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ABSTRACT

In this thesis the use of the seasonal group characteristics
(occurrence of high and low flow groups) in the monthly stream
flow data infilling was investigated. Two multivariate monthly
flow data infilling models were developed. One model
reconstruct a flow group of missing data river by conditioning
on the simultaneously observed flow group in the nearby
located river. The other model reconstruct a flow group of a
missing data river by conditioning on the preceding flow group
of the same river. The later model performed very poorly whilé
the first model performed satisfactorily only in cases of a

longer period of concurrent data.

Further, in this thesis the scope of the use of seasonal group
characteristics (homogeﬁeity characteristic e.g. high flow
group contains high flows and vice versa) to extract seasonal
samples (homogeneous samples) for the application in the
regression models were studied. These samples were found
beneficial only in the reconstruction of one seasonal data by
inducing larger estimation error in other season. Due to the
random variation in the occurrence of the flow groups, the
adopted procedure of seasonal segmentation ( splitting the
yvear in two periods éf high or low flow) assigned few flows
to incorrect season thus causing larger estimation error.
Thorough investigation of such sample are needed prior to the

use for estimation of missing data.
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CHAPTER 1
INTRODUCTION

1.0 PROBLEM DEFINITION

In the water resources planning and management practice,
adequately long uninterrupted monthly stream-flow data series
are needed in order to analyze the sequential properties of
the historical data for various purposes, such as,
- forecasting, synthetic trace generation, determination of
yvield, capacity and operational policy of storage facilities.
Often the existing historical monthly stream-flow record is
not only short but also contain one or more gaps. A gap in the
monthly stream-flow data series may be caused by the
instrumental malfunction during the data measurement, data
transmission and storage. A gap can also occur due to the
calibration error caused by the. occurrence of an extreme
event. Such.a gap as shown in Fig. 1.1, di&ides the data
series into disjointed sﬁb—series. The gap needs to be bridged
by using a suitable data infilling method which considers the

complicated nature of monthly stream-flow data.

1.1 COMPLEX NATURE OF MONTHLY FLOW DATA AND DILEMMA IN THE

CHOICE OF AN INFILLING MODEL

The monthly stream-flow data is characterized by persistence
and cyclic variation in the magnitude of flow. The cyclic
variability in the magnitude of monthly flow data [e.g. Fig.

1.2] causes cyclic variation in correlogram [Fig. 1.3].
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Fig.1.1: Gap in stream-flow data series
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The value of cross correlation coefficient between monthly
stream—flbw series of two nearby located rivers is often very
high. Due to the high cross correlation coefficient, a
regression model could be considered to be viable means for
infilling of missing data of the short data river by
exploiting the concurrent data of a base river (cross river
information transfer). But, use of such a model in the
serially correlated series produce;serially correlated error .
which is considered as an indicator of possible distortion of
a fitted line. When such é distorted line is applied to
estimate the missing data of a serially correlated monthly
stream-flow data series, the estimated data may differ very

‘much from the actual value of the missing data.

Circumventing such a situation could possibly be achieved by
using de-seasonalized data and then fit a AR(1) model on the
residual. But the procedure of de-seasonalization is
criticized for causing drastic drop in the correlation between
{the missing data series and a base series pair} causing
substantial amount of loss of information in the cross river

information transfer [Harmancioglu and Yevijevich 1987].

Due to the cyclic variation, the monthly stream-flow data
belonging to different months may vary substantially and when
only one infilling equation is calibrated from all available

data, wide variation among the observations of the sample may



cause unrealistic estimate of the missing data. A possibility
of encompassing the cyclic variation could be the use of 12
different infilling equations for infilling the missing
monthly stream-flow data of the short data series belonging to
the 12 different months [Hirsh (1979, 1981), Vogel and
Stedinger (1985)], but this procedure is not reliable in case

of the availability of few years of concurrent observations.

Three major groups of missing stream-flow data filling models

are available:

. A group of models use regression type equations on
raw data and disregard persistencé.

. Another group of models use either a
multiple regression or a multivariate regression to infill
multi-site data. Both of the models use de-seasonalized
data.

. The third group of models incorporate either regional
statistics parameters or some physidgraphic
characteristics in the infilling equation and use either

raw data or de-seasonalized data.

1.2 PROPOSED MODELS

The persistence and cyclic variation of the monthly stream-
flow data offers very little scope to build an infilling model
which would simultaneously meet all these constraints. In the

hydrological literature, the existing infilling models make



some form of compromise among these constraints to obtain an
realistic estimate of the missing data. Panu [1978, 1980]
considered a completely different approach to encompass
serial persistence and cyclic variation. Panu [ 1978,1980]
viewed that the time plot of a monthly data series as a
sequence of high and low flow groups. He considered further
that the persistence can be embraced in terms of inter-group
relationship ( of lag-one Markovian nature) between groups
and intra-group relationship between the members of the

groups.

Tn this thesis, an effort is made in order to investigate the
efficacy of the use of group characteristics in a data
infilling model. To pursue the above goals two multivariate
models, referred as MULBS and SESTRNALL, (detail specifics
are given 1in chapter three) are proposed. These models
encompass the cyclic variation completely and thus reconstruct

a segment rather than an element of a time series.

These models consider group relationship which is different

from the conventional notion of persistence. The following

concept.of seasonal group characteristics is considered to

build the configuration of the proposed models:

. The monthly stream-flow data plot of a river [Fig. 1.2]
exhibits periodic occurrence of a peak and a valley over a

period of one year, these are denoted by wet and dry



seasonal segment respectively.

Each of the wet and dry seasonal segments lasts for six

months, each can be denoted by a six dimensional vector

X=[x, ....xéﬂ'. This vector represents the association of

the six monthly flow values within a group and the flows

belonging to a group are considered to be similar ( high or
low) (Fig: 1.4). This similarity criteria is referred by
intra-seasonal homogeneity.

. The dry seasonal segments are considered similar to each
other but dissimilar from the wet seasonal segment.

. The consecutive six months period (seasonal period)-over
which the high/low flow persists in the wet/dry seasonal
segments are considered as season [this definition is
different from the definition of a season used in the time
series analysis, in the time series, the seasonal length is
twelve month ]

. The plot of monthly data [Fig.1.3] can be considered as a

sequence of seasonal segments [ Fig. 3.3.a, b].

RATTONALE BEHIND THE DERIVATION OF THE PROPOSED MODEL

MULBS:
In addition to the above mentioned seasonal group
characteristics, following characteristics are considered in

the derivation of MULBS model:

¥
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Vector representation
of Xp = [ x1 X2 X3 X4 X5 K¢ 1T
Dry seasonal segment

Vector representation
of Xn = [ %7 Xs Xo Xio X11 xi2 ]
Wet seasonal segment

x5 = flow on jtB month on a year

Average dry seasonal

group relationship = COV(Xp)exs , when computed from all
available dry seasonal
segments

Average wet seasonal

group relationship = COV(Xw)sxe , when computed from all
available wet seasonal
segments

Fig.l.4: Vector representation of dry and wet seasonal segments of
a year. :



The simultaneous plot of stream-flow of two or more nearby
located rivers [Fig.4.1.2] exhibits almost concurrent
occurrence of peak and valleyiwhich can be justified by the
coincidence of precipitation. This plot suggests a
dependence among the simultaneously observed seasonal
segments and such a dependence appears to be consistent over
time (when there is a high peak in one river, high peak is

also exhibited in the other rivers).

Such a concurrence of observation of similar seasonal segments
in neérby located river justifies to consider a model which
would be able to reconstruct a missing seasonal segment of the
short data river conditioned on the simultaneously observed
corresponding seasonal segment of the base river. This model
reconstruct a specific seasonal segment of the short data
series at Tf“ seasonal period by conditioning on the
corresponding observed seasonal segment of a base river series
at T;h seasonal period [Fig. 1.5]. This model reconstruct a
dry seasonal segment of the short data series by conditioning
on the existing dry seasonal segment in base river series.
Similarly, this model reconstruct a wet seasonal segment of
the short data series by conditioning on the existing wet
seasonal segment in the bése river series. For the
reconstruction procedure this model_utilizes a mu;tivariate
conditional distribution, detail of this procedure is given in

chapter three. This model completely disregard any
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gap
g D W D W D ) short data series A
VS . §
Tk -2 Tx~-1 Tk Tr+1 Tk +2

D ’ W \\DQQQ\ W D > Base R. data series B
3 ‘ DN i
Tx

Tk -2 Tk - 1 Tk + 1 Tx+2

. D= a dry s.segment Du = missing dry seasonal segment
. W= a wet s.segment D = observed dry seasonal segment
objective: find:

P(Dy | D= Dg ) , derivation of distribution of Du
conditioned on observed Ds

Fig.1.5: Reconstruction of a missing dry seasonal segment Du
by MULBS model
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relationship at the interface of adjacent seasonal segments,
thus, disregard any relationship being carried over from one
seasonal segment to the next seasonal segment (i.e. the model

ignores inter-seasonal group relationship) .

SESTRNALL MODEL:

BACKGROUND: In the discussion of the scope of application of
pattern recognition principle, Panu (1978) proposed a method
of analyzing the seasonal group characteristics of monthly
flow data of a river and finding a missing data segment by
‘projecting the preceding segment of the same river. This
method assumes that the seasonal segments follows a Markovian
transition. The transitional probability, cluster
configuration of the seasonal segments and distances of the
seasonal segments would provide sufficient information to
infill a gap segment [these concepts are explained in chapter
three]. This method was attempted by Frenette (1988), but the
work remained incomplete. This method was initially considered
for the thesis, but, this method was modified subsequently.
The method proposed by Panu (1978) and the rationale behind
the modification is presented in Appendix A.1.2. The modified
model (SESTRNALL) considers the inter-seasonal relationship as
the infilling basis, but, adopts different operational

procedure.
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D= a dry s. segment Dy = missing dry seasonal segment
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P(Dy | W= Ws

)

4

derivation of distribution of Du
conditioned on observed Wsg

Fig.l.6: Reconstruction of a missing dry seasonal segment Dy Dby

SESTRNALL model
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SESTRNALL MODEL: This model reconstruct a specific seasonal
segment of the short data series at T*th seasonal period by
conditioning on the preceding seasonal segment of the same
series at Tk_1th seasonal period [Fig. 1.6]. This model
reconstruct a dry seasonal segment of the short data series by
conditioning on the preceding wet seasonal segment of the
short data series. In a similar way, this model reconstruct a
wet seasonal segment of the short data series by conditioning
on the preceding dry seasonal segment of the same series. For
the reconstruction procedure this model utilizes a
multivariate conditional distribution, detail of this
procedure is given in chapter three. This model takes account
of the relationship' at the interface of adjacent seasonal
segments, thus, considers that thé group relationship being
carried over from one seasonal segment to the next seasonal
segment (i.e. the model accounts for inter-seasonal group

relationship). It also considers intra-group relationships.

1.3 THESIS OBJECTIVE:

.Investigation of the efficacy of using seasonal group
characteristics in multivariate monthly flow data infilling

models and rationale for future use.




14

.Scope of the use of seasonal group characteristics in
extracting samples ( based on seasonal homogeneity) for the

existing univariate regression type data filling model.

The thesis is organized as outlined below:

In.Chapter two a review of the existing infilling models are
given to put the proposed models into perspective. The Chapter
three develops the mathematical background of the proposed
models and it also develops a procedure of sample extraction
based on similarity criteria. The Chaptef four discusses the
application of the proposed models in real world data. The
results obtained are analyzed ih Chapter five. The Chapter six

contains concluding remarks and scope of further research.
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CHAPTER 2
LITERATURE REVIEW

2.0 PREFACE

The existing monthly flow data reconstruction models can be
" broadly classified into thrée major categories so that the
models belonging to a particulaf category do not differ from
each other in three aspects, namely; (i) the way the models
handle serial persistence and cyclic variation, (ii) the
criteria (information source) the models use in the infilling
process and (iii) the restriction the models impose‘on the
number of short data series. These categories are: regression
type models, multi-site models and models using physiographic
factors. Only first two categofy of models are comparable to

a limited extent to the proposed models .

2.1 EXISTING MODELS

REGRESSION _TYPE MODELS :These models disregard serial

persistence and cyclic variation in monthly data, permit
infilling of gap at a single site and incorporate cross-river
information transfer for infilling process. The least square
regression, regression with noise [Hirsh (1982)] and
maintenance of variance extension (MOVE) [Hirsh(1982), Vogel
and Stedinger (1985)] belong to this category. These models
- are basically meant for annual flow data augmentation, hence,
do not take account of serial persistence and cyclic

variation. Their structural configurations can be compared by



16

considering the following hypothetical case:

Let

Ky X, X3 sccccccsscccsssoncscccncsscccces KXoy, o

Yi Yy Y3 ceccccccceees ¥y

represent a nl + n2 period long stream-flow data sequence X of
a base river and nl period long stream- flow data sequence Y
of the river with missing data. The n2 period long gap in
series Y is reconstructed by both the regression and the MOVE

models by means of regressing series Y on series X

Least square regression equation without a noise term is:

yi=§1 + b (Xi-;t.‘ ).o.o-..nooon-o--oco.ooo[2-1]

where,

X, and y, respectively are the sample estimates of mean of

nl period of concurrent data of series X and Y respectively,

b is the estimate of least square regression parameter, y; and
X; are respectively the estimates of missing data of series Y

at it period and the concurrent observed data of series X.

The regression equation with noise is:

where,

e; = noise at period i

; . s . 2 2
(o] = unbiasing factor computed by equating E(sy) = o,
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0 when no noise is added

(o] = Noise indicator i.e. ©

© = 1 when noise is added

r = estimate of correlation coefficient

2

Sy = estimate of variance of nl period of existing

observations of the series Y

When estimates of missing data are computed by Equation [2.2],
the estimates of an augmented series mean and variance would
be unbiased. These aﬁgmented series estimators are known as

Matalas and Jacobs's unbiased estimators.

In stream-flow data reconstruction, mathematical formulation
of MOVE models were done by excluding the noise term from the
regression equation [2.2], yet, preserving some desired
characteristics of the augmented series (i.e. Matalas and
Jacobs's unbiaéed estimators of the mean and the variance of
the augmented series). The noise term was needed to be
excluded in order to produce ah unique estimate of the missing
data [Hirsh (1982)]. Four MOVE models were developed i.e.
MOVE.1l and MOVE.2 by Hirsh (1982) , MOVE.3 and MOVE.4 by Vogel

and Stedinger (1985).

Vogel and Stedinger (1985) presented the comparison among

various MOVE models in detail, which is summarized below :

A

Yi=a+bx.i L IR B B N R B B R I BN B RN BN BN AR B BN BN IR IR BN BN BN BECBE BY B J [2.3]
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All the MOVE models follow the general configuration given by
Equation [2.3] and in each case, the parameters are derived on
the basis of the desired characteristics to be preserved ,

namely:

In MOVE.1l, the regression parameters are derived so that a
nl + n2 long generated sequence of Y series by Equation
[2.3] reproduces the historical mean and variance of Y
series.

In MOVE.2, the regression parameters are derived so that a
nl + n2 long generated sequence of Y reproduces Matalas-
Jacobs's unbiased estimators of mean and variance of
augmented series.

In MOVE.3, the regression parameters are derived so that a
nl long historical data sequence together with n2 long data
sequence dgenerated by Equation [2.3] reproduces Matalas-
Jacobs's estimators of mean and variance of the augmented
series.

In MOVE.4, the regression parameters are derived so that a
nl long historical déta sequence together with n2 long

data sequence generated by Equation [2.3] reprodudes Vogel and
Stedinger's minimum variance estimators of mean and variance
of the augmented series. The minimum variance estimators of
mean and variance of the augmented series were developed by
Vogel and Stedinger(1985) by using a linear combination of the

corresponding parameter estimators of the observed short data
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series and the Matalas and Jacobs's unbiased estimators of the

augmented series as given below:

Ade

(1L -0,) vy, +0 4

ﬂ =

Y ...........“...‘..[2.4]

A*Z 2 A

g, = (1- 6, ) s.y1 + 0, g,

where

ﬁy = Matalas and Jacobs's estimator of the mean of the
augmented series

.

(4] = Matalas and Jacobs's estimator of the variance of the

augmented series

The parameters ®, and ©, are computed by minimizing
the variance of mean and the variance estimators given in

Equation [2.4].

All these models violate the underlying model assumption of
serially independent X and Y series. Such an use would induce
auto-correlated error, which apart from giving an incorrect
estimate of the missing data, may also cause consistent bias
thus producing a serious distortion in the sequential
properties. The proponent of these models [ Hirsh (1979,
1982), Vogel and Stedinger (1985)] are quiet aware of this
problem. They rationalize such an-use by the fact that the
data series of nearby located rivers have similar serial

correlation properties, regression type equations would be
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able to map these characteristics from base river to the river
with missing data, thus, the serial correlation structure of

the river with missing data will not be distorted by such an

infilling.

The MOVE models (MOVE.2, MOVE.3, MOVE.4) claim that they
maintain the variance of the Y series ( a time series), but in
reality, they maintain the variance of an independent series

[Equation 2.2].

Hirsh (1982) found the performance of the MOVE.1l and MOVE.2

to be superior to the regression equations, particularly with
respect to the bias in higher order statistics. The
performance of MOVE.3 and MOVE.4 in infilling missing data has

not been found in the hydrological literature.

MULTI-SITE MODEFELS

These models consider the persistence and cyclic variation
explicitly, permit infilling of gap at.multiple sites and
incorporate cross-river information transfer for infilliﬁg
process. Among the two models belonging to this category, one
model use multiple regression equation [Young et al. (1970)]
and another model use multivariate regression [Kottegoda and

Elgy (1977)] as infilling equation belong to this categ\b::'y.f._,ﬁ~

The operational procedure of the model using multiple

regression, [Young et. al. (1970)] consists of arranging
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normal standardized stream-flow data in matrix format such
that the sites (represented by rows) be arranged top to bottom
of the matrix in descending order of the bulk of available
data [Fig. 2.1]. The procedure furthermore, consists of using
a linear predictor relationship given by Equation [2.5] to
infill the gap from right to left (on the row), top to bottom
of the data matrix thus making optimal use of existing and or
infilled data. For any site k, in case of existing endpoints
i.e. ¥Yy4.1y, and ¥ygq.q, , the infilled estimate of y,, need to
be adjusted with respect to these existing points so that the
infilled data would comply with the assumed underlying AR(1)

prbcess of the data series.

s-

v.. = £ a - +°% b + . (1-R2)V2 . .[2.5]
si k=1 SK Yk(1+1) si Yki si s °° ®

k=1
where,
Y. = estimate of infilled data of s' site at i®
period |
Yicist = existing or infilled data of k' site at (i+1)™
period
Yii = data of k' site at i*" period
b;, a, = least square regression parameters
t; = noise ”‘N(O,l)



22

SITE s

SITE (m-1)
SITE m

LEGEND

X

<] —

EXISTING RECORD
MISSING RECORD

RECORD USED TO INFILL iT# GAP AT

" Fig. 2.1. Gap reconstruction at multiple sites
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A muitivariate multi-site AR(1) model with the following
configuration was considered [Kottegoda and Elgy (1977)] for

infiiling multi-site monthly stream-flow data, there is

Y
Yeat = ) X, + B R, eec00..[2.5]
X,
where,
Y1 = vector of missing data estimates of predicted
variable at p sites on (t+1)™ period
Y = vector of observed values of predicted variable at p
sites on t' period
X, = vector of observed values of predictor variable at n
sites on (t+1) period
X, = vector of observed values of predictor variable at n
sites on t™ period
Ry, = p- dimensional noise vector at (t+1) " period
A,B = parameter matrices

Both of these models adopt standardization to ensure second
order stationarity, but this standardization procedure was
found inadequate for ensuring stationarity in auto-correlation

structure of the series [Bras and Iturbe (1975)].

De-seasonalization (i.e. standardization) procedure also
reduces the zero-lag cross correlation coefficient between the

rivers [ Harmanchioglu and Yevjevich (1987)]
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v

Due to the dependence among the rivers, use of more than one
predictor river may not contribute to the marginal information
gain and unnecessarily complicate the matrix operation
procedure. Young et al. (1970) also considered such a
situation and suggested to stop the incorporation of base

river when multi-collinearity situation arises.

MODELS UTILIZING PHYSTIOGRAPHIC FEATURES

These models permit infilling of gap at a single site and
incorporate cross-river information transfer in conjunction
with .some physiographic features such as the drainage area
ratio, regional statistics, distance between { the short data
river and a base river} for infilling process. Some of the
models pay consideration to the cyclic variation while others
ignore this issue [ Hirsh (1979,), Kottegoda and Elgy (1977)].
These models are suitable in principle for data augmentation
in stations with very few data or no data at all rather than

infilling purposes.

2.2 DISCUSSION

By comparing the existing models discussed so far with the
proposed models (MULBS, SESTRNALL), the followings are
observed:

The proposed models differ very much from the conventional

data filling models in terms of the underlying concept. The
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proposed models are intended to reconstruct a shape feature of
the time plot such as, a peak or a valley, in its integrated
form, while the existing models can be considered to

reconstruct the shape pixel by pixel.

The proposed models take full account of cyclic variation in
that they consider each month as a distinct element of a

seasonal segment.

The proposed models consider group relationship which can be
concieved as the relationship among each of the six elements
constituting the seasonal segments. For a particular type of
seasonal segment, the average relationship is given by a (6x6)
symmetric covariance matrix. Considering such a relationship
as an intra-seasonal persistence, is rather vague from the
typical hydrological view point of persistence, hence, it is
appropriate to consider such a relationship as intra-seasonal

group relationship.

Among the proposed models, the MULBS consider intra-seasonal
group relationship but disregards inter-seasonal group
relationship, while SESTRNALL model considers both intra-

seasonal and inter-seasonal group relationship.

The proposed model are developed in order to investigate

whether or not the seasonal group characteristic can be
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utilized for monthly flow data infilling by means of
multivariate modeis, hence, these models do not claim their
superiority over any of the existing models. With respect to
the underlying concept, these models lack any kind of
similarity with the existing models. The proposed models are
empirical in nature and based upon some assumptions, such as,
MULBS model assumes that there is a relationship between the
simultaneously observed seasonal segments of a {the river with
missing data, a base river} pair. It furthermére assumes that
this relationship is consistent over time. On the other hand
the SESTRNALL model assumes that there is a substantial degree
of inter-seasonal dependence and consistence of the
dependence [Panu (1978)]. These are some assumptions which
need to be verified by a proper scheme derived in the next

chapter.

In this thesis the concept of seasonal group characteristics
is used to investigate the scope for finding samples on the
basis of seasonal homogeneity criteria for the regression type
of models. The proponent of the regression type models have
expressed concern about the large dispersion in the sample
when only one infilling equation is calibrated from all
available data. The only remedy could have been the choice of
12 different equations for infilling data belonging to 12

different months, But this implies reduction of the sample
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size by a factor of 12, which may lead to unreliable estimates
of parameters. These- researchers suggested to make a
compronise between choosing 12 equations for 12 different
monthe or to make two to four seasonal equation. In this
thesis, scope of the concept of seasonal group characteristicé
in extracting such samples is studied. The intent herein is to
study the prospects of seasonal group characteristics in order
to extract a sample consisting of the concurrent observations
of {short data river and a base river} such that the
concurrent observations in the sample do not show wide
dispersion among each other (homogeneity) and are similar to
the missing observation and the simultaneous observation in a
base river (similarity). It is hereby hypothesised that for a
missing observation, if an infilling equation is calibrated
from a sample with homogeneity and similarity proberty, the
estimate of the missing data would be more accurate than the
estimate computed by an infilling equation calibrated form a
sample consisting of all available data (heterogenous sample).
Three sampling scenarios are considered, one of which use
clustering concept. These sampling scenarios are given in

Chapter three.

In the chapter three, concept and selection of such sampling

criteria are discussed.
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CHAPTER 3
DEVELOPMENT OF MULTIVARIATE INFILLING
MODELS AND DERIVATION OF SAMPLING SCENARIOS FOR

REGRESSION AND MOVE.4 MODELS

3.0 OUTLINE OF VARIOUS SUB-~PROCEDURES

The proposed multivariate models assume that any section of
the monthly flow data plot of over a period of one year can be
segmented into two or more different types of seasonal
segments corresponding to the yearly low and high flow group
characteristics of the river. It is thereby necessary to
recognize, analyze such groups in the data, determine the
average number of different flow groups over a year period
followed by a suitable segmentation process. The evidence of
groups in the monthly flow data is diécussed in section 3.1.
Procedure to determine the average number of such groups is
also discussed in this section. An imperial algorithm for

seasonal segmentation is given in section 3.2.

Among the proposed models, MULBS assumes the presence of
considerate 1level of <consistency in the simultaneous
occurrence of seasonal segments of certain level of séverity
in the {river with missing data, a base river} pair [i.e. when
there is a 'very high' peak at a seasonal period T, a very

high peak is expected concurrently in a base river and such
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concurrent occurrence of 'very high' peaks is consistent over
time]. SESTRNALL model on the other hand assumes consistency
in the seasonal transition. These model assumptions are
verified by an empirical scheme that uses a combination of
Asub—clustering and ehtropy' concepts. The sub-clustering
concepts needs the hyper-space representation of seasonal
segments which is discussed in section 3.3. The assessment of

consistency is done in chapter 5.

Tt has been mentioned in the previous chapter that three
sampling scenarios would be considered for the univariate
models. One of these sampling scenarios uses derivation of
selected seasonal segments by an empirical scheme. In this
scheme, the seasonally segmented time series of { the river
with missing data, a base river} pair are replaced by the
sequences of class membership indices of the seasonal segments
which are derived by sub-clustering procedure. Juxtaposition
of the class-membership index sequences of {the river with
missing data, a base river} pair, allows to extract a set of
concurrently observed seasonal segments which are similar to
a missing seasonal segment at a seasonal period T, and the

concurrently observed seasonal segment at a base river.

For the infilling of any element j of a missing seasonal
segment at T,, an regression type equation can be considered

to be calibrated from the Sample consisting of all the
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elements of the selected seasonal segments pertaining to a
missing segment at a period T,. A procedure for extraction of
the selected seasonal segments and develbpment of wvarious
sampling scenarios respectively are discussed in section 3.4

and section 3.5.

The development of general statistical basis of multivariate
models is done in section 3.6, which is utilized in the
development of the statistical configuration of MULBS model in

section 3.7 and that of SESTRNALL MODEL in section 3.8.

‘3.1 ON RECOGNITION OF GROUPS 1IN THE FLOW DATA AND THE

DETERMINATION OF AVERAGE NUMBER OF SUCH GROUPS PER YEAR

Seasonal group characteristics is discernable in wvarious
representation of data. Groups are either visible or
conceivable in the : raw data, correlogram and time plot of

the data.

Monthly stream-flow data series printed from the data bank of
any standard hydrological agency e.g. USGS, can be considered
as a data matrix consisting of rows and columns representing
the year and the month respectively pertaining to the
collected data. The data along the row shows seasonal
characteristics such as relatively high or relatively low flow

persisting consecutively over fixed number of months.
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The group behaviour is visible in the correlogram of the
stream-flow data. The auto-correlation coefficient can be
considered as a measure of similarity between the data at a
certain lag [Romesburg (1974)]. The correlogram of monthly
stream-flow data displays periodic changes in similarity (in
slope and in magnitude). The correlogram of monthly stream-
flow data of a river with two seasons per year shows a peak at
every even multiple of six months and a valley at every odd
integer multiple of six months indicating twelve months
periodicity. This indicates the presence of two different
types of flows. Each type of flow lasts for six months
subsequently followed by a complete reversal of

characteristics [Panu (1978), Panu and Unny III(1980) ].

Seasonal group behaviour of the stream-flow data is further
highlighted in the time waveform plot ( plot) of the stream-
flow data [Fig. 1.2]. Time waveform 6f stream~-flow is a shape
representation of stream-flow in time continuum, characterized
by the periodic recurrence of peaks and valleys within any

year.

On one hand, seasonal group characteristics can be considered
as a shape feature in terms of time wave-form representation,
on the other hand, seasonal group characteristics can be
considered as an attribute of exhibiting similar flows over

some fixed months of any year. However different these
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descriptions may be, they describe one and the same feature of
the physical system, namely, a set of consecutive months
having high and low flows or relatively high, high, low and
relatively low flow scenario depending uponithe number of
seasons per year.‘Due to the random variation of precipitation
and other climatological factors, in the real world situation
, seasonal distinction of the raw data is not very straight

forward.

Based on the similarity criteria associated with the
correlogram, the average number of seasons per year can be
obtained from the correlogram of the data. After determination
of average numbers of seasons per year, the association of
months to the season or segmentation of the time wave form is

done by an empirical algorithm explained in next section.

3.2 SEASONAL SEGMENTATION

An empirical algorithm, in accordance with the definition of
season from clustering point of view, is proposed here { see

example , Appendix A.2.1}.

Let the correlogram of monthly stream-flow series show w
seasohs per year and let, each season last for m months.
According to this algorithm, the twelve stream-flow data
corresponding to the 1st year of the data matrix are ranked in

ascending order of magnitude, the months corresponding to the
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first m lowest flows are assigned to the seasonal group k=1,
the months corresponding to the second m lowest flows are
assigned to the group k=2 and so on. Subsequently, the months
corresponding to the m highest flows are assigned to the group
k=w. This procedure is repeated for each year of the available
data. For(any group k , for any month j, the total number of

assignment of j™ month to k™ group is counted as follows:

N
nk'J =i=z1 zi'j'f ...l......'...l..l...[ 3.1]
where,
n, ; = total number of times j™ month is assigned to
group k
Zi,i.¢ = value of counter f corresponding to assignment
of i month on i'" year to any group
for computation of the assignment of jth month to
kth group:
Z; ;¢ =0 when £ + k
ii¢g=1 when f =k
'J'
w = the total number of seasons
N = total number of years of data

The j™ month can be conceptually considered to be assigned to
a seasonal group k with whom it has been assigned maximum
number of times for that month. The assignment of a month to

group k is given below:
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j €k H maX{ nk.j} ’k= 1.......W s s s ees 0000 [3.2]

For each of the twelve months, the total number of assignment
to each of the seasonal groups ( k=1....w) are counted. For
any season, a continuous chain of m months is expected to show
maximum number of assignments to that particular season. One
can thus infer which chain of m months should be assigned to
which season. Prior knowledge about the drainage basin in
terms of the time of occurrence of the peak and low flow can
be considered as additional aid.pertinent to the seasonal

segmentation process.

The correlogram and the segmentation algorithm enables the
division of continuous time wave-form into seasonal segment.
For a particular season, the seasonal ségments can be grouped
or clustered by imposing some criteria. They can be further

sub-clustered by imposing some other finer criteria.

3.3 HYPER-SPACE REPRESENTATION AND CLUSTERING OF THE SEASONAL
SEGMENTS |

A seasonal segment ( m months long) can be considered as a m-
dimensional object and it can be represented by a m-
dimensional pattern vector X - (Equation ([3.3]). Such a
seasonal segment can be considered as a point in m-dimensional

hyperspace.
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X = [ Byp s Ky 1 eeeeeXy 1T covninnnn e .[ 3.3 1]
where,
X., = pattern vector corresponding to the k' seasonal segment

on ith year

= the stream-flow of k' seasonal segment on

e
~
|

1™ month , 1= 1....m [ also denoted as 1™ element]

In hyper-space representation, in case of a river with w
seasoné per year , the points corresponding to all the
seasonal segments would constitute w different clusters {C.}
(k=1...w) in a way that the points representing the seasonal
segments belonging to a common season k , would lie in a

common cluster C, [Fig. 3.1].

Any seasonal cluster C, can be further sub-divided into g
sub-clusters depending upon the degree of refinement in
similarity criteria imposed on the membership of a common sub-
cluster [Fig.3.2]. For a given seasonal cluster, by means of
sub-clustering, one can thus group seasonal segments by
imposing more rigorous similarity criteria, i.e., sub-
clustering of wet seasonal segments could mean screening of

very high peaks from the comparatively less severe ones.

Many kinds of clustering algorithms and diversified nature of

similarity or dissimilarity metric are available in standard
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cluster anaiysis and pattern recognition text books. In this
thesis, a k -mean algorithm using Euclidean distance as
dissimilarity metric is considered for the sub-clustering of
seasonal segment. Additional detail of k- means algorithm is

given in Appendix A.1.1 .

3.4. EXTRACTION OF SELECTED SEASONAL SEGMENTS

.One can replace the seasonally segmented time wave-form by the
sequence of class-membership indices obtained by the sub-
clustering process{ Such a sequence of seasonal class-
membership indices represents the time plot of the seasonal

status or degree of severity of the seasonal segments [Fig.

3.3].

Let Y and X respectively denote the sequences of seasonal
class-membership indices of the river with short data and base
" river [ Fig.3.4 ]. On basis of the similarity of the climate,
the rivers of same or nearby basins can be considefed to have
same number of seasons per year and the same seasonal
segmentation pattern, i.e., equal number of seasons per year
and association of the same months to the same season). In a
pair of nearby rivers, cdnsistehcy in the simultaneous
occurrence of seasonal segments of certain degree of severity
can be expected. This consistency can be assessed by
computing the probability of occurrence of a seasonal segment

of type ¢, in series Y conditioned on the simultaneous

pk
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Fig., 3.3: (a) Time wave-form , (b) seasonally segmented time wave-
form and {c) class-membership index sequence. [ Assuming 30 years
of monthly data, two seasons per year and two sub-clusters per
seasonal cluster ]
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occurrence of a seasonal segment of type Cyak in series X as

"given below:

Pleyy | Sxq )

]
d
o~
Q
<
*
-
;1
o)
[

P (Cyq) c..[3.4]

where,

XYok

XYpk

Xok

Nka

= a sub-cluster index of series Y corresponding to

season k [ (p=1....k ),k is the total number of

sub-clusters of k™ seasonal cluster]

i

a sub-cluster index of series X corresponding to
season k [ (p=1....k; ),k is the total number of
sub-clusters of k' seasonal cluster]
= number of times the seasonal segment of type Cypk
in series Y is simultaneously observed with
seasonal segment of type ¢, in series X
= number of times the seasonal segment of types Cypk and
Cyak could possibly simultaneously occur in X and Y
= number of times the seasonal segment of type Cyak
is observed in series X
= number of times the seasonal segment of type Cyak

could possibly occur in series X

In case, when the series X and Y have same number of seasons

per year, same seasonal association of the months and same
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number of sub-clusters per season, NXka and Nxpk are equal.

Thus, Equation [3.4] reduces to Equation [3.5].

P(c‘rpk | Cyak ) = (Nyyox / Vyor) cccccccceee] 3.5]

Let there be a missing seasonal segment in season k at T
seasonal period in series Y and let BYN represent the class-
membership index of corresponding simultaneously observed
seasonal segment in series X [Fig. 3.4]. One can search the
conditional probability table and select the most probable

class-membership index c,, of the candidate missing segment in

Yp

Y by satisfying following constraint:

Max{ P(c SYN )} eeeeeececsaasl 3.6]

vk |
The sub-cluster p satisfying Equation 3.6 is considered as the
most probable class- membership index of the missing seasonal
segment and is denoted by MPR. One can now search for the
years in which seasonal segments of type SYN and seasonal
segments of type MPR are simultaneously observed in series X
and Y respectively. Such a set of simultaneously observed
seasonal segments is referred as selected seasonal segments

{ example given in Appendix A.2.5 }.
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3.5 DEVELOPMENT OF SAMPLING SCENARIOS FOR REGRESSION AND

MOVE.4 MODELS

Conventionally, the regression and MOVE.4 moaels_ compute
parameters of the infilling equations from the sample
consisting of all available data, thus, disregard the
heterogeneity of the data belonging to different seasons.
Three different sampling scenarios are developed for.each of
the regression and MOVE.4 models. General configuration of the
regression and MOVE models are discussed in Chapter two and
the detail description of the least square regréssion and
MOVE.4 model considered for various sampling scenarios are
presented in Appendix A.1.4 and Appendix A.1.3. The three

different sampling scenarios are:

1.) Indiscriminately chosen sample

One infilling equation is calibrated from sample consisting of
all available data. The regression and MOVE.4 models under
such sampling scenario are denoted by REG and AMOVE .

2.) Seasonal sampling

Separate infilling equations are calibrated for infilling of
missing data belonging to separate seasons. For infilling of
the missing data belonging to a particular season k, the
sample is chosen from the elements of all simultaneously
observed kth Seasonal segments of { river with missing data,
base river pair}. The regression and MOVE.4 models under such

sampling scenario are denoted by SREG and SMOVE .
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3.) Selected seasonal sampling

Separate infilling equations are calibrated for infilling of
missing data belonging to separate seasons. For infilling of
the missing data belonging to a particular missing seasonal
segment, the sample is chosen from the elements of selected
seasonal segments corresponding to the gap segment. The
regression and MOVE.4 models under such a sampling scenario

are denoted by SSREG and SSMOVE .

These sampling scenarios are more elaborately explained in an

example in Appendix A.2.6.

3.6 DEVELOPMENT OF STATISTICAL BASIS OF MULTIVARIATE MODELS

Two multivariate infilling models are considered. Each of them
computes the parameters of the conditional distribution of the
missing seasonal segment. They differ from each other by the
nature of the conditioning variable. One model conditions on
the observed seasonal segment in the base river while the
other model conditions on the observed or reconstructed
seasonal segment preceding the gap segment of the river with
missing data. When the predictor and predicted seasonal
segments Jjointly follow a multivariate normal distribution,
then the reconstructed seasonal segment is considered to have
a multivariate normal distribution. The mean vector and
covariance matrix of the reconstructed seasonal segment can be

considered as sufficient statistics to describe the
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configuration of the ‘distribution [Johnson and Wichern
(1988)]. Each of the multivariate models considered here has

the same following statistical basis .

Let each of X, and xzzrepresents a p variate random vector and

let X = [ X, , X, ]' be distributed as N, (k, =) with

= 1 By K4

T = fpm—--- j === ' p= r—- , and B, | > 0
Iy | Ep K

Then, the conditional distribution of X, , given X, = X, , is

multivariate normal with

-1
Mean = Wy o+ Ep B ( %X, = K4 )

and .....[ 3.7]

. -1
Covariance = Z, = Zn Ea Za

where,

PP = (p*p) matrix containing the eléments of covariance
matrix of X

I = (p*p) matrix containing the elements of covariance
matrix of X,

T, = é; = (p*p) matrix containing the cross covariance terms
between the elements of X, and X,

Hey = (p*1l) mean vector of X,

Ky = (p*1l) mean vector of X,
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The seasonal gap can be infilled either by the estimate of
corresponding conditional mean or by a randomly generated
seasonal segment by using a multivariate random number
generator specified with the conditional configuration as
generation basis. In this thesis, estimates of conditional
mean are considered as the estimate of missing seasonal

segment.

3.7 MULTIVARIATE INFILLING MODEL CONDITIONING ON_OBSERVED

SEASONAL SEGMENT IN BASE RIVER [MULBS]

The MULBS model reconstructs the missing seasonal shape
feature, such as a peak or a valley of the time wave form of
the river with missing data by conditioning on the
corresponding shape feature observed in the base river. This
model computes the mean and covariance of a missing seasonal
segment of the river with missing data at any seasonal period
by conditioning on the observed seasonal segment in base
river. Let A and B respectively represent the seasonally
éegmented series of the river with missing data and the base
river. Let these rivers have same number of seasons per year
and same association of months to seasons. Let the vectors X,
and X, represent seasonal segments of A and B concurrently
observed on kth season on i'" seasonal period. The vector X=
[ X, » X, ]T represents the simultaneously observed seasonal
segments. Let there be a gap on kth season at Tth seasonal

period of the seasonally segmented time-wave form of series A
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(Fig.3.5) . Because the vector x2=:x2is observed in the series
B , hence, the configuration of the distribution of missing
seasonal segment conditioned on observed X, can be obtained by
Equation 3.7. For any seasonal gap on k™ season, all the
concurrent observations of the random vectors X; and X, on Kt
season are considered as predicted and predictor vectors.
Joint normality of X, and X, is the requisite precondition
to be met for this model. Simultaneously observed seasonal
segments and the sampling scenario for the MULBS model are

explained in detail in Appendices A.2.3 and A.2.7.

3.8. MULTIVARIATE INFILLING MODEL CONDITIONING ON OBSERVED OR

RECONSTRUCTED SEASONAL SEGMENT PRECEDING THE GAP OF THE RIVER

WITH MISSING DATA [SESTRNALL]

The SESTRNALL model reconstructs the missing seasonal shape
feature of the time wave-form by conditioning on the
reconstructed or observed preceding shape feature of the river
with missing data. Let X, and X, respectively denote the k™

h seasonal period and (k-l)th seasonal

seasonal segment on it
segment on (i-1)™ seasonal period. Let the vector x=[x1,x2]T
denote the transitional seasonal segment corresponding to the
transition of (k-1)™ season to k" season. Let there be a

seasonal gap on Tt seasonal period corresponding to k™ season

in the seasonally segmented time series A of the river with
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missing data (Fig.3.6). Let the seasonal segment at (r-1)*t
seasonal period corresponding to (k-1)" season be either
observed or reconstructed , hence known. Corresponding to a
kth seasonal gap, all the observed seasonal segments of k™
and (k-l)th seésonal segments are denoted as predicted and
predictor vectors X, and xzzrespectively. Since the value of
X, = X, is known, the parameters of the distribution of the
ﬁissing seasonal segment X, by conditioning on the observed or
reconstructed vector corresponding to preceding seasonal
segment X, can be derived from Equation [3.7] . The model
parameters of Equation [3.7] are estimated from the existing
observations corresponding to (k-1)th and kth transitional
seasonal segments. Transitional seasonal segments and the
,sémpling scenario of SESTRNALL model are given in Appendix

A.2.4 and A.2.8.
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CHAPTER 4
APPLICATION OF THE MODELS

4.0 OUTLINE OF APPLICATION. PROCEDURE

Application of the models developed in chapter three 1is
carried out by reconstructing a year ?eriod of monthly stream-
flow data of three different rivers in three different
watersheds. In case of application of the models incorporating
base river information, one river is considered as a river
with missing data and whose missing data are infilled by two
to three different base rivers. Such a choice of considering

one missing data river and multiple base rivers allows to do

the followings:

- For a particular base river, for each of the regression
and MOVE.4 models, comparison of infilling quality under
various sampling scenarios.

- For a particular model[ MULBS, regression and MOVE.4
models under various sampling scenarios] , comparison of

infilling by various base rivers.

One set of closely located rivers is chosen which is referred
as river cluster . One member of the river cluster is treated
as the river with missing data R, and the remaining members
are treated as a base river set [{Ry;}, j=1..n;] with n; being

the total number of base rivers. SESTRNALL model is applied to
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information are applied to the pairs of the rivers with

missing data and base rivers [{R,,Rg; }, j=1...n5 1.

At least three nearby located rivers are needed to be
considered to form a river cluster so that one can be treated
as river with missing data and the other two rivers can be
treated as base rivers. Continuous and reasonably 'longer
period (= 30 years) of natural data is desired for each

member of the corresponding river cluster.

Three clusters of canadian rivers were initially considered.
One of them is rejected in view of meager data in one case [
rivers of Dease basin], and another because of urbanization
concentration [rivers of Sydenheim basin]. The third river
cluster, consisting of the rivers of Lillooet basin, was
chosen in spite of the inadequate data (23 years). This river
cluster is referred as cluster LILL (named after the

abbreviation of Lillooet basin).

U.S. Geological survey published data on West Virginia basins
shows that the rivers of this area possess the characteristics
for considering as members of the river cluster. Hirsh
(1979,1982) chose seven rivers from this 2zone for the
comparative study of some of the existing data infilling
models. The same seven rivers are considered here, but these

rivers are considered in two different clusters due their
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relative locations. Each of the members of these river
clusters has very long period of natural data. These two
clusters are referred as UPB cluster and LB cluster in
accordance with their geographical location , namely the
members of the UPB cluster are geographically located

relatively above the members of the LB cluster.

All the models under study (except REG and AMOVE), need
seasonally segmented time series. In order to enable the
computational operation, it 1is therefore convenient to
restructure the data matrix so that it's beginning coincides
with the beginning month of any of the seasons determined by

the segmentation process {Section 3.1}.

In order to facilitate comparison among commensurate models as
well as to facilitate comparison of the quality of infilling
among various base rivers , the data matrix comprising of same
period of data as well as gap over same period is considered.
3o the same restructured or slid data matrix is used for all

\the models.

The procedure of seasonal segmentation and sliding of data
matrix is explained in‘Appendix A.2.1. The essential features,
such as, seasonal segment, simultaneously observed seasonal
segment, transitional seasonal segment, selected seasonal

segment are described in Chapter three and explained in detail
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in Appendix A.2.

For the REG and AMOVE models, infilling Equations A.1l.4 and
A.1.3 are calibrated from the available sample without
imposing any selection criteria. For SREG and SMOVE models,
infilling Equations A.l1.4 and A.1.3 are calibrated from the
seasonal samples. For SSREG and SSMOVE models, infilling
Equations A.1.4 and A.1.3 are calibrated from the seasonal
selected sample. The sampling scenarios are explained in

Appendix A.2.6.

For all the three scenarios of the regression models,
normality of residual is ensured. At first the respective
model is applied to the natural data, and normality of error
is tested by both Chi-square goodness of fit and normal plot.
In case of non-normality, the data is transformed to satisfy
the normal error criteria. In all the three scenarios of the
MOVE models, log transformed data is considered [ Vogel-

Stedinger (1985), Hirsh (1982)].

For the MULBS and SESTRNALL models, the selection of samples
is explained in Appendix A.2.7 and in Appendix A.2.8. For each
of these multivariate models, normality of the joint variate
X [ equation 3.7] is an essential prerequisite. For the
SESTRNALL model, the multivariate normality of the

transitional seasonal segments and for the MULBS model, the
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multivariate normality of the simultaneously observed seasonal -
segments of {base river and the river with missing data} pair

are tested by the procedure explained below.

TEST CRITERIA

For a 2m dimensional normal variate, the Mahalanobis distance
(M.D) follows a chi-square distribution. The testing of the
distribution of the observed M.D. against a Chi-square
distribution is considered as a tool for testing of the

multivariate normality of the X variates.

Let each of the seasons comprise of same number of months m ,
then X can be considered as a 2m - dimensional vector for each
of the multivariate models. In case of 2m- dimensional
normality of X , the Mahalanobis distance (M.D.) of X from the
mean vector , namely, [(X-u)T z! (X-1)] would follow a Chi-
square distribution with 2m degrees of freedom

[Johnson and Wichern (1988)].

OPERATIONAL PROCEDURE:

. The M.D. for the observed X are computed and ranked.
. For each rank j
- The corresponding exceeding probability a; is
computed by : o; = [1 -(j-0.5)/n] ; [n= number of

observed X variate].

- from the of Chi-square table, the theoretical
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Chi- square value (TVj) corresponding to D.F.=2m, is
read at Q;

- The observed M.D.j 's and the correspénding
theoretical Chi- square values are plotted at the
same o;

The curve Jjoining these theoretical values 1is denoted by

theoretical curve. The curve joining the observed values is

denoted by observed curve. The observed curve is visually
compared against the theoretical curve. The rationale of such

a procedure lies in the fact that it provides a tool for

observing the deviation of the observed M.D. from the

theoretical Chi-square values at any exceeding probability
level a. The test of goodness of fit could have been a choice,
but it was not selected because of the biasness of the test
statistics to the numbers cells [this biasness is magnified in
multiple dimension]. On the basis of the deviation between the
observed and the theoretical curve, subjective judgement is
applied in order to accept or reject the fact that the
observed curve is approximately fitting the theorétical curve.

In case of such a satisfactory fit, the multivariate normality

in the raw data is assumed and the raw data is used in the

Equation [3.7].~

TRANSFORMATION

In case of poor fit of the observed curve, non-normality of X
variate is suspected, which is handled by the following

procedure:
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The marginal normality of each of the elements of the joint
variate X is tested. If an element xjis found non-normal, the
element is transformed by Bos-Cox transformation. This is done
for ali non-normal elements. New Mahalanobis distances are
computed and the curve fitting exercise is repeated [Fig.4.0]
until a satisfactory fit is obtained and the transformation
matrix [ consisting of the { shift and power} of the 2m
elements] which provides such a fit is chosen to transform the
non-normal data to normal data. Equation [3.7] now can be
applied to the transformed data under the assumption that the
normalization transformation has ensured normality in the.
data. In case of no satisfactory fit, the transformation
matrix which provides the minimum deviation between the
observed and the theoretical curve, 1is chosen for the

normalization transformation of the data.

The next section deals with the application of the proposed
multivariate models as well as the regression and MOVE.4
models under various sampling scenarios for infilling one
years of the stream-flow data of the missing data river

belonging to each of the three river clusters.
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LEGEND

— — — — 'Theoretical curve A

Observed Curve Cl of Mahalanobis distance which is
.—. computed from the data transformed by the
transformation matrizx T

—

4 Observed Curve €2 of Mahalanobis distance which is
computed from the data transformed by the
\ ‘ transformation matrizx T2

OBSERVED/THEORETICAL CHI-SQ. VARIATE

Fig. 4.9: E_’lots of ranked Mahalanobis distance computed from the
data which is transformed by two different transformation Matrices

* Because the curve Cl has less deviation from A than the curve
¢2, therefore Transformation matrix Tl is a better candidate than
the transformation matrix T2 for emsuring multivariate normality
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4.1 APPLICATION OF VARIOUS MODELS IN INFILLING MISSING DATA OF

RIVERS BELONGING TO UPB CLUSTER

The basic information pertaining to the members of UPB cluster
and the location of the members are presented in Table 4.1.1
and in Fig.4.1.1. A plot of a five year period of
simultaneously observed data of the member rivers is presented
in Fig.4.1.2. At the initial phase, for each of the member
rivers, 31 years of data over the period of [Oct. 1958-
Sep.1988) are considered. Correlogran analysis
[Figs.4.1.3.(a,b,c,d)] shows two seasons per year and the
segmentation procedure assigns the periods [June - Nov.] and
[Dec.- May] respectively to dry and wet seasons [Table
4.1.2]. The data matrix is slid to begin with the beginning of
the dry season. The slid data matrix contains 31 years of data
over the period [June 1958 - May 1989]. One year of monthly
data of Craig Ck. over the period [June 1986 - Mayl1987] is
assumed to be missing. The SESTRNALL model is applied to Craig
Ck. and the rest of the models are applied to {Craig Ck.,
Dunlap Ck.}, {Craig Ck., Johns Ck.} and {Craig Ck., Cowpasture
R.} pairs. Multivariate normality is tested for both MULBS and
SESTRNALL models. In case of unsatisfactory fit, power
transformation of element of the joint variate X are done .
The final Chi-square plot of the Mahalanobis distances of the
observations of X variate are presented in Figs. 4.1.4.(1, 2,
3, 4, 5 and 6) and Figs.4.1.5.(1 and 2). The reconstructed

data of Craig Ck. corresponding to the different information
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sources { Johns CKk., Dunlap Ck., Cowpasture R., Craig Ck. }
pertinent to data reconstruction are presented in Table

4.1.3.(1, 2, 3 and 4)



Table 4.1.1:

59

Information pertinent to the members

of UPB cluste

r

3iver ™ UsGs Comment Latitude  Longitude Arzz Period of Hissing
Station ., data used in Period
Yonber Lt analysis
Craig 02013008 Riyer with $7-39-59  19-54-47 329 Jme 1958-Yay 1989  Jume 1936-Hay 1987
Crast nissing data (31 Tears) .
Cowpastura . 02016000 3ase Rirer 31-47-30 79-45-35 481 June 1958-%ay 1989
River (31 Tears)
Juniap 02013000 33se River 37-48-10  20-32-3¢ 164 June 1958-Hay 1949
Creek : ) (31 Years)
Janas 02017500 Jase iver 37-30-22 30-96-28 104
Cresk June 1953-Hay 1989
(31 Years)
* All rivers are tributaries of the Joper James R.
USes
stat{on
Huzber
=
=
;:: @  0lecco
s
B oot
A Q20130Co
& F 17300
2

Fig.4.1.1: The location of the members of UPB

cluster
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Pig. 4.1.4.1: Chi-square probability plot of Mahalanobis distance of the
simultaneously observed dry seasonal segments of {Craig Ck.,Johns Ck.}

pair
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Fig. 4.1.5.1: Chi-square probability plot of Mahalanobis distance of the

transitional seasomal segments corresponding to Het-Dry  seasonal
transition of Craig Ck.
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Fig. }.}.5.2:‘Chi-square probability plot of Mahalanobis distance of the
transitional seasonal segments corresponding to Dry-Ret  seasonal
transition of Craig Ck. ’ .
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Craig CreeX by various medels incorporating
Johns Creek information

: Infilling of missing monthly mean discharge (CES] of

Infilling Monthly mean Discharge [CFS] for each month of missing peried [Juneld3s-¥ayles7]
Hadels frmemmmmeem oo e e e e e e e oo o
1 2 3 4 5 § 1 13
REG 129.8 3.1 74.0 205.3 65.7 305.5 2201.7 465.1
SREG 133.6 69.9 75.% 212.3 67.5 315.7 2441.9 4%2.0
SSREG 133.4 70.3 76.4 210.8 §7.9 3119 2372.0 445.1
AMOVE 128.2 §6.5 72.5 204.8 64.3 305.4 2261.1 453.5
SHOVE 134.3 0.1 76,2 2135 61.7  317.8 24421 4571
SSHOVE 134.0 70.3 75.6 211.38 68.2 313.7 2260.1 445.3
MULBS 119.3 84.6 70.2 1556.8 62.4 310.4 2440.3 4194
0BSZRYED 114.0 §3.3 63.4 1%0.0 55.5 222.0 2427.0 402.0
Table 4.1.3.2 : Infilling of missing monthly mean discharge [C?S] of
Craig Creek by various models incorporating
Dunlap Creek information
Infilling Monthly mean Discharge [CPS] for each month of missing peried [Juneld86-Hayl987]
Models e ]
1 2 3 4 5 5 1 3 9 10 il 1z

REG 106.7 82.4 107.4 $5.3 7 67.5 . 185.0 628.4 554.5 753.9  1132.5  1934.8 443,1
SREG 107.0 33.3 107.5 96.0 63.7 183.1 §95.0 560.2 762.5 1187.0 2084.8 437.2
SSREG 106.3 83.8 107.0 95.9 §9.8 1717.3 751.5 624.6 821.5 1181.2 1904.7 517.5
AMOVE 102.3 78.1 103.0 91.0 63.5 182.6 114.0 570.0 785.0  1199.8  2095.7 437.%
SHOVE 108.6 84.4 109.3 97.4 63.6 186.8 701.0 560.1 770.5  1173.5  2049.% 450.0
SSUOVE 107.9 84.9 108.5 37.2 70.6 180.6 151.8 620.6 814.9 1189.0 1879.2 514.8
HOLBS 96.3 §6.0 90.3 87.8 61.3 198.3 122.1 584.1 763.0  1350.3 2361.7 §78.32
OBSERYED 114;0 §5.3 63.4 150.0 85,5 222.0 112.0 503.0 655.0 1211.0 2427.0 402.0
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Table 4.1.3.3 : Infilling.uf nissing monthly mean discharge [CPS] of

Craig Creek by various models incarporating
Cowpasture River information

Infilling Monthly mean Discharge (C¥S] for each month of missing period {Juneld8§-Hayl937]
Hodels oo s 7
1 2 3 1 5 $ 7 8 3 10 1 12
REG 131.0 84.2 63.4 74.0 54.3 158.0 §02.2 409.5 481.3 340.0  2044.3 482.7
SREG 122.1 81.3 §2.5 72.1 54.2 145.1 631.1 441,40 5127 853.2  1960.1 5141
SSREG 119.8 381.2 63.2 72.4 35.1 141.2 632.1 520.1 584.4 903.0  1959.8 333.8
AHOVE 1126.4 79.2 58.% §9.0 49.8 154.1 §34.4 421.9 500.8 902.2  2311.4 302.2
SHOVE 123.2 81.3 §3.0 72.1 54,6 146.4 §30.5 4412 512.4 533.0  13s55.0 §i3.2
SSHOVE 120.3 81.5 63.5 72.3 55.4 141.% 667.5 433.9 §33.3 331.2 18%50.9 533.1
MULBS 119.8 §7.8 711 55.9 §3.9 163.0 808.5 443.3 532.3 953.5 20958.3 3883
0BSEZRVED 114.0 §5.3 88.4 150.0 53.3 222.0 712.0 503.0 §35.0  1211.9 -;4;7-.(-3“"'-462.0
Table 4.1.3.4 : Infilling of missing nonthly mean discharge [CPS] of
Craig Creek by SESTRNALL Hedel
Infilling ' Honthly nean Discharge (C?S] for each month of missing period {Junel986-4ayl987]
Hodels
1 2 3 { 5 § -1 3 9 10 11 12

INFILLED BY 120.8 §3.0 99.2 52.8 61.0 104.5 142.1 330.8 §41.0 597.1 330.2 370?;—

SZSTRNALL

HODEL

OBSERVED 1140 §3.3 63.4 150.0 85.5 222.0 112.0 503.0 §35.0 1211.0 2427.0 (02.0_
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4.2 APPLICATION OF VARIOUS MODELS IN INFILLING MISSING DATA OF

RIVERS BELONGING TO LB CLUSTER

The basic information pertaining to the members of LB cluster
and the location of the members are presented in Table 4.2.1
and in Fig.4.2.1. A plot of five vyears period of
simultaneously observed data of the member rivers is presented
in Fig.4.2.2. At the initial phase, for each of the member
rivers, 31 years of data over the period of [Oct. 1958 - Sep.
1988] are considered. Correlogram analysis
[Figs.4.2.3.(a,b,c)] shows two seasons per year and the
segmentation procedure assigns the periods [June - Nov.] and
[Dec. - May] respectively to dry and wet seasons [Table
4.2.2]. The data matrix is slid to coincide with the beginning
of the dry season. The slid data matrix contains 31 years of
data over the period [June 1958 - May 1989]. One year of
monthly data of Little R. over the period [June 1986 - May
1987] is assumed to be missing. The SESTRNALL model is applied
to Little R. and the rest of the models are applied to {Little
R., Reed Ck.} and {Little R., Roanocke R. } pairs.
Multivariate normality is tested for both MULBS and SESTRNALL
models. In case of unsatisfactory fit, power transformation of
the element of the joint variate X are done. The final Chi-
square plots of the Mahalanobis distances of the observations
of X variate are presented in Figs. 4.2.4.(1, 2, 3 and 4) and
Figs.4.2.5.(1 and 2). The reconstructed data of Little R.

corresponding to the different information sources { Reed Ck.,
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Roanoke R., Little R. } pertinent to data reconstruction are

presented in Table 4.2.3.(1, 2 and 3 )



71

Table 4.2.1: Information pertinent to the members of LB cluster

River Basin usGs Ceoment Latituds Longitude. Azea Period of Hissing
station data used in Period
¥umber analysis

Little Kanawaha 03170000 River vith 37-92-15  80-33-25 300 June 1958~Hay 1989 June 1986-Hay 1987

River River nissing data : {31 Tears)

Sasin
Reed Xanawaha 03187000 Jase River 3§-55-22  30-53-13 247 Juge 1358~-Har 1989
Craek River (31 Years)

Basig
Roanoke Roanoke 02055000 Base River = 37-15-30  79-38-10 155 June 1953-¥ay 1389
River River (31 Years)

Basin

Kanawaha R.

\
Y

A

9

usas
Statlon
Huxber

03170000

03147000

02055000

Fig.4.2.1: The location of the members of LB

cluster
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Table 4.2.2: Seasonal Segmentation of the time wave form of
members of the L3 cluster

River Number of assigoment Yonth
to seasomal Group 1 frommemmemm e e e e oo o]
June  July Aug. Sep.Oct. Nov.|Dec. Jan. Feb. Mar. April May
Roancke Group 1 17 29 21 29 24 24 4 g 4 1 3 3
River Group 2 14 2 4 2 1 1 27 22 27 30 28 15
Reed Group 1 15 25 3¢ 31 29 24 13 7 2 1 2
Creek Group 2 16 5 1 ¢ 2 7 18 A 29 0 2%
Little Group 1 13 23 8 s % 22 17 13 2 3 3
I River Group 2 13 3 3 § 3 9 14 18 27 29 23 22
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table 4.2.3.1 : Infilling of missing monthly mean discharge [CPS] of
Little River by various models incorporating
Reed Ck. information
Infilling Honthly mean Discharge {CPS] for each month of missing period {Junel986-4ayl987]
Hodels — femmmmmmmmm e o o oo e e ST ST mmemm e mmoeees
i 1 2 3 4 ] 6 7 8 3 10 11 12
REG 227.1 164.4 158.4 199.5 150.7 228.2 417.7 {17.¢ 583.5 790.8 988.17 425.2
SREG 238.1 161.4 154.4 203.7 145.4 239.4 401.3 400.5 $43.3 780.7 985.4 408.8
SSREG 236.1 167.9 161.4 205.9 153.1 237.3 454.8 454.0 §05.0 235.§ 1033.9 462.5
AMOVE 219.3  153.8  147.7  190.2  139.8  220.4  428.4  427.4  595.0 - 863.3 1103.4 4367
SHOVE 237.8 161.3 154.5 203.8 145.5 239.1 400.9 400.2 547.4 778.3 932.5 403.4
SSHOVE 232.6 166.3 160.0 203.3 151.9 233.1 447.0 446.2 591.0 810.8 998.5 4544
MOL3S 194.6 163.9 145.4 327.0 216,1 291.0 523.8 460.4 583.7 959.3  1385.9 §34.9
OBSERVED "~ .| 160.0 112.0 166.0 213.0 143.¢0 247.0 470.0 354.0 474.0 932.0 1445.0 §32.0




Table 4.2.3.2
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: Infilling of missing monthly mean discharge [CZS] of

Little R. by various medels incorporating

Roanoke R.

infarmation

Infilling Monthly mean Discharge [C?S] for each wnonth of missing peried [Juneld86-Mayl337]
Hodels e e e e e e e e e oo o]
1 2 3 4 S 6 7 3 b} 10 11 12
REG 187.3 139.0 229.9 247.1 148.9 285.5 §33.7 460.5 544.5 790.3  1208.9 420.1
SRYG 191.1  141.1  235.4  253.4 151.4  293.4  536.7 454.3 542.9 306.3 1284.% 443.4
SSREG 1925 1434 233.4 249.9 155.1 286.2 568.9 482.9 573.4 852.8 1333.9% 470.3
AHOVE 131.3 132.5 224.9 242.17 142.5 282.4 530.5 486.9 535.8 823.3  1285.3 433.3
SMOVE 191.7 141.§ 238.1 54.2 151.8 294.3 5358.5 454.3 542.7 805.9  12%3.3 443.3
SSHMOVE 192.1 145.4 238.3 249,1 155.1 285.0 563.8 473.3 570.1 842.2  1312.% 157.0
HOLBS 169.6 160.0 192.5 287.2 148.2 292.% 521.0 303.3 534.7 893.3  1832.4 621.4
OBSERVED 160.0 112.0 168.0 213.0 143.0 247.0 470.0 354.0 474.0 982,08 1445.0 §32.0
Table 4.2.3.3 : Infilling of nissing monthly mean discharge [CFS] of
Little River by SEZSTRNALL Model
In[t;i%linq Honthly nean Discharge {CYS] for each month of missing period [Junel98s-¥ayl1987]
Hode - p
1 2 3 4 s 6 1 3 9 10 11 12

INFILLZD BY 208.3 © 172.8 172.¢ 153.1 167.5 228.1 237.1 338.0 398.4 467.2 352.;““;;;:(;-

SESTRNALL

MODEL

OBSZRYED 160.0 112.0 166.0 213.0. 143.0 247.0 470.0 354.0 474.0 982.0 1445.0 §32.0
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4.3 APPLICATION OF VARIOUS MODELS IN INFILLING MISSING DATA OF

RIVERS BELONGING TO LILL CLUSTER

"The basic information pertaining to the members of LILL
cluster and the location of the members are presented in Table
4.3.1 and in Fig.4.3.1. A plot of five years period of
simultaneously observed data of the member rivérs is presented
in Fig.4.3.2. At the initial phase, for each of the member
rivers, 23 years of data over the period of [Jan. 1925 -
Dec.1947] are considered. Correlogram analysis [Figs.4.3.3.(a,
b, c¢)] shows two seasons per year and the segmentation
procedure assigns the periods [Nov. - April] and [May - Oct.]
respectively to dry and wet seasons [Table 4.3.2]. The data
matrix is slid to coincide with the beginning of the dry
season. The slid data matrix contains 23 years of data over
the period [Nov.1924 - Oct.1947]. One year of monthly data of
Green R. over the period [Nov.1944 - 0ct.1945] is assumed to
be missing. The SESTRNALL model is applied to Green R. and the
rest of the models are applied to {Green R., Soo R.} and
{Green R., Rutherford Ck. } pairs. Multivariate normality is
tested for both MULBS and SESTRNALL models. In cése of
unsatisfactory fit, power transformation of element of the
joint variate X was performed. The final Chi-square plot of
the Mahalanobis distances of the observations of X variate are
presented in Figs. 4.3.4.(1, 2, 3>and 4) and Figs.4.3.5. (1 and
2). The fit of multivariate normality in the case of wet

seasonal segments of [Green R., Soo R.] pair, both dry and wet
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seasonal segments of the [Green R., Rutherford Ck.] pair and
‘the transitional seasonal segments of both [wet-dry] and [dry-
wet] transition are found to be not very satisfactory. This
test 1is repeated on all possible cases of transformed data and
the best fit among them is presented here which (still show
wide deviation). This ack of multivariate normality is
suspected to be due to inadequate data (22 years). This
explanation can not be proven for rivers of LILL cluster.
Nevertheless, a hypothetical test is done on the wet seasonal
segments of {Craig Ck., Johns Ck.} pair of the UPB cluster by
comparing the Chi- square plot by varying the sample size
between 22-29. These plots are presented in Appendix A.2 [Fig.
A.2.] . These plots clearly show the positive correlation
between better fit of the observed curve to the theoretical
curve and the corresponding sample size. In fact, a sample
size of 29 shows satisfactory fit. The better fit of dry
seasonal segments of {Green R., Soo R.} is possibly due to the
little variation among the flows of the dry seasonal segments.
In case of the wet seasonal segment, for small sample size,
variation in the multivariate observations is possibly too
intractable to be encompassed by multivariate normal
distribution format. To investigate the true reason behind the
non-normality in case of small sample is beyond the scope of
the thesis. Inspite of this unsatisfactory fit, the proposed
multivariate models were applied. The reconstructed data of

Green R. corresponding to the different information sources
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'pertinent to data reconstruction are presented in Table

"4.3.3.(1, 2, and 3).
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Table 4.3.1: Information pertx;nent to the members of LILL cluster
Rivar 5S¢ " Camqent Latitude  lLengitude 2raa Paricd of ¥issing
Station : .y data used in Peried
Nenher s analysis
Gresn 08HG303 River with 54-15-33 122-31-95  8S3 Yov.1924~0ck. 1347 ¥ov. 1944-Qct 1943
Rivar : missing data (23 Taars)
Seo 02HGCQ7 8ase River Sg-13-30 123-33-40 293 Hov.1324-0ct. 1347
River (23 Tears)
Rutheriord 08¥GI0E Base iver 30-15-40 122-32-18 179 Yov.1924-9cz. 1847
Craak (32 Yaars)
t a1l rivers are tributaries of the Lilleoet 3.
fsC
Station
Huster
$ 0885303 .
A CBE07
- #® 0850056

Fig.4.3.1: The location of the members of LILL cluster
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%able 4.3.2: Seasonal Segmentation of the time wave form of
members of LILL cluster

River Number of assigmment Month
to seasonal group e I
¥ov. Dec. Jan. Peb. Mar.ApriliMay June July Aug. Sep. Oct.
Green Group 1 18 23 22 23 23 47 0 0 0 0 3 12
River Group 2 5 0 1 ¢ .0 9 PR X] 23 2320 138
) Group 1 17 T L R T T I
River Group 2 § 2 ¢ 0 8 § 2 23 23 23 13 14
Rutherford Group 1 13 21 22 23 23 16 1 0 0 0 3 9
Creek Group 2 [ 2 ] 9 0 1 22 23 23 3 20 14
24 r - : - . r -
\ .
\ LEGEND
22F -
v TTETTT THEDRETICAL CURVE
_ 0BSERVED CURVE

OBSERVED/ THEORETICAL CHI-SQUARE VARIATE

F%g. 4,3.4.1: Chi-square probability plet of Mahalanobis distance of the
simultaneously observed dry seasonal segments of {Greem R., Soo R.} pair
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simultaneously observed wet seasonal segments of (Green R., Soa R.} pair
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Table 4.3.3.1 : Infilling of missing monthly mean discharge [m3/s] of Greem R.
: by various medels incorporating Sco R. infermation
Infilling Montﬁly mean Discharge [m3/s] for each nonth of missing period {Nov.1944-0ct1945]
Hedels -
1 2 3 4 5 6 7 8 9 10 11 12
REG - 33.3 - 18.8 - 1l.§ 11.9 3.2 1.3 79.8 109.2 110.4 §2.5 24.0 20.5
SREG 31.8 19.0 12.7 12.3% 8.7 3.3 78.3 108.6 109.8 61.3 22.5 19.1
SSREG 31.7 19.0. 12.1 12.4 8.5 8.2 80,7 114.0 115.3 §1.§ 21.1 17.8
AHOVE 33.9 19.1 . 11.5 11.9 7.9 1.5 80.0 108.6 109.7 63.0 24.4 20.3
SMOVE 33.0 19.5 12.3 12.5 8.7 8.2 78.8 108.5 109.8 61.3 22.8 19.1
SSHOVE 33.0 13.5 12.3 12.8 8.7 3.3 80.5  113,5  114.9 61.5 2.1 11.6
HULBS 31.3 22.0 11.2 10.§ 9.4 10.5 80.9 1243 113.0 §5.1 38.5 17.3
0BSERVED 35.4 20.3 15.4 13.3 9.0 12.5 80.2 103.0 105.0 72.2 31.7 22.4




Table 4.3.3.2: Infilling of missing monthl

y mean discharge [m3/s] of Green R. by various models
incorporating Rutherford Ck. information :

Infi}ling Honthly mean Discharge [m3/s] for each month of missing period [Hov.1944-0ct,1945]
L B T
1 2 3 4 5 6 1 8 9 10 11 12

REG 323 23.8 20,2 14.5 16.1 17.2 87.1 131.7 129.5 53.7 29.4 24,3
SREG 29,1 21,0 17.6 16.9 137 14.8 87.4 126.0 123.9 58.8 317 33.3
SSREG 31.2 21,7 171.5 16.7 12,7 14,0 94.0 140.4 137.9 59.5 3.1 28.8
AHOVE 311 20.9 16.5 15.1 11.6 12,9 94.4 144.8 142.2 56.3 27.6 21.5
SHOVE 30.9 21.6 17,4 16.6 12.6 13.9 89.8 132.0 129.9 56.4 29.6 23.7
§8HOVE 32.9 22.6 18.0 17.2 12.8 14.3 95,8 147.0 144.3 57.1 21.9 21.17
HULBS 34,7 20,8 18,2 16.3 12,8 17.5 96.8 131.9 104.7 65.1 35.0 26.6
........... L.-....-..__-_.._--......-..--_-_--...._....._._----,.._-..........-....-_..._..-_...._........._.....,_..-._-.._......_..-........_..._.._-_-_...-_-....-.....
ODSERVED | 35.4  20.3  15.4  13.3 9.0 12,5 80,2 103.0 105.0  72.2 3.7 22.4

68

‘Table 4.3.3.3: Infilling of missing monthly mean discharge [m3/8] of Green R. by SESTRNALL model

Infilling Honthly mean Discharge [m3/a] for each wmonth of missing perlod [Nov, 1944 - Oct. 1945]

Hodel e e e e e e e e e e e e
1 2 3 4 5 6 i 8 9 10 11 12

INPILLED BY 31,2 1.1 12,9 12.4 16,7 29.8 69.4 111.3 99.6 69.9 51.4 38.1

BESTRNALL

HODEL

OBSERVED 35.4 20.3 15.4 13.3 9.0 12.5 80.2 - 103.0 105.0  72.2 LT 2.4
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CHAPTER 5

RESULTS AND DISCUSSIOHNS

5.0 ASSESSMENT PROCEDURE
In this Chapter, the results of the applications of various

models are evaluated according to the following procédure:

A year period of monthly stream-flow data is assumed to be
missing which is reconstructed by various models utilizing a
range of information sources. Three categories of assessment

are made based on following viewpoints:

1. For a particular model, and a particular case of {river
with missing data, information source} pair, the infilling
quality assessment 1is made based on purely statistical

considerations relevant to the model.

2. For a particular case of {river with missing data, base
river} pair, for each of regression and MOVE.4 models, the
comparison is made on the basis of the infilling performance

under various sampling scenarios.

3. For commensurate models [ multivariate models, each of
REG, SREG, SSREG, AMOVE, SMOVE and, SSMOVE model], for a
particular river with missing data, the comparison is made on
the basis of the infilling performance by various information

sources.
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ASSESSMENT CATEGORY 1

STATISTICAL ASSESSMENT OF MULTIVARIATE MODELS

ASSESSMENT OF CONSISTENCY IN THE RELATIONSHIP

Markovian seasonal transition together with the consistency
in the simultaneéus occurrence of seasonal segments of a
particular severity is considered as information source. The
consistent nature of inter seasonal dependence is imposed in
SESTRNALL model. In another words, SESTRNALL model assumes
that the .observation of seasonal segments of a certain
severity at any season (k-1) at period (T-1) can predict the
severity of the following seasonal segment at period T. MULBS
models on the other hand, assumes consistency in simultaneous
observation of seasonal segments of certain severity. Entropy

in discrete form is used to quantify the consistency.

Entropy is defined as a measure of uncertainty of a systemn.
For a system X with Xyr Zyy seeeecieesX, , W different possible
sYstem states, the probability Py of occurrence of any system
state x, (k=1.....w), is the only known information. The
uncertainty of entropy of the system is given below [ Kinchin

(1957), Jones (1979)].

H = -k=% Pk ln Pk o.a..ucoco.-o-oonoo-o.co[5-1]

A sequence of class-membership index [chapter 3.1]
representing the sequence of state or severity of the seasonal

segment in discrete form is considered as the system. Entropy
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of such a system based on the knowledge of the occurrence
probability of the seasonal segment of certain severity ,is

given as follows:

W nYk
HY -— -k§1 gF1P(cka) ln P(cypk) 00-000.00011[5-2]
where,
\U = total number of seasons per year
Ny, = total number of sub-clusters in any season k
Cypk = a particular class-membership index of a seasonal

segment observed in season k

For a system following a Markovian transition, the information
contained in consistent transition of the seasonal segments
would theoretically contribute to the reduction of uncertainty
of the system. The entropy of a system following Markovian

transition is given below.

n n (
Hmi-z=1 j=1z Pi Pij ln Pij ...0000000'0[5.3]
where,
n = total number of system states ( n= k#*n, )
P, = probability of observation of any system state i
P.. = probability of transition of state i to the state j

1}

In case of a system Y incorporating cross river information

transfer, reduction in entropy of Y is expected by
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conditioning on the base river X. Thus, considering the
sequences of class-membership index of the series X and Y as
sequences of system state in discrete form, the entropy of Y

conditioned on X is given below.

W nXk nYk

an = Eﬂ gﬂ Ff P(cka ! Cyak ) 1In P(cka ! Cyak ) c...[5.4]

where,

w = total number of seasons per year

Ny, = total number of sub-cluster of series X
in any season k

ny, = total number of sub-clusters of series Y in
any season k

P(cka ! Cygk ) = probability of occurrence of seasonal

segment of type Cypx OF series Y
conditioned on the simultaneous
observation of seasonal segment of type

c of series X

Xqk
Reliability of the information source is measured by the
percentage reduction of system entropy by conditioning on the
information source. For SESTRNALL and MULBS models, the
percentage reduction in system entropy are computed by

Equation 5.5 and Equation 5.6 respectively.

H = e e o o o e Xloo. bcooooon----..[s'sl
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H I e e o o e e X 100. o.ooo-ooco-oooo[S.G]

The greater the percentage reduction in system entropy, the
greater the reliability that can be expected to be associated

with the information source.

Multivariate level infilling assessment is done by the
Mahalanobis distance of the observed seasonal segment with
respect to the corresponding predicted configuration of the
missing éegment. The Mahalanobis distance is a multivariate
analogue of the standard normal deviate z. This distance
corresponds to the probability contour on which the observed
seasonal segment liés with respect to the predicted
distributional configuration . The smaller this distance is,
the narrower the probability contour (hyper-ellipse) will be
and the more accurate will be the quality of prediction
[Fig.5.1.0]. This figure shows that any point Xi lying on
contour P,% has'a constant Mahalanobis distance which is less
than the distance of any point X, lying on the P,% contour.
For a m months long seasonal segment, the limiting probability
contour corresponding to a certain variate X can be obtained
from the relationship given by the following relationship [
Johnson and Wichern (1988)]:

Solid ellipsoid of X values satisfying :

_1 2
(X-p; Z (X-u) = X (a) has a probability of (i~-a) ...[5.7].
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f( X1 ;'Xz )

A

"Fig.5.1.0.: Mahalanobis distance and probability Contour in case of
of a bivariate normal distribution
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where,

L and = are the conditional mean and covariance matrix

computed from Equation 3.7

Univariate level assessment is performed by finding the
probability band on which each element of the observed
seasonal segment lies with respect to the marginal univariate
configuration of corresponding predicted element. The band is
determined by the elements of the conditional mean vector and
the square root of diagonal elements of the conditional

covariance matrix Equation 3.7.

STATISTICAL ASSESSMENT OF THE REGRESSION MODELS

For each of the three sampling scenarios of the regression
models, standard regression analysis incorporating following
assessments:
1. Inference about the regression parameters (t - testj
2. Residual analysis
- normality of the residual (Chi-Square test of
goodness of fit, normal plot)
~ homoscedasticity of the residual (Plot of
residual)
- whiteness of residual (ACF of the residual)
3. Correlation coefficient between the predicted and
predictor variables.

4. Quality assessment of prediction is done by finding the
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probability band within which the observed element resides
corresponding to the configuration of prediction of the
corresponding element of the seasonal segment (given by
the estimates of the prediction mean and the prediction

variance of the corresponding element).

STATISTICAL, ASSESSMENT OF THE MOVE.4 MODELS

No procedure of statistical assessment specific to the model
is described in the source literature [ Vogel- Stedinger
(1985) ]. No statistical analysis is therefore done for MOVE. 4

model under any of the various sampling scenarios.

ASSESSMENT CATEGORY 2

For each case of particular { river with missing data, base
river} pair, for each of the MOVEﬁ4.and regression model, the
comparison of the quality of infilling under various sampling
scenarios are assessed on basis of the following criteria:

a.) Estimation error in the dry season:

A

ed= { 1/6(=((yi - yi)/yi)z}n'5 [ i=1....6]

b.) Estimation error in the wet season:

A

ew= { 1/6(Z((yi - yi)/yi)z}o'5 [ i=700enn 12]

c.) Deviation at the peak value:

A

P% (Yp-yp)

d.) Overall estimation error:
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A

eo= { 1/12(=((yi - yi)/yi)z}a'5 [i=1.....12]

For a particular pair of {base river, short data river}, for
each of the regression and AMOVE.4 model, the corresponding
model varieties are ranked in descending of performance on

basis of ed, ew, P and eo.

The plots of the infilled versus the observed data also
pfovides an approximate measures the relative performance of
the varieties of regression model for a fixed case of {a base
river, the river with missing data} in terms of the deviation
of the plot of the infilled data from the plot of the observed

data.

ASSESSMENT CATEGORY 3

For a particular river with missing ‘data, comparison of
infilling by the SESTRNALL model and MﬁLBS is made. For each
of the sampling scenarios of the regression and MOVE.4 model,
comparison of quality of infilling among various base rivers

are made. Comparison is made on the basis of ed, ew, P and eo.

For a particular model, the relevant information sources are
ranked in descending order of model performance measured in

terms ed, ew, P and eo.
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5.1 ASSESSMENT OF QUALITY OF INFILLING OF MISSING DATA IN THE

RIVER BELONGING TO THE UPB CLUSTER

ASSESSMENT CATEGORY 1

Table 5.1.1.0 shows that in all cases of MULBS model, the
observed seasonal segment lies within the 95% probability
contour of prediction. In case of the SESTRNALL model, the
observed dry seasonal segment lies within the 95% contour but

the wet seasonal segment lies outside the 99.5% contour.

Univariate level assessment in case of MULBS model [Table

5.1.1.(1, 2 and 3)] ghows that for the {Craig Ck., Johns Ck.}
pair, the observed data corresponding to 1st element of wet
seasonal segment lie within the 97.5% contour of marginal
prediction while the observed data corresponding to the rest
of the elements of both wet and dry seasonal segments lie
within the 95% band. In the case of {Craig Ck., Dunlap CKk.}
pair, the observed data corresponding to the elements of both
dry and wet seasonal segment lie within the 95% prediction
band of corresponding element. In case of the {Craig cCk.,
Cowpasture R.} pair, observed data corresponding to the 4th
element of dry seasonal segment lie within 98.6% band and the
observed data corresponding to the rest of the elements of
both dry and wet seasonal segment lie within the 95% band.
Univariate level assessment in case of SESTRNALL model [Table
5.1.1.4] shows that the observed data corresponding to the 1st

element of wet seasonal segment lies within the 99% band , the
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observed data corresponding to the 5th element of the wet
seasonal segment lies beyond the 99.9% band while the observed
data corresponding to the rest of the elements of both dry and

wet seasonal segments lie within the 95% band of prediction.

The entropy reduction varies within the 59% - 78.88% range in
case of conditioning on the base river in contrast to a 5%

reduction under consideration of Markovian inter seasonal

transition [Table 5.1.2].

A. summary of the results of the REG, SREG models [Table'
5.1.3.(1 and 2)] show that all observed elements are
contained within the 95% prediction band. Summary of SSREG
model [Table 5.1.3.3] shows that in case of the {Craig Ck.,
Cowpasture R.} pair, the observed data corresponding to 5th
element of the wet seasonal segment is contained within the
99% prediction band while the rest of the observed data are
contained within the 95% prediction band. In case of both
{Craig Ck., Johns Ck.} and {Craig Ck., Dunlap Ck} pairs, for
SSREG model, all the observed data lie within the 95%

prediction band.
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Table 5.1.1.0 : Distance of Observed seasonal segment of Craig Creek with respect to the predicted
conditional configuration by the base R. by MULBS Model
and by self Series by SESTRNALL Model{multivariate basis appraisal)

Season 1 Season 2
Hodel Information Observed DF Comment Observed DF Comment
Source Distance Distance
MOLBS Johns 1,88 6 lying within 5.22 6 lying within
Creek 95% Contour 95% Contour
HULBS Dunlap 10.25 6 lying within 12.0 6 lying within
Creek 95% Contour 95% Contour
HOLBS Cowpasture 9.14 6 lying within 2,46 6 lying within
River 95% Contour 95% Contour
SESTRNALL Self Series 10.0 6 lying within 20.0 6 lying outside
95% Contour 99.5% Contour
Table 5.1.1.1: Craig Ck. Data infilling by Johns Ck. by MULBS Hodel:
Predicted vs. Observed data (appraisal on marginal basis)
Season Monthly  Element Element Element Observed Comment
Element  Variance Mean std. Element -
Predicted Predicted Predicted
1 0.022 4,780 0.148 4,740 Contained within 95%
2 0.014 4,170 0.119 4,178 Contained within 95%
3 0.069 4,250 0.263 4,225 Contained within 95%
1 4 0.064 6.310 0.253 6.090 Contained within 95%
5 0.031 4,130 0.176 4,016 Contained within 95%
6 0.023 5.740 0.152 5.403 Contained within 95%
1 2540,961 817.457 50.408 712,000 Contained within 97.5%
2 1563.969 542,656 39.547 503.000 Contained within 95%
3 2294.180 711.687 47.898 §55.000 Contained within 95%
2 4 3254.641 1237.556 57.049 1211.000 Contained within 95%
5 3652.438 2440.499 60.435 2427.000 Contained within 95%
6 2198.680 419.416 46.890 402,000 Contained within 95%
Table 5.1.1.2: Craig Ck. Data infilling by Dunlap Ck. by MULBS Model:
Predicted vs. Observed data (appraisal on marginal basis)}
Season Monthly  Element Element Element Observed Comment
Element  Variance Hean std. Element

Predicted Predicted Predicted

1 0.113 4,567 0.336 4,736 Contained within 95%

2 0.052 4,190 0.229 4,179 Contained within 95%

3 0.153 4,503 0.391 4,225 Contained within 95%

1 4 0.877 4,475 0.936 5.011 Contained within 95%
5 0.120 4,116 0.346 4,016 Contained within 95%

6 0.074 5,290 0.271 5,403 Contained within 95%

1 £898.740 722.090 83,059 712.000 Contained within 95%

2 2371.040 584,140 48,693 503,000 Contained within 95%

3 16087.520 763.000 126.837 655,000 Contained within 95%

2 4 15926.500  1350.340 126,200 1211.000 Contained within 95%
5 20996.660  2361.730 144,902 242,000 Contained within 95%

6 9672.580 579.300 98.349 402,000 Contained within 95%
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Table 5.1.1.3: Craig Ck. Data infilling by Cowpasture R. by MULBS Model:

- Predicted vs. Observed data (appraisal on marginal basis)

Season  Monthly Element Element Element Observed Comment
Element Variance Mean std. Element
Predicted Predicted Predicted

1 0.154 4,784 0.392 4,736 Contained within 95%
2 0.101 4,214 0.318 4,179 Contained within 95%
3 0.110 4,273 0.332 4,225 Contained within 95%

1 4 0.946 3.693 0.973 6.090 Contained within 98.6%
5 0.098 3.986 0.313 4,020 Contained within 95%
6 0.126 5.124 0.355 5.400 Contained within 95%
1 0.056 6,411 0.236 6.568 Contained within 95%
2 0.047 6.096 0.216 6.221 Contained within 95%
3 0.036 6.367 0.189 6.485 " Contained within 95%

2 4 0.035 6.877 0.188 7.099 Contained within 95%
5 0.063 7.647 0.252 7.794 Contained within 95%
6 0.148 5.913 0.385 5.997 Contained within 95%

Table 5.1.1.4: Craig Creek data infilling by SESTRNALL Model
Predicted vs, observed data of Craig Creek
[appraisal on marginal basis]

Season  Monthly  Element Element Element  Observed Comment
Element Variance Std. Hean Element
Predicted Predicted Predicted
1 0.4735 0.6881 4,7923 4.7362 Contained within 95%
2 0.1598 0.3997 4,2193 4,1790 Contained within 95%
3 0.3291 0.5737 4,5968 4.2254 Contained within 95%
1 4 0.3179 0.5638 3.9655 5.0106 Contained within 95%
5 0.5048 0.7105 4,1102 5,0160 Contained within 95%
6 0.6098 0.7809 4.6438 5.4027 Contained within 95%
1 0.3020 0.5495 5.2043 6.5681 Contained within 99%
2 0.5083 0.7130 5.8014 6.2206 Contained within 95%
3 0.2333 0.4830 6.4631 6§.4846 Contained within 95%
2 4 0.2524 0.5024 6.3921 7.0992 Contained within 95%
5 0.2593 0.5092 5.9406 7.7944 Not Contained within 99.9
6 0.3341 0.5780 5,9146 5.9965 Contained within 95%

Table 5.1.2: Entropy reduction in class-membership index sequence of Craig Ck.

Case Information source Marginal Entropy of Conditional Entropy of  Emtropy
class-membership index class-membership index Reduction
sequence of Craig Ck. sequence of Craig Ck. [ %]

Conditional Entropy Johns Ck. 1.0292 0.2174 78.88

Conditional Entropy Bunlap Ck. 1.0292 0.3044 70.42

Conditional Entropy Cowpasture R. 1.0292 0.4218 59.02

Markovian Entropy Seasonal transition 1.0292 0.9777 5.00




Table 5.1.3.1: Summary of REG model pertinent to Craig Ck. data infilling

Base State computed model Residual Analysis Prediction
River e e Dt - -
bo bl tbo thl P Comment R-sq | DP Comment Const. state of | Observed vs.
var.(e) ACE(e) prediction interval
s bl St iinhiebeiiebe sk ittt ettt Siebeteeieineiiaii -- ———— mmsescssmmmsananoamaos [
Johns ntd* | 1.49 .92 38,61 106,35 358 b0, bl .97 69 nonnormal  satisfied auto- all elements contained o
Creek aigni- at 5% correlated} vithin 95% interval w
ficant at level
5% level
Dunlap Intd” | 1.46 0.88 20.84  58.99 358 bo, bl 91 69 normal at satisfied auto- all elements contained
Creek signi- 5% level correlated| within 95% interva
ficant at
5% level
Cowpasture Intd"| -0.48 102 -3.82 48,35 358 - b0, bl .88 69 normal at satisfied auto- all elements contained
River signi- 5% level correlated| within 95% interval
ficant at
5% level

% Intd : In transformed data
1 pat ¢ raw data




Table 5.1.3.2: Summary of SREG model pertinent to Craig Ck. data infilling

Base Season  State conputed model : Residual Analysis N Prediction
T I Rttt E AR - B A e E e it
bo bl tho tbl i} Comment R-sq Chi-sq{e) DP Comment Const, State of | Observed vs,
var.(e) ACP{e) prediction interval
>
1 Intd 1.51 .93 22,12 49,98 178 bo, bl .9 68 33 nonnormal  satisfied auto- all elements contained
signi~ at .05% corcelated | within 95% interval
ficant at level
Johns 5% level
Creek T mmemecsscmemesusmossnnmaose - e b
2 Intd 1.06 1.00 17,11 g9 118 b, bt 91 2.8 kk} normal at  satisfied auto- all elements contained
signi- 54 level correlated | within 95V interval
ficant at
5\ level
1 Intd* | 1.57 .85 12,3 26,12 178 b0, bl .18 39 k) normal at satisfied auto- all elements contained =
signi~ 5% level - correlated | within 95V interval (=)
ficant at e
Dunlap 5% level
Creek o - me]  mmmmemmmmosecommscsmsmemeswensoes -
2 nat 18.85 1.87 4.48 33,67 178 bo, bl 86 YR kX normal at satisfied auto- all elements contained
signi- ) 5\ level correlated | within 95V interva
ficant at
5% level
1 Intd"] -0.13 .o -.63 24,03 178 bl is 16 A 33 normal at  satisfied auto- 21l elements contained
significant 54 level correlated | within 95% interval
at 5% but
Cowpasture : drop b0
River P et wa] mmesmmoosessss—cseesocesmmoon Lt et L L L L L L b L
2 intd 0.07 V94 B} 21.6 178 bl is .81 kX 3 normal at  satisfied auto- all elements contained
significant 5% level correlated | within 95V interval
at 5\ but
drop b0
* Intd & In transformed data

12 pat : raw data




- Tabge 5.1.3.3: Summary of SSREG model perfinent to Craig Ck. data infilling

Base Season  State computed model Residual Analysis Prediction
3T S S L b h b bbb i e mmwam oo emes e --- - - -
bo bl tbo 1)} D¢ Comnent R-sq | Chi-sq{e} DP Comment Const. state of  Observed vs.
var.{e) Ac#(e) prediction {nterval
1 Intd"{ 1.55 .92 17440 36,4 148 bo, bl .89 48.4 21 normal at  satisfied | auto- all elements contained
signi- 5% level correlated within 95% interval
ticant at
Johns 5% level
Creek - B R - e s oo oo
: 2 Intd" | 1.09 .99 1.02 35.46 52 ‘b0, bl .96 13,71 7 normal at auto- all elements contained
signi- 5% level correlated within 95% interval
ficant at
5% Jevel
1 Intd*] 1.9t .81 11.47 20,54 154 b0, bl 13 51.85 28 normal at  satisfied | auto- all elements contained —
signi-~ 1% level correlated within 95% interval O
ficant at ol
e I _ I N A
Creek ? Intd*| 2.1 .78 8.69  18.63 52 b0, bl 47 | 90 7 normal at  satisfied | auto- all elements contained
signi- 5% level . correlated within 95% interval
ficant al
54 level
t Intd*| 0.07 .90 30 18.68 154 bl is .69 22,85 28 normal at  satisfied | auto- all elements contalned
significant 5% level correlated within 95% iaterval
at SV but
Coupasture drop B0
River | ----- T e b i it B B it l ===
2 nat 147,32 0.63 2.82 13,91 58 b0, bl 0.77 | 8.6 9 normal at  satisfied| auto- 5th element contained
signi- 54 level correlated within 99% interval
ficant at while the rest contained
54 level within 954 interval
* Intd : 1o transformed data
** pat ¢ raw data
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ASSESSMENT CATEGORY 2

COMPARISON OF THE REGRESSION MODELS FOR DIFFERENT {RIVER WITH
MISSING DATA, BASE R.} PAIRS [ Table 5.1.5.a]

In all cases, REG performed best in terms of ed and eo.

In case of the {Johns Ck.Craig Ck.} pair, the SSREG and SREG
performed better over REG model in terms of ew and P. In case
of {Dunlap Ck., Craig Ck.} pair, SREG performed better over
REG only in terms of P. In case of the {Cowpasture R., Craig
Ck.} pair, REG performed best with respect to all the four
criteria. The plots of the infilled versus observed data are

given in Figs.5.1.1.(1,2,3)].

COMPARISON OF MOVE.4 MODELS FOR DIFFERENT {RIVER WITH MISSING
DATA, BASE R.} PAIRS

The ranking among the various MOVE.4 models is given in Table
5.1.5.b. The AMOVE performed best in all cases in terms 6f ed
eo. In case of {Johns Ck., Craig Ck,} pair: SSMOVE and SMOVE
performed better over AMOVE in terms of ew and P. In case of
{Dunlap Ck., Craig Ck,} pair, only SMOVE performed better over
AMOVE 1in terms of ew. Cowpasture R. did not show any
beneficial effect with respect to choice of sample, i.e. the
models using seasonal sampling criteria did not perform better
over the model using heterogenous sample. The plots of the

‘infilled versus observed data are given in Figs.5.1.1.(4,5,6).
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Table 5.1.5.a: Table of ranking of perforzance of varities of regression model (UPB cluster)
River Hodel rank in terms  Model rapk in ters Model rank in terms Hodel rank in terms
- of estimation error of estination error of deviation at peak of overall estimation
- in dry season [ed] in wet season [ew] reconstd.- obsvd. [P] error [eo]

1
_! REG SREG ~ SSREG ; SSREG SREG REG (SR%G  SSREG REG REG SSREG  SREG
Johas Ck. ;0.240.27  0.27 [0.06 0.07 0.10 (14.9 -55.0 -225.3) 0.18 0.19 0.20

|REG SREG  SSREG |REG  SR®G SSREG |SREG  REG SSREG | REG SREG SSREG
Dunlap Ck. - :0.32 0.32 0.33 Jo.12 0.12 0.21 (-342.2 -492.5 -522.3] 0.2 0.24 0.27

;:REG SREG  SSREG { SREG REG  SSREG |REG SREG SSREG | REG SREG SSREG
CovPastureR.i‘O.Z'l 0.28 0.28 j0.21 0.22 0.23 [-382.7 -466.9 -467.2}0.25 0.25 0.26

Table 5.1.5.b: Table of ranking of performance of varities of MOVE.4 model (UPB cluster)

River Hodel rank in terns  Hodel rank in terms Model rank in terms Hodel rank in terms
- of estimation error  of estiration error of deviation at peak of overall estimation
- in dry season [ed] in wet season [ew] reconstd.- obsvd. [P] ercor [eo]

. AHOVE  SSHOVE SHOVE | SSHOVE SHOVE IOVE |SHOVE SSMOVE AMOVE | AMOVE  SHOVE  SSHOVE
Johas Ck. 0.23 0.27 0.28 [0.06 0.07 0.10 |15.3 -66.9 -165.90.18 0.20 6.20

AMOVE SSMOVE SHOVE | SHOVE' XMOVE SSHOVE|AMOVE  SMOVE SSHOVE% AMOVE  SHOVE  SSHOVE
Dunlap ck. 0.29 0.33 0.33 ;0.12 0.13 0.20 [-331.3 -377.4 -547.8:;0.22 0,25 ¢.28

AHOVE SMOVE SSMOVE| AMOVE SSMOVE SHOVE |AHOVE SMOVE SSHOVE | AHOVE  SSKOVE  SHOVE
Cowpasture R. | 6.28 0.28 0.28 |0.19 0.23 0.28 [-115.5 -472.0 -576.1!0.24 0.25 6.28
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Table 5.1.4: Zero lag Cross correlation Coefficient between Craig Creek

and each of the base rivers

Crass correlation coefficient

Cross correlation coefficient

Base Cross correlation coefficient
River corresponding to corresponding to seasonal corresponding to selected
indiscreminately chosen samplef sample seasonal sample
Season 1 Season 2 Season 1 Season 2
Johns 0.98 0.97 0.99 0.95 0.98
Creek
Dunlap 0.95 0.89 0.93 6.86 0.93
Creek
Cowpasture 0.93 0.87 8.9 0.83 0.38
River
2500 ? r - . -
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20001 OBSERVED DATA IN CRAIG CK.
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Fig. 5.1.1.1:
Comparison of infilling of Craig Ck. data for period [June 1987-May 1988]

- by Johns Ck. by REG, SREG, SSREG models (varities of Regression model )
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2500 N
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2
; 500}
2
0 . . p 8 10
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Fig. 5.1.1.2:
Comparison of infilling of Craig Ck. data for period [June 1987-Hay 1988]
by Dunlap Ck. by REG, SREG, SSREG models (varities of Regression model)
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ASSESSMENT CATEGORY 3

MULTIVARTATE MODELS [Table 5.1.6.a]

In all cases, MULBS model performed better than the SESTRNALL
model. In case of MULBS model, the quality of reconstruction
by incorporating Johns Ck. and Dunlap Ck. information is
superior to quality of reconstruction by incorporating
Cowpasture R.'s information. Thé fig. 5.1.2 shows the

relative performances among the various sources.

REGRESSION MODEL [Table 5.1.6.b]

Johns Ck. performed best with respect to all the four
criteria.

.In case of REG model: Cowpasture R. performed superior to
Dunlop Ck. with respect to ed and P. Dunlap Ck. performed
superior to Cowpasture R. with respect to ew and eo.

.In case of'SREG model: Dunlap Ck. performed superior to
Cowpasture R. with respect to ew, P, eo. Cowpasture R.
performed superior to Dunlap Ck. with respect to ed.

.In case of SSREG model: Dunlap Ck. performed superior to
Cowpasture R. with respect to ew, . Cowpasture R. performed
superior to Dunlap Ck. with respect to ed, P and eo.

The figs. 5.1;21(1,2,3) show the relative performances among
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the'various sources for a particular variety of model.

MOVE MODELS

Johns Ck. performed best with respect to all the four
criteria.

.In case of AMOVE model: Cowpasture R. performed better than
Dunlap Ck. in terms of ed and P. Dunlap Ck. performed superior
to Cowpasture R. with respect to ew and eo. ( similar to REG)
.In case of SMOVE model: Dunlap Ck. performed superior to
Cowpasture R. with respect to ew, P, eo. Cowpasture R.
performed superior to Dunlap Ck. with respect to ed. (similar
to REG model).

.In case of SSMOVE model: Dunlap Ck. perfbrmed superior to
Cowpasture R. with respect to ew, P. Cowpasture R. performed

superior to Dunlap Ck. with respect to ed and eo.

The figs. 5.1.1.(4,5,6) show the relative performances among

the various sources for a particular variety of model.



Table 5.1.6.a:

Table of ranking of performance of various sources
for the nultivariate models (UPB cluster)

Source rask in terzs

Source rank in terms

¥ODFL Source rank in terms Source rank in terzs
- of estivation error of estination error £ deviation at peak of overall estimation
- in dry season [ed] in wet season [ew] reccnstd.~ obsvd. [P} error [eo]
I\'!.Ck. p.ck. C.R. S.8.{ J.Ck. C.R. D.ck. S.S.}J.Ck. D.Ck. C.R. &.S. J.Ck. D.Ck. C.R. S.S.
Multiv. M. 0.18 0.23 0.27 0.39 0.08 0.14 0.21 0.52-13.5 -65.3 -331.7 -2046.8| 0.14 0.22 0.22 0.46
Table 5.1.6.b: Table of ranking of performance of various base R
for each sampling scanarlo regression wodel {UPB cluster)
KODEL River rapk in terms  River rank in terms River rank in terms River rank in terms
- of estination error  of estimation error of deviation at peak of overall estimation
- in dry season [ed] in wet season [ew] reconstd.- obsvd. [P] error {es]
J.Ck C.R D.Ck. | J.ck. D.Ck. C.R. |3.Ck. C.R. D.ck. | J.Ck. D.ck. C.ck.
REG 6.24 0.27 ¢.32 {0.10 0,12 6.22 |-225.3 -382,7 ~-492.5|0.18 0.24 0.25
J.ck. C.R, D.Ck.[J.Ck. D.Ck. C.R. 1J.Ck. D.Ck. C.R. J.Ck. D.ck. C.R.
SREG 0.27 0.28 0.32 |0.07 0.12 0.21 {l4.9 -342.2 -466.90.20 0.24 0.25
J.Ck. C.R. D.Ck.]J.Ck. D.Ck. C.R. }J.Ck. C.R. D.Ck. |J.Ck. C.R. D.Ck.
SSREG 0.27 0.28 0.33 [0.06 0.21 0.23 }-55.0 -467.2 -522.370.19 0.26 0.27
Table 5.1.6.c: Table of ranking of performance of various base R.
for each sampling scenario, HOVE.4 model {UPB cluster)
HODEL River rank in terms  River rank in terms River rank in terzs River rank in terms
- of estimation error  of estimation error of deviaticn at peak of overall estimation
- in dry season [ed] in wet season [ew] reconstd.- obsvd. [P] errer [eo]
3.Ck C.R D.Ck.| J.Ck. D.ck. C.R. |J.ck. C.R. D.Ck. | J.Ck. D.Ck. C.ck.
AMOVE 0.23 0.28 0.29 |0.10 0.12 0.19 |-185.9 -115.6 -331.3| 0.18 0.2¢ 0.24
J.ck. C.R D.Ck.y J.Ck. D.Ck. C.R. |J.Ck. D.Ck. C.R. J.ck. D.Ck. C.R.
SHOVE 0.28 0.28 0.33 {0.,07 0.12 0.28 {15.3 48.0 111.8 | 0.20 0.25 0.28
J.Ck. C.R D.Ck.} J.Ck. D.Ck. C.R. [J.Ck. D.Ck. C.R. J.Ck. C.R. D.Ck.
SSMOVE 0.27 0.28 0.33 [0.06 0.20 0.23 !-66.9 -547.8 576.1 |0.20 0.25 .28
J.Ck= Johns Ck.
D.Ck.= Dunlap Ck.
C.R.= Cowpasture R
§.5.= Same River
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The‘assessment category two shows that:
. Estimation error in dry season is high in case of seasonal
or selected seasonal samples over the one in case of
heterogenous sample.

. Although some {base R., river with missing data} pair under
seasonal sample show less estimation error in the wet season
in contrast to the estimétidn error in wet season under
heterogenous sample, but the overall error is always higher in
case of seasonal sample than in case of heterogenoué sample.
Beneficial effect of seasonal consideration in sample

selection was noticed in few cases only in wet season.

The assessment category three shows that:

Among the rivers performance of Johns Ck. is best. With
respect to some criteria, Cowpasture R. shows better
performance over Dunlap Ck. With respect to some other
criteria, Dunlap Ck. performs superior to Cowpasture R. The

SESTRNALL, model performs worst.

Performance of Johns Ck. compared to the other base rivers is
best. This performance can be explained by verf high cross
correlation coefficient of { Craig Ck., Johns Ck.} pair .

Johns Ck. In case of MULBS, SMOVE and SREG models,
reconstruction by Johns Ck. and Dunlap Ck. are very good in
wet season. The close location of these base rivers to Craig

Ck., therefore, the resulting high seasonal similarity can be
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considered as the cause of good performance. Cowpasture R.
performed best in case of models incorporating
indiscriminately chosen bulk of data [REG, AMOVE] over the
models considering seasonal difference. The remoteness of
Cowpasture R. from Craig Ck. and therefore the less seasonal

similarity can be considered as the reason.
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5.2 ASSESSMENT OF QUALITY OF INFILLING OF GAP OF THE MISSING

DATA RIVER BELONGING TO THE LB CLUSTER

ASSESSMENT CATEGORY 1

Multivariate level assessment [Table 5.2.1.0] shows that the
observed seasonal segment lies within the 95% contour of the
predicted configuration in all cases of MULBS model. In case
of SESTRNALL model , the observed wet seasonal segment resides
beyond the 99.5% predicted contour but the observed dry

seasonal segment lies within the 95% contour.

For the MULBS model, in both cases of {Little R., Roanoke R.}
and {Little R., Reed Ck.} river pairs, the observed data
~corresponding to all the elements of both seasonal segment
lie within the 95% band of marginal prediction [Table 5.2.1. (1
and 2)]. In case of SESTRNALL model, observed data
corresponding to the 2nd element of the dry seasonal segment
lies within the 97.5% band, observed data corresponding to 1st
element of the wet seasonal segment lies within the 99% band,
the observed data corresponding to 5th element of the wet
seasonal segment lies beyond the 99.9% band of prediction
while all other data corresponding to rest of the elements of
both seasonal segment lie within the 95% level of prediction

[Table 5.2.1.3].

Entropy reduction by conditioning on simultaneously observed

seasonal segment of Raonoke R. and Reed Ck. are significantly
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better than the one by assuming Markovian nature of seasonal

transition of Little R. [Table 5.2.2].

For REG model , for each case of incorporating Roanoke R. and
Reed Ck. information, the observed data lie within 95%
prediction band [Table 5.2.3.1]. For SREG model [Table
5.2.3.2], incorporating Roanoke R. information, the observed
element corresponding to the 6th element of wet seasonal
segment lies within 96% prediction band while the rest 1lie
within 95% band of prediction. For the same model, in case of
incorporating Reed Ck. information , all the observed data lie
. within 95% prediction band In case of SSREG model [Table
5.2.3.3], incorporating Roanoke R. information, observed data
corfesponding to 2nd element of the wet seasonal segment lies
within 97% prediction band while the rest lie within 95% bénd.
For SSREG model incorporating Reed Ck. information, all the
observed data lie within 95% prediction band of corresponding

element in case of both seasonal segments.
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. Distance of Observed seasonal seqment of Little R. with respect to the predicted
conditional confiquration by the base R. by HUL3S Hodel

and by self Series by SESTRNALL Model (multivariate basis appraisal)

Season 1 Season 2
Model Information Observed DF Comment Observed Comment
Source Distance Distance
HULBS Reed 10.41 § lying within . 3.00 lying within -
Creek 95% Contour 95% Contour
MULBS Roanoke 9,33 § lying within 11.30 lying withia -
River 95% Contour 95% Contour
SESTRNALL Self Series 9.00 6 lying within . 20.00 lying outside
95% Contour 99.5% Contour
Table 5.2.1.1: Little R. Data infilling by Reed Ck. by MUL3S Model:
predicted vs. Observed data (appraisal on marginal basis)
Seasan  Monthly  Element Element Element Cbserved Comment
Element  Variance Mean std, Element
Predicted Predicted Predicted
1 0.066 5.270 0.257 5.080 Contained within 95%
2 0.047 5.110 0.217 4,720 Contained within 95%
3 0.048 4,980 0.219 5.110 Contained within 95%
1 4 0.099 5.790 0.315 5.360 Contained within 95%
5 265.860 ] 55.950 16.305 39.910 ""Contained within 95%
6 0.050 5.670 0.224 5.510 Contained within 95%
1 4800.594 523.827 69.286 470,000 Contained within 95%
2 §986.777 460,396 33.587 354.000 Contained within 95%
3 §541.078 585.687 80.877 474.000 Contained within 953%
2 4 9036.719 959.299 95.062 982.000 Contained within 953%
5 24171.773 1366.951 155.473 1445.000 Contained within 95%
3 7607.701 654,960 87.222 £§32.000 Contained within 95%

Table 5.2.1.2:

Little R; Data infﬂling by Roanoke R. by MULBS Hodel:
Predicted vs. Observed da

ta {appraisal on marginal basis)

Season  Honthly  Element Element Element Observed Comment
Element  Variance Hean std. £lement
Predicted Predicted Predicted

1 0.052 5.133 0.228 5.075 Contained within 95%
2 0.035 - 5.075 0.187 4.718 Contained within 953
3 0.023 5.260 0.151 5.112 Contained within 95%

1 4 0.048 5.588 0.220 5.361 Contained within 95%
S 0.023 4,999 0,151 4,963 Contained within 95%
6 0.013 5.679 0.115 5.509 Contained within 95%
1 8.280 38.300 2.877 35.680 Contained within 95%
2 10,730 38.840 3.27% 30,710 Contained within 99%
3 63.090 52.770 7.943 46.590 Contained within 95%

2 4 17.600 49,870 4,195 52,990 Contained within 95%
5 3.450 33.680 1.857 31.770 Contained within 95%
6 14,340 25.680 3.787 25.950 Contained within 95%
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Table 5.2.1.3: little River data infilling by SESTRNALL Model
Predicted vs. observed data of Little River

{appraisal on marginal basis)

Season Monthly  Element Element Element  Observed Comnent
Element Variance std. Mean Element
Predicted Predicted Predicted

1 0.0834 0.2888 5.3388 5.0750 Contained within 95%

2 0.0457 0.2138 5.1521 4.7180  Contained within 97.5%

3 0.0683 0.2613 5.1508 5.1120 Contained within 95%

1 4 0.19%03 0.4362 5.0311 5.3610 Contained within 95%
5 0.2035 0.4511 5.1207 4.9630 Contained within 95%

.6 0.2233 0.4725 5.4300 5.5090 Contained within 95%

1 0.0836 0.2891 5.4683 6§.1530 Contained within 99%

2 0.1293 0.3596 5.8231 5.8690 Contained within 95%

3 0.0996 0.3156 5.9875 6.1610 Contained within 95%

2 4 0.1575 0.3969 6.1467 6.8900 Contained within 95%
S 0.1397 0.3738 5.8649 7.2360 Not Contained within 99.9

6 0.1347 0.3670 5.8436 6.4490 Contained within 95%

Table 5.2.2: Entropy reduction in class-membership index sequence of Little R.

Case Information source Marginal Entropy of Conditional Entropy of Entropy
class-membership index class-membership index Reduction]
sequence of Little R. sequence of Little R. [%]

Conditional Entropy Reed Ck. 1.2275 0.6582 46.38

Conditional Entropy Roancke R. 1.2275 0.3408 72.24

Markovian Entropy Seasonal transition 1,2275 1.1192 8.82




Table 5.2.3.1: Summary of REG model pertinent to Little R. data infilling

Base State computed model Residual Analysis Prediction
River | == .- BU RS RETPSEEES TR SLEEEt it bbbt
bo bl tho th DP Comment .+ R-sq | Chi-sg(e) DF Comment Const. state of | Observed vs.
var.{e) ACE(e) prediction interval
Roanoke lntdx 2.48 0.59 35,07 456.15 358 bo, bt .86 84.0 69 norma! at satisfied auto- all elements contained
River signi- 50 level correlated| within 95% interva
ficant at
5% level
Reed lntd’r 2.32 0.63 1.1 32 158 b0, bl T4 65,6 69 normal at  satisfied auto- all elements contained
Creek signi~ 5% level correlated} within 95% interval
ficant at
5\ level
Table 5.2.3.2: Summary of SREG model pertinent to tittle R. data infilling
Base Season  State computed model Residual Analysis Prediction
River - cememaennn - . U SRR EREEEEE
b0 bl tho tbl b Comment R-aqf Chi-sg(e} OF Comment Const. state of | Observed vs.
var.{e) ACE(e) prediction interval
1 Intd 1 oas .60 19,68 24,25 - 178 10, bl 71 }38.8 33 normal at  satisfied auto- all elements contained
signi- 5% level correlated] within 95% interval
ficant at
Roanoke 54 level
River | omneormereesgmpumToissnoosoomeenemeenos - B ittt - masmmasomssnmesnos
H Intd 2.3 .63 0,14 33,78 118 b0, bl 87 {212 33 normal at  satisfied auto- §th element contained
signi- 5% level correlated] within $6% interval
ficant at while the rest contained
5 Jevel within 95V interval
1 Intd 1.13 .76 7.86 16.92 118 b0, bl 62 |22 Kk} norma} at satisfied auto- all elements contained
signi- 5% level correlated} within 95% interval
ficant at
Reed 5% level
Creek ¥ PR Y - it Sl b bttt
2 Intd .12 .66 12,43 2.6 118 b8, bl RIWEIRY 33 pormal at satistied auto- all elements contained
signi- 54 level correlated | within 95\ interval
ficant at
5% level

¢ Intd ¢ In transformed data

1A




Table 5.2.3.3: Summary of SSREG model pertinent to Little R. data infilling

Base Season  State conputed model Residual Analysis Prediction
River ' 3 i e
bo bl tho tbl DP Corment R-sq [Chi-sq(e) DF Comaent Const, State of |Observed vs,
. var.(e) ACF(e) prediction interval
1 ™| 2.6 .55 14,78 14,97 136 b0, bl 62 [24.78 2] normal at  satisfied auto- all elements contained
) signi- 54 lTevel correlated | within 95% interval
ficant at
Roanoke 54 level
River ¥ - e R R I Nppm—. -
2 Intd .3 .62 9.4 16.91 52 b0, bl .85 3.18 1 normal at  satisfied auto- 2nd element contained
signi- 54 level correlated | within 97% interval
ficant at while the rest contained
5% Jevel within 95V interval
1 md*| 218 .67 7.55 11.01 1A bo, bl Rt 25,98 2 normal at  satisfied auto- all elements contained
signi- 5% level correlated | within 95 interval
ficant at
Reed 5% level
Creek T e e e s e e e e e L _
2 Intd 2,58 .60 7.16 10,34 70 bo, b1 .60 10.06 11 normal at  satisfied auto- all elements contained N
signi- 5% level correlated | within 95% interval o)}
ficant at
51 level

* Intd : In transformed data

Table 5.2.4: Zeéo g Cgoig cgrrelation Coefficient between Little River
and eac e

ase rivers
Base Cross coryelation coefficient] Cross co§relat10n coeff}c1ent Cross co rela%lon Eféc1ent
River gorrespondin } corresponding to seasona correspon 1ng o selec

indiscreminately chosen samplej sample seasonal sample
) - Season 1 Season 2 __§§§§gg_} Season 2

Roanoke 0.93 : 0.88 0.93 6.79 0.92
Mver
Reed 0.86 6.79 0.86 0.70 0.78
Creek :




127

ASSESSMENT CATEGORY 2

COMPARISON OF THE REGRESSION MODELS FOR DIFFERENT {RIVER WITH
MISSING DATA, BASE R.} PAIRS

The ranking is given in Table 5.2.5.a. The REG model gave the
least ed and least eo. In case of {Roanoke R.,Little R.}
pair, the SREG and SSREG models respectively performed better
over REG in terms of ew and P. In case of { Reed Ck., Little
R.} pair, SSREG performed over REG in terms of P. The
graphical contrast of infilled versus observed data for

various sampling scenarios is given in Figs.5.2.1. (1,2)].

COMPARISON OF MOVE.4 MODELS FOR DIFFERENT {RIVER WITH MISSING
DATA, BASE R.} PAIRS

The ranking is given in Table 5.2.5.b. AMOVE gave the least ed
in all cases. In case of {Roanoke R., Little R.} pair, SSMOVE
performed better over AMOVE with respect to P and eo., while
SMOVE performed superior to AMOVE with respect to ew. In case
of {Reed Ck., Little R.} pair no beneficial effect of seasonal
sampling over the heterogenous sample was noticed. The
graphical contrast of infilled versus’ observed data for

various sampling scenarios is given in Figs.5.2.1. (3,4)].



Table 5.2.5.a:

Table of ranking of performance of varities of regression model (LB cluster)
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River Hodel rank in terms  Model rank in terms Model ramk in terms Model rank in terms
- of estimation error  of estimation error of deviation at peak of overall estixation
- in dry season [ed] in vet season [ew] reconstd.- obsvd. [P] error [eo]
REG SREG  SSREG |REG SREG  SSREG | SSREG  REG SREG REG SREG SSREG
Reed Ck. 0.26 0.27 0.28 |0.23 0.23 0.24 |-411.1 ~-456.3 -459.60.25 0.25 0.2¢
{REG SREG  SSREG |SREG REG SSREG | SSRZG  SREG REG REG SREG SSREG
Roancke R. 0.22 0.24 0.24 J0.21 0.22 0.23 {-111.4 -180.4 -238.10.22 0.23 0.24

Table 5.2.5.b:

Table of ranking of performance of varities of MOVE.4 model (L3 cluster)

¥odel rank in terms Model raok in terms Model rank in terms

River ¥oedel rank in tarms
- of estimation error  of estimation error of deviation at peak of overall estination
- in dry season [ed] in wet season [ew] reconstd.- obsvd. {P] error [eo]
AHOVE SHOVE SSMOVE|AMOVE SSMOVE SMOVE | AMOYE  SSHOYE SHOVE | AMOVE SHOVE SSHOVE
Reed Ck. - 0.23  0.27 0.27 |0.22 0.24 0.24 |-341.5 -445.4 -462,5{0.25 6.26 0.29
AMOVE SSMOVE SHOVE |SHOVE SSHOVE AMOVE |SSHOVE AMOVE SHOVE | SSMMOVE AMOVE SHOVE
Roancke R. 0.1 0.25 0.25 [0.21 0.22 0.26 |-132.5 -159.7 -181.,7]0.21 0.23 6.24
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ASSESSMENT CATEGORY 3

MULTIVARIATE MODELS (Table 5.2.6.a)

The SESTRNALL model performed very poorly in compared to‘MULBS
model incorporating each of the base rivers information.
Roanoke R. performed best with respect to ed, eo. Reed Ck.
performed best with respect to ew and P. The contrast of
infilled versus observed data by the multivariate models is

presented in Fig.5.2.2.

REGRESSION AND MOVE.4 MODEL [ Table 5.2.6.(b,c)]

With respect to all the criterion that were chosen for
evaluation, in all cases of MOVE.4 and regression models,
Roanoke R. performed better over Reed Ck. . The contrast of
infilled versus observed data by the multivariate models is

presented in Fig.5.2.2.




Table 5.2.6.a:
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Yable of ranking of performance of various sources
for the multivariate models (LB cluster)

HODEL

Source rank in terms
of estimation error
in dry season [ed]

Source rank in terms Source rank in terms Source rank in tersms
of estimation error of deviation at peak of overall estimation
in vet season {ew] reconstd.- obsvd. {P] error [eo]

Ra.R.

Hultiv. M,

S.5. Rd.Ck.
0.2

0.23 9 0.38

Rn.R.
0.21

S.S.
-1092.6

Ra.R.
207.4

Rd.Ck. Rn.R.

S.s | Rd.Ck.
0.11 0.20 0.4

Rd.Ck. s.S.
-78.1 0.3

0.29 .39

Table 5.2.6.b:

Table of ranking of performance of various base R.
for each sampling scenariarreqre.ssiou nodel (LB cluster)

River rank in terns

HODEL River rank in terms  River rank in terms River rank in terms
- of estimation error of estimation error of deviation at peak of overall estimation
- in dry season [ed] in wet season {ex] reconstd.- obsvd. [P] error [eo]
Ro.R. Rd.Ck. Rn.R. Rd.Ck. Rn.R. Rd.Ck. Rn.R. Rd.Ck.
REG 0.22 0.26 0.22 0.23 -238,1 -456.3 0.22 0.25
Ro.R. Rd.Ck. Ro.R. Rd.Ck. Rn.R. Rd.Ck. Rn.R. Rd.Ck.
SREG 0.24 0.27 0.21 0,23 -180.4 -459.6 0.23 0.25
Ra.R. Rd.Ck. Rn.R. Rd.Ck. Ro.R.  Rd.Ck. Rn.R. Rd.Ck.
SSREG 0.24 0.28 0.28 0.24 -111.4 -4]11.1 0,24 0.26

Table 5.2.6.c:

Table of ranking of performance of various base R.
for each sampling scenario)xovz.i podel (LB cluster)

KODEL River rank in terms River rank in terms River rank in terms River rapk in terss
- of estimation error of estimation error of deviation at peak of overall estimation
- in dry season [ed] in vet season [ew] reconstd.- obsvd. [P] error [ec]
Rn.R. Rd.Ck. Rn.R. Rd.Ck. k.R. Rd.Ck. Ra.R. Rd.ck.
HOVE 0.19 0.23 0.22 0.22 -159.7 -341.5 g.20 0.22
Rn.R. Rd.Ck. Ro.R. Rd4.Ck, Ro.R.  Rd.Ck. Rn.R. Rd.Ck.
SHOVE 0.25  6.27 6.21 0.24 -181.7 -462.5 0.23 6.25
. Rn.R. Rd.Ck. Rn.R. Rd.Ck. Bn.R. Rd.Ck. Rn.R. Rd.Ck.
SSMOVE 0.25 0.27 0.22 0.24 -132.5 -411.1 0.24 0.26

Rn.R.= Roanoke R.
Rd.Ck.= Reed Ck.
§.5 = self series
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The assessment category two shows that in all cases the
-heterogenous sample gave the least ed. In case of {Reed Ck.,
Little R.} pair, seasonal sampling do not show any improvement
over the heterogenous sample.

The assessment category three shows that in all cases of
regression and MOVE.4 models Roanoke R. performed superior to
the Reed Ck. In case of MULBS model, Roanoke R. performed
inferior to Reed Ck. in terms of ew and P. SESTRNALL model

performed the worst.

Poor fitting of SESTRNALL model can be explained by the poor
information transfer by considering seasonal transition of
Markovian nature. In case of MULBS model, fitting of
reconstructed data to the observed data is much better in Reed
Ck. than in Roanoke R.. Reed Ck. resides on the same drainage
basin as that of the Little R. while Roanoke R. is located in
different drainage basin. Due to the closer proximity, the
seasonal similarity between {Reed Ck., Little R.} pair is more
than the seasonal similarity between { Roanoke R., Little .}

pair.

In case of all the varieties of regression and MOVE model,
better performance of infilling by Roanoke R. over the
performance of infilling by Reed Ck. can be explained by the
higher zero lag cross-correlation coefficient of {Roanoke R.

and Little R} pair than that of {Reed Ck. and Little R} pair
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[Table 5.2.4]. In case of incorporating Roanoke R.
information, superior performance of SSREG and SSMOVE models
can be attributed both to appreciably high zero lag cross
correlation coefficient of { Little R. and Roanoke R.} pair as

well as to considerable amount of entropy reduction [ Table

5.2.2].
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5.3 ASSESSMENT OF OUALITY OF INFILLING OF GAP OF THE MISSING

DATA RIVER BELONGING TO THE LILL CLUSTER

ASSESSMENT CATEGORY 1

A multivariate level assessment of the MULBS model [Table
5.3.1.0], incorporating Soo R. ‘information transfer, shows
that the observed wet seasonal segment lies within the 99%
contouf of prediction while the observed dry seasonal segment
lies within the 95% contour. For the séme model incorporating
Rutherford Ck. information, all the observed seasonal segment
vlies within the 95% contour. In case of SESTRNALL model, all

the observed seasonal segments lie within the 95% contour of

prediction.

For the MULBS model in the case of {Green R., Soo R.} pair[.
Table 5.3.1.1], observed data corresponding to 5th element of
dry seasonal segment lie within 95.7% prediction band while
the remainder of the observed data 1lie within the 95%
prediction band of correspbnding elements of the associated
seasonal segment. In the case of the {Green R., Rutherford
Ck.} pair [Table 5.3.1.2], observed data coyresponding to the
2nd element of wet seasonal segment lie within the 97.5%
pfediction band while the remainder of the data lie within the
95% prediction band of corresponding element of the associated
seasonal segment. In case of SESTRNALL model [Table 5.3.1.3],
obsérved data corresponding to 5th element of wet seasonal

segment lies within the 99% band while the rest of the
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observed data lie within 95% prediction band of corresponding

element of the associated seasonal segment.

Reduction in entropy for the seasonally classified sequenbe
of Green river is appreciable by conditioning on Soo R. than
by conditioning on Rutherford Ck. and is very poor under
assumption of Markovian nature of seasonal transition [ Table

5.3.2].

In case of both the REG and SREG models incorporating the
{Green R.,Soo R.} and {Green R., Rutherford Ck.} pairs, all
the observed data are contained within 95% band of prediction
[ Table 5.3.3.(1 and 2)]. In case of the SSREG model
incorporating {Green R., Soo R.} pair [Table 5.3.3.3],
observed data corresponding to the 5th element of the wet
seasonal segment lie within the 98% prediction band while the
rest of the data are contained within the 95% prediction level
. For the SSREG model incorporating the {Green R., Rutherford
Ck.} pair [Table 5.3.3.3], observed data corresponding to the
2nd element of the wet seasonal segment lie within the 99.2%
prediction band while the rest of observed data lie within the

95% band.




Table 5.3.1.0
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: Distance of Observed seasonal segment of Greem R. with respect to the predicted

conditional configuration by the base R. by MULBS Model
and by self Series by SESTRNALL Model(multivariate basis appraisal)

Season 1 Season 2
Hodel Information Observed DP Comment Observed DF' Comment
Source Distance Distance

MULBS Soa 3.31 6§ lying within 17.02 6 lying within
River 95% Contour 99% Contour
HOLBS Rutherford 6.39 § lying within 10.44 6 lying within
Ck. 95% Contour 35% Contour
SESTRNALL Self Series 2.00 6§ lying within 8.00 6 lying within
95% Contour 35% Contour

Table 5.3.1.1:

Green R. Data infilling by Soo R. by MOLBS Model:
Predicted vs. Observed data (appraisal on marginal basis)

Season  Monthly  Element Element Element Observed Comment
Element Variance Hean Std. Element
Predicted Predicted Predicted

1 1.180 §.576 1.086 7.140 Contained within 95%
2 0.840 2,947 0.917 2.660 Contained within 95%
3 1,750 2.939 1,323 4,070 Contained within 95%

1 4 0.700 3.105 0.837 3.850 Contained within 95%
5 2,160 2.789 1.470 2.580 Contained within 95.7%
6 1.050 1.124 1,025 - 2.090 Contained within 95%
7 7.780 22.501 2,789 22.280 Contained within 95%
8 29,240 31.804 5.407 22.040 Contained within 95%
9 212.430 89.918 14,575 77.840 Contained within 95%

2 10 5065.830 357.645 71.175 408,330 Contained within 95%
11 2,760 2.912 1.661 -0.452 Contained within 95%
12 4,680 9.098 2.163 11.160 Contained within 95%

Table 5.3.1.2:

Green R. Data infilling by Rutherford Ck. by MULBS Hoglel:
Predicted vs. Observed data(appraisal on marginal basis)

Season  Monthly  Element Element Element Observed Comment
Element Variance Mean std. Element
Predicted Predicted Predicted

1 24,462 34.680 4,945 35.400 Contained within 95%
2 35.382 20,535 5.948 20,300 Contained within 95%
3 31.942 18.227 5.652 15.400 Contained within 95%

1 4 16,573 16.331 4,071 13.300 Contained within 95%
5 18,368 12.775 4.286 9.000 Contained within 95%
6 29.638 17.457 5.444 12.500 Contained within 95%
7 72.453 96.766 8.512 80.200 Contained within 95%
8 159.714 131.911 12,638 103.000 Contained within 97.5%
9 121.499 104.651° 11.023 165,000 Contained within 95%

2 10 48,608 65.121 6.972 72.200 Contained within 95%
11 11.972 35,748 3.460 31.700 Contained within 95%
12 89.986 26,587 9.486 22,400 Contained within 95%
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Table 5.3.1.3: Green River data infilling by SESTRNALL Model
Predicted vs. observed data of Green River
(apprisal on marginal basis)

Season

Monthly  Element Element Element
Element  Variance Std. Hean

Predicted Predicted Predicted

Observed Comment
Element

35.4000 Contained within 95%
20.3000 Contained within 95%
15.4000 Contained within 95%
13.3000 Contained within 95%

9.0000 Contained within 95%
12,5000 Contained within 953%

80.2000 ‘Contained within 95%
103.0000 Contained within 95%
105.0000 Contained within 95%

72.2000 Contained within 95%

31.7000 Contained within 99%

22.4000 Contained within 95%

1 149.8500 12,2413 31.2400
2 106.7100 10,3301 21.1400
3 47.1200 6.8644 12.8900
4 50,9700 7.1393 12.4400
5 22,0500 4.6957 10.6600
6 189.5100 13.7663 29.7800
1 497.8900 22.3134 69.4300
2 333.9700 18.2748 111.0000
3 281.0800 16,7654 99.6400
4 92.9200 9.8395 69.9300
5 54.0900 7.3546 53.3800
6 225,1400 15.0047 38.0800

Table 5.3.2:

Entropy reduction in class-nembership index sequence of Green R.

Case Information source Marginal Entropy of Conditional Entropy of  Entropy
class-membership index class-membership index Reduction
sequence of Green R, sequence of Green R, [$1

Conditional Entropy Soo R. 1.1219 0.3937 64.91

Conditional Entropy Rutherford ck. 1.1219 0.8955 20.18

Markovian Entropy Seasonal transition 1.1219 1.0492 6.48




Table 5.3.3.1: Sumary of REG model

pertinent to Green R. data infilling

Base State computed model Residual Analysis Prediction
River i - B T L R L S g ——- e
bo bl tho thl U4 Corament R-sq | Chi-sq{e) DP Comment Const, State of | Observed vs,
Ace(e) prediction interval
td 2.48 6.59 35,07 46.15 358 bo, bl .86 84.0 69 normal at auto- all 9lement§ contained
ggSer E signi- 54 level correlated| within 958 interval
’ ficant at
R T
x -.-i-'- . . 3 kY 358 bo, bl M 65,6 69 normal at  satisfied auto- all elements contained
2:22:rf0rd tntd s "8 e signi- 5% level correlated | within 95V interva
ficant at
5% level
Teble 5.3.3.2: Summary of SREG model pertinent to Green R. data infilling
Base Season  State computed mode! Residual Analysis Prediction
River - ] e e C o ee e cm e m————— J A
bo bl tbo thi DP Comment R-sq | Chi-sq(e) DP Cowment Const, State of | Observed vs,
: var.(e) AcP{e} prediction interval

i nat**| 3.4 2.08 5.21 2.3 130 b0, bl .89 125.02 23 normal at  satisfied auto- all elements contained
signi- 5% level correlated} within 95% interval
ficant at

Soo 51 level
River - 7 e i I LR LT

2 Intd .83 1.01 6.87 28,22 130 bo, bl .86 | 29.35 23 normal at  satisfied auto- all elements contained
signi- 5% level correlated| within 95V interval
ficant at
51 level

! Intd*{ s.15 3.2 [} 15.8 130 b, bt 66 | 36.83 2 normal at  satisfied auto- all elements contained
signi- 5% level correlated] within 95% interval
ficant at

Rutherford ) 5% level
Creek ol B R L L L e TP e LR e S -

2 nat 18,52 2.9 5,89 18,98 130 b0, bl 13 | 482 23 normal at  satisfied auto- all elements contained
signi- 5% level correlated] within 95% interval
ficant at
54 level

 Intd : In transformed data
4 pat ¢ raw data

evl




Table 5.3.3.3: Summary of SSREG model pertinent to Green R. data infilling

Base Seasen  State computed madel Residual Analysis Prediction
Rvee | e SO | Plictin
be bl tbo tbl pP Comment R-sq | chi-sq(e) P Comment Const, State of | Observed vs,
var.{e) AcP(e) prediction interval
1 Imtd* ! 1.21 .86 1,90 15,28 o b0, bl L1 121.17 16 normal at  satisfied auto- all elenents contained
signi- 50 ltevel correlated{ within 95¢ interval
ficant at
Soo 51 level
River | wremmeccoeees 2 T et (oL e e ORI SIS
2 Intd* | .58 1.09 3.89 U4 92 b0, bl 92 |18t 1 normal at  satisfied auto- Sth element contained
signi- 5% level correiated) within 98% interval
ficant at while the rest contained
5\ level within 95% interval
1 md*| 1.6 .88 1,61 1344 % b0, bl .78 124,88 1 normal at  satisfied auto- all elements contained
signi- 5% level correlated| within 95V interval
ficant at
Rutherford 54 level
Creek i -
2 nat 10.94 3.5 2.61 16,32 « 64 bo, bl 80 §9.24 10 normal at  satisfied auto- nd element contained =
signi- 5% level correlated] within 99.2% interval =
ficant at while the rest contained +
5% level vithin 95% interval

* Intd : In transformed data
% nat :-raw data

Table 5.3.4: Zego lag Cf°§§ cgrrelation Coefficient between Green River
an of the ba

eac se rivers
Base Cross correlation coefficient| Cross cogrelation coefficient Cross coérelation oeggécient
River gorrespondin fo corrfspon ing to seasona corresponding fo selec
- indiscreminately chosen sample| sample seasonal sample
Y Season 1 Season 2 - Season 1 _--Segson 2
Soo 0.97 0.94 0.93 0.84 6.96
River ... . : - S VS S
Ruthﬁrford 0.95 0.81 0.86 0.88 0.89
Cree
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ASSESSMENT CATEGORY 2

COMPARISON OF THE REGRESSION MODELS FOR DIFFERENT {RIVER WITH
MISSING DATA, BASE R.} PAIRS

REG performed best in all cases in terms of ew [Table 5.3.5]."
In case of the {Green R., Soo R.} pair, SREG performed better
over REG in terms of ed, P and eo. In case of the {Green R.,
Rutherford Ck.} pair, SSREG performed better over REG in terms
of ed and eo.and SREG performed better over REG in terms of P.
The graphical contrast of infilled versus observed data for

various sampling scenarios is given in Figs.5.3.1. (1,2)].

COMPARISON OF MOVE.4 MODELS FOR DIFFERENT {RIVER WITH MISSING
DATA, BASE R.} PAIRS

In case of {Soo R., Green R.} pair [Table 5.3.5]. , AMOVE
pérformed best in terms of ew and P, while SSMOVE performed
better over AMOVE in terms of ed. In case of {Rutherford Ck.,
Green R.} pair, SMOVE performed superior to AMOVE in terms of
ew and P, while AMOVE performed best in terms of ed. The
graphical contrast of infilled versus observed data for

various sampling scenarios is given in Figs.5.3.1. (3,4)].
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146

Table of ranking of performance of varities of regression model (LILL cluster)

Kodel rank in tercs

River Model rank in terms  Model rank in terxs Model rank in terms
- of estimation error  of estimation error of deviation at peak of overall estimation
- in dry season {ed] in wet season (ew] reconstd.- obsvd. [P] ecror [eo]
SREG  SSREG REG ! REG SREG  SSREG | SRZG REG SSREG | SREG REG SSRZG
Soo R. 0.09 0.11 0.13 {0.12 0.15 -0.18 [4.8 5.4 10.3 0.12 0,13 0.15
SSREG SREG REG REG SSREG SREG | SREG REG SSREG | SSREG SREG RZG
Rutherford €k.[0.27 0,32 0.48 |0.13 6.25 0.26 [18.9 245 32.9 0.26 0.29 0.37

fable 5.3.5.b:

Table of ranking of performance of varities of OVE.4 model (LILL cluster)

Hodel rank in terms Model rank in terms Model rank in terrs

River Hodel rank in terms
- of estimation error  of estimation error of deviation at peak of overall estimatiog
- in dry season [ed] in wet season {ew] recopstd.- obsvd, [P] error [eo]
SSHOVE SHOVE AMOVE SAHOVE SHOYE SSHOVE AMOVE  SHOYE  SSHOVE | AMOVE SMOVE SSMOVE
Soo R 6.09 0.16 0.13 %O.ll 0.15 0.18 (4.7 4.8 9.9 6.12 0.13 0.15
AKOVE  SMOVE SSHOVE%SHOVE AHOVE SSHOVE[SHOVE  AMOVE  SSHOVE |RHOVE SHOVE SSHOVE
Rutherford Ck.{0.20 0.26 0,29 f0.18 0.25 0.26 j24.9 31.2 39.3 8.23 6.23 0.28
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ASSESSEMENT CATEGORY 3

MULTIVARIATE MODELS

Table 5.3.6.a: shows that Soo R. performed best in terms of
ed, ew, eo. The Rutherford Ck. performed superior to Soo R. in
terms of P. Both SESTRNALL model and MULBS model incorporating
Soo river and Rutherford Ck. information [Fig. 5.3.2], showed
poor fit of reconstruction shape. This deficiency is

specifically prominent at the peak.

REGRESSION AND MOVE.4 MODELS
Both Tables 5.3.6.(b,c) and Figs. 5.3.3.(1, 2, 3 and 4 ] show

that Show better performance of Sco R. over Ruthetford Ck.
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%able of ranking of performance of various sources

table 5.3.5.a:
for the multivariate nodels (LILL cluster)

HODEL Source rank in terrs
- of estimation error
- in dry season {ed}

of estimation error
in vet season [ew]

Source rank in terms Source rank in terms Source rank in terns
of deviation at peak of overall estination
reconstd.- obsvd. [P] error [eo]

Rd.Ck. §.S So.R.
-5.4 8.0

So.R. Rd.Ck. S.S. | So.R. Rd.Ck. 5.S.
Multiv. H. 0.16 0.27 0.58]0.15 0.17 0.37 0.3

0.1

So.R.

Rd.Ck. S.S.
0.22 6.49

table of ranking of performance of various base R.
for each sacpling scenario regression nodel (LILL cluster)

Table 5.3.6.b:

River rank in terms River rank in terms
of estimation error
in wet season {ew]

HODEL River rank in terms
- of estimation error
- in dry season [ed]

River rapk in terms

of deviation at peak of overall estimation
reconstd.- obsvd. [P] error [eo}

So.R. Rd.CK. So.R. Rd.CK. So.R. Rd.Ck. So.R. Rd.Ck.
REG 0.13 0.48 0.12 0.13 5.4 24.5 0.13 0.37
|
So.R. Rd.Ck. S0.R. Rd.Ck. So.R. Rd.Ck. | S0.R. Rd.Ck.
SREG 0.69 0.32 0.15 0.26 4.8 18.3 lO.IZ 0.29
So.R. Rd.Ck. so.R. Rd.ck. So.R. R4.Ck. So.R. Rd.Ck.
SSREG 6.11  0.27 0.18 0.25 0.3 32.9 0.15 0.26

rable 5.3.6.c: vable of ranking of performance of various base R.

for each sanpling scenario HOVE,4 model {LILL cluster)

River rank in terms River rank in terzs

of estimation error

HODEL River rank in terms

River rank in terms

of deviation at peak of overall estimation

- in dry season [ed] in wet season {ew] reconstd.- obsvd. {p] error [eo]
So.R. Rd.Ck. So.R. Rd.Ck. so.R. Rd.Ck. So.R. Rd.Ck.
RHOVE 0.13 0.20 0.11 0.25 4.7 37.2 0.12 0.23
So.R. RA.Ck. .  {So.R. RA.Ck. So.R. Rd.CE. lsor. Rd.CE.
SHOVE 0.10 0.26 6.15 0.13 4.8 24.9 l0.13 0.23
' So.R. Rd.Ck. So.R. Rd.Ck. so.R. Rd.Ck. So.R Rd.Ck.
SSMOVE 0.09 0.29 0.18 0.26 3.9 39.3 0.15 0.28

So. R.= Soo R.
Rd.Ck.= Rutherford Ck.
5.5 = self series
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The assessment category two shows that in all cases the
regression model, heterogenous sample gave the least ew. This
is completely different from the case of UPB and LB cluster.
In terms of the remaining criteria seasonal consideration in
sampling shows beneficial effects. The positive influence of
seasonal sampling was found effective to a lesser degree than
the previous case. With respect to the shape reconstruction
point of view none of the multivariate model could reconstruct

the observed shape.

Poor fit of MULBS models can be explained by the‘poor fitting
of multivariate normal distribution. This lack of fit is most
probably due to the inadequate number of multivariate seasonal
segments . Poor fit of SESTRNALL model can be attributed to
both the poor information transfer by seasonal transition as
well as to the inadequate number of multivariate observations.
Quality of reconstruction by the REG, SREG and SSREG models
are analogous to the AMOVE, SMOVE and SSMOVE models in both
cases of {Green R., Soo R.} and {Green R., Rutherford Ck.}
pairs. Better infilling performance Soo R. than that of by
Rutherford Ck. in all varieties of regression and MOVE models
can be explained by the higher zero-lag cross correlation
coefficient between {Green R., Soo R.} pair than the one

between { Green R., Rutherford Ck.} pair.
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DISCUSSION

The proposed multivariate models assume the presence of
significant relationship between the predictor and predicted
variate and this relationship should be consistent. The
dependence is given by 2,, terms of Equation 3.7. The
correlation-coefficient matrix in case of MULBS model shows
the relationship is of mostly lag-0 nature. But in case of
SESTRNALL model the dependence is found to be small. Moreover,
the insignificant amount of entropy reduction indicates
erratic nature of transition [Table 5.4.1]. Considering these
factors, SESTRNALL model should not be expected to perform

satisfactorily and in fact it did perform poorly.

The MULBS model performed poorly in case of LILL cluster, it
can be conjectured that the available data 22 observations was

inadequate to ensure the multivariate normality.

It was expected that the regression and MOVE.4 models would
perform very good if the samples are chosen by imposing some
homogeneity criteria. It was assumed that the cross-
correlation coefficient may increase under the seasonal
homogeneity condition. But the Table: 5.4.2 shows decrease in
cross correlation coefficient. Only for wet seasonal sample of
{Johns Ck.,Craig Ck.} pair, the correlation coefficient
increases. In wet season, in very few cases the original

Cross- correlation coefficient remained constant. In most of
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Table 5.4.1: = Overall assessment of multivariate models
Cluster Information ~ Entropy Estimation Error Overall Error
Source Reduction in
[ %] Dry S. Het S.
Johns Ck. 78.88 0.18 0.08 0.14
Dunlap Ck. 70.42 0.23 0,21 0,22
UPB Cowpasture R, 59.02 0.27 0.14 0.22
Self Series 5.00 0.39 0.52 0.46
Reed Ck. 46.38 0.38 ° 0.16 0.29
LB Roanoke R, 72.24 0.23 0.20 0.21
Self Series 8.82 0.29 0.47 0.39
Soo R, 64.91 0.16 0.15 0.16
LILL Rutherford ck. 20.18 0,27 0.17 0.22
Self Series 6.48 0.58 0.39 0.49

Cluster River Heterogenous Seasonal sample Selected seasonal sample
sample dry Het dry Wet
Johns Ck. 0.98 0.97 0.99 0.95 0.98
UPB Dunlap Ck. 0.95 0.89 0.93 0.86 0.93
Cowpasture R. 0.93 0.87 0.90 0.83 0.88
Roanoke R. 0.93 0.88 0.93 0.79 0.92
LB Reed Ck. 0.86 0.79 0.86 0.70 0.78
Soo R. 0.97 0.94 0.93 0.84 0.96

LILL Rutherford Ck. 0.95 0.81 0.86 0.88 0.89
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the cases it dropped. This reduction in cross correlation
coefficient in dry seasonal sample was more than the cross
correlation coefficient in wet seasonal sample. In the dry
season, the estimation errors were on an average more than the

errors in wet season.

The procedure of seasonal segmentation or assumption of six
months long season over a fixed period of time could be
considered to be a factor behind such a drop in correlation.
For example in table A.2.3, in the Craig Ck. data matrix,
there are very high flow in the month of June of the 15th year
and of the 19th year. There were also high flows in the month
of November of the 20th year and of the 28th year. The months
of November and June have been assigned to dry season. It can
be conjectured that these high flows may affect the
homogeneity or in extreme cases behave like an outlier. In a
dense sample such as the original data set it is balanced to
some extent, but when the data is selected, the size of the
sample reduces and if the reduced sample contains such
abnormal flow, it may degrade the fitted line. The efficaéy of
seasonal group characteristics for sample selection is thus

found to be beneficial for limited cases.
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Chapter 6
CONCLUSION

In this thesis an effort was made to investigate the efficacy
of seasonal group characteristics for monthly flow data
infilling purpose. Two multivariate models were developed:
MULBS and SESTRNALL models. The MULBS model reconstruct a
seasonal flow group of a river with missing data conditioned
on the simultaneously observed flow group in the nearby
located river. The MULBS model was based on the aésumption of
consistent nature of simultaneously observed inter dependent

flow groups {missing data river, base river}.

The SESTRNALL model on the other hand reconstruct a £low group
of a river conditioned on the preceding flow group in the same
river. This model was based on the assumption of consistent

inter seasonal dependence.

The models were applied to the real world data. The model
assumptions were also tested in the by using conditional
entropy principle. The SESTRNALL model performed very poorly.
The MULBS model showed satisfactory performance only under the
constraints of i) longer period of concurrent data, ii) close
proximity of and seasonal similarity of missing data river and
a base river. Moreover, it involves very complex

multidimensional computational procedures which assumes the
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data to be multivariate normal.

Further in this thesis, the use of group characteristics of
monthly flow data in the extraction of relative homogeneous
samples for regression models were investigated. The
occurrence of groups of low and high flow vary over the length
of a year. Thus a segmentation scheme (such as the one used
in this thesis) based on the assumption that the flow groups
occur over some fixed calendar months runs the risk of
assigning the flows to an incorrect season. Caution should be
exercised in using such a sample.vUnder such a situation, the
use of 12 regression equations for 12 months may run into even
greater risk of incorrect estimate of missing data because the

sample size would be reduced by a factor of six.

SCOPE FOR FURTHER RESEARCH
Following issues were identified during the course of this

thesis, which are open to future study.

1. Multivariate models developed here are capable of
reconstruction of completely missing seasonal segments and
these models do not deal with the situation of partially
missing seasonal segments. Considering x=[x1,x2]T as the
simultaneously observed seasonal segment, EM algorithm

[Johnson and Wichern 1988] could be considered as a candidate

solution for the problen.
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2. In some cases, péor performance of SSREG and SSMOVE over
REG and AMOVE is suspected to be due to the specific
clustering algorithm used in this thesis. The selected
seasonal segments as well as well as the entropy reduction is
expected to vary with the variation of qlustering algorithm
and the metric under consideration. One can study the entropy
reduction and the corresponding infilling performance under
variation of the clustering algorithm as well as the

clustering metric.

3. The study of the data matrix shows that groups of flow do
occur, but the occurrences are neither fixed by some calendar
months nor do they stretch over six months time (also
supported by the cross-correlation matrix). The entropy
analysis shows consistency in the simultaneous occurrence of
flows in the neighbouring rivers. Therefore a multivariate
model of lesser dimension can be considered for the future
research with the parameters calibrated from all available
data. This model can be compared to the existing multivariate
models that uses standardized data [Kottegoda and Elgy

(1977)1].
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APPERDIX A.1

A.1.1 K- MEANS ALGORITHM

In this algorithm, an initial number of clusters k are assumed
and k cluster centres are arbitrarily chosen from the data.
The pattern vectors are assigned to the cluster with which it
has the minimum Euclidian distance . The steps of this
algorithm are [Tou and Gonzalez (1974)] :

1. At the 1st iteration step, as initial seed, choose k
cluster means Z;(1l) cececscese Zu1)'

2. At any kth iteration step, assign a pattern vector X to any
of the k clusters satisfying following inequality :
Xes if [ X -2,k < || 2 =32 || eeeee.[ A.1.1]
with :

i=1.....k and i # jJ
. | X - 2, | = Euclidean distance between X and Z%;
= v (X =-32)" (X - 3;)
. Sj(k) = Set of samples belonging to the cluster
represented by Z;(k) at kth iteration step

3. Compute new cluster centres from the clusters formed in
step 2. Cpnsider the estimate of ﬁhe sample mean of the
set Sj (k) to be the new cluster centre Zj(k+1)].

4. For all the clusters , repeat step-2 and step-3 till the
cluster mean at kth iteration is not significantly

different from the cluster mean at (k+1)th iteration step.
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A.1.2 PANU PROPOSED INFILLING PROCEDURE AND THE RATIONALE

BEHIND THE MODIFICATION

Panu (1978) proposed a data infilling algorithm consisting of

following steps:

-Finding of the most probable sub-cluster representing the
missing seasonal segment by utilizing transitional
probability of the seasonal segments.

-Finding of the most probable Mahalanobis distance of the
missing seasonal segment from the relationship between
the transitional seasonal segments.

—-Generating seasonal segment with a configuration specified
by the configuration of the most probable sub-cluster and
constraning it to have the most probable Mahalanobis

distance .

This procedure assumes that the Markovian transition pattern
is adequate to recognize the sub-cluster to which the missing
segment is expected to belong to and subsequent generation of
a seasonal segment by specifying the marginal configuration of
the sub-cluster obtained from the historical data set is
adequate to mimic the missing seasonal segment provided it is

constrained within the Mahalanobis distance.

Even if the seasonal transition were of perfectly Markovian
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nature, thus, rendering the correct sub-cluster, the
Mahalanobis distance alone is no binding constraint for
obtaining the unique estimate of missing seasonal segment. Let
K, = denote the configuration of the most probable sub-
cluster , then for a known Mahalanobis distance ¢? , any
seasonal segment X will satisfy the equation of

equiprobability contour given by :

(2-)" =" (X-p) = teveeieeee.. [ ALL.2]

Since g and I are estimated from the historical data
conforming to the configuration of the sub-cluster, the
Mahalanobis distance is the only constraint considered here.
But there are infinite combinations of components of X
satisfying equation A.1.2. This is shown in [Fig. A.1.1] where
two pattern vector X, = [Xy,%, 17 and X, = [Xy, X 1T
represented by the points P, and P, both satisfy [Eq. A.1.2]
but each cénsisting of combinations of elements of totally
different magnitude. Unless, the configuration is adapted
according to preceding observed segment, the model proposed by
Panu (1978) would generate estimates.of missing segment within
a certain probability 1level (given by the Mahalanobis
distance) from a cluster with a rigid configuration computed
from the historical data. An empirical data reconstruction
model is developed which uses the inter-seasonal dependence
(Panu 1978) and furthermore incorporate the flexibility in

distributional configuration of the prospective candidate
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X1

Fig.A.1.1: Ei&iprobabilty contour of a bivariate normal distribution with

2 2
{022>a11]and [P12>0]
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seasonal segment corresponding to a missing seasonal segment.

"A.1.3 DESCRIPTION OF THE INFILLING EQUATION CORRESPONDING TO

MOVE.4 MODEL

Tn this thesis, MOVE.4 [Vogel and Stedinger (1985)] is used
under three different sampling scenarios. In each case, n,
period of missing record of the series Y are estimated by the
corresponding observations existing in the series X. Both
series are assumed to have a common record bf n, period. The

general infilling estimate of the missing data by MOVE.4 is

where,
Q' = (n1 + n, )”'y n, _§1
n,
Ax 2 Ax
- - - _iy2 _AX2
P - [ingtny 1) 0, =(ny T1)Sy =0y (7B (2 DT
[ (n, —1)S, ]
., _ (n, -3)r? n, A _
I T P Be(X T %)
(n, -4)r +1 (n,+n,)
nl - -
‘=Z (X, - X1).( Yi— Y4 )
B = | mmmm——mmmm——memmm— oo
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x1
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Sy1
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n,
1 ni
[ Z1 x]
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n,
1 n1 —— 2
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n, -1 -
1
l nt e 2
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n - =
1
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A.1.4 DESCRIPTION OF THE INFILLING EQUATION CORRESPONDING TO

REGRESSION MODEL

Least square regression model is used to infill n, period of
missing record of the series Y Dby the corresponding
observations existing in the series X . For both of these
series, common record of n, period ié considered. The general
infilling equation |

is @

A
Yi=b0+b1 xi+ei oocc-.o.c.ol..[A01I4]

where,

e. = normally distributed random error term
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APPENDIX A.2

A.2.1 SEASONAL SEGMENTATION AND SLIDING OF DATA MATRIX

These procedures are explained in case of Dunlap Creek (a
member of UPB cluster). From the reported data matrix, 31
years of data for period of (Oct. 1958- Sept. 1988) are taken
as input data matrix [Table A.2.1]. The correlogram [ Fig. 1.3
] indicates two seasons per year. For each row of the data
‘matrix, the monthly flows are ranked in ascending order of
magnitude, the six months having the 1st six lowest flows are
assigned to the group-1 and the six months corresponding to
the six next lowest flows are assigned to the group-2 [ Table
A.2.1]. This procedure is repeated for each year. The number
of assignment of each month to each_of the two groups are
counted. The chain of six months [June- Nov.] and [ Dec.- May]
respectively shows maximum number of assignment to the group-1
(dry season) and group-2 (Wet season). This procedure adopted
for finding of the association of the months to the season is

referred as Seasonal segmentation .

In order to facilitate the beginnihg of the data matrix to
coincide with the beginning of the season, the data matrix is
slided forward by deleting eight data [Oct.1958-May 1958] of
the 1st row and appending eight more data [Oct.1989 -May 1989]
at the end 6f the data matrix . Thus, the initially entered
data matrix [Oct.1958 - Sep.1988] is slided to the data matrix

[June 1958 - May 1989]. The segmentation done on the slided



Table 1.2.1:

Segmentation of the original

Input Data matrix
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data matrix of Dimlap Crask (Oct.1958-5ep.1988)

Year ,l Oct.  Nov.  Dec. Jan. Peb. Mar. April Hay June  July  Aug.  Sep.
1 61.9 130.0 278.0 235.0 357.0 582.0 529.0  395.0 46.7 93.4  145.0 27.4
2 24.1 22.7 41.3 115.0 96.0  237.0  420.0 103.0 79.9 24.3 29.2 21.9
3 59.1 98.7 176.0 130.0 299.0 476.0 393.0 271.0 §5.9 26.5 22.% 37.8
4 21.2 25.8 28.8 60.6 396.0 292.6 317.0 205.0 167.0 33.2 23.3 20.0
5 ) 157.0 1140 376.0 259.6 333.0 557.0 182.0 64.7 47.1 30.1 27.9 16.3,
3 ! 31.5 98.2  129.0  314.0 120.0 845.0 12.5 48.4 47.0 23.8 16,2 15.8
7 18.8 26.4 3.4 247.0 208.0 440.0  193.0 62.3 26,9 ° 16.6 15.0 19.7
8 33.5 48.4  123.0  344.0 2940 466.0 283.0 119.0 45.6 33.9 23.5 16.9
] 30.4 20.2 22,7 733.7 3210 175.0 121.0 310.0 4%.0 14.3 20.4 1.5
10 160.0 113.0 168.0 330.0 220.0 689.0 142.0 339.0 89.0 30.3 22.8 20.3
11 53.0 38.0  202.0 294.0. 207.0 235.0 159.0 176.0 71.0 22.6 23.3 13.3
12 60.5 107.0 75.4 146.0 195.0 189.0 141.0 81.3 72.5 31.9 380.0 30.3
13 23.5 29.2  345.0  228.0  304.0 129.0 263.0 92.% 39.6 11.3 20.4 11.0
14 ;28,1 1200 113.0 208.0 580.0 267.0 247.0  453.0 124.0 35.3 46.4 42.5
15 ¢ 1ile 79.4  201.0 277.0  §58.0 242.0 394.0 287.0  584.0 358.0 79.4 24.4
16 i 75.0 437.0 603.0 189.0 431.0 §22.0  625.0 506.0 157.0 84.2 47.0 20.4
17 {0 68,2 159.0 §94.0 515.0 200.0  405.0 220.0 276.0 174.0 69.0 41.3 49.5
18 i385 41,4 220.0 361.0 506.0 608.0 263.0 453.0 126.0 65.3 38.8 39.3
19 t153.0 83.9 747 296.0 213.0 181.0 105.0 117.0 171.0 32.8 20,7 17.4
20 327.0  102.0 206.0 47,6 162.0 321.0 524.0 49.5 31.9 22.7 22.5 7.6
21 94.5  353.0 229.0 452.0 109.0 827.0 281.0  336.0 50.4 35.4 31.8 18.2
22 17.2 23.1  108.0 468.0 542.80 411.6 200.0 289.0 237.6 61.4 46.8  164.0
23 243,0  347.0 173.0 366.0 140.0 657.0 547.0 155.0 49,7 53.0 3.3 27.6
24 20.5 34.7 29.5 242 119.0 94.4 176.0 355.0 245.0 36.3 16.4 17.2
25 30.5 210 113.0 249.0 461.0 422.0 225.0 105.0  330.0 32.9 26.5 17.7
25 33.3 89.7  206.0 §1.0  291.0 401.0 §03.0 211.0 4.7 31.0 17.9 11.2
27 45.8 70,8 273.0  125.0 619.0 515.0 436.0 340.0 40.0 60.7 514.0 72.0
28 57.4  141.0 180.0 218.0 446.0 199.0 .136.0  105.0 40.5 25.8 98.3 21.2
29 19.4  659.0 153.0 58.5 276.0 305.0 54.7  265.0 39.1 29.1 39.4 34.4
30 23.2 73.8 3290 257.0 365.0 581.0 1071.0 202.0 63.0 33.0 17.3 61.3
31 23.9 58.6 108.0 171.0 121.0 59.1 91.5 170.0 28.8 18.7 16.0 25.6
Yearly Ranking of monthly data
Year Oct. Xov. Dec. Jan. Peb. Mar. April Hay Jume  July Aug. Sep,
1 3 5 © 8 7 9 12 11 10 2 4 § 1
2 3 2 6 10 8 11 12 9 7 4 5 1
3 4 § 3 7 10 12 11 9 5 2 1 3
4 2 4 5 7 12 10 11 S 8 6 3 1
5 7 5 11 9 10 12 8 5 4 3 2 1
§ 4 8 10 11 3 12 1 3 5 3 2 1
7 3 5 7 11 10 12 9 8 6 2 1 4
3 3 6 8 11 10 12 9 17 5 4 2 1
9 i 5 2 4 ] 12 10 9 11 7 1 3 8
10 i 7 5 8 10 9 12 6 11 4 3 2 1
11 ; 5 4 9 12 10 11 7 8 § 2 3 1
12 i 3 7 5° 9 11 10 8 6 4 2 12 1
13 4 5 12 S 11 8 10 7 5 2 3 1
14 1 5 5 8 12 10 9 11 7 2 4 3
15 [} 3 5 7 12 6 10 8 11 9 2 1
16 3 8 10 § 7 11 12 9 5 4 2 1
17 3 S 12 11 7 10 8 9 6 ¢ 1 2
18 1 4 7 9 11 12 8 10 6 5 2 3
19 8 5 4 12 11 10 [ 7 9 3 2 1
20 1 7 ) 5 .8 10 12 § 4 2 1 3
2 5 10 7 11 § 12 8 9 4 3 2 1
22 1 2 H 11 12 10 7 9 8 4 3 [
23 8 9 7 10 5 12 11 1 3 4 2 1
24 3 § 5 4 9 8 10 12 11 7 1 2
25 4 2 7 9 12 11 8 § 10 5 3 1
26 4 1 8 5 10 11 12 9 6 3 2 1
27 2 4 7 5 12 11 3 8 1 3 10 5
28 4 8 9 11 12 10 7 6 3 2 5 1
29 1 12 8 7 10 11 § 9 4 2 S 3
30 2 § 9 8 10 11 12 7 -5 3 1 4
31 3 § 9 12 10 1 8 11 5 2 1 4

(Cotd.)
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(Cotd.)

Classified data matriz

Xov. Dec. Jan. Peb. Mar. 2pril Hay June July Aug. Sep..
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Year
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Table 2.2.2: Seqmentation of the siided data matriz of Dunlap Creek (Jume 1958-¥ay 1989)

Slided Data matrix

Year Jume  July  Aug. Sep. Oct Xov Dec.  Jan. Peb, Mar.  Rpril  May
1 46.7 934 5.0 274 241 2.7 419 11S.0 96.0 2370 420.0  103.0
2 19.3 243 2902 21,9 591 987 176.0 130.0 299.0 476.0 393.6  271.0
3 5.9 26,5 22.6 37.8 21.2  25.8  28.8  60.5 396.0  292.0 317.0  205.0
4 167.0 332 23,3 20,0 157.0 114.0 376.0 259.0 333.0 557.0 182.0 4.7
5 7.1 301 27,9 168 3L.S 98.2 129.0 314.0 120.0 845.0 12.5  48.4
6 4.0 23.3 16.2 15.3 18.3 26.4 31,4 247.0 208.0 440.0 193.0 62.8
7 26.9 166 15.0 © 19.7 335 48.4  I123.0  344.0 294.0  4§5.0 288.0  119.0
3 45.6 339 235 169 304 202 22,7 33.7 3210 175.0 121.0  310.0
9 43.0 1.3 204 7L.5 160.0 1I3.0 158.0 330.0 220.0 £39.0 142.0  339.0
10 85.0  30.3 22.8 20.3 53.0 33,0 2020 294.0 207.0 235.¢ 159.0  176.0
u .0 22,6 233 133 §0.5 107.0 75.4 146.0 195.0 189.0 1410 813
12 72.5 31.3  380.0 36.3 23.3 29.2 3450 228.0 304.0 129.0 263.0 92.9
13 39.6  17.3 20,4 110 28.1 1200 113.0 208.0 580.0 2§7.0 247.0  453.0
14 124,60 35.3 46,4 42.5 111.0  79.4 201.0 277.0 653.0 242.0 394.0  287.0
15 584.0  358.0  79.4 244 75.0 487.0 603.0 189.0 431.0 §22.0 §25.0  506.0
15 157.0 842 47.0 204 3.2 159.0 §94.0 515.0 200.0 405.0 220.0 276.0
17 1740 69.0 413 49.5  38.5 4.4 220.0 361.0 506.0 608.0 253.0  453.90
18 126.0  65.5  38.8  39.3 153.0 83.9 747 296.0 213.0 181.0 105.0  117.0
19 7.0 32,8 20,7 17.4 327.0 102.0 206.0  47.6 162.0 321.0 524.0  49.5
2 3L.9 22.1 22.5 27.8 94.5 353.0 229.0 462.0 109.0 827.0 - 281.0 336.0
21 0.4 354 318 18,2 17.2  23.1 108.0 4§8.0 542.0 411.0 200.0  289.0
2 7.0 6.4 46,8 164.0 2430 347.8 173.0 366.0 140.0 657.0 547.0 155.0
23 4.7 S3.00 313 278 205 M7 29.5 242 1190 944 176.0 355.0
24 246.0 36.3  16.4  17.2  30.3 210 113.0 249.0 461.0 422.0 225.0  105.0
25 330.0 329 26,5 17,7 333 89.7 206.0 610 291.0 401.0 §03.0 211.0
26 747 310 179 11,2 45.8  70.3  273.0 125.0 619.0 S15.6  435.0 340.0
27 40.0  50.7 5140 72.0 ST.4 1410 186.0 218.0 445.0 199.0 136.0  105.0
28 40.5 253 983 21,2 19.4 653.0 153.0  S8.5 276.0 305.0  54.7 265.0
29 39.1 291 394 3.4 232 13.3  329.0 257.0 365.0 581.0 1071.¢ 202.0
30 63.0  38.0 17.3  61.3 239 58.6 108.0 171.0 121.0  59.1 91.5 170.0
3l 8.8 18.7  16.0 25.5 22.0 746 95.4 206.0 172.0 247.0 303.0 516.0
Tearly Ranking of ponthly data
Year June July  Rug. Sep Oct Yov Dec. Jan. Peb. Har. 12pril May
1 S [ 10 3 2 1 ¢ 9 7 11 T 12 8
2 5 2 3 1 4 5 3 7 10 12 11 3
3 3 4 2 § 1 3 H 7 12 10 11 9
1 7 3 2 1 § H 11 9 10 12 3 4
H 5 3 2 1 4 L] 10 11 9 12 7 §
§ 1 4 2 1 3 5 [ u 10 12 9 8
7 4 2 1 3 5 § 8 11 10 12 9 7
3 3 7 4 1 5 2 3 § 12 16 9 1
9 3 1 2 4 7 5 3 10 3 12 13 11
10 1 3 2 1 H 4 9 12 10 11 7 .8
1 5 2 N 1 4 3 § 10 12 11 E 1
12 5 4 12 3 1 2 1 8 10 7 9. [
13 5 2 3 1 4 7 5 8 12 10 9 1
14 6 1 3 2 5 4 7 9 12 3 11 10
is 9 5 3 1 2 7 10 4 § 11 12 ]
15 5 4 2 1 3 5 12 11 7 10 ] 9
17 § H 2 4 1 3 7 9 1 12 3 10
18 8 3 1 2 9 5 ] 12 11 10 § 7
19 g 3 2 1 11 § 9 4 7 10 12 H
20 4 2 1 3 H 10 7 11 § 12 8 9
2 § 5 4 2 1 3 7 11 12 10 8 9
2 7 2 1 5 8 E] [ 10 3 12 11 4
23 1 8 5 3 1 5 4 2 10 9 11 12
24 9 5 1 2 4 3 7 10 2 11 8 §
25 10 3 2 1 4 § 7 5 9 1 12 3
26 § 3 2 1 4 5 8 7 12 11 10 9
27 1 3 12 4 2 1 8 10 11 9 § 5
28 4 3 7 2 1 12 3 § 10 n 5 9
29 4 2 H 3 1 § 9 8 10 11 12 7
30 7 3 1 6 2 4 9 12 10 H 8 11
k3 5 2 1 4 3 § 7 9 8 16 11 12

{Catd.})
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(Catd.)

Classified data matrix
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data matrix is shown in Table A.2.2. In case of this slided
data matrix , each row is divided into two each six month
long 1links corresponding to the two different seasonal
segments namely [ June - Nov.] and [Dec.- May]. Each row
corresponding to the period [June- May] is considered as one
year. The sliding process requires the coincidence of the
beginning of the data matrix with the beginning of any season.
In this thesis, dry season is arbitrarily considered. In the
real world situation, in case of meager data, the sliding
process may hecessitates deleting of a number of months

(< 12) of data.

A.2.2 SEASONAL SEGMENT

For any river, for any season, the set of monthly flows
belonging to a common season is called a seasonal segment.In
case of Dunlap Ck. slided data matrix, set of monthly flows
corresponding to [ June - Nov.] and [ Dec.- May] period are

considered as Dry and Wet seasonal segments.

A.2.3 SIMULTANEOUSLY OBSERVED SEASONAL SEGMENT

For a particular year, for a particular season, concurrently
obsetved seasonal segments in the river with missing data and
a base river is referred as simultaneously observed seasonal
segment. In case of both the rivers having same number of
seasons per year and same association of months to season, the

simultaneously observed seasonal segment in any year is
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represented by a 2m- dimensional vector ( m= length of season
ZAin month). In case of { Craig Ck., punlap Ck.} pair,
considering Craig Ck. and Dunlap Ck. respectively as river
with missing data and base river, the simultaneously observed

dry seasonal segment on 11" year is illustrated in Table

A.2.3.

A.2.4 TRANSITIONAL SEASONAL SEGMENT

For the river with missing data , the transitional seasonal
segment is the integrated represeﬁtation of the source and
destiny seasonal segment correspoﬁding to a seasonal
transition. Mathematically, it 1is represented by a 2m-
dimensional vector comprising of the monthly flows of the
source and the destiny seasonal segment pertinent to the
seasonal transition. Considering Craig Ck. as the river with
nissing data , the transitional seasonal segment corresponding
to the dry - wet seasonal transition of 11th year is featured

in Table A.2.4.

A.2.5. SELECTED SEASONAL SEGMENTS

The concept of selected seasonal segment 1is developed in
chapter 3, it is explained in case of {Craig Ck., Dunlap Ck.}
pair considering Craig Ck. and Dunlap Ck. to be the river with
missing data and a base river. For each of these rivers , the
correlogram analysis shows two seasons per Yyear and

segmentation assigns the periods [June- Nov.] and [Dec.- May]



Craig Ck. data matrix

Table 3.2.3: Deponstration of simultaneously ohserved: seasomal seqneat of Craig Ck. and fumlap Ck.
(Junel9s8-say 1989)

176

Tear Juwe  July  2ug.  Sep. Oct.  Xov.| Dec. Jan. Peb.  Mar. April  May
1 137.0  155.0 l45.0 56.3 $2.5 59.5} 147.0 2440 186.0 423.0 993.0 192.8
2 112.0 44.5 §3.0 81.7 475.0 442,01 S11.0 402.0 1023.0 1073.0 915.0 S54.0
3 - 186.0 54.5 44.5% 54.9 44,7 §1.3 84,3 101.0 683.0 691.0 733.0 48s8.0
4 238.0 77.0 2160 77.§  201.0 342.0% 903.3 593.0 831.0 1109.0 663.0 212.0
5 245.0 93.5  183.0 56.5 §4.6 520,01} 375.0 745.0 232.0 1412.0 180.0 133.0
§ 87.2 50.3 41.3 39.6 40.3 §6.2 35.4 641.0 593.0 8l12.0 630.0 1s0.0
7 87.3 43.8 35.8 45.4 91.2 151.94 255.0 630.83 809.0 %07.0 '484.0 307.0
3 97.8 §3.5 42.6 39.7 85.5 S4.9 43.3 $6.9 %04.0 408.0 197.0 §02.0
9 87.0 31,5 $8.0 159.0 397.8 224.0 367.0 747.0 482.0 1094.0 257.0 419.0
10 176.0 101.0  147.0 78,3 161.0 104.0} 542.5 711.0 530.0 635.0 351.0 335.0
11 I 256.0 59.3 17.4 34,1 288.9 368.0) 219.4 370.0 580.0 534.2 310.0 145.0
12 12210 132.0 240.0 1140 78.7 142.0] 551.0 637.9 663.0 291.9 450.0 256.0
13 ! 71.3 52.4  150.0 48,1 107.0 457.0: 2313 3%4.0 1208.0 520,90 534.0 10910
14 ! 542.0 126.0 114.0 131.0 432,09 288.0: 394.0 537.0 1051.0 533.9 746.0 . I1ss.0
15 ¢+ 11340  307.0 175.0 96.9 269.0 872.01061.0 440.0 933.0 1205.0 1331.6 892.9
15 i 415.0  234.0 157.0 78.0 123.3 230.0 - 110S.0 1080.0 {96.0 633.0 500.0 4{d4l.9
17 ! 2630 138.0 146.0 103.0 95.3 81.7, 487.0 737.0 933.0 1457.0 5710 §40.0
18 f 223.0 111.0 36.3 294.0 340.0 75.0 0 156.0 724.0 406.0 329.0 3940 33390
13 1023.6  1l4l.0 80,4 55.6 678.0 289.0, 470.2 1§4.0 282.0 61l.0 306.0 13L.9
20 85.5 62.3 3.0 55.0 109.0 1609.0, 5z9.0 9%4.0 310.0 1575.3 1035.0 1041.0
21 215.0 96.0 139.¢ §9.3 49.4 70.5; 193.9 lo30.0 1095.0 1133.0 661.0 60l.0
22 566.0 162.3 133.0 875.0 659.0 963.0| 453.0 805.0 301.0 1148.0 1316.0 357.0
23 156.0  106.0 81.2 63.9 §4.6 84.9 84.4 §3.1 202.0 202,9 277.0 5430
24 511.0 102.0 44,1 44.5 83.3 58,91 172,04 637.0 1010.0 863.0 377.0 285.0
25 793.0  109.9 85.3 46.1 85,2 192.0( §35.9 212.¢ 809.0 1238.0 1503.0 397.0
25 205.0 7.4 45.0 39.3  138.0 191.0) 312.0 345.0 1084.0 1027.0 1085.0 731.0
21 32.3 82.1 306.0 125.9 85.9 184.0| 246.0 445.2 805.0 3S5.9 295.0 347.0
28 109.0 61.7 407.0 §5.7 §4.7 2112.0{ 458.0 185.0 S544.0 633.0 157.0 403.9
29 114.0 65.3 §8.4 150.0 §5.5 - 222.0 ] 712.9 533.0 §33.0 1211.0 2427.0 402.0
30 115.0 74.7 42.5 1918 54.5 170.0{ 248.0 373.0 292.0 - 1l41.0 372.0 309.0
31 35.1 §9.5 57.1 80.5 §6.5 163.01 136.0 326.0 285.0 §572.0 324.0 1183.0
Dry Season Ret Season

Dunlap Ck. data matriz
Year June  July Aug.  Sep. Oct.  Xov Dec. Jan. Feh, Mar. dpril May
1 48.7 93.4  145.0 21.4 24.1 2.1 4.3 115.0 96.0 237.0 420.0 103.0
2 79.9 24.3 2%.2 2.9 59.1 98.7| 176.0 120.3 299.0 476.0 393.0 271.0
3 65.9 25.5 22.5 37.3 21.2 25.8 28.3 §0.§ 396.0 292.0 317.0 205.0
4 167.6 3.2 23.3 0.0 157.0 1M4.04 376.0 259.0 333.0 557.0 182.0 84.7
S 47.1 0.1 27.9 15.3 315 98.2 | 129.0 314.0 120.0 845.0 72.5 48.4
§ 47.0 23.8 15.2 15.3 18.3 26.4 31.4  247.0 208.0 440.0 193.0 62.8
7 26,9 18.8 15.0 18.7 33.5 48.4¢ 123.0 344.0 294.0 468.0 283.0 119.9
3 45.6 33.9 23.5 16.9 30.4 0.2 22.7 33,7 3219 175,30 121.0  310.0
g 43.0 14.3 20.4 71.5  160.0 113.0} 153.0 330.0 220.0 639.0 142.0 339.0
10 89.0 30.3 22.8 20.3 53.9 38,81 202.0 294.9 207.0 235.0 159.0 17s.0
11 t 71,0 22,5 3.3 13.3 60.5 107.49 75.4 145.0 135.0 189.0 14l.0 81.3
17 i 12.5 31.9  380.0 30.3 23.3 29.2} 345.0 228.¢6 304.0 129.0 263.0 92.3
13 39.6 17.3 2.4 1.e 28.1 120,00 113.0 208,09 580.0 287.0 247.0 453.0
14 1 124.0 35.3 5.4 42,5 111.9 79.44 201.6 277.2 658.0 242.0 394.0 287.0
15 I 584.0  353.0 79.4 24.4 15.0  487.0) $03.3 189.0 431.0 622.0 £25.0 505.0
18 i 157.0 34.2 47.0 20.4 63.2 159.01 694.0 515.0 200.0 40S.0 220.0 275.0
17 174.0 £9.0 41.3 49.5 38.5 41.4} 220.0 381.0 506.0 §03.0 263.6 4S53.0
13 126.0 §5.5 38.8 33.3 1534 83.3 74,7 296.0 213.0 181,90 los.0 117.0
19 1.0 32.3 20.7 17.4  327.0 102.0{ 206.0 47.5 162.0 321.9 524.0. 49.5
20 31.9 22.7 22.3 21.8 94.5 353.0} 229.0 462.0 109.0 827.3 281.0 336.0
21 50.4 35.4 31.8 18.2 17.2 23.11 108.0 '483.0 542.0 411.0 200.0 289.0
22 237.0 §1.4 46.8  184.0 243.0 347.0} 173.9 365.0 140.0 657.0 547.0 155.8
23 439.7 $3.0 31.3 2.8 20.5 347 29.5 24:2  19.0 94,4 176.0 355.0

424 246.0 36.3 16.4 17.2 30.5 21,04 113.0 249.0 461.0 422.0 225.¢ 105.0
25 330.9 32.9 26.5 17.7 33.3 39.7) 206.0 51. 291.0 401.0 803.0 21l.0
26 14.7 3.0 17.3 n.2 45.3 70.3} 273.2 125.0 619.0 515.0 438.0 340.0
27 40.0 §0.7 514.0 72.0 57.4 141.01 130.0 218.0 446.0 199.0 136.0 10S.0
8 40.5 25.3 98.3 2.2 19.¢4 853.0} 153.0 8.5 2763 305.0 54.7 263.0
29 39.1 29.1 39.4 344 23.2 73.3) 329.9 257.3 385.0 581.0 1071.0 202.9
30 63.0 38.0 17.3 61.3 23.9 58.6} l08.0 171.0 121.0 59.1 1.5 170.0
k3 28.3 18.7 15.0 25.6 22.6 4.5 96.4 206.0- 172.0 247.9 308.0 535.0
Dry Season Fet Season

Simultaneously

observed dry

seasonal segment = 2860 03 774 M1 W0 EO 710 RS T3 133 0.5

on 11 %% year

T
107.0]
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Table A.2.4: Demonstration of transitional seascnal segment of Craig Ck. {June 1958- May 1989)

Craig Ck. data matrix

on 11lth year

Year June  July  Aug. Sep. Oct.  Nav. Dec.  Jam. Ped.  Mar. pril May
1 137.0  155.0 145.0 56.3 §2.5 59.5 1 147.0 2440 186.0 428.0 938.¢ 192.0
2 112.0 44.5 63.0 31.7  476.0  442.0 § 611.0 402.0 1028.0 1073.0 915.0 554.0
3 186.0 54.5 44.9 54.9 4.7 57.3 54.8  101.0 563.0 §91.0 738.0 488.0
4 238.0 77.0  as.0 77.6  201.0 342.0 | 903.0 593.0 631.0 1109.0 663.0 212.0
S 245.0 93.5 163.0 58.5 64.5  520.0 , 375.0 745.0 232.0 1412.0 180.0 133.0
6 87.2 $0.3 41.3 39.§ 40.9 66.7 ; 85.4 641.0 5930 912.0 630.0 160.0
7 87.3 3.3 5.8 46.4 91.2  151.0 | 256.0 680.0 809.0 907.0 464.0 307.0
8 97.3 3.5 42.8 3%.7 85.8 54.9 43.9 56.9 904.0 408.0 197.0 602.9
9 87.0 33.5 58.0  159.0 397.0 224.0 | 387.0 747.0 432.0 1094.0 257.0 415.0
10 176.9  101.9  147.90 78.3_ 151.0 104.0 1 542.0 711.0 530.0 655.0 351.0 336.0
11 256.0  69.3 7.4 341 288.0 308.07 200.0 370.0 580.0  584.0  310,0 _145.0
12 21.0 132.0 240.0 114.0 78.7  142.0 | 531.0 637.0 663.0 291.0 450,07 25670
13 17.3 52.4  1%0.0 48.1 107.0 457.0 | 231.0 354.0 1208.0 520.0 S534.0 1091.0
14 542.0  126.0 114.0 131.0 432.0 288.¢0 394.0. 537.0 1051.0 593.0 746.0 758.0
15 1134.0  307.0 175.0 96.9  263.0 872.0 |1061.0 440.0 933.0 1205.0 1331.0 892.0
15 415.0 2340 157.0 78.0  128.0 230.0 [1105.0 .1080.0 496.0 6§55.0 500.0 441.0
17 263.0  138.0 146.0 103.0 95.3 91.7 | 467.0 737.0 938.0 1457.0 5710 940.0
18 228.0  111.0 86.3 2940 340.0 175.0 | 156.0 724.0 406.0 329.0 394.0 333.0
19 1023.0  141.0 30.4 55.6  §78.0  289.0 | 470.0 1§4.0 282.0 611.0 906.0 131.0
20 85.5 62.9 4.0 55.0  109.0 1009.0 ; 529.0 994.0 310.0 1575.0 1085.0 1041.0
21 215.0 36.0  139.0 69.3 49.4 70.5 1 193.0 1030.0 1096.0 1193.0 661.9 ¢0l.0
2 566.0  162.0 138.0 875.0 653.0 968.0 | 453.0 805.0 301.0 1143.0 1316.0  357.0
23 156.0  106.0 81.2 68.9 §4.5 84.9 84.4 63.1 202.0 202.0 277.0 543.0
24 511.0  102.0 4.1 44.3 33.9 58.9 | 173.0 607.0 1010.0 §68.0 377.0 285.0
25 793.0  109.0 85.3 46.1 85.2 192.0 ; 585.0 212.0 809.0 1233.0 1503.0 397.0
25 205.0 7.4 45.0 39.3  133.0 191.0 | 812.0 345.0 1084.0 1027.0 1085.0 731.0
27 92.3 82.1 306.0 126.0 35,9 164.0 | 246.0 445.0 805.6 355.0 295.0 347,0
28 109,90 6L.7 407.0 §5.7 64.7 2112.0 | 458.0 165.0 544.0 §33.0 157.0 403.0
29 114.0 65.3 §8.4 150.0 55.5 222.0 | 712.0 503.0¢ 655.0 1211.0 2427.0 402.0
30 115.0 74.7 2.6 197.0 54.8 170.0 | 248.0 373.0 292.0 141.0 372.0 309.0
3l 86.1 §3.5 57,1 30.35 66.5 163.0 | 136.0 326.6 285.0 572.0 324.0 1183.0
Ory Seasan Ret Season

Transitional

seasonal Segment -

of dry- wet tramsition = [ 256.0 3.3 774 341 288.0 308.0  210.0 370.0  580.0 584.0 310.0 145.0 )
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to dry and wet seasons. For each of these rivers, the data
matrix is assumed to coincide with the beginning month of dry
season. For each of these rivers, for each season, the
seasonal segments represented by pattern vectors are sub-
’clustered into two sub-clusters by-k -~ means algorithm as
explained in A.l.1. For each river, the two sub-clusters
corresponding to dry seasonal clusters are denoted by 1 and
2. The two wet seasonal sub-clusters are denoted by 3 and 4.
For each river, the seasonally segmented time wave-form is
replaced by the sequence of corresponding class-membership’
indices. These sequences of class-membership indices in case
of both rivers are juxtaposed in Table A.2.5. For Craig Ck.,
each of two seasonal period'long gaps on 29" year is denoted
by zero. The probability of occurrence of any class-membership
index R,; in Craig Ck. is computed by éonditioning on the
simultaneously observed class-membership index R,; in Dunlap
Ck. for (i=1..4, j=1..4). This conditional probability
P(R,; 1 Ry; ) is computed and summarized in Table A.2.5. During
the dry seasonal gap on 29th year, the observed dry seasonal
segment (SYN) in Dunlép Creek is of type 2 . The cqnditional
probability matrix shows that the most probable dry seasonal
segment (MPR) of Craig Ck. to be of type 1 because,
P(R=1|R=2) =1.0 and greater than P(R=2|R=2)=0.0 . The
juxtaposition of the sequences of class-membership indices
show that the combinations (MPR=1, SYN=2) corresponding to dry

season are observed 26 times in years (1, 2, 3, 4, 5, 6, 7, 8,



Table X.2.5 Juxtaposition of seasonal class-membership index sequences of.
Craig Ck, and Dunlap Ck, ahd the conditional probability matrix

River Year
- 1 2 3 i 5 I3 7 9 9 10 11 2 13 15 16 17 18 19 20 A 2 3 U 3 w W Wl 31

- =
Crafg ck. PA 13 14 13 14 14 14 14 14 14 14 14 14 14 2313 13 T4 14 23 13 23 14 14 13 13 14 24)00| 14 14 3
Duniap Ck. 24 23 24 23 23 24 24 24 23 23 24 24 24 24 13 23 23 24 24 13 24 13 24 24 23 23 24 14] 23] 24 214

Hutr;fx of probability of occurrence of Cra‘ig Ck. sub-cluster index
conditioned on the simultaneous occurrence of Dunlap Ck.
sub-cluster index [P(R, (R ]

X

Dunlap Tk. Sub-cluster index

]

[ 1 2 3 {
? T

& 1 100§ 8.00 0.0
@ 2 100 0.00 + 0.00 0.0
_“' I}

[&] i

> 3 0.00 0.0 | 0.05
= i 0.00  0.00 4 048 .95
(&) 1
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9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 21, 23, 24, 25, 26, 27,
30, 31) . The set of simultaneously observed dry seasonal
segments in these years is defined as selected seasonal
segments corresponding to the dry seasonal gap of Craig Ck. on
29th year . The MPR corresponding to the wet seasonal gap of
Craig Ck. on 29 year is of type 3 because, P(R;=3}R€=3) =0.82
and greater than P(R,=4 R =3)=0.18. The combination
(MPR=3,SYN=3) are observed nine times in years (2, 4, 15, 16,
17, 20, 22, 25, 26). The set of simultaneously observed wet
seasonal segments in these years is defined as selected
‘seasonal.segments corresponding to the wet seasonal ‘gap of

Craig Ck. on 29 year .

A.2.6 SAMPLING SCENARICS FOR MOVE.4 AND REGRESSION MODELS

This is explained in case of { Craig Ck., Dunlap Ck.} pair

considering one year long gap on 29% year of Craig Ck.

- In case of AMOVE and REG models, one infilling.equation is
considered. The sample consists of all the concurrently
observed monthly data of Dpnlap Ck. and Craig Ck. by
by considering the former as predictor variable and the
later as predicted variable. Thus, the sample consists of
[12*30 = 360] concurrent observations of the predictor and
predicted variables. Each of the missing data of Craig Ck.

on 29" year is estimated by equation A.1.3 and equation
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A.1.4 by AMOVE and REG model corresponding to the during

gap observed monthly flow data in Dunlap Ck.

. In case of SMOVE, SREG models, corresponding to the missing
data belonging to a particular season , say for example dry
season, one infilling equation is calibrated from the sample
consisting of all the concurrently observed data belonging
to the dry season of Dunlap Ck. and Craig Ck. considering
the former as predictor river and the later as the predicted
river. Thus, for this case, the sample consists of
[6%30=180] values of simultaneously observed predictor and
predicted variables. The values of the missing data
belonging to the dry season of Craig Ck. on 29 year are
estimated corresponding to the existing data of Dunlap Ck.
by SMOVE, SREG models using equation A.1.3 and equation
A.1.4, calibrated on the dry seasonal sample . Similarly,
the values of missing data belonging to the wet season of
Craig Ck. on 29™ year are estimated corresponding to the
existing data of Dunlap Ck. by SMOVE, SREG models using
equation A.1.3 and equation A.1.4 calibrated on the wet

seasonal sample.

. In case of SSMOVE and SSREG models, corresponding to the
missing data belonging to the dry season of Craig Ck. , the
infilling equation is calibrated from the selected seasonal

sample corresponding to the dry seasonal gap [Appendix
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A2.5]. Thus,the sample consists of [6* 26 = 156]
concurrent observations of predictor and predicted variable
corresponding to the elements of 26 selected seasonal
segments of the dry seasonal gap. The estimates of the
missing data are computed corresponding to the

existing monthly values of Dunlap Ck. by SSMOVE and SSREG
models using equation A.1.3 and equation A.1l.4 calibrated
on this sample. Similarly, the values of missing data
belonging to the wet season of Craig on 29th year are
estimated corresponding to the existing data of Dunlép Ck.
by SSMOVE and SSREG model using equation A.1.3 and equation
A.1.4 calibrated on the [9*6=54] elements of nine selected

seasonal segments corresponding to the wet seasonal gap.

A.2.7 SAMPLE FOR MULBS MODEL

This 1is explained in case of {Craig Ck.,Dﬁnlap Ck.} pair
considering two seasons long gap on 29 year in Craig Ck. For
dry seasonal gap segment, the conditional distributional
parameters are estimated from equation 3.7 corresponding to
the during gap observed dry seasonal segment in Dunlap Ck..
The sample consists of all the simultaneously observed dry
seasonal segments of {Craig Ck., Dunlap Ck.} pair . Here, dry
seasonal segments of Dunlap Ck. and Craig Ck. are considered
as predictor and predicted vectors. For this particular case,

the sample consists of 30 multivariate observations [ Table
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A.2.3]. Similarly, corresponding to the wet seasonal gap
segment, the sample consists of 30 simultaneously observed wet
seasonal segment ofv { Dunlap Ck. and Craig Ck.} pair.
Configuration of missing wet seasonal segment of Craig Ck. is
estimated from this sample by conditioning on the observed wet

seasonal segment in Dunlap Ck . [ Eg.3.7].

A.2.8 SAMPLE FOR SESTRNALL MODEL

This is explained in case of Craig Ck. assuming two seasons
long gap on 29th year. For infilling of the dry seasonal gap
segment, the sample is considered to be consisting of all the
wet and dry seasonal segments corresponding to complete [wet-
dry] seasonal transition. All the successively observed wet
and dry seasonal segments are considered as predictor and

predicted vectors with respect to the infilling of the dry
seasonal gap. The configuration of the dry seasonal segment
is estimated from equation 3.7 with the parameters calibrated
from this sample conditioned on the observed wet seasonal
segment on 28% year. There are 29 such transitions [Table
A.2.6]. Similarlyj for infilling of the wet seasonal gap
segment, the sample is considered to be consisting of all the
wet and dry seasonal segments corresponding to complete [dry-
wet] seasonal transition. All the successively observed dry
and dry and wet seasonal segments are considered as predictor
and predicted vectors with respect to the infilling of the wet

seasonal gap. There are 30 such transitions [Table A.2.6].



Table A.2.6 Demontration of extraction of samples for SESTRHALL model
for Craig ¢k, data infilling

Year 1 2 3 4 s 4 7 8¢ 9 1 U 12 13 u 15 16 17 18 19 220 2 2 23 A B % 2 AN 2% 32 AN
Season DU oW DWW DY DW DU OW DW DU DWW OW OU DU DY OW DW O DU DW DY DWW DU DY DW DWW OW DU OW 0DV DU OM
Years corresponding to complete seasonal transition gap

[Het-Dry] s. transition
Wet 8. ——  Dry .

[ Dry- Het] s, transition
Dry §. —» Het §.

]
I
|
1 2 ’ 1 1
2 3 | 2 7
3 4 | 3 3
4 ; | ! 4 LEGEND
: : ; > D = Dry seasonal segment
: : ! ¢ 6 H = Het seasonal segment
1 8 | 7 7
10 11 1 10 10
1l 12 | 11 11
13 1 | 13 13
15 16 [ 15 15
16 17 | 16 16
1 18 17 17
18 19 l 18 18
19 20 19 19
20 271 | 20 20
a 2 | 21 21
2 23 22 2
23 24 ] 23 23
24 25 l 2 24
25 26 | 25 25
21 28 27 27
30 31 ! 28 28
3 1 I 30 30
!
{
!
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The configﬁration of the wet seasonal segment is estimated
from equation 3.7 with the parameters calibrated from this
sample and by <conditioning on the estimate of the

reconstructed dry seasonal segment on 29™ year.
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