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ABSTRACT

Fiber Bragg grating sensors are one of many fiber optic sensor technologies that
are currently being used in structural health monitoring systems. The sensors operate by
detecting a shift in the wavelength of reflected maxima due to applied strain. This thesis
studies a new fiber Bragg interrogation method that combines a swept wavelength laser
in combination with wavelength references. These include a gas cell, which is used as
the long term wavelength standard and an etalon used for accurate interpolation of peak
wavelengths. A gas cell is a pressurized container filled with a certain type of gas that,
when exposed to a range of wavelengths, specific wavelength lines are absorbed while an
etalon is.essentially a filter that has a periodic response over a broad wavelength range.
Its wavelength response spacing is smaller than the gas cell and therefore, can be used to
determine the intermediate wavelengths between two gas cell absorption lines. Peak
location is a key element of this interrogation method and several detection algorithms
are investigated. It was determined that polynomial peak fitting is the most
computationally efficient method and yields a resolution of better than 0.5pm with signal
to noise ratios of 30:1 or better. With higher signal to noise ratios, polynomial peak
fitting can yield a resolution of better than 0.25pm and a resolution of better than 0.25pm.
Using a tunable laser, a HCN gas cell and an etalon with maxima every 140pm, static
load tests have demonstrated that measurements can be made with accuracy of better than
2pm. It is expected that this accuracy will be maintained over a long period of time as it
is based on absorption lines in the gas cell. The results of this study are used to
demonstrate that absolute accurate strain measurements can be obtained with the use of

wavelength references in conjunction with a suitable peak location algorithm.
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Chapter 1 Introduction

CHAPTER 1

INTRODUCTION

As structural health monitoring continues to grow as a field of increasing interest
for civil engineers, fiber optic sensor technology is thought to be the most promising
alternative to conventional sensors. Traditionally used in the communications field,
optical fibers have garnered interest in other fields due to their numerous advantages such
as small size, low loss, and electromagnetic interference (EMI) immunity. Presently,
fiber optic sensors are used in a wide range of applications such as strain measurement in
civil infrastructure [1], oil well logging [2], oil pipeline monitoring [3], and composite
structures [4].

Structural health monitoring of civil engineering infrastructure has been a growing
issue over the past few years. As structures continue to age and become damaged by
fatigue, it becomes increasingly important to create a reliable monitoring system in order
to assess their structural integrity. Thus, to successfully monitor the condition of a
structure, the measurement device must be able to provide reliable and accurate data over
long periods bf time. A suitable interrogation system must meet many requirements
including signal stability as well as system insensitivity to changes in the environment,
such as temperature and humidity [5]. The measurement technique should allow several
sensors to be placed on a structure which will provide a thorough representation of the

strain distribution. Also, a portable measurement device would allow several structures
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to be monitored on a periodic schedule, thus drastically reducing the overall cost by
eliminating the need for data acquisition units on every structure [6].

Fiber optic sensors are classified according to the sensing technique by which
they operate. These techniques are based on modulating the intensity, phase, or
polarization of the light passing through the sensor. Fiber sensors are now being used to
monitor various parameters such as strain, temperature, pressure, chemical composition,
deformation and corrosion. One type of sensor used to measure strain is the fiber Bragg
grating. This sensor is also known as an optical strain gauge. Fiber Bragg grating
sensors measure strain through a shift in a spectral peak with applied strain. By
determining the shift in the peak wavelength, one can determine how much strain the
fiber experienced. One of the main problems associated with the demodulation of fiber
Bragg grating sensors is the presence of drift in the light source and/or the photodetector
[7-13]. As aresult, absolute measurements of strain are hindered. In this thesis, resolution
is defined as the minimum amount of Bragg wavelength shift that can be detected and
accuracy is how precise the technique is in determining this change. Therefore,
improving the accuracy of this wavelength measurement is the core work of this thesis.
The development of a measurement technique and the implementation of this technique
into an interrogation unit are also significant contributions of the research work presented
in this thesis.

Prior to embarking on a full overhaul of the Bragg grating interrogation unit,
technical information was first gathered on the various commercial and research
techniques employed. After reviewing details of the performance of the various methods

employed, it became clear that there was potential for further improvement in the
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accuracy of measuring the. Bragg wavelength. It was then decided that the first place to
start would be investigating various methods of determining the location of the Bragg
wavelength on the optical spectrum. Several algorithms were scrutinized based on their
accuracy and computation time. Of those algorithms, one was chosen to be implemented
in the interrogation system. Wavelength references were then used in conjunction with
the algorithm to provide an absolute frame of reference by which the Bragg wavelength
could be determined. This algorithm was implemented into an interrogation system
whose performance was evaluated through static load tests of the fiber Bragg grating
sensor. The data was analyzed and conclusions Were. made on the effectiveness of this
technique in the monitoring of structural performance. To this end, the investigation and
development of the sensor demodulation technique is presented in five chapters.
A review of related literature is presented in Chapter 2, where the advantages and
disadvantages of fiber optic sensors are discussed. The classifications of sensors, along
~with some basics on light transmission in optical fibers, are also presented in Chapter 2.
Furthermore, two wavelength references, the gas cell and etalon, along with past sensor
systems are discussed.
The development of a suitable peak location algorithm is presented in Chapter 3.
The ability to find the correct peak location of the Bragg signal is one of the fundamental
issues investigated in this thesis. This is investigated by testing several peak location
methods and comparing their accuracy and performance with increasing noise in the
signal. In addition, another technique called sub-sampling is introduced and used in

conjunction with the best peak location algorithm.
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The implementation of the peak location algorithm is explained in Chapter 4. The
peak location program was created using Matlab and was then modified to find the Bragg
wavelength using two wavelength references. The peak location algorithm is used to find
the peaks in all three signals. Tests were performed using one and two wavelength
references and the results are discussed in this chapter as well. More detail is provided
on the operation of the etalon wavelength reference since the main objective of this thesis
is to improve the measurement accuracy with the addition of an etalon.

The load testing of the fiber Bragg grating is discussed in Chapter 5. A laboratory
load test was performed to evaluate the performance of the fiber Bragg‘ grating
interrogation unit with and without the etalon. Also, a finite element model of the beam
was used to confirm that the load induces constant stress over the length of the beam. An
explanation of the process of attaching a fiber optic sensor onto a surface is included as
well. Results from the test are pfesented and discussed.

In Chapter 6, a summary of the findings is presented and a number of conclusions
as to the use of an etalon to further improve the accuracy of strain measurements are

drawn. This chapter concludes with recommendations for future work in this area.



CHAPTER 2

LITERATURE REVIEW OF FIBER OPTIC SENSORS

2.1 Introduction

One of the key elements in a structural health monitoring system is the sensing
element and data acquisition system. In the past few years, the focus of research has
shifted to fiber optic sensors. One of the main reasons is fiber optic sensor technology
offers several advantages over conventional sensing techniques [5]:

1) Fiber optic sensors are immune to electromagnetic and radio frequency interference
(EMI and RFI). This means that they can operate in electrically noisy environments and
thus, there is no need for protective shielding.

2) Optical fibers are typically small in diameter (~250pm). This allows them to be
embedded in a composite structure without affecting the structure’s mechanical
properties. Since they can undergo up to 5% elongation, they can withstand high tensile
loading up to 50000pe.

3) They are resistant to corrosion and experience low creep. They are also electrically
passive which means they do not conduct electricity and thus, can be embedded in metal
structures.

4) Fiber optic sensors have both point and distributed sensing capabilities depending on
their sensor length. This provides flexibility in deciding what sensor gauge length would
be ideal for a specific structure.

5) They also possess multiplexing capabilities that allow several sections of a structure to
be monitored and reduce the number of lead wires required.

6) Some fiber optic sensors are capable of absolute measurement with a linear response.
This helps remove any ambiguity and dependence on taking measurements relative to a
certain parameter.

7) They also are very sensitive and have a large dynamic range. Fiber optic sensors have
good signal stability and are suitable for long term monitoring.
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Some disadvantages, however, are the cost and availability of suitable optical sources and
instrumentation. Also, the long term stability of these sensors still needs to be
investigated and the sensor may need to be isolated from unwanted parameters to avoid
erroneous measurements. Finally, steps must be taken to account for the low general
awareness of fiber optic sensor technology. Although these sensors do have their
disadvantages, most can be overcome and the advantages clearly outweigh the
drawbacks. Therefore, with the aforementioned advantages and capabilities, fiber optic
sensors are proving their worth in various monitoring applications and environments.

In this chapter, different classifications of fiber optic sensors based on the sensing
techniques applied are illustrated. Also, basic fiber optic theory is explained and a
description of the components used in this thesis including the fiber Bragg grating sensor,
the gas absorption cell and the etalon, is provided. Finally, a review of sensor systems
using broadband and laser sources and a description of the future for this technology

involving the creation of materials with integrated sensors conclude this chapter.

2.2 Classification of Sensors

Fiber sensor technology can be categorized based on the sensing technique
applied. These include intensiometric, polarimetric and interferometric based sensing
schemes [14].

Intensiometric fiber optic sensors rely on the modulation of the intensity of light
in the fiber. This is due to the fact that this technique does not require monitoring the
frequency or the phase of the optical field. As a result, amplitude based sensors are the

most simple type of sensor in terms of its operation. However, their main disadvantage is
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the lack of measurement sensitivity, which is an important requirement when monitoring
the health of a structure.

Polarimetric sensors are typically used in applications where a longer sensor
gauge length is required. This sensing technique involves two orthogonal polarization
eigenmodes of light in the fiber. This can be created using polarizers at the fiber inputs
or directing a polarized light beam at 45° to the principal axis of the single mode fiber.
Either method will create two components sometimes referred to as perpendicular and
parallel polarizations. When the fiber experiences an external influence, a phase change
will be created between the two components and as a result, reduce the intensity at the
photodetector. Therefore, by monitoring the state of polarization, the external influences
on the fiber can be observed as well. Although, polarimetric sensors are more sensitive
than intensiometric sensors, the demodulation system is substantially more expensive and
complex.

Interferometric sensors operate by detecting any phase changes in the light as it
propagates down the fiber. Typically, light is split into two beams after it enters the fiber.
After which, the two beams are then recombined when they reach the photodetector.
This technique takes advantage of the constructive and destructive interference patterns
between the light waves. The resulting fringe pattern is directly related to the optical
phase difference between the two beams and in turn, represents any external force
experienced by the fiber. Typical configurations of an interferometer include the

Michelson and Mach Zehnder interferometers as shown in figure 2.1.
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Figure 2.1 Configurations of two different interferometers.
(a) Mach Zehnder (b) Michelson Interferometer.

These sensors have a higher sensitivity than the other types of sensors. However, since
most configurations have mechanical moving parts involved, they are not as rugged and
adequate for field applications.

Fiber optic sensors can also be classified as extrinsic or intrinsic sensors. An
extrinsic sensor uses an external element to sense any perturbations and modulate the
light wave accordingly. As a result, an extrinsic sensor merely uses the fiber to transmit
and receive light signals. On the other hand, an intrinsic sensor uses the fiber itself as the

sensor. Both configurations are shown in figure 2.2.

Light Modulator
Input-Fber Output Fiber

/\ External Perturbation

External Perturbation

Optical Fiber

a) Extrinsic Sensor b) Intrinsic Sensor

Figure 2.2 Illustration of an extrinsic and intrinsic sensor.
Extrinsic sensors are typically used to measure parameters used in process control
operations such as temperature, pressure, liquid level and flow. They can also be used to

monitor linear and angular position in aircraft operations. These types of sensors are user
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friendly and are easily multiplexed. However, they have less sensitivity and experience
problems with connections to the external light modulator.

Intrinsic sensors are used to measure properties such as strain, pressure, vibration,
and rotation. These sensors, as shown in figure 2.2, rely on the fiber itself to modulate
the light in response to the external forces it experiences. As a result, intrinsic sensors are
more sensitive and robust. Also, since the sensor consists of simply optical fiber, it is
very versatile for various installation configurations. However, this design does not
prevent any unwanted external perturbations from affecting the sensor. For example, a
sensor which is being used to measure strain may also be affected by the temperature
around it. Therefore, intrinsic sensors require more complicated demodulation schemes.
While intrinsic and extrinsic sensors both have their advantages and disadvantages, the
choice between using a specific type of sensor ultimately depends on the requirements of

the application.

2.3 Fiber Optic Theory

An optical fiber is a cylindrical filament made of transparent material such as
glass or plastic [15]. It utilizes the theory of complete internal reflection to guide light
along the fiber. As a light ray passes through different media, it bends in accordance to
the change in refractive indices between the media. A demonstration of how a light ray

bends depending on its approaching angle ©; is shown in figure 2.3.



Chapter 2 Literature Review df Fiber Optic Sensors

1
]
1
‘

no Ny ! N2
{l
] ~
: 8 |
1 ]
' ‘
b) c)

Figure 2.3 Light propagation between media with different refractive indices.

It is important to note that complete internal reflection occurs for incident angles greater
than the critical angle ©.. The critical angle is expressed as

O, = arcsin(n,/n;) (2.1)
where n; is the refractive index of the first medium and n, is the refractive index of the
second medium.

Optical fiber consists of a core made of pure silica which has fewer impurities
than regular glass in order to reduce the amount of ligh‘; absorbed in the fiber. An extra
layer of glass called cladding surrounds the core of the fiber. The cladding has a lower
refractive index than the core to allow complete internal reflection to occur and create a

light guide, as shown in figure 2.4.

Ny >Ny ny = core refractive index
n, = cladding refractive index

Figure 2.4 Complete internal reflection of light through optical fiber.

10
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The acceptance angle O determines the conditions in which light can be coupled into the
fiber. As shown in figure 2.4, O, is directly related to ©.. Therefore, lights rays must
have an incident angle less than ©4 in order for the fiber to capture the entire flux from
the source. The numerical aperture, NA, of a fiber is determined by the angle of
acceptance, both of which are defined by the refractive indices of the core and cladding.
O, = arcsin(n,” — n,?)"? (2.2)
NA =5sin(6,) = (n,* — n,*)? (2.3)
where n; is the refractive index of the core and n; is the refractive index of cladding. The
numerical aperture is an important parameter because it helps define the efficiency in
which flux from the source is coupled into the fiber. In other words, the numerical
aperture of the source must be less than the numerical aperture of the fiber to maximize
the coupling efficiency.
Optical fibers can be created in different sizes to accommodate various
applications. However, it is the size of the core that affects the way light travels through

it. A typical optical fiber is shown in figure 2.5.

Core
6-100 ym

Cladding
125 pm

Figure 2.5 Cross section of typical optical fiber.
A coating layer made of polymide or acrylate material surrounds the cladding to protect

the optical fiber and allow for easier handling. The size of the core is small compared to

11
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the cladding and can range from 6 to 100pum. Light rays can travel different paths in the
fiber because the incident angles determine how the rays will propagate. For optical
fibers with core sizes in the range of 50 to 100um, several ray paths or modes can be
supported. These types of fibers are called multimode and since the travel time of
different modes can vary, the rays exiting the fiber will become out of sync. Therefore,
narrow pulses sent into the fiber start to broaden and exit the fiber wider than the original
signal. This effect is called intermodal dispersion and it limits the fiber bandwidth and
the maximum pulse rate the fiber can handle.

On the other hand, singlemode fibers have core sizes less than 10pum which
produces a condition in which only a single electromagnetic mode propagates. As a
result, singlemode fibers have a broader bandwidth (up to 100GHz*km) than multimode
fibers and experience less attenuation as well. Therefore, this type of fiber is better suited
for sensor and transmissioﬁ purposes. The number of modes that can be supported by a
fiber is calculated using the fiber’s normalized frequency, v. This frequency is expressed
as

v = (tdfiper NA)/A 2.4
where dfiver is the diameter of the fiber core. For v <2.405, only one mode will propagate
down the fiber, which then becomes known as singlemode fiber.

One of the most important aspects of optical fiber is its low attenuation loss.
Typical fiber loss is about 0.2dB/km at A=1.55um. The attenuation that still occurs is
mainly due to the absorption, Rayleigh scattering, and extrinsic parameters such as
impurities in the material. Attenuation due to absorption occurs as a result of interaction

of electrons with radiation. This UV absorption has attenuation peaks in the ultraviolet

12
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wavelength region and decreases as the wavelength approaches the infrared. Also,

absorption occurs from an interaction with molecular vibration and consequently, this IR

absorption has attenuation peaks in the infrared region. Rayleigh scattering is caused by

small imperfections in the glass structure which forms the fiber. These imperfections can

be trapped gas bubbles, dopants or composition fluctuations which occurred during

solidification. This scattering can cause light energy to escape the fiber and attenuation

usually occurs at short wavelengths. The combined effect of these fiber losses is shown

/ |
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o~ Total attenuation
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Figure 2.6 Attenuation due to fiber loss vs wavelength [15}.
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Due to extrinsic factors, the resulting attenuation curve is actually the shaded region in

figure 2.6. These factors include impurities in the material, fiber defects caused by the

manufacturing process and bends in the fiber due to installation techniques. As a result,

13
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the attenuation curve varies depending on the severity of these extrinsic losses. For
example, the most significant impurity is the water radical OH which causes an
attenuation peak at 1380 nm. From the figure, there are two distinct minima where
attenuation is at its lowest. These regions are called transmission windows and optical
networks usually operate at one of these wavelengths, 1300 or 1550nm, to achieve the
best signal propagation.

There are two types of light sources which can be used with optical fibers, light
emitting diodes (LEDs) and laser diodes. The LED is a broadband low power source
while a laser diode is a narrowband high power source. Therefore, the decision between

which light source to use depends on the requirements of the fiber optic sensor system.

2.4 Fiber Bragg Grating Sensors
A fiber Bragg grating is comprised of periodic changes in the refractive index of
the core located in a section of single mode fiber [16]. This modulation creates a sort of
filter which causes all wavelengths except one to be transmitted through the grating as
shown in figure 2.7. The reflected wavelength is called the Bragg wavelength, Ag, and is
defined by the equation
AB = 2negA (2.5)
where nefr is the effective refractive index in the core and A is the spatial period of the

refractive index modulation.

14
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,DJ —

Bfoadband
light source l
4

Figure 2.7 Operating principle of the fiber Bragg grating sensor [14].

The grating length is typically 1 to 2cm and the bandwidth of the reflected signal, which
is dependent on the grating length, is typically ~0.05 to 0.3nm [14].

Bragg gratings are fabricated using different methods. One method involves
placing a mask pattern over the optical fiber and shining UV light through it to change
the refractive index of the core. The advantage of a Bragg grating is it is very flexible to
work with in terms of being able to choose the wavelength range one would want to use.
Since the Bragg wavelength depends on the spacing between the gratings, it is possible to
create gratings at different wavelengths. The refractive index modulation is on the order
of 10 to 10, Therefore, it takes a large number of periods to increase the reflection to
over 90% which is usually desired. |

The fiber Bragg grating is used for structural health monitoring because it
responds to strain through a wavelength shift. This feature is attractive because it does
not depend on the amplitude of the signal and as a result, is less susceptible to sensor
failure due to signal loss. When it is bonded on or embedded in a material, the reflected
wavelength will change when the grating undergoes thermal or mechanical strain. This is

a result of a change in length in the grating. The wavelength shift A\ is defined by

15
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Ak = Ag ((1-pe) + BAT) (2.6)
where Ap is the initial peak wavelength, € is the strain induced, pe is the effective strain
optic coefficient, § is the apparent thermal strain and AT is the temperature change. The
strain optic coefficient is a constant that relates the change in the index of refraction to
strain. It is given by

pe = 10°/2%[p12 — v(p11 + p12)] 2.7)
where p11 and pj2 are components of the strain-optic tensor, n is the refractive index and v
is Poisson’s ratio. For a silica fiber, the typical values for these parameters are p;; =
0.113, p12=0.252, v=0.16, and n = 1.444 [17,18]. This will give a strain optic coefficient
of 0.2017. Therefore, assuming AT = 0 and using equations 2.6 and 2.7, a 1pg strain will
cause a 1.22pm wavelength shift at 1550nm.

Since the sensor responds to strain and temperature changes, the wavelength shift
in equation 2.6 takes into account both parameters. The strain response is due to a
physical change in the length of the grating pitch and the refractive index of the fiber.
The temperature response is due to thermal expansion effects from the fiber and changes
in the refractive index due to its temperature dependency. A typical fiber grating has a
thermal sensitivity of 7 to 10pm/C°. The apparent thermal strain f is defined by

B = Bo + GF(ctsubstrate — 0o) (2.8)
where Py is the thermo-optic response of the grating at fabrication, GF is the gauge factor
which expresses a sensor’s sensitivity to strain, Osupsrate iS the thermal expansion
coefficient of the substrate and oy is the thermal expansion coefficient of the fiber optic
material which is approximately 0.5 X 10°%/¢Ce. Using the gauge factor in the strain

equation, one can find the wavelength shift by
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Adp = )y (e(GF) + BAT) (2.9)
The typical value for the gauge factor at 1550nm is approximately 0.8.

There are several advantages to using a fiber Bragg grating sensor. It is an
intrinsic sensor and therefore, it is very sensitive to strain and temperature effects. The
strain is determined by measuring wavelength shifts which allows for the absolute
measurement of strain changes. They are typically used in point sensing applications;
however, they can also be used as a distributed sensor by increasing the grating length.
In this configuration, the average strain over the sensor length is determined. Also,
Bragg gratings with different center wavelengths can be multiplexed on a single fiber.
Therefore, by multiplexing the sensors, a greater amount of sensors can be placed on a
structure with less cables and equipment involved. Finally, since these sensors simply
rely on absolute wavelength shifts, the system is not severely affected by low source
power and lésses in the connectors or couplers. This “absolute” nature of the Bragg

grating makes it an effective sensor for both static and dynamic strain applications.

2.5 Gas Absorption Cells

Over the past decade, researchers at several research laboratories have
investigated the use of gas absorption as a means of providing a wavelength reference
that is very stable and directly related to fundamental measurement standards [19]. Gas
cells are often used as calibration sources because of their absoluteness and insensitivity
to the environment. Thus, they can provide precise wavelength stability and absolute
long-term accuracy. For example, a cell 10cm long filled with HCN at a pressure of 100

Torr (~ 0.1 atmospheres) will selectively absorb light at certain wavelengths as shown in
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figure 2.8. HCN has absorption lines at 1539.1494, 1539.7855, 1540.4314, 1541.0872nm
etc. These lines are spaced approximately 0.65nm apart and are known to an uncertainty
of less than 0.3pm [20]. The position of these lines has been shown to drift less than
0.00001nm/°C and will not drift with aging as long as the gas remains uncontaminated.
Gas cells provide a wavelength standard that can be used as a fundamental standard that

will be stable and interchangeable over long periods of time.
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Figure 2.8 Absorption spectrum of a Hydrogen Cyanide gas cell [20].
2.6 Etalon

An etalon is essentially a filter that has a periodic response over a broad
wavelength range. It consists of two flat partially reflecting mirrors aligned parallel
facing other at a fixed distance apart as shown in figure 2.9a. As light from a point
source enters the etalon cavity, light is continually reflected back and forth and since the
inner surfaces are not completely reflective, some light is transmitted through the etalon.
Therefore, an interference pattern is created on the other side as a result of constructive

and destructive interference of the transmitted waves. This is depicted in figure 2.9b.
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Figure 2.9 Etalon operating principle.
(a) Schematic of etalon (b) Wavelength response

Its wavelength response spacing is smaller than the gas cell and therefore, can be used to

determine the intermediate wavelengths between two gas cell absorption lines.

2.7 Past Sensor Systems

Some factors must also be taken into account when considering the
implementation of fiber optic sensors in a health monitoring system. The first issue is
obviously the cost of the system itself including the sensors, the demodulation system and
the installation costs [21]. Fiber optic sensors usually need specific training in order to
correctly install them on a structure. For some companies, this may require sending
employees to training sessions or contracting out the work to qualified individuals.
Although the cost of monitoring the health of a structure may seem expensive, it is fairly
small compared to the cost of the structure itself. Also, long term structural health
monitoring helps prevent unnecessary maintenance and repair costs by providing real
time information on the integrity of the structure. This allows the owner of the structure

to determine when a structure actually requires maintenance rather than following a set
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schedule. As a result, this will increase the return on investment of the system.
Therefore, the initial cost of the implementation of the system is eventually regained over
time.

Another issue that must be taken into account is the impact of these sensors on the
structure itself and their long term performance. Fiber optic sensors must be capable of
being attached to the structure without affecting the structural integrity. For large
structures, the sensors are small enough that they will have little effect. However, when
working with composite materials, it becomes more difficult. The lead fibers protected
with the PVC jacketing cannot be embedded and as a result, the bare fiber sensor is the
placed in between the composite layers while the rest of the cabling protrudes out of the
composite section. For most applications, as long as the cable is not pulling on the
embedded fiber, it is not a major problem. Also, the quality of the interface between the
sensor and the surface of the structure must be such that the strain experienced by the
structure is undergone by the sensor as well. Finally, the sensor must be environmentally
resilient and robust with little signal degradation for long term monitoring purposes.
After taking these issues into account, fiber optic sensors do prove to have significant
advantages for structural health monitoring.

One area that is emerging from structural health monitoring with fiber sensor
technology is the creation of materials with integrated sensors or, in other words, smart
materials. The advantage of this is the elimination of installing the sensor on site and
provides an attractive option for companies who are wary of having to hire someone to
install the sensors for them. An example of this is a pultruded FRP reinforcement where

the fiber optic sensors and their accompanying fiber leads are embedded during the
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pultrusion process [22]. In the research of Kalamkarov et al, the types of sensors used
were Fabry-Perot and fiber Bragg gratings. Fatigue testing was performed on the tendons
to compare the strain readings from the fiber sensor and externally mounted
extensometers. This resulted in excellent conformance between the readings and
therefore, extensive loading had no effect on the performance of the embedded sensors.
Static loading was also performed on the specimens at 40°C and a maximum discrepancy
of 8% occurred between the sensor and extensometer at the peak load of 12.5kN
corresponding to 3500pe. Two differently coated optical fibers were immersed in an
alkaline solution and filtered sea-water for 3 months to test the degradation of the fibers.
Alkaline solution was used because it is typically found in concrete. At the end of the
test period, it was determined that there was only mild damage to the surface of the
coatings. Therefore, it is plausible to assume that when the fibers are embedded in the
composite material, they will be well protected from the environment and are suitable for
long term monitoring. From the results of these tests, pultruded FRP reinforcement bars
with embedded sensors proved to be quite successful as smart materials.

Another example of this concept is the embedment of sensors in carbon fiber
reinforced polymer (CFRP) cables for use in a stay cable bridge in Switzerland [7]. Asin
the previous instance, the fiber Bragg grating sensors are embedded during the
production of the CFRP wires. Each cable consisted of 241 CFRP wires arranged in a
hexagonal structure. It was observed that in order to survive high stress applications, the
fiber sensors must be embedded during the production of the wire. Static and cyclic
testing resulted in good agreement between the fiber sensors and strain gauges. Under a

constant strain of 2400pe, the strain readings from the sensors varied +5pe over 5 days
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[23]. Reliability assessments have concluded that the sensors on the Storchenbriicke
bridge in Switzerland have provided accurate data for over three years. Thus, fiber optic
sensors are continuing to prove their long term stability and the use of smart materials
demonstrates .the ease of installation and feasibility of the commercial potential for
structural health monitoring.

A system’s performance is limited by its weakest link. In fiber Bragg grating
(FBQG) meésurement systems, the weakest link is in establishing the wavelength at which
the peak occurs. There are two common techniques used to determine the peak
wavelength. The first technique involves interrogating the FBG with a broadband source
and spectrally analyzing the reflected signal to determine the peak wavelength as shown
previously in figure 2.7. Although, this is a simple configuration, several issues arise.
Since broadband sources typically offer very little power over the peak of the FBG, the
output signal at the photodetector has even less power. As a result, the resolution and
accuracy of measurement is limited by the intensity of light at the photodetector. In
addition, the use of optical spectrum analyzers to determine the peak wavelengths suffers
from poor accuracy and drifts that typically greatly exceed 10pm [8,9,10]. Using equation
2.9, this translates to an equivalent strain of greater than 8ue at wavelengths of 1550nm
and typical gauge factors of 0.8. It is possible to overcome these drifts using gas
absorption line references at the expense of sampling rate. Using gas line references,
broadband interrogation schemes have achieved sampling rates no greater than 10Hz [7].

A second approach to the interrogation of FBGs makes use of swept wavelength
laser sources. In this technique, the peak wavelength can be located by sweeping the

output wavelength of the source. This wavelength is typically dependent on the current

22



Chapter 2 Literature Review of Fiber Optic Sensors

applied to the laser. One advantage of using tunable laser sources is they usually have
higher power outputs coupled into the fiber than broadband sources. This is important
when the power is divided over several channels in the system. The wavelength output
by the laser at any particular set of drive conditions is not known and so must be
determined by some other technique. For example, commercially available wavelength
meters can determine the wavelength of a laser source to approximately 3pm accuracy
[11] but are not practical to integfate into a high sampling rate FBG interrogation system
and require a significant amount of power as well. Even if a laser source is calibrated
using a wavemeter for a particular set of temperatures and drive conditions, the
relationship between drive conditions and wavelength will drift uncontrollably over time.
This is particularly important in civil infrastructure applications where monitoring is
expected to take place over several decades. The best available commercial diode lasers
are specified by their manufacturers to drift as much as 80pm/yr [12]. At 1550nm this
would correspond to a strain uncertainty of as much as 69ue. These slow frequency drifts
may cause falsely interpreted strain measurements. As a result, the precision of strain
measurement is dependent on the stability of the laser and the frequency jitter [13]. Arie
et al. [24] developed a method of measuring static strain from FBGs using frequency
locked lasers. In this technique, the laser frequency is locked to an absorption line in
érder to eliminate any frequency drifts. For applications which require high resolutions,
this method has achieved sensitivities of 1.2 nanostrain/YHz RMS at 1.5Hz and a
resolution of 6 nanostrain. This value is limited by the environmental acoustic noise.
Consequently, at the cost of sampling rate, high sensitivities are possible using a

combination of a laser and wavelength references. Therefore, it is apparent that for civil
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infrastructure applications it is necessary to have some form of real time wavelength
referencing.

The performance of both commercial and research-based FBG interrogation
systems is summarized in the following tables. As one can see, there are a number of
commercial units available, each with varying degrees of performance. Often, accuracy
is sacrificed for increased scanning frequency, while resolution is approximately the same
for most units. As expected, the values for resolution in Table 1 are much better than the
commercial units, but the compromises made in the transfer of technology from the
research to commercial sector often degrades the initial performance of the system.
However, as seen in the Table 2, most of the companies have done an exceptional job of

maintaining more than adequate values for resolution and accuracy.

TABLE 2.1 SUMMARY OF THE PERFORMANCE OF COMMERCIAL FBG INTERROGATION

UNITS
Company Model Resolution (pm) Accuracy (pm) Speed (Hz)
Advanced Optics Solutions 1.22 +30.5 500
(AOS) [25]
Insensys {26] 6.1 +12.2 500
Blue Road Research 2.44 0.24 0.5
[27]
SHM Systems [28] 5100a 1.22 +6.1 100
Micron Optics [29] s720 | 025 1 5
si425 1 2 244

Systems Planning and FBG-IS 1 +10 50
Analysis (SPA) [30]

SL-FOIS 1 +5 100
Fiberpro [31] IS7000 1 +5 200
Intelligent Fiber Optic 1*Sense 1 1.22 200
Systems (JFOS) [32] 14000
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" TABLE 2.2 SUMMARY OF THE PERFORMANCE OF CURRENTLY RESEARCHED FBG
INTERROGATION TECHNIQUES

Technique Resolution Accuracy (pm) Speed (Hz)
Broadband source with optical spectrum Spm +10 NA
analyzer [8,9,10]
Tunable Laser with Tunable Fabry-Perot +0.1pm 0.2 NA
Filter [33]
Frequency Locked Lasers [24] 1.2ne/NHz NA 1.5
Interferometric Scanning Method 0.6ne/NHz NA >100
34]
UV induced birefringence of a chirped NA 24.4 300
fiber grating [35]
Acoustooptic Tunable Filter [36] 150ne/NHz NA 200
String Resonator [37] 0.122pm +3.66 8
Tunable laser with a gas cell reference NA 2 NA

[19]

2.8 Conclusion

In this chapter, the use of fiber optic sensors in structural health monitoring was

reviewed. Also, the background of fiber optic theory and the fiber Bragg grating sensor

was discussed. Finally, a review of fiber optic interrogation schemes has provided an

adequate introduction to the goal of this thesis. With the use of a swept laser system and

wavelength references, the research work presented in this thesis endeavors to improve

the accuracy of strain measurements by correctly locating the corresponding Bragg

wavelengths.
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CHAPTER 3

PEAK LOCATION ALGORITHMS

3.1 Introduction

As previously mentioned, fiber Bragg grating sensors operate by detecting strain
through a shift in the reflected wavelength. Therefore, the sensor system’s measurement
accuracy depends on its ability to detect the peak of the reflected signal. Typically, a
wavelength shift measurement error of 100 picometers is equivalent to an error of 100ue
as found in equation 2.9. In most cases, this is not an acceptable measurement accuracy
for monitoring the health of a structure. Therefore, several peak detection algorithms are
investigated and their performance when noise is present in the signal is examined. The
algorithms evaluated are:
3dB Method
Highest Point
Polynomial Fitting
First Derivative and Zero Crossing Point

Lorentzian Fitting
Gaussian Fitting

Al e

The data used to evaluate the algorithms were obtained by a swept laser configuration as

shown in figure 3.1.

FBG
Hij—

L.aser Source

{ ]
Photodetector

Oscilloscope

Figure 3.1 Configuration of FBG sensor system using a swept laser source.
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The source was a New Focus (model 6262) external cavity tunable diode laser and the
photodetector module consisted of an InGaAs PIN photodiode. An oscilloscope was
used to view the signal and collect the data.

The light from the free space laser was coupled into the fiber by mounting a lens
to the outside of the laser module and aligning the position of the fiber pigtailed
collimator in order to capture the light. The setup is shown in figure 3.2a and an

overhead view of the entire fiber system is shown in figure 3.2b.

a) b)
Figure 3.2 FBG interrogation system setup.
(a) Detailed view of light collimation into fiber
(b) Overhead view of entire FBG sensor system

The Bragg grating used for this project had a Bragg wavelength of 1536.214nm as
determined by the manufacturer, O/E Land Inc.. The tunable laser source was set to
sweep a range of 2nm, from 1535 to 1537nm. The reflected signal from the grating was
sent to the photodetector and recorded by the oscilloscope. The wavelength output of the
laser source was also sent to the oscilloscope. This signal is a voltage which varies
linearly with the output wavelength of the source. The voltage increases with wavelength
according to the equation

V = fAL (3.1)

27



Chapter 3 Peak Location Algorithms

where AA is in nanometers and f depends on the laser center wavelength and ranges
anywhere from 0.2 and 1V/nm. As a result, this was used to determine the start and stop
points of the laser sweep. The Bragg grating signal output and the corresponding laser
wavelength output is illustrated in the following figure.

Bragg Grating and Laser Wavelength Output (1535-1537nm)
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Figure 3.3 Plot of Bragg grating signal and output voltage from the tunable laser.

In the figure, the laser output begins to increase as the wavelength changes and remains
constant when the sweep is done. For every file, the oscilloscope saves 2000 data
samples. By observation, we can determine the start and stop positions. The start
position occurs at data sample = 419 and ends at data sample = 1578. Therefore, there
are 1578 — 419 + 1 = 1160 data samples to represent a 2nm scan. In other words, the data
is sampled every 1.72pm.

A graph of the entire Bragg grating signal and a detailed view of the peak of the

signal are shown in figures 3.4a and 3.4b, respectively.
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Figure 3.4 Signal reflected from Bragg grating.
(a) entire signal (b) zoomed in view of peak

As shown in the figures, the location of the Bragg peak is not easily located. Also, there
is some sampling error due to the oscilloscope but the main source of noise in the system
is due to photodetector noise. Although the expected signal in a Bragg sensor system is
much smoother than this signal, it was still used to evaluate the algorithms because a

noisier signal would be better suited to test performance and reliability of an algorithm.

3.2 Peak Location Methods
As mentioned previously, six peak detection algorithms were evaluated with the

signal using the software Matlab. A description of each algorithm follows.

1) 3dB Method

The 3dB method is a common technique used to find the peak in a signal. This
method involved finding the 3dB threshold crossing points of the signal and taking the
middle value as the peak as demonstrated in figure 3.5a. The 3dB threshold is found

using the equation

Vi =0.7079*max value of the signal (3.2)
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and the peak location is found with

peak location = A, = (M+ Ag) 3.3)
2
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Figure 3.5 First two peak location algorithms.
(a) 3dB method (b) Highest point method

2) Highest Point

This simple yet coarse method involved finding the absolute maximum value of

the signal and at what wavelength it occurred. This wavelength was then set as the peak

wavelength as shown above in figure 3.5b.
3) Polynomial Curve Fitting
Fitting a polynomial curve to a set of data is a frequently used method in data

analysis applications. This method involved creating a threshold and fitting the data

points within that threshold to a polynomial curve. For this signal, the polynomial curve

used was of 2™ order (ie. Parabola)
P() = prx” + pax + p3 (3:4)
Polynomial curve fitting involves using a least squares method that minimizes the sum of

the squares of the errors between the polynomial curve and the data. Therefore, the
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program in Matlab used the least squares method and the x and y values of the signal to
find the p coefficients of the optimal polynomial curve. The peak wavelength was then
determined to be the location at which the maximum value of the polynomial curve
occurs. The original signal and the corresponding polynomial curve fit are shown in

figure 3.6.

Amplitude (a.0.)

L 1 L 1 L L L
153615 153618 15362 1536.22 153624 1536.26 1536.28
Wavalangth (nim)

Figure 3.6 Polynomial fit algorithm.

4) First Derivative and Zero Crossing
The first derivative of a signal is used to find the locations of maxima and
minima. The zero crossing points of the first derivative define these locations. It is
expected that at some point the derivative will change its sign from positive (indicating
an increasing function) to negative (indicating a decreasing function). This signifies
there is a maxima (ie. Bragg peak) at that critical point.
First, the signal was filtered using a second order Butterworth filter with a cutoff
frequency of 100Hz to remove noise. The first derivative was determined using the

following forward difference formula:

P@) = fi+l) - f{) (3.5)

x(i+1) — x(i)
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A smoothing operation was performed on the derivative to reduce the noise in the signal
and reduce the amount of intensity variation from one sample point to the next. In this
case, Gaussian smoothing was used and it is a 1D convolution operation that uses a
kernel that represents the shape of a Gaussian curve. The degree of smoothing depends
on the standard deviation of the Gaussian kernel. Gaussian smoothing determines a
weighted average around a data point where the average is heavily weighed by the values
closer to the data point. As a result, the Gaussian kernel is a gentler smoothing process
than the mean filter. After the smoothing is performed, the location of the zero crossing

point is determined, as shown in figure 3.7. This location is then assumed to be the peak

location as well.
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Figure 3.7 First derivative and zero crossing point algorithm.

5) Lorentzian Curve Fitting
This method involved fitting a Lorentzian curve to the data points above a
specific threshold. The Lorentzian equation is as follows:

fx)=1__ I~ (3.6)
m (x-p) + (T72)°
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where p = mean and I' = full width at half maximum. For each data point within the
threshold, the I" was varied. The mean squared error between the original signal and
Lorentzian was found for each combination of p and I'. The best fit occurred with the
combination that produced lowest mean squared error. As a result, the peak wavelength

is designated as the p in that combination.

6) Gaussian Curve Fitting

The same methodology as the Lorentzian method was performed on the signal,
except a Gaussian curve was used instead. As before, the data above a designated
threshold was fit to a Gaussian function. The Gaussian equation is

fx)= 1 exp—(x-p)’ (3.7)
o\2m 267

where p = mean and o = standard deviation. In this case, for each data point, the o was
varied. Again, for every combination, the mean squared error between the original signal
and Gaussian curve was found. The p in the combination that resulted with the lowest
mean squared error was specified as the location of the peak wavelength.

The difference between the Gaussian and Lorentzian curves is illustrated in figure
3.8. Also, an example of a Lorentzian curve and Gaussian curve fitted to the Bragg

grating signal is depicted in figures 3.9a and 3.9b, respectively.
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Figure 3.9 Lorenztian and Gaussian peak fit algorithms.
(a) Lorentzian fit (b) Gaussian fit

3.3 Simulations

The signal was first normalized and the peak detection algorithms were performed
on it. To provide a reference point, A, was determined by fitting a Gaussian peak to the
data using the RMS error as a figure of merit. This was used as our baseline for
comparison of peak location algorithms. The peaks determined by each algorithm was
recorded and the error relative to the “ideal” peak location, Ap, from the Gaussian fit was

calculated for each method. The results of the peak detection algorithms performed on

34



Chapter 3 Peak Location Algorithms

the original signal, with a signal to noise ratio of 80:1 and using a reference wavelength

of 1536.214nm, is presented in the following table.

TABLE 3.1 COMPARISON OF PEAK FITTING ALGORITHMS WITH RESPECT TO THE PEAK
WAVELENGTH DETERMINED FROM THE GAUSSIAN FIT METHOD

Algorithm Ap (nm) Ahp (ie. Ay — Ap Gaussian) (Pm)
3dB Method 1536.2157 1.7
Highest Point 1536.2243 10.3
Polynomial Fitting 1536.2157 1.7
First Derivative 1536.2226 8.6
Lorentzian Fitting 1536.2140 0.0
Gaussian Fitting 1536.2140 0.0

From this, one can see that the highest point and first derivative methods resulted in peak
positions which deviated by more than 8pm from the peak position determined by the
Gaussian peak fitting. This corresponds to an error of 7ue and would not be acceptable
for many civil infrastructure applications. On the other hand, the 3dB, polynomial,
Lorentzian and Gaussian peak fitting methods all produced deviations that were less than
5pm yielding errors of less than 4pe. All these algorithms would produce errors less than
those normally considered acceptable for civil infrastructure monitoring applications.
After determining the peaks on the original signal, amplitude noise was then
added to it in increasing increments. The peak position was determined for 15 trials at
each noise level and the RMS error in determining »the peak location is plotted against the
noise to signal ratio as shown in figure 3.10a for the first 3 methods, while the results for
the last 3 methods is displayed in figure 3.10b. The noise to signal ratio is defined as the
RMS noise to the peak signal. The maximum amount of error desired is 5pm. Although
from observation only, it is difficult to discern the performance of each algorithm,
detailed analysis shows that the polynomial, Lorentzian and Gaussian methods prove to

be the most accurate algorithms as shown in figure 3.11.
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Figure 3.10 Peak location error vs noise-to-signal ratio for the first three methods.
(a) 3dB, Highest point and First derivative methods
(b) Polynomial, Lorentzian and Gaussian fit methods
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Figure 3.11 Peak location error vs noise-to-signal ratio for four methods.

A summary of the noise to signal ratio required for each peak location algorithm
in order to stay under an error of 5pm is found in the following table. It is easily seen
that both the highest point and first derivative methods do not achieve errors less than
Spm.

TABLE 3.2 NOISE TO SIGNAL RATIO REQUIRED FOR EACH PEAK FITTING ALGORITHM TO
MAINTAIN AN ERROR BELOW 5 PICOMETERS

Algorithm Noise to Signal Ratio
3dB Method 0.026
Highest Point NA
Polynomial Fitting 0.154
First Derivative NA
Lorentzian Fitting 0.175
Gaussian Fitting 0.175

Since optical power comes at a premium in terms of cost and system reliability, it

is important to establish the minimum power requirements to perform any particular
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measurement. To establish this limit, the Qriginal data was modified by adding additional
noise and the performance of these peak iocation algorithms was mom'tored in the
presence of ever increasing levels of noise.

Using the noise to signal ratio established by the simulations, one can estimate the
minimum optical power required for these measurements. For example, one first
assumes that an optical power of 11.2pW is reflected from the FBG, which corresponds
to a photocurrent of 16pA at the photodiode, assuming the quantum efficiency is 0.7.
Using the polynomial fit curve in figure 3.11 above, at noise to signal ratios of less than
0.1528 (ie. S/N = 7), the error in peak position determination was less than Spm.

Assuming shot noise is the dominant source of noise, we use the following equations:

Isn = (2*q*Tpq *BW)'? (3.8)
p

Isn = *q*BW)'? 3.9)

Tg V1

where q is the charge of an electron, Iq¢ is the current at the photodetector and BW is the
bandwidth. The noise to signal ratio then becomes 0.1415 using a measurement
bandwidth of 1MHz, and the noise current would be Isy = 2nA. Therefore, for 32
channels at 11.2pW per channel, the total optical power required would be least 400pW.
Furthermore, if ImW of power exits the laser and there are 32 channels in the system,
with 80% peak reflection, the power at the photodiode should be about 12.5pW which
corresponds to about 12p1A, assuming quantum efficiency of 1. As a result, ImW source
is quite sufficient for this measurement system.

Sev;:ral of the peak location algorithms performed similarly with respect to the
signal to noise ratio. These include the polynomial, Lorentzian and Gaussian curve

fitting methods. Although the Lorentzian and Gaussian algorithms proved to be the most
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accurate, they were also the most computationally time consuming. For most civil
structure monitoring purposes, it is desirable to have a system which can measure strains
in real time. Therefore, since these methods require extensive amounts of computation,
they would not meet the requirements of a strain monitoring system. On the other hand,
the polynomial fit method demonstrated to have reasonable accuracies and it was also the
most computationally efficient. Therefore, for the remainder of this work, the
polynomial fit method was used as the peak location algorithm.

To further extend the resolution of this technique, sub-sampling of the data was
performed. This involved adding 32 points between data samples and evaluating the
polynomial fit algorithm again with increasing amounts of noise. The result of 10

simulations using the sub-sampling technique is shown in figure 3.12.
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Figure 3.12 Peak location error vs noise-to-signal ratio of polynomial fit algorithm using sub-sampling
technique.

Sub-sampling allowed the peak to be placed between data points, thus increasing

the resolution. From this technique, the data located below 5pm and 1pm of error is
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shown in figures 3.13a and 3.13b, respectively. At noise to signal ratios of 0.104 (ie. S/N
= 9.6), in figure 3.13a, the RMS error is 0.8185pm and corresponds to a strain resolution
of 0.7104pe. At roughly the same noise to signal ratio, with no sub-sampling, the RMS
error was 1.6631pm and the strain resolution was 1.4435ue. Therefore, this technique
improved the resolution by half compared to the results achieved without sub-sampling
the data. Also, in figure 3.13b, the 1pm threshold is exceeded at noise to signal ratios of
0.049 (ie. S/N =20.4). This resulted in an RMS error of 0.3987pm which corresponds to

a strain resolution of 0.346ye.
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Figure 3.13 Peak location error vs noise-to-signal ratio for the first three methods.
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3.4 Discussion of Signal to Noise Ratio in the Peak Location Method

Peak fitting is a method often used in signal processing applications because it
makes better use of more information. When determining a sufficient peak location
method, one must take into account the minimum signal to noise ratio required for a
specific number of samples. For example, in figure 3.14, the Bragg peak can be

approximated with a signal resembling a bandpass filter with a width of A\.

approximation
pp AN

Figure 3.14 Approximation of a Bragg peak.
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1
1
1
i
H
3
]
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n=0 =
Figure 3.15 Shifting the approximation curve by one wavelength position.
The next step involves determining how large the noise in the signal can be before
it becomes impossible to determine when the Bragg peak has shifted one wavelength
sample position. For example, if the approximation is located exactly at the peak,

S=Zn*V; fromn=0ton=i (3.10)
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where S is the total signal amplitude, i is the total number of samples in the signal, and V;
is the amplitude of the signal at each sample point.
In addition, for each sampling point, the noise will have a certain value, V,. If the
noise is uncorrelated, the total noise will be:
N =V, * i (3.11)
Therefore, in order to determine if the peak has shifted one wavelength sample position,
the magnitude of the signql at a certain point would have to be greater than the noise, as

shown in the following equations:

Vi> Vy * i , (3.12)
V=i (3.13)
Va

For example, if the Bragg peak is 100 samples wide, where 1 sample corresponds to
1.72pm, then for each sample, the signal to noise ratio would have to be:
S/N > (100)'” =10 (3.14)
The noise to signal ratio then becomes 0.1 and it represents the amount of noise required
before it becomes impossible to detect a 1.72pm shift in the Bragg peak. As seen in
figure 3.13b, the noise to signal ratio of 0.049 is required to exceed the 1pm threshold.
As a comparison, if a triangle signal is used to approximate the Bragg peak, the
minimum signal to noise ratio changes significantly. In thé following figure, the triangle

signal is used to represent the 3dB method.
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Figure 3.16 Approximation of the Bragg peak using a triangle signal.

In figure 3.16, S is reduced by a factor of 2 and can be compared to the method of finding
the center of two threshold crossings. Therefore, the minimum signal to noise ratio also
reduces by a factor of 2 as seen in the following equation:

Vi=

Vi=i (3.15)
Vo

i
2
As in the previous example, the S/N required for each point is now 50 and N/S is 0.02.
This means that it takes less noise to make it impossible to detect a wavelength shift of
1.72pm. In table 3.2, the 5pm crossing line for the 3dB threshold method occurs at a N/S
of 0.026 and 0.154 for the polynomial fit method. This corresponds to a ratio of 1:5.92.
If the number of samples in the Bragg peak is 100, using equations 3.13 and 3.15, the
ratio of the N/S between the 3dB and polynomial fit is 1:5, which agrees with the ratio

acquired for the Spm crossing line.
To summarize, as the number of samples in increases, the minimum required

signal to noise ratio improves as well. Thus, this provides an explanation as to why the

polynomial and Gaussian algorithms perform better than the 3dB threshold method.

3.5 Conclusion
In summary, the work involving the evaluation of several peak location

algorithms under constraints of maximum RMS error allowed and computation time was
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presented. Three methods, specifically the polynomial, Lorentzian, and Gaussian curve
fit algorithms, performed well under these constraints. However, due to the long
computation times required by the Lorentzian and Gaussian fit methods, the polynomial
fit algorithm was determined to be the best method to use in a FBG demodulation unit.
Also, the concept of sub-sampling was introduced which demonstrated improvements in

the resolution of the polynomial fit algorithm.
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CHAPTER 4

IMPLEMENTATION INTO THE FBG UNIT

4.1 Introduction

The goal of this thesis was to develop a method which improved the accuracy of
Bragg wavelength measurement. In the previous chapter, several peak detection
algorithms were examined based on their performance in finding the peak location under
an increasing amount of noise. It was determined that, for the nature of this work, the
polynomial curve fit algorithm would be adequate. Therefore, the next step involved
implementing this algorithm along with the wavelength references into a fiber Bragg

grating readout unit.

4.2 Modifying the FBG Unit

For this project, a FBG readout unit was readily available for modifications and
was constructed by a student from the University of Toronto [38]. The readout unit was
constructed by modifying a computer tower case with additional parts such as
photodetectors, couplers, and a laser diode. The purpose of this was to try to minimize
the number of separate modules required for a readout unit and create a compact system
design with the potential to become a portable unit in the future. As previously
mentioned, it is impractical and cumbersome to bring separate sources and optical
spectrum analyzers to monitor Bragg grating sensors. A schematic diagram of this FBG

readout system is shown in figure 4.1.
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Figure 4.1 Schematic of FBG interrogatién unit.

This unit consisted of a laser diode which had a 2nm tuning range in the
wavelength ranges of 1535 to 1537nm and 1539 to 1541nm. The wavelength range in
which the laser diode operated was controlled using a thermoelectric cooler (TEC). A
TEC moves heat from one side of the cooler to the other when a DC voltage is applied to
it. As a result, the laser diode is kept at a constant temperature. Therefore, the heat
absorption is proportional to the current through the thermoelement. Since the Bragg
grating was in the 1536nm range, a 500mA current was applied to the TEC to move the
wavelength sweep range to 1535 to 1537nm.

The sensor and the wavelength references were connected to the inputs of the
FBG readout unit as shown in figure 4.2. The Bragg grating was placed in input 1, the
gas cell input/output ports were connected to inputs 2 and 3 respectively, and the etalon
was connected to input 4. For the first trials, the etalon was not used in order to evaluate

the performance of the gas cell as a single wavelength reference.
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Figure 4.2 Schematic of FBG unit with sensor and wavelength references as inputs.

Data acquisition was performed using the software Labview and signal processing
was done in Matlab. The readout unit was modified by replacing the programs in Matlab
with ones specific to the use of wavelength references as a means of determining the
Bragg peak wavelength. These programs also implemented sub-sampling and
polynomial curve fitting techniques and can be found in Appendix A. A screen shot of
the Labview user interface is shown in figure 4.3.

This interface allows the user to input the reference Bragg wavélength either from
the manufacturer or the value determined during calibration. Also, the user can choose
which inputs to monitor, as well as the duration of the scan. For example, the user would
choose to highlight input 1 for the Bragg grating and input 3 for the gas cell reference.
Inputs 2 or 3 can be used as the gas cell reference since it works in transmission either
way. Light is sent down all of the ports each time. Therefore, for a certain scan duration,
only the active ports should be highlighted in order for the data acquisition program to
determine which outputs from the photodetectors to sample, including the reference

signal from the laser itself. The outputs of the interface include the Bragg wavelengths
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and strains determined by the Matlab data analysis program using the etalon and gas cell

wavelength references or simply just the gas cell alone.

Figure 4.3 Screenshot of Labview user interface.

4.3 Testing of the Modified FBG Unit

For the first test, as mentioned earlier, the Bragg grating and the gas cell reference

were used. The Bragg grating was unstrained and placed between two foam cubes for
insulation purposes. This was due to the high sensitivity of the Bragg grating to
temperature changes. The lab itself was subject to temperature changes of approximately
2°C.

In the system, as the current to the laser is swept, the wavelength will also sweep.

As the wavelength of the laser sweeps through a particular gas absorption line, a
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minimum in the transmitted power will be observed. Simultaneously, as the wavelength
sweeps at a particular wavelength, a peak in the reflected power will occur when 2, is
reached. The reflected Bragg peak, gas cell absorption lines and the reference signal
from the laser is shown in figure 4.4. The signals between sample points 1000 and 3600

represent one modulation cycle of the laser sweep from 1535 to 1537nm and back down

to 1535nm.
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Figure 4.4 Plot of signals from the FBG, gas cell and the laser.
The signals are then normalized using the reference signal from the laser. Using two gas
cell absorption lines, the position of a FBG peak A, can be estimated by using simple

linear interpolation, as shown in figure 4.5.
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Figure 4.5 Determining the Bragg peak wavelength using interpolation from the gas cell waveform.

Since the laser sweeps through the gas cell absorption minima each cycle, it is

possible to interpolate to these peaks on each sweep cycle. As a result, short term and

long term drifts in laser wavelength can be corrected for. As a demonstration of this

capability, we swept the laser using a triangular current sweep once every 10ms. This

allowed the determination of strain in the FBG once every 10ms. However, due to the

large amount of computation required, the peak fitting was carried out offline using

Matlab. All Matlab programs used in this thesis can be found in Appendix A.

4.4 Short Term Stability Test

As shown in figure 4.6, the peak to peak variation in the measured peak position is

less than 0.4pm over this 1 second measurement.
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Figure 4.6 Variation of error over a 1 second scan.
RMS=0.071578pm, Peak-to-Peak=0.3948pm

This peak to peak variation, which is approximately 0.39ue, corresponds to the resolution
of the system in short term drifts. This value is much lower than most reported systems
which have a resolution of 2pm [19].

In order to test the long term stability of the system, the FBG sensor was insulated
again between the foam cubes and readings every 5 seconds were taken over a period of

10 minutes. In this test, the drift was somewhat larger at 1pm as shown in figure 4.7.
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Figure 4.7 Variation of error over a 10 minute time period.
RMS=0.208pm, Peak-to-Peak=1.0281pm
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The source of this larger drift has not been identified; however, one possible and likely
explanation could be the small (0.1°C) temperature drifts in the FBG as the foam is not a

perfect buffer from the environment.

4.5 Implementation of the Etalon as a Wavelength Reference

In the next part of the project, the etalon obtained from Wavelength References
Inc. was used for further improvement in the accuracy of the Bragg peak location. As
mentioned earlier, an etalon is a comb filter with a large wavelength range and the
spacing between the combs is referred to as the free spectral range (FSR). The FSR for
this particular etalon was approximately 140pm. It operates in reflection mode because it
has a larger dynamic range and is less sensitive to input power variations than in
transmission mode. Several simulations using the etalon characteristic equations were
performed to observe the etalon signal variations. with respect to wavelength and
temperature. A simulated etalon waveform in reflection mode in the wavelength range

1535 to 1537nm is shown in figure 4.8.
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Figure 4.8 Etalon response in reflection from 1535 to 1537nm.
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The etalon response also varies with wavelength and temperature, each defined by a
specific equation. The Sellmeier dispersion formula, as seen in the following equation,
describes the behavior of the etalon waveform as the operating wavelength changes.

n’(\) - 1=B)> + B> + Bi)® (4.1)

¥-Ci MV-C V-G
In the equation above, the B and C coefficients are constants of the dispersion formula
and n is the index of refraction with respect to the wavelength. Therefore, the index of
refraction changes as the wavelength changes. In addition to this characteristic, the
etalon’s response to temperature is defined by the Schott formula as shown in the
equation below:

An(AT) = npo’ -1 (DAT + D|AT? + DLAT? + EgAT + E AT (4.2)
2nTo A — Ak

where nrg is the value derived from the Sellmeier formula, and the D, E and Atk are
constants of the formula. Detailed calculations are found in Appendix B. The etalon
response to variations in temperature is shown in figure 4.9. As one can see, the

temperature has a significant effect as it ranges from -40°C to +80°C.
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Figure 4.9 Etalon response as temperature varies.
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The etalon package contains a temperature sensor which allows for temperature
compensation of the response. Also, dispersion is usually an issue for large wavelength
ranges. However, it does not have as much effect to the etalon response for a wavelength
range of 2nm. Typically, when an etalon is used in conjunction with a gas cell, it is
possible to achieve wavelength accuracies of £1.5pm [39]. As a result, it is expected that
the etalon has the potential to further improve the accuracy of locating the Bragg peak.
The etalon was implemented by connecting it to input port 4, as seen in figure 4.2.
The reflected Bragg peak, gas cell absorption lines, etalon response and the reference
signal from the laser is shown in figure 4.10. One half of the modulation cycle of the
laser sweep from 1535 to 1537nm is found between sample points 500 and 1750. The
etalon response reveals the nonlinearities in the laser sweep as the spacing between the
peaks are not the same. Therefore, the addition of the etalon reduces the error introduced

during interpolation from the gas cell alone.
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Figure 4.10 Plot of signals from the FBG, gas cell, etalon and laser.
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As one can easily observe, the spacing between the etalon peaks is much smaller than the
gas cell line separations. After finding each ge;s cell minima and assigning their specific
wavelength found in the NIST standards, the etalon peak locations were determined. The
wavelengths of the two etalon peaks nearest to the first gas cell wavelength were found
using linear interpolation. These two peaks were then used to determine the constants for
the etalon equation which determined the rest of the peak wavelengths. This calculation
can be found in Appendix B. The Matlab program then was modified to use linear
interpolation from the etalon peaks to determine the Bragg peak wavelength.

Short term and long term stability tests were performed as before; however, this
time the etalon was used for interpolation. The results over a one second scan are shown
in figure 4.11. This time the peak to peak variation was 0.177pm which was significantly
less than the result of 0.3948pm achieved from interpolation from just tﬁe gas cell. From

this graph, it can be seen that the error was limited by the sampling resolution.
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Figure 4.11 Variation of error over a 1 second scan with the etalon.
RMS=0.05089pm, Peak-to-Peak=0.177181pm

The long term stability was then determined by examining the variation of the

measurements over a 10 minute time period. This is shown in figure 4.12.
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Figure 4.12 Variation of error over a 10 minute time period with the etalon.
RMS=0.266pm, Peak-to-Peak=0.978054pm

As one can see, there were still some temperature drift effects in the signal. However, in
this case, the peak to peak variation was less than 1pm. A comparison of the results from
interpolation from the gas cell and from the etalon is illustrated in the following figure.

The offset was due to the initial wavelength calculated by each method.
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Figure 4.13 Variation of error over a 10 minute time period with and without the etalon.
With Etalon: RMS=0.266pm, Peak-to-Peak=0.978054pm
Without Etalon: RMS=0.260pm, Peak-to-Peak=0.952132pm
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- From the graph, the results from the both the etalon and gas cell interpolations
agree well with each other. The difference between the errors may be a result due to the
increase in accuracy of measurement with the use of the etalon. As mentioned earlier, it
was expected to improve the accuracy of measurements by +1.5pm and the difference
between the two signals is roughly 1.75pm. However, without knowing what the correct
value of the Bragg wavelength is, conclusions about the effect of the etalqn on the
measurement cannot be drawn. Therefore, it is necessary to conduct some experimental
tests using the fiber Bragg grating and a metal foil strain gauge in order to conclusively

determine whether the etalon does improve strain measurement accuracy.

4.6 Conclusion

In this chapter, the implementation of the polynomial curve fit algorithm in
conjunction with two types of wavelength references: a hydrogen cyanide gas absorption
cell and an etalon, was discussed. By simply using the gas cell alone, the performance of
the FBG unit in strain measurement was found to be sufficient for the requirements of
structural health monitoring. However, the goal of this thesis was to explore the
possibility of further improving the accuracy in measurement using an etalon. The results
shown in this chapter have proved that the etalon does improve the stability of
" measurements, especially in short term scans. A discussion of the load testing performed
and a comparison of the results from the modified FBG unit to a metal foil strain gauge

are presented in the following chapter.
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CHAPTER 5

EXPERIMENTAL TESTING AND RESULTS FROM THE FBG UNIT

5.1 Introduction -

In the previous chapter, the implementation of the wavelength references in the
FBG unit was discussed. The results from the unstrained sensor tests proved that the use
of the HCN gas cell and/or the etalon increased the accuracy of Bragg peak location thus
improving the accuracy of strain measurements. The strain tests carried out on the FBG
to evaluate the performance of the FBG unit with the wavelength references are discussed

in this chapter.

5.2 Test Setup

An experimental test setup was fabricated in order to test the accuracy of the FBG
unit using the wavelength reference. This setup involved designing and manufacturing a
constant stress cantilever beam [40] as shown in figure 5.1a. The purpose of creating such
a beam was to ensure the Bragg grating experienced constant strain across its entire
gauge length. If the strain across the grating was not constant, the grating would
experience a strain gradient across its length and thus, result in erroneous strain readings.
Also, it was important to reduce any errors between the Bragg grating and the
corresponding strain gauge that was mounted right next to it. This way, both sensors

would experience the same stress in spite of their different lengths.

58



Chapter 5 Experimental Testing and Results From The FBG Unit

side view

I 6.35mm

He
> fo-

T

A 4

209.55mm

X

top view

63.5mm 12.7mm

SOONNNNNNNNNN

a)

S
section

modulus
actual

theoretical

M
bending
moment

|
1

. “ 0.
| stress

b)

Figure 5.1 Constant stress beam design
(a) Dimensions of the constant stress beam.
(b) Variation of section modulus, bending moment and stress over the beam length with point load P.

The relationship between the bending moment and stress is defined by the following

equation:
o =M(Ex)c =Px (5.1)
Ix) S

where o is the bending stress and M is the bending moment at a distance x from P, the

point load. Also, c is equal to half the thickness of the beam and is the distance from the
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neutral axis to the beam surface. I is the moment of inertia of the beam cross-section.

Finally, S is the section modulus of the beam and is defined as:

S =b(x)t? (5.2)

where b is the beam width at a distance x from P, and t is the beam thickness. Strain is
linearly proportional to stress and varies with Young’s modulus constant, E, as seen in

Hooke’s law:

e=0o=Px (5.3)
E ES

The calculations for the section modulus, bending moment and stress found in figure 5.1b

are as follows:

From equation 5.2, S = b(x)t* where b(x) = 63.5 x
6 209.55
Therefore, S = (63.5 * 6.352) x=2.036 x
(209.55 * 6)
Also, M =Px

Finally, from equation 5.1, 0©0=Px=_Px =0.491P (N/mm®)
S 2.036x

Thus, as shown in figure 5.1, the stress is constant along the span of the beam. As shown
in figure 5.2, the cantilever was fabricated from Aluminum 6061-T6, which has a
Young’s modulus, E, of 69x10° N/m? and a thickness of 6.35mm (%4”). The anticipated

load, P, which would be applied within the elastic range, was 100N.
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Figure 5.2 Constant stress beam dimensions.

Therefore, the expected stress and strain on the beam was 49.1x10° N/m?, using equation
5.1, and 712x10°% or 712pe, respectively. A finite element model of the cantilever using
Adina confirmed that the stress was constant over the span of the beam. The finite

element model of the beam is shown in figure 5.3.

TIME 1.000
PRESCRIBED
FORC

TIME 1000

1000

Figure 5.3 Finite element mesh plot of beam with applied force and boundary conditions.

The resulting stress distribution over the length of the beam and the cross section is

shown in figures 5.4a and 5.4b, respectively.
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Figure 5.4 Stress plot of beam.
(a) Stress distribution over the length of the beam (b) Cross section view of strain distribution

The éolor bar in figure 5.4a corresponds to an expected stress of roughly 40kN/m?* over
the top length of the beam which is, approximately, equal to that obtained using equation
5.1. This value of stress then relates to a strain of 580ug, as seen in the beam cross-
section in figure 5.4b. This strain is experienced on the upper 8% (~0.5mm deep) of the
beam thickness.

The fiber optic sensor and strain gauge were attached to the test beam as shown in
figure 5.5. The fiber sensor was placed near the center of the beam and the cable and

fiber ends were glued on with the fast drying adhesive, Loctite and an accelerator. Epoxy
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AE-10, which consists of a mixture of adhesive resin AE and curing agent 10, was mixed
in a bottle for 5 minutes before being used to glue the rest of the bare fiber down. After a
cure time of 5-6 hours, a final protective coat of nitrile rubber was placed on the fiber.
The strain gauge (TML model no. FLA-6-11-5L), which had a measurement error of
+1%, was then placed parallel to the fiber sensor and held in place using MBond 200

catalyst and adhesive. A coating was then used to protect the sensor.

Figure 5.5 Beam with attached sensors.

5.3 Test Procedure

The test beam was then securely attached to the fixture. The strain gauge was
hooked up to a data acquisition system while the fiber sensor was connected to the FBG
interrogation unit. A screw at the end of the fixture was used to apply the point load to

the beam, as shown in figure 5.6.

Figure 5.6 Cantilever test fixture.
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The gas cell and etalon, which were also connected to the FBG unit, are shown in figures
5.7a and 5.7b. Both devices were obtained from Wavelength References Inc. The gas

absorption cell was connected to two ports because it operates in transmission, while the

etalon works in reflection.

a) b)
Figure 5.7 Wavelength references.
(a) HCN gas absorption cell (b) etalon

By turning the screw, the load at the end of the beam was increased. This caused an
increase in strain in the strain gauge of Sue increments up to a maximum of 200ue. At
each increment, a reading was taken from the FBG unit. After which, these files were
later processed offline. The anticipated strain of approximately 700ue could not be
achieved because of the constraints of the fixture design. In order to achieve a strain of
that magnitude, the cantilever required a greater displacement range than the fixture
could provide. Although it was possible to alter the design of the fixture, it was decided
that it was not necessary to achieve a strain of 700ue to test the accuracy of the

measurement system.

5.4 Results and Discussion
The test data from the first test of the strain gauge and the FBG unit with and

without the etalon for interpolation are shown in figure 5.8.
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Figure 5.8 Comparison from the first test of strain readouts from the FBG unit to the strain gauge.
The results are relatively good except for some deviations of approximately 10ue.
Through further analysis, it was observed that the tip of the screw used to apply the load
was not completely smooth which, in turn, created a large amount of friction between the
screw and beam surface. Therefore, this was causing torque on the cantilever and as a
result, more strain was applied on the Bragg sensor. To address this problem the screw
was rounded smooth using extremely fine sandpaper. The test was then repeated and the

results are shown in figure 5.9.
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Figure 5.9 Comparison from the second test of strain readouts from the FBG unit to the strain gauge.
The results from the second test are excellent as the difference in readings from the strain
gauge and the fiber optic sensor is negligible. The accuracy of the measurement
technique was further investigated by regarding the deviations in strain with respect to
the strain gauge from the signals obtained with and without the etalon, as shown in figure
5.10. The gauge factor used was 0.8, which corresponds to the GF = 1-p. = 1-0.2017 =
0.7983, as calculated in equations 2.7 and 2.9. Using interpolation with the etalon, the
average deviation from the strain gauge was 0.264pe with a maximum error of 2.598pe.
Without the etalon, or in other words, using interpolation from the gas cell, the average
deviation from the strain gauge was 1.478ue and the maximum error was 4.236pe. This
demonstrates that the addition of an etalon as a means of interpolation significantly

improves the measurement accuracy by about 1.2ue.
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Figure 5.10 Comparison of strain deviations.
With Etalon: RMS=0.9854u¢, Peak-to-Peak=4.5262ue
Without Etalon: RMS=1.3213ug, Peak-to-Peak=5.8723ue

The RMS error obtained with the etalon was 0.9854ue while using the gas cell alone

resulted in a RMS error of 1.3213pe.

5.4 Conclusion

In this chapter, the design of an experimental test setup and the theoretical
modeling carried out using Adina were discussed. Two measurement methods were
evaluated: finding the Bragg wavelength using interpolation with and without the etalon.
Although both methods performed well in comparison to the strain gauge, it was
demonstrated that the use of an etalon does improve the measurement accuracy of
determining strain and as a result, is an effective addition as a complementary wavelength

reference.
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CHAPTER 6

CONCLUSION

6.1 Summary

This thesis has provided a comprehensive study on fiber optic sensors,
specifically fiber Bragg gratings, and demonstrated the increased effectiveness of adding
an etalon as a complementary wavelength reference. While the gas cell guarantees
absolute strain measurements, the etalon further improves the measurement accuracy by
providing an additional point of reference.

This thesis began with a comparative study of various peak location algorithms.
Using Matlab, six peak location methods were evaluated based on the computation time
and the amount of noise required in the signal before the algorithm failed to stay below
an error of 5pm. This study concluded that the polynomial, Lorentzian and Gaussian
fitting methods were the most stable. However, among those methods, the polynomial
peak fitting algorithm had a significantly lower computation time. Therefore, it was
decided that polynomial fitting would be used in determining the peak locations in the
signals. Also, the method of sub-sampling was introduced and simulations determined
that it did slightly improve the performance of the fitting algorithm.

The next step involved writing a program to determine the Bragg wavelength
using the wavelength references. This program incorporated the polynomial peak fitting
algorithm and the sub-sampling technique. Since the gas cell wavelengths were

previously known values, the etalon peaks were found by interpolation and use of the
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etalon transmission equations. After the etalon wavelengths were determined, the Bragg
wavelength was calculated by interpolation from the etalon peaks. Using simply the gas
cell alone, it was found that the measurement error in a one second scan was 0.4pm and
1.03pm in a 10 minute scan. However, the addition of the etalon reduced that error to
O.18pm' over a one second scan and 0.98pm over a 10 minute period. These initial
simulations helped prove that the addition of an etalon does improve the accuracy of
measurements.

Finally, load testing was performed on a constant stress beam with a Bragg sensor
and strain gauge to provide a comparison in the readings. Aftér the strain gauge and
Bragg sensor were attached to the cantilever, static load testing was performed on the
fixture. The strain readouts from both the strain gauge and Bragg sensor were compared.
In order to determine the strain on the Bragg sensor, two methods were implemented: the
first using interpolation from the etalon and the second using interpolation from the gas
cell alone. It was determined that both measuremerﬁ methods performed favorably.
However, the method using interpolation from the etalon was slightly more accurate by
1.2pe than using gas cell interpolation alone.

In conclusion, this thesis has met the goals set out to be achieved. It has
demonstrated that an efficient and accurate peak location algorithm incorporated with a
gas cell and etalon can significantly improve the accuracy of strain measurements from a
Bragg sensor. Moreover, wavelength references provide numerous benefits, namely,
providing an absolute standard by which the strain is determined and ensuring long term

monitoring due to their stability. By improving the method in which a Bragg sensor is
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interrogated, stable and accurate strain measurements are now possible for fiber sensors

in structural health monitoring projects.

6.2 Recommendations for Future Research

The list below features some suggestions for future work in the area of fiber Bragg
grating sensor systems.
» Develop a measurement technique to measure Bragg sensors which are
multiplexed on a single fiber.

> A more detailed study on better techniques for peak location.
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APPENDIX A

MATLAB PROGRAMS



% This pregram is the main program used in the Labview interface and determines
the Bragg wavelength using the gas cell and etalon wavelength references

function process_data_v8(binfile, parameter_array, duration, chan_array, laser_source,
raw_plot, peak wavelength)

Yeparameter_array = [0 0 0 1; 1536 1536 1536 1536; 0.5 0.5 0.5 0.5; 6.5¢-6 6.5¢-6 6.5¢-6
%6.5¢e-6; 0.80 0.80 0.80 0.80; 23.5 23.5 23.5 23.5; 23.5 23.5 23.5 23.5; 1536.214
%1536.214 1536.214 1536.214; 0.1e-8 0.1e-8 0.1¢-8 0.1e-8; 0.55e-6 0.55e-6 0.55¢-6
%0.55¢-6];

%binfile="C:\Documents and Settings\All Users\Documents\Data 06-10-2003\06-10-
%2003 _08-30-22PM 3.bin';

%duration=0.5;

%chan_array=[{110 1];

%laser source=1;

Y%raw_plot=0;

%peak wavelength=1536.430;

dynamic=0; %scan over 1 second file

%some variable initialization
clear REF;

clear fbgl;

clear fbg?2;

clear fbg3;

clear gascell peak;

clear bragg peak;

clear etalon_peak;

%Global Variables

global strain; %strain value for bragg grating

global braggwavelength; %calculated bragg peak wavelength
global output_G;

global strain_gc;

global braggwavelengthl;

%global gascell peak; %gascell peaks

%global bragg peak; %bragg peaks

%global etalon_peak; %etalon peaks

%global fbgl; %channel 1
%global fbg2; %channel 2
%global fbg3; %channel 3
%global REF; Y%reference signal

channels = NNZ(chan_array); %finds active channels
chans_G = channels + 1; %total number of active channels plus the reference signal



samples = duration*chans_G*258000;

fid = fopen(binfile,'t"); = %Here the binary file is opened with read only access
[rawdata,count]=fread(fid,samples,'int16"); % this reads successive 16 bit integers
fclose(fid); % this closes file after reading data '
%REF _offset = offset_fixer(rawdata,chans G);

REF offset=0;

if dynamic==
datalength=6000; %sets data to contain one cycle of a wavelength sweep
else
if chans G==3
datalength=length(rawdata)/3; %entire length of data
else
datalength=length(rawdata)/4;
end;
end;

X = [1:1:datalength];

LYY Y6 %% Ve Yo% Y6 Yo% %Y Ye %% Yo% Yo Yo Yo% % Yo% % Yo% % % %% % %o %% %
OB YeY6 Y%V Y% oYY %Yo Y6 Yo% Yo% Yo YoY% U Ye %% Yo %% %o %% % % %% %

[fbgl,fbg2,fbg3 REF]=channel assign(rawdata,REF offset,datalength,chans G,raw_plot,
X);

YoY6 6% Yoo Y% %Yo Ve Yo% Yo% e Yo Yo% Yo Voo e %o %% Yoo %% %Yo % %% % % Yo%
OB Ye Yo% Voo e Yo% YoV Ye Yo% Y Yo Yo Yo% %Yo Ye %% % Y6 %% %% %% %%

Yosub-sampling of data
signal=X;
wi=1:0.0625:length(X);
ri=interp1(X,REF,wi,'spline");
gi=interp1(X,fbg2,wi,'spline');
bi=interp1(X,fbgl,wi,'spline');
if chans G==
ei=interp1(X,fbg3,wi,'spline’);
end;

REF=ri;
fog2=gi;
fbgl=bi;
if chans G==
fbg3=ei;



end;
wavelength=wi;

if chans G==
etalon=fbg3;
end;

[minvr minr}=min(REF);

[minvg ming]=min(fbg2);
[minvb minb]=min(fbgl);
if chans G==4

[minve mine]=min(fbg3);
end;

ref=REF-minvr; %remove offset
gascell=fbg2-minvg;
bragg=fbgl-minvb;

if chans G==

etalon=fbg3-minve;

end;

ref norm=ref/max(ref);  %normalizing
- gascell norm=gascell/max(gascell);
bragg norm=bragg/max(bragg);

if chans G==
etalon_norm=etalon/max(etalon);
end; :

ref=ref norm;
gascell=gascell norm;
bragg=bragg norm;

if chans G==
etalon=etalon _norm,;
end;

Y%figure
%oplot(X,gascell,X,bragg,'r:");

O Ya %YV Ye Yo% %Yo Yo% %Yo Ye e %% %o Vo Y YoY% %Yo %% % %o %% % % % Yo% %
oY%V Y Yo%V %e %Yo N Yoo %% %o Vo Y YoY% %% Vo %% % %o %% % % % % %%

[maxref maxrj=max(ref);
min=0.2*maxref;
start=0;



if dynamic==0 :

minpoint=start_end points(min,start,ref,dynamic); %finding start and end points of
one cycle

start_position=minpoint(1);

end_position=minpoint(2);

minx=start_position;

numsignal=channels;

if chans G==

[gascell peak,bragg peak,etalon peak]=peak finder interp8(gascell,bragg,etalon,wavele
ngth,start_position,end position,numsignal);

[braggwavelengthl,braggwavelength2 braggwithetalonl]=wavelength_calc_interp8(gasc
ell_peak,bragg peak,etalon peak,wavelength);
%braggwavelength=braggwavelengthl;
braggwavelength=braggwithetalonl;
else

[gascell peak,bragg peak,etalon_peak]=peak finder_interp(gascell,bragg,etalon,wavelen '
gth,start_position,end_position,numsignal);

[braggwavelengthl,braggwavelength2]=wavelength_calc_interp(gascell_peak,bragg pea
k,wavelength);
braggwavelength=braggwavelengthl;
end;
strain_et=strain_calc(parameter_array,peak wavelength,braggwavelength);
strain_gc=strain_calc(parameter_array,peak wavelength,braggwavelengthl);
else
minpoint=start_end_points(min,start,ref,dynamic);
numsignal=channels;
format long;
for i=1:length(minpoint)-1
start_position=minpoint(i);
end position=minpoint(i+1);
if chans_G==

[gascell _peak,bragg peak,etalon_peak]=peak_finder_interp8(gascell,bragg,etalon,wavele
ngth,start_position,end_position,numsignal);

[braggwavelengthl braggwavelength2,braggwithetalonl]=wavelength_calc_interp8(gasc
ell_peak,bragg peak,etalon_peak,wavelength);
%bragg wavelengthl(i)=braggwavelengthl;
%bragg wavelength2(i)=braggwavelength2;
Y%braggwavelength=braggwavelengthl;
bragg_wavelengthl(i)=braggwithetalonl;
%bragg_wavelength2(i)=braggwithetalon2;



braggwavelength=braggwithetalonl;

braggwithgcl(i)=braggwavelengthl;

braggwithgc2(i)=braggwavelength?2;
else

[gascell peak,bragg peak,etalon peak]=peak finder interp(gascell,bragg,etalon,wavelen
gth,start_position,end_position,numsignal);

[braggwavelengthl,braggwavelength2]=wavelength_calc_interp(gascell _peak,bragg pea
k,wavelength);
bragg wavelengthl(i)=braggwavelengthl;
bragg wavelength2(i)=braggwavelength2;
braggwavelength=braggwavelengthl;
end;
strain_et=strain_calc(parameter_array,peak wavelength,braggwavelength);
strain_gc=strain_calc(parameter_array,peak wavelength,braggwavelengthl);
bragg strain(i)=strain_et;
bragg gc strain(i)=strain_gc;
end;
end;

if dynamic==1

data(1:length(bragg wavelengthl),1)=bragg wavelengthl’;
%data(1:length(bragg wavelength2),2)=bragg wavelength2';
data(1:length(bragg_strain),3)=bragg strain';
data(1:length(braggwithgcl),4)=braggwithgcl';
data(1:length(braggwithgc2),5)=braggwithgc2';
data(1:length(bragg gc strain),6)=bragg gc strain',

%dlmwrite('temp.out',data);

save temp.out data -ASCII -double -tabs
end;

braggwavelength
strain_et
braggwavelength1
strain_gc



% This function assigns the correct data to each channel from the raw data

function
[fbgl,fbg2 fbg3 REF]=channel assign(rawdata,REF offset,datalength,chans G,raw _plot,
X)

%global fbgl;
%global fbg2;
%global tbg3;
%global REF;

if chans G ==
for i =4:chans_G:4*datalength
fbg1(i/4) = abs(rawdata(i-3));
fbg2(i/4) = abs(rawdata(i-2));
fbg3(i/4) = abs(rawdata(i-1));
REF(i/4) = rawdata(i) - REF offset;
end
if raw_plot==1
figure(1)
plot(X,fbgl, X, fbg2 X fbg3 X REF,"");
title('Reflected signals from FBG sensors and laser REF sampled at 250 kS/s each');
legend('FBG','Gas Cell','Etalon','Laser REF");
end
end

if chans G ==

for i = 3:chans_G:3*datalength
tbg1(i/3) = abs(rawdata(i-2));
fbg2(i/3) = abs(rawdata(i-1));
REF(i/3) = rawdata(i) - REF offset;

end

if raw_plot==

figure(1)

plot(X,tbgl,-' X fbg2.'-.' X REF."");

title('Reflected signals from FBG sensors and laser REF sampled at 250 kS/s each');

legend('FBG','Gas Cell','Laser REF");

end

fbg3=0;

end

if chans G ==

for i = 2:chans_G:2*datalength
fbg1(i/2) = abs(rawdata(i-1));
REF(i/2) = rawdata(i) - REF_offset;



end

if raw_plot==1

figure(1)

plot(X,fbgl,X,REF,"");

title(Normalized FBG signal sampled at 250 kS/s each’);
legend('FBG','Laser REF");

end

end



% This function finds the start and end points of one modulation cycle
function minpoint=start end points(min,start,ref,dynamic)

[maxref maxr]=max(ref);
min=0.01*maxref;
count=1;

minimum_found = 0; %this will turn off loop once minimum is found
flag1=0;
flag2=0;

if dynamic==0
cycles=2;
for w=1:cycles
while minimum_found ==
while flagl ==
if ref(count) < min;
positionl = count;
flagl =1,
end
count=count+1;
end;
count=count+30;
while flag2==0
if ref(count)>min
position2=count;
flag2=1;
end;
count=count+l1;
end;
array=ref(position]:position2);
[value,minpos]=min(array);
minimum_found=1;
end
xarray=positionl :position2;
minpoint(w)=xarray(minpos);
count=count+60;
minimum_found=0;
flag1=0;
flag2=0;
end;

else
allminfound=0;
w=1;



while allminfound==0
while minimum_found ==
‘while flagl == 0
if count>=length(ref),break,end
if ref(count) < min
position] = count;
flagl =1;
end
count=count+1;
end;
count=count+20;
while flag2==0
if count>=length(ref),break,end
if ref(count)>min
position2=count;
flag2=1;
end;
count=count+1;
end;
if count>=length(ref),break,end
array=ref(positionl:position2);
[value,minpos]=min(array);
minimum_found=1;

end

if (allminfound==0)&(count<length(ref))
xarray=position1:position2;
minpoint(w)=xarray(minpos);
end;
count=count+20;
flag1=0;
flag2=0;
w=w+tl;
if count>=length(ref)
minimum_found=1;
else
minimum_found=0;
end;
if count>=length(ref)
allminfound=1;
end;
if allminfound==1,break,end
end;



end;

t=length(minpoint);

if minpoint(t)==minpoint(t-1)
minpoint=minpoint(1:t-1);

end;



%This function determines the locations of the peaks for the bragg grating,
%gas cell, and etalon using the polynomial fit algorithm

function
[gascell_peak,bragg peak,etalon_peak]=peak finder_interp8(gascell,bragg,etalon,wavele
ngth,start_position,end_position,numsignal)

n=numsignal;
for phase=1:n
if phase==
signal=gascell;
threshold=0.05;
limit=8;
elseif phase==2
signal=bragg;
limit=2;
maxbragg=bragg(start_position);
for i=start_position:end_position
if bragg(i)>maxbragg
maxbragg=bragg(i);
end;
end;
threshold=0.75;
elseif phase==3
signal=etalon;
limit=33;
threshold=0.12;
end;
start=start_position+1920;
flag 1=0;
num_peaks=0;
flag_2=0;
peaknum=1;
if phase==
start=start position+3520;
end;
if phase==
start=start position+100;
end;

while num_peaks ==
count=start;
flag 1=0;
while flag 1 == %finding threshold crossing points
if phase==1



if (signal(count)<threshold)&(signal(count+5)<threshold)
pointl=count;
flag 1=1;
end;
else
if signal(count) > threshold;
pointl = count;
flag 1=1;
end;
end;
count=count+5;
end;
count=count+35;
flag_2=0;
while flag 2==0
if phase==
if (signal(count)>threshold)&(signal(count+5)>threshold)
point2=count;
flag 2=1;
end;
else
if signal(count)<threshold
point2=count;
flag 2=1;
end;
end;
count=count+5;
end;

x=wavelength(point1:point2);
y=signal(point1:point2);
p=polyfit(x,y,2); %polynomial fit algorithm
f=polyval(p,x);
if phase==
[minpol,z]=min(f);
else
[maxpol,z]=max(f);
end;

if phase==

gascell peak(peaknum)=x(z); %gas cell wavelength peaks
elseif phase==2

bragg peak(peaknum)=x(z);  %bragg wavelength peaks
elseif phase==3

etalon_peak(peaknum)=x(z); %etalon wavelength peaks
end; ‘



peaknum=peaknum-+1;
start=point2+60;
if phase== %moving threshold closer to the next peak
if length(gascell peak)<limit
num_peaks=0;
if length(gascell_peak)<2
threshold=0.35;
start=start+3550;
elseif (length(gascell_peak)>=2)&(length(gascell_peak)<5)
threshold=0.6;
_ start=start+700;
elseif (length(gascell_peak)>=5)&(length(gascell_peak)<6)
start=start+3900;
threshold=0.6;
elseif (length(gascell _peak)>=6)&(length(gascell_peak)<7)
start=start+4375;
threshold=0.35;
else
start=start+300;
threshold=0.05;
end;
else
num_peaks=1;
end;
elseif phase==2
if length(bragg_peak)<limit
num_peaks=0;
else
num_peaks=1;
end;
elseif phase==3
if length(etalon_peak)<limit
num_peaks=0;
if length(etalon_peak)<=6
threshold=threshold+0.06;
elseif (length(etalon_peak)>=7)&(length(etalon_peak)<=15)
threshold=0.7,
elseif length(etalon_peak)==16
thhresold=0.9;
elseif (length(etalon peak)>=17)&(length(etalon_peak)<=24)
threshold=0.7;
elseif (Iength(etalon_peak)>=25)&(length(etalon_peak)<=26)
start=start+1000;
threshold=0.55;
elseif (length(etalon_peak)>=27)&(length(etalon_peak)<=29)
start=start+900;



threshold=threshold-0.1;
else
start=start+670;
threshold=0.12;
end;
else
num_peaks=1;
end;
end;
end;
end;



% This function finds the corresponding wavelengths to the gas cell and
%etalon peaks and determines the bragg wavelength using interpolation

function
[braggwavelengthl,braggwavelength2 braggwithetalonl]=wavelength calc_interp8(gasc
ell_peak,bragg peak,etalon peak,wavelength)

gepeak1=1536.1170;  %known value of gas cell minima
gepeak2=1536.7034; :

gepeak3=1537.2997,

gepeak4=1537.9069;

gepeaks=[gepeak1;gepeak2;gepeak3;gepeak4];
peaks=gascell peak;

for n=1:8
z=peaks(n)/0.0625;
pl=z-40;
p2=z+40;
for r=pl:p2
if wavelength(r)==peaks(n)
data_peaks(n)=r;
end;
end;
end;

for n=1:2
z=bragg peak(n)/0.0625;
pl=z-40;
p2=z+40;
for r=pl:p2
if wavelength(r)==bragg_peak(n)
b_peaks(n)=r;
end;
end;
end;

for n=1:33
z=etalon_peak(n)/0.0625;
pl=z-40;
p2=z+40;
for r=p1:p2
if wavelength(r)==etalon_peak(n)
eta_peaks(n)=r;



end;
end;
end;

waveperdivl=(gcpeak2-gcpeakl)/(data_peaks(2)-data peaks(1));
waveperdiv2=(gcpeak3-gcpeak2)/(data_peaks(3)-data_peaks(2));
waveperdiv3=(gcpeak4-gcpeak3)/(data_peaks(4)-data_peaks(3));
waveperdivd=(gcpeak2-gcpeak1)/(data_peaks(8)-data peaks(7));
waveperdiv5=(gcpeak3-gepeak?2)/(data_peaks(7)-data_peaks(6));
waveperdiv6=(gcpeak4-gepeak3)/(data peaks(6)-data_peaks(5));
waveperdiv=[waveperdiv1;waveperdiv2;waveperdiv3;waveperdiv4;waveperdiv5;wavepe
rdiv6];

gascell peaks=peaks;

Yo% %% % Y6 % Yo% Yo% Yo Ye %% %Yo Yo Yo% Yo% Yo% Yoo %o Yo Yo Yo Yo %o %% %% % %% %%
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%ZEtalon Simulation

%Assuming n varies with temperature
%Applying Schott Formula

format long;

%Nominal Temperature
t0=20; %degrees celsius
temp=20;
deltatemp=temp-t0;

%Schott constants
d0=-4.93¢-6;
d1=7.94e-9;
d2=-6.32e-11;
€0=9.79¢-7;
e¢l=14.7e-10;
lamdatk=0.296e-6;

%Assuming n varies with wavelength
%Applying Sellmeier dispersion formula

%Sellmeier Coefficients
b1=1.78922056;
b2=3.28427448e-1;
b3=2.01639441;
c1=1.35163537e-2;
€2=6.22729599¢-2;



c3=1.68014713¢2;

%Wavelength Range
min=1536.1e-9;
max=1537.9¢-9;

1amdé=min: le-12:max;

%Find n using Sellmeier Formula
term1=(b1*(lamda.*1e6).72)./((lamda.*1e6).2-c1);
term2=(b2*(lamda.* 1€6).72)./((lamda.*1e6)."2-c2);
term3=(b3*(lamda.*1e6).72)./((lamda.*1e6).*2-c3);
n=sqrt(term1+term2-+term3+1);

%find dn/dT using Schott formula

termone=(n."2-1)./(2*n);
termtwo=(d0*deltatemp)+(d1*deltatemp.*2)+(d2*deltatemp.”3);
termthree=((e0*deltatemp)+(e1*deltatemp.”2))./((lamda* 1e9).”2-(lamdatk* 1€9)"2);

dn=termone.*(termtwo+termthree);

nrev=n-+dn;
n=nrev;

%Finding | using raw data
peakl=gcpeakl+(eta_peaks(3)-data peaks(1))*waveperdivl;
peak2=gcpeak1+(eta_peaks(4)-data_peaks(1))*waveperdivl;
m_est=peak1/(peak2-peakl);

m=round(m_est);

nl=m*peak2/2;

lam=peak2*1e-3;

term1=(b1*(lam).”"2)./((lam).”2-c1);
term2=(b2*(lam).”2)./((lam)."2-c2);
term3=(b3*(lam)."2)./((lam)."2-c3);
n_est=sqrt(term1-+term2-+term3+1);

I=nl/n_est*1e-9;

%Solving for Etalon Transmission
%I1=0.00493777618254; %l=nl/n @ 1550.0nm 1=8.704025e-3/1.76274190612355

delta=(4*pi*n*])./lamda;
=((n-1).72)./((n+1)."2);
t=((1-1)."2)./((1-r)."2+4*1.*(0.5-0.5*cos(delta)));
Yesig=1-t;

Yt=sig;

t=t-0.7367,



Yfigure
%plot(lamda*1e9,10*log10(1-t),'r');
%title('Simulated Etalon Spectrum using Sellmeier Dispersion Formula');
%xlabel('Wavelength (nm)');
%ylabel('Intensity (dB)");
%grid on;
%figure
%plot(lamda*1e9,(t),'r");
%axis(min*1e9 max*1e9 0 0.27]);
Y%grid
%title('Simulated Etalon Spectrum using Sellmeier Dispersion Formula');
%xlabel('Wavelength (nm)');
%ylabel('Intensity");
%grid on;
flag_1=0;
num_peaks=0;
flag 2=0;
peaknum=1;
start=50;
%threshold=0.95;
threshold=0.262;
limit=13;
while num_peaks ==
count=start;
flag_1=0;
while flag 1 ==0
if t(count) > threshold;
pointl = count;
flag 1 =1;
end
count=count+1;
end;
count=count+3;
flag_2=0;
while flag 2==0
if t(count)<threshold
point2=count;
flag 2=1;
end;
count=count+t1;
end;

x=lamda(point1:point2);
y=t(point1:point2);
p=polyfit(x,y,2);



f=polyval(p,x);
[maxpol,z]=max(f);
eta_sim(peaknum)=x(z);
peaknum=peaknum-+1;
start=point2+20;
if length(eta_sim)<limit
num_peaks=0;
else
num_peaks=1;
end;
end;
eta_sim=eta_sim*1e9; %etalon peaks from simulation equation
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%determining which etalon peaks are located between each set of gas cell peaks
bgloop=1;
for count=1:length(eta_peaks)
if (eta_peaks(count)>data_peaks(bgloop))&(eta_peaks(count)<data peaks(bgloop+1))
index(count)=count
end;
end;
k = find(index);
=k(1);
mainindx(bgloop)=f;
clear index;
bgloop=2;
for count=1:length(eta_peaks)
if (eta_peaks(count)>data_peaks(bgloop))&(eta _peaks(count)<data_peaks(bgloop+1))
index(count)=count;
end;
end;
k = find(index);
=k(1);
mainindx(bgloop)=f;-
clear index;
bgloop=3;
for count=1:length(eta_peaks)
if (eta_peaks(count)>data_peaks(bgloop))&(eta _peaks(count)<data_peaks(bgloop+1))
index(count)=count;
end;
end;
k = find(index);
=k(1);
mainindx(bgloop)=f;



clear index;

bgloop=4;

for count=1:length(eta_peaks)
if (eta_peaks(count)>data_peaks(bgloop))&(eta_peaks(count)<data_peaks(bgloop+1))

index(count)=count; :

end;

end;

k = find(index);

£=k(1);

mainindx(bgloop)=f;

clear index;

%ndx=1,

%for jx=1:length(mainindx)-1

% n=mainindx(jx);

% m=mainindx(jx+1)-1;

% for b=n:m

% epeak(b)=gcpeaks(ndx)+(eta_peaks(b)-data_peaks(ndx))*waveperdiv(ndx);
% end; ‘

% ndx=ndx+1;

%end,

sim_etalonpeak=eta_sim;
meas_etalonpeak=eta_peaks(mainindx(1):mainindx(4)-1);

%determining the Bragg wavelength using interpolation from the etalon

for dx=1:length(meas_etalonpeak)
if (b_peaks(1)>=meas_etalonpeak(dx))&(b_peaks(1)<meas_etalonpeak(dx+1))
braggwithetalonl=sim_etalonpeak(dx)+(b_peaks(1)-
meas_etalonpeak(dx))*(sim_etalonpeak(dx+1)-
sim_etalonpeak(dx))/(meas_etalonpeak(dx+1)-meas_etalonpeak(dx));
end;
end,;

%determining the Bragg waveleﬁgth using interpolation from the gas cell

if (bragg_peak(1)>=gascell_peak(1))&(bragg_peak(1)<gascell_peak(2))
braggwavelengthl=gcpeak1+(b_peaks(1)-data_peaks(1))*waveperdivl;
elseif (bragg_peak(1)>=gascell_peak(2))&(bragg_peak(1)<gascell_peak(3))
braggwavelengthl=gcpeak2+(b_peaks(1)-data_peaks(2))*waveperdiv2;
elseif (bragg_peak(1)>=gascell_peak(3))&(bragg_peak(1)<gascell_peak(4))
braggwavelengthl=gcpeak3+(b_peaks(1)-data_peaks(3))*waveperdiv3;
end;;



if (bragg_peak(2)>=gascell_peak(7))&(bragg peak(2)<gascell peak(8))
braggwavelength2=gcpeak1+(data peaks(8)-b_peaks(2))*waveperdiv4,
elseif (bragg_peak(2)>=gascell_peak(6))&(bragg peak(2)<gascell peak(7))
braggwavelength2=gcpeak2+(data_peaks(7)-b_peaks(2))*waveperdivSs;
elseif (bragg peak(2)>=gascell peak(5))&(bragg peak(2)<gascell peak(6))
braggwavelength2=gcpeak3+(data_peaks(6)-b_peaks(2))*waveperdiv6;
end;;



%This function calculates the strain corresponding to the bragg wavelength
fuhction calcstrain=strain_calc(parameter_array,peak wavelength,braggwavelength)
global strain;

format long;
channel_info=parameter_array;
column_number=1;

%calibration coefficients

baseline = channel info(2,column_number);

beta_nought = channel info(4,column_number); %thermo-optic response of grating at
fabrication ,

GF = channel _info(5,column_number); %gauge factor ~0.5

lambda=peak wavelength; %pbaseline
wavelength as defined by user

alpha_sub = channel info(9,column_number); = %thermal expansion coefficient of
substrate

alpha_fiber = channel info(10,column_number); %thermal expansion coefficient of
fiber ~0.55e-6 per degree K (fused silica)

ref temp = channel info(6,column_number); = %reference temp of sensor at
calibration
act_temp = channel info(7,column_number);  %actual temp at measurement

%calculate beta
BETA = ( beta_nought + GF * abs(alpha_sub - alpha_fiber) ); %apparent thermal
strain

%per degree celsius
Y%temperature shift
delta T = (act_temp - ref_temp);

%wavelength shift
delta lambda=braggwavelength-lambda;

%strain calculation
strain= (1/GF)*( delta_lambda/lambda - BETA*delta T )*1e6;

calcstrain=strain;



% This is the Main Peak Location Program which compares the various methods
%used to find the Bragg peak .

%Obtains signal from excel spreadsheet

clear all; ‘

a=xlsread('C:\Documents and Settings\Evangeline\My Documents\Thesis\laser
data\Signals\bragg.xls");

signal=a(:,2);

signal=signal(419:1578);

y=length(signal);

wavelength=1:y;

avg=sum(signal)/y;

signal=signal-avg;

signal=(signal)/max(signal);

orig_signal=signal;

[min iminj=min(signal);

[max imax]=max(signal);

totalsig=abs(max-min);

rmssignal=sqrt(sum(signal.~2)/y);

deviation=[0 0.0002 0.0004 0.0006 0.0008 0.001 0.002 0.004 0.006 0.008 0.01 0.02 0.03
0.04 0.05%;

t=length(deviation);

orig_signal=signal;

for count=1:t
stddev=deviation(count);
sumnoise=0;
if stddev~=0
fori=1l:y
noise=sqrt(stddev)*randn(1);
new_signal(i)=orig_signal(i)+noise;
sumnoise=sumnoise+(noise)"2;
end;
else
new_signal=orig signal;
end;
if stddev==0
sumnoise=0;
end; ’
rmsnoise=sqrt((sumnoise)/y); _
" rmsnoise2=sqrt(sum(new_signal."2)/y);
%signal=(signal)/max(signal);
minerror=4e6;
signal=new_signal;
format long;
figure,



subplot(3,2,1);

plot(wavelength,signal);

ylabel('Normalized Amplitude");

%xlabel('Data Point');

title(['Original Signal with Noise standard deviation ',num2str(stddev)]);

%Method 1
%Threshold and Middle Value
peak1=middlevalue(signal,wavelength);

%Method 2
%Highest point/Lowest Point
peak2=highlow(signal,wavelength);

%Method 3

%Fitting a polynomial
[peak3,xvalues,ysignal,polysignal]=polynomial(signal,wavelength);
subplot(3,2,2);
plot(xvalues,ysignal,'o',xvalues,polysignal,'-");
ylabel('Normalized Amplitude');
%xlabel('Data Point');
title("Polynomial Fit to Signal');

%Method 4

%Take the Derivative and find the Zero Crossing
[peak4,filtersig,derivsig,xderiv]=derivative(signal,wavelength);
subplot(3,2,3);
plot(wavelength, filtersig);
ylabel('Normalized Amplitude');
%xlabel('Data Point');
title('Filtered Signal');
subplot(3,2,4);
plot(xderiv,derivsig);
ylabel('Normalized Amplitude');
Y%xlabel('Data Point');
title('Derivative of Filtered Signal');

%Method 5

%Fitting a Lorentzian Curve
[peaks5,lorentz,newsig,xrange]=lorentzian(signal, wavelength,minerror,y);
subplot(3,2,5);
plot(xrange,lorentz,'r',xrange,newsig);
ylabel('Normalized Amplitude');
xlabel('Data Point');
title('Lorentzian Fit to Signal');



%Method 6

%Fitting a Gaussian Curve
[peak6,gauss,newsignal,xaxis]=gaussian(signal,wavelength,minerror,y);
subplot(3,2,6)
plot(xaxis,gauss,'r',xaxis,newsignal);
ylabel('Normalized Amplitude');
xlabel('Data Point");
title('Gaussian Fit to Signal');

%Peaks from Different Methods
peak(count,:)=[peak1 peak2 peak3 peak4 peak5 peako];
ideal=peak(1,6);
difference(count,:)=abs(peak(count,:)-ideal);

%Noise to Signal Ratio
noisesig(count,:)=rmsnoise/rmssignal;
logofnoisesig(count,:)=log(rmsnoise/rmssignal);
noisedev(count,:)=stddev;
noisetosigratio(count,:)=rmsnoise/totalsig;
logofntosratio(count,:)=log(rmsnoise/totalsig);

end; ~

%Noise to Signal Ratio
noise=ones(t,3);
noise(:,1)=noisedev;
noise(:,2)=noisetosigratio;
noise(:,3)=logofntosratio;

rmsnoise=ones(t,2);
rmsnoise(:,1)=noisesig;
rmsnoise(:,2)=logofnoisesig;

%data

data=zeros(t,17);
data(:,1:3)=noise;
format;
data(:,5:10)=peak;
data(:,12:17)=difference;

%write to temporary file temp.out in C:\MatlabR12\work
dlmwrite(‘temp.out',data,',");



% This function takes the 3dB threshold crossings and assigns the middle value as
%the peak location

function peak=middlevalue(signal,wavelength)

threshold=0.7079*max(signal); %3db threshold
i=1;
while signal(i)<threshold
i=i+1;
end;
pointl=signal(i);
[maxsig n]=max(signal);
=n;
while signal(j)>threshold
=L
end;
point2=signal(j);
k=itj;
if mod(k,2)==0
n=k/2;
else
n=(k-1)/2;
end;
peak=wavelength(n);



%This function takes the point where the highest value occurs and assigns that as
%the peak location

function peak=highlow(signal,wavelength)

x=max(signal);
for i=1:length(signal)
if signal(i)==x;
peak=wavelength(i);
end;
end;



“%This function fits a second order polynomial signal to the raw data and assigns
Yothe point where the maximum value of the polynomial occurs as the peak location

function [peak,x,y,fl=polynomial(signal,wavelength)

threshold=0.4*max(signal);

i=1;

while signal(i)<threshold
i=i+1;

end;

pointl=signal(i);

[maxsig n]=max(signal);

=

while signal(j)>threshold
J=tL

end;

point2=signal(j);

x=wavelength(i:j);
y=signal(i:j);
p=polyfit(x,y',3);
f=polyval(p,x);
%figure
Yoplot(x,y,'0',x,1,'-");
[maxpol,zJ=max(f);
peak=x(z);



% This function take the first derivative of the signal and assigns the zero crossing
% point as the peak location

function [peak,filtsig,sy,x]=derivative(signal, wavelength)

[thresh tmax]=max(signal);
threshold=0.8*thresh;

%figure
%plot(wavelength,signal);

[b,s]=butter(2,0.1); %2nd order filter with wn=0.1
w=filter(b,s,signal);
filtsig=w;

%figure
%plot(wavelength, filtsig);

n=length(filtsig);

z=1;

for j=1:n-1;
deriv2(j)=(filtsig(G+1)-filtsig(j))/(wavelength(j+1)-wavelength(3));
z=z+1;

end;

k=length(deriv2);

x = 1:k; % for discrete plots
fineness = 1/100;
finex = 1:fineness:k; % for continuous plots

% make and plot random data
y = deriv2;
% parameters for Gaussian kernel
FWHM = 10;
sig = FWHM/sqrt(8*log(2));
% do the smooth
sy = zeros(size(y));
forxi=x
kerny i= (1/(sqrt(2*pi)*sig))*exp(-(x-x1)."2/(2*sig"2));
% kerny i=kerny i/sum(kerny i);
sy(xi) = sum(y.*kerny i);
end

%plot of data
Yfigure
Yoplot(x,sy);



%hold on;

%q=(1/(sqrt(2*pi)*sig)) *exp(-(x)."2/(2*sig"2));
Yew=conv(y,q); %euse convolution command
Y%plot(x,w(1:length(sy)),r");

%][b,a]=butter(1,0.8);
Yesy=filter(b,a,sy);

% plot of smoothed data
Yfigure
%plot(x,sy);
deriv2=sy;

%[m iJ=max(deriv);
%q=length(deriv);
Y%deriv2=deriv(i+1:q);

[min imin]=min(deriv2);
[max imax]=max(deriv2);

g=1;
h=1;
zerofound=0;
if imax<imin
for i=imax:imin;
if (deriv2(i)>0)&(deriv2(i+1)<0)
zerofound=zerofound+1,
peak(g)=wavelength(i+1);
g=g+l;
elseif (deriv2(i)<0)&(deriv2(i+1)>0)
zerofound=zerofound+1;
valley(h)=wavelength(i+1);
h=h+1;
end;
end;
elseif imax>imin
while imax>imin
deriv2(imax)=0;
[max imax}=max(deriv2);
end;
for i=imin:imax;
if (deriv2(i)>0)&(deriv2(i+1)<0)
zerofound=zerofound+1;
peak(g)=wavelength(i+1);
g=gtl;
elseif (deriv2(i)<0)&(deriv2(i+1)>0)



zerofound=zerofound+1;
valley(h)=wavelength(i+1);
h=h-+1;
end;
end;
end;

if g>1
peak=peak(g-1);
elseif g==1
peak=peak(1);
end;



% This function fits a Lorentzian curve to the raw data and assigns the maximum
%value of the curve as the peak location

function [minmu,fmin,signalmin,xrange]=lorentzian(signal,wavelength,minerror,y)

threshold=0.5*max(signal);

i=1;

~ while signal(i)<threshold
i=i+1;

end;

point1=signal(i);

[maxsig n]=max(signal);

j=n;

while signal(j)>threshold

L

end;

point2=signal(j);

for mu=wavelength(i):wavelength(j)

xmin=mu-~(y/2);

xmax=mu+(y/2)-1;

if xmin<1
xmin=1,

end;

if xmax>y
XMax=y;

end;

sigmamin=1;

sigmamax=150;

count=1;

for sigma=sigmamin: 1:sigmamax
X=Xmin:xmax;
signalnew=signal(xmin:xmax);
f=(1/pi).*((sigma/2)./((x-mu). 2+(sigma/2)"2));
maxf=max(f);
f=f/maxf;
=f;
error=0;
for k=1:length(f)

error=error+(signalnew(k)-f(k))."2;

end;
Ise(count)=error/length(f);
count=count+1;

end;

sigma=sigmamin: 1 :sigmamax;

[minlse z]=min(Ise);



if minlse<minerror
minerror=minlse;
minsig=sigma(z);
minmu=mu;
minx=minmu-(y/2);
maxx=minmu+(y/2)-1;
if minx<1
minx=1;
end;
if maxx>y
Maxx=y;
end;
Xrange=minx:maxx;
signalmin=signal(minx:maxx);
fmin=(1/pi).*((minsig/2)./((xrange-minmu). 2-+(minsig/2)"2));
maxf=max(fmin);
fmin=fmin/maxf;
fmin=fmin';
end;
end;

%figure,
%plot(xrange,fmin,'r',xrange,signalmin);



% This function fits a Gaussian curve to the raw data and assigns the maximum
%value of the curve as the peak location

function [minmu,fmin,signalmin xrange]=gaussian(signal,wavelength,minerror,y)

threshold=0.4*max(signal);

i=1; .

while signal(i)<threshold
i=i+l1;

end;

pointl=signal(i);

[maxsig n]=max(signal);

=n;

while signal(j)>threshold
i ¥

end;

point2=signal(j);

for mu=wavelength(i):wavelength(j)

xmin=mu-(y/2);

xmax=mu+(y/2)-1;

if xmin<1
xmin=1;

end;

if xmax>y
Xmax=y;

end;

sigmamin=1;

sigmamax=70;

count=1;

for sigma=sigmamin: 1:sigmamax
X=Xmin:xmax;
signalnew=signal(xmin:xmax);
=(1/(sigma*sqrt(2*pi))).*exp((-1*(x-mu).”2)./(2*sigma2));
maxf=max(f), '
f=f/maxf;,
=f;
error=0;
for k=1:length(f) :

error=error+(signalnew(k)-f(k)).”2;

end;
Ise(count)=error/length(f);
count=count+1;

end;

sigma=sigmamin:1:sigmamax;

[minlse z]=min(lse);



if minlse<minerror
minerror=minlse;
minsig=sigma(z);
minmu=mu;
minx=minmu-(y/2);
maxx=minmu-+(y/2)-1;
if minx<1
minx=1;
end;
if maxx>y
maxx=y;
end;
Xrange=minx:maxx;
signalmin=signal(minx:maxx);
fmin=(1/(minsig*sqrt(2*pi))).*exp((-1 *(xrange-minmu).2)./(2*minsig"2));
maxf=max(fmin);
fmin=fmin/maxf;
fmin=fmin';
end;
end;

%figure,
Y%plot(xrange,fmin,'r',xrange,signalmin);
%ylabel('Normalized Amplitude');
%xlabel('Data Point');

Y%title('Gaussian Fit to Signal');



%This is a similar Main Peak Location Program, but it employs sub-sampling
%techniques

%0Obtains signal from excel spreadsheet
clear all;

a=xlsread('C:\Documents and Settings\Evangeline\My Documents\Thesis\laser
data\Signals\bragg.xls");

signal=a(:,2); '
signal=signal(419:1578);
y=length(signal);

wavelength=1:y;

avg=sum(signal)/y;

signal=signal-avg;
signal=(signal)/max(signal);
orig_signal=signal;

[min imin]=min(signal);

[max imax]=max(signal);
totalsig=abs(max-min);
rmssignal=sqrt(sum(signal."2)/y);
deviation=[0 0.0002 0.0004 0.0006 0.0008 0.001 0.002 0.004 0.006 0.008 0.01 0.02 0.03
0.04 0.053;

t=length(deviation);

orig_signal=signal;
orig_wavelength=wavelength;

for count=1:t
stddev=deviation(count);
sumnoise=0;
if stddev~=0
fori=l:y
noise=sqrt(stddev)*randn(1);
new_signal(i)=orig_signal(i)+noise;
sumnoise=sumnoise+(noise)"2;
end;
else
new_signal=orig_signal;
end;
if stddev==0
sumnoise=0;
end;
rmsnoise=sqrt((sumnoise)/y);
%signal=(signal)/max(signal);
minerror=4¢6;
signal=new_signal,
format long;
figure,



subplot(3,2,1);

plot(wavelength,signal);

ylabel('Normalized Amplitude');

%xlabel('Data Point’);

title(['Original Signal with Noise standard deviation ' num2str(stddev)]);

signal=new_signal;
wi=1:0.0625:1ength(signal);
si=interp1(orig_wavelength,signal,wi);

signal=si;
wavelength=wi;

%Method 1
%Threshold and Middle Value
peak1=middlevalue(signal,wavelength);

%Method 2
%Highest point/Lowest Point
peak2=highlow(signal,wavelength);

%Method 3
%PFitting a polynomial
[peak3 xvalues,ysignal,polysignal]=polynomial2(signal,wavelength);
subplot(3,2,2);
plot(xvalues,ysignal,'o' xvalues,polysignal,'-');
ylabel('Normalized Amplitude');
%xlabel('Data Point');
title('Polynomial Fit to Signal’);

%Method 4

9%Take the Derivative and find the Zero Crossing
[peak4,ﬁltersig,derivsig,xderiv]:derivative(signal,wavelength) ;
subplot(3,2,3);
plot(wavelength, filtersig);
ylabel('Normalized Amplitude');
%xlabel('Data Point');
title('Filtered Signal’);
subplot(3,2,4);
plot(xderiv,derivsig);
ylabel('Normalized Amplitude');
%xlabel('Data Point');
title('Derivative of Filtered Signal');

%Method 5
%Fitting a Lorentzian Curve



[peaks,lorentz,newsig,xrange]=lorentzian(signal,wavelength,minerror,y);
subplot(3,2,5);

plot(xrange,lorentz,'r', xrange,newsig);

ylabel('Normalized Amplitude');

xlabel('Data Point');

title('Lorentzian Fit to Signal');

%Method 6

%Fitting a Gaussian Curve
[peak6,gauss,newsignal,xaxis]=gaussian(signal,wavelength,minerror,y);
subplot(3,2,6)

plot(xaxis,gauss,'r',xaxis,newsignal);

ylabel('Normalized Amplitude');

xlabel('Data Point');

title('Gaussian Fit to Signal');

%Peaks from Different Methods

peak(count,:)=[peak1 peak2 peak3 peak4 peak5 peako6];
ideal=peak(1,6);
difference(count,:)=abs(peak(count,:)-ideal);

%Noise to Signal Ratio
noisesig(count,:)=rmsnoise/rmssignal;
logofnoisesig(count,:)=log(rmsnoise/rmssignal);
noisedev(count,:)=stddev;
noisetosigratio(count,:)=rmsnoise/totalsig;
logofntosratio(count,:)=log(rmsnoise/totalsig);

end;

%Noise to Signal Ratio
noise=ones(t,3);
noise(:,1)=noisedev;
noise(:,2)=noisetosigratio;
~ noise(:,3)=logofntosratio;

rmsnoise=ones(t,3);
rmsnoise(:,1)=noisesig;
rmsnoise(:,2)=logofnoisesig;
rmsnoise(:,3)=rmsnoise;

%data
data=zeros(t,21);
data(:,1:3)=noise;
data(:,5:7)=rmsnoise;
format;
data(:,9:14)=peak;



data(:,16:21)=difference;

Y%write to temporary file temp.out in C:\MatlabR 12\work
dlmwrite('temp.out',data,',");



% This program obtains the etalon, gas cell and Bragg signals using an oscilloscope
%and determines the Bragg peak wavelength in reference to the gas cell and etalon

clear all;
a=xlsread('C:\Documents and Settings\Evangeline\My Documents\Thesis\laser
data\Signals\bragg.xls");
bragg=a(:,2);
bragg=bragg(419:1578);
y=length(bragg);

lengths(1)=y;

datapointb=1:y;
avg=sum(bragg)/y;
bragg=bragg-avg;
bragg=(bragg)/max(bragg);

[min imin]=min(bragg);

[max imax]=max(bragg);
totalsig=abs(max-min);
rmsbragg=sqrt(sum(bragg.”2)/y);

b=xlsread('C:\Documents and Settings\Evangeline\My Documents\Thesis\laser
data\Signals\etalon.xls");
etalon=Db(:,2);
etalon=etalon(248:1754);
y=length(etalon);
lengths(2)=y;
datapointe=1:y;
avg=sum(etalon)/y;
etalon=etalon-avg;
maxetalon=etalon(1);
for i=1:length(etalon)

if etalon(i)>maxetalon

maxetalon=etalon(i);

end;
end;
etalon=(etalon)/maxetalon;
[min imin]=min(etalon);
[max imax]=max(etalon);
totalsig=abs(max-min);
rmsetalon=sqrt(sum(etalon.”2)/y);

a=xlsread("C:\Documents and Settings\Evangeline\My Documents\Thesis\laser
data\Signals\gascell.xls");

gascell=a(:,2);

gascell=gascell(216:1734);



y=length(gascell);
lengths(3)=y;
datapointg=1:y;
avg=sum(gascell)/y;
gascell=gascell-avg;
maxgascell=gascell(1);
for i=1:length(gascell)
if gascell(i)>maxgascell
maxgascell=gascell(i);
end;
end;
gascell=(gascell)/maxgascell;
[min imin]=min(gascell);
[max imax]=max(gascell);
totalsig=abs(max-min);
rmsgascell=sqrt(sum(gascell."2)/y);

[max_length,m]=max(lengths);

for p=1:m
if p~=m
t=1:lengths(p)/max_length:lengths(p)-+lengths(p)/max_length;
g=length(t);
Yy=ones(p,q);
y(p,1:9)=t;
else
t=1:lengths(p)/max_length:lengths(p);
q=length(t);
Yey=ones(p,q);
y(@.1:9=t;
end;
end;

newbragg=interp1(datapointb,bragg,y(1,:));
newetalon=interp1(datapointe,etalon,y(2,:));
newgascell=interp1(datapointg,gascell,y(3,:));

datapoint=1:max_length;

figure
plot(datapoint,newbragg','b',datapoint,newetalon’,'r',datapoint,newgascell','g");
axis([0 max_length -4.0 1]);

grid on;

xlabel('Data Point'),

ylabel('Normalized Amplitude');

title('Etalon, Gas Cell and Bragg Signals');



bragg=newbragg';
etalon=newetalon';
gascell=newgascell'’;

[data,waveperdiv]=peakdetection2(bragg,etalon,gascell,datapoint);

gascell_points=data(1:3,1);
gascell peaks=data(1:3,2);
etalon_points=data(:,3);
etalon_peaks=data(:,4);
bragg point=data(1,5);
bragg peak=data(1,6);



%This function is the main peak location program which uses polynomial curve
%fitting to find the peak positions and uses interpolation from the etalon and gas
%cell to find the Bragg wavelength

function [data,waveperdiv]=peakdetection2(bragg,ctalon,gascell,datapoint)
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flag=0;

lindex=1;

start=1;

loopindex=1;

gas=-1*gascell;

maxgas=gas(1);

for i=start:length(gas)
if gas(i)>maxgas

maxgas=gas(i);

end;

end;

threshold=0.4*maxgas;

while loopindex~=0

i=start+2;
if flag==0
while (gas(i)<threshold)&(i~=length(datapoint))&(gas(i-
1)<threshold)&(gas(i+1)<threshold)
i=i+1;
end;
else
i=i+3;
while (gas(i)<threshold)&(i~=length(datapoint))&(gas(i-
1)<threshold)&(gas(i+1)<threshold)
' i=it+1;
end;
end;

pointl=gas(i);
%[ maxsig n]=max(gas);
j=I+2;
if j<length(datapoint)
while (gas(j)>threshold)&(gas(j-1)>threshold)&(gas(j+1)>threshold)
L
end;



W=

if (gas(w+1)<threshold)&(gas(w+2)>threshold)&(gas(w+3)<threshold)
flag=1;

else
flag=0;

end;

point2=gas(j);
stop=j;
x=datapoint(i:j);
y=gas(i:j);
p=polyfit(x,y',2);
f=polyval(p,x);
[maxpol,z]=max(f);
peak=x(z);

gascell peaks(loopindex,:)=peak;
%xvalues(loopindex,:)=x;
%ysignal(loopindex,:)=y";
Y%polysignal(loopindex,:)=f;

%figure
%plot(x,y,'0",x,1,'-");
start=stop;

end;

if j>=length(datapoint)
start=length(datapoint);
end;

if start>=length(datapoint)
loopindex=0;

else
loopindex=loopindex+1;

end;

end;

R B X L L
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start=1;

loopindex=1;
peakindex=1;
maxetalon=etalon(1);



for i=1:length(etalon)
if etalon(i)>maxetalon
maxetalon=etalon(i);
end;
end;
%threshold=0.35*maxetalon,;
%threshold=median(etalon);
threshold=0;
while loopindex~=0

i=start;

while (etalon(i)<threshold)&(i~=length(datapoint))&(etalon(i+1)<threshold)
i=itl;

end;

wW=i;

if w+10>=length(datapoint)
last=length(datapoint)-2;

else
last=w+10;

end;

new_i=last;

for t=last:-1:w
if (etalon(t)>threshold)&(etalon(t+2)>threshold)&(etalon(t+1)>threshold)

new_i=t;
end;
. end;
if new_i==last
new_i=last;
end;
1=new _i;

pointl=etalon(i);

J=It2;
if j<=length(datapoint)
while (j~=length(datapoint))&(etalon(j)>threshold)& (etalon(j-
1)>threshold)&(etalon(j+1)>threshold)
¥
end;

W
point2=etalon(j);

if w+10>=length(datapoint)
last=length(datapoint);
stop=last;

else



last=w+10;
for t=w:last
if etalon(t)<threshold
new_j=t;
end;
end;
stop=new_j;
end;

x=datapoint(i:j);
y=etalon(i:j);

if length(x)>5
p=polyfit(x,y',2);
f=polyval(p,x);
[maxpol,z]=max(f);
peak=x(z);
etalon_peaks(peakindex,:)=peak;
peakindex=peakindex+1;
%figure
%plot(x,y,'o",x,f,'-");

end;

start=stop;
end;

if j>=length(datapoint)
start=length(datapoint);
end;

if start>=length(datapoint)
loopindex=0;

else
loopindex=loopindex+1;

end; ’

end;
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maxbragg=bragg(1);
for i=1:length(bragg)



if bragg(i)>maxbragg
maxbragg=bragg(i);

end;

end,

threshold=0.4*maxbragg;

i=1;

while bragg(i)<threshold
i=i+1;

end;

point1=bragg(i);

[maxsig n]=max(bragg);

i

while bragg(j)>threshold
il ¥

end;

-point2=bragg(j);

x=datapoint(i:j);
y=bragg(i:));
p=polyfit(x,y',2);
f=polyval(p,x);
[maxpol,zj=max(f);
bragg_peak=x(z);
Y%figure
%plot(x,y,'0",x,1,'-");

%% %% %% %% % %% %6 %% % %% %% % % %% %% %% %% %%
%Peak Assignment%%%%%%%%%%%%%%%%%%%%%%
%6%%%% %% %% %% % %% %6%% %% %% %% %% %% %% % %%

%laser swept from 1535 to 1537nm

%from the gas cell data sheet, absorption lines occur at 1535.5401, 1536.1170,

1536.7034

%wavelengths per data point= 2nm/length(datapoint)

format long;

theoretical(1)=1535e-9;

fori=2:y
theoretical(i)=theoretical(i-1)+(2e-9/length(datapoint));

end;

theoretical=theoretical*1e9;

Y%waveperdiv=(2/length(datapoint));

gaspeakl=gascell peaks(1);
gaspeak2=gascell peaks(2);



gaspeak3=gascell _peaks(3);

gepeak1=1535.5401;
gepeak2=1536.1170;
gcpeak3=1536.7034;

gepeaks=[gcpeakl;gcpeak?; gepeak3];

waveperdivl=(gcpeak2-gcpeak1)/(gascell _peaks(2)-gascell_peaks(1));
waveperdiv2=(gcpeak3-gcpeak2)/(gascell _peaks(3)-gascell_peaks(2));
waveperdiv=[waveperdiv1 ;waveperdiv2]; '

pindex=1;
for z=1:length(etalon_peaks)
if (etalon _peaks(z)>=gaspeak1)&(etalon _peaks(z)<gaspeak?)
etapeak(pindex)=gcpeak1+((etalon _peaks(z)-gaspeak1)*waveperdivl);
newepeak(pindex)=etalon_peaks(z);
pindex=pindex+1;
elseif (etalon _peaks(z)>=gaspeak2)&(etalon _peaks(z)<gaspeak3)
etapeak(pindex)=gcpeak2-+((etalon _peaks(z)-gaspeakZ)*waveperdiv2);
newepeak(pindex)=etalon_peaks(z);
pindex=pindex+1;
end;
end;

braggpeak=bragg_peak;

for z=1:length(etapeak)-1
if (braggpeak>newepeak(z))&(braggpeak<newepeak(z+1 )
if (braggpeak>gaspeak1)&(braggpeak<gaspeak2)
bpeak=etapeak(z)+((braggpeak—newepeak(z))*waveperdiv1);
else
bpeak=etapeak(z)+((braggpeak-newepeak(z))*waveperdiv2);
end;
end;
end;

-data=ones(length(newepeak),6);
data(1:length(gascell _peaks),1)=gascell_peaks;
data(1:length(gcpeaks),2)=gepeaks;
data(1:length(newepeak),3)=newepeak’;
data(1:length(etapeak),4)=etapeak’;
data(1,5)=braggpeak;

data(1,6)=bpeak;

dlmwrite(‘temp.out',data);



%This program simulates the etalon transmission lines with varying constants of
%refractive index and temperature

%Assuming constant n and T

%Finding Etalon Constants

n=1.76;

=((n-1)"2)/((n+1)"2);

nl=8.707821e-3; %assumed refl=0 @ 1550.4nm by observation of data plot provided by
supplier

%Wavelength Range
xmin=1549e-9;
xmax=1551e-9;
lambda=xmin:le-12:xmax;

%Solving for Etalon Transmission
delta=(4*pi*nl)./lambda;
t=((1-r)"2)./((1-r)"2+4*1*(0.5-0.5*cos(delta)));

figure
plot(lambda*1¢9,10*log10(1-t),T');
title('Simulated Etalon Spectrum’);
xlabel("Wavelength (nm)');
ylabel('Intensity (dB)");
Yaxis([xmin*1e9 xmax*1e9 -30 -5]);
grid on;

figure

plot(lambda*1€9,(1-t),);
axis([xmin*1e9 xmax*1e9 0 0.3]);
title('Simulated Etalon Spectrum’);
xlabel('Wavelength (nm)');
ylabel('Intensity");

grid on;
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%Assuming n varies with wavelength
%Applying Sellmeier dispersion formula

%n=1.76;
Yor=((n-1)"2)/((n+1)"2);

%Sellmeier Coefficients



b1=1.78922056;
b2=3.28427448e-1;
b3=2.01639441;
c1=1.35163537e-2;
€2=6.2272959%¢-2;
c3=1.68014713¢2;

%Wavelength Range
min=1549¢-9;
max=1551e-9;
lamda=min:le-12:max;

%Find n using Sellmeier Formula
term1=(b1*(lamda.* 1e6).72)./((lamda.*1e6)."2-c1);
term2=(b2*(lamda.* 1e6).”2)./((lamda.* 1€6)."2-c2);
term3=(b3*(lamda.* 1€6).72)./((lamda.*1e6)."2-c3);
n=sqrt(terml+term2-+term3+1);

%Solving for Etalon Transmission

1=0.00493994967724; %l=nl/n @ 1550.4nm 1=8.707821e-3/1.76273475823312
delta=(4*pi*n*l)./lamda;

r=((n-1)."2)./((n+1)."2);

t=((1-r)."2)./((1-r)."2+4*1.%(0.5-0.5*cos(delta)));

figure

plot(lamda*1e9,10*log10(1-t),'r");

title('Simulated Etalon Spectrum using Sellmeier Dispersion Formula’);
xlabel("Wavelength (nm)');

ylabel('Intensity (dB));

grid on;

figure

plot(lamda*1e9,(1-t),");

axis([min*1e9 max*1e9 0 0.3]);

title("Simulated Etalon Spectrum using Sellmeier Dispersion Formula');
xlabel("Wavelength (nm)');

ylabel('Intensity");

grid on;
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%Assuming n varies with temperature

%Applying Schott Formula
format long;



%Schott constants
d0=-5.26e-6;
d1=7.41e-9;
d2=-1.89¢-11;
e0=1.02e-9;
el=1.62¢-9;
lamdatk=0.288e-6;

%Sellmeier constants
b1=1.78922056;
b2=3.28427448e-1;
b3=2.01639441;
cl1=1.35163537¢-2;
€2=6.22729599¢-2;
c3=1.68014713¢2;

%Wavelength range
min=1549¢-9;
max=1551e-9;

%Nominal Temperature
t0=25; %degrees celsius

%TTemperature range

mint=-40;

maxt=80;

delt=40;
iter=(abs(mint)+abs(maxt))/delt +1;

lamda=min:1e-12:max;

%Initializing transmission array
t=ones(length(lamda),iter);

%Initializing temperature
temp=mint;

%Main loop
for i=1:iter
deltatemp=temp-t0;

%find n @ t0=25 celsius with varying wavelength using sellmeier formula
term1=(b1*(lamda.*1e6).72)./((lamda.* 1€6)."2-c1);

term2=(b2*(lamda.* 1€6).72)./((lamda.*1€6).”2-c2),

term3=(b3*(lamda.* 16)./2)./((lamda.*1€6).72-c3);
n=sqrt(term1+term2-+term3+1);



%find dn/dT using Schott formula

termone=(n."2-1)./(2*n);
termtwo=(d0*deltatemp)+(d1*deltatemp."2)+(d2*deltatemp.”3);
termthree=((e0*deltatemp)+(e1*deltatemp.”2))./((lamda* 1e9).”2-(lamdatk* 1€9)"2);

dn=termone.*(termtwo-+termthree);

%find new n
nrev=n-+dn;
n=nrev,

%calculate etalon transmission

%I1=4.947626¢-3;

1=0.00493994967724;

delta=(4*pi*n*1)./lamda;

r=((n-1)."2)./((n+1).72);
t(:,1)=(((1-1)./2)./((1-1)."2+4*1.%(0.5-0.5*cos(delta))))';

%iterate temperature
temp=temp-+delt;

end; %main for loop

%Initializing Plot Settings
%set(gef,'DefaultAxesColorOrder',[1 0 0;0 1 0,0 0 151 1 0;00
0], DefaultAxesLineStyleOrder','-|--|:");

figure
plot(lamda*1e9,10*log10(1-t));
title('Simulated Etalon Spectrum');
xlabel('Wavelength (nm)");
ylabel('Intensity (dB)");

grid on;

figure

plot(lamda*1e9,(1-t));
title('Simulated Etalon Spectrum'),
xlabel('Wavelength (nm)');
ylabel(‘Intensity');

grid on;



APPENDIX B

ETALON SIMULATION EQUATIONS



Etalon Simulation
Reflectivity= R = (n-1)?

(n+1)
Trans=T=__(1-R) Refl=1-Trans &= 4l o .
(1-R)% + 4Rsin(5/2) © ns o=4ml - sin x) 10025(2x)
Refl=1 @ T=0
Refl=0 @ T=1

Using etalon signal in manual: max reflection @ 1550.0nm
min reflection @ 1549.862nm

Assuming nominal comb spacing = 138pm, An=1550.0nm Am-1=1549.862nm
, Am+1=1550.138nm

ForRefl=0 T=1= (1-R)?
(1-R)? + 4Rsin’(0/2)
(1-R)? + 4Rsin®(8/2) = (1-R)?
4Rsin?(5/2) = 0

sin?(8/2) = 0
1-cos(®) =0
2
cos(®) =1
cos(4tni/A) = 1
4mnl = 2mm m=0,1,2,.....
A

nl = mA nl= length of cavity
2

nl = mA = (m-1)(1549.862/2) = m(1550.0/2) = (m+1)(1550.138/2)
2

Using (m-1)(1549.862/2) = m(1550.0/2)
m = 11230.884058
© m=11231
nl = (MA)/2 = (11231*1550.0)/2 = 8.704025 mm

Assuming constant n and temp

T= (R = (1-R)?
(1-R)" + 4Rsin*(0/2) (A-R)* +4Rsin“(41nl/A)

nl = 8.704025mm
n=1.76



Assuming n varies with wavelength
n varies using Sellmeier dispersion formula

P\ -1= BiA2  + BpA?  +  Bgh
AM-C, N-C A —C;

n=[ BA> + BpA® + BN +1
JATZCy NMN—C, MN-Cs

Using data sheet: By = 1.78922056
B, = 3.28427448 x 10™
B; = 2.01639441
C = 1.35163537 x 107
C, = 6.22729599 x 1072
Cs = 1.68014713 x 10?

Using Sellmeier equation, n @ 1550.0nm = 1.76274190612355

Therefore, | = ni/in = 8.704025 x 10° =0.00493777618254
1.76274190612355

*  find n using Sellmeier equation
* find R = (n-1)% (n+1)?

* T= (1-R)
(1-R)? + 4Rsin“(41mnl/A)




Assumind n varies with wavelength and temperature

*  find ny, using Sellmeier formula
*  find An using Schott formula

ARAT) = nro2 -1 (DoAT + D1AT? + DoAT® + EgAT + E/AT?)

2n7o A — A
From data sheet: Dg =-4.93 x 10°
D;=7.94x10°
D, =-6.32x 107"
Eo=9.79x107

E;=14.7x 107
A = 0.296 x 10°®

new n = Ny, + An
e find R = (n-1)%(n+1)?
o« T= (1-R)?
(1-R)? + 4Rsin“(4Tnl/A)




Determining the etalon constants using two peak wavelengths

A\ and A, are found from interpolation from a gas cell line

m= M m is rounded off to get an integer
A2 — A

nl = mh;
2

)\=)\2 * 1e-3

n=ﬁ31)\2 + BoA2 + BN+ 1
N -C; N —C, N —Cs;

| =nl/n*1e-9

The constants n and | can now be used to find the other etalon peaks.





