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Abstract

Obstructive Sleep Apnea (OSA) is a common respiratory disorder during sleep. Apnea

is cessation of airflow to the lungs, which lasts for at least 10 seconds accompanied by

more than 4% drop of the blood’s Oxygen saturation. Polysomnography during the entire

night is the Gold Standard diagnostic method of OSA. It’s high cost and inconvenience

for patients persuaded researchers to seek alternative OSA detection methods.

This thesis proposes a technique for assessment of OSA during wakefulness. We recorded

tracheal breath sounds of 17 non-apneic individuals and 35 people with various degrees of

OSA severity in supine and upright positions during nose and mouth breathing at medium

flow rate. We calculated the power spectrum, Kurtosis, and Katz fractal dimensions of

the recorded signals. Then, we reduced the number of characteristic features to two.

We classified the participant into severe OSA and non-OSA groups as well as non-OSA

or mild vs. moderate and severe OSA groups. The results showed more than 91 and 83%

accuracy; for the two types of classification. Once verified on a larger population, the

proposed method may be used as a simple and non-invasive screening tool for assessment

of OSA during wakefulness.
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Chapter 1

Introduction

1.1 Motivation & Thesis Objectives

Obstructive Sleep apnea (OSA) is a common respiratory disorder that can become a se-

rious condition. By definition, sleep apnea (or hypopnea) is the cessation (or more than

50% reduction) of airflow to the lungs during sleep that lasts for at least 10 seconds, and

is usually associated with more than 4% drop of the blood’s Oxygen saturation (SaO2)

level (SaO2) [1]. It is most common in obese people, people with high blood pressure,

and people with narrowed airway due to tonsils or adenoids, people with stroke or brain

injuries, and smokers. Sleep apnea occurs two to three times more often in the elderly

and also more in males than in females. It is associated with cardiovascular problems,

daytime fatigue, irritability, lack of concentration and sleepiness, causing accidents.

The current gold standard for sleep apnea diagnosis is full night Polysomnography (PSG).

PSG is a costly assessment, uncomfortable for the patient due to the connection of many
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Chapter 1. Introduction 1.2. OUTLINE OF CHAPTERS

sensors, not portable and in need of technical supervision for the entire night. PSG as-

sessment has a long waiting list in Manitoba (1-3 years). The aim of this thesis is to

provide a simple and quick screening test during wake time that would be possible to be

used in physicians’ office.

We hypothesize that the breathing sound signals of patients with apnea are significantly

different from those of healthy individuals at different body positions and different breath-

ing manoeuvres, i.e. mouth breathing versus nose breathing. In order to investigate this

hypothesis, we recorded and compared respiratory sounds from two groups of people with

and without OSA in different body positions. We extracted the characteristic features

from the respiratory sounds, and classified participants with different OSA severity.

1.2 Outline of Chapters

The chapter 2 present background information pertaining the details about:

• Respiratory Sounds & Systems

– Upper Airway Tract Models

– Breathing Sounds Specifications

– Factors Influencing Upper Airway

– Specifications of Inspiratory Breathing Cycles

– Specifications of Expiratory Breathing Cycles

2
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• Sleep Apnea

– Definition

– Diagnosis Methods

Chapter 3 contains the details of methods which used for:

• Data Recording

• Signal Processing

Chapter 4 presents the results of feature selection and classification methods discussed

in the chapter 3 and also discussion of the achieved results. The chapter 5 presents con-

clusion and possible future works. Appendix A contains details of ANOVA algorithm and

Appendix B contains a list of publications.

The author of this thesis was an active member of the team involved in data acquisi-

tion. His roles included setting up hardware and preparing software for data acquisition,

placing sensors on subjects, explaining consent forms to subjects (and their guardians as

necessary), guiding subjects through each protocol, ensuring data storage and analyzing

the recorded data.
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Chapter 2

Background

2.1 Respiratory Sound & System

2.1.1 Structure of The Respiratory System

The main objective of the respiratory system is inhaling O2 and exhaling waste gases.

The main organs involved in respiratory acts are respiratory tract, and lungs [2]. The

respiratory tract is a ventilation system which consists of nasal cavity, oral cavity, pharynx,

larynx, and trachea [2]It extracts oxygen from atmospheric air and transfers it to the lungs,

while extracting CO2 from the lungs to be transferred out of body [2].

During inhalation, air enters nasal or oral cavities from nose or mouth. These two cavities

join each other posteriorly and form the pharynx. Air draws into the larynx through

the pharynx and then enters the trachea. The trachea branches to form right and left

main bronchi, one bronchus to each lung. Air passes from main bronchus to bronchial

4



Chapter 2. Background 2.1. RESPIRATORY SOUND & SYSTEM

tree, ultimately enters alveolar sacs. Blood diffuses the carbon dioxide and other wastes

through the alveoli walls, and in turn receives oxygen.

2.1.2 Upper Airway Model

Many researchers employed physical and/or mathematical models to describe how a bi-

ological system works. The most basic one is to model the airway canal as a rigid tube

assuming a linear relationship between flow and driving pressure (fixed resistance) [3].

However, the negative intrathoracic pressure, transmitted to the passive upper airway

during inspiration causes a reduction in the pharyngeal cross sectional area. Therefore, a

more realistic approach is to assume a varying resistance during inspiratory cycles. Star-

ling resistors are a specific model of collapsible tube behaviour which model a dynamic

interaction between flow and pressure [4].

In the Starling resistors model, the relationship between flow and driving pressure is ap-

proximately linear under a critical driving pressure. Above that point, flow progressively

plateaus despite the increase in driving pressure [5, 6]. This model can be demonstrated

physically by a thin elastic (collapsible) tube enclosed in a chamber. The transmural

pressure inside chamber, which is surrounding the collapsible tube is called Pcrit. It corre-

sponds to the tissue pressure in the collapsible parts of the upper airway. The maximum

flow inside the tube can be determined by the resistance at the upstream segment and

the transmural pressure surrounding the collapsible segment (Pcrit) [3].

5
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When Pcrit << 0, the airway remains open. There is a strong evidence that the hypo-

tonic pharyngeal airway behaves like a Starling resistor [3]. This implies below when the

pressure is below Pcrit, the airways remains closed despite the increase in driving pressure.

The studies have shown that, the measured Pcrit is positive, in patients with OSA while,

it is negative in non-OSA people [4]. On the other hand, the negative intraluminal airway

pressure is higher for patients with OSA during wakefulness; this is the most important

local stimulus to pharyngeal dilator muscle activity [7].

2.1.3 Factors Influencing Upper Airway’s Behavior

The collapsibility/resistance of the upper airway in humans depends also on additional

factors such as the following [3]:

• Upstream airway (e.g. nasal and nasopharyngeal) resistance within the nasal airway:

The nose has a relatively high resistance, which is increased by mucosal congestion

• Gender: There might be gender specific differences in the airway mechanics

• Hormonal status

• Age: Age increases pharyngeal resistance during sleep and wakefulness, and de-

creases the muscles’ activity.

• Sleep: Sleep affects multiple aspects of upper airway’s behavior including muscle

tone, load response, and CO2 level (affecting muscle activity during sleep)

6



Chapter 2. Background 2.2. SLEEP APNEA

• Extrinsic anatomic and static factors including neck and jaw posture, surface adhe-

sive forces, obesity, and tracheal tug.

2.2 Sleep Apnea

Sleep apnea is a common respiratory disorder that can have serious impacts; it leads to

daytime sleepiness, poor job performance, increased risk of accidents and cardiovascular

problems. By definition, sleep apnea (or hypopnea) is the cessation (or more than 50%

reduction) of airflow to the lungs during sleep that lasts for at least 10 seconds, and

is usually associated with more than 4% drop of the blood’s Oxygen saturation (SaO2)

level (SaO2) [1]. There are three forms of sleep apnea: obstructive, central and mixed;

they account for approximately 84.6%, 0.4% and 15% of the reported cases, respectively.

Central apnea occurs due to neurological impairment, while obstructive sleep apnea (OSA)

occurs due to airway impairment. Mixed apnea is a combination of the other two [1].

OSA is common in smokers [8], in people with high blood pressure and those with narrowed

airway due to tonsils or adenoids [9]. Sleep apnea occurs two to three times more often

among men and elderly [9]. It is also associated with cardiovascular problems, daytime

fatigue, irritability, and lack of concentration [10-13]. Sleep apnea is highly prevalent

in the general population, 4% of women and 9% of men develop more than 15 discrete

obstructive events per hour [14], but most of the cases are thought to go undiagnosed.
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2.2.1 Pathophysiology of Obstructive Sleep Apnoea Syndrome

OSA occurs when collapse of pharynx presents a significant mechanical constraint to

ventilation. The pharynx of people with OSA is, on average, smaller and more collapsible

than those of healthy individuals [15]. Individuals with OSA have no breathing difficulty

during wakefulness, because pharynx narrowing is usually compensated with an increase

in dilator muscle activities [16, 17]. This increased activity of the dilator muscles, observed

during wakefulness, no longer exists during sleep; therefore, their pharynx collapses and

obstructs the airflow [18, 19]. On the other hand, dilator muscles’ activities decrease also

in the healthy individuals during sleep, but their airway size dose not decrease to the

extent to obstruct airflow [20, 18].

Mechanical Characteristics of the Passive Pharynx

The upper airway in normal people generally (not always) remains patent in the absence

of all muscle tone when intraluminal pressure is zero [7]. Application of intraluminal

negative pressure (during inspiration) may result in collapse of airways. The luminal

pressure at which the upper airways collapse, has been referred to as Pclose [21].

When a negative luminal pressure is applied, the mechanical properties of the passive

human pharynx determine how much the pharyngeal dilator muscles must be activated

to maintain an adequate air flow. In addition, the pharynx cross-sectional area varies with

the luminal pressure [21], as it is anchored to bone and cartilage (larynx) at its upper

8
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and lower ends, respectively. The cross-sectional area of pharynx increases as the luminal

pressure increases; the relationship between them is not linear.

The maximum flow passing through pharynx called VMAX ; this is obtained by applying

a certain amount of negative pressure called PMAX [22]. Further increase in the negative

pressure does not increase the maximum passing flow; under some circumstances, it even

reduces the passing flow [22]. In theory, VMax can increase by different mechanisms:

• Increase in lung volume due to an increase in pump muscles activity (e.g., di-

aphragm) [23].

• Reduction of respiratory effort, when negative effort dependency exists [22].

• Increase in pharyngeal muscle activities.

When an obstructive event occurs, lung volume cannot increase, while inspiratory effort

will increase. Therefore, once an obstructive event is initiated, VMAX can increase only

by an increase in pharyngeal muscle activities [7]. The maximum flow in the collapsible

tube can be obtained as follow [7]:

V̇MAX = A× {A/[ρ(∆A/∆P )]}0.5, (2.1)

where A is the prospection area, ∆A/∆P is tube compliance, and ρ is the gas density.

Thus, V̇MAX is related directly to the tube’s area and inversely to it’s compliance.The
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relation between luminal pressure and VMAX is almost close to linear. Hence, the me-

chanical properties of an individual pharynx can be described by a slope and an intercept

(PClose) [24] like a Starling resistor. The range of slope and intercept varies among differ-

ent subjects. Intercept ranges from -10 to 10 cmH2O, while the slope ranges from 16 to

103 l.s−1.cmH2O
−1 [25].

2.2.2 Diagnostic Methods

General Information

Respiratory sounds are useful tools in the assessment of respiratory diseases [26]. For

listening to the respiratory sounds, stethoscopes have been widely used [26]. There were

two general types of stethoscope: analog and digital. Both of them have some limitations.

It has been shown tracheal respiratory sounds’ major components are below 1000 Hz,

but in deep breathing it can have components up to 2 kHz [2]. The common analog

stethoscopes attenuate frequency components higher than 112 HZ [27], while electronic

stethoscopes typically attenuate the frequencies above 500 Hz [27]. Therefore, they cannot

transmit the entire bandwidth of respiratory sounds. Moreover, stethoscopes provide

subjective point of care and they cannot monitor the breathing flow. In addition, analog

stethoscopes alter frequency components of the respiratory sounds [26]. As a result, many

researches record and analyze lung and tracheal sounds via computer [28].

10
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Polysomnography

Polysomnography (PSG) during the entire night is currently the accepted Gold Standard

diagnostic method for assessment of sleep apnea. The standard PSG consists of record-

ing various biological signals including EEG, ECG, EMG of chins and legs, nasal airflow,

electro-oculogram (EOG), and abdominal and thoracic movements [29]. PSG is an expen-

sive test for the health care system as it needs full night supervision, is not portable, and

is also inconvenient for patients. Therefore, many researchers have attempted to develop

an alternative, non-invasive and portable OSA monitoring tools.

Current Research on Sleep Apnea Detection

There are many different technologies that record a reduced number of signals, and claim

detecting apnea events during sleep. Most of these technologies record 4 signals including

airflow, SaO2, respiratory effort and snoring sound by an ambient microphone [30-32]. In

these technologies, airflow is measured by either face mask or nasal cannulae connected

to a pressure transducer, whose output reduction or cessation associated with a drop of

more than 4% of SaO2 is detected as the main diagnostic sign of OSA. In case of mouth

breathing, which may happen often during the night, the nasal cannulae will not register

airflow; hence, it is not reliable. On the other hand, face mask, which is considered reliable

for airflow measurement, may change the breathing pattern; it is also difficult for some

patients to fall asleep with mask.

11
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While there have been many studies and developed technologies to diagnose OSA during

sleep [33], few studies attempted to diagnose OSA during wakefulness [34-39]. In [34],

it was claimed that OSA can be diagnosed from a short-time, daytime recording of the

nasal airway pressure. However, that study [34] suffers from several limitations including

the number of studied subjects. They applied their proposed method to two different

groups: Group 1 including 15 non-OSA and 3 OSA, and Group 2 including 14 OSA and

2 non-OSA individuals. Although the reported accuracy of classification is very high,

the numbers of class members (OSA vs. non-OSA) in each of their classifications were

unbalanced. Therefore, the classification results were not reliable.

In one study [35], an OSA detection method was proposed using Ultrafast Magnetic Reso-

nance Imaging from pharyngeal airway. Data were recorded during both wakefulness and

sleep. The results ith central apnea and 10 non-OSA individuals were compared using

the coefficient of variation (CV) and sample entropy of the inspiratory, expiratory cycles

and complete breath sounds. The results showed that the breathing irregularity (defined

by higher CV and sample entropy values) during wakefulness was greater in patients with

mixed apnea compared to that of OSA and control subjects; though, they did not provide

classification results.

By combining the Gaussian mixture model (GMM)-based classifier and feature selection

methods, a technique for detection of OSA using oronasal airway pressure signal was pro-

posed [37]. They achieved good results (>85% accuracy between OSA and non-OSA) for

12
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41 subjects but the feature space dimension was too high for their database size (over-

fitting). This implies the results may not be as promising as reported if the population

size changes. Furthermore, no physiological reasons for the calculated features were pro-

vided.

Recently, a group of researchers investigated the correlation between speech disorder and

OSA [38]. The acoustic features of 10 non-OSA and 18 OSA individuals during speaking

were compared, and substantial differences were found, though no classification was per-

formed [38].

In addition, previous studies have shown that patients with OSA have a defective ability

to dilate the pharynx during inspiration [39, 40]. In [39], to show the pharynx dilator

muscles abnormality during wake time, the tracheal breath sound intensity of 7 patients

with OSA were compared to that of 8 individuals in control group. The results showed

significant increase in breath sound intensity of people with OSA with respect to healthy

individuals.

2.3 Current Study

Given that people with some degrees of upper airway congestion are more prone to de-

velop OSA, we hypothesized that there must be some noticeable differences between the

nose and mouth breathing intensity, complexity and smoothness of the breath sounds

of people with OSA in the supine and upright sitting positions as compared to those of

13
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non-OSA people.

To investigate this hypothesis, the breathing tracheal sounds of 52 participants (healthy

individuals and people with different severity degree of OSA) were recorded. Then, par-

ticipants were classified based on the analysis of recorded sound signals.

14



Chapter 3

Method

3.1 Data Recording

Fifty two participants (37 males) suspected of having OSA, filled written consent to be en-

rolled in this study. The study was approved by the Biomedical Research Ethics Board of

the University of Manitoba. Forty one of the study participants were referred for full-night

PSG assessment at the Sleep Disorder Center at Misericordia Health Center, Winnipeg

MB. The other 11 participants were tested with the Acoustic Sleep Apnea Detection

(ASAD) box [41]. Based on the subjects’ apnea/hypopnea (AHI) scores (determined by

the PSG and/or ASAD), we grouped them into non-OSA (AHI < 5), mild (5< AHI <

15), moderate (15< AHI < 30) and severe OSA (30< AHI). The average age, body mass

index (BMI) and AHI values of the participants are summarized in Table 3.1.

Tracheal breath sound signals were collected by a Sony microphone (ECM-77B) em-

bedded in a chamber (diameter of 6 mm, with a the 2 mm cone space in its middle)

15
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Table 3.1: AVERAGE AGE, BODY MASS INDEX (BMI), AHI VALUES OF THE PARTIC-
IPANTS.

Groups Number of Subjects Age BMI AHI
AHI<5 17 40.3± 8.0 26.5 ± 5.7 1.3 ± 1.7

5<AHI & AHI<15 13 47.8 ± 9.6 30.8 ± 6.3 11.4 ± 2.8
15<AHI & AHI<30 7 50.6 ± 6.8 29.2 ± 3.1 23.8 ± 4.4

AHI>30 15 49.9 ± 10.4 38.4 ± 5.5 76.7 ± 40.3

placed over the suprasternal notch of trachea using double-sided adhesive tapes. The

sound signals were amplified, filtered using a band pass filter (BPF) (0.05-5000 Hz), and

digitized at 10240 Hz sampling rate. The recordings were done in two different body

positions: upright and supine. In each body position breath sounds were recorded during

two breathing maneuvers for at least five full breaths in each trial. The two breathing

maneuvers were breathing through the nose and then through the mouth with a nose

clip in place at medium flow rate (the subject’s comfortable normal medium flow rate).

Therefore, for every participant, we recorded a total of 4 breathing signals (2 breathing

maneuvers at 2 different body positions). Figure 3.1 shows a sample recorded breathing

sound signal.

Out of 52 participants, we excluded the recorded data from 10 subjects that contained

vocal noise in the environment.

3.1.1 Signal Analysis

We performed Signal analysis in three steps:

1. onset detection using the method proposed in [42]

16
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Figure 3.1: Sample recorded breathing sound signal. (Fs = 10240).

2. feature extraction using One-Way Analysis of Variance (ANOVA) [43] and Maxi-

mum Relevancy Minimum Redundancy (mRMR) [44]

3. classification using Linear and Quadratic Discriminant Analysis [45]

Onset Detection

Inspiration is an active process, while expiration is a passive process. Therefore, we

analyzed the inspiration and expiration phases separately. The signals were band pass

filtered over 150-800 Hz to reduce the effects of heart sound and background noise. Among

several features derived from tracheal breathing sounds, the log of variance of recorded

sound signals has been shown to be the best feature for onset detection [42]. Therefore,
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we calculated the log of variance of the sound signals in every 50 ms time windows with

50% overlap between successive windows. Then the valleys of the resultant signal were

extracted as the potential breath onsets followed by a routine to remove the false onsets,

using the method described in [42]. However, in this study, all the detected breath onsets

were verified manually as well. Using the detected breath onsets, the inspiratory and

expiratory sound signals were extracted from the original data to be analyzed separately.

Figure 3.2 shows the flow samples of the recorded flow signal (we used the flow signal

which was recorded in [42]) along with the calculated log of variance of tracheal sound

over [150-850] Hz. The positive and negative values of the recorded flow signal are related

to inspiratory and expiratory phases, respectively. The exact and calculated values of the

breathing onsets are depicted on the flow signal and log of variance of the tracheal sounds

by the circle marks. It can be seen that the calculated log of variance follows the changes

in absolute value of recorded flow signal.

Feature Extraction (Statistical Features)

The feature extraction was performed in three steps. First, we created a large feature

space from three main classes of features. Second, we ran One-Way ANOVA test on the

features. Third, we used mRMR algorithm to find the best two or three features. We

tested the overall statistical significance of the selected features using One-Way MANOVA.

18



Chapter 3. Method 3.1. DATA RECORDING

Figure 3.2: From top to bottom, high flow samples of the recorded signal and the calculated log
of variance of the breathing sound (in 50 ms windows with 50% overlap). The red
points show the breathing onsets

Feature Space

For each respiratory phase in each breath, we calculated the power spectrum density

(PSD), Katz Fractal Dimension FD and Kurtosis in every 50 ms window with 50% over-

lap with the adjacent windows, and averaged over the segments within the breath phase,

denoted as P (bi), FD(bi) and Kurt(bi) respectively; where bi represent the breath number

1 to 5. Next, we calculated the average curves of the P (bi), FD(bi) and Kurt(bi) over five

breath cycles for each inspiration and expiration separately. They are denoted as AvePow,

AveFD and AveKurt. Then, the variance and median values of these average curves were
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Figure 3.3: The flowchart of signal processing stages
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calculated, denoted as V aravepow, Medavepow, V araveFD, MedaveFD, V araveKurt and MedaveKurt.

These six features were chosen for further analysis. Figure 3.3 shows the algorithm of the

proposed signal processing method up to this stage schematically.

Having recorded in two breathing maneuvers and in two different positions, for each par-

ticipant we had 4 recorded sound signals. Then, separation of inspiratory and expiratory

phases would result in 8 signals per participant. In addition, we investigated the differ-

ence between nose and mouth breathing in each position as well as the differences between

the positions in each nose and mouth breathing signals, resulting 4 extra signals for each

inspiration and expiration phases. Therefore, extracting the 6 features from each signal

(16 in total) would result in 96 features in total per participant. Figure 3.4 shows the

different conditions for one feature schematically.

ANOVA Test

To select features with statistically significant difference between the subjects, we ran

One-Way Anova test on the features. Since the goal was to classify healthy participants

(AHI<5) from the participants with severe OSA (AHI>30), and also to estimate the

level of severity of each participant; thus, the chosen features must be statistically signif-

icant not only between non-OSA and severe OSA but also between OSA individuals with

different level of apnea severity. Therefore, first we divided the study participants into

two groups: participants with AHI>30 and those with AHI<5. Then, we ran One-Way

21



Chapter 3. Method 3.1. DATA RECORDING

ANOVA test on each of the 96 features separately.
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Figure 3.4: The different conditions for one feature. In addition, to these conditions, we also
looked at the difference between mouth breathing and nose breathing and also dif-
ference between upright and supine positions.

Twenty one features were statistically significant between the non-OSA and severe OSA

groups (pvalue < 0.05); these features formed the first selected set. Second, we divided

the study participants into participants with AHI>15 and those with AHI<15. We ran

the One-Way ANOVA test on the feature set. This time, 17 features were found to be

statistically significant between the mentioned groups (pvalue < 0.05); they formed the

second set. Then, out of the first and second set of features, we selected the common

features (12) for further analysis.

Maximum Relevancy Minimum Redundancy

To find the best subspace for classification, a search algorithm was needed. We used

the Maximum Relevancy Minimum Redundancy (mRMR) method [44]. The mutual
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information of two random variables x and y with p(x), p(y) as their probability density

function is defined as follow:

I(x; y) =

∫ ∫
p(x, y)log

p(x, y)

p(x)p(y)
dxdy. (3.1)

The purpose of this feature selection method is to find a feature set S with m features, xi

(in our study m = 2). The selected features jointly have the largest dependency on the

target classes. This procedure, called Max-Dependency.

maxD(S, c), D = I({xi, i = 1, ...,m}; c)), (3.2)

when m = 1, the solution is the feature which has individually the highest mutual informal

I(xi; c) with the target class c. Where m > 1, an incremental search method is to add

one feature at one time. In the other words, by having a set of m−1 feature space, Sm−1,

the mth feature was chosen by maximizing I(S; c). Therefore, we have the following

equations:

I(Sm; c) =

∫ ∫
p(Sm, c)log

p(Sm, c)

p(Sm)p(c)
dSmdc

=

∫ ∫
p(Sm−1, xm, c)log

p(Sm−1, xm, c)

p(Sm−1, xm)p(c)
dSm−1dxmdc

=

∫
...

∫
p(x1, ..., xm, c)log

p(x1, ..., xm, c)

p(x1, ..., xm)p(c)
dx1...dxmdc. (3.3)

It is often hard to estimate p(x1, ..., xm) and p(x1, ..., xm, c) accurately. Hence, an
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alternative is to select features which maximize Max-Relevance criteria (3.4). In (3.4),

D(S, c) approximated with the mean value of all mutual information values between

individual feature xi and class c:

maxD(S, c), D =
1

|S|
Σx∈SI(xi; c). (3.4)

On the other hand, it has been shown that the m best features are not the best m features

for classification [46]. Therefore, some studies tried to reduce redundancy among the

features and select the features with minimum redundancy (Min-Redundancy) [46, 47].

In the other words, by removing one of two dependent features, the class-discriminative

power would not change. The Min-Redundancy criteria is as follow (3.5):

maxR(S, c), R =
1

|S|2
Σxi,xj∈SI(xi;xj). (3.5)

By combining (3.5) and (3.4), we can optimize D and R simultaneously:

maxΦ(S, c),Φ = D −R. (3.6)

This criterion is called mRMR (3.7). Suppose we selected the feature set with m − 1

features, Sm−1. We want to find the mth feature by maximizing (3.7) from the set

X − Sm−1. The respective algorithm optimizes the following condition:
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maxxj∈X−Sm−1 [I(xj; c)−
1

m− 1
Σxj∈Sm−1I(xj;xi)]. (3.7)

MANOVA

After selecting the features, one-way Multivariate Analysis of Variance was run (MANOVA) [43]

to verify that the combination of selected features was also statistically significant between

the study participants. Figure 3.5 shows the stages of feature selection procedure.

Classification

We used linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA)

classifiers as classification methods [45]. Basically, for two class classification, LDA ap-

proaches the problem by assuming that the conditional probability density functions are

both normally distributed with mean calculated from training set and pooled estimation

of covariance matrix. Under this assumption, the Bayes’ optimal solution is to predict

points as being from the second class if the ratio of the log-likelihoods is below some

threshold. On the other hand, QDA approach is the same as the LDA, except for estima-

tion of the covariance matrix which is stratified by group [45].

Using both of these methods, the following measures of accuracy were calcualted: the

number of true positives (TP; correctly classified subjects with higher AHI), true nega-

tive (TN; correctly classified subjects with lower AHI), false positive (FP; misclassified

subjects with lower AHI) and false negative (FN; misclassified subjects with higher AHI)
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Figure 3.5: The flowchart of signal processing stages (Feature Extraction)
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and using the Leave One Out method, the sensitivity, specificity and classification accu-

racy were determined as the followings:

• Sensitivity: TP
TP+FN

.100

• Specificity: TN
TN+FP

.100

• Classification Accuracy:
Number of Correctly Classified Subjects

Number of Total Subjects
.100

28



Chapter 4

Results and Discussions

4.1 Results

4.1.1 Selected Features

The feature extraction routine mentioned in Chapter 3 resulted in the following three

features:

• MPUNI: Medavepow of the Upright position, Nose breathing, Inspiratory phase

• MKSNI: MedaveKurt of the Supine position, Nose Breathing, Inspiratory phase

• VKUNI: V araveKurt of the Upright position, Nose breathing, Inspiratory phase

Figure 4.1(a), 4.1(b) and 4.1(c) show the mean and standard deviation of the MPUNI,

MKSNI and VKUNI calculated for participants with AHI<15 and AHI>15, respectively.

Figures 4.2(a) and 4.2(b) show the 3-D scatter plot of the three selected best features
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Table 4.1: ONE-WAY MANOVA RESULTS OF SELECTED FEATURE SPACES (3D & 2D)
BETWEEN PARTICIPANTS WITH AHI<5 & AHI>30 AND AHI<15 & AHI>15

AHI<5 &30<AHI 15<AHI & AHI<15
2D 1.810−4 1.410−4

3D 0.005 0.001

for participants with AHI<15 and AHI>15 and for those with AHI<5 and AHI>30,

respectively.

When we limited the best features to 2, MPUNI and VKUNI were selected again. The

2D scatter plot are shown as in Fig. 4.3 and 4.4(a) for the participants with AHI<5 and

AHI>30 and those with AHI<15 and AHI>15 using the two best features: MPUNI and

VKUNI. Figures 4.4(b) and 4.4(c) show the mean and standard deviation of the calculated

MPUNI and VKUNI, respectively for the mentioned groups.

4.1.2 MANOVA

To ensure whether the three or two selected best features were also statistically significant

between the groups, we ran MANOVA statistical test. The test showed p values less than

0.001 among the groups of AHI>15 and AHI<15 and also among the groups of AHI<5

and AHI>30. Therefore, these features were selected to classify participants with different

OSA severity. The results are shown in Table 4.1.
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(a)

(b)

(c)

Figure 4.1: (a)The mean and standard deviation of the MPUNI for participants with AHI<15
and AHI>15; (b) the mean and standard deviation of the MVSNI for the men-
tioned groups; (c) the mean and standard deviation of the VKUNI for the men-
tioned groups.
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(a)

(b)

Figure 4.2: (a) The 3-D scatter plot (MPUNI, MKSNI, VKUNI) for subjects with AHI<15
and AHI>15. Circles represent subjects with AHI<15; squares represent subjects
with AHI>15. (b) The 3-D scatter plot (MPUNI, MKSNI, VKUNI) for subjects
with AHI<5 and AHI>30.
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Figure 4.3: The 2-D scatter plot (MPUNI, VKUNI) for subjects with AHI<5 and AHI>30.
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(a)

(b)

(c)

Figure 4.4: (a)The 2-D scatter plot (MPUNI, VKUNI) for subjects with AHI<5 and AHI>30;
(b) the mean and standard deviation of the MPUNI for the mentioned groups; (c)
the mean and standard deviation of the MPUNI for the mentioned groups.
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4.1.3 Classification

Tables 4.2 and 4.3 show the specificity, sensitivity and classification accuracy achieved

using LDA classifier for 2D and 3D feature spaces, respectively. We calculated these

values using the Leave-One-Out method [45]. Tables 4.4 and 4.5 show the same results

of the same test as in Tables 4.2 and 4.3 but using the QDA classifier.

Table 4.2: SENSITIVITY, SPECIFICITY AND CLASSIFICATION ACCURACY FOR THE
LDA CLASSIFIER USING MPUNI, VKUNI AND MKSNI AS THE CLASSIFI-
CATION FEATURES
LDA Classifier Sensitivity Specificity Classification Accuracy

AHI<5 & AHI>30 92.3% 50.0% 78.9%
AHI<15 & AHI>15 94.6% 57.1% 77.4%

Table 4.3: SENSITIVITY, SPECIFICITY AND CLASSIFICATION ACCURACY FOR THE
LDA CLASSIFIER USING MPUNI AND VKUNI AS THE CLASSIFICATION
FEATURES
LDA Classifier Sensitivity Specificity Classification Accuracy

AHI<5 & AHI>30 92.9% 75.0% 86.4%
AHI<15 & AHI>15 95.0% 68.8% 83.3%

Table 4.4: SENSITIVITY, SPECIFICITY AND CLASSIFICATION ACCURACY FOR THE
QDA CLASSIFIER USING MPUNI, VKUNI AND MKSNI AS THE CLASSIFI-
CATION FEATURES
QDA Classifier Sensitivity Specificity Classification Accuracy

AHI<5 & AHI>30 100.0% 83.3% 94.7%
AHI<15 & AHI>15 88.9% 69.2% 81.7%
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Table 4.5: SENSITIVITY, SPECIFICITY AND CLASSIFICATION ACCURACY FOR THE
QDA CLASSIFIER USING MPUNI AND VKUNI AS THE CLASSIFICATION
FEATURES
QDA Classifier Sensitivity Specificity Classification Accuracy

AHI<5 & AHI>30 92.9% 75.0% 86.4%
AHI<15 & AHI>15 95.0% 68.8% 83.3%

4.1.4 2D Classification

Overall, QDA classifier outperformed the LDA. Using the QDA classifier, the overall

accuracy for classifying the groups of non-OSA and severe OSA with 2D classifier as

well as those above and below AHI=15 were 91.7% and 83.3%, respectively; using the

LDA classifier, they were 86.4% and 83.3%, respectively. Except for the sensitivity for

classifying participants with AHI<15 from AHI>15, the QDA classifier out performed the

LDA classifier.

For further investigation, we extracted the AHI of the misclassified participants in both

classification approaches using either LDA or QDA. When classifying the severe OSA

from non-OSA individuals, three subjects with AHI of 3.6, 3.9 and 30.7 with either LDA

or QDA were misclassified. On the other hand, when using AHI=15 as the threshold to

divide people into two groups, the AHI of misclassified subjects were 3.6, 3.9, 10.3,13.7,

14 and 30.7 using LDA and 3.6, 13.7, 14, 30.7, 35.6 and 115.6 using QDA.

Figure 4.5 shows the 2D scatter plot of the two selected features of all the participants in

different AHI groups. TN, FP, TP and FN represent:

• The misclassified participants with AHI<15 (FP)
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• The participants with AHI>15 classified correctly (TP)

• The misclassified participants with AHI>15 (FN)

• The misclassified participants with AHI<15 (FP)

Figure 4.5: The 2-D scatter plot (MPUNI, VKUNI) for participants with AHI<15 and
AHI>15. The figure shows four different groups: the participants with AHI<15
classified correctly (TN); the misclassified participants with AHI<15 (FP); the
participants with AHI<>5 classified correctly (TP); the misclassified participants
with AHI>15 (FN).
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4.2 Discussion

People with OSA disorder usually have smaller and more collapsible pharynx than healthy

individuals [15, 48, 21, 49, 50]. It is known that muscle tone naturally decreases during

sleep. In a non-OSA individual, the decrease in dilator muscle activity does not obstruct

the airway. However, in people with OSA a decrease in dilator muscle activity leads their

airway to collapse and obstruct the airflow as the dilator muscle activity is not enough to

maintain the pharynx sufficiently open during sleep [18, 51]. In the other words, OSA is a

product of decrement in muscle activities superimposed upon abnormal airway anatomy.

The level of dilators muscles activation to maintain adequate ventilation is determined

by the passive pharynx properties. Pharynx is connected to bone and cartilage (larynx)

at it extremes upper and lower ends. Therefore, its area varies with luminal pressure [7,

18, 21, 49-52]. There is a certain lumen pressure, in which the pharynx is closed (Pclose).

Above the Pclose, the pharynx area increases by increasing in the pressure; the relation

between pressure and area is nonlinear [7]. When negative pressure is applied to one end

of a pharynx, air flow increases as a function of the applied pressure.

In addition, it has been shown that the pharyngeal muscles respond to the change in

the local upper airway milieu during wake time. The most important local stimulus to

pharyngeal dilator muscle activity is negative intraluminal airway pressure [7]. The in-

creased negative airway pressure stimulate upper airway muscle activity; hence, dilate the

pharyngeal airway and maintain reasonable level of airflow resistance during wakefulness.
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In the other words, people with OSA compensate for their more collapsible airway by an

increased activity of their the dilator muscles during wakefulness and the increased dilator

muscle activity represents the increased negative pressure of the pharynx [7].

On the other hand, the intensity of tracheal breath sounds represents the pharyngeal pres-

sure almost linearly during normal breathing (no flow limitation condition) [53]; this has

been the premise of the acoustic flow estimation method [30]. Given the above mentioned

facts and knowing that the tracheal sounds intensity represents the pharyngeal pressure,

we hypothesized that there must be some notable differences between the breath sounds

of people with different OSA severity during wakefulness.

The goals of this study were to investigate the above hypothesis, and offer a simple and

non-invasive method to identify people with different OSA severity during wakefulness.

We focused on classifying participants with AHI>30 from those with AHI<5 and also

people with AHI>15 from those with AHI<15. The main objective was to find a robust

feature set for classifications of different AHI ranges.

The results on the selected features are congruent with physiological facts about airway

structure associated with OSA as mentioned above. The MPUNI is a feature derived from

average power of the breath sounds during inspiratory phase of nose breathing, when the

pharyngeal pressure is more negative. The higher MPUNI values in the people with OSA

represent more negative pressure and turbulence of air in their airway (Figures 4.1(a) and

4.4(b)); this result is congruent with the above mentioned physiological change in airway
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structure due to OSA.

The other selected features were MKSNI and VKUNI, which are median and variance

of the kurtosis during inspiratory nose breathing. Kurtosis, in general, is a measure of

peakedness of the distribution of the random variables respect to normal distribution. As

we calculated the kurtosis in 50 ms windows, we had a vector of kurtosis for each signal.

Therefore, higher values of variance and median of kurtosis may represent higher variation

in flatness and non-flatness of distribution of signal in different windows, respectively. In

other words, higher variation in distribution of signal is related to the higher complexity

of the signal. Studies on biological signals have often reported an association between the

pathological signals and loss of complexity [54, 55]. The lower variability of the kurtosis

in our OSA data may also be due to lower complexity of pathological signals (Figures

4.1(b), 4.1(c) and 4.4(c)).

The clusters obtained from non-OSA participants (AHI<5) and those with severe OSA

(AHI>30) are more distinguishable due to the gap between the AHI range of participants.

Thus, the classification results were expected to be better for the mentioned groups as

opposed to when classifying two groups below and above the threshold of AHI=15 (Table

4.3, 4.2, 4.5 and 4.4).

As it can bee seen, the classification results show higher sensitivity values than specificity.

This could be due to two reasons. First, the number of subjects in each group was not

balanced. We recorded data from 17 healthy participants and 35 patients with different
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severity of OSA. Therefore, a shift in the classification boundary toward the apneic sub-

jects was expected, which results in higher specificity. Second, our non-OSA data included

data from simple snorers, whom airway might be similar to the patients with OSA.

Since the classification results were very similar for 2D and 3D classifiers (the one with

2D was slightly better), we used the results of 2D classification for further investigation.

In general the smaller size of the feature set, the more robust is the classification result

in terms of a change in population. In other words, we may achieve a higher accuracy

using more features for this particular population, but then the chance to achieve the

same accuracy with the same feature set in a larger population is less. Therefore, in pilot

studies with small population, it is recommended to select the smaller feature sets and

simple classifications.

Except for two misclassified subjects, the AHI of the rest of misclassified cases were very

close to the boundaries of the classification (Fig. 4.5). Note that in determining our

classification accuracies, we only used the AHI values and not the overall diagnosis of the

participants. Obviously, one cannot say the severity of the OSA of a person with AHI

of 14 is indeed different from the one with AHI of 16. The AHI values can be slightly

different depending on who scores the PSG.

It should be noted that in the hospital (in Winnipeg), where we recorded our data, the

PSG is assessed manually. Manual assessment of PSG is considered to be more accurate

than automatic scoring; though it is expected to have slight differences in the AHI values
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depending on who scores the PSG [56]. Nevertheless, while the AHI is one of the most im-

portant factors in diagnosis of OSA, it is not yet the only factor determining the severity

of OSA. Therefore, we expected to have some misclassified cases especially for those with

AHI close to the boundaries. Moreover, due to the small size of our study subjects, we

did not group the subjects in terms of their anthropometric parameters, i.e. gender, BMI,

height, as well as their smoking history that have an impact on the tracheal respiratory

sounds. These are important parameters that should be considered in future studies.
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Conclusion & Future Work

5.1 Summary & Conclusion

In this study a novel method using breath sound analysis has been proposed for OSA

severity assessment during wakefulness. We showed that, features representing average

power and kurtosis of the sound signals are characteristic features that can be used for

screening OSA severity. We tested our proposed method on 42 subjects; the preliminary

results showed a good separability between the groups with different severity of OSA.

The results show over 88% and 77% sensitivity and classification accuracy (for classifying

participants with different degrees of OSA severity), respectively.

The results of this study are encouraging, and pave the way for a simple, non-invasive,

and inexpensive screening tool for people suspected of OSA; it estimates the degree of

severity of the OSA during wakefulness.
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5.2 Suggestion For Feature Works

A number of open problems must be solved to allow the development of a screening apnea

device. First, it is desirable to create a data bank of 500 participants based on the body

mass index, gender, age and smoking condition of subjects. Second, the result of unsu-

pervised clustering should be reevaluated; third, the quality of recording breathing sound

signals with different microphones should be compared and their effect on OSA detection

should be investigated.

Age, gender, obesity are major factors contributing to narrowing, increased resistance

and collapsibility of the upper airway. Currently, we are in the process of creating a data

bank of 500 participants based on the subjects’ body mass index, gender, age and smoking

condition.

The accuracy of the diagnosis method during wake time can be improved through en-

hancing the classification algorithms. As a future study, the method has to be tested in

a double blind study.

In our proposed sleep apnea detection system, we record breathing sound signals using

a Sony microphone (ECM-77B) which is fairly expensive. In order to commercialize our

method, we need to test cheaper microphones. Therefore, the recorded sound signals with

different microphones must be compared with each other.
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Appendix A

One-Way Anova

One-Way ANOVA is needed to compare different variables or different levels of a single

variable. Suppose we have n observations and the response from each of these observations

is a random variable. Table A.1 shows the observations; for example, yij represents the

jth observation taken under factor level i. In this study, we had two states: (AHI<5 &

AHI>30) and (AHI<15 & AHI>15). The total number of observation was 52 (number of

subjects). It is useful to denote the observation with the following models:

Table A.1: DATA FOR A SINGLE-FACTOR EXPERIMENT.

Treatment Observation
Level
1 y11 y12 . . . y1n

2 y21 y22 . . . y2n
... ...

...
...
...
...

...
a ya1 ya2 . . . yan

yij = µi + εij{i = 1, 2, ..., a; j = 1, 2, ..., n}, (A.1)
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yij = µ+ τi + εij{i = 1, 2, ..., a; j = 1, 2, ..., n}. (A.2)

Where yij is the ijth observation, µi is the mean of ith factor, and εij is a random error.

In eq. A.2, the mean of each factor (µi) is estimated with the overall mean (µ), and

ith treatment effect (τi). The observed variable yij is a linear function of the model

parameters.

Equation A.1 is called the means model, while eq. A.2 is called the effects model. They

are also called one-way or single-factor analysis of variance model, because only one factor

is investigated. The objective is to test appropriate hypotheses about the factors means

and estimate them. The model errors are assumed to be normally and independently

distributed random variables with zero mean and variance (σ2). This implies that the

observations to be mutually independent and have the following form:

yij ∼ N(µ+ τi, σ
2). (A.3)

A.1 Analysis

Assume that yi represent the sum of observations of the ith factor, and y.. represents the

some of all observations:

yi = Σn
j=1yij; i = 1, 2, ..., a,

y.. = Σa
i=1Σn

j=1yij. (A.4)
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We are interested in testing the equality of the factors means. E(yij) = µ + τi = µi, i =

1, 2, ..., a. The hypothesis is:

H0 : µ1 = µ2 = ... = µa,

H1 : µi 6= µj for at least one pair (i,j). (A.5)

In the effects model (eq. A.2), we assume that µi = µ + τi, where µ is the overall mean

and calculated as follow:

µ =
Σa

i=1µi

a
. (A.6)

This definition implies that Σa
i=1τi = 0; therefore an alternative way for writing eq. A.9

is:

H0 : τ1 = τ2 = ... = τa,

H1 : τi 6= 0 for at least one pair (i,j). (A.7)

The appropriate procedure for testing the equality of a treatment mean is the analysis of

variance.

Decomposition of the total sum of squares

The total corrected sum of squares is used as a measure of overall variability in the data;

SST = Σa
i=1Σn

j=1(yij − ȳ..)2. (A.8)

58



Appendix A. One-Way Anova

SST can be rewritten as:

Σa
i=1Σn

j=1(yij − ȳ..)2 = Σa
i=1Σn

j=1[(ȳi − ȳ..) + (yij − ȳi)]2

= nΣa
i=1Σn

j=1(ȳi − ȳ..)2 + Σa
i=1Σn

j=1(yij − ȳi)2

+2Σa
i=1Σn

j=1(ȳi − ȳ..)(yij − ȳi). (A.9)

As Σn
j=1(yij − ȳi) = yi − nȳi = 0; therefore, we have:

Σa
i=1Σn

j=1(yij − ȳ..)2 = nΣa
i=1Σn

j=1(ȳi − ȳ..)2 + Σa
i=1Σn

j=1(yij − ȳi)2. (A.10)

The first part of eq. A.10 shows the difference between the observed treatment averages

and the grand average which is a measure between treatment means. On the other hand,

the second part of eq. A.10 shows the difference of observations within a treatment from

the treatment average which can be due only to random error. Hence, we have:

SST = SSTreatments + SSE. (A.11)

SSTeatment is the sum of squares due to treatment (between treatments), and SSE is the

sum of squares due to error(within treatment). There are N observations (N = an). We

have:

SSE = Σa
i=1Σn

j=1(yij − ȳi)2 = Σa
i=1[Σn

j=1(yij − ȳi)2]. (A.12)
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The term within the brackets, is the sample variance for the ith factor multiplied by n−1,

or

S2
i =

Σn
j=1(yij − ȳi)2

n− 1
i = 1, 2, ..., a. (A.13)

By combining the Sis, we have:

(n− 1)S2
1 + ....+ (n− 1)S2

n

(n− 1) + ...+ (n− 1)
=

Σn
i=1[Σn

j=1(yij − ȳi)2]

Σa
i=1(n− 1)

=
SSE

(N − a)
, (A.14)

where SSE

(N−a)
is a pooled estimate of common variance. In addition, we have

Σa
i=1(ȳi−ȳ..)2

a−1
is

an estimate of σ2/n (if there is no difference in the treatment means). Hence, SSTreatment

a−1

estimates σ2.

For further analysis, the quantities MSTreatment = SSTreatment

a−1
and MSE = SSE

N−a aare called

mean squares. The expected values of these mean squares value were calculated as follow:

E(MSE) = E(
SSE

N − a
) =

1

N − a
E[Σa

i=1Σn
j=1(yij − ȳi)2]

=
1

N − a
E[Σa

i=1Σn
j=1(y2

ij − 2yij ȳi + ȳ2
i )]

=
1

N − a
E[Σa

i=1Σn
j=1y

2
ij − 2nΣa

i=1ȳ
2
i + nΣa

i=1ȳ
2
i ]

=
1

N − a
E[Σa

i=1Σn
j=1y

2
ij −

1

n
Σa

i=1y
2
i ]. (A.15)
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By applying the effect model, we obtain:

E(MSE) =
1

N − a
E[Σa

i=1Σn
j=1(µ+ τi + εij)

2 − 1

n
Σa

i=1(Σn
j=1µ+ τi + εij)

2]. (A.16)

By replacing ε2ij and ε2i byσ2 and nσ2, respectively and knowing that E(εij) = 0, eq. A.16

takes the following form:

E(MSE) =
1

N − a
[Nµ2 + nΣa

i=1τ
2
i +Nσ2 −Nµ2 − nΣa

i=1τ
2
i − aσ2]

= σ2. (A.17)

Using the same approach, we have:

E(MSTreatment) = σ2 +
nΣa

i=1τ
2
i

a− 1
. (A.18)

Therefore; MSE = SSE/(N − a) estimates σ2 and if there are no differences in the

treatment means (τi = 0), then MSTreatment also estimates σ2. The test of hypothesis

of equal means for each factor can be performed by comparing MSTreatment and MSE.

There are different methods for comparing these values [43]. In addition of the data in

which the number of observations are not same (This study), the unbalanced analysis

of variance is used [43]. There are slight differences in the balanced and unbalanced

analysis.
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B.1 Patent

• Moussavi, Z., A. Montazeri. SYSTEM AND METHODS OF ACOUSTICAL SCREEN-

ING FOR OBSTRUCTIVE SLEEP APNEA DURING WAKEFULNESS, U.S. Patent,

Pending

B.2 Publications

B.2.1 Journal Papers

• Montazeri, A., Moussavi, Prediction of Obstructive Sleep Apnea and its Severity

during Wakefulness , Annals of Biomedical Engineering (ABME), DOI: 10.1007/s10439-

011-0456-5
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B.2.2 Conference Papers
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Wakefulness, The 33rd Annual International Conference of the IEEE Engineering

in Medicine and Biology Society (EMBC 2011)
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ing Wakefulness, The 32nd Annual International Conference of the IEEE Engi-
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August 201
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