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Abstract 

In this thesis, a direct IIR design method for real WDFs based on Gazsi's work is sum- 

marized in detail, and the cascade realization of first- and second-order allpass sections is 

generalized to any IIR transfer function, then a simple design method for bireciprocal lat- 

tice WDFs is given. A design and realization method for IIR multiple notch filters based 

on the phase of an allpass filter approximation is described. A design and realization 

method for high speed narrow-band and wide-band WDFs based on the iFlR technique is 

çiven, both nonlinear and approximately linear phase filters are considered; the n m w -  

band filter is composed of a model filter and one or several masking filters in cascade. In 

the case of nonlinear phase, conventional lattice and bireciprocal lattice WDFs are used 

t'or the model and masking filters; the overall narrow-band f i l t a  can be designed by sepa- 

rateiy designing the model and masking filters. The wide-band filter is composeci of a nar- 

row-band filter in parallel with a series of allpass filters, to obtain an o v d l  wide-band 

filter. The narrow-band filter is designed first, and is then connected in parallel with one of 

the allpass filters of the narrow-band filter. In the case of approximately linear phase, the 

linear phase IR fiIter is used for the model filter, and a maximum flat linear phase FIR fil- 

ter is used for the masking filter. Several advantages of these filters over directiy designed 

filters are that they have a substantially higher maximal sample fiequency, lower roundoff 

noise and lower finite wordlength. Several design examples are given to demonstrate the 

properties of these filters. 
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Chapter 

Introduction 

A design and realization method for IIR (infinite impulse response) multiple notch fil- 

ters is described. A notch filter is a filtw which has a single or very narrow rejection band 

extending from a finite lower cutoff frequency to a finite upper cutoff fiequency. Frequen- 

cies within the rejection band are eliminated or attenuated while frequencies outside the 

rejection band are passed. Notch f i l m  have a wide variety of applications in the field of 

signal processing for removing a single frequencies or a narrow-band of sinusoidal inter- 

tèrence. Multiple notch filters are used for the rernoval of multiple narrow-band or multi- 

ple fiequency interference. When the tiequencies of narrow-band interferences are known 

in advance, fixed notch filters can be used. We will focus on the 6 x 4  iIR notch filter 

design problem, and use the method which is based on the phase of allpass filter approxi- 

mation. A more detailed derivation for the approach and lattice implementation will be 

presented than in [ 151. 

Digital filters can only be irnpkrnented with h i t e  precision arithmetic, thus the filter 

coefficients must be approximated. Errors, such as rounding mors and overflow can arise 

from coefficient and signai quantization. It is weil know [31] that IIR lattice wave digital 

filters have low passband sensitivity and low level rounding noise to coefficient quantiza- 



tions. In addition, they have good stability properties even under nonlinear operating con- 

ditions resulting frorn overîlow and roundoff effects. We refer to the review papa by 

Fettweis [3 11 and the references contained therein for a detailed discussion of WDFs 

(wave digital filters) and their advantages. 

There are many different possible structures for WDF realizations of the classical refer- 

ence filters. Gazsi [6] presented a direct design method for r d  laîtice WDFs where both 

lattice branches are realized by cascaded first- and seconddegree allpass sections, This 

method makes the desi@ process direct and simple. 

However, for narrow-band and wide-band filters, high sensitivity problems occur even 

with this type of realization since most of the poles are very close to the unit circle. 

In this thesis, based on the IFIR (interpolated finite impulse response) technique [18] 

and [19], a design and realization method for high speed nmw-band and wide-band fil- 

ters is presented. For nonlinesv phase, conventional lattice WDFs are used for the model 

filters, and bireciprocal lattice WDFs are used for the masking filters. Since a bireciprocal 

elliptic filter is a special case of a elliptic filter, it is possible to mdify any standard ellip- 

tic filter algorithm such that the definition of bireciprocal elliptic filters is satisfied. The 

advantage of using lattice WDFs is that they make it possible to obtain stable filter algo- 

rithms under finite-arithmetic conditions [3 11. The iFiR technique was introduced in order 

to reduce the complexity of F R  filters with a narrow transition band. It was later used in 

[30] where an IIR filter is used for the model filter, whereas FR filters are used for the 

masking filters. One advantage of using the IFIR technique is that the poles of the recur- 

sive model filter are closer to the origin comparecl with the ples  of the directly designed 

filters, and this will Iower the roundoff noise [32]. Furthemore, the made1 and masking 



filters c m  be realized in many different ways, which offers the possibility of using stmc- 

mes  that have good properties under fmite-arithrnetic conditions, and that are well suited 

for implementation in hardware. The major advantage of using the interpolatecl technique 

is that the new filters have higtier maximal sample frequency compared with îhe directiy 

designed filters, this is important for hi& speed low power portable applications. it should 

be pointed out that we give the entire design and realization procedures compared with 

[?O],  the main purpose of that paper [20] was to present the redization structure, and we 

givc a lattice bireciprocal approach which is simple and easy to design, we also indicate 

how to choose the maximum intcrpolated value foi. a mctdel filter. For the case of linear 

phase. we also give the more detailed design methud compared with [SS]. 

In Chapter 7, we briefly describe the [IR real WDFs in the lattice structure and the 

method used in [6] to realize odd-order classicai filters. The implementations of first- and 

second-degree ailpass sections by means of three-port circulators will be presmted in 

detail, and the realization method will be generalized to any IIR tramfer function. And a 

design method for bireciprocal elliptic WDFs will be fonnulated. 

in Chapter 3, the design and realization method for I I R  multiple notch filters will be pre- 

sented. First, we transform the specification of a notch filter into that of an allpass filter. As 

a result, the notch filter design problem becomes an allpass filter design problem. Second, 

we will develope an approach to detennine the allpass filter coefficients, and the lattice 

realization will be presented. Then, we will summarize the entire design and realization 

procedures in detail, an example will be given to demonstrate the procedure. 

In Chapter 4, we will first describe the KIR technique, anaiyze tbe maximal sample fie- 

quency for diffment lattice WDF structures, then, we will present tbe design and d i z a -  



tion procedures for narrow-band and wide-band filters, we will use the method described 

in Chapter 2 to design the individual mode1 and masking filters, roundoff noise will be dis- 

cussed, several examples will be &en, and in Chapter 5 the conclusions. 



Chapter 2 

An IIR design rnethod for real WDFs 

The approximation problem in general analog filters (such as Buttmorth, Chebyshev, 

Inverse-Chebshev, Elliptic (Cauer)) has been a subject of research throughout the past 

sixty years, and some powerful methods have been developed for its solution[l-51 and [7]. 

These methods yield a complete description of the continuous-tirne iransfer hc t ion  in 

closed form, eitfier in terms of its zeros and poles or its coefficients.The main purpose of 

this chapter is to describe the lattice wave digital filter realization by using the existing 

theory of analog filter design and a generalization of the basic theory in [6]. In [6j, a direct 

design method is given for lattice WDFs, where both lattice branches are realized by cas- 

caded first- and second-degree allpass sections (see section2.2). in section 2.3, a design 

method of bireciprocal elliptic filters by modi@ng standard elliptic iîiters is presented. 

Examples which demonstrate the above procedures are given. 

2.1 Structure of the lattice wave digital 6iters 

WDFs were first introduced as a method of rnapping a lossless analog filter (known as 

the reference filter) to a digital flter using voltage wave quantities [8]. Thete were two 

motivations for this: 



1. WDFs inherit the low passband coefficient sensitivity of doubly-terminated lossless 

analog filters. 

2. The procedure ailows the use of the existing theory of analog filter design to derive 

the reference filters, which then cm be mapped to the corresponding WDF. 

Consider a two-port (Figure 2.1) where for port i ( i  = 1 or 2), the voltage is 5, the current 

li , and the port (or normalizing) raistance R i .  

Then the analog signal variables Vi and cwent Ii can be mapped to the incident and 

refiected wave quantities .4i and Bi by 

A,  = V i + R i l i ,  Bi = Y i - R j I i ,  i =  l , 2  

Fig. 2.1 A twcqort N with port resistances R I  and R2. 

and 

The incident and reflected wave vecton are related by the scattering equation [9] 

b =Sa (2.2) 

where S is calied the scattering rnatrix: 



we let that the two-port be syrnmetric and reciprocai, i.e. 

Next, define reflections SI = s ,  -sz, , SZ = sI , + sZI and take (2.4) into account. in 

view of (2.1 b) and (2.3), (2.2) can be written as 

2Bz = -SI ( A ,  -A,)  - + Sz ( A ,  + A,) ( 2 3 )  

These equations lead to the lattice realization of a WDF show in the following Fig2.2(a). 

For A ,  = O and disregarding BI  , the above signai-flow diagram simplifies to Fig. 2.2(b). 

Fig. 2.2 (a) Signal-Bow diagram of a lattice sîructure. 



Fig. 2.2 (b) Simplified wave-flow diagram. 

Therefore the reaiization reduces to the realization of two reflectançes: SI, S, . The corre- 

spondence beiween a WDF and its teference filter is established in the iy-domain, ie., the 

complex fiequency variable iy is used instead of the usual variablep.The sirnplest and 

rnost appropriate choice for y is the bilinear msfonn of the 2-variabk, i.e., 

where Fis the sampling iiequency. 

In both branches of the lattice WDF (see Fig. 2.2(a)), S,  (y) and % (yr) are allpass 

functions. Consequendy, they may be written (except for possible sign reversais) in the 

following form [BI, [9], [31]: 

where a = f L , gl (v) and gz (y) are so-called Hunivirz polynomials 1101 of degm 

IV,, and N,. - 

Further, the transfer functions that are realized by these WDFs are given by 



where h (y) , f ( W) and g (y) are the so-called canonic polynomials [IO], [Il]. 

From (2.7), (2.8), and (2.9) we see that 

g(W = g r ( Y f ) g z ( W  (2.1 Oa) 

where a = 1 for f even and a = - 1 for f odd, and g (\y) is a Hurwitz pol ynomial of 

degree N, and N = N I  + N,  - . in this thesis, we only considered the odd order case, Le., the 

case of real coefficients. For even order N, some modifications have to be made. 

Further, the so-called characteristic hct ion is defined by 

It is also known that the zeros of the polynomials g, ( y )  and gz ( y )  are altmately 

distributed in a cyclic rnanner [6] (see figure 2.4)- This property allows the determination 

of g l  (y) and g2(y) fiomg(yr) * 



Fig. 2.3 A i t e m a ~ g  disnibution of  the mots of the polynomial gl andgt (for N = 7). 

2.2 Realization of lattice WDFs 

In this section we discuss how to realize allpass functions S, and SI. An allpass tùnc- 

tion can be synthesized by several different methods. Here, let us cunsider the realization 

as a cascade of eiementary sections by means of three-port circulators [12]. We consider 

the elementary sections of the k t -  and second-degree. 

2.2.1 The determination of the multiplier coefficient of a section ofdegree one 

A section of degree one has a retiectance of the f o m  

It is known (we give a prove below) that using two-port adaptors, ihe corresponding wave 

digital realization has an quivalent wave-tlow diagram as shown in Figure 2.4, where the 

coefficient y. is given by 



port 1 7 

Fig. 2.4 Adaptor rep~sentation of an allpass section of degree one. 

Proof: First rewrite Eq (2. la) as: 

a l  = v l  + Rli l  

bl  = v ,  - R,il (2.13b) 

"2 = V Z  + R2iZ (2.13~) 

- b2 - Vz -R2i2 (2.13d) 

Then Let us consider the direct c o ~ e c t i o n  of  two 2-ports, with port mistances R and R2 

shown in Figure 2.5. 

Fig. 2.6 Direct connechon of two 2-ports, 

Since the two ports are simply connected, we get 



Then substituting (2.14a) and (2.14b) into (2.13c), we get 

And from (2.13a) and (2.1 S), we get 

Substituting (2.16a) and (2.16b) into (2.13b), we get 

and substituting (2.16a) and (2.16b) into (2.13d), we get 

where 

Also fiom Figure 2.4, we have 

- 1  
as = z b2 

Substituting (2.18) into (2.17a) and (2.18b) 

bl = ( 1  + y o ) ~ ' b 2 - Y o a i  

b, = yoz-1b2+ (1 -yo)al 

Frorn (2.19b) we get 



Substituting (2.20) into (2.19a) 

Substituting (2.6) into (2.1 1)  

Comparing (2.21) and (2.32), we get 

This cornpletes the proof. 

2.2.2 The determination of the multiplier coefficient of a section of degree two 

Each of the (N  - 1 )  /2 sections of degree two has (as we shall prove below) a reflec- 

tance of the following form: 

It is known [6] that the correspondhg wave digital realization has an equivalent wave- 

flow diagram as shown in Figure 2.7. 



Fig. 2.7 Wave-flow diagrams of the ith second-dcgm dlpass section 

where the coefficients are given by 

and 

IV- l where i = 1, 2, ..., - 
2 

Proof: First, as in the degree-one case, e.g. fiom Eq (2. i9qb): 

b4 = a 3 + ~ 2 i ( a 4 - a 3 )  

Also From Figure 2.7, we have 



Then substituting (2.27~) into (2.26d) 

Substituting (2.27c), (2.28) and (2.2%) into (2.26~) 

Substituting (2.29) into (2.27a) 

Substituting (2.30) into (2.26b) 

Substituting (2.3 1) into (2.26a) 

Also, substituting (2.6a) into (2.24) 



Compating (2.32) and (2.33), we get 

and 

Substituting (2.34) into (2.35), we get 

This completes the proof. 

2.2.3 Synthesis using cascaded aüpass functions 

We now discuss direct design methods for lattice WDF realizations of the classicai fil- 

ters using the first- and second-degree allpass sections. 

Considering one of the Butterworth, Chebyshev and Cauer (elliptic) reference filters, 

g (y) can be assumed to have the following product form: 



i =  1 

In the most common cases, Le., for Butterwortti, Chebyshev and Cauer(el1iptic) refer- 

ence filters, A i ,  Bi of (2.37) can be obtained by the formulas given in [6] and [13]. Then 

from g (y) , gl (\y) and g2 ( W) can be obtained by using the altemating property relat- 

ing to the distribution of the their zeros. Thus the allpass functions S1 and S, can be writ- 

ten as the following product of sections of degree one and two: 

where 

All adaptor coefficients can be computed by (2.12) and (2.25). Using the cascade synthesis 

of these elementary sections, realizations of SI and S2 are obtained, which leads to the 

corresponding block diagram for the filter given in Figure 2.8. 



Fig.2.8. Block diagram of the Iattice WDF wiih cascaded allpass sections 

for order Ni (as the top smicnuc), or order N2 (as the 

boaom suucnire), the filter order: N = NI+& 

The main advantage of this method is that it is direct, simply with easy calculations and it 

derives the design and implementation of IIR filters at the same t h e .  

Extensions: Since general IIR filter (Butterworth, Chebshev, eliiptic) functions are 

available both in the analog y -domain and digital z-domain in MATLAB, we ody need to 

decompose those functions into two aiIpass filters, Le. realize the filter transfer tùnction 

(in the y -domain) by using the method shown in sections 2.2.1 and 2.2.2. in order to real- 

ize the trarisfer function in the digitai domain, some modifications have to be made: 



z -  1 
For a section of degree one, using the bilinear transform = - , we cm rewrite 

z +  1 

(2.1 1 )  in the form 

And (2.21) cm be written as 

Comparing (2.39) and (2.40), and using (2.23), we get 

2- 1 For a section of degree two, using the bilinear !ransform pr = -, we can rewrite 
z +  l 

(2.24) as 

And (2.32) can be written as 

Comparing (2.42) and (2.43), and using (2.25), we get 



And (2.3 7) can be written as 

And (3.38a,b) can be written as 

where 

,+Nd 1 = -  N - 3 ,  o r k =  N-3 -, / = N d  
7 - 2 2 2 

In order to demonstrate the above realization procedure, an example is show below. 

Example: Specification: 

. A,, = 1.0 dB, A, = 42.5 dB, 

. O,, = 20 rads I sec, O, = 30 rads / sec, 

. Sampling fieq = 100 rads / sec 

1 ) In \CI domain: To meet the specification requirement: A 5îh order Chebshev lowpass 

filter transfer function can be gotten in the folIowing closed fonn by MAïLAB: 

Assign the poles to g ,  (y) , gz ( W) by using the altemathg property, we get: 



g,  (y) = (y  + 0.2 10329) (y + 0.064995 + jO.719355) ( y  + 0.064995 -j0.719355) 

g2 (v) = (y + 0.17016 + jO.444586) (\y + 0.17016 - jO.444586) 

o = 1 since f is even. Then using (2.7a,b), we get the corresponding allpass hctions: 

Realize SI ( y) , Sz (y) by using (2.12,2.25), we get 

3 )  In the digital domain: To meet the same specification requirement: The corresponding 

5th order Chebshev lowpass filter has the poles: 

Assign the poies to g,  ( z )  and g2 (2) by using the pole interlace property: 



Realize SI (z) , S, - (z) by using (2.4 l), (2.44a,b): 

Note: They are same as those obtained above using the polynomials in the domain. 

Finally, we implement the filter by using the structure shown in Fig. 2.9. 

The frequency responses are presented in Fig 2.10 which shows that the specifications are 

satisfied. 

Fig. 2.9 RcalUation structure of the a m p l e .  



Fig. 2.10 

2.3 Bireciprocal lattice WDF design 

IIR bireciprocal filters are used in many communication systems in the case of interpola- 

tion or decimation with a factor of two. The sampling rate alteration can be implemented 

very economically in a bireciprocal lattice WDF which leads to enormous savings in hard- 

ware. In this section, we will rnodify the standard elliptic filter design and realization, then 

an exarnple which demonstrate this procedure is given. 

2.3.1 The definition of bireciprocal filters 1141 

A bireciprocai lattice WDF is a special case of a lattice WDF, it is fonned by the charac- 

teristic function [14]. That is, if the characteristic h c t i o n  



satisfies 

then the characteristic tùnction is called a bireciprocal or a mirror-image hct ion,  and the 

corresponding filter H (y) = is called a birecipmcal filter. Based on the definition 
g ( y )  

of a bireciprocal filter defined by (2.47), the following properties [14] off(  y )  , g ( y )  

and h ( y) hold 

where n is the degree of g (y) and the polynornials are real. 

According to the above definition, the passband and stopband attenuation of a bireciprocal 

filter are related by 

and the fiequency relation between o>p and a>, for a bireciprocal fü ta  is 

or (in the y/ domain) 

(Ps = WP 



where 9, = tan(-), q = t a n ( z ) ,  F is the rsmpling frequency. 
2F 

2.3.2 The design method of buecipnicaI eiliptic 6iters 

Since the bireciprocal elliptic filter is a special case of the elliptic filter, it is possible to 

rnodi@ the standard elliptic filter algorithm such that the (2.5 l), (2.52) are exactly satis- 

fied. 

We organize the design procedure as follows: 

. Specifi As and a,, then calculate A, and m, by using the (2.5 1,2.52). 

Use a program (e.g. MATLAB) for cauer filter design with the above specifications 

to find the transfer function. 

Use the transfer tùnction to findî, g, h (described in section 2.2), and to compute the 

adaptor coefficients. 

2.3.3 The reaüzation structure of b i r e c i p d  eiliptic fiiters 

Once the transfer function is obtained, the realization method descnied in section 2.2 

still applies. We can rewrite (2.37) as 

and (3.38) can be written as 



where 

Apply the realization method in section 2.2, it is easy to show: 

For a section of degree one 

Y. = 0 

then Fig. 2.4 can be simplified to the bireciprocal wave flow diagram of degree one: 

Fig. 2.1 I(a) Wave flow diagram for the degree one. 

For a section of degree two 

then Fig. 2.7 can be simplified to a bireciprocal wave flow diagram of degree two. 

Fig. 2.1 l(b) Wave flow diagram for the degree two. 

Furthemore, Fig. 2.8 can be simplifieci to the realization structure for a bueciprocd filter 

as in Fig. 2.1 1 c. 



Fig. 2.1 l(c) Realization structure ofbirecipracal filter of order N. 

To demonstrate the above design procedure, an example is given below. 

Example: Specification: 

. Sarnpling freq = 48 Wz. 

The coefficients of the three 2-port adaptors can be obtained by following the above 

design procedure as 

After L 1 bit quantization, the three parameters become 

The realization structure for the example is shown in Fig. 2.12. 



Fig. 2.12 Realization stnicnire of the example. 

The fiequency responses are presented in Fig. 2.13qb which shows that the specifica- 

tions are satided. 

F=48 &EL 
Fig. 2. i3(a) Attenuation respoase of the example. 
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Fig. 2.13(b) Ripple response of the example. 



Chapter 3 

IIR multiple notch fille* design 

In this section, an IIR multiple notch filter design based on the phase of an allpass filter 

approximation will be described [15]. 

3.1 A multiple notch filter design method 

Generally, the input of the notch filter has the following fonn 

where s ( n )  is a desired signal, d ( n )  is a sum of sinusoidal interference signals with fie- 

quencies olVk E (O, X) for k = l ,..., M, Mis the number of sinusoidal interference signals. 

In order to extract s ( n )  from the comipted signal x (n) without distortion, the specifica- 

tion of an ideal notch filter is given by 

w = q k , k  = 1, ...,A4 

otherwise 

Further, the IR notch filter H (r) studied here has the following form in the digital 

domain: 



where A ( z )  is an allpass function. 

3.1.1 Specification transformation 

In the foIIowing, we will use the relation (3.3) to transform the specification of a multi- 

ple notch filter into that of an allpass filter. As a result, the notch filter design problem 

becomes an allpass filter design problem. 

The transfer function of a 2M order allpass filter A ( 2 )  is defined by 

Since for z = dm the magnitude response of the allpass A (r) is qua1 to unity for al1 fn- 

quencies, the frequency response c m  be written as 

wherc eA (o) is the allpass filter phase response. From (3.4) and (3 .9 ,  we have 

Now let Od and On denote the angle of the denominator and the nurnmtor of (3.6), 

respectively, then 



aksin (ok) 
= -tan 

and 

From (3.6) and (3.7b), we get 

0, (w)  = fi(hW) = 0, (a) -Od (a) = -2Mm- 2ed(0) ( 3 8  

And frorn (3.7a) and (SA), we get 



8,(a) = -2Ma+2tan 

1 + akcos (ok) 

From (3.9), the 8, (a) of a stable allpass filter is zero when o = 0, -2Mx when 

o = K , and is required to decrease monotonically with increasing fiequency [163. 

Proof: First-order case. Since the poles and zeros of a real allpass function occur in 

reciprocal conjugate pairs, we can write a first order allpass transfer function as 

- 1 a* + z  
H ( z )  = , where a* is the conjugate of a .  Now let rand 0 represent the radius 

- 1 1 +a: 

and angle of a ,  so that a = r d 0 .  Then 

The phase response 0 (a) can be obtained imrnediately 

-1  rs in(o-0)  @(a) = - a + 2 t a n  
1 +rcos (0-9) 

Differentiating with respect to o we arrive at 

If the pole is inside the unit circle, e.g. O 5 r c 1 , we have da < O, that is, @ ( o )  is 
d o  



monotonically decreasing. 

Since an N-th order stable allpass fwiction is a product of Nfirst-order stable allpass h c -  

tions, its (unwrapped) phase response is the sum of the N individual phase responses, and 

is thus monotone. This completes the proof. 

Moreover we can also write the frequency response of a notch filter H ( 2 )  as follows: 

From (3.13), we can show that the magnitude response of a notch filter is related to the 

phase of aIlpass filter as follows: 

And from (3.9) and the monotone phase property of an allpass filter, it is clear that the 

phase Elo4 (a) goes fiom O to -2Mn, when o goes h m  O to K radians. Based on this 

property and (3.14), we have the following observations: 

( 1)  There exist M ûequency points a, < o, < . .. < oM such that 

0,(a>,) =- (~n- l ) a , tha t i sH($)  = O forn=l,  ..., M. 

(2) There exist M fiequency points 13, c 13, c . . . c ûS, such that 

(3) There exist M fiequency points cb, < ô2 < ... < cbM such that 



O0 

- 
9 @2 d2 &2 

(b) 

Fig. 3.1. (a) phase response of a l l p s  filter. (b) magnitude rrspunsc ofnotch Glter. 

- 
(4) There exist M + t fiequency points O = Go c &, c ... c wM = K such that 



9 ( = -2nn, that is, H(&,,) = 1 forn =O,  1 ,...,M. 

Now let H ( 2 )  be a fourth order notch filter, i.e., M =  2, a graphic interpretation of these 

four observations is shown in Fig 3.1. It is obvious that the four statements are valid. 

Moreover from (3.14), we cm see that the maximum gain of the magnitude response of a 

notch filter is unity. Based on the above observation, if we want to design a notch filter 

H ( z )  which satisfies the specification show in Fig 3.2, we need to make the following 

assignrnents of the phase 8,, (a) of the allpass fiIter A (z) : 

Fig. 3.2. The prescriied specification of the real coefficient notch filter. 

where n = 1 ,..., M and the notch tiequency points uN,, satisa mM, c . . . < %. M m -  

over, if B Wn is very small, OA (aN,,) = - ( 2 n  - 1) r and 



BW K 
O,(o, - 2) = - ( 2 n  - 1) n + - , then to a ht-order approximation it cari be show 

2 2 

that 

Thus, assignments (1) and (2) imply assignment (3) if the rejection bandwidth B W,, is 

very small. The three assignrnents can be reduced to two assignments as follows: 

( 1 )  e ,  (w,,,,,) = - ( 2 n  - 1 ) ~ .  

where n = I ,..., M and the notch frequency points oNn satisQ U N I  < ... c OVM- After 

suitable arrangement, these two assignments are equivalent to the following condition in 

2M fiequency sampling points. With the frequency points 

the desired phase response is specified by 

where i = L ,..., 2M, Lx J denotes the largest integer which is smaller than or equal to x, and 

rnod (.r,2) denotes the remainder when x is divided by 2. 

So far, the specification of the notch filter in Fig 3.2 has been traasformed into the spec- 

ification of an allpass filter. Thus, we ody need to design an aüpass fiiter A (2 )  which sat- 



isfies these 2M requiremts in (3.17). thm 1 ( 1 + A  (r) ) is the d e s i d  filter. 2 

3.1.2 The structure of the latrice realization 

In the following, we first develope an approach to determine the allpass filter coetfi- 

cients, then, an efficient lattice-form realization is presented. 

3.1.2.1 The determination of the dpass ûiter coefficients 

First, from (3.9) and (3.17), we can see that the phase response BA (w)  is given at 2M 

points ai,  i = 1 ,..., 2M. Thus, we can let 

1 + $! <rkcos ( k a , )  

1 where pi = - (8, (a,) + 2 M a i )  . This expression can be rewritten as 
2 

:! M 
[sin ( k a , )  - tan ( P i )  cos ( k w i ) ] a k  = t a n ( p i ) ,  i =  L ,..., W (3.19) 

k = l  

Note, equation (3.19) is a linear equation in the filter coefficients a k ,  and it can be 

expressed in the following matrix form: 

Qa = P 

where the two vectors are 

t 
a  = [a, a ,  ... a24  



and the elements of the matrix Q are given by 

Solving the linear equation (3.20), the desued solution is given by 

a = Q-'P 

Thus, the allpass filter coefficients are obtained. 

3.1.2.2 Lattice realization structure 

Since H (r)  = ( 1 + A (z) ) , the notch Alter cm be irnplemented using the structure 
2 

shown in Figure 3.3. 

Fig 3.3 The dization of notch filter 

Thus, the notch filter realization is equivalent to the realization of an allpass filter. Due to 

the mirror-image symrnetry relation between the numerator and denominator polynomials 

of an allpass filter, A ( 2 )  can be realized by the computationally efficient lattice structure 

shown in Figure 3.4. 



Fig. 3.4 (a) Lanice dizat ion saucnire of real coetficient allpass filter 

(b) DetaiIs of the building blocks. 

When the filter coefficients of the direct-fonn allpass filter are obtained in terms of the 

above procedure, the lattice coefficients (e.g, the adaptor parameters) y can be obtained by 

using the transform method [17] desçribed below. We can use the transfet fùnction of the 

al1 pass filter to find the adapter coefficients y S. The numerator and denominator of the dl- 

pass filter transfer hnction were used to find the value of the resultant of  the division of 

- I 
the two polynomials at z equal to zero. 

where A (z) is the transfer function of the allpass filter, h and gare the numerator and the 

denominator of the transfer function respectively. Let h l  = h and g, = g,  then 



this gives the value of yl . Then the numerator of a new transfer function is found ushg 

the equation below: 

and the denominator is found using the following equation: 

h, (0) 
now, using h, and g 2 ,  the value of y2 can be found as yz = - . The process is con- - 

g* (0) 

tinued by increasing the indices by 1 and repeating the process until the final numerator 

and denominator are constants. 

3.2 The design procedure and an example 

In this section, we first summarize the above design procedure, then, an example which 

demonstrates this procedure will be given. 

3.2.1 Summary of design procedure 

We summarize the entire design procedure of the iIR multiple notch filter as follows: 

1) prescnbe notch fiequencies aNI < mm c ... < aNM and 3 dB rejection bandwidth 

2) using (3.16) and (3.17) compte ai and 0, (ai) , i = 1,2 ,..., 2M; 



3) using (3.2 1 )  and (3.22) calculate Q and P. Then, find the dlpass filter coefficients ai,  

i = 1,2 ,..., 2M by using (3.23); 

4) the notch filter is obtained as 

5) using (3.24) - (3.26) find adaptor coefficients y,, i = 1,2, ..., 2M. 

Due to the rnirror-image symmetry relation between the numerator and denominator 

polynomials of an allpass filter, the A (2) can be realized by computationally efficient lat- 

tice structure shown in Fig 3.4. This structure has the minimum number of multipliers and 

delays. When the filter coefficients ai of the allpass filter are obtained in terms of the pro- 

posed design procedure, the lattice coefficients y i ,  i = 1, ..., 2Mcan be obtained by using 

the method described above. Moreover, the fkquency response of the notch filter is very 

insensitive with respect to the coefficients y,, i = 1 ,...,2M, and the notch filter is stable if 

lyil < 1 , i = 1 ,..., W. 

3.2.2 The design example 

In this section, a design example is presented. 

Exarnple: the specification of a sixth-order notch filter is 

O,, = O.ln BW, = 0 . 0 1 ~  

oz, = 0 . 4 ~  BW, = 0 . 0 1 ~  

qN = 0 . 7 ~  BW3 = 0 . 0 2 ~  

Using the above design method, we obtain the flter coefficients of a sixthsrder allpass fil- 



ter as follows: 

a, = -1.2294 a6 = 0.8809 

and the lattice filter coefficients y, as follows: 

The magnitude and phase response of the notch filter are shown in Figure 3.5. From the 

results, we see that the specification is well satisfied And it is clear that the 1x1 < 1 for i = 

1 ,.... 6. Thus, the notch filter is a stable filter. (A MATLAB program for the design of a 

notch filter is given in the Appendix.) 



Fig. 3.5 (a) The magnitude response of the notch filter. 
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Fig. 3.5 (b) The phase response of the allpass filter. 
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Fig. 3.5 (c) nie phase response of the notch filter. 



High speed narrow-band and wide-bundfüter design 

Narrow-band and wide-band filters are widely used for removing low fiequency noise 

and line frequency intderence, for example, tiom an ECG signal. in this chapter, we will 

first introduce the IF[R technique, then based on this technique, we will describe the 

detaiied design methods for both linear and nontinear phase narrow-band and wide-band 

filters. In order to dernonstrate these design procedures, several examples are presented. 

4.1 The interpoiated FTR (IFIR) method 

The IFlR (interpolated F R )  method [18, 191 was proposed for the efficient design of 

narrow-band sharp-transition FIR filters since direct FR designs generally require very 

high order when the transition bandwidth is very narrow. Typically, the filter order, N, is 

proportional to t/Af, where Af is the transition bandwidth. To explain the basic idea, 

consider Fig. 4.1 (a) which shows a narrow-band Iowpass speciiication. instead of meeting 

this specification, we try to meet a two-fold stretched specification; Fig. 4.l(b) shows the 

magnitude response of this srretched filter called G (r) . Note, the sbretched filter G ( 2 )  

has transition band width 2 A  f so that its order is N/2 . Fig. 4.l(c) shows the magnitude 



response of CL:') , where the passband around n is unwanted and can be puppressed by 

cascading G( r') with a new filter II (r) (set Fig.4.l(d)). This filter bas a vay wide tran- 

sition band so that it requires very low order. The desireci response is obtained by cascad- 

ing G(z2) and I I  ( z )  . 

Figure 4.1 The IFIR technique for efficient design of narrowband tilters 

1" Desircd narrow-band response (a) 

O I . 
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1" Smetched filter C(z) (two Eimes wider) (b) 
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O Undesired .a 
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Extensions. Instead of stretching the specifications by two, it is possible to stretch by an 

amount M > 2 . In principle M can be as large as the integer-part of rt/o,. Hem, we con- 

sider only the case where M is a power of 2. 

Conrider Fig. 4. I (e) which shows c(z4) , Le., M = 4 . G ( z ~ )  has two unwanted pass- 

bands. lnstead of designing a FIR filter with passband edge = o>, , stopband edge 

= n/2 - a,, we design two FIR filters. The first filter 1, (z) removes the unwanted pass- 

band around IL, and is the same as II (2) in Fig. 4.l(d). Next, we need to remove the 

unwanted passband around n/2. I ,  - (2) is designed with passband edge = 2uP, and 

stopband edge = n - 2os . (set Fig. 4.1(0). Fig. 4.l(g) shows 1 2 ( 2  1. The desired 

response is obtained by cascading G(I), I I  (z) and 1,(z2).  Notice th* the passband 

around n in 1 2 ( i 2 )  has no effect since the unwanted passband around n in Fig. 4.l(e) was 

already rernoved by I I  ( z )  . 

This idca can be readily extended to higher M, as long as 

M 5 n/0, 

For a given M, the required nurnber of FiR filters is 

numb = l o g p  (4.2) 

and the i-th FIR filter is in the form of [ i( l ' i l ) ,  where [il = 2'- ' . The passband and 

stopband edges of Ii ( z )  are 



Figure. 4.2 shows the filter diagram 

Figure. 4.2 Block diagram for lFIR nmw-band tilters. 

The transfer fwiction for tfiis filter is 

H ( z )  = G(?JI (z) (4.4) 

where G ( z )  is called the mode1 filter, and I(z)  was originaily called an interpolator, in 

here, we cal1 it a masking filter [18], respectively. The masking filter extracts the desired 

image, and removes the undesired images. 

As the value of M increases, the required filter order for G (z) decreases, since the new 

transition bandwidth of G ( 2 )  is M times wider than the original one, but if Mis too large, 

then the transition band of I ( z )  becomes very narrow (so that I [z) dominates the cost), 

and we begin to get decreasing returns. Summarizing, as M increases the cost of G (2) 

decreases and that of I (z) increases. The maximum possible value of M needs to be cho- 

sen caretùlly basai on (4.1). 

4.2 Nonlinenr phase narrow-band and wide-band flter design 

In this section, based on lFIR the technique, we will present both narrow-band and 

wide-band filter designs. 

4.2.1 Nonlinear phase narrow-band filter design[20] 

Recursive infinite impulse-response (ïiR) digital fiiters requk, in general, a smaller 



number of arithrnetic operations per sample than their nonrecursive finite impulse 

response (FIR) countqarts. Instead of designing an FR model filter and a masking filter, 

we use an IIR filter design method (described in chapter 2) for the model filter G (2) and 

an [IR bireciprocal filter for masking filter I ( z )  , since elliptic approximation is more e& 

cient than the other approaches (such as Chebyshev, Inverse-Chebshev and Butterworth) 

in that the transition between passband and stopband is steeper for a given order, we use 

elliptic and bireciprocal elliptic filters for the model filter and the masking filters (as 

described in chaptcr 2). 

Maximal sample frequency analysis 

The maximal sample fiequency for an IIR filter descnbed by a fully specified signal 

fiow graph, is defined [2 11 by 

where Tapi is the total latency of the arithmetic operations, and Ni is the number of delay 

elements in the directed loop i. The loop that determines the maximal sample fiequency is 

called the critical loop. Digital îïiters with high maximal sarnple fiequencies are important 

for high speed applications and low power consumption, since if the required sample fie- 

quency is lower than the maximal sample fiequency, then the excess speed may be utilized 

to reduce the power consumption [22], [23]. 

According to Johansson and Wanhammar [20], the maximal sample frequency for the 

first-order section (see Fig. 4.3) is 



Fig. 4.3 (a) First order allpass section (b) Correspondimg signal flow graph. 

For the second order section (see Fig.4.4), it is 

(a) W 
(b) 

Y@) 

Fig. 4.4 (a) Second order allpass section (b) Comsponding signal flow graph, 

The maximal sample frequency for the allpass sections of a bireciprocal filter is 



From (4.9, we see two ways to increase the maximal sample fiequency, the first is to 

reduce the latency in the critical loop, whereas the second is to increase the number of 

delay elements in the critical loop. The latency cm be reduced by using low-sensitivity fil- 

ters, and by removing unnecessary o p t i o n s  in the critical loop [23], [24]. However, in 

this chapter we are mainly concerned with the approach of increasing the number of delay 

elements in the critical loop, we achieve this by using the interpolated technique, an M- 

fold increase of the maximal sample frequency is automatically obtained, since the corre- 

sponding realization for the M-fold transfer hct ion has at least M delay elements in its 

critical loop. 

. Narrow-band filter structure 

Since IIR filters can be implemented in the fom of a parallel interconnection of two all- 

pass filters, and combined with the narrow-band block diagram shown in Fig. 4.2, we get 

the IIR narrow-band filter structure shown in Fig, 4.5. 

T 
Mode1 filter First masking filter (N- 1)-th masking filter 

Fig. 4.5 Stnicrure for UR narrow-band filtering. 



where A,yo is one of the allpass branches which can be implemented as a cascade of one 

tirst-order allpass section and a number of second-orâer allpass sections, whereas ANI the 

other branch can be realized as a cascade of a number of second-order sections ( s e  chap- 

ter 2 for details). HI  ( r )  is called a mode1 filter, Hz (2) is callecl the fint masking filter, 

while H ,  ( 2 )  is called the (N- 1 )  -th masking filter. 

. Design of narrow-band lowpass füters 

First, let oc T ,  a, T, 6, , and 8, denote the passband and stopband dges and ripples, 

then the specification of the overal narrow-band lowpass filter is 

1-6,<IH(dmT)l<l, oTE[O,@,~'J  

Further, let oc, T and os, T where i = 1,2,. . . fl, denote the passband and stopband 

edges of the model and masking filters. 

For the rnodel filter, we have 

acI T = MtucT, w,,T = MIu,T 

Le., M, times wider than that of overail narrow-band filter, and M l  should satis@ (4.L). 

We also restrict MI to be some power of two, i.e., 

The masking filters: 

Once MI is determined (by using (4.9)), the number of masking filters is obtained by 



N- 1 = logflt (4.1 O) 

and if the parameter M2 is chosen pcoperiy, then by using a bueciprocal lattice WDFs for 

the masking filters, the model and masking filters will have about the same maximal sam- 

ple Frequency. 

Comparing (4.6b,c), we get 

Mi' M,/4 

where i = 2, ...,N. 

Surnrnarizing the above, we get [SOI 

M M., = A, M3 M = , M~ = -i + 2N-i, i = 4, ...a (4.12) 
- 2 4 4 

and 

where i = &...p. 

To see how the stopband edges of the masking filters should be chosen, first we let N =  3, 

then from (4.9) and (4.1 2), we have MI = 4, % = 2 and M3 = 1 . Typical magnitude 

functions of the model and masking filters are as shown in Fig. 4.6 

The model filta H, ( ) exhibits two unwanted images cenmed on n/2 and x (see Fig. 

4.6(b)). These two unwanted images are removed by the two masking filters. The k t  

masking filter 



Response of Hl(z)  

Response of Hl(z4)  

i 

Response of Hz(.?) 

I I Response of H3(z) 

Fig. 4.6 

H,(z') removes the image centered at 7d2, while the second masking filter H, (z) 

removes the remaining image centered at x. 

The specified stopband attenuation of the overall Nter wiU be satisfied by selecting the 

stopband attenuations of the model filter and al1 masking Nters to equal that of the overall 

filter. The passband tipple of a bireciprocal lattice WDF is very small if its stopband atten- 

uation is reasonabIy bigh. Therefore, it is possible in most practical cases to let the model 



filter have the same passband ripple as that of the overalI filter, Le. model filter H, (2) and 

masking filters Hi ( 7 )  satisfy: 

1 - 1  O T E  [ O , A 4 , q T J  

H i  (2)  1 , [MpsT,~1 

IHi ( 7 )  1 5 as, Q> T E [ q i c x l  

. Summary of design proceâure 

We surnmarize the narrow-band filter design procedure as follows: 

Determine the specifications for the mode1 filter: Choose MI by using (4.1), then 

determine the passband and the stopband edges by using (4.8), and choose the 

passband ripple and the stopband attenuation by using (4.14a,b). 

Determine the specifications for the masking filters: First, use (4.10) to select the 

number of masking filters, then choose Mi by using (4.12), and choose the pass- 

band and the stopband edges by using (4.13), then chmse stopband attenuation by 

using (4.15). 

Using the design method describeci in Chapter 2, design the mode1 filter and the 

masking tilters. 

Cascade the model filter and the masking filters by using the structure as shown in 

Fig. 4.5 and obtain the overall nmw-band filter. 

4.2.2 Nonlinear phase wide-band filter design [20] 

A wide-band filter is complementary to a nmw-band filter, since we want the delays in 

each branch to be approximately equal, we seIect one of the ailpass subfilters of each lat- 



tice WDF and cascade these to obtain the overall allpass filter. The wide-band filter struc- 

ture is s h o w  in Fig. 4.7. 

input 
A lo(z'fl) 

Fig. 4.7(a) Structure for IR wide-band filtering. 

Fig. 4.7(b) Sïmplified structure for IR wi&-band filtering. 

To obtain a wide-band filter, we first design a narrow-band filter as described in the pre- 

vious section. If the narrow-band fiiter is a lowpass filter with passband and stopband 

dges  w, T and o,T, then, by comecting this filter in parauel with a series of allpass fil- 

ters, we obtain a wide-band high-pass filter with passband and stopband edges o, T and 



oc T .  The passband and stopband ripples c m  be selected by 1201 

IH ( r )  l2 5 2n26c, CUTE q 

where 6, denotes the passband ripple of the wmsponding nmw-band filter, Ci, d m t e s  

the stopband region of wide-band filter, and 

1-6,SIH(z)1S1+6,, o T E Q ,  

where itc denotes the passband region, and 5, is 

The passband ripple of a narrow-band filter in the worst case is the sum of the passband 

ripples of the model and masking filters. Experience also shows: 

Anp = A c p / N ,  A,, = NA, (4.19) 

where Anp , Ans denote the passband ripple and stopband attenuation of the nmw-band 

filter, whereas A,, A, are passband and stopband ripples of the complementary wide- 

band filter, N is the total number of model and masking filters. 

To achieve a reasonably high stopband attenuation for the wide-band filter, the passband 

ripples of the model and masking filters must be very small. Due to the iaterdependency 

between the passband and stopband ripples of the masking tilters, the stopband attenuation 

of these filters will, in rnost practical cases, be high enough. Therefore, the passband ripple 

of the wide-band filter will, in ptactice, be detennined by the stopband ripple of the mode1 

filter. 

After choosing the passband and stopband ripples of the coffespondiag narrow-band fü- 



ter, we can use the narrow-band filter design procedure to design the corresponding nar- 

row-band filter, and the wide-band filter can be obtained by using the structure as shown in 

Fig. 4.7(b). 

4.3 Linear phase narrow-band and wide-band fiiter design 

In some applications, a small phase deviation h m  a linear phase in the passband is 

required. In this section, we will present approximately linear phase narrow-band and 

wide-band filter designs. 

4.3.1 Linear phase narrow-band filter design [25] 

This design method is also based on the IFiR technique, the model filter is designed 

using the approximately linear phase IIR filter design method in [26]. The IIR section is 

composed of a paraliei connection of an ailpass filta and a pure delay t m .  Then the UR 

section is followed by FIR filters whose transition bandwidths are very wide. Due to the 

wide transition bandwidths, the FIR filters can be implemented without multipliers by 

using MF (Maximally Flat) FR filters (271. 

. Mode1 fdter design 

For linear-phase lattice WDFs, there exist no closed-fom solutions for computation of 

the adaptor coefficients. Thecefore, numerical optimization algorithms must be used. 

1 ) Constructing the magnitude function 

Since the model filter is composed of a parauel comection of an allpass filter and a pure 

delay term, we can write the îransfer function as 



where AlW, (z) is an allpass transfer hction, and can be written as 

that is 

and the magnitude shuuld be bounded: 

2) Transform the filter specifications to allpass phase specifications: 

.al We also can write allpass filter A- ( z )  for z = d 

If $ denotes the phase of A y( da)  , and O, dmots  the phase of the dewminator of 

(4.3.4), then, we have (see Chapter 3 for proof) 



Also 

and from (4.3.2), we get 

@(a) = - ~ p + d l ~ ( d ~ ) l  

substitute (4.3.6) to (4 .33 ,  we get 

, = -+,, q M,, + d1~r)l) 
L 

3) Formulate the error function 

The error function to be minimized is 

= W(o) [$(a) - D (a) 1 

where 

and 

4) Algorithm [26] 



Step 1. Initialize mpl O,, 6,, 6,, M, , and ML. 

Step 2. Select the nwnber of passband extremal points 

n = (M, + 1 ) op/ (a>, + n - a,) , rounded to the neanst integer. AAer 

selecting the number of passband extrema1 points, the extremal points can be 

selected to lie equidistantly on the pasband and stopband regions. 

Step 3. Select initial extmnal points. R = {ml ,oz,. . . .a4 + , } on the passband and 

the stopband. According to the number of passband extrema points, the extrema 

points can be selected to lie equidistantly on the passband and stopband 

regions. 

Step 4. Solve for 4 from 

using (4.3.5b) get +, , then solve (4.3.5a) to get filter coefficients a ,  ,a2 ,... ,a4, 

and then solve for 6. 

Step 5 ,  Built up error function E (a) , and find M, + 1 local extrema whose absolute 

values are the largest with the condition that the maxima and minima altemate. 

Store the abscissa of the extrema into Q' = {a', ,mg2,. . . ,a'- + , ) . 

Step 6. If Io, - o;l 5 E for j = I,2,...>M2 + 1,  îhen go to the next step. Otherwix set 

Q = Q' and go to step 4. 

Step 7. Compute H ( 2 )  and give the hquency respoase of the filter. 



. Masking füter design 

In this part, we will use the MF (Maxirnally Flat) linear phase FIR approach to design 

masking filters. 

The MF FIR transfer function can be written as [27]: 

where 

(K- 1 + f i ) !  
d ( n )  = 

(K- l ) ! n !  

where K, L  can be detemined tiom the filter specification [28] (there is a program in [28] 

to compute K and L).  

And filter order N, K, and L are related by 

N =  2(K+L-1) (4.3.13) 

Thus for a given N and K, L represents the maximum degree of flatness at o = O .  Simi- 

larly, for a given N and L, K represents the maximum degree of flatness at o = K. 

It should be mentioned: The number of masking filter can be detennined by using (4. IO), 

and the passband and stopband edges can be detennined by using (4.3). 

4.3.2 Linear phase wide-band mter design 

A wide-band high-pass filter is the wmplementw filter to a narrow-band lowpass filter, 

and can be obtained by using the structure as shown in Fig.4.8 



Fig. 4.8 The structure br wide-band high-pass filter. 

where M3 can be detennined by M and M ,  , and the length of MF FIR filters. 

4.4 Roundoff noise analysis for interpdated WDFs 

The roundoff noise can be measured by NSR (Noise to signal ratio), and the NSR for 

first-order and second-order dlpass sections is [29] 

where E is the distance fkom the unit &le to the pole location, when the transition band- 

width of model filter is increased by M times, the poles generaily move away fiom the unit 

circle by A4 times E . Therefore, by M level interpolations, the NSR of cascaded IIR filters 

decreases by d and these hplementations are prefrrabe to WDF hplementations for 

larger M, this is an obvious conc1usion obtained k m  (4.4.1). The roundoff noise of the 

model filter alone is therefore lower than for the corresponding conventional filter without 

taking into account the contniutions of the masking filters. 



4.5 The examples 

In this section, several design examples will be preseflted. 

Example 1: Low-pass narrow-band fdter design. 

Specification [30]: 

w,T= 0.0625~ (11.2S0), q T =  0.0757t(t3.5°), 

Method (i): Direct design method (conventional design method): 

These specifications can be met by a seventh-order elliptic filter, with the poles (in the 

digital domain): 

p I 2 = 0.97606586 f 0.19S00405j 

Note, these poles are close to the unit &le. Then the elliptic filter is implemented using 

the lattice WDF structure describeci in chapter 2, the adaptor coefficients can be obtained 

as 

YI = 0.92874051479306, y2 = -0.961 15936623788, y3 = 0.98374275779617, 

y4 = -0.90427807728677, = 0.99130900282711, 76 = -0.99073 Lw26480, 

y7 = 0.9806 1042915654. 

Fig. 4.10 shows the fiequency response using word-lm@, W = 17. 



Method (ü): Described method (interpolateci method). 

Mode1 fi l  ter design: 

Determining the specifications: 

M, I~t/q= 1 /0.075 = 13.3, wechoose M, = 4 .  

'1rna.v = OSdB, A,,, = 50dB. 

The specifications can be met by a seventh-order elliptic filter, with the poles (in the dig- 

ital domain): 

p l  ,, = 0.693 13023 f 0.69743825~ 

Note, these poles are further fiom the unit circle than the poles of the direct method. The 

adaptor coefficients can be obtained as 

y1 = 0.73 lO3234889lO4, y2 = -0.86333741466988, y3 = 0.746803573645 10, 

74 = -0.67062988457961, Ys = 0.8566759592606, y6 = -0.96684962897323, 

y7 = 0.7048 1263233903- 

Masking filter design: 

First, detennine the number of masking filtas = log fii = 2 . 

The first masking filter design: 



Determine the specifications: 

' ? m i n  = 50dB. 

The specifications can be met by a 3rd-order bireciprocal elliptic filter described in 

chapter 2, section 2.3.2. The obtained adaptor coefficient is 

Y1 = 4.350584842 1959 1. 

The passband ripple and stopband attenuation are 

The second masking filter design: 

Detemine the specifications: 

' 3 m i n  = 5OdB. 

The specifications can be met by an 3rd-order bireciprocal elliptic filter, the obtained 

adaptor coefficient is 



y1 = -0.3375033802279. 

The passband ripple and stopband attenuation are 

A,, = 69dB, Apf = 5.265 x I O - ' ~ B .  

The overall narrow-band filter structure is as shown in Fig. 4.9, and Fig. 4.1 1 shows the 

tiequency response of the overall narrow-band filter using word-lengths, W = 12. 



- Y2 - Y i  - 
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Fig. 4.9 Structure of overail narrow-band filter for example 1. 



O 
O ai 0.2 a3 a+ 0.5 o.a a7 0.8 ao 

*TIPI 

Fig. 4.10(a) Frequency response of narmw-band filter (direct rnethod). 

Fig. 4,1O(b) Ripple tesponse of narrow-band filter (direct method). 



Fig. 4.1 1 (a) Magninide response of mode1 filter, and cascade mode1 filter 

with masking filters (for example 1, interpolateci method). 



Fig. 4.1 l(b) Frequency response of overall m w - b a n d  filter (interpolated method). 
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Fig. 4.1 I(c) Ripple response of  overall narrow-band filter (interpolated method). 



Erample 2: High-pass wide-band filta design. 

Specification [25]: 

. o,T= 0.075~ (13S0), w,T= 0.0625~ ( 1  1.2S0), 

Method (i): Direct design method (conventional design method): 

These specifications can be met by a seventh-order elliptic filter, with the poles (in the 

digital domain) 

p, = 0.5911553 

p,,, = 0.96595755 + 0.228348331 
Then the elliptic filter is implemented using the lattice WDF structure desmied in 

chapter 2, the adaptor coefficients can be obtained as 

y1 = 0.591 15529848347, y2 = -0.93062108088553, y3 = 0.968 l96258OO425, 

yq = -0.739375084 165 15, y5 = 0.94489156926825, y6 = -0.9852l6950867 13, 

y7 = 0.973 1506 185408 1. 

Fig. 4.13 shows the fiequency response using word-lengths, W = 17. 



Method (ü) : Descnied method (interpolated method). 

Corresponding narrow-band specifications: 

Ml 111/0,= 1 / 0.075 = 13.3, we choose MI = 4. 

Determine the total number of mode1 filter and masking filters: 

N =  l o g f l l + l  - = 3 .  

Since the specifications of the wide-band filter are A_ = 50dB. A, = 0.2dB, then 

the specifications of the corresponding complementary narrow-band filter are 

A cp = 0.4343 x 1 O ~ ~ B  and A, = 1 3.47dB . We choose the passband and stopband np- 

ples of the narrow-band filter as 

Mode1 filter design: 

Determining the specifications: 

o,,T = M,o,T = 4 ~ 0 . 0 6 2 5 ~  = 0 . 2 5 ~ ,  

o,,T = M , o , T  = 4 ~ 0 . 0 7 5 ~  = 0 . 3 ~ ~  

A I m m  = I O - ~ ~ B ,  A, ,~ ,  = 40dB. 

The specifications can be met by an 1 lth-order elliptic filter, with the poles (in the digi- 

tal domain): 

p l  = 0.28671991 



p6,7 = 0.48253878 f 0.55379296j 

Pa, 9 = 0.35560688 f 0.34139427j 

pio, I l  = 0.663 19926 I0.72833384j 

The adaptor coefficients can be obtained as 

y1 = 0.2867 199 1154392, y2 = -0.5395303 1878987, y3 = 0.62686492810183, 

yq = -0.895029 19636046, YS = 0.66846224032534, Y. = -0.24300630 lO7O66, 

y7 = 0.572 17228785650, yg = -0.76476475528964, yg = 0,65574975306234, 

Y10 = -0.97030342888 112, YI 1 = 0.673 19504866259. 

Masking filter design: 

First, determine the number of masking filtas = log#fl = 2 .  

The first masking filter design: 

Determine the specifications: 

= 4OdB, AZmm = I O - ' ~ B .  

The specifications can be met by an 5th-order bireciprocal elliptic filter, the obtained 

adaptor coefficients are 

YI = -0.1 1455485826387, y2 = -0.54458467232029. 

The passband ripple and stopbaad attenuation are 



ASI = 88.66dB, A,, = 5.9 x I O - ~ ~ B .  

The second masking filter design: 

Determine the specifications: 

Almin = SOdB, A3,, = I O - ' ~ B  

The specifications cm be met by an 3rd-order birecipmcal elliptic filter, the obtained 

adaptor coefficient is 

YI = -0.3375033802279. 

The passband ripple and stopband attenuation are 

A, = 69dB, A,, = 5.265 x IO-'dB. 

The overall wide-band filter structure is as shown in Fig. 4.12. Fig. 4.14 shows the fie- 

quency response ofoverall wide-band filter using word-lengths, W = l l .  (A MATLAB 

program for the design of a wide-band filter is given in the Appendix.) 



output 

econd masking filter 

Fig. 4.12 Structure of overall wide-band filtet for example 2 (interpolated method). 
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Fig 4.13(a) Frequency response of wide-band filter (direct method). 

Fig 4.13(b) Ripplc response of wide-band filter (direct method). 
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Fig. 4.14(a) Frrquency response of componding namw-band filter 

(interpolated meîhod for example 2). 

(interpolated method for example 2). 

x 104 A l m r u d b n  r - i  01 ouar.Ii mraw-bmd Mar 
1 

0.0 

0.8 

0.7 

0.8 

$ 0 . 5  

0.4 

0.3 

- 
W =  11 

- 

- 
- 

- 

- 
- 

0.2 - 

0.1 - 

0-  
O 0.0 1 0.02 O .a a a4 0.0s 0.œ 

nT/pl 

Fig. 4.14(b) Rippte respome of corresponding oarrow-band fiiter 
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Fig. 4.14(c) Frequency response o€overalI wide-band filter (interpolatcd method). 
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Fig. 4.14(d) Ripple rapnse of overd wide-band filter (interpolateci mechod). 



Erample 3: Low-pas narrow-band füter design (linear phase). 

Specification: 

~,T=0.0625~(11.25~), ~,T=0.075~(13.5~), 

Model filter design: 

Detennining the specifications: 

M, 5 X/W, = 1 / 0.075 = 13.3, we choose MI = 8. 

A I ma.r = O.ldB, A l m i ,  = 40dB. 

To meet the specifications, apply the method described in section 4.2.1. We get a 17th- 

order IIR filter (allpass degree is 9, the delay degree is 8), the allpass filter coefficients are 

' 1  - 4  = 1.000000,O. 12 1666,0.487569, -0.059062, 

a s - ,  = -0.105517,0.044379,0.026499, 

' 8  - 10 = -0.08 1658, -0,098785, -0.029697 . 

Masking filter design: 

First, detemine the number of mashg filtem = log$fl = 3 . 

The tirst masking filter design: 

Determine the specifications: 



wc, T = wcT = O . 0 6 2 5 ~ ~  

os? T = K - o,T = O.92h, 

A h x  = O.ldB, A,,, = 40dB. 

Apply the method described in section 4.2.1 masking filter design part, the specification 

can be met for K I  = 2 ,  L = 2 ,  the transfer function for this maximdly flat linear phase 

FIR filter is 

The second masking filter design: 

Determine the specifications: 

o,,T = 2 0 , T  = 0.125%, 

'3rna.v = O.ldB, A3,, = 40dB. 

The specification can be met for K2 = 2 ,  L2 = 3 ,  the tramfer hction for this maxi- 

mally ffat linear phase F[R filter is 

The third masking filter design: 

Determine the specifications: 

oc, T = 4mcT = 0.25x, 



Admas = O. ldB , A4min = 40dB. 

The specification can be met for K3 = 5 ,  L3 = 6 ,  the transfer function for this Maxi- 

rnal flat linear phase FIR filter is: 

The overall narrow-band filter structure is shown in Fig. 4.15. 

Fig. 4.15 The structure for mow-band low-pass filter (example 3). 

The frequency response of overall narrow-band filter is shown in Fig. 4.16. 



FigA.l6(a) Magninide responae of mode1 finer, and cascade mode1 filter with 

masking fiiters (for example 3). 



Fig. 4.16(b) Frequency respoase of o v d l  narrow-band filter (example 3). 

Fig. 4.16(c) Phase (in pasuttanci) response of ovedl narmw-band filter (example 3). 



The corresponding wide-band filter can be obtained by using structure shown in Fig. 4.17. 

Fig. 4.17 Correspondhg wi&-band filter structure for example 3. 

r( "up8' t 
7 112 output 

where 

M, = M - M , +  ( K I + L I - 1 )  +2(K2+L, -1 )  - +4(K3+Lj-1 )  

= 8 x 8 + 3 + 8 + 2 0  = 115 

The frequency response of corresponding wide-band filter is shown in Fig. 4.18. 

input 
> 

IAZ) H 12(2) H 13(z4) 1 
--@ 

output 
> 



Fig. 4.18 The frequency response of corresponding widc-band filter for example 3. 



In this thesis, a method to design iiR multiple notch filters for a prescribed notch fie- 

quencies and 3 dB refiection bandwidths is discussed. This notch filter cm be realized by a 

computationally efficient lattice structure with very low sensitivity. An example has b e n  

given IO demonstrate the design procedure. 

in the second part of this thesis, the design and realization methods for high speed nar- 

row-band and wide-band filters have been given, the narrow-band filters are wmposed of 

a model filter and one or several masking filters in cascade. in the case of nonlinear phase, 

Iattice and bireciprocal lattice WDFs are used for the model and mashg  fitters; a conven- 

tional lattice WDF design method is given, a design method for bireciprocal WDFs is also 

given in detail. The wide-band filters consist of a narmw-band filter in parallel with one of 

the allpass filters. The overdl narrow-band filters can be designed by separatdy designing 

the model filter and masking filters. The overall wide-band filters can be designed by first 

designing a narrow-band filter, then, by ço~ecting îhis filter in parallel with an dlpass fil- 

ter consisting of a cascade of branches one h m  each subflter of the nanow-band filter. 

Estimations were given for the passband and stopband ripples of the individuai 6iters in 

the narrow-band filter in order to meet the requirements for the overdl wide-band filter. 



This offers simple design procedures for both nmw-band and wide-band filters since a 

conventional lattice WDF design method can be used. However, for many wide-band 

cases, these designs imply an unnecessarily high computational complexity, because the 

derived estimations are based on a worst case assumption. For the case of approximately 

linear phase, an approximately linear phase IR filter is used for the mode1 filter, and MF 

linear phase FIR filters are used for the masking filters. Because both cases ( h e m  and 

nonlinear phase) are based on the interpolated technique, ail recursive loops contain a 

number of delay elernents, resulting in filters with higher maximal sample ûequencies 

compared to the directly designed filters. We gave severai exarnples to demonstrate the 

effects of quantization, the resulting filters have lower word-lengths compared with 

directly designed filters. We also discussed the roundoff noise and concluded that these fil- 

ters are likely to be in favor. 



Appendix 

1 Programs for multiple notch filters 

% program for multiple notch filters 

clear; 

format long; 

% notch filter specification 

order=6; %filter order 

wN=[O. 1 *pi 0.4*pi 0.7*pi 1; % notch filter ûeq 

bw=[O.O 1 *pi 0.0 1 *pi 0.02*pi]; % rejection bandwidth 

%bw=[0.05*pi 0.05*pi 0.41tpi]; 

% calculate coefficients 

for i= 1 :order 

w(i)=wN(floor((i+ l)/2))-OS*( 1-(- l).'hiod(i,2))*(bw(floor((i+ 1)/2))/2); 

phase(i)=-((2*(floor((i+ 1)/2))-l)*pi)+O.S*((l-((- l).'Lnod(i,2)))*pi/S); 

beta(i)=OS*(phase(i)+order*w(i)); 

tanb(i)=tan(beta(i)); 

for k= 1 :order 

q(i,k)=sin(k*w(i))-(tanb(i))*(cos(k*w(i))); 

end 

end 



a-inv(q)*tanb'; 

disp('a='),disp(a), 

g=[l a.']; % in the z-domain 

h=fiiplr(g); % in the z-domain 

[H,w] = fkeqz(h,g, 10%); 

figure(5) 

phase = unwrap(angle(H)); % unwrapped phase 

plot(w/pi,phase/pi);grid,xlabel('normalized frequency w / '), ylabel('phase / '), 

title('phase o f  allpass'), 

% calculate gammas 

h=[1 a']; 

g=[fliplr(a') 1 1; 

n=length(g)- 1 ; 

çarnma=zeros( 1 ,n); 

for i= 1 :n 

[gamma(i),h,gl=ExgammaOi,g); 

end 

disp( 'gamrna='),disp(gamma) 

% notch filter freqency response 

M=5 12;% number of time instants 

s=zeros( 1 ,n); % initial state 

input=zeros( 1 ,S*order); 

output=zeros( I ,S*order); 



b2= i ; 

?/ob2=data; 

for m=l:M 

input(m)=b2; 

for i= 1 :n 

a 1 =b2; 

d=s(i); 

[b 1 ,b2]=Two_p-a(-ganuna(i),a 1 ,a2); 

if i> l  

s(i- i)=b 1 ; 

else 

output(m)=b 1 ; 

end 

if i=n 

s(i)=b2; 

end 

end % i-loop 

b2=0; 

end % m-loop 

output=(output+input)*O.5; 

t=linspace(O,M- 1 ,M); 

figure(2),stem(tloutput),axis([0 100 - L 1 ]),grid, xlabel('discrete time n'); 

ylabel('h[n]'), title('Unit Sample Response'); 



% FFT of impulse response and plots of fiequency responses 

N=M; 

y=fft(output,N); 

x=linspace(O, 1 ,N/2); 

y l =[y( 1 :N/2)]; 

y2=abs(y 1) ;  

f is ird3 

plot(x,y2),grid, xlabel('norma1ized fiequency w / '), ylabel('lH['), 

title('Magnitude Response of IIR Multiple Notch Filter'), 

figure14 

om-index = I :.99999*N/2+ 1 ; 

om = x(om-index); % passband 

phase 1 = unwrap(angle(y I(om-index))); % unwrapped phase 

pIot(om,phase l);grid,xlabel('nomalized fiequency w / '), ylabel('phase I '), 

title('phase of IIR Multiple Notch Filter') 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [gammqM,g2]=Exgamma(h I ,g 1) 

gamrna=pol yval(h I ,O)/polyval(g 1 ,O); 

W=polyadd(h 1 ,-gamma*g 1); 

m=length(h2); 

M(:,rn)=n; 

g?=polyadd(g 1 ,-gamma*hl); 

g x  1 )=CI; 



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [b 1 ,b2]=Two_p_a(gamma,al,aî) 

b 1 =-gamma*a 1 +( 1 +gamma)*a2; 

b2=al*( 1 -gamrna)+gamma*a2; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function p=polyadd(a,b) 

if narginc2 

error('Not enough input arguments'), 

end 

a=a(:). '; 

b=b(:).'; 

na=length(a); 

nb=Iength(b); 

p=[zeros(l,nb-na) a] + [zeros(l,na-nb) b]; 

2 Programs for the wide-band ûiters 

%example 2 for overall wide-band filter 

%spec: wcT=0.075pi,wsT=0.0625pi,Ap~=0.2dB,As>=5 hi@-pass 

clear 

format long 

m=33; 



c 1 =zeros(l, l 1);~2=zeros(l,2);c3=zms(l, l ) ; c 4 = -  s(1 ,l); 

d 1 =zeros( 1 , 1 l );d2=zeros(l,5);dheros( 1,3); 

el=zeros(l, I l ) ;  

output 1 =zeros(l ,m);output2=zeros(l ,rn);output3=zms(l ,m); 

%im plement H 1 ( ~ " 4 )  Amax=l O."(-S)db,Amin=40db,order=ll 

for n=0:4095 

a(6)=c 1 (3);c 1(3)=d 1 (3);dl(3)=el(3);e1(3)=b(d);%irnplement delays 

a(S)=c 1 (2);c 1 (2)=d 1 (2);d 1(2)=e 1 (2);e 1 (2)=b(4); 

a 1 =a(5); 

d=a(6);  

gamma=0.626864928 101 83;%Ap= 1 O."(-S),As=4ûdb 

gamma=rowid(gamma*(2." 1 1))/(2." 1 1); 

twoj-a 1 ; 

b(S)=b 1; 

b(6)=b2; 

if n=O 

a(l)=I; 

else 

a( 1 )=O; 

end 

a(2)=cl(l);cl(l)=dl(l);dl(l)=el(l);el(l)=b(2); 

a 1 =a( 1); 

a2=a(2); 



gamrna=O.2867 199 1 154392; 

gamma=ro~nd(gamma*(2."11))/(2.~11); 

two_p-a 1 ; 

b(l)=bl; 

b(2)=b2; 

a(3)=b( 1 ); 

a(4)=b(5); 

a 1 =a(3); 

a2=a(4); 

gamma=-0.5395303 1878987; 

garnma=ro~nd(garnma*(2.~ 1 1))/(2." 11); 

tw0-p-a 1 ; 

b(3)=b 1 ; 

b(4)=b2; 

a( 1 O)=c 1 (5);c i (5)=d 1 (5);d 1 (5)=e 1 (5);e 1 (5)=b(l O); 

a(9)=c 1 (4);c 1 (4)=d 1 (4);d 1 (4)=e 1 (4);e 1 (4)=b(8); 

a 1 =a(9); 

d=a(  10); 

gamma=0.66846224032534; 

gamma=r0und(gamma*(2."11))/(2.~ 1 1); 

twog_a 1 ; 

b(9)=b 1 ; 

b( 10)=b2; 







twoq-a 1 ; 

b(19)=bl; 

b(20)=b2; 

output 1 =b(19)+b(7); 

%implement H2(zA2) 

a(26)=output 1 ; 

a(27)=d2(5);d2(5)=~2(2);~2(2)--d2(4);&2(4)=b(27); 

al =a(26); 

a2=a(27); 



gamma=-0.11455485826387; 

gamrna=round(gamma*(2." 1 1))/(2." 1 1); 

twoq-a 1 ; 

b(26)=bl; 

b(27)=b2; 

a(23)=d2( 1);42(1)=b(23); 

b(23)=output 1 ; 

a(24)=a(23); 

a(25)=d2(3);d2(3)=~2( l);c2( l)=d2(2);d2(2)=b(25); 

a l =a(M); 

a2=a(25); 

gamma=-0.54458467232029; 

gamrna=ro~nd(gamrna*(2.~ 1 1))/(2.A 1 1); 

twoq-a 1; 

b(24)=b 1 ; 

b(25)=b2; 

output2= b(24)+b(26); 

%irnplement H20(z.^2) one allpass of H2(zA2) 

a(3 l)=d3(i);d3(l)=b(3 1); 

b(3 1)=b(7); 

a(32)=a(3 1); 

a(3 3)=d3(3);d3(3)=~4(1);~4(l)=d3(2);d3(2)=b(33); 

al =a(32); 



a2=a(33); 

gamma=-0.54458467232029;%-0.488725856; 

garnma=roound(gamrna*(2 .Y1 ))/(2." 1 1 ); 

two_p-a 1 ; 

b(X)=b 1; 

b(3 3)=b2; 

%impiement H3(z) 

a(29)=output2; 

a(30)=c3(l);c3( l)=b(30); 

al =a(29); 

a2=a(30); 

gamma=-0.3375033802279;%-0.308258011; 

garnma=~ound(gamrna*(2.~ 1 1))/(2." 1 1); 

tw0-p-a I ; 

b(29)=b 1 ; 

b(30)=b2; 

a(28)=b(28);b(28)=output2-b(32)*(2."(3)); 

output3(n+ 1 )=(a(28)+b(29))*((-2)."(-3)); 

end 

x=0:4095; 

figure( 1 ) 

stem(x,output3),grid,xlabel('n'),ylabel('h(n)'),title('Impulse Response'), 

w=linspace(O, 1,4096); %w is f7F 



h=O; 

for n=0:4095 

h=h+output3(n+ 1 )*exp(w*(-n)*i*pi); 

end 

figure(2) 

plot(w,abs(h)),grid, xlabel('wT / '), ylabel('lHl'), 

title('magnitude response of overall wide-band filter'), 

atten=-20*log lO(abs(h)); 

f igW3)  

plot(w,atten),axis([O 0.1 O 90]),grid, xlabel('wT / '), ylabel('dB'), 

ti tle( ' Attenuation response of overall wide-band filter'), 

fisire(4) 

plot(w,atten),axis([O.O7 1 -0.1 O. l]),grid, xlabel('wT / '), yIabel('dB1), 

title(' Attenuation response of overall wide-band filter'), 
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