrium of a particular node are added together. 



The total stress resultant for each degree of freedom at each node should equal zero if the 

structure is in equilibrîum. 

3.3 Sample Input File 

The text file shown on the following page, input.dat, illustrates the input format 

required by TAP. This is the input file used for the double-diagonal truss example in the 

next chapter. Only the left column of numbers is required by the program. The right 

colurnn gives the variable name that stores the data in the program, and is used to help the 

programmer identiQ what the input represents. The input is separated into five main 

components: the control data, nodal coordinates, element data, material properties, and 

the loading conditions. The input file shows these components separated into £ive 

sections for clarity, but in the actual input file no blank lines are allowed. 

The control data is the first line in the input file. It stores the number of nodal 

points (NUMNP), elements @KIMEL), material sets (NUMAT), dimensions (NDM), 

degrees of freedom per node (NDF), Ioad increments (INCREM), and the slippage mode1 

used (MODEL). The structure in the sarnple input file is a plane miss since NDM and 

NDF are equal to two. 

The nodal coordinates are the next component in the input file, one node per line 

(unless nodal generation is used) starting with one and ending with NUMNP. The input 

uses the following format: node number, node generation increment, X-coordinate, Y- 

coordinate, and 2-coordinate. In the sarnple input file, node 3 does not generate 

additional nodes, and has an X-coordinate and Y-coordinate of 250-mm. Since this 

problem is only two dimensions the 2-coordinate is not required. 

The element data input uses the following format: element number, element 

generation increment, the element's material set, and the nodal points i, j, and k that 

define the element's length and direction. Nodal point k is only required for three- 

dimensional beam elements. It serves to orient the member about its own axis, and 

therefore camot be located along the line joining points i and j. Nodal points i, j, and k 

define the member x-y plane. Point k is chosen to produce a positive y-coordinate with 

respect to the rnember's coordinate system. Point k must already be a defined node in the 



input. dat 

JWMNP, MJMEL, NUMAT, NDM, NDF , INCREM, MODEL 

MA, I E L  
E,A,SW,SLIPMAX,PSLIP,SLIPM,SLIPN 
MA, IEL 
E,A,SW,SLIPMAX,PSLIP,SLIPM,SLIPN 
MA, IEL 
AXISIDISP-CODErROT-CODErDISP,ROT,STIFF'NESS 
M?L, IEL 
AXIS,DISP-CODE,ROT-CODE,DISP,ROT,STIFFNESS 

structure. For transmission towers, angle members are oriented such that their principal 

axes are in line with existing structural nodes, therefore, defining the k node is not 

difficult. In the sample input file, elements 1-5 are miss  elements (elernent type 1) and 

elements 6-9 are boundary elements (element type 5). Element 3 belongs to matenal set 

1 and is connected to nodes 3 and 4; nodes 1 and 4 are restrained in the X and Y- 

directions. 

The next component in the input file is the material properties of the elements. 

Each material set is associated with one element type, and each element type has a certain 

number of material properties that are needed to f o m  the element stiffness matrix. A 

two-dimensional truss element requires the following properties: Young's Modulus, 

cross-sectional area, self-weight, maximum slip, slip load, rn parameter, and n parameter. 

A boundary element requires the following properties: the global axis direction (1 = X, 2 



= Y, 3 = Z), displacement code (1 = restrained, O = fiee), rotation code (1 = restrained, O 

= fiee), specified displacement, specified rotation, and spnng stifkess. In the sample 

input file, eiement 4 has a maximum slip of 1-mm while element 5 has a maximum slip 

of O-rnrn- 

The last cornponent in the input file is the loading conditions - concentrated and 

distributed. The format for concentrated loads is: node number, generation increment, 

load at the frrst degree of fieedom, load at the second degree of freedom, . . . , load at the 

maximum number of degrees of freedom. Nodes 2 and 3 have a IO-kN load applied in 

the X-direction. The concentrated load data must terminate with a line of zeros - 

indicating that there are no more concentrated loads. The format for distributed loads 

(only applicable to beam elements) is: element number, generation increment, intensity at 

node-i in the member y-direction, intensity at node-j in the member y-direction, intensity 

at node-i in the member z-direction, intensiv at nodey in the member z-direction. The 

distributed load data must terminate with a line of zeros - indicating that there are no 

more distributed loads and the end of the input file has been reached. The input file is not 

accessed again. With al1 input read and stored, the first increment of displacements can 

be calculated with the first load increment. 
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Chapter 4 

MODEL VERLFICATION AND APPLICATION 

4.1 General 

This chapter verifies the slippage models developed in chapter 2 and investigates 

the effect of bolt slippage on the general behavior of latticed structures. The linear no- 

slip aspects of TAP are first validated followed by a comparison of the results from bolt 

slippage analyses using TAP and the prograrn AK TOWER. The cornparisons are made 

in tems of nodal deflections and member stresses. The number of slipping elements and 

the parameters of both the instantaneous and continuous slippage models are varied in 

order to investigate the effect of bolt slippage on a simple one-dimensional bar element, a 

double-diagonal plane truss, a double-diagonal frame with flexible connections, and a 

simple three-dimensional transmission tower using beam elements. Finally, a full-scale 

transmission tower is analyzed. Before the slippage analysis was conducted on the full- 

scale tower, the most suitable element configuration was deterrnined by trying several 

models (a11 truss elements, al1 beam elernents, or a combination of truss and beam 

elements). The effect o f  bolt slippage is investigated on a full-scale transmission tower 

using truss and beam elements with experimentally determined slippage parameters. 

4.2 Mode1 Verification 

SeveraI example problems are analyzed in this section in order to establish the 

validity of the developed TAP program. The linear no-slip results of the TAP prograrn 

are first compared to solutions obtained fiom PASSFEM, a prograrn for the analysis of 

structural systems byfinite elernent method developed by Krishnamoorthy (1996) and the 

popular structural analysis program SAP N. The only program available for comparison 

of the results from bolt slippage analyses was AK TOWER (Al-Bermani and 

Kitipornchai, 1994). Unfominately, this program combines several nonlinear effects into 

the same program (geometric and matenal nonlinearity, joint flexibility, and joint 

slippage). In the TAP prograrn, only joint slippage produces the nonlinear response. 



Therefore, a direct comparison between the TAP results and the AK TOWER results is 

not possible. Several conclusions c m  be made, however, fiom the results of TAP, AK 

TOWER, and the no-slip case. 

4.2.1 Plane Truss, Space Truss, Plane Frame, and Space Frame 

Before any nonlinear effects are incorporated into a structural analysis program, 

the linear-elastic capabilities must be functioning correctly. In order to veriQ the linear 

(no-slip) aspects of TAP, several simple analyses of fkamed structures were conducted. 

A two-dimensional tniss, a three-dimensional truss, a two-dimensional frame, and a 

three-dimensional frame were analyzed by TAP. The geometry, matenal properties and 

loading conditions of the structures are given in Appendix C (taken from 

Knshnamoorthy, 1996). Cornparisons of axial forces and end moments frorn selected 

members using various analysis prograrns are shown in Tables 4.1 to 4.4. Clearly TAP is 

able to reproduce the results of standard structural analysis programs, and al1 truss, beam, 

and boundary elements are functioning correctly. 

4.2.2 Double-Diagonal Plane Truss with SIippage 

The nonlinear aspects of TAP were investigated by analyzing a simple double- 

diagonal truss as shown in Figure 4.1. Kitipornchai, Al-Bermani, and Peyrot (1994) 

investigated the effect of instantaneous bolt slippage and continuous bolt slippage on the 

same double-diagonal tniss. Figure 4.1 indicates the element material properties and the 

element slippage properties that Kitipornchai selected for the analysis. For this structure, 

the slippage load is 2-kN and slipping rnembers are allowed to slip 1-mm. The 

continuous slippage parameters rn and n for the AK TOWER program and the TAP 

program were assigned values of 4 and 6 respectively. 

The vertical deflection of node 2 is shown in Figure 4.2 for the no-slip case and 

for slippage model I and slippage model II when the tension diagonal (element 4) slips 

and when the compression diagonal (element 5) slips. The deflections are greater when 



the compression diagonal slips because it is directly connected to node 2. In other words, 

node 2 would deflect more if element 5 were removed than if element 4 were rernoved, 

The AK TOWER results along with the output from TAP are shown in Table 4.5. 

AK TOWER computed the ultimate load of the truss, and the deflections shown in Table 

4.5 are taken at 95% of the calculated ultimate load. Although the results fiom the two 

programs should not be compared directIy (since Kitipornchai's program includes 

geometnc and matenal nonlinearity, and treats the angle members as genera1 asymrnetric 

thin-walled beam-column elements) some observations c m  be made. For the no-slip 

case, both programs predict the sarne vertical deflection at 95% of the ultimate load - 
before the compression member buckles. Also, for any slippage model, the vertical 

deflection of node 2 is always more than the no-slip case. The results for the continuous 

slippage models are fairly similar (a 3% difference), but there is a significant discrepancy 

between the instantaneous slip models. Even though the absolute difference is only 0.17- 

mm, the instantaneous slip results frorn TAP are 50% larger when the compression 

diagonal slips. The differences between the predicted deflections are most likely due to 

the geometric and matenal nonlinearities not accounted for in the TAP program, and the 

different rnethods used to modie the stifkess of the slipping member. Kitipomchai's 

method for updating the stiffness matrix and the actual amount of member slip was not 

available for comparison QWipomchai, 1994). 

The TAP deflections reported in Table 4.5, were the values obtained once the 

solution had converged. For the relatively simple double-diagonal truss example, the 

difference between the solution at 100 load increments and the solution at 10000 Ioad 

increments was less than 2%. In fact, the accuracy of the solution did not improve after 

1000 load increments (much less than 1%). Figure 4.3 shows the solution convergence as 

the number of Zoad increments are increased for the instantaneous slip model when the 

tension diagonal slips - this vertical deflection value was entered in Table 4.5. 

4.2.3 Simple Transmission Tower with Slippage 

A simplified model of a transmission tower is shown in Figure 4.4 along with the 

angle sizes and slippage properties. Kitipornchai, Al-Bermani, and Peyrot (1994) 



investigated the effect of instantaneous bolt slippage and continuous bolt slippage on the 

same structure. Four vertical loads, two transverse loads, and two iateral loads are 

applied to the top of the 8-m tower. The tower cross section remains square and the 

bracing is symrnetrical on al1 faces, mica l  of most transmission towers. For this 

structure, Kitipomchai assumed a slippage load one tenth of the yield load, which is a 

fairly reasonable assumption (see Figure 2.3 or Figure ZS), and al1 members are allowed 

a maximum bolt slip of 1-mm. The slippage load was caIculated as 81.55-kN for the 

members in the four main legs and 23.18-kN for al1 other members using the yield stress 

and the cross-sectional area of each type of angle. The sarne rn and n parameters that 

were used for slippage model II in the double-diagonal truss exampIe (4 and 6 

respectively) were selected by Kitipomchai for the simplified transmission tower. Al1 

members are modeled as three-dimensional beam elements. In the input file, the usual 

two end nodes are not enough to completely define the length and orientation of each 

beam eIement. A third node must aIso be entered to define the orientation of the 

principal planes of bending (the member y-axis and the member z-axis). This is only 

necessary for three-dimensional beam elements. 

The transverse defiection at A is shown in Figure 4.5 for the no-slip case and for 

slippage model I and slippage model II when al1 mernbers of the tower are allowed to slip 

1-mm. The Ioad factor on the tower was increased to a maximum of 30; the ultimate load 

of the simplified transmission tower (calculated by AK TOWER) occurred at a load 

factor of 29.35. The transverse defiection at A at 95% of the ultimate load is shown in 

Table 4.6 for the AK TOWER prograrn and the TAP program. Again, as in the double- 

diagonal truss example, a direct cornparison of the deflections camot be made since the 

two computer programs use different analysis techniques. However, as seen fiom Table 

4.6, no matter what technique or what computer program is used, instantaneous or 

continuous bolt slippage produces significantly larger deflections than the no-slip case. 

In this example, the transverse deflection at A was increased by over 30% by using the 

instantaneous slippage model from TAP, and the continuous slippage model fiom AK 

TOWER resulted in a 20% increase in transverse deflection (Kitipomchai, 1994). The 

mode1 1 deflections are greater than the model II deflections in Table 4.6 (and Table 4.5) 

since the low rn parameter in model II does not produce the 1-mm rnember slip which is 



achieved instantaneously in model 1. As discussed later, when the members slip the same 

amount, both models predict the sarne structural response- 

Figure 4.6 illustrates the convergence of the transverse deflection at A (using 

model 1) as the nurnber of load increments are increased up to 1000. The no-slip case has 

been included for comparison. The solution does not change significantly (less than 1%) 

for load increments greater than 1000, as shown in Figure 4.7. It is interesting to note 

that the general shape of the load-deflection relationship remains fairly consistent, no 

matter how many load increments are used. This implies that the tower members slip at 

the same Ioad level (the specified slippage load, P,) but the members that are analyzed 

with fewer load increments exceed the maximum allowable slip and cause larger 

transverse deflections. When the axial force exceeds the slippage load for a member 

using model 1, a large stiffhess change results in a large change in displacement. In some 

cases, this large slip displacernent exceeds the maximum aiiowable slip, As, specified in 

the input file, and the analysis must be repeated with a smaller load increment, Until the 

member slip is approxirnately equal to the specified allowable slip, the number of load 

increments must be increased. This aspect of model 1 is shown in Table 4.7; as the 

number of load increments increase, the actual member slip approaches the specified 

member slip. For this simple transmission tower example, model 1 required 1000 load 

incrernents before al1 of the member's slipped an amount equal to the specified maximum 

slippage. Because of the large slip displacement associated with instantaneous slip, 

model 1 usually requires more load increments than mode1 II before the solution 

converges. In terms of computational eficiency, mode1 II is superior to model 1. 

4.3 Slippage Effects on the General Behavior of Structures 

The program verification in the previous section has shown that linear examples 

analyzed with TAP produce the same results as standard structural analysis programs and 

that the slippage models compared favorably to the only known solutions to structural 

analysis problems incorporating bolt slippage. In this section, the number of slipping 

elements and the parameters of both the instantaneous and continuous slippage modeIs 

are varied in order to observe the effect on the general behavior of several structures and 



to compare the results of the instantaneous slippage model to the continuous slippage 

model. The investigations are conducted in order to arrive at a suitable slippage mode1 

for a full-scale transmission tower- 

4.3.1 Simple Bar Elements 

The most basic of Iatticed structures, a single one-dimensional bar with one node 

restrained and one end axially loaded is shown in Figure 4.8. This simple case c m  easily 

measure the effects of bolt slippage without complicating the analysis with a large input 

mesh. The bar element rnay be modeled as a truss or a beam - both representations give 

identical results since the bar is only subjected to axial forces. The following analysis of 

the simple bar element was based on 1000 load increments; no change in the output was 

observed if the number of load increments was increased above this amount for either 

slippage model (see Figure 4.9). 

The axial force-deformation relationship s h o w  in Figure 4.10 is based on a 

single bar element with the material properties and loading conditions given in Figure 

4.8. In this example, the slippage load is 10-kN (one-tenth the total load) and the 

maximum amount of slip is Imm. It can be seen that the rn parameter has a significant 

effect on the results, as mentioned earlier in chapter 2. If the rn parameter is increased 

above 135, however, the axial force-deformation relationship does not change. Any 

value above 135 produces an axial slip equal to the specified slip (1-mm), and any value 

below 135 produces an insufficient amount of slip (less than 1-mm). This is illustrated in 

Figure 4.11. Therefore, in order to produce the sarne slippage effect for models 1 and II, 

the rn parameter must be at least 135. 

For the no-slip case, the elastic axial deformation (A,) in the bar is 1-mm at the 

final load level. For a specified slippage (As) of also 1-mm, the total axial deformation 

(A) should equal 2-mm according to equation 2.1 1. As can be seen in Figure 4.10, both 

slippage models have a final axial deformation of 2-mm (if a large enough rn value is 

selected for model 11). Furthemore, if an additional bar is attached to the bar s h o w  in 

Figure 4.8, with the same material properties and with an rn parameter that produces a 1- 

mm slip in both members, then the deflection of the end node is equal to each rnember's 



elastic deformation and each member's slippage. This produces a 4-mm end node 

deflection compared to only 2-mm for the no-slip case (see Figure 4.12). This 

sumat ion  of elastic and slippage deformations for a structure with rnany members can 

produce nodal displacements that are much Iarger than a similar structure without 

comection slip. Alternatively, the same amount of slip shown in Figure 4.12 for a two- 

bar assembly is produced when a single bar element is capable of slipping 2-mm instead 

of l-mm. By applying this concept to a full-scale transmission tower, the tower 

deflections would be considerably larger with the bolts in a position of maximum 

clearance than with the bolts positioned in the center of the bolt hole or bearing against 

the bolt hole. 

Altering the slippage load also has a significant effect on the axial force- 

deformation relationship. Figure 4.13 shows the force-deformation relationship for 

rnodel I and model II for slippage loads of 10-kN, 30-lcN, and 50-lcN. Altering the value 

of the slippage load only effects the load which initiates slippage (model 1) or the Load at 

which most of the slippage occurs (rnodel II), but the end resuIt is not affected. A 

structure comprised of elements that slip at IO-kN and a structure cornpnsed of elements 

that slip at 50-lcN would produce identical nodal displacements, as long as the axial force 

in al1 members is greater than 50-kN. 

Another interesting feature of a member capable of slipping is its ability to absorb 

a specified displacement. To illustrate this effect, the same element in Figure 4.8 is used, 

except the appiied force of 100-kN is replaced with a specified displacement of 1-mm. 

Since the 100-kN force produces a 1-mm displacement, a 1-mm specified displacement 

should produce an internal force of 100-kN for the no-slip case. Figure 4.14 confirms 

this. But if the element is allowed to slip according to either slippage model 1 or model 

II, the intemal force is greatly reduced. In Figure 4.14, most of the specified 

displacement is transfemed directiy to the slippage component of the total deformation 

and the internal force remains at or near the slippage load. In fact, if the slippage load 

was reduced to zero in model 1 (slippage begins at the onset of loading), the entire 

specified displacement would be due to slippage and the internal force in the member 

would be zero. This demonstrates that a slipping connection not only increases 



deflections, but can also significantly reduce the connecting member's intemal axial 

force. 

4.3.2 Double-Diagonal Plane Truss 

The double-diagonal tmss exarnple is revisited to investigate the effects of 

slippage and to compare the results of both slippage models. Just as the results for two 

different methods of analysis should not be compared directly, the results for 

instantaneous slippage and continuous slippage should not be compared unless the 

amount the member slips is equal for both cases. As demonstrated with simple bar 

elements, the instantaneous and continuous slippage models only agree with each other 

when al1 members slip the sarne arnount. The amount the members actually slip was not 

shown in Table 4.5, since this information was not provided in the literature. When the 

slippage parameters selected by Kitipomchai are used for venfication purposes (Figure 

4.Q the deflections using model II are significantly less than the deflections using model 

1 (as seen in Figure 4.2). This does not mean the two models disagree with each other, it 

means the amount of slip each model produced was not equal. The low rn parameter in 

mode1 II only produced a slippage of 0.044-mm at the final load compared to the fully 

completed slip of I .O-mm when using slippage model 1. 

The maximum slippage, As, should be set to the difference between the bolt hole 

and the bolt diameter of a connection, 1-mm was assurned for this example. Once the 

specified slip is complete, the member stiffhess is restored to its original value. If a 

slipping member does not reach the specified amount when using model 1, nothing can be 

done to increase the slip since the applied load is not large enough to complete the 

clearance slip. If complete slip is achieved with model 1, but not with mode1 II, the nz 

parameter can be increased to achieve complete slip. If the applied load was less than 

approximately 8-kN (see Figure 4.2) then both models would not be able to complete the 

specified slip. 

In order to produce a 1-mm slippage in the tension member for both models, 

thus allowing a direct companson, the m parameter was increased as shown in Figure 

4.15. In order to complete the clearance slip with mode1 II, a minimum rn parameter of 



210 must be selected. Any value above 210 produces an axial slip equal to the specified 

slip (1-mm), and any value below 210 produces an insufftcient arnount of slip (less than 

1-mm). Figure 4.16 shows that both models predict a very similar load-deflection 

relationship when the tension member slips the same amount. From approximately 9-kN 

up to the fuiai applied load of 10-kN, the load-deflection relationship is linear for both 

models. This represents the transition from slippage stifhess to original stifiess, which 

occws once the slippage has reached the maximum specified amount. When analyzing a 

structure with continuous bolt slippage, it may be necessary to perform several runs of 

the program, each tirne rnodi&ing the slippage parameters until the member slip is equal 

to the specified clearance slip, As. 

An interesting consequence of allowing one diagonal to slip while leaving the 

other diagonal in the no-slip case, is the Ioad-distribution effect. Figure 4.17 illustrates 

the changes that occur in the diagonal member's axial force when member 4 is allowed to 

slip according to model 1, but member 5 is not. The axial forces of the diagonal members 

in the no-slip case are included for comparison. When the axial force in tension member 

4 exceeds the slippage load (2-kN in this example), the member begins to slip. While 

slippage is occurring, the axial force in member 4 remains constant while member 5 must 

take on additional load to maintain equilibrium. Once the prescribed slippage in member 

4 has been achieved, both members share the applied force equally and the axial force 

increases with the applied load at the same rate as the no-slip case (the slopes are equal in 

Figure 4.L7 after the applied load exceeds approximately 8-kN). In this example, 

slippage of the tension member has decreased the final axial force in mernber 4 from 

14.14-kN to 4.9-kN while the axial force in member 5 has increased from -14.14-kN to 

-23.38-W. Almost identical results were achieved using slippage model II. 

For this simple exarnple with only 5 members and allowing only one member to 

slip, the load-distribution effect is easily observed. The effect becomes less noticeable as 

the number of members in a structure is increased, and as the nurnber of slipping 

members is increased. If both diagonals are allowed to slip, the axial forces of al1 

members are virtually the same as the no-slip case, but the deflections are significantly 

larger. Since both diagonals reach their slip load sirnultaneously, the applied load cannot 

be distributed from one diagonal to the other, and the reduced stifiesses only cause 



larger deflections. Likewise, if al1 members in the double-diagonal tmss are aIlowed to 

slip, the axial forces again are virtually the same as the no-slip case and the deflections 

are even larger. The larger deflections are due to larger axial elongations compnsed of 

elastic elongation and 1-mm of slip. The results are surnmarized in Table 4.8. 

4.3.3 Double-Diagonal Plane Frame with Semi-Rigid Connections 

The double-diagonal truss example, shown onginally in Figure 4.2, is re-analyzed 

with semi-rigid connections to determine if joint slippage is influenced by joint 

flexibility. The verification is based on a cornparison between the perfectly pimed and 

the perfectly rigid 

connection by using 

idealizations. TAP models the tangent stiffiess of a semi-rigid 

the following exponential fiinction 

in which LX is a scaling factor, C is a curve fitting constant and 8, is the relative angle of 

rotation between comecting members (accumulated at each load increment). Wben a i s  

large the exponential term approaches unity and the stiffness of the semi-rigid connection 

becomes equal to the constant C. In order to model a pinned comection a srnaIl C value 

is selected; in this exarnple C=lE-8 was used to represent the truss element solution (C 

m u t  be small, but greater than 1 E- 10 in order to prevent a singular stiffness rnatnx). In 

order to model a ngid connection a Iarge C value is selected; in this example C=1E20 

was used to represent the beam element solution. To investigate the semi-rigid case an 

intermediate stifmess is selected, in this example a constant connection stiffness of 

C=lES was used. The semi-rigid beam element can easily model nonlinear moment- 

rotation behavior by decreasing the a factor. 

Figure 4.18 shows the vertical deflection of node 2 of the double-diagonal fiame 

for the no-slip case. As expected, the deflection for the fiame modeled with semi-rigid 

beam elements was larger than the beam element (C=lE20) solution but smaller than the 

tmss element (C=lE-8) solution. Figure 4.19 shows the vertical deflection of node 2 of 

the double-diagonal frame when al1 elernents are allowed to slip 1-mm according to 

model I and II. Again the semi-rigid beam elernent solution falIs in between the beam 



and tmss solution. In fact the percent increase in deflection fkom the beam solution to the 

semi-ngid beam solution was almost the same for the slip and no-slip cases. Semi-rigid 

beam eIements increased the deflection by 13.9% for the no-slip case and by 12.4% for 

al1 members slipping 1-mm. SimiIarly, the percent increase in deflection fkom the semi- 

rigid beam solution to the tniss solution was almost the same for the slip and no-slip 

cases. A 12.0% increase was observed for the no-slip case and an 11.4% increase was 

observed for al1 members slipping 1-mm. Modei 1 and model II solutions were identical 

at the final load - once al1 members had slipped the same amount. This simple exarnple 

shows that joint flexibility influences the nodal deflections, but does not influence joint 

slip behavior. 

4.3.4 Simple Transmission Tower 

The simple transmission tower (Figure 4.4) is revisited to investigate the effects 

of slippage and to compare the results of both slippage models. As previously discussed, 

the instantaneous and continuous slippage models only agree with each other when al1 

members slip an equal arnount. By arbitrarily assuming an m parameter of 4 

(Kitipomchai, 1994) the amount the members in the tower actually slip is not guaranteed 

to be equal to the specified 1-mm, and therefore the two models predict different results, 

That explains why the mode1 II deflection at A (Figure 4.5) is significantly less than the 

mode1 1 defl ection. 

For model 1, as the load factor is increased to a maximum of 30, a total of 44 of 

the 69 beam elements in the tower exceed their slippage load and undergo a 1-mm 

slippage. The other 25 elements do not exceed their slippage load and their stiffness does 

not change. For model LI, al1 the members slip, but the amount each member slips is 

dependent on its rn parameter and its axial force. Table 4.9 shows the axial slippage of 

40 tower members for model 1 and model II. Only with large m values do members slip 

the specified 1-mm with model II. Since the continuous slip model also depends on the 

axial force in the member, elements with a small axial force that did not exceed their 

slippage load for mode1 1 (elements 11-20 in Table 4.9 for example) produce a much 

smaller slippage for model II. 



Since the member slippage using model II approaches the member slippage using 

model 1 with higher m values, the transverse deflection at A using model II with an rn 

parameter of 100 is almost identical to the rnodel 1 solution at higher load factors (see 

Figure 4.20). The two models are not identical, however. For exarnple, in Table 4.9, 

element number 26 slips 0.24-mm using model II, while in mode1 1 this eIement does not 

slip at all. Also, at low and intermediate load levels, the two models can predict 

considerably different deflections (see Figure 4.20 at a load factor of approximately 13). 

Only when the same members slip the same amount at the sarne load level, do the two 

models predict identical deflections and member stresses. Although the defiections 

increased considerably, the axial stresses in the simple transmission tower were 

unaffected by axial slippage. 

4.4 Structural Analysis of a Full-Scale Transmission Tower 

A full-scale transmission tower is s h o w  in Figure 4.21. This tower is located in 

northern Manitoba and is part of Manitoba Hydro's Nelson River DC transmission 

system. It is over 60-rn taIl and is cornpnsed of 494 primary rnembers (not including 12 

boundary elements restraining the footing joints in the three global directions for al1 four 

main legs), and 217 primary nodes. The actual tower has a total of 708 angle members 

and 384 connection nodes, but these totals are also including secondary members and 

secondary nodes. The analysis of this tower does not include secondary rnembers or the 

joints attached only to secondary members (called secondary nodes). Secondary 

members are only relevant in compression capacity calculations, since their purpose is to 

reduce the unbraced length of primary members and not to provide load resistance. The 

self-weight of these neglected secondary members is accounted for by multiplying the 

primary member self-weight by an appropnate factor (Yue, 1994). A factor of 1.2 was 

used in this example. 

This tower was desigued with 16 different angle sizes: from LSlx51x4.8 angles 

used in the transverse and longitudinal cross-bracing in the upper section of the tower to 

L152x152x13 angles used in the main legs of the bottom section of the tower. The 

members are typically assumed to be tmss elernents, but the TAP program can rnodel the 



tower members as truss elements, bearn elements, or a combination of the two. The wire 

loading condition shown in Figure 4.21 is one of several worst-case scenaxios tested by 

Manitoba Hydro's analysis and design program and the output from that program will be 

used to veriQ the results of the TAP program. 

4.4.1 Linear Analysis 

The three-dimensional representation of the tower's upper section, Figure 4.22, 

best illustrates the staggered bracing pattern used for this tower. The bracing rnembers 

on the longitudinal face and the transverse face do not meet at a common joint, providing 

additional stability and strength without increased matenal costs. The staggered bracing 

pattern does complicate the analysis however. Each time the bracing members on each 

face do not meet at a common joint, this additional joint adds three equations (if oniy 

truss members are attached to the joint) or six equations (if a beam member is attached to 

the joint) to the system of equations for the entire tower. For this particular tower, the 

staggered bracing pattern adds over 60 primas. joints to the analysis, or up to 360 

additional equations. 

These staggered joints also present a mathematical problem besides the increased 

number of equations that must be solved. At each of these joints, al1 the members 

connected to these joints are in the same plane - producing a planar joint and a singular 

stiffhess matrix if the connecting mernbers can only resist an axial force (if they are al1 

truss elements). For exampIe, joint 12 in Figure 4.22 is a plana joint. The elements that 

are connected to node 12 (elements 6-12, 10-12, 16-12, and 23-12) al1 lie in the same 

plane. These planar nodes are common in most transmission towers, not just towers with 

staggered bracing. In order to solve such a system of equations, artificial restraints must 

be provided in the direction of instability, or the truss elements must be replaced with 

beam elements. Both options were tried for this tower, and the solutions were compared 

with the output of the program that is currently being used by Manitoba Hydro. The 

deflections for several of the tower's nodes in the upper section (the nodes that are 

subjected to the largest transverse deflections) are presented in Table 4.10. 



The maximum deflections at the very top of the tower (nodes 1-5) were very 

similar for both programs no matter which element configuration was used with TAP. 

The deflections are slightly different between the Manitoba Hydro tnrss model and the 

TAP tmss model since the artificial restraint procedure is not identical. The TAP 

program restrains the planar node in one of the global coordinates whereas the Manitoba 

Hydro prograrn calculates the direction normal to the plane of al1 connecting elements 

and attaches the restraint in that direction. Also, the self-weight of truss members 

stabilized with artificial restraints camot be concentrated at the end nodes since these 

nodes are not strong enough to resist loading. The artificial cross-sectional area provided 

at planar nodes is only large enough to prevent a singular stiffness matrix and any applied 

load would cause very large deflections. Since no load can be applied to a planar node, 

the self-weight of the connecting members must be distributed to the closest non-planar 

node. This procedure of redistributing the self-weight (automatically calculated with the 

Manitoba Hydro program but not with TAP) might contribute to the small discrepancies 

between the two programs. 

. There are several serious problems with the artificial restraint method. Most 

important, the computed deflections at restrained planar nodes are not accurate solutions. 

The artificial restraint technique allows the prograrn to solve for deflections at non-planar 

nodes in the tower, but the deflections at restrained nodes should not be considered 

accurate. For exampIe, when the tower is modeled as a truss, nodes 12-15 and nodes 20- 

23 (nodes that must be restrained artificially) only deflect 3-mm in the Y-direction using 

the Manitoba Hydro program and less than 1-mm when using TAP. This lack of 

rnovernent in the unstable direction is what allows the system of equations to be solved, 

but this lack of movement is not consistent with the nodal deflections near these 

restrained nodes. The nodes above and below these nodes (nodes that are not restrained 

artificially in the Y-direction) are displacing approximately 500-mm, see Table 4.10. 

When the main legs are modeled as beam elements, or when al1 the members are modeled 

as beam elements, then nodes 12-15 and nodes 20-23 displace an arnount similar to their 

neighboring nodes - approximately 500-mm. When beam elements are used, the Y- 

direction displacements gradually decrease from a maximum arnount at the top of the 

tower to smaller values near the bottom of the tower, predicting a more realistic solution 



for nodal displacements than the artificially restrained truss model. This relationship is 

most pronowiced in the Y-direction since the applied load causes large displacements in 

this direction, but the X-displacements and 2-displacements are also more consistent 

throughout the tower if beam elernents are used, see Table 4.10. Because the interna1 

forces and stresses are calculated based on the nodal displacements, the stresses 

calculated from a tmsshearn mode1 are also more accurate than an artificially restrained 

truss model. 

Of the two methods used, the preferred method is to model the main leg rnembers 

as bearn elements rather than truss elements with artificial restraints. This easily solves 

the singular matrix problern without having to search for every planar node and attach an 

artificial restraint element, eliminates the need for dummy members to prevent structural 

mechanisms, eliminates the incorrect displacements at planar nodes corrected with 

artificial restraints, elirninates the need to redistribute the self-weight of members 

attached to planar nodes, and is a more accurate model since the main leg members do 

resist bending stresses and are continuous through the primary joints. 

Modeling the main legs as beam elements does complicate the analysis 

significantly however, since each node has six degrees of freedom (three translational and 

three rotational) instead of only three degrees of freedom for truss elements. Also, a third 

node must be specified for each beam element to describe its orientation cornpletely in 

three-dimensions. Modeling the main legs as beam elernents increases the computation 

time, but the predicted denections and stresses are more realistic. 

Since the primary members not on the main legs of the tower are also continuous 

through pnmary and secondary joints, and can be connected with moment-resisting 

multiple-bolt configurations, they also could be accurately modeled as bearn elements. En 

fact, some researchers use the beam element to model al1 members of a transmission 

tower. The differences in nodal deflections were very small between the full-scale tower 

modeled with only beam elements in the main legs and the full-scale tower completely 

modeled with bearn elements. In both models, the most significant forces were axial 

forces. The largest bending moments in members of the full-scale tower were 

approximately 4-mm, and axial forces were as high as 700-kN. The largest bending 

moments occurred in the main leg members in the bottom section of the tower. The 



bending stress at the extreme fibers of these angle sections was 60-MPa, compared to the 

axial stress of 190 MPa. Unlike a truss element, when a tower member is modeled as a 

bearn element, it rnust be designed to resist axial forces, shearing forces, and bending 

moments. 

4.4.2 Slippage Effects 

In the following slippage analysis, the full-scale transmission tower is modeled 

with bearn elements for the main legs and any elements continuous through planar nodes 

(al1 horizontal members), and tmss elements are used for a11 of the primary bracing 

members on the longitudinal and transverse faces, As discussed in the previous section, 

the final deflections computed by the instantaneous slippage model and the continuous 

slippage model are nearly identical, as long as the elements slip the same amount in each 

rnodel. Consequently, only the continuous slippage model is used for this exampIe, with 

a large m parameter to cornplete the clearance slip (m=100). Mode1 II also tends to 

converge with fewer load increments than rnodel 1. This tower, with 217 nodes with six 

degrees of freedom at rnost nodes, takes about two minutes of computation time per load 

increment. In order to insure solution convergence, 2000 load increments were used, 

requiring almost three days of computation time. Figure 4.23 shows the transverse 

deflection of node 1 converging with increasing load increments. 

The slippage model for the fU11-scale tower assumes that the bolts are not bearing 

nor in a position of maximum clearance, but that the bolts are centered in the bolt hole. 

The effect that bolt position has on the analysis can easily be determined by varying the 

amount of maximum slippage for certain elements. In this example, the slippage 

parameters used in rnodel Il were based on experimental studies conducted by 

Ungkurapinan (2000). The parameters used for the full-scale tower are sumrnarïzed in 

TabIe 4.11. It should be noted that the maximum slip for the members in the four main 

legs of the tower is considered between the splicing points of the continuous main leg 

angles. Since each continuous main leg angle is actually made up of several individual 

bearn elements separated by nodal points that connect transverse and longitudinal bracing 

rnembers, the total slip per continuous main leg angle must be divided evenly among the 



beam elements behveen the two splice points. For al1 other members, the maximum slip 

value can be taken as the actual member maximum slip. It was assumed that the angle 

members were bolted together using only one bolt, corresponding to a slippage load of 

9.29-kN. As demonstrated with the simple bar element, the magnitude of the slippage 

load does not have an effect on the final deflections, as long as the axial force in each 

member exceeds the specified slippage load. The final results for a tower assembled with 

four-bolt connections are the same as a tower assembled with one-bolt connections, as 

long as the axial forces exceed 46.95-kN (see Table 4.11). The deflections at 

intemediate load levels are not the same, however, as some elements begin to slip earlier 

in the tower with only one-bolt connections. 

Figure 4.24 shows the transverse deflected shape of the full-scale transmission 

tower after the final load increment was applied. As expected, the deflections predicted 

using slippage model II with realistic slippage parameters were greater than the no-slip 

case. The greatest tower deflection (node 1) increased from 53 1 -29-mm to 780.23-mm 

when using slippage model II, an increase of over 45%. Despite the significant increases 

in nodal deflections, the member stresses remained relatively unchanged. Table 4.12 

shows the axial stresses of critical members in the fÙ11-scale tower. Four members were 

chosen from the top section, middle section, and bottom section of the tower - these three 

sections are constructed using three diEerent angle types. The four members chosen in 

each section represent each of the four main legs. The axial stresses are symrnetric (two 

main legs in equal compression and two main legs in equal tension) since the applied 

loading does not cause any twisting about the vertical axis of the tower. As Table 4-12 

indicates, comection slippage has no effect on member axial stresses, it only adds to the 

overall flexibility of the tower. This was also observed with the double-diagonal truss 

and the simplified transmission tower. 

However, when a displacement was specified, model II (with the same 

experimentally determined slippage parameters) significantly changed the axial stresses 

in critical members when compared to the no-slip case. To investigate a foundation 

settlement (or heave) the same full-scale transmission tower was used, except the 

transverse loading was removed. The member's self-weight and the same vertical wire 

loads were applied along with a specified foundation heave of 100-mm on only one of the 



four foundations. Transmission tower foundation movements of up to 150-mm have 

been observed in northern Manitoba, where seasonal fiost and the formation of ice lenses 

cause significant frost heave. Tbese conditions Vary greatly over short distances, 

producing differential settlements behireen adjacent footings. Figure 4.25 shows a 

transmission tower in northern Manitoba leaning to the left due to foundation movement. 

The critical members for the specified displacement analysis, the members with the 

highest axial stresses, were al1 located in the bottom section of the tower. These 

members are shown in Table 4- 13. 

The axial stresses in the cntical members were greatly reduced when slippage 

model II was used. Axial stress in the horizontal truss bracing was reduced by 55-Mpa. 

The axial stresses in the tmss members off the main legs were reduced by an average of 

40-MPa. But the greatest change was observed in the main Ieg bearn members - the most 

important structural elernent in the tower. The main leg axial stresses were reduced by 

almost 100-Mpa each, a decrease of over 90% in one main leg rnember. 

4.5 Recommended Slippage Mode1 

In the parametric study and slippage investigation in the two previous sections, 

the following considerations were made: 

Comparing mode1 1, rnodel II, and the no-slip case 

Varying the number of load increments 

Varying the m parameter in slippage model LI 

Varying the magnitude of slip, As 

Varying the magnitude of the slippage load, P, 

Varying the nurnber of slipping elements in a structure 

Comparing the forces induced in members with and without joint slip 

Comparing the nodal deflections of a structure with and without joint slip 

Examining the axial force-deformation relationship due to support movement with 

and without slip 

Examining the influence of semi-rigid joints on slip behavior 



Comparing a tniss eIement model with artificial restraints and a bearn elenlent mode1 

Modeling joint slippage with experimentally determined parameters 

Based on the results of the above investigations, the following model is 

recomrnended for transmission tower analysis: 

A continuous slippage model (mode1 II) with a Large enough m parameter to complete 

the required slip 

If the element slip is less than the required bolt clearance, the rn parameter can be 

increased 

To accurately rnodel the slippage behavior, the analysis should use experimentally 

determined values for the magnitude of joint slip and the magnitude of slippage load 

Bearn elements should be used to model the main tower legs and wherever a planar 

node exists (artificial restraints should be avoided) 

The analysis should be repeated with smaller load increments until the solution 

converges (fewer increments are required for the continuous slippage model) 



Element Number 

Table 4.1: Comparison of axial forces in selected members of a plane truss 

Axial Forces (kN) 

Method of Joints 

Axial Forces (kN) 
Element Number 

S A P  IV 

PASSFEM 

- 
PASSFEM 

Table 4.2: Comparison of axial forces in selected members of a space truss 

TAP 



Element Number 
PASSFEM 

-- 

End Moments (kN-cm) 

S A P  IV 1 TAP 

Table 4.3: Comparison of end moments in selected mernbers of a plane frame 

Table 4.4: Comparison of end moments in selected members of a space frame 



Node 2 Deflection (mm) 

AK TO WER (1994) 
T M  

Computer Prograrn 

Tension Diagonal Slips 

Table 4.5: Comparison of double-diagonal truss deflections at 95% of ultimate load 
(F = 3.145-kN) 

No 
Slip 

Compression Diagonal Slips 

AK TOWER (1994) 
TAP 

Table 4.6: Comparison of deflections of simple transmission tower at 95% of 
ultirnate load (load factor, A., of 27.9) 

hstantaneous 
Slip 

0.30 1 
0.30 1 

1 

Cornputer Prograrn 

AK TOWER (1994) 
TAP 

Continuous 
Slip 

0.333 
0.507 

0.328 
0.335 

Transverse Deflection at A (mm) 

No 
Slip 

15.76 
14.54 

Instantaneous 
Slip 

16.44 
29.14 

Continuous 
Slip 

18.5 1 
15.48 



Number of Load 
Increments 

Main Leg Axial 
Slippage A, (mm) 

Table 4.7: Axial slippage in a typical member of the simple transmission tower for 
various Load increments (maximum slippage = 1.0-mm) 



- 

EIements 
4 and 5 Slip 

0.25 
2.3 7 

Node 2 
X-displacement (mm) 
Y-displacement (mm) 

Node 3 
X-displacement (mm) 
Y-displacement (mm) 

EIernent 1 
Axial Force (kN) 
Elongation (mm) 
Slip (mm) 

No 
Slip 

0.25 
0.96 

Element 2 
Axial Force (kN) 
EIongation (mm) 
Slip (mm) 

~lernent 4 
Slips 

0.4 1 
1.58 

Element 3 
Axial Force &N) 
Elongation (mm) 
Slip (mm) 

Element 4 
Axial Force (kN) 
Elongation (mm) 
Slip (mm) 

Element 5 
Axial Force (kN) 
Elongation (mm) 
Slip (mm) 

Slip 

1-25 
3.37 

- 1-25 
3.37 

10.01 
1.25 
1 .O0 

Al1 EIements 
- 

- 

- 

- 

- 

- 

Table 4.8: Output for several slippage configurations of double-diagonal truss 



Table 4.9: Axial slippage for mernbers of simple transmission tower (mm) 

EIement Mode1 1 Mode1 II 
m=4 

Mode1 II 
m=10 

~ o d e l  I Ï  
m=100 



1 MB Hydro ~roaram. al1 tniss elements 1 I TAP, al1 tmss elements 1 

of fun-scale transmission tower usine - 
Manitoba Hydro's prograrn and TAP with different element configurations 



Member Type r 
Single angle main leg 
members spliced together 

Single angle members with 
one-bolt connections 

Single angle rnembers with 
two-bolt connections 

Single angle rnembers with 
three-bolt connections 

Single angle members with 
four-bolt connections 

Slippage Load P, (kN) Maximum Slippage As (mm) 

3 S (per continuous angle) 

1.7 (per member) 

1.7 (per member) 

1.7 (per member) 

1.7 (per rnember) 

Table 4.11: Slippage parameters used in full-scale transmission tower based on 
load-slip experiments (Ungkurapinan, 2000) 



Element Number 

Top Section Critical Members 

47 
60 

Mid Section Critical Members 
8 1 
90 
99 
108 

Bottom Section Critical Members 
153 
159 
165 
171 

Table 4.12: Axial stress in critical members of full-scale transmission tower with 
and without bolt slippage 

Axial Stress W a )  

No Slip 

-1 15.04 
83.37 
83 -3 7 

-1 15.04 

- 188.8 
129.9 1 
129.9 1 
- 188.8 

-191.7 
138.33 
138.33 
-191.7 

Slippage Model II 

-1 14.78 
83.45 
83.45 

-1 14.78 

-188.17 
129.76 
129.76 

-188.17 

-189.16 
136.97 
13 6.97 

-189.16 



I Elernent Number 

Main Leg Beam Members 
181 
182 
183 
184 

Tmss Members off Main Legs 
419 
420 
42 1 
422 
423 
424 
425 
426 

Axial Stress (MPa) 

No Slip 

Table 4.13: Axial stress in critical members of full-scale transmission tower with a 
100-mm foundation heave with and without bolt slippage 

Horizontal Tmss Bracing 
455 
456 
457 
458 

326.14 
-326.28 
-326.29 
326.14 



\ 
Figure 4.1: Double-Diagonal plane truss 
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Figure 4.2: Double-Diagonal truss deflection 
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Figure 4.3: Convergence of double-diagonal truss (mode1 1) 



Figure 4.4: Simple transmission tower subassembly 
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Figure 4.6: Transverse deflection of simple transmission tower for different load increments (model I) 





Figure 4.8: 1-D bar element (a) before loading (b) after loading 
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Figure 4.15: Axial force-slip relationship for tension member of double-diagonal truss 
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Figure 4.17: Load-Distribution effect for double-diagonal truss (mode1 1) 
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Figure 4.21: Full-Scale transmission tower 



Figure 4.22: Upper section of full-scale transmission tower 
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Figure 4.23: Transverse deflection of node 1 of full-scale transmission tower for different load increments 
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Figure 4.25: Transmission tower subjected to large foundation movement 



Chapter 5 
SUMMARY AND CONCLUSIONS 

This study investigated the effect of bolt slippage on the deflections and axial 

stresses of latticed self-supporting transmission towers. A strucîural analysis program 

was developed which could mode1 structural members as tmss elements or beam 

elements, could incorporate bolt slippage using an instantaneous slippage model or a 

continuous slippage model, and could include the effects of semi-rigid connections 

provided moment-rotation data were available. The instantaneous slippage mode1 

assumes that al1 of the boit slip occurs at a certain load level. The ends of a member slip 

a specified amount when the axial force exceeds the slippage load. The slipping 

member's stiffness is greatly reduced causing increased joint deflection while the interna1 

force remains relatively constant. The continuous slippage mode1 assumes that bolt 

slippage occurs once the first load increment is applied and follows a non-linear function 

throughout the Ioading process, This function is used to reduce the member stiffness to 

account for slippage deformation. For both slippage models, the total axial deformation 

of a member is comprised of elastic deformation and slippage deformation. 

The linear no-slip capabilities of the developed program were venfied by 

companng the output with other structural analysis programs. The only cornparison 

available for venwing the bolt slippage models was the AK TOWER program. Although 

the analysis techniques were different, the TAP program and the AK TOWER program 

both predicted significant increases in nodal deflections as a result of bolt slippage. AIso, 

the instantaneous and continuous slippage models predicted identical deflections and 

stresses when the rnembers in a structure slip the same amount for both models - 
establishing the validity of the TAP program. The m parameter for the continuous 

slippage model can be increased until al1 of the members in a structure slip the specified 

amount (the experimentally deterrnined clearance if available). 

The developed program investigated the slippage behavior of several latticed 

structures, including a simple one-dimensional bar, a double-diagonal plane truss, a 



double-diagonal plane fiame with semi-rigid connections, a simplified three-dimensional 

transmission tower, and a fiill-scale transmission tower. The full-scale tower used 

experimentally obtained slippage parameters to accurately mode1 the bolted connections. 

The most important parameters for a slipping member are the exact amount of clearance 

sIip allowed at a bolted connection and the load that initiates boIt slippage. Both of these 

parameters can be determined experirnentally. 

5.2 Conclusions 

The results of this study confirm the suspicions of earlier researchers and 

practicing engineers: bolt slippage has a considerable effect on the behavior of Iatticed 

structures. The investigation of slippage behavior has shown that a stmcture using any 

bolt slippage mode1 (instantaneous or continuous) will result in larger displacements 

compared to the same structure without accounting for slippage. Furtherrnore, as the 

number of slipping elements increase in a structure, or, as the specified slippage amount 

for each member increases, slippage deformation accumulates and the nodal 

displacements become even larger. Self-supporting Iatticed transmission towers are 

usually sufficiently ngid to assume small-displacement theory, but since bolt slippage 

greatly increases nodal displacements, significant secondary stresses may be induced. 

Latticed towers used to transmit and receive high fkequency signals for wireless 

communication are also at nsk. Excessive deflections caused by connection sIip can 

interfere with communications creating a serviceability failure. Increased flexibility, due 

to the decrease in member stiffness, could also influence a structure's vibration and 

fatigue charactenstics. 

The axial stresses in latticed structures are also affected by bolt slippage. The 

two-dimensional plane tmss exarnple illustrated the load-distribution effect caused by 

bolt slippage. In structures that only expenence slippage in certain members, higher 

stresses are observed in non-slipping members and lower stresses are observed in slipping 

members, compared to an identical structure without accounting for slippage. In the full- 

scale transmission tower using realistic slippage parameters, the axial stresses were not 

significantly affected by bolt slippage. However, the ability of a slipping member to 



absorb a specified displacement had a drarnatic effect on the  axial stresses in the full- 

scale transmission tower. Bolt slippage increased the structure's ability to withstand 

differential settlement or heave, by translating the specified displacement into slippage 

deformation in the tower members. Allowing the membeas comected to the specified 

displacement node to slip, greatly reduced their stresses. In the hIl-scale tower, the axial 

stress was reduced by as much as 90% in one of the ma5n legs when experimentally 

determined slippage parameters were used. Bolt slippage, ztherefore, could explain why 

the large stresses caused by foundation movements, predicted by software not including 

slippage effects, do not occur in reality - slippage is reduvcing the member stresses to 

realistic, elastic, pre-buckling values. 

The pararnetric studies on the various latticed structrrres revealed that varying the 

slippage Ioad effects the axial force-defornation relatiomship, but the end result is 

unchanged. As long as a mernber exceeds its slippage Ioad, mo matter what the value, the 

deflections at the final load will be identical. Members that do not exceed their slippage 

load cause differences between an instantaneous slippage analysis and a continuous 

slippage analysis since slippage can occur in the continuous mode1 at loads below the 

slippage load, but not in the instantaneous model. 

Finally, the slippage analysis of the full-scale transmission tower revealed that the 

three-dimensional truss model, normally used to analyze transmission towerç, should be 

replaced by a trussheam model. Modeling the main legs a s  beam elements eliminates 

the need for dummy members to prevent structural mechanisrns, eliminates displacement 

errors at pIanar nodes when using a truss mode1 with artificjal restraints, and is a more 

accurate model since the main leg members resist bending .stresses and are continuous 

through bracing mernbers. When incorporating bolt slippage, both models predict 

identical solutions when al1 members slip the same amount. The continuous slippage 

model is preferable since it does not exceed the specified slip amount (as the 

instantaneous model does with insufficient load increments), and a portion of the total 

bolt slip can occur below the slippage load, which occurs in expenmental testing. 



5.3 Recomrnendations for Future Work 

The program developed in this study was intended to accurately predict the 

behavior of transmission towers under working load conditions. The program could be 

expanded to predict the behavior up to ultimate load- Considerations for member 

yielding and buckling could be included, as well as the ability to include material and 

geometnc nonlinearity. Such considerations would require an improved nonlinear 

solution method, requiring an iteration procedure for each load increment. 

The program could also be improved by developing a method to input data faster 

and easier. Although a sophisticated preprocessor might not improve the eficiency of a 

linear interpolation data generation scheme since each element has its own specific 

slippage parameters, connection and orientation nodes, Ioading conditions, and material 

properties. 

To increase the accuracy of the proposed slippage models, continued 

experimental testing on typical tower members and connection types could be conducted. 

A joint element could be forrnulated to incorporate both rotational slippage and 

translational slippage by modification of the technique used for semi-rigid joints in the 

TAP prograrn. The joint element could model the slippage characteristics of a typical 

tower member up to yielding - not just modeling clearance slip but the entire load-slip 

relationship. Although, such a model would more accurately represent the experimental 

data, the conclusions of this study are unlikely to change as a result of a more realistic 

bolt-slip model. 



Appendix A 

STIFFNESS MATRICES OF TRUSS AND BEAM ELEMENTS 

A.1 Two-Dimensional Truss Element 

The stiffness matrix of a two-dimensional tmss element in the global axes system 

is given as 

where Cx , C, , Cz are the direction cosines of the element in the x, y, and z directions 

respectively. 

A.2 Three-Dimensional Truss EIement 

The st i f iess  matrix of a three-dimensional miss elernent in the global axes 

system is given as 

EA 
[k] = - 

L 

A.3 Two-Dimensional Beam Element 

The stifhess matrix of a two-dimensional beam in the member axes 

system is given as 



To obtain the stiffness matrix in the global axes system [km] rnust be transformed using 

the folIowing expression 

where 

A.4 Three-Dimensional Beam Element 

The stiffness rnatrix of a three-dimensional beam element in the member axes 

system is given as 



To obtain the stiffness matrix in the global axes system, [km] must be transformed using 

equation A.4, where 

and 

[rl] = 

- 

Cr c, cz 
-Cx SC,, scosa-C, - s i n a  ,/m. cos a 

-C,, .C= . co sa+Cx  - s i n a  

JR Jc:+c_z 
C, -C ,  - s ina- -  -casa 

- Jc:+c5-s ina  
C, - C ,  - s ina+C,  -cosa  

J- - 



in which 

The coordinates y,, and zkr locate the point k (used to defme the principal planes of 

bending) in the y, -z, plane. For more detail see Krishnamoorthy, C. S. (1996). In case 

of a vertical member baralle1 to the global y-axis) the transformation must be modified 

as 

(A. 10) 



Appendix B 

STIFFNESS MATRICES OF SEMI-RIGID BEAM ELEMENTS 

B.1 Two-Dimensional Semi-Rigid Beam Element 

The following formulation is based on the work of Al-Bemani and Kitipomchai 

(1992) and Chen and Lui (1987). The tangent stiffness relation of a connection element 

at end i of a beam element is given as 

where M ,  is the total end moment, M ,  is the element end moment, Ri is the rotational 

stifiess of the connection element, 8, is the total nodal rotation, and 8, is the element 

nodal rotation (see Figure B.1). The relative joint rotation used in equations 2.16 and 

2.17 is found using 

8,- = On - Bei (B-2) 

The tangent stiffhess relationship in the global coordinates of the beam element with 

connection elements at end i and end j c m  be written as 

where {F'}, [K,], {r , }  are the element nodal forces of the beam element, the stiffness 

matrix of the beam element (see Appendix A), and the beam element end displacements 

respectively. Equation B.3 can be rewritten as 

{ c c } =  [ c ~ e c l -  {crecl (B .4) 

where [, ICeC] is a 10 x 10 stiffness matrix of a beam element with connection elements at 

both ends. The subscripts imply a connection element on the lefi end and right end of the 

beam element. 



In order to enforce compatibility at the junctions between the connection element 

and the beam element, the 10 x 10 stiffness matrix must be îransformed into an 8 x 8 

stiffness rnatrix. This transf~~mation ensures that the eiement rotations at both ends of 

the beam only appear once in the nodal displacement vector. The following kinernatic 

relations can be written 

{ c r e c }  = LcI* {c'Tc} 03-51 

where the 10 x 8 kinematic transformation matrix is given as 

i 
0 0 1 0 0 0 0 0  

0 0 0 0 0 0 1 0  

1 0 0 0 0 0 0 0  

0 1 0 0 0 0 0 0  

0 0 0 0 1 0 0 0  

0 0 0 0 0 0 0 1  

0 0 0 0 0 1 0 0  

0 0 0 0 0 0 0 1  

The resulting transformation gives 

where [ ,K,]  is now an 8 x 8 rnatrix. The stiffness relationship of the transformed serni- 

rigid beam element can be partitioned as 

(B. IO) 

where 



The degrees of fieedom at the junction between the bearn element and the connection 

element (8, and 8,) are interna1 degrees of fieedom and can be condensed out using 

static condensation. Since there are no applied moments on the interna1 degrees of 

fkeedom, (Q, } is a zero vector, and by using static condensation 

[KI = [kl I l  - [kl2 1 [k, 1-' [ka 1 Ca-13) 

where [KI is the 6 x 6 stiffhess ma& for a serni rigid beam element in two dimensions. 

It is easier to implement the above transformations into a computer program by using an 

alternate condensation procedure. It can be shown that equation 

following expression 

where 

B. 13 is identical to the 

(B. 14) 

(B. 15) 

in which [I] is a 6 x 6 identity matrix and [,QI is a 2 x 6 matrix containing the 

condensation terms 

Therefore the transformation fiom a beam elernent with comection elements on both 

ends c m  be reduced to a semi-rigid beam elernent in one step 

Now the stifhess relationship is 

[KI. (4 } = {Q,} (B. 18) 

and the displacements and total rotations in {dl} can be found. To solve for the element 

rotations use 

b4 1 = - [ k ~  1-' - [k,~ 1 - {dl 1 (B. 19) 

or simply 

@ 2 } =  [cecl- {dl 1 @-20) 



Since the total rotation and element rotation at a semi-rigid joint are now known, the 

relative rotation can be calculated using equation B.2 and the rotational stiffness of the 

comection element can be updated in equations B. 1 and B.3 for the next load increment. 

B.2 Three-Dimensional Semi-Rigid Beam Elernent 

The formulation of the semi-ngid beam element in three dimensions is identical to 

the formulation in two dimensions, only there are now three rotational degrees of 

freedom for each comection element. The tangent stiffness relation of a comection 

element at end i of a beam element is now given as 

and [J,] in equation B.4 is now a 24 x 24 stiffness matrïx. The 24 x 18 kinematic 

transformation rnatrix is now written as 



Equation B.15 can also be applied to the three-dimensional semi-rigid bearn, only now 

the identity matrix, [II, is a 12 x 12 matrix and [,Q,] is a 6 x 12 matrix. Again the 

stiffhess of the three-dimensional semi-rigid bearn element is written as 



X 

Figure B.1: 2-D Beam Element with Semi-Rigid joints at Both Ends 



Appendix C 
STRUCTURES FOR LINELUX VERIFICATION 

C.1 Plane Tmss 



C.2 Space Truss 

Load (kN) 
Node . x-direction - y-direction z-direction 
5 -- -2.30 - - - 



C.3 PIane Frame 

Columns: 30 x 5Ocm 
AU beams ! 30 x 60cm 



C.4 Space Frame 

Member No. 
- 1,2 

394 
596 
78 

9,lO 
11,12 
13114 

- 15,16 

gr 
Member axes 

Fig. 7.37 Space kame 2 - 
Node No. (for 'k' node) 

2 
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