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ABSTRACT

A database of high resolution digital images of individual kernels of five grain types

(barley, Canada Vy'estern Amber Durum (CWAD) wheat, Canada Western Red Spring

(CWRS) wheat, oats, and rye) collected from 23 growing locations across Western Canada,

was formed. The constituents of dockage were also divided into five broad categories

(broken wheat kernels, chaff, buckwheat, wheat-heads, and canola) and imaged. A total of

230 features (51 morphological, 123 color, and 56 textural) were extracted from these images

and classification was done using a four layer back propagation network (BPN) and a

statistical (non-parametric) classifier. Different feature models, namely, morphological,

color, texture, and a combination of the three, were tested for their classification

performances. The results of these classification processes were used to test the feasibility

of a machine vision based grain cleaner.

For cereal grains, while using the BPN classifier, classification accuracies of over

98olo were obtained for barley, CV/RS wheat, oats, and rye. Because of its misclassification

with CWRS wheat, CWAD wheat gave a lower classification accuracy of 9I%. For the

dockage fractions, because of the uniqueness in their size and/or color, broken wheat

kernels, buckwheat, and canola could be classified with almost 100% accuracy. The

classification accuracies of chaff and wheat-heads was low because they did not have well

defined shapes.

Back propagation network outperformed the non-par¿rmetric classifier in almost all

the instances of classification. None of the three feature sets, i.e., morphological, color, or

texture, in themselves, were capable of giving high classification accuracies. Their



combination improved the classification significantly. But the use of all the features together

did not give the best classification results as a lot of the features were redundant and did not

contribute much towards the classification process. A feature set consisting of the top 20

morphological, color, and textural features each, gave the best results.

To quantify the amount of impurity in a grain sample, a relationship between the

morphology and mass of the kernel (or dockage particle) was investigated. Area of a particle

in a given image gave the best estimate of its mass. This relationship was tested and

validated for quantifying the amount of impurity in a sample before and after passing it

through a lab scale cleaner.

To automate the cleaner, it is desirable that the cleaner should have a decision support

system to adjust its parameters (such as vibration rate, grain flow rate, etc.) by calculating

the amount of impurity being removed from the sample. This was done by calculating the

change in the ranges of morphological features of the particles before and after the sample

was passed through the cleaner. The ranges of morphological features change significantly

when a sample is passed through the cleaner, and thus can be used to provide a feedback to

the system.
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l.INTRODUCTION

In the current grading system of Canada, grain is graded on the five factors

established by the Canadian Grain Commission: test weight, varietal purity, soundness,

vitreousness, and maximum timit of foreign material (exctuding dockage). Of these, the

latter four factors are determined visually by trained personnel, and thus, can be influenced

by individual experience and human fatigue. At this point, it would be beneficial to

differentiate between dockage and foreign material in food grains. Dockage is a material that

is removed from the grain by using approved cleaning equipment so that the grain can be

assigned the highest grade for which it qualifies. Whatever material alien to the particular

grain type is left in the sample after the removal of dockage, is called the foreign material.

The amount of dockage depends on the conditions during growth, harvest, storage, and

transportation, due to contamination by weed seeds, stones, and other grain kernels. During

cleaning, dockage is removed and this is significant for optimization of cleaners.

In a terminal elevator (grain handling facility), once the grain has been received, it

goes through the cleaning process. Cleaning is necessary to meet the buyers' specifications.

In some cases, if the grain is over cleaned, uncleaned or under-cleaned samples are blended

in it. Cleaning performance is controlled by inspecting the grain before and after passing it

through the cleaner or a battery of cleaners. Grain inspectors manually analyze the two

samples and make a decision if the performance of the cleaner is satisfactory. This process

of manually analyzing the samples is subjective and is influenced by the experience of the

personnel and working conditions. With the advancement of computers and improvements

in image analysis techniques, this inspection of grain samples before and after passing them



through the cleaner, can be automated. It is hypothesized that the variance in the features can

be used as a measure to evaluate the cleaning process.

Machine vision systems (MVS) provide an alternative to manual inspection of grain

samples for kernel characteristic properties and the amount of foreign material. Machine

vision is a technology that has arisen from a union between camera and computer. A video

camera acts as an eye to a machine vision system (Batchelor et al. 1985). Analog signals

generated by the camera are digitized into a sequence of numbers and stored as an image in

the computer. Image processing algorithms are used to extract a pattern from the image to

represent an object. The pattern is classified by a classification algorithm which in turn can

be used to generate a signal to activate an actuator to direct the object into a proper route.

Machine vision systems have gained tremendous attention for inspecting products

in different industries and demands for their new applications are increasing. Here

inspection refers to many industrial tasks including defect detection, measuring, locating,

detecting orientation, grading, sorting, and counting. Machine vision offers many

advantages over the conventional grading systems. It is compatible with other automated

on-line processing tasks, can work round the clock, can take dimensional measurements

more accurately and consistently than a human being, and can give an objective measure of

variables such as color, projected area, and shape which an inspector could only assess

subjectively (Batchelor et al. 1985). Since the inspection is done through a non-contacting

procedure, it is hygienic and there is less damage to the fragile biological products when they

are being inspected. The technology, however, is not being used by the grain industry at

present, owing to the variation in shape, size, and color of these biological entities due to



differences in maturity and growing conditions.

Fast and accurate information on the contents of a grain sample can be used to

increase the efficiency of most grain handling operations (such as grain unloading, cleaning,

binning, and shipping) at terminal elevators (Shatadat et al. 1995). The important

applications of machine vision to the grain industry include the design and development of

an objective, fast, and reliable on-line monitoring system for grain in continuous flow at

several points in a terminal elevator. This would lead to increased cleaning throughput and

enhanced recovery of salvageable grains. If the grain is over cleaned (than what is required

by the buyer), uncleaned and over cleaned grains of the same grade are blended to meet the

buyer's requirements. Both at the cleaning and the shipping sections, the MVS can be

installed to determine the cleaning performance of the cleaner (or a battery of cleaners) and

the visual quality of the grain being exported (Majumdar et al. 1999), respectively.

The recent advances in hardware and sofrware have enabled the machine vision and

imaging systems to detect, process, analyze, and display a wide range of finer details of

objects from their digital images in real-time situations. Thus, grain grading and

identification systems based on machine vision techniques are not a distant reality. Such

an MVS should be capable of identifying and grading the grain on the basis of morphology,

color, and texture. Determining the potential of morphological features to classify different

grain species, classes, varieties, damaged grains, and impurities using statistical pattern

recognition technique has been the main focus of the pubtished research (e.g., Segerlind and

Weinberg 197 2; Neuman et al. 19 87 ; Keefe 19 92l' B arker et al. L992a, 1992b, 19 92c,19 92d;

Sapirstein and Kohler 1995; Majumdar and Jayas 2000a,2000b, 2000c,2000d). Some



researchers (Neuman et al. 1989a, 1989b; Luo et al. L999a;Majumdar and Jayas 2000b) have

tried to use color features for grain identification but variability in the illumination of

common light sources poses a practical problem in such cases. Very little work has been

done to incorporate textural features (Al-Janobi andlkanzler L994; Majumdar et al. 1999,

Majumdar and Jayas 2000c) for classification purposes. Efforts have also been made to

integrate all these features in terms of a single classification vector (Paliwal et al. 1999) for

grain kernel identification.

The idea of a grain monitoring system based on machine vision can be extended to

design a cleaning system. The system will use an MVS to identify the amount of dockage

present in a given grain sample. Over the past few years a lot of machine vision algorithms

have been developed for grain identification (e.g., Neuman et al. L987; Keefe L992;

Sapirstein and Kohler 1995; Majumdar et al. 1996; Luo et al. L999a; Paliwal et al. 1999).

As most of these algorithms extract a large number of features for classification, an optimum

set of those features need to be selected to reduce computation time. This optimum feature

set can be used to train an artificial neural network which would then be used as a classifier.

To monitor the cleaning performance, the MVS has fo analyze two samples: one before the

grain goes into the cleaner and the other after the grain comes out of the cleaner. Grain

samples taken before and after passing through the cleaner are presented to a camera and

imaged. It is hypothesized that the differences in the ranges of the morphological features

of the before and after samples, can be used for adjusting the grain flow rate or speed of the

cleaner or both.

Artificial neural networks, resembling the biological nervous system, have proven

4



to be robust in dealing with the ambiguous data and the kind of problems that require the

interpretation of large amounts of data. Neural networks, instead of sequentially performing

aprogram of instructions, exploremany competinghypotheses simultaneously usingmassive

parallelism (Lippmann 1'987). In addition, neural networks have the potential to solve

problems in which some inputs and corresponding output values are known, but the

relationship between the inputs and outputs is not well understood. These conditions are

commonly found in agri-food industry inspection problems.

Pattern recognition has emerged as an important application of artificial neural

networks. One of the most important attributes of neural network classifiers is their

capability to approximate the a posteriori distribution of their training samples through

learning and adaptation. This ability makes them unique among pattern classifiers. The

application of machine vision, coupled with neural networks, seems to offer promise for

inspecting agricultural products.

Grain identification using machine vision in conjunction with pattern recognition

techniques, including neural networks, offers many advantages over the conventional optical

or mechanical sorting devices. A digital camera can be used to gather the necessary

information from the grain and send digitized images to a computer where they can be

analyzed for multi-category classification. Image processing algorithms can be used to

extract higher-level information from the input signals for improved classification

performance. The classification parameters can be easily modified to take into account

annual variations in the product. When neural networks are used as pattern classifiers, the

sorting device can be equipped with a training option through which the machine can be



trained for recognizing new products.

An extensive literature search and communication with industrial sources have

indicated that no pattern recognition machine or neural nefwork based system has been used

for grain cleaning. Nevertheless, enough grain classification and identification algorithms

are available which can be integrated together to be used in such a system. The main

objectives of this thesis were to:

L. identify an optimized set of morphological features that can be used for rapid

identification of different cereal grains, e.g., Canada Western Red Spring (CWRS)

wheat, Canada Western Amber Durum (CWAD) wheat, barley, oats, and rye;

identify an optimized set of color features that can be used for rapid identification of

different cereal grains, e.g., CWRS wheat, CWAD wheat, barley, oats, and rye;

identify an optimized set of textural features that can be used for rapid identification

of different cereal grains, e.g., cwRS wheat, cwAD wheat, barley, oats, and rye;

determine which combination of morphological, color, and textural features gives the

best classification accuracy so that it could be used for real-time on-line cereal grain

identification;

identify an optimized set of morphological, color, and textural features, and their

combination that canbe used forrapid identification of the various dockage fractions,

e.g., broken wheat kernels, chaff, wild buckwheat, wheat-heads, and canola;

design and evaluate a machine vision based grain cleaning system which would use

morphological, color, and textural features of cereal grains for optimized

performance; and

2.

J.

4.

5.

6.



7 . investigate the performance of the grain cleaner when different neural network and

statistical classifiers are used for classification purposes.

The material presented in this thesis is organized into six chapters. The first chapter

addresses the justification, importance, and objectives of the research. Chapter II begins with

the literature review of the research that has been conducted in the field of image analysis

of agricultural products for their quality determination using morphological, color, and

textural features. Various statistical and neural network classifiers are also discussed in

detail. Chapter III discusses the materials and methods that were used in this thesis. A

detailed account of the feature extraction algorithm is given in chapter IV. Results are

presented in chapter V with discussions. The presentation of results follow the flow of

experiments starting with classification of cereal grains using morphological, color, and

textural features. Results are given for different types of features and their combinations

using back propagation neural networks and a non-parametric statistical classifier.

Classification results for dockage classification are also reported. Chapter V concludes with

the selection of the model that can give the highest classification accuracies in quantifying

the amount of dockage in the grain. Chapter VI includes the conclusions and some

recommendations made for future research.



2. REVIEW OF LITERATURE

2.1 Bacþround

There has been extensive research to apply the principle of machine vision and

pattern recognition for classification of agricultural products (e.g., Al-Janobi and Kranzler

1994; Ghazanfari et aI.1997; Ng et al. 1998; Majumdar and Jayas 2000a,2000b, 2000c,

2000d; Lu et al. 2000). The main obstacle in developing machine vision based systems for

applications in the agri-food industry is the variation in size, shape, color, and texture of

these biological entities (Kranzler 1985; Sarkar L986; Tillet 1990). So far, the main focus

of the research in this area has been the development of pattern recognition algorithms for

classification of these objects. Most of the researchers conducted their studies using

morphological and color features for classification purposes. This chapter reviews the results

of the previous work in applying these classification techniques to the agri-food industry.

A brief introduction to the fundamentals of artificial neural networks is also included.

2.2 Classification Features

Any image in its digital form is stored in the memory of the computer as an array of

numbers that may contain over 300 000 elements depending on the size, spatial resolution,

and color information of the image. Sequential processing of this information is time

consuming and is not feasible for high speed on-line inspections. Therefore, image

processing and analysis algorithms are applied to the images to extract some quantitative

information known as features. These features are then used as inputs to a classification

algorithm to categorize the objects in the image. A vector of such features is called a

pattern. Pattern recognition can be done by using the morphological (defining shape and



size), color, textural (spatial distribution of color), or a combination of these features of the

images.

2.2.lMorphological features Segerlind and Weinberg(L972) first estimated grain shape

by a Fourier series expansion of the radial distance from the center of gravity to the periphery

of kernels. A kernel profile was traced on a grid paper to get the image. There was LVo error

in separation of oats and barley versus wheat and rye based on extracted shape features. The

class [e.g., hard red spring (HRS), hard red winter (HRW), amber durum, soft white spring

(SWS), soft white winter (SWW), Canada prairie spring (CPS), and utility wheat are

different classes of Canadian wheat] discrimination for wheat was partially successful with

1'7-25% error. This study is considered as one of the first attempts to classify cereal grain

kernels by describing their shape using a mathematical expansion series.

A significant number of studies have been conducted since Segerlind and Weinberg

(L972) to define the shape and size of different types of grain kernels (e.g., Keefe and Draper

L986,1988; Zayas et al. 1986, 1989; ; Symons and Fulcher 1988a, 1988b; Chen et al. L989;

Keefe 1992). Most of the recent studies have focused on extraction of features from digital

images of grain kernels, instead of drawing their profiles on grid papers. Because the

number of such studies is very large, only a small number of related studies are briefly

discussed in this section.

Neuman etal. (L987) studied the objective classification of Canadian wheat cultivars

based on kernel morphology. They used 576 kernels (sound and uniform) of pedigreed seed

of L4 wheat cultivars for analysis. Using transmitted light they captured silhouette images

of whole wheat kernels in 'plan' (top) view and determined spatial size and shape parameters



and Fourier descriptors of kernels. Hard red spring and CV/AD wheat kernels were the most

easily differentiated groups while there was considerable overlap between HRW and SWS

wheat classes. Discriminating varieties within classes gave inconclusive results with correct

classifications ranging from L5 to 96Vo. Unlike earlier works, random orientation of kernels

was not a problem in this case.

Keefe (L992) constructed a semi-automatic imag e analyzer lor classification of wheat

grains. His algorithm took 33 measurements and derived 36 more features from them.

Because it was proprietary information, the details of the derived features were not provided.

The instrument was evaluated using 20 varieties of United Kingdom wheat. The two major

shortcomings of the algorithm were that it could analyze only one kernel per image and each

kernel had to placed manually in a fixed orientation for imaging. Owing to the slow speed

of processors of personal computers at that time, a sample of 50 kernels took about 5 min for

feature extraction. The overall identification error was 32.9-65.8Vo.

Barker et al. (1992a, L992b, L992c, 1992d) used different sets of features for

characteraing and discriminating among kernels of eight Australian wheat cultivars. The

features v/ere ray (i.e., radial distance from the centroid) parameters, slice and aspect ratio

parameters, Fourier descriptors, and the Chebychev coefficient. The overall classification

error ranged from 35 to 48%. Because of the complexity in feature extraction and low

classification accuracies, the algorithm was not very useful.

Sapirstein and Kohler (1995) suggested an interesting alternative approach to

objective wheat grading by proposing a completely new set of grading factors based on

variability of size, shape, and reflectance features of kernels in a sample, which can be easily
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administered by machine vision based grading. Cargo (grain being shipped out of terminal

elevators) samples of CWRS grades 1,2, and3 were successfully classified using the mean

and variance of the features as quantitative classification variables. On carlot (grain received

at terminal elevator) samples, however, only grades 1 and 3 could be successfully

disc¡iminated from each other.

Ying et aI. (1996) developed computer vision algorithms for automated channel

catfish (Ictalurus punctatus) processing to detect the orientation of a catfish and to identify

its head, tail, pectoral, ventral, and dorsal fins. The algorithms were invariant to translation,

rotation, and scaling. Canny edge detection and a labeling and tracking algorithm were

applied to locate the boundary of a catfish and a2-stage, model-based, catfish segmentation

algorithm was proposed to locate each part. A dominant point detection scheme was

proposed and applied to find the points that connect each part of a catfish. Then

morphological knowledge of the catfish was used to locate the feature points of each part of

the catfish and to determine the cutting lines. The angle of the major axis and center of mass

were used to represent the orientation of a catfish. They also claimed that with stight

modifications the same algorithms can be used for other different objects. But no citation

pertaining to the use of these algorithms to identify other objects has been found in the

lite¡ature.

Ghazanfari et al. (1997) used digitally acquired images of individual pistachio nuts

and graded them into four sets using Fourier descriptors (shape recognition features). The

feature selection procedure applied to the first 15 Fourier descriptors indicated that 7

harmonics were sufficient to separate split nuts from unsplit nuts. Of the 7 selected Fourier
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descriptors, 5 were from the higher order harmonics containing microscopic information

more suitable for separating unsplit from split nuts. An average classification accuracy of

87.I7o was obtained for the 4 grades when using a decision-tree classifier. Multilayer neural

network analysis was able to successfully classify 94.87o based on the same input

parameters, indicating the superiority of the technique.

Majumdar and Jayas (2000a) developed an algorithm based on morphological

features to classify individual kernels of CWRS wheat, CIVAD wheat, barley, oats, and rye.

The algorithm extracted 23 morphological features for the discriminant analysis. The

classification accuracies of individual kernels using the 10 most significant features in the

morphology model were 98.9, 93.7,96.8,99.9, and 8r.6%, respectively for CWRS wheat,

CU/AD wheat, barley, oats, and rye when tested on an independent data set. When the

model was tested on the training data set the classification accuracies of CWRS wheat,

CWAD wheat, barley, oats, and rye were 98.9,9r.6,97.9,100.0, and 91..6vo, respectively.

The problem in this case was due to the limitation of the image acquisition hardware. The

images were captured in the form of rectangular pixels which were then converted to square

pixels. This may have resulted in slight distortion of the originally captured optical

information. The code was written using the KHOROS (Khoral Research, Inc., New

Mexico) programming environment which was not platform independent.

2.2,2 Color features Color provides very important information for grain grading and

inspection. Different grain types and their degrading factors can be easily identified using

the color attribute. Initial research in the field of grain identification mainly emphasized the

use of morphological features using monochrome images. This was mainly due to three

12



reasons. Firstly, the hardware for color image acquisition was expensive. Secondly, the

color image files consisted of a large amount of data which required larger storage space.

Storage of large image files and analysis of such huge data sets was not easy using personal

computers at that time. And lastly, color information extracted from images can vary with

the illumination variations that exist in common light sources. So far very limited work has

been done on designing and calibrating illumination systems for color grain image analysis

(Luo et al. L997).

The use of color image analysis for identifying different wheat classes and varieties

was reported by Neuman et al. (L989a,1989b). Video colorimetry was used to distinguish

kernel types according to wheat class and variety for six wheat classes grown in Western

Canada. Discriminant analyses were performed based on mean red (R), green (G) and blue

(B) reflectance (tristimulus) features. Average correct classification for the Canada Western

Soft White Spring wheat, cwAD wheat, and CWRS wheat were 76, 76 and 627o,

respectively. Relatively lower scores of 56 and 34Vo were achieved for the HRW and CpS

wheat classes.

A field crop research was conducted by El-Faki et al. (L997) where they used color

features to establish a simple weed detection method using a color machine vision system.

Their system was based on the fact that stems of wheat and soyabean are green as compared

to the stems of most of the weed species which are red in color. As compared to the methods

using shape and texture features, the method based on color was less sensitive to canopy

overlap, leaf orientation, camera focusing, and wind effects. The correct classification rate

using the discriminant classifiers for weeds associated with soyabean and wheat were 54.9
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and 62.2%, respectively.

Luo et al. (L999a, 1999b) used a set of moqphological and color features for

classification of cereal grains and obtained average classification accuracies of 98.2,96.9,

99.0,98.2, and99.07o for CWRS wheat, CWAD wheat, barley, rye, and oats, respectively.

They also concluded that combining moqphological and color features improves the

classification accuracies over using morphological or color features alone.

Ng et al. (1998) developed machine vision algorithms for measuringmaize kernel

mechanical damage and mold damage. Mechanical damage was determined using both

single-kernel and batch analyses by extracting from kernel images the damaged area stained

by green dye and by calculating the percentage of total projected kernel surface area that was

stained green. Mold damage was determined using single-kernel analysis by isolating the

moldy area on kernel images and by calculating the percentage of total projected kernel

surface area covered by mold. Their vision system demonstrated high accuracy and

consistency for both mechanical and mold damage measurements.

Other applications of color image analysis in the agri-food industry have been in

detection and classification of fungal damaged soybeans (Wigger et al. 1988, Casady et al.

L992), inspection and grading of fresh market peaches (Miller and Delwiche L989), and

inspection of apples, mushrooms, and potatoes (Morrow et al. 1990).

2,2,3Textural features Texture is a property of surfaces associated with the tactile quality

they represent. In machine vision, texture refers to a closely related concept, that of a

spatially repeating pattern on a surface that can be sensed visually. Texture represents the

local statistics of correlated intensity variations. Texture is an important characteristic for
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the analysis of many types of images. Visual texture is difficult to define, but it is commonly

attributed to images containing repetitive patterns in which elements or tonal primitives are

arranged according to certainplacement rules. It has two basic dimensions - the first is for

describing the tonal primitives out of which the image texture is composed, and the second

dimension is for describing the spatial dependance or interaction between the primitives of

an image texture. Tonal primitives are regions with tonal properties. The tonal primitives

can be described in terms such as the average tone, or maximum and minimum tone of its

region. The region is the maximally connected set of pixels having a given tonal property.

The tonal region can be evaluated in terms of its area and shape. The tonal primitive

includes both its gray tone and tonal regional properties. Image texture can be qualitatively

evaluated as having one or more of the properties of fineness, coarseness, smoothness,

granulation, randomness, or irregular. Each of these adjectives translates into some property

of the tonal primitives and the spatial interaction between the tonal primitives (Majumdar et

al. 1999).

Hayes and Han (1993) evaluated two image processing methods, linear

discrimination and textural difference, using slides taken of 23 soils and 5 soil-surface cover

treatments. Percent cover results from each image processing method were compared with

those measured manually. Tests were purposely aimed at conditions that tend to be difficult

to evaluate with machine vision because of limited visible contrast. These two image

processing methods were found to provide reasonable cover estimates under conditions

having bright green cover. Linear discrimination produced better estimates than did textural

difference in situations with obvious color difference. Textural difference performed better
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when color difference v/as not apparent such as brown residue with a brown soil background.

Zayas (1993) used a digital imaging technique to evaluate bread crumb grain, and the

potential of image texture analysis for crumb grain assessment. Eighteen image texture

features were extracted from slices of two commercially available brands (BRRA and

BRDÐ. One hundred percent of BRRA and 97 .5Vo of BRDI sub-images (128 x 128) from

the middle area of a slice were correctly recognized. Technological factors and location of

sub-images on a slice affected the value of image texture features such as crumb grain vow

across a slice. Variations in the crumb grain within a slice were studied, and a ranking scale

was developed for evaluating the degree of coarseness of crumb grain in boundaries of 64

x 64 pixels.

Al-Janobi and Kranzler (1,994) used color and textural analysis for grading of date

fruits into different classes. They compared their results with manuatty classified dates

according to the USDA grading standards. A total of 39 features and eight models were used

by applying a non-parametric discriminant analysis to each model and by incorporating

subsets of the features. The classification errors for all models ranged between 0.8 and

26.4Vo.

Sapirstein et al. (1989) developed a system for quantitative assessment of bread

crumb grain. Grain crumb features like cell area, cell density, cell wall thickness, cell total

area ratio, crumb brightness, and uniformity of cell size were extracted from their digital

images. Bread crumb containing oxidants was 6Vo brighter and had ZIVo more cells/cmz,

77Vo smaller cell cross-sectional area,l3Vo thinner cell walls, andT1Zomore uniform grains.

Time to compute the cell structure for a single bread slice (approximate size 100 mm x 100
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mm) was about 10 s.

Majumdar and Jayas (2000c) used the textural features of individual kernels of

CWRS wheat, CWAD wheat, barley, oats, and rye to develop algorithms for grain

classification. For bulk samples, the textural features extracted from the red color band, with

256 gray levels from acquired image grouped into 32 gray levels, gave the highest

classification accuracies of 92.0 % using non-parametric estimation. For individual kernels,

the textural features extracted from the green color band, when 256 gray levels were grouped

into 8 gray levels, gave the highest classification accuracies of 92.9Vo using non-parametric

estimation. The classification accuracies improved significantly (as high as 1,007o) when

textural features were combined with morphological and color features (Majumdar and Jayas

2000d). Although it was not mentioned by the authors, it is speculated that the

computational time would significantly increase in the latter case.

2.2.4Limitations of available algorithms Most of the available algorithms use the kernel

size for classification purposes. Use of size can result in significant mis-classifications

because the variations in kernel size depend on maturity and growing conditions. Kernel

sizes are also dependent on the growing region of the crop. Because the grain at a grain

handling facility is a mixture of grain coming from different farm locations, size variability

can give erroneous results.

Secondly, most of the available algorithms extract a large number of features and use

them for classification. Extraction and comparison of a large number of parameters increases

the computation time. For any system, to be used on an industrial scale, operational speed

is a constraining factor.
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Paliwal et al. (1'999) showed that cereal grains can be rapidly identified using a

feature vector consisting of just three attributes viz. length, shape function (Fourier

descriptor in polar coordinates), and color. They obtained classification accuracies of 100,

94,93,99, and 95vofor CWRS wheat, CWAD wheat, barley, oats, and rye, respectively. A

broadening of the training set to include a large number of growing regions, classification

of damaged kernels, other foreign material like chaff, stone pieces, broken kernels, and other

types of grains (e.g., oilseeds and speciality crops) would be required to incorporate such an

algorithm in a grain classification system.

2.3 Classifiers used for pattern recognition

Classification analysis uses a decision rule, called a classífication criterion, to

classify objects into two or more known groups, called classes, on the basis of the

quantitative features extracted from the objects. A set offeatures extracted from an object

is called an observation of the object. The classification criterion is usually derived from the

observations of the known classes, called the training set. The derived classification

criterion can then be applied to classify new observations, called the test set.

A classification criterion partitions an observation or feature hyper-space e into

hyper-regions Q, i = 7,2,...,.ðy', whereNis the number of classes. An object is classified as

coming from class ¿¿ if its corresponding feature vector or observafion m, a point in the

hyper-space Qbelongs to the region Q. Many different types of classifiers are explained

in various pattern recognition books and research papers (Hand 198L; Devijver and Kittler

1982; Fukunaga 1990; Zurada 1992). To determine which classifier works best for a

particular application usually involves some degree of experimentation. Although, for a

18



given problem most of the classifiers give comparable results, the difference might lie in

their time complexity, storage requirements, and precise degree of accuracy (Hush and Horne

1993). Different classification methods and their applications are reviewed in the following

section.

2.3.1 Statistical methods The statistical methods are based on the Bayes minimum error

rule (Duda and Hart L973):

m €qif P(w¡l*) > P(w,lm) lj+ k (2.1)

where P(wt I m) is the posterior probability, by which an object with a feature vector m

belongs to class w,. The rule states that to minimize the average probability of error, an

object should be classified as belonging to a class w, that maximizes the posterior probabitity

P(w,l m).

By applying the Bayes' theorem:

P(w,lm) = P(w) p(mlw)lp(m)

a more practical formulation of the rule can be obtained as

(2.2)

m € qif P(w) p(m I w,) > P(w) p(m I w) lj * k (2.3)

where: P(w) is the prior probability by which an object comes from class wi p@) is the

probability density function for m; and p(m I w) is the class-conditional probability density

function for m.

In most of the practical applications, the posterior probabilities or the class-

conditional probability density functions are unknown, and thus, need to be estimated. There

are two ways of doing this.
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2,3.1.1Parametric approach The parametric approach is based on the assumption that the

class-conditional probability density function for m, p(m I w), has a form of multivariate

normal distribution:

p(m I w, ) = (2 o¡-arz l4l',' "*p[-0.5 
(m-p)' 4-' @-ÐJ (2.4)

where: d is the dimension of the feature vector; p,is the d-dimensional vector containing

feature means in a class w,,,Ð,is the covariance matrix, and 'means transpose.

So to estimate the probabitity density, one needs to estimate the parame ters ¡t,and 2,.

The parameters, p, and 4, can be estimated from the training data set using different

parameter estimation methods (Hand 1931). The prior probability p(w) can also be

estimated from the training data set. Then the classification criterion ,Elq.2.2 or Z.3,can be

determined in an analytical form.

2.3,I.2 Non'parametric approach The non-parametric approach calculates the posterior

probability P(w,l m) directly from the training data set without any assumption of the

underlying probability density. There are several different methods of estimatin gp(w,l m)

such as the histogram, the kernel method, the nearest neighbour method, and the series

method (Hand 1981). The most popular of them is the nearest neighbour method which is

described briefly in the following section.

Nearest neighbor classifiers The nearest neighbour classifier (I.[NC) makes use of the

correspondence between similarity and distance, i.e., the smaller the Euclidian distance

between classes the more similar they are. The nearest neighbour decision rule assigns an

unknown U to the class of its nearest neighbour X:

U e class(i) 11d(U,X) = min d(U,X), for k + j; k, j = 1,2,......C
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where d(U,X) is a distance measure between tl andX and C is the number of classes.

The underlying idea behind the nearest neighbor rule is that samples which fall close

together in feature space are likely to belong to the same class. The NNC stores a number

of patterns for each class. Then the unknown is compared to all of the stored patterns and

assigned to the class of the patterns which is most similar with the unknown. The decision

surface created by NNC is piecewise linear.

The fr-nearest neighbour classifier (Æ-NN) is an extension of NNC. The fr-NN rule

classifies X by assigning it the class most frequently represented among the fr nearest

samples. In other words, a decision is made by examining the labels on the È nearest

neighbours and taking a vote.

2.3.1,3 Parametric versus non-parametric methods The parametric approach has the

advantage that the derived classification criterion is of an analytical formwhich canbe easily

transferred into a computer classification program. The assumption of the multivariate

normal distribution, hov/ever, made for the class-conditional probability density function in

deriving the classification criterion, could be incor¡ect or insufficient in many applications

and may lead to significant classification error. The k-NN approach avoids the subjective

assumption by directly estimating the posterior probability P(w¡l m) ftomthe training data

set. A disadvantage of this approach is that the derived classification criterion cannot be

expressed analytically. All of the training data must be retained - the distance from a new

observation to each of the training set points must be determined to choose the fr nearest

points' This means a large amount of computer memory and a slow classification process.

In addition, the estimation of the posterior probability is biased (Rosenblatt 1958) towards
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larger values.

2'3'2 Neural network classifiers Artificial neural networks are synthetic networks inspired

by the biological system found in living organisms. Due to the limited knowledge available

about the human neryous system, the correspondence between this system and artificial

neural networks is still rather weak. Based on our present understanding of the neuron

function, different models have been developed to simulate functioning of the nervous

system. A typical mathematical model of a neuron is presented in Fig. 2.1. The model

consists of a processing element with a number of input connections (xr, xr, ...., xn) and a

single output. The flow and the process of input signals are considered to be unidirectional

as indicated by the affows.

Nonlinear Activation Function

Fig.2.1 A mathematical model of a neuron

The neuron receives a weighted sum of the inputs. Then a threshold, r, is added to

the weighted sum which results in the activation value ø for the neuron. The threshold

usually has a constant value equal to -L (zurada 1992). The activation value of the neuron
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is computed using:

(2.6)

where n is the number of inputs, and w,the weight of the connection j of the neuron. The

activation value of the neuron is passed through a non-linear activation function (sigmoid)

which generates the output of the neuron. Typical neuron activation functions are:

f(o) = I+ exp(-,la) (2.7)

and

n

a=>(wxt+rwr)
i=I

-1

(+L.a>0
f(o)=1_r,a<o (2.8)

Equation 2.7 is a bipolar sigmoid function (Fig.2.2a) which provides a neuron with a

continuous value between -1.0 and +1.0. In this equation ) is a positive constant

proportional to the neuron gain. Equation 2.8 is a bipolar binary function (Fig.Z.Zb)which

provides a neuron with binary outputs of -1.0 and +1.0. The original neuron model used the

binary function, sometimes called hard-limiting, as its activation function (Zurada TggZ).

Later,because of their differentiability, different forms of continuous functions became the

dominant neuron activation functions (Zurada 1,992;Jou et al. I994;Mehrotra er. aL. Lgg6).
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(a) (b)

Fig.2.2 Typicat activation functions for neurons: a) sigmoid and b) hard-limiting

In a neural network system, a number of neurons are interconnected such that each

neuron output is an input to some or all other neurons and possibly to itself. Lag-free

neurons accomplish their tasks in parallel, thus providing a high speed information

processing tool. Parallel processing of information through many processing elements with

primarily local connections provides a great degree of robustness or fault tolerance.

Depending on the application, these networks may have different connection types such as

forward or backward with time delay, thus providing potential for application in many

different areas.

Neural networks learn to perform a specific task. Learning in a neural network is

accomplished by a systematic procedure for altering the connection weights to reduce the

nefwork errors. Learning is performed in either supervised or unsupervised mode. In

supervised learning the desired response for an input is provided to the teacher. The teacher

implements a reward-and-punishment scheme to adapt the network weights. In unsupervised

learning, the desired response is not known and the network must discover any possible
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existing patterns, regularities, and separating properties among its inputs.

Different neural network classifiers have been applied to different classification

problems. In supervised mode, Hopfield net and Hamming net are normally used with

binary inputs while the single layer perceptron and multi-layer neural network use

continuous-valued inputs (Ztrada 1992; Mehrotra et al. 7996). Because of the use of

continuous-valued inputs, only single-layer and multi-layer neural networks (Villiers and

Barnard 1992) are discussed in this thesis. For further information on other networks the

interested reader is refened to Mehrotra et al. (1996).

2'3'2'l Single layer perceptrons one of the original models of a neuron was proposed by

Rosenblatt (1953). The model is referred to as thepe rceptronand it is presented in Fig. 2.3.

The perceptron forms a weighted sum of the n-dimensional input vectors (Eq. Z.6)and adds

a bias value to it. The result is passed through a hardlimiting activation function, i.e., Eq.

2'8' Due to its binary output, the perceptron can be considered as a dichotomizer which

divides its input patterns into two classes separated by a decision boundary in the form of a

hyperplane.

To achieve the correct classification result, the connection weight and the threshold

in a perceptron can be adapted using a number of different learning rules. The perceptron

learning rule (Rosenblatt 1958) was originally developed for training a perceptron. In this

rule, the weight adjustment, ÁW, is proportional to the product of input vector X and the

difference between the neuron's actual output o and,the desired output d:

AW = c (d-o)X (2.e)

where c is a learning step. In the perceptron learning rule, if the classes are not separable or
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overlap exists between them, the decision boundary between the two classes may oscillate

contiguously (Lippmann 1987).

Binary inputs
T

xl

Xr

Nonlinear Activation Function

Fig. 2.3 A mathematical model of a perceptron

Least mean square (LMS) (Widrow and Hoff 1960) is another widely used algorithm

for training perceptrons. This algorithm minimizes the squared error between the desired

output and the activation value of the neuron. The weight increment is therefore proportional

to the product of this squared error and the input vector:

lW=c(d-WX)2X (2.10)

The weight adaptation through LMS algorithm is independent of the activation function used

by the neurons.

Perceptrons can be arranged in a layer to accomplish multi-category classification

when the classes are linearly pairwise separable (Zurada1,gg2). A multi-category classifier

using discrete perceptrons is shown in Fig. 2.4. Inthis classifier, there is one perceptron for

each class. Each perceptron is trained to have an output, O, of +l.for one class and -1 for

other classes.

xn
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Fig. 2.4 A multi-category classifier using c discrete perceptrons

2'3'2,2 Multi'layer neural networla The perceptron was criticized for its inability to

implement the exclusive-or (XOR) function (Minsky and Papert 1,969). Furthermore, the

decision regions formed by perceptrons are hyperplanes similar to those formed by

maximum likelihood Gaussian classifiers (Lippmann Lg87). There are many problems,

however, that require nonlinear decision boundaries. Some deficiencies of perceptrons are

overcome by implementation of multiJayer neural networks (MLNN).

Multi-layer neural networks are created by cascading neurons in layers. Continuous

activation functions such as sigmoids are used in the neurons. The advantages of using a

sigmoid function include its differentiability and its continuous-valued outputs.

Differentiability is of great interest in minimization of errors using a gradient search.

Continuous-valued outputs are important, in particular, in classification problems because

outputs between -l- and +L or between 0 and +L may be interpreted as probability estimates.
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In an MLNN, the input vector feeds into each of the neurons in the second layer (first

hidden layer). The outputs of the second layer feed the third layer neurons and so on. Often

the neurons are fully interconnected between the layers and flow of information is from the

inputs toward the outputs. The MLNN with this type of unidirectional information flow are

called feedforward networks.

A typical four-layer feedforward neural network is shown in Fig. 2.5. Theillustrated

network has a three dimensional input vector. The most common terminology used for

referring to the layers of a feedforward network is as follows. Input layer: The layer to

which the inputpatterns are fed and the outputs are passed on to the subsequent hidden layer.

Hidden layer; The layer whose outputs are fed to its following layer. Output layer:The last

layer of neurons whose inputs are the output of the last hidden layer and its outputs are the

output of the nefwork. Therefore, Fig.2.5 represents a four-layer network consisting of two

hidden layers and one output layer. It has been demonstrated that three-layer feedforward

networks are capable of forming a close approximation to any nonlinear decision boundary

(Makhoul et al' 1989). Many problems, however, are solved more efficiently using four-

layer nefworks (Chester 1_990, Mehrotra et al. 1996).
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Fig. 2.5 A typical fourlayer neural network

2.4Issues on multi-layer neural networks

MultiJayer neural networks have been established as robust and extremely powerful

pattem classifiers. These classifiers are used in recognition and classification pïoblems and

usually have multiple inputs corresponding to the number of features used for object

representation and multiple outputs corresponding to the number of classes. These networks

are trained to give a desired output vector for a particular input pattern within a

predetermined error. Typically, because feedforward networks do not take advantage of

predefined relationships between the input and output, they require a large number of

trainingpasses. Even after extensive training with a large training set, they usually result in

only 80-90vo recognition accuracy (spirkovska and Reid lgg3).
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Choosing a proper size of network for a particular application is an unsolved issue

in neural network studies. A small network may never converge, while a large network

converges fast but lacks the generalaation power (Hush and Horne ¡gg3). Besides a suitable

network size, there are many other questions that need to be answered to use a network for

a particular problem' Learning step, proper training procedure, number of layers, network

initialization, value of gain, and the number of neurons in each layer are some of the MLNN

issues which have been investigated by different researchers, reviewed in the following

sections.

2.4.1 Number of layers Makhoul et al. (L989) have shown thar MLNN wirh one hidden

Iayer can form arbitrarily close approximation to any nonlinear decision boundary. This does

not necessarily imply that there is no benefit of using more than one hidden layer. Chester

(1990) demonstrated that a small three-layer network was more capable than a large two-

layer network. Lippmann (19s7) stated that for any classification problem, no more than two

hidden layers (i.e., a four-layer network) would be needed. Villiers and Barnar d (1,gg2)

compared the performance of three-hidden layer networks with two-hidden layer networks.

They indicated that three-hidden layer networks were more prone to fall into local minima,

but they performed similarly in all other aspects.

The above work indicates that even though MLNN with one-hidden layer can

perform most of the classification tasks, it is better to use a fwo-hidden layer network. More

than two-hidden layers may also be used, but it does not increase the efficiency. On the other

hand, using more than fwo-hidden layers may result in a lower accuracy because these

networks are more prone to fall into a local minimum.

30



2.4.2 Number of neurons in each layer Determining the optimum number of neurons in

the hidden layers is still an unsolved issue. In general, the number of neurons that should be

used for a given problem is not known. Most researchers have selected the number of

neurons in the first hidden layer to be equal to the number of elements in the input patterns

(Emmerson and Damper !993,Jou et al. 1994). The number of neurons in the output layer

is usually taken to be equal to the number of classes (Mehrotra et ar. 1996).

While there are some guidelines for selecting the number of neurons in the output and

the first hidden layer, there is no clear method for selecting the number of neurons for the

second or subsequent hidden layers. Most researchers use a trial-and-error method to find

a suitable number. Emmerson and Damper (1993) randomly chose the number of neurons

in the second hidden layer. Gupta and Upadhye (1991) empirically determined the number

of neurons for the second hidden layer. Jou et al. (L99\ started with a large number of

neurons and used a pruning algorithm to decrease it to a suitable size.

2.4.3 Neuron gain and learning rate The neuron gain, ,l in Eq. 2.7, deterwrines the

steepness of the sigmoid function in the transition region. Although any value can be used

for .1, most often it is taken to be 1.0 (Zurad,aLggz, Hush and Horne 1,gg3). This gain

provides a moderate steepness for the sigmoid function. The learning rate (7) determines the

size of the step for weight adjustment. The effectiveness and convergence of a network

during training depends significantly on this parameter. Like most of the other factors, the

value of Tdepends on the problem being solved. Larger values of Twill result in more rapid

convergence, but if it is too large, the result is instability in network learning. A small value

of Tshould be chosen to avoid overshooting and to have a smooth convergence. A value of
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qthat might be suitable during the initial phase of training might not be suitable during the

final stages. Values between 0.001 to 1-0 have been reported in different technical

publications (Chester L990, Villiers and Barnard L992, Jou et aL.1994). So the value of 7

for any particular application must be determined empirically.

2.A, l0/l.omentum in learning The back propagation of error based on the gradient descent

method is generally a slow learningprocess. A momentum term is sometimes added to the

weight adjustment to accelerate the conveÍgence of the networks. In this method a fraction

of the previous weight change is added to the current weight adjustment in the following

form:

ÁW(t) = - q W(t) + a ¿W(t-I) (2.11)

where the arguments / and t-l are used to indicate the current and the most recent weight

adjustments. The user defined parameter a is a positive constant with a recommended value

between 0.1 and 0.9 (Zwada 1,992). In Eq. 2.L1, the second term on the right hand side is

called the momentum term. The momentum term typically helps to speed up the

convergence process and it is recommended for problems with convergence that occur too

slowly or for the cases where learning is difficult to achieve.

Silva and Almedia (1990) showed that training a network using regular back

propagation required 10367 training cycles. The same network trained with two momentum

values of 0.5 and 0.9 required 5L80 and 1007 training cycles, respectively. Emerson and

Damper (1993) used a constant momentum value of 0.8 for training different networks. In

general, incorporating a momentum term will reduce the number of training cycles for a

network to reach some predefined error.
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2.5 Multi-layer Neural Network Classifiers Versus Statistical Classiflrers

Various studies have been conducted to compare the performance and the

classification procedures of MLNN classifiers with statistical classifiers (Khotanzad and Lu

L991, Sethi 1991, Luo et aI. L999b, Jayas et aL.2000). As discussed earlier, most of the

statistical classifiers are based on the Bayes decision rule. The Bayes decision rule

performance is optimal for a given set of features in the way that it minimizes the probability

of error and the conditional risk. Although the Bayes decision rule is very simple, it is

difficult to apply in practice because the posterior probabilities are usually unknown and so

must be estimated from the samples (Hush and Horne 1993).

Multi-layer neural network classifiers learn the class knowledge directly from the

training data set and, therefore, it is unnecessary to make any assumptions regarding the

underlying probability density functions. Information about a priori probability can be

adjusted after training (Hush and Horne 1993), or by increasing the number of training

patterns. After training (learning), the MLNN classifier is specified by a set of processing

elements which are arranged in a certain topological structure and interconnected with fixed

connections (weights). There is no need for retaining the training data and no extensive

computation is involved in the classification of unknown patterns.

The problem in designing an MLNN, however, is that there is no theoretical method

available to optimally determine the network structure, the number of hidden layers, and the

node numbers in each hidden layer, which control the learning and classifying ability of the

MLNN. Although, it has been shown that an MLNN with two hidden layers can form any

discriminant surface (Pao 1989), MLNNs with three or more hidden layers are also used for
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their efficiency and speed in learning (Keppler et al. L996). An MLNN with a small and

simple hidden layer structure may not grasp sufficient class knowledge for classification,

while an MLNN with a large and complex hidden layer structure may tend to memorize the

specific patterns in the training data set rather than learn the general class information. The

best way for structure design is to start with a small number of hidden layers and processing

nodes. The network complexity can be gradually increased until the network is trained

sufficiently. Multi-layer neural networks using the gradient descent technique and back-

propagation learning rule can get trapped in a local minimum and consequently result in

lower classification rates. To reduce the risk of local minima it is suggested to use extra

hidden nodes, smaller learning rates, and train the network with different initial weight

values.

Khotanzad and Lu (1991) compared the performance of MLNN with nearest

neighbour classifiers for character recognition. Both the classifiers were similar in their

performance. The time taken by the MLNN classifier, however, was much less than the

nearest neighbour classifier. In general, fr-NN classifiers are not very effective for high

dimensional discrimination problems (Lippmann 1987).

The use of sigmoid functions in the MLNN allows perturbations in the feature values

to be tolerated. Moreover, the use of soft limiting functions in MLNNs provide smoother

boundaries between different classes and this subsequently offers more flexible decision

models than the conventional decision trees. The issue of missing features is also less crucial

in the neural networks implementation because of the parallel nature and graceful

degradation property of the neural networks (Sethi IggI).
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2.6 Application of MLNN Classifiers in Agri-Food Research

Neural network classifiers have been considered and applied for quality inspection

of different agricultural products. Thai and Shewfelt (1991) compared statistical regression

techniques and neural networks to evaluate the external color for tomato and peach. Both

techniques provided the same answers regarding the selection of the factors to be included

in the final mathematical equations. Statistical methods gave slightly better results as

compared to neural network methods. They, however, recommended the use of neural

networks because of fewer steps in the analysis phase.

Bochereau ef al. (L992) presented a general pulpose method for approximating an

arbitrary continuous function on a compact set from a given set of observations. The method

consisted of constructing a model based on a feedforward MLNN, embedding both classical

data analysis techniques and neural network techniques. The model construction was

divided into three steps: (1) principal components analyses was first applied to reduce the

number of input variables and to decorrelate them, (2) multiple regression analysis was used

to derive the best linear estimator, and (3) multilayer neural networks were trained to extract

the non-linear components of the function. The model was applied to reflectance data of the

sugar content obtained using NIR spectroscopy to determine the quality of apples. The

results of the experiments were used to derive a model for predicting apple quality from near

infra-red spectra. The model gave an error of 5To.

Murase et al. (L992) developed a neural network model to estimate the maximum

hoop stress produced in the skin of tomato fruit in the cracking process. A three-layer neural

network was used with gradient descent back propagation as the training algorithm. The
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inputs were physical and mechanical properties of the tomatoes generated by a finite element

model capable of describing their cracking behavior. They inferred that crack occurrence

in tomato can be easily estimated using their neural network model.

Patel et al. (1995) used machine vision in conjunction with an MLNN for detecting

defective eggs with dirt stains and blood spots. The gray level histogram data extracted from

the images of the eggs were used as input to the network. An accuracy of 83.3Vo was

reported for detecting the dirt stains and the accuracy for blood spot detection was 91..7Vo.

The authors indicated that a coupled neural network and computer vision system was an

attractive and feasible method for egg defect detection.

Romaniuk et al. (L993) used a technique developed by Zahnand Roskie s (L972) and

obtained the first 20 Fourier descriptors for different cultivars of barley. The Fourier

descriptors were used as inputs to an MLNN classifier. Their neural network was able to

recognize different varieties of barley seeds with about 80Vo accuracy. In this research no

attempt was made to reduce the number of features. The trained networks had only one

neuron in the output layer and this approach to MLNN classification makes the task of

classification very difficult.

Dowell (1993) used a feedforward neural network for classification of damaged and

undamaged peanut kernels. The spectrum reflectance from 400 nm to 700 nm in 10 nm

intervals was used as the recognition feature. The author indicated classification was best

when the network had 20 or more hidden neurons. The author tested the network with i. to

20 and then to 40 neurons in the hidden layer without any systematic approach to select the

number of neurons. Indicating "20 or more" is a rather weak conclusion because in this case
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"more" can be considered any number between 20 and40. Using an excessive number of

neurons in the hidden layer decreases the generaluation power of networks.

Park and Chen (1994) applied different neural network models to develop an

accurate, reliable, and economical sensor for on-line inspection of cadavers and detecting

infected carcasses at poultry processing units. They used spectral reflectance data obtained

by a diode array spectrophotometer as the discrimination feature. The networks compared

were feedforward back propagation, self organization map with back propagation, and

counter propagation. They found that feedforward back propagation network was the most

suitable network for this application. This network was also compared with other

classification discrimination methods such as multiple linear regression, closest cluster mean,

È-nearest neighbor, and principal component analysis with Mahalanobis distance. The

Feedforward back propagation network was also superior to these classical classifiers.

Chen et at. (1995) used the feedforward backpropagation neural networks with

near-infrared (NIR) diffuse reflectance spectra of ground kernels as input to classify hard red,

winter, and spring wheats. Networks with and without hidden layers were used with various

subsets of the full spectral region as inputs. Using samples from the Lg87-Ig8g crop years,

the best neural network models yielded 97.0 and 96.8% accuracies for calibration and

validation sets, respectively, utilizing the futl wavelength range. When applied to the 1990

crop year, the prediction accuracies of the full and abbreviated wavelength range models

were 95.1 and 95.67o, respectively. These models performed better than a previously

reported principal component analysis with Mahalanobis distance classifier.
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Sayeed et al. (L995) used a feedforward neural network to develop a methodology

to evaluate the quality of a snack product through non-destructive analysis. Input to the

network included visual texture and morphological characteristics. They used step-wise

linear regression to reduce the number of features. The neural network was shown to predict

the sensory attribute of the snack with a reasonable degree of accuracy. The network,

however, performed better when trained and tested with the whole set of data than with a

reduced one. This indicates that either the procedure followed for feature selection was not

suitable or the features could not be reduced. The proposed algorithm seems to be

computationally expensive because of the large network size, large number of features, and

the pre-processing time required for extracting the features.

A method for evaluating tomato ripeness, utilizing its surface color, was developed

by Shibata et al. (1996) using a machine vision system with color image processing

capability and an MLNN-based software system. The tomato ripeness was classified into 4

categories according to the standard commercial classification for manual sorting. Three

color specification values were calculated from the RGB gray levels of a captured color

digital image of a tomato by an on-line image processing system. The authors suggest that

only 0.2-0.57o of. the total surface area of a fruit is needed for color image sensing. A

3-layer back-propagation neural network with 4 hidden nodes gave a satisfactory

performance. The total processing time from image capture to output for a single fruit was

0.45 s. The recognition rate for the ripeness classification using this method was as high as

93Vo- Arecognition rate of only 77Vo was obtained by the multiple regression model tested.

This workprovides another example to strengthen the area of application of neural networks,
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machine vision systems, and robotics for post-harvest processing of agricultural products.

Luo et al. (1999b) applied and empirically compared two statistical and one neural

network classifier for the classification of cereal grain kernels (e.g., CWRS wheat, CWAD

wheat, barley, rye, and oats) and for the classification of one healthy and 6 types of damaged

(".9., broken, grass-green/green-frosted, black-point/smudge, mildewed, heated, and

bin/fire-burnt) CWRS wheat kernels, using selected morphological and color features

extracted from the grain sample images. The classification of cereal grain kernels and the

classification of healthy and damaged CWRS wheat kernels using a non-parametric

(Æ-nearest neighbor) statistical classifier and the MLNN classifier gave similar and the best

classification results. Using an MLNN classifier with a selected set of 15 morphological and

l-3 color features, the average classification accuracies were 98.2, 96.9, 99.0,98.2, and

99.0% for CWRS wheat, CWAD wheat, barley, rye, and oats, respectively, when trained and

tested with 3 different training and testing data sets. The classification accuracies achieved

using a parametric classifier were lower than the classification accuracies achieved using

both the non-parametric and the MLNN classifiers.

Ghazanfariet al. (1998) used amachine vision system to classify unshelled pistachio

nuts based on United States Department of Agriculture grades. The gray-level histogram data

obtained from the gray scale image of the nuts were analyzed to select a set of suitable

recognition features. Based on the analyses, the mean of the gray-level histogram over the

50-60 grayJevel range and the area of each nut (the integral of its graylevel histogram) were

selected as the recognition features. The selected features were used as input to 3

classification schemes: a Gaussian, a decision tree, and an MLNN. The MLNN classifier
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resulted in slightly higher performance with more uniform classification accuracy than the

other two classifiers.

To quantify single wheat kernel color, Wang et al. (\999) used an optical radiation

measurement system which measured reflectance spectra from 400 to 2000 nm. Six classes

of wheat were used for this study. A neural network using input data dimension reduction

by divergence feature selection and by principal component analysis was used to determine

single wheat kernel color class. The highest classification accuracy was 98.8Vo when the

divergence feature selection method was used to reduce the number of inputs. The highest

classification accuracy was 987o when the principal component analysis method was used

to reduce the number of inputs.
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3. MATERIALS AND METHODS

3.1 Imaging Hardware

For image acquisition a 3-chip charge coupled device (CCD) color camera (DXC-

30004, SOI'ry) was used. The camera was fitted with a zoom lens (VCL-1012 Bl', SOIIy)

of I0-L20 mm focal length. To provide rigid stable support and easy vertical movement, the

camera was mounted on a stand (m3, Bencher Inc., Chicago, IL). The camera was connected

to a camera control unit (CCU-M3, SONY). The iris was selectable to manual or automatic

mode. The option of the manual iris control was used to achieve repeatability in the

experiments. The automatic gain control of the camera was disabled. Before each imaging

session, the camera was white balanced. Figure 3.1 shows the camera set up.

The image acquisitionprocedure was controlled using apersonal computer (pC) (pIII

450 MHz) which was fitted with a color frame grabbing board (Matrox Meteor-Il multi-

channel, Matrox Electronic Systems Ltd., Montreal, pe). The National Television System

Committee (NTSC) composite color signal from the camera was converted by the camera

control unit at a speed of 30 frames per second into three parallel analog video signals,

namely red (R), green (G), and blue (B), corresponding to the three NTSC color primaries,

and a synchronous signal. The frame grabber digitized the RGB analog video signals from

the camera control unit to a24bit640 x 480 color digital image. The image resolutions were

approximately 0.064 mm/pixel in the horizontal and vertical directions (see Table 3.1). The

programs to control the frame grabber were provided by the Matrox imaging library,

supplied by the manufacturer of the frame grabbing board. The digital images were then sent

to the computer monitor for on-line display and transfered to the hard disk for storage.
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3.2 Sample Illumination

Illumination plays a very important role in image acquisition. An ideat illumination

source should provide uniform light distribution over the field of view (FOV), should be

consistent over time, and should eliminate any shadows of the objects. It is impractical to

meet all these conditions in an industrial imaging system but a careful selection and

arrangement of light sources can minimize the inconsistencies due to changes in power

voltage, ambient temperature, and lamp deterioration. Luo et aI. (1997) evaluated

incandescent, halogen, and flourescent lamps for their sensitivity to lamp voltage variations,

stability with time, and uniformity over FOV. They suggested that a flourescent lighting is

best suited for the system that was used for this thesis.

A flourescent tube with a 305 mm diameter 32-W circular lamp (FC12Tï!CW, GE

Lighting, USA) with a rated voltage of. L20 V was placed around and just below the surface

level of the sample placement platform of the tight chamber (Fig 3.2). Alight diffuser, a

semi spherical steel bowl of 390 mm diameter, covered the tight bulb and the object plane

such that the object plane was only exposed to the diffused light. The inner side of the bowl

was painted white and smoked with magnesium oxide. A125 mm diameter opening at the

top of the bowl facilitated the camera to view the FOV.

Avoltage regulator (CVS, Sola Canada Inc., Toronto, ON) supplied stable AC power

(t0.5 V) to the light sources and the voltage to the lamps was adjusted by a variac. A light

controller (Fx0648-2ll20,Mercron, Richardson, TX) fitted with a photodiode light sensor

was used with the flourescent lamp. The light controller automatically detected the

illumination level in the light chamber and adjusted the AC frequency of the lamp to

43



maintain a stable level of illumination. The frequency of the AC power output of the

controller varied between l40kIIz at the minimum light levels to 60 kIIz at full pov/er.

3.3 Illumination Standardi zation

A Kodak white card with 90Vo rcflectance (E152-7795, Eastman Kodak Co.,

Rochester, NY) was used as a white reference to standardize the illumination level. The

lamp voltage was set to the ratedI20 V. The image of the white card was acquired and over

a small central area of 50 x 50 pixels the mean gray level values of the R, G, and B bands

were computed and used as the illumination level indicators. By manually adjusting the iris

control and performing the white balance with the camera control unit, all three values (R,

G, and B) were adjusted to 250 t 1.

3.4 Spatial Calibration

All the morphological features were calculated in pixels. To convert these pixel

dimensions into real-world measurement units, the spatial resolution of pixels was

calculated. This was done by taking the image of a Canadian L0 cent coin, counting the

number of pixels in its diameter, and then measuring it with a micrometer (No. 961, Moore

and Wright, Sheffield, England). Table 3.L shows the results of the spatial calibration. The

spatial resolution of the images was 6.38 x L0-2 mm/pixel. The camera was adjusted to this

resolution prior to taking images every time.
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Table 3.1 spatial calibration results for a canadian 10 cent coin

Image
number

Diameter of coin
(pixels)

Diameter of coin
(mm)

Spatial resolution
(mm/pixel)

1

2

J

4

5

28I

28r

282

281

282

17.95

L7.96

L7.96

17.96

17.95

6.39 x 10-2

6.39 xl0-2

6.37 xI0-2

6.37 x LO-z

6.37 x 10-2

Average resolution 6.38 x 10-2

3.5 Grain Samples

The grain samples for this study were obtained from the Industry Services Division

oftheCanadianGrainCommission(\ilinnipeg,MB).FortheLgg8growingyear,cleangrain

samples of CWRS wheat (Grade L,2, and 3), CWAD wheat (Grade 1,,2, and 3), barley

(Special Select Malt Barley), rye (Grade L), and oats (Grade 1) were used in color image

analysis of grain samples for content identification and cleaner performance determination.

Samples were collected from eight locations in Manitoba, nine locations in Saskatchewan,

and six locations in Alberta (Fig. 3.3). These locations were chosen using the climatic

subdivisions of the Canadian Prairies (Putnam and Putnam 1970). The selected locations

represent five sample locations from the humid prairie, seven locations from the sub-boreal

region, six locations from the sub-humid prairie, and five locations from the semi-arid

region.
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3.6Image Acquisition

For its stabilization, the image acquisition system was switched on 30 min prior to

acquiring images. The gray level calibration (white balance) of the FOV was done after that

using a Kodak white card. The spatial calibration was done with an object of known

dimension (a Canadian L0 cent coin).

For each grain type and growing region sample, about 500 g of grain was poured into

a large plastic bag and shaken thoroughly. A scoop was used to take out approximately 1000

kernels from the plastic bag. Six kernels were then taken one at a time and placed in the

FOV of the camera in a non-touching fashion. A black background was used to image the

grain kernels. One hundred such images were taken for each grain type from every growing

region (i.e., 600 kernels of each grain type were imaged for every growing region).

For imaging the dockage fractions, standard dockage samples were obtained from the

Industry Services Division of the Canadian Grain Commission (Winnipeg, MB). Dockage

samples were obtained by running uncleaned farm samples of CWRS wheat through the

Carter dockage tester (Carter Day International, Minneapolis, MN). The sample was then

divided into five different fractions namely, broken wheat, chaff, wild buckwheat, wheat-

heads, and canola. One hundred grams of each dockage tester fraction were collected. To

image these fractions, each individual component was carefully placed in the FOV of the

camera using a pair of tweezers. The component was then weighed on a microbalance

(Metller M3, Germany). Because the mass density of the different fractions were very

different from each other, weighing them was necessary so that their mass could be

correlated to their morphology. By doing so, a correlation between the morphology and the

47



mass of the particle was obtained for each type of dockage fraction.

3.7 Morphology Mass Relationship of Cereal Grains and Dockage

A study was conducted to quantify the mass of the grain kernels and dockage

fractions from their two-dimensional images. It was hypothesized that the mass of any grain

or dockage fraction is dependent on its morphology. Seven morphological features, namely,

area, perimeter, maximum radius, minimum radius, mean radius, major axis length, and

minor axis length were correlated to the mass of the objects. Approximately 600 kernels of

each grain type and 400 particles of each class of dockage were imaged and weighed

separately. A linear regression was performed to find which morphological feature best

described the mass of that particular class.

3.8 Grain Cleaner

A prototype grain cleaner was designed and fabricated (Fig. 3.a). The cleaner

consisted of a wooden frame which could support two screens and a similar trough of 310

mm x 605 mm dimensions. These screens were similar to the ones that are used in a Carter

dockage tester. After consulting the persomel at Carter Day International and the literature

on dockage testers, the sieve sizes were chosen as#8 (2.26mm [inscribed circle] perforated

double triangle) for the top sieve and #5 (1.79 mm x 11.90 mm perforated slot) for the

bottom sieve. The whole assembly was mounted on a vibratory motor (154, Eriez

Manufacturing Co., Erie, PA). The screens had a slope of one in 20. The RpM of the

vibrator and the slope of the screens could be varied to achieve different flow rates through

the cleaner. The screens could be taken out and replaced for cleaning and minor slope

adjustments.
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3.8.1 Grain cleaner testing The grain cleaner was tested at three different flow rates of 4

kg/h, 8 kgih, and Izkglh. The flow rates of 4kglh and 8 kg/h were obtained by adjusring

the vibrator rPm, keeping the slope of the screens at 0.05. To achieve a flow rate of tzkglh,

the slope was increased to 0.08. Table 3.2 shows the slope and vibrator frequencies for the

tested flow rates for different grain types.

One hundred grams of clean grain sample were taken and the kernels were imaged

by placing them in the field of view of the camera in a non-touching fashion. Using the

regression equation, the mass of that sample was calculated. Five grams of dockage was then

added to it to create an impurity Level of 57o. Prior to mixing the clean grain with dockage,

the dockage particles were also imaged and analyzed for the mass of their constituents using

the regression equations. The clean grain and dockage were mixed thoroughly in a plastic

bag and passed through the grain cleaner. The clean grain obtained from the cleaner was

taken and foreign material v/as manually removed from it. The clean grain and foreign

material were separately weighed and imaged again. Their masses were estimated using the

regression equations. Three replicates at each flow rate were done for all the grain types.

Seven morphological features, namely, area, perimeter, maximum radius, minimum

radius, mean radius, major axis length, and minor axis length of grain and dockage mixture

were calculated. The range of these features was compared to the range of the corresponding

features after the grain had been passed through the cleaner. This change in the range of

these features was studied to investigate if it could serve as a feedback to control the cleaning

pfocess.
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3.9DataAnalysis

For the cereal grain classification part, images of L500 kernels of each grain type

were taken to form a set of 7500 kernels (1500 kernels of each of the five grain types). This

set was divided into five $oups of 1500 kernels each (now each group had 300 kernels of

each of the five grain types). One goup (i.e., 1500 kernels) was then used as a training set

and another group was used as a test set. Validation was then done on the remaining three

groups, i.e., 4500 kernels. This replication was done five times so that each group was used

as a training and testing set once.

For cereal grain and dockage classification, 600 objects ofeach type (cereal grain and

dockage categories) were taken to form a set of 6000 objects (600 of each category). The

complete set was divided into five groups of 1200 objects (now each group had 120 objects

of each type). One group (i.e., 1200 objects) was used as a training set and another was used

as a test set. Validation was done on the remaining three groups, i.e., 3600 objects. Again

the replication was done five times so that each group was used as a training and testing set

once.

Data analysis was done using a four-layer BPN and a non-parametric statistical

classifier and the results of the two v/ere compared.

3.9.1 Neural network training Neural networks were designed and implemented using the

soflware package NeuroShell2 (Ward Systems Group, Frederick, MD). Jayas et at. (2000)

indicated that a BPN network is best suited and thus is the most popular choice for

classification of agricultural produce. A four-layer BPN was used for cereal grain and

dockage classification. To begin with, the number of nodes n in the hidden layer was
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calculated using the formula:

n = (I + O)12 + yo.s (3.1)

where: 1 is the number of inputs; O is the number of outputs; and y is the number of input

patterns in the training set (Ward Systems Group 1998). The number of nodes was varied

to see any significant improvement in performance. If no improvement was observed, the

number of nodes calculated by the formula was used to train the network. Because two

hidden layers were used in this thesis, the number of nodes calculated by the formula was

equally divided between them. The network training was done on one group (1500 kernels)

and while training, another group was used as a test set. The three remaining groups were

used for validation after the network was trained.

While training, the weights and thresholds for each neuron were adjusted to minimize

the mean square error (MSE) between the predicted and observed outputs. For all the

connections, logistic activation functions (also called sigmoid, semi-linear, or soft-limiting

functions) were used. Logistic activation functions provide a balance between linear and

non-linear (hard-limiting) activation functions and are considered to be the closest to

biological neurons. Linear activation functions cannot suppress noise and have limited

learning capabilities whereas non-linear functions may introduce network instability and risk

computational and analytical intractability (Mehrotra et al. 1996). The number of hidden

nodes were varied until the best results were obtained. Training was stopped after 1000

epochs. An epoch is defined as the time during which a network is trained by presenting

each pattern in the training set exactly once. In a preliminary study it was found that |000

epochs were more than enough for the network to train as the coefficient of multiple
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determination (À2) became constant well before 1000 epochs (Paliwal etal.200L). To avoid

over-training, the trained network was saved every time it reached a new minimum average

error for the test set. Time taken by each network to train was also determined to compare

the computational speeds of various networks.

The network also gives the contribution of each input feature to the network,s

classification performance. For every input feature it gives a number which is indicative of

the percent contribution that the particular feature made towards the classification process.

These percent contributions for individual features were averaged for different replicates to

rank the contribution for every feature. After ranking, the top 10 and top 20 features were

taken for further analyses and the rest of the features were eliminated.

3.9.2 Non'parametric statistical classifier As described in section2.3, the selection of a

statistical classifier depends on the class-conditional probability density function of the input

features. Because the distribution of features in feature space cannot be assumed to be

normal, a non-parametric statistical classifier was used. This was implemented using

procedure DISCRIM of SAS (SAS 1990). The DISCRIM procedure uses Bayes' theorem

to determine the probability of an observation belonging to a particular group by assuming

the prior probabilities of its group membership and the group-specific densities. The ranking

of features was done using procedure STEPDISC of SAS.
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4. ALGORITHM DEVELOPMENT FOR IMAGE ANALYSIS

The algorithm development for this thesis was done on an IBM compatible (Pentium

III,450 MFIZ) computer in Microsoft Visual C++ (Version 6.0) programming language. The

algorithm was complete in the sense that it could do all the analyses on the image, starting

from reading the image to thresholding, region labeling, extraction of various features, and

writing those features to a text file. The algorithm was capable of sequentially analyzing

multiple files. A description of the C++ code is given in Appendix A and an electronic copy

can be obtained from Dr. D.S. Jayas. The various operations that the algorithm performed

are described in this chapter.

4.l Thresholding

Conversion of a multi level gray level image to a binary image so as to distinguish

the objects from the background is called thresholding. It can either be done manually or

automatically. In manual thresholding, a threshold value is specified by the user and the

pixels whose gray levels are less than the threshold value are set to background (0) and the

remaining pixels are set to object (1). Manual thresholding is time consuming as the

thresholded image has to be displayed for every threshold value specified by the user to

visually examine the thresholded image and to decide the final threshold value.

In this study, automatic thresholding (Parker L994) was used. In automatic

thresholding, the threshold value is decided by the algorithm. The threshold value was

calculated by the principle of iterative selection. The blue band was used for thresholding

the image (Luo et al. L999a). The number of pixels for each gray level of the blue band were

multiplied with the gray level value and summed. The sum was divided by the total number
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of pixels to obtain the first threshold value, Xr. The same iteration was done for the two

parts i.e., 0 to Xt and Xr+L to 255 (assuming that there are 255 gray level values of the blue

band in the image), to generate two more numbers p, and pr. The mean of p, and p, gave the

second threshold value X2. Now the iterative process was done for values from 0 to X, and

þ+1, to 255,to generate P, and Po. Taking the mean of P, and Po gave the new threshold Xr.

This process was repeated until X" equals Xn*,. This stabilized value of X was taken as the

threshold for the image. The maximum number of iterations was set to 40 to reduce the

runtime of the algorithm.

4.2 Region Labeling

Region labeling was done to assign a unique label or identifier to each object in the

binary image. The region labeling algorithm scanned the binary image once from the top left

to the bottom right. The first encountered unlabeled object pixel was assigned a unique

label. Then from that pixel the region was expanded and the same label value was

propagated by following 8-neighbors connectivity (Gonzalez and Woods 1992). The

propagation of the same label value continued until no more neighboringpixels of the objects

could be found. The scanning of the binary image was resumed and the same pÍocess was

continued until all the objects were labeled with their unique label. After labeling there

could be some pixels in the object region with the background gray level value (calledhote)

or some pixels in the background with the object gray levels (called extra region). In

practical applications, certain bright spots on the surface of the objects may appear as holes,

and dusts, dirty background spots, or small pieces of grain shell may result in small false

regions in the thresholded image. It is very important to change the values of these pixels
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to the right values for the accurate measurement of the morphological features. Therefore,

a hole fitling and region deleting subroutine was used to solve this problem (Luo et al.

1999a). Starting from a background pixel, the whole background region was connected by

following the 8-neighbor connectivity. The left out pixels whose gray levels were that of the

background were changed to the respective object label value. For the cereal grains, any

region with less than 200 pixels (0.72mm2)was deleted and for the dockage, regions smaller

than 50 pixels (0.18 mm'z) were deleted.

4.3 Feature Extraction

Once the objects of interest in the image have been clearly segmented, the next step

is to measure individual features of each object. Features of unknown objects are compared

to those of known objects to do the classification. As a rule of thumb, the features that are

simplest to measure and contribute substantially towards the classification are the best to use.

A total of 51 morphological, I23 color, and 56 textural features were extracted by the

algorithm.

4.3.1 Morphological features The feafures defining the physical dimensions that

charucterize the appearance of an object are called morphological features. A list of the 51

morphological features extracted from an individual grain kernel is given in Table B1

(Appendix B). The morphological features that the algorithm extracted are described below.

AreaThe pixel area of the interior of an object is defined as area. It is computed as the total

number of pixels inside, and including, the object boundary.

))'t',
tl
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wherc X(i, j) ='l', in a binary image and n and m define the horizontal and vertical size of the

image.

Perimeter The pixel distance around the circumfeïence of an object is defined as perimeter.

It is a measure of the boundary length of the object. Generally, the perimeter of a region is

calculated by adding the number of pixels on the boundary. But a pixel represents an area

not a linear distance. Boundary pixels can be identified using the 4-neighbor or 8-neighbor

connectivity methods. In the 4-neighbor connectivity method, the gray level of each pixel

relative to its four neighbors is examined. A pixel X(i, j) is considered a boundary pixel if

x(i,j+1)or x(i, j-1)andx(i+I, j)orx(i-I,j)isabackgroundpixet(graylevel0). InrheS-

neighbor connectivity method in addition to the 4-neighbors, the four corner pixels are

considered (Fig. a.1). Perimeter length of objects is determined using the Euclidean distance

principle. The distance represented by each pixel was weighted as 1 if all neighbors were

horizontal or vertical, L.41,4 if all neighbors were diagonal, and 1.207 if there was one

diagonal and one non-diagonal pixel.

ooo
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ooo
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aaaooo

ooo ooo ooo oao oooooo ooo ooo ooo oooOOO OaO OOO OOO OOO

ooa ooo ooo ooo ooooao ooo ooo ooo õooooo ooo Ooa ooa óoO
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Fig. 4.1 Distance template for boundary pixels

d: l

d:1.414
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Centre of Mass The centre of mass of an object can not be used as a feature but is required

for determining major and minor axes and other features of an object. The centre of mass

@" f ,) of an object consisting of l/pixels is determined as:

x"=
(a.2a)

!"= (4.2b)

where xr and yi are the x and y coordinates of the ith pixel, respectively.

Maior axis length It is defined as the longest line that can be drawn through the centre of

mass of an object. The candidate pixels were identified by finding the distance between each

possible pair of boundary pixels which could be connected by a straight line through the

centroid and the longest distance was taken as the length of the major axis.

Minor øxis length The minor axis is defined as the longest line that can be drawn

perpendicular to the major axis through the centre of mass.

SpatialMoments The spatial moments of an object are statistical shape measures that do not

charactetue the object specifically. Rather, they give statistical measures related to an

object's characterizations. Moments of binary objects describe their shape and moments of

gray level images describe the gray level distribution of objects. The general moments (mpq)

of different orders are determined as:

+>,,,

#Þ;,,
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ffion=)lipfx1,Ð 
@.3)

wherep, Q = 0, 7, 2, .... is the order of the moment and X(i,7) is the gray level of the object

at coordinate (i, j).

In binary images the gray level of the object, X(i, j) is L for all pixels. For

monochrome and color images, the gray scale or R, G, and B gray values are substituted for

the value of Xft, j).

The zero-order spatial moment (msç)iscomputed as the sum of the brightness values

in an object. In the case of a binary image, this is simply the number of pixets in the object,

because every pixel in the object is equal to 1 (white). Therefore, the zero-order spatial

moment of a binary object is its area. For a gray level image, an object's zero-order spatial

moment is the sum of the brightness of pixels and is related to the object's energy.

The first-order spatial moments (mro and m6) of. an object contain two independent

components, x and y. They are the x and y sums of the pixet brightness in the object, each

multiplied by its respective x ory coordinate in the image. In the case of a binary image, the

first-order x spatial moment is just the sum of the x coordinates of the object,s pixels,

because every object pixel is equal to 1. Similarly, the y spatial moment is the sum of the

y coordinates of the object's pixels. The second order mom ents mr6 and m,2represent the

moment of inertia.

The moments moo are dependent on the position of

therefore, were not used as features. For comparison and

moments have to be independent of position and orientation

the object in the image and

identification of objects, the

in the image and size of the
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objects. The central moments ltonfhat are invariant to translation þosition of the object in

a given image) and normalized central moments rTon (Gor:zalez and Woods Lggz) that are

invariant to translation and size of the object are given by:

where

(4.4)

(4.s)

(4.6)

Ôt= 4zo* 4oz

óz = (qzo - rlo)2+ 4(r1ilt

ós = (ryso- 3 ,lr)t+ (rlzt - ,lo)2

óo = (qro + th)2 + (qzt r4os)2

(4.7)

(4.8)

(4.e)

(4.10)

Fouríer Descriptors Fourier descriptors are shape recognition features based on the Fourier

series expansion of periodic functions. The general idea is to represent the boundary of an

object as a periodic function with a period of 2 r. The obtained periodic function is then

expanded in a Fourier series and its coefficients are calculated.

þpq = > ) Q - x")o(i - y")n x(i, j)
¿J

þoon - ------
,DA y

þoo

r=ff*t
From the second and third normalized central moments, a set of measurements that

are invariant to translation, rotation, and scaling of the object (GonzaLez and Woods LggZ)

were derived as follows:
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Consider an object with an,À/-point digital boundary in the xy plane. Starting at an

arbitrary point (x6 y/, coordinate pairs (x* yù, (xr, yr), (xo y),....(x*-n !u) are encountered

in traversing the boundary, say, counter-clockwise. These coordinates can be expressed in

the form x(k) = x¡andy(k) = y" Now, the boundary can be represented as the sequence of

coordinates f(k) = [x(k), y(k)J,1or k = 0,7,2...., i/-1. Each coordinate pair can be treated as

a complex number so that f(k) - x(k) + j y(k) for k = 0,1,2,....N-1, i.e., the x axis is treated

as the real axis and the y axis is treated as the imaginary axis of sequence of a complex

numbers. The discrete Fourier transform of f(k) is:

f (k) e-''*o'r (4.1,Ð

fot u = 0, 7, 2,....,1/-1. The complex coefficients F(u) are called the Fourier descriptors of

the boundary. The inverse Fourier transform of the F(u) restores the f(k), i.e.,

jznklN

(4.1,2)

for k = 0,7,2,...., N-7. Because these features were extracted by taking the Fourier

transform of the coordinates along the boundary of the kernel, they were called boundary

Fourier descriptors.

The magnitude of F(u) is the square root of sum of squares of its real and imaginary

values. Fourier transforms determined from the radius of the boundary pixels is given by:

F(,)=#),

r&)= +),t @)e
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F(u): - j2nuklN
(4.13)

where r(k) is the radius of the boundary pixel k. These features were called radial Fourier

descriptors.

Slow variations or smooth boundaries are represented by the low harmonic

components and complex variations along a boundary are represented by the high harmonic

components of the Fourier descriptors (Tao et al. 1995). Therefore, for both the boundary

and radial Fourier descriptors, ten lower harmonics and ten higher order harmonics were

taken.

#à r(k)e
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4.2,2 Color Features

4.2.2.I Measurements derived from RGB model The most commonly used color feature

model in image processing is the RGB color model. In the RGB model, an image consists

of three independent image planes, one in each of the primary colors, red, green, and blue.

A particular color is specified by the amount of each of the primary components present.

Figure 4.2 shows the geometry of the RGB color model for specifying colors using a

Cartesian coordinate system. The gray scale spectrum, i.e. those colors made from equal

amounts of each primary, lies on the line joining the black and white vertices.

Fig.4.2 The RGB color cube. The gray scale spectrum lies along the line
joining the black and white vertices (Gonzalezìnd woods l9g2l

This is an additive model, i.e. the colors present in the light add to form new colors, and is

appropriate for the mixing of colored light for example. The RGB model is used for color

monitors and most video cameras.

The normalized RGB signals, r(x,y), g(x,y), andb(x,y) were computed from each of
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its three color band signals, R(x,y), G(x,y), and B(x,y), respectively, using the following

equations:

f=
R+ G + B (a.1aa)

O=ö
(4.14b)

R+ G + B

and

b=
@Iac)

R+ G + B

The following measurements were derived from the normalized RGB signals of a kernel

region Owhich consisted of l/pixels.

Mean normalized RGB sígnøls

F = #à,@,r) g(x,y) b(*, y) (4.1s)

Vøríances of normalized RGB sígnals

G

t=1\
N¿d

r=1\ò N4

o!

oi

= #,à ,'(*,y)- t'{,')

= #,à s'(*,Ð- Ns')
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and

Õ: = fr,ä b'(*,v)- ¡,tb')
@.16c)

Ranges of normalízed RGB signals

L,r = r^*- f.in = mgx[r(x,y)]- min[r(x,y)] @.t7a)

LB = B^ * - g,"in = .år[S( x,y)]- mninfg(x, y)] (4.r7b)

and

L,b = b^u* - b.in = mgx[b(x,y))- min[b(x,y)] @.17c)

4.2.2.2Measurements derived from HSI model In this model three independent quantities

are used to describe any particular color. The hue (1/) is determined by the dominant

wavelength.The saturation (\ is determined by the excitation purity, and depends on the

amount of white light mixed with the hue. A pure hue is fully saturated, i.e. no white light

mixed in. Hue and saturation together determine the chromaticíty for a given color. Finally,

the intensity (I) is determined by the actual amount of light, with more light corresponding

to more intense colors. The entire space of colors that may be specified in this way is shown

in Fig. 4.3. Figure 4.3a shows the HSI solid and Fig. 4.3b shows the HSI triangle formed by

taking a horizontal slice through the HSI solid at aparticular intensity. Hue is measured from

red, and saturation is given by distance from the axis. Colors on the surface of the solid are
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Yellow

Black

(a) (b)

Fig. 4.3 The HSI model. (a) HSI solid depiction (b) HSI triangle formed by taking a
horizontal slice of HSI solid at any given intensify

fully saturated, i.e. pure colors, and the gray scale spectrum is on the axis of the solid. For

these colors, hue is undefined.

The H,S, and lattributes can be derived from the normalized RGB values, r, g, and

b,by (Gonzalez and Woods L99Z):

,FI = coS-,J ost(l - s) + (r - a)l _J

tt(' - s)' + (, - b)(s - Ðl% I

al

S = 1- 
-J(r+ g+Ð[min(r' 8'b)]

(a.18a)
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and

,=!{r+ g+b)
(a.18c)

The HSI signals,-F(x,y),S(x,y),andl(x,y) were computed for each image from its three color

band signals, R(x,y), G(x,y), and B(x,y) for each image using the Eqs. 4.!4 and 4.1g. The

following measurements were derived from the HSI signals of a kernel region .rzofNpixels:

Mean normnlízed HSI sígnals

I(x,y) (4.1,9)

Vøriances of normalízed HSI sígnals

s = +à r(,,r)E = +àu@'') ¡=a\
NLn

and

4 =;-(lu'{*,v)- NH')

'3 = #() s'{",y)- ¡rs')

"? 
= h() r'{", y)- NI')

@.20a)

(4.20b)

(a.20c)



Ranges of normnlized HSI signals

LH = H^*- ã*,n = max[/1(x,y)]-

ÀS = S*r* - Sn'in = max[S(x, y)]-

min[H(x, y)]

min[S(x, y)]

@.21a)

(4.21b)

and

LI = I**- 1*. = m¿x[/(x,y)]- mrrin[/(x,y)] @.21c)

4.2.2,3 Color moments For bi-level grain images, the invariant moments v/ere defined by

Eqs.4.7 to 4.10 as shape measures. Simitarly the color moments were computed on each of

the three normalized color bands, namely r(x,y), gfu,y), and b(x,y),for each individual grain

kernel as color measurements.

4.2,2.4 RGB histograms An M-band histogram of an object in a digital image with gray

levels in the range [0, L-I]is defined as a discretefiinctionH(k) = fl¡,lN, k = 0, I, ..., M-I (I _.

M sL); where k is the band numb er, n¡is the number of pixels in the object region with gray

levels in the ldhbandrange lk*LlM, (k+I)*Lha], and N is the total number of pixels in the

object region. Because a color image consists of three gray level images, namely.R, G, and

B images, correspondingly three M-band histograms, H^(k), Ho(k), and, Hr(k), of an object

in a color image can be obtained from the three gray level images. These histograms provide

a global description of the object's color appearance. The selection of the number of bands,

M depends on specific applications. Generally, the larger the M, more precise is the

description of the object's color appearance. However, when the histograms are used as

color feafures to represent color differences between different objects, this statement is not

always true. In addition a larger M means a larger number of measurements. Luo et al.
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(L999a) conducted a study to compare histograms withM = 8, 16, and32,by examining the

significance of the corresponding measurements to the classification of the different types

of cereal grains. They found that the 16-band histogram gave the best measurements. Thus

a value of M = 16 was used in this study.

A list of the I23 color measurements extracted from an individual grain kernel is

given in Table B2 (Appendix B).

4.2.3Textural features Texture can be defined as the distribution of color in an image with

respect to the spatial coordinates. It can be qualitatively evaluated as having one or more of

the properties of fineness, coarseness, smoothness, granulation, randomness, or irregular

(Majumdar and Jayas 2000c). Two objects, in their digitat image form, can be comprised

of same number of pixels and exactly same color histograms but if the distribution of color

is dissimilar, they can have totally different appearance. These two objects, if classified

using simple color features, would be classified as similar objects.

There have been many statistical and structural approaches to the measurement and

charcctefization of image texture: autocorrelation functions, autoregressive models, optical

transforms, digital transforms, structural elements, spatial gray tone co-occurrence

probabilities, gray level run lengths, and sum and differences histograms (Hara\ick 1,979).

In this study, gray level co-occurrence matrix (GLCM) and gray level run-length matrix

(GLRM) models were used.

4.2.3,1, Gray level co-occurrence matrix model This model was first described by Haralick

et al. (L973). It provides information about the distribution of gray level intensities with

respect to the relative position of the pixels with equal intensities. The matrix elements M
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(i, i) are the number of occurrence of pixels with gray level I encircled by pixels with gray

leveli at a distance din0",45",90', and 135" directions (Fig. 4.4a). Consideringa4x4

image with gray levels in the range 0 to 3 (Fig. 4.4b), the co-occuffence matrices in the 0',

45',90", and 1,35'directions are shown in Fig.4.4c.

The co-occuffence matrices in the four directions are combined (Fig. a.ad) and each

element was divided using a normalizing constant, fr given by:

k :2N *(N, - L) + ZN ,(N, - 1) + a(nf, - 1XN, - 1)
(4.22)

where N, and N, are the number of pixels in the horizontal and vertical directions,

respectively.
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with 0 to 3 gray level values (c) calculation of gray rever co-
occurrence matrices (GLCMs) in four directions (d) Final GLCM
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From the normalized co-occurrence matrix, the following invariant features were

calculated (Galloway L975):

Meøn

(4.23)

Variance

(4.24)

Uniþrmity

(4.2s)

Entropy

(4.26)

(4.27)

N, Nr

þ = >\ tuçi, ¡¡
i=l j=1.

N, ff,

o' = ))fr - /.¿)'M(i, i)
i=1, j-1

N, N,

u=>ZmQ'Ð'
i=l j:l

N, N,

E = -> ) M(i, j)tog{M(i, j)}
i=t j_l

N, N,

1 = ) à,r 
- i)' M(i, i)
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Correlatíon

N" N"

c= ))
,=1 j=1

(¡- p)(i - p)
o' M(i, i)

(4.28)

Homogeneity

(4.2e)

Cluster

j - 2p)'M(i, j)
(4.30)

where \ is the maximum gray level of the image.

4.2.3.L Gray level run-length matrix model Gray level run length matrix (GLRM) is a

representation of the occurrence of collinear and consecutive pixels of similar gray levels in

an object. The matrix elements RM(i,7) specifies the number of times that picture contains

a run of length j, in a given direction, consisting of points having gray level i (or lying in the

gray level range l). Figure 4.5 shows the calculation of GLRMs for a4x4image consisting

of three gray levels, for the four principal directions (0., 4s", 90., and 135.).

j)
i)'

H= (i,
i-

M
+(t1

¡/" ¡r-

>)i-I j=l

N, N,

' = ))(¿*,-1 j-l
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Fig. 4.5 (a) A 4 x 4 image with 0 to 3 gray level values (b)
calculation of gray level run length matrices (GLRMs) in four
directions (c) Final GLRM

75



The following features were extracted from all four GLRMs and their mean value and

range were calculated for analyses (Galloway T975):

Short Run

s=ïtRM(.-i)R
i=t j=l J

Long Run

L=>f,fnu-<¡,¡>
-*t ?r ^R

Gray level non-uníþrmíty

¡f.

", {) RMQ, Ð\'z
G,u= 

) 
-- 

^
i=L

Run len gth non -uniþrmity

N8

". {) RMe, Ð}2
F'rr=¿= 

"
j:1,

(4.31)

(4.32)

(4.33)

Run percent

(4.34)

(4.3s)

t?
i-Þ = *, N,

)) iRM(i,i)
i=1 j=\
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Gray level entropy

D S $ RM(i, j)tog{RM(i, j)}ust=à?" R Ø.36)

whereÀf, is the maximum number of run lengths in an image, and

ff, N,

N = )) RMe, Ð Øst)i=7 j=L

Table 83 (Appendix B) lists the 56 textural features that were extracted from each

individual grain kernel.
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5. RESULTS AND DISCUSSION

5.1 Gray Level Reduction for Textural Features

In applications like online monitoring of grains, computational time is of essence.

Depending on the type of application, a small amount of performance can be sacrificed to

reduce the computational time. In this thesis, the computational time was a direct

consequence of the number of maximum gray levels in an image because the size of co-

occurrence and run-length matrices depended on gray levels.

Before starting the actual analysis of data, apreliminary study was conducted to find

out the number of gray levels to which the original256 gray levels of the image can be

reduced, without incurring a significant loss in the classification accuracy. Maximum gray

level values of 256 were reduced to 128, 64,32,16, and 8 for all the three bands (i.e., red,

green, and blue) in each image. AII the 56 textural features were extracted for 600 kernels

of every grain type (3000 kernels in total) and classification accuracies were obtained. A

four-layer BPN with 56 neurons in the input layer, 30 neurons in each of the two hidden

layers, and 5 neurons in the output layer, was used for classification. Training was done on

900 kernels and 600 were used for testing. The experiment was replicated three times. The

network was trained until 1000 epochs were reached. Once the network was trained, it was

applied to a production (validation) set consisting of the remaining 1500 kernels. The

average classification accuracies ofthe three replicates obtained for each grain type at256,

128, 64,32, L6, and 8 gray levels are given in Table cL through C6 (Appendix C). Table

5.L shows a summary of classification accuracies. Although there was no clearpattern as the

number of gray levels were increased from 8to256,gray levels of.32and64 seemed to give
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slightly better results. And becaus e32 gray levels involved lesser computational complexity,

they were chosen for extracting the texfural features for further analyses of data in the thesis.

At higher gray level values (e.g.,256 and 128) the image is highty textured and the tonal

primitives cannot be characterized where as at lower gray levels (e.g., L6 and 8) there is too

much loss of textural information from the image.

5.2 Grain Type ldentifïcation of Individual Kernels

5.2.1 Morphological feature model A complete set of 51 morphological features was used

for classification of the five grain types using neural network and statistical classifiers.

5,2.L.1Neural network classifier The BPN had 51 neurons in the input layer, 58 neurons

in each of the hidden layers, and five neurons in the output layer. The network took

approximately 1 1.5 h to train. The classification accuracies based on morphological features

using a BPN classifier are shown in Table 5.2. lt is evident from Table 5.2 thatbarley and

CWRS wheat could be described better on the basis of their shape and size alone, as

compared to the other grain classes. The lower classification accuracy of CWAD wheat

indicates that there is little consistency in shape and size of its kernels.

The network also gave the ranking of the contribution the input features made to the

classification process. Table 5.3 gives the top 20 feafures ranked in order of their decreasing

contribution to the classification process. The contribution of the perimeter to the

classification process was much higher as compared to any other feature. It was followed

by mean radius and area. Although 13 of the top 20 features were independent of the size

of the kernels, the top th¡ee features did however depend on the size. This means that the
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size of the kernel cannot be discounted and shape alone is not the best classification

parameter.

Table 5.L Classification accuracies of cereal grains at differen t gray levels

Number of Gray Levels
Grain type

L6 32 64 I28 256

Barley

CWAI)

C\ryRS

Oats

Rye

88.5

93.2

87.2

94.6

93.t

89.4

91.0

89.4

95.4

95.3

88.6

96.8

94.5

88.4

96.9

95.9

89.2

9L.4

87.9

96.6

93.9

90.1

92.5

84.6

96.7

94.9

89.3 90.5

9\.7 92.L

Table 5.2 Classification accuracies of cereal grains obtained using a BPN classifier with

morphological features as inputs

Classification accuracies for 5 validation sets, VoGrain
type

Mean

Barley

CWAI)

C\ryRS

Oats

Rye

95.9

90.3

98.7

93.4

92.4

96.0

88.0

99.2

94.2

92.7

97.0

90.0

98.9

97.2

92.3

96.3

88.7

98.0

95.9

93.8

97.2

90.0

96.6

94.4

92.8

96.5

89.4

98.3

95.0

92.8
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Table 5.3 The top 20 morphological, color, and textural features based on their respective contribution towards classiflrcation

accuracy for cereal grains while using a BpN classifier

Rank

1

2

3

4

5

6

7

I
9

10

LT

12

Morphological

Perimeter

Mean radius

Area

Boundary FD 2

Minor axis length

Boundary FD 18

Radial FD 2

Radial FD 3

Shape moment 3

Boundary FD 5

Boundary FD 17

Shape moment 4

Color

Red moment 1

Red moment 2

Green moment 2

Blue histogram range 1

Red moment 3

Blue moment 1

Hue mean

Blue variance

Saturation mean

Blue mean

Red histogram range 9

Green variance

Feature set

Textural

Green GLCM mean

Green GLCM cluster shade

Green GLRM runpercent

Green GLCM variance

Blue GLCM mean

Green GLCM corelation

Green GLRM long run

Blue GLRM color non-uniformity

Green GLCM entropy

Green GLRM short run

Green GLRM run length non-uniformity

Blue GLCM corelation
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Table 5.3 The top 20 morphological, color, and textural features based on their respective contribution towards classification

accuracy for cereal grains while using a BpN classifïer

13

t4

15

t6

l7

18

t9

20

Morphological

Radial FD 5

Minimum radius

Major axis length

Boundary FD 20

Boundary FD 1

Boundary FD 3

Maximum radius

Boundary FD 12

Red variance

Blue range

Red histogram range 10

Green histogram range 1

Green moment 1

Red range

Green range

Red histogram range 1L

Feature set

Textural

Blue GLRM short run

Red GLCM homogeneity

Blue GLCM variance

Red GLCM variance

Gray GLRM run length non-uniformity

Blue GLRM runpercent

Red GLRM run length non-uniformity

Blue GLRM run length non-uniformity
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5.2,1.2 Statistical classifier Classification accuracies obtained using a non-parametric

statistical classifier are shown in Table 5.4. Canada Western Red Springwheat followed by

barley were classified the best using the statistical classifier. The results of the non-

parametric classifier were inferior to those of the BPN classifier for all the grain types except

for CWAD (Fig. s.1).

With a minimum significant level of 0.L5, procedure STEPDISC of SAS was used

to find out the relative importance of the input features in the classification process. Table

5.5 shows the rankings of input features in descending order of their contribution to the

discriminatory power of the model. The top 20 features had 14 shape and 6 size features.

However the ranking of the features with the non-parametric classifier was different from

that obtained with the BPN classifier.

Table 5.4 Classiflrcation accuracies of cereal grains obtained using a non-parametric

classifier with morphological features as inputs

Classifïcation accuracies for five validation sets, ZoGrain
type

Mean

Barley

CWAI)

CWRS

Oats

Rye

93.8

91.4

96.2

89.4

89.6

94.L

91.0

97.4

90.1

90.6

92.0

90.8

97.5

94.4

92.0

92.4

90.0

97.0

92.L

91.9

93.5

90.1

96.8

90.9

92.7

93.2

90.7

97.0

9L.4

91..4
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Fig. 5.1 Comparison of classification accuracies of the BPN and non-parametric

classifier with morphological features as inputs

For both the neural network and statistical classifier, using morphology alone, the

classification accuracies of CWAD wheat were very low. This can be attributed to the fact

that the smaller and immature kernels of CWAD wheat are very close in shape and size to

CWRS wheat kernels. Misclassification due to close morphological resemblance between

CWAD and CWRS wheats was also reported by Majumdar et al. (2000a). It is also

speculated that because of its distinct color and texture, the classification accuracy of rye

would improve when color and texture are included in the feature model.

Rye
Grain type
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Table 5'5 The top 20 morphological, color, and textural features based on their respective contribution towards classification

accuracy for cereal grains while using a non-parametric classifier

Rank

I
2

3

4

5

6

7

I
I
10

11

Morphological

Minor axis length

Boundary FD L8

Radial FD 2

Radial FD 7

Shape moment 2

Major axis length

Shape moment L

Area

Boundary FD 6

Maximum radius

Radial FD 3

Red moment 2

Saturation mean

Green mean

Red moment 1

Red mean

Green range

Blue range

Blue histogram range 1

Red variance

Red moment 3

Red histogramrange22

Feature set

Red GLRM entropy

Green GLRM long run

Red GLRM color non-uniformity

Green GLRM run length non-uniformity

Green GLCM inertia

Blue GLCM mean

Green GLCM variance

Red GLRM runpercent

Blue GLRM color non-uniformity

Red GLCM variance

Red GLCM homogeneity
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Table 5.5 The top 20 morphological, color, and textural features based on their respective contribution towards classiflrcation

accuracy for cereal grains while using a non-parametric classifier

Rank

12

13

t4

15

16

t7

18

L9

20

Morphological

Perimeter

Boundary FD 3

Radial FD 4

Boundary FD L7

Shape moment 3

Minimum radius

Boundary FD 9

Boundary FD 2

Boundary FD 10

Color

Blue histogram range 4

Green variance

Green moment 2

Green moment 1

Blue variance

Red moment 4

Blue histogram range 8

Red histogram range 6

Blue histogram range 5

Feature set

Textural

Blue GLRM entropy

Blue GLCM variance

Red GLRM run length non-uniformity

Green GLRM runpercent

Green GLRM short run

Blue GLRM short run

Green GLCM mean

Green GLRM entropy

Red GLCM mean
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5.2.2 Color feature model This model used all the 123 color features that were extracted for

the grain kernels. Neural network and non-parametric classifiers were used to determine the

classification accuracies.

5.2.2.1Neural networkclassifier The BPN hadL23 neurons in the input layer,76 neurons

in each of the hidden layers, and five neurons in the output layer. The network took

approximately 64 h to train. The classification accuracies based on color features using a

BPN classifier are shown in Table 5.6. Classification accuracy of CWRS wheat was very

high using the color features. Atl the other grain types showed low to moderate classification

results. The rankings of the contribution of color features to the classification process are

given in Table 5.3. It is evident that the moments play a very significant role in the

classification process. Four out of the top five color features were based on color moments.

Although there were a lot of histogram features, their contribution to the classification was

not very important with only five histogram features making it to the top2}list of features.

In an earlier study, Luo et al. (1999a) also found that the histogram features contributed very

little to the classification process.

5.2.2.2 Statistical classifier Classification accuracies obtained using a non-parametric

statistical classifier are shown in Table 5.7. It is evident that the classification accuracies

with the statistical classifier were very low for all the grain types except for CWRS wheat.

Figure 5.2 shows a comparison of the statistical classifier with its BPN counterpart.

Procedure STEPDISC of SAS was used to find out the relative importance of the

input features in the classification process. Table 5.5 shows the rankings of color features

in descending order of their contribution to the discriminatory power of the model. Out of
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the three color bands, the red band contributed the most to the classification with eight red

band features in the top 20list followed by five features of green and six of the blue bands

(the remaining one being mean saturation). Statistical parameters such as mean, variance,

and range of the various color bands also contributed to the classification.

Table 5.6 Classification accuracies of cereal grains obtained using a BPN classifier with

color features as inputs

Classification accuracies for five validation sets, VoGrain
type

Mean

Barley

C\ryAI)

CWRS

Oats

Rye

94.0

90.5

99.t

92.4

95.4

93.7

92.2

98.5

93.8

94.8

95.L

93.4

99.4

94.1.

95.4

92.5

95.2

99.3

93.4

91.8

94.2

93.3

98.7

90.8

94.9

93.8

92.9

99.0

92.9

94.5

Table 5.7 Classification accuracies of cereal grains obtained using a non-parametric

classifier with color features as inputs

Grain
type

Classification accuracies for five validation sets, Vo

Mean

Barley

CWAI)

CWRS

Oats

Rye

71..5

81.1

93.6

60.7

87.7

66.1,

80.6

90.3

68.1

91.2

65.8

8t.7

90.9

74.5

9r.4

80.7

13.4

93.0

67.2

81.8

73.5

78.5

93.7

63.5

86.7

71.5

79.1

92.3

66.8

87.8
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m BPN classifier Ø Non-parametric classifie r

Fig. 5.2 Comparison of classification accuracies of the BPN and non-parametric

classifier with color features as inputs

The non-parametric classifier's performance using color features was very inferior

to its BPN counterpart. The reason behind this can be traced back to the basic fact that the

non-parametric classifier retains all the training patterns and does the comparison when an

unknown pattern is presented to it. In this case, because of a large number of features (multi-

dimensional pattern space), it was very difficult for the classifier to process the information

which resulted in a poor classification. The BPN classifier does not suffer from this

shortcoming of a non-parametric classifier, and thus performed better. Luo et at. (1999b)

also proved the superiority of neural network classifier over non-parametric classifier while

using color features. As speculated in section 5.2.'1, the classification accuracy of rye

improved using the color features. The rankings of features for both the classifiers indicate

that the HSI based features are not as important as the RGB model features for classification.
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5.2.3 Texture feature model This model used all the 56 textural features that were extracted

for the grain kernels. The images were reduced to 32 gray levels and classification

accuracies were obtained using a neural network and a statistical classifier.

5.2.3.I Neural network classifïer The BPN had 56 neurons in the input layer, 58 neurons

in each of the two hidden layers, and five neurons in the output layer. The network took

approximately 15 h to train. The classification accuracies based on textural features using

a BPN classifier are shown in Table 5.8. The textural feature model seemed to give less

variation among the classification of different grain types in comparison to morphological

and color feature models where there was a large fluctuation in classification accuracies for

different grain types. Figure 5.3 shows a comparison of classification accuracies using

morphological, color, and textural features with a BPN classifier. The bar charts clearly

indicate that none of the feature models, in themselves, were capable of classifying all the

grains with a high accuracy.

The rankings of the contribution of textural features to the classification process are

shown in Table 5.3. For the textural features, the green band was very important with seven

out of the top 1,0 features coming from the green band. Apart from that there was no clear

pattern in the textural features. The top 20 features had equal number of run-length and co-

occurrence matrix features.

5.2.3.2 Statistical classifier Classification accuracies obtained using the non-parametric

statistical classifier are shown in Table 5.9. The classification accuracies with the non-

parametric classifier also showed little variation among the grain types.
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Table 5.8 Classifïcation accuracies of cereal grains obtained using a BPN classifier with

textural features as inputs

Classification accuracies for five validation sets, 7oGrain
type

Mean

Barley

CWAI)

CWRS

Oats

Rye

93.1

90.6

94.1

93.9

96.t

96.3

92.8

90.4

91.0

96.0

95.9

91.8

96.8

89.0

96.2

93.0

90.8

96.8

89.7

93.1

92.8

9L.6

96.L

90.4

94.4

94.2

9L.5

94.9

90.8

95.2

100

98

96

94

92

90

88

86

W Morphological [ïfï Color WTexture

Fig. 5.3 Classification accuracies of a BPN classifier using morphological, color, and

texture models
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Table 5.9 Classification accuracies of cereal grains obtained using a non-parametric

classifier with textural features as inputs

Classification accuracies for five validation sets, ZoGrain
type

Mean

Barley

CWAI)

cwRs

Oats

Rye

9L.7

92.2

95.2

89.8

96.9

9L.3

93.2

96.3

92.2

96.9

90.9

92.4

97.0

92.7

96.2

90.8

92.3

94.7

90.7

94.4

92.4

92.5

94.6

90.0

96.5

91..4

92.5

95.6

91..1

96.2

Figure 5.4 shows a comparison of classification accuracies using molphological,

color, and textural features with a non-parametric classifier. The classification accuracies

obtained using the color feature model were much lower as compared to morphological or

textural features. While using textural features, the non-parametric classifier gave better

results than the BPN classifier for all the grain types except barley.

Procedure STEPDISC of SAS was used to find out the relative importance of the

input features in the classification process. Table 5.5 shows the rankings of input features

in descending order of their contribution to the discriminatory power of the model. The run-

length matrices contribute more towards the classification as compared to the co-occurrence

matrices. Similar to the case with the BPN classifier, the green band was more important

than the red or blue bands.
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Fig. 5.4 Classification accuracies of a non-parametric classifier using morphological,

coloro and texture models
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Fig. 5.5 Comparison of classification accuracies of the BPN and non-parametric

classifier with texture features as inputs
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5.2.4 Nl features model A complete set of 230 features (5l morphological, 123 color, and

56 textural) was used for classification of the five grain types using a neural network and a

non-parametric statistical classifier.

5.2.4.I Neural network classifier The BPN had 230 neurons in the input layer, 102 neurons

in each of the two hidden layers and five neurons in the output layer and took approximately

T5htotrain. Table5.l,0showsthesummaryoftheclassificationaccuraciesobtainedforthe

five cereal grain classes. Except for CWAD wheat, the classification accuracies improved

considerably for all the other grain types using all features as compared to classification

accuracies obtained using any one class of features. The improvement in classification

accuracies is because all the three parameters, namely, morphology, color, and texture,

together characterize a kernel much better than any one parameter alone. This can be seen

from the rankings of the classification features for this model (Table 5.11) where all the

parameters are contributing towards the classification process.

Table 5.10 Classification accuracies of cereal grains obtained using a BPN classifier

with all features as inputs

Classification accuracies for five validation sets, ZoGrain
type

Mean

Barley

CWAI)

CWRS

Oats

Rye

97.7

90.5

98.3

97.9

99.0

99.0

91,.7

98.2

98.1

99.6

98.7

9L.9

98.9

98.8

98.7

98.1

90.2

99.2

98.7

98.5

97.6

90.4

98.3

98.3

99.2

98.2

90.9

98.6

98.4

99.0
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Table 5.11 The top 20 features based on their respective contribution towards classiflrcation accuracy for cereal grains while using

BPN and non-parametric classifiers with all features as inputs

Rank

I
2

3

4

5

6

7

I
9

10

Back propagation network

Hue mean

Minor axis length

Boundary FD 2

Saturation mean

Radial FD 2

Boundary FD 20

Perimeter

Blue GLRM short run

Boundary FD 18

Green GLRM short run

CIassifier

Non-parametric

* Source: Majumdar and Jayas (2000d)

Radial FD 2

Boundary FD 18

Radial FD 7

Green GLCM inertia

Shape moment 2

Minor axis length

Saturation mean

Green GLCM mean

Green range

Shape moment 1

Non-parametric*

Iængth

Haralick ratio

First Fourier descriptor

Standard deviation of radii

Entropy

Area ratio

Saturation

Red

Mean gray level

Mean
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Table 5.11 The top 20 features based on their respective contribution towards classification accuracy for cereal grains while

using BPN and non-parametric classifïers with alr features as inputs

Rank

11

12

13

t4

15

L6

t7

18

t9

20

Back propagation network

Gray GLRM short run

Boundary FD 3

Blue histogram range L

Radial FD 5

Green GLRM runpercent

Green GLRM long run

Minimum radius

Gray GLCM inertia

Boundary FD 16

Red GLRM short run

Non-parametric

* Source: Majumdar and Jayas (2000d)

Blue GLRM color non-uniformity

Green GLRM short run

Blue GLRM entropy

Radial FD 5

Green GLCM entropy

Shape moment 3

Red GLCM mean

Red GLRM entropy

Green GLRM runpercent

Boundary FD 17

Classifier

Non-parametric*

Radius ratio

Inertia

Run-length non-uniformity

Run percent

GLRM entropy

Cluster prominence

Short run

Blue

Minimum radius

Third invariant moment
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5,2.4.2 Statistical classiflrer Classification accuracies obtained using the non-parametric

statistical classifier are shown in Table 5.L2. Once again, even for the non-parametric

classifier, classification accuracies for all the grain types were better than using any one

feature model by itself. The accuracies for each grain type were, however, lower than the

neural network classifier (Fig. 5.6). This is because of the inherent shortcoming of a non-

parametric classifier in handling a large number of input patterns. Thus, it can be safely

concluded that when dealing with such a large number of input patterns, the use of a BpN

network is advisable.

Procedure STEPDISC of SAS was used to find out the relative importance of the

input features in the classification process. Table 5.11 shows the rankings of these features

in descending order of their contribution to the discriminatory power of the model. For both

the classifiers, the contribution of color features seemed to be very less as compared to the

morphological or textural features. Among the top 20 features, there were only three and two

color features for the BPN and non-parametric classifier, respectively. This result should be

inteqpreted with reservation. As the contribution of textural features was substantial, it

means that the spatial distribution of color played a more important part in classification

rather than the color components themselves. The difference in rankings of features with the

BPN and non-parametric classifiers can be attributed to their entirely different approach to

the classification process.

The feature rankings for the non-parametric classifier were also compared to the

previous work done by Majumdar and Jayas (2000d). In the present sfudy, the shape features

played a more important role in classification than the size features as there was not even one
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size feature among the top five features. In their work, there were three features among the

top five features. This can be explained by the difference in image resolution of the two

studies. In the given thesis, because the resolution of the images was higher than those used

by Majumdar and Jayas (2000d), the kernels were characteraed by their fine boundary

details. Among the textural features, the features obtained using the green band contributed

more towards classification than the other two bands. This result was in accordance with the

hypothesis of Majumdar and Jayas (2000d) that green band based textural features are the

most important. Nevertheless, the presence of red and blue band based textural features

indicates that they were important to a certain extent, both of which were not used in the

earlier study.

It is also evident from Table 5.11 that, in the present thesis, textural features

contributed more towards classification than color features. This, however, did not hold

good in the study conducted by Majumdar and Jayas (2000d). Their study suffered from a

hardware limitation where the images were captured in rectangular pixels which were then

converted to square pixels using interpolation. This may have distorted the actual spatial

distribution of colors in the objects which resulted in poor contribution of texture as a

classification feature.
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Table 5.12 Classification accuracies of cereal grains obtained using a non-parametric

classifier with all features as inputs

Classification accuracies for five validation sets, ZoGrain
type

Mean

Barley

CWAI)

CWRS

Oats

Rye

79.8

85.0

99.6

91.8

94.8

93.9

92.3

90.1

93.3

97.6

94.8

92.5

96.7

98.7

98.8

77.6

81.7

99.2

96.0

96.2

79.3

86.8

99.1.

94.9

94.7

85.1

88.9

96.9

95.0

96.4
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Fig. 5.6 Comparison of classification accuracies of the BPN and non-parametric

classifier with all features as inputs
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5.2.5 Combined 60 and top 60 features models

5.2.5.1Neural network classifier The top 20 moqphological, color, and textural features

were obtained from Table 5.3 to create the combined 60 features model. This model was

compared with the top 60 feature set obtained from the rankings of features obtained from

the all features model. The combined 60 features model was based on the assumption that

morphology, color, and texture contributed equally towards the classification process. These

two reduced feature models were used to investigate if the reduction in number of features

affects the classification accuracies. The networks had 60 neurons in the input layer, 60 in

each of the two hidden layers and 5 neurons in the output layer and took approximately 28

h to train. Tables 5.I3a and 5.13b show the classification accuracies obtained using the

combined 60 and top 60 features models, respectively.

Table 5.13a indicates that a reduced set of combined features improved the

classification accuracy. This can be attributed to the elimination of a lot of redundant

features which did not contribute much to the classification process but induced errors in the

weights on the nodes of the network instead. The top 60 features model, however, did not

perform as well (Table 5.13b). The classification accuracies were lower than those obtained

using the combined 60 features model. The feature rankings of the combined 60 features

model (Table C7, Appendix C) show that all three classes of features (morphological, color,

and texture) contributed to the classificationprocess. Hence an optimized feature set should

have all kinds of features in it.
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Table 5.13a Classification accuracies of cereal grains obtained using a BPN classifîer

with combined 60 features as inputs

Classifïcation accuracies for flrve validation sets, VoGrain
type

Mean

Barley

CWAD

CWRS

Oats

Rye

97.6

90.2

98.6

97.6

98.8

98.8

90.6

98.9

98.6

99.1,

98.0

91.7

98.1

99.L

99.0

98.5

90.5

98.7

98.6

98.8

97.7

89.7

99.0

97.9

98.9

98.1

90.5

98.7

98.4

98.9

Table 5.L3b Classification accuracies of cereal grains obtained using a BPN classifier

with top 60 features as inputs

Classification accuracies for five validation sets, ZoGrain
type

Mean

Barley

C\ryAI)

C1VRS

Oats

Rye

95.2

83.4

95.4

96.7

91.5

95.9

84.5

95.0

96.8

96.5

91.8

88.8

95.8

98.4

96.4

95.6

85.8

98.4

97.5

94.8

94.9

85.4

96.r

93.4

94.L

95.9

85.6

96.2

96.6

94.7
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5.2.5.2 Statistical classifïer The rankings of features obtained by using the morphological,

color, and textural feature models were used to create the set of combined 60 features (Table

5.5). These 60 features (top 20 of each of the morphological, color, and textural classes)

were used for classification using a non-parametric classifier. This combined 60 features

model was compared against the top 60 feature set created using the best ranked 60 features

from the all features model. Tables 5.1,4a and 5.14b show the results of classification using

the combined 60 features and top 60 features models, respectively. Figure 5.7 shows a

comparison of results obtained using the combined 60 and top 60 features models for BpN

and non-parametric classifiers. Between the combined 60 and top 60 features models, the

combined 60 features model gave better classification accuÍacies than the top 60 features

model. The performance of the BPN classifier was superior to the non-parametric classifier

for both combined 60 and top 60 features models.

The classification accuracy of CWAD wheat was lower than the other grain types

irrespective of the classifier being used. But the classification accuracy (for CWAD wheat)

did seem to improve with these 60 features in comparison to using all the features. This led

us to believe that further reduction of the feature set might improve the results. This was

done in the next section. The improvement in classification accuracy with a reduction in

number of input features was consistent with the results obtained by Majumdar et al. (2000a,

2000b, 2000c) and Luo er al. (1999a).
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Table 5.I4a Classification accuracies of cereal grains obtained using a non-parametric

classifier with combined 60 features as inputs

Classification accuracies for five validation sets, VoGrain
type

Mean

Barley

CWAI)

CWRS

Oats

Rye

89.2

90.2

99.0

94.5

98.0

96.3

9L.7

98.4

97.3

98.7

93.8

88.1

89.9

96.4

98.0

86.5

91.0

99.0

95.2

97.9

85.9

90.4

98.9

95.3

97.5

90.4

90.3

97.r

95.8

98.0

Table 5.L4b Classification accuracies of cereal grains obtained using a non-parametric

classiflrer with top 60 features as inputs

Classification accuracies for flrve validation sets, VoGrain
type

Mean

Barley

CWAI)

CWRS

Oats

Rye

88.0

85.4

98.0

93.9

93.3

9I.9

85.6

98.5

95.9

92.2

91,.t

83.0

86.0

91..7

95.2

84.0

84.4

98.1

92.4

90.2

83.8

86.7

96.8

9L.7

93.2

87.7

85.0

95.5

93.1

92.8
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Fig. 5.7 Comparison of classification accuracies of the BPN and non-parametric

classifier with combined 60 and top 60 features as inputs

5.2.6 Combined 30 and top 30 features models

5.2.6,I Neural network classifier The top L0 morphological, color, and textural features

were obtained from Table 5.3. The combined model of 30 features (10 each of the

morphological, color, and textural class) was used to investigate if further reduction in

number of features improves the classification accuracies. This model was also compared

to the top 30 feature set consisting of the best 30 features obtained using the rankings of

features from the all features model. The BPNs contained 30 neurons in the input layer, 52

neurons in each of the two hidden layers, and 5 neurons in the output layer. The training

time for the network was approximately L0 h. Tables 5.15a and 5.15b show the classification

accuracies obtained using the combined 30 and top 30 features models.

Rye
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Table 5.15a ClassifÏcation accuracies of cereal grains obtained using a BPN classifier

with combined 30 features as inputs

Classiflrcation accuracies for five validation sets, VoGrain
type

Mean

Barley

CWAI)

cwRs

Oats

Rye

97.8

89.3

98.5

97.2

97.8

98.3

90.4

98.8

98.4

98.4

97.3

91.5

98.2

98.7

98.2

98.4

90.0

98.4

91.3

98.1

97.8

89.3

98.5

97.3

97.8

98.0

90.1

98.5

97.8

98.0

Table 5.15b Classification accuracies of cereal grains obtained using a BPN classiflrer

with top 30 features as inputs

Classification accuracies for five validation sets, ZoGrain
type

Mean

Barley

C\ryAI)

CWRS

Oats

Rye

95.7

82.6

93.7

94.9

87.2

91,.2

78.8

90.2

94.7

89.3

93.0

77.9

91.8

92.5

89.7

89.3

80.7

95.3

9L.9

88.0

89.3

80.1

9r.7

93.9

87.9

9r.7

80.0

92.5

93.6

88.4

Classification accuracies of the combined 30 features model were consistently higher

than those of the top 30 features model. Therefore, it was concluded that the top 60 and top

30 features models did not perform as well when compared to the corresponding combined

105



feafures models.

Figure 5.8 shows a comparison of the classification accuracies obtained using all

features, combined 60, and combined 30 features models, using a BPN classifier (for sake

of clarity, the poorly performing top 60 and top 30 models not included in comparison).

Analysis of variance showed that the classification accuracies shown in Fig. 5.8 were not

significantly different (P<0.05) from each other for the respective grain types. Considering

the amount of time saved in training of the network, it is advisable to use a less complicated

network. In comparison to the combined 30 features model, the combined 60 features model

gave slightly better classification accuracies for oats and rye. The only disadvantage of using

the combined 60 features model over the combined 30 features model is that the former took

about 1.5 times longer to train. So depending on whether training time is important or a

higher classification accuracy is desired, the feature model can be chosen accordingly.
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Fig. 5.8 Comparison of classification accuracies of the all features, combined 60, and

combined 30 features models using a BpN classifier
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5.2.6.2 Statistical classifier The combined 30 features model was created using the rankings

obtained from Table 5.5. The 30 features (top 10 of each of the morphological, color, and

texfural classes) were used for classification using a non-parametric classifier. These were

compared to the corresponding top 30 features model obtained from the feature rankings of

the all feafures model using a non-parametric classifier. Tables 5.L6aand 5.16b show the

results of classification using the combined 30 and top 30 features models, respectively.

The combined 30 features model performed significantly better (P<0.05) than the

top 30 features model (Fig. 5.9). For barley, CIVRS wheat, and oats the classification

accuracies of the BPN classifier were higher than the non-parametric classifier, whereas for

CU/AD wheat and rye the classification accuracies were very close. Thus the overall

performance of BPN classifier with combined 30 features was better.

Figure 5.10 shows a comparison of the classification accuracies obtained using all

features, combined 60, and combined 30 features models, with a non-parametric classifier

(for sake of clarity, the poorly performing top 60 and top 30 models not included in

comparison). The all features model fared badly in classifying barley and the combined 30

features model could not classify CWRS wheat as good as the other two models. For

optimum performance while classifying these five grain types, the combined 60 features

model is recommended.

The number of features in the classifiers were further reduced to investigate the affect

on classification accuracies. When a set of 20 features was used for classification, the

performance of the classifiers deteriorated drastically for both BPN and non-parametric

classifiers (Tables C8 and C9 of Appendix C). This indicated that to obrain high
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classification accuÍacies a minimum of about 30 features was necessary. Any further

reduction in the number of features will have considerable adverse effect on the performance

of the classifier.

Table 5.L6a Classification accuracies of cereal grains obtained using a non-parametric

classifier with combined 30 features as inputs

Classification accuracies for the five validation sets, VoGrain
type 5 Mean

Barley

CWAI)

cwRs

Oats

Rye

95.5

89.7

98.3

93.5

98.0

96.4

91.8

98.2

96.0

98.0

94.7

90.0

98.2

93.9

97.6

94.9

90.8

15.0

96.3

98.t

93.9

90.7

98.3

93.7

98.4

95.1.

90.6

93.6

94.7

98.2

Table 5.16b Classification accuracies of cereal grains obtained using a non-parametric

classifier with top 30 features as inputs

Classification accuracies for the five validation sets, VoGrain
type

Mean

Barley

C\ryAI)

CWRS

Oats

Rye

89.2

71.7

95.8

90.6

87.2

86.8

80.1

92.5

88.1

87.5

91..2

80.5

93.1.

85.0

88.2

90.5

81.1

69.5

87.4

89.9

88.3

85.0

92.0

85.9

87.2

89.2

80.9

88.6

87.4

88.0
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5.3 Identification of Cereal Grains and Dockage

5.3.1 Morphological feature model A complete set of 5L morphological features was used

for classification of the ten output classes (five grain types, namely, barley, CWAD wheat,

CWRS wheat, oats, and rye, and five dockage fractions, namely, broken wheat kernels, chaff,

wild buckwheat, wheat-heads, and canola) using neural network and statistical classifiers.

5.3.L.1 Neural network classifier The BPN had 51 neurons in the input layer, 32 neurons

in each of the two hidden layers, and ten neurons in the output layer. The network took

approximately L0 h to train.

The classification accuracies of the morphological model are given in Table C10 of

Appendix C. The rankings of the features based on the morphological feature model using

a BPN classifier are given in Tables 5.17. Among the 20 most important morphological

features, although 13 were shape features, the six most important features were the size

features. This is because there was a significant difference in sizes of the grain kernels and

some of the dockage fractions. Hence size features were very important. In a previous study

by Nair and Jayas (1998), the size features contributed more to classification than shape

features.
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Table 5.L7 The top 20 morphological, color, and textural features based on their respective contribution towards classification

accuracy for cereal grains and dockage fractions while using a BPN classifier

Rank

1.

2

3

4

5

6

7

I
I

10

11

Morphological

Mean radius

Minor axis length

Area

Minimum radius

Perimeter

Major axis length

Shape moment 4

Maximum radius

Shape moment 3

Boundary FD 20

Boundary FD 2

Color

Hue mean

Red moment 1

Saturation mean

Blue histogram range 1

Red mean

Red histogramrangeT

Red moment 2

Red histogram range 6

Red histogram range 8

Red histogram range 9

Red variance

Feature set

Textural

Red GLRM entropy

Green GLRM entropy

Gray GLRM entropy

Green GLCM cluster shade

Blue GLCM mean

Red GLCM conelation

Red GLRM color non-uniformity

Green GLRM runpercent

Blue GLRM entropy

Gray GLRM color non-uniformity

Red GLCM cluster shade
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Table 5.17 The top 20 morphological, color, and textural features based on their respective contribution towards classirrcation

accuracy for cereal grains and dockage fractions while using a BPN classifier

Rank

12

13

14

15

t6

17

18

t9

20

Morphological

Radial FD 2

Boundary FD 19

Boundary FD 3

Radial FD 4

Boundary FD 18

Boundary FD 16

Radial FD 19

Radial FD 5

Radial FD 3

Green moment 1

Red histogram range 10

Blue histogram range 2

Red range

Green histogram range 1

Blue moment 2

Hue range

Red moment 3

Green moment 2

Feature set

Blue GLRM color non-uniformity

Green GLRM long run

Green GLRM run length non-uniformity

Green GLRM color non-uniformity

Gray GLRM run length non-uniformity

Blue GLCM entropy

Red GLCM entropy

Red GLRM run length non-uniformity

Green GLRM short run
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5.3.1,2 Statistical classifier The classification accuracies obtained using a non-parametric

classifier are shown in Table Cl1 of Appendix C. Figure 5.LL shows the comparison of the

results of the BPN and non-parametric classifier. Both the classifiers showed very similar

classification accuracies. The classification of chaff was very low as compared to rest of the

classes. This is because it is very difficutt to classify chaff only on the basis of shape and

size alone. In a two dimensional image chaff can be confused with any of the other grain

types or dockage fractions. It is speculated that the classification accuracy of chaff would

improve when color and textural features are also used in the classification process. Because

of the uniqueness of their shape and sizes, dockage fractions like buckwheat and canola were

classified with almost L00Vo accuracy.

The rankings of the features obtained using the procedure STEPDISC are presented

in Table 5.L8. Similar to the case of BPN classifier, the size features played an important

role in the classification process. Size features become all the more important when the

output classes vary largely in size, e.g., in this case there was a tremendous size difference

in classes like wheat-heads and canola or buckwheat.
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Table 5.18 The top 20 morphological, color, and textural features based on their respective contribution towards classification

accuracy for cereal grains and dockage fractions while using a non-parametric classifier

Rank

1

2

3

4

5

6

7

I
9

10

IT

Morphological

Mean radius

Area

Minor axis length

Radial FD 2

Maximum radius

Shape moment 2

Shape moment 1

Boundary FD 8

Perimeter

Boundary FD 2

Shape moment 4

Color

Hue mean

Red mean

Green mean

Red moment 1

Red variance

Green variance

Saturation range

Saturation mean

Red moment 2

Green range

Green moment 1

Feature set

Textural

Gray GLRM long run

Blue GLCM mean

Green GLCM variance

Red GLCM variance

Red GLCM cluster shade

Blue GLCM variance

Red GLCM mean

Red GLRM run length non-uniformity

Blue GLCM entropy

Green GLCM entropy

Gray GLRM entropy
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Table 5.18 The top 20 morphological, color, and textural features based on their respective contribution towards classification

accuracy for cereal grains and dockage fractions while using a non-parametric classifïer

Rank

L2

13

T4

15

16

t7

18

t9

20

Morphological

Radial FD 10

Boundary FD 19

Shape moment 3

Radial FD 3

Radial FD 15

Radial FD 16

Boundary FD L

Boundary FD 3

Radial FD 6

Color

Red histogrumrange22

Blue histogram range 1

Green histogram range L3

Blue histogramrange2

Green moment 2

Blue range

Red histogramrange2l

Red range

Blue histogram range 6

Feature set

Textural

Green GLCM mean

Blue GLCM inertia

Blue GLRM run length non-uniformity

Gray GLCM entropy

Green GLCM cluster shade

Green GLRM run length non-uniformity

Red GLCM entropy

Green GLCM homogeneity

Blue GLRM entropy
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5.3.2 Color feature model For the color feature model, all the L23 color features were used

as inputs to classify the L0 output classes using neural network and statistical classifiers.

5.3.2.I Neural network classifier The neural network had 123 neurons in the input layer,

78 neurons in each of the two hidden layers, and l-0 neuÍons in the output \ayer. The network

took approximately 62.5 h for training. Table CLZ (Appendix C) shows the classification

accuracies of the color feature model. On the basis of color features only, the classification

accuracy of oats was very low as compared to any of the other grains or dockage fractions.

This is also in accordance with the poor classification accuracy of oats obtained in section

5.2.2. Buckwheat and canola showed the best classification accuracies. This can be

attributed to their distinct colors. As speculated earlier, the classification accuracy of chaff

improved considerably with the use of color features. The rankings of the color features are

given in Table 5.17. The contribution of the red band seems to be very important for

classification as seven of the top 10 features were based on the red band.

5.3.2,2 Statistical classifier The classification accuracies obtained using a non-parametric

classifier are shown in Table C13 of Appendix C. The comparison of the results of the BpN

and non-parametric classifier are shown in Fig. 5.L2. The BPN classifier outperformed the

non-parametric classifier for all the ten output classes. As stated in section 5.z.z,this can be

attributed to the poor capabitity of non-parametric classifiers when dealing with a large

number of input patterns. The classification of oats was very low as compared to rest of the

classes. The rankings of the features obtained using the procedure STEPDISC are presented

in Table 5.L8.
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5.3.3 Texture feature model All the 56 textural features were used as inputs to classify the

10 output classes for this model using a BPN and a non-parametric classifier.

5.3.3.1 Neural network classifier The neural network had 56 neurons in the input layer, 38

neurons in each of the two hidden layers, and L0 neurons in the output layer. The network

took approximately 10 h for training. Table C14 ofAppendix-C shows the classification

accuracies of the texture feature model. The classification accuracy of oats v/as very low as

compared to any of the other grains or dockage fractions which conforms with the poor

results obtained for oats in section 5.2.3. The rankings of the textural features are given in

Table 5.17. The contribution of the runJength matrix features seems to more important than

the co-occuffence matrix features as seven of the top L0 features were run-length features.

5.3.2,2 Statistical classifier Table C15 of Appendix C shows the classification accuracies

obtained using a non-parametric classifier. The comparison of the results of the BpN and

non-parametricclassifierareshowninFig.5.13. Thenon-parametricclassifieroutperformed

the BPN classifier for almost all the output classes. The rankings of the features obtained

using the procedure STEPDISC are presented in Table 5.18. The co-occurrence matrix

features contributed more towards classification than run-length matrix features as 14 out of

the top 20 features belonged to the former.

Figures 5.1'4 and 5.15 show the comparison of classification accuracies obtained

using morphological, color, and textural feature models when using a BpN and non-

parametric classifier, respectively. It is evident that none of the feature models, by itself, is

good enough to classify all the cereal grains and dockage fractions. So a combination of the

three models is desirable to achieve better results.
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5.3.4 All features model A complete set of 230 features (51 morphological, 123 color, and

56 textural) was used for classification of the 10 output classes using a BPN and a non-

parametric classifier.

5.3.4.1 Neural network classifier The BPN had230 neurons in the input layer, 77 neurons

in each of the two hidden layers, and ten neurons in the output layer and took approximately

103 h to train. Table C 16 (Appendix C) shows the summary of the classification accuracies

obtained using the all features model. The accuracies of oats, chaff, and wheat-heads were

still lower than the other grain types and dockage fractions, but had improved when

compared to the classifications obtained using only one feature set. Broken wheat kemels,

buckwheat, and canola were classified with almost 100% accuracy. The rankings of the

features are given in Table 5.19. The top 20 most important features contain features from

all the sets, i.e., morphological, color, and texture. Among the morphological features,

however, there is only one size feature which indicates that shape is a better parameter than

size when it comes to classiff dockage fractions which may have a large size range.

5.3.4.2 Statistical classifier The classification accuracies obtained using a non-parametric

classifier are shown in Table C17 of Appendix C. The comparison of the results of the BPN

and non-parametric classifier are shown in Fig. 5.16. As expected for such a large number

of input features, the BPN classifier outperformed the non-parametric classifier for almost

all the output classes. The classification of oats, chaff, and wheat-heads were very low as

compared to rest of the classes. The rankings of the features obtained using the procedure

STEPDISC are presented in Table 5.19. The contribution of color and textural features is

more than the morphological features.
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Table 5.19 The top 20 features based on their respective contribution towards

classifTcation accuracy for cereal grains and dockage fractions while using BPN and

non-parametric classifiers with all features as inputs

ClassifTer
Rank

Back propagation network Non-parametric

I Hue mean Hue mean

2 Saturation mean Red GLCM mean

3 Boundary FD 20 Green mean

4 Red GLCM correlation Saturation mean

5 Radial FD 2 Red mean

6 Boundary FD 3 Gray GLRM long run

7 Blue histogram range 1 Blue range

8 Boundary FD 2 Minor axis length

9 Green GLRM runpercent Red GLCM entropy

10 Blue GLRM runpercent Intensity mean

11 Radial FD 4 Green GLCM mean

12 Minimum radius Red moment I

13 Red variance Red GLCM variance

14 Gray GLRM entropy Gray GLRM color non-uniformity

15 Gray GLRM short run Green moment 1

16 Red GLCM cluster shade Blue GLCM variance

17 Boundary FD 19 Red GLRM run length non-uniformity

18 Red GLRM entropy Boundary FD 2

19 Green GLRM color non-uniformity Radial FD 2

20 Red GLRM short run Green GLCM homogeneity
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5.3.5 Combined 60 features model

5.3.5.1 Neural network classifier The top 20 moqphological, color, and textural features

were obtained from Table 5.17. This combined model of 60 features was used to investigate

if a reduction in the number of features affects the classification accuracies. The network had

60 neurons in the input layer, 35 in each of the hidden layers, and L0 neurons in the output

layer and took approximately 37.5 h to train. Table C1S (Appendix C) shows rhe

classification accuracies obtained using the combined 60 features model. The classification

accuracies of oats, chaff, and wheat-heads improved considerably by reducing the number

of input features.

5.3.5.2 Statistical classifier The rankings of features obtained by using the morphological,

color, and textural feature models were used to create this combined 60 features set (top 20

of each of the morphological, color, and textural classes, Table 5.18). Tabte C19 (Appendix

C) shows the results of the classification accuracies using a non-parametric classifier. The

comparison of the results of the BPN and non-parametric classifier are shown in Fig. 5.17.

Except for the case of barley, the performance of the non-parametric classifier was inferior

to that of the BPN classifier. Canola, buckwheat, CWRS wheat, and broken wheat kernels

gave classification accuracies in the excess of98Vo.

126



100

\oÐe5
C)
(ú
L

Eeo()
(ú

c
(ú
o85

80

Fig. 5.17 Comparison of classification accuracies of the BPN and non-parametric classifier with combined 60 features as inputs

Rye Chi
Oats Broken wheat

G rain/Dockage fraction type

L27



5.3.6 Combined 30 features model

5.3.6.1 Neural network classifier The top 10 morphological, color, and textural features

were obtained from Table 5.17. This combined model of 30 features was used to investigate

if a further reduction in the number of features affects the classification accuracies. The

network had 30 neurons in the input layer,27 in each of the two hidden layers, and 10

neurons in the output layer and took approximately 18.5 h to train. Table C20 (Appendix

C) shows the classification accuracies obtained using the combined 30 features model.

5.3.6.2 Statistical classifier The rankings of features obtained by using the morphological,

color, and textural feature models were used to create this set of combined 30 features (top

L0 of each of the morphological, color, and textural classes, Table 5.18). A non-parametric

classifier was used for classification, the results of which are shown in Table C21 (Appendix

c).

Figure 5.L8 shows the comparison of the classification accuracies of BpN and non-

parametric classifier. Except for the case of broken wheat kernels, the performance of the

BPN classifier was better than the non-parametric classifier.

Figures 5.1-9 and 5.20 show a comparison of the classification accuracies using a

BPN and non-parametric classifier, respectively, as the number of input features were

reduced. For both the classifiers, the combined 60 features model performed the best giving

higher classification accuracies than the other models for eight out of ten output classes.

The results of section 5.3 indicate that it is very difficult to get higher classification

accuracies for components like chaff and wheat-heads because of their vague shape and

sizes. Their inclusion in the model also adversely affected classification of other grains.
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5.4 Quantification of Grain and Dockage Mass Using Morphological Features

To find a relationship between the mass of the particles and their morphology, seven

morphological features, namely, area, perimeter, maximum radius, minimum radius, mean

radius, major axis length, and minor axis length were tested. A linear regression was

performed to find which mo¡phological feature best described the mass of that particular

class. The details of the regression analysis are shown in Appendices DA and DB.

It is clearly evident from the regression output and graphical plots that the area of the

grain kernels and dockage particles gave the best estimate of their mass. The following

regression equations were derived for the different classes:

Barley

m = -13.054 + 0.733 A (s.1)

CWAD wheat

m=-13.737+0.011A (s.2)

CWRS wheat

m = 1.319 + 0.008 A (s.3)

Oats

m = 0.664 + 0.005 A (s.4)

Rye

m = 0.958 + 0.008 A (s.s)

Broken wheøt kernels

m=2.599+0.041A
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Chøff

m = 0.087 + 3.66 x 10a A (s.7)

Buclcwheat

m = -0.046 + 0.002 A (5.8)

Wheat-heads

m = 4819.630 + 3.443 A (s.e)

Canolø

m= -0.019 + I.4Z x I0-3A (5.10)

whereÁ is the area in pixels and m is the mass in mg.

5.5 Testing of the Grain Cleaner

5'5.L Cleaning efficiency The summ arued results of the cleaning performance of the

cleaner are shown in Table 5.20. The detailed results for all the replicates of different grain

types are presented in Tables E1 through E5 of Appendix E. The cleaning efficiency (7) was

calculated using the formula

,7:(Du"-F*)x1oo- 
D u, (5.11)

where D u, is the mass of dockage in the sample before cleaning and F o"is the mass of foreign

material left in the sample after cleaning).
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Table 5.20 Average cleaning effrciencies of the grain cleaner for different grain types

at various flow rates

Cleaning efficiency (7o)

Grain type 4l<glh 8 kgh t2lrglh

Actual
InASS

basis

Image
basis

Actual
InASS

basis

Image
basis

Actual
InASS

basis

Image
basis

Barley

CWAD wheat

CWRS wheat

Oats

Rye

50.0

58.3

62.2

48.3

41,.3

46.6

58.4

62.6

51.5

46.t

50.0

61.7

6L.5

48.9

39.7

46.3

62.7

6t.7

41.8

39.3

50.6

60.0

59.8

52.0

39.r

50.5

59.2

61.0

51.8

39.L

The cleaning efficiencies calculated based on the imaging technique were very close

to the actual efficiencies (Table 5.20). There seemed to be no observable affect of the flow

rates on the cleaning efficiencies. It is important to note that the purpose of this study was

not to obtain very high cleaning efficiencies but to prove that the imaging technique was

robust enough to give very similar results to the actual weighing method used commercially.

5.5.2 Ranges of morphological features before and after cleaning For grain samples

containing SVo dockage, the ranges of seven size-based morphological features were

calculated. These unclean samples were passed through the grain cleaner at 8 kg/h and the

ranges of the same mo{photogical features were calculated for the cleaned grain. Table5.ZL

shows the results of this experiment.
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Table 5'21 The ranges of morphological features for different grain types with 5%o dockage, before and after being passed through

the grain cleaner (3 repticates)

Grain
type

Area

Barley

Dirty Clean

30782

29825

30249

29846

cwAD 30689

291.37

Perimeter

27620

26548

271.67

Dirty Clean

L640 1432

1.67L 1397

1653 1406

CWRS

26893

25730

25394

Maximum
radius

30284 28834

30246 27943

30014 27086

Range of Morphological Features

Dirty Clean

L673

1638

1.649

253 205

231 L98

26L 200

1.577

1467

1508

Minimum Mean radius
radius

L657

1628

1630

Dirty

234 21,4

250 21,2

243 1,87

1507

1438

1485

57 38 I27 88

61. 33 134 88

64 41 126 86

Clean

246 225

275 24t

267 233

Dirty Clean

54 45 L32 100

58 42 130 97

52 45 13L 101

Major axis
length

58 40 126 101

58 39 138 105

60 38 1.32 99

Dirty Clean

466 367

459 363

462 358

Minor axis
length

Dirty Clean

453 402

457 405

451. 409

L92 1.66

1"87 160

L92 I59

135

450 409

462 405

458  IL

184 181

180 175

190 1.82

189 17L

L92 t70

I92 176

...continued



Table 5.21 The ranges of morphological features for different grain types before and after being passed through the grain cleaner

Grain
type

Area

Oats

Dirty Clean Dirty Clean Dirty

30049 28719

31039 28L44

30080 2784L

Perimeter

Rye

29954 28643

30145 28435

30672 27901.

1,667

1658

1633

Maximum
radius

\467

L435

1.404

Range of Morphological Features

L662

L657

L625

249 209 52

249 201 51

273 222 59

Clean

L472

1439

I457

Minimum Mean radius
radius

Dirty

249 216 53

244 208 60

232 201. 52

Clean

42 L27 93

42 r29 90

40 129 9L

Dirty Clean

43 t25 95

44 127 94

43 I29 94

Major axis
Iength

Dirty Clean

452 387

460 390

453 381

Minor axis
Iength

Dirty Clean

46L 392

458 395

45L 390

185 r74

188 r79

r93 1.82

736

186 I73

180 172

191 175



Analysis of variance (ANOVA) was done on individual morphological features

(Appendix F). The results indicate that there was a significant difference (p < 0.05) in the

ranges of all the morphological features before and after the grain was passed through the

cleaner. This is a very important result as this change in the range of any of these

morphological features, can be used as a feedback to evaluate if the grain is being cleaned

properly or not.
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6. CONCLUSIONS AND RECOMMENDATIONS

This thesis research has brought the technology of machine vision one step closer to

its application in the grain industry. An optimum set of morphological, color, and textural

features now exists that can classify barley, CWAD wheat, CIVRS wheat, oats, and rye, with

accuracies of over 96%. It has been proven that all the morphological, color, and textural

characteristics are important in defining the appearance of these biological entities and thus

should be included in the classification process. It was also seen that the presence of too

many features in the classifier hinders its performance as the redundant features increase the

complexity of the classifier unnecessarily. Therefore, an optimized feature set is desirable.

In a practical situation, it is not only necessary for the machine-vision-based system

to identify cereal grains, but it should also be able to recognize the various impurities that

are generally present in the grain. We now have a system that is capable of recognizing these

impurities.

To compare the performance of statistical and neural network classifier, the

classification was done using a non-païametric classifier and a  -layer back propagation

network. The back propagation network outperformed the non-parametric classifier in

almost all the instances of classification. A backpropagation network is thus recommended

for classification of cereal grains.

The identification of impurities in a grain sample will be essential to design a

machine-vision-based grain cleaning system. It has been shown that the machine vision

technique is capable of quantifying the amount of impurity in a grain sample. This

quantification can be used as a measure of the cleaner's performance. Apart from that, the
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change in ranges of several morphological features can serve as a feedback to control

parameters like vibration and feed rates of the cleaner. This study has paved a way for the

implementation of machine vision techniques in designing an automatic imaging-based grain

cleaner. We now know that the cleanliness levels of cereal grains can be estimated without

actually weighing them physically. A few bottlenecks, however, still need to be overcome

to implement this concept in practice. The following recommendations will help in taking

this research to the next level from where it can be applied on a commercial scale:

' a commercial scale grain cleaner needs to be tested using a machine vision system;

' the system needs to be trained to recognize a wider variety of impurities, e.g., stones,

mildewed and bin-burnt grain kernels, wild oats, etc.;

' the dockage removed from the grain can be analyzed for the amount of salvageable

gram;

the image acquisition and data analysis (classification) needs to be done in real-time

by integrating the hardware and software of the system; and

hardware implementation of the soffware will be needed to make it more efficient for

data processing.
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Appendix A

C++ code for feature extraction
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The C++ code was developed in Microsoft Visual C++ (Version 6.0) environment.

The code reads an image file in tiffformat. It then thresholds the image to extract the objects

from the background. Once the objects are segmented, it extracts a total of 230 (51

morphological,123 color, and 56 textural) features from every object. The information

about the files and how to run the program is as follows:

C++ code filename: feøtures.cpp

Header filename: positionlist.h

Executable file obtained by compiling the code: feøtures.exe

Command line syntax (in dos prompt): features.exe imagelist.txt results.txt

where imagelist.txl is the list of image files to be processed (filenames with complete path)

and results.txt is the text file to which all the output witl be written. The program was

capable of ignoring corrupt and non-existent files in the imagelist.txt. In the results.txt,the

features of every kernel were written in one row and were delimited by a tab.

[Electronic copy of the program is available on request from Dr. D.S. Jayas]

1.52



Appendix B

Complete list of morphological, color and textural
features
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Table 81. Complete list of morphological features that were extracted from the grain
kernels and dockage particles

Feature Number Measurement

2 Perimeter

3 Maximum radius

4 Minimum radius

5 Mean radius

6 Major axis length

7 Minor axis length

8 - 11 Shape moments 1- through 4

12 - 31, Radial Fourier descriptors L through 20

32 - 51, Boundary Fourier descriptors 1 through 20

L54



Table 82. Complete list of color features that were extracted from the grain kernels
and dockage particles

Feature Number Measurement

T

2

J

4

5

6

7

I
9

10

L1

L2

T3

L4

15

t6-L9

20 -23

24 -27

28-59

60-91

92 - L23

Red mean

Green mean

Blue mean

Red range

Green range

Blue range

Red variance

Green variance

Blue variance

Hue mean

Saturation mean

Intensity mean

Hue range

Saturation range

Intensity range

Red moments 1 through 4

Green moments 1, through 4

Blue moments 1 through 4

Red histogram ranges 1 through 32

Green histogram ranges L through 32

Blue histogram ranges 1 through 32
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Table 83. Complete list of textural features that were extracted from the grain kernels and dockage particles

Feature
Number

1

2

Measurement

J

4

5

Gray level co-occurrence matrix mean for gray band

Gray level co-occurrence mat¡ix variance for gray band

Gray level co-occurrence matrix uniformity for gray band

Gray level co-occurrence matrix correlation for gray band

Gray level co-occunence mat¡ix cluster shade for gray band

Gray level co-occuûence matrix entropy for gray band

Gray level co-occurrence matrix homogeneity for gray band

Gray level co-occuÍrence matrix inertia for gray band

Gray level co-occuffence matrix mean for red band

Gray level co-occurrence mat¡ix variance for red band

Gray level co-occuûence matrix uniformity for red band

Gray level co-occurrence matrix correlation for red band

Gray level co-occurrence matrix cluster shade for red band

Gray level co-occurrence matrix entropy for red band

Gray level co-occurrence matrix homogeneity for red band

6

7

8

9

10

11

72

13

t4

15

Code

Gray GLCM mean

Gray GLCM variance

Gray GLCM uniformity

Gray GLCM correlation

Gtay GLCM cluster shade

Gray GLCM entropy

Gray GLCM homogeneity

Gray GLCM inertia

Red GLCM mean

Red GLCM variance

Red GLCM uniformity

Red GLCM correlation

Red GLCM cluster shade

Red GLCM entropy

Red GLCM homogeneity

156

...continued



Table 83. Complete list of textural features that were extracted from the grain kernels and dockage particles

tr'eature
Number

1.6

77

i8

19

20

21.

22

23

24

Measurement

Gray level co-occurrence matrix inertia for red band

Gray level co-occurrence matrix mean for green band

Gray level co-occurrence mat¡ix variance for green band

Gray level co-occurrence matrix uniformity for green band

Gray level @-occurrence matrix conelation for green band

Gray level @-occurrence matrix cluster shade for green band

Gray level co-occunence matrix entropy for green band

Gray level co-occunence matrix homogeneity for green band

Gray level co-occurrence matrix inertia for green band

Gray level co-occuÍence matrix mean for blue band

Gray level co-occurrence matrix variance fo¡ blue band

Gray level co-occurrence matrix uniformity for blue band

Gray level co-occurrence matrix correlation for blue band

Gray level co-occurrence matrix cluster shade for blue band

25

26

27

28

29

Code

Red GLCM inertia

Green GLCM mean

Green GLCM variance

Green GLCM uniformity

Green GLCM correlation

Green GLCM cluster shade

Green GLCM entropy

Green GLCM homogeneity

Green GLCM inertia

Blue GLCM mean

BIue GLCM variance

Blue GLCM uniformity

Blue GLCM correlation

Blue GLCM cluster shade
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Table 83. Complete list of textural features that were extracted from the grain kernels and dockage particles

Feature
Number

30

37

Measurement

32

33

34

Gray level co-oæurrence matrix entropy for blue band

Gray level co-occurrence matrix homogeneity for blue band

Gray level @-occurence matrix inertia for blue band

Gray level run length matrix short run for gray band

Gray level run length matrix long run for gray band

Gray level run length matrix color non-uniformity for gray band

Gray level run length matrix run length non-uniformity for gray band

Gray level run Iength matrix entropy for gray band

Gray level run length matrix runpercent for gray band

Gray level run length mat¡ix short run for red band

Gray level run length matrix long run for red band

Gray level run length mat¡ix color non-uniformity for red band

Gray level run length matrix run length non-uniformity for red band

Gray level run length matrix entropy for red band

35

36

37

38

39

40

47

42

43

Gray level run

Code

Blue GLCM entropy

Blue GLCM homogeneity

Blue GLCM inertia

Gray GLRM short ¡un

Gray GLRM long run

Gray GLRM color non-uniformity

Gray GLRM run length non-uniformity

Gray GLRM entropy

Gray GLRM runpercent

Red GLRM short run

Red GLRM long run

Red GLRM color non-uniformity

Red GLRM run length non-uniformity

Red GLRM entropy

matrix runpercent for red band
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Table 83. Complete list of textural features that were extracted from the grain kernels and dockage particles

Feature
Number

45

46

Measurement

47

48

49

Gray level run length matrix short run for green band

Gray level run length matrix long run for green band

Gray level run length mat¡ix color non-unifo¡mity for green band

Gray level run length matrix run length non-uniformity for green band

Gray level run length matrix entropy for green band

Gray level run length matrix runpercent for green band

Gray level run length matrix short run for blue band

Gray level run length matrix long run for blue band

Gray level run length matrix color non-uniformity for blue band

Gray level run length matrix run length non-uniformity for blue band

Gray level run length matrix entropy for blue band

50

51

52

53

54

55

56 Gray level run length matrix ru

Code

Green GLRM sho¡t run

Green GLRM long run

Green GLRM color non-uniformity

Green GLRM run length non-uniformity

Green GLRM entropy

G¡een GLRM runpercent

BIue GLRM short run

Blue GLRM long run

Blue GLRM color non-uniformity

BIue GLRM run length non-uniformity

Blue GLRM entropy

BIue GLRM runpercentnt for blue band
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Appendix C

Classification accuracies and feature rankings
obtained using different feature models and

classifiers
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Table Cl. Classifîcation accuracies of various grain types using 8 gray levels

Classification accuracies for three validation sets, 7o
Grain type

Mean

Barley

CWAI)

CWRS

Oats

Rye

85.9

91.3

87.5

93.5

93.3

89.3

93.6

87.2

95.7

93.5

90.3

94.6

86.8

94.7

92.5

88.5

93.2

87.2

94.6

93.1.

Table c2. Classifîcation accuracies of various grain types using ld gray levels

Classification accuracies for three validation sets, Zo
Grain type

Mean

Barley

CWAI)

cwRs

Oats

Rye

89.0

90.1

89.0

95.2

95.7

89.8

93.1.

88.8

96.5

94.5

89.5

89.7

90.3

94.7

95.7

89.4

91.0

89.4

95.4

95.3

Table c3. ClassifÏcation accuracies of various grain types using 32 gray levels

Classifïcation accuracies for three validation sets, Zo
Grain type

Mean

Barley

CWAI)

CWRS

Oats

Rye

87.9

87.5

86.8

96.7

95.8

89.1

95.5

88.3

97.7

91.5

91.0

92.I

90.5

96.0

96.2

89.3

9].7

88.6

96.8

94.5
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Table c4. classifîcation accuracies of various grain types using 64 gray levels

Classification accuracies for three validation sets, 7o
Grain type

Mean

Barley

CWAI)

CWRS

Oats

Rye

90.0

89.1

88.7

96.8

96.5

92.5

92.9

88.5

95.7

96.8

90.5

92.L

88.4

96.9

95.9

89.0

94.4

88.2

98.2

94.3

Table C5. Classification accuracies of various grain types using 128 gray levels

Classification accuracies for three validation sets, 7o
Grain type

Mean

Barley

CWAI)

CWRS

Oats

Rye

89.8

90.7

87.0

96.8

95.8

87.8

93.4

87.5

97.8

9L.2

90.1

90.1

89.2

95.2

94.7

89.2

91..4

87.9

96.6

93.9

Table C6. Classification accuracies of various grain types using 256 gray levels

Classifîcation accuracies for three validation sets, 7o
Grain type

Mean

Barley

CWAI)

CWRS

Oats

Rye

90.1

92.4

84.2

98.2

94.2

89.5

93.9

82.7

96.7

95.0

90.8

91.3

87.0

95.3

95.5

90.1

92.5

84.6

96.7

94.9
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Table C7. Rankings of features in the combined 60 feature model using a BPN classifier

Rank Feature

1

2

J

4

5

6

7

8

9

10

11

12

73

1.4

15

1.6

77

18

19

20

Boundary FD 18

Hue mean

Green GLRM long run

Red GLCM homogeneity

Green GLRM short run

Minor axis length

Radial FD 2

Green GLRM runpercent

Perimeter

Saturation mean

Boundary FD 2

Green GLCM correlation

Boundary FD 20

Red GLCM variance

Area

Maximum radius

Blue range

Radial FD 5

Blue GLRM short run

Green variance

Rank

2T

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Feature

Boundary FD 12

Green GLCM cluster shade

Green moment 2

Green GLCM enhopy

Red variance

Minimum radius

Blue GLRM runpercent

Shape moment 3

Blue GLRM run length non-uniformity

Major axis length

Green moment 1

Boundary FD 3

Blue moment 1

Blue GLCM variance

Radial FD 3

Blue histogram range 1

Red moment 2

Blue mean

Gray GLRM run length non-uniformity

Red moment 1

Rank

4T

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Feature

Boundary FD 17

Blue variance

Green GLCM variance

Red GLRM run length non-uniformity

Green GLCM mean

Blue GLCM correlation

Blue GLCM mean

Mean radius

Green range

Red histogram range 11

Blue GLRM color non-uniformity

Green histogram range 1

G¡een GLRM run length non-uniformity

Red range

Boundary FD 1

Red histogram range 9

Shape moment 4

Boundary FD 5

Red moment 3

Red histogram range 10
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Table C8. Classification accuracies of cereal grains obtained using a BPN classifier
with top 20 features as inputs.

Classification accuracies for five validation sets, VoOutput
class Mean

Barley

C\ryAI)

CWRS

Oats

Rye

85.9

78.3

85.8

83.3

86.2

85.4

77.5

85.3

87.9

84.4

86.2

78.0

83.6

84.5

84.8

88.5

78.8

86.8

86.9

84.3

83.2

77.9

86.4

83.0

84.8

85.8

78.t

85.6

85.1

84.9

Table C9. Classification accuracies of cereal grains obtained using a non-parametric
classifier with top 20 features as inputs.

Classification accuracies for five validation sets, VoOutput
class Mean

Barley

CWAI)

CWRS

Oats

Rye

81.3

76.9

86.3

82.6

84.8

84.8

78.4

86.0

86.3

85.7

85.2

77.0

87.7

82.1.

86.9

82.3

81..4

65.1

83.9

86.3

82.4

79.6

87.9

81.3

87.1

83.2

78.6

82.6

83.2

86.1
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Table C10. Classification accuracies of cereal grains and dockage fractions obtained using a BPN classifier with morphological
features as inputs

Output class

Barley

CWAI)

CWRS

Oats

Rye

Broken wheat

Chaff

\{ild buckwheat

Wheat-heads

Canola

90.6

86.3

93.3

77.7

89.1

96.8

57.9

9r.3

92.3

99.6

Classification accuracies for five validation sets, 7o

80.8

74.0

94.6

85.2

92.9

96.0

68.8

90.7

94.7

99.7

34
90.3 89.6

81.3 81.8

95.5 96.4

79.2 83.3

88.1 87.7

97.3 97.5

67.4 74.7

89.7 92.3

90.7 93.2

99.9 99.9

90.4

89.5

95.9

83.2

86.6

96.r

65.2

94.2

9L.2

99.8

Mean

88.3

82.6

95.2

8L.7

88.9

96.7

66.8

91..6

92.4

99.8
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Table C11. Classification accuracies of cereal
morphological features as inputs

Output class

Barley

CWAI)

C\ryRS

Oats

Rye

Broken wheat

Chaff

Wild buckwheat

Wheat-heads

Canola

93.9

83.8

9L.4

82.4

81,.7

93.8

40.2

99.1.

83.7

99.6

grains and dockage fractions obtained using a non-parametric classifier with

Classification accuracies for five validation sets, 7o

86.9

82.9

94.8

83.5

88.9

95.1.

49.8

98.2

90.4

99.9

34
89.1 90.8

83.6 86.8

95.8 96.7

76.9 81.5

89.8 89.1

94.6 96.6

50.1 49.3

99.2 100.0

88.2 89.4

99.8 99.7

85.7

89.1

98.7

86.4

90.3

96.4

40.3

99.9

84.0

99.9

Mean

89.3

85.2

95.5

82.2

87.9

95.3

45.9

99.3

87.2

99.8
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Table C12. ClassifÏcation accuracies of cereal grains and dockage fractions obtained using a BPN classifier with color features
as inputs

Output class

Barley

CWAI)

CWRS

Oats

Rye

Broken wheat

Chaff

Wild buckwheat

Wheat-heads

Canola

86.2

88.0

96.3

62.6

85.5

97.8

8L.7

99.0

78.4

99.7

Classification accuracies for fÏve validalion sets, Vo

72.0

78.7

94.6

76.4

91..7

98.4

88.8

99.9

85.8

99.9

34
84.L 85.2

77.1. 80.2

96.9 97.2

71.9 78.4

89.7 94.5

97.3 100.0

88.2 88.5

100.0 99.8

80.2 85.2

100.0 99.9

84.5

82.O

97.9

67.6

9'1,.3

99.L

86.2

99.6

84.0

100.0

Mean

82.4

81..2

96.6

7L.4

90.5

98.5

86.7

99.7

82.7

99.9
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Table C13. Classification accuracies of cereal grains and dockage fractions obtained using a non-parametric classifier with color
features as inputs

Output class

Barley

CWAI)

CWRS

Oats

Rye

Broken wheat

Chaff

Wild buckwheat

Wheat-heads

Canola

75.2

66.3

86.8

50.7

71..4

92.7

71.5

95.8

79.7

100.0

Classiflrcation accuracies for five validation sets, 7o

69.4

6t.4

91.0

60.9

80.6

86.9

85.1

98.9

84.7

100.0

34
65.7 67.8

62.9 71,.3

88.8 85.2

623 60.5

82.7 84.L

94.3 94.6

87.9 85.7

97.6 97.7

77.6 75.9

100.0 100.0

73.3

75.L

86.7

61..6

79.6

93.7

82.8

93.8

79.3

100.0

70.3

67.4

87.7

59.2

79.7

92.4

82.6

96.8

79.4

100.0
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Table C14. ClassifTcation accuracies of cereal grains and dockage fractions obtained using a BPN classifier with textural features
as inputs

Output class

Barley

CWAI)

CWRS

Oats

Rye

Broken wheat

Chaff

Wild buckwheat

Wheat-heads

Canola

81.1

89.6

93.8

69.8

89.2

97.5

77.7

98.4

93.2

99.6

Classification accuracies for five validation sets, 7o

81.9

87.0

94.O

59.5

90.0

96.3

84.0

99.4

95.2

99.7

34
88.4 85.2

87.9 85.8

93.4 94.3

61,.L 69.5

92.9 93.6

98.0 97.2

82.8 85.6

99.6 99.4

92.7 94.4

99.4 99.9

78.5

88.8

92.9

70.3

93.3

98.1

81.6

98.9

90.9

99.8

Mean

83.0

87.8

93.7

66.0

91.8

97.4

82.2

99.2

93.3

99.7
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Table C15. Classification accuracies of cereal grains and dockage fractions obtained using a non-parametric classifier with
textural features as inputs

Output class

Barley

CWAI)

C\ryRS

Oats

Rye

Broken wheat

Chaff

Wild buckwheat

Wheat-heads

Canola

89.4

92.1.

94.4

76.9

90.1

100.0

88.2

99.3

94.0

97.4

Classification accuracies for fîve validation sets, 7o

92.4

88.8

95.6

81.9

90.9

100.0

90.1

99.9

95.1

95.8

34
87.4 84.2

86.2 88.0

96.8 95.8

77.6 76.6

91.3 93.3

100.0 100.0

88.8 89.1

100.0 100.0

93.4 93.4

99.9 99.2

83.3

86.2

93.9

77.7

93.1.

100.0

89.7

100.0

93.9

99.4

Mean

87.4

88.2

95.3

78.r

9L.7

100.0

89.2

99.9

94.0

98.4
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Table C16. Classification accuracies of cereal grains and dockage fractions obtained using a BPN classifier with all features as
inputs

Output class

Barley

CWAI)

cwRs

Oats

Rye

Broken wheat

Chaff

Wild buckwheat

Wheat-heads

Canola

96.9

93.9

95.8

83.4

97.1

98.9

86.6

99.r

82.7

100.0

Classification accuracies for five validation sets, 7o

97.9

95.9

100.0

92.6

99.9

99.3

93.4

100.0

97.0

100.0

34
95.8

91,.4

98.4

85.9

98.7

98.7

90.9

99.9

90.1

100.0

94.4

93.2

98.2

89.0

97.9

99.4

93.9

100.0

92.9

100.0

94.3

95.1

97.0

9I.9

97.3

100.0

88.2

99.9

89.5

100.0

Mean

95.9

93.9

97.9

88.6

98.2

99.3

90.6

99.8

90.5

100.0

T7L



Table CL7. Classification accuracies of cereal grains and dockage fractions obtained using a non-parametric classifier with all
features as inputs

Output class

Barley

CWAI)

CWRS

Oats

Rye

Broken wheat

Chaff

Wild buckwheat

Wheat-heads

Canola

87.7

85.8

89.6

73.5

93.5

100.0

78.5

98.9

85.7

99.8

Classification accuracies for fïve validation sets, 7o

96.3

86.3

95.6

84.6

97.0

100.0

87.7

99.6

9t.2

100.0

34
84.4 86.4

88.7 87.8

98.7 96.6

81.5 79.0

95.7 94.6

99.2 99.2

77.7 78.3

99.9 100.0

7L.6 88.3

99.6 100.0

86.4

87.7

86.4

83.4

94.6

100.0

80.5

99.4

84.I

99.3

Mean

88.2

87.3

93.4

80.4

95.L

99.7

80.5

99.6

84.2

99.8
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Table C18. Classification accuracies of cereal grains and dockage fractions obtained using a BPN classifier with combined 60
features as inputs

Output class

Barley

CWAI)

CWRS

Oats

Rye

Broken wheat

Chaff

Wild buckwheat

Wheat-heads

Canola

95.5

9L.9

98.4

9L.9

96.6

99.8

92.5

100.0

9L.6

100.0

Classification accuracies for flrve validation sets, 7o

92.9

9L.2

99.0

93.2

93.7

99.4

88.8

100.0

94.5

100.0

34
91.5 93.5

94.5 93.7

98.4 98.8

88.7 90.7

96.8 95.9

99.2 100.0

89.8 89.4

100.0 100.0

9L.4 93.4

100.0 100.0

93.3

93.9

98.5

90.8

95.4

99.9

92.4

99.9

91.8

100.0

Mean

93.3

93.0

98.6

91.0

95.7

99.7

90.6

100.0

92.5

100.0
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Table C19. Classification accuracies of cereal grains and dockage fractions obtained using a non-parametric classiflrer with
combined 60 features as inputs

Output class

Barley

CWAI)

CWRS

Oats

Rye

Broken wheat

Chaff

Wild buckwheat

Wheat-heads

Canola

96.3

86.9

92.6

85.4

89.1.

100.0

84.8

100.0

89.9

99.3

Classification accuracies for flrve validation sets, 7o

92.6

96.6

99.3

94.1,

94.6

100.0

85.7

100.0

93.4

100.0

34
94.5 97.6

88.3 9t.6

100.0 99.6

93.2 92.0

97.9 93.7

100.0 100.0

83.2 87.6

100.0 100.0

90.1 93.0

100.0 100.0

96.6

90.8

99.3

92.3

93.3

100.0

87.8

100.0

94.7

100.0

95.5

90.8

98.2

9L.4

93.7

100.0

85.8

100.0

92.2

99.9

L74



Table C20. Classification accuracies of cereal grains and dockage fractions obtained using a BPN classifier with combined 30
features as inputs

Output class

Barley

CWAI)

cwRs

Oats

Rye

Broken wheat

Chaff

Wild buckwheat

Wheat-heads

Canola

92.6

96.2

97.9

84.8

9r.9

99.6

85.1

99.9

92.6

100.0

Classification accuracies for five validation sets, 7o

89.8

9'J..9

96.9

9L.2

93.2

99.2

89.2

99.7

95.1

100.0

34
94.1 88.2

9L.7 90.7

98.1 97.8

85.3 89.6

95.3 92.4

98.4 99.3

91.3 87.2

99.9 100.0

94.6 94.4

100.0 100.0

9L.4

94.4

98.5

88.6

93.8

99.8

89.6

99.7

91.6

100.0

Mean

91".2

93.0

97.8

87.9

93.3

99.2

88.5

99.8

93.7

100.0

775



Table C21. Classification accuracies of cereal grains and dockage fractions obtained using a non parametric classiFrer with
combined 30 features as inputs

Output class

Barley

CWAI)

CWRS

Oats

Rye

Broken wheat

Chaff

Wild buckwheat

Wheat-heads

Canola

86.1

89.1

92.9

89.0

90.9

99.6

83.2

96.3

88.1

100.0

Classifïcation accuracies for five validation sets, 7o

92.6

87.7

97.4

88.4

91..7

99.5

89.8

99.3

90.5

100.0

34
90.2 87.2

87.1. 86.8

99.3 95.8

83.7 87.8

93.8 9L.7

99.9 100.0

86.8 89.4

100.0 100.0

84.8 88.6

100.0 100.0

88.3

86.4

95.1

84.9

90.1

100.0

87.8

99.6

86.7

100.0

88.9

87.4

96.1.

86.8

91..7

99.8

87.4

99.0

87.7

100.0

L76



Appendix DA

Mass and morphology relationship charts for
cereal grains
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Table DAl. Relationship between mass and morphological features of barley

178
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Table DAz. Relationship between mass and morphological features of CWAD
wheat
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Table DA3. Relationship between mass and morphological features of CWRS
wheat
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Table DA4. Relationship between mass and morphological features of oats

r87



40

35

^30o
E
;25ø
(ú

>20

15

Regression Output

40

35

2000 3000 4000 s000 6000 7000 8000
Area (pixels)

250 300 350 400 450
Perimeter

60 70 80 90 100 110
Maximum radius

16 18 20 22
Minimum radius

Constant
Std En of Y Est
R Squared
X Coefficient(s)
Std Err of Coef.

Constant
Std Err of Y Est
R Squared
X Coefficient(s)
Std Err of Coef.

Constant
Std Err of Y Est
R Squared
X Coefficient(s)
Std Err of Coef.

Constant
Std En of Y Est
R Squared
X Coefficient(s)
Std Err of Coef.

Regression Output

0.66384747473396
7.L2580745325715
0.9212279507434I
0.00495128040016
5.9206508208E-05

-2.9174167079882
2.360022t956765
0.65384063964428
0.07395963358021
0.00220062601801

-4.8770405455355
2.3629L579940188
0.65299L27299619
0.38067650949631
0.01134806975076

-7.6472632190688
0.9L69906s298546
0.47t17256261706
1,.51442367502429
0.06560905 643124

^30CD

E
á2s
Ø(!
2zo

15 1

I

ro l-
200

40

35
Regression Output

^30o)
E
;25
Ø
(ú

>20

15

40

35
Regression Output

^30ct)
E
;25
Ø(ú

=zo
15

188

" "'åË^-..'
^È oåod oooo

_o;#eFÞ ø o o

-"Æl*ît'

ê^.4
EFoo o

b_



40

35

15

10

40

35

40

35

Regression Output
^30CD

E
ã25
Ø
(g
Eeo

10 1

^30o
E
;2sø
(ú
220

15

o

.3 .ti Ë-.%-å^ ó "ø Õ

sþ^k€'"u^"
Ë-lÈÈäø o o -

Constant
Std Err of Y Est
R Squared
X Coefficient(s)
Std En of Coef.

Constant
Std Err of Y Est
R Squared
X Coefficient(s)
Std Err of Coef.

Constant
Std Err of Y Est
R Squared
X Coefficient(s)
Std En of Coef.

Regression Output

-L2.328825523359
L.745497097881.43
0.81064265010033
0.81312010601604
0.01607053987563

-6.1009683866827
2.30570795188004
0.66959051999712
0.20565621003599
0.00590762388431

-9.7405954578056
2.859537005L8299
0.49L79919695558
0.77663653224524
0.0322842113833s

80 100 120 140 160 180 200
Major axis length

Regression Output

630
E
;25
Øõ>20

15 * o*æþF
o 

*q 
%o*

189



Table DAs. Relationship between mass and morphological features of rye
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Appendix DB

Mass and morphology relationship charts for
dockage fractions
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Table DBl. Relationship between mass and morphological features of broken
wheat kernels
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Table DBz. Relationship between mass and morphological features of chaff
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Table DB3. Relationship between mass and morphological features of
buckwheat
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Table DB4. Relationship between mass and morphological features of
wheatheads
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Table DBs. Relationship between mass and morphological features of canola
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Appendix E

Performance evaluatÍon of the grain cleaner

209



Table 81. Actual and imaging based cleaning effrciencies for barley at different flow rates

Flow rate
(ks/h)

Grain sample

Actual Image
mass (g) mass (g)

4.00

Before cleaning

100.00

100.00

100.00

8.00

100.59

rOL.22

99.34

100.00

100.00

100.00

Actual Image
mass (g) mass (g)

Dockage

L2.00

5.00

5.00

5.00

100.68

101.73

100.61

100.00

100.00

100.00

4.85

5.21

4.62

Clean grain

5.00

5.00

s.00

Actual lmage
mass (g) mass (g)

I01".28

IOL.36

L00.24

After cleaning

95.64

96.42

95.5s

5.04

5.I7

4.82

s.00

5.00

5.00

Foreign material

9s.95

96.73

95.9t

Actual Image
mass (g) mass (g)

96.02

95.86

94.92

5.13

5.20

4.9s

2.34

2.49

2.67

96.37

96.03

95.10

95.37

95.81

96.23

Cleaning efficiency
(To)

2.46

2.54

2.81.

Actual
mass

basis

2.50

2.36

2.64

95.36

95.99

96.1.5

53.2

50.2

46.6

Image
basis

2.72

2.49

2.84

2.49

2.37

2.55

2L0

49.3

5r.3

39.2

50.0

52.8

47.2

2.6L

2.33

2.62

46.0

51.8

41.1

50.2

52.6

49.0

49.'1.

55.2

47.1



FIow rate
(ks/h)

Grain sample

Actual Image
mass (g) mass (g)

4.00

Before cleaning

100.00

100.00

100.00

8.00

r01..28

r00.67

102.71.

100.00

100.00

100.00

Actual Image
mass (g) mass (g)

Dockage

12.00

5.00

5.00

s.00

101.09

100.88

10I.49

100.00

100.00

100.00

5.r9

5.47

5.61-

Clean grain Foreign material

Actual Image Actual Image
mass (g) mass (g) mass (g) mass (g)

5.00

5.00

s.00

I02.37

100.82

100.56

After cleaning

98.90

99.57

98.61

5:24

s.38

4.97

5.00

s.00

s.00

99.32

r00.46

99.0L

97.94

96.83

96.81

5.09

4.82

4.94

1.86

2.31.

2.08

97.68

96.99

97.00

97.62

97.24

96.s3

Cleaning effïciency
(7o)

1.93

2.64

2.20

Actual
mass

basis

L.93

1.88

1..94

97.57

97.38

96.78

62.8

53.8

58.4

Image
basis

2.02

1.97

1.83

1..93

1.88

2.r9

21,1

62.8

5L.7

60.8

6L.4

62.4

61..2

2.05

2.02

1..99

61.5

63.4

63.2

61..4

62.4

56.2

59.7

58.1

59.7



Flow rate
(ks/h)

Grain sample

Actual Image
mass (g) mass (g)

4.00

Before cleaning

100.00

100.00

100.00

8.00

100.55

100.43

99.68

1,00.00

100.00

100.00

Actual Image
mass (g) mass (g)

Dockage

12.00

t02.L6

L0L.29

99.94

5.00

5.00

5.00

100.00

1,00.00

100.00

5.34

5.42

4.82

Clean grain Foreign material

Actual Image Actual Image
mass (g) mass (g) mass (g) mass (g)

5.00

5.00

5.00

101..37

r00.67

100.08

After cleaning

97.68

98.24

97.82

4.95

5.61

4.97

s.00

5.00

5.00

97.69

98.54

97.6r

98.00

98.21.

98.75

5.20

5.34

4.73

1..94

r.67

2.06

97.82

98.52

98.84

97.83

98.03

97.64

Cleaning efïiciency
(vo)

1.88

L.75

2.1.6

Actual
InASS

basis

L.99

L.74

2.04

97.98

98.16

97.51.

6L.2

66.6

58.8

Image
basis

2.08

1.68

2.L3

2.r8

L.92

L.93

212

64.8

67.7

55.2

60.2

65.2

59.2

2.22

r.84

1.88

58.0

70.1.

57.L

56.4

6L.6

61,.4

57.3

65.5

60.3



Flow rate
(løh)

Grain sample

Actual Image
mass (g) mass (g)

4.00

Before cleaning

100.00

100.00

100.00

8.00

101..49

L02.57

102.46

100.00

100.00

100.00

Actual Image
mass (g) mass (g)

Dockage

12.00

5.00

s.00

5.00

L00.94

t01..26

L00.34

100.00

100.00

100.00

5.04

5.43

5.29

Clean grain

Actual Image
mass (g) mass (g)

5.00

5.00

5.00

r0r.62

1.01..71.

101.31

After cleaning

95.6L

95.37

94.88

5.t7

4.83

4.67

5.00

5.00

5.00

Foreign material

95.80

95.L6

95.01.

Actual Image
mass (g) mass (g)

96.r2

95.34

95.84

4.81

5.26

5.19

2.36

2.71

2.68

96.34

95.27

96.02

95.18

95.73

95.46

Cleaning efficiency
(To)

2.16

2.74

2.76

Actual
mass

basis

2.55

2.6L

2.50

95.40

95.9L

95.63

52.8

45.8

46.4

Image
basis

2.31.

2.70

2.62

2.37

2.19

2.64

2r3

57.1

49.5

47.8

49.0

47.8

50.0

2.5L

2.27

2.55

55.3

44.L

43.9

52.6

56.2

47.2

47.8

56.8

50.9



Table 85. Actual and imaging based cleaning efliciencies for rye at different flow rates

Flow rate
(ks/h)

Grain sample

Actual Image
mass (g) mass (g)

4.00

Before cleaning

100.00

100.00

100.00

8.00

L00.37

101.68

L02.49

100.00

100.00

100.00

Actual Image
mass (g) mass (g)

Dockage

12.00

5.00

5.00

5.00

101.61

101.55

L02.34

100.00

100.00

100.00

5.21

5.27

5.34

Clean grain

Actual Image
mass (g) mass (g)

r01..62

100.94

100.82

5.00

5.00

5.00

After cleaning

93.54

93.67

94.05

5.09

5.r9

4.97

s.00

5.00

5.00

Foreign material

93.69

93.82

94.10

Actual Image
mass (g) mass (g)

95.24

94.68

94.28

5.31

5.t9

4.85

3.03

2.97

2.80

95.21

94.85

94.60

95.27

94.67

93.84

Cleaning efficiency
(7o)

3.11

2.62

2.79

Actual
mass

basis

3.16

3.08

2.80

95.61.

94.63

94.1.1

39.4

40.6

44.0

Image
basis

3.23

3.t4

2.89

3.06

3.1.4

2.94

21.4

40.3

50.3

47.8

36.8

38.4

44.O

3.20

3.L3

3.01

36.5

39.s

41..9

38.8

37.2

41..2

39.7

39.7

37.9



Appendix F

Results of analysis of variance done on ranges of
morphological features before and after passing

the samples through the cleaner
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Class

type

treat

The GLM Procedure

Class Level Information

Levels Values

5 barley durum oats rye wheat

272

Number of observations 30

The GLM Procedure

Dependent Variable: area

Source

Model

Error

Corrected Total

Source

type
treat
type*treat

Source

type
treat
type*treat

DF

9

20

29

R-Square Coeff Var

0.907749 1.998595

DF

4
1

4

DF

4
i
4

Sum of
Squares

65490210.97

6655516.00

721,45726.97

Mean Square

7276690.11

332775.80

Mean Square

1.936936.62
53635092.30
1.026843.05

Mean Square

L936936.62
53635092.30
1,026843.05

F Value

2L.87

F Value

5.82
1.61..17

3.09

F Value

5.82
761..17

3.09

Root MSE area Mean

576.8672 28863.63

Type I SS

7747746.47
53635092.30
41,07372.20

Type III SS

7747746.47
53635092.30
41.07372.20

Pr>F

<.0001

Pr>F

0.0028
<.0001

0.0394

Pr>F

0.0028
<.0001

0.0394
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The GLM Procedure

Duncan's Multiple Range Test for area

NOTE: This test controls the Type I comparisonwise error rate, not the
experimentwise error rate.

Alpha
Error Degrees ofFreedom 20
Error Mean Square 332775.8

0.05

Number of Means 2
Critical Range 694.7

J

729.2
4

151..2

5

766.5

Means with the same letter are not significantly different.

Duncan Grouping

A
A
A
A
A
A
A

B

Mean

29312.0

29291.1

29067.8

28698.5

27948.2

N type

6 oats

6 rye

6 wheat

6 barley

6 durum
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The GLM Procedure

Dependent Variable: perimeter

Source

Model

Error

Corrected Total

DF

9

20

29

Srm of
Squares

290855.8667

L4933.3333

305789.2000

Mean Square

32377.3185

746.6667

F Value

43.28

F Value

3.08
362.61,
3.66

F Value

3.08
362.61.
3.66

Pr>F

<.0001

Pr>F

0.0398
<.0001
0.021,6

Pr>F

0.0398
<.0001
0.0216

R-Square Coeff Var

0.951165 t.757926

Root MSE perimeter Mean

27.32520 1554.400

Source

type
treat
type*treat

Source

type
treat
type*treat

DF

4
1

4

DF

4
1.

4

Type I SS

91,87.5333
270750.0000
10918.3333

Type III SS

91.87.5333
270750.0000
10918.3333

Mean Square

2296.8833
270750.0000
2729.5833

Mean Square

2296.8833
270750.0000
2729.5833
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Duncan's Multiple Range Test for perimeter

NOTE: This test controls the Type I comparisonwise error rate, not the
experimentwise error rate.

Alpha
Error Degrees ofFreedom 20
Error Mean Square 746.6667

0.05

Number of Means
Critical Range

A
A
A
A
A

Mean N type

i585.33 6 durum

L557.50 6 wheat

L552.00 6 rye

1,544.00 6 oats

1533.17 6 barley

2
32.91 34.54

4
35.58

5

36.31,

Means with the same letter are not significantly different.

Duncan Grouping

B
B
B
B
B
B
B
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The GLM Procedure

Dependent Variable: maxrad

Source

Model

Error

Corrected Total

Source

type
treat
type*treat

Source

type
treat
type*treat

DF

9

20

29

R-Square Coeff Var

0.849056 4.880589

DF

4
I
4

Root MSE maxrad Mean

r1..2709t 230.9333

Sum of
Squares

14291.20000

2540.66667

1,6831,.86667

Type I SS

2557.53333
1.1368.53333
365.13333

Type III SS

2557.53333
1.1368.53333
365.73333

Mean Square

1587.971.'J.1.

127.03333

Mean Square

639.38333
11368.53333
91..28333

Mean Square

639.38333
11368.53333
91.28333

DF

4

7

4

F Value

72.50

Pr>F

<.0001

Pr>F

0.0057
<.0001

0.5892

Pr>F

0.0057
<.0001
0.5892

F Value

5.03
89.49
0.72

F Value

5.03
89.49
0.72
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Duncan's Multiple Range Test for maxrad

NOTE: This test controls the Type | çemFarisonwise error rate, not the
experimentwise error rate.

AIpha
Error Degrees ofFreedom 20
Enor Mean Square 127.0333

0.05

Number of Means
Critical Range

A

B
B
B
B
B
B
B

J
14.25

N type

6 wheat

6 oats

6 rye

6 barley

6 durum

2
L3.57

Mean

247.833

233.833

225.000

224.667

223.333

4
14.68

5

1.4.98

Means with the same letter are not significantly different.

Duncan Grouping
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The GLM Procedure

Dependent Variable: minrad

Source

Model

Error

Corrected Total

Source

type
treat
type*treat

Source

type
treat
type*treat

DF

9

20

29

R-Square Coeff Var

0.924159 5.903631,

DF

4
1

4

DF

4
1

4

Root MSE minrad Mean

2.880972 48.80000

Sum of
Squares

2022.800000

166.000000

2188.800000

Type I SS

10.466667
1825.200000
1.81.1.33333

Type III SS

10.466667
1825.200000
1.87.133333

Mean Square

224.755s56

8.300000

Mean Square

2.616667
1825.200000
46.783333

Mean Square

2.616667
1825.200000
46.783333

F Value

27.08

F Value

0.32
2L9.90
5.64

F Value

0.32
219.90
5.64

Pr>F

<.0001

Pr>F

0.8644
<.0001

0.0033

Pr>F

0.8644
<.0001
0.0033
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The GLM Procedure

Duncan's Multiple Range Test for minrad

NOTE: This test controls the Type I comparisonwise error rate, not the
experimentwise error rate.

Alpha 0.05
Error Degrees ofFreedom 20
Error Mean Square 8.3

Number of Means
Critical Range

A
A
A
A
A
A
A
A
A

Mean N type

49.333 6 durum

49.161 6 rye

49.000 6 barley

48.833 6 wheat

47.667 6 oats

2
3.470

J

3.642
4
3.75L

5

3.828

Means with the same letter are not significantly different.

Duncan Grouping
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The GLM Procedure

Dependent Variable: meanrad

Source

Model

Error

Corrected Total

Source

type
treat
type*treat

Source

type
treat
type*treat

DF

9

20

29

R-Square Coeff Var

0.983589 2.506564

Sum of
Squares

9469.466667

158.000000

9627.466667

Type I SS

326.800000
9013.333333
L29.333333

Type III SS

326.800000
90'J.3.333333
1.29.333333

Mean Square

1,052.1,62963

7.900000

Mean Square

81.700000
90L3.333333
32.333333

Mean Square

81.700000
9013.333333
32.333333

Root MSE meanrad Mean

2.8t0694 1,t2.7333

F Value

133.1.9

F Value

1,0.34

1,1.40.93

4.09

F Value

1.0.34

1140.93
4.09

Pr>F

<.0001

Pr>F

0.0001
<.0001

0.0139

Pr>F

0.0001
<.0001
0.0139

DF

4
1

4

DF

4
1

4
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Duncan's Multiple Range Test for meanrad

NOTE: This test controls the Type I comparisonwise error rate, not the
experimentwise error rate.

Alpha 0.05
Error Degrees of Freedom
Error Mean Square 7.9

20

Number of Means
Critical Range

A
A
A

B
B
B
B
B

N type

6 wheat

6 durum

6 rye

6 oats

6 barley

2
3.385

Mean

116.833

t1.5.761

1.10.667

109.833

708.1,67

J

3.553
4
3.660

5

3.735

Means with the same letter are not significantly different.

Duncan Grouping
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The GLM Procedure

Dependent Variable: majax

Source

Model

Error

Corrected Total

DF

9

20

29

R-Square Coeff Var

0.990635 0.983093

Sum of
Squares

36741..36661

347.33333

37088.70000

Mean Square

408237407

17.36667

Root MSE majax Mean

4.1.67333 423.9000

F Value

235.07

F Value

21,.35

1877.39
38.21,

F Value

21.35
1.877.39

38.2I

Pr>F

<.0001

Source

type
treat
type*treat

Source

type
treat
type*treat

DF

4
1

4

DF

4
1.

4

Type I SS

1483.20000
32604.03333
2654.13333

Type III SS

1483.20000
32604.03333
2654.13333

Mean Square

370.80000
32604.03333
663.53333

Mean Square

370.80000
32604.03333
663.53333

Pr>F

<.0001
<.0001
<.0001

Pr>F

<.0001
<.0001
<.0001
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Duncan's Multiple Range Test for majax

NOTE: This test controls the Type I comparisonwise error rate, not the
experimentwise error rate.

Alpha 0.05
Error Degrees ofFreedom 20
Error Mean Square 17.36667

Number of Means
Critical Range

2

5.019
J

5.268
4
5.427

5

5.537

Means with the same letter are not significantly different.

Duncan Grouping Mean N type

432500 6 wheat

429500 6 durum

424.500 6 rye

420.500 6 oats

412.500 6 barley

A
A

BA
B
BC

c
C

D
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The GLM Procedure

Dependent Variable: minax

Source

Model

Error

Corrected Total

Source

type
treat
type*treat

Source

type
treat
type*treat

DF

9

20

29

R-Square Coeff Var

0.894440 2.079946

DF

4
L

4

DF

4
1

4

Root MSE minax Mean

3.754997 180.5333

Sum of
Squares

2389.466667

282.000000

26',11,.466667

Type I SS

203.133333
7702.533333
483.800000

Type III SS

203.t33333
1702.533333
483.800000

Mean Square

265.496296

14.100000

Mean Square

50.783333
1702.533333
120.950000

Mean Square

50.783333
1702.533333
120.950000

F Value

18.83

F Value

3.60
1,20.75

8.58

F Value

3.60
120.75
8.58

Pr>F

<.0001

Pr>F

0.0228
<.000L

0.0003

Pr>F

0.0228
<.0001
0.0003
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Duncan's Multiple Range Test for minax

NOTE: This test controls the Type I comparisonwise error rate, not the
experimentwise error rate.

Alpha 0.05
Error Degrees ofFreedom 20
Error Mean Square 74.7

Number of Means
Critical Range

A
A
A
A
A
A
A

2
4.522

Mean

183.500

182.000

1,81.667

179.500

176.000

N type

6 oats

6 durum

6 wheat

6 rye

6 barley

J

4.747
4
4.890

5

4.989

Means with the same letter are not significantly different.

Duncan Grouping

B
B
B
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