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ABSTRACT

The effects of traps due to either chemical impurities or
lattice imperfections on the steady state current-voltage character-
istics of a solid crystal have been theoretically investigated in a
unified manner for the single injection of charge carriers of one

type (holes), and for the double injection of charge carriers of two

types (electrons and holes) into the crystal from metallic contacts.

Various forms of trap distributions in energy and in space have been

considered. The computed results based on the theoretical expressions
for both single injection and double injection cases under various
conditions are in good agreement with'presently available experimental
results in anthracene corresponding to the same conditions.

In anthracene slices cleaved along the a-b plane with vacuum-
deposited-Ag electrodes, electroluminescence appears first at the
electrode edges. The threshold voltage for the onset of electro-
luminescence is strongly dependent on temperature. Generally, the
voltage for self-sustaining electroluminescence is smaller than the

threshold voltage. It is proposed that the minority carriers (electrons)

required for the formation of singlet exciton following electron~hole re-
combination are emitted from the cathode by tunneling.

For electroluminescence in the specimen with double injection,

a theoretical model for the formation of filamentary currents is pre-
sented. The expressions for the intensity of electroluminescence as
a function of applied average electric field, current density and tem—

perature have been derived on the basls of this model. The computed
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results are in good agreement with presently available experimental
results for undoped anthracené and anthracene doped with tetracene.

A general formulation is also presented for the photovoltaic
effect in a solid with traps. Analytical expressions for the photo-
voltage for two cases, (1) local charge neutrality with traps and
(2) local charge non-neutrality without traps, have been derived, and
the computed results for two extreme conditions (i) strong absorption
and (ii) weak absorption are in good agreement with the experimental
results for naphthalene, anthracene and tetracene crystals. These
expressions can be used not only for the determination of the photo-
voltage under various conditions, but can also be used as a tool to
determine the absorption coefficient, carrier diffusion length, surface
recombination velocity and other bulk propertiés by measuring the photo-
voltage as a function of wavelength of the illuminated light, temper-

ature and the thickness of the crystal specimen.
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CHAPTER I

INTRODUCTION

In the past ten years organic semiconductors have been extensively
studied, both experimentally and theoretically, by many investigators
[8,55,71,80]. Research in this field is rapidly growing, partly because
of their potentialities for electronic devices, and partly because of
their organic structures, and the stﬁdy of these materials may throw
some light on the understanding of the behaviour of biological systems.

Among the known organic semiconductors, anthracene possesses a

relatively simple crystal structure and a reasonable carrier mobility

(® 1 cm2/v—sec) and is'relatively easy to purify and to grow. This is

‘one of the reasons that it has been used as the model material by the

majority of the investigators in.their studies of organic semiconductors.
Since approximations have‘to be made in developing theoretical

models, discrepancies occur between theoretical and experimental results

reported by different investigators. The present state of art indicates

that not only the theoretical models have to be improved, but also the

significance of some physical factors which have been ignored must be
re-examined. The main purpose of the investigation being reported in
this thesis is to study all possible factors that may control 1n3ect10n,

electrolumlnescence and photovoltalc phenomena and to determine the

conditions for their occurrence and subsequent effects.

Current injection in a solid can be classified into (i) single




injection and (ii), double injection. In the case of single injection
of one type of charge carriers (electrons or holes) from an ohmic con~
tact electrode, the injected carrier will interact with the traps present
in the solid, thus controlling the carrier flow and determining the
current-voltage (J-V) characteristics, many investigators [77] have
used the J-V characteristics to determine the possible distribution of
traps in energy within the forbidden gap by comparing their experimental
results with the theoretical expressions available for different forms
of trap distribution. Muller [98] has reported a unified approach for
obtaining the J-V characteristics in a solid having traps distributed
non-uniformly in energy but homogeneously in space. However, it can be
imagined that the spatial distribution of traps can never be homogeneous
because ﬁhere always exist discontinuities between the material and
electrodes [103,146]. The thinner the material specimen used for exper-
imental studies, the more is the influence of the form of spatial dis-
tribution of traps on the J-V characteristics. In the case of double
injection, charge carriers of both types (electrons and holes) are
present and the problem becomes much more complicated because in this
case the recombination which controls the J-V characteristics may either
be bimolecular - direct band to band recombination, or occur through

one or more sets of localized traps ~ indirect recombination. In
deriving the J-V characteristics many investigatorsl[10,77] either
neglected the effect of trapping centers or assumed that the quasineu-
trality approximation could be made. TFor partially or completely filled
deep traps Lampert and Schilling [76] have derived the J-V character-

istics using the regional approximation method that the specimen is




divided into regions which either satisfy the quasineutrality approxi-
mation or are dominated by trapped or free space charge. 1In Chapter III
of this thesis we shall present our new approaches to the theory of
current injection in solid for the cases of single injection and double
injection, taking into account the effects of traps of different types
of distribution in space and in energy, and some computed results to
compare with experimental results.

Electroluminescence in undoped and doped anthracene crystals with

a pair of double~injection electrodes has been observed by many investi-

gators [51,54,124,125,167,168,170]. Earlier than this, Pope et al
[109,119] have reported their observation of electroluminescence in
undoped anthracene crystals and anthracene crystals doped with 0.1 mole ¥
of tetracene using silver paste for electrodes, which has been known
[12,61] to provide a contact which weakly injects holes and blocks elec—
tron injection at low fields. Recently, a similar electroluminescent
phenomenon using silver single injection electrodes has also been reported
by Williams et al [168], and some Russian investigators [17,176] in
anthracene; and by Lohmann et al [83] in naphthalene.

For double injection the recombination of the injected holes with

the injected electrons will yield singlet and triplet excitons and it
is these singlet excitons that radiatively decay producing electrolumi-
nescence. For single injection (say, hole injection) the other type of

charge carriers (say, electrons) is also supplied from the counter elec-

trode (say, electrons from the cathode) but in this case the supply of
minority carriers occurs only at relatively high fields. Thus, the so

called single injection would become double injectilon at the threshold



voltage for the onset of electroluminescence. In fact, many materials

have been used as electrodes [51,92,167,170,175] to produce electrolumi-
nescence in anthracene. ' The fact that different materials used for electrodes
result in different values of threshold voltages indicates that there

are no perfect ohmic contacts, and that different electrode materials in
contact with a crystal surface will form different potential barriers for
carrier injection.

It can also be imagined that the interface between an electrode

and a crystal surface which is not microscopically identical from domain

to domain is never homogeneous and uniform. Thus, there must be one or
more microregions at which the potential barrier has a profile more
favourable to carrier injection than at other regions of the interface.
Furthermore, the crystal itself is never microscopically homogeneous and
uniform. For all these unavoidable imperfections, the current passing
through a crystal specimen is filamentary,at least from a microscopic
point of view. For an electrical field applied to the specimen longi-
tudinally, fhe field will not be uniform longitudinally due to the effect
of space charge and the current density will not be uniform radially due

to the formation of filamentary paths. The current filaments formed in

Si, GaAs, ZnTe, GaAsxP and polycrystalline Si have been observed by

1-x
Barnett et al [8,9]. Therefore, in Chapter IV of this thesis we shall
present our new approach to the double injection filamentary theory and

discuss some electroluminescent phenomena based on this filamentary theory.

The photovoltaic effect can be considered to be the inverse pro-
cess of electroluminescence. In organic crystals, Kallmann and Pope [63]

were the first to report that when an anthracene was illuminated with



a strong light of the fundamental absorption region of anthracene

(A = 3650 A®°), a photovoltage of magnitude up to 0.2V was produced with
negative polarity on the illuminated surface. This phenomena was attri-
buted to the diffusion of more photo-generated holes from the illuminated
to the non-illuminated surfaces since the hole mobility is larger than
the electron mobility in anthracene crystals [69,80,100]. Since then,
many investigators [44,48,87,102,149,157,159] have reported their observ-
ation of the photo&oltaic effect in organic crystals. Piryatinskii et al
{157,159] have reported that if the anthracene was illuminated with the
light of the wavelengths unimportant to absorption (e.g. A > 4000 A°)

the polarity of the photovoltage produced was reversed to that observed
by Kallmann et al. They have attributed this phenomenon to the photo-
release of the electrons from the traps inside the crystal and to the
formation of anti-barrier bending of the bands at the illuminated surface.
It has also been reported [102,157,159] that the spectral distribution

of the photovoltage amplitude correlates closely to the absorption spec-
trum, and the change of light intensity changes only the photovoltage
amplitude but does not affect this correlation, and that the photovoltage
is sensitive to the surface condition. Adsorption of oxygen atoms on

the crystal surfaces reduces the amplitude of the photovoltage. However,
this important phenomenon neither has been systematically studied exper-
imentally nor has it been rigorously analyzed theoretically for organic
crystals. Therefore, in Chapter V of this thesis, we shall present our
theoretical analysis of this photovoltaic phenomenon taking into account

the effects of traps.

As a great deal of work in this field has been available in the




literature, a brief review of available knowledge about current injection,
electroluminescence and photovoltaic phenomena, particularly in anthra-
cene crystals, would give a general outlook about the progress of this
field. Such a brief review is therefore given in Chapter II. Conclu-

sions arising from the present investigation are given in Chapter VI.




CHAPTER ITI
REVIEW OF PREVIOUS WORK ON

ORGANIC SEMICONDUCTORS

In the past few years several extensive review articles in the
field of organic semiconductors have been published [5,21,48,55,71,77,
108,115,173]. 1In this Chapter, only a brief review on the work rele-

vant to the present investigation is given, with particular emphasis

on the work which has not been included in the aforementioned review

articles.

In general, molecular crystals of simple organic structures have
the characteristics of wide energy gap, high resistivity, low carrier
mobility and low melting point; for example, anthracene crystal has
an energy band gap of about 4 eV, resistivity of about 1016 to lO20
ohm~cm and mobility of about 1 cmz/v-sec at 20°C, and melting point of
216°C (see Table 2.1). Therefore, it is almost impossible to generate

a great number of carriers by the thermal excitation process because

of its large energy band gap. Generally, the generation of carriers in

such materials, requires external sources. There are three important
sources for carrier generation, and they are (i) carrier injectiom
from chemically active ohmic contacts, (ii) carrier generation in the
bulk by the photo-excitation and (iii) carrier emission from electrodes

through photoemission process. We shall discuss the source (i) in

Section 2.1 and source (ii) and source (iii) in Section 2.3. Source
(i) provides the advantage that holes and electrons can be injected sep-

arately. The radiative recombination of electrons and holes injected




TABLE 2.1

THE CHEMICAL STRUCTURE, MELTING POINT AND DRIFT MOBILITIES OF NATHTHALENE, ANTHRACENE AND TETRACENE

Organic Chemical Melting Types of Crystal MObilltles Temperature
. . . . (cm?/v-sec) (T) Reference
Semiconductors Structure Point Charge Carriers Axis °
at 20°C Dependence
a 0.51 o (93]
Naphthalene electrons b 0.63 Th0°9
c' 0.68 T 7
c, H @ 80.2°C |
1078 g a 0.88 T_(l)'g
holes b 1.41 T—Z.l [93]
c 0.99 T °°
] -
f a 1.7 T_i'g
Anthracene ; electrons b 1.0 T " [69,80,
i c' 0.4 100]
' l [ l 216°C
| _O-O
C. H l a 1.0 T
14710 ' holes b 2.0 129 [69,80,
; c' 0.8 T 100]
i a
Tetracene ' electrons b 0.5 [7,44,147]
C'
(Naphthacene) CO::O: 357°¢ |
C, H | a
18712 ' holes b 0.01 [7,44,147]
| :




from opposite contacts produces electroluminescence and this will be
discussed in Section 2.2. Finally, the photovoltaic effect is dis-

cussed in Section 2.3.

2.1 CARRIER INJECTION FROM CONTACTS

The book of Lampert and Mark [77], has given quite a comprehensive
review on the current injection from contacting electrodes to inorganic
crystals. In this Section, we shall review mainly the work in this
field for organic crystals. Current injection into a solid is generally
classified into (a) single injection and (b) double injection. Single
injection means that the current flow is mainly due to one type of car-
riers (electrons or holes) injected from a contacting electrode into the
solid. These injected carriers would gradually establish a space-charge
leading to the well known single-carrier space—charge-limited current.
Double injection meens that the current flow involves two types of car-~
riers, electrons injected from the cathode end holes from the anode.

In double injection, recombination kinetics control all the electrical
properties. The recombination process may either be bimolecular (i.e.,
band~-to-band electron-hole recombinafion) or may occur through one or
more sets of localized recombination centers. In the following, we shall
limit ourselves to the steady state electrical properties. The general
expressions for the current-voltage (J-V) characteristics for the most
important cases are summarized in Table 2.2. The J-V characteristics are
strongly dependent on the concentration and the distribution function of
traps inside the specimen.

The diffusion term can be considered to be much smaller than the




TABLE 2.2

THE EXPRESSIONS FOR THE CURRENT-VOLTAGE CHARACTERISTICS FOR SINGLE AND DOUBLE INJECTIONS WITH AND WITHOUT TRAPS

Single Injection in Solids Reference Double Injection in Solids Reference
Trap-free J=9/8¢enq V2/d3 J=9/8¢cuqu V2/d3
P eff -2 3
(991 (,)2 (2, +v) -1t o 11w 1t (106]
Wope = HpoU U (3
eff ROnp '3 3 3L -
Gyt v, ) |, + - I
Traps confined J=9/8ecu_06 Vz/d3 [55,77,
in a single dis- P 120} See Chapter III [59]
crete energy - _
level. 8 Nv/Nt: exp( Et/kT)
Rt oot P S 1 7=t e [7,55,77,
P vip W qeerD) +L 791 89] [59]
ally within the b d See Chapter III
forbidden energy =7 /T
gap. c
Traps distri- qy_N
buted uniformly J = -—{%JL V exp (~ %%) exp (__ZE!__ £g§i117’ See Chapter III [59]

within the for-
bidden energy

gap.

el k1d?
[+

‘01
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drift term if the applied field is large as to make the drift term predom-—
inant. In general, for the applied voltage larger than several kT/q [55,82]
the diffusion term may be neglected without causing a serious error.

As there is no perfect crystals, there are always traps present
in the crystals. In organic semiconductors two types of carrier trap
distributions have been reported [48,55], and they are (i) the traps
confined in discrete energy levels in the forbidden energy gap and (ii)
the traps with a quasi-continuous distribution of energy level (normally
following an exponential form), having a maximum trap density near the
band edges [55,89]. Both types of traps have been extensively investi-
gated in anthracene crystals [13,55,89,113,114,120,121,125,142,145,152,
108]. Simultaneous presence of both types of carrier trap distributions
have also been observed [120,1521. The energy levels and the distribution
of carrier traps can be experimentally determined either by the space~-
charge-limited current (SCLC) method [55], by the thermo-stimulated
current (TSC) method [151], or by the photoemission method [21].
Although these methods may provide some information about the energetic
and kinetic parameters of traps, they do not give any hint as to the
possible physical nature of traps. Some general considerations have been
suggested to relate the discrete traps with chemical impurities intro-
duced into the lattice (chemical traps) and to relate the quasi-continuous
trap distribution with the imperfection of the crystal structure (struc-
tural trap).

We shall discuss the case of discrete traps. Hoesterey and Letson
[57] have shown that tetracene molecules doped into an anthracene crystals

form shallow discrete traps both for electrons and for holes. However,
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anthraquinone molecules in anthracene do not form effective discrete traps
for electrons. Several investigators [55,120] have derived the expression
for the J-V characteristics fbr this case with traps confined in a single
discrete energy level. This expression is given in Table 2.2. The

only difference between this case and the case without traps is a multi-
plication factor 0, which is defined as the ratio of free carrier density
to the total carrier density and its value is usually much smaller than
unity. When the applied voltage increases or the injection level be;omes
so high that the traps are gradually filled up, then the expression of
current-voltages with discrete traps will be superseded by the expression
for the case without traps (see Table 2.2). The current for both cases

is proportional to the square of the applied voltage. The transition
from a small current (trap-controlled) té a higher current (trap free--
after all traps are filled) occurs very sharply at a critical voltage
VTFL’ where TFL stands fof the trap-filled-limited region. By measuring
the value of VTFL’ we can determine the trap density based on the rela-
tion [77,117]

VTFL

d2

3 €
Nt;-fEZq (2.1)

Now we shall discuss the case with traps distributed exponen-—
tially within the forbidden energy gap. Measurements of the steady~-
state space-charge-limited current in single crystals and polyc;ystalline
specimens of naphthalene [83], anthracene [89,113,114,120,145,152],
tetracene [7], perylene [93], p-terphenyl [148], p-quarterphenyle [148]
and phthalocyanines [49,143] as well as in inorganic semiconductors

[117] have shown that the currents are controlled by the traps distributed
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in the forbidden energy gap following the relation

i E

b
h(E) = TT ©XP (- T (2.2)
C C

where Hb is the total trap density and ch is the characteristic energy
distribution. This indicates that the traps in those specimens may be
due to the structural defects. On the assumptions that the diffusion
term is neglected and TC > T, the expression for the J-V characteristics
has been derived by many investigators [7,83,89] and it is given in
Table 2.2. Since & > 1, the dependence of J on V follows a power-law,
and is stronger than that for the case without traps and for the case
with discrete traps, in both of which J o V2. On the basis of the exper-
imental results for anthracene the total overall hole trap densities
have been calculated to be of the order of 1014 - lO19 cm_3 with the
characteristic energies distributed between 0.035and 0.25 eV (see Table
2.3) above the valence band edge [il4].

The space-charge-limited current-voltage characteristics for the
case with uniform continuous trap densities were first investigated by
Rose [117]. The J-V characteristics depend on the bandwidth of the
distribution, its position in the forbidden ban& gap. The trap distri-

bution can be written as

h(E) = Nt/(Etu - E =H (2.3)

tZ) c

where HC is the density of traps per unit energy interval, Nt is the
total trap density, Etu and Et% are, respectively, the upper and lower
energy limits of the trap energy distribution. By assuming EtR = 0 and

Etu = Eg the expression for the J-V characteristics is given in Table 2.2.




SUMMARY OF PREVIOUS EXPERIMENTAL RESULTS OF CARRIER TRAPS IN ANTHRACENE CRYSTALS

TABLE 2.3

gizc:$2210n Trap ngSlty 2 (fZi? ! kTC (eV) Trapping Level Trap Denf;ty Reference
P Hb (em 7) jav ) Et (eV) Nt (em ™)
19
Melt - grown 1.5 x 10 1.4 0.035 [114,152]
2.73 x lO18 1.5 0.0375
1.5 x 1018 1.64 0.041
3.5 % lO13 4.8 0.12
1.1 x lO17 1.0 0.25
Vapor =~ grown 1.2 x 1017 2.28 0.057 [114,152]
1.1 x 1013 .5 0.0625
3.6 x 107 2.6 0.065
Solution - 5.75 x lO16 1.9 0.0475 [114,152]
grown 1.75 x 10%° ) 0.13
4.2 x 1014 5.6 0.14
Melt--grown 19 [120,145,
(zone refined) 0.53 + 0.03 eV 1.5 x 10 152]
Doped with
Tetracene 0.43 eV [57]
Doped with 0.9
Perylene $25 eV [57,144]

Al
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Based on the analysis of experimental results, such uniform trap
distribution has so far not been identified to exist in organic semiw
conductors, However, the experimental results on armorphous Se films
[153] show that a uniform trap distribution in the forbidden energy éap
does exist, and the dark conduction at high fields depends on this form of
trap distribution. Touranine et al [153] have reported that for armorphous
Se the band width of the distribution is 0.25 eV and Eté lies 0.74 eV
above the valence band edge, that the trap density per unit energy is
5 x 1014 cm“3 eVﬁl; and that these values are not affected by the change of
temperature in the range from 233°K to 293°K.

In the above discussion, we have assumed that the diffusion term
is neglected. If the diffusion term is taken into account, the mathem-
atical treatment is very complicated even for the case without traps.
However, if the crystal ié very thin, then diffusion current may become
large enough to produce various effects even at voltages greater than
that usually used, because the "virtual cathode" (for electron injection)
or "virtual anode" (for hole injection) is moving away from the geometric
cathode or anode into the crystal, creating a maximum field in the
region in which the concentration of free carriers is higher than that
in the rest of the crystal. This is equivalent to saying that the effec~-
tive thickness of the specimen is reduced, and thus the current flow is

higher than the flow that would be expected when based on actual specimen

thickness. From the current flow equation and the Poisson equation, we obtain

2 2 2
d°F + (4 ) dF I LA 0 (2.4)
dx2 2ekT’ gx suka

Several investigators [82,135,174] have attempted to solve equation (2.4).
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Wright [174] was the first to obtain a general solution in terms of
Bessel functions, and later Lindmayer et al [82] obtained one in terms
of difference equations. Sinharay et al [135] has solved equation (2.4)
in terms of Airy functions, and they give explicitly the position of
the maximum field inside the crystal as a function of current density.

The number of different possible conditions for double injection
to occur is certainly larger than that for one-carrier single injection,
because a large number of independent physical processes may come into
play for double injection. For this reason, the analytical difficulties
are much greater for this case than for the case of single injection.
Even if the diffusion currents are neglected, the combination of space-
charge and recombination effects makes it difficult to analyze this case
analytically. So far only the case in which the diffusion term and the
effect of traps are neglected has been solved in analytic form by
Parmenter and Ruppel [106], and this is given in Table 2.2. Since the
cases taking into account the effect of arhitrary trap distribution
have not yet been solved in analytic forms, part of our aim is there-’
fore to present our unified approaches to this problem, This shall be
discussed in more detail in Chapter III.

Lampert et al [76,77] have used the so called "the régional approx-
imation method" to analyze the case for the tfaps confined in a single
discrete energy level either fully occupied or partially occupied. Based
on their analysis, there ig a current-controlled negative diffe?ential
resistance region caused by.dOuble injection. Using this regional approx~
imation method, they have dealt with some special cases whicﬁ we sﬁall

not discuss here. However, the details can be found in the literature
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[76,77]. 1t should be noted that Lampert's model has been used to explain
the experimental results of the negative differential resistance observed
in anthracene crystals [121,122] with double injection.

By considering the double injection current to be filamentary rather
than uniformly distributed, Barnett et al [8,9] have derived an expres-

sion for the J-V characteristics for the case without traps which is
27 Y 2,3
= (&L <
I (az) [8 q¢ HoWp (un+up)/ Vo>l (V7/d7)
X [fn (1+ard) + l/(l+ard) - 1] (2.5)

where T4 is the devices radius, or its equivalent radius, if the device

is not circular in cross-sectional area; and
= < > .
a = [2 ey <vo, O/q(un+up)] (V/3D_)* (1/d) (2.6)

Their model can explain well the experimental results for Si [8] and
GaAs [9].

As the effect of the traps is very important. We devise a new
unified approach to extend their work to thé cases with traps.
The details will be given in Chapter IV. It will be shown that our uni-
fied approach can explain quantitatively many electroluminescent phen-

omena in organic semiconductors.

2.2 ELECTROLUMINESCENCE IN ORGANIC SEMICONDUCTORS

Electroluminescence has been observed in undoped-anthracene crystals
[51,54,167,168,170], tetracene-doped anthracene crystals [33,66,109,
124,125,175] and naphthalene crystals [83], either with double injection

or with single injection electrodes. It is well understood that the
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electroluminescence is produced in the bulk of the crystal by direct
recombination of electrons and holes simultaneously injected into the
crystal from injecting eleétrodes. Electron-hole recombination may

lead to both radiative and non-radiative transitions, and it is the rad-
iative transition which produces electroluminescence, In general, there
are five different processes [47] for radiative transitions in solids

and they are: (i) band-to-band recombination, (ii) recombination via
shallow donor or acceptance levels, (iii) donor-acceptor recombination,
(iv) recombination via deep energy levels and (v) exciton transitions.

In inorganic semiconductors, processes (i) - (iv) may be dominant.
However, in organic semiconductors the last process (v) is the most impor-
tant process. It is generally accepted [54] that the recombination of
injected holes with injected electrons in organic semiconductors will
yield singlet and triplet excitons and it is these singlet excitrons that
radiatively decay, producing electroluminescence. The quantum yield of
electroluminescence depends on the probabilities of radiative and non-~
radiative transitions and on the relative efficiency of producing the
radiative exciton. There are many ﬁossible processes for non-radia-

tive transitions [78]. 1In inorganic semiconductors two possible pro-
cesses, (i) multiphonon transition and (ii) Auger recombination, are domi-
nant. Howe?er, in organic semiconductors, again the process of exciton
transitions leading to non-radiative transitions of the exciton is the most
important processes. The exciton transitions can be classified‘iﬂto

(1) the non-radiative, such as intersystem crossing and internal-
conversion and simple momomolecular decay; (ii) exciton-exciton interw
actions, (iii) exciton-carrier interactions; and (iv) exciton«

surface interactions, In the following, we shall briefly
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discuss the mechanisms responsible for electroluminescence and the effects

on its intensity.

2.2.1 The recombination mechanisms

In general, most inorganic semiconductors have a large mobility
and a small recombination rate constant, but most organic semiconductors
have a much smaller mobility and a much larger recombination rate con-
stant. In this subsection, we shall review briefly the carrier and exciton
recombination mechanisms and their relation to the electroluminescence
in organic semiconductors.

(i) Carrier recombination

Generally, carrier recombination involves two steps: (a) the
electron and the hole have to get close enough to one another so that
they can become trapped in each other's Coulomb field, and (b) they
have to lose sufficient energy to become trapped. Classically,an elec-
tron becomes trapped in a Coulomb field if its kinetic energy is less
than its potential energy in the field. Therefore, if an electron gets

close to a hole with a distance less than a critical radius rc defined

by

3 4
E-kT = Src (2.7)

the probability for this electron to be trapped and eventually to recom-
bine with the hole increases markedly. For anthracene crystals,
e = 3.14 €, [54], which €, is the permittivity of free space, and hence

r, = 120 & at room temperature.
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The recombination rate constant for anthracene has been calculated
[54,94,138] on the basis of the Langevin recombination model [94].
In Langevin's theory [54] the carrier recombination probability in gases
is appropriate if AO<<rC, where Xo is the mean free path of carriers.
For anthracene Ao ® 7 - 10 & this condition can be fulfilled. The rela-
tive drift velocity Ud of a positive or a negative ion when they are at
a distance r apart is [94]

Ve = (i u_)(q/eorz) (2.8)

where My and Y_ are the drift mobilities of the positive and negative
ions, respectively. The rate of influx of positive ions into a sphere
of arbitrary radius r drawn around a negative ion, or the recombination

rate constant is

2
b mr €, Ud =4 Tq (u+ +u) (2.9)

This theory for gases can be applied to electrons and holes in solids

if the effect of dielectric constant is included. In anthracene the
mean free path for carriers AO is less than r, so that it is likely that
the Langevin theory might apply. If we take u, +u =z 2 cm2 v—lsec_l
and € = 3.14 €, the recombination rate constant according to Langevin's
theory should be 1.2 x lO“6 cm3 sec—l [94,138]. This value is in fact
in very good agreement with that determined experimentally [54]. The

recombination rate constant is large but finite and thus a certain charge

overlap occurs. The width of recombination zone is given by [54,55]

W = 4q un”p d/<v0R> £ (un + up) (2.10)
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It should be noted that [168] that if the hole and the electron mobil-
ities differ considerably, e.g., up>>un; then the recombination zone is
confined in some particular portion of the crystal. This effect may be-
come more apparent at lower temperatures owing to either the different
temperature dependence of mobility or to the different trapping effects
for the different types of carriers.

(ii) Exciton recombination:

Following the electron-hole récombination, the excited states
finally formed may have either singlet or triplet character. Taking into
account the different multiplicities of these states, and the formation
of excited singlets indirectly from the triplet-triplet exciton recomb-
ination in pairs, then under steady state conditions the kinetic equa-
tion for electron-hole recombination may be formulated on the basis of
the following assumptions: (a) the rates of production of singlet [5]
and triplet [7] excitons by carrier recombination are proportional to
the multiplicities of the respective states, this means that three times
more triplets than singlets would be generated. (b) Two triplet excitons
of lowest energy and with total spin of 1 (atomic units) can recombine
to give one electronically or vibronically excited triplet exciton [T]*,
and (c¢) in the process [T] + [T] - [S] .the two triplet excitons have
total spin of 0. This means that three times more pairs of triplets
with total spin 1 than with total spin O can be formed and that the
triplet-triplet recombination also produces three times more triplets

than singlets. Thus we may write

4(e + h) - 1[S8] + 3[T] (2.11)

dir

4([T] + [T]) ~» l[S]ind + 3[T]* (2.12)
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As monomolecular triplet decay is neglected, equation (2.10) is appli-
caﬁle only to the case with high triplet concentration. In general, the
excited triplet excitons would decay into the lowest triplet state in

a time much shorter than the lifetime of the latter.\ By adding the gen-

erated triplet excitons to triplet concentration, equation (2.12) may be

rewritten as

5[T] ~ 1[S]dir (2.13)
and by combining equations (2.9) and (2.11), we obtain
20(eth) - S[S]dir + 15[T]
> 5[S]dir + B[S]ind (2.14)
where e and h represent, respectively, the electron and hole, [S]dir

and [S]ind are, respectively, the singlet excitons produced by the
direct and indirect processes. It is the population of [S]dir and
[S]ind in the crystal, which governs the electroluminescent intensity.
Since there is a great difference in lifetime between the singlet and

triplet excitons (for example, they are 10_8 sec and 10—2 sec, respec-

tively, in anthracene, see Table 2.4), the total electroluminescence
consists of prompt electroluminescence due to [S]dir and delayed electro-
luminescence due to [S]ind (see Fig. 2.1) and exhibits time constants

corresponding to both of these decays. 1In the steady state, the

electroluminescence intensity is the combination of both prompt and

delayed components,



TABLE 2.4

SUMMARY OF PREVIOUS  EXPERIMENTAL DATA FOR SINGLET AND TRIPLET EXCITONS IN ANTHRACENE CRYSTALS

Singlet Exciton Reference Triplet Exciton I Reference
14 o (5,48,
Energy Level 3.:14 eV [48,115] 1.8 eV 1341
Lifetime 10—8 sec [48,115] 2.2 x 10_2 sec {gz?S’
. , - -3 2 - -6 2 ~1
Diffusion Coefficients 2 x 10 cm - sec [48,115] 2 x 10 cm sec [5,48,
1.6 x 10_5 cm2 sec“1 164]
(in c¢' axis)
Diffusion Length 4.6 x 10°° em [105] (241) x 107> cm [164]
Mono-molecular decay A7 -1 -1 [5,48,
rate constant 5 x 10" sec [16,48] 40 sec 134]
Bi-molecular decay (4+2) x 1078 em 3 secd [16,48] 2 x 107 e sec” [5,48,
rate constant - .
: 134]
Exciton-carrier inter- 5 x 10_5 cm3 secml [160] 6 x 10.-10 cm3 sec—l [161]
ation constant (for electrons)
1.1 x 10_9 cm3 secm1
(for holes)

A
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Fig. 2.1 - Electroluminescent processes in organic crystals.
Solid lines, radiative transition; dash lines,
non-radiative transition.

(a) Prompt electroluminescence

(b) Delayed electroluminescence
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2.2.2 The efficiency of electroluminescence

In this section we shall confine ourselves to the work related
to the efficiency of quantum yield of electroluminescence. First of all,
we shall review the general theory of radiative and non-radiative trans-
ition processes, and then the efficiency of radiative transition.

(1) The theory of radiative and non-radiative transition pro-
cesses:

There are several important approximations or rules to form the
basis for the quantum~mechanical theory of radiative and non-radiative
transition processes in molecules. They are [17] the Born-Oppenheimer
approximation, the FEinstein Coefficients, the electric-dipole transition
moments, the Franck-Condon principle and the selection rules, etc. In
the Born-Oppenheimer approximation$ the total energy of the ground states
(Et) and that of the excited states (Eé) in molecules are described as
the sum of electronic (Ee, Eé) and vibrational energies; and the wave-
function (Y) of a vibronic state are expressed as the product of elec-

tronic (6) and vibrational & wavefunctions. Thus we may write

Vg = 9y Q) &0 (Q) (2.15)

1

. . . s e as .th
as the wavefunction of the 2i vibronic state, where i indicates the i

vibrational state of the lower electronic state £; and

Yo, = Gm x,Q) ¢ . (Q (2.16)

mj mj

. . . .. .th
as the wavefunction of mj vibronic state, where j indicates the j

vibrational state of the higher electronic state m; and x and Q are the
electronic and nuclear coordinates, respectively.

In the Einstein's radiation theory [17] there are two well known
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coefficients: the Einstein A coefficient and the Einstein B coefficient.
The Einstein A coefficient gives the probability of spontaneous emission,
i.e., luminescence and its relation to the fluorescence spectrum and
lifetime. The Einstein B coefficient gives the probability of absorption
or induced emission. The relation between A and B coefficients for a

molecule in a medium of refractive index n is [17]

= (8 n3 3 n3 c_3) B

mj>2i mj>21 (2.17)

Amj+£i

where h is the Planck's constant, v is the radiative frequency corres-
pondipg to the energy difference between the energy states mj and 21,
and ¢ is the light velocity.

The electric~dipole transition moment between any two states can

be calculated with equations (2.15) and (2.16) as

Mmj—xf&i <q)mj | | Vo>

<6, '] 6y> <0 .| o>

|M:m2 |-|smj,2i] (2.18)

where M' is the electric dipole operator, ﬁm is the mean electronic
transition moment and Smj,li is the vibrational overlap integral. This
integral represents the quantum-mechanical statement of the Franck-Condon
principle. The Franck-Condon principle statesthat because the time
required for an electronic transition is negligible compared with that of
nuclear motion, the most probable vibronic transitions is one which
involves no changes in the nuclear coordinates. This transition,which

is referred to as the Franck-Condon maximum, represents a vertical
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transition on the potential energy diagram (see Fig. 2.2). In quantum
mechanical term, the Franck-Condon maximum corresponds to maximum overlap
between the ground state vibrational wavefunction wzi and the excited
state vibrational wavefunction ¢_,; i.e., when S ., . is a maximum.
mj mj, 1
On the basis of the above arguments, the probability for radia-
. _— r e . . .

tive transition (kmi) from an initial vibronic state of wavefunction wmj

to a final vibronic state of wavefunction wzi’ is proportional to the

square of the electronic transition moment. Thus, we can write

r

2
kml I

“ |Mmj+£i

2

= 2
<6, [M'] 0,>7[<q ~fo, >

= 2 2
M ] lsmj,zi[ (2.19)

For convenience, the radiative transition probability per unit time for
vibronic transition is expressed in terms of Einstein coefficient as
[17]

k' =A F (2.20)

where Alm is the Einstein A coefficient for the complete electronic

transition which is equal to |ﬁm2'2 and F is the Franck-Condon factor

which is equal to IS |2

mj,21
The non-radiative transition probability per unit time k;z is
given by [17]
2
nr b pE

ka - h2

lH

2
o7 =PC  F (2.21)

ml

in which
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Fig. 2.2 -~ The potential energy diagram of a diatomic molecule.

The total energy (electronic and vibrational energy)
of the molecules as a function of the nuclear
separation, r. (EFC)a, Franck-Condon maximum is
absorption; (EFc)e’ Franck-Condon minimum is

emission.
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= < >
H o cpmlemll 2 (2.22)
=< >
J e em[JNl 8, (2.23)
4n2pE
where JN is the nuclear kinetic energy operator and P = 5 is the
h
density of state factor and Co = lJlez is the electronic factor.

From equations (2.19), (2;22) and (2.23), the electronic and vibrational
components can be separated. The electronic factor [nglz and the
Einstein coefficient Alm (or IMlez) involve the wavefunctions of the
initial and final electronic states, so that non-radiative transitions
are subject to the same multiplicity, same symmetry and same parity
selection rules as radiative transitions [17]. For example, the electric-
dipole transition between electronic states of different multiplicity

is spin-forbidden, thus the transition from first triplet state to the
ground singlet state is also spin-forbidden, while the transition from
the first excited singlet'state to the ground singlet state is spin-
allowed.

The basic difference between the radiative and non-radiative
transitions is that the former involves the electric dipole operator M'
and it occurs beéween vibronic states that differ in energy, while the
latter involves the kinetic energy operator JN and it occurs between
vibronic states of the same energy (with<i-% pE)° It can be seen from a
potential energy diagram (see Fig. 2.2) that a radiative transition is a
vertical transition between the potential surfaces corresponding fo dif-
ferent electronic states, while a non-radiative transition is a hori~
zontal transiﬁion, which involves crossing or tunneling from the potential

surface of initial electronic state % to the continuum of isoenergetic
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vibrational levels of the potential surface associated with the final
electronic state m. In the following we shall review the efficiency of
radiative transition only.

(ii) The efficiency of radiative transition

There are three bimolecular processes which commonly compete with
each other in the radiative transitions in organic semiconductors, and
therefore the electroluminescent phenomena depend greatly on these pro-
cesées.

(a) Exciton-exciton interactions

In organic semiconductors, the probability of radiative emis~
sion depends not only on monomolecular decay but also on bimolecular

recombination processes. The exciton-exciton interactions can be divided

into (1) free exciton-free exciton interactions and (2) free exciton~trapped
exciton interactions. The free=free exciton interactions have

been discussed in §ection.2.2.1, so in here we shall briefly review the
exciton-trapped exciton interactions. 1In real crystals, there are always
traps capturing excitons. Exciton traps are sites capable of holding

the energy that, otherwise, propagates through the lattice. These traps
are generally localized and non-periodic states in the crystal. Thus,

the radiative transition rate is determined by the specific electronic
structure of the trap site. The presence of the traps changes the spectal
energy distribution, especially the fluorescence and electroluminescence,
and also changes the time dependence of population and depopula£ion pro-
cesses in the specimen. In organic semiconductors, three types of traps
have been identified [52,115,173] and they are:

(1) guest molecules such as tetracene doped in anthracene - the guest
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molecules can be identified by'their spectral properties, which are nor-
maily different from those of the host crystal;

(2) defect or lattice imperfections - these have been considered to be

responsible for vibronic series in the luminescence spectra of the crystal,
which are identical to the spectra of the intrinsic host emission but
shifted to the lower energy side by a certain amount of energy;

(3) self-trapping - the self-trapping of an exciton is a process in

which‘the exciton induces a lattice relaxation, which causes some energy
loss.

The way in which these exciton-exciton interactions affect
the efficiency of electroluminescence are still not clear. In Chapter
IV we shall present our approach to this problem for both perfect crystals
and real crystals.

(b) Exciton-carrier interactions

Thé nonradiative destruction of triplet exciﬁons and singlet
excitons by excess electrons and holes in organic semiconductors have
been investigated by many investigators [39,41,53,110,154,160,161]. The
first experimental study by Helfrich [53] have showed that the excess
electrons induced into anthracene crystals by carrier injection cause a
decrease of triplet lifetime. More recently, Williams et al [160,161]
have reported that the excitons are quenched by carriers and have suggested
that the interaction of the singlet excitons with chargg carriers pro-
vides an additional mechanism for non-radiative exciton decay. Thechange
of quantum yield of fluorescence due to the exciton-carrier interactions

may be written as [160,161]

Oy

'n =
f al + a2 + kS

(2.24)
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where al and az rapresent, respectively, the radiative transition with

the emission of photons and the non-radiative transition with the emission

of phonons, and kS is the singlet exciton-carrier reaction rate which

is given by [160,161]

o
]

N1 -8) o+ N, 80 (u +v2/311) u >v

N(1 - 9) ov + N 60 (v + /%) u<v (2.25)

where 0 is the reaction cross-section between a carrier and a singlet

exciton, u and v are, respectively, the thermal velocities of carrier and

singlet excitons.,

(¢) Exciton-surface

interactions

There are two processes for
at the boundary between an organic

They are: (1) charge transfer - an

an adjacent trapping center at the

quenching the mobile molecular excitons
semiconductor and an electrode,
exciton can transfer an electron to

interface, producing a free hole in

organic semiconductor (for example, oxygen molecules adsorbed at the sur-

face can act as electron trap centers) and (2) Energy transfer - an

exciton can transfer its energy to

the acceptor molecules present at or

adjacent to the surface of the organic semiconductors. Usually,such an

electron transfer is a rather slow

process as compared with the energy

transfer between organic semiconductor and an electrode.

A metal on the surface of a molecular crystal can influence the

electronic states of the surface molecules in two ways: firsty it can

modify their energetic position and secondly, it can affect the lifetime

of excited states., The first effect results from the discontinuity of the

dielectric constant across the interface, which leads to a change in the
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molecular polarization energy. If the polarization is enhanced, surface
moiecules may act as traps for excitons. The second effect results
from non-radiative transitions induced by metal electrons.

In general, the exciton quenching zone at the surface is very
narrow (about 20 &) [110]. 1In the case of electroluminescence, the
excitons are generated from the electron-hole recombination inside the
crystals and the recombination zone width is estimated to be at least about
103 X. Hence the exciton-surface interactions may not be so important
as compared with other non-radiative transitions. But in the case of
photoconduction, the disassociation of excitons at the boundary, which
generates carriers, is one of the important processes for photocarrier

generation mechanisms. This will be discussed in Section 2.3.

2.2.3 Experimental results in anthracene

In this section, we shall briefly review some of the important
experimental results as follows:

(1) Effects of doping impurities

Electroluminescence from pure anthracene occurs primarily in the
“range of 4000-4500 & (blue light) and'is the same as those of the
normal anthracene fluorescence (see Table 2.5). But for the anthracene
doped with tetracene, the electroluminescence may be either oniy that of
the dopant in the range of 5000-5500 & (green light) or a mixture of
anthracene and tetracene emission, the intensity ratio depending upon
the concentration of the dopant [33,66,119,124,125,167,175]. By adding
a suitable amount of tetracene, the color of the electroluminescence of

anthracene can be controlled from blue to green. The anthracene-tetracene




TABLE 2.5

THE ABSORPTION AND EMISSION SPECTRUM RANGES OF NAPHTHALENE,

ANTHRACENE AND TETRACENE CRYSTALS

Organic Absorption- Emission-
Semiconductors Spectrum Spectrum Reference
(fluorescence)
Naphthalene 2300-3300 & 3000-3700 & [17,52]
Anthracene 2300-4000 & 3800~5100 & [17,52]
Tetracene 3300-4360 & 4700-5800 & [17,52]

34,
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system involves transfer of excitation energy from the host crystal to

the guest molecule. At room temperature the fluorescence efficiency is
. 5 . .

approximately 10~ times higher for the guest (tetracene) than for the

host (anthracene)

n./n. = 10" ¢ (2.26)

where nT and nA are, respectively, the quantum yield for the fluore-
scence of tetracene and anthracene, CT is the mole fraction of tetracene
in anthracene. Equation (2.26) shows that for CT = 10—5, both partners
have the same intensity of fluorescence.

Figure 2.3 shows the spectral dependence of fluorescence and elec~
troluminescence for undoped and tetracene-doped anthracene crystals.
In Fig. 2.3(a), the dash-line indicates that the fluorescence of anthra-
cene doped with about 5 x 10—6 mole tetracene, and therefore the guest
and host have about the same intensity of fluorescence. In Fig. 2.3(b)
the solid line represents the undoped anthracene electroluminescence
spectrum and the dash lines that of anthracene doped with tetracene of

about lO_3 mole. In this case all the observed electroluminescence

spectrum is almost that of tetracene.

(ii) Field dependence of electroluminescence:

(a) D.C. electroluminescence

D.C. electroluminescence can be observed either using single
injection electrodes [109,119,168] or double injection electrodes [32,
33,51,54,92,124,125,167,168). However, the threshold field for the
onset of electroluminescence would be different in two cases. In general,

the threshold field for the case of double injection is much smaller than
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Fig. 2.3 - The spectra of fluorescence and electroluminescence
for undoped anthracene and doped with tetracene.

(after Zschokke-Granacher [175]).
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that for the case of single injection. Table 2.6 shows some materials
which have been used for injecting contact electrodes for anthracene.
It is welllknown [51,54] that at high injection current level,
the brightness is linearly proportional to the current; and at low
injection current level, the brightness is proportional to the square
of the current. The location of the luminous zone inside the specimen
depends on the concentration of electron-hole pairs distribution. The

luminous zone is usually considered as the carrier recombination width.

Some important experimental results of d.c. electroluminescence are sum-

marized in Table 2.7.

(b) Pulsed electroluminescence

Pulsed electroluminescence has been observed by many investiga-
tors [14,54,168,176] using pulsed-voltage techniques. They have reported
that the electroluminescence consists of two components; one is "fast
component’, generally called "prompt electroluminescence", and the other
is "slow component', generally called "delayed electroluminescence'.

The fast component is due to the singlet excitons generated by direct

electron-hole recombination. The "fast" light transient marks the time

~when the two leading carrier fronts meet in the specimen. It is this

time together with the "fast" current that enables the calculation of the
carrier recombination rate constant. The slow component is due to the

singlet excitons generated indirectly by triplet-triplet annihilation.

The "slow" light transient enables us to distinguish the delayed fluore-
scence of the directly generated singlet excitons. The '"slow" current
transient can be used to monitor any change of exciton generation rate
which may arise from a decrease of current due to trapping. It should be

noted that electron and hole detrapping will also give rise to a slow light

transient,
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TABLE 2.6

MATERTALS USED AS CARRIER INJECTING CONTACTS TO ANTHRACENE

Electrodes Electron Injection Hole Injection
Materials Materials Ref.
Form (Cathode) (Anode)
Liquid A solution of negative A solution of positive [51,54]
Contacts anthracene ion anthracene ion
Sodium + anthracene (1) kI + I2 in water
T tetrahydrofuran (2) AQCQB + anthracene
+ nitromethane
Lithium + anthracene A2c23 + anthracene [175]
+ nitromethane + ethylenediamine
Solid Sodium-potassium alloy Evaporated gold [92]
Contacts .
Ma + tetrahydrofuran (1) A£c£3 + anthracene |[168]
+ anthracene + nitromethane
(2) Silver paste
(3) Gold paste
(4) Evaporated silver
(5) Evaporated Ag
(6) Conducting glass
(Sn02)
+ ..
(1) =n -Si wafers cov-~ (1) Evaporated trans- [33]
ered with 20-40 & parent films of
Cu20 - Cul
SlO2 (2) Evaporated Sg-Te
(2) A fine grid struc- alloy
ture of evaporated (3) Calloidal black Pt
A% on a glass sub- aste
strate oxidized to P
approximately 50 & (4) Todized Cu paste
of AS&ZO3
Carbon-fibres Evaporated indium [170]




TABLE 2.7

SUMMARY OF PREVIOUS EXPERIMENTAL RESULTS OF ELECTROLUMINESCENCE IN- ANTHRACENE CRYSTALS

Light lEminslon ' Current-
Specimen Specimen Form of Contacts Peak lh{eshold voltage Lemp. Remarks Reference
Preparation Thickness Field dependence Range
Wavelength n
S RO — L. o
Single crystals _ Liquid contacts, 4210 R S o D.C. EL
(Solutioun grown) 10-20u Sluple Injection w40 R 4 x 107 V/em n > 10 293°K Pulucd EL (105, 119]
A.C. EL
Single crystuls _ Liquld contacty, 5 ° b.C. EL
(Melt grown) 1=5 mm Double injection 4300 A Unspecified n>2 293°K Pulsed EL (51,54]
A.C. EL
Single crystals Liquid contacts, 4230 & o X
doped with tetracene 1.5 mm Double injection 4450 & Unspecified n>2 293°K D.C. EL (175]
4740 &
4792 &
5300 R
Films (vacuum Solid contacts, e °
evaporated) 10u . Double injection 41008-54008 Unspecified n>3 293°K D.C. EL {32,33]
Single crystals Solid contacts, 100°K~
(zone-refined) 2 mm Double injection 4500 & 350 V/cm n > 2 350°K D.C. EL (167,168]
Single crystals Unspeci- Liquid contacts, 4340 R N °
doped with tetracene fied Double injection 5480 & n >3 293°K D.C. EL [124,125]
Single crystals Unspeci- Solid contacts, 4250 & 7000 V/cm n>6 293°K D.C. EL [66]
doped with tetracene fied Double injection 4950 &
5250 &
Single crystals 2.2 mm Solid contacts, 3 °
(zone-ref ined) 25 om Double injection 4300 & 6 x 107 V/em 6<n<12 293°K D.C. EL [170]
Single crystals 50 u Solid contacts, ° 4450 & 1x 10° V/cm 293°K A.C. EL [17]

Double injection

‘6t

x
,
1
i
1
4
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(c¢) A.C. electroluminescence

The experimental results of electroluminescence as a function of
frequency and voltage are very scarce. Some investigators [117] have
found that the light output is in phase with applied voltage in the
frequency range of 0-4000 Hz, and that using the same materials for both
electrodes, the wave form of electroluminescence is symmetrical, but if
the two electrode materials are different, the wave form is unsymmetrical
[17]. These results indicate that the injection of both majority and
minority carriers depends greatly on the electrode material, or on the
ohmic properties of the contact.

(iii) Temperature dependence of electroluminescence:

There are very few results available on the temperature depend-
ence of electroluminescence. The electroluminescent brightness has been
found to be linearly proportional to the current, but independent of
temperature for.the temperature range between 350°K and 150°K [108].
Williams et al [108] have reported that the melt—grown crystals show a
considerable portion of defect emission in the electroluminescence
spectra, especially at low temperatures. Although the carrier injection
efficiency slightly improves, the internal quaﬁtum yields of electro-
luminescence decreases [170] at high temperatures.

The basic mechanisms of temperature dependence of electrolumine-
scence is still not fully understood. In Chapter IV, we shall present

our experimental results and theoretical approach on this subject.
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2.3 PHOTOELECTRIC EFFECT

' The processes of chargé carrier generation in organic semicon-
ductors resulting from the'interaction of semiconductors with light have
been studied by many investigators [17,19,22,28,29,48,71,80,115,139].
The observed photoconductivity and photovoltage have been found to be
strongly dependent on a number of parameters, among the most important
of these being (i) the wavelength and intensity of the incident light,
(ii) the magnitude and polarity of the applied field, (iii) the state
of illuminated surface, (iv) fhe ambignt atmosphere and (v) the‘temper-
ature of the specimen.

‘Considering the photogeneration of free carriers in organic semi-
conductors, it is well known that in addition to the direct-ionization
process, carriers can be generated by such other processes as the
interaction of singlet and triplet excitomns, and the interaction of excitons
with surface states at eléctrode surfaces or with impurity or defect
sites near the surfaces. This may be the reason that experimental
results reportéd by different investigators differ widely in magnitude
and température dependence of the photocurrents. In the following,we
shall discuss the photoconduction procéss aﬁd photovoltaic phénomena

separately.

2.3.1 Photoconduction processes

In this section, we shall discuss only the following three

important photogeneration processes.

(1) One-quantum processes
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A one-quantum process means that the process involves only one
photon or exciton in a single interaction process. The following pro-
cessess are on-quantum processes,

(a) Collision of singlet excitons with impurity or defect
sites near and at the surfaces

This process is the most common one for organic semiconductors,
such as anthracene or tetracene when excited in the region of the strongest
optical absorption. Hence the specimen is excited by the light within

(=] (<]
the range between 3100 A and 4000 A, the singlet excitons will be

generated. Then the singlet excitons in motion collide with impurity

or defect sites near or at the surface, causing dissociation of excitons,
which generate one type of carriers (say, holes) and traps the other type
of carriers (say, electrons) at impurity or defect sites. The nature

of the dissociation centers near or at the surfaces has been studied by
Johnston and Lyons [62]. They found that the removal of the original
surface layer (with original impurity or defect sites) from the crystal
under ultra-high vacuum reduces markedly the transient photocurrent in
the low intensities, and that the reintroduction of oxygen on the

crystal surfaces results in an increasg in hole current, indicating

clearly that oxygen is responsible for the dissociation centers. They

concluded that the exciton dissociation at impurity sites is the major
generation process when the crystal is exposed in the air.

The generation rate of this process is given [37] by

2.27)

where €, 1s the absorption coefficient, Q 1is the quantum yield of carrier

generation, f is the illumination light intensity, As is the diffusion
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length of singlet excitons, and X, is the surface path length of singlet
excitons,

(b) Collision of triplet excitons with trapping centers
in the bulk of the crystal

This process is important in anthracene crystals when the specimen
is excited in the fluorescence re-absorption region (3900-4500 &). The
trapped carriers in the bulk would be liberated by triplet excitons.

This process has been studied by many investigators [13,48,55]. The
enhancement of photoconduction by this process can be expressed as a
function of applied voltage, specimen thickness and light intensity or
the concentration of triplet excitons [13]. The photoconduction current
is given by

2 2
nv_ _ 9 v

where ¢ is the light intensity; n is numerical constants (0.5 <n<1);
kph is the empirical constant which is a function of absorption coeffic-
ient, €3 and [T] is the triplet exciton concentration which can be
calculated [13] using equation (2.26) on the basis of the assumptions:
(1) the absorption coefficient in the fluorescent spectral region
change exponentially with light wavelength; (2) triplet excitons are
generated near the illuminated surface.

(c) Photoionization by one photon

This process implies that the absorbed photons create directly
free electron-hole pairs without intermediate steps which involve excitons.
This process is also called the intrinsic process. Castro and Horning

[19] were the first to perform an experiment showing a direct photocarrier
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generation process. They studied quantum yield in anthracene using
pulse techniques, and observed a peak of photocurrent at 2800 R which
they attributed to intrinsic charge-carrier generation by a single-
photon process. Evidence for the intrinsic character of the 2800 &
photocurrent is based primarily on the fact that the peak in the photo-
current spectral-response curve does not correspond to any known optical
transition, and the magnitude of the 2800 & electron photocurrent is
relatively insensitive to the condition of the crystal surface [19].

The intrinsic photoconduction in anthracene crystals have also been
investigated by Chaiken et al [22] using steady state current measuring
techniques. They have found that the direct ionization (i.e., a crystal
band-to-band transition) occurs at a threshold excitation energy of 4.0
eV (3100 K), and it results in a maximum intrinsic photocurrent yield
at 4.4 eV (2800 &). Many investigators have confirmed that the energy
level 4.0 eV corresponds to the first narrow conduction band and 4.4 eV
corresponds to the second wide conduction band [22, 7,139]. The field
dependence of quantum yield for intrinsic photocarrier generation has
been investigated by many investigators [11,22,23,108]. They have
reported that at electric fields higher than 2‘x lO5 v/em, the quantum
yield of carrier generation increases very rapidly with field (at least

10 times higher than that at low fields).

. (11) Two quantum processes:

A two quantum process means that the process involves two photons
or two excitons, or one photon and one exciton in a single collision

process (see Fig. 2.4). There are several possible mechanisms for these
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processes to occur in molecular crystals [48,80], but the most probable
mechanism for the carrier genération in the bulk is the collision of

two singlet excitons, which generate electron-~hole paris [24,26,62,71,79,
136,139]. This mechanism was first proposed by Choi and Rice [24] who,
using perturbation theory, have calculated the rate constant for singlet-
exciton annihilation in the first excited state .of anthracene crystals.
Their theoretically calculated results have been confirmed experimentally
by Silver et al [136] and by Johnston and Lyons [62] by using pulse tech-
niques. They [62] found that the generation rate of charge carrier is

given by

dn _

2
dt kss[S]

(2.29)

where [S] denotes the equilibrium concentration of excitons during the
light flash, n is the concentration of carriers, aﬁd kss is the bimole~
cular rate constant for carrier generation by exciton-exciton collision.
For light of wavelength 4000 & and of intensity 3 x lO12 photons/cm2
incident on the crystal, the number of carriers generated in one flash,
calculated from equation (2.29), is 2 x}lO7 cm—3. This agrees well with

experimental results of Johnston et al [62].

(iii) Multi-quantum processes

A multi-quantum process means that the process involves more than
two quanta (each of which can be either a photon or an exciton)iin a
single interaction process (see Fig. 2.4). Three quantum generation pro-
cesses in anthracene have been reported by Singh et al [134] and Kepler
et al [71]. When a high-intensity light (such as Q-switched ruby laser

(A = 6940 &) is used as the photogeneration source, charge carriers are
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generated by a three photon process [71,134],and the dominant mechanism
for the generation of charge carriers involves the photoionization of
singlet-exciton states. The basic dynamics of this process can be des-

cribed as follows

2[hv] =+ [T] + [T]

[T} + [T] » [S]

(2.30)
{[hu+ [S] e + h

or 3[hv] >~ e+ h

Four quantum processes have been reported by Hasegawa et al [50].
Using Q-switched ruby laser of photon energy 1.79 eV, they found that

carriers were generated from interactions represented by the following

equation:
2[hv] + [T] + [T]
[T] + [T] - [s]
(2.31)
[S1+[S]~> e+nh
or
4[hu] > e+ h

But their proposed mechanism has been criticized by both Kepler [71]
and Strome [141], who suggested that the results could be better approx- .

imated by three quantum processes.

2.3.2. Photovoltaic phenomena

It is well known that the bulk photovoltage (Dember photovoltage)

arises when a light produces a concentration gradient of the non-
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equilibrium carriers because of the difference between the electron and
hole mobilities. The photovoltage may also be affected by the surface
states which may capture photocarriers. Thus, the total photovoltage
should be the sum of the bulk photovoltage and the surface photovoltage.
In this section, we shall discuss briefly (i) the general theory of
photovoltaic effects in solids and (ii) the experimental results of

photovoltaic phenomena in organic semiconductors.

(i) The general theory of photovoltaic effect in solids '

The photovoltaic effect in solids may be caused by (a) bulk
photoﬁoltaic effect (Dember photovoltaic effect), (b) surface photovoltaic
effect, and (c) depletion-layer photovoltaic effect, of which only (é)
is associated with a p-n junction (either homo- or hetero~ p-n junction).
The photovoltaic effect in p-n junction has been studied in detail by |
many investigators [96,150]. Hence,we shall discuss only the bulk and
surface photovoltaic effects as follows:

(a) The bulk photovoltaic effect

This effect in general is referred to as the Dember effect [31,
95,150], which arises due to the diffusion of non-equilibrium photo-
carriers in the bulk of the crystal. On the basis of the following
assumptions (1) the local charge is neutral and there are no traps in
the bulk of the specimen, (2) the thickness of the specimen is much
larger than the diffusion length of the carriers, and (3) there is recom-
bination at the surface, Moss [95] derived the open-circuit photovoltage
for small illumination light intensity (or for the excess pﬁotOvcarrier con-

centration much less than the equilibrium carrier concentration)
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based on the small-signal theory as

) C(Dps)(up—un) sinh(d/Lp)+ s (DP/Lp)[cosh(d/Lp)— 1]

v

X

(2.32)
ph U n 2 2. .
n fo [s +(Dp/Lp) ]51nh(Dp/Lp)+25(Dp/Lp)cosh(d/Lp)

For large illumination light intensity (or for excess photo-
carrier concentration much larger than the equilibrium carrier concentra-

tion)based on the large signal theory Moss obtained [95]

o~ U
S S
Yon = G up) (¢) 2o [L+sa/2p) L+ /u)) (2.33)

where 7 is the illuminated light intensity, Dp is the diffusion con-
stant of holes, s is the surface recombination velocity, and LP is the
diffusion length of holes. It can be seen when un equals up and when

the surface recombination velocity s equals 0, Vp = 0. It can be

h
imagined that as there are always traps in solids, and as the local charge
may not be neutrai because of the different mobilities of the two types

of carriers kelectrons and holes), the photovoltage would be a function
tion of specimen thickness and its absorption coefficient. These effects
have not been taken into account in equafion (2.32). Therefore, we shall
present our uﬁified approach-to this problemstaking these effects into

account in Chapter V.

(b) The surface photovoltaic effect

On the surface of semiconductors there are always local étates.
This gives rise to photo-diffusion effects. For example, in the case of
strong surface recombination there will be the photodiffusion difference

between the surface and the bulk, which is similar in nature to the bulk
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photovoltaic effect. In contrast to the bulk photovoltages, this sur-

face photovoltage might be due to the spacially non-uniformily distri=
bution of surface states or recombination impurities. However, the |
nature of the surface photovoltaic effect is still unclear. So far, the
general theory for the surface photovoltaic effect is not available,

The general qualitative consideration is that the light can affect the con-
tact potential between the metallic electrode and the semiconductor
because the excitation of electrons into the conduction band would raise
the Fermi-level by AEf accord;ng to the following relation [48]

n

= _L :
AEf = kT n (nD) (2.34)

where ny and n refer to the density of free electron in the dark and
under light illumination, respectively. The energy band at surface
would bend upward or downward with respect to the bulk Fermi-level,

Thus, the surface potential, ¢S, is strongly dependent on the surface
states or surface conditions. The experimental results related to the
bulk photovoltaic effect or surface photovoltaic effect in organic semi-

conductors will be reviewed in the next subsection.

(ii) The experimental results of photovoltaic phenomena in
organic semiconductors

The number of experimental results on photovoltage effect is much less
than those on photoconducitivity, probably because it has been recognized
that the photovoltage depends strongly on illuminated light wavelength
and specimen surface conditionms.

(a) Light wavelength dependence

In general, the spectral distribution of photovoltage correlates

well with the absorption spectrum as shown in ¥Fig. 2,5, An increase in
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light intensity changes only the magnitude of photovoltage, but does not
disturb the correlation between the spectral distribution of photo-
voltage and the absorption spectrum. The absorption can be roughly
divided into two regions, namely, (1) strong absorption region and (2)
weak absorption region. In the strong absorption region, the photovolt-
age may be increased up to a certain maximum limiting value and its sign
indicatesthe sign of majority carrier; but in the weak absorption region,
the photovoltage may be reduced to zero, or even cause its sign to
reverse. Vladimirov [159] has observed that when anthracene crystal is
illuminated within the strong absorption region (XA <4000 &), the magni-
tude of photovoltage correlates well with the absorption spectrum and
its sign indicates a p-type conductivity; but when anthracene crystal is
illuminated with weak absorption region (A >4000 R), its sign indicates
an n-type conductivity, and this inversion occurs at A = 4000 & at room
temperatures. Recently, the photovoltaic effect in naphthalene crystals
as a function of light wavelength has been studied by Tavares [149].
He observed that the magnitude of photovoltage in naphthalene for red
light (7500 K) is strongly enhanced if the specimen is previously illum-
inated by violet light (4100 &) or by green light (5100 &) as shown in
Fig. 2.6. These phenomena has been explained only qualitatively by
Tavares [1l49]. It is believed that this enhanced effect of photovoltage
is due to the local charge non-neutrality or space charge effect. The
theoretical explanation of this effect will be presented in Chapter V
based on our analysis.,

The photovoltage in tetracene crystals as a function of specimen

have been studied by Lyons et al [87]. They found that the thinner the
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non-neutrality in naphthalene crystals.
(a) Red light produced by previously illuminating the
specimen with violet light.
(b) Red light produced by previously illuminating the
specimen with green light.

(after Tavares [149])




54.

specimen the higher is the photovoltage generated in the region of the
weak absorption, and that the photovoltage is almost independent of
specimen thickness in the region of strong absorption. In Chapter V,
we shall also present our theoretical explanation of these phenomena.

(b) Surface condition dependence

So far, investigators [48,102,157,159] have studied the effect of

surface conditions on photovoltage by one of the following means:

(1) to expose the specimen in different ambient gases, (2) to allow

the surface barrier by applied higher electric fields and, (3) to excite
the specimen by increasing light intensity. It is possible that the
surface photovoltage ¢s is due to the boundary bending of the energy
bands, and thus its magnitude and sign depend strongly on the surface
states of the specimen surface. (See Fig. 2.7.)

It has been reported that the adsorption of oxygen tend to
decrease the photovoltage [102,157,159]. This phenomena might be explained
[102,159] by the fact that the adsorbed oxygen produces on the anthra-
cene surface negatively charged states, causing the corresponding change
in the bending of the energy bands. Some important results of bulk and

surface photovoltaic effects are summarized in Table 2.8.
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TABLE 2.8

SUMMARY OF PREVIOUS EXPERIMENTAL RESULTS OF PHOTOVOLTAIC EFFECT IN ANTHRACENE CRYSTALS

Crystal Specimen Front surface Back surface Polarity Wave- Temper—
y P (Flrst (Second of Front length ature Remarks Reference
Preparation Thickness
contact) contact) surface Range Range
Single crystals 5.1u-10u Electrolyte Electrolyte Negative 3650 & 293°K Maximum photo- [63]
(solution grown) -0.01M ~-0.01M voltage = 0,2V
NaCl solution NaCl solution

Single crystals 100u-300u Conducting Aluminum Negative 3100 & 261°K [108]
and polycrystal quartz-glass - 3650 & - 328°K
Sublimation 50u SnO2 Metal Negative 300°K Surface photo- {102}
films voltage
Single crystals 30u-50u Sn0, SnO2 Negative <4000 & 300°K Sign inversion [139]
(zone refined) “ Positive >4000 X - 375°K of photovoltage

occury at

A = 4000 &
Single crystals 401 SnO2 SnO2 Negative 3700 & 300°K Spectral distribu~ [157)
(zone refined) or - 4200 & tion same as

Positlve absorption spectrum

*9¢




CHAPTER ITII
UNIFIED APPROACHES TO THE THEORY OF

CURRENT INJECTION IN SOLIDS

In this chapter, we present a new unified approach to the theory
of one-carrier current injection in a solid having an arbitrary distri-
bution of traps in energy and in space and some experimental results
to show the relation between the size effects and the spatial trap
distribution. The space-charge-limited currents in both organic and
inorganic crystals have been discussed at length by many investigators
[55,77]1, but little has been reported on organic materials, particularly
in film form. We chose anthracene films for the present investigation
partly because they are easy to fabricate for various film thicknesses.
We also present a new unified approach to the theory of double-carrier
current injection in a solid having traps distributed uniformly or
nonuniformly in energy but homogeneously in space, and present some
computed results to compare presently available experimental results.

These two approaches also enable the study of the energy distri-
bution of the traps in a solid from the measurements of J-V character-
istics since the expressions for the latter can be easily deduced to

the expression for any particular conditions.

A. SINGLE INJECTION

3.1 THEORY OF SINGLE INJECTION

In single crystals the trap energy levels, if there are any, are

generally discrete; while in amphorous and polycrystalline materials
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they are distributed in accordance with certain distribution functions
[143]. The latter has been attributed to the intrinsic disorder of the
lattice, which is possibly due to the variation of the nearest neighbour
distances. Material specimens in film form produced either by vacuum
deposition or by other means are likely to be polycrystalline, and there-
fore, traps created by defects are generally distributed and their den-
sity is rather high even if the material itself is very pure chemically.
Furthermore, material specimens always have boundaries such as their
surfaces with metallic contacts. The trap distribution near such bound-
aries would be different from that in the bulk. In the theoretical
analysis we make the following assumptions,but the treatment is general
and therefore can be applied to thick or thin specimens in crystal or
in film form of any materialsf

(1) The energy band model can be used to treat the behaviour of
injected carriers,

(ii) Only injected hole carriers are considered and the ohmic
contact to inject them is perfect. (A similar treatment can be easily
extended to the case for only injected electron carriers.)

(iii) The electric field is so large that the current components due
to diffusion and due to carriers thermally generated in the specimen can
be neglected.

(iv) The treatment is one dimensional with the plane at x = 0 as
the injecting contact and that at x = d as the collecting contact, and
the specimen thickness is d.

The distribution function for the trap density as a function% of
|

b

energy level E above the edge of the valence band and distance x from the
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injecting contact for hole carriers can be written as
h(E,x) = Nt(E)S(x) (3.1)

where Nt(E) and S(x) represent respectively the energy and spatial
distribution functions of traps. If the traps capture only holes, the

electric field F(x) inside the specimen follows the Poisson's equation

rGy | APLG) + P )]

dx €

(3.2)
and the current density may be written as
J=quP(X)F(x) (3.3)

where ¢ is the permittivity, p is the hole mobility, q is the elec-
tronic charge, Pt(x) and Pf(x) are, respectively, the densities of

injected trapped and injected free holes. Pt(x) and Pf(x) are given by

E
g
Pt(x) = h(E,x) f(E)dE (3.4)
o
and
Pf(x) = NV exp (—EF/kT) _ (3.5)

where Eg is the energy band gap, N is the effective density of states

v
in the valence band, k is the Boltzmann constant, T is the absolute

temperature, and EF is the quasi-Fermi level for holes, and f(E) is the

Fermi-Dirac distribution function which is given by

1

£(E) = 1% g exp [(E, - E)/KT]

(3.6)

where g is the degeneracy factor of the trap state. In the following

we shall consider three general cases:




60.

3.1.1 The traps confined in a single discrete energy level.

For thié case, equation (3.1) becomes
h(E,x) = Ha S(E - Et) S(x) (3.7)

where Ha is the density of traps, Et is the trap energy level above
the edge of the valence band and §(E - Et) is the Dirac delta function.

From equations (3.4) and (3.6) we obtain

E
-8 H, 6(E - E)S(x)dE
P () = o 1+ gexp [(EE)/KT] (3.8)
HaS(x)
= ——-———-—Haea (3.8)
1+
P.(x)
in which
gNV
Ga = E;_ exp (—Et/kT) : (3.9
Substitution of equation (3.9) into equation (3.2) gives
H S(x)
dF(x) _ _ g a
= "elfet H o, (3.10)
1+
P.(x)

An analytical solution of equation (3.10) for J as a function of applied
voltage is not possible, although a numerical solution can be obfained
for all possible cases separately. For simplicity, we assume that Et

is a shallow trap level located below E This implies that Haga?>Pf(x).

P
On the basis of this assumption and by multiplying both sides of equation

(3.10) with 2F(x) and substituting equation (3.3) into it, we obtain

2F(x)

PG _ a[Fm1® | 21
X

n ax Euea[ea + S(x)] (3.11)
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Integration of equation (3.11) and use of the boundary condition

d
vV = —J F(x)dx give

© 2
J = %—euea dg (3.12)
eff
in which V is the applied voltage and
3 d rt e 12/3
deff = {_f JO UO [ea + S(x)] dx dtj (3.13)

Equation (3.12) is similar in form to that derived by Lampert [75]

except that d has been replaced with deff which can be considered as

"effective thickness'". The difference between deff and d can be attri-
buted to the inhomogeneous spatial distribution of free and trapped

carriers.

3.1.2 The traps distributed exponentially within the forbidden energy gap.

- For this case equation (3.1) becomes

h(E,x) =%— exp (- ﬁ—) S (x) (3.14)
C C

where Hb is the density of traps per unit energy interval and TC is a
characteristic constant of the distribution. If Tc > T we can assume

that [89] £(E) =1 for EF < E < and £(E) = 0 for E < EF as if we take

T = 0. This is a good approximation particularly when TC is much larger

than T. With this assumption we obtain

B
E
Pt(x) = wr~ %P (- WT ) S(x)dE
B c c
F
EF

= Hb exp (- Ef: ) S(x)

Pf T/Tc
= Hb T S(x) (3.15)
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The upper limit of the integral has been extended to infinity. This is
permissible if EF(X) is far enough removed from the Fermi level of the
neutral region. By substituting equation (3.15) into equation (3.2),

' +
letting TC/T = ¢, and multiplying both sides with (&El) [F(X)]l/z, we

obtain
1/2 (2+1)/2
AL reoy R - dTG]
ol 1/ (-2 -1/%
g1, By 5 12 - (3.16)
= () — (qUNV) [0, + S(x)]
in which
N E
N B g 3.17
Sb = ﬁ;-exp [ T ( 7 )] ( )

Integration of equation (3.16) and use of the boundary condition

d
v =-J F(wdx give
o

241
2+1 2
1-2 22 + 1 L € v
JEa o uN, G G ED") I RN (3.18)
d
, . a t eff
in which
RIA+LY L9+1Y2+1
deff ={22 + 1 ( [eb + S(x)] dx) dt l}/( ) (3.19)
2+ 1
o Jo

Equation (3.18) is similar in form to that derived by Mark and -

Helfrich [89] except that d has been replaced with de Again, the

ff"

difference between deff and d is caused by the inhomogencous spatial

distribution of free and trapped carriers.



63.

3.1.3 The traps distributed uniformly within the forbidden energy gap.

For this case, equation (3.1) becomes

hiE,x) = HCS(x) (3.20)

where HC is the density of traps per unit energy interval. From equa-

tions (3.4) and (3.5) we obtain

Eg HCS(X) dE

It

P (%)
t 1+ g exp [(EF - E)/kT]

l+g exp [(EF - Eg)/kT]
1+ g exp (EF/kT)

}s (%)

H {E + kT %n
c g

14

Ep.
H LT( *-g*lv&—-— - In g)S(x) (3.21)

since Eg > E.. Substitution of equation (3.21) into equation (3.2)

F

gives
= -_, P+ H kf( T - ng)S(x)
qHCkT quNVg exp (-E /kT)
- g (3.22)
S [8_+ 5G] In [ - F] :
in which
Ny exp (-E./KT)
6 Y P (3.23)
c E

H kT (—5~———E - ng)

Integration of equation (3.22) and use of the boundary condition

d
V= - j F(x)dx gives(see Appendix)
o
\Y E 2eV
J = unNVg 3 exp (—- -E%) exp ( ) (3.24)
eff qH_ de
in which
d rt
3
dep = 2 [6, + s(x)]dx dt}? (3.25)
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Equation (3.24) is similar in form to that derived by Muller [98]

except that d has been replaced with d Again the difference between

eff’

deff and d is caused by the inhomogeneous spatial distribution of free

and trapped carriers.
The above three general cases can be extended to many other cases
for other possible distribution functions through an appropriate approx-

imation procedure. However, once S(x) is known, d can be easily

eff

calculated and then the I-V characteristics can be determined.

3.2 EXPERIMENTAL AND COMPUTED RESULTS FOR SINGLE INJECTION

Anthracene film specimens were fabricated by evaporating the
anthracene material of scintillation grade and depositing it onto a silver-—
coated glass substrate under a vacuum of 10—6 torr, the temperature of
the substrate being kept at -60°C during deposition [104]. On the other
surface of the film was vacuﬁm—deposited a silver layer to form a sand-
wich type specimen, the silver electrode size on both film surfaces
being 2 mm in diameter. The film thickness was measured with an inter-
ferometer and checked with the microbalance weighing method. Figure
3.1 shows the I-V characteristics for various film thicknesses. For a
given thickness, I is proportional to V3 indicating that the traps are
distributed exponentially within the forbidden energy gap following equa-
tion (3.18) with g = 2. This is reasonable because the structure of
anthracene films is likely to be polycrystalline, and the traps created
by defects due to such a structure generally have an exponential distri-

bution in energy [52]. Since the carriers injected from silver electrodes

to anthracene are holes [61,120], we can now use equation (3.19) to
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calculate deff and then determine S(x) from the thickness dependence of

I for a given applied voltage V. We shall first compute deff for three

most probable distribution functions of S(x) as follows. For simplicity

the contribution of the free carriers to de is ignored, so that

ff

equation (3.19) reduces to

d rt L a4l
28 + 1 241 241
defr = [‘W’l‘ (| sGax dﬂz
0“0
(3.26)
3.2.1 Uniform spatial distribution.
The distribution function may be written as
S(x) =1 (3.27)
deff for this distribution function is therefore
d rt L 2+1
2841 241 204+1
degs = [gg | (| a7 de]
lo ‘o
=4 (3.28)

3.2.2 Exponential spatial distribution with the maximum density at the

injecting electrode (at x = 0).

The distribution function may be written as

S(x) = 1 + A exp (--}’—:—) (3.29)
(o]

where A and X ~are constants. Substitution of equation (3.29) into

equation (3.26) gives
d t L 2+1

[l (1 + A exp (- i—)dx}g+l dt}2£+l
o

= { 2 9~/+}-
eff L+1

0O 'O
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By setting
t _ d .
P=qyg > W= exp (- " )} and Wy = exp ( - ), we obtain
0 o
p 1 1
deff - o c(1+0p) 1+p { [A(l—y)—lnw]p dw}p+l
a4 P W (3.30)
Yd
which can be easily evaluated.
3.2.3 Exponential spatial distribution with the maximum density at
both electrodes (at x = 0 and x = d).
The distribution function may be written as
S(x) =1+ B [exp 6—§— ) + exp (- dx_ 51 (3.31)
o o

where B is a constant. Similarly, substituting equation (3.31) into
equation (3.26) and simplifying it, we obtain

p 1 Ya p 1
X [B(l—w~wd+ ;—)—an] dw}E;I

d d W (3.32)

From the experimental results givén in Fig. 3.1 we have g = 2.
Using this value for g, we have computed deff/d as a function bf d/xO
and the results are given in Fig. 3.2 fbr various S(x). TFrom Fig. 3.1
and equation (3.18) we would expect I to be proportional to d“5 for a
given V if the spatial distribution of traps is uniform. But the plot
of I as a function of d for a given V in Fig. 3.3 shows that I is propor-
tional to d—n, in which n is dependent on d. This indicates that the
trap distribution in the anthracene films under investigation is spatially

n —=5

inhomogeneous. Since I can be simply expressed as I = Md = = Mdeff for
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a given V and 2 = 2, we can determine from Fig. 3.3 the values of n and
deff/d for various values of d. The result of the latter is also plotted
in the same figure.

It is reasonable to assume that if the inhomogeneity of the spatial
trap distribution is caused by the metal-anthracene contacts, then the
distribution function should be independent of film thickness because
the same technique was used to fabricate all specimens. Since the mat-—
erial used for both electrodes is silver, we would expect that the trap
distribution at x = 0 should be symmetrical with that at x = d. Thus
the most probable spatial distribution function would be exponential
with the maximum trap density at x = 0 and x = d. From Figs. 3.2 and
3.3 we have estimated that for S(x) independent of d, the value of X is
between 0.3 and 0.4 U, and the value of B is between i and 2. It should
be noted that the number of thicknesses used for the present experimental
investigation is only 5, the curves drawn in Fig. 3.3 are clearly not
unique. For accurate determination of S(x) more results on thickness
dependence of I-V characteristics and an iterative procedure to find X s

B or A are necessary.

3.3 CONCLUDING REMARK FOR SINGLE INJECTION

The general expressions for the current-voltage characteristics
in a solid with traps uniformly and non-uniformly distributed in space
and in energy have been derived using a unified mathematical approach.
The analysis technique discussed in this chapter may, in principle, be
used to analyse any distribution of traps with space and energy. However,

it should be noted that in the derivation both the permittivity and the
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carrier mobility have been assumed to be constant. For a more rigorous
treatment, these two physical parameters may have to be considered to be

altered by the charge exchange in traps [107].

B. DOUBLE INJECTION

3.4 THEORY OF DOUBLE INJECTION

In the theoretical analysis we make the following assumptions:
(i) The energy band model can be used to treat the behaviour of
injected carriers.

(ii) Both injected electron and hole carriers are considered and
the ohmic contacts at the cathode and at the anode to inject them are
perfect.

(iii) The electric field is so large that the current components
due to diffusion and due to carriers thermally generated in the specimen
can be neglected.

(iv) The treatment is one dimensional with the plane at x = 0
as the electron-injecting contact and that at x = d as the hole-injecting
contact, the specimen thickness being d.

(v) The free electron and hole densities follow the Maxwell-

Boltzmann statistics, while the trapped electron and hole densities follow

the Fermi-~Dirac statistics.

(vi) The mobilities of the free electrons and free holes are not
affected by the presence of traps.

(vii) The fields at both injecting contacts are zero under all con-

ditions. That is

F(x=0) = F(x=d) = 0 (3.33)
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(viii) The indirect recombination through traps 1s predominant so
that the direct band recombination can be ignored.
The behaviour of double injection in a solid is governed by the

current flow equations:

Jn = qunan (3.34)
J = F 3-35
p = W Pg ( )
I =3+ (3.36)

the continuity equations:

- (1/q) (dJn/dx) = T = np<vop> (3.37)
(l/q)(de/dx) =r = np<voR} (3.38)
and the Poisson equation:

dF/dx = (q/g)[pf(x) + P, - nf(x) - nt] . (3.39)

Based on the assumptions given above, the densities of free electrons

and holes are given by
nf(x) = NC exp[—(EC - EFn)/kT] (3.40)
pf(x) = NV exp[-—(EFp - EV)/kT (3.41)

and those of trapped electrons and holes by

?u

n, = ! h (E)f_(E)dE (3.42)
%
E
[ |

P, = hp(E)fp(E)dE (3.43)

Ey




where
£ () = o E— _
1+ g, exp[(E—EFn)/kT]
1
£ (E) =
p( )

1+ gp exp[(EFp-E)/kT]
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(3.44)

(3.45)

and hn(E) and hp(E) are, respectively, the electron and hole trap dis-

tribution functions which are functions of energy level E between the

two limiting levels El and Eu' To evaluate n and P> and to derive the

expressions for the J-V characteristics it is convenient to consider

three general cases as follows:

3.4.1 The traps confined in a single discrete energy level.

(i) Shallow traps:

The electron traps are considered to be shallow if Etn > E

(or Etp < E

bution function is given by

hn(E) = Hand(E - Etn) .

Fp for shallow hole traps). For this case the trap distri-

(3.46)

If Etn is not too close to EFn for shallow traps, substitution of equa-

tions (3.44) and (3.46) into equation (3.42) gives
n_, = Hangn exp[(EFn - Etn)/kT] .
Similarly, we can obtain hp(E) and Pat as follows:
h (E) = H E ~E
p( ) apa( tp)

-1
~ H n — n
Por ap®p exp[(Etp EFP)/kf]

From equations (3.40), (3.41), (3.47) and (3.49) we can write

(3.47)

(3.48)

(3.49




and »oon o=
p:
in which
K
an
K
ap

Petae T Kanls
pf+pat = appf
g H

S

C

H
a —
1+ g—g— exp[(Etp Ev)/kT]

PV

= exp[(E_-E_)/kT]
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(3.50)

(3.51)

(3.52)

(3.53)

By introducing the following parameters for the solids without

traps (denoted by

Mro

VRO

VPO

and the corresponding parameters for the solids with traps

Ra

an

Vap

the subscript "0")

= e<v0R>0/2q

”u/“Ro

“p/“Ro

'R0 _ V%70 1
K K 2q X K
an ap an ap
Kap\)nO
Kanvpo

and also the following parameters

HpHp€

™
i

=<
[i§

[}
1l

T 2K K

an ap“RaJ

qun/KanJ
qu /K J
1Up ap

o F2
a

(3.54)

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)

(3.63)
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= = B .
Sa BanF aKanan (3.64)
T, = YpF = YéKappfF (3.65)

equations (3.36), (3.37), (3.38) and (3.39) can be written as

S + T =1 (3.66)

a a

dSa/dX = —SaTa/Ua (3.67)

dTa/dX = SaTa/Ua ‘ (3.68)

dU /Jdx =v T -v 8§ (3.69)
a an a ap a

Integration of equation (3.69) with the aid of equations (3.66), (3.67)

and (3.68) gives
vap van
Ua = Da(l—Sa) S, (3.70)

where Da is the integration constant which is determined by differenti-
ating equation (3.70) with respect to x and comparing it with equation

(3.69). By doing so, we obtain
dSa/dx = —Sa(l - Sa)/Ua o (3.71)

Since the entire current at the anode is carried by holes, thus Sa = 03

and the entire current at the cathode is carried by electrons, thus

Sa = 1. So integration of equation (3.71) gives
8471 v -1 v, -1
D =d/ s M (1-s ) *P g5 . (3.72)
a a a a
S =0
a
d
Using equation (3.63) and the boundary condition V = - f F(x)dx, it

0
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can easily be shown that the relation between J and V is

9 v
8 “Hefsf 23 (3.73)

J =

where o ) 4
[f S:;mfI (l _S")u",’—l dS,,:'

8qgu,u,
et = = { Hen My +

9 {vog)e 1 2’ (3.74)
[f S¥antz=1 (] =S, )Mapit=t dS"]

]

Equations (3.73) and (3.74) are similar to those derived by
Parmenter and Reppel [106] except that vno and vpo have been replaced

with v =K v and v =K

AV] . i = =
N an no b ap po Thus, by putting Kan K 1,

ap

this case will degenerate to the case for trap-free solids.

(1) Deep traps:

The electron traps are considered to be deep if Etn < E (or

Fn

Etp > EFp for deep hole traps). For this case all equations derived for

the shallow trap case can be used except that n _, p ., K and K
at at an ap
have to be replaced with the following expressions:
n.® Han (3.75)
Pat Hap (3.76)
H (E ~E_)
- an c Fn
Kan 1+ ﬁz— exp [-—_EE_—_—i} (3.77)
H (E, -E)
= —ap —Fp v
Kap 1+ NV exp { T ] (3.78)

3.4.2 The traps distributed exponentially within the forbidden energy ~ap.

For this case the electron and hole trap distribution functions are
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- _H E—-F,
ho(E) = 2 i 3.79
1 ) /\"I',.CXP< AT, ) | ( )
N E.—E
Ny (E) == ~tn e .
kT;exP< kT, )' (3.80)
If T > T we can assume that f (E) =1 for — « < E < E and £ (E) =0
c n Fn n
for E > EFn; and fp(E) = 1 for EFp< E <o and fp(E) = 0 for E < EFp
as if we take T = 0. This is a good approximation particularly when
TC is much larger than T [89]. With this assumption and from equa-
tions (3.42), (3.43), (3.79) and (3.80) we obtain
EFn
_ Hy, E—E. (3.81)
. n,,,—f kTpexp( iT. )dE
El,
= Hbu(nl/N(-)”l
and
Et‘
Hy), E—E
Poe = 'k_r;-:eXp( /\T( >dE
Eg, (3.82)
= Hy,(pdNW
where £ = TC/T. Following the same procedure as above, we can write
- - /%
n =g + n= annf . (3.83)
_ o 1/%
P =pet by, =K P (3.84)
o Ne -1 Er =k, g
K= {1+ e | (57) (P47 )]}N (3.85)
(3.86)

(120 (B B\
w () ()
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To simplify matters, we introduce the following parameters:

— (#I'I/I/K,”,) (,‘l’"”l/l\’h")&

LU+ D pg ™ (3.87)
By = an, /Ky J (3.88)
2
Y qu/K.pr (3.89)
241)/2
U, = 0‘bF( )/ (3.90)
)
Sp = BuKpngF (3.91)
T, = L F
b~ YpXppPs (3.92)
o 1/s
Vipn & Gy K ) iy (3.93)
1/%
Vipp = TR gy (3.94)
o ESvoRy 1
HRp T 1-1/2 ° (3.95)

[(2+1)/2]q (unnf+ uppf)

Using these parameters, substituting equations (3.83) and (3.84) into

9+1 /2

equation (3.39), and multiplying both sides with ab(—z—O[F(x)]l

and then simplifying it, we obtain

dUb/dx = \)bnTbl/2 —'\)bpsbl/2 (3.96)
Since

S, * T, =1 (3.97)

ds, /dx = sbl/ZTbl/Q/Ub (3.98)

dT, /dx = —sbl/ﬂTbl/R/Ub (3.99)



79.

integration of equation (3.96) gives

g (4-1)/2

U, = Dy exp{[L/ (1) 11y, s, +vbp(1-sb)(“"l”

11} (3.100)

where Db is the integration constant which can be determined by inte-

grating equation (3.95). Thus we have

1
_ exp {{ 01U+ D] [wpSi =" + v, (1— 8,41 )dS,
Do = ‘[/ f Sy (1 =8, : (3.101)

Using equations (3.90) and (3.100) and the boundary condition

d

V= - f F(x)dx, it can be easily be shown that the relation between J
0

and V is

J=g (2%)’“ <141761)1:1 (3.102)

where

B = LU+ D@1+ DTl ot o

by~ bn
. .

(f exp{(—[_f 1) Lo S =" 0y, (1 -S,,)-”““”]} [S,M(1 —S,,)‘”]"'dS,,)

+1

Y]

X
1

9 I+1
(f Cxp{(ii jll> [”Imsh‘[_”” + l'bp( l - Sb)”_”“]} [Sl;”I( 1 —Sb) ”’] "ldsb)

0 (3.103)

Equation (3.102) is similar in form to that derived by Mark and
Helfrich [89] for one-carrier crrrent injection except that ppNV/Hbp has

been replaced with ”éff for double carrier current injection.

3.4.3 The traps distributed uniformly within the forbidden energy gap.

For this case the electron and hole trap distribution functions

are




n
jus)

hn(E) an

H

hp(E) dp
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(3.

(3.

104)

105)

From equations (3.42), (3.43), (3.104), and (3.105); and on the assump-

tion that £ (E) = 1 for - » <E <E_ , and £ (E) = 1 for E < E < oo
n Fn P

Fp

and fn(E) = fP(E) 0, otherwise; we obtain

at = Han By — B

and
Pat dp ¢ Fp

Thus we can write

-E /kT
n=n_+n K ln{n & ]

£ at dn /N e

f

-E _/kT
P =P + Pae = deln(pf/Nve ]

in which

- Nrexp [ (bl"n _ bl')”/\ r]]H,/,,/{T
HolEr—E)

K/In = {l

Nexp [(E.—E ) kT
PUEZENMT, .
HoulEo—Ep,) J

K'll' = {l -+

Similarly, we introduce the following parameters for mathematical

simplicity:

oq J/quanp<v0R>d
By = au,/J
Tq T up/d

(3.

(3.

(3.

(3.

(3.

(3.

(3.

(3.

(3.

106)

107)

108)

109)

110)

111)

112)

113)

114)




81.

Uy = adlnF (3.115)
Sd = Bdan (3.116)
Td = ydpfF (3.117)
SO = BdNC exp(—Eg/kT)F (3.118)
TO = Yde exp(—Eg/kT)F (3.119)
Vin = l/KdnuRd (3.120)
Vdp = l/deuRd (3.121)
Mpg = e<voo>d/q(unnf+uppf) . ‘ (3.122)

Using these parameters, and substituting equations (3.108) and (3.109)

into equations (3.37), (3.38) and (3.39); we obtain

Qéﬂzln(TMT”ln(SJSﬂhm
dx ) (3.123)
AT, et

_dle To) In(SafSa) fex,

— (T T) In(SafSa) fexy (3.124)
dF ¢, , o , e
ar (;I [ Kvlpln(lzl/lu) - l\tlu ‘n(*stl/‘sﬂ)] (3’ 125)

dx

Substitution of equations (3.123) and (3.124) into equation (3.125) and

integration give

F = Dd{exp[v E In(S,/S,) + vdeOElln(Td/TO)]} (3.126)

dnSO

is the integration constant.
d

From equations (3.125) and (3.126) and based on V = - f F(x)dx, the value

0

where El is the exponential integral and Dd
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of D, can be determined and it is

13 52) s

’[exp [V,,,,.S},I (ln %) g ok, (1 ‘—S’m (3.127)

1] I” .
1S,
f (In—l -\3'I> <ln M) o
0 y 7~l

r 5'()

D, =

Thus the relation between J and V is

J=2qu’ (Vd)exp[C(V]d*)] (3.128)
where
—— denKtln (U(J',,->,,
- l Sa 1—S (3.129)
2 j .{exp l:l’zll:S()El([n 'S,'i) -+ l',l,rTuEl<ln ——_T() ’I>jl} is
(ln | —S(1> <] &) d
' . TU " Su
and

1

[exp[uduSuE (lni )—i-l/,,,, “L (]n TSd)}

g el WOSOTWGST
C=yhy L e st 1 (3.130)
* U [l"(s(,)'” <—T‘*I>J dS,,}'

]

d Sd

Equation (3.128) is similar in form to that derived by Muller [98]

for one-carrier current injection except that un has been replaced with

u;ff and 2¢/qHkT with C for double carrier current injection.

It should be noted that an alternative approach to this double-
injection problem can also be obtained by employing free carrier den-

sities instead of local coordinates as the independent variables. Based
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on this alternative approach, we can easily deduce from equations (3.34)
- (3.39) the following equation

didnny _ p—erlp,ny

dinp)  p+erl,p (3.131)

If the recombination rate constant, trap densities and their distribution
function are known, n. can be calculated in terms of Pe- Thus we can

write

n, = G(p,) (3.132)

and the crystal specimen thickness and the applied voltage in the form

p =1

d
Je w,dp
' d=[d_\'-‘: —_—— f WApPr )
4 Chatty pnps) (e pep + €r) (3.133)

0

potrs 3]

d ]:f(_‘-::()l

o Je dp,
V=-—de.x~ _Je f tdp; _
g (s, pe)® (o, ppp + €r) (3.134)

0 pf(.r=(1)

From equations (3.131) - (3.134) we can easily deduce expressions of

J-V characteristics for all types of trap distribution described above.

3.5 COMPUTED RESULTS FOR DOUBLE INJECTION

In order to show the effect of traps on the double injection J-V
characteristics, we take anthracene crystal as an example. Generally,
in this material the electron and hole mobilities are small, and the
recombination rate constant is large resulting in a small space charge
overlap. Thus the steady state double injection current in a solid

without traps as a function of applied voltage is given by [55,57].
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2
9 -y
J = 3 €W T3 (3.135)
d
where L + up . The presence of traps in the material alters this

expression as has been discussed in Section 3.4. In the following

we shall present some computed results which are computed by finite difference

method, to show the effect of traps for two most probable types of trap

distribution using the following physical parameters for anthracene

04 cmZ/V—sec

Un'—"
2
uP = 08 cm” /V-sec
WOy = lO.-6 cm3/sec

There is so far ﬁo experimental evidence that the traps are distributed
uniformly within the forbidden energy gap. Physically, the uniform
distribution of traps is unlikely to oecur in a solid. We include it
in our theoretical analysis just for the completeness of this unified
approach, and,for the present,no computed results ;re presented for this

type of trap distribution.

3.5.1 The traps confined in a single discrete energy level

For this case, the expression for the J~V characteristics [equa-
tion (3.73)] is similar to equation (3.135) except that My is replaced

with Vefs which is a function of Mo Hoo hn, hp’ r and F; and may be

P
simply expressed as

+
an ap

Nl:‘t‘
W}Ux:

Heff . (3.136)

Figure 3.4 shows the ratio ueff/uo as a function of Han/Nc and the trap-

ping level (Ec - Etn)/kT [which is for electron traps and which is assumed
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Heff
Mo

.= Theoretical

-3 : - - - Experimental [57]
10 1 ' ! 1 ! L ! 1 1 ;
0 4 8 12 16 20
kT

Fig. 3.4: ueff/uo as a function of (EC - Etn)/kT for traps
confined in a single discrete energy level.
Solid lines for K /K =1 and semi-dashed lines
an’ ap

for X /K =0.5.
an’' ap

A and a: H N = 10‘6, Band b: H /N =10
an/ ¢ 4 an' ¢ ’
Cand c: H_/N =107, Dandd: H /N =107,
an C -2 an C -1
E and e: Han/Nc =10 ", Fand f: H_ /N =10

an’' ¢ :
-6
X: tetracene concentration = lppm equivalent to Han/Nc =10 .
-5
y: tetracene concentration = 10ppm equivalent to Han/Nc =10 7.
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to be equal to (Etp - Ev)/kT for hole traps] for Kan/Kap = 1 and 0.5,
These results indicate that for a fixed trapping level the double injec~
tion current decreases with increasing trap density, and for a fixed
trap density it decreases with increasing value of (EC - Etn)/kT' This
also implies that the shallow tfaps are less effective in reducing the
current than the deep traps. These computed results are in good agree-

ment with the experimental results of Hoesterey et al [57] and those of

Schwob et al [124] for anthracene heavily doped with tetracene as shown

in Fig. 3.4. This indicates that for traps created by dopants alone

the traps are likely to be confined in a single descrete energy level.

3.5.2 The traps distributed exponentially within the forbidden energy

gap.
For this case the J-V characteristics is given in equation (3.102),
in which “éff does not have the same dimension as My but has the dimen-

1 sec_l) (cm3)£“l (eV)z. However, to show the effect of

: 2 -
sion of (cm 'V
traps, results are shown in Fig. 3.5. It can be seen that for a given

value of % the ratio uéff/uo increases with increasing V, and for a

given V it decreases with increasing value of &. The higher the applied

voltage, the less is the effect of traps, and this agrees well with the
experimental results of Schwob et al [125] for tetracene~-doped anthracene
and those of Dresner [32] for undoped anthracene as shown in Fig. 3.5.

This also indicates that in most anthracene crystals with imperfections

the traps created by them are distributed exponentially within the for-

bidden energy gap with £ approximately equal to 2 at room temperature.
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~—— Theoretical
---- Experimental [125]
—-— Experimental [32]

1 I ! !

30 40

kV/em

Fig: 3.5: uéff/“o as a function of V/d for traps distributed

exponentially within the forbidden energy gap.

A: & = 2.5,

B: 2 =2.0, and C: & = 1.5.
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3.6 CONCLUDING REMARKS FOR DOUBLE INJECTION

The general expressions for the double injection current-voltage
characteristics in a solid with traps uniformly and non-uniformly dis-
tributeh in energy have been derived using a unified mathematical
approach. An alternative approach using free carrier densities instead
of local coordinates as the independent variables has also been discussed.

The analysis techniques described in thischapter may, in principle, be

used to analyze any distribution of traps with energy since any type

of distribution can always be resolved into components to fit these

three general distribution functions. The computed results are in good
agreement with the experimental results for anthracene containing traps
either confined in a single discrete energy level or distributed expo-
nentially within the forbidden energy gap. The effect of traps on the
J=-V characteristics can be used as a tool to determine the purity of a
crystal. However, it should be noted that in the derivation both the
permittivity and the carrier mobilities have been assumed to be constant.
For a more rigorous treatment these physical parameters may have to be

considered to be altered by the charge exchange in traps [107].




CHAPTER IV
THEORY OF
FILAMENTARY DOUBLE INJECTION

AND ELECTROLUMINESCENT PHENOMENA

In general, the interface between an electrode and a crystal sur-
face which is not microscopically identical from domain to domain, is
never homogeneous and uniform. Thus, there must be one or more micro-
regioné at which the potential barrier has a profile more favourable to
carrier injection than at other regions of the interface. Furthermore,
the crystal itself is never microscopically homogeneous and uniform.

For all these unavoidable imperfections the current-passing through a
crystal specimen is filamentary at least from a microscopic point of view.
For an electrical field applied to the specimen longitudinally, the field
will not be uniform longitudinally due to the effect of space charge

and the current density will not be uniform radially due to the forma-
tion of filamentary paths. The current filaments formed in Si, GaAs,

ZnTe, GaAsxP and polycrystalline Si have been observed by Barnett et

1-x
al [8,9].

This chapter is to present a theoretical model for the filamentary
injection and to show that the expressions derived on the basis of this

model can explain quantitatively some important experimental aspects of

electroluminescence in undoped and doped anthracene crystals.

4.1 THEORY OF FILAMENTARY DOUBLE INJECTION

In the theoretical analysis we make the following assumptions:
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(i) At the voltage of or higher than the threshold voltage for
the onset of electroluminescence, there may be one or more than one fila-
ments formed between electrodes. But for mathematical simplicity we
use cylindrical coordinates and consider only one filament formed along
the z-axis which coincides with the dentral line joining the two circular
plane electrodes of radius rye The whole system is symmetrical about
the z-axis.

(ii) 1In the filament the longitudinal component of the diffusion
current can be ignored because of the large longitudinal component of
the electric field and the radial component of the drift current can be
ignored because of the small radial component of the electric field.

(iii) The free electron and hole densities follow the Maxwell-
Boltzmann statistics, while the trapped electron and hole densities
follow the Fermi-Dirac statistics.

(iv) The mobility of the free electrons, T and that of the free
holes, up, are not affected by the presence of traps, nor by the high
electric field.

(v) The treatment is two-dimensional with plane at z = 0 as the
hole-injecting contact and that at z = d as the electron-injecting con-
tact, the specimen thickness being d.

(vi) The simply extrinsic (through traps) and intrinsic indirect
recombinations are equally important and the recombination rate, R, con-
sists of a longitudinal component, Rz, and a radial component, Rr .

The behaviour of double injection in a cyrstal is governed by the

current flow equations




91.

> > >
J = + J
n nz nr
on
= K —= 7 4.1
TaM,ng Fi 4+ gD w7 Ty (4-1)
-> > >
J =J + J
b Pz pr
_ e 5 opg
g9 Up_Pf 1 q b 3r Ir 4.2)
> > > -> >
J=J +J =J + J
n P z r (4.3)
the continuity equations
H E—-(n F) = 9
ndz £ T T My 5y BF) =R (4.4)
5 .
E o i) R B2 (“:
r r or r or or r
and the Poisson equation
. =49 - -
VeF=glpgtpg-ng -] (4.6)

The densities of free electrons and holes are, respectively, given by

oo}
il

Nc exp[—(EC - EFn)/kT] 4.7

pf = NV exp[--(EFp - EV)/kT] (4.8)

where J, Jn and JP are, respectively, the total, electron and hole current
densities; n, and P, are, respectively, the trapped electron and trapped
hole densities; F is the electric field; ¢ is the permittivity of the
crystal; Dn and Dp are, respectively, the diffusion coefficients for
electrons and holes; EC and EV are, respectively, the energy levels at

conduction and valence band edges; EFn and EFp are, respectively, quasi-
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Fermi levels for electrons and holes; NC and Nv are, respectively, the
effective densities of states in the conduction and the valence bands;

q is the electronic charge; k is the Boltzmann constant; T is the abso-
lute temperature; gz and ?r are, respectively, the unit vectors in the
directions of z-axis and r-axis; and subscripts z and r refer, respectively
to z- and r-direction. To derive the expressions for the current-—

voltage (I-V) characteristics it is convenient to consider two general

cases as follows:

4.1.1 The traps confined in a single discrete energy level,

For this case the trap density distribution function for electrons

is given by
(4.9)

thus E
u hn(E) dE

-1
s 1+g = expl® - EFn)/kT] (4.10)

Similarly, we have the trap density distribution function for holes

h (E) = H S (E-E ) ' (4.11)
p ap tp
and E
u h (E) dE
- P
Pe T (4.12)
£, 1+ gp exp[(EFp - E)/kT] .

where Han and Hap are, respectively, the trap densities for electrons
and holes for the trap distribution function following a delta function;

&, and gp are, respectively, the degeneracy factors of trap states for

electrons and holes; Eu and Ez are, respectively, the upper and the lower
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limits of the trapping energy levels; and Etn and Etp are, respectively,

electron and hole trapping energy levels.

For simplicity, we introduce the following parameters

n
t
Kn=1+ o (4.13)
f
b
K =1+ -%
ap Pe (4.14)
€ 0
R 2
a d Kan Kap (4.15)
Vv = ﬁ
an Kap un(E(Ré) (4.16)
e Y (5@3) | (4.17)
o - Un Up €
a 2K K _ u_J
an ap Ra zo (4.18)
a M,
Ba =5 (4.19)
an zo
v =t o (4.20)
a K J ’
ap zo
U =a F 2= Cy/3 (4.21)
a
Sa = Ba Kan nf Fz l (4.22)
Ta B YavKap Pe Fz (4.23)
J_(x) J _(x) +J3_ (x)
W o= 2 _ _nz Pz
a J J +J (4.24)
z0 nzo pzo

Where RO is the electron-hole recombination coefficient without traps,
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Jzo is JZ at r = 0 (the center of the filament), and Fz is the electric
field in the z-direction. Using these parameters the current density

in z direction can be written as
W =8 4+ T (4.25)
a a a

Assuming that the radial variation of Fz is negligible, then equation

(4.6) becomes

d
S 1 _y s 2o (4.26)
dr an a ap a
thus
v
T = |-2B| ¢ (4.27)
a v a
an
Substitution of equation (4.27) into equation (4.25) gives
W
Q = ———.—‘a__
a v 4,28
1+ 2R (4.28)
v
an
) (\)ap/\)(_m)wé1
T, = ) (4.29)
1+ 22
Vv
an
Equation (4.5) can be written as
3w |
19 a, _ -1 2
T or (x ar ) = (AFz Jzo) wa (4.30)

This equation indicates that the radial distribution of wa is a func-

tion of z; therefore, to obtain an equation for an average profile, we
average the parameter over the specimen thickness of d. Thus, we can

write

(o}
or
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2~ —
0 W oW
a_ 1 a _ =2

2 + r or (Aa Jzo) wa (4.31)

or

in which Wa is the average value of Wa in the z-direction, and

\Y)

A = ap/van . 2 Kap Kan ”Ra . ppDn + UnDP
2
(1 + vap/van) Up Un € Dp Dn
4 (4.32)

a 1 d <F >

—dez z

d z

o]

An examination of equation (4.31) shows that the solution for ﬁa would
approach infinity as r approaches to zero. Physical reality requires

a finite solution for all values of r, and this demands that aﬁa/ar must
approach to zero when r approaches to zero. Thus the term 1/r Bﬁalar

can be neglected, and equation (4,.31) reduces to

a _ % g w2 (4.33)

Using the boundary conditions

r + o W o> 1 _
@ dw
r > o W >0 and —-§'—>O
a dr
the solution of equation (4.33) gives
o Aa sz L 2
W= [1+ ¢ =22 r] (4.34)

From equations (4.24) and (4.34) the average current density over the

specimen thickness d is given by

A J 1
_ a zo 3 -2
S N ] (4.35)
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and the total current

[ZTT rd

fan
It

J (r) rdr a6
z

Jo o

A g A J -1
12m a zo. ks a “zo %
———A {«an [l + (—-—6 ) rd]+[l + ("—‘6———') l‘d‘l— 1}
a : (4.36)

il

where Jzo is the filamentary current density at the centre. It is
likely that the carriers are mainly injected from some asperities on the
electrode surfaces and that each of such asperities has a very small
injection area. One asperity on the cathode and the other on the anode
will form a double-injection current filament. It is therefore reason—
able to assume that Jzo follows the normal expression for space charge
limited currents because the density of carriers diffusing away from

r = 0 would be very small as compared with that at r = 0. 1In equation
(4.35) jz(r) decreases abruptly with increasing r indicating that 3Z(r)
becomes less space-charge-limited as r is increased. On the basis of
this argument, J,, for this case is the same as J given by equations (3.73)

and (3.74), and for convenience, they are rewritten as follows:

2
9 \Y
- = A 4,37
J20 =8 € Mers 3 (4.37)
d
4 3
. . 1 v -1 v -
in which an ap ]
. [fo Sa (1 - sa) ag |
U _8 %
eff 9 //io 1 v Vap 1 2
[ erera, ]
S (1 - s8) ds
a a
0 (4.38)

and V is the applied voltage across the electrodes.
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4.1.2 The traps distributed exponentially within the forbidden energy

gap.

For this case the trap density distribution functions for elec-

trons and holes are, respectively,

an E - Ec
b (B) = 37 exp( e (4.39)
C [od
H E - E
= 2R -~
hP(E) k_ exp ( KT, ) (4.40)

where TC is the characteristic constant of the trap distribution, and
an and pr are, respectively, the trap densities per unit energy inter-
val for electrons and holes. If TC > 1 we can assume that the elec~

tron distribution function fn(E) =1 for - » < E < E and Fn(E) =0

Fn

for E > EFn; and the hole distribution function fp(E) = 1 for EFp <E <o
and fP(E) = 0 for E < EFP as if we take T = 0. This is a good approx-
imation [77] particularly when Tc is much larger than T. With this

assumption we obtain

Epn H_ E-E_
By = gy S dE
C
E
v
. 1/%
Bpn (PN (4.41)
E
an ° an Ev - E
Py = kr SR
Cc C
Bep
- 1/8
H (pf/Nv) , (4.42)

bp
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where £ = TC/T .
Following the same procedure as above we introduce the following

parameters.

K, = (ng + n?}/ﬁfl/z (4.43)
_ 1/8
Bop = g * pt}/;f (4.44)
U = Ea{h 1
Gy, ng + 1 p) / (4.45)
_ 1/4 (4.46
Vo = WK 1/ )
_ 172 (4.47)
pr (Up /Kbp)/uRb
1/8 1/% .
W - (up /Kbp)(un /Kbn;b (4.48)
b 1/
[ + 1)/21 Hep Jo0
o £ (4.49)
Bb -4 un/%bn Jzo
. .
Yo = 9 WK T (4.50)
_ L+ 18 /% -
Ub = 9% Fz )/ - Cb/Jzo (4.51)
%
S = By Kon P F, (6.52)
T, = % | F
b T Yy Kpp Pe F,
(4.53)
J (r) J {x) + 3 (x)
W = -2 _ _nz pz
b J J + J
zo nzo pzo

(4.54)
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Where Rb is electron-hole recombination coefficient for the traps dis-
tributed exponentially within the forbidden energy gap. Using these

parameters, the current density in z-direction can be written as

W, =8, +T (4.55)

b /% _ /% _ (4.56)
&~ Von b Vbp °b
Thus v .
_. (kP
T, = (v ) Sy
bn
(4.57)
Substitution of equation (4.57) into equation (4.55) gives
S, = Wb
b & (4.58)
1+ (vbp/\)bn)
'3
(\)bp/vbn) W
T = 2 (4.59)
1+ (vbp/\)bn)
Equation (4.5) can be written as
oW
139 b, _ -1/2 . 1/% 2/%
= 5% (r 3;—) = (B F Joo ) Wy (4.60)

Following the same argument for obtaining equation (4.31), we can write

the differential equation for the average value of W, in the z-direction as

b
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as [ 1 Jd F dz. [ 1 l.g_.(r EYE)} =1
d o B J 1/9 41 W 2/% r 9r ar ‘1
o b
or
2- —
"W 3d
b, 1 b _ 1/% =2/%
Brz + r or (Ab Jzo ) wb (4.61)
in which
‘ 241 |
V V) padinl
B = bp/ bn / . ( 2 ) Kbp Kbn HRb . ppDn + LlnDp
2.2/% /2 1/% D D A
[1 + (vbp/vbn)] by e P n
ﬁ 4,62
. B i 3 ( )
b z 1/2
-% f Fi/g dz <Fz > /
o

Using the same boundary conditions for solving equation (4.33), the

solution of equation (4.61) gives

— . ’
W= exp[—()\b 3) ? r] for for L= 2
l/Q, ! "26
20 A g 2
2 -2 b “zo ) }(2 - %)
= [] + (32 >< ) x for'l f & <2
and & > 2 (4.63)

From equation (4.54) we have
J(xr) =J_W (4.64)
and the total current

r

¢ 5 %

I= ZHJZO exp [—(AbJZO) r] r dr
o

for 2 = 2
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r
d rdr
=2 Jzo 22
2-9 b E1A 22/(2—%)
o [1+ (22 )(2+2 ) Jzo r]

for 1 < 2 < 2

and £ > 2 (4.65)

where Jzo for this case is same as J given by equations (3.102) and

(3.103) and for convenience, they are rewritten as follows:

3 o R-1 (22+1)5L+1(5Le)2 v’@+l
zo & Herr 2+ 1 2+ 1 JEIAE (4.66)
and
! _ L+1 2 2 %
Ueff = [(2 + 1)/(22 + 1)] Rb \)bp Vbn
1 L+
_ 2 (2-1) /4 ey A1) /8 1/% 1/2),
. {fc exp{(z =) [V S, +pr(l 5,) ]}[_sb (1-5)) stb
1 2 - et Ve Vo -1, R
{f exp{ ?%..if_k v, Sb(l 1)/2+\)bb(r*sb) ’VJ} [sb (1=57 ] dsb}
e} Rr - l ! -

(4.67)
As the uniform distribution of traps is unlikely to occur in a
crystal, we shall not analyze this case. The above theory of filamentary
double injection will be used as the basis for the development of the

theory of electroluminescence.

4.2 ELECTROLUMINESCENCE IN MOLECULAR CRYSTALS DUE TO DOUBLE INJECTION

It is likely that multiple current filaments may simultaneously
exist between two paralleled plane electrodes. For such a case we can

always consider that within a domain of radius r, is enclosed only one

d

current filament and that the total current between the plane electrodes

may be expressed as




102.

T Idomain 1 + Idomain 2 LERRREE

=rz1 I = HI

This means that the total current can be represented by the current in

one domain I multiplied by a constant H. 1
2
Aano]

It should be noted that when ry << 1 for the traps con-

6

L
fined in a single discrete energy level or when (Aszo)zrd << 1 for the

traps distributed exponentially within the forbidden energy gap,

I = (m rs) Jzo . This implies that the current is uniformly distributed
within the area r§ provided that T4 is chosen small enough to satisfy
this condition.

In molecular crystals, for example, in undoped and doped anthra-
cene, both the electron and hole mobilities are generally small [69,80,
100], and the recombination rate constant is large [54,94,138], resulting
in a small space charge overlap. Thus, the simultaneous injection of
electrons and holes from the contacting electrodes will produce two-

carrier space charge limited currents within the filament, and lead to

electroluminescence when two types of carriers meet and recombine radia-
tively. Using undoped anthracene crystals (supflied by Harshaw Chemical
Company) cleaved along a-b plane with a pair of double-injection elec-

trodes (Ag as anode and Na and anthracene in tetrahydrofuran as cathode)

of 3 mm in diameter, we have measured the electroluminescent brightness

as a function of current, applied electric voltage and temperature; and
the results will be presented in Sections 4.2.1 to 4.2.3. We have also
found that electroluminescence occurs first within a single filament and

the brightness decreases with increasing distance from the centre of the
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of the filament.in a manner similar to the variation of Jz(r) with r in
equations (4.35) or (4.36) and that as the voltage is increased, multiple-
filaments are observed, and the e}ectroluminescent brightness increases.
Since the normal parallel plane electrodes have sharp edges, the fila-
ments are generally formed near the edges because the field is higher
there. Some investigators [170] have used carbon fibres of 0.01L - 0.1
in diameter as injecting electrodes possibly because the local field at
the tips of such fibres is very high so as to enable carrier injection
there.

After the onset of electroluminescence in a molecular crystal with
a fixed emission spectrum, the electroluminescent brightness is governed

by the external quantum efficiency [15], nq given by

n =n,n . n_ =n, n (4.68)

where ni is the carrier injection efficiency which is the ratio of the
current due to minority carriers to the total current; and if we assume
Jn is the current due to minority carriers, then

J
n

NI R (4.69)
n p

ng is thé light generation efficiency; n, =1, ng is the internal
quantum efficiency which is a function‘of the total current density and
temperature of the electroluminescence specimen; and N, is the light
extraction efficiency which is defined as the ratio of power loss due to
the light transmission within the electroluminescence specimen to the
total power losses which consist of both the losses in the bulk and on

the surface, and can be considered to be fixed for a given specimen.
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For double injection the recombination of the injected electrons
with the injected holes at the recombination centers [94,127] will yield
singlet and triplet excitons. It is generally accepted that the singlet
excitons producing fluorescence are partly generated directly by elec-
tron-hole recombination and partly generated indirectly by triplet-
triplet recombination in pairs according to the following relation [51,54].

20(e + h) ~ S[S]dir + 15[T]
” 5[S]dir + 3[S]ind

where e and h represent, respectively, the electron and hole; [S]dir and
[S]ind represent, respectively, the singlet excitons produced by the
direct and the indirect processes; and [T] represents the triplet excitons.
It is the efficiency of generating [S]dir and [S]ind and their subsequent
population in the crystal, which govern the electroluminescent intensity;
but the threshold voltage is mainly governed by local field effects on
the electrode surfaces. Since there is a great difference in}lifetime
between the singlet and the triplet excitons in molecular cry;tals (for
example, they are 10—8 sec and lO—2 sec, respectively, in anthracene);
the total electroluminescence consisgg?of prompt electroluminescence due
to [S]dir and delayed electroluminescence due to [S]ind’ and exhibits time
constants corresponding to both of these decays. But in the steady state
of electroluminescence is the combination of these two.

To develop a time dependent equation for excitons and hence for
electroluminescence, we make the following assumptions.

(i) Singlet and triplet excitons generated due to the recombination
of injected electrons and holes have the generation rates GS and GT 5

respectively.
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(ii) Singlet and triplet excitons have, respectively, the rate

constants o. and Bl for the radiative transition with the emission of

1

photons; and az and 82 for the non-radiative transition with the emission
of phonons.

© (1ii) Singlet and triplet excitons may relax into traps at the

levels AEt lower in energy with the rate constants o

HG and BHG s, res—

pectively.,

- (iv) Trapped excitons may be thermally detrapped, and then decay
radiatively with the rate constants uGl and BGl’ anq non-radiatively with
the rate constant aGZ and BGZ for singlet and triplet excitons, respec-
tively.

(v) The effective rate constant for triplet-triplet annihilation
is Y, and that for triplet-trapped annihilation is YG .
(vi) Excitons may be depopulated by the interactions between excitons

and charge carriers or between excitons and surface states. But in the

following analysis we assumed that the effect of these interactions is

small [110] and can be neglected.

4.2.1 Current dependence of electroluminescent intensity.

(i) Prompt electroluminescence:

(a) Undoped crystals

On the assumption that in the deep traps AEt >> kT and that the
inﬁersystcm crossing into the triplet states can be ignored, the rate
equations for singlet-excitons generated directly by the electron-hole
recombination may be written [5,173] as

a[s],.
dir _ _ o
at - G~ Cag g IS1g 0 = eelSelay - KI8T (4.70)
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d[SG]dir

dt T %5e [S]dir - (aGl - OLGZ) [SG]dir (4.71)

where {S] and [SG] represent, respectively, the free and trapped sing-
let exciton; and KS is the carrier-singlet exciton reaction rate. In
the deep trap case e is larger than KS so that the last term in equa-
tion (4.70) may be neglected. In the steady state

d[SG]dir/dt = d[SG]dir/dt = 0, and thus from equations (4.70) and (4.71)

we obtain
GS
S . =
L ]dlr

2
a, + o, + o
HG/uG

1 2 (4.72)

where GS is the number. of singlet excitons per unit volume generated

per unit time, and can be written as [51,54]
_ Iq Jz(r)
s = g (4.73)
s

in which Ag is the diffusion length of the singlet exciton, and 8 is the
fraction of electron-hole pairs that produces the singlet-excitons
immediately after recombination, and it is approximately equal to 1/4
for anthracene [51,54]. Thus the internal-quantum efficiency can be

written as

2m (4 rd
nint = Q 1 [s]dir r d6 g4z 4ar
Yo o ‘0
_ * (2"95‘3) )
o, + o, + K(N ) A
12 s s (4.74)
where
KON ) = o /o (4.75)
s ne' % :
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The brightness of the prompt electroluminescence, B, is propor-
tional to nq . If we assume Mo is a constant, then B is linearly propor-

tional to the total current I.

=b, I (4.76)

where bl is a constant.

(b) Doped crystals

In general, the doped guest molecules tend to quench the host
molecular fluorescence and to emit the guest molecular fluorescence. Of
course, the quantum yield of guest molecular fluorescence depends on the
dopant concentration. For example, an anthracene crystal doped with
1 ppm of tetracene will emit green light from tetracene instead of blue
light from anthracene. The rate equations (4.70) and (4.71) can be used

for doped crystals. Thus in the steady state we have

%1G Gy
1.. = (4.77)
dir (uGl + 0‘GZ) (al + a, + aéG/aG)

[

In this case o,. based on the hopping model can be defined [142,173] as

G

CG
Ge T T (4.78)
hs

where CG is the dopant (guest molecule) concentration, and ths is the

singlet exciton hopping time. Following the same procedure, the internal

quantum efficiency for doped crystal can be written as

o i

nd =k c) : s
int es G . + 0. + K(N )
1 2 s

= 1 (4.79)
S
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where Kes is defined as the energy transfer constant for singlet excitons
[173], and is given by

a
Gl
K = (4.80)
es al(aGl + aGZ)ths

Thus, the brightness of the prompt electroluminescence is also linearly
proportional to I

Bd o n? n

(4.81)

]
o
=~

where b2 is a constant.

(ii) Delayed electroluminescence:

The rate equations for the free triplet [T] and trapped triplet
[TG] excitons and those for free singlet [S]ind and trapped singlet

[SG]ind created indirectly by triplet-triplet annihilation are given by

da[T]
dt
diT ]

G —
at BHG[T]

’ 2 '
= Gp = (By + BITT ~ B IT] = v ITIIT ] - YIT]® Ko [T] (4.82)

- B . +B. )IT.] -y ITI[T.]
Gl G2 G G G (4.83)

d[S]ind -

2 -
EYITI" = oy + o) Is), o - K_[s] . (4.84)

N

dt

d[s 1.
G ind
rTa— ) (4.85)

. -
=7 f Yé[il[TG]_ (@1 * %a) 156 na

where f and f' are, respectively, the fractions of triplet-triplet and
triplet-trapped triplet annihilations which create singlet excitons, and

the value of f and f' is approximately 0.4 for anthracene; KT is the

carrier-triplet exciton reaction rate; and G, is the number of triplet

T
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excitons per unit volume generated per unit time and it is given [54] by

_ gpd, (r)
GT = —q—TT— (4a86)

in which AT is the diffusion length of the triplet exciton, and &p is

the fraction of electron-hole pairs that produces the triplet excitons
after recombination, and it is approximately equal to 3/4 for anthracene.
It should be noted that in equations (4.82) and (4.84) .y is the effec-
tive overall rate constant for bimolecular triplet-triplet annihilation
which includes the probability of producing [T] from this process [161].

In the deep trap case the last terms of equations (4.82) and (4.84) are

arr] 417!
dt = dt

very small and can be neglected and in the steady state

d[S]ind d[SG]ind
= qt = at = 0 . However, to solve the coupled equations

(4.82) - (4.85), we have to make some approximations. It is therefore

convenient to treat this problem for two cases as follows:

(1) Low injection (or low current) case

In this case we can assume that the monomolecular decay is domi-
2
nant and therefore [Bl + 82)[T] >> y[T]" and [BGl + BGZ)[TG]>>YG[T][TG]

For undoped crystals:

From equations (4.82) and (4.84) we have

[s],

£y 1 2
ing =57 ( ) IT]

a + o) : (4.87)

and
gT/qAT

B + B, + B JalP (4.88)

[T] =

Thus, the internal quantum efficiency is
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d
nint = al [S]ind r 6dz dr
O o] O

. r
a d

£Y 1 1 2 2 2

= == ( ) ( )" (g./9r )" 2na J7(r)ar
2 ot oa, Bl+,82+BHG T Ay z
° (4.89)

If we assume n, is a constant, then the brightness of the delayed

electroluminescence can be written as

B
o nint ne

=b Ji(r) dr (4.90)

where b3 is a constant.

For doped crystals:

In this case the guest molecules tend to quench the host mole-

cular fluorescence. From equations (4.83) and (4.85) we have

- £y [T] IT.]
[s.], .=—2 G :
G ind 2 (aGl + aG2) (4.91)
and _ '
[T.] = (———EEEL——O [T] (4.92)
€ Bgy t+ By,

Based on thehopping model B . is given by [142,173]
pping He

B =

G CG/thT (4.93)

where thT is the triplet excitonhopping time. Thus, from equations
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(4.88), (4.91) and (4.92) the internal quantum efficiency for the doped
crystals can be written as

T

4
o
d £r 1 1 2 A )2 J2(r)dr

= (K Cpn) T ( ) ( ) " (g.,/9A) 2md 4.9
ni‘nt (Kerg) 3 a; + 0, B, + BHG 20T . z ( )
where KeT is the energy transfer constant for triplet excitons [173]

and is given by

f'y a (o, + o)
1
K = (—3) & 2, 2 (4.95)

eT £ al(aGl + uGz) o

Therefore, the brightness of the delayed electroluminescence can be

written as

d d
Bo nint ne
T4 ,
= b4 Jz(r) dr (4.96)
o

where b4 is a constant.

(2) High injection (or high current) case

In this case we can assume that the bimolecular decay is domi-

nant and therefore (Bl + 82)[T] <<y[T]2 and (BGl + BGZ)[TG] <<YG[T][TG].

For undoped crystals:

By assuming that [SG]ind is negligibly small, then from equations

(4.82) and (4.85) and in the steady state, we obtain

£y 1 .2
o+ o) [Tl (4.97)

and
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g. Jd (r)
2 1 7T "z 1+ 20+ V1 + 49
@17 =y g =5 ) (4.98)
where
0 = o Jz(r)y(tm‘)Z (4.99)
9 Ap e
Since 6 >> 1 for undoped crystals, we have
J (n
2 1 Ip I, (4.100)
[T]” = > T oo
4 A
From Egs. (4.94) and (4.100) we obtain
2m d ii
Mg = % [s]indz:d 0dz dr
o o’o
a g
£ 1 1 T
= = ( ) (& ) 27md I (4.101)
2 o) oo, 2 AT
and thus the brightness of the delayed electroluminescence becomes
B 0<nint ne
=Db. I (4.102)
5
where b5 is a constant.
For doped crystals:
From equations (4.82) - (4.85) and in the steady state we have
[s.1. . =21 __Pwe (7] (4.103)
G ind
in 2 (aGl + an)
and
B
i
[T] = HG

—5-'[1 + V1 + 40]

(4.104)
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Since 6 << 1 for doped crystals, we have

1 1 g, J (r)
T} = = (% L= (4.105)
S B2 q )\T
HG
From equations (4.103) and (4.105) we have
a £y 2 %1 Ir
Tine 7 2/2 (o + o.)? T )\T) e (4.106)
Gl G2
and thus the brightness of the delayed electroluminescence is
d d
Bec nint ne
= b6 I (4.107)

where b6 is a constant.

In the steady state the brightness of electroluminescence is
the sum- of the brightness of prompt and delayed electroluminescence.

Thus the brightness as a function of current can be deduced as follows.

(1) Low injection case

For undoped crystals:

(Ta 2 N -
BT = bl I+ b3 JZ (r) T (4-108)
(o}

For doped crystals:

r
BT = b2 I+ b4 J Jz (r) dr (4.109)
o
(2) High injection case
For undoped crystals:
B,=b, I +b.1I (4.110)

T 1 5



114,

For doped crystals:

BT = b2 I+ b6 I (4.111)

In general, for the high injection case the electroluminescent
brightness is directly proportional to current according to equations
(4.110) and (4.111), and this theoretical prediction agrees well with

all presently available experimental results as shown in Fig. 4.1.

For the low injection case, the B,, vs I relationship becomes non-linear

T
according to equations (4.108) and (4.109). If b3 > bl or b4 > b2’

BT becomes proportional to 12, Some experimental results following this
square law are also shown in Fig. 4.1. For doped crystals, the presence

of guest molecules quenches the host molecular fluorescence and exhibits

the guest molecular fluorescence. But it should be noted that the
electrolumineécence yield from host and guest molecules changes with current
and that Fhe relative transfer of excitation energy from host to guest
molecules decreases with increasing current [175]. Schwob et al [124,

175] have reported that under the low injection condition the tetracene

fluorescence in tetracene~doped anthracene is dominant and the electro-

luminescent brightness is a function of dopant concentration. This

is expected on the basis of equations (4.79), (4.94) and (4.109). It
is possible that the brightness increases with increasing dopant con-

centration because under such a condition most recombinations occur in

traps. However, as the current increases, the ratio of carriers being
trapped by the guest to free carriers decreases, and so does the relative
yield of guest flourescence, Therefore, for the high injection case the host

flourescence of the tetracene-doped anthracene becomes dominant and its brightness
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increases to approximately linearly with current [124,175] as expected

from equations (4.79), (41.106) and (4.111).

4.2.2 Voltage dependence of electroluminescent intensity.

From equations (4.36), (4.65) and (4.108) - (4.111), we can
easily deduce the relationship of electroluminescent brightness with the
applied voltége. In the following we consider two types of trap dis-
tribution under high injection condition.

(i) The traps confined in a single discrete energy level:

Substituting equation (4.37) into equation (4.36) and then into

equation (4.111) and expanding it, we obtain

2 2

] v v v :
B,= A — {l+ta, — +a, —7T) (4.112)
T a 3 1 372 2 3

where A = (b.+b ) ( 2_8 U ) T 2
a 2 6 eff d
A

__ 4 _a ks 9 £
ay =7 3 U g7 U gel ) 14
272 6 g & Merr ! Ty

Since r is small, Ia2]<|all<l .

(ii) The traps distributed exponentially within the forbidden
energy gap:
Substituting equation (4.66) into equation (4.65) and then into

equation (4.110), and expanding it, we obtain
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0+ 1)¢
VQA-l V(2+l)/aL b '\/( /)/f/
BT = Ab—_—__~22+l 1+ le, ol + 20 BT
d. 4 2t i e
for £ > 2, or | <£ <2
3 3/4 3/2
. A\ v v
=k 5 (1 by 57 v by, TE,) (4.113)
o 5 12 574 22 572
for £ = 2
where
- 2 22+1 | A+1 e L 2
B = (b +b.)q Hoee U 007 (&1 mr,
74
b = - 2 [ -1 ( 2041 )2+1 e 9 728 2£Ab 1y
12 3 < Here 2+1 2+1 ] ( >3 ) ry
_ -1 2041 Le 8 q1/8 2D, 2
Py =L a Here (Tpe1 ) Cgpp )] (570 r4

__ 1 ! 5.3 2€ 2 .1/4 1/2
15 3 Ladgee (307 0507 177X 4
_1 ' 5.3 , 26 .2 .% 2
by, =% [queff(3) (=) ]/\brd
Since r is small, |b221<]b12]< 1 and lb22|<|b12|< 1.

It is generally expected [57,114,120,151] that in doped crystais,
such as tetracene doped in anthracene, the traps are created mainly by
dopants, and are more likely to be confined in a single discrete energy
level; and that in undoped crystals the traps may be the combination
bf the traps created by unavoidable impurities confined in single dis~
crete energy levels, together with traps created by structural defects

distributed exponentially in energy. Tigure 4.2 shows the experimental

results of the electroluminescent brightness as a function of applied

voltage for undoped anthracene at room temperature. In this case 1t is
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reasonable to assume that at voltages higher than the threshold voltage
for the onset of electroluminescence most of exponentially distributed
deep traps have been filled up and only shallow traps with single discrete
energy levels left are dominént in the conduction process. Using the

following parameters for our undoped anthracene sample: € = 3.2 x lO_ll

F m_l; d =1 mm, ueff = 0.1 CmZV-.l sec—l, and Aa = 109 eﬁl; and assuming

ry T 0.1 mm, we have calculated the BT vs V curve based on equation (4.113).
It can be seen that the experimental results agree well with the theory.
Since BT is proportional to I, eQuation (4.112) and (4.113) explain also
why current is not inversely proportional to d2£+l for crystals in which
the exponential deep traps are dominant [170] and not inversely propor-
tional to d3 for crystals in which the discrete shallow traps are dominant
[125]. We have mentioned in Section 4.1.1 that jz(r) would be space-
charge-limited only when r approaches to zero and become less space-charge-
limited at larger r. If this is the case, the normally measured current
density calculated by dividing the total measured current with the com-
plete electrode area would not follow the normai expression for the space-~
charge limited currents, and this is the main reason why the measured

-(22+1) or

, . -3 .
current is not proportional to d to d . Since the current

density at r 0 is much larger than the normally measured average current
density, any calculations involving carrier densities, for example, the
magnitude of the carrier-exciton interaction terms in equations (4.82) -

(4.85), should take into account the effect of the non-uniformity of the

current density distribution over the electrode area.
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4.2.3 Temperature dependence of electroluminescent intensity.

Fig. 4.3 shows that the electroluminescent brightness of undoped
anthracene increases with iﬁcreasing temperature, reaches a certain
peak value and then decreases with increasing temperature. This pheno-
menon has also been observed using a pair of single injection silver
electrodes. This phenomenon may be explained in terms of three pro-
cesses: (aj exciton~trapped exciton interactions [52,90,130,133,134,140],
(b) exciton-carrier interactions [38,39,41,53,123,160-162], and (c)
exciton-surface state interactions [65,72,95,110,115], which control
the electroluminescent intensity and are temperature-dependent. It has
been reported [65,97,155] that the surface states at the interface
between the contacting electrode and the anthracene crystal quenches
singlet excitons and that the quenching rate decreases with increasing
temperature. However, the effect of surface states may be very small [111]
as compared with those of processes (a) and (b), and therefore we ignore
the process (c¢) for the present discussions.

If we define the temperature for the peak electroluminescent
brightness as the brightness characteristic temperature Tb’ then it is

possible that for temperatures lower than T, the process (a) is dominant,

b
and for temperature higher than Tb the process (b) becomes important.
The physical meaning of Tb can be thought of as the characteristic temp-

erature of these processes, at which the singlet exciton-attempt-escape

frequency is equal to the carrier-singlet exciton reaction rate,

ti _ _
or vexp (- kT ) = Ks =2z NT
b
B (4.114)
o= ti/k
b

n [V/ZNT]
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where Eti is the trapped singlet exciton energy measured from the sing-
let-exciton energy level, v is the singlet~exciton-escape ffequency
factor, KS and Z are, respectively, the rate and the rate constant of
carrier-singlet exciton reactions. In anthracene it is generally accepted
that the thermal velocity of carriers u is larger than that of singlet

excitons v. If this is the case, KS may be written [160] as

K
s

2
NT (1—6t) av + N Gt o (utv /3u)

T

= ZNT (4.115)

where NT is the total carrier density (electrons and holes); et is the
ratio of free carrier density to the total carrier density which includes
both free and trapped carriers, and o is the reaction cross section

s
TV

1/T from the data given in Fig. 4.3 for the tempefature range from -20°C

between a carrier and an exciton. The semi-logarithmic plot of B

to 40°C gives an activation energy Eti of 0.21 eV. Using this value

7 8

sec_l for v and the valuel[l23] of 10~

to be 3 x lOll cm—3 (this value is of

for Eti’ the value [97] of 10

cm3 'sec—l for KS and assuming NT

the same order of that used by other investigators [160,161]) Tb has

been estimated to be about 313°K (or 40°C) which is in good agreement
with experiment. It should be noted that the average value of 313°K
for Tb was calculated using the average value of NT which was determined

and used by other investigators [160,161], assuming an average carrier

b

because we measured only the

distribution over the complete electrode area. This value of T. should
correspond to our measured peak value of BT
total electroluminescent brightness over the complete electrode area.

Since J,, in the filament is much larger than 3z(r) at r > 0, we can
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expect that NT inside the filament at r = 0 may be several orders of

magnitude larger than the average value of NT and also Tb at r = 0 would

be much larger than the average value of Tb.

For temperatures lower than Tb and within the range from ~-20°C
to 40°C, the brightness increases with increasing current and this has
been discussed in Section 4.2.1. Since BT is proportional to I for the
high injection case, the temperature dependence of BT can be explained in
an|

terms of the temperature dependence of I. By assuming lHap|>>|H

and IEc_EtnI = lEtp—-EV = Et for simplicity, in equation (4.112)

ueff

may be written as

U H
eff K K
an ap
Lot ol
- K
gnHan T
U N E -E .
= nc exp [ - c ] exp [ - _t_:_l.'. ]
gnHan KT KT
Bes
=C exp [ - <7 ! (4.116)

where ES is the singlet exciton energy level measured from the conduc-

tion band edge. Substitution of equation (4.116) into (4.112) gives

2 2
Vv v v
B.=A — (1+a, -~— +a, —x%)
T a .3 1 43/2 2
2
. ] 2 v2
= byt b ) (g €Uy Try 2
E,
= D exp [ - —K% ] (4.117)

in which [a and ia are much less than 1. Equation (4.117) explains

1| 2|
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the temperature dependence of B_, for temperatures below T

T b *

For temperatures higher than Tb the brightness decreases though
the current still increases with increasing temperature, and the electyo-
luminescence disappears at a certain temperature depending on the
applied voltage. It has been experimentally observed that the inter-
action of singlet excitons [160] or of triplet excitons [161] with charge
carrier quenches the fluorescence. The change of temperature may not
affect very much the carrier injection from the electrodes but it would

affect the value of et. For undoped anthracene crystals the brightness

as a function of temperature for T > T, can be written as

b
r
: b f dJ 2 (r) dr ]
[b 1] 3 z
1 Tb o Tb
BT (T) = " + KS KT
S
1+ [ 1+ 1 [1+ 5———F]
al +0L2 + x (NS) al+a2 Bl+82+BHG
for low injection, and (4.118)
[ 1] [b.1]
T T
B (T) = b + b
T Ks KS
[1+ - ] [1+ ——— ]
ul+a2+ Kms) al +a2, (4.119)
- fd .2
for high injection, where [blI] s [b3 f Jz (r) dr] and [bSI]
Tb o} Tb Tb

are defined in equations (4.76), (4.90) and (4.102) but at temperature
Tb . The values of Ks/[al+aa+K(Ns)], KS/(al+a2) and KT/(81+52+3HG)

generally increase with increasing temperature. Thus, equations (4.118)

and (4.119) explains the phenomenon shown in Fig. 4.3 for T > Tb .
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4.3 ELECTROLUMINESCENCE IN ANTHRACENE CRYSTALS DUE TO FIELD ENHANCED INJECTION

As has been mentioned in Section 4.2, electroluminescence has been
observed in anthracene either with double-injection [32,33,51,167,168] or with
field enhanced injection [17,109,168,176] electrodes. 1In this section
we report some new phenomena in anthracene crystals cleaved along the a-b
plane with vacuum-deposited silver [32,104] on both opposite surfaces as
electrodes.

(1) Electroluminescence always appears first at the edges of both

electrodes irrespective of electrode geometry and arrangement indicating

that electroluminescence is associated with field-induced minority elec-
trons in the high field regions since silver electrodes inject only
holes at low fields.

(2) The voltage to maintain the self~sustaining electroluminescence
after its onset is much smaller than the threshold voltage for ifs onset
Vth' For éxample, Vth for a specimen of 0.5 mm in thickness at 20°C ié
1.4 kV, while the minimum voltage required to maintain the electrolumine-
scence is 0.6 kV,though the light brightness in this case is very small.
The brightﬁess increases with increasing applied voltage but it becomes
practically independent of applied voltage for voltages between 0.6 and
0.9 kV.

(3) The spectrum of the electroluminescence ranges from 4,050 to
5,150 %, which is close to that obtained with double~injection electrodes

[33].

(4) The brightness increases with increasing current; and by
adjusting the voltage to maintain a constant current, it is then indepen-

o
dent of temperature for, at least, temperatures between -20°C and 20 c.
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(5) The temperature dependence of Vt is shown in Fig. 4.4 and the

h
current voltage (J-V) characteristics in Fig. 4.5, the dashed lines

indicating the values of Vth'

O)
(6) Tor voltages below Vth’ J is proportional to V° following
the relation for the single injection into a solid containing hole-traps

in a discrete energy level [75]. The J - 1/T plot for V=2.0 kV gives

an activation energy Eac of 0.56 eV which can be interpreted as this

t

discrete energy level. For voltage above V J is proportional to V"

th’
with n > 6 implying that the large current may be associated with the
field-induced electrons and the release of trapped carriers due to the
re-absorption of electroluminescence. Eact for Vv > Vth tends to decrease
with increasing V, and such a change in Eact may be attributed to the
effect of the re-absorption of electroluminescence.

(7) The brightness is temperature-dependent and the electrolumi~-
nescence disappears at a certain temperature depending on the applied
voltage as shown in Fig. 4.4.

(8) Vth is affected by the on-and-off time. For example, V

for the first onset is 1.4 kV. If now the voltage source is switched

th

off and then immediately switched on again, Vth is reduced to 1.0 kV.

But if the switch-off time is longer than 30 minutes, V_, would go back

th
to 1.4 kV.

We believe that the supply of minority electrons for the formation
of singlet excitons is from the tunneling process through the so called
"blocking contact' at high fields [74] rather than from the impact ioni-
zation avalanches [176] for two reasons. Firstly, we have found experi-

mentally that Vt for samples with Ag electrodes is different from those

h
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threshold voltage for the onset of electroluminescence

(D curve) as functions of temperature.

A---Sample No.: 9; Sample thickness: 0.81 mm; Electrode
diameter: 1.6 mm; Applied d.c. voltage: 3.0 kV.

B---Sample No.: 4; Sample thickness: 0.6 mm; Electrode

diameter: 1.4 mm; Applied d.c. voltage: 2.0 kV.

C~——Same sample as B but with applied d.c. voltage of 1.6 kV.

D---Sample No.: 31; Sample thickness: 0.90 mm; Electrode

diameter: 1.6 mm.
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Fig. 4.4: Electroluminescent brightness (A, B and C curves) and d.c.

BRIGHTNESS

( arbitrary units )




CURRENT CA)

Fig. 4.5:

128.

10°5

1076

S
N
l

107

1O . T

1.0 1.5 20 25 30 4.0
' " © .VOLTAGE (kv)

The d.c. current-voltage characteristics.

Sample No.: 31; Sample thickness: 0.9 mm; Electrode
diameter: 1.6 mm.'

Temperature: A, 87°C; B, 63°C; C, 51°C; D, 41°C;

E, 34.5°C; F, 20°C; G, 10°C; H, 0°C; I, -10°C; J, -20°C.

30




129.

for the same specimen thickness with In or Al electrodes. Secondly,

it is unlikely that electrons, even%évailable, can gain energy of the
order of 4 eV from the field at Vth to ionize anthracene molecules.
(Thus, the so-called single injection electrodes would become double
injection electrodes near the threshold voltage for the onset of electro-
luminescence.) The temperature dependence results can be explained in

terms of the following three processes: (a) exciton—-trapped exciton

interactions [52,133], (b) carrier-exciton interaction [39,53,160,161],

and (c) exciton-surface state interactions [65,97,115]. 1In general, the

effect of process (c¢) is very small [110]. The detailed discussion has

been given in Section 4.2.

4.4 CONCLUDING REMARK

The general expressions for the filamentary double injection
current-voltage characteristics in a molecular crystal with traps con-
fined in a single discrete energy level and distributed exponentially
within the forbidden energy gap have been derived using a unified math-

ematical approach. On the basis of this model the brightness of electro-

luminescence as a function of applied electric field, current density
and temperature has also been derived, and the computed results are in
good agreement with the experimental results for undoped anthracene and

‘anthracene doped with tetracene. The current-voltage characteristics

can be used as a tool to determine the trap distribution and hence the
purity of a crystal, and the electroluminescent brightness distribution

to study the current filaments.




CHAPTER V
PHOTOVOLTAIC EFFECT 1IN

ORGANIC SEMICONDUCTORS

Since the photovoltaic effect has neither been systematically
studied experimentally nor rigorously analyzed theoretically for érganic
semiconductors, we shall nresent a general theoretical formulation for
the photovoltaic effect in organic semiconductors in this chapter, taking
into account the effects of traps and local charge non-neutrality.
Analytical expressions will be derived for the photovoltage for the fol-
lowing cases: (1) local charge neutrality with traps and (2) local
charge non-neutrality without traps. These models will be used to
explain quantitatively some presently available experimental results

in organic semiconductors.

5.1 THEORY OF THE PHOTOVOLTAIC EFFECT

In the theoretical analysis we make the following assumptions:

(1) The mobilities of photo-generated excess electrons and holes are
not affected by the presence of traps nor are they affected by the
light intensity or the concentration of excess electrons An and
excess holes Ap.

(2) The excess electrons and holes recombine in the bulk and at the sur-
faces of the crystal, and their lifetimes are constant.

(3) The treatment is one-dimensional with the plane at x = o as the
front surface electrode (or as the illuminated surface) and that at
x = d as the back surface electrode, the electrode area being one

unit and the specimen thickness being d.
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(4) The photovoltage is produced under Eﬁg open-circuit condition and

[

then under thié/conditionsthe sum of the electron current flow Jn
and the hole current flow Jp is zero.

(5) The light intensity is small such that the excess carrier densi-
ties An (for electroms) and Ap (for holes) are much smaller than the
equilibrium carrier density n (for electrons before illumination)
and P, (for holes before illumination), respectively. Thus, small
signal theory can be applied.

We shall deal with the photovoltaic effect under steady state
conditions. The behaviour of the excess electrons and holes generated

by photons in a semiconductor is governed by the current flow equations

dAnf
Jn = qunan + q Dn = (5.1)
dApf
= — [~
Jp quppfF q Dp Tx (5.2)
J = Jn + JP =0 (5.3)
the continuity equations;
~(1/q) (@43 /dx) = g (x) - an/t_ (5.4)
(1/) a3,/ = g, () - sp/x_ (5.5)
and the Poisson's equation
dF/dx = (q/e) [Ap-An] (5.6)
in which
AD = n - n = Ant + Anf (5.7)
Ap = p - P, = Apt + Apf (5.8)
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Ant =n, -n (5.9
bp =p, - D, (5.10)
Anf =ng - g (5.11)
bpe = Pp = Py (5.12)

where n and p are, respectively, the total electron and hole densities
n and P, are, respectively, the trapped electron and trapped hole den-
sities; n and P, are, respectively, the trapped electron and trapped
hole densities in thermal equilibrium without light illumination; ne
and P, are, respectively, the total free electron and hole densities;

Do and Pg, are, respectively, the free electron and hole densities

in thermal equilibrium without light illumination; B and up are,
respectively, the electron and hole mobilities, Dn and Dp are, respec-
tively, the electron and hole diffusion constants; Tn and Tp are, respeg—
tively, the lifetimes of excess electrons and holes inside the crystal;
gb(x) is- the electron-hole pair generation rate; € is the diélectric
constant of the semiconductor; q is the electronic charge; and F is the
electric field (or potential gradient) produced by the carrier concen-
tration gradients inside the crystal.

To study the photovoltaic effect, we shall consider first a
general analysis by taking into account the effects of traps and non-
neutrality of local charge. Considering the traps are confined in single
discrete energy levels, the total trapped electron and trapped hole den-
sities are given by equations (3.47) and (3.49). For convenience, we

rewrite them in the following:
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=
i

Hngn exp [(EFn - Etn)/kT] (5.13)

_ -1
P, = Hpgp exp [(Etp EFP)/kT] (5.14)

where Hn and Hp are trap densities, 8, and gp are degeneracy factors of
trap states, Etn and Etp are trapping energy levels, and EFn and EFp are

quasi-Fermi levels, for electrons and holes, respectively; k is the

Boltzmann constant; and T is the absolute temperature. By writing

n =g + n, = Knnf (5.15)
P=ptp = Kppf (5.16)
An = Ang + An, = KnAnf (5.17)
Ap = Apf + Ap, = KpApf (5;18)

the lifetime of excess electrons and holes can be, respectively, defined

as
T, = KnTnf (5.19)
Tp = Kprf (5.20)
where
gan
Kn = 1 + Nc exp[(EC - Etn)/kT] (5.21)
M
K =14 E - E kT 5.22
, S, OPLE, - /K] (5.22)
+
T =p4’(nf° o) (5.23)
nf unnfo * uppfo ©

_ un(nfo + pfo)
Tpf T hn. *hp T (5.24)
n fo p fo

in which NC and NV are, respectively, the effective densities of states
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in the conduction and the valence bands; EC and EV are, respectively,
the energy levels at conduction band and valence band edges; and T, is
.the equilibrium electron~hole pair life time.

Using the relation kT/q = Dn/un = Dp/up and assumption-(5), and

from equations (5.1) - (5.3), we obtain

anup dAnf dApf
Iy = n + o nfo dx + pfo dx
P Hn fo ppfo
KT f Moo 4 |Pgo"Pr T Pg A0
T a_ bpn. -+ up (nfo * pfo) dax n., +p
n fo p fo fo fo
- dg
qD an (5.25)
in which
H_H
kT n p
D=— (n. +p.) (5.26)
q unnfo + uppfo fo fo
DeobPe + Pe Ang
g = S (5.27)
fo T Pgo
Substituting equations (5.3) and (5.25) in equations (5.4) and (5.5),
we obtain
2
d
D-g-—f—+ g, () = o (5.28)
dx o
From equations (5.1) - (5.3) we have
po kT 1 dApf dAp,
= - tu T Uy Tqm
q Llnnfo * “ppfo noodx p dx
__krd | Haffe T WplPy
q dx|yn + MoPeo
- - Qv
ax (5.29)

in which
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_ kT unAnf - upApf

v (5.30)
4 unnfo + uppfo :
From equations (5.6), (5.27), (5.29) and (5.30), we obtain
2
49 %0+ e = o (5.31)
2 1 2
dx
in which
2 __9_2__
m = o T Peo) (5.32)
2 g (uy = u)(ag +p.)
M =% pn, +u (5.33)
n fo ppfo

Thus, the photovoltage generated by the light illumination can be cal-

culated by the following equation

d
Vb = —J Fdx
0
= ¥(d) - ¥(o)
(udag - upApf) o (u bng - upApf)
kT v x=d X=0
= == m— (5.34)
q Hno Uppfo
Equation (5.34) implies that once we can determine Ang and Ap,
at x=o0 and x=d, we can calculate V_. However, to obtain these, we have

b

to solve equations (5.28) and (5.31). But it is not possible to solve
‘these equations analytically without making further assumptions. Many
previous investigators [44,48,95,150] have assumed that no traps are

present and the local charge neutrality prevails in the semiconductor.

This assumption is crude because there are always traps in the semiconductor
and because of the different mobilities of the two types of carriers

(electrons and holes) the local charge would not be neutral. Although
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it is possible to solve equations (5.28) and (5.31) by a numerical method
to remove the shortcomings of this assumption, we shall not attempt

'to do so at present. Rather, we would like to obtain analytical solu-
tions by making the assumptions that the local charge neutrality pre-
vails in the crystal in order to study the effect of traps and that there
is no traps in the semiconductor in order to study the effect of non-

neutrality of local charge. These two cases are now presented as follows:

5.1.1 Local charge neutrality with traps’

Because of local charge neutrality, An = Ap, we obtain from equa-

tions (5.17) and (5.18)

Anf = (Kp/Kn) Apf (5.35)

and from equation (5.27)

_ (nfo + Kppfo/Kn) Apf -
£ = — (5.36)
fo Pfo
Defining the effective diffusion length as
L =D T, (5.37)
and using [79,97]
g, (%) = g exp(- e x) (5.38)
where
- g | s L | (5.39)
Bho ~ S T +en T+ =x/n ’ :
a’s s' s J

Q is the quantum yield of carrier generation, r is the illuminated
light intensity, €, is the absorption coefficient, AS and X, are, respec-

tively, the diffusion length of singlet excitons, and the surface path
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length of singlet excitons; equation (5.28) becomes

2 .
S "go " Ps

o}
2 2

* g, exp(-€ %) = o (5.40)
dx L (nfo + Kppfo/Kn)

The general solution of equation (5.40) is

x/L -x/L ~£ X
a

Apf = aje + a,e + ae (5.41)

To determine the constants, a a, and a, we use the following boundary

1’ %2 3
conditions
D‘%E x=0 T s (5.42)
dbp, :
D= o = s; fpglo)
-p 25 T @
asp, (5.43)
-D - - = s, Apf(d)

where 51 and s, are the surface recombination velocities at the front
and the back surfaces, respectively. Substituting equation (5.41)
into equation (5.42) and (5.43) and solviﬁg them, we obtain
-d/L -e d
a3[(sl - eaD)(s2 - D/L) e —(sl‘+ D/L)(s2 - eaD) e 2 ]

a, = 5 (5.44)
2[sls2 + (D/L)"] sinh(d/L) + 2 (sl + s2)(D/L) cosh(d/L)

d/L —ead
a.[(s, + € D(s, + D/L) e -(s, - D/L)(s, — D) e ]
S bt BT i 1 2~ %a (5.45)

2 2[8182 + (D/L)z] sinh(d4/L) + 2(sl + sz)(D/L) cosh(d/L)
and 2
L K (n., +p_)
a3 = gbo . n fo fo (5.46)

2.2
DL - e L)  (Kn. + Kppfo)
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Using equations (5.44), (5.45) and (5.46), we can calculate the photo-

voltage generated by light illumination from the following equation

. WK - uK
I mp 'pn
v, = BE—PR () - 4p(o)]

b o]
n
pK - uK d/L -d/L
_ kKT "mnp pn _ _ a _
=3 Kn [al(e 1 + az(e 1) + a3(e 1]

5.1.2 Local charge non-neutrality without traps

-e d

(5.47)

Because there are no traps, Kn = Kp = 1. The general solutions

of equations (5.28) can be written as

x/L -x/L - X
a

g = bl e + b2 e + b3 e

(5.48)

Using the same boundary conditions given in equations (5.42) and (5.43)

we can determine the constants b,, b, and b, and they are

1?2 Py 3
-d/L ~€ad
o b3[(sl + gaD)(sz ~ D/L) e -(sl + D/L)(s2 - aaD) e ]
1 2[ss, + (D/L)?] sinh(d/L) + 2(s, +s,) (D/L) cosh(d/L)
d/L ' - d
) ) byl(sy + e D) (s, + D/L)e -(s; = D/L)(sy - e D) e 2
2 20sys, + (0/L)%] sinh(d/L) + 2(s; + 5,)(D/L) cosh(d/L)
and 9
gbo
b = ——
3 pa - giLz)

The general solution of equation (5.31) can be written as

m, x -m, X x/L -x/L - X

Using the boundary conditions

(5.49)

(5.50)

(5.51)

(5.52)
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av = 0 (5.53)
dx

X=0
dv -5 (5.54)
dx

x=d

and equations (5.31), (5.48) and (5.52), we can determine the constants

15 Cys Cys €y and c.; and they are

5
—mld d/L -d/L —€ad)
(c3 - ¢y cg EaL) e —(cBe —c,e —Cg EaLe
c, - (5.55)
2 mlL 81nh(mld)
m.d da/L -d/L —Ead
(c, — ¢, —c. € L)e = =(c,e -c, e - c. € Le )
c, - 3% % "a 3 4 5 a (5.56)
2mlL 51nh(mld)
m§ b
ey = 5 (5.57)
(my - 1/L7)
1
mg )
(ml - 1/19)
and 9
My by
Cg = "% o (5.59)
(my - €, ) '

Using equations (5.49) - (5.51) and (5.35) ~ (5.59), we can calculate
the photovoltage generated by the light illumination from the following

equation

Vo = ¥(d) - y(o)
m, d ~m.,d
= ¢ (e S ¢, (e Yoy
d/L -d/L
+ c3(e - 1) + 04(e -1
-c d
+cle & -1 (5.60)



140.

5.2 COMPUTED RESULTS AND DISCUSSIONS

In Section 5.1 we have presented the expressions for calculating
the component of photovoltage due to the charge separation in the bulk
of the semiconductor. The total photovoltage across the whole semi-—con-
ductor specimen consists of Vb’ the potential created in the bulk of
the semiconductor; ¢sl’ the potential created at the front surface;

and ¢82, the potential created at the back surface. Thus we can write
Vph T Vp T 01 T 0y (3-61)
In the following we shall discuss these components separately.

5.2.1 The photovoltage créated in the bulk of the crystal

Equations (5.47) and (5.60) can be reduced to much simpler forms
by considering the limits of some physical parameters. In this section
we shall present our computed results based on equations (5.47) and

(5.60) for two cases: (i) strong absorption and (ii) weak absorption.

(i) Strong absorption:

For this case, ea can be considered to be much larger than 1/d
and 1/L. Under this condition, equation (5.47) for the case of local

neutrality with traps becomes

K - pKkK a a
_kT |*ap T Mptn 211 a/L %20, -d/L
Vo1 T o ( K } 3 [aj(e b+ [33}@ B

in which
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/L

33[(3l + eaD)(s2 - D/L)e--d ]

2[sys, + (D/L)%] sinh(d/L) + 2(s,+s,) (D/L) cosh(d/L)

o]
I

d/L
-a, [(s, + € D)(s, + D/L)e ]
Q. = 3 12 a 2 (5.63)
2[sls2 + (D/L)"] sinh(d/L) + 2(sl+sz)(D/L) cosh(d/L)

gboL . Kn(nfo + pfo)

2.2
D(1 - €aL ) <Knnfo + Kppfo

)

If d >> L, equation (5.62) can be further reduced to

le/D +1 Jag a, ~d/L

v — (ed/L—l) + . (e

=V _— -1) - 1 (5.64)
bI bsI Ea I, - 1. a3 3

where VbSI is the saturated photovoltage for d >> L, and it is given by

K - K € - L/D
v, o= (& Pt~ Mptn| [ fa T MPI a (5.65)
K s. + L/D 3 :

n 1

Similarly, under the conditionms, € >> 1/d and €a >> 1/L, equation (5.60)

for the case of local charge non-neutrality without traps becomes

mld —mld d/L ~d/L
' p—1 — - — — —
VbI = cl(e 1) + cz(e 1 + c3(e 1 + c4(e 1) Cg (5.66)
in which . d a/L ~d/L
(c,~c,-c_e L) e L (c.e - c,e )
c = 3 74 "57a 3 4
.l 2 mlL s1nh(mld)
m, d d/L ~d/L
o (c3—c4~c5€aL)e ~ (c3e - ce )
2 2 miL s1nh(mld)
2
e oM™
3 (mi - 1719
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2
m by
47 T2 2
(m, - 1/L7)
1
C o2 Py
> - )
(5.67)
-d/L
. b3[(sl + eaD)(52 - D/L)e ]
1 2[8182 + (D/L)z]sinh(d/L) + 2(sl+32)(D/L) cosh(d/L)
“b,[(s, - € D) (s, + D/1) /T
b = 3 1 a 2
> alsys, + (0/1)7] sinh(d/L) + 2(s+s,) (D/L) cosh(d/L)
2
gboL
b, =
3 2.2
D(1 - ea L)
For d >> L, equation (5.66) can be further reduced to
m, d -m,d d/L -d/L =
¢, (e 7 =L)tc, (e -D+c, (e -1)+c, (e -1)-c
V' o=y 1 2 3 4 5 (5.68)
bI bsI m, d —mld )
cl(e -1) + c2(e -1) - ¢, =~ Cs
where VésI is the saturated photovoltage for d >> L and it is given by
mld -mld
' = — —— - —
VbsI cl(e 1) + c2(e 1) Cy cs (5.69)

in which
-(c, + ¢_ ¢ L) e—mld

‘172 maL sigh(; d)

1 1

m,d

R s

1 1
c, =0
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)
.. m2 b2
Y m, - 1h
_ My by
€5 =7 2 (5.70)
(my - e )
1
bl = 0
. b3(sl + eaD)
2 (sl + D/L)
2
b = gboL
3 D(1 - easz)

(ii) Weak absorption:

For this case Ea can be considered to be much smaller than 1/d
and 1/L. Under this condition, equation (5.47) for the case of local

charge neutrality with traps becomes

U K - u K a a _
Y, g =%—Tj— S I 3T 1y + ;—2 (e Lgy _ e d|  (5.71)
n 3 3
in which
. a,[(s; + ¢ D) (s,~D/L) e—d/L-—(sl+D/L)(sz - ¢ D)
1 2[sys, + (0/1)%] sinh(d/L) + 2(s *s,) (D/L) cosh(d/L)
el ey o o - e - (s, - e ] -
2 2[8182 + (D/L)2] sinh(d/L) + 2(sl+82)(D/L) cosh(d/L)
g L2 K (n_ +p_ )
a = bo . n fo fo
3 D Knnfo+Kppfo

Furthermore, if d >> L, equation (5.71) can be further reduced to



_kr [P T Mot bV P
VbII T o K (a3) a (e 1) a
n 3 3

in which

a3(s2 - EaD)

1 (32 + D/L)ed/L
. a3(sl + EaD)
a, = -
(Sl + D/L)
g L2 K, +p_.)
a = bo . _n fo fo
- K K
3 D n"fo + ppfo

144,

- e,d (5.73)

(5.74)

Substituting equation (5.74) into equation (5.73) we obtain

( - -
. ) VEI anp “pKn { (D/L) {[(sl+52) + 2(D/L)] aaL + (sl 82)} g }
PIL o) Koo (s; + D/L) (s, + D/L) a
() fuk - ) - - .
S e S R e o M P (5.75)
& L K J (s, +D/L) (s ,+D/L)
It is intefesting to note here that the conditions for the reverse of
the photovoltage polarity can be determined from equation (5.75). By
putting VBII=O’ we obtain
anp = ppKn (5.76)
D(s,-s.)
e = 1 2 (5.77)

a dL(sl + D/L)(52+D/L)

This means that when either of these two conditions is satisfied, the

photovoltage starts to reverse its polarity.

Similarly, under the condition, €,

<< 1/d, ¢
a

<< 1/L, equation
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(5.60) for the case of local charge non-neutrality without traps becomes

mld —mld d/L ~d/L
[} _ - _ - - -
VbII = cl(e 1) + c2(e 1) + c3(e 1 + cé(e 1) ead cg (5.78)
in which
—mld d/L -d/L
. (c3—c4—c5€aL)e —(c3e —c,e —cSEaL)
1 2mlL 31nh(mld)
m,d d/L ~-d/L
. (c3~c4-c5€aL)e —(c3e A —cssaL)
2 2mlL 51nh(mld)
2
m) by
€37 72 2
(ml - 1/L9)
“‘g by
O B (5.79)
(ml - 1/L9)
2
.- m, b3
HENCH
b,[(s,+€ D) (s -D/L)e—d/L—(s +D/L) (s.,~¢ D) ]
b =3 %17a V%S 1 2""a
Y 20,5, +(D/1)?] sinh(d/L) + 2(s+s,) (D/L) cosh(d/L)
-b,[(s,+e D) (s +D/L)ed/L—(s -D/L) (s~ D) ]
b = 3 1l a 2 1 2 a
? 20sys,+1 D/L)*Jsinh(d/L) + 2(s,+s,) (D/L) cosh(d/L)
2
T
3 D
and if d >> L, these equations reduce to much simpler form, then equa-
tion (5.78) becomes
m, d -—mld a/L
1 o2 o] - - -
VbII & cl(e l)+c2(e l)+c3 e <, ead Cg (5.80)
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in which
-m,d d/L
(c.-c,) e L c, e
o = 3 74 3
1 ZmlL 81nh(mld)
m,d d/L

1
. (c3~c4)e - cye
2 2m. L sinh(mld)

1
2
e o2 °1
> @ - 1h
2
m, b,
€4 T2 2
(ml - 1/19)
(5.81)
o m2 b3
> @l -e )
L Palep m 5D
1 (SZ+D/L)ed/L
) =“b3(sl + EaD)
2 (sl + D/L)
2
o Buol
3 D

Again, from equations (5.80) and (5.81) the conditions for the reverse

of the photovoltage polarity are

m, = 0 (5.82)

and

D[(s,-s,) (m L) sinh(m,d)+ 2s.[1 - cosh(m,d)]
. - 17527 1 2 1 . 1 (5.83)
dL[(sl+(D/L))(sz+D/L)(ml - 1/1.9) mlL sinh(mld)]
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The condition given by equation (5.82) should be ruled out since in most
crystals W * up. Thus, the condition given by equation (5.83) is the
only condition in which the photovoltage would start to reverse its

polarity.

5.2.2 The photovoltage created at the front and back surface

The photo-excess electrons and holes densities within the surface
region are given [88] by

qd>s/kT

Ans =n - ng =0 (e -1) (5.84)

—q¢ /kT
Bp, = Py = Pgy T Py, (e -1) (5.85)
where ng and P, are, respectively, the surface free electrons and holes
densities under non-equilibrium conditions. Within the surface space

charge region, the electric field is given by [88]

N N L (5.86)
s —-qLD kT Peo :
where
= /2KT Jd2o
LD 2kT /q Peo (5.87)
- 1
—_ 2
G q‘i)S nfO = e q¢S/kT+ q(bS -1 nfO qch/kT_ qq)S -1 (5 88
kT p kT - € XT .88)
fo fo

and ¢S is the potential across the surface space charge region. For
p-type semiconductor, when ¢S < 0, there is an accumulation of holes
near the surface and the band bends upward; when ¢S = 0, the band becomes

flat band; when oy > ¢ > O, where ¢B is the potential different between
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the Fermi-level and the midgap of the semiconductor, there is a deple-
tion of holes; and when ¢S > ¢B, there is an inversion region due to
electron enhancement and thus the band bends downward. Although we can

calculate the surface potential at the front surface ¢Sl and at the
back surface ¢52 from equation (5.86) it would be more convenient to
obtain ¢Sl or ¢Sz s by using equations (5.61), (5.47) or (5.60) based
on the following relations

or

¢S =V . 6 -V (if ¢S is assumed to be zero) . (5.89)
2

5.2.3 Computed results

To show the effects of traps and local-charge non-neutrality
on the bulk photovoltage characteristics, we take naphthalene, anthra-
cene and tetracene crystals as examples: and to show the effect of sur-
face states on the total photovoltage characteristics, we take anthra-
cene crystal as an example. Generally, in these materials the hole
mobility is larger than the electron mqbility [69,80,100], and holes are
generally the majority carriers. If we assume that an organic semi-
conductor has no traps and local charge neutrality prevails inside the
crystal, then the photovoltage is given by

a a

Voo = oF (umiday (G @ PRy T

30 30

“1)+(e Fadi1y]
(5.90)

where a; and a, are given in equations (3.44) and (5.45), and 2y,
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corresponds to a, without traps and it is given by

gboL2
a30 =S 55 (5.91)
D(l—ea L7)

3

The presence of traps or local charge non-neutrality in the crystal
alters equation (5.90) as has been discussed in Section 5.1. 1In the fol-
lowing we shall present some computed results to show the effects of
traps, non-neutrality and surface states using the physical parameters

for organic semiconductors given below

e d= 40
a

0]
=
[N
~
o
I}

10

(1) Bulk photovoltages

On the assumption that the bulk photovoltage is predominant and
the surface photovoltage is negligible, we shall discuss the following
two cases.

(a) Local charge neutrality with traps

Strong absorptions

For this case, the expression for the photovoltage characteristics
[equation (5.47)] is similar to equation (5.90) except that (un—up)a3o
is replaced with (unkp—upkn)a3/Kn . Figure 5.1 shows the variation of

bulk photovoltage VbI with the thickness of the sample under strong
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1.4

1.2

1.0 —

0.8}

Vbi/ Vbo

0.6

0.2}-

Fig. 5.1: The variation of VbI/Vbo with d/L for the case of local-
charge neutrality with traps under strong absorption
conditions. a: k /k_=1; b: k /k = 1.2;

n p n p

c: k /k = 1.5,
n p
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absorption conditions (€a>>l/d) for various concentrations of traps based
on equation (5.64). VbI tends to approach asymptotically a constant

value of VbSI given by equation (5.65). It can be seen that the presence
of traps reduces the photovoltage. So far no experimental results on
sample thickness dependence or carrier diffusion length on photovoltage
are available so we cannot compare our theory with experiments. But
Vertisimakha et al [157] have reported that for anthracene Vbi/vbo is
about 0.24 at d/L of about 4 (by assuming L to be 5 x 10"5 cm). Their

results lie below the curve for kn/kp = 1,2 indicating the effects of

traps.

Weak absorptions

Figure 5.2 shows the variation of the bulk photovoltage, VbII with

the thickness of the sample under weak absorptions (€a<<l/d) for various
concentrations of traps based on equation (5.71). It can be seen that

for given values of S, and S decreases with increasing value of

1 2° VbII

(d/v); for a given value of (d/L), V decreases with increasing value

bII
of (kn/kp) indicating the strong effect of traps. The bulk photovoltage
under weak absdfption conditions would be predominant in thin specimens.
This agrees well with the experimental results of Lyons et al [87] for
tetracene films. It should be noted that when (kn/kp) = (up/un), the sign

of V may be reversed. The reverse sign in V may be taken as an

bII b1l

indication of photo-detrapping of minority-carriers from traps (electron-
traps inside the crystals). Such a phenomenon has been observed experi-

mentally in anthracene by Vladimirov [15].
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Fig. 5.2:

The variation of VbII/Vbo with d/L for the case of

local-charge neutrality with traps under weak

absorption condition. §

Solid lines are based on the theory - a: kn/kp =13

b: k /k = 1.2; and c: k_/k_ = 1.5; and, dashed line
n p n p

1s the experimental results after Lyons & Newmann.

10
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(b) Local charge non-neutrality without traps

Strong absorptions

For this case, the expression for the photovoltage characteristics
[equation (5.66)] is similar to equation (3.90) except that kT(un—up)aBO/O,

. 2 , 2
al/a30 and az/a30 are replaced with mz/hnlL 31nh(mld)] [l/(mz—l/LZ)]

{(l+ed/L>[1—cosh(mld)]— (1—ed/L)mlL sinh(mld)}(al/a3o)and [l/(mg - l/LZ)]

/L d/

{(l+e—d ) [1-cosh(m;d)] + (1-e”

2 2.2 . _ _
l>>l/L2, ml>>€a s (mlL) 51nh(mld) = 1 and (l-cosh mld)

= 0 , equation (5.60) can be reduced to equation (5.90) for the case of

L . .
) mlL 31nh(mld)}(al/a3o), respectively.

By assuming that m

local-charge neutrality without traps. Figure 5.3 shows the variation of
bulk photovoltage, VéI with the thickness of the specimen for various
degree of local charge non-neutrality based on equation (5.65) for strong
absorption conditions (€a>>1/d). The higher the degree of local charge
non-neutrality the larger the photovoltage would be generated. Tavares
[149] has reported that in naphthalene the value of Vgl/vbo is about 1
when the sample is illuminated with light wavelength of 7500 2, and this
value jumps up to aéout 3 when the sample has been previously illuminated

with light of short wavelength (4100 & or 5000 R) indicating the space

charge effect which is associated with local charge non-neutrality.

Weak absorptions

Figure 5.4 shows the variation of bulk photovoltages, VgII with
the thickness of the sample for various degree of local charge non-
neutrality under weak absorptions (€a<<l/d) based on equation (5.78).

decreases with increasing value of

For given values of S, and SZ’

1
1 VoIt

(d/L); and for a given value of (d/L), V increases with increasing value

1
bII
of Ax and Ay in which




154,

10 |
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>
1 a
164 l | ! 1 l
1071 1 10

Fig. 5.3: The variation of VbI/Vbo with d/L for the case of
local-charge non-neutrality without traps under strong
absorption conditions.

a: Ax =1, Ay = 0; b: Ax =1, Ay = 2; c: ax = 2, Ay = 3

and d: Ax = 3, Ay = 4.
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10
1
5 -
>
>
>
0.1 —
0.01 ! | ! f I
0.01 0.1 1 10
d/L
Fig. 5.4: The variation of V! __/V, with d/L for the case of

b1 "bo
local-charge non-neutrality without traps under weak

absorption conditions.
a: Ax = 1, Ay = 0; b: Ax = 2, Ay = 3; and c: Ax = 4,
Ay = 5,
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Ax

1 - cosh(mld)

it

Ay = m L sinh(mld) (5.92)

1

It is interesting to note that the conditions for the change of the sign
of the photovoltage depend also on the degree of local-charge non-
neutrality according to equation (5.83); and that the effect of local-
charge non-neutrality is due to unequal distribution of the double-space-
charge of opposite signs in the bulk of the crystal. However, so far this

important space-charge effect has not yet been reported in the literature.

(ii) Surface photovoltage

It is possible that under certain conditions the surface photo-
voltage may be as equally important as the bulk photovoltage, or even pre-
dominant. The magnitude and sign of ¢Sl (or ¢82) depend strongly on the
surface states of the crystal. External factors such as gas molecule
adsorption or additional illumination, etc. may alter the surface states

and hence the value of ¢S (or ¢S ). The generation of surface photo-
: 2

1
voltage may be due to the boundary bending of the energy band near the
surface. According to equation (5.89) we can predict that the presence of
surface states would tend to decrease the photovoltage. Nakada [102]

and Vladimirov [159] have reported that the adsorption of oxygen on the

surface crystal reduces the magnitude of the total photovoltage.

5.3 CONCLUDING REMARKS

The general analytic expressions for the bulk photovoltage in a
solid with traps and non-neutrality of local charges have been derived

using a unified mathematical approach. It is found that the presence of
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traps tends to reduce the magnitude of the photovoltages and to affect the
conditions for the change of the sign of the photovoltages, and that the
non-neutrality of local charges tends to énhance the photovoltages and
also to affect the conditions for the change of the sign of the photo-
voltages. It should be noted that we choose the two cases: (1) local
charge neutrality with traps and (2) local charge non-neutrality without
traps, to show the effects of traps and local-charge non-neutrality using
some approximations mainly for mathematical simplicity. Although the
computed results are in reasonable agreement with experimental results,
for vigorous treatment the photovoltage has to be calculated from equa-
tion (5.34) under the conditions of local charge non-neutrality and with
traps.

It should also be noted that the analysis described in this éhapter
may, in principle, be used as a tool to determine the surface recombina-

tion velocity and the diffusion length of carriers.




CHAPTER VI

CONCLUSIONS

On the basis of the present investigations, we can now draw
the following conclusions:

(1) The general expressions for the single injection and the double
injection current-voltage characteristics in a solid with traps
distributed'uniférmly and non-uniformly within the forbidden
energy gap and in space have been derived.

(2) The general expressions for the filamentary double injection
current-voltage characteristics in a solid with traps confined
in a single discrete energy level and distributed exponentially
within the forbidden energy gap have been derived; and on the
basis of the filamentary double injection theory the brightness
of electroluminescence as a function of applied electric field,
current density and temperature has also been derived, and the
computed results are in good agreement with the experimental
results for undoped anthracene and anthracene doped with
tetracene,

(3) The so-called single injection in anthracene becomes double
injection at high fields.

(4) The general formulation of bulk photovoltage taking into account
the effects of traps and local charge non-neutrality has been
presented. The presence of traps tends to reduce the magnitude

of the photovoltage and to affect the conditions for the change
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of the sign of the photovoltage, and the effect of non-neu-
trality of local charges tends to enhance the photovoltage
and also to affect the conditions for the change of the sign

of the photovoltage.




APPENDIX

By setting

qUNg g exp ( = E_/kT)
D = & (A1)
J

equation (3.22) can be written as
F(t) t
gl kT
m- [6, + S(x) ]dx (A2)

The value of DF 1is of the order of exp [-(Eé—Ef)/kT] which is much

smaller than unity. Thus by setting u = &n L and making use of the

DF
relation
2]
-u - i y
T PPV e S S R L
2 3 4
u u u u u
u
we obtain
F(t)
dr N F(t) (A3)
fn 2o g
DF DF(t)
(¢}

Substitution of equation (A3) into equation (A2) and then integration give

d d (t
qH kT
F(e)de  __ "¢ 1
. 1 © = 5 {2 [GC + S(x) ]dx dt}
DF(t)
0 0“0
qH kT
c 2
e ess (A%)
d can be physically interpreted in such a way that a specimen of true

eff



161.

thickness d having a non-uniform spatial distribution of traps is

equivalent to the same specimen having a uniform spatial distribution of

trapsbut with d changed to deff' Based on this interpretation, we
have rd deff
*
V == Fdx = =~ F dx
JO 0
F* F *
[ , * %
d w9 % [ 4 o FaF
= F —, dF ==~ 1
oF qil kT &n(—p)
*
(F)?
=uEt d (A5)
2chkT %n ( 1 2
DF
d
* %
where F and Fd which correspond to the effective thickness deff are the

effective fields at any point and at x = d, respectively. From equations (A2)

and (A3) we have

%
F gH kT
d c
=~ d (A6)
n( l*) e eff
DFd
From equations (A5) and (A6) we obtain
%
P = d2V (A7)
eff
From equations (A4) and (A6) we obtain
d * 2
F
F(e)de € ‘ d (A8)
1T 1
in BF(L) 2qHCkT n -
Jo d

Substitution of equations (A7) and (A8) into equation (A4) gives equation (3.24).
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