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ABSTRACT

This thesis presents nonlinear analysis techniques to characterize and compress a
nonstationary electrocardiogram (ECG) signal in order to alleviate some of the limitations
of linear methods in biological signals. The motivation behind the study is the need to
reduce the size of storage and the time of transmission and analysis of the ECG signal
since a long-term ECG recording produces large amounts of data. This research has
resulted in three methods for ECG data compression: (i) nonlinear iterated function sys-
tems (IFS) compression and compositional complexity partitioning, (ii) statistical feature
extraction and classification to compress and browse the ECG signal, and (iii) dynamic
time warping (DTW) classification and block encoding.

A nonlinear IFS (NIFS) has been developed to compress ECG data based on self-
similarity of the signal. Compared to the traditional IFS, the NIFS provides more flexible
modelling. It gives a compression ratio of 7.3:1, which is higher than that of 6.0:1 in
orthogonal fractal technique of Jien and Nérstad, under a reconstruction error of 5.8%.
Furthermore, to reduce computational complexity, a variance fractal dimension trajectory
(VFDT) is applied to partition the ECG signal by measuring the local compositional com-
plexity of the signal. The segmented NIFS technique reduces computational complexity to
O(N) for a time series with length N, compared to O(N 2) of the IFS, and achieves a com-
pression ratio of 5.7:1 under the same reconstruction error.

A feature extraction and classification method is also proposed to reduce the
redundancy among the beats of the ECG signal. Instead of comparing the beats of the
quasiperiodic ECG signal directly, statistical features with the same dimension are
extracted from the beats with various lengths. First, we propose to extract moment-invari-
ants by treating ECG beats as character images, thus preserving the shape information of
ECG waveforms. A probabilistic neural network is used to classify ECG beats through
such features. The classification information is applied to remove the redundancy among
ECG beats and to browse the long-term recording in ECG analysis. Secondly, the Rényi
multifractal dimension spectrum based on the Rényi entropy measure of the object is
extracted by modelling the ECG signal through its underlying strange attractor. The inves-
tigation of the ECG strange attractor helps us recognize limitations of the low-sampling
frequency (360 Hz) and noise in phase space reconstruction of the ECG signal. Therefore,
denoising techniques are applied to the ECG signal to remove the noise and thus improve
the convergence of the Rényi dimension spectrum. A mean absolute difference (MAD)
between two Rényi dimension spectra is proposed to measure the convergence of the
Rényi dimension spectrum. Experimental results show that chaos denoising improves the
convergence about five times under the MAD, while wavelet denoising degrades it about
two times.

Finally, a modified DTW is applied to classify ECG frames by time normalizing
two frames through a warping function. Since the warping function is complicated, a seg-
ment-based registration of ECG frames is proposed to approximate the ECG frame. Parti-
tioning of ECG frames is realized by a windowed-variance technique. Then the block
encoding is proposed to compress segments of ECG frames. This compression scheme
achieves a very high compression ratio of about 50:1.
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Chapter I: Introduction

CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Classical signal processing has been used in the biomedical field such as electro-
cardiography (ECG), electroencephalography (EEG), electromyography (EMG), elec-
trooculography (EOG), and uterine electrohysterography (EHG), for analysis, monitoring,
and diagnostic purposes. Well-known examples of such techniques include the use of the
Fourier transform and autoregressive models for analyses of various biomedical signals.
However, these classical methods are not always applicable to the nonstationary ECG sig-
nal. For example, prediction of ventricular tachycardia (VT) is still difficult to achieve.

There has been no satisfactory method for suppression of interfering signals.

Linearity is defined through the superposition principle which states that a function

[ has the property

f(ax+by) = af (x) +bf (y) (1.1)

where x and y are variables, and a and b are arbitrary constants. If the superposition princi-

ple is not satisfied, the system is nonlinear.

A signal is a physical phenomenon which conveys information and depends on

time and space.

A random signal is stationary if its statistical characteristics such as the mean and
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the variance are invariant under time or space shifts; i.e., if they remain the same at ¢ and
r+A, where 7 is a real and A is arbitrary displacement. For such a stationary signal, the
probability densities, together with the moment and correlation functions, do not depend
on the absolute position of the point on the time/space axis, but only on their relative con-
figuration [Berg99]. Nonstationarity can be associated with regimes of different drifts in
the mean value of a given signal, or with changes in its variance which may be gradual or

abrupt.

Many biomedical signals are nonstationary as they originate from very compli-
cated nonlinear systems. The analysis of such signals is difficult. In recent years, new the-
ories such as time-frequency wavelet analysis [Daub92], chaos theory [PeJS92], fractal
analysis [Kins95], and neural networks [Mast95], have been introduced in nonlinear sys-
tems. Since these new techniques do not require the strong hypotheses such as linearity
and stationarity, they now find applications in various areas of biomedical engineering. For
example, wavelet analysis allows tracking the onset of transient phenomena, while chaos
theory can help explain the behaviour of certain physiological systems and model them
further, and neural networks also help model nonlinear systems. There is now strong
incentive to apply these innovative techniques to the monitoring of cardiovascular signals.
Indeed, if parameters extracted are really relevant to the biological mechanism under scru-

tiny, reliable diagnoses can be posed, and medical intervention can be made efficiently.

The ECG signal processed in this thesis is a nonstationary signal from a nonlinear
system. Its discrete form is also called the ECG time series. Figure 1.1 illustrates an ideal

ECG signal from Lead I. Such an ECG signal shows the variation of bioelectric potential
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with respect to time during a single beat of a human heart. The practical ECG signal con-
sists of a succession of beats which reflect the pulsation of the heart. Each normal beat of
the ECG signal should contain the P wave, the QRS complex, and the T wave. Any change
in these components is usually related to an abnormality of the heart. An experienced car-
diologist can use minute features of such a signal to obtain important information about
the heart function of a patient, including arrhythmias, myocardial infarctions, atrial
enlargements, ventricular hypertrophies, and bundle branch blocks [Yano00]. In addition,
the measurement of the ECG signal is non-invasive and simple. Therefore, the ECG has
been used widely in medical care for monitoring, diagnosis, and treatment of patients.

However, such a diagnosis is not the focus of this thesis.

Time [s]

Fig. 1.1. An ideal ECG frame with typical features.

Instead, this thesis concentrates on another problem: it is difficult for a short-time
ECG recorder to capture the exact moment when heart disorder occurs since the heart is in
a normal state most of the time. Consequently, a Holter monitoring system has been used
to record the ECG signal over a period of 24 hours or longer. In order to get good clinical

interpretation, data are acquired at high sampling rate. Feature extraction, classification,
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and data compression are necessary for the nonstationary ECG signal since the recordings
must often be stored, transmitted, and analyzed. The results of this research could be used

in the diagnoses.

1.2  Thesis Statement and Objectives

The purpose of this thesis is to research and develop nonlinear analysis methods to
characterize the nonstationary ECG signal, with particular interest in the efficient repre-
sentation of the signal. The ECG data compression must be performed in such a way that
important clinical information is maintained. An ECG compression technique is required
to reduce (i) the storage requirements of hospital database and ambulatory ECGs, (ii) the
time to transmit data over telephone lines, when remote interpretation is required, and (iii)
the time of browsing the ECG recordings. The research primarily addresses the aspects as

how to:

1) condition the signal for feature extraction;

2) extract statistical features from the ECG signal,

3) classify the ECG beats according to the features;

4) classify the ECG beats by time registering two frames;

5) compress the ECG data involved in the long-term recordings of ECGs;
6) browse the ECG recording quickly;

7) determine the strange attractor of the ECG, if there is one;

8) denoise the ECG signal;

9) partition the ECG signal; and

10) reduce the computational complexity in fractal compression.
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This thesis uses modern signal processing techniques such as multifractals, chaos
theory, wavelet transform, and neural networks, to characterize, classify, and compress the
ECG signal. The important quasiperiodic nature of the ECG signal is employed in the
processing. The ECG signal is compressed by removing redundancy existing both among

beats and between points.

The ECG beat-based compression techniques developed in this thesis are based on
operational characteristics of a Holter monitor to process regular ECG recordings contam-
inated by noise. Since the heart is in its normal state most of the time, these techniques can
achieve a high compression ratio. The instantaneous abnormal state of the heart will be
monitored and detected, and lossless compression techniques will be applied to them.
Thus, in this thesis, we do not select an ECG database with different clinical conditions

and abnormal ECG beats.

Since an ECG signal from any actual recording is a mixture of the pure ECG signal
and different types of noise due to tissue propagation, skin, EMG, and EEG, direct evalua-
tion of denoising techniques applied to such a signal is not possible because neither the
pure ECG signal nor the noise is known. Consequently, we use a pure ECG signal
(obtained from simulation of a mathematical model of the heart) mixed with pure noise
(generated by fractional models). The only remaining noise in the mixture is the numerical
noise. However, we can model it as a white noise whose mean is zero and variance is 62.
Although the simulated ECG signal may change with parameters of the body, it is consid-
ered to be appropriate if its power spectrum is broadband with chaotic characteristics, and

the spectrum distribution is similar to that of the real ECG signal.
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1.3 Organization of This Thesis

This thesis consists of nine chapters. Chapter 1 states the problems in ECG signal

processing and outlines motivation and objectives of the thesis.

Chapter 2 provides background information about the ECG signal and its compres-
sion. Mathematical models of the heart are evaluated for ECG simulation. The compres-
sion efficiency and fidelity measure in the ECG signal are involved. A review of current

ECG data compression techniques is also given in this chapter.

Chapter 3 provides background on wavelet transform. This chapter describes the
wavelet transform from the continuous form to the discrete form and the packet decompo-

sition. It also deals with the application of the wavelet transform to signal processing.

Multifractal characteristics of the ECG signal are investigated in Chapter 4. First
the Lorenz system is used as a chaos example to illustrate the complexity of a chaotic sys-
tem. Then the strange attractor of a practical ECG time series is reconstructed according to
the Takens theorem. To characterize the strange attractor, fractal analysis is included in
this chapter. Single-fractal dimensions are presented, together with multifractals which
have the capability of characterizing complex objects through a series of complexity

measures such as the Rényi dimension spectrum.

Chapter 5 applies denoising techniques to improve the convergence of the Rényi
dimension spectrum of the ECG signal since Chapter 4 shows an incomplete convergence.
One such a technique is threshold denoising in the wavelet domain. Principal component

analysis in the phase space is another denoising technique. Both of them are discussed and
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applied to the ECG signal in this chapter. The performance of the denoising techniques is

evaluated by SNR gain and the improvement of the convergence degree.

Chapter 6 presents the fractal compression technique for time series signals. It
begins from basic fractal encoding and decoding based on iterated function systems (IFS),
collage theorem, and fractal block coding. The piecewise self-affine fractal model devel-
oped by Mazel and Hayes is presented to encode the time series. Then, a nonlinear IFS is
proposed to compress the ECG signal. Furthermore, signal partitioning technique based
on compositional complexity measure is proposed to reduce computational complexity in

fractal compression.

Chapter 7 develops an ECG beat classification technique based on the feature
extraction of moment-invariants and neural network classification. The moment-invariant
contains statistical shape information of the ECG waveform. A probabilistic neural net-
work is used to classify the ECG beat for data compression and browsability purposes.

This chapter also describes how to cluster the training set without supervision.

Chapter 8 applies a modified dynamic time warping technique to classify ECG
beats based on time registering two frames through a complicated warping function. To
make use of classification information to compress the ECG signal, a windowed-variance
technique is used to partition the ECG frame into segments which can be encoded accord-

ing to blocks.

Chapter 9 gives conclusions and contributions for this thesis and recommendations

for future research.
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CHAPTER 11

ECG CHARACTERISTICS AND ITS COMPRESSION

Before discussing electrocardiogram (ECG) signal processing, it is necessary to
know where the signal comes from, how the human heart generates the ECG, what the
meaning of the ECG signal is, and how to acquire it. All of the background knowledge
shows different aspect of the characteristics of the ECG signal and is the foundation to do

further research.

This chapter also reviews research in ECG compression and the performance eval-

uation of ECG compression algorithms.

2.1 Electrical Activity of Heart

A human heart is an electrically active organ. The ECG comes from the electrical
activity of the human heart. Chemical reactions cause an electrical chain of events within
cardiac muscle. Electrical activity (depolarization) precedes mechanical activity (contrac-
tion). Electrical activation describes the events that result in the contraction and relaxation

of cardiac muscle, thus pumping blood to the whole body.

The heart may be thought of as an electrical conduction system. Figure 2.1 illus-
trates such a system, which consists of the sinoatrial (SA) node, the atrioventricular (AV)
junction, the bundle branch system, and the Purkinje fibers. The electrical activity begins
at the SA node, the principal pacemaker of the heart. Following discharge of the SA node,

the electrical impulse is carried by specialized conduction fibers to the left atrium, and
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through the right atrium to the AV node. The impulse is momentarily delayed at the AV
node. It then enters the ventricular conduction system, which is made up of the bundle of
His and the right and left bundle branches. From the bundle branches, the electrical activ-
ity is carried to the ventricular muscle by the network of specialized Purkinje fibers

[Rawl91].

(a) AV] unption (b)

Left Atrium

SA Node

Bundle of His

AV Node i Left Bundle
3 Branch

Right Bundle®
Branch

Purkinje’s
Fibers

Right Bune Left Bundle

Right Ventricle Branch Branch

Left
Ventricle

Fig. 2.1. (a) The structure of the heart’s electrical conduction system. (b) Schematic repre-
sentation of the AV junction, demonstrating the entrance fibers into the AV node, orienta-
tion of the AV node to the bundle of His, and the entrance fibers into the interventricular

septum (from [LeHa00]).

The electrical activity of the heart results from the chemical reaction in the heart
cells. The human heart has hundreds of thousands of cells, each acting like a kind of bag in
which some chemicals exist in water. Each cell is a complex system with characteristics

and performances that contribute to cardiac function. The foremost function is the coordi-
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nated contraction, or the beating, of the heart [Rawl91].

Chemical reactions inside and outside the cell provide mobile ions, and a small
number of them move through the membrane. The ease of passage, called permeability,
varies for different ions. An imbalance of ions across the membrane of a cell causes volt-
age, which changes with the movement of ions. The term action potential describes the
electrolyte exchanges that occur across the cell membrane of the heart during depolariza-
tion and repolarization. Depolarization corresponds to the electrical activation of myocar-
dial cells due to the spread of an electrical impulse. It is the process where the inside of the
cells becomes less negative. Repolarization means the process by which the cells return to
the resting level. Repolarization is fast at first, then followed a longer slower surge until

the resting state is achieved.

The action potential change and electrolyte movement in the cardiac period may be
divided into five phases, which is shown in Fig. 2.2: (i) Phase O is initial phase of the car-
diac cycle, which consists of rapid depolarization. As a change in cellular permeability
occurs, sodium rushes into the cells making them more positive. This action produces the
characteristic upstroke in the action potential. (ii) During Phase 1, initial repolarization, a
rapid influx of chloride inactivates the inward pumping of sodium. This serves to make the
internal charge nearly equal to the external charge. (iii) In Phase 2, the plateau, a slow
inward flow of calcium occurs, while the flow of potassium is slowed considerably. The
electrical charge remains nearly equal at this stage and contraction of the cardiac muscles
begins. (iv) Phase 3 consists of final rapid depolarization. During this stage there is a sud-

den acceleration of the repolarization rate as the slow calcium current is inactivated and

-10-
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the outward flow of potassium is accelerated. Cells begin to regain their negative electrical
charge at this stage. (v) Phase 4 includes diastolic depolarization. There is a difference in
activities of nonpacemaker (working) cells and pacemaker cells. Nonpacemaker cells

remain in the steady state until their membranes are acted on by another stimulus

[LeHa00].
Ar 7N ECG

mV Phase 1
] Phase 2

04 — — >N
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Transmembrane -] Phase0 Phase 3
Potential —
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‘L /M\ TTT \L i«l' \N/ Cell Membrane

K° Na° Ca» K° Na*and K° K° Outside Cell

Fig. 2.2. The relationship between action potential of myocardial working cells of
the heart and the ECG (after [LeHa00]).

2.2 Meaning and Use of ECG

Section 2.1 explained the electrical activity of the heart and the corresponding
ECG. We must now clarify what the ECG means exactly in this thesis because it may have
different meanings. The ECG is an abbreviation of electrocardiogram or electrocardio-
graphy. It may be a medical device capable of recording the electrical activity of the heart.
Or the ECG means the signal or graph of the recording from the heart. This thesis defines
the ECG as an abbreviation for “electrocardiogram” and “the signal recorded from the

heart”. An example of such a signal is shown in Fig. 2.3. We will explain the important

-11 -
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features contained in the ECG in the next section.
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Fig. 2.3. An ideal ECG signal and its features.

The ECG can be recorded from the wave passage of the depolarization and repo-
larization processes in the heart. The potential in the heart tissues is conducted to the body
surface where it is measured using electrodes. By strategically positioning the electrodes
on the body surface as shown in Fig. 2.4, the direction and strength of the potential can be

observed.

The ECG signal is detected by electrodes, which may include unipolar or bipolar
leads. The unipolar leads record the difference between an active electrode and zero poten-
tial. The zero potential is generated approximately by placing an electrode on each arm
and the left leg and connecting them via a common terminal to form a triangle with the
heart at its centre [Marr72] (see Fig. 2.4). Depolarization moving towards an active elec-
trode (V; to V) produces a positive deflection in the ECG recording while depolariza-

tion moving away produces a negative deflection [Gano85]. Bipolar leads record the

-12-
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difference in potential between two active electrodes which are generally located on the

limbs.

! Anterior Axillary Line

I
*Midclavicular Line

Fig. 2.4. Electrode positions on the body for the ECG detection (from [Yano00]).

The voltage signal detected by the electrodes can be amplified, displayed, digi-
tized, recorded, and analyzed in various ways, depending on the applications. The signal
may come from either single-channel or multi-channel. The latter situation occurs when
multiple electrodes are used at various parts of the body simultaneously. Each channel rep-
resents a different “view” of the heart rhythm. Modern ECGs usually utilize 3 to 12 chan-
nels to measure the electrical activity of the heart. We take the frequently used ECG from

V5 as the signal in our research.

Figure 2.5 shows the relationship between the ECG and the heart activity. A mor-
phological change in the ECG waveform is a visible sign of a heart muscle illness. An

experienced cardiologist can observe small features of ECG to extract important informa-

-13-
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tion about the heart function of a patient, including arrhythmias, myocardial infarctions,
atrial enlargements, ventricular hypertrophies, and bundle branch blocks. The measure-
ment of the ECG signal is non-invasive and simple. The ECG has been widely used in
medical care, for monitoring, diagnosis, and treatment of patients possibly suffering from

heart diseases.

7 ——— Depolarization in:
" V,a | SN Sinoatrial node
6} I Atria Right atrium and left atrium
I I AN  Atrioventricular node
5k | I H Bundle of His
| BB Bundle branches
ak | ' P Purkinje network
| \Y Right ventricle and left ventricle
%' | | Repolarization in:
= 3r I a Right atrium and left atrium
=y . l | v Right ventricle and left ventricle
= - "~ 1+ !y == q
2 | |
1} | |
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Fig. 2.5. The relationship between the ECG and the heart activity (from [Rawl91]).

2.3 Characteristics of ECG

From the relationship between the ECG and the heart activity shown in Fig. 2.5, it
is clear that the peaked area in the ECG beat, commonly called the QRS complex, together
with its neighboring P wave and T wave (shown in Fig. 2.3), is the portion of the signal
thought to contain most of the diagnostically important information. Other important
information includes the elevation of the ST segment and heartbeat rate, the RR or PP.

Therefore, it is of the utmost importance that these parts of the signal can be rendered with

-14 -
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good precision after any attempt at compression as discussed in this thesis.

The ECG signal repeats beat by beat, but the heartbeat rate of a recorded ECG
changes with time, as shown in Fig. 2.6. The mean and variance of the beat vary with time.

Therefore, the ECG signal is considered to be quasiperiodic and nonstationary.

A typical feature of such a nonstationary signal is the presence of “patchy” pat-
terns which change over time. These patterns cannot be thought of as noise simply, though
they are noise-like or even have some noise characteristics. The ECG is a very compli-

cated signal from a nonlinear system.

Voltage [mV]

: i L H L
o 0.5 1 1.5 2 2.5 3
Time [s]

Fig. 2.6. A recorded ECG waveform.

Recall that in Fig. 2.2 (which reveals the relationship between the ECG and the
electrical activity of the heart) the action potential of the heart jumps at Phase 0, then var-
ies slowly until settling down to a resting state. It means that the action potential signal has
many frequency components. It is clear that the ECG signal is not the same as the potential
of the heart. It only reflects the change of the action potential in the heart. Compared to the

original potential, the ECG loses some frequency components, especially high frequen-
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cies. The high frequency loss is due to the heart potential passing through an equivalent
lowpass filter [PIBa88]. Since the ECG acquired on the surface of the body has fewer fre-
quency components than the potential of the heart, such a loss may affect the chaotic char-

acteristics of the ECG.

Rawlings [Rawl91] argued that the bandwidth from 0.05 to 5000 Hz is proper to
get a clean ECG signal considering the noise and artifact influences. Jalaleddine et al.
[JHSC90] estimated that the minimal sampling rate should be 457 Hz with 10 bit sampling
precision to avoid spectral foldover. Most of the ECG components with diagnostic signifi-
cance are included in the bandwidth of 0.05 to 100 Hz [Rawl91]. The following figures
show the broadband spectrum distribution of a recorded ECG signal. Figure 2.7(a) is a
semi-log plot of the power density vs. linear frequency. Three peaks occur at about 60,
120, and 180 Hz. To observe the distribution clearly, a log-log plot of the spectrum is
given in Fig. 2.7(b). Its spectrum distributions are piecewise-linearly close to white noise,

f _5, black noise, and pink noise, respectively.

150 -1 0

100 2 3
Frequency [Hz] log(f) [Hz]

Fig. 2.7. The spectrum distribution of an ECG signal. (a) Semi-log plot with 8000 sample
points. (b) Log-log plot with 2000 sample points.
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There is no standard about what sampling frequency and sampling resolution are
suitable to acquire the ECG signal. In a typical ECG monitoring device, the sampling rate
varies from 125 to 500 Hz, and each data sample may have 8, 12, or 16 bit resolution

[NyMKOO0].

24 Modelling of ECG

As described in Sec. 1.2, the pure ECG signal is required for denoising algorithm
evaluation in this thesis. The pure signal, a modelled ECG, is related to the so-called “for-
ward” problem which entails the calculation of the body-surface potentials, starting usu-
ally from either equivalent current dipoles that represent the heart’s electrical activity or
from known potentials on the heart’s outer surface. The forward problem is one of two
topics in the ECG calculation. The other topic is the inverse problem. The calculation of

the ECG is a branch in cardiology [Gulr98].

As discussed already, electrocardiographic potentials on the torso surface arise
from electrical generators within the heart, and are conducted to the torso surface through
the intervening medium, thus reflecting the properties of both the cardiac sources and the
surrounding thoracic tissue. Important in the ECG is the consideration of the effects of the
thoracic inhomogeneities, anisotropies, and geometrical shape on potential distributions
within and on the torso surface [PiP184]. The ECG literature contains many numerical
techniques for potential field calculations, and they can be divided into two broad catego-
ries: surface methods and volume methods. Surface methods for potential calculations are
used for piecewise-homogeneous, isotropic ECG models. For such models, potentials

throughout the entire volume can be determined by the solution of surface integral equa-

-17 -



Chapter II: ECG Characteristics and Its Compression

tions representing either sources directly or potentials on the heart surface, the torso sur-
face, and intervening conductivity interfaces. Surface methods can be used to examine the
anisotropic effects of the skeletal muscle layer by applying the boundary extension
approximation suggested by Rush and Nelson [RuNe76] [CMNB83]. However, this trans-
form can only be utilized for regions of constant anisotropy and is only accurate for flat or

slowly changing surfaces [StPI86].

The second numerical volume method can be used to solve for potential distribu-
tions in an ECG model with any type of inhomogeneity or anisotropy. Volume methods
allow direct representation of conductivity in any number of piecewise-homogeneous or
anisotropic regions without a resulting increase in complexity of solution. Potentials
throughout the volume are determined through the solution of one or more volume equa-

tions by either the finite difference, or finite element, or finite volume methods [Gulr98].

The torso may be treated as a volume conductor. Such a volume conductor has
three important features: quasi-static, linear, and resistive [Gese63]. Quasi-static means
that currents and potentials throughout the body are instantaneously related to sources in
the heart. Linearity means that the potential arising from several sources is equal to the
sum of the potentials contributed by each of the sources acting alone. The resistance of the
tissue means that the capacitive component of the electric impedance of body tissues is
negligible to a good approximation. Experimental verification of the resistive and linear
nature of the volume conductor is obtained by comparing the voltage pulse response
observed at the skin with the current pulse delivered to the heart by an artificial pacemaker

[Bril66].
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The above conditions are summarized in mathematical form as follows. Let J be
the vectorial current density and V be the electric scalar potential (voltage) at a point in the

volume conductor. According to Ohm’s law, we have

J = -QVV 2.1)

where Q is the conductivity of the tissue at the point and V'V is the gradient of the poten-
tial V. In the absence of an external source of current, the divergence V e of the current J

must be

VeJ=0 (2.2)

Bioelectric sources are associated with the movement of ions across the cell mem-
brane, and involve the conversion of chemical energy to electric energy. The sources can
be represented as an “impressed” current source density J' [Gese67]. Hence (2.1)

becomes

J = -QVV+ ] (2.3)

where J* vanishes outside the heart. This concept has been widely adopted. From (2.2)

and (2.3), we have

VeQVV = Ve i (2.4)

which in an unbounded medium of conductivity Q has a solution

1 (VeJi

41Q2 r

dav 2.5)
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where r is the distance from the source to the observation point.

With the use of the divergence theorem, the scale source V e J' can be treated

alternatively as a vector source J'. Consider an arbitrary volume containing the sources
[VeSg)ay = [Jigeds = [(@Ve T+ T e Vo)ay (2.6)

where @ is an arbitrary scalar function, and § is the closed surface surrounding the region
of integration. If this surface lies outside the source region, the second integral in (2.6)

vanishes, and
[Voediay = =[(V e T)odv @.7)

If ¢ is taken to be 1/r, then from (2.5)
V= _Lj.ﬁ.v(l)dwy 2.8)
47tQ r '

where 7 is a constant.

This expression is precisely of the form of the potential of a current dipole. Hence
the impressed current density is equivalent to a source current dipole moment per unit vol-
ume. Henceforth, we will assume that V is measured with respect to a defined reference

potential and omit the constant.

The torso as a volume conductor is linear, inhomogeneous, resistive, anisotropic,

and bounded. It is reasonable to divide it into discrete regions (such as heart, lung, bone,
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blood, and muscle), with an appropriate conductivity assigned to each region. The heart
contains the sources of electricity, or electromotive forces J i Before a mathematical
framework for the solution to the problem is developed, we can write down the form of
the potential. Strictly as a consequence of linearity, the potential V at an arbitrary point on
the surface of the body (or anywhere in the volume conductor) is related to the distribution

of current sources J* throughout the heart as follows
V= [VZeJldv (2.9)

This equation is a statement of superposition. The term VZ is a transfer imped-
ance which relates the source J* in the element of heart volume dv to the potential V at the
observation point. Z depends on the location of the source, the location of the observation
point, the reference point, and the shape and conductivity of the torso and its internal
structures. Volume conductor properties may vary with time; for example, as a conse-

quence of respiration or the beating of the heart.

The transfer impedance VZ relates a vector source to a scalar potential, and is
itself a vector function of position throughout the source region. The fact that it is the gra-
dient of a scalar follows from considerations of reciprocity. From (2.8), an unbounded

homogeneous volume conductor of conductivity Q is

1
4Qr

(2.10)

It is sometimes convenient to divide the heart into a number of regions, and to

assign a lumped dipole dp to the centroid of each region. Then for region i
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dp; = [I'av, (2.11)

where the integration is over the ith region. In this case the cardiac electric sources are
represented by a finite number of lumped current dipoles. Such a source is a multiple

dipole source [FiBa63]. The surface potential is then given by
V=>YdpeVZ (2.12)

where VZ,; is evaluated at the centroid of region i, or is an appropriate average over the

volume.

To calculate the ECG, five essential steps should be implemented:

1) Creation of 3D anatomical computer models of the heart and body (applying computer
tomography, magnetic resonance tomography, and different methods of digital image
processing);

2) Simulation of the electrical excitation propagation in the anatomical heart model
(using a cellular automaton or more sophisticated tools);

3) Calculation of the impressed source current densities (using the bidomain model);

4) Calculation of the potential distribution by solving Poisson's equation with the
impressed source current densities in the anatomical body model (using a finite differ-
ence or finite element solver in a volume conductor); and

5) Calculation of the ECG by taking the leads at the body model.

Werner et. al. calculated an ECG shown in Fig. 2.8 according to the above five

steps [WeSD98]. To model the heart and torso anatomically, they used the Visible Man
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dataset provided by the National Library of Medicine, Bethesda, Maryland, USA
[Acke91]. The anatomical model of the heart of the Visible Man contains about 30 million
voxels of the size of 1/3 mm X 1/3 mm X 1 mm. For performance reasons the model reso-
lution for this simulation is reduced to 350,000 cardiac cells (voxels). The knowledge of
the orientation of the muscle fibres related to anisotropy is determined for each voxel by

texture analysis. The excitation is simulated by applying a cellular automaton [WKDES89],

[WOHH95].
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Fig. 2.8. Calculated ECG of the Visible Man. The electric source distribution to calculate
the ECG is taken from the transmembrane potentials (after [WeSD98]).

It is seen that the calculated ECG has no small notches as compared to the mea-
sured ECG. Therefore, such an ECG can be taken as a pure signal from a mathematical
point of view in our research. However, the simulated ECG still has some artifacts which
are due to the limited bioelectric modelling of the heart and the computing limitation of

the computer. More research is necessary to obtain a more realistic ECG. However, since
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the procedure of the ECG simulation is very complicated, this thesis uses the ECG signal
generated by Werner et. al [WeSD98] as the pure ECG signal. As discussed in Sec. 1.2, it

is appropriate to use the simulated ECG in denoising algorithm evaluation.

2.5 Evaluation of ECG Data Compression Techniques

It is difficult to capture the on-set of a heart disorder because the heart is in a nor-
mal state most of the time. A Holter monitoring system has been used to record the ECG
signal over a period of 24 hours or longer. This system is designed to capture the instanta-
neous abnormal state of the heart. In order to get accurate clinical interpretation, data are
acquired at high sampling rate and high sampling resolution. Since a large amount of data
is generated by the long-term Holter system, and the recording must often be stored, trans-

mitted (telemedicine), and analyzed, ECG signal compression is necessary.

Signal compression refers to the reduction in the number of bits required to repre-
sent a signal compared to the raw uncompressed representation. Usually the signal is rep-
resented as a data set that a computer can process conveniently. The process of data
compression is to detect and eliminate redundancy in a given data set. The inverse proce-
dure from the compressed data may restore the raw signal precisely or lose some informa-
tion. Therefore, data compression is divided into two kinds: lossy and lossless. Lossless
compression requires that the decompression can restore the original data exactly. Lossy
compression allows certain information loss to achieve greater data reduction, while pre-

serving the significant signal features upon reconstruction.

Lossy compression is widely applied to various signals from nature such as image,
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speech, and biomedical signals. It usually achieves a higher compression ratio than the
lossless method. We may use lossy techniques to compress ECG data because the ECG
diagnosis does not need precise ECG waveforms. The performance of lossy compression
techniques can be evaluated through compression efficiency, reconstruction error, and

computational complexity based on the same ECG data.

2.5.1 ECG Database

To compare performance of ECG compression algorithms, experiments should be
performed on the same ECG data. Unfortunately, there is no standard ECG database yet,

which leads to a problem to evaluate various ECG compression schemes.

There are some ECG databases such as MIT-BIH Arrhythmia Database, MIT-BIH
Supraventricular Arrhythmia Database, MIT-BIH ST Change Database, European ST-T
Database, QT Database, Long-Term ST Database, and Creighton University Ventricular
Tachyarrhythmia Database [Phys01]. Among them, the MIT-BIH Arrhythmia Database is

used frequently by researchers to evaluate their algorithms [Mood99].

The MIT-BIH Arrhythmia Database is used in the thesis. This database gives the
ECG signal sampled at 360 samples per second (sps), with 11 bits per sample (bps). We
compress the ECG data contained in the file, x_100.txt, which is a 10-minute recording

(758 beats) over a 10 mV range from V. Record x_100 is relatively clean.

2.5.2 Compression Efficiency Measure

In ECG data compression, compression efficiency is measured by the compression
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ratio, R,,,.. R, is defined as the ratio between the number of bits in the original signal and

that in the compressed version [Kins98]

N
Y blx,(j)]

Rer = JN-‘_I—L— (2.13)

Y blx., ()]

j=1

where x, represents the original signal with length N and X, the compressed signal with

length N;. b[x(j)] is defined as the function to find the bit number of x(j).

This compression ratio is suitable for comparing different compression algorithms.
However, the R, does not consider the sampling rate and sampling resolution of the time
series for various ECG databases. Since the R, does not show how many bits are required

for the resultant output, a bit rate (bits/s) of output data is also used in some papers.
2.5.3 Fidelity Measure

If a signal is compressed by a lossy technique, the reconstructed signal will be a
distorted version of the raw signal. The quality of reconstructed signal is evaluated from
two aspects: subjective and objective. Both of them are significant in ECG compression.
Subjective evaluation refers to the perceptual review of the signal and its reconstruction,

usually by experienced cardiologists.

Objective evaluation is based on the measure of the difference between the original

signal and the reconstructed signal. The percent root-mean-square difference (PRD) is one
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of the objective evaluation criteria defined as [JHSC90]

N
3 () - %,(NT°

PRD = |i=1 ~ x 100 % (2.14)

PEAE)

j=1

where x, and x, are the original and reconstructed signals, respectively, and N is the

number of samples in the signal.

The ECG signal should have a zero mean after it passes through a band pass filter.
When the signal is amplified and sampled, the offset voltage of the amplifier and capacitor
coupling of the analog-to-digital converter (A/D) may induce the D.C. to the signal. The
distortion measure given by (2.14) varies with the D.C. components (mean) of the signal,
which is improper for being used in algorithm evaluation with different ECG databases. To
solve this problem, Huang and Kinsner proposed another distortion measure, the

normalized percent root-mean-square difference [HuKi99]

N

_ 1 1 . \q2
NPRD = max(xo)—min(xo)JN .21 Dxo(7) = 2,()]" 100 % 1)
j=

Nygaard et al. [NyMKOO] proposed still another modified measure. In their

approach, the mean of the signal, ¥, is removed from the original signal
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al 2
P ERGEEAG)
MPRD = L=} x 100 % (2.16)

al 2
Y Ix,() - %,]
j=1

Hilton performed experiments to investigate the relationship between subjective
evaluation and objective measurement based on wavelet compression of the ECG signal
[Hilt97]. Two conclusions can be obtained from his results: (i) high sampling frequency
benefits subjective evaluation in lossy compression techniques, and (ii) compression ratio
of 8:1 may give a 100% correct diagnosis for the MIT-BIH ST Change Database with
sampling frequency of 360 sps and 12 bps. Since Chen and Itoh achieved compression
ratio of 6.8:1 with PRD of 7.0% by applying wavelet transform to the ECG signal from the
MIT-BIH Arrhythmia Database [ChIt98], the PRD of 7.0% should be a reasonable index
for ECG data compression. Under such a threshold, a reliable subjective diagnosis based

on the signal reconstructed from lossy ECG compression schemes can be made.

2.5.4 Problems with Evaluating ECG Compression

As there is no standard for ECG data acquisition, various time sequences are used
in ECG compression algorithms. The performance of these algorithms changes with dif-
ferent conditions and constraints, which poses a problem in evaluating ECG data compres-
sion algorithms using above criteria. On the other hand, the reported compression ratio
and error measure do not take into account factors such as bandwidth, sampling rate, pre-
cision of the original data, wordlength of compression parameters, reconstruction error

threshold, database size, lead selection, and noise level [JHSC90]. It is still an open ques-
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threshold, database size, lead selection, and noise level [JHSC90]. It is still an open ques-

tion about what are the optimal criteria on evaluation of the ECG compression algorithms.

2.6 Current ECG Compression Techniques

During the last several decades, a large number of schemes for a bit-efficient repre-
sentation of the ECG signal have been presented. Roughly, they can be classified into three
categories: direct data compression, transform encoding, and other methods [JHSC90]

[CBLG99].

The direct data compression includes time domain techniques based on adaptively
retaining the ECG samples which represent some key features of the ECG [HBHe94].
This kind of techniques mainly uses piecewise-linear segment compression technique,
including prediction, interpolation, and approximation. The compression ratio of the direct
data compression is low and is related to the sampling rate, the sampling precision, and the
preset error threshold [JHSC90]. Channel noise also affects compression performance

negatively. However, the implementation of direct compression algorithms is fast.

More recently, modern data compression methods such as vector quantization,
transform coding, fractal technique, and subband coding, have also been applied not only
to the ECG signal, but also to other biomedical signals [HBHe94]. They achieve better
compression performance, though at a high computational cost.

2.6.1 Direct Data Compression

The direct data compression methods attempt to reduce redundancy in a data
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sequence by examining a successive number of neighboring samples. These techniques
generally eliminate samples that can be predicted by examining a preceding and succeed-
ing sample. Examples of such techniques include amplitude zone time epoch coding
(AZTEC) [CNFO68], Fan [Gard64], scan-along polygonal approximation (SAPA)
[ISHS83], coordinate reduction time encoding system (CORTES) [AbTo82], delta coding

algorithm [WoSR72], and Slope [Tai91].

The AZTEC was originally proposed by Cox ef al. to preprocess the real-time
ECG signal for rhythm analysis [CNFO68]. It fits raw ECG sample points with plateau
regions and slopes under a preset error. The AZTEC plateau regions (horizontal lines) are
segments with certain length, which are produced by utilizing the zero-order interpolation.
The production of a slope starts when the number of samples needed to form a plateau of
three samples or more can be formed. The stored values for the slope are the duration and
the amplitude of last sample. Signal reconstruction is achieved by expanding the AZTEC
plateau regions and slopes into a discrete sequence of data points. Although the AZTEC
achieves a high compression ratio of about 10:1, the fidelity is not acceptable to the cardi-
ologist because of the discontinuity that occurs in the reconstructed signal. Jalaleddine ez
al. employed the Fan technique (discussed later) to alleviate the discontinuity problem in
AZTEC. Compared to AZTEC, their modified algorithm achieves 50% improvement in

signal fidelity [JHCSSS].

The turning point (TP) data reduction algorithm was developed by Mueller to
reduce the sampling rate of the ECG signal [Muel78]. The TP processes three sample

points at a time, a reference point and two consecutive points. The decision on which of
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the two consecutive points is retained depends on which point preserves the slope of the
original three points better. The TP algorithm produces a compression ratio of 2:1. The
major problem with the TP algorithm is that the compressed data set cannot represent

equal time intervals.

Abenstein and Tompkins suggested the CORTES algorithm, which is a hybrid of
the AZTEC and TP techniques [AbTo82]. The CORTES applies the TP algorithm to the
QRS complex and the AZTEC to the isoelectric regions of the ECG signal. If the segment
obtained by the AZTEC is shorter than an empirical length, it is replaced by the TP data.
There is no slope in the CORTES signal. The CORTES signal is reconstructed by expand-
ing the AZTEC plateaus and interpolating points between each pair of the TP data. Para-
bolic smoothing is applied to the AZTEC portions of the reconstructed CORTES signal to
reduce distortion. The CORTES maintains the high compression ratio of AZTEC, while

reducing distortion sharply.

Gardenhire first suggested and tested the Fan algorithm on the ECG signal
[Gard64] [Gard65]. The algorithm starts by accepting the first data point as a permanent
point. Two slopes are drawn between the permanent point and the next sample plus a pre-
set error threshold (+€) to form a fan area. Another fan area of slopes is formed between
the permanent point and the third sample point. If there is an intersection between the two
fan areas, it is taken as a new fan. If the third point falls within the new fan area, the sec-
ond point and its fan area are replaced by the third point and the new fan area, respectively.
The procedure is repeated for the future samples until a point falls outside the new fan

area. The preceding sample is saved as the next permanent sample and ready for a new
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process. During signal reconstruction, the permanent samples are connected with straight

lines.

Ishijima et al. presented three algorithms based on the SAPA technique to repre-
sent the ECG signal by a series of segments [ISHS83], [SkGo80]. In the three SAPA algo-
rithms, the SAPA-2 gives the best results. The SAPA-2 is the same as the Fan technique,
but with one difference: in addition to the two slopes obtained in the Fan algorithm, the
SAPA-2 computes a third slope between the permanent point and the third sample. Unlike
the Fan which uses a point criterion, the SAPA-2 uses the third slope as the criterion: if the
third slope falls between the two slope values of the new fan, the second point is redun-

dant.

One of the differential pulse code modulation (DPCM) techniques, delta coding
was proposed by Wolf er al. [WoSR72], which encodes the first-difference of the ECG
signal. Ruttimann et al. studied the performance of the DPCM with linear prediction as a
function of the order of the predictor [RuBP76]. They concluded that a DPCM system
with linear predictors of order higher than two would not result in a substantial perform-
ance improvement in ECG data compression. A compression ratio of 7.8:1 is achieved

through the DPCM [RuPi79].

Imai ez al. presented the application of a peak-picking compression technique to
ECG signals [ImK'Y85]. This algorithm extracts the significant points which correspond to
maxima, minima, and large curvature of the signal by using the second-order difference.
The ECG signal is reconstructed by spline function interpolation of these significant

points [ImKY85], [LEBS86]. Straight line fitting technique was also used to restore the
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signal by Giakoumakis and Papakonstantinou [GiPa86]. Under the same compression
ratio, experiments show that the PRD error of the spline method is about half of that of the

AZTEC.

Jalaleddine et al. suggested a cycle-to-cycle (CC) compression technique for the
ECG signal with normal beat [JHCS88]. This algorithm assumes that there is a QRS tem-
plate. The normal QRS is replaced by the difference between itself and the template. Then
the Fan algorithm is applied to the resulting signal for compression. The CC compression

technique requires QRS detection. It has not shown improvement over the Fan algorithm.

Nygaard et al. developed a cardinality constrained shortest path (CCSP) algorithm
for ECG compression [NyMKO0O]. This method is based on a rigorous mathematical
model of the entire sample selection process. By modelling the signal samples as nodes in
a graph, optimization theory is applied in order to achieve the best compression possible
under the given constraints. The goal in [HaHH97] is to minimize the reconstruction error,
given a bound on the number of samples to be extracted. The ECG signal is compressed
by extracting the samples that, after interpolation, will best represent the original signal,

given an upper bound on their number.

In addition, lossless entropy encoding may also be applied to any of the above
techniques. Entropy coding employs a nonuniform probability distribution of data to
encode the data with variable-length codewords, and may be applied to compress the data
further at the final stage of various compression techniques. For example, Ruttimann et al.
employed the variable-length Huffman coding to compress the ECG signal [RuPi79],

[PaBW79], [StBD79], [CoRi73], [WhWo080]. A disadvantage of Huffman encoding is the
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possibility of a serious decoding error that may occur due to a transmission error. Such a
problem can be tackled by the employment of data block coding with known error control
techniques [BuSu72], accompanied by an encoding overhead induced. The encoding over-

head is introduced to recognize the transmission error and correct the transmitted signal.

2.6.2 Transform Coding Compression

Transform coding methods apply a linear transform to the signal and then com-
press via redundancy reduction in the transform domain. Typically, the transform produces
a sequence of coefficients that exhibit compaction, thus leading to a reduction of the
amount of data needed to represent the original signal adequately. Many transforms such
as Karhunen-Loéve (KLT), Fourier, cosine, Walsh, Legendre, the optimally warping, sub-

band coding, and wavelet, are employed in ECG data compression.

The KLT finds the optimal basis function (eigenvectors) from the covariance
matrix of the time series and retains only a certain number of the large eigenvalues and
corresponding eigenvectors. Hambley ez al. used part of the KLT coefficients to express
the ECG signal [HaMF74], [AhAMH75], [WHML77], [ZiWo79], [W0Zi80]. Olmos et al.
suggested a windowed KLT to improve the performance of ECG data compression
[OMGL96]. Although the KLT is an optimal orthogonal transform and achieves a com-

pression ratio of 12:1, it is very computationally intensive [WHML77].

The fast Fourier transform (FFT) and discrete cosine transform (DCT) are orthog-
onal transforms. Unlike the KLT, they have a fixed basis function. They map signals into

the frequency domain. The spectra of the ECG signal are finite, and most of the spectrum

.34 -



Chapter II: ECG Characteristics and Its Compression

energy locates at the low frequency end. Therefore, the ECG signal may be represented by
the most significant coefficients in the frequency domain and compressed. Reddy et al.
used the FFT to compress ECG data [ReMu86]. Ahmed er al. proposed a simpler trans-
form, the DCT, to represent the ECG signal [AhRMH75] [A1Be92]. Both algorithms com-
press the ECG by preserving the most significant part of the transform coefficients. The
DCT achieves a compression ration of 7.4:1 and can be implemented in real time

[ReMu8g6].

Like the FFT, the Walsh transform can concentrate the energy of signals on some
range. Based on this nature, Kuklinski compressed the ECG signal in the Walsh domain by
retaining a fraction of the Walsh spectrum and allocating low bits to Walsh coefficients

[KukI83]. The Walsh transform has a computationally simpler basis function than the FFT.

Philips and Jonghe transformed the ECG signal by the Legendre polynomial (LPT)
basis function, and used part of the transform coefficients to approximate the signal
[PhJo92]. They showed that this approach achieves higher compression ratio and lower
PRD error compared to the DCT. Philips further improved the performance of the LPT by
time-warping the polynomial basis to the signal being compressed [Phil93]. The location

detection of RR intervals in the ECG is an important issue in the LPT.

The subband coding splits a signal into different frequency bands by filters and
then employs some form of quantization and bit allocation strategy [JaNo84]. It has been
applied to ECG data compression [AyCK91], [Tai92], [Haug95]. Tai used a six-octave-
band coder on the ECG waveform to compress the ECG data [Tai92]. Different bands are

allocated with different bits to trade off the compression ratio and fidelity of the signal. A
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compression ratio of 6.5:1 was achieved for the ECG signal by the subband coding

[Haug95].

The wavelet transform is a time-scale representation of signals in the wavelet
domain. A signal may be represented compactly by wavelet coefficients with an optimal
mother wavelet. The discrete wavelet transform (DWT) has been applied to compress
ECG data [ChIH93], [AnDR95], [Brad96], [Hilt97], [ChIt98], [MiYe00]. Chen et al. pro-
posed an ECG data decorrelation method based on the DWT and a compression ratio of
6.8:1 is achieved [ChIt98]. Hilton compared the compression performance by applying
various wavelets to the ECG signal [Hilt97]. He also used the wavelet packet transform
(WPT) to compress ECG data and found that this technique did not achieve improvement
compared to the DWT. Bradie applied the WPT to the beat of the ECG signal and achieved

higher compression ratio than the KLT [Brad96].

2.6.3 Other Methods

There are many other techniques in ECG data compression that cannot be classi-
fied under the direct method or transform method. They are categorized simply into other
methods. This other methods category includes: iterated function systems (IFS), vector
quantization (VQ), cycle-pool-based compression (CPBC) algorithm, linear prediction,

and neural networks.

Bansley et al. developed the IFS to compress signals by finding the attractor of the
system [Barn88], [Jacq90]. Bien and Narstad [Fish98] applied the IFS to ECG signal com-

pression by modelling range blocks through domain blocks, quantizing the model, and
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retrieving the attractor from the quantized coding. A compression ratio of 6.0:1 is
achieved [Fish98]. The experimental result of the IFS outperforms that of the subband

coding algorithm.

Several VQ schemes were applied to ECG signal compression [MaRa90],
[AnDR95], [WaYu97], [CBLG99]. Anant et al. used the VQ on ECG wavelet coefficients
and a compression ratio of 7.3:1 is achieved, which outperforms the ECG wavelet com-
pression [AnDR95]. Miaou and Yen proposed a gold washing adaptive vector quantiza-
tion (GWAVQ) technique with automatic distortion threshold adjustment to encode the
wavelet coefficients of the ECG signal. C4rdenas-Barrera and Lorenzo-Ginori suggested a
direct waveform mean-shape vector quantization (MSVQ) as an alternative for ECG sig-
nal compression [CBLG99]. In this method, an ECG time series is cut into short segments.
Each short segment has it mean subtracted off. Then the mean is quantized as a scalar and

the short segment is encoded through a vector quantizer.

Cassen and English suggested a variable bit allocation (VBA) scheme on ECG
compression because different parts in a beat of the ECG signal have different contribu-
tions to the clinical diagnosis [CaEn97]. This three-stage technique includes: (i) first order
differencing of the ECG time series; (ii) nonlinear quantization (more bits are allocated to

the QRS complex of the ECG signal); and (iii) entropy coding.

Hamilton and Tompkins presented a technique, average beat subtraction and first
differencing of residual data, to compress the ambulatory ECG [HaTo91]. In this tech-
nique, the ECG signal is segmented beat-by-beat and subtracted by a time-aligned average

beat. The residual ECG is first-order differenced, quantized, and Huffman encoded.

-37.-



Chapter II: ECG Characteristics and Its Compression

The CPBC algorithm for the ECG signal was proposed by Barlas and Skordalakis
[BaSk96]. The basic idea is that a pool of past-seen cycles is maintained and cycles to be
encoded can be stored as transformed versions of those residing in the pool. A cycle trans-
form technique is introduced in order to render the pattern matching process and enable
cycle substitution. Pattern matching is implemented based on critical points of ECG

cycles.

Cohen and Zigel established a long-term prediction model for the ECG signal
based on beat segment with a beat codebook. Instead of discarding the prediction error, the
residual is scalar encoded with some bits [CoZi98]. A bit rate of 166 bps per channel is
given by this technique. Unlike Cohen’s method, Ramakrishnan and Saha normalized the
ECG beat in period and amplitude and then modelled the wavelet coefficients of the ECG
signal by long-term prediction [RaSa97]. It seems that Cohen’s approach achieves a better

result than Ramakrishnan’s.

Iwata et al. proposed a dual three-layered neural network (NN) structure to proc-
ess the ECG signal [inS90]. The three-layered NN includes an input layer of 70 units, a
hidden layer of 2 units, and an output layer of 70 units. In the structure, one NN is used for
learning and another for compressing the ECG data so that the system can always evolve
with the ECG time series. The backpropagation technique is used as the learning algo-

rithm [IwNS90].

To utilize inter-beat and intra-beat correlation of the ECG signal, Lee and Buckley
cut and beat-aligned the ECG time series to form a 2D data array [LeBa99]. Then the DCT

is applied to the array to compress ECG data. The results show that this 2D method is
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much better than the 1D DCT and the DPCM techniques.

2.6.4 Results of Current ECG Compression Techniques

As ECG data compression research has been carried out on a bewildering multi-
tude of databases, sampling frequencies, sampling resolution, and reconstruction error
measure, it is quite hard to make qualified judgements about the preference of one tech-
nique over the other. However, Table 2.1 is an attempt to sum up some important results

from the previous work.

From this table, one can see that ECG data used in the compression techniques
have sampling frequency from 200 to 500 Hz, and sampling resolution from 8 to 12 bits.
The reconstruction error also changes from 3.5% to 28%. Since the compression ratio usu-
ally changes with the reconstruction error and is influenced by sampling frequency and
sampling resolution for most compression techniques, Table 2.1 cannot give a precise per-
formance comparison for all ECG data compression schemes. However, we can say that
the subband coding technique [Haug95] achieves a better performance than the fractal-
based compression [Fish98], and the VQ scheme on wavelet coefficients [AnDR95]
improves compression performance for wavelet transform [ChIt98]. These several tech-
niques use the ECG data with the same sampling frequency as our data and have close

reconstruction error to our technique.
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Table 2.1: Results of various ECG data compression schemes. SF means sampling
frequency.

Technique Rer | PRD[%] | SF [Hz] Prﬁfiitssi]on
Fan/SAPA [Gard64] 3.0 4.0 250 -
AZTEC [CNFO68] 10.0 28.0 500 12
Dual appl. of KLT [WHML77] 12.0 - 250 12
DPCM-linear pred., interp. and 7.8 3.5 500 8
entropy coding [RuPi79]

TP [Muel78] 2.0 53 200 12
CORTES [AbTo82] 4.8 7.0 200 12
Peak-picking with entropy encod- 10.0 14.0 500 8
ing [ImKY85]

Fourier descriptors [ReMu86] 7.4 7.0 250 12
Classified VQ [MaRa90] 8.6 24.5 200 12
BP and NN/PCA neural networks 20.0 13.0 360 11
[NaIw93]

Long-term prediction [NaCo093] 28.2 10.0 250 8
Subband coding [Haug95] 6.5 5.1 360 12
VQ of wavelet coefficients 7.3 6.3 360 11
[AnDR95]

Fractal-based compression [Fish98] 6.0 5.8 360 12
Wavelet transform [ChIt98] 6.8 7.0 360 11

2.7 Summary

Chapter 2 introduces background information about the electrical conduction sys-
tem of the heart, and characteristics and computation methods of the ECG. A paper review

of ECG data compression is given.
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The electrical conduction system is the source of the ECG. The ECG is a potential
transferred from the action potential of the heart to the surface of the body through a series
of cascaded equivalent filters. This thesis defines that the ECG stands for electrocardio-
gram and the signal recorded from the heart. The ECG detection is non-invasive and sim-
ple. It is a quasiperiodic and nonstationary signal from a nonlinear system. This signal has
important characteristics such as the QRS complex, the P wave, the T wave, and heartbeat
rate, which correspond to the activity of the heart. The ECG has been widely applied to

heart disorder diagnoses.

The ECG signal can be not only measured, but also modelled, though its simula-
tion is complicated. The ECG is simulated by modelling the heart as a multiple dipole

source.

The compression of the ECG signal is necessary because of a large amount of data
generated by the long-term Holter system. The compression efficiency and fidelity meas-
ure in ECG data compression are involved. It is still an open question of what constitutes
the optimal criteria to evaluate ECG compression algorithms. A review of previous ECG

data compression techniques is also included in this chapter.

The next chapter addresses wavelets, wavelet transform, and multiresolution

decomposition, as well as their application to signal analysis.
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CHAPTER II1

WAVELETS AND WAVELET TRANSFORM

This chapter provides a summary of the theoretical foundation of wavelets and

wavelet transform, as well as their application to signal processing.

The Fourier transform is not applicable to describe the nonstationarity of biomedi-
cal signals. Wavelets and wavelet transform have the ability to represent not only station-
ary signals, but also nonstationary signals. Signal processing can be performed through
the corresponding wavelet coefficients since the original signal or function can be repre-
sented in terms of wavelet expansions (coefficients in a linear combination of the wavelet
functions). If one further chooses optimal wavelets adapted to the data, or truncates the
coefficients below a threshold, the data can be represented very compactly. This compact
coding makes wavelets an excellent tool in the field of data compression. The truncated
coefficients may also be used directly as features for classification. The wavelet coeffi-
cients contain the smoothness information of the signal. Irregular noise leads to small
amplitude coefficients. Therefore, the threshold method can be adopted to denoise the sig-
nal. Wavelet analysis has found wide applications in signal processing including image,

speech, biomedicine, earthquake prediction, and radar.

This chapter begins with wavelets and continuous wavelet transform (CWT). The
time-frequency location is one of the most important properties of the wavelet transform.

Then we discuss the discrete wavelet transform (DWT) and multiresolution signal decom-
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position (MSD) technique for the fast implementation of the transform. The optimal signal

decomposition can be done through wavelet packet transform (WPT).

3.1 Continuous Wavelet Transform

Wavelets are functions that satisfy certain mathematical requirements. They can be
used to represent stationary or nonstationary signals or functions. The wavelet analysis
procedure is to adopt a wavelet prototype function, called an analyzing wavelet or mother
wavelet denoted as y(t), to find the correlation between the signal and the dilated and
shifted y(z). A set of basis functions used in wavelet transform is the scaled and trans-

lated version of the y(¢) as [Daub92] [Rive91]

Vo = 2y 1R (3.

a

where T is a shift position and a is a positive scaling factor. @ > 1 corresponds to a dila-
tion, while 0 <a <1 to a contraction of y(z), and R denotes the set of real numbers. It
should be noted that although the wavelets are not only functions of time, but also of

space.

Equation 3.1 indicates that the wavelets with different scaling factor a keep the
same shapes and have changeable sizes. Such a dilation or contraction property is used to
represent a nonstationary function through wavelet transform [Meye93]. Taking
{v, (1) e L?(R)} as the basis functions, the CWT of a real valued function x(¢) is sim-

ply an inner product of the function and a wavelet [Rive91]
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CWT (a,7) = {x,y, ) = = | x(z)w(t—ﬂ)dz (3.2)
£l [a_oo a

Now let us discuss the transform function with variables of the shift © and scale a
and its significance in the above equation. For a given shift T, the CWT is the result of the
local analysis of the signal x(z) at the given position T with a prototype analyzing func-
tion whose width depends on the scale factor a. This function achieves maxima at a posi-
tion T where the scaled prototype best matches the original function. Therefore, the CWT

allows to find specific patterns in nonstationary signals by selecting appropriate proto-

types.

For a given scale a, the CWT is the output of the signal x(z) through a filter whose
impulse response Y, (¢) = y(-t/a)/[g is the scaled version of the (real valued) y(z)
with the scale factor a. Taking into account that y(¢#) is bandpass around a given radian
frequency @), it is easy to show that the transform can be seen as the signal x(z) after fil-
tering in the neighbourhood of the radian frequency ®,/a with a filter whose bandwidth
is Awy/a. It follows that the CWT is equivalent to a filter bank with constant-Q factor

(Awy/®y = Q).

The CWT is reversible. The inverse continuous wavelet transform (ICWT) can be

defined as [Rive91]
x(t) = % [5 [ cwT (a0, (ndrda (33)
04 —
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if the constant v satisfies the following admissibility condition [Mall98]
= 2
_ [[¥() 34
Y= J T dm < oo (3.4)
0

which guarantees perfect reconstruction of the signal. Here, ¥ (®) denotes the Fourier

transform of y(z).

The admissibility condition requires that the mother wavelet y(#) must satisfy the
following conditions: (i) The square of the Fourier transform, ¥ (®), must decay faster
than |@| at teo, which means the mother wavelet y(¢) is band-limited in the frequency
domain; (i) y(#) must be a zero mean function; and (iii) y(z) is a function with finite

energy.

3.2 Discrete Wavelet Transform

In the previous section, we established that the CWT is equivalent to a filter bank
with constant-Q factor, which can be employed to discretize the parameters a and T in

Y, .(2) according to Shannon’s sampling theorem.
3.2.1 Discrete Scale Factor

For filters having a constant-Q factor and whose impulse response have the same
shape, the semi-logarithmic representation of frequency yields transfer functions with the

same shape, the same width, but different amplitudes and translated position in log®. It
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means that the samples in log®, or equivalently in loga;, must be equally spaced in order

to get the same discretization steps for each filter, that is the quantity
loga;~loga; | = v,, VieZ (3.5)

where 7, is a constant, and Z denotes the set of integer numbers. From (3.5), the follow-

ing equation holds with a, a constant
a, = ayy,, VieZ (3.6)

Equation (3.6) means that the scale factor is a function of the scale level i.
3.2.2 Discrete Shift Factor

If T = 2n/w; is the correct sampling period to sample y(¢) according to the
Nyquist rule, T, = aT is the correct sampling period to sample () = y(t/a)/ Ja,
and also to sample CWT(a, 1) for a given scale factor a. We can write the discrete shifts

1, for the corresponding discrete scale a; as
T, = n(a;T) 3.7

Selecting ay = 1, rewriting (3.2) in its discrete form with (3.6) and (3.7), the

DWT is

(o]

DWT,(i,n) = v, [ x(e)y(y,”"t~nT)dr, ¥(i,n) € Z* (3.8)

—00

DWT (a,1,)
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When the discretization for (3.8) is done on a dyadic grid; i.e., when v, = 2, the
DWT is interpreted as a constant-Q filtering with a bank of octave-band filters, followed
by sampling at the respective Nyquist frequencies (corresponding to the bandwidth of the
particular octave band). We can also assume that 7 = 1, which is the same as scaling ¢ by
the factor 1/T . Then (3.8) becomes

DWT (a,1,) = DWT (i,n) = 27/° | x(OWQ T t—n)dt, Y(i,n) e Z* (3.9)

The discrete wavelets with a dyadic grid are

v, .0 = 2772 -n), Vin)yeZ’ (3.10)

From now on, the discussion of the DWT and multiresolution approximation is

based on (3.10).

3.3 Multiresolution Analysis

The partition of the frequency axis into octave bands allows the introduction of the
multiresolution concept. Mallat described an algorithm to implement the DWT through

multiresolution analysis using filter banks [Mall39].

The general procedure behind Mallat’s DWT algorithm [Mall89] is to decompose
the discrete signal into an approximation signal A; and a detail signal ®,, where i repre-
sents scale level in the multiresolution analysis. The approximation signal A, or lowpass

signal, is formed by the projection of the original signal onto the space formed by the basis
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{0, ,=27720(27"t—n), (i,n) € Z*} where ¢(z) is a scaling function. The detail signal
®;, or highpass signal, is similarly formed with the  basis
{v; , = 272y(27t - n), (i, n) € Z*} where y(z) is a mother wavelet following all of
the previously discussed properties required by the DWT. Both of these bases are effec-

tively scaled versions of ¢(¢) and y(z) that have been downsampled by a 2! -point deci-

mation to a lower resolution.

An important property of ¢(z) is that it must be selected so that approximations
are subspaces of higher resolution approximations. These subspaces are associated with
scale-independent signal representations known as multiresolution analysis (MRA). The
most succinct definition of the MRA has been provided by Mallat [Mall98]: it is a
sequence {Ai}?z_w of closed subspaces of LZ(R) which satisfies the following require-

ments [Mall98]:

V(i,nye Z°, x(f) e A, & x(t-2'n) € A, 3.11)
VieZ, A, {CA,;, (3.12)
Vie Z, x(f) e A, x(t/2) € A,, ,, (3.13)
lim A, = A A, = {0}, (3.14)
i — oo i oo

lim A, = Closure( U A,.) = L*(R), and (3.15)
1—>— [ = —o0
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There exists ¢(¢) such that {¢(z—n), n € Z} constitute an orthonormal basis of

Roughly speaking, A; represents the space of all functions in LZ(R) whose details
of resolution less than 2™ have been removed. We can thus construct a sequence of sets
@, which contains the difference between functions projected on A; and A;_;. This dif-

ference is referred to as a detail signal given by

((O;_1 =0 ) ¥ € D;, V(iyn)e Z? (3.16)
where @, is the orthogonal complement of A; in A;_; so that

A1 = A0, and AND, = {0}, VielZ (3.17)
where @ denotes a direct sum of function spaces.

For j<J,Eq. (3.17) can be extended as

Aj=@; 1©A,=D,,,0D,,,D4, ,

=D, 19D,,,0DD; DA, (3.18)

To implement (3.18), Mallat suggested filter banks G and H for ¢(z) and y(z),
respectively, to filter the signal at each scale. To satisfy (3.17), the following impulse

response relationship between the two filter banks holds

gn) = (<1)'""h(1-n), (n = 1-M,2-M, - ,0) (3.19)
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where M is the vanishing moment of the mother wavelet. Equation (3.19) shows that G is
the mirror of H and thus the pair are known as quadrature mirror filters [Mall89]. Given

any one, the mother wavelet y(¢) or the scaling function ¢(#), we can derive the other.

Mallat proposed a fast orthogonal wavelet transform based on the multiresolution

decomposition and filter banks [Mall98]. The decomposition is

c;(i) = %Zh(n—Zi)cj_l(i) (3.20)

ai) = 3 g(n-20)c; (i) (3.21)

where c(i) is the original signal, x(i). ¢ j(i) and d j(i) represent the approximation and

detail of the signal at scale j, respectively.

At the restoration, the algorithm is performed with
c;(i) = 2) h(i- 2n)c; () + 2 g(k- 2n)d; , (i) (3.22)
n n

Figure 3.1 shows the filter bank scheme of decomposing and reconstructing a sig-
nal. The left of Fig. 3.1 shows the implementation procedure of the multiresolution
decomposition of the signal by filter banks H and G. The signal is first decomposed into
detail part by G and approximation by H, then down-sampled by 2, respectively. The
decomposition and down-sampling for approximation are repeated again and again until a

chosen scale is met or only one sample is left in the resulting approximation.
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Reconstruction of the signal is done by reversing the process depicted in the above.

The right part of Fig. 3.1 shows the procedure.

The computation complexity of the DWT is O(N).

11
« FO [ O
Signal Scale 1 G ‘@—T@* G Scale 1 Signal
Il

H Scale 2 Scale 2

]

=]

Fig. 3.1. The decomposition and reconstruction of an orthogonal wavelet transform are
implemented by cascaded filtering and down/up-sampling operations.

3.4 Wavelet Packet Transform

A generalized decomposition in wavelets is wavelet packet transform (WPT).
Wavelet packets were introduced by Coifman er al. by generalizing the link between mul-
tiresolution approximation and wavelets [CoOMW92]. Like the DWT, the WPT decom-
poses signals according to wavelet basis functions. The difference is that the WPT
decomposes not only the approximate pass A;, but also the detail pass ®,, in each scale of
the decomposition. This procedure is repeated for each approximation and detail signal to

form the WPT.

The time-frequency characteristic of the wavelet transform concentrates the signal
energy on some locations, which may allow for better approximations of the signal by
selecting proper decomposition in wavelet transform. We call this an optimal wavelet

packet transform (OWPT).
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Wavelet decomposition by the DWT, the WPT, and the OWPT is shown in Fig. 3.2.
It is apparent that the WPT decomposes signals more completely than the wavelet trans-
form. The DWT is only a specific case of the WPT. Among the three decomposition
schemes, the OWPT is the most useful in specific applications theoretically and is gener-

ally dependent on characteristics of the signal in the decomposition.

By selecting the basis function and using the OWPT properly, it may only need to
decompose certain approximation and detail signals to a certain level. This selective
decomposition is illustrated in Fig. 3.2(c) where some approximation and detail decompo-
sitions are no longer decomposed further at later levels. The stopping criteria for deciding
where to end a further decomposition depend on the signal and the application, but can
include factors such as entropy measures, mean squared error measures after quantization,

or multifractal measures [CoWi92] [Wick94] [Dans00].

The computational complexity of the WPT is O(Nlog,N).

@ ) ©

Fig. 3.2. Wavelet decomposition with various schemes: (a) the DWT, (b) the WPT, and
(c) the OWPT.
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3.5 Wavelet Transform Applications in Signal Processing

The essence of the wavelet transform is to efficiently approximate signals with
proper wavelets. The larger the wavelet coefficients, the more similar between the wave-
lets and the signal. In signal processing, the wavelet transform may be used to: (i) com-
press data, (i) reduce or remove noise, and (iii) extract features. The algorithms have low

computational complexity and can be implemented in real time.

3.5.1 Data Compression in Wavelet Domain

One of the signal compression techniques is an orthogonal transform. The trans-
form method usually achieves high compression ratio and is insensitive to the noise con-
tained in original ECG signals [JHSC90]. A signal may be approximated efficiently with
few non-zero wavelet coefficients through wavelet transform. The wavelet transform
decorrelates a signal and concentrates its information into a relatively small number of
coefficients with large magnitude. These large coefficients contain more energy than the
small coefficients, and thus are more important in reconstructing the signal than the small

coefficients.

The wavelet transform can achieve higher performance by selecting a proper wave-

let basis for different signals.

Figure 3.3 gives a decomposition result of an ECG signal according to the Mallat’s
fast wavelet transform with the Daubechies 4 wavelet. Figure 3.3(a) is a raw ECG signal
recording with 1024 points. Figures 3.3(b)-(e) show how the original signal is transformed

into detailed signals of scale 1 to scale 4. Figure 3.3(f) shows a smoothed signal at scale 4.
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After decomposing the ECG into the detailed signals that contain pulses (transitions) at
the QRS complex, one observes that the number of wavelet coefficients with high ampli-
tude is quite few in each high frequency pass of the decomposition. When a threshold is
set up to make most of the coefficients zero, the data are compressed. Although a high
threshold leads to high compression ratio, it also results in high distortion rate. Therefore,

a suitable threshold selection is a trade-off between compression ratio and fidelity.
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Fig. 3.3. The multiresolution decomposition of an ECG signal with the Daubechies 4: (a)
the original ECG signal, (b) the detail at scale 1, (c) the detail at scale 2, (d) the detail at
scale 3, (e) the detail at scale 4, and (f) the approximation at scale 4.
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Chen and Itoh compressed ECG signals by the Daubechies 10 wavelet transform.
They used the MIT-BIT ECG database with 360 sps and 11 bps. They got a compression

ratio of about 16.5:1 at a distortion rate (PRD) of 9%.

Hilton [Hilt97] compressed ECG signals with the DWT and the WPT. It is verified
that the compression performance of wavelet transform on ECG signals changes with
wavelet bases. Although the WPT should achieve higher compression performance than
the DWT theoretically, Hilton’s experiments gave almost the same results on ECG signal

compression for both techniques.
3.5.2 Wavelet Denoising

In Chapter 5, we will use wavelet transform as one of the techniques to denoise the
ECG signal. The idea of wavelet denoising is to use the “smoothness” of wavelet basis to
measure and extract the “smoothness” of the signal, by which the signal is distinguished

from noise.

The smoothness of wavelet basis is determined by a vanishing moment and regu-

larity. A vanishing moment M for a wavelet function y(#) is defined as

j My(t)dt = 0
R

o , 0<m<M (3.23)
Jt (H)dr#0
R

where m and M are nonnegative integer.
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One can interpret the degree M as the ability of the wavelet to make a polynomial
with order M vanish during a time integration. A high order polynomial is considered a
highly smooth signal because it has many derivatives, dependent directly on its order.
Therefore, smooth signals can be efficiently represented by wavelets with high degree of

vanishing moment because many resulting wavelet coefficients are zero.

The smoothness of wavelets is related to their regularity. The regularity of a wave-
let function w(z) is defined as the Holder exponent 0 < o < 1 [Riou93] with »>0 and a

constant 7y such that

ly(t+r) -yl <yr®, teR (3.24)

The variable r is known as the radius of a disk centred on location ¢ where the
exponent is defined. Equation (3.24) controls the growth of the wavelet basis with respect
to infinitesimal time change. We often want to characterize the regularity of the nth deriv-

ative of the wavelet. The higher order regularity is defined as n + o..

Rioul showed that a wavelet with a regularity of more than »n possesses n continu-
ous derivatives [Riou93]. Hence, a highly regular wavelet is highly smooth, and suitable

for representing smooth signals.
3.5.3 Wavelet Feature Extraction

The time-frequency characteristic makes it easy for the wavelets to decompose
high frequency and low frequency components from a signal. The detail version of the sig-

nal in the wavelet domain can capture transitions of the signal. This property has been

- 56-



Chapter III: Wavelets and Wavelet Transform

applied to detect edges of images and to extract features from transients in power systems

[Lang96] [ChKHO2].

The wavelet coefficients may be used as features directly for signal classification
because the wavelet transform decorrelates a signal and concentrates its information into a

relatively small number of coefficients with large magnitude.

3.6 Summary

Background on wavelets and wavelet transform is provided in this chapter. The
wavelet transform in a continuous form with a set of shifted and dilated basis functions is
described first. Then the discrete form is deduced by equally spaced sampling on a log
axis of frequency. The filter bank and multiresolution signal decomposition were dis-
cussed to perform the wavelet transform. Important properties of the wavelet transform
include: (i) time-frequency location, (ii) compact representation of the signal, and (iii)
smoothness characteristic. Wavelet analysis has found wide applications in signal process-
ing including: data compression, denoising, feature extraction, detection. Based on differ-
ent applications, the MSD, WPT, and OWPT can be employed to decompose a signal
quickly and effectively. The optimal signal decomposition can be achieved through the

OWPT.

The purpose of discussing wavelet transform is to derive the concept of signal
denoising based on the smoothness of signals which will be presented in Chapter 5. In the
next chapter, the measure of the roughness of signals through fractal analysis will be dis-

cussed.
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CHAPTER IV

CHAOS AND MULTIFRACTALS IN ECG

4.1 Introduction

Linear methods show limitations in analysis of biomedical signals that originate
from very complicated nonlinear living systems. In fact, the majority of natural phenom-
ena can be modelled as nonlinear dynamical systems. The heart is an electrically active
organ, and its activity is controlled by a nonlinear dynamical system. That means the
change of the heart function corresponds to different dynamical characteristics. Therefore,
we can recognize the essence of the heart and extract underlying features by studying the

dynamics of the heart.

The behaviour of a nonlinear dynamical system can fall into three classes: stable,
unstable, and chaotic [JoSm87]. Stable behaviour means that after some transient periods
such a system settles in a periodic or a steady state motion. Unstable behaviour means that
the trajectory of the system is aperiodic and unbounded. The chaos that we will study is a
particular class about how something changes over time. In fact, change and time are two
fundamental subjects that together make up the foundation of chaos. Although the ECG
signal is bounded and has some deterministic features such as the QRS complex, the T

wave, and the P wave, it is not strictly periodic.

A nonlinear dynamical system can be reconstructed through the 1D time series

according to the Takens embedding theorem [Take81]. Therefore, if the heart has dynami-
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cal characteristics, they should be contained in the recorded ECG signal and revealed
through its reconstructed strange attractor. In this chapter, we will try to find the strange
attractor of the heart from the ECG recording. The strange attractor should be a fundamen-

tal feature of the ECG signal and may be employed for classification purpose.

The geometry of a strange attractor in the chaotic dynamical system is complicated
and difficult to be used in classification directly. In order to model a nonlinear chaotic nat-
ural phenomenon, many experiments need to be conducted to determine the nonlinear dif-
ferential equations which govern the system. Sometimes it is almost impossible to find
such equations. Another approach is to characterize the complicated geometrical object by

measuring the complexity of its strange attractor.

The prerequisite of characterizing the strange attractor through its complexity
measure is first to prove the existence of an underlying strange attractor. It has been found
that a complex system with an underlying deterministic model exhibits chaotic dynamics
in some cases. Quantitative measures for analyzing such a system have helped gain better
insight into the dynamics of the system. Ravelli and Antolini [RaAn92] demonstrated that
the degree of complexity measured by the fractal correlation dimension increases as the
ECG evolves from sinus rhythm (SR) to ventricular fibrillation (VF) via intermediate
thythms. Since different nonlinear physiological processes of the heart possess different
complexities, the measure of the fractal correlation dimension is applied to identify ven-
tricular tachycardia (VT) and VF from other rhythms. Zhang et al. used another complex-

ity measure suggested by Lempel and Ziv to analyze the ECG signal [ZZTW99] [LeZi76].

It is not sufficient to characterize a complicated object just using one or two com-
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plexity measures. Chen showed that the morphological dimension of two nonintersecting
objects is dominated by the object with higher fractal dimension, which means the single
complexity measure is incomplete [Chen97]. Instead, the Rényi dimension, a spectrum of
multifractal measures, can characterize the complexity of objects completely [Kins94al.
To calculate the multifractal Rényi dimension spectrum of the ECG signal, first it must be
determined whether the underlying system is deterministic or not, and whether the meas-
ured data are random noise or chaotic data. After knowing all the independent variables of
trajectories of the system, the strange attractor of the ECG can be characterized by calcu-
lating the spectrum of the Rényi dimension. The only problem is that generally there is not
enough information about all the variables. The system is often speculated through the tra-

jectory of one measured variable.

In light of the Takens embedding theorem, the strange attractor in a dynamical sys-
tem can be reconstructed by lagging and embedding the time series in the phase space
[Take81]. The time lag 7 is estimated by the autocorrelation function of the time series.
The minimal embedding dimension is estimated by checking the convergence of the false
nearest neighbours and the Rényi dimension spectrum. In this method, we treat the nonlin-
ear dynamical system of the heart as a “black box”. Only the time series of the one-chan-
nel ECG is used to characterize its dynamics through multifractal measures of its

corresponding strange attractor.

4.2 Chaos and Strange Attractor

The majority of natural phenomena can only be modelled as nonlinear systems.

The behaviour of the heart should not be an exception. Since nonlinear systems are very
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difficult to analyze mathematically, linear systems are usually preferred for modelling pur-
pose. However, only nonlinear systems are capable of exhibiting chaotic behaviours which

present more accurate models of the natural phenomena.

A chaotic behaviour of a dissipative system with differential equations in two
dimensions or more has a bounded trajectory which converges neither to an equilibrium
point nor to a periodic or quasiperiodic orbit and can be represented by an object with
complicated structure. Such an object attracts the neighbour points but has some inherent
instability along it. This attracting set of points (i.e. a strange attractor) is not a simple geo-
metrical object and cannot be characterized well as an integer-dimensional object. Instead,
such a strange attractor is a multifractal or fractal. A nonlinear system can exhibit stable,
unstable, or chaotic behaviour depending on both the range of the parameters involved in

the modelling equations and the value of initial conditions.

A dynamical system is anything that moves, changes, or evolves with time. The
dynamical system is chaotic if it satisfies the following three conditions [Deva92]: (i) it
has sensitive dependence on initial conditions; (ii) periodic points for the system are topo-
logically dense (like the set of rational or irrational numbers, but not the set of integers);
and (iii) the dynamical system is topologically transitive (i.e., given two points, we can

find an orbit that comes arbitrarily close to both points).

It is important to note that although the trajectory of a chaotic dynamical system is
not periodic, and the Fourier transform of it yields a broadband spectrum, this system is
still deterministic and not stochastic. In other words, deterministic chaos includes: @) it

follows a rule (such as some law, equation, or fixed procedure) that determines or specifies
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the observable results; (ii) future results are predictable for given constants and input; (iii)
although the chaotic system appears to be disorderly, its behaviour has a sense of order
and pattern; (iv) chaos can occur even in the complete absence of noise. However, long-
term prediction of the behaviour of the chaotic dynamical system is impossible because it
is extremely sensitive to the initial conditions. The same initial conditions always generate
the same trajectory, but since the numerical tools used for the calculations do not possess
infinite resolution, any error in specifying the initial conditions or during the iterative cal-
culation of the trajectory can give a result which may not be accurate for prediction pur-

pose [PeJS92].

One of the methods to study a nonlinear dynamical system is to solve the differen-
tial equations of the system and analyze the solutions. The Lorenz system gives an exam-
ple for such an analysis. The Lorenz system with three ordinary nonlinear differential

equations is as [Lore63]

[ dx

% = 40-x)

dy _ o
i Bx—y-xz “4.1)
dz _

\E = Xy YZ

When oo = 10, B = 28, and ¥ = 8/3, the Lorenz system shows chaotic charac-
teristics. Figures 4.1(a)-(c) give chaotic solutions of the Lorenz system for the components
x, y, and z, respectively. The solutions are random-like curves. They show aperiodicity and

bifurcation. The broadband spectrum characteristic of the aperiodic signal is shown in Fig.

-62 -



Chapter IV: Chaos and Multifractals in ECG

4.1(d). Its power spectrum distribution is close to pink noise (f_l) except that in the mid-
dle region of the spectrum the distribution is close to that of f -, Figure 4.2 shows the sen-
sitivity of the Lorenz chaos to initial conditions. The 0.001% change of initial values leads
to completely different solutions for the Lorenz chaos. The parameter [ is critical for the
Lorenz system. It determines whether the system is chaotic, as shown in Fig. 4.3(b), or

not. Figure 4.3(a) shows stable solutions for the Lorenz system when B = 16.

Figures 4.1 and 4.2 show difficulty in analyzing the chaotic solutions. Instead of
investigating the solutions directly in the time domain, we can do that in the phase space.
The plot composed of components of solutions is called phase space or state space. Figure
4.3(a) shows a stable solution and Fig. 4.3(b) shows a chaotic solution of the Lorenz Sys-
tem in the phase space for different v values. The trajectory of the solutions evolves with
time in the phase space. From Fig. 4.3(b) one sees that the chaotic attractor is dense,
bounded, nonintersectable, and of a fixed pattern. This attractor is called “strange” for
these remarkable features. Any chaotic system has its characteristic strange attractor in the
phase space. It is also important to note that the existence of a strange attractor is a strong
indicator of chaos in a system, as described next. The code for solving the Lorenz system

and reconstructing its strange attractor is provided in Appendix B.1.1.

Notice that Figs. 4.1(a) and (b) are very similar except for a scaling factor. A con-

siderable difference between waveforms can be found by rescaling them.
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Fig.4.1. When o0 = 10, B = 28, and y = 8/3, the Lorenz system gives chaotic solu-
tions for its components of (a) x, (b) y, and (c) z. The spectrum distribution of the x compo-
nent is shown in (d).

o 200 400 . 600 800 1000

Fig. 4.2. The sensitivity of the Lorenz chaos to initial conditions. The solid line is the solu-
tion of the x component with initial values of x = 0, y = 0.5,and z = 20. The dashed
line is the another solution with initial values of x = 0, y = 0.500005, and z = 20.
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Fig. 4.3. The phase space of the Lorenz system with parameters o, = 10,y = 8/3, and
different 3. Initial values are that x(0) = 0, y(0) = 0.5, and z(0) = 20. (a) Stable
solutions with B = 16. (b) Chaotic solutions with § = 28.

4.3 Reconstruction of Strange Attractor

The strange attractor has a special place in pattern recognition because its structure
corresponds to the nonlinear dynamics of the corresponding system. Such an attractor is
the essence of the dynamical system. Frequently, we do not know the nonlinear dynamical
differential equations or how many variables it has when we analyze a system. We can just
take some measure; i.e. the time series of the signal from the system. How do we recon-

struct the chaotic attractor from such a single measurement?
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4.3.1 Takens Embedding Theorem

Packard er. al. first addressed the question of reconstructing an attractor from the
trajectory of the time series [PCFS80]. Here the trajectory means the path followed by the
system as it evolves with time. Assume x(n) is the time series obtained by sampling a sin-
gle coordinate of a dynamical system. From this measurement, it was found that one can
obtain a variety of m independent quantities which appear to yield a phase space represen-
tation of the dynamics in the original space [PCFS80]. After proving the important obser-
vation made by Packard er. al., Takens gave an embedding theorem [Take81]. The
embedding theorem states that when there is a single measured quantity from a dynamical
system, it is possible to reconstruct a state space that is equivalent to the original one com-
posed of all dynamical variables. The embedding theorem states that if the system pro-
duces an orbit in the original state space that lies on a geometric object of dimension D
(which need not be an integer), then the object can be unambiguously seen without any
spurious intersections of the orbit in another space with dimension m >2D, and com-

prised of coordinates that are nonlinear transforms of the original state space coordinates.

According to the Takens theorem, if the time series x(n) is measured from a sys-
tem, we can lag and embed the time series in an m-dimensional space by taking m-coordi-

nates

um)= (x(n), x(n+1), x(n+21), -, x(n+ (m—-1)1)) , 1<a<N-(m-1)1 (4.2)

where T is the lag of the time series, m is the embedding dimension of the reconstructed

attractor, and N is the length of the time series. Corresponding to the phase space, we call
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the above reconstruction a pseudo phase space since the reconstruction is not exactly the

same as the original.

The remarkable consequence of the Takens theorem is that the strange attractor of
the chaotic system can be reconstructed from the measured time series of a single coordi-
nate. As an illustration, we take the x component of the solutions of the Lorenz system to
reconstruct the Lorenz attractor. Figure 4.4(b) is the pseudo phase space of the Lorenz
attractor with T = 5 and m = 3. We shall show how to get the lag T in Sec. 4.3.2 and the
embedding dimension m in Sec. 4.3.3 from the time series. The reconstructed attractor in
Fig. 4.4(b) is not exactly the same as the original one in Fig. 4.4(a). It is a squashed,
rotated, and projected version of the original attractor. The fact that the pseudo phase
space is a distorted view of the real attractor is not important for our purpose. The impor-
tant feature is that the two versions of the strange attractor are topologically equivalent. It
means that both of them have the same dynamical properties. In particular, they have
approximately the same values of the key indicators of chaos, such as Lyapunov expo-
nents, correlation dimension, Kolmogorov-Sinai entropy, and mutual information [Will97].
Therefore, such properties are invariant, or unchanged, by making the pseudo phase space.
In other words, when two geometric figures are topologically equivalent, a particular

dynamical measure is unchanged regardless of its phase space or its pseudo phase space.
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Fig. 4.4. The strange attractor of the Lorenz system and its reconstruction. (a) The original
strange attractor. (b) The reconstruction of the Lorenz attractor through its x component
with lag T = 5 in 3D phase space, m = 3.

4.3.2 Autocorrelation Function for Lag

The important issue in attractor reconstruction is how to choose the time lag T and
the embedding dimension m from the time series properly. First, let us discuss the choice
of the lag. The lag is related to correlation among data. If the lag is too small, then each
sample is plotted against itself because of high correlation as shown in Fig. 4.5(a). If the
lag is too large, the dynamical relation between points becomes obscure and eventually

random (see Fig. 4.5(c)).

x(n+2) -20 -20 x() X(n+5) -20 20 x(n) x(n+10) =20 -20 xn)

Fig. 4.5. The reconstruction of Lorenz attractor with lag of: (a) 2, (b) 5, and (c) 10.
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Several techniques such as autocorrelation function indicators, mutual informa-
tion, redundancy, correlation integral, and space-filling, have been proposed to find the
optimal lag [Will97]. No single approach seems to apply to all conceivable conditions. We
use autocorrelation function indicators to find the lag of the ECG time series. Autocorrela-
tion measures the degree of correlation of a variable at one time with itself at another time.
At a lag of zero, the coordinates of each plotted point are equal, and autocorrelation is a
maximum of 1. It decreases as the lag increases. The optimal lag corresponds to the so-
called autocorrelation time (the time required for the autocorrelation function to drop to

some value). The autocorrelation function of the time series x(n) is calculated as

N-71
2 X (DX +7)
C(1) = I=— 4.3)
Y ()’
j=1
() = x()-x | (44)

where X is the mean of the temporal signal and N is the length of the signal. We take the
T as the lag of the time series when C(7) first drops below the value (1 — 1/¢) since such
a T is the attenuation constant of time of the 1st-order linear constant differential equation
system. Figure 4.6(a) is an autocorrelation function plot of an ECG signal. From this fig-
ure we get an estimated lag of four sample points for the ECG signal. It is equivalent to
about 11.11 ms. The reconstructed strange attractor of the ECG signal in Fig. 4.6(b) shows
a bounded and deterministic pattern under this lag. The code for the autocorrelation func-

tion and reconstruction is provided in Appendix B.1.2.
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Fig. 4.6. (a) Autocorrelation function of an ECG signal. (b) Strange attractor recon-
structed from the ECG time series with 60,000 samples by lag of 4 in 3D phase space.

4.3.3 False Nearest Neighbours

Once the lag T is determined, the next step is to find the embedding dimension.
Although many techniques, such as correlation dimension, false nearest neighbours
(ENN), principal component analysis, and minimum mutual information, are proposed to
find the minimum embedding dimension for attractor reconstruction, none of them is yet
accepted widely [Will97]. A good idea in practice is to use more than one technique on the
same data to give independent checks on results. We determine the minimum embedding
dimension of the ECG attractor by checking the convergence of the Rényi dimension spec-
trum and the FNN [Kins94a] [KeBA92]. The Rényi dimension spectrum will be discussed

in Sec. 4.6.

The FNN proposed by Kennel er al. deals with the minimal embedding dimension
of the measured time series [KeBA92]. Nearest neighbour points closest to any chosen

data point in pseudo phase space are called true or false. True nearest neighbours lie at
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their true phase space distance from the chosen central data point. False nearest neigh-
bours, in contrast, merely seem to be closer because the embedding space is too small. A
point is identified as false if its distance from the central point continues increasing as the
number of embedding dimensions increases. It means that the distance of the FNN contin-
ues to increase as long as the embedding dimension is too small. The correct embedding
dimension is found when the number (or percentage) of the FNN decreases to approxi-

mately zero.

Assume we are in a j-dimensional phase space, working with points of an attractor
reconstructed from the time series x(»). The rth nearest neighbour of each point u(n) of
the reconstructed attractor is denoted by u(r)(n). Then the Euclidean distance between

point u(») and its rth neighbour is

i~ 1
d(u(n), u" (n)) = ,2 [x(n+kt) = 2D (n+ k0] 4.5)
k=0

where 7 is the lag determined from the previous experiment (Sec. 4.3.2).

n

A j+1 coordinate is added to d?(u(n), u "(n)) when the pseudo phase space is

extended from dimension j to j+1.

&1 (), () = Eam),u”m) + [x(n+ 1) -V + jolT @6)

A natural criterion for false neighbours is that the increase in relative distance
between u(n) and u(r)(n) is greater than a threshold when going from dimension j to

j+1. The criterion is defined as
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1
[diﬂ(u(n), u(n)) - dj(u(n), u‘”(n))}2 _ b jol o
& (u(n), u” (n)) d (u(n),u” (n))

where T, is the threshold found by numerical experiment (i.e., by fixing the embedding
dimension to test the sensitivity of different values of T'; to the relative distance). It is suf-
ficient to consider only the nearest neighbours » = 1 and interrogate every point on the

attractor to check how many nearest neighbours are false.

Equation (4.7) is not sufficient, however, to determine the embedding dimension m
in attractor reconstruction. It is found that even though u(l)(n) is the nearest neighbour of
u(n) it is not necessarily close to u(n) because of the influence of noise. Kennel et al.

[KeBA92] proposed an additional criterion as

dj(u(m), v ()

1 N
Jﬁ > () - %)’

i=1

Ta (4.8)

where X is the mean of the time series and Ta is another threshold found by experiment.

Figure 4.7 gives the ratio of the FNN versus embedding dimension under different
T,. The curves converge when T,=6. From this experiment, a minimal embedding
dimension of 7 is obtained when Ta = 1, T ;2 6, and the percentage of the FNN is about

0.6%. The code for the FNN is provided in Appendix B.1.2.
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Fig. 4.7. The ratio of the FNN with different T, in the reconstructed attractor of the ECG
time series for different embedding dimensions. The length of the time series is 5000
sample points.

After the strange attractor of the dynamic system is reconstructed, its chaotic char-
acteristics need to be investigated further. The complexity features of chaotic systems may
be characterized by fractal technique. In the next section of this chapter, we shall discuss
the following points: (i) what is fractal; (ii) how to use Lyapunov exponents to determine
the chaos of a system; and (iii) how to use the Rényi dimension spectrum to determine the
embedding dimension of a chaotic system and measure the complexity of the strange

attractor.

4.4 Fractal Sets

In general, people are used to thinking about objects in topological space more
than other spaces. Topological (or Euclidean) dimension Dy is the ordinary integer
dimension of abstract objects (set S) such as a point (D, = 0), line (Dg = 1), surface
(Dg = 2), and volume (D; = 3). A set S has topological dimension D; if each point in

S has an arbitrarily small neighbourhood & whose boundaries intersect S in a set of
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dimension Dy—1, where Dy is the least non-negative integer for which this holds.
Although topological dimension finds perfect applications to mathematical smooth
objects, it loses capability of describing complex natural objects such as trees, rivers,

coastlines, mountains, and lightning.

Fractal geometry, which was popularized by Mandelbrot in 1960, provides a tool
for describing complex objects. Mandelbrot [Mand82] defines a fractal as a set for which
the Hausdorff-Besicovitch (fractal) dimension strictly exceeds the topological dimension.
A more accurate definition by Devaney [Deva92] is that a fractal is a subset in R” which
is self-similar and whose fractal dimension exceeds its topological dimension. Unlike top-
ological geometry with the integer dimension for all objects, fractal geometry uses a frac-
tional dimension to depict the roughness of the complex objects, which should be an
important feature of objects in nature. Another feature of a fractal is its self-similarity or
self-affinity. A strictly self-similar object is an object which is constructed from exactly
the same segments, under various degrees of magnification. That is to say that each small
part replicates the whole structure exactly. One of the strictly self-similar examples is the

Minkowski curve [PeJS92].

An initiator and a generator are necessary for the generation of a strict fractal

object. The Minkowski curve is produced according to the following four steps:

1) Let the initiator be a unit straight line (it may be anything).
2) The generator contains eight initiators with a scaling of 1/4 each. The structure of the

generator shows at Step 1 in Fig. 4.8.

3) At Step k, the object at Step k — 1 is scaled by 1/4 and then used to replace every initi-
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ator in the generator.

4) The Minkowski curve is a fractal object when k is infinite.

The generation of the Minkowski curve shows that a complicated fractal may be
produced by simple rules. When we zoom on the curve, we always get the same structure
as the entire curve. Although the Minkowski curve seems simple, its mathematical charac-
teristics are complicated. In the limit, when k — oo, it is nowhere differentiable, it is irreg-
ular everywhere, and the length of the curve is infinite. Such irregular characteristics are

owned by all fractals. Another example of fractal is the Koch curve shown in Fig. 4.9.

Step 0 r=1
N =1 Initiator
L =1

Step 1 r=1/4
N =8 - | _ Generator
L =2

Step 2 r=1/16
N = 64
L =

&g,

Step k r=1/4" i

S Mg :
N =g ""%\?ﬁ &? gﬁﬁﬁ
L =2 %
%vf% 535

Fig. 4.8. Generation of the Minkowski curve, where r is the size of a segment, N is the
number of segments, and L is the total length of the curve (after [Kins94a]).
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Fig. 4.9. Generation of the Koch curve, where r is the size of a segment, N is the number
of segments, and L is the total length of the curve (after [Kins94a]).

Unlike the Minkowski curve and the Koch curve which have the same scaling fac-
tor in any direction (x and ), other fractal objects may have different scales along different
directions (e.g., the time of a time series may scale by 2, but its amplitude may scale by
A/i). Such objects are called self-affine [Kins94a]. However, most objects in nature are
neither strictly self-similar nor self-affine, but have a finite range of self-similarity/affinity.
Some fractals have scale-invariance with respect to their statistics and are called statisti-

cally self-similar or self-affine [Kins94a].

A fractal object can be characterized by a scalar called fractal dimension. The frac-
tal dimension characterizes the irregularity of the fractal. If the object is smooth, the frac-

tal dimension is equal to its topological dimension. The fractal dimension increases with
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the roughness or irregularity. Therefore, since the complexity of an object can be meas-

ured by the fractal dimension, it may be employed as a feature for object classification.

A power law is fundamental in fractal dimension estimation. Different power laws
result in different dimensions. There are many fractal dimensions. Kinsner has presented
more than 21 fractal dimensions in a unified framework [Kins94a], where the dimensions
are classified into morphological, entropy, variance, and spectral dimensions. We shall dis-
cuss the Hausdorff mesh dimension, the Rényi dimension spectrum, the variance dimen-
sion, and the Lyapunov exponent based on morphological, entropy, variance, and spectral

measures on the object.

4.5 Single Fractals and Their Limitations

This section focuses on several typical single fractals and their limitations in com-

plexity measure, and it follows the presentation in [Kins94a].
4.5.1 Self-Similarity Dimension

Consider a bounded set S in the m-dimensional Euclidean space. The set S is said
to be self-similar when it is the union of N(r) distinct (non-overlapping) copies of itself,
each of which has been scaled down by a ratio r in all coordinates. The similarity dimen-

sion of § is given by the following power-law relation

N = r > forr—0 (4.9)

or
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_ logN(r) 410

S 7 log(1/7) (4.10)
Although the Minkowski curve is continuous and spans a finite distance, it is not a

line. The length of the segment consisting of the curve is zero. From Fig. 4.8, we have
r = 1/4% and N(r) = 8k at Step k for the curve. Therefore, the self-similarity dimen-

sion of the Minkowski curve is

k
- log8" _, 5 @.11)

Dy
log4k

while the self-similarity dimension of the Koch curve shown in Fig. 4.9 is

k
D, = 08% _ 19619 @.12)

The similarity dimension measure is only suitable for strictly self-similar fractal
sets. However, the majority of fractals are not exactly self-similar. They may even be ran-

dom. Therefore, other measure techniques are needed to estimate such fractal objects.

4.5.2 Hausdorff Mesh Dimension

The Hausdorff mesh dimension provides a basic and practical measure for fractal
dimensions. It characterizes geometrical complexity of fractal objects. For multi-dimen-
sional objects, one must consider a hypervolume element set with size 7, called vel for
short, for fractal measure. One way of measuring dimension of an object is to use the vel

set to cover the object and then count the minimum number of the covering set, N(r),
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intersected by the object [Kins91], [CaRe94]. The Hausdorff mesh dimension is defined

by the following power-law relation

N(r)~r2m (4.13)

The dimension is found by repeated measurements of N(r) on reduced mesh sizes
according to

_ - logN(r) 4.14
D =l e /) @19

The Hausdorff dimension is often referred to as the box counting dimension (D)
when the vels are square and not overlapping. The Hausdorff dimension can be considered
as a morphological dimension [Kins94]. The morphological dimension uses the number of
geometrical covering vels as a basic measure. The morphological-based fractal dimen-
sions can be used if the distribution of a measure (such as probability) is uniform (i.e., if
the fractal is homogeneous) or the information about the distribution is not available.
Since a geometrical coverage is involved, these dimensions are purely a geometrical con-

cept.

If a fractal is nonuniform or its probability density is nonuniform, the fractal
dimension must be estimated based on entropy measure. This class includes: information
dimension, correlation dimension, Rényi dimension spectrum, and multifractal (Mandel-
brot) dimension spectrum. As an example, information dimension is defined in terms of
the relative frequency of visitation of a typical trajectory (in temporal fractals) or the dis-

tribution measure (in spatial fractals), so it uses either information about the time behav-
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iour of a dynamical system, or the measure describing the inhomogeneity of a spatial

fractal [Kins94b].
4.5.3 Information Dimension

The Shannon entropy is used widely to reflect the complexity of objects. It play a

central role in information theory as measures of information, choice and uncertainty. Let
us consider covering a fractal object with N(r) vels. The size of the vel is r, where 7 is

either radius or diameter or some other estimate of the size. The frequency in the fractal

object may be distributed nonuniformly. The Shannon entropy is defined as

N(r)

H,=-7% pjlogp, (4.15)
j=1

where p ; is defined by

N(r)
7.
.= lim —Land N.. = n. 4.16
p] NT—)°°NT T ';1 j ( )
r—0 /=

where n j is the number of times the fractal intersects the Jjth vel of the covering, and N T is

the total number of intersections of the fractal with all the vels.

Based on the Shannon entropy, the information dimension is defined as

H

D, = lim — 4.17
1= M og(i/n (4.17)
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4.5.4 Correlation Dimension

The correlation dimension is another entropy fractal dimension. Assume the fol-
lowing power law holds between the sum of squared probabilities over all the vels with

size r

N(r) D
3 i (4.18)
=1

where the probability p ; has the same meaning with the probability defined in Sec. 4.5.3.

The correlation dimension is

N(r) 2
logipj

D, = lim — =1 _ 4.19
¢ = I Tog(n (4-19)

4.5.5 Limitations of Single Fractal Measures

Usually the objects in nature are not single fractal objects. They are multiple frac-
tal objects. To investigate the objects with multiple fractals, we put the Minkowski curve
and the Koch curve together without intersecting as shown in Fig. 4.10. The box counting
dimension and the correlation dimension of the Minkowski curve, the Koch curve, and the
composite of them are obtained from the log-log plot of the curves (the detail about this
technique will be presented in Sec. 4.8.2). The similarity dimension can be obtained
directly from (4.10). The experimental conditions and results are given in Tables 4.1 and

4.2, respectively.
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The experimental results reveal some important observation. For the single fractal
such as the Koch curve, its similarity dimension (D), box counting dimension (D p)» and
correlation dimension (D) are very close. The same conclusion can be made from the
Minkowski curve. In the nonintersecting composite of the two curves, its D equals to the
bigger fractal of the two single fractal sets. The Dy and D - are also dominated by the frac-
tal with a higher complexity. It means that these three dimensions only describe the most
complicated features of the multifractal objects. Therefore, using a single fractal dimen-

sion or any other single value complexity to depict complex objects is incomplete.

1000

500 -1

-500

-1000

—1500 1 L ! L
o] 500 1000 1500 2000 2500

Fig. 4.10. The nonintersecting composite of the Koch and the Minkowski curves.

Table 4.1: Conditions for generating the Koch curve, the Minkowski curve, and the
nonintersecting composite.

. . Iterations/number of points in each segment
Dimension Koch Minkowski Nonintersecting Composite
Curve Curve
Similarity oo oo oo
Box Counting 72 4/3 6/2 (Koch) and 4/3 (Minkowski)
Correlation 6/2 4/3 6/2 (Koch) and 4/3 (Minkowski)
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Table 4.2: Fractal dimensions for the Koch curve, the Minkowski curve, and the
nonintersecting composite.

Dimension Koch Minkowski Nonintersecting Composite
Curve Curve
Similarity 1.2619 1.5000 1.5000
Box Counting 1.2663 1.5446 1.4850
Correlation 1.2594 1.4984 1.4660

4.6 Multifractal Dimensions

4.6.1 The Rényi Dimension Spectrum

Instead of measuring a single fractal, the Rényi dimension spectrum (D,) meas-
ures a series of complexities of complicated objects based on the Rényi entropy. The

Rényi entropy H, is [Kins94a]

N(r)

_ 1 q
H, = q—:—IIog > p! —o0 < g < 00 (4.20)

j=1

where p ; is the probability defined by (4.16) and N(r) is the number of non-empty vels

intersected by the fractal object. The vel has the side length of r. The Rényi dimension

spectrum is defined as

N(r)
log 3 pf
. 1 =1
D =1 I
g ri)ng 7—1 Togr (4.21)
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Kinsner shows that [Kins94a]

1 .
D_, = lim L8 (P i) (4.22)
r—0 10g(r)
1
D = lim “&¥mar) 4.23)
r—0 log(r)
Dy=Dypy, Dy;=D;, Dy=D,and (4.24)
D,<Dy, <D, <D, <D_, (4.25)

Therefore, the Rényi dimension spectrum includes the Hausdorff mesh dimension
Dy, the information dimension D ;> and the correlation dimension D as special cases.
It is a spectrum of complexity measure of multifractals. Figure 4.11 shows an example of
the Rényi dimension spectrum from a strange attractor of an ECG signal with 5000 sam-
ples. As explained in Sec. 4.3, the strange attractor of the ECG is reconstructed with

embedding dimension of 7 and lag of 4.

The Rényi dimension spectrum has four important properties: (i) it gives the multi-
fractal measure of complex objects; (ii) it is monotonically decreasing with ¢ (iii) it is

bounded; and (iv) it is always normalized.
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Fig. 4.11. The Rényi dimension spectrum of the ECG with 5000 samples, in which the
strange attractor of the ECG is reconstructed with embedding dimension of 7 and lag of 4.

4.6.2 The Rényi Dimension Spectrum Estimate

Given a time series of a fractal object, its Rényi dimension spectrum can be esti-
mated from the log-log plot (see Sec. 4.8.2), if the probability distribution of the strange
attractor is known. One of the techniques to estimate the Rényi dimension spectrum is the
box counting algorithm [Kins94b], which estimates the probability distribution of the
attractor by dividing the phase space into vels without overlapping. Equation (4.16) shows
how to estimate the probability distribution. Probability estimation through the box count-
ing technique is simple and easily implementable. A drawback of this technique is the
large size of memory required by the algorithm. It is not suitable for the objects with high

embedding dimensions.

Another technique used to estimate the probability distribution in fractal dimen-
sion is the pair-correlation function (integral), which was suggested by Grassberger and

Procaccia [GrPr83]. Pawelzik and Schuster [PaSc87] extended the pair-correlation func-
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tion to any order in the other form. We switch from p;, i.e., the probability to find the tra-

jectory in one of the homogeneously distributed boxes introduced in (4.16), to p; which

denotes the probability to find the trajectory within a ball around one of the inhomogene-

ously distributed points of the trajectory. The latter can be written as

N
pir) = Y 00~ lu(i) ~u ()

i=1

(4.26)

where O(x) is the Heaviside step function and u(i) is defined as (4.2). In this case, the

Rényi dimension spectrum is given as

logC (r)

D =
7 ;50 logr

where the extended pair-correlation function is

&

1

N 1 N g-1
2{ > e(r—llu(i)—u(j)ll)] }q“l
= j=1

2=

C,(r)

N N m-1

;] 29 r—(Z(x(z+k’c) x(j+k1))?

i= J—l k=0

(4.27)

(4.28)

where m is the embedding dimension and 7 is the time lag of the time series x(#n). This is

the technique we use to estimate the Rényi dimension spectrum of the reconstructed

attractor of the ECG signal.
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4.6.3 Multifractal Characteristics of ECG Strange Attractor

We have two reasons for using the Rényi dimension spectrum to analyze the ECG
strange attractor: (1) to find the embedding dimension of the ECG strange attractor through
the convergence investigation of the Rényi dimension spectrum of the ECG time series,

and (ii) to measure the complexity spectra of the strange attractor.

Experiments have been done using the data from the MIT BIH ECG database. The
sampling rate of the data is 360 sps. The Rényi dimension spectrum is calculated under
different embedding dimensions for an ECG time series with 5000 sample points since we
do not know how many variables there are in the dynamical system of the heart. The
embedding dimension is set from 1 to 13. For each embedding dimension, let log(r)
change linearly within the interval [-7,1], where r is the vel size. The extended pair corre-
lation, C,(r), of the attractor is estimated for each r. The log(C,(r)) vs. log(r) plots are
shown in Fig. 4.12(a). The Rényi dimension spectrum, D, , cannot be calculated directly
from (4.27) because it is impossible for r tending to zero in real world. In general, D,

may be obtained from the linear region of the slope of the log(C,(r)) vs. log(r) plots.

We take [-3, 1] as an approximately linear region of the log-log plots to calculate
the Rényi dimension spectrum of the ECG signal through the least-square fitting technique
discussed in Sec. 4.8.2. The code is provided in Appendix B.1.2. The Rényi dimension
spectrum with various embedding dimensions shown in Fig. 4.12(b) is calculated from
that region. It shows that the Rényi dimension spectrum varies with embedding dimen-
sion. The Rényi dimension spectrum curves for ¢ <0 are convergent when the embedding

dimension is greater than 4, while the curves for ¢ >0 do not converge. We propose that
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the incomplete convergence of the Rényi dimension spectrum is due to the low-sampling
frequency and noise in the ECG data. The low-sampling frequency limits the broadband
spectrum characteristics of chaos in the signal, while noise breaks down the criterion that

unfolds the chaos in embedding space.

-14

Fig. 4.12. The convergence investigation of the attractor reconstructed through the ECG

time series with different embedding dimensions. The length of the time series is 5000

sample points. (a) log-log plots of the extended correlation function with approximately
linear region at [-3, 1], and (b) the Rényi dimension spectrum curves.

It may be argued that the sampling rate is certainly adequate for the real ECG sig-
nal and the noise level is very low. Since most of the ECG energy is concentrated between
0 and 100 Hz, the sampling rate of 360 sps is adequate for some ECG applications in
which the variability of the ECG waveform is not important. If a signal is periodic and has
finite spectrum, then its Rényi dimension spectrum is convergent. However, the sampling
rate and noise are related to the system dynamics of the heart. The ECG signal is actually
not periodic and has broadband spectrum. Accurate exposition of notches in an ECG
requires a bandwidth having an upper frequency of several thousand Hertz [Raw190]. Con-

sequently, an ECG signal with high sampling rate is required for chaos study.
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The real ECG signal appears to be clean since its noise components over 180 Hz
have been filtered out. This signal contains low-frequency noise that can be reduced by
denoising techniques. Characteristics of noise and chaos may be studied in the phase
space. It has been demonstrated that there is no convergence in phase space reconstruction
of white noise [Tina99]. Since the convergence of the Rényi dimension spectrum of the
ECG is improved by the denoising experiments as described in the next chapter, this ECG

signal is not noise free.

The convergence of the Rényi dimension spectrum is used as another criterion to
determine the embedding dimension m in the attractor reconstruction. Here the conver-
gence is related to the deterministic pattern of the ECG attractor. It means that the attractor
is unfolded completely in that space. The D, curves of the white noise do not converge
when the embedding dimension increases since a fixed pattern or attractor does not exist

for noise [Ehti99].

From the convergence investigation of the Rényi dimension spectrum and the false
nearest neighbours of the ECG time series, the minimal embedding dimension of 7 is
determined for the attractor reconstruction purpose. Under this embedding dimension we
calculate the Rényi dimension spectrum of the ECG shown in Fig. 4.11. The curve is
strictly monotonic decreasing and bounded in (0, 3). The Hausdorff dimension D gy 1S

about 1.75. Thus, the ECG signal has multifractal characteristics.

4.7 Lyapunov Dimension

The Lyapunov fractal dimension, D Ly is useful in the study of chaotic systems,
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and particularly in the prediction of the dimension of a strange attractor from the knowl-

edge of Lyapunov exponents of the corresponding transform [KaYo78].

The Lyapunov exponents are a quantitative measure of the sensitive dependence of
trajectories on initial conditions (which is a characteristic of chaotic behaviour). They are
averaged rates of divergence or convergence of nearby orbits (i.e., the evolution of neigh-
bouring phase trajectories), which can be used to distinguish between chaotic and noncha-
otic processes. Actually there is a spectrum of Lyapunov exponents. Their number is equal
to the dimension m of the phase space. This approach can be viewed as another multifrac-

tal representation of the strange attractor.

To obtain the Lyapunov fractal dimension spectra, imagine an infinitesimal small
ball with radius r, sitting on the initial state of a trajectory. The flow will deform this ball
into an ellipsoid. That is, after a finite time ¢ all orbits which start in that ball will be in the

ellipsoid. The ith Lyapunov exponent is defined by

A, = lim lim 11n(it)) (4.29)

g rog—=0t—o Fo

where r,(¢) is the radius of the ellipsoid along its ith principal axis as shown in Fig. 4.13.

The Lyapunov dimension is defined as [Ott93]
1
Dy, = K+m—=> A (4.30)

where A; denotes the Lyapunov exponents and is ordered as A; 24, > ... 2 A,,, and K is
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the maximum number of the Lyapunov exponents which makes the sum of the exponents

nonnegative
K K+1
> A;20and Y ;<0 (4.31)
j=1 j=1

trajectory ra(2)

EN

Fig. 4.13. An illustration of how trajectories diverge and converge in 2D phase space.

4.8 Variance Dimension and Log-Log Plot

4.8.1 Variance Dimension

Unlike the Rényi dimension spectrum which analyzes fractal objects based on
entropy measure, the variance dimension analyzes the spread of the increments in the sig-
nal amplitude (variance, ¢°) directly in time. The variance dimension is usually applied to
characterize the fractal components of a nonstationary time series. Although the spectral
dimension may reveal the multifractal nature of the nonstationary signal for different
short-time (windowed) Fourier analysis, the choice of the window size is difficult, and
may introduce artifacts. Since small numerical errors may affect the solution very much,

adding artifacts may become catastrophic. The advantage of the variance dimension is that
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it does not require a window in the Fourier sense, and therefore does not introduce the
window artifact. Another important advantage of the variance approach is that it can be

formulated either for a batch or real-time computation [Kins94b].

Now we illustrate how to calculate the variance fractal dimension (VFD) from a
given time series. Let us assume that the signal x(n) is discrete in time n. The variance,
¢, of its amplitude increments over a time increment is proportional to the time incre-

ment according to the following power law

Var[x(ny) - x(n))] ~ [, — )| (4.32)

where H* is the Hurst exponent. By setting An = |n,-n,| and (Ax),, = x(n,) —x(n;),

the exponent H* can be calculated from

1 log[Var(Ax),,]

H* = lim =
An—0 2 log(An)

(4.33)

For the embedding Euclidean dimension Dy, (i.e., the number of independent vari-

ables in the observed signal), the variance dimension can be computed from

Ds = Dp+1-H* (4.34)

4.8.2 Log-Log Plot Estimate

For measured data, it is not practical to set An — 0. Instead of using (4.33), H*
can be obtained from a log-log plot in which it is related to the slope. To spread the point

on the log-log plot equally, a finite sequence of time increments, {An,, An,, -~ An,},
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should follow a b-adic sequence (such as dyadic), as shown in Fig. 4.14. First, we calcu-

late the following two log values for the plot

X

m

log,An,, (4.35)

~
|

= logb( Var(Ax),,) (4.36)

where An,, is the discrete time increment at the mth order scale. Then the slope s is deter-
mined from these points by a polynomial line fitting technique, with careful attention

given to outliers [Kins94a].

iz i2 1y
(=i +1) Y XY,- ¥ X, 3 Y,
s = Ioh /= _Joh 4.37)

iy iy 2
(h—ip+1) Y X?—(z XjJ

j=i J =1

where the range [i}, i,] corresponds to the optimal linear range of the log-log plot. For

example, the linear range is [2, 5] for Fig. 4.14.

I

w

log,Var(Ax),,
\®]

log,An,,

Fig. 4.14. The log-log plot and its line fitting.
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The Hurst exponent is obtained from

H* = 5/2 (4.38)

If the time series is stationary, this analysis produces a single VFD.

In the above processing, if An,, is replaced by r, and Var(Ax),, is replaced by
the measurement such as entropy or morphology, we may obtain other fractal dimensions

such as the Rényi dimension spectrum.

4.9 Summary

In this chapter, we examine the chaotic and multifractal characteristics of the ECG
through its time series. The majority of natural phenomena can be modelled as nonlinear
dynamical systems. The ECG signal should not be an exception. The fact that the ECG
signal has the same spectral distribution as pink noise makes us consider that it has chaotic
characteristics. After the lag of 11.11 ms is obtained for the ECG time series from the
autocorrelation function, a low dimensional attractor for perceptual purpose is recon-
structed in light of the Takens theorem. One may see the bounded and deterministic pat-

tern in the strange attractor.

To reconstruct the strange attractor of the ECG, a minimal embedding dimension
needs to be found out. The convergences of the Rényi dimension spectrum and the FNN
are investigated to determine the embedding dimension. The percentage of the FNN
decreases to almost zero and its curves converge when the embedding dimension of the

reconstructed attractor is equal to or greater than 7. The extended correlation function is
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also convergent. The incomplete convergence of the Rényi dimension is due to the low-
sampling frequency and noise in the ECG data. The low-sampling frequency limits the
broadband spectrum characteristics of chaos in the signal, while noise breaks down the

criterion that unfolds the chaos in the embedding space.

To characterize the ECG attractor, we use multifractals to extract complexity fea-
tures of the object. Multifractals can give more information than single fractal when char-
acterizing a complex object. The minimal embedding dimension of 7 is determined for the
ECG attractor reconstruction purpose. Under this embedding dimension, we calculate the
Rényi dimension spectrum of the ECG. The curve is strictly monotonic decrease. Its
Hausdorff dimension, Dy, is about 1.75. We say that the ECG signal has multifractal

characteristics.

The Rényi dimension spectrum of the ECG attractor is bounded between 0 and 3.
This is a unique property of the Rényi multifractal dimension that the feature normaliza-
tion is accomplished automatically during the feature extraction procedures. It has a spe-

cial importance in signal classification.

Consequently, an ECG data acquisition system with a high sampling rate needs to
be developed for the study of chaos and fractal feature extraction. Denoising techniques,
which will be discussed in the next chapter, are necessary to reduce the noise, while at the
same time preserving the chaotic characteristics of the ECG [ScKa96]. The denoised ECG
signal with a high sampling frequency will preserve the broadband spectrum and give suf-

ficient amount of data for multifractal analysis.
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CHAPTER V

IMPACT OF DENOISING ON
MULTIFRACTAL CHARACTERISTICS OF ECG

5.1 Introduction

The previous chapter has shown the incomplete convergence of the Rényi dimen-
sion spectrum due to the low-sampling frequency and noise in the recorded ECG data. The
low-sampling frequency limits the broadband spectrum characteristics of chaos in the sig-
nal, while noise breaks down the criterion that unfolds the chaos in the embedding space.
Since the available ECG recordings at 360 sps cannot be changed, we address the second
problem, the noise. Consequently, this chapter presents an investigation of the perform-
ance of denoising techniques and the influence of them on the Rényi dimension spectrum

of ECG signals.

Before discussing denoising techniques, it is necessary to know what types of
noise can be found in the ECG signal. Noise in the ECG signal may include: (i) the elec-
tromyogram (EMG) signal; (ii) relative movement between electrodes and skin; (iii) exter-
nal electromagnetic field interference; (iv) component noise in data acquisition system;
and (v) power supply interference. Often, more than one type of noise appears in the
recorded ECG signal. Since such a noise has broadband characteristics, signal filtering

cannot be used.

Traditional filtering techniques usually assume that the power spectra of the signal
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and noise are separable and thus noise can be removed through a linear filter. It is true if
the signal is dominated by periodic oscillations. The power spectrum of periodic signals
shows sharp peaks at the harmonics of the oscillation frequency and any continuous com-
ponent should originate from noise. Or if we know that the signal spectrum extends to an
upper cutoff frequency, the noise with higher frequency can be removed by a linear low-
pass filter. If the system is nonlinearly dynamical, it may go through a chaotic evolution
which leads to a continuous spectrum distribution. In such a case, the noise spectrum
could not be separated from the spectrum of the time series without affecting the signal.
Even if we could identify the spectrum distribution of the noise, a spectral filter could not
remove it effectively. Unfortunately, the ECG signal has characteristics of broadband

spectrum. Thus, denoising techniques are necessary.

Since linear filters are not suitable to process the time series containing broadband
noise, denoising has been developed within the last decade. Denoising means noise
removal or reduction from a signal. Donoho and Johnstone proposed a soft-threshold
denoising technique implemented in the wavelet domain [Dono92]. The main idea of this
algorithm is that time-frequency features of the wavelet transform can concentrate the sig-
nal energy and separate the signal and noise through wavelet shrinkage. Carré et al. further
developed this idea and denoised signals by an undecimated wavelet transform
[CLEM98]. This wavelet denoising is applied to the ECG signal, as described in Sec. 5.2.
Due to its limitations, we discuss in Sec. 5.3 a better denoising technique, chaos denoising

in embedding space, as developed by Grassberger [GHKS93].

Linear filtering and denoising techniques are applied to an ideal ECG signal super-
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imposed by coloured noise to evaluate the performance of the algorithms by examining
the SNR gain. The impact of denoising on convergence of the Rényi dimension spectrum
of the recorded ECG signal is also investigated. We consider denoising techniques as a
lossless compression technique in the sense that the reconstruction error is at the same
level as quantization error. Denoising suppresses the insignificant components in ECG and
reduces the dynamic range of the signal. Therefore, the entropy of the denoised signal is

lowered.

5.2 ECG Denoising in Wavelet Domain

Let us consider x(n) as a generic time series. Let us further consider four other
notations: (i) x,(n) as an uncontaminated (pure) signal, (ii) x.(n) as a contaminated
(measured) signal, (iii) x,(n) as a noise reduced signal, and (iv) X,(n) as an estimated

signal.

Suppose we wish to recover an unknown signal x,(n) from the measured ECG

time series x.(n)

x.(n) = x,(n)+on(n) n=12-,N 5.1)

where 11(n) is an independent and identically distributed white Gaussian noise with zero

mean and variance of 1, and ¢ is the noise level.

Let x,(n) be the estimate of x,(n). Donoho suggested that the goal of denoising is

to optimize the following mean squared error, MSE,
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N
MSE=% 3 [x,(n) - ()] (5.2)

n=1

subject to the side condition that with high probability, the denoised signal, x ,» 18 at least

as smooth as x,, with any of a wide range of smoothness measures [Dono92].

In this section, a denoising technique based on the wavelet transform is applied to
the ECG signal. Multiresolution decomposition technique is used to implement the wave-
let transform of the ECG signal. The details of the wavelet transform have been discussed

in Chapter 3.

The essence of the wavelet transform is to find the similarity between the signal
and the shifted and dilated mother wavelet. The wavelet coefficients represent how the sig-
nal is similar to the wavelets at various scales and locations. A large coefficient means that
the signal is very similar to a certaiﬁ wavelet at a certain location. The similarity also
includes the smoothness of the signal. The smoothness is decided by the vanishing
moment or regularity of the mother wavelet. The wavelet transform with orthogonal bases
makes the signal concentrate on some parts. On the other hand, the white noise remains a
white noise of the same magnitude and is uncorrelated on all scales. If the discrete wavelet

transform (DWT) is applied to the composite signal expressed by (5.1), we get

DWT, (i,n) = DWT, (i, n) + SDWT, (i, n) (5.3)
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where DWT (i, n) denotes the nth wavelet coefficient of x at scale i. The wavelet coeffi-
cient DWTn of the white Gaussian noise 1(n) has the same distribution as the original

noise [Dono92].

By applying the DWT to the smoothed versions of the signal iteratively, we get the
multiresolution decomposition of the signal [Mall89]. Figure 3.3 shows a general decom-
position procedure of the DWT for a signal from scale 1 to scale 4; i.e., in different fre-
quency bands. It may also be considered as the noise separation procedure of the noisy
signal. Based on the separation property of wavelet transform, Donoho and Johnstone pro-
posed two types of shrinkage functions, a new soft threshold and well-known hard thresh-

old, to denoise a measured signal in wavelet domain [Dono92].

1) Soft threshold is defined as

di(n)-T, di(n)>T,
dsj(n) = 0 ~T,;< a’j(n) <T, (5.4)
d;(n)+T, d;(n)<-T,

2) Hard threshold is defined as

d;(n) |d;(m)| 2T,

5.5
0 4, < T, -2

dhj(n) = {

where T, is an estimated threshold of noise and d j(n) is the detail of the signal at level j

(refer to (3.20) and (3.21)). Donoho gave a universal threshold expressed by

- 100 -



Chapter V: Impact of Denoising on Multifractal Characteristics of ECG
T, = 642log(N) with 6 = Median(|d;(n)])/0.6745 (5.6)

where the factor 0.6745 is chosen as a calibration for a Gaussian distribution. Since T 418
related to a good visual quality of reconstruction obtained by the “shrinkage” of wavelet
coefficients, he named it VisuShrink. The noise dispersion is estimated on the first scale

which mainly contains noise coefficients.

d.(n ) ) d,.(n)
Forward J Coefficient hj Inverse
— . ——— B
Ir_lpu ¢ DWT Shrinkage DWT Denoised
Signal Signal
Median T,
Estimator

Fig. 5.1. Donoho’s wavelet denoising scheme.

The Donoho’s wavelet denoising scheme is illustrated in Fig. 5.1. The procedure

includes:

1) Decompose the signal into various scales by the DWT;
2) Estimate noise threshold from the first detail of the decomposition;
3) Shrink the wavelet coefficients in each scale; and

4) Reconstruct the signal by the inverse DWT.

We use the Daubechies 4 (Daub4) as the mother wavelet, and the soft-thresholding
technique to denoise an ECG signal. First, the ECG signal with 8192 sample points is
decomposed into five scales by the multiresolution decomposition technique. Then, the

soft threshold is estimated from the first scale of the transform. Then, the soft-thresholding
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technique is applied to each scale to remove the noise. Figure. 5.2 shows the experimental
result of wavelet denoising. It is noticed that the denoised output is smoother than the orig-
inal signal, except in the QRS area, where the denoising algorithm has no obvious affect
on the smoothness of the signal from a perceptual point of view. We will use the denoised

ECG to calculate the Rényi dimension spectrum in Sec. 5.4.

6.2

1
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Fig. 5.2. (a) A real ECG and its denoised waveform through the DWT with the Daub 4. (b)
The difference between the real signal and its denoised version.
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Experiments with Donoho’s wavelet denoising on ECG signals and images
[Lang96] show that the separation of the noise from the signal is not complete, and the sig-
nal can be altered to some degree. Consequently, an alternative denoising technique has

been developed, as described next.

5.3  ECG Chaos Denoising in Embedding Space

There is another kind of denoising technique, chaos denoising, which is com-
pletely different from wavelet denoising in alleviating some of its problems. Chaos
denoising separates the signal and noise based on the observation that, in the embedding

space, the chaotic signal is deterministic, while noise is not.

To denoise the signal, we use the knowledge developed in Chapter 4 to reconstruct
the strange attractor of the signal and to obtain the trajectory in an m-dimensional embed-
ding space. Unlike the scalar time series, the point of the trajectory in the phase space is a
vector. In this phase space, principal components are computed in the small neighbouring
subset of a given point that will be corrected. The assumption is that the clean signal
“lives” in a smooth manifold with dimension D < m , where D is the Euclidean dimension
and m is the embedding dimension, and that the variance of the noise is smaller than that
of the signal. Then, for the noisy data, the large eigenvalues (i.e. principal components)
correspond to the dominant directions of the attractor and small eigenvalues in all other
directions. Therefore, we project the vector (the given point) under consideration onto the
subspace related to the large eigenvectors to minimize the noise components. Thus, the fit
of the assumed deterministic dynamics is local and linear, being contained implicitly in

the construction of the linear subspace.
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The procedure of chaos denoising technique is as follows:

Reconstruct the strange attractor for the time series {x.(n), ] <n <N} according to
(4.2) in an m-dimensional embedding space;
Around each given point x,(n) on the trajectory of the strange attractor, find the sub-

set a); in a small neighbourhood of the point with radius r for which
max|x,(j+kt) - x (n+kt)|<r, k=0,1,-,m-1and1<j<N (5.7

where 7 is the time lag in the embedding space and r is related to the amplitude of the
noise;

Compute the principal components of the subset;

Project the given point from the m-dimensional space to the D-dimensional space,
where D <m; and

Repeat from Step 1 to Step 4 for the smaller r until » is almost zero (where r
approaching to zero means that almost no noise can be removed from the signal any-

more).

The realization of the above procedure is time-consuming. Schreiber [Schr93] pro-

posed an approximate and fast noise reduction technique in embedding space. This tech-

nique simply replaces the present coordinate x.(n) by the mean value of the central

coordinates of the neighbourhood,

x,(n) = Ev% 3 xc(j+[%’ Jr) (5.8)

nje o,
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where N ; is the number of points in the neighbourhood. The central coordinate, x 4(n),in
the delayed window is taken as the correction because it is controlled optimally from the

past to the future on the trajectory.

Grassberger et al. suggested a principal component denoising (PCD) technique
based on chaos theory [GHKS93]. The PCD computes the principal components of the
neighbourhood of each given point and then projects the given point to some important
components of the phase space to denoise signals. It achieves better performance than

Schreiber’s technique.

To denoise a given point x,(n) with the subset co,:, the PCD first calculates the

centre of 0);

(i) = = 3 x(j+in) i= 0, m-1 (5.9)
Nnje o
and the m X m covariance matrix
., 1 . . N
6(i, ) = = ¥ x(k+i0)x,(k+ jT)~ L()U()) (5.10)

,
nkew,

withi = 0,.--,m—-1land j=0,--,m—1

The N, orthonormal eigenvectors of the matrix ¢ with smaller eigenvalues are
called v, (k), k = O, ---, N,,. Then, the projector onto the subspace spanned by these vec-

tors is
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NV

ei, j) = Y, v (k, i), (k, j) (5.11)
k=0

Finally, the ith component of the correction is given by

m—1
x4(n, i) = x (n+it)+ Z e(l, (W) =x,(n+j1)) i=0,---,m-1 (512)
j=0
Such a correction is done for each component of every point (vector) along the
trajectory, such that we get a corrected trajectory in the embedding space. Since each
element of the scalar time series occurs in m different points on the trajectory, we finally
obtain m different suggested corrections for each element, of which we take the average of
the corresponding corrections to restore the time series. Therefore, the corrected vectors do

not lie on the correct trajectory precisely but only move toward it in embedding space. The

procedure can be iterated to improve the performance of denoising.

Unlike wavelet denoising, chaos denoising needs to set the noise threshold manu-
ally. Figure 5.3(a) shows a recorded ECG signal denoised by the PCD technique with the
maximal threshold of 0.04 mV. An embedding dimension of 20 and a time lag of 4 are
used for the reconstruction of the strange attractor. The maximal number of points in the
neighbourhood is limited to 300. Like wavelet denoising, chaos denoising makes the sig-
nal smoother, except in the region of the QRS complex. However, the denoised signal by
chaos denoising follows the original signal better than that by wavelet denoising, as shown
in Fig. 5.3(b). The effect of chaos denoising will also be investigated through the conver-

gence improvement of the Rényi dimension spectrum of the ECG signal.
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Fig. 5.3. (a) A real ECG and its denoised waveform through chaos denoising. (b) The dif-
ference between the real signal and its denoised version.

5.4 Performance Evaluation of Denoising Techniques

In this section, the pure ECG signal contaminated by coloured noise and the
recorded ECG signal are used to investigate the performance of denoising techniques. The

purpose of denoising the contaminated signal is to: (i) verify correctness of the algorithms,
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and (i1) show quantitatively that denoising techniques are more effective than the linear fil-
ter technique for the ECG signal. Then, denoising techniques are applied to the recorded
ECG signal to improve the convergence of the Rényi dimension spectrum, which is related
to the reconstruction of the strange attractor of the signal. Here the ideal signal refers to
the computed ECG signal discussed in Sec. 2.4. The recorded ECG signal is taken from

the MIT-BIH ECG database [Mood99].

5.4.1 Denoising the ECG Corrupted with Coloured Noise

The ideal signal x,(n) is considered as the signal without noise 1(»n). Coloured

noise is superimposed on the ideal ECG signal, which can be used for quantitative analysis
in signal denoising experiments. Denoising techniques are applied to the contaminated
signal to evaluate the performance of the techniques by a signal-to-noise ratio (SNR) gain

and a noise reduction factor.

Before implementing various denoising algorithms, let us discuss coloured noise.
Noise is divided into different classes according to its power spectrum density, 1/ fB. The
noise can be classified as: (i) white, with a flat power spectrum 1/ f0 = 1, (ii) pink, with
B = 1, (iii) brown, with B = 2, and (iv) black, with B =3. In general, the exponent J3

does not have to be an integer, thus leading to fractional noise [Kins94c].

Coloured noise is used in the experiments because there are at least two kinds of
noise in the ECG signal. Noise coming from the data acquisition system is probably white.
The interference from other bioelectrical signals is predominantly a pink noise, though

other higher correlated noise can also be found. Therefore, we include the above men-
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tioned four classes of coloured noise in the experiments. Figure 5.4 shows the four type
coloured noise. The coloured noise has been generated by a spectral technique [PeJS92]
[Kins94c] in which (i) white noise is generated in the time domain, (ii) Fourier transform

of the white noise produces random amplitude and phase, (iii) filtering is performed in the

frequency domain on the amplitude to achieve the desired slope 1/ B of the power spec-
trum density, and (iv) the inverse Fourier transform produces the corresponding noise. The
code is provided in Appendix B.2. It is seen that the predictability of coloured noise

increases from white noise to black noise gradually.
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Fig. 5.4. Examples of coloured noise: (a) white, (b) pink, (c) brown, and (d) black.

The pure ECG signal is shown in Fig. 5.5. To investigate the denoising techniques,
coloured noise with 5 dB, 10 dB, and 20 dB SNR has been superimposed with the pure

signal, respectively. Figure 5.6 shows the contaminated ECG signal by coloured noise
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Fig. 5.5. A pure ECG signal.
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Fig. 5.6. A pure ECG signal is superposed by coloured noise with 5 dB SNR: (a) white,
(b) pink, (c) brown, and (d) black.

To reduce noise, wavelet denoising and chaos denoising are used. In addition, a

linear lowpass filter is applied to the contaminated ECG signal as a reference for denoising

-110-



Chapter V: Impact of Denoising on Multifractal Characteristics of ECG

techniques. The code is also provided in Appendix B.2.

The noise reduction factor (NRF) and the SNR gain ( SNR; ) are used to evaluate

the performance of the various algorithms for the ECG signal. The NRF is defined as

[ScKa96]
N 2
N [x, () = x, ()]
NRF = f;l (5.13)
> [y () - x, (DI
j=1

where x, is the pure signal, x, 1s the contaminated signal, x 4 18 the noise-reduced signal,
and N is the length of the signal. If NRF > 1, the quality of the signal is improved. Other-

wise, the signal is degraded for NRF < 1.

The SNR gain is defined as

SNR; = SNR,-SNR, (5.14)

where SNR_, is the SNR of the contaminated ECG signal, and SNR; is the SNR of the
ECG signal after noise reduction. SNR;>0 means improvement of the signal quality.

The signal is degraded if SNR; < 0.

To evaluate denoising techniques, a linear filter is applied to the contaminated
ECG to give a reference for performance comparison. Since a Wiener lowpass filter is
optimal under a minimal squared error sense and quite stable, such a filter with 53-order

and a cutoff frequency of 180 Hz is used in the experiment to filter coloured noise from the
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ECG signal with 5 dB, 10 dB, and 20 dB SNR.

Experimental results are listed in Table 5.1. It is seen that the linear filter is effec-
tive for white noise, especially for the signal with low SNR ( < 10dB). This filter has
almost no improvement for pink noise and degrades the signal with brown noise and black
noise. It can be explained from the spectrum distribution of the ECG signal. The ECG sig-
nal has a spectrum distribution similar to that of the pink noise. Therefore, the lowpass fil-
ter may remove some white noise from the signal since the energy of white noise is
distributed over the spectrum domain evenly. On the other hand, since the signal and pink
noise have similar spectrum distributions, the linear filter cannot filter such a noise. The
energy of brown and black noise is spread over the spectrum of the ECG signal. If the low-
pass filter is used to remove such noise, it will also affect the signal. This experiment

shows the limitation of linear filtering when the spectra of the signal and noise overlap.

Table 5.1: Performance of the Wiener lowpass filter with 53-order and 180 Hz bandwidth
applied on the ECG signal contaminated by coloured noise.

White Noise Pink Noise Brown Noise Black Noise
SNR

SNRg | NRF | SNR; | NRF | SNR; | NRF | SNR; | NRF

5dB | 69dB 22 | 0.73dB 1.1 |-0.12dB| 098 |-0.14dB | 0.98
10dB | 6.3dB 20 | 0.58dB 1.1 |-025dB| 096 |-0.28dB | 0.96
20dB | 1.9dB 12 -1.7dB | 0.88 | -1.7dB | 0.81 | -1.8dB | 0.81

Unlike the linear filter, denoising techniques do not reduce noise based on the
spectrum distribution. Wavelet denoising is based on the smoothness of the signal, and the

correlation between the signal and wavelets to remove noise. Table 5.2 gives experimental
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results for wavelet denoising on the ECG signal which contains the same noise as the
above experiment. Here the used mother wavelet is a biorthogonal wavelet [CoDF92]
since it achieves better performance than other mother wavelets. The signal is decomposed
into four scales. A hard-thresholding technique is used in the denoising. The table shows
that the effect of hard-threshold wavelet denoising is similar to that of the linear filter for
different kinds of noise, except for two points: (i) the performance of this denoising tech-
nique is better than that of the Wiener filter for white noise, and (ii) this wavelet denoising
does not degrade the signal when reducing noise according to the measurement of the

SNR and the NRE

Performance of wavelet denoising increases when noise changes from black,
brown, pink to white. Mother wavelets with various vanishing moments are also used to
test the algorithm. It was found that the higher the order of the vanishing moment, the bet-

ter the performance of the denoising.

Table 5.2: Performance of wavelet denoising on the ECG signal contaminated by coloured
noise. The mother wavelet is bior6.8. Hard threshold is used in the denoising.

White Noise Pink Noise Brown Noise Black Noise
SNR

SNR; | NRF | SNR; | NRF | SNR; | NRF | SNR; | NRF

5dB 7.7dB 24 1.1dB .1 |0026dB| 1.0 |0.022dB| 1.0
10dB | 69dB 22 | 0.98dB I.1 10.025dB| 1.0 |[0021dB| 1.0
20dB | 3.7dB 1.5 0.72 dB I.1 10.015dB| 1.0 |0.013dB| 1.0

In addition to Daubechies wavelets, we have also tried other mother wavelets

including Coiflets [Daub88] [Math01], discrete Meyer [Meye86] [MathO1], biorthogonal
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[CoDF92] [MathO1], and reverse biorthogonal [Math01] wavelets for wavelet denoising.
The performance improvement between the mother wavelets is not significant. Biorthogo-

nal mother wavelet achieves somewhat higher performance than the others.

On the other hand, chaos denoising makes use of the determinacy of the strange
attractor of the signal in the phase space to reduce noise. Table 5.3 shows experimental
results by applying the PCD technique to the ECG signal contaminated by coloured noise.
Here, the ECG signal is the same as the linear filtering experiment used. In the experiment,
embedding dimension is set to 20, time lag is 4, and the maximal number of neighbour
points is limited to 300. From these experimental results, chaos denoising is effective for
all the four kinds of coloured noise, although its performance increases when noise

changes from black, brown, pink to white.

Table 5.3: Performance of chaos denoising on the ECG signal contaminated by coloured
noise. Embedding dimension is set to 20, time lag is 4, and the maximal number of points
in the neighbourhood is limited to 300.

White Noise Pink Noise Brown Noise Black Noise
SNR

SNRg | NRF | SNR; | NRF | SNR; | NRF SNR; | NRF

5dB | 9.1dB 29 3.5dB L5 0.87 dB 1.1 0.73 dB 1.1
10dB | 10dB 3.3 4.9 dB 1.8 3.8dB L5 3.6dB 1.5
20dB | 11dB 3.5 8.7dB 2.7 6.5 dB 2.1 6.1 dB 2.0

Compared to Tables 5.1 and 5.2, Table 5.3 shows that chaos denoising achieves the
best performance of the three techniques. The same conclusion is made from Fig. 5.7. As
Fig. 5.7(c) shows, the waveform after chaos denoising is very close to the original ECG

signal. Figure 5.7(d) demonstrates noise at the TP region of the signal after wavelet
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Fig. 5.7. Examples of various noise reduction techniques applied to the ECG signal. (a) a
pure ECG signal, (b) the ECG signal with 10 dB white noise, (c) chaos denoising, (d)
wavelet denoising, and (e) Wiener filtering.

denoising. It can be seen in Fig. 7.5(e) that noise after Wiener filtering is more obvious.

Unlike wavelet denoising and linear filtering, the performance of chaos denoising
increases with SNR of the signal. It is explained that the reconstruction of the strange

attractor is more precise in low noise environment. Thus, the signal and noise can be sepa-
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rated better.

5.4.2 Impact of Denoising on Convergence of Rényi Dimension Spectrum

The main purpose of denoising in this chapter is to investigate the impact of ECG
denoising on its Rényi dimension spectrum. The Rényi dimension spectrum is a complex-
ity measure of the strange attractor of the object in the phase space [Kins94a]. With the
increase of the embedding dimension, the strange attractor is unfolded in the phase space
and becomes deterministic if the embedding dimension exceeds the dimension of the
attractor. Then the Rényi dimension spectrum will not change any more with the increase
of the embedding dimension. However, noise is nondeterministic in the phase space. The
convergence of the Rényi dimension spectrum will be affected if the signal contains noise.
Signal denoising is required to remove noise and keep the chaotic component unaffected.
Therefore, the convergence of the Rényi dimension spectrum of the ECG should be an
important indicator to evaluate the performance of denoising techniques in the reconstruc-

tion of the strange attractor.

Experiments have been performed to calculate the Rényi dimension spectrum by
using three kinds of ECG signals: (i) the recorded ECG signal, (ii) the ECG signal after
wavelet denoising, and (iii) the ECG signal after chaos denoising. Figure 5.8(a) shows the
Rényi dimension spectrum of the ECG signal with embedding dimension of 1 to 13 under
no denoising, Donoho’s soft-threshold denoising with the Daub 4 (Fig. 5.8(b)), and the
PCD denoising with lag of 4 and embedding dimension of 20 (Fig. 5.8(c)). Figure 5.8(a)

shows the convergence of the Rényi dimension spectrum when m >4 and ¢ <0 for the

original ECG signal. However, it is not convergent when g > 0. Figure 5.8(b) gives the
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Rényi dimension spectrum for the signal with wavelet denoising. There is no convergence
improvement for ¢ >0. When ¢ <0, wavelet denoising degrades the convergence of the
Rényi dimension spectrum. An improvement of the convergence is observed in Fig. 5.8(c)

for both g <0 and ¢ >0, compared to Fig. 5.8(a).

@ 3

2.5

Fig. 5.8. The Rényi dimension spectrum of the ECG changing with embedding dimension
m by (a) no denoising, (b) Donoho’s soft-threshold denoising with the Daub 4, and (c) the
PCD denoising with time lag of T = 4 and embedding dimension of m = 20.

To investigate the improvement of the convergence quantitatively, we propose a

mean absolute difference (MAD) between the Rényi dimension spectra with embedding
. . -1

dimensions m, DZ, and m-1, DZ , to measure the level of convergence. A small

MAD indicates a good convergence. The MAD is defined as

0
1 -
MAD = _I;qgj_Q]DZ_D;” | (5.16)

where Q is the maximum range of g considered in the calculation of the Rényi dimension
spectrum (here O = 20), and Ny is the number of points considered in the calculation

(Ng = 20+1).
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Table 5.4: The MAD of the Rényi dimension spectrum of the ECG signal.

m=13 No Denoising Wavelet Denoising | Chaos Denoising

MAD 2.49% 107 4.46 x107* 573 %107

Table 5.4 gives the MAD of the Rényi dimension spectrum of the ECG signal
under different situations. We see that wavelet denoising degrades the convergence about
two times. The reason is that the threshold technique affects the ECG signal components
when it reduces noise. On the other hand, chaos denoising improves the convergence
about five times. This technique only discards the noise components in the phase space.
However, it is still inadequate to impart sufficient convergence for the multifractal extrac-

tion of features from the signal.

5.4.3 Other Techniques for Denoising Evaluation

In addition to the SNR gain and the convergence of the Rényi dimension spectrum,
there are also some other indicators to evaluate the performance of denoising techniques

when applied to nonstationary signals [KoSc93] [Kins95].

1) The denoised signal x,(n) is more predictable. This means that one sample has rela-
tionships with its neighbouring samples and they are not independent.

2) The power spectrum of x,(n) is still similar to that of the original signal, at least in the
frequency range and spectrum shape. This means that there is no frequency filtering
taking place, as in the traditional filtering. Furthermore, this ensures that fractal

dimensions of signals are preserved.
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3) The x,(n) keeps the same autocorrelation as the original signal. On the other hand,
the autocorrelation of the removed signal should be low. The cross-correlation
between the removed signal and the x,(n) should also be low. This is a logical conse-
quence of removing additive noise.

4) The removed signal should behave like a random process whose statistics match those
of the assumed noise model.

5) The multifractal measure of the removed signal represents a flat line, which

approaches the dimension of the noise.

5.5 Summary

Chapter 4 has revealed the incomplete convergence of the Rényi dimension spec-
trum of the ECG signal for g > 0. One of the reasons was that the sampling frequency was
insufficient to preserve the chaotic behaviour of the signal. The other reason was that the
noise affects the reconstruction of the ECG attractor. We cannot use linear filtering tech-
niques to remove noise from the ECG signal because the signal has broadband characteris-
tics. Consequently, this chapter described alternative denoising techniques applied to the

ECG signal. Denoising reduces noise in the signal.

One denoising technique is Donoho’s wavelet shrinkage. In this technique, a wave-
let transform is applied to the ECG signal. The wavelet coefficients represent the correla-
tion between the signal and the wavelets. They also contain the smoothness information of
the signal. The coefficients of highly irregular noise are low. Based on this idea, the thresh-

old technique is applied to the wavelet coefficients of the ECG signal for noise reduction.
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Another denoising technique is chaos denoising. A chaotic signal is deterministic in the
phase space, while noise is not. It means that we may recognize noise through the attractor

reconstruction in the phase space. Noise is reduced by principal component transform.

A linear filter and denoising techniques have been applied to an ideal ECG signal
superimposed with coloured noise to evaluate the performance of the algorithms by exam-
ining the SNR gain. Chaos denoising achieves the highest SNR gain out of the three tech-
niques. The PCD is effective on the pink, brown, and black noise, while the other two
techniques are not. We have also implemented experiments by applying wavelet denoising
and chaos denoising to the recorded ECG signal. The denoising effect is investigated
through the convergence improvement of the Rényi dimension spectrum of the ECG. The
convergence degree has been evaluated through the MAD, under the conditions of no
denoising, wavelet denoising, and chaos denoising. It was found that chaos denoising
improves the convergence degree about five times under the MAD, while wavelet denois-

ing degrades it about two times.
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CHAPTER VI

SIGNAL COMPRESSION BY IFS
AND DOMAIN BLOCK PARTITIONING

6.1 Introduction

Chapter 4 presented fractal and multifractal measures of complicated objects.
Based on self-similarity or self-affinity of fractal objects, a new signal compression tech-
nique was developed about 15 years ago [Barn88]. More specifically, the iterated Sfunction
systems (IFS) approach to signal compression has been developed based on the fundamen-
tal property of fractal objects. Thus, our discussion begins with a description of a fractal

signal, as this approach will be used in a new compression of ECG signals.

Definition 6.1: A random discrete process x(n) defined for all integers,
—co << oo, is said to be statistically self-similar if its statistics are invariant to its dila-
tions and contractions. Thus, x(n) is statistically self-similar with a parameter D, if for

any real o> 0, it obeys the following scaling relation [Worn96]

P _-D
x(n) = o “x(on) 6.1)
where £ denotes equality in a statistical sense.

To employ the multiplicative (rather than additive) invariance of the dilation and
contraction of the fractal signal, Barnsley proposed a fractal compression technique, the

IFS, which uses an affine transform to map the process or signal onto itself [Barn88].
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The IFS compression technique partitions the signal into domain blocks and range
blocks, and finds a set of affine transforms between the domain blocks and range blocks.
Computational complexity, compression ratio, reconstruction quality of the signal, and
convergence are important issues in the IFS approach. All these issues are related to the

quality of the matching between the blocks which results in the affine transform.

Barnsley’s IFS uses a linear affine transform. A major problem with a linear affine
transform is that its matching capability is very limited for signals such as image, speech,
and the ECG, which have nonlinear characteristics. Another problem is that an exhaustive
and time-consuming search in the domain pool is required to find an optimal matching.
Consequently, we propose to solve the matching problem by finding (i) a more flexible

transform and (ii) a more effective search scheme with low computational complexity.

From the above description, one sees that fractal coding is different from vector
quantization and transform coding. Fractal coding tries to find a function expression for a
data set and is a lossy data compression technique. There is no codebook or basis function

in fractal coding.

Since the theory behind the IFS is quite extensive, it is described in Appendix A.2.

6.2 The Collage Coding

A fractal object described by (6.1) has statistical invariance to its dilations and
contractions. Such invariance means that a small part of the fractal object can be similar to
another small part of the object, under the affine mapping relationship. If we can find such

relationships for every part of the object, a union collage of the mappings consists of a
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transform from the fractal object to itself.

Fractal compression techniques are based on a corollary of contractive transform
theory called the collage theorem, which was proposed by Barnsley [Barn88]. The collage
theorem tells us that to find an IFS whose attractor is close to a given object, one must try
to find a set of transforms, contraction mappings on a suitable space within which the given
object lies, such that the union, or collage, of the given object under the transforms is close
to the original object. The degree to which two objects look alike is measured using the

Euclidean metric or Hausdorff metric.

Fractal coding maps a fractal object to itself. The primary difficulty of fractal
coding associated with the collage theorem is what kind of mapping functions should be
used. Barnsley again proposed the IFS, which makes the collage theorem of practical

significance in signal compression [Barn88].

6.2.1 Iterated Function Systems

Originally, the central goal of fractal compression was to find resolution
independent models, defined by finite length (and hopefully short) strings of zeros and
ones, for real world images. One can achieve fractal image compression via the IFS
compression algorithm, which is an interactive image modelling method based on the

collage theorem [BIMRSS].

“Iterated function systems” is the name introduced by Barnsley and Demko to
denote a system of contraction mappings in a complete metric space [BaDe85]. The idea

was developed earlier by Hutchinson who shows how typically self-similar fractal sets can
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be generated by the “parallel” action of such systems of contraction mappings [Hutc81].
The IFS maps (IFSM) plus a set of associated probabilities (IFSP) define operators which
act on probability measures. As a result, early IFS research work focused on the represen-
tation of image by measures and the approximation of these IFSP measures. However, it is
more convenient to represent spatial and temporal signals by the functions generated by
iterating an IFS-type operator. The IFSM is an example of the IFS or fractal affine trans-
form method over an appropriate space of function which represents signals. The IFS is

defined as [BaHu85]

Definition 6.2: A (hyperbolic) iterated function system consists of a complete met-
ric space (X, d) together with a finite set of contraction mappings w;: X=X, for

i =1,2,:--, N such that
d(w(B),w;(C))<s;d(B,C), V(B,C)e x> (6.2)

with respective contractivity factors 0 < s;<1, where d is a metric on a space X, as

described in Appendix A.2.

The notation for this IFS is {X; w,i=1,2,---, N} and its contractivity factor is
s = max{s;:i=1, 2, ---,N}. The contractivity requirement of the affine mappings in the
IFS is to ensure convergence of the IFS, which makes the IFS useful. Based on the above

definition, we have the following theorem [BaHu93]

Theorem 6.1 (The IFS Theorem): Let {X; w,i=1,2,---, N} be a hyperbolic

iterated function system with contractivity factor s. Then the transform W :
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H(X) = H(X) defined by

W(B) = .@1%(3), VB e H(X) (6.3)

is a contraction mapping on the complete metric space (H(X), d,,) with contractivity fac-

tor s, that is
d,(W(B),W(C))<sd,(B,C), V(B,C)e H2(X) (6.4)

where H(X) and d,, are the Hausdorff space and the Hausdorff distance, respectively, and

are defined in Appendix A.2.

It should be observed that W has a unique fixed point, A € H(X), which obeys

A= W) = igjlwi(A) (6.5)
where the A is given by
n
A ——
A= lim W(W(---W(B):-))
n— oo
= lim W°*(B), VBe H(X) (6.6)
n—>o0

The fixed point A € H(X) described in the IFS theorem is called the attractor of

the IFS. According to the IFS theorem, the sequence of a fractal object generated by
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iteratively affine transforms is convergent. No matter what the initial set is, the sequence

always converges to the same set, the attractor.
6.2.2 The Collage Theorem

Although the IFS gives a method of how to find the attractor of an object, it does
not show how to find the affine transform set W from a given object. For a given object,
finding the W is called the inverse problem of the IFS. The collage theorem provides a way
of assessing how well the attractor of an IFS approximates a given object, which indicates

a direction to seek the W.

Theorem 6.2 (The Collage Theorem): Let (X, d) be a complete metric space. Let
€20 be a given scalar quantity. Choose an IFS {X;w,, i = 1,2, ---, N} with contractivity

factor 0 <s < 1, such that

N
dh(B, U wi(B)) <e,Be H(X) 6.7)

i=1
where d, (e, ) is the Hausdorff metric. Then

€
L
dy(B, A) S 7

or
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d,(B, A) < (6.8)

1-s
where A is the attractor of the IFS. A proof for the collage theorem is given in [Barn88].

The collage theorem tells us how to find the required IFS for a given fractal object.
To find the IFS whose attractor is close to a given object, one must try to find a set of trans-
forms; i.e. contraction mappings on a suitable space within which the given object lies,
such that the union, or collage, of the given object under the transforms is close to the
original given object. The degree to which two fractal objects look alike may be measured

by the Hausdorff metric or Euclidean metric.

6.3 IFS Model of Time Sequence

Barnsley’s collage coding is very time consuming to solve the inverse problem. Its
computational complexity for an image of NXN size is O(N®) [Barn88]. Many
researchers have proposed methods to reduce the computational complexity. One such a
technique was proposed by Jacqin [Jacq92] for grey scale images and is referred to as
Jfractal block coding (FBC). The FBC splits an image into two kinds of small blocks. One
kind is the subimage we want to encode, and is called range block. The other is the sample
blocks from which we try to find what is a similar component to the range block under an
affine mapping. These sample blocks are called domain blocks. The FBC requires that
usually the domain block is larger than the range block for contraction mapping purpose.

This technique reduces the complexity to O(N 4). Another improvement was introduced
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by Kinsner and Wall [WaKi93] to reduce the complexity to O(N 3) by reducing the search
space through a frequency-sensitive neural network. The technique is called the reduced-

search FBC.

The idea of the FBC can be employed to process a 1D signal. The 1D signal can be
cut into segments for fractal coding. For convenience, the segments are also called blocks.
The examples of the fractal coding of the 1D signal include the speech signal and the ECG
signal [Vera99] [Fish98]. Now we discuss how to use the IFS technique to encode the

ECG or other time series signal.

A time series is defined as
{¢tpx,):n=1,2,---,N}, t,eRandt;<t,<.- <ty (6.9

where N is the length of the time series.

Now the question is how to find a set of mappings that best fits the given data
sequence over the interval [z, 7,,]. Mazel and Hayes suggested two IFS models, self-aff-
ine fractal model (SAFM) and piecewise self-affine fractal model (PSAFM), to approxi-

mate the given time series [MaHa92].

The SAFM is an IFS whose attractor is self-affine over the interval [;, zy], which
means that range blocks may be described by applying affine mappings to the entire inter-
val. Vera shows that the SAFM applied to speech signals does not achieve good compres-
sion performance [Vera99]. The poor performance of the SAFM results from taking the

entire interval of a time series which may not be similar to many of range blocks. Such a
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shortcoming may be overcome by the PSAFM.

The PSAFM splits the interval [#,, 5] of the time series into domain blocks and
range blocks. Each of the blocks is a subset of the time series. Usually the domain block is
larger than the range block. For each range block, we search all the domain blocks (called
domain pool) and find the most similar block under an affine transform with the Euclidean

metric. The set of the affine transforms consists of the IFS of the PSAFM.

Definition 6.3: A domain pool, which is a set of domain blocks, is composed of

Mty 1o tpy g Jin= 0,120, -, (N +1-1)/1 |- 1)I} (6.10)

where [, is the length of the domain blocks, / s 1s the displacement between the domain
blocks selected, and | x | is the floor function which means taking the maximal integer

which is smaller than x.

If [ <1, then the domain pool consists of overlapped blocks. Notice that the

position ¢, , ; in time axis may be rewritten as

fyy;=t,+i, ieZ (6.11)

n+

Figure 6.1(a) illustrates a general idea of domain block partitioning for the ECG
signal. One may notice that the SAFM is a special case of the PSAFM when n = 0 and

ldzN.

Definition 6.4: A range pool, which is a set of range blocks, is composed of
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{ltys10tyyy Jin= 0,1, 2, -, N/1,~ 1} (6.12)

where /, is the length of the range blocks. The N and /, are selected such that N/ is an

integer.
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Fig. 6.1. The ECG signal partitioning for (a) domain blocks and (b) range blocks.

Figure 6.1(b) shows range block partitioning for the ECG signal. There is no

overlapping between range blocks.

After defining the domain pool and range pool, we may use the affine transform to

map a domain block to a range block.
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Definition 6.5: A transform w: R — R in the Euclidean plane

o0 L]

where a,, a,, as, a4, by, and b, are real numbers, is called a (2D) affine transform.

Figure 6.2 illustrates that the elements a, , a, , a5 and a, in the matrix perform four

transforms like linear operators: scaling, rotating, reflecting, and shearing. The four

coefficients decide the degree to which any of these transforms is done. The elements b,

and b, give a translation along the abscissa and ordinate.

xA xA X
i b
Original @ /Shlft ®) ©
2D object //
7 % Shift
/ i Rotate
2 7> i >
x A x A xA
(d) (e) ()
Y/
Scaleﬁ\// i\ Rotate Reflection
N Scale \
/ Shear \\
|--é e 0 > N >
Scale

Fig. 6.2. (a) An object can be (b) shifted, (c) rotated, (d) scaled, (e) sheared, and (f)
reflected by the affine transform.

A simplified form of the affine transform can be applied to the time series signal.
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Time series data are single valued. The coefficient a, in the affine transform should be set

to zero to ensure that the IFS only generates single valued data [Vine93] [ViHa93]. Thus,

the affine transform for the 1D signal is rewritten as

0-LJ0E

The boundary of the transformed domain block [#,, 4,2, ] and the range block

[#; 41524, ] canbe constrained by

t z t
d+1 t d+1 /

w{ J = | "1 and wi[ "] = | T (6.15)
Yd+1 X4 Yd+1, Xry

which gives

T R |

i = Lav1,~ta+1 ) ly-1 (6.16)

by; = td”dztrﬂ::‘dﬂtrﬂr = L1t (6.17)
d+l,” *d+1

ay; = (xr+l,—xr+1)1;6i4;(xd+ld—xd+1) 6.18)

by, = Corattars, =% s1lae 1)~ i(Xg1lyer,~ X4 taw1) 6.19)

l 1,1
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Since a;; and b,; are known, we can map every point 7, , in the domain block

into the range block which corresponds to
Lvj = | a1t b
= ay(g -+t 1 -ayty . |

= t,,1+|a;k-1) ] (6.20)

There is more than one point ¢, , mapped to the same point ¢, j since the trans-
form from interval [z, 1,2;,, ] to [£,,,¢,,,] is contractive. An x*,, ; is defined as

the average amplitude of all the points mapped to ¢, i Thus

1
rj = N, 2 (A3t4 4+ QgiXy 4+ by;)
kj=]ak-1)|

a3it*d+k+ (a4ix*d+k+b2i) (6.21)

where N, is the number of the points & in the domain block mapped to the same point in

the range block under the condition j = | a;;(k-1) |, and

1

Paek = 5 O, lask (6.22)
kj=lak-1)]

. _ 1
kj=lak-1]

Consider (6.18) and (6.19) and let
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O = [0 =X DFasrt O patan g, =% 4 g D1/ U= 1) (6.24)

Bj = [Ug=Dx*g4i= (Xgyy, = Xge D ae k= Cgurtysr,~%ge 1 tar 1)1/ U= 1)
(6.25)

Equation (6.21) can be rewritten as

Then we can use the BEuclidean or a related metric such as the mean squared error

(MSE), to measure the distance (error) between the transformed domain block and the

range block

| —

MSE=d, =

Ty

I

2

2 (x*r+j_xr+j)
rj=l

Iy
2

> (0 +Biag—x,., ) (6.27)

j=1

NIH

r

The minimal error in the above equation can be obtained by letting

od,;

i

L
2
5o = L 2 O+ Biay=x,, )B; = 0 (628)
1 rj___l

This equation gives coefficient a,; in the affine transform as
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ay; = =1 (6.29)

Equations (6.16) to (6.19), and (6.29) give the affine transform from the domain
block to the range block with a minimal error. The corresponding measure error between
the domain block and the range block can be obtained by (6.27). To find a similar domain
block, we will compare the given range block with all the domain blocks in the domain
pool and get a set of measure error. The most similar domain block corresponds to the
domain block which has the minimal measure error in the set. Then the attractor of the IFS

of the time series interval at [#;, 7] is obtained by searching the entire range pool.

To encode the affine transform, the coefficients need to be quantized. A quantized
encoding set of the IFS is called the fractal coding. Each kind of the coefficients has differ-
ent contribution to the measure error. This contribution also varies with different objects
processed. Usually the bit distribution to each kind of coefficients is decided through

experiment, as described in Sec. 6.5.

6.4 IFS Reconstruction of Time Sequence

In the previous section, we presented an algorithm of how to find the attractor of
the IFS of the given time series. With such an IFS, the time series can be reconstructed by

iteratively mapping the signal to itself.

To reconstruct the original fractal object from the fractal coding, an iterative
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To reconstruct the original fractal object from the fractal coding, an iterative
decoding algorithm is used according to the collage theorem. This decoding algorithm

begins with a nonempty set A, . The affine transform of the IFS on the Ay is

N/L-1
i=0

If the IFS is applied iteratively to the set, we get a sequence of the sets
Ag, Ay, Ay, -+ The contractibility of the IFS guarantees that the sequence is convergent
and converges to the attractor of the IFS. We say that A » 18 the attractor of the IFS if there

exists a threshold € such that

d(A,A, ., )<¢ (6.31)

n+1
Then the A, is the reconstruction of the time series corresponding to the IFS.

Figure 6.3 shows an example of how an ECG signal is reconstructed from fractal
coding. Since a nonempty set is the only requirement for the initial signal, the reconstruc-
tion begins iterations from a straight line. When the IFS with the fractal coding is applied
to the signal we see a convergence procedure of the ECG with the iteration. The ECG
reconstruction is finished after 11 iterations when the iteration causes almost no change
for the ECG waveform under (6.31). What is remarkable with this technique is that the

main characteristic features of the signal emerge after 2 to 6 iterations.

From the reconstruction procedure, one sees that fractal coding is different from

vector quantization and transform coding. Fractal coding uses a functional expression of a
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data set. There is neither a codebook nor a basis function in fractal coding. Since the
reconstruction is an approximate of the original signal, fractal coding is a lossy signal

compression approach.

Initial Signal 10t lteration 1
1 5
O L
O 1 I 1 I 1 I : 3
0 200 400 600 800 200 400 600 800
18 I lteration 2 gl lteration 3
o i
2t . , | ) | , | ,
200 400 600 800 200 400 600 800
6} lteration 4 6| Iteration 5
5 5
2 _
S 4t . . ‘ . . ) ‘ .
E- 200 400 600 800 6 200 400 600 800
<5 2 [teration 6 55l fteration 7
5 5
6 200 400 600 800 6 200 400 600 800
55 lteration 8 55 T lteration 9
5
6 200 400 600 800 6 200 400 600 800
55 iteration 10 55 lteration 11
200 400 600 800 200 400 600 800

Time (in sample number)

Fig. 6.3. A reconstruction procedure of an ECG signal by the IFS through 11 iterations,
with the initial signal being a straight line.

6.5 Quantization of Coefficients in the IFS

The IFS produces a set of affine transforms, mapping an object to itself. Such
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transforms are composed of real transform coefficients. Like in the Fourier and wavelet
transforms applied to data compression, the coefficients in the affine transform need to be

quantized for storage and transmission purposes.

The process of representing a large, possibly infinite, set of values with a much
smaller set is called quantization. For example, any real number x can be rounded off to
the nearest integer, say Q(x) = round(x). Then the real line in a continuous space is

mapped into a discrete space.

Many of the fundamental ideas of quantization and compression are most easily
introduced in the simple context of scalar quantization. Let us pose the quantization design
problem in precise terms. Suppose we have an input modelled by a random variable X
with probability density function (PDF) P(x). In general, a (scalar) quantizer Q can be
described by (i) a set of M disjoint intervals y = { yisie€ Z} and M + 1 endpoints and (ii)
a set (codebook) of reproduction values or points or levels C = {g,;i € Z} for each of the

M intervals such that the quantizer is defined by

O(x) = q;forxe y, (6.32)

In the rounding off example, a left semi-closed interval is used,
y; = [i-1/2,i+1/2) and g; = i for all integers i. More generally, y; = [r;_;,7;)
where the r; (called thresholds) forms an increasing sequence. The width of a cell y; 18 its

length, r;—r;_;.

Since the source cannot be reconstructed exactly from the quantization output,

quantization process leads to an error, € = Q(x) - x. Therefore,
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O(x) = x+¢ (6.33)

The above equation implies additive noise model of a quantizer, as shown in the

following figure. Unlike signal sampling, data quantization loses information.

€n

xn_)g———» X, = Ox,)

Quantizer

Fig. 6.4. Additive noise model of a quantizer.

Quality of the quantizer is measured by the goodness of the resulting reproduction
in comparison to the original. A distortion measure, d(x, %), is defined to quantify cost or
distortion resulting from reproducing x as . The most common distortion measure is a

o o2 : : o
squared error, d(x, %) = |x—2|". An average distortion under the squared error is given as

6(Q) = E[d(X, Q(X))]

| -0 Pyax

S|

i=1""

(x—q,-)zP(x)dx (6.34)

A PDF-based optimal quantizer can be obtained by minimizing the above error
function. Setting the derivative of 6(Q) with respective to g; to zero and solving for ¢ i

we have [Sayo00] [Sayo096]
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jy ' xP(x)dx
g, = _X;___ 1<isM (6.35)
j P(x)dx
i-1

The output point for each quantization interval is the centroid of the probability
mass in that interval. Taking the derivative with respect to y; and setting it equal to zero,
we get an expression for y; [Sayo96]

4;+9q;41

¥ =~ 1<isM-1 (6.36)

The endpoints are simply the midpoint of the two neighbouring reconstruction lev-
els. Solving these two equations will give us the values for the reconstruction levels and
intervals that minimize the average quantization distribution. Unfortunately, to solve for

q; we need the values of y; and y;_,, and to solve for y;, we need the values of g, and

q;+1

Lloyd and Max proposed an iterative trial-and-error algorithm to solve the prob-

lems [Lloy82] [Max60]. The procedure of the Lloyd-Max algorithm is as follows:

1) Choose a trial value g, satisfying

q,< r xP(x)dx (6.37)

2) The condition that g; is the centre of mass on [y,, y,;) determines y; as the unique

solution of
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Iyl xP(x)dx
j °<,P(x)a.’)c

After the quantities g; and y, are known, g, is obtained according to (6.36)

gy = 2}’1—41

(6.38)

(6.39)

If this g, lies to the right of the centre of mass of the interval (y;, o) then the trial

chain terminates, and we go to Step (1) and start over again with a different trial value

q;- Otherwise, y; and g, are known and serve to determine y, according to (6.35)

Jzsz(x)alx

q, =

y
J'ZP(x)dx
1

Then we get g5 by

q3 = 2}’2"42

We continue in this way, obtaining successively g, ¥, ***, gps_ 1> Yar—1-

The last step is to determine g,, according to

dv = 2Yp_1- 9y -1

At the same time, g,, can be obtained from
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xP(x)dx
gy = 2L (6.43)
P(x)dx

Ym-1
The q,, obtained from (6.42) will not satisfy (6.43) in general. The discrepancy
between the right numbers of (6.42) and (6.43) will vary continuously with the starting
value g, , and the technique consists of running through such chain using various start-

ing values until the discrepancy is reduced almost to zero.

Now we see that the quantizer designed by the Lloyd-Max algorithm is determined
uniquely by the PDF of the source. Common distributions concerned in quantization

design are uniform, Gaussian, and Laplacian, as given in (6.44), (6.45), and (6.46), respec-

tively.
1
P(x) (6.44)
M=o
-’
P(x) = J2l7tce 20 (6.45)
[ [x—pf
P(x) = (6.46)

where |l and G are the mean and variance of the source, respectively.

The code for a nonuniform quantizer design is provided in Appendix B.3.2.
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For the source with uniform PDF, we may get an optimal quantizer with equal
spaced intervals and reproduction levels. Such a quantizer is called a uniform quantizer

and widely applied in analog to digital converter.

Fractal compression focuses on encoding transforms and coefficients. In fractal
compression for images, the FBC separates the affine transform into three distinct trans-
forms performed sequentially as shown in the following figure. These transforms are (i)
spatial contraction, (ii) isometric block transform, and (iii) grey level scaling and transla-

tion, respectively.

: : Isometric Grey Level Range

Spatial y g

Dlgllélgll(n > Conngétion —> _ Block —p Scaling and|—= Block
Transform Translation Matching

Fig. 6.5. The fractal block transform in terms of its sequential component transforms: spa-
tial contraction, isometric block transform, and grey level scaling and translation.

For square domain and range blocks the following eight isometric block trans-

forms are used:

1) identity,

2) reflection about mid-vertical axis,
3) reflection about mid-horizontal axis,
4) reflection about 45° diagonal,

5) reflection about 135° diagonal,

6) +90° rotation about centre,

7) +180° rotation about centre, and
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8) —90° rotation about centre.

Then three bits are allocated to encode isometric block transform and appropriate
bits are used to encode the address of the domain block, spatial contraction, and grey level
scaling and translation. The number of encoding bits used in the FBC is independent of

the range block size.

This quantization scheme cannot give an optimal design of the quantizer and mini-
mal error for the affine transform. It only tries to achieve a low compression ratio under a

certain reconstruction error through a time-consuming search.

ien and Nérstad applied an orthogonal fractal compression to the ECG signal.
Instead of the affine transform, they used orthogonalization transforms in the FBC and
found that the transform coefficients are close to Laplacian distribution [Fish98]. Then a
nonuniform quantizer based on such a distribution was designed to encode the coeffi-

cients. Still the number of the encoding bits is independent on the range block size.

We confirmed the near Laplacian distribution of the fractal coefficients of the ECG
signals in our experiments. Thus, a nonuniform quantizer with a Laplacian distribution is
designed by the Lloyd-Max approach. Unlike @fien and Nérstad, however, we use an opti-
mal number of bits to encode each coefficient in the transforms and do not allocate a spe-
cial code to the isometric block transform any more. The benefit of such an encoding
scheme is to maintain, not to reduce, the ability of the transforms in modelling the fractal

objects.
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6.6 The Nonlinear IFS (NIFS)

6.6.1 Limitation of Affine Transform

The IFS data compression is realized through finding a set of affine transforms
between the range pool and the domain pool. The role of the affine transform is to fit spe-
cific range blocks with the domain blocks optimally. The compression performance is
directly decided by the capability of the affine transform that models the signal. The cur-
rent transform used in the IFS is a linear affine transform. It may model perfectly some
signals which have strict inherent linear relationship (such as the Cantor set, Koch curve,
Sierpinski carpet, and Julia set) [PeJS92]. Unfortunately, many signals in real life have
relationships that are more complicated than linear. To model such signals, the linear aff-
ine transform is inadequate. Image compression by the IFS fractal method is an example
of how difficult it is to find a suitable mapping between a range block and the domain
blocks. A complicated scheme that requires a point-by-point search, combined with a var-
iable size of the domain blocks is necessary to find a reasonable mapping. Even then, it
may fail occasionally. This linear transform causes two problems: (i) poor compression

performance, and (ii) a very time-consuming search.

6.6.2 Nonlinear Transform for the IFS

Instead, a generalized transform which may represent an arbitrary function is
needed to model such complicated signals. We propose that a more flexible way to model
complicated signals is to use a nonlinear transform. This can be accomplished by model-

ling the ECG signal by a polynomial expansion as it is an efficient way to model arbitrary
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functions. Convergence is a critical issue in signal reconstruction by the IFS using the pro-
posed transform. Although we have not proved the convergence theoretically, our experi-
ments show that the new extended affine transform gives convergent results. This
nonlinear model also demonstrates the flexibility in modelling various complexities in the
ECG signal. We shall show that it can give a much better reconstruction quality under the

same compression ratio, as compared to a corresponding linear model.

For a 1D signal x(n), the generalized transform is defined by

n\ _ |an+a,
= 6.47)
W(x) [f(x, n)

where the coefficient a; is limited to the range [0, 1) to guarantee a contraction trans-
form of signals in time. If f(x, n) is also a contractive transform, then (6.47) satisfies the

convergence condition of the IFS, as required by (6.2).

To find an appropriate f(x, n), it is not sufficient to use the convergence condition
only. According to Taylor’s remainder formula, a function may be expanded as a kth-order
polynomial format if its first k — 1 derivatives are continuous and its kth derivative exists

[Trim89]. Thus, a kth-order polynomial is used to approximate the f(x, n)

k m
fam=3 ¥ bquqn’"“f (6.48)

m=0g=0

where k, m, and g are nonnegative integer. Coefficients b, 4 are decided by the function

f(x, n) according to Taylor’s remainder formula. Since the f(x, ) is unknown, it may be
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determined through the inverse procedure, i.e., finding b, 4 To obtain an attractor of the

object, it is reasonable to assume [Barn88]

f(x(ny),ny) = x(n,) (6.49)
where x(n;) is mapped to x(n,) under the condition

anita, = n, (6.50)

Equations (6.48) to (6.50) constitute our nonlinear contraction transform for find-
ing the attractor of the object. When the expansion order k is equal to 1, the nonlinear
transform becomes the traditional affine transform. Therefore, one sees that the nonlinear
transform leads to more flexible mappings between the range blocks and the domain
blocks than the linear affine transform. Such flexibility may result in two advantages: (i)

improving compression performance, and (ii) speeding up the search.

We shall now discuss how to use the least squared error technique to determine the
coefficients in (6.48) and (6.50). For a lossless fractal compression technique, a transform
must be found to satisfy (6.49) with a measured signal exactly. In practice, it is reasonable
to use an approximation to replace the strict equality condition between f(x, n) and x(n)
in the lossy fractal compression. Then we use the MSE to measure the distance between

the transformed domain block and the range block

n
MSE = rll 3 Ly, ny) - x(ny)] (6.51)

n2=1
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where r, is the length of the range block.

A set of optimal transform coefficients can be obtained by applying the least

squared error technique to (6.51). A similar procedure has been described in Sec. 6.3.
6.6.3 Application of the NIFS to ECG [HuKi01a]

The new nonlinear IFS (NIFS) transform is applied to compress a 1D ECG signal.
To compare compression performance, the traditional IFS technique is also implemented.
The code for the NIFS is provided in Appendix B.3.1. The performance of a compression
algorithm is dependent mainly on two parameters: compression ratio and reconstruction

(distortion) error.

Prior to the calculation of the compression ratio and reconstruction error, the coef-
ficients in the f(x, n) must first be quantized. Figure 6.6 shows two distributions of coeffi-
cients by, and b,, with the ECG signal from the MIT-BIH Arrhythmia Database
[Mood99]. We conducted an experiment using the ECG data contained in the file,
x_100.txt, which has a 10-minute recording of the ECG signal. The Lloyd-Max nonuni-
form quantizer discussed in Sec. 6.5 [Lloy82] was used to quantize the coefficients

because their distribution is close to Laplacian.

To improve compression performance, the coefficient a, is set to 27" where
m = 1,2,3, to increase the chance for finding the optimal mapping. The length of range
blocks is also a variable, changing according to 2" with the integer [ varying from 2 to 6.
Figures 6.7(a) and (b) give the size distributions of range blocks for the traditional and the

NIFS technique, respectively. The NIFS can use the most frequent range block size of 32
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sample points to model the ECG signal compared to 4 sample points used by the linear
affine transform. The size distributions of range blocks show that the NIFS finds more
range blocks with large size than the traditional IFS, thus leading to an improved compres-
sion ratio. In our experiment, the mean range size is about 30.0 for the NIFS and 26.9 for

the IFS. It demonstrates that the nonlinear transform can model signals more flexibly.
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Figures 6.8(a) and (b) give the address distribution of the optimally mapped
domain blocks found by the traditional IFS and the NIFS techniques, respectively. It is

seen that the address distribution of the mapped blocks given by the NIFS is more concen-
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trated around the first point of the search. Compared to full distribution in the segment of
1024 points of the IFS, the NIFS gives a distribution of domain block addresses within
110 point range. It shows that the optimal mapping can be found by searching fewer

domain blocks. This is useful in developing a fast search algorithm as done in the next sec-

tion.
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Fig. 6.8. Address distribution of the optimally mapped domain blocks found by (a) the tra-
ditional IFS and (b) the NIFS approaches.

Figures 6.9(a), (b), and (c) show the original ECG signal, its reconstruction, and
the reconstruction error, respectively. The first important issue in the NIFS technique is the
convergence of the strange attractor reconstruction. From these figures, one can see that
the NIFS compresses and reconstructs the ECG signal extremely well. The new technique
has the remarkable property of modelling the QRS complex of the ECG signal almost per-
fectly, which is a difficult issue for the linear affine transform and the orthogonal trans-
form [Fish98]. The reconstruction error is limited to [-33 uv, 32uV]. It is mainly due to

the noise in the signal.
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Fig. 6.9. The ECG signal compression: (a) original ECG signal, (b) reconstructed signal,
and (c) reconstruction error.

Table 6.1 shows the influence of the order k of the Taylor series expansion and
quantization resolution on the compression performance of the ECG signal. By changing
the expansion order from 1st to 4th, as well as the resolution of the quantizer from 7 to 14

bits, various MPRD and R, are obtained. The maximal and minimal MPRDs are 6.1%
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and 5.6%, respectively. The maximal and minimal compression ratios are 7.3:1 and 5.5:1,
respectively. The MPRD of 100% at a 9 bit resolution and k = 1 is considered as an out-
lier. Such a reconstruction failure is probably due to the sensitivity of the reconstruction to
the quantization resolution of the transform coefficients. By monitoring the change of the
MPRD and R,,, we observe that (i) the NIFS outperforms the traditional IFS and (ii) opti-

mal parameters for the NIFS can be found.

For each polynomial expansion, Table 6.1 shows that when the resolution
increases the R . increases first and then decreases. The MPRD is controlled by the error
threshold. A quantizer with 8 bit resolution gives optimal performance for the NIFS with

various orders.

Table 6.1: Compression performance investigation of the NIFS with quantization
resolution and polynomial expansion change on the ECG signal (x_100.txt).

Resolution k=1 k=2 k=3 k=4
(bit) MPRD | R, |MPRD| R, |MPRD| R, |MPRD| R,
7 5.6% 6.3 5.8% 7.0 6.0% 6.7 6.1% 55
8 5.7% 6.4 5.9% 7.3 6.1% 7.0 6.1% 6.0
9 100% 6.4 5.8% 7.1 6.0% 7.0 6.1% 6.1
10 5.8% 6.4 5.8% 6.9 5.9% 6.7 6.1% 6.2
11 5.9% 6.1 5.8% 6.5 5.9% 6.4 6.0% 5.9
12 5.9% 6.1 5.8% 6.5 5.9% 6.3 6.0% 59
13 5.9% 6.0 5.8% 6.3 5.9% 6.2 5.9% 5.8
14 5.9% 59 5.8% 6.3 5.9% 6.1 5.9% 5.8
Threshold 0.0115 0.0118 0.0123 0.0130

One may predict that the increasing order of the expansion will result in the MPRD
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decrease because of the more powerful modelling ability of the NIFS. It is validated by the
error threshold used in Table 6.1. To keep the MPRD the same for comparison purpose,
higher error threshold is required for the higher order NIFS. However, a higher order
results in more coefficients, thus leading to a lower compression ratio. Consequently, there
must be a trade-off between the MPRD and the R,, for choosing the optimal order %.
Although Table 6.1 demonstrates that the change of expansion order has almost no influ-
ence on the MPRD (because the MPRD is controlled by the error threshold), it results in
different R .. The R, increases with the order first, and then decreases. The expansion

order of 2 achieves optimal performance for all the orders.

It was found that the NIFS improves compression performance compared to the
traditional IFS in the ECG signal compression. When PRD = 5.8 %, Jien and Narstad
achieved 6.0:1 with their IFS ECG compression by their orthogonal transform [Fish98].
With the optimal choice of order 2 and 8 bit nonuniform Laplacian quantizer, we get the
compression ratio about 6.4:1 for the affine transform and about 7.3:1 for the NIFS when
MPRD = 5.8 %. It should be noted that the MPRD gives a better reconstruction quality

than the PRD under the same error value.

6.7 Domain Block Partitioning Based on Complexity Measure

As we have discussed already, a fractal object may be expressed in terms of a
series of affine mapping transforms of itself. In data compression of the traditional linear
IFS approach, a time-consuming search needs to be performed on the entire signal to
obtain an optimal match between a small range and some other part of the signal because

the linear affine transform is not flexible to model complicated signals locally. For exam-
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ple, the computational complexity of Barnsley’s collage coding for an image of N x N
size is O(N 6) [Barn88]. In order to reduce the computational complexity, Jacgin proposed
a fractal block coding (FBC) technique 0(N4) [Jacq92]. The FBC splits the image into
two kinds of small blocks: domain blocks and range blocks. Each range block is compared
to affine-transformed versions of the domain blocks. The most similar pair gives the opti-
mal affine transform for that range block. Kinsner e al. suggested a reduced FBC O(N 3)
in which a neural-network based classification technique is used to find an optimal match
between the range and domain blocks [WaKi93]. This approach was applied first to
images [WaKi93], and later to speech through the residual in the code excited linear pre-
diction (CELP) technique [Vera99]. Still a more efficient search approach is necessary to
compress the ECG signal by fractal technique in real time. We will make use of fractal

properties to develop a fast IFS approach in ECG data compression.

Equation (6.1) reveals two important properties in the fractal object: (i) self-simi-
larity which signifies scale invariance and (ii) fractal dimension which signifies the struc-
tural and informational (compositional) complexity. The real o in (6.1) signifies the
invariance to dilations and contractions, which is the foundation of the IFS. The IFS uses a
set of contractive mappings from the signal to itself to represent the fractal object. How-

ever, the complexity of the fractal object is not employed by the IFS to find the mappings.

We conjecture that a strong self-similarity of the fractal object exists in the area
where the signal has the same compositional complexity, and the self-similarity is much
weaker between regions with different complexities. If that is true, then it is not necessary

to search domain blocks which have different complexities with the range block for the
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multifractal object. Therefore, if we can measure the complexity of the signal and only
search domain blocks which have the same complexity with the range block, the search

can be very efficient.

It has been shown that the ECG signal is multifractal, with its singularity varying
with time [KiHCO0]. Thus, we could segment the signal into ranges with similar fractal
dimensions. Based on this idea, a new scheme is proposed to segment the ECG signal for
the construction of an optimal domain pool. Instead of taking the domain blocks from
almost every point of the signal, our pool is only composed of the partitioned segments,
which reduces the search problem to O(N) if we take the search size to be N. The applica-
tion of a nonlinear affine transform to such a domain pool can reduce the reconstruction
error, while maintaining fast search [HuKiOla]. Experimental results show that our
approach can achieve lower reconstruction error and faster implementation speed under

the same compression ratio than the traditional IFS.

6.7.1 Signal Partitioning By the VFDT

Since we know that the ECG signal has multifractal characteristics, it is possible to
segment the signal based on a local fractal dimension estimate [KiHC00]. Fractal dimen-
sions such as the Rényi dimension spectrum, Mandelbrot dimension spectrum, correlation
dimension, and Hausdorff-Besicovitch dimension, require a large number of sample
points to obtain a statistical measure [Kins94a]. Usually, such a measure is a global esti-
mate for the fractal object. Instead of a single-scale statistical measure, the variance fractal
dimension (VFD) discussed in Sec. 4.8 is estimated by computing the spread of the incre-

ments in the signal amplitude, based on a much smaller number of points within a window
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of interest, and at several scales. A time series representing a chaotic or nonchaotic pro-

cess can be analyzed directly in time through its VFD [Kins94b].

Fractal analysis of nonstationary signals is usually conducted in terms of fractal
dimensions as a function of time, thus resulting in the VFD trajectory (VEDT) which
reflects the change of the compositional complexity of the signal with time. In fact, the
VEDT represents the multifractal characteristics of signals with time. The VFDT is gener-
ated by calculating local VFDs for a rectangular sliding window that is displaced along the

entire signal.

Section 4.8 illustrates how to calculate the variance dimension from a given time
series. The b-adic rule is not followed to accommodate the small window for the ECG sig-
nal. To achieve a good segmentation for the signal, the sliding-window size for the VFDT
should be chosen properly for the algorithm. We can see that the complexity segments
change with the window size. An optimal sliding-window size is chosen experimentally
by inspecting the VFDT, computed for different numbers of samples varying from N min
to N, as shown in Fig. 6.10. The histogram of the VFDT of an ECG signal shown in
Fig. 6.11 has three peaks. For the VFDT shown in Fig. 6.10, two thresholds are selected
experimentally to separate the trajectory into three levels, thus segmenting the ECG into
three areas with different complexities. Figures 6.12(a) to (d) illustrate the corresponding
segmentations of the ECG signal. Figure 6.12(d) shows that the sliding window with 128
sample points results in intervals that are too wide for the low complexity parts. Figure
6.12(c) with 64 sample point window shows that the region is still too wide. On the other

hand, Fig. 6.12(a) shows that the wide segmentation in the high complexity areas is caused
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by the window size of 16 sample points being too short. Consequently, Fig. 6.12(b) with
window size of 32 samples gives a proper segmentation for the ECG signal because it is
partitioned into intervals with (i) high but uniform complexity, (ii) middle but varying
complexity and (iii) low complexity representing the QRS complex. In this chapter, the
sliding window with 32 sample point width is chosen as an optimal parameter for the com-

plexity measure of the ECG signal. The code for the VFDT is provided in Appendix B.3.3.
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Fig. 6.10. The variance fractal dimension trajectory of an ECG signal with window size of
(a) 16, (b) 32, (c) 64, and (d) 128 sample points.
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Fig. 6.12. Partitioning of an ECG signal based on complexity estimate with window size
of (a) 16, (b) 32, (c) 64, and (d) 128 sample points.

The segmentation of the signal seems to depend on prior knowledge of the signal
since the QRS complex, the T wave, and the P wave are isolated. However, this is not our
purpose. Signal partitioning is to segment the ECG signal according to its compositional
complexity characteristics through a local complexity measure. Thus, such a partitioning
is not focused on diagnosis and will not lead to missing important artifacts in abnormal

signals.

6.7.2 Application of the NIFS to the Partitioned ECG

Figure 6.13 gives an original ECG signal and its reconstruction by the IFS (with
signal partitioning). Although the search speed of finding the transform set is fast, the

compression performance suffers from large reconstruction errors, especially in the QRS
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area. One of the reasons is that the affine transform defined by (6.14) is not a proper trans-

form for the ECG signal.
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Fig. 6.13. The ECG signal compression with the IFS approach: (a) original ECG signal,
(b) reconstructed ECG signal, and (c) reconstruction error.

Since (6.14) defines a linear transform, it should not be applied to signals with
nonlinear characteristics. The ECG signal, like speech and images in nature, comes from a

nonlinear system and is very complicated. Although there is self-similarity in the ECG

- 159 -



Chapter VI: Signal Compression by IFS and Domain Block Partitioning

signal in the area with the same compositional complexity, the linear affine transform can-

not represent the abrupt change in the QRS complex.

In principle, Eq. (6.48) may fit an arbitrary function. Therefore, we combine the
NIFS and the VFDT techniques to develop a fast IFS algorithm for multifractal signal

compression. Such a scheme must be validated by experimental results.

In this section, experiments are performed to compress the ECG signal by combin-
ing the VFDT and the NIFS together. Again, the ECG signal is taken from the MIT-BIH
ECG database [Mo0od99]. We compress the ECG data contained in the file, x_100.txt,
which is a 10-minute recording. Since such a file contains 216,000 samples in 758 periods,

the number of the average samples in a period is

Ny = 216,000/758 =~ 285 (6.52)

Before the NIFS approach is applied to the ECG signal, the domain pool is pre-
pared based on the signal partitioning according to the complexity measure (see Sec.
6.7.1). Instead of constructing the traditional domain pool by shifting a block point-by-
point in the time series, the blocks in the new domain pool are bounded by the 5 partition-
ing regions for each beat (frame), thus leading to an average block with 285/5 = 57
sample points. Since the NIFS can use the most frequent range block size of 32 sample
points to model the ECG signal as shown Fig. 6.7(b), the corresponding domain block size
should be at least 64 samples, which is larger than the average size of the domain blocks in
the bounded domain pool. Therefore, the matching search is performed by the NIFS on a

few partitioned blocks. Often, an optimal mapping can be found by searching just a few
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domain blocks (usually fewer than 10 domain blocks) by the NIFS as shown in Fig. 6.8(b).
Compared to the complexity O(N 2) by the traditional IFS, it is reasonable to consider that

the complexity of the NIFS with signal partitioning is O(N) for the ECG signal.

Now the NIFS is applied to the ECG signal using the reduced domain pool. Table
6.2 shows the influence of the order & of the Taylor series expansion and quantization res-
olution on the compression performance of an ECG signal. By changing the expansion
order from 1st to 4th, as well as the resolution of the quantizer from 7 to 14 bits, various
MPRD and R, are obtained. The maximal and minimal MPRDs are 20% and 5.6%,
respectively. The maximal and minimal compression ratios are 6.5:1 and 3.7:1, respec-
tively. By monitoring the change of the MPRD and R cr» Optimal parameters for the NIFS
on the ECG signal can be found. Table 6.2 shows that when the resolution increases, the
MPRD decreases and the R, increases first, and then decreases. A high resolution quan-
tizer will benefit the MPRD, but not the R_,.. An optimal quantization resolution may be
found based on the trade-off between the MPRD and the R,,. When the quantizer takes
more than 11 bits, the MPRD and R, change little with the increase of resolution. Thus,
an 11-bit nonuniform quantizer with a Laplacian distribution is chosen for each kind of

coefficients.

From the experiments in Sec. 6.6.3, we observe that a high expansion order k may
decrease the MPRD because of the more powerful modelling ability of the NIFS. It is also
observed that a higher order results in more coefficients, thus leading to (i) higher quanti-
zation error for the MPRD, and (ii) a lower compression ratio. Consequently, there must

be a trade-off between the MPRD and the R, for choosing the optimal order k. Table 6.2
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demonstrates that the increase in k results in the R, increasing first, and then decreasing.
The expansion order of 2 is taken as the optimal parameter because it can achieve the

highest compression ratio under about the same MPRD in the experiments.

It was found that the NIFS achieves higher compression ratio than the traditional
IFS under the same reconstruction error in the ECG signal compression with the segmen-
tation. When PRD = 5.8 %, Qien and Nérstad achieved 6.0:1 with their IFS ECG com-
pression by orthogonal transform [Fish98]. We get the compression ratio about 5.5:1 for
the linear affine transform with a 10 bit nonuniform quantizer and about 5.7:1 for the NIEFS
with an 11 bit nonuniform quantizer, both under order 2 and MPRD = 5.8 %. Thus, the

NIFS outperforms the traditional IFS approach under the fast domain block search.

Table 6.2: Compression performance investigation of the combined VFDT and NIFS
approach with quantization resolution and polynomial expansion change on an ECG
signal (x_100.txt).

Resolution k=1 k=2 k=3 k=4
(b1t MPRD | R,, |MPRD| R, |MPRD| R, |MPRD| R,
7 12% 54 13% 6.1 12% 5.6 20% 3.7
8 6.2% 5.6 8.2% 6.5 7.8% 6.3 12% 4.6
9 6.0% 5.6 8.0% 6.3 7.7% 6.3 11% 4.7
10 5.7% 55 6.6% 6.1 6.6% 6.1 7.5% 4.8
11 5.6% 53 5.9% 5.7 6.2% 5.7 6.3% 4.9
12 5.6% 53 5.9% 5.7 6.2% 5.7 6.4% 4.9
13 5.6% 52 5.8% 5.6 6.2% 5.6 6.3% 4.8
14 5.6% 5.1 5.8% 5.5 6.1% 55 6.2% 4.8
Threshold 0.0115 0.0118 0.0123 0.0130

- 162 -



Chapter VI: Signal Compression by IFS and Domain Block Partitioning

6.2

Al | (@) |

5.8

=5.6

8 5.4
=
B5.2f

1 1.5
Original Signal [s]
8.2 :
ol ) |

5.8

=5.6f

o 5.4

Es.2}

4.8} F/\,M\J W
a6} :
% 0.5 2

-

1 1.5
Reconstructed Signal [s]

(©)

© o oo
N A O ®

Amplitude [mV]
o
N O

—0.4-
-o0.6}

-Q.81

0.5 1 1.5 25
Reconstructed Error [s]

Fig. 6.14. The ECG signal compression with the combined VFDT and NIFS approach
under expansion order 2 and 11 bit nonuniform quantizer: (a) original signal, (b) recon-
structed signal, and (c¢) reconstruction error.

Figure 6.14 shows a compression and reconstruction of an ECG signal by the pro-
posed scheme with optimal parameters. Unlike the reconstruction error obtained by the
IFS, here the error is controlled to [-33uV, 32uV], whose range is the same as the NIFS
achieves under no signal partitioning. The QRS complex in the ECG signal is recon-

structed almost perfectly.
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We use a personal computer with Pentium® III of 600 MHz to run Matlab pro-
grams of the ECG compression algorithm. The linear IFS requires 3540 s to compress an
ECG signal of length of 1024, while the segmented NIFS requires 106 s only, which is

over 33 times faster.

6.8 Summary

This chapter presented fractal signal compression, beginning from basic tech-
niques based on the self-similarity or self-affine property of a fractal object. Such a simi-
larity may be represented through the iterated function systems (IFS) [BaHu85]. The
collage theorem was introduced by Barnsley to describe the fractal object by collaging a
set of contraction mapping transforms together because the practical fractal object is usu-
ally not strictly self-similar and may be composed of a series of mapping transforms of
itself [Barn88]. To find the set of the mapping transforms, Jacquin proposed the fractal
block coding (FBC) technique. The FBC divides the fractal object into domain pool and
range pool. Each block in the range pool is compared to the transformed version of the
blocks in the domain pool. The fractal coding corresponds to the transform of the most
matched pair. The set of such transforms consists of the IFS. Therefore, a fractal object
can be compressed and synthesized by a set of functions mapping it to itself. The contrac-
tivity of the IFS is necessary to ensure that the decoding procedure would converge to an
adequate representation of the original fractal object. The Lloyd-Max algorithm is dis-

cussed and used to design a quantizer for our new fractal compression.

Mazel and Hayes developed a self-affine fractal model and a piecewise self-affine

fractal model to encode a time series. The piecewise self-affine fractal model was applied
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to the ECG signal. Although this approach is very time consuming, the decoding proce-

dure is fast.

We proposed a new nonlinear IFS (NIFS) transform and a signal partitioning tech-
nique to improve the compression performance of the traditional IFS. Several important
experimental results were obtained: (i) good convergence, (ii) high compression ratio at a
small error, (iii) excellent reconstruction of the QRS complex, (iv) few search blocks, and
(v) a fast algorithm for compression. The convergence of the strange attractor reconstruc-
tion of the NIFS has been achieved in all our experiments. The NIFS approach may com-
pete with the traditional IFS technique in ECG signal compression in that, with an optimal
choice of the order ¥ and a nonuniform Laplacian quantizer, the extended transform
achieves a maximal compression ratio of 7.3:1 under MPRD = 5.8 %, which is higher
than that of 6.0:1 obtained by Jien and Nérstad under PRD = 5.8 %. Another advantage
of the new extended transform is that it can model the QRS complex of the ECG signal
very well, which has been a problem with the affine transform and the orthogonal trans-
form in fractal compression. Still another advantage of the NIFS is that fewer blocks are
required to model the ECG signal as compared to the linear IFS, thus providing more flex-
ible modelling. Still another advantage stems from the address distribution of the opti-
mally mapped domain blocks around the first point in the search as shown in Fig. 6.8(b)
which can be employed to speed up the search of finding optimal mappings between the

range blocks and domain blocks.

A combined scheme of the NIFS and signal partitioning approach based on the

compositional complexity measure by the variance fractal dimension trajectory (VFDT) is
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applied to compress the ECG signal rapidly. Compared to a much weaker self-similarity
between regions with different complexities, a strong self-similarity of fractal object exists
in the area with the same complexity. With the domain pool prepared by the VFDT, the
compression ratio is 5.5:1 by the traditional IFS under PRD = 5.8 %, while 5.7:1 by the
NIFS under MPRD = 5.8 %. The R, of the NIFS is slightly lower than that of 6.0:1
obtained by Jien and Narstad. The domain search is reduced to O(N) for a time series
with length N, compared to the computational complexity of O(N 2) of the original IFS.

We conclude that the NIFS can model ECG better than the IFS.
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CHAPTER VII

MOMENT-INVARIANT FEATURES AND
NEURAL NETWORK CLASSIFICATION OF ECG

7.1 Introduction

The previous chapter presented the nonlinear iterated function systems (NIFS)
compression technique and its application to the ECG signal. In that compression, the
ECG signal is treated simply as a general 1D signal. The quasiperiodicity of the signal has
not been employed. This chapter will consider ECG frame classification and compression

since the signal is a beat-repeated signal.

ECG frame classification has important applications in the following three aspects
of ECG signal processing: (i) compression, (ii) browsability, and (iii) recognition of car-
diac rhythms for defibrillators. Compression can be achieved because there is a high corre-
lation among ECG frames. It means that information about the ECG frame morphology
may be exploited to compress ECG data. A high compression ratio may be achieved
through ECG frame classification [HuKi02b] [HuKi99b]. Browse means to look at infor-
mation from a source. Browsability is desired because manual analysis of the large amount
of data recorded by a Holter monitor takes many hours. Through this ECG frame classifi-
cation, an analysis of a case can be speeded up by browsing an ECG recording automati-
cally. Thirdly, implantable cardiac defibrillators have created a new impetus for automatic
recognition of cardiac rhythms. At present, most types of defibrillators use only rate crite-

ria for detection of potentially lethal arrhythmias. Sometimes this results in false positive
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detections and inappropriate delivery of electric therapy. If the device could distinguish
better the unrecoverable from the benign arrhythmias, this would constitute progress. A
neural network has already been used to do the arrhythmia classification in the implanta-
ble device by extracting features from only the QRS complex of ECG frames [Vouk95].

Our approach is to use the full frame information for the arrhythmia classification.

Some frame-based ECG signal compression techniques have been proposed.
Cohen and Zigel establish a long-term prediction model for the ECG signal based on beat
segments with a beat codebook. Instead of discarding the prediction error, the residual is
encoded scalarly with some bits [CoZi98]. Beat-based classification technique provides
another way to compress the ECG signal. As discussed in Sec. 2.6.3, neural network clas-
sification approach is used by Iwata er al. to compress the ECG signal [IwNS90]. The
ECG beats can be classified into different classes and represented by class parameters in a

compressed data file.

To classify ECG patterns, a similarity measure is often established through the
smallest sum of the absolute differences between ECG beats. However, since the duration
of the beats varies with time in practice, the estimates are inaccurate. The computation
cost is also high. It is necessary to find an efficient technique to extract features from the

ECG beat for classification purposes.

In Sec. 7.2, a moment-invariant (MI) technique is proposed to extract statistical
morphology features of ECG beats. The MI was used originally in 2D digital image pro-
cessing to extract the morphology information of an image [GoWo92]. The moment is

invariant when the image translates, rotates, and scales. Based on these properties, the M1
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is often used to match objects. Object matching technique based on the MI has been
applied to image compression by many researchers, including Novak, Gétting, and Pope-
scu [Fish98]. It also has been applied to character recognition [TrJT96]. If ECG beats are
treated as characters, the morphology information of the signal can be described by the
MI. Such moment features have the same dimension for those beats with various dura-
tions. The dimension number of the features may be much less than the sample number of

the beats, which allows the classification to be fast.

After feature extraction, a training set must be clustered for a classifier. There is no
standard training set for the ECG beat because it changes with each individual and with
time. Therefore, the training set of the ECG beat with MI features is clustered by the ISO-
DATA algorithm [HaBa65] in an unsupervised mode (Sec. 7.3). Then such a training set is

used to establish discriminant criteria for the classifier.

A proper classifier should be chosen for the ECG beat based on extracted features.
The Bayes rule supplies a theoretical background for finding an optimal classifier. Cur-
rently, the neural network is one of the most suitable techniques to design classifiers. A
probabilistic neural network (PNN) is used as a classifier in this thesis since it has useful
characteristics drawn from both neural networks and statistical analysis as described in
Sec. 7.4. The selected moment features constitute the input to the PNN for ECG beat clas-

sification.

A classification compression scheme for the ECG signal is shown in Fig. 7.1. The
PNN should be trained by a clustered training set of the ECG beats first. Then a new ECG

beat can be input to the PNN for classification. Finally, the input ECG beat is compared to
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each beat in the class given by the PNN. We shall discuss the compression scheme by con-
sidering the MI feature extraction first, then ISODATA clustering, the PNN, its training

and classification, and finally experimental results.

r-r—-—-""-""""—=""—"=' —"'""— — — = = e = e — — — = = —— — e — — |
| ISODATA |
| Training Set |
| » Clustering ¢ |
I MI Pattern |
| ECGBeat | Feature Classification Beat Index I
| T > Extraction Criteria Comparison > |
| L] v ]} |
| Classification Class |
| Information |
L Y - - T _ _ _ |

Fig. 7.1. Classification compression scheme for the ECG signal.

7.2 Moment-Invariant Features of ECG

In this section, the MI technique is proposed to extract the statistical morphology

features of the ECG beat for classification of the ECG signal.

A beat of the ECG is defined as the interval between two successive R peaks (see
Fig. 2.3). In this thesis, the beat is also called a frame or pattern. The quasiperiodicity of the
ECG signal makes it possible to segment the signal into beats. The beat partitioning can be
carried out since the R peak is the dominant point in the ECG signal. The partitioned beat
can be grouped into various classes. However, the nonstationarity of the ECG signal poses
a problem in the similarity measure between the beats. The duration change of the beats
makes it impractical to measure the similarity directly through the smallest sum of the

absolute differences of the two ECG beats.
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Instead, the MI technique is proposed for ECG frame classification. The MI has
been used in the past in 2D signals to extract morphology information of an image in a
statistical sense. It is often applied to match objects because moments are invariant when
the image translates, rotates, and scales [GoWo092]. It has been also applied to character
recognition [TrJT96]. We extract MI features from the ECG beat since such features
contain the shape information of the object, which is useful for similarity comparison

between the beats. The dimension of MI features will not change with the length of the beat.

Let us first consider moments for 2D objects. For a 2D continuous function f(x, y)
shown in Fig. 7.2, the moment m;; with ith order in x axis and jth order in y axis is defined

as

m; =r r X'y f(x, y)dxdy (7.1)

where the order i and j are nonnegative integers.

’ ﬁ (%)

Fig. 7.2. An object in 2D plane.
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Papoulis states that if f(x, y) is piecewise continuous and has nonzero values only
in a bounded part of the xy plane, moments of all orders exist and the moment sequence
{mij} is determined uniquely by f(x, y). Conversely, {mij} uniquely determines f(x, y)

[Papo65]. By shifting f(x, y) to the centroid (l.,, W1, ) of the object, a central moment My 18

given as
My = f [ e-wo-nyre ydsdy (72)
where

and myy, is the centroid of the object, m,, is the 1st order moment in x axis, and m, is the
1st order moment in y axis. Notice that the integral operation in (7.1) and (7.2) should be

replaced by a sum operation for digital signals; i.e.

my =Y Y x'y f(x, y) (7.12)
Xy
and

My =22 (-1 (v - W) f(x, y) (7.2a)
x y
where i and j are nonnegative integers.

The normalized central moment E;ij is given by

& = M/ 1o (7.4)
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i+j

where [Lyy = my,, Y= 5

+1,and (i+j) = 2,3, -

From the normalized central moments, a set of seven invariant moments can be

derived [Hu62]. They are given by [GoW092] [GoWo02]

@ = &y + &gy (7.5)
0y = (Eyp—Eqp)” +4E7, (7.6)
03 = (E30-3E12)" + (38 —Eg3)° (7.7)
Oy = (Eap+E1p)" + (Byy +E03)° (7.8)

Os5 = (§30—3812)(&ap+ &) [(E50 + &»12)2 ~3(Ey + §O3)2]

+ (381 —&03) (B + Ep)[3(E30 + £1)” — (&1 +Egp) 7] (7.9)
Ps = (Ea0—Ea)[(Ea0 +E1p)° — (Epy +E3)°]

F A8y (Bap +E1p) (B +Eg3) (7.10)
07 = (3& —E0s) (Eap + E1p) [(Egg + £12)° = 3(Eyy +Egy)°]

+ (3815 - Ea0) (B + Ep)[B (60 + £1)” — (61 + Egp) 7] (7.11)

To validate that the moments are invariant, we have performed initial experiments

on the characters shown in Fig. 7.3 with their pixel values set to 1, and expressions for the
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moment taken from [GoWi77]. We found that their ¢, changes with the rotation of a char-
acter. Since the moment of an object ought to be invariant under rotation, we checked both
the formula and the program and discovered a mistake in their formula for ¢, . Equation

(7.11) is correct [GoWo092] and the wrong one is given as [GoWi77]

@7 = (3812 =M30) (€30 + &12) [(E30 + &12)2 ~3(&y + r;os)z]

+ (351 - Ea) (& + Ega)[3(Egp + £1)” - (Ex +E3)] (7.11a)

Based on the correct expressions given by (7.5) to (7.11), an experiment has been
implemented to extract the MI of the characters A to D shown in Fig. 7.3. The code is pro-
vided in Appendix B.4.1. Figure 7.3(a) is character A. The rotations of A are shown in
Figs. 7.3(b)-(d), and its enlargement by a factor of 2 in Fig. 7.3(e). The values of the corre-
sponding seven moments are listed in Table 7.1. It is seen that the moments are contained
in the interval [-0.0024, 0.5505]. It is also seen that the variations of moments @5 to @4
are too small to be significant in character recognition. Furthermore, since the values of
the moments ¢, to @4 are almost the same for the rotated A, but different from B, C, and

D, we can say that the moments contain the shape information of objects.
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Fig. 7.3. An example of MI calculation for characters with the same size except (¢) with
double size. (a) is rotated 90°, 180°, and 270° counterclockwise to give (b), (c), and (d),
respectively. (£)-(h) characters different from (a), but with the same orientation.

Table 7.1: The MI of characters corresponding to Figs. 7.3(a)-(h).

Moment

) ¢, ¢, Q3 Q4 Qs 0% ©
(Fig.)

(a) 0.3693 | 0.0078 | 0.0356 | 0.0019 | 0.0000 | -0.0001 | 0.0000

(b) 0.3693 | 0.0078 | 0.0356 | 0.0019 | 0.0000 | -0.0001 | 0.0000
© 0.3693 | 0.0078 | 0.0356 | 0.0019 | 0.0000 | -0.0001 | 0.0000
) 0.3693 | 0.0078 | 0.0356 | 0.0019 | 0.0000 | -0.0001 | 0.0000

(e) 0.3685 | 0.0083 | 0.0343 | 0.0018 | 0.0000 | -0.0001 | 0.0000
63 0.2894 | 0.0029 | 0.0007 | 0.0000 | 0.0000 | -0.0000 | -0.0000
€] 0.5505 | 0.0161 | 0.0261 | 0.0318 | -0.0004 | -0.0024 | -0.0008

(h) 0.3405 | 0.0000 | 0.0038 | 0.0000 | -0.0000 | -0.0000 | -0.0000

Since the moment can be a shape descriptor of objects, it may be used to extract

morphology information of the ECG waveform. Like characters, we treat the ECG
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waveform shown in Fig. 7.4 as a 2D graphics and set value of 1 for the shaded area and 0
outside the shaded area. Notice that each waveform in the figure is the difference between
the original ECG signal and its minimal value. Then, Egs. (7.5)-(7.11) are applied to the
waveforms to calculate the moments of the ECG beat. Figure 7.4 show different ECG beats.
Their corresponding moments are listed in Table 7.2. It is observed that the seven moments
from the same ECG waveform are different. The values of the moments also change with

various waveforms. The range of the moments is in the interval [-0.0029, 1.4524] .

Voltage [mV]
o o :
D 0 -

o o
N A

[+] 0.2 0.4 0.6 0.8
Time {s]

Voltage [mV]
o o
D 00 =

o ¢
FS

0.2
OO 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
Time [s]) Time [s]

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
Time [s] Time [s]

Fig. 7.4. An example of MI calculation for different ECG waveforms. The ECG wave-
form is treated as a 2D graphics with value of 1 in shaded area and 0 in other place.
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Table 7.2: The MI of ECG waveforms corresponding to Figs. 7.4(a)-(f).

Moment
(Fig) 0, ) @3 (1 @5 Qs ¢
(a) 1.3334 | 1.3752 | 0.4099 | 0.2278 | 0.0481 | 0.1372 | 0.0503
(b) 1.3611 | 1.4524 | 0.4474 | 0.2492 | 0.0602 | 0.1673 | 0.0574
(© 1.1551 | 1.0434 | 0.1889 | 0.0712 | 0.0017 | 0.0083 | 0.0081
d 1.0131 | 0.7975 | 0.1019 | 0.0376 | -0.0001 | -0.0029 | 0.0023
(e 1.3611 | 1.4524 | 0.4474 | 0.2492 | 0.0602 | 0.1673 | 0.0574
® 1.0043 | 0.6221 | 0.1368 | 0.0770 | -0.0028 | -0.0267 | 0.0074

The purpose of calculating the MI is to see how similar one object is to another
according to an appropriate metric. A normalized Euclidean distance (NED) is used to
quantify similarity between two vectors, x; and x,

Ix1=%l, x 100 % (7.12)
]x1 . le

NED =

To investigate similarity between ECG waveforms, we express the seven moments
in Table 7.2 as a vector x. A small NED means that the two vectors are similar. Since the
waveforms in Figs. 7.4(a) and (b) are similar from a perceptual point of view, their NED is
small 4.88%. Since Figs. 7.4(c) and (d) are somewhat different, their NED is 21.0%. The
waveforms in Figs. 7.4(e) and (f) are quite different, and their NED is 64.8%. From this
experiment, we conclude that the more similar the quasiperiodic ECG waveforms, the
closer the values of their moments. Since the MI describes the shape information of ECG

frames, we select it as features to classify quasiperiodic ECG patterns.
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7.3 ISODATA Clustering Algorithm

Since we have found the MI-based approach suitable to distinguish between differ-
ent ECG frames, discriminant criteria need to be established through the training set for
classification. For this purpose, we must solve two problems: (i) the training set needs to
be clustered in order to derive the discriminant criteria, and (ii) optimal discriminant crite-
ria need to be established. The solution for the problems will be discussed in the next two

sections.

An ECG signal is very complicated. Different people have different waveforms.
Even the beats of the ECG measured from the same person change with time. Therefore,
we cannot establish a standard set of ECG waveform patterns, and a training set can only
be prepared by clustering observations in an unsupervised clustering technique, in which

the clustering process does not depend on any prior information.

There are techniques for unsupervised clustering such as one-pass clustering, K
means, fuzzy C means, minimum distribution angle, ISODATA, self organization, and
adaptive resonance [Micr01]. Since the implementation of the ISODATA is more flexible
than the simple one-pass clustering, K means, and minimum distribution angle, and also
simpler than the fuzzy C means, self organization, and adaptive resonance, we choose it as

our unsupervised algorithm to cluster the training set of ECG patterns.

The ISODATA clusters the training set according to two criteria: (i) minimizing the
sum of squared distances of all points within a cluster domain to their cluster centre, trace

[M ], and (ii) maximizing the sum of squared distances of cluster centres to the centre of
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the entire data set, trace [M 5] where

Nc¢
My =Y p(0)M; (7.13)
i=1
NC
My = p(o)(u;-ug)(u;—ug’ (7.14)
i=1
where
N
uy =y p(o))u; (7.15)

j=1

and where N ¢ is the number of classes, M ; is covariance matrix of class ® o U is mean

vector of class ® I and p(w;) is the a priori probability of class ® ; [Pawl99].

The ISODATA uses an iterative technique that incorporates a number of heuristic
(trial and error) procedures to compute classes. Such a technique is similar to the K means
approach, but incorporates procedures for splitting, combining, and discarding trial classes

to obtain an optimal set of output classes [Fuku90].

The ISODATA algorithm analyzes samples of the input to determine a specified
number of initial class centres. Patterns are assigned to classes by determining the closest
class centre (according to the minimum FEuclidean distance). After each classification step,
the process calculates a new centre for each class by finding the mean vector. At the begin-

ning of each iteration, the process evaluates the set of classes produced by the previous
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iteration. Large classes may be split on the basis of a combination of factors, including the
maximum standard deviation for the class, the average distance of class patterns from the
class centre, and the number of patterns in the class. If the distance between the centres of
two classes falls below a user-defined threshold, the classes are combined. If the number
of patterns in a class falls below a user-defined threshold, the class is discarded, and its
patterns are reassigned to other classes. Iterations continue until there is little change in
the location of class centres in successive iterations, or until the maximum allowed num-

ber of iterations is reached.

In the ISODATA algorithm, 7 parameters must be initialized. They are: (i) the
number of classes expected, N, ; (ii) the minimum number of patterns in a class, N s (1i1)
the maximum standard deviation threshold, T, ;; (iv) the minimum distance threshold to
combine two classes, T ;; (v) the maximum merging pairs of class centres, C P (vi) the

number of allowable iterations, N ;; and (vii) the separate coefficient, S . [Bow92].

By changing the centres of the classes iteratively as well as merging and splitting
the classes, the ISODATA gives the approximations of the minimal trace [M wl and
maximal trace [Mp] with clustered classes. The procedure of this algorithm is given as

follow [Fuku90]:

1) Choose initial parameters and some initial clustering centres;

2) Assign pattern x to the nearest clustering centre. If
”x—uj”2<"x—ui”2, i=1,2,,Ng, i#j (7.16)

then x € w;, where N is the number of classes in training set, and ® ; 1s a sample
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subset with clustering centre u ; and N; patterns;
Check if any cluster does not have enough samples. For any j, if N i< N s then discard

Renew each clustering centre by taking the average of the patterns in their domain

1 :
uj= o Y x, j=1,2,N, (7.17)

Jxe(z)j

Compute the within distance d ; for each clustering domain ® ;

1 .
d; = N, Y lx-uf,. j=12-Nc (7.18)

xewj

Compute the average distance d N, for the entire training set
dy. =% 2, N, (7.19)

where N is the total number of patterns in the training set;

alf N,;=0,setT; = 0 and jump to Step 11,

b.IfN-<N,,/2, jump to Step 8,

c.IfN-22N ce OF N, is even, jump to Step 11; otherwise continue;

Compute the standard deviation Cj

1 2, .
%y = v D, Gg—w)’, i=1,2n,j=12-N, (7.20)

Jxe ®;

where » is the dimension of the feature space, x; is the ith component of the kth
observation in ®;, u;; is the ith component of u j» and o; is the ith component of
standard deviation ¢ ; of ® It

Find the maximum component of ¢ j»J=1,2,,N,expressed by ©

Jjmax>
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10) For any o >Tgy, J=1,2,,N., if dj>ch and Nj>2(Np+1), or

Jjmax

N-<N_,/2, then split u j into two new clustering centres u} and ujz-, delete u jo let

N = N +1, and jump to Step 2; otherwise continue;
11) Compute the pairwise distances among all clustering centres d i

dj = ui-uj,. i=1,2Ne-1,j=i+1,, N (7.21)

12) Take C p as merging pairs of clustering centres if it satisfies dij <T,, [dil i d iyjy? T

Dic jc b Where dy j, < dyj, < <d; ;. ;
13) Begin from d i,j, to merge the pair of clustering centres. The new centre is

1

Delete u;; and u ;;, then let No = N, -1;and

it

14) If N,; = 0, end the program; otherwise let N ai = N,;—1,and jump to Step 2.

The ISODATA algorithm has been applied to cluster the set of the moments from
an ECG signal with 505 beats. The code is provided in Appendix B.4.2. Figure 7.5 shows
the clustering result for ECG patterns. Since we cannot visualize the 7D space, three direc-

tions with the larger moments, ¢, , @,, and @5, are selected to show the clustering. Figure

7.5(a) shows the clustering plot with four classes and Fig. 7.5(b) has twelve classes. Clus-
tering output is decided mainly by the initial parameters including the number of expected
classes, the minimum number of patterns in a class, and the maximum standard deviation

threshold.
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Fig. 7.5. Clustering plot of features for the first three MIs of 505 ECG beats with: (a4
classes and (b) 12 classes. The centre of the class is marked by pentagrams.
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7.4 Neural Networks as Classifiers

With the clustered training set given by the ISODATA algorithm, a discriminant
criterion may be established for the classifier to perform the desired ECG frame classifica-
tion. The Bayes rule supplies a theoretical background for optimal classification. Statisti-
cal methods are important in classifier design. In addition, classification may include
neural network computing techniques. Neural networks contain a large number of inter-
connected processing elements or nodes. Like real neural systems, an artificial neural net-
work can learn by experience and develop criteria for making decisions. A neural network
classifier can analyze events and develop classification criteria that do not require assump-

tions about the distribution statistics of the events.

A neural network consists of a set of nodes and the connections between them.
Usually the nodes are grouped in layers, with connections from one layer to a subsequent
layer. In a neural network classifier, there are usually at least three layers of nodes: input,
hidden, and output layer. Each node connection has a weighting factor (weight) which
multiplies the signal traveling along the connection. Ideally, a particular set of input values
should cause the output layer to assign a value of 1 to the node corresponding to the cor-
rect class, and O to all the other nodes. During a learning phase, training patterns are
passed through the net in a number of iterations, and various criteria are used to update the
connection weights to strengthen a given connection for some patterns, and weaken it for
others. This iterative updating eventually converges to a set of weights that can discrimi-
nate between patterns in the training set effectively, and then can be used to classify the

entire data set.
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A typical neural network used for classification is the multiple layer feedforward
network (MLFN), called the backpropagation network (BPN). It has been proved to work
well in many different applications. Such a network can model any linear or nonlinear
deterministic function if sufficient training time and neurons are given. Spending long
time for training is a problem for this technique in applications. A more suitable candidate
for the classifier in ECG application is the probabilistic neural network (PNN). The PNN
is based on a statistical algorithm first proposed in 1972 [Meis72]. Specht showed how the
algorithm could be split up into a number of simple processes which could operate in par-

allel, much like in neural networks [Spec88].
7.4.1 Introduction to PNN

Figure 7.6 shows the architecture of the PNN. The exact number of neurons in
each layer is determined by the dimension of a feature space, the number of patterns in
each class, and the number of classes in the training set. The number of input neurons in
the input layer, which serves no functional purpose other than to distribute input data to
the next layer, is equal to the dimension number N, of the feature space used to describe
the objects to be classified. The pattern layer can be treated as a 2D array and contains one
neuron for each pattern in the training set. It represents a certain number of training sam-
ples (ny, "+, n Nc) from each of the N different classes for a total number of N in the
training set. This is a disadvantage of the PNN that the entire training set must be stored
for classification usage, which requires a large amount of memory. Each neuron in the pat-
tern layer measures a distance between an unknown input and the training pattern repre-

sented by that neuron. An activation function, known as the Parzen window, is then
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applied to the distance measure. It may be another shortcoming of the PNN when the clas-
sification speed becomes slow in some cases [Mast93]. In the summation layer, there are
N neurons. Each of them corresponds to one class of the training set. Such a neuron
sums the values of the pattern layer neurons corresponding to that class to obtain an esti-
mated density function of the class, which is desired by Bayes discriminant criterion. The
width, ¢, of the Parzen window is the only parameter needed to be decided for the PNN. It
shows the simplicity of the PNN. The number of neurons in the output layer is also equal
to the number of classes, N . The output layer is often a simple threshold discriminator
which activates a single neuron to represent the projected class of the unknown sample. In
more advanced implementations, the neurons in this layer can bias the results to compen-
sate for prior class probabilities and the cost of misclassifying a pattern to a certain class

[Mast95].

out 1

Input Pattern Summation  Qutput
Layer Layer Layer Layer

Fig. 7.6. The PNN architecture (from [KiChO0O]).
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The PNN has useful characteristics drawn from both neural networks and statisti-
cal analysis. First of all, the PNN has the neural network elegance of being able to handle
even the most complex data distributions effectively. The importance for many applica-
tions is that it can often provide mathematically sound confidence levels for its decisions
because it is based on established statistical principles. In fact, the classification abilities
of the PNN approach the optimal Baysian classifier. Another advantage of the PNN is that
it has a fixed architecture which allows its implementation to be relatively simple. Further-
more, in most situations, outliers have no real effect on decisions relative to the more fre-
quent events. The most important advantage of the PNN is that its training speed is faster

than that of the MLFNs, while maintaining the quality of classification.

Recall that for a simplified case, the summation layer requires an activation func-
tion which can be derived from Parzen’s probability density function (PDF). In the sum-
mation layer of this simplified case, the activation function n,(x) for class o, with
patterns in the training subset is defined as

ny

1 d(x, x;)
k.
j=1

where x is an unknown input vector, x ; is a training pattern belonging to W, d(x, x ) is

the distance measure between x and x :
d(x,x;) = |x- xj”2 (7.24)

W(y) is the weight function (also known as the potential function or the kernel), most
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commonly taken as the unnormalized Gaussian function given by

W(y) = exp(-y°) (7.25)

and © is the scale of the distance measure which decides the width of Parzen window that
surrounds each sample point. The performance of the PNN is dependent on it. For differ-
ent applications, the scaling parameter 6 can be selected as: (i) the same for all classes
and features, (ii) the same for all classes, but variant with different features, and (iii) vari-
ant for different classes and features. The selection of ¢ directly affects the training speed
and classification speed of the PNN. The simpler the change of o, the faster the PNN

[Mast95].

The Bayesian confidence levels of the PNN can be defined as

Ki(x) = Tnf—(-i (7.26)

C
>, )

Jj=1

A continuous classification error can be estimated from the normalized activation
function. If a pattern x ; belongs to class @, an ideal classifier should generate activations
as K (x j) =1 and that x;(x j) = 0 for [ # k. In most cases, we cannot achieve this ideal
classifier. Thus, there is a classification error for the practical classifier. The error attrib-

uted to this observation is [Mast95]

ex(x) = [1-x(x )1 + Y i cx ) (1.27)
l#k
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The total error for the given training set is

Ne nmg
ec)y= Y ¥ {[I—Kk(xj)]2+ EK?(xj)} (7.28)
k=1j=1 Ik

We see that the classification error is related only to the scaling parameter, .

7.4.2 PNN Training

In pattern recognition, we know that the higher the classification rate, the better the
classifier. A minimal classification error may be achieved by training the neural network
under a given training set. Training also means learning. Neural network learning is the
process of adapting connection weights in response to sets of input sample values and

resulting in sets of output values.

The basic method of training a neural network is trial and error. If the network is
not behaving the way it should, the weighting of a random connection is changed by a ran-
dom amount. If the accuracy of the network declines, undo the change and make a differ-
ent one. Unfortunately, the number of possible weights rises exponentially as new neurons
are added, making it impossible to construct large neural nets using the trial and error
method. In the early 1980s, Rumelhart and Parker independently rediscovered an old cal-
culus-based learning algorithm. The backpropagation algorithm compares the obtained
result with the expected result. It then uses this information to modify the weights system-
atically throughout the neural network. It also can be used reliably to train networks on

only a portion of the data, since it makes inferences. The resulting networks are often con-
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figured correctly to answer problems that they have never been trained on specifically.
Although this training takes only a fraction of the time that trial and error method takes, it

is still time-consuming.

The PNN is designed to recognize natural groups of patterns in the input data, and
to produce the same neural network output (class identification) in response to input of
similar patterns. From (7.23) to (7.28), it can be found that the performance of the PNN is
determined uniquely by the scaling parameter, 6. The ¢ (or a group of 6) may be found
when minimizing the continuous classification error in (7.28) under a given training set by
training the PNN. Since the total classification error e(c) of the PNN can be obtained, the
minimal error problem may be converted as to find the global extreme of a function. That

means to find the solutions of the following equation
d(e(o)) _
i 0 (7.29)

Since e(o) contains a lot of exponential terms, it is difficult to solve (7.29)

directly. We look for a numerical solution of (7.28).

There are many candidate techniques for finding extremes for a function including
the fixed step, steepest descent, Newton-Raphson, momentum, and conjugate gradient.
Mathematically, the neural network training refers to the process of finding the minimum
of a function. Some important issues in the PNN training include: (i) the estimated
extreme of classification error should be global, and (ii) the training speed should be fast.

There is no effective method to search the global minimum for a function f(x). Three
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main techniques, such as the steepest descent, the conjugate gradient, and the Newton-

Raphson, are discussed next.

The steepest descent is the simplest in gradient methods. The choice of direction
for updating x is where f decreases most quickly, which is in the direction opposite to the
gradient Vf(x;). The search starts at an arbitrary point x,, and then slides down the gradi-

ent, until it is close enough to the solution. In other words, the iterative procedure is
X, = xk—kaf(xk) (7.30)

where Vf(x,) is the gradient at a given point x k-

The reason why the steepest descent converges slowly is that it has to take a right
angle turn after each step, and consequently search in the same direction as earlier steps.

The conjugate gradient is an attempt to mend this problem by “learning” from experience.

Conjugacy means that two unequal vectors, d; and d ;> are orthogonal with respect

to any symmetric positive definite matrix, for example Q, if

dieQed; =0 (7.31)

1

This can be looked upon as a generalization of orthogonality, for which Q is the
unity matrix. The idea is to let each search direction d ; be dependent on all the other
directions searched to locate the minimum through (7.31). A set of such search directions

is referred to as a Q-orthogonal, or conjugate, set.

The algorithm of conjugate gradient is as follows:
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1) Initialize
dy = -Vf(xy) (7.32)

2) Determine the step length

min f(x,+ A dy) (7.33)
A >0

3) Update the point and gradient

Xp,o1 = X+ A d, (7.34)
4) Determine the direction of search

dpo1 = =Vf(x,, )+ B4, (7.35)

where

_ (VF G ) (VF (g4 ) = V()

T (7.36)
(Vf(xk)) d Vf(xk)

Br

The Newton-Raphson technique differs from the steepest descent and conjugate
gradient approaches. In the Newton-Raphson technique, the information of the second
derivative is used to locate the minimum of the function f(x). This results in faster conver-
gence, but not necessarily in less computing time. The computation of the second deriva-
tive and the handling of its matrix can be very time-consuming, especially for large

systems.

-192-



Chapter VII: Moment-Invariant Features and Neural Network Classification of ECG

The idea behind the Newton-Raphson method is to approximate the given function
f(x) in each iteration by a quadratic function, and then move to the minimum of this qua-

dratic. The Newton-Raphson technique uses the following iterative formula
Xper = %= H o Vi(x), k= 0,1,2, (1.37)

-1 . . . -1 .
where H,~ is the Hessian matrix and -H, e Vf(x ) 1s often referred to as the Newton

direction.

The size of the Hessian matrix is crucial to the effectiveness of the Newton-Raph-
son technique. For systems with a large number of dimensions; i.e. that the function f(x)
has a large number of variables, both the computation of the matrix and the calculation
that includes it will be very time-consuming. This can be mended by either just using the
diagonal terms in the Hessian; i.e. ignoring the cross terms, or just not recalculating the
Hessian at each iteration (which can be done due to slow variation of the second deriva-
tive). Another serious disadvantage of the Newton-Raphson is that it is not necessarily

globally convergent, meaning that it may not converge from any starting point.

Since the conjugate gradient is more efficient in the above techniques to find a

extreme for a function [Mast95], it is suitable for the PNN training.
7.4.3 PNN and Minimal Residual Classification

To our knowledge, the PNN has never been used in ECG data compression before.
In this thesis, one of the ECG compression techniques is to apply the PNN to ECG frame

classification. Then, the class information is employed to compress the signal. In this tech-

-193 -

e :



Chapter VII: Moment-Invariant Features and Neural Network Classification of ECG

nique, signal reconstruction is an open question. A class consists of a subset of the training
set. Since such a subset contains more than one frame, a classified ECG frame cannot be
reconstructed through the class information directly. Two techniques are proposed to

reconstruct the input ECG frames.

First, we propose a mean frame technique to reconstruct the ECG signal
[HuKi99b]. There are many frames in a class of the training set. The mean frame is intro-
duced to give a representation for such a class based on the patterns in the class. The mean
frame period is calculated from all the patterns belonging to that class. Then each frame in
the class is contracted/dilated linearly to the mean period. The mean frame of the class is

achieved by averaging the processed frames.

Now we connect the unknown frame to the mean frame through a class index. To
improve ECG reconstruction quality, the length, amplitude, and mean of the unknown
input are extracted and preserved for reconstruction. Although the compression ratio of
over 70:1 can be achieved by using four parameters to represent the ECG frame, this tech-

nique cannot control the local error amplitude in the reconstructed signal [HuKi99b].

Second, the minimal residual classification technique is proposed to reduce the
reconstruction error in ECG frame classification and compression. After PNN classifica-
tion, the unknown ECG frame is compared further to each pattern in the classified class of
the training set. Before the comparison, each pattern is contracted/dilated linearly to the
length of the input frame. The minimal residual and corresponding pattern are then deter-
mined. Such a pattern is used to reconstruct the ECG signal. Thus, in the minimal residual

classification, we use the class index, pattern index, length, amplitude of the input frame,
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and the sum of the mean of the input frame and the mean of the residual, to reconstruct the
ECG signal. Although this scheme needs five parameters to represent the ECG frame, the

reconstruction error is improved significantly.

7.5 Experimental Results and Discussion

ECG frame classification and compression experiments have been conducted. The
ECG data sampled at 360 sps with 11 bps are taken from the MIT-BIH ECG database
[Mo00d99]. The experiment uses the ECG signal contained in the file, x_100.txt, which has
a 10-minute recording of ECG data. Since this file contains 758 ECG periods, it can be
segmented into 758 frames, numbered sequentially from Frame 1 to Frame 758. The seven

MlIs of ECG frames are extracted from each period of the ECG signal.

We cannot use a supervised approach to evaluate the classifier since: (i) there is no
standard set of ECG frames, and (ii) the ISODATA and the PNN use different classifica-
tion rule. The classification error becomes less important since the class itself cannot be
defined strictly. Instead, an important parameter for evaluating the classifier is the recon-

struction error in this classification compression scheme.

To use the PNN for classification, a training set and a testing set should be pre-
pared. We use the hold-out technique to allocate the 758 ECG frames [Paw199]. The hold-
out technique allocates 2/3 of the sample set to the training set and 1/3 to the testing set.
The ISODATA algorithm is used for clustering the training set. By changing the initial val-
ues for clustering, we find that the final class distribution is decided mainly by the initial

parameters; i.e., the number of expected classes, standard deviation threshold, and dis-
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tance threshold between the class centres.

The Matlab V6.1.0 supplies a neural network toolbox that is convenient for PNN

simulation. PNN training and classification can be done just by calling functions.

Since the classification is for the purpose of compression, it is necessary to recon-
struct waveforms and calculate reconstruction error. Other than the classification error, the
reconstruction error is another important parameter to indicate the feasibility of this
scheme. The reconstruction error is measured according to (2.14) to (2.16). Five parame-
ters, the class index, pattern index, length, amplitude of the input frame, and the sum of the
means of the input frame and the residual, are preserved to reconstruct a frame of the ECG
signal. Without an optimal bit allocation, the class index, pattern index, and length are rep-
resented by fixed length of 8 bits each. The amplitude of the frame and the sum of the
means are allocated 11 bits, the same as the original data. It should be noticed that the pat-
terns in the training set used as a frame dictionary must be known to both the encoder and
decoder in the compression. According to (2.13), the compression ratio without consider-

ing entropy encoding is

_ 70204 x 11
r 254%x(8+8+8+11+11)

R

66.1:1

where 70204 and 254 are the length and the number of frames of the testing set, respec-
tively. Since the bit allocation of the parameters is not optimized, this R, is the worst
case. An optimal bit allocation for each parameter would require entropy calculations for

each frame.
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The classification and compression are performed on ECG frames. The code is
provided in Appendices B.4.3-4. Table 7.3 gives the classification time, classification
error, and reconstruction error in our experiment. By changing the number of classes, the
classification time of the 505 ECG frames varies from 84.7 to 384 s and the MPRD varies
from 14.65% to 16.35% by a Matlab program running on the Pentium(R) III computer as
described in Sec. 6.7.2. When the number of the classes increases, the classification error
and reconstruction error of the testing set increase. On the other hand, the classification
time decreases with increasing classes. One of the error sources for classification is intro-
duced due to the incompletely consistent criterion used by the ISODATA algorithm and
the PNN, as described in Sec. 7.3 and Sec. 7.4.1. Another reason is the somewhat small
training set. The reconstruction error increases with classes due to fewer patterns remained
in some classes. Considering the trade-off between reconstruction error and classification

time, 14 classes are a good choice from the experimental results in our case.

The experimental results have demonstrated that the PNN is a good classifier for
compression because of its: (i) low reconstruction error: when C = 14, we get MPRD =
15.94%; (ii) short training time: it takes less than 1 minute for training the PNN for the
505 events in the training set by using the above mentioned Pentium(R) III computer; and
(ii) short classification time: the same computer can complete the classification of one

observation within a second.
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Table 7.3: Classification error and reconstruction error of the hold-out estimate for ECG
data, where number of patterns = 758, PRD = the percent root-mean-square difference,
NPRD = normalized PRD, and MPRD = mean removed PRD.

ok | o | Clsiesion | a5y | wew st | e
4 386 3.56 0.55 14.65 1.71
6 332 8.30 0.56 14.93 1.73
8 187 6.72 0.58 15.61 1.80
10 144 10.3 0.59 15.88 1.83
12 125 13.0 0.60 16.16 1.86
14 126 10.7 0.59 15.94 1.84
16 98.6 13.4 0.61 16.40 1.88
18 88.3 15.0 0.60 16.01 1.85
20 84.7 154 0.61 16.35 1.88

A high compression ratio of 66.1:1 is obtained by using five parameters for each
beat to reconstruct the ECG signal. Figure 7.7 shows the original and reconstructed ECG
signal which is processed through the feature extraction, PNN classification, and minimal
residual techniques. The 5 beats are successively taken from a recording. The reconstruc-
tion error is measured by the PRD. The PRD ranges from 0.45% to 0.61% in this case.
Figure 7.7(a) demonstrates a good reconstruction for an input ECG frame. Its reconstruc-
tion error is shown in Fig. 7.7(b). It is observed that the error distribution is not even and
the larger error occurs at transition regions of the signal such as the QRS complex, the P
wave, and the T wave. The same comments can be made from other reconstruction exam-

ples in Fig. 7.7.
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Fig. 7.7. Comparison of the original and reconstructed waveforms for the classification
compression of ECG frames with 10 classes. The left figures show 5 sequential ECG
frames and their reconstructions. The corresponding reconstruction errors are shown in
the right figures.
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The ISODATA algorithm can complete clustering automatically, under some initial
parameters. It has the ability of merging and splitting. However, it is only suboptimal
when using the criteria of minimizing trace [My,] and maximizing trace [My] sepa-
rately. It is time-consuming to find a global optimization by adjusting the initial parame-
ters manually. Consequently, an automatically unsupervised clustering algorithm is

needed in light of the following criterion [Paw199]
max(trace [My M 1) (7.38)
7.6 Summary

This chapter presents an attempt to use MI features and the PNN to classify, com-
press, and browse ECG signals. The duration of the ECG beat changes with time because
of the nonstationarity of the ECG signal. The MI technique solves the problem by extract-
ing features from the ECG beat with the same dimensionality. The MI features represent
the morphology information in the ECG signal. The same number of feature dimension
makes the ECG classification possible using neural networks. The dimension number of
the features may be much smaller than the sample number of the beats, which allows a fast

classification implementation.

Before the ECG classification by the PNN, the training set of the ECG signal needs
to be clustered. There is no standard training set for the ECG beat since it changes with
each individual and with time. Therefore, the training set of the ECG beat with MI fea-
tures is clustered by the ISODATA algorithm [HaBa65] in an unsupervised mode. Then

such a training set is used to establish discriminant criteria for the neural network classi-
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fier.

The PNN is trained by the clustered training set first. Then, it is used to classify the
ECG frames. Experiments show that it can classify the ECG beats in terms of the MI fea-
tures. The training speed of the PNN is fast. The classification results of ECG frames can
be employed to compress or browse the ECG signal. A high compression ratio of about
66:1 is achieved with an MPRD of about 16%. The ECG compression based on beat clas-

sification can be implemented in real time.

The next chapter presents another classification and compression method in which
a dynamic time warping (DTW) is applied to register the ECG frames in time for classifi-
cation. Then a block encoding is proposed to compress the signal based on segments of the
frame. Instead of classifiying the ECG frames based on their statistical characteristics, the
DTW technique will be used to study the ECG signal through a nonlinear mapping in the

next chapter.
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CHAPTER VIII

DYNAMIC TIME WARPING CLASSIFICATION AND BLOCK
ENCODING FOR ECG FRAME

8.1 Introduction

The previous chapter presented the MI feature extraction and PNN classification
techniques for the classification and compression of the ECG frame. In order to explore
further improvements, we now propose another ECG frame classification and compres-
sion method based on a dynamic time warping (DTW) matching, a windowed-variance

smoothing, and a block encoding techniques.

As we have already discussed, a major problem in ECG frame classification is the
nonstationarity of ECG frames, which means the Euclidean distance is not adequate to
compare the similarity between two ECG frames due to the inconsistency of the frame
length. It is noticed that heartbeat variation causes nonlinear time fluctuation of ECG
frames. Elimination of this fluctuation by linear time-normalization has been one of the
techniques for ECG classification research. However, such a linear normalization tech-
nique in which the timing difference between ECG frames is minimized is inherently
insufficient for dealing with the highly nonlinear ECG frame fluctuations. On the other
hand, the DTW matching, as discussed in this chapter, is a pattern matching algorithm
with a nonlinear time-normalization effect. It has been used successfully in speech recog-
nition [SaCh71]. In this algorithm, the fluctuation in time is modelled approximately by a

nonlinear warping function with some carefully specified properties. The timing differ-
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ence between any two ECG frames is minimized by warping the time duration of one
frame such that the maximum coincidence is attained with the other frame. Then the time-
normalized distance is calculated as the individual minimized residual distance between
them. This minimization process is carried out efficiently by the DTW technique

[SaCh78].

A new classification criterion for the DTW, the mean of absolute residual, is
obtained by searching an optimal or suboptimal mapping path between a warped ECG
frame and a template from the end of the frame to its start. The ECG frame is placed into
the class with which it has minimal residual distance, if the residual is within the range of

a certain residual threshold. Otherwise, a new class is generated.

Since the nonstationarity of the ECG signal makes the warping function compli-
cated, compression of the ECG frame by a direct use of the warping function is difficult.
Instead of using the warping function directly, the ECG frame can be classified approxi-
mately by time-normalizing the QRS complex, the T wave, and the P wave, only. Conse-
quently, an effective partitioning of the ECG frame into the segments is required for such
an approximate normalization. A windowed-variance technique is proposed to smooth the
ECG signal, which makes the segmentation of the ECG signal simple. Then a block
encoding is applied to the segments of the ECG signal to encode and reconstruct the sig-

nal.

8.2  DTW Mapping

In this section, we will discuss the DTW matching algorithm for ECG frame clas-
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sification. One of the most fundamental concepts in the nonlinear pattern recognition is
“time-warping” an input pattern to a reference pattern so as to align the two patterns in
time. The DTW proposed by Sakoe and Chiba is one of the most versatile algorithms in

speech recognition [SaCh71]. Figure 8.1 illustrates the basic idea about the time warping.
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i
) , . . . X

3 s 3 S ° % 0.2 0.4 0.6 08 ' 1
Time [s] |
1 = . ; i
( ) ECG Frame |
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!
0.6 |
|
0.4t i
|
02 WW
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Fig. 8.1. llustration of time warping. (a) Reference (template) ECG frame.
(b) Input ECG frame. (c) Time warping function.

Figure 8.1(a) represents a template (reference) ECG frame obtained through a
residual threshold technique, as to be described in Sec. 8.3.1. Figure 8.1(b) is the current
input ECG frame which can be aligned (warped) to match the template as closely as possi-

ble, according to the warping function shown in Fig. 8.1(c). If the warping function is sim-
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pler than the input frame, it can be encoded more compactly than the input frame.
Consequently, the frame compression or classification can be done more efficiently. In
general, there may be more than one template in a codebook (dictionary).

Let us denote the template of the ECG signal by {x,(j), 1<j<J}, and an
unknown frame of the signal as {x(i), 1 <i<T}. The purpose of the time warping is to
provide a mapping between the time indices i and j such that a time registration (align-
ment) between the template and the unknown frame of ECG signals is obtained. We

denote the mapping by a sequence of points v = (i, j), between i and j as [SaCh78]

M = {v(k),1<k<K} 8.1)

where

v(k) = (i(k), j(k)) (8.2)

This sequence can be considered representing a function which approximately realizes a
mapping from the time axis of template x,(j) onto that of frame x(i). It is called a warp-

ing function.

A complete specification of the warping function results from a point-by-point
minimal distance measure between the template x,(j) and the frame x(i). A similarity
measure, or a distance function, d, for every pair of points (i, j) within the adjustment

window shown in Fig. 8.2 is given by

d(v(k)) = d(i(k), j(k))
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= (k) - x,(i(k))|, 8.3)

where | +||, is the Euclidean norm.
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Fig. 8.2. Adjustment window between a template and an input frame of the ECG signal.

The smaller the value of d, the higher the similarity between x(i) and x,(j). Given
the distance function d, an optimal dynamic path m is chosen to minimize an accumulated

distance d,, along the path [RaRL78]

K
d, = min Y d(v(k))W(k) (8.4)
{Mr=1

where W (k) is a nonnegative weighting coefficient, which is introduced intentionally to

make the d , measure flexible.

An effective technique for determining the optimal path is dynamic programming
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[SaCh71]. Using this technique the accumulated distance to any grid point (7, j) can be

determined recursively as [RaRL78]
d,(v(k)) = d(v(k))+min(d,(v(k-1))) (8.5)
where d,(v(k)) is the minimal accumulated distance to the grid point (i(k), j(k)) and

has the form

k
d,(v(k)) = 3 d(v(n))W(n) (8.6)

n=1

The time variable of the ECG signal has properties such as continuity, monotonic-
ity, and limitation on the ECG transition. These conditions give the following restrictions

on the warping function [SaCh78]:
1) Monotonic condition expressed by

i(k—1)<i(k) and j(k-1)<j(k) 8.7)
2) Continuity condition expressed by

i(k)—i(k-1)<1 and j(k)-jk-1)<1 (8.8)

Notice that the above two restrictions lead to the following relation between two con-

secutive points
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(i(k), j(k) - 1)
v(k=1) = 3 (i(k) -1, j(k) - 1) (8.9)

(i(k) -1, j(k))

3) Boundary conditions expressed by

i(1) =1, j(1) = 1

i(K)y=1,jK)=1J (8.10)

4) Adjustment window condition expressed by

|i(k) - j(k) < N (8.11)

where N, is an appropriate positive integer called window size. This condition corre-
sponds to the fact that time-axis fluctuation does not cause an excessive timing differ-

€nce.

5) Slope constraint condition that could be described as
“Neither too steep nor too gentle a gradient is allowed for the warping function M

because such deviation may cause undesirable time-axis warping.”

Sakoe and Chiba demonstrated that when the slope is equal to 1 and the search
path takes a symmetric form, the DTW algorithm reduces the number of paths to be
searched and obtains optimal results [SaCh78]. The weighting coefficient of the symmet-

ric form is
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W(k) = (i(k)—i(k— 1))+ (j(k) - j(k-1)) (8.12)

The symmetric DTW equation with slope of 1 is

d,(v(k)) = d(v(k)) +

dy(i(k—1), j(k=2)) +2d(i(k), j(k—1))
min|  d,(i(k-1), j(k-1)) +2d(v(k)) (8.13)
dy(i(k~2), j(k-1)) +2d(i(k - 1), j(k))

Finally the optimal accumulated distance d , 1s normalized by (I +J) for a symmetric

form.

8.3  ECG Frame Classification by DTW

Since the DTW technique has been applied in speech recognition successfully, we
use it to classify ECG frames. The ECG and speech signals have similar characteristics
such as: (i) they are nonstationary and originate from nonlinear systems, and (i) they can
be divided into frames, with the separability of ECG frames much easier than the separa-
bility of speech utterances such as sentences, isolated words, or phonemes in connected

(continuous) speech.

8.3.1 Modified DTW Classification Rule for ECG

To classify an ECG frame, the DTW is used to calculate an optimal distance
between the ECG frame and a template. However, we found that the optimal distance of

many frames does not correspond to the final point (1, J). Figure 8.3 shows this case.
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Fig. 8.3. Warping function obtained by searching the mapping path from the start to the
end. This is an example of the final point (1, J) that does not correspond to the optimal
distance.

It means that sometimes the optimal mapping exists between one frame and only a
part of another. Therefore, the warping rule must be modified for ECG frames. Unlike the
original DTW, we first calculate the minimal accumulated distance to each grid point in
the adjustment window according to (8.6), and then search the mapping path, starting from
the final point (I, J), which guarantees that at least a suboptimal mapping path can be
found if (I, J) does not correspond to the optimal mapping. We now obtain two new map-
ping series, {j(k), 1<k<K} and {i(k), 1<k<K}. The corresponding residual is
{R(k), 1 <k <K }. The mean of absolute residual, R, is calculated and taken as the clas-

sification criterion for ECG frames.

We have also modified the classification criterion for the DTW, originally used in
the speech recognition. The minimal accumulated distance is not used as the classification

criterion for the ECG frame since such a distance contains a weighting factor.
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There are also pronounced differences between the DTW for speech and ECG. In
speech, the boundaries of isolated utterance are imprecise due to the ambient noise and the
common detection technique based on the cumulative power of the signal. On the other
hand, although the ECG signal is also contaminated by noise, its frame detection tech-
nique is very accurate as it looks for the well-defined maxima in the QRS complex. Conse-
quently, the DTW in speech can proceed either from the start of a frame to its end or in the
opposite direction with similar penalty, provided the bounds are well defined, while the
DTW in ECG must be done from the end of a frame to its start to give a warping for the

entire frame.

The frame classification and establishment of a template set are carried out at the
same time. A classification threshold T, is setup to decide whether an input frame is a
new class or can be classified to some class. The T, is related to the residual error directly.

The classification procedure consists of the following four steps:

1) Partition an ECG frame by detecting the R peak;

2) Warp the unknown input ECG frame with a template frame in time;

3) Calculate the mean of absolute residual, R, between the warped frames; and

4) Put the input frame into template set to add a new class if R > T, for any R; other-

wise, place it into the class which corresponds to the minimal R .

8.3.2 ECG Classification Results by DTW and Discussion

Experiments have been performed to classify the ECG frame using this modified

DTW algorithm. The code is provided in Appendix B.5.1. The ECG data sampled at 360
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sps with 11 bps have been taken from the MIT-BIH ECG database [Mood99]. The experi-
ment uses the ECG signal contained in the file, x_100.txt, which has a 10-minute record-
ing of ECG data. As described in Sec. 7.5, the 758 ECG periods in this file is segmented

into 758 frames, numbered sequentially from Frame 1 to Frame 758.
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Fig. 8.4. Examples of ECG frames and templates before (left) and after (right) the DTW.
The pairs (a) and (b), (c) and (d), (¢) and (f) illustrate such a classification, with the NPRD
error shown on different frames.

We use the DTW to classify the above recording under a residual threshold of
T, = 0.01, which generates 53 classes for a frame dictionary. Some classification exam-

ples are given in Fig. 8.4. Figure 8.4(a) shows Frame 5 and Class 4 to be processed. The
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position difference between corresponding feature waves such as the QRS complex, the T
wave, and the P wave for the two waveforms changes with time. Figure 8.4(b) is the corre-
sponding frame and class after warping. The feature waves between the two frames are
registered precisely in time. Only a small difference can be observed. Notice that the
warped frame is longer than the original. The warping function is nonlinear. The two
waveforms in Fig. 8.4(b) are very similar. Therefore, Frame 5 is classified as Class 4.
Another two examples are shown in Figs. 8.4(c)-(d), and Figs. 8.4(e)-(f). Again, a good
registration is observed for the feature waves of the ECG frame. Here, all patterns are nor-
malized to [0,1] by: (i) subtracting the minimal value of the frame from the signal, and (ii)

then dividing the signal by its maximal value.

Figure 8.5 is the residual between the waveforms in Fig. 8.4(b). Compared to the
original frame, the amplitude of the residual is small. The maximal normalized absolute
residual is about 0.06. Its NPRD is 1.26%. The small residual error is consistent with the
high similarity seen in Figs. 8.4(b), (d), and (f). Although the amplitude of the residual at
the QRS complex is greater than the other part of the frame, its magnitude is still smaller
than errors produced by other techniques. The errors are also consistently small, as dem-
onstrated by NPRD of 1.33% calculated over the entire 10-minute ECG data containing

758 ECG frames.

Dynamic time warping classification will be used to compress the ECG signal
through a lossy compression technique. Such a technique is developed to remove redun-
dancy in the signal to achieve a high compression with minimum affect on the signal, not

directly on diagnosis information. Time registration between ECG beats is not for diagno-
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sis purpose but for data compression capable of providing a high-quality ECG recon-

structed signal that may be used by cardiologists.
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Fig. 8.5. The residual between the ECG frame and the template in Fig. 8.4(b).

84  ECG Compression with Block Encoding

One of the applications of the ECG frame classification is to compress the ECG
signal. Making use of the classification information contained in the ECG frames to do
compression can lead to more efficient techniques. We have described different ECG
frame classification techniques and provided some classification results [HuKi02a]
[HuKi99b]. Although the DTW can achieve low residual error in the frame classification,
the warping function between the input frame and template frame is still too complicated
for compression purpose. As explained before, since the inherent nonstationarity of ECG
signals poses a major obstacle in signal compression of ECG frames, the classification

information cannot be used directly to describe the original signal.

Consequently, another important problem in ECG frame compression is how to
describe efficiently the input frame given a template frame. By observing Fig. 8.1 care-

fully, the complicated warping function may be simplified into several piecewise-linear
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segments for frame description. In ECG data compression experiments, we also found that
a large reconstruction error often occurs at the transition area of the waveform. Therefore,
we propose block encoding to process the complicated nonstationarity of the ECG signal.
A windowed-variance technique is proposed to smooth a noisy ECG signal and then parti-
tion an ECG frame into five segments (corresponding to feature waves of the ECG) for

block encoding purpose.

Voltage [mV]

0 0.2 0.4 0.6 0.8 1
Time [s]

Fig. 8.6. An ideal ECG frame with typical features.

8.4.1 Windowed-Variance of ECG

As we shall see in Sec. 8.4.2, block encoding of an ECG frame involves separate
encoding of the QRS complex, the T wave, and the P wave. Therefore, the first step in this
scheme is to partition the ECG frame into different parts called blocks. It is difficult to find
a general technique to detect the T wave and the P wave directly from the ECG signal
since the recorded ECG waveform shown in Fig. 8.7 is much more complicated than the
ideal waveform of Fig. 8.6. The noise in the signal and the nonstationarity make ECG
waveforms fluctuate with time. Instead of analyzing the signal directly, detecting the tran-

sition in the waveform may be done in a transform domain. A windowed-variance (W V)
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technique is proposed to detect such features in the ECG frame.

o
®

°
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Fig. 8.7. A recorded ECG waveform.

Assume x(i) is a discrete ECG time series with length N, where i is an integer. In
general, variance Gi is used to measure the total fluctuation degree of the signal. If we

take y(i;j) as a windowed part of the signal

yisj) = x()), i-5<j<ivk (8.14)
where L is the length of the window, then the degree of fluctuation of y(i;j) can be
described by O';(i) , the variance of y(i;j). If we let y(i;j) proceed along x(i), then the
function {cy(i), 1 <i< N} will indicate the local change in x(i). The curve of G;(i) will
be smooth if L is selected properly [Kins94b]. Notice that ci(i) is the conventional vari-

ance computed over a window, and is not the variance fractal dimension D, computed

over a window at multiple scales [Kins94b].

Figure 8.8(a) shows that the WV curve is much smoother than the original ECG
waveform, and has elevated values for the desired ECG feature regions. The flat areas in

the signal give low values in the variance domain. Only the transitions of the ECG wave-

-216-



Chapter VIII: Dynamic Time Warping Classification and Block Encoding for ECG Frame

form lead to elevated envelopes in the WV curve. Consequently, it is much easier to detect
the ECG features in the smooth WV curve than in the original ECG waveform. An algo-
rithm based on a threshold T, , an envelope length L,, and an envelope distance d, is
proposed to detect the elevated envelopes in the WV curve. The detection procedure is

based on the following three steps:

1) If 63(i)<T,, then o,(i) = 0;
2) Forany 6,(i)>0,n; Si<n,,
if (ny—ny+1)=2L,,
then c;(i) = vY,Y = const,
otherwise c;(i) = 0;
3) Let d be the difference between the end point of one envelope and the initial point of

the next envelope. If d < d,,, the two envelopes are merged.

Figure 8.8(b) gives an example of four envelopes. Step 1 detects envelopes by
applying a given threshold. Then, a small envelope is removed by Step 2. After Step 3,
Fig. 8.8(c) shows that the last two adjacent envelopes are merged into one envelope. It is

seen clearly that this detection scheme identifies the main features in the ECG frames.

The code of partitioning an ECG frame is provided in Appendix B.5.2.
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Fig. 8.8. The three stages of the WV algorithm. (a) The WV curve of an ECG frame. (b)
The envelopes of the WV curve detected by a threshold (after Steps 1 and 2). (¢) ECG fea-
tures detected by the WV technique (after Step 3).

8.4.2 Block Encoding and Reconstruction

The ECG signal can be compressed based on frames because of the quasiperiodic-
ity of the signal. The ECG frame compression may be realized through frame classifica-
tion and block encoding. Such a classification is carried out by the DTW technique, which
aligns an unknown input frame with a template frame in time. A minimal residual between

the time warped frames is used as the criterion for classification [HuKi02a].
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Once the ECG frame is classified, an important issue is how to describe the frame
by class information for ECG frame compression. A simple technique is to contract/dilate
the template frame to the input ECG frame linearly in time. Although this leads to a very
high compression ratio, the accompanying reconstruction error can be very large. The
large reconstruction error often occurring at the transition areas of ECG signals prompts

us how to improve the reconstruction error.

To reduce the reconstruction error, we propose to partition the ECG frame into fea-
ture regions, and then treat them as blocks to encode. Generally, transitions in the ECG
signal occur at the QRS complex, the T wave, and the P wave. We partition the ECG frame
into five such regions: the QRS complex, ST segment, the T wave, TP segment, and the P
wave. The ECG frame partitioning is done by the WV technique, which transforms the
ECG waveform into a smooth curve in the variance domain. Block encoding means to
encode the block of the ECG frame by the corresponding block in the template frame. In
general, the block from the current ECG frame cannot maintain a fixed relationship with
the corresponding block from the template frame since the ECG signal is nonstationary. A
linear contraction/dilation between the corresponding segments is done to reconstruct the
signal. Block encoding for the ECG frame based on the frame classification and the WV

techniques consists of the following five steps:

1) Extract an ECG frame by detecting the R peaks;
2) Apply the DTW to classify a normalized unknown input ECG frame into a class which
contains a normalized template frame;

3) Partition the input frame and the template frame into five blocks by the WV technique;
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4) Encode the five blocks of the input frame; and
5) Reconstruct the block of the input ECG frame by linear contracting/dilating of the cor-

responding segment in the template.

The purpose of block encoding is to reduce the reconstruction error in the ECG
frame compression. Although such a technique cannot achieve the low error of the DTW
technique, the above model gives an optimal approximation for the ECG frame compres-

sion.

Eight parameters are used to encode the ECG frame. The parameters include: (1)
the class index, (ii) the amplitude and the mean of the input frame, and (iii) lengths of the
five segments. Without an optimal bit allocation, each parameter is represented by 8 bits.
Therefore, the compression ratio by the block encoding can be high and is not related to

the reconstruction error.

8.5  Experimental Results and Discussion

We have performed three experiments to compress ECG data through the block
encoding technique. As described in Sec. 1.2, recorded regular ECG data are used in the
ECG beat-based compression techniques. In the experiment, the ECG data have been
taken from the same data file as used by the DTW classification in Sec. 8.3.2. The total
number of samples is 10 minutes X 60's x 360 sps = 216,000. The 758 ECG periods con-

tained in this file are segmented into 758 frames, numbered sequentially from Frame 1 to

Frame 758.

As described in Sec. 8.3.2, the above ECG frames are classified by the DTW under
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a residual threshold of T, = 0.01, which generates 53 classes for the frame dictionary.
Such a frame dictionary must be known to both the encoder and decoder in the compres-

sion.

The WV technique is applied to detect feature segments in the ECG frame for the
block encoding. The parameters of the algorithm are set as T 4 = 0.018, L = 28 samples,

and L, = d, = 15 samples to partition the ECG frame.

Since there are 758 frames, each represented by eight parameters and the file con-
tains (216,000 samples x 11 bps)/8 bit = 297,000 bytes, then according to (2.13), the

compression ratio R, for the block encoding technique is [Kins98]

297000

o= grmag= 4898:1 (8.15)

Notice that the quantization of the parameters is not optimized. An optimal bit

allocation for each parameter would require entropy calculations for each segment.

An objective evaluation of the classifier is based on a measure of the difference
between the warped ECG frame and the corresponding template. As discussed in Sec.
2.5.3, the PRD is one of the objective evaluation criteria. It is often employed to measure
the error between the original signal and the reconstruction in ECG data compression.
Since the distortion measure given by the PRD varies with the DC components (mean) of
the signal, it should not be used for algorithm evaluation with different ECG databases.
This experiment uses the NPRD to evaluate the performance of the compression scheme

and gives a very small NPRD of 2.53% for a 10-minute ECG recording.
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In order to see how the compression performs on individual frames, we shall dis-
cuss three frames (15, 5, and 35) belonging to different classes (8 and 4). Figure 8.9 illus-
trates an example of the original and reconstructed waveforms by applying the block
encoding to the ECG frame. Figure 8.9(a) shows Frame 15 and Class 8, as classified by the
DTW technique. Figure 8.9(b) shows the corresponding frame and its reconstruction
through the block encoding by partitioning the frame into five segments. The two wave-
forms in Fig. 8.9(b) are very close. The block encoding registers the positions of the QRS
complex, the P wave, and the T wave, which have important significance in clinical diag-
nosis. Figure 8.9(d) shows the residual for this reconstruction. The NPRD of the recon-
struction of Frame 15 is about 1.79%. The normalized maximal reconstruction error for

this frame is 0.09. The large reconstruction error occurs at the area of the QRS complex.
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Fig. 8.9. An example of ECG frame compression by the block encoding. (a) Frame 15 is
classified into Class 8 by the DTW. (b) Reconstruction of Frame 15 by the block encod-
ing. (c) Residual for the full frame encoding. (d) Residual for the block encoding.
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As a comparison, Fig. 8.9(c) gives reconstruction residual of Frame 15 by a full
frame encoding; i.e., linearly dilating the length of Class 8 to that of Frame 15. The NPRD
of the reconstruction of Frame 15 is now larger, about 2.75%. The normalized maximal
reconstruction error for this frame is also larger, 0.21. The largest reconstruction errors

occur in the region of the QRS complex.

From Figs. 8.9(c) and (d), the improvement of reconstruction quality for the ECG
signal is observed from the NPRD and maximal reconstruction error. The error decreases

sharply in the region of the QRS complex.

Another two reconstruction examples for the ECG signal compression by the
block encoding are shown in Figs. 8.10(a)-(b) for Frame 5, and Figs. 8.10(c)-(d) for Frame
35, both of Class 4. Again a good registration is observed for the feature segments of the
ECG frame. Although a large reconstruction error still occurs in the region of the QRS
complex, it decreases sharply compared to the full frame encoding. Here the amplitude of

all the frames is normalized to [0, 1], as described in Sec. 8.3.2.

-223-



Chapter VIII: Dynamic Time Warping Classification and Block Encoding for ECG Frame

-
-4

Frame: 5 Frame: 5

| (3.) Class: 4 ] | Cilass: 4
3 0.8 - ~original frame| @ 0.8 ® Error: 1.88%
= —ECG class = - —original frame
So.6} go.6} —ECG class
<t <
g B
=0.4r F0.4
E E
=2 2

0.2 o.2} )

0 0.2 0.4 0.6 0.8 1 (o] 0.2 0.4 _ 0.6 0.8 1
Time [s] Time [s]
1 1
Frame: 35 Frame: 35
(C) Class: 4 (d) Class: 4
0.8 - ~original f | 0.8 . Y
K- original frame K Error: 3.19%
:_=__’ —ECG class =2 - -original frame
2'0.6 F g‘o,e + —ECG class
=T -
I B
Zo0.4f 0.4t
o b =1
E E
2 2
0.2r ] 0.2 ‘ )
] 3 | oo \
O0 0.2 0.8 1 00 0.2 o] 6 0.8 1

.4 0.
Time [s]
Fig. 8.10. ECG frames before (left) and after (right) reconstruction by the block encod-

ing. The pairs (a) and (b), and (c) and (d) illustrate such a reconstruction on two distinct
frames with the NPRD error shown.
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8.6 Summary

This chapter presents another attempt to classify, compress, and browse ECG sig-
nals. The scheme includes using the DTW for ECG frame classification, and then encod-
ing the blocks in the ECG frame for signal compression. An analysis of a probable heart
disease can be speeded up by browsing ECG recording automatically through the classi-
fied frames. Although such a scheme is one of the more elaborate techniques described so
far, it should be noticed that this browsability can only be used as an analysis tool, not a
diagnosis tool, since the classification is based on ECG waveform characteristics, not on

disease characteristics.

Since the Euclidean distance is not suitable to compare the similarity between two

ECG frames due to the inconsistency of the frame length, the DTW matching is applied to
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eliminate this fluctuation by time-normalizing ECG frames for the frame classification
research, In this DTW algorithm, the fluctuation in time is modelled approximately by a
nonlinear warping function with some carefully specified properties. Timing difference
between two ECG frames is minimized by warping the time axis of one frame such that
the maximum coincidence is attained with the other. A new classification criterion for the
DTW, the mean of absolute residual, is proposed to search an optimal or suboptimal map-
ping path between a warped ECG frame and a template from the end of the frame to its
start. The ECG frame is placed into the class with which it has minimal residual distance,
if the residual is within the range of a certain residual threshold. Otherwise, a new class is

generated.

It appears that the DTW has been employed to classify ECG frames for the first
time in literature. Experiments show that the DTW algorithm with the modified classifica-
tion criterion is effective to find a nonlinear mapping between two ECG frames. From a
perceptual point of view, ECG frame classification using the modified DTW algorithm is

successful. The NPRD of 1.33% on a 10-minute recording is small.

There are three problems with the DTW algorithm applied to ECG frame classifi-
cation: (i) the DTW algorithm is time-consuming, (ii) distribution of the residual ampli-
tude is uneven, and (iii) the warping function is complicated and nonlinear, which leads to
a problem for ECG signal compression through frame classification. Consequently, a
block encoding technique has been proposed to encode an ECG frame with only five

blocks.

In the block encoding, compression of a complicated ECG frame is converted into
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a linear time registration problem of blocks. The WV technique makes the detection of
features of ECG frames easy. The linear contraction/dilation of segments during recon-
struction is also easy to be implemented. The block encoding reconstructs the feature
waves of the frame, such as the QRS complex, the T wave, and the P wave well. A com-
pression ratio of 48.98:1 is achieved, and is not related to the reconstruction error. The
NPRD is 2.53% for a 10-minute ECG recording. The block encoding model tries to
approximate classified ECG frames with a low bit rate. Although its NPRD of 2.53% is
greater than that of 1.33% which is obtained by applying the DTW to the ECG frame clas-

sification, the reconstruction error is still low.
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CHAPTER IX

CONCLUSIONS AND RECOMMENDATIONS

9.1 Conclusions

This thesis has presented a study of nonlinear analysis methods to characterize the
nonstationary one-channel ECG signal, with particular interest in the efficient representa-

tion of the signal.

The first objective was to develop an improved ECG compression scheme. A
scheme of a nonlinear IFS (NIFS) transform combined with signal partitioning based on
the compositional complexity measure by the VFDT has been presented to compress the
ECG signal rapidly. The NIFS of order 2 achieves the best compression performance as
compared to other orders. The domain search is reduced to O(N) for a time series with
length N, compared to the computational complexity of O(N?) of the IFS. With the
domain pool prepared by the VFDT, the compression ratio R or 18 5.5:1 by the traditional
IFS and 5.7:1 by the NIFS under the MPRD of 5.8% for the ECG signal. Although the
R,, of the NIFS is only slightly lower than 6.0:1 obtained by @ien and Nérstad (also an
improved IFS), the NIFS has much more modelling flexibility than the IFS. Compared to a
much weaker self-similarity between regions with different complexities, a strong self-

similarity of fractal object exists in the area with the same complexity.

Another objective was to develop a frame registration scheme suitable for com-

pression and classification. We have presented a study of ECG frame classification and
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block encoding based on time warping frames by the modified DTW and frame partition-
ing by the WV technique. The partitioning of the ECG frame based on feature waves gives
optimal approximations for the frame registration which have important significance in

clinical diagnosis and can achieve high compression ratio (about 50:1 in our case).

Still another objective was to develop a statistical feature extraction for ECG clas-
sification. We have presented a study of ECG frame classes involving statistical feature
extraction and neural network classification. The class information is important in the
application of browsing long-term ECG recordings. The statistical features of the ECG
signal with the same dimension for various beats can be input to the PNN to classify the
ECG frame. The moment-invariant feature of the ECG beats is used in the PNN classifica-
tion. The moment-invariance contains the shape information of the signal waveform. By
representing the ECG frame with class parameters, the compression ratio of about 66:1 is
achieved with the MPRD of about 16%. The training and ECG beat classification by the

PNN can be implemented in real time.

The other statistical features extracted from the ECG signal are multifractal fea-
tures, which is a spectrum of the complexity measure of the fractal object. The Rényi
dimension spectrum is calculated from the strange attractor of the ECG. The strange
attractor is reconstructed by lagging and embedding the ECG time series in an m-dimen-
sional phase space. The lag of about 11.11ms is obtained from the autocorrelation function
of the ECG signal. A clear deterministic pattern of the ECG time series by using such a lag
is observed in 3D phase space. The false nearest neighbourhood technique shows that the

embedding dimension for the ECG is 7.
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The convergence of the Rényi dimension spectrum is also employed to find the
best embedding dimension of phase space in the reconstruction of the strange attractor of
the ECG. The convergence of the Rényi dimension spectrum of the ECG time series is
incomplete. The incomplete convergence is due to the low-sampling frequency (360 sps)
and noise in the ECG data. Consequently, wavelet denoising and chaos denoising are
applied to the ECG signal to remove noise. It is found that chaos denoising improves the
convergence of the Rényi dimension spectrum of the ECG about five times under the con-
vergence degree measure, while wavelet denoising degrades the convergence about two
times. Even with chaos denoising, the convergence is inadequate for the multifractal fea-
ture extraction from the signal. An ECG data acquisition system with a higher sampling
rate needs to be established for chaos study and multifractal measure. Such an analysis has

not been presented in literature before.

It is also found that chaos denoising is the best technique to denoise various colour
noises from the ECG signal according to SNR gain, compared to linear filtering and wave-
let denoising. Since the ECG signal has a power spectrum distribution that is close to pink
noise, we explain that (i) a linear filter cannot filter colour noises from the ECG signal
because their spectra overlap; (ii) wavelet denoising loses its capability because the
smoothness of the noise increases from white, to pink, to brown, to black noise gradually;
and (iii) chaos denoising is based on the determinacy of the chaotic signal and the unique
characteristics of the strange attractor of the object itself, which can be distinguished from

noise.
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9.2 Contributions

To our knowledge, the following contributions and discoveries, as given in this the-

sis, are novel;

1)

2)

3)

4)

5)

6)

7
8)

9

Moment-invariance feature is extracted from the ECG signal;

The Rényi dimension spectrum features are extracted from the ECG signal;

The strange attractor of the ECG is reconstructed in phase space by finding the time
lag of 11.11 ms and embedding dimension of 7;

The ECG is confirmed to be a multifractal object with a morphological dimension of
about 1.75;

By applying denoising techniques to the ECG signal, we find that chaos denoising
improves the convergence of the Rényi dimension spectrum of the ECG five times
under the convergence degree measure, while wavelet denoising degrades the conver-
gence two times;

Chaos denoising is found to be the best technique to improve the SNR gain for colour
noise, compared to linear filtering and wavelet denoising;

The PNN is employed to the ECG frame classification successfully for the first time;
The ECG data are compressed based on the beat classification;

The DTW is employed to the ECG frame classification;

10) The windowed-variance is applied to partition the ECG frame into segments including

feature waves;

11) The ECG frame is compressed based on segments by the block encoding technique;

12) The NIFS is applied to the ECG signal compression;
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13) The VFDT is applied to ECG signal partitioning;
14) A combined scheme of the NIFS and signal partitioning is applied to the ECG signal
compression. The domain search is reduced to O(N) for a time series with length N,

compared to the computational complexity of O(N?) of the IFS; and

15) Software has been implemented for (i) reconstructing the strange attractor of the ECG
signal and the Rényi dimension spectrum calculation, (ii) chaos and wavelet denois-
ing, (iii) NIFS compression with signal partitioning, (iv) PNN classification and mini-
mal residual classification to compress ECG frames, and (v) DTW classification and

block encoding of ECG frames.

9.3 Recommendations

Based on the research presented in this thesis, the following work is recommended

for the future:

1) An ECG data acquisition system with high sampling rate is required for chaos study
and the feature extraction from fractals;

2) The Lyapunov dimension of the ECG time series should be calculated to investigate
the chaotic characteristics of the ECG;

3) Geometric patterns of noise changing with embedding dimension in the phase space
need to be investigated;

4) More ECG data are necessary in the experiments of the nonlinear analysis methods;

5) The R,., MPRD, NPRD, and PRD based on the same ECG database should be

obtained from some typical ECG compression methods for comparison purpose;
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6) Entropy encoding should be applied to the ECG frame classification and compression
methods to remove any residual redundancy in the compressed signal; and
7) In NIFS compression, coefficients of the affine transform should be quantized by the

optimal quantizers with different resolutions.
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Appendix A: Some Pertinent Mathematical Background

APPENDIX A

SOME PERTINENT MATHEMATICAL BACKGROUND

A.l1  Linear Representation of Function
A.1.1 Function in Vector Space

In mathematics, a signal can be represented by a function f(x) and treated as a
vector, denoted as f. In general, the signal has finite energy and is square integrable in an

L2(R) space.

[lfeolfdx < e (A1)
R

where R is a set of real numbers.

Definition A.1: A functional space defined as: { f:R>R/ Jl f (x)|2dx < oo} is
R

called as L*(R).

Definition A.2: A Hilbert space is an inner product space which, as a metric space,

is complete.

In the Hilbert space L2(R) » an inner product of real valued functions, f,(x) and

fa(x), is defined as

(Fiof2) = [F1(0)fa(x)dx A2)
R
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A norm | e|| that defines a length of a vector (function) in L2(R) is induced from

the inner product [Krey89].

A = J<F, 9 (A.3)

A.1.2 Orthonormal Basis and Function Decomposition

The inner product of the Hilbert space can be used to see if any pair of vectors are

orthogonal.

Definition A.3: A vector f, € F is said to be orthogonal to another vector feF

if
(ff2 =0 (A4)
where F'is a set.

Specially, the inner product can determine whether a vector is orthonormal.

Definition A.4: A set of vectors { f k(X)}, o 7 1s said to be orthonormal if
(fufp)=8G-)) (A.5)

where the delta function §(x) = 0 for x € R except §(0) = 1.

Definition A.5: A basis of a vector space V is defined as a subset Vis Vg, s+, v, Of

vectors in V that are linearly independent and span V., Consequently, if v, v,, -, v, is a

A-2
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list of vectors in V; then these vectors form a basis if and only if every ve V can be

uniquely written as

vV =apvtapv, e +ay, (A.6)

where a,, a,, ---, a, are elements of R.

A vector space V will have many different bases, but each will have the same
number of basis vectors. The number of basis vectors in V is called the dimension of V.

Every spanning list in a vector space can be reduced to a basis of the vector space.

Definition A.6: The basis v, v,, ---, v, is orthonormal basis if
(vpv) = 8G-J) (A7)

Under the orthonormal basis, the component a; can be obtained from the inner

product
a; = {v,v) (A.8)

The simplest example of a basis is the standard basis in R” consisting of the coor-
dinate axes. For example, in R? , the standard basis consists of two vectors vy = (1,0)
and v, = (0,1). Any vector v = (a, b) can be written uniquely as the linear combina-
tion v = av,;+bv,. Indeed, a vector is defined by its coordinates. The vectors
vy = (3,2) and v, = (2, 1) are also a basis for R’ because any vector v = (a, b) can

be uniquely writtenas v = (- a + 2b)v; +(2a-3b)v,.

A-3
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Equation A.6 shows the important decomposition property of a vector under a
basis. It is the foundation of orthogonal transform of functions, such as Fourier transform

and wavelet transform.

A.2  Maetric Space and Affine Transform for IFS

We have already introduced some knowledge about vector space in Section A.1.
This section will further provide basic notation, definitions, and information relating to
topological geometry. We begin from the definition of space. A space means a set with
structure on it. A metric space, a map, and an affine transformation can be defined on the

space.

Definition A.7: A metric space (X, d) is a space, or a set, X together with a real-
valued function d: X xX — R, which measures the distance between pairs of points x

and y in X. Suppose that d has the following properties:

1) d(x,y) = d(y,x), Vx,ye X (A.9)
2) 0<d(x,y)<eo, Vx,ye X, x#y (A.10)
3) d(x,x) =0, Vxe X (A.1D)
4) d(x,y)<d(x,2)+d(z,y), Vx,y,zeX (A.12)

The d is called a metric on the space X. Some examples of metric space include:

1) The set of all real number R with

A4
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d(x,y) = |x~-)l (A.13)

2) The Cartesian plane denoted R’ with the Euclidean metric given by

2 2
o5, 3) = f(xy =31 + (35— 9,) (A.14)
where the notation x; and y, are the ith elements of the vectors x and ¥, respectively.

It should be noted that different metrics, defined on the same set, may form differ-

ent spaces. For example the function
d(x,y) = |x; =y + |2y -y, (A.15)

. . : . . . 2
is also metric on the Cartesian plane but is a different metric space from (R%,d,). An

optimal choice of a metric space is dependent on the application.

Definition A.8: A sequence { X, }n =1 of points in a metric space (X, d) is called a

Cauchy sequence if, for any given number € > 0, there is an integer N >0 such that
d(x,x,)<e, Vm,n>N (A.16)

Definition A.9: A metric space (X, d) is said to be complete if every Cauchy

sequence in X converges.

Definition A.10: Let X be a space. A transform, map, or mapping on X is a func-
tion f: X - R. If ScX, then f(S) = {f(x) xe St. The function f is one-to-one if

x,y € X with f(x) = f(y) implies x = y.Itis onto if f(X) = X.Itis called invertible
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if it is one-to-one and onto: in this case, it is possible to define a transform f~!: X — X,

called the inverse of f, by f~I(y) = x, where xe X is the unique point such that

y = f(x).

Definition A.11: Let f: X — X be a transform on a space. The forward iterates of f
are transforms f°": X —=X defined by foO(x) = x, fol(x) = f(x),
Jon+D(x) = fofotm(x) = f(fotn(x)) for n = 0,1,2, ---. If f is invertible, the

backward iterates of f are transforms fo(-m)(x): X — X defined by

Foeb(x) = fl(x), fom(x) = (fom)(x) form = 1,2,3, . (A.17)

Definition A.12: A sequence {x,};"_ ; of points in a metric space (X, d) is said to

converge to a point x € X if, for any given number € > 0, there is an integer N >0 such

that
d(x,,x)<e,Vn2N (A.18)
The point x € X, to which such a sequence converges, is called the limit of the
sequence.

Definition A.13: Let B € X be a subset of a metric space (X, d). B is compact if

every infinite sequence {x,},’_ | in B contains a subsequence having a limit in B.

Definition A.14: Let (X, d) be a compact metric space. Then a Hausdorff space
H(X) denotes the space whose points are the compact subsets of X, other than the empty

set.

A-6
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Definition A.15: Let (X, d) be a compact metric space. Let A and B belong to

H(X). Define

d(A, B) = max{d(x, B):xe A} (A.19)

Definition A.16: Let (X, d) be a compact metric space. Then the Hausdorff dis-

tance between the subset A and subset B in H(X) is defined by

d,(A, B) = max(d(A, B), d(B, A)) (A.20)

A-7



Appendix B: Source Code

APPENDIX B

SOURCE CODE

Table B.1: List of source code files.

File Name

Page

Description

LorenzSolution.m

B-3

numerical solution for the Lorenz system

LorenzReconstruct.m B-4 | strange attractor reconstruction of the Lorenz system

autocorrelation.m B-5 | autocorrelation function of a time series

FalseNearestNeigh- B-7 | false nearest neighbour calculation of a time series

bour.c

attractor.m B-9 | strange attractor reconstruction of a time series

PairCorrelation.c B-10 | calculating the extended pair correlation of a time
series

NoisyECGChaosFil- B-14 | denoising a time series by principal component pro-

ter.cpp jection

Jacobi.h B-18 | include file header of NoisyECGChaosFilter.cpp

Jacobi.cpp B-19 | function for solving Jacob matrix

NoisyECGWaveletFil- | B-22 | denoising a time series in wavelet domain

ter.m

WienerFilter53.m B-23 | linear Wiener filter with 53 orders

FilterEvaluate.m B-24 | SNR gain and noise reduction factor calculation

ColorNoiseGen.m B-25 | coloured noise generator

NIFS.cpp B-27 | NIFS compression with or without signal partition-
ing

IFSReconstruct.m B-37 | signal reconstruction based on NIFS compression

NonuniformQuan- B-43 | nonuniform quantizer design

tizer.cpp

FitCoef.m B-46 | main routine of finding distribution parameters for a

data set
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Table B.1: List of source code files.

Appendix B: Source Code

File Name Page Description

FitCoefl.m B-47 | function for finding a mean and variance from a data
set

hist55.m B-48 | function for giving the histogram of the coefficients
from NIFS.cpp

ReadMeanVar.m B-49 | design of a nonuniform quantizer according to distri-
bution parameters

VEDT_Segment.m B-51 | function for calculating the VFDT

segment.m B-52 | main routine for partitioning a signal according to
complexity measures

moment.m B-53 | main routine for calculating the moment-invariant

moment_fun.m B-54 | function for calculating the moment-invariant

ISODATA.m B-56 | an unsupervised clustering algorithm for the training
set

pnnl_error.m B-61 | PNN training and classification error test

MomentResidual.m B-62 | reconstruction error calculation based on PNN clas-
sification and single template reconstruction

recons]_error.m B-64 | reconstruction error calculation based on PNN clas-
sification and template-averaged reconstruction

DTW_Classification.c B-68 | DTW classification based on minimal average resid-
ual

h_d_pm B-76 | template partitioning

pwln_residual.m B-77 | residual calculation for piecewise linear segments

waveform_detect.m B-80 | function for detecting waveforms in variance domain

linear_nml.m B-82 | function for linear contracting/dilating a segment
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Appendix B: Source Code

B.1  Strange Attractor Reconstruction

B.1.1 Numerical Solution for Lorenz System and the Reconstruction

Name : LorenzSolution.m

Procedure  : numerical solution for the Lorenz system
Date : 17/0ct./1999

Version : 1.0

Designer : Bin Huang; Tel: 4746992, e-mail: hbin @ee.umanitoba.ca

clear;

a=10; b=8/3; r=28;
N=5000;

dt=0.02; dt2=dt/2; dt3=1/3;
x=0; y=0.5; z=20;

for i=1:N

dOx=a*(y-x)*dt2;
dOy=(x*(r-z)-y)*dt2;
d0z=(x*y-b*z)*dt2;
xt=x+d0x;yt=y+d0y;zt=z+d0z;
dlx=a*(yt-xt)*dt2;
dly=(xt*(r-zt)-yt)*dt2;
dliz=(xt*yt-b*zt)*dt2;
Xt=x+d1x;yt=y+d1y;zt=z+d1z;
d2x=a*(yt-xt)*dt;
d2y=(xt*(r-zt)-yt)*dt;
d2z=(xt*yt-b¥*zt)*dt;
Xt=x+d2x;yt=y+d2y;zt=z+d2z;
d3x=a*(yt-xt)*dt2;
d3y=(xt*(r-zt)-yt)*dt2;
d3z=(xt*yt-b*zt)*dt2;
xx(1)=x+(d0x+d 1 x+d2x+d3x)*dt3;
yy(A)=y+(d0y+d1ly+d2y+d3y)*dt3;
zz(i)=z+(d0z+d1z+d2z+d3z)*dt3;
x=xx(1);y=yy(i);z=2z(i);

end

plot_attractor=1;
if plot_attractor==
set(axes, 'fontsize',20);
plot3(xx,yy,zz);
xlabel('x");ylabel('y");zlabel('z")
else
set(axes,'fontsize',20);
plot(yy);
xlabel('t);ylabel('y");
end
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Appendix B: Source Code

Name : LorenzReconstruct.m

Procedure  : strange attractor reconstruction of the Lorenz system
Date :17/0ct./1999

Version 1 1.0

Designer : Bin Huang; Tel: 4746992, e-mail: hbin @ee.umanitoba.ca

Lag=L;
length=size(xx);
Tl1=length(1,2)
specimen=xx;

clear D;
clear D1;
clear D2;
clear DD;
clear DD1;
clear DD2;

D=specimen;
D1([1:(T1-Lag+1)])=D([Lag:T1]);
D2([1:(T1-2*Lag+1)1)=D([2*Lag:T1]);

DD([1:(T1-2*Lag+1)])=D([1:(T1-2*Lag+1)]);
DDI1([1:(T1-2*¥Lag+1)D=D1([1:(T1-2*Lag+1)]);
DD2([1:(T1-2*¥Lag+1))=D2([1:(T1-2*Lag+1)]);

set(axes, 'fontsize',20);
plot3(DD,DD1,DD2);
xlabel('x(n)");
if Lag==
ylabel('x(n+2)");
zlabel('x(n+4)";
elseif Lag==5
ylabel('x(n+5)");
zlabel('x(n+10)";
elseif Lag==10
ylabel('x(n+10)");
zlabel('x(n+20)");
end



Appendix B: Source Code

B.1.2 Reconstruction of Strange Attractor of ECG and the Multifractal

Name : autocorrelation.m

Procedure : autocorrelation function of a time series
Date : 20/0ct./1999

Version : 1.0

Designer  : Bin Huang; Tel: 4746992, e-mail: hbin @ee.umanitoba.ca

......

%
%- Calculating autocorrlation function of the ECG signal. When the function value drops to 1-1/e, we take
%-~ the corresponding time as time delay of the time series.

%
No_estimation_of_period=380;Start_point_addition=50; R_S_distance_coe=1.5;
set(axes, fontsize’,20);

for i=sp:No_estimation_of_period+sp,
j=i-sp+1;
b(j)=a(i);

end

maxima=max(b);
for j=1:No_estimation_of_period,
if b(j) ==maxima
TO=j+sp
AO=maxima;
end
end

whilel
clearc;
for i=T0+Start_point_addition:T0+No_estimation_of_period,
j=i-T0;
c(j)=a(i);
end
maxima_QO=max(c);
for j=1:No_estimation_of_period,
if ¢(j) ==maxima_0
Start_point=j+T0;
specimen_peak=maxima_0;
end
end
clear specimen;
for i=1+T0:Start_point,
j=i-TO;
specimen(j)=a(i);
end
T1=Start_point-T0;TO=Start_point;
clear cycle_data;
cycle_data=specimen-mean(specimen);cycle_length=size(cycle_data);

clear correlate_coe;
for tt=1:cycle_length(1,2)-200
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t(t)=tt-1;
square_sum_x=0;
for i=1:cycle_length(1,2)-t(tt)
square_sum_x=square_sum_x-+cycle_data(i).*2;
end
autocorrelate_sum_x=0;
for i=1:cycle_length(1,2)-t(tt)
autocorrelate_sum_x=autocorrelate_sum_x-+cycle_data(i)*cycle_data(i+t(tt));
end
correlate_coe(tt)=autocorrelate_sum_x/square_sum_x;
end
plot(t,correlate_coe);

Threshold=1-exp(-1);
for t=1:cycle_length(1,2)-200
if correlate_coe(t) <= Threshold
Lag=t-1;
text(10,0.9,sprintf(Lag=%d' Lag), fontsize',18);
break;
end
end
xlabel('Lag');ylabel('Autocorrelation');
end
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Name : FalseNearestNeighbour.c

Procedure  : false nearest neighbour calculation of a time series
Date : 23/Nov./1999

Version : 1.0

Designer : Bin Huang; Tel: 4746992, e-mail: hbin @ee.umanitoba.ca

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <malloc.h>
#include <iostream.h>

const intLag=1;
const intR=10;
const intM=7,
const intN1=10000;

int main()

{
FILE *fin, *fout;
floattime[N1+1];
doubleD1[N1+1],D2[N1+1],D3[N1+1];
doubleresult{M+1][R+1], Rtol[R+1];
int m,n,i,j,r,N,i_n[N1+100];
doublesum, mindist, minind, nextdist, distance, diff time;
doubleRv, Ra, Rb, Rt, Rr, Atol;
int embedmin, embedmax;

embedmin=1; Rv=0.6; Atol=1;

Rtol[0]=5;

for (i=1;i<=R;i++){
Rtolfi]=i-0.99;

}

fin=fopen("length.dat","r+");
fscanf(fin,"%d\n",&embedmax);
fscanf(fin,"%d\n",&N);

fclose(fin);
cout<<"embedmax="<<embedmax<<"N="<<N<<endl;

for (i=embedmin;i<=embedmax;i++){
for (j=1;j<=R;j++){
result[i]{j]1=0;
}
}

fin=fopen("/home/ee/hbin/database/data/x_101.dat","r+");
Ra=0.0;Rr=0.0;
for (i=1;i<=N;i++){

fscanf(fin,"%f\n",&time[i]);

Ra+=time[i];

Rr+=time[i]*time[i];
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fclose(fin);

Ra=Ra/N;
Ra=sqrt(Rr/N-Ra*Ra);
cout<<"RA="<<Ra<<endl;

for (m=embedmin;m<=embedmax;m++){
for (i=1;i<=N;i++){
mindist=10000;
nextdist=0;
for (j=0;j<=mij++){

i_njl=i+j;
}
for (j=1;j<=N;j++){
if (il
distance=0.0;
for (n=0;n<=m-1;n++){
diff_time=time[i_n[n]]-time[j+n];
distance+=(double) diff_time*diff time;
}
if (distance<mindist){
mindist=distance;
diff_time=time[i_n[m]]-time[j+m];
nextdist=(double) diff_time*diff_time;
}
}
}

D1[i]l=mindist; D2[i]=nextdist;
}

fout=fopen("False_NN.dat","w");
for (i=1;i<=N;i++){
Rr=pow(D2[i],0.5)/pow(D1[i],0.5);
Rb=(double) pow(D1[i]+D2[i],0.5);
for (r=1ir<=R;r++){
if (Rr>Rtol[r] Il Rb>Ra*Atol){
resultfm][r}++;

}

}
}
for (j=1;j<=R;j++){
for (i=embedmin;i<=embedmax;i++){
result{i][jl=result[i][jI/N;
fprintf(fout," %f" result(i][j]);

}
fprintf(fout,"\n");
}
fclose(fout);
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Name : attractor.m

Input :afl

Procedure  : strange attractor reconstruction of a time series

Date : 23/Sept./1999

Version : 1.0

Designer : Bin Huang; Tel: 4746992, e-mail: hbin @ee.umanitoba.ca

%

% Reconstructing attractor for ECG time series with lag of 4.

%

Lag=4;
length=size(a);
Tl=length(1,1)
T1=60000
specimen([1:T1])=a([1:T1]);
clear D;

clear D1;

clear D2;

clear DD;

clear DD1;
clear DD2;

D=specimen;

clear specimen;
DI1([1:(T1-Lag+1)])=D([Lag:T1]);
D2([1:(T1-2*Lag+1)])=D([2*Lag:T1]);

DD([1:(T1-2¥Lag+1)])=D([1:(T1-2*Lag+1)]);
clear D;
DDI([1:(T1-2*Lag+1)])=D1([1:(T1-2*Lag+1)]);
clear DI1;
DD2([1:(T1-2*Lag+1)])=D2([1:(T1-2*Lag+1)]);
clear D2;

set(axes,fontsize',20);;
plot3(DD,DD1,DD2,.";
xlabel("x(n) [mV]");
ylabel('x(n+4) [mV7]);
zlabel("x(n+8) [mV1]");
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Appendix B: Source Code

S

Name : PairCorrelation.c
Input : length.dat, x_101.dat
Output : Renyi_dim.dat

Procedure  : calculating the extended pair correlation of a time series for different boxes
Date :22/0ct./1999

Version : 1.0

Designer  : Bin Huang; Tel: 4746992, e-mail: hbin @ee.umanitoba.ca

/*
This program tests whether Renyi dimension spectrum is affected by the radii of a box or not. The time lag

of 4 of the ECG signal comes from autocorrelation.m. Embedding dimension is determined by this program
*/

#include <stdio.h>
#include <iostream.h>
#include <stdlib.h>
#include <math.h>
#include <malloc.h>

const intsp=1;

const intLag=4;

const intembed=2;

const inteuc=2;

const intfile_length_1=30000;
const intmax_period=500;

const intNo_estimation_of_period=380;
const intStart_point_addition=50;

const floatR_S_distance_coe=1.5;

const floatinitial_probability=1.0;

const intvelnum1=50;

int main()
{
FILE  *fin, *fout;
float a[file_length_1+1],cycle_data[file_length_1+1];//float a[2160007;
float  b[max_period];
double c[max_period];
long int Number_M[velnuml],Lag_embedding[SO],integer_Lag,Total_points;
long int total_points;
double Hgq[velnum1][80];
float  x[80], probability_threshold;

double distance,sum,maxima,maxima_O,AO,Invers_M,Delta_step;

float probs[velnum1][file_length_1],vels[velnum1];

int il[ﬁle_length_l],Embedding,_step;

long int i,j,k,n,t,v,embed,time_series_length,dimension_size,Lag_length;
float  q,qq;

long int TO0,T1,M,Start_point,size_c,velnum,Q_number:

float Delta_stan,Delta_end,Q_step;

fin=fopen("length.dat","r+");

fscanf(ﬁn,"%d\n",&dimension_size);
fscanf(ﬁn,"%d\n",&time__series_length);
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fscanf(fin,"%d\n",&velnum);
fscanf(fin,"%f\n",&Delta_start);
fscanf(fin,"%f\n",&Delta_end);
fscanf(fin,"%d\n",&Q_number);
fscanf(fin,"%f\n",&Q_step);
fscanf(fin,"%d\n",&Embedding_step);

Appendix B: Source Code

cout<<"dimension_size="<<dimension_size<<" time_series_length="<<time_series_length;
cout<<"velnum="<<velnum<<"Delta_start="<<Delta_start<<"Delta_end="<<Delta_end<<endl:

cout<<"Q_number="<<Q_number<<"Q_step="<<Q_step<<endl;

fclose(fin);

Delta_step=(Delta_end-Delta_start)/(velnum-1);

for (i=0;i< velnum;i++){
distance=i*Delta_step+Delta_start;
vels[i]=pow(2,2*distance);
cout<<distance<<end]l;

}

fin=fopen("/home/ee/hbin/database/data/x_101.dat","r+");

for (i=0jic=file_length_1;i++){
fscanf(fin,"%f\n",&a[i]);

}

fclose(fin);

cout<<a[file_length_1]<<endl;

fout=fopen("Renyi_dim.dat","w");

for (i=sp;i<=No_estimation_of_period+sp;i++)
{  j=i-sp+l;

bljl=alil;
}

maxima=(b[1]);
for (i=1;i<=No_estimation_of_period;i++)
{ if (maxima<bl[i]){
maxima=b[i];
}
}

printf("maxima=%f\n",maxima);

for (j=1;j<=No_estimation_of_period;j++)
{ if (b[j]l==maxima)

{ TO=j+sp;
AO=maxima;
}
}
for (i=TO+Start_point_addition;i<=TO+No_estimation_of_period;i++)
{ j=i-TO;
| cfjl=alil;

maxima_O=c[Start_point_addition];

for (i=Start_point_addition;i<=N o_estimation_of_period;i++)

{ if (maxima_ O<c[i]){



maxima_0=c[i];

}

for (j=1 ;i<=No_estimation_of_period;j++)
{ if (c[jl==maxima_0)
{ Start_point=j+TO0;
//specimen_peak=maxima_0;
1
}

for (i=TO;i<=time_series_length+T0;i++)
{ j=i-TO;
cycle_data[jl=a[i];
}
Tl=time_series_length;
TO=Start_point;
printf("T0=%d T1=%d\n",T0,T1);
size_c=T1;
for (embed=1 ;embed<=dimension_size;embed:embed+Embedding_step){
cout<<"Embedding dimension="<<embed<<endl;
Lag_length=(embed-1)*Lag;
for (i=0;i<velnum;i++){
Number_M([i]=0;
}
for (i=0;i<=embed-1;i++){
Lag_embedding[i]=i*Lag;
}
for (i=0;i<velnum;i++){
for (j=0;j<=size_c;j++){
probs[i]{jl=initial_probability;
}
}
total_points=0;
for (i=(Lag_length+1);i<=size_c;i++){
for (n=0;n<embed;n++){
il[n]=i-Lag_embedding[n];
}
for (j=(i+1);j<=size_c;j++){
sum=0.0;
for (n=0;n<embed;n++){

Appendix B: Source Code

distance=cycle_data[il1[n]] -cycle_data[j-Lag_embedding[n]];

sum=sum-+distance*distance;

}
for (k=0;k<velnum;k++){
if  (sum <= vels[k]){
probs[k][i]++;
probs[k][jI++;

}
}

Total_points=size_c-Lag_length;
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for (k=0;k<velnum;k++){
distance=0.0;
integer_Lag=0;
for (j=(Lag_length+1);j<=size_c;j++){
probs[k][jl=(double)probs[k][jl/(double)Total_points;

}

k=0;
probability_threshold=initial_probability/(double) Total_points;
for (q=-Q_number;q<=Q_number;q=q+Q_step){
qq=qg-1.0;
for (v=0;v<velnum;v++){
Hq[v][k]=0.0;
for (i=Lag length+1;i<=size_c;i++){
Hq[v][k]=Hq[v][k]+pow(probs[v][i],qq);
1
Hg[v][k]=Hq[v][k]/(double)Total_points;
Hq[v][k]=log(Hq[v][k])/(qq*log(2));
fprintf(fout,"%f ", Hq[v][k]);
}
k=k+1;
fprintf(fout,"\n");
}
}

cout<<"Total_points="<<Total_points<<end];
fclose(fout);
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B.2  SNR Gain Improvement of ECG by Denoising

Appendix B: Source Code

Name : NoisyECGChaosFilter.cpp

Input : parameters.dat

Include file : Jacobi.h

Function : Jacobi.cpp

Procedure  : denoising a time series by principal component projection
Date : 18/June/1999

Version : 1.0

Designer  :Bin Huang; Tel: 4746992, e-mail: hbin @ee.umanitoba.ca
I*

Step: 1. Embedding a time series x(i), by Xi={x(i-Lag*k),....x(i+Lag*k)};
2. Find the neighbourhood with radius r in the phase space; and

3. Project the neighbourhood to a new coordinate system based on principal components

*/

#include <stdio.h>
/f#include <iostream.h>
#include <fstream.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <malloc.h>
#include "Jacobi.h"

onst int
const int
const int
const int
const int
int

int

float

int

float

nt

void

oid main()

{
int
short
int
long
short
int
float
char

file_length= 66000;//216000;
Max_embedding_dimension=100;
Scale=10000;

Remove_base=0;

r=1; /ffor penalty
Limit_of_neibour,Embedding_dimension;

N, Lag, DimensionLag, Period;

*Mean, *d;

*nrot;

**Q=NULL, **Covariance=NULL, **v=NULL:
test_variable, R[Max_embedding_dimension];

Principal_Component_Transform(short [],short [],short [1,int,long int [1,int [], float [], int);

Size_of_neibourhood, NeighbourhoodSize[100];
*X, *y, *x1, #x2;

*neighbours;

*m_Lag;

embedding_space[Max_embedding_dimension][Max_embedding_dimension];

i,j, k,m,iterate, IterateTimes;

Data_String, center_point{fMax_embedding_dimension];
DataFile[80], InputData[80], OutputData[80]={""};

ifstream fin("c:/home/ee/hbin/ECG/ECGModel/Ideal ECGDenoising/parameters.dat”, ios::nocreate);
if(!fin){cerr<<"cannot open input file"<<endl; exit(1);}
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fin>>N;

fin>>Embedding_dimension;

fin>>Lag;

fin>>iterate;

fin>>Limit_of _neibour;

fin>>DataFile;

fin>>Data_String; NeighbourhoodSize[0]=int (Scale*Data_String);
fin>>Data_String; NeighbourhoodSize[1]=int (Scale*Data_String);
fin>>PData_String; NeighbourhoodSize[2]=int (Scale*Data_String);
fin>>Data_String; NeighbourhoodSize[3]=int (Scale*Data_String);

X = new short [N];y = new short [N];

x1 = new short [Embedding_dimension];x2 = new short [Embedding_dimension];

neighbours = new int [Limit_of neibour+2];

m_Lag = new long [Max_embedding_dimension];

Mean=new float[Embedding_dimension];

d =new float[Embedding_dimension];

nrot=new int{200];

Q=(float **)malloc(sizeof(float *)*Embedding_dimension);

Covariance=(float **)malloc(sizeof(float *)*Embedding_dimension);

v=(float **)malloc(sizeof(float *)*Embedding_dimension+1);

for (m=0;m<Embedding_dimension;m++){
Q[m]=(float *)malloc(sizeof(float *)*Embedding_dimension);
Covariance[m]=(float *)malloc(sizeof(float *)*Embedding_dimension);
v[m]=(float *)malloc(sizeof(float *)*Embedding_dimension+1);

}

for (i=1;i<Embedding_dimension-1;i++)
R[i]=1;
R[0]=R[Embedding_dimension-1]=rt;

InputData[0]=NULL;strcat(InputData, DataFile);strcat(InputData,".dat");
cout<<"InputData="<<InputData<<end];

ifstream finl(InputData, ios::nocreate);
if(Mfin1){cerr<<"cannot open InputData"<<end]; exit(1);}
for (i=0;i<N;i++){

fini>>Data_String;

x[i]=int ((Data_String-Remove_base)*Scale);
}

cout<<"Last data="<<Data_String<<""<<x[N-1]<<end];

strcat(OutputData, DataFile);
strcat(OutputData,"_index.dat"); cout<<"OutputData="<<OutputData<<endl;

k=(Embedding_dimension/2+1);// *Lag;

for (m=0;m<Embedding_dimension;m++){
m_Lag[m]=m*Lag;

}

DimensionLag=Embedding_dimension*Lag;
Pen'od=(Embedding_dimension—1)*Lag;

for (IterateTimes=O;IterateTimes<iterate;IterateTimes++)

{
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Size_of_neibourhood=NeighbourhoodSize[IterateTimes];

for (i=0;i<Period;i++){
Principal_Component_Transform(x,x1,x2,i,m_Lag,neigh-
bours,center_point,Size_of_neibourhood);
for (m=0;m<Embedding_dimension;m++){
embedding_space[m][i]=int (center_point{m]);
}
y[il=(short) center_point[0];
}
for (i=Period;i<N-Period;i++){
Principal_Component_Transform(x,x1,x2,i,m_Lag,neigh-
bours,center_point,Size_of neibourhood);
Data_String=0;j=k=i % Period;
for (m=Embedding_dimension-1;m>0;m--){
Data_String+=embedding_space[m][j];
Jj=(j+Lag)%Period;

yli]=(short) ((Data_String+center_point[0])/(float) Embedding_dimension);
for (m=0;m<Embedding_dimension;m++){
embedding_space[m][k]=int (center_point[m]);
}
}
for (i=N-Period;i<N;i++){
j=1 % Period,;
ylil=(short) embedding_space[Embedding_dimension-11j};
}
for (i=0;i<N;i++){
x[i]=ylil;
}
1
FILE*fout;
fout=fopen(OutputData,"w");
for (i=0;i<N;i++){
fprintf(fout,"%f\n",(float) y[i]/(float) Scale);
}

fclose(fout);
cout<<"Denoising has been finished"<<endl;

delete [1 x;delete [] x1;delete [] x2;delete [] \
delete [] neighbours;delete [] m_Lag;
delete [1 Mean;
delete []1 d;
delete [] nrot;
delete [1 Q;
delete [] Covariance;
delete [] v;
if (tv)
cout<<"Out of memory"<<endl;

void Principal_Component_Transform(short x[], short x1[], short x2[], int il,long int m_Lag[], int neigh-
bours[], float center_point[], int Size_of_neibourhood)
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int j»m,n,Q_smallest_eigenvalues;

test_variable=il;
int no_neibour,number_of_neighbours;
int embedding_i[Max_embedding_dimension],embedding_j;

for (m=0;m<Embedding dimension;m++){
embedding_i[m]=i1+m_Lag[m];
x1[m]=x[embedding_i[m]]-Size_of neibourhood;
x2[m]=x[embedding_i[m]]+Size_of_neibourhood:;
if  ((i1==N-1-Period) && (m==Embedding_dimension-1))
{ cout<<"embedding_i[rn]="<<ernbedding_i[m]<<"x="<<x[embedding_i[m]]<<end1;}

}

number_of_neighbours=0;
for (j=0;j<N-Period;j++){
no_neibour=0;
for (m=0;m<Embedding_dimension;m++){
embedding_j=j+m_Lag[m];
if (x1[m]>x[embedding_j]) Il (x[embedding _jI>x2[m])// Ix-x()l>r
{ no_neibour=1;
m=Embedding_dimension;
}

if (no_neibour==0){
neighbours[number_of_neighbours]=j ;///There is a neibour.
if  (++number_of_neighbours>Limit_of_neibour){
=N;
}

}

/e Get means of embedding space of the neighbourhoods------- ;
for (m=0;m<Embedding_dimension;m++){
Mean[m]=0.0;
for (j=0;j<number_of_neighbours;j++){
Mean[m]+=x[neighbours[j]+m_Lag[m]];
}
Mean[m]=Mean[m]/number_of_neighbours;
1
/e Get covariance of embedding space of the neighbourhoods------- ;
for (m=0;m<Embedding dimension;m++){
for (n=0;n<Embedding_dimension;n++){
Covariance[m][n]=0.0;
for (j=0;j<number_of_neighbours;j++){
Covariance[m] [n]+=x[neighbours[j]+rn_Lag[m]]*x[neighbours|'j]+rn_Lag[n]];
}
Covariance[m][n]=Covariance[m] [n]/number_of_neighbours-Mean[m]*Mean[n];
Covariance[m][n]=R[m]*Covariance[m][n]*R[n];
}
}

jacobi(Covariance, Embedding_dimension,d,v,nrot);
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eigsrt(d,v,Embedding_dimension);
Q_smallest_eigenvalues=(int) (Embedding_dimension*0.8);
for (m=0;m<Embedding_dimension;m++){
for (n=0;n<Embedding_dimension;n++){
Q[m][n]=0.0;
for G:Embedding_dimension-Q~smallest_eigenvalues;j<Embedding_dimension;j++){
Q[m][n]+=v[jl[m]*v[j][n];//Q[m][n]+=v[m]{j]*v[n][j];
}
}
}
for (n=0;n<Embedding_dimension;n++){
center_point[n]=0.0;
for (m=0;m<Embedding_dimension;m-++){
center_point[n]+=Q[n][m]*R[m]*(Mean[rn]-x[i1+m_Lag[m]]);

}
center_point[n]=x[il+m_Lag[n]]+center_point[n]/R[n];
}
}
Jacobi.h

1

extern jacobi(float **, int, float [], float **, int *);
extern void eigsrt(float [], float ** int);

1
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Jacobi.cpp

/!
/* W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C:
The Art of Scientific Computing. NY: New York, Cambridge University, pp. 360-376, 1988.

®f
#include <math.h>

#include <malloc.h>

#include <stdio.h>

#include "Jacobi.h"

defineROTATE(a.i.j,k,Dg=alil[j]; h=alk][1];a[i][j]=g-s*(h+g*tau);a[k][I]=h+s*(g-h*tau);
void nrerror(char []);

extern jacobi(float **a, int n,float d[], float **v, int *nrot)

/*Computes all eigenvalues and eigenvectors of a real symmetric matrix a[1..n][1..n]. On output, elements of
a array above the diagonal are destroyed. d[1..n] returns the eigenvalues of a array. v[1..n][1..n] is a matrix
whose columns contain, on output, the normalized eigenvectors of a array. nrot returns the number of
Jacobi rotations that were required.*/

{

const doubleTheshold=0.000001;
int j,iq,ip.i;

floattresh, theta,t,c,g,tau,s,h, *b, *z;
doublesm;

b= new float [n];
z= new float [n];
for (ip=0;ip<n;ip++){//Initiall to the identity matrix.
for (ig=0;ig<n;ig++)v[ip][iq]=0.0;
vipllipl=1.0;
}
for (ip=0;ip<n;ip++){
blip]=d[ip]=a[ip][ip];//Initialize b and d to the diagonal of a.
z[ip}=0.0;//This vector will accumulate terms of the form ta(qp) as

}

*nrot=0;

for (i=1;i<=50;i++){
sm=0.0;
for (ip=0;ip<n-1;ip++){//Sum off-diagonal elements.
for (iq=ip+1;ig<n;iq++)
sm+=fabs(a[ip][iq]);

if  (sm < Theshold){

delete z;

delete b;

return(0);
}
if (<49

tresh=(float) (0.2*sm/(n*n));
else

tresh=0.0;

for (ip=0;ip<n-1;ip++){
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for (iq=ip+1;iq<n;ig++){
g=(float) (100.0*fabs(a[ipl[iq]));
//After four sweeps, skip the rotation if the pff-diagonal element is small.
if  ((i>4) && ((float)(fabs(d[ip]+g)) == (float)(fabs(d[ip])))
&& ((float)(fabs(d[iq]+g)) == (float)(fabs(d[iq]))) ){
a[ip][iq]=0.0;
}
else if(fabs(a[ip][iq]) > tresh){
h=d[iq)-d[ip];
if ((float)(fabs(h)+g) == (float)fabs(h))
t=(a[ip][iq])/h;//t=1/(2theta)
else {
theta=(float) 0.5*h/a[ip][iq];//Equation (11.1.10).
t=(float) (1.0/(fabs(theta)+sqrt(1.0+theta*theta)));
if(theta < 0.0) t=-t;
}
c=(float) (1.0/sqrt(1+t*t));
s=t¥c;
tau=(float) (s/(1.0+c));
h=t*a[ip][iq];
z[ip}-=h;
z[ig]+=h;
d[ip]-=h;
dfiq]+=h;
a[ip][iq]=0.0;
for (j=0:j<=ip-1;j++){//Case of rotation l<j<p.
ROTATE(a,j.ip.j,iq)
1
for (j=ip+1;j<=ig-1;j++){//Case of rotation p<j<q.
ROTATE(a,ip.j,j.iq)
}
for (j=ig+1;j<n;j++){//Case of rotation g<j<n.
ROTATE(a.ip.j,iq,j)
}
for (j=0;j<n;j++){
ROTATE(v,j,ip.j,iq)
}

++(*nrot);

}

}

for (ip=0;ip<n;ip++){
b[ip] += z[ip];
d[ip]=bl[ip]; //Update d with the sum of ta(pq).
z[ip]=0.0;  //ans reinitialize z.

}

}

nrerror("Too many iterations in routine JACOBI");

}

void eigsrt(float *d, float **v, int n)
/*Given the eigenvalues d[1..n] and eigenvectors v[1..n][1..n], this routine sorts the eigenvalues into
descending order, and rearranges the columns of v coorespondingly. The method is straight insertion.*/

{
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int k,j,i;
floatp;

for (i=0si<n;i++){
p=d[k=i];
for (j=i+1;j<n;j++){
if  (@djl>=p){
p=d[k=j];
1
}

if  (k!=i){
d[k]=d[i];
d[i]=p;
for (j=0;j<n;j++){
p=vljllil;
vjllil=v(jlk];
v[jlk]=p;

}

void nrerror(char error_text[])

//Numerical Recipes standard error handler.

{
fprintf(stderr,"Numerical Recipes run-time error...\n");
fprintf(stderr,"%s\n" error_text);
fprintf(stderr,”...now exiting to system...\n");

/I return(0);
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Name : NoisyECGWaveletFilter.m

Input : ECG-ideal-NT.dat, ECGWhiteNoise_, ECGPinkkNoise_, ECGBrownNoise_,
ECGBIlackNoise_, a[]

Output : NoisyECGWaveletFilter.dat

Procedure  : denoising a time series in wavelet domain

Date : 29/Jan./2002

Version 1 1.0

Designer  : Bin Huang; Tel: 4746992, e-mail: hbin @ee.umanitoba.ca

clear;

fid =fopen(\home\ee\hbin\ECG\ECGModeNECG-ideal-NT.dat', 'r');
[PureSignal,Datal ength]=fscanf(fid, '%f");fclose(fid);
PureSignal=PureSignal’;

Signal Variance=sqrt(var(PureSignal,1));

SNR(1)=5; SNR(2)=10; SNR(3)=20;
NoiseTypePath(1,:)="home\ee\hbin\ECG\ECGModel\IdealECGDenoisin S\ECGWhiteNoise_";
NoiseTypePath(Z,:)='\home\ee\hbin\ECG\ECGModel\IdealECGDenoising\ECGPinkkNoise_';
NoiseTypePath(3,:)=‘\home\ee\hbin\ECG\ECGModel\IdealECGDenoising\ECGBrownNoise_';
Noise’IypePath(4,:)=‘\home\ee\hbin\ECG\ECGModel\IdealECGDenoising\ECGBlackNoise_';
fidl =fopen('\home\ee\hbin\ECG\ECGModel\IdealECGDenoising\NoisyECGWaveletFilter.dat', 'w');
for NoiseType=1:4
fprintf(fid1,'%s\n’,NoiseTypePath(Noise Type,:));
fprintf(fidl,’ %s  %s  %s\n','OriginalSNR','SNRGain','SNRRatio');
for Iterate=1:3
OriginalSNR=SNR(lterate);
NoisyDataFile:strcat(Noise’I‘ypePath(Noise’I‘ype,:),num2str(0riginaISNR),’dB.dat’)
fid =fopen(NoisyDataFile, 1');
[a,N]=fscanf(fid, '%f"); fclose(fid); a=a':;
X = wden(a,'sqtwolog','h','sIn' 4,'bior6.8");
FilterEvaluate;
fprintf(fid1,’ %d %f  %f\n',Original SNR,SNRGain,r);
end
fprintf(fidl,\n");
end
fclose(fid1);
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sk

Name : WienerFilter53.m

Input : ECG-ideal-NT.dat, ECGWhiteNoise_, ECGPinkkNoise_, ECGBrownNoise_,
ECGBIlackNoise_, a[]

Output : WienerFilter.dat

Procedure : linear Wiener filter with 53 orders

Date : 02/Feb./2002

Version : 1.0

Designer : Bin Huang; Tel: 4746992, e-mail: hbin @ee.umanitoba.ca

clear;

fid =fopen(\home\ee\hbin\ECG\ECGModel\ECG-ideal-NT.dat, 'r');
[PureSignal,Datal.ength]=fscanf(fid, '%f);fclose(fid);
PureSignal=PureSignal';

Signal Variance=sqrt(var(PureSignal,1));

[b,err,res}=gremez(53, [0 0.08 0.12 1]....
{'taperedresp',{1 1 0 0]}, [1 1]);
[H,Fl=freqz(b,1,Datalength,180);

SNR(1)=5; SNR(2)=10; SNR(3)=20;
NoiseTypePath(1,:)="home\ee\hbin\ECG\ECGModel\IdealECGDenoising\ECGWhiteNoise_';
NoiseTypePath(2,:)="\home\ee\hbin\ECG\ECGModel\IdealECGDenoising\ECGPinkkNoise_;
NoiseTypePath(3,:)="home\ee\hbin\ECG\ECGModel\IdealECGDenoising\ECGBrownNoise_";
NoiseTypePath(4,:)='\home\ee\hbin\ECG\ECGModel\IdealECGDenoising\ECGBlackNoise_';
fidl =fopen(‘\home\ee\hbin\ECG\ECGModel\IdealECGDenoising\WienerFilter.dat', 'w');
for NoiseType=1:4
fprintf(fid1,'%s\n',NoiseTypePath(Noise Type,:));
fprintf(fidl,’ %s  %s %s\n','OriginalSNR','SNRGain','SNRRatjo");
for Iterate=1:3
OriginalSNR=SNR(Iterate);
NoisyDataFile=strcat(NoiseTypePath(NoiseType,:),num2str(OriginalSNR),'dB.dat")
fid =fopen(NoisyDataFile, 't");
[a,N]=fscanf(fid, '%f"); fclose(fid); a=a"

FFTNoisySignal=fft(a,N);
for i=1:N

X1(i))=H@G)*FFTNoisySignal(i);
end
X=ifft(X1,N); clear X1; X1=2*real(X); clear X;
Shift=14; X([1:N-Shift+1])=X1([Shift:N]);
Datal_ength=N-200;

FilterEvaluate;
fprintf(fid1,' %d %f  %f\n',Original SNR,SNRGain,r);
end
fprintf(fid1,\n");
end
fclose(fid1);
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Name : FilterEvaluate.m

Input : ECG-ideal-NT.dat, parameters.dat

Procedure  : SNR gain and noise reduction factor calculation
Date : 22/Feb./2002

Version 1 1.0

Designer  :Bin Huang; Tel: 4746992, e-mail: hbin @ee.umanitoba.ca

ChaoDenoising=1; % 1 for Chaos denoising

hold off; N1=800; N2=1100;
if ChaoDenoising==

fprintf(‘Now it is chaos denoising’);

fid =fopen(\home\ee\nbin\ECG\ECGMode\ECG-ideal-NT.dat', '');
[PureSignal,Datal.ength]=fscanf(fid, '%f");fclose(fid);
PureSignal=PureSignal’;

SignalVariance=sqrt(var(PureSignal,1));

k=1;
aa=PureSignal([k:Datalength]); clear PureSignal; PureSignal=aa; Datal.ength=Datalength-k+1;
plot(PureSignal([N1:N2]));
FileName="home\ee\hbin\ECG\ECGModel\IdealECGDenoising\parameters.dat';
[Param]=textread(FileName,'%s');
Param1=char(Param(6));
InputFile=strcat(Param1,'.dat"); %fprintf('InputFile=%s\n',InputFile);
OutputFile=strcat(Param1,’_index.dat'); %fprintf(‘OutputFile=%s\n',OutputFile);
FileNameLength=max(size(Param1)); clear dB;
if Paraml(FileNameLength-3)=="_"

dB(1)=Param1(FileNameLength-2);
else

dB(1)=Param1(FileNameLength-3);

dB(2)=Param1(FileNameLength-2);
end
OriginalSNR=str2num(dB);
hold on;

fid=fopen(OutputFile,1'); [aa,Datalength] = fscanf(fid,'%f\n"); fclose(fid);
clear X; X=aa([1:Datalength],1); X=X'"; plot(X([N1:N2]));

clear aa;clear a;

fid=fopen(InputFile,r'); [aa,length] = fscanf(fid, %f\n'"); fclose(fid);
a=aa([k:length],1); %+k-1

a=a’;

plot(a([N1:N2]),'r—");

clear aa; aa=X([1:DataLength])-a([1:DataLength]);

else

plot(X([N1:N2]));

hold on;

plot(PureSignal([N1:N2]));

fprintf(Now it is non-chaos denoising ~ ');

end

N1=100; N2=Datal ength-100;
clear EstimatedNoise; clear Noise;
Noise([1:N2-N1+1])=a([N1:N2])-PureSignal ([N 1:N2]);
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NoiseVariance=sqrt(var(Noise,1));

EstimatedNoise([ 1:N2-N1+1])=X([N1:N2])-PureSignal([N1:N2]);
EstimatedNoiseVariance=sqrt(var(EstimatedNoise, 1));
EstimatedSNR=20*log10(SignalVariance/EstimatedNoise Variance);
SNRGain=EstimatedSNR-Original SNR;
r=NoiseVariance/EstimatedNoise Variance;

fprintf('SNRGain=%f r=%f\n',SNRGain,r);

Name : ColorNoiseGen.m

Output : WhiteNoise.dat, PinkNoise.dat, BrownNoise.dat, BlackNoise.dat
Procedure  : coloured noise generator

Date : 05/Feb./2002

Version : 1.0

% This program:

% - displays the Fourier transform of the Gaussian white noise to check that Matlab's random number
% generator is acceptable;

% - generates, displays, and saves white, pink, brown, and black noise and the corresponding power
% spectrum densities; and

%

clear all variables;

fs = 16384-1; % sampling frequency

t=[0:1/fs:1]; % time scale

tmax = 2000; % time slice to graph (tmax < fs)
wgn = randn(size(t)); % generate white Gaussian noise
figure(9); % check to see how good the random
wgn_ft = fft(wgn); % number generation is (by looking

loglog(abs(real(wgn_ft))); % at its Fourier transform)
xlabel('Frequency'); ylabel(' Amplitude”);

% M. Tom Bruhns from HP provided the following pole / zero
% locations for a white-to-pink noise filter for audio signals.
poles = [.9986823 .9914651 .9580812 .8090598 .2896591]";
zzeros = [.9963594 .9808756 .9097290 .6128445 -.0324723]";

[b,a] = zp2tf(zzeros,poles,1); % coefficients for the filter

pnk = filter(b,a,wgn); % generate pink noise

summ = 0; % generate brown noise

fori=1:length(wgn) % (by integrating white noise)
summ = summ + wgn(i); brn(i) = summ;

end % for

summ =0; % generate black noise

fori=1:length(pnk) % (by integrating pink noise)
summ = summ + pnk(i); blk(i) = summ;

end % for

wgn = wgn/max(abs(wgn)); % normalize amplitudes
pnk = pnk/max(abs(pnk));brn = brn/max(abs(brn));blk = blk/max (abs(blk));

figure(1); % display white noise

plot(t(1:tmax)*1000,wgn(1:tmax));
title('White Noise'); xlabel('Time (msec)"); ylabel("Voltage");
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figure(2); % display pink noise
plot(t(1:tmax)*1000,pnk(1:tmax));

title(Pink Noise'); xlabel('Time (msec)"); ylabel('Voltage");
figure(3); % display brown noise
plot(t(1:tmax)*1000,brn(1:tmax));

title(Brown Noise'); xlabel('Time (msec)'); ylabel('Voltage');
figure(4); % display black noise
plot(t(1:tmax)*1000,blk(1:tmax));

title('Black Noise'); xlabel('Time (msec)"); ylabel(‘'Voltage');
% save project_l.mat fs t tmax wgn pnk brn blk; % save data!

X = wgn; % white noise

N = length(x);

f=(1/N* (1:N)); % frequency

x_ft = fft(x); % calculate fast Fourier Transform
x_ft_conj = conj(x_ft); % calculate conjugate of x_ft

PSD = (x_ft .* x_ft_conj) / N; % calculate Power Spectrum Density
f_log =logl0(f); % take the log (base 10) of both ararys
PSD_log = log10(PSD);

xl1=1; x2=N; % min & max values for graphing

figure(5); loglog(f(x1:x2),PSD(x1:x2)); % plot PSD
xlabel('Frequency"); ylabel('Power Spectrum Density');

X = pnk; % pink noise
x_ft = fit(x); % calculate fast Fourier Transform
x_{ft_conj = conj(x_ft); % calculate conjugate of x_ft

PSD = (x_ft .* x_ft_conj) / N; % calculate Power Spectrum Density
PSD_log = 10g10(PSD);

figure(6); loglog(f(x1:x2),PSD(x1:x2)); % plot PSD
xlabel('Frequency"); ylabel(Power Spectrum Density'");

x = brn; % brown noise
x_ft = fft(x); % calculate fast Fourier Transform
x_ft_conj = conj(x_ft); % calculate conjugate of x_ft

PSD = (x_ft .* x_ft_conj) / N; % calculate Power Spectrum Density
PSD_log =1og10(PSD);

figure(7); loglog(f(x1:x2),PSD(x1:x2)); % plot PSD
xlabel('Frequency'); ylabel('Power Spectrum Density');

x = blk; % black noise
x_ft = fft(x); % calculate fast Fourier Transform
x_ft_conj = conj(x_ft); % calculate conjugate of x_ft

PSD = (x_ft .* x_ft_conj) / N; % calculate Power Spectrum Density
PSD_log = 1og10(PSD);

figure(8); loglog(f(x1:x2),PSD(x1:x2)); % plot PSD
xlabel('Frequency"); ylabel('Power Spectrum Density'");

%----- ‘WhiteNoise.dat, PinkNoise.dat, BrownNoise.dat, and BlackNoise.dat.---
wgn=wgn-mean(wgn); Variance=sqrt(var(wgn,1)); wgn=wgn/Variance;
pnk=pnk-mean(pnk); Variance=sqrt(var(pnk,1)); pnk=pnk/Variance;
brn=brn-mean(brn); Variance=sqrt(var(brn,1)); brn=brn/Variance;
blk=blk-mean(blk); Variance=sqrt(var(blk,1)); blk=blk/Variance;

fout =fopen ('WhiteNoise.dat', 'wt'); fprintf(fout,'%f\n', wgn); fclose(fout);
fout =fopen ('PinkNoise.dat', 'wt);  fprintf(fout,'%f\n’, pnk); fclose(fout);
fout =fopen (‘BrownNoise.dat', 'wt’); fprintf(fout,'%f\n’, brn); fclose(fout);
fout =fopen (‘BlackNoise.dat', 'wt'); fprintf(fout,' %f\n', blk); fclose(fout);
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B.3  Data Compression by the NIFS with Segmentation
B.3.1 NIFS Compression

Name : NIFS.cpp

Input : UnixOrWindows.dat, IFS_Parameter.dat, IFS255Param.dat
Procedure  : NIFS compression with or without signal partitioning

Date : 06/May/2001

Version :1.0

Designer : Bin Huang; Tel: 4746992, e-mail: hbin @ee.umanitoba.ca

seskesk

#include
#include
#include
#include
#include
#include

int
int
int
int
int
int
float
int

const int
const int
const int
const int
const int

FILE
long int
short int
float
float
float
float
float

int

int

int

int

int

int

int

int

int

float

<fstream.h>
<stdio.h>
<iostream.h>
<stdlib.h>
<math.h>
<string.h>

RangeSegments;

SegStart;

SegEnd;

MaximalSize;

MinimalSize;

Size_Ratio;

ErrorThreshold;

LowestQuantizer, HighestQuantizer;

MaxQuantizationLevel=32768;
NumberofCoeType=6;
MaxNumRangeBlock=500;
MaxNumofResolution=14;
FileLength=216002;

*fid;

DataLength;

*aa, *dimension_index;

*InputFile, *InputFilel;

*Quantizer,*Quantizer_c,*Quantizer_d,*Quantizer_f;
*Quantizer_g,*Quantizer_h,*Quantizer_i;

*Interval, *Interval_c,*Interval_d,*Interval_f,*Interval _g,*Interval_h,*Interval_i;
*MeanSeg, *VarianceSeg;

QuantizerLevel, QuantizerLevel_1;

length,i,j,UnixOrWindows;

SegmentLength;

Start_Position,SegStart1,Length;

TotalSegmentCount, *tr,*tr_1,*trlr, *Ir,*1d,td,i_td:
RangeBlock,RangeBlockPosition,RangeBIockSize;
BreakDown,ErrorZRangeSize,ContractionRatio,DomainStep,i__tr;

Segmenting, DomainSegment, kd, td_end, k, *SegmentedPoint, *d_i, *tdld, *complexity;
Quantizing;

sum_t,sum_t_square,sum_{_newx,Sum_newx_square,Sum_newx,sum_x_t;

B-27



float SUMm_X,SUm_x_newx;

float A_KE_kc_k,d_kf k,rms,rmsl,mean,rms2;

float  Error, BestDomain,DomainLength;

float AA EE.dd,cc,ff;

float Center_c,Distance_c,Center_d,Distance_d,Center_f,Distance_f:
float Center_g,Distance_g,Center_h,Distance_h,Center_i,Distance_i:
float  x_middle,*x_affine, MeanRangeSize;

char
char
char

int
int

Appendix B: Source Code

FileName[100]={""}, Directory[100]={""}, Directory_1[100]={""}, DataFile[100];

SaveFile[100];

QuantizerName[100], MeanVarFile[100]={""}, SavedCoeName[100], TempCha[100];
//charQuResolution[MaxNumofResolution+1][6];

SelectQuantizer;
TotalSegments;

float  TotalMeanSegmentLength;

int
int
int

TotalRangeBlock, Segment_Number;
Start_Position_1;
*count;

float *g %%, %*x1,%t1;

void fun_IFS255();
void fun_Quantizing(float &Output, float Quantizer[],float Interval[],int QuantizerLevel,float Input);

//Prototype

void main() {

aa = new short int[FileLength];

dimension_index = new short int[FileLength];
InputFile = new float[2*MaxQuantizationLevel];
InputFile1= new float[2*NumberofCoeType];
MeanSeg = new float{NumberofCoeType];
VarianceSeg = new float[NumberofCoeType];
Quantizer = new float[MaxQuantizationLevel];
Quantizer_c = new float{MaxQuantizationLevel];
Quantizer_d = new float{MaxQuantizationLevel];
Quantizer_f = new float{MaxQuantizationLevel];
Quantizer_g = new float{MaxQuantizationLevel];
Quantizer_h = new floatfMaxQuantizationLevel];
Quantizer_i = new float{MaxQuantizationLevel];
Interval = new float{MaxQuantizationLevel];
Interval_c = new float{MaxQuantizationLevel];
Interval_d = new float{MaxQuantizationLevel];
Interval_f = new float{MaxQuantizationLevel];
Interval_g = new float{MaxQuantizationLevell;
Intervai_h = new float{MaxQuantizationLevel];
Interval_i = new float{MaxQuantizationLevel];
SegmentLength=1024; // Define segment length;
a = new float[SegmentLength+1];

x = new float[SegmentLength+1];

x_affine = new float[SegmentLength+1];

x1 = new float[SegmentLength+1];

t1 = new float[SegmentLength+1];

count = new int[SegmentLength+1];

1d = new int[SegmentLength-+17;
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Ir = new int[SegmentLength];

tr = new int[SegmentLength+1];

tr_1 = new int[SegmentLength+1];

trir = new int[Segmentlength+1];
SegmentedPoint = new int[SegmentLength+1];
d_i = new int[SegmentLength+1];

tdld = new int[SegmentLength+1];

complexity = new int[Segmentlength+11;

ifstream fid4("UnixOrWindows.dat",ios::nocreate);

fid4>>UnixOrWindows:

if  (UnixOrWindows==1){
strcat(Directory,"//home//ee//hbin//Carol//hb//data//");
strcat(Directory_1,"//home//ee//hbin//Carol//hb//ifs-1//ifs2//data//");

}

else {
strcat(Directory, "\Carol\\hb\\data\\");
strcat(Directory_1,"\Carol\\hb\ifs-I\ifs2\\data\\");

}

strcat(FileName,Directory);strcat(FileName,"IFS_Parameter.dat");

ifstream fid5(FileName,ios::nocreate);

fid5>>RangeSegments;

fid5>>SegStart;

fid5>>SegEnd;SegEnd+=SegStart;

fid5>>MaximalSize;

fid5>>MinimalSize;

fid5>>LowestQuantizer;

fid5>>HighestQuantizer;

fid5>>ErrorThreshold;

fid5>>ErrorThreshold;

//fid5>>ErrorThreshold;

/id5>>ErrorThreshold;//for IFS455

cout<<"ErrorThreshold="<<ErrorThreshold<<endl;

Size_Ratio=1+(int) (log10(MaximalSize/MinimalSize)/1og10(2));

FileName[0]=NULL;
strcat(FileName,Directory_1);strcat(FileName,"IFS255Param.dat");
ifstream fid5(FileName,ios::nocreate);
fid5>>DataFile;
fid5>>SaveFile;
fid5>>Segmenting;
fid5>>Quantizing;
cout<<"DataFile="<<DataFile<<"SaveFile="<<SaveFile<<"Segmenting="<<;
cout<<Segmenting<<"Quantizing="<<Quantizing<<endl;
if(Quantizing==0){
LowestQuantizer=7;HighestQuantizer=7;//QuResolution[0]=NULL;
}
strcat(MeanVarFile,Directory__1);strcat(MeanVarFile,DataFile);strcat(MeanVarFile,SaveFile);
strcat(MeanVarFile,"MeanVar.dat");cout<<"MeanVarFile="<<MeanVarFile<<endl;
ifstream fid3(Mean VarFile,ios::nocreate);
if(!fid3){cerr<<"cannot open"<<Mean VarFile<<endl; exit(1);}
length=-1;
while(!fid3.eof()){
fid3>>InputFilel[++length];
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}
length--;
j=0;
for (i=0;i<=length;i+=2){
MeanSeg[jl=InputFile1[i];
VarianceSeg[jl=InputFile1[i+1];
j++
}
FileName[0]=NULL;
strcat(FileName,Directory);
strcat(FileName,DataFile);strcat(FileName,".dat");cout<<"DataFile="<<FileName<<endl;
ifstream fid1(FileName,ios::nocreate);
Datalength=0;
while(!fid1l.eof()){
fid1>>A_k;aa[++Datalength]=(short int) (1000*A_k);
}
Datalength--;
Length=Datalength;//size(aa);
TotalSegments=(int) (DataLength/SegmentLength);
cout<<"SegmentLength="<<SegmentLength<<"Length="<<Length<<"TotalSegments="<<TotalSeg-
ments<<endl;

"%----—--- Read the segmented file
if (Segmenting==1){
FileName[0]=NULL;
strcat(FileName,Directory);strcat(FileName,DataFile);
strcat(FileName,"_segment.dat");cout<<"Complexity file="<<FileName<<end];
ifstream fid5(FileName,ios::nocreate);
for (i=1;i<=Datalength;i++)
fid5>>dimension_index[i];
}
DomainStep=1;
for (SelectQuantizer=LowestQuantizer;SeIectQuantizer<=HighestQuantizer;SelectQuantizer++){
i=(int) pow(2,SelectQuantizer);k=0;//cout<<"i="<<i<<endl;
while(i/(int) pow(10,++k)){}
k-
for (j=k;j>=03j--){
TempCha[jl=48+i%10; i=i/10;
}
TempCha[++k]="\0";
QuantizerName[0]=NULL;
strcat(QuantizerName,Directory);strcat(QuantizerName,"Laplacian_");
strcat(QuantizerName, TempCha);
strcat(QuantizerName," .txt");cout<<"QuantizerName="<<QuantizerName<<endl;
SavedCoeName[0]=NULL;strcat(SavedCoeName,Directory_1);strcat(SavedCoeName,DataFile);
strcat(SavedCoeName,SaveFile);
if  (Quantizing==1)
strcat(SavedCoeName,"Q");
else TempCha[0}=NULL;
if (Segmenting==1)
strcat(SavedCoeName,"Seg");
strcat(SavedCoeName,"-");strcat(SavedCoeName,TempCha);
strcat(SavedCoeName,".dat");cout<<"SavedCoeName="<<SavedCoeN ame<<endl;
TotalMeanSegmentlength=0;
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}

TotalRangeBlock=0;
Start_Position=1;
Segment_Number=0;
fun_IFS255();

void fun_IFS255()

{

/"
/4

/4
/"

i/
i
/"
/!
i

fid = fopen(SavedCoeName,"wt");cout<<SavedCoeName<<endl;

L ReadMeanVar.m

ifstream fid2(QuantizerName,ios::nocreate);

QuantizerLevel=-1;

while (!fid2.eof()){
fid2>>InputFile[++QuantizerLevel];

}

QuantizerLevel--;
QuantizerLevel=(QuantizerLevel)/2+1;QuantizerLevel_1=QuantizerLevel-1;
for (i=0;i<QuantizerLevel;i++){
Quantizer[il=InputFile[i];
Quantizer_c[i]=Quantizer[i] *VarianceSeg[0]+MeanSeg[0];
Quantizer_d[i]=Quantizer[i]*VarianceSeg[1]+MeanSeg[1];
Quantizer_f[i]=Quantizer[i]*VarianceSeg[2]+MeanSeg[2];
Quantizer_g[i]=Quantizer[i] *VarianceSeg[3]+MeanSeg[3];
Quantizer_h[i]=Quantizer[i]*VarianceSeg[4]+MeanSeg[4];
Quantizer_i[i]=Quantizer[i]*VarianceSeg[S]+MeanSeg[5];

for (i=0;i<QuantizerLevel-1;i++){
Interval[i]=InputFile[i+QuantizerLevel];
Interval_c[i]=Interval[i]*VarianceSeg[0]+MeanSeg[0];
Interval_d[i]=Interval[i]*VarianceSeg[1]+MeanSeg[1];
Interval_fli]=Interval[i]*VarianceSeg[2]+MeanSeg[2];
Interval_g[i]=Interval[i]*VarianceSeg[3]+MeanSeg[3];
Interval_h[i]=Interval[i]*VarianceSeg[4]+MeanSeg[4];
Interval_i[i]=Interval[i]*VarianceSeg[5]+MeanSeg[5];
1
int RangeRatio=(int) (Quantizer[QuantizerLevel-1]+0.999);
Center_c=MeanSeg[0];
Distance_c=RangeRatio*VarianceSeg[0];
Center_d=MeanSeg[1];
Distance_d=RangeRatio*VarianceSeg[1];
Center_f=MeanSeg[2];
Distance_f=RangeRatio*VarianceSeg[2];
Center_g=MeanSeg[3];
Distance_g=RangeRatio*VarianceSeg[3];
Center_h=MeanSeg[4];
Distance_h:RangeRatio*VarianceSeg[4];
Center_i=MeanSeg[5];
Distance_i=RangeRatio*VarianceSeg[5];
%

float sum_t1_square,sum_x1_t1 ,sum_tl,sum_t1_t2,sum_x_tl,sum_x_t2;
float  sum_x1_square,sum_x1,sum_x1_t2,sum_x_x1;
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"
1/

/"
/i

float sum_t2,sum_x;
float sum_t2_square;

float all,al2,al3,al4;

float a22,a23,a24;

float a33,a34;

/ffloat  a41,a42,a43,a44,a45,246;
/float  a51,a52,a53,a54,a55,a56;
double bl11,b12,b13;

double b21,b22,b23;

//double b31,b32,b33,b34,b35;
//double b41,b42,b43,b44,b45;
//double ¢11,c12,c13,c14;
//double ¢21,c22,¢23;

//double ¢31,¢32,c33,c34;
//double d11,d12,d13;

//double d21,d22,d23;

float g k;

float gg;

const int Poly2=2;
const int Poly3=3;
const int Poly4=4;
float *z2, #12;
z2 = new float[SegmentLength+1];
23 = new float[SegmentLength+1};
z4 = new float[SegmentLength+1];
t2 = new float[SegmentLength+1];
t3 = new float[Segmentlength+1];
t4 = new float[SegmentLength+1];

for (i=1;i<=SegmentLength;i++){

Appendix B: Source Code

z2[i]=(float) pow(i,Poly2);//z3[i]=(float) pow(i,Poly3);z4[i]=(float) pow(i,Poly4);

}

for (TotalSegmentCount=1;TotalSegmentCount<=TotalSegments;TotalSegmentCount++){

HP--=--~ Get a segment from time series------
Start_Position_1=Start_Position-1;;

for (i=Start_Position;i<Start_Position+SegmentLength;i++){

a[i-Start_Position_1]=(float) (aa[i]/1000.);
}
Start_Position=Start_Position+SegmentLength;
Segment_Number=Segment_Number+1;
1% IFS.m ;
SegmentLength=SegEnd-SegStart;
SegStart]=SegStart-1;
for (i=1;i<=SegmentLength;i++){
x[i]=a[i+SegStart1];

}

11%0----=--- Get domain blocks according to the complexity
if (Segmenting==1){
k=1;complexity[1]=dimension_index[SegStart];

SegmentedPoint[k]=1;d_i [k]=dimension_index[SegStart];

for (i=2;i<=SegmentLength;i++){
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complexity[i]=dimension_index[i+SegStart1];
if (d_i[k]!=complexity[i]){
tdld[k]=i-1;
k=k+1;SegmentedPoint[k]=i;d_i[k]=complexity[i];
}
}
tdld[k]=SegmentLength;DomainSegment=k;

}
%

RangeBlock=1;RangeBlockPosition=1;
while (RangeBlockPosition<SegmentLength){

RangeBlockSize=MaximalSize;
tr[RangeBlock]=RangeBlockPosition;tr_1[RangeBlock]=tr[RangeBlock]-1;

for (i=1;i<=Size_Ratio;i++){
trlrfRangeBlock]=RangeBlockPosition+RangeBlockSize-1;
if (tlr[RangeBlock]<=SegmentLength){
break;
}
else {
RangeBlockSize=RangeBlockSize/2;

}
}

Error=100;BreakDown=0;
for (Error2RangeSize=1 ;Error2RangeSize<=Size_Ratio;Error2Ran geSize++){
trirfRangeBlock]=RangeBlockPosition+RangeBlockSize-1;
Ir[RangeBlock]=RangeBlockSize;
A_k=1;
for (ContractionRatio=1;ContractionRatio<=3;ContractionRatio++){
//%Corresponding to shrink factor a: 0.5, 0.25, 0.125
A_k=A_k/2;
ld[RangeBlock]=(int) (IrfRangeBlock]/A_k):

if (Segmenting==0)
td_end=SegmentLength-1d[RangeBlock];
else td_end=DomainSegment;
for (kd=1;kd<=td_end;kd+=DomainStep){
if  (Segmenting==0)
td=kd;
else {
td=SegmentedPoint[kd];
if  ((td+ld[RangeBlock]-1) > Segmentlength){
break;
}
}
i_td=td-1;
J=Lx1[j]=x[td];t1[jl=(float) td; count[j]=1;
2[j1=22[td];//t3[jl=23[td];t4[j1=z4[td];
for(i=td+1;i<td+Id[RangeBlock];i++){
/li1=i-td;
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if  (j==(int) ceil((-td+1)*A_k)){
x1[jl=x1[jl+x[il;t1[j]=t1[j]+(float) i;count[j]=count(j]+1;
t2[j1=t2[j]+22[)://3[j1=t3[j]+23[i);t4[j1=t4[j 1 +24Li];

}
else {
j++
x1[jl=xfi];t1[jl=(float) i;count[j]=1;
12[j1=22[i];//t3[j1=23[i];t4[jl=z4[i];
}
}

for(j=1;j<=Ir[RangeBlock];j++){
x1[jl=x1[j)/(float) count[j];t1[j]=t1[j)/(float) count[j];
2[jl=t2[j}/(float) count[jl;
/1 t3[j1=t3[j1/(float) count[j1; t4[j]=t4[jl/(float) count][j];
}

sum_t1_square=0;sum_x1_t1=0; sum_t1=0;sum_t1_t2=0:sum_x_t1=0;

sum_x1_square=0;sum_x1=0;sum_x1_t2=0;sum_x_x1=0;

sum_t2=0;sum_x=0;

sum_t2_square=0;sum_x_t2=0;

for (i=1;i<=Ir[RangeBlock];i++){
i_tr=tr_1[RangeBlock]+;
sum_t1_square=sum_t1_square+t1[i]*t1[i);
sum_x1_tl=sum_x1_t1+x1[i]*t1[i];
sum_tl=sum_tl+t1[i];
sum_t1_t2=sum_t1_t2+t1[i]*t2[i];
sum_x_tl=sum_x_t1+x[i_tr]*t1]i];
sum_x1_square=sum_x1_square+x 1[i]*x1[i];
sum_x1=sum_x1+x1[i];
sum_x1_t2=sum_x1_t2+x 1[i]*t2[i];
sum_x_x1=sum_x_x1+x[i_tr]*x1[i];
sum_t2=sum_t2+t2[i];
sum_x=sum_x+x[i_tr];
sum_t2_square=sum_t2_square+t2[i]*t2[i];
sum_x_t2=sum_x_t2+x[i_tr]*t2[i];

}

all=sum_t1_square-sum_t1*sum_t1/(float) IrfRan geBlock];

al2=sum_x1_t1-sum_x1*sum_t1/(float) Ir[RangeBlock];

al3=sum_t1_t2-sum_t1*sum_t2/(float) Ir[RangeBlock];

ald=sum_x_t1-sum_x*sum_t1/(float) Ir[RangeBlock];

a22=sum_x1_square-sum_x1*sum_x1/(float) If[Ran geBlock];

a23=sum_x1_t2-sum_x1*sum_t2/(float) Ir[RangeBlock];

a24=sum_x_x1-sum_x*sum_x1/(float) Ir[RangeBlock];

a33=sum_t2_square-sum_t2*sum_t2/(float) Ir[RangeBlock];

a34=sum_x_t2-sum_x*sum_t2/(float) IrfRangeBlock];

bll=all*a33-al3*al3;bl12=al2*a33-a13*a23;b13=al4*a33-al3*a34;
b21=b12;b22=a22*a33-a23*a23;b23=a24*a33-a23*a34;

c_k=(float) ((b12*b23-b13*b22)/(b12*b21-b11%b22));
d_k=(float) ((b13*b21-b11*b23)/(b12*b21-b11¥b22));
_k=(float) ((al4-c_k*all-d_k*al2)/al3);
f_k=(float) ((sum_x-c_k*sum_tl-d_k*sum_x1- g _k*sum_t2)/(float) Ir[Range-
Block]);
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if(Quantizing==0){

rms=0;

}

else{

rms=200;

if  ((fabs(c_k-Center_c)<Distance_c) & (fabs(d_k-Center_d)<Distance_d) &
(fabs(f_k-Center_f)<Distance_f)){

if (fabs(g_k-Center_g)<Distance_g){
fun_Quantizing(g_k,Quantizer_g,Interval_g,QuantizerLevel,g_k);
d_k=((al4-g_k*al3)*al2-all1*(a24-g_k*a23))/(al2*al2-al1*a22);
fun_Quantizing(d_k,Quantizer_d,Interval_d,QuantizerLevel,d_k);
¢_k=(al4-d_k*al2-g_k*al3)/all;
fun_Quantizing(c_k,Quantizer_c,Intervalﬁc,QuantizerLevel,c_k);
rms=0;

}

}

}

if(Quantizing==1){

mean=0.;

for(i=1;i<=Ir[RangeBlock];i++){

x_affinefil=c_k*t1[i]+d_k*x1[i]+g_k*t2[i]-x[tr_1 [RangeBlock]+il;

x_middle=x_affine[i]+f k;

mean=mean+x_middle;

}

mean=mean/(float) Ir[RangeBlock];

f_k=f k-mean;

fun_Quantizing(f_k,Quantizer_f,Interval_f,QuantizerLevel,f_k);

for(i=1;i<=Ir[RangeBlock];i++){

x_middle=x_affine[i]+f _k;

rms=rms+x_middle*x_middle;

}

}

else{

for(i=1;i<=Ir[RangeBlock];i++){
x_affine[i]=c_k*t1[i]+d_k*x1[i]+g_k*t2[i]-x[tr_I [RangeBlock]+i];

x_middle=x_affine[i]+f_k;

rms=rms+x_middle*x_middle;

}

}

rms=(float) sqrt(rms/(float) IrfRangeBlock]);

if(rms<Error){
Error=rms;

BestDomain=(float) td;Domainlength=(float) 1d[RangeBlock];
AA=A_k;//E[RangeBlock]=E_k;

ce=c_k;dd=d_k;ff=f k;

gg=g k;
if(rms<ErrorThreshold){
BreakDown=1;
break;
}
} /1% ifNewError<Error(RangeBlock)
} /1%kd

if (BreakDown==1){
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break;
}

W %ContractionRatio

if ((ms<ErrorThreshold) | (RangeBlockSize<=MinimalSize)){
break;

}

else {
RangeBlockSize=RangeBlockSize/2;

}
1 %Error2RangeSize
RangeBlockPosition=RangeBlockPosition+(int) (DomainLength*AA);

fprintf(fid,"%5.0f\n", BestDomain);
fprintf(fid,"%5.0f\n", DomainLength);
fprintf(fid,"%5.3f\n", AA);
fprintf(fid,"%14.12f\n", cc);
fprintf(fid,"%14.11f\n", dd);
fprintf(fid,"%14.11f\n", ff);
fprintf(fid,"%14.12f\n", gg);
i fprintf(fid,"%14.12f\n", hh);
/i fprintf(fid,"%16.14\n", ii);
RangeBlock=RangeBlock+1;
}
RangeBlock=RangeBlock-1;
TotalRangeBlock=TotalRangeBlock+RangeBlock;
MeanRangeSize=(fioat) SegmentLength/ (float) RangeBlock;
cout<<"TotalSegmentCount="<<TotaISegmentCount<<"MeanRangeSize="<<MeanRangeSize<<”Range-
Block="<<RangeBlock<<end];
TotalMeanSegmentLength=TotalMeanSegmentLength+SegmentLength;
}
TotalMeanSegmentLength=TotalMeanSegmentLength/(float) TotalRangeBlock;
cout<<"TotalMeanSegmentLength="<<TotalMeanSegmentLength<<endl;
fclose(fid);

void fun_Quantizing(float &Output, float Quantizer[],float Interval[],int QuantizerLevel,float Input)

{

int fun_Q_i,Position,Levell;

Quantizerl evel=QuantizerLevel/2;
Levell=(int) (log10(QuantizerLevel)/1og10(2));
if ((Interval[QuantizerLevel-1] <= Input) && (Input <= Interval[QuantizerLevel])){
Output=Quantizer[QuantizerLevel];
}
else if ((Interval[QuantizerLevel] < Input) && (Input <= Interval[QuantizerLevel+1])){
Output=Quantizer[QuantizerLevel+1];
}
else{
Position=QuantizerLevel;
for (fun_Q_i=1;fun_Q_i<=Levell;fun_Q_i++){
Quantizerlevel=QuantizerLevel/2;
if (Input < Interval[Position]){
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Position=Position-QuantizerLevel;
}
else{
Position=Position+QuantizerLevel;
}
}

if (Input < Interval[Position]){
Output=Quantizer[Position];

}
else {
Output=Quantizer{Position+1];
}
}

return;
}
Name : IFSReconstruct.m
Input : UnixOrWindows.dat, IFS_Parameter.dat
Procedure  : signal reconstruction based on NIFS compression
Date : 29/June/2001
Version : 1.0

Designer  :Bin Huang; Tel: 4746992, e-mail: hbin @ee.umanitoba.ca

Resfsiese

clear;

fid=fopen('UnixOrWindows.dat','r');

[flagl=fscanf(fid,'%d");

UnixAndWindowsFlag=flag(1);

if (UnixAndWindowsFlag)
Directory="/home/ee/hbin/Carol/hb/data/";
Directory_1="/home/ee/hbin/Carol/hb/ifs-1/ifs2/data/";

else
Directory="\Carol\hb\data\';
Directory_1=\Carol\hb\ifs-l\ifs2\data\';

end

FileName=strcat(Directory, IFS_Parameter.dat');

fid=fopen(FileName,'r");

[IFSParameters,length]=fscanf(fid, '%f");fclose(fid);

LowestQuantizer=IFSParameters(6);

HighestQuantizer=IFSParameters(7);

fprintf('Quantizer1=%d, Quantizer2=%d\n',LowestQuantizer, Hi ghestQuantizer);

FileName=strcat(Directory_1, TFS255Param.dat');

[Param]=textread(FileName, %s");

Param 1=char(Param(1));

Param?2=char(Param(2));

Param3=char(Param(3));

Param4=char(Param(4));

Segmenting=str2num(Param3); Quantizing=str2num(Param4);

fprintf('Segmenting=%d,  quantizing=%d\n', Segmenting, Quantizin 2);

DataFile=strcat(Directory,Param1,".dat"); fprintf('DataFile=%s\n',DataFile);
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fid=fopen(DataFile,'r");
[aal=fscanf(fid,'%f\n"); aa=aa’;

CoeFile=strcat(Directory_1,Param1,Param2); MeanVarFile=strcat(CoeFile, Mean Var.dat');
if (Quantizing==1)
CoeFile=strcat(CoeFile,'Q");
else
LowestQuantizer=7;
HighestQuantizer=7,;
end
if (Segmenting==1)
CoeFile=strcat(CoeFile,'Seg");
end
CoeFile=strcat(CoeFile,-";
SaveFile=strcat(CoeFile, Re.dat"); fprintf('SaveFile=%s\n',SaveFile);
fout=fopen(SaveFile,'w');
fprintf(fout,’ Yos %s %s',RMS', TotalEntropy','CompressionRatio");
fprintf(fout,’ %s %s %s %s  %s  %s %s\i\n', DPosi', DLeng','A",'c','d'",'f,'g");

DistrName="Laplacian_";
for SelectQuantizer=LowestQuantizer:HighestQuantizer
QuantizerName=num?2str(2./SelectQuantizer);
if (Quantizing==1)
InputFile=strcat(CoeFile,QuantizerName,'.dat'); %fprintf('InputFile=%s\n',InputFile);
else
InputFile=strcat(CoeFile,'.dat"); %fprintf(' InputFile=%s\n' InputFile);
end
fprintf(\nQuantizerLevel=%s, InputFile=%s\n',QuantizerName, InputFile);
%-----Get parameters for Quantization----
QuantizerName=strcat(DistrName,QuantizerName);
fprintf(fout,' %s\r\n', QuantizerName);
QuantizerName=strcat(Directory,QuantizerName,".txt');
%

[RMS, TotalEntropy, EntropyofCoe, CompressionRatio,a]=fun_R255Q(aa,InputFile,Quantiz-
erName,MeanVarFile);

fprintf(fout,’ %5.2f% %' RMS);
fprintf(fout,’ %f', TotalEntropy);
fprintf(fout,’ %t ,CompressionRatio);

fprintf(fout,’ %5.2f %5.2f %5.2f %5.2f %5.2f %5.2f %5.2f\r\n',EntropyofCoe);
end
fclose(fout);

subroutine:
% fun_R255Q.m
% Read IFS coefficients given by IFS255.cpp for an complete ECG signal.
% Reconstructing it and calaulate RSM and Compression Ratio (also Entropy).
%
% 29/06/2001 by Bin Huang
%
function [RMS, TotalEntropy, EntropyofCoe, CompressionRatio,a]=fun_R255Q(aa,InputFile,Quantiz-
erName,MeanVarFile);
fid=fopen(InputFile,'r");
[temp,length] = fscanf(fid,'%f\n"); fclose(fid);
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DimensionNumber=7;
CoeffientLength=length(1,1)/DimensionNumber; Potprintf('Coeffientlegth=%d\n',CoeffientLength);
k=0;
for i=1:DimensionNumber:length
k=k+1;
Segment_DomainPosition(k)=temp(i);
Segment_DomainLength(k)=temp(1+i);
Segment_a(k)=temp(2+i);
Segment_c(k)=temp(3+i);
Segment_d(k)=temp(4+i);
Segment_f(k)=temp(5+i);
Segment_g(k)=temp(6-+i);
% Segment_h(k)=temp(7-+i);
% Segment_i(k)=temp(8+i);
end

if 0
Resolution=500;
hist(Segment_DomainPosition,500); xlabel('DomainPosition"); pause;
hist(Segment_DomainLength,500); xlabel('DomainLength); pause;
hist(Segment_a,Resolution); xlabel('Coefficient a'); pause;

% hist(Segment_e,Resolution); xlabel('Coefficient e'): pause;
hist(Segment_c,Resolution); xlabel('Coefficient c¢'); pause;
hist(Segment_d,Resolution); xlabel('Coefficient d"); pause;
hist(Segment_f,Resolution); xlabel('Coefficient f'); pause;
hist(Segment_g,Resolution); xlabel('Coefficient g'); pause;

% hist(Segment_h,Resolution); xlabel('Coefficient h'); pause;
% hist(Segment_i,Resolution); xlabel('Coefficient i'); pause;
end

Po-m-==mmmmmm- Reconstructing the signal segment by segment---------—-----
SegmentCount=0;
SegmentLength=1024;
i=0;
AccumulatedSeglg=0;
forCoePosition=1:CoeffientLength
i=i+];
A(i)=Segment_a(CoePosition);
%E(i)=Segment_e(CoePosition);
BestDomain(i)=Segment_DomainPosition(CoePosition);
DomainLength(i)=Segment_Domainlength(CoePosition);
c(i)=Segment_c(CoePosition);
d(i)=Segment_d(CoePosition);
f(i)=Segment_{(CoePosition);
g(i)=Segment_g(CoePosition);
% hh(i)=Segment_h(CoePosition);
% ii(i)=Segment_i(CoePosition);

AccumulatedSeng:AccumulatedSeng+Segment_DomainLength(CoePosition)*Segment_a(CoePosi—
tion);
if (AccumulatedSegl g==SegmentLength)
RangeBlock=i;
iterate=100;y([ 1:SegmentLength])=1;Threshold=0.00001;
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k=1; t(k)=1; E(k)=floor(tr(k)-ceil(A(k)*BestDomain(k)));

for k=2:RangeBlock
tr(k)=A(k-1)*DomainLength(k-1)+tr(k-1);
E(k)=floor(tr(k)-ceil(A(k)*BestDomain(k)));

end

fori=1:iterate
count([1:SegmentLength])=0;y_index([1:SegmentLength])=0;
for k=1:RangeBlock
BestDomain_1(k)=BestDomain(k)-1;
E1(k)=E(k)+floor(A(k)*BestDomain(k)-0.01);
for j=1:DomainLength(k)
j1=j+BestDomain_1(k);
t_j=ceil(Ak)*)H+E1(k);
count(t_j)=count(t_j)+1;
% y_index(t_j)=y_index(t_j)+c(k)*j1+d(k)*y(j1)+f(k);
y_index(t_j)=y_index(t_j)+c(k)*j1+d(k)*y(1)+f(k)+g(k)*(j1.42);
end
end

for j=1:SegmentLength
_index(j)=y_index(j)/count(j);

end

ConError=std(y-y_index);

if ConError>Threshold

y=y_index;
else
break;
end
end
a([SegmentCount*SegmentLength+1 :(SegmentCount+1)*SegmentLength])=y([1:Seg-
mentLength));
SegmentCount=SegmentCount+1;  %fprintf(SegmentCount=%d\n', SegmentCount);
i=0;

AccumulatedSegl g=0;
end %if(AccumulatedSegLg==SegmentLength)
end %forCoePosition=1:CoeffientLength

if1
Datalength=SegmentCount*SegmentLength; fprintf('Datalength=%d\n’, Datal_ength);
clf;
plot(aa([1:Datalength]),-.");
hold on;
plot(a([1:Datalength]));
xlabel(i);
al([1:DataLength])=aa([1:DataLength])-a([1 :Datalength]);
RMS=sqrt(cov(al)/cov(a))*100; %fprintf(RMS=%f\n', RMS);
end

fid=fopen(QuantizerName,'r');

[InputFile,length]=fscanf(fid, %f"); fclose(fid);
QuantizerLevel=(length+1)/2; QuantizerLevel_l=QuantizerLevel-1 ;
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fid=fopen(MeanVarFile,'r');

[InputFilel,lengthl=fscanf(fid, %f);

fclose(fid);

=1

for i=1:2:length
MeanSeg(j)=InputFile1(i);
VarianceSeg(j)=InputFile1(i+1);
j=i+l;

end

Quantizer=InputFile([1:QuantizerLevel],1); Ran geRatio=ceil(max(Quantizer));
Quantizer_c=Quantizer*VarianceSeg(1)+MeanSeg(1);
Quantizer_d=Quantizer*VarianceSeg(2)+MeanSeg(2);
Quantizer_f=Quantizer*VarianceSeg(3)+MeanSeg(3);
Quantizer_g=Quantizer*VarianceSeg(4)+MeanSeg(4);

% Quantizer_h=Quantizer*VarianceSeg(5)+MeanSeg(5);

% Quantizer_i=Quantizer*VarianceSeg(6)+MeanSeg(6);

% Entropy.m
clear EntropyofCoe;
SignalSampling=11; %bits

[EntropyofCoe(1)]=fun_Entropy(Segment_DomainPosition,SegmentLength);
[EntropyofCoe(2)]=fun_Entropy(Segment_DomainLength,SegmentLength);
[EntropyofCoe(3)]=fun_Entropy(Segment_a,SegmentLength);
[EntropyofCoe(4)]=fun_Entropy_Q(Segment_c,Quantizer_c,QuantizerLevel);
[EntropyofCoe(5)]=fun_Entropy_Q(Segment_d,Quantizer_d,QuantizerLevel):
{EntropyofCoe(é)]=fun_Entropy_Q(Segment_f,Quantizer_f,QuantizerLevel);
[EntropyofCoe(7)]=fun_Entropy_Q(Segment_g,Quantizer_g,QuantizerLevel);
% [EntropyofCoe(8)]=fun_Entropy_Q(Segment_h,Quantizer_h,QuantizerLevel);
% [EntropyofCoe(9)]=fun_Entropy_Q(Segment_i,Quantizer_i,QuantizerLevel);
fprintf(EntropyofCoe=%f %f %f %f %f %f %f\n'EntropyofCoe);

TotalEntropy=sum(EntropyofCoe);
CompressionRatio:(DataLength*SignalSampling)/(TotalEntropy*CoefﬁentLength);
fprintf('CoeffientLength=%d, TotalEntropy=%f, RMS=9%f, CompressionRatio=%f\n',CoeffientLength,
TotalEntropy, RMS, CompressionRatio);

% fun_Entropy.m

% Calculate entropy for a quantized coefficient.
%

% 05/06/2001 by Bin Huang

%

function [EntropyofCoe]=fun_Entropy(Coefficiet,Resolution)
NumofCoe=size(Coefficiet);
Prob=hist(Coefficiet,Resolution);
Prob=Prob/NumofCoe(1,2); %ProbabilitySum=sum(Prob)
EntropyofCoe=0.; NumofCoe=size(Prob);
for i=1:NumofCoe(1,2)
if Prob(i)~=0.
EntropyofCoe=EntropyofCoe-Prob(i)*log2(Prob(i));
end
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end
EntropyofCoe;
% fun_Entropy_Q.m
% Calculate entropy for a quantized coefficient based on probability distribution;
% 01/07/2001 by Bin Huang
%

function [EntropyofCoe]=fun_Entropy_Q(Coefficient,Quantizer,QuantizerLevel)
Prob([1:QuantizerLevel])=0;
NumofCoe=size(Coefficient);
ProbConst=1./NumofCoe(1,2);
for j=1:NumofCoe(1,2)
QuantizerLevel._2=QuantizerLevel/2;
if (Coefficient(j)==Quantizer(QuantizerLevel._2))
Prob(QuantizerLevel._2)=Prob(QuantizerLeveL_2)+ProbConst;
else
Position=QuantizerLevel_2;
for i=1:log2(QuantizerLevel_2)
QuantizerLevel._2=QuantizerLevel_2/2;
if Coefficient(j) < Quantizer(Position)
Position=Position-QuantizerLevel_2:

else
Position=Position+QuantizerLeveL_2;
end
end
Prob(Position)=Prob(Position)+ProbConst;
end
end

EntropyofCoe=0;
for i=1:QuantizerLevel
if Prob(i)~=0.
EntropyofCoe=EntropyofCoe-Prob(i)*log2(Prob(i));
end
end
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B.3.2 Coefficient Quantization

Name : NonuniformQuantizer.cpp

Input : parameter.dat,

Procedure  : nonuniform quantizer design based on the Gaussian or Laplacian distribution
Date : 26/June/2001

Version : 1.0

Designer  : Bin Huang; Tel: 4746992, e-mail: hbin @ee.umanitoba.ca

#include <fstream.h>
#include <stdio.h>
#include <iostream.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>

#define DefRange 14.

const long int N = 10000000;//max 515000*2;
const long int N1= N/2;
doubleScaleCoe=65535;

int Gaussian_curve=0;

doublepi=3.1415926;

void main() {

FILE *fid;

double StepSize;

double sqrt_2=sqrt(2.), ConCoe;

double T_pi;

double i, x1,x2,x11,x22,Q_difference, xmiddle;
long int ii, j, Mean_interval, initial_position;

int flag_p;

int QuantizerLevel;

unsigned short int*Coeffients;

float g_now, abs_q_Di, qM, gM1;

char FileName[50],FileName1[60]={""};
char FileLn[20];

int Level _1;

float *q, *q1, *x_interval, *x1_interval, *NormalizedQuanta, *NormalizedInterval;

ifstream fid1("c:\\carol\\hb\\data\\parameter.dat",ios::nocreate):
if(!fid1){cerr<<"cannot open fid"<<endl; exit(1);}
fid1>>FileName;fid1>>FileLn;

strcat(FileName, "_");strcat(FileName, FileLn):
strcat(FileNamel,FileName);

strcat(FileName, ".txt");

strcat(FileNamel, "_index");strcat(FileNamel, ".txt");
cout<<FileName<<endl;cout<<FileName 1 <<endl;
Level_l=atoi(FileLn);cout<<Level_l<<endI:

g=new float[Level_1+1];q1=new float[Level 1+1 1
x_interval=new float[Level_14+1];x1_interval=new float[Level _1+1];

B-43



/*

Appendix B: Source Code

NormalizedQuanta=new float[Level_1+1]:NormalizedInterval=new float[Level _1+11;
cout<<"N1="<<Nl<<endl;

StepSize=(double) (2.*DefRange)/(double) (N);
cout<<"StepSize="<<StepSize<<endl;

Coeffients = new unsigned short int [N1+1];

if(Coeffients==NULL){ cout<<"No enough memory!"; exit(1);}
coute<"1="<<Level_l<<endl;

QuantizerLevel=Level_1;

QuantizerLevel=QuantizerLevel/2;

=05
if (Gaussian_curve) //Gausian
{ T_pi=(double) ScaleCoe/sqrt(2*pi);
for (i=-DefRange;i<DefRange;i=i+StepSize)
{ Coeffients[j]=(unsigned short int) (exp(-i*1/2)*T_pi);
j=i+l;
}
}
cout<<"DefRange="<<DefRange<<""<<"StepSize="<<StepSize<<endl;
if (~Gaussian_curve) //Laplacian
{*/ sqrt_2=sqrt(2); ConCoe=(double) ScaleCoe;///sqrt_2;
cout<<"ScaleCoe="<<ScaleCoe<<"ConCoe="<<ConCoe<<endl:
for (i=-DefRange;i<=0;i=i+StepSize)
{  Coeffients[jl=(unsigned short int) (exp(-fabs(i)*sqrt_2)*ConCoe);
j=+1;
}
1}
cout<<"j="<<--j<<endl;
Mean_interval=(long int) (N1/2.26);//(float) QuantizerLevel);//2.3
_difference=100000;
x11=0.; x22=1.e-40;ScaleCoe=ScaleCoe/StepSize;
for (ii=0;ii<Mean_interval;ii++){
xmiddle=(double) Coeffients[ii]/ScaleCoe;
x11=x11+ii*xmiddle;//*StepSize;
X22=x22-+xmiddle;
}

cout<<"3="<<Level_l<<end];

for (initial_position:Mean‘interval;initial_position<(long int)(N1/2.1875);initial_position++){
xmiddle=(double) Coeffients[initial_position]/ScaleCoe;
x11=x11+initial_position*xmiddle;//*StepSize;
x22=x22+xmiddle;
qf1]=(float) (x11/x22);
q[2]=(float) (2.*initial_position-q[1]);
if (q[1] < q[2D){
x_interval[1]=(float) (initial_position);
//%----Find every endpoint and quantum------------ ;

for (j=2;j<=QuantizerLevel-1;j++){ /1% for each intervals;
x1=0.; x2=1.e-40;//%q_now=0;
flag_p=0;

for (ii=(int) (x_interval[j-1]+1);ii<N1;ii++){
xmiddle=(double) Coeffients[ii}/ScaleCoe;
xI=x1+ii*xmiddle;//*StepSize;
x2=x2+xmiddle;
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_now=(float) (x1/x2);
if (qfj] <= q_now){ /1% using monotonic increase property of x1/x2;

if (fabs(q[j]-((xl—ii*xmiddle)/(xZ—xmiddle)))<fabs(q[j]—q_now))
x_interval[j]=(float) (ii-1);//*StepSize;

else
x_interval[j]=(float) (ii);//*StepSize;

q[j+1]1=(float) (2.*x_interval[jI-q[j1);

if (qljl <qlj+1D

flag_p=1;
break;
}
}
if (flag_p==0)
break;

if (flag_p==1){
x1=0.; x2=1.e-40;
for (ii=(long int) (x_interval[QuantizerLevel-1]+1);ii<N1;ii++){
xmiddle=(double) Coeffients[ii]/ScaleCoe;
x1=x1+ii*xmiddle;//*StepSize;
x2=x2+xmiddle;
}
qM = (float) (x1/x2);
abs_q_Di = (float) (fabs(qM-q[QuantizerLevel]));
if (abs_q_Di < Q_difference){
Q_difference=abs_q_Di;
for (ii=1;ii<=QuantizerLevel;ii++){
q1[ii]=q(iil;
x1_interval[ii]=x_interval[ii];
gM1=qM;

}
1
%if q(1) < q(2)

fid = fopen(FileNamel, "w");
for (ii=1;ii<=QuantizerLevel;ii++){
fprintf(fid,"%f\n", q1[ii]);

coutc<"6="<<Level_l<<endl;
for (ii=1;ii<QuantizerLevel;ii++){
fprintf(fid,"%f\n", x1_interval[ii]);

fclose(fid);

cout<<"7="<<Level_l<<endl;

for (ii=1;ii<=QuantizerLevel;ii++){
NormalizedQuanta[ii]=(float) (q1 [ii]*StepSize)-DefRange;
NormalizedInterval[ii]=(float) (x1_interval[ii]*StepSize)-DefRange;
NormalizedQuanta[2*QuantizerLevel+1-ii)=-NormalizedQuanta[ii];

NormalizedIntervaI[QuantizerLevel]=O;//on1y for even quantization level;
for (ii=1;ii<QuantizerLevel;ii++){
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N ormalizedInterval[2*QuantizerLevel—ii]=—Norma1izedInterval[ii] ;
}
QuantizerLevel=QuantizerLevel*2;
fid = fopen(FileName, "w");
for (ii=1;ii<=QuantizerLevel;ii++){
fprintf(fid,"%f\n", NormalizedQuanta[ii]);
}
for (ii=1;ii<QuantizerLevel;ii++){
fprintf(fid,"%f\n", NormalizedInterval[ii]);

Appendix B: Source Code

}
fclose(fid);
}
Name : FitCoef.m
Output : CoeMeanVar.dat
Procedure  : main routine of finding distribution parameters for a data set
Date : 23/May/2001
Version : 1.0

Designer  : Bin Huang; Tel: 4746992, e-mail: hbin @ee.umanitoba.ca

clear;

hist55;

i_CoefficientsInpput=0;

if1
VarianceScale=1000; LengthRatio=20;
CoefficientsInpput=Segment_c;
FitCoefl;

end

if 1
VarianceScale=6; LengthRatio=200;
CoefficientsInpput=Segment_d;
FitCoefl;

end

if 1
VarianceScale=1000000; LengthRatio=40;
CoefficientsInpput=Segment_f;
FitCoefl;

end

if 1
VarianceScale=23; LengthRatio=800;
CoefficientsInpput=Segment_g;
FitCoefTl;

end

if 1
VarianceScale=100;  LengthRatio=7000;
CoefficientsInpput=Segment_h;
FitCoefl;

end

if 1
VarianceScale=600; LengthRatio=100000;
CoefficientsInpput=Segment_i;
FitCoefl;
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end

i_CoefficientsInpput %should be 6
fid =fopen (\carol\hb\data\CoeMeanVar.dat’, 'wt');
for i=1:i_CoefficientsInpput
fprintf(fid,'%10.8f ', MeanSeg(i));
fprintf(fid,'%10.8f\n’, VarianceSeg(i));

end

fclose(fid);

Name : FitCoefl.m

Input

Output

Procedure  : function for finding a mean and variance from a data set
Date : 23/May/2001

Version : 1.0

Designer : Bin Huang; Tel: 4746992, e-mail: hbin @ee.umanitoba.ca

MaxInput=max(CoefficientsInpput);
MinInput=min(CoefficientsInpput);
N=LengthRatio*(MaxInput-MinInput)
Step1=(MaxInput-MinInput)/N;
CoefficientsSeg=hist(CoefficientsInpput,N);
N1=1000;

Max Value=-1000; Max ValePosition=0;
for i=1:N
if CoefficientsSeg(i) > MaxValue
MaxValue=CoefficientsSeg(i); MaxValuePosition=i:
end
end
Mean=Step1*Max ValuePosition+MinInput

SegLength=size(CoefficientsInpput);
Variance=0;
for i=1:Segl.ength(1,2) :
Variance=Variance+(CoefficientsInpput(i)-Mean).2;
end
Variance=Variance/SegLength(1,2);
Variance=Variance/VarianceScale;
SqrtVariance=sqrt(Variance);
EstimateWidth=2*sqrt(Variance)
DistributionWidth=floor(Estimate Width/S tepl);
x1_il=floor(-DistributionWidth+Max ValuePosition); %-MinInput/Step1)
x1_i2=floor(DistributionWidth+Max ValuePosition);%-MinInput/Step1)
for i=x1_il:x1_i2
x1_axis(i)=(iy*Step1+Minlnput;
end
%-----curve generating
Gaussian_curve=0; % Gaussian_curve=1 for Gaussian, 0 for Laplacian;
Step2=2*EstimateWidth/N1;
Beta=Mean; Alfa=sqrt(2/Variance);
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=1
if Gaussian_curve  %QGausian

Const1=2*Variance; Const2=sqrt(2*pi*Variance);
=L
for i=-EstimateWidth+Mean:Step2:EstimateWidth+Mean
Coefficients(j)=exp(-(i-Mean).*2/Const1)/Const2;
x_axis(j)=i+Step2;
j=i+l;
end
MaxSeg=max(CoefficientsSeg)*Const2
end
if ~Gaussian_curve %Laplacian
sqrt_2=sqrt(2);
for i=-EstimateWidth+Mean:Step2:EstimateWidth+Mean
Coefficients(j)=(Alfa/2)*exp(-Alfa*abs(i-Beta));
x_axis(j)=i+Step2;
j=i+1;
end
MaxSeg=max(CoefficientsSeg)/(Alfa/2);
end
hold off;
plot(x_axis,Coefficients); hold on;
[sum(CoefficientsSeg([x1_i1:x1_i2])),SegLength(1 ,2),sum(CoefficientsSeg([x1_il:x1_i2]))/Seg-
Length(1,2)]
CoefficientsSeg=CoefficientsSeg/MaxSeg;
plot(x1_axis([x1_il:x1_i2]), CoefficientsSeg([x1_il:x1_i2]));
i_CoefficientsInpput=i_CoefficientsInpput+1;
MeanSeg(i_CoefficientsInpput)=Mean;
VarianceSeg(i_CoefficientsInpput)=SqrtVariance;

Name : hist55.m

Input : Coeffie.dat, IFS_Coeffie.dat

Procedure  : function for giving the histogram of the coefficients from NIFS.cpp
Date : 17/ May/2001

Version 1 1.0

Designer : Bin Huang; Tel: 4746992, e-mail: hbin@ee.umanitoba.ca

if 0
fid =fopen (\carol\hb\data\Coeffie.dat', 'wt');
fprintf(fid,'%f\n', Segment_DomainPosition);
fprintf(fid, %f\n', Segment_DomainLength);
fprintf(fid,'%f\n', Segment_a);
fprintf(fid,'%f\n', Segment_e);
fprintf(fid,'%f\n', Segment_c);
fprintf(fid,'%f\n', Segment_d);
fprintf(fid,'%f\n', Segment_f);
fprintf(fid,'%f\n’, Segment_g);
fprintf(fid,'%10.8f\n’, Segment_h);
fprintf(fid,'%10.8f\n’, Segment_i);
fclose(fid);

end

B-48



clear temp;

load \carol\hb\data\IFS_Coeffie.dat;

temp=IFES_Coeffie;

length=size(temp);

DimensionNumber=10;

CoeffientLength=length(1,1)/DimensionNumber;

for i=1:CoeffientLength
Segment_DomainPosition(i)=temp(i);
Segment_DomainLength(i)=temp(CoefﬁentLength+i);
Segment_a(i)=temp(2*CoeffientLength+i);
Segment_e(i)=temp(3*CoeffientLength+i);
Segment_c(i)=temp(4*CoeffientLength-+i);
Segment_d(i)=temp(5*CoeffientLength-+i);
Segment_f(i)=temp(6*CoeffientLength+i);
Segment_g(i)=temp(7*CoeffientLength-+i);
Segment_h(i)=temp(8*CoeffientLength-+i);
Segment_i(i)=temp(9*CoeffientLength+i);

end

if 0
Resolution=500;
hist(Segment_DomainPosition,500); xlabel('DomainPosition’); pause;
hist(Segment_DomainLength,500);  xlabel(DomainLength'); pause;
hist(Segment_a,Resolution); xlabel('Coefficient a'); pause;
hist(Segment_e,Resolution); xlabel('Coefficient e’); pause;
hist(Segment_c,Resolution); xlabel('Coefficient c'); pause;
hist(Segment_d,Resolution); xlabel('Coefficient d'); pause;
hist(Segment_f,Resolution); xlabel('Coefficient f); pause;
hist(Segment_g,Resolution); xlabel('Coefficient g); pause;
hist(Segment_h,Resolution); xlabel('Coefficient h'); pause;
hist(Segment_i,Resolution); xlabel('Coefficient i');
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end

Name : ReadMeanVar.m

Input

Output

Procedure  : given distribution parameters to design a nonuniform quantizer
Date : 18/May/2001

Version : 1.0

Designer : Bin Huang; Tel: 4746992, e-mail: hbin@ee.umanitoba.ca

clear MeanSeg; clear VarianceSeg;
fid=fopen(QuantizerName,'r');
[InputFile,length]=fscanf(fid, %f); fclose(fid);
QuantizerLevel=(length+1)/2; QuantizerLevel_1=QuantizerLevel-1;
fid=fopen("\carol\hb\data\CoeMean Var.dat','");
[InputFilel,length]=fscanf(fid,'%f); fclose(fid):
=t
for i=1:2:length

MeanSeg(j)=InputFile1(i);

VarianceSeg(j)=InputFile1(i+1);
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j=j+1;
end
MeanSeg
VarianceSeg
Quantizer=InputFile([1:QuantizerLevel],1); RangeRatio=ceil(max(Quantizer));
Interval=InputFile([QuantizerLevel+1:2*QuantizerLevel-1],1);
Quantizer_c=Quantizer*VarianceSeg(1)+MeanSeg(1);
Interval_c=Interval*VarianceSeg(1)+MeanSeg(1);
Center_c=MeanSeg(1);
Distance_c=RangeRatio*VarianceSeg(1);
Quantizer_d=Quantizer*VarianceSeg(2)+MeanSeg(2);
Interval_d=Interval*VarianceSeg(2)+MeanSeg(2);
Center_d=MeanSeg(2);
Distance_d=RangeRatio*VarianceSeg(2);
Quantizer_f=Quantizer*VarianceSeg(3)+MeanSeg(3);
Interval_f=Interval*VarianceSeg(3)+MeanSeg(3);
Center_f=MeanSeg(3);
Distance_f=RangeRatio*VarianceSeg(3);
Quantizer_g=Quantizer*VarianceSeg(4)+MeanSeg(4);
Interval_g=Interval*VarianceSeg(4)+MeanSeg(4);
Center_g=MeanSeg(4);
Distance_g=RangeRatio*VarianceSeg(4);
Quantizer_h=Quantizer*VarianceSeg(5)+MeanSeg(5);
Interval_h=Interval*VarianceSeg(5)+MeanSeg(5);
Center_h=MeanSeg(5);
Distance_h=RangeRatio* VarianceSeg(5);

Quantizer_i=Quantizer* VarianceSeg(6)+MeanSeg(6);
Interval_i=Interval*VarianceSeg(6)+MeanSeg(6);
Center_i=MeanSeg(6);
Distance_i=RangeRatio*VarianceSeg(6);

B-50

Appendix B: Source Code



Appendix B: Source Code

B.3.3 Signal Segmentation

Name : VEDT_Segment.m

Input : UnixOrWindows.dat, VDT-Parameter1 .dat
Procedure  : function of calculating the VFDT

Date : 06/0ct./2001

Version : 1.0

Designer  : Bin Huang; Tel: 4746992, e-mail: hbin @ee.umanitoba.ca

function VFDT_Segmrnt

clear;
fid=fopen('UnixOrWindows.dat','r');
[flag]=fscanf(fid,'%d");
UnixAndWindowsFlag=flag(1);
if  (UnixAndWindowsFlag)
Directory="/home/ee/hbin/Carol/hb/data/";
else
Directory="\Carol\hb\data\’;
end
fclose(fid);
fid=fopen("VDT-Parameterl.dat','r');
[InputFile]=fscanf(fid, %s")
fclose(fid);
fid=fopen("VDT-Parameter2.dat’,'r’);
[window_width]=fscanf(fid, %d")
fclose(fid);
InputFile=strcat(Directory,InputFile)
OutputFile=strcat(InputFile,' ','segment.dat’);
InputFile=strcat(InputFile, .dat');
fid=fopen(InputFile, 1');[a,length]=fscanf(fid, %f"):fclose(fid);
x=a;count=length
%Window in which variance dimension estimated.
%ewindow_width=32;
Halﬂ?Vindow=window_width/2;HalfWindow__1=1—HalﬂNindow;
1=1; K2=10;%starting point and ending point for linear slope region.
K_total=K2-K1+1; % P is the power of 2 which ...
last_location=(count-HalfWindow-K2);
ll=1;E=1;
for L=HalfWindow:last_location
§1=0;52=0;53=0;54=0;
for k=K1:K2%(formular: 108-1)
sum1=0;sum2=0;L1=L+k;
for n=HalfWindow_1:HalfWindow
deltB=x(L1+n)-x(L+n); suml=sum1+deltB*deltB; sum2=sum2-+deltB;
end
sum2=sum2/window_width;varB3=sum1/window_width-sum2*sum2;
Y(k)=log2(varB3/window_width);
X(k)=log2(k);
sl=s1+X(k)*Y(k);52=s2+X(k);s3=s3+Y(k);s4=s4+X(k)*X(k);
end
H=0.5*(K _total*s1-s2*s3)/(K_total*s4-s2%s2);%(formular: 109-3)
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dimension(L)=E+1-H;%(formular: 109-6)

end
['VEDT finished']
Name : segment.m

Procedure  : main routine of partitioning a signal according to complexity measures
Date : 24/Feb./2001

Version : 1.0

Designer : Bin Huang; Tel: 4746992, e-mail: hbin @ee.umanitoba.ca

sesksk &

if window_width==
Threshold1=1.35;Threshold2=1.71;

elseif window_width==32
Threshold1=1.34;Threshold2=1.70;

else
Threshold1=1.34;Threshold2=1.70;
['Attendtion: no proper threshold’]
end
for i=1:last_location
if dimension(i)<Threshold1

dimension_index(i)=0;
elseif  dimension(i)<Threshold2
dimension_index(i)=1;
else
dimension_index(i)=2;
end
end
for segment_width=4:4:16
PreviousSegmentValue=dimension_index(1);
CurrentSegmentLength=1;
fori=2:last_location
if(dimension_index(i)==dimension_index(i-1))
CurrentSegmentLength=CurrentSegmentLength+1;
elseifCurrentSegmentLength<segment_width
forj=1:CurrentSegmentLength
dimension_index(i-j)=PreviousSegmentValue;
end
PreviousSegmentValue=dimension_index(i-1);
CurrentSegmentLength=1;
else
PreviousSegmentValue=dimension_index(i-1);
CurrentSegmentLength=1;
end
end
end
fid =fopen (OutputFile, 'wt");
fprintf(fid,'%d\n', dimension_index);
fclose(fid);
start_point=10;N=2800;N=N+start_point;
plot(a(start_point:N)-3.5,"-.");hold on;
plot(dimension_index(start_point:N));
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B.4  Moment-Invariant and Classification of ECG

B.4.1 Moment-Invariant Feature Extraction

Name : moment.m

Input raf]

Output : MOMENT.DAT

Procedure  : main routine for calculating the moment-invariant
Date : 28/Nov./2001

Version 1 1.1

Designer  : Bin Huang; Tel: 4746992, e-mail: hbin @ee.umanitoba.ca

%
% Step:

% 1. Find the first peak in initialization

% 2. Find second peak to segmant a beat of the ECG

% 3. Calculate the 7 MIs (call moment_fun.m) by treating the beat

% as a character image and save the MIs in one line (MOMENT.DAT).
% 4. Setthe second peak as the first peak and jump to Step 2.

%

1=0;

normal_I=1;

sp=1;

fid = fopen(MOMENT.DAT",'w");

SampleFrequency=360;

No_estimation_of_period=370;%400;

End_point_addition=50;

R_S_distance_coe=1.5;
_R_distance_coe=0.33;

Period_error_limit=5;

Moment_error_limit=10;

length=size(a);
File_length=length(1,1)
peak1=0;
for i=1+sp:No__estimation_of_period+sp,
if peakl<a(i)
TO=i;
peakl=a(i);
end
end
sp=T0+End_point_addition;
whilel
if TO+No_estimation_of_period>File_length
break;
end
L=L+1;
peak2=0;
for i=1+TO+End_point_addition:TO+No_estimation_of_period,%+End_point_addition,
if peak2<a(i)
End_point=i;
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peak2=a(i);

end
end
clear specimen;
clear ff;
for i=14+T0:End_point,

j=i-TO;

specimen(j)=a(i);
end
specimen=specimen-min(specimen);
specimen_Length=End_point-T0;
TO=End_point;
clear img;
for j=1:specimen_Length
for i=1:specimen(j)*100

img(i,j)=1;
end
end
moment_fun;
fori=1:7

fprintf(fid,'%6.4f ',phi(i));
end
fprintf(fid,' %d\r\n’,specimen_Length);
end

Appendix B: Source Code

fclose(fid);
L
Name : moment_fun.m
Procedure  : function for calculating the moment-invariant
Date : 28/Nov./2001
Version (11

Designer : Bin Huang; Tel: 4746992, e-mail: hbin @ee.umanitoba.ca

sesfesisiesiesie

size_img=size(img);
Ordinate_length=size_im g(1,1);
Abscissa_length:size_img(1,2);
MO00=0; M01=0; M10=0;
for j=1:Ordinate_length
for i=1:Abscissa_length
if img(j,i)~=0
M0O0=MO00+1;
MO01=MO01+j;
M10=M10+i;
end
end
end

mean_x=M10/M00; mean_y=M01/MO0O0;

eta20=0; eta02=0; etall=0;
eta30=0; eta03=0; etal2=0; eta21=0;
for j=1:0rdinate_length
for i=1:Abscissa_length
if img(j,i)~=0

eta00=M00;
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i_centre=i-mean_x; j_centre=j-mean_y;
i2=i_centre*i_centre; j2=j_centre*j_centre;
i3=i2*i_centre; j3=j2%j_centre;
i1j2=i_centre*j2;  i2j1=i2*j_centre;
eta20=eta20+i2; eta02=eta02+j2; etall=etall+i_centre* ‘j_centre;
eta30=eta30+i3; eta03=eta03+j3;
etal2=etal2+ilj2;  eta2l=eta21+i2j1;
end
end
end
eta20=eta20/eta00./2; eta02=eta02/eta00./2; etall=etall/eta00./2;
eta30=eta30/eta00./2.5; eta03=eta03/eta00./2.5;
etal2=etal2/eta00./2.5; eta2l=eta2l/eta00.42.5;
clear phi;
phi(1)=eta20+eta02;
phi(2)=(eta20-eta02)."2+4*etal 1.72;
phi(3)=(eta30-3*etal2)./2+(eta03-3*eta21)./2;
phi(4)=(eta30+etal2)./2+(eta03+eta21).42;
phi(5)=(eta30-3*etal2)*(eta30+etal2)*((eta30+etal2).A2-3%(eta03+eta2 1 ).A2);
phi(5)=phi(5)+(3*eta21-eta03)*(eta03+eta2 1)*(3*(eta30+etal2). 2-(eta03+eta2 1 )2,
phi(6)=(eta20-eta02)*((eta30+etal2).A2-(eta03+eta21).A2)+4*etal 1 *(eta30+etal 2y*(eta03+eta2l);
phi(7)=(3*eta21-eta03)*(eta30+etal2)*((eta30+etal2).A2-3*(eta2 1 +eta03).A2);
phi(7)=phi(7)+(3*etal2-eta30)*(eta21+eta03)*(3*(eta30+etal2)./2-(eta2 1 +eta03)./2);
[L, phi]
% image(img);pause;
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B.4.2 Clustering Training Set

Name : ISODATA.m

Input : MOMENT.DAT

Output : Moment_cluster.dat

Procedure  : an unsupervised clustering algorithm for the training set
Date : 16/Dec./2001

Version 1 1.1

Designer : Bin Huang; Tel: 4746992, e-mail: hbin @ee.umanitoba.ca

%
% ISODATA---Iterative Self-Organizing Data Analysis Techniques
% 2/3 of the data set is used for training and 1/3 for classification
%
% x--samples for training

% Di--The dimension of samples

% N--The number of samples

% u--mean of cluster

% I--allowable iterating number

% C--Initial cluster number

% Cd--Cluster number demanded

% TN--Minimum number of samples in a cluster

% Te--Standard error theshold

% Td--Distance theshold between the centres of clusters
% CP--Maximum Clustering pairs

% Sc--Separate coeffieciency

C=1;

load MOMENT.DAT
xx=MOMENT(,[1:7]);
x1_value=size(xx);
NN=x1_value(1,1);
Dimension=x1_value(1,2);
N=floor(NN*2/3);
x([1:N],-)=xx([1:N1,);
u=mean(x);

break_out=0;

%--Step 2 Allocating all samples to clusters according to [X-ujl</X-uil, i=1...C, i<>j
while 1
Step([3:14])=0;
separat_occured=0;
clear samples_in_cluster; samples_in_cluster([1:C])=0:
clear new_clusters;
for j=1:N
current_cluster=0; xj_value=100000;
for i=1:C
xij_sum_square=sum((x(j,:)-u(i,:)).*2);
if  xij_sum_square <= xj_value
current_cluster=i;
Xj_value=xij_sum_square;
end
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end
samples_in_cluster(current_cluster)=samples_in_cluster(current_cluster)+1;
new_clusters(current_cluster,samples_in_cluster(current_cluster),[1:Dimension] )=x(j,f1:Dimen-
sion]);
Tc(j)=current_cluster;
end
Class(2)=C;

%--Step 3 If the number of samples in some clusters is too small, removing them.

k=0;
clear samples_in_cluster_index;
clear new_clusters_index;

for i=1:C
if samples_in_cluster(i) >= TN
k=k+1;

samples_in_cluster_index(k)=samples_in_cluster(i);
new_clusters_index(k,:,:)=new_clusters(i,:,:);
end

end

C=k;

clear samples_in_cluster;

clear new_clusters;

samples_in_cluster=samples_in_cluster_index;

new_clusters=new_clusters_index;

if break_out== %Function for Step 14, program out from here!!!!!1!!11111111
k=0; clear u_index;
for i=1:C
if samples_in_cluster(i) >= TN
k=k+1;
u_index(k,:)=u(,:);
end
end
C=k; clearu; u=u_index;
for j=1:N
current_cluster=0; xj_value=100000;
for i=1:C

xij_sum_square=sum{(x(j,:)-u(i,:)).*2);
if xij_sum_square <= xj_value
current_cluster=i;
Xj_value=xij_sum_square;
end
end
Tc(j)=current_cluster;
end
break;
end %if break_out==

%--Step 4 Renew the centre of the clusters

clear u;

Maxmum_cluster_size=size(new_clusters);

for i=1:C

for k=1:Dimension
u(i,k)=sum(new_clusters(i,:,k))/samples_in_cluster(i);

end
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end
%--Step 5 Evaluate average distance between centre to samples in a cluster and total distance
Total_D=0;
for i=1:C
D()=0;
for j=1:samples_in_cluster(i)
x_value=0;
for k=1:Dimension %Di
x_value=x_value+(new_clusters(i,j,k)-u(i,k)).~2;
end
D(i)=D(i)+sqrt(x_value);
end
Total_D=Total_D+(D(i));
D(i)=D(i)/samples_in_cluster(i);
end
Total_D=Total_D/N;
%--Step 6 Evaluate total average distance D

%--Step 7 Make decision
while 1
if I== %check iteration number
Td=0;
break;
end
if  C>(Cd/2)%b) isn't satisfactory, check c)
if  ((C>=2%Cd) | 2*floor(I/2)==I)) %even
break;
end
end
%--Step 8 and 9: Evaluate standard error and find the maxmum values
Step(8)=1; Step(9)=1; Sigma_i=0;Sigma_j=0;
clear some_cluster; some_cluster([1:C],[1:Dimension])=0; %Di
for i=1:C
for j=1:samples_in_cluster(i)
for k=1:Dimension %(Di)
some_cluster(i,k)=some_cluster(i,k)+(new_clusters(i,j,k)—u(i,k))."Z;
end
end
some_cluster(i,:)=sqrt(some_cluster(i,:)/samples_in_cluster(i));
end
Sigma=max(max(some_cluster));
break_flag=0;
for i=1:C
for j=1:Dimension %(Di)
if Sigma==some_cluster(i,j)
Sigma_i=i; Sigma_j=j;break_flag=1;

break;

end

end

if break_flag==1
break;
break_flag=0;

end

end
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Class(8)=C;Class(9)=C;

%0--Step 10 Check whether or not adding a new cluster
Cl=C;
if Sigma>Te
Number_Clusters=C;
for i=1:C
if ((D@)>=Total_D) & (samples_in_cluster(i)>2*(TN+1))) | (C<=(Cd/2))
Number_Clusters=Number_Clusters+1;
u(Number_Clusters,:)=u(i,:);
u(i,Sigma_j)=u(i,Sigma_j)-Sc*Sigma;
u(Number_Clusters,Sigma_j)=u(Number_Clusters,Sigma_j)+Sc*Sigma;
separat_occured=1;
end
end
C=Number_Clusters;
end
break;
end %while 1 at Step 7
%--step 11 Evaluate the distance between clusters
while 1
if  separat_occured==1
break;
end
clear d;clear dd;d([1:C],[1:CD=0; k=0;
for i=1:C-1
for j=i+1:C
for kDim=1:Dimension
d(i,))=d(,)+(, kDim)-u(j,kDim)).A2;
end
k=k+1; dd(k)=d(.,j);
end
end
Step(11)=1; Class(11)=C;

%--Step 12 Comparing d(i,j) with Cp
%~--Step 13 Combining cluster pairs and evaluating new centres
dd_length=size(dd);
if dd_length(1,2)>Cp
dd_length(1,2)=Cp;
end
Number_Clusters=C;
for k=1:dd_length(1,2)
if dd(k)>Td
break
end
for i=1:C-1
for j=i+1:C
if  ddk)==d(,))
u(i,:)=(samples_in_cluster(i)*u(i,:)+samp1es_in_c1uster(j)*u(j,:))/
(samples__in_cluster(i)+samples_in_cluster(j));
u(j,1)=100000; %(Di)
Number_Clusters=Number_Clusters-1;
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break;
end
end
end
end

k=0; clear uu;
for i=1:C
if  u@,1)~=100000
k=k+1; uu(k,:)=u(,:);
end
end
clear u; u=uu; C=k:break;
end %while 1 at Step 11

%--Step 14 Goto step 2 or end
I=I-1;
if I==0
break_out=1; % Stop program at Step 3 for clearing small classes.
end
end
if Display_plot==
clear ClusteredTrainingSet; clear SamplesInClassOfT; rainingSet;
ClusteredTrainingSet=new_clusters;
SamplesInClassOfTrainingSet=samples_in_cluster:
ISODATA _plot;
end
separat_occured=0;
clear samples_in_cluster;
for i=1:C
samples_in_cluster(i)=0;
end
X=xX; clear new_clusters;
for j=(N+1):NN
current_cluster=0;xj_value=100000;
for i=1:C
xij_sum_square=sum((x(j,:)-u(i,:)).*2);
if  xij_sum_square <= xj_value
current_cluster=i;xj_value=xij_sum_square;
end
end
samples_in_cluster(current_cluster):samples_in_cluster(current_cluster)+ 1;
for k=1:Dimension %Di
new_clusters(current_cluster,samples__in_cluster(current_cluster),k):x(]',k);
end
Te(j)=current_cluster;
end
fid = fopen('Moment_cluster.dat’,'w");
for i=1:NN
fprintf(fid,'%2d\r\n', Tc(i));
end
fclose(fid);
[Cd,C]
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Name : pnnl_error.m

Input : MOMENT.DAT, MOMENT_CLUSTER.DAT
Output : MOMENT_CLUSTER1.ERR

Procedure  : PNN training and classification error test
Date : 10/Dec./2001

Version (L1

Designer  : Bin Huang; Tel: 4746992, e-mail: hbin @ee.umanitoba.ca

%

%2/3 of samples is taken as training set and 1/3 for classification.

%

clear P, clear T; clear Tc;
load MOMENT.DAT
P1=MOMENTC(,[1:7])";
P11=P1';
x1_value=size(P1);
NN=x1_value(1,2);
N=floor(NN*2/3);
load MOMENT_CLUSTER.DAT
Tc1=MOMENT_CLUSTER(:);
P(,[1:ND=P1{,[1:N]);
Te([L:ND=Tc1([1:N]);
Tc_error=Tc;
error=0;
spread =0.04;  %0.04;
T = ind2vec(Tc);
net = newpnn(P,T,spread);
for k=(N+1):NN
p=P11(k,:)";
Tep=Tcl(k);
classified_point = sim(net,p);
Tc_error(k)=vec2ind(classified_point);
if Tc_error(k)~=Tcp
error=error+l;
end
end

error;
NN-N;
Hold_out_error=100*error/(NN-N)
fid = fopen(MOMENT_CLUSTER1.ERR','w");
for i=1:NN
fprintf(fid,'%2d\n', Tc_error(i));
end
fclose(fid);
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B.4.4 Reconstruction and Error

Name : MomentResidual.m

Input : MOMENT.DAT, MOMENT_CLUSTER1.DAT

Output

Procedure  : reconstruction error calculation based on PNN classification and single template reconstruc-
tion

Date : 10/Dec./2001

Version : 1.0

Designer  : Bin Huang; Tel: 4746992, e-mail: hbin @ee.umanitoba.ca

PeakMoveAhead=0; % 15
clear Sample; clear SampleNumber;
load MOMENT.DAT;Tc=MOMENT(:,8);
load MOMENT_CLUSTER1.ERR;Cc=MOMENT_CLUSTER1(:):
Cc_max=max(Cc); x1_value=size(Cc);NN=x1_value(1,1); N=floor(NN*2/ 3);
file_length=size(a);
mean_sqare_Specimen_index=0;sum_square_specimen=0;Root_mean_sqare=0;
PRD_ori=0; PRD_dif=0; MPRD_ori=0:; NPRD_ori=0;
cycle_number([1:Cc_max])=0;
sp=1;
No_estimation_of_period=370; %400
Start_point_addition=50;
peak1=0;
for i=1+sp:No_estimation_of_period-+sp,
if peakl<a(i)
TO=i;
peakl=a(i);
end
end
TO=T0-PeakMoveAhead;
for position_count=1:N
clear Specimen;
Start_point=T0+Tc(position_count);
for i=1+TO0:Start_point,
Specimen(i-T0)=a(i);
end
TO=Start_point;
Specimen=Specimen-min(Specimen); %7777727222929227297222229272779?
Specimen=Specimen/max(Specimen);
cycle_number(Cc(position_count))=cycle_number(Cc(position_count))+ 1;
SamplePosition:cycle_number(Cc(position_count));
SampleNumber(Cc(position_count),SarnplePosition)=Tc(position_count);
Sample(Cc(position_count),SamplePosition,[1 ‘Te(position_count)])=Specimen([1:Tc(position_count)]);
end
TTO=TO;
for i=1:1000
X_axis(i)=i/360;
end
for position_count=1+N:NN
clear Specimen;
Start_point=TO0+Tc(position_count);
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for i=1+T0:Start_point,
Specimen(i-T0)=a(i);
end
TO=Start_point;
Max_Specimen=max(Specimen);
Min_Specimen=min(Specimen);
MinResidual=100000;
Cluster=Cc(position_count);
Specimen_cycle=Tc(position_count);
for SamplePosition=1:cycle_number(Cluster)
cluster_average_cycle(Cluster)=S ampleNumber(Cluster,SamplePosition);
cluster_average_waveform(Cluster,[1:SampleN umber(Cluster,SamplePosition)])=Sample(Cluster,Sam
plePosition,[1:SampleNumber(Cluster,SamplePosition)]);
LinearRegistration;
Specimen_index=Specimen_index*(Max_Specimen-Min_Specimen)+Min_S pecimen;
clear Specimen_index1;
Specimen_index 1=Specimen_index-Specimen;
MeanDifference=mean(Specimen_index1);
Specimen_index1=Specimen_index 1-MeanDifference;
Residual=sum(Specimen_index1./2);
if Residual<MinResidual
MinResidualPosition=SamplePosition;
MinResidual=Residual;
clear MinSpecimen_index;
MinSpecimen_index=Specimen_index; MinMean=MeanDifference;
end
end
x11=MinResidual; x12=sum(Specimen. 2);
x13=sum((Specimen-mean(Specimen))./2);
mean__sqare_Specimen_index:mean_sqarens pecimen_index+x11;
sum_square_specimen=sum_square_specimen+x12;
Root_mean_sqare=Root_mean_sqare+x11/x12;
PRD_dif=PRD_dif+x11; %mean of Specimen_index-specimen can be put into mean of specimen;
PRD_ori=PRD_ori+x12;
NPRD_ori=NPRD_ori+sqrt(x11/S pecimen_cycle)/ (Max_Specimen-Min_Specimen);
MPRD_ori=MPRD_ori+x13;

if plot_display
set(axes, fontsize',20);hold on;
axis([0 1 4.5 6.2]);
xlabel('Time [s]');
ylabel("Voltage [mV]");

Specimen_index=MinSpecimen_index-MinMean;
plot(x_axis([1:Specimen_cycle]),Specimen_index([1 :Specimen_cycle)),--");
plot(x_axis([1:Specimen_cycle]),Specimen([1:Specimen_cycle]));

text(0.05,6.10,sprintf('Frame: %3d',position_count), fontsize',18);

text(0.05,5.95,sprintf('Class: %2d PRD: %04.2t%% %' Cluster,100%sqrt(x11/x12)), fontsize', 18);
plot(Legend_x,solid_line,'--");

plot(Legend_x,dashed_line);

text(beginning_solide+0.05,5.65 ,sprintf(' original’),'fontsize',18);
text(beginning_solide+0.05,5.80,sprintf(' reconstructed'), fontsize', 1 8);

figure(2);
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set(axes,'fontsize',20);hold on;
axis([0 1-0.9 0.9D);
xlabel('Time [s]");
ylabel('Voltage [mVT);
plot(x_axis([1:Specimen_cycle]),Specimen_index1([1 :Specimen_cycle]));
text(beginning_solide+0.05,0.8 ,sprintf('Reconstruction error’), fontsize',18):
pause;
hold off;

end

if 0
text(20,6.45,sprintf('%3d Class: %d',position_count,Cluster), fontsize',14);
text(20,6.35,sprintf('MPRD: %4.1f%%',100*sqrt(x11/x1 3)),'fontsize',14);
pause;
hold off;
end
end %for position_count=1+N:NN
Root_mean_sqare1=100*sqrt(Root_mean_sqare/(QNN-N-1))
%Root_mean_sqare=100*sqrt(mean_sqare_Specimen,index/(sum_square_specimen))

PRD= 100*sqrt(PRD_dif/PRD_ori)
NPRD=100*NPRD_ori/(NN-N)
MPRD=100*sqrt(PRD_dif/MPRD_ori)

Name : reconsl_error.m

Input : MOMENT.DAT, MOMENT_CLUSTER1.DAT

Output

Procedure  : reconstruction error calculation based on PNN classification and template-averaged recon-
struction

Date : 09/Dec./2001

Version ' 1.0

Designer : Bin Huang; Tel: 4746992, e-mail: hbin @ee.umanitoba.ca

plot_display=0;
load MOMENT.DAT; Tc=MOMENTY(:,8);
load MOMENT_CLUSTER1.ERR;Cc=MOMENT_CLUSTERI1(:);
Cc_max=max(Cc); x1_value=size(Cc);NN=x1_value(1, 1); N=floor(NN*2/3);
file_length=size(a);
mean_sqa.re_Specimen_index:O;sumﬁsquare_specimen:O;Root_mean_sqare:O;
PRD_ori=0; PRD_dif=0;
cluster_average_cycle([1:Cc_max])=0:
cycle_number([1:Cc_max])=0;
for i=1:N
cluster_average_cycle(Cc(i))=c1uster_average_cycle(Cc(i))+Tc(i);
cycle_number(Cc(i))=cycle_number(Cc(i))+1;
end
for i=1:Cc_max
cluster_average_cycle(i)=ﬁoor(cluster_average_cycle(i)/cycle_nurnber(i));
end
cluster_average_waveform([1:Cc_max],[1 ‘max(cluster_average_cycle)])=0;
sp=1;
No_estimation_of_period=370; %400
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Start_point_addition=50;
peak1=0;
for i=1+sp:No_estimation_of_period-+sp,
if peakl<a(i)

TO=i;

peakl=a(i);
end

end
TTO0=TO;

for position_count=1:N
clear specimen;
Start_point=T0+Tc(position_count);
for i=1+T0:Start_point,
specimen(i-T0)=a(i);
end
specimen=specimen-min(specimen);
TO=Start_point;
Cluster=Cc(position_count);
cluster_average_cycle(Cluster);
Specimen_cycle=Tc(position_count);
differece_periodl =cluster_average_cycle(Cluster)-Specimen_cycle;
differece_period=abs(differece_period1)+1;
period_ratio=floor(Specimen_cycle/differece_period);
clear Specimen_index;
if differece_period1<0
delta=0;
for i=1:differece_period-1
il=(i-1)*period_ratio;
for j=1:period_ratio
Specimen_index(j+il-delta)=specimen(j+i1);
end
delta=delta+1;
end
jl=j+il;
j=j+il-delta;
for k=jl:Specimen_cycle
Specimen_index(j)=specimen(k);
j=i+;
end
smali=0;
elseifdifferece_period1>0
delta=0;
for i=1:differece_period-1
il=(i-1)*period_ratio;
for j=1:period_ratio
Specimen_index(delta+j+i1)=specimen(j+i1);
end
delta=delta+1;
Specimen_index(delta+j+i1)=specimen(j+i1);
end
jl=j+il+delta;
jEH1+1,
for k=j:Specimen_cycle
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jl=jl+41;
Specimen_index(j1)=specimen(k);
end
great=1;
equal=2;
else Specimen_index=specimen;
end

cluster_average_waveform(Cluster,[1:cluster_average_cycle(Cluster)] )=cluster_average_waveform(Cluster,
[1:cluster_average_cycle(Cluster)])+Specimen_index([ 1 :cluster_average_cycle(Cluster)]);
end %for position_count=1:N

TT0=TO0
k=position_count;

for i=1:Cc_max
cluster_average_waveform(i,:)=cluster_average_waveform(i,:)/cycle,number(i);
cluster_average_waveform(i,:)=cluster_average_waveform(i,:)/
max(cluster_average_waveform(i,:));

end

for position_count=1+N:NN
clear specimen;
Start_point=T0+Tc(position_count);
for i=1+T0:Start_point,
specimen(i-T0)=a(i);
end
TO=Start_point;
Cluster=Cc(position_count);
cluster_average_cycle(Cluster);
Specimen_cycle=Tc(position_count);
differece_period1=Specimen_cycle-cluster_average_cycle(Cluster);
differece_period=abs(differece_period1)+1;
period__ratio=ﬁoor(cluster_average_cycle(Cluster)/differece_period);
clear Specimen_index;
if differece_period1<0
delta=0;
for i=1:differece_period-1
i1=(i-1)*period_ratio;
for j=l:period_ratio
Specimen_index(j+i1-delta)=cluster_average_waveform(Cluster,j+i1);
end
delta=delta+1;
end
jl=j+il;
j=j+l-delta;
for k=jl1 :cluster_average_cycle(Cluster)
Specimen_index(1')=cluster__average_waveform(Cluster,k);
j=i+l;
end
small=0;
elseifdifferece_period1>0
delta=0;
for i=1:differece_period-1
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il=(i-1)*period_ratio;
for j=1:period_ratio
Specimen_index(delta+j+i1)=cluster_average_waveform(Cluster, j+i1);
end
delta=delta+1;
Specimen_index(delta+j+il)=cluster_average_waveform(Cluster,j+i1);
end .
jl=j+il+delta;
j=EiH1+L
for k=j:cluster_average_cycle(Cluster)
jl=jl+1;
Specimen_index(j1 )=cluster_average_waveform(Cluster,k);
end
great=1;
equal=2;
else
Specimen_index([1 :Specimen_cycle])=cluster_average_waveform(Cluster,[1 :Specimen_cycle]);
end
Specimen__index:Specimen_index*(max(specimen)—rnin(specimen))+min(specirnen);
if plot_display
set(axes, fontsize',24);hold on;
axis([0 330 4.5 6.5));
xlabel('Timne (sample/3ms)’);
ylabel("Voltage (mV)");
plot(Specimen_index,"--);
plot(specimen);
end
Specimen_index=Specimen_index-specimen;
x11=sum((Specimen_index-mean(Specimen_index)).*2):
x12=sum(specimen."2);
mean_sqare_Specimen_index=mean_sqare_Specimen_index+x11;
sum_square_specimen=sum_square_specimen+x12;
Root_mean_sqare=Root__mean__sq are+x11/x12;
PRD_dif=PRD_dif+x11; %mean of Specimen_index-specimen can be put into mean of specimen;
PRD_ori=PRD_ori+x12;
if plot_display
text(20,6.45,sprintf('%3d Class: %d',position_count,Cluster), fontsize',14);
text(20,6.35,sprintf(PRD: %4.1f%%',100*sqrt(x11/x1 2)),'fontsize',14);
pause;
hold off;
end
end %for position_count=1+N:NN
Root_mean_sqare1=100*sqrt(Root_mean_sqare/(NN-N-1))
%Root__mean_sqare:100*sqrt(mean_sqare_Specimen_index/(sum_square_specimen))
PRD=100*sqrt(PRD_dif/PRD_ori)
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DTW Classification and Block Encoding for ECG Frame

B.5.1 DTW C(lassification for ECG Frame

Name : DTW_Classification.c

Input :x_101.dat

Output : classification.dat

Procedure  : DTW classification based on minimal average residual
Date : 18/Aug./1999

Version 1 1.0

Designer  : Bin Huang; Tel: 4746992, e-mail: hbin @ee.umanitoba.ca

----------- Dynamic Time Warping

-—--DTW is very sensitive to window_size;
---Move peak point back (Peak_move_ahead);
---Find minimal g(i,j) from adjancent three points;
---Begin from (LJ);

---Do not search forward; and

---G(1,J) and residual are obtained.
/*

*/

Average Residual is employed to classify ECG frames. Period difference threshold is another criterion to
classify ECG frames. First frame is taken as a template. A threshold is setup to classify ECG frames. If the
threshold condition is not satisfactory, a new class is generated. Therefore, we can train and classify a sys-
tem on-line. We place an input frame into a class with the minimal residual which is lower than the thresh-

old. The frame is extracted by forwarding the time position by Peak_move_ahead points.

*/

#include <stdio.h>
#include <sys/ddi.h>
#include <math.h>
#include <iostream.h>
#include <stdlib.h>

int main()

{

FILE *fin, *fout;

const int frame_class=60;

const int number_of_frames=760;
const int frame_cycle=400;

const int mapping_length=500;
const int frame_class1=61;

const int frame_cycle1=401;
const int mapping_length1=501;

int file_flag;

int window_size,Peak_move_ahead,sp,No_estimation_of_period,non_rational;
int pattern_X_length,pattern_Y_length,mapping_function_length;

int have_been_classiﬁed_ﬂag,Stan_point_addition;

int last__class,frame_length,frame_number,residual__length,classes;

long int i,j,il,j l,k,ii,'j,iil,class_i,TO,TOO,Start_point__l,Start_point;

float R__S__distance_coe,maximal,minimal,maxima__O,AO,specimen_peak;
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float fabsf_sum,last_minimal_residual;
int classification[number_of_frames-1],period[frame_class1].I J[3];
float templet[frame_classl][frame_cyclel],g[frame_cyclel][frame_cyclel];
float *aPtr,aPPtr;
float ~DTW_g[number_of_frames];
float pattern_X[frame_cyclel],pattern_Y[frame_cyclel];
float  pattern_XX1[mapping_length1],pattern_YY1[mapping_length1];
float  gg[4]residual[mapping_length1];

/1%---Successive frame comparison.Shift and normalization of frame.
window_size=30;//%it is 1, required by DTW
const float residual_threshold=0.01;
Peak_move_ahead=15;
Y/ R Initial data
sp=1;
No_estimation_of_period=380;
Start_point_addition=50;
R_S_distance_coe=1.5;

non_rational=1000;
frame_length=400;
residual_length=500;
cout<<endl<<"ECG frame classification by Dynamic Time Warping 1"<<endl;
for (i=1;i<=frame_class;i++){
classification[i]=0;
period[i]=0;
for (j=1;j<=frame_cycle;j++)
{ templet[i]{j]=0;
}
}
/1%--GET First ECG CYCLE DATA pattern_Y
!/ %-----First, get first peak AO and its position TO---------
for (i=1;i<=400;i++)
{

pattern_Y[i]=0;

}
fin=fopen("/home/ee/hbin/database/data/x_101.dat","r");
maximal=0;
for (i=sp;i<=No_estimation_of_period+sp;i++)
{

aPtr=&aPPtr;

fscanf(fin," %f", aPtr);

if (maximal < *aPtr)

{ TO=i;

maximal=*aPtr;

}

}

cout<<"initial maximum="<<maximal<<" Position="<<T0<<endl;
/I %----Second, get specimen_peak, specimen--
maximal=0;
fseek(ﬁn,6*(TO+Start_point_addition—1),SEEK_SET);
for (i=T0+Start_point_addition;i<=T0+No_estimation_of_period;i++)
{
aPtr=&aPPtr;
fscanf(fin,"%f", aPtr);
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if (maximal < *aPtr)
{ Start_point=i;
maximal=*aPtr;

minimal=non_rational;
maximal=0;
TO00=T0-Peak_move_ahead;
Start_point_1=Start_point-Peak_move_ahead;
fseek(fin,6*(1+T00-1),SEEK_SET);
for (i=14T00;i<=Start_point_1;i++)
{ j=i-TOO;
aPtr=&aPPtr;
fscanf(fin,"%f", aPtr);
pattern_Y/[j]l=*aPtr;
if  (minimal > pattern_Y[j])
{ minimal=pattern_Y[j];}
else
{ if (maximal < pattern_Y[j])
{ maximal=pattern_Y[jl;}
}
}
pattern_Y_length=Start_point-TO0;
TO=Start_point;
maximal=maximal-minimal;
classes=1;
for (i=1;i<=pattern_Y_length;i++)
{ pattern_Y[i]=(pattern_Y[i]-minimal)/maximal;
templet[classes][i]=pattern_YTi];
}
frame_number=1;
classification[frame_number]}=classes;
period[classes]=pattern_Y_length;
/*--—--Loop: a. take a frame from data file;
b. find optimal matching mapping by DTW;
c. find mapping function.
d. reconctrution
®f
frame_number=frame_number+1;

while(1){

N Y%---—--- GET sample cycle pattern_X
printf("frame_number=%3d\n",frame_number);
for (i=l;i<=frame_length;i++)

{ pattern_X[i]=0;}
maximal=0;

fseek(fin,long (6*(T0+Start_point_addition-1)),SEEK_SET);
for (i=TO+Start_point_addition;i<=TO+No_estimation_of_period;i++)

{ j=i-TO;
aPtr=&aPPtr;
file_flag=fscanf(fin,"%f", aPtr);
pattern_X[jl=*aPtr;
if (maximal < pattern_X[j])
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{ Start_point=i;
maximal=pattern_X[j];
}
}
minimal=non_rational;
maximal=0;
TO00=TO0-Peak_move_ahead;
Start_point_1=Start_point-Peak_move_ahead;
fseek(fin,long (6*(1+T00-1)),SEEK_SET);
for (i=1+T00;i<=Start_point_1;i++)
{ j=i-TOO;
aPtr=&aPPtr;
file_flag=fscanf(fin,"%f", aPtr);
pattern_X[j]=*aPtr;
if  (minimal > pattern_X[j])
{ minimal=pattern_X[j];}
else
if (maximal < pattern_X[j])
{ maximal=pattern_X[jl;}

}
if (file_flag!l=1)
{ coutc<” Read file end"<<endl;
break;} // end
pattern_X_length=Start_point-TO;
TO=Start_point;
maximal=maximal-minimal;
for (i=1;i<=pattern_X_length;i++)
{ pattern_X[i]=(pattern_X[i]-minimal)/maximal;

}

Appendix B: Source Code

I Yo------- Evaluate frame average residual between current observation and templets

1

last_minimal_residual=1000;
have_been_classified_flag=0;//% invalid
last_minimal_residual=non_rational;
for (class_i=1;class_i<=classes;class_i++)
{
for (i=1;i<=period[class_i];i++)
{ pattern_Y[iJ=templet[class_i][i];}
pattern_Y_length=period[class_i];
To--~--~ check period length
if (fabsf(pattern_Y__length—pattem_XJength) < window_size)

Jo--~---- Getting the residual between two succesive patterns by DTW----

for (i=1;i<=pattern_X_length;i++){

for (j=1;j<=pattern_Y_length;j++)

{ glillj]=0;}

}

j=1; //%correspond to pattern_Y(j), Y axis
gl1][1]=2*fabsf(pattern_X[1]-pattern_Y[1]);

for (i=2;i<=(j+window_size);i++)

{ g[i][]']:g[i—1][]']+fabsf(pattern_X[i]-pattern_Y[j]);}
i=1; /1% i = pattern_X(i), X axis,

for (j=2;j<=(i+window_size);j++)

{ glilljl=glillj-1]+fabsf(pattern_X[i]-pattern_YT[j1);}
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g[2][2]=g[1][1]+2*fabsf(pattern_X[1]-pattern_Y[1]);

=2

for (i=3;i<=(j+window_size);i++)

{ ggl2]=gli-1][j-1]+fabsf(pattern_X[i] -pattern_Y/[j]);
gg[3]=gli-2][j-1]+2*fabsf(pattern_X[i-1 ]-pattern_Yj]);
glil[jl=min(gg[2],gg[3] )+fabsf(pattern_X[i]-pattern_Y[j]);

}

i=2;

for (j=3;j<=(i+window_size);j++)

{ gglll=g[i-1][j-2]+2*fabsf(pattern_X[i] -pattern_Y[j-1]);
gg[2]=g[i-1](j-1]+fabsf(pattern_X{[i]-pattern_Y[j]);
glil[jl=min(gg[1],gg[2] )+fabsf(pattern_X[i]-pattern_YT[j1);

}
i=3;
=3
while(1)
{ i=i+l;
if (i==(+window_size))
{ if (i>pattern_X length)
{ i=pattern_X_length;}
g8[2]=g[i-11[j-1]+fabsf(pattern_X[i]-pattern_Y[j]);
gel3]=gli-21[j-1]+2*fabsf(pattern_X[i-1]-pattern_Yj]);
g[i][j]=min(gg[2],gg[3])+fabsf(pattern_X[i]—pattern_Y[j]);
=L
if (j>pattern_Y_length)
{ II[1]=i;
LI[2]=j-1;
break;
}
else
{ i=j-window_size;

while(i<2)

{ i=i+l;}

if (i>pattern_X_length)

{ i=pattern_X_length;
gg[2]=g[i-1](j-1]+fabsf(pattern_X[i]-pattern_Y[j]);
ggl31=gli-2][j-1]1+2*fabsf(pattern_X[i-1]-pattern_Y[j]);
g[i][j]=min(gg[2],gg[3])+fabsf(pattern_X[i]-pattern_Y[j]);

}

else

{ sgglll=gli-11{j-2]+2*fabsf(pattern_X][i]-pattern_YT[j-1]);
88[2]=g[i-1](j-1]+fabsf(pattern_X[i]-pattern_Y[j]);
g[i][j]=rnin(gg[1],gg[2])+fabsf(pattern_X[i]—pattern_Y[j]);

}

}
}
else
if  (i>pattern_X_length)
{
}
else

{ gg[l]:g[i-1][j-2]+2*fabsf(pattern_X[i]—pattern_Y[]'-1]);
gg[2]=g[i—l][j—1]+fabsf(pattem_‘X[i]—pattem_Y[j]);
gg[3]=g[i—2][]’-1]+2*fabsf(pattern_X[i-1]-pattern_Y[j]);
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gg[2]=min(gg[2].gg[3]);
gli](jl=min(gg[1].gg[2])+fabsf(pattern_X[i]-pattern_YT[j]);
}
}
DTW_g[class_i]=100%g[pattern_X_length][pattern_Y _length}/
(pattern_X_length+pattern_Y_length);
/* %---Find match path (mapping function) according to minimal residual path-*/
for (i=1;i<=pattern_X_length;i++){
for (j=1;j<=pattern_Y_length;j++){
it (glilljl==0)
{ glill[j]=100;}
}
}
pattern_XX1[1]=pattern_X[1];
pattern_XX1[2]=pattern_X[2];
pattern_YY1[1]=pattern_Y[1];
pattern_Y Y 1[2]=pattern_Y[2];
iil=pattern_X_ length-1;
ii=iil;
jj=pattern_Y_length-1;
k=1;
fabsf_sum=0;
while (1)
{ if (A_J[1]>=pattern_X length) & (I_J [2]>=pattern_Y_length))
{ pattern_XX1[k]=pattern_X[pattern_X_length];
pattern_Y'Y1[k]=pattern_Y[pattern_Y_length];
residual{k]=pattern_XX1[k]-pattern_YY1[k];
fabsf_sum=fabsf_sum+fabsf(residual[k]);
k=k+1;
i=pattern_X_length-1;
j=pattern_Y_length-1;
}
else {break;
}
while(1)
{ if (window_size < fabsf(i-}))
{ if (@ <j-window_size)
{ =13}
else {i=i-1;
}
}

else
{ il=i-1;
jl=j-1;
if  ((1<2) 11 (i1<2))
{ break;}
it ((glill[j1]<glill[jD & (glilllj1l<glillj1]))
{ i=il;
=L
}
else
if  ((glil](jl<glilj]) & (glillfjl<glilfi11)
{ i=il;}
else {j=i1;
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}
}
pattern_XX1[k]=pattern_X[i];
pattern_YY1{k]=pattern_YT[j];
residual{k]=pattern_XX1[k]-pattern_YY1[k];
fabsf_sum=fabsf_sum-+fabsf(residual[k]);
k=k+1;
}
break;
}
mapping_function_length=k-1;
fabsf_sum=fabsf_sum/mapping_function_length;
printf("class=%3dX_length=%3dY _length=%3d
",class_i,pattern_X_length,pattern_Y_len, gth);
cout<<"mapping_function_length="<<mapping_function_length<<",  "<<"Average resid-
ual="<<fabsf_sum<<endl;
/[%----Classifying

R Check residual threshold-------------
if (fabsf_sum < residual_threshold)
/! %---Comparison with minimal residual-----

{ if (fabsf_sum < last_minimal_residual)
{ last_minimal_residual=fabsf sum;
last_class=class_i;
classification[frame_number]=class_i;
have_been_classified_flag=1;//% valide
cout<<" last_class="<<last_class<<endl;
}
}
}  /*if (fabsf(pattern_Y_length-pattern_X_length) < window_size)
else {printf("X_length=%3d Y_length=%3d Frame difference is too
great\n",pattern_X_length,pattern_Y _length);

}
}  /*Class_i
printf("frame_number=%3d 5\n",frame_number);
I Pommmmmmmmened Check if the current frame has been classified successfully---

if  (have_been_classified_flag==0)
{ classes=classes+1;

for (i=1;i<=pattern_X_length;i++)

{ templet[classes][i]=pattern_X[i];}
period[classes]=pattern_X_length;
classificationf{frame_number]=classes;
printf("A new class is added. classes=%3d\n" classes);

1
else {printf("Frame is classified to %3d\n" last_class);
}
frame_number=frame_number+1;
}
fclose(fin);
e — Save classification information
N classification.dat:class information-------
[l period.datclass length---—--—----
ff=meee templet.datclass serieg------------

fout=fopen("“classification.dat","w");
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for (i=l;i<frame_number;i++)
fprintf(fout," %d\n" classification[i]);
fclose(fout);
fout=fopen("period.dat","w");
for (i=1;i<=classes;i++)
fprintf(fout," %d\n",period[i]);
fclose(fout);

fout=fopen("templet.dat","w");

for (i=1;i<=classes;i++){

for (j=1;j<=period[il;j++)
fprintf(fout,"%f\n",templet[i][j]);

}

fclose(fout);

return(0);

}
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Name :h_d_pm

Input : x_101.dat, period.dat, classification.dat, templet.dat
Procedure : template partitioning

Date : 23/Feb./2002

Version 1 1.1

Designer

: Bin Huang; Tel: 4746992, e-mail: hbin @ee.umanitoba.ca

%

----- detect waveform change of pattern_Y

clear
load /home/ee/hbin/database/data/x_101.dat
load \home\ee\hbin\database\data\x_101.dat
a=x_101(,1);
sp=1;
window_size=30;
No_estimation_of_period=380;
Start_point_addition=50;
Peak_move_ahead=15;
non_rational=1000;
load period.dat
period1=period(:,1);
load classification.dat
classification1=classification(:,1);
load templet.dat
temporal=templet(:,1);
middle=size(period);
classes=middle(1,1);
k=1;
for i=l1:classes

for j=1:period(i)

templet1(i,j)=temporal(k);
k=k+1;

end

end

hold off;
Position=5;

for unix
%ofor Windows

clear end_point_Y;
clear location_Y;
for class_i=1:classes

pattern_Y([1:period1(class_i)])=templet1(class_i,[ 1:period1(class_i)]);

pattern_Y_length=period1(class_i);

[location_Y(class_i,:),end_point_Y(class_i,:)]=waveform,_detect(pattern_Y,pattern_Y_Iength);

end
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Name : pwin_residual.m

Input :af]

Procedure  : residual calculation for piecewise linear segments
Date : 19/Aug./1999

Version 1 1.0

Designer  : Bin Huang; Tel: 4746992, e-mail: hbin @ee.umanitoba.ca

%
%Piecewise linear normalization residual calculation. The classification is prepared by Dynamic Time
% Warping algorithm, DTW_Classification.c. This program calls two functions: waveform_detect.m and
linear_nml.m. %h_d_p.m is used to read data file x101.dat, classification.dat, period.dat, and templet.dat. It
also %extract QRS, T and P wave of classes.
[+/4
%-- 1. reconstructing class information;
%-- 2. detect QRS, T and P wave of classes;
%-- 3. fetch a frame from samples;
%-- 4. detect QRS, T and P wave of the frame;
%-- 5. piece-wise linear normalization; and
%-- 6. evaluate residual.
%
frame_Position=12;
Yes=1; No=0; ShowResidual=Yes;
scale=360;
%-----First, get first peak AQ and its position TO---------
for i=sp:No_estimation_of_period+sp
j=i-sp+1;
b(j)=a(i);
end
maxima=max(b);
for j=1:No_estimation_of_period
if b(j) ==maxima
TO=j+sp-1
AO=maxima;
end
end

%---Loop: a. take a frame from data file; b. find optimal matching mapping by DTW;
Po-=-=-==-~ ¢. find mapping function. d. reconctrution
cycle_number=1;
whilel
o----~-- GET sample cycle pattern_X
clear c;
for i=TO+Start_point_addition:TO+N0__estimation_of_period,
j=i-TO;
c(i)=a(i);
end
maxima_0=max(c);
for j=1:No_estimation_of_period,
if ¢(j) ==maxima_0
Start_point=j+T0;
specimen_peak=maxima_0;
end
end
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clear pattern_X;
TO0=T0-Peak_move_ahead;
Start_point_1=Start_point-Peak_move_ahead;
for i=1+T00:Start_point_1

j=i-T00;

pattern_X(j)=a(i);
end
pattern_X_length=Start_point-TO;
TO=Start_point;
pattern_X=pattern_X-min(pattern_X);
pattern_X=pattern_X/max(pattern_X);

/S — detect QRS, T and P wave of the frame
[location_X,end_point_X]=waveform_detect(pattern_X,pattern_X_length);
Po------=-- piece-wise linear normalizating pattern_Y-

if (cycle_number >= frame_Position)
class=classification1(cycle_number)
clear pattern_Y;
pattern_Y([1:period1(class)])=templet1(class,[ 1:period1(class)]);
pattern_Y _length=period1(class);
[pattern_X_length,pattern_Y_len gth]
series_length=end_point_Y(class,1);
series([1:series_length])=pattern_Y([1:series_length]);
[series1]=linear_nml(series_length,series,end_point_X(1));
series1=series1/max(series1);
pattern_Y Y=series];
mapping_length=location_X(2)-end_point_X(1);
series_length=location_Y(class,2)-end_point_Y(class,1);
series([1:series_length])=pattern_Y([end_point_Y(class,1)+1 :location_Y(class,2)]);
[series1]=linear_nml(series_length,series,mapping_length);
pattern_YY([1+end_point_X(1):location_X(2)])=series1([1 ‘mapping_length]);
mapping_length=end_point_X(2)-location_X(2);
series_length=end_point_Y/(class,2)-location_Y(class,2);
series([ 1:series_length))=pattern_Y([location_Y(class,2)+1 :end_point_Y(class,2)]);
[series1]=linear_nmi(series_length,series,mapping_len gth);
pattern_YY([1+location_X(2).end_point_X(2)])=series1([1 :mapping_length]);
mapping_length=location_X(3)-end_point_X(2);
series_length=location_Y(class,3)-end_point_Y(class,2);
series([1:series_length])=pattern_Y([end_point_Y(class,2)+1 :location_Y(class,3)]);
[series1]=linear_nml(series_length,series,mappin ¢_length);
pattern_YY([1+end_point_X(2):location_X(3)])=series1([ 1:mappin g_length]);
mapping_length=pattern_X_length-location_X(3);
series_length=pattern_Y_length-location__Y(class,3);
series([1:series_length])=pattern_Y([location_Y(class,3)+1 :pattern_Y_length]);
[series1]=linear_nmi(series_length,series,mapping_length);
pattern_YY([1+location_X(3):pattern_X_length])=series1([1 :mapping_length]);
Jo----===~ evaluate residual between pattern_X and pattern_YY-
clear residual; residual=pattern_X-pattern_Y'Y;
NPRD=100*sqrt(sum(residual ~2)/pattern_X_length);
sum_residual=0;
for i=l:pattern_X_length
sum_residual=sum_residual+abs(residual(i));
end
sum_residual=sum_residual/pattern_X_len gth;
[max(abs(residual)),NPRD]%,sum_residual]

B-78



Appendix B: Source Code

set(axes, fontsize',20);

hold off;

beginning_solid=0.7;

clear Legend_x;

clear solid_line;

clear dashed_line;

solid_line_height=0.77;

dashed_line_height=0.69;

for i=1:9
Legend_x(i)=beginning_solid+i/200;
solid_line(i)=solid_line_height;
dashed_line(i)=dashed_line_height;

end

clear axis_x;

clear axis_y;

for i=l:pattern_X length
axis_x(i)=i/scale;

end

for i=1:pattern_Y_length
axis_y(i)=i/scale;

end

hold off;

plot(axis_x,pattern_X,'--");

hold on;

plot(axis_y,pattern_Y);

xlabel('Time [s]");

ylabel(Normalized Amplitude');

'Original frames’;

text(beginning_solid,0.93,sprintf('Frame: %3d',cycle_number), fontsize',18);

text(beginning_solid,0.85,sprintf('Class: %3d',class), fontsize',18):

plot(Legend_x,solid_line,'--";

plot(Legend_x,dashed_line);

text(beginning_solid+0.05,so0lid_line_height,sprintf(original frame"), fontsize',18):

text(beginning_solid+0.05,dashed_line_height,sprintf('ECG class "), fontsize',1 8);

hold off;

figure(2);

set(axes, 'fontsize',20);

plot(axis_x,pattern_X,'--");

hold on;

plot(axis_x,pattern_YY);

xlabel("Time [s]');

ylabel('Normalized Amplitude');

clear solid_line;

clear dashed_line;

clear Legend_x;

solid_line_height=0.69;

dashed_line_height=0.61;

for i=1:9
Legend_x(i)=beginning_solid+i/200;
solid_line(i)=solid_line_height;
dashed_line(i)=dashed_line_height;

end

text(beginning_solid,0.93,sprintf('Frame: %3d',cycle_number), fontsize',18);

text(beginning_solid,0.85,sprintf('Class: %3d',class), fontsize',18);
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plot(Legend_x,solid_line,'--");

plot(Legend_x,dashed_line);

text(beginning_solid,0.77,sprintf('Error: %4.2f%%%' NPRD), fontsize',18);
text(beginning_solid+0.05,solid_line_height,sprintf(‘ori ginal frame'"),' fontsize',18);
text(beginning_solid+0.05,dashed_line_hei ght,sprintf('ECG class '),'fontsize',18);
‘Original frame (dashed line) and reconstruted frame';

hold off;
if ShowResidual==Yes
figure(3);

set(axes, fontsize',20);hold on;

axis([0 1 -0.2 0.2]);

xlabel("Time [s]");

ylabel(Normalized Amplitude');

plot(axis_x,residual);

clear Pattern_YY'Y; clear residual_1;
[pattern_YYY]=linear_nmli(pattern_Y_len gth,pattern_Y,pattern_X_length);
residual_1=pattern_X-pattern_YYY;

figure(4);

set(axes, 'fontsize',20);hold on;

axis([0 1 -0.2 0.2]);

plot(axis_x,residual_1);

xlabel("Time [s]');

ylabel(Normalized Amplitude');
NPRD_1=sqrt(sum(residual_1./2)/pattern_X_length)*100;
[max(abs(residual_1)),NPRD_1]

pause;
end
end
cycle_number=cycle_number+]1
end
Name : waveform_detect.m
Procedure  : function of detecting waveforms in variance domain
Date : 19/Aug./1999
Version : 1.0

Designer : Bin Huang; Tel: 4746992, e-mail: hbin @ee.umanitoba.ca

% ECG frame waveform (QRS, T, P wave) detection function using windowed variance technique.
function [location,end_point]= waveform_detect(pattern,pattern_length)

Do--=~=-=-- Evaluate windowed-variance of pattern-X for its full length---
window_size=28;
Threshold=0.018;%for variance
Threshold_QRS=0.2;
half_window=window_size/2;
width_of_subwave=15;
clear windowed_var;
for i=1:half_window

clear window;

for j=1:+half window

window(j)=pattern(j);
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end
windowed_var(i)=std(window);

end

for i=1-+half_window:pattern_length-half_window-1
clear window;
il=-i+half_window+1;
for j=i-half_window:i+half_window

window(j+il)=pattern(j);

end
windowed_var(i)=std(window);

end

for i=pattern_length-half_window:pattern_length
clear window;
il=-i+half_window+1;
for j=i-half_window:pattern_length

window(j+i1)=pattern(j);

end
windowed_var(i)=std(window);

end

clear wave_var;

width=0;

clear location;

clear end_point;

high_level_flag_1=0;% low level

for i=1:pattern_length

if windowed_var(i)> Threshold_QRS
high_level_flag_1=1;

elseithigh_level_flag 1~=0
locate_number=1;
end_point(1)=i;%-back_bias_of_first_point;
location(locate_number)=i;
%[locate_number,location(locate_number),end_point(locate_number)];
width=0;
break;

windowed_var(pattern_length+1)=0;
for i=location(1):pattern_length+1
if windowed_var(i)> Threshold
width=width+1;
elseifwidth > width_of_subwave
if  i-width-end_point(locate_number)>width_of _subwave
locate_number=locate_number+1;
location(locate_number)=i-width;
end
end_point(locate_number)=i;
%[locate_number,location(locate_number),end_point(locate_number)]
width=0;
else width=0;
end
end
if (locate_number==1)
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location(2)=pattern_length-1;
end_point(2)=pattern_length;
location(3)=pattern_length-1;
end_point(3)=pattern_length;
elseif(locate_number==2)
if (end_point(2) > pattern_length)
end_point(2)=pattern_length;

end

location(3)=pattern_length-1;
end_point(3)=pattern_length;

end
Name : linear_nml.m
Procedure : function of linear contracting/dilating a segment
Date : 19/Aug./1999
Version : 1.0

sk

Designer  : Bin Huang; Tel: 4746992, e-mail: hbin @ee.umanitoba.ca

function [Reconstructed_series]= linear_nml(series_length,series,mapping_length);

%---Reconstruction: linear transform series to series
whilel
differece_period1=mapping_length-series_length;
differece_period=abs(differece_period1)+1;
period_ratio=floor(series_length/differece_period);
if (period_ratio < 2) & (differece_periodl < 0)
clear series_index;
j=floor(series_length/2);
for i=l:j
series_index(i)=series(2*i);
end
clear series;
series=series_index;
series_length=j
elseif(period_ratio < 2) & (differece_periodl > 0)
clear series_index;
for i=l:series_length
series_index(2*i)=series(i);
end
series_index(1)=series_index(2);
for i=2:series_length
series_index(2*i-1)=(series_index(2*i-1)+series_index(2*i-2))/2;
end
clear series;
series=series_index;
series_length=2%*series_length;
else break;
end
end
clear Reconstructed_series;
if differece_period1<0
Yo---~~- delete points---------
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delta=0;
for i=l:differece_period-1
i1=(i-1)*period_ratio;
if  delta~=0
Reconstructed_series(1+i1-delta)=(series(1+i1)+Reconstructed_series(1+i1 -delta))/2;
else
Reconstructed_series(1+il-delta)=series(1+il);
end
for j=2:period_ratio
Reconstructed_series(j+il -delta)=series(j+il);
end
delta=delta+1;
end
jl=j+il;
j=j+il-delta;
if differece_period~=2
for k=jl:series_length
Reconstructed_series(j)=series(k);
j=i+1;
end

else
Reconstructed_series(i)=(Reconstructed_series(j)+series(j 1)/2;
j=i+L
for k=jl+1:series_length
Reconstructed_series(j)=series(k);
j=j+1;
end
end
elseifdifferece_period1>0
delta=0;
for i=l:differece_period-1
il=(i-1)*period_ratio;
if delta~=0
Reconstructed_series(delta+1+i1)=(series(1+i1)+series(2+i1))/2;
else
Reconstructed_series(delta+1+i1)=series(1+i1);
end
for j=1:period_ratio
Reconstructed_series(delta+j+il)=series(j+il);
end
delta=delta+1;
Reconstructed_series(delta+j+i1)=series(j+i1);
end
jl=j+il+delta;
jEjH1+1;
if differece_period~=2
for k=j:series_length
ji=jl+1;
Reconstructed_series(j1)=series(k);
end
else
ji=jl+1;
Reconstructed_series(j1)=(series(j)+series(j+1))/2;
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for k=j+1:series_length
jl=jl41;
Reconstructed_series(j1)=series(k);
end
end
else Reconstructed_series([1:series_length])=series([1:series_length]);
end
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