
THE UNIVERSITY OF W O B A  

FREELY VIBRATING BEAMS 

Submitted to the Faculty of Graduate Studies 
in Partial Fulfilment of the Rcquirementts 

for the Degrce of 

DOCCOR OF PHILOSOPHY 

Department of Mechanical and Industrial Engineering 

Winnipeg, Manitoba 



National Li'brary 1*1 ,canada 
Bibliothèque natianale 
du Canada 

Acquisitions and Acquisitions et 
BiblÏographic Services s e w b s  bibliogra~hiques 
395 w ~ i  Street 395, nie warï'aiga#i 
-ON K1AON4 OltanisON K 1 A W  
Canada canada 

The author has granted a non- 
exclusive licence allowing the 
National Library of Canada to 
reproduce, loan, distribute or sell 
copies of this thesis in microform, 
paper or electronic formats. 

The author retains ownership of the 
copyright in this thesis. Neither the 
thesis nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission. 

L'auteur a accorde une licence non 
exclusive permettant à la 
Bibliothèque nationale du Canada de 
reproduire, prêter, distri%uer ou 
vendre des copies de cette thèse sous 
la fome de microfiche/film, de 
reproducticn saï pzpier ou sur fomiat 
électronique. 

L'auteur conserve la propriété du 
droit d'auteur qui protège cette thése. 
Ni la thèse ni des extraits substantiels 
de celle-ci ne doivent être imprimés 
ou autrement reproduits sans son 
autorisation, 



FACVLTY OF GRADUATE STUDIES 
*+*a* 

COPYRIGHT PERiMiSSION PAGE 

A TbesidPracticum submittd to the Facdty of Gradoate Studies of The University 

of Manitoba in partiai fulnllment of the reqainments of the degree 

of 

DocmROIrPIiILOSOPEY 

Daqing -g 1997 (c) 

Permission bas b e n  granteci to the Libray of The Uuiversity of Manitoba to lend or  sel1 
copies of this thesW/practicum, to the Nationai Library of Canada to microfilm this thesis 
and to lend or  sel1 copies of the film, rad to Dissertations Abshlcts International to pubiish 

an abstract of this thesis/practicum. 

The author reserves othet publicatioi righb, and neitlicr this tbesis/practicum nor 
extensive estmcts from it may be printed or othcrwUe nproduceà without the authoc's 

written permissioa. 



To Dr. C- S. Chang 

and 

To the rnemory of my late fatha 



An operator based formulation is usai to show the completenes of the eigenvectors of 

a non-uniform, axiaily loadcd, transvcrsely vibrating Euler-Bemoulli bearn having 

eccentric masses and supportcd by off-set linear springs. This resuît gcneralizes the 

classical expansion theorem for a bcam having conventional end conditions. Furthermore, 

the effect of truncating a series approximation of the initial deflection is investigatcd for 

the first tirne. New asympotic forms of the eigenvalues and eigenvectors arc determineci 

which are themselves often sufficiently accurate for high frequency calcuiations. 

A numencal procedw no&y needs to be used for a transversely vibrating Euler- 

Bernoulli beam bving complicated interior and end conditions because closed fom 

solutions (including th& asympotic forms) art mostly beyond mach, The Rayleigh-Ria 

approximate procedure has bcen applied widely to seE-adjoint problcms in stnictural 

dynamics. However, the numerical convergence of the Rayleigh-Ritz procedure 

deteriorates significantly if Gibbs phenornenon accws. In this thesis, geneialized force 

mode functions are suggested as one meam of avoiding this effect. The convergence rate 

of the eigenvalue approximations rcsuhing h m  the use of such fiuictions is detennined 

for a discontinuous, h l y  vibrating Euler-Bernoulli beam. Momver, the pointwise 

convergence of the derivatives that conespond to the practidy important bending 

moment and shear force is examincd for the fmt tirne. nien. a numericati example is 

given to corr0brate the new theory. 

Non-self-adjoint systems are encountcd when viscous damping ~OICCS or a gymscopic 



effect exists. The gencratiztd force mode functions mahod is extendcd to accommodate 

a spinning Timoshenko barn having a stepped cross-section. Numeriai data suggests that 

this appmach can very accuxately approximatt the backward and forward precession 

frequencies, bending moment and shear force. 
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INTRODUCTION 

1.1 Introdudion 

Both the rotary inertia a d  shcar deformation arc ntgïcctd in the Euler-Bernoulli mode1 

of a frec. transvcrsely vibrating beam. Aithough the mode1 is limiteci to a beam having 

a small flexural wavelength to lemgth ratio [Il, it is a simple and widely used 

approximation for beam-like smcaires which may have additional mass or rotary in- 

at their en& (cg. a rnast supporthg an antenna [2], or a single jomt robt  carrying an end 

payload 13, 41) or which may be loaded axially (an accelerating missile [SI). In the 

analysis and control of beam vibrations, it is extremely important to undexstand the 

eigenvlue distributions and eigenvectors as well as the inauence of parameters, such as 

the off-set of a lumped mass and axial force, on the dynamic behaviour 16, n. In most 

cases, it is impassible to obtain an anaiytid salution for a beam having a complicated 

cross-section, except for several particular cases, e.g. [8]. On the other hanci, hrst ordtr 

asymptotic estimates of naturai frequencies have btcn presented in [9] for a non-unSom 

beam having conventional end conditions such as simpk supports, fixcü, siiding or pinned 

ends. However, no rigorous justification was given. A sirnilar procedure has been 

employd in [IO] for a beam having arbitraxy elastic displacement and rotation constraints 

at its ends. However, refertnce [10] Wed to explicitly iden- the data included in the 

estimates. By chifjing the asympotic solution of a cantilevereû beam, this thesis dcrives, 

rigorously and uplicitly for the fmt the .  the nrSt and second order asympotic forms 



of the eigcnvalues and eigenvectors of a non-URiform Euler-Bcmoulli beam having non- 

conventiod end conditions, i.c. ecccntric masses suppmd by off-set linear springs. 

In addition ta the asymptotic tstimates of the natural frcquencics, a practicaiiy important 

problem concems how a perturbation of the bcam's end conditions influences its natural 

fkquencies. This question may a- h m  the dynamic anaiysis and control of a mbotic 

manipulator. Numerical results [3,4] illustrate that such behaviour is particuiarly difficult 

to aanlyze whcn the centre of gravity of the xnanipulator's payload das not coincide with 

the manipulator's end or alters as a task changes. Furthennom, no theoreticai anaiysis has 

bcen derived to indicate whether the ciassical inclusion principle can be employcd to 

estimate the natural frequencies. To c w  this impomt point, a demilcd theorttical 

analysis as weLi as numerical data are presented in this thesis. It is concludtd that the 

classical inclusion prhciple is invalid for an off-set mas. Furthennore, the off-set of a 

mass mainly influences the positioning accwacy. 

An important issue in the numerial simulation of the dynamic respo~~~e of an cxtemally 

excitai beam concems the completeness of the eigenvectors. Completmess is needtd in 

a Hilkxt space and conesponâing energy space to ensure that (i) a baun's initial 

conditions or an extemai force can be txuly expanded in tcm of the eigenvcctors, and 

(ii) the bencihg moment can be prcdictcd reiiably [Il]. Furthemore, completeness is a 

hindamental rquirement when eigenvcctors an uscd in the Rayleigh-Ria method for 

seif-adjoint problems or in the Ga1erki.n methad for non-sesadjoint pmblems. For a non- 

Worm bcam having conventid ends, completencss is a diricct rcsult of the weU-known 

Sturm-Liouville thcorcm [12]. On the other hami, this thcorcm cannot bc appied 



straightfonivardly wtim a m a s  or rotary inercia is connectecl with a longituâinaï off-set 

to an end of a bearn. Thcn the integrai ktmel of the eigenvaiue problem &pends upon 

the eigenvalues themselves 1131. A formai statement of the completenes of the 

eigavcctors has been given in [14,1!5J by observing the onhogonality of the eigenvectors 

and employing the delta hction. However, it has btcn show in 1161 that the 

orthogonality of the eigenvectoxs is neither a necessary condition nor a sufncient 

condition for their complttent~s. A rigoms proof of completeness rnay employ a Hilbert 

space theory [13,17 - 191 or a S-Hermitian bouncky value approach 1201. The main idca 

behhd these two methods is to a;ursfcer the original eigenvalue problem to an integral 

equation with a kemel function indcpendent of the eigenvalue. For example, a Hilbert 

space fonnalism was used in [21] to pmve the completcness of the eigenvectors of a 

transvetsely vibrating, non-uniform rotating beam having one end fixed and a mass 

locacd precisely at the other end. Cornpietenes was also shown in a Hilbert space in 1223 

by using a perturbation thtory for a non-unifonn cantilever btarn having an axial foze 

and the centre of a (eccentric) mass off-set h m  the frec end. In this thesis, the 

completeness of eigenvtctors in both a Hilbefi space and an cnergy space is confirmacd 

by employing operator theory for a bcam having more than one eccentric masses and 

supported by off-set springs. 

In addition to completeness, another fiindamental problem is to &tect how closely 

eigenvectors c m  approximatc a bown function, likc an initial dcflection, when a transient 

response is fornulatecl in terms of such eigenvtctors. In o t k  words, h is important to 

determine how rapidly numerical amrs decrease as the number of eigenvectors incrtases. 



Suppose, for exampIe. that a nuiaion has continuous denvatives upo orda thrcc and aïs0 

passesses a piecewise con~uous fourth order derivative. The classicai expansion theorem 

for a bearn havmg conventional ends 1231 mes tbt, if this fiinaion satisfics aii the 

beam's end conditions, a series expansion as weîi as each Serjcs obtained by 

difftrentiating it upo three h e s  converge udormly and absolutely at each point of the 

bcam. However, the work prescnted m this thesis demonstrates tbat the classical 

expansion thearem stiü appiïes when the fiinction is expandeci in tcrms of the 

eigcnvectors of a Euler-Bernoulli beam having an eccentric m a s  and possibly sprhgs off- 

set h m  both ends - evcn when the function does not satisfy a s i n e  end condition. 

Analytical solutions, including asymptotic f o m .  are clearly important bccause of the 

insight they provide into a structure's behaviour. Unfortunately, they cannot lx found for 

mat rcal structures so that numerical mtthods have to bt employecl. The Rayieigh-Ritz 

procedure is a weïl established numerical method. It traditionaily employs continuously 

differentiable fimctions to approximate the eigenvalues and eigenvectors of, say, a frtely 

vibrating Euler-Bernoulli barn  1241. These fiinctions may be a set of Mependent 

polynomial functions or the eigenvectors of a unifonn Euler-Bemoulli beam having 

conventional end conditions. However, such functions can produce significant numerid 

oscillations in the practically important second and third defimion derivatives near 

discontinuities or the b a n ' s  boundaries. This is callad Gibbs' phenornenon [25]. 

Momver, the eigenvalues arc approximatcd poorly [25 - 2q. To avoid this phenomenon. 

a mixd Rayleigh variational appmach [26]. in which the âeflection and stress are 

considercd simultantously, can be used for bcams having a continuous stress distribution 



despite material discontinuities. However, a iargtr eigenvalue pmblem is generated ard 

the eigenvalue estimates am not necessarily uppcr bounds. Another approach reporteci in 

[26] approximatcs merdy the stress. AIthough the cwrdinate transfomation givm in 1281 

can be appkà, a complicated second order difkrential equation is produceci. A non- 

standard finite element approach has also bem proposcd [29, 301 in which solely the 

deflection is appximated by using a suitable average for the varymg cross-section or 

material characteristics of an element [30]. However, this procedure again does not 

nccasariiy produce uppcr bound esthata for the cigenvalues. Morcover, these methods 

cannot avoid Gibbs' phenornenon at the discontinuities of the bending moment and shear 

force of a beam having interior iinear and torsional spring supports or lumpcd masses. 

Force mode functions and quasi-cornparison hctions have been use4 with a uniform 

bcam's eigemrectors. to accommodate interior springs [21] and natumi end corditions 

[31]. The force mode fimctions are associated with the static dtflection of the beam. In 

particuiar, the fmt order force mode function is the dtfltction found by rcplacing an 

intemediate spring with an analogous concentxated force. However. an outstanding issue 

concems appropriate huictions when a ngid body motion occm d e r  a spring has k e n  

removeci. Furthermo~, it may be difEicult to derive an analytical form when a non- 

uniformity is not piecewise constant [32]. On the oiher han& quasi-cornparison functions 

involve at least two sets of eigenvectors of a d o m  beam correspondurg to different 

natural boundary conditions. Whcn a barn has discontinuities, the beam has ta be dividcd 

into diffant  pieces at the discontinuitics. Then a set of quasi-comp9iison fiinctions have 

to be & f d  on each component. Finally. ttie appoximate solution is resolvcd by using 



a component made synthesis, It can bc expectcd that, with more discontinuities, a m e r  

eigenvalue problem is critatted again. Momver, rcgardlcss of approach, no pointwise 

m r  estimates have bem derived yet for the bending moment and shear force, To 

overcome these problems, a unifleci approach, calied the generalized force mode (GFM) 

funftion method, is proposed. The pomtwise convergence of the practically important 

bending moment and shear is deriveci and confirmed numexicaiïy for a f b l y  vibrating, 

Euler-Bernoulli beam. F&y, the GFM fiuiction method is appiicd, in conjunction with 

the Galerkin method, to solve the fke vibrations of a non-self-adjomt, spinning 

Timoshenko beam having a discontinuous cross-section. An tasy way of constnrcting the 

GFM functions is proposed and numencal data demonstrates that Gibbs phenomenon does 

not happen at the discontinuity of a bendîng moment or shear force. 

13 Objectives of ThcsiP 

The main objectives of this thesis arc stattd next. 

A. To m n t  a detailed prccedurr whidi generalites and significantly extends previous 

expansion theorem 1221. The extension enables a non-unifonn beam to have more than 

one eccentric mass and be supported by springs that are off-set h m  one or both its ends. 

Furthemore, the k t  and second order asymptotic estimates of the natural frcquencies 

arc &riveci explicitly for the h t  the. The exor h m  tnuicating a series approximation 

of the initial deflection U also investigated, This investigation uses an extended inclusion 

principle to formulate new and easily enurnerate& asymptotic f o m  of the eigcnvalues 

and eigenvectors when an eccentric rnass is Pdded to a bcam. Moreover, the principle 

a f k n s  the numerical data given in [3] and disproves the paradoxical observation stated 



in 143 that a iarger mas, at a given eccentricity, can inclza~e a particular naîurai 

frequency. Finally, the mathematicaï formula dtmonstrating the influence of the off-set 

of a lumped mass is deriveci for the hrst tirne. 

B. To dcvelop a unificd procedure for selecting admissible functions in order to handle, 

in the Rayleigh-Ritz meth06 a cornplex Euler-Bernoulli beam having complicated interior 

as well as end conditions. These functions involve the eigenvectors and genecalized force 

mode functions of a unifonn beam having conventional ends. Gencmlized force made 

(GFM) functions may be constructcd by finding the static deflection of a uniforni beam 

arising h m  eithcr a concentrated moment or force acting at the location of a 

discontinuity. Thus, dixontinuous defiection &rivatives are approximated by 

discontinuous fiuictiom. A rigomus tramnent of GFM fwictions is also ne& to 

guaranttee that approximate solutions have a high convergence rate with an inmashg 

number of admissibk functions. This important aspect is presented in this thesis dong 

wiîh ncw e m r  estimates for the eigenvalues and eigenvectors. Furthemore, sufficient 

conditions are proposed for the pointWise convergence of the second and third defîection 

derïvatives. These conditions are proved for a b a n  having an arbitrarily located 

discontinuity. They art suggtsted numericaily for more than one discontinuity. A 

numerical example is a h  given to corûirxn the thtory and demonstrate that Gibbs 

phenornenon is avoided when GFM functions arc employed in conjunction with the 

eigenvectors of a unifon Euler-Banouiii beun having standard end conditions. 

C. To extend the GFM methoâ in order to d y z e  a non-self-adjoint problem involving 

a stepped, spinnîng Timoshenko bcam. To achieve this end, a g e n d  mcthod which 



employs Hermite polynomial interpolation is proposed for the c011st~ction of the GFM 

fimctions. This approach advantagcously avoids the necd to solve a boundaxy value 

problem in order to hnd the static dtflection. Furthemore, it may providc simpler forms 

of the GFM functions. Accurate numerid data suggests that the approach has grcat 

potentiai. 

1 3  Thesis Layout 

This thesis has five chapers and thirtecn Appendices. The results nccdcd ta achieve 

objective A are presented and discussed in Chapter 2. Chapter 3 dcals with objective B 

whilst Chapter 4 considers objective C. Finaiiy, conclusions and rtcommendations are 

presented in Chaper 5. Detailed proofs are given more conveniently in Appendices. 



FREE VIBRATIONS OF A NON-UNIFORM 

EULER-BERNOULLI BEAM 

2.1 Introduction 

The comp1cteness of a beam's eigenvectors is fundamentally important in a genemlized 

Fourier's series expansion. This is because completeness ensures convergence when the 

tigenvtctors are employai to approximate, for example, an initial deflection. Momver, 

completeness is a primasr requkemcnt in the successful application of the Rayleigh-Ritz 

or Galerkin methods. Reference 1221 has shown the completeness of the eigenvcctors of 

a non-uniform, axially loaded, cantilever Euler-Bernoulli bearn having a mass off-set h m  

its frce end. This chaper generalizes and significantly extends this work to a beam having 

two eccenmcally located masses as weii as off-set springs. For simplicity, the static 

deflcction caused by the total weight is assumed negügible as m 12, 3. 4, 5, 221. 

Completeness guarantees convergence ody when the number of eigenvectors tends to 

infinity. In practical computations, however, only a finite numbcr of eigenvectors can be 

employed This limitation leaàs inevitably to a so-called tnincation emr. Consquentiy, 

a question arises as to how the truncation emr decreases with the use of an increasing 

numbcr of eigenvectors. This chaper clarifies this important issue by deriving the 

convergence rate of a gaieralized Fourier's series baseci upon the use of asymptotic forms 

of the eigenvalues and eigenvectors. These asymptotic fonns are deriveci by empoying 

an extendad inclusion principle. They are usehl not oniy in a convergence analysis but 



a h  in the approximation of the exact higha valued eigenvalues and conespondhg 

eigmvectors. FuRhermoxe, the Muaice of an off-set mass on the eigcnvalucs is clarifiai. 

This work is motivatcd by the nced to assess the positionhg accwacy of a robtic arm 

when rhe payload's centre of gcavity cbanges with differcnt tasis or does not coincide 

with the am's end 

22 Euler-BeIMNlUi Beam Tbeory 

A non-uniform buim having hgth t is illusmted in Figure 2.1. Ihe M, . 3, . Kr and 

8, (r - O, 1) shown indicate (positive) lumped masses and rotary inenia as welï as 

rectiiinear and torsional spring constants. The non-negative e, and tl, , on the other han& 

repmcnt respectively the distances (ic. longitudinal off-sets) of the centres of gravity of 

the lumped masses and the tips of the linear s m g s  outside the ends of the ban. A(x) 

and p art, respoctively, the arca of cross-section and density of the beam whilst E(x) and 

Z(x) are the Young's modulus and moment of inertia of a cross-section. respectïvely. 

Furthermore, H(x) is positive and a s s u d  to be twice differcntiable whilst pA(x) is 

positive and continuous. That is, then exist two positive constants c, and c, such that 

Q(x) 2 c, > O and p(x) 2 c, > O for O S x S L. Then the frtc vibrations can be found 

from (M.25) and (M.31) of Appcndix M to be 

si wil = (PA)-' [(H w,;' ) "- @wJI  =A,wij. O < x < L  

where p(x) is a continuaus axial force such that buckling is avoidcd [SI. Note that an 

equation number with a letter p f u r  is given in the corrcsponding Appaidix. Momver, 

A, and w&) arc the jth eigenvaiue and comsponding eigenvector, nspectively, and a 

10 



prime superscript indicates a dintr~~~tiation with rcspct to x. If the expiicit fhction of 

x is ornitteci for brevity, it can bc found (M.26) through (M.30) and (M.32) thmugh 

(M.35) that the end conditions can be wmïtttn as 

and 

whaek-  Oor 2, r - O i f k - O  othenwiser- 1, whilstxo-O,x, -L.Thes,, a- 1, 2, 

..., 5 define a mapping in which 

w 2 , ~ w l ~ o ) - c o w : ~ o ) .  w,jrw*(0), 

and 

w,,=w1JL)+e1w:,(~). W ~ = W $ L ) .  

Completeness of the eigenfiinctiom WU be considcmd next. 



2.3. Completeness of EigemrecfOm 

By refomuiating (22.1) through (2.23) in an operator fonn. the eigenvectors' 

completeness can be detemineci in a Hilbert space and an en- spacc. Foliowing the 

proposai of Frcidman [13]. define 80> as a Ailbert space having five-component vec to~~  

such that 

(2.3.1) 

with the inner product gîvcn by 

for two arbitrary vcctors Fm (f,. .., a) and G - (g,. .... g,) E RO>. Here SP2@A. 0. L) 

designates a Hilbert space of square-integrable functions wiîh weight pA(x). C is the set 

of complex numbers and the ovcrhead bar denotes the complex conjugatc. Furthermo~e, 

plfl - ((<F. F>d3)*. F E a<? &fats the norm of H? 

Define a Lincar vcctor operator IL Domm) -+ dn such that 

for every Y = (y,. y, .... y*) E D o m O  where the y,. i 2 2. axe dtfktd in Ull~ls of y,(x) 

and its denvative at x, - O and x, - L by (2.2.4). nie D o m o  describes a domah of II 

thPt iP dense in 80? The proof of the densiîy of D o m o  m R" is given in Appendix A. 

Morcover. the range of II is in 80> so that the y,'"(x) nceded in (2.2* 1) Iw in 

S'@A. O. t). Furthcnnore. (2.2.1) through (22.3) may be icwritten succinctly for the 



j th eigmvak A,. and comsponding eigmvector. w, (x). as 

II WJ = xj WJ 

is the jth eigenvector of operator II. Relation (2.35) shows that the completencss of 

w,kx) foollws h m  the completeness of eigenvcctor Wj which is stated fonnally next but 

proved in Appendix B. 

Theorem 23.1. A positive constant c eUsts such that an energy space EO> c m  be formed 

by complethg a space having the inner product 

w h i l ~  Wa, - (CC ~ > ~ ~ 9 ~ ~  for F. G E D o i n O .  Momver, the eigenvecton. Wj, 

j - 1. 2 ... form a complete orthogonal system in Hn and E<? That is. 

<WiT Wj>,, - 0  - cWi. Wjwas), i +  jand 

for an arbitrary vector F E HO whilst 

for an arbitrary F E E<n whez 



TO estimate the em>r mtroduced by tnmcating (23.7), the ordcr of the (i, given by 

(2.3.4) is important. This point is considerd in section 2 5  after fïrst prcscnting the 

xequircd asymptotic estimates of the eigenvalues and eigenfiuictions. 

2.4. Eigenvalue proPeiLies 

The fundamental propcrties of the eigenvalues are investigattd next. Then the fim and 

second order asymptotic estimates arc prcsented. F W y .  the eigenvalucs of a flexible 

maniplator are considercd as a practical application of the theory. 

2A.1 Tbeoretid Analgsis 

The firu order asymptotic estimate of the eigcnvalue. A,. of a non-uniform cantilever 

beam may be employai as a convenient base for odm end conditions. Fint, howevcr, the 

general seend order asymptotic form. wfil(x). of the j th eigcnvector. w, (x). is needcd 

as j + a. It has k e n  shown in Appendix C @ascd upon [9]) to take the fonn 



*) = J&x)dx and a(x) = (&X))-=(EI(X))-~ 
O 

The A,. 4. C, and D, used in (2.4.1) are constants which depend upon the order, j, as 

weii as the @cular end conditions of a beam By substituting (2.4.1) into (2.2.2) and 

(2.2.3). 

[Sv](AjBj CJDj)' = (O O O O)' (2.4.6) 

is obtained where the E , , i and j = 1, 2, 3, 4 arc detailed m Appendix D. The Aj. Bi. Cj 

and D, are not generally zero simultanwusly so that the determinant of [S , 1, d*(Z , ), 
wiïî nonnally be 

clet(=,) = O .  (2.4.7) 

This condition, of course, provides the ficquency equation h m  which A, can be 

cstimated By employing (2.4.1). (D.28) and m.33). the foUowing rcsult can be shown. 

Theorem 2.4.1. The tirst order asymptotic e~timatt.(zj)~ a, of z p .  M i  within (2.42) 

and (2.45). is (2j - l)H2 for a non-uniforin bcam which is cantilcvered. 



Proof 

Let 

whcrc j, and V j  need to be determincd for 1 O, 1 S n/2. It can be shown. essentially h m  

(D.28) and (D.33). that, for Ko - a. B, - 00. Kl - 0. BI = O. M, - O and JI - O. the 

asympotic fhquency aquation and the comsponding Aj, BI. C, and Dj are given, as 

in whichfi] = O(&)) means that there exists a positive constant, c. which ic independent 

of j and such that k] 1 d c lgo) 1 as j + m. Combining (2.4.8) with (2.4.1) and (2.4.9) 

yieldr V, + O as j 00 as well as the first onder asympotic form 

w : ~ ( x )  = a(& [cos Q,P/ o -sin a$/ o - exp(-Q,31 a) 

(2.4. 10) 

+(-lyexp(-(1 -2 lo)Q,,)] +Mi-') 

Now the fimction in the square parentheses of (2.4.10) constitutes the n th eigenvector of 

a unifonn centilever beam [33]. Thus, wifl(x) has (n - 1) nodes in O c x S t [34]. 



Howeva. it is hown 1341 thpt w ~ ~ ' ( x )  has (j - 1) nodcs so that j must equal n. 

Consequcntly. it can be seen h m  (2.4.11) that jo must equal -1 and, h m  (2.4.8). that 

rio has the required first ordcr asymptotic value of (2j - l)xn because Vj + O as 

j +  .o. 

(Remurk. Aithough the asymptotic estimate of 5 has beai stated prcviously for a non- 

uniform cantilever barn, cg. [9], no rigomus proof has been prcsentd) 

An inclusion theorcm is given ntxt as a means of hnding the approxiniate eigenvalues 

of a non-UDifonn beam due to a change in either the axial force or the beam's end 

conditionsI 

Theorem 2.4.2 (i) If an eccentric mass or rotary inertia is added to one end of a non- 

unifonn kam. which has the j th eigenvalue &;. the modifieci beam's correspondhg 

eigenvalue. As. will Satkfy A,- ,' 5 A., 5 A;. 

(ii) La 5" and Ây be the jth eigenvalues comsponding to a beam having a constant 

axial force f or p. rcspcctively. wherc p" S p(x) 5 f l  for O S x S L. Then the j th 

eigenvalue. A,. comsponding to the spetially varying aual force p(x) satisfies 

A,-- SA,+ y'. 
Theorcm 2.4.2 is an extension of the classical inclusion principle (e.g. [35]) in which 

a m a s  without eccentricity is c o n s i & d  Its proof (using min-max and max-min 

pineiples) is very simüat to the ciassical one. Details can be found in Appendix E. 

nie foliowing kmma end theorcm ue needed to detamine moie precioe asymptotic 

estimates of the cigenvalues. 



Leninia 2.4.1. The eigenvector wIj(x) and its fim spatial dexivative. which conwpond 

to a simple eigenvalue. depend continuously upon (finite) Kr. Br. Mr . Jr . r - 0, 1 and 

P(x)- 

This lemma can be obtained M y ,  excep for M, - O - Ir, r - O and 1, by using the 

clessical Rellich's perturbation theorcm on operator ïï 1361. For M, - O - Jr. il nads to 

be modifieci so that it can be defined in a Hilbert space whose elemcnts corzcspond to a 

v-r having fewer than five components. In this case, the pmof of the lemma is 

analogous to that given in D7J for the numerical stability of the mund-off error 

introduced by differcnt admissible fiuictions in the Rayleigh-Ria approach. The proof b 

provided in Appendix G. 

Theorem 2.4.3. If e non-zero S is not a repeated eigenvalue, then 



for a Mr with eccentncity er and a Kr with off- cd. r - O and 1. Fuithermo~t, when p(x) 

is constant, 

Proof 

Suppose r - 1 and tbat .D > M, 2 O is changed to M,' due to the augmentation or lors 

of a mass at x - L whilst ail  other parameters (Idce e, , e, etc.) rtmain fixai. Dcnote the 

comsponding Hilbert space. the j th eigenvalue and eigenvector by R(? A; and W;. 

ricspectively. Then it can be shown straightforwardly that 

Consequently, the partial derivative of S with respect to Ml can be found to be 

Substituthg 2, - A > O h m  (2.4.2) into the iast equality and using Lemma 2.4.1 yields 

The 1st equation is simply (2.4.12) with i - 1. Similar p f s  can also be demonstrateci 

for the othcr derivatives. 

Two practicai applications arc prcscntcd in the fbilowing stctions. 



2A.2 mmptotic 

It can be shown ftom Thcorcm 2.4.3 that &,BK,. &,las, and az )/ap tend to zero as 

j + .o for a bcam having a constant axial force. Then ~ o r c r n  2.4.2 (ii) indïcates that 

(z,), u is independent of fiaite K, . fl and p(x). Equation (2.4.12). on the other han& cm 

be used in conjunction with Table 2.l to find the analogous effkct of adâing M, or J, at 

x - x, . r = O and 1. For example if r - 1, (2.22) and (2.2.4) lcad to 

nie iast equation does not &pend upon w&) and its derivatives at x - O so that. by 

using (2.4.1). it can be âemonstrated that (w,(L) +el w'@) - O(i-l) as j 4 .o rcgardless 

of the conditions at x - O. (Monover. it is shown later that all z, have the same 

asymptotic order of j whüst (W, is &monstrated in Appendix F to be bounded bclow 

and above by constants.) Thenfore the asymptotic order of ,/aM1 can be found h m  

(2.4.12) to be j x jq - j-L. Conscquauly, adding M, nt x - x, does not change the 

asymptotic eigenvalue. The asymptotic order of w,(x) and its derivatives at x - x, . 
r - O or 1, can be determincd similarlly. Oniy the rcsults axe sumrnarized in Table 2.1. 

The fkst order asymptotic tigenvaiue estimates of the beam shawn in Figure 2.1 can be 

deriveci now by using Theorcms 2.4.1 through 2.4.3 and Table 2.1. To illustrate the 

procedure, suppose a non-unifonn k m  has a constant axial force and the end conditions 

i& - &, - and Ml # O + J I .  & < 00 - Kl with qi - O # e l .  Consider first* however. the 

same beam but withait the axial force. cccentric mus. M, . and rotary inertia, Jl . The 
ciassical inclusion principle 1121 and (D.28) indicatc that (zi)* a then respectively satisfics 



w f i a t  the uppt  aod Iowa boundr correspond to tbe jth and (j + 1) th values of (23, O 

for a cantileva beam. Thur (& o must equal (4j+ 1)~/4. Now. add the mass Ml 

eccentridly at x - x, . Theurem 2.4.2 (i) and 0.28) show that 

(4j-3)n14 5 (?),a S (4j+l)n/4 and cos(z,),a = O (2.4.19) 

so that (za, a - (23 - lW2. F i y .  add the rotary inertk, Il . at x - x, . Thcorcm 2.43 

(i) and 0.28) indicate that (z,),a then satisfies 

(2j-3)n/2 5 (zj),a S (2 j - l )d2  and cos(r,),~ = 0. (2.4.20) 

Now (zj), a cannot be determined uniquely f h n  (2.430) so that Theorem 2.4.3 and 

Table 2.1 aie needed First. the asympotic order of W'~~(L). comsponding to the previous 

end conditions of 4 - O with el # O t M l .  p, c 00 - RI, and il, - O, c m  be found to be 

j J  fiom the intersection of the fourth column h m  the right and the fïfth row finm the 

bottom of Table 2.1. Moreover, Theorem 2.4.3 indicates that &,la, tends to zero as 

j + m. That is. there is no change in (z& a when j + 00 due to the addition of JI  . 
Fmhermore, it can be shown h m  (2.4.13) and Theorcm 2.4.2 ci) that a constant axial 

force Qes not influence the fixst order asymptotic estimate so that the previous 

(z,), O - (2j - l)W2 still appïies and it is the finai rcsuit. 

Other end conditions can be trcatd similarly. The resuits are summarized in Table 2.2. 

This table ccmfîrms that, for given conditions at x - x,, . (r, ), o i.e. (r, ), is indepndav 

o f K r 2 . ~ p w e l l a s ~ i € K  1 ~ ~ u d ~ r 2 c - . w h e r r r I , r 2 - O o r 1  butr, tr , .Onthe 



and 

a' 1 1 
( z j ) p  = [(qla+-] +(-)- ~ O F  - 4 + a 

j 4 

A, and 4 am given by 0.29) and lAl Ih, 1 can tend oniy 

4 (2.4.23) for 1-1  -+ 1. 
4 

to the indicated limits as 

j + m. The &/A, m (2.4.22) was inadvertcntly negiectcd in [8] for the particular example 

of a non-unSom ~8ntilever bcam. 

By substituting the h t  (or second) order asympotic estimates of z p  into (D.3 1) and 

(D.33). the comsponding A], Bj .  C' and D, can k found and the h t  (second) order 

asynptotic estimates of the eigenfunctions can k obtained straightforwardly~ These 

~ s u l t s  are used to determine the order of the a, &fïned by (2.3.9). 

2.43 Iniluence of an --Set, Lumped M a s  

Thcorcm 2.4.3 is employed in this section to invcstigate the practicai e f f e t  of an off-set 

pnyload on îhe positionhg accuacy of a fkxible rnanipuiator. For sirnplicity. aily a 

unifonn beam is considerd for which K, - B, - O. Then it can be seai h m  equation 



(2.4.12) that 

whcm o, is the j th natural fmpency satisfying aj - (X,)'" whiist a prime superscript 

indimes a differcntiation with respect to the spatial co-orrdinate x and 

The pA in the last equation is the barn 's  mass pr unit length so îhat O: l; is the kinetic 

energy of the jth mode. Equation (2.4.25) l a d s  to the obscmation that a unit, independent 

change in el modifies of ï', by @M,(w@ + el w', (L))w', (L) - the term containcd in 

the quarie parentheses of equation (2.4.24). Conscqucntly Rayleigh's principle 1121 may 

be useci to ~traightfommdiy vaiidate cquation (2.434) e n  that, to k t  order. the saalli 

e ~ g y  ir umfEOCttd by e, being modified Haice. as suggested by equntion (2.4.24). the 

fiquency variation depends sofely upon the change in the kinctic amgy. 

When. as done hm, wI;(L) io set invariably to unity. the inequaiity 

can be found immeAistcly 

whm e, b changed alone if (w,,(L) + e,) or. in non-dimensional fonn. (wlj(L) + elYL is 

negative (positive). Althaugh such ~rcnds arc apparrcntly simple to predict. the application 

23 



of bqualïty (2.4.26) may be limiteci by the o h  tedious computation of w,(L) (and 

w', (L)) [3]. However, a numaical example is givm next to demonstrate that the 

inequalïty pxovida a uJdul check when variations in a, aie cornplex. 

Suppose pA(x) = constant and =(x) = constant such that 

and 

These values are identical to those uscd in 131. The ratio ajl  mOj, where moj is the j th 

naniral fiequency for an identical payload with no off-set, was computed by using double 

precision arithmaic on a SUN14 - 280 wmkstation [38, 391. nie results for different 

values of el IL art prestnted in Figures 23(a) and 23. Gocd agreement is demonstrated 

with limited previous data 131. On the other hancl, Figurc 2.2(b) gives. for the hrst tirne, 

the values of (w,(L) + eJL, w',(L) - 1, componding to the fkquency ratios of 

Figure 2.2(a). 

Figures 2.2(a) and 2.3 ~tveal  that the fundamental naturai fiequency is aff'tcted most by 

a given variation in a payload's off-set. Indeed, these figwcs &monstrate that a,/ q,, 

deviates mart from one as the mode number, j, generally decritases and el /L incrtases. 

Not unexpectedly. thercforc, a particular pay1d  has a detrirnentaiiy -ter innuence on 

the overall dynamics as the off-set grows. If an off-set is ncglcctd, then the lowcst 

frcquency modes - particularly the hindamcntal mode - shodd bc controllcd to achicve 



mone accwatt positioniag of a heavy p y 1 d  [7& 

A cartful wmpar*on of Figures 22(a) and 22@) cornborates imquality (2.4.26). 

T h e  figures show that a,/ q,] decnases for mode j - 1 but increascs for j - 5 because 

the componding (w, (L) + eJL is always positive or negative. respectivtly. Mode 

j - 3 is more intercsting. The (w,(L) + e,)L is negative upo about e, /L - 0.0345 but is 

positive otherwise. Thus. the wmsponding o, /q,, gmws and then diminishes with 

inmashg e,lL in a way that is consistent with ïnequality (2.4.26). This dichotomous 

bchaviour, momver. confimis thaî an inclusion principle cannot hold for the third naturai 

fkequency because its value may either incrta~t or demase when el /L is perturbed 

around 0.03. 

25. Comrergence Rate Estimates 

Tk objective of this d o n  is to investigate the convergence rate. j4. of laj 1 as 

j + 00 for a non-uniform beams initial deflcction, y&), in order to determine the 

ciifference ly&) - y.(x) 1. Here y, (x) L the summation of the f î t  n urms of ihe infÿiite 

Sefies 

cdtuting y, (x). The next resuit is needed to achieve the objective. 

Theorem 2.5.1. Let represent any one of the four fwictions w&). (l/~,a)w,~'(x). 

(l/zj a)%,,"(x) and (lkj a)3w,;"(~) as j + -. Thtn the inequaiîty 



holdr for any fûnction. y(.).  that is piecewise continuous in O S x S L [a. Hem c and 

subscquently c,. i - O, 1. 2 ..... are gmeric positive constants. 

Proof 

Consider initially the case of PAX) = wl@). Set the ~(x) of (2.42) to zen, so that the 

iesulting wfil(x) from (2.4.1) represents the first order appraximation of w&). Hence. it 

is known fiom [34] that then exists a positive constant, cl. which is independent of j and 

such that 

Cl 1 w - w ;  1 4 - 
i 

as j + .o. Equation (2.4.1). combined with the genenc mequality lab 1 5 1 a(& - c) 1 + 

loci. leads to 

whae c, - o>ax (a(x)A, . a(x)Bj. cx(x)C,,. a(x)D,, ). It can be shown straghtfomardly 1411 

that 



and 

where c, is a positive constant which is independent of j. Consequentiy, 

Taking c = cl c, + 4c2 c, produces (2.5.1). Similv proofs cm also k formulateci for the 

remaining functions. 

By using Table 2.1 and Thwrcm 2.!Ll. die convergare rate, j*, of la, 1 can be found 

as j + .o. To illustrate the procedure, suppose the initial deflection, yo(x), of the non- 

unifonn beam of Figure 2.1 has continuous &rivatives up to nfih order. Let the skth 

derivative be piecewise continuous. 

(2.2.3) ltads to 

Integrating (2.3.9) by parts and using (2.2.2) and 

1 

whtrc the function &(x) as weiï as R, Rb and R, r - 0,1, arc detailcd in the fwtnote 



of Toble 23. It can be s e n  h m  Table 2 2  that, as suggested prcviously. the z, ail have 

the same asymptotk order of n. Furtfiermore. it ù shown in Appcndix F that two positive 

constants, cl and c,. exist such that cl < IWjl# < c2 for aU j. On the other hand if, for 

crwnple, y(x) = EZ(x)ROff(x) and z(x) - -(p(x)R/(x))', Theonm 2.5.1 indicates that the 

integral multipficd by zJd in (25.7) behaves lilre jar j - j-' as j r m. Moreover, the 

asympotic behaviour of w ,&), wl,'(x, ), w,"(5 ) and (ETwlJxr ))' can be found for diis 

particular beam fimm the twelfth rightmost mw of Table 2.1 to be j-'. j ". j 2  and j ', 
~spectively. Therefore, the second and thid terms in (25.7). which correspond to the 

summations, have the asympotic order j and j". mspectively. Consequently, the thiid 

asympotic tenn dominates and larl S cj" as j + a, where c is a positive constant which 

is independent of j. However, if the initial deflection, yo(x), satisfies the m e r  conditions 

R, - Rb - R, - O, r = O and 1, the third texm becornes mo and, hence, 171 S cjd as 

j + .o. If, in addition, R,' - O, r - O and 1, thcn the second ttrm is &O ztro so that 

lo,l S cj" as j + 0. Now the foomote of Table 2.3 suggests that the conditions 

R, - R, = O cornpond to the static end conditions when M, and Jr , r - O and 1, do not 

exist. Thus, an initiai deflection caused by a static extemai force automaticaUy satisfies 

R, - R, - O but not necessarily R, - R,' - O, r - 0, 1. 

By using Table 2.3, the emr produccd by truncating y,@) can be estimatesi h m  the 

ineqwty 1401 

For example, if lajl S cj* as j + -, the hst inequality, when innomKed into the 



Thertfore, an appropriate n u m k  of unns can be chosen, a priori. for the series with 

knowladge of the asymptotic behaviour of laj 1. Table 2.3 indicates that this behaviour 

depends smngiy upon a beam's end conditions. 

(Remwk. Table 2.3 can also be applied to a series expansion of an initial velocity as well 

as ta the situation involving an extenial force.) 

2.6. Conrlusi011~ 

Compkteness has been shown in a Hilbert space and an energy space by employing an 

operator thcory for the eigenvectors of a non-uniform. aually loadcd, Euler-Bemouiii 

beam having eccentric masses and supponed by springs. C o n s ~ t l y .  the general 

solution to the forceci and fiet vibrations of the btam can be obtained in tenns of a 

surnmation of these eigenvectors. On the other han& a muication error is inevitable in 

practical computations. Therefore. in order to detexmine how the tmcation emr 

decreases with the use of an incrcasing number of eigenvectors, the convergence rate bas 

ken  anaiyzed and tabuîatcd. nie nnilts demonstrate. for the fmt the. that a series 

expansion in terms of the eigenvectors. as well as each series obtained by diffcrentiating 

it upo thrce times, converge Woxmiy and aôsolutcly. This result implies that the 

eigenvectors of a non-uniform beam having tcccnaic masses and springs should -ce 

a high convergence rate when uscd as the Rayleigh-Ritz base hctions in the component 

mode synthesis. 'Lhic conjectwc is substantiated numericaiiy in 1431 thugh illustrative 



examples. 

In addition to the completenes and convergence rate, asympotic estimates of the 

eigenvdues and eigenvectors have becn derivecl to approximatt the higher onicr, exact 

eigenvalues and corrcsponding eigenvcctors. These estimatcs arc simple in form so that 

thcy can be applied, for example, to the dtsign of distriiutd fttdback by using 

independent modal-space conml [6]. Then the optimal distributecl conaol force is a 

s~1~1111âtion of modes whose weighting coefficients can k approximated easily and 

accurately at high fnquencies by employing the asymptotic estimatcs. Moreover, the 

effict of an off-set lumped mass on the lower natural ficquencies of a beam bas also becn 

investigated It is demonstrated ht, for a given m a s ,  an off-set influences mainly the 

fiindamental naturai frequency. Practicaliy, this means that a robot's positionhg accuracy, 

say, can be influenad by the off-set of the payload's gravity centre. 



Figure 2.1. A non-uniforni beam having general end conditions. 
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Figure 2.2 . (a) 'Zhe nafural fkquencies and (b) corresponding aiterion 
values. a, Data of reference [3]; *. ordinate scales have to 
be muitipiied by given factors. 



Figure 2.3. Variation of higher frequencies with an off-set mass. 





A UNIFIED APPROACH AND ITS NUMERICAL APPLICATION 

3.1 Inti.0duction 

Asympotic solutions were dcrived in the prcvious chaptcr for a single-span, non- 

W o n n  Euler-Bernoulli beam having complex end conditions. UnfortunatcIy, most real 

beams have discontinuous cross-sections or materials so that asymptotic solutions may not 

be found so easiiy or even may not existe Furthemo~, low fnquency information is often 

nctdtd in the practicai design of a beaxn. AE exact solution approach, however* bccomes 

l e s  tractable as the variation in a beam's cross-section gets more complicatd Then a 

Rayleigh-Ritz or Galerkin procedure that employs the eigenvectors of a uniform beam 

having a standard fixe& fret or simple end suppon is gcnerally p r c f e d  However* such 

an appmach can produce poor appwiniations due to Gibbs phenomenon [25.27] when 

a beam has discontinuous material propcrties, interior masses and spring supports as well 

as nonconventional end conditions. In this chapter, a genealized force mode (GFM) 

methad is introduced to avoid the Gibbs phenomenon and speed the convergence rate of 

an approximation. To present this appreach, the Rayleigh-Ritz procedure is rcviewed fmt 

for a Euler-Bernoulli beam having general intenor and end conditions. Then the concept 

of GFM functions is defined. Subsquendy, emr  estimates of the eigenvaluts and 

eigenvectos arc derived when GFM functions arc used in conjunction with the 

eigcnvtctors of a uniform Euler-Bernoulli bcam having conventional end conditions. 

Furthermo~t, pointWise e m r  estimates of the second and third dcflection &rivatives arc 



derived unda specifiad conditions. Finalîy. a numencal example is givm to conûm die 

theory and verify that Gibbs phenornenon is truiy avoideb An extension of this method 

to Galericin's pmaxkc is given in the next chaptcr. 

3 3  Rayligh-Rh Approlch 

Consider a h l y  vibrating Euler-Bernoulli kom having length L. Unlüre the previous 

chaper. the f l e x d  rigidity El(x). mass per unit length pA(x) and an axiai force pdx). 

where x indicates a typical distance h m  the beam's lefi end. may not continuous. 

Furtbcrmore, the beam is supported by an elastic foundation having stiffness Le(,). La 

b o t e  a partition of the intemal O I x S L in which the knots x,. 1 I r S N- 1, correspond 

to the locations of discontinuities which mny involve pA(x), dx) and ke(x). 

Furthermore. rectilinear and torsional springs. Kr and Br. as welï as lumpcd masses and 

rotary inertia, Mrmd J, ,  may be located at x,, r - 0, 1, ..., N. 

Suppose that 5 is the j th exact and distinct. fkc vibration eigenvalue having 

multiplicity Oj. Let wj(x) be an arbitrary eigenvector in a subspace, Maj), that is spanned 

by aU the eigenvcctors cornsponding to A,. It can be show similarly to (M.20) through 

(M.24) that the A, and w,(x) arc g o v e d  by 

wherc a prime superscript indiates ciif'f'eritntiation with respect to x. If Kr. Br. M, and 



Ir. r - 0, 1. .... N, arc ai l  positive and finite. wj(x) satisfis the end conditions 

and 

as well as the foiiowing interior conditions at x - xr , r - 1, ..., (N - l), 

Negative and positive superscripts uidicate Iimitùlg values as x appmaches xr fiam the left 

and right, respectively. The variational form of equations (3.2.2) through (3.25) can bc 

Wrincn as [44] 

N w j *  Y) = y ( w j * y )  (3.2.6) 

for any y E @)(O, L), a Sobolev space in which every element and its f b t  derivative prr 
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Pbbolutely continuous whiist the com~pohding second derivative is square integrable in 

O I x  l t [45]. Now 

and 

where a fllnction's dependence upon x is omittcd for conveaience. 

Suppose that the= exist positive constants cf,  i - O. 1 (subsequendy i - 2. 3, ... and c 

also denote a positive constant) such that B(u. w )  and D(u, w) satisfy 1461 

for arbiuary non-zero u(x) E *)(O. L) and y(x) E v l ( O ,  t). The 1.1 reprtsents the 

norm of W1(O. L) whilst D(u. u ) ~  is assumed to bc compact with respect to 1.1 1461. 

Then lui, - B(u. u)In defuies a nom for an energy spacc, B. which is equivalent to 

W@(O. L) whiist Nul, - D(u. u)* introduces a norm for a Hilbert space, D. These 

assumptions are nquired to ensure that the eigenvalue problem is self-adpint so that the 

Rayleigh-Ritz proceâurc can be employed. 

(Remurk 3.2.1. Should K, - .p or f& - m. r - O. N. the end conditions (3.2.3) and (3.2.4) 

taie the simpler form w& ) - O or wj'(xr) - O. Then it can be shown that equation 

(3.2.6) stiU holds if terms involving w,(xr ) or wjP(xr) in quations (32.7) and (3.2.8) are 

omitted and y(xr ) - O or y'&) - O for any y(x) E B. r - O. N. This lnst consmint is a 
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so-callcd geomctric a d  condition that shodd be satisfied by any admissible fiinction in 

the Rayleigh-Ritz pmcdure 1441.) 

In ordcr to estimate the errors produccd by the Rayleigh-Ritz procedure, it is known [43, 

441 that the nature of the discontinuities (Le. the nguhity [47.48]) of the WAX) as well 

a the solution, w(x), of the equation 

B(w,u) = D(f,u), jZIt a givenflx) E B but ony u E B ,  (3.2.10) 

nec& to be clarified The last equation describes the static deflection, z(x), of the wmplex 

Euicr-Bernoulli bcam under consideration when subjected to a temprally indtpcndent, 

distniutcd force, pA(xxx), in each interval: x,, < x < x, as weii as a concentrateci force, 

Mrflxr), and bending moment, Ir f '(x,), locateâ at x - x,, r - 0, 1, ..., N. Eigenvalue 

problem (3.2.6) can k considercd a spccial case of equation (3.2.10) in which Kx) is 

rcplacad by S w&). 

Tbeorem 3.2.1. Suppose that ET(x), pA(x), k,(x) and p(r) arc ai i  difkrcntiable to an 

arbitrarily high order in cach sub-interval V, : x ,, S x I x , ,  1 I r S N. Then ail order 

spatial derivatives of the eigenvectom. w,(x), are continuous in each Y, if (3.2.9) holds 

for any u(x) E B and w(x) e B. In aciriition, w(x) has continuous derivatives upo order 

five whilst d b(x)/dn is square integrabc in each V, if f "(x) is squaxe integrable. 

Furthexmore, the wI(x) and w(x) sa- conditions (3.2.3) through (3.25). (It is worth 

noting that distributional denvatives of functions having finite jumps at the bots are 

circumventtd by considering these functions only in each individual sub-intewal V, .) 

The proof of Theorcm 3.2.1 is si- to that given in 1491 wherc a Green's fiinction 

h employed for diî3crential equations of motion that involve continuously diffcxentiable 
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coefficients but no intaior conditions. Details can be found in Appenck H. 

Suppose Sn is an n-dimensional subspace of B. Then the n th Rayleigh-Ritz 

approximation, An and w;(x). of 5 and wi(x). j S n. are found h m  [29] 

However, a solution's convergence rate depends significantly upon the base chosen for 

Sn. This aspect is considmd m the next section. The= Sm is spanned by GFM functions 

and a simple unifhm barn's eigenvectors, <yr,(x)>, whose andyticai fonn is given 

generdy by C331 

Phase 6,,,(x), the n th characteristic value. and the coefficients Q, . Q, and Q, are 

detcrxninad by the beam's standard end conditions [SOI: 

Here y,, is an integer that depends upon the unifom beam's sptcific end conditions at 

x, - O and x, - L. Monover. y,, > y,, P O and the notation d yrm(x)/dxo = y,&) is used 

33. Asymptotic Error Estimates 

Thrce sets, 3:. 1; and S, q. in which i and q are positive integers satisfying 

q 2 i + 1. ut descn'bed next. They axe neoded to estimate piecewisc asympotic emrs for 

the higher order dtflection derivatives. 



Dcndtion 3.3.1. Set 9: contains a f i t e  number of fhnctions. ch('). r - 1. .... (N - 1). 

that indiviAiially saw ~ & 3  - ~d((Sc) - O (v - 1 .2  and j - O. 1. .., 
jo 2 [q - ya - l]/4). The I;Cr) have unifonnly continuous derivatives upto order (i - 1) in 

O S x S  t and upto order (q + 1) in both O Sxcx ,  andx, e x  SL. 1 5 r S (N - 1). 

Futfiermore. d ' 5,(x:Y& ' t d ' c,(x;ydt 

Defidoion 3.33. Set Sir ( Xi ) c C'(O. L) contains just one function cm(x) (Cdx)). 

Gdx) * O (cdx) c O) if. for a given positive integcr i. the= exists a positive mtcger. 

j, . such thaî j1 - [i - yho]14 ÿ1 - [i - yho y4) when vo - 1 or 2. Moreover. L(x) (G,&)) 

satis* 

(a) U ,  jl(Ga) * O (uNV$cb) # O) and CC,(<& - O (UOvJ(chr) - O), v - 1. 2 and j - O. 1. 
O 

..., /; , where is an integer satisfying A 2 - y,, y4 a 2 [i - y,, v4). In addition, 

(b) UO&J - O (UNli(CW) - O). j - O, 1. .... j3. and Uarj(Cd - O (Umj(51N) - O). j - O. 1. 

..., j4 . The j$, and j4 arc positive integers sati';fving j, < [i - y,, y4 I j, + 1 

(j3< [ i -yNIJ/4ij3+ 1)and j 4 < [ i - k Y 4 S  j,+ 1 0 ; < [ i - y N 2 1 / 4 1 j + +  1). 

By using these defInitions. q-GFM functions can be defincd concisely for an arbiirary 

fiinction, W(X) E 23, that has continuous derivatives upto order q in each sub-interval 

v r  

Dennition 333.  Let i, and i ,  be two positive inttgers satisfj6ng 2 S i,, I i, S (q - 1). 

Suppose that r, and ri axe two positive integers for a given positive integer i that satisj. 

r, a ri S N whilst i satMts i, S i S i l .  The set of non-zero hctions 

corresponds to qGFM functions with ricspcct to {vm(x)> and the function w(x) if there 
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exists a set of rcal constants. h,, such that the fiinction g(x) defimai by 

and 

has a scries expansion with respect to {cy,(x)> whose denvatives can be taken. tam by 

term, up to order (q - 1) without loss of uniform convergence in O I x < L. Furthemore. 

the q th derivative of g(x) is fdly or piecewise continuous. Mortover, if q is Mependent 

of W(X) whcn w(x) is a solution of equation (32.10) for a&) E B. the {Gb(x)> an said 

to be Q-GFM functions with respect to { ~ ~ ( x ) )  and equation (32.10). Then the following 

rtsult can be obtahd immadiately but its proof is given more conveniently in 

Appdix  I. 

Lemma 33.1. The q-GFM functions with respect to {v,,,(x)) and equation (3.2.10) satisfy 

2 S q S 5 .  

Two main concems arise. One concem is how to construct the sets 3:. eq and Pi 4 

It is easily found that the conditions needed by these sets involve the end conditions 

(3.2.13) as well as the left and right derivatives of a function at x - xr . 1 S r 5 N - 1. 

Consequently. the fiinctions (cb(x))> can be obtoined h m  standard refercnces, e.g. [5 11. 

by employing the static defltction of a d o r m  buun having no rigid body motion. The 



second concern relates to the existence of the constants, h,, . It can be demonstrattcd 

dirtctly that they can be found h m  

Asymptotic lower e m  are determined next for the convergence ntcs of the eigenvalue 

and eigenvector emrs. 

Theorem 3.3.1. Suppose that the conditions used in Theorem 3.2.1 hold and S, is spanned 

by n fimctions consisting of the rn, linearly independent fûnctions ( L ( x ) )  of set (3.3.1) 

in addition to <vm(x). m - 1. .... n - ml>. If the c,,(x)> fomi ql-GFM functions with 

respect to <y,,,(x)> and w,(x). the asymptotic emrs arising from the n th Rayleigh-Ria 

eigenvaiue and eigenvector approximations, A; and w,"(x). to their mie countgpns. A, 



Moreovcr, if «&))> also forms a set of q,GFM fllnctions with respect to {qtI(x)) and 

equation (3 -2. IO), then 

'Ibe cf. i - 1. .... 5. are not only positive constants but they are independent of n and 

wj -9 

q,, = (g2+q,)(3-2014+q2(l+2i)/4. i = O, 1 (3.3.9) 

and 



Proof 

hcqualities (3.3.5) and (3.3.7) can be obtaincd straightforwardly by using inequaiitics 

Q.59) and (I.61) of Lemma t l  as weîî as hequalities (185) and (1.86). (They can ail k 

found in Appcndix 1.) Then it can be secn h m  inequalities (3.35) and (3.3.7) that 

and 

IneQualities (3.3.1 1) and (3.3.12), on the other han& produce 

- LI; 

A, + O and An B, + O a n +  - . k = 0 . 1 .  (33.13) 

Furthemore. it can be found h m  inequalities (3.3.11) and (3.3.12) that A,/& 4 O as 

n+.osothat  

Thus, the conditions requircd for Theorcm 1.2 of Appendix 1 are saMed. Conscquentiy, 

the incqualities iabciled (3.3.8) can bc &riveci by substituting the A, and En, def'ined by 

xclations (3.3.1 1) and (3.3.14). into incquaîity 0.89). 

Inequaiitics (3.3.8) provide poïntwise asymptotic estimates over O I x S L but only for 

the emr of the defieaion and its faJt derivative. The practicaiiy important bending 



moment and shear force arc considercd next. 

3.4. PoinnRisc Convergence of the Higher Derivrtsves 

Sufficient condibons for the pointwk convergence of the second and dllrd deflection 

derivatives art determincd fust, 

Tbeorem 3.4.1. Suppose that the conditions employed in nicorcm 3.3.1 and Lemma J. 1 

hold. Let the i and r of the GFM fiinction MX). which is employed in Theorcm 3.3.1. 

2 54,s X i ,  S3 and0 S r ,  S r  S r , S N .  niai~e~e~tfourpositiveconstants. 

cl and c,. that are independent of n and such W. at the conthuous points of wjœ(x) and 

w, ' (x). the inequalities 

and 

hold for their approximate countcrparts. w; "(x) and w," -(x). 'Ihe q, and air: 
qt 

dtfmed by cquations (3.3.6). 

Proof 

The n th Rayleigh-Ria approximation. w,"(x). of WAX) may be expzessed as 



where b, and am are determineci h m  equation (32.11). On the other band, the m, 

fiurctians &"(x)> constitute a set of q1 - GFM functions with respect to the (n - m,) 

functions <~r,(x)} and the WAX). Hencc, it can be shown simüarly to the proof of 

Lemma 1.2 of Appendix 1 that t h e  exist constants, hb, such that the series expansion 

has the error estimate 

The c3 is a positive constant, 1.1, is a nom of a Hilbert space, H, given by equation 

(J-2) and 

Furthexmore, dm is defined by equation (1.6) in which g(x) is given by 

Subtracting equation (3.4.3) fiom equation (3.4.4) produces 



Suppose P, is an orthogonal projection of the Hilbert space, H, on a (n - 1) dimensional 

subspace, B,,. that is spaaned by {vmw(x). m - 1, ..., (n - m,)) and the (ni, - 1) GFM 

fiinctions {C,,"(x)> in which C(X) û omitted Hcre s and t an two (given) positive 

integers satisfying 2 S s 5 4 and O 5 t S N. Then it a n  be shown, by using Lemma 1.1. 

that thcm exists a positive constant, c,, such that 

the other band by multiplying equation (3.4.8) by cy,Cx), the rcsulting tenn involving 

(dm - aJ can be determincd k m  

It can be shown straightfomdly that 



By using tquations (3.4.6) and (3.4.8). the Rayleigh-Ritz approximation, di-'w;(xydrqrl. 

can be found to be 

It can be demonstrated, by using Dennition 3.33 and inquality (3.4.9). that the f h t  term 

on the rïght of the iast equation converges absolutely and uniformly to the tme derivative 

d ql-l~j(~)Mrql-l whilst the second tenn converges to zero. Thus, the k t  summation on 

the right &termines wMier  d qi-lwj"(x)ldr converges absolutely or unifonnly. Now 

reiations (3.4.10) and (3.4.1 1) lead to 

w h n  cs is a positive constant. Combining the k t  inopuality with relations (33.6) and 

(3.4.9) rcsuits in I(d~'l/&ql-l)(w~(x) - wj(x))[  + O like dn as n + m. Consequently. 

the q u h d  hqualitics (3.4.1) and (3.4.2) can bc obbtpined by using Thcorcms 3.3.1 and 



Co- 3.4.1. Suppose that the conditions employed in Theonm 33.1 arc valid and 

N S 2. If the i anâ r of the c&) employed in 'Lheorem 33.1 saticfy 2 S i, S i S il S 3 

and O I r, I r 5 r, 5 N, haqualities (3.4.1) ami (3.4.2) hold 

A numerid example is @veu next, 

3.5 Numerid Example 

The cantilever bcam shown in Figure 3.1 has a torsional spring lacated at x = x, = U4 

and a stepped cross-section at x - x, = UZ. It is used solely for illustration because an 

exact so1ution is available. in this example, K, - .O - Bo, K, - K, - K, - - - O but 

B,Un(O) - 40. Morcover. Mr = Jr - O, r - 0, 1, 2.3 and pC*) - O - k,(x) for O S x S L. 

The El(x) and p(x) are constant in each sub-intemal Vr (r - 1, 2, 3). They sa&@ 

B(x,3 - EI(xl-), p(x:) - p(x,'), El(x,+)U?l(xC) - 10 and p(q+yp(q') - 10% It foilows 

6cam Remark 3.2.1 that w(0) - w'(0) - O for any w(x) E B. FuRhemrc, it can be shown 

straightforwardly that wnditions (2.9) arc satisfied for any rc(X) E B and w(x) E B. Thus, 

Theorem 3.2.1 holds. 

Equations (3.2.5) suggest that the example probbm's second defiection &rivative is 

discontinuous at x - x, and x - x, whilst the left diird âefktion dcrivative quais the 

nght third defiection denvative at x - x, but no< at x - x, . 'Iherefore, the thrr+ GFM 

functions prtsented in Table 3.2 arc used in the Rayleigh-Ria proceciun. lhey comspond 

to the static deflection of a unifom cantiitver beam caused by a moment positioned at 

eithcr x - x, or x - x, and a transverse force bcatcd at x - x, 1511. Thus, the 

n-dimensional subspacc. S. . in Theorems 3.3.1 and 3.4.1 is fomied by these three 

fimctions in aâdition to the (n - 3) eigenvcctors {y,((%), m - 1, ..., (ri - 3)) of a WUfonn 
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cantilevercd beam. Obviously. the dimmionality. n, grows as the n u m k  of eigenvectors 

is cnlarged. 

Definition 3.33 indicata that the functions of Table 3.2 form a set of 4GFM fiinctions 

with respect to {~,,,(x)> and WAX). Therefm. h m  nKorem 3.3.1, the n th approximation, 

li; - (A.. ~(o)L~/E~(o))*. shouid converge ultimately I*e at lcast P as n is mcreased 

Funhermore, it is dernonstrated in Appendix L that the conditions of Theorem 3.4.1 are 

satisficd. This k t  thcorem indiCates that the convergence of the correspmding w; "(x) 

and w; '"(x) should be at lepst nM and n-*. respectively. 

To connmi the above predictions, an analytical expression was dcrived for the exact j 

th eigenvector. It taks the form 

wherc a - 0.1 la and p, - (Sp(0)L4/EI(0))*. The lowest thnx values of p, are presentcd 

in Table 3.3 whiïst the comsponding coefficients 5,. k = 1. 2 ...., 7 and j - 1. 2. 3. are 

detailed in Table 3.4 when both wbL) and w;(L) aie taken as an prbitray 1 m. 

Furthexmore. equation (32.11) was solved numericaliy by using Quble pecision 
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arithmetic and the IMSL eigenvalue subroutint, DGVCSP 1381. rinmmg on a SUN/4-280 

worlcstation. The resulting errors (li; - pl). j = 1, 2. 3 are givcn in Figure 32 for 

incrcasing n. They tend to zero Lilre the F picdicted bound The corresponding 

cornparisons of the approwimatc and analytical second and third derivatives of the 

fundamentai eigenvector arc presented in Figures 3.3 and 3.4. These figures show that the 

overail emin are generaliy cbse to about k and n-'. Thenfore, they tend to zero 

somewhat hiter  than the prcdicted lowa rates of nM and n? In addition, the= is no 

evidence of Gibbs phcnomenon. 

3.6. ConrluSi0~1~ 

A generalizad force mode (GFM) function appmach has b e n  introduced in this chapter 

for a self-adjoint eigaivaluc problem comsponding to a Euler-Bernoulli beam having 

materid or cross-sectionai discontinuities, interior spring supports, or non-classical end 

conditions. Gmeralized force mode (GFM) fbnctions am dcfmed for the fvst the .  A 

priori emr estimates art &nved and corroboratcd nurnerically for the eigenvalues of a 

Euler-Bernoulli beam having cornplicated constraints when GFM hctions are usad in 

the Rayleigh-Ritz appmach. These estimates not only implicitly indicate a fast 

convergence, even when each approximation function daes not sa* non-standard 

boundaq conditions, but they also dcmonstmtc that Gibbs phcnomenon is avoided. 

Cotlstquently. the bcnding moment and shear force can be advantageously analyzed in 

a pintwise fiashion evai in the ne ighbo~ood of a discontinuity. 

The next chaptcr extends the prcsent method to a non-self-adjoint eigenvalue problem 

by considering a simply supporteci, spinning Timoshenko beam. 



Figure 3.1. A stepped beam having an interior spring support. 



Inn 

Figure 3.2. bwest  three fkquency exrors. 



Figure 3.3. Absolute second denvative e m  for the fundamental eigenv&tor. 



Figure 3.4. Absolute third derivative emrs for the fiinciamentai eigenvectoc 



Table 3.1. Values of y, . 
Standard end conditions 

atx-x , ,  r - 0 . N  

Tabk 3.3. Lowest üine analyticai dues  of p,. 

Table 3.4. Eigenvector coefficients ç,[, i = 1, 2, ..., 7 comsponding to Table 3.3. 



FREE VIBRATIONS OF A STEPPED, SPINNING TIMOSHENKO BEAM 

4.1. Iiib.odUdion 

A generalUcd force mode (GFM) method was introduced in the last chaper for a frte, 

transversely vibrating Euler-Bernoulli beam. It was demonstrated that the beam's static 

defiection can be employed as GFM functions. On the other hanci, it is weii-known that 

Timoshenko beam theory can provide more accurate eigenvalues and eigenvectors as the 

beam's depth increases and as the wavelength of vibration decreases 1241. This is because 

the T'ioshenko theory considers the effects of rotary i n e ~  and the transverse shear 

&formation. Thus, h m  a structural engineering viewpoint, an extension of the GFM 

method to a Timoshenko beam is desirable. However, the static defiection of a Euler- 

Bernoulli beam that arises h m  a concentrated force may not be used as a GFM function 

for a Timoshenko beam. This is because the f5st derivative of such a static deflection is 

dways continuous. Conversely, a static deflection causeci by a concentrattexi force acting 

on a uniform Timashenb beam (having standard end conditions) may be employed 

directly as a GFM function because its first derivative is discontinuous. However, h m  

a computational viewpoint. a question arises as to the simplicity of its analytical form. It 

can be shown [Sl] that the latter static âeflection can be expressed as a polynomial of 

degrec direc on each si& of a concentrated force. On the other hanci, it can be seen h m  

Definition 3.3.1 that a polynomial M n  having only degree one on each si& of a 

discontinuous cross-section can also be uscd as a GFM function. Thus a more general 



approacb, caIlcd H d t e  polynomiat interpolation, is suggestcd in this cbapcr for the 

constniction of the GFM fiuictioas. This involves two steps. F i  polynomialn 

arc found on each si& of a discontinuity which satisfy the conditions at the contiguous 

end Second, the polynomisls must be chosen so that the transverse âeflection and the 

slope due to bending an continuous at the location of a discontinuity. The approach not 

oniy provides simple analyticai forms for the OFM hctions but also avoids the need to 

wlve a boundary valut pmblem. This latter advantage may be even more important for 

a two dimensional problem in which the static deflection may have to be found 

numerically , 

A self-adjoint eigenvalue problem was considerd in the previous chapter. However. 

non-self-adjoint problems are often encountered in practice due to viscous damping and 

gymscopic effects. It is known [I l ]  that a non-seIf-adjoint problem can be approximated 

by the Galerkin approach. In this cbapter. the simply supported, stepped spùraing 

Timoshenko buun shown in Figure 4.1 is employed to demonstrate the extension of die 

GFM me- needed to apply Galerkin's approach A numencal example illustrates the 

usefulness of this procedure. 

4.2. Outiine of Anaiysis 

Consider a Timoshenko beam having lcngth L and a circular cross-section which is 

discontinuous at x = U2. Suppose that the beam spins at a constant angular s p d  8 . 
about the x axh which coincides with the baun's geomctric centre in the f m d  (ineitial) 

coordinate fiame of Figure 4.1. The barn has mas density, p. Young's modulus. E. shear 

modulus, G, and shear coefficient K. Let A(x). I(x) and 1' be the area. moment and polar 



moment of i n d a  of a cross-stctiou tbat is distance x h m  the left end. The tranmersc 

deflections conrtsponding to the j th nstunl fkqency of the buim are designatecl uij d 

4. in the ai and O& directions. respcctively, whüst @il and @& rcpre~eat the 

analogous bending angles. 'Ihe free vi'brations of the spinning beam ut govemai by 1481 

and 

wherc a prime superscript indicates differentiation with respect to x whilst <, - ; i : 
i' - (-1)'% Here O; npnsents the jth forward naairal rnucncy when j > O. However, 

a; depicts the j th backward naainl fquency when j c O. nie simply supponed ends are 

denotcd by 

and 



On the othcr hanci, the force compatibiîity conditions at x - U2 = x;, - L/2 art 

and 

Assume approximate solutions have the fomi 

and 

w h m  QL (x) (i - 1. 2 and 4 - 1. 2. .... n) an admissible bctions whilst 6; are 

undeteminad coefficients. Substituthg these forms into the left sides of (4.2.1) through 



(4.2.4) Ieads to the rcsidual errors 

and 

Coeffients 6; are detennined h m  the rcquirement that [ I l ]  

which Icads, in matrix notation, to 

~ [ M ~ ] { ~ ~ ~ + ~ , [ C ~ ] ~ + [ K ]  = O 



The [M ' 1  and [K ' 1  an symmetric mas and stifhess matrix. mpectively. whilst [Cr] is 

a skcw-symmetric gyroscopic ma&. These matrkes arc given by 

and 

Here 



and 

Equation (4.2.17) represents a system that is not self-adjoint. It can be rewrïtten as 

in order to employ a standard eigenvalue solver. A specific beam that has the material and 

dimensional properties given in Table 4.1 is considered next. 

43. Numerid R d t s  

The nrSt and second order deflection denvatives as weU as the dope due to bending of 
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the example kam are discontinuous at its steppd midpoint, x - 0 5  m. Coarequently, the 

corrcsponduig denvatives of the GFM functions must aiso be discontinuous at this 

location. Thcy should also satisfv the contiguous end conditions. Ther GFM functions 

are designatcd arbiaarily in (4.2.10) and (4.2.1 1) by cp:, (x) and cp: (x) for the deflection. 

and by &, (x) and q& (x) for the dope due to bending. Their piecewise polynomial forms. 

o b M  by folloWmg the procedurc outlined in the section 4.1, are summarizcd in Table 

4.2 for the situation when L - 1 m. They passcss the properties 

and 

that make the calculation of [KI in (4.2.19) easier. The remaining admissible functions 

are takm to be the eigenfunctions of a uniform. non-spinning Euler-Bernoulli beam 

having simply supponed ends for the deflection and sliding-sliding ends for the slow due 

to the bending. is .  Q;, (x) - sin(t - 2 ) d L  and cp; (x) - cos(& - 3 ) W L  for t - 3, ..., 
n. It can be shown dircctly that all the Q:, (x) and &, (x), t 2 1. satisfy the end 

conditions (4.25) and (4.2.6). respectively. The resulting numerical data for the nIzt four 

forward and backward precession fiequencies. computed with n - 10 in (4.2.10) and 

(4.2.1 1)- arc psented in Table 4.3 alongside the exact values obtained by using standard 

method. Data calculated without the gencralizcd force mode functions arc alsa given. In 



this case. &, (x) - sin 4 rcdl and &, (x) - cos(t - l)&L are employed in (42.10) 

and(4.2.11) for I = 1. ..., n. It can bc seen that the GFM fiinctiolls certainly improve the 

accuracy of the mCural frtquencics. 

To ascemin if Gibbs phenomenon [25] OCCUIS in the bending moment and shcar force 

due to the steppad cross-section. the d<D:, ( x y k  and d 4 ,  (xydr + O;, (x) for the first 

forward precession hquency are compared with th& exact values in Figures 4.2 and 4.3. 

nzspectively. Corrcsponding results cornpted without the GFM fbctions an also 

presented again. For conveninrce. u:, (x) is taken as I m at the beam's midpoint. Figure 

4.2 demonstrates that the exact results and those obtained with the inclusion of the GFM 

functions overiap, despite the discontinuous nature of the derivatives However, the &ta 

obtained without these fiuictions oscillate around the midpoint. A similar oscillation can 

also be found in Figure 4.3. Furthermore, this 1st  figue indicates that the numerical data 

obtained with the GFM fiinctions converge to the exact d t s  with an increasing n. 

4.4. Conclusions 

The numerical results presented in this chaper demonstrate that Hermite polynornial 

interpolation is a simple way of constnicting GFM fiinctions. Furthermore, GFM functions 

enable the free vibrations of a non-self-adjoint Timoshenko beam to be found without 

Gibbs phenomenon occurring. 



Figure 4.1. The inertial CO-ordinates Xi, i - 1,2. 



Figure 4.2. Exact and numerical values of (ai ,(x) 1'. 

* hcludes the GFM hctions. 



Figure 4.3. Exact and numerical values of (u :, (x)  )' + @: (x )  . 

* Includes the GFM functions. 



TabIe 4.1. Propcrtics of the spinning beam. 
I L - l m  Ik-0.9 I 

Table 4.2. GFM fuIlctions in the inertial co-ordinatc fiame. 

GFM functions for the deflection 

q&-x. &-x(4r'-l) 
0.0 c x < 0.5 

0 ; ~ - 1  -x. & 2 - 4 x l ) - 1 W + 1 ~ - 3  
0 5  < x < 1.0 

Tabk 4.3. Vdues of a; for a steppeci, simply supportcd, mtating 

GFM for the bcnding angb 

4&=&-1, & - 1 2 2 - 1  
0.0 c x < 0.5 

& - & + & - 3 .  & - 1 W - 2 & + 1 1  
0.5 < x < 1.0 

, i 
1 

-1 

Prcscnt 
~ ~ t h o d  

264.53 

-264.41 

No GFM 
fiinctiotls 

266.04 

-265.92 

Exact 
Rcsults 

264.53 

-264.41 



Tabk 4.4. u:,(x) and @:,(x) col~csponding to the fiRt forward naturai MMplacy of 
a spinnhg Timoshenko bcam having a stepped, circuïar cross-section. 

-0,057898 s i .  (3.235359 x) + 1.141479 sr'n(3.236267 x) 
O<x<O.!5 

4&) = 
0.062353sinh [2.953382(1 - x)] + 0.874441 sin [2.954386(1 - x)] 

0 5 < x c  1 

O, 187452 cosh (3.235359 x) - 3.69 1554 cos (3.236267 x) 
O c x c 0.5 

*x-a = 
0.184308 cosh [2.953382(1 - x)] + 2581273 cos [2.954386(1 - x)] 

O J < x < l  



CaAPTERS 

CONCLUSIONS AND FUTURE WORK 

5.1 CollClUSiom 

An opcrator approach bas becn used to show the comp1euness of the eigenvectors of 

a non-uniform, axially loaded Euler-Bernoulli beam having cccenaic masses and 

supported by off-set springs at both ends. Tht motivation is to ver@ the validity of using 

these eigenvectors in a generalized Fouricr series expansion or in the Rayleigh-Ria or 

Galericin meaiods. Thû generalization extends the work presented in [22] for a cantilever 

beam having solely an eccentric m a s  at its fke  tip. Furchermore, the order of the j th 

coefficient of a series approximation of a continuous initiai defiection, y,(.), bas been 

determineci, for the first the, as j + a. Consequently, the ermr caused by truncating 

such a series can be found straightforwardly. An important conclusion which arises is 

ttiat, for any three times diffemntiable function whose fourth order derivative is piecewise 

continuous, a series expansion in tcmis of these eigenvectom, as well as each saies 

obtained by differentiating it upto three times, converge uniformly and absolutely. This 

result sianificantly extends a ciassical expansion theorcm 1231 in which a function is 

req- to satisw ail the bearn's end conditions. Moreover, it can be expected h m  this 

generaiïzation that the eigenvectors should produce a hightr convergence rate when used 

as the Ria base functions in the component mode synthesis. Thk conjecture is 

substantiateâ numencaily in 1431 duough illustrative examples. 

In addition to the generaüt6d expansion theorem, asympotic estimates of the 



eigenvalues and eigenvectors have bcen ciexivecl for the first tirne. These estimates can be 

appiied, for erampk, to the design of distn'butd feedback by using independent modal- 

space control [6]. Then the optimal diotnbuted control force ïs a summation of modes 

whose weighting coefficients au, be approximatcd easily and accumtely at high 

fkquencics by employing the asymptotic estimates. Furtheennore, the effect of an off-set 

lumpcd mass on the lower natural frcquencies of a beam has alsa been investigated This 

work is motivated by the recent growth in the use of industriai robots. A new criterion 

is proposxi for pdicting how the naturai fkpencies of a beam (i.e. a flexible robot 

having a single arm) vary with a payload's off-set. It is demonstrateci that, for a given 

payload. an offset influences mainly the fiindamental nanual fkquency and, hence, the 

robot's positioning accwacy. Moreover, a numerical example confirms that an mclusion 

principle cannot k generally used to estimate the n a d  fkquencies. To obtain low 

6requency data, a numerical procedure like the Rayleigh-Ritz method or the finite element 

method is pssibly the best way to obtain such information- Of course, such pnnedum 

are not restricted to low frequencies but experience [Il] suggests that they can produce 

inaccurate high fixquency modes even with the additional penalty of severe computational 

effort. 

When a beam has complex interior conditions such as discontinuous cross-sections, 

sprhg supports or lumped masses. or non-conventional end conditions, an outstanding 

question concems possible extraneous numerid oscillations around the discontinuities 

as weii as at the bcam's ends. This so cailcd Gibbs phenomenon can lead to a slowly 

converging approximatt solution- To avoid this difficulty, a unined procedure for 



selectïng admissible fùnctiom has ken developed in this thesis for the Rayleigh-RiP 

m c t h d  ui this appnrach, gencralized fora mode (GFM) fiinctions arc employed as 

admissible fiinctiom togcthcr with the eigenvectors of a d o m  Euler-Bernoulli beam 

having conventional end conditions. The kcy idea is that discontinuous defieaion 

derivatives can be appximated more efficientiy in a pointwise fkshion only by using 

discontinuous functions. Based upon th& viewpoint, GFM fiuictions are defined ngorously 

for the f h t  tirne- To jus- the practical uscfulncss of the d e d  approach, a priori emr 

estimates are derived and conoborated numeridy for the eigenvalues of a Euler- 

Bernoulli beam having cornpikateci constraints. These estimates not only implicitly 

indicate a f s t  convergence. even when each approximation fiinction does not satisfj. non- 

standard boundary conditions. but they also demonstrate that the Gibbs phenomenon is 

avoided Consequently. the practicaily important bending moment and shear force can be 

approximated accurately. 

It is known (111 that the Rayleigh-Ria approach can be used only for a self-adjoint 

eigenvalue problem. However. non-seif-adjoint problems are ofien encountered in 

practicai structures. A Galerkin procedure is needed for such problems. In this thesis. a 

spinning Timoshenko shan having a steppd cross-section is employed as an example to 

demonstrate how the unified approach can be extended to non-self-adjoint pblems. 

Moreover, a Hermite polynomial interpolation method has ken pposed as an easier way 

of constructing the GFM functiom. FuRhermo~it. numerid data again show no Gibbs 

phenomenon in the baiding moment and shear force* Consequently, an extension of the 

unificd approach to non-self-adjoint pblems appars to be possible. 



5.2 Recommendatiom 

This thesis saidies the eigenvalues and eigenvectors of a single span Euier-Bcmouiii 

beam having general end conditions. Furthemore. a novel numerical approach has been 

proposecl to appmnimate the eigenvalues and eigenvectors of a beam having complex 

interior and end conditions. Several other interesthg topics couid be dtvcloped in fiiture 

~search. They may includc: 

a rigorous asympotic analysis of the eigenvalues and eigenvectors of a 

Thnoshenko beam having general end conditions; 

extension of GFM functions to handle a steady, transient or random dynamic 

response; 

. extension of GFM functions to accommodate vibrating plates and s h e k  and an 

extension of the approach to a finite element analysis of smictures having 

discontinuous cross-sections, interior spring supports and lumped masses. 
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This appendix juscifies the assertion that the domain of oprator KI is dense in the 

Hilbert spece gn. The following theonm, proved in [45], is needed to accomplish this 

task 

Theorem A.l The fimction space C V ,  L) with f (0) - f (L) - O for a i l  f (x) E C" (O, L) 

is dense in the Hilbert space S2(0, L). 

C *(O, L) consists of fimctions that are infinitely differentiable. Thus, it is known fkom 

Theorem A.l that, for an arbitrary vector F - (f,, A, f,, f, f,) in dn and an arbitmy 

e > O, there exists a fiuiction f lx)  E Cm(O, L) with f (0) = f (L) = O such that 

Furthermore, it is easily shown rhat there exists a cubic poIynorniai, denoted byf,(x), such 

that 

where 

and 



Forf,(x) M n  by (A.1) and an arbitrary E w O, it is known h m  Theorem A.1 that there 

exists a function, denoted by f,(x) E C *(O, L) with fa) - f,(L) - O, such that 

where 

and 

t;'&'(;oe,f,'%). jy =fy(U. (A. 10) 

It is clcar that F ' is in the domain of operator II. By using (A.1) and (A.6) as well as the 
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gencric inequality (a + b)' S 2(d + b2), it can k shown straightforwaTdly b t  

The k t  hcquaiity indicates that the domain of opmator ï X  is. inüecd, deme in B<? 



To simp1ï.Q the pmof of T h m m  2.3.1. oprator K + c l  is considercd innead of ï ï  

w h m  1 is the identity oprator h m  D o m  to bn whil* c is a positive constant* By 

rewriting (2.3.4) as 

it is easily seen that the eigenvalue problem of operator (n + CI) is equivalent to that of 

operator ïI . The foiiowing theorems are needed to prove Theorem 2.3.1. 

-rem B.l A positive constant c exists such that, for any vector F E D o m o ,  

where p, - m a  Ip(x) 1. That is, oprator II + cl is positive-bounded-below. 

Proof 

Integrating the left si& of (8.2) and using (2.2.4) leads to 





then &SB one subsequence. V;lt>. which convergts in *@A. O, L). On the other hanci, 

the mbsaqumce <faL>. Gnk}. ikk} and V,,,i> must Iie m a bounded and closed set due 

to the baundedness of thest sequencts in the complex space, CI It is known [a] h m  the 

compactness of a bounded closed set h t  thcm exists at l e s t  one convagent subsequence 

Gkjh a&]>. ck > and Gn >. Coclse~umy. the subsequence 
i kj 

<Fj>- {(f lnk . f hk . f 3nk . f 4kk . f snk )>converges inbnandTheorem B.2 is proved. 
j I I I j  

Thorem B.3 (See 144.) Let a positive, bounded h m  below operator be such that any 

set of functions (vectors), whose energy n o m  are a l l  bounded, have at least one 

convergent sequence in a Hilbert space. Then the corresponding eigenfunctions ( or 

eigenvectors) form a complete orthogonai system in both a Hilbert space and an energy 

space. 

Theorem 2.3.1 can be proved now. F i t .  Tleorem B.l reveals that (II + c I )  is a 

positive, bounded h m  below operator. Then Theorem B.2 shows that, an arbitrary 

sequence {Fj}. whose energy nom in @ is bouncied, has at least one convergent 

sequence. Thus, Theorem A.3 demonstrates that the eigenvectors of (n + c î )  or Iï are 

complete in fin and i.e. Theomrn 2.3.1 holds. 



Th second ordei asympotic expression, WEI (x). is deriveci in diis appendix for the 

eigcnvector. w&). of a non-uaifbrm beam having the generai end conditions shown in 

Figure 2.1. It h known h m  [9] that the second order expression for w f l  (x) takes the 

general form 

where CO, - $ - kjm. By substituthg the above expression into (2.2.1) and comparing the 

resulting coefncients of a;. mjm and o. the foliowing ordinary differential equations are 

O btained: 

and 

It is hown h m  [9] that the ~olutions of equations (C.2) through (C.4) are given by 



Y&) = f f (x), u,(x) = L<Ia(x) and y(x )  * t ~ ( x )  (c 5) 

as weil as 

By nibstituting (CS) and (C.6) into (C.1). w$) (x) can be expressad as 

whilst 



By substituting (C.11) into the end conditions (22.2) and (22.3). coefficients A,, B, . C' 
and D, can be obtained by soIving the e~uation 

Elements qj. i. j - 1.2.3, 4 and the coefficients A,. Bj .  C' and Dj are detailed in the 

next appendix. 



This appendix prcscnts explkit expressions for ail the coenicicnts as weiï as detaiïs of 

the frequency e~uation appearing in section 2.4.1 m d  Appcndix C. 

1. Coefficients 







and 

Moreover, 



Excep for (D.22). a priw supcrscript in this appcndix indicates a differcntiation with 

Iespect to 2. 

2. F~equency equation 

By expanding &tev) .  the tkequency quation can be shown to be 

4 cos El(z,J - 4 sin B,(zJ = O 

where 

and 

3. A,. B,. Cj and D, 

Aj . B, . Cj and D, an be deriveci h m  equation (2.4.6) as 

for a beam whose left end conditions arc either 



for a beam bving the other end conditions specsed at the lefmiost si& of Table 2.1. 



The proof of Theorem 2.4.2 is pxcsentcd hem. F i  the min-max principle is needed 

which smtes that the j th eigenvalue of a completely continuous, seif-adjoint, positive 

operator. Q, is givcn by 1121 

where R(Y) is the Rayleighquotient defined by 

for Y E R, The H and E are the Hilbert space and energy space correspondhg to 

operator Q. respectively. whiist Q is merely the operator ïï " for a bearn. Consider, 

without loss of generaiity, the beam shown in Figure 2.1 excep that M, - O. This beam 

can be regarded as a beam that has been modified by an additional Ml having eccentricity 

e, at x - L. Designate the eigenvalues and eigenvectors of the unmodifieci beam by 

and w;(x), respectively. where w&) is normalUed in the comsponding Hilbert space. 

That is, 



Substituting CI,. corresponding to the modined beam, into the Rayleigh quotient @ 2 )  

results in 

On the other han& assume that at least one of (w,(L) + elwh'(L)) (n - 1, 2. ..., j - 1) 

is non-zero. Here w&) is the n th eigenvector of the modifiai beam. Without loss of 

generalty, let (wll(L) + elwll'(L)) # O. Consider the vector V,. , # O given by 

and 



By substituthg Y,. , coinsponding to the unmodified bcam into the quotient @2). t is 

easily s h o w  that 

for any Y,- ,  + O E span {Y,. .... Y, >. From the min-max pinciple (E. 1). inequaiities (E.6) 

and (E.11) imply diat Theorem 2.4.2 (i) holds when at least one of 

(w,,(L) + e,w,'(L)) # O (n - 1.2. .... j - 1) is non-zero. 

If (w ,(L) + e,w,'(L)) - O for n - 1. 2. ..., j - 1. the eigenvecton w &). n - 1. 2, .... 
j - 1. ais0 the unmodifieci beam's conditions at x - L. According to the 

completeness of the eigenvectors of the unmodifieci system. it can be seen that the k t  

(j - 1) eigenvalues are the same as those of the unmodifIed beam. Therefore, Theorem 

2.4.2 (i) still holds. 

Theorem 2.4.2 (ii) can be shown anaiogously. 



This a p p d i x  &monstrates tbat thae cxïsts two positive constants, cl and 4, that are 

independent of the eigenvector Wj and such that 

is valid for a sufficientiy large j. Hem 

whilst w&) is the first component of W,. By setting the ~ ( x )  of (2.4.2) to zero, the first 

order, asymptotic fom wc'(x), of w&) can k found h m  (2.4.1) to be 

where 

and 



are needed To validate (F.6). f k t  consider a simply supportai beam. Le. 

Ko = = = K, F-7) 

and 

By substituting (F.8) into @.1) duough @. 12). (D.24). 0 . 2 5 )  and (D.31). Ai. B,. Cj and 

Dj can be found as follows 

and 

where 





and 

and 

Here di .  i - 1, 2. .... 5, are given by (D.17) and (D.18). On the other hand, when 

K, + m. it can k found stmightfomardly h m  (F.11) through (F.13). (F.17) and 8.19) 

that 

Conoequently. the A, and C, givm in (F9) and (F.10), respectively. can k simpMed for 
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lim 
Ito- 

and, similatIy, 

so that 

Now consider D j .  When K, + 0, it can be found k m  (F.16). (F.20) and (F.21) that 

Consequently. the iimit 



can be found fhm (FM) md (F.25). Furthemore. (Zj), - j ir. This to 

A similar procedure can be used to obtain 

Il lim , = - cos (z,), . 
KI+= 5 4  

Substituting (F.27) and (F.28) into v.10) yields 



On the other band, the limits 

c m  be determineci h m  (F. 17) through (F.19). nius, the limiis of A, and Cj. as j + 0, 

cm be found fiom (F.23) and (F.24) to be 

or, by employing (F.30), 

Furthemore, it is known 1421 that Icos(z,), 1 S 1 for any j so that 

Consequently , the inequality 

must hold 1421. This last inequality, when combined with (F.31). leads immediately to 



On the othcr han4 it is known h m  [a] that (F.34) is cquivaltnt to 

Thus, (F.31) and (F.36) demonstrate tbat A, + O, Cj + O and Dj + O as j + - so that 

there must exist a positive integer. I', , such that 

-3 <A,<  3, -3 c Cj< 3 and -3 c D j c  3 (F-37) 

for j > jo . Furthermore, (F.9) indicates Bj = 1. Therefore. (F.6). indeed, holds for a simply 

supprted beam. A simüar proof can be given for a buun having the other end conditions 

stated in Table 2.1. 

Now (D.3 1) and (D.33) demonstrate that either A, = 1 or 4 - 1 for the end conditions 

given in Table 2.1. Thus, it can be shown h m  (F.6) that the inequalities 

and 



can be found straightforwardly for any condition given in Table 2.1. Furthexmore, it can 

be showa. by employmg (F.3). that 

+ C '  Jp~a2  (x) exp(-2 (zj), n)dr 
O 

By employing the standard integral 

and 



integrai p.41) is shown next to be bounded F i i  it can be found nOm (F.43) thaî the 

inequalities 

and 



are valid. On the othcr hancl, it is known k m  @!5) that 

Moreover, it is hown h m  the derivative of a definite integral having a variable upper 

iimit 1401 that 

Hence, for an arbitmry integrable function. f (x), the identity 

can be found by ernploying (F.47). The use of (F.38). (F.44) and (F.48) yieI& 



Furthermore, the inequality 

c m  be obtained similarly h m  the use of (F.38), F.44) and (F.48). Now 

c, - max(p~a~(x)l&x)) > O and c, = min(pda2(x)l&x)) > 0.  

Henct the incqualities (F.49) and (F.50) can be rewrittcn succinctly as 



By employing die incqualitits 

I c o s ( ( ~ , ) , f + ~ ~ ) (  S 1, pA O and a(x) > 0 F.53) 

as weii as (F-6) and (F.38) through @.a), the foilowing inequalities can be shown 

similarly 

and 



Then by employhg (F.52) and the leftmost and rightmost inaqualities of  (F54) thmua 

(F.58). integrai (F.41) cm be ôounded immediately by 

and 

and 

for two given c3 and c4 and j w j, . By employing (F.61) and (F.62). the inequaiities 



and 

can be obtained b u s e  (112 - V100) > 113 . Combining (F.59) and F.61) wi1 

and (F.64)  produces 

for a sufficiently iarge j. 

Now, by employing F.65) and the identity 

as well as the gcneric inequslity lu - b12 S Z(la(' + 1 b 1'). where a and b are any two 

rcal values, it can be show that 

On the other band it is known from [34] that the= must exist a positive constant. c, 
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which is indepardent of j and such that 

By employing (F.68). the incquality 

can be found. Whcn 

8.67) can be simplifieci, by employing w.65) and (F.69). to 



for a sufficientiy large j because 1 > 1/50. On the other han& by empIoying (F.66). it cm 

bc found that 

Ernploying the genenc mequality lu - b 1 2 1 a 1 - 1 bl yields 



Furthennom, fiam (F.73) and Schwarz's inequality 1421, vil 

the inequality 

or, fiom (F.65), 

can be found In addition CO (F.70). if j aiso satisfies 



it can be shown fiam (F.69) and (F.76) that 

and 

nius. by using (F.77) and (F.78), (F.75) can k simplified to 



because 47/150 > 116. By employing (F.2) and 8-79), the inequality 

can be found. On the otlm han& Table 2.2 Uidicates that the four rightmost tenns of 

equation (F.2) tend to zero as j + W. Le. the= exists a positive A such thaî 

for j >  j,. mus, h m  (F.71) and (F.8 1). the inequality 



can be obtained for a Nfnciatly iarge j. By îakhg 

c, = (cp1 6)lJ2 and c, = (13 c, a)'" . 

the requirtd inequality F.1) h p v e â  by combiaing (E80) and 8.82). 



This appendix p n t s  the proof of Lemma 2.4.1. 

Suppose Il - O for the beam shown in Figure 2.1. Then a Hilbert space having four- 

component vectors, bq. is defineci by 

Ho = -A. O. L)@CB)C~C (G. 1) 

with the imer product given by 

for two arbitrary vectors É - K. ..., f*) and G' - (g,'. .... g:) E b4. Furuiermore. 

IF 'I,, - (CF'. F E a<4). reprcsents the nom of b4). nien. the j th 

eigenvaiue. A;, and comsponding cigenvector. W; - (w,. .... w, , )  are detcrmined by 

n"w; = ii; w; (G.3) 

where II ' is a linear vector operator defineci by 

of y&) and its fmt denvative at x, - O and x, - L by the equations labelled (2.2.4). The 

Domm 3 describes a domain of operator no. On the 0 t h  hanci, operator ï I  ' can k 



p v e &  in a simüar way to the pxwf aven m Appendix B for opemtor II. to be 

completely conthuous, positive and seKadjoint in R<". Consequently. the j th eigenvalue. 

A;. of Iï can be characterizcd by the min-max principle (E.1) as 

Y = min max R(Ym), j = 1, 2, ... 
8pEd1<0,lkrY;rj Y - €  V; 

where R(Y) is the Rayleighquotient defined by 

Here E4) is an energy space which is completed by the inner product 

ït can k found h m  (2.2.4) that, for an arbitrary vector F' - (fi'. .... f*) E E'*'. the= 

exists a unique vector F - (f, . .... f, . A) E EeO) in which f ,  - A*. f2 - f;, fi - f;. fr -Ae 

anci& - fie '(L). On the other hanci, for an arbitrary F - 6. .... f, . f;) € EEO? the vator 

F'- (f,', .., f;) E G" can bedetermineduniq~el~ byf,'=f, .fie -f,.fr - f i -  

Consequently. it can be s a n  from (E.1) that the jth eigenvalue. %, of a beam havuig a 

non-sao J ,  can be rcWtittm as 



(G. 10) 

It can be seen h m  (G.6). (0.7). (G.10) and (G.ll) that the j th eigenvalue. h. is a 

peRurbation of A; due to a non-zem (Jlh2). If the terni (J,f,) is considercd equivdent 

to a numerical arot in the Rayleigh-Ritz-Galerkin procedure. the convergence analysis 

presented in 133  demonstrates that 

wherc W;,,I denotes a four-component vector obtained by cüminatuig the f& component 

of Wj - (w,. .... wSj). Wj é the jth eigenvector of the beam s h o w  in Figure 2.1 and it 

has a non-zero J ,  . Thus, it can be shown h m  (G.9) and (G.12) that the following limits 

hold 

and 

w j -  t O. i = 2, 3, 4. 5 .  
J, + O 

By repeatcdiy employing Schwan's inquality i.c. 

(G. 13) 

(G. 14) 



(G. 15) 

and 

the foliowing two inequalities can be obtained straightfonwardly 

Similarly , the inequality 

(G. 18) 



can be obtained Limits (G-17) and (G.18) illustrate thaî Lemnia 2.4.1 holds as the 

parameter I,  tends to zero. A similar procedun can a h  be uced for paramcters iike 

Mo , M, and Io. 



This appendix prcsents the pmof of Theorcm 3.2.1. nie notation of section 3.2 is also 

used in this appendix, It is well hown that a ôoundary value problem has two f m  

p3]. One is d e d  a strong form which cansists of a differcntial equation as weil as 

interior and end conâitions. The other is a weak fom, Le. a variational equation. The 

comsp0ndi.g solutions are calleci the classical solution and the weak solution, 

~tsptctively. These two soIutions arc i&nticai when stmng and weak forms both have 

unique solutions [53]. Moreove, the ~itgularity, i.e. wntinuities or discontïnuities, of a 

weak solution is equivalent then to that of the ciassical solution. On the other han& the 

uniqueness of the classicai solution can be demonstratecl by employing a Green's function. 

this approach gives the classical solution of the eigenvalue pmblem, describeci in (3.2.2) 

t h g h  (3.23,  in the integrai form 

G&), i - 1.2. is defined later in thip section. G(x, B. conversely. is the Green's hction 

of the multiple-point boundary value pmblcm 

with the end conditions at x - O and x - L given, mpectively, by 



and 

The interior conditions at x - x, are given by 

The negative and positive superscripts indicate limiting values as x approaches x, fiom 

the left and nght. nspectively. On the other han& GJx) and G&) are the respective 

solutions of 



and 

The Green's fiinction. G(&. is connnicted to satiofy the foliowing nquirements. 

130 



(1) G(x. D is regardeci as a huiction of x for a nitcd f& It satisfies the homogencous 

dinemntial equafion SIG] - O for aii x excep x - and x - x, . r - 0.1 .  .... N. Momver. 

it ais0 satisfies the end and inmior conditions (H.3) dvough (H.5). 

(2) G(x. and &(x. are continuous in the square defincd by O 5 x. 5 5 L. 

(3) me avG(x. waxv. v = 2. 3.4. are continuous in 

if satisfies xr , S 5 S xr for a givm positive integer. r,, , such that 1 S r, d N. The 
O O 

partial derivatives of G(x, at x = x, . r - 0. 1. .... N should be considend as left partiaï 

cienvatives when x c xr or right partiai dcnvatives when x > xr . Furthemore. ~G(x ,  B/w 
is continuous in the square defmed by xr ., 5 x, 5 xr . 

O O 

(4) The following equalities hold for x,, c x z x, r - 1. .... N: 

and 



The following l e m  is usefid to verifj. the existence of this Green's function. 

Lemma H.1. The analytical solution of the problem defmcd by equations (H.2) through 

w.5) is idcnticaüy tero whm f (x) = 0. 

Proof 

Suppose +,,(x). .... @&) rcpeKm the four independent solutions of equation (H.6) when 

f (x) - O in the interval xr . , S x S xr . r - 1. 2. .... N. Then the comsponding solution of 

cquation (H.2) can be expssed by 

Substituthg (H. 1 1) into the end and interior conditions (H.3) and (H5) yields 



and 



Equations (H.12) through (H-23) can be expresscd compactly in the maaix fonn 

[A]u = O m.24) 

a = (a,, . ... . ..-. a,,. ..-. 

Here W is a 4N x 4.N match which consists of the coefficients a, that are used in 

equations (H.12) through (H.23). Suppose that the determinant of matrix [A] is zero. Then 

it is weiï-hown [49] that there cxists a set of aon-rero coefficients. q. such that y@) is 

non-zero and satisfies aquations (H.2) Uwugh (H.5) for f (x) - O. On the other hanâ, the 

corresponding variational form of quition (H.2) through (A.5) can be writteri as 

B6.u) = O (Hom 

for aü u E B. In particuiar, B(y,y) - O so that y(# = O in O 5 x S L because B(u, v)  is 

an inner product of space B. This conclusion is conuary to the assumptïon of a non-zero 

y(x). Hence the determinant of [A] must bc non-mo. Conîequently. the conesponding 

analytical solution quais zero. 

This completes the proof of Lcmma El. 

By employing Lemma H-1. the existence of the pnviously described Green's function 

can be verfieci straighdorwardiy. Let Ir &note the open sub-intend: xr < x < xr + , . 
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Suppose ro . r, and r, an thrcc. giva, positive integcrs satisfying 1 S ro . r1 . r, 5 N. nien. 

by foliowing the procedure used in [49], G(x. can be expresscd as 

nie fiuictions % arc deteRnincd by the continuities of G(x. for xr ., S x. S xr as well 
O O 

as those of the first and second pardal derivatives of G(x, with respect to x. i.e. h m  

(1.27). 

in addition to the jump condition (H.9). viz 

+lr$x). .... $&) rercp~esent the four independent solutions of equation (H.6) PO that the 

b i = 1 .... 4 can be detcrmined uniquely h m  equations (H.28) d (H.29). 

Furthennom. the bb0@. i - 1.  .... 4 are inàependtnt of the end and interior conditions. 

To determine the a&). substitute G(x. into the end and interior conditions (H.3) and 



(H.5) ta yicld 





It can be observed that the coefficients a, m equations (H.30) h u g h  (H.49) are the 

same as those given by equations (H.12) through (H.23). Lemma H.1 demonstrateci that 

the determinant of the mat& of the coefficients is non-zero. Therefon, a,@, 

i - 1, ..., 4 and r - 1, ..., N are dctermined uniquely. This completes the proof of the 

existence of G(x, p. The existence of G,,(x) and G&) can be shown andogously. 

It is nœdcd to prove next that the function 



is the solution of the foiiowing. multiple-point boundary vaiue problem : 

Pb1 = Ax) 9 xPI c x c xr ,  r = l ,--. ,N 

Suppos~ x E Ir0 for an arbitrary. given positive integer, ro. satisfying i 5 r, S N. Then 

(HJO) can be rewritten as 

Using Leibnitz's rule for difftrentiation. the above equation becorner 







and 

By cmploying equations (H.9) and (H.10). the last equation kcomes 



Substituting equations (H.55). (H.56) (H.57) and (t159) into the lcft si& of (H.2) leads 

It can be seen f b n  the definition of G(x. and equations (H.6) and (H.7) that ali the 

integxais in the last equation are identicaiiy zero. Fiuthermoxe. Zro is an arbitrary 

sub-interval in O I x 5 t. Thereforc Hx). which is givtn by equation @.50), satisfies 

Suôstituting y(x) into the left si& of the f m  end condition of (H-52) and combining the 

result with the end conditions (H.3). (H.6) and (H-7). yiclds 



Thus Hx), indctd, sathfies the fint end condition of (H.52). It can be shown analogously 

that y(x) &O satisfies the remaihg end and interior conditions. viz (H.52) and (H.53). 

Consequently. y(x) h a classical solution of the multiple-point boundary value problem 

(H.51) through (H.53). This means that the variational equation (3.2.5) has a unique 

solution of y(x). 

To study the contllruiiy of y(x), rewrite equation (H.2) as 

It can bc found h m  (H.27) and (H.54) through (33.57) that y(x). dy(xYdx. d 4(xydx and 

d 'y(xydr arc continuous in each sub-interval V' : xr S x S x, + , . Thmfore, 

~ l ( x ) d  4~~Yd;n .  has the same continuity as the fimction Xx) given on the right si& of 

(H-63). Thus. if f u(x) is square integrabk in cach V, . then d %(xYdr is aiso square 

h e p b l e  in Y, because pA(x). El(x). p(x) and 4') as weil as their arbitmily high 



derivatives arc also continuous. This proves the second part of kmma 2.1. 

Mathematid induction is needed to invtstigate the continuity of the eigenvcctors in 

each V,(that is c m e d  m Theorem 3.2.1). It is known h m  equatïon ( E l )  that the hrst 

dcrivative, dw, (xy&, is continuous in each intervai V, . Suppose d k, (xydx ' is eontinuous 

in each Y, for aU k S n - 1. Then the induction procedure req- that d" wj (xy& is 

alsa shown to be continuous in each V'. To accomplish this goal, replace y(x) and f (x) 

in (R63) by WAX) and Swj(x). rcspectively. That k. 

It can bc noticed h m  (H.65) that g(x) bas d 'WI(XY& as the highcst derivative of wj(x). 

It is assumeci in the induaion that d k,(xydrk. k - 0. 1, .... (n - 1). is continuous in each 

V'. Furthemore, pA(x), El@). p(x) and k(x) as weii as theu arbitnrily hi@ derivatives 

arc aiso continuous. Consequently. it can be seai h m  the foïiowiag equation 



that dAg(x)/dxn4 txists and it is continuous in each sub-interval Vr.  On the other band, 

it is hiown h m  (H.63) and (H.64) thst g(x) - ~l(x)d~w,(x)Mx< Hencc. 

d d(EI(x)d w, (x)/dx 4ydx * is also continuous in cach Vr so that 

This last equation indicatm that d "wJxkfr " is. hdccd, continuous. This cornpleus the 

146 



proof of the fust part of Lcmma 2.1. 



This appcndix prcsents the proafk of Lemmas 3.3.1.1.1.12 and 1.3 and outlines the two 

thcortms givm in 146. 541 which arc used to prove Theofcm 3.3.1. 

It h known h m  Theorcm 3.2.1 that d 6z(~)/&6 is spart-integrable in each sub-iitcrval 

V, whcn z(x) is an arbitmy solution of equation (3.2.10). Conscqucntly. if g(x) is & f m d  

by equations (3.3.2) and (3.3.3). d 6g(~)/dx cannot k fidïy or piecewist continuous. 

However. by rcferenen to Definition 3.3.3. it is known tbat q must saasfy q S 5 c 6. On 

the other hand, nieorcm 3.2.1 shows bat z "(x) is pieceWise continuous in O S x S L . 
Define g(x) to be identical to dx). Then Table 2.3 indicates that g(x) has a stries 

expansion with respect to (W,lx)) whose k t  order derivatives can be taken. temi by 

tcm, without loss of uniform convergence in O I x I L, i.t. q 1 2 > 1. 

This complets the prwf of Lemma 3.3.1. Lemma 1.1, which is needed in the proof of 

Lemma 1.2, is dcmonstratd next. 

Lemma LI. Let i,. il and q be thce positive integers satisfying i,, l il < q. Suppose that 

r, and r, art two positive integers for a given positive intcger i that satisw r, I ri S N 

whiist i satisfies i, b i S i, . Imagine c&) E riq. c&) E 9, and c,(x) E 3 iq  wherc 

r, I r I ri. Aiso. w(x) E B is an arbitrary function that has continuous derivatives upto 

order q in each sub-intend V,: x,, I x S x ,  , 1 I r I N. Moreover* a coefficient ir, is 

&fmed by (3.3.4) as 



Given the above statements, thm exists a positive constant* c. such that 

f o r i , S i I i l a n d O I r , I r d r f  S N .  

Proof 

F i t  consider r  satisQing O < r < N. It can be shown [45] that the= exists a constant 

cl such that 



La c, and c3 be two positive constants that are dcfîncd by 

and r = 1 .  2, ..., N-1). 

It can be fond immediately h m  the l u t  equation that the incquality 

i = io. io+l. .... il and r = 1. 2. .... N-1 
is tme. Thereforc 

i = i 1 . il and r = 1 ,  2,  .... N-1. 

Beforc pmcceding to prove Q.2). it iz helpful to demonstrate that 

The proof of (I.8) is bascd upon the use of matbernatical induction. 1t can be found from 
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(LI) that, for 0 c r < N and i = & + 1, 

By employing (I.3) and (In, the f0110wing inequaiity can be obtained fiam (ï.9) 

Consequently, the inquaiity 



Suppose (I.10) a h  holds for an arbitrary integer. i = i2. that satisfies i, + 1 < i2 < i l .  Le. 

Then 0.8) is nctdtd to bc shown when i - t, + 1. First, it is hown h m  (LI) that 

Then. by employing 4.3) and Q.7) again, the following inequality can be obtained h m  



This iast inequality shows that (L8) is aiso valid for i = i, + 1. Thmefore, Q.8) holds for 

any positive integer i oatistying i, S i S i l .  Next. 4.2) can be shown straightforwardly for 

r satisfying r, S r I ri. Fit, by employing QI). (13) and (1.7). the inequality 



By employing 4.3) and (1.8). (I.20) bacornes 

Substituting (I.19) into (T.21) leads to 

Let c be a positive constant defincd by 



This last hcqdïty shows thaî Q2) holds for O < r < N and i, S i 5 i, . A s i m i .  pmof 

can bc given for r - O and r - N. 
This completes the pmof of Lemma 1.1. By employing this lemma, the next lemma 

nec& to be shown beforc kmma 1.3 is f d y  provcd. 

Lemma I d .  Let g(x), which is defined by 

and 

have the gentralized Fourier series expansion 

where h, is given by (I.1) and 

Suppose tbat the (spatial) &rivatives of series 0.25) can be taken. term by tcnn. up to 

ordtr (q - 1) without loss of u d o m  convergence in O I x S L. Furthennoze, imagine that 



the q th derivative of g(x) is fully or pieeewise continuous. Then dm cm be rrWnttcn as 

whae v = 3 - q mod 4. ïfhe mod term is the integer remaindtr h m  dividing q by 4 

[SI].) Fuxthe~11orc. a positive constant, c,. exjsts such that 

for a sufficiently large m. 

Proof 

It has been shown in 1551 that q can be expresscd in the fonn 

q = 4k+q iirod 4 0-31) 

where k is the positive integer quotient obtained when q is divided by 4. On the oîher 

han& the foliowing relation can be found from [SOI, v u  

1 d 4 & * ' x  (x) 
= vJx) 

( L )  dru** 

Substiîuting (U2) hto the first equation labellecl (128) leads to 

Integmting (1.33) by puu and using (LI) yields 
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Let v - 3 - q nrod 4. 'IhQ by employing (131), the foiiowing relations can be shown 

v = 3 - q  mod 4 = 3 + ( 4 k - q )  = (4k+4)-(q+l). @.35) 

This last equation yields 

4k+4 = q + l  +va 

Substituthg (1.35) and (I.36) into (I.34) produces (2.29). 

Now consider inequality (L30). First, it can be shown [45] that there exim a positive 

constant c, such that 

Fuxthermore, it is known [42] that the generic incquality 

holds for bk. k - &, k, + 1. .... k, whcre bk is an arbitrary real value. n ie  L, and k, arc 

two positive integem. By employing (I.38). the incquality 



can bc obtallied h m  (I.25). Moreover, the inequality 

can be found similarIy for xr- , S x S x,, r - 1. 2. .... N. Thus. 

' 1  q+l N 
d f L  2 + < i l - i o + i ) < r ï - r , o + i , C  C ( h k r F ( x  ( 1 Wn)l 

k=fo b r i o  C-O r=f xr-l 

can be obtaintd straightforwatdly. By using (1.2). (141) kcomeo 



~ 6 -  

wherc c, is a positive constant which is givai by 

Additionally, it is known [46] that the ith oida daivative of y&) saticnes 

(sliding -sliding and sliding -pinned c d )  

(pinned-pinned ends) 0.46) 

(al1 o tkr  srandtard end conditions). 

Consequently, it can k show in a s i m i .  marner to 8.1) that there exists a positive 

constant, C, , such that 

After the above pliminaries. (1.30) can be show straighdorwatdly. FUEI, it is seen 
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h m  (1.29) that 

By ernploying Schwarz's mtquaiity 1451 i.e. 

as weU as the inequalities [SOI 

for an arbia~ry integer i and a suffîciently large m. 0.48) becornes 

By employing (I.47) and 050). -1) can be simplified to 



By using (T.37). 453) can be simplifiai fiirther to 

+Lm(c,/6)Tg7;1 

F i y .  because N > rf - r, . the application of (X.42) to (1.54) leads to 

By &finhg a positive constant, c,, as 



c, = 12U0 L R ( 2 c 5 ~ +  LLR(c,l 6 ) ) ~ ~ .  

(ISS) can bt rewritten as 

This wmplaes the proof of Lexxuna 12. nie next muk can be obtaiaed by using this 
Iemma. 

independent fimctions <cb(x)> of set (3.3.1) as weii as W x ) :  m - 1. .... n - ml ). Suppose 

{Mx)). 2 S b S i d il S (9, - 1). O S r, S r S r, > form a set of q,-GFM fiinctions with 

rwpect to {vm(x)> and an eigenvector w, (x) E M G .  H 

thm a positive constant, cl. exists whkh is independent of n and WAX) a d  udch that 

for a sufficicntiy îarge n. The q, and ( T a x e  &en by equation (3.396)- Fmhemore. 
*1 

suppose P is an orthogonal projection of sprce B on S,,and, for an a r b i i  9 E B and 

if <cb(x)> form a set of q&FM fimetions with respect to <vm(x) 1 and quation (32.10). 



wherc q, is given by equation (3.3.10) and c9 is a positive constant that is inâepcndent 

of 9. 

Proof 

To pmve inequality (1.59). let w(x) = wi(x) and q - q,. Thai the g(x) defincd by 

equations (3.3.2) and (3.3.3) has the generalized Fourier series expansion (1.2'7) and the 

coefficient dm is given by (I.29). It has ken show in Lemma 1.2 that a positive constant, 

c, , exists such that 

for a sufnciently iarge m. By using the iaeqdity [4û) 

for a sufficiently large n. the following inequalities can be show 

Le. 



S i m y  

for any point x MtiSQing O S x S L. On the other hm& Parseval's identity applied to the 

right si& of (I.27) for gm(x) produca [40] 



w h m  IyJ, is the nom of wm(x) in a HiIbert space. H. [45]. 1t is givm by [SO] 

By employing Q50). (1.62) and (1.67). the inequality 

can be demonstratad. By using 0.30). the iast inequality becornes 



On the other band, it is lmown h m  (3.2.7) that 

Substituting 0.64). (165) and (Lm) into (i.70) yields 



It can be shown straightforwardly that 

for n > 1 so that 0.71) can be simpllïkd to 

By &£ining a positive constant, c, . as 



Combining mis 1st relation with equations (3.3.2) and (33.3) produces 

Hence. it can k seai h m  (176) that there erists a positive constant, c8 such that 

requinxi inequatity (I.59). viz 

c b c , n - Q q i - a n l T  = c p - ~ l j ,  Q I  0.77) 

holds. 

To prove inaquality (I.61). laflx) - 0 - Pp for an arbitrary Q E B and suppose that z(x) 

is a solution of equation (32.10). By choosing u -fi).  equation (3.2.10) givcs [56] 

m.n = VI:. (1,781 

It is oan eerily h m  quations (3.2.6) and (ï.60) that 



for aU ]Kr) E S, Applying Schwarz's incquality to the right ride of the last equation 

yiek 

Now {cb(x))> COIIS~~N~CS a set of q3-GFM fiinctions Mth respect to <y,(x)) and cquation 

(3.2.10). Let w(x) = r(x) so that the g(x) defineci by equations (33.2) and (3.3.3) has the 

gentralized FoUncr series expansion (J.27) whose coefficients axe given by equation (1.29) 

in which q is replaceci by q3. For q, - 5. it can be found h m  (I.30) that a positive 

constant, c, , exists such that 

On the other hanci, by choosing lyx) as 

it can be seen h m  0.63) and (i.8 1). in a maMeer similar to the derivation of (1.75). that 

a positive constant, c, , exists such that 



A similnr p f  can also be givcn for q, - 2. 3 and 4. 

In addition to Lenvna L3, the following theorcm is neadtd in Thcorcm 3.2.1 to estimate 

the eigenvalue and eigenvcctor errors in spaces B and D. 

m m  11 [46]. There ucists a positive constant, c such that. for the eigcnvaluts and 

eigcnvectors of variational problem (3.2.6). 

A . - ) c , S  ce2 

and 

The E and q in the last inequalities arc given by relations (I.59) and 461). respectively. 

The next theorcm is used to derive pomtWiK emr estimates in nieorcm 3.4.1 for an 

eigenvcctor and its highcr spatial denvatives. 

Theorem I.2 1541. Imagine u and a sequence of fiinctions (u, : n - 1, 2, ...) belong to 

W<')(O, L), a Sobolev space in which eveiy element and its derivatives have absolutely 

continuous derivatives upto order (k - 1) whilst the kth derivative is square integrable in 

O s x l L. suppose 



k-i- ' 1 

Am + 0. A, + O a d  ( A , / E , J ~  + O as n + .D 

then the sequence <diun/&'> converges unifo-y to d 'u/dxi in O 6 x S L such that 

The di), i - 0. 1. .... (k - 1). arc positive constants that depend upon i. 



This appendk prcsents Lemma J.1, which is needd to prove Thcorcm 3.4.1, and 

sketches the pmof of Comliary 3.4.1, 

(1) Lmma J.1 

Reference 157 estimates the positive integer. h, used in the inequality 

Hcrc f = Kx)  is a continuous function and f ,  - ,(x) is an orthogonal projection ont0 an 

(n - 1) dimensional subspw, K. ,. spanned by an arbitrary. onho~onal series in a Hilbert 

space, H, whose nom is given by 

Moreover. c is a positive value that is independent of n. Inequality (3.4.9) indicates that 

an estimate of h is needed for a continuous or a discontinuous c",,(x) in an (n - 1) 

dimensional subspace. B, - , , spanned by a non-orthamna1 series that contains the 

orthogonal eigenvcctom, {&(x) >, and the GFM fiinctions { ~ J X )  > which exclude sa&). 
The s and t art two given positive mtegtrs. 

It is known [4û] that the value and sign of the coefficients in an orthogonal series 

expansion dictate the expansion's convergence rate. These coeff~cients are dctcnnineâ by 

the orthogonal eigenvectors themstlves as well as thtir derivatives at the discontinuous 

points of 5,(x). ûn the other hand the ratio of the m th characteristic value. &. to m 

tends to IC in (3-2.12) as m + =. Moreovvcr, (3.2.12) indicates tfiat, for a sufficicntiy large 



ni, a unifonn beam's eigcnvcctors and th& denvatives are dominaml by eithcr 

cos(&. + 8,(x)) or sUr(mdL + O&)) wIiert û,,(x) is prtsented in Table J.1 for 

clBertnt standard end conditions. To End how thest trigonometric functions change for 

M&rcnt m at a @vcn x - xr, a ray 0 0  introductd in the &-xi plane shom in 

Figure 1.1. This ray has a (constant) unit length and nuis fiom the origin, 0, to an 

arbiûary point, A,. It rotates countcrclockwise about O ad, aher m equal stcpped 

incrcments of xx,K h m  the initial angle 8,(x,), the ray forms the angle 

relative to the &-axis. By using the particuiar locations of OA, that correspond to 

r - 0, 1, ..., N, as weil as the foilowing Lemma, inequality (J.1) can be demonsmted to 

apply to c"&) in the (n - 1) dimaisionai sub-spacc B, . , . 

whac r - 1, 2, ..., N - 1 and i - 2, 3. nie sets e9. Ni and 9 i q  are denned in 

Definitions 3.3.1 and 3.3.2. Let S, bc spanned by n functions consisting of the m, linearly 

independent functiolls (u)> in addition to Qtm(x), m - 1, .... n - nJ Suppose that 

Ur) (L O) E Sm where s and t are two (known) positive integtls thpt satisfy 2 S s S 3 



and O d r S N. Thcn, for a non-zeio u) and a set of arbitmy rcal constants {b, > in 

which b, - 1 and 6, - O if u x )  S,, , the= exists a positive constant, cl, which is 

independent of n and such that, for a sufficiently large n, 

and 

if (1) for a set of arbitrary constants, {O,, k - 0, 1 and r - 0, 1, ..., N), satisfying 

Q, + O. Q, - O for c&) r S. and - O for Ca) L Sn, there ù a positive integtr, 

in, < A, such that the rays OA, , with c&) E Sm or u x )  E Sm, 1 c r c N. can be rotated 

synchronously into the plain regions defineci in Figurc J.l with the exception that just one 

ray OAro, comsponding to a rational number x,/L, may coincide with the xY-axis of this 

figure, where v is a non-negtive integer satis£ying v - (3 - s) nrod 3: and if 

(2) the dations 



w h m  k is a positive integer and do/@ implies the fimction itself. However, 

cv 1 
( Q ~ ~ , ~ ~ ~ ~ ) ( Q ~ ~ ~ ~ ~ ~ ~ )  2 0. 5, 2'3 (# 0 )  ' Sm. 2 r 4 (XI ( @  O )  E Sm 

(J. 10) 

and 

(J. 1 1) 

for aii positive imegers r, (1 - 1.  2. 3. 4) satisfying O < rl < N. Furthemore, rl # r1 for 

l - 2, 3. 4. Moreover. the comsponding xr1 IL - jrl /j is rational when jrl and j are two 

positive intcgexs. Ab, v1 = (s + 1) rnod 3. v2 - 1 + (7s mod 4). Morcover, r, = r1 for 



a unifom fice-sliding bcam or a h-pinned beam; and 

1 if 5, ,(x) ( 0  O) E Sm. r = 0. N 
2 (J. 12) Pr = 

O if h,(x) - O or L2,(x) (. O) t Sn. r = O, N 

- i 1 if (x) E S,, and rl # O. N 
2r1 a, - O if r, = O. N. 

Proof 

Parseval's identity applied to the left si& of (J.5) produces 

3 N n-m 1 .,*If QD 

nius. if there exkt a positive constant c and a positive integer nr, @ n) such that 



By t a b g  c, - 8". the 1st inequality indicates that Lemma J.1 holds. AU the following 

development is nctded to show the existence of c and m, so that, indeed, (J.15) holds. 

Suppose that aU xr /L are rational. They are denoted by [59] 

wherc jr and j arc two positive integers. Then, by employing (J.17) for a givcn integer m, 

such that 1 S m, < n, it is known [55] that 

(2j+n+,)nxr/L nid 2n = (2jrr+morrxrlL) mod 2a 

= m,zx,/L mod Zn. (J-18) 

r = 1 * 2 ,  a.., N - 1 .  

This iast equation indicates ttiat, regardles of r, the my O& rctums to its initial position 

after 2j stepped incremcnts (Le. the periodicity is 2~3. 

for a set of given rcal constants {bb >, i - 2, 3. Suppose that &(x) has die genealited 



Fourier Sefies expansion 

whar d, is defincd by the k t  equation dmoted (J.6). lntegrating the right si& of this 

equation by pans leads to 

whilst 

but 

whiht 

and 

It can be seen h m  (J.21) and (J.22) that the validity of (J.15) depends upon the 
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analytical propaties of Tl., and TL, *ch an firnctions of ym(xr ) and y 'Jxr ). Thus. 

to prove Lemma J.1, x>me analytical properties of Tl,, and Tz, . as weil as ~ ( x ,  ) and 

~ '~ (x . ) .  are medd. Consider. for example. a free-sliding unSom beam. Suppose s - 2. 

Let qOr and pl in reqkrnent (1) of Lemma J.1 be @en by 0, - O, and pl ,  - a, .. 
rcspcctively. If rcquirtment (1) is to be saMcd, these must exht an Înteger. m,, such 

that the rays 04. with c&) E S .  or CJx) E Sm . 1 < r < N. can be rotated 

synchronously into one of the four plpin regions of Figure J.1 Mth the possible exception 

that just one OAro coincides with the ~,-axis. It is known. on the 0 t h  hand, hom 

Lemma KJ of Appendix K that 

for ail r satisIying 1 S r S Ai - 1, a sunicicntiy iarge. positive in- k and a fîxed, 

positive integer j, Furthemore, if OAro coincides with the x,-axis. then 

whem + &) is the (4 + Zkj) th eigenvector of the free-sliding beam. 

It is known [SOI that qt',(L) O. Hence. Definition 3.3.1 inâicates that G d x )  = O. This 

leads to t + N in Lemma J.1 for a fkc-sliding d o m i  beam Thus, if (J.7) holds in 

addition to (J.24) and (J.25) then, when s - 2, v - (3 - s) rnod 3 - 1 so that 

4.aZo * O. r *  N, < ~ , ~ a l l ~ ) ( 4 , a ~ ! ~ )  2 O. Gr(x) a 0-  (f.26) 

Fuxthemor~. it is socn from 6.3). (K.61) of Lemma K5 and Remark K.1 that there 

exists a positive constant, m, . such that 



for aii n and ni, + 2Lj > m, . Inequality 427). when combined with (J.26). leads then to 

This k t  inquality as welï as (J.22) and (J.24). together with the periodicity. 2j. of 

rotation of ray OA,. lead immediately to the inequalities 

where k and k, are two arbitrary positive integers that sa&& in, + Uj > ni, and 

m, + ZL, j > q . Also. Q% + is the (4 + 2&) th characteristic value of the frcc-sliding 

beam. Furthemore. when s - 2. v, - (s + 1) mod 3 - O and v, - 1 + (7s mod 4) - 3. 

Suppose that (J.9) is m e  and M x )  E Sn. SJx) E S.. ci(x) E S,, and c&) E S.. Then. 

by employing (1.8) as weii as (J.12) and (J.13). the inequality 

uuibeshownforp,-a,, Q , , - o , ~ .  Q , , ~ = o , ~  ~ d ~ ~ - ~ ~ . H ~ m t h e n ~ < a t i ~ n  

d0ya(xrydf r yr%(x,) is uscd again whilst r, = r and r, = ro arc two arbitrary integm 

satis@ing 1 5 r c N. 1 S r, < N and r, # r. It U boum from (K.22). (K.24) and (K.25) 

that 



and 

0x1 the other hanci, it is known M m  (K.28) that yr,(xr) can be written. for an arbitrary and 

sufficiently large positive imeger m. in the form 

Thus. by employing (J.3 1) and (J.34) as weii as 4-35). the T, , defined in (J.22) can k 

expandcd as 



This iast equation leads to 

Let k, be another arbitrary positive imeger satisfLing ni,, + & j > m, . Then. the 

can be found ftom (K.60) of Lemma K.5. Furthermore, by employing (K.29). it is hown 

that 

for any positive integer k. Thexefore. by employing (J.30). (J.38) and (J.39). it can k 

shown that 

so that 



with i - 1 and 2. Consequently, the inequality 

or, from (J.37), 

can be shown by employing 0.39) and (J.41). In addition ta (J.29) and (J.42). a positive 

integer Q, defineci by 

is also needcd in the pioof of (J.15). Here k, is the positive quotient obtained when n is 

dividtd by 2j. It is b w n ,  howevcr, fram the pmof of Lemma K.1 given in 

Appendix K that I satisfies the incquality 



for a sufficicntly large n. 

(J.15) can bc provad now by tmploying (J.24). (J.25), (J27). (J.42) and (J.44). Fit, it 

is known fiom the analogous principle of r d  numbers (551 that, for two arbitrary but 

given hnite real values a and b, either a 2 b or b ç a. N o w  Id% + ,l and 

(~~1% + , ) 1 T,. % + ,I are two given. finite non-negative values. Thus, either 

by using (J.21) or 

If (J.45) holds, then it is seen h m  (J.29) that 

On the other hanci, it can be seen h m  (Id38) that 

nmo., < 3fin (J.48) 

for a sunieiently large (rn, + 9. Consequently, it can be found h m  4.47) and (J.48) that 



It is hown h m  (J.5) and (J.26) that 6, = 1 when (Q s - 2 and (ii) a given positive 

Let 

so that (1.49) can be sirnplified to 

Idrn2 1 > cn- I .  (J 32) 

This iast inequaiity means that, because s - 2.Q.15) is mie. Consequentiy (J.5). indeed, 

holds, 

A M e r  study is needed when (J.46) rather than (J.45) holds. First, consider 



Morw ver, 

and 

Let 

and 

4 . ( m O + t ~  = (T2.(m0+3#) -Am0*34) -('2.(m0+@ -Amo+@)* 

Then, by employmg the identities 



(J54) can bc simplificd to 

To apply (J.60) in proving (J.15). the following inequalities are needed 

and 

To &rive (J.61). the following equallty. which is obtained by employing (K.25) and 

( K m .  

@) O 
~ ~ ~ + 3 # ~ ~ ,  = %m0+30 +Ar(m0-3()  -(ar<mo+t) +Ar(mO+#]) 



is usefbl. In hct, by employing (K.66). it cau k found that 

Hence, h m  (K.44). 

for a sufficiently large ni, + I Similarly, h m  (K.21) rather than (K2O). 

I 

By employing 0.64) and (J.65) with (3.25) and (1.24). respectively, and r e m e m b e ~ g  that 

I - 2jk0, it can be seen that 



and, simiiarly, 

or, h m  4-22) again, 



This iast incquality is just (J.61). A umilar proof can be given for mequality (J.62). 

On the other hanci, it is known fiom (K.74) that 

for a nifnciently large (m, + Q. On the other hami, it can be fond nom (J.35) that kl, 
and &,, are both positive for a sufnciently large m. Thus, for Tl. % + , > 0, inequality 

0.53) îndicates that S 0- Then. by employing (J.56), Q.69) and (J.70), it can be shown 

that. ifa, S 0. the (G+r - %+a d in (J.60) satisfies 

The equality in (J.71) holds. of course, when a,l - a, - O. Furthemore!, it is hown 

fkom the elementary algebraic th- [60] diat la 1 S b is equivalent to -b S a S b whiist 

i: I a + b I c is equivalent to -(c + 6) S a I (c - b). Here the generic b is an arbitrary 

nnite psitive value whilst a and c are arbiwry finite mai values. Thus, the inequaiity 



can be obtained straighdorwardly fmm 4-46) for Tl- (5 + , > O. Monover 

On the other hanci, it is known h m  (J.37) that, 

Hence, h m  the definition (J.56) of A,,,, , 



Furthermore, it is known h m  (J.43) that t = & j. Co~l~tqllently, when ni, + t > 4, it 

is seen h m  (J.41) that 

and 

or, h m  (J.56). 

Consequmtly, by cmploying 0.80). the incquality 





for cr,l S O and o, S O. By using (J.61) and (J.62). Q.84) kcomes 

because 

y ields 

(112 - 11500) > 114. Moreover. the last inequality, when combined with (J.78). 



Then it can be seen h m  (J.29) that, as t - & j, 

By using (K.40). (J.87) can be simpli-fied to 

Let 

L ,  t = O , . . .  - 1 )  2 '"2 = mo+3# and c = ( )  112 (J-89) 
Sooox L 

so that (J.88) becornes 

This iast inequaiity means that (J.15). indeed, holds when s - 2 so that (J.16) is valid 

That is, Lemma J. 1 is m e  when (3.53) holds and o, S O. A similar proof can also k 

given for a, > O as weli as for the foilowing cases: 



1 
Tl .<"Io*@) 

= - 
1 .<mo+t) ond =T = - = 2.(m0+0 - (J.94) 

Then it can be shown straightfotwardly h m  (J.94) that 



Thus, it can bc found h m  (J.21) and (J.95) that 

Hence Lemma J.1 can be show to hold in a simüar manner to TL. (% + > O for s - 2. 

The pmrious analysis is based upon the assumption that the x,/L = jr /j. r - 1, .... 
N - 1. are ai i  ratiod. Suppose. conveaely, that the xjL. 1 5 r c NT are inational. Then 

it is krown 1591 that. for a suniciently large n. there exists a rational number. denoted by 

x ,+~IL = lr/n, a971 

such that 

where. h m  Table J.1 for a fÎcciliding beam, 



aftcr 2B simultaneously stepped increments. nius. it can k shown k m  (J.97) through 

(J.100) that 

Furthe~more. it is known h m  equation (J.17) and (J.97) that al l  rational x,/L can be 

expresseci by 

xr/L = jr/j  = ( j r n ) / ( j ~ )  a d  xr,& = lr/n = ( l r j ) / ( j n ) .  
(J. 102) 

O c r c N .  

Consequently. it can k shown f h m  (J.18) that all  the OA, which correspond to rational 

xJL rcturn to their initiai positions after 2Jir increments. (Note that j is a hown positive 

integer for a given set of xr,  r = 1.  2. .... N - 1.) Define t - 2jn. Then. inequality (J.5) 

can be shown to hold for s - 2 by empbying inequality (J.102) and the same procedure 

as before - cven if some of the x,lL are irraiional as well as rational, 

Lemma J.1 cm be proved analogously for s - 3 as well as for the eigenvectom. <v,(x) >, 

of a uniform beam having the other end conditions given in Table 3.1. Then the analytical 

properties of the eigenvcctors iisted in Tables J.2 and J.3 arc useful. 



(2) Pmof of Coroîiary 3.4.1 

The following =suit is helpfid in proving Coroltary 3.4.1. It is written in the form of 

a lemma. 

Lemmi J3. Suppose bat n, and ml are an evcn and odd intcger, nspctively. Thcn a 

ray, OA, . that has an end point A, which does not coincide with x, IL - 1/4. 113. 1/2,2/3 

or 314 can k mtated iato one of the four plain regîons &nned in Figure J.1 by taking 

either m, or m, stepped incrcments h m  any initiai position. This statement is also mie 

for a beam having other than pinned-pinned or sliding-sliding ends when x, lL - 1/4 and 

314. 

Proof 

Consider the ray OA, . It has the angle B,(x,). relative to the positive &-,-axis of 

Figure J.1, which is given by 

after m stepped increments fiom its initial angle 9&). Suppose a point x, satisfies 

O c x, l t S 1/5. Then it can be found h m  (J.103) that, for any positive integer m, 

(J. 104) 

a value corresponding to the anguiat width of each plain region of Figure J.1. Imagine 

that ray OA, is rmted into a plain region after D>, stepped increments h m  &,(x,). The 

comsponding angle B,(x,) a n  k found h m  (J.103) to be 



On the other band (J.103) also shows that 

emO~,(xl) = ( ~ o - l ) = l ~ L + e o ( ~ l )  

and 

(J. 107) 

are the angles after (m, - 1) and (6 + 1) stepptd increments, respectively. If neither 

8%. ,(x,) nor 0% + ,(x,) is in the same plain region as @%(xi) then 

(x) > 23~154.  ~ , O . l ( ~ l ) - ~ m O - l  1 (J. 108) 

This concIusion contradicts (J. 104) for any positive integer m. Hence, the ray OA, , which 

lies at either the angle 0%. ,(x,) or 8% + ,(xl). must stay in the same plain region as 

û,,+(x,). Monover, it is known 1551 that in, is an even (odd) integer if (nt, - 1) and 

(m, + 1) are odd (even) integers. Thus, Lemma J.2 must hold for O c x, 1 L I 16. 

Consider next a point x, s a w i n g  1/5 c x, IL 5 431180. The cwrdinate aawformation 

X, IL - x, /L - 115 is usenil in proving Lemma J.2. It can be found h m  this 

transformation dut *IL satisfks O < + /L < 301180 - 116 c 1/5. Furthermore. it can be 

detennined h m  (J.103) and the transformation that B,(x,)l,, , = 5 h  + krt(Sx, IL) + 

û,,(x,) when k is a positive integer. Introduce a ray OA, havhg the end point A, bat 

corresponds to x, IL. This ray's angie, dat ive to the positive &-anis, is 



afrer k sieppal mcmments h m  the initiai angle O&,). As x, satisfîes O c q /L < 1/5, t 

can bc shown in a simiiil+ manner ta diat for OA, that there must exkt an even integer, 

k, , and an odd intcger, k,, such that ray O 4  can be rotated into any one of the plain 

regions of Figure J.1. On the other han& the periodicity of rotation is 2x: so that, when 

k equals , it can be found from (J.103) and (J.109) that 

n i a t  is, OA, coincides with OA, . However, when k equals k, , rather than k, , the 

direction of O& is 180' out phase with the direction of ray OA, because 

This iast tquality means that there exists an even integer, m, - Sk,. and an odd integer, 

ml - Sk, , such that the ray OA, can be rotated into any of the plain regions of Figure J.1 

after m, and ml stepped increments from its initial angle. A similar procedure cm aiso k 

applied for any point satisming x, /L < 1/2 as well as x1 IL # 114 and x, /L # 1/3. In 

particuiar, the cmrdinate transfomations x, lL - 1/4 - x,/L and x, /L - x,/L - 1/4 are 

naded for 43/180 < xl IL c 114 and 1/4 c x, IL S 3/10, rcspectively. Simüarly, the 

coordinate transformations q /L - 113 - x,/L and x, /L - xl/L - 113 are requïred for 

3110 < x, /t < 113 and 1/3 c x, IL 5 5/12 whilst x, /L - 112 - x,/L is usefbi for 



51 12 c x, /L < 112. Morwver, the coordinate transformation + /L = 1 - x, /L as well as the 

ricsult of Lemma 1.2 for O < x, 1L c 112 can be uscd to prove Lemma J.î for x, IL 112 

and x, 1L # 2 3  and x, 1L # 314. 

Table J.1 Mdicates that, for x, IL - 114, the initial angle, û&, ), of ray OA, is 4 2  and 

4 4  for a pinneci-piund buun and a sliding-siiciing bcam, rrspctively. Thus, the k t  

eight locations of OA, can be obtaiucd analytically h m  [SOI. They are tabulated for 

convenience in Tables J.4 and 1.5. It can be observeci from these tables that after 1, 3 ,s  

and 7 stepped increments h m  its initial position, ray OA, Lies in the plain regions N, 

1, II and III for a pinned-pinned beam and the plain regions 1, II, ï I I  and IV for a siiding- 

sliding beam. Furthemore, it can be found h m  (J.18) that the periodicity of rotation is 

eight because j - 4. Therefore, there is no even integer, nr,, that permits OA, to be 

rotated into the plain regions h m  its initial angle. This confinns Lemma 1.1 for a 

pinneci-pinned beam or a slidhg-slidhg beam providing x, 1L - V4. Lemma J.2 cm be 

obtained similarly fiam Table J.4 and Table J 5  for a pinned-pinned beam or a siiding- 

sliding beam providing x - 113, 11 2, 2f3 and 3/4. 

The fmt eight locations of OA, can be obtained similarly for a beam having other end 

conditions. They are prtsented in Tables J.6 thmugh J.13. By employing the pxiadicity 

of rotation for OA, , it can be concluded that, for any one of the plain regions, there must 

exist an even integer, m, , and an odd integer, m l ,  such that a ray OA, , which 

conesponds to x, IL - 1/4 and 3/4, can bc rotated into the plain region afier m, and ml 

stepped incrcments. However, Tables J.6 üuough J.13 indicate that the s a m t  conclusion 

does not hold for OA, Ex, 1L = 113, 112 and 2/3. 



This completes the proof of Lemms J 3 .  

By cmploying this l e m  and Theorem 3.4.1. CoroUary 3.4.1 can be shown 

straighdorwardly. In kt, once the set of constants q, ., i - 0. 1, used in (J.7) through 

(J.10) are &en, the signs of 

are determineci. It can be found h m  Table 5.2 that the signs of these values depend only 

upon whether m is an even or an odd integer because N - 2 hem. In order for (J.7). (J.9) 

through (J.11) to be satisfied, for example, the requircd signs of 

can be determineci for given q0, and pl,. They must involve one of the fouowing four 

combinations 

O a,, I O (0) a,, I O 
(J.112) 

a,, 2 0 

It is welI hown [42] that, for a ray OA, located in plain region 1 after m stepped 

increments fiom its initial angle, i.e. in part of the fmt quadrant, 

and, for OA, in the plain m o n  II or part of the second quadrant, 
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Furthermore, for a ray OA, m plain region III, 

2 2 aE = (-)lf2cos(0Jx,)) c O and a: = -(,)1f2sin(ûm(x,)) > O (J.115) 
L L 

and, for OA, m plain rcgion IV, 

Also, Lemma J.2 indicates that, for each plain region of Figure J.1, there exist an even 

integer, m, , and an odd integer, rn, , such that OA, can k rotated into that plain region 

with the possible exception of (i) the eigenvectors of a pinned-pinned and sliding-slidhg 

beam at x, fL - 1/4, 1/3, 112, Z 3  and 314 or (ii) a beam having the end conditions given 

in Tables J.6 through J. 13 when x, /L = 113,112 and Y3. nius, it is seen fbm -22) that 

any one of the four combinations given in (J. 109) holds sometimes excep possibly at the 

stated, isolated points. This means that assumption (1) of Lemma J.1 as weli as (J.7) and 

(J.9) through (J.11) are, indeed, vaüd. It foiiows h m  nieorem 3.4.1 that Corollary 3.4.1 

holds except maybe at x,lL - 114, 1/3,1/2,2/3 and 3/4. The remaining part of this section 

demonstrates that Lemma J.1 holds even at these points. 

Consider x, /L - 114, for instance, when y&) is the m th eigenvector of a sliding-siidkg 

beam. Suppose that the pi , ,  i - 0. 1 and r - 0, 1, 2, axe arôitmy but given constants. 

Now, it can be found fiam Table J.2 diat 



for Q, 2 O and Q, h O. Furthermore. Tabie J.4 indicates tbat the comspondhg ray. 

OA, . can k rotated to coincide with the x0-axis aher five stepped inmments so that 

On the other han4 it is known h m  Table J.2 that 

for any positive integer m. Consequently. 

Let r, - O and r, - r, - 1 in (J9). Thea it can be found straightfo~wardly that (J.9) 

holds no matter whether pl, y*, ) is positive. zero or negative. n u s .  there exists a 

positive integer m, = 5 such that assumption (1) of kmma J.1 and (J.10) are true. Hence 

Lemma J.1 is valid for s - 3 and t - 1 d e n  Q,, > O. O,,,, 2 0 and Q, 1 O. Whai Q,, . Q, 
and have different signs, a simiiar analysis can be followed and the £inal mults are 

sumnwized ne* 



(J.122) 

(J. 123) 

and 



for s = 3, t - 1 and c,, t O. Again, (5.122) through (J.128) indicate that the= txists an 

integer m, - 2 or 3 or 5 or 6 such that assurnpion (1) of Lemma 1.1 as weïl as u.7) and 
Q.9) through (J.11) are satisficd. Thexefoit, Lemma Ll holds for s - 3 and t - 1. The 
validity of Lemma J.1 can be show simiiarly for s = 3 and t - 0, 2 as weii as for 

s - 2 and t - 1. Thus, Theorem 3.4.1 coafirms that Coroiiary 3.4.1 holds even when 

x, IL 1 1/4 for the siiding-sliding beam. A sirniiar proof can be derived for a beam having 

-the end conditions given in Table 3.1 or smtcd in Tables J.4 through J.13 when 

x, /L - 1/4 1/3, 1/2, Z 3  and 314. 

This completes the proof of Coroliary 3.4.1. 



Figure J. 1. Defining plain regions 1 thtough IV 1-1. 



Table I-1. Values of 8,(jr). O < x < LI 



Table J.2. a: and a:: . r = O. N. for a uniform Euler-Bernoulli beam. 

End Supports 



Table 1.3. Ar, for a uniform Euier-Bemoulii kam. x satisfies O < x, < L. 

End supports 

piaaed-pinnecl 
s liding-pinned 
sliding-sliding 



Table J.4. Locations for a pinned-pinneci beam of OA, 
after m stepped increments fiom the initial angle Bo(x,). 

( 1 s r s N - 1 )  

Value of m 

"Coincidence" with 

xo-axis xi-=is 

* indicates that the direction of ray OA. is 18@ out phase wim the positive x ,  
or x i-axis. ûtherwise it is in phase. (This symbol has the same implication & Table I.5 
through 1.13 .) 

Table J.5. Locations for a sliding-sliding beam of OA, 
after m stepped increments nom the initial angïe &(x,). 

(1srsN-1) 
1 

Value of m I 
- 

" Coincidence" with 

x o - a  xi-* 



Table 1.6. Locations for a c i a m p e d - c ~  beam of OA, 
after m stepped increments h m  the initial angle Bo(x,). 

( 1 s r s N - 1 )  

Value of m 

"Coincidence" with 

x o - a  x i - a  

Table J.7. Lacations for a fkee-fiee beam of OA, 
a k  rn stepped incrernents f i m  the initial angle &(x,). 

( 1 s r s N - 1 )  

Value of m 

"Coincidence" with 

XO-axis x r -axis 



Table J.8. Locations for a clampi-fiee beam of OA, 
afkr m stcppcd incrernents fmm the initial angie Bo(x,). 

(1 s r s N - 1 )  

Value of m 

" Coincidence" with 

Table J.9. Locations for a clamped-pinned beam of OA, 
afkr m stepped increments nom the initiai angle Oo(xr). 

(1srsN-1) 

T 
- - 

"Coincidence" with 

Region III Region N xo-axis x,-axis 



Table 1.10. Locations for a fhe-pinned beam of OA, 
after m stepped increments fiom the initial angie O,,(xr). 

( I s r s N - 1 )  

Value of m 
- -  

"Coincidence" with 

Table J. 11. Locations for a sliding-pianed beam of OA, 
after m stepped increments ftom the hihial angle e&). 

( 1 z t s N - 1 )  
1 

Value of m I 

Region 1I 

3.4 

3 

2 

1.4 

1.6 

Region III 

5, 6 

4 

3 

2. 5 

4.7 

Region IV 

7.8 

6 

4 

2.5 

"Coincidence " with 

xo-axis XI-- 

2, S* - 



Table J. 12. Locations for a ciampcû-slidhg beam of OA, 
afkr m stepped inctements h m  the initial angle eO(xr). 

( 1 s r s N - 1 )  

Vaiue of m 

Table J. 13. Locations for a free-sïiding beam of OA, 
afm rn stepped increments fkom the initial angle O&). 

( 1 s r s N - 1 )  

Value of m 

Region Iï 

4.5 

3 

3 

2.5 

297 

Region ïïï 

6.7 

4 

4 

3 .6  

598 

Region N 

8 .9  

6 

5 

3.6 

" Coincidence" with 

xo-axis x 1-a 

2. S* 



This appendix gives details of the nuits that arc used without proof in Appendu J. 

Fit, following a simiiar pmcedum to that employed in [33], the asymptotic expressions 

of the m th eigenvector, w,(x), and corrcsponding characteristic value, a, of a fiiet- 

sliding Euler-Bernoulli beam arc presented. It is hown [SOI that the analytical 

explesrions of yrm(x) and its fint spatial derivative for a fxee-sidiag d o r m  beam are 

&en by [50] 

and 

where m - 2, 3, ... . Free-sliding end conditions at x = O and x - L. resjxxtively, 

comspond to [SOI 

On other hanci, a satisfies [SOI 

tan% = tanhn,. m 2 2. 

Furthermore, it is known [SOI that 



for a suffkientIy large m. Let 

Then (K.4) can be rcwriuen as 

Substituting the expansion 1421 

and 

into (K.7) leads to 

This last equation ka&, after algebraic manipuiation, to 



vm = m-'(-exp(-ZSr_)). 

On the other hanci, it is known [42] that 

for an arbitrary real value a satisfjhg la1 < 1. Furthemore, (K.5) indicates that 

cxp(-m,,,) + O as m + .o. Let a - -exp(-m,,,). Consequently, the foliowing equality can 

be found fimm (K.11) and (K.12) 

It can be observed that the tcrms 



form an altemathg series because they arc altemaîdy negative and positive. 

Consequently, it is known [42] that saies (K.14) satisfies the incquality 

That is, series (K.14) tends to zero like the order of the term exp(-W. Thus, by 

employing Landau's notation 1581, series (K. 14) can be denoteci as 

so tbat (K.13) can be rewritten more succinctiy as 

By substituting (K.17) into (K.6) and rearranghg te-, the asymptouc form of Q, can 

be obtained as 

By substituting (K.18) and the expressions [42] 



and 

al) and W), the asympotic forms of yrm(x) and y',(x) can be obtained, for a 

sufficiently large m and 0 l x l L, as 

2 
-9  L "2 

for x = O 

2 5 x l c  1 X 
m-m 

v&) = (-)*cos[(m--)K.+-] +-exp(-nm-)[1 + 

L  4 L 4 p"' L  

and 

I - 2 4 -+exp( -Oq) ( l+O(exp( -RJ) ) .  f o r x  = O 
~ " 2  ~ 1 1 2  

( 0 .  for x = L. 

Now 



and 

Let 

for r = O 
(K-26) 

x, -e~p(-a,-)C1+O(Q<p(-Q_))]. for O < r i N 
L 

and 



L 0.  for r = N. 

Then the asympotic forms (K.20) and (IC21) may be rcwritten. at x - x,, as 

When xr /L  - jr/j ( O < r < N) is rational. i.e. jr and j axe two positive integers, it can be 

found h m  (J.18) and (K.22) that 

for any positive integer k. Moreover, it can be seen h m  (K.24) and (K.25) that (K.29) 

is also vaiid when r - O and r - N. After obtaining the asymptotic expressions (K.18), 

(K.20) and (K.21). the next resuit is needed to demonstrate (J.44). 



Lcmm;i El. Sup- n>, and j arc two gvcn finiie positive in- that satisQ O c q 

c n and O c j c n. He= n is also a positive integcr but it can incnasc to in6inity. Then 

th- eusts a positive integer, &, ouch that the incquaiity 

3 n  > q,+t  > n (K-30) 

where 

holds for a sufficiently iarge n. 

Proof 

It is known that j is a given finite positive integer whilst n tends to infity. Thus, n can 

be increased such h t  

is satisfied La k, be the positive quotient obtained when 212 is divided by 2j. Then it is 

known [SOI that 

Zn = k0(21)+2n mod 2j (K-33) 

and 

O S 2n  mod 2j S ( 2 j -  1 ) .  

Thus, by using (K.32) and (K.34). it can be found h m  (K.33) that 

2n = ko(2J"+2n nid 2j 2 kJ2j)  

and 



Let t be defineci by -1). Le. 4 - & j. It can be found h m  -35) and (K.36) in 

conjunction with O < na,, < n that m, + I mus satiay 

3 n  > nto+@ w t > n (Km 

for a sufficientiy large n. 

This completes the proof of Lemma ICI. By using Lemma K. 1. the foilowing result can 

be obtained. 

Lemma K.2. Suppose that the conditions of Lemma K.1 hold Then the inequality 

is valid for a sufficiently large n. 

Proof 

It is known h m  [SOI that, xegardless of the standard end conditions, 

n m > 2  f o r m r 3 .  (K.39) 

Consequently, 

By employing (K.40) and (K.15) thrwgh (K.17). it can be shown that 



Combining the last inequality with (K.30) leads immediately to the righmiost inequaiity 

(K.38). On the other had, the l e h s t  incquality (K.38) can be obtained 

straightforwardly h m  the inequality 

Slt slt 1 mao., = (mo+Qn-T+Vm O +, > (mo+t)n-(,+-) 
4 4 

This completes the proof of Lemma K2. By using Lemma K.1 and K.2, the foiiowing 

resuit, which is also needed in Appendix J, can be obtained 

Lemma K3. Suppose the requircments for Lemma K.1 hold Then the inequality 

is vaiid when n satisfies 



Proof 

It can be sœn that the value of 

is a positive constant for a given point xr , O c r 4 N. On the other band positive integers 

have no upper bound Therefon. it is reasonable to let n, k a positive integer which 

This iast inequality leads, after algebraic manipulation, to 

so that 



Let n > u n r .  r - 1. 2. .... N - 1). then it was shown in [42] that 

By employing the leftmost inequality of (K.38) and @JO) 

which is the required relationship (K-44). 

The following result is a h  needed in Appendix L 

Lemma 5.4- Suppose Lemma K.1 holds. Then the inequalities 

n m 0 4  3 Q m o 4  9 nM0+3# 29 
> - ,  ( ) 5  and w -  

Qm0*3# 10 Qm0+3# 100 Qm04 10 

are m e  for a sufficiently large (m, + 9. 

Prwf 

When n > 15, the Uicquality 

must hold This iast inequality. together with (K.6). 

w 

6 3 0 )  and (K.41). leads to 



On the other band, a sirnilar proof can be given for the inequaiity 

(Lmo+3t c 3(mO+Q)n. 

Consequently, by employing (K.56) and (K57), the inequality 

can be obtained immediately. It can be seen h m  the last inequality that 

The 1st  inequality given in m.52) can be shown analogously. 

This completes the proof of Lemma K.4. In aââition ta Lemma Kl  through K.4. the 

following result is also needed in Appendix J. 

Lemnia KS. Let xr /t - jr /j be rational. (The j, and j are two given positive integers.) 

Suppose that there exists a positive integer. n, . such that the ray O&. which has an 

initial angle 8,(xr) given by (K.23), can be mtated into one of the piain regions Qfined 

in Figure J.1. Alternativeiy. it may coincide with the &-axis. Then, rcgardless. 
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can be demonstrated for a niniciaitly large k and a fixeci positive iutcger j. On the other 

han4 Suppose 04 is mtated either into one of the plain regions or it coincides with the 

x1-axis after m, steppeci increments h m  8,(xr). Thm 

Proof 

Suppose that the ray OA, either iies in one of the plain regions defked in Figure J.l 

or it coïncides with the a-axis after in, stepped increments h m  8&,). According to (J.3) 

or (K.23) and the periodicity 2j of OA,. which can be daived h m  Q.18). the inequality 

holds for any positive imeger k and a given j. This last inequality, when combined with 

(K.22). Ieads to 

On the other han4 the notation O(exp(42) in (K.20) means that then exist a positive 

constant, c, and a positive integer, n, , suc 

l o(arp(-n,, 

Combining (ïS.64) with (K.38) leads to 

h that, when m > n,, 

1s cexp(-q) .  



can be found for m, + 2kj 1 n. Thus, ït is known h m  (K.26) and (K.66) that, when 

r + 0, 

Otherwise (K26) indicates that if r - O 

Consequently. k m  (K.38). 

ho& for m, + 2kj 1 n. Fwthcrmore, if 



then. by employing (K.67). 

Consequently. by ushg (K.63) and (K.68), the following inequality can be found h m  

W-28 

This k t  inquality proves the first inequality of  0). On the other hancl, it is known 

from elementary algebraic theory that (a 1 - b > O is equivalent to a c -6 or a s b. Here 

the genenc b is an arbitrary finite positive value and a is an arbitrary fItiite real value. 

Thus, the inequaiities 

and 

O 
%mo+2&n + & U ~ + ~ L .  > o. if %7mO.2kj) > O 

can be demonstratd. nie 1 s t  two incqualities lcad immediately to 



Caisequently, the second ineqyaiity of (K.60). Le. 

can be obtaiaed by employing (K29) and Q.72). A similar proof can be given for (K.61). 

This completes the p o f  of Lemma K.5. 

(Remark KI. It can be shown straightforwardly fkom (K.24) and (K.25) that 6-60) is 

also true when r - O and r - N whilst (K.61) holds just for r - 0.) 

F W y ,  the foiiowing result is needed in Appendix J. 

Lemma K.6. Suppose that Lemma K. 1 holds and xr /L - jJj is rational where jr and j are 

two given positive integers. Then the inequalities 

hold for a sufficiently large (m, + I) and O c r S N where m, is positive intcger. 

Proof 

It is known h m  the proof of Lemma K.5 that there exists a n, such that, when 

n > n, , (K.66) holds so that 

This last inequality leads, additionally, to the inequality 

By employing (K.75) and (K.76). the inequalities 



and 

can be obtained h m  (K.26) for O e r I N. Consequently, 

can be shown from (K.77) and (K.78). On the other hand, it can be shown k m  (K.41) 

that, because lt(4 > 114, 

This last inequality. when combinai with (K-6). leads to 



Furthermore, it is known h m  (Id42) that 

Qm0+, < (mo+I)n < 2(mo+I)r. 

Thus, by employing (IC81) and (K.82). the incquality 

can be demonstrated. Furthemore, it is known h m  6 3 1 )  and (K.36) that I > n and, 

hence. t - (m, + 3) > n - (mo + 3). When n > oiru<(xJL)" (h6)h, q,), the foiiowing 

inequaiity can be found h m  (J.79) and (J.83), viz 



This completes the proof of Lemma K6. 



It is show hen that the conditions nquired by Thcorcm 3.4.1 are satïdicd by the 

numerical example. In the cxampIt. N - 3. x1 IL - 0.25 and q / L  - 0 5  an the two points 

where the second &rivatives of the GFM fûnctions, c2&) and c&). are dixontinuous. 

On the other hanci, the third derivative of c,(x) is discontinuous at x, - 0.5L. The n- 

dimensionai subspace. S.. in Theorems 33.1 and 3.4.1 is formed by C2,(x). C=(X) and 

c&) in addition to the (n - 3) eigenvcctors <y,&), m - 1. .... (n - 3)) of a unifonn 

cantiievered kam. Suppose that OA, and OA, are two rays that have the initial angles 

- 7V8 and e0(@ - 0, respectively. to the 11-axis. These rays rotate counterclockwise 

about the ongin, 0. show in Figure 1.1 of Appendix J in incxexnens of x,WL (OA,) and 

x,WL (for OAa. Then it can be found h m  Table J.8 that the foiïowing inqualities 

and 

hold for s - 2 and t - 1. Also, 



and 

when s - 2 and t - 2. Furthermore, 

holds for s - 3 and t - 2. Thus, (J.7) and Q.9) through (J.11) of Lemma J.1 are satisfed. 

Moreover, the functiom fomi a set of 4-GFM fimctions so that nieorem 3.4.1 appEes. 



APPENDIX M 

This appcndix derives equations (22.1) thn,ugh (22.3) of the fkcly vibrating bcam 

shown in F i  2.1 by employïng the Euler-Bernoulli beam theory. The notation of 

chaptcr 2 is used in this appndà. Fi& consider the equation of motion of aa eletnent 

of the bcam that is given in Fi- 2.1 and which is also shown in Figure M.1. Let 

W(X. 0 and 8(x, i) bc the transverse defiection and rotation of the beam whiist Vf(x, 0 

and M& î) denote the shear force and knding moment acting at a point, x, and at an 

instant of tirne, î Furthermore. p(x) and A,(x) represent the tirne mdependent axial 

force and extemal. distributed load dong the x axis. Then txansverse equilibrium yields 

Rotationai equilibrium about the centroid, O,, of the cross-sectional area is shown in 

Figure M.1. It produces 

whilst the longitudinal equilibrium -tes 

By employing the foliowing approximations in the Euler-Bernoulli beam theory [SOI 
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and neglecting higherorder tenns involving (#, Cquations (M.1) can be simplined to 

Moreover, (M.2) and (M.3) can be simplifid to 

and 



On the other band, it is lmown h m  the Euler-Bernoulli beam theory [SOI that 

Substituting the k t  equation h o  (MJ) and (M.6) p d u c e s  

Now consider the equation of motion of the lump& mas ,  Ml, and the mmy inertia, 

4 . in Figure 2.1. The corresponding fiee body diagram is shown in Figure M I  Mf 

(L, 0. V'(L. 9 and p(L) are the bending moment, shear force and axial force of the 

beam whilst KI (w(L, t) + ql 8(L. 0) and a B(L, 0 represent the transverse force and 

torsional moment due to the defiection of the linear s@g KI and torsional spring pl 

show in Figure 2.1. Ihe Pl in Figure M 2  is a the-independent, concentrated 

extemal load acting dong the x axis at x - L + e, . Transverse equilïbnum leads to 



On the other haru& rotational cquili'brium about O,. the centcr of gravity of the 

lumped mass Ml. yields 

Furthexmore. longitudinal eqdibrium *es 

(M. 12) 

By employhg w.4). (M.10) through (M.12) can be simplified to 

and 



By employing a similar procedire. the foilowing equation can be derived fkom Figure 

M.3 for the lumped mass. Mo. and the mtaqr hrth, JO. ülustratcd in Figure 2.1 

and 

Po is a tirne-independent. concentratcd extemal load acting dong the x axis at x - -e, . 

Suppose the beam of Figure 2.1 is in free vibrations corresponcïing to the j th naaual 

frequency. O,. Then w(x. 9 can be expressed by [SOI 

wherc w&) is the correspondhg eigenvcctor. Substituting (M.19) into (M.9). (M.13). 

(M.14). (M.16) and (M.17) and le- A, - lcPds to the equation of fkee vibration 

of the bcam shown in Figure 2.1 as 



and 



Let s,, . n - 1. 2. ..., 5 be linear maps that are defineci by 

and 



ami 

Consequentiy, quations (M.20) through (M.21) can k rew&cn as 

T1 WU = )CIwl,* O < x C L w . 3  1) 

and 

It can be found that equations (2.2.1) through (22.3) are j u s  concise fonns of 

equations (M.25) t h u g h  (M.35). 



Figure M.l. Free-body diagram of an element of the beam 

shown in Figure 2.1. 
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Figure M.2. Free-body diagram of the lumped mass, Ml , and 

the rotary inertia, J1 , shown in Figure 2.1. 



Figure M.3. Free-body diagram of the lumped mass, Mo, and 

the rotary ïnertia, JO , shown in Figure 2.1. 




