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The Motion of a Particle under Gravity on the

Smooth Surface of a Vertiecal Paraboloid of Revolution.

s

‘Sec. 1 - Introductory.

It is proposed to consider the motion of_a heavy
p&rficle constrained to move on the smooth inner surface of
a paraboloid'of revolution, Symmetrical with respect to the
z;axis which is verticel.

The equations‘of motion will first be set up. From
~these will be derived the cofrespdnding "Vis Viva Intégral"
and the equation of angular momenfum about the z;axis.

By considering the "Vis Viva" and the momentum
equations simultaneously we shall obtain the differential
 equations for the path and the time. In each of these
fundamental equations will appear two constants. By arbitrarily
choosing these constants sevéral different cases arise, for
each of which the path and the time will be determined.

Diagfams will be used to illustrate the shapes of these paths.




Sec. 2 - General Differential Equations of Motion.
The general equations of motion for a particle constrained

to move on any surface § (x,y,z) =0 are:

2% : | |
m;{g-f“x . sx | L 1
-2 : |
u'_ - )
B Wy e e 2
2 ..........
mi‘;‘:':}?z Ny 22 0 e 3
where-Ex Z Sum of the Components of &ll the forces in the direction
= of the x-axis
L = Sum of the Components of all the reactions in the direction

of the x-axis, ete.

m = mass of partiele.

' Now in the case of a smooth surface @ (x,y,z) = O the reaction

of the surface, N, is at every point normal to the surface and thereforg?

N Ny o Na | |
W3 w N e *
IX LY 4z

Further the total reaection

e TN W AIG G e

Sec. 3 - To Derive the Equations of Motion for the Given Paraboloid.

{

 Here f(xyz) = O, becomes x° L ¥® = 2z
' or % (x° £ ¥ -28) 20 commee 6
We choose here the "latus rectum" as unity. This merely
fixes the unit of length snd does not affect the generality of
the results, but only the numerical values in & particular case.



Sec. 3 - continuned.

We have them e 7
Aléo since gravity is the only force acting,‘
Fg = 0 Ey =0, F,=-g mm s e e a8
Prom (4) etc. when we take the msss equal
to unity, the equations (1), (2), (3), take the following forms
respectively:
2 :
a"x
e AT
at
d2 T
-——%— = AY ———————————— 10
at
2 S . _
s P N
= - “A-8 L emeeeel 11
dat
We proceed to find the value of and T. . Por the general
aquatlon $ (x,y,2) =
¢ = (\¢ d-x 4y ' é¢ dz .
at 3 ’l _d%’taz = -0
Differentiating again
2. 2
a® . 90 % 4 ad . % 4 N, a7
at> Jdx at” dy at? Jz at?
2 2 2 2 2 2
A ¢ (ax)” A°¢  (ay) Q8 (az)"
@ 95 @ 5 @
J = -y Jz
2 | . | |
2_5_&-.%%:%;2_6\39_ dz%z_c\__fé_ S
d=xdy - Jdydz dx-dz _
N2 : 2 42
2M.%fg_dl _il,zeé,ﬁa_-,_@_%:o‘ _______
dx-Ot at Jy.0t  at Jz Ot t




Sec.. 32 - continued.

In case of paraboloid a¢ i % d = i | _._ ’_1
: d T v I, Z
hence C‘} X 7 C‘E ¢ o) zg g : 0

M

Xz : a yz / C) z
()_a_a_?i@_ te. ()_._&__@_ G &ll vani sh.
X.Ay x. 0t

Hence Equation (13) becomes _ |
0 =x (Ax) vy (Ay) (-1) (-A-g) # (ax) (dy)
Ax) / F A ;‘v (%) # (ar)

n -

1

/\fX fy D %g;‘(ax %(_&%)

Whence, on putting %2 ;l y° = 2z, we obtain

1]

1  (ax)? (d,jz e
A - 57T {g%(a") fany | . 18

A 3 e

1
>
b}
AV
S~
o
FAV)
N~
(]
0!
[}
=
o)
=]
~3

= A2z £1) Since ngy?' = 2z
- (ax)? | (ay)?
(2z 4 1)% {g%(d)"l(a'%) ———————————————— 14

Substitute this value of /\ in (9), (10), (11) and the eauations

 of motion of the rarticle on the paraboloid become




Sec. 8 - continued.

d’?‘x - X | 2 - 2 '
= =X g F (ax) 4 (ay)
dtg 2z £ 1 [ (at) (at) | w
at® 2z £ 1 (dt) (at)
VRN S IYPET. ,z(g_y_)g] .
dtz 25 % 1 (d ) (d )

Sec, 4. Vis

Viva Integral for the Given Surface.

The Vis.Viva'integral, which gives the kinet energy of

~the particle,

+ m v

is given by the genefal relation

- (Xdx # vay / zdz)

- In the case of the pafaboloid under discussion this becomes

f

integration.

i.e. VZ =

{ )\ xdx ';Z,\ydy - (/\7z g) dz)
4%— ( x° } 7°) - (A % g) z ; k!
_4%4 (EX)'; (/\% g) =z %'kf

- 8% )‘ k! #
b 3

- zg'Z‘f k where k = 2k’

where k¥ is the constant of




Sec. 4 - continued.

If therefore we suppose V = O when z = h we see that k = 2gh
and hence

v = 2g (h - z) et LT TPy 16

h - Zy5 1is the height to which the body would rise if projected

vertically from point (Xo, Yoo ZO) with a velocity V.

Sec. 5. Angular Momentum about the z-axis.

Multiplying the first of equations (15) by y and the second

by x and subtracting we have

. . 2 B
X’_QEX— -y ATX o o
Cat® at”

Integrating this equation we get

iy ax ~ '
x of e T m—— 17

where ¢ is the constant of integration.

‘From this equation we see that the angular momentum about the
z-axis is constant, or that the-afea passed over by the projectionv

of the radius vector on the xy-plane is proportidn&l to the time.



Sec, 5 - continued.

‘

If weput x = rcos@ , y = r Sin Q where r is the
distance of the particle from the z-sxis and is the angle
between the xz-plane and the plane defined by the position of

the particle and the z-axis, equation (17) becomes

roos @, 4T sinE for cos @ - a8 x Sine‘dr GOS@-I‘Slneggg‘ Zo

‘ 2 ! L e e
i, e. ri%:c e 178
which also expresses the fact that the projeetion of the sreal
velocity on the xy-plane is constant.
Equations (17) and (17a) may be called the eaquations of

esngular momentum.

Sec. 6, Regions of Real Motion.

Prom equation (16}
| V2 - 2g (h‘z)
: it is evident that real motlon exists only between the planes

—O and z-h- since 1flz > h, V is imaginary, and z cannot be
negative for any position of‘the particle on the paraboloid.

Now in using ceylindrical coordinates as indicated in sec. 5, -

fhe distance r from thé z;axis alweys projects into r on the xy;plane

6} projects into Q; , and & section of the paraboloid formed by |
& plane parallel to the xy-plane projects into a circle on the
xy-plane any are of which, 8, is given by

s =r S. o

and also x2 % 72 = r?




Sec, 6 ~ continued.
On the xy-plane

V=1r

2.2 (26012 L (2, 46)° s i g
( )

,:»Ig
t

i.e. vV =r - at ) L o

1‘2 1'2 2z

where ¢ is the angular momentum, see equation (17)

: 2 _ .2 ' :
and r° = x° /3% = 25 for any point on the parsboloid.

How these two values for Vo may be equated when the verticsal
component of V2 in equation (16) has vanished. i.e. when the total
veloeity has become the tangential velocity in & plane parallel
to the xy;plane. This evidehtly occurs at the turning points in the
motion i.e. at thelhighest and lowest points in any path traced on |
the surfgee of the paraboloid. |

Hence at points where the vertical component of the velocity
vanishes, we have,

.Zg (h - z) E EE_

2z

or 4gz2 - 4ghz £ c® = 0

| A 7 2
whence z = _48h f \)4g‘2h - 16ge”
_ 8
SR > >
SR - e 18

‘This gives two parallel planes

and %

]
aVH fuy

]
AR B
- @
D'm

1

o
00

between which the mption.of the particle must take place.




Seec, 6 - continued.

The constant h may have any value depending on the initial

3 2
\'2 . .
0

2g f %o

values of Vo and Zé gince h =

The constant ¢ has many positive values.

1) If EE_ >>h2 the values of z as given by (18) are imaginery,

g

and no’real motion exists., This case need not be considered further.

o
~ 2
2) 1f 0 féfi—— f; h™  we get two real values for z. Hence we must

congider values of ¢ within this range.

Now positive end negative values of ¢ indicaté rotation in
qprSite directions about the z;axis. It is therefore necessary to
consider only positive values of c.

 Besides the general case (2) presents two special limiting cases

as follows: ,
1) If ¢ = O i.e. 1if the angular momentum is zero,

H

2
then P d;% o= 0

| o]
»
®
.
[
'
R}

i.e. Q.

The motion is theh in a plane through the z-axis. Such a plane

8 constant.

euts the paraboloid in & parabolic section and hence the path is
along a pargbola. ' ‘

Also e = 0 gives z - O and z = h in equation (8)' i.e. motion in
this parabolic path is limited between the planés Z ; O and z ; h. The
particle will fall along this path, through the origin, and then up
along & continuation of the path on the opposité side of the

paraboloid.
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Sec. 6 - continued.

1) 1£ % _ 2 ¢ £ 0 then the two
g ‘

values of z are the same, namely % i.e. the two parallel limiting

planes come into coincidence and hence the psth of the particle is

g circle of radius
r = \}ZZ :JE_
Farther since ‘ ' _
H . . . - 2
r? = 2g -.-h_ﬁ fhz -c
g

it is evident that the projection on the xy-plane of the path

traced on the paraboloid by the particle will lie between two

‘concentric_circles with & common centre at the origin and rsdii

S T _ of I —
1'| -Jh.' h c_ r2=Jh7zh'02
g -

In the case where ¢~ ; h2 these circles become coincident and

g
the radius of esch is r =‘;h

Sec. 7. Differential Equations of the Path Projected on the xy-plane

1. The velocity of a particle moving in space is given by
v om o
at dat at
Transforming to cylindrical coordinates, (see Sec. 6) by

put‘cingx=rcosQ ,y=:rSin9', zZ =z

this becones.
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Sec., 7 -~ continued.

v

- - 2 R
{g.l.' cos g - r Siﬂél-d_ai‘ft} £ 48T gin L 1 cos.
at : / a _

,C,
e

; 2 - : ' :
- v g_____a 9} f {Q}g ¢ {az)® ' 19
' at dt ary T TTTTTTTTTTTTT °
Whence ,
. , v A
V. dt = l:r? (a6)° ¢ (ar)® # (dz)"] =
. . _%_ . ’ .
snd sinece V = [?,g (h-—z)J _________________ 16.
: . ' ' Y .. .
then ¥dt _ .. [r?’ (ag)® £ (gr)g £ (az)?] ® 50
- ? = - T — W - Ve
ng (h - z)J 2
Since - d@ ‘-- | a ’ -
-5t =<  mmemeseseoooooee-- 17
2
f.e. dt= X 46 _ 5 ag
c c
and moreover
r = 2z
rdr = dz
(ar)® = (22)? | (g5)?
2 2y

r

We have, on substituting in (20),

, : o 2 : i
4 22 (d@)g - [2z (dg)g £ (—g—z-) ;‘(dz)gj ?

2

° | [zg(h'-z)J%"
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Sec. 7 - continued.

ice. 82% (-3) (ag)® =2z (20)? }t%__‘ (a7)2(1 # 27)
z .

2
e
i.e. 8 z°g (h - z) ' 2 '
2 =2z 4_1 (dz :
-z : {24 (1 4 2a)
£ : ’ 2 X1
i.e. (22)% (40) . (1 / 22)°
(Tdz) T 5 ‘ '
[882 (h - z) - 2{]
02
: ‘ 1
i.e. ae = (1 - 2x)°% dz
2z (.‘-’f& (h - ) —1)
02
i.e. i% . 4o .. (1 ;Z 9Z
- e

" Integrating (21)

_ﬁ;g - (22 £1) _dz
¢ ) 1
| 2z -(42° - 4zn ; e®y ( 2z ; 1 ] ®

g

(2z # 3) dz v
22 [ (22 - a) (22 - b) (22 / 1)_]

ol

where . & = h %,‘}hz o2 b=h- |h - e” -
. . g ’ =

It_iS'now necessary to consider the regions of integrability.

[-<4z (h - 7) - CZ (22 ; 1);]

wojr

---2y
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BSec, 7 - continued.

\\3!)"5

For the expression (} (2z - a) (2z - b) (22 £ 1{] c,
oceurring in the integral of (22), to be real, it is evident that

2z must lie between a and b i.e. z must lie between the values

. « .o . 2 . .
% - % I n® - 02 and % ¢ % h® - ¢ which agrees with the -
g . g '

region of real motion of the particlegs found in Sec. 7.

Hence the expression is integrable only over the region of
real motion of the particle. | |

The graph of the equation (2z - 2) (2z - b) (22 f 1) . 0

has the form

\
‘ a
~_ % AN
. —%
And again for a real integral z must lie between & and b

2

Since ¢ < h
g
z > 0 , b 4 0, . . the order of the roots is
-1%b<e (o<£hb)
Sec. 8. Determination of the Path. (Special Cases)

:

i) As we saw in Sec. (6, 2i) we have, for ¢ = 0
(9: (9 0 s constant.
The particle moved along & P0Z section i.e. in a parsbolic

path determined by o
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‘Sec. 8 - continued.
2

ii)’ When e¢“ = © hg ¢ 4 0 a ; B ; h
g -

In this case as we saw in Sec. (6, 2 ii) the two limiting

planes coincide and the path of the particle is given by

r =2z  and 2z = h

'8 eircle parallel to the xy-plane of radius fﬂ—

o Thg;e fo11ows from this an interesting resuit from & consideration
of'the veloecity in this path. |
Prom V2 = 2g (h - 2) | | _ ‘;;_' ____________ I 16.
| IV = Vo When 7 - Zo

2 . .
then ’VO = 28- (h - z)

: 2 .
h = VO )[ ZO
2g
If Z = %, then h = V,°  which is height body would rise if
2g

projected verticslly. from (X,, Y,, %,) with velocity V .

Now since r? = h = 2Z0'

r 2 : :
Vo %IZO = 2Z0

2 . .
‘o ° VO - Bgzo !

i.e. if the body is moving in the horizontal circle with a tangential
velocity equal to the initial velocity required to raige it to this

plane from the xy-plane, then it will confinue to rotate in a circle

in this plane.
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\ Sec. 9. Determination of the Path in the General Cases.
In the case h2 ) c?

g L
b L 2z £ g

- s

¢
f;

[

‘3__9 _ (2z,l1)dz
22 [- (22 - 2) (22 - D) (zz,zl)j

4

Q
1

L}

1

1

]

1

[}

!
[av]
[av]
.

S dz % ‘dz
bt .t . . A —1" A N N .
' E— (2z-a) (2z-b) (22%1)] = 2z [ -(2z-a) (2z-Db) (’227(1)/7

To reduce 'thls integral to Legendre's standard form
2

put X” = 2z - a
b -8
or -‘('é.-b) x2 = 22 - a
whence 4z = - (a - b) xdx
2z,‘-aj=—(a'—b)x

2z - b (a-b)-(a—b)xg

Then the above bintegral becomes

5?_9‘ | ;(a—b)xdx

‘[-(- (aeb 2) ((a-b) - (a-b 2)((1}&) (a-—b)x)

+ : ‘ | - (a - b) x° ax | |
(a - ,(a_-b) x> ) f ( (a-b) x ) ((a-b) - (a-b) xz)g‘lfa) (a—b):ﬁ




Secs 9 - continued

i.e. _%% ; v_
;a {(1-::)(1-7'32)

1
/ -__hz)fJu-x)(:L-a-_;gx)

where X decreases as Q increases, and lies within 1 2> x2:£ 0

e X : R
- - _8%¢ [ (k,x) # 1‘| ‘(n k x):‘  eeee—--23a
| d 1 / a ' |
io (S @ ;.' c Coe ) PR A
- 1P (xg) 41 (n,k, )] ------- 23D
"g (1 4 &) [. o a / ‘ 7
in the usual notation for Elllptle Integrals
where k2 - &~ b n = _ &-5b
x = Sin f A¢ =Jl T K sin’g
Sec. 10. Differential Equations -fo_r the Time.
2. .2 (40)% | (ar)2 Iy
From v r (it ) 7‘ (E-'t-) ,[ (%%; _________ 19
2 " ' L
and V'  =2g (h -2) - - . 16
We have )
' 2 (aQ)% 7, (ar)® . iz)2 -
' 7 (Ef% F(TE)  F gE%; 2g (h - z)
. : 2. 2 2 2
L = [F_(ae)® /(ar)? f (an)?]

(Zg (g-;'z[)




- 17 -

Sec. 10. - continued.

Since r° a0 ; o
at
; cdt cdt
a6 = =5
T 2z
and since r2 = 2%
rdr = dz
. o . 2 ,
and . . (dr)2 = (dz) - (dz)2
P2 27
‘ 24 2 ‘ o
. ; c” (at) (az)” g 2
o AU el 1
(dat)” = 27 f 5, F (az)
2g (h - z)

i.e. (at)® [ 4gz (h - 7 ) - c? ] - (2x } 1) dz

; ' ' i S C
dt = (2x £ 1)% az . o4
. . 2 _]___ . T e e s s e e e e e
[4gz (h’-'z) - c -] 2
Integrating
r :
gt = (2x £ 1) az

’}: (472 - 4zh % QE ) (2% ; 1)
g

; (2x % 1) dz :
/ ((ZZ S n)? - (m? 9;— )) ( 22 } 1’)

(22 # 1

/ﬂ-(az—h J et ) (8z-h %‘/h“ _;_ (2z £ 1)

(2z % 1) az_

- (2% - a) (2x - b) (2x ; 1)



- 8ec¢, 10 - continued.

where a = h J>h2 - & , b - h -J'hz - c”
g g
= - Rz % 1 —— dz @ e e 25,
. - (2x - a) (2z - b)
Sec. 11, ' PDetermination of Time in the General Case.
’ Z
In L, = ° A o
&t 2z £ 1 82 mmmmmeme- 25,
- (2z - &) (22 - b) '
o _
put xz = 2% - 8
b - 8

n

or ;(a'; b) %2 (22 ; a)

(s - b) xdx

’whence dz

22‘2 1= (1 ; 8) - (a - b) %%
2z - & é -(a - b) x2
2x - b - (a - b) - (a - b) %2

Then we get

gt = (1 ,l - (a ;'b) x> (,_(a-b))XdX
(a-b )(a-b) (5-b)x2

s
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Sec, 11 - eontlnued.

2

(1 ; a)'; (a - b) x” ix
/// \f 1 - X2 '

- Xo | L
=W,1 ; a "~ a-b 2
/(— 1- 715 %

J Gas¢ 1l - k Sin~ ¢ .d¢ where kz = g‘b x = Sin ¢i'
2 178 »
1 - Sin ¢ : _

Bo
V1t Vrl - ¥®sin® ¢ . af |
For a real integral

0 . v béZZéa

Limits of integration from

1 . a * .. : .'A"
= —_gL E (k9¢) : ' 22: = g to EZ = b
u ’ give x =0 tox =

1
angd ¢=O t0¢ j;f

I

For the period of one complete.cycle we have

T-a b
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Sec. 12. Determination of Time in the Special Cases.

i) If in the sbove the angulsr momentum ¢ =0 then, as in

sections (6, 2 i) éna (gab ~the path is parabolic.

Here a = h / |h® - 2 = on
g
b=h - h2 - o2 Q 0

- g
whence t ; ‘ll~§—§— E; (k,0) | ; M l—fggé é; (k @)

2 g a-b - _® . _2n
14a 14a 14 2h
To. find the limits of integration
Since %~ . 2% - g : 2z - 2h
b -'a 0 f'Zh
when z = O » x =1 ’ ¢ = — /V“
' 2
and when z = x=0 |, ¢ ; 0

;, ]}l_é_é EF (%, I
g
_ 8

=

ol o
L5

e

= o c $#0 thena=Db=zh

*

:

(%,

Hence for half the path 7/—
2
and for the whole path

ii) When

As in sections (6, 2ii) and (8,ii) the peth is a circle, parallel

to xy-plane, of radius \ fﬁf
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See, 12 - eontinueﬁ.‘

The veloecity as in Sec. (8@3 is given by

5
Vo = 2g%, = 2gh

and thus 7V, =\}Zgh

Hence the periodic time jf' is giveh by

2 T ;ﬁ/g“

g result independent of h.

This means that the orbit is completed in same time(in
circles at any height ahove the xy;plane; i.e. the speed in
cireular orbits increases with height. This agrees with result
in (10,ii) whéie it wes shown that tangential velocity in each
of these circular orbits must be equal to the initial velocity
required to raise the particle to the level of the orbit in U

question.

Sec. 13. - Summarye.

The motion of the psrticle is bounded by two planes
parallel to the xy;plane. These p;anes are’given by the root
of the equation z* - hz ; QE " 0 ;;;——;—-—;—;;-;18

. 4g '
_ If one r§ot is zero, i.e. if c ; 0, theQmotion is

pafabolic. Sec. (7, 2i)

If two roots are equal, i.e. if the two limiting planes
coincide, then the motion ié in & cirele. Bec. (6, 2ii) and the

period of revolution is independent of the height of the plane.
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Sec. 13 - continued.
In the general case where the roots are unequal we may
consider two cases. 1st where b is smell, 2nd where b is nearly

equal to a.'

Sec. 14. ' Equation of Path in & Form Adapted to Computation.

From Sec. 11. - ‘

i : 1 . = I : ‘,
: - . 1 - ,
L9 =- , [ P(kx) /21 ﬁ’(n,k,x)] - 288
f14e «
L e < = ]
) | 4x 1 1 oae2) Tt _dx
le 17 Az 3 (- w5
O N . 0 .
2: : : : :
where X~ - _& ~ b - & -b = 1-%2) (1-k2x° )
Rl L
This may be written \
X X
8 . :
- ° L= g1 (1 - nx?) " ax_
AX Ax'
0 0
where c; = c
Now (1 - nx2®) - 1 f nx 4 n2x% £ Jg'( f 2)

and this series is convergent for x on the interval we are con-

sidering. X = Sin $ , Sin @ being less than unity.
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Sec. 14 - continued.

-Retaining two terms we have

, N : _ X
_g_ = (141 » (kx) fB - £2 ax
{ & & A x
0
: . 1 A . X
- i n
(1 4 g,) P o(k,x) { > kzxzdx
i.é.
% = (1 % % # _g_ ) P (k,x) - ._.’21._.. (k,x)
! x“a k°a

: ;1 .'n v n
= (1 £ = ) F k, - o (k, )
(1 4 - ;o (x,0) P , ‘ [
where x = Sin §

From which © may be calsulated.
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Sec. 15. Caleulation of COnSfants.

i) Case where b is small

Let us take a = 15 D = ]
¥z &b = B8 -1_ 7 e .
14 a 14 15 8
n: &-Db ; 15 -1, 14 | . 2
a 15 15 or n = .93
¢, = e - 21,97 = = 9676

Jg-(i /£ a) Viseoo) (100

To evaluate ¢ we have

& = h %l'hz - ¢®
" - ?hz - o2
g

Adding, we have h :‘a.é b

o |

o
H

2
Subtracting (a - b) = 2 |n® - o
8
Whence e® = % (4}12 - (8 - b)gj
- . ' 2 :
z éi—i Q\d,(64) - (14) ) = 483

21.97

.
.

Q
1]
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"Sec. 15 - continued.

ii) Teke a =25, b = 10

k%: a-b .15

1/a 26 ko= .7
n = gﬁ..:_.b_ - % = .6

a N
c = ¢ | 89.1

! , . - L z.omes
| |)g (1 £ a) (32.2) (26)

As ih 1) above

¢ = & '(%hg - (& ’.b)é)

822 (4 (38)% . (15)2)
4 2

‘. .‘40589,1

n

8050

Sec, 16. Calculation of Q ‘and r.

i) 'To find &

For a = 15, b =1 wusing the values of constants

found in Sec. (15,1)

@ : : 1 ][ 1_4.. ' .' . 14 |
: = {1 = 15; - ) (k,¢) - E.__._ C (%,8)
L9676 18 Z (15) - 1 as) t; |

o)
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Sec. 16 - continued.

- . 9676 [1.1877 7 (x,0) - .om F e g;]

; 1.1008 7 (k,f) -~ .oesng (k @) | .

Por & = 25 b =0

‘ | 3
0 R Q L1 2 3
- 5F | 2 (k,8) - ——— (k ¢
.O 85 »
5:07 o 15 (2m) F 25 (25)E
26 26

3.0785 [:1 0816 f’ (k’¢) ;..04016 E (x, ¢{]
- B.3204 7 (1r $) - .1236 g (x, ,8)

ii) To find r
From x2 = 22 -~ &
o _ "ﬁ;ffig"

22 = & - (& - b) <2

But r° = 2z

. . T = Jan- (e - b) % where X = Sin
For & = 15, b =1
r= |15 - 14Sin>@

For & = 25, b = 10

Jz5 - 155in°¢

=
L}



15°
300
45°
60°
75"
90°

‘See. 17.
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Tables of Values of

r and
i) TFor a =15 b= 1, k = .9, r ;4d1$ ;‘1éSin2¢
P(k,p) B(k,$) 1.1008 P(k,§) .06879_E(k,¢) redlans degress T
o N 0 0 0 0 3,873
,254 ,259 .2906 .01781 272 15%387 3,749
,544 505 .5988 03473 564 320191 3,501
,858 723 <9444 .04973 .894 51%161 2.828 f
1.233 .907 1.3573 . 06239 1.2904 74°91 2,121
1.703 1.053 1.8747 © .07095 1.803 10331t 1.392
2.275 1,173 2.5043 ©.08069 2.423 138°52% 1.0
1) For e =25, b =10, k= .7 ¥ ;JEB - 155in¢
P(k,0) E(k,0) 3.3294 E(k;¢) .1236 B(k,Q)
. _ radians degrees T
0 0 0 0 0 0 5
«263 . .260 . 8756 03213 .843  48°207 4,898
.536 .512 1.7846 . 06326 1.721 . 98%447 4,609
.826 .748 2.7501 .09245 2,657 142°171 4.183
1.142 . 965 3.8022 11927 3.682 211°2% 3,708
1.488 1.163 4.9480 .14375 4.804 275°171 3.317
1.854 1.351 6.1727 .16698 6.005 344%°8' 3,162

for Different Values of @
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§ec. 18, Conclusion.

The return branch of curve is symmetricgl with that indicated.
.'above and similar cycles will bg traced out in succession.

| The distance from one apse to the next on the same plane

ié ﬁwiee the value of C)cdrresponding‘fo the complete elliptie
~integral that is for @ = 90° | ,

Our result for the case & ; 15, b.? 1 gives the apsidsl
angles as 2x2.423 %'4.846 radians. Sinée this result is less than
2 ng/the path is regressing. | |

Our result for the case a 5 25; b = 10 gives the apsidal
angle as 2x6.005 = 12.01 radians. Since this is greater than |
2 ﬂf%he pafhﬂis precessing. _ |
‘ fOn t+he following pages are shown drawings of the actual
pafhs and their projections on the xy;plane for the foui cases

considered.

\




T

Prare T.

\\

~

0.
/Eienraf‘/'on

|
PrOjecv"/ofL orr Plone X Y




h

g
.

//E/c vationr.

' k‘\‘u ~.

P/—oﬁ/'cc%/von on XY Plarce

Circular Orbit.




| N

| b

Z L , ~ 1

g | RE. OGS T R o * > |
v B o T LRI R e e S t
”/ | N |
__ M \ Wy
0 N

S

Pro./cc:?"/on on PPlorne XY




Prare IV

k N P g
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\ = zz-a=% .
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= 4
/7 p. i
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\ . 4 > /
\ 7 /,/ /

e g "
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