A FORMAL SPECIFICATION OF ELECTRONIC PATIENT
RECORD PROCESSING FOR AN INTEGRATED
DISTRIBUTED HEALTH CARE SYSTEM

Srinivasan Sampath

A dissertation submitted in partial satisfaction of the

requirements for the degree of
Master of Science

Department of Computer Science

Faculty of Graduate Studies
University of Manitoba

Copyright (©) 2003 by Srinivasan Sampath

THE UNIVERSITY OF MANITOBA
FACULTY OF GRADUATE STUDIES

KEIKRR

COPYRIGHT PERMISSION PAGE

A FORMAL SPECIFICATION OF ELECTRONIC PATIENT
RECORD PROCESSING FOR AN INTEGRATED
DISTRIBUTED HEALTH CARE SYSTEM

BY

Srinivasan Sampath

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University
of Manitoba in partial fulfillment of the requirements of the degree
of

Master of Science

Srinivasan Sampath © 2003

Permission has been granted to the Library of The University of Manitoba to lend or sell copies of this
thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend or sell copies
of the film, and to University Microfilm Inc. to publish an abstract of this thesis/practicum.

This reproduction or copy of this thesis has been made available by authority of the copyright owner
solely for the purpose of private study and research, and may only be reproduced and copied as
permitted by copyright laws or with express written authorization from the copyright owner.

Abstract

Using a distributed healthcare application, doctors can diagnose and treat patients
based not only on the limited information available to them at that time but also
based on each patient’s entire medical history. An electronic patient record is at the
core of such a system. Making such a record available via a distributed system means
that even if a patient requires emergency care in a remote location and is unconscious
the patient’s information will be available so that healthcare personnel can offer the
best possible treatment.

The motivation for the use of a distributed electronic patient record is the current com-
plexity of maintaining and accessing patient records and other medical information
resources scattered across many locations in an unstructured manner. This results in
the inefficient use of both healthcare facilities and personnel as well as, sometimes,
leading to sub-optimal care. Changing from paper to electronic media offers the po-
tential to avoid these inefficiencies as well as improving overall healthcare. Doing
so, however, is a complex and potentially life-critical process. The patient’s record’s
confidentiality should not be compromised; and the right mapping of the patient to
patient’s medical records must be guaranteed. This makes a formal specification of
any such electronic patient record essential to guarantee that there is no information
loss (relative to existing systems) that could endanger patients. Current implementa-
tions of electronic patient record systems seem generally well-designed and organized
but lack a formal specification of their underlying operations. These implementations
have not been verified mathematically and therefore are relatively untrustworthy in
the eyes of many practitioners. Since the healthcare domain is safety-critical, we
should not rely on human intuition in the development of such systems.Thus, the
goal of this research is to present a formal specification of an electronic patient record
and how it interfaces to the software that uses it in an integrated distributed health-
care system. This research provides a good case study for learning and transferring
skills in formal software design. The lessons learned from applying formal methods
also directly benefits developers producing such systems.

i

Acknowledgements

I am deeply grateful to my supervisor, Dr. Sylvanus Ehikioya, for taking me on as
a student in the first place. I really thank him for his encouragement, appreciation,
personal guidance and the constructive comments he provided during the completion
of this thesis. Throughout the thesis-writing period he provided sound advice, great
teaching and a lot of ideas for improving this thesis. I would have been lost without

him. Thank you, Sir.

I am grateful to Dr. Peter Graham, and Dr. Jose Rueda for their insight, for serving
as my committee members, and for reviewing the thesis manuscript. I am especially
thankful to Dr. Peter Graham for providing useful comments and excellent editing of

the initial thesis proposal.

Special thanks to Dr. Thulasiraman for providing me great encouragement and guid-
ance.

I am indebted to my many friends for helping me get through the difficult times, and
for all the emotional support, entertainment, and caring they provided during my
stay in Winnipeg.

My special gratitude is due to my sister and my brother in-law for their loving support.
Lastly, and most importantly, I wish to thank my parents, Sampath and Shanthi.
They raised me, supported me, taught me, and loved me. To them I dedicate this

thesis.

iii

Contents

1 Introduction

1.1 Motivation
1.2 Problem Definition
1.3 Brief Outline of the Thesis Work
1.4 Limitations
1.5 Contributions
1.6 Organization
2 Literature Survey
2.1 Use of Formal Notations
2.2 Medical Record Formats
2.3 Encounter based Medical Record, .
2.4 Database Integration in Medical Domain
2.5 Applications of the Internet in Medical Systems
2.6 Use of Agents in Medical Systems
2.7 User Interfaces
2.8 Summary
3 Specifications
3.1 Informal Operational Requirements
3.2 Functional Requirements
3.3 Task Specific Requirements
3.4 Formal Specifications

v

(= N e e N N L A

03]

10
11
11
12
12

13
14
16
17
19

4 System Design

4.1 Architecture Design e

4.2 Flow between Interface-Database

4.3 Patient Flow

4.4 Algorithms and UML Diagrams

5 Implementation

5.1 Implementation Environment

5.2 Implementation Strategies

5.3 Run-Time Behaviour

5.4 Deployment and Quality Assurance Strategies

6 Conclusions

6.1 Summary of Contributions

6.2 Future Work

References

57
o7
61
62
64

80
80
81
81
104

118
118
119

120

List of Tables

3.1
3.2
3.3
3.4
3.5
3.6
3.7

Room Booking 23
Patient’s Stay and Cost 25
Resource Allocation 28
Resources used by a Patient 30
Appointment List 31
Todays Appointment 35
Two Column Table 49

vi

List of Figures

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22

5.1

Architectureof a HIS, .
The Three-Tier Architecture of a Health Care System
Architecture of the Present Implementation
Components of the Software Architecture
Flow from/to Database from/to User Interface
Patient Flow in Health care
Search for a Record — Patient
Insertion of Patient Record
Password Verification
Book Room
Retrieve Medical Record
Pharmacy
Patient Medical Record as Developed : Class- Object Diagram
Patient Flow - Use Case Diagram
Patient Flow Sequence Diagram
User Authentication/ Search Operation
Two Operations in the Front Desk : Activity Diagram
Search for a Resource : State Chart
Drug Update in Pharmacy Inventory
Laboratory Activity Diagram
Patients Accessing Medical Records : Sequence Diagram

Medical Record Retrieval from Participating Hospitals

Form for user authentication

vil

9.2

5.3

5.4

9.9

5.6

5.7

5.8

5.9

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29
5.30
5.31
5.32
5.33

Form showing the front desk menu 82

Form showing patient details 83
Form showing patient’s address details 84
Form showing patient insurance details 84
Form showing immunization details 85
Vital statistics of patients 85
Form showing appointment search - date based 86
Form showing appointment booking - flexible search 86
Form showing appointment booking - changing patient details 87
Form showing an update on patient details 87
Form showing appointment booking 88
Form showing patient search -1 89
Form showing patient search -2 89
Form showing appointment search - Doctor-based 90
Form showing appointment bill generation 91
Form showing request for resource 92
Form showing resource availability in other health care institutions . 92
Form showing Doctor’'s Menu 93
Form showing patient diagnostics 93
Form showing prescription filling 94
Form showing patient referring 94
Form showing an encounter record 95
Form showing image beforezoom 95
After Zoom 96
Form showing drug dispense 96
Form showing drug deletion 97
Form showing the count and cost of drugs 97
Form showing purchase list 98
Delete Chosen Drug 98
Drug Deletion Confirmation 99
Adding a Patient Record - Laboratory Module 99
Form showing matching patient record - laboratory module 99

viii

5.34
5.35
.36
5.37
5.38
5.39
5.40
5.41
5.42

5.43
0.44
5.45
5.46

5.47
5.48
5.49
5.50
5.51
5.52
9.93

Associating a record with the Corresponding Doctor-Patient Encounter 100

Form showing adding new employees 101
Form showing updating address details of employees 101
Form displaying deleting employees profiles 102
Setting the Organization Name and Logo 102
Form showing setting of cost for using resources 103
Setting the ODBC Database used by the health care application . . . 104
Windows Data Source Administrator Window 105
Report showing the list of all employees working in Sylvanus Health

Care Center e 106
Report showing doctors belonging to a particular specialization . . . 107
Report showing a doctor’s appointments for a particular day 108
Report showing all appointments for a particular day 109

Report showing the all patient who have received care at Sylvanus

Health carecenter 110
Report showing the room renting charges 111
Report showing the laboratory resources invoice 112

Report showing the drug orders on a day with various drug suppliers 113

Report showing the drug ordered with a particular supplier 114
Report showing the doctor patient interaction 115
Report showing the medicines prescribed for a patient 116
Form showing a consolidated bill for a particular visit 117

ix

Chapter 1
Introduction

“Computers are magnificent tools for the realization of our dreams, but
no machine can replace the human spark of spirit, compassion, love, and

understanding.” — Louis Gerstner

Most present health care systems employ the traditional method for maintaining
patient records using paper and pen. Paper has been an effective and simple medium
for recording interactions between patients and their doctors and other health care
workers. Paper allows the doctor to write down patient information and his/her views
easily in a format the doctor is comfortable with [Po94]. The use of paper also gives
the doctor more freedom to express his/her views more conveniently than with existing
computer systems. Paper also supports reasonable portability as it can be carried with
the patient from one health care practitioner to another. The problems with paper-
based systems are, however, many. The impact of losing a patient’s paper record
is severe. For example, important information about the patient may be missing
during his next interaction with another doctor. Paper also suffers from being illegible
at times, is often poorly formatted, and relatively cumbersome to deal with [Di97].
Finally, it is not a convenient format to distribute quickly, on-demand.

One serious drawback of paper-based systems is that they are unstructured and not
amenable to electronic access. Hence, maintaining files of records and retrieving the
contents of such records are sometimes difficult tasks. Since a patient’s history should
be reviewed before recommending any treatment or medication, patient records must

be available prior to treatment. Further, doctors should be able to retrieve information

CHAPTER 1. INTRODUCTION 2

about a patient from remote locations.

Computers were first introduced into the health care system to improve administrative
practices rather than to improve patient care [Lu96]. Clinical computing, as compared
to administrative computing, is centered on the patients [Ha94]. Computers, which
have made marked impacts almost everywhere in modern life, have affected the doc-
umentation of clinical care very little [Lu96]. There are clear benefits to be gained by
exploiting computer-based automation in providing an integrated healthcare service,
and at the core of this is the electronic patient records system.

An electronic patient record contains the patient’s medical history, giving comprehen-
sive information about the patient. Electronic medical records attempt to transfer the
information about a patient that is currently maintained on paper (and other media
such as x-ray film) to a computer. Patient records are “a place where we store every-
thing we need to know about a patient and where we keep this information forever so
we can do a great job of delivering care” [Sa94].

Current electronic medical record systems [Bi95, Ku99, NA99| contain such informa-
tion as the patient’s history, family history, past diagnoses, test results, known aller-
gies, immunization facts, health and psychological problems, medications prescribed
and responses to treatments, etc. An electronic medical record may also include in-
formation about instances of hospitalization for the patient, extra services the patient
received, the amount that was spent when the patient was treated and details of the
patient’s interactions with other health care professionals such as pharmacists. In the
future, electronic medical records may also include such things as online imagery (e.g.,

X-rays) and video (e.g., a telemedicine session or a functional MRI record) [NA99].

1.1 Motivation

An integrated distributed health care system enables a patient to get all aspects of
medical care from a single system, regardless of location. In such systems, wide
ranges of services are supported including: emergency care, inpatient hospitalization,
outpatient follow-up care and rehabilitation, as well as ongoing health education and
outreach services. Further, patient documentation resulting from all such services is

maintained in the patient’s electronic medical record, which is subsequently available

CHAPTER 1. INTRODUCTION 3

to all service providers. By integrating patient information from different sources in
this way, both operational cost effectiveness and improved health care delivery can be
achieved.

There are a number of challenges to be overcome before electronic medical records (and
the integrated health care systems they will support) can be accepted in the medical
community and by the public at large. These challenges include both technical and
perception issues.

One of the biggest technical problems in computerized data management is incom-
patibility between heterogeneous information systems. Database systems that are
developed using different DBMSs are classified as heterogeneous databases. Such
databases are common in healthcare systems now and will undoubtedly be a part of
any fully integrated healthcare system. Heterogeneous databases pose real problems
for integrating and retrieving patient records since the structure and content of pa-
tient records from different, existing service providers (e.g. pharmacy vs. hospital
records) are not uniform. Because accessing these records requires only electronic
authorization, the security and privacy of the records could also be compromised.
Other technological problems include the need to reliably interconnect all health ser-
vice providers and issues of high-availability related to both medical data and service
provider interconnection. While these are important problems they are not the focus
of this thesis.

An even greater challenge in the conversion from paper to electronic medical records
is one of perception by the medical community and the public generally. There is a
good deal of distrust of many computerized systems outside the Computer Science
and Engineering communities. This has arisen, primarily, due to inaccuracies in the
design and implementation of past systems, which have lead to serious operational
flaws. This is particularly problematic for large-scale systems where the complexity
is high and in life-critical systems where there is no margin for error.

The public’s lack of trust may be at least partially addressed by the use of formal
design techniques. For example, formal specifications can be used during the media
change from paper medical records to electronic ones to guarantee that there is no
information loss thus providing assurance that the new system will, at least, be no

worse than the old one. Although existing implementations of computerized medical

CHAPTER 1. INTRODUCTION 4

systems may seem well-designed they lack a formal specification of their underlying
operations and their implementations have not been formally verified. Since the
healthcare domain is safety-critical, we cannot rely on human intuition alone in the
development of such systems. The goal of this research is therefore to present a formal
specification of an electronic patient record and how it interfaces to the software that

will use it in an integrated distributed healthcare system.

1.2 Problem Definition

To investigate the application of formal specifications to electronic patient record

systems, three things are done:

1. determine what information should be included in a patient record and where/how

those records will be used in an integrated distributed health care system,

2. formally model the design of those aspects of a health care system that directly
impact electronic patient records and use tools to illustrate the correctness of

the model developed, and

3. implement certain parts of an integrated health care system (a subset of those
that will interface with electronic patient records) to show that the formal model

is, in fact, useful in developing such applications.

Significant work must be done to accurately assess what information should be con-
tained in an electronic patient record and how such records would be used in an
integrated distributed healthcare system (this is requirements gathering). An elec-
tronic patient record should certainly include the contents of all existing, paper-based
systems but must also be expanded to include information necessary to support such
records’ use in an integrated distributed healthcare system. Note also that an elec-
tronic patient record will eventually contain information relevant to all users of an
integrated healthcare system (doctors, pharmacists, physiotherapists, health insur-
ance providers, etc.). To assess the needed additions to electronic patient records for
such an integrated healthcare system, their use in such a system must be carefully

considered. To do this also requires an assumed model/architecture for an integrated

CHAPTER 1. INTRODUCTION 5

distributed healthcare system. (Such an architecture is proposed in the following sec-
tion.) Electronic patient records will be used by many parts of an integrated health-
care system and the processing performed on them by each part of the integrated
system will have to be specified. Systems that will use electronic patient records

include (among many others):

e Patient system flow,
e Health care resource management,
e Patient care and treatment, and

¢ Billing for health care resources utilization.

1.3 Brief Outline of the Thesis Work

Once a set of requirements has been formulated, the use of electronic patient records
in the processing described must be formally modeled (the formal and informal re-
quirements are explained in detail in Chapter 3 - Specifications). This modeling was
done using the UML [0e99, Dy98] and Z [Da96, Sp92] notations. These two notations
are complementary and their use together provides more detail than would be possible
with just UML or Z alone. Z-EVES [Sa95] proves the consistency of the Z part of the
specifications developed. Doing the most extensive possible verification is important
since the specification will eventually be used to build a system that is safety-critical
(e.g., medical doctors may use such a system to guide courses of treatment of a patient
so errors could be life threatening).

Finally, a proof-of-concept implementation was developed on a select subset of the
system’s specification to illustrate the applicability of using such formal specifications
in this problem domain. This allows the production of equivalence mappings between
the proven formal specification described and the prototype implementation. This
further increases confidence in the final implementation and thereby in the approach of

using formal specifications for the design of integrated distributed health care systems.

CHAPTER 1. INTRODUCTION 6

1.4 Limitations

The thesis provides outlines for integrating various health care departments necessary
to model an electronic medical record. There were issues that require more concen-
tration and collection of intrinsic details, e.g., the main objective of the thesis was
to identify the participating departments and the transactions that are performed in
these departments that get into the medical record of a patient. The actual design
of the proposed system should be more efficient to accommodate various security fea-
tures and the functionality of each department are generalized to save and retrieve
information, while the actual design must be customized to suite the individual de-
partments. Since the focus was on identifying the transactions in these departments,
the actual design of the database is not specified (though the transactions are spec-
ified). Further, verification and validation of a user is based on the login name and

password (in the real world this would require more rigorous encryption strategies).

1.5 Contributions

The research provides a good case study for learning and transferring skills in formal
software design. To the best of our knowledge, no formal techniques have been applied
to the design of health care systems although numerous commercial and academic
prototypes are available. Since this is a safety-critical domain where correctness is
paramount, experience and lessons learned from applying formal methods in this

thesis can directly benefit developers working on producing such systems.

1.6 Organization

The rest of this thesis is organized as follows. Chapter 2 (Literature Survey) provides
some of the relevant literature required for pursuing this research. A formal specifi-
cation of the health care system is described in Chapter 3 (Specifications). Chapter
4 (System Design) describes an integrated health care system architecture, including
the different object models needed, developed using UML. The implementation of
the system is described in Chapter 5 (Object Model and Implementation). Finally,

CHAPTER 1. INTRODUCTION 7

conclusions and future work of the thesis are presented in Chapter 6 (Conclusions
and Future Work)

Chapter 2
Literature Survey

“It is difficult to say what is impossible, for the dream of yesterday is the
hope of today and the reality of tomorrow.” — Robert H. Goddard

Introduction

There has been significant research demonstrating the use of computer-based medical
records and the advantages in using them. Those research efforts focus on issues
like creating and maintaining electronic medical records, designing appropriate user
interfaces, scheduling mechanisms, transaction processing in the health care domain,

etc. I briefly discuss some of the most relevant related research below.

2.1 Use of Formal Notations

The use of formal methods in software design and development generally tends to
increase the reliability of systems produced. Formal methods are useful in exploring
system design alternatives, provide a general approach for generating test data, and
help to guarantee that the design and implementation of a system are free from errors.
The need for and advantages of formal specification have been demonstrated repeat-
edly (e.g., [Eh00, EhO1, He97, Ho95]) in non-medical domains. Helke et al. [He97]
explain that the application of formal notation(s) during the initial stages of software

development helps in improving the quality, and reduces the cost, of the application

CHAPTER 2. LITERATURE SURVEY 9

software. Further, Horcher [Ho95] demonstrates the success of formal specifications
in deriving integration test cases that satisfy the requirements specification of an
application. Finally, according to Ehikioya [Eh00, EhO1], formal modeling leads to
“correct, fail-safe, and robust transaction-processing environments” (as are typical of
patient record processing in an integrated distributed health care environment). To
employ formal specification successfully in the software lifecycle requires formal train-
ing and education. The notations used in formal methods are intimidating, which
makes software engineers to skip this phase totally. Also, formally specifying a model
consumes significant resources leading to increased costs initially.Barden et al. [Ba92]
document the problems of using Z by the industry practitioners.

Formal specifications rely on the use of certain notations (and tools). The use of
UML [0Oe99, Ev98, Ho99] in designing and modeling software is discussed in the
literature. According to Oestereich [0e99], “The Unified Modeling Language (UML)
is a graphical language for visualizing, specifying, constructing, and documenting the
artifacts of a software-intensive system”. The usefulness of UML to model software
systems has been discussed in [Ev98, Ho99]. For example, Evans et al. [Ev98] show
the advantages of designing a software system using UML with rigorous reasoning
techniques. Hofmeister et al. [Ho99] describe the benefits in designing the software

architecture of a system in UML.

2.2 Medical Record Formats

The use of the SOAP (Subjective Data, Objective Data, Assessment, Plan model)
in creating and maintaining patient’s medical records has been demonstrated in
[Po94, Yv92, Po00]. In SOAP, the doctor starts by viewing a patient’s medical his-
tory and then the doctor observes the characteristics of the patient’s problem. From
the observed characteristics, the doctor determines the diagnosis and finally plans
any treatment and instructs the patient on any follow up visits. In [Po94] doctors
record their opinions in three different ways: circle, underline or strikethrough the
words in the list. The doctor can write notes on information about the patient. The
system, PureMD [Yv92], automates hospital services and decreases the amount of

written work, which facilitates the process of information retrieval and data entry.

CHAPTER 2. LITERATURE SURVEY 10

The objective of Potamias, et al [Po00] in developing the Patient Clinical Data Di-
rectory (PCDD) was to deliver an “encounter-centered” view of the medical record.
An encounter-centered view of medical record is the abstracted history of a patient’s
encounter with a health care provider over a period of time. To provide a consis-
tent view of locating and accessing patient information, PCDD supports an uniform
interface called the PCDD Update Interface.

2.3 Encounter based Medical Record

Goble and Crowther [Go00] introduce the idea of generating a medical record from a
series of existing patient records (essentially the integration of multiple records into
one). This approach supports multiple autonomous (i.e. non-integrated) healthcare
systems, each providing a part of an integrated medical record, and then describes
how they may be integrated. No attempt is made, however, to formally specify either

the resulting patient records or the integration process.

2.4 Database Integration in Medical Domain

The needs and ways of computerizing hospitals and integrating various departments
in hospitals have also been discussed [Po00, Ev99, Ga91, La98]. Among these, [Ev99,
La98] support ways for updating and editing patients’ medical records at the point
of encounter with the medical personnel. In Potamias, et al [Po00] “autonomous
information systems” are integrated to provide various views of a medical record to
authorized users. In this research, I develop specifications and implement (integration
is reflected in the implementation) respective parts of the system, which are necessary

for capturing patient flow in a health care unit.

CHAPTER 2. LITERATURE SURVEY 11

2.5 Applications of the Internet in Medical Sys-

tems

The use of the World Wide Web (WWW) as a medium for creating, accessing, and
maintaining patient medical records is discussed in [K096, Ku99, Le99]. Because
the Internet is widely available, it provides the necessary infrastructure to permit
distributed access to patient records in an integrated healthcare system. Due to
the sensitive nature of patient records, however, adequate security features such as
password-secure access, logging of transactions and cryptographic technologies must
be provided. Some of these approaches are discussed in [Ku99, Le99]. Recently,
[Eh02] describe mechanisms that support the ubiquitous and efficient exchange of
electronic medical records data across multiple heterogeneous environments. In my
specification, I will model the retrieval of information across the Internet as well as

the provision of basic security via login-based user verification.

2.6 Use of Agents in Medical Systems

A common theme that has recently emerged in medical systems automation is the
use of agents. For example, Miksh et al. [Mi97] employ “adaptive agents” to track
health-related information about patients. Adaptive agents interpret data from the
various departments where a patient’s health information is maintained and based
on the information observed, patient’s medication is determined. Hannebauer et
al. [Ha99] observe that most existing systems lack coordination among departments
thereby leading to ”sub-optimal patient throughput and resource usage”. They pro-
pose “composable agents” that can exchange information dynamically to support the
dynamic allocation of resources. The use of agents in hospital operations scheduling is
also discussed in the literature. For example, Decker et al. [De98] use the Generalized
Partial Global Planning (GPGP) [De92] approach where an agent constructs its local
view of the structures and relationships for a task and can then receive additional
information from other agents to increase the accuracy/detail of its view. The use of

agents for patient record processing will be considered only briefly in this thesis.

CHAPTER 2. LITERATURE SURVEY 12

2.7 User Interfaces

The problems associated with designing suitable user interfaces for medical appli-
cations have been one of the many reasons for the slow adoption of computerized
medical records. This problem has also been extensively studied [Yv92, La98, Wi90,
Di95, P198]. While it is evident from the literature that the design of user interfaces
for effective and convenient access to medical records is an area of ongoing research
this problem will not be directly considered in my thesis (only a simple user interface

will be specified).

2.8 Summary

Based on this review of the literature, it appears that formal methods have not been
used in the design and implementation of an integrated distributed health care system
despite the safety-critical nature of such systems. Thus, the research proposed herein
is, to the best of my knowledge, an original contribution to the field of software

engineering.

Chapter 3
Specifications

“The j0b of formal methods is to elucidate the assumptions upon which

formal correctness depends.” - Tony Hoare

The first step in developing a system is to have a sound understanding of the ap-
plication domain and to resolve any uncertainties that might exist concerning the
functionality of the system. Present medical record systems lack formal specifications
for their implementations. Some of the important features of formally specifying

software systems in general include [Jo94] :

e Formal specifications describe what the software to be developed does rather
than how we develop the software. That is, it defines what a system outputs
when certain inputs are given with no account about how the outputs were

derived.

e Notations used in formal languages and notations used in formal verification of
software are tightly coupled which makes verification of a product specified in

a language like Z easier.
e Specifications expressed in formal notations can be assured of consistency.

e Formal specifications can be considered to be “high-level nonprocedural pro-
gramming language” [Jo94]. This line of thinking is useful especially when we
consider the specifications as a prototype for the software to be developed. Using

formal specifications, misunderstandings can be detected early.

13

CHAPTER 3. SPECIFICATIONS 14

e Tool support for formal specifications helps in automated analysis and helps re-
ducing intuitions (i.e, informal specification of software would still require some
thinking while information specified formally is analyzed automatically and also
a tool supports ways for locating incompleteness, repetition and incorrect orga-

nizations)

Additional features are provided in [Eh97, Eh99, BH95, S092, Ro01].

Software systems, though generally versatile, are often prone to errors and incurs high
cost for repair [Ke97]. The main reason for the failure of such systems is commonly
the lack of a strong foundation for the development of the software. This illustrates

the importance of applying formal methods in designing software.

3.1 Informal Operational Requirements

This section summarizes some of the informal requirments of a health care application,

which could be eventually implemented based on the formal specifications.

e Health care applications should be easy to use and the navigation should be
simple because typical users are not computer savvies. A Distributed and Inte-
grated Health Care Application (DIHA) integrates various departments within
a hospital, accordingly the interfaces have to be designed so that they best suit
the individual departments. However, there are also situations when a user in
one department has to access information in other departments. In such sce-
narios, a user must not be allowed to search for the operation the user wishes
to perform. Hence, though developed as interfaces for different departments the

overall interface design has to be standardized.

e Health care applications support a multi-user environment, where the users
could be geographically distributed as in a hospital. Thus, a DIHA should allow
users to execute queries across the network. A hospital environment supports
various kinds of users like doctors, nurses, pharmacist, laboratory technicians,
frontdesk users and system administrators. Typically, these users are not neigh-
bors. Hence, particular users should be able to get information from other kinds

of users.

CHAPTER 3. SPECIFICATIONS 15

o Health care applications supports access only to authorized users who can have
access to patient’s records. A medical record is a document that contains a pa-
tient’s medical history. Such documents have to be safeguarded so that unautho-
rized people do not access them. Therefore, access-oriented security mechanisms

become necessary.

e Distributed health care applications should support heterogeneous databases.
Information about patients is derived from various hospitals/departments. These
hospitals/departments may not all necessarily use the same database manage-

ment system. Thus, the application should support heterogeneity in databases.

e Stopping one of the functional processes in the application should not halt the
application altogether. Since the field of health care is critical, patient’s medical
information should be made available at all times to authorized users. The

developed system should provide both reliability and consistency.

e Health care systems should consider temporal issues like the real-world time a
transaction occurs, past and future plans, the sequence of states in which events
may take place (e.g., a supply order placed, bill payment, etc.) and the time
periods (e.g., scheduling).

e Cyclic tasks exist in health care applications and must be supported. For ex-
ample, a patient may visit a doctor who refers him to have a laboratory test

performed. After the laboratory test is done, the patient returns to the doctor.

e Patients are the major players in health care and they are mobile. As a result, a
health care application should be able to transfer information about a patient to
another health care organization that participates (number of health care orga-
nization can exchange information) in information sharing during emergencies
and at other times. That is, the electronic information should be transferred
to the hospital where the patient is receiving emergency care. Also, electronic
communication (e.g. via email) of patient medical record information between
a participating and a non-participating health care centers should be possible

in periods of acute emergency.

CHAPTER 3. SPECIFICATIONS 16

e Overall system performance should be acceptable, e.g., should offer good re-

sponse times, etc.

3.2 Functional Requirements

One of the fundamental goals of this thesis is developing an Electronic Medical Record
of patients based on patient-medical personnel encounter. To develop such encounter

based medical records, the system must provide ways to:

e Create and maintain electronic patient medical records.
e Record a patient’s problem according to the patient’s description.

e Facilitate recording of encounter notes at the place where the patient is medi-
cated or diagnosed. This decreases the time of data entry as well as the possibil-
ity of misinterpretation, which might exist when patient information is updated

at a later time by a third party.

e Provide special options for viewing the medical record (e.g., support zooming

on images).

e The application should be capable of generating the medical record with in-
formation from various other participating medical institutions. A patient can
receive care from any number of health care centers. If there are ways of commu-
nicating between the participating health care centers then redundant operations
like laboratory tests, observation, etc, can be avoided. Effective communication

among the participating health care centers can result in improved care.

e A report of a patient’s medical record should be developed. Users of medical
records are more bothered about the information in the medical record rather
than the source, so users should not be allowed to search for patient related

information.

g

CHAPTER 3. SPECIFICATIONS 17

3.3 Task Specific Requirements

DIHA integrates operations in different departments in a hospital into a single appli-
cation. In each of the departments various kinds of operations are performed to record

facts in the patient’s medical records. This gives rise to the following requirements:

e Every user in each department has to be authenticated for security.

e DIHA should identify the various departments that would use the application
e.g., frontdesk, medical personnel, pharmacists, and laboratory technicians. A
number of departments coexist in a hospital. The departments support various
kinds of users (e.g., doctors and nurses fall in to the department that delivers care
to patients). Then it becomes a definite need to identify the various departments

and the users in those departments.

e DIHA should allow users to insert, search, update, and change information re-
garding patients in their own domain. For example, a user at the frontdesk
can perform the above operations in the particular domain (e.g., doctor’s do-
main, pharmacist domain, etc) with no control over transactions that affect the

database of a different domain (e.g., that of a doctor).

e In addition to the above operations, frontdesk users can schedule patients for
appointments with doctors. Scheduling is an important function in any domain.
In a safety critical domain like health care, resource scheduling is a must for

efficient utilization and monitoring of resources.

e Doctors can have full access to the medical records of the patients maintained
in the hospital that the doctor works in. This ensures that doctors can view the
entire information about patients in the hospital. This includes the treatment

and medication of the patient by another doctor.

e A search by a doctor about a patient results in a number of instances that a
patient received care. Doctors should have the freedom to choose and view any

of the displayed instances that interests the doctor.

CHAPTER 3. SPECIFICATIONS 18

e Doctors can also view the record of a patient in the other participating hospi-
tals. This ensures that a doctor can gather more information about a patient
when needed. Health care organizations can determine users who can access

information between organizations.

e Doctors should be able to prescribe medications. The application aims at re-
ducing the amount of written work. Hence, doctors should be given the option
of performing all the operations they would normally do using pen and paper

electronically. Prescription writing is one of them.

e Users in the pharmacy department should be able to do periodic updates of
the stock and the expiry date of medicines. Information in the database of
a pharmacy is one of the databases in which information has to be updated
everyday. Hence, users in the pharmacy department should be able to reflect

changes (e.g., refilling, inventory updates, etc) in their database(s).

e Users in the laboratory also perform basic operations. These users should be able
to transfer information about any test results (e.g., x-ray reports, blood reports,
etc) in the best suited way to doctors (and/or the appropriate requester(s)).
Though several customized test might be performed and the forms for these
test would be different, I developed a generic form which captures the type of
test and the result of the test.

e An important requirement of this application is sharing of information among
participating hospitals. This is of prime importance as this helps in requesting

services including operating theaters, wardbeds, etc of one hospital by another.

e Granting privileges to add and maintain users and devices in the health care
domain by authorized users is a key requirement. Since the computers in a
hospital are connected through a network, system administrators in the domain
becomes absolute necessary. They are responsible for authorizing access to the
database and monitoring the use of the privileges (because this is not a direct
requirement of this thesis, I would only implement parts to manage users and

their privileges).

CHAPTER 3. SPECIFICATIONS 19

e Whenever patients receive regular care for a particular ailment, then these treat-
ments can be classified as periodic treatments. Periodic medications should be

maintained automatically.

e DIHA should be able to generate different kinds of reports. These reports are
basically the output of interactions between a patient and medical personnel
or could be a result of any transaction (e.g., they might be a drug order form,

doctor prescription, insurance provider’s template, etc.).

The information thus gathered from the above requirements is used to decide which
parts of the system can be formally specified (since Z is not intended to do everything).
Issues like concurrency are often ignored and the design of user interfaces is difficult to
achieve using Z. So, formal specifications that I develop reflect the various transactions
that could happen in the health care domain with respect to patients and the UML

models reflects various process chains that happen in the identified departments.

3.4 Formal Specifications

This section presents a formal specification of the transaction processing of a patient
medical record in a hospital. I start the specifications by formally defining a basic

type STRING to represent alphanumeric data type.
[STRING]

The system should generate various kinds of messages to display results of an at-
tempted transaction. The following definition, Message, shows some of the possible

messages.

Message ::= PatientAdded | PatientEzists | PatientdoesntExist | OverFlow
| NoAppointmentsAvailable | AppointmentCancelled | Failure
| Available | NotAvailable | AppointmentAvailable | Success
| WrongParameters | DrugEzists | RunningQutofStock
| Updated | Database WillbeClosed | PasswordUpdated
| DatabaseNotOpen | Cancelled

CHAPTER 3. SPECIFICATIONS 20

Users in the health care domain, fundamentally share some common demographic
details. These users are modeled as Person in the domain. For obvious reasons, all

person in the health care have a contact person, Contactname.

Person

name : STRING
SIN, Phone, ContactPhone : N;
address, Contactname : STRING

A Patient is a person who also has other attributes in addition to the attributes of a
Person. Hence, a patient inherits the attributes of a Person along with other special

attributes.

Patient
Person
pzd : Nl
msurancedetails : STRING

To preserve the individual identity of patients, one or a combination of attributes
should be combined to make patient’s record unique. Hence a particular patient’s

name should be associated with only one attribute of the patient.

Vz,y: Patient @ © # y = 1.pid # y.pid

Patients must be added to the patient database before they can receive care. So, I

first define a state schema that captures the list of patients in a hospital.

PatientDB
{‘ PatientList : P Patient

The following schema captures the process of adding a patient to the list of patients
treated in the hospital.

CHAPTER 3. SPECIFICATIONS 21

__AddPatient
A PatientDB

PatientList, PatientList’ : P Patient
NewPatient? : Patient

message! : Message

NewPatient? ¢ PatientList
(V. : Patient | z € PatientList e z.pid # NewPatient?.pid)
PatientList’ = PatientList U { NewPatient? }message! = PatientAdded

It is very likely that patients’ information could change and there could be a need to
update them. To do this the particular patient’s record has to be retrieved to capture
the changes. This search can either be based on the unique patient identity number
(for efficient retrieval) or, if the patients do not have access to them, then it can be
through their name (when search is done by names a list of all patients’ by that name
are generated).

__Searchbyld

=PatientDB
patld? : Ny
Response! : Message

(32 : Patient o z.pid = patld?)
Response! = Success

— SearchbyName
=PatientDB
patName? : STRING
Response! : Message

(3 : Patient ® z.name = patName?)
Response! = Success

The process of searching for a patient by name or the patient number is defined as:

PatientSearch = Searchbyld V SearchbyName

A patient generally visits a hospital to receive care where a patient consults a doctor.
We need to formally model the resource Doctor. A Doctor is inherently a Person with

a unique identifier, drid, and domain speciality.

CHAPTER 3. SPECIFICATIONS 22

Doctor

Person
drid : Nl
Specialization : STRING

To show that every doctor in the domain is unique the following should always be

true.

Vz,y: Doctor e x # y = z.drid # y.drid

Date and Time

Because DATE can assume various standards in various software, we define DATE

as a basic type.
[DATE)

TIME is defined as a natural number to enable us to manipulate time entities.
TIME == N;

Next I specify operations relating to rooms in a hospital. Although a room is a

resource, in this section we isolate it to give it greater attention.

Rooms

Hospitals have a finite number of rooms, which are available for patients’ care. A
hospital maintains a database to record the assignment of Rooms to Patients. A room
typically has a number or name. We define rmNo as a basic type, which represents

the name or the number of a room in a hospital.
[rmNo]

As described earlier, a hospital has a finite number of rooms, MazRooms. All trans-

actions on rooms should be less than or equal to this finite number, MazRooms.

MazRooms : N

CHAPTER 3. SPECIFICATIONS 23

Rooms in hospitals are of various types. The following free type definition of Room-

Type explains the various kinds of rooms.
RoomType ::= Fzecutive | Hospitality | Maternity

Every room has an associated cost when used (cost). This cost is dependent on the
type of room. Records of rooms that have been booked for various dates should
be available. The variable book is defined as a partial injective function mapping
rmNo and the Cartesian product of Patient and DATE. The relation is modeled as a
partial injective function to avoid duplication of the same room on a particular day,
thus avoiding over booking. The number of rooms in a hospital may be added to or
deleted from (in cases where a room is changed to service something else), I introduce
booking as a subset of rmNo. Only those rooms, which can be scheduled, can be
booked.

__Rooms
RoomNo : rmNo

BasicFacilities : STRING
rmType : Room Type

cost : Ny

booking : P rmNo

book : rmNo »~ Patient x DATE

dom book C booking

The schema Rooms describes the attributes necessary to book a room. This schema
defines a variable book which denotes the current bookings in the hospital for rooms.

Table 3.1 shows an instance of the partial injective function book.

Room Number | Patient Date
1 Mathew | 12/12/2001
2 Joe 12/12/2001
3 Randy | 25/12/2001

Table 3.1: Room Booking

CHAPTER 3. SPECIFICATIONS 24

As shown above in Table 3.1, a list of Patients that have booked rooms on vari-

ous/particular dates can be generated by the schema Rooms.

To make the schema definition of Rooms valid we must enforce a strict constraint

that room numbers are unique. This universal constraint is specified as follows:

Vrl,r2: Rooms e vl # r2 = r1.RoomNo # r2.RoomNo

The above specification simply states that no two rooms are the same. The schema
RoomInit describes the initialization of the room booking system in a hospital. When
the system is first started, there are no bookings for rooms. The predicate book’ = {

} represents this initial state of the booking system.

__ RoomlInit
A Rooms

book’ = {}

Searching for the availability of a room requires one input (e.g., date in the considered
case but could be by room type, etc) and booking a room requires three inputs, the
date for which the room is requested, the patient’s name and the room itself. The
constraint here is that the type of room requested should be available. The operation

of booking a room is captured in the following schema.

__ BookRoom
A Rooms
Date? : DATE
Pat? . Patient
roomno? : rmNo
Response! : Message

#(dom book) < MazRooms
roomno? € booking \ dom book
book’ = book U {roomno? — (Pat?, Date?)}
booking’ = booking
Response! = Awailable

The cost of staying in a room depends on the actual cost of the room and the number

CHAPTER 3. SPECIFICATIONS 25

of days the room is occupied by a patient. The following schema, RoomCost, captures

the above requirement and computes the cost of staying in a given room.

_ RoomCost

ZRooms

room? : Rooms
NumberofDays? : N,
RoomCost! : N,

3rl: Rooms | r1.RoomNo € booking e
r1.RoomNo = room?. RoomNo A
RoomCost! = rl.cost * NumberofDays?

The date a patient was admitted, the room number a patient stayed in and the cost

a patient paid should be captured for future reference. Schema PatientPays captures

this requirement.

PatientPays
TPays : Patient + rmNo x DATE x DATE x RoomCost

Table 3.2 shows instances of patient stay dates in a hospital and the cost a patient
paid, which could be used when developing a report of usage of various rooms.

Room Number Patient From To Room Cost
1 Robert Barry | 12/12/2001 | 15/12/2001 | $ 250
2 Roger Moore | 13/01/2002 | 17/02/2002 $ 450
3 Shiela Murray | 24/02/2002 | 20/02/2002 | $ 675

Table 3.2: Patient’s Stay and Cost

Quite possibly, when there is a scarcity of rooms, the system may output the fact
that there are no rooms presently available. The schema NoRoom captures this re-

quirement.

CHAPTER 3. SPECIFICATIONS 26

_ NoRoom

Rooms
Date? : DATE
Response! : Message

Ar:rmNo | r € booking e = (r € dom book)
Response! = NotAvailable

After booking a room a patient may decide to cancel the booking. In such scenarios,
the room may be returned to the booking list of the hospital so that it is made
available for another patient. The operation of canceling a room is described by the

schema CancelRoom.

__ CancelRoom
A Rooms
date? : DATE
rooms? : rmNo
Response! : Message

rooms? € dom book
book’ = {rooms?} < book
Response! = Cancelled

Notice that in the schema CancelRoom, a room can be cancelled if and only if it was

already booked.

Personnel at the frontdesk of a hospital should be able to retrieve information about
a patient’s room number. Since a patient can not be associated with two different

rooms on any given day, a function to retrieve this information is described as follows:

PatientIn : Patient = rmNo

Vz,y: Patient e x = y = z.pid = y.pid

The overall process in defining the system of booking and canceling a room is combined

in RoomBooking.

RoomBooking = BookRoom V NoRoom V CancelRoom

CHAPTER 3. SPECIFICATIONS 27

When a patient wishes to change rooms then the system should be flexible to accom-
modate the room change. Such operations involve first paying for the room used,
booking a new room and then canceling the existing room. This is defined in the

following specification, ChangeRoom.

ChangeRoom = RoomCost A BookRoom A CancelRoom

Resources

Every room in a hospital has basic needs (like beds, pans, lights, etc.). For patient’s
convenience, additional resources (like television sets, books, etc.). can also be or-
dered. Such resources are defined by the schema Resources. Various departments
provide certain resources for patients’ service. To guarantee that a resource is identi-

fied uniformly anywhere in the hospital, we define a basic type resNo for this purpose.

[resNo]

Thus, associated with every resource is an unique resource identity number (resNo)
and a cost for the use of the resource. We define Order as a function mapping resource
to the cartesian product of the date and the room that requested the resource. Order
is mapped as a partial function because it is very likely that there may be requests
for two units of the same resource on a particular date by the same room number.
The number of resources in a hospital may be added to or deleted from, hence we

introduce ResOrdering as a subset of resNo.

__ Resources
Name : STRING
ResourceNo : resNo
cost : Ny
ResOrdering : P resNo
Order : resNo + DATE x Rooms

dom Order C ResOrdering

Table 3.3 shows instances of an order made on a resource to a particular room on a
particular date based on the definition of Resources.

The operation of ordering a resource is captured in the following schema, BookRe-
source.

CHAPTER 3. SPECIFICATIONS 28

Resource No Date Room Number
A67491 27/12/2001 14
E98432 08/07/1978 08
F56793 15/08/1994 18

Table 3.3: Resource Allocation

__ BookResource
A Resources
Date? : DATE
room? : Rooms
resno? : resNo
Response! : Message

resno? € ResOrdering \ dom Order

Order’ = Order U {resno? — (Date?, room?)}
ResOrdering’ = ResOrdering

Response! = Available

Resources also carry a cost and depending on the duration of usage the cost is cal-
culated. The following schema, ResourceCost, models the cost involved in using re-

sources.

__ ResourceCost

ZResources

Resource Type : P Resources
Res? : Resources
NumberofDays? : N
ResourceCost! : N

Res? € Resource Type

dres : Resources | res € ResourceType ®
res. ResourceNo = Res?. ResourceNo A
ResourceCost! = NumberofDays? * res.cost

As with rooms, Resources may also be unavailable, cancelled and /or the person search-
ing for a resource could have supplied a incorrect resource number. The following

schema, NoResource, captures the situation when a resource is unavailable.

CHAPTER 3. SPECIFICATIONS 29

__NoResource

ZResources

date? : DATE
room? : Rooms
Response! : Message

— (I res : resNo e res — (date?, room?) ¢ Order)
Response! = NotAvailable

Factors such as cost (e.g., lesser coverage of insurance) and unforseen contingencies
could sometimes make a user cancel a previous request for a resource. The schema

CancelResource captures the act of cancelling a resource.

__ CancelResource
A Resources
res? : resNo
room? : Rooms
Response! : Message

res? ¢ dom Order
Order’ = {res?} <4 Order
Response! = Cancelled

Notice that in schema CancelResource, a resource can be cancelled if and only if it

was already requested.

The overall process in defining the system of ordering and canceling a resources is

combined in ResourceOrdering.
ResourceOrdering = BookResource V NoResource V ResourceCost V CancelResource

The resource used by a particular patient is captured in the schema ResourceFor-
Patient. In this schema we define a function mapping the Patient to the cartesian

product of the resources the patient used and the cost for using the resource.

ResourceForPatient
[l res : Patient +— Resources x ResourceCost

CHAPTER 3. SPECIFICATIONS 30

Table 5.3 shows an instance of res values. I model the TotalCost that a patient has
accumulated staying in a room and associated resources requests as a combination of

PatientPays and ResourceForPatient.

TotalCost = PatientPays N\ ResourceForPatient

Patient | Resource | Resource Cost

Mathew | Extra Bed $14
Borris | Television $08

Stephen | Computer $18

Table 3.4: Resources used by a Patient

Frontdesk

Before a patient meets a doctor, the patient reports to the frontdesk personnel re-
questing an appointment. Here the patients have the freedom to express the way they
feel. This is particularly important in deriving similarities in symptoms, for future
observations and drawing association rules (e.g., data discovery from patient medical
records when an intelligent system will be modelled). The patient information (pa-
tient’s name and problem in the patient’s words), the date and the opinion of the

doctor after the encounter are contained in the schema, Description.

. Description

Pat : Patient

Doc : Doctor

days : N;

Date : DATE

PatWords, DocWords : P STRING

PatWords #

With the first encounter of a patient with the frontdesk personnel, the medical records
for that particular patient is created in that hospital (and, at times, the medical record
itself becomes active in a networked hospital environment). Every appointment of a

patient with a doctor is captured by the function appointment which is a partial

CHAPTER 3. SPECIFICATIONS 31

injective function mapping the Patient to the cartesian of DATE, TIME(s) (for the
start time and end time of the appointment), and Doctor. It is modeled in this way
because on any day in a hospital at a particular time a number of doctors could
be treating any number of patients. The partial injection ensures that a particular
Patient is related only to one particular Doctor at a given date and time. The variable
duration in the schema DrAppointment computes the time a doctor spends with a
patient. Practically, the start times and the end times are defined (e.g.. the first
appointment slot for the day could be between 10:00am (start time) and 10:20am
(end time) and the next slot could start at 10:30)

. DrAppointment

appointment : Patient -~ DATE x TIME x TIME x Doctor
duration : N

V Date : DATE; Patl, Pat2 : Patient; prevStrt, strtTime, endTime,
prevind : TIME; Dr : Doctor | Patl # Pat2 e
(Patl — (Date, strtTime, endTime, Dr)) € appointment A
(Pat2 — (Date, prevStrt, prevEnd, Dr)) € appointment A
endTime > strtTime A
duration = endTime — strtTime A
strtTime = prevStrt + duration A
prevEnd = strtTime

Instances of the function appointment are shown in Table 3.5

Patient Date Start Time | End Time Doctor
Roy Emmerson | 11/12/2001 11:30 12:00 Dr. Harry
Stark Living | 27/12/2001 12:15 12:45 Dr.Williams
Marc Robinson | 08/07/2002 14:00 14:30 Dr. Mathew

Table 3.5: Appointment List

Similar to room booking, a doctor’s appointment should also support functionality to
book and cancel appointments. The schema DrAppointmentInit initializes a doctor’s

appointment book. Initially, there are no appointments.

CHAPTER 3. SPECIFICATIONS 32

_ DrAppointmentiInit
A DrAppointment

appointment’ = {}

To book an appointment, the date and doctor information are the inputs. If any
appointment time is available then the time is given as the output and the appoint-
ment information is inserted into the appointment book. The operation is formally

specified by the schema BookDrAppoint, given below.

—_ BookDrAppoint
A DrAppointment
Date? : DATE

Dr? . Doctor

Pat? : Patient
Response! : Message

dstrtTime, endTime : TIME o
(Date?, strtTime, endTime, Dr?) ¢ ran appointment A
appointment’ = appointment U { Pat? «— (Date?, strtTime, endTime, Dr?)}
appointment’ = appointment
Response! = Available

Alternatively, if the hospital maintains a time interval to serve patients, then the
free type definition of Slots (below) can be employed to represent the scheduling as a
finite number of intervals/appointments a doctor/health care personnel can devote to
a patient. As an example, Slots (below)shows a two interval appointment scheduling
(e.g., slot 1 is scheduled for the AM session and slot 2 is scheduled for the PM
session). They can be customized from hospital to hospital and according to the
schedule interval (e.g., 10:00 - 10:15 could be a slot for a doctor-patient appointment
and 10:00 - 14:00 could be a slot for booking a operating theater).

Slots ::= AM | PM

slotl, slot2 : Slots

slotl = AM
slot2 = PM

CHAPTER 3. SPECIFICATIONS 33

To allow individual organizations to choose their type of scheduling, I use the type de-
fined for time for patient scheduling. However, if there are no appointments available

with a particular doctor, the fact is specified in the NoAppoint schema.

__ NoAppoint
=DrAppointment
Date? : DATFE

Dr? : Doctor
Response! : Message

= (IstrtTime, endTime : TIME o
(Date?, strtTime, endTime, Dr?) ¢ ran appointment)
Response! = NotAvailable

When a patient cancels an appointment with a doctor, the appointment details like
the patient and doctors’ names and the date of the appointment are supplied as the
input, the time of appointment is retrieved and is removed from the appointments

book. The schema CancelDrAppoint captures this specification.

— CancelDrAppoint
A DrAppointment
Dr?: Doctor
Date? . DATE
Pat? : Patient
Response! : Message

Pat? € dom appointment

dstriTime, endTime : TIMFE o
(Date?, strtTime, endTime, Dr?) € ran appointment A
Pat? — (Date?, strtTime, endTime, Dr?) € appointment A
appointment’ = { Pat?} 4 appointment

Response! = AppointmentCancelled

At times a patient only knows that he/she has an appointment on a particular date
(or just that the patient has an appointment). In this situation, the system should
be able to retrieve the appointments of patients to cancel the appointment. In such
scenarios, from the multiple responses that the system outputs, the patient chooses
the appropriate appointment for cancellation. Then there arises a need for generating

the list of appointmnets for the day (which will be discussed shortly).

CHAPTER 3. SPECIFICATIONS 34

__ CancelsDrAppoint

A DrAppointment
Pat? : Patient
Response! : Message

Pat? € dom appointment

dstrtTime, endTime : TIME; Dr : Doctor; date : DATE o
(date, strtTime, endTime, Dr) € ran appointment A
Pat? — (date, strtTime, endTime, Dr) € appointment A
appointment’ = {Pat?} € appointment

Response! = AppointmentCancelled

The scenario when an appointment is cancelled can then be specified as CancelDrAp-
pointment using the logical compostion of the two schemas CancelDrAppoint and

CancelsDrAppoint.
CancelDrAppointment = CancelDrAppoint V CancelsDrAppoint

The overall process of scheduling an appointment with a doctor can then be modeled

as a combination of the above schemas.
DoctorAppointment = BookDrAppoint V NoAppoint V CancelDrAppointment

An important operation, in terms of retrieving appointments, is to generate a list of
appointments on a particular day. The operation TodaysAppointment takes in one

input, the date, and outputs the relevant attributes of the appointment.

__ TodaysAppointment

A DrAppointment
Today? : DATE

V Pat : Patient

(3 strtTime, endTime : TIME; Dr : Doctor e
(Pat — (Today?, strtTime, endTime, Dr)) € appointment A
Pat € dom appointment)

Table 3.6 shows an example of a doctor’s appointments with patients for the day.

The slots for which a doctor is scheduled with a patient are populated with the

CHAPTER 3. SPECIFICATIONS 35

patient’s name and the slots without a name represent available appointment times

that a patient can request an appointment with the corresponding doctor for that day.

Doctor 10:00 - 12:00 | 12:00 - 2:00 | 2:00 - 4:00
Dr. Roy Emmerson Peter Harry
Dr. Stark Living Jacob Prince Michael
Dr. Marc Robinson Williams

Table 3.6: Todays Appointment

All hospitals and clinics have times which are allotted for emergencies. There is no
advance booking required during this time and patients who arrive in emergency
care are treated immediately or as soon as possible. Status is a basic type which
corresponds to the level of emergency of a patient. It could be customized (e.g.,

different colors may represent various emergency levels) for a particular hospital.
[Status]

Also, a queue has to be formed with respect to the level of emergency. The variable
queue is a partial function that binds a doctor to the cartesian product of Patient
and Status. (queue is so defined because, at any time an available doctor can treat

patients based on the status.

Emergency
Fqueue : Doctor -+ Patient x Status

The following schema, EmergencyBooking, defines the appointment booking process
during an emergency. For an emergency, a patient is scheduled with any available
doctor.

— EmergencyBooking

AFEmergency
Pat? : Patient
status? : Status

3 Dr : Doctor @ Dr ¢ dom queue A
queue’ = queue U { Dr — (Pat?, status?)}

CHAPTER 3. SPECIFICATIONS 36

After a patient is treated, the doctor is ready to treat the next patient in emergency.
The fact that the doctor is free should be captured by removing the doctor from the
list of doctors who are presently treating patients.

__ DrinQueue

AFEmergency
Dr?: Doctor

Dr? € dom queue
queue’ = {Dr?} 4 queue

The various operations during an emergency are captured in Emergencies.

Emergencies = Emergency V DrinQueue

The following definition of Frontdesk combines the operations of scheduling patients
(regular and emergency), patient search and adding patients to the health care orga-

nization.

Frontdesk = DoctorAppointment A Emergencies A PatientSearch V TodaysAppointment

Pharmacy

The following schema definitions model some of the transaction processing in the
pharmacy department of a hospital. Inherently, a pharmacy database contains infor-
mation about Drug. This information includes details like the name of the drug, the
quantity in stock, the cost per unit of the drug, and the unique identification that
identifies the drug, Drugld. 1 introduce Drugld as a basic type as follows.

[Drugld]
Then I specify the attributes (structure) of a drug in the following schema Drug.

— Drug
DrugName, Purpose, Manufacturer : P STRING
DrugCost, Stock, ReorderPoint : Ny

DrugNo : P Drugld

DrugNo # §
DrugName # ()
Purpose # ()
Manufacturer # ()

CHAPTER 3. SPECIFICATIONS 37

To make the above schema definition valid we must enforce a strict constraint that
drug numbers are unique in any drug database, DrugDB. This is captured by the
predicate part of the DrugDB schema.

— DrugDB
DrugList : P Drug

Vz,y: Drug e x # y = z.DrugNo # y.DrugNo

A drug can be added to and supplied if and only if that drug exists in the pharmacy.
So, we should define the maximum and the minimum drug stock in the pharmacy.
The stock of a particular drug cannot exceed MazDrug units of the drug or reduce

below MinDrug units of the drug. We define these variables as follows:

MazDrug : N
MinDrug : N

MinDrug =0
MazDrug > 0

The operation AddDrug adds new drugs to the pharmacy database. To add drugs we
need as inputs all those variables defined in the schema Drug. The new drug is added

after verifying that the drug does not already exist in the pharmacy database.

— AddDrug

ADrugDB
DrugList, DrugList’ : P Drug
drug? : Drug

drug? ¢ DrugList
drug?.Stock > MinDrug
drug?.Stock < MazDrug
(Vd : DrugList e d.DrugNo # drug?.DrugNo)
DrugList’ = DrugList U {drug?}

It should be possible to check if a particular drug is available in the pharmacy
database. The schema, DrugFEuzist, performs the checking for the existence of a drug

in the pharmacy database.

CHAPTER 3. SPECIFICATIONS 38

_ DrugFEzist
=DrugDB
drug? : Drug

Response! : Message

drug? € DrugList
Response! = DrugFists

AddDrugs combines the process of successfully adding a new drug to the database or
checking if the drug exists.

AddDrugs = AddDrug V DrugFEzist

It is important that the pharmacy never runs out of stock. So we have to make sure
that the system warns the user when a drug’s stock is below a threshold (e.g., < 50
units). The following schema, DrugLessthan, warns the user whenever the stock of a

drug falls below the threshold value.

— DrugLessthan
EDrugDB
DrugList : P Drug
OnStock! : N
Response! : Message

Yy : Drug |y € DrugList e
y.Stock < y.ReorderPoint A OnStock! = y.Stock
Response! = RunningQOutofStock

On any given day a particular drug’s stock could be checked. So, the system should
be able to retrieve the stock of a particular drug. The schema DrugStocks models the

retrieval of the quantity of a drug on hand .

— DrugStocks
=DrugDB
drug? : Drug
Stock! : N

(3,2 : Drug | z € DrugList e
z.DrugNo = drug?.DrugNo A Stock! = z.Stock)

CHAPTER 3. SPECIFICATIONS 39

Continuing research in medicine could discover potential threats in consuming cer-
tain drugs or improved drugs replacing old ones, hence the system should give the
appropriate users (e.g., system administrators) the liberty to delete such drugs from
the hospital database. The schema DeleteDrug captures the operation of deleting a
drug from the database.

_DeleteDrug

ADrugDB

DrugList, DrugList’ : P Drug
drug? . Drug

Response! : Message

drug? € DrugList
DrugList’ = DruglList \ {drug?}
drug? ¢ DrugList’

One of the periodic updates in the pharmacy database, is the refilling of certain drug
stocks. The schema AddStock captures the scenario where a newly added quantity is

supplied as an input is added to the existing stock of the drugs.

— AddStock
ADrugDB

DrugList’, DrugList : P Drug
drug? : Drug

add? : Ny

Response! : Message

drug? € DrugList
(3,z: Drug | z € DrugList e
z.DrugNo = drug?.DrugNo A
drug?.Stock = x.5tock + add? A
drug?.Stock < MaxDrug A
DrugList’ = DrugList \ {z} U {drug?})
Response! = Updated

Every time a drug is sold, it reduces the quantity in the pharmacy database by the
same amount as the number of drugs dispensed. ReduceStock captures this fact. Since
the transactions of adding or reducing stock effects the state of a particular drug, we

must define that there exists a particular drug in the database for which a transaction

CHAPTER 3. SPECIFICATIONS 40

might be done. Since, there exists number of drugs in the pharmacy database, we
must specify that the transaction to be done is indeed performed on that particular

drug. This is captured in the precondition of the schema ReduceStock

_ ReduceStock
ADrugDB
DrugList’', DrugList : P Drug
drug? : Drug

sub? 1 N;

Response! : Message

drug? € DrugList
(3,2 : Drug | z € DrugList e
z.DrugNo = drug?. DrugNo A
drug?.Stock = z.Stock — sub? A
drug?.Stock > MinDrug N
DrugList’ = DrugList \ {z} U {drug?})
Response! = Updated

Finally, the cost of a drug dispensed is modeled by the schema DrugsCost.

— DrugsCost
=DrugDB
drug? : Drug

qty?, cost! : Ny

(3,d: Drug | d € DrugList e
d.DrugNo = drug?. DrugNo A
cost! = qty? * drug?. DrugCost)

The transactions in Pharmacy are then modelled as:

Pharmacy = AddDrugs V DrugLessthan V DeleteDrug V AddStock V
ReduceStock v DrugsCost V DrugStocks

Encounter

Every encounter between a patient and any health care personnel is recorded. During
an encounter, the date and time of the interaction is defined along with other details,

(e.g., the identity number and name of the actors of the interaction as defined in

CHAPTER 3. SPECIFICATIONS 41

Description). An EncounterRecord is a sequence of Descriptions. A patient can have
several encounters with one or more doctors. In such records, if the patient identity
number repeats then it means that we are referring to the same person since patient

identities are unique.

EncounterRecord
li'rec : seq Description

Doctors may write prescriptions after interacting with a patient. Such prescriptions
consists of drug name(s), quantities, instruction, patients name and doctor name. A
patient could be allergic to one or more drugs. The function allergy relates Patient

to Drug.

DefineAllergy
,-allergy : Patient — Drug

Initially, the allergy list is empty. This fact is captured in the schema Allergylnit.

— AllergyInit
ADefineAllergy

allergy’ = {}

When a doctor diagnoses a patient to be allergic to a drug the doctor adds this fact
to the allergy list using the AddAllergy schema.

— AddAllergy

DefineAllergy
drug? : Drug
patient? : Patient

(patient?, drug?) ¢ allergy
allergy = allergy U {(patient? — drug?)}

Now, the system should not allow a doctor to prescribe drugs to which the patient
is allergic. The schema Prescription captures this requirement and the process of a

doctor prescribing medicine.

CHAPTER 3. SPECIFICATIONS 42

__Prescription
=DefineAllergy

Doc? : Doctor

Pat? . Patient

drug? : Drug

PrescriptionList, PrescriptionList’ : P Drug

(Pat? — drug?) ¢ allergy
PrescriptionList’ = PrescriptionList U {drug?}

During the course of treatment, doctors may refer a patient to another doctor (e.g,
a specialist) or to a laboratory technician. Hence, the system should capture various
personnel involved during the referral process and the reason for the referral. The

schema Refer captures this specification.

__ Refer
ZPatientDB

ReferringDrname?, ReferedDrname? : Doctor
pat? . Patient

reason? : P STRING

reason? # ()
ReferringDrname? # ReferedDrname?

pat? € PatientList

The overall process of interaction of a patient with a doctor is combined in Encounter

Encounter = EncounterRecord g ((((Prescription A AddAllergy) V Prescription)
V Refer)
v ((Prescription V (Prescription A AddAllergy)) A Refer))

CHAPTER 3. SPECIFICATIONS 43

Reports

In a health care system various personnel offer care to patients. These different care

providers are captured as Personnel

Personnel ::= Doctors | Technicians | Nurse

A report of an interaction between a patient and a care provider may need to be
generated. The schema Report contains the basic structure of a report. A report
contains the report headers, body, date and time and the person who generates the
report. A report may also contain images. This basic structure is extensible in order
to create specific reports for certain special operations. We define images as a basic

type, as follows:
[tmages]
Thus, a generic report is specified as:

— Report
reportld, dept, Banner : STRING
body : PSTRING
date : DATE
time : TIME
Image : P images
reportby : Personnel

body # {}

Image in the schema Report is a power set of the basic type images since some reports
(e.g., Labarotory report), may have one or more images while other reports (e.g., a
doctor’s encounter with a patient), may not have any images at all. If the depart-
ments in the hospital were to generate a report, then the reports can be customized.
For instance, a report from a Pharmacy can be generated with drug names, date,
time, cost, department, and the banner of the hospital, and similarly laboratories can

customize their reports with the above parameters (as in Report).

CHAPTER 3. SPECIFICATIONS 44

— PharmacyReport
Report

date? : DATE
time? : TIME
PatientDetails?, DrugDetails? : P STRING
generatedby? : Personnel

Qty? : Ny

report! . Report

Qty? > 1

report!.body = (DrugDetails? U PatientDetails?)
report!.date = date?

report!.time = time?

reportl.reportby = generatedby?

Network

Health care facility in the present model are networked. Hence, I specify the network
with which the various sub-systems in the health care application communicate. The
following definition of network is adopted from [In01].

Fundamentally, a network consist of nodes (or computers) with links between them.
At this level of abstraction, we are more concerned about the relevant information (e.g,
appointment and resource availabilities, etc.)from a node rather than the information
itself, hence a unique address that maps a particular computer to a network node is

defined as a basic type, Ipaddress.
[Ipaddress]
The schema Node contains the Ipaddress of the system.

Node
I> 1p : Ipaddress

A Network is formed when a number of such nodes are connected. Because, a medical
record is a confidential document, easy access to every one could jeopardize the privacy
of medical records, so secured access to these records is a must. By secured access, I
mean that only those systems in the network can communicate between other systems

in the domain of participating health care organizations {which is a finite set).

CHAPTER 3. SPECIFICATIONS 45

__ Network
NetworkName : STRING
nodes : F Node

network : Node <« Node

Vz,y: Node o (z.ip # y.ip) A ((z,y) € network = (y,z) € network)

An information system may grow, which could result in many networks integrating
to form a single network. This operation is captured as a new node being added to
the existing system and to the existing network the added node becomes an integral
part. The schema AddToNetwork captures the fact.

_ AddToNetwork

A Network
node?, network? : Node

node? ¢ nodes
nodes’ = nodes U {node?}
network’ = network U {(node?, network?)}

The process of adding new computer systems to the network can be combined in
Distribution.

Distribution = Network A AddToNetwork

Now that computers can communicate, information between them can be transferred.
But again access to shared files is given only to certain user groups in the network.
Access rights are determined when users login to any health care application. When
users login, irrespective of their access rights the application opens a connection to the
database. We represent the access types that are available in the system as defined
in [In01]:

Accesstype = Select | Insert | Delete | Update

Once contacts is established with a remote database, the operation flow is similar as
in local database. The electronic medical record from the remote database is modeled

similarly as in the case of the local database.

CHAPTER 3. SPECIFICATIONS 46

Laboratory

Patients require the services of the laboratory personnel too. Hence, transactions in
a laboratory should also be captured. In a laboratory, different kinds of tests may be
performed. For the sake of uniformity, I model all the different tests under a single

umbrella of tests. I define the types of test available in the system as follows:
Test ::= Blood | XRay | Scan | Others

A test that has to be performed requires a resource. Although a resource may come
from another department and may be of different resource types, basically all resources
share common features, so they can be placed under the already defined schema for

resources, Resources.

The record of a laboratory test is captured in the schema Laboratory.

Laboratory
ReferedDrname : Doctor
pat . Patient

test : Test

Result : Report

An electronic medical record is modeled as a combination of the patient’s description
of the problem, the patient’s encounter with doctors, the doctor’s description of the
problem, the prescription for an ailment, the allergy list of the patient and doctor’s
referral to other offices (such as specialist doctor, laboratory, etc.). The following
schema LocalMedicalRecord (since the medical record is specific to the interaction a
patient encounters in one hospital, I use the term Local medical record) is defined as

follows:

LocalMedicalRecord = DoctorAppointment A Encounter
A TotalCost N\ Laboratory

Agents

The specification so far assumes that although distributed, the heterogeneous databases

are part of the participating hospital’s database. This is of prime importance be-

CHAPTER 3. SPECIFICATIONS 47

cause, as explained earlier, secured access of medical records is one of the primary
constraints in designing such a system. In future, if all health care delivery institu-
tions start to communicate in secured environments (which would be ideal for medical
records) then we could use the assistance of agents in retrieving medical records of
patients. Although the formal specification of agents in health care is not a main
objective of this research, the use of agents in developing medical records (e.g., in-
tegrating patient information from various databases) is abundant in the literature
[Mi97, Ha99, De92, De98]. This has motivated me to give the initial specifications
below (as specifying agents for this domain is, by itself, I believe, a research topic
for further investigation). At this abstract level, I designed Agent to possess various
attributes like a reference identity number, type of agent, its goal and status of ini-
tializing the agent. I represent the computations involved as a basic type, Compute,

and an agent’s goal as the basic type Aim.
[Aim, Compute]

Agents are often generated for a specific role (e.g., an agent can assume the role of
an information supplier or an agent requesting information).

Role ::= InformationSupplier | InformationRequest

An agent could detect valuable information or could not. Hence the result of an agent

computation can be represented as a boolean.
Bool ::= True | False

Ehikioya’s model [Eh99a] of an agent is defined as follows.

Agent

agentno : N
role : Role
status : Bool
aim : F, Aim

Agents in Ehikioya’s model terminates after performing a certain number of computa-
tions. Although the time required for performing a computation is a major attribute,

time-based agent systems are out of the scope of the work presented in this thesis.

CHAPTER 3. SPECIFICATIONS 48

_ Agentprocess

compute : F Compute
Response! : Message

Response! = Success V Responsel = Failure

The agent approach used by [IEO1] in the domain for e-commerce transactions can be
suitably adapted to the medical domain as well. The execution of an agent’s task is
defined as the cartesian product of the agent and its aim. Once an agent performs its

computation it generates a report.
[action : Agent x Aim — Report

The definition of Agent and the process agents are commited to are combined in

Agentbased as follows,

Agentbased = Agent A Agentprocess

Users

Finally, the various users (such as Doctors, Nurses, Labarotory technicians, Phar-
macists, etc) can be modeled as users of the integrated application. So they can be
defined using a single schema Users (Users could be a subset of Persons). All users
of the application have a login account which lets them access the records to which
they have permission. The login name, composed of a username and a password,

authenticates users.
username == STRING
password == STRING

group ::= Dr | LabPersonnel | Pharmacists | Nurses | Administrators

Database

The following specifications for designing a relational schema, are based on the defini-
tion of a relational schema by Elmasri and Navathe [EN94]. In describing a relational

schema we first define DataType and name as basic types.

CHAPTER 3. SPECIFICATIONS 49

[DataType, name]

I then define Attribute as a function mapping a name to a datatype. This corresponds

to a column in a table.
Attribute == name -» DataType

Every defined attribute has a associated value. So, in this specification we assume

Value as a basic type.
[Value]

The value for every attribute (or one of the several attributes) forms a Tuple (corre-

sponding to rows in a table).
Tuple == Attribute + Value

Finally, I define a table (or Relation) itself.

_ Relation

Columns : seq, Attribute
Rows : I Tuple

#Columns > 1

An example of a two column table is shown in Table 3.7where (Roy Emmerson, 22) is
an example of one of the rows and “Name” and “Age” correspond to Attributes with

STRING and real as their data types, respectively.

Name Age

Roy Emmerson | 22
Stark Living 27
Marc Robinson | 20

Table 3.7: Two Column Table

Support for maintaining backups for the patient information is an important opera-

tion, so the schema Backup is specified to fulfill this functionality.

CHAPTER 3. SPECIFICATIONS 50

Backup

present : Relation
backup : Relation

The operation of doing a backup can be performed as described in the schema Copy

— Copy
A Backup

present?, present! : Relation
backup! : Relation

present! = present?
backup! = present?

Additionally, when an erroneous transaction is committed, there is a need to restore

the table to its earlier state. This operation is contained in the schema Rollback.

_ Rollback

A Backup
present! . Relation
backup?, backup! : Relation

present! = backup?
backup! = backup?

A database is a collection of related information [EN94]. This related infprmation is

s tored in tables. Therefore, I define Database as a collection of tables (Relation).
Database == P Relation

Information from a database either can or can not be obtained based on the mode of
the database (a database can be open or closed). The variable connected is a boolean

representing the open (dbOpen) or the closed mode (dbClose) of the database

connected ::= dbOpen | dbClose

The following schema, Db2 (I chose the name DB2 arbitarily), initializes the database

to be in the closed mode.

CHAPTER 3. SPECIFICATIONS 51

—Db2

db : Database
open : connected

open = dbClose

The schema OpenDatabase establishes connection with a database.

_ OpenDatabase

Databases : P Db2
database’, database? : Db2

3,z : Db2 | z € Databases o z.open = dbClose
database’ = database?
database’.open = dbOpen

After a transaction is committed, the database should be closed. This is specified in

the schema CloseDatabase.

_ CloseDatabase

Databases : P Db2
database’, database? : Db2
Response! : Message

if database?.open = dbClose

then Response! = DatabaseNotOpen

else Response! = Database WillbeClosed N
(3,2 : Db2 | z € Databases e z.open = dbOpen A
database’ = database? A
database’.open = dbClose)

A hospital information system is a safety critical system, so all users must have an
account in the hospital for authentication. Typically, a username and a password
is required for basic authentication. Also, different users exist in the health care
domain (e.g., doctors, nurses, pharmacists, laboratory technicians, receptionists, and
system administrators) and each of the above groups have different access rights in
the hospital. For example, doctors have the right to diagnose and prescribe drugs

while other user groups cannot. These access rights determine if a user that wishes

CHAPTER 3. SPECIFICATIONS 52

to perform a certain operation is authorized to do so. The information about a user’s
account and access rights is stored in User, defined formally as follows:

__User

user : username > password
USETGTOUP : USETNAME —~ Group
access : username < (Relation x Accesstype)

dom access C dom user

Every user who uses the information system software has to supply his/her username
and password. If the username and password matches the stored values for these
variables/attributes then the user gains entry and a suitable message is displayed to
the user. This use case is captured by the operation Login, defined as follows:
__Login
=User
uname? : username

password? : password
message! : Message

(uname?, password?) € user
message! = Success

For various reasons users in the health care domain may want to change their password
periodically. To change a password, the user must first login to the system. The user
then submits his/her old password, new password and a confirmation of the new
password.

_ ChangePassword
AUser

uname? : username
oldpassword?, newpassword?, confirmpassword? : password

(uname?, oldpassword?) € user
newpassword? = confirmpassword?
user’ = user @ {uname? — newpassword?}

New users to the system have to be added and then their access levels set. This is one

of the jobs of the system administrator. To add a new user, the system administrator

CHAPTER 3. SPECIFICATIONS 53

must first login and then supply the new user’s username and password. The system
then checks the username for uniqueness and the administrator assigns the user to
a usergroup which the new user belongs to so that the user inherits the usergroup

access levels.

__AddUser
AUser
admin?, newuser? : username
adminpassword?, newuserpassword? : password
ugroup? : group

newuser? ¢ dom user

(admin?, Administrators) € usergroup

user’ = user & {newuser? — newuserpassword?}
usergroup’ = usergroup @ {newuser? — ugroup?}

Though users privelages are not likely to change, system administrators should have
the privilege to grant new access levels to existing users. To add privileges, the
administrator first checks for the username and then specifies the table(s) which the

new privelage is/are applicable.

—_ Grant
AUser

admin?, uname? : username
table? : Relation

grant? : Accesstype

uname? € dom user
(admin? — Administrators) € usergroup
access’ = access U {uname? — (table?, grant?)}

Administrators should also be able to delete users from the system.

CHAPTER 3. SPECIFICATIONS 54

__ Remove

AUser
admin?, DeleteUser? : username

DeleteUser? € dom user

(admin?, Administrators) € usergroup
user’ = { DeleteUser?} < user
usergroup = { DeleteUser?} < usergroup
access’ = { DeleteUser?} < access

Query Modeling

I now specify the data manipulation commands (DML) that users use in this domain.
These commands (queries) consist of type of access, the table on which the access is
requested, and possibly one or more predicates and constraints. A simple command
for retrieving a doctor’s appointment for a particular day can be modeled as:

Select Drname

From Doctor

Where date = ‘12/01/2002’

Order by Drname;

In the above SQL statement, Select determines the kind of access the query performs
on the table Doctor based on the condition (predicate, that its on the 12th day of
January 2002) and the results are sorted based on the doctor’s name. So, to model

a DML query we need to specify predicates too. First, we define the following basic

types:

[COMPARATOR, NUMBERS, EXPRESSIONS, Column]

The COMPARATOR basic type can assume one of the following operators (=, #, <
,>, >, <) to compare two attributes. The basic type NUMBERS includes the natural
numbers (only natural numbers because of the restriction posed by the Z specification
language). Although we consider only natural numbers, practically NUMBER is
universal and can assume any data type (integer, real, etc) when applicable.

For example, in the SQL statement,

CHAPTER 3. SPECIFICATIONS 55

Select Drname From Doctor Where DrID = 12

the field DrID is a NUMBER

Compare is a basic type which embeds constants and attribute

Compare ::= col{{ Column)) | num{{NUMBERS)) | ezp{(EXPRESSIONS))

In predicates we, therefore, compare two operands (operandl and operand2) of which
operandl is always an attribute to be used for comparison in the table and the other

could be a constant. We represent Predicate based on [EN94] and as defined in [In01].

Predicate

operandl : Column
operator : COMPARATOR
operand?2 : Compare

So a query can be formally defined as

— Query
Z=User
rel : F Relation

records : P Tuple
groupby : seq Attribute
predicates : F Predicate

(37 : Relation e r.Rows = records A r.Columns = groupby)

In order to generate a report, the application must first accept a query to process the

required report. The schema, AskQuery accepts a user’s query.

__ AskQuery

ZUser

uname? : username
query? : Query

uname? € dom access

The process of executing a query based on the user rights has been demonstrated in

[In01} and will not be repeated here.

CHAPTER 3. SPECIFICATIONS 56

The individually specified transactions and departments constitute the distributed

and integrated health care system. Thus,

DIHA = RoomBooking A ResourceOrdering N\ Frontdesk A
Distribution A LocalMedicalRecord N
Pharmacy N Report

Chapter 4

System Design

“You know you have achieved perfection in design, not when you have
nothing more to add, but when you have nothing more to take away.” -

Antoine de Saint Exupery

This chapter discusses the system architecture of a health care information system
that interfaces with other participating health care organizations. Section 4.1 gives
a description of the architecture and describes the different components of the archi-
tecture. Section 4.2 briefs the reader about query processing in the assumed network
environment. Section 4.3 explains the flow of a patient record in the health care sys-
tem, Section 4.4 presents the UML diagrams and some of the relevant pseudocodes for

the transactions implemented. Finally Section 4.5 provides a summary of the chapter.

4.1 Architecture Design

Any proposed architecture for an integrated distributed health care system must cap-
ture, store, search for, retrieve, update and make available information contained in a
patient’s medical record. This information can, however, be created and maintained
in geographically distributed locations.

Figure 4.1 gives an overall, logical view of the architecture of the distributed

and integrated health care system presented in this thesis. Figure 4.2 shows the

a7

CHAPTER 4. SYSTEM DESIGN 58

system’s 3-tier physical structure which consists of a Database Repository, Middleware

layer, and the Client’s Interface.

Local Health Information
system

Inter/Intranet

Participating Health Care Centers

/\

Application Module

DIHA Kemel

Figure 4.1: Architecture of a HIS

The Application Module (Figure 4.1) is the client-level interface to the appli-
cation. This interface lacks intelligence as is appropriate for a web-based design (in
this thesis a web-based design is adopted only to reflect that health care applications
can be web-based) and only passes a user’s query to the next tier. Components in the
second tier include middleware and the Distributed and Integrated Health care Ap-
plication (DIHA) kernel. The middleware layer receives a user request (i.e., queries)
from the interface, and makes decisions on issues such as authentication, transaction
processing, QoS, load balancing, etc. and then passes the actual query to the kernel

where it is executed. The execution of a query involves contacting the database and

CHAPTER 4. SYSTEM DESIGN 59

performing the required operations (based on the user request). The kernel receives
the result of query execution from the database, which is then displayed to the user
through the middleware layer. For remote applications that need to access patient
record information stored, for example, in a remote hospital’s database, the client
interface of the remote application will contact the middleware layer and then the
processing will continue as before in the local system. The separation of the database
from the client through the middleware layer helps to address security issues in remote
queries and in the local domain. While some of the characteristics of this architecture
impact the formal specifications I have done and presented , other details, for example

in the middleware layer (i.e., QoS, load balancing, etc.), are beyond the scope of this

thesis.
Doctors
(Clienf) Authorization
N
Ph i
armacist -
(Client) Load Balancing
/1 Database
AN e —
Fromtdesk QoS
(Client)
Clients Middleware Database

Figure 4.2: The Three-Tier Architecture of a Health Care System

Architecture of the Implementation

Figure 4.3 shows the architecture of the prototype implementation. Users access the
application from various workstations spread across a hospital. The application’s

user interface allows users to access the database. All users are authenticated before

CHAPTER 4. SYSTEM DESIGN 60

they can access any of the access-based modules of the system (e.g., the modules for
doctors). Once a user is authenticated the user’s query is passed to the database
server where the user’s query is executed. Authentication of the user determines the
privileges of the user. People at the frontdesk (Patient Scheduler (PS) in Figure
4.3) acts as an interface between patients and doctors. Patients interact with these
personnel to arrange appointment times with doctors and/or care-providing personnel
in the hospital. They are also responsible for updating the personal information of
patients (as shown in Figure 4.4(a) — Frontdesk Package). From the PS, patient
records move to the Care Providers (CP). CPs represent all the personnel in the
hospital who diagnose patients. The encounter between patients and CP personnel
results in CP medicating the patients (e.g, the CP could only prescribe medicines
and/or forward patients to laboratory to have some tests performed and/or refer the
patients to another CP to obtain a second opinion, etc (as shown in Figure 4.4 (b) —
Doctor Package). Medication results in patients either responding to the treatment

of the doctor or visiting the doctor again for post medication problems.

gog

Clients
[Authentication }:;i Quary Input iﬁ Display l Authentication
Usor tnterface
Application Layer [T
Busiress Laysr _} l
[oeson [P [[oowrome | Fe [omome | [] [iovomion
Patient Scheduler Care Providors {#4—— Modication
Datg pase Layer
Details Demils
Query Domain

Figure 4.3: Architecture of the Present Implementation

CHAPTER 4. SYSTEM DESIGN 61

Frontdesk
Doctor
Diagnosis

Retrieve Patinet Info Book Appointment :
{ANDIOR}
\

Medicate : Refer
Patient Update Fonward to Respective roomiward

Figure 4.4 (a) Figure 4.4 (b)

Laboratory

Pharmacy '
(o) —> (o)

Figure 4.4 (c)

Perform Test Update Encounter

O
|

Forward Test Resulis

Figure 4.4 (d)

Figure 4.4: Components of the Software Architecture

4.2 Flow between Interface-Database

Figure 4.5 illustrates the application-database connection in the proposed integrated
health care architecture. Both local and remote users’ interface are shown. It is
assumed that the client interface applications will interface to the network using
industry-standard protocols (i.e., the Transmission Control Protocol/Internet Proto-
col (TCP/IP)) and that database queries will be supported using Open Database
Connectivity (ODBC).

In a distributed environment, various departments/health care system co-
operate in offering care to a patient. Health care application gives privilege to access
information from a database in the local area network and the database of the partic-
ipating hospital across the Internet. If the software is developed as a web application
and a browser is used as the interface then information from databases should be
made compatible to the browser by the use of appropriate markup languages, e.g,
XML.

CHAPTER 4. SYSTEM DESIGN 62

Middlewate of ODBC

the application

Database
MS- Access

TCPAP
Inter/Intra Network

TCP/P I -
Middlewrare of Database
the application DB/2

Figure 4.5: Flow from/to Database from/to User Interface

4.3 Patient Flow

The patient record is initialized when the patient visits the hospital for treatment.
The patient’s record is then accessed by the people at the front desk to review the
patient’s situation who forward the patient to a doctor. The doctor then views the
patient’s medical record and listens to the patient to determine the cause of the
patient’s visit and also to make an initial diagnosis about the patients health. Then
depending on the condition of the patient, the doctor either directs the patient to
a laboratory to obtain test reports (laboratory tests might include blood, urine and
saliva tests). Doctors can also send patients to obtain reports (such as X-ray and
ultrasound) or the doctor might just prescribe medication and update the medical
record of the patient (generally laboratory tests and diagnostic imaging are offered
in the same institution). A doctor also ensures that the patient is not allergic to
the drug he/she prescribes by checking the patient’s medical record. The patient
takes any prescriptions to the pharmacist and the patient’s medical record updated.
Laboratory personnel and the imaging specialists perform their respective tests and
forward the reports to the doctor (if need be). The doctor then explains to the patient
the state of his/her health. Figure 4.6 illustrates this patient flow process.

CHAPTER 4. SYSTEM DESIGN

Reception
Patient

e

Patient Appointment List

Returms to the doctor
gets doclor's opinion on
tast resuits or if the
medication doesn’t haip

- -
ﬂ Updates Medical

Boctor Record for doctor's

opinion

Diagnosa and Update
Medical Record

Pharamacists

i lo patient

Patient

Dispenses Medicines

Laboratory Test and X-Rays

Parforms the tast
ard submits raports

Patient

Yes

ee the Doctor
again ?

Figure 4.6: Patient Flow in Health care

63

CHAPTER 4. SYSTEM DESIGN 64

4.4 Algorithms and UML Diagrams

This section presents the object model and algorithms that capture the various func-
tionalities of the design. The purpose of these algorithms and diagrams is to provide
better understanding of the specifications and enhance communication between the
persons developing the software and the persons who requested the software. “Devel-
oping software is a continuous process and is never complete” [Oe99]. Additions and
modifications to the developed software is a regular process and, at times, if the design
of the system is not well thought out, the modifications can prove expensive. Hence,
software developers should interact with the users of the system at an intermediate
stage to verify that the system being developed is indeed the system sought. The
various UML diagrams represent the activities (e.g., starting from a patient’s visit
for ailment, medication received for the problem, etc.) and they help in visualizing
the system in different perspectives. Some of the UML diagrams used in this thesis

includes Use Case, State, Activity, Sequence, and Deployment diagram.

The follwong sub-sections explain the alogithms that is defined by the name

of the sub-section.

Patient Search

One of the important activities in a health care organization is to maintain patients’
records. A health care facility assigns a unique identity number to every patient
who gets care from that facility. Information about a patient in that health care can
be retrieved when this identity number is given as an input (patient’s information
retrieval is also necessary to commit updates on the record). Searching records by a
patient’s name is generally more useful because patients do not often remember their
medical number. Hence, a name-based search should also be supported. Figure 4.7
searches for a patient record based either on the medical number or the name of the

patient.

CHAPTER 4. SYSTEM DESIGN 65

Algorithm 1: Search Patient

/* Variables
x : Patient’s Name or Medical Number
P; : Patient j in the Patient List P
name, medno : Attributes of Patients

found : Boolean */

SearchPatient(x) operation:
found = false
FOREVERY(P; in the Patient List P)
If ((P;.name == x) or (P;.medno === x)) THEN
found = true
DisplayDetails(P;)
ELSE
found = false
ShowMessage (“No such patient exists”)
ENDIF
END{FOR}

Figure 4.7: Search for a Record — Patient

Create Patient Record

When a patient visits a health care organization, the personnel at the frontdesk
searches for the patient’s details. If no details about the patient exist, the front-
desk personnel then creates a new record for the patient. This new record consists
of the demographic and insurance details and the vital statistics of the patient. On
committing the transaction, the unique patient number (generated automatically or
one of the unique input fields, such as social insurance number) is mapped to that

particular patient. Figure 4.8 shows the process of creating a patient record.

Password Verification

In a hospital several users access patient records. As described earlier, the users
include doctors, frontdesk personnel, and laboratory personnel among others. Since
patients medical records are confidential,unauthorized users should not be allowed
to access these records. This requires that the respective personnel are allowed to
view and edit only that information to which they are authorized. Figure 4.9 shows
the user authentication algorithm based on the password verification approach. On

authentication the system checks the role of the personnel in the health care system

CHAPTER 4. SYSTEM DESIGN 66

Algorithm 2: Insert Patient Record

/* Variables
x : Patient’s Name
P; : Patient j in the Patient List P
name, address, contacts, insurance, and sin : Patient’s Attributes
medno : unique identifier

found : Boolean */

Create(record) operation:

SearchPatient(x)

IF SearchPatient(x).found = false THEN
Get x.name, x.address, x.contacts, x.insurance, x.dob, x.sin, x.vitals
Insert(x.name, x.address, x.contacts, x.insurance, x.sin, x.vitals)
ShowMessage(“Patient’s Medical Record Created Successfully”)
x.medno = Pj.medno + 1

ELSE
ShowMessage(“Patient details exist in the database”)

ENDIF

Figure 4.8: Insertion of Patient Record

and accordingly lets the user access parts of the software the user is authorized to

access.

Room Booking

A patient is admitted to a hospital on the recommendation of a doctor. To book a
room the necessary inputs are the patient details (e.g., name) and the dates for which

the room is required.

On receiving the inputs the application checks the availability of a room of
desired type for that particular date. A user can request a particular kind of room
(e.g. corner room, non air conditioned room, etc); if such a room is available then
the result is displayed as a success and the patient is mapped to that room. If the
type of room requested by the patient is not available then a general search of room
availability is performed. If any acceptable room is available, the room is reserved for

the patient. Figure 4.10 captures this process .

CHAPTER 4. SYSTEM DESIGN 67

Algorithm 3: Password Verification

/* Variables
user : User of the application
User; : User j in the User List, User
uid, pwd : Attributes for authentication */

PasswordVerification(Username, Password) operation:
IF ((user.id == User;) and (user.pwd == User;.pwd)) THEN
CASE
IF (user == Doctor) THEN
Display(Doctor Form)
ELSE
IF (user == Frontdesk Personnel) THEN
Display(Frontdesk Form)
ELSE
IF (user == Laboratory Personnel) THEN
Display (Laboratory Form)
ENDIF
END{CASE}
ELSE
ShowMessage(“Authentication Failure”)
ENDIF

Figure 4.9: Password Verification

Patient Medical Record Retrieval

A patient medical record can be generated in various ways. In this thesis, we generate
a comprehensive medical record of the patient based on earlier encounters of the
patient with health care professionals. To generate encounter-based medical records,
search is not limited to only the encounters recorded in the patient-doctor encounter
database but also records from the databases of laboratories (for image files and
test results) and pharmacies (for drugs that the patient bought) should be retrieved.

Figure 4.11 illustrates the retrieval of medical record.

Pharmacy Processing

Patients purchase drugs from the pharmacy. When a patient purchases drugs, the
details (such as cost and quantity purchased) are recorded. A report is generated for
the patient and the stock of drug is reduced by the same quatity purchased by the

patient. Figure 4.12 illustrates code which captures this scenario.

CHAPTER 4. SYSTEM DESIGN

Algorithm 4: Book Room

/* Variables
All; : Room j in the List of all Rooms
Par; : Room j (heated/non-heated, etc.) in the List of Rooms Par
Note that Par C All
y : Patient’s Name
x : Date room is requested */

found : Boolean */

BookRoom(y, x) operation:
found = false
FOREVERY (Par; in the room list Par)
IF (Parj.date == x) THEN
found = true
ShowMessage (“Room unavailable”)
CASE
FOREVERY(All; in the Room list)
IF (All;.date == x) THEN
found = true
ShowMessage(“Room unavailable ”)
ELSE
found = false
ShowMessage(“Room of type All; Available™)
IF patient accepts room All; THEN
Insert(y, x)
ENDIF
ENDIF
END {FOR}
END {CASE}
ELSE
ShowMessage(“Room of type Par; Available”)
Insert(y, x)
ENDIF
END{FOR}

Figure 4.10: Book Room

UML Diagrams

63

CHAPTER 4. SYSTEM DESIGN 69

Algorithm 5: Medical Record

/* Variables
MedicalRecord : encounter records
Pat; : Patient j in the Patient List Pat
medno : unique patient identifier,
Encounter, Laboratory and Department list : Database of interactions */

Retrieve(MedicalRecord):
FOREVERY(Pat; in the Patient List Pat)
If (Pat;.medno == x) THEN
found = true
FOREVERY (Pat; in Encounter List)
RetrieveEncounter(Pat;.medno)
END{FOR}
FOREVERY (Pat; in Laboratory List)
RetrieveLabTest(Pat;.medno)
END{FOR}
FOREVERY (Pat; in Department List)
MiscDetails(Pat;.medno)
END{FOR}
GenerateReport(Encounter, Laboratory, Department)
ELSE
ShowMessage (“New Patient! No Record”)
ENDIF
END{FOR}

Figure 4.11: Retrieve Medical Record

Algorithm 6: Pharmacy Processing

/* Variables
x : Drug name
qty : Quantity
Med; : Medicine j in the Medicine List Med
medname, cost : Attributes of Med; */

Pharmacy Processing(x)
GetMedicine(x, qty)
FOREVERY (Med; in the Medicine List 'Med’)
If (Med; . medname == x) THEN
RetriveDetails(Med;)
ComputeCost(Med;.price, Med;.qty)
GenerateReport(Med; .medname, Med;.qty, Med;.cost, date)
ReduceStock(x, qty)
ENDIF
If (Med;.qty <= qty) THEN
ShowMessage(“Medicine running out of Stock ”)
ENDIF
END{FOR}

Figure 4.12: Pharmacy

CHAPTER 4. SYSTEM DESIGN 70

Network/individual Hospital(s)
FName : Char

Hdro : Integer

l-Address : String

ENote : String

[vaddOrg(y

[raddResource()

1
|

Patients_Record faalth F
[sin : integer Lsin - Integer
HFirst Name : Char I Nama : Char Patient Medical Record
LLast Name : Char FAddress : String FMedro
FAddress : String - Timings : Decimal | _ _ sFEncountesHisiory
HPhore : Integer ey 7 Allergy
FContact Name : Char L sodate() FReporis
FContact Phone ; Integer s detete()
irsurance : Char rsave() 7K
Irsurance Numbaer : Integer| Hsearch() j
Lvizal Stats)
@ i
T winhgrits» i
| P A Ui I L S, i
o] 5 | ,
0. . Doctors 0.1 Nurse Pharmaclist Labarotory Front_Desk Personnel
Specialization : Char, {-depariment ; char| 0. Hocation : char| o type - char 0.1 lencountertocation : char
+refer() t+search()
+add{} [+add()
75 JAN trefer(}
Jrits:
intaritss «inhgrits» thoak()

e | ® [1 1. :)
Cardiologist: octors] fGeneralBodiors] Dentist - Doctors] [General - Doctors| feRay Labaroory] [ECG - Labaroiony] [ECG Labartoy)
{ | I |

AI 9.0 1.0 LI

[| | fypo : char | type char | ype : char]
Spedialized and general doctors Other Laboratory personnel and
are accounted for in a common are captured under the ciass
class of doctors. Laboratory

Figure 4.13: Patient Medical Record as Developed : Class- Object Diagram

Figure 4.13 represents the class model for the electronic patient record system de-
scribed in this thesis. At the root is the hospital where a patient receives care and
where these records are stored. In a hospital, there are several classes of employ-
ees and care providers who directly or indirectly interact with the medical records
of a patient. Again, these include doctors, nurses, laboratory technicians, the front
desk personnel, etc. All users inherit attributes (name, sin, address, etc) from the
health care personnel class and groups of users in the environment also have special
attributes (e.g., doctors have additional attributes like specialization). In Figure 4.13
there exists certain generic classes (e.g., doctors and laboratory) which represents
other subclasses (such as specialist doctors and laboratory specialists). Each user
has a distinct set of permissible executable operations on a patient’s medical record
(e.g., a nurse can update existing information about a patient but cannot add any
information (or new finding) about the patient as only doctors will be authorized to
do so). Patient medical records are used by the various personnel depicted in the

above diagram.

CHAPTER 4. SYSTEM DESIGN 71

Figures 4.14 and 4.15 depict the flow of patients in a health care system using Use

case and sequence diagrams respectively.

Patient Flow l

R

Refer

Pharmacist aboratary .
Report

T Specialist

Laboratory
Technician

Figure 4.14: Patient Flow - Use Case Diagram

Figure 4.14 shows a use case diagram for a typical interaction between a patient
and a doctor. To start, a patient goes to the doctor for treatment. The doctor
then examines the patient and prescribes (in this case) drugs for the patient. The
pharmacist dispenses any drugs prescribed for the patient. Sometimes when the
doctor feels there is a need for a specialist’s opinion, the doctor may refer a patient
to a specialist who in turn may request a specific laboratory test. The patient then

returns to the specialist with the test results.

CHAPTER 4. SYSTEM DESIGN 72

The following sequence diagram shows one of the possible sequence of patient flow in

a health care.

Prescribe

Patient Dector Phanmacis! Lab Technicians Specialist
! Visit I) i I
i |) § |

|] i |

Prescribe | J ! |
____________ J l l {

! | ! ! !
I i I {

| } 1 !

Give Medicires I ! i
e e ———— 1 1 t
Visit | | |

! N 1 {
Refer : : :

< | Visit 1 [
| > |

: Rep ort : II

)l\l] I

H |

i R

] 1

f |

H I

i |

1 |

i |

i |

i |

|
I
I
!
|
]
]
0
|
| Refer
1
|
|
i
|
§
|
}
|

Figure 4.15: Patient Flow Sequence Diagram

The activities in Figure 4.15 are similar to that of Figure 4.14 but depicted as a

sequence of events.

CHAPTER 4. SYSTEM DESIGN 73

To view a patient’s medical record the user needs authorization. Authentication is
done to assure the safety and confidentiality of medical records. Sufficient security
checks are performed to ensure that the medical records are not accessed by unau-
thorized personnel. The doctor (or any authorized user) after being authenticated
searches for the medical record of a patient. If the search is success then the record
is displayed otherwise an error message is displayed. Possible reasons for error mes-
sages include the patient being a first time visitor or the patient’s records having been
deleted (i.e., remove the patient record as active and put it in an archive). Figure 4.16
shows the activity diagram for authenticating an user and processing a user’s request

to view a patient’s medical record.

.—-—— N} Usemame
Prompt user
for user name

incorrect user

rame of
password Password
Authenticate)

Search j
Errorin s h Patient
Input earch Palien
>

found

Show medical record

Figure 4.16: User Authentication/ Search Operation

CHAPTER 4. SYSTEM DESIGN 74

The flow of patients in the health care system begins with the interaction between
patients and the frontdesk personnel. The following diagrams (Figures 4.17 and 4.18)

show the activities in the frontdesk using activitiy and State chart diagrams.

start
search
. S 3 EnterSin)
create
] No match
Gnter SIN and other detai@ Disptay Resuit
match
update
exit /
@_—_—___‘, / | Chanrge Information }
viaw

N

exit

exit

®
close

Figure 4.17: Two Operations in the Front Desk : Activity Diagram

Figure 4.17 represents two frontdesk operations: searching for patients and adding
patients to the system. A patient’s record is searched based on the sin number, if
there is a match, the record is updated other wise error message is displayed and the

user can start again by making a new search.

CHAPTER 4. SYSTEM DESIGN

75

Frontdesk personnel also search for any available resources. The resources could be

anything/anyone who could offer some health care service to a patient.

7

On location
4 lab N 'po_meate;\ (" wards)
N \. J/
B =
£ ® << parallel search >»
) L £ Search the list of
N | available hospitals to
search make the best
. choice
<< SUCCESS >>
if the resource N;ai‘lai{aﬁility:
under consideration E ;5& m‘ gloa
is availabie a hospit
message Is Ao
displayed - Remote hospital N
4 lab N 4 h /' wards
¥ Op theater ¥ 5
S ___

Figure 4.18: Search for a Resource : State Chart

Figure 4.18 shows the idea behind making health care facility distributed. In case of

emergency, access to the best available service a patient can get in the vicinity could

save the patient’s life. Applications should also communicate with other hospitals to

retrieve information such as available number of beds in wards and operating theaters.

A vparallel search is done to retrieve the hospital, which can offer the best service at

that moment.

CHAPTER 4. SYSTEM DESIGN 76

The pharmacy supplies the drugs required by patients in the health care system.
Hence, it is necessary to maintain a log of drugs that need to be replenished . Figure
4.19 shows the flow of activities during the update of drug inventory information
in the pharmacy database. The requested drug’s available stock in the database is
retrieved. The process is repeated for the desired number of drugs. All drugs with

low stock are recorded for re-ordering.

‘ 7 3} Get Drug Name

Display Quantity

If lass stock
{ Repeat for another drug & = false

N if less stock

= ifrue

E\dd to list of Drugs to be orderedj
If end of
orcer= false
™

if end of

order= true

Display List

{ Update and Commit)

Figure 4.19: Drug Update in Pharmacy Inventory

CHAPTER 4. SYSTEM DESIGN 77

Patients visit doctors for treatment. A doctor, depending upon the diagnosis, could
advise the patient to have certain tests performed in the laboratory. The activities in

the laboratory should also be captured.

Gat pationt Info

Visit for lab test

{ Parform test }

Update Patient Record Scan lmage

Name & Update Recovd

Send to Referring Doct@

Submit to Patient

Figure 4.20: Laboratory Activity Diagram

Figure 4.20 shows the activities (e.g., blood samples, etc) in a laboratory. A patient
visits the laboratory to perform any requested test. The laboratory technician may

scan results and images, if any, updates the patient’s record.

CHAPTER 4. SYSTEM DESIGN 78

Figures 4.21 and 4.22 capture ways patients can view their medical record.

Browser WebServer .00 DalabaseServes

¥

Authenticate()

o

AcceptQuery()

1
i
!
1
1
]
ExacuteQuerny(}
Retrieve()
embeddCnHtmI() <
.
i
i
i
4
i

Figure 4.21: Patients Accessing Medical Records : Sequence Diagram

h 4

A

DisplayResul{)

A

S
1
1
|

The application should enable patients to view their medical status online. Like all
other users, patients are authenticated and a patient’s query is executed to retrieve
the patient’s information from a particular hospital. Figure 4.21 represents this use

case scenario as a sequence diagram.

CHAPTER 4. SYSTEM DESIGN 79

In a distributed environment, a patient should have access to not only information
from one health care provider where the patient regularly receives care, but also
should be able to retrieve/view the records from the participating hospitals where

he/she received care.

Hos pital 1
Patiert Db ; Patient Doman '

Patient Domain

Patients interface
E Patient's Point of Access

Figure 4.22: Medical Record Retrieval from Participating Hospitals

Figure 4.22 shows the implementation diagram for the patient’s access of a medical

record. A patient can have access to any number of health care providers’.

Chapter 5
Implementation

“ There are two ways of constructing a software design; one way is to
make 1t so simple that there are obviously no deficiencies, and the other
way ts to make it so complicated that there are no obvious deficiencies.
The first method is far more difficult.” - C. A. R. Hoare .

This chapter explains the implementation strategies and the various screen shots of the
implementation. The screen shots shown are generated when various kinds of users
(e.g. as a doctor, pharmacist, laboratory technician and the front desk personnel)

interact with the system.

5.1 Implementation Environment

The prototype was developed and tested on a heterogeneous database environment
(Access and DB2) distributed across a cluster of windows workstations (running Win-
dows NT). The implementation of the prototype is in Microsoft Visual Basic 6.0, as
this software supports object oriented programming and aids in the rapid development

of prototypes including GUI-based interactive systems.

80

CHAPTER 5. IMPLEMENTATION 81

5.2 Implementation Strategies

When developing the software one important consideration was the end-users. Since
the end-users are the people who will use the software, they should be involved during
the entire implementation (and the customization of the software for a particular
user profile). A thorough research on user inputs for similar applications was made
to study the various advantages that users would want to get from such systems.
The implementation was developed progressively because this helps in designing the
interoperability between the various user profiles . A medical record system integrates
the various autonomous departments, otherwise the overall benefit cannot be realized;

hence we provide a wrapper integrator to encapsulate the various modules.

5.3 Run-Time Behaviour

The following screen shots illustrates user interactions relating a patient’s visit to
a hospital for treatment. As described, a medical record is generated based on the

various encounters the patient has had with the medical personnel in the hospital.

The developed implementation when executed prompts the user for his/her user name
and password to authenticate the user. All user names are assigned with respect to
the user’s role in the health care domain. For instance, a doctor in the domain has a
username starting with “dr” and a front desk personnel has his/her user name begin-
ning with “fr”. The prefix (dr, fr) determines the access rights for the various user

profile.

Figure 5.1 shows the login screen for the application to validate the user. The form
allows users to submit their user name and password and/or cancel the operation.
If the password supplied is incorrect then an error is reported and the application
prompts the user to re-try with the correct password. Also, if the user name does
not exist, an error message is generated informing the user to change the user name

entered.

CHAPTER 5. IMPLEMENTATION 32

Figure 5.1: Form for user authentication

The following figures (Figure 5.1 - 5.18) illustrate some of the activities a front desk

personnel performs in a health care system.

The front desk personnel are primarily responsible for scheduling patients with doc-

tors. They are also responsible for generating bills for using health care resources.

- Integrated Healthcare Application

Figure 5.2: Form showing the front desk menu

Figure 5.2 shows the start up screen with the menu details for a front desk user.

For booking appointments, the patient details are collected. This includes the demo-

graphic, insurance and the immunization details as shown in Figures 5.3 to 5.7.

CHAPTER 5. IMPLEMENTATION 83

Figure 5.3: Form showing patient details

Figure 5.3 shows the form that is used by the front desk personnel to create new
patient records. The user inputs the patient’s personal information, this includes the
patient’s identification number (I use patient’s SIN to gurantee uniqueness of the pa-
tient’s medical records), address, phone number, contact person’s name and phone
number. This form and the subsequent forms are designed with user optons to save,
clear and close the form while certain forms having more user controls for customized

operations.

Figure 5.4 shows the form front desk personnel use to capture the address details of a
patient. The patient’s name and medical number automatically are copied from the
form shown in Figure 5.3. The form allows patients to specify both their temporary

and permanent address for future communication.

Figure 5.5 shows the form front desk personnel uses to capture the insurance details

of a new patient.

Figure 5.6 shows the form where a patient’s immunization records are updated. Front

CHAPTER 5.

IMPLEMENTATION

X8 Add New Patient Details Nancy Drew on 15-01-2003

2. John Street
ilow Gardens
{Calgary R4T Y5

Figure 5.4: Form showing patient’s address details

| % Add New Patient Details Nancy Drew on 16-01-20

Figure 5.5: Form showing patient insurance details

84

desk personnel are also gather vital statistics information on the patient as shown in

Figure 5.7.

CHAPTER 5. IMPLEMENTATION 85

Add New Patient Details Nancy Drew on 15-01-2003

Figure 5.6: Form showing immunization details

Figure 5.7: Vital statistics of patients

Appointment times are modelled as slots over the day and a slot represents one fi-
nite period of time. While scheduling patients with doctors, a number of customized
queries have to be modeled. The following form (Figure 5.8) captures the scenario

when a patient requests an appointment on a particular day.

CHAPTER 5. IMPLEMENTATION 86

DEName
D1.5ri Sam

DrSiiSam
.Dr.Sii Sam
Dr.SriSam

Figure 5.8: Form showing appointment search - date based

When date is the constraint to a patient, the front desk personnel performs a search
to view all doctors that may have available appointment times on the date requested
(as shown in Figure 5.8). Users can clear the result of the query and view a different
date or they can close the form. If the patient is willing to be scheduled in one of the

available times then the user points to the preferred time and Figure 5.9 is displayed.

¥ Appointment Booking by Nancy Drew I

""‘Aﬁh‘diﬁt’fnérit‘ﬁe‘taﬂ's- . S
| FirstName]
" Door EEE]|

o r“_“" = :

72 Master Stet. 12345

Figure 5.9: Form showing appointment booking - flexible search

In Figure 5.9, a ”"wild card” search is performed on last name, returning all the pa-
tient details whose name starts “dra”. The corresponding name is chosen and the

user makes sure that correct patient is considered for an appointment by verifying the

CHAPTER 5. IMPLEMENTATION 87

address and phone number of the patient.

Figure 5.10: Form showing appointment booking - changing patient details

If there is a need to change the patient details, the user clicks on the “Yes” option of

the dialogue box (shown in Figure 5.10) to modify the patient details.

2 Patient Update Nancy Drew on 08- 03

Backaround Detals

SIN [o1391955 :
st Name Stinvasen

Name :]saﬁ{path

DoB Jo7/0enar

Figure 5.11: Form showing an update on patient details

The patient’s details are populated in Figure 5.11 from the unique record of the patient

chosen using the form shown in Figure 5.10. The user can then change the applicable

CHAPTER 5. IMPLEMENTATION 88
details and closes the form. If no update of patient data is required, the user clicks
the “No” option of the dialogue box (as shown in Figure 5.10) to continue and book
the patient appointment.Again,the patient’s details are passed to the corresponding

text boxes of the form (originally shown as Figure 5.9 and now revised in Figure 5.12.).

S8 Siot Timings

Name i Nar
tinivasan ' Di.Si Sam
Rahu DiSiiSem
achin : D.5ri Sam
Dr.S1i Sam

s [aonara7]

- [Patient suffers from severe head ache and &
general body ache. Has the above problem for. |-

Figure 5.12: Form showing appointment booking

Often, patients’ forget the name of the doctor that last treated them but might want
to be treated (or not treated) by the same doctor. Hence, earlier instances of patient’s

visits should be able to be referred to when booking an appointment.

Figure 5.13 shows a screen that supports two kinds of searches for obtaining patient
information. A patient’s details can be searched for either by their medical number
or their name. When the medical number is submitted, the application outputs the

corresponding patient’s name and displays the patient’s previous appointment details

CHAPTER 5. IMPLEMENTATION 89

Figure 5.13: Form showing patient search - 1

as shown in Figure 5.14.

Patient Information=————
stNama Ramd . Last ame.

Address FoMaster§ o'Bf 121271967 |

[izaas67 Insurance.

DiSiSam Headache : 08/01/2003

Figure 5.14: Form showing patient search - 2

Figure 5.14 displays the details like the demographic details and the previous appoint-

ment dates and times, reason for the patient’s visit for encounters with various doctors.

CHAPTER 5. IMPLEMENTATION 90

Front desk users should also retrieve queries of users might want to have the first

appointment available with a particular doctor between two dates.

P And :‘]19/0312002;

_batsl
, 30712/2001 1
| Hauy Porter Srimivasen 3071272000 1
1 |Harty Porter Walter 221272000 :
Hany Porter Sachin ~ 27/12/2001:
Jack Olson Ganesh 27/12/2001
| [Jeck Olon Jonathan © 27/12/2001°
[Jack Olson Wiliam 27/12/2001

L1 LAk Alsan * Saurav 27N2/20m
aEl

Between

1 % Slot Timings BB[EIES)}

Figure 5.15: Form showing appointment search - Doctor-based

Figure 5.15 shows the form that displays a list of unavailable (i.e. booked) appoint-

ment times with a doctor between two requested dates.

Following a patient’s visit, the front desk personnel also generate bills to update the
insurance companies. A patient can also receive a hard copy of the bill, hence the ap-
plication supports ways for generating such bills. Figure 5.16 shows one such sample
bill.

The front desk users also check for the availability of resources in the local hospital
and resource availability in other health care institutions. Figure 5.17 allows the user
to fill in details of the date requested and the resources requested. The person and the
hospital requesting the resource are populated automatically. On clicking the “Sub-
mit” button information is retreived from the database of the participating hospital

(as shown in Figure 5.18).

CHAPTER 5. IMPLEMENTATION 91

SylvanlSocm[y . ‘ -
R Receipt of Claim
135, Machray Hall
SIH First Name LastHame Date Complaint Dr.Name Amount
81381959 Srinivasan Sampath 141503 Headache Dr.Sri Sam $2500

The information on the this soﬂvvare_l's"diéi}éld;jét_ffar informational purposes only and is not
intended norimpliedto be a advice ora pro’fessional“w

This information is ADVISORY: ON| and thg:uset: assumes sole responsibility for any decisions
made based upon its content: While all altempts afe mad n good faithto ensure the accuracy and
suitability of the mfurmation presented; reference ori ed, all critical information should be
independently verified. No endorSeme intended or made of any hypertext link, product, sevice,
or information, either by its-inclusion or exclusioh fom this page or site. 1stOF disclaims all
warranties, whether expressed lmphed ‘regarding’t the information presented, referenced, or
implied, including, but notlinited anywarranty‘asfo the quallty, accuracy, or suitability of this
information for any paniculag purpos:

For Sylvanus Health Care,

Figure 5.16: Form showing appointment bill generation

The following figures (Figure 5.19 - 5.25) ilustrate some of the activities done by a
doctor once he/she is authenticated in to the system. The doctor’s menu is shown in
Figure 5.19.

When a doctor is authenticated, the appointments the doctor has for the day are
displayed along with a set of menu options. On choosing a particular patient and
clicking one of the menu options, the doctor performs the selected action on the cho-
sen patient (e.g., choosing the first record and then choosing the diagnosis button

allows doctors to diagnose the first patient (as shown in Figure 5.20).

CHAPTER 5. IMPLEMENTATION 92

m Request for Resource]

Figure 5.17: Form showing request for resource

¥ Resource Availal

- Resource - Hospital Dist

 [Resptal. . JWeds |ECG. [Op

- {Grace ¢~ 100

o |Victoia 100
- [SevenQaks 10

Figure 5.18: Form showing resource availability in other health care institutions

After diagnosis a doctor may write a prescription for the patient. Figure 5.21 illlus-

trates this process.

Doctors may also refer patients to specialists. In my implementation I have captured
referral as an internal process, where doctors within the organization refer patients

to each other. Figure 5.22 shows the referral form.

Doctors view a patient’s medical record to get a better understanding of the patient.
Hence, my implementation retrieves information about the patient from different de-
partments of the health care institution to present a consolidated view. Figure 5.23

shows a sample encounter record.

CHAPTER 5. IMPLEMENTATION 93

B Intcgrated Healtheae Apgication FFIE

Fis:

Figure 5.19: Form showing Doctor’s Menu

Palient Diagnosis by Dr.S1i Sam on 13/01/2003
Vi

Symptoms of Migraine

Figure 5.20: Form showing patient diagnostics

In the encounter record images (e.g., x-ray or ECG) may be included. Doctors have
the freedom to zoom in/out images. This allows doctors to view diagnostic images

more clearly to make more accurate inferences.

The vertical scroll bar to the right of the image (shown in Figure 5.25) allows users to

CHAPTER 5. IMPLEMENTATION 94

W, Patient Referal by Ds.Sri Sam on 07-01-2003
~ic Refer Patiel e

ot [iowe]

/|Bpinion on possible damage to the back |
 |bone because of an accident 3 days back] i

Figure 5.22: Form showing patient referring

zoom in or zoom out the image. Figure 5.24 and Figure 5.25 shows the same image

before and after being zoomed respectively.

After viewing the image, the form can be closed by clicking the close button, which

takes the user back to the form shown in Figure 5.23.

The pharmacy in a health care instituion, dispenses medicine to patients and updates

the drug information in the database.

CHAPTER 5. IMPLEMENTATION 95

onfidential Encounter Rmd De.Sri Sam

I

{DrSiSam Temperature ‘NonEmergency NJA
{DrSiiSam Brain Scan . Emergency lab-ECG
D151 Sam - Headache and Body Non Emetgency None

Figure 5.23: Form showing an encounter record

&, Zoomed Image [z]o]
=t

Figure 5.24: Form showing image before zoom

Figure 5.26 shows a typical form where a pharmacist dispenses drugs.

In Figure 5.26 illustrates drug dispensing by a pharmacist. To delete a wrong entry,

pharmacist clicks on the corresponding drug as shown in Figure 5.27.

CHAPTER 5. IMPLEMENTATION 96

. View Zoomed Image of Reports

Figure 5.25: After Zoom

tlFiI Drugs of Patient

Figure 5.26: Form showing drug dispense

Pharmacist completes the transaction by clicking on “Bill” on the form shown in Fig-

ure 5.26. This forces the application to pop up a window displaying the count and

CHAPTER 5. IMPLEMENTATION 97

Figure 5.27: Form showing drug deletion

cost of the drugs sold as shown in Figure 5.28. The final list of drugs purchased is

listed on the form shown in Figure 5.29.

Figure 5.28: Form showing the count and cost of drugs

Drugs in the purchased list should have the flexibility to be deleted before the pay-
ment is committed. Figure 5.30 captures this process. The application should be
interactive to the user instructions. The process of deleting the drug should be ac-
knowledged to the user. Figure 5.31 reflects this. The purchase of drugs should be
generated as a bill. This bill is similar to Figure 5.16.

CHAPTER 5. IMPLEMENTATION 98

&% Fill Ig alel '

Figure 5.29: Form showing purchase list

Figure 5.30: Delete Chosen Drug

In a laboratory, users typically add and update patient records as per the instructions
of doctors (i.e., the users add patient records to the laboratory database and update
the records after the test results are obtained). Following figures (see Figures 5.32

and 5.33) capture the this scenario.

As with other users, a laboratory user can perform a wild character search to identify
patients (e.g., name contains “sam”) in the Figure 5.32. This results in another pop
up window with all patients names starting “sam”. The laboratory user chooses the
appropriate patient record and the other details are populated automatically based

on the patient selected.

CHAPTER 5. IMPLEMENTATION 99

Figure 5.31: Drug Deletion Confirmation

I'3% Mark Black - Add a Patient Record BEER

Figure 5.32: Adding a Patient Record - Laboratory Module

Add'a Patient Record B B3|l 28 Mark Black Doctor-Patient Interaction H=E3

Laboratory Referals of Patients by Doctors
: 1» Doctor Name'| Category: :|ddate
|

- Add Detaﬂs of Pahent

Name lSampath .
. sn 913919593 .
ReED' ‘Dr.SuSam

DiSiiSam: ['{Non Emetgenﬁ; ngh Blood Pressute 07/03/2002
DrSn Sam “{Non Emergency High Blood Pressqre U?[ﬂ3f2002
: Possible Pnemonia : 07/03/2002

Non Emergen

_ RetDate [o770372002 |
 RecdDate. [3670272002 [

Figure 5.33: Form showing matching patient record - laboratory module

To match a laboratory test with a particular Doctor-Patient encounter, laboratory

CHAPTER 5. IMPLEMENTATION 100

users choose a particular encounter (various laboratory referrals of patients over a
period of time is displayed in another window and the user has the freedom to choose

one of the matching interactions).

‘f'ISamp"atI"} . |
,'313819583 "

g::g;:g:gliguﬁj _.d |- |was tested for an attack of pneumonia and

i {the results were negative.

Figure 5.34: Associating a record with the Corresponding Doctor-Patient Encounter

After matching the record, the laboratory user updates the patient record by assigning
the matching file name referring to the test results (e.g., X-Ray images, ECG reports,

etc.). The user gives his/her view on the report.

Finally, the administrators are responsible for maintaining the database and manag-
ing the resources (adding and deleting as needed) in the system. The following forms
are displayed when a user is authenticated as a system administrator (i.e., the user
has a prefix “ad” on his/her user name). The following forms (Figure 5.35 and Figure

5.36) illustrate the process of adding new users to the system by the administrators.

Figure 5.37 shows a form that allows administrators to delete other users from the
system. Similarly, other resources (e.g., laboratory machines, etc) are also added to

the system. An administrator updates the information on addition of such resources.

In addition to adding and deleting employees, administrators also configure certian

key attributes required by the application (e.g., the organization name, tax rates and

CHAPTER 5. IMPLEMENTATION 101

=X Add a New Empoyee

[12/08/1965

Figure 5.35: Form showing adding new employees

<% Add a New Employee

12, Labour Avenue {12, Labour Avenue
Winnipes {Winnipeg
R3T& R3T8J8 .

Figure 5.36: Form showing updating address details of employees

the database this application uses. Figures (5.38 - 5.41) shows the configuration of
such fields.

Figure 5.38 shows a screen that allows administrators to change the organization’s
name.

Figure 5.39 shows a screen that allows, system administrators to update the cost for
using any of the services in the health care system. Figure 5.40 shows the form the

system admnistrators use to change the ODBC/Database used by the health care

CHAPTER 5.

application.

IMPLEMENTATION

12, Labour Avenue
Winnipe:
3

Figure 5.37: Form displaying deleting employees profiles

.................. Define Charges T e

- Organizational Details -

Organization Name i Sylvanus Health Care

Urganization Address l 12 Machray Hall

Organization City ' YWinnipeg

Country and Zip l Canada R3T 2N2

Company Lodo g%@%%
TR P

Sylva s

Trm s 6

sic Uy

v

Control O dCIick on Image to change Iogo[

Save Clear f

Figure 5.38: Setting the Organization Name and Logo

102

CHAPTER 5. IMPLEMENTATION 103

Database

Organization Info j[Define Charges T

~Enter Charge for Yarious Services

- Various Room Cost ~ - Define Tax———

ROONTPPBI!anACRc)om vi GST :?ZU
Cost$ [0 PST [70

Save [Save l

- Labarotory Tests Charges ~~~~~~~~~~~~~~~]

l
% Test Name lBiood Test I
1 Cost$ 1

Save

Figure 5.39: Form showing setting of cost for using resources

On clicking the “ Change ODBC/Database”, the apllication opens the Windows Data
Source Administrator for changing the ODBC as shown in Figure 5.41.

1 and 2 pertaining to patient’s visit, resource

Users can also generate various reports
usage and doctor’s appointments on a particular day or week. Following figures (Fig-

ure 5.42 - 5.52) shows some of the reports developed.

Invoices, as described earlier, are generated for the use of health care resources (e.g.

rooms and laboratory services). Forms (5.47 and 5.48) show such invoices.

I The logo in the header of the report is copyright of The Arden Theatre Company image available
at http://www.ardentheatre.org

2The logo on the body of the report is copyright of University of Missouri available at
www.system.missouri.edu/vpacad/ images/sigill.gif

CHAPTER 5. IMPLEMENTATION 104

Organization Infa T Define Charges T Database

This form:allows the system administrator to change the
database that this application will talk to. Administrators
follow the pop up windows by clicking on*'Change
ODBC/Database™ ta change the database/ODBC name

~System Settings
System DSN

Database |r

FCRargs UDBC T
: Databhas i

Figure 5.40: Setting the ODBC Database used by the health care application

Reports of drugs ordered in the pharmacy are also generated. Figures 5.49 and 5.50
show reports of drug orders. Reports of doctors interaction with patients have to be

generated as well. Figures 5.51 and 5.52 show the interaction reports.

A consolidated bill on the patient’s visit is also to be developed as shown in Figure
5.53.

5.4 Deployment and Quality Assurance Strategies

Quality Assurance (QA) is the validation and verification of a system performed by
end users rather than by the software developers or the software testers. A number
of attributes determine the quality of a software system [S092], however not all of

the criteria are applicable to every software developed [BP84]. Some QA attributes,

CHAPTER 5. IMPLEMENTATION 105

User DSN. | System DSN | File DSN:| Drivers | Tracing | Connectioni Pocling | About |

Giganizatior: Infe 7 Define Charges T Database
User Data Sotirces:
This form allows the system administrator to chanhge the ; :|:Name | Driver | Add...
database that this application will talk to. Administrators chintu Driver do Microsoft Access (*.mdb)
follow the pop up windows by clicking on "Change conn Microsoft Access Driver {mdb} Remove |
ODBC/Database" to charge the database/0DBC name db2000 Diiver do Microsoft Access [*.mdb)
dBASE Files Microsoft dBase Driver (*.dbf) Configuie:..
~ System Settings dBase Files - Word Miciosoft dBase VFP Driver {*.dbf}
Excel Files Microsoft Excel Driver (* «ls)
.. System DSN FoxPro Files - Word Microsoft FoxPro VFP Driver [dbf)
Database TF manufactuiing Driver do Microsoft Access (*:mdb}
E MS Access Database Microsoft Access Driver (*.mdb)
i patient Miciosoft Access Driver (*mdb) .
" Changs ODBC7 7} ; 1 nres Mintnsnft Arress Drvar X mahl Pl
| i, Database :]
| An ODBC User data source stores infarmation about how to' connect ta
the indicated data provider; - A User data souice is only visible te you;
and can only be Used on the cuirent machine:

oK l Cancel t i [Help

Figure 5.41: Windows Data Source Administrator Window

which relates to this application are explained in the following paragraph.

The application in this thesis is windows-based, hence little or no effort will be re-
quired to make the application run on other windows-based system, thus supporting
portability. For a good understanding of the system, the design, implementation, and
the testing of the system are documented. The application itself includes help files
and commented source codes to aid the understanding of the system. Various users
access the application for various purposes. The faults for a particular user profile do
not halt the proper working of the system (offering reliability). The transactions in
the implementation are based on the formal specifications, supporting correctness of

the software.

Software quality assurance guarantees the quality of the development process and
products. A well defined software development process yields high quality software
[S092]. Hence, a great deal of time and effort was devoted in formulating a well-

planned software development process.

A constant review of the software developed helped in examining parts and all of

CHAPTER 5. IMPLEMENTATION 106

Syhvan; Soviety

i B List of all Employees

Bmplojse Name Bnplojwe = - Department Addrasy ~DoB -0 -Phone
DroriSam Docor Gereral T UrtensiyCreze CAOMOI9 127127199 1234557
Di.PktardJozes Docor candp 55, Ak ke Ciclke 1208198 12015 5160957
Drharks Doctor Gerefal 12, Larey Street 036891975 2000 7657687
Dr.HkkJames Docer Hewmo 34, RoNy Aeree 12089995 120%19% 875512
Dr.Harry Porer Destor Carclio 12, Ralkor Aeate 127126163 12837199 93716543
Dr.Rcbih Wilsos Bacor Gepesal 23, Matkr Straet 3G 231199 PR icre
Driakokon Docor Geeral 313, Uskersty 3120001 234249 XBITE3
Mark Black Ly Tach Labmrabry 34, Moy Avaxee DA01948 1272799 1234557
James Gzlhg Plamacht Plamnackt 35,4k lakk Click 1208198 Iz TeSTesT
Hawoy Drew Pecaptionkst FrontDesk 34, Bloreny A nge 120301978 1220190 1234567

(End-of Repart)

Figure 5.42: Report showing the list of all employees working in Sylvanus Health Care

Center

the system. Notes on the review were recorded and the problems identified were
corrected. A thorough review of earlier system designs gave better insight into the
various problems encountered in the development of the system and how to resolve
them. Verification and validation of a software accompanies the software accompanies
product through out its implementation. Verification and validation involves an anal-

ysis of the product using both static and dynamic approaches. Formal specification

CHAPTER 5. IMPLEMENTATION 107

SylvaiSociety

Front Desk Office

137, Miehuay Hall
Employee Listof . Doctor. - Cardio
Report Generated on Thursday, February 27, 2003

Hame Address DoB Dol " 'Phone’

Dr Harry Porter 12, Madison 12121934 12/081997 9876543

Dr Richard Jones 56, Adelside 12/08/1978 12/074956 8758967

{ End of Report)

Figure 5.43: Report showing doctors belonging to a particular specialization

and verification was done guaranteeing the mapping between the implementation and
the specification (the formal specification itself was guaranteed freed of types and log-
ical errors using the Z-Eves tool) and dynamic verification was done using functional

testing (black-box testing).

Testing any application usually demonstrates the existence of errors. Defects often
exists in complex systems even after detailed testing. A successful defect test displays
the presence of defects in the software under consideration. Testing the application in-
volved performing unit and module tests using typical test data and testing the code
during the implementation of individual components of the software system. Unit
testing confirms that the tested units adhered to the purpose of their implementa-

tion. After implementing various modules (e.g., doctor modules, front desk modules,

CHAPTER 5. IMPLEMENTATION 108

75

SylvaniSociery b

Frela T A Front ‘Desk Office

Doctors Appointment on a Particular Day

Doctor Name: Dr Nick James
Appointment Date: 0141142003
Patiert Name Patient Sin Patient Complairt Slot
David Flower 813919596 Headache 1
Alec Stewart 913919598 Headache and Fever 4

(End of Report)

Figure 5.44: Report showing a doctor’s appointments for a particular day

etc), the modules were integrated. Sub-system and system testing were performed on
the integrated modules to expose interface conflicts and validate the system, respec-
tively. The detected defects were corrected and the above tests repeated (regression

testing) to account for the modifications.

Since, the application is enterprise-based and will be used across a network, stress
tests of the software with increasing load was performed. Stress testing showed that
overloading the system does not cause any anomaliesin the software. Poor usability
may result from badly designed user interface. With mulitple navigational windows

and various number of clicks (Click-Depth) the user could be lost during the naviga-

CHAPTER 5. IMPLEMENTATION 109

a1

Sylvan]Society
T e All Appointments on a Particular Date
Date of Appointment: 21-Jan-2003
Patient Sin Patient Hame Doctor Patient Stot
913919536 David Flower Dr Nick James Headache 1
913918598 Alec Stewvart Dr Nick James Headache and Fever 4
913918597 Michael Ponting Dr Harry Porter Headache and Fever 4

(End of Report)

Figure 5.45: Report showing all appointments for a particular day

tion. Usability results, often reveal poor designing problems (in terms of layout and

structure).

The deployment of the application to the end user is the ultimate aim in developing
software systems. Hence, adoption of a sound deployment strategy is a prerequisite
for the ultimate success of the software. The deployment strategy for this project
was based on several phases as described in [Sc99]. For example, in the inception
phase of the software, initial deployment strategies were planned for with a focus on

identifying the end users and releasing the software at once rather than progressively.

CHAPTER 5.

e e e wen

IMPLEMENTATION

SIN Name: DoB Sex: Address ‘Phone
9139189595 Sachin Tendulkar 171211968 M 1, Monday Street 8556778
913919594 Rahu! Dravid 1201211967 M 12 Master Strret 1234567
913819583 Srinivasan Sampath 07/084978 M 12, Mister Street 4746728
913919598 Issac Newton 08/01/1972 M 13, Nymph 8550748
123456789 George Plant 171212002 1] 2, Sunday Street 2753790
913919532 tark Waugh 09/08/1 9586 M 201-8, Myriad 2753790

{ End of Report)

110

Figure 5.46: Report showing the all patient who have received care at Sylvanus Health

care center

CHAPTER 5. IMPLEMENTATION

it S . Tt o
Sylvan[Society

T Pt a0 e

‘Room Invoice

Invoice for: NMark Waugh for using Rooms at Sylvanus heéalth care starting- 22/02:2003

SN Sex Dob Phone Address:
913919592 M 08/08/195 2753790 201-8, Myriad
Treating Doctor Room Type Ta Date
Dr.Sri Sam ACO01 264022003
Number of Days 4

Cost Per Day $100.00
Total Cost $400.00

{ End of Report)

Figure 5.47: Report showing the room renting charges

111

CHAPTER 5. IMPLEMENTATION

Labarotory Inveice -

* Patient Details
sit: Patient Hame Sex: Date DoB. ‘Address Phone
913918592 Mark Waugh M 160021200 089/0811958 201-6, Myriad 2753790
‘Dottor Referal
Doctor: Date Referedfor Patient Type Boctor View Cost
Dr Nick 1700152 Lab - Xray Outpatient Headache $51.00

LabRepoit Pnemonia and severe

(End of Report)

Figure 5.48: Report showing the laboratory resources invoice

112

CHAPTER 5. IMPLEMENTATION

,,

SylvaniSaciery
e e Dings Ordered on a Particular Day

Ordered Date: 12/01/2003

Order Ho Agent. Drug Units
12 Encapsulation Tylenol 100
13 Functions Anacin 12
16 Inheritance Vicks 15
15 Polymorphism Viscosin 14

{ End of Repart)

113

Figure 5.49: Report showing the drug orders on a day with various drug suppliers

CHAPTER 5. IMPLEMENTATION 114

Agent Hame Agent Address Phone
Encapsulation 21, Ethiopia Sireet 2753730
Order Ho Order Date Brug Hame Units = Date Received
2 12/02/2003 Salbutamol 100 17/01/2003
9 1210272003 Paracetamol 56 1710142003
12 12/01/2003 Tylenol 100 17:/01/2003

{ End of Report)

Figure 5.50: Report showing the drug ordered with a particular supplier

CHAPTER 5. IMPLEMENTATION 115

f[Saciety

57, Wiy Hall

Patients- Doctor Interaction
Doctor Details
Doctor Name Addvess Phone Specialization
Dr MNick James 34, Movery Avenue 8765432 Meuro
Patienit Details
SIN Name Sex Address Insurance
913919592 Mark Waugh M 2, Nymph Avenue Gresat West Insurance
Interaction Details
Encounter Date Time i - Patient Type Category Doctor's View: Tests
1710172003 13:58:36 Outpstient Non Emergency High Blood Lab - Blood
0111/2003 13:58:36 Outpatient Non Emergency Possible Lab - Xray

(End of Report)

Figure 5.51: Report showing the doctor patient interaction

CHAPTER 5. IMPLEMENTATION 116

Patient Prescription.

Doctor Details Patient Details
Doctor Name: Dr Nick James Patient Sirt 913819592
Specialization Neuro Patient Name Mark Waugh
“'Phone 8765432

Date of Prescription 17/01/2003

Druig Name Quantity FrequencyDay Refils
Anacin 1 1 1
Aspirin 1 1 1
Tylenol 1 1 1

A generically equivalent drug product may be dispensed unless the
practioner hand wrtes the words "Brand Necessary" on the face of
Prescription

(End of Report)

Figure 5.52: Report showing the medicines prescribed for a patient

CHAPTER 5.

Figure 5.53: Form showing a consolidated bill for a particular visit

-~ Patient Flow
- Appointment Detail

Patient Name ' [Sinivasan Sampath Date [11/01/2003
DoctorName '}'Dr‘Sri Sam Complaint 1Headache]

IMPLEMENTATION

- Medication -

- Drugs mLab Tests: s
Diug Count | Cost [$) { Category’ [Cost (8)
Anacin 3 45 i Lab - Blood 50
Saridh .

~ Patient Payment

Consultation (8]~ {35 Amount: (3]

Drug Purchase [$) j‘ Tax (%) i
Lab Charges ($) =5 Total (3 {159 5

117

Chapter 6
Conclusions

“ I find that the harder I work, the more luck I seem to have.” — Thomas

Jefferson (1743-1826)

This chapter summarizes the contributions of the thesis and explores some areas of
the potential future work. This thesis provided a formal specification of transaction
processing for a distributed, integrated health care system with focus on electronic

patient record.

6.1 Summary of Contributions

The thesis contributes to research of application of computers in the health care

domain in the following ways:

1. It formalizes the transactions of a patient with the medical community and
formally models the design of those aspects of a health care system that impacts

electronic medical record.

2. A formal specification of the health care system was developed and a description
of the adopted integrated health care system architecture, including the different

object models developed using UML was presented.

3. A system was implemented to reflect parts of formal specifications.

118

CHAPTER 6. CONCLUSIONS 119

4. This thesis provides a good case study for learning and transferring skills in

formal software design.

6.2 Future Work

The implementation of certain functionality of the system was not attempted and was

left for future work. Few of them include:

1. Various transactions that are specified need to be refined and customized to
tailor the needs of a particular health care provider. The thesis presents a generic
model for capturing information and processing the transactions based on the
inputs. For real-world applications,which are based on formal specifications,
these inputs have to be studied in great details and be customized before they

can be implemented.

2. Encryption of data using a uniform technique could be added to enhance the

security.

3. A health care informatics domain/application is not just patient centric. There
exists several other transactions that the patient use indirectly, hence such trans-
actions have to be recognized, studied and formally modelled before the imple-

mentation to make the application complete.

4. Even though agent based system was not the focus of this thesis, the abundant
literature and the growing adoption of agent based systems in the health care
domain prompted us to mention about agents. The use of agents in this domain
is a potential research topic. Since, the medical records can be populated from
various database(s) of participating health care organizations, the use of agent

based systems is a likely candidate.

To conclude, this thesis offers an excellent platform for studying and specifying the

overall transactions in a health care domain.

References

[BHO5]

[BP84]

[Ba92]

[Bi95]

[Dags]

[De92]

[De98]

J. P. Bowen and M. G. Hinchey, “Seven More Myths of Formal Methods,”
IEEE Software, Vol. 12, No. 3, 1995, pp. 34-41.

F. J. Buckley and R. Poston, “Software Quality Assurance,” IEEE Trans-
actions on Software Engineering, Vol. 10, No. 1, January 1984, pp. 36-41.

R. Barden, S. Stepney, and D. Cooper, “Improving Software Tests using
Z Specifications,” Proceedings of the Sizth Annual Z User Workshop J. E.
Nicholls, ed., Workshops in Computing , Springer-Verlag, December 1992,
pp- 99-124.

K. Binsted, A. Cawsey, and R. Jones, “Generating Personalised Patient
Information Using the Medical Record,” Proceedings of the Fifth Conference
on Al in Medicine Europe, P. Barahona, M. Stefanelli, and J. Wyatt, ed.,
Vol. 934 of Lecture Notes in Artificial Intelligence, Springer-Verlag, 1995,
pp. 29-41.

J. Davies and J. C. P. Woodcock, Using Z: Specification, Refinement, and
Proof, Prentice Hall, London, July 1996.

K. Decker and V. Lesser, “Generalizing the Partial Global Planning Algo-
rithm,” International Journal of Cooperative Information Systems, Vol. 1,
No. 2, June 1992, pp. 319-346.

K. Decker and J. Li, “Coordinated Hospital Scheduling,” Proceedings of the
Thard International Conference on Multi-Agent Systems, (Paris, France),
1998, pp. 104-111.

120

REFERENCES 121

[Di95)

[Di97]

[Dy98]

[EN94]

[EhOO]

[EhO1]

[Eh02]

[Eh97]

[ER99]

C. DiMarco, G. Hirst, L. Wanner, and J. Wilkinson, “Healthdoc: Customiz-
ing Patient Information and Health Education by Medical Condition and
Personal Characteristics,” Proceedings of the First International Workshop
on Artificial Intelligence in Patient Education , (Glasgow, UK), 1995.

R. S. Dick, E. B. Steen and D. E. Detmer, “The Computer-Based Patient
Record: An Essential Technology for Healthcare,” Institute of Medicine,
(Washington D.C, USA), 1997.

N. Dykman, SAGE: Generating Applications with UML and Components,
Master’s Thesis, Department of Computer Science, The University of Utah,
Utah, USA, December 1998.

R. Elmasri and S. B. Navathe, Fundamentals of Database Systems, Second

Edition, Benjamin Cummings, California, 1994.

S. A. Ehikioya, “A Formal Design Framework for Electronic Commerce
Transactions,” International Conference on Advances in Infrastructure for
Electronic Business, Science, and Education on the Internet (SSGRR-
2000), (L’Aquila, Italy), July 31 - Aug 6 2000.

S. A. Ehikioya, “A Formal Characterization of Electronic Commerce Trans-
actions,” International Journal of Computer and Information Science,
Vol. 2, No. 3, September 2001.

S. A. Ehikioya and A. Mitra, “A Formal Design of Electronic Patient Medi-
cal Record Exchange System,” The Benin Journal of Advances in Computer
Science, 2002.

S. A. Ehikioya, Specification of Transaction Systems Protocols, Ph.D Thesis,
University of Manitoba, Winnipeg, Canada, 1997.

S. A. Ehikioya and K. E. Barker, “Towards a Formal Specification Method-
ology for Transaction Systems Protocols,” Proceedings of the Third Annual

TASTED International Conference on Software Engineering and Applica-
tions , (Scottsdale, USA), October 1999.

REFERENCES 122

[Eh99a]

[Ev98]

[Ev99]

[Gagl]

[Go00]

[Ha94]

[Ha99]

[He97]

S. A. Ehikioya, “An Agent-based System for Distributed Transactions: A
Model for Internet-based Transactions,” IEEE Canadian Conference on

Electrical and Computer Engineering, (Edmonton, Canada), 1999.

A. Evans, R. France, K. Lano, and B. Rumpe, “Developing the UML as a
Formal Modelling Notation,” UML 1998 Beyond the notation. International
Workshop, Vol. 1618, (Mulhouse, France), June 1998, pp. 297-307.

J. A. Evans, “Electronic Medical Record System,” US Patent Number
9924074, Application Number 721182, July 1999.

A. M. Garcia, “System and Method for Scheduling and Reporting Patient
Related Services include Prioritizing Services,” US Patent Number 5065315,
Application Number 426113, November 1991.

C. Goble and P. Crowther, “Schemas for Telling Stories in Medical Records,”
Proceedings of the Fourth International Conference on Erxtending Database
Technology M. Jarke, J. Bubenko, and K. Jeffery, ed., Lecture Notes in
Computer Science, (Cambridge, U.K), Springer-Verlag, September 1994,
pp. 393-406.

W. E. Hammond, “Hospital Informations Systems: A Review in Perspec-
tive,” Year Book of Medical Informatics J. H.van Bemmel and A. T. McCray,
ed., Advanced Communications in Health Care, (Stuttgart, Germany), In-

ternational Medical Informatics Association, Schattauer, 1994, pp. 95-102.

M. Hannebauer, H. D. Burkhard, J. Wendler, and U. Geske, “Composable
Agents for Patient Flow Control — Preliminary Concepts,” Proceedings of
the DFG-SPP Workshop, (Ilmenau, Germany), 1999, pp. 223-231.

S. Helke, T. Neustupny and T. Santen, “Automating Test Case Generation
from Z Specifications with Isabelle,” Z User Meeting 1997 (ZUM’97): The
Z Formal Specification Notation J.P. Bowen and M.G. Hinchey and D. Till,
ed., Vol. 1212 of Lecture Notes in Computer Science, Springer-Verlag, 1997,
pp. 52-71.

REFERENCES 123

[Ho95]

[Ho99]

[IE01]

(In01]

[Jo94]

[Ke97]

(K096

[Ku99]

H. M. Horcher, “Improving Software Tests using Z Specifications,” Pro-
ceedings of the Nineth Annual Z User Workshop J. P. Bowen and M. G.
Hinchey, ed., Vol. 967 of Lecture Notes in Computer Science, (Limerick,
Ireland), Springer-Verlag, September 1995, pp. 152-166.

C. Hofmeister, R. L. Nord, and D. Soni, “Describing Software Architecture
with UML,” Proceedings of the First Working International Federation for
Information Processing, (San Antonio), February 1999, pp. 145-160.

Y. Indratmo and S. A. Ehikioya, “A Formal Framework of Multi-Agent
Systems for Electronic Commerce Transactions,” The Journal of Computer

Science and Information Management, Vol. 3, No. 3, (To Appear).

Y. Indratmo, A Formal Specification of Web-Based Data Warehouses, Mas-
ter’s Thesis, Department of Computer Science, University of Manitoba,
Winnipeg, Canada, 2001.

G. Jones , “Crosstalk,” The Journal of Defense Software Engineering,
March 1994.

J. C. Kelly, Formal Methods Specification and Analysis Guidebook for the
Verification of Software and Computer Systems Volume II: A Practitioner’s
Companion, NASA, California, USA, July 1997.

[S. Kohane, F. J. van Wingerde, J. C. Fackler, C. Cimino, P. Kilbridge,
S. Murphy, H. Chueh, D. Rind, C. Safran, O. Barnett, and P. Szolovits,
“Sharing Electronic Medical Records Across Multiple Heterogeneous and
Competing Institutions,” Proceedings of American Medical Informatic As-
sociation Annual Foll Symposium , (Washington DC, USA), 1996, pp. 608
612.

E. Kuikka, A. Eerola, J. Porrasmaa, A. Miettinen and, J. Komulainen, “An
Object-Oriented Method to Create an SGML DTD of an Electronic Patient
Record,” Technical Report, Department of Computer Science and Applied
Mathematics, University of Kuopio, Kuopio, Finland, 1999.

REFERENCES 124

[La9sg]

[Le99]

[Lu96]

[Mi97]

[NAOY]

[Oe99]

[P198]

[Po00]

M. Lavin, Nathan and Michael, “System and Method for Managing Pa-
tient Medical Records,” US Patent Number 5,772,585, Application Number
706316, June 1998.

P. J. Lees, C. E. Chronaki, E. N Simantirakis, S. G. Kostomanolakis, S.
C. Orphanoudakis, and P. E. Vardas, “Remote Access to Medical Records
via the Internet: Feasibility, Security and Multilingual Considerations,”
Proceedings of Computers in Cardiology, (Hannover, Germany), September
1999.

M. S. Lundy, “The Computer-Based Patient Record, Managed Care and
the Fate of Clinical Outcomes Research,” Florida Family Physician Medical
Informatics Issue, Vol. 46, No. 1, January 1996.

S. Miksh, K. Cheng and B. Haynes-Roth, “An Intelligent Assistant for Pa-
tient Health Care,” Proceedings of the First International Conference on
Autonomous Agent, (Marina del Rey, CA, USA), August 1997.

Computer Science and Telecommunications Board, For the Record: Protect-
ing Electronic Health Information, National Research Council, Washington,
D.C, USA, July 1999.

B. Oestereich, Developing Software with UML, Addison—Wesley, Reading,
UK, March 1999.

C. Plaisant, R. Mushlin, A. Snyder, J. Li, D. Heller, and B. Shneiderman,
“Lifeline: Using Visualization to Enhance Navigation and Analysis of Pa-
tient Records,” Proceedings of the American Medical Informatic Association

Annual Fall Symposium , November 1998, pp. 76-80.

G. Potamias, M. Tsiknakis, D. G. Katehakis, E. Karabela, V. Moustakis,
and S. C. Orphanoudakis, “Role-Based Access to Patients Clinical Data:
The InterCare Approach in the Region of Crete,” Proceedings of MIFE 2000
and GMDS 2000, (Hannover, Germany), IOS Press, August 2000, pp. 1074-
1079.

REFERENCES 125

[Po94]

[Ro01]

[Sa94]

[Sa95]

[Sc99]

[S092]

[Sp92]

[Wi90]

[Yv92]

A. D. Poon and L. M. Fagan, “PEN-Ivory: The Design and Evaluation
of a Pen-Based Computer System for Structured Data Entry,” Proceedings

of the Eighteenth Annual Symposium on Computer Applications in Medical
Care, (Washington D.C, USA), November 1994, pp. 447-451.

Roger S. Pressman, Software Engineering — A Practitioner’s Approach, 5th
Edition, McGraw Hill, New York, USA, 2001.

K. Sandrick, “A 26-Year Quest for the Ultimate Electronic Record,” Health
Data Management, July 1994, pp. 21-23.

M. Saaltnik and I. Meisels, The Z/EVES Reference Manual (Version 2.1),
ORA Canada, Ottawa, Canada, December 1995.

“Effective Software Deployment,” November 1999. Software Development

Online.

Ian Sommerville, Software Engineering, Fourth Edition, Addison-Wesley,
Harlow, UK, 1996.

J. M. Spivey, The Z Notation: A Reference Manual, Second Edition, Pren-
tice Hall, UK, 1992.

B. T. Williams, J. W. Yoder, and D. F. Schultz, “The MEDIGATE Sys-
tem for Direct Entry of Physical Findings by the Examiner: User Interface
Issues,” Proceedings of the International Health Evaluation Association An-
nual Symposium on The Art and Science of Preventive Medicine, (La Jolla,
CA, USA), 1990, pp. 107-114.

A. L. Yves, M. Maksud, B. Desruisseaux, P. Yale, and St-Arneault,
“PureMD: A Computerized Patient Record Software for Direct Data Entry
by Physicians using a Keyboardless Pen-Based Portable Computer,” The
Sirteenth Symposium on Computer Applications in Medical Care, (Balti-
more, USA), November 1992, pp. 319-346.

