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ABSTRACT

A database of high resolution digital images of individual kernels of five grain types
(barley, Canada Western Amber Durum (CWAD) wheat, Canada Western Red Spring
(CWRS) wheat, oats, and rye) collected from 23 growing locations across Western Canada,
was formed. The constituents of dockage were also divided into five broad categories
(broken wheat kernels, chaff, buckwheat, wheat-heads, and canola) and imaged. A total of
230 features (51 morphological, 123 color, and 56 textural) were extracted from these images
and classification was done using a four layer back propagation network (BPN) and a
statistical (non-parametric) classifier. Different feature models, namely, morphological,
color, texture, and a combination of the three, were tested for their classification
performances. The results of these classification processes were used to test the feasibility
of a machine vision based grain cleaner.

For cereal grains, while using the BPN classifier, classification accuracies of over
98% were obtained for barley, CWRS wheat, oats, and rye. Because of its misclassification
with CWRS wheat, CWAD wheat gave a lower classification accuracy of 91%. For the
dockage fractions, because of the uniqueness in their size and/or color, broken wheat
kernels, buckwheat, and canola could be classified with almost 100% accuracy. The
classification accuracies of chaff and wheat-heads was low because they did not have well
defined shapes.

Back propagation network outperformed the non-parametric classifier in almost all
the instances of classification. None of the three feature sets, i.e., morphological, color, or
texture, in themselves, were capable of giving high classification accuracies. Their
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combination improved the classification significantly. But the use of all the features together
did not give the best classification results as a lot of the features were redundant and did not
contribute much towards the classification process. A feature set consisting of the top 20
morphological, color, and textural features each, gave the best results.

To quantify the amount of impurity in a grain sample, a relationship between the
morphology and mass of the kernel (or dockage particle) was investigated. Area ofa particle
in a given image gave the best estimate of its mass. This relationship was tested and
validated for quantifying the amount of impurity in a sample before and after passing it
through a lab scale cleaner.

To automate the cleaner, it is desirable that the cleaner should have a decision support
system to adjust its parameters (such as vibration rate, grain flow rate, etc.) by calculating
the amount of impurity being removed from the sample. This was done by calculating the
change in the ranges of morphological features of the particles before and after the sample
was passed through the cleaner. The ranges of morphological features change significantly
when a sample is passed through the cleaner, and thus can be used to provide a feedback to

the system.
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1. INTRODUCTION

In the current grading system of Canada, grain is graded on the five factors
established by the Canadian Grain Commission: test weight, varietal purity, soundness,
vitreousness, and maximum limit of foreign material (excluding dockage). Of these, the
latter four factors are determined visually by trained personnel, and thus, can be influenced
by individual experience and human fatigue. At this point, it would be beneficial to
differentiate between dockage and foreign material in food grains. Dockage is a material that
is removed from the grain by using approved cleaning equipment so that the grain can be
assigned the highest grade for which it qualifies. Whatever material alien to the particular
grain type is left in the sample after the removal of dockage, is called the foreign material.
The amount of dockage depends on the conditions during growth, harvest, storage, and
transportation, due to contamination by weed seeds, stones, and other grain kernels. During
cleaning, dockage is removed and this is significant for optimization of cleaners.

In a terminal elevator (grain handling facility), once the grain has been received, it
goes through the cleaning process. Cleaning is necessary to meet the buyers’ specifications.
In some cases, if the grain is over cleaned, uncleaned or under-cleaned samples are blended
init. Cleaning performance is controlled by inspecting the grain before and after passing it
through the cleaner or a battery of cleaners. Grain inspectors manually analyze the two
samples and make a decision if the performance of the cleaner is satisfactory. This process
of manually analyzing the samples is subjective and is influenced by the experience of the
personnel and working conditions. With the advancement of computers and improvements
in image analysis techniques, this inspection of grain samples before and after passing them
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through the cleaner, can be automated. It is hypothesized that the variance in the features can
be used as a measure to evaluate the cleaning process.

Machine vision systems (MVS) provide an alternative to manual inspection of grain
samples for kernel characteristic properties and the amount of foreign material. Machine
vision is a technology that has arisen from a union between camera and computer. A video
Camera acts as an eye to a machine vision system (Batchelor et al. 1985). Analog signals
generated by the camera are digitized into a sequence of numbers and stored as an image in
the computer. Image processing algorithms are used to extract a pattern from the image to
represent an object. The pattern is classified by a classification algorithm which in turn can
be used to generate a signal to activate an actuator to direct the object into a proper route.

Machine vision systems have gained tremendous attention for inspecting products
in different industries and demands for their new applications are increasing. Here
inspection refers to many industrial tasks including defect detection, measuring, locating,
detecting orientation, grading, sorting, and counting. Machine vision offers many
advantages over the conventional grading systems. It is compatible with other automated
on-line processing tasks, can work round the clock, can take dimensional measurements
more accurately and consistently than a human being, and can give an objective measure of
variables such as color, projected area, and shape which an inspector could only assess
subjectively (Batchelor et al. 1985). Since the inspection is done through a non-contacting
procedure, it is hygienic and there is less damage to the fragile biological products when they
are being inspected. The technology, however, is not being used by the grain industry at
present, owing to the variation in shape, size, and color of these biological entities due to
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differences in maturity and growing conditions.

Fast and accurate information on the contents of a grain sample can be used to
increase the efficiency of most grain handling operations (such as grain unloading, cleaning,
binning, and shipping) at terminal elevators (Shatadal et al. 1995). The important
applications of machine vision to the grain industry include the design and development of
an objective, fast, and reliable on-line monitoring system for grain in continuous flow at
several points in a terminal elevator. This would lead to increased cleaning throughput and
enhanced recovery of salvageable grains. If the grain is over cleaned (than what is required
by the buyer), uncleaned and over cleaned grains of the same grade are blended to meet the
buyer’s requirements. Both at the cleaning and the shipping sections, the MVS can be
installed to determine the cleaning performance of the cleaner (or a battery of cleaners) and
the visual quality of the grain being exported (Majumdar et al. 1999), respectively.

The recent advances in hardware and software have enabled the machine vision and
imaging systems to detect, process, analyze, and display a wide range of finer details of
objects from their digital images in real-time situations. Thus, grain grading and
identification systems based on machine vision techniques are not a distant reality. Such
an MVS should be capable of identifying and grading the grain on the basis of morphology,
color, and texture. Determining the potential of morphological features to classify different
grain species, classes, varieties, damaged grains, and impurities using statistical pattern
recognition technique has been the main focus of the published research (e.g., Segerlind and
Weinberg 1972; Neuman et al. 1987; Keefe 1992; Barker et al. 1992a, 1992b, 1992¢,1992d;
Sapirstein and Kohler 1995; Majumdar and Jayas 2000a, 2000b, 2000c, 2000d). Some
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researchers (Neuman et al. 1989a, 1989b; Luo et al. 1999a; Majumdar and Jayas 2000b) have
tried to use color features for grain identification but variability in the illumination of
common light sources poses a practical problem in such cases. Very little work has been
done to incorporate textural features (Al-Janobi and Kranzler 1994; Majumdar et al. 1999,
Majumdar and Jayas 2000c) for classification purposes. Efforts have also been made to
integrate all these features in terms of a single classification vector (Paliwal et al. 1999) for
grain kernel identification.

The idea of a grain monitoring system based on machine vision can be extended to
design a cleaning system. The system will use an MVS to identify the amount of dockage
present in a given grain sample. Over the past few years a lot of machine vision algorithms
have been developed for grain identification (e.g., Neuman et al. 1987; Keefe 1992;
Sapirstein and Kohler 1995; Majumdar et al. 1996; Luo et al. 1999a; Paliwal et al. 1999).
Asmost of these algorithms extract a large number of features for classification, an optimum
set of those features need to be selected to reduce computation time. This optimum feature
set can be used to train an artificial neural network which would then be used as a classifier.
To monitor the cleaning performance, the MVS has to analyze two samples: one before the
grain goes into the cleaner and the other after the grain comes out of the cleaner. Grain
samples taken before and after passing through the cleaner are presented to a camera and
imaged. It is hypothesized that the differences in the ranges of the morphological features
of the before and after samples, can be used for adjusting the grain flow rate or speed of the
cleaner or both.

Artificial neural networks, resembling the biological nervous system, have proven
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to be robust in dealing with the ambiguous data and the kind of problems that require the
interpretation of large amounts of data. Neural networks, instead of sequentially performing
a program of instructions, explore many competing hypotheses simultaneously using massive
parallelism (Lippmann 1987). In addition, neural networks have the potential to solve
problems in which some inputs and corresponding output values are known, but the
relationship between the inputs and outputs is not well understood. These conditions are
commonly found in agri-food industry inspection problems.

Pattern recognition has emerged as an important application of artificial neural
networks. One of the most important attributes of neural network classifiers is their
capability to approximate the a posteriori distribution of their training samples through
learning and adaptation. This ability makes them unique among pattern classifiers. The
application of machine vision, coupled with neural networks, seems to offer promise for
inspecting agricultural products.

Grain identification using machine vision in conjunction with pattern recognition
techniques, including neural networks, offers many advantages over the conventional optical
or mechanical sorting devices. A digital camera can be used to gather the necessary
information from the grain and send digitized images to a computer where they can be
analyzed for multi-category classification. Image processing algorithms can be used to
extract higher-level information from the input signals for improved classification
performance. The classification parameters can be easily modified to take into account
annual variations in the product. When neural networks are used as pattern classifiers, the
sorting device can be equipped with a training option through which the machine can be
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trained for recognizing new products.

An extensive literature search and communication with industrial sources have

indicated that no pattern recognition machine or neural network based system has been used

for grain cleaning. Nevertheless, enough grain classification and identification algorithms

are available which can be integrated together to be used in such a system. The main

objectives of this thesis were to:

1.

identify an optimized set of morphological features that can be used for rapid
identification of different cereal grains, e.g., Canada Western Red Spring (CWRS)
wheat, Canada Western Amber Durum (CWAD) wheat, barley, oats, and rye;
identify an optimized set of color features that can be used for rapid identification of
different cereal grains, e.g., CWRS wheat, CWAD wheat, barley, oats, and rye;
identify an optimized set of textural features that can be used for rapid identification
of different cereal grains, e.g., CWRS wheat, CWAD wheat, barley, oats, and rye;
determine which combination of morphological, color, and textural features gives the
best classification accuracy so that it could be used for real-time on-line cereal grain
identification;

identify an optimized set of morphological, color, and textural features, and their
combination that can be used for rapid identification of the various dockage fractions,
e.g., broken wheat kernels, chaff, wild buckwheat, wheat-heads, and canola;
design and evaluate a machine vision based grain cleaning system which would use
morphological, color, and textural features of cereal grains for optimized

performance; and



7. investigate the performance of the grain cleaner when different neural network and
statistical classifiers are used for classification purposes.

The material presented in this thesis is organized into six chapters. The first chapter
addresses the justification, importance, and objectives of the research. Chapter II begins with
the literature review of the research that has been conducted in the field of image analysis
of agricultural products for their quality determination using morphological, color, and
textural features. Various statistical and neural network classifiers are also discussed in
detail. Chapter III discusses the materials and methods that were used in this thesis. A
detailed account of the feature extraction algorithm is given in chapter IV. Results are
presented in chapter V with discussions. The presentation of results follow the flow of
experiments starting with classification of cereal grains using morphological, color, and
textural features. Results are given for different types of features and their combinations
using back propagation neural networks and a non-parametric statistical classifier.
Classification results for dockage classification are also reported. Chapter V concludes with
the selection of the model that can give the highest classification accuracies in quantifying
the amount of dockage in the grain. Chapter VI includes the conclusions and some

recommendations made for future research.



2. REVIEW OF LITERATURE

2.1 Background

There has been extensive research to apply the principle of machine vision and
pattern recognition for classification of agricultural products (e.g., Al-Janobi and Kranzler
1994; Ghazanfari et al. 1997; Ng et al. 1998; Majumdar and Jayas 2000a, 2000b, 2000c,
2000d; Lu et al. 2000). The main obstacle in developing machine vision based systems for
applications in the agri-food industry is the variation in size, shape, color, and texture of
these biological entities (Kranzler 1985; Sarkar 1986; Tillet 1990). So far, the main focus
of the research in this area has been the development of pattern recognition algorithms for
classification of these objects. Most of the researchers conducted their studies using
morphological and color features for classification purposes. This chapter reviews the results
of the previous work in applying these classification techniques to the agri-food industry.
A brief introduction to the fundamentals of artificial neural networks is also included.
2.2 Classification Features

Any image in its digital form is stored in the memory of the computer as an array of
numbers that may contain over 300 000 elements depending on the size, spatial resolution,
and color information of the image. Sequential processing of this information is time
consuming and is not feasible for high speed on-line inspections. Therefore, image
processing and analysis algorithms are applied to the images to extract some quantitative
information known as features. These features are then used as inputs to a classification
algorithm to categorize the objects in the image. A vector of such features is called a
Dpattern. Pattern recognition can be done by using the morphological (defining shape and
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size), color, textural (spatial distribution of color), or a combination of these features of the
images.

2.2.1 Morphological features Segerlind and Weinberg (1972) first estimated grain shape
by a Fourier series expansion of the radial distance from the center of gravity to the periphery
of kernels. A kernel profile was traced on a grid paper to get the image. There was 1% error
in separation of oats and barley versus wheat and rye based on extracted shape features. The
class [e.g., hard red spring (HRS), hard red winter (HRW), amber durum, soft white spring
(SWS), soft white winter (SWW), Canada prairie spring (CPS), and utility wheat are
different classes of Canadian wheat] discrimination for wheat was partially successful with
11-25% error. This study is considered as one of the first attempts to classify cereal grain
kernels by describing their shape using a mathematical expansion series.

A significant number of studies have been conducted since Segerlind and Weinberg
(1972) to define the shape and size of different types of grain kernels (e.g., Keefe and Draper
1986, 1988; Zayas et al. 1986, 1989; ; Symons and Fulcher 1988a, 1988b; Chen et al. 1989;
Keefe 1992). Most of the recent studies have focused on extraction of features from digital
images of grain kernels, instead of drawing their profiles on grid papers. Because the
number of such studies is very large, only a small number of related studies are briefly
discussed in this section.

Neuman et al. (1987) studied the objective classification of Canadian wheat cultivars
based on kernel morphology. They used 576 kernels (sound and uniform) of pedigreed seed
of 14 wheat cultivars for analysis. Using transmitted light they captured silhouette images
of whole wheat kernels in ‘plan’ (top) view and determined spatial size and shape parameters
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and Fourier descriptors of kernels. Hard red spring and CWAD wheat kernels were the most
easily differentiated groups while there was considerable overlap between HRW and SWS
wheat classes. Discriminating varieties within classes gave inconclusive results with correct
classifications ranging from 15 to 96%. Unlike earlier works, random orientation of kernels
was not a problem in this case.

Keefe (1992) constructed a semi-automatic image analyzer for classification of wheat
grains. His algorithm took 33 measurements and derived 36 more features from them.
Because it was proprietary information, the details of the derived features were not provided.
The instrument was evaluated using 20 varieties of United Kingdom wheat. The two major
shortcomings of the algorithm were that it could analyze only one kernel per image and each
kernel had to placed manually in a fixed orientation for imaging. Owing to the slow speed
of processors of personal computers at that time, a sample of 50 kernels took about 5 min for
feature extraction. The overall identification error was 32.9-65.8%.

Barker et al. (1992a, 1992b, 1992c, 1992d) used different sets of features for
characterizing and discriminating among kernels of eight Australian wheat cultivars. The
features were ray (i.e., radial distance from the centroid) parameters, slice and aspect ratio
parameters, Fourier descriptors, and the Chebychev coefficient. The overall classification
error ranged from 35 to 48%. Because of the complexity in feature extraction and low
classification accuracies, the algorithm was not very useful.

Sapirstein and Kohler (1995) suggested an interesting alternative approach to
objective wheat grading by proposing a completely new set of grading factors based on
variability of size, shape, and reflectance features of kernels in a sample, which can be easily
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administered by machine vision based grading. Cargo (grain being shipped out of terminal
elevators) samples of CWRS grades 1, 2, and 3 were successfully classified using the mean
and variance of the features as quantitative classification variables. On carlot (grain received
at terminal elevator) samples, however, only grades 1 and 3 could be successfully
discriminated from each other.

Ying et al. (1996) developed computer vision algorithms for automated channel
catfish (Ictalurus punctatus) processing to detect the orientation of a catfish and to identify
its head, tail, pectoral, ventral, and dorsal fins. The algorithms were invariant to translation,
rotation, and scaling. Canny edge detection and a labeling and tracking algorithm were
applied to locate the boundary of a catfish and a 2-stage, model-based, catfish segmentation
algorithm was proposed to locate each part. A dominant point detection scheme was
proposed and applied to find the points that connect each part of a catfish. Then
morphological knowledge of the catfish was used to locate the feature points of each part of
the catfish and to determine the cutting lines. The angle of the major axis and center of mass
were used to represent the orientation of a catfish. They also claimed that with slight
modifications the same algorithms can be used for other different objects. But no citation
pertaining to the use of these algorithms to identify other objects has been found in the
literature.

Ghazanfari et al. (1997) used digitally acquired images of individual pistachio nuts
and graded them into four sets using Fourier descriptors (shape recognition features). The
feature selection procedure applied to the first 15 Fourier descriptors indicated that 7
harmonics were sufficient to separate split nuts from unsplit nuts. Of the 7 selected Fourier
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descriptors, 5 were from the higher order harmonics containing microscopic information
more suitable for separating unsplit from split nuts. An average classification accuracy of
87.1% was obtained for the 4 grades when using a decision-tree classifier. Multilayer neural
network analysis was able to successfully classify 94.8% based on the same input
parameters, indicating the superiority of the technique.

Majumdar and Jayas (2000a) developed an algorithm based on morphological
features to classify individual kernels of CWRS wheat, CWAD wheat, barley, oats, and rye.
The algorithm extracted 23 morphological features for the discriminant analysis. The
classification accuracies of individual kernels using the 10 most significant features in the
morphology model were 98.9, 93.7, 96.8, 99.9, and 81.6%, respectively for CWRS wheat,
CWAD wheat, barley, oats, and rye when tested on an independent data set. When the
model was tested on the training data set the classification accuracies of CWRS wheat,
CWAD wheat, barley, oats, and rye were 98.9, 91.6, 97.9, 100.0, and 91.6%, respectively.
The problem in this case was due to the limitation of the image acquisition hardware. The
images were captured in the form of rectangular pixels which were then converted to square
pixels. This may have resulted in slight distortion of the originally captured optical
information. The code was written using the KHOROS (Khoral Research, Inc., New
Mexico) programming environment which was not platform independent.

2.2.2 Color features Color provides very important information for grain grading and
inspection. Different grain types and their degrading factors can be easily identified using
the color attribute. Initial research in the field of grain identification mainly emphasized the
use of morphological features using monochrome images. This was mainly due to three
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reasons. Firstly, the hardware for color image acquisition was expensive. Secondly, the
color image files consisted of a large amount of data which required larger storage space.
Storage of large image files and analysis of such huge data sets was not easy using personal
computers at that time. And lastly, color information extracted from images can vary with
the illumination variations that exist in common light sources. So far very limited work has
been done on designing and calibrating illumination systems for color grain image analysis
(Luo et al. 1997).

The use of color image analysis for identifying different wheat classes and varieties
was reported by Neuman et al. (1989a, 1989b). Video colorimetry was used to distinguish
kernel types according to wheat class and variety for six wheat classes grown in Western
Canada. Discriminant analyses were performed based on mean red (R), green (G) and blue
(B) reflectance (tristimulus) features. Average correct classification for the Canada Western
Soft White Spring wheat, CWAD wheat, and CWRS wheat were 76, 76 and 62%,
respectively. Relatively lower scores of 56 and 34% were achieved for the HRW and CPS
wheat classes.

A field crop research was conducted by El-Faki et al. (1997) where they used color
features to establish a simple weed detection method using a color machine vision system.
Their system was based on the fact that stems of wheat and soyabean are green as compared
to the stems of most of the weed species which are red in color. As compared to the methods
using shape and texture features, the method based on color was less sensitive to canopy
overlap, leaf orientation, camera focusing, and wind effects. The correct classification rate
using the discriminant classifiers for weeds associated with soyabean and wheat were 54.9
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and 62.2%, respectively.

Luo et al. (1999a, 1999b) used a set of morphological and color features for
classification of cereal grains and obtained average classification accuracies of 98.2, 96.9,
99.0, 98.2, and 99.0% for CWRS wheat, CWAD wheat, barley, rye, and oats, respectively.
They also concluded that combining morphological and color features improves the
classification accuracies over using morphological or color features alone.

Ng et al. (1998) developed machine vision algorithms for measuring maize kernel
mechanical damage and mold damage. Mechanical damage was determined using both
single-kernel and batch analyses by extracting from kernel images the damaged area stained
by green dye and by calculating the percentage of total projected kernel surface area that was
stained green. Mold damage was determined using single-kernel analysis by isolating the
moldy area on kernel images and by calculating the percentage of total projected kernel
surface area covered by mold. Their vision system demonstrated high accuracy and
consistency for both mechanical and mold damage measurements.

Other applications of color image analysis in the agri-food industry have been in
detection and classification of fungal damaged soybeans (Wigger et al. 1988, Casady et al.
1992), inspection and grading of fresh market peaches (Miller and Delwiche 1989), and
inspection of apples, mushrooms, and potatoes (Morrow et al. 1990).

2.2.3 Textural features Texture is a property of surfaces associated with the tactile quality
they represent. In machine vision, texture refers to a closely related concept, that of a
spatially repeating pattern on a surface that can be sensed visually. Texture represents the
local statistics of correlated intensity variations. Texture is an important characteristic for
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the analysis of many types of images. Visual texture is difficult to define, but it is commonly
attributed to images containing repetitive patterns in which elements or tonal primitives are
arranged according to certain placement rules. It has two basic dimensions - the first is for
describing the tonal primitives out of which the image texture is composed, and the second
dimension is for describing the spatial dependance or interaction between the primitives of
an image texture. Tonal primitives are regions with tonal properties. The tonal primitives
can be described in terms such as the average tone, or maximum and minimum tone of its
region. The region is the maximally connected set of pixels having a given tonal property.
The tonal region can be evaluated in terms of its area and shape. The tonal primitive
includes both its gray tone and tonal regional properties. Image texture can be qualitatively
evaluated as having one or more of the properties of fineness, coarseness, smoothness,
granulation, randomness, or irregular. Each of these adjectives translates into some property
of the tonal primitives and the spatial interaction between the tonal primitives (Majumdar et
al. 1999).

Hayes and Han (1993) evaluated two image processing methods, linear
discrimination and textural difference, using slides taken of 23 soils and 5 soil-surface cover
treatments. Percent cover results from each image processing method were compared with
those measured manually. Tests were purposely aimed at conditions that tend to be difficult
to evaluate with machine vision because of limited visible contrast. These two image
processing methods were found to provide reasonable cover estimates under conditions
having bright green cover. Linear discrimination produced better estimates than did textural
difference in situations with obvious color difference. Textural difference performed better
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when color difference was not apparent such as brown residue with a brown soil background.

Zayas (1993) used a digital imaging technique to evaluate bread crumb grain, and the
potential of image texture analysis for crumb grain assessment. Eighteen image texture
features were extracted from slices of two commercially available brands (BRRA and
BRDI). One hundred percent of BRRA and 97.5% of BRDI sub-images (128 x 128) from
the middle area of a slice were correctly recognized. Technological factors and location of
sub-images on a slice affected the value of image texture features such as crumb grain vow
across a slice. Variations in the crumb grain within a slice were studied, and a ranking scale
was developed for evaluating the degree of coarseness of crumb grain in boundaries of 64
x 64 pixels.

Al-Janobi and Kranzler (1994) used color and textural analysis for grading of date
fruits into different classes. They compared their results with manually classified dates
according to the USDA grading standards. A total of 39 features and eight models were used
by applying a non-parametric discriminant analysis to each model and by incorporating
subsets of the features. The classification errors for all models ranged between 0.8 and
26.4%.

Sapirstein et al. (1989) developed a system for quantitative assessment of bread
crumb grain. Grain crumb features like cell area, cell density, cell wall thickness, cell total
area ratio, crumb brightness, and uniformity of cell size were extracted from their digital
images. Bread crumb containing oxidants was 6% brighter and had 21% more cells/cm?,
17% smaller cell cross-sectional area, 13% thinner cell walls, and 16% more uniform grains.
Time to compute the cell structure for a single bread slice (approximate size 100 mm x 100

16



mm) was about 10 s.

Majumdar and Jayas (2000c) used the textural features of individual kernels of

CWRS wheat, CWAD wheat, barley, oats, and rye to develop algorithms for grain
classification. For bulk samples, the textural features extracted from the red color band, with
256 gray levels from acquired image grouped into 32 gray levels, gave the highest
classification accuracies of 92.0 % using non-parametric estimation. For individual kernels,
the textural features extracted from the green color band, when 256 gray levels were grouped
into 8 gray levels, gave the highest classification accuracies of 92.9% using non-parametric
estimation. The classification accuracies improved significantly (as high as 100%) when
textural features were combined with morphological and color features (Majumdar and J ayas
2000d).  Although it was not mentioned by the authors, it is speculated that the
computational time would significantly increase in the latter case.
2.2.4 Limitations of available algorithms Most of the available algorithms use the kernel
size for classification purposes. Use of size can result in significant mis-classifications
because the variations in kernel size depend on maturity and growing conditions. Kernel
sizes are also dependent on the growing region of the crop. Because the grain at a grain
handling facility is a mixture of grain coming from different farm locations, size variability
can give erroneous results.

Secondly, most of the available algorithms extract a large number of features and use
them for classification. Extraction and comparison of a large number of parameters increases
the computation time. For any system, to be used on an industrial scale, operational speed
is a constraining factor.
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Paliwal et al. (1999) showed that cereal grains can be rapidly identified using a
feature vector consisting of just three attributes viz. length, shape function (Fourier
descriptor in polar coordinates), and color. They obtained classification accuracies of 100,
94,93, 99, and 95% for CWRS wheat, CWAD wheat, barley, oats, and rye, respectively. A
broadening of the training set to include a large number of growing regions, classification
of damaged kernels, other foreign material like chaff, stone pieces, broken kernels, and other
types of grains (e.g., oilseeds and speciality crops) would be required to incorporate such an
algorithm in a grain classification system.

2.3 Classifiers used for pattern recognition

Classification analysis uses a decision rule, called a classification criterion, to
classify objects into two or more known groups, called classes, on the basis of the
quantitative features extracted from the objects. A set of features extracted from an object
is called an observation of the object. The classification criterion is usually derived from the
observations of the known classes, called the training set. The derived classification
criterion can then be applied to classify new observations, called the test set.

A classification criterion partitions an observation or feature hyper-space £ into
hyper-regions &, i = 1, 2, ..., N, where N is the number of classes. An object is classified as
coming from class ; if its corresponding feature vector or observation m, a point in the
hyper-space &, belongs to the region £. Many different types of classifiers are explained
in various pattern recognition books and research papers (Hand 1981; Devijver and Kittler
1982; Fukunaga 1990; Zurada 1992). To determine which classifier works best for a
particular application usually involves some degree of experimentation. Although, for a
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given problem most of the classifiers give comparable results, the difference might lie in
their time complexity, storage requirements, and precise degree of accuracy (Hush and Horne
1993). Different classification methods and their applications are reviewed in the following
section.
2.3.1 Statistical methods The statistical methods are based on the Bayes minimum error
rule (Duda and Hart 1973):
m € G, if P(w, | m) > P(w; | m) Vi=k (2.1)
where P(w; | m) is the posterior probability, by which an object with a feature vector m
belongs to class w,. The rule states that to minimize the average probability of error, an
object should be classified as belonging to a class w; that maximizes the posterior probability
P(w; | m).
By applying the Bayes’ theorem:

P(w, [m) = P(w) p(m | w)/p(m) 2.2)

-a more practical formulation of the rule can be obtained as
m € it P(wy) p(m | wy) > P(w) p(m | w) Vj=k (2.3)
where: P(w,) is the prior probability by which an object comes from class w;; p(m) is the
probability density function for m; and p(m | w,) is the class-conditional probability density

function for m.

In most of the practical applications, the posterior probabilities or the class-
conditional probability density functions are unknown, and thus, need to be estimated. There

are two ways of doing this.
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2.3.1.1 Parametric approach The parametric approach is based on the assumption that the
class-conditional probability density function for s, p(m | w), has a form of multivariate
normal distribution:
plm | w;) = (22 | 5] exp[-0.5 (m-p)* 5 (m-p)] 2.4)
where: d is the dimension of the feature vector; 4 is the d-dimensional vector containing
feature means in a class w,, 7 is the covariance matrix, and * means transpose.
So to estimate the probability density, one needs to estimate the parameters 4 and 2.
The parameters, 4 and %, can be estimated from the training data set using different
parameter estimation methods (Hand 1981). The prior probability P(w,) can also be
estimated from the training data set. Then the classification criterion, Eq. 2.2 or 2.3, can be
determined in an analytical form.
2.3.1.2 Non-parametric approach The non-parametric approach calculates the posterior
probability P(w; | m) directly from the training data set without any assumption of the
underlying probability density. There are several different methods of estimating P(w; | m)
such as the histogram, the kernel method, the nearest neighbour method, and the series
method (Hand 1981). The most popular of them is the nearest neighbour method which is
described briefly in the following section.
Nearest neighbor classifiers The nearest neighbour classifier (NNC) makes use of the
correspondence between similarity and distance, i.e., the smaller the Euclidian distance
between classes the more similar they are. The nearest neighbour decision rule assigns an
unknown U to the class of its nearest neighbour X
U eclass(i) if d(U,X,) = min dU,X), fork = j; k,j=1,2,.....C (2.5)
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where d(U,X) is a distance measure between U and X and C is the number of classes.

The underlying idea behind the nearest neighbor rule is that samples which fall close
together in feature space are likely to belong to the same class. The NNC stores a number
of patterns for each class. Then the unknown is compared to all of the stored patterns and
assigned to the class of the patterns which is most similar with the unknown. The decision
surface created by NNC is piecewise linear.

The k-nearest neighbour classifier (,-NN) is an extension of NNC. The 4-NN rule
classifies X by assigning it the class most frequently represented among the & nearest
samples. In other words, a decision is made by examining the labels on the k nearest
neighbours and taking a vote.
2.3.1.3 Parametric versus non-parametric methods The parametric approach has the
advantage that the derived classification criterion is of an analytical form which can be easily
transferred into a computer classification program. The assumption of the multivariate
normal distribution, however, made for the class-conditional probability density function in
deriving the classification criterion, could be incorrect or insufficient in many applications
and may lead to significant classification error. The k-NN approach avoids the subjective
assumption by directly estimating the posterior probability P(w; | m) from the training data
set. A disadvantage of this approach is that the derived classification criterion cannot be
expressed analytically. All of the training data must be retained - the distance from a new
observation to each of the training set points must be determined to choose the % nearest
points. This means a large amount of computer memory and a slow classification process.
In addition, the estimation of the posterior probability is biased (Rosenblatt 1958) towards
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larger values.

2.3.2 Neural network classifiers Artificial neural networks are synthetic networks inspired
by the biological system found in living organisms. Due to the limited knowledge available
about the human nervous system, the correspondence between this system and artificial
neural networks is still rather weak. Based on our present understanding of the neuron
function, different models have been developed to simulate functioning of the nervous
system. A typical mathematical model of a neuron is presented in Fig. 2.1. The model
consists of a processing element with a number of input connections (xy, Xy, ...., X,) and a
single output. The flow and the process of input signals are considered to be unidirectional

as indicated by the arrows.
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Fig. 2.1 A mathematical model of a neuron

The neuron receives a weighted sum of the inputs. Then a threshold, t, is added to
the weighted sum which results in the activation value g for the neuron. The threshold
usually has a constant value equal to -1 (Zurada 1992). The activation value of the neuron
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is computed using:

n

a= 2(wm+ Wr)

i=1 (2.6)
where n is the number of inputs, and w, the weight of the connection i of the neuron. The
activation value of the neuron is passed through a non-linear activation function (sigmoid)

which generates the output of the neuron. Typical neuron activation functions are:

2
fla)= 1+ exp(-Jda) ! 2.7)
and
+La>0
f(a)= {—La <0 (2.8)

Equation 2.7 is a bipolar sigmoid function (Fig. 2.2a) which provides a neuron with a
continuous value between -1.0 and +1.0. In this equation [ is a positive constant
proportional to the neuron gain. Equation 2.8 is a bipolar binary function (Fig. 2.2b) which
provides a neuron with binary outputs of -1.0 and +1.0. The original neuron model used the
binary function, sometimes called hard-limiting, as its activation function (Zurada 1992).
Later, because of their differentiability, different forms of continuous functions became the

dominant neuron activation functions (Zurada 1992; Jou et al. 1994; Mehrotra et al. 1996).
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Fig. 2.2 Typical activation functions for neurons: a) sigmoid and b) hard-limiting
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In a neural network system, a number of neurons are interconnected such that each
neuron output is an input to some or all other neurons and possibly to itself. Lag-free
neurons accomplish their tasks in parallel, thus providing a high speed information
processing tool. Parallel processing of information through many processing elements with
primarily local connections provides a great degree of robustness or fault tolerance.
Depending on the application, these networks may have different connection types such as
forward or backward with time delay, thus providing potential for application in many
different areas.

Neural networks learn to perform a specific task. Learning in a neural network is
accomplished by a systematic procedure for altering the connection weights to reduce the
network errors. Learning is performed in either supervised or unsupervised mode. In
supervised learning the desired response for an input is provided to the teacher. The teacher
implements a reward-and-punishment scheme to adapt the network weights. In unsupervised
learning, the desired response is not known and the network must discover any possible
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existing patterns, regularities, and separating properties among its inputs.

Different neural network classifiers have been applied to different classification
problems. In supervised mode, Hopfield net and Hamming net are normally used with
binary inputs while the single layer perceptron and multi-layer neural network use
continuous-valued inputs (Zurada 1992; Mehrotra et al. 1996). Because of the use of
continuous-valued inputs, only single-layer and multi-layer neural networks (Villiers and
Barnard 1992) are discussed in this thesis. For further information on other networks the
interested reader is referred to Mehrotra et al. (1996).
2.3.2.1 Single layer perceptrons One of the original models of a neuron was proposed by
Rosenblatt (1958). The model is referred to as the perceptron and it is presented in Fig. 2.3.
The perceptron forms a weighted sum of the #-dimensional input vectors (Eq. 2.6) and adds
a bias value to it. The result is passed through a hard-limiting activation function, i.e., Eq.
2.8. Due to its binary output, the perceptron can be considered as a dichotomizer which
divides its input patterns into two classes separated by a decision boundary in the form of a
hyperplane.

To achieve the correct classification result, the connection weight and the threshold
in a perceptron can be adapted using a number of different learning rules. The perceptron
learning rule (Rosenblatt 1958) was originally developed for training a perceptron. In this
rule, the weight adjustment, 4W, is proportional to the product of input vector X and the
difference between the neuron’s actual output o and the desired output 4

AW = ¢ (d-0)X (2.9)
where c is a learning step. In the perceptron learning rule, if the classes are not separable or
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overlap exists between them, the decision boundary between the two classes may oscillate

contiguously (Lippmann 1987).
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Fig. 2.3 A mathematical model of a perceptron

Least mean square (LMS) (Widrow and Hoff 1960) is another widely used algorithm
for training perceptrons. This algorithm minimizes the squared error between the desired
output and the activation value of the neuron. The weight increment is therefore proportional
to the product of this squared error and the input vector:

AW =c(d-WX)\>X (2.10)
The weight adaptation through LMS algorithm is independent of the activation function used
by the neurons.

Perceptrons can be arranged in a layer to accomplish multi-category classification
when the classes are linearly pairwise separable (Zurada 1992). A multi-category classifier
using discrete perceptrons is shown in Fig. 2.4. In this classifier, there is one perceptron for
each class. Each perceptron is trained to have an output, O, of +1 for one class and -1 for

other classes.



Fig. 2.4 A multi-category classifier using c discrete perceptrons

2.3.2.2 Multi-layer neural networks The perceptron was criticized for its inability to
implement the exclusive-or (XOR) function (Minsky and Papert 1969). Furthermore, the
decision regions formed by perceptrons are hyperplanes similar to those formed by
maximum likelihood Gaussian classifiers (Lippmann 1987). There are many problems,
however, that require nonlinear decision boundaries. Some deficiencies of perceptrons are
overcome by implementation of multi-layer neural networks (MLNN).

Multi-layer neural networks are created by cascading neurons in layers. Continuous
activation functions such as sigmoids are used in the neurons. The advantages of using a
sigmoid function include its differentiability and its continuous-valued outputs.
Differentiability is of great interest in minimization of errors using a gradient search.
Continuous-valued outputs are important, in particular, in classification problems because
outputs between -1 and +1 or between 0 and +1 may be interpreted as probability estimates.
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In an MLNN, the input vector feeds into each of the neurons in the second layer (first
hidden layer). The outputs of the second layer feed the third layer neurons and so on. Often
the neurons are fully interconnected between the layers and flow of information is from the
inputs toward the outputs. The MLNN with this type of unidirectional information flow are
called feedforward networks.

A typical four-layer feedforward neural network is shown in Fig.2.5. The illustrated
network has a three dimensional input vector. The most common terminology used for
referring to the layers of a feedforward network is as follows. Input layer: The layer to
which the input patterns are fed and the outputs are passed on to the subsequent hidden layer.
Hidden layer: The layer whose outputs are fed to its following layer. Output layer: The last
layer of neurons whose inputs are the output of the last hidden layer and its outputs are the
output of the network. Therefore, Fig. 2.5 represents a four-layer network consisting of two
hidden layers and one output layer. It has been demonstrated that three-layer feedforward
networks are capable of forming a close approximation to any nonlinear decision boundary
(Makhoul et al. 1989). Many problems, however, are solved more efficiently using four-

layer networks (Chester 1990, Mehrotra et al. 1996).

28



Input Layer First Hidden Second Hidden Output
Layer Layer Layer

Fig. 2.5 A typical four-layer neural network

2.4 Issues on multi-layer neural networks

Multi-layer neural networks have been established as robust and extremely powerful
pattern classifiers. These classifiers are used in recognition and classification problems and
usually have multiple inputs corresponding to the number of features used for object
representation and multiple outputs corresponding to the number of classes. These networks
are trained to give a desired output vector for a particular input pattern within a
predetermined error. Typically, because feedforward networks do not take advantage of
predefined relationships between the input and output, they require a large number of
training passes. Even after extensive training with a large training set, they usually result in

only 80-90% recognition accuracy (Spirkovska and Reid 1993).
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Choosing a proper size of network for a particular application is an unsolved issue

in neural network studies. A small network may never converge, while a large network
converges fast but lacks the generalization power (Hush and Horne 1993). Besides a suitable
network size, there are many other questions that need to be answered to use a network for
a particular problem. Learning step, proper training procedure, number of layers, network
initialization, value of gain, and the number of neurons in each layer are some of the MLNN
issues which have been investigated by different researchers, reviewed in the following
sections.
2.4.1 Number of layers Makhoul et al. (1989) have shown that MLNN with one hidden
layer can form arbitrarily close approximation to any nonlinear decision boundary. This does
not necessarily imply that there is no benefit of using more than one hidden layer. Chester
(1990) demonstrated that a small three-layer network was more capable than a large two-
layer network. Lippmann (1987) stated that for any classification problem, no more than two
hidden layers (i.e., a four-layer network) would be needed. Villiers and Barnard (1992)
compared the performance of three-hidden layer networks with two-hidden layer networks.
They indicated that three-hidden layer networks were more prone to fall into local minima,
but they performed similarly in all other aspects.

The above work indicates that even though MLNN with one-hidden layer can
perform most of the classification tasks, it is better to use a two-hidden layer network. More
than two-hidden layers may also be used, but it does not increase the efficiency. On the other
hand, using more than two-hidden layers may result in a lower accuracy because these
networks are more prone to fall into a local minimum.
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2.4.2 Number of neurons in each layer Determining the optimum number of neurons in
the hidden layers is still an unsolved issue. In general, the number of neurons that should be
used for a given problem is not known. Most researchers have selected the number of
neurons in the first hidden layer to be equal to the number of elements in the input patterns
(Emmerson and Damper 1993, Jou et al. 1994). The number of neurons in the output layer
is usually taken to be equal to the number of classes (Mehrotra et al. 1996).

While there are some guidelines for selecting the number of neurons in the output and
the first hidden layer, there is no clear method for selecting the number of neurons for the
second or subsequent hidden layers. Most researchers use a trial-and-error method to find
a suitable number. Emmerson and Damper (1993) randomly chose the number of neurons
in the second hidden layer. Gupta and Upadhye (199 1) empirically determined the number
of neurons for the second hidden layer. Jou et al. (1994) started with a large number of
neurons and used a pruning algorithm to decrease it to a suitable size.

2.4.3 Neuron gain and learning rate The neuron gain, 4 in Eq. 2.7, determines the
steepness of the sigmoid function in the transition region. Although any value can be used
for 4, most often it is taken to be 1.0 (Zurada 1992, Hush and Horne 1993). This gain
provides a moderate steepness for the sigmoid function. The learning rate (7) determines the
size of the step for weight adjustment. The effectiveness and convergence of a network
during training depends significantly on this parameter. Like most of the other factors, the
value of 77 depends on the problem being solved. Larger values of 7will result in more rapid
convergence, but if it is too large, the result is instability in network learning. A small value
of 7should be chosen to avoid overshooting and to have a smooth convergence. A value of
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n that might be suitable during the initial phase of training might not be suitable during the
fina]l stages. Values between 0.001 to 10 have been reported in different technical
publications (Chester 1990, Villiers and Barnard 1992, Jou et al. 1994). So the value of 7
for any particular application must be determined empirically.

2.4.4 Momentum in learning The back propagation of error based on the gradient descent
method is generally a slow learning process. A momentum term is sometimes added to the
weight adjustment to accelerate the convergence of the networks. In this method a fraction
of the previous weight change is added to the current weight adjustment in the following
form:

AW() = - p VE() + a AW(z-1) (2.11)
where the arguments ¢ and #-1 are used to indicate the current and the most recent weight
adjustments. The user defined parameter a is a positive constant with a recommended value
between 0.1 and 0.9 (Zurada 1992). In Eq. 2.11, the second term on the right hand side is
called the momentum term. The momentum term typically helps to speed up the
convergence process and it is recommended for problems with convergence that occur too
slowly or for the cases where learning is difficult to achieve.

Silva and Almedia (1990) showed that training a network using regular back
propagation required 10 367 training cycles. The same network trained with two momentum
values of 0.5 and 0.9 required 5180 and 1007 training cycles, respectively. Emerson and
Damper (1993) used a constant momentum value of 0.8 for training different networks. In
general, incorporating a momentum term will reduce the number of training cycles for a
network to reach some predefined error.
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2.5 Multi-layer Neural Network Classifiers Versus Statistical Classifiers

Various studies have been conducted to compare the performance and the
classification procedures of MLNN classifiers with statistical classifiers (Khotanzad and Lu
1991, Sethi 1991, Luo et al. 1999b, Jayas et al. 2000). As discussed earlier, most of the
statistical classifiers are based on the Bayes decision rule. The Bayes decision rule
performance is optimal for a given set of features in the way that it minimizes the probability
of error and the conditional risk. Although the Bayes decision rule is very simple, it is
difficult to apply in practice because the posterior probabilities are usually unknown and so
must be estimated from the samples (Hush and Horne 1993).

Multi-layer neural network classifiers learn the class knowledge directly from the
training data set and, therefore, it is unnecessary to make any assumptions regarding the
underlying probability density functions. Information about g priori probability can be
adjusted after training (Hush and Horne 1993), or by increasing the number of training
patterns. After training (learning), the MLNN classifier is specified by a set of processing
elements which are arranged in a certain topological structure and interconnected with fixed
connections (weights). There is no need for retaining the training data and no extensive
computation is involved in the classification of unknown patterns.

The problem in designing an MLNN, however, is that there is no theoretical method
available to optimally determine the network structure, the number of hidden layers, and the
node numbers in each hidden layer, which control the learning and classifying ability of the
MLNN. Although, it has been shown that an MLNN with two hidden layers can form any
discriminant surface (Pao 1989), MLNNSs with three or more hidden layers are also used for
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their efficiency and speed in learning (Keppler et al. 1996). An MLNN with a small and
simple hidden layer structure may not grasp sufficient class knowledge for classification,
while an MLNN with a large and complex hidden layer structure may tend to memorize the
specific patterns in the training data set rather than learn the general class information. The
best way for structure design is to start with a small number of hidden layers and processing
nodes. The network complexity can be gradually increased until the network is trained
sufficiently. Multi-layer neural networks using the gradient descent technique and back-
propagation learning rule can get trapped in a local minimum and consequently result in
lower classification rates. To reduce the risk of local minima it is suggested to use extra
hidden nodes, smaller learning rates, and train the network with different initial weight
values.

Khotanzad and Lu (1991) compared the performance of MLNN with nearest
neighbour classifiers for character recognition. Both the classifiers were similar in their
performance. The time taken by the MLNN classifier, however, was much less than the
nearest neighbour classifier. In general, k&-NN classifiers are not very effective for high
dimensional discrimination problems (Lippmann 1987).

The use of sigmoid functions in the MLNN allows perturbations in the feature values
to be tolerated. Moreover, the use of soft limiting functions in MLNNs provide smoother
boundaries between different classes and this subsequently offers more flexible decision
models than the conventional decision trees. The issue of missing features is also less crucial
in the neural networks implementation because of the parallel nature and graceful
degradation property of the neural networks (Sethi 1991).
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2.6 Application of MLNN Classifiers in Agri-Food Research

Neural network classifiers have been considered and applied for quality inspection
of different agricultural products. Thai and Shewfelt (1991) compared statistical regression
techniques and neural networks to evaluate the external color for tomato and peach. Both
techniques provided the same answers regarding the selection of the factors to be included
in the final mathematical equations. Statistical methods gave slightly better results as
compared to neural network methods. They, however, recommended the use of neural
networks because of fewer steps in the analysis phase.

Bochereau et al. (1992) presented a general purpose method for approximating an
arbitrary continuous function on a compact set from a given set of observations. The method
consisted of constructing a model based on a feedforward MLNN, embedding both classical
data analysis techniques and neural network techniques. The model construction was
divided into three steps: (1) principal components analyses was first applied to reduce the
number of input variables and to decorrelate them, (2) multiple regression analysis was used
to derive the best linear estimator, and (3) multilayer neural networks were trained to extract
the non-linear components of the function. The model was applied to reflectance data of the
sugar content obtained using NIR spectroscopy to determine the quality of apples. The
results of the experiments were used to derive a model for predicting apple quality from near
infra-red spectra. The model gave an error of 5%.

Murase et al. (1992) developed a neural network model to estimate the maximum
hoop stress produced in the skin of tomato fruit in the cracking process. A three-layer neural
network was used with gradient descent back propagation as the training algorithm. The
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inputs were physical and mechanical properties of the tomatoes generated by a finite element
model capable of describing their cracking behavior. They inferred that crack occurrence
in tomato can be easily estimated using their neural network model.

Patel et al. (1995) used machine vision in conjunction with an MLNN for detecting
defective eggs with dirt stains and blood spots. The gray level histo gram data extracted from
the images of the eggs were used as input to the network. An accuracy of 83.3% was
reported for detecting the dirt stains and the accuracy for blood spot detection was 91.7%.
The authors indicated that a coupled neural network and computer vision system was an
attractive and feasible method for egg defect detection.

Romaniuk et al. (1993) used a technique developed by Zahn and Roskies (1972) and
obtained the first 20 Fourier descriptors for different cultivars of barley. The Fourier
descriptors were used as inputs to an MLNN classifier. Their neural network was able to
recognize different varieties of barley seeds with about 80% accuracy. In this research no
attempt was made to reduce the number of features. The trained networks had only one
neuron in the output layer and this approach to MLNN classification makes the task of
classification very difficult.

Dowell (1993) used a feedforward neural network for classification of damaged and
undamaged peanut kernels. The spectrum reflectance from 400 nm to 700 nm in 10 nm
intervals was used as the recognition feature. The author indicated classification was best
when the network had 20 or more hidden neurons. The author tested the network with 1 to
20 and then to 40 neurons in the hidden layer without any systematic approach to select the
number of neurons. Indicating “20 or more” is a rather weak conclusion because in this case
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“more” can be considered any number between 20 and 40. Using an excessive number of
neurons in the hidden layer decreases the generalization power of networks.

Park and Chen (1994) applied different neural network models to develop an
accurate, reliable, and economical sensor for on-line inspection of cadavers and detecting
infected carcasses at poultry processing units. They used spectral reflectance data obtained
by a diode array spectrophotometer as the discrimination feature. The networks compared
were feedforward back propagation, self organization map with back propagation, and
counter propagation. They found that feedforward back propagation network was the most
suitable network for this application. This network was also compared with other
classification discrimination methods such as multiple linear regression, closest cluster mean,
k-nearest neighbor, and principal component analysis with Mahalanobis distance. The
Feedforward back propagation network was also superior to these classical classifiers.

Chen et al. (1995) used the feedforward backpropagation neural networks with
near-infrared (NIR) diffuse reflectance spectra of ground kernels as input to classify hard red,
winter, and spring wheats. Networks with and without hidden layers were used with various
subsets of the full spectral region as inputs. Using samples from the 1987-1989 crop years,
the best neural network models yielded 97.0 and 96.8% accuracies for calibration and
validation sets, respectively, utilizing the full wavelength range. When applied to the 1990
crop year, the prediction accuracies of the full and abbreviated wavelength range models
were 95.1 and 95.6%, respectively. These models performed better than a previously

reported principal component analysis with Mahalanobis distance classifier.
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Sayeed et al. (1995) used a feedforward neural network to develop a methodology
to evaluate the quality of a snack product through non-destructive analysis. Input to the
network included visual texture and morphological characteristics. They used step-wise
linear regression to reduce the number of features. The neural network was shown to predict
the sensory attribute of the snack with a reasonable degree of accuracy. The network,
however, performed better when trained and tested with the whole set of data than with a
reduced one. This indicates that either the procedure followed for feature selection was not
suitable or the features could not be reduced. The proposed algorithm seems to be
computationally expensive because of the large network size, large number of features, and
the pre-processing time required for extracting the features.

A method for evaluating tomato ripeness, utilizing its surface color, was developed
by Shibata et al. (1996) using a machine vision system with color image processing
capability and an MLNN-based software system. The tomato ripeness was classified into 4
categories according to the standard commercial classification for manual sorting. Three
color specification values were calculated from the RGB gray levels of a captured color
digital image of a tomato by an on-line image processing system. The authors suggest that
only 0.2-0.5% of the total surface area of a fruit is needed for color image sensing. A
3-layer back-propagation neural network with 4 hidden nodes gave a satisfactory
performance. The total processing time from image capture to output for a single fruit was
0.45 s. The recognition rate for the ripeness classification using this method was as high as
93%. A recognition rate of only 77% was obtained by the multiple regression model tested.
This work provides another example to strengthen the area of application of neural networks,
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machine vision systems, and robotics for post-harvest processing of agricultural products.

Luo et al. (1999b) applied and empirically compared two statistical and one neural
network classifier for the classification of cereal grain kernels (e.g., CWRS wheat, CWAD
wheat, barley, rye, and oats) and for the classification of one healthy and 6 types of damaged
(e.g., broken, grass-green/green-frosted, black-point/smudge, mildewed, heated, and
bin/fire-burnt) CWRS wheat kernels, using selected morphological and color features
extracted from the grain sample images. The classification of cereal grain kernels and the
classification of healthy and damaged CWRS wheat kernels using a non-parametric
(k-nearest neighbor) statistical classifier and the MLNN classifier gave similar and the best
classification results. Using an MLNN classifier with a selected set of 15 morphological and
13 color features, the average classification accuracies were 98.2, 96.9, 99.0, 98.2, and
99.0% for CWRS wheat, CWAD wheat, barley, rye, and oats, respectively, when trained and
tested with 3 different training and testing data sets. The classification accuracies achieved
using a parametric classifier were lower than the classification accuracies achieved using
both the non-parametric and the MLNN classifiers.

Ghazanfari et al. (1998) used a machine vision system to classify unshelled pistachio
nuts based on United States Department of Agriculture grades. The gray-level histogram data
obtained from the gray scale image of the nuts were analyzed to select a set of suitable
recognition features. Based on the analyses, the mean of the gray-level histogram over the
50-60 gray-level range and the area of each nut (the integral of its gray-level histo gram) were
selected as the recognition features. The selected features were used as input to 3
classification schemes: a Gaussian, a decision tree, and an MLNN. The MLNN classifier
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resulted in slightly higher performance with more uniform classification accuracy than the
other two classifiers.

To quantify single wheat kernel color, Wang et al. (1999) used an optical radiation
measurement system which measured reflectance spectra from 400 to 2000 nm. Six classes
of wheat were used for this study. A neural network using input data dimension reduction
by divergence feature selection and by principal component analysis was used to determine
single wheat kernel color class. The highest classification accuracy was 98.8% when the
divergence feature selection method was used to reduce the number of inputs. The highest
classification accuracy was 98% when the principal component analysis method was used

to reduce the number of inputs.
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3. MATERIALS AND METHODS

3.1 Imaging Hardware

For image acquisition a 3-chip charge coupled device (CCD) color camera (DXC-
3000A, SONY) was used. The camera was fitted with a zoom lens (VCL-1012 BY, SONY )
0f 10-120 mm focal length. To provide rigid stable support and easy vertical movement, the
camera was mounted on a stand (m3, Bencher Inc., Chicago, IL). The camera was connected
to a camera control unit (CCU-M3, SONY). The iris was selectable to manual or automatic
mode. The option of the manual iris control was used to achieve repeatability in the
experiments. The automatic gain control of the camera was disabled. Before each imaging
session, the camera was white balanced. Figure 3.1 shows the camera set up.

The image acquisition procedure was controlled using a personal computer (PC) (PIII
450 MHz) which was fitted with a color frame grabbing board (Matrox Meteor-II multi-
channel, Matrox Electronic Systems Ltd., Montreal, PQ). The National Television System
Committee (NTSC) composite color signal from the camera was converted by the camera
control unit at a speed of 30 frames per second into three parallel analog video signals,
namely red (R), green (G), and blue (B), corresponding to the three NTSC color primaries,
and a synchronous signal. The frame grabber digitized the RGB analog video signals from
the camera control unit to a 24 bit 640 x 480 color digital image. The image resolutions were
approximately 0.064 mm/pixel in the horizontal and vertical directions (see Table 3.1). The
programs to control the frame grabber were provided by the Matrox imaging library,
supplied by the manufacturer of the frame grabbing board. The digital images were then sent
to the computer monitor for on-line display and transferred to the hard disk for storage.
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Fig. 3.1 The image acquisition system

Fig. 3.2 The illumination setup for image acquisition
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3.2 Sample Illumination

Hlumination plays a very important role in image acquisition. An ideal illumination
source should provide uniform light distribution over the field of view (FOV), should be
consistent over time, and should eliminate any shadows of the objects. It is impractical to
meet all these conditions in an industrial imaging system but a careful selection and
arrangement of light sources can minimize the inconsistencies due to changes in power
voltage, ambient temperature, and lamp deterioration. Luo et al. (1997) evaluated
incandescent, halogen, and flourescent lamps for their sensitivity to lamp voltage variations,
stability with time, and uniformity over FOV. They suggested that a flourescent lighting is
best suited for the system that was used for this thesis.

A flourescent tube with a 305 mm diameter 32-W circular lamp (FC12T9/CW, GE
Lighting, USA) with a rated voltage of 120 V was placed around and just below the surface
level of the sample placement platform of the light chamber (Fig 3.2). A light diffuser, a
semi spherical steel bowl of 390 mm diameter, covered the light bulb and the object plane
such that the object plane was only exposed to the diffused light. The inner side of the bowl
was painted white and smoked with magnesium oxide. A 125 mm diameter opening at the
top of the bowl facilitated the camera to view the FOV.

Avoltage regulator (CVS, Sola Canada Inc., Toronto, ON) supplied stable AC power
(20.5 V) to the light sources and the voltage to the lamps was adjusted by a variac. A light
controller (FX0648-2/120, Mercron, Richardson, TX) fitted with a photodiode light sensor
was used with the flourescent lamp. The light controller automatically detected the
illumination level in the light chamber and adjusted the AC frequency of the lamp to
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maintain a stable level of illumination. The frequency of the AC power output of the
controller varied between 140 kHz at the minimum light levels to 60 kHz at full power.
3.3 Illumination Standardization

A Kodak white card with 90% reflectance (E152-7795, Eastman Kodak Co.,
Rochester, NY) was used as a white reference to standardize the illumination level. The
lamp voltage was set to the rated 120 V. The image of the white card was acquired and over
a small central area of 50 x 50 pixels the mean gray level values of the R, G, and B bands
were computed and used as the illumination level indicators. By manually adjusting the iris
control and performing the white balance with the camera control unit, all three values (R,
G, and B) were adjusted to 250 + 1.
3.4 Spatial Calibration

All the morphological features were calculated in pixels. To convert these pixel
dimensions into real-world measurement units, the spatial resolution of pixels was
calculated. This was done by taking the image of a Canadian 10 cent coin, counting the
number of pixels in its diameter, and then measuring it with a micrometer (No. 961, Moore
and Wright, Sheffield, England). Table 3.1 shows the results of the spatial calibration. The
spatial resolution of the images was 6.38 x 10?2 mm/pixel. The camera was adjusted to this

resolution prior to taking images every time.
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Table 3.1 Spatial calibration results for a Canadian 10 cent coin

Image Diameter of coin Diameter of coin Spatial resolution

number (pixels) (mm) (mm/pixel)

1 281 17.95 6.39 x 107

2 281 17.96 6.39 x 10

3 282 17.96 6.37 x 10

4 281 17.96 6.37 x 107

5 282 17.95 6.37 x 107
Average resolution 6.38 x 102

3.5 Grain Samples

The grain samples for this study were obtained from the Industry Services Division
of the Canadian Grain Commission (Winnipeg, MB). For the 1998 growing year, clean grain
samples of CWRS wheat (Grade 1, 2, and 3), CWAD wheat (Grade 1, 2, and 3), barley
(Special Select Malt Barley), rye (Grade 1), and oats (Grade 1) were used in color image
analysis of grain samples for content identification and cleaner performance determination.
Samples were collected from eight locations in Manitoba, nine locations in Saskatchewan,
and six locations in Alberta (Fig. 3.3). These locations were chosen using the climatic
subdivisions of the Canadian Prairies (Putnam and Putnam 1970). The selected locations
represent five sample locations from the humid prairie, seven locations from the sub-boreal
region, six locations from the sub-humid prairie, and five locations from the semi-arid

region.
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3.6 Image Acquisition

For its stabilization, the image acquisition system was switched on 30 min prior to
acquiring images. The gray level calibration (white balance) of the FOV was done after that
using a Kodak white card. The spatial calibration was done with an object of known
dimension (a Canadian 10 cent coin).

For each grain type and growing region sample, about 500 g of grain was poured into
alarge plastic bag and shaken thoroughly. A scoop was used to take out approximately 1000
kernels from the plastic bag. Six kernels were then taken one at a time and placed in the
FOV of the camera in a non-touching fashion. A black background was used to image the
grain kernels. One hundred such images were taken for each grain type from every growing
region (i.e., 600 kernels of each grain type were imaged for every growing region).

For imaging the dockage fractions, standard dockage samples were obtained from the
Industry Services Division of the Canadian Grain Commission (Winnipeg, MB). Dockage
samples were obtained by running uncleaned farm samples of CWRS wheat through the
Carter dockage tester (Carter Day International, Minneapolis, MN). The sample was then
divided into five different fractions namely, broken wheat, chaff, wild buckwheat, wheat-
heads, and canola. One hundred grams of each dockage tester fraction were collected. To
image these fractions, each individual component was carefully placed in the FOV of the
camera using a pair of tweezers. The component was then weighed on a microbalance
(Metller M3, Germany). Because the mass density of the different fractions were very
different from each other, weighing them was necessary so that their mass could be
correlated to their morphology. By doing so, a correlation between the morphology and the
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mass of the particle was obtained for each type of dockage fraction.
3.7 Morphology Mass Relationship of Cereal Grains and Dockage

A study was conducted to quantify the mass of the grain kernels and dockage
fractions from their two-dimensional images. It was hypothesized that the mass of any grain
or dockage fraction is dependent on its morphology. Seven morphological features, namely,
area, perimeter, maximum radius, minimum radius, mean radius, major axis length, and
minor axis length were correlated to the mass of the objects. Approximately 600 kernels of
each grain type and 400 particles of each class of dockage were imaged and weighed
separately. A linear regression was performed to find which morphological feature best
described the mass of that particular class.
3.8 Grain Cleaner

A prototype grain cleaner was designed and fabricated (Fig. 3.4). The cleaner
consisted of a wooden frame which could support two screens and a similar trough of 310
mm X 605 mm dimensions. These screens were similar to the ones that are used in a Carter
dockage tester. After consulting the personnel at Carter Day International and the literature
on dockage testers, the sieve sizes were chosen as #8 (2.26 mm [inscribed circle] perforated
double triangle) for the top sieve and #5 (1.79 mm x 11.90 mm perforated slot) for the
bottom sieve. The whole assembly was mounted on a vibratory motor (15A, Eriez
Manufacturing Co., Erie, PA). The screens had a slope of one in 20. The RPM of the
vibrator and the slope of the screens could be varied to achieve different flow rates through
the cleaner. The screens could be taken out and replaced for cleaning and minor slope
adjustments.
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Fig. 3.4 The lab scale grain cleaner: (a) side view and (b) top view
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3.8.1 Grain cleaner testing The grain cleaner was tested at three different flow rates of 4
kg/h, 8 kg/h, and 12 kg/h. The flow rates of 4 kg/h and 8 kg/h were obtained by adjusting
the vibrator rpm, keeping the slope of the screens at 0.05. To achieve a flow rate of 12 kg/h,
the slope was increased to 0.08. Table 3.2 shows the slope and vibrator frequencies for the
tested flow rates for different grain types.

One hundred grams of clean grain sample were taken and the kernels were imaged
by placing them in the field of view of the camera in a non-touching fashion. Using the
regression equation, the mass of that sample was calculated. Five grams of dockage was then
added to it to create an impurity level of 5%. Prior to mixing the clean grain with dockage,
the dockage particles were also imaged and analyzed for the mass of their constituents using
the regression equations. The clean grain and dockage were mixed thoroughly in a plastic
bag and passed through the grain cleaner. The clean grain obtained from the cleaner was
taken and foreign material was manually removed from it. The clean grain and foreign
material were separately weighed and imaged again. Their masses were estimated using the
regression equations. Three replicates at each flow rate were done for all the grain types.

Seven morphological features, namely, area, perimeter, maximum radius, minimum
radius, mean radius, major axis length, and minor axis length of grain and dockage mixture
were calculated. The range of these features was compared to the range of the corresponding
features after the grain had been passed through the cleaner. This change in the range of
these features was studied to investigate if it could serve as a feedback to control the cleaning

process.
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3.9 Data Analysis

For the cereal grain classification part, images of 1500 kernels of each grain type
were taken to form a set of 7500 kernels (1500 kernels of each of the five grain types). This
set was divided into five groups of 1500 kernels each (now each group had 300 kernels of
each of the five grain types). One group (i.e., 1500 kernels) was then used as a training set
and another group was used as a test set. Validation was then done on the remaining three
groups, i.e., 4500 kernels. This replication was done five times so that each group was used
as a training and testing set once.

For cereal grain and dockage classification, 600 objects of each type (cereal grainand
dockage categories) were taken to form a set of 6000 objects (600 of each category). The
complete set was divided into five groups of 1200 objects (now each group had 120 objects
of each type). One group (i.e., 1200 objects) was used as a training set and another was used
as a test set. Validation was done on the remaining three groups, i.e., 3600 objects. Again
the replication was done five times so that each group was used as a training and testing set
once.

Data analysis was done using a four-layer BPN and a non-parametric statistical
classifier and the results of the two were compared.

3.9.1 Neural network training Neural networks were designed and implemented using the
software package NeuroShell 2 (Ward Systems Group, Frederick, MD). Jayas et al. (2000)
indicated that a BPN network is best suited and thus is the most popular choice for
classification of agricultural produce. A four-layer BPN was used for cereal grain and
dockage classification. To begin with, the number of nodes # in the hidden layer was
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calculated using the formula:

n=~1+0)2 +y* 3.1
where: / is the number of inputs; O is the number of outputs; and y is the number of input
patterns in the training set (Ward Systems Group 1998). The number of nodes was varied
to see any significant improvement in performance. If no improvement was observed, the
number of nodes calculated by the formula was used to train the network. Because two
hidden layers were used in this thesis, the number of nodes calculated by the formula was
equally divided between them. The network training was done on one group (1500 kernels)
and while training, another group was used as a test set. The three remaining groups were
used for validation after the network was trained.

While training, the weights and thresholds for each neuron were adjusted to minimize
the mean square error (MSE) between the predicted and observed outputs. For all the
connections, logistic activation functions (also called sigmoid, semi-linear, or soft-limiting
functions) were used. Logistic activation functions provide a balance between linear and
non-linear (hard-limiting) activation functions and are considered to be the closest to
biological neurons. Linear activation functions cannot suppress noise and have limited
learning capabilities whereas non-linear functions may introduce network instability and risk
computational and analytical intractability (Mehrotra et al. 1996). The number of hidden
nodes were varied until the best results were obtained. Training was stopped after 1000
epochs. An epoch is defined as the time during which a network is trained by presenting
each pattern in the training set exactly once. In a preliminary study it was found that 1000
epochs were more than enough for the network to train as the coefficient of multiple
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determination (R”) became constant well before 1000 epochs (Paliwal et al. 2001). To avoid
over-training, the trained network was saved every time it reached a new minimum average
error for the test set. Time taken by each network to train was also determined to compare
the computational speeds of various networks.

The network also gives the contribution of each input feature to the network’s
classification performance. For every input feature it gives a number which is indicative of
the percent contribution that the particular feature made towards the classification process.
These percent contributions for individual features were averaged for different replicates to
rank the contribution for every feature. After ranking, the top 10 and top 20 features were
taken for further analyses and the rest of the features were eliminated.

3.9.2 Non-parametric statistical classifier As described in section 2.3, the selection of a
statistical classifier depends on the class-conditional probability density function of the input
features. Because the distribution of features in feature space cannot be assumed to be
normal, a non-parametric statistical classifier was used. This was implemented using
procedure DISCRIM of SAS (SAS 1990). The DISCRIM procedure uses Bayes’ theorem
to determine the probability of an observation belonging to a particular group by assuming
the prior probabilities of its group membership and the group-specific densities. The ranking

of features was done using procedure STEPDISC of SAS.
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4. ALGORITHM DEVELOPMENT FOR IMAGE ANALYSIS

The algorithm development for this thesis was done on an IBM compatible (Pentium
111, 450 MHz) computer in Microsoft Visual C++ (Version 6.0) programming language. The
algorithm was complete in the sense that it could do all the analyses on the image, starting
from reading the image to thresholding, region labeling, extraction of various features, and
writing those features to a text file. The algorithm was capable of sequentially analyzing
multiple files. A description of the C++ code is given in Appendix A and an electronic copy
can be obtained from Dr. D.S. Jayas. The various operations that the algorithm performed
are described in this chapter.

4.1 Thresholding

Conversion of a multi level gray level image to a binary image so as to distinguish
the objects from the background is called thresholding. It can either be done manually or
automatically. In manual thresholding, a threshold value is specified by the user and the
pixels whose gray levels are less than the threshold value are set to background (0) and the
remaining pixels are set to object (1). Manual thresholding is time consuming as the
thresholded image has to be displayed for every threshold value specified by the user to
visually examine the thresholded image and to decide the final threshold value.

In this study, automatic thresholding (Parker 1994) was used. In automatic
thresholding, the threshold value is decided by the algorithm. The threshold value was
calculated by the principle of iterative selection. The blue band was used for thresholding
the image (Luo et al. 1999a). The number of pixels for each gray level of the blue band were
multiplied with the gray level value and summed. The sum was divided by the total number

55



of pixels to obtain the first threshold value, X;. The same iteration was done for the two
parts i.e., 0 to X; and X;+1 to 255 (assuming that there are 255 gray level values of the blue
band in the image), to generate two more numbers P, and P,. The mean of P,and P, gave the
second threshold value X, Now the iterative process was done for values from 0 to X, and
X,+11t0 255, to generate P; and P,. Taking the mean of P, and P, gave the new threshold X,
This process was repeated until X, equals X,,; This stabilized value of X was taken as the
threshold for the image. The maximum number of iterations was set to 40 to reduce the
runtime of the algorithm.
4.2 Region Labeling

Region labeling was done to assign a unique label or identifier to each object in the
binary image. The region labeling algorithm scanned the binary image once from the top left
to the bottom right. The first encountered unlabeled object pixel was assigned a unique
label. Then from that pixel the region was expanded and the same label value was
propagated by following 8-neighbors connectivity (Gonzalez and Woods 1992). The
propagation of the same label value continued until no more neighboring pixels of the objects
could be found. The scanning of the binary image was resumed and the same process was
continued until all the objects were labeled with their unique label. After labeling there
could be some pixels in the object region with the background gray level value (called hole)
or some pixels in the background with the object gray levels (called extra region). In
practical applications, certain bright spots on the surface of the objects may appear as holes,
and dusts, dirty background spots, or small pieces of grain shell may result in small false
regions in the thresholded image. It is very important to change the values of these pixels
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to the right values for the accurate measurement of the morphological features. Therefore,
a hole filling and region deleting subroutine was used to solve this problem (Luo et al.
1999a). Starting from a background pixel, the whole background region was connected by
following the 8-neighbor connectivity. The left out pixels whose gray levels were that of the
background were changed to the respective object label value. For the cereal grains, any
region with less than 200 pixels (0.72 mm?) was deleted and for the dockage, regions smaller
than 50 pixels (0.18 mm?) were deleted.
4.3 Feature Extraction

Once the objects of interest in the image have been clearly segmented, the next step
is to measure individual features of each object. Features of unknown objects are compared
to those of known objects to do the classification. As a rule of thumb, the features that are
simplest to measure and contribute substantially towards the classification are the best to use.
A total of 51 morphological, 123 color, and 56 textural features were extracted by the
algorithm.
4.3.1 Morphological features The features defining the physical dimensions that
characterize the appearance of an object are called morphological features. A list of the 51
morphological features extracted from an individual grain kernel is given in Table B1
(Appendix B). The morphological features that the algorithm extracted are described below.
Area The pixel area of the interior of an object is defined as area. It is computed as the total

number of pixels inside, and including, the object boundary.

4= Z Z X6 1) 4.1)
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where X(i, j) = 1, in a binary image and »n and m define the horizontal and vertical size of the
image.

Perimeter The pixel distance around the circumference of an object is defined as perimeter.
It is a measure of the boundary length of the object. Generally, the perimeter of a region is
calculated by adding the number of pixels on the boundary. But a pixel represents an area
not a linear distance. Boundary pixels can be identified using the 4-neighbor or 8-neighbor
connectivity methods. In the 4-neighbor connectivity method, the gray level of each pixel
relative to its four neighbors is examined. A pixel X(j, j) is considered a boundary pixel if
X(i, j+1)or X(i, j-1) and X(i+1, j) or X(i-1, j) is a background pixel (gray level 0). In the 8-
neighbor connectivity method in addition to the 4-neighbors, the four corner pixels are
considered (Fig. 4.1). Perimeter length of objects is determined using the Euclidean distance
principle. The distance represented by each pixel was weighted as 1 if all neighbors were

horizontal or vertical, 1.414 if all neighbors were diagonal, and 1.207 if there was one

diagonal and one non-diagonal pixel.
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Fig. 4.1 Distance template for boundary pixels
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Centre of Mass The centre of mass of an object can not be used as a feature but is required
for determining major and minor axes and other features of an object. The centre of mass

(x5 y.) of an object consisting of N pixels is determined as:

13
°" N 1

[ \%
=

(4.2a)

1 N-1
Ve = ‘N—Z (4.2b)

where x; and y; are the x and y coordinates of the i pixel, respectively.

Major axis length 1t is defined as the longest line that can be drawn through the centre of
mass of an object. The candidate pixels were identified by finding the distance between each
possible pair of boundary pixels which could be connected by a straight line through the
centroid and the longest distance was taken as the length of the major axis.

Minor axis length The minor axis is defined as the longest line that can be drawn
perpendicular to the major axis through the centre of mass.

Spatial Moments The spatial moments of an object are statistical shape measures that do not
characterize the object specifically. Rather, they give statistical measures related to an
object’s characterizations. Moments of binary objects describe their shape and moments of
gray level images describe the gray level distribution of objects. The general moments (m1,,)
of different orders are determined as:
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m, = E Zip X3, )

where p, g =0, 1, 2, .... is the order of the moment and X{(j, j) is the gray level of the object

(4.3)

at coordinate (i, j).

In binary images the gray level of the object, X(i, j) is 1 for all pixels. For
monochrome and color images, the gray scale or R, G, and B gray values are substituted for
the value of X(i, j).

The zero-order spatial moment () is computed as the sum of the brightness values
in an object. In the case of a binary image, this is simply the number of pixels in the object,
because every pixel in the object is equal to 1 (white). Therefore, the zero-order spatial
moment of a binary object is its area. For a gray level image, an object’s zero-order spatial
moment is the sum of the brightness of pixels and is related to the object’s energy.

The first-order spatial moments (1, and m,,) of an object contain two independent
components, x and y. They are the x and y sums of the pixel brightness in the object, each
multiplied by its respective x or y coordinate in the image. In the case of a binary image, the
first-order x spatial moment is just the sum of the x coordinates of the object’s pixels,
because every object pixel is equal to 1. Similarly, the y spatial moment is the sum of the
y coordinates of the object’s pixels. The second order moments my, and my, represent the
moment of inertia.

The moments m,, are dependent on the position of the object in the image and
therefore, were not used as features. For comparison and identification of objects, the
moments have to be independent of position and orientation in the image and size of the
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objects. The central moments 4, that are invariant to translation (position of the object in
a given image) and normalized central moments 7,, (Gonzalez and Woods 1992) that are

invariant to translation and size of the object are given by:

thog = 0, D =% ) (j - v ) X (i, ) (4.4

_
oq = ul, 4.5)
where
, )
2 (4.6)

From the second and third normalized central moments, a set of measurements that
are invariant to translation, rotation, and scaling of the object (Gonzalez and Woods 1992)

were derived as follows:

b1 = 1o + 2 4.7)
& = (10 - 0)*+ 4(myy)? (4.8)
&5 = (150 - 3 m)*+ (11 - m3)° (4.9)
& = (30 + m2)* + (721 +13)° (4.10)

Fourier Descriptors Fourier descriptors are shape recognition features based on the Fourier
series expansion of periodic functions. The general idea is to represent the boundary of an
object as a periodic function with a period of 2z The obtained periodic function is then
expanded in a Fourier series and its coefficients are calculated.
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Consider an object with an N-point digital boundary in the xy plane. Starting at an
arbitrary point (x,, y,), coordinate pairs (X, o), (X1, Y1), (X2 Y)soo (1 Yy.1) are encountered
in traversing the boundary, say, counter-clockwise. These coordinates can be expressed in
the form x(k) = x, and y(k) = y, Now, the boundary can be represented as the sequence of
coordinates f{k) = [x(k), y(k)], for k = 0,1,2...., N-1. Each coordinate pair can be treated as
a complex number so that f(k) = x(k) + j y(k) for k = 0,1,2,....N-1, i.e., the x axis is treated
as the real axis and the y axis is treated as the imaginary axis of sequence of a complex

numbers. The discrete Fourier transform of f(k) is:
1 & — j2mkIN
Fuy= 3 fke @11)
=0

foru=0, 1, 2,..., N-1. The complex coefficients F(u) are called the Fourier descriptors of

the boundary. The inverse Fourier transform of the F(u) restores the flk), ie.,

1 N-1

f)=5Y Fae™™"

=0
4.12)

for k = 0, 1, 2,...., N-1. Because these features were extracted by taking the Fourier
transform of the coordinates along the boundary of the kernel, they were called boundary
Fourier descriptors.

The magnitude of F(u) is the square root of sum of squares of its real and imaginary
values. Fourier transforms determined from the radius of the boundary pixels is given by:
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N-1

F(u)=— ;; r(k) e 2™ 4.13)
N £
where r(k) is the radius of the boundary pixel k. These features were called radial Fourier
descriptors.

Slow variations or smooth boundaries are represented by the low harmonic
components and complex variations along a boundary are represented by the high harmonic
components of the Fourier descriptors (Tao et al. 1995). Therefore, for both the boundary
and radial Fourier descriptors, ten lower harmonics and ten higher order harmonics were

taken.
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4.2.2 Color Features

4.2.2.1 Measurements derived from RGB model The most commonly used color feature
model in image processing is the RGB color model. In the RGB model, an image consists
of three independent image planes, one in each of the primary colors, red, green, and blue.
A particular color is specified by the amount of each of the primary components present.
Figure 4.2 shows the geometry of the RGB color model for specifying colors using a
Cartesian coordinate system. The gray scale spectrum, i.e. those colors made from equal

amounts of each primary, lies on the line joining the black and white vertices.
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Fig. 4.2 The RGB color cube. The gray scale spectrum lies along the line
joining the black and white vertices (Gonzalez and Woods 1992)

This is an additive model, i.e. the colors present in the light add to form new colors, and is
appropriate for the mixing of colored light for example. The RGB model is used for color
monitors and most video cameras.

The normalized RGB signals, r(x,), g(x,y), and b(x,y) were computed from each of
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its three color band signals, R(x,y), G(x,y), and B(x,y), respectively, using the following

equations:
R
r=———
R+G+B (4.142)
g- G (4.14b)
R+G+B
and
B (4.14¢)
b= ——
R+G+8B

The following measurements were derived from the normalized RGB signals of a kernel
region £2which consisted of N pixels.

Mean normalized RGB signals

1 1 =
7= —I-V—Zr(x,y) g= FZ 8(x,y) b= ‘;‘,‘Z b(x,y) (4.15)

Variances of normalized RGB signals
2 1 2 2
o =7 (Z? (x,y)- Nr7) (4.162)

(4.16b)



and

% = 377 (3 B x) - N

Ranges of normalized RGB signals
AT = Ty = Togy = max{r(x,y)] - minfr(x, y)]

Ag = 8uax = 8min = max[g(x, y)]- min[g(x, y)]

and

Ab = by, = by, = max{b(x, y)] - minfb(x, y)]

(4.16¢)

(4.17a)

(4.17b)

(4.17¢)

4.2.2.2 Measurements derived from HSI model In this model three independent quantities

are used to describe any particular color. The hue (H) is determined by the dominant

wavelength. The saturation (S) is determined by the excitation purity, and depends on the

amount of white light mixed with the hue. A pure hue is fully saturated, i.e. no white light

mixed in. Hue and saturation together determine the chromaticity for a given color. Finally,

the intensity (I) is determined by the actual amount of light, with more light corresponding

to more intense colors. The entire space of colors that may be specified in this way is shown

in Fig. 4.3. Figure 4.3a shows the HSI solid and Fig. 4.3b shows the HSI triangle formed by

taking a horizontal slice through the HSI solid at a particular intensity. Hue is measured from

red, and saturation is given by distance from the axis. Colors on the surface of the solid are
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Fig. 4.3 The HSI model. (a) HSI solid depiction (b) HSI triangle formed by taking a
horizontal slice of HSI solid at any given intensity

fully saturated, i.e. pure colors, and the gray scale spectrum is on the axis of the solid. For
these colors, hue is undefined.
The H, S, and I attributes can be derived from the normalized RGB values, r, g, and

b, by (Gonzalez and Woods 1992):

| O5[(r-g)+(r-0b)]
H = cos {[(r g+ (r-b)g- b)]%} (4182

S=1- m[min(r, g, b)]
(4.18b)
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and
1
=—(r+g+b)
3 (4.18¢)
The HSIsignals, H(x,y), S(x,y), and I(x,y) were computed for each image from its three color
band signals, R(x,y), G(x,y), and B(x,y) for each image using the Egs. 4.14 and 4.18. The
following measurements were derived from the HSI signals of a kernel region 20f N pixels:
Mean normalized HSI signals

H = %,—}; H(x,y) S = Z S(x,y) I= j\,l—; I(x,y) (4.19)

Variances of normalized HSI signals

0% = o 1(2 H*(x,y)- NH?) (4.202)

N1 S7Cey)- NS

(4.20b)

and

0 = 73 P )= AT
B (4.20¢)
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Ranges of normalized HSI signals

AH = H,,, - Hyy, = max{H(x, y)] - min[H(x, y)] (4.21a)

AS = S = Spia = max[S(x, y)] - min[S(x, y)] (4.21b)
and

AL = Iy = Iy, = max[I(x, y)] - min[I(x, y)] (4.21¢)

4.2.2.3 Color moments For bi-level grain images, the invariant moments were defined by
Egs. 4.7 to 4.10 as shape measures. Similarly the color moments were computed on each of
the three normalized color bands, namely r(x,y), g(x,y), and b(x,y), for each individual grain
kernel as color measurements.

4.2.2.4 RGB histograms An M-band histogram of an object in a digital image with gray
levels in the range [0, L-1] is defined as a discrete function H(k) = n,/N, k= 0, 1, o M-1(1<
M <L); where k is the band number, n, is the number of pixels in the object region with gray
levels in the kth band range [k*L/M, (k+1)*L/M], and N is the total number of pixels in the
object region. Because a color image consists of three gray level images, namely R, G, and
B images, correspondingly three M-band histograms, Hy(k), H(k), and Hp(k), of an object
in a color image can be obtained from the three gray level images. These histo grams provide
a global description of the object’s color appearance. The selection of the number of bands,
M depends on specific applications. Generally, the larger the M, more precise is the
description of the object’s color appearance. However, when the histograms are used as
color features to represent color differences between different objects, this statement is not
always true. In addition a larger M means a larger number of measurements. Luo et al.

69



(1999a) conducted a study to compare histograms with M = 8, 16, and 32, by examining the
significance of the corresponding measurements to the classification of the different types
of cereal grains. They found that the 16-band histogram gave the best measurements. Thus
a value of M = 16 was used in this study.

A list of the 123 color measurements extracted from an individual grain Kernel is

given in Table B2 (Appendix B).
4.2.3 Textural features Texture can be defined as the distribution of color in an image with
respect to the spatial coordinates. It can be qualitatively evaluated as having one or more of
the properties of fineness, coarseness, smoothness, granulation, randomness, or irregular
(Majumdar and Jayas 2000c). Two objects, in their digital image form, can be comprised
of same number of pixels and exactly same color histograms but if the distribution of color
is dissimilar, they can have totally different appearance. These two objects, if classified
using simple color features, would be classified as similar objects.

There have been many statistical and structural approaches to the measurement and
characterization of image texture: autocorrelation functions, autoregressive models, optical
transforms, digital transforms, structural elements, spatial gray tone co-occurrence
probabilities, gray level run lengths, and sum and differences histograms (Haralick 1979).
In this study, gray level co-occurrence matrix (GLCM) and gray level run-length matrix
(GLRM) models were used.
4.2.3.1 Gray level co-occurrence matrix model This model was first described by Haralick
et al. (1973). It provides information about the distribution of gray level intensities with
respect to the relative position of the pixels with equal intensities. The matrix elements M
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(3, j) are the number of occurrence of pixels with gray level i encircled by pixels with gray
level j at a distance d in 07, 45°, 90", and 135° directions (Fig. 4.4a). Considering a 4 x 4
image with gray levels in the range 0 to 3 (Fig. 4.4b), the co-occurrence matrices in the 0,
45°,90°, and 135° directions are shown in Fig. 4.4c.

The co-occurrence matrices in the four directions are combined (Fig. 4.4d) and each
element was divided using a normalizing constant, k given by:

k=2N, (N, -1)+2N (N, 1) +4(N, -1)(N, -1) )
where N, and N, are the number of pixels in the horizontal and vertical directions,

respectively.
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Fig. 4.4 (a) Eight nearest-neighbor resolution cells (b) A 4 x 4 image
with 0 to 3 gray level values (c) Calculation of gray level co-
occurrence matrices (GLCMs) in four directions (d) Final GLCM
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From the normalized co-occurrence matrix, the following invariant features were

calculated (Galloway 1975):

Mean
Ng Ng
u=y > iM(i, j) (4.23)
=1 =1
Variance
Ng Ng
o' = > > (i-uyM(i, ) (4-24)
=1 =1
Uniformity
Ng NS
U= 2 2 M, jy (4.25)
=1 =1
Entropy
Ng Ng
E=- M3, j)log{M(i, j)} (4.26)
=1 J=1
Inertia
N

1

1l

gNg

2 (i- jY M, j) (4.27)
=] j=1
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Homogeneity

Cluster
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o M, j) (4.28)
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(4.29)

< MG, MG, j)
;,- [1+ G- j)]

Ng

(l+ j=2p) M(, J)

MZ

= (4.30)

]
il
i

where N, is the maximum gray level of the image.

4.2.3.1 Gray level run-length matrix model Gray level run length matrix (GLRM) is a

representation of the occurrence of collinear and consecutive pixels of similar gray levels in

an object. The matrix elements RM(j, j) specifies the number of times that picture contains

arun of length j, in a given direction, consisting of points having gray level i (or lying in the

gray level range 7). Figure 4.5 shows the calculation of GLRMs fora 4 x 4 image consisting

of three gray levels, for the four principal directions (0, 457, 907, and 135°).
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Fig. 4.5 (a) A 4 x 4 image with 0 to 3 gray level values (b)
Calculation of gray level run length matrices (GLRM:s) in four
directions (c¢) Final GLRM

75



The following features were extracted from all four GLRMs and their mean value and

range were calculated for analyses (Galloway 1975):

Short Run

S ZERM(Z ])R

Long Run

I Z E jzRA}i(i,j)

=1 =1

Gray level non-uniformity

v, {3 RM(i, )Y’
Gu= )"

Run length non-uniformity

v, {2 RM(, /)Y’
R =
nu 4 R

j=

M

Run percent

R

ZEJRM@ i)

1=
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Gray level entropy

< & RM (i, )log{RM(i, j)}
E, = Z} ; R (4.36)

where N, is the maximum number of run lengths in an image, and

Ng Nr

N, = > RM(, j) (4.37)

=1 =1

Table B3 (Appendix B) lists the 56 textural features that were extracted from each

individual grain kernel.
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5. RESULTS AND DISCUSSION
5.1 Gray Level Reduction for Textural Features

In applications like online monitoring of grains, computational time is of essence.
Depending on the type of application, a small amount of performance can be sacrificed to
reduce the computational time. In this thesis, the computational time was a direct
consequence of the number of maximum gray levels in an image because the size of co-
occurrence and run-length matrices depended on gray levels.

Before starting the actual analysis of data, a preliminary study was conducted to find
out the number of gray levels to which the original 256 gray levels of the image can be
reduced, without incurring a significant loss in the classification accuracy. Maximum gray
level values of 256 were reduced to 128, 64, 32, 16, and 8 for all the three bands (i-e., red,
green, and blue) in each image. All the 56 textural features were extracted for 600 kernels
of every grain type (3000 kernels in total) and classification accuracies were obtained. A
four-layer BPN with 56 neurons in the input layer, 30 neurons in each of the two hidden
layers, and 5 neurons in the output layer, was used for classification. Training was done on
900 kernels and 600 were used for testing. The experiment was replicated three times. The
network was trained until 1000 epochs were reached. Once the network was trained, it was
applied to a production (validation) set consisting of the remaining 1500 kernels. The
average classification accuracies of the three replicates obtained for each grain type at 256,
128, 64, 32, 16, and 8 gray levels are given in Table C1 through C6 (Appendix C). Table
5.1 shows a summary of classification accuracies. Although there was no clear pattern as the
number of gray levels were increased from 8 to 256, gray levels of 32 and 64 seemed to give
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slightly better results. And because 32 gray levels involved lesser computational complexity,
they were chosen for extracting the textural features for further analyses of data in the thesis.
At higher gray level values (e.g., 256 and 128) the image is highly textured and the tonal
primitives cannot be characterized where as at lower gray levels (e.g., 16 and 8) there is too

much loss of textural information from the image.

3.2 Grain Type Identification of Individual Kernels

5.2.1 Morphological feature model A complete set of 51 morphological features was used
for classification of the five grain types using neural network and statistical classifiers.
5.2.1.1 Neural network classifier The BPN had 51 neurons in the input layer, 58 neurons
in each of the hidden layers, and five neurons in the output layer. The network took
approximately 11.5 hto train. The classification accuracies based on morphological features
using a BPN classifier are shown in Table 5.2. It is evident from Table 5.2 that barley and
CWRS wheat could be described better on the basis of their shape and size alone, as
compared to the other grain classes. The lower classification accuracy of CWAD wheat
indicates that there is little consistency in shape and size of its kernels.

The network also gave the ranking of the contribution the input features made to the
classification process. Table 5.3 gives the top 20 features ranked in order of their decreasing
contribution to the classification process. The contribution of the perimeter to the
classification process was much higher as compared to any other feature. It was followed
by mean radius and area. Although 13 of the top 20 features were independent of the size
of the kernels, the top three features did however depend on the size. This means that the
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size of the kernel cannot be discounted and shape alone is not the best classification

parameter.

Table 5.1 Classification accuracies of cereal grains at different gray levels

Number of Gray Levels

Grain type

16 32 64 128 256
Barley 88.5 89.4 89.3 90.5 89.2 90.1
CWAD 93.2 91.0 91.7 92.1 91.4 925
CWRS 87.2 89.4 88.6 88.4 87.9 84.6
Oats 94.6 95.4 96.8 96.9 96.6 96.7
Rye 93.1 95.3 94.5 95.9 93.9 94.9

Table 5.2 Classification accuracies of cereal grains obtained using a BPN classifier with

morphological features as inputs

Grain Classification accuracies for 5 validation sets, %

type 1 2 3 4 5 Mean
Barley 95.9 96.0 97.0 96.3 97.2 96.5

CWAD 90.3 88.0 90.0 88.7 90.0 89.4

CWRS 98.7 99.2 98.9 98.0 96.6 98.3

Oats 93.4 94.2 97.2 95.9 94.4 95.0

Rye 924 92.7 923 93.8 92.8 92.8
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Table 5.3 The top 20 morphological, color, and textural features based on their respective contribution towards classification

accuracy for cereal grains while using a BPN classifier

Feature set

Rank
Morphological Color Textural
1 Perimeter Red moment 1 Green GLCM mean
2 Mean radius Red moment 2 Green GLCM cluster shade
3 Area Green moment 2 Green GLRM runpercent
4 Boundary FD 2 Blue histogram range 1 Green GLCM variance
5 Minor axis length Red moment 3 Blue GLCM mean
6 Boundary FD 18 Blue moment 1 Green GLCM correlation
7 Radial FD 2 Hue mean Green GLRM long run
8 Radial FD 3 Blue variance Blue GLRM color non-uniformity
9 Shape moment 3 Saturation mean Green GLCM entropy
10 Boundary FD 5 Blue mean Green GLRM short run
11 Boundary FD 17 Red histogram range 9 Green GLRM run length non-uniformity
12 Shape moment 4 Green variance Blue GLCM correlation

...continued
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Table 5.3 The top 20 morphological, color, and textural features based on their respective contribution towards classification

accuracy for cereal grains while using a BPN classifier

Feature set

Rank
Morphological Color Textural
13 Radial FD 5 Red variance Blue GLRM short run
14 Minimum radius Blue range Red GLCM homogeneity
15 Major axis length Red histogram range 10 Blue GLCM variance
16 Boundary FD 20 Green histogram range 1 Red GLCM variance
17 Boundary FD 1 Green moment 1 Gray GLRM run length non-uniformity
18 Boundary FD 3 Red range Blue GLRM runpercent
19 Maximum radius Green range Red GLRM run length non-uniformity
20 Boundary FD 12 Red histogram range 11 Blue GLRM run length non-uniformity

82



5.2.1.2 Statistical classifier Classification accuracies obtained using a non-parametric
statistical classifier are shown in Table 5.4. Canada Western Red Spring wheat followed by
barley were classified the best using the statistical classifier. The results of the non-
parametric classifier were inferior to those of the BPN classifier for all the grain types except
for CWAD (Fig. 5.1).

With a minimum significant level of 0.15, procedure STEPDISC of SAS was used
to find out the relative importance of the input features in the classification process. Table
5.5 shows the rankings of input features in descending order of their contribution to the
discriminatory power of the model. The top 20 features had 14 shape and 6 size features.
However the ranking of the features with the non-parametric classifier was different from

that obtained with the BPN classifier.

Table 5.4 Classification accuracies of cereal grains obtained using a non-parametric

classifier with morphological features as inputs

Grain Classification accuracies for five validation sets, %

type 1 2 3 4 5 Mean
Barley 93.8 94.1 92.0 92.4 93.5 93.2

CWAD 91.4 91.0 90.8 90.0 90.1 90.7

CWRS 96.2 97.4 97.5 97.0 96.8 97.0

Oats 89.4 90.1 94.4 92.1 90.9 91.4

Rye 89.6 90.6 92.0 91.9 92.7 914
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Fig. 5.1 Comparison of classification accuracies of the BPN and non-parametric
classifier with morphological features as inputs

For both the neural network and statistical classifier, using morphology alone, the
classification accuracies of CWAD wheat were very low. This can be attributed to the fact
that the smaller and immature kernels of CWAD wheat are very close in shape and size to
CWRS wheat kernels. Misclassification due to close morphological resemblance between
CWAD and CWRS wheats was also reported by Majumdar et al. (2000a). It is also
speculated that because of its distinct color and texture, the classification accuracy of rye

would improve when color and texture are included in the feature model.
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Table 5.5 The top 20 morphological, color, and textural features based on their respective contribution towards classification

accuracy for cereal grains while using a non-parametric classifier

Feature set

Rank
Morphological Color Textural
1 Minor axis length Red moment 2 Red GLRM entropy
2 Boundary FD 18 Saturation mean Green GLRM long run
3 Radial FD 2 Green mean Red GLRM color non-uniformity
4 Radial FD 7 Red moment 1 Green GLRM run length non-uniformity
5 Shape moment 2 Red mean Green GLCM inertia
6 Major axis length Green range Blue GLCM mean
7 Shape moment 1 Blue range Green GLCM variance
8 Area Blue histogram range 1 Red GLRM runpercent
9 Boundary FD 6 Red variance Blue GLRM color non-uniformity
10 Maximum radius Red moment 3 Red GLCM variance
11 Radial FD 3 Red histogram range 22 Red GLCM homogeneity
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Table 5.5 The top 20 morphological, color, and textural features based on their respective contribution towards classification

accuracy for cereal grains while using a non-parametric classifier

Feature set

Rank

Morphological Color Textural
12 Perimeter Blue histogram range 4 Blue GLRM entropy
13 Boundary FD 3 Green variance Blue GLCM variance
14 Radial FD 4 Green moment 2 Red GLRM run length non-uniformity
15 Boundary FD 17 Green moment 1 Green GLRM runpercent
16 Shape moment 3 Blue variance Green GLRM short run
17 Minimum radius Red moment 4 Blue GLRM short run
18 Boundary FD 9 Blue histogram range 8 Green GLCM mean
19 Boundary FD 2 Red histogram range 6 Green GLRM entropy
20 Boundary FD 10 Blue histogram range 5 Red GLCM mean
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3.2.2 Color feature model This model used all the 123 color features that were extracted for
the grain kernels. Neural network and non-parametric classifiers were used to determine the
classification accuracies.
5.2.2.1 Neural network classifier The BPN had 123 neurons in the input layer, 76 neurons
in each of the hidden layers, and five neurons in the output layer. The network took
approximately 64 h to train. The classification accuracies based on color features using a
BPN classifier are shown in Table 5.6. Classification accuracy of CWRS wheat was very
high using the color features. All the other grain types showed low to moderate classification
results. The rankings of the contribution of color features to the classification process are
given in Table 5.3. It is evident that the moments play a very significant role in the
classification process. Four out of the top five color features were based on color moments.
Although there were a lot of histogram features, their contribution to the classification was
not very important with only five histogram features making it to the top 20 list of features.
In an earlier study, Luo et al. (1999a) also found that the histogram features contributed very
little to the classification process.
5.2.2.2 Statistical classifier Classification accuracies obtained using a non-parametric
statistical classifier are shown in Table 5.7. It is evident that the classification accuracies
with the statistical classifier were very low for all the grain types except for CWRS wheat.
Figure 5.2 shows a comparison of the statistical classifier with its BPN counterpart.
Procedure STEPDISC of SAS was used to find out the relative importance of the
input features in the classification process. Table 5.5 shows the rankings of color features
in descending order of their contribution to the discriminatory power of the model. Out of
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the three color bands, the red band contributed the most to the classification with eight red
band features in the top 20 list followed by five features of green and six of the blue bands
(the remaining one being mean saturation). Statistical parameters such as mean, variance,

and range of the various color bands also contributed to the classification.

Table 5.6 Classification accuracies of cereal grains obtained using a BPN classifier with

color features as inputs

Grain Classification accuracies for five validation sets, %

type 1 2 3 4 5 Mean
Barley 94.0 93.1 95.1 92.5 94.2 93.8

CWAD 90.5 92.2 93.4 95.2 93.3 92.9

CWRS 99.1 98.5 99.4 99.3 98.7 99.0

Oats 924 93.8 94.1 93.4 90.8 92.9

Rye 95.4 94.8 95.4 91.8 94.9 94.5

Table 5.7 Classification accuracies of cereal grains obtained using a non-parametric

classifier with color features as inputs

Grain Classification accuracies for five validation sets, %

type 1 2 3 4 5 Mean
Barley 71.5 66.1 65.8 80.7 73.5 71.5
CWAD 81.1 80.6 81.7 73.4 78.5 79.1
CWRS 93.6 90.3 90.9 93.0 93.7 92.3
Oats 60.7 68.1 74.5 67.2 63.5 66.8
Rye 87.7 91.2 914 81.8 86.7 87.8
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Fig. 5.2 Comparison of classification accuracies of the BPN and non-parametric
classifier with color features as inputs
The non-parametric classifier’s performance using color features was very inferior
to its BPN counterpart. The reason behind this can be traced back to the basic fact that the
non-parametric classifier retains all the training patterns and does the comparison when an
unknown pattern is presented to it. In this case, because of a large number of features (multi-
dimensional pattern space), it was very difficult for the classifier to process the information
which resulted in a poor classification. The BPN classifier does not suffer from this
shortcoming of a non-parametric classifier, and thus performed better. Luo et al. (1999b)
also proved the superiority of neural network classifier over non-parametric classifier while
using color features. As speculated in section 5.2.1, the classification accuracy of rye
improved using the color features. The rankings of features for both the classifiers indicate
that the HST based features are not as important as the RGB model features for classification.
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5.2.3 Texture feature model This model used all the 56 textural features that were extracted
for the grain kernels. The images were reduced to 32 gray levels and classification
accuracies were obtained using a neural network and a statistical classifier.

5.2.3.1 Neural network classifier The BPN had 56 neurons in the input layer, 58 neurons
in each of the two hidden layers, and five neurons in the output layer. The network took
approximately 15 h to train. The classification accuracies based on textural features using
a BPN classifier are shown in Table 5.8. The textural feature model seemed to give less
variation among the classification of different grain types in comparison to morphological
and color feature models where there was a large fluctuation in classification accuracies for
different grain types. Figure 5.3 shows a comparison of classification accuracies using
morphological, color, and textural features with a BPN classifier. The bar charts clearly
indicate that none of the feature models, in themselves, were capable of classifying all the
grains with a high accuracy.

The rankings of the contribution of textural features to the classification process are
shown in Table 5.3. For the textural features, the green band was very important with seven
out of the top 10 features coming from the green band. Apart from that there was no clear
pattern in the textural features. The top 20 features had equal number of run-length and co-
occurrence matrix features.
5.2.3.2 Statistical classifier Classification accuracies obtained using the non-parametric
statistical classifier are shown in Table 5.9. The classification accuracies with the non-

parametric classifier also showed little variation among the grain types.
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Table 5.8 Classification accuracies of cereal grains obtained using a BPN classifier with

textural features as inputs

Grain Classification accuracies for five validation sets, %

type 1 2 3 4 5 Mean
Barley 93.1 96.3 95.9 93.0 92.8 94.2
CWAD 90.6 92.8 91.8 90.8 91.6 91.5
CWRS 94.1 90.4 96.8 96.8 96.1 94.9
Oats 93.9 91.0 89.0 89.7 90.4 90.8
Rye 96.1 96.0 96.2 93.1 94.4 95.2

Mean accuracy (%)

CWRS
Grain type

Morphological Color Texture

Fig. 5.3 Classification accuracies of a BPN classifier using morphological, color, and

texture models
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Table 5.9 Classification accuracies of cereal grains obtained using a non-parametric

classifier with textural features as inputs

Grain Classification accuracies for five validation sets, %

type 1 2 3 4 5 Mean
Barley 91.7 91.3 90.9 90.8 92.4 914

CWAD 92.2 93.2 92.4 92.3 92.5 92.5

CWRS 95.2 96.3 97.0 94.7 94.6 95.6

Oats 89.8 92.2 92.7 90.7 90.0 91.1

Rye 96.9 96.9 96.2 944 96.5 96.2

Figure 5.4 shows a comparison of classification accuracies using morphological,
color, and textural features with a non-parametric classifier. The classification accuracies
obtained using the color feature model were much lower as compared to morphological or
textural features. While using textural features, the non-parametric classifier gave better
results than the BPN classifier for all the grain types except barley.

Procedure STEPDISC of SAS was used to find out the relative importance of the
input features in the classification process. Table 5.5 shows the rankings of input features
in descending order of their contribution to the discriminatory power of the model. The run-
length matrices contribute more towards the classification as compared to the co-occurrence
matrices. Similar to the case with the BPN classifier, the green band was more Important

than the red or blue bands.
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Fig. 5.5 Comparison of classification accuracies of the BPN and non-parametric

classifier with texture features as inputs
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5.2.4 All features model A complete set of 230 features (51 morphological, 123 color, and
56 textural) was used for classification of the five grain types using a neural network and a
non-parametric statistical classifier.

5.2.4.1 Neural network classifier The BPN had 230 neurons in the input layer, 102 neurons
in each of the two hidden layers and five neurons in the output layer and took approximately
75 hto train. Table 5.10 shows the summary of the classification accuracies obtained for the
five cereal grain classes. Except for CWAD wheat, the classification accuracies improved
considerably for all the other grain types using all features as compared to classification
accuracies obtained using any one class of features. The improvement in classification
accuracies is because all the three parameters, namely, morphology, color, and texture,
together characterize a kernel much better than any one parameter alone. This can be seen
from the rankings of the classification features for this model (Table 5.11) where all the
parameters are contributing towards the classification process.

Table 5.10 Classification accuracies of cereal grains obtained using a BPN classifier

with all features as inputs

Grain Classification accuracies for five validation sets, %

type 1 2 3 4 5 Mean
Barley 97.7 99.0 98.7 98.1 97.6 98.2
CWAD 90.5 91.7 91.9 90.2 90.4 90.9
CWRS 98.3 98.2 98.9 99.2 98.3 98.6
Oats 97.9 98.1 98.8 98.7 98.3 98.4
Rye 99.0 99.6 98.7 98.5 99.2 99.0
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Table 5.11 The top 20 features based on their respective contribution towards classification accuracy for cereal grains while using

BPN and non-parametric classifiers with all features as inputs

Classifier

Rank

Back propagation network Non-parametric Non-parametric*
1 Hue mean Radial FD 2 Length
2 Minor axis length Boundary FD 18 Haralick ratio
3 Boundary FD 2 Radial FD 7 First Fourier descriptor
4 Saturation mean Green GLCM inertia Standard deviation of radii
5 Radial FD 2 Shape moment 2 Entropy
6 Boundary FD 20 Minor axis length Area ratio
7 Perimeter Saturation mean Saturation
8 Blue GLRM short run Green GLCM mean Red
9 Boundary FD 18 Green range Mean gray level
10 Green GLRM short run Shape moment 1 Mean

* Source: Majumdar and Jayas (2000d)
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Table 5.11 The top 20 features based on their respective contribution towards classification accuracy for cereal grains while

using BPN and non-parametric classifiers with all features as inputs

Classifier

Rank

Back propagation network Non-parametric Non-parametric*
11 Gray GLRM short run Blue GLRM color non-uniformity Radius ratio
12 Boundary FD 3 Green GLRM short run Inertia
13 Blue histogram range 1 Blue GLRM entropy Run-length non-uniformity
14 Radial FD 5 Radial FD 5 Run percent
15 Green GLRM runpercent Green GLCM entropy GLRM entropy
16 Green GLRM long run Shape moment 3 Cluster prominence
17 Minimum radius Red GLCM mean Short run
18 Gray GLCM inertia Red GLRM entropy Blue
19 Boundary FD 16 Green GLRM runpercent Minimum radius
20 Red GLRM short run Boundary FD 17 Third invariant moment

* Source: Majumdar and Jayas (2000d)
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5.2.4.2 Statistical classifier Classification accuracies obtained using the non-parametric
statistical classifier are shown in Table 5.12. Once again, even for the non-parametric
classifier, classification accuracies for all the grain types were better than using any one
feature model by itself. The accuracies for each grain type were, however, lower than the
neural network classifier (Fig. 5.6). This is because of the inherent shortcoming of a non-
parametric classifier in handling a large number of input patterns. Thus, it can be safely
concluded that when dealing with such a large number of input patterns, the use of a BPN
network is advisable.

Procedure STEPDISC of SAS was used to find out the relative importance of the
input features in the classification process. Table 5.11 shows the rankings of these features
in descending order of their contribution to the discriminatory power of the model. For both
the classifiers, the contribution of color features seemed to be very less as compared to the
morphological or textural features. Among the top 20 features, there were only three and two
color features for the BPN and non-parametric classifier, respectively. This result should be
interpreted with reservation. As the contribution of textural features was substantial, it
means that the spatial distribution of color played a more important part in classification
rather than the color components themselves. The difference in rankings of features with the
BPN and non-parametric classifiers can be attributed to their entirely different approach to
the classification process.

The feature rankings for the non-parametric classifier were also compared to the
previous work done by Majumdar and Jayas (2000d). In the present study, the shape features
played a more important role in classification than the size features as there was not even one
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size feature among the top five features. In their work, there were three features among the
top five features. This can be explained by the difference in image resolution of the two
studies. In the given thesis, because the resolution of the images was higher than those used
by Majumdar and Jayas (2000d), the kernels were characterized by their fine boundary
details. Among the textural features, the features obtained using the green band contributed
more towards classification than the other two bands. This result was in accordance with the
hypothesis of Majumdar and Jayas (2000d) that green band based textural features are the
most important. Nevertheless, the presence of red and blue band based textural features
indicates that they were important to a certain extent, both of which were not used in the
earlier study.

It is also evident from Table 5.11 that, in the present thesis, textural features
contributed more towards classification than color features. This, however, did not hold
good in the study conducted by Majumdar and Jayas (2000d). Their study suffered from a
hardware limitation where the images were captured in rectangular pixels which were then
converted to square pixels using interpolation. This may have distorted the actual spatial
distribution of colors in the objects which resulted in poor contribution of texture as a

classification feature.
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Table 5.12 Classification accuracies of cereal grains obtained using a non-parametric

classifier with all features as inputs

Grain Classification accuracies for five validation sets, %

type 1 2 3 4 5 Mean
Barley 79.8 93.9 94.8 77.6 79.3 85.1
CWAD 85.0 923 92.5 87.7 86.8 88.9
CWRS 99.6 90.1 96.7 99.2 99.1 96.9
Oats 91.8 93.3 98.7 96.0 94.9 95.0
Rye 94.8 97.6 98.8 96.2 94.7 96.4
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Fig. 5.6 Comparison of classification accuracies of the BPN and non-parametric

classifier with all features as inputs
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5.2.5 Combined 60 and top 60 features models

3.2.5.1 Neural network classifier The top 20 morphological, color, and textural features
were obtained from Table 5.3 to create the combined 60 features model. This model was
compared with the top 60 feature set obtained from the rankings of features obtained from
the all features model. The combined 60 features model was based on the assumption that
morphology, color, and texture contributed equally towards the classification process. These
two reduced feature models were used to investigate if the reduction in number of features
affects the classification accuracies. The networks had 60 neurons in the input layer, 60 in
each of the two hidden layers and 5 neurons in the output layer and took approximately 28
h to train. Tables 5.13a and 5.13b show the classification accuracies obtained using the
combined 60 and top 60 features models, respectively.

Table 5.13a indicates that a reduced set of combined features improved the
classification accuracy. This can be attributed to the elimination of a lot of redundant
features which did not contribute much to the classification process but induced errors in the
weights on the nodes of the network instead. The top 60 features model, however, did not
perform as well (Table 5.13b). The classification accuracies were lower than those obtained
using the combined 60 features model. The feature rankings of the combined 60 features
model (Table C7, Appendix C) show that all three classes of features (morphological, color,
and texture) contributed to the classification process. Hence an optimized feature set should

have all kinds of features in it.

100



Table 5.13a Classification accuracies of cereal grains obtained using a BPN classifier

with combined 60 features as inputs

Grain Classification accuracies for five validation sets, %

type 1 2 3 4 5 Mean
Barley 97.6 98.8 98.0 98.5 97.7 98.1
CWAD 90.2 90.6 91.7 90.5 89.7 90.5
CWRS 98.6 98.9 98.1 98.7 99.0 98.7
Oats 97.6 98.6 99.1 98.6 97.9 98.4
Rye 98.8 99.1 99.0 98.8 98.9 98.9

Table 5.13b Classification accuracies of cereal grains obtained using a BPN classifier

with top 60 features as inputs

Grain Classification accuracies for five validation sets, %

type 1 2 3 4 5 Mean
Barley 95.2 95.9 97.8 95.6 94.9 95.9
CWAD 83.4 84.5 88.8 85.8 85.4 85.6
CWRS 95.4 95.0 95.8 98.4 96.1 96.2
Oats 96.7 96.8 98.4 97.5 93.4 96.6
Rye 91.5 96.5 96.4 94.8 94.1 94.7
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5.2.5.2 Statistical classifier The rankings of features obtained by using the morphological,
color, and textural feature models were used to create the set of combined 60 features (Table
5.5). These 60 features (top 20 of each of the morphological, color, and textural classes)
were used for classification using a non-parametric classifier. This combined 60 features
model was compared against the top 60 feature set created using the best ranked 60 features
from the all features model. Tables 5.14a and 5.14b show the results of classification using
the combined 60 features and top 60 features models, respectively. Figure 5.7 shows a
comparison of results obtained using the combined 60 and top 60 features models for BPN
and non-parametric classifiers. Between the combined 60 and top 60 features models, the
combined 60 features model gave better classification accuracies than the top 60 features
model. The performance of the BPN classifier was superior to the non-parametric classifier
for both combined 60 and top 60 features models.

The classification accuracy of CWAD wheat was lower than the other grain types
irrespective of the classifier being used. But the classification accuracy (for CWAD wheat)
did seem to improve with these 60 features in comparison to using all the features. This led
us to believe that further reduction of the feature set might improve the results. This was
done in the next section. The improvement in classification accuracy with a reduction in
number of input features was consistent with the results obtained by Majumdar et al. (20004,

2000b, 2000c) and Luo et al. (1999a).
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Table 5.14a Classification accuracies of cereal grains obtained using a non-parametric

classifier with combined 60 features as inputs

Grain Classification accuracies for five validation sets, %

type 1 2 3 4 5 Mean
Barley 89.2 96.3 93.8 86.5 85.9 90.4

CWAD 90.2 91.7 88.1 91.0 90.4 90.3

CWRS 99.0 98.4 89.9 99.0 98.9 97.1

Oats 94.5 97.3 96.4 95.2 95.3 95.8

Rye 98.0 98.7 98.0 97.9 97.5 98.0

Table 5.14b Classification accuracies of cereal grains obtained using a non-parametric

classifier with top 60 features as inputs

Grain Classification accuracies for five validation sets, %

type 1 2 3 4 5 Mean
Barley 88.0 91.9 91.1 84.0 83.8 87.7
CWAD 85.4 85.6 83.0 84.4 86.7 85.0
CWRS 98.0 98.5 86.0 98.1 96.8 95.5
Oats 93.9 95.9 91.7 924 91.7 93.1
Rye 93.3 92.2 95.2 90.2 93.2 92.8
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Fig. 5.7 Comparison of classification accuracies of the BPN and non-parametric

classifier with combined 60 and top 60 features as inputs

5.2.6 Combined 30 and top 30 features models

5.2.6.1 Neural network classifier The top 10 morphological, color, and textural features
were obtained from Table 5.3. The combined model of 30 features (10 each of the
morphological, color, and textural class) was used to investigate if further reduction in
number of features improves the classification accuracies. This model was also compared
to the top 30 feature set consisting of the best 30 features obtained using the rankings of
features from the all features model. The BPNs contained 30 neurons in the input layer, 52
neurons in each of the two hidden layers, and 5 neurons in the output layer. The training
time for the network was approximately 10 h. Tables 5.15a and 5.15b show the classification
accuracies obtained using the combined 30 and top 30 features models.
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Table 5.15a Classification accuracies of cereal grains obtained using a BPN classifier

with combined 30 features as inputs

Classification accuracies for five validation sets, %

Grain

type 1 2 3 4 5 Mean
Barley 97.8 98.3 97.3 98.4 97.8 98.0
CWAD 89.3 90.4 91.5 90.0 89.3 90.1
CWRS 98.5 98.8 98.2 98.4 98.5 98.5
Oats 97.2 98.4 98.7 973 97.3 97.8
Rye 97.8 98.4 98.2 98.1 97.8 98.0

Table 5.15b Classification accuracies of cereal grains obtained using a BPN classifier

with top 30 features as inputs

Grain Classification accuracies for five validation sets, %

type 1 2 3 4 5 Mean
Barley 95.7 91.2 93.0 89.3 89.3 91.7
CWAD 82.6 78.8 77.9 80.7 80.1 80.0
CWRS 93.7 90.2 91.8 95.3 91.7 92.5
Oats 94.9 94.7 92.5 91.9 93.9 93.6
Rye 87.2 89.3 89.7 88.0 87.9 88.4

Classification accuracies of the combined 30 features model were consistently higher
than those of the top 30 features model. Therefore, it was concluded that the top 60 and top

30 features models did not perform as well when compared to the corresponding combined
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features models.

Figure 5.8 shows a comparison of the classification accuracies obtained using all
features, combined 60, and combined 30 features models, using a BPN classifier (for sake
of clarity, the poorly performing top 60 and top 30 models not included in comparison).
Analysis of variance showed that the classification accuracies shown in Fig. 5.8 were not
significantly different (P<0.05) from each other for the respective grain types. Considering
the amount of time saved in training of the network, it is advisable to use a less complicated
network. In comparison to the combined 30 features model, the combined 60 features model
gave slightly better classification accuracies for oats and rye. The only disadvantage of using
the combined 60 features model over the combined 30 features model is that the former took
about 1.5 times longer to train. So depending on whether training time is important or a

higher classification accuracy is desired, the feature model can be chosen accordingly.
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Fig. 5.8 Comparison of classification accuracies of the all features, combined 60, and
combined 30 features models using a BPN classifier

106



5.2.6.2 Statistical classifier The combined 30 features model was created using the rankings
obtained from Table 5.5. The 30 features (top 10 of each of the morphological, color, and
textural classes) were used for classification using a non-parametric classifier. These were
compared to the corresponding top 30 features model obtained from the feature rankings of
the all features model using a non-parametric classifier. Tables 5.16a and 5.16b show the
results of classification using the combined 30 and top 30 features models, respectively.

The combined 30 features model performed significantly better (P<0.05) than the
top 30 features model (Fig. 5.9). For barley, CWRS wheat, and oats the classification
accuracies of the BPN classifier were higher than the non-parametric classifier, whereas for
CWAD wheat and rye the classification accuracies were very close. Thus the overall
performance of BPN classifier with combined 30 features was better.

Figure 5.10 shows a comparison of the classification accuracies obtained using all
features, combined 60, and combined 30 features models, with a non-parametric classifier
(for sake of clarity, the poorly performing top 60 and top 30 models not included in
comparison). The all features model fared badly in classifying barley and the combined 30
features model could not classify CWRS wheat as good as the other two models. For
optimum performance while classifying these five grain types, the combined 60 features
model is recommended.

The number of features in the classifiers were further reduced to investigate the affect
on classification accuracies. When a set of 20 features was used for classification, the
performance of the classifiers deteriorated drastically for both BPN and non-parametric
classifiers (Tables C8 and C9 of Appendix C). This indicated that to obtain high
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classification accuracies a minimum of about 30 features was necessary. Any further
reduction in the number of features will have considerable adverse effect on the performance

of the classifier.

Table 5.16a Classification accuracies of cereal grains obtained using a non-parametric

classifier with combined 30 features as inputs

Grain Classification accuracies for the five validation sets, %

type 1 2 3 4 5 Mean
Barley 95.5 96.4 94.7 94.9 93.9 95.1

CWAD 89.7 91.8 90.0 90.8 90.7 90.6

CWRS 98.3 98.2 98.2 75.0 98.3 93.6

Oats 93.5 96.0 93.9 96.3 93.7 94.7

Rye 98.0 98.0 97.6 98.7 98.4 98.2

Table 5.16b Classification accuracies of cereal grains obtained using a non-parametric

classifier with top 30 features as inputs

Grain Classification accuracies for the five validation sets, %

type 1 2 3 4 5 Mean
Barley 89.2 86.8 91.2 90.5 88.3 89.2
CWAD 77.7 80.1 80.5 81.1 85.0 80.9
CWRS 95.8 92.5 93.1 69.5 92.0 88.6
Oats 90.6 88.1 85.0 87.4 85.9 87.4
Rye 87.2 87.5 88.2 89.9 87.2 88.0
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Fig. 5.10 Comparison of classification accuracies of the all features, combined 60, and
combined 30 features models using a non-parametric classifier
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3.3 Identification of Cereal Grains and Dockage

5.3.1 Morphological feature model A complete set of 51 morphological features was used
for classification of the ten output classes (five grain types, namely, barley, CWAD wheat,
CWRS wheat, oats, and rye, and five dockage fractions, namely, broken wheat kernels, chaff,
wild buckwheat, wheat-heads, and canola) using neural network and statistical classifiers.
5.3.1.1 Neural network classifier The BPN had 51 neurons in the input layer, 32 neurons
in each of the two hidden layers, and ten neurons in the output layer. The network took
approximately 10 h to train.

The classification accuracies of the morphological model are given in Table C10 of
Appendix C. The rankings of the features based on the morphological feature model using
a BPN classifier are given in Tables 5.17. Among the 20 most important morphological
features, although 13 were shape features, the six most important features were the size
features. This is because there was a significant difference in sizes of the grain kernels and
some of the dockage fractions. Hence size features were very important. Ina previous study
by Nair and Jayas (1998), the size features contributed more to classification than shape

features.
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Table 5.17 The top 20 morphological, color, and textural features based on their respective contribution towards classification

accuracy for cereal grains and dockage fractions while using a BPN classifier

Feature set

Rank
Morphological Color Textural
1 Mean radius Hue mean Red GLRM entropy
2 Minor axis length Red moment 1 Green GLRM entropy
3 Area Saturation mean Gray GLRM entropy
4 Minimum radius Blue histogram range 1 Green GLCM cluster shade
5 Perimeter Red mean Blue GLCM mean
6 Major axis length Red histogram range 7 Red GLCM correlation
7 Shape moment 4 Red moment 2 Red GLRM color non-uniformity
8 Maximum radius Red histogram range 6 Green GLRM runpercent
9 Shape moment 3 Red histogram range 8 Blue GLRM entropy
10 Boundary FD 20 Red histogram range 9 Gray GLRM color non-uniformity
11 Boundary FD 2 Red variance Red GLCM cluster shade
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Table 5.17 The top 20 morphological, color, and textural features based on their respective contribution towards classification

acéuracy for cereal grains and dockage fractions while using a BPN classifier

Feature set

Rank
Morphological Color Textural
12 Radial FD 2 Green moment 1 Blue GLRM color non-uniformity
13 Boundary FD 19 Red histogram range 10 Green GLRM long run
14 Boundary FD 3 Blue histogram range 2 Green GLRM run length non-uniformity
15 Radial FD 4 Red range Green GLRM color non-uniformity
16 Boundary FD 18 Green histogram range 1 Gray GLRM run length non-uniformity
17 Boundary FD 16 Blue moment 2 Blue GLCM entropy
18 Radial FD 19 Hue range Red GLCM entropy
19 Radial FD 5 Red moment 3 Red GLRM run length non-uniformity
20 Radial FD 3 Green moment 2 Green GLRM short run
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5.3.1.2 Statistical classifier The classification accuracies obtained using a non-parametric
classifier are shown in Table C11 of Appendix C. Figure 5.11 shows the comparison of the
results of the BPN and non-parametric classifier. Both the classifiers showed very similar
classification accuracies. The classification of chaff was very low as compared to rest of the
classes. This is because it is very difficult to classify chaff only on the basis of shape and
size alone. In a two dimensional image chaff can be confused with any of the other grain
types or dockage fractions. It is speculated that the classification accuracy of chaff would
improve when color and textural features are also used in the classification process. Because
of the uniqueness of their shape and sizes, dockage fractions like buckwheat and canola were
classified with almost 100% accuracy.

The rankings of the features obtained using the procedure STEPDISC are presented
in Table 5.18. Similar to the case of BPN classifier, the size features played an important
role in the classification process. Size features become all the more important when the
output classes vary largely in size, e.g., in this case there was a tremendous size difference

in classes like wheat-heads and canola or buckwheat.
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Fig. 5.11 Comparison of classification accuracies of the BPN and non-parametric classifier with morphological features as inputs
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Table 5.18 The top 20 morphological, color, and textural features based on their respective contribution towards classification

accuracy for cereal grains and dockage fractions while using a non-parametric classifier

Feature set

Rank
Morphological Color Textural
1 Mean radius Hue mean Gray GLRM long run
2 Area Red mean Blue GLCM mean
3 Minor axis length Green mean Green GLCM variance
4 Radial FD 2 Red moment 1 Red GLCM variance
5 Maximum radius Red variance Red GLCM cluster shade
6 Shape moment 2 Green variance Blue GLCM variance
7 Shape moment 1 Saturation range Red GLCM mean
8 Boundary FD 8 Saturation mean Red GLRM run length non-uniformity
9 Perimeter Red moment 2 Blue GLCM entropy
10 Boundary FD 2 Green range Green GLCM entropy
11 Shape moment 4 Green moment 1 Gray GLRM entropy
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Table 5.18 The top 20 morphological, color, and textural features based on their respective contribution towards classification

accuracy for cereal grains and dockage fractions while using a non-parametric classifier

Feature set

Rank
Morphological Color Textural
12 Radial FD 10 Red histogram range 22 Green GLCM mean
13 Boundary FD 19 Blue histogram range 1 Blue GLCM inertia
14 Shape moment 3 Green histogram range 13 Blue GLRM run length non-uniformity
15 Radial FD 3 Blue histogram range 2 Gray GLCM entropy
16 Radial FD 15 Green moment 2 Green GLCM cluster shade
17 Radial FD 16 Blue range Green GLRM run length non-uniformity
18 Boundary FD 1 Red histogram range 21 Red GLCM entropy
19 Boundary FD 3 Red range Green GLCM homogeneity
20 Radial FD 6 Blue histogram range 6 Blue GLRM entropy
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5.3.2 Color feature model For the color feature model, all the 123 color features were used
as inputs to classify the 10 output classes using neural network and statistical classifiers.
3.3.2.1 Neural network classifier The neural network had 123 neurons in the input layer,
78 neurons in each of the two hidden layers, and 10 neurons in the output layer. The network
took approximately 62.5 h for training. Table C12 (Appendix C) shows the classification
accuracies of the color feature model. On the basis of color features only, the classification
accuracy of oats was very low as compared to any of the other grains or dockage fractions.
This is also in accordance with the poor classification accuracy of oats obtained in section
5.2.2. Buckwheat and canola showed the best classification accuracies. This can be
attributed to their distinct colors. As speculated earlier, the classification accuracy of chaff
improved considerably with the use of color features. The rankings of the color features are
given in Table 5.17. The contribution of the red band seems to be very important for
classification as seven of the top 10 features were based on the red band.

5.3.2.2 Statistical classifier The classification accuracies obtained using a non-parametric
classifier are shown in Table C13 of Appendix C. The comparison of the results of the BPN
and non-parametric classifier are shown in Fig. 5.12. The BPN classifier outperformed the
non-parametric classifier for all the ten output classes. As stated in section 5.2.2, this can be
attributed to the poor capability of non-parametric classifiers when dealing with a large
number of input patterns. The classification of oats was very low as compared to rest of the
classes. The rankings of the features obtained using the procedure STEPDISC are presented

in Table 5.18.
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Fig. 5.12 Comparison of classification accuracies of the BPN and non-parametric classifier with color features as inputs
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5.3.3 Texture feature model All the 56 textural features were used as inputs to classify the
10 output classes for this model using a BPN and a non-parametric classifier.

5.3.3.1 Neural network classifier The neural network had 56 neurons in the input layer, 38
neurons in each of the two hidden layers, and 10 neurons in the output layer. The network
took approximately 10 h for training. Table C14 of Appendix.C shows the classification
accuracies of the texture feature model. The classification accuracy of oats was very low as
compared to any of the other grains or dockage fractions which conforms with the poor
results obtained for oats in section 5.2.3. The rankings of the textural features are given in
Table 5.17. The contribution of the run-length matrix features seems to more important than
the co-occurrence matrix features as seven of the top 10 features were run-length features.
5.3.2.2 Statistical classifier Table C15 of Appendix C shows the classification accuracies
obtained using a non-parametric classifier. The comparison of the results of the BPN and
non-parametric classifier are shown in Fig. 5.13. The non-parametric classifier outperformed
the BPN classifier for almost all the output classes. The rankings of the features obtained
using the procedure STEPDISC are presented in Table 5.18. The co-occurrence matrix
features contributed more towards classification than run-length matrix features as 14 out of
the top 20 features belonged to the former.

Figures 5.14 and 5.15 show the comparison of classification accuracies obtained
using morphological, color, and textural feature models when using a BPN and non-
parametric classifier, respectively. It is evident that none of the feature models, by itself, is
good enough to classify all the cereal grains and dockage fractions. So a combination of the
three models is desirable to achieve better results.
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Fig. 5.13 Comparison of classification accuracies of the BPN and non-parametric classifier with textural features as inputs
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5.3.4 All features model A complete set of 230 features (51 morphological, 123 color, and
56 textural) was used for classification of the 10 output classes using a BPN and a non-
parametric classifier.

5.3.4.1 Neural network classifier The BPN had 230 neurons in the input layer, 77 neurons
in each of the two hidden layers, and ten neurons in the output layer and took approximately
103 h to train. Table C16 (Appendix C) shows the summary of the classification accuracies
obtained using the all features model. The accuracies of oats, chaff, and wheat-heads were
still lower than the other grain types and dockage fractions, but had improved when
compared to the classifications obtained using only one feature set. Broken wheat kernels,
buckwheat, and canola were classified with almost 100% accuracy. The rankings of the
features are given in Table 5.19. The top 20 most important features contain features from
all the sets, i.e., morphological, color, and texture. Among the morphological features,
however, there is only one size feature which indicates that shape is a better parameter than
size when it comes to classify dockage fractions which may have a large size range.
5.3.4.2 Statistical classifier The classification accuracies obtained using a non-parametric
classifier are shown in Table C17 of Appendix C. The comparison of the results of the BPN
and non-parametric classifier are shown in Fig. 5.16. As expected for such a large number
of input features, the BPN classifier outperformed the non-parametric classifier for almost
all the output classes. The classification of oats, chaff, and wheat-heads were very low as
compared to rest of the classes. The rankings of the features obtained using the procedure
STEPDISC are presented in Table 5.19. The contribution of color and textural features is

more than the morphological features.
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Table 5.19 The top 20 features based on their respective contribution towards

classification accuracy for cereal grains and dockage fractions while using BPN and

non-parametric classifiers with all features as inputs

Classifier
Rank
Back propagation network Non-parametric

1 Hue mean Hue mean

2 Saturation mean Red GLCM mean

3 Boundary FD 20 Green mean

4 Red GLCM correlation Saturation mean

5 Radial FD 2 Red mean

6 Boundary FD 3 Gray GLRM long run

7 Blue histogram range 1 Blue range

8 Boundary FD 2 Minor axis length

9 Green GLRM runpercent Red GLCM entropy

10 Blue GLRM runpercent Intensity mean

11 Radial FD 4 Green GLCM mean

12 Minimum radius Red moment 1

13 Red variance Red GLCM variance

14 Gray GLRM entropy Gray GLRM color non-uniformity
15 Gray GLRM short run Green moment 1

16 Red GLCM cluster shade Blue GLCM variance

17 Boundary FD 19 Red GLRM run length non-uniformity
18 Red GLRM entropy Boundary FD 2

19 Green GLRM color non-uniformity =~ Radial FD 2
20 Red GLRM short run Green GLCM homogeneity
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5.3.5 Combined 60 features model

3.3.5.1 Neural network classifier The top 20 morphological, color, and textural features
were obtained from Table 5.17. This combined model of 60 features was used to investigate
ifareduction in the number of features affects the classification accuracies. The network had
60 neurons in the input layer, 35 in each of the hidden layers, and 10 neurons in the output
layer and took approximately 37.5 h to train. Table C18 (Appendix C) shows the
classification accuracies obtained using the combined 60 features model. The classification
accuracies of oats, chaff, and wheat-heads improved considerably by reducing the number
of input features.

5.3.5.2 Statistical classifier The rankings of features obtained by using the morphological,
color, and textural feature models were used to create this combined 60 features set (top 20
of each of the morphological, color, and textural classes, Table 5.18). Table C19 (Appendix
C) shows the results of the classification accuracies using a non-parametric classifier. The
comparison of the results of the BPN and non-parametric classifier are shown in Fig. 5.17.
Except for the case of barley, the performance of the non-parametric classifier was inferior
to that of the BPN classifier. Canola, buckwheat, CWRS wheat, and broken wheat kernels

gave classification accuracies in the excess of 98%.
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5.3.6 Combined 30 features model

5.3.6.1 Neural network classifier The top 10 morphological, color, and textural features
were obtained from Table 5.17. This combined model of 30 features was used to investigate
if a further reduction in the number of features affects the classification accuracies. The
network had 30 neurons in the input layer, 27 in each of the two hidden layers, and 10
neurons in the output layer and took approximately 18.5 h to train. Table C20 (Appendix
C) shows the classification accuracies obtained using the combined 30 features model.
5.3.6.2 Statistical classifier The rankings of features obtained by using the morphological,
color, and textural feature models were used to create this set of combined 30 features (top
10 of each of the morphological, color, and textural classes, Table 5.18). A non-parametric
classifier was used for classification, the results of which are shown in Table C21 (Appendix
O).

Figure 5.18 shows the comparison of the classification accuracies of BPN and non-
parametric classifier. Except for the case of broken wheat kernels, the performance of the
BPN classifier was better than the non-parametric classifier.

Figures 5.19 and 5.20 show a comparison of the classification accuracies using a
BPN and non-parametric classifier, respectively, as the number of input features were
reduced. For both the classifiers, the combined 60 features model performed the best giving
higher classification accuracies than the other models for eight out of ten output classes.

The results of section 5.3 indicate that it is very difficult to get higher classification
accuracies for components like chaff and wheat-heads because of their vague shape and
sizes. Their inclusion in the model also adversely affected classification of other grains.
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Fig. 5.18 Comparison of classification accuracies of the BPN and non-parametric classifier with combined 30 features as inputs
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5.4 Quantification of Grain and Dockage Mass Using Morphological Features

To find a relationship between the mass of the particles and their morphology, seven
morphological features, namely, area, perimeter, maximum radius, minimum radius, mean
radius, major axis length, and minor axis length were tested. A linear regression was
performed to find which morphological feature best described the mass of that particular
class. The details of the regression analysis are shown in Appendices DA and DB.

Itis clearly evident from the regression output and graphical plots that the area of the
grain kernels and dockage particles gave the best estimate of their mass. The following

regression equations were derived for the different classes:

Barley

m=-13.054 + 0.733 A (5.1)
CWAD wheat

m = -13.737 + 0.011 A (5.2)
CWRS wheat

m=1319 + 0.008A (5.3)
Oats

m = 0.664 + 0.005 A 54
Rye

m =0.958 + 0.008 A 5.5)
Broken wheat kernels

m=2599 + 0.041 A (5.6)
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Chaff

m = 0.087 + 3.66 x 10" A 5.7
Buckwheat
m = -0.046 + 0.002 A (5.8)
Wheat-heads
m =4819.630 + 3.443 A (5.9
Canola
m=-0.019 + 1.47 x 10° A (5.10)

where A is the area in pixels and m is the mass in mg.

5.5 Testing of the Grain Cleaner

5.5.1 Cleaning efficiency The summarized results of the cleaning performance of the
cleaner are shown in Table 5.20. The detailed results for all the replicates of different grain
types are presented in Tables E1 through ES of Appendix E. The cleaning efficiency (7) was

calculated using the formula

77: (Dbc _Fac) XlOO
D

N (5.11)

where D, is the mass of dockage in the sample before cleaning and F,_ is the mass of foreign

material left in the sample after cleaning).
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Table 5.20 Average cleaning efficiencies of the grain cleaner for different grain types

at various flow rates

Cleaning efficiency (%)

Grain type 4 kg/h 8 kg/h 12 kg/h
Actual Image Actual Image Actual Image
mass basis mass basis mass basis
basis basis basis
Barley 50.0 46.6 50.0 46.3 50.6 50.5
CWAD wheat 58.3 58.4 61.7 62.7 60.0 59.2
CWRS wheat 62.2 62.6 61.5 61.7 59.8 61.0
Oats 48.3 51.5 48.9 47.8 52.0 51.8
Rye 41.3 46.1 39.7 39.3 39.1 39.1

The cleaning efficiencies calculated based on the imaging technique were very close
to the actual efficiencies (Table 5.20). There seemed to be no observable affect of the flow
rates on the cleaning efficiencies. It is important to note that the purpose of this study was
not to obtain very high cleaning efficiencies but to prove that the imaging technique was
robust enough to give very similar results to the actual weighing method used commercially.
5.5.2 Ranges of morphological features before and after cleaning For grain samples
containing 5% dockage, the ranges of seven size-based morphological features were
calculated. These unclean samples were passed through the grain cleaner at 8 kg/h and the
ranges of the same morphological features were calculated for the cleaned grain. Table 5.21

shows the results of this experiment.
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Table 5.21 The ranges of morphological features for different grain types with 5% dockage, before and after being passed through

the grain cleaner (3 replicates)

Range of Morphological Features

Grain Area Perimeter Maximum Minimum Mean radius Major axis Minor axis
type radius radius length length

Dirty Clean Dirty Clean Dirty Clean Dirty Clean Dirty Clean Dirty Clean Dirty  Clean

30782 27620 1640 1432 253 205 57 38 127 88 466 367 192 166
Barley 29825 26548 1671 1397 231 198 61 33 134 88 459 363 187 160
30249 27167 1653 1406 261 200 64 41 126 86 462 358 192 159
29846 26893 1673 1577 234 214 54 45 132 100 453 402 184 181
CWAD 30689 25730 1638 1467 250 212 58 42 130 97 457 405 180 175
29137 25394 1649 1508 243 187 52 45 131 101 451 409 190 182
30284 28834 1657 1507 246 225 58 40 126 101 450 409 189 171
CWRS 30246 27943 1628 1438 275 241 58 39 138 105 462 405 192 170
30014 27086 1630 1485 267 233 60 38 132 99 458 411 192 176
...continued
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Table 5.21 The ranges of morphological features for different grain types before and after being passed through the grain cleaner

Range of Morphological Features

Grain Area Perimeter Maximum Minimum Mean radius Major axis Minor axis
type radius radius length length

Dirty Clean Dirty Clean Dirty Clean  Dirty Clean  Dirty Clean Dirty Clean Dirty  Clean

30049 28719 1667 1467 249 209 52 42 127 93 452 387 185 174
Oats 31039 28144 1658 1435 249 201 51 42 129 90 460 390 188 179
30080 27841 1633 1404 273 222 59 40 129 91 453 381 193 182
29954 28643 1662 1472 249 216 53 43 125 95 461 392 186 173
Rye 30145 28435 1657 1439 244 208 60 44 127 94 458 395 180 172
30672 27901 1625 1457 232 201 52 43 129 94 451 390 191 175
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Analysis of variance (ANOVA) was done on individual morphological features
(Appendix F). The results indicate that there was a significant difference (P < 0.05) in the
ranges of all the morphological features before and after the grain was passed through the
cleaner. This is a very important result as this change in the range of any of these
morphological features, can be used as a feedback to evaluate if the grain is being cleaned

properly or not.
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6. CONCLUSIONS AND RECOMMENDATIONS

This thesis research has brought the technology of machine vision one step closer to
its application in the grain industry. An optimum set of morphological, color, and textural
features now exists that can classify barley, CWAD wheat, CWRS wheat, oats, and rye, with
accuracies of over 96%. It has been proven that all the morphological, color, and textural
characteristics are important in defining the appearance of these biological entities and thus
should be included in the classification process. It was also seen that the presence of too
many features in the classifier hinders its performance as the redundant features increase the
complexity of the classifier unnecessarily. Therefore, an optimized feature set is desirable.

In a practical situation, it is not only necessary for the machine-vision-based system
to identify cereal grains, but it should also be able to recognize the various impurities that
are generally present in the grain. We now have a system that is capable of recognizing these
impurities.

To compare the performance of statistical and neural network classifier, the
classification was done using a non-parametric classifier and a 4-layer back propagation
network. The back propagation network outperformed the non-parametric classifier in
almost all the instances of classification. A back propagation network is thus recommended
for classification of cereal grains.

The identification of impurities in a grain sample will be essential to design a
machine-vision-based grain cleaning system. It has been shown that the machine vision
technique is capable of quantifying the amount of impurity in a grain sample. This
quantification can be used as a measure of the cleaner’s performance. Apart from that, the
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change in ranges of several morphological features can serve as a feedback to control
parameters like vibration and feed rates of the cleaner. This study has paved a way for the
implementation of machine vision techniques in designing an automatic imaging-based grain
cleaner. We now know that the cleanliness levels of cereal grains can be estimated without
actually weighing them physically. A few bottlenecks, however, still need to be overcome
to implement this concept in practice. The following recommendations will help in taking
this research to the next level from where it can be applied on a commercial scale:

. a commercial scale grain cleaner needs to be tested using a machine vision system;
o the system needs to be trained to recognize a wider variety of impurities, e.g., stones,

mildewed and bin-burnt grain kernels, wild oats, etc.;

. the dockage removed from the grain can be analyzed for the amount of salvageable
grain;
. the image acquisition and data analysis (classification) needs to be done in real-time

by integrating the hardware and software of the system; and
. hardware implementation of the software will be needed to make it more efficient for

data processing.
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Appendix A

C++ code for feature extraction
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The C++ code was developed in Microsoft Visual C++ (Version 6.0) environment.
The code reads an image file in tiff format. It then thresholds the image to extract the objects
from the background. Once the objects are segmented, it extracts a total of 230 (51
morphological, 123 color, and 56 textural) features from every object. The information
about the files and how to run the program is as follows:

C++ code filename: features.cpp

Header filename: positionlist.h

Executable file obtained by compiling the code: features.exe

Command line syntax (in dos prompt): features.exe imagelist.txt results.txt
where imagelist.txt is the list of image files to be processed (filenames with complete path)
and results.txt is the text file to which all the output will be written. The program was
capable of ignoring corrupt and non-existent files in the imagelist.txt. In the results.txt, the

features of every kernel were written in one row and were delimited by a tab.

[Electronic copy of the program is available on request from Dr. D.S. Jayas]
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Appendix B

Complete list of morphological, color and textural
features
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Table B1. Complete list of morphological features that were extracted from the grain
kernels and dockage particles

Feature Number Measurement

1 Area

2 Perimeter

3 Maximum radius

4 Minimum radius

5 Mean radius

6 Major axis length

7 Minor axis length

8-11 Shape moments 1 through 4

12-31 Radial Fourier descriptors 1 through 20
32-51 Boundary Fourier descriptors 1 through 20
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Table B2. Complete list of color features that were extracted from the grain kernels
and dockage particles

Feature Number Measurement

1 Red mean

2 Green mean

3 Blue mean

4 Red range

5 Green range

6 Blue range

7 Red variance

8 Green variance

9 Blue variance

10 Hue mean

11 Saturation mean

12 Intensity mean

13 Hue range

14 Saturation range

15 Intensity range

16 - 19 Red moments 1 through 4

20-23 Green moments 1 through 4

24 -27 Blue moments 1 through 4

28 -59 Red histogram ranges 1 through 32
60-91 Green histogram ranges 1 through 32
92 -123 Blue histogram ranges 1 through 32
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Table B3. Complete list of textural features that were extracted from the grain kernels and dockage particles

Feature Measurement Code

Number

1 Gray level co-occurrence matrix mean for gray band Gray GLCM mean

2 Gray level co-occurrence matrix variance for gray band Gray GLCM variance

3 Gray level co-occurrence matrix uniformity for gray band Gray GLCM uniformity

4 Gray level co-occurrence matrix correlation for gray band Gray GLCM correlation

5 Gray level co-occurrence matrix cluster shade for gray band Gray GLCM cluster shade
6 Gray level co-occurrence matrix entropy for gray band Gray GLCM entropy

7 Gray level co-occurrence matrix homogeneity for gray band Gray GLCM homogeneity
8 Gray level co-occurrence matrix inertia for gray band Gray GLCM inertia

9 Gray level co-occurrence matrix mean for red band Red GLCM mean

10 Gray level co-occurrence matrix variance for red band Red GLCM variance

11 Gray level co-occurrence matrix uniformity for red band Red GLCM uniformity

12 Gray level co-occurrence matrix correlation for red band Red GLCM correlation

13 Gray level co-occurrence matrix cluster shade for red band Red GLCM cluster shade
14 Gray level co-occurrence matrix entropy for red band Red GLCM entropy

15 Gray level co-occurrence matrix homogeneity for red band Red GLCM homogeneity
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Table B3. Complete list of textural features that were extracted from the grain kernels and dockage particles

Feature Measurement Code

Number

16 Gray level co-occurrence matrix inertia for red band Red GLCM inertia

17 Gray level co-occurrence matrix mean for green band Green GLCM mean

18 Gray level co-occurrence matrix variance for green band Green GLCM variance

19 Gray level co-occurrence matrix uniformity for green band Green GLCM uniformity
20 Gray level co-occurrence matrix correlation for green band Green GLCM correlation
21 Gray level co-occurrence matrix cluster shade for green band Green GLCM cluster shade
22 Gray level co-occurrence matrix entropy for green band Green GLCM entropy

23 Gray level co-occurrence matrix homogeneity for green band Green GLCM homogeneity
24 Gray level co-occurrence matrix inertia for green band Green GLCM inertia

25 Gray level co-occurrence matrix mean for blue band Blue GLCM mean

26 Gray level co-occurrence matrix variance for blue band Blue GLCM variance

27 Gray level co-occurrence matrix uniformity for blue band Blue GLCM uniformity

28 Gray level co-occurrence matrix correlation for blue band Blue GLCM correlation

29 Gray level co-occurrence matrix cluster shade for blue band Blue GLCM cluster shade
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Table B3. Complete list of textural features that were extracted from the grain kernels and dockage particles

Feature Measurement Code

Number

30 Gray level co-occurrence matrix entropy for blue band Blue GLCM entropy

31 Gray level co-occurrence matrix homogeneity for blue band Blue GLCM homogeneity

32 Gray level co-occurrence matrix inertia for blue band Blue GLCM inertia

33 Gray level run length matrix short run for gray band Gray GLRM short run

34 Gray level run length matrix long run for gray band Gray GLRM long run

35 Gray level run length matrix color non-uniformity for gray band Gray GLRM color non-uniformity

36 Gray level run length matrix run length non-uniformity for gray band Gray GLRM run length non-uniformity
37 Gray level run length matrix entropy for gray band Gray GLRM entropy

38 Gray level run length matrix runpercent for gray band Gray GLRM runpercent

39 Gray level run length matrix short run for red band Red GLRM short run

40 Gray level run length matrix long run for red band Red GLRM long run

41 Gray level run length matrix color non-uniformity for red band Red GLRM color non-uniformity

42 Gray level run length matrix run length non-uniformity for red band Red GLRM run length non-uniformity
43 Gray level run length matrix entropy for red band Red GLRM entropy

44 Gray level run length matrix runpercent for red band Red GLRM runpercent
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Table B3. Complete list of textural features that were extracted from the grain kernels and dockage particles

Feature Measurement Code

Number

45 Gray level run length matrix short run for green band Green GLRM short run

46 Gray level run length matrix long run for green band Green GLRM long run

47 Gray level run length matrix color non-uniformity for green band Green GLRM color non-uniformity

48 Gray level run length matrix run length non-uniformity for green band Green GLRM run length non-uniformity
49 Gray level run length matrix entropy for green band Green GLRM entropy

50 Gray level run length matrix runpercent for green band Green GLRM runpercent

51 Gray level run length matrix short run for blue band Blue GLRM short run

52 Gray level run length matrix long run for blue band Blue GLRM long run

53 Gray level run length matrix color non-uniformity for blue band Blue GLRM color non-uniformity

54 Gray level run length matrix run length non-uniformity for blue band Blue GLRM run length non-uniformity
55 Gray level run length matrix entropy for blue band Blue GLRM entropy

56 Gray level run length matrix runpercent for blue band Blue GLRM runpercent
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Appendix C

Classification accuracies and feature rankings
obtained using different feature models and
classifiers
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Table C1. Classification accuracies of various grain types using 8 gray levels

Classification accuracies for three validation sets, %

Grain type

1 2 3 Mean
Barley 85.9 89.3 90.3 88.5
CWAD 91.3 93.6 94.6 93.2
CWRS 87.5 87.2 86.8 87.2
Oats 93.5 95.7 94.7 94.6
Rye 93.3 93.5 92.5 93.1

Table C2. Classification accuracies of various grain types using 16 gray levels

Classification accuracies for three validation sets, %

Grain type

1 2 3 Mean
Barley 89.0 89.8 89.5 89.4
CWAD 90.1 93.1 89.7 91.0
CWRS 89.0 88.8 90.3 89.4
Oats 95.2 96.5 94.7 95.4
Rye 95.7 94.5 95.7 95.3

Table C3. Classification accuracies of various grain types using 32 gray levels

Classification accuracies for three validation sets, %

Grain type

1 2 3 Mean
Barley 87.9 89.1 91.0 89.3
CWAD 87.5 95.5 92.1 91.7
CWRS 86.8 88.3 90.5 88.6
Oats 96.7 97.7 96.0 96.8
Rye 95.8 91.5 96.2 94.5
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Table C4. Classification accuracies of various grain types using 64 gray levels

Classification accuracies for three validation sets, %

Grain type

1 2 3 Mean
Barley 90.0 89.0 92.5 90.5
CWAD 89.1 94.4 92.9 92.1
CWRS 88.7 88.2 88.5 88.4
Oats 96.8 98.2 95.7 96.9
Rye 96.5 94.3 96.8 95.9

Table CS. Classification accuracies of various grain types using 128 gray levels

Classification accuracies for three validation sets, %

Grain type

1 2 3 Mean
Barley 89.8 87.8 90.1 89.2
CWAD 90.7 934 90.1 91.4
CWRS 87.0 87.5 89.2 87.9
Oats 96.8 97.8 95.2 96.6
Rye 95.8 91.2 94.7 93.9

Table Cé6. Classification accuracies of various grain types using 256 gray levels

Classification accuracies for three validation sets, %

Grain type

1 2 3 Mean
Barley 90.1 89.5 90.8 90.1
CWAD 924 93.9 91.3 92.5
CWRS 84.2 82.7 87.0 84.6
Oats 98.2 96.7 95.3 96.7
Rye 94.2 95.0 95.5 94.9
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Table C7. Rankings of features in the combined 60 feature model using a BPN classifier

Rank Feature Rank Feature Rank Feature
1 Boundary FD 18 21 Boundary FD 12 41 Boundary FD 17
2 Hue mean 22 Green GLCM cluster shade 42 Blue variance
3 Green GLRM long run 23 Green moment 2 43 Green GLCM variance
4 Red GLCM homogeneity 24 Green GLCM entropy 44 Red GLRM run length non-uniformity
5 Green GLRM short run 25 Red variance 45 Green GLCM mean
6 Minor axis length 26 Minimum radius 46 Blue GLCM correlation
7 Radial FD 2 27 Blue GLRM runpercent 47 Blue GLCM mean
8 Green GLRM runpercent 28 Shape moment 3 48 Mean radius
9 Perimeter 29 Blue GLRM run length non-uniformity 49 Green range
10 Saturation mean 30 Major axis length 50 Red histogram range 11
11 Boundary FD 2 31 Green moment 1 51 Blue GLRM color non-uniformity
12 Green GLCM correlation 32 Boundary FD 3 52 Green histogram range 1
13 Boundary FD 20 33 Blue moment 1 53 Green GLRM run length non-uniformity
14 Red GLCM variance 34 Blue GLCM variance 54 Red range
15 Area 35 Radial FD 3 55 Boundary FD 1
16 Maximum radius 36 Blue histogram range 1 56 Red histogram range 9
17 Blue range 37 Red moment 2 57 Shape moment 4
18 Radial FD 5§ 38 Blue mean 58 Boundary FD 5
19 Blue GLRM shott run 39 Gray GLRM run length non-uniformity 59 Red moment 3
20 Green variance 40 Red moment 1 60 Red histogram range 10
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Table C8. Classification accuracies of cereal grains obtained using a BPN classifier
with top 20 features as inputs.

Output Classification accuracies for five validation sets, %

class 1 2 3 4 5 Mean
Barley 85.9 85.4 86.2 88.5 83.2 85.8
CWAD 78.3 77.5 78.0 78.8 77.9 78.1
CWRS 85.8 85.3 83.6 86.8 86.4 85.6
Oats 83.3 87.9 84.5 86.9 83.0 85.1
Rye 86.2 84.4 84.8 84.3 84.8 84.9

Table C9. Classification accuracies of cereal grains obtained using a non-parametric
classifier with top 20 features as inputs.

Output Classification accuracies for five validation sets, %

class 1 2 3 4 5 Mean
Barley 81.3 84.8 85.2 82.3 82.4 83.2

CWAD 76.9 78.4 77.0 81.4 79.6 78.6

CWRS 86.3 86.0 87.7 65.1 87.9 82.6

Oats 82.6 86.3 82.1 83.9 81.3 83.2

Rye 84.8 85.7 86.9 86.3 87.1 86.1
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Table C10. Classification accuracies of cereal grains and dockage fractions obtained using a BPN classifier with morphological
features as inputs

Classification accuracies for five validation sets, %

Output class

1 2 3 4 5 Mean
Barley 90.6 80.8 90.3 89.6 90.4 88.3
CWAD 86.3 74.0 81.3 81.8 89.5 82.6
CWRS 93.3 94.6 95.5 96.4 95.9 95.2
Oats 71.7 85.2 79.2 83.3 83.2 81.7
Rye 89.1 92.9 88.1 87.7 86.6 88.9
Broken wheat 96.8 96.0 97.3 97.5 96.1 96.7
Chaff 57.9 68.8 67.4 74.7 65.2 66.8
Wild buckwheat 913 90.7 89.7 92.3 94.2 91.6
Wheat-heads 923 94.7 90.7 93.2 91.2 924
Canola 99.6 99.7 99.9 99.9 99.8 99.8
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Table C11. Classification accuracies of cereal grains and dockage fractions obtained using a non-parametric classifier with
morphological features as inputs

Classification accuracies for five validation sets, %

Output class

1 2 3 4 5 Mean
Barley 93.9 86.9 89.1 90.8 85.7 89.3
CWAD 83.8 82.9 83.6 86.8 89.1 85.2
CWRS 914 94.8 95.8 96.7 98.7 95.5
Oats 824 83.5 76.9 81.5 86.4 82.2
Rye 81.7 88.9 89.8 89.1 90.3 87.9
Broken wheat 93.8 95.1 94.6 96.6 96.4 95.3
Chaff 40.2 49.8 50.1 49.3 40.3 45.9
Wild buckwheat 99.1 98.2 99.2 100.0 99.9 99.3
Wheat-heads 83.7 90.4 88.2 89.4 84.0 87.2
Canola 99.6 99.9 99.8 99.7 99.9 99.8
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Table C12. Classification accuracies of cereal grains and dockage fractions obtained using a BPN classifier with color features
as inputs

Classification accuracies for five validation sets, %

Output class
1 2 3 4 5 Mean

Barley 86.2 72.0 84.1 85.2 84.5 82.4
CWAD 88.0 78.7 77.1 80.2 82.0 81.2
CWRS 96.3 94.6 96.9 97.2 97.9 96.6
Oats 62.6 76.4 71.9 78.4 67.6 71.4
Rye 85.5 91.7 89.7 94.5 91.3 90.5
Broken wheat 97.8 98.4 97.3 100.0 99.1 98.5
Chaff 81.7 88.8 88.2 88.5 86.2 86.7
Wild buckwheat 99.0 99.9 100.0 99.8 99.6 99.7
Wheat-heads 78.4 85.8 80.2 85.2 84.0 82.7
Canola 99.7 99.9 100.0 99.9 100.0 99.9
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Table C13. Classification accuracies of cereal grains and dockage fractions obtained using a non-parametric classifier with color
features as inputs

Classification accuracies for five validation sets, %

Output class

1 2 3 4 5 Mean
Barley 75.2 69.4 65.7 67.8 73.3 70.3
CWAD 66.3 61.4 62.9 71.3 75.1 67.4
CWRS 86.8 91.0 88.8 85.2 86.7 87.7
Oats 50.7 60.9 62.3 60.5 61.6 59.2
Rye 71.4 80.6 82.7 84.1 79.6 79.7
Broken wheat 92.7 86.9 94.3 94.6 93.7 92.4
Chaff 71.5 85.1 87.9 85.7 82.8 82.6
Wild buckwheat 95.8 98.9 97.6 97.7 93.8 96.8
Wheat-heads 79.7 84.7 77.6 75.9 79.3 79.4
Canola 100.0 100.0 100.0 100.0 100.0 100.0
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Table C14. Classification accuracies of cereal grains and dockage fractions obtained using a BPN classifier with textural features
as inputs

Classification accuracies for five validation sets, %

Output class

1 2 3 4 5 Mean
Barley 81.1 81.9 88.4 85.2 78.5 83.0
CWAD 89.6 87.0 87.9 85.8 88.8 87.8
CWRS 93.8 94.0 93.4 94.3 92.9 93.7
Oats 69.8 59.5 61.1 69.5 70.3 66.0
Rye 89.2 90.0 92.9 93.6 93.3 91.8
Broken wheat 97.5 96.3 98.0 97.2 98.1 97.4
Chaff 77.1 84.0 82.8 85.6 81.6 82.2
Wild buckwheat 98.4 99.4 99.6 99.4 98.9 99.2
Wheat-heads 93.2 95.2 92.7 94.4 90.9 93.3
Canola 99.6 99.7 99.4 99.9 99.8 99.7
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Table C15. Classification accuracies of cereal grains and dockage fractions obtained using a non-parametric classifier with
textural features as inputs

Classification accuracies for five validation sets, %

Output class

1 2 3 4 5 Mean
Barley 89.4 924 87.4 84.2 83.3 87.4
CWAD 92.1 88.8 86.2 88.0 86.2 88.2
CWRS 94 .4 95.6 96.8 95.8 93.9 953
Oats 76.9 81.9 77.6 76.6 77.7 78.1
Rye 90.1 90.9 91.3 93.3 93.1 91.7
Broken wheat 100.0 100.0 100.0 100.0 100.0 100.0
Chafft 88.2 90.1 88.8 89.1 89.7 89.2
Wild buckwheat 99.3 99.9 100.0 100.0 100.0 99.9
Wheat-heads 94.0 95.1 934 934 93.9 94.0
Canola 974 95.8 99.9 99.2 99.4 98.4
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Table C16. Classification accuracies of cereal grains and dockage fractions obtained using a BPN classifier with all features as
inputs

Classification accuracies for five validation sets, %

Output class

1 2 3 4 5 Mean
Barley 96.9 97.9 95.8 94.4 94.3 95.9
CWAD 93.9 95.9 914 93.2 95.1 93.9
CWRS 95.8 100.0 98.4 98.2 97.0 97.9
Oats 83.4 92.6 85.9 89.0 91.9 88.6
Rye 97.1 99.9 98.7 97.9 97.3 98.2
Broken wheat 98.9 99.3 98.7 99.4 100.0 99.3
Chaff 86.6 93.4 90.9 93.9 88.2 90.6
Wild buckwheat 99.1 100.0 99.9 100.0 99.9 99.8
Wheat-heads 82.7 97.0 90.1 92.9 89.5 90.5
Canola 100.0 100.0 100.0 100.0 100.0 100.0
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Table C17. Classification accuracies of cereal grains and dockage fractions obtained using a non-parametric classifier with all
features as inputs

Classification accuracies for five validation sets, %

Output class

1 2 3 4 5 Mean
Barley 87.7 96.3 84.4 86.4 86.4 88.2
CWAD 85.8 86.3 88.7 87.8 87.7 87.3
CWRS 89.6 95.6 98.7 96.6 86.4 934
Oats 73.5 84.6 81.5 79.0 83.4 80.4
Rye 93.5 97.0 95.7 94.6 94.6 95.1
Broken wheat 100.0 100.0 99.2 99.2 100.0 99.7
Chaff 78.5 87.7 77.7 78.3 80.5 80.5
Wild buckwheat 98.9 99.6 99.9 100.0 99.4 99.6
Wheat-heads 85.7 91.2 71.6 88.3 84.1 84.2
Canola 99.8 100.0 99.6 100.0 99.3 99.8
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Table C18. Classification accuracies of cereal grains and dockage fractions obtained using a BPN classifier with combined 60
features as inputs

Classification accuracies for five validation sets, %

Output class

1 2 3 4 5 Mean
Barley 95.5 92.9 91.5 93.5 93.3 93.3
CWAD 91.9 91.2 94.5 93.7 93.9 93.0
CWRS 98.4 99.0 98.4 98.8 98.5 98.6
Oats 91.9 93.2 88.7 90.7 90.8 91.0
Rye 96.6 93.7 96.8 95.9 95.4 95.7
Broken wheat 99.8 99.4 99.2 100.0 99.9 99.7
Chaff 925 88.8 89.8 89.4 924 90.6
Wild buckwheat 100.0 100.0 100.0 100.0 99.9 100.0
Wheat-heads 91.6 94.5 91.4 934 91.8 92.5
Canola 100.0 100.0 100.0 100.0 100.0 100.0
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Table C19. Classification accuracies of cereal grains and dockage fractions obtained using a non-parametric classifier with
combined 60 features as inputs

Classification accuracies for five validation sets, %

Output class

1 2 3 4 5 Mean
Barley 96.3 92.6 94.5 97.6 96.6 95.5
CWAD 86.9 96.6 88.3 91.6 90.8 90.8
CWRS 92.6 99.3 100.0 99.6 99.3 98.2
Oats 854 94.1 93.2 92.0 92.3 914
Rye 89.1 94.6 97.9 93.7 93.3 93.7
Broken wheat 100.0 100.0 100.0 100.0 100.0 100.0
Chaff 84.8 85.7 83.2 87.6 87.8 85.8
Wild buckwheat 100.0 100.0 100.0 100.0 100.0 100.0
Wheat-heads 89.9 93.4 90.1 93.0 94.7 922
Canola 99.3 100.0 100.0 100.0 100.0 99.9
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Table C20. Classification accuracies of cereal grains and dockage fractions obtained using a BPN classifier with combined 30
features as inputs

Classification accuracies for five validation sets, %

Output class

1 2 3 4 5 Mean
Barley 92.6 89.8 94.1 88.2 914 91.2
CWAD 96.2 91.9 91.7 90.7 94.4 93.0
CWRS 97.9 96.9 98.1 97.8 98.5 97.8
Oats 84.8 91.2 85.3 89.6 88.6 87.9
Rye 91.9 93.2 95.3 924 93.8 93.3
Broken wheat 99.6 99.2 98.4 99.3 99.8 99.2
Chaff 85.1 89.2 91.3 87.2 89.6 88.5
Wild buckwheat 99.9 99.7 99.9 100.0 99.7 99.8
Wheat-heads 92.6 95.1 94.6 94.4 91.6 93.7
Canola 100.0 100.0 100.0 100.0 100.0 100.0
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Table C21. Classification accuracies of cereal grains and dockage fractions obtained using a non parametric classifier with
combined 30 features as inputs

Classification accuracies for five validation sets, %

Output class

1 2 3 4 5 Mean
Barley 86.1 92.6 90.2 87.2 88.3 88.9
CWAD 89.1 87.7 87.1 86.8 86.4 87.4
CWRS 92.9 97.4 99.3 95.8 95.1 96.1
Oats 89.0 88.4 83.7 87.8 84.9 86.8
Rye 90.9 91.7 93.8 91.7 90.1 91.7
Broken wheat 99.6 99.5 99.9 100.0 100.0 99.8
Chaff 83.2 89.8 86.8 89.4 87.8 87.4
Wild buckwheat 96.3 99.3 100.0 100.0 99.6 99.0
Wheat-heads 88.1 90.5 84.8 88.6 86.7 87.7
Canola 100.0 100.0 100.0 100.0 100.0 100.0
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Appendix DA

Mass and morphology relationship charts for
cereal grains
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Table DAL. Relationship between mass and morphological features of barley
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Table DA2. Relationship between mass and morphological features of CWAD
wheat
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Table DA3. Relationship between mass and morphological features of CWRS
wheat

184



Mass (mg)

Mass (mg)

Mass (mg)

[]
o

™
&

20 .|

o
‘W
8o

15 : -

2000 2500 3000 35

00 4000 4500 5000

Area (pixels)

45

40 |-

354

o o
So
. Oog o
o °

15 :

180 200 220 240

260 280 300

Perimeter

320

Mass (mg)

B H
o (4]

[
o

351

w
o
¢

40

45

50 55 60 65

Maximum radius

16 18 20 22 24 26 28 30

Minimum radius

185

Regression Output

Constant 1.31913193804326
Std Err of Y Est 1.57108893801176
"~ R Squared 0.88386923372106
X Coefficient(s) 0.00846975992873
Std Err of Coef. 0.00012554520957
Regression Output
Constant -27.245277504428
Std Err of Y Est 0.31475102944421
R Squared 0.74791075244024
X Coefficient(s) 0.23407321179262
Std Err of Coef. 0.00555716631788
Regression Output
Constant -9.4386734558032
Std Err of Y Est 3.45072358655103
R Squared 0.43977034369397
X Coefficient(s) 0.81319773831558
Std Err of Coef. 0.03753320475844
Regression Output
Constant -2.3082667415092
Std Err of Y Est 2.5979722737613
R Squared 0.68244805738873
X Coefficient(s) 1.53102393610688
Std Err of Coef. 0.04270748278863



N
[¢]]

w B
o o

Mass (mg)
w
°

30 32 34 36 38 40 42
Mean radius

Mass (mg)

90 100 110 120
Major axis length

80 130

Mass (mg)

40 45 50 55
Minor axis length

60

186

Regression Output

Constant -30.921108817559
Std Err of Y Est 1.7977300678405
R Squared 0.84794709751542
X Coefficient(s) 1.79787742167816
Std Err of Coef. 0.03113310703857
Regression Qutput
Constant -14.137628921064
Std Err of Y Est 3.29145356732979
R Squared 0.49029227479472
X Coefficient(s) 0.46783926236306
Std Err of Coef. 0.01950649123525
Regression Output
Constant -4.8621946464506
Std Err of Y Est 2.51091173104116
R Squared 0.70337439186562
X Coefficient(s) 0.78839441795914
Std Err of Coef. 0.02093649574362



Table DA4. Relationship between mass and morphological features of oats
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Table DAS. Relationship between mass and morphological features of rye
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Appendix DB

Mass and morphology relationship charts for
dockage fractions
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Table DB1. Relationship between mass and morphological features of broken
wheat kernels
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0.03761749045686

Regression Output

Constant

Std Err of Y Est
R Squared

X Coefficient(s)
Std Err of Coef.

4.92049964313258
10.4678263677556
0.36108213319588
1.48434715986705
0.08847902559883



Table DB2. Relationship between mass and morphological features of chaff
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Regression Output

Constant 0.087054659680656
Std Err of Y Est 0.167731566758127
R Squared 0.908049184388513
X Coefficient(s) 0.000366368868068
Std Err of Coef. 6.75357204647E-06
Regression Output
Constant 1.13369053274661
Std Err of Y Est 0.459843813157528
R Squared 0.308890800519712
X Coefficient(s) 0.002088648534950
Std Err of Coef. 0.000180978958061
Regression Output
Constant 1.5273620717483
Std Err of Y Est 0.511704030587761
R Squared 0.144217001810817
X Coefficient(s) 0.006878448637818
Std Err of Coef. 0.000970635033524
Regression Output
Constant 1.67593222673365
Std Err of Y Est 0.522452723263618
R Squared 0.107886784397431
X Coefficient(s) 0.026356581604568
Std Err of Coef. 0.004390427524786
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Regression Output

Constant 0.607466578318577
Std Errof Y Est  0.448689172296087
R Squared 0.342013236561029
X Coefficient(s)  0.030651288045418
Std Err of Coef.  0.002462791912281
Regression Output
Constant 1.04041759079141
Std Errof Y Est  0.475769144761129
R Squared 0.260192849266673
X Coefficient(s) 0.006990832643385
Std Err of Coef.  0.000682861074913
Regression Output
Constant 1.36344971537918
Std Err of Y Est 0.49324251166851
R Squared 0.20485381497390
X Coefficient(s) 0.01610183604749
Std Err of Coef. 0.00183767509628



Table DB3. Relationship between mass and morphological features of
buckwheat
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Regression Output

Constant

Std Err of Y Est
R Squared

X Coefficient(s)
Std Err of Coef.

-0.04599655400595
0.077856786259407
0.940736359787279
0.002221392542810
2.64602547806E-05

Regression Output

Constant

Std Err of Y Est
R Squared

X Coefficient(s)
Std Err of Coef.

-0.03006401898803
0.169241663246662
0.719966526488013
0.012563683475342
0.000371855596816

Regression Output

Constant

Std Err of Y Est
R Squared

X Coefficient(s)
Std Err of Coef.

0.287011330017293
0.1885768319117

0.652326132649103
0.046181480999855
0.001600036931207

Regression Output

Constant

Std Err of Y Est
R Squared

X Coefficient(s)
Std Err of Coef.

-0.59771247394033
0.20004161284154

0.608766465970438
0.200433825853191
0.007625568153999
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Regression Output
Constant -0.56163770156266
Std Err of Y Est 0.129847481230357
R Squared 0.835160064040422
X Coefficient(s) 0.131289257363961
Std Err of Coef. 0.002768114599003
35
Regression Output
Constant -0.09865554690416
Std Err of Y Est 0.169546859488973
R Squared 0.718955638003985
X Coefficient(s) 0.035064260650201
Std Err of Coef. 0.001040422157727
100
Regression Output
Constant -0.865377690502
Std Err of Y Est 0.1607686380515
R Squared 0.7473041886548
X Coefficient(s) 0.1047708389748
Std Err of Coef. 0.0028913405688
35
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Table DB4. Relationship between mass and morphological features of
wheatheads
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Regression Output

4819.63016406315
6429.85616734966
0.87363620247299
3.44314268082667
0.07624125475466

Regression Output

1240.46084072766
11647.5872657745
0.58534004262338
63.8162354101096
3.12724642735992

Regression Output

11125.599756134

14899.2322676552
0.32150299667970
289.647447286972
24.4985370929426

Regression Output

39894.1885849035
17426.3025053226
0.07182332530602
402.148039826116
84.170037203736
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Regression Output

Constant -25320.034287569
Std Err of Y Est 11512.2506187397
R Squared 0.59492016552347
X Coefficient(s) 990.931924564599
Std Err of Coef. 47.607324934089
Regression Output

Constant 3728.58188682305

Std Err of Y Est 14002.7271888489

R Squared 0.40069844005251

X Coefficient(s) 195.738265662882

Std Err of Coef. 13.9372986473881

Regression Output

Constant

Std Err of Y Est
R Squared

X Coefficient(s)
Std Err of Coef.
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7550.47136464785
14149.8228802225
0.38804123417557
553.235860797358
40.4502729802625



Table DBS. Relationship between mass and morphological features of canola
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Regression Output

Constant

Std Err of Y Est
R Squared

X Coefficient(s)
Std Err of Coef.

-0.01913061039824
0.074530622613672
0.812678478343065
0.001467600894133
3.39000667541E-05

Regression Output

Constant

Std Err of Y Est
R Squared

X Coefficient(s)
Std Err of Coef.

-0.33288886850805
0.109232979885118
0.597629862615093
0.013061176916912
0.000515628797256

Regression Output

Constant

Std Err of Y Est
R Squared

X Coefficient(s)
Std Err of Coef.

-0.62562808316145
0.098150714887727
0.675133362885432
0.095962529829504
0.003202709784950

Regression Output

Constant

Std Err of Y Est
R Squared

X Coefficient(s)
Std Err of Coef.

-0.36411364099789
0.098254027122045
0.674449101705767
0.108745677689578
0.003635004806099
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Regression Output

Constant

Std Err of Y Est
R Squared

X Coefficient(s)
Std Err of Coef.

-0.7858732053941
0.071314871622888
0.8284943673001
0.123794176360711
0.002709896819360

Regression Output

Constant

Std Err of Y Est
R Squared

X Coefficient(s)
Std Err of Coef.

-0.58680842506155
0.089144944633083
0.73201430159396

0.049552339758128
0.001442508291534

Regression Output

Constant

Std Err of Y Est
R Squared

X Coefficient(s)
Std Err of Coef.

-0.45983581802134
0.096589095388509
0.685388657569235
0.052963908224275
0.001726461437518



Appendix E

Performance evaluation of the grain cleaner
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Table E1. Actual and imaging based cleaning efficiencies for barley at different flow rates

Before cleaning After cleaning Cleaning efficiency
Flow rate Grain sample Dockage Clean grain Foreign material (%)
(kg/h) Actual Image Actual Image Actual Image Actual Image Actual Image
mass (g)  mass (g) mass (g) mass (g) mass (g) mass (g)  mass (g) mass (g) mass basis
basis

100.00 100.59 5.00 4.85 95.64 95.95 2.34 2.46 53.2 49.3

4.00 100.00 101.22 5.00 5.21 96.42 96.73 2.49 2.54 50.2 51.3
100.00 99.34 5.00 4.62 95.55 95.91 2.67 2.81 46.6 39.2

100.00 100.68 5.00 5.04 96.02 96.37 2.50 2.72 50.0 46.0

8.00 100.00 101.73 5.00 5.17 95.86 96.03 2.36 2.49 52.8 51.8
100.00 100.61 5.00 4.82 94.92 95.10 2.64 2.84 472 41.1

100.00 101.28 5.00 5.13 95.37 95.36 2.49 2.61 50.2 49.1

12.00 100.00 101.36 5.00 5.20 95.81 95.99 2.37 2.33 52.6 552
100.00 100.24 5.00 4.95 96.23 96.15 2.55 2.62 49.0 47.1
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Table E2. Actual and imaging based cleaning efficiencies for CWAD wheat at different flow rates

Before cleaning After cleaning Cleaning efficiency
Flow rate Grain sample Dockage Clean grain Foreign material (%)
(kg/h) Actual Image Actual Image Actual Image Actual Image Actual Image
mass (g) mass (g) mass (g) mass (g) mass (g) mass (g)  mass(g) mass(g) mass basis
basis

100.00 101.28 5.00 5.19 98.90 99.32 1.86 1.93 62.8 62.8

4.00 100.00 100.67 5.00 5.47 99.57 100.46 2.31 2.64 53.8 51.7
100.00 102.11 5.00 5.61 98.61 99.01 2.08 2.20 584 60.8

100.00 101.09 5.00 5.24 97.94 97.68 1.93 2.02 61.4 61.5

8.00 100.00 100.88 5.00 5.38 96.83 96.99 1.88 1.97 62.4 63.4
100.00 101.49 5.00 4.97 96.81 97.00 1.94 1.83 61.2 63.2

100.00 102.37 5.00 5.09 97.62 97.57 1.93 2.05 61.4 59.7

12.00 100.00 100.82 5.00 4.82 97.24 97.38 1.88 2.02 62.4 58.1
100.00 100.56 5.00 4.94 96.53 96.78 2.19 1.99 56.2 59.7
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Table E3. Actual and imaging based cleaning efficiencies for CWRS wheat at different flow rates

Before cleaning After cleaning Cleaning efficiency
Flow rate Grain sample Dockage Clean grain Foreign material (%)
(kg/h) Actual Image Actual Image Actual Image Actual Image Actual Image
mass (g)  mass (g) mass (g) mass (g) mass (g) mass (g) mass(g)  mass(g) mass basis
basis

100.00 100.55 5.00 5.34 97.68 97.69 1.94 1.88 61.2 64.8

4.00 100.00 100.43 5.00 5.42 98.24 98.54 1.67 1.75 66.6 67.7
100.00 99.68 5.00 4.82 97.82 97.61 2.06 2.16 58.8 55.2

100.00 102.16 5.00 4.95 98.00 97.82 1.99 2.08 60.2 58.0

8.00 100.00 101.29 5.00 5.61 98.21 98.52 1.74 1.68 65.2 70.1
100.00 99.94 5.00 4.97 98.75 98.84 2.04 2.13 59.2 57.1

100.00 101.37 5.00 5.20 97.83 97.98 2.18 222 56.4 57.3

12.00 100.00 100.67 5.00 5.34 98.03 98.16 1.92 1.84 61.6 65.5
100.00 100.08 5.00 4.73 97.64 97.51 1.93 1.88 61.4 60.3
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Table E4. Actual and imaging based cleaning efficiencies for oats at different flow rates

Before cleaning After cleaning Cleaning efficiency
Flow rate Grain sample Dockage Clean grain Foreign material (%)
(kg/h) Actual Image Actual Image Actual Image Actual Image Actual Image
mass (g)  mass (g) mass (g) mass (g) mass (g) mass (g) mass(g) mass(g) mass basis
basis

100.00 101.49 5.00 5.04 95.61 95.80 2.36 2.16 52.8 57.1

4.00 100.00 102.57 5.00 5.43 95.37 95.16 2.71 2.74 45.8 49.5
100.00 102.46 5.00 5.29 94.88 95.01 2.68 2.76 46.4 47.8

100.00 100.94 5.00 5.17 96.12 96.34 2.55 2.31 49.0 553

8.00 100.00 101.26 5.00 4.83 95.34 95.27 2.61 2.70 47.8 44.1
100.00 100.34 5.00 4.67 95.84 96.02 2.50 2.62 50.0 43.9

100.00 101.62 5.00 4.81 95.18 95.40 2.37 2.51 52.6 47.8

12.00 100.00 101.71 5.00 5.26 95.73 95.91 2.19 2.27 56.2 56.8
100.00 101.31 5.00 5.19 95.46 95.63 2.64 2.55 47.2 50.9
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Table ES. Actual and imaging based cleaning efficiencies for rye at different flow rates

Before cleaning After cleaning Cleaning efficiency
Flow rate Grain sample Dockage Clean grain Foreign material (%)
(kg/h) Actual Image Actual Image Actual Image Actual Image Actual Image
mass (g) mass (g) mass (g) mass (g) mass (g) mass (g) mass(g) mass(g) mass basis
basis

100.00 100.37 5.00 5.21 93.54 93.69 3.03 3.11 394 40.3

4.00 100.00 101.68 5.00 5.27 93.67 93.82 2.97 2.62 40.6 50.3
100.00 102.49 5.00 5.34 94.05 94.10 2.80 2.79 44.0 47.8

100.00 101.61 5.00 5.09 95.24 95.21 3.16 3.23 36.8 36.5

8.00 100.00 101.55 5.00 5.19 94.68 94.85 3.08 3.14 384 39.5
100.00 102.34 5.00 4.97 94.28 94.60 2.80 2.89 44.0 41.9

100.00 101.62 5.00 5.31 95.27 95.61 3.06 3.20 38.8 39.7

12.00 100.00 100.94 5.00 5.19 94.67 94.63 3.14 3.13 372 39.7
100.00 100.82 5.00 4.85 93.84 94.11 294 3.01 41.2 37.9
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Appendix F
Results of analysis of variance done on ranges of

morphological features before and after passing
the samples through the cleaner
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The GLM Procedure

Class Level Information

Class Levels Values
type 5 Dbarley durum oats rye wheat
treat 2 12

Number of observations 30
The GLM Procedure

Dependent Variable: area

Sum of
Source DF Squares
Model 9 65490210.97
Error 20 6655516.00
Corrected Total 29 72145726.97

Mean Square
7276690.11

332775.80

R-Square Coeff Var Root MSE  area Mean

0.907749  1.998595 576.8672  28863.63

Source DF Type I SS
type 4 7747746.47
treat 1 53635092.30
type*treat 4 4107372.20
Source DF Type III SS
type 4 7747746.47
treat 1 53635092.30
type*ireat 4 4107372.20

Mean Square

1936936.62
53635092.30
1026843.05

Mean Square

1936936.62
53635092.30
1026843.05
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F Value

21.87

F Value

5.82
161.17
3.09

F Value

5.82

161.17
3.09

Pr>F

<.0001

Pr>F

0.0028
<.0001
0.03%4

Pr>F

0.0028

<.0001
0.0394



The GLM Procedure

Duncan's Multiple Range Test for area

NOTE: This test controls the Type I comparisonwise error rate, not the

experimentwise error rate.

Alpha 0.05
Error Degrees of Freedom 20
Error Mean Square 332775.8

Number of Means 2 3 4
Critical Range 694.7 729.2 751.2

Means with the same letter are not significantly different.

Duncan Grouping Mean N type

A 29312.0 6 oats

A

A 29291.7 6 rye

A

A 29067.8 6 wheat
A

A 28698.5 6 barley
B 27948.2 6 durum

217
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Dependent Variable: perimeter

Source
Model
Error

Corrected Total

R-Square

0.951165

Source

type
treat
type*treat

Source

type
treat
type*treat

DF

9

20

29

Coeff Var

1.757926

DF

Ju—y

DF

oy

The GLM Procedure

Sum of
Squares

290855.8667

14933.3333

305789.2000

Mean Square

32317.3185

746.6667

Root MSE  perimeter Mean

27.32520

Type I SS

9187.5333
270750.0000
10918.3333

Type III SS
9187.5333

270750.0000
10918.3333

1554.400

Mean Square

2296.8833
270750.0000
2729.5833

Mean Square

2296.8833
270750.0000
2729.5833
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F Value

43.28

F Value

3.08
362.61
3.66

F Value

3.08

362.61
3.66

Pr>F

<.0001

Pr>F

0.0398
<.0001
0.0216

Pr>F

0.0398

<.0001
0.0216



Duncan's Multiple Range Test for perimeter

NOTE: This test controls the Type I comparisonwise error rate, not the

experimentwise error rate.

Alpha 0.05
Error Degrees of Freedom 20
Error Mean Square 746.6667

Number of Means 2 3 4
Critical Range 3291 34.54 35.58

Means with the same letter are not significantly different.

Duncan Grouping Mean N type
1585.33 6 durum

1557.50 6 wheat

> P

1552.00 6 rye

1544.00 6 oats

s BlesBivslveiRvelivelivy)

1533.17 6 barley
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The GLM Procedure

Dependent Variable: maxrad

Sum of
Source DF Squares Mean Square
Model 9 14291.20000 1587.91111
Error 20 2540.66667 127.03333
Corrected Total 29 16831.86667

R-Square Coeff Var Root MSE maxrad Mean

0.849056 4.880589  11.27091  230.9333

Source DF Type I SS Mean Square
type 4 2557.53333 639.38333
treat 1 11368.53333 11368.53333
type*treat 4 365.13333 91.28333
Source DF Type I11 SS Mean Square
type 4 2557.53333 639.38333
treat 1 11368.53333 11368.53333
type*treat 4 365.13333 91.28333
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F Value

12.50

F Value

5.03
89.49
0.72

F Value

5.03

89.49
0.72

Pr>F

<.0001

Pr>F

0.0057
<.0001
0.5892

Pr>F

0.0057

<.0001
0.5892



Duncan's Multiple Range Test for maxrad

NOTE: This test controls the Type I comparisonwise error rate, not the

experimentwise error rate.

Alpha 0.05
Error Degrees of Freedom 20
Error Mean Square 127.0333

Number of Means 2 3 4
Critical Range 13.57 14.25 14.68

Means with the same letter are not significantly different.

Duncan Grouping Mean N type

A 247833 6 wheat
B 233.833 6 oats

B

B 225.000 6 rye

B

B 224.667 6 barley
B

B 223333 6 durum

221
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The GLM Procedure

Dependent Variable: minrad

Sum of
Source DF Squares
Model 9 2022.800000
Error 20 166.600000
Corrected Total 29 2188.800000

Mean Square
224.755556

8.300000

R-Square  Coeff Var Root MSE minrad Mean

0.924159 5903631 2.880972  48.80000

Source DF Type 1SS
type 4 10.466667
treat 1 1825.200000
type*treat 4 187.133333
Source DF Type HI SS
type 4 10.466667
treat 1 1825.200000
type*treat 4 187.133333

Mean Square

2.616667
1825.200000
46.783333

Mean Square

2.616667
1825.200000
46.783333

222

F Value

27.08

F Value

0.32
219.90
5.64

F Value

0.32

219.90
5.64

Pr>F

<.0001

Pr>F

0.8644
<.0001
0.0033

Pr>F

0.8644

<.0001
0.0033



The GLM Procedure
Duncan's Multiple Range Test for minrad

NOTE: This test controls the Type I comparisonwise error rate, not the
experimentwise error rate.

Alpha 0.05

Error Degrees of Freedom 20

Error Mean Square 8.3
Number of Means 2 3 4 5
Critical Range 3.470 3.642 3.751 3.828

Means with the same letter are not significantly different.

Duncan Grouping Mean N type
49.333 6 durum
49.167 6 r1ye

49.000 6 barley

48.833 6 wheat

> > P

47.667 6 oats
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Dependent Variable: meanrad

Source
Model
Error

Corrected Total

R-Square

0.983589

Source

type
treat
type*treat

Source

type
treat
type*treat

DF

9

20

29

Coeff Var

2.506564

DF

oy

DF

—_

The GLM Procedure

Sum of
Squares

9469.466667
158.000000

9627.466667

2.810694

Type I SS

326.800000
9013.333333
129.333333

Type III SS
326.800000

9013.333333
129.333333

Mean Square

1052.162963

7.900000

Root MSE meanrad Mean

112.1333

Mean Square

81.700000
9013.333333
32.333333

Mean Square
81.700000

9013.333333
32.333333

224

F Value

133.19

F Value

10.34
1140.93
4.09

F Value

10.34

1140.93
4.09

Pr>F

<.0001

Pr>F

0.0001
<.0001
0.0139

Pr>F

0.0001

<.0001
0.0139



Duncan's Multiple Range Test for meanrad

NOTE: This test controls the Type I comparisonwise error rate, not the
experimentwise error rate.

Alpha 0.05

Error Degrees of Freedom 20

Error Mean Square 7.9
Number of Means 2 3 4 5
Critical Range 3.385 3.553 3.660 3.735

Means with the same letter are not significantly different.

Duncan Grouping Mean N type

A 116.833 6 wheat
A

A 115.167 6 durum
B 110.667 6 rye

B

B 109.833 6 oats

B

B 108.167 6 barley
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Dependent Variable: majax

Source

Model

Error

Corrected Total

R-Square

0.990635

Source

type
treat
type*treat

Source

type
treat
type*treat

DF

9

20

29

Coeff Var

0.983093

DF

oy

DF

[E=y

4.167333

The GLM Procedure

Sum of
Squares

36741.36667
347.33333

37088.70000

Type I SS

1483.20000
32604.03333
2654.13333

Type III SS
1483.20000

32604.03333
2654.13333

Mean Square
4082.37407

17.36667

Root MSE majax Mean

423.9000

Mean Square

370.80000
32604.03333
663.53333

Mean Square

370.80000
32604.03333
663.53333
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F Value

235.07

F Value

21.35
1877.39
38.21

F Value

21.35

1877.39
38.21

Pr>F

<.0001

Pr>F

<.0001
<.0001
<.0001

Pr>F

<.0001

<.0001
<.0001



Duncan's Multiple Range Test for majax

NOTE: This test controls the Type I comparisonwise error rate, not the
experimentwise error rate.

Alpha 0.05
Error Degrees of Freedom 20
Error Mean Square 17.36667

Number of Means 2 3 4 5
Critical Range 5.019 5.268 5.427 5.537

Means with the same letter are not significantly different.

Duncan Grouping Mean N type

A 432,500 6 wheat
A
B A 429500 6 durum
B
B C 424500 6 rye
C
C 420.500 6 oats
D 412500 6 barley
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Dependent Variable: minax

Source

Model

Error

Corrected Total

R-Square

0.894440

Source

type
treat
type*treat

Source

type
treat
type*treat

DF

9

20

29

Coeff Var

2.079946

DF

[uy

DF

s

3.754997

The GLM Procedure

Sum of
Squares

2389.466667
282.000000

2671.466667

Type 1SS

203.133333
1702.533333
483.800000

Type III SS
203.133333

1702.533333
483.800000

Mean Square
265.496296

14.100000

Root MSE minax Mean

180.5333

Mean Square

50.783333
1702.533333
120.950000

Mean Square

50.783333
1702.533333
120.950000
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F Value

18.83

F Value

3.60
120.75
8.58

F Value

3.60

120.75
8.58

Pr>F

<.0001

Pr>F

0.0228
<.0001
0.0003

Pr>F

0.0228

<.0001
0.0003



Duncan's Multiple Range Test for minax

NOTE: This test controls the Type I comparisonwise error rate, not the

experimentwise error rate.

Alpha 0.05

Error Degrees of Freedom 20

Error Mean Square 14.1
Number of Means 2 3 4
Critical Range 4.522 4.747 4.890

Means with the same letter are not significantly different.

Duncan Grouping Mean N type
183500 6 oats
182.000 6 durum

181.667 6 wheat

B> >

179.500 6 rye

W ww

176.000 6 Dbarley
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