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ABSTRÀCT

In this thesis. the use of the seasonal group charact'erisLics

(occurrence of high and 1ow flow groups) in the monthly stream

flow data infillingi was investigated. Two multivariate monthly

flow data infilling models $¡ere developed. One model

reconstruct a flow group of rnissing data river by conditioníng

on the simultaneously observed flow group in the nearby

located river. The other model reconstruct a flow group of a

missing data river by conditioning on the preceding flow group

of the same river. The later model performed very poorly while

the first mod.el performed satisfactorily only in cases of a

longer period of concurrent data.

Further, in thís thesis the scope of the use of seasonal group

characteristics (hornogeneity characteristic e.g. high flow

group contains high flows and vice versa) to extract seasonal

samples (homogeneous samples) for the application in the

regression models hlere studied. These samples were found

beneficial only in the reconstruction of one seasonal data by

inducing larger estimation error in other season. Due to the

random variation in the occurrence of the flow groups, the

ad.opted procedure of seasonal segmentation ( splitting the

year in two periods of high or Iow flow) assigned few flows

to incorrect season thus causing larger estimation error.

Thorough investigation of such sample are needed prior to the

use for estimation of missing data.

il
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CEÀPTER 1

INTRODT'CTION

1. O PROBLEI'I DEFINITION

fn the lvater resources planning and management practice,

adequatety long uninterrupted monthly stream-fIow data series

are needed in order to analyze the sequential properties of

the historical data for various purposes, such âsr

forecastitg, synthetic trace generation, determination of

yield, capacity and operational policy of storage facilities.

Often the existing historical nonthly stream-flow record is

not only short but also contain one or more gaps. A gap in the

monthly stream-flow data series may be caused by the

instrumental malfunction during the data measurement, data

transmission and storage. A gap can also occur due to the

calibration error caused by the. occurrence of an extreme

event. Such a gap as shown in Fig. 1.1, divides the data

series into disjointed sub-series. The gap needs to be brid.ged

by using a suitable data infilling method which considers the

complicated nature of rnonthly stream-flow data.

1.1 COMPI¡EX NATI'RE OF UOIWTEI¡Y FI¡OW DATA AI{D DILEM!,ÍA IN TEE

CHOICE OF AN INFILI,ING UODEI.

The monthly stream-flow data

and cyclic variation in the

variability in the magnitude

L.2l çauses cyclic variation

is characterized by persistence

magnitude of flow. The cyclic

of monthly flow data [e.9. Fig.

in correlogram tFiq. 1.31.



Fig.1.1: Gap in strearn-florl data series
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The value of cross correlation coefficient between monthly

stream.flowseriesoftwonearbylocatedriversisoftenvery

high.Duetothehighcrosscorrelationcoefficient,a
regressionmodelcouldbeconsideredtobeviablemeansfor

infillíngofmissingdataoftheshortdatariverby

exploitingtheconcurrentdataofabaseríver(crossriver
information transfer) ' But, use of such a model in the

serially correlated series produce; serially correlated error

which is considered as an indicator.of possibre distortion of

a fitted line. when such a distorted line is applied to

estimate the rnissing data of a serially correlated rnonthly

stream-flow data series, the estimated data may differ very

much from the actual value of the missing data'

circumventing such a situation could possibly be achieved by

usingde-seasonalizeddataandthenfitaAR(l)rnodelonfhe

residuat.Buttheprocedureofde-seasonalizationis
criticized for causíng drastic drop in the correlation bett'veen

{themissingdataseriesandabaseseriespair}causingl
substantial amount of 10ss of information in the cross river

information transfer [Harmancioglu and Yevjevich 1987] '

Duetothecyclicvariation,themonthlystream-flowdata

belonging to different months may vary substantially and when

only one infilling equation is calibrated from all available

data, wide variation among the observations of the sample may
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cause unrealistic estimate of the missing d.ata. A possibility
of encompassingi the cycric variation could be the use of 1_2

different infirring equations for infilling the missing
monthly stream-flow data of the short data series belonging to
the t2 different months fHirsh (Lg7g, ]-981), vogel and

stedi-nger (1985) l, but this procedure is not reliable in case
of the availability of few years of concurrent observations.

Three major groups of missing stream-flow data firling model-s

are avaíl-able:

. A group of models use regression type equations oà

raw data and disregard persistence.
. Another group of models use either a

multiple regression or a multivariate regression to infill
multi-site data. Both of the model_s use de-seasonalized
data

. The third group of rnoders incorporate either regional
statistics parameters or some physiographic
characteristics ín the infirling equation and use either
raw data or de-seasonalized data.

1.2 PROPOSED }ÍODEIJS

The persistence and cycric variation of the monthly stream-
flow data offers very rittle scope to buird an infilling mod.e1

which would simultaneousry meet all these constraints. ïn the
hydrological literature, the existing infilring models make
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some form of compromise among these constraints to obtain an

realistic estimate of the missing data. Panu 1L978, l-9801

considered a completely different approach to encompass

serial persistence and cyclic variation. Panu I L978'19801

viewed that the time plot of a nonthly data series as a

sequence of high and Iow flow groups. He considered further

that the persistence can be embraced in terms of inter-group

relationship ( of 1ag-one Markovian nature) between groups

andintra-grouprelationshipbetwgenthemembersofthe
groups.

In this thesis, âñ effort is made in order to investigate the

efficacy of the use of group characteristícs in a data

infilling model. To pursue the above 9oa1s two multivariate

models, referred as MULBS and SESTRNALL, (detail specifics

aregiveninchapt'erthree)'areproposed.Thesemodels

encompass the cyclic variation completely and thus reconstruct

a seg:ment rather than an element of a time series '

Íbese models consider group relatioDship which is different

fron the conventional notion of persistence. The following

concept of seasonal grouP characteristics is considered to

build the configuration of the proposed models:

. The nonthly stream-flow data plot of a river [Fig. L.2]

exhibits periodic occurrence of a peat< and a valley over a

period of one year, these are denoted by wet and dry



seasonaL segment respectively.

Each of the wet and dry seasonal segments lasts for six

months, eactr can be denoted by a six dimensional vector

X=[xt ....*¿]t . This vector represents the association of

the six monthly flow values within a group and the flows

belonging to a group are considered to be simíIar ( high or

Iow) (Fig: 1.4). this sinilarity criteria is referred by

iatra-seasonal bomogeneity.

the dry seasonal segments are considered similar to each

other but dissinilar from the wet seasonal segment.

The consecutive six months period (seasonal period) over

whích the high/Iow flow persists in the wet/dry seasonal

segments are considered as season [this definition is

different from the definition of a season used in the time

series analysis, in the time series, the seasonal length is

twelve month l
The plot of monthly data tFig.l-.31 can be considered as a

sequence of seasonal segments I Fig. 3.3.a, b].

RATIONALE BEHTND THE DERTVATION OF THE PROPOSED MODEL

IIULBS:

In addition to the above mentioned seasonal gro-rp

characteristics, following charact,eristics are considered in
the derivation of MULBS model:



x10

season a I
i nterface
X

t2
MT Mr*1 F1T*z Mr*3 Mr*4 Mr*5

i dry s. segment

Itr xrz

Mr*7 Mr*B [\*g Mr*ro Mt+t2M
I -ro

I
I

i
wet s. segment j

I

_ _____]

Vector representation
of

Dry seasonal segment
Xp = [ xr ¡r2 x3 x4 xs x6 ]r
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Fig.1.4: Vector representation of dry and wet seasonal segments oÈ

a year



9

The simultaneous plot of stream-flow of two or more nearby

located rivers tFig.4.1,.2l exhibits almost concurrent

occurrence of peak and valley which can be justífied by the

coincidence of precipitation. This plot suggests a

dependence among' the sirnultaneously observed seasonal

segments and such a dependence appears to be consistent over

time (when there is a high peak in one river, high peak is

also exhibited in the other rivers).

Such a concurrence of observation of sirnilar seasonal segments

in nearby located ríver justifies to consider a model which

would be able to reconstruct a missing Seasonal segment of the

short data river condítioned on the simultaneously observed

corresponding seasonal segrment of the base river. This model

reconstruct a specific seasonal- segment of the short data

series at T*tn seasonal period by conditioning on the

corresponding observed seasonal segment of a base river series

at T*tn seasonal period tFig. 1.51. This model reconstruct a

dry seasonal segment of the short data seríes by conditioning

on the existing dry seasonal segment in base river series.

SimíIarly, this model reconstruct a wet seasonal segment of

the short data series by conditioning on the existínq wet

seasonal segment in the base rj-ver series. For the

reconstruction procedure this model. utilizes a multívariate

conditional- distribution, detail of Èhis procedure is given in

chapter three. This model completely disregard any
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relationshipattheinterfaceofadjacentseasonalsegments'
thus, disregard any relationship being carried over from one

seasonar segment to the next seasonal segment (i.e. the model

ignores inter-seasonal group relationship) '

SESTRNÀLL MODEL:

BACKGRoUND:Inthediscussionofthescopeofapplicationof
pattern recognition principle' Panu (Lg78) proposed a method

ofanalyzingtheseasonalgroupcharacteristicsofmonthly

flowdataofariverandfindingamissingdatasegmentby
projecting the preceding segment of the same river' This

method assumes that the seasonar segrments follows a Markovian

transition. The transitional probability' cluster

configurationoftheseasonalsegmentsanddistancesofthe

seasona}segmentswouldprovidesufficientinformationto

infillagapsegmentItheseconceptsareexplainedinchapter

threel. This method was attempted by Frenette (l-988), but the

work remained incomprete. This method was initially considered

for the thesis, but, this method was nod'ified subsequently'

ThemethodproposedbyPanu(]-978)and'therationalebehind

thenodificationispresentedinAppendixA.L.2.Themodified

model (SESTRNALL) consid.ers the inter-seasonal relationship as

theinfillingbasis,but,adoptsdifferentoperational
procedure.
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SESTRNALL MODEL: This model reconstruct a specific seasonal

segment of the short data series at Tkth seasonar period by

conditioning on the preced.ing seasonar segnnent of the same

series at T*-,ttn seasonal period t Fig. 1 . 6I . Thís model-

reconstruct a dry seasonal segment of the short data series by

conditj-oning on the preceding wet seasonal segment of the
short data series. rn a simil-ar wêy, this model reconstruct a

wet seasonar segment of the short data series by conditioning
on the preceding dry seasonal segrment of the same series. For
the reconstruction procedure this modef utilizes a

multivariate conditional distribution, detail of this
procedure is given in chapter three. This model takes account
of the relationship'at the interface of adjacent seasonal-

segrrnents, thus, considers that th; group relationship being
carried over from one seasonal segment to the next seasonal
segrment (i.e. the model accounts for inter-seasonal group
relationship) . rt al-so considers intra-group relationships.

1.3 TEESIS OBJECTTVE:

.rnvestÍgation of the efficacy of using seasonal_ group

characteristics in rnultivariate rnonthly flow data infilling
models and rationaÌe for future use.
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.Scope of the use of seasonal group characteristics in
extracting sarnples ( based on seasonal homogeneity) for the

existing univariate regression type data filling modeI.

The thesis is organized as outlíned below:

In Chapter two a review of the existing infilling models are

given to put the proposed models into perspective. The Chapter

three develops the mathematical- background of the proposed

models and it also develops a procedure of sample extraction
based on similarity criteria. The Chapter four discusses the

application of the proposed models in real world data. The

results obtaíned are analyzed in Chapter five. The Chapter síx
contaíns concluding remarks and scope of further research.
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CHAPTER 2

LITERATTIRE REVIETÍ

2.0 PREFACE

The existing monthly flow data reconstruction models can be

broadly classified into three major categories so that the
models belonging to a particular category do not differ from

each other in three aspects, namelyt (i) the way the models

handle serial persistence and cyclic variation, (ii) the
criteria (information source) the models use in the infilling
process and (iii) the restriction the models impose on the
number of short data series. These categories are: reglession
type models, multi-site models and moders using physiographic
factors. only first two category of model-s are comparable to
a limited extent tcj the proposed -models

2.1 EXISTING UODEIJS

REGRESSTON TYPE MODELS :These models d.isregard serial
persistence and cyclic variation in monthly d.ata, permit
infii-ling of gap at a single site and. incorporate cross-river
information transfer for infilring process. The reast square

regression, regression with noise fHirsh (1982) ] and

maintenance of variance extension (MovE) [Hirsh (LgB2) , vogel
and stedinger (t-995) I belong to this categiory. These moders

are basically meant for annual flow data augmentation, hence,

do not take account of serial persistence and cyclic
variation. Their structurar configurations can be compared by



16

considering the following hypothetical case:

Let

Xl XZ X3 ................................. X(ni *rr2)

Y1 Y2 Y3 """""" Ynl

represent a n1 + n2 period long stream-flow data seguence X of

a base river and nl period long stream- flow data sequence Y

of the river with rnissing data. The n2 period long gap in

series Y is reconstructed by both the regression and the MOVE

mod.el-s by means of regressing series Y on series X

Least sguare regression equation without a noise term is:

^-
Y¡ = Yt + b ( Xi - Xl ).......................[2.1]

where,

;,, .r,a y, respectively are the sample estimates of mean of

n1 period of concurrent data of series X and Y respectively,

b is the estimate of least square

xi are respectively the estimates

at íth period and the concurrent

regression parameterr y¡ and

of missinq data of series Y

observed data of series X.

The regression equatíon with noise is:

tr+b(x¡-xr)+c@r'(t-r2 )"rt ei ........Í2.27
vlhere,
Yi=

2
ov

gi=

Cl=

noise at period i

unbiasing factor computed by equating u{å") =



r
2

svl

I7

Noise indicator i.e. o = 0 when no noise is added

e - l- when noise is added

estimate of correlation coefficient

estimate of variance of n1- period of existing

observatíons of the series Y

Í{hen estimates of missing data are computed by Equatíon [2.2],
the estimates of an augmented series mean and variance would

be unbiased. These augmented series estimators are known as

Matalas and Jacobsrs unbiased estimators.

In stream-flow data reconstruction, mathematical formulation

of IIIOVE models were done by excludíng the noise term from the

regression equation 12.21, yet, preserving some desired

characteristics of the. augrmented series (i.e. Matalas and

Jacobsrs unbiased estimators of the mean and the variance of

the augrmented series). The noise term was needed to be

excluded in order to produce an unique estimate of the missing

data [Hirsh (1982) ]. Four MOVE models hrere developed i.e.

MOVE.1 and MOVE.2 by Hirsh (1-982) , MOVE.3 and MOVE.4 by Vogel

and Stedinger (l-985).

Voge1 and Stedinger (1985) presented the comparison among

various MOVE models in detail, which is summarized below :

Y¡ = a + b X¡ ............................. L2.37
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All the MOVE models folIow the general configuration given by

Equation 12.31 and in each case, the parameters are derived on

the basis of the desired characteristics to be preserved ,

namely:

In MOVE.1, the regression parameters are derived so that a

n1 + n2 Iong generated sequence of Y series by Equation

12.31 reproduces the historical mean and variance of Y

series.

In MOVE.2, the regression parameters are derived so that a

nl. + n2 long gienerated sequence of Y reproduces Matalas-

Jacobsrs unbiased estimators of mean and variance of

augmented series.

In MOVE.3, the regression parameters are derived so that a

nl long historical data sequence together with n2 long data

sequence generated by Equation 12.31 reproduces Matalas-

Jacobsrs estimators of mean and variance of the augrmented

series.

In MOVE.4, the regression pararneters are derived so that a

n1 long historical data sequence together with n2 long

data seguence generated by Equation 12.3) reproduces Vogel and

Stedingerrs minimum variance estimators of mean and variance

of the augmented series. The ninj-mum variance estimators of

mean and variance of the augrmented series were developed by

Vogel and Stedinger(l-985) by using a linear combination of the

corresponding parameter estimators of the observed short data
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þv = (1

series and the Matal-as and Jacobsrs

augmented series as given below:

-or)ir+@tþv

¡*2 26y= (1- @z ) t"r * @z

where

Matalas and Jacobsrs

augmented series

Matalas and Jacobsrs

augmented series

unbiased estimators of the

12.47

estimator of the mean of the

estimator of the variance of the

^?
ov

tt, =

^2ov=

The parameters @.' and @, are computed by ininimizing

the variance of mean and the variance estimators given in

Equation 12.41.

AlI these models violate the underlying model assumption of

serially independent X and Y series. Such an use would induce

auto-correlated error, which apart from giving an incorrect

estimate.of the missing data, ilây also cause consistent bias

thus producing a serious distortíon in the sequential

properties. The proponent of these models I Hirsh (L979,

L982) , Vogel and Stedinger (l-985) I are quiet aware of this
problem. They rational-ize such an use by the fact that the

data series of nearby located rivers have similar serial

correlation properties, regression type equations would be
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able to rnap these characteristics from base river to the river

with missing data, thus, the serial correlation structure of

the river with missíng data will not be distorted by such an

infilling.

The MOVE models (MOVE.2, MOVE.3, MOVE.4) claim that they

maintain the variance of the Y series ( a time series), but in

realíty, they maintain the variance of an independent series

IEquation 2.2] .

Hirsh (1,982) found the performance of the MOVE.I- and MOVE.2

to be superior to the regression equations, parÈicularly viith

respect to the bias in higher order statistics. The

performance of MOVE.3 and MOVE.4 in infilling missing data has

not been found in the hydrological líterature.

MULTI-SÏTE MODELS

These model-s consider the persistence and cyclic variation

expticitly, permit infilling of gap at rnultiple sites and

incorporate cross-river information transfer for infilling

process. Among the two models belonging to this category, one

model use multiple regression equation [Young et al. (]-970) l

and another model use multívariate regression [Kottegoda and

Elgy l1g77)J as infilling equation belong to this catejòrY.,.,^--

The operatíona1 procedure of the model using nultiple

regression, IYoung et. aI. (1-970) ] consists of arranging
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normal standardízed stream-fIow data in matrix format such

that the sites (represented by rows) be arranged top to bottom

of the matrix in descending order of the bulk of available

data tFig. 2.71. The procedure furthermore, consists of using

a linear predictor relationship given by Equation L2-51 to

infill the gap from right to left (on the row), top to bottom

of the data matrix thus rnaking optimal use of existing and or

infilled data. For any site k, in case of existing endpoints

i.e. y¡1r-1, and yr(r*,r) , the ínfilIed estj-mate of Ytc' need to

be adjusted with respect to these exísting points so that the

infilled data would comply with the assumed underlying AR(1)

process of the data seríes.

.Ê, ""* Yr(¡*r) * *-J b"¡ Yr¡ * t"¡ (t-Rz=¡ 1/2 . . [2.5]

where,

Y*i estimate of infitled data of sth site

period

existing or infilled data of kth site
period

data of kth site at ith period

least square reg'ression parameters

noise - N(OrL)

at ith

Yrc¡*t ¡

Yri

bsi, âsk

t"¡

at ( i+i-) th

v- =J st
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A multivariate multi-site AR(1) model with the following

configuration was considered [Kottegoda and Elgy (L977)] for

infilling rnulti-site rnonthly stream-flow data, there is

Yt

Yt+t = A xt*l | + B ot*r .-.....[2.5]

xt

where,

yt*t : vector of missing data estimates of predicted

variable at p sites on (t+1-) th period

y¡ : vector of observed values of predícted variable at p

sites on tth period

Xt*t : vector of observed values of predictor variable at n

sites on (t+1)th Period

Xt = vector of observed values of predictor variable at n

sites on tth Period

o.*t - p- dimensional noise vector at (t+1) th period

ArB : parameter matrices

Both of these models adopt standardization to ensure second

order stationarity, but this standardization procedure was

found inadequate for ensuring stationarity in auto-correlation

structure of the series [Bras and Iturbe (f-975) ] -

De-seasonalizatíon (i.e. standardization) procedure also

reduces the zero-Iag cross correlation coefficient between the

rivers I Harmanchioglu and Yevjevich (1987) ]
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Due to the dependence among the rivers, use of more than one

predictor river may not contribute to the marginal information

gain and unnecessarily complicate the matrix operation

procedure. Young et al. (t97O) also considered such a

situation and suggested to stop the incorporation of base

river when multi-col-linearity situation arises.

MODELS. UTTLTZTNG PHYSTOGRAPHIC FEATURES

These models permit infilling of gap at a single site and

incorporate cross-river information transfer in conjunction

with.some physiographic features such as the drainage area

ratio, regional statistics, distance between { the short data

river and a base river) for infilling process. Some of the

models pay consideration to the cyclic variation white others

ignore this issue I Hirsh (1979,) | Kottegoda and Elgy (L977)].

These models are suítable in principle for data augmentation

in stations with very few data or no data at all rather than

infiJ-ling purposes.

2.2 DISCUSSION

By comparíng the existing models discussed so far with
proposed models (MIILBS, SESTRNALL) , the f ollowings

observed:

The proposed models differ very much from the conventional

data filling models in terms of the underlying concept. The

the
âPô
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proposed models are intended to reconstruct a shape feature of

the tíine plot such as, a peak or a vaIley, in its integrated

form, while the existíng models can be considered to

reconstruct the shape pixel by pixel

The proposed models take fu]l account of cyclic variation

that they consider each month as a distinct element of

seasonal segment.

The proposed models consider group relationship which can be

concieved as the relationship amongi each of the six elements

constituting the seasonal segrments. For a particular type of

seasonal- segrment, the average relationship is given by a (6x6)

symmetric covariance matrix. Consiðering such. a reLationship

as an intra-seasonal persistence, is rather vague from the

typical hydrological view point of persistence, hence, it is

appropriate to consider such a relationship as intra-seasonal

group relationshiP.

Among the proposed models, the MULBS consider intra-seasonal

group relationship but disregards inter-seasonal group

relationship, while SESTRNALL model considers both intra-

seasonal and inter-seasonal group relationshíp

The proposed model are developed in order to investigate

whether or not the seasonal group characteristic can be

1n
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utilizedformonthlyflowdatainfil}ingbymeansof

multivariate models, hence, these models do not claim their

superiority over any of the existing models. with respect to

the underlying concept, these mod'e1s lack any kind of

similarity with the existing models. The proposed models are

empirical in nature and based upon some assumptions, such as,

MULBS model assumes that there is a relatiqnship between the

simultaneously observed seasonal segments of a {the river with

missing data, a base river) pair. It furthermore assumes that

this relationship is consistent over tine. on the other hand

the SESTRNALL model assumes that there is a substantial degree

of inter-seasonal dependence and consistence of the

dependence [Panu (r-978) ]. These are some assumptions which

need to be verified by a proper scheme derived in the next

chapter.

In this thesis the concept of seasonal group characteristics

is used to investigate the scope for finding samples on the

basis of seasonal homogeneity criteria for the regression type

of models. The proponent of the regression type models have

expressed concern about the large dispersion in the sample

when only one ínfil1ing equation is calibrated from all

available data. The only remedy could have been the choice of

LZ d.ifferent equations for infilling data belonging to 12

different months, But this inplies reduction of the sample
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síze by a factor of L2, which may lead to unreliable estimates

of parameters. These researchers suggested to rnake a

compromisebetweenchoosingl'2equationsfor]-2different

months or to make two to four seasonal- equation' In this

thesis'scopeoftheconceptofseasonalgroupcharacteristics

in extracting such samples is studied. The intent herein is to

studytheprospectsofseasonalgroupcharacteristicsinorder

to extract a sample consisting of the concurrent observations

of{shortdatariverandabaseriver}suchthatthe

concurrent observations in the sample do not show wide

dispersionamongeachother(homogeneity)andaresimilarto
the missing observation and the simultaneous observation in a

base river (sinilarity). It is hereby hypothesised that for a

missing observation, if an infilling equation is calibrated

from a sample with homogeneity and sirnilarity property, the

estimate of the rnissing data would be more accurate than the

estimate computed by an infilling equation calibrated form a

sample consisting of all available data (heterogenous sample) '

Three sarnpling scenarios are considered, one of which use

clusteringconcept.Thesesamplingscenariosaregivenin

Chapter three.

In the chapter three, concept and selection of such sampling

criteria are discussed.
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CHAPTER 3

DEVELOPIIENT OF IIÍULTMRIATE INFILLING

¡TODELS ÀND DERIVATION OF SAI,ÍPIJING SCENÀRIOS FOR

REGRESSION A}ID I,ÍOVE.4 ¡.ÍODEL8

3.O OUTIJINE OF VARIOÛS SUB-PROCEDURES

The proposed multivariate models assume that any section of

the monthly flow data plot of over a period of one year can be

segimented into two or more dif f erent types of seasonal

segrnents corresponding to the yearly low and high fl-ow group

characteristics of the river. ft is thereby necessary to

recognize, analyze such groups in the data, determine the

averag'e number of different flow groups over a year period

followed by a suitable segpentation process. The evidence of

groups in the nonthly flow data is discussed in section 3.1-.

Procedure to determine the average number of such groups is

also discussed in this section. An irnperial algorithm for

seasonal segmentation is given in section 3.2.

Among the proposed models, MULBS assumes the presence of

considerate level of consistency in the simultaneous

occurrence of seasonal segTments of certain level of severity

in the {river with missing data, a base river} pair Ii.e. when

there is a rvery hight peak at a seasonal period T, a very

high peak is expected concurrently in a base river and such



29

concurrent occurrence of rvery highr peaks is consistent over

tirnel. SESTRNALL model.on the other hand assumes consistency

in the seasonal transition. These model assumptions are

verified by an empirical scheme that uses a combination of

sub-clustering and entropy concepts. The sub-clustering

concepts needs the hyper-space representation of seasonal

segrments which is discussed in section 3.3. The assessment of

consistency is done in chaPter 5.

It has been mentioned in the previous chapter that three

sampling scenarios would be considered for the univariate

models. One of these sampling scenarios uses derivation of

selected seasonal segments by an empirical scheme. In this

scheme, the seasonalJ-y segmented time series of { the river

with missing data, a base river) pair are replaced by the

sequences of class membership indices of the seasonal segrments

which are derived by sub-clustering procedure. Juxtaposition

of the class-membership index seguences of {the river with

missing data, a base river) pair, allows to extract a set of

concurrently observed seasonal segrments which are similar to

a missing seasonaÌ segment at a seasonal period Tk and the

concurrently observed seasonal segment at a base river.

For the infilling of any element j of a missing seasonal

segiment at T., âD regression type equation can be considered

to be calibrated frorn the sample consisting of alI the
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elements of the selected seasonal segments pertaining to a

missing segiment at a period T*. A procedure for extractíon of

the selected seasonal segiments and development of various

sampling scenarios respectively are discussed in section 3.4

and section 3.5.

The development of general statistical basis of multivariate

models is done in section 3.6, which is utilized in the

development of the statistical configuration of MULBS model in

section 3.7 and that of SESTRNALL MODEL in section 3.8.

3.1 ON RECOGNITION OF GROUPS IN THE FI,OIT DATA AND THE

DETERUINÀTION OF AVERAGE NT'IÍBER OF SUCR GROUPS PER YEAR

Seasonal group characteristics is discernable in various

representation of data. Groups are either visible or

conceivable in the : ra$r data, correlogram and time plot of

the data.

Monthly stream-fIow data series printed from the data bank of

any standard hydrological- agency e.g. USGS, can be considered

as a data rnatrix consÍsting of rovts and columns representing

the year and the month respectively pertaining to the

collected data. The data along the rov¡ shows seasonal

characteristics such as relatively high or relatively low flow

persisting consecutively over fixed number of months.
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The group behaviour is visible in the correlogram of the

stream-flow data. The auto-correlation coeffícient can be

considered as a measure of sinilarity between the data at a

certain lag [Romesburg (1'974)]. The correlogram of monthly

stream-flow data displays periodic changes in sinilarity (in

slope and ín magnitude). The correlogram of monthly stream-

flow data of a river with two seasons per year shows a peak at

every even multiple of six months and a valley at every odd

integer rnultiple of six months indicating twelve months

periodicity. This indicates the presence of two different

types of flows. Each type of flow lasts for six months

subseguently followed bY a complete reversal of

characteristics [Panu (]-978), Panu and Unny III(1980) l.

Seasonal group behaviour of the stream-fl-ow data is further

highlighted in the time waveform plot ( plot) of the stream-

flow data tFig . 7.2J. Time waveform of stream-flow is a shape

representation of stream-fIow in tine continuum, characterized

by the periodic recurrence of peaks and valleys within any

year.

on one hand, seasonal group characteristics can be considered

as a shape feature in terms of time vtave-form representatíon,

on the other hand, seasonal group characteristics can be

considered as an attribute of exhibiting similar flows over

some fixed months of any year. However different these
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descriptions may be, they describe one and the same feaLure of

the physical system, namely, a set of consecutive months

having high and low flows or relatively high, high, 1ov'r and

relatively low fl-ow scenario depending upon the number of

seasons per year. Due to the random variation of precipitation

and other climatological factors, in the real world sítuation

, seasonal distinction of the raw data is not very straight

forward.

Based on the siinilarity criteria associated with the

correlogram, the average number of seasons per year can be

obtained from the correlogram of the data. After determination

of average numbers of seasons per year, the association of

months to the season or segmentation of the time wave form is

done by an empirical algorithn explained in next section.

3.2 SEÀSONÀT. SEGUENTÀTION

An ernpirical algorithrn, in accordance with the definition of

season from clustering point of view, is proposed here { see

example , Appendix .A'.2.7I.

Let the correlogram of rnonthly stream-flow series show w

seasons per year and Iet, each season last for m months.

According to this algorithm, the twelve stream-flow data

corresponding to the l-st year of the data matrix are ranked in

ascending order of rnagnitude, the months corresponding t,o the
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fírst m lowest flows are assigned to the seasonal group k=1,

the months corresponding to the second m lowest flows are

assigned to the group k=2 and so on. Subsequently, the months

corresponding to the n highest flows are assigned to the group

k=w. This 
-procedure 

is repeated for each year of the available

data. For any group k, for any month j, the total number of

assignment of jth month to kth group is counted as follows:

I
t*,j =¡ì zr,j,l

where,

ta, j total number of times jth month is assigned to

group k

2i,i,t f corresponding to assignment

ith year to any group

the assignment of jth month to

k
k

SEASONS

: total number of yéars of data

The jth month can be conceptually consid.ered to be assigned to

a seasonal group k with whom it has been assigned maximum

number of times for that month. The assignment of a month to
group k is given below:

= value of counter

of jth month on

lor computation of

kth group:

,i,i,f : 9 when
zi,i',t = 1 when

= the total number

f+

of
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i e k : max{ Dt,j I , k= 1.......tI ........o Í-3.27

For each of the twelve months, the total number of assignment

to each of the seasonal groups ( k:1-....$t) are counted. For

any season, a continuous chain of m months is expected to shohl

maximum number of assignments to that particul-ar Season. One

can thus infer which chain of m months should be assigned to

which season. Prior knowledge about the drainage basin in

terms of the time of occurrence of the peak and low flow can

be considered as additional aid pertinent to the seasonal

segïnentation Process .

The correlogram and the segi'mentation algorithm enables the

division of continuous time vtave-form into seasonal segment,.

For a particular Season, the seasonal Segfments can be grouped

or clustered by j-mposing some criteria. They can be further

sub-clustered by inposing some other finer criteria.

3.3 UYPER-SPACE REPRESENTÀTION AND CI,USTERTNG OF THE SEASONAL

SEGI.ÍENTS

A seasonal segment ( m months long) can be considered as a m-

dimensional object and ít can be represented by a m-

dimensional pattern vector X (Equatíon t3.31). Such a

seasonal seglnent can be considered as a point in m-dirnensional

hyperspace.
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Xir = [ xlt , tzk , .....x¿ JT [ 3.3

r¡Ihere,

Xik = pattern vector corresponding to the kth seasonal segiment

on ith year

x,* : the stream-flow of kth seasonal segrment on

lth month , 1: 1....m I also denoted as lth elernent]

In hyper-space representation, in case of a river with vt

seasons per year , the points corresponding to all the

seasonal seg:ments would constitute w different clusters {cr}

(k:1...w) in a way that the points representing the seasonal-

segiments belonging to a conmon season k , would lie in a

conmon cluster C* [Fig. 3.1].

Any seasonal cluster Ck can be further sub-divided into q

sub-clusters depending upon the degree of refinement in

similarity criteria imposed on the membership of a coÍlmon sub-

cluster tFig.3.2l . For a given seasonal cluster, by means of

Sub-clustering, one can thus group Seasonal segfments by

inposing more rigorous simílarity criteria, i.e., sub-

clustering of wet seasonal segments could mean screeníng of

very high peaks from the comparatively less severe ones.

Many kinds of clustering algorithms and diversified nature of

similarity or dissirnilariÈy metric are avaitable in standard
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cluster analysis and pattern recognition text books. In this

thesis, a k -mean algorithrn usÍng Euclidean distance as

dissinilarity metric is consídered for the sub-clustering of

seasonal segrment. Additional d.etail of k- means algorithm is

given in Appendix A.l-.1

3.4. EXTRÀCTION OF SEI.ECTED SEASONAL SEGMENTS

.One can replace the seasonally segrmented tirne wave-forn by the

sequence of class-mernbership indices obtained by the sub-

ctustering process. Such a sequence of seagonal class-

membership indices represents the time plot of the seasonal

status or degree of severity of the seasonal segrments [Fig.

3.31.

Let Y and. X respectively denote the sequences of seasonal

class-membership indices of the river with short data and base

river t Fig.3.4 l. On basis of the similarity of the climate,

the rivers of same or nearby basj-ns can be considered to have

same number of seasons per year and the same seasonal

segrmentation pattern, i.e., equal number of seasons per year

and association of the Same months to the Same season). In a

pair of nearby rivers, consistency in the simultaneous

occurrence of seasonal segi-ments of certain degree of Severity

can be expected. This consistency can be assessed by

computing the probability of occurrence of a seasonal segrment

of type "rpk in series Y conditioned on the simultaneous
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occurrence of a seasonal segment of type c*qk in series x as

given below:.

P(cyp¡< I "ro* ) = P(cvpk r "Lo!_l
P ( cxqk)

(Nxyo* / Nnn* )

=
(Nxot / Nro* )

... [3.4]

where,

p = a sub-cluster index of series Y corresponding to

season k [ (p:1" "kt ) 'kt is the total number of

sub-clusters of kth seasonal cluster]

q = a sub-cluster index of series x corresponding to

season k [ (p:1" "kr ) 'kt is the total nurnber of

sub-clusters of kth seasonal clusterl

N*rok : number of times the seasonal segfment of type cto*

in series Y is simultaneously observed with

seasonal segrment of type c*o* in series X

Nrrp* = number of times the seasonal segi'ment of types cro* and

cro* could possibly sirnultaneously occur in X and Y

N*ok = number of tirnes the seasonal segment of type C*ok

is observed in series X

N*o* : number of times the seasonal segment of type c*o*

could PossiblY occur ín series X

In case, when the series X and Y have same number of seasons

per year, Same seasonal association of the months and Same
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number of sub-clusters per season, N*rpk and Nro* are. equal.

Thus, Equation t3.41 reduces to Equation t3.51.

p(cvpk I c*qt ) = (N*ot / Nxot) """""'f 3'5]

Let there be a rnissing seasonal segment in season k at Tth

seasonal period in series Y and let SYN represent the class-

membership index of corresponding simultaneously observed

seasonal segrment in series X tFiq. 3.41. One can search the

conditional probability table and select the most probable

class-membership index 
"ro* 

of the candidate missing segirnent in

Y by satisfying following constraint:

I.fax{ p(cvpk I svll )} .............f 3.6I

The sub-cluster p satisfying Equation 3.6 is considered as the

most probable class- membership index of the missing seasonal

segirnent and is denoted by ttfPR. One can nol.l search for the

years in which,seasonal segrnents of type SYN and seasonal

segments of type MPR are simultaneously observed in series X

and Y respectively. Such a set of simultaneously observed

seasonal segirnents is referred as selected seasonal segiments

{ example gJ-ven in Appendix .A'.2 .5 } .
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3.5 DEVELOP}IENT OF Sã¡.IPTTNG SCEN2\RIOS FOR REGRESSION ÀND

MOVE.4 IIODELS

conventionally, the regression and MovE.4 models compute

parameters of the infilling equations from the sample

consísting of all avail-able data, thus, disregard the
heterogeneity of the data belonging to different seasons.

Three different sanpling scenarios are deveroped. for each of
the regression and MOVE.4 models. General configuration of the
regression and MovE models are discussed Ín chapter two and.

the detail descriptj-on of the least square regråssion and

MovE.4 model considered for various sampring scenarìos are
presented in Appendix À.1.4 and Àppendix A.j-.3. The three
different sampling scenarios are:

l-. ) f ndiscriminatel_y chosen sample

one infilling equation is calibrated from sample consistingi of
all available data. The regression and MovE.4 models under

such sampling scenario are denoted by REG and. Ar{ovE

2.) Seasonal samplinq

separate infilling equations are calibrated for infilring of
missing data belonging to separate seasons. For infirling of
the miss j-ng data belonging to a partícular season k, the
sampre is chosen from the elements of al1 simultaneously
observed kth seasonar segments of { river with missing'data,
base river pair). The regression and. MovE.4 models under such

sampling scenario are denoted. by SREG and SMOVE
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3. ) Selected seasonal sampling

Separate infilling equations are calibrated for infilling of

missing data betonging to separate seasons. For infilling of

the missing data belonging to a particular missing seasonal

segrnent, the sample is chosen from the elements of selected

seasonal segments corresponding to the gap segment. The

regression and MOVE.4 models under such a sampling scenario

are denoted by SSREG and SSMOVE

These samplíng scenarios are more elaborately explained in an

example in Appendíx 4.2.6.

3.6 DEVELOPIÍENT OF STÀTISTICA,L BÀSIS OF MULTIVÀRTÀTE IIfODELS

Two multivariate infilling models are considered. Each of them

computes the parameters of the conditional distribution of the

missing seasonal- segiment. They differ from each other by the

nature of the conditioníng variable. one.mode1 conditions on

the observed seasonal segment in the base river while the

other model conditions on the observed or reconstructed

seasonal segrment preceding the gap segment of the river with

missing data. V{hen the predictor and predicted seasonal

segrments jointly follow a multivariate normal distribution,

then the reconstructed seasonal segrment is considered to have

a multívariate normal distribution. The mean vector and

covariance matrix of the reconstructed seasonal segment can be

considered as sufficient statistics to describe the
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conf igurat j-on of the d.istribution IJohnson and l^Iichern

(L988) l. Each of the multivariate models considered here has

the same following statistical basis

lfean = Fr + 2'- Eu-t ( xz ' Itz )

and o.... [ 3.7]

-1
Covariance = Erl - t,tz 2zz Ez,t

r,,Ihef e t

Etl(p*p)matrixcontainingtheelementsofcovariance
matrix of Xt

2zz : (p*p) matrix containing the elements of covariance

matrix of Xt
-(-

Zr, : Zr'.,: (p*p) matrix containing the cross covariance terms

between the elements of Xt and Xt

It1 = (P*1) mean vector of X''

It2 : (P*r) mean vector of Xt

p variate random vector and

ed as Nro (tt, E) with

[r,l ,and lzzzr >o
LprJ

on of X,, , given tz: tz , isThen, the conditional distribut

multivariate normal with
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The seasonal gap can be infilted either by the estimate of

corresponding conditional mean or by a randomly generated

seasonal segrment by usín9 a multivariate random number

generator specified with the conditional configuration as

generation basis. In this thesis, estimates of conditional

mean are considered as the estimate of missing seasonal

segment.

SEASONAL SEGI'IENT IN BASE RMR [I'ÍULBS]

The I{UIJBS model reconstructs the rnissing seasonal shape

feature, such as a peak or a valtey of the time hTave form of

the river with missing data by conditioning on the

corresponding shape feature observed in the base river. This

model computes the mean and covariance of a missing seasonal

segment of the river with rnissing data at any seasonal period

by conditioning on the observed seasonal segTment in base

river. Let A and B respectively represent the seasonally

segmented series of the river with missing data and the base

river. Let these rivers have same number of Seasons per year

and same association of months to seasons. Let the vectors Xt

and X, represent seasonal segments of A and B concurrently

observed on kth season on ith seasonal period' The vector X=

I Xr , Xz lT represents the simultaneously observed seasonal

segments. Let there be a gap on kth season at Tth seasonaf

period of the seasonally segi"mented time-wave form of series ã
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(Fíg.3.5). Because the vector X, = xz is observed in the series

B , hence, the configuration of the distribution of missing

seasonaL segment conditioned on observed xz can be obtained by

Equation 3.7 . For any seasonal gap on kth season, all the

concurrent observations of the random vectors x,, and x, on kth

season are considered as predicted and predíctor vectors'

Joint normalíty of Xt and X, is the requisite precondition

to be met for this mod.el. Sirnuttaneously observed seasonal

segments and the sampling scenario for the MULBS model are

explained in detail in Appendices A.2 ' 3 and A'2 '7 '

WITII UISSING DATA TSESTRNALI,I

The SESTRNALL mode1 reconstructs the missing seasonal shape

feature of the time wave-form by condítioning on the

reconstructed or observed preceding shape feature of the river

with missing data. Let X' and X, respectively denote the kth

seasonal segfnent on ith seasonal period and (k-1) th seasonal

segrment on (i-1)th seasonal period. Let the vector X=[X1rX2lT

denote the transitional seasonal segment corresponding to the

transitíon of (k-l)th season to kth season. Let there be a

seasonal- gap on Tth seasonal period corresponding to kth Season

in the seasonally segmented tine series A of Èhe river with
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missing d.ata (Fig.3.6). Let the seasonal segiment at (T-1)th

seasonal period corresponding to (k-l)th season be either

observedorreconstructed,henceknown.Correspondingtoa
kth seasonal gap, all the observed seasonal segfments of l(th

and (I(-1) th seasonal segments are denoted as predicted and

predictor vectors X', and X, respectively' Since the value of

xz:rtzisknownrtheparametersofthedistributionofthe

rnissingseasonalsegimentXlbyconditioningontheobservedor

reconstructed vector corresponding to preceding seasonal

segment N,z can be derived from Equation 13'71 ' The model

parametersofEquationi3.T]areestimatedfromtheexísting

observations corresponding to (k-1)th and kth transitional-

seasonal segments. Transitional seasonal segTments and the

sánpfing scenario of SESTRNALL model are given in Appendix

A.2 .4 and A .2.8.



49

CHAPTER 4

APPI.ICATION OF TEE }ÍODELS

4. O OUTI,INE OF APPI,ICÀTION PROCEDTTRE

Application of the models d.eveloped in ctrapter three is

carried out by reconstructing a year period of monthly strean-

flow data of three d.ifferent rivers in three different

watersheds. In case of application of the models incorporating

base river information, one rj-ver is considered as a river

with missing data and whose missing data are infilled by two

to three di-fferent base rivers. Suctr a choice of considering

one missing data river and multiple base rivers allows to do

the followings:

For a particular base river, for each of the regression

and. MOVE.4 models, comparison of infilling quality under

various sampling scenarios.

For a particular model[ MULBS, regtression and MovE.4

mod.els under various sanrpling scenarios] ' comparison of

infilling by various base rivers.

One set of closely located rivers is chosen which is referred

as river cluster . One member of the river cluster is treated

as the river with rnissing data RA and the remaining members

are treated as a base river set t{Rs¡}, j=l..n'l with n, being

the total number of base rivers. SESTRNALIT model- is applied to
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information are applied to the pairs of the rivers with

nissing data and base rivers [{RArRBj I, j=1"'Ds ]'

At least three nearby located rivers are needed to be

consídered to form a river cluster so that one can be treated

as river with missing data and the other two rivers can be

treated aS base rivers. Continuous and reasonably'longer

period (> 30 years) of natural data is desired for each

member of the corresponding river cluster'

Three clusters of canadian rivers !,rere initially considered-

One of them is rejected in view of meager data in one case t

rivers of Dease basinl, and another because of urbanization

concentration [rivers of Sydenheim basin]. The third river

cluster, consisting of the rívers of Lillooet basin' hlas

chosen in spite of the inadequate data (23 years). This river

cluster is referred as cluster LIIIL (named after the

abbreviation of Lillooet basin).

U.S. Geological survey published data on West Virginia basins

shows that the rivers of this area possess the characteristics

for considering as members of the river cluster. Hirsh

(Lg7g,Lg82) chose seven rivers from this zone for the

comparative study of some of the existing data infilling

models. The Same Seven rivers are considered here, but these

rivers are considered in two different cl-usters due their
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relative locatíons. Each of the members of these rl-ver

clustershasverylongperiodofnaturaldata.Thesetwo
clusters are referred as uPB cluster and IJB cluster in

accordance with theír geographicar rocation , namely the

members of the uPB cluster are geographically located

relatively above the members of the LB cluster'

All the models under study (except REG and AMOVE), need

seasonallysegmentedtimeseries.Inordertoenablethe
computationaloperation,itísthereforeconvenientto

restructure the data matrix so that itts beginning coincides

witn the beginning month of any of the seasons determined by

the segmentation process {Section 3'1}'

In ord.er to facilitate comparison amongi conmensurate models as

well as to facilítate comparison of the quality of infillíng

among various base rivers , the data matrix comprising of same

period of data as well as gap over same period is considered'

so the same restructured or slid data matrix ís used for all

the rnodels.

The procedure of seasonal segmentation and sliding of data

matrix is explained. in Appendix 4.2-L. The essential features'

such âsr seasonal segrment, simuttaneously observed seasonal

segment, transitional seasonal segment, selected seasonal

segrment are described in chapter three and explained in det'ail
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in Appendix 4.2.

For the REG and AMOVE models, infilling Equations 4.1.4 and

A. i-. 3 are calibrated from the availabte sarnple without

imposing any selection criteria. For SREG and SMOVE models,

infilling Equations 4.1.4 and 4.1.3 are calibrated from the

seasonal samples. For SSREG and SSMOVE models, infilling

Equations 4.1-.4 and 4.1.3 are calibrated from the seasonal

selected sample. The sampling scenarios are explained in

Appendix A.2.6.

For all the three scenarios of the regression models,

normality of residual is ensured. At first the respective

model is applied to the natural data, and normality of error

is tested by both Chi-square goodness of fit and normal plot.

In case of non-normality, the data is transformed to satisfy

the normal error criteria. In all the three scenarios of the

MOVE models, log transformed data is considered I Vogel-

Stedinger (1985) , Hirsh (l-e82) I .

For the MULBS and SESTRNALL models, the selection of samples

is explained in Appendix 4.2.7 and in Appendix 4.2.8. For each

of these multivariate models, norrnality of the joint variate

X I equatj-on 3.7] is an essential prerequisite. For the

SESTRNALL model, the multivariate normality of the

transitionat seasonal segments and for the MULBS model, the
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multivariate normality of the simul-taneously observed seasonal

segments of {base river and the river with missing data} pair

are tested by the procedure explained below.

TEST CRÏTERIA

For a 2m dimensional normal variate, the Mahalanobis distance

(M.D) follows a chi-square distribution. The testing of the

distribution of the observed M.D. against a Chí-square

distributj-on is considered as a tool for testing of the

rnultivariate normality of the X variates.

Let each of the seasons comprise of same number of months m ,

then x can be considered as a 2m - dimensional vector for each

of the multivariate models. fn case of 2m- dimensional

normality of X , the Mahalanobis distance (M.D. ) of X from the

mean vector , namely, [ (X-&)r E-î (X-p) ] would fol1ow a Chi-

square distribution with 2n degrees of freedom

[Johnson and Wichern (1988) ].

OPERATIONAL PROCEDTIRE :

. The M.D. for the observed X are computed and ranked.

. For each rank j

The corresponding exceeding probability a, is
computed by : dj : []- -(j-0.5)/nl ; [n: number of
observed X variatel.
from the of Chi-square table, the theoretical
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chi- square value (TVj ) corresponding to D.F.:2m, is

read at a,

The observed M.D., rs and the corresponding

theoretical Chi- square values are plotted at the

same aj

The curve joining these theoretical values is denoted by

theoretical curve. The curve joining the observed values is

denoted by observed curve. The observed curve is visually

compared against the theoretical curve. The rationale of such

a procedure lies in the fact that it, provides a tool for

observing the deviation of the observed M.D. from the

theoretical Chi-square values at any exceeding probability

leve1 o. The test of goodness of fit could have been a choice,

but ít was not selected because of the biasness of the test
statistics to the numbers cells [this biasness is magnified in

rnultiple dimensionl. On the basis of the deviation between the

observed and the theoretical curve, subjective judgement is

applied in order to accept or reject the fact that the

observed curve is approximately fitting the theoretical curve.

In case of such a satisfactory fit, the multivariat,e normality

in the raw data is assumed and the ravr data is used in the

Equation t3.71.
TRÃNSFORMATION

In case of poor fit of the observed curve, non-norrnality of X

variate is suspected, which is handled by the following
procedure:
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Ttre rnarginal norrnality of each of the elements of the joint

variate X is tested. If an element x, is found non-normaI, the

element is transformed by Bos-Cox transformation. This is done

for all non-normal elements. New Mahalanobis distances are

computed and the curve fitting exercise is repeated IFi9.4.0]
until a satisfactory fit is obtained and the transformation

matrix I consisting of the { shift and power} of the 2m

elementsl which provides such a fit is chosen to transform the

non-normal data to normal data. Equatíon 13.7 I now can be

applied to the transformed data under the assumption that the

normalization transformation has ensured normality in the

data. In case of no satisfactory fit, the transformation

matrix which provides the minimum deviation between the

observed and the theoretical curve, is chosen for the

normalization transformation of the data.

The next section deals with the application of the proposed

multj-variate models as well as the regression and MOVE.4

models under various sampling scenarios for infilling one

years of the stream-fIow data of the missing data river
belongíng to each of the three river clusters.



56

TEGEND

Theoretical curve A

1

l'¡
Fé
É

c)a
c/1

I

<.)

Ë
(J
*
Þ¡Éo
trJ

Ê<

ê
È¡
É
É¡
úl
çoo

Observed Curve C1 of Mahaianobis distance which is
computed from the data transformed by lhe
transfonnation natrix Ti

Observed Curve C2 of Mahaianobis disbance which is
computed from the data transformed by the
transformation mabrix Tz

\

Fig, 4,0 : Pl ots of ranked
data which is lransformed by

Mahalanobis disbance computed from the
tro different transfornation I'fabrices

* Because the curve Cl has

C2, therefore Transformation
the transformation malrix T2

less deviation from A lhan the curve
matrix TI is a better candidate than
for ensuring rnullivariate normality

oL ----Y



57

4.1 APPLICATION OF VÃRIOUS UODEI,S IN INFILI,TNG IIÍISSING DATA OF

RIVERS BELONGING TO UPB CLUSTER

The basic information pertaining to the members of UPB cluster

and the location of the members are presented in Table 4.L.t

and in Fig. 4.L.t. A plot of a f ive year period of

simultaneousÌy observed data of the member rivers is presented

in Fi9.4.L.2. At the initial phase, for each of the member

rivers, 3I years of data over the period of [Oct. 1958-

Sep.1988) are considered. Correlogram analysis

IFigs.4.l.3.(a,b,c,d)] shows two seasons per year and the

segrmentation procedure assi-gns the periods [June - Nov. ] and

[Dec.- May] respectively to dry and wet seasons [Tab1e

4.L.21. The data matrix ís slid to begin with the beginning of

the dry season. The slid data matrix contains 31 years of data

over the period [June ]-958 May 19891. One year of monthly

data of Craig Ck. over the period [June 1986 May19B7] is
assumed to be rnissing. The SESTRNALL model is applied to Craig

Ck. and the rest of the models are applied to {Craig Ck.,

Dunlap Ck. ), {Craig Ck. , Johns Ck. } and {Craig Ck. , Cowpasture

R. ) pairs. Multivariate normality is tested for both MULBS and

SESTRNÀLL models. fn case of unsatisfactory fit, power

transformation of element of the joint variate X are done

The final Chi-square pì-ot of the Mahalanobis distances of the

observations of X variate are presented in Figs. 4.L.4.(L, 2,

3,4,5 and 6) and Figs.4.l-.5.(L and 2). The reconstructed

data of Craig Ck. corresponding to the different information
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sources { Johns Ck., Dunlap Ck., Cowpasture R., Craig Ck. }

pertinent to data reconstruction are presented in Tabre

4.1-.3.(t, 2t 3 and 4)
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TabLe 4.1.1: Infornntion pertinent to the meÍbers of UPB ctuster
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' Table 4.1,3,I : Iaíi11in9 oi nissing nonthl¡ nean discbarge [crs] oÉ

Craig Creek b¡ various nodels incor¡orating
Joh¡s Creek infornatioa

Iníi1 I inq
!{odel s

l{onthlJ nean Discharge ICgS] ior e¿ch nonlh oi aissilg period IJuneJ.986-YayLoSi]

!?

RSC

SREG

ssREc

,trovu
SHOVE

ssH0vE

¡{0t8s

i29.s
133.6
i33 . .{

l?8.2
I ?J 1

13{.0
119.3

òd.1
69,9
70 .3
66. 5

70,1
?0 .5
61.6

71.0 205 . I
75.9 212.3
76.1 210.8
72 .5 20.{. 6

76.2 213.5
75.6 2II.8
70 .2. 156. S

65.7 305.5
6i.5 315.7
67.9 3II.9
61.3 305 . {
67.7 317.8
68.2 3i3.7
62;{ 310. {

77I.9 5.{?.3
78t.9 s38.t
767,3 530.3
78I.5 55t. {
7A2.1 538.2
765.6 529.1
817.5 312.1

690..{

640.9

692.8
679.1
7L!.7

l!5t.9 220!..i ,t66.i
1207,9 21.{r.9 {5?.0
ll8t.2 237?.0 {16.1.
Il72.s 225I.I {63.s
1208.? 2.{{2.1 152.!
i176.9 2360.!. {{s.3
1237.5 2r.40.3 11.9. {

oBs¡¡,vED | 1i4,0 55,3 hd-! t50.0 s5 .5 2L2.0 712.0 50i.0

fable .{.1.3,2 : Iníil,ling of nissing nonthly nean <ii.scbarge Icfs] oi
Craig Creek by various arodels inccr¡oraLing

. Dunlag Creek inior¡ation

i1 !L

IoÉi I I iag
!lode! s

Hoolhl¡ nean Discharge Ic9s] for'each ¡ronih of nissing pericd Iiune!9E6-äayl98i]

Þ9A

SREG

SSREG

tÍ0vE
SHOVE

sst{0vE

HTIBS

I06.7
107 .0
I06.3
102.3
108.5
107 .9

95.3

82.1 ioi.{
83.3 ]0i.5
83.8 I0?.0
78.1 103 .0
81,4 109.3
81.9 108.5
66.0 -q0 .3

95,3 '67.5
96.0 64.7
95. 9 69 .8
91.0 63.5
97.{ 59.6
97 .2 70.6
87.8 61.3

146.0 6e8.4
I83.I 695.0
I77 .3 757 . 5

I82 . 6 ?I{.0
186.8 70I.0
I80. 6 75i .8
1-a8.3 ',122.1

(<1 ( ?q1 0

550.2 762.5
62.{.6 82I.5
5i0.0 785.0
560.I ??0.5
520.6 8I{.9
53i.1 763.0

1132.5 I93.{. 5 {13 . L

1167.0 2084.8 1s7.2
usl.2 1,a0,r..? 5l?.5
1199.5 2095.7 {57.S
M5.5 20{9.6 150.0
11.69.0 1879.2 5r.i.8
i350 .3 2361.7 579 .3

L14.0 65 .3 63.{ t50 .0 55.5 222.0 712.0 503.0 655.0 121i.0 2421 .0 {02.0
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lable {.1.3.3 : Iniilliug of nissing ¡onthlJ neaa discharge [cys] oÉ

Craig Creek by various ¡odels inccr¡orating
Co4asture River inf or¡a[ion

XonlhlJ nean Discbarge Ic?S] ior each nooth oi nissing gerioci Ijune!986-i{ay!.9S7]

_-r_____--2-___-_-_l_-___-__J__-___-_l________J_______i I e i0 li t2

t e e:.3 ej j tr.e :1.1 ¡ie.e ;;; ì----;;;:;----;;;:----;,;.;--;;l_;----ì;;;'22.t 8r.3 62.s 72.! s{.2 r{s.t 6ir.,t {{r.{ stt.i 8se.2 idao.i íii.i19.8 81.2 63.2 72.t s5.t t.{1.2 6e2.1 s20,1 sil.r 903.0 19s9.s 5aa.i26.4 19.2 s8.6 69.0 .{9.3 15{.I 634.,t .t21..9 500.6 902.2 231.i.{ 3ot.i23.2 81.9 63.0 72.1 s.r.6 t.{6.4 qig.i .{{r..2 5t2.,r 55a.0 ress.o sti.¡19.: :Ì t !1.: !1.1 :: 1 :jl.l e!i.l {8'j.i 5ij:8 8ar.2 i8s0.e s55.iqo¡.J rór.) JJJ.ü ðô!.2 lg50,g 555.iu.9.5 57.6 ?r.i 5ó.9 53.9 168.0 608.5 4{3.A aãi.i 951.5 20.q5.i i6-r.-:

rj..o 65.3 68.{ 150,0 55.5 222.0 712.0 503.0 655.0 I2II.O 241.7.0 {c:.c

lable 1.I.3.1 : lniiliirq oi nissirg noolhly aear discharge Ic?S] of
Craig Creek by S?SÎRIÀMcdel

ilÍllli* | Hoolhlr neaa Ðischarge Icrs] for each nonth oÉ nissing period IJurel986-Xarl98?]

1231 5 6 -7 I 9 t0 lt 12

120.5 68.0 99.2 52.8 6L0 101.5 182.1 330.8 6{1..0 59?.I 3A0.2 3?0.{

rI{.0 55.3 6A.{ 150,0 55.5 222-0 ?r2.0 503.0 555.0 1211.0 2127,0 102.0

Ili¡In¿0 8T

szsTru{Àrû
l{0DEt



69

4.2 ÀPPTJICATION OF VÀRIOUS IIODEIJS IN INFIIJIJTNG UISSING DÀTÀ OF

RIVERS BEIJONGING TO I'B CLUSTER

The basic information pertaining to the members of LB cluster
and the location of the members are presented in Table 4.2.I

and in Fig.4.2.I. A plot of five years period of

simultaneously observed data of the member rivers is presented

in Fi9.4.2.2. At the ínitial phase, for each of the member

rivers, 31 years of data over the period of [Oct. 1958 - Sep.

1988 I are considered. Correlogram analysis

IFigs.4.2.3.(a,b,c) ] shows two seasons pgr year and the

segrmentation procedure assigns the periods fJune - Nov. ] and

[Dec. - May] respectively to dry and wet seasons [Tab1e

4.2.2J. The data matrix is slid to coincide with the beginning

of the dry season. The slid data matrix contains 3l- years of
data over the period [June 1958 May 1-989]. One year of

monthly data of Litt1e R. over the period [June 1-986 May

1987 I is assumed to be missing. The SESTRNALL model is applied

to Little R. and the rest of the models are applied to {Little
R., Reed Ck. i and {Little R., Roanoke R. } pairs.

Multivariate normality is tested for both MULBS and SESTRNALL

models. In case of unsatisfactory fit, por¡¡er transformation of
the element of the joint variate X áre done. The final Chi-

square plots of the Mahalanobis distances of the observations

of X variate are presented in Figs. 4.2.4.(1t 2t 3 and 4) and

Figs.4.2.5.(1 and 2). The reconstructed data of Little R.

corresponding to the different information sources { Reed Ck.,
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Roanoke R., Little R. ) pertinent to data reconstructÍon are

presented ín Table 4.2.3.(1-, 2 and 3 )
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Tabte 4.2.1: Information p€rtinent to the mer¡Èers of LB ctuster

Xirer !¿siu gscs ccffi!È
Staiioo
Xub¿r

LaliÈud¿ Loogitud¿- Àr¿a ?eriod of )tissilg
d¿t¡ usei i¡
aoal¡:i.s

?¿riod

tit'.Ì¿ f,¿nay¡ha o3r70o0o iiver yith 3?-02-15 80-3J-15 300 Jue l95t-l{a¡ 1989 Jue l-q86-ì¡-¡¡ 1987

River River ni::inq data (31 lters)
!¡sin

Re¿d f,uacaba 0316?000 !r:e lizer 16-50--?? 80-5i-t3 lli Ju!Ê I958-:{¿J l.qEg

cr¿ei lircr (Jl fear:)

8as is

touoi¿ Roæok¿ o2o55o0o Easc River ' 37'!5-l(¡ 79-56-?0 155 Juue I95t-Ya¡ 1989

iiä- ;i;;^- (3I lcars)
3¡JiI

tisõ5
SÌat lon
¡tuÈer

I 03l70cca

L 03tó7c00

o 0æ55Cæ

Fi5.4.2.1: The tocation of the ÍEÍÈers of LB

ctuster
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Fig.1.2.2: Ptot of five years of sirr.lttaneousty observed
rnonthty stream-ftow data of the nrenÈers of LB

ctuster I June 1958-llay 19ó31
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lable {.2.2: Seasoqal Seglentation of the Line ïave ior¡ oi
nenbers of the !B clusler
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correspondiag lo Drl-flet seasonal

lra¡sitiou oi tittle R'

labie 1.2.3.1 I inÉilli.ng oÉ nissing ¡ro¡lhlI near discbarqe IcPs] of

Lit!1e River by various nodeis inccrporatinq
Reed Ck. iliornation

i?l1

Iníi I I ing
Xodels

lfoniblf urean Discharge IC¡S] for each ¡ronlh of nissing Period IJunel986-l{a¡).987]

REC

IRIG

¡¡{0\,E
sH01/g

ssHovE

HULES

227.1 164.{
238.1 I6L{
236.1 I6i.9
219.3 153 .8
237.8 161.5
232.6 165.3
194.6 165.9

158. { 199.5
15.{.{ 203.7
16l. { 205.9
1.t7.7 190.2

154.5 ?03 . 5

160.0 203.3
I{5. { 32? .0

150.7 228.?

145..{ 239 . {
I53 .1 237 ,3

139,8 220.1

145 .5 239 . L

15I.9 233.?

216.i 29I.0

.{17.7 {17.0 553.5
,{01.3 400.5 S{8.3
454.8 .15{.0 605.0

428 . { 42'1 .4 595 .0
400.9 {00.2 5{7.{
.t{7.0 446.2 5.4I.0
s23.8 160.{ 565.7

7-o0.8 933.? 125.2
780.7 985.{ {03.S
835.5 1033.9 r.62.5

863.3 1103.{ {36.1
??8.A 942.5 {0¿.{
8I0.8 998.6 45{.{
959.3 1366.9 65{.9

o8s¡RVED I teo.o 112.0 156.0 213.0 1{3.0 241.0 {70.0 35'{.0 47{.0 9A2.0 I{{5,0 632.0
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lable 4.2.3.2 : Iafi.lling oí ¡issisg nonihl¡ nean disclarge [c?s] ot
tiiile R. by various nodels incorporatica
Roa¡oke R. inior¡alion

Hcnthl¡ aean t)ischarge Icfs] Éor each nonÈh oÉ nissirg perioci Ijunel986-l{ayl.-08?]

I'J

187 .3 139.0
191.1 141. I
i.qz.'5 1.45. {
lAI .3 132 .5
19I.? !.,{]. S

I92.1 1.15.{
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229 .9 2.{i . I I.{E . 9

235.1 2s3.1 15I..1
233.4 ?49.9 155.I
)'rt a )!1 1 ll, q
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192.5 26i.2 I{8.2
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286.2 563 . .0
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Iniil I ing
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Houlhl¡ :rea-o Discharge ICYS] for each ¡ooth of ilssing period IJunel986-:{a1l9S7]

5 I1 It

208.3 172.3 172.5 153.1 I57.5 228.1 237.I 338.0 398.{ 167.2 35?.1 354.0

160.0 112.0 166.0 213.0 I{3.0 2{?.0 4?0.0 354.0 ,{7{.0 982.0 t{.¡.5.0 .652.0
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4.3 APPLTCATTON OF VÀRTOI]8 }ÍODELS TN INFTLLING MISSTNG DATA OF

RMRS BEIJONGING TO frfIJIJ CITIISTER

The basic information pertaining to the members of LILL

cluster and the location of the members are presented in Table

4.3.L and in Fig. 4.3.I. A plot of f ive years period of

simultaneously observed data of the member rivers is presented

in Fi9.4.3.2. At the initial- phase, for each of the member

rivers , 23 years of data over the period of [Jan. A925

Dec. L947 I are considered. Correlogram analysis IFigs.4.3.3. (a,

b, c) I shows two seasons per year and the segmentation

procedure assigns the periods [Nov. - Àpril] and [May.- Oct.]

respectively to dry and wet seasons fTable 4.3.2]. The data

matrix is slid to coincide with the beginningr of the dry

season. The slid data matrix contains 23 years of data over

the period [Nov.3-924 - Oct.L947J. One year of monthly data of

Green R. over the period [Nov.Lg44 - oct.Lg45] is assumed to

be missing. The SESTRNÀLL model is applied to Green R. and the

rest of the models are applied to {Green R., Soo R. } and

{Green R., Rutherford Ck. } pairs. Multivariate normality is

tested for both MULBS and SESTRNALL models. In case of

unsatisfactory fit, pol¡/er transformation of element of the

joint variate X was performed. The fj-naI Chi-square plot of

the Mahal-anobis di-stances of the observations of X variate are

presented in Figs . 4.3.4. (I, 2, 3 and 4) and Figs .4.3.5. (L and

2). The fit of multivariate normality in the case of wet

seasonal segirnents of [Green R. , Soo R. ] pair, both dry and wet
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seasonal segments of the [Green R., Rutherford Ck. ] pair and

the transitional seasonal- segments of both [wet-dry] and [dry-
wetl transítion are found to be not very satisfactory. This

test is repeated on all possible cases of transformed data and

the best fit among them is presented here which (stil1 show

wide deviation). This }ack of multívariate normality is
suspected to be due to inadequate data (22 years). This

explanation can not be proven for rivers of LÏLL cluster.
Nevertheless, a hypothetical test is done on the wet seasonal

seg-ments of {Craig Ck., Johns Ck.} pair of the UpB cluster by

comparing the Chi- square plot by varying the sample size

between 22-29. These plots are presented in Appendfx À.2 tFig.
4.2.1 . These plots clearly show the positive correlation
between better fit of the observed curve to the theoretical
curve and the corresponding sample size. In fact, a sample

size of 29 shows satisfactory fit. The better fit of dry
seasonal segments of {Green R., Soo R. } is possibly due to the

littl-e variation among: the flows of the dry seasonal segments.

rn case of the ¡,¡et seasonal segment , f or smalr sample síze,
variatj-on in the multivariate observations is possibly too

intractable to be encompassed by rnultivariate normal

distribution format. To investigate the true reason behj-nd the

non-normality in case of small sample is beyond. the scope of
the thesis. rnspite of this unsatisfactory fit, the proposed

multivariate models $/ere applied. The reconstructed d.ata of
Greén R. corresponding to the different information sources
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pertinent to data reconstruction are presented in Table

4.3.3.(1-, 2, and 3).
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Tabte 4-3.1: ¡nfo-nnation pertìnent to the ¡nenbers oí LILL 
"iust".
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?able {.3,3.I : Iuiilliog of nissing ¡rontbll aean discbarge [n3/s] oi Grr.:s R.
b¡ various nodels iucorpórating Soo R. infor¡ralion
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12.3
I1..2

lr. I
1t 0

12. {
lI. 9

12.6
Ll. b

10.5

oa
0't
8.6
7.9
8.7
8.7
q¿

7.8
9.3
8.2
7.5
8.2
ó.J

10.5

79. s 109.2
78.8 I08.6
80 . i 1I1.0
s0.0 I08.6
78.8 I08.5
80 .5 i.13 . 5

80.9 -t2{.3

I10..{
109.9
Its .3
10-c.7

109.8
Il.l. 9

ll.3 .0

62.5
61.3
61.5
53 .0
61. 3

61.5
56.1

24.0 20.5
ll , 5 1).1
tl.L lt.5
21.4 20.8
72.6 l9.l
21.1 17.6
36.5 17.3

20 .308s8,,¡ED ls.{ !1 I 9.0 80.2 I03.0 I05.0 77 1 31. 7 ll-1



Table ¿r.3.3.2: lnf il.tlng^of mlssing.rnonthl.y mean discharge lrnj/sl of Green R, by various modeteincorporating Rutherford Ck. lnformation

Inti I I tns
Hodel s

REC

5R8C

SSREC

ÀI0vÍ
sHOVE

6BHOl/B

l{u t8s

Honbhly mean Discharge Im3/s] tor each nonth of nisslng perlod It{ov.I94{-oct.l9{5]

32,3 23,8
29,1 2t,0
31,2 2t,?
3l.l 20.9
30.9 21,6
32.9 ?2.6
34,7 20,5

0ts8Rv 80

20,2
l?.6
l?,5
16.5
l?, {
lB,0
18,2

19,5
16,9
I6,7
15,?
16,6
11 ,2
I6,3

Tabte /r.5.3.3: Infittfng of mieslng ûìonthty mean dlscharge trnS/el of Green R. by SESTRNALL modcI
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l?6.0 t23.9
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131,9 I04,?

12.5 80.2 I03,0 105.0
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5B.B

59.5
56.3
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29.6
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26.6

12.2

æ(O



90

CHAPTER 5

REAI'LES ÃTÍD DIACUSAIOHS

5. O ASSESSI'ÍENT PROCEDIIRE
rn this chapter, the results of the applications of various
models are evaluated according to the follov¡ing pro"ådure:

A year period of rnonthly stream-frow data is assumed to be

missing whj-ch is reconstructed by various models utilizing a

rangie of information sources. Three categories of assessment

are made based. on following viewpoints:

l-. For a particurar model, and a particular case of {river
with missing data, information source] pair, the infirling
quarity assessment is made based on purery statistical
considerations rel-evant to the model.

2- For a particular case of {river with missing data, base

river) pair, for each of regression and MovE.4 models, the
comparison is made on the basis of the infirl-ing performance

under various sampling scenarios.

3. For commensurate models I multivariate mode]_s, each of
REc, SREG, SSREG, AMOVE, SMOVE and, SSMOVE modell, for a

particul-ar river with missing data, the comparison is made on

the basis of the infilling performance by various information
sources.
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ÀSSESSIIIENT CÀTEGORY 1

STATISTTCAL ASSESSMENT OF MULTIVARTÀTE MODELS

AsSESSIIENT OF CONSTSTENCY TN THE RELATTONSHTP

Markovian seasonal transition together v¡ith the consistency
in the s j-rnurtaneous occurrence of seasonar segrments of a

particular severity is considered as information source. The

consistent nature of inter seasonal dependence is imposed in
SESTRNALL model. rn another words, SESTRNALL moder assumes

that the observation of seasonal segments of a certain
severity at any season (k-1) at period (T-1) can predict the
severity of the foll-owing seasonal segTment at period r. MULBS

models on the other hand, assumes consistency in simultaneous
observation of seasonal segments of certain severity. Entropy
in discrete form is used to quantify the consistency.

Entropy is defined as a measure of uncerta.inty of a system.

For a system x with \1t x2t .... -.; e - -x, r w different possibre
system states, the probability pr of occurrence of any system

state xk (k=l.....w), is the only known information. The

uncertainty or entropy of the system is given below I Kinchin
(L957) , Jones (1979) l.

HE= E
k=l

Pa ln Pa ........................f5.1]

A sequence of class-mernbership index
representing the sequence of state or severity
segment in discrete form is consideted as the

Ichapter 3.1]

of the seasonal

system. Entropy
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of such a system based on

probability of the seasonal

given as fol-l-ows:

EY=

the knowledge of the occurrence

segment of certain severity , is

¡ nYk
po

k=l p1

where,

vr

Dyk

"tpk

P (cypk) ln P (cvpr) Is.2 ]

total number of seasons per year

total number of sub-clusters in any season k

a particular cl-ass-membership index of a seasonal

segment observed in season k

E* t 
,E=i ¡=rf 

P,

For a system following a Markovian transition, the information
contained in consistent transition of the seasonar segments

v¡ould theoretically contribute to the reduction of uncertainty
of the system. The entropy of a system foIlor^ring Markovian

transition is given belov¡.

Pr¡ ln Pr, .. r......... [5.3]

where,

n : total number of system states ( n: k*rrr )

Pi : probability of observation of any system state i
Ptj : probability of transition of state i to the state j

ïn case of a system y incorporating cross river information
transfer, reduction in entropy of y is expected by
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conditioning on the base river x. Thus, considering the
sequences of class-membership index of the series x and y as

seguences of system state in discrete form, the entropy of y

conditioned on x is given below

r nXk nykEt!* = ä, ë,, _f P("ton I cxq¡. ) In p(cvp* | cxcr< ) .... [5.4]

where,

w : total number of seasons per year

trxk : total number of sub-cluster of series X

in any season k

ntk : total number of sub-clusters of series y in
any season k

P("rpr I "*o* ) 
: probability of occurrence of seasonal

segment of type cvpt of series y

conditioned on the simultaneous

observation of seasonal_ segrment of type

"rok of series X

Reliability of the information source is measured, by the
percentage reduction of system entropy by conditioning on the
information source. For SESTRNALL and MULBS model_s, the
percentage reduction in system entropy are computed by

Equation 5.5 and Equation 5.6 respectively.

(EY_Hvx)
ERx = - x 1OO. .............[5.5]

EY
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E*t ---1-1---i:¡-l- * 1oo.
HY

. . . . .. .. o. . o ... [5.6]

satisfying :

probability of (1-a) ...tS.Zl.

The greater the percentage reduction in system entropy, the
gireater the reliability that can be expected to be associated

with the information source.

Multivariate level infilling assessment is done by the
Mahalanobis distance of the observed seasonal segment with
respect to the corresponding predicted configuratj-on of the
missing segment. The Mahalanobis distance is a mul-tivariate
analogue of the stand.ard normal deviate z. This distance
corresponds to the probability contour on which the observed

seasorÍal- segment lies with respect to the predicted
distributional configuration . The smarler this distance is,
the narror¡/er the probability contour (hyper-elripse) wilr be

and the more accurate will be the quality of prediction

[Fi9.5.1.0]. This figure shows that any point Xl lying on

contour P.t% has a constant Mahalanobis distance which is less
than the distance of any point xz lying on the pz% contour.
For a m months long seasonar segrment, the riniting probability
contour corresponding to a certain variate X can be obtained
from the rel-ationship given by the following relationship t

Johnson and lriichern (1988) l:

solid eJ.Iípsoid
r-1(x-¡¡) E (x-l¿) s

of X values
2xr(a) has a
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f( xr,'xz )

Fis -5.1 .0. : llahalanobis dj.stance
of a bivariate normal

and probability
distribut ion

Contour in case of
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\^¡here,

p and E are the conditional mean and covariance matrix
computed from Equation 3.7

Univariate leveI assessment is performed by finding the

probability band on which each element of the observed

seasonal segrcent lies with respect to the marginal univariate
configuration of corresponding predj-cted element. The band is
determined by the elements of the conditional mean vector and

the square root of diagonal elements of the conditional
covariance matrix Equation 3.7 .

STATTSTICAL ASSESSMENT OF THE REGRESSÏON MODELS

For each of the three sampling scenarios of the regression
models, standard regression analysis incorporating foltowing
assessments:

L. Inference about the regression parameters (t - test)
2. Residual analysis

normalj-ty of the residual (Chi-Square test of
goodness of fit, normaL plot)
homoscedasticity of the resj-dual (plot of
residual)

whiteness of residual (ACF of the residual)
3. Correlation coefficient between the predicted and

predictor variables.

4. Quality assessment of prediction is done by finding the
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probability band within which the observed element resides

corresponding to the configuration of predictj-on of the

corresponding element of the seasonal segrment (given by

the estimates of the prediction mean and the prediction

variance of the corresponding element).

STATISTICAL ASSESSMENT OF THE MOVE.4 MODELS

No procedure of statistícal assessment specific to the model

is d.escribed in the source literature I Vogel- Stedinqer

(l-985) l. No statistical analysis is therefore done for MOVE.4

model under any of the various sanpling scenarios.

ÀSSESSUENT CÀTEGORY 2

For each case of particular { river with missing data, base

river) pair, for each of the MOVE.4.and regression model, the

comparison of the quality of infilling under various sanpling

scenarios are assessed on basis of the following criteria:

a. ) Estination error in the dry season:

n 
?o-5ed.: { Ll o(:( (yi - yi) /ví)'i'- [ i=1....6]

b. ) Estimation error in the wet season:

^
e\^¡: { a/e(:((yi - yi) /VÐ' f'' I i=7.....121

Deviation at the peak value:

(vp-vp)

overall estimation error:

c.)

p:

d. )
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eo: { t/ 12 (2 ( (yí 2 0-5- vi) /vj-) ) [i:1.... .L2]

For a particul-ar pair of {base river, short data river}, fot

each of the regression and AMOVE.4 model, the corresponding

model varieties are ranked in descending of performance on

basis of ed, êw, P and eo.

The ptots of the infilled versus the observed data also

provides an approximate measures the relative performance of

the varieties of regression model for a fixed case of {a base

river, the river with missing data) in terms of the deviation

of the plot of the infilled data from the plot of the observed

data.

ASSESSMENT CATEGORY 3

For a particular river with rnissing data' comparison of

infilling by the SESTRNALL model- and MULBS is made. For each

of the sanpling scenarios of the regression and MOVE.4 mode1,

comparison of quality of infilling among various base rivers

are made. Comparison is made on the basis of edt e¡Wt P and eo.

For a particular model, the relevant information sources are

ranked. in descending order of model performance measured in

t,erms êd, êIfr P and eo.
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RIVER BELONGING TO THE UPB CÍJUSTER

ASSESSI.ÍENT CÀTEGORY 1

Table 5.1-.1.0 shows that in all cases of MULBS model, the

observed seasonal segrment lies within the 952 probability

contour of prediction. In case of the SESTRNALL model, the

observed dry seasonal segment lies within the 95? contour but

the wet seasonal segrment lies outside the 99.52 contour.

Univariate leveI assessment in case of MULBS model [Table

5.i-.L.(t, Z and 3)l shows that for the {Craig Ck., Johns Ck.}

pair, the observed data corresponding to 1st element of wet

seasonal- segment lie wíthin the 97.5e" contour of rnarginal

prediction while the observed data corresponding to the rest

of the elements of both wet and dry seasonal segments lie

within the g5Z band. In the case of {Craig Ck., Dunlap Ck. i

pair, the observed data correspondíng to the elements of both

dry and wet seasonal segment lie within the 952 prediction

band of corresponding element. In case of the {craig ck.,

Cowpasture R. ) pair, observed data correspondíng to the 4th

element of dry seasonal segment Iíe within 98.6å band and the

observed data corresponding to the rest of the elements of

both dry and wet seasonal segrment lie within the 952 band.

Univariate l-eve1 assessment in case of SESTRNALL model ITable

5.1-.1.41 shohrs that the observed data corresponding to the lst

element of wet seasonal seq'ment lies within the 99? band , the
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observed data corresponding to the 5th element of the wet

seasonal segment lies beyond the 99.9å band while the observed

data corresponding to the rest of the elements of both dry and

wet seasonal segrments lie within the 952 band of prediction.

The entropy reduction varies within the 59å - 78.88å range in

case of conditioning on the base river in contrast to a 52

red.uction under consideration of Markovían inter seasonal

transitíon [Table 5.1.2] .

A sunmary of the results of the REG' SREG models [Tab1e

5.1.3.(1 and 2)J show that all observed elements are

contained within the 95eo prediction band. Summary of SSREG

model [Table 5.1.3.3] shows that in case of the {Craig Ck.,

Cowpasture R. Ì pair, the observed data corresponding to 5th

element of the wet seasonal segTment is contained within the

99eo prediction band white the rest of the observed data are

contained within the 952 prediction band. In case of both

{Craig Ck., Johns Ck. } and {Craig Ck., Dunlap Ck} pairs , for

SSREG model, all the observed data Iie r¡/ithin the 952

prediction band.
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Table S.1.I.0 : Distance of observed seasonai segment of Craig Creek_rilh respect to the predicled

conditional coniiguration by lhe base R' by HUüBS llodei
and by seif serieÀ by SESTRNALL Hodei(nultivariate basis appraisal)

Tabie 5.1.1,11 craig ck. Data infiliing bv Joh¡s Ck. by llÛLBS Hodel:

Predicted vs. Observed data (aPpraisal on marginal basis)

lable 5.I.1.2: Crais Ck. Data iniillins bv Duniap.Ck' br HUtBI-{9d:l:
p..¿i.uäåí'..0i!åliåã-ãa[ålæiiäi'átoimargiualbasis)

Season I Season 2

llodel Infonnation 0bserved DE Co¡'rneut Observed DF Cor¡rnent

Source Disiance Disiance

------:'-"---
HtLBs Joh¡s ?,88 6 lying rithin 5'22 6 lying rithin

Creek 95t conlour 95T ConLour

HUTBS Duniap 10.25 6 lying nilhin l2'0 6 }ying rilhiu
Creek 95t Contour 95t Contour

2.46 6 lling nibhin
95t ContourHfltBS CowPasture

Ri ver
9.I4 6 lyins Hithin

95t Contour

SESTRI{ÀtL Self Series 10.0 6 lying rithin
95t Contour

20.0 6 lying outside
99,51 Contour

Season HonlhlY
E I enent

El ement EI enenl
Variance Hean

Predicted Predicted

El eneqt
std.

Predi c ted

0bserved
EI ene¡l

Corment

0 ,022

0.014
0,069
0.064
0 .031
0 .023

4,780
4. i70
4.250
6.3I0
4.130
5.740

0. I48
O.II9
0.263
0.253
0.I76
0.I52

4.?40
4.r?8
Ã 1r\
5.090
4.016
5 .403

Conlained rilhin 957

Contained rithin 95t
Contained niLhin 95t
Coutained rithin 95t
Contained rithin 957

Contained rithin 95t

I
2

J

4

J

6

2540.961 817.45i
Is63.969 542.6s6

2294.180 711.687

3254.641 1237.556
3652.438 2440,499
2198.680 419.4i6

50 .,{08

39 .54?
47.898
(7 nlQ

60.435
{6.890

7 12 .000
503.000
655.000

12I1.000
242'l .000

402.000

Contained rithin 9?.51
Contained riLhin 95t
Contained rithin 95t
Contained nithin 95ï
Contai¡ed rithin 95t
Contained rithin 951

Season llonthlY
EI enenl

Elemeut Elecìent Elesìent 0bserved Cornent

Variance Hean Std. ElemenÈ

Predicted Predicted Predicted
-i ---------ì:ii;-------;.;;;------ì:;;;--- - ;'iii coutained rithin e5t

zo.õi24.1900'2294'l?gconlai¡edriLhin95t
30'1534.5030.3914,223Containedrilhin95t

l4o.eiz4'4?50.9365.01iContainedwithin95t
50'1204.1160.3454.0t5Containedrithin95T
6 0'0?4 5'2.40 0'2?i 5'403 Contained rithin 95t

16898.?40?22.09083'059?12'000Con|ainedri|hln95I
223?1.040584'14048.693503,000ContainedHithiu95t
3 1608?.520 ?63.000 i26'837 655'000 contained within 95t

2 4 15926.500 1350.340 126.200 1211.000 contaiued rithin 95t

5 20996,660 2361,?30 144.902 2{2?,000 contained riLhiu 957

69572'5805?9.30098'349402.000C0ntai¡ed'ritbin95T
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Table 5.1.1.3: craig Ck. Data infilling by Cowpasture R. by HÛIBS ]todel:
PredicLed vs. Observed daia (appraisal on marginal basis)

Table 5.1.1.4; Craig Creek data infilling by SESTRì{ALL t{odel
Predicted vs. observed data óf Craig Creek
Iappraisal on rnarginal basis]

Season }lonthly Elenent
El enent Variance

Predi c i ed

El eurent

std,
Predic t ed

Elemeut Observed
Hean El enent

Predict ed

Season Houbhly Eleneni
Elemenl Varia¡ce

Predi c i ed

EIenent Elenen! Observed
Xean Std. El enenl

Predicted Predicted

Corunent

t
2

4

5

6

0.154
0. I01
0.ILo
0.946
0,098
0.1.26

4. 784

4.2r4
a 111

3.693
3.986
5 .12{

0 .392

0 .318
0 ,332
0.973
0 .3I3
0.355

4 ,736
4.179
4.225
6.090
4 .020
5.400

Conbained rithin 95t
Co¡lained rithÍn 95t
Contained tithin 95t

Contaiued wiihin 98,6t
Contained rlithin 95t
Contaiued rithin 95t

0 ,056
0.047
0.036
0 .035
0.063
0, I48

6.411
6.096
6.367
6.817
7 .641
5.913

0.236
0.216
0 .189
0,188
0 .252
0 .385

6.568 Contained rithin 95t
6.221 Contained rithin 95t
6.485 Coniaiued rithin 95t
?.099 Coniained yithin 95t
7.794 Contained rithin 95t
5.997 Coniained yithin 95t

I
2

J

4

6

0,4735
0.I598
0.329I
0,3I79
0 .5048
0.6098

0 . 688I
0.399?
0.5737
0.5638
0.7105
0.7809

0 .5495
0.7130
0. 4830

0.5024
0 .5092
0.5780

4.7923
{.2t 93

4 .5968
3.9655
{ . I102
4. 6488

4.7362
4.1790

4.2254
5.0I06
5.0I50
5 .4027

Contai¡ed riihin 95t
Contained within 95t
Contained witbin 95t
Contained nithin 95t
Coutained nithin 95t
Contained rithin 95t

I
2

3

4

5

6

lalle 5.1.2:

0.3020
0 ,5083
0,2333
0.2524
0.2593
0.3341

5.2043
5 . 8014
6. 463I
6.3921
5.9406
5.9I46

6.5681 Coniained riihin 99t
6.2206 Contained nithin 95t
6.4846 ContaÍned Hithin 95t
7,0992 Contained riihin 95t
7.7944 Hoi Contained rilbin 99.9
5.9965 Contained rithin 95t

Entrop¡ reduction i¡ class-¡pnbership iudex sequence of Craig Ch.

lafornation source Harginal htropy of
ci ass-sre¡rbership inder
sequence of Craig Ch.

Conditional htropy oÉ

class-ne¡bership inder
sequeBce of Craig Ck.

htrop¡
Reductio
trI

Conditioual htrop¡
Conditional hÈropy
Conditional htrop¡
Hartovia¡ htropy

Joh¡s Ck,
Drnlap Ck.

Corpasture R.
Seasoual transition

I.02 92

r.0292
1.0292
t.0 2 92

0 .217 4

0.3044
0. 4218

0.97',17

78.88
10 .12
59 .02
5.00



lable 5.1-3.1: St¡mry of R€c rnodel. pertinent to Craig Ck. data inf itting

Ease
River

Joh¡s
Creek

sta te

DulaP
Creel

I ntd

h0

I.,t9

bl

CoHpasture

Ri ver

lntd'

92

rb0

1.,{6

computed nodel

I n trlt

38.61

t lntd : ln [ransfomed data
rr nat : rar data

tbl

0.88

t06.35

0. {8

DP

20.8{

I

358

.02

Coment

58. 99

3.82 t8.35

b0, bt
signi-
ficant at
5I level

358

R-sq

Residual lnal ysis

b0, bt
s igni -
fic¿nt at

5l I evel

Dt coment const. State of
var. (e) ÀcF(e)

91

358

69 nonnoml satisfied auto-
at.5l correlated
I evel

b0, bl
signi-
ficant at
5l level

9t 69 nornal at satisfÍed auto-
5t level correlated

88 69 norml at satisfied auto-
51 I evel correl ated

Predict i on

Observed vs.
prediction interval

all elenents contained
vithin 95T inlerval

all elenents contained
rithin 95I interval

all elenents contained
vithin 95I interval

I

iOI(, I

i



Iabte 5.1.3.2: sl.¡mry of SREG r¡odet pertinent to craig ck. data infilting

r lntd : ln transfomcd data
ll nat : rav data

Residual Ànalysis

DP Coment

s¿[isfied

no¡nl at satisticd ¿uto-

5t level corrcl¿ted

nonÉl at satisIied auto'
5l I evel corrclated

nomal aI
51 I evel

satistied auto-
corre I ated

O
-Þ



'Tobte 5.1.3.5: Sl¡mry of SSREG rEdet pêriinent to Cråig Ck. data lnfitting

Basê

River
Seðson 5tàtê

Johns

Creek

I lntd

b0

? lntd'

i.55

Dulag
Crcek

bt

I

92

tb0

t.09

conputed nodel

lntd

t?.t{ 36,?r 118

? lntdr

tbt

.99

corpas ture
Rivcr

t.?t

DT

7,02

t lntd^

.8t

coßncnt

2.t0

35.,t6 s2

il.{? ?0.5t t5{

b0, bt
signi-
ticant at
5l level

r lntd : ln tra¡s[omed datatr ¡at ; rar dat¿

?8

0.0?

R-sq

ûaI

8.69

b0, bl
signi-
ficant at
5l I evel

chi-sq(e) DP comenI Const.
var,(c)

90

89

1t7.32 0.61

10. 63

Rcsidual Ànal¡:is

t8,{ ?t norml at
.5t level

30

b0, bl
signi -

ficant at
5l I evel

. r6

5? b0, br .8?

signi-
ficant aI
5t I evel

t8.6E l5{

13.?{ ? ooml at satistíed
5l I evel

2.82

?3

13.9t 58

51,85 28 nomal at satisfi¿d
ll I evel

bl ls
signi ficant
at 5l but
drop b0

satisIicd

State of ob:erved vs.
lc8(c) prediction Interval

9.?0 ? nornal at satistied
5l I evcl

b0, bl
slgni'
ficant at
5l I ev¿l

69

Prcdictiou

auto' all elenents containcd
correlated rithi¡ 951 interval

22.85 ?8 norul at
5l I evel

0. ??

aut o-
corrc I a tcd

8.6 9 norml at satisfied
5l I evel

all elencnts contained
riIhin 951 intcrval

auto- al I cl enents containcd
correlated rithin 951 ioterval

auto- all ¿lenents cont¿ined
correlated vithin 95t interval

satisfird auto- all cìcnents contal¡cd
corr¿l¡[ed rithin 951 interval

auto- 5th elenent contain¿d
correlated rithin 991 [nterval

rhiìe the rest contaÍned
rithln 951 int¿rval

O
(-'¡
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ASSESS}ÍENT CÀTEGORY 2

coItpARlSON OF THE HEGRESSTON IúODELS FOR DTFFEAøNT {RWER WTTH

MISSING DATA, BASE R.] PAIRS I TabTe 5.1-.5.a]

In all cases, REG performed best in terms of ed and eo.

fn case of the {Johns Ck.Craig Ck.} pair, the SSREG and SREG

performed better over REG model in terms of ew and P. In case

of {Dunlap Ck., Craig Ck. } pair, SREG performed better over

REG only in terms of P. In case of the {Cowpasture R., Craig

Ck. ) pair, REG performed best with respect to all the four

criteria. The plots of the infilled versus observed data are

given in Figs.5.1-.1. (1,2,3)1.

CO|'IPARISON OF IúOVE.4 IúODELS FOR DIFFEAZNT {RWER WITH ItISSING

DATA, BASE R.] PÄ-IRS

The ranking among the various MOVE.4 models is given.in Table

5.1-.5.b. The AMOVE performed best in all cases in terms of ed

eo. In case of {Johns Ck., Craig Ck, } pair: SSMOVE and SMOVE

performed better over AMOVE in terms of ew and P. In case of

{Dunlap Ck., Craig Ck, } pair, only SMOVE performed better over

AMOVE in terms of ev/. Cowpasture R. did not show any

beneficial effect with respect to choice of sample, i.e. the

models using seasonal sampling criteria did not perform better

over the model using heterogenous sample. The plots of the

infilled versus observed data are given in Figs.5.L.1. (4,5,6).
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fable 5.1,5,a: lable oÉ ralking of perforuac: of rarities of reçressiou nodel (UpB cluster)

River

Joh¡s Ck.

la.ble 5.1.5.b: lable o[ ralking of perfomce of v¿rilies of EOfB,l rndel (0pB cluter)

'i
I

ì

!
I

I

l{odel ra¡k i¡ ter¡s Hodel ra¡} i¡ tcrr todel ra¡l in terre Hodel ra¡k iu terrs
of estÍutiou error of ætintiæ error of desiatio¡ aÈ peal of overall esÈimtioo
ia dr¡ seasoo [ed] in ret scæm [er] recoutd.- obsvd. [p] error [eo]

River

. :,, j ¡.";'" ;;;;; F* ;;;; i*,, ä; ;;;;-t il---*;;----;il---
Job¡s ck. 

I 
0.23 0.27 0.28 

I 0.05 0.0? 0.t0 
| $.3 _56.9 _l.6s.e 

i 0.1s 0.20 0.?0-------------1--- -i--------------------:-----------
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?able 5.Ì.41 Zero lag Cross correlation Coefticienl betreen Craig Creek

and each of the base rivers

Base
River

Croås correlation coefficient
corresponding to
indiscreninalel y chosen sarnpl e

Cross correlalion coef iicient
correspoudilg to seasonal
samp I e

Cross correlaÈion coeÉficienl
corresponding to selected
seasonal sanple

t..r..r I s.rrooz seasonl I ::l:ll
Johns
Creek

0.98 o.si 
I 

oss 0.9s 0.98

Dunl ap

Creek

0.95 ;;; I os, 0,86 0.93

CoHpas lure
River

0.93 o.rt I o.,o 0.83 0.88

2000

1 ,,..

2500

0

LEGEND

OBSERUED DATA
_ RECONSTRUCTED
. " RECONSTRUCTED
._RECONSTRUCTED

IN CRAIG CK.
BY SSREG T1ODEL

BY SREG TIODEL

BY REG HODEL

tt ti
ti\ti
!

,[\"/

ø
s looo
È
IÉ
o
@

e

Ë soo
o

Èl

-024681012

GAI PERIOD III HùI{T[

Fig.5.l.l.l:
Couparison_of_infilling of Craig Ck. daia for period [Jule I987-Ha¡ IgBg]
by Jobs Ck. b¡ REG, SREG, SSREC nodels (varities of iegression noãel)
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2500
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500

Fis.5.I.1'2:
Conparison of infilling of Craig Ck. data for period [Ju¡e l98?-ltal ].9881

by Dunlap Ck. bt REc, SREG, SSREC nodels (varities of Regression nodel)
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I

H
I

U
@
Ê
È
F-o
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LEGEND

OBSERVED DATA iN CRAIG CK
.-REÍ]ONSTRUCTED BY SSREG TIODEL
.. RECONSTRUCTED BY SREG HODEL

._.RECONSTRUCTED BY REG T1ODEL

0246
Fig.5.l.I.3:
Conparisou of infilli¡g of'Craig Ck. ilata for perioil [Ju¡e 198?-Haf 1988]
by Corpasture R. bt REG, SREG, SSREG nodels (variLies of Regression nodel)

810
GÃP PERIOD TII NOHTI

12

LEGEND

OBSERUED DATA
-. RECONSTRUCTED
. . .RECONSTRUCTED
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BY SREG HODEL
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2500
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Fiq.5.1.1.{:
;;;.;i;;;';i iniillins of crais ck' data.for period [r!¡e le8?-Har ]'e881

iïiii.l"l ¿k. by trtr0VE,-SHoVE, s¡HovE nodels (variLies of H0VE.1 ¡rodel)

LEGEND

OBSERVED DATA IN CRAIG CK.

- _ RECONSTRUCTED BY SSNOVE HODEL

. ." RECONSTRUCTED BY SIIOVE HODEL

, _- RECONSTRUCTED BY AT1OVE HODEL

i."ï
/,l1A
iir
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o
HIÉ
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?
o
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Fig. 5.1.1.5r GAP PERIOD iI HOIITE

conparison of infillÍng of Craig Ck. data for.period IJr:¡e 198?-Haf ].s881

by Dunlap ck. by ÀllOvE, SHovE, ssHoVE nodels (varities of.HovE,{ nodel)

LEGEND

OBSERVED DATA IN CRôIG CK.

- - REDONSTRUCTED BY SSI1OVE I1ODEL

. . . .RECONSTRUCTED BY SMOVE IIODEI-
. 
- 

. RECONSTRUDTED BY AI1OVE I1ODEL

+--
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RECONSTRUCTED

RECONSTRUCTED
RECOI.ISTRUCTED

IN CRAIG
BY SSNOUE

BY SI1OVE
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HODEL
IlODEL

024681012
GÀ¡ PSIOI) II{ HO¡ITE

Pig.5.1.I.6:
Conparison oi infillilg ot Craig Ck. daia for period Ijune I987-9a¡ 1988]
by Corpasture R. by IIOVE, ${OVE, SSHOVE lcdels (varities o[ ]foVE.4 nodel)
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ÃSSESS!'IENT CATEGORY 3

MULTWARIATE IúODELS [TabLe 5 .1-.6 .a]

fn all cases, MULBS model performed better than the SESTRNALL

model. In case of MULBS model, the quality of reconstruction

by incorporating Johns Ck. and Dunlap ck. information is

superior to quality of reconstruction by incorporating

Cowpasture R.rs information. The fig. 5.1.2 shows the

relative performances among the various sources.

REGRESSTON T¿TODEL [Tab7e 5 .1-.6 .b]

Johns Ck. performed best with respect to all the four

criteria

.In case of REG model: Cowpasture R. performed superior to

Dunlop Ck. with respect to ed and P. Dunlap ck. performed

superior to Cowpasture R. with respect to ew and eo.

.In case of SREG model: Dunlap Ck. performed superior to

Cowpasture R. with respect to êw, P, eo. Cowpasture R.

performed superior to Dunlap Ck. with respect to ed.

.In case of SSREG model: Dunlap Ck. performed superior to

Cowpasture R. with respect to ewf. Cowpasture R. performed

superior to Dunlap Ck. with respect to ed, P and eo.

The figs. 5.1-.'2.(Ltz,3) show the relative performances amongt
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the various sources for a particular variety of model--

IIOVE IITODELS

Johns Ck. performed best with respect to all the four

críteria.
.In case of AMOVE model: Cowpasture R. performed better than

Dunlap Ck. in terms of ed and P. Dunlap Ck. performed superior

to Cowpasture R. with respect to ew and eo. ( similar to REG)

.In case of SMOVE model: Dunlap Ck. performed superior to

cowpasture R. with respect to êwr P, eo. cowpasture R.

performed superior to Dunlap Ck. with respect to ed. (similar

to REG model)

.ïn case of SSMOVE model: Dun1ap Ck. performed' superior to

Cowpasture R. with respect to ew' P. Cowpasture R. performed

superior to Dunlap Ck. with respect to ed and eo'

The figs. 5.1-.1.(4,5,6) show the relative performances among

the various sources for a particular variety of model.



lablc 5.1.6.a:
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lable of rækino of ærforr¡¡ce of variou: sourcæ
for the nullivaiiate'mdels (0P3 cluter)

IiODE,

HultiY. l{.

lable 5.1.5.b:

lablc 5.1.6.c:

source rÐk iD tem
of overal I estinLion
error Ieo]

D.Ck, C.R. S.S.
0.22 0.22 0.{6

ffi -'- - ;;;; il;;;.; ;;.;; ;;;;;;;;';;;;;'il; -

- of estirulÍon error of estinatio¡ error of deviatioo a! peal of oeerall eslintioo
- i¡ ttrr season [ed] in ret seæoo [er] recq¡std.- obsvd. [P] error [æ]

D.ck. c.cl.
0.21 0.25

D.ck. c.R.
0.71 0.25

lable of ra¡ling of perforrnoce of various hse R.
for each supling sceoario,regressioo Edel (g?ts cl6ter)

lable oi ranking of gerfornalce of rarious b¿se R.

for each sæpling sceoariorXOW.{ mdet (0PB clLster)

c.R. D.Ck.
0.26 0.27

yoo River ra¡l i¡ teræ
of estintioo error
ir dr¡ season [ed]

River rmk iu tem River rul iu terË RÍver ra¡t in tergg
of esti¡ution error of deviatio¡ aÈ pæl of over¿ll estimtion
in ret seæou [er] recoætd,- obsrd, [P] ¿-or [eo]

D.Cl. C.ck.
0.2{ 0-21

D.Ck. C.R,
0.25 0.28

;; t ;;i ;;. ;.;. l ;
o.t9 | -r6s.e -i1s.5 -33L3I o

-------l-----------------------l--
c.R. I J.cr. D.ct. c.R. I ¿

0.28 lrs.3 {8.0 ul.8 lo______ _J- - _----- ---;; l'il:--';;: ;;: F
0.23 ' -66.9 -5{7.8 576.1 I 0

ck.
T2

ck.
It

;;:
20

D,

_l:
D.

-!:
D.
0.

li::_

TÏ-
ss{0vE

;:l;;;.-
.2e I o. ro
----t-------
.cr. I ¡.cr.
.33 | o,07

; lñ:
.33 i o.o6

- l-;.;-;.;-'--;
| 0.23 o.2B o

. c!.

.I8

.ck.

.20

.ct.

.20
c.R. D.Ck.
0.25 0 .28

J.CL= Joh¡s Ck.
D.cl.= DEûlap Ct.
c.R,: corpasLurE B.
S.S.= Sæ Rirer
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OBS¿RVED DÀTÀ II{ CRÀIG q{.
RECOHSTRUCTED BT JOHHS CK. BT HUIBS HOI)EL

RECOilSTRUCTED BT CCHPÀSTI]RE R. BY HUTBS HODET

RECOXSTRSCTTÐ BY DTHIÀP CK. BT HÛIES HODET
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Pig.5.1.2:
;õ;;;" oË infilli¡g of crais Ck. data for period [Jrue 1987-xa¡ 1988]

bf nuiLivariale nodeis usiog variable inforsralio¡ source
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OBSERVED D¡,1À, IN CRATG CK.
RECONSTRUCTED BY JOHNS CK.
RECONSTRUCTED BY COWPASTURE R.
RECONSTRUCTED BY DUNLÀP CK.
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Fiq.5.1.3.1:
cosroarison of infilling of Craig Cl- data for period

bl igc nodel using variable i¡for¡ation source
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Fi9.5.1.3.2:
Coapari,sou of i¡filli¡q of Craig Ch. data for geriod [June l9B?_Xa¡ l9B8]by sRZc nodel using rariable i¡iornaiion ,0o."å----'
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Fiq.5.I.3.5:
Conparison of infilling of Craig Cb. data for period lJrne l98?-Hay 1988]
by SHOIIE nodel using variable informatiôn source
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Fi9.5.I.3.6:
Conparison of infilling of craig Ck. data for perioil [June 1987-Hay 1988]

by SsHoVE nodel using variable infornation source
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The assessment category two shows that:

. Estimatíon error in dry season is high in case of seasonal

or selected seasonal sarnples over the one in case of

heterogenous samPle.

. Although some {base R., river with missing data} pair under

seasonal sample show less estimation error in the wet season

in contrast to the estimation error in wet season under

heterogenous sample, but the overall error is always higher in

case of seasonal sample than in case of heterog'enous sample.

. Beneficial effect of seasonal consideration in sample

selection vlas noticed in few cases only in wet season.

The assessment category three shows that:

Among the rivers performance of Johns Ck. is best. With

respect to some criteria, Cowpasture R. shows better

performance over Dunlap Ck. Vüith respect to some other

critería, Dun1ap Ck. performs superior to Cowpasture R. The

SESTRNALL model Performs worst.

Performance of Johns Ck. compared to the other base rivers is

best. This performance can be explained by very high cross

correlation coefficient of { Craig. Ck., Johns ck. } pair

Johns Ck. In case of MULBS, SMOVE and SREG rnodels,

reconstruction by Johns Ck. and Dunlap Ck. are very good in

wet season. The close location of these base rivers to Craig

Ck., therefore, the resulting high seasonal similarity can be
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considered as the cause of good performance. Cow¡rasture R.

performed best in case of models incorporating

indiscriminately chosen bulk of data [REc, AIvIOVE] over the

models considering seasonal difference. The remoteness of

Cow¡rasture R. from Craig Ck. and therefore the less seasonal-

similarity can be consídered as the reason
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5.2 ASSESSMENT OF OUÀLITY OF INFILLING OF GAP OF TEE UISSING

DATA RIVER BEI,ONGING TO THE I,B CI,USTER

ASSESSHENT CãTEGORY 1

Multivariate level assessment [Table 5.2.1.0] shor¡¡s that the

observed seasonal segment lies within the 95eo contour of the

predicted configuration in all cases of MULBS model. In case

of SESTRNALL nodel- , the observed wet seasonal segrment resides

beyond the'99.52 predicted contour but the observed dry

seasonal segirnent l-ies within the 952 contour.

For the MULBS modeI, in both cases of {Little R., Roanoke R. }

and {Little R., Reed Ck. } river pairs, the observed data

corresponding to all the elements of both seasonal segrment

1ie within the 95? band of rnarginal prediction [Tab1e 5.2.]-. (1

and 2)1. In case of SESTRNALL model, observed data

corresponding to the 2nd element of the dry seasonal segrment

lies within the 97.5å band, observed data corresponding to 1st

element of the wet seasonal segment lies within the 99? band,

the observed data corresponding to sth element of the wet

seasonal- segrment lies beyond the gg.ge" band of prediction
while all other data corresponding to rest of the elements of

both seasonal segment lie within the 9SZ level of prediction

ITable 5.2.1.3 ]

Entropy reduction by conditioning on simultaneously observed

seasonal segment of Raonoke R. and Reed Ck. are significantly
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better than the one by assuming Markovian nature of seasonal

transition of Little R. ITable 5.2.2).

For REG model , for each case of incorporating Roanoke R. and

Reed Ck. information, the observed data lie within 952

prediction band ITable 5.2.3.1,). For SREG model ITab1e

5.2.3.21, Íncorporating Roanoke R. information, the observed

element corresponding to the 6th element of wet seasonaÌ

segment lies within 96eo prediction band while the rest lie

within 95? band of prediction. For the same modeI, in case of

incorporating Reed Ck. information , all the observed data lj-e

within 952 prediction band In case of SSREG model- [Table

5.2..3.31, incorporating Roanoke R. information, observed data

corresponding to 2nd element of the wet seasonal segment lies
within 97å prediction band. while the rest lie within 95å band.

For SSREG model incorporating Reed Ck. information, all the

observed data lie within 95å prediction band of corresponding

element in case of both seasonal segrments.
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Table 5.2.I.0 : Distance oÊ observed seasonal segnelt of tillle R' rilh respecl to lhe predicted

condrÈLonai configuration bJ the base R' by HULBS Hodel

a¡d bt self seriei bÏ s?sTRIÀlt !{odel(nulLivariate basis apgraisal)

Table 5,2,I.1: tittle R' Data inÍillinq bl Reed Ch, bÍ KMS Hodel:

Predicled vs. Observed data (appraisal on narginal basis)

Table 5.2.I.2: litile R. Data iniilting by Roanoke R. bf Httttss Hodel:.
Predicted vs. Observed data (ePPrarsal 0n nargual basrsl

Season I Season 2

l{odel Infor¡ration
Source

0bs erved
Dis ta¡ce

DF Cornelt 0bserved DF Conneot

Dis tance

HUtBS. Reeri

Cr eek

10.{I lting 
'¡ilhin95t Contour

5 .00 l7ia9 rithil
951 Contour

HUIES Roanoke

River
9 .55 lling Hilhin

95t Contour
!.1.80 6 lring rithia

95I Contour

sBsTRt{ilt Sel f Series 9.00 lying Hithin
95T Contour

20 .00 Iying outside
99.51 Contour

Season l{onthly Ele$e¡t
El e¡rent Variance

Predi c ted

Elenent Obserred
Std, EI enerL

Prerii cted

El e¡re¡t
Hean

Predi ct ed

Co¡sìeui

0.066
0.04?
0 .048
0.099

265.860
0 ,050

5.270
5.110
4. 980

5 .790
55.950

5. 670

0 .257
0 .217
0.2I9
0.315

16.30 5

0.224

5.080
4.120
5. IIO
5.360

39.910
5.5I0

Con[aioed'¡iihin 951

Contained rilhin 95å

Contained vithiu 951

Contained Hithin 951

Contained 'rithin 951

Conbaine<i ritbin 951

4800 .594 523 .827

6986. ??7 460 .396
6541.078 565.687
9035.719 959.299

241?1.7?3 1366.951
7607.70I 654.960

69.286
83.58?
80 .87?
95.0 6 2

I55. {73
87 .222

470 .000
354.000
474.000
982 .000

1445.000
632 .000

Co¡tained rilhin 951

Contai,ned rrithin 95I
Contained t¡ithin 951

Contained riihin 951

Coutained çilhio 95å

Contained t¡iihin 95I

Season HonlhlÍ Ele ent Eleurelt Elenent

ElenenÈ Variance Hean std'
Predicted Predicted Predicled

Obser-red CoaoPnt

EI enenl

0.052
0 .035
0 .023
0.048
0.023
0.013

5 .133 0 .228

5.075 0.18?
5.260 0.I5I
5.588 0.220
4.999 0.151
5.6i9 0,II5

5.0?5 Conlained Hithin 951

{.?IS Coniaioed xiLhin 951

5.112 Co¡tained ïiLhin 951

5.361 Contained rithin 95X

4.963 Conlaised ritbin 951

5.509 Contained Hithin 951

8.280
l0 .730
63.090
17 . 600

3. {50
14.340

38.300
38 .8{0
52.7?0
49. 570

33. 680

25.680

2.87'l
3.2't6
7.943
4.195
1.857
3.787

35 . 680

30.7I0
.{ 6 . 5,00

52. 9.00

31. ?70

25.9s0

Contained rilhin 951

Co¡lai¡ed rithin 991

Cootained eithin .a5t

Conlained rithin 951

Coutained xithiu 951

Co¡taÍned eithin 951



124

Table 5,2.l.3: litÈle River data infilling by SESTRllàlL Hodel

Predicted vs, observed daEa of Little River
(appraisal on narginal basis)

Season Honthl y El enent
Ele¡rent Variance

Predi cted

El e¡rent
std.

Predi c t ed

El e¡rent Observed
Hean El enent

Predi c ted

0.0834
0 .0 457

0 .0683
0 .1903
0.203s
0 .2233

0 .2888
0 .2138
0.2613
0. {362
0 . 451t
0.4725

5,3388
5. Is2L
5. 1508

5 ,0311
5. t20?
5,4300

5,0750 Conlained rithiu 95$

4.?180 Containeri rithin 9?.57
5.i120 Contained Hithin 95å

5.3610 Coutained nithin 95t
4.9630 Contaiued rithin 95t
5.5090 Coniained Hithin 95t

I
2

3

4
(

6

0.0836
0.1293
0.0996
0 .1575
0. 139?

0 .1347

0 .289r
0 .3596
0 .3156
0 .3969
0 .3738
0.3670

5. 4683

5, S23l
5,9875
5.1467
5.86{9
5.8436

6,1530 Contaiued riLhin 997

5.8690 Contaiued vithin 95t
6.1610 Coniaiued vithin 951

5.8900 Contaioeil riihin 95I
7,2350 l{ot Contaiued ribhin 99.
6.4490 Contained wilhin 95t

lalle 5'2.2: htrogy reduction in class-¡renbership inder sequence of Little R.

Case I¡for¡ation source Harginal htropy of
class-nenbership inder
sequence of Littie R.

CondíÈional htrop¡ of htropl
class-nenbership inder Reducti
sequence of litt]e R. t S l

Condibional htropy
Condit,ional htrop¡
Harkovia¡ htrop¡

Reed Ck.
Roa¡oke R,

Seaso¡al transilion

1.2275
1.2275
L.2275

0. 6582

0 .3408
l.1192

15 .38
72.24

8 .82



TâbLe 5.2.3.1: Srmry of REG nþdet Pertinent to Littte R- dsts lnfittirg

Tabte 5.2.3.2: st¡mry of SREG mod€t Pertinent to Lítt[e R' data infittirE

Eà5 ê

RlYcr

Roanofe
River

6ca3on Statê

-.-----;;;;-'

---'-------ï
I ntd

b0

2

7.t5 .60 19.6S 2{,25 I?8 bo, bt 11

signt-
ficant at
5l I evel

letd
Cr e elr

bf tbo tbl DF coment

I lntd

lntd

2.23 .63 2O.l{ 33,?E l?8 b9,!l 8?

slgnl -
ficant at
5t I evel

conguted nodcl

1.

I.?3 ,?6 ?.86 16.92 t?S bg,!l ,62

sl9nl-
Iicant at
5l I cvel

2.r2 .66 12.{1 22.61 l?8 b9,lt '1t
3l9n t -
ficant at
5l I cvel

R '!q chi-sq(el

38.8

Residual ÀnalJsls

DP Coment Const. Statc ot
var.(e) ÀcP(c)

33 sorrul at satisfied auto-

5l level correlated

21,? 33 nomal at satisficd auto-

5l level correlated

22.7 33 nolMl at satistied auto-

51 level correlated

11.0 31 oom¡l at sati3ficd auto-
5t lcvel corrclated

.:::il::l:1.--..--.-.....
obscrved vr.
prcdiction intervrl

all clcne¡ts contained
rithin 951 intcrval

5th elenent contained

rithin 961 interval
vhile the rest containGd

ritbln 95t interval

¡ll elenents contained

vithln 951 inttrval

all elcnents cont¡incd
rithin 95t interval

t\)('r

ln tfång



labte 5.?.3.3: sumry of ssREG trþdet pertinmr to r.ittte R. data infittirìg

lable 5.2.4: feço lag C¡oçp cgrrelafion Coefficient betyeen [ittle River
alld each ât the base rrvers

Base
River

ñ;;;;i;- 
----

RÍver

R;;;--------
Creek

Cross co¡gelation coefficientl Cross correlation coefficient I Cross correlation
ç0(fesp00d1nq f0 I correspondÍnq to seasonal I correspondinq to selndlscrenrnatell choseD sanplel saÍtple- t seasonãl samile

0.93

0 .86 0.79

coe f fi cient
I ec ted

f\)
O)
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ÀSSESSIIIENT CATEGORY 2

COT'TPARTSON OF THE HEGRESSTON T,TODELS FOR DTFFEAENT {RTVER WTTH

ItïSSING DATA, BASE R.] PAIRS

The ranking is given in Table 5.2.5.a. The REG model gave the

least ed and least eo. In case of {Roanoke R. rl,ittle R. }

pair, the SREG and SSREG models respectively performed better

over REG in terms of ew and P. In case of { Reed Ck., Little

R. ] pair, SSREG performed over REc in terms of P. The

graphical contrast of infilled versus observed data for

various sampling scenarios is given in Figs.5.2.L. (L,2)J.

oOItPARïSON OF |úOVE.4 IúODELS FOR DIFFERENT {RMR WITH IIISSTNG

DATA, BASE R.} PATRS

The rankÍng is given in Table 5.2.5.b. AMOVE gave the least ed

in all- cases. In case of {Roanoke R., Little R.} pair, SSMOVE

performed better over AMOVE with respect to P and eo., while

SMOVE performed superior to AÌ,ÍOVE with respect to ew. In case

of {Reed Ck., Little R. } pair no beneficial effect of seasonal

sampling over the heterogenous sample r,Jas noticed. The

graphical contrast of infilLed versus observed. data for
various sampling scenarios is given in Figs.5.2.1,. (3,4) l.
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lalle 5.2-5.a: lalle of raoling of perforuace of varities of regrassioo Dodel (tB cluster)

llodel rall i¡ ters Hodel ra¡I i¡ leræ Xodel r¿¡Ì in t.er¡s ¡o¿.¡ ¡'nt ia term
of esti¡ìatiou error of æiiution error of deviatioa at peal of overall estiutio¡
in dr¡ seasoo [edl iu vet season [er] re.oútd.- obsvd. [p] error [eo]

River

--t* -;;-;,,* 
Ë;- '*--;;;;Ë;-;----;;--Ë;--- ;; ;;; -

Beed cL. i 0.26 0.27 0.28 10.?3 0.23 0.2{ I -{lt.t -{s6.3 -{s9.6 i 0.2s 0.25 0.26
I--------------:---------------:---t------: ------- ---i - -----------f----
iuc sRpc ssËc lsn¡¡ Rrc srüc I sfdtc ri¡G R.zc I Rrc sntc ssnec

Roa¡oke B. l0.2? 0.2{ 0.2{ 10.2t 0.22 0.23 l -ItL{ -180.1 -238.t | 0.22 0.?3 0.24
-------- --- ---:-- - !--- - ----------- -----t --- ----- ------ -- - --- ---L - - - -

lable 5,2,5.b: lable of raúing of perforna.uce of varities of IOvf.1 rcdel (!B cluster)

l{cdel ra¡} i¡ t¿ræ Xodel r¿¡I i¡ terre Xodel raok in ter¡s l{odel ra¡l in teru
of ætintion error of ætiutim error of deviatío¡ at peal of overall esti¡u!Íon
iu dr¡ seasoo [ed] iu ret seasou [er] ræoutd.- obsvd. [p] crror [eo]

River

------'l----- -- ---
¡liovz s${or¿ ${ovE I ÀHcr¿ ${ovr s$¡ow
-31r.5 -{{6.1 -{62.s 

I 
0,25 0.25 0.29

-----T----------
ss{oÍE ¡t+or¿ s{ovE i 5s4{ow ÈiovE &{ot¡E
-132.5 -1s9.7 -18L7 

I 
0.21 0.23 0.21

ffi ;;;Ë;;-*;;;T
!:11 -9:11--19: i1...1:1! - -.1 -1! |

ss'lorE E{ovE lorovz ssrorz uorz I

0.2s 0.2s 10.2t 0.22 0.26 
I

-Ë;
lo.zr'--Ë;-
lo.rs

Reed Ct.

8oa¡oke B.
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Conparisou of infilling of litlle R. data for period [June I98?-Hay 1988]
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ASSESSI.IENT CATEGORY 3

I'IULTMRIATE MODELS (Tab7e 5 . 2 . 6 .a)

The SESTRNALL model performed very poorly in compared to MULBS

model incorporating each of the base rivers information.
Roanoke R. performed best with respect to ed, eo. Reed Ck.

performed best with respect to ew and P. The contrast of

infilled versus observed data by the multivariate models is
presented in Fig.5.2.2.

REGRESSTON ATTD TûOVE.4 T,TODEL I TabTe 5.2.6. (b,c) ]
I{ith respect to all- the criterion that were chosen for
evaluation, in all cases of MOVE.4 and regression models,

Roanoke R. performed better over Reed Ck. The contrast of
infilled versus observed data by the mul-tivariate models is
presented in Fig .5..2.2.



?aile 5.2.5.a:

132

lalle of ra¡Ii¡q of performncc of r¿rious sourcæ
for the ¡ultivaiiate-ædels (tB ct¡stcr)

l{0DEt Source ra¡k iû terre Sou¡ce ranl iu Èer¡s Source ra¡l in terns Soorce ranl in teræ
of estiutioo error of estimtio¡ error of degiatim at peaÌ of overall estinatioo
ia dr¡ season [ed] il ret season [er] reco¡std,- obsvd. [P] error [eo]

lable of ruking of perfonulce of r¿riou base i.
for each salrpliug scenariorregressim mdel ([B closter)

Talle 5.2.5.b:

¡{0DEt River ra¡l iq te:rs
oi estiutio¡ error
iu rel seasoo Ier]

River rank iu term
ol deviatiou at peal

recoûstd.- obsvd. IP]

Eiver ra¡k iu terns
of ocerall esliuÈio¡
error Ieo]

Rd.ck.
0.23

lable of rauking of perforoa.oce oi r¿rious base R.
for each supliug sceoariorl{0fE.{ rdel (tB ctuster)

ñ
lo.22

Rd. CL.

0.25

58.8G

lable 5.2.5.c:

Ë0Ds[ River rank in ter¡s Biv¿r ruÏ in ters
of esti¡atioo error of estÍ¡atioq error
in dr¡ seæou [ed] io ret seasoa [er]

Eivcr ranl i¡ leræ Eiver ra¡l i¡ ter*s
of deviaÈiou at peal of overall estinÈior

ræoostd.- obsvd. IP] error Ieo]

nd. c!.
0.22

Rd. cl.
0.25

Bd.Ct.
0.25

siovE

s9{0vE

h.R.= Roasole R,
ld.Ck,= Reed Ck.
5.S: self seri.æ

;:;.ì;;:--
0.22 0,22

h.R. Bd.Ck.

!-ll---9:1i----.-
b.R. Bd.Ck.
0.22 0.24

Rd.ck.
0.23

Ril . Ck.
0,27

Rd. CL.
0.27

F;:
l0.re

Ë:;:
lr:
l*.*.
lo.zs
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Conparison oi infilling of tittle R. data for period [Jure 1987-Hay 1988]
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The assessment category two shows that in all cases the

heterogenous sarnple gave the least ed. In case of {Reed Ck.,

Little R. ) pair, seasonal sampling do not show any improvement

over the heterogenous sample.

The assessment category three shows that in all cases of

regrression and MOVE.4 inodels Roanoke R. performed superior to
the Reed Ck. In case of MULBS model, Roanoke R. performed

inferior to Reed Ck. in terms of er¡r and P. SESTRNALL model

performed the worst.

Poor fitting of SESTRNALL model- can be explained by the poor

information transfer by considering seasonal transition of
Markovian nature. fn case of MULBS mod.el, f itting of
reconstructed data to the observed data is much better in Reed

ck. than in Roanoke R.. Reed ck. resides on the same drainage

basin as that of the Little R. whíIe Roanoke R. is rocated in
dífferent drainage basin. Due to the cl_oser proximity, the

seasonar siinilaríty between {Reed ck., Littre R. } pair is more

than the seasonal similarity between { Roanoke R., Little . }

pair.

rn case of all the varieties of regression and MovE model,

better performance of infilling by Roanoke R. over the
performance of infilling by Reed ck. can be explained by the

higher zero lag cross-correlation coefficient of {Roanoke R.

and Little R) pair than that of {Reed ck. and Little R} pair
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ITab1e 5.2.4]. In case of incorporating Roanoke R.

information, superior performance of SSREG and SSMOVE models

can be attributed both to appreciably high zero lag cross

correlation coeffícient of { Litt1e R. and Roanoke R. } pair as

well as to considerable amount of entropy reduction I Table

5.2.21 .
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5.3 A8SESSME¡¡T OF OUÀLITY OF INFII¡LING OF GÀP OF THE !.ÍISSING

DATA RIVER BEIJONGING TO THE LIIL CLUSTER

ASSESSUENT CATEGORY 1

A multivariate leve1 assessment of the MULBS model- fTable

5.3.1.01, incorporating Soo R. 'ínformation transfer, shows

that the observed wet seasonal segment l-ies within the 992

contour of prediction while the observed dry seasonal segment

lies within the 95? contour. For the same model incorporating

Rutherford Ck. information, all the observed seasonal segrment

lies within the 952 contour. In case of SESTRNALL model, aII
the observed seasonal segrments lie within the 952 contour of
prediction.

For the MULBS model in the case of {Green R., Soo R. } pair[

Table 5.3.1.11, observed data corresponding to Sth element of
dry seasonal segrment lie within 95.72 prediction band while

the remainder of the observed data lie within the gíe"

prediction band of corresponding elements of the associated

seasonal segment. In the case of the {Green R., Rutherford

Ck.Ì pair [Tab1e 5.3.L.2], observed data corresponding to the

2nd element of wet seasonal segment Iie within the 97.52

prediction band while the remainder of the data lie within the

95å prediction band of corresponding element of the associated

seasonal segrment. In case of SESTRNALL model [Tab1e 5.3.1.3],
observed data corresponding to sth element of wet seasonal-

segment lies within the 992 band while the rest of the
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observed data lie withín 95å prediction band of corresponding

element of the associated seasonal- segirnent.

Reduction in entropy for the seasonally classified sequence

of Green river is appreciable by conditioning on Soo R. than

by conditioníng on Rutherford Ck. and is very poor under

assumption of Markovian nature of seasonal transition I Table

5.3 .21 .

In case of both the REG and SREG models incorporating the

{Green R.rSoo R.} and {Green R., Rutherford Ck.} paÍrs, all
the observed data are contained within 95? band of prediction

I Table 5.3.3. (1 and 2) ]. In case of the SSREG model

incorporating {Green R. , Soo R. } pair ITab1e 5. 3 .3.3 ] ,

observed data corresponding to the sth element of the wet

seasonal segrment lie within the 98? predictíon band whíle the

rest of the data are contained within the 95å prediction leve1

. For the SSREG model incorporating the {Green R., Rutherford

Ck.) pair [Table 5.3.3.3], observed data corresponding to the

2nd element of the wet seasonal segiment lie within Èhe 99.22

predíction band while the rest of observed data lie within the

952 band.
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Table 5,3,1.0 : Distance of 0bserved seasonal segurent of Creer R. rith respect to Lhe predicted
conditional coufiguration by the base R. b¡ Htll,BS Hodel
and by seif Series bf SSSTRT{ALü Hodel(nultivariale basis apgraisal)

æ1-.----------.::Ï:1.1-----.--l
!{odel Iniornation I Obr.rved DF Couqreni I Observed DP Connent Isource 

I 
oistance 

I 
Distance 

I

;;;;;'----'---;;;"------t ;;'- --;--l;;;;;;;il I -i; 
;; 
-;--ì;;;ñil-- . iRiver I -----ll1-!::::::---------l- --:::-:::::::-- I

SESTRIIAII Sel i Series 2 .00 6 lyi.ng rithin
95t Contour

lable 5.3.I.I: Green R. Data infilling by Soo R. bI HttrBS Hodel:
Predicted vs, Observed daba (appraisal on rnrginal basis)

I e.oo 6 lting r¡ithin
95ï Conlour

Table 5.3.L2: Green R' Data
Predicted vs.

l{onthly Elenent Element
EI enent Varia¡ce Heau

Predicled Predicted

El enent
s td.

Predicted

0bs erved
El e¡rent

Con¡nent

I. I80
0.840
]. i50
0,700
2 .160
I. 050

6.576
2.947
2.939
3; I05
2.789
l. l2{

1.086
0.917
L 323

0 .837
l. {70
1.025

7.140
2.560
4.070
3.850
2 .580
2.090

Cootained rithin 957
Contained rithin 95t
Contai¡ed wilhin 95t
Coutained Hilhin 95t

Contaiued riÈhin 95.71
Contained Hit'hin 95å

7

I
9

210
1I
12

7 .780
29.240

212.430
5055.830

2.760
4. 680

22 .50I
3t.804
89.918

35?.645
2.912
9.098

2.789
5. 407

14.575
i1. I75
1. 561

2. I63

22.280
22.040
77 .840

408.330
-0.452
11. I60

Conlained rithin 95t
Contained Hilhin 95t
Contained riihin 958
CouLained r¡iÈhin 95t
Conlained Hithin 957
Contained rilhin 95f

infilling by Rutherford Ck. by HULBS Hodel:
0bserved data(appraisal on unrginal basis)

seasou Honlhl y

El ement

El enent El ene¡t El eneut
Variance Hean Std.

Predicted Predicied Predicled

0bs erved
EI enent

24.462
?ç 20t

3i. 942

16.573
18 .368
29.638

34. 680

20 .535
L8.227
l6 ,33I
12 .775
l7 . {57

4. 946

5.948
5. 652

4.0?1
4.286
5 .114

35 . {00
20 ,300
15. {00
13 .300

9 .000
12 .500

Contained riibin 95t
Contained rithin 95t
Contained Hithin 95t
Contained nilhin 957

Coqtained rithin 95t
Contaioed rithin 957

1
o

9

2I0
II
12

72 . 453

159 .714
l2l. {99
48.608
II.972
89.985

96.766
l3I. 911

104.651
55.121
35.7{S
26.587

8.5I2
t2,638
1I.023
6.972
3, {50
9.486

80 .200
I03.000
105 .000
72.200
31.700
22.400

Conlai¡ed Hithin 95å

Contained Hithin 9?,5t
Conlaioed rithin 951

Conlained rithi¡ 95t
Ccntained rithin 95$

Contained rithin 95f
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Table 5.3.I.3: Green Riyer daia i¡filling by SESTRIIÀII Hodel
Predicted vs. observed data oÉ Green River
(apprisal on rarginal basis)

Season }lont'hly Elenent
El enent Variance

Predi c t ed

El e¡reot
std.

Predi ct ed

EI eurent 0bserved
Hean El enen!

Predi c i ed

Corment

I
)
3

4

6

I49.8s00
I06.7i00

41 .1200
50,9700
22.0500

189 .5t00

l2.2413
t0.330I

6 ,8644
7.1393
4. 5957

I3.7663

31.2{00
21.1400
I2 ,8900
I2.,{,{00
10.6500
29. 7800

35 . {000
20 .3000
15. {000
13 .3000

9 .0000
12 ,5000

Conlaiaed Hithin 95t
coítained riLhin 95*
Coniained ribhin 95t
Contai¡ed riihin 95t
Conlained rithin 951
Contained riLhin 95S

497.8900
333 . 9?00

281 .0800
92,9200
54 .0900

225,1400

aa ll7t

18,2748
I6.7554

9. 6395

7 .3546
15 .00 {7

59. 4300 80.2000
lll ,0000 t03 ,0000

99 , 6400 105.0000
59. 9300 '12 .2000
53.3800 3Li000
38.0800 22.1000

Coutained riLbiu 95t
Conlained yibhin 95I
Contai¡ed rithin 95I
Contained rithin 95å
Contained rithin 99t
Contained rithin 95å

lalle 5.3.2: htrop¡ reduction i¡ class-urbership index sequence of Green R.

I¡for¡ation source Harginal htropy of
c1 ass-ssrbership ilrler
segue[ce of Green R,

Condilio¡al hlropy of htropy
class-neobership inder Reductiòn
sequence of Green R. t t l



lsbte 5.3,5.1: sl'¡mry of REG rþdet Pertinent to Green R. data ínf i I t ir¡9

Earc

River

Soo

River

State
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Intd

Rutherford
Creel

b0
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signi-
ficant at
5l level

;--.-'---i;;;ï
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8{.0 69 nomal at satisfied auto-
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? nat
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IbI DF
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5l level correlated

6.8? 28.22
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ASSESSMENT CATEGORY 2

COMPARTSON OF THE REGRESSTON T4ODELS FOR DTFFERENT {RWER WÏTH

MTSSTNG DATA, BASE R. } PAÏRS

REG performed best in aIl- cases in terms of ew [Table 5.3.5].,

In case of the {Green R., Soo R. } pair, SREG performed better

over REG in terms of ed, P and eo. In case of the {Green R.,

Rutherford Ck. ) pair, SSREG performed better over REG in terms

of ed and eo.and SREG performed better over REG in terms of P.

The graphical contrast of infilled versus observed data for

various sarnpling scenarios is given in Figs. 5. 3 . 1-. (L,2) I .

coMpARISON OF ï4OVE.4 IúODELS FOR DIFFERENT {RTVER WTTH MTSSTNG

DATA, BASE R.} PAÏRS

In case of {Soo R., Green R.} pair [Tab1e 5.3.5]:-, Al,foVE

performed best in terms of ew and P, while SSMOVE performed

better over AMOVE in terms of ed. In case of {Rutherford Ck.,

Green R. ) pair, SMOVE performed superior to AIvfoVE in terms of

er¡r and P, while AMOVE performed best in terms of ed. The

graphical contrast of infilled versus observed data for

various sarnpling scenarios is gíven in Figs.5. 3 . 1. (3 ,4) I .
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Tallc 5.3.5.a: lablc of rarking of perforrÊ¡ce of variLies of regression mdel (LM cluster)

Sive¡ liodel rank in ter¡s Hodel ra¡h in lerr t{odel ra¡l iu ter¡s l{odel ruk in terrs
of esii¡ration error of estiution error of deviatio¡ at peal of ocerall stimtiou
iu dr¡ season [ed] in ret season [er] recoutd.- obsvd. [p] error [eo]

--------------i--
I sn¿c ssRzc REc

5oo R. | 0.09 0.11 0.13
I--------------i-
I Ssirc sRsc RsG

tutherÉord ct.l 0.2? 0.32 0.{B
_____-_----___L_

r-;;;- ';;;;---;;* i;;;-;'-' il T;;;---'-;;;- 
-ä--

. 0.I2 o.ts 0.18 
I 
1.8 s..t 10.3 

| 
o.rz o.l3 o.ts

l-;;; ;; -;;;' i"*';."' ;;;; 
-i;,* ;; -" ; --

I 
o.te 0.2s 0.26 

I 
t8.e 21.5 32.9 10.26 0.2e 0.3?

lable 5.3.5.b: fable of raaking of perfornance of varities of I/¡OVE.{ mdel ([ILL cluster)

RiYer Xodel ruk i¡ ter¡rs Hodel ruÌ i¡ terrs t{odel ra¡l in ter¡s Xodel ra¡t i¡ ter¡s
of ætin¿tio¡ error of estimtÍo¡ error of deriation at peat of oyerall æti¡alio¡
io dry season [ed] in ret scæon [ev] reco¡sÈd.- obsvd. [p] error [eoJ

5H0t¡E

0.13
5S{0r¿
0 -15
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0
Q246

Fig. 5.3.ì..I:
Courparison oÉ iufilliug of Green R. data for period lilov. 19{4- Oct.1945]
by Soo R. bf Rlc, SREG, SSREG ¡rodels (varities of Regræsion model)
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Fi9.5.3.1.2:
Conparison of infilling of Green R. daÈa for period [iov. l9{{- Oct.1945]
by Rutherford Ck. b¡ REG, SREG, SSREG nodels (varities of negression aodål)
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Pig.5.3.1'3:
irö.iiiå".f inti¡ing of Green R. daia for period [t{ov. 1944--oct.L91s]
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ÀSSESST{ENT CATEGORY 3

TíU LT TV ART ATE T'ÍODELS

Tab1e 5.3.6.a: shows that Soo R. performed best iri terms of

€d, êw, eo. The Rutherford Ck. performed superior to Soo R. in
terms of P; Both SESTRNALL model and MULBS model incorporating
Soo river and Rutherford Ck. information tFig. 5.3.2), showed

poor fit of reconstruction shape. This deficiency is
specifically prominent at the peak.

REGRESSTON AND TúOVE.4 MODELS

Both Tables 5.3.6. (b,c) and Figs. 5.3.3. (1, 2, 3 and 4 I show

that Show better performance of Soo R. over Rutherford Ck.
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The assessment category two shows that in all cases the

regrression model, heterog'enous sample gave the least ew. This

is completely different from the case of UpB and LB cluster.
In terms of the remaining criteria seasonal consideration in
sampling shows beneficial effects. The positive influence of
seasonal sampling was found effective to a lesser degree than

the previous case. with respect to the shape reconstruction
poj-nt of view none of the multivariate model could reconstruct
the observed shape.

Poor fit of MULBS moders can be explained by the poor fitting
of murtivariate normal distribution. This rack of fit is most

probably due to the inadequate number of nultivariate seasonal

segments . Poor fit of SESTRNALL model can be attributed to
both the poor information transfer by seasonal transition as

well as to the inadequate number of multivariate observations.

QuaÌity of reconstruction by the REG, SREG and ssREG moders

are analogous to the Al"IovEr sMovE and ssMovE moders in both

cases of {Green R., Soo R. } and {Green R., Rutherford Ck. }

pairs. Better infilling performance soo R. than that of by

Rutherford Ck. in al-l- varieties of regTression and MoVE models

can be explained by the higher zero-lag cross correlation
coefficient between {Green R., soo R. } pair than the one

between { creen R., Rutherford Ck. } pair.
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DTSCUSSION

The proposed multivariate model_s assume the presence of
significant rel-ationship between the predictor and predicted
variate and this relationship should be consistent. The

dependence is given by Ezr terms of Equation 3.7. The

correlation-coefficient matrix in case of MULBS model- shows

the relationship is of mostly lag-O nature. But in case of
SESTRNALL model the dependence is found to be small_. Moreover,
the insignificant amount of entropy reduction indicates
erratic nature of transition ITabJ-e 5.4.1]. considering these
factors, SESTRNALL model shoul_d not be expected to perform
satisfactorily and in fact it did perform poorly.

The MULBS model performed poorry in case of LÏLL cruster, it
can be conjectured that the available data 22 observations was

inadequate to ensure the mur-tivariate normality.

rt was expected that the reg,ression and MovE.4 models wourd
perform very good Íf the samples are chosen by inposing some

homogeneity criteria. rt e/as assumed that the cross-
correlation coefficj-ent may increase under the seasonal-

homogeneity condition. But the Table: s.4.2 shows decrease in
cross correlation coefficient. only for wet seasonal sample of
{Johns ck-,craig ck.} pair, the correration coefficient
increases. rn wet season, in very few cases the original
cross- correlation coefficient remained constant. rn most of



Tabl e 5.4.1:

157

0verall assessment of multivariate ¡rodels

Cluster Information
Source

Estimation Error 0verall Error
in

Dry S, Iiet S.

Entropy
Reduction
trl

Johns Ck,

Dunlap Ck.
IIPB Conpasture R.

Self Series

0.18 0.08
0,23 0,2t
0.27 0.14
0,39 0.s2

?8.88
70,42
59,02
5.00

0 .14
0,22
0.22
0,46

tB
Reed Ck,

Roanoke R,
Self Series

46.38
72,24
8,82

0,38
0.23
0.29

0. i6
0 .20
0,47

0,29
0,21
0,39

tltt

Table 5.4.2: Cross correlation coefficienl in various sanples

Soo R. 64, 91

Rutherford Ck. 20.18
Sel f Series 6.48

0. Ì6
0.21
0.58

0 ,15
0. t7
0.39

0. i6
0.22
0,49

Cluster River Heterogenous
sampl e

Seasonal sample Selected seasonal sample
dry liet dry l{et

gPB
Johns Ck. 0.98
Dunlap Ck. 0.95
Cowpasture R, 0.93

0.9s 0.98
0.86 0.93
0.83 0.88

0.97
0,89
0 ,87

0. 99

0.93
0. 90

IrB

Roanoke R.

Reed Ck.
0 .93
0.86

0 ,88
0.79

0.93
0,86

0.79 0 .92
0 .70 0 .78

0.94
0.8I

0.93
0,86

Soo R. 0.9?
Rutherford Ck. 0.95

0,84 0,96
0.88 0.89IiLt
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the cases it dropped. This reduction in cross correlation

coefficient in dry seasonal sample $ras more than the cross

correlation coefficient in wet seasonal- sample. In the dry

season, the estirnation errors !'¡ere on an average more than the

errors in wet season.

The procedure of seasonal segmentation or assumption of six

months long season over a fixed perÍod of tine could be

considered to be a factor behind such a drop in correlation.

For example in table A.2.3, in the Craig ck. data matrix,

there are very high flow in the month of June of the 15th year

and of the l-9th year. There were also high flows in the month

of November of the 20th year and of the 28th year. The months

of November and June have been assigned to dry season. It can

be conjectured that these high flows may affect the

homogeneity or in extreme cases behave like an outlier. In a

dense sampJ-e such as the original data set it is balanced to
some extent, but when the data is selected, the size of the

sample reduces and if the reduced sample contains such

abnormal flow, i-t may degrade the fitted line. The efficacy of

seasonal group characteristics for sample selection is thus

found to be beneficial for linited cases
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Chapter 6

CONCI,I'SION

fn this thesis an effort was made to investigate the efficacy

of seasonal group characteristics for monthly flow data

infilling purpose. Two multivariate models r^Iere developed:

MULBS and SESTRNÀLL models. The MULBS model reconstruct a

seasonal flow group of a river with missing data conditioned

on the simultaneously observed flow group in. the nearby

located river. The MULBS model was based on the assumption of

consistent nature of simul-taneously observed inter dependent

flow groups {nissing data river, base river}.

The SESTRNALL model on the other hand reconstruct a flow group

of a river conditioned on the preceding flow group in the same

river. This mod.el v¡as based on the assumption of consistent

inter seasonal dependence.

The models lüere applied to the real world data. The model

assumptions v/ere also Èested in the by using conditional

entropy principle. The SESTRNALL model performed very poorly.

The MULBS model showed satisfactory performance only under the

constraints of i) Ionger period of concurrent data' ii) close

proximity of and seasonal similarity of missing data river and

a base river. Moreover, it involves very cornplex

multidimensional computational procedures which assumes the
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data to be multivariate normal.

Further in this thesis, the use of group characteristics of
monthly flow data in the extraction of relative homogeneous

samples for regression models v/ere ínvestigated. The

occurrence of groups of low and high flow vary over the length
of a year. Thus a segmentation scheme (such as the one used

in this thesis) based on the assumption that the flow groups

occur over some fixed calendar months runs the risk of
assigning the flows to an incorrect season. caution should be

exercised in using such a sample. under such a situation, the

use of L2 regression equatÍons for l-2 months may run into even

greater risk of incorrect estimate of missing data because the

sample size would be reduced by a factor of six.

SCOPE FOR FURTHER RESEARCH

Following issues were identífied during the course of thís
thesis, which are open to future study.

1-. Multivariate models developed here are capable of
reconstruction of compretely missing seasonâl segments and

these models do not deal with the situation of part,ially
missing seasonal segments. Considering X=[Xt rXrJ, as the
simultaneously observed seasonal segment, EU algorithm

[Johnson and I,Iichern 1988] could be considered as a candidate

solution for the problem.
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2. In Some cases, poor performance of SSREG and SSMOVE over

REG and Aì,IOVE is suspected to be due to the specif ic

clustering atgorithm used in this thesis. The selected

seasonal segments as vlell as well as the entropy reduction is

expected to vary vfith the variation of clustering algorithn

and the metric under consideratíon. One can study the entropy

reduction and the corresponding infilling performance under

variation of the clustering algorithm as well as the

clustering metric.

3. The study of the data matrix shows that groups of flow do

occur, but the occurrences are neither fixed by Some calendar

months nor do they stretch over s j-x months time (also

supported by the cross-correlation matrix). The entropy

analysis shows consistency in the simultaneous occurrence of

flows in the neighbouring rivers. Therefore a multivariate

model of lesser dimension can be considered for the future

research with the parameters calibrated from all available

data. This model- can be compared to the existing multivariate

models that uses standardized data IKottegoda and Elgy

(Le77 ) I .
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ãPPEHDIX 4.1

A.1.1 K- I,ÍEANS AI,GORITHU

In this algorithm, an initial number of clusters k are assumed

and k cluster centres are arbitrarily chosen from the data.

The pattern vectors are assigned to the cluster with which it

has the minimum Euclidian dístance . The steps of this

algorithm are [Tou and Gonzalez (L974)] :

1. At the ]-st iteration step, âs initial seed, choose k

cluster ñeans Zl(l-l o . . .. .... o Zx<tl

2. At any kth iteration step, assign a pattern vector X to any

of the k cl-usters satisfying following ínequality :

x € sj if ll x - zj(k)ll < ll x - zi ll ......f 4.1.1J

with :

i=1.....k and i * :
. ll x - zi ll : ntt"tidean distance between x and zi

= .I (X-Zrl' (X-Zi )

. sj(k) : Set of samples belonging to the cluster

represented by Zj(R) at kth iteration step

3. Compute new cluster centres from the clusters formed in

step 2.1 Consider the estimate of the sample mean of the

set 8, (k) to be the new cluster centre Zi(k+l) l.
4. For all- the clusters , repeat step-2 and step-3 till the

cluster mean at kth iteration is not, significantly

different from the clust,er mean at (k+1)th iteration step.
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BEHIND TIIE IIODIFICÀTION

Panu (l-978) proposed a data infilling algorithm consisting of

following stePs:

-Finding of the most probable sub-cluster representing the

missing seasonal segment by utilizíng transitional

probability of the seasonal segrments.

-Finding of the most probable Mahalanobís distance of the

missing seasonal segment from the relationship between

the transitional seasonal segrments.

-Generating seasonal segment with a configuration specified

by the configuration of the most probable sub-cl-uster and

constraning Ít to have the most probable Mahalanobis

distance

This procedure assumes that the Markovian transition pattern

is adequate to recognize the sub-cluster to which the rnissíng

segfment is expected. to belong to and subsequent generation of

a seasonal segrment by specifying the marginal configuration of

the sub-cluster obtained from the historical data set is

adequate to mimic the missing seasonal segTment provided it is

constrained within the Mahal-anobis distance

Even if the seasonal- transition $/ere of perfectly Markovian
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nature, thus, rend.ering the correct sub-cluster, the

Mahalanobis distance alone is no binding constraint for

obtaining the unique estimate of missing: seasonal segrment' Let

F, E denote the configuration of the most probable sub-

cluster , ttren for a known Mahalanobis distance cz , êDY

seasonal segiment x will satisfy the equation of

equiprobabilitY contour given bY :

(x-p)T E-l (x-¡¿) = c2 ............ [ À-1.21

Since p and E are estímated. from the historical data

conforming to the configuration of the sub-cluster, the

Mahalanobis distance is the only constraint considered here'

But there are infinit.e combinatíons of components of X

satisfying equation 4.I.2. This is shown in tFig. A. L.1l where

two pattern vector xj : [xrrrxlz ]T and Nz = lxzt, xzz It

represented by the points Pl and P' both satisfy [Eq. A.]-.21

but each consistíng of combinations of elements of totally

different magnitude. Unless, the configuration is adapted

according to preceding observed segTment, the model proposed by

panu (;-g71) would generate estimates of missing segrnent within

a certain probability leve1 (given by the Mahalanobis

disÈance) from a cluster with a rigid configuration computed

from the historical data. An empirical data reconstruction

model is developed. which uses the inter-seasonal dependence

(Panu Lg78) and furthermore incorporate the flexibility in

distributional contiguration of the prospective candidate
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Seasonalsegmentcorrespond'ingtoamissingseasonalseg:ment.

MOVE.4 I-ÍODEL

rn this thesis, MovE.4 [Vogel and stedinger (r-985) ] is used

und.er three d'if f erent sanpling scenarios ' In each case ' t2

period'ofmissingrecordoftheseriesYareestimatedbythe

correspondingobservatíonsexistingintheseriesx.Both

series are assumed to have a conmon record of n1 period' The

generalinfi]-lingestimateofthemissingdatabyMoVE.4is:

ir, = a'+ b (xi --xzl ....""""' [À'1'3]

(nr -l)rz
Y.t 'l-rt (nr '+)r2 +t

:þ (xi - *').{ Y'-Í, )

*p=
Il, 

^_:r____ .'ß. (lz - \ )

(nr+n2)

B:
n1

"*' 
(*'' -f )z
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e
"x1

sv1

1n1
% = --- ¡. Y;I I i=1

n1

1 
n-1

x1 = -- - 
"",, 

xi
n1

z L n1, ::
sv1 : -.----,- Ë-tv, -n )2'tt (nr -l-) i=1

z.Ln1s*1: -:----- il' (xr - ", l'^r (nr -r-) r=r
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REGRESSION UODEI,

Least square regression model is used to infíI1 n, Period of

missing record of the series y by the corresponding

observations existing in the series x . For both of these

series, conmon record of n,, period is considered- The general

infilling equation

is:

Yi-bo+btxi+ei

where,

o o . . . o . . . . . . . . f 4.1'4]

i'],,,", - ir) (yi - -y1)

b1 :
n1i (xi - ,r,')t
i=1

bo=i-brE

ei = normally distributed random error term
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APPENDIX 4.2

¡\.2.1 SEASON¡II¡ SEGUENTÀTION ÀND SLIDING OF DATA }IÀTRIX

These procedures are explained in case of Dunlap Creek (a

member of uPB cluster) . From the reported data matrix, 3I

years of data for period of (oct. 1958- Sept. 1988) are taken

as input data matrix [Tabte A.2.]-1. The correlogram I Fig. 1.3

I indicates two seasons per year. For each ro$I of the data

matrix, the rnonthly fl-ows are ranked in ascendingf order of

magnitude, the six months having the 1st six lowest flows are

assigned to the group-1 and the six months corresponding to

the six next lowest ftows are assigned to the group-2 [ Table

A.2.1-1. This procedure is repeated for each year. The number

of assignment of each month to each of the two groups are

counted. The chain of síxmonths [June- Nov.] and I Dec.- May]

respectively shows maximum number of assignment to the group-1

(dry season) and group-2 (Wet season). This procedure adopted

for finding of the association of the months to the season is

referred as Seasona1 segmentation

In order to facilitate the beginning of the data matrix to

coincide with the beginning of the season, the data matrix is

slided forward by deleting eight data [Oct.1958-May 1958] of

the 1st row and appending eight more data [Oct.1989 -May ]-9891

at the end of the data matrix . Thus, the ínitially entered

data matrix [Oct.1958 - Sep.]-9881 is slideð to the data matrix

[June ]-958 May l-9891. The segmenLation done on the slided
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lable À.2.I: segmeutalion oi the origilal daia ¡alri¡ of Drnlap cr:ek (Oct.1958-sep.l9B8)

Input Data mtrir

ïear | Oct.
I

2

I
I

I
6

I
2

I
I
5

I
3

4

{

L2

3

{
2

I
3

2

I0
5

I
I

2
1

1

{
7

5

3

J

2

2
t

2

2

1

ö

1

5

5

5

7

1

6

I
5

7

t]

5

6

9

1

I
I
3

lt

l0
5

I
3

{
5
I

9

9

9

5

6

I
7

ll
11
I
6

7

1l
I
9

9

l0
7

6

9

9

5

12

6

9

I
b

9

7

It

9L2II
81112

l0 12 lI
t2 l0 l1
10128
9127

10129
10129
12109
9126

t0lt7
ut08
IISIO
!2109
L26IO
71112
7108

11L28
IIIOs
.8 t0 12
6128

L2107
s12ll
98I0

12tt8
I0 11 t2
12tl9
t2107
I0lt6
I0llt2
l0?8

7

I0
7

7

9

II
I1
i1

6

10

12

lt
0

L2

5

tl
11

¡0
{
9

5

5

t1
7

8

t2

I
6

8
(

tl
l0

5

7

l0
2

9

6
1

7

{
I

!2
5

6

ll
5

I
I
I
I
{

t?l¡l¡t;
tJ
l5
t7
lalo

itoiu
112
lt3

t,t
l5
l6
LI
l8
l9
20

2L

22

23

21
25

26

27

28

29

30

3t

T2

5

5

10

t2
7

1

Year I oct. íov. D.* Jar. Peb. !lar. Àpril Àug. seP.Jul ¡

8

9

10

II
L2

I3
l.l
I5
t6
L7

I8
l9
20

2I
22
11

24

25

27

28

29

30

31

51.9 I30.0 278.0
21.1 22,7 ll.9
59.1 98.7 l?6.0
2r.2 25.8 28.8

t57.0 u4,0 376.0
3t.5 98.2 129.0
I8.8 26.4 31.{
33.5 48.{ 123.0
30.{ 20.2 22.7

160.0 113.0 168.0
53.0 38.0 202.0
50.5 t07.0 75.{
23.5 29.2 315.0
28.1 t20.0 1t3.0

lII.0 79.1 201.0
75.0 187.0 603.0
68.2 159.0 69{.0
38.5 11..t 220.0

153.0 83.9 71.7
327.0 t02.0 206.0
9{.5 353.0 229.0
Ll.2 23.1 108.0

243.0 31?.0 173.0
20.5 31.7 29.5
30.5 21.0 113.0
33.3 89.7 205.0
15.8 ?0.3 273.0
57.{ l{1.0 I80.0
19.{ 659.0 153.0
23.2 73.8 329.0
23,9 58.5 I08.0

235.0 357.0
115.0 96.0
130.0 299.0
60.6 396.0

259.0 333.0
314.0 120.0
217.0 208.0
3{1.0 291.0'33.? 

321.0
330.0 220.0
294.0 207.0
116.0 t95.0
228.0 301.0
208.0 580.0
277.0 658.0
189.0 131.0
515.0 200.0
361.0 506.0
296.0 213.0
17,6 t62.0

162.0 109.0
158.0 5{2.0
366.0 l{0.0
21.2 I19.0

219.0 {61.0
61.0 29t.0

125.0 519.0
218.0 {{5.0
58.5 276.0

257.0 365.0
171.0 12t.0

s82.0 52e.0 ¡s8.0 --a6J 93.{ 145.0 27.1
24.3 29.2 21..9
26.5 22.6 3?.3
33.2 23.3 2o.o
30. t 27 .9 16. S

23.8 t5,2 I5.8
16.5 Is.o 19.7
33.9 23.s 16.9
I{.3 20.1 7I.5
30.3 22.8 2o.3
22.6 23,3 l3.l
31.9 380.0 30.8
I7.3 20.1 Il.0
35.3 46..t 12.5

358.0 79.1 24.1
84 .2 47 .0 20. 1

69.0 {I.3 {9.5
65.5 3S.8 39.3
32.8 20.7 17. {
22.7 22.5 27.6
35. { 31.8 I8.2
6I.{ ,t6.8 t6{.0
53.0 31,3 27.6
36.3 16.1 !7.2
32.9 26.5 t1.7
31.0 I7.9 u..2
60.7 5t{.0 72.0
25.8 98.3 21.2
29. l. 39. 1 34. {
34.0 17.3 51.3
I8.7 16,0 2s.6

237.0 {20.0 103.0 7g.g
{76.0 393.0 27LO 6s.9
292.0 3t7.0 205.0 167.0
557.0 t82.0 64.7 n,r8{5.0 12.5 {S. { 17,0
{10.0 t93.0 62.A 26.9
166.0 288.0 t19.0 45.6
l?5.0 12I.0 310.0 {9.0
689.0 L12.0 339.0 89,0
?3s,0 159.0 t?6.0 ?t.o
189.0 I1t.0 81.3 ?2.5
t29.0 263.0 92.9 39.6
267.0 217.0 {53,0 124.0
212.0 394.0 287.0 58{.0
622.0 625.0 506.0 1s7.0
10s.0 220.0 276.0 17{.0
608.0 268.0 453.0 I25.0
181.0 1.05.0 117.0 171.0
321.0 52{.0 {9,5 3I.9
827.0 281.0 336.0 50.{
{11.0 200.0 289.0 237.O
557.0 s{7.0 tss.0 19,7
91.1 175.0 355.0 246.0

122.0 225.0 105.0 330.0
10I.0 603,0 2t1.0 74.7
515.0 {36.0 3{0.0 {0.0
199.0 .135.0 105.0 10.5
305.0 sí.7 265.0 39.I
581.0 1071.0 202.0 63.0
59.I 9t.5 l?0.0 28.8

fearl¡ Raaliug of mlihll data

(coid. )



177

(cotd. )

Classiiied dala mlri¡

?olai ouber oÉ assiguærÈ oÉ the resbLs Eo lhe ¡earl¡ seasooal groups

Iear j oct. lfov. Dec. JaE, Peb. NÂr. Àlril ta¡ Juo" Jut¡ fug. -{
I
I
I
I

.2
I

l0
II
72

l{
15

16

l7
l8
l9
20

2l
22

23

21

25

27

28

29

30
ii

out 
I 

Oct. llov. oec. Ja!. Peb. Xår. Àpril XãJ June Jult Àug. S.p

122292930
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ta'blc À.2.2: scgr¡taÈioû of lLa ¡ridaí data mÈrir of llurlap craei (Jrme tgsg-Har 1989)

Slided Dat¿ sÈri:

Àug. sêP. !ov. Dcc. Ja!.0c!.Jull

I
9

10

u
12

l3
l{
l(

I6
L7

l8
l9
20

2t
11

at

21

25

26

?7
t0

¿t
30

3I

16.1
79.9
65.9

167.0
{7.t
{7.0
26.9
{5. 5

19.0
89.0
71.0
I t-5
39.6

121.0
58{.0
157.0
17,t.0
126.0
I71.0
3l-9
5{. {

237.0
19.7

2{5.0
330.0
71.7
10.0
{0.s
39.1
63.0
28.8

e3.1 l{5.0 27.1 24.r 22.7 1r.9 Um21.3 29.2 21.9 se.r e8.7 175.0 130.0 299.0 176.0 3s3.0 tti-ò26,5 22.6 37.8 2t.2 25.3 28.8 60.5 396.0 292.0 317.0 ios.o33.2 23.3 20.0 157.0 u{.0 376.0 259.0 333.0 557.0 182.0 61.730.t 27.9 16.3 3I.5 9s.2 129.0 3l{.0 120.0 8{5.0 12.s 1S.123.8 16.2 Is.8 18.3 26.1 3L{ 217.0 208.0 {{0.0 193.0 62.815.Í ts.o L9.7 33.5 18.{ 123.0 3{{.0 29,{.0 165.0 2A8.0 ui.o33.9 23.5 16.9 30.{ 20.2 22.1 33.7 32t.0 17s.0 121.0 ¡io.ol{.3 20.{ 7I.5 160.0 U3.0 t58.0 330.0 220.0 6A9.0 142.0 339.030.3 22.8 20.3 53.0 38.0 202.0 291.0 2o?.0 235.0 t59.0 Ui.o22.6 23.3 t3.3 60.s 107.0 7s.{ t{6.0 lgs.o t89.0 1{1..0 8l:33I.9 380.0 30.3 23.3 29.2 315.C 228.0 301.0 129.0 253.0 g2.gI7.3 20.4 LI.o 28.1 120.0 1t3.0 208.0 580.0 267.0 ?17.0 {53.035.3 ,16.{ 12.5 t]1.0 79.t 201.0 277.0 558.0 212.g 391.0 28?.0358.0 79.{ 21.1 ?5.0 {8?.0 503.0 189.0 131.0 622.0 625.0 506.081.2 17.0 20.{ 58.t Ise.o 591.0 srs.o 200.0 roi.o äó.0 ;;;.; i5e.0 11.3 {e.s 3s.s {1.{ 220.0 36r.0 s06.0 608.0 iia.o ¡ii:õ i6s.s 38.8 3s.3 ts3.0 83.e 71.7 2s6.0 2t3.0 ]8t.0 ios.õ ii;:õ i32.8 20.7 17.{ 327.0 102.0 205.0 17.6 t62.0 32t.0 52{.0 -is.s 
i22,1 22.5 27.6 91.5 353.0 229.0 {62.0 109.0 827.0 . 281.0 335.035.{ 31.8 18.2 L7.2 23.1 tos.0 {68.0 512.0 {U.0 200.0 289.05I.{ 16.8 161.0 243.0 317.C 173.0 366.0 l{o.o 557.0 51?,0 I55.053.0 31.3 27.6 20.5 3{.7 29.5 21.2 M.0 g1.1 176.0 355.0¡6.J 15.{ L7.2 30.5 2I.O ll.3.O 2{9.0 16I.0 122.0 225.0 t05.032.9 26.5 !7,7 33.3 89.7 205.0 5t.0 29r.0 {01.0 503.0 zu:o31.0 17.9 lI_2 {5.8 70.3 273.0 125.0 619,0 515.0 {35.0 310.060,7 5I{.0 72.0 5i.{ I{l.o I80.0 218.0 {{6.0 199.0 136.0 los.o25.8 98.3 2I.2 19.1 659.0 t53.0 58.5 276.0 305.0 51.7 265.029.1 39.{ 3{.{ 23,2 73.A 329.0 25?.0 365.0 581.0 1071.0 202.038.0 17.3 6t.3 23.9 58.6 to8.o 17I.0 l2t.o 59.1 91.5 I?0.0I8.7 15.0 25.6 22.0 7!..6 96.{ 206.0 172.0 217.0 308.0 516.0
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Classified dai¿ ¡rLri:
(coid. )

?oLal nr¡rber of assig¡ncot of tåe æ¡ths to Lhe ¡earl¡ seasoual groups

Ju¡e JulJ Àug. seP' oct. I(ov. @

l0
t1
12

1J

11

I5
16
It

I8
l9
20

21
)1

23

21

lb
27
to
,o

30

3t

19 29 27 31 27 23
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data matrix is shown in Table A.2.2. In case of this slided

data matrix , each ror¡I is divided into two each six rnonth

long links corresponding to the two different seasonal

seqrments namely I June Nov.] and [Dec.- May]. Each roI¡I

corresponding to the period [June- May] is considered as one

year. The sliding process requires the coincidence of the

beginning of the data matrix with the beginning of any season.

In this thesis, dry season is arbitrarily considered. In the

real world situation, in case of meager data, the sliding

process may necessitates deleting of a number of months

(< t2) of data.

4.2 .2 SEÀSONAL 8EGIÍENT

For any river, for any season, the set of monthly flows

belonging to a cotnmon season is called a seasonal segnnent.In

case of Dunlap Ck. slided data matrix, set of monthly flows

corresponding to I June Nov.] and I Dec.- May] period are

considered as Dry and lÍet seasonal segments.

A.2.3 SIUULTANEOUSLY OBSERVED SEÀSONATJ SEGI.ÍENT

For a particular year, for a particular season, concurrently

observed seasonal segments in the river with missing data and

a base river is referred as sinultanéous1y observed seasonal

segfment. fn case of both the rivers having same number of

seasons per year and same associatj-on of months to season, the

simultaneously observed seasonal segment in any year is
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represented by a 2m- dimensional vector ( m= length of season

ZAin month) . In case of { Craíg Ck., Dunlap Ck'} pair'

considering craig ck. and Dunlap Ck. respectively as river

with missing data and base river, the simultaneously observed

dry seasonal segrment on l-1th year is illustrated in Tab1e

A.2.3.

A. 2 . 4 TRANSITIONAIT SEASONAIJ SEGUENT

For the river with rnissing data , :n" transitional seasonal

segment is the integrated representation of the source and

destiny seasonal segment corresponding to a seasonal-

transition. Mathematically, it is represented by a 2m-

dimensional vector comprising of the monthly flows of the

source and the destiny seasonal segment pertinent to the

seasonal transition. considering craíg ck. as the river with

missíng data , the transitional seasonal segment correspondíng

to the dry - wet seasonal transition of Ll-th year is featured

in Tab1e A.2.4.

À. 2 . 5. SELECTED SEASONAT. SEG!{ENTS

The concept of selected seasonal segiment is developed in

chapter 3, it is explained in case of {craíg ck., Dunlap Ck.}

pair considering craig ck. and Dunlap ck. to be the river with

missing data and a base river. For each of these rivers , the

correlogram analysis shows two seasons per year and

segmentation assigns the periods IJune- Nov. ] and IDec.- May]
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ïablê Ä-2.3: Ðun¡tr¡iio¡, of sirlltaoeorsl¡ oh:ervrl'se¿sqoal segest oÉ caig ct. a¡d ormlao c!,
(Juel958-Ba¡ 1989)

c¡zig C!. dat¿ utrir

SÍnul taneous I ¡
observed dry
seasoual segneel
on lI rt Iear

Dr¡ Scasou lêt Scsoû

Fet SeasoB

7I -0

fêar I Jue Jull Àug. scp, oct. !or. I Dec. Jas. Peb. lar. Àpril Håt

6

7

9

10-iI_
12

13

I{
l5
t<

t7
¡ð

T9

20

2!
1a

23

21

?s

?6

21
t0
t0

30

3l

137.0 ts5.0
ll2-0 {{.5.185.0 51.5
238.0 77.0
216.0 93.5
87.2 50.3
87.3 i3 . I
97 .3 63.5
87.0 r3.5

176.0 lot.0

l{6.0 56.J
63.0 81.7
{1.9 51. 9

215.0 17.5
I53.0 55.5
{I.3 39.6
35.6 16. {
17.5 39.7
58.0 15 9.0

s2.5 59.s I 1i7.0
t76.! 112.0 | 6U.0
11.7 5i.3 I 5{.3

201-0 3.12.0 I 903.r¡
6{.5 520.0 I 375.C
{0.3 55.2 I 85.{
9L.2 tsl.c | 255.0
85.5 51.9 I {8.1

397.0 2?{.0 I 557.r

211.0 186.0 123.X

{0?.0 l02s-0 1073.0
101.0 663.0 591.0
593.0 691.0 I109.0
715.0 232.0 t1I2.0
5{r.0 593.0 9I2.0
6e0.0 E09.0 907.0
56. t 90{.0 {08.0

7{7.0 {82.C I09{. C

7U.0 5¡0.C 6:6.0
3?0,0 560.0 511.0
6i7.r 563.0 291.0
35{.C.1208.0 520.C
!37.0 I05t.C 5t3.0
{/-0.0 933.0 Iî05.0

1080.0 196.0 655.0
i37 .0 913.0 1{57.C
iu.n {¡5.0 329.0
15i.0 282.0 511.0
951.0 310.0 1575.3

l0¡0.0 1095.0 u93.0
805.0 301.0 ll{8.0
53.I 202.0 202,1

6.:7.0 1010.0 86a.0
2L2.0 809.0 l?is.c
3{5.0 108{.0 I02î.c
{15.¡ 805.0 355.!
155.0 511.0 6i3.0
503-0 555.0 l?11.0
373.C 292.0 - l{1.0
326.0 285.0 572.0

998.0 192.0
915.0 55,{.0
73a.0 188.0
663.0 2t2.0
180.0 13E.0
680.0 160.0
{6{.0 307.0
19?.0 602.0
257.0 1I9.0
l5l.0 336.0
3 I0 .0 I{5.0
1.c0.0 255.0
53{.0 109L0
?16.0 7s8.0

t33l.o' 89?.C

500.0 {11.c
5i1.0 9{0.c
l9{.c 333.0

906.0 ÌlI. c

1085.0 1011.0
56t.0 50t.0

t315.0 357.0
277.0 511.0
3?7.0 285.C

1503.0 397.0
1085.0 73I.0
295.0 3{7.0
157.0 {03.0

2421.0 102.0
372.0 309.0
32{.0 lts3.0

221.0 132-0
7?1 qrl

512.0 t2 5.0
I13{.0 307.0
{15.0 23{.0
253.0 118.0
224-C 111.0

1023.0 1{t.0
85.5 62.9

219.0 95.0
566.0 !62.!
156.0 t0 5.0
511.0 I02.0
793.0 109.0
205.0 i1.t
92.A 82.1

l0 9.0 51.7
u {.0 65.3
1t5.0 7,1.7

85. l. 69.5

210.0 Lt{.0
Iso.0 18. I
II{.0 131.0
I75.0 96.9
151.0 78.0
l{6.0 108.0
86.3 291.0
80,{ 55.6
{3.0 55.0

139.0 59. e

13a.0 875.0
81.2 6A.9
{.{.1 1{.5
85.3 16 . I
{5.0 39.3

306.0 126.0
{07.0 55.7

68. { I50.0
12.6 197.0
57.1 80.5

78.r I{2-0 | 551.0
107.c 157.0; 231.r
132.0 288.0 ! 391.C

259.0 872.0 i 1061.!
I2A.0 230.0 U05.0
9s.3 91.7 ; {6r.c

3{0.0 1i5.0: 156.0
678-û 289.0, 170.3
109.0 1009.0, 529.c
{9.{ 70.5 I te3.¡

6s9.0 95a.0 | 1si.0
51.5 81.9 I 8{.i

!38.0 19t.0 I 3t2.¡
85.9 t61.0 I 2{6.0
51.7 2U2.0 | r5e.']
ss.s 222.0 I 112.r
51.S t70.c I 2{8.0
66.5 16r.0 I t36.0

Àug. Sc?. Oct. Iov. I Dec. Ju. P:b, l{ar. À9ri1 å¿I

{6.7 93. {
79.9 21-3
65.9 25.5

167.0 33.2
17.! 30.1
17.0 23_8
25.9 t6.5
15.6 33.9
19.0 l{.1

12.5 3I.9
39. 5 17. l

12{.0 35.3
581.0 35E.0
157.0 8{.2
I7 1.0 69.0

46.0 6s.s
u1.0 32.5
3I.9 22.7
50.{ 15.{

237.0 51. {
{9.7 53.0

216.C 36.1
330.0 32.9
74.7 31.0
{0.0 50.7
10.5 25.8
39.1 25.1
63.0 38.0
28.3 I8.7

21.1 21_t ?2.7
2l-9 59-I 98.7
37.8 2I-2 25.8
20-0 t5?.0 lt{.0
16.8 3l-5 98.2
15.3 18.3 26.{
19 - 7 33.5 {8. {
15.9 30-.{ 20.2

u5.0 96.0
u0.0 299.0
50.5 395.0

259.0 333.C
3l{.0 I20.0
217.0 208.0
3{1.0 29{.0
33.7 3?l.c

350.0 220,C
291.! 207.0
I{6.0 155.'J
22S.0 30{.0
208,C :80.0
277.1 65r.0
189.0 {3t.0
515.0 200.0
361.0 506.0
296.0 213.0
17.5 152.0

162.0 !09.C
{63.0 512.0
365.0 l{0.0
21:2 U9.0

219.0 {61,0
5l.c 291.0

u5.0 619.0

2f8-0 {{6.0
58.5 276.0

257.t 155.0
171.0 I2l-0
206.0' 172.0

237 .C {20.0
{7 6.0 393.0
292.0 317.0
557.0 182.0
8{5.0 72.5
{10.3 I93.0
{66.0 288.0
175.3 121.0
68 9.0 I{2.0
235.0 15 9.0
189.0 t{I.0
129.0 263.0
267.0 217.0
212.0 39{.0
52?.î 625.0
105.0 220,0
608.0 25A.0
18t.0 105.0
321..3 52{.0
827.7 28t.0
{u.0 200.0
557.C 5.{7.0
9{.{ 176.0

122.C 225.0
{01.0 503.0
515.0 {36.0
I99.C 136.0
305.0 51.7
581.C 107I.0
59.1 9r.5

2t:.t 308.0

23.3 13.3

20.1
{5.1
?9. {
17.0
{1,3
38.9
20.1
22.5
31.8
'{6.8

3I.3
16. {
26.5
17.9

5t{.0
98.3
39.{
t7.3
16.0

?9. { I

{8?.0 |

Ee.o I

¡l q

175.C
lð.J

376.0
u9.0
31. {

123.¡
22.7

15A.0
202. C

75.{
315..1
I13.0
20t.0
503.¡
69{.0
n0.t

7 4.7
206.0

108.0
t73.!
29.5

IT}.0
205.0
273.!
I80.0
153.0
329.'J
108.0
96-{

103.0
27t-0
205.0
6{.7
,t8. {
62.3

Ll9.C
310.0
339.0
176.0
Et.l
92.9

153,0
287.0
506.0
27 6.0
15i.0
II7. O

19.5
336.0
289.0
155.0
355.0
105.0
211.0
3{0.0
105.0
255.0
202.c
170.0
536.0

l3
L{
I5
tb
!7
l8
l9
20
tt

22
tl

21

25

26

?7
10

29

30

3l

u-0 28.1
{2.5 ]l.t.c
z'1.1 ?5.0
20.1 5e.2
{9.5 38.5
39.3 153.0
L7.1 327.0
27.6 9{_s
18.2 L7.2

16{-0 2{3.0
27.5 20.5
I7 -2 30.5
17.7 33.J
11.2 {5-3
72-0 57.{
2L.2 ts - {
1rr rlt
51_3 23-9
25.6 22-0

DrJ S¿as@

= [ ?5ó.0 69.3 n-! 3{.t 268.0'308-c T2-t 4.3 l3-3 60.5 lo7-01
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table À.2.{: DBoÂstratioû on tra¡sitionai seasonal segaenÈ oË cr"ig c!. (iuue l95g- l{a¡ 19B9)

traig Ck. data ¡alri:

0r¡ Season FeÈ Seasoo

lrans i Iional
seasonal segnent
of dr¡- net transilion = [ :sg.o
oo llth year

71 .t 3{.1 ¡8S,0 J08.0 210.0 t70.0 580.0 5E{.C 3t0.0 l{s.0 l

L2

I3
l1
l<

I6
17

l8
l9
20

z1

2?
aa

21

26

27

29

30

]l

Jutre Jul¡ Àug. Sep. Oci. llov. Dec. Ja!. Peb. l{ar. Àprii HaI

I37.0 I55.0
112.0 {1.6
186.0 5{.5
238.0 17 .û
2{6.0 93.5
87.2 50.3
8?. I {3.3
97.S 63.5
87.0 J3.5

.0 69.3
:¡-ii2.o

t,{6.0 55.3
63.0 31.7
{{.9 51.9

215.0 77,6
!63.0 56.5
{1.3 39.5
35.5 16. {
12.6 39.7
58.0 t59.0

qt i <0 <

175.0 142.0
11.7 57.3

20I.0 342.0
64.5 520.0
,(0 . 9 66.7
qì , t(r ñ

85. 6 51.9
397.0 224.0

ô3.9 s8.9 | t73.0
35.2 t92.0 | 58s.0

2{{.0 186.0
{02.0 t028.0
10I.0 563.0
593.0 691.0
715.C 232.0
511.0 593.0
660 .0 809.0
55.9 90{.0

747.0 182.0

{28.0 998.0 19?.0
1073.0 9I5.0 55 {.0
691.0 738.0 188.0

t109.0 663.C 212.0
t{12.0 180.0 t38.0
9I2.0 640.0 150.0
907.0 164.0 307.0
{08.0 I97.0 602.0

1091.0 257.¡ {19.0

11 .3 52. {
512.0 126.0

I131.0 307.0
115,0 231.0
263.0 138.0
228.0 ilI.o

1023.0 tiI.0
85 .5 62.9

2I9.0 95.0
566.0 162.0
t55.0 t06.0
5n.0 102.0
793.0 10 9.0
205.0 17.1
92.3 82.1

109.0 6t.7
111.0 65.3
u5.0 11.7
86.I 69.5

t50.0 18.I
lLr.0 131.0
175.0 95.9
157.0 78.0
1{6.0 10a.0
86.3 291.0
80.{ s5.5
{3.0 55 .0

13 9.0 69. 3

138.0 875. C

81.2 68.9
{1.I 1{.s
85.3 {5 . I
15.0 39.3

306.0 t26.0
{07.0 65.7
68. { 150,0
12.6 197.0
57,L e0.5

520.0 531.0 109t.0

109.0 too9.o i 529.0
{9.{ 70.5 | 193.0

5s9.0 968.0 I {s3.g
5{.5 81.9 | 81.{

537.0 105t.0
{10.0 933.0

.1080.0 {96.0
731 .0 938,0
721.0 106.0
l6{.0 282.0
991.0 310.0

1030.0 t096.0
805.0 30t.0

63. I 202.0
607.0 t0I0.0
212.0 809.0
3{5.0 1081.0
{15.0 805.0
I65.0 51{.0
503.0 655.0
373.0 292.0
326.0 285.0

593.0 716.0 758.0
1205.0 133I.0 892.0
655.0 500.0 {4}.0

I{57.0 571.0 910.0
329.0 39{.0 333.0
6It.0 906.0 13t.0

t575.0 ì08s.0 t041.0
I193.0 661.0 50I.0
11{8.0 13t6.0 357.0
202.0 277 .0 513 .0
868.0 3?7.0 285.0

1238.0 1503.0 397.0
1027.0 I085.0 731.0
355.0 295.0 317.0
633.0 Ìs7.0 403:0

lzIL.0 2121.0 {02.0
ltI.0 372.0 309.0
572.0 32{.0 It83.0

13a.0 I91.0 I 812.0
a5,9 t51.0 I 215.û
6{.7 2t12.0 | {s8.0
5s.5 222,0 | iIz,O
51.5 t70.0 | 2{8.0
56.5 153.0 I t36.0
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to dry and wet seasons. For each of these rivers, the data

maLrix is assumed to coincide with the beginning month of dry

season. For each of these rivers, for each season, the

seasonal segments represented by pattern vectors are sub-

clustered into two sub.-cLusters by k means algorithm as

explained in A. l- . i-. For each river, the two sub-clusters

corresponding to dry seasonal clusters are denoted. by 1 and

2. The two wet seasonal sub-clusters are denoted by 3 and 4.

For each river, the seasonally segmented time wave-form is

replaced by the sequence of corresponding class-membership

indices. These sequences of cfass-membershì-p indices in case

of both rivers are juxtaposed in Table 4.2.5. For Craig Ck.,

each of two seasonal period long gaps on 29th year is denoted.

by zero. The probability of occurrence of any class-membership

index R.i in Craig ck. is computed by cond.itioning on the

simul-taneously observed class-membership index Ro¡ in Dunlap

Ck. for (i:L..4, j:1..4) . This cond.itional probability

P(Rai I R¡¡ ) is computed and summarized in Tab1e 4.2.5. During

the dry seasonal gap on 29th year, the observed dry seasonal-

segment, (SYN) in Dunlap Creek is of type 2 . The conditional

probability matrix'shows that the most probable dry seasonal

segiment (MPR) of Craig Ck. to be of type 1- because,

P(R":Ll\=2) :l-.0 and greater than P(R"=2 lq:z)=0.0 . The

juxtaposition of the sequences of class-membership indices

show that the combinations (MPR:f, SYN:2) corresponding to dry

season are observed 26 times in years (1, 2, 3t 4, 5, 6, 7 | 8'l
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9, 10, 11, L2, 13, a4, a6, L7, 19, ag, 2a, 23, 24, 25, 26, 27,

30, 31) . The set of simultaneousl-y observed dry seasonal

segments in these years is defined as selected seasonal

segments corresponding to the dry seasonal gap of craig ck. on

2gth year . The MPR corresponding to the wet seasonal gap of
Craig Ck. on 29th year is of type 3 because, p(R":3 lRu:3) :0.82

and greater than P (R":4 lq:: ):0. l-g . The combination
(MPR:3,SYN:3) are observed nine times in years (2, 4,15, 16,

17 , 2O, 22, 25, 26) . The set of simul-taneously observed wet

seasonal segments in these years is defined as selected
seasonal segments corresponding to the wet seasonal .g:ap of
Craig Ck. on 29th year

4.2.6 SÀ}IPLING SCENÀRIOS FOR }TOVE.4 ÀHD REGRESSTON UODELS

This is explained in case of { Craig Ck., Dun]ap Ck. } pair
consideringr one year long gap on 29th year of Craig Ck.

. rn case of AlfovE and REG models, one infilling eguation is
considered. The sample consists of all the concurrentry
observed monthJ_y data of Dun1ap Ck. and Craig Ck. by

by considering the former as predictor variabre and. the
later as predicted variabre. Thus, the sample consists of
[12*30 : 36o] concurrent observations of the pred.ictor and

predicted variabres. Each of the missing d.ata of craig ck.

on zgth year is estimaÈed by equation À.1-.3 and equati-on
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4.1.4 by AMOVE and REG model corresponding to the during

gap observed monthly flow data in Dunlap Ck.

In case of SMOVE, SREG model-s, corresponding to the missing

data belonging to a particular season , sây for example dry

season, one infilling eguation is calibrated from the sample

consisting of al-l- the concurrently observed data belonging

to the dry season of Dunlap Ck. and Craig Ck. considering

the former as predictor river and the l-ater as the predicted

river. Thus, for this case, the sample consists of

[6:t30=]-8Ol values of simultaneously observed predictor and

predicted variables. The values of the missing data

belonging to the dry season of Craig Ck. on 29th year are

estimated corresponding to the existing data of Dunlap Ck.

by SMOVE, SREG models using equation À.1.3 and equation

.A.1.4, calibrated on the dry seasonal sample . Siinilarly,

the values of missing data belonging to the wet season of

Craig ck. on zgth year are estimated. corresponding to the

existing data of Dunlap Ck. by SMOVE, SREG models using

eguation À.1.3 and equation A.l-.4 calibrated on the wet

seasonal sample.

In case of SSMOVE and SSREG models, corresponding to the

missing data belonging to the dry season of Craíg Ck. , the

infilling equation is calibrated from the selected seasonal

sample corresponding to the dry seasonal gap [Appendix
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.A'2.51. Thus,the sampJ-e consists of [6* 26 : 156]

concurrent observations of predictor and pred.icted variable

correspondíng to the elements of 26 selected seasonal

seg:ments of the dry seasonal gap. The estimates of the

missing data are computed corresponding to the

existing monthly values of Dunlap Ck. by SSMOVE and SSREG

models using equation 4.1.3 and equation 4.1.4 calibrated

on this sample. SimilaYIY, the values of missing data

belonging to the wet season of Craig on 29th year are

estimated corresponding to the existing data of Dunlap ck.

by SSMOVE and SSREG model using equation À'.1.3 and equation

A.l-.4 calibrated on the [9*6:54] elements of nine selected

seasonal segments corresponding to the wet seasonal gap.

À.2.7 SA!{PLE FOR IIIULBS ìtfODEIr

This is explained in case of {craig Ck.,Dun1ap ck. } pair

consid.ering two seasons long gap on 29th year in Craig Ck. For

dry seasonal gap segment, the conditional distributional-

parameters are estj-rnated from equation 3.7 corresponding to

the during gap observed dry seasonal segment in Dunlap Ck..

The sample consists of all the simultaneously observed dry

seasonal segrments of {Craig Ck., Dunlap ck.} pair . Here, dry

seasonal segments of Dunlap ck. and Craig ck. are considered

as predictor and predicted vectors. For this particular case,

the sample consists of 30 multivariate observations I Table
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4.2.31. Similarly, corresponding to the wet seasonal gap

segment, the sample consists of 30 simultaneously observed wet

seasonal- segment of { Dunlap Ck. and Craig Ck. } pair.

Configuration of missing wet seasonal segment of Craig Ck. is

estimated fron this sarnpì-e by conditioning on the observed wet

seasonal segment in Dunlap Ck t 8q.3.71.

A.2.8 SAI.ÍPLE FOR SESTRNãLTJ I,IODEL

This is explained in case of Craig Ck. assuming two seasons

long gap on 29th year. For infil-l-ing of the dry seasonal gap

segment, the sample is considered to be consisting of. all the

wet and dry seasonal segments corresponding to complete [wet-
dryl seasonal transition. All- the successively observed wet

and dry seasonal segments are considered as predictor and

predicted vectors with respect to the infilling of the dry

seasonal gap. The configruration of the dry seasonal segment

is estimated from equation 3.7 with the parameters calibrated
from this sample conditioned on the observed wet seasonal

segrment on 28th year. There are 29 such transitions [Table

A.2.61. Sími1ar1y, for infilling of the wet seasonal gap

segrment, the sample is considered to be consisting 9f all the

wet and dry seasonal segments corresponding to complete [dry-
wetl seasonal transition. À11 the successively observed dry

and dry and wet seasonal- segments are considered as predictor

and predicÈed vectors with respect to the infilling of the wet

seasonal gap. There are 30 such transitions [Tab1e A.2.6].
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