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Abstract

The probabilistic method in combinatorics is a nonconstructive tool popular-

ized through the work of Paul Erdős. Many difficult problems can be solved

through a relatively simple application of probability theory that can lead to

solutions which are better than known constructive methods.

This thesis presents some of the basic tools used throughout the probabilis-

tic method along with some of the applications of the probabilistic method

throughout the fields of Ramsey theory, graph theory and other areas of com-

binatorial analysis.

Then the topic of random graphs is covered. The theory of random graphs

was founded during the late fifties and early sixties to study questions involving

the effect of probability distributions upon graphical properties. This thesis

presents some of the basic results involving graph models and graph properties.
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Chapter 1

Introduction

This chapter introduces the topics of the probabilistic method and random

graphs, along with an outline of this thesis.

1.1 The probabilistic method

The probabilistic method is a powerful tool in discrete mathematics. The

essential idea is as follows: Trying to prove a structure with a collection of

properties exists, define an appropriate sample space, Ω, a probability measure

P, and show that the desired properties hold with positive probability. Here

is an example of the probabilistic method at work.

For every positive integer k, the Ramsey number R(k, k) is the smallest

integer n such that every two-colouring of the edges of the complete graph,

Kn, there is a complete subgraph, Kk, such that all of the edges are either red

or all of the edges are blue. F. P. Ramsey [32] showed that for every positive

integer, k, R(k, k) exists.

Claim 1. If
(

n
k

)
21−(k

2) < 1 then R(k, k) > n.

A proof by Erdős [8] showed that if n satisfies the hypothesis, then with

positive probability there exists a two-colouring of the edges of Kn, with no

monochromatic Kk. One advantage of Erdős’ proof is that the proof contains

5
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no constructions and few calculations; whereas a constructive proof of such

a theorem would involve finding a colouring that fails to have a monochro-

matic Kk. For more on constructive methods in Ramsey theory, see Radzis-

zowski [31]. See Chapter 4 for the proof of Claim 1 and other probabilistic

results in Ramsey theory.

1.2 Random graphs

In their papers (see e.g. [14]) of 1959-60, the Hungarian mathematicians Paul

Erdős and Alfred Rényi popularized the methods that underlie the founda-

tions of the theory of random graphs. Their idea was to use probabilistic and

statistical methods to study limiting behavior of graph theoretic properties.

One approach to better understand the notion of random graphs is to think

of a random graph as a living organism that evolves with time. Let p be the

probability that any two vertices in a graph are joined by an edge. Upon being

born, p = 0, the graph is just a collection of isolated vertices with no other

structure. As p starts to grow, the graph gains edges with the ‘typical’ graph

having
(

n
2

)
p edges. While p < 1

(n
2)

, the average graph is a forest of small trees.

As p continues to grow, the trees get larger along with small and then larger

cycles start to appear. Around p = 1
n

the graph starts forming larger connected

components; coalescing into yet larger components eventually forming a giant

component made up of nearly all the vertices.

Part of what made these papers so fundamental to the development of

random graphs was the ability to present many different and interesting ques-

tions to work on, some of which are studied in this thesis. The first topic

covered is threshold functions. Let Q be a property of graphs. The function

r : Z+ → [0, 1] is called a threshold function if for large positive integers n, if

p < r(n), the probability of a graph having Q goes to zero, while for r(n) < p,

the probability of a graph having Q goes to one.

As an example of a threshold function, let Q be the property ‘G has an
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isolated vertex. For every n, the graph on n vertices with no edges, Kn,

has isolated vertices while the complete graph, Kn, has no isolated vertices

and there are many graphs between these two extremes that both have and

don’t have Q. When 0 ≤ p is smaller than r(n), the probability of a graph

having an edge is less than 1/2 so the graphs with fewer edges have higher

probabilitygraphs with higher probability has few edges so is likely to have

isolated vertices. As p gets closer to one, the typical graph has a larger number

of edges and therefore is less likely to have isolated vertices.

As Erdős and Rényi [9] explain, while the study of random graphs is inter-

esting in it’s own right, the evolutionary behavior of graphs may be considered

a simplified model of the evolution of more sophisticated structures consist-

ing of vertices and connections such as railways or communication networks.

In a recent paper by Newmann et al. [29] some of the more recent applica-

tions of the random graphs phenomena are explored. The writers explain that

random graphs “have been employed extensively as models of real world net-

works of various types”, with particular success in the field of epidemiology.

The spread of a disease through a “community depends strongly on the pat-

tern of contacts” between the individuals infected with the disease and those

who are susceptible to it. A good model for this pattern is a network, “with

individuals represented by vertices and contacts capable of transmitting the

disease by edges”. This ‘class of epidemiological models are known as sus-

ceptible/infectious/recovered (or SIR) models’ often use the so-called “fully

mixed approximation”, in which the assumption is that “contacts are random

and uncorrelated, i.e., that they form a random graph”. Thus the concept of

random graphs has moved on from being observations regarding properties of

graphs to form a basis to the study of real world problems in such fields as

sociology, biology and computer science.
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1.3 Layout of Thesis

The second chapter introduces basic terminology used throughout this thesis

along with mathematical necessities. The third chapter presents elements of

probability theory along with several theorems that are the basis for the meth-

ods displayed in this thesis. Chapter four presents an outline of four different

methods commonly deployed within combinatorial probabilistic arguments.

The fifth chapter presents some examples of applications of probability to var-

ious topics in general combinatorics including Ramsey theory, combinatorial

set theory and combinatorial geometry and graph theory.

Chapters six through eight present some results in the theory of random

graphs. Chapter six introduces the probability models Gn,p and Gn,q of graphs,

along with a 0-1 law, a combination of logic, graph theory and probability

theory. Chapter seven presents the idea of threshold functions and applies

them to some graphical properties along with a theorem for balanced graphs,

allowing for the calculation of thresholds for a large class of properties. Chapter

8.1 examines what occurs in the neighborhood of threshold functions and shows

that some graph properties converge in distribution to the Poisson distribution.

Section 8.2 then introduces the theory of graphical evolution, which sumarises

the ideas of random graphs into one theory (see e.g. [4]). Chapter nine presents

the material to complete the computations in 8.1 and 8.2.



Chapter 2

Notation and mathematical

tools

This chapter contains the definitions, symbols and mathematical tools nec-

essary for the entire text. Throughout this text, the integers, rational and

real numbers are denoted by Z,Q, and R, respectively. The collection of pos-

itive integers {1, 2, 3, . . .} is denoted by Z+. For integers a < b, the notation

[a, b] = {x ∈ Z : a ≤ x ≤ b} is used for an interval of integers. In partic-

ular, [1, n] = {1, 2, . . . , n}, is often abbreviated by [n]. Given n ∈ Z+, the

permutation group of n elements is denoted by Sn.

For the most part, functions in this script are real-valued, (often integer-

valued), and have Z+ or [n] as their domain. For example, t(n) might be the

number of graphs on n vertices that have no triangle. To compare two such

functions and their asymptotic rates of growth, certain notation is helpful.

For two functions f and g, write f = o(g) [read “f is little oh of g”] or

f(n) = o(g(n)) if and only if limn→∞
f(n)
g(n)

= 0. For example, ln x = o(x2), and

1
n

= o(1). Hence, the notation f(n) = (1 + o(1))g(n) means that f and g are

approximately equal for large n, that is, limn→∞
f(n)
g(n)

= 1, in which case one

often writes f ∼ g.

When f is eventually bounded above by some fixed multiple of g, another

9
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notation, called the “big oh” notation is used: write f(n) = O(g(n)) if there

exists a positive constant C ∈ R and an n0 ∈ Z+ so that for all n > n0, f(n) ≤

Cg(n). For example, x2 + 1 = O(3x2 + 14x) (e.g., take C = 1, and n0 = 10).

Turning the big oh notation inside out, define f = Ω(g) if g = O(f). If both

f = O(g) and f = Ω(g), write f = Θ(g); this essentially describes the situation

where for some constants c and C, f and g satisfy cg ≤ f ≤ Cg. It is often

convenient to abbreviate an expression like limn→∞ f(n) = L by f(n) → L.

The notation f(n) → ∞ is reserved to describe functions whose values get

arbitrarily large as n gets large.

2.1 Set theory

In this section, the definitions and notation are given and is not intended to

be a set theory primer; for further information on set theory, the text [22] is

a comprehensive source. For any set Ω, the power set of Ω is the set of all

subsets of X; throughout this text the notation P(Ω) is used for the power set

of Ω. For any set A ∈ P(Ω), by Ac is meant the set of x ∈ Ω such that x 6∈ A

and if A, B ∈ P(Ω) denote A \ B = {x ∈ A : x 6∈ B}. Thus Ac = Ω \ A. For

any set X, and any k ∈ Z+, [X]k = {S ⊆ X : |S| = k}.

Given a set X and an r ∈ Z+, an r-colouring is a function χ : X → [r];

while for i ∈ [r], the set χ−1(i) is the i-th colour class. A set Y ⊂ X is

said to be monochromatic under a colouring χ iff there exists an i such that

Y ⊆ χ−1(i). If χ : X → [2] is a two-colouring of X, it is common practice

to replace the set {1, 2} by the set {red, blue}; if Y ⊆ X, the statement “Y

is monochromatic” is often replaced with the statement “Y is red” or “Y is

blue”.

Definition 2.1.1. (Total Ordering)

A set X is totally ordered by the relation ≤ iff ≤ is a reflexive, antisymmetric

and transitive binary relation.
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2.2 Graph theory

Many of the applications of the probabilistic method spotlighted here involve

graph theory. In this section, the notation and basic graph theory used in this

thesis is presented. For further information, see any basic text on graph theory

(e.g. [39] or [7]).

A graph is an ordered pair G = (V, E), where V = V (G) is a non-empty set

whose elements are called vertices, and E = E(G) ⊆ [V ]2 is a set of unordered

pairs of vertices; elements of E are called edges. An edge e = {x, y} ∈ E(G)

is said to join x and y; also x and y are end points of e, x and y are incident

with e, or x and y are adjacent. For each n ∈ Z+, if |V | = n then the graph

Kn = (V, [V ]2) is called the complete graph on n vertices. A directed graph (or

digraph) is a pair D = (V, E) of vertices, V and a set E consisting of ordered

pairs of vertices, each such pair in E is called a directed edge or arc.

If G = (V, E) is a graph, a graph H = (V ′, E ′) is called a subgraph of G if

V ′ ⊆ V and E ′ ⊆ ([V ′]2) ∩ E; if E ′ = ([V ′]2) ∩ E, H is called the subgraph of

G induced by V ′. If S ⊂ V , denote KS as the complete subgraph on S. A set

S ⊆ V is called clique (or a k-clique if |S| = k) when the subgraph induced

by S is KS. A set V ′ ⊆ V is independent if [V ′]2 ∩E = ∅ and α(G) is the size

of the largest independent subset of V .

A walk in a graph G = (V, E) is an alternating sequence v1e1v2e2 . . . em−1vm

of vertices and edges (not necessarily distinct) so that for each i = 1, 2, . . . m−1,

ei = {vi, vi+1}; such a walk has length m − 1. A closed walk is a walk where

v1 = vm. A trail is a walk with no edge repeated. A path is a trail with no

vertex repeated. A cycle is a closed walk with no repeated vertices (except

the first and last). A graph is connected if there is a path between every pair

of vertices. A subset, S, of vertices is called a clique if the induced subgraph

is complete.

A tournament is an ordered pair T = (V, D) where V = V (T ) is set whose

elements are called vertices (or players) and D = D(T ) ⊂ V × V where for
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every vi 6= vj ∈ V , either (vi, vj) ∈ D or (vj, vi) ∈ D but not both. A graph

G = (V, E) is bipartite if there exists U,W ⊆ V , disjoint such that U ∪W = V

and for every edge e = {x, y} ∈ E either x ∈ U and y ∈ W or vice versa.

The girth of a graph, G = (V, E), (denoted by girth(G)) is the length of the

shortest cycle in G. For every graph G, the nonnegative integer χ(G), called

the chromatic number of G, is the least integer such that there exists a χ(G)-

colouring of E(G) such that no pair of adjacent vertices are monochromatic.

The following well known fact is needed later.

Lemma 2.2.1. For every graph G,

χ(G) ≥ n

α(G)
. (2.1)

Proof. If χ is any χ(G) colouring of V , the colour classes partition V into

independent sets of size at most α(G). Thus

χ(G)α(G) ≥ n.

2.3 Useful approximations

As Alon and Spencer explain in [1], part of the art of the probabilistic method is

the deduction of bounds that may not be the best possible but allow for cleaner

and simpler proofs. As is seen throughout this document, approximations are

often necessary in the proofs.

2.3.1 Approximating the exponential

To approximate the exponential, recall

∀x ∈ R ex =
∞∑

k=0

xk

k!
(2.2)

is the Taylor series at x of the exponential function.
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Lemma 2.3.1. For all x ∈ [0,∞), 1 + x ≤ ex.

Proof. Truncate equation (2.2) after the second term.

Lemma 2.3.2. For all d ∈ (0,∞),
(
1− 1

d+1

)d ≥ e−1.

Proof. Assume d > 0 and put x = 1/d in inequality (2.3.1) to get

d + 1

d
= 1 +

1

d
≤ e1/d.

Thus, (
d + 1

d

)d

≤ e.

Hence

e−1 ≤
(

d

d + 1

)d

=

(
1− 1

d + 1

)d

.

2.3.2 Approximating the logarithm

Another function for which approximations are necessary is the natural log,

denoted throughout this text as ln. Since

1− yn+1 = (1− y)(1 + y + . . . + yn)

or

1

1− y
=

1 + y + . . . + yn

1− yn+1
. (2.3)

When |y| < 1, then the limit as n goes to infinity in equation (2.3) exists so

that if |y| < 1,

1

1− y
= lim

n→∞

n∑
k=0

yk

=
∞∑

k=0

yk.

Integrating both sides yields

ln (1− y) = −
∞∑

k=1

yk

k
(2.4)
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or replacing y by −y,

ln (1 + y) = −
∞∑

k=1

(−y)k

k
. (2.5)

2.3.3 Binomial coefficients

For the positive integers, k ≤ n, recall the following formulas:

n! = n(n− 1)(n− 2) · · · 2 · 1;

(n)k = n(n− 1)(n− 2) · · · (n− k − 1);(
n

k

)
=

(n)k

k!
=

n!

k!(n− k)!
.

The notation (n)k is often called a falling factorial. To conclude this section,

here are a few more useful results whose proofs won’t be provided here.

Lemma 2.3.3. If k = o(n1/2), then

(n)k

nk
∼ e−( k2

n
+ k3

2n2 ). (2.6)

Lemma 2.3.4. (See for example [16])(Stirling’s approximation of n!)

n! = (1 + o(1))
√

2nπ
(n

e

)n

. (2.7)

Theorem 2.3.5. (Binomial theorem) Let x, y ∈ R, then for every n ∈ Z+;

(x + y)n =
n∑

k=0

(
n

k

)
xkyn−k. (2.8)

Lemma 2.3.6. (See for example [7]) For all t ∈ Z+,
(

n
t

)
≤
(

ne
t

)t
.

Proof. (Of Lemma 2.3.6) Let t ∈ Z+ be given. Theorem 2.3.5 implies(
1 +

t

n

)n

=
n∑

k=0

(
n

k

)(
t

n

)k

≤ et.

Therefore as t > 0,(
n

t

)(
t

n

)t

≤ et.

Hence (
n

t

)
≤
(ne

t

)t

.



Chapter 3

Elementary probability

This chapter covers the probability basics that are used throughout this thesis.

As it is assumed that a reader knows nothing about probability theory, the

definitions needed, along with properties, are given. This chapter concludes

with a few probability inequalities that are necessary for this thesis.

3.1 Measure theory

Measure theory is the basis of modern probability theory, so this section pro-

vides the needed measure theoretic ideas.

Definition 3.1.1. Given a set Ω, a collection Σ ⊆ P(Ω) is called an algebra

iff:

i. Ω ∈ Σ.

ii. If A ∈ Σ then Ac ∈ Σ.

iii. If A, B ∈ Σ then A ∪B ∈ Σ.

An algebra Σ is called a σ-algebra if Σ is closed under countable unions.

Definition 3.1.2. If Σ ⊆ P(Ω) is a σ-algebra, a function µ : Σ → [0,∞] is

called a measure iff:

15
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i. µ(∅) = 0.

ii. If A ⊆ B, then µ(A) ≤ µ(B). In this case, µ is said to be monotone.

iii. If {Ai}∞i=1 ⊆ P(Ω) are pairwise disjoint, then µ(
⋃∞

i=1 Ai) =
∑∞

i=1 µ(Ai).

In this case, µ is said to be countably additive.

Lemma 3.1.3 (Properties of a measure). Let Σ be a σ-algebra. Suppose µ :

Σ → [0,∞] is a measure and A, B ∈ Σ.

1. If {Ai}n
i=1 ⊂ Σ are disjoint then µ(∪n

i=1Ai) =
∑n

i=1 µ(Ai).

2. If B ⊂ A and µ(B) < ∞ then µ(A \B) = µ(A)− µ(B).

3. (a measure is countably subadditive) If {Ai}∞i=1 ⊂ Σ (not necessarily

disjoint) then

µ(
∞⋃
i=1

Ai) ≤
∞∑
i=1

µ(Ai).

4. If A ∈ Σ then µ(A) + µ(Ac) = µ(Ω).

Proof. 1. Assume {Ai}n
i=1 ⊆ Σ are mutually disjoint and for all i > n,

define Ai = ∅, thus {Ai}∞i=1 ⊆ Σ are mutually disjoint. Since the union

of a set with any number of empty sets doesn’t change the set,

∪n
i=1Ai = ∪∞i=1Ai.

As µ is a measure,

µ(∪n
i=1Ai) = µ(∪∞i=1Ai)

=
∞∑
i=1

µ(A1) (Definition 3.1.2 (iii))

=
n∑

i=1

µ(Ai) +
∞∑

i=n+1

µ(Ai)

=
n∑

i=1

µ(Ai) + 0 (Definition 3.1.2 (i))

=
n∑

i=1

µ(Ai)

as claimed.



17

2. If B ⊂ A then A = B ∪ (A \B) is a disjoint union. Property 1 implies

µ(A) = µ(B ∪ (A \B)

= µ(B) + µ(A \B).

Therefore

µ(A \B) = µ(A)− µ(B) (µ(B) < ∞),

showing Lemma 3.1.3 (2).

3. Let B1 = A1 and for 1 < k, Bk = Ak \ (∪k−1
i=1 Ai).

∪∞i=1Ai = ∪∞i=1Bi.

Definition 3.1.2 (ii) implies:

∀i µ(Bi) ≤ µ(Ai).

Thus

µ(
∞⋃
i=1

Ai) = µ(
∞⋃
i=1

Bi)

=
∞∑
i=1

µ(Bi) (Definition 3.1.2 (iii))

≤
∞∑
i=1

µ(Ai),

as claimed.

4. As Ω = A ∪ Ac is a disjoint union, property 1 implies:

µ(Ω) = µ(A) + µ(Ac),

as claimed.
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3.1.1 Probability theory

Definition 3.1.4. A probability space is a triple (Ω, Σ,P) where Ω is a set,

Σ is a σ−algebra of subsets of Ω and P : Σ → [0, 1] is a measure such that

P(Ω) = 1.

If Ω is a finite set, the probability space (Ω, Σ,P) is called a finite probability

space.

Example 3.1.5. Given a two sided coin, with one side ‘heads’, (h), and one

side ‘tails’, (t), the ordered triples of (h) and (t)

Ω = {(h, h, h), (h, h, t), (h, t, h), (t, h, h), (h, t, t), (t, h, t), (t, t, h), (t, t, t)}

is a representation of the sample space of three flips of the coin.

Let Σ = P(Ω) and define P : Σ → [0, 1] by P(A) = |A|
|Ω| . The triple, (Ω, Σ,P),

is a probability space.

Example 3.1.6. Let Ω = [5] and Σ = P(Ω). Define P : Σ → [0, 1] by

P(A) = |A|
5

. The triple (Ω, Σ,P) is a probability space.

Unless otherwise specified, the probability spaces used in this thesis are

finite and Σ = P(Ω). When Σ = P(Ω) is assumed, the notation (Ω,P) is used

to denote a probability space.

In order to better explain the probabilistic method, one technique is to use

the terminology of statistics. To apply the probabilistic method, first define

an experiment and sample space, Ω, which is the collection of all possible

outcomes. Define a measure P on Ω representing the probability that G ∈ Ω

is a result of the experiment. Next, define the σ-algebra, Σ ⊆ P(Ω) of desired

possible events that could result in the given experiment. The event A ∈ Σ is

said to have occurred if the resultant of the experiment is some G ∈ A.

The probability of the event A occurring as a result of the experiment is

the probability of some outcome G ∈ A being the resultant of the experiment;

calculated by P(A) =
∑

G∈A P(G). The event A = ∅ expresses the result the
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event that A is impossible and A = Ω is the event of any possible outcome

occurring; explaining why in Definition 3.1.4, P[∅] = 0, as an impossible event

can not occur; while P[Ω] = 1 as the experiment must yield some outcome.

Given any two events A, B ⊂ Ω, some ways in which other events can be

formed include A ∧ B, the event that both A and B occur; A ∨ B, the event

of outcomes either in A or B (or both). The event corresponding to all of the

outcomes not in A is denoted as A; A∧B, the event of outcomes in A and not

in B; while the event of all outcomes only in A or only in B and not both is

denoted as A ∧ B ∨ B ∧ A or A4B. In the case that A ∧ B = ∅, then A and

B are called mutually exclusive.

Example 3.1.7. Using Example 3.1.5, let A, B and C be the events ‘first flip

is a head’, ‘second flip is a head’ and ‘third flip is a head’ respectively. The

event A∨B is ‘either the first or second flip is a head’ while A∧B is the event

‘both the first and second flip is a head’ and A ∧B ∧ C is the event ‘all three

flips are heads’. Clearly, if D is the event ‘first flip is a tail’, A and D are

mutually exclusive while B and D are not. Furthermore, observing that A =

{(h, h, h), (h, h, t), (h, t, h), (h, t, t)}, B = {(h, h, h), (h, h, t), (t, h, h), (t, h, t)},

A ∨ B = {(h, h, h), (h, h, t), (h, t, h), (h, t, t), (t, h, h), (t, h, h)} and A ∧ B =

{(h, h, h), (h, h, t)} showing that

P[A] =
|A|
|Ω|

=
1

2
= P[B]

and

P[A ∨B] =
3

4

while

P[A ∧B] =
1

4
.

Lemma 3.1.8. Given any probability space (Ω, Σ,P)

∀A, B ∈ Σ, P[A ∨B] = P[A] + P[B]− P[A ∧B].
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Proof. As A ∨B = (A4B) ∨ (A ∧B) and P is a measure,

P[A ∨B] = P[(A4B) ∨ (A ∧B)]

= P[A4B] + P[A ∧B] (Definition 3.1.2(2))

= P[(A ∧B) ∨ (B ∧ A)] + P[A ∧B] (definition of A4B)

= P[A ∧B] + P[B ∧ A] + P[A ∧B] (Lemma 3.1.3).

Since A = (A ∧B) ∨ (A ∧B) are disjoint,

P[A] = P[A ∧B] + P[A ∧B] (Lemma 3.1.3)

P[A ∧B] = P[A]− P[A ∧B] (P[A ∧B] ≤ 1).

Put both equations together yields

P[A ∨B] = (P[A]− P[A ∧B]) + (P[B]− P[B ∧ A]) + P[A ∧B]

= P[A] + P[B]− P[A ∧B].

3.1.2 Conditional probability and independence of events.

Definition 3.1.9. Given the probability space (Ω,P) and two events A, B ∈ Ω.

If P[B] 6= 0, define

P[A|B] =
P[A ∧B]

P[B]
, (3.1)

called the conditional probability of A given that B has occurred.

Example 3.1.10. Continuing Example 3.1.6, define event B = {x ∈ Ω :

x is odd} and events A1 = {y ∈ Ω : y is divisible by 3} and A2 = {z ∈ Ω :

z is divisible by 2} then

P [A1|B] = 1/3 and P [A2|B] = 0.

Definition 3.1.11. Given a probability space (Ω,P), the events A, B are called

independent events if

P(A ∧B) = P(A)P(B).
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For 1 < n ∈ Z+, a collection of events {Bi}n
i=1 ⊂ Ω are mutually independent

if for every 1 ≤ k ≤ n and every S ∈ [n]k

P[
∧
i∈S

Bi] =
∏
i∈S

P[Bi]

If events A, B are independent, equation (3.1) becomes P[A|B] = P[A].

Example 3.1.12. (See [34]) For the collection of events {Ai}n
i=1 to be inde-

pendent, it is not enough that each pair be mutually independent. Consider

the following game: an urn contains four balls numbered 1, 2, 3, 4 respectively.

One ball is pulled at uniformly and randomly. Each player picks two numbers

between 1 and 4 and a player wins an award if one of their numbers are chosen.

Three people Tom, Dick and Harry decide to play. Tom chooses 1 and 2, Dick

chooses 1 and 3 while Harry chooses 1 and 4. Let T be the event Tom wins,

D be the event Dick wins and H be the event Harry wins. Then

P[T ∧D] = P[T ∧H] = P[D ∧H] = 1/4

while

P[T ∧D ∧H] = 1/4 6= P[T ] · P[D] · P[H] = 1/8,

thus the above events are pairwise independent but not mutually independent.

The following is an example of three events, A, B1 and B2 such that A is

independent of both B1 and B2 but not of B1 ∧B2.

Example 3.1.13. (See [23, p.222])Flip a fair coin twice. Let B1 be the event

of heads on the first flip, B2 be the event of heads on the second flip and A be

the event where both flips come up the same then

P[A|B1] = P[A|B2] = 1/2,

while

P[A|B1 ∧B2] = 1.
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3.2 Random variables, expectation and vari-

ance

3.2.1 Random variables

Definition 3.2.1. A real valued random variable X on a probability space

(Ω,P) is a function X : Ω → R. If X is random variable on the probability

space (Ω,P) and a ∈ R, the event A = {G : X(G) = a} is denoted by {X = a}.

In general, a random variable is defined as a measurable function. As this

thesis covers finite probability spaces (Ω,P), every function on Ω is measurable

and so the added definition of what it means for a function to be measurable

won’t be discussed here. For a general discussion of this and other probability

theory topics, please see most books on real analysis or measure theory such

as [35] or [21].

If X, Y are two random variables on (Ω,P), call X and Y independent if for

every a, b ∈ R and A = {X = a}, B = {Y = b} then A and B are independent.

Example 3.2.2. Let (Ω,P) be a probability space.

(i) For any event A, define

XA(G) =

 0 : if G 6∈ A;

1 : if G ∈ A;

called the indicator random variable of A.

(ii) If X has a finite range, {xi}n
i=1, and let Ai = {X(G) = xi} then X =∑n

i=1 xiXAi
.

(iii) Let Ω be as in Example 3.1.5, let X : Ω → R be defined by X(G) is the

number of heads in G. If G1 = (h, h, t), G2 = (t, h, t), then X(G1) = 2

and X(G2) = 1.
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3.2.2 Expectation of random variables

Definition 3.2.3. Given a finite probability space (Ω,P), the real valued func-

tion defined on the collection of random variables (on Ω) by

E[X] =
∑
G∈Ω

X(G)P(G)

is called the expectation value of X or the first moment of X.

Properties. If (Ω,P) is a finite probability space, a, b ∈ R and X and Y are

random variables on Ω, then:

(i) E[aX + bY ] = aE[X] + bE[Y ]. This property is denoted as the linearity

of expectation.

Proof.

E[aX + bY ] =
∑
G∈Ω

(aX + bY )(G)P[G]

=
∑
G∈Ω

(aX+bY )(G)P(G)

=
∑
G∈Ω

(aX(G)+bY (G))P(G)

=
∑
G∈Ω

aX(G)P(G)+
∑
G∈Ω

bY (G)P(G)

=a
∑
G∈Ω

X(G)P(G) + b
∑
G∈Ω

Y (G)P(G)

=aE[X] + bE[Y ].

(ii) If a ≤ X ≤ b then a ≤ E[X] ≤ b.

Proof. If a ≤ X then for all G ∈ Ω, a ≤ X(G). Therefore

a = a
∑
G∈Ω

P(G) (
∑

G∈Ω P(G) = 1)

≤
∑
G∈Ω

X(G)P(G) (a ≤ X(G))
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= E[X].

The proof is similar for X ≤ b.

(iii) E[X2] ≥ E[X]2.

Proof. Let Y = X − E[X]. Then

0 ≤ E[Y 2]

= E[X2 − 2E[X]X + E[X]2]

= E[X2]− 2E[X]E[X] + E[X]2 (linearity of expectation)

= E[X2]− E[X]2.

(iv) If {xi}n
i=1 ⊂ R is the range of X, then E[X] =

∑n
i=1 xiP(X = xi).

Proof. Let A ⊂ Ω and X be the indicator random variable for A. Then

E[X] =
∑
G∈Ω

X(G)P(G)

=
∑
G∈A

X(G)P(G) +
∑
G∈Ā

X(G)P(G)

=
∑
G∈A

1× P(G) =
∑
G∈Ω

1× P(X = 1).

Assume {xi}n
i=1 is the range of X and Ai = {X = xi} then X =∑n

i=1 xiXAi
. Linearity of expectation implies

E[X] =
n∑

i=1

xiE(XAi
) =

n∑
i=1

xiP(XAi
).

(v) If X and Y are independent random variables then E[XY ] = E[X]E[Y ].

Proof. Let X =
∑n

i=1 xiXAi
and Y =

∑m
j=1 yjXBj

. Then

XY =
∑

1≤i≤n
1≤j≤m

xiyjXAi∧Bj
.
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Thus

E[XY ] = E[
∑

1≤i≤n
1≤j≤m

xiyjXAi∧Bj
]

=
∑

1≤i≤n
1≤j≤m

xiyjE[XAi∧Bj
] (linearity of expectation)

=
∑

1≤i≤n
1≤j≤m

xiyjP(Ai ∧Bj)

=
∑

1≤i≤n
1≤j≤m

xiyjP(Ai)P(Bj) (independence of Ai, Bj)

= E[X]E[Y ].

Lemma 3.2.4. Suppose X is a random variable on the finite probability space

(Ω,P) and E[X] = a. Then there is a G1, G2 ∈ Ω such that X(G1) ≤ a ≤

X(G2).

Proof. The proof is nearly trivial by contradiction.

Corollary 3.2.5. If X ≥ 0 is an integer valued random variable and E[X] < 1

then there is a G ∈ Ω such that X(G) = 0.

3.2.3 Conditional expectation

Definition 3.2.6. Given an event A in a finite probability space and a discrete

random variable, X, define the conditional expectation of X conditioned A by

E[X|A] =
∑
G∈Ω

X(G)P[G|A].

Lemma 3.2.7. For any random variables X and Y ,

E[Y ] =
∑

x

P[X = x] · E[Y |X = x]. (3.2)

Proof.∑
x

P[X = x]E[Y |X = x] =
∑

x

P[X = x]
∑
G∈Ω

Y (G) · P[G|X = x]
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=
∑
G∈Ω

Y (G)
∑

x

P[X = x] · P[G|X = x]

=
∑
G∈Ω

Y (G)P(G)

=E[Y ].

3.2.4 Variance and covariance of random variables

Definition 3.2.8. If X is a random variable on the probability space (Ω,P)

the variance of X is

Var[X] = E[(X − E[X])2].

Definition 3.2.9. If X and Y are random variables on the probability space

(Ω,P), define the covariance of X and Y by

Cov[X, Y ] = E[(X − E[X])(Y − E[Y ])].

Through multiplication and the properties of expectation, the following

lemma is seen.

Lemma 3.2.10. If X and Y are random variables on the probability space

(Ω,P), then

Cov[X, Y ] = E[XY ]− E[X]E[Y ].

Lemma 3.2.11. Suppose X and Y are random variables on the probability

space (Ω,P) then

Var[X + Y ] = Var[X] + Var[Y ] + 2Cov[X, Y ].

Proof.

Var[X + Y ] =E[X + Y )− E[X + Y ]]2

=E[(X + Y )2]− E[X + Y ]2

=E[X2] + 2E[XY ] + E[Y 2]− E[X + Y ]2

=E[X2] + 2E[XY ] + E[Y 2]− (E[X]2 − 2E[X]E[Y ] + E[Y ]2)

=Var[X] + Var[Y ] + 2(E[XY ]− E[X]E[Y ])
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While variance of a random variable is an important tool in the probabilistic

method, the following lemmas reduce the need for covariance.

Lemma 3.2.12. If X and Y are independent random variables on the proba-

bility space (Ω,P), then

Cov[X, Y ] = 0.

Lemma 3.2.12 is a direct consequence of Property (v) of expection of ran-

dom variables.

Corollary 3.2.13. If X and Y are independent random variables on a prob-

ability space (Ω,P) then

Var[X + Y ] = Var[X] + Var[Y ].

Corollary 3.2.13 combines Lemmas 3.2.11 and 3.2.12 together.

Lemma 3.2.14. Suppose A and B are two events of a probability space, (Ω,P)

Cov[XA, XB] ≤ P[A ∧B].

Proof. Observe

XAXB = XA∧B

so that

Cov[XA, XB] = P[A ∧B]− E[XA]E[XB]

≤ P[A ∧B].

3.2.5 Distributions

The following are a few examples of distributions. The probability function

P can be described by the probability distribution function P[X = x] or the

cumulative distribution function P[X ≤ k].
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Example 3.2.15. (Uniform)

Let ∅ 6= Ω be a finite set. For G ∈ Ω, define P(G) = 1
|Ω| . Then (Ω,P) is a

probability space called the uniform distribution.

Claim 1. Let X =
∑n

i=1 XAi
be a random variable on the finite set Ω with

the uniform distribution. Then

E[X] =
n∑

i=1

|Ai|
|Ω|

.

Proof. For all A ⊆ Ω,

E[XA] = P[A] =
|A|
|Ω|

.

Linearity of expectation implies

E[X] =
n∑

i=1

E[XAi
] =

n∑
i=1

|Ai|
|Ω|

.

Example 3.2.16. (Binomial)

Suppose that n independent trials are to be run, each with probability of

‘success’ to be p and ‘failure’ to be 1− p. If X is the random variable counting

the number of successes that occur in the n trials, then X is called a binomial

random variable with parameters (n, p), given by

P[X = k] =

(
n

k

)
pk(1− p)n−k.

Note that by the binomial theorem,

n∑
k=0

P[X = k] = 1.

Observe that in Example 3.2.2(iii), X is a binomial random variable with

parameters n = 3 and p = 1/2.

Claim 1. Let X be a random variable on (Ω,P) with binomial distribution of

parameters (n, p), then E[X] = np.
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Proof. From the definition of X and E[X],

E[X] =
n∑

i=1

i

(
n

i

)
pi(1− p)n−i

=
n∑

i=1

(
n

i− 1

)
pi(1− p)n−i

=np

n∑
i=1

(
n− 1

i− 1

)
pi−1(1− p)n−1−(i−1)

=np
n−1∑
k=0

(
n− 1

k

)
pk(1− p)n−1−k (k = i− 1)

=np(p + (1− p))n−1 (Theorem 2.3.5)

=np.

Claim 2. Let X be a random variable on (Ω,P) with binomial distribution of

parameters (n, p), then Var[X] = np(1− p).

Proof. As

E[X2] =
n∑

i=1

i2
(

n

i

)
pi(1− p)n−i

= np

(
n−1∑
i=1

i

(
n− 1

j

)
pi−1(1− p)(n−1)−(i−1)

)

= np

(
n−1∑
i=1

(i− 1) + 1

(
n− 1

j

)
pi−1(1− p)(n−1)−(i−1)

)

= np

(
n−1∑
i=1

i

(
n− 1

i− 1

)
pi−1(1− p)(n−1)−(i−1) . . .

. . . +
n−1∑
i=1

i

(
n− 1

p

)i−1

(1− p)(n−1)−(i−1)

)

= np

(
n−1∑
i=1

(

(
n− 1

i− 1

)
pi−1(1− p)(n−1)−(i−1) + 1

)
(Theorem 2.3.5)

= np((n− 1)p + 1) (applying 1)

= (np)2 + np(1− p).

Therefore

E[X2]− E[X]2 = (np)2 + np(1− p)− (np)2 = np(1− p).
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Example 3.2.17. (Multinomial)

If a sequence of n independent trials are run where each trial has K > 2

possible outcomes, each with probabilities p1, p2, . . . , pk. Then the probability

that the n-th trial has x1 outcomes of the first kind, x2 outcomes of the second

kind,. . . , xk outcomes of the k-th kind, is

n!

x1!x2! . . . xk!
px1

1 px2
2 · · · pxk

k .

Example 3.2.18. (Geometric)

Suppose a sequence of independent trials are run, each with the probability, p

of ‘success’, and 1− p of ‘failure’. Let X measure the number of trials needed

until the first ‘success’. Then

P[X = 1] = p

P[X = 2] = (1− p)p

P[X = 3] = (1− p)(1− p)p

...
...

...

P[X = k] = (1− p)k−1p

since if the first ‘success’ is on the k−th trial, the experiment must fail for the

k − 1 prior trials.

Claim 1. Let X be a random variable on the (Ω,P) with a geometric distri-

bution with parameter p. Then E[X] = 1/p.

Proof. Let u = 1− p.

E[X] =
∞∑

k=1

k(1− p)k−1p

= p

∞∑
k=1

kuk−1

= p
∞∑

k=1

d

du
uk−1 ( d

du
uk = kuk−1)

= p
d

du

∞∑
k=1

uk−1
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= p
d

du

1

1− u

= p
1

(1− u)2

=
1

p
.

Example 3.2.19. (Hypergeometric)

Let Ω be a set with n = a+b objects, a of type A, b of type B. If N ≤ n objects

are chosen without replacement from Ω, let X count the number of elements

selected of type A. Then X is said to have the hypergeometric distribution if

for each k satisfying 0 ≤ k ≤ a and N − k ≤ b,

P[X = k] =

(
a
k

)(
b

N−k

)(
n
N

) .

Example 3.2.20. (Poisson)

A random variable X, with E[X] = µ has the Poisson distribution if P[X =

k] = e−µ µk

k!
.

Example 3.2.21. (Normal) The standard normal distribution is given by

the cumulative distributive function

P[X ≤ k] =

∫ k

−∞

e−x2/2

√
π

dx.

As an exercise in calculus, it can be shown that

lim
k→∞

P[X ≤ k] = 1.

3.3 Necessary inequalities

Part of the art of the probabilistic method is in the estimation of bounds.

Often the bounds need not be great, just shown to exist or to be of a certain

type. To this end, the following inequalities are often useful.

Definition 3.3.1. An inner product on a real vector space V is a function

〈·, ·〉 : V × V → R

such that for all u, v, w ∈ V and all k ∈ R satisfies the following properties:
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(1) 〈u,v〉 = 〈v,u〉

(2) 〈u + v,w〉 = 〈u,w〉+ 〈v,w〉

(3) 〈ku,v〉 = k〈u,v〉

(4) ||v||2 = 〈v,v〉 ≥ 0 and 〈v,v〉 = 0 iff v = 0. The value ||v|| is called

the norm (or length) of v.

An inner product space is a the pair (V, 〈·, ·〉) where V is a real vector space

and 〈·, ·〉 is an inner product on V .

As an abuse of language, in what follows the inner product space (V, 〈·, ·〉)

is referred to as an inner product space V , without reference to the inner

product.

Example 3.3.2. Let (Ω,P) be a finite probability space. Let V be the vector

space of all random variables on (Ω,P). Then

〈X, Y 〉 = E[XY ]

is an inner product on V .

Property (1) of Definition 3.3.1 follows trivially from the definition of ex-

pectation. For property (2), let X, Y and Z be random variables on (Ω,P).

Then

〈(X + Y ), Z〉 = E[(X + Y )Z] = E[XZ + Y Z]

= E[XZ] + E[Y Z] (linearity of expectation)

= 〈X, Z〉+ 〈Y, Z〉

as needed. Similarly, property (3) also follows from linearity of expectation.

For property (4),

0 = E[X2] =
∑
G∈Ω

X2(G)P[G].

Then for all G ∈ Ω, X(G) = 0 which is exactly v = 0 in V .
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Lemma 3.3.3 (Cauchy-Schwarz inequality). Let V be an inner product space

then for all u,v ∈ V ,

|〈u,v〉| ≤ ||u|| · ||v||.

The proof appears in such books as [2].

Corollary 3.3.4. Suppose X and Y are random variables on a finite proba-

bility space (Ω,P) then

|E[XY ]| ≤
√
E[X2]E[Y 2].

Proof. Let V be as in Example 3.3.2. Lemma 3.3.3 implies

|E[XY ]| = |〈X, Y 〉| ≤ ||X|| · ||Y || =
√
E[X2]E[Y 2].

Definition 3.3.5. A function f : R → R is convex iff for all 0 ≤ λ < 1 and

for all x, y ∈ R,

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y). (3.3)

The following shows that inequality (3.3) is true for certain linear combi-

nations also.

Theorem 3.3.6 (Jensen’s inequality). Let λ1, λ2, . . . λn ∈ (0, 1) such that∑n
k=1 λk = 1 and x1, x2, . . . xn ∈ R. If f : R→ R is convex then

f(λ1x1 + λ2x2 . . . + λnxn) ≤ λ1f(x1) + λ2f(x2) + . . . + λnf(xn).

Proof. The proof is by induction on n. For m = 1 the statement is trivial. For

m = 2, the theorem is the definition of a function being convex.

Assume for n ≥ 2, the statement of the theorem is true for m = n. Suppose

λ1, λ2, . . . λn+1 ∈ (0, 1) satisfies
∑n+1

k=1 λk = 1 and x1, x2 . . . xn+1 ∈ R. Let

y =

(
λ1x1

λ1 + λ2

+
λ2x2

λ1 + λ2

)
and λ̂ = λ1 + λ2.

As
n+1∑
k=1

λkxk = λ̂y +
n+1∑
k=3

λkxk,
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the induction hypothesis implies

f(
n+1∑
k=1

λkxk) = f(λ̂y +
n+1∑
k=3

λkxk)

≤ λ̂f(y) +
n+1∑
k=3

λkf(xk)

≤ λ1f(x1) + λ2f(x2) +
n+1∑
k=3

λkf(xk) (convexity of f).

3.3.1 Markov and Chebychev inequalities

Theorem 3.3.7 (Markov’s inequality). Let X ≥ 0 be a random variable on

the finite probability space (Ω,P) and 0 < t ∈ R. Then

P[X ≥ t] ≤ E[X]

t
. (3.4)

Proof.

E[X] =
∑
G∈Ω

X(G)P[G]

≥
∑
G∈Ω

X(G)≥t

X(G)P[G]

≥
∑
G∈Ω

X(G)≥t

tP[G]

≥t
∑
G∈Ω

X(G)≥t

P[G]

=tP[X ≥ t].

Theorem 3.3.8 (Chebychev’s inequality). Let X be a random variable on the

finite probability space (Ω,P) and t > 0 ∈ R. Then

P(|X − E(X)| ≥ t) ≤ Var(X)

t2
. (3.5)

Proof. Let Y = (X − E[X])2. Equation (3.4) implies

P[Y ≥ t2] ≤ E[Y ]

t2
.
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Since E[Y ] = Var(X) the result follows by taking square roots of both sides.

For the next inequality (from [1]), let {Ai}n
i=1 be a finite collection of events

in a probability space (Ω,P) with the respective indicator random variables

{Xi}. If X =
∑n

i=1 Xi then

Var(X) =
n∑

i=1

V [Xi]−
∑
i6=j

Cov(Xi, Xj)

=
n∑

i=1

E[Xi]− (E[Xi])
2 −

∑
i6=j

Cov(Xi, Xj)

=E[X]−
n∑

i=1

(E[Xi])
2 −

∑
i6=j

Cov(Xi, Xj). (3.6)

Define a relation ’∼’ on [n] by i ∼ j if Ai and Aj are not independent. Let

∆ =
∑
i∼j

P[Ai ∧ Aj].

Then

Var[X] ≤ E[X] + ∆ (by Lemma 3.2.14). (3.7)

Corollary 3.3.9. If X ≥ 0 is a finite random variable then

P[X = 0] ≤ P[|X − E[X]| ≥ E[X]] (3.8)

≤ Var[X]

E[X]2
≤ E[X] + ∆

E[X]2
. (3.9)

Proof. The first part of inequality (3.2.14) follows from noting that

|X − E[X]| ≥ E[X]

is the same as

{X − E[X] ≤ −E[X]} ∨ {X − E[X] ≥ E[X]}.

Thus

P[X ≤ 0] ≤ P[{X − E[X] ≤ −E[X]} ∧ {X − E[X] ≥ E[X]}]
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= P[|X − E[X]| ≥ E[X]]

≤ Var[X]

E[X]2
.

While the second inequality of (3.2.14) follows from equation (3.6).

For the definition of almost surely, please see Definition 6.1.6.

Corollary 3.3.10. If Var[X] = o(E[X]2) then almost surely X > 0.

Corollary 3.3.11. If Var[X] = o(E[X]2) then almost surely, X ∼ E[X].

Proof. Theorem 3.3.8 implies for any ε > 0,

P[|X − E[X]| > εE[X]] ≤ Var[X]

ε2E[X]2
.

The condition on Var[X] implies the corollary.

The following inequality is similar to the Chebychev inequality, but gives a

bound on one side of the probability. It can ber found in a number of places,

including [17, p. 152].

Theorem 3.3.12 (Chebychev-Cantelli). Let t > 0 and X be a random variable

on a probability space (Ω,P) with Var[X] < ∞. Then

P[X − E[X] ≥ t] ≤ Var[X]

Var[X] + t2
.

Proof. Without loss of generality, assume E[X] = 0. For all t > 0,

0 = E[X] =
∑
G∈Ω

X(G)P[G]

=
∑
G∈Ω

(XI{X≤t} + XI{X>t})(G)P[G]

=
∑
G∈Ω

(XI{X≤t}P[G] +
∑
G∈Ω

XI{X>t}P[G]

≥
∑
G∈Ω

(XI{X≤t})(G)P[G] + t
∑
G∈Ω

I{X>t}P[G]

= E[XI{X≤t}] + tP[{X > t}]
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= E[XI{X≤t}] + t(1− P[X ≤ t].

Rearranging the terms gives

E[(t−X)I{X≤t}] = E[tI{X≤t}]− E[XI{X≤t}]

= tP[X ≤ t]− E[XI{X≤t}]

≥ t− E[X]

= t. (since E[X] = 0)

Thus

t2 ≤ E[(t−X)I{X≤t}]

≤ E[(t−X)2]E[I2
{X≤t}] (Lemma 3.3.4)

= (t2 − 2tE[X] + E[X2])E[I{X≤t}]

= (t2 − E[X2])E[T{X≥t}] (E[X] = 0)

= (t2 + Var[X])E[T{X≤t}].

Hence,

t2

(t2 + Var[X])
≤ E[T{X≤t}]

= P[X ≤ t] = 1− P[X ≥ t].

Rewriting:

P[X ≥ t] = P[X − E[X]]

≤ Var[X]

t2 + Var[X]
.

3.3.2 Chernoff’s inequalities

This section covers a pair of inequalities related to the paper [6] by Hermann

Chernoff.

Lemma 3.3.13. For a > 0, (
ea + e−a

2

)
≤ ea2/2. (3.10)
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Proof. Using the Taylor series (2.2) for ea and e−a, gives(
ea + e−a

2

)
=

∞∑
n=0

a2n

(2n)!
≤

∞∑
n=0

a2n

2nn!
= ea2/2.

Theorem 3.3.14 (Chernoff’s inequality [6]). Let {Xi} be mutually indepen-

dent indicator random variables on a finite probability space (Ω,P) such that

P[{Xi = 1}] = P[{Xi = −1}] = 1
2
. If Sn =

∑n
i=1 Xi then for any λ > 0,

P[{Sn > λ}] < e
−λ2

2n . (3.11)

Proof. Observe that −n ≤ Sn ≤ n. Therefore if λ > n, (3.11) is trivial. So

assume 0 < λ < n. Let α = λ
n
. If 1 ≤ i ≤ n then E[eαXi ] = eα+e−α

2
and

since for every {i, j} ∈ [n]2, Xi and Xj are independent, eXi and eXj are also.

Therefore

P[{αSn > αλ}] = P[{eαSn > eαλ}]

= P[{
∏

eαXi > eαλ}]

=
∏
P({eαXi > eαλ})

∏
P[{eαXi > eαλ}]

≤
∏ E[eαXi ]

eαλ
(inequality (3.4))

=

∏
1
2
(eα + e−α)

enαλ

≤
∏

eα2/2

enαλ
(Lemma 3.3.13)

= en(α2

2
−αλ)

= en( λ2

2n2−
λ2

n
)

= eλ2( 1
2n
−1)

≤ e−λ2/2n.

The next theorem is a second example of a Chernoff inequality.

Theorem 3.3.15. Assume X1, X2, . . . Xn ∈ {0, 1} are independent random

variables on some finite probability space (Ω,P). Suppose for each 1 ≤ i ≤ n,

P[Xi = 1] = pi ∈ (0, 1).
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If Sn =
∑n

i=1 Xi and µ = E[Sn] then for all δ ∈ (0, 1),

P[Sn > (1 + δ)µ] ≤ e−
δ2µ
2 .

Proof. Let f(Sn) = eSn . Then for all t ∈ R

E[etSn ] = πn
i=1E[etXi ] (independence of Xi)

= πn
i=1(pie

t + (1− pi)1)

= πn
i=1

(
1 + pi(e

t − 1)
)

≤ epi(e
t−1). (by (2.3.1))

Thus for all δ > 0,

P[Sn > (1 + δ)µ] = P[tSn > (1 + δ)tµ]

= P[etSn > e(1+δ)tµ]

≤ E[etSn ]

e(1+δ)tµ
(by 3.4)

≤
∏n

i=1 epi(e
t−1)

e(1+δ)tµ

=
e(et−1)

Pn
i=1 pi

e(1+δ)tµ

=
e(et−1)µ

e(1+δ)tµ

= e((et−1)−t(δ+1))µ. (3.12)

To minimize equation (3.12), set t = ln (δ + 1) so that

eµ((et−1)−t(δ+1)) = eµ((δ+1)+1−1)−(ln (δ+1)(δ+1))

= eµ(δ−(δ+1)(ln (δ+1))). (3.13)

As 0 < δ < 1, equation(2.4) implies:

(δ + 1)
∑
1≥1

(−1)i+1 (δ)i

i
=
∑
1≥i

(−1)i+1(δ)i+1

i
+
∑
1≥i

(−1)i+1 (δ)i

i

= δ +
∑
2≥i

(−δ)i(
1

i− 1
− 1

i
) (3.14)
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= δ +
∑
2≥i

(−δ)i

(
1

i(i− 1)

)
≤ δ +

δ2

2
− δ3

6

≤ δ +
δ2

2
. (3.15)

Equations (3.14) and (3.13) give

P[Sn > (1 + δ)µ] ≤ e[µ(δ−(δ+ δ2

2
)] = e−µδ2/2.

The next example illustrates the use of Chernoff’s inequality (3.3.14).

Example 3.3.16. Consider flipping a fair coin n times. Let Xi = 1 if and only

if the i-th flip is a head and 0 otherwise. Then E[Xi] = 1/2. Let X =
∑n

i=1 Xi

be the number of heads. Thus µ = E[X] = n/2. Inequality (3.3.15) implies

for all 0 < δ < 1,

P[X > (1 + δ)µ] ≤ e−δ2µ/2 = e−δ2n/4.

The next example compares the bounds given by Chebychev’s inequal-

ity (3.3.8) and Chernoff’s inequality (3.3.14) and therefore gives an indication

of when Chernoff’s inequality is preferable to Chebychev.

Example 3.3.17. [38] Consider Example 3.3.16 and assume δ = 1/2. To

ensure that P[X > 3n/4] ≤ 0.1, suppose e−(1/2)2n/4 =
1

10
. Taking natural

logarithms yields:
−n

64
= − ln 10 or n = 64 ln 10 or n u 148.

Alternatively, as the Xi’s are independent, inequality (3.3.8) and Lemma 3.2.13

imply

Var[X] =
n∑

i=1

Var[Xi] = n/4

thus

P[|X − n/2| > 3n/4] ≤ n/4

3n/4
= 1/3

independent of n. Thus the Chernoff bounds allows for for an estimate on

the size of n to ensure that the probability X > (1 + δ)µ is small, whereas

Chebychev’s inequality only gives as upper bound the probability, regardless

of n.



Chapter 4

Essential methods

This section outlines a few of the methods commonly used in applications of

the probabilistic method.

4.1 First moment method

Suppose X1, X2, . . . Xn are random variables, c1, c2, . . . cn are real numbers and

X = c1X1 + . . . + cnXn, then Lemma i implies

E[X] = c1E[X1] + . . . + cnE[Xn].

The first moment method uses random variables and expectation to show the

existence or nonexistence of a certain entity F. Often, calculating expected

values achieved through a decomposition into simple indicator random vari-

ables. The power of this principle lies in the fact that linearity of expectation

has no restrictions regarding dependence or independence of the Xi’s. The

first example is viewed as one of the first examples of using probability theory

to prove a purely combinatorial result.

Theorem 4.1.1. [37] There is a tournament on n players with at least n!2−(n−1)

Hamiltonian paths.

Proof. Fix n and let Ω be the set of all tournaments on n players. If T ∈ Ω,

let X(T ) count the number of Hamiltonian paths in T .

41
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For σ ∈ Sn, define the path Pσ = {vσ(1), vσ(2), vσ(3), . . . vσ(n)}. These Pσ

have the property that for every Hamiltonian path P ⊆ T , there is a unique

σ ∈ Sn such that P = Pσ. Say T has Aσ if Pσ ⊆ T and let Xσ be the indicator

random variable for Aσ.

Write Aσ as the events:

Aσ = {(vσ1 , vσ2) ∈ T} ∧ {(vσ2 , vσ3) ∈ T} ∧ · · · ∧ {(vσ(n−1), vσ(n)) ∈ T}.

The definition of Ω implies that each event occurs independently with proba-

bility 1
2
, hence

E[Xσ] = P[Aσ]

= P[{(vσ1 , vσ2) ∈ T} ∧ · · · ∧ {(vσ(n−1), vσ(n)) ∈ T}]

= P[{(vσ(1), vσ(2)) ∈ T}] · · ·P[{(vσ(n−1), vσ(n)) ∈ T}] (events indep.)

= 2−(n−1).

As X =
∑

σ∈Sn
Xσ and |Sn| = n!, E[X] =

∑
σ∈Sn

E[Xσ] = n!2(1−n). Lemma 3.2.4

implies there is a T ∈ Ω with at least E[X] Hamiltonian paths.

The next theorem is folklore.

Theorem 4.1.2 ([12]). Every graph with m-edges has a (not necessarily in-

duced) bipartite subgraph of at least m/2 edges.

Proof. The proof is from [1]. Define the sample space

Ω = {(U,W ) : U and W partition V .}

For every (U,W ) ∈ Ω, let

T(U,W ) = {e = {x, y} ∈ E : {x ∈ U ∧ y ∈ W} ∨ {x ∈ W ∧ y ∈ U}} .

For every e ∈ E, let Ae be the event ‘e ∈ T (U, V )’ with the respective indicator

random variable Xe.

E[Xe] = P[Ae]
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= P[{(x ∈ U) ∧ (y ∈ W )} ∨ {(x ∈ W ) ∧ (y ∈ U)}]

= P[(x ∈ U) ∧ (y ∈ W )] + P[(x ∈ W ) ∧ (y ∈ U)] (disjoint events)

= P[x ∈ U ]P[y ∈ W ] + P[x ∈ W ]P[y ∈ U ] (indep. events)

= (1/2)(1/2) + (1/2)(1/2) = 1/2.

If X[(U, V )] = |T(U, V )| =
∑

e∈E Xe[(U, V )] so that

E[X] =
∑
e∈E

E[Xe]

= mE[Xe] (∀e1, e2 ∈ E E[Xe1 ] = E[Xe2 ])

= m/2.

Lemma 3.2.4 implies there is a pair (U,W ) ∈ Ω with at least this many “cross-

ing” edges.

4.2 Alterations and deletions

A second probabilistic tool useful in combinatorial research is often called

alterations or the deletion method. As in the first moment method, first define

a probability space and a “nice” random variable. Next calculate the expected

value and choose an element with at most that much of the property. Then

alter this element in such a way as to eliminate what is not desired.

Theorem 4.2.1. [9] Let k, ` ∈ Z+, ` ≥ 3. There exist a graph G such that

girth(G) > ` and χ(G) ≥ k.

Proof. (This proof is based [1].) Assume n is an unspecified, large, nonnegative

integer and let 0 < θ <
1

`
. Let p = nθ−1. Assume G = (V, E) ∈ Gn,p (for the

definition of Gn,p), please see Chapter 6) and let X(G) be the number of cycles

of length at most `.

Let S = {v1, v2 . . . vs} ∈ [V ]s, and AS be the event “S induces a cycle”.

There are (n)s sequences of distinct S ∈ [V ]s, and each cycle can be identified
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by 2s of those sequences: there are two ways to choose direction and s ways

to choose a first vertex. Furthermore, given any ordering of S, the probability

of a graph having this cycle is ps. Putting all of this together yields,

E[X] =
l∑

i=3

(n)i

2i
pi

=
∑̀
i=3

(n)i
pi

2i

=
∑̀
i=3

(n)i
n(θ−1)i

2i

≤
∑̀
i=3

nin(θ−1)i

=
∑̀
i=3

nθi ≤ lnθ` = o(n) (θ` < 1).

From (3.4),

P[X >
n

2
] ≤ E[X]

n
2

= o(1), (4.1)

which implies there is an n large enough so that P[X >
n

2
] < 1

2
.

Next, observe Lemma 2.2.1 implies bounding α(G) from above bounds

χ(G) from below. Since for any integer x > 0,

P[α(G) = x] ≤
(

n

x

)
(1− p)(

x
2) ≤ nxe−px

(x−1)
2 = (ne−p

(x−1)
2 )x, (4.2)

if x = d3
p
ln(n)e, (4.2) implies

P[α(G) = x] ≤ n−
x
2 = o(1). (4.3)

Furthermore,

P[α(G) ≥ x] ≤
n∑

i=x

P[α(G) = i] = o(1). (4.4)

Note that the choice of x is made to simplify the subsequent calculations; the

proof only requires x to be large enough so that P([α(G) ≥ x]) = o(1), to

guarantee the existence of an n so that P[α(G) ≥ x] < 1/2.

Pick n large enough to make both (4.1) and (4.4) less than 1/2. Since

P[{X(G) ≤ n/2} ∨ {α(G) < x}] ≤ P[{X(G) ≤ n/2}] + P[{α(G) < x}]
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< 1/2 + 1/2 = 1

then

P[{X(G) ≤ n/2} ∧ {α(G) ≤ x}] = P[{X(G) ≤ n/2} ∧ {α(G) ≤ x}]

> 1− 1 = 0

ensuring there is a graph, G ∈ Gn,p, with

X(G) ≤ n

2
and α(G) < x.

From G, create a new graph G∗ by deleting a vertex from each cycle of length

at most `. Thus, girth(G∗) > `.

By the choice of G, the number of cycles of length ` or less is at most n/2

so that the deletion of vertices from G leaves

|V (G∗)| ≥ n− n

2
=

n

2
.

The construction of G∗ ensures α(G∗) ≤ α(G). Hence, by Lemma 2.2.1

χ(G∗) ≥ |V (G∗)|
α(G∗)

≥ n
3
p
ln n

=
n
2

3
nθ−1 ln n

=
nθ

6 ln n
. (4.5)

Equation (4.5) gives a second lower bound on n as choosing n large enough so

that nθ

6 ln n
> k implies χ(G) is high enough showing that the created graph has

the requisite properties.

4.3 Second moment method

Assume X is a random variable with Var[X] = E[X2] − E[X]2. The second

moment method is any proof that uses variance. The sections on random

graphs (specifically Chapter 7 on threshold functions) illustrate the use of the

second moment method. Therefore any further explanation is delayed until

Chapter 7.
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4.4 The Lovász local lemma

Let A1, A2, . . . Ak be events in a probability space. Often in combinatorial

applications, it is necessary to show

P[∧k
i=1Ai] > 0. (4.6)

If it is possible to show P[
∨k

i=1 Ai] < 1, then the definition of probability implies

equation (4.6). To accomplish this, one method is to calculate
∑k

i=1 P[Ai] then

using the relationship P[
∨k

i=1 Ai] ≤
∑k

i=1 P[Ai] for the desired result. In the

case that the events are mutually independent, this result is the best possible,

while in the case of dependence between events, such a relationship may be

useless.

This section introduces a result useful to guarantee equation (4.6) when

there is dependence between events. The Lovàsz local lemma is best applied

when there are few dependencies between events. While the Lovàsz local

lemma is purely a probabilistic result, it was developed by Lovàsz and Erdős

in 1975 to handle problems in combinatorics. First a definition used in the

proof is given.

Definition 4.4.1. Given a finite collection of events {Ai}n
i=1 in any probability

space, a dependency digraph D = (V, E) is defined by

V = [n] E = {(i, j)|Ai is dependent on Aj}.

While there are several variants of the proof of the Lovász local lemma (e.g.

[1], [4]), each is more or less the same. This version and its corollary are from

[1].

Theorem 4.4.2. Lovász local lemma [13]

Given a finite collection of events {Ai}n
i=1 in any probability space and the

respective dependency digraph D = (V, E), if there exists real numbers 0 <

xi < 1 such that for every event

P[Ai] ≤ xi

∏
(i,j)∈E

(1− xj) (4.7)
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then

(a)∀1≤i≤nP[Ai|
∧

(i,j)∈E

Aj] ≤ xi (b)P[
n∧

i=1

Ai] ≥
n∏

i=1

(1− xi)

.

Proof. The proof is by induction on the size of S  [n]. For all 0 ≤ k ≤ n− 1

let P (k) be the proposition

∀S ∈ [n]k, ∀i ∈ [n] \ S P[Ai|
∧
j∈S

Aj] ≤ xi. (4.8)

For k = 0, S = ∅ hence (4.8) is for all i ∈ [n] P[Ai] ≤ xi which follows from

the assumptions on Ai.

Let 0 < m < n be given and assume for every 0 ≤ k < m P (k) holds.

Let S ∈ [n]m (without loss of generality, assume S = [m]) and i ∈ [n] \ S.

Let S1 = {j ∈ S|(i, j) ∈ E} and S2 = S \ S1; then

P[Ai|
∧
j∈S

Aj] =
P[Ai ∧

(
∧l∈S1Al

)
∧
(∧

j∈S2
Aj

)
]

P[
(∧

l∈S1
Al

)
∧
(∧

j∈S2
Aj

)
]

≤
P[Ai ∧

(∧
l∈S1

Al

)
∧
(∧

j∈S2
Aj

)
]

P[A1]P[A2|A1] · · ·P[Am|
∧

j∈S\{m} Aj]

≤
P[Ai|

∧
j∈S2

Aj]∏
j∈S(1− xj)

≤ P[Ai]∏
j∈S1

(1− xj)
≤ xi,

which is (a). From which it follows:

P[Ai|
∧

(i,j)∈E

Aj] ≥ 1− xi.

To complete the proof, observe that

P[
n∧

i=1

Ai] = P[A1]P[A2|A1] · · ·P[Am|
n∧

i=1

Ai]

= (1− P[A1])(1− P[A2|A1]) · · · (1− P[Am|
n∧

i=1

Ai])

≥
n∏

i=1

(1− xi)

as needed.
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A corollary of the local lemma is often useful in the case of some symmetry.

Corollary 4.4.3. Given a finite collection of events {Ai}m
i=1 that are mutually

independent of all except at most d separate events, if there exists a 0 < p < 1

such that for every i ∈ [n], P[Ai] ≤ p and ep(d + 1) ≤ 1 then P[
m∧

i=1

Ai] > 0.

Proof. If d = 1, then the result follows from

P[∧Ai] ≥
∏

(1− p)n.

Otherwise, observe that if x = 1/(d + 1) then:

x(1− x)d ≥ xe−1 ≥ p

from the hypothesis. Theorem 4.4.2 gives the result.

In general, the probabilistic method uses the symmetric version, Corol-

lary 4.4.3, of the Lova̋sz local lemma rather than the generalized version, Theo-

rem 4.4.2. The following examples represent but a few of the many applications

of this lemma.

An arithmetic progression of length k (in symbols, APk) is a string of posi-

tive integers of the form {a, a+d, a+2d, . . . a+(k−1)d}. The positive integer

N = W (k) is called the k-van der Waerden’s number iff for every n ≥ N

and every two-colouring, χ, of [n] there is a monochromatic APk ⊂ [n]. Using

Corollary 4.4.3 of the Lovasz local lemma, provides a method to get a lower

bound.

Example 4.4.4. [23, p. 244] For every k ≥ 2, if

e21−k(n2 + 1) ≤ 1 (4.9)

then W (k) > n.

Proof. Let n = 2k−1 and χ be any random and uniform two-colouring of [n]

(i.e. for x ∈ [n], the probability χ(x) is red=1/2=the probability χ(x) is blue).
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Let A ⊂ [n] be any APk, and let S be the event “A is monochromatic”.

Using p = P[S] = 21−k, since S is dependent on at most d = n2 events,

Corollary 4.4.3, along with the conditions on n, give the result.

The next example demonstrates the use of the general Lova̋sz local Lemma

4.4.2.

Example 4.4.5. [3] Let F be a family of sets, each of which has at most

k ≥ 2 points. Also suppose that for each point v,

∑
S∈F : v∈S

(
1− 1

k

)−|S|
21−|S| ≤ 1

k
.

Then F is 2-colourable.

Proof. Let F = {S1, S2, . . . , Sm} and colour the points red and blue indepen-

dently and randomly with a probability of 1/2. For every St ∈ F , let At be

the event that St is monochromatic; thus

P[At] = 1− 21−|St|.

Events At and As are dependent if and only if 0 < |St∩Ss|. Define the relation

‘∼’ on [m] by s ∼ t iff As are dependent on At.

To complete the proof, it must be shown that for every t ∈ [m],

P[At] ≤ xt

∏
s∼t

(1− xs).

To this end,

xt

∏
s∼t

(1− xs) ≥ xt

∏
v∈St

 ∏
j:v∈Sj

1− xj

 (4.10)

≥ xt

∏
v∈St

1−
∑

j:v∈Sj

xj

 (4.11)

≥ xt

(
1− 1

k

)|St|

(4.12)
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since the assumptions on the theorem state
∑

j:v∈Sj
xj ≤ 1

k
. Thus

xt

∏
s∼t

(1− xs) ≥ xt

(
1− 1

k

)|St|

= 21−|St| = P[At].

Lemma 4.4.2 implies that

P[A1 ∧ A2 ∧ . . . ∧ Am] > 0.

Thus there is a two-colouring such that no St is monochromatic.



Chapter 5

Combinatorial applications

This chapter demonstrates applications of the probabilistic method throughout

combinatorics.

5.1 Ramsey theory

As Ramsey numbers have proven to be difficult to calculate using deterministic

methods, the use of probability theory has given some of the best known

results.

Definition 5.1.1. Let k, ` ∈ Z+. The Ramsey number R(k, `) is the smallest

positive integer n such that every red-blue colouring of the edges of Kn, there

is either a red Kk or a blue K`.

Ramsey (1929) showed that for every two positive integers, k, `, R(k, `)

is finite. The numbers R(k, k) are some times called the diagonal Ramsey

numbers.

Theorem 5.1.2. (Erdős, 1947) Let n ≥ k be positive integers. If(
n

k

)
21−(k

2) < 1

then R(k, k) > n.

51
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Proof. Let G = (V, E) be a complete graph on n vertices. Let Ω be the

collection of two-colourings of E(G). For every S ∈ [V ]k, let AS be the event

that “the edges of KS are monochromatic.” Call χ ∈ Ω a good colouring if no

AS occurs.

Let χ ∈ Ω be such that for every {x, y} ∈ E,

P[{x, y} is red] = 1/2 = P[{x, y} is blue]

independently and randomly chosen. Let S ∈ [n]k be given. For all {x, y} ∈

[S]2, let B{x,y} be the event ‘{x, y} is blue’ and R{x,y} be the event ‘{x, y} is

red’. As

AS = (
∧

{x, y} ∈ [S]2
B{x,y}) ∨ (

∧
{x, y} ∈ [S]2

R{x,y})

so that

P[AS] = P[(
∧

{x, y} ∈ [S]2
B{x,y}) ∨ (

∧
{x, y} ∈ [S]2

R{x,y})]

= P[
∧

{x, y} ∈ [S]2
B{x,y}] + P[

∧
{x, y} ∈ [S]2

R{x,y}] (mutu. disj. events)

=
∏

{x, y} ∈ [S]2
P[B{x,y}] +

∏
{x, y} ∈ [S]2

P[R{x,y}] (ind. of events)

=
∏

{x, y} ∈ [S]2
2−1 +

∏
{x, y} ∈ [S]2

2−1

= 2
(
2−(k

2)
)

(|[S]2| =
(

k

2

)
).

If every colouring of G is bad then R(k, k) ≤ n, but,

P(
∨

S ∈ [V ]k
AS) ≤

∑
S ∈ [V ]k

P(AS)

= 21−(k
2)

∑
S ∈ [V ]k

1

= 21−(k
2)
(

n

k

)
< 1.
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Hence

P(
∨

S ∈ [V ]k
AS) = P(

∧
S ∈ [V ]k

AS)

= 1− P(
∨

S ∈ [V ]k
AS) > 0.

Therefore there is a two-colouring of G for which no AS occurs.

The next proof is very similar but uses expectation and random variables.

Proof. (of Theorem 5.1.2) Let Ω be the sample space of all two-colourings of

the edges of Kn such that for all e ∈ E(Kn),

P[e is red] = P[e is blue] =
1

2

determined independently. Let X be the nonnegative, integer valued random

variable on Ω defined by X(χ) is the number of monochromatic Kk. For

S ∈ [V ]k, let AS be the event “KS is a monochromatic” and XS be the indicator

random variable for AS thus

E[XS] =
∑
G∈Ω

XS(G)P(KS ⊂ G is monochromatic)

= 21−(k
2).

As X =
∑

S∈[n]k XS,

E[X] =
∑

S∈[V ]k

E[XS]

=
∑

S∈[V ]k

21−(k
2)

=

(
n

k

)
21−(k

2) < 1.

Lemma 3.2.4 implies there exists G ∈ Ω with X(G) = 0 i.e. a two-colouring

of Kn with no monochromatic Kk.
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Before moving on to the lower bound these proofs produce, here is an

illustration of the counting argument which both proofs of Theorem 5.1.2 for-

malize. Observe that there for all K ∈ [n]k, there are 2(n
2)+1−(k

2) 2-colourings

of G for which [K]2 is monochromatic, while there are 2(n
2) two-colourings of

G. Therefore, the percentage of two-colourings that leave [K]2 monochromatic

is (at most) 21−(k
2). As |[n]k| =

(
n
k

)
, if(

n

k

)
21−(k

2) < 1,

there are two-colourings with no monochromatic [K]2.

Both of these give the following bound on R(k, k).

Theorem 5.1.3. For every positive integer k,

R(k, k) ≥ (1 + o(1))
k2k/2

√
2

.

Proof. Starting with the relationship:(
n

k

)
21−(k

2) <
nk

kk
2−(k

2)+1 (k is fixed, n varies).

Assume nk

kk 2−(k
2)+1 ≤ 1. Then

nk ≤ kk2
k2

2 2−
k
2 2−1 (simplifying).

So

n ≤ k2
k
2 2−1/22−1/k (taking the k-th root)

= (1 + o(1))
k√
2
2

k
2 (2−1/k = o(1)).

Thus

(1 + o(1))
k√
2
2

k
2 ≤ R(k, k).

Theorem 5.1.4. If

e

((
k

2

)(
n

k − 2

)
+ 1

)
· 21−(k

2) < 1 (5.1)

then R(k, k) > n.
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Proof. Assume n satisfies equation (5.1). Let Ω be the collection of two-

colourings of Kn as in the second proof of Theorem 5.1.2. Let p = 21−(k
2)

and d =
(

k
2

)(
n

k−2

)
. For any k-set S ∈ [n]k, let AS be the event that “S is a

monochromatic k-clique”.

As in Theorem 5.1.2,

P[AS] = p.

To bound the number of events AS is dependent upon, observe that if |S∩T | ≤

1, then the complete subgraphs generated by S and T share no edges, therefore

AS is independent of AT , as the colour of one edge is independent of another.

For any 2-set Ŝ ∈ [S]2 there are at most
(

n
k−2

)
k-sets which contain Ŝ. As there

are
(

k
2

)
such Ŝ, there are at most d events dependent on S. While this might

be an over count of the number of dependent events, the proof only requires a

uniform bound on d. Therefore

e(d + 1)p = e(

(
k

2

)(
n

k − 2

)
+ 1) · 21−(k

2) < 1

hence Corollary 4.4.3 implies

P[
∧

S ∈ [n]k
AS] > 0

i.e. there is a two-colouring with no monochromatic k-clique.

While Theorem 5.1.4 presents a second method to prove a lower bound on

R(k, k), the reason this theorem is useful because Theorem 5.1.4 gives a better

lower bound on R(k, k).

Theorem 5.1.5. For every positive integer, k,

R(k, k) ≥ (1 + o(1))
√

2k2k/2,

where o(1) → 0 as k →∞.

Proof. As k is fixed and n can vary. The approximation((
k

2

)(
n

k − 2

)
+ 1

)
∼
((

k

2

)(
n

k − 2

))
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∼
(

k(k − 1)

2

nk−2

(k − 2)k−2

)
is acceptable. Therefore

e

(
k(k − 1)

2

nk−2

(k − 2)k−2

)
21−(k2−k)/2 < 1,

and so (
k2nk−2

(k − 2)k−2

)
≤ 2(k2−k)/2−1

e

≤ 2(k2−k−4)/2 (2 < e and simplifying).

Thus

nk−2 ≤ (k − 2)k−22(k−2)( k+1
2
− 1

k−2
)

k2
(divide k2 − k − 4 by k − 2)

n ≤ (k − 2)2(k+1)/22−(k−2)−2

(taking the k − 2 root)

∼ k2(k+1)/22−(k−2)−2

(k − 2 ∼ k)

∼ k2(k+1)/2(1 + o(1)) (2−(k−2)−2

= o(1))

= (1 + o(1))
√

2k2k/2.

Thus

(1 + o(1))
√

2k2k/2 ≤ R(k, k).

Theorem 5.1.6. (See for example [1, pp. 25-26]) Let k ∈ Z+. For all n,

R(k, k) > n−
(

n

k

)
21−(k

2).

Proof. For every n ∈ Z+, let Ω be the sample space of 2-colourings of E(Kn)

that uniformly and randomly colour every e ∈ E(Kn) with P(e is red) =

P({x, y} is blue) = 1/2. Let X : Ω → R be the number of monochromatic

Kk’s. As in the second proof of Theorem 5.1.2,

E(X) =

(
n

k

)
21−(k

2).

Lemma 3.2.4 implies there exists an χ ∈ Ω so that X(χ) ≤ E(X).
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For each monochromatic (w.r.t. χ) Kk, remove one vertex. It is possible

that the Kk’s overlap, but this can only reduce the number of vertices removed,

hence improving the result. If m is the remaining number of vertices, then

m ≥ n−
(

n

k

)
21−(k

2).

The induced colouring on the Km subgraph has no monochromatic Kk’s (as

removing one vertex from each monochromatic Kk’s means a monochromatic

subgraph can be at most a Kk−1) as needed.

Theorem 5.1.7. (See for example [1, p. 16]) Let k ∈ Z+. For n ∈ Z+, there

is a two-colouring of the edges of Kn with at most
(

n
k

)
21−(k

2) monochromatic

Kk’s.

Proof. Define the sample space Ω of two-colourings of E(Kn). Choose χ ∈ Ω

such that the colour of every edge is determined independently with probability

1/2. The use of p = 1/2 is mainly for expediency, while also reflecting the fact

that the desired two objects (either a red or a blue Kk) are of the same size,

which under these conditions, have an equal probability of occurring.

For an accurate counting of the desired subgraphs, define the random vari-

able X on Ω by

X(χ) = the number of monochromatic K ′
ks.

For all S ∈ [n]k, define the event AS to be “the edges of KS are monochromatic”

with the respective indicator random variable, XS.

Claim 1. : E[XS] = P[AS] = 21−(k
2).

The proof of the claim is as the first proof of Theorem 5.1.2.

Since X =
∑

S∈[n]k

XS,

E[X] = E[
∑

S∈[n]k

XS]
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=
∑

S∈[n]k

E[XS] (linearity of expectation)

=

(
n

k

)
21−(k

2).

Theorem 3.2.4 implies there is a two-colouring with at most
(

n
k

)
21−(k

2) monochro-

matic Kk’s, thus completing the proof of Theorem 5.1.7.

The following example illustrates the same idea, but using a different prob-

ability.

Theorem 5.1.8. (See for example [1]) Let k ∈ Z+ be given. For every 3 ≤

n ∈ Z+, there is a 3-colouring of E(Kn) with at most
(

n
3

)
31−(k

3) monochromatic

Kk’s.

The only difference between this example and the last is that every edge

can be coloured in three different ways. Since the desired events, monochro-

matic Kk’s, are still of equal size, changing the sample space to be uniform

three-colourings where the probability of any edge having any one colour is 1
3
.

Everything else is as in Example 5.1.7.

For the diagonal Ramsey numbers, the desired objects are both copies of

a monochromatic Kk, justifying the use of p = 1/2 in the above arguments.

When k 6= `, one of the difficulties in using probability theory to get lower

bounds on R(k, `) is the necessity of using a general value of p.

Theorem 5.1.9. Let k, ` be positive integers. If there exists a probability p

such that (
n

k

)
p(k

2) +

(
n

`

)
(1− p)(

`
2) < 1 (5.2)

then n < R(k, `).

Proof. Assume p and n satisfy equation (5.2). Let Ω be the collection of two-

colourings of Kn. For K ∈ [n]k, let BK be the event “all of the edges of KK

are blue” and for L ∈ [n]`, let RL be the event “all of the edges of KL are red”.

P[BK ] = p(k
2)
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P[RL] = (1− p)(
`
2).

There are
(

n
k

)
such K and

(
n
`

)
such L, therefore

P[Aχ] = P[(
∨

K∈[n]k

BK) ∨ (
∨

L∈[n]`

RL)]

≤ P[
∨

K∈[n]k

BK ] + P[
∨

L∈[n]`

RL] (Definition 3.1.2)

≤
∑

K∈[n]k P[BK ] +
∑

L∈[n]` P[RL]

=

(
n

k

)
p(k

2) +

(
n

`

)
(1− p)(

`
2) < 1 (assumption on n and p).

Therefore there is a two-colouring χ ∈ Ω that satisfies ∨
K∈[n]k

BK

 ∨

 ∨
L∈[n]`

RL

 =

 ∨
K∈[n]k

BK

 ∧

 ∨
L∈[n]`

RL


=

 ∧
K∈[n]k

BK

 ∧

 ∧
L∈[n]`

RL

 .

Hence χ(G) has no blue Kk and no red K`, which implies R(k, `) > n as

claimed.

5.2 Extremal Set theory

In this section, results using the probabilistic method in set theory are shown.

Definition 5.2.1. A collection F of sets is called k-uniform iff for every S ∈ F,

|S| = k.

Definition 5.2.2. For k ∈ Z+, let B(k) be the minimum possible number of

sets in a k-uniform family which is not 2-colourable.

To put it another way, if n is a positive integer, B(k) < n if there is a family

F ⊆ X of sets with |F| = n where every A ∈ F satisfies |A| = k such that for

every 2-colouring of X there is an element A of F which is monochromatic.
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Theorem 5.2.3. [10] If k is sufficiently large, then

B(k) ≤ (1 + o(1))
e ln 2

4
k22k.

Proof. Let X be an arbitrary set with |X| = bk2/2c = n and Ω = [X]k with

the uniform probability measure. Let A ∈ Ω be a random element (i.e ∀A ∈ Ω,

P[A = A] = 1

(n
k)

). Let

F = {A1,A2, . . . ,Ab}

be an independent and random subset of Ω.

Let χ be any two-colouring of X with a red elements and n−a blue elements.

For A ∈ F, let Aχ denote the event ‘A is monochromatic with respect to χ’

and

BF
χ =

∧
A ∈ F

Aχ.

Thus

P[Aχ] =

(
a
k

)
+
(

n−a
k

)(
n
k

)
≥ 2

(bn/2c
k

)(
n
k

) (by Theorem 3.3.6)

∼ e−121−k (by Theorem 2.3.4)

= p.

The independence of Ai ∈ F implies

P[BF
χ ] ≤ (1− p)b ≤ e−pb.

If BF =
∨
χ

BF
χ then

P[BF ] = P[
∨
χ

BF
χ ]

≤
∑

χ

P[BF
χ ] ≤ 2ne−pb (2n two-colourings of X).
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If 2ne−pb < 1, there is a family D = {A1, A2 . . . Ab} ⊂ Ω witness to the event

BD =
∨
χ

BD
χ =

∧
χ

BD
χ

=
∧
χ

∧
A ∈ D

Aχ

=
∧
χ

∨
A ∈ D

Aχ,

i.e., for every 2-colouring χ of X, there is a A ∈ D such that A is monochro-

matic with respect to χ thus B(k) < b.

To complete the proof, it must be shown that for b = (1 + o(1)) e ln 2
4

k22k,

2ne−pb < 1. Replace o(1) by ck > 0, and observe

−pb = −e−121−k

(
e ln 2

4
k22k + ck

e ln 2

4
k22k

)
= −k2 ln 2

2
− ck

k2 ln 2

2
.

Therefore,

2ne−pb = 2n2−k2/2−ck
k2 ln 2

2

= 2b
k2

2
c− k2

2
−ck

k2 ln 2
2 (n = bk2/2c)

≤ 2−ck
k2 ln 2

2 < 1 (ck > 0)

as desired.

Definition 5.2.4. A family F of subsets of X has property B if there exists a

two-colouring of X such that no element A ∈ F is monochromatic.

The next example appears in [1, pp. 65-66].

Example 5.2.5. Let H = (V, E) be a hypergraph in which every edge has at

least k-elements and suppose every edge of H intersects at most d other edges.

If

e(d + 1)21−k < 1

then H has property B.
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Proof. This proof uses Corollary 4.4.3 with the probability p = 21−k being

a bound on the probability that any one edge is monochromatic. Since if

f, g ∈ E and Af is the event that f is monochromatic, then Af is dependent

on Ag ⇐⇒ f and g share vertices, the conditions given imply Af is dependent

on at most d events. Observing that

P[
∧
f∈E

Af ] > 0

implies there is a two-colouring with no monochromatic edge.

Let k ∈ Z+. A family of sets, F, is called k-uniform iff for all A ∈ F |A| = k.

Theorem 5.2.6. [13] If every member of a k-uniform family intersects at most

2k−3 other members, then the family is 2-colourable.

Proof. This is an application of the Lovász local lemma.

Assume F = {A1, A2 . . . Af} is a k-uniform family of subsets of some set X

in which every member A ∈ F intersects at most 2k−3 other members of F.

Independently and uniformly colour X (i.e for all x ∈ X; P[x is red] =

1/2 = P[x is blue]). For A ∈ F, let A be the event ‘A is monochromatic’. As

the colouring is independent,

P[A] = 21−k = p.

Using d + 1 = 2k−3 + 1, then

e(d + 1)p = e(2k−3 + 1)21−k

= e(2−2 + 21−k) < 1

by applying Corollary 4.4.3,

P[A1 ∧A2 ∧ · · · ∧Af ] > 0 (5.3)

such that there is two-colouring for which none of the Ai ∈ F is monochromatic.

Hence F is 2-colourable as needed.
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Before proceeding to the next theorem, the following lemma is needed.

Lemma 5.2.7. Let n ∈ Z+ and p ∈ (0, 1). Let np ≤ s. Then

(i) α =
n− s

s + 1

p

1− p
< 1

(ii)
n∑

k=s+1

(
n

k

)
pk(1− p)n−k ≤

(
n

s

)
αs

1− α
.

Proof. For part (i), if np ≤ s, then n − s ≤ n(1 − p) while
1

s + 1
<

1

s
<

1

np
.

Therefore

α =
n− s

s + 1

p

1− p
<

n(1− p)

np

p

1− p
= 1,

completing the proof of (i).

For part ( ii), note that(
n

s+1

)(
n
s

) ps+1(1− p)n−s−1

ps(1− p)n−s
= α

so that for s + 1 ≤ v ≤ n,(
n
v

)(
n
s

) pv(1− p)n−v

ps(1− p)n−s
=

(
n
v

)(
n

v−1

) pv(1− p)n−v

pv−1(1− p)n−v−1

(
n

v−1

)(
n

v−2

) pv−1(1− p)n−v−1

pv−2(1− p)n−v−2
· · ·

· · ·
(

n
s+1

)(
n
s

) ps−1(1− p)n−s−1

ps(1− p)n−s
≤ αv.

Therefore (
n

v

)
≤
(

n

s

)
αv;

hence

n∑
k=s+1

(
n

k

)
pk(1− p)n−k ≤

(
n

s

) n∑
k=s+1

αk−s

≤
(

n

s

)
αs

∞∑
k=1

αk

=

(
n

s

)
αs 1

1− α
(α < 1).
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If Y is a k-uniform family of subsets of X, the next result in this section

shows that under certain conditions, it is possible to colour X in r = b k
ln k
c

colours so that every set A ∈ F has at most t = d2e ln ke monochromatic

elements.

Theorem 5.2.8. [18] Let k ∈ Z+. Let F be a k-uniform family of subsets of

X and suppose that no point belongs to more than k elements of F. Then for k

sufficiently large, there exists an r = b k
ln k
c colouring of X such that no A ∈ F

has more than t = d2e ln ke points of the same colour.

Proof. (This proof is from [23, p. 242]) Colour the points of X with r colours

such that each point is coloured randomly and independently with a probability

of 1/r. For i ∈ [r] and S ∈ F, let A(S, i) be the event ‘S has more than t points

coloured i’. Any two such events, A(S, i), A(S ′, i′) are dependent if S∩S ′ 6= ∅.

Define a relation ∼ on F by S ∼ S ′ iff A(S, i) is dependent on A(S ′, i′). For

any event A(S, i), the first step is to bound the number d of dependent events.

As S has k elements, each of which are in (at most) k − 1 other S ′ ∈ F and

there are r colours,

d ≤ (1 + k(k − 1))r ≤ k3.

To apply Corollary (4.4.3), the next step is to bound P[A(S, i)]. For every

S ∈ F and every i ∈ [r],

P[A(S, i)] =
k∑

j=t+1

(
k

j

)(
1

r

)j (
1− 1

r

)k−j

≤
(

k

t

)(
1

r

)t

(Lemma 5.2.7)

≤
(

ek

t

)t(
1

r

)t

(Lemma 2.3.6)

=

(
ke

tr

)t

< 2−t < k−4 (assumption on k).

Using d = k3, p = k−4, then

ep(d + 1) ∼ ek−1 < 1.
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Hence, Corollary (4.4.3) implies

P[
∧
S∈F
i∈[r]

A(S, i)] > 0.

Thus there is an r-colouring of X such that no element of F has more than t

elements of the same colour.

Definition 5.2.9. A family Y of sets is called an anti-chain if no set of Y is

contained in another.

The following result was independently discovered by Lubell [26], Me-

shalkin [28] and Yamamoto [40]; consequently the result is often called

“LYM”-inequality.

Theorem 5.2.10. (LYM-inequality) Let n ∈ Z+. Let X be a set of n elements.

Let F ⊆ P(X) be an anti-chain. Then∑
A∈F

1(
n
|A|

) ≤ 1.

Proof. (This proof is from [1, p. 197-198]) Uniformly choose σ ∈ Sn (i.e.

for all σ ∈ Sn, the probability of choosing σ is 1
n!

). Let Cσ = {{σ(j) : 1 ≤

j ≤ i} 0 ≤ i ≤ n}. To clarify, Cσ is the collection {∅} (when i = 0, the set

is empty), {σ(1)}, {σ(1), σ(2)} . . . {σ(1), σ(2), . . . σ(n)} = {1, 2 . . . n} as σ is a

permutation. This collection has one set of every cardinality between 0 and n.

For every A ∈ P([n]), observe that the event ‘A ∈ Cσ’ occurs when the set

{σ(1), σ(2) . . . σ(|A|)} = A, while the elements

σ(|A|+ 1), σ(|A|+ 2) . . . σ(n) ∈ [n] \ A

for which there are |A|!(n− |A|)!. Therefore, the uniform choice of σ implies

P[A ∈ Cσ] =
|A|!(n− |A|)!

n!
=

1(
n
|A|

) . (5.4)

For every A ⊂ P([n]), let

X(A) =

|A ∩ Cσ| if A ⊆ F

0 otherwise.
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and for each A ∈ F, let XA be the indicator random variable for the event

“A ∈ Cσ”.

Since F is an anti-chain and Cσ is a chain,

|F ∩ Cσ| ≤ 1

so that

X =
∑
A∈F

XA ≤ 1.

Hence

E[X] =
∑
A∈F

E[XA]

=
∑
A∈F

Pσ[A]

=
∑
A∈F

1(
n
|A|

) ≤ 1 (as E[X] ≤ 1.)

5.3 Probabilistic proofs in graph theory

To motivate the next example, here is a lemma. Recall that if G = (V, E) is

a graph, a set V ′ ⊆ V is called independent iff [V ′]2 ∩ E = ∅ and α(G) is the

cardinality of the largest independent subset of V .

Lemma 5.3.1. Let G be a graph on n vertices and ∆(G) = d. Then G contains

an independent set of at least n/(d + 1) vertices.

Proof. Partition V as follows: Choose a vertex v1 with smallest degree and let

V1 be the set of v1 along with v1’s neighbors.

Choose a vertex v2 ∈ V \V1 of smallest degree and let V2 be the set of v2 along

with v2’s neighbors in V \ V1.

Continue in this manner until all of V is used up, with sets V1, V2 . . . Vk parti-

tioning V and for 1 ≤ i ≤ k,

|Vi| = |V \ ∪j≤i−1Vj| ≥ n− i(d + 1).
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Let

U = {v1, v2, . . . , vk.

As n− k(d + 1) ≤ 0, then n
d+1

≤ k. From the construction of U , U ⊂ V is an

independent set of k elements.

The next two theorems guarantee the existence of an independent set of

a certain size. Furthermore, the next theorem, appearing in [1, p. 70-71],

guarantees the maintenance of structure.

Theorem 5.3.2. Let H = (V, E) be a graph with maximum degree d and let

V = V1 ∪ V2 ∪ . . . ∪ Vr be a partition of V . Suppose for all i ∈ [r], |Vi| ≥ 2ed.

Then there is an independent set W ⊂ V that contains a vertex from each set.

Proof. Let g = d2ede. Without loss of generality, assume for all i, |Vi| = g

(otherwise choose V ∗
i ⊆ Vi with |V ∗

i | = g. Examine the subgraph induced by

{V ∗
i }r

i=1. If two vertices are independent in the induced subgraph then the two

vertices are independent in the larger graph).

Form a set W by randomly and uniformly choosing a vertex from each

Vi. Using Corollary 4.4.3 of the Lovász local lemma, it is shown below with

positive probability, no edge has both of its endpoints in W .

Define the events

• for all f ∈ E, let Af be the event “both end points of f are in W”

• if x 6= y let Ax,y be “x ∈ Vi ∧ y ∈ Vj then i 6= j”

• For all z ∈ V let Az be “z ∈ W”.

By the definition of W , for all f = {x, y} ∈ E,

Af = Ax,y ∧ Ax ∧ Ay.

By the uniformity of the choice of x and y,

P[Ax] = P[Ay] =
1

g
.
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Thus

P[Af ] ≤ P[Ax]P[Ay] =
1

g2
.

To estimate the number of events that Af is dependent upon, if f has

endpoints in Vi and Vj then Af is independent of all events with endpoints not

in Vi ∪ Vj so that Af is dependent on at most 2gd− 1 events. By the choice of

g,
e2gd

g2
=

e((2gd− 1) + 1)

g2
=

2ed

g
< 1.

Therefore Corollary 4.4.3 implies with positive probability, none of the Af

occur. Thus with positive probability there is a collection W for which no

Af occur. Hence there is an independent set with a vertex in each set as

needed.

Theorem 5.3.3. [36] Let n ∈ Z+. Suppose G = (V, E) is a graph on n

vertices. If, for some 1 ≤ k ≤ n− 1, nk
2
≤ |E(G| then α(G) ≥ n

2k
.

Proof. Let p = 1
k
. Let S ⊂ V be chosen such that P[v ∈ S] = p.

For e ∈ E, let Ae be the event “both endpoints of e are in S” and let Ye be the

indicator random variable for Ae. Let Y =
∑

e∈E Ye. As Ye = 1 if and only if

both end points are in S which occurs with probability p2, since |E(G)| = nk
2

,

linearity of expectation implies

E[Y ] =
nk

2
p2.

Let X = X(S) = |S| such that E[X] = np. Define Z = Z(S) = X(S)− Y (S).

If 0 < Z(S) = ` then S has ` more vertices containing both end points in S

than edges. This implies that S has at least ` independent vertices (as they

share no edges).

By linearity of expectation,

E[Z] = E[X]− E[Y ]

= np− nk

2
p2
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=
n

k
− nk

2

1

k2

=
n

2k
.

Thus there is a S ⊆ [n] with Z(S) ≥ n
2k

which implies S has an independent

set of size

n

2k
≤ α(G).

Theorem 5.3.4. Let G = (V, E) be a graph on 0 < n vertices. For v ∈ V , let

deg(v) = dv, then

α(G) ≥
∑
v∈V

1

1 + dv

.

Proof. Let Ω be the collection of total orders of V . Let

I< = {v ∈ V : {v, w} ∈ E → v < w}

so that x ∈ I< iff for all w ∈ N(x) x < w.

Claim 1. For all v ∈ V ,

P[v ∈ I<] =
1

dv + 1
.

Proof (of claim): If b is the number of total orderings of V and a is the

number of total orderings of V where v is the least element in {v} ∪ N(v).

The observation that if <1 is a total ordering of V with v <1 x then there is a

second total ordering <2 with x <2 v, thus for every w ∈ N(v), the number of

orderings where w is the least element of {v} ∪N(v) is also a. Hence∑
x∈{v}

S
N(x)

a = (dv + 1)a = b,

which implies

a =
b

dv + 1
.

Together this yields

P[v ∈ I] = P[v is the least element of {v} ∪N(v)]
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=
a

b
=

1

dv + 1
,

thus concluding the proof of Claim 1.

Returning to the proof of Theorem 5.3.4, let X be a random variable defined

by X(<) = |I<|. Let Xv be the indicator random variable for the event

‘v ∈ I<’. Hence

X =
∑
v∈V

Xv

and therefore

E[X] =
∑
v∈V

E[Xv] =
∑
v∈V

1

dv + 1
.

Corollary 3.2.5 implies there is a total ordering < so that:

|I<| = X(I<) ≥ E[X] =
∑
v∈V

1

dv + 1
.

To complete the proof, it is shown that for any total ordering <, I< is an

independent set. Assume x, y ∈ I<, x 6= y and y ∈ N(x). As < is a total

ordering of V , x < y or y < x. Suppose y < x then x is not the least element

in {x} ∪ N(x) which implies x 6∈ I<, a contradiction, and if x < y, then y is

not the least element in N(y)
⋃

y, a contradiction. Therefore if x, y ∈ I< then

x and y are independent which implies α(G) ≥ |I<|.

Denote the complete m-partite graph on n vertices partitioned as evenly

as possible by Tm(n), called the Turán graph. From this definition of Tm(n),

α(Tm(n)) = m.

Theorem 5.3.5. Let m ≤ n ∈ Z+. Suppose q and r satisfy n = mq + r and

0 ≤ r < m. Let e = r
(

q+1
2

)
+ (m − r)

(
q
2

)
. Let H = (W, F ) be a graph on n

vertices and e edges. Then α(H) ≥ m and with equality iff H ' Tm(n).

Proof. Let Tm(n) = (V, E) be the Turán graph on n vertices.

Claim 1. Assume m is as in Theorem 5.3.5. Then
∑

v∈V
1

dv+1
= m.
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Proof (of Claim 1): Let V1, V2, . . . , Vm be the m classes that V is split into.

From the construction of Tm(n), the subgraph induced from each component

is complete so that each connected component is a complete subgraph. Thus

for all v ∈ Vi, deg(v) = |Vi| − 1. Therefore∑
v∈Vi

1

deg(v) + 1
=

|Vi|
deg(v) + 1

=
|Vi|
|Vi|

= 1.

Hence, summing over the m components proves Claim 1.

For the next claim, let H = (W, F ) be any graph on n vertices and define

D(H) =
∑
v∈W

1

deg(v) + 1
.

Claim 2. D(H) is minimized when every vertex has the same degree.

Proof (of Claim 2): Let

v =

(
1√

(dv1 + 1)
,

1√
(dv2 + 1)

, . . . ,
1√

(dvn + 1)

)
and

u =
(√

(dv1 + 1),
√

(dv2 + 1), . . . ,
√

(dvn + 1)
)

.

Lemma (3.3.3) implies

n2 = (〈u,v〉)2

≤

(
n∑

j=1

1

dv1 + 1
+ . . .

1

dvn + 1

)

((dv1 + 1) + . . . (dvn + 1))

= D(H)(2E[H] + n) (as
∑n

j=1 dvj
= 2E[H].)

Lemma (3.3.3) is minimized when there is a nonzero t ∈ R such that v = tu

or for all i ∈ [n] 1√
(dvi+1)

= t
√

(dvi
+ 1). Hence 1/t = dvi

+ 1; thus all of the

vertices have the same degree. Completing the proof of Claim 2.

The next part of the proof uses the same idea as Lemma 1. Recall that for

any H = (W, F ) with |W | = n and |F | = e,

α(H) ≥
∑
v∈W

1

dv + 1
≥ m.
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If ‘<’ is any total ordering of W , let I< and X(<) = |I<| be as in the previous

proof.

Claim 3. If α(H) = E[X] then X is constant.

Proof (of Claim 3): Assume α(H) = E[X] and X is not constant. Lemma 1

implies for any total ordering < of W , α(H) ≥ X(I<). If X were not constant,

there would be a total ordering <1 of W such that

α(H) ≥ X(I<1) > E[X]

which is a contradiction. Thus Claim 3 is shown.

Claim 4. If α(H) = m, then H is the union of cliques.

Proof (of Claim 4): Assume otherwise; there is vertex v ∈ W such that

{x, y}, {x, z} ∈ F but {y, z} 6∈ F.

Let <1 be an ordering of W that begins with x, y, z and <2 that begins y, z, x

and otherwise is the same as <1 then I<1 = I<2 ∪ {x} (since x is the least

element in <1, x is the least element in its neighborhood, whereas in <2, x is

greater than two of its neighbors and nothing else is changed) thus X is not

constant and α(H) 6= E[X] which is a contradiction to the assumption. Thus

completing the proof of Claim 4.

Returning to the proof of Theorem 5.3.5, assume H = (W, F ) is a graph

with |W | = n and |F | = e and Tm(n) = (V, E) is the Turán graph. If

H ' Tm(n), then there is an graph isomorphism β : H → Tm(n) such that

for x, y ∈ W , {x, y} ∈ F iff {β(x), β(y)} ∈ E. Hence any pair x, y ∈ W are

independent iff β(x), β(y) are independent in Tm(n). Therefore V1, V2, . . . , Vm

partition V into independent sets iff β−1(V1), β
−1(V2), . . . , β

−1(Vm) partition

W into independent sets. Hence α(H) = m.

Suppose α(H) = m. Claim 4 implies the H is the union of cliques. Partition

W into W1, W2, . . . ,Wk so that for each i, Wi is a maximal clique.
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Claim 5. If W1, W2, . . . ,Wk are a partition of W into maximal cliques, then

k = m.

As H is the union of cliques and W1, W2, . . . ,Wk are maximal cliques, each

of the Wi’s are independent sets. Therefore, k ≤ m.

Suppose k < m. Partition W into independent sets U1, U2, . . . , Um. As

k < m and both collections partition W , there is a 1 ≤ i ≤ k and 1 ≤ s <

t ≤ m such that Wi ∩ Us 6= ∅ and Wi ∩ Ut 6= ∅. This is a contradiction as

W1, W2, . . . ,Wk are maximal cliques while U1, U2, . . . , Um are independent sets.

Therefore m ≤ k and Claim 5 is shown.

As α(H) =
∑

v∈W
1

1+dv
= m is minimized, Claim 2 implies every vertex has

as close to the same degree as possible. As this is also true in Tm(n), there is

an isomorphism between H and Tm(n).

The last result in this section involves extremal graph theory. Suppose H

is some graph on k vertices and n ≥ k. The number ex(n, H) is the largest

number of edges such that for any graph on n vertices with ex(n,H)+1 edges

has a copy of H as a subgraph.

Theorem 5.3.6. There is a constant c such that for n sufficiently large,

ex(n, K2,2) > cn
4
3 .

Proof. Assume n is large and p ∈ (0, 1). For G ∈ Gn,p, let X(G) count the

number of (not necessarily induced) copies of K2,2 in G and let Y (G) be the

number of edges in G. Then

E[X] = 3

(
n

4

)
p4 ∼ n4p4

8

and

E[Y ] =

(
n

2

)
p ∼ n2p

2
.

Let Z = Y −X. Then Z is the random variable in Gn,p measuring the difference

between the number of edges in a graph and the number of K2,2’s. Linearity
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of expectation implies

E[Z] = E[Y ]− E[X]

∼ n2p

2
− n4p4

8

=
n2p

2

(
1− n2p3

4

)
.

When p(n) = n−2/3, then

E[Z] =
n4/3

2

(
1− 1

4

)
=

3n4/3

8
.

By Lemma 3.2.4, fix a graph G such that Z(G) ≥ E[Z]. Removing one edge

from every K2,2 forms a new graph G′ with no K2,2’s and Y (G)−X(G) ≥ 3n4/3

8

edges as needed.

The actual bounds for ex(n,K2,2) = cn3/2 (see [11] for the upper bound

and [33] for the lower bound). Thus Theorem 5.3.6 is an example where the

probabilistic bound is not the best possible.

5.4 Other examples

For v = (x1, x2, . . . , xn) ∈ Rn, let ||v|| =
√

x2
1 + x2

2 · · ·+ x2
n be the Euclidean

norm on Rn. The next theorem is a famous result in combinatorial geometry.

Theorem 5.4.1. [25] Let v1,v2, . . . ,vn ∈ Rn, where for each i, ||vi|| = 1.

There exists ε1, ε2, . . . , εn ∈ {−1, 1} such that

||ε1v1 + ε2v2 + . . . + εnvn|| ≤
√

n

, and there exists α1, α2, . . . , αn ∈ {−1, 1} such that

||α1v1 + α2v2 + · · ·+ αnvn|| ≥
√

n.
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Proof. Select β1, β2 . . . βn independently and uniformly from {−1, +1}. Let

X(β1, . . . βn) = ||β1v1 + . . . + βnvn||2 =
n∑

i=1

n∑
j=1

βiβjvi · vj.

From the definition,

E[βi] =− 1P[βi = −1] + P[βi = 1]

=(−1)
1

2
+

1

2
(uniformity of the choice of βi)

=0.

Furthermore, as the βi are chosen independently,

E[βiβj] =

0 i 6= j

1 i = j.

Hence

E[X] =
n∑

i=1

n∑
j=1

E[εiεj]vi · vj

=
n∑

i=1

vi · vi = n.

Thus there exists an ε1, ε2 . . . εn and an α1, α2, . . . αn such that

X(ε1, ε2, . . . , εn) = ||ε1v1 + . . . + εnvn||2

≤ E[X] = n.

While

X(α1, α2, . . . , αn) = ||α1v1 + . . . + αnvn||2

≥ E[X] = n.

Taking square roots yields the result.

Definition 5.4.2. A set x1, x2, . . . xk of positive integers is said to have distinct

sums iff for all S ⊆ [k], ∑
i∈S

xi

are distinct.
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The proof of the next theorem uses the second moment method.

Theorem 5.4.3. ([1, pp. 52-53]) Let f(n) denote the maximal k for which

there exists a set

{x1, x2, . . . , xk} ⊂ [n]

with distinct sums. Then

f(n) ≤ log2(n) +
1

2
log2 log2 n + O(1).

Proof. Fix {x1, x2, . . . , xk} ∈ [n]k with distinct sums. Let ε1, ε2, . . . , εk ∈ {0, 1}

be chosen independently so that for all j ∈ [k],

P[εj = 0] = P[εj = 1] =
1

2

and define

X = ε1x1 + ε2x2 + . . . + εkxk (X is a random sum).

As the ε’s are chosen independently,

E[X] =
x1 + x2 + . . . + xk

2

To calculate the variance,

Var[X] =
k∑

i=i

Var[εixi] (εi’s are independent),

=
k∑

i=1

E[(εixi)
2]− E[εixi]

2

=
k∑

i=1

E[(εi)
2]xi −

1

4
x2

i .

Since every xi ∈ [n],

Var[X] =

∑k
i=1 x2

i

4
≤ kn2

4
.

Chebychev’s inequality implies for every λ > 1,

P

[
|X − µ| ≥ λ

n
√

k

2

]
≤ Var[X]

(λn
√

k
2

)2
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≤ n2k/4

λ2n2k/4
= λ−2

or

P[|X − µ| < λ
n
√

k

2
] ≥ 1− λ−2. (5.5)

Since the xi’s were chosen to have distinct sums, to any t ∈ R,

P[X = t] = 0 or 2−k

(as there is one distinct event corresponding to every t, which occurs with

probability 2−k or 0 depending on whether or not X can equal t). Thus,

P[|X − µ| < λ
n
√

k

2
] ≤ 2−k

(
λ

n
√

k

2
+ 1

)
(5.6)

since |X − µ| < λn
√

k
2

is the event −λn
√

k
2

< X − µ < λn
√

k
2

which can occur

λn
√

k + 1 ways each with at most a probability of 2−k.

Putting together inequalities (5.5) and (5.6) yield

1− λ−2 ≤ P[|X − µ| ≤ λ
n
√

k

2
] ≤ 2−k(λn

√
k + 1) (5.7)

or

1− λ−2 ≤ 2−k(λn
√

k + 1),

from which it follows that

2k(1− λ−2)− 1

λ
√

k
≤ n.

Take λ =
√

3 yields:

2k 2
3
− 1

√
3k

< n.

Let k0 = log2(n) + 1
2
log2 log2(n) + c. Then

2k0 = 2cn
√

log2(n).
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While

√
3k0 =

√
3(log2(n) +

1

2
log2 log2(n) + c)

=

√
3 log2(n) +

3

2
log2 log2(n) + 3c.

Therefore

2k0+1 − 3

2
√

3k0

=
2c+1n

√
log2(n)− 3

3
√

3 log2(n) + 3
2
log2 log2(n) + 3c

=
n

3

√
22(c+1) log2(n)

3 log2(n) + 3
2
log2 log2(n) + 3c

− 3√
3 log2(n) + 3

2
log2 log2(n) + 3c

.

Picking a proper value for 0 < c gives the result.



Chapter 6

Probability models for graphs

In this chapter, two probability models for graphs are introduced along with

some properties of each. At the end of the chapter, a result combining graph

theory, logic and probability is shown providing the basis for the chapter on

threshold functions.

Definition 6.0.4. Let n ∈ Z+. The set Ω is the collection of all graphs on an

n-set, V .

6.1 Model A

Definition 6.1.1 (Model A). For 0 < p < 1, and n ∈ Z+, let Gn,p denote the

model (called Model A) of graphs on n vertices in which the edges are chosen

independently, each with probability p.

To clarify, Gn,p = (Ω,P) where for every edge, e, and each graph, G ∈ Ω,

P[e ∈ E(G)] = p,

and each edge is independently chosen. The next lemma shows this is a prob-

ability space.

Lemma 6.1.2. For every n ∈ Z+, 0 < p < 1, Gn,p = (Ω,P) is a probability

79
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space such that for all G0 ∈ Ω, if |E(G0)| = m then

P[G0] = pm(1− p)(
n
2)−m.

Proof. It must be shown that P is a probability measure on Gn,p.

(i) Let G0 ∈ Ω have m edges. For every e ∈ [V ]2, let Ae be the event

“e ∈ E(G)” so that

P[{G0}] = P[G = G0]

= P[(
∧

e∈E(G)

Ae) ∧ (
∧

e 6∈E(G)

Ae)]

= pm(1− p)(
n
2)−m (indep. of Ae)

as claimed.

(ii) Since for every 0 ≤ e ≤
(

n
2

)
, there are

((n
2)
e

)
graphs with |E(G)| = e,

Theorem 2.3.5 implies

P[Ω] =
∑
G∈Ω

P[G]

=

(n
2)∑

m=0

((n
2

)
m

)
pmq(

n
2)−m = 1.

(iii) If A ⊂ B ⊂ Ω, then 0 ≤ P[A] ≤ P[B] ≤ 1.

Notice B = A ∧ (B \ A) therefore

P[B] =
∑
G∈B

P[G]

=
∑
G∈A

P[G] +
∑

G∈B\A

P[G] (A and B \ A are disjoint)

≥
∑
G∈A

P[G]

= P[A]

as needed.

(iv) P[∅] = 1− P[Ω] = 1− 1 = 0.
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Thus P is a probability measure.

Example 6.1.3. Expected degree of a vertex

For G ∈ Gn,p, let X(G) = degG(v1), and for 2 ≤ i ≤ n, let Xi(G) be the

indicator random variable for the event ‘{v1, vi} ∈ E(G)’ so that E[Xi] = p

and X =
∑n

i=2 Xi. Hence linearity of expectation implies

E[X] = (n− 1)p.

Example 6.1.4. Expected number of edges

Let V = {v1, v2, . . . , vn}. Enumerate the pairs {vi, vj} ∈ [V ]2 in any manner.

For G ∈ Gn,p, let X(G) = |E(G)| and for 1 ≤ i ≤
(

n
2

)
, let Xi be the indicator

random variable of the event ‘i ∈ E(G)’. From the definition of Gn,p, E[Xi] = p

and

X =

(n
2)∑

i=1

Xi,

so by linearity of expectation,

E[X] =

(
n

2

)
p.

These two examples illustrate properties of Model A: the larger p is, the

larger the expected number of edges of graph is (see Theorem 6.3.5). Recall

that a vertex v is isolated iff there is no edge incident to v.

Example 6.1.5. Expected number of isolated vertices

Let X be a random variable on Gn,p counting the number of isolated vertices

in a graph; for v ∈ V , let Av be the event ‘v is isolated’ and let Xv be the

respective indicator random variable. Then

E[Xv] = (1− p)n−1.

As X =
∑

v∈V Xv,

E[X] =
∑
v∈V

E[Xv]

= n(1− p)n−1 (linearity of expectation).
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Some terminology is needed for the next definition. For every n ∈ Z+, let

Ωn be a model of random graphs of order n so that Ωn = Gn,p(n) for some

p(n) ∈ [0, 1] or Ωn = Gn,M(n) for some 0 ≤ M(n) ≤
(

n
2

)
.

Definition 6.1.6 (Almost surely). Let {Ωn}∞n=1 be a sequence of models of

random graphs. A property of graphs Q is said to hold almost surely iff

limn→∞ P[Q] = 1.

As an example of the calculations in later sections, the next example consid-

ers the property of connectedness in graphs. Recall that a graph is connected

iff between any two vertices there is a path.

Theorem 6.1.7. (See [30]) Let 0 < p < 1 be given. In Gn,p almost surely

every graph is connected.

Proof. Assume n and p are given. For G ∈ Gn,p, let

X(G) =

1 G is disconnected

0 otherwise.

Then E[X] is the probability that a graph is disconnected in Gn,p.

Let P = {U,W} be a nontrivial (i.e. U 6= ∅ 6= W ) partition of V . Say P

is a good partition if there are no edges between vertices in U and vertices in

W . Thus

P[P is good] = (1− p)|U ||W |.

For every k ∈ [n], there are
(

n
k

)
partitions with |U | = k and |W | = n− k, thus

E[X] ≤
n−1∑
k=1

(
n

k

)
(1− p)k(n−k),

the inequality being necessary as a disconnected graph may be partitioned in

multiple ways. Inequality (3.4) implies

P[X ≥ 1] ≤ E[X]
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≤
n−1∑
k=1

(
n

k

)
(1− p)k(n−k)

≤
n−1∑
k=1

(
n

k

)
ek(−p(n−k))

≤
n−1∑
k=1

nkek(−p(n−k)

=
n−1∑
k=1

(epne−pn)k

∼
n−1∑
k=1

(ne−pn)k

≤ (n− 1)(ne−pn) = o(1) (p fixed and n large ⇒ n2e−pn < 1).

Theorem 6.1.8. (See [30]) Let p ∈ (0, 1) be given. Define the random variable

κ on Gn,p by κ(G) is the size of the largest clique. Then

lim
n→∞

P
[
κ(G) >

2 ln n

− ln p

]
= 0.

Proof. For n ∈ Z+, let r =

⌈
(−2 ln n− ln p)

ln p

⌉
. For every R ∈ [n]r, let AR be

the event ‘the subgraph induced by R is a clique’ and κR be the respective

indicator random variable. Let κr =
∑

R∈[n]r XR be the random variable on

Gn,p counting the number of r-cliques. Note that if κr(G) ≥ 1, then κ(G) ≥ r.

As the subgraph generated by R has
(

r
2

)
edges,

E[κR] = p(r
2).

Thus

E[κr] =
∑

R∈[n]r

E[κR] (linearity of expectation)

=

(
n

r

)
p(r

2)

∼ (ne)rp(r
2) (Lemma 2.3.4)
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= (nep( r−1
2 ))r.

Since p ∈ (0, 1) is fixed, equation (3.3.8) implies

lim
n→∞

P[κ(G) > r] ≤ lim
n→∞

P[κr(G) ≥ 1]

≤ lim
n→∞

E[κr]

≤ lim
n→∞

[
nep( r−1

2 )
]r

= 0.

6.2 Model B

Definition 6.2.1. (Model B)

For n ∈ Z+, and 0 ≤ q ≤
(

n
2

)
, let Ωq = {G ∈ Ω : |E(G)| = q}. Define

∀Go ∈ Ωq P[G = G0] =

((n
2

)
q

)−1

and

Gn,q = (Ωq,P).

Lemma 6.2.2. Gn,q is a uniform probability space.

Proof. (i) P[Ωq] = 1. There are
((n

2)
q

)
graphs in Ωq, thus

P[Ωq] =
∑
G∈Ωq

P[G]

=
1((n
2)
q

) ∑
G∈Ωq

1 = 1.

(ii) If A ⊆ B ⊆ Ωq then

P[B] =
∑
G∈B

P[G]

=
∑
G∈A

P[G] +
∑

G∈B\A

P[G]

≥
∑
G∈A

P[G] = P[A]

as needed.
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(iii) P[∅] = 1− P[Ωq] = 1− 1 = 0.

Thus Gn,q is a probability space.

Example 6.2.3. [30, p. 9-10]

In G4,2, the probability of a graph being connected is zero as no graphs with

four vertices and two edges are connected. In G4,3, the probability of a graph

being connected is

1−
(
4
3

)((4
2)
3

) =1− 4(
6
3

)
=1− 4/20 = 4/5.

Example 6.2.4. For G ∈ Gn,q with V (G) = {v1, v2, . . . , vn}, let X(G) =

deg(v1). Then E[X] = 2q/n.

Proof. Let 2 ≤ i ≤ n. Let Xi be the indicator random variable for the event

“{v1, vi} ∈ E(G)”. As there are
(

n
2

)
edges to choose from, picking one (say

{v1, vi}) leaves the remaining
(

n
2

)
− 1 edges from which q − 1 are chosen.

Therefore for all 2 ≤ i ≤ n,

E[Xi] =

((n
2

)
− 1

q − 1

)((n
2

)
q

)−1

.

Linearity of expectation gives

E[X] =
n∑

i=2

E[Xi] = (n− 1)E[X2]

= (n− 1)

((n
2

)
− 1

q − 1

)((n
2

)
q

)−1

= (n− 1)

(
(
(

n
2

)
− 1)!

(q − 1)!(
(

n
2

)
− q)!

)(
q!(
(

n
2

)
− q)!(

n
2

)
!

)

=
(n− 1)q

n(n− 1)/2
=

2q

n

6.3 Comparative results in Gn,p and Gn,q

Throughout the rest of these notes, it will occasionally be necessary to compare

two measure spaces Gn,p1 and Gn,p2 (or Gn,q1 and Gn,q2) with respect to some



86

property Q. In these cases, the notation Pp1(Q) and Pp2(Q) (or Pq1(Q) and

Pq2(Q) respectively) to refer to the measure of Q in Gn,p1 versus the measure

of Q in Gn,p2 (or Gn,q1 versus Gn,q2 respectively). Theorem 6.3.5 is an example

of comparing a property in two measure spaces.

Definition 6.3.1. A property Q of graphs is called monotone increasing if

whenever G satisfies Q and G is a subgraph of H then H satisfies Q.

Example 6.3.2. Let Q be the property “G contains a triangle”. Then Q is

monotone increasing since if a subgraph contains a triangle, so does the larger

graph.

Example 6.3.3. The property that G contains a cycle is monotone increasing.

If G is a subgraph of H containing a cycle then so does H.

Example 6.3.4. Before the next theorem, here is a algorithm to produce a

graph in Gn,q. Enumerate all of the possible
(

n
2

)
edges for a graph in Gn,q,

then form a graph H by choosing q edges randomly and uniformly (e.g., via

a random number generator where the probability of every number is equal).

The first part of the proof of the next theorem uses this idea.

Theorem 6.3.5. Let n ∈ Z+ be given. Suppose Q is a monotone increasing

property. If 0 ≤ q1 < q2 ≤
(

n
2

)
and 0 ≤ p1 < p2 ≤ 1 then

Pq1(Q) ≤ Pq2(Q)

and

Pp1(Q) ≤ Pp2(Q).

Proof. As in Example 6.3.4, form a graph H ∈ Gn,q1 and extend H to a graph

G ∈ Gn,q2 in the same manner by choosing the remaining q2 − q1 edges in the

same manner. If H has Q then G has Q. As every G ∈ Gn,q2 can be generated

in such fashion,

Pq1 [Q] ≤ Pq2 [Q].
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Let p = p2−p1

1−p1
. Choose any G1 ∈ Gn,p1 and randomly independently choose a

second graph G2 ∈ Gn,p. Form a new graph G ∈ Ω by E(G) = E(G1)∪E(G2).

The next step is to show that G ∈ Gn,p2 . As P[e ∈ E(G1)] = p1 and P[e ∈

E(G2)] = p and the edges are chosen independently,

P[{e ∈ E(G1} ∧ {e ∈ E(G2)}] = P[{e ∈ E(G1}]P[{e ∈ E(G2)}]

= p1p

so that

P[e ∈ E(G1) ∪ E(G2)] = P[{e ∈ E(G1)} ∨ {e ∈ E(G2)}]

= P[{e ∈ E(G1)}] + P[{e ∈ E(G2}]

− P[{e ∈ E(G1)} ∧ {e ∈ E(G2)}]

= p1 + p− p1p = p2

implying G ∈ Gn,p2 . As Q is monotone increasing, if G1 has Q so does G.

Therefore

Pp1(Q) ≤ Pp2(Q).

Example 6.3.2 and Theorem 6.3.5 give the following.

Corollary 6.3.6. Let Q be the property “G has a triangle” and q1, q2, p1, p2 be

as in Theorem 6.3.5. Then

Pq1(Q) ≤ Pq2(Q)

and

Pp1(Q) ≤ Pp2(Q).

6.4 Zero-One laws in graph theory

This section discusses some of the results regarding the first order theory of

graphs. This theory of logic consists of variables {x, y, z, u, v, . . .} representing
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vertices of a graph, the operations of equality and adjacency (x = y, x ∼ y),

the usual Boolean connectives (∧,∨, . . .), along with universal and existential

quantification (∀,∃).

Example 6.4.1. Some examples of first order statements in theory of graphs.

In the first order theory of graphs, the statement:

∃x∃y∃x[x ∼ y ∧ y ∼ z ∼ x]

is the property “there exists vertices x, y, z such that {x, y}, {y, z}, {z, x} ∈

E(G)”; i.e. G contains the triangle formed by the vertices x, y, z.

In the first order theory of graphs, the statement:

∀x∃y[x ∼ y]

is the property “for all vertices x, there exists a vertex y such that {x, y} ∈

E(G); i.e. G contains no isolated vertices.

A theory of logic is called consistent if the theory has a model. A theory

is complete if, for every formula in its signature, either that formula or its

negation is a logical consequence of the axioms of the theory. In what follows,

the next definition is neccessary.

Definition 6.4.2. A finite set Γ of sentences truth-functionally entails a sen-

tence P (denoted Gamma � P ) if and only if there is no truth-value assignment

on which every member of Γ is true and P is false.

Definition 6.4.3. For an integer k > 0, and a graph G with n > 2k vertices,

let Pk be the proposition “for every disjoint W1, W2 ⊂ [n] with |W1|, |W2| ≤ k,

there is a z ∈ [n] \ (W1 ∪ W2) adjacent to every v ∈ W1 and not adjacent to

any v ∈ W2”.

The following two lemmas can be found in e.g. [4].
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Lemma 6.4.4. Choose k ∈ N. Enumerate the prime numbers in Z+ as

p1, p2, p3 . . . in increasing order. Define

E = {{i, j} : (i < j) ∧ (pi divides j)}.

Then G = (N, E) has Pk.

Proof. Let W1, W2 ⊂ N be disjoint with |Wi| ≤ k for i = 1, 2. Let

x =
∏

i∈W1

pi.

From the definition of G, for every i ∈ W1, {i, x} ∈ E(G) while for every

j ∈ W2, {j, x} 6∈ E(G), as W1 and W2 are disjoint and for j ∈ W2, pj does not

divide x. As W1, W2 ⊂ N with |Wi| ≤ k arbitrary implies G has Pk.

Lemma 6.4.5. Let k ∈ N be fixed. Then

lim
n→∞

P[Gn,p satisfies Pk] = 1.

Proof. Observe that for k > 1, Pk implies Pk−1; therefore it is enough to prove

the statement is true for k-sets and the general statement follows.

Let k and n ≥ 2k be given. For every disjoint W1, W2 ⊂ [n]k and z ∈

[n]\(W1∪W2), let Rk(W1, W2; z) be the proposition that z is adjacent to every

v ∈ W1 and not adjacent to any v ∈ W2 and Sk(W1, W2) be the proposition

that there exists a vertex z adjacent to every v ∈ W1 and not adjacent to any

v ∈ W2. Therefore

Sk(W1, W2) =
∨

z∈[n]\(W1∪W2)

Rk(W1, W2; z).

Hence

Pk =
∧

W1,W2∈[n]k

W1∩W2=∅

Sk(W1, W2).

For any n > 2k,

P[G ∈ Gn,p has Rk(W1, W2; z)] ≤ 1− pk(1− p)k.
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Therefore

P[G ∈ Gn,p has Sk(W1, W2)] = (1− (p(1− p))k)n−2k

≤ e−(p(1−p))k(n−2k).

Which implies

P[G ∈ Gn,p has Pk] ≤
(

n

2k

)
e−(p(1−p))k(n−2k)

≤ n2ke−(n−2k)(p(1−p))k

.

Let c0 = e2k(p(1−p))k
and c1 = (p(1− p))k. Then

P[G ∈ Gn,p has Pk] ≤ c0n
2ke−c1n (k is a constant).

Therefore

P[G ∈ Gn,p has Pk] = o(1).

Hence

lim
n→∞

P[G ∈ Gn,p has Pk] = 1− lim
n→∞

P[G ∈ Gn,p has Pk] = 1.

The following theorem is a slight generalization of Theorem 6.4.5 as k

remains fixed while p is allowed to vary with n.

Theorem 6.4.6. (See [4]) Let k ∈ Z+ be given. Assume that for every ε > 0,

lim
n→∞

nεp = lim
n→∞

nε(1− p) = ∞.

Then G ∈ Gn,p almost surely has Pk.

Proof. The proof is similar to the proof of Lemma 6.4.5 combined with the

observation that as k is fixed, n− 2k ∼ n. The theorem assumptions imply

(n− 2k)(p(1− p))k ∼ (n1/2kp)k(n1/2k(1− p))k →∞.

Therefore,

P[G ∈ Gn,p has Pk] ≤ n2ke−(n1/2kp)k(n1/2k(1−p))k) = o(1)

as needed.
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The following theorem can be found in many places (e.g. [4] and [1]). The

proof given here follows [36]).

Theorem 6.4.7. For every first order statement, A, of graph theory

lim
n→∞

P[Gn,p satisfies A] = 0 or 1.

Proof. Let G = (Z+, E(G)) and G∗ = (Z+, E(G∗)) be two graphs. Suppose

for all k ≥ 1, G and G∗ satisfy Pk.

Claim 1. There is an isomorphism from G to G∗.

Let f : G → G∗ be defined as follows: let f(1) = 1∗. Assume that f is

defined on a finite set V ⊂ V (G) and choose a vertex v ∈ V (G) \ V . Define

f(v) ∈ V (G∗) \ f(V ) such that for u ∈ V , uv is an edge in G if and only

if f(u)f(v) is an edge in G∗. Since for every k ∈ Z+, both G and G∗ are

k-satisfied, f is an isomorphism, ending the proof of Claim 1.

Claim 2. Any logical theory T that contains {Pk}∞k=1 is consistent.

Lemma 6.4.4 implies G is a model of T which shows that T is consistent.

Claim 3. Any logical theory T that contains {Pk}∞k=1 is complete.

Suppose T is a logical theory containing {Pk}∞k=1. If T were not complete,

then there exists a theorem, B, which is undecidable in T . Let T0 = T ∪ B

and T1 = T ∪ B. As T is consistent, T0 and T1 are consistent. Gödel’s com-

pleteness theorem states that every consistent theory has a finite or countable

model, thus there are countable models, G1 and G2 for T1 and T2 respectively.

From Claim (1), G1 and G2 are isomorphic; thus both agree on B, which is

a contradiction of the assumptions on T1 and T2 as B must be true in both

models or false in both models, since G1 and G2 are isomorphic. Hence Claim

(3) is proven.
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To complete the proof of Theorem 6.4.7, let {Pk} ⊂ T be a theory of

graphs. Given a first order statement A, if T |= A, as proofs are finite, there

are a finite {Pki
}m

i=1 such that {Pki
} |= A or {Pki

} |= A. Thus

lim
n→∞

P[A] ≤ lim
n→∞

m∑
i=1

P[Pki
] = 0,

which implies

lim
n→∞

P[A] = 1.

If A is a true statement in a theory of graphs, then apply the above proof to

show

lim
n→∞

P[A] = 1

and the relationship

lim
n→∞

P[A] = 1− lim
n→∞

P[A].



Chapter 7

Threshold Functions

In this chapter, instead of looking at one space such as Gn,p a sequence of spaces

{Gn,p} or {Gn,q} where p = p(n) and q = q(n) are allowed to vary with n. The

“random variable” examined here is actually a sequence of random variables,

defined on the separate spaces Gn,p(n) or Gn,q(n). The goal is to examine the

limiting behaviour of certain properties as the values of p are varied. Note

that it is standard to abuse the notation of random variables and refer to X

as a random variable on Gn,p where the sequence p = p(n) is defined instead

of examining the sequence of random variables Xn : Gn,p → Z+.

7.1 Thresholds in Gn,p

Definition 7.1.1 (Threshold function). Given a graph theoretic property A,

a function r : Z+ → [0, 1] is called a threshold function in Gn,p for A if either

• when 0 < p(n) = o(r(n)) then limn→∞ P[Gn,p(n) |= A] = 0,

• when r(n) = o(p(n)) < 1, then limn→∞ P[Gn,p(n) |= A] = 1,

or

• when 0 ≤ p(n) = o(r(n)) then limn→∞ P[Gn,p(n) |= A] = 1

• when r(n) = o(p(n) then limn→∞ P[Gn,p(n) |= A] = 0.

93
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Theorem 7.1.2. Let A3 be the property “G contains a copy of K3”. Then

r(n) = n−1 is the threshold function for A3.

Proof. Let n ∈ Z+ and p ∈ (0, 1) be given. For every A = {a1, a2, a3} ∈ [n]3

and every G ∈ Gn,p, let XA(G) be the indicator random variable for the event

“the subgraph induced by A is a copy of K3”. As the subgraph induced by A

is a copy of K3 requires the independent events ({a1, a2} ∈ E(G))∧({a2, a3} ∈

E(G)) ∧ ({a1, a3} ∈ E(G)),

E[XA] = P[XA = 1]

= P[({a1, a2} ∈ E(G)) ∧ ({a2, a3} ∈ E(G)) ∧ ({a1, a3} ∈ E(G))] = p3.

Define X = Xn =
∑

A∈[n]3 XA count the the number of K3’s that occur in

G ∈ Gn,p. As expectation is linear,

E[X] =

(
n

3

)
p3.

Let 0 ≤ p(n) = o(n−1). Then

E[X] ≤ n3p3

therefore

lim
n→∞

E[X] = 0.

Now assume n−1 = o(p(n)). Then limn→∞ E[X] = ∞ but this doesn’t nec-

essarily mean much about the behaviour of almost all graphs. To determine

what (if anything) can be derived from these calculations, the second moment

method is used.

Ennumerate [n]3 = {S1, S2, . . . S(n
3)
} and let Ak be the event “the subgraph

of G induced by Sk is a K3” and let Xk be the respective indicator random

variable. Then X =

(n
3)∑

k=1

Xk. Calculating

Var[X] = E[(X − E[X])2]

= E[X2]− E[X]2
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=
∑

{i,j}∈[n]×[n]

E[XiXj]− E[X]2

=
n∑

i=1

E[X2
i ] + 2

n∑
j=2

∑
i<j

E[XiXj]− E[X]2

=
n∑

i=1

E[Xi] + 2
n∑

j=2

∑
i<j

E[XiXj]− E[X]2.

To get an estimate on the terms The next step in the second moment method

is to get an estimate on
n∑

j=2

∑
i<j

E[XiXj], To this end, choose j ∈ [n] to be

given. If, for i < j, the events Ai, Aj are independent, then

E[XiXj] = E[Xi]E[Xj].

To figure out when this is true, note that if i < j and |Si ∩ Sj| < 2 then

Ai occurring has no affect on whether or not Aj occurs, as they share no

edges, therefore Ai and Aj are independent. If i < j and |Si ∩ Sj| = 2 a

triangle induced by Si would have an edge in the subgraph induced by Sj thus

increasing the probability of a triangle in Sj, thus Ai and Aj are dependent.

Note that XiXj = XAi∧Aj
so that

E[XiXj] = E[XAi∧Aj
]

= P[Ai ∧ Aj]

= P[Aj]P[Ai|Aj]

= p3p2 = p5

the second to last of these equalities follows from noting that if Aj occurs (i.e.

the subgraph of G induced by Sj is a triangle) and |Si∩Sj| = 2 then Ai occurs

if and only if the other two edges of the triangle induced by Si occur, which

happens with probability p2. Note that there are(
3

2

)
(n− 3) = 3(n− 3)

events dependent on Aj. Define the relation ’2’ on [n] by i 2 j if and only if
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and Ai is dependent on Aj. Putting this all together yields

n∑
i=1

E[XiXj] = E[Xj] +
∑
i62j

E[Xi]E[Xj] +
∑
i2j
i6=j

E[XiXj]

= p3 +

((
n

3

)
− 3n

)
p6 + 3np5.

Therefore

E[X2] =
n∑

j=1

n∑
i=1

E[XiXj]

=
n∑

j=1

E[Xj] +
∑
i62j

E[Xi]E[Xj] +
∑
i2j

E[XiXj]

=

(
n

3

)
p3 +

(
n

2

)((
n

3

)
− 3n

)
p6 + n(3np5).

Thus

Var[X] =

(
n

3

)
p3 +

(
n

2

)
((

n

3

)
− 3n

)
p6 + n(3np5)− (

(
n

3

)
p3)2

= O(n3p3 + n5p6 + n2p5 − n6p6).

Theorem 3.3.8 gives

P[|X − E[X]| > E[X]] ≤ Var[X]

E[X]2

= O(
n3p3 + n5p6 + n2p5 − n6p6

n6p6
)

From the choice of p, limn→∞ P[|X−E[X]| > E[X]] = 0. Thus Corollary 3.3.11

implies almost surely X ∼ E[X].

This section covers techniques used to compute thresholds in Gn,p; while

Section 7.2 shows some threshold examples in Gn,q, using similar properties to

give a point of reference to the similarities and differences in the two models.

Chapter 8 presents examples of more in-depth analysis. The next theorem is

a general version of Theorem 7.1.2.
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Theorem 7.1.3. Let 3 ≤ k ∈ Z+ and Ak be the property “V (G) has a k-

clique”. Let r(n) = n−2/(k−1). Then r(n) is a threshold function for Ak.

Proof. The first step is to show that if p(n) = o(r(n)) then

lim
n→∞

P[Gn,p(n) |= Ak] = 0.

Let G ∈ Gn,p(n) and X(G) be the number of copies of Kk in G. Thus

E[X] =

(
n

k

)
p(k

2) < nkpk = (np)k (0 < p < 1 thus p(k
2) < pk). (7.1)

From the condition on p(n) and Lemma (3.4),

P[X > 0] ≤ E[X] → 0 (as n →∞).

Next, assume r(n) = o(p(n)) so that equation (7.1) implies

lim
n→∞

E[X] = ∞.

To show that X 6= 0 almost surely, it is suffices to show that Var[X] = o[E[X]2.

For every S ∈ [V ]k, let AS be the event “the subgraph induced by S is a k-

clique” and XS be the respective indicator random variable for AS. As in the

case of k = 3, two events AS and AR are dependent if and only if 2 ≤ |S ∩R|.

Assume 2 ≤ t = |S ∩ R|. If AS occurs, then

(
k

2

)
−
(

t

2

)
other edges are

necessary for AT to occur. Therefore

P[AR ∧ AS] = P[AS]P[AR|AS]

= p(k
2)p(k

2)−(t
2)

= p2(k
2)−(t

2)

As AS is dependent on at most

(
n− k

k − t

)
events,

Var[X] = E[X] +
∑

K∈[n]k

k−1∑
t=2

(
n− k

k − t

)
p2(k

2)−(t
2) − E[X]2

= E[X] +

(
n

k

) k−1∑
t=2

(
n− k

k − t

)
p2(k

2)−(t
2) − E[X]2.
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As k is fixed and n gets arbitrarily large,

∼ nkpk2

+ nk

k−1∑
t=2

(n− k)(k−t)p(k2−t2/2) − n2kpk2

. (7.2)

Therefore, as n−2/(k−1) = o(p(n)), Var[X] = o[E[X]2) as needed. Lemma 3.3.8

implies that

lim
n→∞

P[|X − E[X]| > E[X]] = 0.

Therefore Corollary 3.3.11 implies X ∼ E[X] almost surely as needed. Thus

r(n) = n−2/(k−1) is the threshold function for Ak.

On the somewhat opposite end of the spectrum, recall that an isolated

vertex has degree zero.

Theorem 7.1.4. Consider the property A0 of “containing isolated vertices”.

In Gn,p, the function

r(n) = n−
1
2

is a threshold for A0.

Proof. Let G = (V, E) ∈ Gn,p and v ∈ V . Let Av be the property ”v is isolated”

and let Xv be the indicator random variable for Av. Then

E[Xv] = (1− p)n−1

as property Av is equivalent to the property “for all x ∈ V (G) \ v {v, x} 6∈

E(G)”. If X(G) counts the number of isolated vertices in G, then X =
∑
v∈V

Xv

thus

E[X] =
∑
v∈V

E[Xv] = n(1− p)n−1.

Write

(1− p)n = e ln (1−p)n

= en ln (1−p). (7.3)

Equation (2.4) implies

ln (1− p) = −p− p2

2
− p3

3
− . . . (7.4)
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therefore

(1− p)n = e
n

„
−p− p2

2
−...

«
= e−np−np2

2
−...) = e−npO(1). (7.5)

Provided p = p(n) = o(r(n)),

E[Xv] ∼ ne−pn → 0.

To apply the second moment method, assume r(n) < p(n) ≤ 1. If v, w ∈ V ,

v 6= w with events Av and Aw and the indicator random variables Xv, Xw as

above, then

E[XvXw] = P[Av ∧ Aw]

= P[Av]P[Aw|Av]

= (1− p)n−1(1− p)n−2 = (1− p)2n−3.

For n large,

E[XvXw] ∼ (1− p)2n.

Thus equations (7.3), (7.4) and (7.5) with 2n replacing n imply

E[XvXw] = e−2np− 2np2

2
−... = e−2npO(1).

As every pair of events Av, Aw are dependent,

Var[X] = E[X2]− E[X]2

=
∑
v∈V

E[X2
v ] +

∑
{v,w}∈[V ]2

E[XvXw]− E[X]2

=
∑
v∈V

E[Xv] +
∑

{v,w}∈[V ]2

E[XvXw]− E[X]2

∼ E[X] +

(
n

2

)
e−2pn − E[X]2.

Then

Var(X)

E[X]2
≤ 1

E[X]
+

(
n
2

)
e−2pn

E[X]2
− 1
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=
1

E[X]
+

(
n
2

)
e−2pn

n2e−2pn
− 1 (E[X]2 ∼ n2e−2pn)

∼ 1

E[X]

((
n
2

)
e−2pn

n2e−2pn
− 1 → 0

)
.

Inequality (3.3.8) implies

P[X = 0] ≤ P[|X − E[X]| ≥ E[X]]

≤ Var(X)

E[X]2

∼ 1

E[X]
→ 0 (r(n) = o(p(n)), limn→∞ E[X] = ∞) .

Hence for r(n) = o(p(n)), Corollary 3.3.11 implies almost surely X ∼ E[X].

Thus r(n) is the threshold function.

A natural question to ask next is about the appearance of cycles. Note

that a graph is called acyclic if it contains no cycles. An acyclic graph with

at least one tree is called a forest.

Theorem 7.1.5. The threshold function for the property of ‘G being a forest’

is r(n) = 1/n

Proof. Assume n, p and k are given. Let G ∈ Gn,p. Let Ak be the event “G

has a subgraph that is a copy of Ck” and Xk(G) be the number of subgraphs

of G that are copies of Ck’s. As in Theorem 4.2.1,

E[Xk] =

(
n

k

)
pk

2k
.

If X(G) is the number of cycles in G of any length, then

E[X] =
n∑

k=3

(
n

k

)
pk

2k

≤
n∑

k=3

nkpk

=
n∑

k=3

(np)k.
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If p(n) = o(n−1), then for all ε > 0,

E[X] <

n∑
k=3

εk

<
ε3

1− ε
→ 0.

If n−1 = o(p(n)), Theorem 7.1.2 implies X3 ∼ E[X3], hence X → ∞. Thus

almost surely, G ∈ Gn,p(n) is not a forest.

Definition 7.1.6. Let H be a graph with e edges and v vertices. Define ρ(H) =

e/v to be the density of H. The graph H is called balanced iff for every subgraph

H ′ of H ρ(H ′) ≤ ρ(H). The graph H is called strictly balanced iff for every

proper subgraph H ′, ρ(H ′) < ρ(H).

Complete graphs and cycles are examples of balanced graphs.

Theorem 7.1.7. Let H be a balanced graph with v vertices and e edges. Let

A(G) be the event that H is a subgraph (not necessarily induced) of G. Then

p = n−v/e is the threshold function for A.

Proof. Assume n, p and k are given. Let H be a balanced graph on v vertices

and e edges. For every S ∈ [n]v, let AS be the event that the subgraph induced

by S (in G) contains H.

While the previous examples allowed for exact calculations of the proba-

bility of an event, the proof of this theorem requires properly behaved bounds

on P[AS].

For a lower bound, note that if the subgraph induced by S to contain a

copy of H, S must contain at least e, thus pe ≤ P[AS]. A good upper bound

is (in general) difficult to calculate, due to the large number of overlapping

potential copies of H, but noting that any particular placement of H (in the

subgraph induced by S) has a probability of pe of occurring and there are at

most v! possible placements of H then

P[AS] ≤ v!pe. (7.6)
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The next step is to approximate the expected number of H’s in any G ∈

Gn,p. Let XS be the indicator random variable for AS and X =

(n
v)∑

i=1

XS be the

number of copies of H. Then(
n

v

)
pe ≤ E[X]

≤
(

n

v

)
v!pe

= (n)vp
e < nvpe = (n

v
e p)e.

As p(n) = o(n−v/e),

P[X > 0] ≤ E[X] → 0.

To calculate Var(X), first choose S ∈ [n]v. Define a relation 2’ on [n]v \ S

by T 2 S iff AS is dependent on AT . To determine how many T satisfy

T 2 S, examine the subgraph induced by S∩T , if there is an edge of any copy

of H then T 2 S.

To estimate P[AT |AS], note that if S 6= T ∈ [n]v with 2 ≤ |S∩T | = i ≤ v−1,

then any induced subgraph Ĥ 6= ∅ of H contained in the subgraph of G induced

by T \ S ∩ T satisfies

ρ(Ĥ) =
|E(Ĥ)|

v − |S ∩ T |
≤ e

v
= ρ(H)

since H is a balanced graph. Therefore

|E(Ĥ)| ≤ e(v − |S ∩ T |)
v

.

Thus, as in equation (7.6),

pep
e(v−i)

v ≤ P[AT ∧ AS] (7.7)

= P[AS]P[AT |AS]

≤ pe(v − i)!p
e(v−i)

v . (7.8)

As equation (7.7) is true for every T with |T ∩S| = i and every 2 ≤ i ≤ v− 1,

then ∑
{T |T2S}

P[AT ∧ AS] =
∑

{T |T2S}

P[AS]P[AT |AS]
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≤
v−1∑
i=2

(
n− v

v − i

)
pe(v − i)!p

e(v−i)
v

≤
v−1∑
i=2

(n− v)v−ipe+
e(v−i)

v

∼
v−1∑
i=2

(n− v)v−ip2e−ie/v.

Therefore E[X]2 ∼ n2vp2e and

Var(X) = E[X] +
∑

S∈[n]v

∑
{T |T2S}

E[XT XS]− E[X]2

≤ E[X] +

(
n

v

) v−1∑
i=2

(n− v)v−ip2e−ie/v − E[X]2

∼ E[X] + nv

v−1∑
i=2

(n− v)v−ip2e−ie/v − E[X]2

≤ E[X] +
v−1∑
i=2

n2v−ip2e−ie/v − E[X]2.

Let V̂ (X) =
v−1∑
i=2

n2v−ip2e−ie/v. For every 2 ≤ i ≤ v − 1,

n2v−ip2e−ie/v

E[X]2
=

n2v−ip2e−ie/v

n2vp2e

= n−ip−ie/v

< n−in(v/e)(ie/v) → 0 (as n →∞).

Thus Var[X] = o(E[X]2) as necessary so Corollary 3.3.11 gives the result.

7.2 Examples of threshold functions in Gn,q

In this section, threshold functions in Gn,q are considered.

Definition 7.2.1. Let Q be a property of graphs and let A ⊂ Gn,q be the set

of graphs with Q. Then t = t(n) is called a threshold function for property Q

if either
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(i) while 0 ≤ q(n) = o(t(n)) then P[Gn,q |= A] → 0,

(ii) while t(n) = o(q(n)) then P[Gn,q |= A] → 1

or if

(i)’ while 0 ≤ q(n) = o(t(n)) then P[Gn,q |= A] → 1,

(ii)’ while 0 ≤ t(n) = o(q(n)) then P[Gn,q |= A] → 0.

Theorem 7.2.2. Threshold of 3-cliques In Gn,q, t(n) = n is the threshold

function for the property of “having a subgraph isomorphic to K3”.

Proof. Let n be given. Let X count the number of subgraphs isomorphic to

K3.

Assume 0 ≤ q ≤
(

n
2

)
is arbitrary for the moment. Consider any S ∈ [n]3.

Let AS be the event “S is a clique”. To calculate the probability of AS, observe

that graph G ∈ Gn,q for which AS occurs, then the remaining q − 3 edges are

chosen from the remaining

(
n

2

)
− 3 edges. Therefore

P[AS] =

((n
2)−3

q−3

)
((n

2)
q

) . (7.9)

If XS is the indicator random variable for AS, then X =
∑

S∈[n]3

XS so that

E[X] =
∑

S∈[n]3

E[XS]

=

(
n

3

)((n
2)−3

q−3

)
((n

2)
q

)
=

(
n

3

) (
q
3

)((n
2)
3

)
≤ n3

(
q
3

)
(
(

n
2

)
)3

≤ n3

(
q
3

)
(n2/2)3
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=
8
(

q
3

)
n3

≤ 8q3

6n3
.

Inequality (3.4) implies

P[X > 0] ≤ E[X] → 0 (if q = o(n)).

Assume n = o(q). Then

E[X] =

(
n

3

) (
q
3

)((n
2)
q

)
≥
(

n
3

)
q3((n

2)
3

) ≥ n2 →∞.

To use the second moment method, note that if S, T ∈ [n]3, the events, AS, AT

are dependent if and only |S ∩ T | = 2. As there are
(
3
2

)
= 3 ways to choose an

S ′ ∈ [S]2 and n− 3 ways to choose the third element of

T = S ′ ∪ {v ∈ V \ S},

there are 3(n− 3) such T ∈ [n]3 \ S. In the notation of equation (3.6),

∆ =

(
n

3

)
3(n− 3)P[AS ∧ AT ] ≤ n4.

The conditions on q imply ∆ = o(E[X]2), thus Corollary 3.3.11 imply almost

surely X ∼ E[X]. Thus

t(n) = n

is the desired threshold for 3 cliques in Gn,q.

The next theorem is the Gn,q version of Theorem 7.1.7. See the paper [14]

for the proof.

Theorem 7.2.3. Assume H is a balanced connected graph on k vertices and

k − 1 ≤ l ≤
(

k
2

)
edges. Let Ak,l be the property that that the random graph

Gn,q has a subgraph isomorphic to H. The threshold function for Ak,l is t(n) =

n2− k
l .
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The next theorem represents a sharper notion of a threshold function.

Theorem 7.2.4. Let n ∈ Z+. Let 0 < c ∈ R and q = c
2
n ln n.

(i) If c > 1 then almost all graphs in Gn,q have isolated vertices.

(ii) If c < 1 then almost all graphs in Gn,q have no isolated vertices.

Proof. Since q = o(
(

n
2

)1/2
) Stirling’s approximation (2.3.4) implies((n

2

)
q

)
= (1 + o(1))(2πq)−1/2

(
e
(

n
2

)
q

)q

. (7.10)

For G ∈ Gn,q, let X(G) be the random variable defined to be the number

of isolated vertices in G and for v ∈ V , let Xv(G) be the indicator random

variable for the event “v is isolated in G”.

For a graph G ∈ Gn,q, a vertex v ∈ V (G) is isolated implies that the q edges

are distributed amongst the n− 1 remaining vertices. Therefore in Gn,q,

E[Xv] = P[v is isolated]

=

((n−1
2 )
q

)((n
2)
q

) (7.11)

Since for any two vertices, v and v̂, E[Xv] = E[Xv̂] and

X =
∑
v∈V

Xv

implies

E[X] = n

((n−1
2 )
q

)((n
2)
q

) . (7.12)

Formula (7.10) for

((n−1
2

)
q

)
gives

((n−1
2

)
q

)
∼ (2πq)−1/2

[(
n−1

2

)
e

q

]q

∼ (2πq)−1/2eq
[ n

c ln n

]q [
1− 1

n

]nc ln n
(n− 1 = n(1− 1/n)).
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Approximate (
1− 1

n

)n(c ln n)

∼ e−c ln n = n−c.

Let Cn = (2πq)−1/2
[ n

c ln n

]q
; then((n−1

2

)
q

)
∼ Cnn

−ceq. (7.13)

Similar calculations on

((n
2

)
q

)
imply

((n
2

)
q

)
∼ (2πq)−1/2

(
n2

2q
e

)q

= Cne
q. (7.14)

Combining formulas (7.13) and (7.14) gives

E[X] ∼ n1−c.

Therefore, for c > 1, E[X] → 0. By Markov’s inequality,

P[X ≥ 1] ≤ E[X]

such that almost surely, X = 0.

For 0 < c < 1,

E[X] →∞.

To show limn→∞ P[X = 0] = 0, the second moment method is needed. The

first step is to estimate Var(X). For every i ∈ [n], let Ai be the event “i is

isolated”. Then for i 6= j ∈ [n],

P[Ai ∧ Aj] = P[Ai]P[Aj|Ai]

=

(
n−1

q

)(
n
q

) (n−2
q

)(
n
q

) .

Using the notation of (3.6),

∆ =

(
n

2

)((n−1
2 )
q

)((n
2)
q

) ((n−2
2 )
q

)((n
2)
q

)
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∼
(

n

2

)((n−1)2/2
q

)(
n2/2

q

) (
(n−2)2/2

q

)(
n2/2

q

)
∼
(

n

2

)( e(n−1)2

2q

)q

(
en2

2q

)q

(
e(n−2)2

2q

)q

(
en2

2q

)q (Lemma 2.3.4)

∼
(

n

2

)(
(n− 1)(n− 2)

n2

)2q

= o((E[X])2).

Inequality 3.4 implies

P[X = 0] ≤ P[|X − E[X]| ≥ E[X]]

≤ Var[X]

E[X]2
→ 0.

Thus, almost surely X = E[X].

7.3 Unbalanced graphs

Theorems 7.1.7 and 7.2.3 showed how to calculate threshold functions for the

property of ‘containing a subgraph H’ in the case that H is balanced, but what

can be said if H is not balanced? Alon and Spencer [1] provide an answer in

this case. Here an outline of the solution is given.

In calculating threshold functions it is necessary to examine each subgraph

separately. This is because when considering the second moment, any possible

intersection of proper subgraphs can occur. In the previous section, when

considering Theorem 7.2.3, it was necessary to calculate for every S1, S2 ∈ [n]k,

P[AS1 ∧ AS2 ]

where each of the ASi
are as in Theorem 7.2.3.

In the case that H is unbalanced, the same ideas are applied except that it

is necessary to find the subgraph H ′ of highest density. The idea is captured

in the following theorem.

Theorem 7.3.1. In the notation of Theorem 7.1.7, if H is not balanced then

p = n−v/e is not the threshold function.
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Proof. Let H1 be a subgraph of H with v1 vertices and e1 edges and e1/v1 >

e/v. Let α satisfy v1/e1 < α < v/e and p = n−α. If X = X(G) is the random

on Gn,p counting the number of subgraphs of G isomorphic to H1,

E[X] =

(
n

v

)
pe1 ∼ nv1(n−α)e1 = o(1).

Inequality (3.3.8) implies almost surely G has no copy of H1, hence no copy of

H.

Thus graphs that are unbalanced have proper subgraphs with higher den-

sity so that a threshold function of higher value works.
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Chapter 8

Random Graphs

8.1 Beyond thresholds: property distributions

This section goes beyond the notion of threshold functions and discusses a

similar question:

“Given conditions on p(n) (respectively, q(n)) and a random variable X on

Gn,p (respectively, Gn,q) , what can be said about the limit properties of the

distribution function P[X = j].”

Presented here are examples for Gn,p and Gn,q.

8.1.1 Examples in Gn,p

Recall Theorem 7.1.4 showed r(n) = n−
1
2 is a threshold function in Gn,p of the

property ‘G has an isolated vertex’, it was shown that for p(n) < r(n) = n−1/2,

almost surely Gn,p has isolated vertices while for r(n) < p(n) = p, almost surely

Gn,p has no isolated vertices. In this subsection, assume that for some constant

c > 0,

p(n) = c
ln n

n

where 0 < c. Since for large n, 0 < ln n < n
1
2 , the proof of Theorem 7.1.4

shows that

E[X] ∼ ne−pn

111
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= ne−c ln n
n

n

= n1−c.

Thus if 1 < c, E[X] → 0 such that almost surely X = 0 and if c < 1 E[X] →∞.

At c = 1 something special happens. Is there a way to say more? This section

shows a way to extend this analysis.

Theorem 8.1.1. [4] Let p(n) = ln n
n

+ 1
n

and X = X(G) be the number of

isolated vertices in G. Then for k = 0, 1, 2, . . .,

P[X = k] → e−λλk

k!

where λ = e−1.

This theorem states that X converges in distribution to the Poisson distri-

bution with mean λ = e−1.

Proof. The first step is to show limn→∞ S1 = limn→∞ E[X] = λ. From the

proof of Theorem 7.1.4,

E[X] = n(1− p)n−1

∼ ne−p(n−1)

∼ ne−pn

= ne−n( ln n
n

+ 1
n

)

= ne− ln n− 1

= e−1 = λ.

The next step in the proof of Theorem 8.1.1 is to use the Theorem 9.3.1.

Claim 1. For all 2 ≤ r ∈ Z+,

lim
n→∞

Sr =
λr

r!
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Proof (of Claim 1). Let 2 ≤ r ≤ n ∈ Z+ be given and V = {v1, v2 . . . vn}.

For i ∈ [n], let Ai be the event ‘vi is isolated’ and Xi be the indicator random

variable for Ai. Assume 1 ≤ l1 < l2 < . . . lr ≤ n then

E[Xl1Xl2 ] = P[Al1 ∧ Al2 ]

= P[Al1 ]P[Al2|Al1 ]

= (1− p)n−1(1− p)n−2

= (1− p)2(n− 2) + 1

= (1− p)2(n− 2) +
(
2
2

)
E[Xl1Xl2Xl3 ] = P[A1]P[A2|A1]P[A3|A2 ∧ A1]

= (1− p)2(n− 2) + 1(1− p)n−3

= (1− p)3(n− 3) + 3

= (1− p) 3(n− 3) +
(
3
2

)
.

Thus the general formula is

E[Xl1Xl2 · · ·Xlr ] = (1− p) r(n− r) +
(

r
2

)
.

Thus

Sr =
∑

1

E[Xl1Xl2 · · ·Xlr ] =

(
n

r

)
(1− p)r(n−r)+(r

2). (8.1)

To check the asymptotics of equation (8.1), observe

Sr =

(
n

r

)
(1− p)rn(1− p)(

r
2)−r2

=

(
n

r

)
(1− p)rn(1 + o(1)) (as p(n) → 0 and r is fixed)

∼
(

n

r

)
e−prn

=

(
n

r

)
e−rn( ln n

n
+ 1

n
)

=

(
n

r

)
e (−r ln n− r)

∼ nr

r!

e−r

nr
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=
(e−1)r

r!

=
λr

r!
.

Thus Claim 1 is proven. Theorem 9.3.1 implies Theorem 8.1.1.

The next theorem requires a lemma.

Lemma 8.1.2. Let H = (V, E) be a unlabeled graph on k vertices and auto-

morphism group aut(H) and a = |aut(H)|. If l(H) is the number of ways to

label H then

l(H) =
k!

a
.

Proof. Label the vertices of H is all k! ways. Any two labels are the same if they

differ by an automorphism of H. Thus the k! possible labels are partitioned

into sets of size a, thus l(H) = k!
a
.

Theorem 8.1.3. Suppose H is a fixed strictly balanced graph with k vertices

and l ≥ 2 edges, and its automorphism group has a elements. Let c be a

positive constant and set p = cn−k/l. For G ∈ Gn,p denote by X = X(G) the

number of H-subgraphs of G then for r = 0, 1, 2 . . . and λ = cl

a
,

lim
n→∞

P[X = r] =
e−λλr

r!
. (8.2)

Proof. Assume V = {v1, v2, . . . vn} and H is a strictly balanced graph on k

vertices and l edges. Let Hn be the collection of subgraphs generated by V

that are isomorphic to H. For every J ∈ Hn, let AJ be the event ‘J is a

subgraph’ and XJ be the indicator random variable for AJ so that E[XJ ] = pl.

To calculate |HN |, if K ∈ [V ]k, Lemma 8.1.2 implies there are k!
a

subgraphs

on K that are isomorphic to H. As there are
(

n
k

)
k sets, |HN | =

(
n
k

)
k!
a
.

Since X =
∑

J∈HN XJ then linearity of expectation implies

E[X] =
∑

J∈Hn

E[XJ ]

=

(
n

k

)
k!

a
pl
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∼ nk

k!

k!

a
pl

=
nkpl

a
.

Using pl = (cn−k/l)l = cln−k implies

E[X] ∼ cl

a
= λ. (8.3)

Theorem 9.3.1 implies to complete the proof, it is enough to show for every

r ∈ Z+,

lim
n→∞

Er[X] = λr.

In order to simplify the calculations of Er[X], define the random variable Y =

Y (G) counting the number of isolated J ∈ Hn that are subgraphs of G. First

show

lim
n→∞

Er[Y ] = λr,

then approximate Er[X] and prove

Er[X]− Er[Y ] = o(1).

Claim 1. Let r ∈ Z+ be given. Then

Er[Y ] =

(
n

k

)(
n− k

k

)(
n− 2k

k

)
· · ·
(

n− (r − 1)k

k

)(
k!

a

)r

pkr. (8.4)

Proof (of Claim 1) To understand equation (8.4), choose a k-set K from

[V ]. As the desired graphs are to be disjoint, choose a k set from [V ] \ K.

Continue until r disjoint k sets are chosen. In each case, the probability there

is an induced subgraph isomorphic to H is k!pl

a
. Thus Claim 1 is proven.

The next step is to calculate the asymptotics of equation (8.4). Observe

that (
n

k

)(
n− k

k

)
· · ·
(

n− (r − 1)k

k

)(
k!

a

)r

pkr ∼
(

nk

k!

)r (
k!

a

)r

(pl)r

=
nkr

(k!)r

(k!)r

ar
plr

=

(
nkpl

a

)r
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=

(
nkc(n−k/l)l

a

)r

=
( c

a

)r

= λr.

Thus

lim
n→∞

Er[Y ] = λr. (8.5)

Ending the proof of Claim 1 The approximation of Er[X], requires that H is

strictly balanced. To this end, suppose A and B are graphs and B is isomorphic

to H with exactly 1 ≤ t ≤ k − 1 vertices not in A.

Claim 2. |E(A
⋃

B)| > |E(A)|+ tl
k
.

Proof (of Claim 2): Let J be the subgraph of B induced by the k−t vertices

of B contained in A. As B is strictly balanced,

|E(J)|
|V (J)|

=
|E(J)|
k − t

<
l

k

or

|E(J)| < (k − t)
l

k
.

Thus if e(B \ J) is the number of edges of B not in J ,

e(B \ J) > l −
(

l − tl

k

)
=

tl

k
.

Hence

|E(A ∪B) > |E(A)|+ tl

k
.

Thus Claim 2is proven.

Now suppose {H1, H2, . . . Hr} ∈ [Hn]r such that

|V (H1 ∪H2 ∪ · · · ∪Hr)| = s.

Let t1 = k and for 2 ≤ j ≤ r, let tj be the number of vertices in Hj that are

not in H1 ∪H2 ∪ · · ·Hj−1 then

r∑
j=2

tj = s− k. (8.6)
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From Claim 2,

|E(H1

⋃
H2

⋃
· · ·
⋃

Hr)| > |E(H1

⋃
H2

⋃
· · ·
⋃

Hr−1)|+
trl

k

> |E(H1

⋃
H2

⋃
· · ·
⋃

Hr−2)|+
tr−1l

k
+

trl

k
.

Continuing inductively, . . .

> |E(H1)|+
t2l

k
+

t3l

k
+ . . . +

trl

k

= l +
(s− k)l

k

=
sl

k
. (by (8.6))

This implies for δ > 0,

|E(H1 ∪H2 ∪ · · · ∪Hr)| =
sk

l
+ δ

where the ‘δ’ was added to make the strict inequality an equality.

Finally,

Er[X]− Er[Y ] <
rk−1∑

s=k+1

(
n

s

)((
s

k

)
k!

a

)r

p
sl
k

+ δ

∼
rk−1∑

s=k+1

ns

s!

(
sk

k!

k!

a

)r

p
sl
k

+ δ

=
rk−1∑

s=k+1

ns

s!

(
sk

a

)r

p
sl
k

+ δ

=
rk−1∑

s=k+1

skr

s!

(
np

l
k

)s
pδ

=
rk−1∑

s=k=1

skr

s!
c2(cn−k/l)δ (substituting p = cn−k/l)

=
rk−1∑

s=k+1

O(1)n−
kδ
l = o(1) (as n is the only variable)

as claimed. Thus

Er[X] ' Er[Y ] = λr.

Hence X has asymptotically Poisson distribution.
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8.1.2 Gn,q: Trees

Theorem 8.1.4. [14] Suppose N(n) is a sequence of positive integers such

that for every n, N(n) ≤
(

n
2

)
and

lim
n→∞

N(n)

n
k−2
k−1

= σ > 0.

Let τk be the random variable on Gn,N(n) counting the number of isolated trees

of order k. Then for j ∈ Z+ ∪ {0},

lim
n→∞

P[τk = j] =
λje−λ

j!
(8.7)

where

λ =
(2σ)k−1kk−2

k!
.

Proof. Let N(n) = N and T k
n be the set of k trees on n vertices. For every

T ∈ T k
n , let AT be the event “T is an isolated tree in G ∈ Gn,N” and let XT

be the indicator random variable for AT .

E[XT ] =

( (n−k
2 )

N−k+1

)
((n

2)
N

)
∼

(
(n−k)2/2
(N−k+1)

)(
n2/2
N

)
=

[(n− k)2/2]
N−k+1

[n2/2]N
N !

(N − k + 1)!

∼ [(n− k)2/2]
N

[n2/2]N
Nk−1

[(n− k)2/2]k−1

∼
[
1− k

n

]2N [
2N

(n− k)2

]k−1

∼
[
1− k

n

]2N [
2N

n2

]k−1

∼ e−
2kN

n

[
2N

n2

]k−1

.

Let 2 ≤ r ∈ Z+. The next step in the proof of Theorem 8.1.4 is to calculate

the r-th factorial moment.
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Claim 1. Let {T1, T2, . . . Tr} ∈ [T k
n ]r with the respective indicator random

variables XT1 , XT2 . . . then

E[XT1 , XT2 , . . . , XTr ] = P[AT1 ∧ AT2 ∧ . . . ∧ ATr ]

=


0 if any pair of the Ti’s are not disjoint

( (n−rk
2 )

N−r(k−1)
)

((
n
2)
N

)
otherwise.

Proof (of Claim 1) Let T1, T2 . . . Tr ∈ T k
n be distinct elements and ATi

be the

corresponding event “Ti is an isolated tree in G ∈ Gn,N”. From the definition,

if for i 6= j, Ti ∩ Tj 6= ∅ then ATi
is mutually disjoint from Aj, thus if any pair

of T1, T2, . . . Tr are not disjoint,

E[XT1 , XT2 , . . . XTr ] = P[AT1 ∧ AT2 ∧ . . . ∧ ATr ] = 0. (8.8)

Now assume that T1, T2 . . . Tr are pairwise disjoint. Then

E[XT1 , XT2 , . . . , XTr ] = P[AT1 ∧ AT2 ∧ . . . ∧ ATr ] (8.9)

=

( (n−rk
2 )

N−r(k−1)

)
((n

2)
N

) . (8.10)

Combining equations (8.8) and (8.9) gives proves Claim 1

The next step in the proof of Theorem 8.1.4 is to prove the following claim.

Claim 2. Let n ∈ Z+ be given. Then

∑
E[XT1 , XT2 . . . XTr ] ∼

((n
k

)
kk−2

r

)[( (n−rk
2 )

N−r(k−1)

)][((n
2)
N

)] (8.11)

where the sum is over [T k
n ]r.

Proof (of Claim 2) Notice that

|T k
n | =

(
n

k

)
kk−2.

To see this, choose a K ∈ [n]k. As the vertices are labeled, Cayley’s formula

implies there are kk−2 distinct trees. As there are
(

n
k

)
such K sets, there are
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(
n
k

)
kk−2 trees. Equation (8.11) follows from Lemma 1, under the assumption

that as k and r remain fixed, when n is large, the number of pairwise non-

disjoint r-sets of k-trees is small in comparison to the total number of trees,

thus Claim 2.

The next step in the proof of Theorem 8.1.4 is to examine the asymptotic

behaviour of equation (8.11). As

((n
k

)
kk−2

r

)[( (n−rk
2 )

N−r(k−1)

)][((n
2)
N

)] ∼
(

nkkk−2

k!

r

)((n−rk)2/2
N−r(k−1)

)(
n2/2
N

)
∼

[
nkkk−2

k!

]r
r!

[
((n− rk)2/2)

N−r(k−1)

(N − r(k − 1))!

] [
(n2/2)N

N !

]
∼
[
nrkkr(k−2)

(k!)rr!

]
[(n− rk)2/2]

N − r(k − 1)

(n2/2)N

N !

(N − r(k − 1))!

∼
[
nrkkr(k−2)

(k!)rr!

]
(n− rk)2(N − r(k − 1))

n2N

2N

2N-r(k-1)(N)r(k−1)

∼
[
nrkkr(k−2)

(k!)rr!

] [
nrkkr(k−2)

(k!)rr!

]
(

1− rk

n

)N

(n− rk)−2r(k−1) 2r(k−1)(N)r(k−1)

∼
[
nrkkr(k−2)

(k!)rr!

](
1− rk

n

)2N 2r(k − 1)(N)r(k−1)

(n− rk)2r(k−1)

∼
[
nrkkr(k−2)

(k!)rr!

](
1− rk

n

)2N
2r(k − 1)N r(k − 1)

(n− rk)2r(k−1)

=

[
kr(k−2)

(k!)rr!

](
1− rk

n

)2N

nrk

(
(2N)

(n− rk)2

)r(k−1)

∼
[
kr(k−2)

(k!)rr!

]
e
−2Nrk

n nrk

(
2N

(n− rk)2

)r(k−1)

∼
[
kr(k−2)

(k!)rr!

]
e
−2Nrk

n nrk

(
2N

n2

)r(k−1)

∼ 1

r!

(
kk−2

k!

)r

e
−2Nrk

n

(
2N r(k−1)

nr(k − 1)− rk

)
=

1

r!

(
kk−2

k!

)r

e
−2Nrk

n

(
2N r(k−1)

nr(k − 2)

)
=

1

r!

(
kk−2

k!

)r

e
−2Nrk

n

(
2N

n
r(k−2)
r(k−1)

)r(k−1)

.
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Thus∑
[T k

n ]r

E[XT1 , XT2 , . . . , XTr ] ∼
1

r!

(
kk−2

k!

)r

e
−2Nrk

n

(
2N

n
k−2
k−1

)r(k−1)

. (8.12)

As

lim
n→∞

N(n)

n
k−2
k−1

= σ > 0,

equation (8.12) implies

lim
n→∞

∑
[T k

n ]r

E[XT1 , XT2 , . . . , XTr ] = lim
n→∞

1

r!

(
kk−2

k!

)r

e
−2Nrk

n

(
2N

n
k−2
k−1

)r(k−1)

=
1

r!

(
kk−2

k!

)r

(2σ)r(k−1).

Using

λ =
(2σ)k−1kk−2

k!

gives

lim
n→∞

∑
[T k

n ]r

E[XT1 , XT2 , . . . , XTr ] =
1

r!

(
kk−2(2σk−1)

k!

)r

=
λr

r!
. (8.13)

Thus Theorem 9.3.1 implies Theorem 8.1.4.

8.2 Graphical evolution

Up until now, the threshold functions that have been in calculated in this work

have involved what might be called (rather vaguely) local properties versus

what could be known as global properties. While a clear definition of these

terms is unknown to the author, notice that if Q is the graph property of

having a 3-clique, knowing that whether a graph has such a property says little

about the overall structure of the graph, while knowing if a graph is connected,

planar or if G is a forest gives information about the global structure of the

graph.

To begin, here is an alternative viewpoint on random graphs. Let n be some

large, yet unspecified number. Label the edges 1, 2, . . . ,
(

n
2

)
. Starting with 1,
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in some manner (for instance a random binary number generator) choose an

edge with probability p. This process takes
(

n
2

)
steps and the resultant is a

random graph. It is easy to see that this process is one way to view a random

graph. For other methods, please see for example [30].

With this process in mind, it should be clear that the smaller p is, the fewer

the expected number of edges would be. For very small p, there would most

likely be many isolated vertices and just a smattering of edges here and there.

As p is slowly increased, edges connect the isolated vertices into isolated trees.

Cycles then start to appear. First 3,4 then k-cycles would start appearing;

the higher the probability an edge being in the graph the more likely there is

cycles. At some point, the graph would most likely be connected.

All of this was clear to Erdős and Rényi, (founders of the theory of random

graphs), their papers in the late fifties and early sixties laid the ground work

for most of these ideas. The size of the connected components of almost all

graphs changes near

c > 0 p =
2c

n

which is where the phenomenon of the so called “double jump” occurs. As

seen in Theorem 7.1.5, p(n) = 1
n

is the threshold for acyclic graphs, and since

this change is fundamental to the structure of graphs, it is an important area

to research more closely. In this section, some of the results in this direction

are shown.

In Gn,p, let X be the number of cycles of any size. In an Theorem 7.1.5, it

was shown that

E[X] =
n∑

k=3

(
n

k

)
pk

2k
. (8.14)

If X(G) = 0 then G is acyclic hence G is a forest, while the larger X(G) is,

the less trees G has. Continuing, if

lim
n→∞

E[X] = 0

Markov’s inequality(3.4) implies X = 0 almost surely, and almost surely, G ∈

Gn,p is a forest.
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8.2.1 Evolution of tree components

Theorem 8.2.1. [4] For k ≥ 2 and G ∈ Gn,p, let Xk = Xk(G) be the number

of components in G that are trees of order k.

(i) If p(n) = o(n−k/k−1), then almost surely Xk = 0.

(ii) If for some constant c > 0 and p ∼ cn−k/k−1 then Xk converges in

distribution to the Poisson distribution with λ = ck−1kk−2/k!.

(iii) If pnk/k−1 → ∞ and pkn − ln n − (k − 1) ln ln n → −∞ then for every

L ∈ R,

lim
n→∞

P[Xk ≥ L] = 1.

(iv) If pnk/k−1 → ∞ and for some x ∈ R, pkn − ln n − (k − 1) ln ln n → x

then Xk converges in distribution to the Poisson distribution with λ =

e−x/(kk!).

(v) If pnk/k−1 →∞ and pkn− ln n− (k − 1) ln ln n →∞ then almost surely

Xk = 0.

Proof. Let T k
n be the collection of labeled trees of order k on n labeled vertices.

Then |T k
n | =

(
n
k

)
kk−2.

(i) Assume p(n) = o(n−k/k−1). As trees of order k are balanced graphs with

v = k and e = k − 1, it was shown in Theorem 7.1.7, p(n) = n−k/k−1 is

the threshold function for graphs having an isolated component in T k
n .

Therefore almost surely Xk = 0.

(ii) Assume that for some constant c > 0, p(n) ∼ cn−k/k−1.

First, observe that

E[Xk] =

(
n

k

)
kk−2pk−1(1− p)(

k
2)−(k−1)+k(n−k)

∼ kk−2

k!
nk(cn−k/k−1)k−1(1− p)kn(1− p)(

k
2)−(k−1)+k2

∼ ck−1kk−2

k!
e−pkn (k fixed)



124

∼ ck−1kk−2

k!
(pn → 0)

= λ.

Let 1 < r ∈ Z be given. Then

Er[X] =

(
n

k

)(
n− k

k

)(
n− 2k

k

)
·
(

n− (r − 1)k

k

)
· (kk−2)rpr(k−1)(1− p)(

rk
2 )−r(k−1)+rk(n−rk)

∼
(

kk−2

k!

)r

nrk(cn−k/k−1)r(k−1)(1− p)nrk (r, k are fixed)

∼
(

ck−1kk−2

k!

)r

e−pnrk (1− p ∼ e−p)

= λre−crkn−k/k−1n (p ∼ cn−k/k−1)

= λre−(crkn(−1/k−1))

∼ λr

as needed.

(iii) Assume pnk/k−1 →∞ and pkn− ln n−(k−1) ln ln n → −∞. The second

moment method is used to show for all 0 < L ∈ Z, P[Xk < L] → 0.

As in (ii),

E[Xk] =

(
n

k

)
kk−2pk−1(1− p)k(n−k)+(k

2)−(k−1)

∼ nkpk−1(1− p)kn

∼ nkpk−1e−kpn.

The idea for the proof that E[Xk] → ∞ comes from [4, p. 75]. Let

0 < x ∈ R be arbitrary. Assume p(n) = xn−k/k−1. Therefore

E[Xk] ∼ nk(xn−k/k−1)k−1e−kxn−k/k−1n

= xk−1e−kxn−1/k−1

As k and x are fixed,

E[Xk] → xk−1.
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Since x is arbitrary, is pnk/k−1 →∞ and pkn−ln n−(k−1) ln ln n → −∞

then

E[Xk] →∞.

To calculate E[X2], let α ∈ T k
n . Let Aα be the event “α is an isolated

component of G ∈ Gn,p” and Xα be the respective indicator random

variable. If {α, β} ∈ [T k
n ]2, then XαXβ = 1 iff α and β have no vertices

in common.

As

E[XαXβ] = P[Aα ∧ Aβ]

= P[Aβ|Aα]P[Aα]

= pk−1(1− p)k(n−k)+(k
2)−(k−1)pk−1(1− p)k(n−2k)+(k

2)−(k−1)

= p2k−2(1− p)2kn−3k2+2(k
2)−2(k−1).

For every α ∈ T k
n , there are

(
n−k

k

)
events independent of Aα, therefore

E[X2
k ] =

(
n

k

)(
n− k

k

)
p2k−2(1− p)2kn−3k2+2(k

2)−2(k−1).

Hence E[X2
k ] = o(E[X]2) hence Theorem 3.3.8 implies almost surely Xk ∼

E[Xk], as needed.

(iv) Suppose pnk/k−1 → ∞ and let x ∈ R such that pkn − ln n − (k −

1) ln ln n → x. Then

E[Xk] =

(
n

k

)
kk−2pk−1(1− p)(

k
2)−(k−1)+k(n−k)

∼ kk−2

k!
n(np)k−1(1− p)kn

∼ kk−2

k!
n(np)k−1e−pkn.

Let {cn} ⊂ R such that pkn− ln n− (k − 1) ln ln n + cn = x or cn − x−

ln n− (k − 1) ln ln n = −pkn so that

e−pkn = ecn−x−ln n−(k−1) ln ln n
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=
ecn−x

n(ln n)k−1
.

Therefore

E[Xk] ∼
kk−2

k!
n(np)k−1 ecn−x

n(ln n)k−1

=
kk−2ecn−x

k!

( np

ln n

)k−1

.

As

np

ln n
=

x + ln n + (k − 1) ln ln n

ln n

= 1 + o(1).

Hence E[Xk] ∼
kk−2e−x

k!
= λ.

Let 1 < r ∈ Z be given. As in step (ii),

Er[X] =

(
n

k

)(
n− k

k

)(
n− 2k

k

)
· · ·
(

n− (r − 1)k

k

)
·

· (kk−2)rpr(k−1)(1− p)(
rk
2 )−r(k−1)+rk(n−rk)

∼
(

kk−2

k!

)r

nrkpr(k−1)(1− p)nrk (r, k are fixed)

∼
(

kk−2

k!

)r

nr(np)r(k−1)(e−pnk)r

=

(
kk−2

k!

)r

nr(np)r(k−1)

(
ecn−x

n ln nk−1

)r

∼ λr
( np

ln n

)r(k−1)

∼ λr

as needed.

(v) Assume pnk/k−1 →∞ and pkn−ln n−(k−1) ln ln n →∞. As in step (ii),

E[Xk] =

(
n

k

)
kk−2pk−1(1− p)(

k
2)−(k−1)+k(n−k)

∼ nkpk−1e−kpn

≤ nke−kpn
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= ek ln n−pkn (nk = ek ln n).

Therefore

E[Xk] ≤ ek ln n−knp → 0 (as pkn− ln n− (k − 1) ln ln n →∞).

Inequality (3.4) implies

P[Xk > 0] ≤ E[Xk] → 0

as claimed.

Theorem 8.2.1 shows that for every 2 < k ∈ Z and for 0 < p < n−k/k−1,

the number of components of a graph G ∈ Gn,p, that are k-trees is zero, while

as p grows according to Theorem 8.2.1, the nature of the components that are

k-trees changes until p is large so that almost all G ∈ Gn,p have no components

that are k-trees. The next section illustrates more of the concept of graphical

evolution.

8.2.2 Evolution of connected components

This section continues the synopsis of the evolution of random graphs; in par-

ticular the evolution of connected components. This will only be a summary,

without any proofs. For more information, please see either Palmer [30] or

Bollobás [4].

Section 8.2.1 shows the evolution of the number of components that are

trees. A natural next question is how many vertices are in trees. Let 0 < c ∈ R

and x(c) =
∞∑

k=1

kk−1

k!
(2ce−2c)k. Observe that x(c) converges while 2ce−2c ≤ e−1

and that lim
c→∞

x(c)

2c
= 0.

Theorem 8.2.2. Let X be the random variable counting the number of vertices

in a random graph, G ∈ Gnp, that belong to components that are trees and
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0 ≤ c ∈ R. Let p =
2c

n
, then

E[X]

n
→

1 for c ≤ 1/2

x(c)
2c

for c > 1/2.

Which has the following corollary.

Corollary 8.2.3. Let p = 2c
n

and c < 1/2, almost all graphs have no compo-

nents with more than one cycle.

Thus almost all graphs are trees with one cycle.

Let Y be the random variable counting the size of the largest component

of G ∈ Gn,p. Notice that if for some G ∈ Gn,p, X(G) ∼ n, then G would

be one large component with a smattering of small components. If for some

0 < ε < 1, X(G) < (1− ε)n, then G would have two disconnected components

of large size.

Theorem 8.2.4 ( [9]). Suppose 1/2 < c and p = 2c
n
. Let G(c) = 1 − x(c)

2c
.

then for all ε > 0,

P
[{

Y

n
−G(c)

}
< ε

]
→ 1.

Note that as c gets large, G(c) → 1. Thus, almost surely the largest

component has at least nG(c) vertices.



Chapter 9

Calculations for convergence in

distribution

Definition 9.0.5 (Convergence in distribution). Let X, X1, X2, . . . be nonneg-

ative, integer valued random variables, if for every 0 ≤ k ∈ Z,

lim
n→∞

P[Xn = k] = P[X = k]

then {Xn} converges in distribution to X. In notation, Xn
d−→ X.

This chapter covers the material necessary in the calculations regarding the

convergence of distribution.

9.1 Events

This section follows the presentation of Bollobás [4, pp. 15-25]. Here is an

example that shows the idea for some of the results in this section. The

statement and proof come from Jukna [23], but both are standard in most text

books on elementary combinatorics. Let X be a finite set, and A1, A2, . . . , An ⊂

X. For every I ⊂ [n], define AI =
∨
i∈I

Ai, with the convention A∅ = X.

129
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Theorem 9.1.1 (Inclusion/exclusion principle). Let X be a finite set and

A1, A2, . . . An ⊂ X. The number of elements of X not in any Ai is∑
I⊂[n]

(−1)|I||AI |.

Definition 9.1.2. Let the probability space (Ω,P) be given. Let J ⊂ [n], a

Boolean polynomial gJ on Ω is of the form

gJ(A1, A2, . . . An) =

(∧
i∈J

Ai

)
∧

(∧
i6∈J

Ai

)
.

Theorem 9.1.3. Let f1, f2, . . . , fk be Boolean polynomials in n variables A1, A2, . . . An

and let b1, b2 . . . bk be real constants. Suppose

k∑
i=1

biP[{fi(B1, B2 . . . Bn}] ≥ 0 (9.1)

whenever B1, B2 . . . Bn are events in a probability space (Ω,P) such that

∀1 ≤ i ≤ n; P[Bi] = 0 or 1.

Equation (9.1) holds for every choice of events C1, C2 . . . Cn in (Ω,P).

Proof. From Definition 9.1.2, a Boolean polynomial can be written and a prod-

uct of subsets of [n]. Therefore, if gJ(A1, A2, . . . An) =
(∧

i∈J Ai

)
∧
(∧

i6∈J Ai

)
,

define the constant

cJ =

0 gJ is not in inequality (9.1)

bi if fi = gJ .

Equation (9.1) can be rewritten as∑
J⊂[n]

cJP[{gJ(B1, . . . Bn}] ≥ 0. (9.2)

Given a set J0 ⊆ [n] choose events B1, B2 . . . Bn such that

P[Bi] =

0 if i 6∈ J0

1 otherwise.
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For this choice of {B1, B2 . . . Bn},

P[gJ(B1, B2, . . . Bn)] =

0 for all J 6= J0 ⊆ [n]

1 J = J0.

Thus

cJ0 =
∑
J⊂[n]

cJP[{gJ(B1, . . . Bn}] ≥ 0. (9.3)

Hence for any collection of events C1, C2 . . . Cn equation (9.2) holds.

Theorem 9.1.3 has the following corollary.

Corollary 9.1.4. If for every sequence of events B1, B2 . . . Bn with P[Bi] = 0

or 1,

k∑
i=1

biP[{fi(B1, B2 . . . Bn}] = 0,

then for any choice of events C1, C2, . . . Cn,

k∑
i=1

biP[{fi(C1, C2 . . . Cn}] = 0.

For the rest of this section, let A1, A2, . . . An be arbitrary events in a prob-

ability space (Ω,P). For J ⊆ [n], define and A∅ = Ω and AJ =
∧
j∈J

Aj. Next

define pJ = P[AJ ] and for r = 0, 1, 2 . . . , n. let Sr =
∑

J∈[n]r

pJ .

The following corollary is similar Theorem 9.1.1 and allows for a calculation

of the probabilities of events using combinations.

Corollary 9.1.5. If A1, A2, . . . An is a sequence of events in a probability space

(Ω,P) then

P[
n∨

j=1

Aj] =
n∑

r=1

(−1)r+1Sr.

Theorem 9.1.6. Let A1, A2, . . . , An be events in a probability space (Ω,P) and

let S0, S1, . . . Sn be as above and denote by pk the probability that exactly k of

these events occur. Then

pk =
n∑

r=k

(−1)r+k

(
r

k

)
Sr. (9.4)
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Proof. As a result of Theorem 9.1.3, it is enough to show equation (9.4) holds

for events {Ai}n
i=1 such that for some 1 ≤ l ≤ n,

P[A1] = P[A2] = . . . = P[Al] = 1

and

P[Al+1] = P[Al+2] = . . . = P[An] = 0.

If B and C are events with P[B] = P[C] = 1 then

P[B] = P[C] = 1− P[B] = 0.

As B ∧ C ⊆ C then

0 ≤ P[B ∧ C] ≤ P[C] = 0

hence

P[B ∧ C] = 0.

Since B = (B ∧ C) ∨ (B ∧ C) is a disjoint union, then

1 = P[B]

= P[B ∧ C ∨B ∧ C]

= P[B ∧ C] + P[B ∧ C]

= 0 + P[B ∧ C] = P[B ∧ C].

Thus for 1 ≤ k ≤ n,

P[
k∧

j=1

Aj] =

0 if for one of the Aj P[Aj] = 0

1 otherwise.

All together this implies

Sr =

(
l

r

)
. (9.5)

As a short explanation of why equation (9.5) holds,

Sr =
∑

J∈[n]r

pJ
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and pJ = 1 if and only if for all j ∈ J P[Aj] = 1 which happens for all J ∈ [l]r

by the assumptions on the Aj’s. Using the standard counting argument then

(as in the inclusion/exclusion principle) shows the result.

9.2 Random variables

9.2.1 Falling factorial

Let X be a random variable on some finite probability space, (Ω,P).

Denote

(X)0 = X0 = 1. (9.6)

To clarify, as X is a random variable, for every G ∈ Ω, X(G) is a real number.

Thus this formula says that for every G ∈ Ω, (X)0(G) = 1. For every positive

integer r,

(X)r = X(X − 1)(X − 2) · · · (X − r + 1). (9.7)

Example 9.2.1. Let X be a random variable

(X)0 = 1

(X)1 = X

(X)2 = X(X − 1) = X2 −X

(X)3 = X(X − 1)(X − 2) = X3 − 3X2 + 2X

(X)r = (X)r−1(X − r + 1) = X(X)r−1 − (r − 1)(X)r−1.

These equations are the random variable version of the ‘falling factorial nota-

tion’ of real numbers (i.e., (x)r = x(x− 1) · · · (x− r + 1).)

If j is a positive integer, the notation Xj is the random variable Xj(G) =

(X(G))j, then by multiplying equation (9.7) shows that for all 0 ≤ r ∈ Z+,

(X)r =
r∑

j=1

(−1)r−j

(
r

j

)
Xj. (9.8)
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Suppose X is a random variable that is expressed as the sum of random

variables,

X =
n∑

j=1

Xj.

Then

(X)2 = X(X − 1) = X2 −X

=
∑

(i,j)∈[n]×[n]

XiXj −
∑
i∈[n]

Xi

= 2!
∑

1≤i<j≤n

XiXj (as X2
i = Xi).

(X)3 = (X)2(X − 2)

= X

( ∑
1≤i<j≤n

XiXj

)
− 2

∑
1≤i<j≤n

XiXj

= 3!
∑

1≤i<j<k≤n

XiXjXk (as X2
i = Xi).

The general formula is

(X)r = r!
∑

1≤l1<l2<···<lr≤n

Xl1Xl2 · · ·Xlr .

If, for every j, Xj is an indicator random variable for the event Aj, then

Xl1Xl2 · · ·Xlr = XAl1
∧Al2

∧···∧Alr
.

Thus

E[Xl1Xl2 · · ·Xlr ] = P[Al1 ∧ Al2 ∧ · · · ∧ Alr ].

Hence

E[(X)r] = r!
∑

1≤l1<l2<···<lr≤n

E[Xl1Xl2 · · ·Xlr ]

= r!
∑

1

P[Al1 ∧ Al2 ∧ · · · ∧ Alr ].
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9.2.2 rth Factorial moments

For a positive integer r, define the r-factorial moment by

Er[X] = E[(X)r]. (9.9)

Observe that if X counts the number of objects of a certain class, then Er[X]

is the expected number of ordered r-tuples of that class. From equation (9.8),

Er[X] =
r∑

j=1

(−1)r−j

(
r

j

)
E[Xr], (9.10)

as expectation is linear.

Corollary 9.2.2. Let X be a random variable which takes values in {0, 1, 2, . . . , n}

and let Er[X] be the r-th factorial moment of X. Then

P[X = k] =

∑n
r=k(−1)k+r Er[X]

(r−k)!

k!
(9.11)

Proof. Let k ∈ {0, 1, 2, . . . , n} be given. For i ∈ {0, 1, 2, . . . , n}, let Ai = {X ≥

i} and Bi = {X = i}.

Observe that Bk is the event that exactly k of the Ai occur. Using the

notation of Theorem 9.1.6, Sk =
Ek[X]

k!
and

pk = P[Bk]

=
n∑

r=k

(−1)r+k

(
r

k

)
Sr (by (9.4))

=
n∑

r=k

(−1)r+k

(
r

k

)
Er[X]

r!

=

∑n
r=k(−1)r+k Er[X]

(r−k)!

k!
(simplifying).

9.2.3 Binomial moments

Definition 9.2.3 (Binomial moments). For nonnegative integers, r, the bino-

mial moments Sr of X are

Sr =

1 if r = 0∑
E[Xl1Xl2 · · ·Xlr ] if r > 0

(9.12)
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where the sum in equation (9.12) is over all 1 ≤ l1 < l2 < · · · < lr ≤ n.

Thus

Sr =
Er[X]

r!
. (9.13)

The following theorems are from [30] and will not be proved here.

Theorem 9.2.4. Suppose that for all i ∈ [m], Xi is an indicator random

variable and X = X1 + X2 + . . . + Xm. Then

P[X = r] =
n−r∑
k=0

(−1)k−r

(
k + r

k

)
Sk+r. (9.14)

Corollary 9.2.5. Suppose Xi and X are as in Theorem 9.2.4. Then

P[X = 0] =
n∑

k=0

(−1)kSk. (9.15)

The following inequalities are also useful.

Theorem 9.2.6. (Bonferroni inequalities)

For all integers 0 < k and 0 < m,

P[X = k] ≤
2m∑
j=0

(−1)j

(
k + j

j

)
Sk+j. (9.16)

P[X = k] ≥
2m−1∑
j=0

(−1)j

(
k + j

j

)
Sk+j. (9.17)

The proofs follow the same idea as Theorem 9.1.1.

9.3 Limit theorem

The theorem and proof are from [4].

Theorem 9.3.1. Let X =
∑m

j=1 Xj and let Sk be as in (9.13). Suppose there

exists µ ∈ (0,∞) such that for every k = 1, 2, . . .,

lim
n→∞

Sk = µk. (9.18)

Then

lim
n→∞

P[X = k] =
µke−µ

k!
. (9.19)
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Proof. For every m = 1, 2 . . ., inequality (9.16) implies

P[X = k] ≤
2m∑
j=0

(−1)j

(
k + j

j

)
Sk+j

≤
2m∑
j=0

(−1)j

(
k + j

j

)
µk+j

(k + j)!

=
µk

k!

2m∑
j=0

(−µ)j

j!

≤ µk

k!
e−µ.

Similarly, inequality (9.17) implies

2m−1∑
j=0

(−1)j

(
k + j

j

)
µk+j

(k + j)!
=

µk

k!

2m−1∑
j=0

(−µ)j

j!

≤ P[X = k].

Putting these inequalities together yield for every k = 1, 2 . . .,

lim
n→∞

P[X = k] =
µke−µ

k!

as claimed.
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