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Abstract

In this thesis, we investigate the impact of channels that have a bursty nature in a cognitive

radio network scenario. Our goal is to design a general channel usage model that can

handle bursty primary user channel usage. The proposed model describes idle periods

with a discrete platoon arrival process and describes busy periods with a discrete phase

type distribution. The performance of the proposed model is compared with two more

traditionally encountered channel usage models in three different secondary user access

schemes.

First, we design a reactive access scheme to show the poor performance results an in-

vestigator can potentially obtain when ignoring bursty data traffic. We have also analyzed

two proactive secondary network access schemes. Numerical results show that the achiev-

able utilization and interference probability of the network are affected when traditional

channel models are used in a bursty PU channel.
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Chapter 1

Introduction

Many works, such as [1–5], have demonstrated that for some network scenarios, the data

traffic pattern is not well modelled by exponential distributions. The network traffic is usu-

ally modelled statistically as a Poisson process due to its analytical simplicity. However,

the network traffic can exhibit burstiness and correlation between the interarrivals in a wide

range time scale. The traffic can also be self-similar. Existing research, e.g. [6, 7], make us

believe that when the traffic is bursty, the performance measures will be impacted when

using models that involve exponential distributions. Hence, using models that involve

exponential interarrivals or geometric interarrivals may not be adequate in these systems

because the results may be misleading.

Recent developments in dynamic and opportunistic spectrum allocation [8–10] have

caused us to revisit this issue. Given the scarcity of spectrum and the underutilization of

licensed bands, dynamic spectrum access (DSA) has brought a lot of attention as a possible

solution for a more efficient use of the limited spectrum. The main idea in these DSA

networks is to reuse the statically allocated spectrum of primary users (PUs). These PUs

or licensed users are those who hold official use of some specific radio spectrum bands.

DSA can be done by introducing cognitive radio networks, where secondary users (SUs)

opportunistically access the channel when it is unused by primary users. The term cognitive

comes from the fact that these secondary users should adapt to the dynamic environment
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by using their ability to sense and to learn.

In a cognitive radio network, the interference to PUs should be limited. At the same

time, sufficient throughput for a successful communication in the secondary network should

be maintained. Hence, a critical task is to identify white spaces/spectrum holes/spectrum

opportunities, which strongly depend on the traffic patterns of the primary users. Accu-

rate characterization of the usage of spectrum is needed [11]; thus, we reconsider the issue

about bursty arrivals.

Channel usage patterns of PUs can be represented by an alternating process of idle

and busy (OFF and ON) periods. The traffic can exhibit burstiness; hence, instead of

modelling the channel usage with geometric or exponential distributions as done in many

previous works [12–14], we will develop a more general spectrum use model that can also

characterize bursty traffic patterns. Besides investigating the benefits in the performance of

the cognitive radio network when using the more general model in a bursty PU’s channel,

we also aim to study the possible impact of the geometric distribution assumption in a

bursty PU’s channel.

1.1 Previous Work

Many authors [15–17] have considered different designs to model a bursty arrival process.

One popular arrival process is the Markov modulated Poisson process [18] and its discrete

time counterpart the Markov modulated Bernoulli process. The authors in [15] proposed

the use of a Hyper-Erlang distribution to model the interarrival times. A Hyper-Erlang

distribution can exhibit fat tail behaviour with adequate parameters. Another option is

to have packet arrivals described by a platoon arrival process (PAP). The authors in [7]

designed a platoon arrival process to model burstiness encountered in the intersections of

roads. We adopt this latter model to describe our bursty channel model.

Commonly encountered channel usage models involve exponentially or geometrically

distributed busy and idle periods [12, 19] because of their analytical simplicity. On the
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other hand, stemming from the fact that data packets arrivals can be bursty, one of the

suggestions in [20] was to use a mixture distribution that involves uniform and generalized

Pareto distributions to represent the idle periods. Hidden Markov models (HMM) have

also been proposed in [21] and [22] to predict when the channel will be idle. The authors

in [23], focused only on capturing the statistical characteristics of TV-broadcast scenarios.

Adaptive sensing to maximize the discovery of channel opportunities was explored in [24]

using renewal theory.

Similarly as in [20], we want to design a general channel usage model that also takes

into account bursty data scenarios while maintaining reasonable complexity. Thus, we have

decided to describe the idle periods with a platoon arrival process and the busy periods

with a phase type (PH) distribution. This channel usage model is denoted as the PAP-PH

model. Another important reason for this design is that there are known algorithms for the

statistical fitting procedure of both processes, for a discrete PAP in [25], and a few fitting

procedures choices for PH are explained in [26].

Assuming that the idle durations are independent of the busy durations in a PU channel,

a simple model is the alternating geometric distributed idle and busy periods model (Geo-

Geo). A more general model that includes the Geo-Geo case is the alternating phase type

distributed idle and busy periods model (PH-PH). In this thesis, the Geo-Geo and PH-PH

channel usage models will be referred to as commonly encountered or traditional channel

usage models. Our proposed channel usage model, the PAP-PH model, will be compared

with the Geo-Geo and PH-PH models in three spectrum access schemes.

1.2 Outline

The objective in this research work is to develop a general data traffic model that captures

bursty traffic scenarios. Under a reactive and proactive spectrum access, our general chan-

nel usage model will be compared to those commonly encountered channel usage models.

Before describing the general data traffic model, a description of the cognitive radio net-
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work with a special focus towards spectrum access schemes will be given in Chapter 2.

The necessary background with respect to discrete time processes will be explained

in Chapter. 3. The proposed general channel usage model, i.e. PAP-PH, and other more

traditional channel usage models will be presented in Chapter 4, which also outlines the

reasons of our PAP-PH model design. The channel usage models can only be implemented

in a cognitive radio network scenario if automatic fitting procedures exist to estimate the

model’s parameters. Thus, Chapter 5 describes the fitting procedures that has been used to

estimate the parameters of each channel usage model applied in this research work.

To analyse the potential effects of a bursty PU channel on the performance measures

of a cognitive radio network scenario, a reactive spectrum access has been designed and

presented in Chapter 6. Given the benefits of a proactive spectrum access, in Chapter 7 we

use two different proactive spectrum access schemes to show the increased spectrum uti-

lization and reduced PU interference that can be achieved with an accurate characterization

of the spectrum usage. One of these spectrum access schemes was developed in [27], and

we have developed an additional scheme which can be considered as a modification of that

proposed in [27]. For all these spectrum access schemes, we will show the results of two

examples: a low channel utilization example and a high channel utilization usage example.

Finally, the conclusion and proposals for future works are presented in Chapter 8.
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Chapter 2

Cognitive Radio Networks

Given the rapid deployment of wireless devices and applications, the demand for the ra-

dio spectrum resource has been constantly increasing. Unfortunately, for decades, most of

the available radio frequencies have been assigned in a static manner to licensed users by

governmental organizations, like the Federal Communications Commission (FCC). These

licensed users are also known as primary users (PUs). Studies, such as [28], indicated that

the current assignment policy underutilizes the radio spectrum. Some bands are heavily

used while others are not used or are only partially used. Hence, a new spectrum manage-

ment approach needs to be developed for a more efficient use of the network resources.

Stemming from the fact that changing the existing network architecture is not viable,

a possible solution will be to apply a dynamic spectrum access (DSA) technique. In this

technique, secondary users (SUs) who do not have spectrum licenses are allowed to op-

portunistically access the licensed spectrum when it is unused. These unused spectrum

bands are also known as white spaces, spectrum opportunities, spectrum holes or simply

opportunities.

To accomplish DSA, the FCC has proposed the use of a cognitive radio, for which we

provide the following definition [8,10,29]: a cognitive radio is an intelligent wireless com-

munication radio that has the ability to sense and to gather information from its surround-

ing environment. It has the capacity to learn and to adjust its transmission parameters in
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an autonomous manner.

From the definition of a cognitive radio, the key tasks in a cognitive radio cycle can

be divided into four [30]. The first task involves a real time sensing of the radio environ-

ment. The second task consists of a rapid analysis of the sensing information to predict

the current channel state and channel capacity. Based on the results of the second task,

cognitive radio functions should determine the best action or response strategy in the third

task. During the fourth task, cognitive radios reconfigure their operating parameters ac-

cordingly and perform a strategic action. The transmission parameters that a radio device

can adapt according to its dynamic surroundings can consist of [8, 9, 30]: transmission

power, carrier-frequency, modulation type, and communication technology. The strategic

action can consist of remaining idle, sensing and/or transmission.

A secondary link is formed by a secondary user receiver and a secondary user trans-

mitter. Transmitter and receiver synchronization can be achieved by the use of a feedback

channel, where control information can flow between the receiver and transmitter. Depend-

ing on the nodes involved in the cognitive radio network, different tasks can be performed

in an individual or collective manner.

Each cognitive radio device will have a set of characteristics. The cognitive device can

employ a wideband spectrum transmission or narrowband spectrum transmission. In this

thesis, we focus on narrowband spectrum transmissions. This access technology is known

as overlay spectrum access [9, 11], where SUs only try to transmit when the channel is not

being used by PUs. In [31], this access approach is known as the interweave paradigm.

2.1 Cognitive Radio Network Architecture

As explained in [8,9], the CR architecture consists of two components: the primary network

and the secondary network. For each of these networks, a centralized or distributed archi-

tecture is used. As the name suggests, in a centralized architecture, decisions of spectrum

allocation are enforced by a central entity of the network. In a distributed architecture, no
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central entity is present, and nodes of the network must organize and communicate between

themselves to achieve their goals.

The primary network is composed of primary users and the existing infrastructure sur-

rounding them; such as, a base station for a centralized architecture. On the other hand,

the secondary network is formed by users or nodes who have no privilege on the frequency

bands. A secondary base station can be present in a centralized architecture to coordinate

the access between secondary users in the secondary network. A secondary base station

is also the bridge to other cognitive radio networks and can perform other functions in a

centralized manner. A third component of the secondary network is the spectrum broker or

scheduling server [9] whose function is to administer the usage of the spectrum resources

among different cognitive radio networks.

In this work, one of the main assumptions is that a single primary user channel is ana-

lyzed. The primary network can consist of one or more primary users that access a single

channel. In the same way, the secondary network can consists of one or more secondary

users, who opportunistically try to access the primary user channel. We do not focus on the

scheduling among secondary users.

2.2 Objectives and Requirements

The main objective in a cognitive radio network is to identify and efficiently use the avail-

able white spaces. However, for the success of a cognitive radio network, we must guar-

antee that the amount of interference to the primary users is limited. Collisions caused by

secondary users’ transmissions may significantly deteriorate primary users’ quality of ser-

vice. Thus, while avoiding collisions with primary users, secondary users should maintain

a stable communication between themselves to fulfill their own performance requirements.

The more information a secondary network possesses, the higher the chances for an in-

telligent decision. To achieve the aforementioned objectives, there is a need for an accurate

spectrum usage characterization. With the adequate channel usage model, more complex
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upper layer functions can be successfully deployed.

2.3 Cognitive Radio Functions

To efficiently utilize the dynamic available spectrum, a DSA network has many functions

which can be grouped as [9, 30]: spectrum sensing and analysis, spectrum management,

spectrum handoff, and spectrum sharing.

• Spectrum sensing and analysis: is a critical task from which a secondary user can

detect spectrum holes or white spaces [30]. After a white space detection, an SU can

proceed to utilize the available spectrum. Similarly, an SU can detect a PU presence

by sensing the channel.

• Spectrum management: the objective of spectrum management is to select the best

available channels to achieve the communication requirements.

• Spectrum handoff: according to the time varying frequency channel, the secondary

users may need to hop among different PU channels to maintain seeming-less com-

munication. A spectrum hand-off scheme goal is to determine how and to which PU

channel, a pair of SU should switch. The switching process should be such that the

SUs have high probability of achieving the required quality of service in the new

channel.

• Spectrum sharing: the secondary network may consist of many secondary nodes,

each of which have data packets to transmit and quality of services to be fulfilled. In

this case, spectrum sharing is necessary to administer the available frequency bands

between the secondary users.

2.3.1 Spectrum Sensing

Secondary users perform sensing to discover spectrum opportunities. In this research, the

concept of a white space follows the conventional definition of a spectrum opportunity
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which has been described as [10]: “a band of frequencies that are not being used by the

primary user of that band at a particular time in a particular geographic area”.

The most common spectrum sensing techniques include [10]: energy detection, waveform-

based sensing, cyclostationary-based sensing and matched-filtering. A binary hypothesis

test can be formulated [9, 13]:

H0 : primary user channel is idle,

H1 : primary user channel is busy.
(2.1)

Let us define that the sensing result is described by random variable ✓, with ✓ 2
{busy, idle}. The probability of detection Pd is defined as the probability the channel is

sensed busy given that the primary user channel is active, i.e.,

Pd = Pr(✓ = busy|H1). (2.2)

The probability of missed detection is 1� Pd. The probability of false alarm Pf is defined

as the probability of sensing the channel as busy given that the PU channel is idle, i.e.,

Pf = Pr(✓ = busy|H0). (2.3)

Given that the outcome of a sensing can be assumed to be idle or busy (OFF or ON), a

primary user channel can be modelled as an idle and busy (OFF and ON) random process.

2.4 Reactive and Proactive Schemes

Depending on the amount of sensing information the secondary network uses in the cogni-

tive radio functions, these functions can be classified as a reactive or proactive schemes.
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2.4.1 Reactive and Proactive Sensing

In the sensing task, a reactive sensing implies that a secondary user solely monitors the

primary user channel when it has packets to transmit or to receive. This means that a

secondary user does not exploit the inherent PU channel pattern information. On the other

hand, in a proactive sensing, secondary users continuously monitor the channel according

to their respective sensing period. This periodic sensing allows the secondary network to

gather information about each channel usage behaviour. In addition, channel usage patterns

can be estimated using the collected sensing data. Using a statistical channel usage model,

the performance of cognitive radio functions can be further improved.

Figure 2.1: Periodic sensing over a primary user channel

PU OFF

PU ON

...

Sensing time

Sensing period

In Figure 2.1, we show an example of a primary user channel with a proactive sensing

scheme. To obtain a sensing sample, sensing should be performed through a length of

time to achieve a given false alarm probability Pf . This length of time will be referred

to as sensing time. The length between two consecutive sensing samples is denoted by

sensing period. One of the main disadvantages of a proactive sensing is that it can cause

more sensing-overhead than a reactive sensing [23, 24]. Even though a secondary user

does not have packets to transmit, it needs to periodically sense the channel. Spectrum

sensing costs time and is energy demanding. As a result, there is a trade-off between

performance and complexity. For adequate performance, the optimal sensing period should

be determined for each spectrum band. In [24], the authors proposed a sensing-period

adaptation algorithm for a set of PU channels. After collecting a sequence of samples or

sensing results from each PU channel, the channel usage behaviour is predicted and the

10



sensing period is adapted accordingly. A framework for an adaptive spectrum sensing and

access has also been proposed in [32]. They minimize the number of sensing assignments

in an occupied channel by implementing a back-off time resolution algorithm.

2.4.2 Reactive and Proactive Spectrum Access

In a reactive spectrum access approach, an SU’s action of when to transmit is solely based

on the latest sensing information whereas no historical sensing data is used, and an SU

only reacts after detecting a change in the channel state. Although, a reactive spectrum

access is simple, it can cause higher interference to the primary users when compared to

a proactive spectrum access scheme [21]. A proactive spectrum access consists of design-

ing a model that captures the primary’s usage channel patterns by using historical sensing

information. This model can be used to predict the channel availability in the future, and

the channel access can be planned accordingly among the SUs. Throughout this thesis, the

terms proactive and reactive will denote whether or not the SU network employs a traffic

model.

In the literature, reactive and proactive spectrum access schemes have also been used

to denote how and when an SU chooses to switch to another PU channel. For instance,

in [12], a comparison of a reactive and proactive switching is discussed. In a reactive

switching scheme, an SU only switches to a different channel when the current channel

is detected busy and it randomly chooses a channel to switch. On the other hand, before

a collision with a PU, an SU can switch in advance to a channel that has a larger mean

remaining idle period or a higher probability of remaining idle time. These latter schemes

are known as proactive switching. When the proactive switching scheme proposed in [12]

is used instead of a reactive random search, the authors showed that SU’s channel utilization

can be increased by 5% and the primary user hit rate can be reduced by 30%.

When a secondary user needs to find an idle channel to continue transmitting, it should

determine the optimal order of channels to sense such that the channel-search delay is

minimized. The authors in [24], proposed an ordering of channels based on the conditional
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probability of finding the channel idle given the previous sensing history. Another option

is to use the expected remaining idle time, as in [33]. When no channel ordering is used,

the results in [24] indicate that the delay increases as the number of channels to sense

increases. However, with channel ordering, the search delay remains almost constant and

invariant of the number of channels to sense. Based on prediction, the authors in [19],

proposed a channel ordering for an SU with the constraints of maintaining the quality of

services requirements and maximizing spectrum utilization.

Markov decision processes have been applied to find optimal or sub-optimal solutions

for different opportunistic spectrum access schemes. These schemes usually involve a set

of PU channels and a set of requirements and/or constraints. In [14], a constrained Markov

decision process (CMDP) is proposed to determine the optimal policy (sensing and trans-

mission) for an SU. Moreover, a partially observable Markov decision process (POMDP)

framework for optimal sensing and access strategies has been addressed in [34]. A POMDP

framework with energy constraints was designed in [13]. A PU’s channel idle and busy pe-

riods were characterized by exponential or geometric distributions in [13,14,34]. However,

general busy period distributions were considered in the CMDP proposed by [35]. The au-

thors from [35] compared three random access schemes to determine the optimal solution

(sensing scheme, access scheme, transmission length) of a problem with throughput and

collision constraints.

The performance of a proactive access scheme will heavily depend on how accurately

the model can characterize and predict the channel usage. This is the main issue in this

thesis and is investigated in Chapter 7.
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Chapter 3

Special Discrete Time Arrival Processes

In this Chapter, we want to provide the necessary background to understand the channel

usage models that will be defined in Chapter 4. A general overview of phase type distribu-

tions and platoon arrival processes will be explained in the next sections.

3.1 Phase Type Distribution

A discrete phase type (PH) distribution describes the number of time slots until absorption.

Consider a discrete time absorbing Markov Chain {Xn} with state space {0, 1, 2, . . . ,m <

1}. State {0} is an absorbing state and states {1, 2, . . . ,m} are transient states. This

Markov chain is described by the following transition matrix

P =

2

4 1 0

⌧ T

3

5
, (3.1)

where T is a m⇥m substochastic matrix representing the transition probabilities between

transient states. Column vector ⌧ with dimension m ⇥ 1 represents the probability of

absorption in each transient state. We have that ⌧ = 1�T1, where the notation 1 indicates

a column vector of ones. A start probability vector ↵ = [
↵1, ↵2, . . . ↵m ] represents

the probability of starting the process in each phase. The probability of instantaneous

13



absorption is ↵0 = 1 � ↵1. This phase type distribution has representation PH(↵, T ),m.

The constant m is known as the order of a phase type distribution.

If the random variable Y denotes the time until absorption and is further phase type

distributed, PH(↵, T ),m, then, the probability mass function of Y is

Pr(Y = 0) = ↵0, Pr(Y = i) = ↵T

i�1
⌧ , i � 1. (3.2)

The cumulative distribution function of Y is

F = Pr(Y  i) = 1� Pr(Y > i) (3.3)

= 1�↵T

i1.

In addition, the ith factorial moment of the time to absorption is

E[Y i] =
1X

n=1

n

iPr(Y = n) (3.4)

= i!↵T

i�1(I � T )�i1.

The mean is

E[Y ] = ↵(I � T )�11. (3.5)

A phase type distribution can be used to represent most special statistical distributions

encountered in tele-traffic.

3.1.1 Examples of Phase Type Distributions

Suppose we have a sequence of Bernoulli experiments or trials. For each experiment, the

probability of a success is p, and the probability of failure is (1� p).

1. Geometric distribution:

If random variable X represents the number of experiments needed for a success

then X has a geometric distribution. We denoted this by X ⇠ Geo(p). A geometric
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random variable has a probability mass function of Pr(X = i) = (1� p)i�1
p, which

can be represented by a PH distribution of order m = 1 with ↵ = 1, T = (1 � p),

and ⌧ = p.

2. Negative Binomial Distribution:

Consider that random variable X denotes the number of trials needed for n successes.

Then, X is said to be negative binomial distributed, X ⇠ NB(n, p). The probability

mass function of X is given by

Pr(X = i) =

0

@ i� 1

n� 1

1

A
p

n(1� p)i�n
, i � n, (3.6)

where Pr(X = i) is the probability that i trials are needed for n successes. A

negative binomial distribution NB(n, p) can be represented by a PH(↵, T ), n with

↵ =
h
1 0 0 . . .

i
and the following transition matrix

T =

2

66666666664

(1� p) p . . . 0

0 (1� p) p . . . 0

. . . . . . ...
. . .

p

(1� p)

3

77777777775

.

3. Constant interarrival time of value n.

One possibility to represent this distribution is with a PH(↵, T ), n where ↵ =
h
1 0 0 . . .

i
, and the elements of the transition matrix T are

T (i, i+ 1) = 1, 8 1  i  n� 1.

For example, assume that n = 3, then the probability of start of each phase is ↵ =
h
1 0 0

i
, and the transition states before absorption are represented by
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T =

2

6664

0 1 0

0 0 1

0 0 0

3

7775
.

3.2 Markov Arrival Process

Consider that the process starts at t0 = 0 with zero arrivals. We define a discrete time

Markov chain with state space

� = {(0) [ (Xm, Jm);Xm � 1, Jm = {1, 2, . . . , n}}, m � 0, (3.7)

where Xm denotes the number of arrivals that has been observed up to time slot m and Jm

denotes the current phase of the arrival process at time slot m.

A Markov Arrival Process (MAP) [36] is characterized by two substochastic matrices

C0 and C1 of dimension n. Matrix C0 denotes the probabilities of no arrival event, and ma-

trix C1 denotes the probabilities of an arrival event. A MAP captures correlations between

consecutive arrival events. More specifically, say (C0)i,j and (C1)i,j , with 1  i, j  n,

are the elements of matrix C0 and C1, respectively. Element (Ck)i,j , with k = 0, 1, denotes

the transition probability from phase i to phase j with k arrivals. Matrix C = C0 + C1 is a

stochastic and irreducible matrix. The transition matrix of this arrival process whose state

space is (3.7) can be written as

P =

2

66666664

C0 C1 0 · · ·
0 C0 C1

. . .

0 0 C0
. . .

...
...

... . . .

3

77777775

. (3.8)
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3.3 Platoon Arrival Process

A platoon arrival process (PAP), which was defined in [7], is a special case of a MAP.

A PAP can capture bursty traffic behaviour by using two interarrival distributions: the in-

traplatoon and interplatoon distributions. A given realization of the platoon arrival process

consists of the following repetitive pattern: a consecutive sequence of intraplatoon interar-

rivals followed by one or more interplatoon interarrivals. A platoon is defined as a sequence

of consecutive arrivals separated by intraplatoon interarrivals. The mean intraplatoon in-

terarrival is shorter than the mean interplatoon interarrival. This behaviour gives rise to the

bursty nature of the statistical model.

A more general representation of a PAP is given in [25] using a terminating MAP. The

PAP model can capture correlation between consecutive arrivals, that is, it can differentiate

intervals between arrivals in a platoon, or between the last arrival in a platoon and the first

arrival of the following platoon.

In this research, we use a platoon arrival process to characterize idle periods in our

proposed traffic model. When we include the platoon concept for idle periods, we can

distinguish two types of idle periods denoted as the intraplatoon idle period and the inter-

platoon idle period. In an arrival process, an idle period represents an interarrival length.

To incorporate a PAP without taking into account busy periods, the definition of a platoon

is slightly different from the work in [7]. Our definition is that a platoon groups consec-

utive intraplatoon idle periods into groups, and between platoons there is an interplatoon

idle period. Having this definition allows us to preserve the structure of the transition ma-

trix of the PAP process exactly as in [7]. The different definition of a platoon causes the

distribution of the number of elements in a platoon to refer to the distribution of the number

of consecutive intraplatoon idle periods.

An example of a channel usage realization where idle periods are characterized by a

platoon arrival process is given in Figure 3.1. In this figure, random variables Yi and Zi

represent the duration of the busy period i and the duration of the idle period i, respectively.
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Figure 3.1: A data traffic channel realization with idle periods described by a PAP.
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Figure 3.2: A PAP realization (idle periods).
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In a cognitive radio network point of view, and as stated in [20], DSA is a promising

approach when we can find idle periods that are long enough for an SU packet transmis-

sion. If an SU starts transmitting the moment it senses the channel is free, this strategy

as mentioned before can result in frequent disruptions to both PUs and SUs. Therefore,

we are concerned with differentiating shorter idle period from longer idle periods, and we

think that our model can be useful to predict the different types of idle periods.

With the aforementioned definition of a platoon, let us assume that the number of in-

traplatoon idle periods in a platoon follows a phase type distribution of order K described

by PH(�, D), K with �0 + �1 = 1 and D

0 + D1 = 1. In this case, � is the probability

of start for each phase. We allow the possibility of instantaneous absorption with �0 > 0,

which means that after an interplatoon interval another interplatoon interval can follow. Or

in other words, an empty platoon has occurred in the process describing idle periods.

The duration of an idle period Zi follows one of the following interarrival distributions:

• A PH(↵1, T1),m1 representing the intraplatoon interval distribution with ↵11 = 1

and ⌧ 1 + T11 = 1.
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• A PH(↵2, T2),m2 representing the interplatoon interval distribution with ↵21 = 1

and ⌧ 2 + T21 = 1.

The probability of instantaneous absorption, ↵i(0) = 1�↵i1, for i = 1, 2, is zero because

the duration of an idle period is at least one.

How the two types of idle interarrival distributions are related depends on the PH(�, D), K

distribution. This PH(�, D), K distribution describes the probability of how many con-

secutive intraplatoon idle durations are likely to occur before seeing an interplatoon idle

duration.

In discrete time, the underlying Markov chain of a PAP has a transition matrix given

by [7]

PPAP =

2

66666664

C0 C1 0 · · ·
0 C0 C1

. . .

0 0 C0
. . .

...
...

... . . .

3

77777775

, (3.9)

with

C0 =

2

4 T2 0

0 IK ⌦ T1

3

5
, and C1 =

2

4 ⌧ 2�0↵2 ⌧ 2� ⌦↵1

D

0 ⌦ ⌧ 1↵2 D ⌦ ⌧ 1↵1

3

5
. (3.10)

The sign ⌦ represents Kronector product, the symbol IK denotes identity matrix of

dimension K. Here matrix C0 represents a non-arrival event, and matrix C1 represents an

arrival event. That is, given the current state, C0 indicates the probability that an idle period

continues in a time slot, and C1 indicates the probability that an idle period has finished in a

time slot. The total number of phases in C0 and C1 is m = m2+Km1. Matrix C = C0+C1

is stochastic, and define the phase stationary vector ⇡ = [⇡inter ⇡intra] such that

⇡ = ⇡C. (3.11)

The interplatoon interval initial phase is chosen according to vector ↵2. The matrix T2
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describes phase transitions for the interplatoon interval when the channel is idle, this idle

period ends with probability ⌧ 2 in a time slot.

The number of intraplatoon intervals is characterized by the PH type distribution (�, D).

This probability density initial phase is chosen according to �. The probability that after

an interplatoon interval another interplatoon interval comes is given by �0. The initial

phase for an intraplatoon interval is given with probability vector ↵1. In an intraplatoon

interval ending, a counter through matrix D indicates that the platoon still continues and

with matrix D

0 it shows that the platoon has finished. If the platoon continues, then another

intraplatoon interval follows the current intraplatoon period with start probability vector

↵1. The identity matrix, IK of dimension K, allows that the phase of the counter remain

unchanged while the process is in the intraplatoon interval without any arrivals.

A platoon arrival process will be represented by PAP(↵1, T1,↵2, T2, �, D),m or equiv-

alently by PAP(C0, C1),m.

3.3.1 Statistical Characteristics

Consider that the phase stationary vector probabilities are ⇡ = ⇡(C0 + C1) with ⇡1 = 1.

Then, the probability that there is an arrival at an arbitrary time slot in the stationary process

is � = ⇡C11. This is also known as mean arrival rate [25]. Then, the stationary distribution

for the phases immediately after an arrival can be computed as [37]

⇡

0 =
⇡C1

⇡C11
. (3.12)

This conditional stationary distribution of the phases ⇡

0 can be used to calculate the

probability mass function and cumulative distribution function of the interarrival times.

The probability that the time to absorption is i or the probability that the idle period length

is i is given by

Pr(Z = i) = ⇡

0
C

i�1
0 C11, i � 1, (3.13)
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and the cumulative distribution function of Z is

Pr(Z  i) = 1� P (Z > i) (3.14)

= 1� ⇡

0
C

i
01, i � 1.

We can get the mean duration Linter of the interplatoon period with

Linter =
1X

k=1

k↵2T
k�1
2 ⌧ 2

= ↵2(I + 2T2 + 3T 2
2 + · · · )⌧ 2

= ↵2(I � T2)
�2
⌧ 2 = ↵2(I � T2)

�2(I � T2)1

= ↵2(I � T2)
�1
1. (3.15)

In a similar way, the mean duration Lintra of the intraplatoon period is

Lintra =
1X

k=1

k↵1T
k�1
1 ⌧ 1

= ↵1(I � T1)
�1
1. (3.16)

The mean number of consecutive intraplatoon periods in a platoon is

Ē =
1X

k=1

k�D

k�1
D

0

= �(I �D)�1
1. (3.17)

The mean duration of the idle period is

Iave = E[Z] =
1X

k=1

k⇡

0
C

k�1
0 C1

= ⇡

0(I � C0)
�1
1. (3.18)
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Chapter 4

Channel Usage Models

In this Chapter, we will specifically define three discrete time channel usage models that

will be compared and analyzed in the reactive and proactive schemes in Chapter 6 and 7,

respectively. Recall that the channel usage model in a proactive scheme will be used to

predict the PU’s spectrum usage.

Generally, a source traffic model consists of two random processes [1]. These random

processes are an arrival process that determines the interarrival time between two events

and a process that describes the duration of the event. However, when dealing with channel

usage models, as in [12,13,24,33], we also think that the two processes of a traffic model are

better described by the distribution of the OFF and ON periods. The terms channel usage

model, spectrum usage model, traffic model, and data traffic model in a cognitive radio

network context refers to the model used to characterize the usage patterns of a frequency

spectrum band.

Channel usage is represented by an alternating process of idle and busy (OFF and ON)

periods. Consider that the system is observed at equally spaced points in time; define this

interval as a time slot. Let Yi and Zi, with i � 1, be a sequence of two types of discrete

random variables representing the duration of the busy period i and the duration of idle

period i, respectively. For all the subsequent channel usage models, it is assumed that the

duration of busy periods are independent of the duration of idle periods.
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When idle and busy periods are described by geometric distributions, we will refer the

traffic model as a Geo-Geo channel usage model. A more general traffic model than the

Geo-Geo process consists of idle and busy periods that are characterized by phase type

distributions, in this case the channel model is named a PH-PH traffic model. Finally, an

even more general model capable of including busty traffic patterns comprises idle periods

that follow a platoon arrival process and busy periods that are phase type distributed. This

latter model is referred to as a PAP-PH traffic model, and will be the topic in Section 4.5.

Before explaining the spectrum usage models, in Section 4.1, we intend to provide an

overview of the reasons why we have designed a bursty channel model. Our interest comes

from the results obtained through the analysis of data network traces. Through traffic char-

acterization, many researches have become concerned about the Poisson process assump-

tion and have questioned its validity when modeling characteristics of the network traffic;

such as, packet and connection arrivals, packet and connection sizes. In addition, self-

similarity and long-range dependence (LRD), which are briefly explain in Section 4.1.1,

have become popular terms over the last decade for describing the network traffic.

4.1 Traffic Characterization

When the arrival process is characterized by a Poisson process, we know that the interarrival

times are exponentially distributed. To understand why exponential distributions may not

be sufficient to accurately model the traffic behaviour, in this Section, we intend to give

an overview of different studies that have analyzed the characteristics of different network

traffic traces. Given the constant evolution of the internet and network technologies, traffic

characterization has been and will continue to be a challenge. Our focus is to provide an

introduction of the reasons why exponential models may not be adequate to model some

traffic patterns.

It is known that the use of exponential distributions has been widely accepted to de-

scribe statistical characteristics of conventional voice applications; such as, the interarrival
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time between connections setups and the connection duration [1]. However, next gen-

eration mobile communications services are increasingly becoming packet oriented with

multiple classes of applications. The use of the Internet has evolved rapidly in terms of the

variety of available applications. These not only consist of file transfers, but also consist of

music streaming, video streaming, on-line games, voice over IP (VoIP), e-commerce and

peer-to-peer (P2P) applications. In addition, the number of users and the variety of tech-

nology devices that are connected to the Internet has grown substantially in recent years.

New applications, such as those involving variable-bit rate, introduce more complexity to

the analysis of the internet traffic. Moreover, the data traffic is highly dependent on the

applications and other non-predictable factors. Thus, the internet traffic characterization is

complex to understand because of the heterogeneous sources, the different wireless access

technologies and the numerous network interconnections.

4.1.1 Self-similarity and Long-Range Dependence

Over the past decades, self-similarity and long range dependence has been an active topic in

the network traffic modelling. We will define these two concepts in a discrete time system.

First, we will provide the necessary background of stochastic processes. Consider a

discrete time stochastic process {Xn} with n = 0, 1, . . . , N . The mean of the random

process {Xn} is defined as [38]

mX(n) = E[Xn]. (4.1)

The autocorrelation function is defined by

RX(n, l) = E[XnXl], (4.2)

and it characterizes the dependence relationship between r.v. Xn and r.v. Xl.

The random process {Xn} is wide sense stationary if two conditions are satisfied [38,
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39]:

1. mX(n) = mX(n+ l) 8 n, l.

2. RX(n, l) = RX(n� l) = RX(|n� l|) 8 n, l.

The first condition means that mX(n) = µ, 8 n. The secondary condition implies that

the autocorrelation function is only dependent of the time difference between two random

variables.

A stationary random process {Xn} is long range dependent if
P1

i=1 |RX(i)| = 1 [40].

Unlike the memoryless Poisson arrival process, traffic that exhibits long-range dependence

implies that the traffic presents long-term memory. More specifically, as defined in [40],

“LRD means that the behaviour of a time-dependent process shows statistically significant

correlations across large time scales”.

Self-similarity has been defined as “the phenomenon in which the behaviour of a pro-

cess is preserved irrespective of scaling in space or time” [40]. It is important to understand

that self-similar processes have different theoretical properties when compared to Poisson

processes. As stated in [2], one of the main characteristics of a self-similar and fractal-like

traffic is that burstiness is present over a wide range of time scales. Contrary to self-similar

processes, aggregated traffic from sources that are described by Poisson processes tend to

be less bursty as the number of active sources increases [41].

4.1.2 Self-similarity and LRD in Data Traffic

Popular random processes {Xn} in traffic characterization include measuring the packet

arrival rate, connection arrival rates, sessions arrival rates in a communication link. The

concept of connection and sessions depends on the application involved and assumptions

made by the authors to model the traffic. Other random processes measure the distribution

of the packet, connection and session sizes.

In the traffic characterization literature, authors commonly use the concept of a flow

or connection to discuss the behaviour of the traffic, for which we offer the following
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definition [42]: “A flow is defined as a set of packets that share origin and destination

addresses, origin and destination ports (if applicable to the transport protocol utilized),

transport protocol and are observed within a time-frame.” A flow can be classified based

on the size, duration and by burstiness.

Researchers have observed self-similar traffic in local and wide area networks. One

of the first works, [41], that identified self-similar traffic involves a local area network

(LAN) scenario. Moreover, after analysing traces from a wide-area traffic, the authors

in [2] concluded that the commonly used Poisson process for packet and TCP connection

arrivals underestimates the burstiness present over a wide range of time scales.

The main objective in [1] was to provide traffic models for data users in wireless net-

works, particularly general packet radio service (GPRS). As explained in [1], the traffic

can present a high degree of bustiness and can be better described by self-similar pro-

cesses. Not only due to the high variance of the interarrival times between packets, but also

from the high variance of the packet length. As indicated by [1], Poisson models in bursty

traffic scenarios can lead to an understimation of some performance measures; such as, the

average packet delay or maximum queue size.

Authors like [1, 42] claimed that the LRD structure can be caused by: the feedback-

oriented nature of TCP control mechanisms, traffic with heavy-tailed flows distributions

and heavy-tailed file size distributions. In these cases, the Poisson model is no longer

sufficient. Packets of a TCP connection are dependent on each other. Hence, the usage

of TCP connections causes a dependence between packets of the same connection that are

transmitted over long ranges [3].

In addition, studies as [42] stated that aggregated connections or aggregated network

traffic also exhibits LRD correlations and traffic bursts are originated from several active

connections. Interestingly, authors in [42] explained that studies indicate that an internet

bursty traffic typically arises from a few large dominating flows connections. They further

stated that the burstiness is a result of the heterogeneity of the network, and, as in [3], they

pointed out that large flows causes LRD.

26



Over the last few years, there has been a dramatic increase of the P2P traffic in the

network. According to [42], the predominant type of traffic involves P2P applications and

video sharing applications. Focussing on the size criteria of a flow, these types of traffic

cause the “mice and elephant flow” phenomenon in the internet traffic [3, 42]. Namely,

internet traffic consists of thousands of mice (small flows) and there is some number of ele-

phants (large flows). These elephants are responsible for a large percentage of the internet

traffic volume. Because of this fact, the distribution of the flows is heavy-tailed and the

shape of the distribution is very different from that of an exponential distribution.

According to [4], on-line games traffic consists of a large number of small, periodic

bursts of UDP packets. The periodicity comes from the predictable and frequent updates

of the server to its clients. After analysing on-line game traces in different time-scales, an

extremely bursty and a highly periodic pattern was observed in terms of the packet loads at

the server.

In [43], upstream internet traffic of a Broadband Fixed Wireless (BFW) access was

analysed. Their results indicated that P2P applications are dominant in the user traffic.

This is one of the causes for the existence of short flows in the upstream link between

the end-user and the head-end. The aggregated upstream traffic consisted mostly of web

requests, UDP/DNS packets, TCP acknowledgement and control packets, and other single

packet flows. The flow arrival process of a BFW access showed burstiness; which could be

caused by the shared bandwidth among users and the underneath MAC protocols.

In [44], the authors analized P2P flow-level internet traces on a transpacific link. Their

results showed that different characteristics are exhibited by different P2P applications. For

the BT and Napster applications, they found that the traffic volume per connection can be

modeled by a Weibull and Pareto distribution respectively. Both applications exhibited

bursty heavy-tailed phenomenon.

The works explained in this Section are examples that show that the data network traffic

sources can be bursty. Given the multi-service internet network, an exact traffic character-

ization is difficult to develop and depends on many factors. Nonetheless, we think that
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general models for predicting channel behaviour can still be useful. Sources of internet

traffic are known to be bursty. The merge of different traffic might still be bursty, though

we cannot guarantee exactly how the traffic will behave because it will highly depend on the

scheduling or network access protocol, routing protocol, running applications among other

causes. Nevertheless, we can design a general model that intends to capture the burstiness

in the channel usage if such burstiness exists. This model is presented in Section 4.5.

4.2 Spectrum Usage Models

We have labelled the Geo-Geo and PH-PH channel model as traditional channel usage

models because in the literature they are the most often encountered channel usage models

in discrete time. To describe the spectrum use, an alternating exponential spectrum occu-

pancy model, which is the continuous time counterpart of a Geo-Geo spectrum occupancy

model, has been used in [12,14,19,24,32,33]. A Geo-Geo spectrum usage model has been

used in [13, 34, 45] to model each PU channel.

In [35], the idle period distribution is exponential while the busy period distribution is

general. Erlang distributed busy and idle periods where considered in [24].

Semi-Markov models have been used in [20, 46] to describe the channel behaviour of

WLAN systems. Their empirical data showed heavy-tailed idle periods behaviour. The

authors in [46], have defined a semi-Markov model as: “an extension to a continuous

time Markov process with separate statistical specification of the transition behavior and

sojourn time within each state”. Besides the usage of mixture distributions (uniform and

Pareto) to model the idle sojourn times, the authors in [20, 46], proposed hyper-Erlang and

PH distributions to model heavy-tailed idle periods.

Using real occupancy data measurements, in [47], the authors proposed different time-

frequency models for the spectrum use. According to [47], the time domain of a low

traffic load 2.4GHz ISM-band can be modelled with a geometric distribution during the

day. However, during the night times the geometric assumption is no longer valid. A
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key fact of their work is that they used a lower sampling rate than in [20, 46] and their

measurement setup cannot capture the details as in [20, 46]. Heavy-tailed behaviour were

still found in several traces [47]; such as in an uplink GSM with high load. The authors

in [47] proposed a lognormal distribution to match heavy-tailed idle or busy periods.

One of the motivations of our work to represent an idle period with two distributions

also comes from the work in [20]. To include bursty transmissions in multi-access com-

munication channels the authors decided to extend the state space, which is usually idle

and busy, of the channel usage model. A specific example provided includes a WLAN

scenario. After each successful data packet transmission in a WLAN, an acknowledgement

(ACK) packet must follow. The white space or idle period between the data packet and the

ACK can be shorter than usual. Another characteristic of a WLAN is that after a successful

transmission, the stations need to perform the standardized back-off algorithm. Thus, the

authors from [20] used two distributions to model the idle periods: one distribution for the

contention window and another distribution to model when the stations do not have packets

to transmit.

The mixture distribution used to model the idle periods in [20] was a uniform distribu-

tion for the contention period and generalized Pareto distribution when the stations have no

packets to transmit. They also recommend using PH distributions and hyper-Erlang distri-

butions. From our PAP-PH model perspective; these two types of idle periods can also be

modelled with the intraplatoon distribution and interplatoon distributions respectively.

Another interesting fact to notice is that the authors in [20] clarified that the idle period

between a data packet and its respective ACK can be too short for secondary users’ trans-

missions. This effect can also be modelled using our PAP-PH traffic model with a mean

intraplatoon idle period that is too short for an effective secondary user transmission.

In our model, the concept of a platoon can also represent connection or session. For

instance, within a connection, a number of consecutive packets are transmitted. The idle

length between two consecutive connections is longer than the idle period between packets

in the same connection. Similarly, a session consists of a number of connections. The idle
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period between consecutive sessions is expected to be longer than idle periods between

connections. For example, a typical HTTP session consists of several TCP connection

establishments between the user and the web server [1]. A connection within a session

could involve a web request, where the browser retrieves a number of objects or packets

from the web server. After retrieving the necessary packets, the user can remain idle while

viewing the web.

In [5], the tail heaviness of the transmission delay distribution under a reactive spec-

trum access scheme is investigated. Besides using light tailed distributions, they compared

heavy-tailed busy periods and heavy-tailed idle periods. Although the authors concluded

that the tail heaviness of the transmission delay distribution under their reactive spectrum

access scheme is not affected by heavy-tailed idle periods, we consider another type of

reactive spectrum access scheme and we also design a proactive spectrum access scheme

that involves traffic prediction.

The discussed investigations in this Section show that the Geo-Geo traffic model does

not describe all possible cases. It should also be noticed that the PAP-PH traffic model

can be used to model specific arrival processes. But, in the channel usage pattern con-

text, where there may be many merged application packets, the platoon may not have a

straightforward interpretation. In fact, packets grouped in a platoon may come from dif-

ferent applications. As mentioned before, the channel usage pattern will depend on many

factors that are difficult to foresee. Hence, the above example of connections and sessions

are merely an intuitive physical explanation of the bursty nature of data traffic.

The channel usage models that will be compared in this thesis will be described in the

subsequent sections.

30



4.3 The Geo-Geo traffic model

A geometric idle and busy channel model, Geo(q, b), has the following transition matrix:

PGeo =

2

4 (1� q) q

b (1� b)

3

5
, (4.3)

where the state of the channel goes from idle to busy in a time slot with probability q and

from busy to idle with probability b. The mean duration of the busy period is E[Y ] = 1/b,

and the mean duration of the idle period is E[Z] = 1/q.

Assuming that the process is stationary, the stationary probability vector denoted by

⇡ = [⇡I ⇡B] can be obtained from ⇡ = ⇡PGeo and ⇡1 = 1. This results in ⇡I = b/(q + b)

and ⇡B = q/(q + b).

4.4 The PH-PH traffic model

A PH-PH traffic model consists of: phase type distributed busy periods with distribu-

tion defined by PH(�, S),mb, and phase type distributed idle periods with parameters

PH(↵, T ),mi. The transition matrix for the idle and busy states is

PPH =

2

4 T T

0
�

S

0
↵ S

3

5
, (4.4)

with T

0 = 1� T1, S0 = 1� S1.

The mean busy interval is E[Y ] = ↵(I � T )�1
1, and the mean idle interval is E[Z] =

�(I � S)�1
1.
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4.5 The PAP-PH traffic model

Our proposed traffic model is the PAP-PH model, where idle periods are described by

a platoon arrival process and busy periods are phase-type distributed. To capture the

characteristics of a PAP-PH traffic model in a single transition matrix, we can design an-

other Markov chain model to merge the busy and idle period’s distributions. Assume that

the busy period distribution is PH(�, S),mb, and the idle periods are characterized by a

PAP(↵1, T1,↵2, T2, �, D),m. Remember that the intraplatoon and interplatoon idle pe-

riod are PH(↵1, T1),m1 and PH(↵2, T2),m2 respectively, and the number of consecutive

intraplatoon periods have another phase type distribution denoted by PH(�, D), K. The

total number of phases in a PAP is m = m2 +m1K.

Consider a discrete time stochastic process {Xn} with n = 0, 1, 2, . . ., where Xn is

a random variable representing the state of the process at time n. The state space is

defined as N = {Idle, Busy}, with Idle = {inter, intra}, inter = {1, 2, . . . ,m2},

intra = {1, 2, . . . , Km1}, and Busy = {1, 2, . . . ,mb,mb + 1,mb + 2, . . . ,mb + Kmb}.

The cardinality of set N is m2 + Km1 + mb + Kmb. The transition matrix representing

the state of the channel (busy or idle) in a given time slot for this Markov Chain is

PPAP =

2

4 PI PIB

PBI PB

3

5
, (4.5)

where each element of PPAP is a conditional probability. The substochastic matrix PI

refers to the probability that given that the current state is idle, the next state will also

be idle. Hence, matrix PI describes transitions within the idle period. In a similar way,

matrix PB represents transitions probabilities within the busy period in a given time slot.

The matrix PBI denotes transitions from the busy to the idle period, and the matrix PIB

denotes transitions from the idle to busy state. Each of these substochastic matrices is
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further defined as

PI =

2

4 T2 0

0 IK ⌦ T1

3

5
, PIB =

2

4 ⌧ 2�0� ⌧ 2� ⌦ �

D

0 ⌦ ⌧ 1� D ⌦ ⌧ 1�

3

5
,

PBI =

2

4 S

0
↵2 0

0 IK ⌦ S

0
↵1

3

5
, PB =

2

4 S 0

0 IK ⌦ S

3

5
.

Basic properties for discrete time Markov chain (DTMC) holds, such as the sum of ele-

ments in each row of transition matrix PPAP is one, i.e., PPAP1 = 1.
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Chapter 5

Statistical Fitting Procedures

An intelligent access scheme can use the previous and present sensing results to build a

statistical traffic model which will aid the SUs to make decisions. Hence, the first phase

is to estimate the parameters of the statistical model. In this Chapter, the main goal is to

explain the statistical fitting procedures that has been used to estimate the parameters of the

three channel usage models described in Chapter 4. In addition, these fitting procedures

will be used in the proactive spectrum access scheme defined in Chapter 7 to predict future

channel behaviour.

To estimate the parameters of the the Geo-Geo traffic model we have used the maximum

likelihood parameter estimation described in [24]. This maximum likelihood parameter

estimation will be outlined in Section. 5.2. To estimate the parameters of a PH distribution

or a platoon arrival process, we have decided to use the Expectation Maximization (EM)

procedure. These two EM algorithms will be discussed in Section 5.3.

The parameter estimation results of a low channel usage example is shown in Section

5.4.1. In addition, in Section 5.4.2, we show the parameters obtained in a high channel

usage example. These two examples with their respective estimated parameters will be

further used in Chapter 7.
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5.1 Realization Characteristics

A realization is a sequence of N interarrival times x = {x1, x2, . . . , xN}. Assume that this

sequence of observations is from a random process {Xn}. The kth empirical moment can

be calculated with [37]

E[Xn] =
1

N

NX

i=1

(xi)
k
. (5.1)

The cumulative distribution function (cdf) of the realization can be computed with [37]

FXn(i) = Pr(Xn  i) =
1

N

NX

i=1

�(xi  i), (5.2)

with

�(b) =

8
<

:
1 : if b is true

0 : otherwise.
(5.3)

5.2 Maximum Likelihood Parameter Estimation for the

Geo-Geo Traffic Model

Let us assume that we want to describe the data traffic as a Geo-Geo process, with param-

eters Geo(q, b), which has been defined in Section 4.3. One of the alternatives to estimate

the unknown probability density function parameters ✓ = (q, b) is to apply the maximum

likelihood estimation.

Assume we have historical sensing data of a PU channel. By retrieving the duration

of idle and busy periods we obtain a sequence of samples or training sequence. Denote

this observed sequence of N samples as x, i.e., x = {x1, x2, . . . , xN}. It can be said that

the sequence of samples has been drawn from a joint pmf p(x; ✓) with ✓ the unknown

parameters. The likelihood function is a function of ✓ and is defined as [48]

Lf (x;✓) ⌘ p(x1, x2, . . . , xN ;✓). (5.4)
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Given the first order Markovian property, the likelihood function can be further developed

to [24]

Lf (x;✓) = Pr(X1 = x1;✓)
NY

i=2

Pr(Xi = xi|Xi�1 = xi�1;✓), (5.5)

= Pr(X1 = x1;✓)(1� q)n00
q

n01
b

n10(1� b)n11
,

with n01 the total number of transitions from the idle state to the busy state, n10 the total

number of transitions from the busy state to the idle state. In a similar way, n00 and n11 are

the number of transitions within the idle state and within the busy state respectively.

As stated in [48], the objective of the maximum likelihood estimation is to determine the

optimal set of parameters ✓ that maximizes the likelihood function. Hence, the maximum

value corresponds to

✓̂ML = arg max
✓

Lf (x;✓). (5.6)

Because of the monotonicity property of the logarithmic function, we can obtain ✓̂ML

by maximizing the log-likelihood function defined as

lf (x;✓) = logLf (x;✓). (5.7)

The maximum likelihood ✓̂ML for the Geo-Geo process can be obtained by calculating

the value of ✓ where the gradient of the log-likelihood function is zero, that is

@lf (x;✓)

@✓

= 0,

which results in
@lf (x;✓)

@q

= � n00

(1� q)
+

n01

q

= 0, (5.8)

and
@lf (x;✓)

@b

=
n10

b

� n11

(1� b)
= 0. (5.9)
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Solving (5.8) and (5.9) gives that the maximum likelihood ✓̂ML = (q̂, b̂) are

q̂ =
n01

n00 + n01

, (5.10)

and

b̂ =
n10

n10 + n11

. (5.11)

5.3 EM Algorithm

The parameter estimation of phase type distributions or Markovian arrival processes is

an incomplete data problem because the transition phases that lead to an arrival are not

observable. Direct application of the maximum likelihood method to the incomplete data

might be a very difficult task. It might be easier if we could estimate the true data using the

incomplete information and calculate the maximum likelihood based on the estimated true

data.

When dealing with missing data problems, the expectation maximization (EM) algo-

rithm has been vastly used because of its relative simplicity, as well as its monotonicity

property which has been discussed in [49]. Thus, for the estimation of parameters ✓, of

a phase-type process or a platoon arrival process, we have decided to use the expectation

maximization procedure. An EM algorithm for a discrete time PAP has been proposed

in [25]. Following the work of [26] and [25], the procedures that have been implemented

in this research to estimate the parameters of the distributions will be explained.

As stated in [49], an EM algorithm is an iterated method. In each iteration, the EM

algorithm tries to improve the likelihood of the estimates. That is, we want to maximize

the conditional expected log-likelihood in each iteration. Let ✓(m) be the estimates obtained

from the m-th iteration. First, for ✓(0), we pick a random initial guess. The initial estimates

✓

(0) can also be chosen with more refinement if the investigator has more information of

the behaviour of the distributions.

With the initial estimates, ✓(0), we execute the following steps of the EM algorithm
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until reaching a stopping condition:

1. E-step: given the estimate ✓

(m) and the sequence of observations z, we have to cal-

culate the conditional expected log-likelihood with respect to the complete sequence

of observation. Complete sequence of observation means that the state transitions in

each time slot is known for every interarrival zn 2 z. Thus, the E-step is given by

Q(✓|✓(m)) = EW |z,✓(m) [lf (W ;✓)|Z = z]

=
X

w

lf (w;✓)p(w|z,✓(m)), (5.12)

where sequence w denotes the complete state information of the sequence z.

2. M-step: The m+ 1 estimation will be obtained from

✓

(m+1) = arg max
✓2⌦

Q(✓|✓(m)). (5.13)

The stopping condition can be based on the likelihood ratio [25], where the EM algo-

rithm is stopped if the following condition holds

Lf (x;✓
(m+1))

Lf (x;✓
(m))

< 1 + ✏. (5.14)

with ✏ > 0 a constant set by the investigator according to the wanted accuracy. According

to [49], the stopping criteria can also be based on the difference between consecutive esti-

mates, i.e., |✓(m+1) � ✓

(m)| < ✏ with ✏ > 0. Another option is a set of criteria based on the

likelihood function |l(m+1)
f � l(m)

f | < ✏ for some ✏ > 0.

An EM algorithm for discrete phase type distributions has been proposed in [26]. For

completeness, the development of the EM algorithm for PH distributions will be outlined

in Section 5.3.1. This procedure has been used in the PH-PH traffic model and in the

PAP-PH traffic model. Since the busy periods and idle periods distributions are assumed

independent, the fitting process for each of these traffic models consists of two independent
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processes: a fitting procedure for the idle period distribution and another fitting procedure

for the busy period distribution.

In Section 5.3.2, the EM algorithm used to estimate the parameters of the platoon arrival

process will be explained.

5.3.1 An EM Algorithm for Fitting Phase-Type Distributions

A sequence y of N samples has been observed, i.e., y = {y1, y2, . . . , yN}. Each of these

observations is assumed to be phase type distributed with parameters (�, S) with K phases

and S

0 = 1�S1. Using this set of incomplete observations we can use the EM algorithm in

the fitting process. All elements of matrix S will be denoted by s(i, j), elements of vector

S

0 are s

0(i) and elements of vector � are �(i) with 1  i, j  K.

The set of parameters that needs to be estimated is ✓ = (�, S,S0). Given the sequence

of independent interarrivals in y, the incomplete likelihood function is given by [26]

L(y;✓) =
NY

n=1

�S

yn�1
S

0
. (5.15)

For the E-Step we need to calculate the conditional expected log-likelihood of the un-

known complete data W given the observed interarrivals y and the current parameter esti-

mates ✓(m). Assume that the complete information of sequence y is given in the sequence

w. Then, the complete likelihood of a particular sequence w with independent phase type

distributed samples can be written as

Lf (w;✓) =
KY

i=1

�(i)A(i)

KY

i=1

KY

j=1

s(i, j)B(i,j)

KY

i=1

s

0(i)C(i)
, (5.16)

with A(i) the number of observations that had started on phase i, B(i, j) is the number of

transitions from state i to state j, and C(i) is the number of samples that were absorbed

in state i. Maximizing the likelihood function Lf (w;✓) is equivalent to maximizing the
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log-likelihood function which is given by

lf (w;✓) =

KX

i=1

A(i)log(�(i)) +
KX

i=1

KX

j=1

B(i, j)log(s(i, j)) +
KX

i=1

C(i)log(s0(i)). (5.17)

We can also write the statistics A(i) , B(i, j) and C(i) as

A(i) =
PN

n=1 A(i)
n
, B(i, j) =

PN
n=1 B(i, j)n, C(i) =

PN
n=1 C(i)n,

with A(i)n 2 {0, 1}, B(i, j)n, C(i) 2 {0, 1}, for 1  i, j  K. For instance, an A(i)n = 1

means that process n started at phase i; on the other hand, if A(i)n = 0, then the process n

did not start at phase i.

Given that the log-likelihood is a linear function of the statistics, in the E-step we need

to calculate the expected values of A(i), B(i, j), and C(i) conditioned on y, which were

developed in [26]

Â(i) = E✓[A(i)|Y = y] =
NX

n=1

E✓[A(i)
n|Yn = yn]

=
NX

n=1

e

T
i S

yn�1
S

0
�(i)

�S

yn�1
S

0
, (5.18)

where ei denotes a column vector of zeros with a one in position i and superscript T indi-

cates the transpose function. The predictor of B(i, j) is

B̂(i, j) = E✓[B(i, j)|Y = y]

=
NX

n=1

1{yn�2}

yn�2X

k=0

e

T
j S

(yn�(k+1)�1)
S

0
s(i, j)�Sk

ei

�S

(yn�1)
S

0
. (5.19)
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And the predictor of C(i) is

Ĉ(i) = E✓[C(i)|Y = y] =
NX

n=1

E✓[C(i)n|Yn = yn],

=
NX

n=1

�S

yn�1
eis

0(i)

�S

yn�1
S

0
. (5.20)

Using the estimates Â(i), B̂(i, j), and Ĉ(i), we want to find the parameter ✓ = (�, S,S0)

such that the expected log-likelihood function defined in Equation (5.17) is maximized.

This step is referred to as the M-Step in the EM algorithm. Then, we have the following

optimization problem

arg max
✓

EW |y,✓(m)(lf (W ;✓)|Y = y),

subject to
KX

i=1

�(i) = 1,

KX

j=1

s(i, j) + s

0(i) = 1, 1  i  K,

which can be converted to an unconstrained optimization problem using the Lagrangian

method. Given that the complete log-likelihood is a linear function of the statistics, the ex-

pression EW |y,✓(m)(lf (W ;✓)|Y = y) will be written as l0f (w;✓) with the statistics replaced

by their respective conditional expectations. Then, the Lagrangian is given by

LA(✓) = l0f (w;✓) +
KX

i=1

"
�1i

 
KX

j=1

s(i, j) + s

0(i)� 1

!#
+ �2

 
KX

i=1

�(i)� 1

!
.

We can find the optimal estimates for ✓ by maximizing LA(✓) with respect to each param-

eter in ✓. This results in the following estimates developed in [26]. The estimate for �(i)

becomes

�̂(i) =
Â(i)

N

, 8i 2 {1, 2, . . . , K}. (5.21)
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We also get that the estimate for parameter s0(i) is

ŝ

0(i) =
Ĉ(i)

PK
j=1 B̂(i, j) + Ĉ(i)

, 8i 2 {1, 2, . . . , K}. (5.22)

The estimate for parameter s(i, j) is

ŝ(i, j) =
B̂(i, j)

PK
s=1 B̂(i, s) + Ĉ(i)

, 8i, j 2 {1, 2, . . . , K}. (5.23)

The EM algorithm can be summarized as follows:

Step 1: Make an initial estimate for ✓(0) = (�(0)
, S

(0)
,S

0(0)). Set m = 0.

Step 2: Given the sequence of observations y and the current estimate for ✓(m) calculate the

conditional expectation for the statistics using (5.18), (5.19) and (5.20).

Step 3: To get the m+ 1 estimation of ✓ we use the conditional expectations of the statistics

from Step 2 and get

�(i)(m+1) =
Â(i)

N

, (5.24)

s

0(i)(m+1) =
Ĉ(i)

PK
j=1 B̂(i, j) + Ĉ(i)

, (5.25)

s(i, j)(m+1) =
B̂(i, j)

PK
s=1 B̂(i, s) + Ĉ(i)

, (5.26)

for all 1  i, j  K.

Step 4: Let m = m+ 1 and repeat from Step 2 until a stopping criteria is satisfied.

Further details of this algorithm and other maximum likelihood estimators approaches

for phase type distributions can be found in [26].

5.3.2 An EM Algorithm for Fitting a Platoon Arrival Process

In this section, the main derivation steps to obtain the EM algorithm proposed by [25]

for a discrete time platoon arrival process is shown. The work in [25] does not show the
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derivation steps that have been used to obtain their final parameter estimation equations.

In addition, the authors focus on deriving the terminating MAP estimates. Hence, we

independently will describe the procedures to obtain the parameter estimation equations for

the PAP, and we will also highlight some differences from [25] that we have considered.

The procedure to derive the EM algorithm is quite similar to the EM algorithm used

for the PH fitting process with some differences. The main difference is that the likelihood

function is not a product of independent samples. This causes a more tedious solution

to compute the estimated statistics and estimators in an EM algorithm iteration. Towards

this goal, let us first assume, that we have an incomplete data sequence of N interarrivals,

z = {z1, z2, · · · , zN}. This sequence is incomplete because we cannot identify interplatoon

and intraplatoon samples and we also cannot distinguish the transition phases to achieve a

particular sample. Hence, we are dealing with a hidden data problem.

Define ✓ as the set of parameters we want to estimate. For the case where the inter-

platoon distribution, intraplatoon distribution, and number of interplatoons in a platoon

distribution are all phase-types, we have that ✓ = (�0, �, D,D

0
,↵1,↵2, T1, T2, ⌧ 1, ⌧ 2).

These parameters have been defined in Section 3.3. Elements of matrices T1, T2, D will

be denoted by t1(i, j), t2(i, j) and d(i, j) respectively. Elements of vector ⌧ 1, ⌧ 2, D0 are

⌧1(i), ⌧2(i) and d0(i) correspondingly. Finally, elements of row vector ↵1, ↵2 and � are

↵1(i), ↵2(i) and �(i).

Then, the likelihood function of sequence z given ✓ is

L(z;✓) = ⇡

0
NY

n=1

�
C

zn�1
0 C1

�
1m, (5.27)

with matrix C0 representing a non-arrival event, and matrix C1 representing an arrival event.

Matrices C0 and C1 can be obtained from Equation (3.10). We also used the conditional

stationary vector ⇡0 obtained from Equation (3.12). Because we cannot distinguish between

an interplatoon and intraplatoon idle duration, we cannot use the product of independent

arrivals to compute the likelihood function as in the phase type EM algorithm case.
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Say that we have a complete data sequence w available. That is, the entire phase transi-

tions of the arrivals in sequence w are known. Then, we can write the complete likelihood

function of w as

Lf (w;✓) =

m1Y

i=1

↵1(i)
A1(i)

m2Y

i=1

↵2(i)
A2(i)

KY

i=0

�(i)B(i)

m1Y

i=1

m1Y

j=1

t1(i, j)
T1(i,j)

⇥
m2Y

i=1

m2Y

j=1

t2(i, j)
T2(i,j)

KY

i=1

KY

j=1

d(i, j)D(i,j)

m1Y

i=1

⌧1(i)
T1(i)

⇥
m2Y

i=1

⌧2(i)
T2(i)

KY

i=1

d0(i)
D(i)

. (5.28)

where Aj(i) represents the number of observations from sequence w that start in phase

↵j(i), B(i) is the number of observations that are the first intraplatoon period in a platoon

and that start at phase �(i), Tk(i, j) are the number of transitions from phase i to phase j

in matrix Tk that have occurred in sequence w. In a similar way, D(i, j) is the number

of transitions from state i to state j in matrix D, Tk(i) and D(i) denote the number of

observations that have been absorbed from state i in their respective distribution.

Each statistic can be calculated by the number of occurrences in each observation.

Aj(i) =
NX

n=1

A

n
j (i), B(i) =

NX

n=1

�

n(i), D(i) =
NX

n=1

D

n(i),

Tk(i, j) =
NX

n=1

T

n
k (i, j), Tk(i) =

NX

n=1

T

n
k (i), D(i, j) =

NX

n=1

D

n(i, j),

We want to maximize function Lf (w;✓), which result will be equivalent to maximizing
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the log-likelihood function. The complete log-likelihood function can be written as

lf (w;✓) =

m1X

i=1

A1(i)log[↵1(i)] +

m2X

i=1

A2(i)log[↵2(i)] +
KX

i=0

B(i)log[�(i)]

+

m1X

i=1

m1X

j=1

T1(i, j)log[t1(i, j)] +

m2X

i=1

m2X

j=1

T2(i, j)log[t2(i, j)]

+
KX

i=1

KX

j=1

D(i, j)log[d(i, j)] +

m1X

i=1

T1(i)log[⌧1(i)]

+

m2X

i=1

T2(i)log[⌧2(i)] +
KX

i=1

D(i)log[d0(i)]. (5.29)

For the E-step we want to calculate the expected log-likelihood given the current param-

eter estimates and the sequence of data z , i.e., EW |z,✓(m) [lf (W ;✓)|Z = z] from Equation

(5.12). We can see from Equation (5.29) that the log-likelihood function of w is a linear

function of the statistics defined above. Hence, we can compute Equation (5.12) from the

conditional expectations of the statistics. The conditional expectation for each statistic S

is [26]

Ŝ = E[S|Z = z] =
NX

n=1

E[Sn|Z = z] (5.30)

with S 2 {Aj(i), B(i), D0(i), Tk(i, j), Tk(i), D(i, j)}.

In the M-Step we obtain the new estimate ✓

(m+1) by maximizing the expected log-

likelihood of Equation (5.12). This can be done by applying the method of Lagrange

multipliers. Since EW |z,✓(m) [lf (W ;✓)|Z = z] is calculated from the conditional expec-

tations in Equation (5.30), for notation purposes let us write EW |z,✓(m) [lf (W ;✓)|Z = z] as

l0f (w;✓). Remember that to get the expected log-likelihood, EW |z,✓(m) [lf (W ;✓)|Z = z],

we will simply need to replace the statistics by their conditional expectations.
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Hence, we have that

LA(✓) = l0f (w;✓) +

m1X

i=1

"
�1i

 
1�

m1X

j=1

t1(i, j)� ⌧1(i)

!#

+

m2X

i=1

"
�2i

 
1�

m2X

j=1

t2(i, j)� ⌧2(i)

!#
+ �3

 
1�

m1X

i=1

↵1(i)

!

+�4

 
1�

m2X

i=1

↵2(i)

!
� �5

 
1�

KX

i=0

�(i)

!

+
KX

i=1

"
�6i

 
1�

KX

j=1

d(i, j)� d0(i)

!#
. (5.31)

Then,
@LA

@↵1(i)
=

Â1(i)

↵1(i)
� �3 = 0 ) �3 =

Â1(i)

↵1(i)
.

Using the constraint
Pm1

i=1 ↵1(i) = 1, we have that

m1X

i=1

↵1(i) = 1 )
m1X

i=1

Â1(i)

�3

= 1 ) �3 =

m1X

i=1

Â1(i).

The parameter estimator for ↵1(i) is

↵̃1(i) =
Â1(i)

�3

=
Â1(i)Pm1

s=1 Â1(s)
. (5.32)

We repeat the above procedure for all ↵2(i) with 1  i  m2 and for all �(i) with

1  i  K.

For the rest of the parameters, we can also derive the respective estimates by calculat-

ing the gradients of each pair: t1(i, j) and ⌧1(i), t2(i, j) and ⌧2(i), d(i, j) and d

0(i). For

instance; for parameters t1(i, j) and ⌧1(i) we have that

@LA

@t1(i, j)
=

T̂1(i, j)

t1(i, j)
� �1i = 0,

@LA

@⌧1(i)
=

T̂1(i)

⌧1(i)
� �1i = 0.
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Which combined gives

T̂1(i, j)

t1(i, j)
=

T̂1(i)

⌧1(i)
)

m1X

j=1

T̂1(i, j)⌧1(i) =

m1X

j=1

T̂1(i)t1(i, j).

Using the constraint
Pm1

j=1 t1(i, j) + ⌧1(i) = 1 results in the following estimates

⌧̂1(i) =
T̂1(i)Pm1

s=1 T̂1(i, s) + T̂1(i)
,

t̂1(i, j) =
T̂1(i, j)Pm1

s=1 T̂1(i, s) + T̂1(i)
.

In summary, the parameters estimators which we think are equivalent from those spec-

ified in [25] are given by

↵̂1(i) =
Â1(i)Pm1

s=1 Â1(s)
, ↵̃2(i) =

Â2(i)Pm2

s=1 Â2(s)
, �̂(i) =

B̂(i)
PK

s=0 B̂(s)
,

⌧̂1(i) =
T̂1(i)Pm1

s=1 T̂1(i, s) + T̂1(i)
, ⌧̃2(i) =

T̂2(i)Pm2

s=1 T̂2(i, s) + T̂2(i)
,

t̂1(i, j) =
T̂1(i, j)Pm1

s=1 T̂1(i, s) + T̂1(i)
, t̃2(i, j) =

T̂2(i, j)Pm2

s=1 T̂2(i, s) + T̂2(i)
, (5.33)

and

d̂0(i) =
D̂(i)

Pm2

s=1 D̂(i, s) + D̂(i)
, d̂(i, j) =

D̂(i, j)
Pm2

s=1 D̂(i, s) + D̂(i)
. (5.34)

The steps for the EM algorithm for PAP are

Step 1: Obtain an initial estimate for ✓(m) with m = 0.

Step 2: Given the sequence of observations z and the current estimate for ✓(m) calculate the

conditional expectation for the statistics using Equation (5.30).

Step 3: Use equations (5.33) and (5.34) to get the m+ 1 estimation of ✓ by using the condi-

tional expectations of the statistics from Step 2.
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The statistics are calculated based on the conditional expectation given the sequence

of observations z. As in [50], to simplify notations, let us first define the likelihood of

observing the sequence of samples up to the n� 1 sample of sequence z as �n�1, which is

defined by

�n�1 = ⇡

0
n�1Y

s=1

C

zs�1
0 C1. (5.35)

In addition, the likelihood that involves the last samples starting from sample n+ 1 will be

denoted as

⌘n+1 =
NY

s=n+1

C

zs�1
0 C11. (5.36)

We can then calculate the statistics estimators with

B̂(0) =
NX

n=1

E(Bn(0)|Z = z) =
NX

n=1

Pr(Bn(0) = 1 \ Z = z)

L(z;✓)
, (5.37)

and

Pr(Bn(0) = 1 \ Z = z) = �n�1C
zn�1
0

0

@ ⌧ 2

0

1

A
�0(↵2,0)⌘n+1.

Similarly, to estimate B(i) we calculate the following

B̂(i) =
NX

n=1

E(Bn(i)|Z = z) =
NX

n=1

Pr(Bn(i) = 1 \ Z = z)

L(z;✓)
, (5.38)

with

Pr(Bn(i) = 1 \ Z = z) = �n�1C
zn�1
0

0

@ ⌧ 2

0

1

A
�(i)

 
m1X

h=1

↵1(h)e
T
m2+(j�1)m1+h

!
⌘n+1.

We also have that, the statistic estimate D̂(i), which has also been derived in [25], is

D̂(i) =
NX

n=1

E[Dn(i)|Z = z] =
NX

n=1

P (Dn(i) = 1 \ Z = z)

L(z;✓)
, (5.39)
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with

Pr(Dn(i) = 1 \ Z = z) = �n�1C
zn�1
0

 
m1X

h=1

em2+(i�1)m1+hd0(i)⌧1(h)

!
(↵2,0)⌘n+1.

The estimate for D(i, j) is given by

D̂(i, j) =
NX

n=1

E[Dn(i, j)|Z = z] =
NX

n=1

Pr(Dn(i, j) = 1 \ Z = z)

L(z;✓)
, (5.40)

with

P (Dn(i, j) = 1 \ Z = z) = ⇡

0
n�1Y

s=1

C

zs�1
0 C1C

zn�1
0

⇥
 

m1X

h=1

m1X

s=1

em2+(i�1)m1+hd(i, j)⌧1(h)↵1(s)em2+(j�1)m1+s

!
NY

s=n+1

C

zs�1
0 C11.

Moreover,

Â1(i) =
NX

n=1

E[An
1 (i)|Z = z] =

NX

n=1

Pr(An
1 (i) = 1 \ Z = z)

L(z;✓)
, (5.41)

with

Pr(An
1 (i) = 1 \ Z = z) = �n�1C

zn�1
0

8
<

:

0

@ ⌧ 2

0

1

A
 

KX

h=1

�(h)↵1(j)e
T
m2+(h�1)m1+j

!

+

 
KX

r=1

KX

c=1

m1X

h=1

em2+(r�1)m1+hd(r, c)⌧1(h)↵(i)e
T
m2+(c�1)m1+i

!)
⌘n+1.

The estimate for statistic T1(i) is

T̂1(i) =
NX

n=1

E[T n
1 (i)|Z = z] =

NX

n=1

Pr(T n
1 (i) = 1 \ Z = z)

L(z;✓)
, (5.42)
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with

Pr(T n
1 (i) = 1 \ Z = z) = �n�1C

zn�1
0

( 
KX

h=1

em2+(h�1)m1+id0(h)

!
⌧1(i)(↵2,0)

+

 
m1X

h=1

KX

r=1

KX

c=1

em2+(r�1)m1+id(r, c)⌧1(i)↵1(h)e
T
m2+(c�1)m1+h

!)
⌘n+1.

Similarly, the estimate for statistic T1(i, j), which is the same as the work from [25] is

T̂1(i, j) =
NX

n=1

E[T n
1 (i, j)|Z = z] =

NX

n=1

Pr(T n
1 (i, j) = 1 \ Z = z)

L(z;✓)
, (5.43)

with

Pr(T n
1 (i, j) = 1 \ Z = z) = �n�2C

zn�1�1
0

0

@ � ⌦ ⌧ 2↵1

D ⌦ ⌧ 1↵1

1

A
(

zn�1X

l=1

(I ⌦ T1)
l�1

⇥
 

KX

h=1

em2+(h�1)m1+it1(i, j)e
T
m2+(h�1)m1+j

!
(I ⌦ T1)

zn�l�1

)

⇥(D0 ⌦ ⌧ 1↵2, D ⌦ ⌧ 1↵1)⌘n+1.

To obtain Â2(i) we have

Â2(i) =
NX

n=1

E[An
2 (i)|Z = z] =

NX

n=1

Pr(An
2 (i) = 1 \ Z = z)

L(z;✓)
, (5.44)

with

Pr(An
2 (i) = 1 \ Z = z) = �n�1C

zn�1
0

0

@ ⌧ 2�0

D

0 ⌦ ⌧ 1

1

A
↵2(i)e

T
i ⌘n+1

Analogously, we get T̂2(i, j) with

T̂2(i, j) =
NX

n=1

E[T n
2 (i, j)|Z = z] =

NX

n=1

Pr(T n
2 (i, j) = 1 \ Z = z)

L(z;✓)
, (5.45)
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and

Pr(T n
2 (i, j) = 1 \ Z = z) = �n�2C

zn�1�1
0

0

@ ⌧ 2�0↵2

D

0 ⌦ ⌧ 1↵2

1

A

⇥
 

zn�1X

l=1

T

l�1
2 eit2(i, j)e

T
j T

zn�l�1
2

!
(⌧ 2�0↵2, ⌧ 2� ⌦↵1)⌘n+1.

Finally, the new estimate for T2(i) is

T̂2(i) =
NX

n=1

E[T n
2 (i)|Z = z] =

NX

n=1

Pr(T n
2 (i) = 1 \ Z = z)

L(z;✓)
, (5.46)

with

Pr(T n
2 (i) = 1 \ Z = z) = �n�1C

zn�1
0 ei⌧2(i)(�0↵2, � ⌦↵1)⌘n+1.

5.4 Fitting Process Examples

In this Section, we will show three fitting procedure examples: two PU channels charac-

terized by PAP-PH processes and one PU channel described by a Geo-Geo process. The

process describing the PU channel will be referred to as Original.

In Sections 5.4.1 and 5.4.2, the fitting procedures results will be shown for a low and

a high PAP-PH channel usage examples. These two examples will be again used in the

reactive and proactive spectrum access in Chapter 6 and in Chapter 7. In Section 5.4.3, the

fitting procedures will be applied to a PU channel with geometrically distributed idle-busy

periods.

In the next examples, we assume that a time slot represents the required length to obtain

a sensing sample. The sequence of observations U used for the fitting procedures could

have been obtained from historic data stored in a database, or sensing results. We consider

that an SU performs perfect sensing, i.e., false alarm and miss-detection probabilities are

zero.

Using the original traffic model, a binary sequence was generated, i.e., zeros for idle
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and ones for busy. To show the fitting procedure results, each fitting procedure is repeated

many times with independent realizations of the PAP-PH process, this is referred to as a

repetition. A repetition consists of executing the Geo-Geo, PH-PH and PAP-PH fitting

procedures once with a sequence of sensing observations U . We chose one repetition as the

final parameter estimates.

The first two examples involve a PU channel described by a PAP-PH process where all

distributions involved are negative binomial of order 3. This PAP-PH process is char-

acterized by four parameters: ✓1, ✓2, ✓3, ✓4, which correspond to the intraplatoon in-

terval, interplatoon interval, number of intraplatoon in a platoon distribution and busy

period respectively. More specifically, the busy period distribution is PH(�, S),mb ⇠
NB(3, ✓4), and the parameters of the platoon arrival process for the idle period distribu-

tion are PH(↵1, T1),m1 ⇠ NB(3, ✓1), PH(↵2, T2),m2 ⇠ NB(3, ✓2) and PH(�, D), K ⇠
NB(3, ✓3). For these examples, we will use parameters ✓i to describe the original PAP-PH

traffic model.

If random variable Y describes the busy duration length and random variable Z charac-

terized the idle duration length, then the average channel utilization is defined as [24]

C̄ =
E[Y ]

E[Y ] + E[Z]
. (5.47)

5.4.1 Low Channel Usage Example

Low channel usage models are of special interest in opportunistic spectrum access. Many

channel-ordering and adaptive sensing frameworks found in the literature give priority to

low traffic spectrum bands. In addition, transmissions in longer idle periods are more

attractive for secondary users in order to reduce the interference probability with primary

users.

Consider a PU channel that behaves as a PAP-PH process with parameters ✓1 = 0.2,

✓2 = 0.01, ✓3 = 0.95 and ✓4 = 0.075. This results in a busy period distribution char-

acterized by parameters PH(�, S),mb ⇠ NB(3, 0.075), and the parameters of the pla-
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toon arrival process for the idle period distribution are PH(↵1, T1),m1 ⇠ NB(3, 0.2),

PH(↵2, T2),m2 ⇠ NB(3, 0.01) and PH(�, D), K ⇠ NB(3, 0.95). The statistical charac-

teristics of this original PAP-PH process are: average idle period of Iave = 83.54, average

busy period of Bave = 40, Lintra = 15, Linter = 300, Ē = 3.15 and � = 0.012. The average

utilization is C̄ = 0.32.

For each repetition, U = 13000 time slots were used in all fitting procedures. The

number of idle period interarrivals retrieved from U = 13000 time slots was on average

N = 100. Likewise, the average number of busy period interarrivals obtained from U time

slots was also N = 100. Both PAP EM algorithm and PH EM algorithm consists of 400

EM iterations.

The initial parameters for all EM algorithms were randomly generated. However, in

order to preserve the representation of shorter idle period to intraplatoons and longer idle

periods to interplatoons, the reader is advised to select random initial parameters that result

in a estimated Linter larger than a estimated Lintra. Otherwise, the fitting procedure will

most probably converge to a result where the definition of intraplatoon and interplatoon

have been exchanged. That is, the interplatoon distribution will characterize intraplatoon

idle periods and the intraplatoon distribution will characterize interplatoon idle periods.

Although this convergence result is also correct, we use the additional control Linter >

Lintra in the initial parameters to avoid confusion in the previously defined terminology for

our platoon arrival process in Section 3.3. If we use this extra control, we are 90% confident

that between 95.6% to 100% of the simulations will result in final estimates with a mean

interplatoon larger than a mean intraplatoon.

After running for 10 repetitions of U = 13000 time slots, the estimated mean idle

period and mean busy period for each estimated channel usage model are shown in Figures

5.1 and 5.2, respectively. Both of these graphs generally show adequate estimates for the

average idle and busy period length as long as the realization used for the fitting procedures

accurately describes the underlying idle-busy patterns. Thus, the estimated parameters

of each channel usage model heavily depend on the binary realization used in the fitting
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Figure 5.1: Estimated mean idle period duration for the low traffic model
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Figure 5.2: Estimated mean busy period duration for the low traffic model
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procedures. The EM algorithm for a PAP in repetition 6 converges to an estimate that

deviates significantly from the mean idle period as shown in Figure 5.1. This can happen

because an EM algorithm tries to learn the shape of the distribution and does not focus on
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the moment. Hence, it can reach local minimas where the likelihood of the realization with

the parameter estimates is high; however, the moment of the estimated model might not

closely match the moment of the realization. The best way to avoid this is to restart the

EM-algorithm with other initial values.

Consider that sequence z represents N consecutive idle duration samples or interar-

rivals. The log-likelihood of the idle distribution parameters estimates, logL(z;✓), are

compared in Figure 5.3. The idle samples likelihood for the Geo-Geo model, Geo(q, b), is

L(z;✓) =
NY

i=1

(1� q)zi�1
q, (5.48)

where each zi 2 z. The idle samples likelihood for the PH-PH and PAP-PH models are

given in equations (5.15) and (5.27). As expected, the PAP-PH estimates have a closer

likelihood to the original channel usage model when compared to the PH-PH and Geo-Geo

estimates.

Figure 5.3: Log-likelihood of idle samples with estimates for the low traffic model
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The statistical characteristics of the estimated PAP distribution parameters from repeti-

tion 1 to 6 are summarized in Table 5.1. What Table 5.1 shows is that the PAP EM algorithm
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is able to capture the bursty nature characteristics of the PU traffic in a reasonable manner.

We expect to get better results if more interarrival samples are considered.

Table 5.1: PAP idle samples fitting procedures results for the low traffic model

Repetition from estimated PAP
Original PAP 1 2 3 4 5 6

Iave 83.54 91.93 63.11 93.45 66.54 84.36 158.9
Lintra 15 20.67 14.4 16.26 17.6 16.51 15.43
Linter 300 328.2 217.9 331.4 218.22 290.87 615.42
Ē 3.15 3.31 3.17 3.08 3.09 3.04 3.18
� 0.012 0.011 0.015 0.01 0.015 0.012 0.006

We select the estimates from repetition 5 to be the final parameters estimates of this

low traffic PU channel. The repetition selection can be based on the most accurate mean

idle and busy repetition. It can also be based on the repetition with higher likelihood. The

estimated parameters for the PAP-PH process are:

�
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The final estimates for the PH-PH channel usage model are:

↵

(400)
PH =

h
0.8964 0 0.1036

i
, T

(400)
PH =

2

6664

0.6475 0.0376 0.3149

0.2193 0.4803 0.2527

0.0258 0.2264 0.7472

3

7775
,

�

(400)
PH =

h
0 0 1

i
, S

(400)
PH =

2

6664

0.921 0.033 0

0.8829 0.1171 0

0 0.0477 0.9523

3

7775
.

The estimated parameters for the Geo-Geo model are:

PGeo =

2

4 0.9878 0.0122

0.0223 0.9777

3

5
.

In Figure 5.4, the cumulative distribution function of the estimated idle period distri-

butions from repetition 5 is shown. Besides the three estimated distributions, we have

included the original PAP cdf and the empirical realization cdf used in the fitting proce-

dures. The empirical realization cdf has been calculated using equation (5.2). For the cdf

plot to be legible we have plotted the cdf versus a subset of the natural numbers. From

Figure 5.4 we can see that the estimated geometric and phase-type distribution functions

differ in a noticeable way from the platoon arrival process.

Through different channel usage simulations, we have discovered that sometimes the

PH-PH estimates also have the capacity of achieving close likelihoods as the PAP-PH es-

timates. This means that for some data traffic patterns, the PH-PH model with adequate

parameters can approximate the cumulative distribution function of a PAP-PH model in a

reasonable way.
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Figure 5.4: Cumulative distribution function for the low traffic model
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5.4.2 High Channel Usage Example

It is interesting to see the performance of the reactive and proactive spectrum access schemes

if the channel utilization is high. Similarly as in the previous Section, consider a PU chan-

nel described by a PAP-PH process where all distributions involved are negative binomial

of order 3 with parameters ✓1 = 0.6, ✓2 = 0.03, ✓3 = 0.2 and ✓4 = 0.075. The statistical

characteristics of the original PAP-PH process are: average idle period of Iave = 10.937,

average busy period of Bave = 40, Lintra = 5, Linter = 100, Ē = 15 and � = 0.091. This

PAP-PH channel usage model has an average utilization of C̄ = 0.785.

Similarly as the low traffic model example, 10 repetitions of each fitting procedures was

performed. Each repetition used U = 9000 time slots which resulted on an average number

of N = 180 interarrivals. The estimated mean idle period for each estimated channel usage

model is shown in Figure 5.5. The log-likelihood of the realization with the idle period

parameter estimates of each traffic model is plotted in Figure 5.6. From these three figures

and Table 5.2, we can conclude that the estimates of the high traffic example are better than

those of the low traffic example in the previous Section. Lower variance in the estimated
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mean idle and busy periods is achieved by considering a higher number of interarrivals in

the fitting procedures.

Figure 5.5: Estimated mean idle period duration for the high traffic model
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Figure 5.6: Log-likelihood of idle samples with estimates for the high traffic model
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Table 5.2: PAP idle samples fitting procedures results for the high traffic model

Repetition from estimated PAP
Original PAP 3 4 5 6 7 8

Iave 10.937 10.39 9.34 12.16 9.33 52.69 11.69
Lintra 5 4.99 5.16 5.16 5.04 5.04 5.08
Linter 100 105 72.5 106.53 71.25 768.02 93.43
Ē 15 17.69 15.11 13.49 14.43 15.01 12.36
� 0.091 0.09 0.1 0.08 0.1 0.01 0.085

The final parameters estimates for the high traffic PU channel, which will be used in

Chapter 7, are those obtained from repetition 8. In Figure 5.7, the cumulative distribution

function of the idle period distributions estimates are shown. The high traffic PAP-PH cdf

estimates have a closer resemble than the low traffic PAP-PH cdf estimates in Figure 5.4.

Figure 5.7: Cumulative distribution function for the high traffic model
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The final estimated parameters for the PAP-PH process are:

�

400 =
h
1 0 0

i
, D

400 =

2

6664

0.779 0.2209 0

0 0.7315 0.2685

0 0 0.7569

3

7775
,
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i
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2

6664
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0.298 0.442 0.237

0.219 0.463 0.309

3

7775
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�

400 =
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1 0 0

i
, S

400 =

2

6664

0.831 0.168 0

0.0923 0.806 0.1

0 0 0.946

3

7775
.

5.4.3 A Geo-Geo PU channel

From the previous examples, the PAP-PH parameter estimates outperforms the Geo-Geo

estimates when the PU channel is characterized by a PAP-PH process. Nevertheless, it

is important to analyse the PAP-PH estimates when the PU channel is instead described

by a Geo-Geo process. Hence, in this Section, we will show the estimation results of the

three traffic models when a PU channel with geometrically distributed busy-idle periods is

considered.

The mean idle period is Iave = 40 and the mean busy period of Bave = 40. The

estimated mean idle period for the three distributions in 100 repetitions is shown in Figure

5.8. In Figure 5.9, we show an example of the estimated cumulative distribution functions

of a repetition; in this case, repetition 90. As expected, it can be observed that the cdf of

the platoon arrival process and phase type distribution closely match the original geometric

cdf.

The statistical characteristics of some fitting procedures are outlined in Table 5.3. The

EM-algorithm, used to estimate the parameters of the PAP, tries to find the maximum likeli-
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Figure 5.8: Estimated mean idle period duration for the high traffic model
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Figure 5.9: Cumulative distribution function for the Geo-Geo PU channel
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hood of the idle samples. Hence, the different statistical measures of the PAP estimates are

because there are different structures to represent a geometric distribution with a platoon

arrival process.
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Table 5.3: Fitting procedures results for the Geo-Geo PU channel

Original Repetition No
¯

from estimated PAP-PH
Geo-Geo 40 50 60 70 80 90

Iave 40 46.8 41.5 48.6 40.7 45.1 42.8
Bave 40 39.5 39.05 40.34 47.7 421 42.8
Lintra 46.06 37.4 36.7 37 35.3 41
Linter 48.25 131.5 76.9 67 69.9 140.5
Ē 1.88 21.82 2.4 7.02 2.55 54.9
� 0.02 0.02 0.02 0.02 0.02 0.02

5.5 General comments of the fitting process

A computer has limits in the representation of a floating point data. Using the MATLAB

software, the range for a double is: 2.22507e-308 to 1.79769e+308. This means that the

PAP EM algorithm cannot be applied when the likelihood of the realization with the PAP

estimates exceeds the MATLAB double representation limit. The likelihood decreases as

the number of samples and values of each sample increases. Hence, the major limitation

of this algorithm is the number of samples that can be used in the PAP fitting process. An

advantage of using a continuous PAP is that the interarrivals can be scaled to smaller values,

which will allow more samples to be used in the EM algorithm. For instance; the author

in [37] used 103 to 104 samples in his EM algorithm for a continuous MAP. Each sample

had a value between 0 to 1.

Although the EM algorithm for discrete PAP only considers few hundreds of samples,

it still yields a reasonable approximation of the original distribution. In addition, the com-

plexity of the EM algorithm increases with the number of samples. In a cognitive radio

network, the parameters may need to be adapted frequently. Hence, efficiency in the esti-

mation procedures is necessary.
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Chapter 6

A Reactive Spectrum Access Scheme

We have seen in Chapter 4 that many research works in their investigation assume a Geo-

Geo channel usage model for mathematical tractability. However, it is important to analyze

the potential effects of this assumption if the channel is behaving in a bursty manner. Hence,

in this Chapter we will first design a simple reactive channel access scheme. As explained

in Section 2.4.2, a reactive spectrum access implies that an SU’s action of when to transmit

is solely based on the latest sensing information and no historical sensing data is used.

Using the reactive channel access scheme, two performance measures will be analyti-

cally derived using Markov chain models. These two measures are the average transmis-

sion delay and the average number of time slots between collisions. The analytical results

will be compared against simulations to test their accuracies. We investigate the differ-

ent performance measures an investigator will obtain if a Geo-Geo channel usage model

assumption is used over a PU channel with bursty spectrum utilization.

Assuming a PAP-PH primary user channel, our results show that as the channel usage

increases, the accuracy of the performance measures derived with the Geo-Geo channel

usage model decreases.
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6.1 The System Model

Consider a single PU channel that consists of idle and busy periods (OFF/ON periods) char-

acterized by a bursty PAP-PH process. A discrete time secondary network access scheme

is considered, where a time slot is defined as the required length for an SU to perform

sensing. It is assumed that in a given time slot; a secondary user is either sensing or trans-

mitting. The listen-before-talk strategy is implemented in this scheme to avoid collision

with primary users.

In this access scheme, an SU always needs L consecutive idle time slots for a successful

transmission. In other words, a packet length is L. If the channel is sensed idle, the SU

starts its transmission in the next time slot. One idle time slot is always used for sensing

before a transmission. It is further assumed that the SU always has packets to transmit and

continuously stays on the same PU channel. We assume that during transmission, the SU

can detect a PU arrival.

The SU always aims to transmit for L time slots; however, it immediately stops if it

detects a primary user arrival. If the SU is still transmitting and it detects that the primary

user has returned, a collision occurs that lasts for a single time slot. This scheme can be

better understood by looking at Figure 6.1, where L = 3. For a successful transmission the

SU needs a total of L+1 idle time slots, one used for sensing and L consecutive time slots

for transmission. This SU access model is an optimistic one because an SU may not be able

to sense all the time, and it may not be able to detect the PU arrival while transmitting. Not

being able to detect a primary user arrival while transmitting will inherently cause more

interference to primary users.

In the next sections, we will calculate two performance measures: average transmission

delay E[DL], and the average number of time slots between collisions E[Tiv]. The aver-

age transmission delay is defined as the average number of time slots an SU spends for a

successful transmission. A given transmission delay includes the time slots used for sens-

ing and time slots that resulted in failed transmissions. As the name suggests, the average
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Figure 6.1: Reactive spectrum access model with L = 3
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number of time slots between collisions is the number of time slots that an SU takes on

average to collide with a PU given that a collision have just occurred. An example of these

two measures can be observed in Figure. 6.1, where Tiv(j) denotes the number of time

slots between collision j and collision j�1, and Di denotes the delay for the ith successful

transmission.

Before defining the Markov chain models used to derive the performance measures,

we will first define the standard notation for a channel usage model. The behaviour of the

stationary channel can be captured by a transition matrix P of the following form

P =

2

4 PI PIB

PBI PB

3

5
. (6.1)

Recall that matrices PI and PB describe transitions within the idle and busy periods respec-

tively. The matrix PBI denotes transition probabilities from the busy state to idle state, and

matrix PIB denotes transitions from the idle state to busy state. Matrix P can be obtained

from any discrete time traffic model such as those presented in Chapter 4.
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6.2 Average Transmission Delay

To calculate the average transmission delay E[DL] we will design a discrete time absorbing

Markov chain to obtain the distribution of the number of time slots required for a successful

transmission. Given that the SU has just successfully transmitted a packet, the transmission

delay consists of the number of time slots required for the SU to encounter L+ 1 idle time

slots. Therefore, we will design a discrete time absorbing Markov chain that can keep track

when successive L + 1 idle time slots have been encountered by the SU. In other words,

absorption occurs when L+1 idle slots has been encountered. This results in the following

state space

� = {0 [ B [ (I, i); 0  i  L},

where state {0} is the absorbing state, state B represents the channel is busy and can be

further decomposed to B = {(B, j); 1  j  nB} if the busy state has phases. State (I, i)

denotes that the channel is idle. State (I, 0) means that the SU has sensed the channel as

idle and the SU will start transmitting in the next time slot. For 1  i  L , state (I, i)

signifies that the SU has transmitted for i consecutive idle time slots. Each idle state can

further be divided into (I, i) = {(I, i, j); 1  j  nI}. Constants nB and nI are the

number of phases transition matrices PB and PI have. For the case of a PAP-PH channel-

usage model which has been explained in Section 4.5 we have that nB = mb +Kmb and

nI = m. For the Geo-Geo traffic model explained in Section 4.3 we have that nB = 1 and

nI = 1.

The state transition diagram is shown in Figure 6.2. The process starts at state (I, L)

because a successful SU transmission has just occurred. It can be noticed that the distri-

bution of the transmission delay DL can be represented by a phase-type distribution with

parameter PH(�, V ), nV where nV = nB + (L+ 1)nI . Moreover, the transition matrix of

the Markov chain is

PD =

2

4 1 0

v V

3

5
, (6.2)
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Figure 6.2: State Diagram to compute the average transmission delay E[D
L
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. (6.3)

In this reactive access scheme, an SU continuously monitors the same PU channel re-

gardless of a collision or a successful transmission. Hence, we define the start probability

vector � =
h
0 · · · 0 �I

i
such that �I represents the stationary conditional proba-

bilities of finding the channel in the idle phases after a successful transmission. The sta-

tionary distribution of finding the PU channel in the idle and busy states in the long run is

⇡ =
h
⇡I ⇡B

i
which satisfies the following equations

⇡ = ⇡P, and ⇡1 = 1.

with P defined in Equation (6.1). Then, the element �I of the start vector probability for
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the transmission delay phase-type distribution is

�I =
⇡̃IP

L
I

⇡̃IP
L
I 1

, (6.4)

with ⇡̃I the stationary conditional probability of finding the process in each of the idle

phases given that the channel is idle, i.e.,

⇡̃I =
⇡I

⇡I1
. (6.5)

The start probability vector � always begins in an idle state because a successful transmis-

sion implies that the channel remained idle for L+ 1 time slots.

The probability that the transmission delay is i is given by

Pr(DL = i) = �V

i�1
v, i � 1, (6.6)

with v = 1� V 1. The average transmission delay for L idle time slots requirement is thus

E[DL] = �(I � V )�1
1. (6.7)

6.3 Average Number of Time Slots between Collisions

The average number of time slots between successive collisions will be denoted as E[Tiv].

In a similar way as in the preceding section, we can design a discrete time absorbing

Markov chain to obtain the distribution of the number of time slots Tiv between succes-

sive interfered PU time slots. Recall that an interference scenario is caused when the SU

starts its transmission given that the channel was found idle and the PU returns at some

point of the L consecutive time slots.

The aim in the discrete time absorbing Markov chain design is to keep track of the prob-

abilities that given that an SU starts its transmission, a PU returns before the completion of
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the SU transmission. We can define a Markov chain with the following state space

� = {0 [B [ (I, i); 1  i  L+ 1},

where state {0} is the absorbing state, the states B = {(B, j); 1  j  nB} represent that

the PU channel is busy and (I, i) = {(I, i, j); 1  j  nI} represent idle states. More

specifically, when the system is in state (I, 1) the SU has sensed that the channel is idle and

will start transmitting in the next time slot. For 2  i  L + 1, state (I, i) means that the

SU has transmitted for i � 1 time slots and the channel has remained idle for i time slots.

The number of phases of the busy and idle states are nB and nI respectively. As mentioned

in the previous section, for the case of a PAP-PH channel-usage model nB = mb + Kmb

and in the Geo-Geo channel-usage model nB = 1. In a similar way, the variable nI = m

for the PAP-PH channel-usage model, and nI = 1 for the Geo-Geo channel-usage model.

The state transition diagram is shown in Figure 6.3. It can be noticed that the distribu-

tion of Tiv can be represented by a phase-type distribution with parameter PH(⇢, U), nU

where nU = nB + (L+ 1)nI . Moreover, the transition matrix of the chain is

PIV =

2

4 1 0

u U

3

5
, (6.8)

with

U =

2

66666666666664

PB PBI 0 0 · · · 0

0 0 PI 0

. . . ...

0 0 0 PI
. . . ...

...
...

... . . . ...

0 0 0 0 0 PI

PIB PI 0 0 · · · 0

3

77777777777775

. (6.9)

Using arguments identical to the derivation of the average transmission delay in Section

6.2, we can get the average number of time slots required to cause interference to the PU.
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Figure 6.3: State Diagram to obtain the average number of time slots between collisions E[T
iv

]
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Let us denote the stationary probabilities of finding the PU channel in the idle and busy

states by ⇡I and ⇡B, respectively. Further define the stationary probability vector of the

PU channel as ⇡ =
h
⇡I ⇡B

i
. Assuming that P is the transition matrix defined in

Equation (6.1), the stationary vector ⇡ can be computed as

⇡ = ⇡P, and ⇡1 = 1.

The start probability vector is given by ⇢ =
h
⇢B 0 · · · 0

i
with ⇢B being the

conditional probability of starting in the busy period given that an interference has occurred

⇢B =
⇡̃IPIB

⇡̃IPIB1
, (6.10)

and ⇡̃I is the normalized probability that the PU channel is in the idle state in the long

run obtained from Equation 6.5. The phase type distribution, PH(⇢, U), nU , always starts

at a busy phase because random variable Tiv denotes the number of time slots between

interfered PU time slots.

The probability that the collision with a PU occurs in i time slots is given by

Pr(Tiv = i) = ⇢U

i�1
u, i � 1, (6.11)

with u = 1� U1.
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The average number of time slots required for a collision for L idle time slots transmis-

sion requirement is thus

E[Tiv] = ⇢(I � U)�1
1. (6.12)

6.4 Numerical and Simulation Results

Computer simulations of the reactive spectrum access scheme will also be performed to

evaluate the analytical formulas (6.7) and (6.12). In this simulation, no PAP-PH fitting

process is performed because in a reactive access approach the SU does not use a channel

usage model to determine when to transmit.

Say that the PU channel is assumed to behave as a PAP-PH process. If the investigator

uses a Geo-Geo model over the bursty PU channel, the estimated Geo-Geo model will have

the same average idle period and same average busy period as the PAP-PH model. Hence, in

the rest of this Chapter, we will execute the reactive scheme for a PU channel characterized

by the estimated Geo-Geo model, and we will also compute the reactive scheme for a PAP-

PH PU channel. These two traffic models have the same mean idle period and the same

mean busy period. Besides analyzing the performance of the proposed reactive scheme, our

objective is to compare the performance measures differences of a Geo-Geo and PAP-PH

traffic models. We have generated a long independent realization of each channel model

using their respective P matrix from Equation (6.1).

Assume that L + 1 idle time slots are needed for a single SU transmission. In a sim-

ulation run or realization, Di(L) denotes the delay the SU experiences to transmits the ith

packet of length L. The sample mean transmission delay is given by

D̄(L) =
1

NL

NLX

i=1

Di(L), (6.13)

with NL the number of successful SU transmissions in the simulation.

Simulations are also performed to test the accuracy of the absorbing Markov chain to
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obtain the measure E[Tiv]. In this case, if Tiv(j)(L) denotes the number of time slots for the

jth collision, then the sample Tiv average is

T̄iv(L) =
1

CL

CLX

j=1

Tiv(j)(L), (6.14)

with CL the total number of collisions.

6.4.1 Simulation Results with Low Traffic Example

Consider a PAP-PH and Geo-Geo traffic model with mean idle period Iave = 83.54 and

mean busy period Bave = 40. As defined in Section 5.4.1, The PAP-PH model parameters

are ✓1 = 0.2, ✓2 = 0.01, ✓3 = 0.95 and ✓4 = 0.075. The corresponding Geo-Geo transition

matrix P , which has been defined in Equation (6.1), is

PGeo =

2

4 0.988 0.012

0.025 0.975

3

5
. (6.15)

Using these two traffic models, the reactive scheme has been applied to a realization of

five million time slots. The analytical and simulation results are compared in Figures 6.4

and 6.5. The average transmission delay versus L is shown in Figure 6.4. As expected,

the average transmission delay increases with the transmission length L. As L gets larger,

the SU experiences more difficulty to achieve a successful transmission. For a channel

with low traffic the average transmission delay is not seriously affected by a Geo-Geo

model assumption. In this channel with low traffic, the simulation results obtained with

the variation of L reflects that almost no difference is observed between the Geo-Geo and

PAP-PH model.

The average number of time slots between collisions for both of the traffic models

are shown in Figure 6.5. The analytical formulas to derive E[Tiv] have better accuracy

than the analytical formulas used to obtain E[DL]. It can be seen from Figure 6.5 that

E[Tiv] decreases with longer transmission length L. This means that higher probability of
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Figure 6.4: Average transmission delay E[D
L

] for the low traffic example
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Figure 6.5: Average number of time slots between collisions E[T
iv

] for the low traffic example
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collision occurs with larger L. Hence, an SU should use small values of L to avoid severe

interference to primary users.
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6.4.2 Simulation Results with High Traffic Example

Consider a PU channel with average utilization of C̄ = 0.785. The PAP-PH and the Geo-

Geo channel model have a mean idle period of Iave = 10.937 and mean busy period of

Bave = 40. As defined in Section 5.4.2, the PAP-PH model parameters are ✓1 = 0.6,

✓2 = 0.03, ✓3 = 0.2 and ✓4 = 0.075. The resulting Geo-Geo transition matrix P , which

has been defined in Equation (6.1), is

PGeo =

2

4 0.9086 0.0914

0.025 0.9750

3

5
. (6.16)

Similarly as the low traffic example, the reactive scheme has been applied to the two

traffic models. By comparing Figures 6.4 and 6.6, we can see that the average transmission

delay is higher as the channel usage increases. In addition, the average transmission delay

increases with a longer SU transmission requirement length L. A larger difference in E[DL]

between the Geo-Geo and PAP-PH channel models is observed as the channel utilization

increases. However, if the transmission length L is kept small, such as L < 10, the Geo-

Geo assumption over a bursty PU channel still achieves reasonable accuracy. On the other

hand, if L > 10, then the Geo-Geo assumption is no longer valid to calculate the average

transmission delay over a bursty PU channel.

The analytical approximation underestimates E[DL] when the value of L is close to the

mean intraplatoon idle period. This is especially noticeable when deriving E[DL] for the

PAP-PH traffic model case.

The average number of time slots between collisions versus L is shown in Figure 6.7.

As L increases, the rate increases until reaching a convergence value. This convergence

value is the worst case, where the SU causes interference almost each time the PU returns

to the channel. When comparing the results of the Geo-Geo and PAP-PH models in Figures

6.5 and 6.7, we notice that a higher traffic causes a higher difference in E[Tiv]. Recall that

for the busy-idle patterns in Figure 6.7, the average intraplatoon idle period is Lintra = 5.
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Figure 6.6: Average transmission delay E[D
L

] for the high traffic example
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Figure 6.7: Average number of time slots between collisions E[T
iv

] for the high traffic example
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If the idle-busy patterns of the PU channel is characterized by a PAP-PH process, then for

L  5 the Geo-Geo process underestimates E[Tiv], while for L > 5 the Geo-Geo process

overestimates E[Tiv].

The analytical formulas used to get the average number of time slots between colli-
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sions has excellent accuracy for both channel usage models. The average transmission

delay formulas achieve very good accuracy for the Geo-Geo model. Even though the aver-

age transmission delay does present less accuracy for the PAP-PH model, it does provide

enough insight of the performance of the secondary network. Hence, in the next section,

further analysis of the performance measures will be performed using only the analytical

formulas.

6.4.3 Different Platoon sizes

In this section, the reactive scheme will be simulated on PU channels characterized by

different platoon sizes. The PAP-PH process is characterized by three negative binomial

distributions with parameters ✓1 = 0.2, ✓2 = 0.01, ✓4 = 0.075. The size of a platoon is

constant with value equal to K, which is the order of the platoon size phase-type distribu-

tion PH(�, D), K defined in Section 3.3. The Geo-Geo process is estimated such that it

matches the mean idle period and mean busy period of the PAP-PH process.

The average transmission delay versus the constant platoon size K for three different

SU transmission length L is plotted in Figure 6.8. As the size of the platoon increases the

channel utilization also becomes higher. Hence, we observe that E[DL] increases with K.

This increase is more subtle for small values of L, while more dramatic for larger values

of L. As noted earlier, we can see that the Geo-Geo model assumption is valid for small

values of L, and the average transmission delay of the Geo-Geo diverge from that of the

PAP-PH process as L increases.

Figure 6.9 shows the average number of time slots between collisions versus the platoon

size K. Lower interference is achieved with smaller SU transmission lengths. For this

example, the Geo-Geo model achieves good accuracy. In general, the Geo-Geo channel

model achieves good accuracy to estimate E[Tiv] and this accuracy is higher on channels

with low utilization.
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Figure 6.8: Average transmission delay E[D
L

] versus constant platoon size K
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Figure 6.9: Average number of time slots between collisions E[T
iv

] versus constant platoon size K
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Chapter 7

Proactive Spectrum Access Schemes

An intelligent access scheme can use the previous and present sensing results to build a

statistical channel usage model which will aid the SU to make decisions, e.g. handoff.

Therefore, the first phase to apply a proactive spectrum access scheme is the parameter

estimation of the statistical channel usage model. With the estimated channel usage model

the performance of different cognitive radio functions can be improved. Although we only

focus on one PU channel, the usability of the proactive access schemes can be extended to

multiple PU channels.

The authors in [27] have developed a fixed frame structure proactive access model. A

frame is a set of consecutive time slots where a mandatory sensing is performed at the first

time slot and the rest of the time slots are available for SU transmission. Their discrete

time secondary user access model will be explained with more detail in Section 7.3. Based

on a probability of interference constraint, their fixed frame system model dynamically

decides how many time slots are used in each frame for an SU transmission. Using the

work from [27], we have developed a proactive scheme where the secondary user system

has no frame structure but has a fixed transmission length. This fixed transmission length

system will be further described in Section 7.4.

The goal in this Chapter is to show the potential advantages of an accurate statistical

characterization of a bursty PU channel model. Three traffic models will be compared on
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different proactive spectrum access schemes. These three traffic models are: the Geo-Geo

model, the PH-PH model and the PAP-PH model. These models are compared in a low

traffic scenario and in a high traffic scenario. The simulation results are shown in Section

7.4.1 and in Section 7.4.2, respectively.

7.1 Traffic Prediction and Decision Policy Formulation

In this Section, the fundamental statistical formulas to predict the traffic will be developed.

These formulas will then be used in the proactive spectrum access schemes in the subse-

quent sections to aid the SU make decisions.

First, consider that an SU monitors a single PU channel. The secondary network is a

discrete time system where each time slot is the required length to sense the channel. After

sensing the channel idle, an SU keeps track of the number of time slots the channel has

remained idle. This quantity is denoted as ⌧ . Say that the SU concludes that the channel

has been idle for ⌧ time slots and let us denote by Eon(⌧, x) the event that the PU returns to

the channel in x time slots after ⌧ . That is, given that the channel has remained idle for ⌧

slots, Eon(⌧, x) is the event that the channel remains idle only for an additional x� 1 time

slots. In Figure 7.1, the event Eon(9, 3) is shown as an example.

Figure 7.1: E
on

(9, 3): channel has remained idle for 9 time slots and PU returns in 3 time slots

PU OFF

PU ON

...

Sensing time Sensing period

...

... ...SU 
knowledge

τ =9
x =3

Let the random variable Z denote an idle period duration which has a given distribution

function. The probability that the PU will return in x time slots given that the channel has
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been idle for ⌧ slots can be computed by [27]

Pr[Eon(⌧, x)] = Pr(Z = ⌧ + x� 1|Z � ⌧) (7.1)

=
Pr(Z = ⌧ + x� 1)

Pr(Z � ⌧)
.

In this Chapter, it is assumed that an SU cannot detect a PU arrival while transmitting.

Now, consider that the channel has been idle for ⌧ slots. If the SU transmits for the next h

consecutive time slots, the mean number of time slots with interference is [27]

 iv(⌧, h) =
hX

x=1

Pr[Eon(⌧, x)](h+ 1� x). (7.2)

The expression  iv(⌧, h) was computed assuming that the transmission length of an SU

will not exceed a busy period duration. It should be noticed that  iv(⌧, h) depends on the

assumed traffic model. Hence, we will develop Pr[Eon(⌧, x)] for the three traffic models

used in this thesis.

Let the random variable Z be represented by a PAP(C0, C1),m. The stationary distri-

bution of the phases is obtained with ⇡ = ⇡(C0 + C1) and ⇡1 = 1. Then, Pr[Eon(⌧, x)]

becomes

Pr[Eon(⌧, x)] =
⇡

0
C

⌧+x�2
0 C11

⇡

0
C

⌧�1
0 1

, (7.3)

with ⇡

0 defined in (3.12).

If the channel is thought to be characterized by a PH-PH traffic model, where the idle

periods are described by PH(↵, T ),mi we have that

Pr[Eon(⌧, x)] =
↵T

⌧+x�2
T

0

↵T

⌧�1
1

, (7.4)

with T

0 = 1� T1.

For a Geo-Geo idle-busy periods with parameters Geo(b, q), Pr[Eon(⌧, x)] is indepen-
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dent of ⌧ and can be calculated as

Pr[Eon(⌧, x)] = (1� p)x�1
p. (7.5)

7.1.1 Examples of the traffic prediction formulas

If the secondary network has a statistical model for the PU channel patterns, then Equation

(7.1) can be used to gain more knowledge of the channel usage. For instance, consider the

low traffic example explained in Section 5.4.1. The probability that the PU will return in the

next time slot given that the channel has been idle for ⌧ time slots is shown in Figure 7.2.

If we use a geometric distribution to characterize the idle periods, Pr[Eon(⌧, 1)] remains

constant and is independent of ⌧ . Because of the memoryless property of geometric random

variables, we cannot exploit more information of the idle periods by using variable ⌧ .

Figure 7.2: Probability that the PU returns in the next time slot given that the channel has been idle for ⌧
time slots for the low traffic example
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If a phase-type distribution is used to model the idle durations, this provides more infor-

mation than the geometric case; however, for ⌧ larger than 10, Pr[Eon(⌧, 1)] remains almost

constant. This means that the the estimated parameters of the phase type distribution, of
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order 3, is able to capture that the PU is less likely to return when the elapsed idle period is

less than 10. Remember that for the low-usage channel example the mean idle intraplatoon

period is Lintra = 15.

After comparing the shape of Pr[Eon(⌧, 1)] in Figure 7.2, we can see that the results

obtained from the estimated PAP-PH process resembles the results of the original PAP-PH

process. The shape of Pr[Eon(⌧, 1)], belonging to the PAP-PH process, gives us substan-

tially more information of the behaviour of the PU channel model. By looking at the results

obtained from the original PAP-PH process, we can see that there is a higher probability

that the PU will return in the next time slot when ⌧ is around 15, which is the mean in-

traplatoon Lintra idle period of this example. As ⌧ gets closer to Lintra there is a greater

chance that the idle period is an intraplatoon. On the contrary, as ⌧ gets larger than Lintra,

the probability that the idle period is an interplatoon gets higher.

Figure 7.3: Probability that the PU returns in the next time slot given that the channel has been idle for ⌧
time slots for the high traffic example
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Similar results are obtained for the high channel-usage example as shown in Figure

7.3. Similar curve shapes for the original and estimated PAP-PH process are observed.

According to the original PAP-PH process, as ⌧ gets closer to six, the PU has a higher
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probability of returning in the next time slot. Recall that for the high channel usage example

especified in Section 5.4.2, the mean intraplatoon idle period is Lintra = 5.

7.2 Performance Measures

To evaluate the performance of our simulations we have applied the same performance

measures defined in [27]. For each simulation we have calculated the spectrum utilization �

and the interference violation probability piv. The spectrum utilization � has been defined

as [27]

� =
E[Vsuc]

E[Z]
, (7.6)

where Vsuc is the number of time slots per idle period that are the result of a successful

transmission, and E[Z] is the mean idle period. The maximum utilization achievable by an

SU is defined as [27]

�max =
E[Z]� E[⌘s]

E[Z]
, (7.7)

where random variable ⌘s is the number of time slots during an idle period that has been

used for a mandatory sensing. The meaning of mandatory sensing will be further explained

when each proactive scheme is discussed in the next sections.

The interference violation probability can be calculated with [27]

piv =
E[Viv]

E[Z]� E[⌘s]
, (7.8)

where Viv is the number of time slots per idle period that had interference with the PU.

7.3 Fixed Frame System Model

In this Section, we present the discrete time secondary access model that has been designed

in [27]. Consider an SU access model with a fixed frame structure of length M . The first

time slot of each frame is used for sensing; this is mandatory. If the channel is found idle,
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the SU proceeds to calculate the number of consecutive time slots h of the frame which

would be used for transmission. The maximum length of the SU transmission is M � 1

which is determined by the length of the frame. A diagram for the secondary user access

model is shown in Figure 7.4. The SU only starts a transmission in the second time slot of

a frame.

Figure 7.4: Secondary user access model with fixed frame structure of length M

Busy 
period Idle Period

Z2 Z3Y1 Y2Z1

Time slots with interference 

SU performs sensing

PU OFF

PU ON ...

...

...

...SU Tx

SU sleeping 
or sensing 

M: frame length

Su decides to remain idle for the rest of the frame
Su decides to transmit for 4 time slots

Given an interference probability constraint in a time slot, which is denoted as pthr,

the number of time slots used for a transmission is determined per frame. The value set

to pthr will depend on the quality of service required for the PU network. Given that

the SU has knowledge that the PU channel has remained idle for ⌧ time slots and that

the interference probability constraint in a time slot is pthr, we have the following linear

optimization problem

h

⇤ = maximize h

subject to  iv(⌧, h)  (M � 1)pthr,

0  h  M � 1.

(7.9)

Notice that for each ⌧ , the optimal number of time slots for transmission h

⇤ can be

previously calculated and stored in the secondary network as long as the underlying channel

pattern remains unchanged. Then, after sensing the channel is idle at the beginning of the

frame, the SU can use the optimal number of time slots for transmission. Notice that if the

channel is sensed idle after a mandatory sensing, an SU can also decide not to transmit if
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no positive h satisfies constraint (7.9) for the corresponding ⌧ .

If the channel is found busy after a mandatory sensing, the SU has two options: either

go to sleep or continue to sense for the rest of the frame. We will call these two schemes

as:

A) Fixed frame model of length M with sleep state: in this scheme an SU has three

states: sensing, transmitting and sleeping. A mandatory sensing is performed in the

first time slot of each frame. If the PU channel is found busy in a frame, the SU sleeps

for the rest of the frame. This scheme can also be thought of having a fixed sensing

period of length M . That is, the secondary user only senses the channel every M

time slots. The advantage of this scheme is that the SU can conserve its energy.

B) Fixed frame length model of length M with no sleep state: in this scheme an

SU has two states: sensing and transmitting. Mandatory sensing is performed in the

first time slot of each frame. If the PU channel is sensed busy in the first time slot

of a frame, the SU continues to sense for the rest of the frame. The SU however

does not start a transmission if at some point of the frame the PU channel is sensed

idle. Possible SU transmission only occurs if the PU channel is sensed idle at the

beginning of the frame. The advantage of this scheme is that the SU has a better

tracking of the elapsed idle period ⌧ ; hence, we expect that the prediction of how

many slots to be used for transmission is more accurate than the scheme where the

SU sleeps.

For both of these schemes the SU receives a negative acknowledgement (NACK) of

those time slots that had suffered a collision with a PU. Using this information, the sec-

ondary user can update the state of the PU channel accordingly. By having packet ac-

knowledgements, the elapsed idle period ⌧ is tracked more accurately. For Scheme A,

where the SU is allowed to sleep, the historical busy-idle patterns of the PU channel are

inherently not exact. On the other hand, assuming perfect sensing, no channel errors and

NACK, Scheme B accurately captures the state of the PU channel at all times.
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7.3.1 Simulation Results of the Low Traffic Example

Consider that the fixed frame scheme, with frame length M = 10, is applied to the low

traffic example specified in Section 5.4.1. This means that 9 time slots in each frame are

available for transmission. For this PU channel that behaves as a PAP-PH process, the

optimal transmission length h

⇤ versus ⌧ is plotted for each estimated channel usage model

in Figure 7.5. If the SU uses a Geo-Geo model to predict, then it will always dedicate

h

⇤ = 8 time slots in a frame for transmission. In a similar way, the PH-PH model will

also use 8 time slots in general; however, when ⌧  3 the SU is more aggressive and all

available time slots, M � 1 = 9, are used for transmission.

Figure 7.5: Optimal transmission length h⇤ versus ⌧ for p
thr

= 0.05 and M = 10.
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An SU using the original or estimated PAP-PH models is more cautious in the trans-

mission length when ⌧ gets closer to the mean intraplatoon idle period. Hence, we can see

that the optimal transmission length decreases as ⌧ gets closer to Lintra = 15. Moreover,

the SU becomes more aggressive as ⌧ > Lintra because the SU is more confident that the

current idle period is of interplatoon type.

The effect of the interference constraints, pthr, in the optimal transmission length can be

observed in Figure 7.6. This figure only shows the results for the original PAP-PH model.
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Figure 7.6: Optimal transmission length h⇤ versus ⌧ for different p
thr

values with M = 10 in the low traffic
example

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

8

9

10

τ

h
∗

 

 

pthr=0.01

pthr=0.03

pthr=0.05

pthr=0.07

As pthr gets larger, the SU is more aggressive, and more time slots are used for transmission

in a frame.

To compute the performance measures defined in Section 7.2, Monte Carlo simulations

with 30 replications of one million time slots have been performed. First, consider the fixed

frame scheme with sleep state with a time slot interference probability of pthr = 0.05. The

average interference in a time slot, piv, versus M is shown in Figure 7.7. For this traffic, the

estimated Geo-Geo and estimated PAP-PH satisfy the pthr = 0.05 interference threshold;

however, the PH-PH channel model does not satisfy pthr for a frame length larger than 10.

Although the estimated Geo-Geo model satisfies the interference threshold, we can observe

that the estimated PAP-PH process achieves lower interference for 2  M  15.

The average utilization as a function of M for the access model with sleep state is

plotted in Figure 7.8. While the achievable mean utilization of the Geo-Geo process is

highly affected by larger frames sizes, the estimated PAP-PH process shows more stability

and accomplishes a higher utilization when 9  M  16. Hence, from Figures 7.7 and 7.8,

we think that the Geo-Geo model can still be used for small frame sizes at a cost of higher
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Figure 7.7: Fixed frame scheme: p
iv

as a function of M in the low traffic example with p
thr

= 0.05
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Figure 7.8: Fixed frame scheme: � versus M in the low traffic example with p
thr

= 0.05

2 4 6 8 10 12 14 16
0.4

0.5

0.6

0.7

0.8

0.9

1

M

U
til

iz
at

io
n 

( Φ
) 

 

 

PAP−PH Original
PAP−PH process
PH−PH process
Geo−Geo process
Φmax

interference. Nevertheless, for M > 10 the spectrum efficiency of the Geo-Geo model

decays rapidly. Likewise, the estimated PH-PH model has similar performance behaviour.

Thus, the Geo-Geo and PH-PH models are less reliable than the PAP-PH model, especially
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Figure 7.9: Fixed frame scheme: p
iv

versus p
thr

in the low traffic example with M = 10
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as M gets larger.

In Figure 7.9, we show the interference violation probability as a function of the inter-

ference threshold when M = 10. Even though the Geo-Geo and PH-PH achieves compara-

ble interference with the PAP-PH process when pthr  0.05, the estimated PAP-PH process

will allow a higher utilization of the PU channel, as shown in Figure 7.10. Nevertheless,

when the interference constraint probability is somewhat large, such as pthr > 0.05, the

estimated Geo-Geo model and estimated PH-PH are still suitable for low-usage channels

with a small degree of burstiness.

Even for a large interference constraint pthr, in Figure 7.10, the gap between the achiev-

able utilization � of a scheme and maximum utilization exists because the SU can only

transmit at the beginning of a frame.
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Figure 7.10: Fixed frame scheme: � versus p
thr

in the low traffic example with M = 10
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7.3.2 Simulation Results of the High Traffic Example

We have applied the fixed frame scheme with no sleep state to the PU channel with high

traffic example defined in Section 5.4.2. With an interference threshold of pthr = 0.05, the

interference probability and channel utilization as a function of M is shown in Figures 7.11

and 7.12.

The oscillating behaviour of piv for the Geo-Geo model, comes from the fact that for a

given threshold pthr and frame length M , the optimal transmission length h

⇤ in a frame is

constant and is independent of the elapsed idle period. Hence, in this example, h⇤ = 1 for

3  M  6, h⇤ = 2 for 7  M  11 and h

⇤ = 3 for 12  M  16.

As shown in Figure 7.12, the estimated PAP-PH process outperforms the Geo-Geo and

PH-PH models in terms of channel utilization. Moreover, in this simulation, an SU using

the Geo-Geo model has an average underutilization of 58.1% with respect to the estimated

PAP-PH model. While efficiently predicting spectrum opportunities, the estimated PAP-PH

model causes a mean interference below the interference threshold.

In Figure 7.13, we show that the estimated PAP-PH model discovers more opportunities
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Figure 7.11: Fixed frame scheme: p
iv

as a function of M in the high traffic example with p
thr

= 0.05
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Figure 7.12: Fixed frame scheme: � versus M in the high traffic example with p
thr

= 0.05
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than the Geo-Geo and PH-PH models for an interference threshold between 0.05  pthr 
0.1. We can see from Figures 7.13 and 7.10, that the efficiency of identifying spectrum

opportunities decreases as the traffic in the PU channel increases. Moreover, the prediction
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of the Geo-Geo model gets worse as the channel usage increases.

Figure 7.13: Fixed frame scheme: � versus p
thr

in the high traffic example with M = 10
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7.3.3 Simulation Results of the Geo-Geo PU Channel Example

Consider a PU channel with geometrically distributed idle and busy periods, with parame-

ters Geo(0.025, 0.025). The mean idle period and mean busy period are both 40. We have

applied the estimated traffic models, from Section 5.4.3, to the fixed frame access scheme

with no sleep.

The mean interference and the mean utilization as a function of the frame size is given

in Figures 7.14 and 7.15 respectively. The three estimated traffic models have the same

performance. If one achieves lower interference, it also accomplishes lower utilization

and viceversa. Besides achieving higher performance with bursty patterns, an SU using

the PAP-PH model will also accurately predict the behaviour of a Geo-Geo PU channel.

It means that a PAP-PH model can also be used in a Geo-Geo PU channel successfully.

Moreover, the same performance in terms of throughput and interference probability as the

Geo-Geo model will be obtained.
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Figure 7.14: Fixed frame scheme: p
iv

as a function of M in the Geo-Geo example with p
thr

= 0.05
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Figure 7.15: Fixed frame scheme: � versus M in the Geo-Geo example with p
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7.4 Fixed Transmission Length System Model

In this Section, we develop a variation of the proactive scheme presented in Section 7.3

where the secondary user has a fixed transmission length.

In this scheme, it is assumed that the SU does not sleep and is either sensing or trans-

mitting in a particular time slot. The transmission length of the SU is constant and denoted

by L. Specifically, each SU transmission involves L consecutive time slots. When the PU

channel is sensed idle, the SU can decide whether or not to start a transmission. If the SU

decides not to start a transmission, this action is referred to as waiting. During the waiting

state, the SU continues to sense the channel.

As the previous proactive schemes, the decision whether or not to start a transmission

is based on a time slot interference constraint pthr. For this proactive scheme, the SU

transmits for L consecutive time slots only if the following condition holds

 iv(⌧, L)  � ⇥ pthr, (7.10)

with pthr the interference violation probability threshold for one time slot, and � is the

number of consecutive time slots where the SU remained idle during an OFF period waiting

for the condition (7.10) to hold plus L.

Figure 7.16: Secondary user access model with fixed transmission length L
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The SU access model with a fixed transmission length is shown in Figure 7.16. The

variable � is the number of time slots the SU has in its advantage to preserve the proba-
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bility of interference pthr constraint of the PU channel. More specifically, after each SU

transmission of length L the variable is reset to � = L. Consider that at time slot n = 1

the channel is sensed idle and it has remained idle for ⌧ time slots. If the condition (7.10)

does not hold, the SU will restrain from transmission in the next time slot, n = 2. In this

case, variable � is increased by one, i.e., � = � + 1. If the PU channel still remains idle in

the next time slot, n = 2, the SU may have larger chances of satisfying condition (7.10). If

it does satisfy the condition, then the SU will proceed to transmit during time slots n = 3

to n = 3 + L � 1. On the other hand, if it does not satisfy condition (7.10), the action

of increasing variable � by one continues as long as the SU keeps on waiting during an

PU OFF period and condition (7.10) is not yet satisfied. The moment when the channel is

sensed busy, the variable � is reset to � = L, and the SU continues the sensing task until

the channel is idle.

The action of a unit increase in � can be seen as a reward to the SU for remaining idle in

the next time slot and not causing potential interference to the PU. If the channel is sensed

idle in the next time slots the SU can have a possibly advantage for the condition (7.10) to

hold. Although, it will depend ultimately on the average number of interference the SU is

likely to cause given that the channel has remained idle for ⌧ time slots.

Remember that when the SU is in the transmission state it cannot detect a PU arrival.

Hence, a collision only occurs in the following scenario: the secondary user starts trans-

mitting, and the primary user returns before the SU has finished transmitting. If there has

been a collision, the SU receives a NACK during these time slots that had suffered interfer-

ence. As in the fixed frame length model with no sleep state explained in Section 7.3, this

fixed transmission length model also has a perfect knowledge of the PU channel historical

behaviour. This is because; perfect sensing and no channel errors are assumed.

Given an interference threshold pthr and a fixed transmission length L, an SU will

always start a transmission for specific values of ⌧ . That is, with a channel usage model we

can calculate when condition (7.10) will hold and the entire behaviour of the transmitter

can be known beforehand. In other words, for a traffic model, the SU will always transmit
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at particular values of ⌧ . With perfect sensing, this implies that the receiver would not need

additional control messages to know when a transmission has started; however, in reality,

perfect sensing is not possible.

7.4.1 Simulation Results of the Low Traffic Example

Let us assume that the idle and busy periods of a PU channel behave as a PAP-PH process

with parameters defined in Section 5.4.1. Monte Carlo simulations have been performed to

obtain the performance measures defined in Section 7.2 for the fixed transmission length

proactive scheme.

We first set the interference violation probability to pthr = 0.05. The effective inter-

ference probability piv as a function of L, for the three channel-usage models, is shown in

Figure 7.17. For values of L � 9, the Geo-Geo traffic model does not satisfy the interfer-

ence probability threshold pthr. As the transmission length L increases, an SU causes more

interference to PUs in general. Nonetheless, the effect in piv of increasing L, is much less

for a PAP-PH model.

In Figure 7.18, we show the achievable utilization for each traffic model as a function

of transmission length L. The maximum utilization �max has been calculated based on the

original traffic model. The maximum utilization is an increasing function of L because

when L is larger, less dedicated sensing is performed. When L > 7, the SU has more

difficulties in predicting the behaviour of the channel, and the SU spends more time in

the waiting state for the transmission requirement in (7.10) to hold. Recall that in this

example, the mean idle intraplatoon is Lintra = 15. A transmission length that is close to

Lintra, should cause the SU to avoid transmission when the current idle period has a high

chance of being of intraplatoon type. Thus, the mean utilization, of the PAP-PH process,

stays almost constant for 8  L  15 in Figure 7.18. On the other hand, prediction with

the Geo-Geo process will cause a decreased spectrum efficiency when L � 8, because a

Geo-Geo process cannot capture the types of idle periods. Not only the Geo-Geo process

does not efficiently utilize the spectrum, but also causes a higher interference when the
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Figure 7.17: Fixed transmission length scheme: p
iv

as a function of L in the low traffic example with
p
thr

= 0.05
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Figure 7.18: Fixed transmission length scheme: � versus L in the low traffic example with p
thr

= 0.05
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transmission length is close to Lintra.

When comparing the results in Figure 7.7 of the fixed frame transmission scheme with
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sleep, we can say that the fixed transmission length scheme is more aggressive when L  7.

In addition, lower interference is achieved in the fixed transmission length scheme because

an SU has perfect knowledge of the PU channel when making decisions; while in the fixed

frame scheme example, given in Section 7.3.1, an SU is allowed to sleep .

7.4.2 Simulation Results of the High Traffic Example

To see the effect of an increased channel utilization, we executed the fixed transmission

length scheme in a PU channel with high traffic with parameters defined in Section 5.4.2.

Figures 7.19 and 7.20 show the interference probability and utilization as a function of L,

respectively.

Figure 7.19: Fixed transmission length scheme: p
iv

as a function of L in the high traffic example with
p
thr

= 0.05
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In this scheme, the estimated Geo-Geo model performance is affected by an increased

channel usage. Even for small transmission lengths, higher interference and lower spectrum

utilization is accomplished with the Geo-Geo model when compared to the estimated PAP-

PH model. When L > 3 or close to the mean idle intraplatoon period Lintra, we can see an
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Figure 7.20: Fixed transmission length scheme: � versus L in the high traffic example with p
thr

= 0.05
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abrupt descent of piv for the Geo-Geo process and PH-PH process. This is a direct result of

the SU remaining in the sensing and waiting state for long periods. This fact can be seen

in Figure 7.20, where we can identify that for all L, the PAP-PH model discovers more

spectrum opportunities than the Geo-Geo and PH-PH models. Therefore, we can also say

that a higher utilization and a reasonable interference probability to the PU channel are

achieved when the PAP-PH process is used.

7.5 Comparison and Comments

The performance of the Geo-Geo model is better in the fixed frame scheme explained

in Section 7.3, rather than the fixed transmission length scheme outlined in Section 7.4.

To achieve acceptable prediction results with the Geo-Geo model, an SU should use small

frame sizes in the fixed frame scheme. As the channel utilization increases, the advantage of

using a PAP-PH process, instead of a Geo-Geo model or a PH-PH model, to predict future

channel states becomes more obvious. That is, higher discovery of spectrum opportunities
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is accomplished with the PAP-PH traffic model as the channel-usage becomes higher. This

is a direct result of the prediction accuracy of the PAP-PH traffic model.

If the fixed transmission length scheme is used over a bursty channel model, the Geo-

Geo model becomes unusable when the transmission length is close to the mean intrapla-

toon period. Hence, we recommend the use of a frame size or transmission length that is

smaller than the mean intraplatoon period.

Throughout our simulations, we noticed that the PAP-PH process outperforms the Geo-

Geo model in general. If lower interference is caused by the Geo-Geo model, it is very

likely that the Geo-Geo model has lower spectrum utilization as well. Although the perfor-

mance of the PH-PH model has been very similar to the Geo-Geo model, we think that if

the order of the PH distributions is larger, the PH-PH model has the capacity of achieving

better results.

When comparing the performance of the PAP-PH model in the different proactive

schemes, higher spectrum utilization are obtained in the fixed frame scheme in general.

However, lower interference probability is achieved in the fixed transmission length scheme.

Hence, the achievable performance with the evaluated proactive schemes is quite similar.

In terms of interference probability, the fixed frame scheme is more conservative.
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Chapter 8

Concluding Remarks

8.1 Conclusion and Discussion

Given that the Geo-Geo model is not adequate for all traffic scenarios, we propose the

PAP-PH channel-usage model, which is a more general traffic model that can describe

bursty channel behaviour patterns. Our design motivation comes from the fact that for

many years, researches have concluded that the data traffic can exhibit bursty characteris-

tics and be described by heavy tailed distributions. Moreover, we think that the PAP-PH

model maintains reasonable analytical simplicity and there are fitting procedures available

to estimate its parameters. These fitting procedures can be designed such that they work

without a manual override. That is, the EM-algorithms only expect as inputs the sequence

of interarrival samples and the order of the phase type distributions of the traffic model.

This results in a highly adaptable algorithm without continuous user intervention.

We have investigated the potential effect of using traditional statistical models, i.e. the

Geo-Geo model and the PH-PH model, over a channel that exhibits burstiness in a cogni-

tive radio network scenario. Different secondary user channel access schemes to a single

primary user channel have been designed.

First, a reactive channel access scheme, where the SU uses no historical sensing infor-

mation, has been designed. In this access scheme, the SU has a fixed transmission length,
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and a successful transmission only occurs when the entire transmission length has not suf-

fered a collision. We compare two performance measures that an investigator will likely

obtain, if a Geo-Geo model assumption is used in a PU channel characterized by a PAP-PH

process. These two performance measures are: the average transmission delay and average

number of time slots for a collision with a PU.

According to our results, the Geo-Geo model assumption is appropriate to derive the

average number of time slots between successive collisions. The reactive scheme has been

designed such that the SU has the ability to sense while transmitting. Hence, the effects

of the Geo-Geo model can be quite different if the SU cannot sense during a transmission.

Our results show that when the PU channel has a low traffic, the Geo-Geo model can

be successfully used to approximate the mean transmission delay of the reactive scheme.

However, for a PU channel with high bursty traffic, as the SU transmission length increases,

the overestimation in the mean transmission delay of the Geo-Geo model with respect to

the PAP-PH model increases. From the high bursty traffic example, it can be concluded

that the Geo-Geo model assumption is no longer suitable when the transmission length is

close or larger than the mean idle intraplatoon period.

If the secondary network has historical sensing information, applying a proactive access

scheme is more suitable. In this thesis, we have analysed two proactive access schemes.

We compared the achievable performance of the network in terms of spectrum utilization

and interference probability. First, we considered a PU channel characterized by a PAP-

PH process. Compared with the estimated PAP-PH process, simulation results show that

traditional channel usage models underutilize the available white spaces and cause a larger

degree of interference to the primary users. This is because the PAP-PH process describes

the channel more accurately and the secondary user can exploit the additional information

in its decision policy. As the bursty channel usage increases, accurate channel character-

ization with the PAP-PH process allows the SU to discover more spectrum opportunities

while maintaining reasonable interference.

To show the generality of our proposed channel usage, a Geo-Geo PU channel was also
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considered. Our findings show that the PAP-PH process is useful for bursty and non-bursty

spectrum use patterns.

Special attention has been given to the Geo-Geo model, because we think that if the

order of the idle phase type distribution is larger, a PH-PH model has the capacity of im-

proving its performance.

8.2 Proposal for future work

In this research, we have focused on access schemes that involve a single PU channel. The

proactive spectrum schemes can be further investigated for multiple PU channels. As ex-

plained in Section 2.4.2, many new concerns rise with multiple PU channels. For instance,

an SU needs to efficiently choose the channels to continue transmission. We expect that an

accurate characterization of the PU channels, in the channel ordering scheme, will improve

the identification of the spectrum opportunities. Another example is the implementation of

a proactive switching. A proactive switching may allow a higher utilization of the white

spaces. Consider bursty channels described by PAP-PH processes. Intuitively, a smart

switch will occur when an SU switches to a different channel when the current idle period

is likely to be of intraplatoon type. These and other cognitive radio functions can be used

with a PAP-PH channel-usage model assumption.

Another interesting research direction is to incorporate imperfect sensing in the sec-

ondary network. Further analyses are needed to measure the effects of imperfect sensing

in the proactive spectrum access schemes. The effects can be similar to those encountered

with the fixed frame model with sleep state explained in Section 7.3.

Since the busy duration of the traffic can exhibit heavy-tailed behaviour, these heavy-

tailed busy periods can be incorporated to the traffic model by describing the busy periods

with a platoon arrival process. Hence, a PH-PAP model is a potential candidate to charac-

terize the heavy-tailed busy periods in discrete time. By alternating the state representation

of the PAP-PH model, the heavy-tailed busy periods can be analysed in the simulations.
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Even a more complex model can involve the usage of platoon arrival processes for the idle

and busy periods of a PU channel. Further investigation is needed to study their effects in

deriving the performance measures in the spectrum access schemes.

Finally, the busy period distributions can be used for a smart sensing scheme, where

an SU remains idle for longer periods when the channel is likely to remain busy. Energy

aware schemes can be further designed.
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