# THE EFFECTOR CELLS IN <u>IN VITRO</u> SEMI-SYNGENEIC CYTOTOXICITY AND THEIR FUNCTIONS IN THE <u>IN VIVO</u> PHENOMENON OF THE GRAFT-VERSUS-HOST REACTION

Вy

# KENNETH K.Y.FUNG, B.Sc., M.Sc., M.D.

A Thesis Submitted to The Faculty of Graduate Studies In Partial Fulfilment of The Requirement For The Degree of Master of Science

> Department of Immunology Faculty of Medicine University of Manitoba Winnipęg Manitoba Canada

# THE EFFECTOR CELLS IN <u>IN VITRO</u> SEMI-SYNGENEIC CYTOTOXICITY AND THEIR FUNCTIONS IN THE <u>IN VIVO</u> PHENOMENON OF THE GRAFT-VERSUS-HOST REACTION

ΒY

#### KENNETH K.Y. FUNG

A thesis submitted to the Faculty of Graduate Studies of the University of Manitoba in partial fulfillment of the requirements of the degree of

MASTER OF SCIENCE

### © 1982

Permission has been granted to the LIBRARY OF THE UNIVER-SITY OF MANITOBA to lend or sell copies of this thesis, to the NATIONAL LIBRARY OF CANADA to microfilm this thesis and to lend or sell copies of the film, and UNIVERSITY MICROFILMS to publish an abstract of this thesis.

The author reserves other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without the author's written permission.

# TABLE OF CONTENTS

| ABBI | REVIATIONS           | i   |
|------|----------------------|-----|
| LIST | I. OF TABLES         | iii |
| LIST | I OF FIGURES         | v   |
| ABSI | FRACT                | vii |
| I.   | INTRODUCTION         | 1   |
| II.  | REVIEW OF LITERATURE | 5   |

# SEQUEALE OF GRAFT-VERSUS-HOST REACTION

| Manifestations of GVH Reaction              | 5  |
|---------------------------------------------|----|
| Remission of GVH Reaction                   | 7  |
| Absence of Secondary GVH Reaction           | 9  |
| Failure of Adoptive Passage of GVH Reaction | 10 |
| Immunological Incompetency in GVH Reaction  | 12 |
| Mechanisms of GVH-induced Immunosuppression | 15 |

# IMMUNOLOGY OF GRAFT-VERSUS-HOST REACTION

| The 1  | Donor Lymphoid cells in GVH Reaction          | 21 |
|--------|-----------------------------------------------|----|
| Cyto   | toxic Reactivity in GVH Reaction              | 23 |
| Lymp   | hotoxins                                      | 27 |
| Lympl  | hocyte Activating Factor                      | 28 |
| Gene   | tics of GVH Reaction                          | 29 |
| The l  | Histocompatibility (H-2) System               | 29 |
| The 1  | Mls System in GVH Reaction                    | 32 |
| Immu   | noregulatory Mediators in GVH Reaction        | 33 |
| Mitog  | genic Factors as Soluble Factors              | 34 |
| Immu   | noglobulins and Antibodies as Soluble Factors | 35 |
| IMMUNO | LOGY OF HOST-VERSUS-GRAFT REACTION            |    |
| Prol   | iferation response of Host Lymphoid Tissues   | 37 |

|     |            | Looponoo | 01 1100 | e Lympilo | 10 1100000 | <br>57 |
|-----|------------|----------|---------|-----------|------------|--------|
| The | Allogeneic | Effect i | n GVH   | Reaction  |            | <br>40 |
| The | Autoimmune | Phenomen | on in   | GVH Reac  | tion       | <br>42 |

| III. | RATIONALE                                                                 | 56  |
|------|---------------------------------------------------------------------------|-----|
| IV.  | EXPERIMENTAL DESIGNS AND RESULTS                                          | 59  |
|      | PARAMETERS OF SEMI-SYNGENEIC CYTOYXICITY                                  |     |
|      | Induction of GVH Reactions in Mice                                        | 60  |
|      | Cell Mediated Cytotoxicity Assay                                          | 61  |
|      | Semi-syngeneic Cytotoxicity of GVH Reactions                              | 63  |
|      | Activation of F <sub>1</sub> Host Effector Cells                          | 65  |
|      | Sensitivity of Target Cells in Semi-syngeneic                             |     |
|      | Cytotoxicity                                                              | 67  |
|      | Kinetics of Semi-syngeneic Cytotoxicity Reactions                         | 70  |
|      | Cytological Study of Kinetics                                             | 72  |
|      | Assessment of Kinetics of Semi-syngeneic Cytotoxicity                     | 77  |
|      | Statistical Analyses of Kinetics of Semi-syngeneic                        |     |
|      | Cytotoxicity                                                              | 80  |
|      | Abrogation of Semi-syngeneic Cytotoxicity by                              |     |
|      | Irradiation of the GVH Activated F $_{ m l}$ Effector Cells               | 85  |
|      | Abrogation of Semi-syngeneic Cytotoxicity by                              |     |
|      | Specific Antisera                                                         | 87  |
|      | Preferential Cytotoxicity for Parental H-2 Geneotype                      |     |
|      | Target Cells by GVH-activated Host Effector Cells                         | 89  |
|      | Cytotoxicity of F <sub>1</sub> PEC on Parental H-2 Genotype               |     |
|      | Target Cells                                                              | 94  |
|      | THE HOST EFFECTOR CELL IN SEMI-SYNGENEIC CYTOTOXICITY                     |     |
|      | Cytotoxicity of Host Peritoneal Exudate Cells                             | 98  |
|      | Microscopic Study of Cytolysis by GVH-activated                           |     |
|      | Macrophages                                                               | 101 |
|      | Specific Macrophage-cytocidal Effect of Silica                            |     |
|      | Particles                                                                 | 1Q5 |
|      | Suppression of Semi-syngeneic Cytotoxicity with Silica $\cdot$            | 108 |
|      | In Vitro Activation of Macrophages in Semi-syngeneic                      |     |
|      | Cytotoxicity                                                              | 111 |
|      | THE IN VIVO ROLES OF GVH ACTIVATED F1 MACROPHAGES                         |     |
|      | In Vivo Activation of Macrophages in Semi-syngeneic                       |     |
|      | Cytotoxicity                                                              | 113 |
|      | Kinetics of In Vivo Activation of F $_{ m l}$ Macrophages $\ldots \ldots$ | 115 |
|      | Kinetics of Semi-syngeneic Cytotoxicity of In Vivo                        |     |
|      | Activated F <sub>1</sub> Macrophages                                      | 117 |

.

| Effect of GVH Activated PECs on GVH Reaction Assayed  |    |
|-------------------------------------------------------|----|
| by Spleen Indices 12                                  | 23 |
| In Vivo Rescue Effect of GVH Activated F <sub>l</sub> |    |
| Immunocompetent Cells12                               | 26 |
| Abrogation of Spontaneous Resolution of GVHR 13       | 30 |
| Specificity of Suppression of in vivo GVH Reaction 13 | 5  |
| V. DISCUSSION 14                                      | 0  |
| VI. APPENDIX16                                        | 1  |
| VII.LITERATURE CITED                                  | 6  |

.....

.....

# ABBREVIATIONS

| GVH              | =          | Graft-versus-host                                            |
|------------------|------------|--------------------------------------------------------------|
| PEC              | =          | Peritoneal exudate cell                                      |
| <b>Þ</b> LN      | =          | Peripheral lymph node                                        |
| PMN              | . =        | Polymorphonuclear                                            |
| <sup>51</sup> Cr | =          | Chromium 51                                                  |
| MHC              | =          | Major Histocompatibility Complex                             |
| Mls              | Ξ          | M - Locus                                                    |
| MLR              | =          | Mixed leukocyte reaction                                     |
| Н-2              | =          | Histocompatibility - 2 locus                                 |
| Hh               | <b>112</b> | Hybrid Histocompatibility ( Hemopoietic Histocompatibility ) |
| Ir               | =          | Immune response gene                                         |
| CMC              | 522        | Cell-mediated-cytotoxicity                                   |
| PFC              | =          | Plaque-forming-cell                                          |
| SRBC             | =          | Sheep red blood cell                                         |
| LATS             | =          | Long Acting Thyroid Stimulator                               |
| LT               | =          | Lymphotoxin                                                  |
| LAD              | =          | Lymphocyte Activating Determinant                            |
| LAF              | =          | Lymphocyte Activating Factor                                 |
| ITL              | =          | Initiator T lymphocyte                                       |
| RTL              | =          | Recruited T lymphocyte                                       |
| MIF              | =          | Migration Inhibitory Factor                                  |
| AEF              | =          | Allogeneic Effect Factor                                     |
| MF               | =          | Mitogenic Factor                                             |
| СРМ              | =          | Counts Per Minute                                            |

- RS = Recognition Structure
- $RS_A$  = Recognition structure for the A antigen

 $RS_{R}$  = Recognition structure for the B antigen

Anti-RS = Anti-recognition Structure

RPMI = Rosewell Park Memorial Institute

HBSS = Hank's Balanced Salt Solution

BBS = Borate Buffered Saline

DS = Dulbecco's Solution

PPD = Purified Protein Derivative

EC = Effector Cell

TC = Target Cell

# LIST OF TABLES

| Tables |                                                                           |     |
|--------|---------------------------------------------------------------------------|-----|
| I.     | Semi-syngeneic Cytotoxicity Reactions in Different                        |     |
|        | Combinations of Parental Donors and F <sub>1</sub> Recipients             | 64  |
| II.    | Activation of Effector Cell Population using various                      |     |
|        | Routes of Induction of GVH Reactions                                      | 66  |
| III.   | Sensitivity of Target Cells in Semi-syngeneic Cytotoxicity                |     |
|        | Reaction of $F_1$ s undergoing GVH Reactions                              | 69  |
| IV.    | Computer Print-out of Statistical Analysis of Semi-                       |     |
|        | <pre>syngeneic Cytotoxicity (EC:TC = 100:1)</pre>                         | 81  |
| V.     | Computer Print-out of Statistical Analysis of Semi-                       |     |
|        | syngeneic Cytotoxicity (EC:TC - 200:1)                                    | 83  |
| VI.    | Effect of Irradiation of F, PEC on Semi-syngeneic                         |     |
|        | Cytotoxicity                                                              | 86  |
| VII.   | Suppression of Semi-syngeneic Cytotoxicity Reaction                       |     |
|        | by Specific Anti-H-2 Antisera                                             | 88  |
| VIII.  | Preferential Lysis of Target Cells Bearing Parental                       |     |
|        | Antigens by $\mathtt{F}_1$ Hybrid Cells from Mice Undergoing              |     |
|        | Graft-versus-Host Reactions                                               | 92  |
| IX.    | Cytotoxicity of F <sub>1</sub> Cells on Targets Cells Bearing             |     |
|        | Parental Histocompatibility Antigens                                      | 96  |
| Х.     | Semi-syngeneic Cytotoxic Activities of Individual                         |     |
|        | Populations of Effector Cells from GVH-induced                            |     |
|        | F <sub>1</sub> peritoneal Exudate Cells                                   | 100 |
| XI.    | Abrogation of Semi-syngeneic Cytotoxicity Reaction                        |     |
|        | by Treatments of $F_1$ Effector Cells with Silica $\ldots$                | 109 |
| XII.   | The <u>In Vivo</u> Activation of Syngeneic F <sub>1</sub> Immunocompetent |     |
|        | Cells in Semi-syngeneic Cytotoxicity Reaction                             | 114 |
| XIII.  | Effect of In Vivo Incubation Interval of Syngeneic                        |     |
|        | Macrophages in GVH-induced $F_1$ Hosts on Semi-                           |     |
|        | syngeneic Cytotoxicity Reaction                                           | 116 |

iii

| XIV. | Computer Print-out of Statistical Analysis in <u>In Vivo</u>         |
|------|----------------------------------------------------------------------|
|      | Activated Macrophages in Semi-syngeneic CMC Assays                   |
|      | 48 Hours after Injection into Syngeneic F <sub>l</sub> as Undergoing |
|      | GVH Reactions 119                                                    |
| XV.  | Computer Print-out of Statistical Analysis of <u>In</u> <u>Vivo</u>  |
|      | . Activated Macrophages in Semi-syngeneic CMC Assays                 |
|      | 72 Hours after Injection into Syngeneic F <sub>1</sub> s             |
|      | Undergoing GVH Reactions 121                                         |
| XVI. | Percentage Deaths of F <sub>1</sub> Hybrids Previously Irradiated    |

and Induced into GVH Reactions by Parental Cells ..... 127

# LIST OF FIGURES

Figures

| 1.  | Principle of Experimental GVH Reaction                             |
|-----|--------------------------------------------------------------------|
| 2.  | Kinetics of Semi-syngeneic Cytotoxicity of Peritoneal              |
|     | Exudate Cells induced by GVH Reaction                              |
| 3.  | Correlation between $^{51}$ Cr Method and Cell-Count Method        |
|     | in Assays of Semi-syngeneic Cytotoxicity                           |
| 4.  | Regression Coefficient Plot between Corrected Per                  |
|     | Cent Cytotoxicity and Incubation Time in Semi-                     |
|     | syngeneic Cytotoxicity (EC:TC = 100:1)                             |
| 5.  | Regression Coefficient Plot between Corrected Per                  |
|     | Cent Cytotoxicity and Incubation Time in Semi-                     |
|     | syngeneic Cytotoxicity (EC:TC = 200:1)                             |
| 6.  | Experimental Protocol of Inducing GVH Reactions in                 |
|     | Two Semi-allogeneic F <sub>l</sub> Hybrids and Comparing their     |
|     | Relative Cytotoxicity in Identical Target Cells 90                 |
| 7.  | Cytotoxic Effect of Silica Particles on Peritoneal                 |
|     | Macrophages 107                                                    |
| 8.  | Effect of GVH-activated Macrophages on Normal Syngeneic            |
|     | Peritoneal Macrophages in Semi-syngeneic Cytotoxicity112           |
| 9.  | Kinetics of In Vivo Activated Peritoneal Macrophages               |
|     | in Semi-syngeneic Cytotoxicity                                     |
| 10. | Regression Coefficient Plot between Corrected Per Cent             |
|     | Cytotoxicity and Incubation Time in Semi-syngeneic                 |
|     | Cytotoxicity 48 hours after <u>In Vivo</u> Activation of           |
|     | Syngeneic Macrophages 120                                          |
| 11. | Regression Coefficient Plot between Corrected Per Cent             |
|     | Cytotoxicity and Incubation Time in Semi-syngeneic                 |
|     | Cytotoxicity 72 Hours after <u>In Vivo</u> Activation of           |
|     | Syngeneic Macrophages 122                                          |
| 12. | Effect of GVH Reaction Activated Macrophages on Spleen             |
|     | Indices of F <sub>1</sub> Hosts Undergoing GVH Reactions 125       |
| 13. | Effect of GVH-activated Macrophages on Mortality of                |
|     | Lenthally Irradiated F <sub>1</sub> s Undergoing GVH Reactions 129 |

v

| 14. | Effect of Irradiation on GVH Activated F <sub>1</sub> Cells in         |
|-----|------------------------------------------------------------------------|
|     | Reduction of Spleen Indices of Syngeneic F <sub>l</sub>                |
|     | Hosts Undergoing GVH Reactions 131                                     |
| 15. | Abrogation of the Rescuing Effect of GVH Activated                     |
|     | $	extsf{F}_1$ Donor PEC s in Irradiated $	extsf{F}_1$ Hosts Undergoing |
|     | GVH Reactions 133                                                      |
| 16. | Specificity of Suppression of In Vivo GVH Reaction 136                 |
| 17. | Specificity of Suppression of In Vivo GVH Reaction 138                 |
| 18. | Possible Types of GVH and HVG Reactions 153                            |
| 19. | Experimental Situation of F $_{ m l}$ Cells Reacting Against           |
|     | Parental Antigens 156                                                  |
| 20. | Experimental Situation of $\mathtt{F}_1$ Cells Reacting Against        |
|     | Parental Antigens                                                      |

.....

.....

vi

#### ABSTRACT

Graft-versus-host reaction was induced in adult  $F_1$  hybrid mice with the transplantation of one of the two strains of parental spleen cells. The immunocompetent cells from these GVH-induced  $F_1$  hosts showed a semi-syngeneic cytotoxicity or  $F_1$  anti-parent immune reaction which was quantitated by the <u>in vitro</u> assays of the lysis of <sup>51</sup>Cr-labelled target cells. The route of induction of the GVH reaction was important in determining the degree of semi-syngeneic cytotoxicity, and the peritoneal exudate cells were observed to be most effective in eliciting the <u>in vitro</u>  $F_1$  anti-parent immune response.

Investigations on the mechanical aspect of the semi-syngeneic cytotoxicity reaction revealed that the GVH reaction appeared to activate the  $F_1$  macrophages to become cytotoxic effector cells since they were shown to possess surface adherence and were exclusively sensitive to silica particles. Non-adherent  $F_1$  immunocompetent cells were found incapable of initiating the semi-syngeneic cytotoxicity reaction. Moreover, irradiation of the  $F_1$  effector cells abrogated the semi-syngeneic cytotoxicity reaction.

The semi-syngeneic cytotoxicity reaction, mediated by the GVH-induced  $F_1$  macrophages, could be enhanced by both <u>in vivo</u> and <u>in vitro</u> addition of normal syngeneic  $F_1$  amcrophages. The adoptive transfer of GVH-induced  $F_1$  PECs into other syngeneic  $F_1$  recipients undergoing GVH reactions resulted in an increased semi-syngeneic cytotoxicity response as measured by the CMC assays, and also a decrease of the <u>in vivo</u> GVH reaction as evidenced by ; (1) decreased spleen indices relative to those

vii

GVH-induced  $F_1$  animals without receiving additional GVH-activated  $F_1$  PECs, and (2) increased survival rates of lethally irradiated and GVH-induced  $F_1$  recipients relative to those without receiving additional GVH-activated PECs. Such capacity to suppress an <u>in vivo</u> GVH reaction by the GVHactivated  $F_1$  cells could be abrogated by irradiation. Moreover, certain degree of specificity seems to exist in the <u>in vivo</u> GVH reaction suppression. This type of specificity is reflected by the <u>in vitro</u> observation in the preferential target cell lysis experiments. The GVH activated  $F_1$  immunocompetent cells were shown to mediate the host-versus-graft reaction in producing the spontaneous resolution of the in vivo GVH reaction.

The underlying mechanism of the semi-syngeneic cytotoxicity reaction was explored. Investigations on the immunological aspect of the mechanism revealed that, during a GVH reaction, the  $F_1$  host immunocompetent cells exhibited a preferential cytotoxic effect on the parental H-2 genotype target cells; i.e., when the H-2 genotype of the target cells used in CMC assays and the H-2 genotype of the parental cells used in GVH induction were identical, the lysis of target cells was significantly higher than the situation in which the H-2 genotype of the target cells and the parental cells were different. In addition, the  $F_1$  immunocompetent cells were found capable of reacting against the histocompatibility antigens of the parental cells, demonstrating the mediation of the semi-syngeneic cytotoxicity or  $F_1$ anti-parent reaction via the antigenic determinants of the H-2 complex. viii

#### INTRODUCTION

A graft-versus-host reaction results from the recognition of host tissue-antigens which do not exist in the transplanted immunocompetent donor cells. Circumstances initiating GVH reactions include situations in which the host will accept a graft without the capacity of rejection. The principle of GVH reaction is classically illustrated by the condition that  $F_1$  hybrid animals will accept immunocompetent cells from either parental strains, but the grafted cells from one parental strain are confronted in the tissues of the  $F_1$  host with antigens inherited from the other parental strain. The grafted cells proceed to attack the  $F_1$  host tissues bearing such foreign antigenic determinants resulting in the experimental form of graft-versus-host reaction (Oliner <u>et al</u> 1961). The principle of such a unidirectional reaction is illustrated in Figure 1.

There are basically two categories of GVH reaction; systemic and localized. The immunologists have done considerable work on the systemic GVH reactions, while the pathologists are more interested in studying the localized GVH reactions. Experimental evidence of systemic GVH reaction was initially provided by the production of "runting diseases" in newborn mice which were injected with adult lymphoid cells (Simonsen,1957). Apart from this type of classical hybrid wasting disease, other types of systemic GVH reactions have been described. For example, adult mice previously made tolerant to another strain by neonatal inoculation with immunoincompetent cells from the other strain, were noted to develop "runting diseases" when they were grafted with immunocompetent cells from



parental spleen cells

0000

а

axb

Graft-vs-Host Reaction



the donor strain origionally used in the induction of neonatal tolerance (Billingham <u>et al</u> 1955; Billingham and Silvers, 1961). In the case where the parabiotic surgical union of an animal (graft) with an immunologically non-responsive partner (host) through vascular anastomoses, the syndrome of parabiosis intoxication characterized by severe anemia, weight loss, and death of the non-responsive partner (host), had been identified to be one form of systemic GVH reactions (Eichwald <u>et al</u>, 1959). Lethally irradiated animals, when transplanted with allogeneic bone marrow cells, usually recovered from the primary effect of irradiation, but they eventually developed "secondary diseases" due to the activities of the immunocompetent cells in the transplanted bone marrow inoculum (Trentin, 1956).

Besides the systemic category, several localized forms of GVH reactions have been described. These included the intrarenal GVH reactions produced by inoculating parental lymphoid cells into the renal capsules of  $F_1$  hosts (Elkins, 1964), and the intracutaneous GVH reaction observed in hamsters and guinea pigs when parental spleen cells were injected intradermally (Brent and Medarwa, 1966). When adult chicken leukocytes were distributed over the chorioallantoic membrane of a genetically unrelated embryo, white focal "pocks" developed. Using this type of local GVH reaction, the small lymphocytes were established as participants in such reactions (Simonsen, 1967). Popliteal lymph node (PLN) hypertrophy, or enlargement, after the injection of parental lymphoid cells into the foot-pads of animals such as hamsters and rats, has also been used to quantitate local GVH reactivities (Grebe and Streilein, 1974).

The importance of GVH reaction in immunology is mainly two-fold. From an academic point of view, GVH reaction has been and will

continue to be a useful experimental approach in studying immunobiology, the immune response, and immunoregulation. In clinical investigations, GVH reactions have been important in situations of : intrauterine blood transfusion of Rh erythroblastosis fetalis (Naiman, 1969), the transfusion of blood into congenitally immune deficient infants (Hathaway, 1965), and bone marrow transplantation studies (Kretschner, 1970). GVH reaction today remains the major stumbling block in the success of bone marrow transplants. Approximately 70% of patients receiving bone marrow grafts develop GVH reactions (Thomas <u>et al</u>, 1975); and about half of these die from GVH related infections, or from the GVH reaction itself (Bunn, 1977; Rosen <u>et al</u>, 1978). Granulocyte transplantations have recently been used with some success in acute leukemic patients (Graw <u>et al</u>, 1970), but GVH reaction is significantly induced with platelet transfusions (Mathe <u>et al</u>, 1974), presumably due to the simultaneous transfer of contaminating leokocytes (Cohen et al, 1979).

Because of academic significance and extensive clinical applications, many research efforts have been devoted to study the phenomenon of graft-versus-host reaction. In the following review of literature, relevant significant findings are described.

#### REVIEW OF LITERATURE

An enormous amount of literature is available on the various aspects of the GVH reaction, and since the review of literature is not meant to be all-inclusive, only articles pertinent to the theme of the present thesis are presented. The review is divided into three main sections : Sequelae of graft-versus-host reactions, Immunology of GVH reactions, and Immunology of host-versus-graft (HVG) reactions. Within each section, significant observations will be described.

### SEQUELAE OF GRAFT-VERSUS-HOST REACTION

In the animal model, graft-versus-host reactions can be induced by the injection of parental lymphoid cells into the appropriate  $F_1$  hybrids, and in applying this technique to newborn mice, the GVH syndrome observed is historically known as "runting diseases". In clinical situations, GVH diseases in humans are usually the result of bone marrow transplantations. In the animal model, GVH reactions have been extensively investigated; its manifestations and sequelae of the phenomenon are described in the following.

# Manifestations of Graft-versus-host Reaction

When parental lymphoid cells are injected intravenously or intraperitoneally into the appropriate  $F_1$  hybrids, systemic GVH reactions can take either an acute or a chronic course, depending on the number of grafted parental cells, the age of the hybrid at the time of transplantation, and the extent of histoincompatibility involved (Brent and Medawar, 1966).

In the animal model, anatomical manifestations of the GVH syndrome as initially described in "runting diseases" include the failure of normal somatic development of the newborn, splenomegaly, hepatomegaly, hypertrophy, then atrophy of the lymphoid organs, and lesions of the cutaneous tissues (Billingham,1968). The hallmark of the systemic process is significant hyperplasia of the splenic parenchyma. Early splenic enlargement had been attributed to the proliferation of the grafted donor cells, but in later periods, splenomegaly is mainly due to the proliferation of the host lymphoid cells (Auerbach and Globerson,1966; Hilgard,1970; Bonney and Feldbush,1973; Bennett and Hand,1978).

Histologically, the follicular structure of the spleen becomes obliterated and the majority of the organ is occupied by blast-like cells and necrotic foci (Simonsen,1957). This acute stage of lymphoid organomegalies is followed by a stage of pronounced hypoplasia, particularily of the thymus. The most important physiological changes are immunological, hematological, and hepatic dysfunctions. Decreased immune responsiveness results in increased susceptibility to bacterial and viral infections (Elkins,1971). In many murine strain combinations tested, hosts undergoing GVH reactions developed remarkably frequent, malignant reticuloendothelial tumors (McBride,1966).

The manifestations of GVH reactions in the human patients studied are usually secondary to bone marrow transplantations. The signs and symptoms of GVH disease appear from 10 to 30 days after grafting of the bone marrow. The earlier the manifestations appear, the more serious the reaction and prognosis (Cline <u>et al</u>,1975). The clinical picture in these patients consists of dermatitis with erythematous maculopapular eruptions spreading all over the body, hepatitis accompanied by jaundice, elevated hepatic enzymes, and gastrointestinal disturbances (Thomas <u>et al</u>, 1975). These synptoms will usually lead to generalized immunodeficiency

states, complicated by severe infections, resulting in septic shock and death (Wells and Ries, 1978).

Experimental GVH reactions in the animal model do not, as a rule, cause the death of the host. In fact, if the host can survive the initial GVH syndrome, spontaneous recovery is expected, and a type of secondary GVH reaction is not easily inducible, if not impossible. This type of natural resolution of GVH reaction manifestations observed in experimental animals unfortunately does not occur in humans because the simultaneous presence of intrinsic diseases in humans are absent in the experimental animals.

# Remission of Graft-versus-host Reaction

If the dogma of transplantation immunology is correct in asserting that the  $F_1$  hybrid immunocompetent cells are incapable of reacting against the parental lymphoid cells, it seems possible that when a single parental immunocompetent cell, injected into the  $F_1$  host, and given sufficient period of incubation, would proliferate and produce a full blown picture of GVH syndrome; but this is not the case. In fact, many studies have shown that  $F_1$  animals which survived the acute stage of GVH reaction usually recover (Gowans, 1962).

Natural remissions of both systemic and localized GVH reactions in experimental animals have been extensively reported. When lethally irradiated (CB x MHA)  $F_1$  hamsters were inoculated with parental MHA lymphoid cells, the severe cutaneous reaction of lethal epidermolysis (one form of systemic GVH reactions) were produced. But using normal (CB x MHA)  $F_1$  hmasters as recipients of intravenously inoculated parental MHA lymphoid cells, the severe cutaneous reaction observed in lethally

irradiated syngeneic  $F_1$  hamsters was absent, and the  $F_1$  hosts eventually returned to a normal state with no apparent pathological sequelae (Streilein and Billingham, 1970a).

Studies on localized GVH reactions also show that the pathological manifestations resolve spontaneously. By injecting parental lymphoid cells into the renal subcapsular spaces of the  $F_1$  recipients to demonstrate local GVH pathology, it was observed that after the initial reaction, diminishing inflammatory infiltrate appeared by the 14th day. At the end of the 40th day, there was little macroscopic evidence that GVH reaction had occured (Elkins,1964). Using (DA x Lewis)  $F_1$  rats as hosts, parental Lewis lymphoid cells were inoculated intradermally to initiate a localized GVH reaction. After the initial skin manifestations, the reaction regressed to a stage where barely perceptible residual lesion, identified by a necrotic skin nodule remained on the  $F_1$  hosts (Streilein and Billingham,1967). By injecting parental lymphoid cells into the foot-pads of the appropriate  $F_1$  hybrids, local GVH reactions, quantitated by assaying popliteal lymph node weights consistently followed a self-limited course (Grebe and Streilein,1974).

The self-limited nature of GVH reaction has also been quantitated by delayed hypersensitivity reactions involving the measurement of the thickness of the foot-pads of  $F_1$  hosts injected with parental lymphoid cells. When parental C57BL/Rij spleen cells were transplanted into (C57BL/Rij x CBC/Rij)  $F_1$  mice, GVH reactivities were noted to be maximal from day 5 to day 8, and thereafter the reactivities decreased progressively (Wolters and Benner, 1978).

Spontaneous remissions of GVH reactions seem to involve

certain immunoregulatory mechanisms. Features of the GVH syndrome usually subside in experimental animals when the lymphoid organs are replenished by proliferating host lymphoid cells (Fox,1966). In the characteristic development of splenomegaly during GVH reactions, the weights of the spleens, after reaching peak values, decline progressively. This is followed by complete recovery (Simonsen and Jensen,1959). It has been suggested that the host spleen provides an immunoregulatory microenviroment in which cell-mediated immune response, including GVH reaction, are modulated or regulated (Grebe and Streilein,1976).

# Absence of Secondary Graft-versus-host Reaction

In addition to the spontaneous remission of GVH reaction in the genetically tolerant  ${\rm F}_1$  hybrid host, certain mechanisms seem to produce in the host animal a state of refractoriness to subsequent GVHinducing challenges, and no secondary GVH reaction parallel to the secondary antibody response can be initiated. This phenomenon was first made in experiments in which adult (CBA x C57BL/6)  $F_1$  mice, previously injected with parental C57BL/6 spleen cells, failed to develop GVH reaction on subsequent injection of either strain of parental spleen cells (Fox and Howard, 1963). The observation was later supported by the fact that rats which survived the first GVH reaction were subsequently found to be staunchly resistant to a second inoculation of lymphoid cells from the same parental strain (Field and Gibb, 1966). Such resistance to a secondary challenge has also been demonstrated in parabiosis studies during the acute stage of the GVH syndrome where certain unidentified humoral factors were suggested to be responsible for the refractory state (Field and Cauchi, 1967). In the case of  $F_1$  hybrid hamsters that have

survived the early phase of GVH disease, a subsequent challenge with lymphoid cells of the original donor genotype resulted in similar refractoriness as reported in other animals tested (Streilein, 1972).

The absence of a secondary GVH reaction has been studied in its specificity, and both "specific refractoriness" as well as "non-specific refractoriness" have been identified. Using DA, Fischer (parental donors) and (DA x Fischer)  $F_1$  hybrid rats (GVH recipients) as an example, the term "specific refractoriness" referred to a situation in which the parental strain used in both the primary (e.g.,DA) and secondary (e.g.,DA) challenges were identical, while "non-specific refractoriness" indicated the situation where the parental strain used in the primary (e.g.,DA) and the secondary (e.g.,Fischer) challenges were dissimilar. In both situations, the absence of a secondary GVH reaction was confirmed (Grebe and Streilein,1976).

These observations implicated a situation in which, parental immunocompetent cells, after exposure to semi-allogeneic  $F_1$  host tissues, induced certain immunoregulatory mechanisms in the  $F_1$  hybrids so that a secondary GVH-response is modulated or suppressed.

# Failure of Adoptive Passage of Graft-versus-host Reaction

If it is true that the  $F_1$  generation is genetically tolerant to parental immunological challenge, then it should be possible to produce the GVH reaction serially from the primary host to a syngeneic secondary host by adoptive transfer of lymphoid cells. It was however, impossible to elicit "adoptive runting diseases" in mice by transferring spleen cells from the first  $F_1$  recipient to the second syngeneic recipient (Russel,1961). Moreover, evidence has been presented that within 24 hours after injection into the newborn  $F_1$  hybrids, parental lymphoid cells lost their capacity to

initiate GVH reaction in a secondary host (Simonsen and Jensen,1959). Using isogeneic rodents and inbred chicken strains, a few studies have only been able to achieve at best, one or two passages before the cell suspensions lost their capacity to incite GVH reactions (Ramseier and Billingham,1966; Steinmuller,1967).

Attempts to passage the GVH reaction serially in hamsters beyond the tertiary host by adoptive cellular transfer were unsuccessful (Streilein and Billingham,1970a). Using adult (Fischer x DA)  $F_1$  rats as primary and secondary hosts in serial passage experiments, it was noted that there was only popliteal lymph node enlargement (local GVH) in the secondary host and none in the tertiary host (Grebe and Streilein,1976).

The failure to transfer serially a GVH reaction in syngeneic hosts can be explained by two possibilities. The first possibility is that the donor lymphoid cells were being serially diluted to such a level as to be ineffective in inducing GVH reaction when transferred to the secondary or tertiary hosts. The possibility of such a diluting effect on the donor cells seems unlikely because there is inadequate explanation to account for the inability of donor cells to proliferate so as to compensate for the diluting effect in a genetically tolerant host.

The second possibility is that certain immunoregulatory mechanisms take place during a GVH reaction within the primary host, thus rendering the donor cells incapable of initiating the reaction in the syngeneic secondary host. Evidence supporting this assumption has been reported in studies using  $T_6$  chromosome markers in donor cells. It was observed that during GVH reaction, parental donor cells in active mitosis constituted only about 1% in the host spleen by the 14th day, indicating  $\Pi$ 

the suppression of proliferation of donor parental cells (Fox,1966). In a study using popliteal lymph node assay of local GVH reaction, it was noted that 75% of the cells in the lymph node were of host origin, again demonstrating the inability of donor cells to proliferate specifically in the spleen of the  $F_1$  host (Grebe and Streilein,1974). In studies of systemic GVH reactions involving radioisotope labelling of parental cells with <sup>3</sup>H-thymidine, it was noted that the majority of labelled donor cells were found dead in the lymphoid organs of the host within one to two weeks after the induction of GVH reaction (Sprent,1976). Similar findings in local GVH reactions have been reported (Clancy and Adams,1973).

If it is true that the GVH reaction initiated certain immunoregulatory mechanisms leading to the immunosuppression of the grafted or passaged parental lymphoid cells resulting in the failure of adoptive transfer of GVH reactions serially, then one would expect that the effect of immunosuppression, not only will affect the transplanted parental cells, but will also exert its influence on the immunocompetent cells of the host as well. In fact, this seems to be the situation observed in many studies. Features of such immunosuppression or immunoincompetence have been reported in many experimental and clinical conditions.

### Immunological Incompetency in Graft-versus-host Reaction

The immune response of  $F_1$  hybrid animals undergoing GVH reactions has been shown to be profoundly suppressed. This type of functional immunoincompetence seems to involve both humoral antibody response (Lawrence and Simonsen, 1967) as well as cell-mediated immune response (Lapp and Moller, 1969).

The humoral immune response of mice which have survived the initial onslaught of GVH reaction after allogeneic bone marrow transplants proved to be defective against a variety of antigens (Gengozian and Owen, 1958; Gengozian and Congdon, 1965; Gengozian and Toya, 1971). Adult  $B6AF_1$  mice that underwent GVH reactions were deficient in forming antibodies to an intraperitoneal challenge of  $T_2$  bacteriophages. The basis of such immunoincompetence was attributed to the destruction of host lymphoid cells (Blaese and Good, 1964). When parental donor spleen cells, previously immunized to sheep red blood cells (SRBCs), were used to induce GVH reactions in  $F_1$  hybrids, and the specific antibody response were tested 7 days later, a marked suppression of anti-SRBC antibody synthesis was detected (Moller, 1971); i.e.,  $F_1$  host suppressed the parental cells.

Studies on the ability of hamsters undergoing GVH reactions to make specific antibodies in response to tetanus toxoid revealed the absence of circulating antibodies for as long as 26 days after antigenic challenge (Streilein,1972). Even in the presence of repeated antigenic stimulations, GVH-induced  $F_1$  hosts failed to produce any detectable level of anti-SRBC antibody (Treiber and Lapp,1973). Using the <u>Salmonella</u> flagellar antigen in long-term allogeneic chimera studies, it was noted that the level of antibody suppression was dependent upon the severity of GVH reaction (Gengozian and Congdon,1973). There is however recent evidence indicating the lack of correlation existing between the severity of GVH diseases and the immunological capacity of the T and B lymphocytes (Urso and Gengozian,1977).

Many studies have examined the suppression of cell-mediated immunity in GVH-induced animals. Marked prolongation of allograft survival

on the ears of rabbits undergoing a GVH reaction suggested the depression of transplantation rejection mechanism (Vrubel,1961). Prolonged survival of allografts has also been reported in adult (C57BL/6 x CBA)  $F_1$  hybrids injected with C57BL/6 parental spleen cells (Howard and Woodruff,1961). Dramatic immunosuppression, resulting from a GVH reaction, was shown by the finding that H-2 incompatible skin grafts from a third party donor could survive two to three times longer on the  $F_1$  host undergoing the GVH reaction (Lapp and Moller,1969). Using skin allografts, suppression of cell-mediated immune responses have also been demonstrated in both hamsters and rats undergoing GVH reactions (Streilein,1972).

It has been suggested that GVH-induced suppression of the humoral immune response was more persistent than the suppression of the cell-mediated immune response. While repeated (SRBC) antigenic challenges in the suppressed host did not produce any detectable level of anti-SRBC antibody, the injection of a third party's bone marrow cells into a GVHinduced host caused a subsequent rejection of the skin allograft identical to the third party bone marrow cell genotype (Treiber and Lapp,1973). In addition, GVH-induced animals were able to produce cell-mediated responses to xenogeneic as well as allogeneic antigens, following appropriate stimulations with the specific antigens (Treiber and Lapp,1976).

Immune deficiency associated with GVH reaction has been shown to cause suppression of specific antibody responses to both thymic-dependent and thymic-independent antigens (Blaese and Good, 1964; Lawrence and Simonsen 1967; Zaleski and Milgrom, 1973; Byfield <u>et al</u>, 1973). In the suppression of antibody responses to thymic-independent antigens, single challenges in GVHinduced mice with Escherichia coli lipopolysaccharide endotoxin or the

pneumococcal polysaccharide Type III preparations, failed to elicit significant specific antibody responses (Moller,1971; Byfield <u>et al</u>,1973), but multiple antigenic challenges have been shown to relieve GVH-induced suppression of humoral responses to thymic-independent antigens (Treiber and Lapp,1978). In the situation of thymic-dependent antigen related suppression, even multiple challenges failed to induce significant antibody production in GVH-induced and suppressed mice (Treiber and Lapp,1978).

# Mechanisms of GVH-induced Immunosuppression

The exact nature of the immunosuppressed state in a GVHinduced host remains a point of contention. Different mechanisms have been proposed to explain the phenomenon, and these can be categorized into three or four main groups; deficiency of a T cell mediator, the induction of suppressor cells, interference of T and B cell interaction, and the possible regulatory role of the macrophages.

GVH-induced immunosuppression was initially suggested to be the result of certain defects in the thymic-derived cell population since the administration of thymic tissues was able to restore only partially the immunocompetence of GVH-induced mice in response to SRBC antigens (Lapp <u>et al</u>,1974). The explanation given was that even though T cells were present in the host, the intense immune response generated by the GVH reaction functionally depleted both host and donor T cells of a thymic mediator which is essential for immunological reactivity. To support this hypothesis, GVH-induced spleen cells and normal syngeneic spleen cells were cultured in a Marbrook culture system but were separated from cell to cell contact by a cell-impermeable membrane. The possibility that normal spleen cells restoring competence to GVH-induced spleen cells through soluble mediators was examined. The results suggested that a T cell mediator could be involved (Parthenais <u>et al</u>,1974). In order to identify the source of this depleted mediator, thymus, bone marrow, and lymph node cells from normal mice were individually supplied to the GVH-suppressed spleen cells. While significant plaque-forming-cell (PFC) responses were restored by the thymic and lymph node cells, normal bone marrow cells were found incapable of restoring immunocompetence to the GVH-suppressed cells (Elie and Lapp,1976a).

Anatomically, this type of T cell related immunosuppression, presumably induced by the GVH reaction, did not seem to occur in all the lymphoid organs of the GVH-induced host. It appeared to be confined to the host's spleen, since spleen cells from these GVH-induced  $F_1$  animals produced very poor restoring results. In contrast, thymic and lymph node cells from the same GVH-induced animals were able to restore significant capacity to produce anti-SRBC antibodies when supplied to the GVH-induced and suppressed spleen cells (Elie and Lapp,1976b). Interestingly, while normal bone marrow cells could not restore the GVH-suppressed spleen cells to produce good PFC responses, bone marrow cells taken from mice three days after GVH induction, restored the PFC responses in the GVH-suppressed cells even though the proportion of theta-antigen bearing cells in these GVHinduced bone marrow cells was not elevated. This indicates that the possible restoring effect of GVH-induced bone marrow cells was not due to an increased level of T cells in the bone marrow cell population (Elie and Lapp,1976a).

The restoring capacity of T cells was shown to be regulated by a population of splenic accessory (A) cells present in the spleens of

mice undergoing GVH reactions (Elie and Lapp,1977). It was also noted that the optimal ratio of splenic (A) cell to non-adherent (NA) cell for maximal reconstitution of GVH-suppressed PFC responses was 1 to 10. The proportions of splenic (A) cells in the range of 20% to 40% actually suppressed the PFC response instead of restoring it. This seems to indicate that the accessory (A) cells were responsible for GVH-induced suppression of T cell helper function in the inductive phase of the immune response (Elie and Lapp,1977).

The cellular level of GVH-induced immunosuppression seems to affect both T and B cells. Suppression of the humoral response to thymic-dependent antigens was suggested to be due to a defect in the activity of helper T cell and appeared to be mediated by soluble factors. It was postulated that large quantities of soluble factors were produced by the adherent cells and were released during a GVH reaction, resulting in the suppression of T cell helper function (Treiber and Lapp, 1978).

GVH-induced immunosuppression at the T and B cell level was suggested by the fact that the antibody response to a single injection of <u>Escherichia coli</u> lipopolysaccharide antigenic preparation into a GVHinduced host was significantly reduced. It was postulated that the suppression of immune responses to thymic-independent antigens at the B cell level, was caused by the binding of a large amount of splenic (A) cell factors to the mitogenic sites on the B cell, rendering them immunosuppressed. Multiple challenges of GVH-suppressed hosts with thymic-independent antigens would provide enough antigenic determinants to display these splenic (A) cell factors, resulting in the restoration of the humoral immune response (Treiber and Lapp,1978). Immunosuppression observed in murine allogeneic

chimeras has also been suggested to be due to interference of the immune response at the B cell level possibly by humoral blocking factors (Urso and Gengozian, 1977).

Apart from the mechanisms of depletion of T cell related mediator and interference at the T and B cell level, the involvement of suppressor cells which may include spleen cells, macrophages, or T cells have also been suggested for GVH-induced immunosuppression.

Spleen cells obtained from F<sub>1</sub> hybrids undergoing GVH reactions were shown to be inhibitory on the humoral response of normal syngeneic spleen cells (Elie and Lapp,1977). While some authors attributed the suppressor effect to the splenic (A) cells as described previously, the role of splenic macrophages as suppressor cells had also been implicated. It was noted that the inhibitory effect of these GVH-induced spleen cells was not abolished by anti-theta antisera and complement treatment, but was eliminated by treatment with iron powder and removal of the phagocytic cells (Sjoberg,1972). The immunosuppressive effect of adherent cells from GVHinduced hosts had also been reported by other investigators (Hoffman and Dutton,1971; Scott,1972; Treiber and Lapp,1976). Adherent cells which inhibited the PFC responses were detected in GVH-induced spleen cells 10 days after GVH induction and were found to be theta-negative. These thetanegative adherent cells were able to produce an immunosuppressive effect on normal spleen cells from either the donor or the host (Parthenais and Lapp,1978).

Suppressor T cells were initially demonstrated in GVH-induced F<sub>1</sub> hybrids using cell-fractionation analysis and selective deletion of the donor or host cells (Shand,1975). It had also been shown that the suppressor T cells induced in GVH reactions were derived from the donor (C57BL/6) spleen

cells because of the following evidence. Suppression was abrogated after irradiation of the donor spleen cells, but not after irradiation of the (C57BL/6 x DBA/2)  $F_1$  hybrids. Treatment of GVH-induced spleen cells with anti-H-2<sup>d</sup> (anti-DBA/2) antisera and complement did not affect the immuno-suppressive activity (Pickel and Hoffman,1977). Parental origin of the suppressor T cells had also been demonstrated in other mouse strains (Shand,1976). The phenotypic components of these GVH-induced suppressor T cells were identified to be Ly-1<sup>+</sup>, 2<sup>+</sup>, 3<sup>+</sup>, Ia<sup>+</sup>, and were distinct from those suppressor T cells induced by concanavalin A (Shand,1977).

It has recently been suggested that at least two different GVH-activated spleen cell populations could non-specifically suppress the immune response. A distinct third cell population could be involved in the specific suppression of the immune reaction. The data seems to indicate the presence of non-specific suppressor cells in both the adherent and non-adherent spleen cells from GVH-induced animals which were previously depleted of T lymphocytes. It has been suggested that the non-specific immunosuppressive effect of GVH-induced spleen cells was mediated by GVHactivated macrophages existing in the anti-theta treated adherent cell population, and possibly also mediated by the B lymphocytes existing in the non-adherent cell population (Parthenais and Lapp,1978).

In summary, this section has briefly reviewed the significant manifestations and sequelae of a graft-versus-host reaction. Experimental results from various investigations implicated the existence of certain immunoregulatory mechanisms during the confrontation between the grafted donor cells and the semi-syngeneic  $F_1$  cells. The regulatory mechanisms manifested itself as the absence of a "secondary" form of GVH response, failure to serially passage the GVH reactions along syngeneic hosts, immunosuppression of both humoral as well as cell-mediated immunities, and eventually, the graft-versus-host reaction progressively subsides, terminating in complete as well as spontaneous resolution. The nature of the immunoregulatory mechanisms involved in these reactions remain to be clarified.

#### IMMUNOLOGY OF GRAFT-VERSUS-HOST REACTION

In this section, the GVH reaction will be examined from the perspective of the grafted donor cells reacting against the tissues of the host. The fate of the donor cells within the  $F_1$  recipient will be described in terms of proliferation and generation of cytotoxic effector cells. In cell-mediated immunity reactions involvoing the grafted cells against the host cells, the possible role of certain soluble mediators and their characteristics will be considered. The genetic aspect of the GVH reaction will also be examined in terms of the H-2 complex and the Mls (M-locus) histocompatibility systems. Finally, the contributions of certain immunoregulatory mediators in GVH reactions will be described.

#### The Donor Lymphoid Cells in GVH Reaction

The various facets of the reactivities initiated by the grafted donor cells in a GVH reaction are poorly understood at present. The donor cells seem to proceed into two distinct phases : (1) the Proliferative phase, and (2) the Effector cytotoxicity phase. The proliferative phase seems to be the combination of two distinct sub-phases: (a) stimulation of the donor immunocompetent cells by the foreign host antigens, leading to "specific proliferation" of the transplanted donor cells (Gowans,1962), and (b) the "non-specific proliferation" of the host lymphoid cells, resulting in hypertrophy of the lymphoid organs of the host (Fox,1966). Using popliteal lymph node assay of local GVH reactions, it was noted that 75% of the cells in the lymph node of the recipient host were of host origin (Grebe and Streilein,1974). The proliferative phase can therefore be described more accurately as a continuum of an initial

proliferation of the grafted donor cells, followed by the proliferation of the host lymphoid cells. The proliferative phase is presumably replaced by the Effector cytotoxicity phase which will be described later. Proliferation of the grafted parental lymphoid cells seems to occur after the donor cells "homed" to their respective lymphoid organs.

The "homing" phenomenon of the transplanted parental donor cells to the lymphoid organs of the recipient host has been documented in many studies. Parental thymus cells transplanted into heavily irradiated  $F_1$  hybrid mice were noted to locate in the spleen as well as in the lymph nodes of the host (Sprent and Miller, 1972a). Using a radioisotope labelling technique to study the sites of localization of the grafted parental lymph node cells in the recipient host, 20% of the circulating thoracic duct lymphocytes were identified to be of donor origin. When the thoracic duct was cannulated and the circulating lymphocytes were transferred to a syngeneic host, they "homed" predominantly to the small intestines, and almost 40% of these donor cells were found within the area of the Peyer's patches (Sprent, 1976). The systemic distribution of grafted parental donor cells will therefore explain the systemic manifestations of the graft-versus-host syndrome.

The proliferation of the donor cells within the  $F_1$  animals had also been studied by a genetic technique using an identifiable chromosomal marker found only in the parental donor cells. When CBA strain parental spleen cells carrying the  $T_6$  chromosome markers were injected intravenously into the  $F_1$  hosts, bursts of mitotic activities within the  $F_1$  spleen and lymph nodes were documented (Fox,1962). Towards the 14th day after GVH induction, parental donor cells undergoing mitosis

in the spleen of the F<sub>1</sub> host constituted less than 2% of the total splenic population (Fox,1966). Proliferation of the grafted donor cells seem to terminate spontaneously.

The fate of the  ${}^{3}$ H-thymidine labelled parental donor spleen cells was followed after they were injected intravenously into the F<sub>1</sub> recipients. The majority of these labelled donor cells were found dead within the lymphoid organs of the host approximately two weeks after transplantation (Sprent,1976). The labelling of these donor cells with  ${}^{3}$ H-thymidine radioisotopes did not contribute to the death of the donor cells. Similar findings of dead parental donor cells after transplantation into the F<sub>1</sub> hosts have also been reported in studies on localized types of GVH reactions (Clancy and Adams,1973).

The grafted donor lymphoid cells within the host animal, seems to go through a defined course of initial proliferation when encountered by the foreign antigens of the host. This is followed by the phases of differentiation and generation of cytotoxic effector cells detected experimentally by cell-mediated target cell lysis assays. The time-frame reference of the generation of cytotoxic effector cells and the decline of the grafted donor cells remains to be clarified.

### Cytotoxic Reactivity in GVH Reaction

Although the target-tissue in a GVH reaction is generally regarded to be the host immunocompetent cells, pathological manifestations of a GVH reaction are also found in non-lymphoid tissues such as the skin, the gastrointestinal tract, the liver and many other sites (Billingham, 1968). The principal cause of tissue destruction in a GVH reaction remains unclear.
For example, skin destruction has been postulated to involve various mechanisms such as anti-epidermal antibodies (Merritt et al,1970), and lymphotoxins capable of killing non-lymphoid as well as "innocent bystander" cells (Streilein and Billingham,1970a).

The generation of <u>in vivo</u> lesions, initiated presumably by the donor cytotoxic effector cells reacting against host antigens, seems to be dependent upon the route of grafting of the donor cells. In hamsters, the injection of  $2 \times 10^7$  parental lymphoid cells intracutaneously would produce the epidermolytic syndrome presumably the result of cytotoxic effector cells. However, the injection of the same number of parental lymphoid cells intravenously would not produce any epidermolytic syndrome at all (Streilein and Billingham 1970b), indicating the complexity of the generation of cytotoxic effector cells <u>in vivo</u>. To further complicate the picture, the production of the GVH-induced skin lesions has been shown to be dependent upon the presence of host leukocytes within the dermis of the host animals (Ramseier and Billingham, 1966; Streilein and Billingham, 1967; Zakarian and Billingham, 1972). The generation of <u>in vivo</u> cytotoxic effects would therefore seem to be the result of reactivities of both donor and host lymphoid cells.

The generation of <u>in vitro</u> cytotoxic reaction in experimental situations is less complicated. Cytotoxic T lymphocytes of donor origin, with specificity for host strain target cells, have been consistently detected in the spleens of mice undergoing GVH reactions especially in the early phase of the reaction (Cerottini,1971; Cheers and Sprent,1974), and in fact, these cytotoxic lymphocytes have long been used as effector cells in many transplantation reaction studies. While the Mixed-Lymphocyte-Reaction

(MLR) is considered as the <u>in vitro</u> correlate of the proliferation of donor cells after their encounter with host antigens (Adler <u>et al</u>,1970), the Cell-Mediated-Cytolysis (CMC) assay of labelled target cell lysis by the cytotoxic effector cells is considered to be the <u>in vitro</u> correlate of the grafted donor cells attacking the host tissues (Hodes and Anderson, 1970; Solliday and Bach,1970; Hayry and Anderson,1973). Many investigations have used the CMC assay to study allograft reactions as well as any related phenomenon involving cytotoxic T cells.

The involvement of T lymphocytes in cell-mediated immunity reactions is a well documented fact, especially in rejection of allografts. However, there are three paradoxes that separate the GVH reaction from the allograft rejection reaction involving the T lymphocytes. (1) Restriction of the type of stimulator cells: normal transplantation reaction, skin grafting, for example, involves the stimulation of T lymphocytes by histoincompatible antigens expressed on a variety of tissues. In contrast, GVH reactive T lymphocytes are stimulated by foreign antigens on lymphocytes. (2) Species specificity: GVH reactive lymphocytes are stimulated to a much greater degree by allogeneic than xenogeneic hosts (Lafferty et al, 1972). (3) Low immunization ability: the type of "Second Set" accelerated rejection reaction normally seen in skin-grafting experiments involving pre-sensitized lymphocytes is not seen in GVH reaction, i.e., absence of "Secondary" GVH reaction. Immunization of a donor of GVH reactive lymphocytes, against strongly histoincompatible host cells, does not increase, amd may actually decrease the severity of a GVH reaction (Ford and Simonsen, 1971). The immunological mechanisms of a GVH reaction and an allograft reaction may therefore be two distinct entities.

The generation of cytotoxic T lymphocytes seems to require a sequential interaction of two distinct types of syngeneic T cells: (1) Initiator T lymphocytes (ITL), and (2) Recruited T lymphocytes (RTL). The ITLs were found to reside mostly in the spleen and the thymus, and they were interestingly, absent in the lymph nodes. In contrast, the RTLs were absent in the thymus and were detected to be predominantly in the lymph nodes (Livrat and Cohen, 1975). The properties of the ITLs include : the resistance to hydrocortisone as well as to irradiation treatments, and adherence to nylon-wool columns. The properties of the RTLs were exactly the reverse of the ITLs except that both possessed theta-antigens (Cohen and Livrat, 1976). The roles of ITLs and RTLs in a GVH reaction have not been elucidated, but the distributions of the ITLs and the RTLs seem to reflect the distribution of the injected parental donor lymphoid cells described in the "homing" phenomenon.

The realization of cytolysis by the GVH-induced cytotoxic effector cells seems to involve three not mutually exclusive mechanisms : (1) contact cytotoxicity in which the killer T cell can act in the absence of other cells; (2) antibody-mediated cytotoxicity in which specific antibodies synthesized by the donor cells together with complement; induced lysis of the host cells, and (2) soluble mediators generated in cellular immunity reactions are responsible for, direct cytotoxicity or non-specific activation of the effector-killer cells. The first two mechanisms have been extensively studied and reported by many investigators, while the understanding of the involvement of soluble mediators in GVH reactions is only in a primitive stage. Two particular soluble mediators : Lymphotoxin and Lymphocyte-Activating-Factor deserve some attentions because of their possible roles in the cytotoxic reaction.

#### Lymphotoxin

Lymphotoxin (LT) is a lymphokine which has the ability to cause cytolysis when released from stimulated lymphocytes. Cytolytic mediators of cellular immunity reactions were initially demonstrated in supernatants from suspensions of sensitized lymph node cells incubated with the antigen (Ruddle and Waksman, 1968; Granger and Kolb, 1968). From the elution pattern of DEAE-cellulose chromatography, lymphotoxin appears to be a netural protein with molecular weight in the region of 90,000<sup>4</sup> daltons (Namba and Waksman, 1975).

Lymphotoxin can cause non-specific cytolysis of many types of mammalian cells (Streilein and Billingham,1970a), and lymphotoxin associated cytolysis had been shown to be dependent upon the factors of temperature and concentration (Williams and Granger,1969). Studies on lymphotoxin-induced cytolysis indicated that with low concentrations of lymphotoxin, target cells continued to grow until the rate of cell-death exceeded the rate of cell-multiplication. This seems to suggest that cellular DNA synthesis was not affected by the lymphotoxins (Walker and Lucas,1972). When a small inoculum of parental spleen cells are used to induce a GVH reaction, the  $F_1$  host recovers from the GVH syndrome more quickly. This could be interpreted as the result of a low concentration of lymphotoxin because of a small number of grafted donor cells.

Differential susceptibility of different target cells to the cytolytic effect of lymphotoxin had been reported in different sublines of L929 cells (Kramer and Granger, 1975). This differential effect had been ascribed to explain the differential pathology of tissue destructions in GVH reactions (Grebe and Streilein, 1976).

Human lymphotoxins released by activated lymphocytes can be fractionated into several major classes. The stable molecules are found in the alpha and beta classes (Hiserodt <u>et al</u>,1976), and a third gamma class consists mainly of unstable molecules (Lee and Lucas,1976). Using these purified subclasses of lymphotoxins to raise specific antisera, it has recently been shown that lymphotoxin molecules indeed exist <u>in vivo</u> and may very well represent a direct measurement of the <u>in vivo</u> cytotoxic reactivity (Granger <u>et al</u>,1978). With all these advances in lymphotoxin studies, the roles of such soluble mediators will be clarifed, and the involvement of lymphotoxins in GVH-induced cytotoxicity reaction will become more clear.

#### Lymphocyte-Activating-Factor

In the situation of humoral immune response, the role of macrophages has been identified as the "processing" of antigens, and soluble factors may be involved in the production of specific antibodies. Cell-free supernatants from macrophage cultures have been shown to be capable of restoring the <u>in vitro</u> response of mouse spleen cells to SRBC indicating the involvement of such a soluble factor (Hoffman and Dutton, 1971). In the situation of cell-mediated cytotoxicity reactions, the role of macrophages is not clear. Through soluble mediators, a parallel role for macrophages may exist in cellular immunity as in humoral immunity, and Lymphocyte-Activating-Factor seems to be the suitable candidate.

Lymphocyte-Activating-Factors (LAFs), produced by macrophages, are capable of activating lymphocytes into proliferation. In GVH reactions, LAFs may be involved in the stimulation of lymphocytes into proliferation and possibly the generation of cytotoxic effector cells.

The existence of LAFs was initially demonstrated in the supernatants of macrophage preparations (Bach <u>et al</u>, 1970), and confirmed by sensitivity to anti-macrophage antisera (Shortman and Palmer, 1971). The stimulating effect of LAFs have been shown to affect both thymic and circulating T lymphocytes (Grey <u>et al</u>, 1972), and stimulating LAFs have been detected in several species : mouse, rat, rabbit, and human (Gery and Waksman, 1972). Most recently, macrophage derived LAFs were shown to be capable of restoring the immune response in athymic mice (Koopman <u>et al</u>, 1978). The molecular weights of murine and human LAFs were estimated to be between 5000 to 25,000 (Gery and Handschumacher, 1974; Koopman <u>et al</u>, 1977). LAF activity was noted to be sensitive to proteolytic enzymes (Calderon and Unanue, 1975), and was suggested to be a peptide (Blyden and Handschumacher, 1977).

The speculative role of LAFs in GVH reactions resides mostly in the activation of lymphocytes into cytotoxicity reactions. Evidence in support of such a contention although lacking in literature, will no doubt be forthcoming when the involvement of macrophages in the cellular immune response is clearly delineated.

## Genetics of the GVH Reaction

The importance of the Histocomaptibility-2 (H-2) complex in allograft reactions has been described in many recent reviews (Shreffler and David,1975; Klein,1975), and the involvement of the H-2 complex in a GVH reaction will be described. Apart from the H-2 complex, the M-locus (Mls) (Festenstein,1973) in relation to the GVH reaction will be included.

#### The Histocompatibility-2 System

Transplantation reactions, including GVH reactions, involve the recognition of histoincompatible antigenic determinants coded by the

genes in the Major Histocompatibility Complex (MHC). The MHC of the mouse, known as the H-2 complex, is located on the 17th chromosome. The role of the H-2 complex in allograft rejection are described in early reports (Simonsen and Jensen, 1959; Simonsen, 1962), and since then, the immunogenetics of transplantation reactions have become an area of research on its own. For a brief review, the H-2 complex in the mouse is divided into four main regions: K, I, S, and D regions. The K and D regions code for the serologically defined transplantation antigens, while the S region controls both qualtitative and quantitative expressions of a serum betaglobulin believed to be the C'4 component of the serum complement system.

The antigenic determinants coded by the K and D regions of the H-2 complex appear to be the most potent antigens in eliciting the cytotoxic effector cells. Differences in the K and D regions alone, between the host and donor immunocompetent cells, can lead to significant cell-mediated cytotoxicity reactions in the absence of any known H-2 central region differences (Schendel <u>et al</u>, 1973; Nabholz <u>et al</u>, 1974).

The I region, based on the immune responses against the Ia (I-region-associated-region) determinants, has been further divided into three subregions: Ir-IA, Ir-IB, and Ir-C. The humoral response to the : GVH reactivity, natural or synthetic antigens, and the MLRs are considered to be under the control of the I region. In mice, the antigens coded by the I region appear to be the most potent in stimulating the donor immunocompetent cells into proliferative MLRs (Klein and Park, 1973; Shreffler and David, 1975; Klein, 1975).

In studying the mechanism responsible for the cytotoxicity reaction against "self-antigens" or "altered-self-antigens", an important

role of the H-2 complex in the interaction between the cytotoxic effector cell and the target cell had been implicated. Using viral-infected or chemically-modified cells as target cells and syngeneic effector cells in cell-mediated cytotoxicity studies, homology between the stimulating cells (i.e., the cells used in sensitizing for induction of cytotoxicity) and the "modified" target cells, at the H-2 complex, particularily in the H-2K or H-2D regions, was found to be necessary in order to produce significant cytolysis of the "modified" target cells (Zinkernagel and Doherty, 1975; Rehn <u>et al</u>, 1976; Zinkernagel, 1978a; 1978b).

Two mechanisms have been proposed to explain the requirement of the H-2 complex homology between the effector and target cells in the generation of a cytotoxicity reaction. The first mechanism, the "Dual-Recognition Hypothesis", suggested that T cells would possess two distinct recognition structures; (1) an H-2 coded recognition structure which binds complementary unmodified H-2 gene-products, and (2), a second recognition structure which binds the foreign antigen; e.g., the viral or chemical hapten moiety on the surface of the "modified" cell (Zinkernagel and Doherty,1974). The second mechanism, the "Altered-Self Hypothesis", suggested that only one recognition structure would be present on the T cell. This recognition structure is capable of recognizing gene-products coded by the H-2 complex as well as the foreign viral or chemical haptens (Bevan,1976). Future investigations will decide which hypothesis is correct, and in the mean time, the importance of the H-2 complex in the generation of cytotoxicity reactions cannot be over-emphasized.

### The Mls System in GVH Reaction

In mice, although the genes encoding the lymphocyte-activating determinants (LADs) are apparently confined to the MHC, another system, which is not linked to the H-2 locus, also encodes LADs which in turn also stimulate very strong MLRs. This is the M-locus (Mls-locus), which has been mapped to a chromosome other than the 17th chromosome. In some cases, Mls encoded LADs were even stronger than the MHC encoded LADs (Festenstein, 1973). Mls determinants have been detected on the cell surfaces of ; the B lymphocytes, macrophages (Ahmed <u>et al</u>,1975), bone marrow cells (Pena-Martinez <u>et al</u>,1973). The Mls determinants located on the macrophages have a much stronger lymphocyte activating potential than the H-2 encoded determinants (Schirrmacher <u>et al</u>,1975).

The injection of Mls incompatible but H-2 compatible lymphocytes into the host's popliteal lymph node produced significant lymphadenopathy resembling a local GVH reaction observed in a parent- $F_1$  combination (Huber et al, 1973; Matossian-Rogers and Festenstein, 1978). Lethal Mls-induced alloimmune reactions have been reported (Rodey et al, 1974).

Absence of a systemic "secondary reaction" parallel to that observed in H-2 incompatible GVH reactions had been reported similarily in Mls incompatible combinations (Matossian-Rogers, 1976). In addition, absence of local "secondary reaction" e.g., the suppression of popliteal lymph node enlargement had also been described in Mls incompatible combinations (Jacobsson et al, 1975; Matossian-Rogers, 1977). The role of the Mls system in GVH reactions will no doubt require more clarification, but its involvement in - GvH reaction cannot be disputed.

## Immunoregulatory Mediators in GVH Reaction

Immunoregulatory mediators are soluble products generated, or released from lymphoid tissues during an immune reaction. There are many soluble products that can affect the various functions of the lymphoid cells. They may be alpha-globulins, mitogenic factors, specific antibodies, immunoglobulins, and soluble proteins. A general classification of the many soluble mediators of cellular immunities, according to the targets being acted upon, has been proposed recently to clarify the confusing terminology (Rocklin,1978). For example, the Migration-inhibitory-Factor (MIF) is classified as mediators whose targets are the macrophages. The Mitogenic Factors (MFs) acting on target T and B cells are classified into the group of mediators affecting the lymphocytes, etc.

Specific reports on the role of the soluble mediators within the context of GVH reactions are very deficient in literature. The aspect of GVH-induced immunodeficiency observed in animals undergoing GVH reactions has been suggested to be the result of depletion of a T cell mediator (Lapp <u>et al</u>,1974; Parthenais <u>et al</u>,1974). The suppression of the humoral responses to thymic-dependent antigens in animals undergoing GVH reactions has been postulated to be mediated indirectly by soluble mediators released from the adherent cells (Treiber and Lapp,1978).

The involvement of soluble mediators in cellular immunity has been reported in many studies. Mediators in the forms of thymic hormones have been shown to assist the development of lymphoid system throughout the life-span of an individual (Friedman, 1975). The alpha-proteins were suggested to regulate the immune system in embryonic life (Yachnin, 1975), and later on they are replaced by the phenomenon of tolerance as the immune system matures (Katz and Benacerraf, 1974). Mediators with specificities directed to targets of lymphoid cells have been suggested to assume an important role in cellular immunity reactions (David and David, 1972). As a result of inflammatory destruction in GVH reactions, self-antigens may be exposed or released, followed by the onset of autoimmune reactions. Certain C-reactive proteins have been suggested to be responsible for the inhibition of this type of autoimmune reaction (Mortensen <u>et al</u>, 1975), but the identification of C-reactive proteins in GVH-induced animals has not been septimed. <u>Mitogenic Factors as Soluble Mediators</u>

Mitogens for the stimulations of T and B lymphocytes have been extensively investigated in MLRs. In transplantation reactions, the formation of blast-cells in MLRs has been considered to be the <u>in vitro</u> correlate of the inductive phase of the GVH reaction. Splenomegaly noted in GVH reactive hosts has been suggested to be the result of the release of certain mitogenic factors during the intense inflammatory reaction.

The natural resolution of the GVH syndrome has also been hypothesized to be due to: (1) depletion of mitogenic factors, (2) the suppression of blastogenesis by adherent cells despite the presence of the mitogenic factors (Folch and Waksman, 1973). Prostaglandins may also be involved in inhibiting the mitogenic factors leading to remission of the GVH reaction (Goodwin and Bankhurst, 1977). This is supported by the recent finding that prostaglandins can induce differential effects on the proliferative responses of different types of lymphocytes, thus suggesting the inhibition of blastogenesis possibly at the molecular level of the mitogenic factors (Novogrodsky, 1979). The immunoregulatory role of the mitogenic factors cannot be ignored in fufure studies.

## Immunoglobulins and Antibodies as Soluble Mediators

The production of immunoglobulins and antibodies by the donor lymphoid cells during the course of GVH reaction has been clearly established (Elkins,1971). Specific antibodies are known to suppress the "secondary" immune response as demonstrated in the adoptive transfer experiments (Uhr and Moller,1968). The ratio of antigens to antibodies within the immune system may regulate a delicate balance between tolerance and immune response. This is shown by the fact that a certain concentration of antibodies to antigens would form complexes which can induce tolerance to subsequent antigenic challenges (Diener and Feldman,1970). In this context, the immunoglobulins and antibodies are prime candidates for the regulation of the GVH reaction.

GVH reaction-induced runting disease could be prevented by the injection of antibodies raised against the parental donor cells, into the  $F_1$  hybrid recipients (Russell,1960; Siskind <u>et al</u>,1960). The donor immunocompetent cells, during a GVH reaction, recognize and synthesize specific antibodies against the foreign antigens on the host cells, leading to the masking of host antigens and subsequent induction of tolerance. Immunocompetent cells from human volunteers became tolerant in HLA typing experiments when the antigens on the target cells were masked by the appropriate anti-HLA antibodies which were obtained from women inadvertently immunized by previous pregnancies (Brochier et al,1974)

Inhibitory immunoglobulins can also be involved in the GVH reaction. Donor lymphoid cells can be suppressed by the feedback mechanism of the inhibitory immunoglobulins resulting in the resolution of the GVH reaction. When  $F_1$  mice , which survived the initial GVH reaction, were later

irradiated, the subsided GVH syndrome reappeared. This seems to suggest that irradiation had removed the inhibitory antibodies which were presumably synthesized by the radiosensitive lymphoid cells (Schwartz and Beldotti,1963). This hypothesis is reinforced by the fact that, while sensitized lymphoid cells failed to induce popliteal lymph node hypertrophy, the depletion of antibody-forming cells from these sensitized parental lymphocytes could lead to popliteal lymph node hyperplasia in  $F_1$  recipient (Fink <u>et al</u>,1974).

The passive treatment of parental donor cells with the donor-produced anti- $F_1$  antibodies was noted to depress the GVH reactivity (Safford and Tokuda, 1970). Along the same line of experiments, adult  $F_1$  mice, when given parental IgG anti- $F_1$  antisera, and later induced with GVH reaction, would develop much reduced splenomegalies (Jose <u>et al</u>, 1974).

Apart from immunoglobulins and antibodies, other immunoregulatory mediators probably also exist in the GVH reaction. The role of the idiotypic antibodies and its immunoregulatory function in the GVH reaction will be described in a later section.

In summary, this section has described the fate of the parental donor cells within the  $F_1$  host, the GVH reaction in terms of the graft against the host, the generation of donor cytotoxic effector cells mediating cytotoxicity reactions under the influence of the H-2 complex as well as the MLs-locus, and the possible role of certain immunoregulatory mediators within the context of the graft-versus-host reaction.

#### IMMUNOLOGY OF HOST-VERSUS-GRAFT REACTION

In this section, the GVH reaction will be examined from the perspective of the host's immunocompetent cells reacting against the grafted donor cells; i.e., the host-versus-graft (HVG) reaction.

The grafting of parental immunocompetent cells into the  $F_1$  hybrid recipients produces the classical adult GVH syndrome. According to the genetics of transplantation reactions, the  $F_1$  hybrids, being genetically tolerant to parental antigens, are expected to be incapable of reacting against the grafted parental cells. Studies on the GVH reaction in past decades did not provide satisfactory explanations to the spontaneous resolution of the GVH reaction. The limited understanding to date is that the donor lymphoid cells set in motion an extremely complex sequence of events within the  $F_1$  host which requires further comprehension. Evidence has been accumulating in the last few years to indicate that the  $F_1$  host, not only actively participates in the GVH-HVG reactions, but the host may in fact terminate the GVH reaction through certain unidentified immuno-regulatory mechanisms. Significant observations concerning the perspective of the host-versus-graft reaction are described in the following.

## Proliferation Response of Host Lymphoid Tissues

The lymphoid tissue-megalies of the host, for example, splenomegaly observed during the early phase of the GVH reaction, was initially considered the result of the proliferation of the grafted donor cells because of antigenic stimulations. Many studies have since been advocating that <u>in vivo</u> hepatosplenomegaly was due to the proliferation of actually host's lymphoid tissues as a consequence of the inflammatory

response to tissue destruction (Jandl and MacDonald,1965). Parental lymphocytes have also been shown to induce proliferative granulocytopoiesis in  $F_1$  hybrid mouse spleen-explants in <u>vitro</u> (Auerbach and Globerson,1966). Using the  $T_6$  chromosome marker technique, cytogenetic analyses of the proliferating cells in host's spleen revealed that donor cell divisions rapidly declined within a week and subsequently decreased to 1% of the total by the end of the second week (Fox,1966). These early reports clearly indicated that host lymphoid organomegalies are manifestations of the proliferative responses of the host's immunocompetent cells.

The severity of experimental GVH reactions can be measured by the comparisions of individual spleen indices (Simonsen,1959). In comparing the spleen indices between normal and irradiated  $F_1$  hybrids undergoing GVH reactions, it was noted that splenomegaly in GVH-induced  $F_1$  hybrid mice could be abolished by irradiation at a dosage of 500 Rads (Hilgard,1970). The spleen indices of the irradiated  $F_1$  hosts were significantly lowered, suggesting that the proliferating host cells were radiosensitive (Singh <u>et al,1972</u>).

In the assessments of local cutaneous GVH reactions induced in irradiated guinea pigs, it has been demonstrated that as leukopenia of the host increased, the appearance of GVH skin lesions decreased (Zakarian and Billingham,1972). This is parallel to the situation where splenomegaly decreases with increasing irradiation of the  $F_1$  recipients. Similar to hepatosplenomegaly, lymph node hypertrophy was noted to be due to the proliferation of host cells originated from the bone marrow. Furthermore, in lethally irradiated  $F_1$  hosts, lymph node enlargements could be restored by syngeneic bone marrow grafts as late as 9 days after the induction of

GVH reaction (Bonney and Feldbush, 1973). In similar experiments also using popliteal lymph node assays of local GVH reactions, 75% of the cells dissociable from the injected lymph nodes were identified as host-derived, and 50% of these cells were shown to migrate to the lymph node via a hematogenous route (Grebe and Streilein, 1974).

Using specific cytotoxic alloantisera, the proportion of host cells in the popliteal lymph node in rats undergoing GVH reactions had been estimated to be as high as 90% of the total viable cells (Rolstad, 1976). The origin of the cells accumulating in the popliteal lymph nodes of mice and rats undergoing GVH reactions has also been studied by karyotype analyses, immunofluorescence and radioautography. It was shown that on the 7th day after GVH induction, the enlarged lymph nodes consist of, at the most, 2% donor cells (70% T lymphocytes, 30% B lymphocytes). During the period studied, the proliferating donor cells represented, at the most, 20% of the total cell population in the regional popliteal lymph node (Piguet and Vasalli,1977).

The proliferation of host lymphoid tissues, as manifested by hepatosplenomegaly, PLN hypertrophy, seems to provide certain immunoregulatory function for the GVH-induced  $F_1$  host. This is evidenced by the fact that lethal GVH disease induced in irradiated mice (Trentin,1956) could be abolished by reconstituting the host with syngeneic spleen cells (Bennett and Hand,1978). Resolution of a GVH reaction in the  $F_1$  host, therefore seems to be initiated as a very first step, by the proliferation of host's immunocompetent cells. As described in the following section, the proliferative  $F_1$  lymphoid cells are indeed immunoresponsive.

### The Allogeneic Effect in GVH Reaction

The GVH reaction-induced suppression of the humoral immune response has been described in a previous section (Gengozian and Owen,1958; Lawrence and Simonsen,1967; Lapp and Moller,1969). A phenomenon, known as the Allogeneic Effect, contrary to the immunodeficiency state also exists in the GVH-induced  $F_1$  host. It is a situation in which the humoral immune response to an antigen, not only is not suppressed, but is actually elicited or enhanced by the grafting of parental lymphoid cells to the  $F_1$  recipient.

This phenomenon was first described in (strain 2 x 13)  $F_1$  guinea pigs previously primed with DNP-ovalbumin and subsequently grafted with normal parental (strain 2) lymphoid cells. Such a transfer of semi-allogeneic or semi-syngeneic lymphoid cells produced a striking secondary anti-DNP antibody response in the  $F_1$  host when challenged with DNP coupled to another carrier protein unrelated to ovalbumin. The phenomenon has also been observed in rats (Katx and Benacerraf, 1972), and in hmasters (Scott and Ornellas, 1974).

Stimulation of the IgG antibody response associated with the allogeneic effect has been demonstrated in mice (Schimpl and Wecker, 1973). The allogeneic effect, in addition to enhancing the IgG and IgM responses to the DNP hapten, also stimulates subpopulations of host B cells, as evidenced by the spectrum of antibody heterogeneity identified by the isoelectrofocusing studies of host sera (Klaus and McMichael, 1974).

The allogeneic effect phenomenon was postulated to involve the activation of the  $F_1$  host antibody-forming cells as a result of the immunological attack by the parental donor cells (Katx and Paul,1971). The explanation implies that parental T cells, in the process of reacting

against the allogeneic  $F_1$  hybrid antigens, is able to stimulate the  $F_1$  hybrid B cells to produce specific anti-hapten antibodies. This hypothesis implicated the co-operation of semi-allogeneic T and B cells in the course of an immune response.

The appearance of autoantibodies in the course of GVH reaction in  $F_1$  hamsters may be a reflection of the allogeneic effect (Streilein and Stone,1973). In the same context, detection of Coomb's antibodies of host origin and an increased level of anti-SRBC antibody in mice, neonatally induced with GVH reactions, suggested the stimulation of the  $F_1$  host's B lymphocytes by the semi-allogeneic donor cells (Lindholm and Strannegard,1973).

In mice, lymphoid cells capable of inducing the allogeneic effect also proliferate in the mixed-leukocyte-reaction (Corley and Kindred, 1977). This imples that the parental T cell initiating the allogeneic effect and the parental T cell which responded to the foreign  $F_1$  histocompatibility antigens are in the same lymphocyte population. This implication has recently been confirmed by the fact that those T cells reactive to the  $F_1$ alloantigens can also mediate the allogeneic effect (Corley and Lefkovits, 1978). Most recently, allogeneic effect associated MLRs were attributed to the "hybrid-specific antigens" associated with the I region of the H-2 complex (Fathman and Augustin, 1978).

It has been hypothesized that the process of recognition by the parental T cell of the Ia antigenic determinants on the semi-allogeneic  $F_1$  hybrid B cells activated the hybrid B cells to produce IgG antibodies against the challenging hapten (Delovitch and McDevitt, 1977).

Many studies on the allogeneic effect have shown that soluble factors could be involved in the phenomenon. When allogeneic mouse spleen

cells were mixed <u>in vitro</u>, the T lymphocytes secreted a product which guided the maturation of the B lymphocytes (Ekpaha-Mensah,1971; Britton, 1972). The soluble factor involved was named "Allogeneic Effect Factor" (AEF), and was later characterized to be a highly active protein with a molecular weight in the range of 30,000 to 40,000 daltons, exhibiting some strain-specific properties (Armerding and Katz,1974). The biological active moiety of the AEF was identified to bear Ia determinants and therefore, was probably the gene products of the I region of the H-2 complex (Armerding and Sachs,1974).

Experimental evidence in support of the allogeneic effect phenomenon also serves the important purpose of implicating the immunoresponsive capacity of GVH-induced  $F_1$  lymphoid cell previously believed to be incapable of initiating an immune response. Such immunoresponsiveness in the  $F_1$  host undergoing GVH reaction may also explain the autoimmune phenomenon observed in GVH reactions.

## The Autoimmune Phenomenon in GVH Reaction

The manifestations of the autoimmune phenomenon in GVH reaction-induced hosts can be examined from the perspectives of : (1) the production of autoantibodies by the  $F_1$  host, and (2) the autoimmune histopathology observed in the GVH-induced  $F_1$  animals.

The general assumption is that in GVH reaction, helper T cell activity provided by the donor cells could stimulate the host's B cells into proliferation and production of autoantibodies (Katz and Paul,1971). This has been suggested by the allogenetic effect phenomenon described in  $F_1$  animals undergoing GVH reactions (Lindholm and Strannegard,1973; Streilein and Stone,1973; Scott and Ornellas,1974).

Repeated injections of parental lymphoid cells into the  $F_1$  hybrid mice have been shown to induce the formation of anti-nuclear antibodies, and using allotypic marker analyses, the source of these autoantibodies was identified to be the  $F_1$  host (Fialkow <u>et al</u>,1973). The polyclonal auto-antibodies detected were also found to be of the host's allotype and were reactive in other mouse strains.

Coomb's-positive autoimmune hemolytic anemias have been noted in mice undergoing GVH reactions (Gleichmann and Wilke,1972; Lindholm and Strannegard,1973). Hamsters undergoing GVH reactions were similarily prone to severe autoimmune hemolytic anemias (Streilein and Duncan,1975). The GVH process in hamsters seems to induce the production of a wide spectrum of autoantibodies which include autoantibodies against : immunoglobulins, lymphocytes, epidermal cells and erythrocytes (Streilein and Stone,1973). The anti-erythrocyte antibodies were noted to be true autoantibodies since they failed to discriminate strain specificities among different inbred lines of hamsters (Streilein and Duncan,1975).

A study has shown that during the interval in which autoantibodies were detectable, the ability of the GVH-induced  $F_1$  host to respond to a new extrinsic antigenic challenge was severly suppressed (Streilein,1972). The significance of autoantibodies in relation to the immunodeficiency states observed in GVH-induced animals remains unclear. It has recently been noted that in normal mice, a high proportion of immunoglobulin-producing lymphoid cells were actually making autoantibodies constantly (Steele and Cunningham,1978). This may lead to the speculation that the GVH process inadvertently releases the normally operating autosuppressive mechanisms within the host to the extent that autoantibodies are synthesized and released.

Apart from the production of autoantibodies, host animals undergoing GVH reactions, in  $F_1$  hybrid mice and rats for example, also display a propensity to disorders with heavy autoimmune implications. The kidneys in these GVH-induced hosts were found to contain immune complexes of host-IgG and erythrocytes, demonstrating truly autoimmune histopathology (Gleimann and Wilke, 1972).

The IgG immunoglobulin "Long-acting-thyroid-stimulator" (LATS) is known to be associated with the disorder of autoimmune thyroiditis. The possible involvement of LATS in local GVH reaction has recently been reported in experiments in which the thyroid glands of the  $F_1$  hybrid rats were injected intraparenchymally with parental lymphoid cells. On autopsy, the histopathological picture obtained was identical to that observed in a typical autoimmune thyroiditis reaction (Konetzki and Streilein, 1978).

If GVH-induced  $F_1$  hosts can produce the phenomena of the allogeneic effect and autoimmunity, they are expected to participate in the GVH reaction to the extent that "counter-antibodies" may be produced against specific antibodies synthesized as a consequence of the recognition of foreign histocompatibility antigens of the  $F_1$  host by the transplanted parental immunocompetent cells. This in fact may actually happen and the concept of anti-idiotypic antibodies is described in the following section.

## Anti-Idiotypic Antibodies in GVH Reaction

The quantity of literature related to idiotypes and the anti-idiotypic antibody is so enormous that it is impossible to cover every aspect in this brief review. The intention here is to construct a relationship between anti-idiotypic antibody and the graft-versus-host reaction, especially from the host-versus-graft perspective.

Idiotypes are considered to be antigenic markers for the antibody binding sites and were found to correlate with the primary structure of the antibody molecule (Glynn and Steward, 1977). Idiotype appears to represent the antigenicity of the antigen-binding site of an antibody molecule. Idiotypic determinants are said to be located in the Variable region of molecule (Fudenberg, 1976).

Idiotypic determinants, being antigenic, can induce the formation of anti-idiotypic antibodies. In many instances, the reaction between idiotypes and anti-idiotypic antibodies is inhibited by haptens against which the idiotypic antibodies were raised (Kabat, 1969; Glynn and Steward, 1977). Anti-idiotypic antibodies can be produced by the injection of certain specific antibodies into syngeneic animals (McKearn et.al., 1974a). Anti-idiotypic antibodies in the serum of  $F_1$  hybrid rats after the injection of parental lymphoid cells may block the receptors on other parental strain cells which are specific against the serologically defined histocompatibility antigens of the host (McKearn et.al., 1974b).

In graft-versus-host reaction, idiotypes presumably located in the Varible region of an receptor antibody molecule on the surface of the injected parental strain cells, may be able to induce anti-idiotypic antibodies. Such anti-idiotypic antibodies must logically be produced by the  $F_1$  host cells , otherwise parental cells would be producing antibodies against its own receptors. In the above context, anti-idiotypic antibodies may be speculated to be antibodies against the "recognition structure" or receptor on the parental cell.

Evidence supporting the involvement of anti-RS antibodies in GVH reactions was initially provided by the experiment in which, sera from adult F<sub>1</sub> hybrid mice, rats, and hamsters, containing antibodies against one of the parental strain as a result of immunization, specifically inhibited the recognition by immunocompetent cells of the immunizing genotype of transplantation antigens of the other parent (Ramseier and Lindenmann,1969). In other words, adult (A x B)  $F_1$  hybrid, induced into GVH reaction by the parental strain A lymphoid cells bearing  $RS_B$ , produced anti- $RS_B$  antibodies which inhibited the recognition of B antigens by the parental strain A cells. Similar results in many  $F_1$ -parent combinations in different species of animals have been reported (Ramseier,1973).

When anti-B antibodies were injected into the (A x B)  $F_1$  mice, the resulting  $F_1$  sera, presumably containing anti-RS<sub>B</sub> antibodies, were noted to inhibit local GVH reactions (Binz and Lindenmann, 1973; McKearn, 1974). Using adoptive transfer of anti-RS antisera into  $F_1$ -newborns which were neonatally injected with parental lymphoid cells, significant reduction of neonatal mortality was noted (Joller, 1972). Anti-RS antibodies, in the presence of complement, have been shown to be cytotoxic to GVH reactive parental spleen cells (Binz <u>et al</u>, 1974), and anti-idiotypic antibodies were suggested to play an important role in immunoregulation (McKearn <u>et al</u>, 1974).

Idiotypic markers have been found in the sera and urine of normal individuals (Binz and Wigzell,1975). When these idiotypic markers were presented to the same individuals in a concentrated form, the recipients were able to produce anti-idiotypic antibodies against these markers. The "Network Hypothesis" proposed that sequential antibody, anti-idiotypicantibody responses would exert a negative feedback on the immune response itself (Jerne,1973). Suppression of specific antibody productions by the anti-idiotypic antibodies have been clearly established (Hart <u>et al</u>,1972; Cosenga and Kohler,1972; Eichman,1974). Animals injected with antibody to

the idiotype of a clone of their own lymphocytes could become unresponsive to the homologous antigen (Eichmann,1975). The immunization of rats with their own lymphocytes which have been presensitized to the histocompatibility antigens of another strain of rat led to prolonged tolerance of kidney grafts from the sensitizing strain (Binz and Wigzell,1976). This type of immunosuppression by auto-produced anti-idiotypic antibodies were shown to be mediated by either antibody or thymus-derived lymphocytes (Aguet <u>et al</u>,1978).

To summarize briefly, host-versus-graft reaction has so far been examined mainly in the aspect of the humoral immune response through the description of allogeneic effect, autoimmune phenomenon, and idiotypic antibodies. The cellular immune response aspect of the host-versus-graft are described in the following sections.

## In Vitro Non-specific Cytotoxicity in GVH Reaction

The term "non-specific cytotoxicity" refers to the situation where specific sensitization of immunocompetent cells against certain H-2 histoincompatible antigens, resulted in the lysis of at least two genetically different target cells. The lysis of target cells syngeneic to the cell used in sensitization is known as "specific cytotoxicity", while the lysis of target cells which are semi-syngeneic, allogeneic, and even xenogeneic to the cells used in sensitization is known as "non-specific cytotoxicity". In case of a GVH reaction, donor parental lymphoid cells are specifically sensitized against the histoincompatible but semi-syngeneic  $F_1$  hybrid cells. The resultant lysis of target cells allogeneic to the donor cells is the classical "specific cytotoxicity", and the lysis of target cells syngeneic to the  $F_1$  cells represents the "non-specific cytotoxicity".

Specificity has been the hallmark of immunological reactions, however, the simultaneous existence of both specific and non-specific cytotoxicity reactions has been documented in many reports. For example, in the presence of specific antigen, lymph node cells from inbred rats with delayed hypersensitivity to bovine gamma-globulins, produced destruction of monolayers of allogeneic fibroblasts (Ruddle and Waksman,1968). When human peripheral blood lymphocytes were sensitized to soluble antigens e.g., PPD, non-specific lysis of allogeneic and xenogeneic target cells have also been reported (Butterworth,1973).

Using fibroblasts as target cells, lymphoid cells previously sensitized <u>in vitro</u>, in addition to showing a specific cytotoxicity reaction against the sensitizing genotype, also demonstrated a weaker cytotoxic effect on fibroblasts carrying different H-2 antigens. Such a non-specific effect was observed even when the "bystander" cells were syngeneic to the cytotoxic lymphocytes (Svedmyr and Hodes, 1970). In rats, lymph node cells sensitized <u>in vitro</u> against allogeneic or xenogeneic fibroblasts were shown to be cytotoxic to syngeneic target cells (Cohen and Feldman, 1970).

The observation of <u>in vitro</u> non-specific cytotoxicity in a systemic GVH reaction was initially reported in  $F_1$  hybrid mice. Lymphoid cells, taken from the spleens of the GVH-induced  $F_1$  mice, were noted to exert a non-specific cytotoxic effect on syngeneic, allogeneic and even xenogeneic target cells (Singh <u>et al</u>,1972). This type of non-specific cytotoxicity was attributed to the  $F_1$  host's lymphoid cells, and supporting evidence was provided by the following experiments. Strain B parental spleen cells were injected into (A x B)  $F_1$  hybrids for the induction of GVH reactions, and non-specific cytotoxicity was detected by the lysis of the B genotype

target cells. Antisera with specificity against the A genotype cells were raised in strain B animals. The pooled sera, in the presence of complement, were cytotoxic to any cells carrying the A genotype, including the (A x B)  $F_1$ hybrid cells, but not toxic to cells carrying the B genotypes, i.e., the parental strain B cells. When the GVH-induced (A x B)  $F_1$  lymphoid cells were treated with these anti-A sera plus complement, non-specific cytotoxic reaction on the B genotype target cells were abolished, thus indicating the contribution of non-specific cytotoxicity by the  $F_1$  lymphoid cells (Singh et al,1972). Macrophage target cells were found to be resistant to the non-specific cytotoxicity reaction (Singh <u>et al</u>,1973). These observations were later confirmed in similar studies using the microcytotoxicity assay technique in different parent- $F_1$  combinations (Fung and Sabbadini,1976).

A non-specific cytotoxicity reaction had been implicated to involve a population of lymphoid cells which were found to be theta-negative (Grant and Alexander, 1974). The reaction appeared to be mediated by a soluble factor which would be directly cytotoxic to the target cells even in the absence of the activated effector cells (Distasio <u>et al</u>, 1978).

The detection of non-specific cytotoxicity in  $F_1$  hosts induced with GVH reactions suggested the active participation of  $F_1$  lymphoid cells during the course of the GVH reaction. Such  $F_1$ -host-versus-graft reaction are described more fully in the following sections.

# The Hybrid Resistance Phenomenon in GVH Reaction

It has been generally accepted that antigens of the Major Histocompatibility Complex are co-dominantly expressed, and on the lymphoid cells of the  $F_1$  generation, serologically detectable antigens of both parents are manifested. However, evidence has been accumulating to suggest

that intra-allelic interactions at the gene level may be more common than generally assumed, and the inheritance of certain MHC components may not be strictly co-dominant. This would result in the loss of certain parental-specific gene-products and the appearance of hybrid-specific determinants on the heterozygous  $F_1$  cells. Such an assumption was first made when the failure of proliferation of certain parental cells in supposedly tolerant  $F_1$  hybrid mice was noted (Cudkowicz and Stimpfling,1964), and later echoed by other investigators (Goodman and Bosma,1967; Claman and Hayes,1969).

This non-acceptance of parental lymphoid cells by the  $F_1$  hosts was termed "Hybrid Resistance", and the existence of a "Hybrid Histocompatibility" (Hh) locus within the H-2 region, linkage group IX of the mouse had been suggested (Cudkowicz,1968). The parental strain was postulated to possess an antigen determined by the homozygous Hh-la/Hh-la gene which was not expressed in the heterozygous  $F_1$  hybrids. Hybrid resistance therefore, was attributed to the absence of the parental homozygous antigen(s) which are controlled by the MHC linked Hh-l gene, in the  $F_1$  hybrids (Cudkowicz and Bennett,1971). The Hh gene (currently = Hemopoietic histocompatibility) was designated as such because of its expression in the cells of the lympho-myeloid complex and also because of the barrier posed to hemopoietic cell transfers in parent- $F_1$  and allogenetic combinations. In mice, the host responded to the Hh gene-products in ways different from that of other MHC coded, co-dominantly inherited antigens (Shearer and Schmitt-Verhulst,1977).

The hybrid resistance phenomenon had been shown to be resistent to irradiation treatments (Cudkowicz,1971; Lotzova and Cudkowicz,1974). In genetic studies of bone marrow transplantations, it was noted that both irradiated (C57BL/6 x AKR)  $F_1$  and non-irradiated (DBA/2 x AKR)  $F_1$  hybrids

were resistent to transplants of spontaneous lymphomas of AKR parental donor origin (Gallagher and Trentin, 1976).

Hybrid resistance had also been demonstrated to be ; thymus independent (Cudkowicz and Bennett, 1971); suppressible by anti-macrophage agents (Cudkowicz, 1975); and genetically mapped in or near the D region (H-2D-Hh-1) of the murine MHC (Cudkowicz and Lotzova, 1973). In the case of (129 x CBA)  $F_1$  mice (strain 129 haplotype H-2<sup>b</sup> x strain CBA haplotype H-2<sup>k</sup>) injected with parental CBA bone marrow cells, the  $F_1$  recipients rejected the H-2<sup>k</sup> marrow graft in the usual manner and the genetic control of this hybrid resistance phenomenon had been mapped to the H-2<sup>k</sup> region in this particular situation (Cudkowicz and Warner, 1979). It seems, therefore, both H-2<sup>d</sup> and H-2<sup>k</sup> regions may control the hybrid resistance phenomenon.

Observations resembling hybrid resistance in which hemopoietic cells from parental donors failed to grow in heavily irradiated hosts have also been described in the dogs (Rapaport <u>et al</u>,1972; Rapaport <u>et al</u>,1973), and possibly also in humans (Van Bekkum,1975; L'Esperance et al,1975).

The phenomenon of hybrid resistance postulated the activity of  $F_1$  hybrid cells against the homozygous parental antigen. Such hypothesis implicated the existence of  $F_1$ -host-versus-graft reaction outside the GVH reaction, which in fact, gives strong evidence that the  $F_1$  immunocompetent cells are not really genetically tolerant to the parental donor cells. In the following section, significant  $F_1$  versus parent reactivities will be described.

# Immunoreactivity of F<sub>1</sub> Hybrid against Parent

According to the laws of transplantation reactions, the  $F_1$  lymphoid cells from inbred mice, are genetically incapable of reacting

against either one of the two parental genotypes. This assumption is being challenged because recent evidence of  $F_1$  immunocompetent cells active against parental histocompatibility differences have surfaced.

Parental cells grafted into  $F_1$  hybrids were first noted to proliferate very poorly in the  $F_1$  host (Cudkowicz and Bennett, 1971). Prior injection with subclinical doses of parental strain (A) cells into (A/B)  $F_1$  rats have shown to induce a state of specific resistance to local GVH reactions. Parental T-cells depleted of specific alloreactivity to the host alloantigens failed to induce specific local GVH resistance (Woodland and Wilson, 1977).

Specific resistance to systemic GVH reaction had also been demonstrated by the injection of  $F_1$  animals with subclinical doses of parental lymphocytes. This resistance is ; radioinsensitive, transferable to syngeneic  $F_1$  hosts adoptively, and reflects a host-T-cell mediated immune response to MHC receptors (A  $\approx$  B) on the donor strain (A) T cells. (Bellgrau and Wilson, 1978). This immunity had also been shown to be effective for  $\approx$  B receptors on third party (e.g., C.D.E...) T cells (Bellgrau and Wilson, 1979).

 $F_1$  spleen cells, not only were found capable of inhibiting the growth of parental bone marrow grafts, but could also generate <u>in vitro</u> cytotoxic activity specifically against parental target cells (Shearer,1975). Similar studies showed that cells from (C57BL/6 x DBA/2)  $F_1$  hybrids could develop a primary <u>in vitro</u> cytotoxic response to C57BL/6 target cells (Shearer et al,1976). When (AKR x DBA/2)  $F_1$  lymphoid cells were mixed with parental AKR lymphocytes <u>in vitro</u>, Thy-1 positive effector cells specifically cytotoxic against parental AKR target cells were generated (Schmitt-Verhulst and Zata,1977).

The  $F_1$  anti-parent cytotoxicity reaction was noted to develop later than the immune response against alloantigens. Selective abolition of the  $F_1$  anti-parent cytotoxicity could be achieved without abrogation of the reactivity against alloantigens. This suggested that two different mechanisms may be responsible for the two reactions (Shearer <u>et al</u>,1976), and the  $F_1$  anti-parent reaction was suggested to be mediated by the T cells (Ishikawa and Dutton,1979).

Involvement of the MHC in this type of  $F_1$  anti-parent reaction has been investigated recently using heterozygous  $F_1$  spleen cells cultured with homologous stimulator cells from the parent. Specific anti-parent cytolytic effects were noted to be coded for, or regulated by the H-2K-Hh-3 region of the MHC. The K end of the H-2 complex seems to control the  $F_1$  anti-parental H-2<sup>k</sup> cell mediated lysis (CML), and the D end seems to control those of  $F_1$  anti-parent H-2<sup>b</sup> CML (Warner and Cudkowicz,1979).

The second type of evidence demonstrating the  $F_1$  anti-parent activity was derived from MLR studies. Adult (C3H x CBA)  $F_1$  lymphoid cells were injected into the parental CBA hosts, and the lymphoid cells from these CBA animals were later found incapable of reacting against C3H cells in the one-way MLR reaction in which the stimulator cells were irradiated C3H cells. It was postulated that the  $F_1$  donor lymphocytes inhibited the T cells of the CBA parent from proliferation during the one-way mixedleukocyte-reaction (Lilliehook <u>et al</u>,1978).

In addition, parental CBA lymphocytes were found incapable of  $\underline{\text{in vivo}}$  proliferation in (C3H x CBA)  $F_1$  hosts which were previously injected with CBA spleen cells and later irradiated before the transfer of new CBA parental cells. This implied that the  $F_1$  hybrids could become immunized against the parental CBA cells and the inhibitory mechanism was probably radioresistent (Lilliehook and Blomgren, 1978).

The injection of (C3H x CBA)  $F_1$  lymphocytes into irradiated parental CBA hosts resulted in rapid proliferation of the  $F_1$  cells in the parental spleen. When these proliferating  $F_1$  cells were transferred to new non-irradiated CBA parental hosts, they continued to proliferate. But when they were injected into syngeneic (C3H x CBA)  $F_1$  hybrids, proliferation ceased abruptly (Blomgren and Lilliehook,1978). These observations may be interpreted as follows: the (C3H x CBA)  $F_1$  lymphoid cells, during their transit through the irradiated CBA hosts, became immunized against the parental CBA antigens. When they were injected into new CBA hosts, they continued to proliferate as in a secondary immune response reaction, but when they were exposed to the syngeneic  $F_1$  hosts, the parental CBA antigens on the  $F_1$  cells were probably inaccessible, and proliferation arrested.

Recently, a syndrome known as the "Host-versus-graft disease" has been described. The HVG disease is obtained by the injection of  $F_1$ hybrid spleen cells into parental newborn mice perinatally, resulting in a fatal complex of lesions. Principal features of the syndrome included: thrombocytopenia, intestinal hemorrhage (Hard and Kullgren, 1970), hyperfibrinogenemia (Smith <u>et al</u>, 1977), and disseminated intravascular coagulation (Hard and Still, 1975). Death from acute HVG disease was attributed to the rapid formation of immune complexes causing severe glomerulopathies (Hard and Moncure, 1973). Lymphocyte depletions in spleen and lymph nodes have also been reported (Simpson et al, 1974; Cornelius, 1978).

Mice with HVG disease usually developed severe T cell mediated immunodeficiency by about 3 to 4 weeks of age, and sequential pathological studies revealed that the thymic dependent portions of lymphoid organs were severely depleted of small lymphocytes (Hard and Campbell, 1979); and yet, splenomegaly is characteristic of HVG diseases (Hard and Kullgren, 1970).

The type of lymphoid cells proliferating in the spleen accounting for the splenomegaly is unknown. It is tempting to speculate that the injected donor cells being reactive against parental antigens, proliferate in the host-parent to give splenomegaly. The significance of these reports is that the fatal syndrome induced by HVG disease is a reverse image of the GVH-induced runting disease in newborn mice.

In summary, this section has reviewed the many interesting aspects of the host participating in the GVH reaction; beginning with the observations of proliferation of host lymphoid cells in response to the injection of parental immunocompetent cells, the production of humoral immune responses by the  $F_1$  hybrid cells manifested as the allogeneic effect, and the detection of autoimmune as well as anti-idiotypic antibodies.

In cellular immune responses, the host-versus-graft reaction is probably manifested by the phenomenon of non-specific cytotoxicity, hybrid resistance, and  $F_1$  anti-parent reactivity. All these reactions may very well be the contributing parts of the total process of the GVH reaction.

#### RATIONALE

The injection of parental immunocompetent lymphoid cells into the  $F_1$  hybrid animals results in the sensitization of the donor cells against the host's histoincompatible antigens. This initiates a series of complex interactions between the donor and host cells, and the manifestations of the GVH reaction include: the runting syndrome (Simonsen,1957); the proliferation of the reticuloendothelial tissues (Weiss <u>et al</u>.1957); the increased phagocytic activities (Howard <u>et al</u>,1961); and deficiencies in both humoral and cell-mediated immune responses (Lapp and Moller,1969).

The manifestations of GVH reaction are usually followed by spontaneous remission of the reaction (Streilein and Billingham,1970a; Grebe and Streilein,1974; Grebe and Streilein,1976; Wolters and Benner, 1978), and this interesting aspect of the GVH reaction has not been satisfactorily explained. To this end, different mechanisms have been proposed. These include: the induction of tolerance in the donor cells towards host antigens, the "allergic cell death" of the grafted donor cells overwhelmed by the exposure to the enormous amount of host antigens, the production of "blocking antibodies", "anti-idiotypic antibodies", and the involvement of the phenomenon of "hybrid resistance". But none of these even came close to suggest that the genetically tolerant  $F_1$  host immunocompetent cells could become activated in a GVH reaction resulting in the mediation of a host-versus-graft reaction.

The pathological changes seen in the  $F_1$  host animal in the GVH reaction is generally believed to be the result of immunological attacks of host tissues by the activated donor lymphoid cells, as evidenced by the

production of donor effector cells mediating "specific cytotoxicity".

Cell-mediated cytotoxicity reactions have generally been observed to be immunologically specific (Allison,1971). However, immunologically "non-specific cytotoxicity" reactions have also been reported by many authors, in which, allogeneic, semi-syngeneic, and even xenogeneic target cells were also affected (Berke <u>et al</u>,1972; Binet <u>et al</u>,1962; Singh <u>et al</u>,1971). Experiments involving inhibition of cytotoxicity with specific alloantisera have indicated that this type of GVH-induced non-specific cytotoxicity was due to the  $F_1$  host cells (Singh <u>et al</u>,1972). By contrast, effector cells from lethally irradiated  $F_1$  animals undergoing GVH reactions lysed specifically only target cells of the genotype against which the donor cells have been sensitized, while those from non-irradiated hosts exhibited non-specific cytotoxicity reactions (Singh <u>et al</u>,1973; Greenberg <u>et al</u>,1973).

These investigations indicated that different populations of cells were responsible for the two types of cell-mediated cytotoxicity reactions. Specific cytotoxicity is due to the donor immunocompetent cells reacting against the host, and non-specific cytotoxicity reaction is due to immunocompetent cells of  $F_1$  host origin. The cellular nature of the effector cells involved in this type of host cell mediated non-specific cytotoxicity have not been determined in previous studies.

The mechanisms operating in a GVH reaction remain a mystery to the immunologists. Despite a genetically tolerant environment, the parental donor cells somehow are regulated as a consequence of the inflammatory reaction, and the host animal eventually recovers from the immunological attack spontaneously. This is a significant challenge to the

57

genetic dogma of transplantation tolerance. The various possible immunoregulatory mechanisms involved, no doubt are complex and multiple, and no coherent hypothesis which can explain the manifestations, as well as the termination of the GVH reaction, exists to date. To this end, the present study attempts to elucidate the underlying mechanisms of the semi-syngeneic cytotoxicity reaction and to relate it in total perspective to the understanding of the immunological phenomenon of graft-versus-host, as well as the host-versus-graft reactions.

The experimental designs and the results of the present thesis will be presented in three separate sections.

Experiments in the first section examined the various parameters involved in the GVH-induced semi-syngeneic cytotoxicity reaction; e.g., route of induction, anatomical distribution of the  $F_1$  effector cells, kinetics of the cytotoxicity reaction, etc.

The second section consists of experiments designed to identify the nature of  $F_1$  effector cells in semi-syngeneic cytotoxicity, the <u>in vitro</u> activation of the  $F_1$  effector cells, the kinetics of the activation process.

In the last section, the <u>in vivo</u> aspect of the GVH reaction were examined from the perspectives of : <u>in vivo</u> activation of the  $F_1$  cells, the role of the GVH activated  $F_1$  cells in the <u>in vivo</u> GVH reaction, and the involvement of the  $F_1$  immunocompetent cells in the host versus graft reaction. .58

## EXPERIMENTAL DESIGNS AND RESULTS

The various experimental designs and results of this report are presented in three individual sections. The first section includes studies on the various parameters of the  $F_1$  host cell mediated semi-syngeneic cytotoxicity reaction. The second section consists of experiments to identify the nature of the  $F_1$  host effector cells as well as their <u>in vitro</u> roles in the cytotoxicity reaction. The last section describes the involvement of the  $F_1$  host cells in the phenomenon of natural resolution of the GVH reaction. The underlying mechanism of such a phenomenon will be examined in the section of Discussion.

# PARAMETERS OF SEMI-SYNGENEIC CYTOTOXICITY

A GVH reaction classically occurs when immunocompetent cells are grafted into histoincompatible but genetically tolerant recipients. The  $F_1$  hybrid generation is considered immunologically unresponsive to the histocompatibility antigens of both parents and is theoretically incapable of reacting against the transplanted parental donor lymphoid cells. The specificity of the cytotoxicity reaction however, is not absolute. In our laboratory, a "non-specific" cytotoxicity reaction observed in GVH-induced hosts, producing <u>in vitro</u> lysis of target cells bearing the parental H-2 genotype had been reported to be mediated by the  $F_1$  host lymphoid cells (Singh <u>et al</u>,1972; 1973). In this first section of experiments, the many parameters involved in this  $F_1$  host mediated semi-syngeneic cytotoxicity reaction will be examined.
#### Induction of GVH Reactions in Mice

Graft-versus-host reactions were induced in mice by injecting intraperitoneally  $1.5 \times 10^8$  parental spleen cells into different groups of individual F<sub>1</sub> hybrids on day zero.

In order to obtain a high yield of peritoneal exudate cells (PEC), the animals were injected with 1.5 ml of a 6% sodium caseinate solution 3 days before harvesting the PECs from the peritoneal cavities using Alsever solution washings. Differential staining of these PECs demonstrated that they consisted mainly of macrophages and mononuclear cells. After centrifugation at 250 G for 3 minutes 1X, macrophages were found to constitute above 90% of total cells. The PECs when harvested on the ninth day from the peritoneal cavities of these GVH-induced animals would constitute the effector cell population.

Spleen cells from these GVH-induced  $F_1$  recipients were also used as effector cells in some experiments. Control effector cells were obtained from  $F_1$  syngeneic animals injected with syngeneic  $F_1$ spleen cells replacing the parental spleen cells.



#### Cell Mediated Cytotoxicity Assay

This CMC test is done by mixing, in the wells of the Microcytotoxicity test-plates (Microntest II, Falcon Plastics), a 0.1 ml volume of a suspension of effector cells (1 to  $2 \times 10^6$  cells/0.1 ml) with a 0.1 ml volume of a suspension of <sup>51</sup>Cr-labelled target cells (1 to  $2 \times 10^4$  cells/0.1 ml). The test-plates were sealed with the plastic covers and were incubated at  $37^{\circ}$ C for 16 hours. After incubation, the plates were centrifuged at 250 G for 10 minutes to sediment the effector and the lysed target cells. A 0.1 ml volume of the cell-free supernatants were aspirated from each individual wells and transferred to separate test-tubes which were counted in an automatic gamma-ray counter (Chicago Nuclear). The counts per minute of each test-tubes were recorded.

The corrected percent lysis of the target cells was obtained according to the following formula :

Corrected Percent = Cytotoxicity = CPM<sub>Exp</sub>. - CPM<sub>Cont</sub>. x 100 CPM<sub>Tot</sub>. - CPM<sub>Cont</sub>.

where : CPM = counts per minute of  ${}^{51}$ Chromium radioactivity  $CPM_{Exp}$  = mean CPM in supernatants of the experimental wells  $CPM_{Cont.}$  = mean CPM in supernatants of the control wells  $CPM_{Tot.}$  = mean CPM of maximal or 100% target cell lysis

The experimental wells contained GVH-activated  $F_1$  spleen or peritoneal effector cells obtained from the  $F_1$  hosts previously injected with parental spleen cells for the induction of GVH reactions.

The control wells contained  $F_1$  spleen or peritoneal exudate cells obtained from the  $F_1$  animals previously injected with syngeneic  $F_1$ spleen cells just as in the induction of GVH reactions. These syngeneic  $F_1$  cells were used as controls in various experiments to eliminate the background or truly non-specific target cell lysis.

Approximately 3 ml of the <sup>51</sup>Cr-labelled target cells used in each individual experiments was transferred to a test-tube which was put through 3 cycles of alternate freezing anf thawing to obtain maximal or 100% lysis of the labelled target cells. A 0.1 ml volume of the cellfree supernatant was aspirated into different test-tubes, and the CPMs of 6 replicates were obtained for each experiment to give a mean CPM.

Various experimental conditions as applied in the CMC assays will be described accordingly in each individual experiments.

## Radioisotope for Target Cell Labelling

Chromium-51 ( $^{51}$ Cr) isotope with specific activity between 80 to 150 uc/gm was obtained from Atomic Energy of Canada Ltd., Ottawa, Ontario, as Na<sub>2</sub>CrO<sub>4</sub> form in NaOH solution. The solution containing the isotope was neutralized with HCl and diluted to the concentration of 1.0 uc/ml. Radioactivity was determined by a well-type gamma-rays scintillation counter (Nuclear Chicago Corporation, Des Plaines, Illinois).

#### Labelling of Target Cells

Target cell suspensions in one ml volumes containing  $1 \times 10^7$  target cells per ml were suspended in RPMI 1640 without fetal calf sera and incubated with 80 to 100 uc of radioactive <sup>51</sup>Cr isotope in 12 x 75 mm plastic tissue culture tubes (Falcon Plastics) at 37°C for 30 minutes

agitated every 10 minute intervals. After incubation, the target cells were washed 3X in HBSS at  $20^{\circ}$ C, followed by 2X RMPI 1640 without fetal calf serum and antibiotics also at  $20^{\circ}$ C, and then resuspended in RPMI 1640 medium adjusted to 1 x  $10^{5}$  taget cells per ml.volume. These labelled cells were used as target cells in CMC assays.

# Semi-syngeneic Cytotoxicity in GVH Reactions

Inbred strain mice of approximately six to eight weeks old from established lines were obtained from the Jackson Laboratory, Bar Harbor, Maine, U.S.A. Parental donors included female strains of A/J  $(H-2^{a} = H-2^{k}/H-2^{d})$ , C57BL/6 $(H-2^{b} = H-2^{b}/H-2^{b})$ , DBA/2J $(H-2^{d} = H-2^{d}/H-2^{d})$ and C3H/HeJ $(H-2^{k} = H-2^{k}/H-2^{k})$ . The F<sub>1</sub> hybrid recipients included male strains of B6AF<sub>1</sub>(C57BL/6 x A/J = H-2<sup>b</sup> x H-2<sup>k/d</sup>), B6D2F<sub>1</sub>(C57BL/6 x DBA/2J = H-2<sup>b</sup> x H-2<sup>d</sup>), and C3D2F<sub>1</sub>(C3H/HeJ x DBA/2J = H-2<sup>k</sup> x H-2<sup>d</sup>).

For the induction of GVH reactions in different strains of parent- $F_1$  combinations, parental spleen cells from various strains of the A/J, C3H/HeJ, and DBA/2 female mice were injected intraperitoneally into the appropriate  $F_1$  hybrids of B6AF<sub>1</sub>, C3D2F<sub>1</sub>, and B6D2F<sub>1</sub> recipients respectively. Different strains of target cells bearing the respective parental donor H-2 genotypes which were in effect semi-syngeneic to the  $F_1$  host cells, were used within each parent- $F_1$  combination in CMC assays. The results of the respective semi-syngeneic cytotoxicity reactions are shown in Table I.

Significant semi-syngeneic target cell lysis reactions were obtained with peritoneal exudate cells and spleen cells in all of the three parent- $F_1$  combinations tested. The  $F_1$  peritoneal exudate cells were consistently more effective than the spleen cells in eliciting the semi-syngeneic cytotoxicity reaction.

Table I - Semi-syngeneic Cytotoxicity Reactions in Different Combinations of Parental Donors and F<sub>1</sub> Recipients

| Donor   | Recipient          | Effector<br>Cells | Target<br>Cells | Corrected<br>Lysis* |
|---------|--------------------|-------------------|-----------------|---------------------|
| A/J     | B6AF <sub>1</sub>  | Spleen            | Sarcoma I       | 14.59 <u>+</u> 0.33 |
|         |                    | PEC               | 11              | 39.31 <u>+</u> 2.12 |
|         |                    |                   |                 |                     |
| C3H/HeJ | C3D2F <sub>1</sub> | Spleen            | L929            | 21.27 <u>+</u> 1.62 |
|         |                    | PEC               | 11              | 42.24 <u>+</u> 1.04 |
|         |                    |                   |                 |                     |
| DBA/2   | B6D2F <sub>1</sub> | Spleen            | P815            | 18.25 <u>+</u> 1.07 |
|         |                    | PEC               | "               | 37.74 <u>+</u> 0.64 |
|         |                    |                   |                 |                     |

\* Mean percent corrected lysis of target cells induced by pooled effector cells from groups of 10 animals  $\pm$  SE in 4 replicates

64

# Activation of F<sub>1</sub> Host Effector Cells

Parental donor mice were sacrificed by cervical dislocation and the spleens were removed, dissected into fragments then teased into cell suspension using two needles in tissue culture medium RPMI 1640 buffered with HEPES, supplemented with antibiotics as previously described. The cells in the suspension were filtered through a sterile (pressurized steam sterilization) stainless steel mesh ( gauge 200 ) screen and collected in sterile plastic 12 x 75 mm plastic tissue culture tubes (Falcon Plastics). The cells were then washed 3X with HBSS or RPMI 1640 and refiltered through other unused stainless steel mesh screen twice. The spleen cells were resuspended in RPMI 1640 in various required concentration for later experimental uses. 65

Adult parental female A/J spleen cells (1 x  $10^8$ /recipient) were injected intravenously and/or intraperitoneally into three separate groups of 25 male B6AF<sub>1</sub> recipients in the absence of peritoneal exudate cell stimulants. The <u>in vitro</u> cytotoxicity of these GVH-induced F<sub>1</sub> host lymphoid cells on parental donor H-2 genotype target cells were examined eight days after the induction of GVH reaction. The release of <sup>51</sup>Cr radioactive labels from the target cells was determined after incubating the F<sub>1</sub> peritoneal exudate effector cells with the parental genotype target cells at 37°C for 16 hours as previously described. The results as shown in TableII indicated that the intraperitoneal route of induction of GVH reactions in the F<sub>1</sub> hybrids was the most significant in determining the degree of <u>in vitro</u> semi-syngeneic cytotoxicity. The F<sub>1</sub> host peritoneal exudate cells were more efficient in producing target cell lysis than the spleen cells from the same group of GVH-induced animals.

### Table II. Activation of Effector Cell Populations using various

Routes of Induction of GVH Reaction

| GVH<br>Induction<br>Routes      | Effector<br>Cells                        | Target<br>Cells | Corrected<br>Lysis ***                     |
|---------------------------------|------------------------------------------|-----------------|--------------------------------------------|
| Intravenous                     | Spleen <sup>*</sup><br>PEC <sup>**</sup> | Sarcoma I       | 1.71 <u>+</u> 0.77<br>9.31 <u>+</u> 1.73   |
| Intraperitoneal                 | Spleen<br>PEC                            | Sarcoma I       | $7.28 \pm 0.35$<br>$36.56 \pm 1.95$        |
| Intravenous and intraperitoneal | Spleen<br>PEC                            | Sarcoma I       | 14.59 <u>+</u> 1.02<br>29.29 <u>+</u> 2.67 |

\* Spleen = Spleen cells from  $B6AF_1$  8 days after transplantation of A/J parental spleen cells.

\*\* PEC = Peritoneal exudate cells from B6AF<sub>1</sub> 8 days after transplantation of A/J parental spleen cells.

66

## Sensitivity of Target Cells in Semi-syngeneic Cytotoxicity

Male  $B6AF_1$  mice were grafted intraperitoneally with 1 x 10<sup>8</sup> of A/J parental spleen cells, and 5 days later injected with 1.5 ml of the 6% sterile sodium caseinate solution also intraperitoneally. Using the spleen cells and peritoneal exudate cells from these GVH-induced  $B6AF_1$  hybrids as effector cells, semi-syngeneic cytotoxicity reactions were compared among the three different types of target cells possessing, at least the (H-2<sup>k</sup>) genotype of the parental donor cells.

Four different target cells were used in the <u>in</u> <u>vitro</u> assay of host cell mediated semi-syngeneic cytotoxicity reactions.

(1) L-929 Cells of C3H origin were obtained from Microbiologic Associates, Bethesda, Maryland. The cells were grown in monolayers and incubated in tissue culture chambers at  $37^{\circ}$ C in the absence of carbon dioxide. Cell culture procedures were done in sterile chambers under the strict sterile procedure guide lines as in microbiological cultures. A treatment of the monolayer with a 0.25% trypsin solution in Madin-Darby's solution at  $37^{\circ}$ C for 10 to 20 minutes resulted in liberation of the cells into a suspension for target cells.

(2) P815x2 (P815) Mastocytoma) cells were grown in ascites forms in mice of strain DBA/2J  $(H-2^d/H-2^d)$  and they bear the same  $H-2^d$ genotype as the host of the tumor cells. The tumor cells were harvested intraperitoneally six to eight days after the injection of  $1 \times 10^6$  cells per animal. After centrifugal separation of the tumor cells from the ascitic fluid, the cells were washed in HBSS 3X and then suspended in hypotonic solution (1 volume DS diluted with 6 volumes of double-distilled water) for lysis of the red blood cells. After 30 seconds in this

solution, isotonicity was immediately restored by adding the appropriate volume of a 5% (weight to volume) NaCl solution and the tumor cells removed from the solution by centrifugation, then suspended in tissue culture medium RPMI 1640 as described previously.

(3)Sarcoma I (SaI) tumor target cells were obtained from the Jackson laboratory and were grown in the ascitic fluid in peritoneal cavity of strain A/J mice. The tumor cells were harvested 4 to 6 days after the injection of  $1 \times 10^6$  tumor cells per animal. The harvested tumor cells were prepared in the same procedure as described for the P815 tumor cells from strain DBA/2J animals. The Sarcoma I target cells bear the same H-2<sup>a</sup>(H-2<sup>k</sup>/H-2<sup>d</sup>) genotype as the host A/J recipients.

(4) Macrophage target cells were harvested from the peritoneal cavities of mice 3 days after intraperitoneal injection of 1.5ml of a 3.55 gram-percent autoclaved Dextran (molecular weight range of 5 to 40 x  $10^{6}$ ) solution. The cells were collected in Alsever's solution, washed 3X in HBSS, 2X in RPMI without fetal calf sera. The cells were then suspended in the supplemented RPMI 1640 tissue culture medium to be used as target cells.

As shown in Table III, it can be seen that significant differences in the susceptibility of the same target cell to cytolysis by the spleen and peritoneal exudate cells from the same group of  $F_1$  hosts were detected. Tissue-culture propagated L929 target cells were noted to be the most efficient target cells for such experimental CMC assays, while normal macrophages were noted to be the least efficient target cells. The A/J genotype Sarcoma I tumor cells were intermediate between the L929 cells and the A/J macrophages as target cells in the semi-syngeneic cytotoxicity assays.

-68

#### Sensitivity of Taget Cells in Semi-syngeneic Cytotoxicity Table III -

Reaction of F Hybrids Undergoing GVH Reactions \*\*

| Target                                     | Effector      | Corrected                                  |
|--------------------------------------------|---------------|--------------------------------------------|
| Cells                                      | Cells         | Lysis *                                    |
| L929 (H-2 <sup>k</sup> /H-2 <sup>k</sup> ) | Spleen<br>PEC | 13.50 <u>+</u> 1.02<br>39.28 <u>+</u> 2.07 |
| Sarcoma I $(H-2^{a})$                      | Spleen        | $10.82 \pm 1.77$                           |
| = $(H-2^{k}/H-2^{d})$                      | PEC           | 23.31 ± 3.12                               |
| Macrophage $(H-2^{a})$                     | Spleen        | $-1.90 \pm 0.79$                           |
| = $(H-2^{k}/H-2^{d})$                      | PEC           | 9.31 ± 1.73                                |

\* Mean percent corrected lysis of target cells by pooled effector cells from groups of 10 animals + SE in four replicates.

\*\*

GVH Reaction Combination

Parental donor cell genotype = A/J  $(H-2^{a}) = (H-2^{k}/H-2^{d})$  $F_1$  hybrid genotype =  $B6AF_1 = (H-2^k/H-2^d) \times (H-2^b/H-2^b)$ 

## Kinetics of Semi-syngeneic Cytotoxicity Reactions

The relationship between the degree of <u>in vitro</u> semisyngeneic cytotoxicity and the interval of incubation of the effector and target cells was studied using two different effector to target cells ratios under identical experimental conditions.

Parental C3H/HeJ spleen cells were used to induced the GVH reactions in  $C3D2F_1$  hybrids which were later stimulated by the 6% sodium caseinate solution. At different intervals of incubation in the CMC assays, the semi-syngeneic cytotoxicities were measured. As shown in Figure 2, the degree of semi-syngeneic cytotoxicity was directly proportional to; firstly, the quantity of effector cell present, and secondly, the interval of the in vitro incubation of the  $F_1$  host effector cells with the semi-syngeneic target cells. These results demonstrated a dose-response type of relationship between the interval of incubation and the degree of cytotoxicity.



### Cytological Study of Kinetics of Semi-syngeneic Cytotoxicity

<u>In vitro</u> semi-syngeneic cytotoxicity in a GVH reaction has been demonstrated by the CMC assay in previous experiments. Evidence is presented here with microphotographs taken at different intervals during the process of <u>in vitro</u> cell mediated cytolysis to substantiate the observations in the CMC assays using <sup>51</sup>Cr-labelled target cells.

The L929 cells were transplanted from the tissue-culture bottles into the individual wells of the microcytotoxicity test plates as in the CMC assay. Each well contained  $1 \times 10^4$  L929 target cells, and they were incubated at  $37^{\circ}$ C for 1 hour to allow the formation of a target cell monolayer.  $C3D2F_1$  mice were injected with parental C3H/HeJ spleen cells for the induction of GVH reactions. The peritoneal exudate cells from these  $C3D2F_1$  mice were added to the monolayer of target cells in the final ratio of 100 effector cells to 1 target cell. At three-hourly intervals, the plates were examined and microphotographs were taken with an Olympus microscope. The qualitative destruction of target cells are shown in the following pages. Target cells could be distinguished from the effector cells by their morphological appearances.

In each of the following pages, the top photograph is the control (i.e.,without  $F_1$  effector cells), and the bottom photograph shows the destruction of the target cell monolayer by the  $F_1$  effector cells. The intervals of incubations, at 3, 6, 9, and 12 hours, are indicated at the bottom right corner. The progression of increasing target cell lysis can be seen by comparing the control and the test photographs. The L929 target cell monolayer becomes more morbid as the incubation interval increased. The quantitative aspect of destruction of the monolayer of target cells is described in the following experiments.



Control at 3 hours



Test at 3 hours



Control at 6 hours



test at 6 hours



Control at 9 hours



Test at 9 hours



Control at 12 hours



Test at 12 hours

# Assessment of Kinetics of Semi-syngeneic Cytotoxicity

This section compares the measurements of the <u>in vitro</u> semi-syngeneic cytotoxicity reactions by the  $^{51}$ Cr-release method and the cell-counting method (Klein 1975) in relation to the kinetics of target cell lysis.

Parental C3H/HeJ spleen cells were injected into  $C3D2F_1$  animals to induce GVH reactions and peritoneal exudate cell stimulants were injected as previosuly described. These  $F_1$  PECs were used as effector cells in both assay methods. The quantitation of <sup>51</sup>Cr release-method has been described. The cell-counting method involved quantitating viable and non-viable target cells in standardized counting fields. The wells of the CMC plate were examined at 1:40 magnification and 5 standardized small squares were randomly selected for counting. Target cells were distinguished from effector PECs by their morphological appearance in the cell-cultured monolayer. Non-viable target cells were stained by trypan blue solution. The number of viable and dead target cells were counted and the percentage of cytotoxicity was calculated by the following formula :

Percent No. of dead target cells x 100 Cytotoxicity

No. of dead taget cells + No. of viable target cells The arithmetic means and standard errors were calculated and plotted in Figure 3. The results displayed a parallel relationship of kinetics of semi-syngeneic cytotoxicity between the two assaying methods. The <sup>51</sup>Cr release method is more sensitive at the early incubation period, while the cell-counting method is more sensitive at the later incubation interval. At 6 hours of incubation, the sensitivities of the two assay methods were noted to be approximately equal.



### Statistical Analysis of Data

The arithmetic means and standard errors (SE) were calculated for all cytotoxicity assays using pooled materials. Analysis of regression for individual cytotoxicity reactions where applicable were performed by the following computer program ST 31 available at the Computer Department of Faculty of Medicine, University of Manitoba.

### ST 31 ( Simple Linear Regression and Correlation )

#### Function

This program performs a linear regression and correlation tests along with the tests of significance. There is an option to calculate the confidence limits for the mean of the dependent values and for a single dependent value given any independent value and also an option for a plot of the data about the regression line.

#### Output

-Mean and standard deviation of both variables.

-Simple correlation coefficient and its square.

-Intercept and regression coefficient.

-Standard error of estimate.

-Standard deviation of the regression coefficient.

-T-value for the regression coefficient.

-Analysis of variance table.

-Observed, expected, adjusted, and residual values.

-Plot of data about the regression line.

-Confidence limits for the mean of the dependent values and for a single dependent value given any independent value.

Details of the mathematical aspect of the ST 31 program are described in Appendix section.

## Statistical Analyses of Kinetics of Semi-syngeneic Cytotoxicity

To verify that the kinetic relationship observed in above studies is statistically significant, the experimental data from the kinetic study using <sup>51</sup>Cr target cell cytolysis was analysed by the computer program ST 31 for comparison between the dependent variable (semi-syngeneic cytotoxicity) and the independent variable (incubation time) as described previously.

Tables IV and V are direct computer print-outs of data input, regression coefficient analyses, and tables of analysis of variances for the two different effector to target cell ratios studied.

In both tables, it can be seen clearly that the two calculated regression coefficients, namely 0.971 (effector to target cells 100 : 1), and 0.984 (effector to target cells 200 : 1) were very close to the ideal value of 1, indicating a linear correlation which is statistically significant. In the analysis of variance tables, the OBSERVED and EXPECTED values were very close together mathematically, with RESIDUAL values in the range of 0.004 (minimal) and 3.558 (maximal). These results again indicated the statistical significance of semi-syngeneic cytotoxicity reactions.

The direct plots of the two linear regression lines are shown in Figures 4 (effector to taget cells 100 : 1) and 5 (effector to target cells 200 : 1). The directly proportional relationship between the degree of semi-syngeneic cytotoxicity and incubation time interval was graphically demonstrated.

F

1.116

3.558

98.754

DATA ... 1 2.06 2 5.79 3 4.13 4 8.53 6 14.6 8 21.55 10 19.74 11 24.71/ N = 8 Х MEAN SD 1 5.625 3.739 2 12-639 8.681 SELECTION ... 2 1 R = 0.971 RSQ = 0.9432 ON 1 INTERCEPT = -0.040 . . . **=** В 2.254 SD ESTIMATE = 2.244 Т -٠, 0P1.. Y \*\* ANALYSIS OF VARIANCE \*\* SOURCE DF .... SS .... MS REGRESSION 1 497.282 497.282 DEVIATIONS 30.214 6 5.036 . . .**7**′ . . TOTAL . 527.496 0P2.. Y NO. OBSERVED EXPECTED ADJUSTED RESIDUAL 2.060 1 2.214 12.485 -0.154 5.790 2 4.468 13.961 1.322 3 4.130 6.722 10.047 -2.592 ۵ 8.530 8.976 12.193 -0.446 5 14.600 13.484 13.755 21.550 17.992 6 16.197 .7 19.740 22.500 9.878 -2.760 ·. 8 24.710 24.754 12.594 -0.344

Table IV - Computer Print Out of Statistical Analysis of-Semi-syngeneic Cytotoxicity

Ratio of EC : TC of 100 to 1



Per Cent Cytoxicity and Incubation Time In NSemi-Syngeneic Cytotoxicity Ratio of EC : TC of 100 to 1

82

N = 8

10 47.51 11 44.94/

| x | MEAN   | SD     |
|---|--------|--------|
| 1 | 5.625  | 3.739  |
| 2 | 24.808 | 17.722 |

SELECTION ... 2 1

R = 0.984 RSQ = 0.969

2 ON 1

| INTERCEPT   | = | -1.435 |
|-------------|---|--------|
| В           | = | 4.665  |
| SD ESTIMATE | = | 3.372  |
| SDB         | = | 0.341  |
| Т           | = | 13.686 |

0P1... Y

\*\* ANALYSIS OF VARIANCE \*\*

| SOURCE     | DF  | SS       | MS       | F       |
|------------|-----|----------|----------|---------|
| REGRESSION | 1   | 2130.311 | 2130.311 | 187.315 |
| DEVIATIONS | 6 . | 68.237   | 11.373   |         |
| TOTAL      | า   | 2198.548 |          |         |

0P2.. Y

| NO.        | OBSERVED | EXPECTED | ADJUSTED | RESI DUAL |
|------------|----------|----------|----------|-----------|
| 1          | 4.070    | 3.230    | 25.647   | 0.840     |
| 2          | 7.630    | 7.896    | 24.542   | -0.266    |
| · 3        | 10.790   | 12.561   | 23.037   | 1 -1.771  |
| 4          | 16.270   | 17.226   | 23.851   | -0.956    |
| 5          | 25.630   | 26.557   | 23.880   | -0.927    |
| 6          | 41.620   | 35.888   | 30.540   | 5.732     |
| 7          | 47.510   | 45.218   | 27.099   | 2.292     |
| . <b>8</b> | . 44.940 | 49.884   | 19.864   | - 4.944   |

Table V

Semi=SyngeneicyCytotoxicity

Ratio of EC : TC of 200 to 1

Computer Print Out of Statistical Analysis of

Ì.



Ratio of EC : TC of 200 to 1

# Abrogation of Semi-syngeneic Cytotoxicity by Irradiation

of the GVH Activated F<sub>1</sub> Effector Cells

To prove that the  $F_1$  immunocompetent cells were responsible for the effector mechanism in the <u>in vitro</u> semi-syngeneic cytotoxicity reaction, this experiment examined the situation in which the  $F_1$  effector cells were lethally irradiated and its subsequent effect on the syngeneic target cell lysis.

GVH actiavted  $F_1$  animals were produced by the injection of parental C3H/HeJ and DBA/2 spleen cells into B6C3F<sub>1</sub> and B6D2F<sub>1</sub> hosts respectively. On day 8 post induction of GVH reactions, some of the  $F_1$  animals in these two groups were lethally irradiated.

The mice were caged inside ventilated plastic containers and were exposed to total body gamma-rays irradiation which was generated by a  $^{60}$ Cobalt isotope source (Manitoba Cancer Treatment and Research Centre). The source to mid-body distance was approximately 100 cm, and the dose rate was approximately 80 rads per minute. The total body dose was 850 Rads.

Peritoneal exudate cells were collected from four groups of the GVH activated  $F_1$  animals, i.e., irradiated  $B6C3F_1$ , non-irradiated  $B6C3F_1$ , irradiated  $B6D2F_1$ , and non-irradiated  $B6D2F_1$ . These effector cells were tested in the semi-syngeneic cytotoxicity assays.

The results as shown in Table VI demonstrated the abrogation of the <u>in vitro</u> semi-syngeneic cytotoxicity reaction as a result of rendering the  $F_1$  effector cells immunoincompetent by irradiation. This experiment proved that viable  $F_1$  peritoneal exudate cells were responsible for the phenomenon of <u>in vitro</u> semi-syngeneic cytotoxicity.

|                   | TT: 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - |                   |                 | ······································ |
|-------------------|-----------------------------------------------------------------------------------------------------------------|-------------------|-----------------|----------------------------------------|
| Parental<br>Donor | GVH F <sub>1</sub><br>Recipient                                                                                 | Effector<br>Cells | Target<br>Cells | Corrected*<br>% Lysis                  |
| DBA/2             | B6D2F <sub>1</sub>                                                                                              | PEC               | P815            | 39.58 <u>+</u> 1.35                    |
| **                | **                                                                                                              | ĨĨ                | 11              | 1.64 <u>+</u> 0.78                     |
| C3H/HeJ           | B6C3F <sub>1</sub>                                                                                              | PEC               | L929            | 41.32 <u>+</u> 1.67                    |
| 11                | 11                                                                                                              | FT                | ¥ 1             | 2.29 <u>+</u> 1.34                     |

Table VI - Effect of Irradiation of the F<sub>1</sub> PEC on Semi-syngeneic Cytotoxicity

\* Mean percent corrected lysis of target cells induced by pooled effector cells from groups of 10 animals <u>+</u> SE in 4 replicates

## Abrogation of Semi-syngeneic Cytotoxicity by Specific Antisera

GVH-activated  $F_1$  host effector cells were obtained from C3D2F<sub>1</sub> mice which were injected with parental C3H/HeJ spleen cells as previously described. The peritoneal exudate cells from these  $F_1$  hosts were used as effector cells against the parental H-2<sup>k</sup> genotype L929 target cells in CMC assays. Antisera with specificity against the H-2<sup>k</sup> genotype were prepared by multiple injections of C3H/HeJ spleen cells in Freund's complete adjuvant into the C57BL/6 mice. The hyperimmune sera collected were Complement inactivated at 37°C for 30 minutes. 0.1 ml of thess pooled sera preparation was added into each well in the cytotoxicity test plate containing the labelled L929 target cells and the C3D2F<sub>1</sub> host effector cells as in other CMC assays. The controls of the experiment are the assays in the presence of normal mouse sera and in the absence of any mouse sera. The results are shown in Table VII.

As shown in Table VII, antisera with specificity against the  $H-2^k$  genotype, when mixed with the GVH-induced  $C3D2F_1$  effector cells, significantly suppressed the semi-syngeneic cytotoxicity reaction. The degree of suppression of cytotoxicity was almost 90%.

The exact site of such a suppression is not clear because the specific anti-H-2<sup>k</sup> antibodies could either mask the k antigens on the surfaces of the L929 target cells, or they could interfer with the process of recognition of the k antigenic determinant by the "recognition structure" of the  $F_1$  effector cells. In any event, the data confirmed that the H-2 antigenic determinants were invloved in the process of the semi-syngeneic cytotoxicity reaction.

Table VII - Suppression of Semi-syngeneic Cytotoxicity Reaction by Specific Anti-H-2 antisera

| Parental<br>donor | Effector<br>cells        | Target<br>cells | Sera<br>addition         | Corrected<br>Lysis * |
|-------------------|--------------------------|-----------------|--------------------------|----------------------|
| C3H/HeJ           | C3D2F <sub>1</sub> -PECs | L929            | none                     | 44.16 <u>+</u> 2.03  |
| . 11              | 11                       | 11              | Normal <sup>(1)</sup>    | 37.40 <u>+</u> 0.45  |
| 11                | 11                       | TT.             | Anti-H-2 <sup>k(2)</sup> | 4.07 <u>+</u> 1.72   |
| 11                | "                        | 11              | Anti-H-2 <sup>k(2)</sup> | 4.07 <u>+</u> 1.72   |

- \* Mean percent corrected lysis of target cells induced by pooled effector cells from groups of 6 animals <u>+</u> SE in 4 replicates.
- (1) Normal pooled C57BL/6 sera.
- (2) Pooled sera from C57BL/6 hyperimmunized to the C3H/HeJ cells.

In recent studies, the  $F_1$  anti-parent reactivity resembling the semi-syngeneic cytotoxicity reaction has also been reported in some laboratories (Shearer <u>et al</u>,1976; Schmitt-Verhulst 1977; Warner and Cudkowicz 1979; Ishikawa and Dutton 1979). In experiments in the previous sections, parental spleen cells were grafted to the  $F_1$  hybrids, and the GVH-induced  $F_1$  lymphoid cells were noted to produce lysis of target cells bearing the same H-2 genotype as the parental donor cells. The following experiments are designed to demonstrate that in the GVH phenomenon, the immunocompetent cells of the GVH-induced  $F_1$  hosts are actively engaged in the host-versus-graft (HVG) reaction.

## Preferential Cytotoxicity for Parental H-2 Genotype Target Cells by GVH-activated Host Effector Cells

Previous experiments have demonstrated the reactivity of the  $F_1$  immunocompetent cells against semi-syngeneic target cells bearing the parental H-2 antigen. The question derived from these observations is as follows. When the GVH-activated  $F_1$  effector cells are exposed to target cells of different H-2 genotypes, and one of the two target cells bear the same H-2 genotype as the parental donor cells used in induction of GVH reaction, should one expect the GVH-induced  $F_1$  effector cells to "recognize" the parental H-2 genotype target cells more readily since the  $F_1$  immunocompetent cells have been previously exposed to such parental H-2 antigens on the transplanted parental spleen cells ? The answer to this question is yes, and in fact the GVH-induced  $F_1$  effector cells showed a preferential cytolysis of target cells bearing the parental H-2 genotype. The experimental approach of this experiment is described in Figure 6.

As shown in the figure, two strains of  $F_1$  recipients, namely, B6C3F<sub>1</sub> (H-2<sup>k</sup> x H-2<sup>b</sup>) and B6D2F<sub>1</sub> (H-2<sup>d</sup> x H-2<sup>b</sup>) each possessing the H-2<sup>b</sup> half were used as the  $F_1$  hosts. Parental spleen cells of the genotype of the non-identical half between the two  $F_1$  hosts, i.e., H-2<sup>k</sup> and H-2<sup>d</sup> strains



Figure 6 - Experimental protocol of inducing graft-versus-host reaction in two semi-allogeneic F<sub>1</sub> hybrids and comparing their relative cytotoxicity in identical genotype target cells.

(1) Target cell syngeneic to grafted parental donor cell
(2) Target cell allogeneic to grafted parental donor cell
(3) Target cell allogeneic to grafted parental donor cell
(4) Target cell syngeneic to grafted parental donor cell

were used as donor cells for the induction of GVH reactions in these hybrids. Parental C3H/HeJ  $(H-2^k/H-2^k)$  spleen cells were injected into the B6C3F<sub>1</sub> hybrids, and parental DBA/2  $(H-2^d/H-2^d)$  spleen cells were injected into the B6D2F<sub>1</sub> hybrids respectively.

The peritoneal exudate cells from these two strains of  $F_1$  hosts were used as effector cells in CMC assays as previously described. The genotypes of the two target cells used are identical with either one of the genotype of the parental donor spleen cells; i.e., L929 (H-2<sup>k</sup>) target cell is syngeneic to the C3H/HeJ parental cells, and P815 (H-2<sup>d</sup>) target cell is syngeneic to the DBA/2 parental donor cell. The cyto-toxici activities of these two groups of GVH-induced  $F_1$  hosts were compared in the CMC assays using the two H-2 different target cells.

The results in Table VIII showed that, when parental  $H-2^k$ spleen cells were injected into the  $H-2^k \ge H-2^b$  (B6C3F<sub>1</sub>) hosts to induce GVH reactions, the degree of semi-syngeneic cytotoxicity on the  $H-2^k$ (L929) target cells (i.e.  $36.67 \pm 1.62$ ) was significantly greater than that (i.e.  $29.76 \pm 2.27$ ) by effector cells from the  $H-2^d \ge H-2^b$  (B6D2F<sub>1</sub>) hosts induced into GVH reactions by the parental  $H-2^d$  (DBA/2) spleen cells. Similar results were noted in the reverse situation. When the parental  $H-2^d$  spleen cells were injected into the  $H-2^d \ge H-2^b$  (B6D2F<sub>1</sub>) hosts, a significantly greater degree of semi-syngeneic target cell lysis was observed with the  $H-2^d$  (P815) target cells (i.e.  $46.30 \pm 0.40$ ) than that (i.e.  $27.98 \pm 1.73$ ) by effector cells from the  $H-2^k \ge H-2^b$  (B6C3F<sub>1</sub>) hosts induced into GVH reactions by the parental  $H-2^k$  (C3H/HeJ) spleen cells.

The above results actually revealed the following situation. The cytotoxicity by the GVH-induced (k x b)  $F_1$  host effector cells ( the k parental cells injected into k x b  $F_1$ ) on the k genotype target cell was significantly higher than the cytotoxicity by the GVH-induced (d x b)  $F_1$  host effector cells (parental d cells injected into c x b  $F_1$ ). In other words, GVH-activated  $F_1$  effector cells, seem to possess a higher degree of

Table VIII - Preferential Lysis of Target Cells Bearing Parental Antigens by F<sub>1</sub> Hybrid Cells From Mice Undergoing Garft Versus Host Reaction.

| Donor<br>Cells       | Parental<br>H-2 Antigen | GVII<br>Hosts          | Target<br>Cells          | Corrected<br>Lysis * |
|----------------------|-------------------------|------------------------|--------------------------|----------------------|
| C3H/HeJ(             | 1) k/k                  | B6C3F <sub>1</sub> (2) | L929 (H-2 <sup>k</sup> ) | 36.67 <u>+</u> 1.62  |
| DBA/2 <sup>(3)</sup> | d/d                     | B6D2F1 <sup>(4)</sup>  | 11                       | 29.76 <u>+</u> 2.27  |
| C3H/HeJ              | k/k                     | B6C3F1                 | P815 (H-2 <sup>d</sup> ) | 27.98 <u>+</u> 1.73  |
| DBA/2                | d/d                     | B6D2F <sub>1</sub>     |                          | 46.30 <u>+</u> 0.40  |

\* Mean percent lysis of target cells induced by pooled effector cells from groups of 8 animals + SE in 4 replicates.

- (1) C3H/HeJ =  $H-2^{k}/H-2^{k}$
- (2)  $B6C3F_1 = H-2^k \times H-2^b$
- (3) DBA/2 =  $H-2^{d}/H-2^{d}$
- (4)  $B6D2F_1 = H-2^d \times H-2^b$

cytotoxicity on target cells which bear the same H-2 genotype as the parental cells used in the induction of GVH reactions than that by the effector cells from a different  $F_1$ -parent combination in which the H-2 genotype of the parental cells used in GVH induction is different from the H-2 genotype of the target cell. Graphically, it is as follows.



CYTOTOXICITY

(k x b)  $F_1 > (d x b) F_1$ 

 $(k \ x \ b) \ F_1 < (d \ x \ b) \ F_1$ 

93

The demonstration of preferential cytotoxicity on target cells syngeneic to the transplanted parental donor cells have implicated the capacity of the  $F_1$  immunocompetent cells reacting against the H-2 antigens of the invading parental lymphoid cells. The significance of such implication will be explored in the next experiment.

# Cytotoxicity of F<sub>1</sub> PEC on Parental H-2 Genotype Target Cells

To investigate into the possibility that GVH-induced  $F_1$  cells were reacting against the H-2 antigens of the other parent (the parent not used as donor), the  $F_1$  immunocompetent cells can be grafted into lethally irradiated parental animals, and any semi-syngeneic cytotoxicity detected would be due to the grafted  $F_1$  cells reacting against the parental antigens since the recipient parents were immunosuppressed by irradiation. In the following actual experiments, (A x B)  $F_1$  cells were injected into irradiated (A x C)  $F_1$  animals instead of the parental (A/A) animals because of the possibility that the homozygous (A/A) parents may express the "homozygous antigens" which the heterozygous (A x B)  $F_1$  can react against as postulated by the "Hybrid Resistance" phenomenon.

In the first experiment, spleen cells from  $B6D2F_1$  (H-2<sup>d</sup> x H-2<sup>b</sup>) were injected into lethally irradiated  $C3D2F_1$  (H-2<sup>k</sup> x H-2<sup>d</sup>) recipients bearing the parental (in respect to  $B6D2F_1$ ) H-2<sup>d</sup> antigen. This has eliminated as discussed above, the possible involvement of the "Hybrid Resistance" phenomenon since both donor and recipient were heterozygous hybrids. The objective was to detect lysis of the parental H-2 genotype target cells by the  $B6D2F_1$  PECs in CMC assays. The development of cytotoxicity by the  $C3D2F_1$  immunocompetent cells against the H-2<sup>b</sup> antigen

expressed on the  $B6D2F_1$  cells was eliminated because the  $C3D2F_1$  recipients were lethally irradiated. The cytotoxic effects of the  $B6D2F_1$  immuno-competent cells were tested with the L929 (H-2<sup>k</sup>) and the P815 (H-2<sup>d</sup>) target cells in CMC assays.

In the second experiment, the roles of the donor and the recipient in the above experiment were reversed. Spleen cells from the  $C3D2F_1$  hybrids  $(H-2^k \times H-2^d)$  were grafted into lethally irradiated  $B6D2F_1$   $(H-2^b \times H-2^d)$  hosts bearing the parental (in respect to  $C3D2F_1$ )  $H-2^d$  antigen expressed on the  $B6D2F_1$  cells. The objective again was to detect the lysis of the parental H-2 genotype target cells by the  $C3D2F_1$  PECs using CMC assays. The results are shown in Table IX.

As seen in the table, when the  $B6D2F_1$  spleen cells were exposed to the irradiated  $C3D2F_1$  cells <u>in vivo</u>, significant cytotoxicity reactions were observed on target cells bearing; (1) the parental  $H-2^d$ antigen (target cell P815) and (2) the allogeneic  $H-2^k$  antigen (target cell L929). The cytotoxic reaction on the  $H-2^d$  genotype target cell (i.e., semi-syngeneic cytotoxicity) was significant because it indicated the situation of the  $(H-2^b \times H-2^d) F_1$  lymphoid cells reacting against the parental  $H-2^d$  antigen. The cytotoxicity observed with the L929  $(H-2^k)$ target cells (i.e., classical specific cytotoxicity) was expected since the  $H-2^k$  genotype and its antigenic determinants were foreign to the B6D2F<sub>1</sub>  $(H-2^b \times H-2^d)$  immunocompetent cells.

In the situation where the roles of donor and recipient was reversed, cytolysis of target cells bearing the parental  $H-2^d$  antigen was again demonstrated. When  $C3D2F_1$  spleen cells were transplanted into the lethally irradiated  $B6D2F_1$  recipients ( $H-2^b \times H-2^d$ ), significant cytotoxicity
## Table IX - Cytotoxicity of F<sub>1</sub> Cells on Target Cells Bearing parental Histocompatibility antigen.

Donors Irradiated Target Corrected Cells recipients Cells Lysis\*  $C3D2F_1$  (H-2<sup>kxd</sup>) P815 (H-2<sup>d</sup>) 35.56 ± 2.02 (1) B6D2F,  $(H-2^{bxd})$ L929 (H-2<sup>k</sup>) 45.93  $\pm$  1.18 (2) 11  $C3D2F_1$  (H-2<sup>kxd</sup>) B6D2F<sub>1</sub> (H-2<sup>bxd</sup>) P815 (H-2<sup>d</sup>) 43.97 ± 3.43 (3) L929 (H-2<sup>k</sup>)  $-3.76 \pm 2.90$  <sup>(4)</sup> 88 88

- \* Mean percent corrected lysis of target cells induced by pooled effector cells from groups of ten animals <u>+</u> SE in four replicates.
- (1) Cytotoxicity here showed that  $F_1$  cells lysed cells of parental  $H-2^d$  genotype (semi-syngeneic cytotoxicity)
- (2) Cytotoxicity is expected since the k antigen in C3D2F<sub>1</sub> induced sensitization in allogeneic B6D2F<sub>1</sub> cells (specific cytotoxicity)
- (3) Cytotoxicity here again showed that F<sub>1</sub> cells can lyse target cells bearing parental H-2<sup>d</sup> antigen (semi-syngeneic cytotoxicity).
- (4) Absence of cytotoxicity due to absence of sensitizing k antigen in B6D2F<sub>1</sub> recipients.

was observed with target cells bearing the parental (in respect to  $C3D2F_1$ )  $H-2^d$  antigen (target cell P815) indicating that the  $C3D2F_1$  ( $H-2^k \times H-2^d$ ) immunocompetent cells could be induced to react against the parental  $H-2^d$  antigen (i.e., semi-syngeneic cytotoxicity reaction).

The absence of significant cytotoxicity by the C3D2F<sub>1</sub> effector cells on the L929  $(H-2^k)$  target cells was also expected since the irradiated B6D2F<sub>1</sub>  $(H-2^b \times H-2^d)$  recipients which provided the antigenic stimulation to the C3D2F<sub>1</sub> immunocompetent cells did not possess any  $H-2^k$  genotype and therefore logically no  $H-2^k$  antigenic determinants to sensitize the C3D2F<sub>1</sub> lymphoid cells to become cytotoxic to the L929  $(H-2^k)$  target cells in the CMC assays. The significance of the above observation is that this type of semi-syngeneic cytotoxicity on the parental H-2 genotype target cell by the transplanted  $F_1$  cells is not a truly non-specific cytotoxicity reaction otherwise the  $H-2^k$  (L929) target cells would be non-specifically attacked and lysed in the process.

The results of these experiments will be reviewed in more detail in the section of Discussion. It is suffice to reiterate here that the  $F_1$  immunocompetent cells can become sensitized to the parental H-2 antigens resulting in cytotoxicity reactions.

#### THE HOST EFFECTOR CELL IN SEMI-SYNGENEIC CYTOTOXICITY

The experiments described in the previous section examined the various parameters related to the phenomenon of semi-syngeneic cytotoxicity observed in immunocompetent cells from GVH-induced  $F_1$  hosts. In this section, the identity and nature of the host effector cell responsible for the semi-syngeneic cytotoxicity reaction will be examined. In addition, the <u>in vitro</u> and <u>in vivo</u> effects of the GVH-activated  $F_1$  peritoneal exudate cells on syngeneic  $F_1$  animals undergoing GVH reactions will be described.

#### Cytotoxicity of Host Peritoneal Exudate Cells

Peritoneal exudate cells are known to contain mainly the macrophages which adhere to plastic or glass surfaces and lymphocytes which are characteristically non-adherent. To investigate into the type of cell responsible for the semi-syngeneic cytotoxicity reaction, PECs from GVH-induced  $F_1$  hosts were separated into adherent and non-adherent populations. Individual cell populations were tested in CMC assays for semi-syngeneic cytotoxicity reactions as previously described.

Peritoneal exudate cells from  $F_1$  hybrid animals undergoing graft-versus-host reactions were suspended in supplemented RPMI 1640 medium at the concentration of  $1 \times 10^7$  cells per ml. Aliquots of 10 mls. of this suspension were transferred into tissue culture dishes measuring 60 x 15 mm (Falcon Plastics, Oxnard, California ) which were incubated at  $37^{\circ}$ C for one hour and then washed with HBSS three times. The washings were pooled together, centrifuged, and the non-adherent cells were resuspended at the

concentration of  $1 \times 10^7$  cells per ml. in supplemented RPMI 1640 culture medium. The adherent cells were washed off the surface of the tissue dishes by a jet stream produced by forcing HBSS through a syringe with a 25 gauge needle. Adherent cells were also resuspended in RPMI culture medium at concentration of  $1 \times 10^7$  cells per ml.

 $B6D2F_1$  hybrids were injected with 1 x 10<sup>8</sup> parental DBA/2 spleen cells 8 days previously and challenged with 1.5 ml of the 6% sterile sodium caseinate solution 5 days later. The immunocompetent cells collected from the peritoneal cavities of these GVH-induced  $F_1$  animals were pooled together and incubated at  $37^{\circ}$ C in tissue-culture dishes (Falcon Plastic Petri Dish) to allow separation of the adherent and non-adherent lymphoid cells as previously described. Individual cell populations were tested against the P815 target cells for semi-syngeneic cytotoxicity reactions.

As shown in table X ,the adherent cells from GVH-induced  $F_1$ animals, just as the unseparated population, produced a significant degree of cytotoxicity reaction, while the non-adherent cell population from the same GVH-induced peritoneal exudate cell pool was not cytotoxic to the parental H-2 genotype target cells. These results indicated that peritoneal exudate cells, previously quantitated to comprise more than 90% macrophages were involved as the end-effector mechanism in the production of semisyngeneic target cell cytolysis by the GVH-induced  $F_1$  immunocompetent cells. Quantitatively, the proportion of semi-syngeneic cytotoxicity due to the adherent cells was approximately 90% of the total cytotoxicity seen in the original unseparated peritoneal exudate cell population (i.e.,28.26/33.74 approximately 90%).

Table X - Semi-syngeneic Cytotoxic Activities of Individual Populations of Effector Cells from GVH-induced F<sub>1</sub> PECs

| Effector<br>Cells* | Target<br>Cells | Corrected<br>Lysis** |  |
|--------------------|-----------------|----------------------|--|
| Unseparated PECs   | P815            | 33.74 <u>+</u> 0.64  |  |
| Adherent PECs      | 91              | 28.26 <u>+</u> 1.72  |  |
| Non-adherent PECs  | 11              | -0.15 <u>+</u> 1.77  |  |

- \* Effector cells from B6D2F<sub>1</sub> hybrids injected with parental DBA/2 spleen cells as previously described.
- \*\* Mean percent corrected lysis of target cells induced by the pooled peritoneal exudate cells from 20 animals <u>+</u> SE in groups of 6 replicates.

#### Microscopic Study of Cytolysis by GVH-activated Macrophages

Having demonstrated by the <u>in vitro</u> CMC assays that the  $F_1$  peritoneal macrophages were responsible for the phenomenon of semi-syngeneic cytotoxicity reaction, the actual process of semi-syngeneic target cell lysis by the  $F_1$  host macrophages was investigated by the microscope. The results are reported in the following pages.

Peritoneal macrophages were obtained, by procedures previously described, from the GVH-induced  $B6D2F_1$  hosts, and P815 cells were used as target cells for the qualitative cytological assessment of the CMC process.

The next three pages contain microphotographs depicting the process of target cell destruction by the GVH-activated macrophages. The dark blue cells are identified as the semi-syngeneic target cells with the abnormal nuclei which were distinguished from the normal nuclei of the pinkish peritoneal macrophages. The cytoplasmic anatomy of the two cells are also characteristically distinguishable.

In photograph 1, two macrophages were seen approaching the target cells near centre. In photograph 2, one macrophage was seen extending its cytoplasmic edges around the surface of the target cell on the left. In photograph 3, the macrophage seemed to engulf the target cell completely. In photograph 4, 5, and 6, the macrophages evolved to a stage where intracellular granules were discretely seen inside the cytoplasm. In photograph 4, the granules were near the edge of the cytoplasmic border, while in photograph 5, the granules were released and completely surrounded the target cell including the nucleus. The plasma membrane of the target cell was lysed. In photograph 6, even the nucleus of the target cell was attacked and fragmented. Total destruction is almost complete at this stage.













To substantitate the above indication that the GVH-induced  $F_1$  host peritoneal macrophages were invloved in the semi-syngeneic cytotoxicity reaction, the following experiments will present further evidence confirming the role of the  $F_1$  macrophages mediating the lysis of parental H-2 genotype target cells.

## Specific Macrophage-cytocidal Effect of Silica Particles

Crystalline silica particles are known to be highly toxic for the macrophages while possessing little cytocidal effect for other cells for example, lymphocytes. This particular aspect of cytotoxicity was studied in this experiment with the aim of establishing the optimal dose concentration of silica particles required for the maximal lysis of macrophages.

Macrophages from the peritoneal exudates were partially purified by exposing 3 mls. of PEC suspensions to three brief cycles of centrifugations ( 30 seconds each, maximum g = 100 ) and discarding between each cycle the supernatant containing the small and large lymphocytes. The cell suspension obtained in this manner comprised of more than 99 per cent mononuclear cells which were identified to be macrophages on the basis of morphological criteria and their ability to adhere to plastic surfaces and to phagocytose collodial carbon particles.

Silica particles of average size 5u were obtained through the courtesy of Dr. K. Robock, Steinkohlenberg-Bauverein, 43 Essen-Krey, West Germany. The particles were sterilized in pressurized steam (120°C) chamber and suspended in supplemented RPMI 1640

Crystalline silica particles in varying quantities, were added to a constant number  $(10^4$  cells per well in CMC assay plates) of <sup>51</sup>Cr-labelled L929 target cells, C3H/HeJ spleen cells, B6C3F<sub>1</sub> peritoneal macrophages purified as previously described, from PECs, and a mixture of labelled L929 target cells plus unlabelled B6C3F<sub>1</sub> macrophages. The amount of the <sup>51</sup>Cr-isotope released due to the cytocidal effect of silica on these different cell populations were measured after incubation at 37°C for 14 hours. The results are shown in Figure 7.

As demonstrated in the figure, a significantly specific cytocidal effect of silica particles on peritoneal macrophages has been observed. Such a cytocidal effect was particularly evident at the dose concentration of 10 ug of silica particles per 10 $^4$  cells. On the other hand, silica induced a very low cytocidal effect on the parental C3H/HeJ spleen cells presumably due to the small amount of macrophages present in the population of spleen cells. Furthermore, such insignificantly low cytocidal effect for the parental C3H/HeJ spleen cells has been noted with silica concentration as high as 100 ug per 10 $^4$  cells (not reported in the figure). These results indicated the non-cytocidal effect of silica particles on the parental spleen cells. This particular fact will become significant in the following experiment in which, it will demonstrate that silica can abrogate the in vitro semi-syngeneic cytotoxicity reaction. It will be seen later that, if silica, is cytocidal to the  $F_1$  macrophages but not cytocidal to the parental spleen cells, the abrogation of semi-syngeneic cytotoxicity by silica will necessarily indicate the conclusion that







semi-syngeneic cytotoxicity is mediated by the F<sub>1</sub> macrophages.

The results in Figure 7 also demonstrated that silica has no cytocidal effect on the L929 target cells, and therefore the treatment of the  $F_1$  peritoneal exudate cells with silica particles will not affect the outcome of the CMC assays. Moreover, the presence of macrophages which were destroyed by silica, did not induce any significant lysis of the labelled L929 target cells. This indicated that the lysed macrophages did not in turn induce any non-specific lytic effect on the "innocent bystanding" L929 target cells, and therefore accordingly, the results of the CMC assays involving treatments, even of cells susceptible to silica toxicity, will not be complicated. The following experiment involves such a treatment of the  $F_1$  effector cells with silica particles.

## Suppression of Semi-syngeneic Cytotoxicity with Silica

GVH reactions were induced in  $B6C3F_1$  (H-2<sup>k</sup> x H-2<sup>b</sup>) and  $B6D2F_1$  (H-2<sup>d</sup> x H-2<sup>b</sup>) hybrids by the intraperitoneal injection of 1 x 10<sup>8</sup> parental C3H/HeJ and DBA/2 spleen cells respectively. The 6% sterile sodium caseinate peritoneal exudate cell stimulant was injected into these GVH-induced  $F_1$  hosts 5 days later as previously described. The peritoneal exudate cells from these different strains of GVH-induced  $F_1$  animals were used as effector cells in the CMC assays against the corresponding L929 and P815 parental H-2 genotype target cells.

For demonstrating the contributory role the  $F_1$  macrophages in semi-syngeneic cytotoxicity reactions, 100 ug of crystalline silica particles were added to a mixture of 1 x 10<sup>4</sup> of <sup>51</sup>Cr-labelled target cells and 1 x 10<sup>6</sup> peritoneal exudate effector cells from the GVH-induced  $F_1$  hosts.

# Table XI - Abrogation of Semi-syngeneic Cytotoxicity Reaction by Treatment of $F_1$ Effector Cells with Silica

| Parental | GVH-host           | Treatment of   | Target | Corrected           |
|----------|--------------------|----------------|--------|---------------------|
| Donor    | Recipient          | Effector Cells | Cells  | Lysis*              |
| C3H/HeJ  | B6C3F <sub>1</sub> | No treatment   | L929   | 36.67 <u>+</u> 1.62 |
| "        |                    | Silica **      | "      | 3.76 <u>+</u> 1.01  |
| DBA/2    | B6D2F <sub>1</sub> | No treatment   | P815   | 42.30 <u>+</u> 0.40 |
|          | "                  | Silica         | "      | 8.60 <u>+</u> 0.63  |

\* Mean percent corrected lysis of target cells induced by pooled PEC from groups of 6 animals <u>+</u> SE in 6 replicates
\*\* 100 ug of silica particles were added into the culture and incubated together with effector and target cells.

The controls in this experiment are the GVH-induced  $F_{1}$  peritoneal exudate cells in the absence of silica particles. The results are shown in Table XI.

As shown in the table, the addition of silica particles to the  $F_1$  host effector cells significantly suppressed the semi-syngeneic cytotoxicity reaction in the two  $F_1$ -parent combinations tested, indicating the involvement of the  $F_1$  peritoneal macrophages in the cytolysis of the parental H-2 genotype target cells.

The involvement of the parental spleen cells in the semisyngeneic cytotoxicity reaction in a truly non-specific fashion can be excluded on the basis that; parental spleen cells have been shown not susceptible to the toxic effect of silica particles, and if parental spleen cells were responsible for the semi-syngeneic cytotoxicity reaction, then the lysis of the parental genotype target cells should not be suppressed by the addition of silica. But semi-syngeneic cytotoxicity was shown to be significantly suppressed by the treatment of silica, and macrophages were demonstrated to be highly susceptible to the cytocidal effect of the silica particles, therefore, semi-syngeneic cytotoxicity reaction must be contributed by the F, macrophages.

The involvement of the  $F_1$  immunocompetent cells in semisyngeneic cytotoxicity reactions has been implicated in previous studies in our laboratory. When one of the two parents was used to induce GVH reactions in the  $F_1$  hybrids, the treatment of the GVH-induced effector cells with antisera specifically against the other non-donor parent will destroy only the  $F_1$  and not the parental donor immunocompetent cells. Such a treatment had been shown to result in the abrogation of semi-syngeneic cytotoxicity, and the  $F_1$  cells were concluded to be involved in the reaction.

#### In Vitro Activation of Macrophages in Semi-syngeneic Cytotoxicity

The effect of mixing GVH reaction activated  $F_1$  peritoneal macrophages with normal syngeneic lymphoid cells was investigated by the <u>in vitro</u> incubation of macrophages from  $F_1$  hybrids undergoing GVH reactions with normal syngeneic  $F_1$  macrophages. The cytotoxicity effect on semi-syngeneic target cell by these <u>in vitro</u> incubated cells were measured by the CMC assays as described previously.

A constant number of  $(2 \times 10^6)$  peritoneal macrophages purified from PECs of B6D2F<sub>1</sub> hybrids previously induced into GVH reactions by the injection of  $1 \times 10^8$  parental spleen cells, were pipetted into the wells of a microcytotoxicity test plate as in other CMC experiments. Into each of these wells already containing the  $2 \times 10^6$  GVH activated macrophages, additional : (1) normal syngeneic F<sub>1</sub> macrophages purified from normal PECs, and (2) normal syngeneic F<sub>1</sub> spleen cells, were added in increasing concentrations of  $0.5 \times 10^6$ ,  $1.0 \times 10^6$ ,  $1.5 \times 10^6$ , and  $2.0 \times 10^6$  cells per well in a series. A third group of wells contained  $2 \times 10^6$  normal spleen cells in place of the GVH-induced macrophages plus the increasing concentration of normal spleen cells as described above. The cytotoxicity among the three groups on semi-syngeneic target cells were compared.

As shown in Figure 8, GVH-activated peritoneal macrophages seem to activate normal syngeneic macrophages into cytotoxic. activities resulting in an increasing level of semi-syngeneic target cell lysis when incubated together <u>in vitro</u>. In contrast, GVH-actiavted macrophages were not able to render normal syngeneic spleen cells into cytotoxicity probably due to the small amount of macrophages present in spleen cells. In addition, the spleen cells may exert certain immunoregulatory effect on the GVH-induced macrophages since cytotoxicity of that combination was noted to be reduced. HI





## THE IN VIVO ROLES OF GVH ACTIVATED F<sub>1</sub> MACROPHAGES In Vivo Activation of Macrophages in Semi-syngeneic Cytotoxicity

The role of graft-versus-host reaction activated  $F_1$  peritoneal macrophages on in vivo activation of other normal syngeneic macrophages was studied by injecting (1) normal peritoneal syngeneic  $F_1$  macrophages purified from normal PECs, and (2) normal syngeneic  $F_1$  spleen cells, into different groups of syngeneic  $F_1$  hosts previously induced into GVH reactions as described in other experiments.

Equal numbers of  $1 \times 10^7$  peritoneal C3D2F<sub>1</sub> macrophages purified from normal syngeneic PECs or spleen cells were injected separately into two groups of syngeneic C3D2F<sub>1</sub> hosts five days after the induction of graft-versus-host reaction by transplanting parental C3H/HeJ spleen cells intraperitoneally. 48 hours after the transfer of the exogenous syngeneic lymphoid cells into these GVH-induced hosts, semi-syngeneic target cell cytolysis were measured with PECs from these hosts using the CMC assays as described previously.

As shown in Table XII, the injection of exogenous syngeneic  $F_1$ macrophages into the  $F_1$  animals already undergoing GVH reaction resulted in a marked increase in semi-syngeneic cytotoxicity. In contrast, the injection of exogenous syngeneic spleen cells, not only did not enhance the degree of semi-syngeneic cytotoxicity, but also produced certain inhibitory effect instead. This reflects the similar observation in the in vitro activation experiment and an earlier experiment also involving syngeneic normal spleen cells. However, the significance of both in vitro and in vivo activation of normal syngeneic macrophages by GVH-induced macrophages have been demonstrated.

Table XII- The In Vivo Activation of Syngeneic  $F_1$  Immunocompetent Cells in Semi-syngeneic Cytotoxicity Reaction

| Parental<br>Donor | F <sub>l</sub> Hybrid<br>Recipient | F <sub>l</sub> Cells<br>Transplanted | Target<br>Cell | Corrected<br>Lysis* |
|-------------------|------------------------------------|--------------------------------------|----------------|---------------------|
| C3H/HeJ           | C3D2F1                             | none                                 | L929           | 35.25 <u>+</u> 2.56 |
| 11                | п.                                 | F <sub>l</sub> spleen cells          | 11             | 21.56 + 2.06        |
| 11                | 11                                 | F <sub>l</sub> macrophages           | **             | 64.21 <u>+</u> 1.60 |

- \* The  $F_1$  hosts were injected with 1.5 x 10<sup>8</sup> parental spleen cells and 5 days later, 1 x 10<sup>7</sup>  $F_1$  syngeneic spleen cells or purified macropahges were injected. 3 days later, their PECs were used as the effectro cells in CMC assays.
- \*\* Mean percent corrected lysis of target cells induced by pooled PECs from groups of 6 animals <u>+</u> SE in 6 replicates.

## Kinetics of In Vivo Activation of F1 Macrophages

The time interval required for the <u>in vivo</u> activation of syngeneic normal  $F_1$  peritoneal macrophages by the GVH-activated syngeneic  $F_1$  macrophages was studied by transferring 1 x 10<sup>7</sup> normal syngeneic  $F_1$ macrophages intraperitoneally into groups of  $F_1$  hosts previously induced into graft-versus-host reactions. These normal macrophages were injected at 72, 48, and 24 hours prior to the measurement of semi-syngeneic target cell cytolysis using the PECs from these injected syngeneic  $F_1$  hosts.

The results, as shown in Table XIII indicated that increasing level of semi-synegenic cytotoxicity was obtained with increasing time of residence of the exogenously transferred normal syngeneic macrophages in these syngeneic  $F_1$  hosts undergoing graft-versus-host reactions, suggesting an <u>in vivo</u> activation mechanism within the peritoneal cavities of the GVH reaction induced  $F_1$  host animals. The activation process rendered the normal syngeneic macrophages to become cytotoxic towards semi-syngeneic target cells detected in CMC assays.

In comparing the kinetics of <u>in vitro</u> and <u>in vivo</u> activations of normal syngeneic  $F_1$  macrophages into semi-synegenic target cell cytolysis, it was noted that the <u>in vivo</u> activation mechanism required a much longer time interval of incubation than that of the <u>in vitro</u> situation. In both activation studies, syngeneic spleen cells were noted to possess certain regulatory effect on the activation of normal macrophages into cytotoxic effector cells, and because of the presence of a larger number of spleen cells in the <u>in vivo</u> situation, the extended time of incubation for <u>in</u> <u>vivo</u> activation could be due to the presence of regulatory spleen cells.

Table XIII- Effect of In Vivo Incubation Interval of Syngeneic

Macrophages in GVH-Induced F<sub>l</sub> Hosts on Semi-syngeneic Cytotoxicity Reaction

| Transplant<br>of cells into<br>GVH-induced<br>C3D2F <sub>1</sub> * |            | Time of transplant<br>of F <sub>l</sub> macrophages<br>before assays | Target<br>Cells | Corrected<br>Lysis ** |
|--------------------------------------------------------------------|------------|----------------------------------------------------------------------|-----------------|-----------------------|
| non                                                                | e          | N/A                                                                  | L929            | 38.98 <u>+</u> 2.15   |
| C3D2F <sub>1</sub> m                                               | acrophages | 24 hours                                                             | L929            | 57.71 <u>+</u> 0.98   |
| 11                                                                 | 11         | 48 hours                                                             | L929            | 66.90 <u>+</u> 4.19   |
| 11                                                                 | TT         | 72 hours                                                             | L929            | 70.56 <u>+</u> 3.68   |

- \*  $C3D2F_1$  hybrids were injected with 1.5 x 10<sup>8</sup> C3H/HeJ spleen cells and PEC stimulants as previously described. At the time indicated in the second column, groups of 6 animals received the injection of 1 x 10<sup>8</sup> C3D2F\_1 macrophages per animal. CMC assays were done 8 days after the induction of GVH reactions.
- \*\* Mean percent corrected lysis of target cells by pooled effector cells from each group of 6 animals <u>+</u> SE in 6 replicates.

# Kinetics of Semisyngeneic Cytotoxicity of In Vivo Activated F1 Macrophages

The kinetics of semi-syngeneic cytotoxicity noted in the <u>in vivo</u> activation of syngeneic  $F_1$  macrophages was studied in relation to the time of incubation in CMC assays involving two different incubation periods of the exogenously transferred macrophages. Parental C3H/HeJ spleen cells were used to induce GVH reactions in C3D2F<sub>1</sub> hybrids which later received 1 x 10<sup>7</sup> syngeneic macrophages at 48 and 72 hours prior to CMC assays using the PECs from these GVH-induced  $F_1$  hosts. The results as shown in Figure 8, showed that a directly proportional relationship detween percent semi-syngeneic cytotoxicity and the time of incubation in the CMC assays.

To verify that the directly proportional dose-response relationship observed is statistically significant, the experimental data were analysed by the computer program ST 31 previously described.

In Tables XIV , and XV , it can be seen that the two regression coefficients, namely, 0.991 ( in vivo activation period of 48 hours ) and 0.995 ( in vivo activation period of 72 hours ) were very close to the ideal value of 1, indicating a linear correlation which is statistically significant. In the analysis of variance tables, the OBSERVED and EXPECTED values very close together mathematically, with RESIDUAL values in the range of 0.142 to 3.931 in the case of 48 hours of <u>in vivo</u> incubation, and 0.080 to 4.018 in the case of 72 hours of <u>in vivo</u> incubation of adoptively transferred macrophages.

The direct plots of the two linear regression lines are shown in Figures 10 (48 hours of in vivo incubation) and 11 (72 hours of in vivo incubation). The directly proportional relationship between the degree of semi-syngeneic cytotoxicity and in vivo incubation time of adoptively transferred syngeneic macrophages was graphically depicted.

117





72 hrs. of in vivo activation of F<sub>1</sub> macrophages
 48 hrs. of in vivo activation of F<sub>1</sub> macrophages

DATA ... 1 10.9 2 15.28 3 23.88 4 30.09 6 35.3 8 50.84 10 56.6 11 58.97/ N = 8 х MEAN SD 1 5.625 3.739 2 35.233 18.552 SELECTION ... 2 1 R = 0.991 RSQ = 0.9822 ON 1 INTERCEPT 7.578 = В = 4.916 SD ESTIMATE = 2.691 SDB = 0.272 T = 18.075 OP1.. Y \*\* ANALYSIS OF VARIANCE \*\* SOURCE DF SS REGRESSION 1 2365.687 DEVIATIONS 6 7 43.445 TOTAL 2409.132

0P2 .. Y

| NO. | OBSERVED | EXPECTED | ADJUSTED | RESIDUAL |
|-----|----------|----------|----------|----------|
| 1   | 10.900   | 12.494   | 33.638   | -1.594   |
| 2   | 15.280   | 17.411   | 33.102   | -2.131   |
| 3   | 23.880   | 22.327   | 36.785   | 1.553    |
| 4   | 30.090   | 27.243   | 38.079   | 2.847    |
| 5   | 35.300   | 37.076   | 33.456   | -1.776   |
| 6   | 50.840   | 46.909   | 39.164   | 3.931    |
| 7   | 56.600   | 56.742   | 35.091   | -0.142   |
| 8   | 58.970   | 61.658   | 32.545   | -2.688   |

Computer Print Out of Statistical Analysis of In Vivo Table XIV -Activated Macrophages In Semi-syngeneic CMC Assays 48 Hours After Injection Into Syngeneic  $F_1$ Undergoing GVH Reactions

MS

2365.687

7.241

F

326.712



Figure 10 - Regression Coefficient Plot Between Corrected Per Cent Cytotoxicity And Incubation Time In Semi-Syngeneic Cytotoxicity 48 Hours After In Vivo Activation of Syngeneic Macrophages

DATA... 1 8.34 2 16.69 3 22.61 4 26.44 6 46.11 8 62.50 10 75.77 11 76.81/ N = 8 Х - MEAN SD 1 5.625 3.739 З 41.909 27.205 SELECTION ... 2 1 R = Ø.995 RSQ = 0.9902 ON 1 INTERCEPT 1.180 B · = 7.241 SD ESTIMATE = 2.872 SDB = 0.290 Т = 24.939 0P1 .. 2 1 TE 1 . OP1.. Y \*\* ANALYSIS OF VARIANCE \*\* SOURCE DF SS MS REGRESSION · • 1 5131.403 5131.403 DEVIATIONS 6 49.501 8.250 TOTAL 7 51.80.904 0P2 ... Y NO. OBSERVED EXPECTED ADJUSTED RESIDUAL 8.340 1 8.420 41.828 2 16.690 15.661 42.938 3 22.610 22.902 41.617 26.440 4 30.143 38.206 5 46.110 44.624 43.395 6 62.500 59.105 45.303

75.770

76.810

7

8

Table

121

XV - Computer Print Out of Statistical Analysis of In Vivo Activated Macrophages In Semi-syngeneic CMC Assays 72 Hours After Injection Into Syngeneic F<sub>1</sub> Undergoing GVH Reactions

44.092

37.891

73.587

80.828

F

-0.080

1.029

-0.292

-3.703

1.486

3+395

2.183

-4.018

¢

621.976



 Regression Coefficient Plot Between Corrected Per Cent Cytotoxicity And Incubation Time In Semi-Syngeneic Cytotoxicity 72 Hours After In Vivo Activation of Syngeneic Macrophages

Figure

11

In previous experiments, GVH activated macrophages were shown to be responsible for the <u>in vitro</u> semi-syngeneic cytotoxicity reaction. The following experiments were designed to demonstrate that these GVH activated macrophages were also involved in the <u>in vivo</u> aspect of the spontaneous resolution of the GVH reaction. Two experiments, one using the Spleen Index, the other using the reduction of mortality were performed. Effect of GVH Activated PECs on GVH Reaction Assayed by Spleen Indices

The spleen index is considered as the <u>in vivo</u> indicator of the GVH reaction in experimental animals (Simonsen 1962). To obtain splenomegaly parental spleen cells were injected into  $F_1$  hybrids, and on day 9 post induction, the body and spleen weights of eacg animal were measured. For the controls, syngeneic spleen cells were injected into a separate group of  $F_1$ s. The body and spleen weights of these animals were also measured on day 9. The spleen index was calculated by the following formula :

| Spleen Index | Spleen Weight of GVH Animal     |
|--------------|---------------------------------|
|              | <br>Body Weight of GVH Animal   |
|              | Spleen Weight of Control Animal |
|              | Body Weight of Control Animal   |

Normal  $B6C3F_1$  recipients were injected intraperitoneally with C3H/HeJ parental spleen cells in increasing numbers :  $5 \times 10^6$ ,  $1 \times 10^7$ ,  $5 \times 10^7$ , and  $1 \times 10^8$  cells per  $F_1$  recipients. On day 9 post GVH induction, the  $F_1$  recipients were sacrificed and spleen indices were obtained for these animals representing the classical GVH reaction.

In order to study the in vivo effect of the GVH activated  $F_1$  PECs on the GVH process, these GVH activated  $F_1$  immunocompetent cells were obtained

from  $B6C3F_1$  hybrids previously injected with 1 x  $10^8$  parental C3H/HeJ spleen cells. These PECs were coolected 8 days post GVH induction and were injected intravenously (in increasing numbers of :  $0.5 \times 10^6$ ,  $1.0 \times 10^6$ ,  $5 \times 10^6$ , and  $1 \times 10^7$ cells per recipient) into four groups of syngeneic  $B6C3F_1$  hosts. Each group of these new syngeneic  $F_1$  hosts were induced into GVH reaction by the injection of increasing number ( $5 \times 10^6$ ,  $1 \times 10^7$ ,  $5 \times 10^7$  and  $1 \times 10^8$  cells per recipient) of parental spleen cells. The spleen indices of each of these new  $F_1$  hosts were obtained on day 9 post injection.

As shown in Figure 12, the spleen indices of the classical GVH reaction followed a linear pattern with increasing number of parental spleen cells injected, i.e., <u>in vivo</u> GVH reaction is directly proportional to the quantity of parental immunocompetent cells transferred.

The spleen indices of  $B6C3F_1$  receiving only syngeneic spleen cells without any parental spleen cells indicated a non-GVH reaction. This normal control level represented the absence of <u>in vivo</u> GVH reaction.

The spleen indices of GVH induced  $F_1$  recipients which have received the additional GVH activated syngenetic PECs at the time of induction the GVH reactions showed an inversely proportional relationship to the quantity of GVH activated PECs adoptively transferred.

Increasing number of GVH activated PECs pa-sively transferred into syngeneic  $F_1$  recipients at the beginning of the induction of GVH reaction, produced a decreasing level of spleen indices in these GVH induced syngeneic  $F_1$  animals. This indicated a suppressive effect of the <u>in vivo</u> GVH reaction by the syngeneic GVH activated  $F_1$  immunocompetent cells.

The following experiment examined another <u>in vivo</u> parameter of the GVH reaction in the presence of GVH activated syngeneic  $F_1$  immune cells.



# In Vivo Rescue Effect of GVH Activated F<sub>1</sub> Immunocompetent Cells

This experiment investigated into the <u>in vivo</u> effect of GVH activated peritoneal macrophages on reducing the mortality of lethally irradiated syngeneic  $F_1$  hosts undergoing GVH reactions.

The mice were caged inside ventilated plastic containers and were exposed to total body gamma-rays irradiation which was generated by a  $^{60}$ Cobalt isotope source (Eldorado Unit, Atomic Energy of Canada) at the Manitoba Cancer Treatment and Research Foundation centre. The source to mid-body distance was approximately 100 cm, and the dose rate was approximately 80 Rads per minute.

Fifty normal male  $B6C3F_1$  hybrids were lethally irradiated.  $1 \times 10^7$  parental C3H/HeJ spleen cells were injected intravenously into these  $F_1$  hybrids for the induction of GVH reactions. The number of  $F_1$  recipients that died on certain pre-selected days were recorded. This group of animals served as the control group indicating the mortality rate of lethally irradiated and GVH reaction induced  $F_1$  hybrids in the absence of any subsequent external intervention on the GVH process.

Another fifty male  $B6C3F_1$  hybrids were also lethally irradiated and injected with parental spleen cells as the control animals. In addition,  $1 \times 10^7$  of GVH-activated syngeneic  $F_1$  macrophages were injected into each of these  $F_1$  hybrids intravenously. The number of animals that died on the same pre-selected days as in the control group was recorded. The results between these two groups were compared.

As shown in Table XVI, the cumulative number of deaths and the cumulative total percentage of deaths of these two groups of animals within the observation period were described. The results showed that passively transferred syngeneic  $F_1$  macrophages which were activated by previous GVH

| Table XVI | - Percentage Deaths of F <sub>1</sub> Hybrids previously |  |
|-----------|----------------------------------------------------------|--|
|           | Irradiated and Induced into GVH Reactions                |  |
|           | by Parental Spleen cells                                 |  |

| GVH<br>Induction                          | = | l x 10 <sup>7</sup><br>Parental<br>Spleen cells |         | l x 10 <sup>7</sup><br>Parental<br>Spleen cells |                                              |
|-------------------------------------------|---|-------------------------------------------------|---------|-------------------------------------------------|----------------------------------------------|
| Treatment of<br>GVH-induced<br>Recipients |   | none                                            |         | l<br>GVH-<br>F <sub>l</sub> ma                  | x 10 <sup>7</sup><br>activated<br>acrophages |
| Days after<br>GVH induction               |   | x/50                                            | Total % | x/50                                            | Total %                                      |
| 0                                         |   | 0                                               | 0       | 0                                               | 0                                            |
| 4                                         |   | 1                                               | 2       | 0                                               | 0                                            |
| 7                                         |   | 9                                               | 18      | 0                                               | 0                                            |
| 10                                        |   | 16                                              | 32      | 0                                               | 0                                            |
| 14                                        |   | 29                                              | 58      | 1                                               | 2                                            |
| 17                                        |   | 46                                              | 92      | 3                                               | 6                                            |
| 21                                        |   | 48                                              | 96      | 3                                               | 6                                            |
| Median<br>Survival time<br>(in days)      |   | ]                                               | -2      | >>                                              | 12                                           |

note : x = cumulative number of dead experimental animals50 = total number of experimental animals in the group

127

reaction, were capable of prolonging the median survival time of the animals lethally irradiated and induced with GVH reactions as compared to those  $F_1$  hybrids which did not receive any additional cells i.e., the control group of  $F_1$  hybrids.

To obtain a better representation of the data, the percentage deaths of both groups of  $F_1$  animals were plotted against the time interval of observation in the experiment. The results are shown in a PROBIT analysis graph as shown in Figure 13.

The cumulative percentage deaths of the lethally irradiated  $F_1$  animals induced into GVH reactions and received no additional cellular transfer, followed a directly proportional relationship with the number of days after the induction of GVH reactions. The Median (50% survival) survival time of this group of  $F_1$  hosts was estimated to be approximately 12 days after GVH induction.

The other group of lethally irradiated and GVH-induced  $F_1$  hosts which have also received additional GVH-activated syngeneic  $F_1$  macrophages demonstrated a prolonged survival interval indicating the passively transferred syngeneic GVH-activated macrophages exerted a rescuing effect on those animals probably as a result of the adoptive transfer of such GVH-activated macrophages. The Median (50% survival) survival time of this latter group of GVH-induced  $F_1$  hosts was extended to beyond 12 days and extrapolated to approximately 21 days after GVH induction.

These experimental results are significant because they have demonstrated the capacity of GVH-activated macrophages in the prolongation of the survival of lethally irradiated and GVH-induced  $F_1$  hosts. They also implicated the possible involvement of the  $F_1$  immunocompetent cells in mediating the recovery or resolution of the GVH reaction observed in the non-irradiated  $F_1$  hosts as described previously in literature.



Figure 13 - Effect of GVH Activated Macrophages on Mortality of Lethally Irradiated F<sub>1</sub> Hosts Undergoing Graft versus Host Reaction

Irradiated GVH F 1

A-----A

Irradiated GVH  $F_1$  + GVH Activated  $F_1$  Macrophages

#### Abrogation of Spontaneous Resolution of GVHR

To prove that GVH activated  $F_1$  cells are responsible for the spontaneous resolution of the GVH reaction, the following two experiments were performed.

In both experiments, some of the GVH activated  $F_1$  animals were lethally irradiated, and the immunoincompetent  $F_1$  PECs were collected and transferred into new syngeneic  $F_1$  hosts. These new  $F_1$  hosts were injected with parental spleen cells from the same parental strain used in the induction of GVH activated  $F_1$  donor PECs.

In the first experiment, the degree of the <u>in vivo</u> GVH reaction in the presence of GVH activated irradiated, and GVH activated non-irradiated  $F_1$  donor PECs were compared by the spleen index assays.

In the second experiment, the degree of <u>in vivo</u> protection of irradiated new  $F_1$  hosts by syngeneic GVH activated irradiated and GVH activated non-irradiated  $F_1$  donor PECs were compared by the 50% mortality assay which was previously described.

In the first experiment, GVH activated  $F_1$  PECs were obtained from B6D2F<sub>1</sub> previously induced with GVH reaction by the injection of parental DBA/2 spleen cells. In one group of these GVH activated  $F_1$ s, the PECs were collected 8 days post GVH induction and were injected intravenously ( in increasing numbers of ;  $0.5 \times 10^6$ ,  $1 \times 10^6$ ,  $5 \times 10^6$ , and  $1 \times 10^7$  cells per new  $F_1$ recipient ) into groups ( 6 animals each group ) of syngeneic B6D2F<sub>1</sub> hosts. GVH reactions were also induced in these new hosts by the injection of  $5 \times 10^6$ ,  $1 \times 10^7$ ,  $5 \times 10^7$  and  $1 \times 10^8$  parental spleen cells in each respective group of  $F_1$ s.

Another group of GVH induced  $B6D2F_1$  animals were lethally irradiated. The F<sub>1</sub> PECs from these GVH activated hosts were collected and injected also



Figure 14 - Effect of Irradiation on GVH Activated F<sub>1</sub> Cells in the Reduction of Spleen Indices of Syngeneic F<sub>1</sub> Hosts Undergoing GVH Reactions

> Increasing No. of Parental Spleen Cells injected into Normal F<sub>1</sub> (Normal GVH Reaction)

GVH Activated F<sub>1</sub> PEC injected into Syngeneic F<sub>1</sub> recipients undergoing GVH Reactions (\*)



(\*) These animals received :

1. increasing No. of parental spleen cells

2. increasing No. of GVH activated syngeneic F<sub>1</sub> PECs which were either irradiated or not irradiated
intravenously ( in increasing numbers of  $0.5 \times 10^6$ ,  $1 \times 10^6$ ,  $5 \times 10^6$ , and  $1 \times 10^7$  cells per new F<sub>1</sub> recipient ) into groups of syngeneic B6D2F<sub>1</sub> hosts. Parental DBA/2 spleen cells, ( in increasing numbers also ;  $5 \times 10^6$ ,  $1 \times 10^7$ ,  $5 \times 10^7$ , and  $1 \times 10^8$  cells per recipient ) were injected into these groups of new F<sub>1</sub> hosts for the induction of GVH reactions.

The results as shown in Figure 14, demonstrated that when GVH activated  $F_1$  donor PECs were not irradiated, the spleen indices of the syngeneic new hosts were decreased indicating the suppression of the <u>in</u> <u>vivo</u> GVH reaction by the exogenous GVH activated syngeneic  $F_1$  effector cells.

However, when GVH activated  $F_1$  donors were lethally irradiated and the  $F_1$  donor PECs transferred, the spleen indices of the syngeneic  $F_1$ recipients followed the same pattern as the classical GVH reaction with close correlation. In other words, no suppression of the ongoing GVH reactions by the irradiated  $F_1$  donor PECs were observed.

The results in this experiment demonstrated that in order to bring about the suppression of the <u>in vivo</u> GVH reaction as measured by the spleen indices, the adoptively transferred GVH activated  $F_1$  immunocompetent cells must be viable or able to proliferate in the new  $F_1$  recipient. This experiment also demonstrated that GVH activated  $F_1$  immunocompetent cells were responsible for the reduction of the degree of <u>in vivo</u> GVH reaction.

In a previous experiment, it had been shown that GVH activated  $F_1$  PECs, when adoptively transferred into lethally irradiated syngeneic  $F_1$  hosts undergoing GVH reactions, were able to reduce significantly the 50% mortality rate of these new  $F_1$  recipients. The following second experiment examined the situation of irradiating the GVH activated  $F_1$  donor PECs and the resultant effect if any, on the reduction of the mortality rate of the new  $F_1$  hosts undergoing GVH reactions.



GVH activated  $F_1$  donor PECs were obtained by the induction of GVH reactions in B6D2F<sub>1</sub> hybrids with DBA/2 parental spleen cells. Some of these  $F_1$  animals were lethally irradiated so as to produce irradiated GVH activated  $F_1$  donor PECs. Other non-irradiated  $F_1$  animals were used as source of GVH activated  $F_1$  donor PECs.

Three groups of thirty normal male  $B6D2F_1$  hybrids were lethally irradiated and injected with 1 x 10<sup>7</sup> DBA/2 parental spleen cells for the induction of GVH reactions. One group of these GVH induced syngeneic  $F_1$  hosts received 1 x 10<sup>7</sup> GVH activated  $F_1$  donor PECs. The second group received 1x10<sup>7</sup> GVH actiavted but irradiated  $F_1$  donor PECs. The last group received no additional  $F_1$  cells and served as the control indicator of the <u>in vivo</u> GVH reaction. The number of animals that died on certain pre-selected days were recorded. The percentage deaths for each individual group on those preselected days were calculated.

The results as shown in Figure 15, demonstrated the phenomenon that GVH activated  $F_1$  PECs when adoptively transferred into syngeneic  $F_1$  hosts undergoing GVH reactions, were able to suppress the 50% mortality rate very significantly. On the other hand, when the GVH activated  $F_1$  donor PECs were rendered immunoincompetent by irradiation and transferred into new syngeneic  $F_1$  recipients undergoing GVH reactions, the phenomenon of reduction of the 50% mortality rate was not observed. This clearly indicated the role of the GVH activated  $F_1$  donor PECs in rescuing the syngeneic  $F_1$  recipients and also implied the involvement of  $F_1$  immunocompeten- cells in bringing about the spontaneous resolution of the <u>in vivo</u> GVH reaction.

# Specificity of Suppression of in vivo GVH Reaction

In previous experiments, it have been shown that GVH activated  $F_1$  effector cells seem to possess a higher degree of preferential <u>in vitro</u> cytotoxicity on target cells bearing the same H-2 genotype as the parental cells used in the induction of GVH reactions. This experiment investiagted into the <u>in vivo</u> situation to see if there is any specificity in the suppression of the <u>in vivo</u> GVH reaction by the adoptively transferred GVH activated  $F_1$  immunocompetent cells.

In order to study this particular aspect, GVH reactions were induced in two groups of the F  $_1$  animals. One group was injected with one parental strain spleen cells. The other group was injected with the other parental strain spleen cells. The PECs from these GVH activated  $F_1$ s were transferred into lethally irradiated syngeneic  $F_1$  recipients. These new  $F_1$  recipients were induced into GVH reactions by either one of the two strains of parental spleen cells. The degree of suppression of the in vivo GVH reaction bewteen these two groups was compared by the 50% mortality assay. In other words, the GVH activated F PECs encountered either one of the two parental strain spleen cells in the lethally irradiated new  ${ t F}_1$ recipients. One of the GVH inducing parental strain cells had been exposed to the GVH activated F PECs previously, while the other parental strain cell had not been exposed to the GVH activated F  $_1$  PECs before. The control for this experiment was provided by a group of lethally irradiated  $F_1$  hosts not receiving any GVH activated syngeneic F donor PECs. The results are  $\frac{1}{1}$ shown in Figure 16 and Figure 17.

In the first experiment, GVH activated  $F_1$  donor PECs were obtained from B6D2F<sub>1</sub> injected with parental DBA/2 spleen cells. These GVH



activated  $F_1$  PECs were transferred into two groups of lethally irradiated syngeneic B6D2F<sub>1</sub> recipients. One group of the new  $F_1$  recipients were induced into GVH reactions by the injection of parental DBA/2 spleen cells. The other group of the new  $F_1$  recipients were injected with parental C57BL/6 spleen cells. Remember that the GVH activated  $F_1$  donor PECs have only been exposed to DBA/2 spleen cells previously and never to C57BL/6 parental spleen cells before.

As shown in Figure 16, GVH activated  $B6D2F_1$  donor cells previously activated by the exposure to DBA/2 parental spleen cells were able to suppress the <u>in vivo</u> GVH reaction induced by the same parental DBA/2 spleen cells. When these GVH activated  $B6D2F_1$  PECs encountered the other C57BL/6 parental spleen cells ( Which they have not been exposed to before ) the DBA/2 activated  $F_1$  cells were not able to suppress the <u>in vivo</u> GVH reaction induced by the C57BL/6 parental cells. The results indicated a specificity reaction in which one can state that GVH activated  $F_1$  immunocompetent cells were only able to suppress an <u>in vivo</u> GVH reaction if the parental strain spleen cells used in producing the GVH activated  $F_1$  donor cells was identical to the parental strain used in inducing the second <u>in vivo</u> GVH reaction.

In the following second experiment, another combination of  $F_1$  and parental strains was used to prove the same point.  $C3D2F_1$  were injected with C3H/HeJ spleen cells to produce GVH activated  $F_1$  donor cells. These activated  $F_1$  PECs were injected into two groups of lethally irradiated syngeneic  $C3D2F_1$  recipients. One group was induced into GVH reactions by the parental C3H/HeJ spleen cells. The other group was induced by the other parental C57BL/6 strain spleen cells.



<u>vivo</u> GVH reaction was compared between these two groups by the 50% median mortality assay. The control group received no GVH activated  $F_1$  PECs.

The results as shown in Figure 17 revealed the same type of previous findings; i.e. suppression of <u>in vivo</u> GVH reaction by the GVH activated  $F_1$  PECs could only be achieved if the parental strain used in the production of GVH activated  $F_1$  PECs was identical to that used in inducing the <u>in vivo</u> GVH reaction.

#### DISCUSSION

The garft-versus-host reaction was initially introduced as an experimental tool in studying the transplantation reactions and the complex interactions between various immunocompetent cells. To date, there is emerging realization that, because of intrinsic immunological regulations, a GVH reaction goes through a programmed course of syndromes and eventually results in complete resolution. The interactions between the grafted parental cells and the immunocompetent cells of the  $F_1$  host can be examined from two perspectives. The classical perspective is the study of the cytotoxic activities of the grafted parental cells against the foreign antigens of the  $F_1$  host, and the non-conventional perspective is the study of the paradox of the immunocompetent cells of the presumably genetically tolerant  $F_1$  host reacting against the grafted parental cells. The first perspective has been extensively investigated in the past, while the second perspective is currently under initial investigations and seem to be gaining more importance.

During a GVH reaction, the pathological features occuring in the  $F_1$  host and the subsequent demise of the  $F_1$  recipient have classically been attributed to the direct attack of the host tissues by the parental donor lymphocytes. It has been suggested that the interactions between the parental lymphoid cells and the tissues of the  $F_1$  host resulted in a non-specific activation of the host's lymphoid cells into cytotoxic cells as demonstrated by the <u>in vitro</u> CMC assays. While such an indiscriminate destructive event can occur <u>in vivo</u>, there have not been any satisfactory

explanation as to why, in almost all situations studied, the attacking donor cells disappeared early during the GVH reaction, and the  $F_1$  hosts, provided that they were not rendered immunodeficient, eventually all recovered from the pathological reactions.

Previous studies in this laboratory demonstrated that the "non-specific cytotoxicity reaction" observed in GVH-induced  $F_1$  cells was mediated by the immunocompetent cells of the  $F_1$  host (Singh <u>et al</u>,1972). The cytotoxic reaction is in effect, the lysis of H-2 semi-syngeneic target cells by the  $F_1$  immunocompetent cells. This reaction is presently referred to as the semi-syngeneic cytotoxicity reaction which encompasses the concept of the  $F_1$  anti-parent reactivity.

In the present study, various aspects of the semi-syngeneic cytotoxicity reaction were investigated. These included; the activation of the  $F_1$  effector cells, the effects of stimulants on the  $F_1$  peritoneal exudate cells, the types of H-2 semi-syngeneic target cells best suited for the CMC assays, the kinetics of the cytotoxic reactions in terms of the effector to target cell ratios, and the <u>in vitro</u> histological process of the lysis of the semi-syngeneic target cells.

Data in the present study revealed that the optimal route to induce the semi-syngeneic cytotoxicity was the intraperitoneal injection of the parental spleen cells into the appropriate  $F_1$  recipients. Moreover, the  $F_1$  peritoneal exudate cells, regardless of the route of induction of the GVH reactions, were more effective than the  $F_1$  spleen cells in producing the cell-mediated cytotoxicity reactions. The tissue-cultured L929 cellline was noted to be the most efficient target cells for such <u>in vitro</u> CMC assays. The kinetics of the semi-syngeneic cytotoxicity reactions were

analysed by the pre-tested computer programs designed for computing the regression coefficients and the analysis of variances. The experimental results were found to be statistically significant.

Apart from studying the various experimental aspects of the semi-syngeneic cytotoxicity reaction, the identity and the nature of the  $F_1$  effector cells were investiagted. The classical assumption is that the peritoneal lymphocytes of donor origin, when obtained from alloimmuned  $F_1$  animals, were cytotoxic to the tissues of the  $F_1$  host (Berke <u>et al.</u>,1972). However, in GVH reactions, parental donor lymphocytes have been shown to die and disappear very early in the course of the GVH reaction, and the semi-syngeneic cytotoxicity reaction was still detectable long after the disappearance of the grafted donor cells. In addition, if the parental donor lymphocytes were responsible for the semi-syngeneic cytotoxicity reaction, they have to be truly autocytotoxic, the mechanism of which is difficult to understand. Further more, previous experiments have clearly established the  $F_1$  cells were responsible for the semi-syngeneic cyto-toxicity reaction (Singh <u>et al.</u>,1972).

Experimental evidence in the present study indicated that the  $F_1$  peritoneal macrophages were responsible for the semi-syngeneic cytotoxic reactivities. Indirect evidence in support of this conclusion derived from the fact that the  $F_1$  cytotoxic effector cells possessed the properties of surface adherence. Direct evidence indicating the  $F_1$  macrophages to be the cytotoxic effector cells was provided by the experiments in which the in vitro semi-syngeneic cytotoxicity reaction was suppressed by irradiating the  $F_1$  effector cell or by adding silica particles which were shown to be cytotoxic only to the  $F_1$  peritoneal macrophages and not the lymphocytes regardless of whether  $F_1$  or parental origin.

The demonstration of the  $F_1$  peritoneal macrophages being the cytotoxic effector cells is supported by similar reports in literature. The phenomenon of <u>in vitro</u> generation of a  $F_1$  anti-parent cytotoxicity reaction has also been reported to be easily abrogated by a single small dose of silica particles (Yung and Cudkowicz 1977). Cytotoxic macrophages from human sources were also noted to be specifically inhibited by silica particles (Howitz <u>et al</u>,1979). A very significant observation reported recently was that, the <u>in vitro</u> generated  $F_1$  anti-parent cytotoxicity reaction was inhibited by silica treatment, while the development of the anti-allogeneic cytotoxic reactivity was not affected by silica particles (Shearer <u>et al</u>,1978). This report confirmed our observation that the  $F_1$ macrophages were the cytotoxic effector cells.

The present study also demonstrated that normal  $F_1$  macrophages could be activated by the GVH-induced syngeneic  $F_1$  macrophages through both <u>in vitro</u> and <u>in vivo</u> mechanisms and together with the GVH-induced  $F_1$  effector macrophages, produced an enhanced semi-syngeneic cytotoxicity reaction in the CMC assays. The kinetics of such <u>in vivo</u> activation of the normal  $F_1$ macrophages was analysed by the ST-31 computer program, and the results were found to be statistically significant. The anatomical progression of the  $F_1$  effector macrophages in attacking the semi-syngeneic target cells were reported in the present study. Histological evidence of cytotoxic effector macrophages in other experimental situations as reported in literature was confirmatory to our present findings (Piessens 1978).

The <u>in vivo</u> effects of the GVH-activated  $F_1$  macrophages on syngeneic  $F_1$  animals were investigated. The data showed that such GVHactivated  $F_1$  effector macrophages, when adoptively transferred into other

syngeneic  $F_1$  hosts undergoing GVH reactions, were capable of reducing the severity of the <u>in vivo</u> GVH reactions as reflected by the reduction of the spleen indices in these adoptively grafted animals. In addition, the adoptively injected GVH-activated  $F_1$  effector macrophages were capable of exerting an extrinsic rescuing effect on other syngeneic  $F_1$  animals which were lethally irradiated and injected with parental spleen cells. A significant increase of the median (50%) survival time of these GVH crippled recipients was obtained, implicating the GVH-activated effector macrophages to be an intergral part of the cytotoxic mechanism in the natural resolution of the GVH reactions.

The spontaneous resolution og the <u>in vivo</u> GVH reaction secondary to the adoptive transfer of syngeneic  $F_1$  PECs could be abrogated by rendering the GVH activated  $F_1$  donor PECs immunoincompetent. This had been demonstrated clearly in the experiments in which the GVH activated  $F_1$ donor PECs, when irradiated and transferred into syngeneic  $F_1$  hosts undergoing GVH reactions were not ablt to either reduce the spleen indices nor increase the median survival rate of the new  $F_1$  recipients. It could be concluded that the  $F_1$  immunocompetent cells were responsible for the active host-versus-graft reaction in bringing about the resolution of the <u>in vivo</u> graft-versus-host reaction.

In addition, it had been clearly demonstrated that there was certain degree of specificity in the capacity of the GVH activated  $F_1$  PECs to suppress or interfer with an <u>in vivo</u> GVH reaction. Immunocompetent cells from  $F_1$  donors GVH activated by one parental strain were capable of suppressing an <u>in vivo</u> GVH reaction if the GVH inducing parental cells injected into the irradiated new syngeneic  $F_1$  recipients were from the same parental strain.

However, if one parental strain was used to to produce the GVH activated  $F_1$  donor PECs and another parental strain was used to induce the <u>in vivo</u> GVH reaction in the new syngeneic  $F_1$  recipients, suppression of the <u>in vivo</u> GVH reaction secondary to the adoptive transfer of the GVH activated  $F_1$  PECs could not be achieved. These <u>in vivo</u> results complimented the previously described <u>in vitro</u> phenomenon of preferential lysis of target cells bearing parental antigens by the GVH activated  $F_1$  PECs. A hypothesis to explain such host-versus-graft reaction will be presented later.

Implication of the active host-versus-graft role of the F1 macrophages had been reported in recent literature. For example, the anti-tumor effect of the purified immune macrophages had been tested in the experiments in which, normal mice were injected with the L5178Y tumor cells, and two days later, 5 x 10<sup>5</sup> syngeneic immune macrophages were also injected into these animals. Those mice which received the immune macrophages survived 4 to 8 weeks more than the group which received the non-immune macrophages (Alexander et al, 1973). The ability of macrophages from C57BL/6 mice bearing the Bl6 melanoma to inhibit pulmonary metastases in vivo had been reported. In this experiment, macrophages cultured in vitro with the Bl6 melanoma tumor cells, when adoptively transferred, could significantly reduce the number of pulmonary nodules. Moreover, those macrophages cultured in vitro with sodium caseinate or thioglycollate without the exposure to the B16 melanoma tumor cells, could not reduce the number of pulmonary metastases (Hibbs et al, 19720. Data from certain immunotherapeutic trials in pulmonary carcinoma indicated that macrophages stimulated by BCG vaccine, when injected intravenously, could migrate to the lung and arrested the growth of the existing pulmonary nodules (Hopper

and Pimm 1976). All these reports in literature supported the contention that macrophages are effective in vivo against syngeneic cells.

Apart from the capacity of reacting against homologous tumor cells, some activated macrophages could reportedly inhibit certain functions of the lymphocytes. For example, the suppression of the generation of cytotoxic T lymphocytes have been shown to be present in the spleens of normal mice (Hodes and Hathcock 1976) and the cells responsible for such a suppressive activity were identified as macrophages (Weiss and Fitch 1977; Kung <u>et al</u>,1977). Indirect evidence implicating the splenic macrophages to be responsible for the regression of a GVH reaction had been reported in studies on the MIs histocompatibility system in which, local peripheral lymph node enlargements were suppressed by the activated macrophages (Jacobsson <u>et al</u>,1975; Matossian-Rogers 1977).

Perhaps the best evidence implicating the  $F_1$  macrophages as the effector cells in rescuing the host from a GVH reaction as reported in recent literature was the demonstration that a local GVH reaction could be abrogated by collodial carbon particles which possess similar toxic activities as the silica particles specifically against the macrophages (Hanna and Watson 1965). As reported in that study, a single prior injection of colloidal carbon particles could augment the local GVH reaction of peripheral lymph node hypertrophy in the footpads of the  $F_1$ recipient rats. The colloidal carbon particles, when injected alone, did not produce any lymph node enlargement or runting disease (Yamashita <u>et al</u>, 1978). The colloidal carbon presumably caused the suppression of the  $F_1$ macrophages resulting in the augmentation of the local GVH reactions.

Apart from establishing the  $F_1$  macrophages as the effector cells in the semi-syngeneic cytotoxicity, the present study also explored into the underlying mechanism of such reactivities within the context of the GVH reaction. In the investigation of the immunological aspect of the semi-syngeneic cytotoxicity reaction, it was revealed that a significantly higher level of target cell lysis was obtained when the parental spleen cells (used in GVH induction) and the target cells (used in CMC assays) were of the same H-2 genotype as compared to the situation in which the genotype of the parental donor spleen cells (used in GVH induction) and the genotype of the target cells (used in CMC assays) were different at the H-2 level. This was designated as the preferential cytotoxic effect exhibited by the GVH-induced  $F_1$  effector cells in CMC assays.

The observation of such a preferential cytotoxic effect by the  $F_1$  effector cells necessitates a consideration of three hypothetical situations which could explain the underlying mechanism. They are : (1) the  $F_1$  immunocompetent cells are not really genetically tolerant to the parental cells but can react against the histocompatibility antigens of the parental spleen cells during a GVH reaction; (2) the GVH reaction somehow activated the different clones of the  $F_1$  immunocompetent cells one of which can become autoimmune against self-antigens present on the parental spleen cells, and (3) the cytotoxic reaction is the result of the activation of the  $F_1$  immunocompetent cells by certain non-specific mechanism during the GVH reaction.

The experimental data from the present study seems to favor the first hypothesis. Before going into the details of such experimental evidence, the suggestion that the  $F_1$  macrophages were non-specifically activated by the GVH reaction can be classified as a lesser possibility if one considers the following facts. It is a well known fact that GVH reactions can not be serially transferred. If the parental spleen cells could non-specifically activate the  $F_1$  cells in the first injection, there is no reason why they could not non-specifcally activate the  $F_1$  cells in the second host. It had been reported that the injection of the  $F_1$  lymphocytes into irradiated parental hosts resulted in proliferation of the  $\mathtt{F}_1$ cells in the recipient parental spleen. This indicated that the  $F_1$  cells were activated into proliferation in the absence of any active proliferation of the parental lymphoid cells (Blomgren and Lilliehook 1978). The time course of events during a GVH reaction could not support the suggestion that the parental spleen cells non-specifically activated the  $F_1$  lymphoid cells. The  $F_1$  host macrophages were shown to be cytotoxic long after the disappearance of the donor spleen cells, and the grafted parental spleen cells died and disappeared very early after transplantation into the  $F_1$ hosts. Moreover, macrophages capable of cytotoxicity against certain antigens in the absence of GVH reactions have been reported in literature; in mice (Fink 1976) and in human adherent cells (Horwitz et al,1979). Further more, as reported in the mouse, the induction of an inflammatory

exudate in the peritoneal cavities with agents such as sodium caseinate, thioglycollate, starch, mineral oils and peptones have been shown to be an insufficient stimulus to convert macrophages into cytotoxic cells specifically against syngeneic normal or tumor cells (Hibbs <u>et al</u>,1972; Hibbs 1974; Cleveland <u>et al</u>,1974). With all the above facts on hand, one can consider the activation of the  $F_1$  effector cells in the GVH reaction to be a specific event, an intergral part of the entire reaction.

To explain the underlying mechanism of the semi-syngeneic cytotoxicity reaction, one can postulate that, under normal conditions, the F immunocompetent cells reactive against the self-MHC antigens are only suppressed, not eliminated as some reports suggested, by certain immunoregulatory mechanisms, so that autoreactivity would not normally take place. The suppressive mechanisms could involve any regulatory mediators such as suppressor cells, anti-recognition structure molecules, etc. However, when an external stimulus is presented to upset the delicate balance between self-suppression and self-sensitization, for example, the GVH reaction, the suppressive activity would become inoperative. The release from such normal self-suppression may proceed to the situation in which the F immunocompetent cells become capable of "recognizing" the parental histocompatibility antigens expressed on the surfaces of the parental lymphoid cells transplanted previously in the induction of GVH reactions. The outcome of such a recognition process is the proliferation of the F immunocompetent cells resulting in the lysis of the target cells bearing the parental H-2 antigenic determinants. This hypothesis was investigated in the present study, and supportive results were obtained.

Evidence implicating the existence on the immunocompetent cells of specific antigen-binding receptors capable of recognizing the self-MHC-antigens producing autosensitization and auto-cytotoxicity, but are normally immunosuppressed, has been described in literature (Binz and Wigzell 1978). The lack of such "Horror Autotoxicus" reactivity in the normal F murine spleen cells is likely due to the concomitant presence of both the suppressor cells and the autoreactive immunocompetent cells, and the latter cells are inhibited by the first one. However, if the suppressor cells are selectively removed from the population, the autocytotoxic immunocompetent cells can then be detected. This assumption in support of the presently proposed hypothesis of self-suppression in the  $F_1$  hybrid animals has been illustrated in certain experiments reported recently using bovine serum albumin discontinuous gradients to separate the mouse splenic population of cells into different density fractions. After separation of the fractions of the spleen cells, a medium density cell population was shown to be auto-cytotoxic (Osband and Parkman 1978). The presence of suppressor cells in many immunological reactions is well The involvement of suppressor cells in transplantation reactions known. and tolerance have been described in literature (Argyris 1966; Dorsch and Roser 1977; Rieger and Hilgert 1977; Holan et al, 1978). The existence of suppressor cells in the  $F_1$  hybrid mice is a logical proposition, and the existence of the capacity of the  ${ extsf{F}_1}$  immunocompetent cells to react against self-MHC antigens is discussed in the following.

In the present study, in order to demonstrate that the  $F_1$  immunocompetent cells possess the potential to react against the parental histocompatibility antigens, spleen cells from the (A x B)  $F_1$  hybrids were

injected into lethally irradiated (B x C)  $F_1$  hybrids and cytotoxicity reactions against the H-2<sup>b</sup> genotype target cells were measured. This particular experimental design was used in experiments described previously and a detailed explanation in the interpretation as well as the implications of the results in reference to the present hypothesis are discussed in the following paragraphs.

Referring to Figure 18 Part (I); when parental spleen cells are injected into the  $F_1$  hybrids, two types of immunological reactions could exist between the donor cells and the host cells : (1) the GVH type of reaction; manifested as specific cytotoxicity (parent immunocompetent cells against foreign  $F_1$  antigens), the hypothetical truly non-specific cytotoxicity in which, syngeneic, allogeneic, and even xenogeneic target cells are destroyed. (2) the HVG type of reaction; manifested as, the phenomenon of semi-syngeneic cytotoxicity, hybrid resistance, in vitro generated  $F_1$  anti-parent cytotoxicity, and autoimmune reactions. These HVG reactions, according to the classical concept of self-tolerance, should not exist.

In reference to Part (II) of Figure 18 when the roles of donor and host are reversed and the recipient hosts are lethally irradiated, i.e., the  $F_1$  cells are injected into lethally irradaited parental recipients, only the graft against host type of reaction can occur. This reaction, in name, is a GVH reaction, but in fact, is equivalent to the HVG type of reactions described in Part (I), which is manifested therefore as ; the phenomenon of semi-syngeneic cytotoxicity, hybrid resistance, <u>in vitro</u> generated  $F_1$  anti-parent cytotoxicity, and autoimmune reactions. The other type of reaction in Part (II), i.e., the HVG reaction which is



EC = Effector Cell TC = Target Cell

Figure 18 - Possible Types of Reactions Involving the Graft and the Host in GVH and HVG directions

equivalent to the GVH reaction in Part (I) would not be manifested since the parental recipient hosts were lethally irradiated. The situation in Part (II) could allow the manifestation of the hypothetical phenomenon of Hybrid Resistance since certain recessive antigens are hypothetically expressed only in the homozygous genotype (i.e., the parental A/A host in the present situation) which the heterozygous  $F_1$  cells do not possess and are therefore foreign. Because of the lack of the hypothetical homozygously expressed antigens, the  $F_1$  cells can react against these antigens resulting in the production of <u>in vitro</u> cytotoxicity reactions.

To avoid the misinterpretation of cytotoxicity due to the hypothetical Hybrid Resistance phenomenon as the semi-syngeneic  $F_1$  antiparent cytotoxicity, the  $F_1$  immunocompetent cells should be injected into lethally irradiated heterozygous and semi-syngeneic  $F_1$  hosts possessing one half of the genotype common to both the donor  $F_1$  and the irradiated recipient  $F_1$  animals; i.e., donor  $F_1$  genotype would be (A x B), and the irradiated recipient  $F_1$  genotype would be (C x B), with H-2<sup>b</sup> as the common genotype. In this combination, the stimulating recipient which were lethally irradiated, would also be heterozygous. This experimental approach is described in Part (III) of Figure 18. As shown in Part (III) of the figure, two types of immunological reactions can occur. The first one is the semi-syngeneic cytotoxicity reaction in which the (A x B)  $F_1$  immunocompetent cells would react against the parental B antigens on the (C x B)  $F_1$  stimulating cells. The second type of reaction is the classical version of specific cytotoxicity which is known to exist.

Using the experimental approach as described in Part (III) of Figure 18, the  $F_1$  immunocompetent cells have been shown to be capable of

producing the lysis of target cells bearing the parental H-2 genotype. The results were presented previously in Table IX.

To explain the mechanics of such a reactivity involving the sensitization of the  $F_1$  cells by the surrogate parental H-2 antigens, one can postulate that, on the surface of the B6D2 $F_1$  immunocompetent cells, there exist : (1) the B and D antigens inherited from the two parental genotypes, and (2) the "recognition structures" (RS) recognizing the B and D antigens. The action of recognition by the recognition structures are normally suppressed as indicated earlier. In addition, there are other recognition structures recognizing other antigens such as the K antigen of the H-2<sup>k</sup> genitype. The H-2 antigens and the recognition structures are illustrated in Figures 19 and 20 by different symbols.

When the  $B6D2F_1$  spleen cells are injected into the lethally irradiated  $C3D2F_1$  recipients, the (B x D)  $F_1$  immunocompetent cells are exposed to the H-2 antigens of the (K x D)  $C3D2F_1$  cells, and three transplantation reactions of relevance can occur. As described diagrammatically in Figure 19, they are : <u>B6D2F\_1 (B x D)</u> <u>C3D2F\_1 (K x D)</u>

 ${\rm RS}_{\rm d}$  reacting against the D antigen  ${\rm RS}_{\rm k}$  reacting against the K antigen

 ${}^{\rm RS}{}_{\rm b}$  not reacting against the K and D antigens The most significant reaction here is the reaction of the  ${}^{\rm RS}{}_{\rm d}$  reacting against the D antigen on the  ${}^{\rm C3D2F}{}_1$  cells. The occurence of such a reaction would lead to the lysis of the parental H-2 genotype target cell detectable in the CMC assays. In fact, the results in Table IX demonstrated the existence of such a reaction.



Hypothetical experimental situation of F<sub>1</sub> immunocompetent cells reacting against parental antigens in an one-way reaction.



Figure 19 - Experimental situation of F<sub>1</sub> cells reacting against Parental Antigens ( see text ) d - RS = RS<sub>d</sub> (Recognition Structure for D antigen) k - RS = RS<sub>k</sub> (Recognition Structure for K antigen)

The similar experimental approach using the same two  $F_1$  mice strains in reversed roles is depicted in Figure 20. The B6D2 $F_1$  mice were used as the lethally irradiated recipients, into which, spleen cells from the C3D2 $F_1$  mice were injected. The (K x D) C3D2 $F_1$  cells were exposed to the antigens of the (B x D) B6D2 $F_1$  recipients. The three transplantation reactions of relevance are described in Figure 23 diagrammatically.

The exposure of the  $C3D2F_1$  immunocompetent cells to the H-2 antigens of the B6D2F\_1 cells could result in the following transplantation reactions :  $\frac{C3D2F_1 (K \ge D)}{B6D2F_1 (B \ge D)}$ 

 ${\rm RS}_{\rm d}$  reacting against the D antigen  ${\rm RS}_{\rm b}$  reacting against the B antigen

 ${}^{\rm RS}_{\rm k}$  not reacting against the B and D antigens The most significant reaction here again is the reaction of the  ${\rm RS}_{\rm d}$  against the D antigen on the B6D2F<sub>1</sub> cells. The existence of such a reaction was detected and reported previously in Table IX, in which, the F<sub>1</sub> cells were noted to be capable of causing the lysis of the surrogate parental H-2 semi-syngeneic target cells after the exposure to the parental H-2 antigens on the lethally irradiated semi-syngeneic F<sub>1</sub> host possessing the common parental H-2 antigen. Together with the evidence that the lysis of the parental H-2 semi-syngeneic target cells by the GVH-activated F<sub>1</sub> effector cells was inhibited by the H-2 specific antibodies, the underlying mechanism of the semi-syngeneic cytotoxicity reaction was interpreted to involve the antigenic determinants of the H-2 complex, thorugh which, the GVH-activated F<sub>1</sub> immunocompetent cells mediated the F<sub>1</sub> anti-parent cytotoxicity reaction.

The above hypothesis and interpretations of the experimental results are significant because a concept as well as data opposite to the



Hypothetical experimental situation of  $F_1$  immunocompetent cells reacting against parental antigens in an one-way reaction.



Figure 20 - Experimental situation of F<sub>1</sub> cells reacting against
Parental Antigens ( see text )
d - RS = RS<sub>d</sub> (Recognition Structure for D antigen)
b - RS = RS<sub>b</sub> (Recognition Structure for B antigen)

157

classical "Clonal Deletion Theory" in transplantation immunology has been presented. The implications would undoubtedly be of importance in future clinical applications of bone marrow transplantations and the studies on the autoimmune diseases.

Evidence demonstrating the proliferative response of the lymphoid cells against syngeneic and/or autologous stimulator cells in the mixed-lymphocyte-reactions have been reported in literature. They tend to support the contention of self-reactivity as proposed in the present thesis. Neonatal thymus cells were found capable of responding vigorously when cultured or exposed to mitomycin-treated syngeneic adult spleen cells (Howe et al,1970). In addition, adult lymph node cells were noted to proliferate in response to mitomycin-treated syngeneic or autologous adult spleen cells (Ponzio <u>et al</u>,1975; Finke <u>et al</u>,1976). This type of autoresponsiveness or self-sensitization have also been reported in different subpopulations of human peripheral blood lymphoid cells (Opelz <u>et al</u>,1975; Kuntz <u>et al</u>,1976).

The observation of the presently reported cytotoxic effect by the  $F_1$  effector cells on target cells bearing the parental H-2 antigens is also supported indirectly by a number of recent studies. For example, under certain <u>in vitro</u> conditions, the  $F_1$  immunocompetent cells were noted to react against target cells bearing the parental genotype, the situations of which, were not GVH related (Warner and Cudkowicz 1979). This type of <u>in vitro</u> generation of  $F_1$  anti-parent cytotoxic cells has also been observed by other investigators (Verhulst and Zata 1977; Lilliehook and Blomgren 1978). The cytotoxic effect was also implicated to involve the MHC antigens on the parental cells (Botzenhardt <u>et al</u>,1978; Ishikawa and Dutton 1979). <u>In vivo</u>

evidence of the  $F_1$  immunocompetent cells reacting against the parental H-2 genotype target cells has been provided by a recent report in which GVH-activated  $F_1$  spleen cells were shown to be cytotoxic to the parental genotype (methylcholanthrene induced sarcoma) target cells by the <u>in vivo</u> neutralization test (Nagino <u>et al</u>,1978).

The <u>in vivo</u> induction of the semi-syngeneic cytotoxicity reaction reported in this thesis and the parallel situation of <u>in vitro</u> generation of  $F_1$  anti-parent cytotoxicity reported by another investigator are strongly supported by the recently described "Host-versus-Graft" disease. This HVG phenomenon occurs when adult  $F_1$  spleen cells were injected into the parental newborn mice, producing a complex syndrome similar to the GVH-induced "Runting Disease" in the newborn  $F_1$  mice (Smith <u>et al</u>,1977; Cornelius 1978; Hard and Campbell 1979). The present study however, is the first report to describe the <u>in vivo</u> generation of the  $F_1$  cytotoxic effector cells reactive against the parental H-2 associated antigenic determinants which paradoxically, the  $F_1$  cells themselves also possess.

While self-sensitization by the  $F_1$  immunocompetent cells against the parental histocompatibility antigens occurs as a result of the removal of the naturally occuring immunosuppressive mechanisms by the GVH reaction, the transplanted parental immunocompetent cells actually have a head start in reacting against the histoincompatible antigens on the  $F_1$ host cells producing the pathological syndromes observed in the early part of the course. As a result of the initiation of the GVH reaction, the  $F_1$ immunocompetent cells are activated to react against the invading parental cells. This type of  $F_1$  anti-parent reactivity can be detected experimentally as the semi-syngeneic cytotoxicity reaction. The effect of the manifestation

of such a reaction in the  $F_1$  host is the natural resolution of the GVH reaction in an immunocompetent host animal. Evidence in support of this contention has been reported in recent literature. It is known that GVH diseases occur in approximately 70% of human patients after bone marrow transplantations. Patients suffering from the acute GVH disease were noted to lack in their peripheral blood, the  $TH_2^+$  leukocytes. Reappearance of the  $TH_2^+$  leukocytes in the blood samples signaled the subsidence of the acute GVH disease (Reinherz et al.1979). This clinical observation closely resembles the experimental demonstration that the adoptive transfer of GVH-activated macrophages could reduce the severity of the <u>in vivo</u> GVH reaction as evidenced by the reduction of the spleen indices described previously.

In conclusion, the present thesis represents a pioneering work on the understanding of the graft-versus-host phenomenon in the context of the host-versus-graft reaction. A mechanism explaining the activation and the cytolytic process of the GVH-induced F  $_1$  immunocompetent cells in the F anti-parent semi-syngeneic cytotoxicity reaction has been proposed. It is suggested that the F immunocompetent cells possess the capacity to react against the syngeneic antigens on the parental cells, but such reactions are normally immunosuppressed. During a GVH reaction, the balance of self-suppression and self-sensitization was disturbed, and the  $F_1$  immunocompetent cells, in defence of the viability of the  $F_1$  host, became activated and acquired cytotoxicity against the invading parental These host-versus-graft reactivities eventually lead to the cells. resolution of the graft-versus-host reaction. When the  $F_1$  host was made immunodeficient by lethal irradiation prior to the induction of GVH reaction, the depletion of the  $F_1$  immunocompetent cells resulted in the continuous progression of the graft against host reaction, ending in the death of the  $F_1$  host.

## Phosphate Buffered Saline Solution ( DULBECO ) :

Reference : J. Exp. Med., ( 1954 ), 99 : 167

Components -

| NaCl                                 | 8000.0 | mg/L |
|--------------------------------------|--------|------|
| KCl                                  | 200.0  | **   |
| Na2HPO4                              | 1150.0 | 11   |
| KH2P04                               | 200.0  | 71   |
| CaCl <sub>2</sub> (anhydrous)        | 100.0  | **   |
| MgCl <sub>2</sub> .6H <sub>2</sub> 0 | 100.0  | 88   |

# Hank's Balanced Salt Solution ( DULBECO ) :

Reference : Proc. Soc. Exp. Biol. Med., ( 1949 ), 71 : 196

Components -

| NaCl                                 | 8000.0 | mg/L |
|--------------------------------------|--------|------|
| KC1                                  | 400.0  | 81   |
| $Na_2HPO_4.2H_2O$                    | 60.0   | 89   |
| KH2P04                               | 60.0   | 88   |
| MgS0 <sub>4</sub> .7H <sub>2</sub> 0 | 100.0  | 81   |
| CaCl <sub>2</sub> (anhydrous)        | 140.0  | 88   |
| Glucose                              | 1000.0 | 91   |
| MgC12.6H20                           | 100.0  | 88   |
| NaHCO3                               | 350.0  | 88   |
| Phenol Red                           | 10.0   | 81   |

### Tissue Culture Media and Buffers

Tissue culture medium RPMI 1640 (Rosewell Park Memorial Institute media series 1640, Buffalo New York) without bicarbonate was obtained from commercial source (GIBCO, Grand Island New York). Cell suspending solution and transport media of Hank's Balanced Salt Solution (HBSS) and Dulbecco Solution (DS) were obtained from DIFCO Laboratories, Detroit, Michigan,U.S. All solutions were buffered by a 0.04 Molar HEPES buffered solution. The HEPES(N-2 hydroxyethylpiperazine-N-2, ethanesulphonic acid) powder was obtained from CALBIOCHEM CO.LTD., La Jolla, California, U.S.A. The tissue culture medium RPMI 1640, a 1.043 grams-percent solution, buffered by 40 mls. of HEPES buffered solution per liter of medium was adjusted to pH 7.2 by a stock solution of 1N NaOH(sodium hydroxide) and 1N HCl(hydrochloric acid), and supplemented with 10% fetal calf sera(complement inactivated at 56<sup>0</sup>C for 30 minutes), 100 units/ml penicillin; 100 ug/ml. streptomycin. The medium was sterilized by Millipore filters under constant negative pressure and stored at 4<sup>0</sup>C before use.

### Trypan Blue Exclusion Test

This test of cell viability was applied in all experiments to ascertain the degree of viability of various cell suspensions just prior for use in various tests and experiments. A 0.2% aqueous solution of trypan blue was made isotonic by the addition of appropriate amount of a 5% NaCl(sodium chloride) solution before use and was used to dilute the cell suspension in a 1:10 ratio. After 10 minutes incubation at 37°C the number of stained and unstained cells were counted in a hemocytometer and the percentage of viability calculated. RPMI MEDIA SERIES 1640

Ref.:<sup>1</sup>Iwakata, S., Grace, J. T. Jr.; N. Y. J. of Med., 64/18:2279-2282 (September 15, 1964).

<sup>2</sup>Moore, G. E., Sandberg, A. A. and Ulrich, K.; J. Nat. Can. Inst., 36/3:405 (March 1966).

<sup>3</sup>Published with the kind permission of George E. Moore, M.D., Ph.D., Roswell Park Memorial Institute, Buffalo, New York. <sup>4</sup>Ibid.

The RPMI media series, developed at Roswell Park Memorial Institute, were designed specifically for growing human and mouse leukemia cells.

| COMPONENT                                 | RPMI 3<br>1603 | 6PML 1<br>1629     | 8011 2<br>1630 | RPMI 3<br>1634 | RPMI 4<br>1640 |
|-------------------------------------------|----------------|--------------------|----------------|----------------|----------------|
|                                           | mg/L           | mg/L               | mg/L           | mg/L           | mg/L           |
| Ferrous Sulfate $\cdot$ 7H <sub>2</sub> O | 1.0            | -                  | -              | -              | -              |
|                                           | -              | 100.0              | -              | -              | -              |
| $Ca(INO_3)_2 \cdot 4H_2O$                 | 200.0          |                    | 100.0          | 100.0          | 100.0          |
| Glucose                                   | 2500.0         | 3000.0             | 2500.0         | 2000.0         | 2000.0         |
| MgSO4 • 7H2O                              | 200.0          | 200.0              | 100.0          | 100.0          | 100.0          |
|                                           | 400.0          | 400.0              | 400.0          | 400.0          | 400.0          |
| $Na_2HPU_4 \cdot /H_2U$                   | 1512.0         |                    | 2835.0         | 2835.0         | 1512.0         |
| $N_3H_2PU_4 \cdot H_2U$                   | 230.0          | 580.0              | -              | -              | -              |
|                                           | 6000.0         | 6460.0             | 6000.0         | 6000.0         | 6000.0         |
|                                           | -              | 13.4               | -              | -              |                |
| L-Arginine (free base)                    | 200.0          | 42.1<br>(HCI)      | 200.0          | 100.0          | 200.0          |
| L-Asparagine                              | 50.0           | 45.0               | 30.0           | 30.0           | 50.0           |
| L-Aspartic acid                           | -              | 19.9               | 30.0           | 30.0           | 20.0           |
| L-Cysteine                                | _              | 31.5               |                | 50.0           | 20.0           |
| L-Cystine                                 | 50.0           | -                  | 100.0          | 100.0          | 50.0           |
| L-Glutamic acid                           | 15.0           | 22.1.              | 80.0           | 80.0           | 20.0           |
| L-Glutamine                               | 500.0          | 219.2              | 300.0          | 300.0          | 300.0          |
| Glutathione (reduced)                     | -              | 0.5                | 10.0           | 10.0           | 10             |
| Glycine                                   | 15.0           | 7.5                | 15.0           | 15.0           | 10.0           |
| L-Histidine (free base)                   | 20.0           | 20.9               | 35.0           | 35.0           | 15.0           |
|                                           |                | $(HCI \cdot H_2O)$ |                | 90.0           | ,0.0           |
| L-Hydroxyproline                          | _              | 19.7               | _              | -              | 20.0           |
| L-Isoleucine (Allo free)                  | 80.0           | 39.3               | 50.0           | 50.0           | 50.0           |
| L-Leucine (Methionine free)               | 80.0           | 39.3               | 50.0           | 50.0           | 50.0           |
| L-Lysine HCI                              | 25.0           | 36.5               | 60.0           | 75.0           | 40.0           |
| L-Methionine                              | 30.0           | 14.9               | 15.0           | 15.0           | 15.0           |
| L-Phenylalanine                           | 20.0           | 16.5               | 30.0           | 30.0           | 15.0           |
| L-Proline (Hydroxy L-Proline free)        | 10.0           | 17.3               | 30.0           | 30.0           | 20.0           |
| L-Serine                                  | 100.0          | 26.3               | 50.0           | 50.0           | 30.0           |
| L-Threonine (Allo free)                   | 35.0           | 17.9               | 50.0           | 50.0           | 20.0           |
| L-Tryptophane                             | 20.0           | 3.1                | 10.0           | 10.0           | 5.0            |
| L-Tyrosine                                | 20.0           | 18.1               | 30.0           | 30.0           | 20.0           |
| L-Valine                                  | 10.0           | 17.6               | 40.0           | 40.0           | 20.0           |
| Ascorbic acid                             | -              | 0.5                | _              | _              | _              |
| Biotin                                    | 0.05           | 0.2                | 0.2            | 0.1            | 0.2            |
| Vitamin B <sub>12</sub>                   | 0.05           | 2.0                | 0.05           | 0.1            | 0.005          |
| D-Ca pantothenate                         | 0.25           | 0.2                | 3.0            | 0.25           | 0.25           |
| Choline Cl                                | 2.0            | 5.0                | 3.0            | 3.0            | 3.0            |
| Folic acid                                | 0.01           | 10.0               | 2.0            | 1.0            | 1.0            |
| Folinic acid                              | 0.01           | -                  |                | _              |                |
| i-Inositol                                | 5.0            | 36.0               | 5.0            | 15.0           | 35.0           |
| Manganese Sulfate • H <sub>2</sub> O      | 1.0            | -                  | · -            | _              |                |
| IVI2CIN                                   |                | 0.5                | -              | <u> </u>       |                |
| Nicotinamide                              | 0.2            | 0.5                | 2.5            | 2.5            | 1.0            |
| INICOLINIC ACID                           | 0.01           | -                  | · _            | -              | _              |

#### ST 31 PROGRAM

### Definition of Output

Let N be the number of observations,

Y be the dependent variable,

X be the independent variable.

- MEAN = mean
- SD = standard deviation
- R and RSQ = simple correlation coefficient and its square

- INTERCEPT and B = Y-axis intercept and regression coefficient

The estimated regression equation is :

 $\hat{\mathbf{Y}} = \mathbf{INTERCEPT} + \mathbf{BX}$ 

where B = 
$$\frac{\sum (X_i - \overline{X}) (Y_i - \overline{Y})}{\sum (X_i - \overline{X})^2}$$

INTERCEPT =  $\overline{Y} - B\overline{X}$ 

- SD ESTIMATE = standard error of estimate

SD ESTIMATE = 
$$\sqrt{\frac{\text{SSDEV}}{\text{N}-2}}$$
 where  $\text{SSDEV} = (Y - \hat{Y})^2$ 

- SDB = standard deviation of the estimated regression coefficient

$$SDB = \frac{SD ESTIMATE}{\left(\sum_{i} (x_{i} - \overline{x})^{2}\right)^{\frac{1}{2}}}$$

- T = calculated T - value for the estimated regression coefficient

$$T_{t} = \frac{B}{SDB}$$

Define :  $\hat{Y}$  = INTERCEPT + BK - ANALYSIS OF VARIANCE TABLE SSREG =  $\sum (\hat{Y} - \overline{Y})^2$ note : (SSREG + SSDEV = SSTOS) SSDEV =  $\sum (Y - \hat{Y})^2$ SSTOT =  $\sum (Y - \overline{Y})^2$ SOURCE  $\mathbf{DF}$ <u>SS</u> MSF REGRESSION 1 SSREG SSREG SSREG DEVIATIONS N-2 SSDEV/(N-2) SSDEV SSDEV/(N-2) TOTAL N-1 SSTOT - OBSERVED Y was input by the user - EXPECTED  $Y = \hat{Y}$ - RESIDUAL =  $Y - \hat{Y}$ - ADJUSTED =  $\overline{Y}$  + RESIDUAL The regression line may be drawn by joining the two +s - PLOT The data are indicated by asterisks (\*) - LIMITS = confidence limits LOWMEAN UPPMEAN LOWY UPPY  $X_{o}$  (X - value specified for confidence limits) THET T (theoretical T - value) are input by the user LOWMEAN =  $\hat{Y}_{o}$  - (THET T) (SD ESTIMATE) +  $\frac{(X_{o} - \bar{x})^{2}}{\Sigma(X_{i} - \bar{x})^{2}}$ UPPMEAN =  $\hat{Y}_{o}$  + (THET T) (SD ESTIMATE)  $/ \frac{1}{N} + \frac{(X_{o} - \bar{X})^{2}}{\Sigma (X_{c} - \bar{X})^{2}}$ LOW Y = $1 + \frac{1}{N} + \frac{(X_o - \bar{X})^2}{\bar{\Sigma}(X_i - \bar{X})^2}$  $\hat{Y}_{o}$  - (THET T) ( SD ESTIMATE) UPP Y = $1 + \frac{1}{N} + \frac{(X_{o} - \bar{X})^{2}}{\sum (X_{i} - \bar{X})^{2}}$  $\hat{\mathbf{Y}}_{o}$  + (Thet T) ( SD ESTIMATE)

#### LITERATURE CITED

Adler W.H., Takiguchi T., Smith R.T., (1970) J. Immunol. 105:984 Aguet M., Anderson L.C., Wigzell H., (1978) J. Exp. Med. 147:50 Ahmed A., Sell K.W., Knudsen R.C., (1975) Trans. Proc. 7 Suppl. 1:213 Alexander P., and Evans R., (1971) Nature (New Biol) 232:76 Alexander P., Evans., Mikulska Z.B., (1973) "Chemotherapy of Cancer Dissemination and Metastases" Eds. Garattini and Franchi, Raven Press, New York, 1973. Allison A.C., (1971) Arch. Int. Med. 128:131 Argyris B., (1966) J. Immunol. 96:273 Armerding D., and Katz D.H., (1974) J. Exp. Med. 140:19 Armerding D., Sachs D.H., (1974) J. Exp. Med. 140:1717 Auerbach R., Globerson A., (1966) Exp. Cell. Res. 42:31 Bach F.H., Alter B.J., Janis M., (1970) Cell. Immunol. 1:219 Bartova J., Ivanyi D., (1975) J. Immunogenetics 2:365 Bast R.S., Cleveland R.P., Littman B.H., (1974) Cell. Immunol. 10:248 Bennett M., and Hand A.S., (1978) Transplantation 26:199 Bellgrau, D., and Wilson, D.B., (1978) J. Exp. Med. 148:103 Bellgrau, D., and Wilson, D.B., (1979) J. Exp. Med. 149:234 Berke G., Sullivan K.A., Amos B., (1972) J. Exp. Med. 135:1334 Bevan M.J., (1976) Cold Spring Harbor Symp. 41:519 Billingham R.E., Brent L., Medawar P.B., (1955) Ann.N.Y.Acad.Sci. 59:409 Billingham R.E., and Silvers W.K., (1961) Trans. Bull. 28:113 Billingham R.E., (1968) Harvey Lect. 62:21 Binet J., Mathe G. (1962) Ann. N.Y. Acad. Sci. 99:426 Binz H., and Lindemann J., (1973) Nature (Lond.) 246:146 Binz H., Lindenmann J., Wigzell H., (1974) J. Exp. Med. 140:731 Binz H., and Wigzell H., (1975) Scand. J. Immunol. 4:591 Binz H., and Wigzell H., (1976) Nature 262:294

- Binz H., Ramseier H., Lindenmann J., (1973) J. Immunol. 111:1108
- Binz H., and Wigzell H., (1978) Fed. Proc. 37:2365
- Blaese R.M., Good R.A., (1964) J. Exp. Med. 119:211
- Blomgren H., and Lilliehook B., (1978) Scand. J. Immunol. 8:231
- Blyden G., and Handschumacher R., (1977) J. Immunol. 118:1631
- Boehmer M.V., (1974) J. Immunol. 112:70
- Bonney W.W., and Feldbush T.L. (1973) Transplantation 15:215
- Botzenhardt U., Klein J., Ziff M., (1978) J. Exp. Med. 147:1435
- Brent L., and Medawar P.B., (1966) Proc.Roy.Soc.(Biol) 165:413
- Britton S., (1972) Scand. J. Immunol. 1:89
- Brochier J., Roitt I., Festenstein H., (1974) Eur. J. Immunol. 4:709 Bucker C.D., Epstein R.B., (1970) Blood 35:741
- Bunn H.F., (1977) " Harrison Principle of Internal Medicine " 2:1644
- Byfield P., Christie G., Howard J.G., (1973) J. Immunol. 111:72
- Calderon J., and Unanue E., (1975) Nature 253(5490):359
- Cerottini J.C., Nordin A.A., Brunner K.T., (1971) J. Exp. Med. 134:553
- Cheers C., and Sprent J., (1973) Transplantation 15:336
- Cheers C., and Sprent J., (1974) Cell. Immunol. 10:57
- Claman H.N., and Hayes L.L. (1969) Transplantation 7:87
- Cleveland R., Meltzer M., Zbar B., (1974) J. Nat. Can. Inst. 52:1887
- Clancy J., and Adams B.J. (1973) Transplantation 15:52
- Cline M.J., Gale R.P., Fahey J.L., (1975) Ann. Intern. Med. 83:691
- Cohen D., Weinstein H., Mihm M., (1979) Blood 53:1053
- Cohen I.R., and Feldman M., (1970) Cell. Immunol. 1:521
- Cohen I.R., and Livnat S., (1976) Transp. Proced. 8:393
- Cooper G.N., and Howard J.G. (1961) Brit. J. Exp. Pathol. 42:558
Corley R.B., and Kindred B., (1977) Scand. J. Immunol. 6:923 Corley R.B., and Lefkovits I., (1978) J. Immunol. 121:1082 Cornelius E., (1978) Am. J. Pathol. 90:675 Cosenza H., and Kohler H., (1972) Proc. Nat. Acad. Sci. 69:2701 Cudkowicz G., (1968) "The Proliferation and Spread of Neoplastic Cells" page 661. Willams and Wilkinson Co. Baltimore. Cudkowicz G., and Bennett M., (1971) J. Exp. Med. 134:83 Cudkowicz G., and Stimpfling J.H., (1964) Nature(Lond.) 204:450 Cudkowicz G., and Lotzova E., (1973) Transp. Proced. 4:1399 Cudkowicz G., (1975) Transp. Proced. 7:155 Cudkowicz G., and Warner J.F., (1979) Immunogenetics Currie G.A., Basham C., (1975) J. Exp. Med. 142:1600 David J.R., and David R.A., (1972) Prog. Allergy 16:300 Delovitch T.L., and McDevitt H.O., (1977) J. Exp. Med. 146:1019 Diener E., and Feldman M., (1970) J. Exp. Med. 132:31 Distasio J.A., Lopez D., Silverman M., (1978) J. Retic. Soc. 24:161 Dorsch S., and Roser B., (1977) J. Exp. Med. 145:1144 Eichmann K. (1974) Eur. J. Immunol. 4:296 Eichmann K. (1975) J. Immunol. 5:511 Eichwald E., Lustgraaf E., Strainer M., (1959) J. Natl. Canc. Inst. 23:1193 Ekpaha-Mensah A., (1971) Nature(New Biol.) 233:174 Elie R., and Lapp W.S., (1976a) Cell. Immunol. 21:185 Elie R., and Lapp W.S., (1976b) Cell. Immunol. 21:31 Elie R., and Lapp W.S., (1977) Cell. Immunol. 34:38 Elkins W.L., (1964) J. Exp. Med. 120:329 Elkins W.L., (1971) Prog. Allergy 15:78

Fathman C.G., and Augustin A., (1978) J. Immunol. 121:259 Festenstein H., (1973) Transp. Rev. 15:62 Fialkow P.J., Gilchrist C., Allison A.C. (1973) Clin. Exp. Immunol. 13:479 Fidler I.J., (1974) Cancer Res. 34:1047 Field E.O., and Gibbs J.E., (1966) Clin. Exp. Immunol. 1:195 Field E.O., and Cauchi M.N., (1967) Transplantation 5:241 Fink M., Cloud C.L., McCarthy K.F., (1974) Cell. Immunol. 11:74 Fink M., (1976) "Macrophage in Neoplasia" Acad. Press. N.Y. Finke J.H., Ponzio N.M., Battisto J., (1976) Cell. Immunol. 26:284 Folch H., and Waksman B.H., (1973) Cell. Immunol. 9:12 Ford W.L., and Simonsen M., (1971) J. Exp. Med. 133:938 Fox M., (1962) Immunology 5:489 Fox M., (1966) Transplantation 4:11 Fox M., and Howard J.G., (1963) Transplantation 1:1 Friedman H., (1975) "Thymus Factors in Immunity" Ann. N.Y. Acad. Sci. 249:1 Fudenberg, H.H., (1976) "Basic and Clinical Immunology" p.619 Fung K.Y., and Sabbadini E., (1976) Transplantation 22:449 Fyfe D.A. and Finke J.H., (1979) J. Immunol. 122:1156 Gallagher M.T., and Trentin J.J. (1976) Biomedicine 25:1 Gengozian N.T., and Owen R.D., (1958) Proc. Natl. Acad. Sci. 44:560 Gengozian N.T., and Congdon C.C., (1965) Science 149:645 Gengozian N.T., and Toya R.E., (1971) Transp. Proced. 3:434 Gengozian N.T., and Congdon C.C., (1973) Transplantation 16:32 Gery I., and Handschumacher R., (1974) Cell. Immunol. 11:162 Gery I., and Waksman B.H., (1972) J. Exp. Med. 136:143 Gery I., Gershon K., Waksman B.H., (1972) J. Exp. Med. 136:128 Gleichmann E., Wilke W.W., (1972) Transpl. Rev. 13:156 Glynn, L.E. and Steward, M.W., (1977) "Immunochemistry : An Advanced Textbook", p. 114

Goodman J.W., and Bosma G.C., (1967) Immunology 13:125 Goodwin J.S., and Bankhurst A.D., (1977) J. Exp. Med. 146:1719 Gowans J.L., (1962) Ann. N.Y. Acad. Sci. 99:432 Granger G.A., and Kolb W.P., (1968) J. Immunol. 101:111 Granger G.A., Shimizu L., Horn P., (1978) Clin. Immun. Pathol. 10:104 Grant C.K., and Alexander P., (1974) Cell. Immunol. 14:46 Graw R.G., Buckne C.D., Henderson E.S., (1970) Lancet 2:338 Grebe S.C., and Streilein J.W., (1974) Fed. Proced. 33:644 Grebe S.C., and Streilein J.W., (1976) Transplantation 22:245 Greenberg A.H., Hudson L., Roitt I., (1973) Nature 242:111 Hanna E.E., and Watson D.W., (1965) Proc. Soc. Exp. Biol. Med. 118:865 Hard R.C., and Kullgren B., (1970) Amer. J. Pathol. 59:203 Hard R.C., and Moncure C.W., (1973) Lab. Invest. 28:468 Hard R.C., and Still W.J., (1975) Amer. J. Pathol. 79:131 Hard R.C., and Campbell R.C., (1979) Cell. Immunol. 43:225 Hart D.A., Wang A.L., Nisonoff A., (1972) J. Exp. Med. 135:1239 Hathaway W.E., Fulginiti V.A., (1967) J. Am. Med. Assoc. 201:1015 Hayry R., and Anderson L.C., (1973) Transpl. Proced. 5:1697 Heise E.R., and Weiser R.S., (1966) J. Immunol. 103:570 Hibbs J.B., Lambert L.H., Remington J.S., (1972) Proc. Exp. Biol. Med. 139:1049 Hibbs J.B., Lambert L.H., Remington J.S., (1972) Nature(New Biol.) 235:48 Hibbs J.B., (1974) J. Natl. Cancer Inst. 53:1487 Hilgard H., (1970) Transplantation 10:396 Hirserodt J.C., Prieur A., Granger G.A., (1976) Cell. Immunol. 24:277 Hodes R.J., and Svedmyr E.A., (1970) Transplantation 9:470

- Hodes R.J., and Hathcock K.S., (1976) J. Immunol. 116:167
- Hoffman M., and Dutton R.W., (1971) Science 172:1047
- Holan V., Hasek M., Chutna J., (1978) Transplantation 25:27
- Hopper D.G., Pimm M.V., (1976) Lancet II:255
- Horwitz D., Kight N., Allison A.C., (1979) Immunology 36:221
- Howard J.G., and Woodruff M.A., (1961) Proc. Roy. Soc. Ser. 154:532
- Howe M.L., Goldstein A.L., Battisto J., (1970) Proc.Natl.Acad.Sci.67:613
- Huber B., Pena-Martinez J., Festenstein H., (1973) Transpl. Proced. 5:1373

171

- Ishikawa H., and Dutton R.W., (1979) J. Immunol. 122:529
- Jacobsson H., Lilliehook B., Blomgren H., (1975) Scand. J. Immunol. 4:181
- Jandl J.H., MacDonald R.A., (1965) J. Exp. Med. 122:299
- Jerne N.K., (1973) Science 229:52
- Joller P.W., (1972) Nature(New Biol.) 240:214
- Jose D.G., Stutman O., Good R.A., (1974) Transplantation 17:211
- Katz D.H., and Paul W.E., (1971) J. Immunol. 107:1319
- Katz D.H., and Benacerraf B., (1972) Advan. Immunol. 15:1
- Katz D.H., and Benacerraf B., (1974) "Immunological Tolerance" Acad. Press
- Klaus G.B., and McMichael A.J. (1974) Eur. J. Immunol. 4:505

Klein J., and Park J.M., (1973) J. Exp. Med. 137:1213

- Klein J., (1975) "Biology of the Mouse H-2 Complex" Springer-Verlag N.Y.
- Konetzki W.S., and Streilein J.W., (1978) Transplantation 25:240
- Koopman W.J., Farrar J., Oppenheim J., (1977) J. Immumol. 119:55
- Koopman W.J., Farrar J., Fuller-Bonar (1978) Cell. Immunol. 35:92
- Kramer J.J., and Grabger G.A., (1972) Cell. Immunol. 3:88
- Kramer S.L., and Granger G.A., (1975) Cell. Immunol. 15:57
- Kretschmer R., (1969) Pediatric Res. 3:34

Kung J.T., Brooks S., Talmage D., (1977) J. Exp. Med. 146:665 Kuntz M.M., Innes J., Weksler M., (1976) J.Exp. Med. 142:1042 Laffertz K.J., Walter K.Z., Scolly R.G., (1972) Transp. Rev. 12:198 Lapp W.S., and Moller G., (1969) Immunology 17:339 Lapp W.S., Wechsler A., Kongshaun P.A., (1974) Cell. Immuno-. 11:419 Lawrence W., and Simonsen M., (1967) Transplantation 5:1304 Lee S.C., and Lucas Z., (1976) J. Immunol. 117:283 Leonard E., Ruco L., Meltzer M., (1978) Cell. Immunol. 41:347 L'Esperance P., Hansen J.A., Jersild C., (1975) Transp. Proced. 7:823 Lilliehook B., Jacobsson H., (1978) Int. Arch.Aller.Appl.Immun. 56:238 Lilliehook B., Blomgren H., (1978) Scand. J. Immunol. 8:223 Lindholm L.L., and Strannegard O., (1973) Eur. J. Immunol. 3:511 Livnat S., and Cohen I.R., (1975) Eur. J. Immunol. 5:357 Lotzova E., and Cudkowicz G., (1974) J. Immunol. 113:798 Mathe G., Kiger N., Florentin I., (1974) Clin. Immunolbiol. 2:33 Matossian-Rogers and Festenstein H., (1976) J. Exp. Med. 143:456 Matossian-Rogers (1977) Transplantation 23:316 Matossian-Rogers and Festenstein H., (1978) Transpl. proced. 10:11 McBride R.A., (1966) Cancer Res. 26:1135 McKearn T.J., (1974) Science 183:94 McKearn T.J., Stuart F.P., Fitch F.W., (1974a) J Immunol. 113:1876 McKearn T.J., Hamada Y., Fitch F.W., (1974b) Nature(Lond.) 251:648 Merritt C.B., Mann D.L., Rogentine G.N., (1970) J. Exp. Med. 132:181 Miyazaki S., Nomoto K., Takeya K., (1976) Jap. J. Micro. 20:493 Moller G., (1971) Immunology 20:597 Mortensen R.F., Osmand A., Gewurz H., (1975) J. Exp. Med. 141:821 Muchmore A., Decker J., Blaese R., (1979a) J. Immunol. 122:1146 Muchmore A., Decker J., Blaese R., (1979b) J. Immunol. 122:1152

Nabholz M., Young H., Shreffler P., (1974) Eur. J. Immunol. 4:373 Naiman J.L., and Punnett H., (1969) New Eng. J. Med. 281:697 Nagino H., Nomoto K., Takeya (1978) Int. Arch. Aller. Appl. Immu. 56:48 Namba Y., and Eaksman B.H., (1975) J. Immunol. 115:1018 Novogrodsky A., Rubin A.L., Stenzel K., (1979) J. Immunol. 122:1 Oliner H., Schwartz R.S., Dameshek w., (1961) Blood 17:20 Opelz G., Kiuchi M., Terasaki P., (1975) J. Exp. Med. 142:1327 Osband M., and Parkman R., (1978) J. Immunol. 121:179 Parthenais E., Elie R., Lapp W.S., (1974) Cell. Immunol. 13:164 Parthenais E., and Lapp W.S., (1978) Scand. J. Immunol. 7:215 Pena-Martinez J., Huber B., Festenstein H., (1979) Transpl. Proced. 5:1393 Pickel K., and Hoffman M.K., (1977) J. Immunol. 118:653 Piessens W.F., (1978) Cell. Immunol. 35:306 Piguet P.F., Vassalli P., (1977) Cell. Immunol. 31:242 Ponzio N.M., Finke J.H., Battisto J., (1975) J. Immunol. 114:971 Ptak W., Hanczakowska M., Skowron-Cendrzak, A., (1975) Transplantation 19:12 Raff M.C., (1969) Nature (Lond.) 224:378 Ramseier H., (1973) Curr. Topic Micro. Immunol. 60:31 Ramseier H., and Billingham R.E., (1966) J. Exp. Med. 123:629 Ramseier H., and Lindenmann J., (1969) Pathol Micro. 34:379 Rapaport F.T., Watanaba K., Cannon F.D., (1972) J Exp. Med. 136:1080 Rapaport F.T., Ozaki A., Cannon F.D., (1973) Transpl. Proced. 5:845 Rehn T.G., Shearer G.M., Inman K., (1976) J. Exp. Med. 143:127 Reinherz E.L., Parkman R., Rapperport J. (1979) New Engl.J.Med. 300:1061 Riger M., and Hilgert, (1977) J. Immunogenetics 4:61 Rocklin R.E., (1978) "Basic and Clinical Immunology" LANGE series Rodey G.E., Bortin M.M., Bach F.H., (1974) Transplantation 17:84 Rolstad B., (1976) Transplantation 21:117

Rosen R.C., Huestis D.W., (1978) J. Pediatrics 93:268 Ruddle N.H., and Waksman B.H., (1968) J. Exp. Med. 128:1267 Russel P.S., (1960) Ann. N.Y. Acad. Sci. 87:445 Safford J.W., and Tokuda S., (1970) Proc. Sco. Exp. Biol. Med. 133:651 Schendel D.J., Atler B., Bach F., (1973) Transpl. Proced. 5:1651 Schimpl A., and Wecker E., (1973) J. Exp. Med. 137:547 Schirrmacher V., Pena-Martinez J., Festenstein H., (1975) Nature 255:155 Schmitt-Verhulst A., and Zatz M.M., (1977) J. Immunol. 118:330 Schwartz R.S., and Beldothi L., (1963) Science 140:171 Scott D.W., and Ornellas E.P., (1974) Cell. Immunol. 11:116 Scott M.T., (1972) Cell. Immunol. 5:469 Sethi K.K., Teschner M., Brandis H., (1974) Infect. Immun. 10:960 Sethi K.K., and Brandis H., (1975) J. Natl. Cancer Inst. 55:393 Shand F.L., (1975) Immunology 29:953 Shand F.L., (1976) Immunology 31:943 Shand F.L., (1977) Eur. J. Immunol. 7:746 Shearer G.M., Yung Y.P., Cudkowicz G., (1978) Cell. Immunol. 39:61 Shearer G.M., and Schmitt-Verhulst T.G., (1977) Cold Spring Harbor Symp. Quant. Biol. 41:511 Shearer G.M., (1975) Science 190:890 Shearer G.M., Waksal H., Cudkowicz G., (1976) Transpl. Proced. 8:469 Shortman K., and Palmer J., (1971) Cell. Immunol. 2:399 Shreffler D.C., and David C.S., (1975) Adv. Immunol. 20:125 Simonsen M., and Jensen E., (1959) "Biological Problems of Grafting" Ed. Medawar, Blackwell, Oxford. Simonsen M., (1957) Acta Pathol. Micro. Scand. 40:480 Simonsen M., (1962) Prog. Allergy 6:349 Simonsen M., (1967) Cold Spring Harbor Symp. 32:517

Simpson E., Mosier D., Cantor H., (1974) Immunology 27:989 Smith D.E., Fischer L., Hard R.C., (1977) Fed. Proced. 36:1082 Singh J.N., Sabbadini E., Sehon A.H., (1971) Transplantation 11:475 Singh J.N., Sabbadini E., Sehon A.H., (1972) J. Exp. Med. 136:39 Singh J.N., Sabbadini E., Sehon A.H., (1973) Cell. Immunol. 8:280 Siskind G., Leonard L., Thomas L., (1960) Ann. N.Y. Acad. Sci. 87:452 Sjoberg O., (1972) Clin. Exp. Immunol. 12:365 Solliday S., and Bach F.H., (1970) Science 170:1406 Sprent J., and Miller J.F., (1972a) Cell. Immunol. 3:385 Sprent J., and Miller J.F., (1972b) Cell. Immunol. 3:213 Sprent J., (1976) Cell. Immunol. 21:278 Steele E.J., and Cunningham A.J., (1978) Nature 274(5670):483 Steinmuller D., (1967) Science 158:127 Streilein J.W., (1972) J. Exp. Med. 135:567 Streilein J.W., and Billingham R.E., (1967) J Exp. Med. 126:455 Streilein J.W., and Billingham R.E., (1970a) J Exp. Med. 132:181 Streilein J.W., and Billingham R.E., (1970b) J Exp. Med. 132:163 Streilein J.W., and Stone M.J., (1973) Transpl. Proced. 5:861 Streilein J.W., and Duncan W.R., (1975) J. Immunol. 111:952 Svedmyr E.A., and Hodes R.J., (1970) Cell. Immunol. 1:644 Thomas E.D., Storb R., Buckner C.D., (1975) N. Eng. J. Med. 292:832 Treiber W., and Lapp W.S., (1973) Transplantation 16:211 Treiber W., and Lapp W.S., (1976) Transplantation 21:391 Treiber W., and Lapp W.S., (1978) Cell. Immunol. 37:118 Trentin J.J., (1956) Proc. Soc. Exp. Biol. Med. 92:688

Uhr J.W., and Finkelstein M.S., (1967) Prog. Aller. 10:37 Uhr J.W., and Moller G., (1968) Advan. Immunol. 8:81 Urso P., and Gengozian N.T., (1977) J Immunol. 118:657 Van Beckum D.W., (1975) Transpl. Proced. 7:805 Vrubel J., (1961) Nature(Lond.) 189:853 Waksman B.H., and Namba Y., (1976) Cell. Immunol. 21:164 Walker S.M., and Lucas Z.J., (1972) J. Immunol. 109:1233 Warner J.F., and Cudkowicz G., (1979) J. Immunol. 122:575 Weiss L., Aisenberg A.C., (1965) J. Cell. Biol. 25:149 Weiss A., and Fitch F.W., (1977) J. Immunol. 119:510 Wells J.V., and Ries C.A., (1978) "Basic & Clinical Immunology" LANGES Series, page 390 Williams T.W., and Granger G.A., (1969) J. Immunol. 102:911 Woodland, W.T., and Wilson, D.B., (1977) Eur.J. Immunol. 7:136 Wolters E.A., and Benner R., (1978) Transplantation 26:40 Yachnin S., (1975) J. Exp. Med. 141:242 Yamashita A., Miyamoto M., Kitawaki Y., (1978) Transplantation 26:56 Yung Y.P., and Cudkowicz G., (1977) J. Immunol. 119:1310 Zakarian S., and Billingham R.E., (1972) J. Exp. Med. 136:1545 Zaleski M., and Milgrom F., (1973) Cell. Immunol. 7:268 Zinkernagel R., and Doherty P., (1974) Nature (Lond) 248:701 Zinkernagel R., and Doherty P., (1975) J. Exp. Med. 141:1427 Zinkernagel R., (1978) Arch. Intern. Med. 138:1326 Zinkernagel R., (1978) Fed. Proced. 37:2379