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ABSTRACT

Fiber Bragg grating sensors are one of many fiber optic sensor technologies that

are currently being used in structural health monitoring systems. The sensors operate by

detecting a shift in the wavelength of reflected maxima due to applied strain. This thesis

studies a new f,rber Bragg interrogation method that combines a swept wavelength laser

in combination with wavelength references. These include a gas cell, which is used as

the long term wavelength standard and an etalon used for accurate interpolation of peak

wavelengths. A gas cell is a pressurized container filled with a certain type of gas that,

when exposed to a range of wavelengths, specihc wavelength lines are absorbed while an

etalon is essentially a filter that has a periodic response over a broad wavelength range.

Its wavelength response spacing is smaller than the gas cell and therefore, can be used to

determine the intermediate wavelengths between two gas cell absorption lines. Peak

location is a key element of this interrogation method and several detection algorithms

are investigated. It was determined that polynomial peak fitting is the most

computationally efficient method and yields a resolution of better than 0.5pm with signal

to noise ratios of 30:1 or better. With higher signal to noise ratios, polynomial peak

fitting can yield a resolution of better than 0.25pm and a resolution of better than 0.25pm.

Using a tunable laser, a HCN gas cell and an etalon with maxima every 140pm, static

load tests have demonstrated that measurements can be made with accuracy of better than

2pm. It is expected that this accuracy will be maintained over a long period of time as it

is based on absorption lines in the gas cell. The results of this study are used to

demonstrate that absolute accurate strain measurements can be obtained with the use of

wavelengfh references in conjunction with a suitable peak location algorithm.
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CHAPTER 1

INTRODUCTION

As structural health monitoring continues to grow as a field of increasing interest

for civil engineers, fiber optic sensor technology is thought to be the most promising

alternative to conventional sensors. Traditionally used in the communications field,

optical fibers have garnered interest in other fields due to their numerous advantages such

as small size, low loss, and electromagnetic interference (EMÐ immunity. presently,

fiber optic sensors are used in a wide range of applications such as strain measurement in

civil infrastructure [l], oil well logging [2], oil pipeline monitoring [3], and composite

structures [4].

Structural health monitoring of civil engineering infrastructure has been a growing

issue over the past few years. As structures continue to age and become damaged by

fatigue, it becomes increasingly important to create a reliable monitoring system in order

to assess their structural integrity. Thus, to successfully monitor the condition of a

structure, the measurement device must be able to provide reliable and accurate data over

long periods of time. A suitable interrogation system must meet many requirements

including signal stability as well as system insensitivity to changes in the environment,

such as temperature and humidity t5l. The measurement technique should allow several

sensors to be placed on a structure which will provide a thorough representation of the

strain distribution. Also, a portable measurement device would allow several structures
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to be monitored on a periodic schedule, thus drastically reducing the overall cost by

eliminating the need for data acquisition units on every structure [6].

Fiber optic sensors are classified according to the sensing technique by which

they operate. These techniques are based on modulating the intensity, phase, or

polaization of the light passing through the sensor. Fiber sensors are now being used to

monitor various parameters such as strain, temperature, pressure, chemical composition,

deformation and corrosion. One type of sensor used to measure strain is the fiber Bragg

grating. This sensor is also known as an optical strain gauge. Fiber Bragg grating

sensors measure strain through a shift in a spectral peak with applied strain. By

determining the shift in the peak wavelength, one can determine how much strain the

fiber experienced. One of the main problems associated with the demodulation of fiber

Bragg grating sensors is the presence of drift in the light source and/or the photodetector

[7-131. As a result, absolute measurements of strain are hindered. In this thesis, resolution

is defined as the minimum amount of Bragg wavelength shift that can be detected and

accuracy is how precise the technique is in determining this change. Therefore,

improving the accuracy of this wavelength measurement is the core work of this thesis.

The development of a measurement technique and the implementation of this technique

into an interrogation unit are also significant contributions of the research work presented

in this thesis.

Prior to embarking on a full overhaul of the Bragg grating interrogation unit,

technical information was first gathered on the various commercial and research

techniques employed. After reviewing details of the performance of the various methods

employed, it became clear that there was potential for further improvement in the
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accuracy of measuring the Bragg wavelength. It was then decided that the first place to

start would be investigating various methods of determining the location of the Bragg

wavelength on the optical spectrum. Several algorithms were scrutinized based on their

accruacy and computation time. Of those algorithms, ons was chosen to be implemented

in the interrogation system. 'Wavelength 
references were then used in conjunction with

the algorithm to provide an absolute frame of reference by which the Bragg wavelength

could be determined. This algorithm was implemented into an interrogation system

whose performance was evaluated through static load tests of the fiber Bragg grating

sensor. The data was anaLyzed and conclusions were made on the effectiveness of this

technique in the monitoring of structural performance. To this end, the investigation and

development of the sensor demodulation technique is presented in five chapters.

A review of related literature is presented in Chapter 2, where the advantages and

disadvantages of fiber optic sensors are discussed. The classifications of sensors, along

with some basics on light transmission in optical fibers, are also presented in Chapter 2.

Furthermore, two wavelength references, the gas cell and etalon, along with past sensor

systems are discussed.

The development of a suitable peak location algorithm is presented in Chapter 3.

The ability to find the correct peak location of the Bragg signal is one of the fundamental

issues investigated in this thesis. This is investigated by testing several peak location

methods and comparing their accuracy and performance with increasing noise in the

signal. In addition, another technique called sub-sampling is introduced and used in

conjunction with the best peak location algorithm.
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The implementation of the peak location algorithm is explained in Chapter 4. The

peak location program was created using Matlab and was then modified to find the Bragg

wavelength using two wavelength references. The peak location algorithm is used to find

the peaks in all three signals. Tests were performed using one and two wavelength

references and the results are discussed in this chapter as well. More detail is provided

on the operation of the etalon wavelength reference since the main objective of this thesis

is to improve the measurement accuracy with the addition of an etalon.

The load testing of the fiber Bragg grating is discussed in Chapter 5. A laboratory

load test was performed to evaluate the performance of the fiber Bragg grating

interrogation unit with and without the etalon. Also, a finite element model of the beam

was used to confirm that the load induces constant stress over the length of the beam. An

explanation of the process of attaching a fiber optic sensor onto a surface is included as

well. Results from the test are presented. and discussed.

In Chapter 6, a summary of the findings is presented and a number of conclusions

as to the use of an etalon to further improve the accuracy of strain measurements are

drawn. This chapter concludes with recommendations for future work in this area.



CHAPTER 2

LITERATURE REVIE\il OF FIBER OPTIC SENSORS

2.1 Introduction

One of the key elements in a structural health monitoring system is the sensing

element and data acquisition system. In the past few years, the focus of research has

shifted to fiber optic sensors. One of the main reasons is fiber optic sensor technology

offers several advantages over conventional sensing techniques [5]:

1) Fiber optic sensors are immune to electromagnetic and radio frequency interference
(EMI and RFI). This means that they can operate in electrically noisy environments and

thus, there is no need for protective shielding.

2) Optical fibers are typically small in diameter (-250pm). This allows them to be

embedded in a composite structure without affecting the structure's mechanical
properties. Since they can undergo up to 5o/o elongation, they can withstand high tensile
loading up to 50000pe.

3) They are resistant to corrosion and experience low creep. They are also electrically
passive which means they do not conduct electricity and thus, can be embedded in metal

structures.

4) Fiber optic sensors have both point and distributed sensing capabilities depending on

their sensor length. This provides flexibility in deciding what sensor gauge length would
be ideal for a specific structure.

5) They also possess multiplexing capabilities that allow several sections of a structure to

be monitored and reduce the number of lead wires required.

6) Some fiber optic sensors are capable of absolute measurement with a linear response.

This helps remove any ambiguity and dependence on taking measurements relative to a
certain parameter.

7) They also are very sensitive and have a large dynamic range. Fiber optic sensors have

good signal stability and are suitable for long term monitoring.



Some disadvantages, howev er, ate the cost and availability of suitable optical sources and

instrumentation. Also, the long term stabitity of these sensors still needs to be

investigated and the sensor may need to be isolated from unwanted parameters to avoid

erïoneous measurements. Finally, steps must be taken to account for the low general

awareness of fiber optic sensor technology. Although these sensors do have their

disadvantages, most can be overcome and the advantages clearly outweigh the

drawbacks. Therefore, with the aforementioned advantages and capabilities, fiber optic

sensors are proving their worth in various monitoring applications and environments.

In this chapter, different classif,rcations offiber optic sensors based on the sensing

techniques applied are illustrated. Also, basic fiber optic theory is explained and a

description of the components used in this thesis including the fiber Bragg grating sensor'

the gas absorption cell and the etalon, is provided. Finally, a review of sensor systems

using broadband and laser sources and a description of the future for this technology

involving the creation of materials with integrated sensors conclude this chapter.

2.2 Classification of Sensors

Fiber sensor technology can be categorized based on the sensing technique

applied. These include intensiometric, polarimetric and interferometric based sensing

schemes [4].

Intensiometric fiber optic sensors rely on the modulation of the intensity of light

in the fiber. This is due to the fact that this technique does not require monitoring the

frequency or the phase of the optical field. As a result, amplitude based sensors are the

most simple type of sensor in terms of its operation. However, their main disadvantage is



Chapter 2 Literature Review of Fiber Optic Sensors

the lack of measurement sensitivity, which is an important requirement when monitoring

the health of a structure.

Polarimetric sensors are typically used in applications where a longer sensor

gauge length is required. This sensing technique involves two orthogonal polarization

eigenmodes of light in the fiber. This can be created using polarizers at the f,rber inputs

or directing a polarized light beam at 45" to the principal axis of the single mode fiber.

Either method will create two components sometimes referred to as perpendicular and

parallel polarizations. When the fiber experiences an external influence, a phase change

will be created between the two components and as a result, reduce the intensity at the

photodetector. Therefore, by monitoring the state of polarization, the extemal influences

on the fiber can be observed as well. Although, polarimetric sensors are more sensitive

than intensiometric sensors, the demodulation system is substantially more expensive and

complex.

Interferometric sensors operate by detecting any phase changes in the light as it

propagates down the fiber. Typically, light is split into two beams after it enters the fiber.

After which, the two beams are then recombined when they reach the photodetector.

This technique takes advantage of the constructive and destructive interference patterns

between the light waves. The resulting fringe pattern is directly related to the optical

phase difference between the two beams and in turn, represents any external force

experienced by the fiber. Typical configurations of an interferometer include the

Michelson and Mach Zehnder interferometers as shown in figure 2.1.



external perturbation on sensing f¡berv
source detector

_>---->

reference fiber

a) b)

Figure 2.1 Conhgurations of fwo different interferometers.
(a) Mach Zehnder (b) Michelson Interferometer.

These sensors have a higher sensitivity than the other types of sensors. However, since

most configurations have mechanical moving parts involved, they are not as rugged and

adequate for f,reld applications.

Fiber optic sensors can also be classified as extrinsic or intrinsic sensors. An

extrinsic sensor uses an external element to sense any perturbations and modulate the

light wave accordingly. As a result, an extrinsic sensor merely uses the fiber to transmit

and receive light signals. On the other hand, an intrinsic sensor uses the fiber itself as the

sensor. Both configurations are shown infigweZ.2.

Llght ¡¡odulator

External Perturbation
External Pertu rbatloll

a) Extrínslc 5ensor b) lntrÍnslc Sensor

Figure 2.2 lllustration of an extrinsic and intrinsic sensor.

Extrinsic sensors are typically used to measure parameters used in process control

operations such as temperature, pressure, liquid level and flow. They can also be used to

monitor linear and angular position in aircraft operations. These types of sensors are user

_\_,_
frmnro,

u^,^^l1r reflectãti!ñIãÞ coatings
oetector
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friendly and are easily multiplexed. However, they have less sensitivity and experience

problems with cor¡rections to the extemal light modulator.

Intrinsic sensors are used to measure properties such as strain, pressure, vibration,

and rotation. These sensors, as shown in figure 2.2, rely on the fiber itself to modulate

the light in response to the external forces it experiences. As a result, intrinsic sensors are

more sensitive and robust. Also, since the sensor consists of simply optical fiber, it is

very versatile for various installation configurations. However, this design does not

prevent any unwanted external perturbations from affecting the sensor. For example, a

sensor which is being used to measure strain may also be affected by the temperature

around it. Therefore, intrinsic sensors require more complicated demodulation schemes.

V/hile intrinsic and extrinsic sensors both have their advantages and disadvantages, the

choice between using a specific type of sensor ultimately depends on the requirements of

the application.

2.3 Fiber Optic Theory

An optical fiber is a cylindrical filament made of transparent material such as

glass or plastic [5]. It utilizes the theory of complete internal reflection to guide light

along the fiber. As a light ray passes through different media, it bends in accordance to

the change in refractive indices between the media. A demonstration of how a light ray

bends depending on its approaching angle 01 is shown in figure 2.3.
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fìz < fìr

b)

Figure 2.3 Light propagation between media with different refractive indices.

It is important to note that complete internal reflection occurs for incident angles greater

than the critical angle Or. The critical angle is expressed as

O.: arcsin(rnlnù (2.r)

where n1 is the refractive index of the frrst medium and nz is the refractive index of the

second medium.

Optical fiber consists of a core made of pure silica which has fewer impurities

than regular glass in order to reduce the amount of light absorbed in the fiber. An extra

layer of glass called cladding surrounds the core of the fiber. The cladding has a lower

refractive index than the core to allow complete internal reflection to occur and create a

light guide, as shown in figure 2.4.

l'll > l'lz rì1 = core refractive index
n2 = cladding refractive index

Figure 2.4 Complete internal reflection of light through optical fiber.

10
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The acceptance angle Oe determines the conditions in which light can be coupled into the

fiber. As shown in figure 2.4, Ae is directly related to O.. Therefore, lights rays must

have an incident angle less than Oa in order for the fiber to capture the entire flux from

the source. The numerical aperture, NA, of a fiber is determined by the angle of

acceptance, both of which are defined by the refractive indices of the core and cladding.

04: arcsin(nl2 - n')'o

NA: sin(Oa): (nl2 -n')t''

(2.2)

(2.3)

where nl is the refractive index of the core and n2 is the refractive index of cladding. The

numerical aperture is an important parameter because it helps define the efficiency in

which flux from the source is coupled into the fiber. In other words, the numerical

aperture of the source must be less than the numerical aperture of the fiber to maximize

the coupling effi ciency.

Optical fibers can be created in different sizes to accommodate various

applications. However, it is the size of the core that affects the way light travels through

it. A typical optical frber is shown in figure 2.5.

Gore
6-100 pm

Figure 2.5 Cross section of fypical optical frber.

A coating layer made of polymide or acrylate material surrounds the cladding to protect

the optical fiber and allow for easier handling. The size of the core is small compared to

l1

Gladding
125 pm
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the cladding and can range from 6 to 100pm. Light rays can travel different paths in the

fiber because the incident angles determine how the rays will propagate. For optical

fibers with core sizes in the range of 50 to 100pm, several ray paths or modes can be

supported. These types of fibers are called multimode and since the travel time of

different modes can vary, the rays exiting the fiber will become out of sync. Therefore,

narro\ / pulses sent into the fiber start to broaden and exit the fiber wider than the original

signal. This effect is called intermodal dispersion and it limits the fiber bandwidth and

the maximum pulse rate the fiber can handle.

On the other hand, singlemode fibers have core sizes less than 10pm which

produces a condition in which only a single electromagnetic mode propagates. As a

result, singlemode fibers have a broader bandwidth (up to 1OOGHz*km) than multimode

fibers and experience less attenuation as well. Therefore, this type of fiber is better suited

for sensor and transmission purposes. The number of modes that can be supported by a

fiber is calculated using the fiber's normalized frequency, v. This frequency is expressed

AS

v : (æd¡6., NA)/¡, (2.4)

where d¡u", is the diameter of the fiber core. For v <2.405, only one mode will propagate

down the fiber, which then becomes known as singlemode fiber.

One of the most important aspects of optical fiber is its low attenuation loss.

Typical fiber loss is about 0.2d8lkm at l,:1.55¡rm. The attenuation that still occurs is

mainly due to the absorption, Rayleigh scattering, and extrinsic parameters such as

impurities in the material. Attenuation due to absorption occurs as a result of interaction

of electrons with radiation. This UV absorption has attenuation peaks in the ultraviolet

t2



Chanfer 2 Literature Review of Fiber Optic Sensors

wavelength region and decreases as the wavelength approaches the infrared. Also,

absorption occtrs from an interaction with molecular vibration and consequently, this IR

absorption has attenuation peaks in the infrared region. Rayleigh scattering is caused by

small imperfections in the glass structure which forms the fiber. These imperfections can

be trapped gas bubbles, dopants or composition fluctuations which occurred during

solidification. This scattering can cause light energy to escape the fiber and attenuation

usually occurs at short wavelengths. The combined effect of these fiber losses is shown

in figure 2.6.

0.1

0.03

0.01
0.2 1.0 1.4 l _fì

War.elengf h (Pnr) ---->-

Figure 2.6 Attenuation due to frber loss vs wavelength [15].

Due to extrinsic factors, the resulting attenuation curve is actually the shaded region in

frgwe 2.6. These factors include impurities in the material, fiber defects caused by the

manufacturing process and bends in the fiber due to installation techniques. As a result,

Ä
I
I

1

'ð

.Z r.o
É

Ð

ã. 0.3
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the attenuation curve varies depending on the severity of these extrinsic losses. For

example, the most significant impurity is the water radical OH- which causes an

attenuation peak at 1380 nm. From the figure, there are two distinct minima where

attenuation is at its lowest. These regions are called transmission windows and optical

networks usually operate at one of these wavelengths, 1300 or 1550nm, to achieve the

best signal propagation.

There are two types of light sources which can be used with optical fibers, light

emitting diodes (LEDs) and laser diodes. The LED is a broadband low power source

while a laser diode is a narrowband high po\iler source. Therefore, the decision between

which light source to use depends on the requirements of the fiber optic sensor system.

2.4 Fiber Bragg Grating Sensors

A fiber Bragg grating is comprised of periodic changes in the refractive index of

the core located in a section of single mode fiber [16]. This modulation creates a sort of

filter which causes all wavelengths except one to be transmitted through the grating as

shown in figure 2.7. The reflected wavelength is called the Bragg wavelength, 1.s, and is

defined by the equation

Is :2n€ffÂ (2.s)

where ns6 is the effective refractive index in the core and A is the spatial period of the

refractive index modulation.

t4
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r:1 , l/ln,
Broadband
light source

Figure 2.7 Operatng principle of the fiber Bragg grating sensor [14].

The grating length is typically 1 to 2cm and the bandwidth of the reflected signal, which

is dependent on the grating length, is typicalty -0.05 to 0.3nm [14].

Bragg gratings are fabricated using different methods. One method involves

placing a mask pattern over the optical fiber and shining UV light through it to change

the refractive index of the core. The advantage of a Bragg grating is it is very flexible to

work with in terms of being able to choose the wavelength range one would want to use.

Since the Bragg wavelength depends on the spacing between the gratings, it is possible to

create gratings at different wavelengths. The refractive index modulation is on the order

of 104 to 10-3. Therefore, it takes a large number of periods to increase the reflection to

over 90o/o which is usually desired.

The fiber Bragg grating is used for structural health monitoring because it

responds to strain through a wavelength shift. This feature is attractive because it does

not depend on the amplitude of the signal and as a result, is less susceptible to sensor

failwe due to signal loss. V/hen it is bonded on or embedded in a material, the reflected

wavelength will change when the grating undergoes thermal or mechanical strain. This is

a result of a change in iength in the grating. The wavelength shift AÀs is defined by

15
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AÀs : Às (e(1-p.) + BAT) (2.6)

where l.e is the initial peak \¡/avelength, e is the strain induced, p" is the effective strain

optic coefficient, B is the apparent thermal strain and AT is the temperature change. The

strain optic coeffrcient is a constant that relates the change in the index of refraction to

strain. It is given by

p": rfl2*¡çtrz - v(prr + prz)] (2.7)

where p¡ and pp are components of the strain-optic tensor, n is the refractive index and v

is Poisson's ratio. For a silica fiber, the typical values for these parameters are plr :

0.1 13, pn: 0.252, v : 0.16, and n : 1.444 [17,18]. This will give a strain optic coeffrcient

of 0.2017. Therefore, assuming AT = 0 and using equations 2.6 and 2.7, a 1pe strain will

cause al.Z2pm wavelength shift at 1550nm.

Since the sensor responds to strain and temperature changes, the wavelength shift

in equation 2.6 takes into account both parameters. The strain response is due to a

physical change in the length of the grating pitch and the refractive index of the fiber.

The temperature response is due to thermal expansion effects from the fiber and changes

in the refractive index due to its temperature dependency. A typical fiber grating has a

thermal sensitivity of 7 to 10pm/C". The apparent thermal strain p is defined by

0 : Po * GF(osuustrate - 0o) (2.8)

where B6 is the thermo-optic response of the grating at fabrication, GF is the gauge factor

which expresses a sensor's sensitivity to strain, osubsrrare is the thermal expansion

coeffrcient of the substrate and as is the thermal expansion coefficient of the fiber optic

material which is approximately 0.5 X 10-6/C". Using the gauge factor in the strain

equation, one can frnd the wavelength shift by
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AIo:\(e(GF)+BAT) (2.e)

The typical value for the gauge factor at 1550nm is approximately 0.8.

There are several advantages to using a fiber Bragg grating sensor. It is an

intrinsic sensor and therefore, it is very sensitive to strain and temperature effects. The

strain is determined by measuring wavelength shifts which allows for the absolute

measurement of strain changes. They are typically used in point sensing applications;

however, they can also be used as a distributed sensor by increasing the grating length.

In this configuration, the average strain over the sensor length is determined. Also,

Bragg gratings with different center wavelengths can be multiplexed on a single fiber.

Therefore, by multiplexing the sensors, a greater amount of sensors can be placed on a

structure with less cables and equipment involved. Finally, since these sensors simply

rely on absolute wavelength shifts, the system is not severely affected by low source

power and losses in the connectors or couplers. This "absolute') nature of the Bragg

grating makes it an effective sensor for both static and dynamic strain applications.

2.5 Gas Absorption Cells

Over the past decade, researchers at several research laboratories have

investigated the use of gas absorption as a means of providing a wavelength reference

that is very stable and directly related to fundamental measurement standards [19]. Gas

cells are often used as calibration sources because of their absoluteness and insensitivity

to the environment. Thus, they can provide precise wavelength stability and absolute

long-term accuracy. For example, a cell 10cm long filled with HCN at a pressure of 100

Ton (- 0.1 atmospheres) will selectively absorb light at certain wavelengths as shown in
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figure 2.8. HCN has absorption lines at 1539.1494,1539.7855,1540.4314, 1541.0872nrt

etc. These lines are spaced approximately 0.65nm apart and are known to an uncertainty

of less than 0.3pm [20]. The position of these lines has been shown to drift less than

0.0000lnm/oC and will not drift with aging as long as the gas remains uncontaminated.

Gas cells provide a wavelength standard that can be used as a fundamental standard that

will be stable and interchangeable over long periods of time.
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Figure 2.8 Absorption spectrum of a Hydrogen Cyanide gas cell [20].

2.6Etalon

An etalon is essentially a filter that has a periodic response over a broad

wavelength range. It consists of two flat partially reflecting mirrors aligned parallel

facing other at a fixed distance apart as shown in figure 2.9a. As light from a point

source enters the etalon cavity, light is continually reflected back and forth and since the

inner surfaces are not completely reflective, some light is transmitted through the etalon.

Therefore, an interference pattern is created on the other side as a result of constructive

and destructive interference of the transmitted waves. This is depicted in figure 2.9b.
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Figure 2.9 Etalon operating principle.
(a) Schematic of etalon (b) Wavelength response

Its wavelength response spacing is smaller than the gas cell and therefore, can be used to

determine the intermediate wavelengths between two gas cell absorption lines.

2.7 Past Sensor Systems

Some factors must also be taken into account when considering the

implementation of fiber optic sensors in a health monitoring system. The f,irst issue is

obviously the cost of the system itself including the sensors, the demodulation system and

the installation costs [21]. Fiber optic sensors usually need specific training in order to

correctly install them on a structure. For some companies, this may require sending

employees to training sessions or contracting out the work to qualified individuals.

Although the cost of monitoring the health of a structure may seem expensive, it is fairly

small compared to the cost of the structure itself. Also, long term structural health

monitoring helps prevent unnecessary maintenance and repair costs by providing real

time information on the integrity of the structure. This allows the owner of the structure

to determine when a structure actually requires maintenance rather than following a set
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schedule. As a result, this will increase the return on investment of the system.

Therefore, the initial cost of the implementation of the system is eventually regained over

time.

Another issue that must be taken into account is the impact of these sensors on the

structure itself and their long term performance. Fiber optic sensors must be capable of

being attached to the structure without affecting the structural integrity. For large

structures, the sensors are small enough that they will have little effect. However, when

working with composite materials, it becomes more diffrcult. The lead fibers protected

with the PVC jacketing cannot be embedded and as a result, the bare fiber sensor is the

placed in between the composite layers while the rest of the cabling protrudes out of the

composite section. For most applications, as long as the cable is not pulling on the

embedded fiber, it is not a major problem. Also, the quality of the interface between the

sensor and the surface of the structure must be such that the strain experienced by the

structure is undergone by the sensor as well. Finally, the sensor must be environmentally

resilient and robust with little signal degradation for long term monitoring purposes.

After taking these issues into account, fiber optic sensors do prove to have significant

advantages for structural health monitoring.

One area that is emerging from structural health monitoring with fiber sensor

technology is the creation of materials with integrated sensors or, in other words, smart

materials. The advantage of this is the elimination of installing the sensor on site and

provides an attractive option for companies who are wary of having to hire someone to

install the sensors for them. An example of this is a pultruded FRP reinforcement where

the fiber optic sensors and their accompanying fiber leads are embedded during the

20



Chapter 2 Literature Review of Fiber Optic Sensors

pultrusion process [22]. In the research of Kalamkarov et al, the types of sensors used

were Fabry-Perot and fiber Bragg gratings. Fatigue testing was performed on the tendons

to compare the strain readings from the fiber sensor and externally mounted

extensometers. This resulted in excellent conformance between the readings and

therefore, extensive loading had no effect on the performance of the embedded sensoÍs.

Static loading was also performed on the specimens at 4}"C.and a maximum discrepancy

of 8%o occurred between the sensor and extensometer at the peak load of 12.5kN

corresponding to 3500pe. Two differently coated optical fibers were immersed in an

alkaline solution and filtered sea-water for 3 months to test the degradation of the fibers.

Alkaline solution was used because it is typically found in concrete. At the end of the

test period, it was determined that there was only mild damage to the surface of the

coatings. Therefore, it is plausible to assume that when the fibers are embedded in the

composite material, they will be well protected from the environment and are suitable for

long term monitoring. From the results of these tests, pultruded FRP reinforcement bars

with embedded sensors proved to be quite successful as smart materials.

Another example of this concept is the embedment of sensors in carbon fiber

reinforced polymer (CFRP) cables for use in a stay cable bridge in Switzerland [z]. As in

the previous instance, the fiber Bragg grating sensors are embedded during the

production of the CFRP wires. Each cable consisted of 24I CFRP wires arranged in a

hexagonal structure. It was observed that in order to survive high stress applications, the

fiber sensors must be embedded during the production of the wire. Static and cyclic

testing resulted in good agreement between the fiber sensors and strain gauges. Under a

constant strain of 2400¡rc, the strain readings from the sensors varied t5¡re over 5 days
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1231. Reliability assessments have concluded that the sensors on the Storchenbrücke

bridge in Switzerland have provided accurate data for over three years. Thus, fiber optic

sensors are continuing to prove their long term stability and the use of smart materials

demonstrates the ease of installation and feasibility of the commercial potential for

structural health monitoring.

A system's performance is limited by its weakest link. In fiber Bragg grating

(FBG) measurement systems, the weakest link is in establishing the wavelength at which

the peak occurs. There are two common techniques used to determine the peak

wavelength. The f,rrst technique involves interrogating the FBG with a broadband source

and spectrally analyzing the reflected signal to determine the peak wavelength as shown

previously in frgrne 2.7. Although, this is a simple configuration, several issues arise.

Since broadband sources typically offer very little power over the peak of the FBG, the

output signal at the photodetector has even less power. As a result, the resolution and

accuracy of measurement is limited by the intensity of light at the photodetector. In

addition, the use of optical spectrum analyzerc to determine the peak wavelengths suffers

from poor accuracy and drifts that typically greatly exceed 1Opm [8,9,10]. Using equation

2.9,this translates to an equivalent strain of greater than 8¡re at wavelengths of 1550nm

and typical gauge factors of 0.8. It is possible to overcome these drifts using gas

absorption line references at the expense of sampling rate. Using gas line references,

broadband interrogation schemes have achieved sampling rates no greater than 10Hz tzl.

A second approach to the interrogation of FBGs makes use of swept wavelength

laser sources. In this technique, the peak wavelength can be located by sweeping the

output wavelength of the source. This wavelength is typically dependent on the current
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applied to the laser. One advantage of using tunable laser sources is they usually have

higher power outputs coupled into the fiber than broadband sources. This is important

when the power is divided over several channels in the system. The wavelength output

by the laser at any particular set of drive conditions is not known and so must be

determined by some other technique. For example, commercially available wavelength

meters can determine the wavelength of a laser source to approximately 3pm accuracy

[11] but are not practical to integrate into a high sampling rate FBG interrogation system

and require a significant amount of power as well. Even if a laser source is calibrated

using a wavemeter for a particular set of temperatures and drive conditions, the

relationship between drive conditions and wavelength will drift uncontrollably over time.

This is particularly important in civil infrastructure applications where monitoring is

expected to take place over several decades. The best available commercial diode lasers

are specified by their manufacturers to drift as much as 8Opm/yr [tz]. At l550nm this

would correspond to a strain uncertainty of as much as 69pe. These slow frequency drifts

may cause falsely interpreted strain measurements. As a result, the precision of strain

measurement is dependent on the stability of the laser and the frequency jitter tl3l. Arie

et al. ¡z+l developed a method of measuring static strain from FBGs using frequency

locked lasers. In this technique, the laser frequency is locked to an absorption line in

order to eliminate any frequency drifts. For applications which require high resolutions,

this method has achieved sensitivities of 1.2 nanostrainl,'lHz RMS at l.5Hz and a

resolution of 6 nanostrain. This value is limited by the environmental acoustic noise.

Consequently, at the cost of sampling rate, high sensitivities are possible using a

combination of a laser and wavelength references. Therefore, it is apparent that for civil
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infrastructure applications it is necessary to have some form of real time wavelength

referencing.

The perfoffnance of both commercial and research-based FBG interrogation

systems is summarized in the following tables. As one can see, there are a number of

commercial units available, each with varying degrees of performance. Often, accuracy

is sacrificed for increased scanning frequency, while resolution is approximately the same

for most units. As expected, the values for resolution in Table 1 are much better than the

commercial units, but the compromises made in the transfer of technology from the

research to commercial sector often degrades the initial performance of the system.

However, as seen in the Table 2, most of the companies have done an exceptional job of

maintaining more than adequate values for resolution and accuracy.

TABLE 2.I SUMMARY OF THE PERFORMANCE OF COMMERCIAL FBG INTERROGATION
UNITS

Company Model Resolution (pm) Accuracy (pm) Speed (Hz)

Advanced Optics Solutions
(AOS) I2sl

t.22 +30.5 500

Insensys [26] 6.1 +12.2 500

Blue Road Research
t2'71

2.44 0.24 0.5

SHM Systems [28] 5 l00a 1.22 16.l 100

Micron Optics [29] si120 0.25 +1 5

si425 I
,) 244

Systems Planning and
Analysis (SPA) [30]

FBG-IS I *10 50

SL-FOIS I r5 100

Fiberpro [31] IS7000 I +5 200

Intelligent Fiber Optic
Systems (IFOS) t32l

I*Sense
14000

I 1.22 200
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TABLE 2.2 SUMMARY OF THE PERFORMANCE OF CURRENTLY RESEARCHED FBG
INTERROGATION TECHN

Technique Resolution Accuracy (pm) Speed (Hz)

Broadband source with optical specfum
analyzer [8,9, I 0]

5pm +10 NA

Tunable Laser with Tunable Fabry-Perot
Filter [33]

+0.lpm 0.2 NA

Frequency Locked Lasers [24] l.2ne/'lHz NA 1.5

Interferometric Scanning Method

[341

0.6nd{Hz NA >100

UV induced birefringence of a chirped
f,rber grating [35]

NA 24.4 300

Acoustooptic Tunable Filter [36] l50ne/{Hz NA 200

String Resonator l37l 0.122pm *3.66 8

Tunable laser with a gas cell reference

tlel
NA 2 NA
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2.8 Conclusion

In this chapter, the use of fìber optic sensors in structural health monitoring was

reviewed. Also, the background of fiber optic theory and the fiber Bragg grating sensor

was discussed. Finally, a review of fiber optic intenogation schemes has provided an

adequate introduction to the goal of this thesis. With the use of a swept laser system and

wavelength references, the research work presented in this thesis endeavors to improve

the accuracy of strain measurements by correctly locating the corresponding Bragg

wavelengths.
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CHAPTER3

PEAK LOCATION ALGORITHMS

3.1 Introduction

As previously mentioned, fiber Bragg grating sensors operate by detecting strain

through a shift in the reflected wavelength. Therefore, the sensor system's measurement

accuracy depends on its ability to detect the peak of the reflected signal. Typically, a

wavelength shift measurement error of 100 picometers is equivalent to an error of 100¡ie

as found in equation 2.9. In most cases, this is not an acceptable measurement accuracy

for monitoring the health of a structure. Therefore, several peak detection algorithms are

investigated and their performance when noise is present in the signal is examined. The

algorithms evaluated are:

1. 3dB Method
2. Highest Point
3. Polynomial Fitting
4. First Derivative and Zero Crossing Point
5. Lorentzian Fitting
6. Gaussian Fitting

The data used to evaluate the algorithms were obtained by a swept laser configuration as

shown in figure 3. 1.

FBG
1ilil-

Figure 3 . 1 Configuration of FBG sensor system using a swept laser source.
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Figure 3.4 Signal reflected ûom Bragg grating.

(a) entire signal (b) zoomed in view of peak

As shown in the figures, the location of the Bragg peak is not easily located. Also, there

is some sampling effor due to the oscilloscope but the main source of noise in the system

is due to photodetector noise. Although the expected signal in a Bragg sensor system is

much smoother than this signal, it was still used to evaluate the algorithms because a

noisier signal would be better suited to test performance and reliability of an algorithm.

3.2 P eaklocation Methods

As mentioned previously, six peak detection algorithms were evaluated with the

signal using the software Matlab. A description of each algorithm follows.

1) 3dB Method

The 3dB method is a common technique used to fTnd the peak in a signal. This

method involved finding the 3dB threshold crossing points of the signal and taking the

middle value as the peak as demonstrated in f,rgure 3.5a. The 3dB threshold is found

using the equation

Yt:0.7079*max value of the signal

/\
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and the peak location is found with

peak location: Xp : (l,f+ À¿)

)
(3.3)
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Figure 3.5 First two peak location algorithms.

(a) 3dB method (b) Highest point method

2) Highest Point

This simple yet coarse method involved finding the absolute maximum value of

the signal and at what wavelength it occurred. This wavelength was then set as the peak

wavelength as shown above in figure 3.5b.

3) Polynomial Curve Fitting

Fitting a polynomial curve to a set of data is a frequently used method in data

analysis applications. This method involved creating a threshold and fitting the data

points within that threshold to a polynomiàl curve. For this signal, the polynomial curve

used was of 2"d order (ie. Parabola)

p(x):prx2+pzx+p¡ (3.4)

Polynomial curve fitting involves using a least squares method that minimizes the sum of

the squares of the errors between the polynomial curve and the data. Therefore, the

h
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A smoothing operation was performed on the derivative to reduce the noise in the signal

and reduce the amount of intensity variation from one sample point to the next. In this

case, Gaussian smoothing was used and it is a lD convolution operation that uses a

kernel that represents the shape of a Gaussian curve. The degree of smoothing depends

on the standard deviation of the Gaussian kernel. Gaussian smoothing determines a

weighted average around a data point where the average is heavily weighed by the values

closer to the data point. As a result, the Gaussian kemel is a gentler smoothing process

than the mean filter. After the smoothing is performed, the location of the zero crossing

point is determined, as shown in figure 3.7. This location is then assumed to be the peak

location as well.

Warelength (nm)

Figure 3.7 First derivative and zero crossing point algorithm.

5) Lorentzian Curve Fitting

This method involved fitting a Lorentzian curve to the data points above a

specific threshold. The Lorentzian equation is as follows:

f(x): L ll2
;$-pî7gzl

_0-03r I I I ' '. 
¡ 

' ' ' ' I

1535 1535.2 1535.4 1535.6 1535.8 1536 1536.2 1536.4 1536.6 1536.8 1537
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where p : mean and f : full width at half maximum. For each data point within the

threshold, the f was varied. The mean squared error between the original signal and

Lorentzian was found for each combination of p and f. The best fit occurred with the

combination that produced lowest mean squared enor. As a result, the peak wavelength

is designated as the p in that combination.

6) Gaussian Curve Fitting

The same methodology as the Lorentzian method was performed on the signal,

except a Gaussian curve was used instead. As before, the data above a designated

threshold was fit to a Gaussian function. The Gaussian equation is

f(x): 1 exp-(x-p)2
o.'lzn 2o2

(3.7)

where p : mean and o : standard deviation. In this case, for each data point, the o was

varied. Again, for every combination, the mean squared error between the original signal

and Gaussian curve was found. The p in the combination that resulted with the lowest

mean squared error was specified as the location of the peak wavelength.

The difference between the Gaussian and Lorentzian curves is illustrated in figure

3.8. Also, an example of a Lorentzian curve and Gaussian curve fitted to the Bragg

grating signal is depicted in figures 3.9aand 3.9b, respectively.
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the original signal, with a signal to noise ratio of 80:1 and using a reference wavelength

of 1536.214nm, is presented in the following table.

TABLE 3.I COMPAzuSON OF PEAK FITTING ALGORITHMS WITH RESPECT TO THE PEAK
WAVELENGTH DETERMINED FROM THE GAUSSIAN FIT METHOD

Algorithm h (om) A}n (ie. f, - b o"ussi-) (pm)

3dB Method 1536.2157 r.7
Hiehest Point 1536.2243 10.3

Polvnomial Fittine 1536.2157 t.7
First Derivative t536.2226 8.6

Lorcntzian Fittine 1536.2140 0.0
Gaussian Fittine ts36.2t40 0.0

From this, one can see that the highest point and first derivative methods resulted in peak

positions which deviated by more than 8pm from the peak position determined by the

Gaussian peak fitting. This conesponds to an error of 7pe and would not be acceptable

for many civil infrastructure applications. On the other hand, the 3dB, polynomial,

Lorentzian and Gaussian peak fitting methods all produced deviations that were less than

5pm yielding elrors of less than 4pe. All these algorithms would produce errors less than

those normally considered acceptable for civil infrastructure monitoring applications.

After determining the peaks on the original signal, amplitude noise was then

added to it in increasing increments. The peak position was determined for 15 trials at

each noise level and the RMS enor in determining the peak location is plotted against the

noise to signal ratio as shown in figure 3.10a for the first 3 methods, while the results for

the last 3 methods is displayed in figure 3.10b. The noise to signal ratio is defined as the

RMS noise to the peak signal. The maximum amount of error desired is 5pm. Although

from observation only, it is difficult to discern the performance of each algorithm,

detailed analysis shows that the polynomial, Lorentzian and Gaussian methods prove to

be the most accurate algorithms as shown in figure 3.1 1 .
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measurement. To establish this limit, the original data was modified by adding additional

noise and the performance of these peak location algorithms was monitored in the

presence of ever increasing levels of noise.

Using the noise to signal ratio established by the simulations, one can estimate the

minimum optical power required for these measurements. For example, one first

assumes that an optical power of 11.2pW is reflected from the FBG, which corresponds

to a photocurrent of 16pA at the photodiode, assuming the quantum efficiency is 0.7.

Using the polynomial fit curve in figure 3.11 above, at noise to signal ratios of less than

0.1528 (ie. SÀl = 7), the error in peak position determination was less than 5pm.

Assuming shot noise is the dominant source of noise, we use the following equations:

IsN: (2*q*Ipd *BV/)l/2

IsN: (21qlBW)r/2
Ip¿ r/ Iou

where q is the charge of an electron, Ipc is the current at the photodetector and BW is the

bandwidth. The noise to signal ratio then becomes 0.1415 using a measurement

bandwidth of lMHz, and the noise current would be 15¡ : 2nA. Therefore, for 32

channels at l1.2pV/ per channel, the total optical power required would be least 400p'W.

Furthermore, if lm'W of power exits the laser and there are 32 channels in the system,

with 80% peak reflection, the power at the photodiode should be about 12.5pW which

corresponds to about I2pA, assuming quantum efficiency of 1 As a result, lmW source

is quite sufficient for this measurement system.

Several of the peak location algorithms performed similarly with respect to the

signal to noise ratio. These include the polynomial, Lorentzian and Gaussian curve

frtting methods. Although the Lorentzian and Gaussian algorithms proved to be the most

(3.8)

(3.e)
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accurate, they were also the most computationally time consuming. For most civil

structure monitoring pu{poses, it is desirable to have a system which can measure strains

in real time. Therefore, since these methods require extensive amounts of computation,

they would not meet the requirements of a strain monitoring system. On the other hand,

the polynomial fit method demonstrated to have reasonable accuracies and it was also the

most computationally effrcient. Therefore, for the remainder of this work, the

polynomial fit method was used as the peak location algorithm.

To fuither extend the resolution of this technique, sub-sampling of the data was

performed. This involved adding 32 points between data samples and evaluating the

polynomial fit algorithm again with increasing amounts of noise. The result of l0

simulations using the sub-sampling technique is shown in figure 3.12.
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Figure 3.12 Peak location elror vs noise-to-signal ratio of polynomial fit algorithm using sub-sampling
technique.

Sub-sampling allowed the peak to be placed between data points, thus increasing

the resolution. From this technique, the data located below 5pm and lpm of error is
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shown in figwes 3.13a and 3.13b, respectively. At noise to signal ratios of 0.104 (ie. S/l{

:9.6), in figure 3.t3a, the RMS error is 0.8185pm and corresponds to a strain resolution

of 0.7104¡te. At roughly the same noise to signal ratio, with no sub-sampling, the RMS

error was 1.663ipm and the strain resolution was 1.4435pe. Therefore, this technique

improved the resolution by half compared to the results achieved without sub-sampling

the data. Also, in figure 3.13b, the lpm threshold is exceeded at noise to signal ratios of

0.049 (ie. SA{ : 20.4). This resulted in an RMS error of 0.3987pm which corresponds to

a strain resolution of 0.346¡re.
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3.4 Discussion of Signal to Noise Ratio in the Peak Location Method

Peak fitting is a method often used in signal processing applications because it

makes better use of more information. When determining a sufficient peak location

method, one must take into account the minimum signal to noise ratio required for a

specific number of samples. For example, in figure 3-I4, the Bragg peak can be

approximated with a signal resembling a bandpass filter with a width of ÂI.

tt,:

Figure 3.14 Approximation of a Bragg peak.

n=0

Figure 3. I 5 Shifting the approximation curve by one wavelength position.

The next step involves determining how large the noise in the signal can be before

it becomes impossible to determine when the Bragg peak has shifted one wavelength

sample position. For example, if the approximation is located exactly at the peak,

S : X n*Vi from n:0 to n:i
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where S is the total signal amplitude, i is the total number of samples in the signal, and Vi

is the amplitude of the signal at each sample point.

In addition, for each sampling point, the noise will have a certain value, Vn. If the

noise is uncorrelated, the total noise will be:

N: Vn* {i (3.11)

Therefore, in order to determine if the peak has shifted one wavelength sample position,

the magnitude of the signal at a certain point would have to be greater than the noise, as

shown in the following equations:

V¡> Vn * r/i

u: {i
vn

(3.12)

(3.13)

(3.14)

For example, if the Bragg peak is 100 samples wide, where 1 sample corresponds to

I.72pm, then for each sample, the signal to noise ratio would have to be:

sn\ > (1oo)'/2: 19

The noise to signal ratio then becomes 0.1 and it represents the amount of noise required

before it becomes impossible to detect a I.72pm shift in the Bragg peak. As seen in

figure 3.13b, the noise to signal ratio of 0.049 is required to exceed the lpm threshold.

As a comparison, if a triangle signal is used to approximate the Bragg peak, the

minimum signal to noise ratio changes significantly. In the following figure, the triangle

signal is used to represent the 3dB method.
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<- one wavelength
\ sample

n=0 ¡=i ¡=i+,1

Figure 3.1 6 Approximation of the Bragg peak using a triangle signal.

In figure 3.16, S is reduced by a factor of 2 andcan be compared to the method of finding

the center of two threshold crossings. Therefore, the minimum signal to noise ratio also

reduces by a factor of 2 as seen in the following equation:

Yi:j-
vn2

(3. 1 s)

As in the previous example, the SAü required for each point is now 50 and N/S is 0.02.

This means that it takes less noise to make it impossible to detect a wavelength shift of

1.72pm. In table 3.2, the 5pm crossing line for the 3dB threshold method occurs at a NiS

of 0.026 and 0.154 for the polynomial fit method. This corresponds to a ratio of l:5.92.

If the number of samples in the Bragg peak is 100, using equations 3.13 and 3.15, the

ratio of the N/S between the 3dB and polynomial fit is 1:5, which agrees with the ratio

acquired for the 5pm crossing line.

To summarize, as the number of samples in increases, the minimum required

signal to noise ratio improves as well. Thus, this provides an explanation as to why the

polynomial and Gaussian algorithms perform better than the 3dB threshold method.

3.5 Conclusion

In sunmary, the work involving the evaluation of several peak location

algorithms under constraints of maximum RMS error allowed and computation time was
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presented. Three methods, specifically the polynomial, Lorentziart, and Gaussian curve

fit algorithms, perforrned well under these constraints. However, due to the long

computation times required by the Lorentzian and Gaussian fit methods, the polynomial

fit algorithm was determined to be the best method to use in a FBG demodulation unit.

Also, the concept of sub-sampling was introduced which demonstrated improvements in

the resolution of the polynomial fit algorithm.
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CHAPTER 4

IMPLEMENTATION INTO THE FBG TJNIT

4.L lntroduction

The goal of this thesis was to develop a method which improved the accuracy of

Bragg wavelength measurement. In the previous chapter, several peak detection

algorithms were examined based on their performance in finding the peak location under

an increasing amount of noise. It was determined that, for the nature of this work, the

polynomial curve fit algorithm would be adequate. Therefore, the next step involved

implementing this algorithm along with the wavelength references into a fiber Bragg

grating readout unit.

4.2 Modifying the FBG Unit

For this project, a FBG readout unit was readily available for modifications and

was constructed by a student from the University of Toronto [38]. The readout unit was

constructed by modifying a computer tower case with additional parts such as

photodetectors, couplers, and a laser diode. The purpose of this was to try to minimize

the number of separate modules required for a readout unit and create a compact system

design with the potential to become a portable unit in the future. As previously

mentioned, it is impractical and cumbersome to bring separate sources and optical

spectrum analyzers to monitor Bragg grating sensors. A schematic diagram of this FBG

readout system is shown in figure 4.1.
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Figure 4.1 Schematic of FBG interrogation unit.

This unit consisted of a laser diode which had a 2nm tuning range in the

wavelength ranges of 1535 to 1537nm and 1539 to 1541nm. The wavelength range in

which the laser diode operated was controlled using a thermoelectric cooler (TEC). A

TEC moves heat from one side of the cooler to the other when a DC voltage is applied to

it. As a result, the laser diode is kept at a constant temperature. Therefore, the heat

absoqption is proportional to the current through the thermoelement. Since the Bragg

grating was in the 1536nm range, a 500m4 current was applied to the TEC to move the

wavelength sweep range to 1535 to 1537nm.

The sensor and the wavelength references were connected to the inputs of the

FBG readout unit as shown in figure 4.2. The Bragg grating was placed in input 1, the

gas cell inpuloutput ports were connected to inputs 2 and 3 respectively, and the etalon

was connected to input 4. For the first trials, the etalon was not used in order to evaluate

the performance of the gas cell as a single wavelength reference.
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l-l Memory

l-l Processor

Laser Controller

Figure 4.2 Schematic of FBG unit with sensor and wavelength references as inputs.

Data acquisition was performed using the software Labview and signal processing

was done in Matlab. The readout unit was modified by replacing the programs in Matlab

with ones specific to the use of wavelength references as a means of determining the

Bragg peak wavelength. These programs also implemented sub-sampling and

polynomial curve fitting techniques and can be found in Appendix A. A screen shot of

the Labview user interface is shown in figure 4.3.

This interface allows the user to input the reference Bragg wavelength either from

the manufacturer or the value determined during calibration. Also, the user can choose

which inputs to monitor, as well as the duration of the scan. For example, the user would

choose to highlight input 1 for the Bragg grating and input 3 for the gas cell reference.

Inputs 2 or 3 can be used as the gas cell reference since it works in transmission either

way. Light is sent down all of the ports each time. Therefore, for a certain scan duration,

only the active ports should be highlighted in order for the data acquisition program to

determine which outputs from the photodetectors to sample, including the reference

signal from the laser itself. The outputs of the interface include the Bragg wavelengths
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Figure 4.5 Determining the Bragg peak wavelength using interpolation from the gas cell waveform.

Since the laser sweeps through the gas cell absorption minima each cycle, it is

possible to interpolate to these peaks on each sweep cycle. As a result, short term and

long term drifts in laser wavelength can be corrected for. As a demonstration of this

capability, we swept the laser using a triangular current sweep once every 10ms. This

allowed the determination of strain in the FBG once every 10ms. However, due to the

large amount of computation required, the peak fitting was carried out offline using

Matlab. All Matlab programs used in this thesis can be found in Appendix A.

4.4 Short Term Stabilify Test

As shown in figure 4.6, the peak to peak variation in the measured peak position is

less than 0.4pm over this I second measurement.
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Figure 4.6 Variation of enor over a I second scan.
RMS=O.07 I 578pm, Peak-to-Peak=0.3 948pm

This peak to peak variation, which is approximately 0.39pr, corresponds to the resolution

of the system in short term drifts. This value is much lower than most reported systems

which have a resolution of 2pm [19].

In order to test the long term stability of the system, the FBG sensor was insulated

again between the foam cubes and readings every 5 seconds were taken over a period of

l0 minutes. In this test, the drift was somewhat larger at lpm as shown in figure 4.7.
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Figure 4.7 Variation of enor over a 10 minute time period.
RMS:O.208pm, Peak-to-PeaF 1.028 lpm
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The source of this larger drift has not been identified; however, one possible and likely

explanation could be the small (0.1"C) temperature drifts in the FBG as the foam is not a

perfect buffer from the environment.

4.5 Implementation of the Etalon as a Wavelength Reference

In the next part of the project, the etalon obtained from Wavelength References

Inc. was used for further improvement in the accuracy of the Bragg peak location. As

mentioned earlier, an etalon is a comb filter with a large wavelength range and the

spacing between the combs is referred to as the free spectral range (FSR). The FSR for

this particular etalon was approximately 140pm. It operates in reflection mode because it

has a larger dynamic range and is less sensitive to input power variations than in

transmission mode. Several simulations using the etalon characteristic equations were

performed to observe the etalon signal variations with respect to wavelength and

temperature. A simulated etalon waveform in reflection mode in the wavelength range

1535 to I537nn is shown in figure 4.8.

Wavelength (nm)

Figure 4.8 Etalon response in reflection from 1535 to l537nm.
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co.-EtÒ
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As one can easily observe, the spacing between the etalon peaks is much smaller than the

gas cell line separations. After finding each gas cell minima and assigning their specific

wavelength found in the NIST standards, the etalon peak locations \ilere determined. The

wavelengths of the two etalon peaks nearest to the first gas cell wavelength were found

using linear interpolation. These two peaks were then used to determine the constants for

the etalon equation which determined the rest of the peak wavelengths. This calculation

can be found in Appendix B. The Matlab program then was modified to use linear

interpolation from the etalon peaks to determine the Bragg peak wavelength.

Short term and long term stability tests were performed as before; however, this

time the et¿lon was used for interpolation. The results over a one second scan are shown

in figure 4.11. This time the peak to peak variation was 0.l77pm which was significantly

less than the result of 0.3948pm achieved from interpolation from just the gas cell. From

this graph, it can be seen that the error was limited by the sampling resolution.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Time (seconds)

Figure 4. 1l Variation of error over a I second scan with the etalon.

RMS:0.05089pm, Peak-to-Peak=0. l77l I lpm

The long term stability was then determined by examining the variation of the

measurements over a 10 minute time period. This is shown infigxe 4.12.
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Figure  .l2Yariation of error over a l0 minute time period with the etalon.
RMS:O.266pm, Peak-to-Peak:0.978054pm

As one can see, there were still some temperature drift effects in the signal. However, in

this case, the peak to peak variation was less than lpm. A comparison of the results from

interpolation from the gas cell and from the etalon is illustrated in the following figure.

The offset was due to the initial wavelength calculated by each method.
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From the graph, the results from the both the etalon and gas cell interpolations

agree well with each other. The difference between the errors may be a result due to the

increase in accuracy of measurement with the use of the etalon. As mentioned earlier, it

was expected to improve the accuracy of measurements by *1.5pm and the difference

between the two signals is roughly 1.75pm. However, without knowing what the correct

value of the Bragg wavelength is, conclusions about the effect of the etalon on the

measurement cannot be drawn. Therefore, it is necessary to conduct some experimental

tests using the fiber Bragg grating and a metal foil strain gauge in order to conclusively

determine whether the etalon does improve strain measurement accuracy.

4.6 Conclusion

In this chapter, the implementation of the polynomial curve fit algorithm in

conjunction with two types of wavelength references: a hydrogen cyanide gas absorption

cell and an etalon, was discussed. By simply using the gas cell alone, the performance of

the FBG unit in strain measurement was found to be sufficient for the requirements of

structural health monitoring. However, the goal of this thesis was to explore the

possibility of further improving the accuracy in measurement using an etalon. The results

shown in this chapter have proved that the etalon does improve the stability of

measurements, especially in short term scans. A discussion of the load testing performed

and a comparison of the results from the modified FBG unit to a metal foil strain gauge

are presented in the following chapter.
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EXPERIMENTAL TESTING AND RESULTS FROM THE FBG UNIT

5.1 Introduction

In the previous chapter, the implementation of the wavelength references in the

FBG unit was discussed. The results from the unstrained sensor tests proved that the use

of the HCN gas cell and/or the etalon increased the accuracy of Bragg peak location thus

improving the accuracy of strain measurements. The strain tests carried out on the FBG

to evaluate the performance of the FBG unit with the wavelength references are discussed

in this chapter.

5.2 Test Setup

An experimental test setup was fabricated in order to test the accuracy of the FBG

unit using the wavelength reference. This setup involved designing and manufacturing a

constant stress cantilever beam [40] as shown in figure 5.la. The purpose of creating such

a beam was to ensure the Bragg grating experienced constant strain across its entire

gauge length. If the strain across the grating was not constant, the grating would

experience a strain gradient across its length and thus, result in erroneous strain readings.

Also, it was important to reduce any errors between the Bragg grating and the

corresponding strain gauge that was mounted right next to it. This way, both sensors

would experience the same stress in spite of their different lengths.
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neutral axis to the beam surface. I is the moment of inertia of the beam cross-section.

Finally, S is the section modulus of the beam and is defined as:

where b is the beam width at a distance x from P, and t is the beam thickness. Strain is

linearly proportional to stress and varies with Young's modulus constant, E, as seen in

Hooke's law:

S: b(x)t2
6

€: O: PX
EES

(s.2)

(5.3)

The calculations for the section modulus, bending moment and stress found in figure 5.lb

are as follows:

From equation 5.2, S : b(x)t2--6- where b(x):_615_x
209.55

Therefore, S : Gl.5 lj!f)¡ :2.036 x
(209.ss * 6)

Also, M: Px

Finally, from equation 5.1, Bð---= 0.491P (w/tru"1
2.036x

Thus, as shown in figure 5.1, the stress is constant along the span of the beam. As shown

in figure 5.2, the cantilever was fabricated from Aluminum 6061-T6, which has a

Young's modulus, E, of 69x10n N/*' and a thickness of 6.35mm (%"). The anticipated

load, P, which would be applied within the elastic range, was 100N.

o: Px:
S
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CHAPTER 6

CONCLUSION

6.1 Summary

This thesis has provided a comprehensive study on fiber optic sensors,

specifically fiber Bragg gratings, and demonstrated the increased effectiveness of adding

an etalon as a complementary wavelength reference. While the gas cell guarantees

absolute strain measurements, the etalon further improves the measurement accuracy by

providing an additional point of reference.

This thesis began with a comparative study of various peak location algorithms.

Using Matlab, six peak location methods were evaluated based on the computation time

and the amount of noise required in the signal before the algorithm failed to stay below

an error of 5pm. This study conçluded that the polynomial, Lorentzian and Gaussian

fitting methods were the most stable. However, among those methods, the polynomial

peak fitting algorithm had a significantly lower computation time. Therefore, it was

decided that polynomial htting would be used in determining the peak locations in the

signals. Also, the method of sub-sampling was introduced and simulations determined

that it did slightly improve the performance of the fitting algorithm.

The next step involved writing a program to determine the Bragg wavelength

using the wavelength references. This program incorporated the polynomial peak fitting

algorithm and the sub-sampling technique. Since the gas cell wavelengths were

previously known values, the etalon peaks were found by interpolation and use of the
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etalon transmission equations. After the etalon wavelengths were determined, the Bragg

wavelength was calculated by interpolation from the etalon peaks. Using simply the gas

cell alone, it was found that the measurement error in a one second scan was 0.4pm and

l.03pm in a 10 minute scan. However, the addition of the etalon reduced that error to

0.18pm over a one second scan and 0.98pm over a 10 minute period. These initial

simulations helped prove that the addition of an etalon does improve the accuracy of

measurements.

Finally, load testing was performed on a constant stress beam with a Bragg sensor

and strain gauge to provide a comparison in the readings. After the strain gauge and

Bragg sensor were attached to the cantilever, static load testing \¡/as performed on the

fixture. The strain readouts from both the strain gauge and Bragg sensor were compared.

In order to determine the strain on the Bragg sensor, two methods were implemented: the

first using interpolation from the etalon and the second using interpolation from the gas

cell alone. It was determined that both measurement methods performed favorably.

However, the method using interpolation from the etalon was slightly more accurate by

1.2¡re than using gas cell interpolation alone.

In conclusion, this thesis has met the goals set out to be achieved. It has

demonstrated that an efficient and accurate peak location algorithm incorporated with a

gas cell and etalon can significantly improve the accuracy of strain measurements from a

Bragg sensor. Moreover, wavelength references provide numerous benefits, namely,

providing an absolute standard by which the strain is determined and ensuring long term

monitoring due to their stability. By improving the method in which a Bragg sensor is
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interrogated, stable and accurate strain measurements are now possible for fiber sensors

in structural health monitoring projects.

6.2 Recommendations for Future Research

The list below features some suggestions for future work in the area of fiber Bragg

grating sensor systems.

multiplexed on a single fiber.
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APPEI{DIX A

MATLAB PROGRAMS



ToThis program is the main progrâm used in the Labview interface and determines
the Bragg wavelength using the gas cell and etalon wavelength references

function process data-v8(binfile, paramete Í-aÍray duration, chan-array, laser-source,
rawjlot, peak_wavelength)

%oparameter_anay: [0 0 0 1; 1536 1536 1536 1536;0.5 0.5 0.5 0.5; 6.5e-6 6.5e-6 6.5e-6
o/o6.5e-6;0.80 0.80 0.80 0.80; 23.5 23.5 23.5 23.5;23.5 23.5 23.5 23.5;1536.214
%1536.2141536.2141536.214;0.1e-8 0.1e-8 0.1e-8 0.1e-8; 0.55e-6 0.55e-6 0.55e-6
%0.55e-61;
o/obinfile:'C:\Documents and Settings\All Users\Documents\D ata 06-10-2003\06- I 0-
%2003 _08 -3 0 -22PM 3 . bin' ;

%duration:0.5;
o/ochan_array:U I 0 1];
o/olaser_source:1 

;
o/orawjlot:O;

%op eak_w avel en gth: 1 5 3 6.43 0 ;

dynamic=O; Yoscan over 1 second file

o/osome variable initialization
clear REF;
clear fbgl;
clear fugZ;
clear fbg3;
clear gascelljeak;
clear braggjeak;
clear etalon_peak;

%Global Variables
global strain; oástrain value for bragg grating
global braggwavelength; Yocalculated braggpeak wavelength
global output_G;
global strain_gc;
global braggwavelength 1 ;
o/oglobal gascellleak; %gascell peaks
%global braggjeak; Yobragg peaks
%;oglobaletalon¡leak; Yoetalonpeaks
%oglobal fbgl; o/ochannel I
%globalftg2; o/ochawrcl2

%global fbg3; o/ochannel3

%global REF; o/oreference signal

channels : NNZ(chan_array); o/oftnds active channels
chans_G : channels * 1; o/ototal number of active channels plus the reference signal



samples : duration*chans_G*25 8000;
fid: fopen(binfile,'r'); o/oHere the binary file is opened with read only access

[rawdata,count]:fread(fid,samples,'intl6'); % this reads successive 16 bit integers
fclose(fid); %othis closes file after reading data
%REF_offset : offset_fi xer(rawdata,chans_G) ;

REF_offset:O;

if dynamic:=O
datalength:6000; o/osets data to contain one cycle of a wavelength sweep

else

if chans_G::3
datalen gth:l en gth(rawd ata) I 3 ; o/o entir e I en gth o f d ata

else

datal en gth:l en gth(raw data) I 4 ;

end;
end;

X: [1:l:datalength];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

lfbgl,fbg2,fbg3,REFI:channel_assign(rawdata,REF_offset,datalength,chans_G,rawjlot,
x);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

oásub-sampling of data
signal:X;
wi:1 :0.0625 :length(X);
ri:interp I (X,REF,wi,'spline') ;

gi:interp I (X,fbg2,wi,'spline');
bi:interp I (X,fbg 1,wi,'spline');
if chans_G::4
ei:interp I (X,fb 93,wi,'spline') ;

end;

REF:ri;
fb92:gi1'
fbgl:bi;
if chans_G=:4
fbg3:ei;



end;
wavelength:wi;

if chans_G-3
etalon:fbg3;
end;

[minvr minr]:min(REF) ;

[minv g ming] :m in (fb e2) ;

[minvb minb]:min(fbg 1 );
if chans_G-4
[minve mine]:min(fbg3);
end;

reÈREF-minvr; Yoremove offset
gascell:fb92-minvg;
bragg:fbg1-minvb;
if chans_G:=4
etalon:fbg3-minve;
end;
ref norm=eflmax(ref); %onormalizing
gascell_norm:gascell/max(gascell) ;

brag g_norm =br aggl max(bra g g) ;
if chans_G::4
etalon_norm:etalon /max (etalon) ;

end;

reÈref norm;
gascell:gascell norm;
bragg:bragg_norm;
if chans_G::4
etalon:etalon_noffn;
end;

Yofrgure
%oplotff.,gascel l,X,brag g,'r :') ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[maxref maxr] :max(ref) 
;

min:O.2*maxref;
start:0;



if dynamic:0
minpoinFstart end points(min,start,ref,dynamic); %ofindingstart and end points of

one cycle
startjosition:minpoint( 1 ) ;

end_p osition=ninpo int(2) ;

minx:start¡losition;
numsignal:channels;
if chans_G::4

[gascelþeak,braggjeak,etalonleak]:peak_findelinterpS(gascell,bragg,etalon,wavele
ngth,startjosition,encl position,numsignal) ;

[braggwavelengthl,braggwavelen gtb2,braggwithetalonl]:wavelength_calc_interpS(gasc
elþeak,brag gj eak,etalon_peak,wavelength) ;

Yobr aggw ave I ength:bra g gwav el en glh I ;
brag gwavelength:brag gwithetalon 1 ;

else

[gascelljeak,braggjeak,etalonjeak]=peak_frnder_interp(gascell,bragg,etalon,wavelen
gth,start¡losition,end_po sition,numsi gnal) ;

[braggwavelenglhl,braggwavelength2]:wavelength_calc_interp(gascelþeak,bragg¡lea
k,wavelength);

brag gwavelength:brag gwavelength I ;
end;
strain_et:strain_calcþarameter-array,peak-wavelength,braggwavelength);
strain_gc:strain_calc(parameter_array,peak-wavelength,braggwavelengthl );

else

minpoinFstart_end points(min,start,ref,dynamic) ;

numsignal:channels;
format long;
for i: 1 :length(minpoint)- 1

start_po sition:minpoint(i) ;

endjosition:minpoin(i+ 1 ) ;

if chans_G::4

Igascelljeak,bragg¡leak,etalon__¡reak]:peak_findelinterpS(gascell,bragg,etalon,wavele
ngth,start¡losition,endjosition,numsi gnal) ;

[braggwavelengthl,braggwavelength2,braggwithetalonl]:wavelength_calc_interpS(gasc
ell¡leak,brag g¡leak,etalon_peak,wavelength) ;

Yobragg_wavelength I (i):braggwavelength 1 ;

Yobragg_wave\engllt2(i):braggwavelength2;
Yobraggvtavelength:braggwavelength 1 ;

bragg_wavelength I (i):braggwithetalon 1 ;

Yobr agg_w av eleng[h2(i ) 
:brag gwithetal on2 ;



braggwavelength:braggwithetalon I ;
braggwithgc I (i):braggwavelength 1 ;

braggwithgc2(i):brag gwave length2 ;

else

[gascelþeak,bragg3eak,etalon_peak]:peak_finder interp(gascell,bragg,etalon,wavelen
gth,start¡losition,endjo sition,numsignal) ;

þraggwavelengthl,braggwavelength2]:wavelength_calc_interp(gascelljeak,braggjea
k,wavelength);

bragg_wavelength I (i):braggwavelength I ;
brag g_wave I en gth2 (i ) 

:b rag gwav elenglh2 ;
braggwavelength=braggwavelength I ;

end;
strain_et:strain_calc(parameter_array,peak_wavelength,braggwavelength);
strain_gc:strain_calc(parameter_array,peak_wavelength,braggwavelengthl);
bragg_strain(i) :strain_et;

bragg_gc_strain(i):strain_gc ;

end;
end;

if dynamic::|
data(1 :length(bragg_wavelengthl ), I ):bragg_wavelengthl';
%odata(l : length(bragg_wavele ngfhZ),2):bragg_wavelen gth2' ;

data(1 :length(bragg strain),3):bragg_strain';
data(l :length(braggwithgc I ),4):braggwithgc l';
data( 1 : length(braggwithgc2), 5 ):braggwithgc2' ;
data( 1 : length(bragg_gc_strain),6):bragg_gc_strain';

%dlmwrite('temp. out',data) ;

save temp.out data -ASCII -double -tabs
end;

braggwavelength
strain_et
braggwavelengthi
strain_gc



7.This function assigns the correct data to each channel from the raw data

function

[fbgl,fbg2,fbg3,REF]:channel_assign(rawdata,REF_offset,datalength,chans_G,raw_1rlot,
x)

o/oglobal fbgl;
o/oglobal fbg2;
%global.fbg3;
%global REF;

if chans_G::4
for i : 4:chans_G:4*datalength

fb eI (il Ð : ab s (rawdata(i- 3 )) ;
fb g2(l Ð : abs (rawd ata(i-Z)) ;

fb e3 Ql Ð : abs(rawdata(i- 1 )) ;
REF(il4): rawdata(i) - REF_offset;

end
if rawjlot:l
figure(1)
plot(X,fbgl,X,fug2,X,fbg3,X,REF,':');
title('Reflected signals from FBG sensors and laser REF sampled at250 kS/s each');
legend('FBG','Gas Cell','Etalon','Laser REF') ;

end
end

if chans_G::3
for i : 3 :chans_G:3+datalength

fbg 1 (i/3 ) : abs(rawd ata(i-2)) ;

fb 92 (i I 3) : abs (rawdata(i- I )) ;
REF(i/3) : rawdata(i) - REF_offset;

end
if rawjloF:l
figure(1)
plot(X,fbg 1,' -',X,fb 92,' -.',X, REF,' :') ;
title('Reflected signals from FBG sensors and laser REF sampled at250 kS/s each');
legend('FBG','Gas Cell','Laser ffiF');
end
fbg3:0;
end

if chans G::2
for i : Zihans-G:2*datalength

fb gl (ilz) : abs(rawdata(i- 1 )) ;
REF(i/2) : rawdata(i) - REF_offset;



end
if raw_ploFl
figue(1)
plot(X,fbg 1,X,REF,':');
title(NormalizedFBG signal sampled at250 kS/s each');

legend('FBG','Laser REF') ;

end
end



ToThis function fÏnds the start and end points of one modulation cycle

function minpoint:start_end p oints(min,start,ref, dynamic)

[maxref maxr] :max(ref) 
;

min:0.01*maxref;
counFl;

minimum_found:0; o/othis will turn off loop once minimum is found
flagl:0;
f7ag2:0;

if dynamic:O
cycles:2;
for w:1:cycles

while minimum_found - 0

while flagl - 0
if ref(count) < min;

positionl : count;
flagl :1;

end
counFcount*l;
end;
count:count*30;
while flag2::0

if ref(count)>min
position2=count;
flag2:l;

end;
counFcount*l;

end;
array:ref(position 1 :position2);

[value,minpo s] :min(array) 
;

minimum_found:l;
end
x¿uray==position I :position2 ;

minpoint(w):xarray(minp o s) ;

counFcount*60;
minimum_found:0;
flag1:0;
flag2:O;

end;

else

allminfound:0;
w:l;



while allminfound:0
while minimum_found :: 0

while flagl :0
if counÞ:length(ref),break,end
if ref(count) < min

positionl : count;
flagl:l;

end
count:count*l;

end;
counFcount+20;
while flag2::}

if counÞ:length(ref),break,end
if ref(count)>min

position2:count;
flag2:l;

end;
counFcount*l;

end;
if counÞ:length(ref),break, end
array:ref(positionl :position2);

[value,minpos] :min(array) 
;

minimum_found:l;

end

if (allminfound-0)&(count<length(ref))
x¿uray:position 1 :position2;
minpo in(w):xarray(minpos) ;

end;
count:count*20;
flag1:0;
flag2:O;
w:w+l;
if counÞ:length(ref)

minimum_found:l;
else

minimum_found:O;
end;
if counÞ:length(ref)
allminfound:l;
end;
if allminfound: l,break,end

end;



end;

t:length(minpoint);
if minpoint(t):minpoin(t- 1 )

minpoinFminpoint( I :t- I ) ;
end;



%This function determines the locations of the peaks for the bragg grating'
Vogas cell, and etalon using the polynomial fit algorithm

function

[gascelþeak,braggjeak,etalonjeak]:peak-finder-interpS(gascell,bragg,etalon,wavele
ngth,start_position, endjosition,numsi gnal)

n:numsignal;
for phase:l:n

if phase-l
signal:gascell;
threshold:O.05;
limit:8;

elseif phase:2
signal:bragg;
limieZ1'
maxbragg:brag g(start¡lo sition) ;

for i:start_position:endiosition
if bragg(i)>maxbragg

maxbragg:bragg(i);
end;

end;
threshold:0.75;

elseif phase:3
signal:etalon;
limir33;
threshold:O.12;

end;
start:startjo sition+ 1 920 ;

flag_l:0;
numjeaks:O;
flae2=O;
peaknum:l;
if phase::2

starFstartjo sition+3 5 2 0 ;

end;
if phase::3

start:start¡losition+ I 00 ;

end;

while num__peaks::0
count:start;
flag_l=0;
while flag_l :: 0 %finding threshold crossing points

if phase::1



if (signal(count)<threshold)&(signal(count*5)<threshold)
pointl:count;
flag_l:1;

end;
else

if signal(count) > threshold;
pointl : count;
flag_l :1;

end;
end;
count:count*5;

end;
count:countf5;
flagJ:o;
while flag-?-}

if phase::1
if (signal(count)>threshold)&(si gnal(count+5 )>threshold)

point2:count;
flag_2:l;

end;
else

if signal(count)<threshold
point2:count;
flag2:l;

end;
end;
count:count*S;

end;

x:wavelengthþoint I :point2) ;

y:signalþoint 1 :point2);
p:polyfit(x,y,2); %polynomial fit algorithm
Ëpolyval(p,x);
if phase::1

[minpol,z]:min(Ð;
else

[maxpol,z]:max(Ð;
end;

if phase::1
gascelljeak(peaknum) :x(z); %ogas eeII wavelength peaks

elseif phase:2
bragg3eakþeaknum) :x(z) ; Tobragg wavelength peaks

elseif phase::3
etalonjeakþeaknum) :x(z); %oetalon wavelength peaks

end;



peaknum:peaknum+l;
starFpoint2+60;
if phase:1 o/omoving threshold closer to the next peak

if length(gascelþeak)<limit
numjeaks:O;
if length(gascelþeak)<2

threshold:O.35;
starFstart*3550;

elseif (length(gascellie ak)>:2) &.(length(gascelþeak)<5 )
threshold:O.6;
t1¿¡¡:s¡¿¡t+700;

elseif (length(gascelþeak)>:5 )&(length(gascellieak)<6)
starFstart+3900;
threshold:O.6;

elseif (length(gascelljeak)>:6)&(length(gascellieak)<7)
starFstart+4375;
threshold:0.35;

else
t1¿¡çs1¿rt+300;
threshold:0.05;

end;
else

numjeaks:l;
end;

elseif phase::2
if length(bragg peak)<limit

num¡leaks:0;
else

numjeaks:l;
end;

elseif phase-3
if length(etalonjeak)<limit

num__peaks:0;
if length(etalo n¡reak) <:6

thresholdnhreshold+O.06;
elseif (length(etalon¡reak)>:7)&(length(etalon-peak)<:1 5)

threshold:O.7;
elseif length(etalon--peak):: 1 6

thhresold:O.9;
el seif (l en gth(etalon_p eak)>: l7 ) &.(length(etalonjeak) <=24)

threshold:O.7;
etseif (length(etalonieak)>:2 5 )&(length(etalon¡r eak)<:26)

51¿6:51¿rt+ 1000i
threshold:0.55;

elseif (length(etalon¡r eak)>:27 ) &,(length(etalonieak)<:29)
start:start+900;



threshold=hreshold-0. 1 ;

else
starFstart+670;
th¡eshold:0.12;

end;
else

numleaks:l;
end;

end;
end;

end;



o/oThis function finds the corresponding wavelengths to the gas cell and
o/oetalon peaks and determines the bragg wavelength using interpolation

function

[braggwavelenglhl,braggwavelenglh2,braggwithetalonl]:wavelength_calc_interpS(gasc
elþeak,brag g_peak, etalon3eak,wavelength)

gcpeakl:l536.1170; %known value of gas cell minima
gcpeak2:1536.7034;
gcpeak3:l537 .2997;
gcpeak4:l 537.9069;

gcp e aks: I gcp eak 1 ; gcp eal<2 ; gcp e ak3 ; gcp e ak4] ;

peaks:gascell_peak;

for n:l:8
z:peaks(n) 10.0625;
p1:z-40;
p2:z+40;
for r-pl:p2

if wavelength(r)::p eaks(n)
data__peaks(n):r;

end;
end;

end;

for n:l:2
z=br agg ateak(n)iO. 0 62 5 ;

p1:z-40;
p2:z+40;
for r:pl:p2

if wavelength(r)::brag gj eak(n)
b¡reaks(n):r;

end;
end;

end;

for n:l:33
z=etalonleak(n)/0.0625 ;

pl:z-40;
p2:z+401.
for r-pl:p2

if wavelength(r)::etal on3eak(n)
eta_peaks(n):r;



end;
end;

end;

waveperdivl :(gcpeak2-gcpeakl )/(data peaks(2)-datajeaks( 1 ));
waveperdiv2:(gcpeak3 - gcpeak2)l(data peaks(3 )-datajeaks(2)) ;

waveperdiv3 :(gcpeak4 - gcpeak3)l(data peaks(4)-datajeaks(3 )) ;
waveperdiv 4:(gcpeal2-gcpeak I )/(data peaks(8 )-datajeaks (7)) ;

waveperdiv5:(gcpeak3 - gcpeal2)l(datajeaks(7)-data peaks(6));
waveperdiv6:(gcpeak4-gcpeak3 )/(data peaks(6)-datajeaks(5));
waveperdiv:[waveperdivl;waveperdiv2;waveperdiv3;waveperdiv4;waveperdiv5;wavepe
rdiv6l;

gascelljeaks:peaks;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

o/oBtalon Simulation
o/oAssuming n varies with temperature
%Applying Schott Formula
format long;

%Nominal Temperature
t0:20 ; o/o degrees cel sius
temp:2};
deltatemp:temp-tO;

%Schott constants
d0:-4.93e-6;
d1:7.94e-9;
d2:-6.32e-ll;
e0:9.79e-7;
eI:14.7e-10;
lamdatk:0.296e-6;

%Assuming n varies with wavelength
%Applying Sellmeier dispersion formula

%S ellmeier Coeffrcients
bI:|.78922056;
b2:3.28427448e-l;
b3:2.0163944t;
c1:1.35163537e-2;
c2:6.22729599e-2;



c3:l .68014713e2;

oáWavelength Range
min:l536.1e-9;
max:1537.9e-9;

lamda:min:le-I2:max;

%Find n using Sellmeier Formula
t.t* 1 :(b 1 

* (lamda. * I e6) .^2). I ((lamda. * I e6). ^2 -c I ) ;
¡"rm't : (b2* (lamda. * I e 6) .^2) . / ((lamda. * I e 6) .^2 - c2) ;
term 3 :(b 3 * (l amda. * 1 e6) .^2) . I ((l amda. * I e6) .^2 - c3) ;
n:sqrt(term 1 *term2*term3 + 1 ) l

o/ofind dn/dT using Schott formula
termone:(n .^2 - l). / (2* n) ;
termtwo:(d0 * deltatemp)+(d I * delt atemp.^2)+(d2 * deltatemp. ^3 ) ;

termthree:((e0*deltatemp)+(el *deltatemp.^2)).1((latrtda*Ie9).^2-(lamdatk* le9)^2);

dnnermone. * (termtwo+termthree) ;

nrev:n*dn;
n:ffev;

%Finding I using raw data
peak I :gcpeak 

1 +(eta peaks(3)-data peaks( 1 ))*waveperdiv 1 ;

peak2: gcpeak 1 +(eta peaks(4) -data peaks( 1 )) 
* waveperdiv 1 ;

m_est:peak 1 /þeak2-peak I ) ;

m:round(m_est);
nl:m*pealAlZ;
lam:peak2* 1e-3;
term 1 

:(b 1 
* (lant)."2).l((lam). ^2-c 1 ) ;

t"r 2:(b2* (larcr).^2). I ((larn).^2-c2);
,.no3 :(b 3 * (larrr)."2) . I ((l am). ^2 -c3 ) ;

n_est:sqrt(term 1 *term2+term3 + I ) ;
l=nl/n_est* 1e-9;

%Solving for Etalon Transmission
%l:0.004937 7 7 61 825 4; o/ol:nU n @ I 5 5 0. Onm l:8.7 0 4025 e-3 I I .7 627 4 I 9 0 6 123 5 5

delta=(4*pi *n* l)./lamda;
r:((n- 1 ).^2)./((n+ 1 ).^2) ;

1=(( 1 -r). ^2) . I ((l -r) .^2+4 * r. * (0. 5 -0. 5 * co s (delta) )) ;
Vosig:1-¡'
Yot:sig;
t:t-}.7367;



%ofrgure
%plot(lamda* 1 e9, I 0*log I 0( 1 -t),'r');
%title('Simulated Etalon Spectrum using Sellmeier Dispersion Formula');
%xlabel('V/avelength (run)') ;

%ylabel('Intensity (dB)') ;

%iogrid on;
%iofrgare

%plot(lamda* 1 e9,(t),'r') ;

%axis([min* 1e9 max* le9 0 0.27]);
%ogrid
%title('simulated Etalon Spectrum using Sellmeier Dispersion Formula');
%xlabel('Wavelength (nm)') ;

%ylabel('Intensity') ;
o/ogrid on;
flag_1:0;
num_peaks:O;
flag?:O;
peaknum:l;
start:50;
%threshold=0.95;
threshold:0.262;
limit:13;
while numjeaks::0

count:start;
flag_1:0;
while flag_l :0

if t(count) > threshold;
pointl:count;
flag_l :1;

end
counFcount*l;

end;
count:countf5;
flag 2:0;

while flag]:O
if t(count)<threshold

point2:count;
flag2:l;

end;
counFcount*l;

end;

x:lamda(point 1 :point2);
y:t(pointl:point2);
p:polyfit(x,y,2);



Èpolyval(p,x);
[maxpol,z]:max(Ð;
eta_sim(peaknum):x(z) ;

peaknum:peaknum+l;
starFpoint2+20;

if length(eta_sim)<limit
numjeaks:0;

else
numjeaks:l;

end;
end;
eta_sim:eta_sim*1e9; Yoetalonpeaks from simulation equation

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
o/odetermining which etalon peaks are located between each set of gas cell peaks

bgloop:1;
for counF I : length(eta-peaks)

if (etajeaks(count)>datajeaks(bgloop))&(eta_peaks(count)<data¡reaks(bgloop+1))
index(count):count;

end;
end;
k: find(index);
Êk(1);
mainindx(bgloop):f;
clear index;
bgloop:2;
for counF 1 : length(etaieaks)

if (era peaks(count)>data_peaks(bgloop))&(etajeaks(count)<data¡reaks(bgloop+1))
index(count):count;

end;
end;
k: find(index);
rk(1);
mainindx(bgloop):f;'
clear index;
bgloop:3;
for counF 1 : length(etaieaks)

if (eø¡reaks(counQ>datajeaks(bgloop))&(eta¡reaks(count)<data¡reaks(bgloop+1))
index(count):count;

end;
end;
k: find(index);
Êk(1);
mainindx(bgloop):f;



clear index;
bgloop:4;
for counF 1 :length(eta3eaks)

if (eta3eaks(count)>data_peaks(bgloop))&(etajeaks(count)<datajeaks(bgloop+1))
index(count):count;

end;
end;
k: find(index);
Ëk(1);
mainindx(bgloop):f;
clear index;

o/ondx:I;

Yofor jx: 1 : length(mainindx)- I
% n:mainindx0x);
% m:mainindx(x+1)-1;
% for b:n:m
% epeak(b):gcpeaks(ndx)+(eta peaks(b)-datajeaks(ndx))*waveperdiv(ndx);
% end;
% ndx:ndx*l;
o/oend;

sim_etalonpeak:eta_s im;
meas_etalonpeak:eta_peaks(mainindx( I ) :mainindx(4)- I ) ;

%determining the Bragg wavelength using interpolation from the etalon

for dx: I : length(meas_etalonpeak)
if (bjeaks(l)>:meas_etalonpeak(dx))&(b¡reaks(1)<meas-etalonpeak(dx+i))

braggwithetalon 1 :sim-etalonpeak(dx)+(bieaks( I )-
meas_etalonpeak(dx)) * (sim-etalonpeak(dx+ I )-
sim_etalonpeak(dx))/(meas-etalonpeak(dx+ I )-meas-etalonpeak(dx)) ;

e¡d;
end;

%determining the Bragg wavelength using interpolation from the gas cell

if (bragg peak( 1 )>:gascell-peak( I ))&(braggieak( 1 )<gascelþeak(2))
braggwavelength 1 

:gcpeak 1 +(b--peaks( I )-data peaks( 1 )) 
* waveperdiv I ;

elseif(bragg¡reak(1)>:gascell--¡reak(2))&(bragg peak(1)<gascellieak(3))
braggwavelength 1 

:gcpeak2+(bjeaks( 1 )-data¡reaks(2)) 
* waveperdiv2 ;

elseif (bragg-peak( I )>=gascelþeak(3 ))&(bragg-peak( 1 )<gascelþeak(a))
braggwavelength 1 

:gcpeak3 +(b--peaks( I )-data¡reaks(3 )) 
*waveperdiv3 

;

end;;



if (bragg p eak(2)>: gascelþeak (D) e,þraggjeak(2)<gascelþeak(8)
braggwavelength2:gcpeak I +(data_peaks(8)-b¡reaks(2)) * wavepe rdív 4;

elseif (braggjeak(2)>:gascelljeak(6))&(bragg3eak(2)<gascelljeak(7))
braggwavelength2:gcpeak2+(datajeaks (7) -b_peaks(2)) * waveperdiv5 ;

elseif (braggjeak(2)>:gascelljeak(5))&(bragg peak(2)<gascelþeak(6))
braggwavelenglh2: gcpeak3 +(datajeaks(6) -bjeaks(2)) * waveperdiv6 ;

end;;



Y.This function calculates the strain corresponding to the bragg wavelength

function calcstrain:strain_calc(parameter_array,peak_wavelength,braggwavelength)

global strain;

format long;
channel_i nfoar aramete r _arr ay ;
column_number:l;

%óc alibr ation c o effi c i ents
baseline : channel info(2,column_number) ;

beta_nought: channel_info(4,column_number); %othermo-optic response of grating at
fabrication
GF : channel_info(5,column_number); o/ogaugefactor-0.5

lambda:peak_wavelength; o/obaseline

wavelength as defined by user
alpha_sub: channel info(9,column_number); %thermal expansion coefficient of
substrate
alpha_fiber: channel_info(l0,column_number); %thermal expansion coefficient of
fiber -0.55e-6 per degree K (fused silica)

ref temp: channel_info(6,column_number); o/orefercnce temp of sensor at
calibration
act temp: channel info(7,column_number); %oact:.nl temp at measurement

%ocalculatebeta
BETA: ( beta_nought + GF * abs(alpha_sub - alpha_fiber) ); Yoapparentthermal
strain

%oper degree celsius
%temperature shift
delt¿_T: (act temp - ref temp);

%owavelengfh shift
delta_lambda:brag gwavelength-l ambda;

Yostrain calculation
strain: ( l/GF)*( delta_lambda/lambda - BETA*delta_T ) 

* 
1 e6;

calcstrain:strain;



ToThis is the Main Peak Location Program which compares the various methods
Toused to find the Bragg peak

%Obtains signal from excel spreadsheet
clear all;
a:xlsread('C:\Documents and Settings\Evangeline\My Documents\ThesisVaser
data\S i gnals\brag g. xls') ;
signal:a(:,2);
signal:si gn al(419 : I 57 8) ;

5length(signal);
wavelength:l:y;
avg:sum(signal)ly;
signal:signal-avg;
si gnal:(si gnal)/max(s i gnal) ;

orig_signal:signal;

[min imin]:min(signal);
[max imax]:max(signal);
totals i g:abs(max-min) ;

rms si gnal:sqrt(sum(si gnal.^2) I y) ;
deviation:[0 0.0002 0.0004 0.0006 0.0008 0.001 0.002 0.004 0.006 0.008 0.01 0.02 0.03
0.0a 0.051;
Flengfh(deviation);
orig_signal:signal;

for count:l:t
stddev:deviation(count) ;

sumnoise:0;
if stddev-O

for i:1:y
noise:sqrt(stddev) * randn( 1 ) ;

new_signal(i):orig_signal(i)+noise;
sumno ise:sumnoise*(noise)^2 ;

end;
else

new_si gnal:ori g_si gnal ;
end;
if stddev-O

sumnoise:0;
end;
rmsnoise:sqrt((sumnoi se)/y) ;

rmsnoise2:sqrt(sum(new_s i gnal.^2) I y) ;

%signal=(signal)/max(signal);
minerror:4e6;
signal:new_signal;
format long;
figure,



subplot(3,2,1);
plot(wavelength,si gnal) ;

ylab el (Ttrorm alized Amplitude') ;

%xlabel('Data Point');
title(['Original Signal with Noise standard deviation ',num2str(stddev)]);

%Method I
%Threshold and Middle Value

peak 1 
:middlevalue(si gnal,wavelength) ;

VoMethod2
%Highest poinllowest Point

peak2:hi ghlow(si gnal,wavelength) ;

%Method 3

%oFitting a polynomial

[peak3,xvalues,ysi gnal,polysi gnal]:polynomial(si gnal,wavelength) ;

subplot(3,2,2);
plot(xvalues,ysi gnal,'o',xvalues,polysi gnal,'-') ;

ylab el(Norm alized Amplitude') ;

%xlabel('Data Point');
title('Polynomial Fit to Signal');

o/oMethod 4

%oTake the Derivative and find the Zero Crossing

[peak4,fi ltersi g,derivsig,xderiv]:derivative(signal,wavelength) ;

subplot(3,2,3);
plot(wavelength,fi ltersig) ;

ylabel(btrorm alized Amplitude') ;

%xlabel('Data Point') ;

title('Filtered Signal');
subplot(3,2,4);
plot(xderiv,derivsig) ;

ylab el ('Norm alized Ampl itude') ;

%xlabel('Data Point') ;

title('Derivative of Filtered Signal');

%Method 5

%Fitting a Lorentzian Curve

þeak5,lorentz,newsig,xrange]=lorentziær(signal,wavelength,minerror,y);
subplot(3,2,5);
plot(xrange,lorentz,'r',xrange,newsig) ;

ylabel('Norm alized Amplitude') ;

xlabel('Data Point');
title('Lorentzian F it to Signal');



%Method 6
o/oFitting a Gaussian Curve

[peak6,gauss,newsignal,xaxis]:gaussian(signal,wavelenglh,minerror,y);
subplot(3,2,6)
plot(xaxis,gauss,'r',xaxis,newsignal) ;

ylab el (Ttr orm alize d Amp I itude') ;

xlabel('Data Point');
title('Gaussian Fít to Signal');

%Peaks from Different Methods
peak(count,:):[peakl peal2 peak3 peak4 peak5 peak6];

ideal:peak(1,6);
difference(count, : ):abs(peak(count, : )-ideal) ;

ToNoise to Signal Ratio
noisesig(count, : ):rmsnoise/rmssignal ;

lo gofnoisesig(count, : ):lo g(rmsnoi se/rmssignal) ;

noisedev(count, : ):stddev;
noisetosigratio(count, : ):rmsnoise/totalsi g;

lo gofnto sratio (count, : ):lo g(rmsnoise/totalsi g) ;

end;

%oNoise to Signal Ratio
noise:ones(1,3);
noise(:,1):noisedev;
noise(:,2)=noisetosigratio ;

noise( :, 3 ):lo gofnto sratio ;

rmsnoise:ones(t,2);
rmsnoise(:, I ):noisesig;
rmsno ise( :,2):lo gofnoi ses ig ;

Yodata

data:zeros (t,17);
data(:,1:3):noise;
format;
data(:,5:10):peak;
data(:,12 : 1 7 ):di fference ;

%write to temporary file temp.out in C:\MatlabRl2\work
dlmwrite ('temp. out', data,',' ),



ToThis function takes the 3dB threshold crossings and assigns the middle value as
o/othe peak location

function peak:middlevalue(signal,wavelength)

threshold: 0 .7 07 9 * max(signal) ; %3 db threshold
i:1;
while signal(i)<threshold

i:i+l;
end;
pointl:signal(i);
[maxsig n]:max(signal) ;

j:n;
while signal(i)>threshold

j:j+1;
end;
point2:signalO;
k:i+j;
if mod(k,2):O

n:W2;
else

n:(k-I)12;
end;
peak:wavelength(n);



ToThis function takes the point whene the highest value occurs and assigns that as
o/"the peak location

function pealshi ghlow(si gnal,wavelen gf h)

x:max(signal);
for i:1 :length(signal)

if signal(i)::x;
peak:wavelength(i);

end;
end;



7"This function fits a second order polynomial signal to the raw data and assigns
%othe point where the maximum value of the polynomial occurs as the peak location

function þeak,x,y,fl :polynomial(signal,wavelength)

threshold:0.4 * max(signal) ;

i:l ;

while si gnal(i)<threshold
i:i+1;

end;
pointl:signal(i);
[maxsig n]:max(signal);
j:n;
while signalO>threshold

j:j+1;
end;
point2:signalfi);

x:wavelength(i j);
psignal(ij);
p:polyfrt(x,y',3)i
Èpolyvalþ,x);
%ofigure
Yoplot(x,y,' o',x, f,' -') ;

[maxpol,z]:max(f);
peak:x(z);



ToThis function take the fÏrst derivative of the signal and assigns the zero crossing
V"point as the peak location

function þeak,filtsig,sy,x]:derivative(signal,wavelength)

[thresh tmax] :max(signal) 
;

threshold:O. 8 *thresh;

%ioftgrre
o/oplot(w ave len gth, s i gn al ) ;

[b,s]:butter(2,0.1); %o2nd order filter with wn:0.1
w:filter(b,s,si gnal) ;

filtsig=w;

%iofigure

%p lot(wavelen gth, fi lts i g ) ;

n:length(filtsig);
--1 .
L-lt

for j:1:n-l;
deriv2fi ):(filtsig(f + I )-fi ltsig(j ))/(wavelength( + I )-wavelengthfi )) ;

z:zlI;
end;
k:length(deriv2);

x : 1:k; %o for discrete plots
fineness: l/100;
ftnex : 1:fineness:k; %o for continuous plots

%omake and plot random data
y: deriv2;
o/o paratneters for Gaussian kernel
FWHM:10;
sig : FWHI\{/sqrt(8 * log(2));
%o do the smooth
sy: zeros(size(y));
for xi: x
kemy_i : ( 1 /(sqrt(2 * pi) * si g)) * exp((x-xi) .^2 I (2* sig^2)) ;

%keny1: kerny_i / sum(kerny_i);
sy(xi) : sum(y.*kerny_i);

end

%oplot of data
Yofrgure
%plot(x,sy);



%hold on;
% q:( 1 /( s qrt(2 * pi) * s i g)) * exp (- (x). ^2 I (2* si g^2)) ;

%w:conv(y,q); oáuse convolution command
%plot(x,w( 1 : length(sy)),'r') ;

% [b,a]:butter( 1,0. 8) ;

%sSfilter(b,qsy);

o/o plot of smoothed data
o/oftgure

%plot(x,sy);
deriv2:sy;

%[m i]:max(deriv);
%q:length(deriv);
Yoderiv2: deriv(i+ i : q) ;

[min imin]:min(deriv2);
[max imax]:max(deriv2) ;

o:1 'b .,

h:l;
zerofound:O;
if imaxcimin

for i:imax:imin;
if (deriv2(i)>0)&(deriv2(i+ 1 )<0)

zerofound:zero found+ I ;
peak(g):wavelength(i+ i );
o:o]-l'b b ^t

elseif (deriv2(i)<0)&(deriv2(i+ 1 )>0)
zero found:zerofound+ 1 ;

valley(h):wavelength(i+ 1 ) ;

h:h+l;
end;

end;
elseif imax>imin

while imax>imin
deriv2(imax):0;
[max imax]:max(deriv2);

end;
for i=imin:imax;

if (deriv2(i)>0)&(deriv2(i+ 1 )<0)
zerofound:zero found+ I ;
peak(g):wavelength(i+ I );
o:o-f'l'bÞ"

elseif (deriv2(i)<0) &(deriv2(i+ I )>0)



zerofound:zerofound+ 1 ;

valley(h):wavelength(i+ 1 ) ;

h:h+l;
end;

end;
end;

if g>1
peak:peak(g-1);

elseif g:l
peak:peak(l);

end;



ToThis function fits a Lorentzian curre to the raw data and assigns the maximum
%"valrue of the curve as the peak location

function [minmu,fmin,signalmin,xrange]:lorentzian(signal,wavelength,minerror,y)

threshold:0. 5 * max(signal) ;

i:l ;

while signal(i)<threshold
i:i+1;

end;
pointl:signal(i);
[maxsig n]:max(signal);
j:n;
while signal( )>threshold

j:j+1;
end;
point2:signalO;

for mu:wavelength(i) :wavelength( )
xmin:mu-(y/2);
xmax:mu*(yl2)-l;
if xmincl

xmin:l;
end;
if xmax>y

xmax:y;
end;
sigmamin:l;
sigmamax:150;
counFl;
for sigma:sigmamin: 1 : si gmamax

x:xmin:xmax;
signalnew:si gnal(xmin : xmax) ;

È( 1 /pi). * ( sigma/ 2) . 1 ((x -mu). ^2+ (si gma/ 2) 2)) ;

maxFmax(f);
Èflmaxf;
È{ì.r I:

error:O;
for k:l:length(Ð

error:error+(s i gnalnew(k) -f(k)). ^2 ;

end;
lse(count):eno r/length(f) ;

counFcount*l;
end;
sigma=sigmamin: 1 : sigmamax;

[minlse z]:min(lse);



if minlse<minerror
minerrorminlse;
minsigsigma(z);
minmu=nu;
minx:minmu-(yl2);
maxx=ninmu+(y/2)-l;
if minx<1

minx:l;
end;
if maxx>y

maxx:y;
end;
xrange:minx:maxx;
signalmin:si gnal(minx : maxx) ;
fmin:( 1 /pi). * ((minsig I 2). I ((xrange-minmu). ^2+(minsig/2)"2)) ;

maxÈmax(fmin);
fmin:fmin/maxf;
fmin:fmin';

end;
end;

Yofrgure,
%plot(xrange,fmin,'r',xrange,signalmin) ;



ToThis function fits a Gaussian curve to the raw data and assigns the maximum
Tovalue of the curve as the peak location

function [minmu,fmin,signalmin,xrange]:gaussian(signal,wavelength,minerror,y)

thresho ld:O. 4 * max(si gnal) ;
:-1 .r-lr
while signal(i)<threshold

i:i+1;
end;
pointl:signal(i);
[maxsig n]:max(signal);
j:n;
while signalO>threshold

j:j+1;
end;
point2:signalO;

for mu:wavelength(i) : wavelength( )
xmin:mu-(y/2);
xmax:mui(yl2)-l;
if xmin<1

xmin:l;
end;
if xmax>y

xmax:y;
end;
sigmamin=l;
sigmamax:70;
count:l;
for sigma=sigmamin: 1 : sigmamax

x=rmin:xmax;
si gnalnew:si gnal(xmin : xmax) ;

È( 1 /(sigma* sqrt(2*pi))). * exp((- 1 + (¡-mu).^2).1 (2* sigm{z));
maxFmax(f);
Fflmaxf;
c-â.
l-l r

error:0;
for k:1:length(f)

enor:erroÉ(signalnew(k) -f(k)). ^2 ;
end;
lse(count):enor/l ength(f) ;
counFcount*l;

end;
sigma:sigmamin: I : si gmamax;

[minlse z]:min(lse);



if minlse<minerror
minerror:minlse;
minsig:sigma(z);
minmu:mu;
minx=ninmu-(yl2);
maxx:minmu+(yl2)_l;
if minx<1

minx:l;
end;
if maxx>y

maxx:y;
end;
xrange=minx:maxx;
signalmin:si gnal(minx :maxx) ;

fmin:(1/(minsig*sqrt(2*pi))).*exp((-1*(xrange-minmu) .^2).1(2*minsig^2));
maxÈmax(fmin);
fmin:fmin/maxf;
fmin:fmin';

end;
end;

Vofrgure,
%plot(xrange,fmin,'r',xrange,signalmin) ;

%ylabel('Normalized Amplitude') ;

%xlabel('Data Point');
%title('Gaussian Fit to Signal');



ToThis is a similar Main Peak Location Program, but it employs sub-sampling
Totechniques

%Obtains signal from excel spreadsheet
clear all;
a:xlsread('C:\Documents and Settings\EvangelineMy Documents\Thesis\laser
data\S i gnals\brag g. xl s') ;

signal:a(;,2);
si gnal:sign al(41 9 :I 57 8) ;

plength(signal);
wavelength:1:y;
avg:sum(signal)ly;
signal:signal-avg:.
signal:(si gnal)/max(si gnal) ;

orig_signal:signal;
[min imin]:min(signal);
[max imax]:max(signal);
totalsig:abs(max-min) ;

rms s i gnal :s qrt(s um( s i gnaL^2) / y) ;

deviation:lO 0.0002 0.0004 0.0006 0.0008 0.001 0.002 0.004 0.006 0.008 0.01 0.02 0.03

0.04 0.051;

t:length(deviation);
orig_signal:signal;
ori g_wavelength:wavelength;

for counFl:t
stddev:deviation(count) ;

sumnoise:O;
if stddev-:0

for i:l:y
noise:sqrt(stddev) * randn( I ) ;

new_si gnal (i):orig_si gnal(i)+noise ;

sumnoise:sumnoise*(noi se)^2 ;

end;
else

new_signal:ori g_si gnal ;
end;
if stddev:O

sumnoise:O;
end;
rmsnoi se:sqrt((sumno i se)/y) ;
o/osi gnal:(si gnal)/max(si gnal) ;
minerror:4e6;
signal:new_signal;
format long;
figure,



subplot(3,2,1);
plot(wavelength,si gnal) ;
ylabel('Norm alized Amplitude') ;

%xlabel('Data Point') ;
title(['Original Signal with Noise standard deviation ',num2str(stddev)]);

signal:new_signal;
wi: I : 0.0625 :length(signal);
si:interp I (orig-wavelength,signal,wi) ;

signal:si;
wavelength:wi;

%Method 1

%Threshold and Middle Value
peak 1 

:middlevalue(si gnal,wavelength) ;

%oMethod2
%Highest point/Lowest Point

peak2=hi ghlow(si grral,wavelength) ;

%Method 3
o/oF itting a p o lynomi al

[peak3,xvalues,ysignal,polysi gnal] :polynomial2(signal,wavelength) ;

subplot(3,2,2);
plot(xvalues,ysi gnal,'o',xvalues,polysi gnal,'-') ;

ylab el (Norm alized Amplitude') ;

%xlabel('Data Point') ;
title('Polynomial Fit to Signal');

%Method 4
YoTakethe Derivative and find the Zero Crossing

[peak4, filtersi g,derivsi g,xderiv] :derivative(si gnal,wavelength) ;

subplot(3,2,3);
plot(wavelength,filters i g) ;

ylabel ('Norm alized Amplitude') ;

%xlabel('Data Point') ;

title('Filtered Signal');
subplot(3,2,4);
plot(xderiv,derivsig) ;

ylabel(ïtrorm alized Amp litude') ;

%xlabel('Data Point');
title('Derivative of Filtered Signal');

%Method 5
%oF itting a Lor entzian Curve



þeak5,lorentz,newsig,xrange]=lorentzian(signal,wavelength,minerror,y);
subplot(3,2,5);
plot(xrange, lorentz,'r',xrange,newsi g) ;

ylab el(blorm alized Amplitude') ;
xlabel('Data Point');
title('Lorent zian F it to S i gnal') ;

%Method 6
%oF itting a Gaussian Curve

þeak6,gauss,newsignal,xaxis]:gaussian(signal,wavelength,minerror,y);
subplot(3,2,6)
plot(xaxis, gauss,'r',xaxis,newsignal) ;

ylab e I (Ttrorm alized Amp I itude') ;

xlabel('Data Point');
title('Gaussian Fit to Signal');

%Peaks from Different Methods
peak(count,:):[peakl peal2 peak3 peak4 peak5 peak6];

ideal:peak( 1 ,6);
difference(count, : ):abs(peak(count, :)-ideal) ;

%Noise to Signal Ratio
noisesig(count, : ):rmsnoise/rmssignal ;

lo gofnoisesig(count, : ):lo g(rmsnoise/rmssignal) ;

noisedev(count, : ):stddev ;

noisetosigratio(count, : ):rmsnoise/totalsig;
logofntosratio(count, : ):lo g(rmsnoise/totalsig) ;

end;

%oNoise to Signal Ratio
noise:ones(t,3);
noise(:,1)=noisedev;
noise( :,2):noisetosigratio ;

noise( :,3 ):lo gofntosratio ;

rmsnoise:ones(t,3);
rmsnoise(:, 1 ):noisesig;
rmsno i se( :,2):lo go fno ise s i g;

rmsnoi se( :,3 ):rmsno i s e ;

o/odata

data:zeros(t,21);
data(:,1 :3):noise;
data(:,5 :7 ):nms no i s e ;

format;
data(:,9:I4):peak;



data(:,1 6 :2 I ):di fferenc e ;

%owrite to temporary file temp.out in C:\[4atlabRl2\work
dlmwrite('temp. out',data,',') ;



ToThis program obtains the etalon, gas cell and Bragg signals using an oscilloscope
%oand determines the Bragg peak wavelength in reference to the gas cell and etalon

clear all;
a:xlsread('C:\Documents and Settings\Evangeline\My Documents\Thesis\laser
data\S i gnals\bragg. xls') ;

bragg:a(:,2);
bragp-brag g(4 | 9 : I 5 7 8) ;

5length(bragg);
lengths(1):y;
datapointb:1:y;
avg:sum(brugg)ly;
braggbragg-avg;
brag g:(brag g)/max(brag g) ;

[min imin]:min(bragg);
[max imax] :max(bragg) 

;

totalsi gabs(max-min) ;
rmsbrag gsqrt(sum(b r agg.^2) I y) ;

b:xlsread('C:\Documents and Settings\Evangeline\My Documents\Thesis\laser
data\Signals\etalon.xls') ;

etalon:b(:,2);
etalon:etal on(248 :I7 5 $ ;

y:length(etalon);
lengths(2):y;
datapointe:1:y;
avg:sum(etalon)/y;
etalon:etalon-avg;
maxetalon:etalon(1);
for i:l :length(etalon)

if etalon(i)>maxetalon
maxetalon:etalon(i);

end;
end;
etalon:(etalon)/maxetalon;

[min imin]:min(etalon);
[max imax]:max(etalon);
totals ig:abs(max-min) ;

rms etalo n: s qrt( s um(e talon.^2) I y) ;

a:xlsread('C:\Documents and Settings\Evangeline\My Documents\Thesis\laser
data\S i gnal s\gascel l. xl s') ;

gascell:a(:,2);
gascell:gas cell(2 I 6 : 1 7 3 4) ;



5length(gascell);
lengths(3):y;
datapointg:l:y;
avg:sum(gascell)/y;
gascell:gascell-avg;
maxgascell:gascell( I );
for i:1 :length(gascell)

if gascell(i)>maxgascell
maxgascell:gascell(i) ;

end;
end;
gascell:( gascell)/maxgascel I ;

[min imin]=nin(gascell);
[max imax]:max(gascell);
total sigabs(max-min) ;

rmsgascell:sqrt(sum(gascell. "2)/y) ;

[max_length,m] :max (lengths) ;

for p=l:m
if P-:*

t:1 :lengthsþ)/max length:lengthsþ)+lengths(p)/max_length;
q:length(t);
%5ones(p,q);
vþ,1:q):t;

else

t: I : lengthsþ)/max_length : lengths(p) ;

q:length(t);
%5ones(p,q);
yþ,1:q):t;

end;
end;

newbragg:interp 1 (datapointb,bragg,y( 1, :)) ;

newetalon:interp 1 (datapointe,etalon,y(2, :)) ;

newgascell:interp 1 (datapointg, gascell,y(3, : )) ;

datapoint= I :max-length;

figure
plot(datapoint,newbragg','b',datapoint,newetalon','r',datapoint,newgascell','g');
axis([0 max_length -a.0 1]);
grid on;
xlabel('Data Point');
ylab el(Ttrorm alized Amp I itude') ;

title('Etalon, Gas Cell and Bragg Signals');



braggnewbragg';
etalon:newetalon';
gascell:newgascell';

[data,waveperdiv] :peakdetection2(bragg,etalon, gascell,datapoint) ;

gascelljoints:data( 1 : 3, 1 );
gas c el þ eak s: data(1. :3,2) ;
etalonjoints:data( :,3 );
etalon¡leaks:data(:,4);
braggjoinFdata(1,5);
bragg peak:data(|,6);



TrThis function is the main peak location program which uses polynomial curve

"/ofittingto find the peak positions and uses interpolation from the etalon and gas

%ocellto find the Bragg wavelength

function [data,waveperdiv]:peakdetection2(btagg,etalon,gascell,datapoint)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
o/oGascellPeakDetectiono/o%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

flag:o;
lindex:l;
starFl;
loopindex:l;
gas:-1 *gascell;

maxgas:gas(1);
for i:start : length(gas)

if gas(i)>maxgas
maxgas:gas(i);

end;
end;
threshold:0.4 * maxgas ;

while loopindex-:O

i:startl-Z;
if flag-O

while (gas(i)<threshold)&(i-lenglh(datapoint))&(gas(i-
1 )<threshold)&(gas(i+ 1 )<threshold)

i:i+l;
end;

else

i:i+3;
while (gas(i)<threshold)&(i-:length(datapoint))&(gas(i-

1 )<threshold)&(gas(i+ 1 )<threshold)
i:i+l;

end;
end;

pointl:gas(i);
%[maxsig n]:max(gas);
j:i+2;
if j <length(datapoint)

while (gasO>threshold)&(gasfi - 1 )>threshold)&(gas(+ I )>threshold)
j:j+1;

end;



r-j;
if (gas(w+ 1 )<threshold)&(gas(w+2)>threshold)&(gas(w+3 )<threshold)

flag:l;
else

flag:o;
end;

point2:gas(j);
stop:j;
x:datapoint(i j);
5gas(ij);
p polyfit(x,y',2)i
tspolyval(p,x);
[maxpol,z]:max(f);
peak:x(z);

gascell¡leaks(loopindex, : ):Peak;
oáxvalues(loopindex, 

: ):x;
%ysi gnal(loopindex, :):y' ;

%polysignal(loopindex, : ):f;

o/ofrgare

%oplot(x,y,' o', X, f, ' -') l
starFstop;

end;

if j >:len gth(datapo int)
start:len glh(datapo int) ;

end;

if starÞ:length(datapoint)
loopindex:0;

else

loopindex:loopindex+ 1 ;

end;

end;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
o/oBtalonPeakDetectionYoYo%oYo%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

start:l;
loopindex:1;
peakindex:l;
maxetalon:etalon(1);



for i: 1 :length(etalon)
if etalon(i)>maxetalon

maxetalon:etalon(i);
end;

end;
%threshold:0. 3 5 + maxetalon;
%threshold:median(etalon) ;

threshold:0;
while loopindex-:O

i:start;
while (etaton(i)<threshold)&(i:length(datapoint))&(etalon(i+1)<threshold)

i:i+1;
end;
w:i;
if w+ 1 0>:length(datapoint)

lasFlength(datap o int) -2 ;

else

lasFw+10;
end;
new_i:last;
for t:last:-1:w

if (etalon(t)>threshold)&(etalon(t+2)>threshold)&(etalon(t+1)>threshold)
new_i:t;

end;
end;
if new_i-last

new_i:last;
end;

i:new_i;
pointl:etalon(i);

j:i+2;
if j <:length(datapo int)

while 0-length(datapoint))&(etalon(f )>threshold)&(etalonfi -

1 )>threshold)&(etalonfi + 1 )>threshold)
j:j+1;

end;

Fj;
point2:etalonO;

if w+ I 0>:length(datapoint)
last:length(datap oint) ;
stop=last;

else



lasFw+10;
for Fw:last

if etalon(t) <threshold
newj+;

end;
end;
stop:newj;

end;

x=datapoint(ij);
5etalon(ij);

if length(x)>5
p=polyfit(x,y',2);
Fpolyval(p,x);
[maxpol,z]:max(f);
peak:x(z);
etalon¡leaks(peakindex, : ):Peak;
peakindex:Peakindex+ I ;
Vofrgne
%oplot(x,y,'o',x,f,'-'),

end;

start:stop;
end;

if j >:len gth(datapoint)
starFlength(datapo int) ;

end;

if starÞ:length(datapo int)
loopindex:0;

else

loopindex:loopindex+ I ;
end;

end;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
o/oBr agg Peak D etec tion%oYoyoYo%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

maxbraggbragg(1);
for i:1:length(bragg)



if bragg(i)>maxbragg
maxbraggbragg(i);

end;
end;
thre sho I d: 0 . 4* maxbr agg;
i:l;
while bragg(i)<threshold

i:i+l;
end;
pointl:bragg(i);
[maxsig n]:max(bragg) ;

j:tr;
while braggO>threshold

j:j+1;
end;
point2:bragg(i);

x:datapoint(i j);
pbragg(ij);
p:polyfit(x,y',2);
Èpolyvalþ,x);
[maxpol,z]:max(Ð;
braggjeak:x(z);
o/ofrgure

%oplot(x,y,' o', x, f,' -' ) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%oP eak As si gnment %%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

o/olase'r swept from 1535 to 1537nm

%;ofromthe gas cell data sheet, absorption lines occur at 1535.5401, 1536.1170,

t536.7034
o/owavelen gth s p er data p o i nF Zwnl lengfh(datap o int)
format long;
theoretical(l ):1 53 5e-9;
for i:2:y

theoretical(i)+heoretical(i- I )+(2e-9llength(datapoint)) ;

end;
theoretical:theoretical * 

1 e9 ;

Vow av ep er div: (2 /l en gth ( datap o int) ) ;

gaspeak 1 
:gascell_peaks( 1 ) ;

gaspeak2:gascell3eaks (2) ;



gaspeak3 :gascell¡leaks(3 ) ;

gcpeakl:1535.5401;
gcpeal2:1536.1170;
gcpeak3:l 536.7034;

gcpeaks:[gcpeakl ; gcpeak2 ; 
gcpeak3 ] ;

waveperdiv l:(gcpeaïA- gcpeak 1 )/(gascelþeaks(2)-gascelþeaks( 1 )) ;

waveþerdiv2:(gcpeak3 - gcpeakZ)/(gascelþeaks(3 )- gascelþeaks(2)) ;

waveperdiv:[waveperdiv 1 ;waveperdiv2];

pindex:l;
for z:l: length(etalon¡leaks)

if (edonJò"f.t1r¡t:gaspeak i )&(etalon¡reaks(z)<gaspeak2)
àtuprutqpinaexj:gcpeak I +((etalon-peaks(z)- gaspeak 1 ) 

* waveperdiv 1 ) ;

newepeak(pindex):etalonleaks(z) ;

pindex:Pindex+l;
etseif ietatôn-peaks(z)>:gaspeak2)&(etalon--peaks(z)<gaspeak3 )

etap ear.6 iø"*;: góp.ukzi(çetalon_peaks(z) - gaspeak2) * waveperdiv2) ;

newepeakþindex):etalon-peaks(z) ;

pindex:Pindex+l;
end;

end;

brag gpeak:brag g-Peak;

for z: l: length(etaPeak) - 1

if (braggleùtn"*"p"ak(z))&(braggpeak<newepeak(z+ I ))
ìf @nææ"ak>gaspeak 1 )&(braggpeak<gaspeak2)

ùp.ut:.tup"uf.ir;+11Urag gpeak-newepeak(z)) * waveperdiv 1 ) ;

else

bpeak:etapeak(z)+((brag gp eak-newepeak(z)) * wavepe t dív2) ;

end;
end;

end;

data:ones(lengfh(neweP eaþ, 6) ;

data( I : length(gascelþeaks), 1 )=gascelþeaks;
data( I : length(gcpeaks),2):gcpeaks ;

data( 1 : length(newepeak),3 )=newepeak' ;

data( 1 :tength(etapeak),4):etapeak' ;

data(1,5):braggPeak;
data(1,6):bpeak;

dlmwrite('temP. out',data) ;



yoThis program simulates the etalon transmission lines with varying constants of

"/orefractive index and temperature

o/oAssuming constant n and T

%Finding Etalon Constants

n:\.76;
r((n- 1 )^2)/((n+ 1)^2);
nt:8.70782\e-3; %oassumed refl:O @ 1550.4nm by observation of data plot provided by

supplier

o/oWavelength Range

xmin:1549e-9;
xmax:l551e-9;
lambda:xmin: 1e- 1 2:xmax;

%Solving for Etalon Transmission
delta:(4*pi*nl)./lambda;
1:( 1 -r)^2) . I ((l -r)^2+ 4* r * (0. 5 -0' 5 * co s (delta))) ;

figure
plot(lambda* 1 e9, 1 0*log1 0(1 -t),'r');

title('Simulated Etalon Spectrum');

xlabel('Wavelength (.un)') ;

ylabel('Intensity (dB)') ;

%axis([xmin* 1 e9 xmax* 1 e9 -30 -5]);

grid on;
figure
plot(lambda* I e9,( 1 -t),'r') ;

axis([xmin*1e9 xmax*1e9 0 0.3]);

title('Simulated Etalon Spectrum') ;

xlabel('Wavelength (run)') ;

ylabel('Intensity');
grid on;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

oóAssuming n varies with wavelength

%Applying Sellmeier dispersion formula

o/on=7.76;

o¿t:1(n- 
1 )^2) I ((n+ l) 2);

o/o 
S ellmeier Co effi ci ents



bt:l.78922056;
b2:3.28427448e-l;
b3:2.0t639441;
c1:1.35163 537e-2;
c2:6.22729599e-2;
c3:1.68014713e2;

o/oWavelength Range
min:t549e-9;
max:1551e-9;
lamda=min:le-LZ:max;

%Find n using Sellmeier Formula
term I :(b I * (lamda. * I e6) .^2). I ((lamda. * 1 e6 ). ^2-c 1 ) ;

t"t*,2:(b2*(lamda.*te6)."2).1((lamda.*le6).^2-c2);
,.tttr3:(b3 * (lamda. * | e6)."2).1 ((lamda. * 

1 e6).^2-c3 ) ;

n:sqrt(term 1 *term2+term3 + 1 ) ;

%Solving for Etalon Transmission
l:0. 00493 9 9 49 67 7 24; %ol:nll n @ | 5 5 0 .4nrn l:8.7 07 821 e-3 I L7 627 3 47 58233 12

delta:(4*pi*n* l)./lamda;
r:((n- 1 ).^2)./((n+ 1 ).^2) ;

F(( 1 -r). ^2) . I ((l -r) .^2+4 * r. * (0. 5 - 0. 5 * co s (delta))) ;

figure
plot(lamda* 1 e9, I 0*1og 1 0(1 -t),'r');
title(simulated Etalon Spectrum using Sellmeier Dispersion Formula');

xlabel('Wavelength (run)') ;

ylabel('Intensity (dB)');
grid on;
frgure
plot(lamda* 1 e9,( 1 -t),'r');
axis([min*1e9 max* 1e9 0 0.3]);
title('Simulated Etalon Spectrum using Sellmeier Dispersion Formula');

xlabel('Wavelength (run)');
ylabel('Intensity');
grid on;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Assuming n varies with temperature

%Applying Schott Formula
format long;



%Schott constants
d0:-5.26e-6;
dI:7.4Le-9;
d2:-1.89e-11;
e0:1.02e-9;
eI:|.62e-9;
lamdatk:O.288e-6;

%Sellmeier constants
bt:t.78922056;
b2:3.28427448e-I;
b3:2.01639441;
c1:1.35163537e-2;
c2:6.22729599e-2;
c3:1 .68014713e2;

o/oWavelength range
min:1549e-9;
max:l551e-9;

%oNominal Temperature
t0:25 ; o/ode grees cel sius

o/oTemperature range
mint:-4O;
maxt:80;
delt--40;
iter:(abs(mint)+abs(maxt))/delt + 1 ;

lamda:min:1e-12:max;

%olnitializing transmi s si o n array
t:ones(length(lamda),iter) ;

o/olrutializing temp erature
temp:mint;

%Main loop
for i:l:iter

deltatemp:temp-t0;

%ofind n @ t0:25 celsius with varying wavelength using sellmeier formula
term 1 

:(b I * (lamda. * I e6).^2). I ((lamda. * I e6). ^2-c 1 ) ;

term}: (b2* ( I am d a. * I e6) ."2) . I ((l amda. * I e6) . ^2 - c2) ;

,.r* 3 :(b 3 * (lamda. * I e6) ."2). I ((lamda. * | e6).^2 - c3) ;
n:sqrt(term 1 +term2+term3 + 1 ) ;



o/ofinddr/dT using Schott formula
termone:(n .^2 - l). I (2* n) ;

termtwo:(dO* deltatemp)+(d 1 
+ deltatemp.^2)+(d2*deltatemp."3);

termthree:((e0*deltatemp)+(e1*deltatemp.^2))./((lamda*le9).^2-(lamdatk* le9) 2);

dn:termone. * (termtwo+termthree) ;

o/oftndnew n
nrev:n*dn;
n:nrev;

o/ocalculate etal on tran s mi s s i o n

Vol:4.947626e-3;
l=0.00493994967724;
delta=(4*pi *n* l)./lamda;
r:((n- 1 ).^2)./((n+ 1 ).^2) ;

t(:,i):((( 1 -r).^2)./(( I -r).^2+4*r. * (0. 5-0. 5 * cos(delta))))' ;

Yoiterate temperature
temp:temp+delt;

end;Yomain for loop

Yolnitializing Plot S ettings
%set(gcf,'DefaultAxesColorOrder',[1 0 0;0 1 0;0 0 1;1 1 0;0 0

0],'DefaultAxesLineStyleOrder',' - 
| 
--l :') ;

figure
plot(lamda* 1 e9, 1 0* log 1 0( 1 -t));
title('Simulated Etalon Spectrum') ;

xlabel('Wavelength (nrn)') ;

ylabel('lntensity (dB)');
grid on;

figure
plot(lamda* I e9,(1 -t));
title('Simulated Etalon Spectrum') ;

xlabel('V/avelength (n*)') ;

ylabel('Intensity');
grid on;



APPE¡{DIX B

ETALON SIMULATIOI..{ EQUATIONS



Etalon Simulation

ReflectivitY= R = (n-1)1" (ilî'z
Trans=T= (1-R)2 Refl=1-Trans sin21x¡= 1-cos(2x)

2
õ= 4nnl

À(1-R)'+ 4Rsin'(õ/2)

Refl=1 @ T=0
Refl=O @T=1

Using etalon signal in manual: max reflection @ 1550.0nm
min reflection @ 1549.862nm

Assuming nominal comb spacing = 138pm, À'=1550'0nm Àn.-t=1549'862nm
À¡¡+1=1550' 138nm

For Refl=O
(1-R)'+ 4Rsin'(õ/2)

(1-R)'ì ¿nr¡n'(olz¡ = it-n¡'z
4Rsin21õ/2¡ = 6

sin21ö/2¡ = g

1-cos(ö) = 0
2

cos(ö) = 1

cos(4nnl/À) ='l
4nnl = 2mn

À

nl =mÀ
2

m=0,1 ,2,.....

nl= length of cavity

nl = mÀ = (m-1X1549.86212) = m(1550.0i2) = (m+1X1550.138/2)
2

Using (m-1 X1 549.86212) = m(1 550.0/2)
m = 11230.884058

m = 11231
nl = (mÀ)/2 = (11231*1550.0)/2 = 8104025 mm

Assuming constant n and temP

nl = 8.704025mm
n = 1.76

(1-R)' (1-R)'



Assuminq n varies with wavelenqth

n varies using Sellmeier dispersion formula

n21,lt¡ -t = BrÀ2 + Bzhz + BsÀ'

r:ci T=e; ¡2 _f,;

n=lJÀ'z:e; -¡z-= -Ãz:G

Using data sheet: Br = 1 -78922056
Bz= 3.28427448 x 10-1

Bs = 2.01639441
Cr = 1.35163537 x10-2
Cz= 6.22729599 x 10-2

Cs=t.68014713x102

using sellmeier equation, n @ 1550.Onm = 1.76274190612355

Therefore, l= nl/n = 8.70a025 x 10-1 = 0.00493777618254
1.76274190612355

' find n using Sellmeier equation

. find 3 = (n_1)2t (n+l¡z

. T = (1-R)2

@



Assuminq n varies with wavelength and temperature

' find rì1q using Sellmeier formula

' find Ân using Schott formula

an(À,T) = nro?-1 (DgAT + D1aT2 + DzaT3 - eo^*i$d
Znro

From data sheet: 
3: = Í;iJ.1|%'
Dz= -6'32x 10-11

Eo = 9'79 x 10-7

Et=14'7x10-10
Àrt = 0'296 x 10-6

newn=nTo+^n
o findp=(n-1)2t(n+l¡2
o T = (1-R)2

@



Àr and Àz atê found from interpolation from a gas cell line

m= Àr

¡t --[t

nl = mÀ¿

2

m is rounded off to get an integer

À: Àr * 1e-3

n=
JÀz:-eì X -õi -I,:e;

= nl/n * 1e-9

The constants n and I can now be used to find the other etalon peaks.




