Reinforcement Learning in
Biologically-Inspired Collective Robotics:

A Rough Set Approach

by
Christopher Henry

A Thesis
submitted to the Faculty of Graduate Studies,
in Partial Fulfilment of the Requirements for the degree of

Master of Science
in
Electrical and Computer Engineering

© by Christopher Henry, January 2006

Department of Electrical and Computer Engineering
University of Manitoba
Winnipeg, Manitoba R3T 5V6 Canada

Reinforcement Learning in
Biologically-Inspired Collective Robotics:

A Rough Set Approach

by
Christopher Henry

A Thesis
submitted to the Faculty of Graduate Studies,
in Partial Fulfilment of the Requirements for the degree of

Master of Science
in
Electrical and Computer Engineering

© by Christopher Henry, January 2006

Permission has been granted to the Library of the University of Manitoba to lend or sell copies of this
thesis to the National Library of Canada to microfilm this thesis and to lend or sell copies of the film, and
University Microfilms to publish an abstract of this thesis.

The author reserves other publication rights, and neither the thesis nor extensive abstracts from it may be
printed or otherwise reproduced without the author’s permission.

Abstract

This thesis presents a rough set approach to reinforcement learning. This is made
possible by considering behaviour patterns of learning agents in the context of ap-
proximation spaces. Rough set theory introduced by Zdzistaw Pawlak in the early
1980s provides a ground for deriving pattern-based rewards within approximation
spaces. Learning can be considered episodic. The framework provided by an ap-
proximation space makes it possible to derive pattern-based reference rewards at the
end of each episode. Reference rewards provide a standard for reinforcement com-
parison as well as the actor-critic method of reinforcement learning. In addition,
approximation spaces provide a basis for deriving episodic weights that provide a
basis for a new form of off-policy Monte Carlo learning control method.

A number of conventional and pattern-based reinforcement learning methods are
investigated in this thesis. In addition, this thesis introduces two learning environ-
ments used to compare the algorithms. The first is is a Monocular Vision System
used to track a moving target. The second is an artificial ecosystem testbed that
makes it possible to study swarm behaviour by collections of biologically-inspired
bots (tiny robotic devices designed to crawl on the ground, up and down power tow-
ers, and along sky wires stretching between power towers). The simulated ecosystem
has an ethological basis inspired by the work of Niko Tinbergen, who introduced in
the 1960s methods of observing and explaining the behaviour of biological organ-
isms that carry over into the study of the behaviour of interacting robotic devices that
cooperate to survive and to carry out highly specialized tasks.

Agent behaviour during each episode is recorded in a decision table called an
ethogram, which records features such as states, proximate causes, responses (ac-
tions), action preferences, rewards and decisions (actions chosen and actions re-
jected). At all times an agent follows a policy that maps perceived states of the
environment to actions. The goal of the learning algorithms is to find an optimal
policy in a non-stationary environment. The results of the learning experiments with
seven forms of reinforcement learning are given. The contribution of this thesis is a
comprehensive introduction to a pattern-based evaluation of behaviour during rein-
forcement learning using approximation spaces.

Keywords: Approximation space, ecosystem, ethology, reinforcement learning,
rough sets, swarm, target tracking

Acknowledgements

Many thanks the to following people for their role to in the completion of this thesis.

= My adviser, James Peters, for his counsel and advice, great discussions, valued
feedback, and steadfast confidence. Thank you for being a great role model and
helping me to create a thesis that | am proud of. A smile goes a long way.

m Dan Lockery and Maciej Borkowski for their helpful discussions and work on var-
ious parts of the physical ecosystem called Alice Il that parallels the research with
the ecosystem testbed used to obtain swarm behaviour samples reported in this the-
sis.

= Wes Mueller and Manitoba Hydro for their generous support.

= My parents and family for continuing to be part of my strong foundation and their
constant support.

» Lastly, my fiancée Tanya Kowalski for her love and never ending encouragement.

This research has been supported by Natural Sciences and Engineering Research Council
of Canada (NSERC) grant 185986 and grant T247 from Manitoba Hydro.

Contents

Abstract

Acknowledgements

List of Tables
List of Figures
1 Introduction
2 Rough Sets
3 Approximation Spaces
3.1 Example: Lower (Upper) Approximation Space
3.2 Example: Approximation Space for a Swarmbot
4 Reinforcement Learning
5 Reinforcement Learning and the Monte Carlo Method
5.1 Expectation and Monte Carlo Method
52 UpdateRule
6 Intelligent System Behaviour: An Ethological Per spective
6.1 Swarm Behaviour: Proximate Causes and Responses
7 Ethograms Reflecting Swarmbot Behaviour
8 Monocular Vision Experiments
9 Image Processing
10 Tracking Problem
11 Incremental Reinforcement Comparison
11.1 Rough Coverage Reinforcement Comparison
12 Actor-Critic Methods

12.1 Actor-Critic Methods using Rough Coverage

vii

viii

11
12
12

14
14

16

19

20

24

26
28

32

13 Monte Carlo Off-Policy L earning Control Method
13.1 Weights
13.2 Weighted Sampling Based On Approximation Spaces

13.3 Common Off-Policy Monte Carlo Learning

13.4 Off-Policy Monte Carlo Learning With Approximation Spaces

14 Analysis

15 Conclusion

A Swarmbot Testbed

B Ecosystem Architecture
Notation

Glossary

I ndex

References

Vi

37
37
39
40
41

49

51

52

57

59

61

67

69

List of Tables

~NOo Oorh wnN -

Sample Information System 4
Vision System Hardware L. 19
Testbed Symbol Descriptions 53
RLStates e 54
Swarm ACtions 54
RL Reward Function 55
RL State ActionSpaces 55

vii

List of Figures

CoO~NO Ol WN B

MNNNNNNNRPRPRPRERRERRERRREO©
EWONRPFPOOWOMNOODUNWNERO

Blocks of B-indiscernibleelements 4
The Lower and Upper Approximationsto a Sample X [49] 5
Rough Coverage in a Lower Approximation Space 6
Episode Framework 9
Hydro Tower Skywire (electrical ground line) 16
Sample Sbot Behaviour 17
EcosystemPanels 17
Vision System 20
Vision System L e 21
VisionSystemGUI 22
Image Filter 22
Vision System State Identification 25
Ecosystem Testbed Normalized Average Reward: IRC vs RCRC 30
Vision System Normalized Average Reward: IRCvsRCRC 31
Ecosystem Testbed Normalized Average Reward: ACvs ACRC 35
Vision System Normalized Average Reward: ACvs ACRC 36
Ecosystem Testbed Results Normalized Average Reward: Off Policy Tests 42
Vision System Results Normalized Average Reward: Off Policy Tests . . 43
Ecosystem Testbed Results Normalized Total Q: Off Policy Tests 44
Vision System Results Normalized Total Q: Off Policy Tests 45
Ecosystem Testbed Results RMS: Off Policy Tests 46
Vision System Results RMS: Off Policy Tests 47
UML Notation 53
Static UML Model of Testbed Architecture (see, eg., [12]) 56

viii

1 Introduction

In reinforcement learning, the choice of an action is based on estimates of the value of a
state and/or the value of an action in the current state using some form of an update rule
(see, eg., [8,17,56, 69]). Anagent learns the best action to take in each state by maximiz-
ing a reward signal obtained from the environment. Two different forms of reinforcement
comparison and the actor-critic method as well as three forms of the off-policy Monte
Carlo learning control method are investigated in this thesis, namely, the conventional ap-
proach and the approximation space approach to reinforcement learning in real-time by an
agent. Furthermore, the two instances of an agent investigated in this thesis are a collec-
tion of cooperating bots that learn by evaluating their actions, and a single agent learning
to track a moving target. First, incremental reinforcement comparison (IRC) with a very
simple update rule is considered. Then a new form of IRC is considered where reference
rewards derived from what is known as an approximation space. Briefly, an approxi-
mation space is a framework for measuring the closeness of clusters (called blocks) of
equivalent objects to a set representing a standard. The basic idea for an approximation
space comes from [37], and is amplified in [40]. The motivation for considering approx-
imation spaces as an aid to reinforcement learning comes from the fact that it becomes
possible to derive pattern-based rewards (see, e.g., [44]).

The conventional actor-critic method is also considered in this thesis. A critic eval-
uates whether things have gotten better or worse than expected as a result of an action-
selection in the previous state. A temporal difference (TD) error term ¢ is computed by
the critic to evaluate an action previously selected. An estimated action preference in the
current state is then determined using 6. Agent actions are generated using the Gibbs soft-
max method [69]. In the study of swarm behaviour of multiagent systems such as systems
of cooperating bots, it is helpful to consider ethological methods (see, e.g., [70]), where
each proximate cause (stimulus) usually has more than one possible response. Swarm
actions with lower TD error tend to be favoured. A second form of actor-critic method
is defined in the context of an approximation space (see, e.g., [37, 38, 39, 40, 47, 48, 59,
60, 65]), and which is an extension of recent work with reinforcement comparison (see,
e.g., [40, 43, 44]). This form of actor-critic method utilizes what is known as a reference
reward, which is pattern-based and action-specific. Each action has its own reference re-
ward which is computed within an approximation space that makes it possible to measure
the closeness of action-based blocks of equivalent behaviours to a standard.

A basic assumption in the study of real world reinforcement learning problems is that
the state transition probabilities are non-stationary and a perfect model of the environment
can not be obtained. This is particularly true during the investigation of the biologically-
inspired, artificial ecosystems containing swarms of cooperating bots. Let Pr(X = x)

denote the probability that X equals x. It is assumed that the return R (cumulative dis-
counted future rewards) for a sequence of actions is a discrete random variable, and the
probability Pr(R = r) is not known. In effect, if the episodic behaviour of a swarm yields
a sequence of returns Ry, . .., R,,, the value of the expectation £ [R] = 37, x; Pr(R; =
x;) is not known. Monte Carlo methods (see, e.g., [29, 52, 53, 72, 73]) offer an approach
to estimating the expected value of R. In general, a Monte Carlo method relies on the use
of pseudo-random methods to construct estimates of unknown quantities such as the val-
ues of action or state functions. In a Monte Carlo method calculation, random numbers
defined by real phenomena are generated, and then the resulting calculation is a direct
simulation (i.e., imitation) of the phenomena [29]. Agents in a non-stationary ecosystem
agents learn from experience, which is reflected in sample sequences of states, actions
and rewards that result from episodic interaction with an environment that is constantly
changing. Learning in such an environment entails continual exploration. That is, agents
learn during an episode by exploring actions that may not have not have been particularly
promising (low rewards) in the past. Monte Carlo estimation is used in controlling be-
haviour. Only the off-policy learning control method and its rough coverage counterpart
are considered in this thesis. The contribution of this thesis is a comprehensive intro-
duction to a pattern-based evaluation of behaviour during reinforcement learning using
approximation spaces.

This thesis is organized as follows. Basic ideas and notation from rough set theory is
given in Sect. 2. The basic idea of an approximation space is presented in Sect. 3. Two
examples of special forms of approximation spaces used in the reinforcement learning al-
gorithms presented in this thesis are given in Sect. 3.1 and Sect. 3.2. Sect. 4 gives a brief
overview of reinforcement learning. Sect. 5 relates the reinforcement learning paradigm
to the Monte Carlo method. Half of the experiments given in this thesis are obtained from
observations of swarm behaviour in an ethology based, artificial ecosystem. Ethology is
briefly introduced in Sect. 6. Ethograms (tabular representations of swarm behaviour) are
presented in Sect. 7 in the context of an ecosystem testbed designed to support the study
of reinforcement learning by swarms (see Appendices A & B). The remaining experi-
mental results for this thesis are obtained from a single agent which must learn to follow a
moving target by controlling the position of a camera via a mini high powered servo. Con-
sequently, the Monocular Vision System is described in Sect. 8 and the image processing
techniques used to track the moving target are presented in Sect. 9. Next, a discussion of
utilizing reinforcement learning in the Monocular Vision System is presented in Sect. 10.
Conventional and approximation space-based incremental reinforcement learning, Actor-
Critic, and off-policy learning methods are presented in sections 11, 12, and 13. A com-
parison of results obtained from the three different reinforcement learning methods by
testing with either the ecosystem or the monocular vision system is given in Sect. 14.

2 Rough Sets

This section presents some fundamental concepts in rough set theory that provide a foun-
dation for estimating the expected value of a state or state-action pair for actions by col-
lections of cooperating agents. The rough set approach introduced by Zdzistaw Pawlak
[35, 36, 37] provides a ground for concluding to what degree a set of equivalent behav-
iours are covered by a set of behaviours representing a standard. The term “coverage”
is used relative to the extent that a given set is contained in a standard set. An overview
of rough set theory and applications is given in [20, 49]. For computational reasons, a
syntactic representation of knowledge is provided by rough sets in the form of data tables
(see, e.g., Table 1). A data table (information system IS) is represented by a pair (U, A),
where U is a non-empty, finite set of elements and A is a non-empty, finite set of attributes
(features), where for every a € A thereisafunctiona : U — V,, inwhich V is the value
setof a (i.e. V, = a(xz) where z € U). Foreach B C A, there is associated an equivalence
relation Ind;s(B), called the relation of indiscernibility with respect to the attribute set
B, such that

Ind;s(B) = {(z,2') € U*Va € B,a(z) = a(z')} (1)

where U? is the Cartesian square of the set U. Let U/Ind;s(B) denote a partition of
U determined by B (i.e., U/Ind;s(B) denotes a family of subsets created from the re-
lation Ind;s(B)), and let B(X) denote a set of B-indiscernible elements containing x.
B(x) is called a block, which is a member of the family of subsets created from the parti-
tion U/Ind;s(B). For example, Fig. 1 contains an information system (U, A) where the
elements of U are represented by coloured circles, and the feature set A contains only
one attribute, namely, the element’s colour. Furthermore, the indiscernibility relation,
Ind;s(B) is used to partition the set U into blocks of elements containing equivalent
value sets (i.e. each block contains elements whose feature values are the same). Lastly,
note that for this case the set B = A.
Next, for any X C U, the sample X can be approximated from information contained
in B by constructing a B-lower and B-upper approximation denoted by B, X and B* X,
respectively, where
B.X = U{B(x)|B(x) C X} (2)
and
B*X = U{B(z)|B(x) N X # 0} (3)

The B-lower approximation B, X is a collection of blocks of sample elements that can
be classified with full certainty as members of X using the knowledge represented by
attributes in B. By contrast, the B-upper approximation B* X is a collection of blocks of
sample elements representing both certain and possibly uncertain knowledge about X.

3

@)
OR|[@

O\ o

Figure 1: Blocks of B-indiscernible elements

zr; s PC a p(s,a) r d
z01 3 4 0.010 0.010 0
z1 1 3 5 0.010 0.010 1
z2 1 3 4 0.010 0.010 0
z3 1 3 5 0.020 0.011 1
z41 3 4 0.010 0.010 0
z5 1 3 5 0.031 0.012 1
z6 1 3 4 0.010 0.010 0
z7 1 3 5 0.043 0.013 1
81 3 4 0.010 0.010 1
29 1 3 5 0.056 0.014 0

Table 1: Sample Information System

These concepts can be observed in Fig. 2 in which the lower and upper approximations of
a sample X are traced with thick contours. Finally, whenever B, X is a proper subset of
B*X,i.e, B,X C B*X, the sample X has been classified imperfectly, and is considered
a rough set.

Definition 1 Rough Set [35] Let X C U(universe) and B C A(feature set). Whenever
B, X isa proper subset of B*X, i.e, B.X C B*X, the sample X has been classified
imperfectly, and is considered a rough set.

Nl

Figure 2: The Lower and Upper Approximations to a Sample X [49]

3 Approximation Spaces

This section gives a brief introduction to approximation spaces. The basic model for
an approximation space was introduced by Pawlak in 1981 [34], elaborated in [33, 36],
generalized in [59, 65], and applied in a number of ways (see, eg., [9, 39, 40, 61]). An
approximation space serves as a formal counterpart of perception or observation [33], and
provides a framework for approximate reasoning about vague concepts.

A very detailed introduction to approximation spaces considered in the context of
rough sets is presented in [49]. The classical definition of an approximation space given
by Zdzistaw Pawlak in [34, 36] is represented as a pair (U, Ind), where the indiscerni-
bility relation Ind is defined on a universe of objects U (see, e.g., [57]). As a result, any
subset X of U has an approximate characterization in an approximation space. A gener-
alized approximation space was introduced by Skowron and Stepaniuk in [59, 65]. Let
P(U) denote the powerset of U. A generalized approximation space is a system GAS =
(U, N, v) where

e U is a non-empty set of objects, and P(U) is the powerset of U,
e N:U — P(U) is a neighbourhood function,
e v:P(U)xPU) — [0,1] is an overlap function.

A set X C U issaid to be in a GAS if, and only if X is the union of some values of
the neighbourhood function. In effect, the neighbourhood function N defines for every
object x a set of similarly defined objects [58]. That is, NV defines a neighbourhood of
every sample element x belonging to the universe U (see, e.g., [47]). Generally, IV can be
created by placing constraints on the value sets of attributes (see, e.g., [31]) as in Eq. 4.

y € N(z) & m(?x{dista(a(x), a(y))} <e. (4)

where dist, is a metric on the value set of a and e represents a threshold [31]. Specifically,
any information system /.S = (U, A) defines for any B C A a parameterized approxima-
tion space ASp = (U, Ng,v), where N = B(x), a B-indiscernibility class in the partition
of U [58]. The rough inclusion function » computes the degree of overlap between two
subsets of U. The overlap function v is commonly defined as standard rough inclusion
(SRI) v : P(U) x P(U) — [0, 1] as defined in Eq. 5.

IXny|

vsnr(X.Y) = { e BT y (5)
for any X, Y C U, where it is understood that the first term is the smaller of the two
sets. The result is that vsr; (X, Y') represents the proportion of X that is “included” in Y.
However, for the purposes of this thesis it is desirable to be able to determine how well Y
“covers” X, where Y represents a standard for evaluating sets of similar behaviours. This
can be accomplished through the use of standard rough coverage (SRC) vsgc Which can
be defined as in Eq. 6 (also, see Fig. 3) where again, it is understood that the first term X
is the smaller of the two sets.

X0V ifY £),

”SRC(X’Y>:{ T iy —o

(6)

In other words, vsrc (X,Y") returns the degree that Y covers X. In the case where

Blocks of Blocks of
B-Indiscernible B-Indiscernible
Elements, B, (x) Elements, B, (x)
Lower Lower
Approximation, Approximation,
B.D B.D

Degree of coverage, v

(a) Lower Approximation (b) Rough Coverage

Figure 3: Rough Coverage in a Lower Approximation Space

X =Y, then vgge (X,Y) = 1. The minimum coverage value vgro(X, Y) = 0 is obtained
when X NY =((i.e, X and Y have no elements in common).

6

3.1 Example: Lower (Upper) Approximation Space

Let AS, = (U, N, v) denote an approximation space defined in the context of the decision
table (U, A, d),

e U is a non-empty set of objects. Assume D C U.
e N:U — P(U),where N(z) = B(x) for B C A.
e v:PU)xPWU)— [0,1].

where U is a non-empty set of behaviours, A is a set of behaviour features, and d is
a distinguished attribute representing a decision. Let D = {z € U : d(x) = 1}, where
d(x) = 1 specifies that behaviour = has been accepted. Recall that the lower approx-
imation of a set D is a collection of sample elements that can be classified with full
certainty as members of D using the knowledge represented by attributes in B [37]. Let
vp(Ba.(x), B, D) denote lower rough coverage defined in Eq. 7

v (Bute), B.D) = P 000)
where v = vg and vp(X,Y) = vsre(X, B.Y) for XY C U. The value vp(X,Y)
determines the extent with which B.Y covers X. ASy is called a lower approximation
space. Similarly, an upper approximation space ASy can be defined by specializing the
neighbourhood function N and rough coverage v in terms of the upper approximation
of a set. Note, it is now important to differentiate between two different notations used
throughout this thesis. The value of ac used with respect to rough sets and approximation
spaces is different from the value of « mentioned in regard to the state value functions
mentioned in Sect. 4. The term ac represents the values obtained from discretizing the
values of a recorded during the episode (i.e., the value ac represents the interval to which
a belongs). The method of discretization is mentioned in Sect. 11.1.

3.2 Example: Approximation Space for a Swarmbot

Let AS;, = (Usen, Np,vp) denote an approximation space defined in the context of a
decision system 1.S = (Upen, A, d). Assume that N : Uy, — P (Uper) is used to com-
pute B, D as in Sect. 3.1 where N(z) = B(x) for B C A. Further, let B, D represent
a standard for swarmbot behaviours, and let B,.(x) be a block in the partition of Uy,
containing x relative to action ac (i.e., B,.(z) contains behaviours for a particular action
ac that are equivalent to). The block B,.(x) is defined in Eq. 8.

Bac($> = {y € Ubeh . Q?IND(B)y} (8)

7

This relation can be used to measure the extent that B, D covers B,.(x) as in Eq. 9.

[Bue@)0B-D| it B D) £
VB(BaC(x)vB*D) = { lB]*_D‘ ifB.D=10

(9)
What follows is a simple example of how to set up a lower approximation space relative to
a decision system. The calculations are performed on the feature values shown in Table 1.

B = {si, PC;, a;, p(s,a),, r;}

D={zeU:d(z)=1} = {zl, 23,25, 27, 28}

Boe(x) ={y € Upe, : tIND(B U {a})y}, where
Bie—a(20) = {20, 22, x4, 26, 28}

Bae—s(x1) = {z1}
Bac:5($3) = {l‘g}
Bac:5($5) = {l‘5}
Bac:5($7) = {l‘7}
Bie—s5(29) = {29}
B.D = U{By.(z)|Bac(z) € D} = {z1, 23, 25,27},
VB(BaC:4(ZEO), B*D) =0
VB(Bacf5(ZE]_), B*D) = 0.25
VB(BGC:5(ZE3), B*D) = 0.25
VB (Bae=s(25), B.D) = 0.25
VB (Bae=s(27), B.D) = 0.25
vp(Bae=s(29), B.D) =0

B, D represents certain knowledge about the behaviours in D. For this reason, B,D
provides a useful behaviour standard or behaviour norm in gaining knowledge about the
proximity of behaviours to what is considered normal. The term normal applied to a set
of behaviours denotes forms of behaviour that have been accepted. The introduction of
some form of behaviour standard makes it possible to measure the extent that the standard
covers blocks of B-similar action-specific behaviours. The framework provided by an
approximation space makes it possible to derive pattern-based rewards, which are used
by swarms that learn to choose actions in response to perceived states of its environment
(see, e.g., Fig. 4).

episode\

vac

Value
Function

ASL =
(Ubehs NBa VB)

Approximation
Space

estimated Q(s, ac)

Policy

argmax,,. Q(s,ac)

R
ac \

Environment]
DTagent = {

(Ubeh’ A, d) ‘\~_ .""

Figure 4: Episode Framework

4 Reinforcement Learning

There has been extensive research in reinforcement learning (see, eg., [1, 2,5, 6, 7, 8, 14,
15, 16, 17, 18, 19, 22, 24, 26, 28, 27, 54, 55, 56, 62, 63, 64, 66, 67, 68, 69, 71, 74, 75,
77, 78]), and more recently in the context of rough sets and approximation spaces (see,
e.g., [40, 43, 44, 45]). Reinforcement learning itself is considered a problem formulation,
not a solution technique [28]. The basic problem that provides a setting for reinforcement
learning is formulated by [54]: a system is required to interact with its environment to
achieve a particular task or goal, and based on the feedback about the current state of the
environment, what action should the system perform next? Reinforcement learning itself
is the act of learning the correct action to take in a specific situation based on feedback
obtained from the environment [69]. In the context of this thesis, the feedback is a nu-
merical reward assigned to actions taken by an agent. Specifically, reinforcement learning
can be divided into off-line and on-line learning. Off-line learning is similar to the idea
of a student learning by instruction from a teacher. In effect, the agent is taught what it
needs to know before venturing into the environment in which it is to operate. In con-
trast, on-line learning resembles an infant learning to walk. Learning occurs in real-time
in which the agent is exploring its environment and constantly adding to its experience
in order to make better decisions in the future. Learning techniques are typically ap-
plied to stationary or non-stationary models of the environment. In stationary models all
the state transition probabilities are fixed, whereas, in non-stationary models they change
over time. This thesis investigates on-line non-stationary models with off-line learning
and stationary models being outside the scope of this thesis. Lastly, a central theme to all

9

of the algorithms discussed in this thesis is the idea of an update rule. The update rule
is extensively discussed in [69], as well as, [5, 15, 66, 78]. At its heart the update rule
is a form of incremental average used by the agent to record experience gained from the
environment. Formally, the update takes the form given in Eq. 10 (see e.g., [69]).

New Estimate < Old Estimate + Step Sze[Target — Old Estimate] (10)

where Sep Sze is used to control the rate of learning. The terms agent, state, action,
reward, policy, and value of a state are fundamental in RL (see, e.g., [51, 54, 69]). An
agent is some form of a system that that has sensors that enable it to perceive (i.e., sense
and evaluate its environment), actuators, and the ability to perform actions that modify its
environment. An intelligent agent is one that recognizes patterns and learns over time to
choose beneficial actions. The sensors of an agent are used to describe the state of the
environment. A state s € S is a unique interpretation of the environment from which an
action a € A(s) is selected. An action a by an agent causes a change in the environment.
Each action is assigned a reward r with a numerical value that represents the desirability
of the action performed. Whenever an agent receives a reward for an action performed,
it is viewed as a reinforcement signal [51]. Similarly, goals are achieved by the agent
through maximizing the rewards it receives. The most desirable action to be performed
by an agent is the action that is most likely to give the highest reward. Finding this action
is called the credit assignment problem [54].

Definition 2 Agent [69] A system that has sensors that enable it to perceive, actuators,
and the ability to perform actions that modify its environment.

Definition 3 Reward [69] A value assigned to a state or action which represents its
desirability.

Definition 4 Reinforcement [69] A stimulus which increases/decreases the likelihood of
an action being selected in the future.

Lastly this thesis compares three conventional RL algorithms (see e.g., [8, 51, 69]) to
similar versions incorporating approximation spaces. The first method Incremental Rein-
forcement Comparison, directly implements Eq. 10 to create a standard which is used as
the basis for comparison. The second method is Actor-Critic, which is an extension of re-
inforcement comparison in that an update rule is still used. However, this method uses an
actor to make action selections, and a critic evaluates the actor’s performance and updates
the policy (see, e.g., [8, 51, 69]). The last method discussed in this thesis is the Monte
Carlo off-policy, where off-policy means that the behaviour policy is separate from the
estimation policy (see, e.g., [8, 50, 69]). Whereas in on-policy algorithms the behaviour
and estimation policies are one and the same. Furthermore, Monte Carlo algorithms are
episodic in which all the learning occurs at the end of an episode.

10

5 Reinforcement L earning and the Monte Carlo Method

Let S, s, A(s), m denote set of possible states, particular state, and set of possible actions
for a state s, and policy used in selecting an action to perform, respectively. Moreover,
each a € A(s) is associated with a state s (see, eg., [51]). In general, a policy can
be characterized as a decision-making rule (see, e.g., [69]). Two types of policies are
commonly used in reinforcement learning (see, e.g., [4, 69]. A deterministic policy is a
mapping 7 : S — A. By contrast, a stochastic policy is a mapping = : S x A — [0, 1],
where 7 (s, a) equals the probability that action a will be selected in state s. The state-
value function V™ (s) denotes the value of a state s obtained by following policy =. The
action-value function Q™ (s, a) denotes the expected discounted future reward starting in
state s, selecting action a, and continuing to follow policy 7 [28, 50]. The basic idea in
reinforcement learning is to find a good policy, where a good policy maximizes the value
functions. So, in a sense, the selection of a policy defines a behaviour. Throughout this
thesis V' (s) and (s, a) will be used to denote estimates of the value functions. Letr; € R
denote a numerical reward resulting from action «; in state s;. A behaviour is defined by a
finite state sequence that occurs during an episode that ends at time 7", and is represented
by Eq. 11.

S0, A0, 71, S1,A1,72, -..,8;, Q5,541 --.,ST—1,A7—1,TT,ST (11)

The return R,, (i.e., cumulative future discounted rewards) on a sequence of actions is
defined by Eq.12.

T
Ry =rmi+r+7rs+ .+ e =Y " (12)

m=1

where v € [0, 1] is called a discount rate, and R,, is a discrete random variable. The
basic idea is to choose actions during an episode that ends in a terminal state at time 7" so
that the expected discounted return £E™[R,,] following policy 7 improves. To do this, it is
necessary to estimate the expected value of R;.

Definition 5 Stochastic Policy Let S be a set of states, and A a set of possible actions.
Then, a stochastic policy isamapping 7 : S x A — [0, 1].

Definition 6 Return [69] A function of the reward sequence received in a specific state
asin Eq. 12.

11

5.1 Expectation and Monte Carlo Method

The study of the expected value of a random variable was first introduced in 1657 by C.
Huygens in estimating the results of games of chance [13]. Assume that X is a discrete
random variable with possible values x4, ..., z,. Let Pr(X = z) denote the probability
that X has the value x. The expected value of X (denoted E[X]) is identified with the
mean of the distribution containing values of X, and is computed using Eq. 13.

E[X] = ZZ:1 2o Pr(X = x3). (13)

Consider the generic problem of estimating the value of an action Q™ (s, a), starting in
state s with action a following policy 7. Assume that there is a probability density func-
tion (pdf) f such that f(x) = Pr(R = x) can be computed for each value of R. Assume
that R is a continuous random variable with pdf f. Then the expected value of Q7 (s, a)
is given in Eq. 14.

Q" (s,a) = E[Rp|st = s,a; = a] = / xf (z)dx, (14)
where return R, is defined in Eq. 12. However, in a non-stationary environment, R is
a discrete random variable, and the probability Pr(R,, = x) is not known. Hence it is
helpful to use Monte Carlo methods to estimate the value of R,,. In its simplest form,
the expected value R,, is estimated using an empirical average, to obtain an approximate
value of Q™ (s, a) as in Eq. 15.

- 1 m
Quls,a)=—> R, (15)

where the average in Eq. 15 converges to E [R,,,|s; = s, a; = a] as m — oo by the Strong
Law of Large Numbers [52]. That is, % > e, Ri, approximates the integral me xf(x)dx.
The sample mean in Eq. 15 is called an unbiased estimator of Q7 (s, a) (see, e.g., [52, 53]).
The Monte Carlo method was introduced by Ulam [72, 73].

5.2 Update Rule

As was mentioned in Sect. 4 a central theme in the reinforcement learning algorithms
discussed in this thesis is that of an update rule. The motivation in working with update
rules in learning algorithms, is the resulting computational simplicity as well as the more
intuitive representation of the incremental character of the learning process. Using the
Monte Carlo method, @, (s, a) can be estimated using a weighted sum. Let w; denote an

12

importance sampling weight on R;, and obtain an approximate value of Q, (s, a) using
Eqg. 16.

Qi (s.0) ~ izt Tl (16)

Property 1 Aweighted average value function can be rewritten as an incremental update
rule.

Proof. Consider, first, the sum of the weightsasin Eq. 17.

Wn - Z?zl Wy, . (17)
WnJrl = Wn + Wpp1 = Zizl W; + W1

Then derive an incremental update rule for Eg. 16 as shown in Eq. 18 using Eq. 17.

7" n+1
Qn+1(57 CL) = WiiH 21:1 szz
_ 1 n+
= Wotwni1 doiny Wilk
V[/l_~_1 (wlRl + ...+ wnR + wnJranJrl)
Wn+1 (ZZ 1 w R + wn-l—an—H)
(wnJranJrl + Z =1 W; z) (18)

Wn_H <wn+1Rn+1 + Wniz"v# -
= Wn+1 (wn+1Rn+1 _'_ WnQn(87 a’))
1 wnJranJrl + WnQn(Sa &) + wnJrlQn(Sa &) - wn+1Qn(57 CL))
n(5,0) + 2 (Rusr — Q1 (s,0)).

Wn+l

n

@%

The incremental update rule in Prop. 1 provides a foundation for the value functions used
in the two off-policy learning algorithms introduced in this thesis.

13

6 Intelligent System Behaviour: An Ethological Perspec-
tive

A number of features of the behaviour of an agent in an intelligent system can be discov-
ered with ethological methods. Ethology is the study of the behaviour and interactions
of animals (see, e.g., [70]). The study of biological behaviour provides a rich source for
identifying features useful in modelling and designing intelligent systems, as well as iden-
tifying how behaviour contributes to survival. It has been observed that animal behaviour
has patterns with a biological purpose and that these behavioural patterns have evolved.
Similarly, patterns of behaviour can be observed in various forms of intelligent systems
that respond to external stimuli and evolve. In the search for features of intelligent system
behaviour, one might ask Why does a system behave the way it does? Tinbergen’s four
whys are helpful in answering this question by identifying important features of intelligent
system behaviour which promote survival. Namely, proximate cause (stimulus), response
together with the survival value of a response to a stimulus, evolution, and behaviour on-
togeny (origin and development of a behaviour) [70]. Only proximate cause and action
taken in response are considered in this thesis. Tinbergen’s survival value of a behaviour
for an animal correlates with reward that results from an action made in response to a
proximate cause in an intelligent system. The assumption made here is that action pref-
erence is influenced by a reference or standard reward and survival is defined in terms of
accomplishing goals. The focus in this thesis is behaviour on the swarm intelligence level

(see, eg., [3]).

6.1 Swarm Behaviour: Proximate Causes and Responses

In the study of proximate causation the focus is on mechanisms that underly an observed
behaviour, namely, contexts in which a behaviour occurs, its external (exogenous) and
internal (endogenous) stimuli [21]. Specifically, it is the study of the preceding events
which may induce a particular behaviour [70]. Behaviour itself is viewed as the response
of an organism to a PC originating in the environment of an agent in an artificial ecosys-
tem. In this context, a PC can either be exogenous (e.g., lightning, high electromagnetic
field, a moving target) or endogenous (e.g., low swarm energy, mechanical failure). A PC
and its response by a swarm is represented by a (state, action) pair defined in the context
of reinforcement learning, where the reward for an action influences (proximally causes)
the modification of the behaviour of an agent in an artificial ecosystem. A state in the
ecosystems considered in this study is a representation of a swarm’s perception of its en-
vironment. The notion of a PC is used in defining ecosystem states. In effect, a swarm
uses an identified PC to determine its current state. Each state defines a set of available

14

actions used by a swarm to make an action-selection (see, e.g., Tables 4, 5, 6, and 7).

15

-

Figure 5: Hydro Tower Skywire (electrical ground line)

7 EthogramsReflecting Swar mbot Behaviour

This section introduces a testbed modelled as an artificial ecosystem containing swarms
of cooperating bots (sbots) in an environment containing sequences of hydro-electric tow-
ers which require inspection. The bots crawl along sky wires (electrical ground lines, see
Fig. 5) strung between the apex of towers. Similarly, the bots can crawl up and down
towers. These bots cooperate to inspect power system equipment (e.g., insulators and
towers). Two or more cooperating bots form a swarmbot. Bots are dependent on sunlight
to recharge their solar cells. The ecosystem also models many bot-threatening hazards
such as high winds and lightning. Fig. 6(a) is a screen shot of a testbed that automates the
production of ethograms to provide a record of observed swarmbot (sbot) behaviour pat-
terns (See Appendix A for a description of symbols used in Fig 6(a)). Fig. 7(a) shows the
different learning algorithms the user can select, as well as, the different parameters that
can be adjusted before starting the testbed. Similarly, Fig 7(b) shows the environmental
feedback that the testbed provides to the user, as well as, a legend of swarm behaviour
representing the different actions available to the bots in the ecosystem. For a detailed
description of the testbed behaviour see Appendix A & B.

Episodes (random in duration in the interval [2s, 4s] with 200 ms increments), have

16

Shot on
// Skywire
i Vibration
S Damper
N
\"‘-\.
- \\
530 - pit
/‘/ . %
Digital =
Camera — ——
(a) Sbot testbed (b) Cooperating bots
Figure 6: Sample Shot Behaviour
Start Ecosystem | - E Greedy Method 7 Rein. Comp. Inc. Epsilon ,ﬁ Ecosystem Status Agent Legend
" MC On Policy " Rein. Comp. RS Aok 1/ Sunny Recharge ™ Flee
Stop Ecosystem | MC O Policy " MCOf RS I ,W uWindy 8 Shutdown @) Shelter High 'Winds
" Garza dctor Critic Discount Fate: 'W u|Lightring m Search | [nspect Tower
" O-Leaming " dctar Critic AS Lambida: ,ﬁ uEMF Hide | Report EMF
" Tabular Saisa - u Undesirable | Leader
" Tabular OL B o1

(a) Ecosystem Methods, parameters (b) Ecosystem Status, Agent Leg-
end

Figure 7: Ecosystem Panels

17

been introduced in the ecosystem to break up learning into intervals, and make it possible
for a swarm to “reflect” on what it has learned. Swarm behaviour during each episode is
recorded in an decision table called an ethogram, which records swarm states, proximate
causes, responses (actions), action preferences, state-action value estimates, rewards and
decisions (actions chosen and actions rejected). The focus of the ecosystem is on swarm
activity and swarm learning. At all times a swarm follows a policy that maps perceived
states of the environment to actions. The goal of the learning algorithms is to find an
optimal policy in a non-stationary environment.

Cooperation between bots is one of the hallmarks of swarmbot behaviour (see, e.g., [3,
11]), and in multiagent systems containing independent agents that exhibit some degree
of coordination (see, e.g., [39]). Many of the details concerning the shot in Fig. 6(b)* have
been already been reported (see, e.g., [42]). Fig. 6(b) provides a conceptual view of an
aerial sbot called Alice 11, which has a binocular vision system whenever two individual
bots are coupled together. Lastly, this sample snapshot of the individual and collective
behaviour of inspect bots in a line-crawling swarmbot testbed is part of a Manitoba Hydro
Line-Crawling Robot research project.

Lpatent pending.

18

Vision System Component Hardware Implementation

Camera Logitech QuickCam Express
Servo Controller UltraSound Module 5-120
Servo Hitec HS-300 Servo

Table 2: Vision System Hardware

8 Monocular Vision Experiments

The monocular vision system provides an additional platform to compare the reinforce-
ment learning algorithms. The design is a simplified conceptualization of the learning en-
vironment developed by Gaskett [8] and consists of a digital camera that is used to track
a moving target. The system complements results obtained from the testbed by providing
a real environment that is free of any unintentional biases that may have been included in
the software simulation. Furthermore, the learning problem is smaller in scope than the
ecosystem in that state and reward are based on the relative position of the moving object
and that there is no swarm behaviour to consider. All actions are generated by a single
reinforcement learning agent. This focused approach allows for a closer analysis between
algorithms by removing much of the random nature which is inherent in the ecosystem.
Although this problem is not as interesting as the ecosystem testbed it is used to support
the results. The system contains only one degree of freedom (DOF) which is the hori-
zontal rotation of the camera. The specific goal of the reinforcement learning algorithms
is to horizontally track the moving target. Fig. 8 contains a conceptual diagram of the
system. The moving target in these experiments is a black and white circle attached to the
extended arm of a metronome (see Fig. 8 & 9(a)). The advantage of using a metronome
is that it provides a baseline for testing due to its periodic nature. In addition, the target
is placed between the camera, and a print of Monet’s Bras de la Seine pres Vetheuil, to
detect the target direction (see, e.g., Sec. 9). This print is desirable for the vision system
because it contains a large amount of contrast. The GUI for the software component of
the vision system is similar to the ecosystem (see Fig. 7 & 10). The user is able to select
the learning method and adjust algorithm specific parameters. Furthermore, the image
window located on the bottom left of Fig. 10 is the direct feed from the digital camera,
and the image on the right is the applied image filter (again see Sec. 9). Next, Fig. 9
depicts the vision system from the rear, top, and side views. Lastly, Table 2 lists the main
hardware components of the vision system.

19

Background Print

Metronome

Camera
Range

Digital Camera
and Servo Controller

Figure 8: Vision System

9 Image Processing

This section introduces the image processing used to detect a moving object and deter-
mine its direction. The main objective of the vision system is to support the results of the
ecosystem testbed. Consequently, the vision system employs elementary image process-
ing techniques. An extensive discussion of image processing techniques and references is
presented in [10]. An RGB color image is represented by a M x N matrix of color pixels,
where each pixel is a triplet corresponding to the Red, Green, and Blue components of
an RGB image at a specific location [10]. The RGB color model employed uses 24 bits
of information per pixel which corresponds to 8 bits each for red, green, and blue. As a
result there are 256 (2%) values (intensity levels) for each color. Traditionally, the image
origin is located at the top left corner and pixels are counted from left to right and top to
bottom.

Next, movement can be detected if the background remains stationary by observing
the difference between two successive frames captured from the digital camera (see, e.g.,
Fig. 11(a) & 11(b)) [10]. Specifically, Eq. 19 is used to calculate the average difference
between pixel intensities where the subscripts a and b refer to the first and second frames
respectively.

J=(|Ra = Ro| + |Ga — Go| + |Ba — By|)/3 (19)

Ideally, any value of j greater than O represents a moving object between the two frames
due to the assumption that there is no movement in the background. However, in practise

20

(b) Top View

(c) Side View

Figure 9: Vision System

21

£ RLMotion

Caphure Device

Control Algorithm

Epsion: | 0.1 | Lambda: | 0.9

Logitech QuickCam Express O Marwal Contrel (ORCRC O off Policy MC ‘_7! l_—l
O Heuristic Contral O actor Criic (O EOE MC Aphs: |01 ‘ e ‘”" |

Manual Control e — =
DIRG O acRC OTOEMC Gamma | 0.1 ‘

Figure 10: Vision System GUI

(c) Frames Overlapped

(d) Difference of Frames

Figure 11: Image Filter

22

noise is introduced between successive frames due to the light sensors of the camera and
analog to digital conversions. Therefore, a noise threshold is used to select only those
values of j which represent movement. Plotting all valid values of j produces the image
shown in Fig. 11(d) by assigning j to the green intensity, and making both red and blue
equal to 0.

Identifying the relative position and direction of a moving object builds on the steps
used to detect movement. The centroid is used to find the geometric centre of the moving
object based on the intensity values of ;5 using Eq. 20 where NV is the number of ; values
that are not considered noise.

Zz’]\il TiJi Zfil Yili
Zi:l Ji Zizl Ji

The centroid is denoted by the small white “plus” symbol shown in Fig. 11(d). Next,
the direction of the object is determined by using three consecutive frames, a,b and ¢
where the centroid of the movement is calculated between frames a & b and frames b &
c. The case where 7., < T;. represents movement in the positive direction along the x
axis, otherwise the opposite is true. This solution assumes that the camera is not moving,
consequently, the camera control algorithm only detects object direction once the camera
servo has stopped. Detecting camera movement is determined by the number of ; values
which are larger than the noise threshold. A large percentage of j values can only occur
when the camera is moving due to the assumption that the background is not moving
and the size of the target is constant. Therefore, another threshold on the percentage of j
values is used to dictate whether the control algorithm tests for object movement direction.

T =

23

10 Tracking Problem

The task of assigning states and defining reward functions strongly affects performance,
varies greatly from application to application and is more of an art than a science [69]. For
example the ecosystem contains only 18 states (see Table 4) whereas the vision system has
350. The number of states for the tracking problem is a function of the pixel width of the
digital camera which has a resolution 352 x 288 pixels. Specifically, the reinforcement
learning state is based on the horizontal coordinate of the centroid. The main intuition
being that the degree of the camera’s response should be symmetric with respect to centre
of the camera’s field of view (which will be denoted as “the centre” for the rest of this
section). For instance, consider the case when the centroid is +/- 50 pixels from the centre
(see Fig 12) and is moving away from the centre in both cases. These two situations are
considered the same state because in the ideal case the degree with which the camera
reacts should be the same (yet opposite direction). The result is that the vision system
learns the degree with which the camera should move in a specific state and the direction
is based strictly on the movement of the target. Note, the opposite case of Fig. 12 is
considered a separate state (i.e. the case when the target on either side is moving toward
the centre). The algorithm used in the vision system to define the current state is located
in Alg. 1. Similarly, the method used to calculate the reward is also a function of the
distance of the centroid from the centre and is given in Eq. 21

d
reward = 1 W/ (21)
where d is the distance of the centroid to the centre and 1V is the pixel width of the digital
camera (i.e. 352). The result of Eq. 21 is a normalized reward which equals one when
the centroid of motion is located at the centre, and equals zero when the centroid is at the
outside edge of the field of view. Lastly, reinforcement learning only occurs when motion
has been detected, i.e., the system waits for a moving target to present itself.

24

126 Centerof the field _ 226
(17650 oftheview (176+50)

Figure 12: Vision System State Identification

Algorithm 1: Vision System State Definition

Input : Centroid x coordinate z, Image Width W/
Output: Vision System State s

if z > W/2then
if direction = Right then
| s=z-W/2
else
| s=x—1
end
else
if direction = Right then
| s=W-z2-1
else
| s=W/2—-1Z
end

end

25

11 Incremental Reinforcement Comparison

The main idea behind reinforcement learning is that actions followed by positive rewards
should be reinforced, and actions followed by negative rewards should be discouraged.
The question is how to adapt this idea to machine learning. One solution is to use a
standard or reference level, called a reference reward, to gauge the value of an action [69].
It is common to use average action rewards as a basis for estimating action values. Using
the incremental reinforcement comparison method (IRC), a reference reward (denoted 7)
is equated with an average of previously received rewards. Then a reward for an action is
interpreted as large if it is higher than 7, and small if it is lower than 7. Let a, r, 7, denote
action, reward and reference reward, and let p(s,a) denote an action-preference in state
s. Preference and reference reward are computed in Eq. 22 and 23, respectively.

p(s,a) = p(s,a) + B(r —7) (22)

FT=T+a(r—7) (23)

where «, and (3 are positive fixed step-size parameters in the interval (0, 1] which influ-
ence the rate of learning [69]. After each time step, the preference p(s, a) is incremented
by the difference (error) between the reward r, and the reference reward 7 (a form of in-
cremental comparison [69]). The reference reward, 7, is an average formed incrementally
from rewards obtained in all states. Preferences are used to determine action selection
probabilities according to the softmax function shown in Eq. 24.

eP(s,a)

S — 24
S ”

7(s,a)

Definition 7 Reference Reward [69] A standard or reference used for judging the desir-
ability of an action.

Alg.2 gives the steps used to implement incremental reinforcement comparison. The
infinite iteration prescribed by outer loop of Alg. 2 reflects the fact that reinforcement
comparison continues forever within the learning environment. Each reward r is deter-
mined by the effect the action has on the environment (see, e.g., Table 6 or Eq. 21).
Similarly, the next state s" is determined by new conditions in the learning environment
environment. At the end of the inner loop, the learning agent repeatedly enters into a new
state s until s is terminal. Lastly, episodes are not required for this algorithm to work,
however, they are introduced here in order to provide a method of comparison between
incremental and rough coverage reinforcement comparison.

26

Algorithm 2: Incremental Reinforcement Comparison

Input : States s € S, Actions a € A(s), Initialized «, £3.
Output: Policy 7 (s, a) /lwhere (s, a) is a policy in state s that controls the
selection of a particular action in state s.
for (all s € S,a € A(s)) do
p(s,a) «— 0;
ep(s,a) .
7(s,a) «— STACT oo
end
while Truedo
Initialize s;
for (t=0;t<T,;t=t+1)do
Choose a from s using 7 (s, a);
Take action a, observe r, s';
p(s,a) «— p(s,a) + Br —7];

Z\bi(f)\ ep(s,b) !
=F+alr—7;
— s

7(s,a) «—

VR

end
end

27

11.1 Rough Coverage Reinforcement Comparison

This section introduces what is known as rough coverage reinforcement comparison
(RCRC). Recall that IRC uses an incremental average of all recently received rewards.
By contrast, RCRC uses average rough coverage values in a lower approximation space.
That is, during RCRC learning, the degree that a block of equivalent behaviours is covered
by a set of behaviours representing a standard, is computed [43]. This intuition matches
the idea of a reference reward defined in Sect. 11 as a standard or reference level used
to judge the “goodness” of a preceding action. Lower rough coverage is a useful tool
because it determines to what degree a block is a member of B, D of behaviours that
have been accepted by a learning agent. The reference or standard used in RCRC is
7 = vp(Ba(x), B.D). Specifically, let 5 denote a set of blocks representing actions in a
set of sample behaviours S in an ethogram as in Eq. 25,

B = {Bac(r)|r € S} (25)

Then 7 is defined as average rough coverage as shown in Eq. 26.

card(B
r= ! Zi:l) vp (Bac(x)v B*D)7 (26)
where B,.(x) € B. Computing the average lower rough coverage value for action blocks
extracted from an ethogram implicitly measures to what extent action a has been selected
relative to state s. Further, discretization is performed on the ethogram feature values be-
fore partitioning sample behaviours into blocks, deriving B, D and calculation of average
lower coverage values. To achieve very fast discretization, a non-optimal discretization
method based on the standard deviation of a given column of feature values is used instead
of the optimal discretization algorithm introduced in [30] (see also [20]). This approach
to feature value discretization is non-optimal because no attempt is made to find the min-
imum number of intervals.

A rough coverage reinforcement comparison algorithm used in the ecosystem testbed
is given in Alg. 3. Just as before, the infinite iteration prescribed by the outer loop reflects
the fact that reinforcement comparison by a learning agent continues forever. Similarly,
rewards, r, and the next state s’ is determined by the learning environment. At the end of
the inner loop, the learning agent repeatedly enters into a new state s until s is terminal.
Finally, Alg. 3 implements Eq. 9 to compute rough coverage values at the end of every
episode. Fig. 13 shows a plot of normalized average reward values for both reinforce-
ment comparison methods where the learning agent is the swarm within the ecosystem.
Similarly, Fig. 14 is a plot of the normalized average reward values for the vision system
where there is a single learning agent controlling the camera.

28

Algorithm 3: Rough Coverage Reinforcement Comparison

Input : States s € S, Actions a € A(s), Initialized 3.
Output: Policy 7 (s, a) /lwhere (s, a) is a policy in state s that controls the
selection of a particular action in state s.

for (all s € S,a € A(s)) do

p(s,a) «— 0;

ep(s,a) .

(s, a) «— ST o(s.0) !
end
r+«—— 0;
while Truedo
Initialize s;
for (t=0;t<T,;t=t+1)do
Choose a from s using 7 (s, a);
Take action a, observe r, s';
p(s,a) — pls, a) + Blr —7;

(s, a) — —g__
SIACT ep(s.t)

s+— s

end

Extract ethogram table 7.S;,0rm = (Upen, A, d) ;
Discretize feature values in 1.5,,4rm |

Compute 7 as in Eq. 26 using 1.5,qrm;

end

29

o o o
I o ©

o
>

o
S

Normalized Average Reward
° °
° &

Normalized Average Reward

Normalized Average Reward

30 40 50 60

Episodes ($=0.1 ¢=0.1)

=01, a=0.1

20

60 80 100 120 140
Episodes (=0.5 0=0.1)

) B=05a=0.1

30 40
Episodes (=0.9 0=0.1)

e =09 a=0.1

30

Normalized Average Reward
o

0.9

e
o

o
5

Normalized Average Reward

Normalized Average Reward

e
2

e o o
> o o

e
@

1

30 40 50 70

Episodes (§=0.1 #:=0.9)

(©) B=0.1,a=09

0 20

60

50
Episodes (§=0.5 0:=0.9)

d) =05 a=09

30 40

o
2

e
>

e
o

e
=

o
©

o
N

0.1

20 30
Episodes (§=0.9 0:=0.9)

) B=09 a=09

Figure 13: Ecosystem Testbed Normalized Average Reward: IRC vs RCRC

Normalized Average Reward Normalized Average Reward

Normalized Average Reward

20 30 40 50 60

Episodes ($=0.1 ¢=0.1)

@ B=0.1a=0.1

50

0 L L
20

30 40
Episodes (=0.5 0=0.1)

) B=05a=0.1

0 L L L L L
20

30 40
Episodes (=0.9 0=0.1)

e =09 a=0.1

e
>

Normalized Average Reward
o o o
5 R &

e
o

o
5

e
>

Normalized Average Reward
o o o o
S 5 R &

o

10 20 30 40

Episodes (§=0.1 #:=0.9)

(©) B=0.1,a=09

50

70

o

09

o
2

e
>

Normalized Average Reward
o o
2 &

o
©

o
N

0.1

o

60

30 40 50
Episodes (§=0.5 0:=0.9)

d) =05 a=09

20

80

31

20 30 40
Episodes (§=0.9 0:=0.9)

) B=09 a=09

70

Figure 14: Vision System Normalized Average Reward: IRC vs RCRC

12 Actor-Critic Methods

Actor-critic (AC) methods are temporal difference (TD) learning methods with a separate
memory structure to represent policy independent of the value function used (see, e.g.
[8, 51, 69]). AC methods are an extension to the idea of reinforcement comparison (see,
e.g., [69]). In an AC method, the policy structure is known as the actor, since it is used to
select actions, and the estimated value function is known as the critic because it criticizes
the actions made by the actor. The estimated value function, V' (s), is an average of the
rewards received while in state s. After each action selection, the critic evaluates the
quality of the selected action using ¢ in Eq. 27 which represents the error (labelled the TD
error) between successive estimates of the expected value of a state [54].

d=r—+V(s)—V(s) (27)

Where ~ is the discount rate used to determine the current value of future rewards [69].
The actor then uses ¢ as an internal reinforcement to adjust the probability of an action be-
ing selected in the future [54]. This is accomplished just as in reinforcement comparison
by using the softmax relationship and preference values. The only difference is preference
is now calculated in Eq. 28. Alg. 4 shows the Actor-Critic method implementation. This
algorithm uses an array Count to calculate the value of a state V'(s), which is the incre-
mental average of rewards obtained in a specific state (i.e. Eq. 18 is used with w; = 1). In
addition, this algorithm is episodic, and is executed continuously.

p(s,a) — p(s,a) + (0 (28)

12.1 Actor-Critic Methods using Rough Coverage

This section introduces what is known as a rough-coverage actor-critic (ACRC) method.
The preceding section is just one example of Actor-Critic methods [69]. In fact common
variations include additional factors which vary the amount of credit assigned to selected
actions. This is most commonly seen in calculating the preference, p(s,a). The rough
coverage form of the Actor-Critic method calculates preference values as shown in Eq. 29.

p(s,a) < p(s,a) + 56 — 7] (29)

where 7 is reminiscent of the idea of a reference reward used during reinforcement com-
parison. Recall that incremental reinforcement comparison uses an incremental average
of all recently received rewards as suggested in [69]. By contrast, rough coverage re-
inforcement comparison (RCRC) uses average rough coverage of selected blocks in the

32

Algorithm 4. Actor-Critic

Input : States s € S, Actions a € A(s), Initialized «, 7.

Output: Policy 7 (s, a) /lwhere (s, a) is a policy in state s that controls the
selection of a particular action in state s.

for (all s € S,a € A(s)) do

p(s,a) «— 0;

ep(s,a)

Sy
Count(s) «— 0;

7(s,a) «—

end

while True do

Initialize s;

for (t=0;t<T,;t=t+1)do

Choose a from s using 7 (s, a);

Take action a, observe r, s';

Count(s) «— Count(s) + 1;

V(s) «— V(s) + 1/Count(s) [r — V(s)];
d=r+~V(s)—=V(s);

p(s, a) < p(s, a) + 36;

eP(s;a) .
m(s,a) — SreTaes |

end

end

33

lower approximation of a set [43]. Intuitively, this means action probabilities are now
governed by the coverage of an action by a set of equivalent actions which represent a
standard. Rough coverage values are defined within a lower approximation space. Alg. 5
is the ACRC learning algorithm used in the ecosystem for actor-critic methods using
lower rough coverage. Notice that the only difference between Algorithms 4 and 5 is the
addition of the reference reward, 7, which is calculated using rough coverage. Fig. 15
contains plots of average reward values for both actor-critic learning methods for results
obtained from the ecosystem testbed. Similarly, Fig. 16 contains the test results from the
vision system experiments.

Algorithm 5: Rough Coverage Actor-Critic
Input : States s € S, Actions a € A(s), Initialized «, ~.
Output: Policy 7 (s, a) /lwhere (s, a) is a policy in state s that controls the
selection of a particular action in state s.
for (all s € S,a € A(s)) do
p(s,a) «— 0;

ep(s,a)
Z\bi(f)\ ep(s,b)’
Count(s) «— 0;

7(s,a) «—

end

while True do

Initialize s;

for (t=0;t<T,;t=t+1)do

Choose a from s using 7 (s, a);

Take action a, observe r, s';

Count(s) «— Count(s) + 1;

V(s) «— V(s) + 1/Count(s) [r — V(s)];
d=r+~V(s)=V(s);

p(s,a) < p(s,a) + 816 — 7);

p(s,a)
T(s,0) «— Ao
Yoy e

/s

s +— s’

end

Extract ethogram table 7.S,0rm = (Upen, A, d) ;
Discretize feature values in 1.5,4rm ;

Compute 7 as in Eq. 26 using 1.5,arm;

end

34

Normalized Average Reward Normalized Average Reward

Normalized Average Reward

20 40 60 80
Episodes (§=0.1y=0.1)

@) B=0.1y=0.1

120

_—

10 20 30 40 50
Episodes (§=0.5 1=0.1)

) 8=0.5,~=0.1

40 60
Episodes (=0.9 1=0.1)

() 3=09,v=0.1

35

Normalized Average Reward Normalized Average Reward

Normalized Average Reward

-

o
©

o
®

e
2

e
>

o
o

e
=

e
@

e
o

o
5

Episodes (=0.1y=1)

0 B=0.1~y=1

C 1]
ACRC

20 40 60 80 100 120 140 160
Episodes (=0.5 y=1)

d)p=05~vy=1

180

20 60 80 100
Episodes (=09 y=1)

) B=09~=1

Figure 15: Ecosystem Testbed Normalized Average Reward: AC vs ACRC

Normalized Average Reward Normalized Average Reward

Normalized Average Reward

N

20 30 40 50

Episodes (§=0.1y=0.1)

@@ B=0.1~v=0.1

60 70

30 40
Episodes (=0.5 1=0.1)

) 8=0.5,~=0.1

20 50

20 30 50
Episodes (=0.9 1=0.1)

() 3=09,v=0.1

36

Normalized Average Reward Normalized Average Reward

Normalized Average Reward

e
>

o
o

e
=

e
@

e
o

o
5

09

o
2

e
>

e
o

e
=

o
w

o
N

o

10

30 40
Episodes (=0.1y=1)

0 B=0.1~y=1

20 50 70

o

09

o
2

e
>

e
o

e
=

o
©

o
N

0.1

o

30 40 50 60 80
Episodes (=0.5 y=1)

d)p=05~vy=1

20

20 30 40 50 80

Episodes (=09 y=1)

) B=09~=1

Figure 16: Vision System Normalized Average Reward: AC vs ACRC

13 Monte Carlo Off-Policy Learning Control Method

A Monte Carlo control algorithm is dubbed “off policy” in the case where the policy that is
being revised is not the one being used to make decisions. The two policies are =’ (called
a behaviour policy used to generate behaviour) and 7 (called an estimation policy). The
advantage to this scheme is that the behaviour policy 7’ can be used for exploration in
sampling all possible actions while the estimation policy 7 can be deterministic and can
be improved after each episode [69]. In this way information about non-greedy actions
can still be acquired without sacrificing the deterministic policy which would have fallen
short of this task on its own. Notice that a requirement for this method to work is that the
behaviour policy 7" must have a non-zero probability of returning to a state (i.e. 7’(s,a) >
0) for all state action pairs [69]. This is guaranteed through the use of an e-soft policy such
as Eqg. 35. The basic idea is to choose actions during an episode such that the expected
return E'[R] is maximized. To see how this is done, first consider weighted sampling of
R-values.

Definition 8 Behaviour Policy [69] A policy used to generate behaviour.

Definition 9 Estimation Policy [69] A policy which eval uates the actions selected under
the behaviour policy.

13.1 Weights

Traditional Monte Carlo methods differ from the weighted average in Eqg. 16 only by the
definition of wy, given by

k
pi(s)
A
where p;(s) and pl(s) are the probabilities that a complete sequence occurs under the
polices 7 and 7’ respectively. An estimate of the expected value of R for Q™ (s, a) after

observing m — n returns from state s is then given by
Q(s, a) —111 ; § R (31)
s, a) =~ Wi, .
) kWEk

where W denotes the sum of the weights. The difficultly in using Eqg. 30 with Eq. 31
is that probabilities p;(s) and p;(s) are usually unknown [69]. However, here the only
requirement is that their ratios which can be determined without the knowledge of the
systems state transition probabilities (usually not known in Monte Carlo applications).

37

Moreover, the values of policies p;(s) and pj(s) can be used after suitable definition.
Assume that p;(s) is defined as in Eq. 32.

Ti(s)—1

pi(s) = (S, ak)PiFSk+1. (32)
k=t

~

where Pr is the conditional probability that a system in state s, will be in state s

after its next transition given that action a;, was selected [69]. Then the following equation
is obtained
pi(st) ;ﬂf)_l T (sk, ar) Pil, B il 7(Sk, a)
pilst) ;;Fi:(f)_l ' (8K, ag) Pols, . - g 7 (8K, ax)
Thus the weight needed in Eq. 31, p;(s)/p(s), depends only on the two policies and not
at all on the environment’s dynamics. Therefore, Eqg. 30 can be replaced with

(33)

we=] M (34)

i=n-+1

Notice that in the case where (s, a) is an arbitrary e-soft policy, the probability of select-
ing an action a determined by policy 7 (s, a) is computed using Eq. 35.

Definition 10 e-Soft Policy [69] A policy which assigns the probability, e, to the action,
a*, which is the action most likely to produce the highest reward. Furthermore, the prob-
ability 1 — e isdistributed among the remaining actions as shown in Eq. 35.

e if a+#a*

l—€e+ —+—, Iif a=a",
(s, a) = { €T TAE) (35)
[As)D

Assume that 7 is a deterministic policy, where ¢ is zero, then 7(s,a) = 1, where a = a*,
i.e, the action « is an optimal action a*. Then a simplified form of w, is obtained as
shown in Eq. 36.

Definition 11 Deterministic Policy [69] Let 7(s) denote a policy which over time selects
the same action for a given state.

k=T;(s)—1

1
wy=] Tl (36)

k=t
This line of reasoning yields the Prop. 2 and Prop. 3.

38

Property 2 A weight on a return can be defined as a function of episodic behaviour
policies and «’ as shown in Eq. 34.

In the case where 7 is an e-soft policy defined relative to the greatest expected return
(see Eq. 35), where ¢ is zero in Eq. 35, then the weights on returns can be formulated
using only 7" as shown in Eq. 36.

Property 3 A weight on returns can be defined as a function of a single episodic behav-
iour policy " as shown in Eq. 36.

13.2 Weighted Sampling Based On Approximation Spaces

The framework provided by an approximation space makes it possible to derive pattern-
based rewards, which are used by swarms that learn to choose actions in response to
perceived states of their environment (see, eg., Fig. 4). The notation 7,. denotes an
average rough coverage value computed within the context of an approximation space
using Eq. 9 as shown in Eq. 37.

Vae = Y V(Bac(;), B.D)/n. (37)
1=0
The decision table DT = (Uy.n, A, d) in Fig. 4 provides a record of behaviour patterns ob-
served during different episodes in the life of system. The action value function Q7 (s, a)
can be approximated using the weighted average shown in Eq. 38.

Q" (s,a) ~ % > Rywp. (38)
k=1

where the weight defined in Eq. 36 is used in conjunction with Eq. 37 to obtain an ap-
proximation space-based weight as shown in Eq. 39.

TTﬁl)
7' (sk,ak) Tm—1 1
k=t
Wy = —————— = (1 4+ U4) - (39)
(1+1m,c) kl_t[m (5K, ax)

In other words, in approximating the expected value of R,,, the samples R,, can be
weighted within the context of an approximation space. This leads to Prop 4.

Property 4 The expectation E[R,,| can be estimated with approximation space-based
weighted sampling.

39

13.3 Common Off-Policy Monte Carlo Learning

This section briefly considers an off-policy Monte Carlo algorithm using weighted sam-
pling based on Eq. 36. The conventional off-policy algorithm used in both the ecosystem
and vision experiments is given in Alg. 6 (see,e.qg., [69]). It is assumed that 7 is the lat-
est time at which a; # m(s;), which means that after time 7 each action selected by the
behaviour policy is the same action that would be selected by the estimation policy.

Algorithm 6: Off-Policy Monte Carlo Control Algorithm

Input : States s € S, Actions a € A(s) //A(s) is a set of actions in state s.
Output: Policies 7 (s) //where 7(s) is a policy used to select action in state s.
for (all s € S,a € A(s)) do

7(s) is randomly chosen;

Q (s, a) < arbitrary; //where () is the value of an action « is state s
N(s,a) «— 0; [Inumerator of Q(s, a)

D(s,a) < 0; [ldenominator of Q(s, a)

end

while Truedo
Select action policy 7'(s, a) to generate an episode:
S0, @0, 1, S1, Q1,725 - -+, ST—1, AT -1, 7T, ST}

/I r; i1s the reward on action a;_
T «— the latest time at which a, # 7 (s;);

for each pair (s, a) inan episode at time 7 or later do

t «— the time of first occurrence of s,a st. t > 7;
T-1 1.
Wae,t imeir 75,0

N(s,a) «— N(s,a) + wac+Ry; IRy as Eq. 12
D(s,a) «— D(s,a) + wqc;

N(s,a) .
Q(S’ CL) N DEs,a%’

end
for eachs € S do

| 7(s) «— argmaz,Q(s,a);
end

end

The approach to weighted sampling in Alg. 6 reflects the application of Prop. 3. No-
tice, also, that Alg. 6 can be simplified using the update rule from Prop 1. There is a
disadvantage in using off-policy control and it comes in the form of how the estimation
policy learns. Toward the end of an episode, the behaviour policy is modified to select

40

only greedy actions, at this point, the estimation policy learns from the choices made. As
a result, only the end of an episode provides the information necessary for the estimation
policy to be improved. This ends up slowing the learning process in comparison to the
on-policy method which is able to make use of the information in the entire episode [69].

13.4 Off-Policy Monte Carlo Learning With Approximation Spaces

An approximation spaced based alternative to the weighted sampling method in Alg. 6 is
briefly explored in this section. To obtain the new form of weighted sampling in Alg. 7,
Alg. 6 has been rewritten using the update rule from Prop. 3 and the approximation space-
based weighted sampling estimates of the expected value of R,, from Prop. 4.

A tail-of-episode (TOE) approach to off-policy Monte Carlo control is used in Alg. 7.
That is, the application of the new approach to weighted sampling only occurs after a
swarm has gained some experience at the beginning of each episode. Experience at the
beginning of an episode is represented by an extracted ethogram. The knowledge gained
from each ethogram influences the weighted sampling (guided by average rough coverage
values for each action) that governs behaviour in the tail of an episode. In some sense,
Alg. 7 mimics the approach Ulam suggests in learning from experience (see, e.g., [72]).
For example, consider trying to estimate the success of the next solitaire hand based on
previous experience with solitaire hands. In this case, the ethogram extracted at some
point in time after the beginning of each episode of Alg. 7 reflects the experience of a
swarm in coping with an environment. The approximation space-based TOE off-policy
Monte Carlo algorithm was introduced in [25], and elaborated in [46]. Lastly, Figures 17
& 18 give results for the normalized average reward in the ecosystem and vision system
respectively, Figures 19 & 18 contain results for normalized total Q values, and Figures 21
& 22 are the plots obtained by finding the RMS between the average value of (s, a) at
the end of an episode and each individual value of Q(s, a).

Other forms of the approximation space-based off-policy algorithm are possible. For
example, consider moving ethogram extraction to end of each episode, and use rough
coverage based weighted sampling at the beginning of the next episode. This is called the
end-of-episode (EOE) method that has been reported in [41]. Detailed consideration of
alternative methods of approximation space-based off-policy algorithms are outside the
scope of this thesis.

41

Normalized Average Reward

e 2 o o o
w » 0 > N

)
N

0.1

e e

Normalized Average Reward
o o

o

0 10 20 30 40 50 60
Episodes (1=0.1)

@ ~y=0.1

1

10 20

30 40 50 60
Episodes (1=0.5)

(b) v = 0.5

0.9

e o o
> N @

Normalized Average Reward
o o o o o
= o

3F
0.2 EOCE
TOE
0.1 MC OFF
0
0 10 20 30 40 50 60
Episodes (1=1)

©vy=1

42

70

Figure 17: Ecosystem Testbed Results Normalized Average Reward: Off Policy Tests

-

— _ I
09 X
08 08
=]
g 07 g 07
& &
v 06 v 06
))
g g
}(’ 05 }(’ 05
s s
S o4 S o4
g g
503 503
z z
0.2 EOE 0.2 EOE
01 ToE || o1 ——T0E ||
) MC OFF i MC OFF
0 . " 0 . ’
0 10 20 30 40 50 0 10 20 30 40 50
Episodes (1=0.1) Episodes (1=0.5)
1
0ol Y
0.8
=
S o7t
H
['3
© 0.6f
s
o
§ 05F
s
8 o4t
]
£
5 03
z
0.2
—— EOE
0.1 TOE
——— MC OFF
0 . . . T
0 10 20 30 40 50

Episodes (=1)

©vy=1

Figure 18: Vision System Results Normalized Average Reward: Off Policy Tests

43

-

e 2 o o o o
A o o N » ©

Normalized Total Q

o
w

)
N

0.1

-

Normalized Total Q
e 2 o o o o
A o o N » ©

o
w

)
N

01t~

0 10 20 30 40 50 60 70 80
Episodes (1=0.1)

@ ~y=0.1

90 0 10 20 30 40 50 60
Episodes (1=0.5)

(b) v = 0.5

Normalized Total Q

Figure 19: Ecosystem Testbed Results Normalized Total Q: Off Policy Tests

0 10 20

30 40 50 60 70
Episodes (1=1)

©vy=1

44

70

o o
>

Normalized Total Q
S

0 10 20 30
Episodes (10.5)

@ ~y=0.1 (b) v =10.5

20 30
Episodes (1=0.1)

1

0.9

Normalized Total Q
© o o o o
I

o
w

)
N

0.1F

0 10 20 30 40 50
Episodes (=1)

©vy=1

Figure 20: Vision System Results Normalized Total Q: Off Policy Tests

45

— EOE
— TOE
—— MC OFF
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70
Episodes (1=0.1) Episodes (1=0.5)
0.25
021
015
[%]
=
o
011
0.05-
MC OFF
o :
0 10 20 30 40 50 60 70

Episodes (1=1)

©vy=1

Figure 21: Ecosystem Testbed Results RMS: Off Policy Tests

46

10

20 30 40 50 0 10 20 30
Episodes (1=0.1) Episodes (1=0.5)
@ ~y=0.1 (b) v =10.5
0.16
. ‘ ‘ ‘ ‘
0 10 20 30 40 50
Episodes (y=1)
) vy=1

Figure 22: Vision System Results RMS: Off Policy Tests

47

50

Algorithm 7. Off Policy Monte Carlo Learning with Approximation Spaces

Input : States s € S, Actions a € A(s)

Output: Policy 7(s).

for (all s € S,a € A(s)) do

7(s) is randomly chosen;

is randomly chosen;

«— 0

«—— 0; /lcounts the number of times action a was selected in state s
(s,a) < arbitrary; //where @ is the value of an action a is state s
W(s,a) «— 1

VAl
Q
N —

end

while Truedo

Use 7/ (s, a) to generate an episode:

Sg, 0o, T1, 81,01, T2, ..., ST_1,ar—_1, 7T, ST; Il r; 15 the reward on action a;_;
T «— the first time at which a, # 7 (s;);

Extract ethogram table D70 = (Upen, A, d);

Discretize feature values in DT,,qrm.

Compute 7, as in Eq. 37 using DTwarm;
for(t=mt<T;t=t+1)do

C(s4,a1)n1 = O, a1)p + 1,

R(s¢, a¢)ny1 «— R(s¢,a0)n + ﬁ[rt — R(s¢, a¢)nl;

5t,at)n+1
W1 = (14 7ye) f;tl m;//ac is the interval containing a,
W1 (8, ap) «— Wi(se, ap) + wpot;
Qns1(5e, ar) «— Qn(se, ar) + ity B (56, ar) — Qn(se, ar));
end
or (all s € S,a € A(s)) do
C(s,a) «— 0;
R(s,a) «— 0;

—h

end
for (eachs € S) do

| 7(s) «— argmaz,Q(s,a);
end

end

48

14 Analysis

This section considers the test results obtained from both the ecosystem testbed and the
vision system. First, the plots obtained from the vision system indicated that there is not
much separation between the algorithms being compared (i.e. the plots are quite similar).
This is a result of two distinct design choices. The first consideration is that the system
only learns when motion is detected. Specifically, the absence of motion is not considered
a state in the environment, and there is no (negative) reward assigned for choosing an
action which leads to this state. Second, when motion is detected the centroid is usually
calculated to be within a central boundary of the camera’s field of view. This is due to
the symmetry of the target being tracked and the fact that the camera is trying to keep
the target within the centre of the field of view. Consequently, the reward received by the
system has a small standard deviation. One possible solution to this problem would be
to vary the reward exponentially with the distance of the centroid from the centre of the
field of view, and negatively reinforce (punish) any action which results in an absence of
motion (i.e. losing the target).

Next, some of the ecosystem plots contain sections where there are large spikes or
dips. These anomalies can be attributed to a number of factors. First, the maximum
reward assigned in the ecosystem can only be attained in a subset of the total states.
Therefore, the reward will drop if the swarm chooses a random action which causes a
transition out of this subset. Also, there are times when the environment forces the swarm
into a state which causes low rewards. For example, lightning causes the swarms to
dismount from the skywire into the path of an adversary which reduces the net charge
of the swarm. Also, the plot anomalies can also be caused by the addition or removal
of a swarm member. New members can bring experience to the swarm which causes the
reward to increase.

The plots in Fig. 13 & 14 indicate that the RCRC method either had a higher average
reward than the incremental RC method, or was comparable. This suggests that average
rough coverage is better than average reward as a standard for judging the “goodness” of
a previous action. This makes sense because rough coverage is used to determine to what
degree each set of equivalent behaviours are covered by a set of behaviours representing
a standard. Furthermore, the plots in Fig. 15 & 16 indicate that the RAC method had a
higher average reward than the AC method. This suggests that average rough coverage
is better than average reward as a standard for judging the “goodness” of a previous ac-
tion. This makes sense if one considers the significance of computing rough coverage
to determine to what degree blocks of equivalent action-based behaviours are a part of a
set of behaviours representing a standard. This is also reminiscent of findings reported
elsewhere (see, e.g., [40, 43, 44]).

49

Next, the results of the experiments with different parameter values for each of the
three off-policy Monte Carlo reinforcement learning methods presented in this thesis are
presented, namely, the conventional, TOE and EOE off-policy methods. A sampling of
normalized reward, normalized (s, a) values and corresponding RMS values for the
TOE, EOE and conventional off-policy Monte Carlo learning are shown in Fig. 17 - 22
respectively. In each case, the TOE and EOE approaches to off-policy learning consis-
tently do better than the conventional off-policy method. For the most part, the sample
Q(s, a) values using these two rough off-policy learning methods are fairly close together.
The TOE off-policy methods tends to do better than the EOE off-policy method.

50

15 Conclusion

The contribution of this thesis is a comprehensive introduction to a pattern-based evalu-
ation of behaviour during reinforcement learning using approximation spaces. Further-
more, this thesis presents the implementation of two learning environments (the ecosys-
tem testbed, and the monocular vision system) used to compare seven different forms of
reinforcement learning. Namely, two forms of Reinforcement Comparison, and Actor-
Critic methods as well as three forms of Monte-Carlo off-policy control. A basic assump-
tion made in this thesis is that learning is carried out in a non-stationary environment. In
general the learning techniques presented in this thesis are ideal for problems in which
little or no information is known about the environment. They allow for the discovery
of better action selection choices by exploring an unknown environment while exploit-
ing knowledge gained in the past. The results obtained by the pattern-based approach to
reinforcement learning are promising. At the very least they indicate that this approach
is comparable to traditional reinforcement learning techniques. However, more work is
required to determine (both theoretically and empirically) which method is superior. Ad-
ditionally in future work, several other forms of reinforcement learning methods will be
considered. Finally, the monocular vision requires significant improvements in order to
be a practical solution for tracking moving objects.

51

A Swarmbot Testbed

The testbed makes it possible to experiment with bots that must learn to cooperate in a
number of ways (e.g. navigate pasts obstacles). The goal for swarms of cooperating bots
within the testbed is to learn to correctly inspect the towers within the simulation while
learning to avoid the many hazards. The hazards are represented by adversaries which can
take the form of lighting, high wind, emf, or attacks by animals. This testbed has a com-
putation kernel that sets up an approximation space (defined in Sect. 3) at the end of each
episode. As was mentioned in Sect. 7 Fig. 6(a) is a screen shot of a testbed that automates
the production of ethograms to provide a record of observed swarmbot (sbot) behaviour
patterns. Swarm ethograms are appended after each time step with swarm specific data
which is used at the end of an episode. Furthermore, Table 3 contains a description of the
symbols that appear in Fig 6(a). The basic symbols visible during ecosystem operation
are shown in Fig. 6(a), namely, bot (tiny disk), bot charge (number next to bot), swarm
(cluster of tiny disks), average swarm charge (number next to cluster of tiny disks), sensor
range (circle surrounding an agent or swarm), adversary (larger solid disk inside circle),
power line (line) and power tower (solid square connected to power line). As was men-
tioned in Sect. 6 the focus of this testbed is on swarm behaviour. Moreover, the bots are
based on a real world model (see Fig. 6(b)) which requires cooperation in order to achieve
goals. As a result, bot behaviour is limited to searching for other bots or recharging batter-
ies when it is not part of a swarm. A bot will search out any other bot(s) which it detects
within its sensor range (green circle). Once a swarm is formed bots have access to a larger
action space. Specifically, the actions available to a swarm are a function of its currently
perceived state. Moreover, the bots within the swarm will elect a leader based on experi-
ence gained within the ecosystem (experience is based on the length of time the bot has
“survived” within the ecosystem). It is the leader who ultimately makes the decisions for
the swarms actions based on knowledge about the current state gained from all members
of the swarm, as well as, conditions within the swarm (e.g. low energy). Lastly, new lead-
ers are elected quite frequently within a swarm due to new members joining (with more
experience), swarms dispersing due to too many members, the threat of an adversary, or
the removal of a swarm member by an adversary.

A swarm determines its current state as a function of the environment variables (e.g.
weather conditions), average swarm battery charge, and whether the swarm is inspecting
hydro equipment (see, e.g. Table 4). It is also assumed that each swarm knows the exact
state of the environment. However, this is not to say that the state transition probabilities
are known, only that the sensors of sbots have small error. Tables 4 and 5 lists all the
states and actions available to a agent within the ecosystem. Lists of action spaces for
a specific state are given in Table 7. Table 6 contains the rewards a swarm can receive.

52

Symbol Description

Tiny Disk Bot

Number next to disk Bot charge
Cluster of tiny disks Swarm
Number next to cluster Swarm charge
Green circle Sensor range
Larger solid disk Adversary
Black line Power line

Solid square connected to power line Power tower

Table 3: Testbed Symbol Descriptions

Note, that the conditions are listed in order of priority. Finally, the environment used in
the testbed is non-stationary, which means that transition probabilities change over time.

$ A e » B

(a) Node (b) Component (c) Object (d) Dependency

i

(e) Interface

Figure 23: UML Notation

53

State Description

Low energy; No danger; Weak sunlight; Mounted on sky wire.

Low energy; No danger; Plenty of sunlight; Mounted on sky wire.

Low energy; No danger; Weak sunlight; Not Mounted on sky wire.

Low energy; No danger; Plenty of sunlight; Not Mounted on sky wire;
Low energy; Danger adversary; Weak sunlight; Not Mounted on sky wire;
Low energy; Danger adversary; Plenty of sunlight; Not Mounted on sky wire;
Low energy; Danger lightning; Weak sunlight; Mounted on sky wire;

Low energy; Danger lightning; Plenty of sunlight; Mounted on sky wire;
Low energy; Danger high winds; Weak sunlight; Mounted on sky wire;
Low energy; Danger high winds; Plenty of sunlight; Mounted on sky wire;
High energy; No danger Mounted on sky wire; Tower detected.

High energy; No danger Mounted on sky wire; No Tower detected.

High energy; No danger Not mounted on sky wire; No Tower detected.
High energy; No danger Not mounted on sky wire; Tower detected

High energy; Danger adversary; Not mounted on sky wire;

High energy; Danger lightning; Mounted on sky wire;

High energy; Danger high winds; Mounted on sky wire;

Not in a swarm

Table 4: RL States

Action Action Description
)

00 Error action (only used in the code)
01 Recharge
02 Shut down
03 Search
04 Search rapid
05 Hide
06 Undesirable
07 Flee
08 Shelter high winds
09 Inspect Tower
10 Report EMF
11 Mount tower
12 Dismount tower

Table 5: Swarm Actions

54

Reward Condition

Swarm Reward

Average Swarm Charge < Threshold
Action = Search
Action = Inspect Tower
Action = Mount Tower
Action = Avoid Hazards
Everything Else

0.1

o
ork

Table 6: RL Reward Function

State and Action Space
S=00,A(00)={1,2,3,4,8,9,10, 12
S=01,A(01)=1{1,23,4,8,9,10, 12
S=02,A(02)=1{1,2,3,4,5,6,7
S=03,A(03)=1{1,2,3,4,5,6,7
S=04,A(04)=1{1,2,3,4,5,6,7
S=05A(05=1{1,234,5,6,7
S=06,A(06)=11,2,3,4,8,9,10, 12
S$=07,A(07)=1{1,2,3,4,8,9,10, 12
S=08,A(08)=11,23,4,8,9,10, 12
S=09,A(09)=1{1,23,4,8,9,10, 12
S=10,A(10)=1{1,2,3,4,8,9,10, 12
S=11,A(11)=1{1,2,3,4,8,9,10, 12
S=12,A(12)=1{1,2,3,4,5,6,7}
S=13,A(13)=1{1,2,3,4,5,6,7, 11}
S=14,A(14)=1{1,2,3,4,5,6,7}
S=15,A(15)=1{1,23,4,8,9,10, 12
S=16,A(16)=1{1,2,3,4,8,9, 10, 121
S=17,A(17)=1{1,2,3
Table 7: RL State Action Spaces

55

0.0[True]:StartSimulation 3[Received Enviro. Var]:
0.1[Agent Created]:new AgentController() Determine State; Update CntrlAlg
0.2[True]:New RLController()

0.3[Agents Instantiated]:Start Simulation Environment

:Simulator :Agent
:GUIDisplay ?
EThread:EnvironmentSimulator
Draw:UpdateDisplayInfo
:AdjustEnviroVars HO r-
| 5.0[Performed Action aJ:
| 1[True] ¢ Update Display Info.
getEnviroVariables I — O’—_‘_l‘\gentBehaviorController ?
|
jT ormRL:GUI ? | Behave:AgentController

|
|—|—| :UpdateUserlnterface I T
| |
I~ - | |
l l 5.1[Performed Action a]: l
| AgentOperatlon - Report Reward l
| RN |
| |
:UpdateAgentBehavior — |
¢ 2[Received Enviro. Var]:Update Agents |
|
4[Processed State Information]: |
Report Action Selection a !
|
|
|
|
|
T

:RLControlAlgorithm %

:ControlAlgorithm

EF' CtrlInterface:RLController

Actor

Figure 24: Static UML Model of Testbed Architecture (see, e.g., [12])

56

B Ecosystem Architecture

This Appendix describes the ecosystem software architecture through the use of a UML
deployment diagram (see, e.g. [12, 32]). The main elements of a deployment diagram are
given in Fig. 23 and are briefly introduced here. Nodes represent high level facets of a
system which house component artifacts (see Fig. 23(a)). Components represent struc-
ture groupings of a system and are usually created once the project is nearing completion
(see Fig. 23(b)). Objects are usually direct instances of system software or hardware and
can be seen in Fig. 23(c). The dashed line with an arrow head in Fig. 23(d) represents
a dependency and is used to designate that component A is dependent on component B.
An interface represents operations which define the behaviour of an object or element
(see Fig. 23(e)). Solid black lines connecting objects represent the links between objects.
Messages are located next to object relationships and describe features and conditions of
the deployment and usually indicate sequence. The lines with the half arrowhead repre-
sent the direction of the messages. Lastly, the following gives the convention used for
naming and messaging.

Name: Type
Sequence # Condition] : Action

A modular approach was used in order to facilitate the addition of control algorithms
and to decouple the ecosystem code. Namely, each reinforcement algorithm was encap-
sulated in a class which implements a control interface. For instance, one requirement of
the interface is for objects to report the previous state-action pair, the resultant reward,
and the current state-action pair at the end of each time step. The main benefit of this
approach is the ability to use the same instance of a bot regardless of the algorithm used
to control it. For example, Fig. 24 is a deployment diagram of the main architectural
components of the testbed including the modular control algorithm design. Notice that
the control algorithm is a separate node than the agent. As a result, the agent creates
(instantiates) the desired control algorithm at start up. Furthermore, the control algorithm
is transparent to the agent because they all implement the control interface (i.e. that the
agent does not need to know the type of algorithm used to control it). The dots at the top
right of the nodes in Fig. 24 indicate more than one agent is associated with the simulator
(remember that multiple agents form swarms). Next, note the dependencies in Fig. 24.
The main responsibility of the GUI in this system is to update the environment and the
spatial properties of all the objects within the simulation. Consequently, it is dependent on
the thread which is responsible for the environment variables, as well as, the simulation
component which is responsible for updating the agents. Lastly, Fig. 24 gives the deploy-
ment specifications for one iteration of the ecosystem testbed. Step 0 involves starting the

57

ecosystem simulation and steps 2 - 5.1 are repeated infinitely. They represent the basic
operations of the simulation and are given in more detail below.

Repeat forever {after selecting RL method, and starting ecosystem }
For each time step

Determine environment variables (e.g., lightning, wind, sunshine, emf).
If end of episode reached, then report it to agents.
Update ecosystem environment variables, and adjust swarm (s, a).
Adjust agents (including swarm members) position, energy.
Report swarm reward based on action performed and environment state.
Perform any necessary clean up (e.g., remove dormant agents).

58

Notation

PU)
VSR[(X, Y)
VSRC(Xa Y)
ASy,

(U, A, d)

Bae(2)
B.D

Vp (X7 Y)
ASy

Temporal Difference (TD) Error

Probability that X equals x

Return

Expected value of R

Information System

Represents an information system where U is a non-empty finite set
of elements and A is a non-empty finite set of attributes

An attribute which is a member of a set of attributes for an element
The value set of an attribute a (i.e. V, = a(x) where z € U)
Indiscernibility relation with respect to attribute set B

A partition of U created by the indiscernibility relation

Block (a set of B-indiscernible elements)

Lower approximation of the set X based on the attributes in B
Upper approximation of the set X based on the attributes in B
Approximation Space

Generalized Approximation Space

A system representing a GAS where U is a non-empty finite set of
objects, NV is a neighbourhood function, and v is an overlap
function.

A parameterized approximation space (U, N, v) where the
neighbourhood function, N, is defined as a block of B-
indiscernible elements.

The powerset of U

Standard Rough Inclusion

Standard Rough Coverage

A lower approximation space defined in the context of a decision
system

Represents a decision system which is the same as an information
system with an additional distinguished attribute representing a
decision.

Notation used to specify a specific block containing feature value ac
Lower approximation of the decision set D

Short hand notation for vgrc (X, B.Y)

An upper approximation space defined in the context of a decision
system

59

DT

argmax,

Decision set containing all elements which have been accepted (i.e.
d(x) =1)

State

Action

Set of all states

Set of all actions for state s

Policy indicating the probability of taking action « in state s
(denoted 7 for short)

The value of a state s obtained by following policy =

The value of taking « in state s while following policy 7
Estimate of V™ (s)

Estimate of Q7 (s, a)

Reward

Set of all real numbers

Return (cumulative future discounted reward)

Discount rate

Expected discounted return following policy =

Average difference between pixel intensities

Centroid coordinates

Preference for action a in state s

Reference reward

Step size parameters

Set of all blocks consisting of elements in U

Number of times state s was encountered during an episode
Weight used in weighted average

policy, a decision-making rule

Deterministic policy, a mapping from state s to an action a
Stochastic policy, a mapping from state s to the probability of
performing action a

The probability a complete sequence occurs under a policy
Probability that a system in state s, will be in state s,

after its next transition given that action a, was selected
Average rough coverage of all the blocks containing action ac (where
ac differs from a because the decision system is discretized
before setting up a lower approximation space)

Decision Table (Decision System)

The value of the given argument for which the expression is maximal

60

Glossary

Action

Action Value Function

Actor

Actor-Critic Method

Agent

Approximation Space

Attribute
Behaviour Policy

Block
Coverage

Critic

An action taken by an agent causes a change in
the environment.

The expected discounted future reward starting in
state s, selecting action a, and continuing to
follow policy .

Policy structure used to select actions in the
Actor-Critic method.

A temporal difference (TD) learning method
with a separate memory structure to represent
policy independent of the value function.

A system that has sensors that enable it to
perceive, actuators, and the ability to perform
actions that modify its environment.

A universe U together with the lower and upper
approximations (characterized by the I'nd;g
relation). An approximation space gives an
approximate description for any X C U.

See Feature
A policy used to select actions.

A set of indiscernible elements based on the
attributes contained in B (where B C A).

Used relative to the extent that a given set is
contained in a standard set.

Structure which learns and critiques the policy
used by the actor to make action selections in the
Actor-Critic method.

61

Credit Assignment Problem

Data Table

Decision System

Deterministic Policy

Discounting

Discretization

e-Greedy Method

Estimation Policy

Ethogram

Ethology

Feature

Feature (Behaviour Feature)

Feature (System Feature)

Finding the action for a specific state that will
most likely give the highest reward.

See Information System

An information system 1.5 = (U, A, d) where
d is a distinguishing attribute representing a
decision.

A policy that assigns an action to a state.

The process of determining the present value of
future rewards.

A process of assigning intervals to the real numbers
contained in a column of an information system in
order to facilitate the extraction of patterns.

An action selection method which assigns the
probability e to the action with the highest
value estimate and equally assigns the
probability 1 — e to the remaining actions.

A policy which evaluates the actions selected under
the behaviour policy.

An Ethogram is a catalogue of descriptions of
separate and distinct species-typical behaviour
patterns.

The study of the behaviour and interactions of
animals.

An abstraction that characterizes a part of an
object of interest.

An abstraction that characterizes some aspect of a
behaviour.

An abstraction that characterizes a part of a
64stem.

Generalized Approximation Space

Greedy Action Selection

Indiscernibility Relation

Information System

Intelligent Agent

Lower Approximation

Monte Carlo Method

Non-Greedy Action Selection

Non-Stationary Models

Off-Line Learning

Off-Policy

Isasystem GAS = (U, N, v) where U is a
non-empty set of objects, /V is a neighbourhood
function, and v is an overlap function.

Always selecting the action which is most likely
to produce the highest reward.

Two elements x and 2’ are indiscernible from
each other if their associated feature sets are the
same.

A pair (U, A), where U is a non-empty, finite
set of elements and A is a non-empty, finite set
of attributes

An agent that recognizes patterns and learns over
time to choose beneficial actions.

The lower approximation for a sample X C U

is a collection of blocks of sample elements which
can be classified with full certainty as members of
X based on the knowledge represented by
attributes in B.

Estimate £ [R] with average R-value.

Selecting an action with unknown or low reward
expectation in order to make better action
selections in the future.

Models in which the state transition probabilities
change over time.

Learning which occurs before the agent is placed
in the environment in which it is to act.

A control algorithm where the policy that is
being revised is not the one being used to make
decisions.

63

On-Line Learning

On-Policy

Pattern

Policy

Preference

Proximate Cause

Reference Reward

Reinforcement

Reinforcement Comparison Method

Reinforcement Learning

Reward

Reward Signal

Learning which occurs in real time with the agent
constantly adding to its experience in order to make
better action selections in the future.

A control algorithm where the behaviour and
estimation policies are one and the same.

A feature-value vector.

A decision-making rule

A measure of the desirability of a state-action

pair used to determine a policy by the Reinforcement

Comparison and Actor-Critic methods.

The preceding event(s) which which may induce a
particular behaviour.

Standard or reference used for judging the
desirability of an action.

A stimulus which increases/decreases the
likelihood of an action being selected in the
future.

Methods which use a reference reward to judge
the desirability of a reward.

The process of learning the correct action to take
based on feedback from the environment.

Value assigned to a state or action which
represents its desirability.

Measured response from the environment.

64

Rough Coverage A measure of the degree with which a given set X
is covered by a set Y (where it is always assumed
that | X | < |Y).

Rough Inclusion A measure of the degree with which a given set X
is included in a set Y (where it is always assumed
that | X | < |Y).

Rough Set Is an approximation of a sample X C U defined in
terms of the upper and lower approximation of the
sample X.

Softmax Method An action selection method which assigns
probabilities based on value estimates where the
action with the highest value estimate is
assigned the largest probability according to the
Gibbs or Boltzmann distribution.

State A unique interpretation of the environment
from which an action a € A(s) is selected.

State Value Function The value of a state s obtained by following
policy .
Stationary Models Models in which the state transition probabilities
are fixed.
Stochastic Policy Assigns a probability of taking action « in state
S.
Survival Value A measure of the degree to which an observed animal

behaviour contributes to survival.

Swarm A collection of cooperating organisms which can be
viewed as a collective entity.

Swarm Intelligence A form of artificial intelligence based on the
collective behaviour of decentralized systems.

Swarmbot A collection of small robots which work together

as a whole.
65

Temporal Difference (TD) Error The difference obtained between value estimates
obtained at different times.

Update Rule A form of incremental average.

Upper Approximation The upper approximation for a sample X C U
is a collection of blocks of sample elements
representing both certain and possibly uncertain

knowledge about X .

Value Set A function which defines for every element x € U
a set of feature values.

66

| ndex

e-Greedy Method, 38

Action, 10-12

Action Value Function, 12, 13, 38, 40
Actor, 33

Actor-Critic Method, 11, 33-35

Agent, 10, 11

Approximation Space, 6-10, 29, 35, 40, 41
Attribute, see Feature

Behaviour Policy, 38
Block, 4, 8, 29

Centroid, 24, 25
Credit Assignment Problem, 11
Critic, 33

Data Table, see Information System
Decision System, 8, 40

Decision Table, see Decision System
Discount Rate, 12, 33
Discretization, 29

Episode, 17, 27, 29, 40
Estimation Policy, 38, 40
Ethogram, 19, 29
Ethology, 15

Expected Value, 12, 38, 40

Feature, 4, 8, 15
Generalized Approximation Space, 6

Indiscernibility, 4, 6, 7
Information System, 4, 7

Lower Approximation, 4, 8, 29

Monte Carlo Method, 11-14, 38-43

Neighbourhood Function, 6, 8
Non-Greedy Action Selection, 38
Non-Stationary Models, 10, 19

Off-Line Learning, 10
Off-Policy, 11, 38, 40
On-Line Learning, 10
On-Policy, 11, 41
Overlap Function, 6

Pattern, 9, 15, 40
Policy, 12

Powerset, 6
Preference, 15, 27, 33
Proximate Cause, 15

Reference Reward, 15, 27, 29, 33

Reinforcement Comparison Method, 11, 27—
29, 33

Reinforcement Learning, 10-12, 15, 25, 27

Return, 12

Reward, 9-12, 25

Rough Coverage, see Standard Rough Cov-
erage

Rough Inclusion, see Standard Rough In-
clusion

Rough Sets, 4-5, 10

Standard Rough Coverage, 4, 7-9, 29, 33
Standard Rough Inclusion, 7

State, 11, 12, 25

State Transition Probabilities, 10, 39
State Value Function, 12, 33

Stationary Models, 10

67

Step Size Parameters, 11, 27
Survival Value, 15

Swarm, 9, 15, 17, 19
Swarmbot, 8, 17

Temporal Difference Error, 33

Update Rule, 11, 13-14
Upper Approximation, 4

Value Set, 4

Weighted Average, 38

Weights
Approximation Space Approach, 40
Traditional Approach, 38-39

68

References

[1] A.G. Barto, S. Mahadevan, Recent advances in hierarchical reinforcement learning,
Discrete Event Dynamic Systems: Theory and Applications, 13, 2003, 41-77.

[2] B.M. Blumberg, P.M. Todd, P. Maes, No Bad Dogs. Ethological Lessonsfor Learn-
ing in Hamsterdam, Research Report, MIT Media Lab, Massachusetts Institute of
Technology, 1995.

[3] E. Bonabeau, M. Dorigo, G. Theraulaz, Svarm Intelligence. From Natural to Artifi-
cial Systems, (UK: Oxford University Press, 1999).

[4] P. Dayan, C.J.C.H. Watkins, Reinforcement learning, Encyclopedia of Cognitive
Science. MacMillan Press, UK, 2001.

[5] P. Dayan, Reinforcement comparison. In: Touretzky D. S., EIman, J. L., Sejnowski,
T. J., and Hinton, G. E. (Eds.), Proc. of the 1990 Summer School, Morgan Kauf-
mann, San Mateo, 1991, 45-51.

[6] T.G. Dietterich, Hierarchical reinforcement learning with the maxqg value function
decomposition, Journal of Artificial Intelligence Research, 13, 2000, 227-303.

[7] M. Dorigo, M. Colombetti, Robot Shaping. An Experiment in Behavior Engineering.
The MIT Press, Cambridge, MA, 1998.

[8] C. Gaskett, Q-Learning for Robot Control. Ph.D. Thesis, Supervisor: A. Zelinsky,
Department of Systems Engineering, The Australian National University, 2002.

[9] A. Gomolinska: Rough validity, confidence, and coverage of rules in approximation
spaces. In J.F. Peters, A. Skowron, D. van Albada(Eds.), Transactions on Rough Sets
I11 Lecture Notes in Computer Science, 3400, 57-81, 2005

[10] R.C. Gonzalez, R.E. Woods: Digital Image Processing, 2nd Ed. Prentice Hall, N.J.,
2002.

[11] R. Gross, M. Dorigo, Cooperative transport of objects of different shapes and sizes.
In M. Dorigo, M. Birattari, C. Blum, L.M. Gambardella, F. Mondada, T. Stut-
zle(Eds.), Ant Colony Optimization and Swarm Intelligence Lecture Notesin Com-
puter Science, 3172,106-117,2004.

[12] J. Holt, UML for Systems Engineering watching the wheels, The Institution of Elec-
trical Engineers, London, UK, 2001.

69

[13] C. Huygens,: De Ratiociniis in Ludo Aleae (On Reasoning or Computing in Games
of Chance), 1657.

[14] L.P. Kaelbling, Learning in Embedded Systems, The MIT Press, Cambridge, MA,
1992.

[15] L.P. Kaelbling, Hierarchical learning in stochastic domains: Preliminary results. In
Proc. of the 10’/ International Conference on Machine Learning, 1993, 167-173.

[16] L.P. Kaelbling, Acting optimally in partially observable stochastic domains. In Proc.
12th Nat. Conf. on Artificial Intelligence, 1996.

[17] L.P. Kaelbling, M.L. Littman, A.W. Moore,Reinforcement learning: A survey Jour-
nal of Artificial Intelligence Research, 4, 1996, 237-285.

[18] P.R. Killeen, Mathematical principles of reinforcement, Behavioral and Brain Sci-
ence, 17, 1994, 105-172.

[19] A.C. Kolle, The Nature of Learning—A Study of Reinforcement Learning Method-
ology, Ph.D. Thesis, supervisor: P. Johansen, University of Copenhagen, 21 Nov.
2003.

[20] J. Komorowski, Z. Pawlak, L. Polkowski, A. Skowron, Rough sets: A tutorial, in
S.K. Pal, A. Skowron (Eds.) Rough Fuzzy Hybridization. A New Trend in Decision-
Making (Singapore: Springer-Verlag Singapore Pte. Ltd., 1999), 3-98.

[21] P.N. Lehner, Handbook of ethological methods, Cambridge University Press, Cam-
bridge, UK, 1979.

[22] L. Li, Distributed Learning in Svarm Systems: A Case Sudy, M.Sc. Thesis, super-
visor: Y.S. Abu-Mostafa, California Institute of Technology, 2002.

[23] L. Li, V. Bulitko, R. Greiner, Batch reinforcement learning with state importance,
Research Report, University of Alberta, 2004.

[24] LJ. Lin, T.M. Mitchell, Memory Approaches to Reinforcement Learning in Non-
Markovian Domains, Research Report CMU-CS-92-138, Carnegie-Mellon Univer-
sity, 1992,

[25] D. Lockery: Reinforcement Learning Methods. Research Report CI1L02.11052005,
Computational Intelligence Laboratory, Department of Electrical and Computer En-
gineering, University of Manitoba, 11 April 2005.

70

[26] F. Lu, Exploring Model-Based Methods for Reinforcement Learning, Ph.D. Thesis,
supervisor: D. Schuurmans, University of Waterloo, Waterloo, Ontario, Canada,
2003.

[27] R. Maclin, J.W. Shavlik, Creating advice-taking reinforcement learners, Machine
Learning, 22(1-3), 1996, 251-281.

[28] A.K. McCallum, Reinforcement Learning with Selective Perception and Hidden
Sate, Ph.D. Thesis, University of Rochester, U.S.A., 1996.

[29] G.A. Mikhailov, Monte-Carlo method. In: M. Hazelwinkel(Ed.), Encyclopedia of
Mathematics, 4, Kluwer Aca. Pub., Dordrecht, 1995.

[30] H.S. Nguyen, Discretization of Real Value Attributes, Boolean Reasoning Approach,
supervisor: A. Skowron, Warsaw University, 1997.

[31] S.H. Nguyen: Regularity Analysis and Its Applications in Data Mining, Doctoral
Thesis, superisor: Bogdan S. Chlebus, Faculty of Mathematics, Computer Science
and Mechanics, Warsaw University, July 1999.

[32] Object Management Group, UML Standard 1.5, http://www.uml.org/

[33] E. Ortowska: Semantics of Vague Concepts. Applications of Rough Sets. Institute
for Computer Science, Polish Academy of Sciences Report 469, March 1982

[34] Z. Pawlak: Classification of Objects by Means of Attributes. Institute for Computer
Science, Polish Academy of Sciences Report 429, March 1981

[35] Z.Pawlak: Rough Sets. Institute for Computer Science, Polish Academy of Sciences
Report 431, March 1981

[36] Z. Pawlak, Rough sets, International J. Comp. Inform. Science, 11, 1982, 341-356

[37] Z. Pawlak, Rough Sets. Theoretical Reasoning about Data, Theory and Decision
Library, Series D: System Theory, Knowledge Engineering and Problem Solving,
vol. 9, Kluwer Academic Pub., Dordrecht, 1991.

[38] J. F. Peters, Approximation space for intelligent system design patterns. Engineering
Applications of Artificial Intelligence, 17(4), 2004, 1-8.

[39] J.F. Peters, Approximation spaces for hierarchical intelligent behavioural system
models. In: B.D.-Keplicz, A. Jankowski, A. Skowron, M. Szczuka (Eds.), Moni-
toring, Security and Rescue Techniques in Multiagent Systems, Advances in Soft
Computing, (Heidelberg: Physica-Verlag, 2004) 13-30

71

http://www.uml.org/

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

J.F. Peters, Rough ethology: Towards a Biologically-Inspired Study of Collective
Behavior in Intelligent Systems with Approximation Spaces. Transactionson Rough
Sets, 111, LNCS 3400, 2005, 153-174.

J.F. Peters: Approximation spaces in off-policy Monte Carlo learning. Plenary paper
in T. Burczynski, W. Cholewa, W. Moczulski (Eds.), Recent Methods in Artificial
Intelligence Methods, AI-METH Series, Gliwice, 2005, 139-144.

J.F. Peters, T.C. Ahn, M. Borkowski, V. Degtyaryov, S. Ramanna, Line-crawling
robot navigation: A rough neurocomputing approach. In: C. Zhou, D. Maravall, D.
Ruan (Eds.), Autonomous Robotic Systems. Studies in Fuzziness and Soft Comput-
ing 116 (Heidelberg: Springer-Verlag, 2003) 141-164

J.F. Peters, C. Henry, S. Ramanna, Rough Ethograms : Study of Intelligent System
Behavior. In: New Trends in Intelligent Information Processing and Web Mining
(11S05), Gdansk, Poland, June 13-16 (2005)

J.F. Peters, C. Henry, S. Ramanna, Reinforcement learning with pattern-based re-
wards. In: Proc. Fourth Int. IASTED Conf. Computational Intelligence (CI 2005),
Calgary, Alberta, Canada (4-6 July 2005) 267-272

J.F. Peters, C. Henry, S. Ramanna, Reinforcement Learning in Svarms that Learn,
Research Report, Computational Intelligence Laboratory, University of Manitoba,
2005.

J.F. Peters, D. Lockery, S. Ramanna: Monte Carlo off-policy reinforcement learning:
A rough set approach. In Proc. Fifth Int. Conf. on Hybrid Intelligent Systems, Rio de
Janeiro, Brazil, 06-09 Nov. 2005, 187-192.

J.F. Peters, A. Skowron, P. Synak, S. Ramanna,Rough sets and information granula-
tion. In: Bilgic, T., Baets, D., Kaynak, O. (Eds.), Tenth Int. Fuzzy Systems Assoc.
World Congress IFSA, Instanbul, Turkey, Lecture Notes in Artificial Intelligence
2715 (Heidelberg: Springer-Verlag, 2003) 370-377

J.F. Peters, S. Ramanna, Measuring acceptance of intelligent system models. In: M.
Gh. Negoita et al. (Eds.), Knowledge-Based Intelligent Information and Engineering
Systems, Lecture Notesin Artificial Intelligence, 3213, Part I, 2004,764-771.

L. Polkowski, Rough Sets. Mathematical Foundations. (Heidelberg: Springer - \Ver-
lag, 2002).

72

[50] D.Precup,R.S. Sutton,S. Singh, Eligibility traces for off-policy evaluation. In: Proc.
17th Conf. on Machine Learning(ICML 2000),Morgan Kaufmann, San Francisco,
2000, 1-8.

[51] J. Randlov, Solving Complex Problems with Reinforcement Learning, Ph.D. Thesis,
University of Copenhagen, 2001.

[52] C.P. Robert, G. Casella: Monte Carlo Satistical Methods, 2nd Ed. Springer, Berlin,
2004.

[53] R.Y., Rubinstein: Smulation and the Monte Carlo Method. John Wiley & Sons,
Toronto, 1981

[54] G.A. Rummery, Problem Solving with Reinforcement Learning, Ph.D. Thesis, Cam-
bridge University, 1995.

[55] H. Sevay, Multiagent Reactive Plan Application Learning in Dynamic Environ-
ments, Ph.D. Thesis, supervisor: C. Tsatsoulis, University of Kansas, 2003.

[56] S.P. Singh, Transfer of learning by composing solutions of elemental sequential
tasks. Machine Learning, 8(3-4), 1992, 323-339.

[57] A. Skowron, Rough sets and vague concepts. Fundamenta Informaticae, XX, 2004,
1-15.

[58] A. Skowron, J. Stepaniuk, Modelling complex patterns by information systems.
Fundamenta Informaticae, XXI, 2005, 1001-1013.

[59] A. Skowron, J. Stepaniuk, Generalized approximation spaces. In: Lin,
T.Y.,Wildberger, A.M. (Eds.), Soft Computing, Smulation Councils, San Diego,
1995, 18-21

[60] A. Skowron, J. Stepaniuk, Information granules and approximation spaces, in Proc.
of the 7 Int. Conf. on Information Processing and Management of Uncertainty in
Knowledge-based Systems (IPMU98), Paris, 1998, 1354-1361

[61] Skowron, A., Swiniarski, R., Synak, P.: Approximation spaces and information
granulation, Transactions on Rough Sets |11, 2005, 175-189

[62] W.D. Smart, Making Reinforcement Learning Work on Real Robots, Ph.D. Thesis,
Brown University, 2002.

73

[63] P. Stone, Team partitioned, opaque-transition reinforcement learning. In: M. Asada,
H. Kitano (Eds.),RoboCup-98: Robot Soccer World Cup I1,Springer-Verlag, Berlin,
1999.

[64] P. Stone, Layered Learning in Multiagent Systems. A Winning Approach to Robotic
Soccer. The MIT Press, Cambridge, MA, 2000.

[65] J. Stepaniuk, Approximation spaces, reducts and representatives, in L. Polkowski
and A. Skowron (Eds.), Rough Sets in Knowledge Discovery 2, Sudiesin Fuzziness
and Soft Computing 19(Heidelberg: Springer-Verlag, 1998)., 109-126

[66] R.S. Sutton, Temporal Credit Assignment in Reinforcement Learning, Ph.D. Thesis,
University of Massachusetts, Amherst, MA., 1984.

[67] R.S. Sutton, Learning to predict by the methods of temporal differences. Machine
Learning, 3, 1988, 9-44.

[68] R.S. Sutton, Reinforcement learning architectures for animats. In: J.A. Meyer,
S.W. Wilson (Eds.),From Animals to Animats, Proc. 1°* Int. Conf. Smulation of
Adaptive Behavior, The MIT Press, Cambridge, MA, 1991.

[69] R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction The MIT Press,
Cambridge, MA, 1998.

[70] N. Tinbergen, On aims and methods of ethology, Zeitschrift fiir Tierpsychologie 20,
1963, 410-433

[71] T. Tyrrell, Computational Mechanisms for Action Selection, Ph.D. Thesis, Centre
for Cognitive Science, University of Edinburgh, 1993.

[72] N. Metropolis, S. Ulam: The Monte Carlo method, Journal of the American Satis-
tical Association, 44(247), 1949, 335-341.

[73] S. Ulam: On the Monte Carlo method. In Proc. 2nd Symposium on Largescale Dig-
ital Calculating Machinery, 1951, 207-212

[74] C.J.C.H. Watkins, Learning from Delayed Rewards, Ph.D. Thesis, King’s College,
Cambridge, 1989.

[75] C.J.C.H. Watkins, P. Dayan, Technical note: Q-learning, MachineLearning, 8, 1992,
279-292.

74

[76] M. Weinberg, J.S. Rosenschein, Best-response multiagent learning in non-stationary
environments. In: Proc. Int. Conf. Autonomous Agents and Multi-Agent Systems
(AAMASO04), New York, N.Y., U.S.A., 19-23 July, 2004, 1-8.

[77] M. Wiering, Explorations in Efficient Reinforcement Learning, Ph.D. Thesis, Uni-
versity of Amsterdam, 1999.

[78] R.J. Williams, Simple statistical gradient-following algorithms for connectionist re-
inforcement learning.,Machine Learning, 8, 1992, 229-256.

75

	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Rough Sets
	Approximation Spaces
	Example: Lower (Upper) Approximation Space
	Example: Approximation Space for a Swarmbot

	Reinforcement Learning
	Reinforcement Learning and the Monte Carlo Method
	Expectation and Monte Carlo Method
	Update Rule

	Intelligent System Behaviour: An Ethological Perspective
	Swarm Behaviour: Proximate Causes and Responses

	Ethograms Reflecting Swarmbot Behaviour
	Monocular Vision Experiments
	Image Processing
	Tracking Problem
	Incremental Reinforcement Comparison
	Rough Coverage Reinforcement Comparison

	Actor-Critic Methods
	Actor-Critic Methods using Rough Coverage

	Monte Carlo Off-Policy Learning Control Method
	Weights
	Weighted Sampling Based On Approximation Spaces
	Common Off-Policy Monte Carlo Learning
	Off-Policy Monte Carlo Learning With Approximation Spaces

	Analysis
	Conclusion
	Swarmbot Testbed
	Ecosystem Architecture
	Notation
	Glossary
	Index
	References

