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ABSTRACT

An operator based formulation is used to show the cdmplcteness of the eigenvectors of
a non-uniform, axially loaded, transversely vibrating Euler-Bemoulli beam having
eccentric masses and supported by off-set linear springs. This result generalizes the
classical expansion theorem for a beam having conventional end conditions. Furthermore,
the effect of truncating a series approximation of the initial deflection is investigated for
the first time. New asymptotic forms of the eigenvalues and eigenvectors are determined
which are themselves often sufficiently accurate for high frequency calculations.

A numerical procedure normally needs to be used for a transversely vibrating Euler-
Bermoulli beam having complicated interior and end conditions because closed form
solutions (including their asymptotic forms) are mostly beyond reach. The Rayleigh-Ritz
approximate procedure has been applied widely to self-adjoint problems in structural
dynamics. However, the numerical convergence of the Rayleigh-Ritz procedure
deteriorates significantly if Gibbs phenomenon occurs. In this thesis, generalized force
mode functions are suggested as one means of avoiding this effect. The convergence rate
of the eigenvalue approximations resulting from the use of such functions is determined
for a discontinuous, freely vibrating Euler-Bernoulli beam. Moreover, the pointwise
convergence of the derivatives that comrespond to the practically important bending
moment and shear force is examined for the first time. Then, a numerical example is
given to corroborate the new theory.

Non-self-adjoint systems are encountered when viscous damping forces or a gyroscopic



effect exists. The generalized force mode functions method is extended to accommodate
a spinning Timoshenko beam having a stepped cross-section. Numerical data suggests that
this approach can very accurately approximate the backward and forward precession

frequencies, bending moment and shear force.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Both the rotary inertia and shear deformation are neglected in the Euler-Bernoulli model
of a free, transversely vibrating beam. Although the model is limited to a beam having
a small flexural wavelength to length ratio [1], it is a simple and widely used
approximation for beam-like structures which may have additional mass or rotary inertia
at their ends (e.g. 2 mast supporting an antenna [2], or a single joint robot carrying an end
payload [3, 4]) or which may be loaded axially (an accelerating missile [5]). In the
analysis and control of beam vibrations, it is extremely important to understand the
eigenvalue distributions and eigenvectors as well as the influence of parameters, such as
the off-set of a lumped mass and axial force, on the dynamic behaviour [6, 7]. In most
cases, it is impossible to obtain an analytical solution for a beam having a complicated
cross-section, except for several particular cases, e.g. [8]. On the other hand, first order
asymptotic estimates of natural frequencies have been presented in [9] for a non-uniform
beam having conventional end conditions such as simple supports, fixed, sliding or pinned
ends. However, no rigorous justification was given. A similar procedure has been
employed in [10] for a beam having arbitrary elastic displacement and rotation constraints
at its ends. However, reference [10] failed to explicitly identify the data included in the
estimates. By clarifying the asymptotic solution of a cantilevered beam, this thesis derives,

rigorously and explicitly for the first time, the first and second order asymptotic forms



of the eigenvalues and eigenvectors of a non-uniform Euler-Bemoulli beam having non-
conventional end conditions, i.e. eccentric masses supported by off-set linear springs.

In addition to the asymptotic estimates of the natural frequencies, a practically important
problem concems how a perturbation of the beam’s end conditions influences its natural
frequencies. This question may arise from the dynamic analysis and control of a robotic
manipulator. Numerical results [3, 4] illustrate that such behaviour is particularly difficult
to analyze when the centre of gravity of the manipulator’s payload does not coincide with
the manipulator’s end or alters as a task changes. Furthermore, no theoretical analysis has
been derived to indicate whether the classical inclusion principle can be employed to
estimate the natural frequencies. To clarify this important point, a detailed theoretical
analysis as well as numerical data are presented in this thesis. It is concluded that the
classical inclusion principle is invalid for an off-set mass. Furthermore, the off-set of a
mass mainly influences the positioning accuracy.

An important issue in the numerical simulation of the dynamic response of an externally
excited beam concerns the completeness of the eigenvectors. Completeness is needed in
a Hilbert space and corresponding energy space to ensure that (i) a beam’s initial
conditions or an external force can be truly expanded in terms of the eigenvectors, and
(ii) the bending moment can be predicted reliably [11]. Furthermore, completeness is a
fundamental requirement when eigenvectors are used in the Rayleigh-Ritz method for
self-adjoint problems or in the Galerkin method for non-self-adjoint problems. For a non-
uniform beam having conventional ends, completeness is a direct result of the well-known

Sturm-Liouville theorem [12]). On the other hand, this theorem cannot be applied



straightforwardly when a mass or rotary inertia is connected with a longitudinal off-set
to an end of a beam. Then the integral kemel of the eigenvalue problem depends upon
the cigenvalues themselves [13]. A formal statement of the completeness of the
cigenvectors has been given in [14, 15] by observing the orthogonality of the eigenvectors
and employing the delta function. However, it has been shown in [16] that the
orthogonality of the eigenvectors is neither a necessary condition nor a sufficient
condition for their completeness. A rigorous proof of completeness may employ a Hilbert
space theory [13, 17 - 19] or a S-Hermitian boundary value approach [20]. The main idea
behind these two methods is to transfer the original eigenvalue problem to an integral
equation with a kemel function independent of the eigenvalue. For example, a Hilbert
space formalism was used in [21] to prove the completeness of the eigenvectors of a
transversely vibrating, non-uniform rotating beam having one end fixed and a mass
located precisely at the other end. Completeness was also shown in a Hilbert space in [22]
by using a perturbation theory for a non-uniform cantilever beam having an axial force
and the centre of a (eccentric) mass off-set from the free end. In this thesis, the
completeness of eigenvectors in both a Hilbert space and an energy space is confirmed
by employing operator theory for a beam having more than one eccentric masses and
supported by off-set springs.

In addition to completeness, another fundamental problem is to detect how closely
eigenvectors can approximate a known function, like an initial deflection, when a transient
response is formulated in terms of such eigenvectors. In other words, it is important to

determine how rapidly numerical errors decrease as the number of eigenvectors increases.



Suppose, for example, that a function has continuous derivatives upto order three and also
possesses a piecewise continuous fourth order derivative. The classical expansion theorem
for a beam having conventional ends [23] states that, if this function satisfies all the
beam’s end conditions, a series expansion as well as each series obtained by
differentiating it upto three times converge uniformly and absolutely at each point of the
beam. However, the work presented in this thesis demonstrates that the classical
expansion theorem still applies when the function is expanded in terms of the
cigenvectors of a Euler-Bemoulli beam having an eccentric mass and possibly springs off-
set from both ends - even when the function does not satisfy a single end condition.
Analytical solutions, including asymptotic forms, are clearly important because of the
insight they provide into a structure’s behaviour. Unfortunately, they cannot be found for
most real structures so that numerical methods have to be employed. The Rayleigh-Ritz
procedure is a well established numerical method. It traditionally employs continuously
differentiable functions to approximate the eigenvalues and eigenvectors of, say, a freely
vibrating Euler-Bermnoulli beam [24]. These functions may be a set of independent
polynomial functions or the eigenvectors of a uniform Euler-Bemoulli beam having
conventional end conditions. However, such functions can produce significant numerical
oscillations in the practically important second and third deflection derivatives near
discontinuities or the beam’s boundaries. This is called Gibbs’ phenomenon [25].
Moreover, the cigenvalues are approximated poorly [2S - 27]. To avoid this phenomenon,
a mixed Rayleigh variational approach [26], in which the deflection and stress are

considered simultaneously, can be used for beams having a continuous stress distribution



despite material discontinuities. However, a larger eigenvalue problem is generated and
the eigenvalue estimates are not necessarily upper bounds. Another approach reported in
[26] approximates merely the stress. Although the co-ordinate transformation given in [28]
can be applied, a complicated second order differential equation is produced. A non-
standard finite element approach has also been proposed [29, 30] in which solely the
deflection is approximated by using a suitable average for the varying cross-section or
material characteristics of an element [30]). However, this procedure again does not
necessarily produce upper bound estimates for the ecigenvalues. Moreover, these methods
cannot avoid Gibbs’ phenomenon at the discontinuities of the bending moment and shear
force of a beam having interior linear and torsional spring supports or lumped masses.
Force mode functions and quasi-comparison functions have been used, with a uniform
beam’s eigenvectors, to accommodate interior springs [27] and natural end conditions
(31]. The force mode functions are associated with the static deflection of the beam. In
particular, the first order force mode function is the deflection found by replacing an
intermediate spring with an analogous concentrated force. However, an outstanding issue
concerns appropriate functions when a rigid body motion occurs after a spring has been
removed. Furthermore, it may be difficult to derive an analytical form when a non-
uniformity is not piecewise constant [32). On the other hand, quasi-comparison functions
involve at least two sets of eigenvectors of a uniform beam corresponding to different
natural boundary conditions. When a beam has discontinuities, the beam has to be divided
into different pieces at the discontinuities. Then a set of quasi-comparison functions have

to be defined on each component. Finally, the approximate solution is resolved by using



a component mode synthesis. It can be expected that, with more discontinuities, a larger
eigenvalue problem is created again. Moreover, regardiess of approach, no pointwise
error estimates have been derived yet for the bending moment and shear force. To
overcome these problems, a unified approach, called the generalized force mode (GFM)
function method, is proposed. The pointwise convergence of the practically important
bending moment and shear is derived and confirmed numerically for a freely vibrating,
Euler-Bemoulli beam. Finally, the GFM function method is applied, in conjunction with
the Galerkin method, to solve the free vibrations of a non-self-adjoint, spinning
Timoshenko beam having a discontinuous cross-section. An easy way of constructing the
GFM functions is proposed and numerical data demonstrates that Gibbs phenomenon does
not happen at the discontinuity of a bending moment or shear force.

1.2 Objectives of Thesis

The main objectives of this thesis are stated next.

A. To present a detailed procedure which generalizes and significantly extends previous
expansion theorem [22]. The extension enables a non-uniform beam to have more than
one eccentric mass and be supported by springs that are off-set from one or both its ends.
Furthermore, the first and second order asymptotic estimates of the natural frequencies
are derived explicitly for the first time. The error from truncating a series approximation
of the initial deflection is also investigated. This investigation uses an extended inclusion
principle to formulate new and easily enumerated, asymptotic forms of the eigenvalues
and eigenvectors when an eccentric mass is added to a beam. Moreover, the principle

affirms the numerical data given in [3] and disproves the paradoxical observation stated



in [4] that a larger mass, at a given eccentricity, can increase a particular natural
frequency. Finally, the mathematical formula demonstrating the influence of the off-set
of a lumped mass is derived for the first time.

B. To develop a unified procedure for selecting admissible functions in order to handle,
in the Rayleigh-Ritz method, a complex Euler-Bemoulli beam having complicated interior
as well as end conditions. These functions involve the eigenvectors and generalized force
mode functions of a uniform beam having conventional ends. Generalized force mode
(GFM) functions may be constructed by finding the static deflection of a uniform beam
arising from either a concentrated moment or force acting at the location of a
discontinuity. Thus, discontinuous deflection derivatives are approximated by
discontinuous functions. A rigorous treatment of GFM functions is also needed to
guarantee that approximate solutions have a high convergence rate with an increasing
number of admissible functions. This important aspect is presented in this thesis along
with new error estimates for the eigenvalues and eigenvectors. Furthermore, sufficient
conditions are proposed for the pointwise convergence of the second and third deflection
derivatives. These conditions are proved for a beam having an arbitrarily located
discontinuity. They are suggested numerically for more than one discontinuity. A
numerical example is also given to confirm the theory and demonstrate that Gibbs
phenomenon is avoided when GFM functions are employed in conjunction with the
eigenvectors of a uniform Euler-Bernoulli beam having standard end conditions.

C. To extend the GFM method in order to analyze a non-self-adjoint problem involving

a stepped, spinning Timoshenko beam. To achieve this end, a general method which



employs Hermite polynomial interpolation is proposed for the construction of the GFM
functions. This approach advantageously avoids the need to solve a boundary value
problem in order to find the static deflection. Furthermore, it may provide simpler forms
of the GFM functions. Accurate numerical data suggests that the approach has great

potential.

1.3 Thesis Layout

This thesis has five chapters and thirteen Appendices. The results needed to achieve
objective A are presented and discussed in Chapter 2. Chapter 3 deals with objective B
whilst Chapter 4 considers objective C. Finally, conclusions and recommendations are

presented in Chapter 5. Detailed proofs are given more conveniently in Appendices.



CHAPTER 2

FREE VIBRATIONS OF A NON-UNIFORM
EULER-BERNOULLI BEAM

2.1 Introduction

The completeness of a beam’s eigenvectors is fundamentally important in a generalized
Fourier’s series expansion. This is because completeness ensures convergence when the
cigenvectors are employed to approximate, for example, an initial deflection. Moreover,
completeness is a primary requirement in the successful application of the Rayleigh-Ritz
or Galerkin methods. Reference [22] has shown the completeness of the eigenvectors of
a non-uniform, axially loaded, cantilever Euler-Bemoulli beam having a mass off-set from
its free end. This chapter generalizes and significantly extends this work to a beam having
two eccentrically located masses as well as off-set springs. For simplicity, the static
deflection caused by the total weight is assumed negligible as in [2, 3, 4, 5, 22].

Completeness guarantees convergence only when the number of eigenvectors tends to
infinity. In practical computations, however, only a finite number of eigenvectors can be
employed. This limitation leads inevitably to a so-called truncation error. Consequently,
a question arises as to how the truncation error decreases with the use of an increasing
number of cigenvectors. This chapter clarifies this important issue by deriving the
convergence rate of a generalized Fourier’s series based upon the use of asymptotic forms
of the eigenvalues and eigenvectors. These asymptotic forms are derived by employing

an extended inclusion principle. They are useful not only in a convergence analysis but



also in the approximation of the exact higher valued ecigenvalues and corresponding
eigenvectors. Furthermore, the influence of an off-set mass on the eigenvalues is clarified.
This work is motivated by the need to assess the positioning accuracy of a robotic arm
when the payload’s centre of gravity changes with different tasks or does not coincide

with the arm’s end.

22 Euler-Bernoulli Beam Theory

A non-uniform beam having length L is illustrated in Figure 2.1. The M, , J,, K, and
B, r = 0, 1) shown indicate (positive) lumped masses and rotary inertia as well as
rectilinear and torsional spring constants. The non-negative e, and 1, , on the other hand,
represent respectively the distances (i.e. longitudinal off-sets) of the centres of gravity of
the lumped masses and the tips of the linear springs outside the ends of the beam. A(x)
and p are, respectively, the area of cross-section and density of the beam whilst E(x) and
I(x) are the Young’s modulus and moment of inertia of a cross-section, respectively.
Furthermore, El(x) is positive and assumed to be twice differentiable whilst pA(x) is
positive and continuous. That is, there exist two positive constants ¢, and ¢, such that
EI(x) 2 ¢, >0 and p(x) 2 ¢, >0 for 0 < x < L. Then the free vibrations can be found

from (M.25) and (M.31) of Appendix M to be

T, w, = (A [(EIw/Y'-(pw,/Y]1 =Aw,, O<x<L (2.2.1)

where p(x) is a continuous axial force such that buckling is avoided [5]. Note that an
equation number with a letter prefix is given in the corresponding Appendix. Moreover,

A; and w,(x) are the jth eigenvalue and corresponding eigenvector, respectively, and a
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prime superscript indicates a differentiation with respect to x. If the explicit function of
x is omitted for brevity, it can be found from (M.26) through (M.30) and (M.32) through
(M.35) that the end conditions can be written as

Tk Waony =M, 1 [K,(w,;-(-1yn,w ) -(-1Ypw, Hs
2.2.2)

+("1Y(EIWU-, ,:”x=x’ = ljwa‘m

and

t;.g w(3¢g)j = Jr.l [er (EIWU’ ! +(- 1)'K,(e,‘fl,)(wu‘ (- 1)"'1,“’,,’) -
(2.2.3)

~C-1VEIw, [ +(B,-pe,)w, 1 |x=x = XWg..,

where k=0 or 2, r = 0 if k = 0 otherwise r = 1, whilst x, =0, x, =L. The t,, n =1, 2,

.. 5 define a mapping in which

w,, = wlj(O)—eOW{j(O). Wy = Wllj(o). W

and f 224

w, = w L)+ewi L), ws =w(L). |

Completeness of the eigenfunctions will be considered next.

11



2.3. Completeness of Eigenvectors

By reformulating (2.2.1) through (2.2.3) in an operator form, the eigenvectors’
completeness can be determined in a Hilbert space and an energy space. Following the
proposal of Freidman [13], define H® as a Hilbert space having five-component vectors

such that

H® = @(pA, 0, ) DCOHCACDC 23.n

with the inner product given by
L
<F, G>B(_r,) = (l.‘:)Afl g_ldx)-c-Mof;E;q»]ofa E::"MnﬂZ*Jl-GE; (2.3.2)
0]

for two arbitrary vectors F= (f,, ..., fs) and G = (g,, ..., g&5) € H®. Here %A, 0, L)
designates a Hilbert space of square-integrable functions with weight pA(x), € is the set
of complex numbers and the overhead bar denotes the complex conjugate. Furthermore,
IFl,s = (<F. F>n(5,)"‘. F € H®, defines the norm of H®.

Define a linear vector operator IT: Dom(TI) — H® such that

MY = (T,5,.T,Y, T3¥5 TV TsVs) (2.3.3)

for every Y = (y,, ¥3, ..., ¥s) € Dom(II) where the y,, i 2 2, are defined in terms of y,(x)
and its derivative at x, = 0 and x, = L by (2.2.4). The Dom(II) describes a domain of I1
that is dense in H®, The proof of the density of Dom(IT) in H® is given in Appendix A.
Moreover, the range of IT is in H® so that the y,””(x) needed in (2.2.1) lies in

S#%(pA, 0, L). Furthermore, (2.2.1) through (2.2.3) may be rewritten succinctly for the

12



Jth eigenvalue, A,, and corresponding eigenvector, w,;(x), as

nw,=aw, 23.4)

where

Wj = (wu.wu,w”,w‘ ""s;) (2.3.5)

is the jth eigenvector of operator II. Relation (2.3.5) shows that the completeness of
w, (x) follows from the completeness of eigenvector W, which is stated formally next but
proved in Appendix B.

Theorem 2.3.1. A positive constant ¢ exists such that an energy space E® can be formed
by completing a space having the inner product

<F, G>E(5) =<IIF, G>"(5) + c<F, G>H(5) (2-3-6)

whilst |F|_s, = (<F, F>£(5,)"‘ for F, G € Dom(IT). Moreover, the eigenvectors, W,
Jj=1,2, .. form a complete orthogonal system in H® and E®. That is,

" oW
mIF-% 9 [ =0 @3.7)
n—poo J=1 ijlﬁs)
for an arbitrary vector F € H®™ whilst
imlF-3 2% 1o =0 2.38)

Ao jel IW]'H"’

for an arbitrary F € E® where

13



a, = <F, W>us/1W,lys - (2.3.9)

To estimate the error introduced by truncating (2.3.7), the order of the g; given by
(2.3.4) is important. This point is considered in section 2.5 after first presenting the

required asymptotic estimates of the eigenvalues and eigenfunctions.

24. Eigenvalue Properties
The fundamental properties of the eigenvalues are investigated next. Then the first and
second order asymptotic estimates are presented. Finally, the ecigenvalues of a flexible

manipulator are considered as a practical application of the theory.

2A4.1 Theoretical Analysis

The first order asymptotic estimate of the eigenvalue, A;, of a non-uniform cantilever
beam may be employed as a convenient base for other end conditions. First, however, the
general second order asymptotic form, w{P(x), of the j th eigenvector, w,,(x), is needed

as j —> =, It has been shown in Appendix C (based upon [9]) to take the form

wP (@ = a()(A,cosE,(x) +B,sinE,(x) + C,exp(-E,(x))
(2.4.1)

+Dexp(-(0z,+0%/z;-E,(x)))
with O < x <L as well as
zf =2,, Ex = £x)z,~x(x)/ 2,4 E = £(x)z,+ X )/ 2, 2.4.2)

whilst

14



) = jz;(x)dx and a(x) = (b(x)**(El(x))™"* (2.4.3)
o

whereas

o o
with

bx) = (‘;z‘l‘g)"‘. o =#L) and o = x(L). (2.4.5)

The A;, B;, C; and D; used in (2.4.1) are constants which depend upon the order, j, as
well as the particular end conditions of a beam. By substituting (2.4.1) into (2.2.2) and

2.2.3),

[E,1(A; B,C, D) =(0000) (2.4.6)
is obtained where the £, i and j = 1, 2, 3, 4 are detailed in Appendix D. The A;, B;, C;
and D, are not genenally zero simultaneously so that the determinant of [E;], det(Z ;)
will normally be

det(Z,) = 0. .4.7)

This condition, of course, provides the frequency equation from which A; can be
estimated. By employing (2.4.1), (D.28) and (D.33), the following result can be shown.

Theorem 2.4.1. The first order asymptotic estimate,(z;), 0, of 2,0, defined within (2.4.2)

and (2.4.5), is (2j - 1)1v/2 for a non-uniform beam which is cantilevered.
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Proof

(2),0 = G+jp+ 1/2)x + Vj (2.4.8)

where j, and V, need to be determined for | V; | < 2/2. It can be shown, essentially from
(D.28) and (D.33), that, for K, = «, B, = o, K, =0, B, = 0, M, = 0 and J, = O, the
asymptotic frequency equation and the corresponding A;, B;, C; and D; are given, as

Jj = =, by

coszo = O(z;'), A, =-B, = -C, =1,
(2.49)

D

), = -(sin z,0 +cos z,o)

in which f{j) = O(g(j)) means that there exists a positive constant, ¢, which is independent
of j and such that |j)| < c|g()| as j = «. Combining (2.4.8) with (2.4.1) and (2.4.9)

yields V, = 0 as j — o as well as the first order asymptotic form

wi(x) = a(x)[cos R £/0-sin Q_£/0-exp(-Q,£/0)
(2.4.10)
+(-1Y exp(-(1-£/06)Q )] +OG™)

where
Q = @2n-1)n2 and n = j+j,+1. (2.4.11)
Now the function in the square parentheses of (2.4.10) constitutes the a th eigenvector of

a uniform cantilever beam [33]. Thus, w{(x) has (n - 1) nodes in 0 < x < L [34].
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However, it is known [34] that w{’(x) has (j- 1) nodes so that j must equal n.
Consequently, it can be seen from (2.4.11) that j, must equal -1 and, from (2.4.8), that
z;0 has the required first order asymptotic value of (2j - 1)n/2 because V, — 0 as

Jj—> oo,

(Remark. Although the asymptotic estimate of A; has been stated previously for a non-
uniform cantilever beam, e.g. [9], no rigorous proof has been presented.)

An inclusion theorem is given next as a means of finding the approximate eigenvalues
of a non-uniform beam due to a change in either the axial force or the beam’s end
conditions.

Theorem 2.4.2 (i) If an eccentric mass or rotary inertia is added to one end of a non-
uniform beam, which has the j th eigenvalue A, the modified beam’s corresponding
eigenvalue, A,, will satisfy A, ," <A, <A,

(ii) Let 2" and A* be the jth cigenvalues corresponding to a beam having a constant
axial force p™ or p¥, respectively, where p™ < p(x) < p* for 0 < x < L. Then the jth
eigenvalue, A;, corresponding to the spatially varying axial force p(x) satisfies

ATSA SAM

Theorem 5.4.2 is an extension of the classical inclusion principle (e.g. [35]) in which
a mass without eccentricity is considered. Its proof (using min-max and max-min
principles) is very similar to the classical one. Details can be found in Appendix E.

The following lemma and theorem are needed to determine more precise asymptotic

estimates of the cigenvalues.
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Lemma 2.4.1. The cigenvector w,,(x) and its first spatial derivative, which correspond
to a simple eigenvalue, depend continuously upon (finite) X,, B,. M,.J,,r =0, 1 and
p(x).

This lemma can be obtained directly, except for M, = 0 =J,, r = 0 and 1, by using the
classical Rellich’s perturbation theorem on operator IT [36]. For M, = 0 = J,, II needs to
be modified so that it can be defined in a Hilbert space whose elements correspond to a
vector having fewer than five components. In this case, the proof of the lemma is
analogous to that given in [37] for the numerical stability of the round-off error
introduced by different admissible functions in the Rayleigh-Ritz approach. The proof is
provided in Appendix G.

Theorem 24.3. If a non-zero A; is not a repeated eigenvalue, then
X

az_, 2,

- (w,~(-1Ve,w P |x=x OSM <,
M, AWFe v

r

9z % /
=L (Wllx= 0<M <,
-ﬁr 4|w'jl2”(5) 15 Ix X,

az, 1 /
PR — -(-1)Yqw = 0K <o, ¢
K 4z,’|%|’,,<s>(w" AT Lem, rS7 4.12)

b ]

dz
-B-Fj = _l_(w{l)zlxgx' 0<B <=

4 IW, Py

% _ My

—_l(w —(-l)’e,w’)w' |y 0<e <o
de, 2|W,|2,,(5) H WU xEx,
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for a M, with eccentricity e, and a K, with off-set nj,, 7 = 0 and 1. Furthermore, when p(x)

is constant,
a L
/R S I w! (o) d. 2.4.13)
P 4 |W, Py

Proof

Suppose r = 1 and that =« > M, =0 is changed to M,” due to the augmentation or loss
of a mass at x = L whilst all other parameters (like ¢,, e, etc.) remain fixed. Denote the
corresponding Hilbert space, the jth eigenvalue and eigenvector by H'®, 1" and W/,

respectively. Then it can be shown straightforwardly that

<AW; - W), W>ps + L<W,, W -L<W, W>,5 =0. (24.14)

Consequently, the partial derivative of A; with respect to M, can be found to be

A, _ L A (<WL Wi -<W, Wi>y) (2.4.15)
M, M,-M)<W, W, >,

Substituting z, = A ;* > 0 from (2.4.2) into the last equality and using Lemma 2.4.1 yields

Bz, z

- y
oM, AW e

W+ W) x=x, - (2.4.16)

The last equation is simply (2.4.12) with i = 1. Similar proofs can also be demonstrated
for the other derivatives.

Two practical applications are presented in the following sections.
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24.2 Asymptotic Estimates

It can be shown from Theorem 2.4.3 that dz,/9K ,, 9z ;/df, and dz;/dp tend to zero as
Jj = oo for a beam having a constant axial force. Then Theorem 2.4.2 (ii) indicates that
(z), o is independent of finite X, , B, and p(x). Equation (2.4.12), on the other hand, can
be used in conjunction with Table 2.1 to find the analogous effect of adding M, or J, at

x=x,,r=0and 1. For example if r = 1, (2.2.2) and (2.2.4) lead to

w (L) +e,wi(L)) = (1/zf MK, (w, +nw]) —EIw) +pw]| ;= - (2.4.17)

The last equation does not depend upon w,;(x) and its derivatives at x = O so that, by
using (2.4.1), it can be demonstrated that (w,;(L) +e,w',,(L)) = O(j ') as j = < regardless
of the conditions at x = 0. (Moreover, it is shown later that all z; have the same
asymptotic order of j whilst [W, [y is demonstrated in Appendix F to be bounded below
and above by constants.) Therefore the asymptotic order of dz ;/0M ; can be found from
(2.4.12) to be jxj? = j'. Consequently, adding M, at x = x, does not change the
asymptotic eigenvalue. The asymptotic order of w,;(x) and its derivatives at x = x, ,
r=0 or 1, can be determined similarly. Only the results are summarized in Table 2.1.
The first order asymptotic eigenvalue estimates of the beam shown in Figure 2.1 can be
derived now by using Theorems 2.4.1 through 2.4.3 and Table 2.1. To illustrate the
procedure, suppose a non-uniform beam has a constant axial force and the end conditions
Ky=B,=and M, # 0=/, B, <o =K, with 1}, = 0 # ¢, . Consider first, however, the
same beam but without the axial force, eccentric mass, M, , and rotary inertia, J, . The

classical inclusion principle [12] and (D.28) indicate that (z)), G then respectively satisfies
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2j-1Dn/2 < (2),6 < @j+Dn/2 and cos(z),0 -sin(z), 0 = 0 (24.18)

where the upper and lower bounds correspond to the jth and (j + 1) th values of (z), &
for a cantilever beam. Thus (z);, 6 must equal (4j + 1)n/4. Now, add the mass M,

eccentrically at x = x, . Theorem 2.4.2 (i) and (D.28) show that

(4j-3)n/4 < (),0 S (4j+1)n/4 and cos(z),0 = 0 24.19)

so that (z), 6 = (2j - 1)n/2. Finally, add the rotary inertia, J, , at x = x; . Theorem 2.4.2

(i) and (D.28) indicate that (z),0 then satisfies

@2j-3)r/2 < (),0 < (2j~-1)W/2 and cos(z),0 = 0. (2.4.20)

Now (z), © cannot be determined uniquely from (2.4.20) so that Theorem 2.4.3 and
Table 2.1 are needed. First, the asymptotic order of w’,;(L), corresponding to the previous
end conditions of J, = 0 with e, # 0= M,, B, <o =K, and 1), = 0, can be found to be
j from the intersection of the fourth column from the right and the fifth row from the
bottom of Table 2.1. Moreover, Theorem 2.4.3 indicates that dz;/dJ, tends to zero as
J = oo. That is, there is no change in (z;); 6 when j — < due to the addition of J, .
Furthermore, it can be shown from (2.4.13) and Theorem 2.4.2 (ii) that a constant axial
force does not influence the first order asymptotic estimate so that the previous

(z;), 0 = (2j - /2 still applies and it is the final result.

Other end conditions can be treated similarly. The results are summarized in Table 2.2.
This table confirms that, for given conditions at x = X » (z;)1 0 i.e. (z;), is independent

ofK,z.B,zaswellasﬂ,2 if K, < e and B,2<eo. wherer,, 7, =0or 1 butr, #r,. On the
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other hand, if 1, # 0, Table 2.2 indicates that (z;), is independent of e, - Furthermore, if
K,2 = oo in addition to J,2 # 0, (2), is also independent of n,-
As a matter of interest, the second order asymptotic estimate, (z;), 0, can be found from

(D.28) and (2.4.5) to be

)6 = [@)o+- S 1-2 Ao, (2.421)
(), [(z)0 (Z;)ll A for % -
- A A1
z),6 = [(2),6+-2_]+(=1)" 2w, (2.422)
oA R W =

and

. A 2.4.23
@), = [(z,)10+(:’—)]-[tan((z,)p)*-zz-lll for |i:‘2-| > @43

71
A, and A, are given by (D.29) and |A,/A,| can tend only to the indicated limits as
j— <. The A,/A, in (2.4.22) was inadvertently neglected in [8] for the particular example
of a non-uniform cantilever beam.
By substituting the first (or second) order asymptotic estimates of z,o into (D.31) and
(D.33), the corresponding A;, B;, C; and D; can be found and the first (second) order
asymptotic estimates of the eigenfunctions can be obtained straightforwardly. These

results are used to determine the order of the g; defined by (2.3.9).

24.3 Influence of an Off-Set, Lumped Mass
Theorem 2.4.3 is employed in this section to investigate the practical effect of an off-set
payload on the positioning accuracy of a flexible manipulator. For simplicity, only a

uniform beam is considered for which K, = p, = 0. Then it can be seen from equation
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(2.4.12) that

3w
- E-JIT-[O)}Ml(wU(L)+elw,',(L))w,',(L)] (2.4.24)
1 J J

where @; is the j th natural fréquency satisfying @, = (A;)"? whilst a prime superscript

indicates a differentiation with respect to the spatial co-ordinate x and

L
T, = 12[( [pAw}()dr) + My, (0) - e w] () + 1, (Wi (0) +
0 ) (2.4.25)

+M (w,, (L) +e, wi (L) +J, (W {L))*] .

The pA in the last equation is the beam’s mass per unit length so that ©; Y is the kinetic
energy of the jth mode. Equation (2.4.25) leads to the observation that a unit, independent
change in e, modifies ®} Y; by &'M,(w,;(L) + e, w’,,(L))W'y,(L) - the term contained in
the square parentheses of equation (2.4.24). Consequently Rayleigh’s principle [12] may
be used to straightforwardly validate equation (2.4.24) given that, to first order, the strain
energy is unaffected by e, being modified. Hence, as suggested by equation (2.4.24), the
frequency variation depends solely upon the change in the kinetic energy.

When, as done here, w,/(L) is set invariably to unity, the inequality

o0
73?{ S0 if w,(L)+e, 20 (2.4.26)

1
can be found immediately from equation (2.4.24). Therefore w; will increase (decrease)
when e, is changed alone if (w,;(L) + ¢,) or, in non-dimensional form, (w,;(L) + ¢,VL is

negative (positive). Although such trends are apparently simple to predict, the application
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of inequality (2.4.26) may be limited by the often tedious computation of w,,(L) (and
w’,; L)) [3]. However, a numerical example is given next to demonstrate that the
inequality provides a useful check when variations in ®, are complex.

Suppose pA(x) = constant and EI(x) = constant such that

10¢, - 100pAL _ 107,
L M, pAL>

=1 (2.4.27)

and

HMO - pAL3 - BOL
pAL'K, J, H

=5, (2.4.28)

These values are identical to those used in [3]. The ratio ®;/ ®,;, where @y is the j th
natural frequency for an identical payload with no off-set, was computed by using double
precision arithmetic on a SUN/4 - 280 workstation [38, 39]. The results for different
values of e, /L are presented in Figures 2.2(a) and 2.3. Good agreement is demonstrated
with limited previous data [3]. On the other hand, Figure 2.2(b) gives, for the first time,
the values of (w,;(L) + ¢, )L, w",,(L) = 1, corresponding to the frequency ratios of
Figure 2.2(a).

Figures 2.2(a) and 2.3 reveal that the fundamental natural frequency is affected most by
a given variation in a payload’s off-set. Indeed, these figures demonstrate that @,/ @,
deviates more from one as the mode number, j, generally decreases and e, /L increases.
Not unexpectedly, therefore, a particular payload has a detrimentally greater influence on
the overall dynamics as the off-set grows. If an off-set is neglected, then the lowest
frequency modes - particularly the fundamental mode - should be controlled to achieve
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more accurate positioning of 2 heavy payload [7].

A careful comparison of Figures 2.2(a) and 2.2(b) corroborates inequality (2.4.26).
These figures show that @,/ w,, decreases for mode j = 1 but increases for j = S because
the corresponding (w,; (L) + e,VL is always positive or negative, respectively. Mode
J = 3 is more interesting. The (w,;(L) + ¢,)/L is negative upto about e, /L = 0.0345 but is
positive otherwise. Thus, the corresponding ®; /@, grows and then diminishes with
increasing e, /L in a way that is consistent with inequality (2.4.26). This dichotomous
behaviour, moreover, confirms that an inclusion principle cannot hold for the third natural
frequency because its value may either increase or decrease when e, /L is perturbed

around 0.03.

2.5. Convergence Rate Estimates
The objective of this section is to investigate the convergence rate, j*, of |q, | as
j = oo for a non-uniform beam’s initial deflection, y,(x), in order to determine the
difference |[y,(x) - y.(x)|. Here y,(x) is the summation of the first n terms of the infinite
series
i a,w, (x)
i1
constituting y, (x). The next result is needed to achieve the objective.
Theorem 2.5.1. Let @, represent any one of the four functions w,(x), (1/z;0)w);"(x),

(1/z0)'w,/"(x) and (1/z;0)’w,/"(x) as j — <. Then the inequality
L
I _[y(x)@,(x)dxl < ; . 2.5.1)
[¢]
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holds for any function, y(x), that is piecewise continuous in 0 < x < L [40]. Here ¢ and
subsequently c;, { = 0, 1, 2,..., are generic positive constants.

Proof

Consider initially the case of @(x) = w,(x). Set the y(x) of (2.4.2) to zero so that the
resulting w{(x) from (2.4.1) represents the first order approximation of w,(x). Hence, it
is known from [34] that there exists a positive constant, ¢, , which is independent of j and

such that

|w,, -w®| < G (2.5.2)

1J - -

J
as j — co. Equation (2.4.1), combined with the generic inequality |ab| < |a(b - ¢)| +

|ac], leads to

L L L
| [y w,@ax| < ¢l [ydr|1j+e, (| [y sin ), 2dx|
(] o o]
L L
+1 [y cos @, 2dx| + | [y exp(-z), D) dx | (2.5.3)
(o] 0

L
+| [y exp(-(z)), (-0 dx )
0

where ¢, = max (a(x)A;, a(x)B;, a(x)C;, a(x)D,). It can be shown straightforwardly [41]

that
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L L
| [yosinG)gdel <clis | [y@eos@)ede] <cyi @59
0 0

and

L
I Iy(x) exp(-(z), £)dx| < c,/j (2.5.5)
o

where c; is a positive constant which is independent of j. Consequently,

L L
|J‘y(x)wu(x)¢t| < (¢,c,*4c,¢))/j and c, = | I y(x)dx|. (2.5.6)
o 0

Taking ¢ = ¢, ¢, + 4c, c;produces (2.5.1). Similar proofs can also be formulated for the
remaining functions.

By using Table 2.1 and Theorem 2.5.1, the convergence rate, j*, of |a,| can be found
as j = . To illustrate the procedure, suppose the initial deflection, y,(x), of the non-
uniform beam of Figure 2.1 has continuous derivatives up to fifth order. Let the sixth
derivative be piecewise continuous. Integrating (2.3.9) by parts and using (2.2.2) and

(2.2.3) leads to

L 1
a, = 1{z* I(EIRI’w{S ~pR/)Yw )dx+z*Y (EIR,'w(;-pR,'W ) |x=x
r=0 r

(o]

2.5.7)

1
+Z; ' Y[R, w, + R wi;~2 'R, (W) -pw))]|x=x NW,lis
r=0 v
where the function R, (x) as well as R_, R, and R,, r = 0, 1, are detailed in the footnote
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of Table 2.3. It can be seen from Table 2.2 that, as suggested previously, the z; all have
the same asymptotic order of n. Furthermore, it is shown in Appendix F that two positive
constants, ¢, and c,, exist such that ¢, < IW/l_;, <c; for all j. On the other hand if, for
example, y(x) = EI(x)R,”(x) and z(x) = -(p(x)R,'(x))’, Theorem 2.5.1 indicates that the
integral multiplied by z;® in (2.5.7) behaves like j*xj = j7 as j — . Moreover, the
asymptotic behaviour of w,(x,), w,/(x,), w,;"(x,) and (Elw,;"(x,))" can be found for this
particular beam from the twelfth rightmost row of Table 2.1 to be j 7, j 7, j? and j?,
respectively. Therefore, the second and third terms in (2.5.7), which correspond to the
summations, have the asymptotic order j© and j >, respectively. Consequently, the third
asymptotic term dominates and [a;| < cj as j — <, where c is a positive constant which
is independent of j. However, if the initial deflection, y(x), satisfies the further conditions
R,=R,=R_,=0,r=0 and 1, the third term becomes zero and, hence, |g,| < ¢j*® as
Jj = . If, in addition, R’ = 0, r = 0 and 1, then the second term is also zero so that
la,| <cj? as j = . Now the footnote of Table 2.3 suggests that the conditions
R, = R_ = 0 correspond to the static end conditions when M, and J,, r = 0 and 1, do not
exist. Thus, an initial deflection caused by a static external force automatically satisfies
R_, = R, = 0 but not necessarily R, =R, = 0,r =0, 1.

By using Table 2.3, the error produced by truncating y.(x) can be estimated from the
inequality [40]

Yt s nevk-1) for 1 <k. 25.8)
jon

For example, if |q;] < ¢j™* as j = =, the last inequality, when introduced into the
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truncated series, gives

lyo(X)-f: aw, )| = | f: aw, |<cY jts < _(m+1y%v, 259)
Jj=1 Janel j=nel (k- 1)

Therefore, an appropriate number of terms can be chosen, a priori, for the series with
knowledge of the asymptotic behaviour of |a; |. Table 2.3 indicates that this behaviour
depends strongly upon a beam’s end conditions.

(Remark. Table 2.3 can also be applied to a series expansion of an initial velocity as well

as to the situation involving an extemal force.)

2.6. Conclusions

Completeness has been shown in a Hilbert space and an energy space by employing an
operator theory for the eigenvectors of a non-uniform, axially loaded, Euler-Bernoulli
beam having eccentric masses and supported by springs. Consequently, the general
solution to the forced and free vibrations of the beam can be obtained in terms of a
summation of these eigenvectors. On the other hand, a truncation error is inevitable in
practical computations. Therefore, in order to determine how the truncation error
decreases with the use of an increasing number of eigenvectors, the convergence rate has
been analyzed and tabulated. The results demonstrate, for the first time, that a series
expansion in terms of the eigenvectors, as well as each series obtained by differentiating
it upto three times, converge uniformly and absolutely. This result implies that the
eigenvectors of a non-uniform beam having eccentric masses and springs should produce
a high convergence rate when used as the Rayleigh-Ritz base functions in the component

mode synthesis. This conjecture is substantiated numerically in [43] through illustrative
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examples.

In addition to the completeness and convergence rate, asymptotic estimates of the
eigenvalues and eigenvectors have been derived to approximate the higher order, exact
eigenvalues and corresponding eigenvectors. These estimates are simple in form so that
they can be applied, for example, to the design of distributed feedback by using
independent modal-space control [6]). Then the optimal distributed control force is a
summation of modes whose weighting coefficients can be approximated easily and
accurately at high frequencies by employing the asymptotic estimates. Moreover, the
effect of an off-set lumped mass on the lower natural frequencies of a beam has also been
investigated. It is demonstrated that, for a given mass, an off-set influences mainly the
fundamental natural frequency. Practically, this means that a robot’s positioning accuracy,

say, can be influenced by the off-set of the payload’s gravity centre.
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Figure 2.1. A non-uniform beam having general end conditions.
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Table 2.2. First order asymptotic estimate (2), O.
(For |p(x)| < = and z, >0 whilste, #0=M, ,05B, <o r.n= 0. 1butr, #r,)

End Conditions @ho
J,#0 | M, =0J,=0 2j - S)m2
M, =0, .I,,¢0 4j - 13)v4
0< K,l < o ' jl,z.toO e, = 0 @j- 1D/
0SK, < r e, *0 4j - 134
2 M,=0 J,*0 2j - /2
0sB, <= J, =0 | M, =0, J, =0 @&j - 94
M, =0 J,=#0 G-3)x
] M, #0 | e, =0 2j - 52
J,'=0 2 -
n e,zto G-3)r
.I,laeo 1,2-0 M,z-o n,z-o @j-Nva
11,21:0 4j - 99rv4
M, #0 |n, =e,#0]| (4j-9w4
0sK, <= N, *e, @2j - S;m2
K, = J.,#0 | M, =0 orM, =0 2j - SHr2
0<B, <= J,=0 [J, =0 | M, =0[n,=0 2j - )2
n,#0 G-2)r
M,2¢0 n,z-e,zato (-2
N, *e, @4 -4
.I,z:O M,Z-O orM,zan 4j - 94
0<K, < J, =0 | M, =0 @4j - 94
0SK, <w M, #0 @Qj - Sm2
J,=0 | M, =0 G-2)x
B, =< M,_%0 (4j - w4
0<K, <= J, =0 (2j - )2
K, ===B, J, =0 @ - Swa
K, =K, = J, =0 2j - D2
B,= J, =0 n, =e, 4 - hva
n, e, 2j - N2
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CHAPTER 3

A UNIFIED APPROACH AND ITS NUMERICAL APPLICATION

3.1 Introduction

Asymptotic solutions were derived in the previous chapter for a single-span, non-
uniform Euler-Bernoulli beam having complex end conditions. Unfortunately, most real
beams have discontinuous cross-sections or materials so that asymptotic solutions may not
be found so easily or even may not exist. Furthemore, low frequency information is often
needed in the practical design of a beam. Ar: exact solution approach, however, becomes
less tractable as the variation in a beam’s cross-section gets more complicated. Then a
Rayleigh-Ritz or Galerkin procedure that employs the eigenvectors of a uniform beam
having a standard fixed, free or simple end support is generally preferred. However, such
an approach can produce poor approximations due to Gibbs phenomenon [25, 27] when
a beam has discontinuous material properties, interior masses and spring supports as well
as non-conventional end conditions. In this chapter, a generalized force mode (GFM)
method is introduced to avoid the Gibbs phenomenon and speed the convergence rate of
an approximation. To present this approach, the Rayleigh-Ritz procedure is reviewed first
for a Euler-Bemoulli beam having general interior and end conditions. Then the concept
of GFM functions is defined. Subsequently, error estimates of the eigenvalues and
eigenvectors are derived when GFM functions are used in conjunction with the
eigenvectors of a uniform Euler-Bernoulli beam having conventional end conditions.

Furthermore, pointwise error estimates of the second and third deflection derivatives are
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derived under specified conditions. Finally, a numerical example is given to confirm the
theory and verify that Gibbs phenomenon is truly avoided. An extension of this method
to Galerkin’s procedure is given in the next chapter.

3.2 Rayligh-Ritz Approach

Consider a freely vibrating Euler-Bernoulli beam having length L. Unlike the previous
chapter, the flexural rigidity EJ(x), mass per unit length pA(x) and an axial force p(x),
where x indicates a typical distance from the beam’s left end, may not continuous.

Furthermore, the beam is supported by an elastic foundation having stiffness k,(x). Let
O=x,<x ..<x, =L (3.2.1)

denote a partition of the interval 0 < x < L in which the knots x,, 1 < r < N-1, correspond
to the locations of discontinuities which may involve EI(x), pA(x), p(x) and k(x).
Furthermore, rectilinear and torsional springs, K, and B, , as well as lumped masses and
rotary inertia, M, and J,, may be located at x,, r = 0O, 1, ..., N.

Suppose that A, is the jth exact and distinct, free vibration eigenvalue having
multiplicity @;. Let w;(x) be an arbitrary eigenvector in a subspace, M(A)), that is spanned
by all the eigenvectors corresponding to A;. It can be shown similarly to (M.20) through

(M.24) that the A; and w,(x) are govemed by

(EI)w,"(x))" - (pxyw, ()Y +k, ()w,(x) = L,pA(Iw(x),
(3.2.2)

x,_,<x<x,r=1,.,N

r

where a prime superscript indicates differentiation with respect to x. If K, , B,, M, and
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J,.r=0,1, ..., N, are all positive and finite, w;(x) satisfies the end conditions

K,w (0) -p(0)w/(0) + (EIw/'(0))’ = A M,w (0)

(G.2.3)
-Eij”(O) +Bow/(0) = AJ, w]’(O)
and
K,w(L)+pL)w/L)-(EIw L)) = A M, w (L)
(3249
ij”(L)-l— Byw/@) = AJy w]’(L)
as well as the following interior conditions at x=x,, r=1, ..., (N - 1),
* - /, > ¥ - W
wix,) = w(x,), wix,) = wix,)
- " " / - I/
EIWI |x=x: * HWI lxzx: * Bfw.i (xr) A']Jr w] (xr) { (3'25)

(EIW]Y -pw/)| o~ (EIW -pw) _ -

>
x=x,

+Kwix,) =AM wx) |

Negative and positive superscripts indicate limiting values as x approaches x, from the left
and right, respectively. The variational form of equations (3.2.2) through (3.2.5) can be

written as [44]
B(w,y) = lJD(w], y) 3.2.6)
for any y € W?(0, L), a Sobolev space in which every element and its first derivative are

39



absolutely continuous whilst the corresponding second derivative is square integrable in
0 <x <L [45]. Now

L N
Bw,y) = I(Elwi”y”*—pwl’y’+kewjy)dx+E (K,w,y+Bw/y ) x=x 3.2.7)
0

r=0

and

L N
Dov,. ) = [pAw,yde+3> (Mw,y+J W/ lxex, (32.8)
(o]

re0

where a function’s dependence upon x is omitted for convenience.
Suppose that there exist positive constants c¢;, i = 0, 1 (subsequently i = 2, 3, ... and ¢

also denote a positive constant) such that B(x, w) and D(u, w) satisfy [46]
(B, y)| < c,lullyl, Bu,w) 2 c lulP and Du,w) >0 (3.2.9)

for arbitrary non-zero #(x) € W®(0, L) and y(x) € WP(0, L). The [¢| represents the
norm of W®(0, L) whilst D(u, u)'? is assumed to be compact with respect to |e] [46].
Then July = B(u, ¥)'* defines a norm for an energy space, B, which is equivalent to
W20, L) whilst Julp, = D(u, u)"? introduces a norm for a Hilbert space, D. These
assumptions are required to ensure that the eigenvalue problem is self-adjoint so that the
Rayleigh-Ritz procedure can be employed.

(Remark 3.2.1. Should K, = < or B, = o, r = 0, N, the end conditions (3.2.3) and (3.2.4)
take the simpler form w/(x,) = 0 or w,’(x,) = O. Then it can be shown that equation
(3.2.6) still holds if terms involving w;(x, ) or w,’(x, ) in equations (3.2.7) and (3.2.8) are

omitted and y(x, ) = O or y'(x,) = O for any y(x) € B, r = 0, N. This last constraint is a
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so-called geometric end condition that should be satisfied by any admissible function in
the Rayleigh-Ritz procedure [44].)

In order to estimate the errors produced by the Rayleigh-Ritz procedure, it is known [43,
44] that the nature of the discontinuities (i.e. the regularity [47, 48]) of the w/(x) as well

a the solution, w(x), of the equation
B(w,u) = D(f.u), for a given fx) € B but any u € B, (3.2.10)

needs to be clarified. The last equation describes the static deflection, z(x), of the complex
Euler-Bernoulli beam under consideration when subjected to a temgorally independent,
distributed force, pA(x)x), in each interval: x,., < x <x, as well as a concentrated force,
M, fix,), and bending moment, J, f’(x,), located at x = x,, r = O, 1, ..., N. Eigenvalue
problem (3.2.6) can be considered a special case of equation (3.2.10) in which fx) is
replaced by A;w(x).
Theorem 3.2.1. Suppose that El(x), pA(x), k.(x) and p(x) are all differentiable to an
arbitrarily high order in each sub-interval V,: x,, Sx<x,, 1 <r < N. Then all order
spatial derivatives of the eigenvectors, w;(x), are continuous in each V, if (3.2.9) holds
for any u(x) € B and w(x) € B. In addition, w(x) has continuous derivatives upto order
five whilst d *w(x)/dx ¢ is square integrable in each V, if f”"(x) is square integrable.
Furthermore, the w;(x) and w(x) satisfy conditions (3.2.3) through (3.2.5). (It is worth
noting that distributional derivatives of functions having finite jumps at the knots are
circumvented by considering these functions only in each individual sub-interval V,.)
The proof of Theorem 3.2.1 is similar to that given in [49] where a Green’s function

is employed for differential equations of motion that involve continuously differentiable
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coefficients but no interior conditions. Details can be found in Appendix H.
Suppose S, is an n-dimensional subspace of B. Then the n th Rayleigh-Ritz

approximation, A;" and w;(x), of A; and w;(x), j < n, are found from [29]
Bw;,u) = \;Dw/,u), for w'(x) € S, and any u € §,. (3.2.11)

However, a solution’s convergence rate depends significantly upon the base chosen for
S, - This aspect is considered in the next section. There S, is spanned by GFM functions
and a simple uniform beam’s eigenvectors, {y,.(x)}, whose analytical form is given
generally by (33]

v, (x) = Q,, cos(Q_x/L+9 (x))+0Q, exp(-€2_ x/L)
(3.2.12)
+0,.exp(-(L-x)2_/L).

Phase 0,(x), the m th characteristic value, €2, and the coefficients Q,,.. 0,,. and O, are
determined by the beam’s standard end conditions [S0]:

d?"’“’,“’..(x,)

o e uJw) =0, r=0,N, v=1,2, j=0,1,... (213

Here v, , is an integer that depends upon the uniform beam’s specific end conditions at

xo =0 and xy = L. Moreover, ¥,, > ¥,, 2 0 and the notation d°y,(x)/dx° = y,_(x) is used.

33. Asymptotic Error Estimates
Three sets, 37, &,* and &, 9, in which i and g are positive integers satisfying
q 2 i + 1, are described next. They are needed to estimate piecewise asymptotic errors for

the higher order deflection derivatives.
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Definition 3.3.1. Set 3/ contains a finite number of functions, {,(x), r =1, ..., (N - 1),
that individually satisfy U, /(C,) = Uy JC) =0 (v=1,2andj=0, 1, ..,

Jo 21{q - Yo, - 1V/4). The {,(x) have uniformly continuous derivatives upto order (i - 1) in
OSx<Landuptoorder(g+ 1)inbothO<x<x,andx, <x<L,1Sr<WN-1).
Furthermore, d‘ L (x,*Vdx" # d*{,(x, Vdx'.

Definition 3.32. Set &, ( ., ) < C~(0, L) contains just one function {(x) (Cx(x)).
Co(x) » 0 (Cu(x) = 0) if, for a given positive integer i, there exists a positive integer,

Ji » such that j, = [i - Yo, ¥4 G = [i - Vv, V/4) when v, = 1 or 2. Moreover, {q(x) (Ca(x))
satisfies

@) Uoy,1 G} # 0 (U 1Cs) % 0) and Up(C) = 0 (Up/Ca) =0), V= 1.2 and j= 0, 1,
< Jo » Where j, is an integer satisfying 4 2 [i - Yy, V4 () 2 [i - Yo, J4). In addition,

®) Us/Co) = 0 (Un/C) = 0),j =0, 1, ..., j5, and Ug/(Co) = 0 (Up/C) = 0), =0, 1,
< Jo- The j and j, are positive integers satisfying j; < [i - ¥, V4 <j, + 1
Gs<li-ymYadsjp+l)and j <[i-VV4<j +1 (i<[i-WpV4<j, +1).

By using these definitions, g-GFM functions can be defined concisely for an arbitrary
function, w(x) € B, that has continuous derivatives upto order g in each sub-interval
V..

Definition 3.3.3. Let i, and i, be two positive integers satisfying 2 < i, < i, £ (g - 1).
Suppose that r,, and r; are two positive integers for a given positive integer i that satisfy

rp S r; £ N whilst i satisfies i, < i < i,. The set of non-zero functions
{({w:,eyUsiU®&Y#F*.ipsisi,rosr<sr} @3

corresponds to g-GFM functions with respect to {y,(x)} and the function w(x) if there
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exists a set of real constants, A, , such that the function g(x) defined by

gx) = w(x)- y_; 2 hRL®, x#x, k=1, .., N-1, (33.2)

i "0 r=rn

and

diglx,) _ d'wix) " | §, (x[)
dx’ dx’ ,2;0 ,.z,;o ! (3.3.3)

has a series expansion with respect to {y,,(x)} whose derivatives can be taken, term by
term, up to order (g - 1) without loss of uniform convergence in 0 < x < L. Furthermore,
the gth derivative of g(x) is fully or piecewise continuous. Moreover, if g is independent
of w(x) when w(x) is a solution of equation (3.2.10) for a fx) € B, the {{,(x)} are said
to be g-GFM functions with respect to {y,.(x)} and equation (3.2.10). Then the following
result can be obtained immediately but its proof is given more conveniently in
Appendix I.

Lemma 3.3.1. The ¢g-GFM functions with respect to {y,(x)} and equation (3.2.10) satisfy
2<g<S.

Two main concems arise. One concem is how to construct the sets 39, &7 and &, 9.
It is easily found that the conditions needed by these sets involve the end conditions
(3.2.13) as well as the left and right derivatives of a functionatx=x,, 1 S7r<N - 1.
Consequently, the functions {{,(x)} can be obtained from standard references, e.g. [S1],

by employing the static deflection of a uniform beam having no rigid body motion. The
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second concemn relates to the existence of the constants, A, . It can be demonstrated

directly that they can be found from

’

dw(x, ) d‘w(x ) Kt d’ Ckr(x‘)

[ - 2 h‘.,.(

dx ¢ k=i,
'ck,m 4% d'c,,cxn

dx' dx’ dx'

(d‘W(x 7Y d'wx; ) ‘C,,(x ) _dit, G ))
{ dx' dx’ dx' (3.3.4)
i=i,0<r<N

2 ‘W(J:,) _ § d ‘C,,,(‘x,) v ’C,,(jr,) ,
dx k=1, dx dx

r=0,N,{ () =0

hy<i=si,

d i‘v(xr) / d ‘glr(xr)

- . i=i,r=0,N,{(x)=0

-

Asymptotic lower errors are determined next for the convergence rates of the eigenvalue
and eigenvector errors.
Theorem 3.3.1. Suppose that the conditions used in Theorem 3.2.1 hold and S, is spanned
by n functions consisting of the m, linearly independent functions {C,(x)} of set (3.3.1)
in addition to (¥, (x), m = 1, ..., n - m,}. If the {{,(x)} form ¢,-GFM functions with
respect to {y,(x)} and w;(x), the asymptotic errors arising from the nth Rayleigh-Ritz

cigenvalue and eigenvector approximations, A;* and w;'(x), to their true counterparts, A,
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and w, (x), are bounded by

Aj-A, < t:ln‘z'z(lelql)2 and |w,~w/l, < czn"'zlelql (3.3.9)

where
@l N 5 diw
g, =(2¢,-3)/2 and TwI =Y Y ( I (—2ydo? (3.3.6)
i1 isQ rel dx‘

Xp-1

Moreover, if {{,(x)} also forms a set of g,-GFM functions with respect to {y,(x)} and

equation (3.2.10), then
|wj-wj" I, s c3n‘(92“'4)'|'u7]|: G3.3.7
and
|wl(x)-w,"(x)| < c‘n"’sulel"1 . le’(x)-wj" ‘™| s csn"nl'ﬁl"_l. (3.3.8)

The ¢, i= 1, .., 5, are not only positive constants but they are independent of n and

w;. Also,
2 = (@,+q)(3-2)/4+q,(1+2i)/4, i=0,1 (339
and
1/2, q3 = 2
q, =13/2, q, = 3.4 (3.3.10)
74 , q = 5.



Proof
Inequalities (3.3.5) and (3.3.7) can be obtained straightforwardly by using inequalities
(1.59) and (1.61) of Lemma I.1 as well as inequalities (1.85) and (I.86). (They can all be

found in Appendix L) Then it can be seen from inequalities (3.3.5) and (3.3.7) that

L
A, = ([Iw,-w/ a0} < cn Tt 331
0 1

and

B, =(

lell_w]n Illzdx)m < cn"zTT,I-. (3.3.12)

9

(Y

Inequalities (3.3.11) and (3.3.12), on the other hand, produce

1

-koa ke
A > O and A, B,> > 0 asn—> w,k=01 3313

Furthermore, it can be found from inequalities (3.3.11) and (3.3.12) that A,/B, — 0 as

n — o so that

E, = (A}+B)" = B, (1 +AYBY" < 2 cnuTwW] . (3.3.14)

Thus, the conditions required for Theorem 1.2 of Appendix I are satisfied. Consequently,
the inequalities labelled (3.3.8) can be derived by substituting the A, and E,, defined by
relations (3.3.11) and (3.3.14), into inequality (1.89).

Inequalities (3.3.8) provide pointwise asymptotic estimates over 0 < x < L but only for

the emror of the deflection and its first derivative. The practically important bending
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moment and shear force are considered next.

3.4. Pointwise Convergence of the Higher Derivatives

Sufficient conditions for the pointwise convergence of the second and third deflection
derivatives are determined ﬁrst;
Theorem 3.4.1. Suppose that the conditions employed in Theorem 3.3.1 and Lemma J.1
hold. Let the i and r of the GFM function {(x), which is employed in Theorem 3.3.1,
satisfy 2 < i, <i<i, <3 and 0 Sr, S r <r, S N. Then there exist four positive constants,

¢, and ¢, , that are independent of n and such that, at the continuous points of w;"(x) and

w; ¥ (x), the inequalities

< Cx”-mlwll,l . q, =3
s A 3.4.1
I“'J @) -w; ) | ~ley(0; - )* V(8D ( )
Scn S ¢ r-rwj'. q >3
1
and
< ‘z"-ml“’ll,l . q =4
[, ) w0 R P oA
< czn Tz wl ’ ql > 4

“

hold for their approximate counterparts, w;* “(x) and w;* ®*(x). The ¢, and |W,|' are
i

defined by equations (3.3.6).

Proof

The nth Rayleigh-Ritz approximation, w;(x), of w(x) may be expressed as



‘l L1 n=m
wi® =Y Y 5,50+ Y a.v.0 (B43)

fl'x'o r=rio m=]l

where b, and a, are determined from equation (3.2.11). On the other hand, the m,
functions {{,”(x)} constitute a set of g, - GFM functions with respect to the (n - m,)
functions {y,(x)} and the w/(x). Hence, it can be shown similarly to the proof of

Lemma 1.2 of Appendix I that there exist constants, A, , such that the series expansion

h & -
wix) = ;;o Y A0.® +2:l 4 ¥.(x) (3.4.4)
"0 """i0 me=

has the error estimate

Iw/ @£ Dl =1 Y, 4V @], < >TwT . (G45)

n.(n-mlol) n

The ¢, is a positive constant, f*[, is a norm of a Hilbert space, H, given by equation

J.2) and
£y ; n-my
W= Y 10+Y dv,x. (3.4.6)
ftfo r=ri me=]

Furthermore, d,, is defined by equation (J.6) in which g(x) is given by

r,

L, n
gx) =wm-Y ¥ 4,0.(. (3.4.7)

l-lo rer;o

Subtracting equation (3.4.3) from equation (3.4.4) produces
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n-.l

1. 5
wl(x) - W;'(X) = E 2 (hir -bir) Cl‘r(x) + E (dll -aﬂ) wﬂ(x)

imi, rop m=]
e (3.48)

+ Y dy®x.

m'(n-nl +1)

Suppose P,, is an orthogonal projection of the Hilbert space, H, on a (n - 1) dimensional
subspace, B, ,, that is spanned by {y,"(x), m = 1, ..., (n - m,)} and the (m, - 1) GFM
functions {{,"(x)} in which {,”(x) is omitted. Here s and r are two (given) positive
integers satisfying 2 < s < 4 and 0 < ¢ £ N. Then it can be shown, by using Lemma J.1,
that there exists a positive constant, c,, such that

W/ @-w "l +1 Y d .yl

Ih" bnl < _ mt!:ln-'ﬂl‘l)
18,:(x)-P, L. (), (3.4.9)

< e T
1

On the other hand, by multiplying equation (3.4.8) by y,.(x), the resulting term involving

d,, - a,) can be determined from

d.-a,) j(w”)zdx j(w rwp wlan- 355 @, b‘,)jc,,v..

iwig rerg,

It can be shown straightforwardly that

|d-a_| <(t, I*E |w,_|u<-z-"*>r—r)/j(w (3.4.10)

i "0

where

S0



L
- I(w "ew!yy"dx and W, = J'): Ty dx (3.4.11)
0

0 I'"‘o

By using equations (3.4.6) and (3.4.8), the Rayleigh-Ritz approximation, d /1w (x}dx 1",

can be found to be

dnwi(x)  dS) d*17'g, (x)
&t dent gz,:o =) ——
(3.4.12)
-..E.l d_-a ___._dql V.
m=] - '.) dqu-l ]

It can be demonstrated, by using Definition 3.3.3 and inequality (3.4.9), that the first term
on the right of the last equation converges absolutely and uniformly to the true derivative
d *1'w, (x)dx 1" whilst the second term converges to zero. Thus, the last summation on
the right determines whether d %"'w/"(x)dx %! converges absolutely or uniformly. Now

relations (3.4.10) and (3.4.11) lead to

ll‘lll n-m
| E ,-a) an 11', (x) | S(E ~gy-i+D) E m-li-@;-2]
me1 dx i=ig mel (3.4.13)

-{g4-(g, -]
+p" 92" )ijlﬁ

where c; is a positive constant. Combining the last inequality with relations (3.3.6) and
(3.49) results in |(d "Y/dx 1 Xw;'(x) - w;(x))| = O like n'? as n — . Consequently,
the required inequalities (3.4.1) and (3.4.2) can be obtained by using Theorems 3.3.1 and
L2.

The next result, whose proof is given in Appendix J, can be considered a corollary.
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Corollary 3.4.1. Suppose that the conditions employed in Theorem 3.3.1 are valid and
N £ 2. If the i and r of the {,(x) employed in Theorem 3.3.1 satisfy 2 < {, <i<i <3
and 0 < r, < r < r; £ N, inequalities (3.4.1) and (3.4.2) hold.

A numerical example is given next.

3.5. Numerical Example

The cantilever beam shown in Figure 3.1 has a torsional spring located at x = x, = L/4
and a stepped cross-section at x = x, = L/2, It is used solely for illustration because an
exact solution is available. In this example, K=o =, K, =K, = K, =, = B, = 0 but
B.L/EI(0) = 40. Moreover, M, =J, =0, r=0,1,2,3 and p(x) =0 =k (x) for0 < x < L.
The EI(x) and p(x) are constant in each sub-interval V, (r = 1, 2, 3). They satisfy
EI(x,*) = EI(x,"), p(x,*) = p(x;"), EI(x,'VEI(x,)) = 10 and p(x,*Vp(x;") = 102 It follows
from Remark 3.2.1 that w(0) = w’(0) = O for any w(x) € B. Furthermore, it can be shown
straightforwardly that conditions (2.9) are satisfied for any u(x) € B and w(x) € B. Thus,
Theorem 3.2.1 holds.

Equations (3.2.5) suggest that the example problem’s second deflection derivative is
discontinuous at x = x; and x = x, whiist the left third deflection derivative equals the
right third deflection derivative at x = x; but not at x = x, . Therefore, the three GFM
functions presented in Table 3.2 are used in the Rayleigh-Ritz procedure. They cormrespond
to the static deflection of a uniform cantilever beam caused by a moment positioned at
ecither x = x, or x = x, and a transverse force located at x = x, [51]. Thus, the
n-dimensional subspace, S, ., in Theorems 3.3.1 and 3.4.1 is formed by these three

functions in addition to the (n - 3) eigenvectors {y,(x), m = 1, ..., (n - 3)} of a uniform
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cantilevered beam. Obviously, the dimensionality, n, grows as the number of eigenvectors
is enlarged.

Definition 3.3.3 indicates that the functions of Table 3.2 form a set of 4-GFM functions
with respect to {y,.(x)} and w/(x). Therefore, from Theorem 3.3.1, the n th approximation,
B = @ p(O)LYEI(0))"?, should converge ultimately like at least #”° as n is increased.
Furthermore, it is demonstrated in Appendix L that the conditions of Theorem 3.4.1 are
satisfied. This last theorem indicates that the convergence of the corresponding w;" "(x)
and w;" ™ (x) should be at least #*? and n''?, respectively.

To confirm the above predictions, an analytical expression was derived for the exact j

th eigenvector. It takes the form

G, (sinp;”x/L -sinhp;"x/ L)

+G,, (cos p;*x/L - coshp;x/ L) 0<x<x
i o 1
G sing; (/L -1/4)+g, sinhp; " (x/L-1/4) + <y <
Wi =1 W SFEh a8
G, cos i (x/L-1/4) + G, coshpy; " (x/L-1/4) |
" L 1
g,](smap, (1 -x/L) +sinhap,;“ (1 -x/L)) +
n " F x,Sx=<L
(cosap; (1 -x/L)+coshap;”(1-x/L))/2 J

where a = 0.1'® and p, = (A, p(0)L*/EI(0))". The lowest three values of p, are presented
in Table 3.3 whilst the corresponding coefficients ¢, k= 1, 2,..., 7and j = 1, 2, 3, are
detailed in Table 3.4 when both w(L) and w;(L) are taken as an arbitrary 1 m.

Furthermore, equation (3.2.11) was solved numerically by using double precision
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arithmetic and the IMSL eigenvalue subroutine, DGVCSP {38], running on a SUN/4-280
workstation. The resulting errors (p” - p), j = 1, 2, 3 are given in Figure 3.2 for
increasing n. They tend to zero like the n® predicted bound. The corresponding
comparisons of the approximate and analytical second and third derivatives of the
fundamental eigenvector are presented in Figures 3.3 and 3.4. These figures show that the
overall errors are generally close to about n? and n'. Therefore, they tend to zero
somewhat faster than the predicted lower rates of n*? and n™. In addition, there is no

evidence of Gibbs phenomenon.

3.6. Conclusions

A generalized force mode (GFM) function approach has been introduced in this chapter
for a self-adjoint eigenvalue problem corresponding to a Euler-Bernoulli beam having
material or cross-sectional discontinuities, interior spring supports, or non-classical end
conditions. Generalized force mode (GFM) functions are defined for the first time. A
priori error estimates are derived and corroborated numerically for the eigenvalues of a
Euler-Bernoulli beam having complicated constraints when GFM functions are used in
the Rayleigh-Ritz approach. These estimates not only implicitly indicate a fast
convergence, ecven when each approximation function does not satisfy non-standard
boundary conditions, but they also demonstrate that Gibbs phenomenon is avoided.
Consequently, the bending moment and shear force can be advantageously analyzed in
a pointwise fashion even in the neighbourhood of a discontinuity.

The next chapter extends the present method to a non-self-adjoint eigenvalue problem

by considering a simply supported, spinning Timoshenko beam.
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Figure 3.1. A stepped beam having an interior spring support.
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Table 3.1. Values of y,, .

Standard end conditions "y,l Y.
atx=x ,r=0N
clamped | vy, (x,) - dy (xVdx =0 0 1
pinned Va(x,) - dAy (x,Vdxt =0 0 2
sliding dy(x,Ydx = d*y (x.Vdx®=0 1 3
free d2y (x, YdP = d>y (x,Vdx® =0 2 3
Table 3.2. GFM functions.
G, =x¥2,0sx<sL/4, G, =L(2x-Li4)2, Lld4<xs<L
Loy = X212, Cx = X(3L/2 - x)/6, 0sx<sL/2
Cs = L(2x - L12)/2, s =L*(3x-L12))6, L2<x<L

Table 3.3. Lowest three analytical values of p .

M

B

P

3.44940

27.63121

85.64654

Table 3.4. Eigenvector coefficients ¢, i = 1, 2, ..., 7 corresponding to Table 3.3.

J

Sy

37

Cy

Sy

Csj

Se

i

0.95119

-0.32684

0.99685

-0.89830] -0.92746

0.96620

-0.53938

-1.77976

1.28946

-1.69902

1.32469

0.03013

-0.92429

-0.63676

1
2
3

1.39006| -1.40385

0.09379

-0.06846] 1.91865

0.26260] -0.49583
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CHAPTER 4

FREE VIBRATIONS OF A STEPPED, SPINNING TIMOSHENKO BEAM

4.1. Introduction

A generalized force mode (GFM) method was introduced in the last chapter for a free,
transversely vibrating Euler-Bernoulli beam. It was demonstrated that the beam’s static
deflection can be employed as GFM functions. On the other hand, it is well-known that
Timoshenko beam theory can provide more accurate eigenvalues and eigenvectors as the
beam’s depth increases and as the wavelength of vibration decreases [24]. This is because
the Timoshenko theory considers the effects of rotary inertia and the transverse shear
deformation. Thus, from a structural engineering viewpoint, an extension of the GFM
method to a Timoshenko beam is desirable. However, the static deflection of a Euler-
Bemoulli beam that arises from a concentrated force may not be used as a GFM function
for a Timoshenko beam. This is because the first derivative of such a static deflection is
always continuous. Conversely, a static deflection caused by a concentrated force acting
on a uniform Timoshenko beam (having standard end conditions) may be employed
directly as a GFM function because its first derivative is discontinuous. However, from
a computational viewpoint, a question arises as to the simplicity of its analytical form. It
can be shown [S1] that the latter static deflection can be expressed as a polynomial of
degree three on each side of a concentrated force. On the other hand, it can be seen from
Definition 3.3.1 that a polynomial function having only degree one on each side of a

discontinuous cross-section can also be used as a GFM function. Thus a more general
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approach, called Hermite polynomial interpolation, is suggested in this chapter for the
construction of the GFM functions. This procedure involves two steps. First, polynomials
are found on each side of a discontinuity which satisfy the conditions at the contiguous
end. Second, the polynomials must be chosen so that the transverse deflection and the
slope due to bending are continuous at the location of a discontinuity. The approach not
only provides simple analytical forms for the GFM functions but also avoids the need to
solve a boundary value problem. This latter advantage may be even more important for
a two dimensional problem in which the static deflection may have to be found
numerically.

A self-adjoint eigenvalue problem was considered in the previous chapter. However,
non-self-adjoint problems are often encountered in practice due to viscous damping and
gyroscopic effects. It is known [11] that a non-self-adjoint problem can be approximated
by the Galerkin approach. In this chapter, the simply supported, stepped spinning
Timoshenko beam shown in Figure 4.1 is employed to demonstrate the extension of the
GFM method needed to apply Galerkin’s approach. A numerical example illustrates the

usefulness of this procedure.

4.2. Outline of Analysis

Consider a Timoshenko beam having length L and a circular cross-section which is
discontinuous at x = L/2. Suppose that the beam spins at a constant angular speed, © ,
about the x axis which coincides with the beam’s geometric centre in the fixed (inertial)
coordinate frame of Figure 4.1. The beam has mass density, p, Young’s modulus, E, shear

modulus, G, and shear coefficient k. Let A(x), I(x) and J, be the area, moment and polar
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moment of inertia of a cross-section that is distance x from the left end. The transverse
deflections corresponding to the jth natural frequency of the beam are designated «;; and
u; , in the Oy, and Oy, directions, respectively, whilst ®;; and @;; represent the

analogous bending angles. The free vibrations of the spinning beam are govemed by [48]

d [ 4
(KAG(Q'U-##))’ + CpAul, = 0 @.2.1)
X
d [ 4
(KAG(®;+ d"”)y + @pAu, = 0 422)
X
do; du’,
(B ZLY +kAG@,+ =) + GpI®)+c 0,0, =0 (2D
and
do, du’.
-(EI-Zz{),*KAG(‘D;j* du:l) - gﬁp[@i}-gjejp(p;] =0 (4.2.4)

where a prime superscript indicates differentiation with respect to x whilst ¢; = © /i’
i* = (-1)'. Here ®; represents the jth forward natural frequency when j > 0. However,
o/ depicts the jth backward natural frequency when j < 0. The simply supported ends are

denoted by

u0) = ui(L) = 1,0) = (L) =0 4.2.5)
and
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@:,'(0) = @,'L) = ®,'0) = @) = 0. (4.2.6)

On the other hand, the force compatibility conditions at x = L/2 = x, = L/2 are

d0(x) _ Ellx) dO)(x5) d®:)(x) _ Elxg) d®:y(x5)

- & - s 4.2.7
@)+ B, | KGAKD) gy sy FiT0), @258)
KGA(x)
and
@,05)+ d"’:’f)) . :g:z: ; (@) + "“ifl‘:‘; ). @2.9)
Assume approximate solutions have the form
W5 = oD, w0 = 3 Eei 4.2.10)
and
o) = 3 S, O = 3 55) 4.2.11)

=] i=]

where @, (x) (i = 1, 2 and € = 1, 2, .., n) are admissible functions whilst 3, are

undetermined coefficients. Substituting these forms into the left sides of (4.2.1) through
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(4.2.4) leads to the residual errors

d m
2y + CpAul

€. = (KAG®]+
1 ( ( 1j Tx

[ 4 1.} d '.. m
&, = (-cAG(d>,,+di;))' + CpAul

™m n
1y

) d®d m duy; m m
& = —(El it Y +KAG(® + d:) + GpIDY+5OJ @

and

: d®;; m AP " n
€ = -(H%)'+mc(¢2,+ d:f) + Gpl®S;-c 8J o)

Coefficients 8, are determined from the requirement that [11]

3

L L
[elmelax = 0. [olmeds = 0,
0 o]

L L
[er@ear =0, [l =0
0 0

P

which leads, in matrix notation, to

S IM s+ [CTUE™ +[K 5™ = 0

where

4.2.12)

4.2.13)

“4.2.19)

(4.2.15)

(4.2.16)

4.2.17)



{37} = B} ... 81ns - By - O (4.2.18)

The [M*‘] and [K ‘] are symmetric mass and stiffness matrix, respectively, whilst [C] is

a skew-symmetric gyroscopic matrix. These matrices are given by

(M = (M1 [0] (k7] - (K] [0] 4.2.19)
[0} ([M,] [01 (X1
and
0 0 0 o0 |
[Cl=8 0 0 0 Y i (4.2.20)
0 0 0 O
_0 '[11'] 0 0 i
with
(%] [0] (01 (0] TANTaY
IM1=| and [K'] = Cleka| 4.2.21)
[0]1 (%] [0] [4] (71 U]
Here

L
(1 = [ o7, (@7 (@ dx] (4.2.22)
4]
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(5] = tij{ Fretldx], (K] = [jpz @Fdx] (4223
[ = [ j’ ENQTY (o Vax1, (K] =1 j GUTPVTigPYdx]  (4229)

U = [ f GAQT ofldx], L] = [ j GAT (g Vdx].,  (4225)

@7} = @1 v 9L, 7Y = (@), o @5 0))T  (42.26)
and
(o7} = (@2, o OL D), @V = (@5, wmn (@Y. 4227

Equation (4.2.17) represents a system that is not self-adjoint. It can be rewritten as

0 (] =y {  J {37 (4.2.28)
_[Mr]-l[Kt] _[M:]-I[C:] gj{sm} - gi gj{am}

in order to employ a standard eigenvalue solver. A specific beam that has the material and

dimensional properties given in Table 4.1 is considered next.

4.3. Numerical Results

The first and second order deflection derivatives as well as the slope due to bending of
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the example beam are discontinuous at its stepped midpoint, x = 0.5 m. Consequently, the
corresponding derivatives of the GFM functions must also be discontinuous at this
location. They should also satisfy the contiguous end conditions. These GFM functions
are designated arbitrarily in (4.2.10) and (4.2.11) by @;, (x) and @}, (x) for the deflection,
and by @;, (x) and @3, (x) for the slope due to bending. Their piecewise polynomial forms,
obtained by following the procedure outlined in the section 4.1, are summarized in Table

4.2 for the situation when L = 1 m. They possess the properties

0,/ = 5,00, ¢,/ =8¢,(x), x=05m, (4.3.1)

and

o) = 24<p{:(x). x<05m (4.32)
-24¢9,,(x), x=205m,
that make the calculation of [K] in (4.2.19) easier. The remaining admissible functions
are taken to be the eigenfunctions of a uniform, non-spinning Euler-Bemoulli beam
having simply supported ends for the deflection and sliding-sliding ends for the slope due
to the bending. i.e. @}, (x) = sin(f - 2)rx/L and @3, (x) = cos(f - 3)mx/L for & = 3, ...,
n. It can be shown directly that all the ¢;, (x) and @3 (x), £ = 1, satisfy the end
conditions (4.2.5) and (4.2.6), respectively. The resulting numerical data for the first four
forward and backward precession frequencies, computed with » = 10 in (4.2.10) and
(4.2.11), are presented in Table 4.3 alongside the exact values obtained by using standard

method. Data calculated without the generalized force mode functions are also given. In
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this case, @}, (x) = sin €nx/L and @, (x) = cos(f - 1)nx/L are employed in (4.2.10)
and(4.2.11) for £= 1, ..., n. It can be seen that the GFM functions certainly improve the
accuracy of the natural frequencies.

To ascertain if Gibbs phenomenon [25] occurs in the bending moment and shear force
due to the stepped cross-section, the d®;, (x)dx and du;, (xYdx + ®;, (x) for the first
forward precession frequency are compared with their exact values in Figures 4.2 and 4.3,
respectively. Corresponding results computed without the GFM functions are also
presented again. For convenience, u;, (x) is taken as 1 m at the beam’s midpoint. Figure
4.2 demonstrates that the exact results and those obtained with the inclusion of the GFM
functions overlap, despite the discontinuous nature of the derivatives. However, the data
obtained without these functions oscillate around the midpoint. A similar oscillation can
also be found in Figure 4.3. Furthermore, this last figure indicates that the numerical data

obtained with the GFM functions converge to the exact results with an increasing n.

44. Conclusions

The numerical results presented in this chapter demonstrate that Hermite polynomial
interpolation is a simple way of constructing GFM functions. Furthermore, GFM functions
enable the free vibrations of a non-self-adjoint Timoshenko beam to be found without

Gibbs phenomenon occurring.

68



X1

w\©
w\C
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Table 4.1. Properties of the spinning beam.
L=1m k=09

A, = 3.14159x10* m* |E = 200 GPa
A, = 4.52389x10* m® |G =83 GPa
P = 7833.5 kg/m’ © = 200 rad/s

Table 4.2. GFM functions in the inertial co-ordinate frame.

GFM functions for the deflection GFM for the bending angle
Q=%  Pp=x(4c-1) Q= -1, oL =122 -1
00<x<0.S5 00<x<0.5
O =1-x @0 =4-122+1lx-3 | @}, =-4 +8x-3, @}, = 12¢% - 24x + 11
05<x<10 05<x<10

Table 4.3. Values of o/ for a stepped, simply supported, rotating beam.
Present No GFM Exact
J Method functions Results
264.53 266.04 264.53
-1 -264.41 -265.92 -264.41
2 1104.84 1105.23 1104.70
-2 -1104.37 -1104.76 -1104.23
3 2415.35 2428.57 2415.32
-3 -2414.27 -2427.49 -2414.25
4 4364.84 4367.21 4361.92
-4 -4362.74 -4365.38 -4360.10

- indicates a backward natural frequency.
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Table 4.4. u;,(x) and ®;,(x) corresponding to the first forward natural frequency of
a spinning Timoshenko beam having a stepped, circular cross-section.

-0.057898 sinh (3.235359 x) + 1.141479 5in(3.236267 x)

0<x<0.S5
Uy (x) =
0.062353sinh [2.953382(1 - x)] + 0.874441 sin [2.954386(1 - x)]
05<x«<l
0.187452 cosh (3.235359 x) - 3.691554 cos (3.236267 x)
0<x<0.S5
h(x) -

0.184308 cosh [2.953382(1 - x)] + 2.581273 cos [2.954386(1 - x)]
0S5<x<l1
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CHAPTER §
CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

An operator approach has been used to show the completeness of the eigenvectors of
a non-uniform, axially loaded Euler-Bernoulli beam having eccentric masses and
supported by off-set springs at both ends. The motivation is to verify the validity of using
these eigenvectors in a generalized Fourier series expansion or in the Rayleigh-Ritz or
Galerkin methods. This generalization extends the work presented in [22] for a cantilever
beam having solely an eccentric mass at its free tip. Furthermore, the order of the jth
coefficient of a series approximation of a continuous initial deflection, y,(x), has been
determined, for the first time, as j — . Consequently, the error caused by truncating
such a series can be found straightforwardly. An important conclusion which arises is
that, for any three times differentiable function whose fourth order derivative is piecewise
continuous, a series expansion in terms of these eigenvectors, as well as each series
obtained by differentiating it upto three times, converge uniformly and absolutely. This
result significantly extends a classical expansion theorem [23] in which a function is
required to satisfy all the beam’s end conditions. Moreover, it can be expected from this
generalization that the eigenvectors should produce a higher convergence rate when used
as the Ritz base functions in the component mode synthesis. This conjecture is
substantiated numerically in [43] through illustrative examples.

In addition to the generalized expansion theorem, asymptotic estimates of the
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eigenvalues and eigenvectors have been derived for the first time. These estimates can be
applied, for example, to the design of distributed feedback by using independent modal-
space control [6]. Then the optimal distributed control force is a summation of modes
whose weighting coefficients can be approximated easily and accurately at high
frequencies by employing the asymptotic estimates. Furthermore, the effect of an off-set
lumped mass on the lower natural frequencies of a beam has also been investigated. This
work is motivated by the recent growth in the use of industrial robots. A new criterion
is proposed for predicting how the natural frequencies of a beam (i.e. a flexible robot
having a single arm) vary with a payload’s off-set. It is demonstrated that, for a given
payload, an off-set influences mainly the fundamental natural frequency and, hence, the
robot’s positioning accuracy. Moreover, a numerical example confirms that an inclusion
principle cannot be generally used to estimate the natural frequencies. To obtain low
frequency data, a numerical procedure like the Rayleigh-Ritz method or the finite element
method is possibly the best way to obtain such information. Of course, such procedures
are not restricted to low frequencies but experience [11] suggests that they can produce
inaccurate high frequency modes even with the additional penalty of severe computational
effort.

When a beam has complex interior conditions such as discontinuous cross-sections,
spring supports or lumped masses, or non-conventional end conditions, an outstanding
question concems possible extraneous numerical oscillations around the discontinuities
as well as at the beam’s ends. This so called Gibbs phenomenon can lead to a slowly

converging approximate solution. To avoid this difficulty, a unified procedure for

75



selecting admissible functions has been developed in this thesis for the Rayleigh-Ritz
method. In this approach, generalized force mode (GFM) functions are employed as
admissible functions together with the eigenvectors of a uniform Euler-Bemoulli beam
having conventional end conditions. The key idea is that discontinuous deflection
derivatives can be approximated more efficiently in a pointwise fashion only by using
discontinuous functions. Based upon this viewpoint, GFM functions are defined rigorously
for the first time. To justify the practical usefulness of the unified approach, a priori error
estimates are derived and corroborated numerically for the eigenvalues of a Euler-
Bemoulli beam having complicated constraints. These estimates not only implicitly
indicate a fast convergence, even when each approximation function does not satisfy non-
standard boundary conditions, but they also demonstrate that the Gibbs phenomenon is
avoided. Consequently, the practically important bending moment and shear force can be
approximated accurately.

It is known [11] that the Rayleigh-Ritz approach can be used only for a self-adjoint
eigenvalue problem. However, non-self-adjoint problems are often encountered in
practical structures. A Galerkin procedure is needed for such problems. In this thesis, a
spinning Timoshenko shaft having a stepped cross-section is employed as an example to
demonstrate how the unified approach can be extended to non-self-adjoint problems.
Moreover, a Hermite polynomial interpolation method has been proposed as an easier way
of constructing the GFM functions. Furthermore, numerical data again show no Gibbs
phenomenon in the bending moment and shear force. Consequently, an extension of the

unified approach to non-self-adjoint problems appears to be possible.
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52 Recommendations
This thesis studies the eigenvalues and eigenvectors of a single span Euler-Bernoulli
beam having general end conditions. Furthermore, a novel numerical approach has been
proposed to approximate the eigenvalues and eigenvectors of a beam having complex
interior and end conditions. Several other interesting topics could be developed in future
research. They may include:
a rigorous asymptotic analysis of the eigenvalues and eigenvectors of a
Timoshenko beam  having general end conditions;
extension of GFM functions to handle a steady, transient or random dynamic
response;
extension of GFM functions to accommodate vibrating plates and shells; and an
extension of the approach to a finite element analysis of structures having

discontinuous cross-sections, interior spring supports and lumped masses.
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APPENDIX A

This appendix justifies the assertion that the domain of operator II is dense in the
Hilbert space H®. The following theorem, proved in [45], is needed to accomplish this
task.

Theorem A.1 The function space C (0, L) with f(0) = f(L) = 0 forall f(x) € C~(0, L)
is dense in the Hilbert space @20, L).

C=(0, L) consists of functions that are infinitely differentiable. Thus, it is known from

Theorem A.1 that, for an arbitrary vector F = (f,, £, fa, fir ;) in H® and an arbitrary

€ > 0, there exists a function fx) € C (0, L) with f(0) = f(L) = O such that

L
Ilﬂ(x) -f@)|*dx < €. (A.1)
)

Furthermore, it is easily shown that there exists a cubic polynomial, denoted by f,(x), such

that
%) = ¢, =c,(x/L)+c,(x/L)* = c,(x/L)’ (A.2)
where
c, = f,vefir & =fiL, c; = —(L+3e,);+3f,-2¢,-3¢, (A.3)
and
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c,= (L+2¢e)f,~-2f,+c,+2¢ A9

L-F 0 +&f/©0) = £,-£/0) = f,-fL)-e,f/L) = f,-f/L) = 0. (AS)

For f,(x) given by (A.1) and an arbitrary € > 0, it is known from Theorem A.l that there

exists a function, denoted by fz(x) € C~(0, L) with f3(0) = fz(L) = O, such that

L
_[IJE,(x) ~f(x) [2dx < €. (A.6)
0
Define a vector F* € E® as
F*=G" L0055 (A.7)
where
£7@) = f0)~f,(0)-f(x). (A.8)
L =£20)-6,f0), £ =£"0) (A9)
and
=0 f'W). £ =1£"0). (A.10)

It is clear that F ° is in the domain of operator I1. By using (A.1) and (A.6) as well as the
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generic inequality (a + b)’ < 2(a* + b%), it can be shown straightforwardly that

L
IF*-Flzo < 2 [[(@-f@P -0 -f;0)Pldr < 4. AID
0

The last inequality indicates that the domain of operator IT is, indeed, dense in H®.
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APPENDIX B

To simplify the proof of Theorem 2.3.1, operator IT + c I is considered instead of IT
where I is the identity operator from Dom(IT) to H® whilst, c is a positive constant. By
rewriting (2.3.4) as

(r[d.-cl)wj = (lj-bc)Wj (B.1)
it is easily seen that the eigenvalue problem of operator (IT + c I) is equivalent to that of
operator IT . The following theorems are needed to prove Theorem 2.3.1.

Theorem B.1 A positive constant ¢ exists such that, for any vector F € Dom(IT),
< @+cDF,F >gs 2 p, IF{ s (B.2)

where p,, = max |p(x) |. That is, operator IT + cI is positive-bounded-below.
Proof

Integrating the left side of (B.2) and using (2.2.4) leads to

<(H*CI)F, F>H(5) = <I'IF, F>E(S)*C<F, F>H(5)
L L

= ([ eI P ao)- [plf 12ax
[s] 0

1
*3 K IA-CnfP.., (B.3)

r=0

1
Y B Pl.r +c 1F Fgen-

res0
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there exists one subsequence, {f,, }, which converges in @ (pA, 0, L). On the other hand,
the subsequence (quk}’ {f‘hk}‘ {f"‘k) and {G"g} must lie in a bounded and closed set due

to the boundedness of these sequences in the complex space, C. It is known [40] from the

compactness of a2 bounded closed set that there exists at least one convergent subsequence

., » {f,, » {f,, } and {f, ). Consequently, the subsequence
5 Y % %

{F}= {(f,nk], fz"k; f;nkj. f,,_kj. f,,_kj)} converges in H® and Theorem B.2 is proved.
Theorem B.3 (See [44].) Let a positive, bounded from below operator be such that any
set of functions (vectors), whose energy norms are all bounded, have at least one
convergent sequence in a Hilbert space. Then the comresponding eigenfunctions ( or
eigenvectors) form a complete orthogonal system in both a Hilbert space and an energy
space.

Theorem 2.3.1 can be proved now. First, Theorem B.l reveals that (IT + c ) is a
positive, bounded from below operator. Then Theorem B.2 shows that, an arbitrary
sequence {F,;}, whose energy norm in E® is bounded, has at least one convergent

sequence. Thus, Theorem A.3 demonstrates that the eigenvectors of (IT + ¢ ) or IT are

complete in H® and E®, i.e. Theorem 2.3.1 holds.
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APPENDIX C

The second order asymptotic expression, w{? (x), is derived in this appendix for the
eigenvector, w, (x), of a non-uniform beam having the general end conditions shown in
Figure 2.1. It is known from [9] that the second order expression for w(? (x) takes the

general form

2
wlaj) x) = exp((v),m E u_(x) 0);""2) .1

meQ

where ©; = z* = A,'2. By substituting the above expression into (2.2.1) and comparing the
resulting coefficients of 0, ** and , the following ordinary differential equations are

obtained:

W) EI(x)/ p(x) = 1 (C.2)

EI(x)(4(u) u +6 ()’ uy) ~ 2 (EI(x)Y ()’ = O (C.3)

and

EICx)(4(ug) 1)+ 6ug) () +3() + dasl” )~ 6 () ul’ +
(C.4)

12 ugutq e, + 2 (EI()Y (3 (o)’ 1y + 3usy g + ((EI(X)) ~p) (w)” = 0.

It is known from [9] that the solutions of equations (C.2) through (C.4) are given by



U(x) = ££(x), u,(x) = lnax) and u(x) = tx(x)

as well as

ufx) = £i's(x), u(x) = na(x) and u(x) = 5 i'yx).

Here, i = (-1)"? and

’ El(x)

whilst

x) = |{( - - —
X J 4b> 8b®  Sb(EI? 2EIb 4EIh

By substituting (C.5) and (C.6) into (C.1), w® (x) can be expressed as
wi? (X) = a(x)(A,cosE (x) + B sinE (x) + C exp(-E,(x))
+D exp(-(0z,+0"/z,~E,(x))).

where

E\(x) = £x)z,-x()/z,, E, = 2z +x()/z, 2 = A,

whilst
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C5

C.6)

(C.7n

(C.8)

(C.9)

(C.10)



o= %(L) and o = y(L). (C.11)

By substituting (C.11) into the end conditions (2.2.2) and (2.2.3), coefficients A;, B;, C;

and D, can be obtained by solving the equation

[£,1{4, B, C, D,}" = o. C.12)

Elements Z,;, i, j = 1, 2, 3, 4 and the coefficients A;, B;, C; and D; are detailed in the

next appendix.
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APPENDIX D

This appendix presents explicit expressions for all the coefficients as well as details of
the frequency equation appearing in section 2.4.1 and Appendix C.

1. Coefficients =;;

=, = 0) = [M,e,z;-(K,n,+p)1ba’ -d,a(E, - 3d,a'(E; )*~

@D.1)
K,-M,z)a+0(1)
E,(& = 0) = [d,+M,e,bz/- K n,+p)blak ~2d,o’E/~d,x
D.2)
x(3a"E/-a(§/ ) ~0@ ")
E (& = 0) = [d,~M,e,bz/- (K ,n,+p)ba’'-aE)+d,(-2a'E,~
+a(EN) +d,(-3¢"E/ +3d' €, -aE,))+ D.3)
K,-Mz)a+0(1)
E.(# = 0) = O(exp(-z,0)) (D.4)
E,(# = 0) = h cosE, +h,sinE, ®D.5)
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E,(& = 0) = h;sinE - h,cosE, (D.6)

E, (& = 0) = O(exp(-z,0)) ®.7

(& = 0) = [d,+M,e,bz/ - (K, *p)bA](a"GEZ’)*d‘(Za’gz'v
+a(E ) +d,3a"E, +3a'(E,)/ P ~aE,/))- ®D.8)

-(K,-Mz)a+0(1)

E&=0 = dza(gx,)z*[5((Bo'pno)'(Jo"Mo(eo'“o)eo)zf)-dl]a""
MD.9)

+ My (e, - Nz -nyld,aE ) ~3d,a'E/)]-01)

Ep& =0) = '2dzagzl"'[b‘((ﬁo'pno)-(',o* o(eo'no)eo)zj‘)-dllagll*
D.10)

+N[d;aE/'+2d,d'E/'~d,Ba"E/~aEH?*)]+0()

E,(% =0) = dz(zwgz"'a@z')z)*[B(Bo“P’lo)'(Jo*’Mo(eo'ﬂo)‘-’o)Zf)‘
‘d1](a/'agll)"'Mo(eo-no)azj‘+qo[-dsagz’q.d‘(-2(1’32'... D.11)

+a(§))+d;(-3a"E,/+3d'E)-aE,))1-00)
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Eu(& = 0) = O(exp(-z,0))

E.(£ = 0) = h,cosE +h,sinE,

Eo(X = 0) = h;sin - A cos§,

Eq(& = 0) = O(exp(-z,0))

E & = 0) = 4,20’ ~a(§, M)+ [6(B,-pn) -, ~M (e, - )e)z)) -
~d (&' ~ag)~-M, (e, 'T‘I)az‘f‘*nl [d,a8)/+d,(2a'E,+

+aE,) - d,(3'E, + 3,V +a )]~ O(l)

where

dx) = P05, d,(x) = PWb(), d() = d/(x)b(x)

d(0) = b d,®)+d,(x)), d(x) = P@b’(x)

V(@) = EI®)*(PAE)™.

7 =A, E() = 2x)z,-x(x)/ 2, E, = Hx)z;+x(x)/z,
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D.13)

D.14)

®.15)

(D.16)

®.17

(D.18)

D.19)

(D.20)



x

) = [bwdx, a@ = Gy “E@)

0o

x an A 2 ’
o) = I[(sgz_ 15(133)2)_ 3EDY | EY' | P®) 14,
> 4b 8b 86 (EI? 2EIb A4FIb

and
bx) = (‘2‘(‘;’)"‘, o = #L).
Moreover,

hG& = o) = [Mxelzi‘-(Klnl*P)]50"-‘14“@1,)2-3‘15“’,(;1,)2—

-(K,-M,z))a+0(1)

h(t = o) = -[(d,+M, e bz -(Km,~p)b)a+2d,a +3d,a"[E/ ~

+d.aE/)~0()

h(t = o) = -d,aE)+[6(B,-pn)-U,~Me,-1)e)z)~d,]x

xa'- M (e, -n)az -0 (d,aE)?+3d,&' E)?)

D.21)

D.22)

D.23)

D.29

(D.25)

(D-26)



h(% = 0) = -(2d,a/ +[6B,-pn) -, +M (e, -n)e)z)+d Ja} x
®27)

xg'+n, [-(d,a+2d, o/ ~3d,a")E +d, ')+ O(1)

Except for (D.22), a prime superscript in this appendix indicates a differentiation with
respect to X.
2. Frequency equation

By expanding Det(Z;;), the frequency equation can be shown to be

A cosE(z)~A,sinE(z) = 0 (D.28)
where
A =5, 0hk-vh)+ZE (V,h-v k)
(D.29)
A = E:u(vthc"'vzha)'Eu(ulhz"uzhl)
and
v, = (E,5,,-5,5,). v, = (313531'511533)' (D-30)
3.A,8;,C; and D,
A;, B;, C; and D, can be derived from equation (2.4.6) as
A =v/v, B =1, C, =-C,5,-5,5)/,
D.31)

D}"(Ezz ¢Ezlutjvz)/574

for a beam whose left end conditions are either
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K =, J =0, B,<x or M, =0, J,=0, B, <. (D.32)

Moreover,

A, =1, B =vul/v, C=-E,5,-5,8)/v

®.33)

D = =&, +E,0,/v))/E,

for a beam having the other end conditions specified at the leftmost side of Table 2.1.
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APPENDIX E

The proof of Theorem 2.4.2 is presented here. First, the min-max principle is needed

which states that the jth eigenvalue of a completely continuous, self-adjoint, positive

operator, Q, is given by [12]
A= min max R(YY), j=1,2,.. E.1)

7 veH. dmvs; Yev

where R(Y) is the Rayleigh-quotient defined by

E.2)

for Y € H. The H and E are the Hilbert space and energy space corresponding to
operator Q, respectively, whilst @ is merely the operator IT * for a beam. Consider,
without loss of generality, the beam shown in Figure 2.1 except that M, = 0. This beam
can be regarded as a beam that has been modified by an additional M, having eccentricity
e, at x = L. Designate the eigenvalues and eigenvectors of the unmodified beam by A/
and w,;'(x), respectively, where w,,"(x) is normalized in the corresponding Hilbert space.

That is,

L
ij (wy, ()Y dx+M (w; (0) - e,wy, (0 +J,(wi; (0))*+J,(wy; ‘(L)) = 1. E.3)
[s]

Consider an arbitrary linear combination of the vectors X, ,n =1, 2, ..., j, i.e



U =cX+c,X,+..c X, # 0 E-4)

where
X, = Wi, (x), wi0)-ew?, (0), w, (), wh(L)+ew!, L), w;,@)). ES5)

Substituting U;, corresponding to the modified beam, into the Rayleigh quotient (E.2)

results in

2as . s
CiAy +Cohy + e +Ci A; R
R = ezl ral SN. e

j

ci+ci+rct+M, (3 Wi L) ~ew;, L))
ns1

On the other hand, assume that at least one of (w,,(L) + eyw,,/ L)) (n=1,2, .., j- 1)

is non-zero. Here w, (x) is the ath eigenvector of the modified beam. Without loss of

generality, let (w;,(L) + e;w;,"(L)) # 0. Consider the vector V,_, # O given by

Vi.,= Y+, ¥,~..~cY, E.7
where
Y, =hZ+Z  h = - w“‘(L)*e‘w‘:"(L), n>1 ES)
w (L)+~e,w,,(L)
Z, = (w,,(x).w,,(0)-¢e,w,,'(0), w,,'(0), w,,'(L)) E.9)
and
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Z, = w,(x),w, 0)-ew, 0),w,©0).w,/WL), n=23,.,j EI)

By substituting V;_, corresponding to the unmodified beam into the quotient (E.2), it is

easily shown that

J
(E hncs)zz'l*cgli*c;l?‘“'*clej
RV, ) = =2 <A, E.11)

]
(X ke Vrci+ci-.vc]

n=2

forany V,_, #0 € span {¥,, ..., ¥;}. From the min-max principle (E.1), inequalities (E.6)
and (E.11) imply that Theorem 2.4.2 (i) holds when at least one of
W, L)+ew,L)=0@m=1,2,..,j- 1) is non-zero.

If (w, (L) +ew, (L) =0forn=1,2,..j- 1, the eigenvectors w,(x),n =1, 2, ...,
Jj - 1, also satisfy the unmodified beam’s conditions at x = L. According to the
completeness of the eigenvectors of the unmodified system, it can be seen that the first
(j - 1) eigenvalues are the same as those of the unmodified beam. Therefore, Theorem
2.4.2 (i) still holds.

Theorem 2.4.2 (ii) can be shown analogously.
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APPENDIX F

This appendix demonstrates that there exists two positive constants, ¢, and c,, that are

independent of the eigenvector W, and such that

¢ < ﬁ‘vjﬂn(s) <cq (F.1)

is valid for a sufficiently large j. Here

L
W, = [pAGw, PdeeMy00, 2 Jy (0, 2 =M 00, o d o0, 2 F2)
(o]

whilst w, (x) is the first component of W;. By setting the x(x) of (2.4.2) to zero, the first

order, asymptotic form, w{?(x), of w,(x) can be found from (2.4.1) to be

wi (x) = a(x)((Af B} )" cos((z,), £- D) + C,exp(-(z), D)

F.3)
~D, exp(-(0 - £)(z),))
where
. B
B, =sin'e—L__, o= L) (F.4)
(Aj ~B J 2
and
20 = [bdx, a = G 2E@Y2, b = EAD) ES)
] El(x)
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The A;, B;, C,; and D; are given by (D.31) and (D.33). To show (F.1), the following
inequalities

-3<Aj<3, —3<Bj<3. -3<CJ<3 and -3<Dj<3 (F.6)

are needed. To validate (F.6), first consider a simply supported beam, i.e.

K, =o =K E.7)

and

eO'nO-el'nI.MO'JO'MISJI’BO’BI’O' (F.8)
By substituting (F.8) into (D.1) through (D.12), (D.24), (D.25) and (D.31), A;, B;, C; and
D; can be found as follows

A= S2Zn 5% 5o F.9)
= n = = J
CLE 5,5

and
C = _(iuisx'iuisz) . D= (24.;1‘,,41) (F.10)
—13=—3 =y :‘33) — =
where

. di da
E,E = 0) = ~pb X -d,a(G) ) -3d @’ E1D)

K,a~O(1)
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da

E,& = 0) = (d,-ph)a(z),+2d, — (z),
(F.12)
+d,3 L% ) -a((z) )0
S -Zf_z. <571 j71 /]
= = 0) = (dy=Pb)GE-aE))+d, (-2 22 @) (@)
2 13
~d(-32 2 ), +3 52 (@) F-a @) E-13)
+K,o-0(1)
=, (% = 0) = hcos(z), +h;sin(z), (F.14)
E,(# = 0) = h;sin(z), - h,cos(z), (F.15)
= e d d
5% = 0) = (dg-pl;](zof*‘a(z,)l)+d.(2?%(z,)l*
d? da (F.16)
- ((z))?)~dy(3 'ch:(z’)‘ “32 @)y
+a((z))*)-K,a+0(1)
= (¢ =0 2 da 1
=, = 0) = d,0((z),’ ~d, 2=+ O(D) F.17)
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E (= 0) = -2dz‘f_“;‘(z,)l -d,a(z),+0(1) F.18)

and
E(f=0) = dz(z‘f_;(z,)l-a((zj)l)z)-dl(‘f_;-a(z,)l)+0(1) (F.19)
whilst
o o - - cda _ da 2_
-K,a+0(1)
and
A da d*’a
= - - - - —_—+3d -
h(£ = o) f(d,-pb)a 2d‘df 3 sdle(z’)l F21)

+d;a((z),)* + O(1).

Hered.,i=1, 2, ..., 5, are given by (D.17) and (D.18). On the other hand, when

K, — oo, it can be found straightforwardly from (F.11) through (F.13), (F.17) and (F.19)

that
mi-a- i E limE"E”-o- i E’_‘. (F.22)
Ko-ow KO Ko—tm KO Ko-ocn KO KO—NB Ko

Consequently, the A, and C; given in (F.9) and (F.10), respectively, can be simplified, for
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- e -
12733 13732

K, = o, as
A = lim 512533’513:';‘32 = lim K,
J = e e = - e =
Kg== =y3me3 T=y1=33 Kp2= =337 =133
K,

or

_a'--

A= 2 (F.23)

A=y, —0=y,

- e =
127731 TTi1TTI2

and, similarly,
= lim —— Ko.. —
S T ==

lim A T
Ci’ = e = £
P w1331 =1]1""33 [ e
Ko

Ko

F.29

so that
Com=__ %2 .4
d aEn-aEss !
Now consider D;. When K, — «, it can be found from (F.16), (F.20) and (F.21) that
h =
lim - = -a, m::i’.-o. 2= - F.25)
Kl—nn Kl Kl-o-: Kl Kl-.o 1

Consequently, the limit
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— = lim l = lim K,

Koo B, K== & Koo O

Kl Kl

. (-asin(z), -0xcos(z),)
a
or
lim 22 = -sin(z), (F.26)
K== S

can be found from (F.15) and (F.25). Furthermore, (z), = j . This leads to

lim —2 = -sinGiw) = 0 F27)
Kpj—e D94
A similar procedure can be used to obtain
lim . = -cos(z),- (F.28)
K== e
Substituting (F.27) and (F.28) into (F.10) yields
D = nm("22 ‘“ A) = (0-Acos(z),) = -A,cos(2),. (F.29)
K —$o0 "'24 _2‘
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On the other hand, the limits

lim_E_"_-o-lim 32 lim —2 _=-da=#0 (F.30
(zp) == ((21)1)3 (zp) | == ((Zf)x)s (== ((Z_,)l)3 d )

can be determined from (F.17) through (F.19). Thus, the limits of A;and C;, as j — o,

can be found from (F.23) and (F.24) to be

-z,
_a'=' 3
limA =1limC, = lim 2 _ = lim_ﬁf)‘)__-- 0
Jj=bam j=rao J=bao (1.':'.3[ -a:-33 J— a:-;l-a:gg O-dsaz
(@)
or, by employing (F.30),
lim A, = lim C, = 0. (F.31)

Jo Joo
Furthermore, it is known {42] that |cos(z;), | < 1 for any j so that

0 < JAjcos(z),| < |A]|cos(z),| < |A,]. (F.32)

Consequently, the inequality

0% lim |A,cos(z),] < lim |4,| (F.33)

J=o
must hold [42]. This last inequality, when combined with (F.31), leads immediately to

lim |A,cos(z), | = 0. F.39)

Jbeo
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On the other hand, it is known from [40] that (F.34) is equivalent to

lim (4,c05(z),) = 0. (F.35)

Substituting (F.35) into (F.29) leads to

lim D, = lim (-A,cos(z)) = -lim (4,c0s(z),) = 0. (F.36)

Jo jo=

Thus, (F.31) and (F.36) demonstrate that A, — 0, C; — 0 and D; = 0 as j — o so that

there must exist a positive integer, j,, such that

-3<A;<3,-3<C;<3 and -3<D;<3 F.37)

for j > j, - Furthermore, (F.9) indicates B; = 1. Therefore, (F.6), indeed, holds for a simply
supported beam. A similar proof can be given for a beam having the other end conditions
stated in Table 2.1.

Now (D.31) and (D.33) demonstrate that either A; = 1 or B; = 1 for the end conditions

given in Table 2.1. Thus, it can be shown from (F.6) that the inequalities

1<A’+B} <10,05C/ <9,0sD} <9 (F.38)
-24 < 2C(A} +B})'" < 24, -24 < 2D (A} +B])"* < 24, (F.39)

and
-18 <2C,D, < 18 (F.40)
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can be found straightforwardly for any condition given in Table 2.1. Furthermore, it can

be shown, by employing (F.3), that

L

L
I pA(wSYdx = (A} +B}) IpAa’(x)cos’((zj)lf—ﬁ)dx
0

0o

L
+C? IpAa’ (Wexp(-2(z,), £)dx
o
L
+D} IPA a? (x)exp(-2(0-£)(z),))dx
o

L
2C,(A7~B})* [pAct (R)cos((z)), £-9) (F.41)
(o]
xexp(-(z,), £)dx
L
~2D, (A} +B)” [pA*()cos((z), £ -8 )x
[s)
exp(~(6 - £)(z),))dx

L
~2C,D, [pAd*(yexp(- 0 (), Jdx.
0

By employing the standard integral formulae [42]

(1-exp(-i(z)), 9)) Ci=1,2, (F.42)
i(z),

j exp(-i(z), Hdz =
0

and
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eosie,e-8pae = 2~ SB2EAE-BN @) - .43
2 4(z),

0

integral (F.41) is shown next to be bounded. First, it can be found from (F.43) that the

inequalities
T ey o o 16inQ((z),0+9))-sin29))|
6[cos @) 2-9)dt 2 - o
>0._2
2 4(z),
ie.
[ ¢ e>9-_1 44
z)[c°sz((z])1x-v»ﬁj)dx2 =5 o, (F.449)
and

[costz), 28 az < 2~ | Gin2(G), 0-3)) | - sin@3,))|
0 2 4(21)1

2

< 9.
2 4(z),

or
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) a1 (F.45)
Jcos’((zj)lf d)dz < 2 2(z),

are valid. On the other hand, it is known from (F.5) that

x

£(x) = j b(x)dx. (F.46)

0

Moreover, it is known from the derivative of a definite integral having a variable upper

limit [40] that

b(x)dx = b(x). F.47)

- W—

dx d
dx dx

Hence, for an arbitrary integrable function, f(x), the identity

(-} L L L
S ge o [SD) 42 4 o [ D) pnyae = [fr)dx. (F.48)
a[ h(x) J b(x) dx b[ h(x) ‘c[

can be found by employing (F.47). The use of (F.38), (F.44) and (F.48) yields
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a7 +B}) [pAa’(x)cos’((z,)f +D)dx = (4] »B,)[""“)(" 0s*((z)), £+ B )dx
x

2 [PAL ) cogt(z),2+B )
2 b(x)

2 (-2
> min(PA% O [ cos?((z) £+ 9 )dx
b(x) oI 7 d

or

(A2~ B )IpAaz(x)cosz((zj) £-® )dx 2 min(PAL G ),
b (F.49)
o 1
‘3 2(z), )
Furthermore, the inequality
L A 2
47 +B}) [pA0? ()cos?(z), £+B )dx < 10max(LAZ D) 5,
o 1
‘7 2(z), .
can be obtained similarly from the use of (F.38), (F.44) and (F.48). Now
c, = max(pAa(x)/b(x)) > 0 and c, = min(pAa?(x)/b(x)) > 0. F.51)

Hence the inequalities (F.49) and (F.50) can be rewritten succinctly as
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L

J‘pAaz(x)cosz((zj)l.f*ﬁj)dx
(2-_L <2 < 10c(S+ 1 ). F.52)
4 3
2 2z, (A} +B})! 2 2z),

By employing the inequalities

[cos((z), £+8)| <1, pA >0 and a(x)>0 (F.53)

as well as (F.6) and (F.38) through (F.40), the following inequalities can be shown

similarly
[ 9¢c
2
0<C a[pA (@) exp(-2(z), Hdx < 2(21-") 1 E.59)
T 9c.
0 <Dj IPA(a(x))’ exp(-2(c-£)(z),)dx < —2 (F.55)
0 2(z),
L
2 - -
_24c, _ 2¢ J PAC? ()c0s((2)), £ =B ) expl(~(z)),)dx L 24, (F.56)
(zf)l - (A}... B})'”z = (21)1
L
2 - - -
24, _ w,a[pAa ®)cos((z), £- D) exp(~(0-£)(z), )dx g 57
(), - (A} +B})y "2 = @),
and
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18c,0 T 18c,0
T CICAN D, !P a‘(x)exp(-o(z),) T CIERN

Then, by employing (F.52) and the leftmost and rightmost inequalities of (F.54) through

(F.58), integral (F.41) can be bounded immediately by

)-c,( 180 . B ) (F.59)
2 2(z exp(0(z),) (z),

L
I pA(wf}’)’dx 2 c‘(_o.- 1
0 AN

L
Aw®Pydx < 10c,(S + 1 ., 180 .57 . (F.60)
OI PA(w,;’) c5( ) 2(7-1)1) c3(exp(o(z,)l) (), )

Table 2.2 indicates that (z;)," — 0 and exp(-9(z;),) — 0 as j — . Thus, it is known [36]

that there must exist a positive integer, j, , such that,

c,0

< l-c, 186 _ 48 ) < F.61)
2(z), exp(o(z),) (), 100
and
10¢,0 180 57 ;0
0 + + ) < F.62)

< ———+¢,
2(z), exp(o(z),) (z), 100

for two given ¢; and ¢, and j > j, . By employing (F.61) and (F.62), the inequalities
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o 1 18¢ 48 o cO c.O
(=) + ) > - > (F.63)
) ey @, 0 T 10

and
11
106,(S L yoc( 180 .57, 1069 &o _llgo (F.64)
2 2(z), exp(0(z),) (z), 2 2 2

can be obtained because (1/2 - 1/100) > 1/3 . Combining (F.59) and (F.61) with (F.63)

and (F.64) produces

L
l1c,0
f%ﬂ < [ pAwrdx < ;3 (F.65)
0

for a sufficiently large j.

Now, by employing (F.65) and the identity

w, () = w, J(x)-«-wf})(x)-wf})(x) because wi)(@)-w(x) = 0, (F.66)

as well as the generic inequality |a - b|? < 2(]a|? + |b|?), where a and b are any two

real values, it can be shown that

L L
[paw, rds = [pAMWS «w, -wi)rdx
o o F67)

L L
<2 IpA(wl(;)(x))zdx +2 IpA(wl ~wPPds.
o 0o

On the other hand, it is known from [34] that there must exist a positive constant, c,
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which is independent of j and such that

[w, @) -wi ()| < § (F.68)

By employing (F.68), the inequality

L L L
[pacw,-wiPyds < [paSrds < [max(pa)(Syds
] o o

or
L
IpA(wU-wf}))zdx < max(pA)L(E ) (F.69)
J
0
can be found. When
., . max(pA)Lc? 10
I Z o700 €70

(F.67) can be simplified, by employing (F.65) and (F.69), to

llc,0 ¢ c;0
+2Lmax(pAN =) < llc,0+—
5 (v )(j)2 €0+ =5

L
[pAtw, rdr < 2
0

or

L
[paew, @rdx < 12¢,0 F.71)
0
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for a sufficiently large j because 1 > 1/50. On the other hand, by employing (F.66), it can

be found that
L L
IpA(wl X)) dx = IpA(wl Wi +wiYdx
0 0
L L
= [pAwd@rde+2 [paww,~wiax  ET2)
0 (4]
L
+ [pAw,-wirds.
(]
Employing the generic inequality |a - b| 2 |a]| - |b]| yields
L L L
| [paow, ordx| = | [pAmw Fdx+2 [paw)ow, ~w()dx
(o] (+] o
L
+ I‘)A(wl j-wl(}))zdx[
0

L L
> | IpA(wl(}’(x))zdx+2J‘pAWS)(WU‘WS) )dx |
0 0

L
-1 [pA0w, -wirax|
0

or
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L L L
[paw rdxz [pawdwrde-2| [pAw o, -w)dx|
o 0 0

(F.73)
L
- IpA(wl j-wiidx.
0
Furthermore, from (F.73) and Schwarz’s inequality [42], viz
L L L
| [rmemax| s Jroma2grmaxirn, F.74)
0 0 o
the inequality
L L L
[pAw, 2dx 2 [pAePErdr- [paow,-wdrds
[0} o o]
L L
-2([pAwPRdx) 2 ([pA(w,-wP dey
o 0
or, from (F.65),
L c.O L
IPA(“G I(x))zdx > .;_-J‘[:»A(wl j-wf}))zdx
0 (o]
(F.75)

llc,o .
_2(_;_3_)112 ( J'pA(wu_wl(}))z dx)llz
0

can be found. In addition to (F.70), if j also satisfies
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(100max(PA)L)c 50, llc,0 yz max@A)L)Yc, g 16
(C‘ 0)'"2 2 c,C ’

Jj > max(

it can be shown from (F.69) and (F.76) that

IPA(an"WS))zdx < max(pA)L('}c?)z < ‘i':; E17)
and
2( Ilr:;,")"z(_[pA(wU ~w®pPdx)? < 2( )“z(max(pA)L)“Zj
or
2( llc,0 )!’2(]‘pA(W”‘W8-))2dI)“2 < ‘l—'z:; ] (F.78)

Thus, by using (F.77) and (F.78), (F.75) can be simplified to

L
c,6 ¢cO0 ¢O0 c,0 ¢,0 47c,0
J.pA(wll(x))’dx> s - -t =t -t = s

0

3 100 100 3 50 150

or
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L
[pacw, @rax> 22 F.79)

0

because 47/150 > 1/6. By employing (F.2) and (F.79), the inequality
L
IW i = [0AGw, 2 +My(w, Y+ T (0 Y + M, 00, )+ T, (w5 )
d .
L
2 IpA (w, Ydx
(]

or

€, 0 (F.80)

can be found. On the other hand, Table 2.2 indicates that the four rightmost terms of

equation (F.2) tend to zero as j — o, i.c. there exists a positive j, such that

Cc,0 c.C c.G c.C
My(w,;) < —a—' Jow,, ¥ < -—:}—' Mw,) < 34 and J,(wy,)’ < _;_ (F.81)
for j > j,. Thus, from (F.71) and (F.81), the inequality
L
IW iy = J’pA(wU)ldx*MD(wll)z +Jo(wy Y+ My (w, F + T, (ws))*
o
T Cc, O
3
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or

c, O
IW ks < 12¢,0+4= = 13,0 (F.82)

can be obtained for a sufficiently large j. By taking

¢, = (c,06/6)"* and c, = (13c,0)'", (F.83)

the required inequality (F.1) is proved by combining (F.80) and (F.82).
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APPENDIX G

This appendix presents the proof of Lemma 2.4.1.
Suppose J, = 0 for the beam shown in Figure 2.1. Then a Hilbert space having four-

component vectors, H, is defined by

H® = $(pA, 0, L)DCODCOC G.1

with the inner product given by
L —— — — ——
<F*, Gy = (_[PAf? g dx)+M.f; 8 +Jof; &5+ M, fi g: G-2)
(4]

for two arbitrary vectors F* = (f,", ..., f.) and G’ = (g,’, ..., g,) € H®. Furthermore,
IF 'IH«, = (<F°, F° >H(.,)"2. F " € H®, represents the normm of H. Then, the jth
cigenvalue, A", and corresponding eigenvector, W, = (w,;, ..., w,;*) are determined by

W] =4 W] ©3
where IT° is a linear vector operator defined by

Inmny: = (tly;ttzy;itJ;OtJ:) (G.4)

with
€, (Elyl.”),-Kl (e1 ’111)0'1. "’111}'1. ,) <"Elyl. "+ (Bl -pel)yl., Ix=L =0 (G'S)

forevery Y’ =(y,", y,', 2, ¥.)) € Dom(I1°). Moreover, the y;’, i 2 2, are defined in terms
of y,"(x) and its first derivative at x, = 0 and x, = L by the equations labelled (2.2.4). The

Dom(I1°) describes a domain of operator IT°. On the other hand, operator IT* can be

123



proved, in a similar way to the proof given in Appendix B for operator II, to be
completely continuous, positive and self-adjoint in H®. Consequently, the jth eigenvalue,

A/, of I1” can be characterized by the min-max principle (E.1) as

A= min max RY®, j=1,2,.. G.6)

V EH® dimV]=j Y €V

where R(Y’) is the Rayleigh-quotient defined by

R(Y®") = <Y V>0 G.7D
(Y., Y.>ﬁg)

Here E® is an energy space which is completed by the inner product
<F*, G*>ya = <F*, II'G*>,, F*, G° € DAT") (G.8)

ie.

L — 1 — —_
<F°, G.>g(‘) = IEIfl.gl.dx"'z K,(ﬁ‘(‘l)'ﬂ;fr ’)(gl. "('1)‘11,-81 ,) lx=xf
[s]

i=0

G.9)

1 —
+E Bifl-’gl ,Ix-_-xi'

i=0

It can be found from (2.2.4) that, for an arbitrary vector F' = (f’, ..., £.) € E®, there
exists a unique vector F = (f, , .... fi. ;) € E2 inwhich f, = f*, =5 o= fi fo =1
and £, = £°’(L). On the other hand, for an arbitrary F = (f,, .... f; . fs) € E®, the vector
F =" ... f.) € E® can be determined uniquely by f," = f, . 5 =fio i =fio fo =fi-
Consequently, it can be seen from (E.1) that the jth eigenvalue, A;, of a beam having a

non-zero J, can be rewritten as

124



A = min max R(F) (G.10)

V,EH™ dmV,=j FEYV,

where R(F) is given by (E.2)

<F°* II'F*
A = min max >u® . (G.11)
Ve dmViej pPev: <F° F.>,(;)* l(fs)z

It can be seen from (G.6), (G.7), (G.10) and (G.11) that the jth eigenvalue, A, is a
perturbation of A, due to a non-zero (J, f%). If the term (J, £;) is considered equivalent
to a numerical error in the Rayleigh-Ritz-Galerkin procedure, the convergence analysis

presented in [37] demonstrates that
IW;,JI‘W}.IE@) - 0, as "l -0 (G.12)
where W,'. s, denotes a four-component vector obtained by eliminating the fifth component

of W, = (wy, ..., ws;). W, is the jth eigenvector of the beam shown in Figure 2.1 and it

has a non-zero J, . Thus, it can be shown from (G.9) and (G.12) that the following limits

hold
L & i .
lim I|dw‘f-d”'”|=dx=o, k=01,2 G.13)
J, -0 o dxk dxk
and
i |wtj""t;| =0, i=23,45. (G.19)
J, =0

By repeatedly employing Schwarz’s inequality i.e.
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L L L
| frogax| < (i Pdo([1seo Pax, (G.15)
o) o a

and

W, -wi = [l -wi, @)+ (w,0) -w;(0) (G.16)
v}

the following two inequalities can be obtained straightforwardly

L
Jlim [w, ()-wi0)| < limL" j(w1 | @) -wy, (x)Pdxe
(S S d 0

+llim0] WU(O) -W;)(O) [

ie.

Jlimol w, (X)-w (x| = 0. (G.17)
Similarly, the inequality

L
lim {w/(x)-w,/(x)] < lim L' _[(w{’,(x) ~wi Yx))dx)"?
J, =0 o

Jl -0
+Jlim°| w1 £0) -w, /(0) |

ie.

Iumo| wifx)-w;(x)| =0 (G.18)
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can be obtained. Limits (G.17) and (G.18) illustrate that Lemma 2.4.1 holds as the
parameter J, tends to zero. A similar procedure can also be used for parameters like

M,,M,and J,.
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APPENDIX H

This appendix presents the proof of Theorem 3.2.1. The notation of section 3.2 is also
used in this appendix. It is well known that a boundary value problem has two forms
[53]. One is called a strong form which consists of a differential equation as well as
interior and end conditions. The other is a weak form, i.e. a variational equation. The
corresponding solutions are called the classical solution and the weak solution,
respectively. These two solutions are identical when strong and weak forms both have
unique solutions [53]. Moreover, the regularity, i.e. continuities or discontinuities, of a
weak solution is equivalent then to that of the classical solution. On the other hand, the
uniqueness of the classical solution can be demonstrated by employing a Green’s function.
this approach gives the classical solution of the eigenvalue problem, described in (3.2.2)
through (3.2.5), in the integral form

L N
w0 = &,( [ Dw,0dx+ T (G, M, w,x) + G, @I, w/e)). ED
0 r=0

G,(x), i = 1,2, is defined later in this section. G(x, &), conversely, is the Green’s function

of the multiple-point boundary value problem

= & d’y(x),_d .y, = H.2)
Liy] Z-z-(El(x) o ) dx\P(X, dx) kx)y(x) = f(x),

X

L, <x<x, r=1,..,N

with the end conditions at x = 0 and x = L given, respectively, by
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U, D) = K,y -py'+(EIy") [x=0 = 0 (H.3)
Ul = ~EIy"+B.y’ |x=0 = O

U,bl1 = K,y+py'-(Ely") '|x= = O H.4)
Ul = EIy"+Byy’ Ix=L = 0.

The interior conditions at x = x, are given by

1
€.b] = y(x) = y&x)) = €], €D =y(x) =y(x) = €,0]

ULl = -Ely"Y +K\y+py' |y oy = ~E"Y+py'| ;- = Uy, » #S)

U, bl = HY"*BJ'ngx; = Hy”lx=x,‘ = U,
r=1,2, .., N-1. |

The negative and positive superscripts indicate limiting values as x approaches x, from
the left and right, respectively. On the other hand, G,,(x) and G,(x) are the respective

solutions of
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and

G, 1 =0 ]
€.[G,]1-€,[G,] = &[G, ]1-€,[G, ] = U;;[G,,]
-U;[G,1 =0, i=1,2, .., N-1
U, [G,,] = U, [G,]1 =0,
U,olG(,1=1, U,IG,] = US[G,]
-U[G,1=0, for r=0, i

"
—
N
2

|

—

UIN [Glr] = 1' UlO [Glr] = U;'[Glr]
-Uf,[Gl,] =0, for r=N, i=1,2, .., N-1
U,[G,,1-U[G,] = 1, U,,[G,,] = U, (G,] = U;[G,,]

>

-U[G,,1=0, for 1<r<N-1 and all i#r J

€2G,] =0
€.[G,,1-€,[G,] = &[G, ]1-€,(G,] = U,[G,,]
-U;G,]1 =0, i=1,2,..,N-1

U,lG,,1=U,IG,] =0,
Uy lG,,] = 1, UylG,,]1 = Uy[G,,1-U;(G,,] =0,

for r=0, i=1,2,.., N-1
Uin[G,,] = 1, UylG,,]1 = U,[G,1-U(G,] = 0,

for r=N, i=1,2,...,N-1
U, 1G,,1-U,,[G,,1 = 1, U, (G,,] = U,,[G,,] = Uy[G,,]

-Ux[G,,1 =0, for 1<Sr<N-1 and all i=*r. J

(H.6)

H.7)

The Green’s function, G(x, E), is constructed to satisfy the following requirements.
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(1) G(x,®) is regarded as a function of x for a fixed E. It satisfies the homogeneous
differential equation $£[G] = 0 forall xexcept x=E and x=x,,r =0, 1, ..., N. Moreover,
it also satisfies the end and interior conditions (H.3) through (H.5).

(2) G(x,B) and dG(x, E)/dx are continuous in the square defined by 0 < x, E < L.

(3) The 9"G(x,E)/dx", v = 2, 3, 4, are continuous in

Osx<x,..x

=1

Sx<E<x.,...x <x<x, (H.8)

if & satisfies % 1 SE< x, for a given positive integer, r,, such that 1 < r, < N. The
partial derivatives of G(x,§) atx=x,, r=0, 1, ..., N should be considered as left partial
derivatives when x < x, or right partial derivatives when x > x,. Furthermore, 3°G(x, E)/ox*
is continuous in the square defined by X S5 E< x, .

(4) The following equalities hold forx,, <x<x,r=1, ..., N:

aSG(E.vg)_,aaG(g"g) = 1 ,E#x.
a x> EH® ’ (H.9)

r=0,1,...N

and

?’GE, 8 _ FGE &)

ox3 ox3 ELI0)
PGE.BH _ ¥GEE) |
ox3 ox?

E#x, r=0,1,..,N.

P
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The following lemma is useful to verify the existence of this Green’s function.
Lemma H.1. The analytical solution of the problem defined by equations (H.2) through
(H.5) is identically zero when f(x) = 0.

Proof

Suppose §,,(x), .., ¢.,(x) represent the four independent solutions of equation (H.6) when
f(x) =0 in the interval x, , Sx<x,,r =1, 2, ..., N. Then the corresponding solution of
equation (H.2) can be expressed by

4
yx =Y a9®, x, Sx<x, r=1,2,..,N. (H.11)

i=0

Substituting (H.11) into the end and interior conditions (H.3) and (H.5) yields

‘Z:;an U,lé,]1 =0 H.12)
g a,Uyle,] =0 (H.13)
g a, €,¢,] - g a,€[¢,] =0 H.14)
i a,€,¢,] - i a,€;(6,] =0 (H.15)

i=] iw]
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2 aix Ul.l[¢n] =

i=l

E an U;l[¢n] -

i=1

4
E a1, € v- 0[O -1y ]
iwl

Y -1, Cov- iy

i=]

4
E Sy Viv-nl®iv- )]
i=]

4
Z -1y Ul’-CN- l)[¢mv- 1)]

i=}l

4
Y a,U\[¢,] =0

i=]

E a:zU{I [¢i2] =0

i=]

4
- E 3., € pidy] =0

i=}

4
- Z a, € [0y] =0

i=]

4
- ¥ a, Ul 9y =0

i=]

4
-Y ayUsw.il9y] =0
i1

E “.-NUm[')m] =0

iel

and
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(H.16)

H.17)

(H.18)

H.19)

(H.20)

(H.21)

(H.22)



E a,U,y[ex] = 0. (H.23)

i=]

Equations (H.12) through (H.23) can be expressed compactly in the matrix form

[Ala = O H24

with

@ = (@), ey Qyps vy Gypys ey BN (H.25)

Here [A] is a 4V x 4N matrix which consists of the coefficients g, that are used in
equations (H.12) through (H.23). Suppose that the determinant of matrix [A] is zero. Then
it is well-known [49] that there exists a set of non-zero coefficients, a,, , such that y(x) is
non-zero and satisfies equations (H.2) through (H.S5) for f(x) = 0. On the other hand, the

corresponding variational form of equation (H.2) through (H.5) can be written as

By.u) =0 (H.26)

for all ¥ € B. In particular, B(y,y) = 0 so that y(x) = 0 in 0 < x < L because B(u, v) is
an inner product of space B. This conclusion is contrary to the assumption of a non-zero
y(x). Hence the determinant of [A] must be non-zero. Consequently, the corresponding
analytical solution equals zero.

This completes the proof of Lemma H.1.

By employing Lemma H.1, the existence of the previously described Green’s function

can be verified straightforwardly. Let I, denote the open sub-interval: x, < x <x,, ;.
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Suppose 7,, r; and r, are three, given positive integers satisfying 1 <r,, r,, 7, < N. Then,

by following the procedure used in [49], G(x, &) can be expressed as

-

4

Y a,®6,0. xel Eel r*r,

i=]

. 2
G(x.E) = < 2 (air(,@ +b ©)¢"o(x), x’o <x< E < xro‘l, H27)

ir
iw] °

4
E (airo(g)-blro(g ))¢"D(x) ’ x,o < E <X < xro o1

L i=l

The functions b, are determined by the continuities of G(x,§) for X, 1 <x,E< x, as well

as those of the first and second partial derivatives of G(x, ) with respect to x, i.e. from

1.27),
4 d’
Ebir——q’ﬁgo for v=20,1, 2, (H.28)
ie1  ° dxV

in addition to the jump condition (H.9), viz

e d3¢( o(g) 1
" = — . H.29)
rz.; Bur dr? 2 EI(x)

¢,,o(x), cens Q.,o(x) represent the four independent solutions of equation (H.6) so that the
b,,o(E). i =1, .., 4 can be determined uniquely from equations (H.28) and (H.29).
Furthermore, the b, ), i= 1. ..., 4 are independent of the end and interior conditions.

To determine the a,(E), substitute G(x,E) into the end and interior conditions (H.3) and
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(H.5) to yield

4
E ailUlO ¢,‘1] = 0

iw]

2 allU20[¢n] =0

i=]

4 4
E a,€.4,] - . a,€0,] =0

=1 =1

E a,€,0,] - E anc;1[¢‘,2] =0

i=] i=l

2 a,Unl¢,] - 2 a,U[¢,] =0

(£ 38 rry

4 It
2 auU{Z[¢u] = Z aiszz[Qu] =0

iwl =l

. . .

- . .

‘El %0p-1 ‘l(ro-x)[omo-n] - ; a"OC,(,o,D[Q)"O] = 2: bi'otl('O’l)[¢ir°]
* -

im}
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(H.30)

(H.31)

(H.32)

(H.33)

(H.34)

(H.35)

(H.36)



4 4
g ai(ro-l)‘;('o°l)[0i(to-l)] = g airo‘;('o'l)[¢|ro 2 brrotz('o D [¢ir°] (H-37)

i=]

4 4

g ai(ro- 1) Ul-(ro- l)[¢i(r° -1 ] - 'Z.; airo U [. o= 1)[¢;,0 E irg U; -1 [¢;,°] (I{.38)
4 4 4

g a;cro -1 U, (ro- D[¢i(’0 -1 1 - g a,,o sz'o‘ 1)[@.',0 ]= g b"o U2(ro- n [¢i l,0] (H.39)
4 4 4 _

g al’ro cl'o[¢iro] - g ai' g+ 1) ‘lr°[¢i g+ ] = g biro cl ) [¢f,°] (11'40)

4

g afro c2r0[¢."° - § ai(roo n ‘2!0[¢.‘(,°. 1)] 2 irg cZr(, [¢f'°] (H‘41)
4 4

g alro Ul ro[¢(’° E 1(,0. 1) Ul 'O[¢“"o’ 1) ] = g b(,o Ul n [¢"0] (H'42)
4 4

§ a"O Uz,o[ "0] - g a,c'o, n U2,0[¢‘(r°’ 1)] E irg UZro [¢‘,° (H-43)
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4

3 S Ciw-nin-i] ~ X G Ciov-pd] = 0 (H.44)

i=] i=]

4 ¢
g arm-x)‘;w—u[‘wv-u] - g amc;(N-na[q’m] =0 (H-45)
s . .
E alw-l)Ul-W‘l)[¢fW-1)] - g aUiw-1,[0,] =0 (H.46)
iw] -
4 4
2; -1 U{W‘I)N’iw-u] - ; axUi-nldy) = 0 (H.47)
4
2 a,U oyl =0 (H.48)
i=l
and
.
Y ayUylé,l = 0. (H.49)

iw}l

It can be observed that the coefficients a, in equations (H.30) through (H.49) are the
same as those given by equations (H.12) through (H.23). Lemma H.1 demonstrated that
the determinant of the matrix of the coefficients is non-zero. Therefore, a,(€),
i=1,.., 4and r = 1, .., N are determined uniquely. This completes the proof of the
existence of G(x, E). The existence of G,,(x) and G,,(x) can be shown analogously.

It is needed to prove next that the function
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N-1 “ret

N
y®) =Y [ GuDADIEY G, WM, fx)+G, W, fz) HSO)

r=0 7 r=0
r

is the solution of the following, multiple-point boundary value problem :

yl=fx), x ,<x<x, r=1,.,N (H.51)
U, vl = M,f0), U, bl = J,£1(0), Uyl = MyAL), U] = J, f'@y (©.52)

and

‘;rD] = ‘Ir[),] * ‘;r[y] = ‘;r[y ] . Ul.r[y] _U;r[y] = M,ﬂx,)
(H.53)

U, -Usbl =Jfx), r=1,2 .., N-1.

Suppose x € I,0 for an arbitrary, given positive integer, r,, satisfying 1 < r, < N. Then

(H.50) can be rewritten as

ro-l Trel x “"0.'l
y® =Y [ 6e.br®dE [coebr®E- [ 6xBf®E
- "o ’ (H.54)

Trel

N-1 N
+ X I Gx.BfE)E+Y (G, (M, f(x)+G, ()], fi(x)).

rergel x, r=0

Using Leibnitz’s rule for differentiation, the above equation becomes
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- | __3G(x.§)ﬂg)d§+IBG;.:@)KEME*G(L X))

0

r01 N-1 X1

I aG(xg).ﬂg)@ -G(x, x’)ﬂx )+ z IBG(XB@@

r¢r°01 x,

+§_: dGl,(x)

r=0

M fix)+ Jf'( x,))

or

-1 Trel
dy(x) _ g aa(x 9G(x.E)
ZED) [ D r@adg- I—éx—f@)dE

0

r01

j’ aG(x f@d§+ J’ 3G(x FOE (H.S5)

r'roo 1 x

Yy dG
3 2 pe+

J,f'( x))

whilst

d:;(:) ='oz'1*,‘azc;(x§)ﬂ§) g_._J'azG(xE)@dg*aG(x.x)ﬁ )
r=0 =, 5

r’l

J‘ aza(xg)ﬂg)dg aG(x.x)ﬂx.)+ J‘B’G(xg)f@)dg

r.r°0 1

N 2
+2 (d G"(x)Mj( £)+ __d,,(i)Jf,( )

r=0
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or

X

Py®) _ [ PCED e, [ FCEE
dx* g ;[ ox? D45 dx? fO&

P 4
o

Trael

L PC0D e e, o #6aD
Fiedpa- 3 [ITBma

rerpel ¢
r

H.56)

x

N 2
0> < f;(x) M, fx)+ mﬁm I f'x))

r=0

whereas

d? y(x) - B’G(x,E) . T PGx,E)
) o I 3 @dg . _'_a?—-ﬂg)@

b

Tpael

. 9°Glx, x7) . ¥ 3*G(x,E)
t—— fx7) J——ax, LEE

_P6E, x) ., [ PCED
— ﬂx)'gl‘r 5o ——=fB)dE

N 3
+2(d G, (x)Mﬂ x)+ 2,(x)

r=0 dx

J,f(x)

or
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d3y(x) _ asG(x 3*G(x,
9 - ): j ® fe)ag + I axf’f@ds

el

+°Iasa(x. ﬂg)dg-»z:l IaaG(xg)j(’g)dg H.57)

rtr°¢l

Y 4G, (x) 4G, ()

+3( M, fx)+ J f(x)

and

-l‘

d;i(f) E B‘G(x E)) AE)E + j‘ a4 G(x AE)E

*r

Tp ool

+Mf(x')+ a‘G("E’ﬂg)dg

3 I e (H.58)
26 X)) ye T j e e
ax r-rOOI
d‘G d‘G
53 (x) M, fix)+ (x) JFx)).

r=0

By employing equations (H.9) and (H.10), the last equation becomes
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-l"o

d*y(x) ’ a*c;(x 3) a‘G(x £)
L0, . 3 | SR I LD rpa

r

r .1
J B‘G(x g))mdg+ “t‘ I a‘G(x.g)j@dE (H.59)
rergel x dx*
N d‘G,
o3 (x)) M fix)+ 2,(x)

r=0

J fi(x)) +fx).

Substituting equations (H.55), (H.56) (H.57) and (H.59) into the left side of (H.2) leads

to

ro~ 1 %pel

2bw] = Y [ 2ACxHIBIE+ jsz[G(x DI

r=0
x?

rool N-1 .1

+ [ e p@E: ¥ [ 2ceprRE HO

rerge 1 x,

N
+Y (UG, IM, fix) +R[G, D), f(x,)) +fx).

r=0

It can be seen from the definition of G(x, E) and equations (H.6) and (H.7) that all the
integrals in the last equation are identically zero. Furthermore, I is an arbitrary

sub-interval in 0 € x < L. Therefore y(x), which is given by equation (H.50), satisfies

2] = Ax), forx+x, r=0,1, .., N. (H.61)

Substituting y(x) into the left side of the first end condition of (H.52) and combining the

result with the end conditions (H.3), (H.6) and (H.7), yields
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N-1 Trst

N
U@l = X [ U, [ DI®EE+Y. WG, 1M, fix)

reQ
x
»

+ UG,V f(x))

or

U, D)} =M, f(x,). (H.62)

Thus y(x), indeed, satisfies the first end condition of (H.52). It can be shown analogously
that y(x) also satisfies the remaining end and interior conditions, viz (H.52) and (H.53).
Consequently, y(x) is a classical solution of the multiple-point boundary value problem
(H.51) through (H.53). This means that the variational equation (3.2.5) has a unique
solution of y(x).

To study the continuity of y(x), rewrite equation (H.2) as

EI(x) d‘}'(‘x) = pAfx)-(2 dEI(x) d’y(x) -+ d’El(x) d*y(x)

dx dx dx? dx? dx?
-;;(p(x)%m,(x)y(x)) #.63)

x <x<x, r=1,.,N.

It can be found from (H.27) and (H.54) through (H.57) that y(x), dy(xVdx, d y(x)dx? and
d*y(xVdx* are continuous in each sub-interval V,: x, < x < x,, , . Therefore,

EI(x)d ‘y(x)/dx * has the same continuity as the function fx) given on the right side of
(H.63). Thus, if f*(x) is square integrable in each V,, then d %y(x)dx ¢ is also square

integrable in V, because pA(x), ENx), p(x) and k(x) as well as their arbitrarily high
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derivatives are also continuous. This proves the second part of Lemma 2.1.

Mathematical induction is needed to investigate the continuity of the eigenvectors in
each V, (that is claimed in Theorem 3.2.1). It is known from equation (H.1) that the first
derivative, dw;(x)/dx, is continuous in each interval V,. Suppose d‘w,;(xVdx* is continuous
in each V, for all £ < n - 1. Then the induction procedure requires that d " w, (x)/dx" is
also shown to be continuous in each V.. To accomplish this goal, replace y(x) and f(x)
in (H.63) by w(x) and A,w;(x), respectively. That is,

d*w (%)

4

dEI(x) 4°w,(X) d*El(x) 4*w,(x)
d x dx’ dxz dxz

d dw ( (H.64)

w.(x)
- dxfp(x) d{x ) +k (X)w(x))

X

r-1

El(x) = pA lfw 7 (x) ~ (2

dx

<x<x, r=1,.,N.

Define a function, g(x), as

dEI(x) 4*'W/(X) _d*El(x) 4°w,X)

glx) = pAlfwj(x)-(2 = =53 oo =

(H.65)
- Low v, (x)) +k (X)w,(x))
dx
x,,<x<x, r=1.,N.

It can be noticed from (FH.65) that g(x) has d *w/(x)/dx’ as the highest derivative of w,(x).
It is assumed in the induction that d*w/(xVdx*, k = 0, 1, ..., (n - 1), is continuous in each
V, . Furthermore, pA(x), EI(x), p(x) and k(x) as well as their arbitrarily high derivatives

are also continuous. Consequently, it can be seen from the following equation

145



‘-(

d**g(x) _ d pA 4" 'w, dEr dV ' w,
== E -2
dx"* i3S = dx'*' dxm

LJAEL AW, glp AW, (H.66)
dxtoz dxu—Z-i dxi dxn-z-i

_ di,lp du~3-fwj+d‘k dn-4-fwj

dxlOl dxn-B-i dxi dxn-&-i

where

n_ n! H.67)
r r'(n-r)!

that d"*g(x)/dx™* exists and it is continuous in each sub-interval V,. On the other hand,
it is known from (H.63) and (H.64) that g(x) = EI(x)d ‘w(x)/dx *. Hence,

d "“(El(x)d * w;(x)/dx *Ydx™* is also continuous in each V, so that

a=t 4w f) = “i:‘ n-414'gr d"'w, ...m(x\d"“’l(‘) - 7' (H.68)
dx"" e dx' dx"f s dx" dx"-*
i.e.
dw, 1 dtee) R [r-4atE de (.69
dx* EG)  dx* S i Jdx' dx

This last equation indicates that d "w/(xYdx" is, indeed, continuous. This completes the
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proof of the first part of Lemma 2.1.
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APPENDIX I

This appendix presents the proofs of Lemmas 3.3.1, I.1, 1.2 and I.3 and outlines the two
theorems given in [46, 54] which are used to prove Theorem 3.3.1.

It is known from Theorem 3.2.1 that d °z(x)/dx® is square-integrable in each sub-interval
V, when z(x) is an arbitrary solution of equation (3.2.10). Consequently, if g(x) is defined
by equations (3.3.2) and (3.3.3), d °g(x)/dx ¢ cannot be fully or piecewise continuous.
However, by reference to Definition 3.3.3, it is known that g must satisfy g <5 < 6. On
the other hand, Theorem 3.2.1 shows that z ”(x) is piecewise continuous in 0 S x <L .
Define g(x) to be identical to z(x). Then Table 2.3 indicates that g(x) has a series
expansion with respect to {y,.(x)} whose first order derivatives can be taken, term by
term, without loss of uniform convergence n 0 < x<L,ie.gq22> 1.

This completes the proof of Lemma 3.3.1. Lemma L1, which is needed in the proof of
Lemma 1.2, is demonstrated next.

Lemma L1. Let i,, i, and g be three positive integers satisfying i, < i; < q. Suppose that
rp and r; are two positive integers for a given positive integer i that satisfy rp < 7, S N
whilst i satisfies iy < i < i, . Imagine { (x) € &%, La(x) € &, and L, (x) € S, where
ro Sr<r,. Also, w(x) € B is an arbitrary function that has continuous derivatives upto
order g in each sub-interval V,: x,, S x <x,, 1 < r < N. Moreover, a coefficient 4, is

defined by (3.3.4) as
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r

dw(x’ ) d w(x, it ‘C,, (X )
- h r
[ 3
dfckr(x’ ) / dlgfr(x’) d‘C[r(x; )
V(-2
ihb<i<i,0<r<N

),

(dﬁv(x:)_d‘w(x,') )/(J‘Cf,(x,’)_d‘c,,(xf))
R dx’ dx’ dxt an
v i=i,0<r<N

d 'W(x) i d‘C,,(x) d,(x)

k=i dx'
l°<lSll.r=0.N- £, (x) = 0

d'w(x,) , d'g (x)
dxt*  dx!

.« i=iy,r=0,N,{ (x) = 0.

Given the above statements, there exists a positive constant, ¢, such that

q+1

|k, | < TwT, where TWl =Y 2 ( I )szr)"2 1.2)
i=0 pew] P
forip<i<iiandO<ry,<r<r, <N.
Proof
First consider r satisfying 0 < r < N. It can be shown [45] that there exists a constant

c, such that
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di
w(:t’)l <sqtwl, i=0,1,..,9-1 ad r=1, ... N-1. @3)

=

Let ¢, and c; be two positive constants that are defined by

(456D a6

c, = - - |, @ =iy, i+1, .., i, .4
r=1,2,..,N-1)
and
. d'C(x) d'C(x) C . .
c, = min(| S - & | =0, i =y dt], @.5)

dx dx

and r=1,2, ..,N-1).

It can be found immediately from the last equation that the inequality

. i - i . i -
Ce(x) _ diT (x) | for | d'C,(x)) dG(x) | 0,

d!
¢ S I i i i i
dx dx dx dx J3.6)

i=iy,i+l, .. i ad r=1,2,.., N-1

is true. Therefore

df * df - du’ .- du’ -
Ly 850 dRE) 1 gy L) _TRED | L,
C, dx* dx' dx' dx' an
i =iy i+, .., i ad r=1,2, ..., N-1.
Before proceeding to prove (I.2), it is helpful to demonstrate that
1 2¢, Wl ‘' C, & Cy imi
Yials 0 P a2 eq+s2 | a.8)
c C,

i=iy 3 k=0 C,

The proof of (1.8) is based upon the use of mathematical induction. It can be found from
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(d.]) that, forO<r<Nandi=i,+ 1,

A | I d'o'w(x,) d'o'w(x)) .y d'o C.D,(x,’ )
woenr | = dxio’! - dxio’! e 2 e
i A ] a9
d'o Cfo r(xr ) 3/ dfo’! C(l’(:)o l)r(xr ) dfo‘IC(fcol)'(xr )
dxio ( dxl'ool dxio,l ) | .

By employing (I.3) and (1.7), the following inequality can be obtained from (1.9)

1, do'wlx,) d'o*'w(x,)
lhg, i | < Z(I oo T [+] o RECAL D
1
< ?;(ZCJWL*C;I’!;O,I)
or
2¢c, <,
Ih(lool)rl s (—c_'lwlq"'c—lh.’opl)v 0 <r< N. (I.IO)
3 3
Consequently, the inequality
2c, c,
lhforl + I h(lool)rl S Ihlorl +(_CT"W':+-C'; I hlor I)
or
2c, c,
lhlorl + Ih(fool)rl s c—alwl., +(1 +:~:)Ih‘o’|' O<r<N ain

can be found from (1.10). This last inequality shows that (1.8) is valid for i = i, + 1.
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Suppose (1.10) also holds for an arbitrary integer, i = i,, that satisfies i, + 1 <i, < i, i.e.

2 iz-lo‘l

[ a4 C. -p
2 Bl s 2L TOTA+2) w2220 n, | .12
{t{o c3 k=0 C3 Cs Y

Then (1.8) is needed to be shown when i = i, + 1. First, it is known from (L1) that

d2'w(x]) d'2*'w(x]) 2 d-C, (x,)

h = r’.
l (lzol)rl I( dx‘z’l dxfz’l I.Eio —2
d28, (7))  d2l L, 00) A ) a.13)
) dx"2 NI dxh2*! B dxt2*! )l

0<r<N.

Then, by employing (I.3) and (I1.7) again, the following inequality can be obtained from

(1.13) in a similar manner to (1.10), viz

I y ol)rl S(——l I + ZE |h,|)’ O<r <N, I1.14)

c3 i= ‘O

Consequently,

iz
E L B 2 A+ kg,

l-f i-io (1.15)

s (_rT‘+(1+_)E |A, |), O <r<AN.

C3 i= io

Combining (I.15) with (I.12) yields
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1201

E l (Y OI)rI - (—I I +(I+—)E Ihlrl)

f-fo c3 [t[o
c . 2¢ iy-ig-1
< (A= pn, 1 29 Oy -)*) @16)
¢, Cs 0 Cs k=0
2¢c,
W
Cs M
or
E lh(‘ ’l)rl <(1 +_)12 ro ll ‘0’ i Sl 4 E 1+ __) "’——T_r]
G k=1 Cs
ie.
201 .l_T‘z fo
Y Ikl S+ ‘)2 T S Pt UL 3 (1+_) @17
i-lo k=0

o <r<r,.

This last inequality shows that (L.8) is also valid for i = i, + 1. Therefore, (1.8) holds for
any positive integer i satisfying i, < i < i, . Next, (I.2) can be shown straightforwardly for

r satisfying r, < r < r,. First, by employing (I.1), (I.3) and (1.7), the inequality

diow(x’) d'ow(x)) di°§:°,(x: ) db C,o,(x,' )

h = r - r I -
gl = 1 - T Dy LAY

d1.18)

i - f -
< 1, dow(x,) |+ d'ow, (x,)
Cs dx'o dx’o

). 0Si,Sg-1,0<r <N,

or
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|k, | S220WT,. 0<i,<q-1,0<r<N
c3

can be obtained. Then it is known from (I.1) that

d'w(x)) d‘w(x) Lt

[k, | = IC +3 A

) 4T )

‘Ck,(x )

)|

dx‘ k-fo
AN d
N (—
d'w(x;) d'w(x,)
< Ly,
< dx dx'

By employing (I.3) and (1.8), (1.20) becomes

l—io-l

2¢,c,Twl
k| stpze,ToT, + 250200
C, Cy k=0 C,
2¢c,c, 17567 c c.
< l[2c1+ 22 Y A+lYeq+2
3 C3 k=0 Cs G,

Substituting (1.19) into (I.21) leads to

1-fo-1
c 0

2 2 i~
k| stp2+ 222 E A+2) 22020 TR, 0<r< .
C.

3 €3 k=0 G G, Cs

Let ¢ be a positive constant defined by

Fy=in=-
170
2"1

c =L[2+
6‘3 c3 k=0 63
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fl-io |

dxi

i-1

l +C22 ‘hkrl)'
k-io

3 a2

3

hforlllwlq.

y (1+2 ‘+3;i(1+fi)‘l"°].

Cy

1.19)

1.20)

a.21)

1.22)

1$.23)



Then (1.23) becomes
A, | < TWT,. @.24)
This last inequality shows that (I.2) holds for0 < r <N and {, £ i <i,. A similar proof
can be givenfor r = 0 and r = N.
This completes the proof of Lemma L.1. By employing this lemma, the next lemma
needs to be shown before Lemma 1.3 is finally proved.
Lemma 1.2. Let g(x), which is defined by

g = w@®-3 3 L@, xex, k=1,.. N-1 1.25)

l-lo r™rin

and

d’gx,) _ d'w(x) 21: 2 5 3500 dfc, (xk)

y J =22, ..,9-1, .
dx’ dx’/ i=iy rer,, (I 26)

k=1, ..,N-1,

have the generalized Fourier series expansion

60 = ¥ d v @27
mel
where A, is given by (I.1) and
L L
d, = Ig(x)\ll_(x)dx and ( I (v, (x))dx)'? = 1. 1.28)
o o

Suppose that the (spatial) derivatives of series (I.25) can be taken, term by term, up to

order (g - 1) without loss of uniform convergence in 0 < x < L. Furthermore, imagine that
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the q th derivative of g(x) is fully or piecewise continuous. Then d,, can be rewritten as

r-l
-1)f q _de davy,,
d.- ( l)o[o E (d g I - g v ' -
(,/L Virer, dx? dx" X1 axT dx°

a.29)

*re

rel .l d
- Iu&k)
dx*T dx’

where v = 3 - ¢ mod 4. (The mod term is the integer remainder from dividing g by 4
{51].) Furthermore, a positive constant, ¢, , exists such that

!du ’ s Ce m.(” I)WI: (1.30)
for a sufficiently large m.

Proof

It has been shown in [55] that ¢ can be expressed in the form
q = 4k+q mod 4 a.31)

where k is the positive integer quotient obtained when q is divided by 4. On the other

hand, the following relation can be found from {50], viz

1 d““w"(x)
CNALr o @2

Substituting (1.32) into the first equation labelled (1.28) leads to

L
1
d, = e | 2(x)
(Q./L)‘k’ 6’.

4k 4.
v 1.33)
h‘kv‘

Integrating (1.33) by parts and using (1.1) yields
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4 =_Cu ;‘:’ (A d TNy, drgdtt ey,

" QUL dx? dx*tt@th x dxt dx*t@eD x
1.34)

dx).

*rel ke d-(ge1
S i S
dx9*!  dx**4-@D

X
r

Let v = 3 - g mod 4. Then, by employing (1.31), the following relations can be shown
vV = 3-g mod 4 = 3+(4k-q) = (4k+4)-(g+1). @.35)
This last equation yields
4k+4 = g+1+v. 1.36)
Substituting (1.35) and (I.36) into (I.34) produces (1.29).

Now consider inequality (I.30). First, it can be shown [45] that there exists a positive

constant ¢ such that

dl
“f')l S¢Tel,. i=0,1,...q-1 and r=0.1,...N. @37

e

Furthermore, it is known [42] that the generic inequality

& ky
(X b,V sk -k+DY &) a.38)
k=k, k=k,

holds for b, , k = k, , ko + 1, ..., k;, where b, is an arbitrary real value. The k, and k, are

two positive integers. By employing (1.38), the inequality
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i h 5

(W) = (w@-Y ¥ 4,0, 0) <2[(w) + (): Y A0,

ftl'o r=ro t-fo "'I'O

i i

< 2[(w@P+(i,~iy+ DY (Y 4,5,0)] (1.39)

l-to r=r:;
h n

S 2[(WEP+(i =i+ 1)(r,=1o+ DY, 3 (8,1, )]

I-fo r=rio

can be obtained from (1.25). Moreover, the inequality

h n d’
ddf")fszt("“’("f«:, ci 1)1y + DY T (B, P C‘("ﬂ (L.40)

ktlo rer;,

can be found similarly forx, , <x<ux,,r=1, 2, .., N. Thus,

g*1 N i
@ =5 5 f (ng)’dx)m

i=Q rel} f

q+1 N '
<20y ¥ ( f( 2 pdn»

i=s0 r=]

+( =+ D)(r,-r, *U).'Z E (h, P E(I(—) dx)'?)]
k-lo l-r‘o i=0 rel P
or
Y on
(Te |)z < 2[(Twl )2+(' =i+ 1)(r,—ro+ 1)2 2 (hkr)z(T)z @.41)
k=i derg

can be obtained straightforwardly. By using (1.2), (I.41) becomes
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I gI' < cs'lm: (I.42)

where ¢, is a positive constant which is given by

hH
Cs = 21 +c2(i, =i+ 1)(r,-rpy+ DY 3 IZ;,I"):‘]"2 . 1.43)
:’-lo re=r;n

Additionally, it is known [46] that the ith order derivative of ¥, (x) satisfies

d d'cos(Q x/L+9
Ly v (x) - 0. L), ‘cos(Q,_x )

+(-1 <CXp(-€2_x/L)
Q. dx' Q. dx’ Y Qamex( 1.44)
+Q, exp(-€2_(L-x)/L).
where
(8) =(2)“2 0<lm|Q, | < 2 0<lim|Q,. | < 2 a.45)
1m f ’ e 2mi = —I':TH’ - —— I3m| = —['m <
whilst
) (sliding-sliding and sliding-pinned ends)
lm 8 = -—.’25 (pinned-pinned ends) 1.46)
% (all other standard end conditions).

Consequently, it can be shown in a similar manner to (F.1) that there exists a positive

constant, ¢, , such that

( ] ((—)‘ \lf o ))’dx)"’ < (I((—)‘ V. ))’dx)“z Scipsisi,. @47

After the above preliminaries, (I.30) can be shown straightforwardly. First, it is seen
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from (1.29) that

-1

s L 3 [ T8 S
/Lyt -y, dx* Q_/L)dx"

dw () | i deig

d'g(x,)
H | +]

+|

avy,

dx* Q@ /Lydx

By employing Schwarz’s inequality [45] i.e.

I Jﬂx)g(x)dxl <( Ij(x)zdx)l’z( Ig(x)zdx)uz
T Xyt X,

as well as the inequalities [SO]

dy (x,)

| (Q_/Lydx'

for an arbitrary integer i and a sufficiently large m, (1.48) becomes

ld | <

dig(x)

+ |

1 5: [l dig(x;.,) " d vy (x.,)
(Q /LY /=7y dx? (Q,/L)ydx"

l

d*y, (x;)

dc* (Q./L)dx"

+(T(" Eydx )*’%T( bl

By employing (1.47) and (1.50), (1.51) can be simplified to
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«Q_/L)dx"

y

)112] .

; dxT(Q /Ly dx

| £ 6/LY? and 27m > Q_ > m(l-i)n:
m

dx)|].

(1.48)

1.49)

1.50)

as1)



dig(x,, d'g(x,,
|d_| s _1_2 u_.‘i"'_‘)[st.-m | 280r1) gy i
@D S T dxe P

+ d g
( ] (CErdne)

ie.

< . dqg(erI) f iy d g(xrol)

1
| S e L7 3 | ——— E
(Q_/Ly"! A

-1 "rol

L6 ¥ ([ (& — A8y gy,

rey.
o =,

By using (1.37), (I.53) can be simplified further to

d,| < .(_fz_lllr‘.);TsL-"z[(c,(r,-r,o)]—l'g = (-1 TETD)

+L"(c,/6) Igl,].

Finally, because N > r, - r,, the application of (I1.42) to (1.54) leads to

1 -
d, | s W6L Y2 [2¢5¢4(r, 1o ) TWT + L (cec, ) 6TWI ]

or

Cs :
ld.| < (—9../1-_"6L 12[2¢,N +L"(c,/6) 1 TwT,.

By defining a positive constant, c,, as
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1.53)
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¢, = 12L*"'"?(2¢,N+L"*(c,/6))cq, 1.56)

(1.55) can be rewritten as

c‘
mt!

ld,|  —*_TwT,. asn

The last two inequalities show that, indeed, (1.30) holds.

This completes the proof of Lemma 1.2. The next result can be obtained by using this
lemma.

Lemma 1.3. Let S, © B be an n -dimensional subspace spanned by m, linearly
independent functions {C,(x)} of set (3.3.1) as well as {y,(x): m =1, ..., n - m,}. Suppose
Cx),2<i{,<i<i <(q,-1),0<r,<r<r) form a set of q,-GFM functions with

respect to {Y,.(x)} and an eigenvector w;(x) € M(A). If

= inf lwx)~ul,, wf(x) € MQ)),
u €S,

(1.58)

then a positive constant, ¢, , exists which is independent of 2 and w(x) and such that

e S cnalwl 1.59)

L

for a sufficiently large n. The g, and ]Wl'l_ are given by equation (3.3.6). Furthermore,
Lb
suppose P is an orthogonal projection of space B on §, and, for an arbitrary ¢ € B and

alues,,

B(@-Po,u) = 0. (1.60)

If {C.(x)} form a set of g;-GFM functions with respect to {y,.(x)} and equation (3.2.10),
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lo-Pol, <nlo-Pol;, and n =c,n™ e61)

where g, is given by equation (3.3.10) and ¢, is a positive constant that is independent
of @.
Proof

To prove inequality (1.59), let w(x) = w;(x) and ¢ = g;. Then the g(x) defined by
equations (3.3.2) and (3.3.3) has the generalized Fourier series expansion (1.27) and the
coefficient d,, is given by (1.29). It has been shown in Lemma 1.2 that a positive constant,

C., exists such that

|d, | < cem @*PTw, Iﬁ d.62)

for a sufficiently large m. By using the inequality [40]

© - 1 -sol -3¢
E m- < (n m1+1) < (1/2)-301 n 119 5> l, (1.63)

m-n-nIOI 5=

for a sufficiently large n, the following inequalities can be shown

n-my o« -
lg-Y dv@l =1 ¥ dvmis ¥ |v.lidl
mwl m-n-nlol u-u—ul‘l

6¢c,Tw jl - 6c,Tw |
Y mevg YAz —_— L (/2) g

L llz M'l'.l

ie.
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gl 6(2)c

lg)- Y d v, s —TwT n. 1.64)
me=] QL L)
Similarly
.-.l , . ,
lg'x)-Y dv.ml=| ¥ dv.o|
msl ms n-m10l
- L ./ Q
< —_— d >
--'-E'-m g v-@lld. l
6c,Iw 1 -
L
———— 2nmm°@'l)
L312 ﬂ.n’.101
12xc, = )
< L3? 'wllql "'"gx“ m™
121tc‘|wj|
n (1/2)" @D p-@-D
L¥*(g-1)
ie.
Igl(x)_u.zml d W, w| < 12(2)9 P xc, T n-4-b @L.65)
o " L¥%(g-1) ’u

for any point x satisfying 0 < x < L. On the other hand, Parseval’s identity applied to the

right side of (I.27) for g”(x) produces [40]
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’ i T gy Vel
I(g”(x)- Y d v .())ydc = I(g"(x)' X dlv.l, 1 =Y ds
] gt 3 me=] V

= 1.66)

Y dd v

me n-llt101

where Iy, I, is the norm of y,(x) in a Hilbert space, H, [45]. It is given by [50]
L
Ival, = ((wiendo'? = @ /Ly @67
0

By employing (1.50), (1.62) and (1.67), the inequality

L e ¢ [
[e'®- X dwiwrar= X dd. 1wy
0 LI m = n-m, <+l (I,68)
(2n)* - 2 4
< d |*m
L‘ - -nE-..lol l - l
can be demonstrated. By using (I1.30), the last inequality becomes
1 ~ (2m)* -
J(gu(x)- Y dvinyde < = AN P Y meimt
0 mel 1 m=n-mel
Qr)* 2 - -2q-
< 77 C4(|W]|'I) ) .Elﬂ m-Qe2
ie.
T " - " (2x)* ci204? 2 -(2¢-3) 1.69)
- d dx < —_— -, .
o[(s @- X d.vioyds < 2 S (W)
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On the other hand, it is known from (3.2.7) that

'l‘.l l‘.ll

150- Y d.v. @ = jm(g"cx) Y dwim)y

mel ._':u =1
p@E'®- Y d .7

me=1

u-nl

k(g0 - ¥ d v, 0)P1dx @.70)

me=l

n-ml

+E [K,EW- Y 4y, ©F
re0 m=l
-y
+B.(g'™- Y d v.rl.

me]

Substituting (1.64), (1.65) and (1.69) into (1.70) yields

n—m R
13- Y d.v. 0 < max(&Q) j (e"®- ¥ d .y ()Y dx

mal m=]
R-my

+ max(p(x)) [ @W- Y dy.0rde

m=1

l'ﬂl

+max(k, (x)) [ (- Y d v, () dx

©6(@29c,) )
+§ K, ————— T (Iw,T )’n 2q

[12(2¢V)nc, P
(L**(g-D)

*B, (TwD), Yn2eb)

or
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"-.1

150~ ¥ 4wl < maxceien CEL EZ00 qgp ees

— 2g-3 1"y
[12(2@'“)1:::‘]2 o
*mEXQENL — s (wT, Pa2ed
6(2
+max(k (x))L (%)’(Iw,lﬂ)’n"" a@.71)
N 6(2 )c

+Y K (—= W )’n"’

r=0

12249 P)rc,
X SEUA LN
MG

It can be shown straightforwardly that

n=293 5 p M gpnd eI 5 gD a.72)

for n > 1 so that (I.71) can be simplified to

! 4 2(21 3
150- ¥ 4,00 < (max(Eze) 25 =
m=1l
[ 12(2(‘" Myre, P
max(p(x)) T a7
.73
6( ")c‘ x 6(2 )c @7

+max(k, (x)) 2y

+¥ K (—=

r=0

12(24"M)xc,

2 (‘l—n?- “2@-3,
Lalz(q_l) ) ] ) n

+B,(

By defining a positive constant, cg, as
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)* ¢ 20972 [1229 "), ]

2 _ Q2=n .
(cg)* = max(EI(x)) 3553 max(p(x)) T 17
1.79)
6(29c, & 6(2 ) 12(29 Y)ywc
+ k K € Y
max(k, (x)) - ; [K,(——=) +B.( ey ]
(1.73) becomes
fe(x) - El dv.x)1; <cn @«1-3”2]—1‘ d.75)
me]
Combining this last relation with equations (3.3.2) and (3.3.3) produces
'l n n-m.l
w@-3 3 AL.0-3 4wl < cneaTwi". @76
I:lo r=r;o m=] 1

Hence, it can be seen from (1.76) that there exists a positive constant, cg such that

required inequality (1.59), viz

e ScnCadTwT " = g Twl , a@m
qy *

9

holds.
To prove inequality (1.61), let fx) = @ - P for an arbitrary @ € B and suppose that z(x)

is a solution of equation (3.2.10). By choosing « = fx), equation (3.2.10) gives [56]
B(z.f) = Iflp. (L.78)

It is seen easily from equations (3.2.6) and (1.60) that
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Bz-%./) = Iflp @.79)
for all Mx) € S,. Applying Schwarz’s inequality to the right side of the last equation
yields

IF1; < B(z-h, z-2)* B, N)". (1.80)
Now {C,(x)} constitutes a set of g,-GFM functions with respect to {y,.(x)} and equation
(3.2.10). Let w(x) = z(x) so that the g(x) defined by equations (3.3.2) and (3.3.3) has the
generalized Fourier series expansion (1.27) whose coefficients are given by equation (1.29)
in which ¢ is replaced by g, . For g, = S, it can be found from (I.30) that a positive

constant, ¢, , exists such that
|d,| < com™ lQ-Pol,. 1.81)

On the other hand, by choosing »(x) as

ANx) =) - Y 4wy, 1.82)

me n-lul¢l

it can be seen from (1.63) and (I1.81), in a manner similar to the derivation of (I.75), that

a positive constant, ¢, , exists such that
lz-3l, S c,n?lo-Pol, 1.83)

for a sufficiently large n. Combining inequalities (I.80) and (I.83) yields
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lo-Pol, < c,n™|o-Pol,. a.84)

A similar proof can also be given for ¢, = 2, 3 and 4.

In addition to Lemma L3, the following theorem is needed in Theorem 3.2.1 to estimate
the eigenvalue and eigenvector errors in spaces B and D.
Theorem L1 [46]. There exists a positive constant, ¢, such that, for the eigenvalues and

eigenvectors of variational problem (3.2.6),
A-A, < ce? 1.85)
and

Iw]"-wjl‘ < ce whilst Iw;'-wll,J <cne (1.86)

The € and 7 in the last inequalities are given by relations (1.59) and (I.61), respectively.
The next theorem is used to derive pointwise error estimates in Theorem 3.4.1 for an

eigenvector and its higher spatial derivatives.

Theorem L2 [54]. Imagine » and a sequence of functions {u,: n = 1, 2, ...) belong to

W®(0, L), a Sobolev space in which every element and its derivatives have absolutely

continuous derivatives upto order (k - 1) whilst the kth derivative is square integrable in

0 < x < L. Suppose

L L
Jlu-u,raxy2 s 4, ([l "__- <B,
and 0 0 & L asn

Al+B? = E2. J
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keimg degy
A - 0,A, “B," > 0and A/E)* > 0 asn > o
.88)

then the sequence {d'u,/dx’} converges uniformly to d ‘w/dx’ in 0 < x < L such that

i - -i-1 .l
"d—(;;?ﬂl < co@, TE, . .89)

The c(i), i =0, 1, ..., (k - 1), are positive constants that depend upon i.
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APPENDIX J

This appendix presents Lemma J.1, which is needed to prove Theorem 3.4.1, and
sketches the proof of Corollary 3.4.1.
(1) LemmaJ.1

Reference [57] estimates the positive integer, A, used in the inequality

If-£f,_ 1y 2 cn®. d@.1)

Here f = f{x) is a continuous function and f, _,(x) is an orthogonal projection onto an
(n - 1) dimensional subspace, 3, _,, spanned by an arbitrary, orthogonal series in a Hilbert

space, H, whose norm is given by

L
Ifl, = (<f. f>) = (|fdx)"™. d.2)
0

Moreover, c is a positive value that is independent of n. Inequality (3.4.9) indicates that
an estimate of A is needed for a continuous or a discontinuous {”.(x) in an (n- 1)
dimensional subspace, B, ., , spanned by a non-orthogonal series that contains the
orthogonal eigenvectors, {y”,(x)}, and the GFM functions {{",(x)} which exclude {” (x).
The s and r are two given positive integers.

It is known [40] that the value and sign of the coefficients in an orthogonal series
expansion dictate the expansion’s convergence rate. These coefficients are determined by
the orthogonal eigenvectors themselves as well as their derivatives at the discontinuous
points of {,(x). On the other hand, the ratio of the m th characteristic value, Q. , to m

tends to & in (3.2.12) as m — o. Moreover, (3.2.12) indicates that, for a sufficiently large
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m, a uniform beam’s eigenvectors and their derivatives are dominated by either
cos(mmx/L + 8y(x)) or sin(mmx/L + 6,(x)) where 8,(x) is presented in Table J.1 for
different standard end conditions. To find how these trigonometric functions change for
different m at a given x = x,, a ray OA, is introduced in the ),-); plane shown in
Figure J.1. This ray has a (constant) unit length and runs from the origin, O, to an
arbitrary point, A, . It rotates counterclockwise about O and, after m equal stepped

increments of 7tx, /L from the initial angle 84(x,), the ray forms the angle

0.(x,) = ""Lu' +8,(x,) da.3)

relative to the ,-axis. By using the particular locations of OA, that correspond to
r=0,1, ..., N, as well as the following Lemma, inequality (J.1) can be demonstrated to
apply to {”,(x) in the (n - 1) dimensional sub-space B, _,.

Lemma J.1. Imagine {(x) € &7, Lpx) € &, 9, L, (x) € 3,7 and

|
iel fel
478 o T oy gcxseL
dxi01 deOl
S Jd.4)
di’*l
ﬂ =0, 0Sx<x and x <x <L,
dxi#l r r

where r = 1,2, .., N-1and i =2, 3. The sets &7, &, Y and 3 ;7 are defined in
Definitions 3.3.1 and 3.3.2. Let §, be spanned by n functions consisting of the m, linearly
independent functions {,(x)} in addition to {y,(x), m = 1, ..., n - m,). Suppose that

L.{x) (» 0) € S, where s and ¢ are two (known) positive integers that satisfy 2 < s < 3
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and 0 < ¢ < N. Then, for a non-zero {(x) and a set of arbitrary real constants {b, } in
which b, = 1 and b, = 0 if {,(x) & S,, there exists a positive constant, ¢, , which is

independent of n and such that, for a sufficiently large n,

3 N R-m,
1Y Y 5.00-Y 4, V. L>cn* h=(G-1) ad b, =1, U5)
(w2 r=(Q me] w- "

whilst

= 'Wmlu I(E E b.'pgtr)v,l':dx

i®s2 r=0

and ¢ Jd.6)

Iwal, = ([(ur Pd'? = (

if (1) for a set of arbitrary constants, {@,, .,k =0,1 and r = 0, 1, ..., N}, satisfying
0.%20, go, =0 for §,(x) € S, and @,, = O for {,,(x) &€ S,, there is a positive integer,
m, < n, such that the rays OA,, with {, (x) € S, or {,(x) € S,, 1 <r <N, can be rotated
synchronously into the plain regions defined in Figure J.1 with the exception that just one
ray OA,O , corresponding to a rational number X /L, may coincide with the ) ,-axis of this
figure, where v is a non-negtive integer satisfying v = (3 - 5) mod 3; and if

(2) the relations
.. %m, *0 and (@00 )e,%n) 20 a.n

hold forall r withr £ fand {,(x) (w 0) € S,. In (1.7),
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d'y, .,.(x)

lim(ﬂl' ) d‘:k , i=0,land t =0, N

[ Y3 -2k J

® S 0
A, = T 0.8)
° ) L d'cos( Pt X))
(W=’ , i=0,1and 0 <t <N
| L m,® dx!

where k is a positive integer and d %/dx® implies the function itself. However,

(vy) vy vy vy
Q"lrza'z"o (po QvloaOno +8'1 Q"l';a'l‘“o + on QleaN"O) 2 0

a.9)
if (0,0, o053 +8, @, , Gk +O,0, ,avi) #0. L, () (= 0) €5,
also,
v vy)

(@, %0 )0, , 0 h) 20,5 &) (+0)eS,L  ()(»0)e€s,

@.10)
if (0,0, olod; +8, @, , Ok + 0@, yaxk) =0,
and

v (vy) )y >

(0,0, 0%n, +8, @, , %k * Oy, voOvi) 2 0 » a1

if§,,2,l(x) (»n0)e S, Q,z,(x) € S, providingr#r,0<r<N |

for all positive integers 7, (I = 1, 2, 3, 4) satisfying 0 < r, < N. Furthermore, r, # r, for
1 = 2, 3, 4. Moreover, the corresponding x, IL = Jr, /j is rational when Jr, and j are two

positive integers. Also, v, = (s + 1) mod 3, v, = 1 + (7s mod 4). Moreover, r, = r, for
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a uniform free-sliding beam or a free-pinned beam; and

. 1f §, D ((0eS, r=0.N
" loF L @W=00rl, (O ES, r=0.N

1 if t_’,vz,l(x) €S andr #0, N
3.7 los r, =0, N.

Proof

Parseval’s identity applied to the left side of (J.5) produces

L& e, Ve o =
1Yy Y 5,0.-Y deeols= Y ld.I
i®=2 r=0 me] IW- lH n-n--l’l

Jd.12)

@d.13)

J.14)

Thus, if there exist a positive constant ¢ and a positive integer m, (= n) such that

-6-1)
dm2 >cn .

then

176

J.15)



R-my ”

IS 3 5,80-5 4,

i®2 r=0 m=]

- ( i ld‘nIZ)llz

mEn-m, <+ 1

-y

mz-l
- 2, 2
C ¥ ldPeldP e

n'n—mIOl

- E |d,.|2)“2

m'mzol

> (|dm2 IZ)I/Z > cuzn-(:—l).

By taking c, = ¢'?, the last inequality indicates that Lemma J.1 holds. All the following
development is needed to show the existence of ¢ and m, so that, indeed, (J.15) holds.

Suppose that all x, /L are rational. They are denoted by [59]

x/L=jlj, r=1,.,N-1 .17

where j, and j are two positive integers. Then, by employing (J.17) for a given integer m,

such that 1 < m, < n, it is known [55] that

Qj+m)nx /L mod 2% = (2j n+m,nx /L) mod 21
= m,nx,/L mod 2x, d.18)
r=1,2,.,N-1
This last equation indicates that, regardless of r, the ray OA, returns to its initial position
after 2j stepped increments (i.e. the periodicity is 2j).

Define, next, a function, f,(x), as

fu) = Z( {5 +b, 5h®). b, =1, @.19)

r=0
for a set of given real constants {b, }, i = 2, 3. Suppose that f,(x) has the generalized
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Fourier series expansion

o I/4
£ =% d Vul®

m ”
m=1 l\'f.la

(.20

where d,, is defined by the first equation denoted (J.6). Integrating the right side of this

equation by parts leads to

d = Lz( Tl.m + Tz.-.)
" Q, Q
where
N 1 N
Tl.m = 2 alr ﬁ'v,m(xr) and TZ.M = 2 aBr‘l’m(xr)
r=0 - r=0
whilst
420, (0) 42, @) ’
8y = 'bon' = bzu——d;z—-
but
d*L,, () _ d?C,, (x))

a, = -b,( - - — ), r=1,2, ..,N-1
whilst <
d*C,,(0) d*C,, @)

ay = bm_d.-x—’—’ w = ~biy P
and
&, (x)) d°C, (x;)
a, = b,( - - e ), r=1,2, .. ,N-1.

J.21)

(J.22)

J.23)

It can be seen from (J.21) and (J.22) that the validity of (J.15) depends upon the
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analytical properties of T, ,, and T, , which are functions of y,(x,) and ¥’ (x, ). Thus,
to prove Lemma J.1, some analytical properties of T, , and T, ,,, as well as ¥, (x,) and
V' .(x,), are needed. Consider, for example, a free-sliding uniform beam. Suppose s = 2.
Let @,, and @, , in requirement (1) of Lemma J.1 be given by @,, = a,,and @,, = a,,,
respectively. If requirement (1) is to be satisfied, there must exist an integer, m,, such
that the rays OA,, with {,(x) € §, or {,(x) € §,, 1 < r < N, can be rotated
synchronously into one of the four plain regions of Figure J.1 with the possible exception
that just one OA,O coincides with the y,-axis. It is known, on the other hand, from

Lemma K.5 of Appendix K that

L
o)

1,2
Vmge2n®) | > " (J.24)

for all r satisfying 1 < r S N - 1, a sufficiently large, positive integer k& and a fixed,

positive integer j. Furthermore, if OA,O coincides with the ¥,-axis, then

1

10(%)”2. r#r,, (0.25)

l ‘vm002jk(xr) ' >

where Yoy + .x(%) is the (m, + 2kj) th eigenvector of the free-sliding beam.

It is known [50] that y”, (L) » 0. Hence, Definition 3.3.1 indicates that {,,(x) = 0. This
leads to ¢t # N in Lemma J.1 for a free-sliding uniform beam. Thus, if (J.7) holds in
addition to (J.24) and (J.25) then, when s = 2, v = (3 - 5) mod 3 = 1 so that

az,a.,‘,‘,,’o #0,2%N, (az,af,‘:o)(a,,aft:o) 20, §, (0 =o0. J.26)

Furthermore, it is seen from (K.3), (K.61) of Lemma K.5 and Remark K.1 that there

exists a positive constant, m, , such that
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Voloy) = VL) =0 and o) Wi oy(®x,) >0, 72N @27
for all m and m, + 2kj > m,. Inequality (J.27), when combined with (J.26), leads then to
(8,000 )(@,, W .24(x,)) 20 for all r. (.28)

This last inequality as well as (J.22) and (J.24), together with the periodicity, 2j, of

rotation of ray OA, , lead immediately to the inequalities

1 L 1 ,2
[TI.(M ozkj)[ 2 |ty e, .zu(x,)l > ——(—)m‘az,l
0 L Q"’o’zkj o 10L L L 7.29)

and
T,

1.(0!002&)') Tl.(InooZElj) >

0

where k and k, are two arbitrary positive integers that satisfy m, + 2&j > m, and

mq, + 2k, j > m,. Also, Q,,,o,,,,, is the (m, + 2kj) th characteristic value of the free-sliding
beam. Furthermore, when s = 2, v, = (s + 1) mod 3 =0 and v, = 1 + (7s mod 4) = 3.
Suppose that (J.9) istrue and {(x) € §,, [, (0) € S, , C_'.s,l(x) € S, and {,(x) € S,. Then,

by employing (J.8) as well as (J.12) and (J.13), the inequality

(& ©) () ©)
ag,anno (agoaOmo +agrl a'l"'o +aguaNmo) 20

(J.30)

: (W] ©@ @
i (830%0m, *a;, O mg +a;,Qy,, ) # 0

can be shown for @y = ax, @0, = as,. Qo, = a3, and Q. = ai . Here the notation
d °\|f,,o(x,)/dt° = w_o(x,) is used again whilst r, = r and r; = r,, are two arbitrary integers
satisfying 1 Sr<N,1<r,<Nandr, #r. Itis known from (K.22), (K.24) and (K.25)

that
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oo = Z?_fz Om = (%)"2ws( 2 +8,(x, )) .31
and
Olmy = (-1)"'0"(%)"2 (3.32)
where, from (K.23),
6,(x)=( Sy m (3.33)
0 j 4

On the other hand, it is known from (K.28) that y,,(x,) can be written, for an arbitrary and
sufficiently large positive integer m, in the form

V.(x) = aD+A d.34

where, from (K.26),

A =0, A_= _l_cxp(-Q.%)[l +O(exp(-Q_))], r=0. (.35

LIIZ

Thus, by employing (J.31) and (J.34) as well as (J.35), the T, ,, defined in (J.22) can be

expanded as

N r.-1
T2.n = E a!rw- (xr) = (aSOGO(D")l+030A0m) +2 aSr‘vm(xr) +(a3rl a'(?ﬂ+a3rlArlm)

r=0 rel
N-1 ©
+ 2 aBrWn (xt) + (aSNaN' 4>aZ!NANm)

rer,+1

or
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r-1

= 2 )
TZ.R = ﬁ%o*z a3rwm(xr)+(a3rlarlm+03rlArIn)

re}

J.36)
N=-1
+ E a3r‘"m (xr) + (aJNaN(mﬂ +a3NAN..) .
rer, ¢l
This last equation leads to
r,-1
2 T
Tz.m - (a3rlArlu +a3NAN-|) = Zﬁam +§ a3rvn(xr) "03,10»,(,?.
d.3n

N-1
()
+ E a, V., (x,)+a,, 0y, .

rer, sl

Let k, be another arbitrary positive integer satisfying m, + 2k, j > m; . Then, the

inequalities

“’(.nozk,j)(xr) ar@mo >0 and ‘I’(ﬂozt,j)(xr)ar(o-)lo >0 (1.38)

can be found from (K.60) of Lemma K.S. Furthermore, by employing (K.29), it is known

that
2 a,.+a © +a, o = a, +a ©®  va, a5 J.39)
JAL 30 3rlarl(n°*2kn IN U N(mg*2k)) ‘m 30 3'|a'x"'o 3N"Nm, .

for any positive integer k. Therefore, by employing (J.30), (J.38) and (J.39), it can be

shown that
2 © ©
83, Vo2t j(xr)(ffﬁaSO *@;, Oy (mgo2t,n * By ONimyo2k,) Z 0 (J.40)

so that
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r-1

2 ()
830+ 83, W .2t &) 83, Or meze
rel

( Luz

N-1
* Z a3r %02&1"(‘:) asﬂay(,-,.zktj))x 0.41)

rep,+1

2
(Luz

© (]
Q30+ a3, O me2k,p +8yy Oy ime2k, ) 2 0

with { = 1 and 2. Consequently, the inequality

-l
(L%/z —Tz%0" z: a; Vv m +2k, J(x )+ a,, a(?(mozklj)
N-1
+r§1 A3 Vmo2e i (x,)+ asNaN(moZklj))x
2 r-1 o
(Luz @3 * E A3, Vo2, &)+ A3, Lr me2k, )
N-1
+ El asr\"-,ozk (x )*’asxau(mozgzn) 20
rere

or, from (J.37),

[Tl.(moozklj) - (asrlArl(mooulj) +03NAN(m0~2klj) )] [Tz.(moozkzn

J.42)
-(a3rlArl(moouzj) *aswAN(moozkzn)] 20

can be shown by employing (J.39) and (J.41). In addition to (J.29) and (J.42), a positive

integer ¢, defined by

¢t = 2k,j, J.43)
is also needed in the proof of (J.15). Here k, is the positive quotient obtained when # is

divided by 2j. It is known, however, from the proof of Lemma K.1 given in

Appendix K that ¢ satisfies the inequality
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3n>m+t>n J.44)

for a sufficiently large n.

(J.15) can be proved now by employing (J.24), (3.25), (J.27), (J.42) and (J.44). First, it
is known from the analogous principle of real numbers [55] that, for two arbitrary but
given finite real values g and b, eithera = b or b < a. Now Id,,,o,.l and

@129, . 0)|T; (m,+ | are two given, finite non-negative values. Thus, either

L—z ITI.(mOOI)l < Id .[ - Lzl Tl.(mod) . TZ.(MO*I) 0_45)
2 gm°0! "o my Qi.o..
by using (J.21) or
0<|d,,| =L? Tt + Tt < L_’__I ang] (3.46)
o uod Q:nool 2 Q"O"
If (J.45) holds, then it is seen from (J.29) that
T,
[ dpgue| 2 L_zl_""'°"’| Lia,l 2 (_)“2 - @47
o 2 9"0" 20 Q_O,,
On the other hand, it can be seen from (K.38) that
Q .,<3nn J.48)

b}

for a sufficiently large (m, + 0). Consequently, it can be found from (J.47) and (J.48) that

L|a,| 2 1 Llia,| 2 1 Lia,| 24,1
d =%l 200 el 2yn 2yl gas
4l > —55—(P 9_0,, 30 (L) T TR T ) (.49
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It is known from (J.5) and (J.26) that b,, = 1 when (i) s = 2 and (ii) a given positive

integer ¢ satisfies 0 < r < N. Substituting b,, = 1, 0 < ¢ < N, into (J.23) leads to

- dzgﬂ)(o) t = 0
o= @50)
_(d’C,.(x, ) dzCz,(x,))‘ t% 0. N.
dx? dx?

c= Lmiﬂ(lazll, t = ou svey N-l){z 172

On (£ and m, = mo-b[ J.51)

so that (J.49) can be simplified to

|d, | > cn™t. (3.52)

This last inequality means that, because s = 2, (J.15) is true. Consequently (J.5), indeed,
holds.

A further study is needed when (J.46) rather than (J.45) holds. First, consider
T,, my+ 0 > 0. Suppose

1

2 © ©
Tl.(modj(fu_;aso+a3rlarl(mod)+a3NaN(nool)) <0

J.53)
and [ (
T1,(..°.l; (asrlAr1 (-000) *GSNAN(»'-OOI) ) s 0,

<
TI.(m°00a3rlArl(-ooo - 0' j

Then, by replacing m with (m, + 30) in (J.21), the equality
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T

L.(mg+30) Tz.o-ooso
-

[d..o.sg | = L? l

moo3t S i3
T, wntT 300" T1tm-o
- LomgsD L 1.0mye30 ™ £ 1.img+0)
Q"O’”
J.54)
. T, mgo0 " Taimg 30~ Dmgo3e ™ T gmpen -A,. -0
QiOQSQ
me +3¢ -Anod
M )
gmoou
can be obtained because
Tl.(mo'l)—Tl.(uod) = T2.(m°~l)—T2.(n°0!) = Amoﬂ_Amo'l = 0. (J.SS)
Moreover,
Anod = a3r1Arl(nl00l) *aSNAN(uod) 6
and J.56)
A..Ooso = aerArl(moosn) *asuku(..o.sa)'
Let
81 imge0 = T} tmge30 " L1 mgeny asmn
and
8y imgo0r = (Lo (mgorm “A, 030 (T en -A, -0 d.58)

Then, by employing the identities
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Q- Iy ] Q- +30 Qﬂ L ]
(")"’Q1 501 and (—2 yp_ 1 =_1 | 3.59)
..0.3. Q..o.. my +t LN *30 9-0030 Q.z..o -8 ‘ioo3l

(J.54) can be simplified to

-t 2| Q, o3t Timyen*Biimgen
Q

my 38 mo -t mool

Idmo’Stl = Lz(

J3.60)
Tz.ouo ot 62.(‘-0«) Amo .30 Amoon
+ + | .

‘&000 Qi -t

(o}

To apply (J.60) in proving (J.15), the following inequalities are needed

1
|8[.(m°00 I < W l T[.(mo..) I (1.61)

and

1
Isz.(movfj [ < sm

[T mgot = Amgen |- 3.62)

To derive (J.61), the following equality, which is obtained by employing (K.25) and

K.26),

= @ By )]
‘vaOSQ(xr) -Wmoﬂ(‘tr) - ar(m°03l) +Ar(m°03!) (a'(ﬂo’.) +Ar(m00l))

=A A

r(mge30) L r(mget)

or, from (K.26),
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1 x,
\l’nooal(xr) ‘v-OOI(xr) = m(cxu-gnooarf)[l +0(CXP(‘Q.°.3.))] -

J1.63)
x’
exm-ggoo.f) [ 1 +O(exp(-gnoo.) )])

is useful. In fact, by employing (K.66), it can be found that
1V @)V )] S o (lexp(-Q, 20|+ [exp(-2,, 3020 )
m°03l r mye 8y - -L_T,'z' mooif ..0.3!2- .

Hence, from (K.44),

P | 2 ]
|\If,,°.3,(x,) Vg ()| < 10 ‘(T)m < 10 ‘(I)uz J.64)

for a sufficiently large m, + L Similarly, from (K.21) rather than (K.20),

L ’ L / 2 x,
Wmooal(xr) 'Q—Wuod(xp) I s (Z)xlz( l cxP('Q..O.QT) I

Qm°03l nod

)10 (.65)

+ l cxp(-gmool L

2
< 1074(2)Y2,
(L)

By employing (J.64) and (J.65) with (J.25) and (J.24), respectively, and remembering that

€ = 2jk, , it can be seen that

- -3 1 2 172
Voo 3i®) =W i) | < 107 (7

<1072y, .&)]
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or

1
lwn[)*Sl(xr) -wno¢l(xr) I < % I‘vmod(xr) l 0'“)
and, similarly,
L ’ L ’ o l
I Vm 03l(xr)‘—‘|'ul OQ(x,)I < 0 3 (-)IIZ
Qﬂ003l ° gnoot °
< 107 WVootx,) |
mo el
or
’ L ’ 1 L
mo.a. ‘3'(xr) "z_m;‘vmo*'(xr)l s(x) | Q ‘l’mool(x )I (1-67)

Consequently, it can be shown from the definition of 5, mg+ © * i.e. 3.57), and (J.22) as

well as (J.67) that

sm | 81.(n|00l) l = sm I Tl.(m0030) —Tl.(MOOl) I

500 ’ ’
= _L—Igo azr( Q_ ‘S.WmOOSI(xr)- QM ..WmOOO(xr))I
(o] (o]
|a,, 36X, = Vo dx,)) |
g l!l003. Qn°0l °

< _g | 2r I"z——‘vmool(x )I = 2 IGZ,(-——)W’,,,O..(x )I

r=0
nod moot

or, from (J.22) again,
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1
18, (my+0 | < 300 l T, (mg+0> |- J.68)

This last inequality is just (J.61). A similar proof can be given for inequality (J.62).

On the other hand, it is known from (K.74) that

>0 J.69)

ry (,.o.n"A,l (mg>30)
and
AN(.O.n"AN(,,O.w >0 J.70)

for a sufficiently large (m, + ). On the other hand, it can be found from (J.35) that A,l,,,
and A,,, are both positive for a sufficiently large m. Thus, for T, o, . ¢ > 0, inequality
(7.53) indicates that as < 0. Then, by employing (3.56), (3.69) and (J.70), it can be shown

that, if @,y < 0, the (A,, . 3 - A, .o used in (J.60) satisfies

A"'o’” - Amooc = (aSrlArl(lnoosl) + a3NAN(m°030) ) - (aBrlArl(mool) + aBNAN(mov'l) )
= TG4, (Arl(mo*i) 'Arlono»sc) ) 'asn(sz(mod) 'AN(moosn )20
i.e.
m

Apost =P 20 a.71)

The equality in (J.71) holds, of course, when Gy =Gy = 0. Furthermore, it is known
from the elementary algebraic theory [60] that [a| < b is equivalent to -b < a < b whilst
- £a + b < c is equivalent to -(c + b) < a < (c - b). Here the generic b is an arbitrary

finite positive value whilst g and c are arbitrary finite real values. Thus, the inequality
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T. T

l Tl-(’o“) Tl'(.o") 2‘(.0’.) < l 1."0'.)

+ s
2 Q-o‘! Qﬂo‘. ‘2’2"0" 2 Qnool
or
T - T . >l T ">
--3— l-(ﬂo .) s 2.i 0 )] s - 1 1.0 o .) (1.72)
2 -lod ‘I;O‘. 2 gnod
can be obtained straightforwardly from (J.46) for T, my+0 > 0. Moreover
T mgos = Tomyety “ Dot * A ot d.73)
so that
T, T -A A T,
(m,e0) (mye0 m o+l PRy ] (m -t
2 Q_o,, Qe Q. . 2 Q_,o,,
On the other hand, it is known from (J.37) that,
T. -(a A +a. A )=_2_a +r§aw (x)+a a,‘°’
2,(mgy+0) 37,707 (mye0) 3NT N(mye D L“z 30 st 3r Vmge\'r 3r, 1(mp+®
N-1 o
> 03,Wmo,,(x,)*a3~(l§;(mo..,.
P.q’l

Hence, from the definition (J.56) of A,,.,
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r-1
2 - ©
mg+0 ~ Pmger = maﬂ)*; a3r"’-°d(xr) +3;, Cr (mget>

Tz
@.75)

N-1
()]
* Z a3'v-00' (xr) + a3NaN(m 000) .

rer ¢l

Furthermore, it is known from (J.43) that ¢ = 2k, j. Consequently, when m, + ¢ > m;, it

is seen from (J.41) that

2
(TZ.(llo~') - Amool )(maao +a$'l ar(?-lo *agyal\«!,;)uo ) 2 0. (1.76)
However, (J.53) indicates that
2
Tl.(mo OD(FaSO * asrlar((:_)(-lod) +agNaN(0)(mool) ) <0 (1.77)
and
Tl.(IIOO')(a3rlArl(mool) *a:!NAN(.oo.)) <0 (].78)
or, from (J.56),
Tl.(ﬂo"')Alllool < 0. (1-79)

€0 and — < 0. (J.80)

Consequently, by employing (J.80), the inequality
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Tx.(uo’o) 1 Tl.(-ool) 81.(-0’0 82-“"0’” ” J.849
- -

|y onel 2 %I%T 30 o !
L0 -t mg -t n00l ‘2:.0 Y]

for a, < 0 and a,, < 0. By using (J.61) and (J3.62), (J.84) becomes

d > — P —
el > Bl o755
] (] (]

Tl-("‘o’.)

1 Tz'("'o’” -A"oq

~ 1
500 gio..
or
L. 9 Tl.(-loﬂ) 1 Tx.(n-om 1 Tz.(mooo'Amo,,
eyl > Bl aa 0 g O
mg +¢ L Qmool

because (1/2 - 1/500) > 1/4. Moreover, the last inequality, when combined with (J.78),

yields

Lz( 9 Tx.(mooa) lrx.(mool) 3 Tl.(mod)

— +*
10 @ ,, 49 ., 1000
o o 0

ld...o.g. | > 15

T
2 Lmg o)
L ( 9 °)

P e (e ———e——
510 q,,

because (1/4 - 3/1000) > 0. In summary,
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.
ld_ | > L2 (3.86)
"o 500 <« .,

"o

Then it can be seen from (J.29) that, as ¢ = 2k, j,

T L
dy .30 2 e L? BN -3_L2_'_°L|(3)“2__1_., a8
"o 50 @,., S0 0L L @

By using (K.40), (J.87) can be simplified to

Lla,| 2,1
d > (=), J.88)
4nyenl % S50 T 3
Let
Lmin ,t=0, .., N-1
m, = my+30 and c = (|“2‘|5' . )(%)xfz 3.89)
so that (J.88) becomes
d, | 2 L. 7.90)
n

This last inequality means that (J.15), indeed, holds when s = 2 so that. (J.16) is valid.
That is, Lemma J.1 is true when (J.53) holds and a4, < 0. A similar proof can also be

given for a,; > 0 as well as for the following cases:
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Q)

T, ny-0(2a3+ a5, ar(?no "'asnanr@(uooa) )SO
while ¢ 0'91)
Tl.(mo*b(aZSrlArl(mool)+a3NAN(mod)) =0,
Tl.(m00003rlAr[(mooo 2 0 J
(ii)
\
T, Lmgy+0 Qa,, *as,, (15?,,.0 *asnagzmod) )20
while [ d.92)
Tl.(mo*')(a3r1Arl(mo") "IBNAN(-O‘O)) <0,
T, o095 A, n .0 S 0. J
(iif)
203°+a3,1(!,(?..0+a3"(!§2,,,0,,, = 0. J.93)
Moreover, when T, (my+ 0 < 0, let
' Limgs®) — ~ lTl.(moﬂ) and ITz.(mooo) =~ sz.(..o.n)' J.94)

Then it can be shown straightforwardly from (J.94) that
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'T, T T T,

L.(m,+0) 2.(m, ) 1L.(m0) 2.(m+0)
—_— | = e ——|.. @3.95)
Q.O -t 9-0 ) Q’O -t ﬂi,o -t
Thus, it can be found from (J.21) and (J.95) that
T T
L(mgy+®) 2.my+0)
ld"'o"I =L l_ * I' ITL.(MQ’.) > 0. J.96)

Qmo Ly ] Qio -t

Hence Lemma J.1 can be shown to hold in a similar manner to T, (, . ¢ >0 for s = 2.
The previous analysis is based upon the assumption that the x,/L = j,/j, r =1, ...,
N - 1, are all rational. Suppose, conversely, that the x/L, 1 < r < N, are irrational. Then

it is known [59] that, for a sufficiently large n, there exists a rational number, denoted by

x oL =1/n, J3.97

reN
such that
|x,/L-1/n| € a2, (3.98)
Here /, is a positive integer. Let 84(x,) and 8(x, , ») be the initial angles of rays OA, and

OA,, 5. respectively. Then it can be seen from (J.3) that 6,(x, ) and 0,(x,,, ) are given, for

m = 2jn, by

0,.(x,) = (2jrnx /L)+8yx) and O,,.(x ) = (2jnni/n)+8,(x,.,) J3.99)

where, from Table 1.1 for a free-sliding beam,
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I PR (3.100)
eo(x,) = (1 T)T and eo(x’.x) = (l ..n—)z

after 2jn simultaneously stepped increments. Thus, it can be shown from (J.97) through

(3.100) that

18,(x,) =0, (x| = |2jnm(x,/L-1/n)+0,(x)-0,)) |

X l 5x T 51 Tt
< 2j —_— ~ Do -(1-D_
JM:IL n[+|(1 L)4( n)4| d.101)

l
< 2jnn“+i’.t.|i-_'| < 2j1tn"+£t.n‘2.
4 L n 4
Furthermore, it is known from equation (J.17) and (J.97) that all rational x, /L can be

expressed by

x/L =jlj=(,n)(Gn) and x /L =1/n=(lj)(n),
Wi=U N (3.102)

O<r<A.

Consequently, it can be shown from (J.18) that all the OA, which correspond to rational
x,/L return to their initial positions after 2jn increments. (Note that j is a known positive
integer for a given set of x,, r = 1, 2, ..., N - 1.) Define ¢ = 2jn. Then, inequality (J.5)
can be shown to hold for s = 2 by employing inequality (J.102) and the same procedure
as before - even if some of the x,/L are irrational as well as rational.

Lemma J.1 can be proved analogously for s = 3 as well as for the eigenvectors, {Y¥.(x)),
of a uniform beam having the other end conditions given in Table 3.1. Then the analytical

properties of the eigenvectors listed in Tables J.2 and J.3 are useful.
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(2) Proof of Corollary 3.4.1

The following result is helpful in proving Corollary 3.4.1. It is written in the form of
a lemma.
Lemma J.2. Suppose that m, and m, are an even and odd integer, respectively. Then a
ray, OA, , that has an end point A, which does not coincide with x,/L = 1/4, 1/3, 1/2, 2/3
or 3/4 can be rotated into one of the four plain regions defined in Figure J.1 by taking
either m, or m, stepped increments from any initial position. This statement is also true
for a beam having other than pinned-pinned or sliding-sliding ends when x, /L = 1/4 and
3/4,
Proof

Consider the ray OA, . It has the angle 8,(x,), relative to the positive y,-axis of

Figure J.1, which is given by

0,(x,) = (mmx,/L)+6(x,) (J.103)

after m stepped increments from its initial angle 8,(x,). Suppose a point x, satisfies
0 <x,/L < 1/5. Then it can be found from (J.103) that, for any positive integer m,

0,..x)-0__ (x)=[(m+Drx/L+0(x,)]-[(m-1)nx,/L+6yx,)]

J.109)

= 2nx /L < 351‘. < 23n/54,

a value corresponding to the angular width of each plain region of Figure J.1. Imagine
that ray OA, is rotated into a plain region after m, stepped increments from 6,(x,). The

corresponding angle 9..0(-\?1) can be found from (J.103) to be
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O_O(xl) = (myntx,/L) +0,(x,). J.105)

On the other hand, (J.103) also shows that

0_0_ (x,) = (m,-1)nx, /L+0(x,) J.106)

and

0, ..(x,) = (mo+1)mx,/L+8(x,) @.107)

are the angles after (m, - 1) and (m, + 1) stepped increments, respectively. If neither

9,,,0, 1(x;) nor 9,,,04, 1(x) is in the same plain region as Gmo(xl) then

0, .. ()-8, _(x) > 23n/54. (3.108)

This conclusion contradicts (J.104) for any positive integer m. Hence, the ray OA, , which
lies at either the angle 6,,,D (x) or 0,,0 + 1(x;), must stay in the same plain region as
G,O(xl). Moreover, it is known [55] that m, is an even (odd) integer if (m, - 1) and
(my, + 1) are odd (even) integers. Thus, Lemma J.2 must hold for 0 < x,/L < 1/5.
Consider next a point x, satisfying 1/5 < x, /L < 43/180. The coordinate transformation
x /L = x;, /L - 1/5 is useful in proving Lemma J.2. It can be found from this
transformation that x, /L satisfies 0 < x, /L < 30/180 = 1/6 < 1/5. Furthermore, it can be
determined from (J.103) and the transformation that 0,(x,)|, . s« = Sk®x + kn(5x, /L) +
0,(x,) where k is a positive integer. Introduce a ray OA, having the end point A, that

corresponds to x, /L. This ray’s angle, relative to the positive ¥ -axis, is
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0i(x,) = kn(5x,/L)+8(x,) (3.109)

after k stepped increments from the initial angle 0,(x,). As x, satisfies 0 < x,/L < 1/5, it
can be shown in a similar manner to that for OA, that there must exist an even integer,
k;, and an odd integer, k,, such that ray OA, can be rotated into any one of the plain
regions of Figure J.1. On the other hand, the periodicity of rotation is 2x so that, when

k equals k,, it can be found from (J.103) and (J.109) that

(0,5 |nase, =0 [y ) mod 27 = 0. 3.110)

That is, OA, coincides with OA, . However, when k equals &, , rather than k,, the

direction of OA, is 180° out phase with the direction of ray OA, because

(8,(x)) | use, ~070) iy ) mod 21 = . @.111)

This last equality means that there exists an even integer, m, = 5k,, and an odd integer,
m, = 5k, , such that the ray OA, can be rotated into any of the plain regions of Figure J.1
after m, and m, stepped increments from its initial angle. A similar procedure can also be
applied for any point satisfying x, /L < 1/2 as well as x,/L # 1/4 and x, /L # 1/3. In
particular, the coordinate transformations x,/L = 1/4 - x,/L and x, /L = x,/L - 1/4 are
needed for 43/180 < x, /L < 1/4 and 1/4 < x; /L < 3/10, respectively. Similarly, the
coordinate transformations x, /L = 1/3 - x,/L and x, /L = x,/L - 1/3 are required for

3/10 < x,/L < 1/3 and 1/3 < x; /L < 5/12 whilst x, /L = 1/2 - x,/L is useful for
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5/12 < x, /L < 1/2. Moreover, the coordinate transformation x,/L = 1 - x, /L. as well as the
result of Lemma J.2 for 0 < x, /L < 1/2 can be used to prove Lemma J.2 for x, /L > 1/2
and x; /L = 2/3 and x, /L # 3/4.

Table J.1 indicates that, for x, /L = 1/4, the initial angle, 8,(x, ), of ray OA, is -1/2 and
-n/4 for a pinned-pinned beam and a sliding-sliding beam, respectively. Thus, the first
eight locations of OA, can be obtained analytically from [50]. They are tabulated for
convenience in Tables J.4 and J.5. It can be observed from these tables that after 1, 3, 5
and 7 stepped increments from its initial position, ray OA, lies in the plain regions IV,
L, II and I for a pinned-pinned beam and the plain regions L, II, III and IV for a sliding-
sliding beam. Furthermore, it can be found from (J.18) that the periodicity of rotation is
eight because j = 4. Therefore, there is no even integer, m,, that permits OA, to be
rotated into the plain regions from its initial angle. This confirms Lemma J.1 for a
pinned-pinned beam or a sliding-sliding beam providing x, /L = 1/4. Lemma J.2 can be
obtained similarly from Table J.4 and Table J.5 for a pinned-pinned beam or a sliding-
sliding beam providing x = 1/3, 1/2, 2/3 and 3/4.

The first eight locations of OA, can be obtained similarly for a beam having other end
conditions. They are presented in Tables J.6 through J.13. By employing the periodicity
of rotation for OA, , it can be concluded that, for any one of the plain regions, there must
exist an even integer, m, , and an odd integer, m, , such that a ray OA, , which
corresponds to x, /L = 1/4 and 3/4, can be rotated into the plain region after m, and m,
stepped increments. However, Tables J.6 through J.13 indicate that the same conclusion

does not hold for OA, if x, /L = 1/3, 1/2 and 2/3.
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This completes the proof of Lemma J.2.
By employing this lemma and Theorem 3.4.1, Corollary 3.4.1 can be shown
straightforwardly. In fact, once the set of constants @,,, i = 0, 1, used in (J.7) through

(J.10) are given, the signs of

O (O] @ (63}
QooaOmv Qloaﬂmv Qoza'Zm and 012"'211

are determined. It can be found from Table J.2 that the signs of these values depend only
upon whether m is an even or an odd integer because N = 2 here. In order for (1.7), (J.9)

through (J.11) to be satisfied, for example, the required signs of
i and o,

can be determined for given @, and @,, . They must involve one of the following four

combinations
a® =20 a® =20 a® <0 a® <
and . and . and or and d.112)
m [4) m I
o,.20 a.<0 A 2 Ay <

It is well known [42] that, for a ray OA, located in plain region I after m stepped

increments from its initial angle, i.e. in part of the first quadrant,

Qi = (12-)"2cos(9_(x1)) >0 and i) = -(%)”zsin(e_(xl)) <0 @.113)

and, for OA, in the plain region II or part of the second quadrant,
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a® = (-12:-)“2cos(6,(x1)) <0 and d) = -(%)“%in(ﬂ.(xl)) <0 3.119)

Furthermore, for a ray OA, in plain region III,

a® = (%)*'zcos(e_(x,)) <0 and o® = -(%)”lsin(e_(xl)) >0 @.115)

and, for OA, in plain region IV,

ap, = (%)l’zcos ©,(x)) >0 and o, -(%)“’sin(e,_(xl ) >0 d.116)
Also, Lemma J.2 indicates that, for each plain region of Figure J.1, there exist an even
integer, m,, and an odd integer, m, , such that OA, can be rotated into that plain region
with the possible exception of (i) the eigenvectors of a pinned-pinned and sliding-sliding
beam at x, /L = 1/4, 1/3, 1/2, 2/3 and 3/4 or (ii) 2 beam having the end conditions given
in Tables J.6 through J.13 when x,/L = 1/3, 1/2 and 2/3. Thus, it is seen from (K.22) that
any one of the four combinations given in (J.109) holds sometimes except possibly at the
stated, isolated points. This means that assumption (1) of Lemma J.1 as well as (J.7) and
(7.9) through (J.11) are, indeed, valid. It follows from Theorem 3.4.1 that Corollary 3.4.1
holds except maybe at x, /L = 1/4, 1/3A, 1/2, 2/3 and 3/4. The remaining part of this section
demonstrates that Lemma J.1 holds even at these points.

Consider x; /L = 1/4, for instance, when y,(x) is the m th eigenvector of a sliding-sliding
beam. Suppose that the @;,, i = 0,1 and r = 0, 1, 2, are arbitrary but given constants.

Now, it can be found from Table J.2 that

204



ao(ma'ol) = a2(°()2.01) = (%)”2 > 0 (J.l 17)

so that, when m = § in (J.117),

Qpolos 20 and @, 055 2 0 @.118)

for @, = 0 and @,, = 0. Furthermore, Table J.4 indicates that the corresponding ray.

OA, , can be rotated to coincide with the ) -axis after five stepped increments so that

o® >0 and @,03 >0 for g, >0. (7.119)

On the other hand, it is known from Table J.2 that

o, = 05213, =0 J.120)

for any positive integer m. Consequently,

(1) 1)

010%5"'012%5 = O- (1.121)

Letr, =0 and r; = r, = 1 in (J.9). Then it can be found straightforwardly that (J.9)
holds no matter whether @,, ¥s'(x, ) is positive, zero or negative. Thus, there exists a
positive integer m, = 5 such that assumption (1) of Lemma J.1 and (J.10) are true. Hence
Lemma J.1 is valid for s = 3 and z = 1 when g,, > 0, @, 20 and @, = 0. When @, , @
and @, have different signs, a similar analysis can be followed and the final results are

summarized next:
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()]
001 a13

(1)
Q 11 a15

(V)
901 als

(¢}
Q 11 a3

)
Qo %13

€))]
°1 1 aIZ

(©)
Qo[ aIZ

(48]
911046

©
001 alG

¢))
Quals

©
Qo %16
and

(1)
Q,, %

©
Qo]_all

20

>0,

20

<0,

20

<0,

20

>0,

20
>0,

20
<0,

=20
<0,

L)
or Q“a(m <0

©) o
Qooaos 2 O' 002%3

a
or Qllals <0

© ©

®
or Q,,d,;<0

()] )
Qooa03 s 0, Qoza23

&
or @,0,; <0

() ()
Qooaoz 2 0' Qoza22

or @,02<0

(V] ()}
Qoo%os 2 0, @y, X6

(1)
or Q“als <0

©)
oooaO(OG) S ov Qozazs

or @, <0

Q0o 0; < 0, @, 0%

<0,

<0,

if @020, @p, 20, @,

if @ =0, 0, =0, @,

if @ <0.Q; =0 @,

if @ 20, @, S0, @

fe,20,0,<0 @,

if @ =0, @, 20, @,

if @0 <0, 0,20,
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for s =3,t=1 and ¢, # 0. Again, (J.122) through (J.128) indicate that there exists an
integer m, = 2 or 3 or 5 or 6 such that assumption (1) of Lemma J.1 as well as (J.7) and
(J.9) through (J.11) are satisfied. Therefore, Lemma J.1 holds for s = 3 and ¢ = 1. The
validity of Lemma J.1 can be shown similarly for s = 3 and ¢ = 0, 2 as well as for

s = 2 and ¢t = 1. Thus, Theorem 3.4.1 confirms that Corollary 3.4.1 holds even when
x, /L = 1/4 for the sliding-sliding beam. A similar proof can be derived for a beam having
the end conditions given in Table 3.1 or stated in Tables J.4 through J.13 when

x, /L =1/4, 1/3, 1/2, 2/3 and 3/4.

This completes the proof of Corollary 3.4.1.
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Figure J.1. Defining plain regions I through IV [_].
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Table J.1. Values of 0,(x), 0 < x < L.

End Supports 6, (x)
pinned-pinned -x/2
sliding-sliding -nx /L
clamped-clamped x/L + 1/2)=/2
free-free (-3x/L + 1/2)=/2
clamped-free (x/L + 1/2)x/2
clamped-pinned x/L + Dx/4
free-pinned (-3x/L + Dn/4
sliding-pinned -xn/2L
chmped—sﬁdig (x/L + Dx/4
free-sliding (-5x/L + 1)=n/4
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Table J.2. afo,), and ag,’, , r = 0, N, for a uniform Euler-Bernoulli beam.

End Supports «? and o), r=0,N
inned-pinned © © m (0)) (¢}) -1/2
P P Com = Cym = 0, Gop = Cyoom) = -ENom.1) = L

iding-slidin. g © © (V) Q) 1¢))
sliding-sli Lom = Cxem.1) = ~CNam) = 1 Cop = Cyy = 0

clamped-clamped| ,© _ ,©@ m o 9

Com = Cvm = %om = CnNm
free-free (0] © () ©) 12
®oc2m) = ~ONam) = Fozm.1) = %Nem.1y = (2/0)
) 0] O] m 1/2
Qoc2m) = ENezm) = Zo2m.1) = ~CN2m.1y = (2/L)
CIamped'&ee ag:)n = ag}u = 0, ag)(zm) < o, “g)amd) > O,

M )
ayvemy < 0, Cyom.y > 0

clamped-pinned o © m m ()]
P Com = Cym = Cgm = 0, Cyopm > 0, Gyom.yy < 0
free-pinned (1)) m © (¢)) (¢}
P aly > 0, af) < 0, ay, =0, €yom > 0, Gyomy < O
liding-pinned ()] -172 (¢)) a -1/2 -() ©
S &P ®Com = L » ~Cne2m) = EN@2m.l) = L', dom = @ym =0

clamped-sliding ag:)u = ag;:' = a(Nl')n =0, al(g)(zm) < a%ZMol) >0

freesliding | ¢® > 0, a® < 0, «®,,, < 0, «®,,.,, > 0
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Table J.3. A, ,, for a uniform Euler-Bernoulli beam. x , satisfies 0 < x, < L.

End supports A .
pinned-pinned
sliding-pinned 0
sliding-sliding
L2 exp(-Q,x,/L)[1 + O(exp(-Q,(L -2x,)/L)], 0 < x,/L <1/2
clamped-clamped
L2 exp(-Q,, (1- x, /L))[sin2m + 1)=/2
+ O(exp(-Q , (2x, - L)/L))], 172 <x,L <1
L'2exp(-Q,x,/L)[1 + O(exp(-Q, (L - 2x,)/L)}, 0 < x,/L <1/2
free-free
. L2 exp(-Q,, (1- x, /L))[sin(2m -3)=/2
+ O(exP_GQ4, (2x, - L)/L))], 12 <x,/L<1
L2 exp(-Q,,x, /L)[1 + O(exp(-Q, (L - 2x,)/[)}, 0 < x,/L s 1/2
clamped-free
L2 exp(-Q,, (1- x, /L))[-sin(2m - 1)=/2
+ O(exp(-Q » (2x, - L)/L))}, 1n<x,/A<l1
clamped-pinned
clamped-sliding L2 exp(-Q,x,/L)[1 + O(exp(-Q,)]
free-pinned -
free-sliding
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Table J.4. Locations for a pinned-pinned beam of OA,
after m stepped increments from the initial angle 0(x,).
(I1srsN-1)

Value of m

"Coincidence" with

Region I | Region II| Region III |Region [V] x,-axis X -axis

x,/L
1/4 3 5 7 1 2, 6* 4, 8*
1/3 2 4 5 1 3, 6*
1/2 1, 3* 2, 4*
2/3 1,4 2,5 3%, 6*
3/4 1 7 5 3 2%, 6 4, 8*

* indicates that the direction of ray OA, is 180° out phase with the positive x,
or x,-axis. Otherwise it is in phase. (This symbol has the same implication in Table J.5
through J.13.)

Table J.5. Locations for a sliding-sliding beam of OA,
after m stepped increments from the initial angle 64(x,).

(lsrsN-1)
Value of m
"Coincidence” with
x./. | RegionI | Region II| Region III [Region IV| xc-axis X)-axis
1/4 2 4 6 8 5*%,9 3,7
1/3 2 3 5 6 4* 7
172 3%, 5 2, 4*
2/3 2,5 3,6 4,7
3/4 4 2 8 6 5%, 9 3*,7
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Table J.6. Locations for a clamped-clamped beam of OA ,
after m stepped increments from the initial angle 6,(x,).

(lsrsN-1)
Value of m
"Coincidence" with
x./L Region I | Region II | Region III |Region IV| x,-axis X1-axis
1/4 1,8 2,3 4,5 6, 7
1/3 35,6 1 2,3 4
172 1*, 3 2%, 4
2/3 3,6 L4 2,5
3/4 2,5 3,8 1,6 4,7

Table J.7. Locations for a free-free beam of OA,
after m stepped increments from the initial angle 8,(x,).

(l1srsN-1)
Value of m
"Coincidence" with
x,/L Region I | Region II | Region HI |Region IV| yx,-axis x-axis
1/4 3,10 4,5 6,7 8,9
1/3 7.8 3 4,5 6
172 3* 5 4* 6
2/3 59 3,6 4,7
3/4 4,7 5,10 3,8 6,9
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Table J.8. Locations for a clamped-free beam of OA,
after m stepped increments from the initial angle 8,(x,).

(lsrsN-1)
Value of m
"Coincidence” with
x,/L Region I | Region II | Region III |Region IV] x,-axis x-axis
1/4 1,2 3,4 5,6 7, 8
1/3 6 2 3 5 1, 4*
1/2 2%, 4 1, 3*
2/3 2,5 3,6 1,4
3/4 3,6 1, 4 2,7 5,8
Table J.9. Locations for a clamped-pinned beam of OA,
after m stepped increments from the initial angle 64(x,).
(lsr<N-1)
Value of m
"Coincidence" with
x /L Region I | Region II | Region III |Region IV| x,-axis x;-axis
1/4 7, 8 1,2 3,4 5,6
1/3 6 1 3 4 2%, 5
1/2 4 1 2 3
2/3 3,6 , 2,5
3/4 5,8 3,6 , 2,7
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Table J.10. Locations for a free-pinned beam of OA,
after m stepped increments from the initial angle 84(x,).

(lsr<N-1)
Value of m
"Coincidence" with
x,/L Region I | Region I | Region III | Region [V| x,-axis X 1-axis
1/4 8,9 2,3 4,5 6,7
1/3 7 2 4 5 3*,6
1/2 5 2 3 4
2/3 4,7 2,5 3,6
3/4 6,9 4,7 2,5 3,8
Table J.11. Locations for a sliding-pinned beam of OA,
after m stepped increments from the initial angle 04(x,).
(lsrsN-1)
Value of m
"Coincidence" with
x, /L Region I | Region II | Region II |Region IV| x,-axis x,-axis
1/4 1,2 3,4 56 7,8
1/3 1 3 4 6 2,5*% _
1/2 1 2 3 4
2/3 3,6 1,4 2,5
3/4 3,8 1,6 4,7 2,5
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Table J.12. Locations for a clamped-sliding beam of OA,
after m stepped increments from the initial angle 04(x,).

(lsrsN-1)
Value of m
"Coincidence” with
x,/L | RegionI | Region II| Region I |Region [V| xq-axis X1-axis
1/4 1,2 3,4 5,6 7, 8
1/3 6 2 3 5 1, 4*
1/2 1 2 3 4
2/3 3,6 1,4 2,5
3/4 3,8 1,6 4,7 2,5

Table J.13. Locations for a free-sliding beam of OA,
after m stepped increments from the initial angle 64(x).

(l1sr<N-1)
Value of m
"Coincidence” with
x,/L | RegionI |Region II| Region III | Region IV| xo-axis X1-axis
1/4 2,3 4,5 6,7 8,9
1/3 7 3 4 6 1 2,5*
172 2 3 4 5
2/3 4,7 2,5 3,6
3/4 4,9 2,7 5,8 3,6
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APPENDIX K

This appendix gives details of the results that are used without proof in Appendix J.
First, following a similar procedure to that employed in [33], the asymptotic expressions
of the m th eigenvector, V¥, (x), and corresponding characteristic value, Q,_ , of a free-
sliding Euler-Bernoulli beam are presented. It is known [50] that the analytical
expressions of ¥, (x) and its first spatial derivative for a free-sliding uniform beam are

given by [50]

V.(x) = L—f,i-[coshﬂ,,% +cosQ”.;_‘ -tanhﬂm(sinhﬂm% +sin9m%)] X.1)

and

-Qi\vi.(x) = ﬁ[sinhﬂ_%—sinﬂn%—tanhgm(coshﬂm%+cosﬂm%)] X.2)

where m = 2, 3, ... . Free-sliding end conditions at x = 0 and x = L, respectively,

correspond to [SO]

Va0 = ya(0) = v, (L) = yal) = 0. K.3)

On other hand, 2, satisfies [50]

tanQ_ = tanhQ_, m 2 2. K.49

Furthermore, it is known [50] that

217



Q > mr-__
4

for a sufficiently large m. Let

Sn
v = g - -— -
. — (mTm 3 )

Then (K.4) can be rewritten as

tan(mn-i}+vm) = tanhQ .

Substituting the expansion [42]

Q = 1-exp(-282.)
" 1+exp(-2Q.)

and

tan(m:t-.sTn) +tanV

:an(mn-sT"+v,,) = . -
1 -tan(mn-_;.)tanV_

1+tanV_

into (K.7) leads to

1+tanV, _ 1-exp(-29,)

Toanv,  Tee(-I0,)

This last equation leads, after algebraic manipulation, to
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1-tanV,_

K.5)

K.6)

K.7

K.8)

K.9)

(K.10)



tanV_ = -exp(-2LQ)

V_ = tan"!(-exp(-29,)). X.11)

On the other hand, it is known {42] that

tan-'a = a-.g_’ﬂ?’-ﬁ?&... (K.12)

for an arbitrary real value g satisfying |a| < 1. Furthermore, (K.5) indicates that
-exp(-22,) — 0 as m — . Let a = -exp(-212,). Consequently, the following equality can
be found from (K.11) and (X.12)

exp(-6%,) exp(-102,)

vV, =tan"'(-exp(-R2,)) = -exp(-2Q_)+ 3 3

. exp(-14Q,)
-

or

exp(-4L ) . exp(-8€2.)

V. = -exp(- -
exp(-2Q, )(1 . -

(K.13)
_exp(-12Q,) .

7 ).

It can be observed that the terms
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_ exp(-49,) . exp(-8% ) _ exp(-129.) .
3 5 7

K.14)

form an alternating series because they are altemately negative and positive.

Consequently, it is known [42] that series (K.14) satisfies the inequality

exp(-49Q ) exp(-8Q)) exp(-12Q)) exp(-4Q, )
|- 3 + = - - +..] S —

X.15)
exp(-£2,)
€
3

That is, series (K.14) tends to zero like the order of the term exp(-L2,). Thus, by
employing Landau’s notation [58], series (K.14) can be denoted as

_exp(-4Q,) . exp(-8Q,) exp(-12Q,) .

- - (K.16)
3 3 5 O(exp(-£2,.))

so that (K.13) can be rewritten more succinctly as

V., = -exp(-2Q_)(1 +O(exp(-£2,))). X.17)

By substituting (K.17) into (K.6) and rearranging terms, the asymptotic form of €2, can

be obtained as

Q = mn-_sa’i-exp(-m_)[l +O(exp(-2,))]. (K.18)

By substituting (K.18) and the expressions [42]
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N

sinhQ_ = _;_(exp(a_)—exp(-a,,))
and » K.19)

coshQ_ = %(cxp(ﬂ,.)*—cxp(-ﬂ,,,))

P

into (K.1) and (K.2), the asymptotic forms of y,(x) and y’.(x) can be obtained, for a

sufficiently large mand 0 € x <L, as

2
YA Jor x = 0
v, (x) .-.+ (Z)WCOS[(M_S)nx+1t]+ 1 exp(-Q x)[1+ K.20)
L 4L & L L
+O0(exp(-£2,))], for0<x<L
and
-2 + 4 exp(-6L_)(1+0(exp(-R2))), for x =0
7 T2 m ’
2 . 5 X K 1 x (X.21)
Is'z—"':'("’ =) ~(P)sinl(m - Dr L+ 2] - exp(-Q, D1+
) +0(exp(-R2,))}, forO<x <L
L 0, for x = L.
Now
. mrx,
) me d‘cos( +0,(x,)
10 S n - .
a"'-('[_')l(L) - , i=0,1and 0 <x <L X.22)
where
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Sx
8,x) = 1-—)7 (K23)

1

® _ 5 - 2 w_pu Ly __ 2
Lo = P_E:wno2k(o) = Lll2 » Qo = E?;TuwnoZk(o) = z-iTz-

, K24)

o =tim_L ' @ =0

k= m+2k

and
. . 2 5. L &«
Oy = limy, @) = Pﬂ(z’m°°s“’"*2"‘z”‘z*zl
= mn(%)*'zcos[zkm(m-l)n]
[ Y
or
o, = (-1)'"*(%)“1 K.25)
Let
R 0, fJorr =0 K.26)
- z%cxp(-ﬂ.%)[l +Oexp(-Q_))], forO<r <N
and
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4

L 2

exp(-6L2_))(1 +O(exp(-R2,.))), forr =0

- -#exp(-ﬂ_%)[l +O@Exp(-Q )], for0O<r<N (K27

| O, forr =N.

Then the asymptotic forms (K.20) and (K.21) may be rewritten, at x = x, , as

v.(x) = o®+A _ and giw;(x) =a®+K _,0<srsN. (K28

When x,/L = j /[j (0 < r < N) is rational, i.e. j, and j are two positive integers, it can be

found from (J.18) and (K.22) that

dicos(2kjm+ " +8(x))
‘cos + +0 (x
mn)-l_ Jr L 0 ")

® = 2y
Ay (me2kp) (L) (L T

; mnx,
d'cos( 7 +0,(x,))

= 2 172 mi.-;
(PR —

or
Crtme26p) = Crm (K-29)

for any positive integer k. Moreover, it can be seen from (K.24) and (K.25) that (K.29)
is also valid when r = 0 and r = N. After obtaining the asymptotic expressions (K.18),

(K.20) and (K.21), the next result is needed to demonstrate (J.44).
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Lemma K.1. Suppose m, and j are two given finite positive integers that satisfy 0 < m,
<nand 0 <j< n. Here n is also a positive integer but it can increase to infinity. Then
there exists a positive integer, &, , such that the inequality

3n>m,+8¢>n XK.30)

where

0= 2k X.31)

holds for a sufficiently large n.
Proof

It is known that j is a given finite positive integer whilst n tends to infinity. Thus, n can
be increased such that

rn > 10j (X.32)

is satisfied. Let &, be the positive quotient obtained when 2z is divided by 2j. Then it is
known [50] that

2n = k,(2j)+2n mod 2j (K.33)

and

0 < 2n mod 2j < (2j-1). K.34)

Thus, by using (K.32) and (K.34), it can be found from (K.33) that

2n = ky(2j)+2n mod 2j 2 k,(2j) (K.35)

and
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k,(2/) = 2n-2n mod 2j 2 2n-(2j-1)> 2n-n = n

k,(2)) > n. (K.36)

Let ¢ be defined by (K.31), i.e. £ = 2k, j. It can be found from (K.35) and (K.36) in
conjunction with 0 < m, < n that m, + ¢ must satisfy

3n>m+>0>n X.37

for a sufficiently large n.

This completes the proof of Lemma K.1. By using Lemma K.1, the following result can
be obtained.

Lemma K.2. Suppose that the conditions of Lemma K.1 hold. Then the inequality

%nn <Q ., <3nr (K.38)

is valid for a sufficiently large n.
Proof
It is known from [50] that, regardless of the standard end conditions,

Q >2 form23. (K.39)

Consequently,

exp(-2Q) < exp(-R_) < exp(-2) < % (K.40)
By employing (K.40) and (K.15) through (K.17), it can be shown that
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or

—_ (K.41)
36 4
Hence, it can be found from (K.6) that

9'.0‘. = (mo+!)1t-.5%t.+v_o., < (mo+l)1t-(ﬁt.— 1

7‘:) < (m,+0)r. (K.42)

Combining the last inequality with (K.30) leads immediately to the rightmost inequality
(K.38). On the other hand, the leftmost inequality (K.38) can be obtained
straightforwardly from the inequality

Sxn 5 1
OQMO.. = (mo+!)1t-_4_+Vmo,. > (mo+t)1t-(T+_)

(K.43)
> an-2n > 2% Jor n > 4.

This completes the proof of Lemma K.2. By using Lemma K.1 and K.2, the following
result, which is also needed in Appendix J, can be obtained.

Lemma K.3. Suppose the requirements for Lemma K.1 hold. Then the inequality

xp 10-‘ - -
exp(-Q.o,,T) < T r=1,2,.,N-1

K.44)
is valid when n satisfies
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5> umx(.i_ln(ﬁ.)-l r=1,...N-1). (K.45)

r

Proof

It can be seen that the value of

2 Lin 2%y K.46)

2 Ling

T X,

is a positive constant for a given point x,, 0 < 7 < N. On the other hand, positive integers
have no upper bound. Therefore, it is reasonable to let n, be a positive integer which

satisfies

r

-4
n22Ltn (10 )L, K.47)
ﬂx

This last inequality leads, after algebraic manipulation, to

n x 10-4 -1 (K48)

5T 2o
so that )

exp(—n—) 2 exp(In( 10" yh= (l(: )t
or
_ .1 . 1074
(exp(-—n—)) Y

Le.
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n X 10"
exp(-"rnly < 1070 (K.49)
-t S —

Letn> max(n,,r =1, 2, ..., N - 1), then it was shown in [42] that

n_x n,_x, _ 10
exp(-=n-0) < ——rnt) < . K.50)
Xp(- 5T S exp(-Rp) < —

By employing the leftmost inequality of (K.38) and (K.50)

x, n_x 107
exp( "o"T) s exp( 7“2" < = (K.51)

which is the required relationship (K.44).
The following result is also needed in Appendix J.

Lemma J.4. Suppose Lemma K.1 holds. Then the inequalities

Q. Q. Q.
0.>3.( 0.)"> 9 and N K.52)
Q, .. 10 ., 100 Q2 .. 10
(o] (o] 0

are true for a sufficiently large (m, + 0).
Proof

When n > 15, the inequality

31 (K.53)
2n 10

must hold. This last inequality, together with (K.6), (K.30) and (K.41), leads to

v
S _ Tmpet . 15,1 54
(7 _n:_')] > (m,+O)n[1 7(7 7)] X.54)

1

Qmool = (mo+¢)n[1 -m
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3 1 9
Q. .. > (my+ON(1- =) > (my+ OR(L-22) = (mo+ DT

ie.

9
Q ot > (mo+!)1t..l_0..

On the other hand, a similar proof can be given for the inequality

Q_ .., <3m+0m.

m°03I
Consequently, by employing (K.56) and (K.57), the inequality

Rt Omy+t) _ 3
Q 30(m,+0) 10

mooSI

can be obtained immediately. It can be seen from the last inequality that

Q

myel 9
Qm003l 100

The last inequality given in (K.52) can be shown analogously.

K.55)

(K.56)

K.57)

(K.58)

K.59)

This completes the proof of Lemma K.4. In addition to Lemma K.1 through K.4, the

following result is also needed in Appendix J.

Lemma K.S. Let x, /L = j,/j be rational. (The j, and j are two given positive integers.)

Suppose that there exists a positive integer, m, , such that the ray OA, , which has an

initial angle ,(x,) given by (K.23), can be rotated into one of the plain regions defined

in Figure J.1. Alternatively, it may coincide with the ),-axis. Then, regardless,
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1.2
Iw'o'zjk(x’)l > -ﬁ(z 2 and ar(mnovuoozk](xr) >0 (K°m)

can be demonstrated for a sufficiently large &k and a fixed positive integer j. On the other
hand, Suppose OA, is rotated either into one of the plain regions or it coincides with the

X.-axis after m, stepped increments from 6,(x,). Then

| L
o)

Viganle) | > SV and 0B WL () >0 K61

Proof
* Suppose that the ray OA, cither lies in one of the plain regions defined in Figure J.1
or it coincides with the Y,-axis after m, stepped increments from 0,(x,). According to (J.3)

or (K.23) and the periodicity 2j of OA,, which can be derived from (J.18), the inequality

|cos8, .., 4x,) | > 1_1016 K.62)

holds for any positive integer k and a given j. This last inequality, when combined with
(K.22), leads to

11

00 (K.63)

2 2
Iaﬂ’ = (_L.)"ZICOSG_O,zﬂ(x,)I > (t)uz

On the other hand, the notation O(exp(-2,)) in (K.20) means that there exist a positive

constant, ¢, and a positive integer, n,, such that, when m > n,,

|O(exp(-Q_) |< cexp(-L,). K.64)

Combining (K.64) with (K.38) leads to
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|O(exp(-Q,,_.;,)) |S cexp(-Q, ;) < cexp(- ..";.) (K.65)

for my, + 2kj 2 n,. Let n > max(2In(2cyx, 10j, ny). Then, the inequality

|O(exp(-Q,, ,,) | < cexp(-ZF) < cexp(-In20)) = —

or,

| O(ex“-gnOOZEj)) l < % (K’“)

can be found for m, + 2kj 2 n. Thus, it is known from (K.26) and (K.66) that, when

r=0,
A =1 = Q
r(-|°02kj) = FCXK-QmO.ijT){l'FO(exK- mooij))]
2 X,

Otherwise (K.26) indicates that if r = 0

_ 2 x,
Ar(m°02kj) =0< L[/z cxp(-QHIOOZku)'

Consequently, from (K.38),

2 nx,
r(my+2&)) < "—Luz cxp(-—z T n) (K.67)

holds for m, + 2kj = a. Furthermore, if
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n > max((2) () In(1002)"). Zin(2¢). 10j. n,)
Tt L 14

then, by employing (K.67),

2 X, 2
A aen < 7’T,exp(-; ™) < TrpexR(-In(1002)")

or

2 1
Ar(m{:,v2kj) < ('Z-)UZT(E" (K'68)

Consequently, by using (K.63) and (K.68), the following inequality can be found from

(K.28)
© 2 11, _ ,2unl
|V,..o.m(x,)| 2 'ar(mooij) | -A'(ﬂlo‘?-ff) > (f)uz(l—o-d-'—lo—o') - (T)uzl—o- (K-69)

This last inequality proves the first inequality of (K.60). On the other hand, it is known
from elementary algebraic theory that |a| - b > O is equivalent to a < -b or a > b. Here
the generic b is an arbitrary finite positive value and a is an arbitrary finite real value.

Thus, the inequalities

ag:)"o’zkf) +Ar(m002kj) <0, '..far(lz)mo¢2kj) <0 (K.70)
and
a'(o()ll002kj) +A"(l°02kj) > 0’ l:fa,(o()mo.an > 0 (K-71)

can be demonstrated. The last two inequalities lead immediately to
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22 (Xrmgeziy Ay 2i) > O K.72)

Consequently, the second inequality of (K.60), i.e.

Uy Vi 21y 5) > 0 K.73)

can be obtained by employing (K.29) and (K.72). A similar proof can be given for (K.61).
This completes the proof of Lemma K.5.
(Remark K.1. It can be shown straightforwardly from (K.24) and (K.25) that (K.60) is
also true when r = 0 and r = N whilst (K.61) holds just for r = 0.)

Finally, the following result is needed in Appendix J.
Lemma K.6. Suppose that Lemma K.1 holds and x,/L = j,/j is rational where j, and j are
two given positive integers. Then the inequalities

4 r(moo3|)

A oA >0 K.74)

hold for a sufficiently large (m, + ) and 0 < r £ N where m; is positive integer.
Proof

It is known from the proof of Lemma K.5 that there exists a n, such that, when

n > n,, (K.66) holds so that
|OCexp(-Q,, )| < .- K.75)
This last inequality leads, additionally, to the inequality
| O(exp(-R2,, o)) | < |O(exp(-2, )| S 2 K.76)

By employing (K.75) and (K.76), the inequalities
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1 X,
Amyrsn = STz, o )1+ O(exp(- 2, 3)))]
&.77)
3 r
< wexp( -9-0’3‘T)
and
1 X,
rmg e Wexp(-ﬂ_o,rr)[l +0(exp(—$2_°,,))]
(K.78)
> 1 Q xf
= —2L1,2 exp( - ,.o.'—L—)

can be obtained from (K.26) for 0 < r < N. Consequently,

l r 3 r
Ar(mooa) 'Arouooso) = TAL exp( 'Q..oorz') - -ZLTC"P( - 9m003lf)

or

1

- 2
r(mod) r(m003!) = 2L”1

X x,
exp(-Q_o,,T)(l -3cxp(-(QM°’3,-Quo’,)T) X.79)

can be shown from (K.77) and (K.78). On the other hand, it can be shown from (K.41)

that, because /4 > 1/4,

STV <Im.E - 8% (3 (X.80)
7 7 2

-~ -4_

This last inequality, when combined with (K.6), leads to
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Q en > (m,+30nt-3x. (K.81)

Furthermore, it is known from (K.42) that

Q, ., < (m+O)T < 2(my+O. (K.82)

Thus, by employing (K.81) and (K.82), the inequality

_0.3.‘0‘"0.' > (m0‘3!)(1 - 331)“'21‘(”!0*')
0
or
m003l-gl!lool > n[!-(mo+3)]- (K-83)

can be demonstrated. Furthermore, it is known from (K.31) and (K.36) that € > n and,
hence, £- (my + 3) > n - (my, + 3). When n > max((x, /L)" (In6)/n, n,), the following

inequality can be found from (J.79) and (J.83), viz

A -A > _L _exp(-Q 2y -3exp(-(Q ..-Q )2
r(mq+t) r(mg+ 30 2L“2 Mo’.L mg+30 mqo+t L
x’ xr
> ST exp(—ﬂmo’,f)(l -3exp(—n(!-(m°+3))f)
xf xf
ST exp(-Q“o,,T)(l -3exp(-n(n —(m°+3))T)
x'
> VAL cxp(-Q.o‘,T)(l -3exp(-In6))
or
1 xp
r(...o.n'Ar(..o.ao > We"p(-g”'o"—l:) > 0. (K.84)
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This completes the proof of Lemma K.6.
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APPENDIX L

It is shown here that the conditions required by Theorem 3.4.1 are satisfied by the
numerical example. In the example, N = 3, x, /L = 0.25 and x, /L = 0.5 are the two points
where the second derivatives of the GFM functions, {,,(x) and {,,(x), are discontinuous.
On the other hand, the third derivative of {,,(x) is discontinuous at x, = 0.5L. The n-
dimensional subspace, S, , in Theorems 3.3.1 and 3.4.1 is formed by {,,(x), {,,(x) and
Cx(x) in addition to the (n - 3) eigenvectors {y(x), m = 1, ..., (» - 3)} of a uniform
cantilevered beam. Suppose that OA, and OA, are two rays that have the initial angles
0,(x;) = /8 and 8,(x,) = 0, respectively, to the n-axis. These rays rotate counterclockwise
about the origin, O, shown in Figure J.1 of Appendix J in increments of x,7WL (OA,) and

xUL (for OA,). Then it can be found from Table J.8 that the following inequalities

Qo) =0, (e,a)(e,,x) =0, if @,@,20
@.1)

© ©
Q% 20 or @,x; <0

and

(¢))

Qllalg * 01 (Q“a(g)(elzagg) 2 o’ ':f Qllqlz s 0

€L.2)

qoza,‘%’ 20 or Qozaéo; <0

hold fors = 2 and ¢ = 1. Also,
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Q.o # 0, (@,0{)(e,,aD20, if @,,20

@.3)
Q051 20 or @,0 <0
and
0,05 # 0, (@,05)(e, @D 20, i @,@,S0
r.49
Qoza’z(o; 20 or Qoza'g <0
when s = 2 and ¢ = 2. Furthermore,

e,05<0, ifg,20 and @,a?20, ife, <0,0,87=0

holds for s = 3 and ¢ = 2. Thus, (J.7) and (3.9) through (J.11) of Lemma J.1 are satisfied.

Moreover, the functions form a set of 4-GFM functions so that Theorem 3.4.1 applies.
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APPENDIX M

This appendix derives equations (2.2.1) through (2.2.3) of the freely vibrating beam
shown in Figure 2.1 by employing the Euler-Bernoulli beam theory. The notation of
chapter 2 is used in this appendix. First, consider the equation of motion of an element
of the beam that is given in Figure 2.1 and which is also shown in Figure M.1. Let
w(x, t) and O(x, t) be the transverse deflection and rotation of the beam whilst V,(x, )
and M,(x, ) denote the shear force and bending moment acting at a point, x, and at an
instant of time, . Furthermore, p(x) and A(x) represent the time independent axial

force and external, distributed load along the x axis. Then transverse equilibrium yields

v 9, . 00 . Fw
-(VI+E{dx)+Vf+(p+§p.dx)sm(9+$.dx) -psin® = pAdx_a?. M.1)

Rotational equilibrium about the centroid, O, , of the cross-sectional area is shown in

Figure M.1. It produces

M Y%
M+ S22 dx) -M,-(V,+ L dx)dx +A,dx %X sin@
ax ox 2
M.2)
dp . .00
4P 1vydx dx)= 0
* @+ I dsin(de)
whilst the longitudinal equilibrium creates
@+ 2P dx)cos (0 + R.dx) -pcose -4,dx = 0. M.3)
dx ox

By employing the following approximations in the Euler-Bemoulli beam theory [50]
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d0 J I

sin(@ + —dx) = 9+ —dX
- s
sm(Tdr) - de, cos(6+.&.dx) « 1, cos® « 1

and neglecting higher-order terms involving (dx)?, equations (M.1) can be simplified to

v, 30 dp FPw
- + + A
—Ldrep_dx 62dx =p dxat
or
Ny, 30) _ ;4 Fw
ox ox F
or
8V ) az
5
eI - M.3)
Moreover, (M.2) and (M.3) can be simplified to
v, = 2 (M.6)

and
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ap _ 4. M.7)
dx

On the other hand, it is known from the Euler-Bernoulli beam theory [50] that

M, (x.0) = El(x)f%. M.8)

Substituting the last equation into (M.5) and (M.6) produces

b o iw Fw
- El = A_. 9
F 5 ax(”ax) s M-9)

Now consider the equation of motion of the lumped mass, M, , and the rotary inertia,
J, , in Figure 2.1. The corresponding free body diagram is shown in Figure M.2. M,
(&, ). V;(L, t) and p(L) are the bending moment, shear force and axial force of the
beam whilst K, (w(L, t) + 1, 0(L, ©)) and B, O(L, t) represent the transverse force and
torsional moment due to the deflection of the linear spring K, and torsional spring B,
shown in Figure 2.1. The P, in Figure M.2 is a time-independent, concentrated

external load acting along the x axis at x = L + ¢; . Transverse equilibrium leads to

- K, (WL .F) +0,8(L, ) +V,(L.D) - p(L)sin® = MI%(w(L.i)
t

M.10)

ow(L, t))
‘" ox
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On the other hand, rotational equilibrium about O, , the center of gravity of the

lumped mass M, , yields

(e, ~N)K,(W(L,D)+1,8(L.1))-e,V,(L.P) +e,p(L)sin®

(M.11)
-BoL.H-M,L.H =5, L LD,
Y oi ox
Furthermore, longitudinal equilibrium gives
pL)cos® = P, . M.12)
By employing (M.4), (M.10) through (M.12) can be simplified to
& oo WD) )+ ow(L,?) Fw(l,t)
-K,(w(L,.t)+n, ~ )+p(L) = 2(EI(L) 3 —_—)
M.13)
> o ow(L,
= Ml?(w(va*’el (ax ﬂ)
0 Pw(L,?) ow(L,?) Fw(L,?)
-elg(ﬂ(L)—axz—-V(el‘TII)KI(W(L.f)*Tll = )-EKI(L) 3
M.14)
. ow(L,?) ow(L,?) _ ow(L, t)
e.pL) ox ~Bi—3 ~ ox a ( ox
and
pi)=P,. M.15)
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By employing a similar procedure, the following equation can be derived from Figure

M.3 for the lumped mass, M, , and the rotary inertia, J,, illustrated in Figure 2.1

aw(O )

ow(0,7) _ &# 2 @0 azw(O.?))

)+p(0
VPO === Fy

-K,(w(0,)-m,

oy P . ow(0,9)
MOF(W(OJ) e )

- e B0 220D o (¢, -1 K000, -1, 2Ly () FWO:D)
ox ox ox?
. aw(o £ _p w05 _, & w05,
PO —57= "B = b Y =
and

p©O)= -P,.

M.16)

M.17)

M.18)

P, is a time-independent, concentrated external load acting along the x axis at x = -¢,.

Suppose the beam of Figure 2.1 is in free vibrations corresponding to the j th natural

frequency, ;. Then w(x, t) can be expressed by [SO]

w(x,f) = w, fx)(Acosw,i +Bsinw,i)

M.19)

where w, (x) is the corresponding eigenvector. Substituting (M.19) into (M.9), (M.13),

(M.14), (M.16) and (M.17) and letting A, = 0} leads to the equation of free vibration

of the beam shown in Figure 2.1 as
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? Fw, JO N aw, (x) _
Ta?(H == )= P — ) PAA W, (x)
aw, (0) ow,(0) & Fw, (0)
- - + e (EI(0) — L —
K,(w, (0) -7, 5= )-p(0) 3 3x2( ) 5 )
ow, (0
= M A (w,;(0)~¢, alf ))
FPw, (0 ow, (0) Fw, ,(0)
eO%(EI(O) ‘;‘:2( )) + (e, =N K (w, ,(0)-110-%) - EI(0) ;:2
ow,,0) o 9w, 0) _ I aw, ,(0)

~eoPO—g—*Bo—gi— = A ——

W), w L) @ Fw D)
K, (w (L) ﬂlT) p(L) 5 37 (E1 e )

ow, (L

= Mllj(wli(L)d-el_%)

and

2 Fw, L) aw, (L) Fw, (D)

el.g(EI(L) 3;2 )‘(el'ﬂl)Kl(wu(L)"'ﬂlﬂlx—)*’EI(L) 8:2
aWU(L)+ ow, (L) =J A ow, (L)

“aPO—g— P T I

244

M.20)

M.21)

M.22)

M.23)

M.24)



Lett,,n=1,2,..,5 be lincar maps that are defined by

w, = (pA)"i(Ezaz“' M.25)

e 5“’7‘

1

T, = Mg [K,(w a" o "(0) "’2 = EO) a:( )y1  M26)
- d w, (0 ) )
W, = Jol[e0 ax(H(O) &Uz +(e,-NY K, (w, 1(0) no__g’(_
M.27)
_EI0) azwu(O) 0y 2" ow, (0) B, ow, ,.(0)]
ax ox

ow (L) _ a= (Ha=wu(1.))] (M.28)

T ox ox?

w, (L)
‘ ‘j = Ml [K (WU(L)"'ﬂl ax ) P(L)

and
- ’Fw ow_ (L)
W, = I ' e ‘ai”m‘) 3:( )) =(e,-n)K (w, (L)+n, gi )
M.29)
«EIL) azwl j(L) (L) aw (L) Bl awl J.(L) ]
ox ox
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where

2 = Wi 0 -€wik0),  w; = wif0),

and :

W, = wU(L)-t‘eI w,',(L), w,, = wl',(L). )

Consequently, equations (M.20) through (M.21) can be rewritten as

TW, = ljwu, O<x<lL
W, = ljwzj

T,W,; = 3-_,-“’3 ;

T W, = ljwq

and

Aw

TsWs; = AWs; -

It can be found that equations (2.2.1) through (2.2.3) are just concise forms of

equations (M.25) through (M.35).
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M.31)

M.32)

M.33)

M.349)

M.35)



M, +—" dx
w(x, 1) M; gk 3
) y
[
[
; |Vf )
l
' I
| I
| {
[ (
0 A 'l $x

———

Figure M.1. Free-body diagram of an element of the beam
shown in Figure 2.1.
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B1O(L, 1)

Me(L D)
w(x, 7) (V (L, D
‘ f — P 1
e
L) —3_ _
rl | oL, )
: 1 Ky(ey - )WL, &) + 0 8(L, D)
i
- l . n
wiL.t), (K,w(L,D+n08L, D)
i | '
| Lo
| | |
0 '] 2 J 1 _" x

2

Figure M.2. Free-body diagram of the lumped mass, M, , and
the rotary inertia, J; , shown in Figure 2.1.

248



Figure M.3. Free-body diagram of the lumped mass, M|, , and
the rotary inertia, J; , shown in Figure 2.1.
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