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Abstract

In this thesis, a direct [IR design method for real WDFs based on Gazsi’s work is sum-
marized in detail, and the cascade realization of first- and second-order allpass sections is
generalized to any [IR transfer function, then a simple design method for bireciprocal lat-
tice WDFs is given. A design and realization method for [IR multiple notch filters based
on the phase of an allpass filter approximation is described. A design and realization
method for high speed narrow-band and wide-band WDFs based on the IFIR technique is
given, both nonlinear and approximately linear phase filters are considered; the narrow-
band filter is composed of a model filter and one or several masking filters in cascade. In
the case of nonlinear phase, conventional lattice and bireciprocal lattice WDFs are used
for the model and masking filters; the overall narrow-band filters can be designed by sepa-
rately designing the model and masking filters. The wide-band filter is composed of a nar-
row-band filter in parallel with a series of allpass filters, to obtain an overall wide-band
filter. The narrow-band filter is designed first, and is then connected in parallel with one of
the allpass filters of the narrow-band filter. In the case of approximately linear phase, the
linear phase [IR filter is used for the model filter, and a maximum flat linear phase FIR fil-
ter is used for the masking filter. Several advantages of these filters over directly designed
filters are that they have a substantially higher maximal sample frequency, lower roundoff
noise and lower finite wordlength. Several design examples are given to demonstrate the

properties of these filters.
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Chapter 1

Introduction

A design and realization method for IIR (infinite impulse response) multiple notch fil-
ters is described. A notch filter is a filter which has a single or very narrow rejection band
extending from a finite lower cutoff frequency to a finite upper cutoff frequency. Frequen-
cies within the rejection band are eliminated or attenuated while frequencies outside the
rejection band are passed. Notch filters have a wide variety of applications in the field of
signal processing for removing a single frequencies or a narrow-band of sinusoidal inter-
terence. Multiple notch filters are used for the removal of multiple narrow-band or multi-
ple frequency interference. When the frequencies of narrow-band interferences are known
in advance, fixed notch filters can be used. We will focus on the fixed IIR notch filter
design problem, and use the method which is based on the phase of allpass filter approxi-
mation. A more detailed derivation for the approach and lattice implementation will be
presented than in [15].

Digital filters can only be implemented with finite precision arithmetic, thus the filter
coefficients must be approximated. Errors, such as rounding errors and overflow can arise
from coefficient and signal quantization. It is weil know [31] that [IR lattice wave digital

filters have low passband sensitivity and low level rounding noise to coefficient quantiza-



tions. In addition, they have good stability properties even under nonlinear operating con-
ditions resulting from overflow and roundoff effects. We refer to the review paper by
Fettweis [31] and the references contained therein for a detailed discussion of WDFs
(wave digital filters) and their advantages.

There are many different possible structures for WDF realizations of the classical refer-
ence filters. Gazsi [6] presented a direct design method for real lattice WDFs where both
lattice branches are realized by cascaded first- and second-degree allpass sections. This
method makes the design process direct and simple.

However, for narrow-band and wide-band filters, high sensitivity problems occur even
with this type of realization since most of the poles are very close to the unit circle.

In this thesis, based on the [FIR (interpolated finite impulse response) technique [18]
and [19], a design and realization method for high speed narrow-band and wide-band fil-
ters is presented. For nonlinear phase, conventional lattice WDF's are used for the model
filters, and bireciprocal lattice WDFs are used for the masking filters. Since a bireciprocal
elliptic filter is a special case of a elliptic filter, it is possible to modify any standard ellip-
tic filter algorithm such that the definition of bireciprocal elliptic filters is satisfied. The
advantage of using lattice WDF's is that they make it possible to obtain stable filter algo-
rithms under finite-arithmetic conditions [31]. The IFIR technique was introduced in order
to reduce the complexity of FIR filters with a narrow transition band. It was later used in
[30] where an [IR filter is used for the model filter, whereas FIR filters are used for the
masking filters. One advantage of using the [FIR technique is that the poles of the recur-
sive model filter are closer to the origin compared with the poles of the directly designed

filters, and this will lower the roundoff noise {32]. Furthermore, the model and masking



filters can be realized in many different ways, which offers the possibility of using struc-
tures that have good properties under finite-arithmetic conditions, and that are well suited
for implementation in hardware. The major advantage of using the interpolated technique
is that the new filters have higher maximal sample frequency compared with the directly
designed filters, this is important for high speed low power portable applications. It should
be pointed out that we give the entire design and realization procedures compared with
[20], the main purpose of that paper [20] was to present the realization structure, and we
give a lattice bireciprocal approach which is simple and easy to design, we also indicate
how to choose the maximum interpolated value for a model filter. For the case of linear
phase, we also give the more detailed design method compared with [25].

[n Chapter 2, we briefly describe the [IR real WDFs in the lattice structure and the
method used in [6] to realize odd-order classical filters. The implementations of first- and
second-degree ailpass sections by means of three-port circulators will be presented in
detail, and the realization method will be generalized to any IIR transfer function. And a
design method for bireciprocal elliptic WDFs will be formulated.

[n Chapter 3, the design and realization method for [IR multiple notch filters will be pre-
sented. First, we transform the specification of a notch filter into that of an allpass filter. As
a result, the notch filter design problem becomes an allpass filter design problem. Second,
we will develope an approach to determine the allpass filter coefficients, and the lattice
realization will be presented. Then, we will summarize the entire design and realization
procedures in detail, an example will be given to demonstrate the procedure.

[n Chapter 4, we will first describe the [FIR technique, analyze the maximal sample fre-

quency for different lattice WDF structures, then, we will present the design and realiza-



tion procedures for narrow-band and wide-band filters, we will use the method described
in Chapter 2 to design the individual model and masking filters, roundoff noise will be dis-

cussed, several examples will be given, and in Chapter 5 the conclusions.



Chapter 2

An IIR design method for real WDF's

The approximation problem in general analog filters (such as Butterworth, Chebysheyv,
Inverse-Chebshev, Elliptic (Cauer)) has been a subject of research throughout the past
sixty years, and some powerful methods have been developed for its solution{-5] and {7].
These methods yield a complete description of the continuous-time transfer function in
closed form, either in terms of its zeros and poles or its coefficients.The main purpose of
this chapter is to describe the lattice wave digital filter realization by using the existing
theory of analog filter design and a generalization of the basic theory in [6]. In {6], a direct
design method is given for lattice WDFs, where both lattice branches are realized by cas-
caded first- and second-degree allpass sections (see section2.2). In section 2.3, a design
method of bireciprocal elliptic filters by modifying standard elliptic filters is presented.

Examples which demonstrate the above procedures are given.

2.1 Structure of the lattice wave digital filters
WDFs were first introduced as a method of mapping a lossless analog filter (known as
the reference filter) to a digital filter using voltage wave quantities [8]. There were two

motivations for this:



{. WDFs inherit the low passband coefficient sensitivity of doubly-terminated lossless
analog filters.
2. The procedure allows the use of the existing theory of analog filter design to derive

the reference filters, which then can be mapped to the corresponding WDF.

Consider a two-port (Figure 2.1) where for port i (i =1 or 2), the voltage is V;, the current
[;, and the port (or normalizing) resistance R, .
Then the analog signal variables V; and current ; can be mapped to the incident and

reflected wave quantities 4, and B, by

A4, = V,+RI, B =V.-Rl, i=12 (2.1a)
I, [2
= ==
4 4,
V[ Rl R1 V’:
Bl N ) 82 )
- e__. _+ -

Fig. 2.1 A two-port ¥ with port resistances R and R.

a= A'} b= By (2.1b)
AZ 82

b=Sa (2.2)

and

where S is called the scattering matrix:



S= S S (2.3)
S S22

we let that the two-port be symmetric and reciprocal, i.e.

S|| = Sa3s S = Sy (24)

Next, define reflections S, = s, -s,,, §, = 5, +5,, and take (2.4) into account. In

view of (2.1b) and (2.3), (2.2) can be written as

2B, = S, (A,-A4,) +S, (A4, +4,) (2.52)

28,

-8, (A, =4,) + 8, (4, +4,) (2.5b)
These equations lead to the lattice realization of a WDF shown in the following Fig2.2(a).

For 4, = 0 and disregarding B, the above signal-flow diagram simplifies to Fig. 2.2(b).

Al — Az
[ Je—
Sy | S,
B, (—-O__\L v — O B,
12 12

Fig. 2.2 (a) Signal-flow diagram of a lattice structure.



Fig. 2.2 (b) Simplified wave-flow diagram.

Therefore the realization reduces to the realization of two reflectances: S, , S)'2 . The corre-

spondence between a WDF and its reference filter is established in the y -domain, i.e., the
complex frequency variable yf is used instead of the usual variable p.The simplest and

most appropriate choice for y is the bilinear transform of the z-variable, i.e.,

y=221< tanh(%r), z=el, - 2.6)

where F is the sampling frequency.
In both branches of the lattice WDF (see Fig. 2.2(a)), §, (y) and §, (y) are allpass

functions. Consequently, they may be written (except for possible sign reversals) in the

following form [6], [9], [31]:

Sl - —Ugl (“W) (2.73)
g, (y)
g, (-v)
S, = (2.7b)
g (w)

where ¢ = £1, g, (v¥) and g, (y) are so-called Hurwitz polynomials [10] of degree
N,,and N,.

Further, the transfer functions that are realized by these WDFs are given by



_ S[+S2 _ h(y)

Su = Sz 3 Z(v) (2.8)
5-51 _ ftw)
= = = (2.9)
S12 T Sy 2 2(y)
where A (y) , f(v) and g (y) are the so-called canonic polynomials [10], [11].
From (2.7), (2.8), and (2.9) we see that
g(y) = g, (v)g,(y) (2.10a)
BW) = 2 {8 (W) g, (¥) ~08, (W g, (W)} (2.10b)
FO9) = 38, (W&, (-¥) + 08, (V) g, (W)} (2.10¢)

where ¢ = | for fevenand ¢ = -1 for fodd, and g (y) is a Hurwitz polynomial of
degree Nyand N = N + N,. In this thesis, we only considered the odd order case, i.e., the

case of real coefficients. For even order N, some modifications have to be made.

Further, the so-called characteristic function is defined by

_ s (w) _ h(y)
spw f(y)

C(y) (2.10d)

It is also known that the zeros of the polynomials g, (¥) and g, (y) are altemately
distributed in a cyclic manner [6] (see figure 2.4). This property allows the determination

of g, (¥) and g, (y) from g(y) .



Imy

81 £2

Fig. 2.3 Alternating distribution of the roots of the polynomial g, and g, (for N =7).

2.2 Realization of lattice WDF's

[n this section we discuss how to realize allpass functions S, and §,. An allpass func-

tion can be synthesized by several different methods. Here, let us consider the realization
as a cascade of elementary sections by means of three-port circulators [12]. We consider
the elementary sections of the first- and second-degree.

2.2.1 The determination of the multiplier coefficient of a section of degree one

A section of degree one has a reflectance of the form

_—V+B
y+B,

S

(2.11)

It is known (we give a prove below) that using two-port adaptors, the corresponding wave
digital realization has an equivalent wave-flow diagram as shown in Figure 2.4, where the

coefficient ¥, is given by

10



1-B,

= 2.12
L B, @12
port 1 port2
a) 2
R
b, Yo by
—————t

Fig. 2.4 Adaptor representation of an allpass section of degree one.

Proof: First rewrite Eq (2.1a) as:

a, = v, R (2.13a)
b, = v, -Rji, (2.13b)
a, = v+ Ryi, (2.13¢c)
b, = v, = Ryi, (2.13d)

Then let us consider the direct connection of two 2-ports, with port resistances R, and R,

shown in Figure 2.5.

i iy

XO€ +
Vi R R, A/
£\
- A\ g

Fig. 2.6 Direct connection of two 2-ports.

Since the two ports are simply connected, we get

vV =V, (2.14a)

i = iy (2.14b)

11



Then substituting (2.14a) and (2.14b) into (2.13¢), we get
a») = Vl "Rzil

And from (2.13a) and (2.15), we get

P Tl
' 5 ap
R +R,
v = 2 2
! R, +R,

Substituting (2.16a) and (2.16b) into (2.13b), we get
by = ay+yy(ay-a)
and substituting (2.16a) and (2.16b) into (2.13d), we get
by = a,+Yy(ay~a))
where

R, -R

=2
Yo R, +R,
Also from Figure 2.4, we have
-
a, =z b,

Substituting (2.18) into (2.17a) and (2.18b)

it

by = (1+%) anbz ~ Yo%

b, = YOZ-Ibz*' (1-Y)a,

From (2.19b) we get

a

1_
by = Yo

1 —‘yoz‘[ l

12

(2.15)

(2.16a)

(2.16b)

(2.17a)

(2.17b)

2.17¢)

(2.18)

(2.192)

(2.19b)

(2.20)



Substituting (2.20) into (2.19a)

Substituting (2.6) into (2.11)

z=1l.,p z -8

=l -

S = z+1 0= l+BO
ﬂ+30 l—l_BQz_l
z+1 1 +B,

Comparing (2.21) and (2.22), we get

YO=_J

This completes the proof.

2.2.2 The determination of the multiplier coefficient of a section of degree two

(2.21)

(2.22)

(2.23)

Each of the (N~ 1) /2 sections of degree two has (as we shall prove below) a reflec-

tance of the following form:

_ ¥ -4y+B
v A +B,

S

(2.24)

It is known [6] that the corresponding wave digital realization has an equivalent wave-

flow diagram as shown in Figure 2.7.

13



port |

3y

Y2i-1

<
<

b

Fig. 2.7 Wave-flow diagrams of the ith second-degree allpass section.

where the coefficients are given

and

- N-1
wherei =1, 2,..., -

by
_A-B.-1
Yoy =
A,+B,+1
1-8.
= _J

Proof: First, as in the degree-one case, e.g. from Eq (2.19a,b):

b, =
b, =

b3=

a9, (a,-a))

a+v,;_,(ay—-a))

ay+ Yy (ag—ay)

by = ay+1y(ay-ay)

Also from Figure 2.7, we have

14

(2.25a)

(2.25b)

(2.26a)

(2.26b)

(2.26c)

(2.26d)

(2.27a)

(2.27h)



a, =z b, (2.27¢)

Then substituting (2.27¢) into (2.26d)

1 =9,
b4 — 721

- a, (2.28)

Substituting (2.27¢), (2.28) and (2.27b) into (2.26¢)

-1 Y2
by = (1+v,)z [ il ]03—72‘43
1—721.2
(1w
=T (%
:! -7
= = 2: b (2.29)
Substituting (2.29) into (2.27a)
2y
ay = z—l[__fll]bz (2.30)
1-v,2
Substituting (2.30) into (2.26b)
-l
1-9%,. Jz +%%.  —%Y,.
a, = ( YI:—I) ?ZIYZI—I -IYZtal (231)
2t NYai 1~ Y~ Y21
Substituting (2.31) into (2.26a})
R R T C A D P
S = a_l = _2i—-1 208 82i-1 - (2.32)

L T VEA Y.

Also, substituting (2.6a) into (2.24)

5



_ (1-4,+B)2*+ (2B;-2)z+ (1 +4,+B)
(L+A4,+B)22+ (2B,=2)z+ (1-4,+B)

_AZB -1 2(B-D) a2
A+B+1 A +B+1

= (2.33)
L+ 2(8,-1) 5 _Ai—B,.- lz-z
A+B+1 A +B+1
Comparing (2.32) and (2.33), we get
A.-B.-1
Yoj_ g = ==t (2.34)
A, +B;+1
and
2(B.-1)
(Vy,  =1) = ——t— 2.35
Yo (Ya; 1= 1) 4B+ (2.35)
Substituting (2.34) into (2.35), we get
1 -8B,
.= : 2.36
Yai B (2.36)

This completes the proof.
2.2.3 Synthesis using cascaded allpass functions

We now discuss direct design methods for lattice WDF realizations of the classical fil-
ters using the first- and second-degree allpass sections.

Considering one of the Butterworth, Chebyshev and Cauer (elliptic) reference filters,

g () can be assumed to have the following product form:

16



(¥-1)

2 2
v = wBy [T (v eva+s,) @37

i=1
In the most common cases, i.e., for Butterworth, Chebyshev and Cauer-(elliptic) refer-

ence filters, 4, B, of (2.37) can be obtained by the formulas given in (6] and [13]. Then
from g () , g, (y¥) and g, (W) can be obtained by using the alternating property relat-

ing to the distribution of the their zeros. Thus the allpass functions §, and §, can be writ-

ten as the following product of sections of degree one and two:

2
~ytB) V-WAE, W oyd, +B, ¥ -y4,+B,

Sy = T3 - - 3 (2.382a)
V% yiryd, B, v rya, +B, ¥oHy4 + By
yi-yd, + B q,l_q,,43+33 y’ -4, +B

§,(y) = = 1751, - 1—’——-! (2.38b)
Votyd, +8 vy +yA; + B, Y +y4d,+B,

where
k=N—l’ ‘,=N—3, 01_k=1\f-3, j=N-L
2 2 2 2

All adaptor coefficients can be computed by (2.12) and (2.25). Using the cascade synthesis
of these elementary sections, realizations of §, and §, are obtained, which leads to the

corresponding block diagram for the filter given in Figure 2.8.

17



Y —_7 V2 —— —O0—
: 2 output Y
—s -——-
){\ 112
'Y é? :
input - Complementary

X output Y,
IN2-1
™2

Fig.2.8. Block diagram of the lattice WDF with cascaded allpass sections
for order ¥, (as the top structure), or order N (as the
bottom structure), the filter order: N = Ny +N;

The main advantage of this method is that it is direct, simply with easy calculations and it
derives the design and implementation of [IR filters at the same time.

Extensions: Since general IIR filter (Butterworth, Chebsheyv, elliptic) functions are
available both in the analog y -domain and digital z-domain in MATLAB, we only need to
decompose those functions into two allpass filters, i.e. realize the filter transfer function
(in the y -domain) by using the method shown in sections 2.2.1 and 2.2.2. In order to real-

ize the transfer function in the digital domain, some modifications have to be made:

18



. . - -1 .
For a section of degree one, using the bilinear transform y = i+—l , We can rewrite
z

(2.11) in the form

z+1
S(z) = By (2.39)
z+f,
And (2.21) can be written as
—Ypz + |
S(z) = Y& (2.40)
z2-%,
Comparing (2.39) and (2.40), and using (2.23), we get
[-8,
=-f = 2.41)
To = By 1+ 8, (

For a section of degree two, using the bilinear transform y = z_—% , We can rewrite
z+

(2.24) as
(2.42)

And (2.32) can be written as

p
Yy 12 Yy (Ve —1)z+ 1

2
Z Yy (Yo —D2=Yy

Comparing (2.42) and (2.43), and using (2.25), we get

Yoo =B, = i (2.44a)
- " A, +B+1

Yy = —ie = -8 (2.44b)
‘' -B,-1 1+B,
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And (2.37) can be written as

V-1
2
g = By [1 (#+az+8) (245)
i=1
And (2.38a,b) can be written as
1 B 2 +1 B 2+a +1 B 2+a +1
+ Z 4 Z 2
5, (2) = Bzt L 2 o AL £ . "; (< (2.46a)
2By FraztB, Ztazth, Z+oz+P,
Brltaz+l B+az+l P taz+l
z (o X4 F4 b4
S = AP BT (2.46b)
roztf, 2 taztf, Z +az+f,

where

k=Nl N3 o poN=3 o N-L
2 2 2

?

(%]

[n order to demonstrate the above realization procedure, an example is shown below.

Example: Specification:
A,=1.0dB, 4,=42.5dB,

w,= 20 rads / sec, @ =30 rads / sec,

Sampling freq = 100 rads / sec

1) In y domain: To meet the specification requirement: A 5th order Chebshev lowpass

filter transfer function can be gotten in the following closed form by MATLAB:

g(¥)  (y+0.210329)(y+0.064995 £ j0.719355)(y + 0.17016 + j0.444586)

Assign the poles to g, (V) , g, (y) by using the alternating property, we get:
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g, (y) = (y+0.210329) (y +0.064995 +0.719355) (y +0.064995 - j0.719355)

2,(W) = (y+0.17016 +/0.444586) (y + 0.17016 — j0.444586)

¢ = | since fis even. Then using (2.7a,b), we get the corresponding allpass functions:

s (y) - -0, (-¥) _ (- y+0.210329) (- y +0.064995 +0.719355)
: g, (W) (y+0.210329) (y + 0.064995 £,0.719355)

| —(-y+0210329) 2 -0.12999y +0.521696 )

(y +0.210329) ( y2+0.12999y + 0.52!696)

_ &y _ (~y+0.17016 +,0.444586) (—wy + 0.17016 —j0.444586)
g, (y) (y +0.17016 +0.444586) (y + 0.17016 - j0.444586)

_ y?—0.34032y + 0.22661 |
w2 +0.34032y + 0.226611

Realize §, (y) , S, (y) by using (2.12, 2.25), we get
Y = 0.652443, v, = -0.842597, y; = 0.314323,
Y4 = -0.565622, Y5 = 0.630509.

2) Inthe digital domain: To meet the same specification requirement: The corresponding

Sth order Chebshev lowpass filter has the poles:

po = 0.65243, p, , = 0.493569 +/0.567461 , p; , = 0.289585 +j0.871055 .

Assign the poles to g, () and g, (z) by using the pole interlace property:

s o < (20652443 + 1) | 0.84259622-057917z + 1)
e (z-0.652443)

(23—0.579172 + 0.842596)
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| 0.565622:2-0.9871382 + 1

§,(2) =
( 2*-0.987138z + 0.565622)

Realize S| (2) , S, (2) by using (2.41), (2.44a,b):
Y, = 0.652443 v, = -0.842596, v, = 0.314323,
Y, = —0.565622, y; = 0.630509.

Note: They are same as those obtained above using the polynomials in the y domain.
Finally, we implement the filter by using the structure shown in Fig. 2.9.
The frequency responses are presented in Fig 2.10 which shows that the specifications are

satisfied.

~]
Nm!
T

—_Ti —2

- 12
) ég O output
input

Fig. 2.9 Realization structure of the example.
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Aftenuation Response of Sth-ordar Chebyshev Filter
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w/ (rad/ s), Sampling Freq.=100rad/s

Fig. 2.10

2.3 Bireciprocal lattice WDF design

[IR bireciprocal filters are used in many communication systems in the case of interpola-
tion or decimation with a factor of two. The sampling rate alteration can be implemented
very economically in a bireciprocal lattice WDF which leads to enormous savings in hard-
ware. In this section, we will modify the standard elliptic filter design and realization, then
an example which demonstrate this procedure is given.
2.3.1 The definition of bireciprocal filters [14]

A bireciprocal lattice WDF is a special case of a lattice WDF, it is formed by the charac-

teristic function [14]. That is, if the characteristic function



- h(y)
K(y) = (2.47)
Sy

satisfies
K( l) =1 (2.48)
v/ K(w)
then the characteristic function is called a bireciprocal or a mirror-image function, and the

corresponding filter A/ (y) = f_((}% is called a bireciprocal filter. Based on the definition
g\

of a bireciprocal filter defined by (2.47), the following properties [14] of () , g (y)

and & (y) hold

b = 2w(L), 7o) = 2w L) (249ab)
gly) = :tw"g(\t) (2.50)

where n is the degree of g (y) and the polynomials are rea.

According to the above definition, the passband and stopband attenuation of a bireciprocal

filter are related by
4, = -lologw(l - 10“"‘“‘”) @2.51)
and the frequency relation between @, and , for a bireciprocal filter is
oT+o,T =1 (2.52a)
or (in the y domain)
9, = /g, (2.52b)
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h =t (0)3) —tan(&) Fis th ling frequenc
where @_ = tan T ' 9, T is the sampling frequency.

2.3.2 The design method of bireciprocal elliptic filters

Since the bireciprocal elliptic filter is a special case of the elliptic filter, it is possible to
modify the standard elliptic filter algorithm such that the (2.51), (2.52) are exactly satis-
fied.

We organize the design procedure as follows:

« Specify 4, and @_, then calculate Ap and @, by using the (2.51,2.52).

« Use a program (e.g. MATLAB) for cauer filter design with the above specifications
to find the transfer function.
. Use the transfer function to find £, g, 4 (described in section 2.2), and to compute the

adaptor coefficients.
2.3.3 The realization structure of bireciprocal elliptic filters
Once the transfer function is obtained, the realization method described in section 2.2

still applies. We can rewrite (2.37) as

N-1
g(w) = (y+1) ]z[[wzwA,.H) (2.53)
i=1

and (3.38) can be written as

(2.54a)

\vz-wAl-!-l \pz—lyA3+l qf—wA,+l
Sz(w) = . it
VHyd, +1 ¢ +yd,+ L W 4+l

(2.54b)
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where

N-3
2 2

N-1

g1 N3
2

—_—, ork=
2

Apply the realization method in section 2.2, it is easy to show:

For a section of degree one
Yo = 0

then Fig. 2.4 can be simplified to the bireciprocal wave flow diagram of degree one:

4

P
T

Fig. 2.11{a) Wave flow diagram for the degree one.

For a section of degree two

Y1 =

then Fig. 2.7 can be simplified to a bireciprocal wave flow diagram of degree two.

NI
<1
Fig. 2.11(b) Wave flow diagram for the degree two.

Furthermore, Fig. 2.8 can be simplified to the realization structure for a bireciprocal filter

asin Fig. 2.11c.
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- 1R
—>
input output
T NS

R

Fig. 2.11(c) Realization structure of bireciprocal filter of order V.

To demonstrate the above design procedure, an example is given below.

Example: Specification:

Ap= 0.1dB, 4_.=68 dB,
fp= 8 kHz, f,= 16 kHz,

Sampling freq = 48 kHz.

The coefficients of the three 2-port adaptors can be obtained by following the above

design procedure as
Y1 =-0.09213253378103, ¥y = -0.34345544384394, Y3 = -0.73104262493127
After |1 bit quantization, the three parameters become

Y, = —189/2048, v, = -352/1024, y; = -749/1024.

The realization structure for the example is shown in Fig. 2.12.
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y; = -189/ 2048
Y= -352/ 1024
;= -1497 1024

2r

Y2

i
input output

bl —_an

-aZTJ QEJ

Fig. 2.12 Realization structure of the example.

The frequency responses are presented in Fig. 2.13a,b which shows that the specifica-

tions are satisfied.

Alten/ B

t/kHz

F=48 kHlz
Fig. 2.13(a) Attenuation response of the example.
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Fig. 2.13(b) Ripple response of the example.



Chapter 3

IIR multiple notch filter design

In this section, an [IR multiple notch filter design based on the phase of an allpass filter

approximation will be described [15].

3.1 A multiple notch filter design method

Generally, the input of the notch filter has the following form
x(n) =s(n) + ﬁAksin (nwy, +6,) = s(n) +d(n) 3.1
k=1
where s (n) is a desired signal, d (n) is a sum of sinusoidal interference signals with fre-
quencies w,, € (0, n) fork=1,..., M, M is the number of sinusoidal interference signals.

In order to extract s (n) from the corrupted signal x (n) without distortion, the specifica-

tion of an ideal notch filter is given by

H(e’"’) _ {(l) O = Q. k=1,.M 62

otherwise

Further, the [IR notch filter / (z) studied here has the following form in the digital

domain:
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H(z) = %(1 +4(2)) (3.3)

where A (z) is an allpass function.
3.1.1 Specification transformation

In the following, we will use the relation (3.3) to transform the specification of a multi-
ple notch filter into that of an allpass filter. As a result, the notch filter design problem

becomes an allpass filter design problem.

The transfer function of a 2M order allpass filter 4 (z) is defined by

a,M+...+alz'2M” +7M
A(z) = = - - 3.4
l+a‘z t..otay,gz

Since forz = ¢ the magnitude response of the allpass 4 (z) is equal to unity for all fre-

quencies, the frequency response can be written as

A( ei(n) - ejeﬁcm) (3.5)

where 8, (@) is the allpass filter phase response. From (3.4) and (3.5), we have

- -k
i‘{ ae 0 (2M - k)

A(e"‘") = k=0 (3.6)

P LL]
g a.e

k=0

Now let 8 d and On denote the angle of the denominator and the numerator of (3.6),

respectively, then
M

0, () = 2£¥ ae”™
k=0
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= £ ), a,(coswk—jsinwk)
k=0

g a,sin (wk)

-l k=0

= —tan
f a,cos (k)
k=0

g a,sin (k)

“H k=1

]
1+ f a, cos (k)
k=1

and

- (2M - k)
éfake
k=0

0, (w)

-j2Mo jok
=/ g ae 150
k=0

- 2M 0k
Le?M? g ake’
k=0

= -2Mw-0,(w)
From (3.6) and (3.7b), we get
8,(0) = 24(°) = 8, () -8,(w) = -2Mw—-20,(w)

And from (3.7a) and (3.8), we get
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gaksin(a)k)
0,(w) = -2Me+2tan | —£=! (39)

1+ g a,cos (k)

k=1

From (3.9), the 8, (@) of a stable allpass filter is zero when @ = 0, -2M® when

® = 1, and is required to decrease monotonically with increasing frequency [16].
Proof: First-order case, Since the poles and zeros of a real allpass function occur in

reciprocal conjugate pairs, we can write a first order allpass transfer function as

-1
¥4z . .
H(z) =2 1z , where a* is the conjugate of a. Now let r and 0 represent the radius

and angle of a,sothat a = rd 0. Then

W) < et

l+rd e 87
. f(@-86)
= o701 +'6"_ (3.10)
L +re? @9
The phase response ¢ (@) can be obtained immediately
0(0) = —@+2tan rSin(@-6) G.11)
1 +rcos (w-0)
Differentiating with respect to @ we arrive at
2
~1-r

do (1_r)2+2r(1+cos(m-9))

[f the pole is inside the unit circle, e.g. 0 < r< 1, we have ‘-‘%%’l <0, thatis, ¢ (@) is
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monotonically decreasing.
Since an N-th order stable allpass function is a product of N first-order stable allpass func-
tions, its (unwrapped) phase response is the sum of the ¥ individual phase responses, and

is thus monotone. This completes the proof.

Moreover we can also write the frequency response of a notch filter A (z) as follows:
H(ng _ l( 1 +ejen(m)J
2

jB_‘(m) _jOA(m) jGA(m) je,.(m) 0
=%e 2 g7 2 4 2 fog 2 cos(-“gﬂ) (.13)

From (3.13), we can show that the magnitude response of a notch filter is related to the

phase of allpass filter as follows:

) -

And from (3.9) and the monotone phase property of an allpass filter, it is clear that the

cos( % ;m) J‘ (3.14)

phase 6 , () goes from 0to —2M=n, when © goes from 0 to ® radians. Based on this

property and (3.14), we have the following observations:

(1) There exist M frequency points ®, <®, < ... <®,, such that

6,(0,) = -(2n-1)m, thatis A ¢ ) = 0 forn=1,.,M.

(2) There exist M frequency points 8, <@, < ... <@,, such that
= - —_ T_t 1 H( jm") = .l. - ‘ = ..L =
0,(®,) (2n l)1|:+2,thatls,| é ‘ lz(l 7) 7 forn=1,... M.

(3) There exist M frequency points @, <®, < ... <@, such that
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8,(d,) =~ (2n—l)n—g,thatis, 1H(ejﬁ"J

- |l(1+j)

(b)

Fig. 3.1. (a) phase response of allpass filter. (b} magnitude response of notch filter.

(4) There exist M + | frequency points 0 = @, <®, <... <@, = T such that
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8,(w,) = -2nx,thatis, H{®,) =1 forn=0,1,., M.

Now let H (z) be a fourth order notch filter, i.e., M= 2, a graphic interpretation of these
four observations is shown in Fig 3.1. It is obvious that the four statements are valid.
Moreover from (3.14), we can see that the maximum gain of the magnitude response of a

notch filter is unity. Based on the above observation, if we want to design a notch filter
H (=) which satisfies the specification shown in Fig 3.2, we need to make the following

assignments of the phase 8, (@) of the allpass filter 4 (z) :

>

(4]

1

0707 [ — Il - -1
0 VA L\ !“ S

-,
aw 14 ®
aw, 1 8w, M
Y Ot Ov1T T3 Oyy T3 Dypr ONpr” 3

Fig. 3.2. The prescribed specification of the real coefficient notch filter.

DO, (0y,) =-2n-1)=x.

2) eA(“’Nn—B—?fn) T T (2"—1)n+§'

BW,
3) 9_4(0)1Vn+—2-ﬂ) = - (2n—1)1|:—-§.

where n = 1...., M and the notch frequency points @, satisfy @, <... <@y, . More-

over, if BW, is very small, 8, (®,,) = —(2n-1)® and
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9,4( Wy, — g—g—,ﬂ) =-(2n-rn+ g , then to a first-order approximation it can be shown

that

eA(mN,,+B—Z’A)=—(2n—1)n-’§' (3.15)

Thus, assignments (1) and (2) imply assignment (3) if the rejection bandwidth BW, is
very small. The three assignments can be reduced to two assignments as foliows:

()6, (wy,) =-Q2n-1m.

2) e.‘l(mNn—E'Z—,n) = - (2"—1)1”'1;--

where n = |,..., M and the notch frequency points @, satisfy @, <... <@y,,. After

suitable arrangement, these two assignments are equivalent to the following condition in

2M frequency sampling points, With the frequency points

[( mod (i, 2) BW[L%LJ
o =0, —=1=-(1 . )—"—- (3.16)
R 2
the desired phase response is specified by
0, (o) =-(2]itl -l)ml [ - (-1)med@2 |E 17
(@) = ~(2] 121 1= i ) (317
where [ = |,..., 2M, |_x ] denotes the largest integer which is smaller than or equal to x, and

mod (x,2) denotes the remainder when x is divided by 2.
So far, the specification of the notch filter in Fig 3.2 has been transformed into the spec-

ification of an allpass filter. Thus, we only need to design an allpass filter 4 (z) which sat-
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isfies these 2M requirements in (3.17), then é (1+A4(2)) is the desired filter.

3.1.2 The structure of the lattice realization
In the following, we first develope an approach to determine the allpass filter coeffi-
cients, then, an efficient lattice-form realization is presented.

3.1.2.1 The determination of the allpass filter coefficients

First, from (3.9) and (3.17), we can see that the phase response 8, (®) is given at 2M

points ®;,i=1,., 2M. Thus, we can let

2M
Y asin (ko))
k=1 = tan (B,) , i=1,2,..2M (3.18)
2
l + ﬁ a,cos (kw,)

k=1

where B, = > (8, (®) +2Mw) . This expression can be rewritten as

b —

M
Y, [sin (ko) - tan (B)) cos (ko) ]a, = tan (B}, i=1,.,2M (3.19)
k=1

Note, equation (3.19) is a linear equation in the filter coefficients a,, and it can be

expressed in the following matrix form:

Qa =P (3.20)
where the two vectors are
a= l:al a, ... aw]' (.21a)
t
P = [tan(B)) tan(B,) ... tan (By)] (3.21b)
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and the elements of the matrix Q are given by
q; = sin (ko) —tan (B) cos (k@) , i=1,.,2M. k=1,.,2M. (3.22)

Solving the linear equation (3.20), the desired solution is given by

a=Q'P (3.23)
Thus, the allpass filter coefficients are obtained.

3.1.2.2 Lattice realization structure
Since A (z) = é (1+A4(z)) , the notch filter can be implemented using the structure

shown in Figure 3.3.

\ 172
— A(2) {R —O—
x(n) y(n)

Fig 3.3 The realization of notch filter

Thus, the notch filter realization is equivalent to the realization of an allpass filter. Due to
the mirror-image symmetry relation between the numerator and denominator polynomials

of an allpass filter, 4 (z) can be realized by the computationally efficient lattice structure

shown in Figure 3.4.
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3

NRIZ NIV, NI

(&)

Fig. 3.4 (a) Lattice realization structure of real coefficient allpass filter.
(b} Details of the building blocks.

When the filter coefficients of the direct-form allpass filter are obtained in terms of the
above procedure, the lattice coefficients (e.g. the adaptor parameters) Y can be obtained by
using the transform method [17] described below. We can use the transfer function of the
allpass filter to find the adapter coefficients ys. The numerator and denominator of the all-

pass filter transfer function were used to find the value of the resultant of the division of

the two polynomials at 2! equal to zero.

l.e.

A(z) = G
()

where A (z) is the transfer function of the allpass filter, 4 and g are the numerator and the

(3.24)

g

denominator of the transfer function respectively. Let &, = & and g, = g, then
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h, (0)
e s 3.25
T g, (0) (3:23)

this gives the value of v, . Then the numerator of a new transfer function is found using

the equation below:

hy(2) = W) .}g[L;') (3.26)
Z

and the denominator is found using the following equation:
-1 |
g8, (z) = gllz J—'{‘gltz ) (3.27)

h, (0) X
now, using k, and g, , the value of ¥, can be foundas y, = 2 The process is con-

g, (0)
tinued by increasing the indices by | and repeating the process until the final numerator

and denominator are constants.

3.2 The design procedure and an example

In this section, we first summarize the above design procedure, then, an example which
demonstrates this procedure will be given.
3.2.1 Summary of design procedure

We summarize the entire design procedure of the [IR multiple notch filter as follows:

) prescribe notch frequencies @, <@y, < ... <®,,, and 3 dB rejection bandwidth

BW,.BW,,....BW,,;

2) using (3.16) and (3.17) compute OJi and 0, () ,i=1,2,.., 2M;
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3) using (3.21) and (3.22) calculate Q and P. Then, find the allpass filter coefficients a,,
i=1,2,.., 2M by using (3.23);

4) the notch filter is obtained as

( Ayt ... +al.=:‘2M+l + M
H(z) =21+
2 l+alz‘l +...+a2Mz”2M

(3.28)

5) using (3.24) - (3.26) find adaptor coefficients v;,i = 1, 2,..., 2M.

Due to the mirror-image symmetry relation between the numerator and denominator
polynomials of an allpass filter, the 4 (z)} can be realized by computationally efficient lat-
tice structure shown in Fig 3.4. This structure has the minimum number of multipliers and
delays. When the filter coefficients a;, of the allpass filter are obtained in terms of the pro-

posed design procedure, the lattice coefficients ¥,, i = ..., 2M can be obtained by using

the method described above. Moreover, the frequency response of the notch filter is very

insensitive with respect to the coefficients y,, i = 1,...,2M, and the notch filter is stable if
|yl.| <l,i=1,.,2M.

3.2.2 The design example
In this section, a design example is presented.

Example: the specification of a sixth-order notch filter is

Q= O.in B‘WI = 0.0Ilx
O,y = 04n BW?_ = (0.0Ir
Wy = 0.78 BW3 = 0.02r

Using the above design method, we obtain the filter coefficients of a sixth-order allpass fil-

42



ter as follows:

a, =-13422  a, = 1.0897
a, = 11918 ag = -1.1868
a, = -12294  a, = 0.8809

and the lattice filter coefficients v, as follows:

Y, = -0.75845 Y, = 0.1520
Y, = 04130 ¥s = —~0.01969
Y; = -0.4428 Ys = 0.8809

The magnitude and phase response of the notch filter are shown in Figure 3.5. From the

results, we see that the specification is well satisfied. And it is clear that the |y| < 1 fori=

l,..., 6. Thus, the notch filter is a stable filter. (A MATLAB program for the design of a

notch filter is given in the Appendix.)
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Fig. 3.5 (a) The magnitude response of the notch filter.
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Chapter 4

High speed narrow-band and wide-band filter design

Narrow-band and wide-band filters are widely used for removing low frequency noise
and line frequency interference, for exampie, from an ECG signal. In this chapter, we will
first introduce the IFIR technique, then based on this technique, we will describe the
detailed design methods for both linear and nonlinear phase narrow-band and wide-band

filters. [n order to demonstrate these design procedures, several examples are presented.

4.1 The interpoiated FIR (IFIR) method

The [FIR (interpolated FIR) method [18, 19] was proposed for the efficient design of
narrow-band sharp-transition FIR filters since direct FIR designs generally require very

high order when the transition bandwidth is very narrow. Typically, the filter order, ¥, is
proportional to 1/Af, where Af is the transition bandwidth. To explain the basic idea,

consider Fig. 4.1(a) which shows a narrow-band lowpass specification. Instead of meeting

this specification, we try to meet a two-fold stretched specification; Fig. 4.1(b) shows the
magnitude response of this stretched filter called G (z) . Note, the stretched filter G (z)

has transition band width 2Af so that its order is N/ 2. Fig. 4.1(c) shows the magnitude
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response of G( 22) , where the passband around & is unwanted and can be suppressed by

cascading GL zz) with a new filter [, (2} (see Fig.4.1(d)). This filter has a very wide tran-

sition band so that it requires very low order. The desired response is obtained by cascad-

ing G{ =% ) and 7, (2) .

14 Desired narrow-band response (a)
0 [\ ] )
vy O, T
P Stretched filter G(z) (two times wider) ()
20, 20 1 3
4 Response of G(=%) ()
oL\ Desired Undesired =/ L o
@ 0 T—a T
14 Response of /,(z) (d)
0 \L l >m
A Response of G(z*)
1 (e)
\ / \ Undesired /
Ksu‘ed
0 0
a)p W, R’2-0y ruz w2+, -0 1:
4 Response of /12) 3]
0 x l s
4 Response of /5(z%)
0 —\1 \/‘

w2 -0 r:/2 W2+ @

Figure 4.1 The [FIR technique for efficient design of narrowband filters
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Extensions. Instead of stretching the specifications by two, it is possible to stretch by an

amount M > 2. In principle M can be as large as the integer-part of /. Here, we con-
sider only the case where M is a power of 2.

Consider Fig. 4.1(e) which shows G( z4) e, M=4. GLz“) has two unwanted pass-
bands. Instead of designing a FIR filter with passband edge = @, stopband edge

= /2 -, we design two FIR filters. The first filter /, (z) removes the unwanted pass-
band around 7, and is the same as /, (z) in Fig. 4.1(d). Next, we need to remove the

unwanted passband around n/2. [, (z) is designed with passband edge = 20, and
stopband edge = - 20, . (see Fig. 4.1(f). Fig. 4.1(g) shows L,( 2 ). The desired

. . . 4 2 .
response is obtained by cascading GLz ) ,1,(2) and 12Lz J Notice that the passband

around tin /, L zz) has no effect since the unwanted passband around & in Fig. 4.1(¢) was
already removed by /, (z) .
This idea can be readily extended to higher M, as long as
MsT/@, @“.n
For a given M, the required number of FIR filters is
numb = log,M 4.2)
and the i-th FIR filter is in the form of 1,.(2“l ), where [i] = 2! The passband and

stopband edges of /. (z) are

APl _ i-1
o)p,.T— 2 -mpT, o, T=r-2 -oT 4.3)
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Figure. 4.2 shows the filter diagram

dn)—i@——@—)y(")

Figure. 4.2 Block diagram for IFIR narrow-band filters.

The transfer function for this filter is
H(z) = G( M )1 (2) (4.4)

where G (z) is called the model filter, and /(z) was originally called an interpolator, in

here, we call it a masking filter [18], respectively. The masking filter extracts the desired

image, and removes the undesired images.

As the value of M increases, the required filter order for G(z} decreases, since the new
transition bandwidth of G (z) is M times wider than the original one, but if M is too large,
then the transition band of /(z) becomes very narrow (so that /(z) dominates the cost),
and we begin to get decreasing returns. Summarizing, as M increases the cost of G (z)

decreases and that of /{z) increases. The maximum possible value of M needs to be cho-

sen carefully based on (4.1).

4.2 Nonlinear phase narrow-band and wide-band filter design

In this section, based on [FIR the technique, we will present both narrow-band and

wide-band filter designs.
4.2.1 Nonlinear phase narrow-band filter design[20]

Recursive infinite impulse-response (IIR) digital filters require, in general, a smaller
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number of arithmetic operations per sample than their nonrecursive finite impulse

response (FIR) counterparts. Instead of designing an FIR model filter and a masking filter,
we use an IIR filter design method (described in chapter 2) for the model filter G (z) and

an [IR bireciprocal filter for masking filter /(z) , since elliptic approximation is more effi-
cient than the other approaches (such as Chebyshev, Inverse-Chebshev and Butterworth)
in that the transition between passband and stopband is steeper for a given order, we use
elliptic and bireciprocal elliptic filters for the model filter and the masking filters (as

described in chapter 2).

+ Maximal sample frequency analysis

The maximal sample frequency for an [IR filter described by a fully specified signal

flow graph, is defined [21] by

fnax = min {ﬂ} 4.5)

! opi

where T, is the total latency of the arithmetic operations, and N; is the number of delay
elements in the directed loop i. The loop that determines the maximal sample frequency is
called the critical loop. Digital filters with high maximal sample frequencies are important
for high speed applications and low power consumption, since if the required sample fre-
quency is lower than the maximal sample frequency, then the excess speed may be utilized
to reduce the power consumption [22], [23].

According to Johansson and Wanhammar [20], the maximal sample frequency for the

first-order section (see Fig. 4.3) is
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critical loop

==
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y, %
Y| é?.o\ '!
T4 I
x(n) y(n) y

(n) y(n)
(a) e ®)

Fig. 4.3 (a) First order allpass section (b) Corresponding signal flow graph.

—

|5

. i
= = (4.6a
fmax rT. T .,+2T, ., )

min mult

For the second order section (see Fig.4.4), it is

i -
e - _
— |" |i d)( " 5 critical loop
e |
wa Bu +
i N
—XP
AN T
NN
x(n)  y(n) % v
(a) x(n) y(n)

®)
Fig. 4.4 (a) Second order allpass section (b) Corresponding signal flow graph.

_ 1 _ 1
f = = (4.6b)
maxr 2T ,+4T

min mult add

The maximal sample frequency for the allpass sections of a bireciprocal filter is
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1 2
fo=t= (4.6¢)
e T, T +2 Tadd

min mult

From (4.5), we see two ways to increase the maximal sample frequency, the first is to
reduce the latency in the critical loop, whereas the second is to increase the number of
delay elements in the critical loop. The latency can be reduced by using low-sensitivity fil-
ters, and by removing unnecessary operations in the critical loop [23], [24]. However, in
this chapter we are mainly concerned with the approach of increasing the number of delay
elements in the critical loop, we achieve this by using the interpolated technique, an M-
fold increase of the maximal sample frequency is automatically obtained, since the corre-
sponding realization for the M-fold transfer function has at least M delay elements in its

critical loop.

« Narrow-band filter structure

Since [IR filters can be implemented in the form of a parallel interconnection of two all-
pass filters, and combined with the narrow-band block diagram shown in Fig. 4.2, we get

the IIR narrow-band filter structure shown in Fig. 4.5.

input v output
410" {\ St —)é} ~ }—O—)
.““(:'"l) /‘2'(2‘”2)
Model filter First masking filter (N-1)-th masking filter
H (2) H, (2) Hy(2)

Fig. 4.5 Structure for [IR narrow-band filtering.
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where 4, is one of the allpass branches which can be implemented as a cascade of one

first-order allpass section and a number of second-order allpass sections, whereas 4, the

other branch can be realized as a cascade of a number of second-order sections (see chap-

ter 2 for details). A (z) is called a model filter, , (z) is called the first masking filter,

while H,,(z) is called the (N - 1) -th masking filter.

« Design of narrow-band lowpass filters

First, let o T, ®,T, §,, and §_ denote the passband and stopband edges and ripples,

then the specification of the overall narrow-band lowpass filter is

-8, <[t ¢ |<1,  oTe oo,

4 ) <5, wTe (0,10 .7)
Further, let @ _,T and @, T where i = 1,2,...,N, denote the passband and stopband

edges of the model and masking filters.

For the model filter, we have
o,T=MoTl, o,T=MaeT (4.8)
i.e, M, times wider than that of overal! narrow-band filter, and M, should satisfy (4.1).
We also restrict M| to be some power of two, i.e.,

M =2V, Msn/a, 4.9)

The masking filters:

Once M, is determined (by using (4.9)), the number of masking filters is obtained by
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(4.2), ie.,
N-1 = log, M (4.10)
and if the parameter M, is chosen properly, then by using a bireciprocal lattice WDFs for

the masking filters, the model and masking filters will have about the same maximal sam-
ple frequency.
Comparing (4.6b,c), we get

M;2M, /4 @11

where i = 2,....N.

Summarizing the above, we get [20]

M’=A_’{1, 1\,[3=_‘1’f_i.1 M=%+2N_i’ i=4..N (4.12)
-2 4 4
and
M. T+20_, T
o, =% ( <l 3 £ ) o, =n-0,T (4.13)
|

where i = 2,...,N.

To see how the stopband edges of the masking filters should be chosen, first we let N =3,
then from (4.9) and (4.12), we have M, = 4, M, = 2 and M; = 1. Typical magnitude
functions of the model and masking filters are as shown in Fig. 4.6

The model filter A L z4J exhibits two unwanted images centered on /2 and & (see Fig.

4.6(b)). These two unwanted images are removed by the two masking filters. The first

masking filter
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0 ‘—\ /—_—_l > oT
;T2 -0, T/2 n
(d) A
| Response of H;(z)
0T T
A
()
| Overall narrow-band filter
\ ] ;(!)T

Fig. 4.6

H2L22J removes the image centered at n/2, while the second masking filter H,(2)

removes the remaining image centered at &.

The specified stopband attenuation of the overall filter will be satisfied by selecting the
stopband attenuations of the model filter and all masking filters to equal that of the overall
filter. The passband ripple of a bireciprocal lattice WDF is very small if its stopband atten-

uation is reasonably high. Therefore, it is possible in most practical cases to let the model
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filter have the same passband ripple as that of the overall filter, i.e. model filter //, (z) and
masking filters H,(z) satisfy:
1-3,<|H,(2)|<1, ©Te[0M 0T
|Hl (z)| <8, oTe [Mo,Tn] (4.14a,b)
IH,.(z)| <8, ole(w,ln] (4.15)

« Summary of design procedure
We summarize the narrow-band filter design procedure as follows:

1) Determine the specifications for the model filter: Choose M, by using (4.1), then

determine the passband and the stopband edges by using (4.8}, and choose the
passband ripple and the stopband attenuation by using (4.14a,b).

2) Determine the specifications for the masking filters: First, use (4.10) to select the

number of masking filters, then choose M, by using (4.12), and choose the pass-

band and the stopband edges by using (4.13), then choose stopband attenuation by
using (4.15).

3) Using the design method described in Chapter 2, design the model filter and the
masking filters.

4) Cascade the model! filter and the masking filters by using the structure as shown in
Fig. 4.5 and obtain the overall narrow-band filter.

4.2.2 Nonlinear phase wide-band filter design [20]
A wide-band filter is complementary to a narrow-band filter, since we want the delays in

each branch to be approximately equal, we select one of the allpass subfilters of each lat-
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tice WDF and cascade these to obtain the overall allpass filter. The wide-band filter struc-

ture is shown in Fig. 4.7.

input : 2 output
A=) - 3{ App(2'™) —E?'O—)g}—)
) @

A" | Al | A
-41[(:“’1) flg](Z‘“z) "Nl(zMN) ,

Fig. 4.7(a) Structure for [IR wide-band filtering.

input 2
T - 5
output

A= —)idmz”z)

M2
A )0 _
A2 |

Fig. 4.7(b) Simplified structure for IIR wide-band filtering.

To obtain a wide-band filter, we first design a narrow-band filter as described in the pre-

vious section. If the narrow-band filter is a lowpass filter with passband and stopband

edges .7 and @ T, then, by connecting this filter in parallel with a series of allpass fil-

ters, we obtain a wide-band high-pass filter with passband and stopband edges @ T and
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®,T. The passband and stopband ripples can be selected by [20]

H(z)|* <235, oTeQ (4.16)
where §_ denotes the passband ripple of the corresponding narrow-band filter, Q_ denotes

the stopband region of wide-band filter, and

1-8 <|H(2)|<1+8, aTeQ, .17)

where Q _ denotes the passband region, and §,, is
8, = max{8}, i=12,.N. (4.18)

The passband ripple of a narrow-band filter in the worst case is the sum of the passband

ripples of the model and masking filters. Experience also shows:

A, = AN, A, = NA (4.19)

where 4, , 4, denote the passband ripple and stopband attenuation of the narrow-band

filter, whereas 4, o0 s are passband and stopband ripples of the complementary wide-

band filter, N is the total number of model and masking filters.

To achieve a reasonably high stopband attenuation for the wide-band filter, the passband
ripples of the model and masking filters must be very small. Due to the interdependency
between the passband and stopband ripples of the masking filters, the stopband attenuation
of these filters will, in most practical cases, be high enough. Therefore, the passband ripple
of the wide-band filter will, in practice, be determined by the stopband rippie of the model
filter.

After choosing the passband and stopband ripples of the corresponding narrow-band fil-
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ter, we can use the narrow-band filter design procedure to design the corresponding nar-
row-band filter, and the wide-band filter can be obtained by using the structure as shown in

Fig. 4.7(b).

4.3 Linear phase narrow-band and wide-band filter design

[n some applications, a small phase deviation from a linear phase in the passband is
required. In this section, we will present approximately linear phase narrow-band and
wide-band filter designs.

4.3.1 Linear phase narrow-band filter design [25]

This design method is also based on the IFIR technique, the model filter is designed
using the approximately linear phase [IR filter design method in [26]. The IIR section is
composed of a parallel connection of an allpass filter and a pure delay term. Then the [IR
section is followed by FIR filters whose transition bandwidths are very wide. Due to the
wide transition bandwidths, the FIR filters can be implemented without multipliers by

using MF (Maximally Flat) FIR filters [27].

« Model filter design

For linear-phase lattice WDFs, there exist no closed-form solutions for computation of
the adaptor coefficients. Therefore, numerical optimization algorithms must be used.

1) Constructing the magnitude function

Since the model filter is composed of a parailel connection of an allpass filter and a pure

delay term, we can write the transfer function as

H(z) = é[z-Ml*-AMz @ ] @.3.1)
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where A, (z) is an allpass transfer function, and can be written as

AMzLeimJ = /4

then (4.3.1) can be written as
"( e/m) _ l(e-fM|m+ej0(m))
2

(o) -Mae) y
=e? cos (0 (0) +M,0)

that is
) -

and the magnitude should be bounded:

1-8,< IH(e’“’)I <1, oe0,)]

cosé (6 (©) + M) 4.3.2)

|6 ¢ )| <5,, we @, 43.3)

2) Transform the filter specifications to allpass phase specifications:

We also can write allpass filter A m, (2) forz = d° as

M. joM,-k
a,e

AM:(J'") e (43.4)

M. ~jok
Z a.e
k=0

[f ¢ denotes the phase of 4 M,L ¢ m) ,and ¢, denotes the phase of the denominator of

(4.3.4), then, we have (see Chapter 3 for proof)



Also

and trom (4.3.2), we get

¢(0) =-Mo+ 2cos—l|H(eim)|

substitute (4.3.6) to (4.3.5), we get
-1 .
R )

3) Formulate the error function

The error function to be minimized is

E(w) = W(a)} (¢(0) -D(w)]

where
1
= ,we [0, mp]
2cos (1-8_(w))
W) = L7
— , e [o,n]
2sin” (8, (®))
and
{ -Mo, oeo]
D(w) =
-M0+x, we (0,r]
4) Algorithm [26]
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(4.3.5b)

(4.3.6)

4.3.7)

(4.3.3)

4.3.9)

(4.3.10)



Step 1.

Step 2.

Step 3.

Step 4.

Step S.

Step 6.

Step 7.

Initialize ®,, O, Sp, o, M,,and M,.
Select the number of passband extremal points
n= (M,+1) cop/ ((Op +n-), rounded to the nearest integer. After

selecting the number of passband extremal points, the extremal points can be

selected to lie equidistantly on the passband and stopband regions.

Select initial extremal points. Q = {©,,0,,....0,, .} on the passband and

the stopband. According to the number of passband extrema points, the extrema
points can be selected to lie equidistantly on the passband and stopband
regions.

Solve for ¢ from
E(@) = #(©) [6(w) -D(®)] = (-1)/8, j=12,..M,+1
using (4.3.5b) get ¢, , then solve (4.3.5a) to get filter coefficients a,.a,,...,a,, .

and then solve for 8.

Built up error function £ (@) , and find M, + | local extrema whose absolute

values are the largest with the condition that the maxima and minima alternate.

Store the abscissa of the extrema into Q' = {o’|,0’5,..., 0", _}.

If|mj-co'j| <g forj = 1,2,...,M, + |, then go to the next step. Otherwise set
Q = Q' and go to step 4.

Compute H (z) and give the frequency response of the filter.
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. Masking filter design
In this part, we will use the MF (Maximally Flat) linear phase FIR approach to design
masking filters.

The MF FIR transfer function can be written as [27]:

H(z) = ( ‘ *22- )ZK. Lf P (-1)"d(n)(“2{l)2n @4.3.11)
n=0

where

_ (K-1+n)!

(4.3.12)
(K-1)!n!

d(n)

where K, L can be determined from the filter specification [28] (there is a program in [28]
to compute K and L).

And filter order N, K, and L are related by

N=2(K+L-1) (4.3.13)
Thus for a given N and K, L represents the maximum degree of flatness at @ = 0. Simi-
larly, for a given N and L, K represents the maximum degree of flatness at @ = x.

It should be mentioned: The number of masking filter can be determined by using (4.10),
and the passband and stopband edges can be determined by using (4.3).
4.3.2 Linear phase wide-band filter design

A wide-band high-pass filter is the complementary filter to a narrow-band lowpass filter,

and can be obtained by using the structure as shown in Fig.4.8
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A ,,,2(z"’ )

172
é;——o— MF FIR
input 2MM) - ¥ output

=M

Fig. 4.8 The structure for wide-band high-pass filter.

where M, can be determined by M and M, , and the length of MF FIR filters.

4.4 Roundoff noise analysis for interpolated WDF's

The roundoff noise can be measured by NSR (Noise to signal ratio), and the NSR for

first-order and second-order allpass sections is [29]

i

NSR “lz’ NSR,, o @4.1)

Lst 2
€ €'sin"@
where € is the distance from the unit circle to the pole location, when the transition band-
width of model filter is increased by M times, the poles generally move away from the unit

circle by M times €. Therefore, by M level interpolations, the NSR of cascaded IIR filters

decreases by M and these implementations are preferable to WDF implementations for
larger M, this is an obvious conclusion obtained from (4.4.1). The roundoff noise of the
model filter alone is therefore lower than for the corresponding conventional filter without

taking into account the contributions of the masking filters.



4.5 The examples

[n this section, several design examples will be presented.
Example I: Low-pass narrow-band filter design.

Specification [30]:

» @, 7=0.06257(11.25°), @,T=0.075n(13.5°),

. 4,,.=05dB, 4, =50dB.

min

Method (i): Direct design method (conventional design method):
These specifications can be met by a seventh-order elliptic filter, with the poles (in the
digital domain):

P\, = 0.97606586 +0.19500405;
P4 = 0.943864 £0.11575329
Pss = 096463816 +0.17502166;

p, = 092874051

Note, these poles are close to the unit circle. Then the elliptic filter is implemented using
the lattice WDF structure described in chapter 2, the adaptor coefficients can be obtained
as

Y1 = 0.92874051479306, Y, = -0.96115936623788, Y3 = 0.98374275779617,
Ya = -0.90427807728677, Y5 = 0.99130900282711, Y = -0.99073114126430,
Y7 = 0.98061042915654.

Fig. 4.10 shows the frequency response using word-lengths, W= 17.
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Method (ii): Described method (interpolated method).

Model filter design:
Determining the specifications:

M, <n/w =1/0.075=13.3, we choose M, = 4.
o, T=MoT=4x00625t = 0.25x,
w,T=MoT=4x0075r = 0.3x,

A = 0.5dB, A = 50dB.

Imax Imin

The specifications can be met by a seventh-order elliptic filter, with the poles (in the dig-

ital domain):
p,, = 0.69313023 £ 0.69743825;
py4 = 0.69577352 £0.61582191;
psg = 0.71562121 £0.39821999;
p; = 0.73103235

Note, these poles are further from the unit circle than the poles of the direct method. The

adaptor coefficients can be obtained as
Y1 = 0.73103234889104, ¥, = -0.86333741466988, Y3 = 0.746803573645 10,

Y4 = -0.67062988457961, Y5 = 0.8566759592606, Y = -0.96684962897323,
Y7 = 0.70481263233903.

Masking filter design:
First, determine the number of masking filters = log,M; = 2.

The first masking filter design:



Determine the specifications:

My==L=%=
2 2
+
w,T = n—%(w) = 0.8583x,
1

chT = n—mszT = (.1417x,
Aypin = 50dB.

The specifications can be met by a 3rd-order bireciprocal elliptic filter described in

chapter 2, section 2.3.2. The obtained adaptor coefficient is

¥) = -0.35058484219591.
The passband ripple and stopband attenuation are

-5
A, = 50.7848B, 4, = 3.62x10 "dB.

The second masking filter design:

Determine the specifications:

M} = % = 1,
4
M T+2m. ,T
w,T = n-j(%T‘"ﬂ-) = 0.9292x,
!

0,7 = t-0,T = 00708,

A = 50dB.

3min

The specifications can be met by an 3rd-order bireciprocal elliptic filter, the obtained

adaptor coefficient is
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¥; =-0.3375033802279.

The passband ripple and stopband attenuation are

-7
Ay = 69dB, 4,5 = 5265107 dB.

The overall narrow-band filter structure is as shown in Fig. 4.9, and Fig. 4.11 shows the

trequency response of the overall narrow-band filter using word-lengths, W = 12,
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Fig. 4.9 Structure of overall narrow-band filter for example 1.
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Example 2: High-pass wide-band filter design.

Specification [25]:

« ©.7=0.075r(13.5°), ® T=0.0625T (11.25°),

. A, =02dB, 4 . =50dB.

min

Method (i): Direct design method (conventional design method):
These specifications can be met by a seventh-order elliptic filter, with the poles (in the

digital domain)

p, = 0.5911553
Py = 0.82176043 +0.25314993;
Pys = 093461005 +0.23900864;

Pe7 = 0.96595755 £ 0.22834833;

Then the elliptic filter is implemented using the lattice WDF structure described in
chapter 2, the adaptor coefficients can be obtained as

Y1 = 0.59115529848347, ¥, = -0.93062108088553, Y3 = 0.96819625800425,
Y4 = -0.739375084 16515, Y5 = 0.94489156926825, Y = -0.98521695086713,
Y7 = 0.97315061854081.

Fig. 4.13 shows the frequency response using word-lengths, W = 17.
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Method (ii): Described method (interpolated method).

Corresponding narrow-band specifications:
M, s/ =1/0.075=13.3, we choose M| = 4.
Determine the total number of model filter and masking filters:

N = log,M +1 = 3.
Since the specifications of the wide-band filterare 4, = 504B, 4, = 0.2dB, then

the specifications of the corresponding complementary narrow-band filter are

A, = 0.4343x10"dB and A_. = 13.47dB. We choose the passband and stopband rip-

ples of the narrow-band filter as

A
= ¢ — -5 —3 —
Ay, = WL 107°dB, A, = N-A,=40dB.

Model filter design:
Determining the specifications:

@, T = M,0,T = 4x0.0625% = 0251,

o, 7= MoT=4x0075t = 0.3=,

A, =10"dB, A, . = 40dB.

lmax tmin

The specifications can be met by an 11th-order elliptic filter, with the poles (in the digi-

tal domain):

p, = 0.28671991

P, 3 = 0.63337773 £.0.70275305f

Py s = 0.57862203 +0.65571435;
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Ps 1= 0.48253878 £ 0.55379296/
pg g = 0.35560688 +0.34139427;

P, = 0.66319926 +0.72833384;

The adaptor coefficients can be obtained as

Y1 = 0.28671991154392, Y, = -0.53953031878987, Y3 = 0.62686492810183,
Y4 = -0.89502919636046, Y5 = 0.66846224032534, Y = -0.24300630107066,
Y7 = 0.57217228785650, Yg = -0.76476475528964, Yo = 0.65574975306234,
Y10 = -0.97030342888112, Y;| = 0.67319504866259.

Masking filter design:

First, determine the number of masking filters = log,M; = 2.

The first masking filter design:

Determine the specifications:

Mle_;l.= =2,

[N PN

+
@,T = n_%(w) = 0.8583~,

M, 3

o, =n~0,T = 0.141Tr,

A, =40dB, A, _= 10°dB.

2min 2max
The specifications can be met by an Sth-order bireciprocal elliptic filter, the obtained
adaptor coefficients are

Yy = -0.11455485826387, Y, = -0.54458467232029.

The passband ripple and stopband attenuation are
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_ -9
A, = 88.66dB, A,, = 59x 107 dB.

The second masking filter design:

Determine the specifications:

4
+
T = n-L—'!("—’dT—;-f’il-T) = 0.9292x,
1

0T = n-,T = 00708,

Agpin = S0dB, Ay, = 107°dB

Imin
The specifications can be met by an 3rd-order bireciprocal elliptic filter, the obtained
adaptor coefficient is

Y1 =-0.3375033802279.

The passband ripple and stopband attenuation are

-7
o Ay = 69dB, A,y = 5265107 dB.

The overall wide-band filter structure is as shown in Fig. 4.12. Fig. 4.14 shows the fre-
quency response of overall wide-band filter using word-lengths, W = 11. (A MATLAB

program for the design of a wide-band filter is given in the Appendix.)
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Fig. 4.12 Structure of overall wide-band filter for example 2 (interpolated method).
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Fig 4.13(a) Frequency response of wide-band filter (direct method).
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Fig 4.13(b) Ripple response of wide-band filter (direct method).
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Example 3: Low-pass narrow-band filter design (linear phase).

Specification:
« ©.7=0.0625r (11.25°), @ T=0.075% (13.5°),

. 4,,=01dB, 4, =40dB.

min
Model filter design:
Determining the specifications:

M, <t/w,=1/0.075=13.3, we choose M =38.
w,T = MlcocT = 8x0.0625% = 0.5¢,
o,T= Mo T = 8x0.075% = 0.6,

A = 0.1dB, 4 = 4048B.

lmax Imin

To meet the specifications, apply the method described in section 4.2.1. We get a 1 7th-

order IR filter (allpass degree is 9, the delay degree is 8), the allpass filter coefficients are

o
|

1 -4 = 1000000, 0.121666, 0.487569, —0.059062,

i

-0.105517, 0.044379, 0.026499 ,

ag_ o = —0.081658, -0.098785, —0.029697 .
Masking filter design:
First, determine the number of masking filters = log,M; = 3.

The first masking filter design:

Determine the specifications:
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0,7 = o.T = 00625x,
0,7 =n-0T = 0925r,

Aypoe = 0.1dB, 4,,, = 40dB.

2max
Apply the method described in section 4.2.1 masking filter design part, the specification
can be met for K| = 2, L, = 2, the transfer function for this maximally flat linear phase

FIR filter is

ho = (B2 o )

The second masking filter design:

Determine the specifications:

0.7 =20, T = 0.125%,
0,7 = n-20T = 0.8,

A = 0.1d8, 4 = 40dB.

Imax Imin
The specification can be met for K, =2, L, = 3, the transfer function for this maxi-

mally flat linear phase FIR filter is

AN R Y

The third masking filter design:

Determine the specifications:

0,7 = 40 T = 025,

0,7 = t-4a. T = 07x,
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A = 0.1dB, 4 = 40dB.

dmax 4min

The specification can be met for K; = 5, L, = 6, the transfer function for this Maxi-

ral flat linear phase FIR filter is:

-1\10 -1\2 ~1\4
[3 (2) = ( l+2 ) (3—5_52—4( |-z ) + 152—3(1_1)
2 2 2

-ING -1n8 N
= ) 70 L=z )-126("‘ )
2 2 2

The overall narrow-band filter structure is shown in Fig. 4.15.

Ay (@)

12 output
input h) L) Iz b—>

3}

Fig. 4.15 The structure for narrow-band low-pass filter (example 3).

The frequency response of overall narrow-band filter is shown in Fig. 4.16.
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Fig.4.16(a) Magnitude response of model fitter, and cascade model filter with
masking filters {for example 3).
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The corresponding wide-band filter can be obtained by using structure shown in Fig. 4.17.

E output

A AWZ(ZS)
12 output
é;—H h(z) I K(z%
64
input z
6
"M3
Fig. 4.17 Corresponding wide-band filter structure for example 3.
where

My=M-M+ (K +L ~1) +2(K,+ Ly~ 1) +4(Ky+ Ly~ 1)

= 8Bx8+3+8+20 =115

The frequency response of corresponding wide-band filter is shown in Fig. 4.18.
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Chapter 5

Conclusions

[n this thesis, a method to design IIR multiple notch filters for a prescribed notch fre-
quencies and 3 dB reflection bandwidths is discussed. This notch filter can be realized by a
computationally efficient lattice structure with very low sensitivity. An example has been
given to demonstrate the design procedure.

[n the second part of this thesis, the design and realization methods for high speed nar-
row-band and wide-band filters have been given, the narrow-band filters are composed of
a model filter and one or several masking filters in cascade. [n the case of nonlinear phase,
lattice and bireciprocal lattice WDFs are used for the model and masking filters; a conven-
tional lattice WDF design method is given, a design method for bireciprocal WDFs is also
given in detail. The wide-band filters consist of a narrow-band filter in parallel with one of
the allpass filters. The overall narrow-band filters can be designed by separately designing
the model filter and masking filters. The overall wide-band filters can be designed by first
designing a narrow-band filter, then, by connecting this filter in parallel with an allpass fil-
ter consisting of a cascade of branches one from each subfilter of the narrow-band filter.
Estimations were given for the passband and stopband ripples of the individual fiiters in

the narrow-band filter in order to meet the requirements for the overall wide-band filter.
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This offers simple design procedures for both narrow-band and wide-band filters since a
conventional lattice WDF design method can be used. However, for many wide-band
cases, these designs imply an unnecessarily high computational complexity, because the
derived estimations are based on a worst case assumption. For the case of approximately
linear phase, an approximately linear phase [IR filter is used for the model filter, and MF
linear phase FIR filters are used for the masking filters. Because both cases (linear and
nonlinear phase) are based on the interpolated technique, all recursive loops contain a
number of delay elements, resulting in filters with higher maximal sample frequencies
compared to the directly designed filters. We gave several examples to demonstrate the
effects of quantization, the resulting filters have lower word-lengths compared with
directly designed filters. We also discussed the roundoff noise and concluded that these fil-

ters are likely to be in favor.
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Appendix

1 Programs for multiple notch filters

% program for multiple notch filters

clear;

format long;

% notch filter specification

order=6; %filter order

wN=[0.1*pi 0.4*pi 0.7*pi ]; % notch filter freq

bw=[0.01*pi 0.01*pi 0.02*pi]; % rejection bandwidth

%bw=[0.05*pi 0.05*pi 0.4*pi];

% calculate coefficients

for i=1:order
w(i)=wN(floor((i+1)/2))-0.5*%(1-(-1).”mod(i,2))*(bw(floor((i+1)/2))/2);
phase(i)=~((2*(floor((i+1)/2))-1)*pi)+0.5%((1-((-1)."mod(i,2))) *pi/2);
beta(i)=0.5*(phase(i)+order*w(i));
tanb(i)=tan(beta(i));
for k=1:order

q(i.k)=sin(k*w(i))-(tanb(i))*(cos(k*w(i)));
end

end



a=inv{q)*tanb’;

disp(*a="),disp(a),

g=[1 a.’]; % in the z-domain

h=fliplr(g); % in the z-domain
[H,w] = freqz(h,g,1024);

figure(5)

phase = unwrap(angie(H)); % unwrapped phase

plot(w/pi,phase/pi);grid,xlabel(‘normalized frequency w/ ), ylabel(‘phase / ’),

title(‘phase of allpass’),

% calculate gammas

h=[1a’];

g={fliplr(a’) 1];

n=length(g)-1;

gamma=zeros(1,n);

for i=1:n

[gamma(i),h,g]=Exgamma(h.g);

end

disp(‘gamma="),disp(gamma)

% notch filter freqency response
M=512;% number of time instants
=zeros(1,n); % initial state

input=zeros(1,2*order);

output=zeros(I,2*order);
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b2=1,
%%b2=data;
for m=1:M
input(m)=b2;
fori=l:n
al=b2;
a2=s(i);
[bl,b2]=Two_p_a(-gamma(i),al,a2);
ifi>1
s(i-1)=bl;
else
output(m)=bl;
end
if i==n
s(i)=b2;
end
end % i-loop
b2=0;
end % m-loop
output=(output+input)*0.5;
t=linspace(0,M-1 M);
figure(2),stem(t,output),axis([0 100 -1 1}),grid, xlabel(‘discrete time n’);

ylabel(*h[n]’), title(‘Unit Sample Response’);
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% FFT of impulse response and plots of frequency responses

N=M;

y=ftt(output,N);

x=linspace(0,1,N/2);

y1=[y(1:N/2)];

y2=abs(y1),

figure(3)

plot(x,y2),grid, xlabel(‘normalized frequency w/ *), ylabel(*|H['),
title(‘Magnitude Response of [IR Multiple Notch Filter'),

figure(4)

om_index = 1:.99999*N/2+1;

om = x(om_index); % passband

phasel = unwrap(angle(y |{om_index))); % unwrapped phase
plot(om,phasel );grid,xlabel(‘normalized frequency w / *), ylabel(‘phase / *),
title(‘phase of IR Multiple Notch Filter’)

%% % %% %% %% %% %% %% %% %% %% %% %% %% %% %% % %% % % %% %% % %%
function [gamma,h2,g2]=Exgammathli,gl)
gamma=polyval(h1,0)/polyval(g1,0);

h2=polyadd(hl,-gamma*gl);

m=length(h2);

h2(:,m)=(];

g2=polyadd(gl,-gamma*hl);

820, 1)={];
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%%%%%%%%%%%%%% % %%%%%%%%%%%%%%% %% %% % %% %% % %% %
function [bl,b2]=Two_p_a(gamma,al,a2)
bl=-gamma*al+(1+gamma)*a2;
b2=al*(1-gamma)+gamma*a2;
%%%%%%%%%%%%%%%%%%% % %%%% %% % %% %% % %% %% %% % % %% %
function p=polyadd(a,b)
if nargin<2
error(‘I\'Iot enough input arguments’),

end

=a(:).”;
b=b(:).";
na=length(a);
nb=length(b);

p=([zeros(1,nb-na) a] + [zeros(1,na-nb) b];
2 Programs for the wide-band filters

%example 2 for overall wide-band filter

Yespec: weT=0.075pi,wsT=0.0625pi,Ap<=0.2dB,As>=50dB hign-pass
clear

format long

m=33;

b=zeros(1,m);



cl=zeros(1,11);c2=zeros(1,2);c3=zeros(1,1);cd=zeros(1,1);
d1=zeros(l,11);d2=zeros(1,5);d3=zeros(1,3);
el=zeros(1,11);
output | =zeros(1,m);output2=zeros(1,m);output3=zeros(i,m);
Y%implement H1(z.”4) Amax=10."(-5)db,Amin=40db,order=11
for n=0:4095
a(6)=c1(3);c1(3)=d1(3);d1(3)=el(3);el(3)=b(6);%implement delays
a(S)=cl(2);c1(2)=d1(2):d1(2)=el (2);el (2)=b(4);
al=a(5);
a2=a(6),
gamma=0.62686492810183;%Ap=10.°(-5),As=40db
gamma=round(gamma*(2.*11))/(2.*11);
two_p_al;
b(5)=bl;
b(6)=b2;
if n==0
a(l)=1;
else
a(1)=0,
end
a(2)=cl(l);cl()=d1(1);di(1)=el(1);el(1)=b(2);
al=a(l);

a2=a(2);
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gamma=0.28671991154392;
gamma=round(gamma*(2.711))/(2.*11);
two_p_al;

b(1)=bl;

b(2)=b2;

a(3)=b(1);

a(4)y=b(5);

al=a(3);

a2=a(4);

gamma=-0.53953031878987,
gamma=round(gamma*(2.711))/(2.*11);
two_p_al;

b(3)=bl;

b(4)=b2;
a(10)=c1(5);c1(5)=d1(5);d1(S)=el(5);e1(5)=b(10);
a(9)=cl(4);c1(4)=d1(4);d1(4)=el(4);el(4)=b(8);
al=a(9);

a2=a(10);

gamma=0.66846224032534;
gamma=round(gamma*(2./11))/(2.711);
two_p_al;

b(9)=bl;

b(10)=b2;
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a(8)=b(9);
a(7)=b(3),
al=a(7),

=a(8);
gamma=-0.89502919636046;
gamma=round(gamma*(2.*11))/(2.*11);
two_p_al;
b(7)=bl;
b(8)=b2;
a(14)=cl(7);c1(7)=d1(7);d1(T)=el(7);el(7)=b(14);
a(13)=c1(6);cl(6)=d1(6);d1(6)=el(6);el(6)=b(12);
al=a(13);
a2=a(14);
gamma=0.57217228785650;
gamma=round(gamma*(2.*11))/(2.M11);
two_p_al;
b(13)=bl;
b(14)=b2;
a(12)=b(13);
a(ll)=a(l),
al=a(ll);
a2=a(12);

gamma=-0.24300630107066;
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gamma=round(gamma*(2.~11))/(2.711);
two_p_al;

b(11)=bl;

b(12)=b2;
a(18)=c1(9);c1(9)=d1(9);d1(9)=e1(9);e1(9)=b(18);
a(17)=cl(8);c1(8)=d1(8);d1(8)=el(8);e1(8)=b(16);
al=a(17),

a2=a(18);

gamma=0.65574975306234;
gamma=round(gamma*(2.811))/(2.711);
two_p_al;

b(17)=bl;

b(18)=b2;

a(15)=b(1l);

a(l6)=b(17);

al=a(15);

a2=a(16);

gamma=-0.76476475528964;
gamma=round(gamma*(2.*11))/(2.*11);
two_p_al;

b(L5)=bl;

b(16)=b2;

a(22)=cl(11);et(11)=d1(11);d1(1 1)=el(1 1);el (11)=b(22);
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a(21)=cl(10);c1(10)=d1(10);d1(10)=e1(10);e1(10)=b(20);
al=a(21);

a2=a(22),

gamma=0.67319504866259;
gamma=round(gamma*(2.* 1 1))}/(2.”11);
two_p_al;

b(21)=bl;

b(22)=b2;

a(20)=b(21);

a(19)=b(15),

al=a(19);

a2=a(20);

gamma=-0.97030342888112;
gamma=round(gamma*(2.711))/(2.*11);
two_p_al;

b(19)=bl;

b(20)=b2;

output 1=b(19)+b(7);

%implement H2(z."2)

a(26)=outputl;
a(27)=d2(5);d2(5)=c2(2);c2(2)=d2(4);d2(4)=b(27);
al=a(26);

=a(27);
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gamma=-0.11455485826387,
gamma=round(gamma*(2.*11))/(2."11);
two_p_al;

b(26)=b!;

b(27)=b2;

a(23)=d2(1);d2(1)=b(23);

b(23)=output!;

a(24)=a(23);
a(25)=d2(3);d2(3)=c2(1);c2(1)=d2(2);d2(2)b(25);
al=a(24);

a2=a(25);

gamma=-0.54458467232029;
gamma=round(gamma*(2.*11))/(2./11);
two_p_al;

b(24)=bl;

b(25)=b2;

output2=b(24)+b(26);

%implement H20(z."2) one allpass of H2(z.*2)
a(31)=d3(1);d3(1)=b(31);

b(31)=b(7);

a(32)=a(31);
a(33)=d3(3);d3(3)=c4(1);c4(1)=d3(2);d3(2)=b(33);

al=a(32);
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a2=a(33);
gamma=-0.54458467232029;%-0.488725856;
gamma=round(gamma*(2.*11))/(2.”11);
two_p_al;
b(32)=bl;
b(33)=b2;
%implement H3(z)
a(29)=output2;
a(30)=c3(1);c3(1)=b(30);
al=a(29);
a2=a(30),
gamma=-0.3375033802279;%-0.308258011;
gamma=round(gamma*(2.711))/(2.711);
two_p_al;
b(29)=bl;
b(30)=b2;
a(28)=b(28);b(28)=output2-b(32)*(2.7(3));
output3(n+1)=(a(28)+b(29))*((-2).*(-3));
end
x=0:4095;
figure(1)
stem(x,output3),grid,xlabel(‘n’),ylabel(‘h(n)’),title(‘Impulse Response®),

w=linspace(0,1,4096); %w is f/F
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h=0;
for n=0:4095
h=h+output3(n+1)*exp(w*(-n)*i*pi);
end
figure(2)
plot(w,abs(h)),grid, xlabel(*wT / *), ylabel(‘|H|"),
title(‘magnitude response of overall wide-band filter’),
atten=-20*log 1 0(abs(h));
figure(3)
plot(w,atten),axis([0 0.1 0 90]),grid, xlabel(‘wT / ), ylabel(*‘dB’),
title( Attenuation response of overall wide-band filter),
figure(4)
plot(w,atten),axis({0.07 1 -0.1 0.1]),grid, xlabel(*wT / *), ylabel(‘dB"),

title(‘ Attenuation response of overall wide-band filter’),
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