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ABSTRACT

This dissertation reports a study on grain boundary dependent creep deformation
behaviour of Inconel 718 in the region of power-law dislocation creep. It is proposed that
grain boundaries may influence the creep deformation not only exclusively by grain
boundary sliding, but also by an alternative mechanism yet to be determined. Existence of
this new mechanism is justified by the fact that in the past many results have been
explained unsatisfactorily on the basis of models of grain boundary sliding, and also that a
few available results, although they are incomplete, are supportive of this concept.

The material used in this study was a wrought commercial precipitation
strengthened nickel base alloy Inconel 718. This material was heat treated to produce two
types of materials which were different only in the microstructures of their grain
boundaries. The grain boundaries of one type were free of precipitates (material A) and
those of the second type were decorated with 6-phase particles (material B). Creep tests
on specimensK with these two microstructures were comparatively conducted at a
temperature in the range of 6000C to 650°C and at constant applied stress in the range of
745 MPa and 860 MPa. These creep tests provided a strong evidence of grain boundary
dependent creep bahaviour which is distinguished the grain-material dependent creep
behaviour in the following three major aspects: (1) It has a secondary creep rate that is
independent of the strength of grain material, (2) It shows much stronger dependence of
secondary creep rate on applied stress and effective stress as well, (3) It causes the back
stress to be dependent on the applied stress and grain boundary microstructure (which
includes the grain size and the amount of coverage of precipitates on grain boundaries).

The observed results have been also analyzed and it is proposed that creep
deformation of this material involves a grain boundary dependent deformation mechanism
that is different from the mechanism of grain boundary sliding. It is suggested that the

elastic and plastic incompatibility around grain boundaries caused heterogeneity in the

ii



distribution of applied stress. This incompatibility is described by a variable R, which
considers the strengthening state of the grain interior and of the grain boundaries.
Partitioning of the applied stress in both regions is, then, quantitatively given by a factor
which includes the effect of R and grain size. Based on these concepts, it is proposed that
(1) the incompatibility in material with clean grain boundaries can be eliminated very soon
after the stress is applied, and therefore, a uniform distribution of applied stress can be
achieved. This may result in a creep behaviour which is dependent on the microstructures
of grain interior; (2) In material B, however, the incompatibility can be intensified due to
the high stress concentration around densely spaced particles on grain boundaries. This
produces a heterogeneity in partitioning of the applied stress to the grain interior and the
regions of grain boundaries. As a result, the creep deformation is observed to depend on
grain boundary microstructure as well. Results reported in the literature can also be

satisfactorily explained on the basis of the proposed mechanism.
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CHAPTER ONE INTRODUCTION

In the power-law disiocation creep region, creep deformation is assumed to be
caused by two sources (assuming. that macro defects are not introduced in the material).
These are, (1) deformation from the grain interior, and (2) deformation from the grain
boundaries due to grain boundary sliding. The grain boundary sliding is considered to
provide an extra contribution to the total creep strain, and is assumed not to influence the
creep mechanism occurring in the grain interior. Therefore, is not normally included in the
creep equation.

With the above considerations, one question can be asked; are there any other
mechanisms through which creep behaviour in the power-law dislocation creep region can -
be influenced by grain boundaries? The answer to this question is, "yes" when a material is
deformed at low temperatures. At thése temperatures, grain boundaries are considered to
provide an strengthening effect and the grain boundary dependent deformation behaviour
is described by the well-known Hail-Petch relationship.

However, at a temperature higher than 0.5 Tm, the answer to this question is very
controversial. First of all, it is generally believed that grain boundaries at this high
temperature have a softening effect. Due to this belief, the deformation of grain
boundaries is ignored except for grain boundary sliding. However, this commonly held
belief is in fact not related to the question raised above, since the grain boundary
strengthening is not because of inhibition of grain boundary sliding in the low temperature
region. It is because of a mechanism that has nothing to do with grain boundary sliding but
a mechanism that can provide resistance to the deformation of the grain interior.
Therefore, the current consideration ofa grain boundary as having a softening effect is due
to the observation of grain boundary sliding., not due to the invalidity of the mechanism

that operates at low temperatures.




Secondly, the experimental results concerning the effect of grain boundaries on
creep behaviour are very often contradictory to each other. For example, in one study, the
creep rates were observed to be independent of grain size, but in another, they were found
to be strongly dependent on grain size. In many cases attempts to explain the effect of
grain boundaries on creep behaviour by the model of grain boundary sliding have been
unsuccessful ( refer to Chapter Two). These unsuccessful attempts may, therefore, suggest
a positive answer to the question raised at the beginning of this chapter; that is, do the
grain boundaries influence creep behaviour through a mechanism which is different from
the mechanism of grain boundary sliding. This question is often given an affirmative
answer by the experimental results (see section 2.4.3)

The argument above provides the rationale of the existence of a grain boundary
dependent creep mechanism which is not identical to the mechanism of grain boundary
sliding. To understand this mechanism, however, research both on experimental and
theoretical bases is required. This was the intention of the present investigation.

The study of grain b;)undary dependent creep can be carried out by using material
with appropriate grain boundary microstructures. The microstructures of grain boundaries
can be changed by micro alloying and by heat treatment. In this study, the heat treatment
method has been used to produce materials with microstructures that are different only at
the grain boundaries. That is, the strength of grain material is the same but that of the
grain boundaries is different from one material to another. The two type of materials have
been creep deformed and the influence of grain boundaries on the overall creep
deformation has been studied.

In Chapter two of this dissertation, the relevant literature has been reviewed which
is followed by a description of the scope of the research carried out in this study. Chapter
three describes various research techniques used and the experimental results are provided
in Chapter Four. The results are discussed in Chapter Five with reference to the currently

held beliefs and available models. An attempt has also been made to point out their




inadequacies and a new model has been suggested which can not only explain the results

obtained in this study but results reported by other investigators as well.



CHAPTER TWO LITERATURE REVIEW

2.1. INTRODUCTION

When a material is subjected to a static external load, individual atoms adjust their
positions in such a way that the equilibrium between external forces and interatomic forces
is maintained. Macroscopically, the adjustment of atomic position is manifested as
deformation.

The deformation, which is the response of a material to applied stress, generally
may have three components: elastic, anelastic and plastic. The elastic strain is time
independent and reversible, its magnitude is a single valued function of the stress. The
anelastic deformation, like elastic deformation is reversible, but in contrast to the elastic
deformation, it is time dependent. Plastic deformation is irreversible and leads to a
permanent change in the form of a body. Generally, it consists of time dependent and time

independent components. The time dependent component of plastic deformation is

designated as creep.
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Fig. 2.1 Schematic representation of the strain/time curves when logarithmic behavior is

observed at low temperatures and when normal creep curves are displayed at

temperatures above 0 ~ 0.4 Tm



The graphical representation of the time dependence of strain is known as the
creep curve. This curve, shape of which is a function of stress and temperature,
characterizes one or two stages of creep, and possibly the third stage, if the stress or
temperature is high enough. When all three stages take place, the form of the creep curve
is as illustrated in Fig. 2.1. The first stage during which, possibly after an instantaneous
strain &,, the creep rate & decreases with time is called the primary stage or transient
creep (in Fig. 2.1). At low homologous temperatures, only this stage of creep is observed.
The creep rate decreases with time and finally reaches a negligible value. In the second
stage, which is also known as the steady-state or secondary creep, the creep rate is time
invariant. This creep rate is designated as steady-state or secondary creep rate &,. The
steady-state creep takes place only at relatively high homologous temperatures, at which
the recovery rate is sufficiently high to compensate the effects of deformation
strengthening at any instant of time. .

.For several decades, considerable effort has been spent in describing the time
dependence of creep strain, i.e., the creep curve, quantitatively. The approach to such a
description was predominantly empirical during the period of 1930 -60[1, 2], however it
has become phenomenological and physical during last 30 years. The description of creep
curves, no matter which approach is used, may be useful from the point of view of the
needs of engineering practice. However it is not very helpful in understanding the physical
mechanism in terms of dislocation motion, which is the area of interest during the last
three decades and is also the focus of the present research project.

During the plastic deformation of a polycrystalline materials, the total strain can

consists of the following components

E=Eut+E,+E,+E,+E, (2.1)



where &,,, &,, £, &,,and &, are the strains caused by dislocation glide, non-conservative

motion of dislocations, grain boundary sliding, stress directed diffusion of vacancies and
intercrystalline void nucleation and growth, respectively.

The significant contribution of each component to the total strain depends on the
temperature and the magnitude of applied stress. This can be demonstrated through

deformation map as shown in Fig. 2.2al3].
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Fig. 2.2a Example of a deformation map. Pure nickel, mean grain diameter d = 1 mm.
Jield A— dislocation glide without participation of recovery; Field B— dislocation
creep, dislocation core diffusion: Field C— dislocation creep, lattice diffusion: Field D
and E— diffusion Nabarro-Herriing and Coble creep respectively. The curves of

constant strain rates are shown on the mapl3/.

In region A dislocation glide is dominant and takes place at relatively low
homologous temperatures and high strain rates. In this region the dislocation density
increases which manifests itself by an increase in plastic strain with stress.

Regions D and E are diffusional creep regions. Diffusional creep takes place

through stress-directed diffusional mass transport without any participation of lattice



dislocations. This possibility was considered for the first time by Nabarrol4] in 1948 and
Herring[°] in 1950. In 1963 Coblel6] suggested that the stress directed transportation of
mass by diffusion need not take place via the crystal lattice as assumed by Nabarro and
Herring, instead it can occur via grain boundaries (region E). The mechanism of
diffusional creep has been well studied but will not be addressed in this literature review
since it is not relevant to the research reported in this dissertation.

In dislocation creep region [ region B (dislocation core diffusion) and region C
(lattice diffusion)], the deformation due to intercrystalline void nucleation and growth may
play a significant role only when polycrystal integrity is damaged. Therefore, two factors
which may have to be considered for the total deformation in dislocation creep region are

(1) deformation in the grain material, (2) deformation in the grain boundaries.
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Fig. 2.2b Example of deformation map wherein GBS mechanisms are taken into

account!3a].

It should be noted that grain boundary sliding is not considered an individual
deformation mechanism in Fig. 2.2a since this mechanism would dominate only when
superplastic deformation occurs, especially in the material with rather small grain size.

However, if it does occur, grain boundary sliding may become an individual deformation




mechanism and can be included in the deformation map as shown in Fig. 2.2b[33], Under
normal power-law dislocation creep, grain boundary sliding is not significant, though it

does have an influence on the total creep rate (refer to section 2.3).

2.2 GRAIN MATERIAL-CONTROLLED DISLOCATION
CREEP

2.2.1 BASIC CONSIDERATIONS

2.2.1.1 CREEP DISLOCATIONS IN GRAIN MATERIAL
1. DISLOCATION YELOCITY

In tensile testing, dislocations can overcome the local barrier on the slip plane
without a significant assistance by thermal activation. In creep testing, however, the
applied stress is constant and less than the level which can cause a dislocation to overcome
the local barriers, therefore, thermal activation is needed t;) help a dislocation move from
one stable configuration to another. When the barrier is a stress field (o;) created by other
dislocations, the effective stress o* acting on the mobile dislocation will be reduced as

shown in the following expression:
o =o-og, (2.2)

where o is the macroscopically homogeneous external (applied) stress.
The velocity of dislocation in this thermally activated mode, v* can be defined

asl7]




v =, exp[ —/fTG) (2.3)

where AG is the free activation enthalpy; the quantity v, can, in the first approximation,

be interpreted as the maximum attainable dislocation glide velocity. The free activation

enthalpy AG can be considered to consist of a part, AG,, which does not depend on

effective stress, and a part which does depend on effective stress[8]. That is,

AG=AG, b A'do 2.4)

where & is the length of Burgers vector and 4 * is the activation area, which is defined by

the following expression

A.:_i(é’ACj) _kT é’lnf) @.5)
b\ do" pr b\ do ),

Therefore, v* can be expressed by the following expression,

. -AG b o
v =0, exp( T ]exp[ﬁfofi*do*} (2.6)

2. DISLOCATION CLIMB

A dislocation can aiso climb over a physical barrier or only that part of a
dislocation which hindered the motion of the entire dislocation may disappear. This can be
done by the emission and or absorption of vacancies by the dislocation and /or by other

long range source. By this consideration the velocity of a dislocation is given by[9]

27D, Q0o

L 1 2.7
Ve S Bk Tn(R17) @7

9



where r, is the dislocation core radius, R is the distance from the dislocation line on which
the vacancy concentration reaches the thermal equilibrium value C,, D, is the coefficient

of lattice diffusion and £21is the atomic volume.
Eqn. 2.7 has been modified by considering the factors that influence the value of
RI10, 11], These include the effect of non-symmetrical distribution of vacancies round the

dislocation, the geometrical patterns of vacancy diffusion, as well as the stacking fault

energy

3. DISLOCATION DENSITY

Two different types of dislocations can be distinguished from each other during
creep in terms of their influence on creep deformation. (1) Free dislocations: these are not
associated with subboundaries and remain arranged in the matrix in a three-dimensional
network during steady-state creep stage. (2) Mobile dislocations: these are potentially
mobile free dislocations. Moving dislocations represent a fraction of mobile dislocations
which are actually moving. The total dislocations is the sum of free dislocations and the

dislocations associated with subboundaries.

2.2.1.2 GENERAL CONSIDERATION OF DISLOCATION CREEP
MECHANISMS

Two groups of models of dislocation creep are often considered: dislocation glide

controlled creep models and recovery-controlled creep models

1. DISLOCATION GLIDE-CONTROLLED CREEP MODELS

These models are based on the assumption that the recovery occurs so quickly that

it does not limit the creep rate, and consequently the creep deformation is controlled by

10




dislocation glide. Therefore, recovery is not considered. Under this assumption, the plastic

strain rate of crystalline solids is described by the well-known Orowan equation[12, 13],
£=p,bv (2.8)

where p,, is the mobile dislocation density, which is proportional to the density of free

dislocations p. That s,
Pn=Kp (2.9)

where Kim is a constant. The free dislocation density is related to applied stress by the

following expressionl14];
1({oY
=—| = 2.10

By combining Eqns. 2.8, 2.9 and 2.10, the creep rate can be expressed by the following

equation.

=K 2.11)

¥

2r GQ(0)3
G

D._
LT

where K, = X, /In(R/r,) is a dimensionless constant.

2. RECOVERY-CONTROLLED CREEP MODELS

These models are based on the assumption that creep is controlled by recovery, i.e.
by a process which compensates to some extent the effects of deformation strengthening

that results from an increase in dislocation density and the formation of various dislocation

11




arrangements. In these models, generally, it is accepted that the steady state could not be
established. That is, the recovery did not proceed quickly enough to ensure that the
quantitative characteristics of dislocation structure are independent of time. These
characteristics include the density of free dislocations p, the mean subgrain diameter d_,
the mean angle of misorientation of neighbouring subgrains ® and the characteristics
derived from p, 4, and @, i.e., the density of dislocations forming sub-boundaries p, and
the total dislocation density p,. Therefore, the models of recovery controlled creep involve
recovery mechanisms.

To describe the rate of high temperature recovery controlled creep, Orowan
expression (Eqn. 2.8) and the Bailey-Orowan expression[12, 151, described below, are

frequently used:

(2.12)

=1~

Here r is the rate of recovery and /4 the coefficient of deformation strengthening.

The Bailey-Orowan equation has been found to be equivalent to Orowan equation

in the following form[16]:

(2.13)

é=pmbvc£

where L is the glide distance along a path parallel to the glide plane, 4. is the climb

distance in a direction normal to the glide plane. From this expression the creep rate

equation can be modified to:

(2.14)

: 27 . LGQf oY
-k 2Zp =t
R T kT(G)
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If the constant X, and the structure factor L//, do not depend on stress, the creep rate is
proportional to the third power of stress, which is in agreement with Weertman's
analysis[17]. Thus, the usually observed stress dependence of steady state creep rate of

pure metals and single phase alloys, behaving as Class II solids, can be explained only in

that either the ratio of structural parameters L/A, or the constant Km is a function of
stress. The latter implies that the density of mobile dislocations, p,,, increases with stress
more quickly than the free dislocation density, p.

2.2.1.3 TEMPERATURE DEPENDENCE OF CREEP RATE

1. APPARENT ACTIVATION ENERGY OF CREEP

Generally, the dependence of creep rate on temperature is described by the

Arrhenius law

£=¢g, exp[—%} (2.15)

where (. is the activation energy of creep and & is the Boltzman's constant. &, is the
frequency factor and has the same dimension as the strain rate £.

Eqn. 2.15 reflects the fact that creep involves thermally activated process and
thermally activated -mechanisms operating on atomic scale. If one of these mechanisms
dominates, and thus controls the creep rate, the activation energy of creep O is identical
to the activation energy of this particular mechanism, or is at least in an immediate relation
to it. Therefore, O, has a definite physical meaning.

Eqn. 2.15 can also be written as:




or O, = {—éﬁi—} (2.16)

A-1/kT) |
and Ing=lg - Q (2.17)
_ kT

From Eqn. 2.17, it follows that when O, is not a function of temperature, the
relationship between /né and 1/T is linear and thus, the activation energy Q. is equal to
the product of k and the slope of /ng - 1/T plot. However, when two or more mechanisms

with different activation energies contribute to the creep rate to a comparable extent the

Ing - I/T plot is no longer linear. In this case, the activation energy depends on-: .-

temperature, and represents only a phenomenological quantity. However, this situation, if
ever occurs, can usually be satisfactorily analyzed. From Eqns. 2.15 and 2.17, it follows -

that when &, = £,(7), the activation energy

dneg, )
QC = AHC +[mj‘d (218)

where AH is the activation enthalpy of creep.

2. CORRELATION OF EXPERIMENTS DETERMINED ACTIVATION

ENERGY

From an analysis of extensive experimental data, it has been concluded that the

frequency factor in Eqn. 2.15, &,, can be expressed as[18]

i4



£ = A[EJ (2.19)

where 7 in a constant, 4 is a factor independent of both temperature and stress and E is

the Young's modulus.

From Eqns. 2.18 and 2.19, it follows that

Q. =—-AH, —nk—2= (2.20)

Generally dE/dT < 0, so that O, > AH . A theoretical analysis has led to the conclusion

that the description of creep by the following equation

n-1
. o2 Qo AH
= Al — —_ - < 2.21
&, A[G] T exp[ T ) 2.21)

is physically more accuratel19]. In Eqn. 2.21, Ao is a constant, G is the shear modulus and

{2is the atomic volume. From Eq. 21, the following expression for Q. is obtained.

KT dG | KT d0
G dr Q dT

Q.=AH, -(n-1) (2.22)

3. RELATIONSHIP BETWEEN ACTIVATION ENERGY OF CREEP AND

ACTIVATION ENTHALPY OF DIFFUSION

Extensive experimental evidence is available to show that the activation energy of
creep O, especially when corrected for the temperature dependence of elastic modulus,
ie., AH  is equal or at least close to the activation enthalpy of lattice self-diffusion, AH |,
at homologous temperature 7/7,, > 7, . The quantity 7, depends on the ratio ovE[19~23]

For a typical value of this ratio, e.g., 5 x 104, 17, = 0.5 for all metals with the exception of
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tin, for which 7, = 0.9[191 For homologous temperatures higher than 0.5, Eqns. 2.19 and

2.21 can be written in the form

5 A'[E) (2.23)
D, E

or, more precisely, in the form
g o 4 99 (-‘-’-) , (2.24)
D, b kT\ G

where 4 is a dimensionless constant and Dy is the coefficient of lattice self-diffusion. In
subsequent discussion, the quantity &_/ D, is called the steady-state creep rate normalized
to diffusion coefficient or simply the normalized steady state creep rate. Similarly, the
ratios o/G and o/FE will be called applied stress normalized to the shear modulus and
Young's modulus respectively, or simply normalized applied stress. Eqn. 2.24 is generally
known as the Dorn creep equation. ‘

When diffusion through dislocation core is involved, Sherby and
collaborators[20~22] have applied a phenomenological relation of the following form:

é.s o D = LfL +Dcorﬂorr (225)

€

where D, is the effective coefficient of diffusion, D, and D, are the coefficient of
lattice self-diffusion and dislocation core diffusion, respectively, £, is the fraction of atoms
taking part in lattice diffusion and £, is the fraction of atoms taking part in dislocation
core diffusion. The fraction f, is proportional to the dislocation density which is a

function of normalized stress o/E. Sherby and Young(22] showed that

S = 2x10*(0/E).
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2.2.1.4 STRESS DEPENDENCE
The dependence of steady state creep rate on applied stress can be characterized
by the parameter m’ which describes the sensitivity of steady-state creep rate to applied

stress. It is defined as
, (éln &, )
m=
ono ),

The dependence of creep rate on applied stress varies with the range of applied stress.

(2.27)

Such a dependence is summarized in Table 2.1 in which m’ is replaced by .

Table 2.1 The dependence of creep rate on applied stress

STRESS RANGE

EQUATION

STRESS DEPENDENCE

Low and Medium

g=Ao"

n =5 dislocation creep in pure metals

Stress = A[g)n 7 =3 dislocation creep in Class I solids
e A( E)" n =1 diffusional creep in pure metals
G n > 5 dislocation creep in PS and ODS alloys
[Ref.24]
High Stress e= A'exp[Bo] A’ A’'n, B, Bn are constants

. o
g=A'exp[B —
xp[ nE]

[Ref. 2, 24,25]

Entire Stress

Range

&= A"(sinh B" 0)"
&= A,0" "' sinh B o

A=B"" A" at low stress [Ref 26]
{ oo4’* at high stress [Ref 27, 28]




2.2.2 DISLOCATION CREEP IN PURE METALS

2.2.2.1 DISLOCATION STRUCTURE

The dislocation arrangements developed during Power-law creep, as identified by
X-ray techniques, etch-pitting studies and transmission electron microscopy, have been
comprehensively reviewed by Takeuchi and Argon[29]. Although the precise dislocation
configurations observed in pure metals vary with stress, strain, temperature and material
parameters such as stacking fault energy, they have some general similarities in their
characteristics and nature.

After the initial straining of the specimen on loading, the dislocation structure that
forms closely resembles that produced by deformation at low temperatures. During creep
of most metals, particularly those characterized by a high stacking fault energy, the
relatively uniform dislocation arrangements observed initially are found to change
gradually as a consequence of the formation of a subgrain structure. Their subgrains have
regions of comparatively low dislocation density separated by low-angle tilt and twist sub-
boundaries which often have a complex nature[30] Early in the primary stage, a high
density of subgrains form in some regions but not in others. As primary strain increases,
this heterogeneous subgrain structure becomes more homogeneous and the average
misorientation across the sub-boundaries increases. It then seems to remain constant at
about 1 or 20 or less throughout the secondary stage[29].

In pure metals, such as alpha iron, the density of free dislocations initially
increases. It quickly reaches a maximum value and then decreases slowly to a value
corresponding to the steady-state at a given applied stress and temperature as shown in
Fig.2.3031]. From this figure, it can be seen that the density of dislocations forming sub-
boundaries, p,, increases during primary creep and the total dislocation density

p, = p+ p, increases similarly. The free dislocation density represents only a small fraction



of the total dislocation density. The density of dislocations associated with sub-boundaries

is an order of magnitude higher than the free dislocation density.
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Fig. 2.3 Changes in total dislocation density p, free dislocation density p and the
density of dislocations associated in sub-boundaries, pg, with the creep strain; alpha iron

crept at 873K and 75 MPal31].

The quantitative characteristic of dislocation structure are described in terms of
total dislocation density p,, density of free dislocation p, mean subgrain diameter d;, mean

subgrain misorientation angle @, density of dislocations forming sub-boundaries p, and

density of free dislocation p . The dependence of p on applied stress o can be described

by the following expression[14]:
r
p=K; (“’“) (2.28)

where K; is a constant, the value of which ranges from 1.0 to 6.5. p is an exponent which

is in the range of 1 to 2; in theoretical considerations p is usually accepted to be equal to

2.
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The density of sub-boundary-forming dislocations p,, is expressed as follows[31]:

_ 30
pB_bd

5

(2.29)

where dj, is the mean subgrain diameter, © is the mean subgrain misorientation expressed
as ©=>b/h. Here A is the mean distance between dislocations in sub-boundaries .

The mean subgrain diameter d is found to be[14]

5‘;&: Kd% (2.30)

where K7~ 10.5[14], by combining Eqns. 2.29 and 2.30,

® o

= 2.31
X (2.31)

pp =K,
Since during steady state creep the ratio p,/p, remains constant, the total

dislocation density p; is proportional to the free dislocation density, p. Therefore, the

subgrain diameter, d_, can be expressed by the following:

d =Kp'"? (2.32)

5
where X is a constant.

2.2.2.2 TEMPERATURE AND STRESS DEPENDENCE OF CREEP RATE
Intensive experimental investigations suggest that when homologous temperatures
at which creep occurs are sufficiently high for lattice diffusion to dominate dislocation

core diffusion, the apparent creep activation energy is equal to the activation energy of
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lattice self-diffusion, and the creep rate depends on applied stress with an exponent of 5.

At lower homologous temperatures, where dislocation core diffusion dominates over

lattice diffusion, a stronger dependence of creep rate on applied stress is often observed.
With few exceptions, various models of creep assume that the creep strain is a

result of dislocation glide and non-conservative motion of dislocations. These models are

CREEP IS CAUSED BY
™ DISLOCATION GLIDE

!

@REEP MODEL]

’T

CREEP IS CAUSED BY
DISLOCATION CLIMB

CREEP IS CONTROLLED
BY RECOVERY
CREEP IS CONTROLLED
BY DISLOCATION GLIDE

Fig. 2.4 Illustration of establishment of creep mechanisms

illustrated in Fig.2.4. These models are based on two separate assumptions. The first type
of models assume that creep strain is a result of dislocation glide and that non-
conservative motion of dislocations contributes to the overall creep strain to a negligible
extent. These models, also known as models of "Glide Creep", can be essentially divided
into two groups. Models of the first group start from an idea that the process that controls
creep rate is recovery which consists of climb and annihilation of edge dislocations.
Models of the second group are based on the assumption that dislocation glide is the creep
rate controlling process. These models assume that the creep strain is a result of
dislocation climb, also known as models of dislocation "climb creep”, and ignore any

contribution of disiocation glide to the creep strain. In the following section, a brief review

21




of only those models of dislocation creep will be given which have contributed to the

development of ideas on dislocation creep mechanisms significantly.

1. RECOVERY CONTROLLED DISLOCATION GLIDE CREEP MODEL

a) Weertman's Earlier Models[32, 27];  As shown in Table 2.2, Weertman's
models predict not only the usually observed temperature dependence but also the
frequently observed stress dependence of steady state creep rate. Nevertheless, numerous
objections were raised against it. The more noteworthy of them are the following;

i). the assumed dislocation configuration is unstable[33, 34]

if). dislocation pile-ups were not observed in crept specimens

iii). the assumption of a fixed and stress independent permanent density of
dislocation sources has never been supported experimentally.

Generally, the dependence of creep rate on the 4.5th power of stress is reached
due to an ad-hoc assumption of independence of dislocation source density of stress.
However, if the assumption is ignored, the Weertman's model would predict a third power
dependence of creep rate on stress.

b) Models Involving the Role of Sub-boundaries : If dislocations forming
the subboundaries act as sources and sinks for vacancies, then Nabarro-Herring diffusion

creep occurs, the rate of which is given by

£ GQ_q_

—~ =B, ——— 2.33
D, "dUTG (2.33)

where B, is a constant and d; is the mean subgrain diameter. Considering the

dependence of d on stress, the creep rate with above equation is given by

. 3
f)i =B, %(g—) (2.34)
L




Table 2.2 CREEP IS CONTROLLED BY RECOVERY PROCESS

MODEL EQUATION ASSUMPTION
: : D, GV¥(o\" ... .
Weertman's E= AW—k—T—— re Dislocation pile-ups, a fixed and stress

M0d81[3 21 27]

independent permanent density of

dislocation sources

Models Involving

the Role of Sub-

Ivanov and Yanushkevich[35]

Finite subboundary thickness a.
Blum[36]

boundaries
. GQ _ 3
'5— =dso [%)(%] Argon and Takeuchi[37]
L
. 5
, :
& GQ (dY( oY
D" m(z (5) Rel 4749
L
o & 87 GQf oY L :
Dislocation —D——?—E el Coefficient is independent of applied
L
Network Models stress
4
ém(—g) When  deformation  strengthening
coefficient depends on the reciprocal
of stress
The model described by Eqn. 2.34 was presented by Ivanov and

Yanushkevich[35], Eqn. 2.34 was also derived in a simple way by Weertman. These two

assumed that subboundaries have a " zero " thickness. Blum[36] modified Ivanov and

Yanushkevich's analysis by making an ad-hoc assumption of a finite sub-boundary

thickness. Consequently, the creep rate is described by the following equation




(2.35)

E _, a G.Q[O')4
G

SISy Eheiiacheiel (Sl
D, TP kT

. 3
The relation —E—oc(—Gq) is commonly accepted as a natural third power law of high
L

temperature creep. An explanation of the discrepancy between the "natural" power law
creep exponent for pure metals, » = 3, and the creep exponent usually observed
experimentally, # > 3, has not yet been provided:

Argon and Takeuchi Modell37]; Argon and Takeuchi derived the "natural "

creep relation of the form:

. 3 3
;—J = A, ———;2 (%) (%) (2.36)
L

3
which, with the exception of the factor (%) , has an identical form to that derived by

Weertman (;;F is the stacking fault energy). Argon and Takeuchi assumed that the
dependence of creep rate on the third power of stress is a consequence of the internal
stress not being taken into account and thus replaced the applied stress o by the effective

stress o” = o— ;. Consequently, the creep rate is expressed as

& GQ (v 3(0-—0. )3
s =4 LE i 2.37
D, " buT [Gb) G 237)

Further, the authors developed a theory of internal stress, o,, assuming that this stress is

exclusively due to sub-boundary bow-out caused by the applied stress. Based on this

assumption, they obtained the following expression for o,




273
o, = aKdG@l%(Tc?%) (2.38)

where the constant & = 0.3/7, @ is the mean misorientation angle of a sub-boundary and
K is the proportionality constant in Eqn. 2.30. They used strain transient dip test
technique to study eight pure metals and solid solution alloys that exhibit Class II creep
behaviour and in which subgrain structure develops during creep deformation ( Fig.

2.5)[29]. This conclusion was supported by the results of Orloval[39],
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Fig. 2.5 Results of measurements of internal stress ;i in steady-state creep assembled by

Takeuchi and Argon{29]

Weertman's Modell38]l:  On the basis of recent high voltage TEM
observations by Caillard and Martin on the behavior of dislocation networks in high
temperature creepl40~42], Weertman developed a dislocation creep model in which & and

o are related by the following expression:




£ GQ (oY
SR bl Rl 2.39
D, " bsz(G) (239)

where 4, is approximately equal to 1 x 107 for pure BCC and high stacking fault energy
FCC metals if the power exponent is set to be equal to 5.

The natural Sth power arises in this theory because the screw dislocation segments
move a distance which is proportional to the applied stress rather than a distance which is
inversely proportional to the applied stress. The edge dislocation segments move a
distance which is inversely proportional to the applied stress. Most of the edge dislocation
segment annihilation occurs not through climb but through a cross slip process of screw
dislocation segments as suggested by the Caillard-Martin observations{40~42]. However,
the rate controlling process remains the climb of edge dislocations. Consequently the
activation energy of high temperature creep is that of self diffusion. According to this
theory, for high temperature creep in the intermediate temperature range the natural stress

exponent is 7 and the activation energy is that of pipe diffusion.

Robinson and Sherby's Model[47]: The majority of theories proposed to
describe the creep process neither include subgrain size as an important variable nor utilize
the subgrain boundaries in the formulation of a rate equation. The reasons for relegating
subgrains to an incidental role in the creep process are based on evidence obtained in the
1950s. This evidence indicated that a true substructural steady state in which dislocation
density, subgrain size and subgrain misorientation were constant did not exist[43].
However, later studies on aluminum show that subgrain size, misorientation and shape
remain essentially constant up to strains of 3.7[44]1. This constancy of subgrain size and
misorientation has been reconfirmed using transmission electron microscopy[43, 461,

An attempt to incorporate subgrain size in a strain rate description of the creep

process was made by Robinson and Sherbyl47]. After analyzing all of the creep data
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available on polycrystalline tungsten,.they proposed an empirical equation to describe the
steady state creep strain rate which included subgrain size as an important parameter.
Later, Young et al.[48], using subgrain size data available in the literature combined with
results from high temperature constant strain rate tests for high purity aluminum, obtained
results which were similar to those found in the earlier study on tungsten. In 1977, Sherby

et al.[49] reanalyzed the data available in the literature for several materials and proposed

a creep rate equation of the form

P N
=56 (F) @
- where & is instantaneous strain rate, § = structure dependent constant, D = effective
diffusion coefficient, A= subgrain size.

For a constant value of A, a stress exponent of 8 is obtained. Under steady state
conditions, A varies as o', hence the stress exponent is 5, as is commonly observed.
Ferreira and Stang[30] confirmed the form of this relationship, but found that a stress
exponent of 7 and a subgrain size exponent of 2 were more appropriate. The constant
dislocation structure creep was also analyzed based on the thermodynamics of dislocation

glide in subgrain interior controlled by over-coming of obstacles[31~33],

c¢) Dislocation Network:  The first model of creep based on experimental
evidence that free dislocations are arranged into a three dimensional network and on the
idea that the deformation strengthening results by the network refinement and the recovery
on the network coarsening, which is dependent on diffusion, was proposed by
McLean[34] in 1968. The decrease in mean mesh sizre A leads to an increase in dislocation
density, while the growth of the mean mesh size results in a decrease. The role of recovery

1s in an occasional thermally activated release of a dislocation network link. Based on this

the recovery rate is given by[35]:
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(2.41)

and coefficient of deformation strengthening, A, by[56]:

p=92-6 (2.42)
de 2m
Substituting Eqn. 2.41 and 2.42 into Bailey-Orowan equation (Eqn. 2.12), the

creep rate is given byl37]:

e 82 GQf oY
5 as) @4
L

Thus, the above simple analysis also gives a stress exponent of 3 for the creep rate.
This analysis assumes an independence of # on o, which is actually not observed.
However, by considering the usually observed dependence of deformation strengthening

coefficient / on the reciprocal of stress, Lagneborg[38] obtained the following relationship
. G 4
goc| — 2.44
( G) (2.44)

The network of dislocation is not stationary, but is in a dynamic equilibrium as
newly created dislocation line is continuously being annihilated by climb. Thus, at any
time, the link in the network can be considered in various stages of multiplication or
coarsening process. Based on this, Burton[39] proposed a dislocation network theory

which gives the creep rate by :

28




; 3
Loy, @(E) (2.45)
D, *wr\c

Therefore, it can be concluded that dislocation network models of creep controlled

by lattice diffusion also yield a value of 3 for the stress exponent of the creep rate.

2. DISLOCATION CLIMB CREEP : NABARRO CREEP

All the models of dislocation (power law) creep discussed so far assume that the
creep strain results essentially from dislocation glide, though the creep rate is controlled by
recovery dependent on dislocation climb occurring through lattice diffusion. In contrast, in
Nabarro creep, the creep strain results exclusively from non-conservative dislocation

motion, i.e. dislocation climb.
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Fig. 2.6 Nabarro model of creep. An arrangement of edge dislocations into the regular
three-dimensional networid 60].
This model was established for a case where the interdislocation spacing in
subboundaries can be comparable to the subgrain diameter. The dislocations are arranged

into three dimensional networks as shown in Fig. 2.6.. In this figure, the directions of

dislocation climb are shown by the arrows
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A detailed model of this type of dislocation climb creep was presented by
Nabarrol60] in 1967. Nabarro considered individual links of the network to operate as
Bardeen-Herring dislocation sources. That is, while absorbing or emitting vacancies they
bow which causes their length in unit volume to increase. That is, their dislocation density
increases. An increase in dislocation density is compensated by the annihilation of
dislocations of opposite signs which meet during climb. In the steady state, the dislocation
density remains constant and the mean link length also does not change.

Nabarro's analysis led to the equation{60],

. 3 -1
£ -4, —?9—(5‘—) 1n[iG—) (2.46)
D, bokT\G o

The value of the logarithmic term changes with stress very slightly, so that the
creep rate practically varies with the third power of stress.

In 1968, Weertman[11] rederived the equation for Nabarro creep rate using
Orowan equation since the deformation is caused by dislocation climb, L = 1 = ds. If it is
accepted that all the dislocations are mobile, the resulting equation for creep rate can be

written as follows

: 3
B~ wre) e
L

As to the form, Eqn. 2.47 is identical to Eqn. 2.46, and except for the logarithmic factor, it
is also identical to the original Nabarro Eqn. 2.46. It should be noted that the creep rate
expressed by Eqn. 2.46 and 2.47 does not depend on the dimension of dislocation
network, A. Thus, Nabarro creep controlled by lattice diffusion also obeys the third power

law.




Besides the model of creep described above, Nabarro[60] developed another
model of climb creep, assuming that edge dislocations are arranged into a regular three
dimensional network and the dislocation core diffusion, instead of the lattice diffusion,

controls the creep rate. The climb velocity controlled by core diffusion is given by[ﬁo]:

v, = Kc%Dcﬁ, (2.48)
2 kT

where K, is a constant, D, the coefficient of dislocation core diffusion and X is the mean
spacing of dislocations between which the exchange of vacancies takes place, i.e, the
mean mesh size of dislocation network. Since the dislocation density given by Eqn. 2.28 is

proportional to 1/4* and the creep rate is given by Eqn. 2.8 in which v, is substituted for

U, the following equation for creep rate is obtained

) 5
_b‘i =4 _b?; (%) (2.49)

Eqn. 2.49 is, with respect to the stress dependence of creep rate, similar to the equation

originally suggested by Nabarrol60] and the creep rate varies as the fifth power of stress.
However, generally both lattice diffusion and dislocation core diffusion take places

simultaneously in Nabarro creep. The creep rate is thus equal to the sum of the rates

expressed by Eqn. 2.41 and 2.49, i.e.,

2 3
- . GQ
e=A° [DL +AN(%) D}(%) e (2.50)

From this equation it follows that the effective coefficient of diffusion is




2
D, =D, +4, (GEJ D, @2.51)

In the previous section, Weertman's "cell model" of creep controlled by lattice
diffusion, which leads to a " natural " fifth power law, was discussed. At intermediate
homologous temperatures, where dislocation core diffusion is more likely to occur than
lattice diffusion to control dislocation climb, the stress exponent in the creep rate equation

is increased and creep rate is described by the seventh power equation.

) 7
5 A 8) @
C

The constant A4,,, is approximately equal to 9.3 x 103 4,.. Weertman believes that this
equation represents a " natural " seventh power law for creep controlled by dislocation

core diffusion[38].

3. CREEP CONTROLLED BY DISLOCATION GLIDE

As an alternative to recovery dependent on dislocation climb, dislocation glide
dependent on diffusion must be considered as a creep rate controlling process. The most
acceptable and, consequently, most widely discussed model of creep controlled by
dislocation glide dependent on diffusion is the model of non-conservative motion of jogs
on screw dislocation. A possibility that the creep rate is controlled by the glide of screw
dislocations with jogs was first considered by Mott[61] in 1954 and later by Raymond and
Dornl62], Barrett and Nix[28] and other authors[63]. Hirsch and Warrington developed a
theory of flow stress at high temperatures starting from the same ideas as Mott{61] In the
following paragraphs, the analysis performed by Barrett and Nix will be briefly described.

Barrett and Nix{28] assumed that the non-conservative motion of jogs on screw

dislocations can be related to both the emission and absorption of vacancies and that any



screw segment contains either vacancy emitting or vacancy absorbing jogs. The vacancy
motion emitted by a jog causes a vacancy supersaturation, while the absorption of vacancy
during the motion of a jog causes a vacancy under saturation in the vicinity of the jog.

Their detailed analysis has resulted in the creep rate being given by[28]:

5 Gb
£ a4 2.53
D, P 3kT(G) (2.33)

where £ is the number of atoms in the unit cell,, a the lattice parameter, /; the distance

between jogs.




2.2.2.3 HARPER-DORN CREEP

High temperature creep at very low normalized stresses sometimes shows features
that are characteristic of diffusional creep (Newtonian behaviour, i.e., linear stress
dependence of creep rate). At the same time, it also has the features which are in
contradiction with the concept that creep occurs by stress directed diffusion of vacancies,
which are emitted and absorbed by grain boundaries. That is, creep rate is independent of
the mean grain diameter. Creep of this type is known as Harper-Dorn (H-D) creep, as
Harper and Dorn[64] were first to observe it in aluminum in 1957.

Until recently, H-D creep has been thought to take place at homologous
temperatures higher than about 0.95, normalized stresses o/G lower than about 5 x 10-6
and in materials with mean grain diameters larger than about 500 um. However, in the
past decade it has been shown that H-D creep can also take place at much lower

homologous temperatures.

1. HIGH TEMPERATURE H-D CREEP

The primary characteristics of H-D creep at very high homologous terr;peratures
and low stresses can be summarized as follows[3].

¢ The stress exponent is equal to 1.

¢ The creep rate is independent of grain size and similar creep rates are observed both
in polycrystals and single crystals.

¢ The activation energy for creep is equal to the activation enthalpy for lattice
diffusion.

+ The creep curves show a distinct primary stage which is followed by the steady
state stage.

¢ the dislocation density is low, i.e., of the order of ~5x 107 m™2, and is independent

of stress.



4 There is a random and reasonably uniform distribution of dislocations in specimens
crept to the steady state.
¢ Very similar results are obtained on pure metals and solid solution alloys. There is
no experimental evidence to suggest a variation in creep behaviour with solute
concentration.
The H-D creep rate can be expressed by the following phenomenological

equation[65]

D, ™rr\G

L

£y G (E) (2.54)

Several models of "high" temperature H-D creep have been proposed.

a). Earlier models: In the earlier work of Dorn and co-workersi®4, 66] H-D
creep was attributed to the motion of jogged screw dislocations and the associated
production of vacancies, using the concept developed by Mott[61], According to
Mohamed[68, 70] and Yavari's[65] analysis this mechanism is not appropriate to be H-D
creep for two reasons: (a) it requires a predominance of screw dislocations which
contradicts experimental results[67], and (b) it requires an unrealistically small mean

spacing between jogs (<b).

b). Barrett's model: Barrett, Muehleisen and Nix[%] proposed a model based

on the following assumptions: (1) the dislocation multiplication occurs by climb, while the

creep strain results from dislocation glide; (2) the dislocation glide velocity v, = v,0,
where v, o« D;; (3) the mean subgrain diameter is given by Eqn. 2.30, just as it is in

recovery (power-law) creep; (4) the dislocation-source density does not depend on stress;

s
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and (5) the annihilation and / or immobilization of dislocations occur exclusively in sub-

boundaries. From this model, the following expression has been derived.

d, Db

2.55
v, GkL’ (2.3

p=p,

where p, is the length of dislocation sources per unit volume and d, =d,o is a constant.
Thus, the dislocation density does not depend on stress, which is in agreement with
experimental results. The creep rate is described by the Orowan equation so that it can be

expressed as

i DV (o
=pd —Ft—— 2.56

c). Mohamed, Murty and Morris[70] considered the possibility of H-D creep
control led by the climb of jogged edge dislocations. For this process Hirth and Lothe

derived the following equation for the steady-state strain rate.

. 3
£ AoEb_@(E) (2.57)
D, 1 #W\G

where /; is the mean jog spacing on the edge dislocation . Thermal jog spacing is of the

order of (b/10)exp[ Uj/kT], where U is the energy of jog formation.

This model was later discussed in detail by Langdon and Yavaril67], They
suggested that an array of dislocations containing a very high jog density would exhibit
vacancy saturation. When dislocation jogs become saturated with vacancies, the

dislocation velocity may be controlled by diffusion of vacancies to or from the dislocation



line. This mechanism was first considered by Friedell71]. Following Hirth and Lothel63],

the steady state creep rate is given by,

f_:As_ﬁé;j_(}_b(EJ (2.58)
D,  In(g7%) kT\G

- where A4° is a constant. Langdon and Yavaril67] showed that there are numerous points

of agreement between requirements of this model and extensive experimental observation.

2. INTERMEDIATE TEMPERATURES

The main features of H-D creep occurring at intermediate temperature are as

follows[72]

4

¢

Well defined steady state creep rate is observed.

Depending on conditions, the creep rate may be controlled either by lattice diffusion
or by dislocation core diffusion.

Creep can occur -at dislocation densities several orders of magnitude higher
(~10"2m7?) than the upper limiting dislocation densities allowing H-D creep to occur
at homologous temperatures close to 0.95.

The subgrain formation has not been observed even at grain diameters considerably
larger than those resulting from Eqn. 2.30 with K=/0. The dislocations are arranged
into irregular three-dimensional network. The density of dislocations does not
depend on stress.

A threshold stress has been observed for steady-state creep which does not depend
on the grain size[73~75]

Creep occurs for grain sizes considerably smaller than at high temperatures. For

example, the lower limiting grain size d=195um was found for alpha ironl74],




¢ A transient creep occurs, however, transient strains are relatively small and the
duration of transient stage is relatively short[72,76].
The "intermediate” temperature H-D creep rate can be generally described by the

equation[73),

_‘.CZ‘_=A _G_é O'-—O'O
D kT G

(2.59)

where A, is a constant; D is a proper diffusion coefficient and o, is the threshold stress.

The effect of dislocation core diffusion can be incorporated by setting the effective

diffusion coefficient D, for D in Eqn. 2.59. It is known that D,y = f.D, + f.D., where
Jf; and f, are the fraction of atoms participating in lattice diffusion and dislocation core

diffusion, respectively. The value f, ~ 1 and

Je=ap (2.60)

where a, is the area around the dislocation core participating in core diffusion. Then,
substitution of Eqn. 2.25 and 2.60 into Eqn. 2.59 leads to the following general equation

for H-D creep

. Gbf{o o
= A D D f— ———2 2.61
3 HD( 'y +ap. C)kT(G G) ( )

Novotny, Fiala and Cadek(73, 771 suggested that the H-D creep rate in alpha iron
and alpha zirconium at intermediate temperatures is controlled by jog dragging. That is, by
a non-conservative motion of jogs on screw dislocations which is dependent on dislocation

core diffusion and suggested that the creep rate can be expressed by,




b+ Gb({o o
L ok p1po[2 % 2.62
D, ePr kT(G G) (2.62)

where Ko is a dimensionless constant, p, is the screw dislocation density and /; is the mean

spacing between jogs on crew dislocations.
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2.2.3 CREEP IN SOLID SOLUTION ALLOYS

2.2.3.1 INTRODUCTION

The addition of solute B in solvent A may improve creep resistance by:

(i) a modification of stacking fault energy

(i) the elastic interaction (Cottrell) of atoms with dislocations

(iii) the chemical interaction (Suzuki ) of solute atoms with the stacking faults

(iv) an interaction of short range order with dislocations-Fisher interactions

A less important role may be played by Mott-Nabarro strengthening ( individual
atoms of a solute represent local obstacles to glide ), a modification of diffusion coefficient
( diffusion effects), a modification of elastic modulus and a modification of Peierls-
Nabarro stress.

Solid solution alloys may exhibit different creep behaviour: Class I ( Alloy type ),
the value of # is typically equal to 3. Class II ( Metal type), to which the pure metals
belong, # is typically equal to 5. A solid solution alloy can behave as a Class I solid in one
region of external conditions, while it‘can behave as a Class II solid in another.

Besides the difference in values of stress exponent n, other characteristic
differences in Class I alloys have been noted[78]:

¢ No instantaneous plastic strain takes place after the application of stress and inverse
primary creep occurs;

¢+ If the applied stress ¢ is reduced by Ac in steady state creep region, the creep rate
measured immediately after the stress reduction is higher than the steady-state
creep rate corresponding to the reduced stress 6-Ac;

¢ The steady-state creep rate does not depend on, or only slightly depends on, the
stacking fault energy;

¢ The dislocation substructure (cell or subgrain structure) does not form to any

significant extent during creep;,
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+ Dislocations are generally only slightly curved, they are homogeneously distributed
and the tendency for network formation is slight;

+ Dislocations are predominantly of the edge type.

2.2.3.2 CREEP MECHANISMS-CREEP CONTROLLED BY VISCOUS
DISLOCATION GLIDE

The main models for viscous dislocation glide-controlled creep is listed in Table
2.3. The Weertman's theory[79] was the first one of the kind. The theory is considered to
be general in the sense that it does not assume a specific type of interaction of solute
atoms with dislocations, however, it assumes specific dislocation arrangements which is
neither consistent with the homogeneous dislocation distribution generally observed, nor
with the fact that the dislocations are mostly of edge orientation.

Friedell71] assumed that the atmosphere around a dislocation is not saturated.
Therefore, his theory is valid for very dilute solid solutions only, and thus, is not general
enough.

Takeuchi and Argon's theory[78] does not rely on assumptions of either
Weertmanl[ 7] or Friedell71], and is based on the concept that both the dislocation glide
and climb are influenced by the atmospheres around dislocations. Takeuchi and Argon[78]
showed that their theory is in good agreement with the experimental resuits on Class II of
solids, but the creep behaviour of Class I solids cannot be explained satisfactorily.

The criterion for Class I creep behaviour has been derived by Mohamed and

Langdon(80], which can be written in the form:

2 3\2 . 3
B, (EJ b [i) &efco >1 (2.63)
1- WG )\ kT J\Gb ) D,

where B,, is a constant and has been experimentally determined to be 6.4 x 107",
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TABLE 2.3 DISLOCATION CREEP MECHANISMS IN SOLID SOLUTION ALLOYS

INVESTIGATORS | MODELS CONDITIONS
3
gzw E) e=(r-r)/r, is the misfit
Gb EC G
Weertmanl79] parameter. r , r, is radii of solute and
solvent atoms respectively.
3
EEMDS [_0_') Ds is the diffusion coefficient of the
2kT G
Friedell71] solute
ekl oY .
s =4 — C =C, exp[ /kT] is the solute
DGb (GJ &l
y 1 ( kT )2 concentration in the atmosphere. 7,
] 5 —3—
Tackeuchi & 8C, € \Gb is the solute atom-dislocation
Argonl78] interaction energy.

When the applied stress is increased to a critical value of o, following the

criterion represented by Eqn. 2.63, the stress exponent changes from a value close to 5 to

a value close to 3. However, when the stress increases further, the stress exponent

increases again at another critical stress ¢.'> ¢, from n ~ 3 to n > 3. The transition of
[+ [+

Class I to Class II behaviour at higher stress levels has been observed by many

authors[81~89] and can be considered to be well established at the present

Three possible causes of the breakdown of Class I creep behaviour at high stress

levels have been critically considered by Yavari and Langdon[88]

+ Normal power-law breaks down(83] ( creep rate starts to increase as exp/Bo],

where B is a constant).



¢ Transition to a region of viscous glide controlled by dislocation core diffusion, so
that deviation from 7 ~ 3 to n » 3+2 is analogous to the transition from lattice
diffusion to dislocation-core diffusion controlled glide creep or climb creep.

¢ Breakaway of the dislocations from their solute atmospheres(86, 87] in a manner
first suggested by Friedell71],

The critical stress o, for the transition from Class I to Class II creep behaviour

was derived by Friedel to be
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Fig. 2.7 Schematic representation of stress dependence of creep rate showing Class I —
Class I — Class II transition in sofid solution alloys. Stress interval in which Newtonian

(diffusional or Harper-Dorn ) creep occurs is also shown ( d means the grain size )[88],




The possibility of a Class II—>Class I->Class I transition occurring when the stress
is increased is shown schematically in Fig. 2.7 on a logarithmic plot of creep rate versus
stress{88]. This three-stage behaviour is well suggested by the results of experiments
conducted over a wide range of stresses on a single solid solution alloy (e.g.[89]).
Combining Eqn. 2.63 with 2.64, it can be concluded that Class I creep behavior with n ~3
occurs within a range of normalized stresses which may be restricted to the range

described by:

T | —

; 3

3(cp :
L PR (DGR 1 gp  WiC, (2.65)
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_1
where the constant y =[5,/ (1-v)] 2.
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224 CREEP IN PRECIPITATION AND DISPERSION
STRENGTHENED ALLOYS

2.2.4.1 INTRODUCTION

The high temperature strength of many engineering alloys is due to the dispersion
of second phase particles in the material. The mechanisms by which deformation can occur
in such particle strengthened alloys have been the subject of many studies which are
largely based on the mechanism proposed by Brown and Ham{90]. In these studies, it has
been envisaged that the mobile dislocations are arrested or slowed down at the particles
and that extensive deformation cannot occur unless a minimum, or threshold, stress is
applied that allows the dislocations to escape from the pinning particles by one of the four

possible mechanisms which have, in general, different threshold stress, viz. {91],

a) particle shearing either by fracture of incoherent particles or by the glide of
dislocation pairs through coherent parti;:les

b) bowing between particles (Orowan bowing) where the matrix dislocation is
extended in the glide plane between particles by the applied stress to the extent that the
dislocation is released, leaving loops around the particles.

c) climb around particles where segments of the dislocation can extend in a
direction normal to the glide plane by diffusional processes in order to avoid the particles

d) Drag of particles where the dislocation continues to glide at a rate constrained

by the diffusional movement of the pinning particles

Processes a) and b) have very small temperature dependence (i.e. are athermal)
and, although various modifications have been proposed to deal with them, for example,

elastic anisotropyl92], the general form of the Brown-Ham treatment of the deformation
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process has been widely accepted. The threshold stress for Orowan bowing mechanism is

given by[901:

Top = —glb—ln(—)i) (2.66)

and threshold stress for the cutting of coherent particles with a long range ordered

structure is given by[90]

A 4y ,af 12 )
T =22 [(T-r ) fJ (2.67)

In both these equations, A is the interparticle spacing, r,, the dislocation core radius (r, =

b), 7, the antiphase boundary energy, I' = —;—Gb Y2 the dislocation line energy[93], #is the

particle volume fraction and a the particle dimension.

Processes c) and d) involve diffusional mass transfer and will be intrinsically slower
than the other process or processes. Consequently if either mechanism a) and b) can occur
it will control the deformation process. There have only been a few isolated observations
of particle dragging which will not be considered further here since it apparently
contributes little to creep deformation. However, dislocation climb around particles can be
dominant when the athermal processes are inhibited. (i.e. at lower stresses leading to slow
strain rates)

The first model of creep in precipitate-strengthened (PS) and dispersion
strengthened (DS) alloys due to dislocation climb around particles was proposed by Ansell
and Weertmen in 1959[94] Though these models have lost much of their original

significance, it seems useful to outline them briefly in Table 2.4.
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TABLE 2.4 CREEP MODELS FOR PRECIPITATE-STRENGTHENED ALLOYS

STRESS MODELI[%4] ASSUMPTION

RANGE

Gb Gb ' 5\ Gb o

“1':“‘< o< 7 £z [_) 22 Y | Creep rate controlling process is associated
D, h) kT m(R/r,)

with dislocation climb around particles

2 4 .
) Gb ( g ) Dislocation passed the particles by Orowan
looping. The rate controlling process is the

climb of dislocation loop left around the

particle.

L: the maximum radius of a dislocation loop generated by Frank-Read sources

A: the interparticles spacing, h the mean path which a dislocation has fo pass by climb.

Both models in Table 2.4 do not explain the frequently observed much stronger
dependence of creep rate on stress. These models also require the apparent activation
energy for creep to be close to the activation enthalpy for lattice self-diffusion, while the
observed values for the apparent energy are frequently much higher. The models described
above are not able to account for either the very high values of the stress sensitivity
parameter or the unrealistically high values of the apparent activation energy for creep, Qc,
frequently observed for creep in particle strengthened alloys. It was proposed that these
high values of m' and Qc can be rationalized by the current concepts of creep by
expressing the creep rate which is in terms of the difference of the applied stress o and the

back stress o (o~ Oy ), instead of in terms of the applied stress alone. In this analysis

the back stress is associated with the particle by-pass mechanism. Then, provided that the




creep is lattice diffusion controlled, the creep rate can be described by the

phenomenological equation

i:A—G—IZ(G—G‘B) (2.68)
D, ¥\ G

where A and n are constants. The initial approaches along these lines were made by
Wickers and Greenfieldl95] and by Lagneborg[96] in 1968, but the concept has been
much developed by Wilshire and collaborators{97~100] and by other authors[101~103],
Thus, it has been shown[98, 99, 104] that incorporation of the temperature dependence of
o, allows the remaining temperature dependence of creep to be described by the lattice
diffusion in the matrix by Eqn. 2.68. This implies that creep processes in particle
strengthened alloys are closely related to those in single phase systems. To the stress
exponent, a value of 4, following the Lagneborg's[96] theory, has been assigned.

From Eqn. 2.68 and those defining the apparent activation energy for creep O,

(Eqn. 2.16) and the stress sensitivity parameter m' (Eqn.2.27), it follows that,

1 dG b oo
=AH, —kT*|(n-1)=——= 2 2.69
o st -t )1 () oo
and
m'=-"19 [1—(0”%)J (2.70)
o~ 0y do Jr

From Eqn. 2.70, it follows that »’ = n when the back stress does not depend on

applied stress, i.e., o, / Jo =0, the parameter m' is
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m'= 2.71)

and since # is constant, it approaches infinity with applied stress approaching the back

stress o;. In this case o, represents a true threshold stress below which creep as
described by Eqn. 2.68 does not occur. The parameter m’ decreases with increasing
applied stress and approaches the value of the exponent » at applied stresses much above

the back threshold stress.

2242 THE ORIGIN OF THRESHOLD STRESS WHEN CLIMB OF
DISLOCATIONS AROUND PARTICLES IS THE RATE CONTROLLING

PROCESS

The climb of dislocation around particles was proposed to proceed by three basic

mechanisms (Fig. 2.8) :
1. LOCAL CLIMBI[®0, °1, 106]

This is illustrated in Fig. 2.8a), where the dislocation segment between the particles
remains in the glide plane and the remainder assumes profiles of the particles surface as it
climbs. The threshold stress is the stress that is required to create the new length of
dislocation generated during climb. This analysis only considers the effect of the shear
stress in the glide plane neglecting the contribution of the normal component of applied
stress to the climbing segment of dislocation. This is equivalent to assuming that particle
separation is much greater than the particle diameter. That is, there is a low volume
fraction of particles so that the climb force on the dislocation segment of the particle due
to the shear stress is amplified. Then, the threshold stress for local climb is given by the

expression
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T, =T, /2 (2.72)

Lagneborg[106] first pointed out that during local climb the sharp transition from
the dislocation segment in the glide plane to that climbing the particle will be unstable. He
showed that relaxation of the dislocation requires a larger segment to climb. Moreover,
the length of new segment of dislocation created in climbing over the obstacles depends on
the curvature of the gliding segment(i.e. applied stress). This results in a back stress
resisting the climb/glide sequence that is proportional to the applied stress rather than an

absolute threshold stress of the climb by-pass process.
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Fig. 2.8 Schematic illustrations of dislocation configurations perpendicular to and in the

glide plane for a) local climb; b) general climb, ¢) co-operative climb[91],
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Fig. 2.9 Model of Lagneborg[l%}. a) a relation between the back stress and the

applied stress; b) corresponding applied stress dependence of creep rate.

At applied stresses lower than the Orowan threshold stress, the back-stress is given

by,
o, =Ko (2.73)

where the constant K= 0.7. From Eqn. 2.71, it follows that at applied stresses lower than
O,y the parameter m' = n; for applied stresses higher than o, , m’ =16 for n = 4. With
increasing stress the parameter m' decreases, and at applied stresses much higher than o,
its value approaches the value of exponent n. This dependence of creep rate on applied

stress is shown schematically in Fig. 2.9.

2. GENERAL CLIMB

As illustrated in Fig. 2.8b, general climb can occur with a smaller increase in

dislocation length when all of the dislocation climbs out of the glide plane, This leads to a




smaller threshold stress, or rather a range of threshold stresses depending on the effective
mean spacing of obstacles which varies with the stress level.

Then,

Toe = Topf "2 /2" for high stress
(2.74)
Toe = Topf 7 15" for low stress

It is argued that general climb will occur many orders of magnitude more slowly
than local climb since it involves considerably more diffusional mass transport. This will
certainly be true in the low volume fraction approximation. However, for £ 212.5% the
kinetics of the two processes should be largely equivalent.

These concepts have been very successful in accounting for the creep behaviour of
alloys strengthened by low volume fraction of stable oxide particles. Measurements on
single crystals of both Cu-SiO2 (reviewed by Shewfelt and Brown[105]) and (Ni,Cr)-
ThO2 (Nix and co-workers)[107, 108] show clear evidence of a threshold stress for creep
at about /1/2 7,,. Associated with this is a very rapid increase in creep rate with
applied stresses greater than 1./1/—2 7,5 Which declines to the stress sensitivity associated
with the matrix as indicated in Fig. 2.10al110]. The threshold stress measured
experimentally has been associated with the local climb mechanism{109]: and although
general climb is predicted to have a lower threshold stress, the strain rates produced are
thought to be too low to be detected by the creep tests performed. This type of behaviour
is not, however, observed in nickel-base superalloys that are reinforced by high volume
fractions of coherent precipitate particles. On the contrary, there is an increase rather than
a decrease in the value of stress sensitivity with an increase in applied stress as indicated in

Fig.2.10b)[111]
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Fig. 2.10 Typical creep data for a) Nickel containing low volume fractions of incoherent

oxide particles[l 10] and b) a nickel-base superalloy containing high volume fraction of

coherent lt;varrticles{1 1] ¢ after Mclean [91] )

3. GENERAL COOPERATIVE CLIMBI112],

Evans and Knowles proposed a process of general cooperative climb during creep

deformation. They assumed that dislocations are arranged into a three-dimensional

dislocation network and the nodes of this network are spatially fixed. At stresses higher

than the Orowan bowing stress o, the lengths of dislocation links are shorter than the

mean inter particle spacing A while at stresses o < o, they are longer than this spacing.

For o < o, the situation is similar to that shown in Fig. 2.8¢. The climb-by-passing of

the particles which do not join at the nodes of the dislocation network will not be

associated with creation of a new length of dislocation, i.e., dislocations climb in a

cooperative manner around groups of particles. There is an energy advantage in allowing

such a climb rather then climbing around each individual particle. The back stress then

results exclusively due to an increment in length of the link between the nodes and the




neighboring particles ( segments AB and B'A' in Fig. 2.8¢). Evans and Knowles[112]

showed that under this assumption, the back stress is expressed by

5 112
oy =24 g2 +[i) (2.75)
364 4

provided that obA /8T <1. In En. 2.75, I = —21-sz is the dislocation line energy, a and A

are line dimensions given in Fig. 2.8c. Thus the back stress does not depend on applied
stress and, consequently, represents a true threshold stress, o, = o,,.. The o / o, ratio
depends strongly on the parameters of dispersion, i.e., on ratio a/A. If value of this ratio
approaches unity, which would be the case for regularly packed cube-shaped particles,
Ogc | Opp approaches 0.75. This analysis is most likely to be appropriate for high particle
volume fraction alloys where the kinetics of general and local climb-converge.

Mclean[91] criticized the Evans-Knowles' analysis on the grounds that;

+ It only considers the climb force generated by the shear stress and does not include
the normal Peach-Koehler climb force component, and

+ The work done in moving the dislocation link is only calculated over the part that
changes length (segments AB and B'A' in Fig. 2.8¢) rather than over the entire length
that it climbs.

As the particle volume fraction increases, the climb force due to the normal
component of the applied stress becomes relatively more important. This is taken into
account in Mclean's formulation[®1] of the model of general cooperative climb around
particles. Conceptually, Mclean's[91] analysis is similar to that of Evans and
Knowles{112],

Meclean{®1] considered the link of a three-dimensional dislocation network initially
situated in a glide plane that intersects cube-shaped particles and pinned at the nodal

points A and A" (Fig. 2.8¢c). The climb force due to the normal component of the applied



stress acts over the entire dislocation link and is biased in one direction. Consequently,
cooperative general climb can occur over a group of particles as shown in Fig. 2.8¢c, while
creating small new dislocation length than if climb is general.

The climb of a link of length L over a particle involves displacement §y(climb)
normal to the glide plane and Jx (glide) in the glide plane. The energy change involved in

these displacements is given by:
OF =T0L — L& - o, vLéy, (2.76)

where o, is the applied stress component normal to the glide plane. Although the whole
dislocation link climbs, the only new length of dislocation created in climbing a height y is
at the ends of the link adjacent to the nodes A and A'. Then the increase in dislocation link
length is 6L=2(AC-AB), which was shown by Evans and Knowles[112] to be expressed
by:

1 N

2177

O =2¢|y* +(£sin'1 ﬂ) —Zzzsin“i o4 2.77)
2/ 2T (1, 4T

The effective force F acting on the dislocation is given by

_dE
dy

F= (2.78)

Combining Eqns. 2.76 and 2.77, 2.78, the following expression for the effective force is

obtained,

N
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LN )
F==2Iy|y? 4—[1’2£sin"t ﬁ) +| o, + rﬁ bL . (2.79)

B 2r &

Dislocation will climb around the particles if 7 > 0 for all values of y > a/2. The threshold
in this situation may be given by the condition 7 = 0 under which climb is just possible.
Now, it is necessary to specify the link length L. In the absence of particles the
network link length is given by the Orowan flow condition L = aGb / 5,, where o is a
constant and o, is the applied stress. In the presence of dispersed particles, part of the

applied stress, o, is required to extend the dislocations in order to for it climb over the

particles and the difference is available for deformation of the matrix. Consequently,

b

Ja - O-B

L= (2.80)

It is also necessary to establish the relative values of o, and 7. This is determined by the

orientation of the applied stress relative to the glide plane. Thus the tensile stress o

applied at an angle @ to the normal to the glide plane has the following shear (7) and

normal (&, ) component in that plane
7=0sin®cos®; o, =osin’O. (2.80a)

Substituting Eqns. 2.80 and 2.80a into Eqn. 2.79 the back stress o, is obtained by
assigning a value of zero to F and solving the resulting equation analytically. This is

possible only when osin® cos® < Gb/ 1. Then,

EB—:[1+a(sin2®+sin®cos®§)(l+-ﬂ%)”2]"}. (2.81)
o) dy a

a



For constant volume fraction of particles, f, the ratio A/a is independent of particle size

and is given by:

A pn g (2.82)
a

Thus,

s _ {1 +afsin® © +sin®cos®d—x)[1 +(fP - 1)2]”2} (2.83)
o dy

Consequently, the back stress or resistance to flow, o,, by a glide/climb by-pass
mechanism is proportional to the applied stress and is independent of the parameters of
dispersion, i.e., a and A, in contrast to the model of Evans and Knowles[112], Climb-by-
pass of the particles is possible until osin@cos®>Gb/A and this is the condition for
looping of dislocations between particles by the Orowan mechanism. More precise results
can be obtained by solving Eqn. 2.79 numerically[21].

In Fig. 2.11{%1] the minimum flow resistance or threshold stress for the three
particle by-pass mechanisms(Orowan bowing, particle cutting and cooperative general
climb) as a function of volume fraction of y'-phase particles in directionally solidified
IN738LC nickel-base alloy for various applied stresses is shown. The applied stress is
parallel to the <100> direction , and the values of G, b, a, @ q, 7, and dx/dy are shown in
the figure caption. It can be seen that at an applied stress of 300 MPa, for instance, the
true threshold stress associated with Orowan bowing increases up to f = 0.4, when the
condition for glide/climb by-pass mechanism if fulfilled. The flow resistance decreases
abruptly to about 120 MPa and then increases slightly with increasing value of fup to £ =
0.8, when the condition for the particle cutting mechanism is fulfilled and the flow

resistance is consequently given by the true threshold for this mechanism. There is a




discontinuous fall in flow resistance on changing from either Orowan bowing or cutting to
climb-by-pass mechanism. In practice, however, there are a range of particle sizes and
spacing which would lead to a coexistence of deformation mechanisms in the transition

regions and this will smooth out the discontinuous changes.
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Fig. 2.11 Model of Mclean!91]: minimum flow resistance — or threshold stress for the
three particle by-pass-mechanisms as a function of volume fraction of ¥ - phase particle
Jor various applied stresses using parameters relevant to directionally solidified IN

738LC alloy stressed parallel to <100>.

It should be noted that the implications of Mclean modell®1] are quite different
from those of the conceptually similar model of Evans and Knowles[112] but are
qualitatively similar to the implications of the Lagneborg[106] model based on quite
different assumptions. The main difference between the Mclean and Lagneborg models lies

in the constants of proportionality between op and o which are ~0.4 and ~0.7,

respectively.



Mclean's modell91] is based on an assumption of regularly spaced particles. It is
argued_that in many alloys with high volume fraction of strengthening phase, the particles
are not randomly distributed but are regularly packed. For example, the ordered y'-phase
in nickel-based superalloys is often in the form of cube-shaped particles arranged in an
uniform array. Such a configuration leads to an extensive layers of matrix, along which
long straight dislocation segments can climb without statistical modulations considered by
Shewfelt and Brownl105] and Arzt and Ashby[113]. For high volume fractions of
particles, the small inter-particle spacing relative to the size of the particles introduces
constraints in both their orientation and distribution, and leads to large free paths along the
matrix layers. Consequently, the configuration shown schematically in Fig. 2.8c is

probably quite relevant.




2.3

ROLE OF GRAIN BOUNDARIES IN POWER-LAW

DISLOCATION CREEP—GRAIN BOUNDARY SLIDING

2.3.1 INTRODUCTION

It is generally recognized that the grain boundaries may play significant role in the

creep deformation depending on the grain size of the material. This is presented in Table

2.5, as recently suggested by Langdon[114],

TABLE 2.5. DEFINITIONS OF GRAIN SIZE RANGES SHOWING SIMILAR
CHARACTERISTICS/114]

Grain size Material condition Major  characteristics of { Role of GBs in high
range flow temperature deformation
Macroscopic All single crystals. and very | Intragranular dislocation slip No significant rple
large  grained polycrystals
(typically >1000um)
Mesoscopic Medium grained polycrystals | Subgrains formed in high | Minor role in low (e.g. grain
(typically 10-1000um) temperature deformation, | boundary sliding in creep),
core/mantle behavior(d>1) possible major role in fracture
Microscopic very small grained polycrystals | No subgrains formed, mantle | Major role in flow and
(typically 0.01 - 10um) behavior only (d<)\) fracture (e.g. Superplasticity)
Nanoscopic nanocrystalline materials | Flow associated with boundary | Grain boundaries account for
(typically <0.01pun) processes, volume fraction of | essentially all deformation

graint boundaries>30%

o0




The macroscopic grain sizes are of little interest since they play only a minor role
in creep deformation. Nanoscopic grain sizes represent an area where the current data are
incomplete or even conflicting. Therefore, this section will only examine flow and fracture
within the mesoscopic and microscopic grain size ranges.

In the power-law dislocation creep region, grain boundaries deform by sliding
along each other due to shear stress along the plane of the grain boundaries. Grain
boundary sliding may take place in a polycrystalline material either as a flow mechanism
occurring independently of diffusion creep or as a natural consequence of the process of
diffusion creep. Cannonl!15] named these two mechanisms Rachinger sliding and Lifshitz
sliding because of early evaluations of these two processes by Rachinger[1 16} and
Lifshitzl117] | respectively.

The distinction between Rachinger sliding and Lifshitz sliding may be described by
referring to Fig.2.12 where four hexagonal grains are deformed to different macroscopic
strain for (a) Rachinger sliding, (b) Lifshitz sliding, respectively. The applied stress in
Fig.2.12 acts in a vertical direction[118]

Rachinger sliding without diffusion creep is illustrated in Fig.2.12(a) and this may
be accompanied by four different processes: (1) intragranular slip throughout adjacent
grains (as in grain A}, (2) localized slip adjacent to the boundaries (as in grain B), (3) the
formation of triple point folds (as in grain C) or (4) the opening up of wedge cracks at the
triple points (as in grain D at the junction of grains A and B). The marker line in
Fig.2.12(a) lies parallel to the stress axis and it shows sharp offsets at the boundaries due
to the occurrence of grain boundary sliding. As noted by Cannon[115], Rachinger sliding
provides additional strain by attempting to rearrange the grains so as to increase their

numbers along the tensile axis.
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Fig. 2.12 Deformation in a polycrystal for a) Rachinger sliding and b) Lifshitz sliding in
a material with a mesoscopic grain size and ¢) superplasticity in a material with a

microscopic grain size; the tensile axis is verticall118],

Lifsitz sliding is illustrated in Fig.2.12(b) and it refers to the situation where the
individual grains become elongated through Nabarro-Herring[43] or Coblel6] diffusion
creep. As the grains close up to maintain coherency, sharp offsets are produced in any
marker lines at the points where they cross grain boundaries. It is important to note that
the appearance of these offsets is similar to those produced by Rachinger sliding, but their
origin is different because they represent only the accommodation of the change in grain
shape due to diffusion creep and, in the limit, there is no increase in the number of grains
lying along the tensile axis.

Considerable attention has been devoted to determining and evaluating the rate-
controlling mechanisms during steady-state flow. From experimental investigations,
combined with theoretical consideration, it has been established that the steady-state creep

rate, £, may be generally represented by an equation of the form[114]

. _ADGh (bY'( Y
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where D is the diffusion coefficient, 4 is a dimensionless constant, and p and » are

constants which represent the exponents of the inverse grain size and the stress,

respectively

2.3.2 MODEL OF GRAIN BOUNDARY SLIDING

The theories of Lifshitz and Rachinger divide grain boundary sliding into two
distinct types. The first type is designed to predict the intrinsic rate of sliding of a grain
boundary in which there is no hindrance from triple points and neighboring grains. In
principle, this type of theory is applicable only to smooth, planar boundaries in bicrystal
specimens. The second type considers accommodation of the sliding process also, and thus
it applies to polycrystalline materials. These two types, termed intrinsic and extrinsic

sliding models, are considered separately.

2.3.2.1 INTRINSIC SLIDINC MODELS

The first detailed attempts to derive relationships for the intrinsic velocity of grain
boundary sliding, v;, were performed by Ashby and co-workersl119~121], By assuming
that the grain boundary slides in a Newtonian viscous manner and that the ledges or other
irregularities on the surface of the boundary are of no more than atomic height, it was

shown that v, may be expressed as[121];

2.67
= (2.67)

85D35Gb T 10

Where & is the width of the grain boundary, Dgb is the coefficient of grain boundary
diffusion, and 7 is the shear stress acting in the plane of the boundary. However, if there

are ledges in the boundary plane of height /4, Eqn. 2.67 is replaced byl ! 1_9]:
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Eqn. 2.68 assumes that matter is transported between the ledges by grain boundary
diffusion, and thus it refers to Lifshitz sliding. However, this type of flow is adequately
modeled for polycrystalline materials by the theories of Nabarro-Herringl4 51 and
Coblel6] for diffusion creep, and it does not, in general, lead to cavity formation. In
practice, it is more important to obtain a relationship for Rachinger sliding since this may
lead to intergranular failure. It is anticipated that models for Rachinger sliding will be
based on dislocation movement rather than vacancy flow, and two models for intrinsic
sliding are now available.

Gates[123] developed a mechanism in which sliding arises due to the movement of
structural or intrinsic grain boundary dislocation, and it was assumed that sliding was due
to a combination of glide and climb processes. For the situation where the steps in the

*grain boundary are effective obstacles to dislocation motion, it was shown that

ﬁcSDGb( r)”’
- z 2.69
ST G 2.69)

where D is the appropriate diffusion coefficient and 4 is defined as

- i[ yjﬂm)(i—%tan acoty) (2.693)

x tangcoty

where iy is the inverse of the spacing of the moving dislocations in the network, £2is the

atomic volume, x is the length of the diffusion path ( assumed to be equal to 10 b, where

b, is the Burgers vector of a grain boundary dislocation), and o and y are angles relating

the grain boundary to the rotation axis . Although the diffusion coefficient was not defined

o+




explicitly in this model, it would probably be equivalent to the value for grain boundary

diffusion.

In a later model, Pond et all124] considered that sliding arose from the movement

of grain boundary dislocations in the boundary plane by a climb process. Then the shear

strain rate in the plane of the boundary due to sliding, y,, , is given by
i 2b;bc P || DesGhy ( T )1.0 (2.70)
wé kT G

where ¢; is the jog concentration, Pgp 18 the density of moving grain boundary dislocations,

v is a factor relating byp to the distance a grain boundary dislocation climbs for each atom
added (1 < w < 10), and £ is a constant relating the orientation of bgb to the grain
boundary plane (typically, = 0.5).

The important result contained in these models is that the sliding process is
intrinsically Newtonian viscous in character, so that 7 = 1.0, both for the mechanism based
on vacancy flow(Eqns. 2.67 and 2.68) and for the two mechanisms based on dislocation
climb (Eqgs. 2.69 and 2.70). In practice, however, experiments on polycrystals generally
show 7> 1. Pond et all124] have suggested that this may be due to a stress dependence of

¢; or pgp in Eqn. 2.70.

2.3.2.2 EXTRINSIC SLIDING MODELS

The preceding models are appropriate for planar boundaries in bicrystals, but they
are not directly applicable to polycrystalline materials where it is.necessary to consider the
role of accommodation of stress ( or strain ) at the triple points also.

If sliding occurs by the climb and glide of dislocations in a zone adjacent to the
grain boundary, the rate of sliding is governed by the rate of climb since this is the slower

process. Furthermore, Langdon[125] has suggested that, if the sliding is accommodated




not by an intragranular flow mechanism but by the opening of grain boundary cracks and

cavities, then the strain rate due to sliding in a polycrystalline material, &, , is given by

. ADGh( (oY
s et e [ Y 2.71
o= r \d) \G @70

where D, is the coefficient of lattice self diffusion, and A7 is a constant close to unity. This
model therefore predicts a stress exponent of 2.0, and activation energy equal to that of

lattice self-diffusion, and an inverse linear dependence on grain size.
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Fig. 2.13 An example of a triple point fold (4) formed in high-purity aluminum due to
intergraniar sliding on boundary B. Specimen deformed to 7.8 percent at 573 K under a

stress of 3.5 MPa: grain size = 535 ym. The stress axis is verticall 126},

In polycrystalline materials deforming with extensive grain boundary sliding, an

important experimental observation is the formation of intragranular folds at the triple
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points. An example of this type of folding is shown in Fig.2.13 for high-purity aluminum,
where the fold A was formed by intergranular sliding on the boundary labeled B. Triple
point folds are a common feature in high-temperature creep. Gifkins[127] developed a
model in which the formation of folds accommodated the sliding process. This model leads

to rate of sliding which is given by,
o ( 2FyAd, ) DGb (b )”( a)‘” 27
gbs — 2 s —~ .
b kT \d G

where F'is a stress concentration factor due to the action of sliding at the triple point, y is

the width of the triple point fold, A is the subgrain size, and A2 is the value of the constant
in the standard rate equation for lattice creep by dislocation climb. In the earlier theory of
climb at the head of dislocation pile-ups{27], 42 is given by 3°° 72 /85" A4%°, where M is
the number of active dislocation sources per unit volume. In the later theory based on
climb at multiplesl11], 42 is equal to 1/B' 25" A1°*, where ' ~ 6.

In practice, the subgrain size is inversely related to stress through the following

expression[126]

-1
A= A(E) (2.73)
where A is a constant. Thus Eqn. 2.72 is equivalent to
2.0 15
o (235 22022
b KT N\d G

This model therefore gives a stress exponent of 3.5, an activation energy equal to the

value for lattice self-diffusion, and an inverse grain size exponent of 2.0.
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Crossman and Ashbyl128] extended the relationship for intrinsic grain boundary
sliding(Eqn. 2.68) to a polycrystalline matrix in which sliding is accommodated by plastic
flow within the grains. They developed the deformation contour ( Fig. 2.14 ) within a
grain when grain boundaries can slide freely, and found that as creep in the grains becomes
more non-linear ( n = 4.4, 8.8 ) slip becomes increasingly concentrated into a band (the
often observed intragranular folds at the triple points), across the horizontal mid-plane of
the grains where the strain rate is more than twice ¥ 4» and large parts of the grain deform

at rates which are much less than 7. Their resultant sliding rate is given by
) 85 ngGb (b)20( b)!.O( O_)].O
=| 8 21 (2) (<2 2.75
Gt (31))( v \n) \d) \G (2.75)

Thus, this model predicts a stress exponent of 1.0, an activation energy equal to the value

for grain boundary diffusion, and an inverse grain size exponent of 1.0.

Fig. 2.14 Contours of normalized shear stain rate ¥ | 7.4 during steady-state creep for

a grain obeying power law creep ( with exponents of 1.0, 4.4 and 8.8 ) surrounded by
freely sliding boundaries. The fourth quadrant shows a pypical mesh of elementsl128],
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An alternative analysis by Speight[129] is also available in which it is assumed that
coherency is preserved at the grain boundaries. Gifkins[130] has pointed out that there are
difficulties in applying this model to the experimental data, and it also appears that the
analysis represents a special limiting casel1311. Accordingly, this model will not be
included in the present discussion.

Finally, it should be noted that several theories are available for grain boundary
sliding under superplastic conditions where the grain sizes are extremely small[132~134]
These theories are not generally applicable to normal polycrystalline materials deforming
under high-temperature creep conditions, and they are therefore excluded from this
Teview,

Howell and Dunlop[ 135] have observed experimentally that the main obstacles to
the motion of grain boundary dislocations are particles situated on grain boundaries and
triple junctions. These obstacles contribute to a threshold stress for grain boundary sliding.
The authors have assumed that the rate at which grain boundary dislocations can surmount
such obstacles is the major factor influencing the grain boundary sliding rate, i.e., the rate
of accommodation of flow in grains is sufficiently rapid for the grain boundary sliding to
be the rate controlling process. Under this assumption, they proposed the following

equation for strain rate due to grain boundary sliding;

2 _ n
g = A,D,6, (f—;)(gj ( d G"o J (2.76)

where # = 2 and the threshold stress

o, =0,+0,+Aoy, (2.77)
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o, is a friction stress for the movement of grain boundary dislocations[136, 137] op is

the contribution due to particles situated on grain boundaries and 4oy, is the contribution
due to dislocation pile-ups at triple points (this is likely to be significant for small grain
sizes). A value of 2 for the stress exponent n has been on an ad-hoc basis following Ball

and Hutchison[138]. However, this value of n is not supported by experimental data.

2. 3. 3 CONTRIBUTION OF GRAIN BOUNDARY SLIDING TO
TOTAL CREEP DEFORMATION
Using finite element calculations, Crossman and Ashby[lzs] have studied the
contribution of grain boundary sliding to total creep rate. If boundaries do not slide, the
polycrystals deform uniformly following the creep law for the interior of a single grain.
7y

¥ = A(—G—Jn, (no GBS) (2.78)

where y is average strain rate, 7 s the average applied shear stress and 4 and » are
constants. If, instead, grain boundaries slide freely, the flow field and stress field become
non-uniform but the polycrystal again deforms according to power law with the same

power n as before, and strain rate is given byl128],

y= A( f %) (free GBS) (2.79)

where the stress enhancement factor, f, describes the acceleration of creep caused by
freely sliding boundaries. The stress enhancement factor f and the strain rate enhancement

factor 7 are independent of grain size.

Eqns. 2.78 and 2.79 are limiting cases, the first for high strain rates, the second for

low strain rates. The transition from the latter to the former limiting case arises when grain
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boundary sliding can no longer occur fast enough to contribute significantly to the total
strain rate. If a stress 7 is applied to the polycrystal, the stress in the sliding grain
boundary can never exceed 7; thus the maximum contribution of GBS to the total strain

rate is,

1

for == 22T (2.80)

dn, ’

SRS

where the grain boundary viscosity 7, is equal to k7 /86D, For convenience the

authors{128] have defined a normalized grain boundary viscosity

. d
Mg = 5 g (2.31)
)3
so that
. T
ygb = » (2‘ 82)
I/

Then, when the transition occurs this strain rate is equal to that caused by uniform creep

described by Eqn.. 2.78, thus giving,

_ G 1/(n-1)
T 2 (2.83)
G \ 47

or

=1
. [1(c
4 "[A ) } e
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where 7, is the transition stress and 7, is the transition strain rate. The transition strain

rate varies with mean grain diameter as @™ . For a typical value of # = 5, #, varies with

grain diameter as 1/d**.
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Fig. 2.15 A typical stress - strain rate plot in dimensionless ¥/ Gny—7/ G coordinates,

computed from the finite element model. The transition strain rate is adequately located
by the intersection of the power-law creep curve for the grains ¥ = A(7/G)" with the flow

law for the grain boundary, normalized to the grain size y =(5, /d )('%/ n, ) [128],

This simple approximation has been supported by computations using the finite
element modell128). The results of these computations in dimensionless coordinates

7/ G, —7/ G are shown in Fig.2.15. The transition from non uniform to uniform flow is
centered about the intersection of plot based on the grain boundary sliding Eqn. 2.80 with

the plot based on creep Eqn.2.78. This transition strain rate, given by Eqn. 2.84, is

considered a logical normalizing parameter. The relative contribution of GBS x= ygblj_'/A
depends not on the absolute value 7, , but on whether it is greater or less than 7, . The

transition takes place in less than one decade of strain rate and the enhancement of strain
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rate due to GBS is not large. In Fig. 2.15, f,=1.5 for » = 4.4. According to other
authors[131, 139] the strain rate enhancement should be larger, ranging from 4 to 7.5 if
the stress exponent 7 = 5[140]. the best estimate of Crossman and Ashby is 2.2 for n =

4.4,
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Fig. 2.16 Siress enhancement factor f as a function of reciprocal stress exponent,

1/nl139],

The problem of the effect of GBS on steady state creep in polycrystals was later
analyzed by Chen and Argon and Ghahremanil13%], More accurate computations, using
the finite element method led to the dependence of the stress enhancement factor f on the
reciprocal of stress exponent, 1/n, shown in Fig. 2.16. In this figure, the results of
Crossman and Ashby are also shown for comparison.

The above results of Crossman and Ashby[128] have been displayed as fields on
deformation mechanism maps. For aluminum, these maps are shown in Fig.2.17. In

constructing the maps the ledge controlled viscosity

KT (RY
= a2 2.85
T 8bD, (b) (2.85)
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NORMALIZED SHEAR STRESS

was used with ledge heights of 0.01um. The boundary between the fields "no GBS" and

"GBS" is given by Eqs. 2.83 and 2.84. From these maps, the effect of reducing ledge

height # and thus, of reducing the grain boundary viscosity can be determined. It is found

that a reduction in the value of /2 expands the field of non-uniform creep at the expense of

uniform creep.

Grain boundary precipitation would have the reverse effect. By raising the grain

boundary viscosity it would shrink the field in which sliding is important, and reduce the

creep rate by the factor f7-
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Fig. 2.17 a) A deformation mechanism map for pure aluminum of grain size 316 um

and ledge h = 0.01 pm showing the sub-fields of power- law creep in which GBS is

extensive and in which it is negligible. b) in a) but for a ledge height h = 0.1 um ( i.e.,

Jor a boundary viscosity which is 100 times grater )[128],
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2.3.4 EXPERIMENTAL RESULTS ON GRAIN BOUNDARY
SLIDING
2.3.4.1 MEASUREMENTS OF GRAIN BOUNDARY SLIDING

It is usual to separate total creep strain into two components
Et = gg + ggb.t_ (286)

Attention is then focused on the ratio = ggbs/ €0 and its variation with testing and
microstructural conditions.

The most obvious way of determining €gs is to measure €gs and €; separately
after creep and obtain &gs by subtraction through Eqn. 2.86. £,, can be obtained from
the creep curves and several techniques are available for the determination of &;.

Two methods are based on the changes in grain shape which occur during creep
and can be applied equally well to the surface and interior of the specimen. The method
described by Rachinger[116] measures the average number of grain boundary intersection
per unit length along lines parallel to and perpendicular to the stress axis before and after

creep. The grain strain is given by

273
ggz{NTNL:] -1 (2.87)
N.N',

where N and N’z are the number of intersections on a line parallel to the stress axis before
and after creep, respectively. Similarly Nr and N'r are number of intersections measured on

a line transverse to the applied stress.

The confidence limits on the values of €; are often large due to initial scatter in
grain size and it has been proposed that a better accuracy can be obtained[114] by

measuring, for a large number of individual grains, the maximum grain dimensions parallel




to and at right angles to the stress direction before and after creep. A calculation of &
follows from Eqn.. 2.87 when various intercept counts are replaced by the reciprocals of

the average maximum grain dimensions in the appropriate direction.

SURFACE

N SURFACE

STRESS
-

L~ N\ SECTION PERPENDICULAR STRESS
- —>

Fig. 2.18 Displacement vectors for a general sliding boundary[142],

An alternative general technique for grain boundary sliding measurements relates
gbs directly to the average displacement between adjacent grains[142]. Fig. 2.18 shows
the general displacement at a grain boundary which intersects the surface of a specimen.
The overall displacement vector p, can be resolved into three mutually perpendicular
components %, v, w, where u is parallel to the uniaxial stress axis and v is normal to the

specimen surface. From this figure, it is seen that,

w

+ (2.88)

tang tané

U=

For a line inscribed parallel to the stress axis prior to deformation, the average value of w

along the line is directly related to €gs by,

Eops = N, T (2.89)

gbs
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In view of the Eqn. 2.88 and considering that © and ¢ (see Fig. 2.18) are not

physically distinguishable in the interior of the specimen, then

W
£ =2N, [151—5} (2.90)

The determination of # is often made difficult by grain boundary migration. This is
also true for surface measurements of w .

The simplest displacement parameter which can be measured with precision is D

since it can be determined by interference techniques. The translation of » into € gps 18 MOt

straightforward and relationships of the kind

£, = KND (2.91)

have been employed . Here N and D must be determined from a random sample of grain

boundaries and K is a constant.
2.3.4.2 COMPARISON WITH EXPERIMENTAL RESULTS

1. DEPENDENCE ON STRESS

Several attempts have been made to analyze the experimental data to determine

directly the value of n,,, . The results for polycrystalline materials are summarized in Table

2.6. A review of the data in Table 2.6 shows a large variation between the different sets

of experiments. In all cases the results consistently show 7, < n. There is no support

from the experiments on polyerystalline materials for 7, ~ 1, thereby tending to exclude

the model represented by Eqn. 2.75. in which Newtonian viscous sliding is suggested to be
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accommodated by intragranular plastic flow. Furthermore, the results indicate Ry, > 2,

thus casting some doubt on the climb-glide model given in Eqn. 2.71.

TABLE 2.6 A COMPARISON OF THE STRESS EXPONENT POLYCRYSTALS[126]

MATERIAL n o REFERENCE
Al-0.5Mg-0.5Si n—ny =39 Sklenicka et alf143]
Cu-30Zn 5.1 3.3 Saxl et all144]
Mg-0.8Al 5.2 2.4 Langdon[145]
Ni 3.8 2.3 Rozenberg{146]
Low-carbon steel 5.6 4.7 Hortonl147]
316 stainless steel  6.0+0.2 3.840.2 Hortonl147]

- Pure Al 4.5 3.3 Langdonl114]

2. DEPENDENCE ON TEMPERATURE.
Many experiments have been conducted to determine the activation energy for
sliding, and the results are summarized in Table 2.7. For each material, the temperature

range of test is indicated as a fraction of 7},, and the results are given as the approximate

value of the ratio 0, /0. A value of Q,,,/Q, ~ 1 indicates that sliding is controlled by
lattice diffusion, whereas a value of Q, /O, ~ 0.6 tends to suggest control by grain
boundary diffusion since, for most metals, Q,, =0.60, where Q,, is the activation energy
for grain boundary diffusion. Thus an average value of Qs /Q, close to 1 supports the
inclusion of D, in the expression for &,,, (Eqns. 2.71 and 2.74), whereas an average value

close to 0.6 supports the inclusion of D,, in the grain boundary sliding relationship
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(Eqn.2.75). In practice, although most, but not all, of the values of Oy /O, lie in the

range from 0.6 to 1.0.

TABLE 2.7 A COMPARISON OF THE ACTIVATION ENERGIES FOR GBS[126]

MATERIAL T/Tm ~ O/ O, REFERENCE
Al 0.6~0.7 0.5 Rozenbeerg and
| Epshtein[148]
Cu-10Zn 0.6~0.7 0.6 Saxl et all149]
Cu-30Zn 0.6 ~0.7 0.6 Skienicka et all150]
Ni 0.5~0.6 1.0 Rozenberg[ 146
0.6 ~0.7 1.0 Ciha et all151]
Low-carbon steel 0.5~0.6 0.8~1.0 . Horton[147]
316 stainiess steel 0.6 ~0.7 0.7 Gatesl[152]
Pure Al 0.6~0.38 1.0 Langdon[114]

3. DEPENDENCE ON GRAIN SIZE

Since grain boundary sliding depends on the presence of grain boundaries, the
value of p is non-zero in Eqn. 2.66. However, it is difficult to determine the value of p
experimentally, because it is not sufficient to make a direct comparison of grain boundary
sliding measurements taken at the same total strain, ¢, for a series of different specimens of
different grain size materials tested under the same conditions of stress and temperature.
The reason is because a material having a smaller grain size will contain a larger number of

grain boundaries and thus, at a fixed total strain, there are more grain boundaries each
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contributing a smaller offset. This problem was not appreciated in some of studies on grain
size dependencel 133, 154] of grain boundary sliding.
Langdon has applied an analytical procedure which avoids this problem, in the

creep study of a Mg.-0.8Al alloy[145, 155] and MgOl156] His investigations give values
for the inverse grain size exponent for sliding , p,,,, to be 1.0 and 1.4, respectively. Thus

these values of p,, tend to support the dependence of é‘gb, on grain size represented by

Eqns. 2.71 and 2.75.

Very recently, Langdon has given a unified explanations of the behaviour of grain

boundary sliding, which is summarized in Table 2.8{157]

TABLE 2.8 AN UNIFIED EXPLANATION FOR GRAIN BOUNDARY SLIDING

GRAIN SIZE EQUATION

D l ’ . o
Large grain size &, = Ag_b;djﬁl_’_(g) (—g-) D -coefficient for lattice self-diffusion
d>2) D,,: coefficient for GB diffusion
) A D.Gh b 20 o 20
in < ks ot vl = . HUS.
Small grain size &, T ( d) ( G) A: subgrain size
(d<A) Agbs, Asp: Dimensionless constant
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2.4 GRAIN BOUNDARY DEPENDENT CREEP
BEHAVIOUR — INITIATION OF PRESENT STUDY

A grain boundary is considered to be a softening influence in the region of power-
law dislocation creep. The result of the softening influence is the grain boundary sliding,

which has been discussed in detail in the previous section. However, one question can be

raised, are there any other mechanisms through which the creep rate or creep strain can be

influenced by the presence of grain boundaries. The answer to the question is very
controversial. On the one hand, it is generally assumed that creep rate is insensitive to
grain size. On the other hand, many experimental results show clear evidence that creep
rates are significantly influenced by grain size in a way that is not identical to grain
boundary sliding. These controversies can be better visualized if the effect of grain

boundary on creep behaviour is examined.

2.4.1 VARIATION OF CREEP RATE WITH GRAIN SIZE
The effect of grain size on creep rate in the power-law dislocation creep can be

classified into the following two groups

2.4.1.1 CREEP RATE IS INSENSITIVE TO GRAIN SIZE

Often creep rate has been observed to be independent of grain size. A typical
example of this type of behaviour, shown in Fig. 2.19, was reported by Barrett, Lytton and
Sherbyl158], They investigated the creep of copper under two sets of conditions: a)
random crystallographic orientation of grains and b) well developed cubic texture. The
results showed that for random crystallographic orientation of grains, the creep rate,
measured at a given mean grain diameter, does not depend on the mode of treatment
producing this grain diameter. Also, when the mean grain diameter is greater than 100 um,

it does not influence the creep rate, but with mean grain diameter decreasing below 100 p
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m, the steady-state creep rate increases slightly. Similar results were also reported by other
investigators[139]. Hence it is not likely that the rate of dislocation creep depends on
mean grain diameter. An increase in steady-state creep rate with decreasing mean grain
diameter in the range below 100 pm was explained on the basis of contribution of grain
boundary sliding. The insensitivity of creep rate to grain size in the coarse grain region
was related to the constant substructures developed in grain interiors. It has been assumed
that dislocation substructure controls the creep rate, and since subgrain size is an inverse
function of applied stress, the creep rate will remain the same at a given applied stress as

grain size is increased.

Steady State Creep Rate,d
=3
Q
o

0 01 02 03 04 05 06 67 08
Grain Diameter, mm

Fig. 2.19 The grain size dependence of the secondary creep rate of polycrystalline
copper at 20.68 MPa and 769 K1158],

o Samples deformed 50% and annealed for different times at 973 K.

A Samples deformed varying amounts before a fived anneal at 973 K.

0 Samples deformed 50% and annealed at temperatures in the range 1123 to 1323 K.
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2.4.1.2 U-SHAPE DEPENDENCE OF CREEP RATE ON GRAIN SIZE.

In several investigations the creep rate is found to decrease and then increase with
an increase in grain size. Fig. 2.20 shows a typical U-shape dependence of creep rate on
grain size, which was reported by Garofalo et alll60]. The curve shows a negative
dependence of creep rate on grain size in fine grain region, and positive dependence in
coarse grain region. In the former region, the creep rate varies with grain size in the form
of d72, where-p is about 2. The U-shape dependence of creep rate on grain size were

explained by dividing the curve into the fine grain and coarser grain region, respectively.
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Fig. 2.20 Dependence of secondary creep rate on grain size for an iron-base austenitic

alloy steel ar 704 °C[160]

1 FINE GRAIN REGION:
Coble creep model: This modell161] was proposed mainly because the
dependence of creep rate on grain size is similar to that found in Coble creepl®]. Further

researchesl 162] have shown that this idea is not valid because the stress-exponent ,#, in
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this region is around 5, which is much higher than that defined in Coble creepl6] where n
is found to be as low as 1.

Dislocation pipe-diffusion model: This modell163] is based on the idea
that dislocation pipe-diffusion can increase the stress exponent by up to an extra order of
2. Since pipe-diffusion creep usually takes place at the temperature below 0.4 Tm, this

model is also a not realistic one.
Grain boundary sliding model: ~ Models of this type were established by

considering the effect of grain boundary sliding of the following form.

& kT Y (o,
. =4, |—]1= 2.92

where Agbs is a constant, d is grain size. Although Eqn. 2.92 explains the relationship

between creep rate and grain size, the predicted stress exponent is still much lower than
what is experimentally observed.

In order to explain the results shown in Fig. 2.20, Fang[164] et al have recently
proposed a model using the grain boundary sliding mechanism suggested by Gifkins[165]
based on the climb-controlled triple-point fold formation. They showed that in the region
where the steady state creep rate increases with decreasing mean grain diameter d, the

following expression is valid.

kT by -l
(D’Gb)b =Agbs(z) (%"‘) (2.93)
gbs

Here, Agbs is a constant and #=5.5 is the stress exponent for steady state creep rate in the

region of mean grain diameter where &, does not depend on d. As the mean grain diameter
decrease further until it becomes equal to the mean subgrain diameter dg the stress and

grain size dependencies of the steady state creep rate is given byl 164]:
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(gskT ) =Ab;(f’-][i’9-], d<d (2.94)
DGb),, *#\d\G |

where, again, 4, ' is a constant. The transition from Eqns. 2.93 to 2.94 should occur at

very small grain diameters. The critical mean grain diameter below which Eqn. 2.93
becomes important will decrease with increasing applied stress.

Although the author found that Eqn. 2.93 fits the experimental results
satisfactorily, contradictions still exist in several aspects. First of all, experimental results
do not support the idea that stress exponent in fine grain region is an order of one unit less
than that observed in coarse grain region. Secondly, the model predicts that the creep rate
in the coarse grain region does not depend on the grain size. This does not agree with the
experimental results in which creep rate was found to increase with an increase in grain

size.

2 IN THE COARSE GRAIN REGION

Lagneborg[166}, suggested that, the observed increase in &, with increasing grain
size was probably the result of premature cracking which led to an early tertiary stage and
thus an apparent enhancement of secondary creep rate. Langdon[167] also corroborated
this view, based on the results of compressive creep tests in which &, was found to be
independent of grain size in large grained materials. However, this suggestion has been
criticized by Mannan and Rodriguezl168] who observed a strong increase in creep rate
with grain size even at low stresses at which the premature cracking is unlikely to occur (
Fig. 2.21). This indicates that the positive dependence of creep rate on grain size is true.

Garofalo et all160] explained the rising creep rate with grain size on the premise
that, at high temperatures, grain boundaries are a steady source of dislocations and
therefore grain size influences the mobile dislocation density. Barrett et all16%] have

questioned the validity of this assumption on the basis of their experimental results where
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the density of dislocations within the subgrains was found to be unaffected by variation in
grain size,

Mclean provided another explanation which is based on the strain-hardening-
recovery theory of creep, and uses the idea that, at high temperatures, fast grain boundary
transport large dislocation meshes in and near grain boundaries which spread relatively
quickly into the grain interior. By including the grain size dependent strain hardening along
with grain size deﬁendent recovery, the U-type curves observed for the variation of creep

rate with grain size can be explained.
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Fig. 2.21 Variation of steady state creep rate &, with grain size at various stresses for

873 x1168],
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Armstrong[171] has developed a model to describe grain size effects on creep rate

by incorporating the Hall-Petch relationship in the thermally activated flow model for

deformation rates. He assumes that the single crystal flow stress o, is the sum of single

crystal athermal or internal stress o, i.e.
O, = cr,- + o, (2.95)
Substituting Eqn. 2.95 into the Hall-Petch relationship
o, =0, +Kd" (2.96)

where o, is the flow stress at a given strain ¢, and o,.and K, are experimental constants

known as the Hall-Petch intercept and the Hall-Petch slope, respectively. The grain size

dependence of effective stress o, is found to be
o,=0,~0,-Kd" (2.97)

Substituting of Eqn. 2.97 into the classical thermally activated flow model gives

x

g =A exp{-%-{- — AT

(0.-0, -Kgd“”)} (2.98)

where () is the magnitude of the rate limiting energy barrier in the deformation process, ¥*
the activation volume, A’ is a structure dependent constant, and m’ is an orientation

correction factor, while R7 has its usual meaning.

12

Based on Eqn. 2.98, the plots of log &, versus d™'* for the results presented in

Fig. 2.21 are shown in Fig. 2.22. Even though the creep rate decreases as the grain size is
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decreased, the curvature is opposite to that predicted on the basis of Eqn. 2.98. The
observed positive second derivative in Fig. 2.22 is consistent with earlier observations on
other materialsl[172, 173] and implies that the role or grain boundaries cannot be described
by simply incorporating the Hall-Petch relationship into the classical thermally activated

flow model which is used to describe deformation rates.
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Fig. 2.22 Plots of log &, v. d™* at 873 X for different stresses ( d is grain size )[168],
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Fig. 2.23 Existence of an optimal grain size for which the minimal creep rate g, Is

lowest[174],

In a recent review paper, Lasalmonie and Strudell174] gave a comprehensive
explanation for the dependence of creep rate on grain size. They suggested the following
expression:

2 2 4.5
g = 10%0%(3) (EG—) +106D%(%J (2.99)

where D is the diffusion coefficient at temperature T, k is the Boltzmann's constant,

o, = 0, ~ 0; is the effective stress experienced by the dislocation and o, the internal stress

inside the material. The first term of Eqn. 2.99 describes the contribution of grain
boundary sliding to the steady state creep rate, the second term of Eqn. 2.99 describes that
of the dislocation creep. In order to include the grain size effects in the coarse grain

region, it is suggested to consider
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c,=0,-0,—-kd"* (2.100)

where o, is associated with microstructural hardening,

By setting &, /&d = 0, an optimum grain size of

_Jo®" T2\ (e
dopr—4l: e } - = (2.101)

e e

can be obtained from Eqn. 2.99. The curve of Eqn. 2.99 is schematically shown in Fig.
2.23.

Eqn. 2.99 also uses the grain boundary sliding model to explain the negative
dependence of creep rate with grain size. ’I‘hisl treatment, as stated above, contradicts the
experimental results that the stress exponent in small grain region is always much higher
than 2[160] 1n addition, simply incorporating the Hall-Petch relationship into the creep
equation is also found to be inappropriate in explaining the positive dependence of creep

rate on grain size observed in the coarser grain region[168].

242 DEPENDENCE OF CREEP BEHAVIOUR ON GRAIN
BOUNDARY MICROSTRUCTURES

It is generally assumed that in the power-law dislocation creep, the creep
deformation is controlled by the microstructures of grain interior. Grain boundaries may
make contribution to total breep strain only by grain boundary siding. The change in
microstructures at grain boundaries, then could influence the creep rate through the

change in the rate of grain boundary sliding. As reviewed in section 2.3, the change of
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sliding rate should not affect the creep mechanism which is always believed to be
controlled by the microstructures of grain interiors. However, these beliefs can be
questioned by the consideration of a few available results as described next.

Furillo, Davidson and Tien[175] have investigated the effect of grain boundary
carbides on the creep and back stress of a Nimonic 115 superalloy, with a high ( about
40%) volume fraction of y' precipitates. By controlling heat treatment procedures, they
produced microstructures that have thé same precipitation conditions within grains. As
shown in Table 2.9, it was found that the true creep activation energies remain fairly
constant for the both microstructural conditions, and are about equal to the activation
energies determined from the creep of the polycrystalline nickel base superalloys. This
suggests that in the either case creep is controlled by the thermally activated process
involving vacancies. Concerning the large difference in the apparent stress exponent, they
suggested that creep of the material without grain boundary carbides may be controlled by
grain boundary sliding. For the material with grain boundary carbides, the stress exponent
is much higher than that obtained for the material without grain boundary carbides. This is

an indication of change in the creep mechanism.

Table 2.9 Siress exponents and activation energies for steady state creep and calculated

back stress values for specimens without and with grain boundary carbides[175]

O-b at ng=2 O-b at ng=4

Microstructures n, o, 0,
(kJmol'l)  (kImol'l) (MPa)  (MPa)

Without GB carbides 2.18 334.4+104.1 324.8 44 8
With GB carbides 14.58 390.3+81.0 2974 467.0 3945

where N, Is the apparent stress exponert, Qa is the apparent creep activation energy, Qo

is the true creep activation energy, |, ng=2 1S back stress value based on n, =2, and

O] at ny=s IS back stress value based on n, = 4
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Zhang and Chenl139, 176~177] st died the effect of grain boundary strengthening
on the creep of Fe-15Cr-25Ni alloys. By changing carbon content of the alloys and
controlling heat treatment procedures, microstructures were obtained that were either
purely single phase polycrystalline or single phase polycrystalline with only carbides at the
grain boundaries. It was found that creep rate is insensitive to grain size for single phase
material, which implies that grain boundary sliding has not occurred. However- the creep
rate was observed to increase with grain size ( &, ocd®* at 8500C) for the material with
carbides at grain boundaries. The stress exponent for the two materials was also different,
and was observed to be 5 for the former and around 7 for the latter.

Another evidence which supports the fact that creep bebaviour is grain boundary
dependent was obtained by Maruyama, Wananabe and Oikaval178], They found that with
the addition of a very small amount of aluminum in a zinc bi-crystal, creep rate can be
reduced by one order of magnitude and the creep behaviour was also found to be altered
by the addition of aluminum. They concluded that the grain boundary strengthening is as

important as the other strengthening mechanisms available in the power-law creep regime.

2.4.3 GRAIN BOUNDARY DEPENDENT CREEP BEHAVIOUR

The following can be concluded from the analysis presented in the previous
section:

(i} The creep rate in some cases is insensitive to grain size, however, is strongly
dependent on grain size in many cases. The negative dependence of creep rate on grain
size in fine grain region seems to be related to the mechanism of grain boundary sliding
through various ways. This, however, seems to contradict the experimental observations
in one aspect or another.

(if) There are no doubts about the existence of positive dependence of creep rate

on grain size. The Hall-Petch relationship has been simply incorporated to the creep
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equation for the explanation of the positive dependence of creep rate on grain size. This
treatment has been found to be inappropriate.

(iii) The creep behaviour in terms of stress exponent has been also found to be a
function of grain boundary microstructures. This indicates that grain boundary
microstructures might be as important as the microstructures of grain interiors in
controlling the creep deformation process.

Therefore, answer to the question posed at the beginning of the section is in
affirmative. That is, grain boundaries can influence the creep rate by a mechanism which is
different from grain boundary sliding. Due consideration to this might not have been given
in the past because of the minor influence of non-grain boundary sliding mechanism

observed in a few cases that were investigated and this aspect was generally ignored.

2.4.4 THE SCOPE OF THE PRESENT RESEARCH

The well developed commercial Inconel 718 was used in this investigation to study
the grain boundary dependence of creep behaviour. This alloy has been extensively
studied[179~189] and the effect of heat treatment on microsturctures is generally
understood. The relationship between microstucture and mechanical properties have been
also studied extensively[180~181,190~191] The effect of grain boundary strengthening
on mechanical properties is a subject that has been receiving increasing attention in recent
years. However, the grain boundary-related creep behaviour has not received much
attention[182~1821] 1 addition, most §tudies in this direction have been conducted mostly
for the improvement of mechanical properties through some modified heat treatment
procedures. Such modified heat treatments have changed the microstructures at grain
boundaries as well as within the grain interior. As a result, it is not possible to ascertain if
the resulting improvement in mechanical properties is due to the change in grain boundary
microstructures or in the microstructures of grain interior. Therefore, this study was

initiated to study the grain boundary dependence of creep in Inconel 718 by producing
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two types of materials one with precipitates of 8-Ni3Nb at the grain boundaries and
another without. Having obtained the microstructures at grain boundaries, all the
specimens were given an aging heat treatment at a temperature which is proven to be low
enough so that it does not cause any changes in the microstructures of grain boundaries.
By this heat treatment, specimens with the following microstructures were prepared:
+ Specimens with identical microstructures at grain boundaries but with varied
microstructures, and hence, strength in the grain material.
+ Specimens with identical strength in grain materials but with various precipitate
density at grain boundaries
+ Specimens with identical microstructures except for the grain size
Creep tests on these specimens were conducted at temperatures ranging from
6009C to 650°C and at an applied stress ranging from 745 MPa to 860 MPa. Back
stresses of certain specimens were also determined. With these tests, the following major
results on the two type of materials were obtained
+ The dependence of creep rate on the strength of grain rﬁateriaf
+ The dependence of creep rate on applied stress and test temperature
+ Variation in creep behaviour with the precipitate density at grain boundaries
+ Effect of grain size on creep behaviour
¢ The dependence of back stress on (i) applied stress, (i) temperature, (1ii)
precipitate density at grain boundaries, and (iv) grain size.
By analyzing the results obtained, mechanisms relevant to the deformation of grain

boundaries have been suggested.
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CHAPTER THREE  EXPERIMENTAL METHODS

3.1 MATERIAL

The material used in this study was wrought commercial Inconel 718 which was
provided by Bristol Aerospace Lt. Canada. The nominal chemical composition ( wt.% ) as

well as the actual chemical composition of the material is listed in Table 3.1.

Table 3.1 Chemical composition of Inconel 718 (wt.%)

Elements Actual composition (wt.%) Nominal composition
(wt. %)
C 0.03 0.03
Fe 19.2 19.0
Ni 52.37 Bal.
Cr 18.24 18.0
Al 0.52 0.5
Ti 0.97 1.0
Mo 3.07 3.0
Nb+Ta : 4,98 5.0
Mn 0.007 /
S 0.007 /
Si 0.3 /
Cu 0.04 /

3.2 PREPARATION OF TENSILE AND CREEP SAMPLES

A 2.54 mm thick sheet of the alloy was cold-rolled to a thickness of about 1.4 mm
before it was machined into flat creep and tensile samples which have a gauge dimension
of 1.3 mm x 5.3 mm x 2.54 mm, as shown in Fig. 3.1 The machining of the sample was

carried out by a numerically controlled universal milling machine.
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Fig. 3.1 Dimension of creep and tensile specimens

Before the tensile or creep testing, all the samples were grounded on sandpaper
from the coarse to fine up to 600 grades, to remove all the defects and oxidized layer from

the surface.

3.3 HEAT TREATMENT PROCEDURES

The tensile and creep samples were heat-treated in accordance with the scheme
illustrated in Table 3.2. In order to obtain a microstructure with grain boundaries free from
precipitates, the samples were solid solution treated at a temperature above 10209C for 4
hours, and then air-cooled to room temperature. The material after such a heat treatment
was designated as material A. The second type of material, designated as material B, was
given the same solid solution treatment, but was furnace-cooled instead at a cooling rate
of 50°C/hour to 725°C. The furnace cooling, as reported by other investigators[ 180, 182,
190] can introduce small precipitates of O-phase at grain boundaries, and the coarse
precipitates of y"+y' within the grains. The subsequent solid solution treatment at a

temperature ranging from 900°C ~ 1000°C for the material was designed to dissolve the
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coarse y"+y' particles, but maintain the 8-phase particles at grain boundaries. As a result of
these two solid solution treatments, the intragranular microstructure of material B and
material A were identical, however, the grain boundaries of material A were free of

precipitates and those of material B had 8-precipitates on them.

Table 3.2 Heat treatment schemes for Inconel 718

Material Solid solution treatment Aging heat treatment

Material A | 1020°C ~ 1100°C x 4 hour with air-cooling 7259C for various time

Material B | 10200C ~ 11000C x 4 hour with furnace-cooling | 725°C for various time
at 509C/hour to 725°C

900°C ~ 1000°C x 1 hour with air-cooling

After the solid solution treatment, both materials were given the same aging
treatment at 7259C for various lengths of time to produce strengthening precipitates in the
grain interior. This aging treatment did not cause any change in the grain boundary
microstructure of both the materials, since 5-phase starts to precipitate at a temperature
much higher than 7250C. Therefore, the heat treatment used in this study produced two
types of microstructure, both of which differs from each other only in the microstructure

at grain boundaries.
3.4 MICROSTRUCTURAL EXAMINATION
3.4.1 OBSERVATION OF MICROSTRUCTURE

Microstructures  before and after the creep tests were examined by optical

microscope and a JEOL 840 Analytical Scanning Electron Microscope. Both materials
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were etched differently to reveal different aspects of their microstructures. Various of

etchants used in this study are listed in Table 3.3.

Table 3.3 Erchants used for Inconel 718 in this study

Etchant used Comments

H3PO4(12mi)+HNO3(40mi)+H, SO 4(48ml) Observation of precipitates
Electrical etching at 5-6 volts for 10 seconds

HCL(30ml)}+HNO3(10ml)+Ethylene Glycol(20ml) Observation of grain boundaries
Immersing and swabbing

3.4.2 MEASUREMENTS OF y" PRECIPITATE SIZE

The y" precipitates are disc shaped in Inconel 718, Therefore, their size was
determined by measuring the diameter of discs by transmission electron microscope. To
make TEM thin foils, thin slices were cut from the heat treated or the crept specimens.
The thin slices were first grounded on sandpaper to 600 grade, then further thinned by
electopolishing 3 mm diameter discs in a a jet electropolishing unit using 15 % perchloric
acid, 85 % methanol electrolyte at a temperature of 223-233K and a current of 85 - 100
ma. The thin foils were examined in JEOL 2000FX Analytical TEM/STEM.

Due to the presence of large coherent strains around the y" and y' particles,
individual precipitates could only be observed in dark field micrographs obtained by using
their superlattice reflections. Furthermore, the y" particles in Inconel 718 grow coherently
into discs on {100} plane of the FCC matrix with the ¢ axis of the y" phase being
perpendicular to the discs. The y' phase also forms coherently on the {100} planes of FCC
matrix. Therefore, the dark field image of v" and y' were obtained with the specimen in the

{100} orientation. The images obtained were enlarged, and then processed on an image
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analyzer to determine the size of y". At least S images, each containing more than 50

particles, were analyzed.

3.43 MEASUREMENTS OF PRECIPITATE PARAMETERS FOR § PHASE
PARTICLES AT GRAIN BOUNDARIES.

The size and number of 3-Ni3Nb precipitates at the grain boundaries were
determined from the binary images created in a scanning electron microscope using
secondary electrons. This analysis was carried out on the entire grain boundaries of several
grains. The total length of the grain boundaries analyzed was also measured on the SEM
micrographes. The average line density of precipitates at grain boundaries were calculated
by the number and the average size of precipitates on a given length of grain boundary.
More than a thousand particles on grain boundaries of at least 5 grains were scanned on

each material.

3.4.4 MEASUREMENT OF GRAIN SIZE

The grain size was measured by the line iﬁtercept methods. The sample to be
examined was placed on the graduated stage of an optical microscope. At the beginning of
the measurement, the sample was moved to such a position where a grain boundary was at
the cross marked in the eyepiece of the microscope. Then the number of intercepts of
grain boundary with the cross was counted as the stage of the microscope was moved.
The grain size was obtained by dividing the total length traversed by the stage by the
number of intercepts (-1). By this method the whole surface of the specimen could be
examined. Therefore, each line can cover a large number of grains. In addition, at least

five directions were scanned for each material.
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3.5. TENSILE TESTS

Tensile testing was conducted at creep testing temperatures at a constant strain
rate of 1.0x107™S™" on both materials A and B. The test temperature was controlled
within £39C by a three-zone furnace filled with argon and monitored by a thermocouple

attached to the gauge section of the specimens.

3.6 CREEP TESTS

The tensile creep tests were carried out in three T48 Avery-Denison constant
stress creep machines. The testing temperature was controlled within +2°C by a three-
zone furnace. The furnace was adjusted to have a constant temperature zone of a length
longer than that of the gauge section of the specimen, and the temperature along the zone
was also maintained to within £2°C. The test temperature was always monitored by
thermocouples attached directly to the gauge section of the specimen.

The creep deformation was measured by LVDT with extensometer attached to the
specimen grips inside‘the argon-filled chamber, and was recorded on a strip chart recorder.
The creep strain was calculated by assuming that all of the measured displacement was
due to homogeneous deformation of the gauge length of the sample. In subsequent
analysis, the creep deformation was presented in the form of creep rate versus creep strain
or creep time. The creep rate at a given moment was calculated by determining the change
in deformation strain within a short interval of time.

The back stress or threshold stress was determined by the Wilshire technique or
the consecutive stress reduction method[191~195] When the creep test reached the
secondary creep stage the applied stress was reduced by a small amount, Aoy, typically ~
0.05 o,. This stress reduction resulted in an elastic contraction of the specimen, which
was followed by an incubation period of zero creep rate. Creep then recommenced with a
slower creep rate at the reduced stress level. As soon as a new steady state creep rate was

reached a second small stress reduction, Ao,, was made and so on. The duration of
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successive incubation periods (Af,, Aty---+-- ) was recorded for each consecutive small
stress reduction (Agy, Aoy, +«+-- ). Eventually, the incubation period became very long.
In order to determine o,, the data were plotted as cumulative incubation time, ¥ Af,

against the remaining stress on a linear scale. The back stress or threshold stress, Oy, Was
taken to be the asymptotic value of the remaining stress when the cumulative incubation

time approached infinity.
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CHAPTER FOUR RESULTS

4.1 MICROSTRUCTURAL CHARACTERIZATION OF
INCONEL 718

4.1.1 MICROSTRUCTURE OF INCONEL 718

Inconel 718 is a precipitate-strengthened nickel base alloy. This alloy is widely
used as hot end parts for gas engines, such as turbine blades, discs and vanes. Typical
phases present in the as received material are listed in Table 4.1. The (Nb, Ti)C-carbides,
that form during solidification, have a volume fraction of about 1%, and have been found
to be very stable up to 12000C[184] The ordered disc shaped BCT y"-Ni3(Nb, Fe)
particles are the main strengthening phase in the material[196, 197], The FCC y-Ni3(AL
Ti, Nb) particles provide only a minor contribution to strength (10-20%). In the peak aged
condition, the total volume fraction of the y" + y-precipitates is 17% and the ratio of the
‘volume fraction of y" to ¥' is between 2.5 ~ 4.0[198] Because of these reasons, only y"-
precipitates are often considered wherever precipitate-strengthening is involved (which is
also the case in the present study). Finally, 8-Ni3Nb phase can precipitate directly in the
matrix or can form by the transformation of y"-precipitates. They can also form at the
grain boundaries under appropriate heat treatment conditions.

Table 4.1 Typical phases present in wrought Inconel 718

Phases Structure Shape Temperature Area
(Nb, Ti)C FCC Block-like Tm Whole matrix
y"-Nig(Nb, Al, Ti) BCT Disc-shaped 900 ~ 7300C Grain interiors
y-Ni3(Al, Nb, Ti)  Ordered FCC Spherical 820 ~ 7200C Grain interiors
8-NigNb Orthorhombic Needle-like 1010 ~820°C  Grain boundaries

and interiors
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4.1.2 MICROSTRUCTURE USED IN THIS STUDY

4.1.2.1 GRAIN BOUNDARY PRECIPITATION

In order to produce different microstructures at grain boundaries, the material was
heat treated according to the scheme listed in Table 3.2. Fig. 4.1 is a TEM image of
material A showing clean grain boundaries obtained by air cooling from solid solution
treatment at 10200C for 4 hour. Material B was furnace-cooled from the solid solution
heat treatment temperature of 1020°C, which produced coarse precipitates of y" + y'
phases in the grain interiors as well as smaller particles of 8- phase at grain boundaries
(Fig. 4.2)[180]. These § phase particles at grain boundaries have been extensively
characterized by many investigators(179, 180, 185] anq therefore, their characterization
will not be repeated here. Material B was given a second solid solution treatment at a
lower temperature in the range of 9000C ~ 1000°C for one hour. This second solid
solutioﬁ treatment was designed to dissolve the coarse y" + y' precipitates within grain
interiors which were introduced during the furnace cooling, and maintain the & phase
precipitates at grain boundaries without undergoing excessive coarsening. As shown in
Fig. 4.3a, the second solid solution heat treatment at a temperature below 925°C was not
successful in achieving this. However, as seen in Fig. 4.3b-d when the temperature was
9259C or above, the specimens were free of all the intragranular precipitates and the §
precipitates at grain boundaries had grown slightly as compared to those obtained before
the second solid solution treatment.

The size and the amount of 8 particles were influenced by the second solid solution
temperature. The quantitative analysis of these grain boundary particles was conducted by
SEM. The results are presented in Fig. 4.4, where the average diameter and the line
density of the precipitates at grain boundaries have been plotted against the second solid

solution treatment temperature. It is seen that, the average diameter of & particles varies
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Fig. 4.2 SEM image showing precipitates at grain boundaries in material B
after furnace cooling from solid solution treatment at 1020 © C for 4 hour.
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Fig. 4.3 Microstructures of the materials being partially solid solution treated after furnace cooling.
The partial solid solution temperature is a) 900 °© C ,b) 9252 C, ¢) 975°C, d) 1000° C
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Fig. 4.4 The effect of partial solid solution temperature on the distribution
parameters of & precipitates at grain boundaries.
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from 0.52 pm at 9259C to 0.34 um at 975°C and the average density varies from 67 %
at 9259C to 20 % at 1000 OC.

4.1.22 PRECIPITATION WITHIN THE GRAINS

After the two solid solution treatments, both material A and material B had single y
phase grain interiors, although their microstructures at grain boundaries were different, i.e.
material A had clean grain boundaries while material B had & phase precipitates at grain
boundaries. Both the materials were given a subsequent aging treatment at 725°C for
different lengths of time to obtain various sizes of strengthening precipitates within the
grains. Fig. 4.5 compares the size of v" precipitates in grain interiors of both the materials
aged at 7250C for 25 hour. It is seen that the size of " in material A is nearly the same as
that observed in material B. The diameter of the discs y" discs was measured. Its variation
with aging time is given in Fig. 4.6.

The formation of 8 phase at grain boundaries occurs in the temperature range of
810 to 10109C. Therefore, it is certain that the aging at 7250C will not change the grain
boundary microstructure of either of the two materials. This is verified by the
microstructures shown in Figs.4.7a) and b), in which the size of & phase at grain
boundaries in both the materials is seen to be identical ( F ig. 4.7a), although both of them

were aged at 7259C for different lengths of time ( Fig. 4.7b).

4.1.2.3 VARIATION OF GRAIN SIZE WITH SOLID SOLUTION
TEMPERATURE

In order to obtain different grain sizes, material A and material B were solid
solution treated for 4 hours at different temperatures above 10200C, Fig. 4.8 shows the
variation in grain size with solid solution temperature. It is seen that the second solid

solution treatment did not change the grain size of material B. This is because i} grain
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Fig. 4.5 TEM images showing precipitates of y "in material A (a)
and material B (b).

24



(nm)

DISC-DIAMETER OF "

10 | | IJ?III|

10 2 3 5 100
AGING TIME ( Hour)
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Fig. 4.7a SEM images of precipitates of the § phase at grain boundaries.
The materials have been aged at 725 © C for 25 h (a) and 50 (b).



Fig. 4.7b) Dark field TEM images of y" of grain interiors. The materials have
been aged at 725 OC for 25 h (a) and 50 h (b). In (a) d, =17.3nm, in (b)
d,=212nm
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Fig. 4.8 Variation of grain size with solid solution temperature.
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growth in both the materials starts at 1020°C; ii) the pre-precipitated & phase particles at

grain boundaries prevent grain growth.

4.2 DEPENDENCE OF CREEP RATE ON THE
STRENGTH OF GRAIN MATERIAL

The dependence of creep rate on the strength of grain material was determined for
both material A and material B. Various levels of strength within the grain material of both
materials A and B were achieved by aging them at 725°C for different lengths of time.
Since the precipitation of § phase in Inconel 718 occurs in the temperature range of 820 ~
10109C, the subsequent aging at 725°C did not cause any change in the size of
precipitates at grain boundaries in material B, and also did not produce any grain boundary
§ precipitates in material A. This is shown in Figs.4.7 a and 4.7 b which are the SEM
micrographs of a specimen which are aged for 25 and 50 hours at 7259C after the second
solid solution treatment at 9250C The dark field TEM micrographs of these two
specimen are shown in Fig. 4.7 a and 4.7 b, where the average diameter of v" discs was
found to be 17.3 nm and 21.2 nm, respectively. Therefore, it is concluded that the heat
treatment used in this study above produces material that has the same size of & phase
precipitates at grain boundaries and different sizes of " phase precipitates depending upon
the length of aging at 725°C. The average grain size of the material remained constant at
59 um,

The variation in creep rate with creep strain for various specimens contains y"
precipitate discs of different diameter is shown in Fig. 4.9. For a clearer presentation of
results, that is, without undue overlapping of curves, this figure is divided into two halves.
All the seven curves show the occurrence of a steady state creep rate with increasing creep
strain. The value of steady state creep rate, g, for the specimen with the smallest and the
largest y" precipitate particles in them is greater than the value observed in other

specimens in which the size of ¥" precipitates had a value in between the two extremes.
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The steady state creep rate, &,, is also observed to be the same as the minimum creep
rate,£,,, with the exception of specimen 4, where average diameter of the y" discs is 21.4
nm. The value of the minimum creep rate in this specimen is significantly smaller than the
steady state creep rate. The validity of the existence of this sharp minimum was established
by duplicate tests. It should be noted that specimens with 17.3 nm and 21.2 nm diameter v
" precipitates exhibit a significant steady state creep region and in the specimen with 21.2
nm y" the sharp minimum in creep rate occurred before the steady state stage was reached.
In Fig. 4.10, the values of steady state creep rate observed in various specimens are
plotted against average diameter of y" discs in them. It is seen that the value of steady
state creep rate acquires a constant value when the average diameter of the y" discs
reaches 17.3 nm and increases again when it is 26.2 nm.

The creep behaviour of specimens with clean grain boundaries under the test
conditions similar to those used in this study has been characterized by Han and
Chaturvedil 199> 200] 4 power-law dislocation creep with a true stress exponent of about
5. The dependence of steady state creep rate on the size of y" in specimens tested at
625°C e;nd 765 MPa, as reported by Han and Chaturvedi{200] , 1s included in Fig. 4.10. It
can be seen that the creep rate of the material with clean grain boundaries is strongly
dependent upon the size of y" precipitates. Such a dependence of steady state creep rate
on the precipitate particle size has been observed in the applied stress range of 620-815
MPa and also reported in Cu-Co alloys by Threadgill and Wilshire [201] However, the
results of this study show that the presence of about 0.5 pm size & precipitates at the grain
boundaries makes the minimum creep rate, €y, independent of the y" precipitate size over
a certain size range. That is to say, that the values of the steady state creep rate are
independent of the strength of the grain material unlike that is generally believed for creep
in the power-law dislocation creep region. It should also be noted that the values of steady
state creep rate in the material with & precipitates at the grain boundaries are significantly

higher than those observed in the material with clean grain boundaries.
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4.3 DEPENDENCE OF CREEP RATE ON APPLIED
STRESS

The results presented in the previous section clearly show the existence of a creep
behaviour that is independent of the strength of grain material when the material has
precipitates at grain boundaries. In order to understand the mechanisms that may cause
such an unusual behaviour, stress and temperature dependence of creep deformation were
conducted. All the specimens used in these tests were given the same aging treatment of
25 hours at 7259C to obtain an identical strengthening state for grain interior. This aging
treatment produced a discs of y" precipitates of average diameter of 17.3 nm and 16.5 nm
for material B and material A, respectively. This size of y" precipitates in material B is in
the range within which the material displays a steady state or minimum creep rate which is
independent of the size of y". The cre:ep tests were conducted in the temperature range of

600°C ~ 6500C and in the stress range of 745 MPa ~ 860 MPa.

4.3.1 MATERIAL A

The plots of creep rate versus creep time (or creep strain) for material A tested at
temperatures of 600°C and 625°C and at various stress levels are shown in Figs. 4.11(a,
b) and Fig. 4.12, respectively.

The creep curves for the specimens tested at 600°C are quite complex. These
curves consist of either a point of minimum creep rate followed by a stage with a constant
creep rate ( in the high stress region ) (Fig.4.11a) or two stages of steady state of creep
rate ( in the low stress region ) (Fig 4.11b). Detailed studies, not included in this
dissertation and to be published elsewhere, have shown that this unusual creep behaviour
is a combination of Portevin-le-Chatelier effect and a normal creep deformation. It has
been suggested that the Portevin-le-Chatelier effect is responsible for the occurrence of a

minimum creep rate ( in high stress region ) and the first steady state creep rate stage ( in

117




CREEP RATE (1/S)

8 -
6 I— g
n APPLIED STRESS
4 0 822.9 MPa
"~ 0 840.0 MPa
2 |- A 860.4 MPa
1E-8 |—
8 -
o
4 | .
2 |
1E-9 1 Lol | RN |
1.0 2 3 5 10.0 2 3 5 100.0 2

CREEP TIME (hour)

Fig. 4.11a Creep rate versus creep time for material A tested at 600 © C
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low stress region ). However, it gradually disappeared towards the second steady state
stage. Therefore, it is believed the final steady state creep rate represents the creep
resistance of material without the influence of Portevin-La-Chatelier effect.

In contrast to the results at 6000C, the characteristics of creep curves ( Fig. 4.12)
obtained at 6259C seem to be normal. They have a prolonged primary stage with a rapidly
decreasing creep rate, a minimum creep rate which is followed by tertiary stage that leads
to the final fracture of the sample.

The minimum creep rate at 625°C and the final steady state creep rate at 600°C
have been plotted against applied stress in Fig. 4.13. It is seen that the stress dependence
of creep rate at 600°C varies with applied stress. In the higher stress region, the stress
exponent is about 11. This value is nearly the same as the stress exponent obtained when
the material was tested at 6259C. As the applied stress is decreased, the stress exponent at

600°C is observed to decrease to a value of about 5.0.

4.3.2. MATERIAL B

The plots of creep rate versus c}eep time (or creep strain) for material B are shown
in Fig. 4.14a, b, ¢, d, e. These creep curves are quite different from the creep curves
observed for the material with clean grain boundaries. In the material with clean grain
boundaries the creep rate decreases rapidly with creep strain (or time) until a minimum
point is reached, it then accelerates towards the final fracture of the material. In the
material with precipitates at grain boundaries, creep rate is observed to decrease to a stage
with a well defined constant creep rate. Besides that, a significant difference between the
creep curves of material A and Material B also appears in the primary stage. In the
primary stage of material A, creep rate is significantly influenced by applied stress only
when creep is approaching the minimum creep rate. In contrast to this, the strong
dependence of creep rate on applied stress in material B starts at the very beginning of

creep deformation. Such a difference in creep rate during the primary stage on applied

121




—8@— materal Aat600°C

—e— materdal Aat625°C /

— —- material Bat625°C /

1E-8
8
o 6
Lit
E 4
= B
Ll
x|
e
O 2 -
1E-9 —
8 B |

700 800 800
APPLIED STRESS (MPa)

Fig. 4.13 Dependence of creep rate on applied stress
in material A and material B



CREEP RATE (1/S)

1E-7

FriT

o
]

1E-9

i IIIIEI[

. ™
APPLIED STRESS
A 768 MPa
| 820 MPa
+ * 858 MPa
4 y,
A
A [ ]
A
GRAIN SIZE: 59 L m
||||||I [ IIIIHII I Illlllll [ |

Fig.

S 1.0 2 3 5 100 2 3 5 1000 2 3
CREEP TIME (hour)

4.14a Creep rate versus creep time for material B tested at 600 © C




GRAIN SIZE: 89 p m

~

1E-7 ~
APPLIED STRESS
* 858 MPa
5 ] 820 MPa
3 A 768 MPa J
n
~
Z 2
1
S
a 1E-8
|
]
ad
Q

1E-9 | f :
0.0 0.1 0.2 0.3

CREEP STRAIN (%)

Fig. 4.14b
Creep rate versus creep strain for material B tested at 600 ° C




)

( 1/Sec.

CREEP RATE

1077

10

l'lllll

TEST TEMPERATURE: 625 °C

820 MPa

st 1 11l

795 MPa
770 MPa

745 MPa

Lt raral

Fig

1 10
TIME X 3 ( Hour )

. 4.14c Creep rate verrsus creep time for material B with a

grain size of 59 4 m

100




CREEP RATE (1/S)

s I GRAIN SIZE: 175 p m TEST TEMPERATURE: 625°C
1E-7 —
5 P
3 822.2 MPa
2 - 797.0 MPa
770.0 MPa
e A e
1E-8 —
"llllll' L |111||1| [ [

3 5

CREEP TIME (hour)

Fig. 4.14d Creep rate versus creep time for material B with a grain size of 175 1 m

10.0




CREEP RATE (1/S)

1E-7

1E-8

lll|

TEST TEMPERATURE: 625 °C
GRAIN SIZE: 175 p m ‘

822.2 MPa

797.0 MPa

770.0 MPa

f | | i

0.0

Fig. 4.14e

0.1 0.2 0.3
CREEP STRAIN (%)

Creep rate versus creep strain for material B
with a grain size of 175 o m.



stress does not seem to be significant in the plot of creep rate versus creep time, however,
becomes very profound in the plots of creep rate against creep strain (Fig. 4.14 b and e).
The stress dependence of steady state creep rate for material B at two temperature
levels is plotted in Fig. 4.15. The stress exponent for material B, varies with temperature.
The variation in steady state creep rate with applied stress at 600°C and 625°C for
material B with a grain size of 59 pm are also presented by a dotted line in Fig. 4.13. The

values of stress exponent for both materials A and B are listed in Table 4.2.

Table 4.2 Summary of apparent stress exponent for materials A and B

Material 600 O0C 625 °C

A 11.0 ( At high stress ) 10.9
4.8 (atlow stress )

B 10.8 13.0

4.3.3 EFFECT OF BACK STRESS

The high values of stress exponent observed in the present study are similar to
those observed in many other two-phase materials [142]. In these materials creep
deformation occurs under the influence of an effective stress, which is given by, (o,-0,).
In this expression, o, is the applied stress and o, is the back stress. The consecutive
stress reduction method [191~195] was employed to determine the back stress for both
the materials during creep testing. An incubation period after about 5% stress reduction
was observed in both the materials. Fig. 4.16 shows some examples of the relationship
between the cumulative incubation time and residual applied stress for both the materials
tested at 6259C and at the initial applied stress of 820 MPa and 770 MPa.

The values of back stresses obtained experimentally are plotted against the initial
stress in Fig.4.17. It can be noted that the value of Back stress for material A is not

influenced significantly by the values of initial applied stress. This observation is similar to
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the results reported eartier[199; 202] on Tnconel 718 which had a clean grain boundaries
but with an average ¥" disc diameter of 26.9 nm. However, the value of bflck stress for
material B is observed to increase with an increase in applied stress.

The effective creep stress, which is obtained by subtracting the back stress from
the applied stress is plotted against minimum creep rate for material A and against steady-
state creep rate for material B in Fig. 4.18. The values of effective stress exponent of
creep rate were calculated from these plots. The value of n, for material A was found to
be 3.0 This is similar to the values normally observed in two-phase materials which
undergo creep deformation by dislocation power law mechanism. The value of He in
material B was found to be 6.8. This would also suggest that the creep mechanism

operating in material B is different than that operating in material A.

4.4 DEPENDENCE OF CREEP RATE ON TEMPERATURE

The activation energy for the creep deformation process is a reflection of the
mechanism of creep deformation. Therefore, the activation energies were measured for

both the materials.

The creep strain rate, &, applied stress o, testing temperature T, and apparent

activation energy, (,, are related by the following creep rate equation:
. o, Y[ Gb 0
e =4 == — |exp| ——=% 4.1
: (G) (kT] p( kT) &1

where 1, is the apparent stress exponent, G is the shear modules, b is the Burger's vector,

k is the Boltzmann constant and A is a material constant.

The apparent activation energy, 0,, can be obtained from the slope of the plot of
In(z,T /G)(G/o,)™ vs. 1UT. Therefore, both the materials A and B were tested at 600°C,
6250C and 650°C at an applied stress of 820 MPa. The In(&,T /G)(G/o,)™ vs. 1/T plots
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are shown in Fig. 4.19. The calculated values of apparent activation energy, Q,, are listed

in Table 4.3. It is seen that these values (450-475 kj mol-1) are much higher than those
observed for self-diffusion or for the creep process in pure nickel and Ni-Cr solid solution
(265-295 kj mol-1)[107, 193, 203] However, Eq. 4.1 does not consider the influence of

back stress on the creep rate and the activation energy. Therefore, the creep rate equation

is modified as follows by replacing o, by ((c, - o, }[1951.

i = A[E—éi) (%b) exp(—%) 4.2)

From this expression, the effective activation energies, Q,, can be determined from the

slope of ln(é',T/G)[G/(aa - 0‘,,)]"' vs. 1/T.

Table 4.3 Experimentally determined values of activation energy of creep

Material 0, kJmol™ Q, kJmol™

Material A 452.7 248.1

Material B 473.6 250.8

Pure Ni and Ni-Cr alloys 265-295 (Ref. [107, 193, 203])

The back stress of Inconel 718 with clean grain boundaries has been observed to
decrease with an increase in temperaturel199, 202] This was confirmed in the present
study. The back stress for both the materials, with clean grain boundaries and with §
precipitates on the grain boundaries, was observed to decrease with an increase in
deformation temperature, as shown in Fig.4.20. The In(&,T/ G)[G/ (o, -0, )]" vs. 1/ T
plots, using temperature corrected values of back stress, are shown in Fig. 4.21. From

these plots, the values of effective activation energy were determined to be 248.1 and




250.8 kJ mol-1 for material A and Material B, respectively, and are listed in Table 4.3.
These values are in a reasonable agreement with the activation energies observed for self-
diffusion and for creep deformation of pure nickel and Ni-Cr solid solution alloys (256-
295 kJ moI-l)[107s 193, 203], They suggest that the creep deformation process in both

the materials is thermally activated and involves vacancy migration[94, 199, 202],

45 EFFECT OF GRAIN BOUNDARY PRECIPITATE
DENSITY ON CREEP BEHAVIOUR

The results presented in previous section suggest that the back stress is influenced
by the introduction of precipitates at grain boundaries. Therefore, it is necessary to
determine if the back stress is also dependent on the precipitates at grain boundaries. To
obtain different coverage of precipitates at grain boundaries, material B was given
different second solution treatments at temperatures ranging from 900°C to 1000°C. The
results of this heat treatment were described in detail in section 4.1.2. The creep tests on
these materials were conducted at 6250C at an applied stress of 795 MPa. .The results of

these tests are described next.

4.5.1 CREEP DEFORMATION

Some of the typical creep curves for specimens with different grain boundary
precipitate density are shown in Fig. 4.22. The steady state creep rate or the minimum
creep rate for all the specimens tested were plotted against the density of precipitates at
grain boundaries. This plot is shown in Fig. 4.23. The main features of the curves shown in
Figs. 4.22 and 4.23 can be summarized as follows:

(1). There is a well defined steady state stage in materials with a grain boundary
precipitate density of 45%, 51% and 61%. In contrast to this, creep curve of the material

with a lower density of precipitates at grain boundaries (22%) does not exhibit a steady

138



CREEP RATE (1/SEC.)

x
10E-7)— TEST TEMPERATURE: 625 © C
STRESS APPLIED: 770 MPa
8 -
§ DENSITY OF GB
PRECIPITATES
6 1o g 61%
X 51%
A 45%
o 2%
4 — o 0%
2 —
10E-8—
8 S
0 0.1 0.2 0.3 0.4

CREEP STRAIN (%)

Fig. 422 Creep rate versus creep strain for the materials with different
precipitate density at grain boundaries.

i



STEADY STATE CREEP RATE (1/S)

APPLIED STRESS: 795 MPa
TEST TEMPERATURE: 625°C
4 I

0.00 0.40 - 0.80

DENSITY OF GRAIN BOUNDARY PRECIPITATES

Fig. 4.23 Variation of steady state creep rate with the density
of precipitates at grain boundaries




state stage. This observation is similar to that observed in creep curve of the material with
clean grain boundaries. _

(2) The steady state creep rate does not change when the material has a higher
density of precipitates at grain boundaries, and the minimum creep rate in the material with
a lower density of precipitates at grain boundaries (22%) is identical to that of the material
without any precipitates at grain boundaries.

The back stress of the materfals with various levels of coverage of grain
boundaries by precipitates was also determined. The typical plots of remaining applied
stress versus cumulative time are presented in Fig. 4.24. The dependence of back stress on
the density or grain boundary precipitates at the same initial applied stress is demonstrated
in Fig.4.25. This curve can be divided into three regions. In the region with a very high or
a very low density of precipitates at grain boundaries, the back stress is not influenced by
the presence of grain boundary precipitates. However, in the region with an intermediate
density of precipitates at gr;ain boundaries, the back stress is strongly dependent on the
density of precipitates at grain boundaries. In this region, with a decrease in precipitate
density at grain boundaries, the back stress decreases from a constant value of back stress
in the high density region, and then increases to another constant value constant in the low
density region. In addition to this, some other features should also be noted: (1) the value
of back stress in region III is lower than that observed in region I. (2) the back stress in
region II is lower than in both regions I and III. All of these features contradict the
generally held belief that back stress is a reflection of the creep resistance of grain material

and not likely to be influenced by the precipitates at grain boundaries.

4.5.2 RUPTURE BEHAVIOUR

Besides the creep deformation behaviour, the rupture behaviour of the material

should be also influenced by the change in the precipitate density at grain boundaries. This
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is shown in Fig. 4.26 in which the creep curves obtained in the material with various
precipitate densities at grain boundaries are presented in terms of creep strain versus creep
time. The total rupture time and total creep strain are plotted against the precipitate
density at grain boundaries in Fig. 4.27. It is seen that the curves exhibit a v-shape which
shows a transition at a grain wo:n.amQ precipitate density of about 45%. When the
precipitate density at grain boundaries is above the transition value, the rupture time is
observed to increase with an increase in precipitate density at grain boundaries. While
below this value an opposite dependence is observed. The total creep strain shows the
same trend as the rupture time, except for in the lower density region, where the total
creep strain is not significantly influenced by the precipitate density at grain boundaries. In
addition, it can be noted that transition in rupture behaviour coincides with the transition
observed in Fig. 4.25 which shows the variation in back stress with the precipitate density
at grain boundaries.

The fractographs of crept samples are shown in Fig. 4.28 and the observations can
be summarized as follows: (1) The fracture is intergranular in all cases, whether
Qmomvmﬁmﬂmm are present at the grain boundaries or not. (2) For the material with clean
grain boundaries, occurrence of deformation on grain boundary's facets is not observed,
though traces of slip lines in the grain interior are observed( Fig. 4.28d). (3) When the
precipitate density at grain boundaries is higher than 45%, heavy deformation is observed
at the interfaces of grains where many deformation dimples can be seen (Fig. 4.28a and b).
(4) Although massive precipitates are present at the grain boundaries in samples which
have a grain boundary precipitate density equal to or less than 45%, however, no
indication of grain boundary deformation is evident.

The polished flat surface of the gauge section of failed samples was also examined
by SEM to further study the creep fracture behaviour and typical micrographes are shown
in fig. 4.29. It is seen that, (1) the wedge-like cracks at triple points of grain boundaries

are dominant in the material with clean grain boundaries (Fig. 4.29). Some small creep
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Fig. 4.28 SEM fractographs of the materials solid solution treated at a) 900 © C ,
b)925°C,c)975°C, d) 1020 © C and creep tested at 625 © C and 795 MPa.
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10 um

Fig. 4.29 Wedge cracks at the triple points of grain boundaries are often observed
in the material with clean grain boundaries (@), and with a partial solid solution

temperature at 975 © C (b) and higher. Void-formed cracks are mainly found in the
material with a solid solution temperature at 925 © C (c) and 900 © C (d).




voids on regular grain boundaries are also observed, though they are often associated with
intersection site of slip lines and twins and grain boundaries; (2) the wedge cracks at triple
points might initiate the fracture in the material with low density of precipitates at grain
boundaries. The wedge cracks are seldom observed in materials with high density of
precipitates at grain boundaries, instead creep cracks are often found on normal grain

boundaries.

4.6 EFFECT OF GRAIN SIZE ON CREEP BEHAVIORS

4.6.1 DEPENDENCE OF CREEP RATE ON GRAIN SIZE

Material A and B with various grain sizes were also tested at a temperature of
6259C and at different levels of applied stress. The variation in grain size was achieved by
changing the solid solution temperature. In order to maintain an identical grain boundary
microstructure (except grain size ), all the specimens of material B were given the same
subsequent heat treatment.‘ That is, furnace-cooling at a rate of 50 OC/h from the solution
treatment temperature to 7259C and second solid solution treatment at 925°C for 1 hour (
which produced a grain boundary precipitate density of about 67%). For all the specimens
of material A, air cooling was used, which produced clean grain boundaries in the
material. All the samples of material A and B were given an aging treatment at 725°C for
25 hours to strengthen the grain interior.

The typical creep rate-creep time curves for specimens of material A and B with
various grain sizes are given in Fig. 4.30 and 4.31, respectively. Three major difference
can be observed between material A and material B:

(I) The creep curves of material A show a decelerating primary stage and
accelerating tertiary stage with a minimum in creep rate between the two stages; in the
creep curves of material B, a well defined steady state stage between the primary and

tertiary stages is observed..
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(2) In the primary stage, the creep rate is not influenced by the variation in grain
size of ‘material B, however, a decrease in creep rate with an increase in grain size is
observed in material A

(3) The dependence of minimum creep rate or steady state creep rate on grain size
is shown in Fig. 4.32. The minimum creep rate observed in material A is almost
independent of grain size. In contrast to this , the steady state creep rate in material B
increases with an increase in grain size and the exponent is calculated to be 0.40.

The dependence of creep rate on applied stress at various level of grain size in
material B is shown in Fig. 4.33. It is seen that the stress exponent for material B appears

to be constant at different levels of grain size.

4.6.2 BACK STRESS

Back stress is generally believed to be an indication of creep resistance of grain
material, and therefore, is not expected to be influenced by the presence of precipitates at
grain boundaries (refer to section 2.2.4). This hypothesis is found to be true for the
material with clean grain boundaries. To test this hypothesis, the back stress of both the
materials with and without precipitates, but with different grain sizes was determined. As
shown in Fig. 4.34, the back stress for material A is constant at various grain size levels.
However, for the material B, the back stress increases with an increase in grain size, and
the effective stress, in turn, would decrease with an increase in grain size..

Fig. 4.35 shows the dependence of steady state creep rate on effective stress for
material B with a grain size of 59 pm and 175 pm, respectively. The stress exponent
obtained for material with d=175 pum is about 6.5, which is very close to the value
obtained for material B with a grain size of 59 um. The dependence of steady state creep
rate on grain size at a given effective stress is shown in Fig. 4.36. It is observed that the

steady state creep rate varies with d>°.
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CHAPTER FIVE  DISCUSSION

5.1 INTRODUCTION
5.1.1 CREEP MECHANISM IN MATERIAL A

The experimental results obtained in the material with clean grain boundaries have
shown that the creep behavior of the material is not influenced by grain size in the
temperature and stress region in which tests were conducted. For example: (i) the effective
stress exponent is observed to be within the range in which its value is found for most
precipitate-strengthened materials. (if) The minimum creep rate and the back stress are
independent of grain size. These observations suggest that the microstructure of grain
interior of the material is responsible for the creep behaviour observed in this study.

The grain interior of the material was precipitate-strengthened with y" precipitates.
The interaction between a moving dislocation and precipitates has been studied by many
researchers. Fig. 5.1 illustrates the variation in critical shear stress, required for the
operation of a particular mechanism, with the size of precipitates[90, 204] It can be seen
that, dislocations cut through precipitates when the size of precipitatés is small. As the size
of precipitates increases, cutting process becomes difficult and is replaced by Orowan
bowing-out mechanism at a critical size of particles. When particles are larger than this
size, a smaller critical stress may need for the deformation to occur. When the applied
stress is so low that both cutting and Orowan bowing-out mechanism are not possible,
deformation may occur by dislocations climbing over the particles. The operation of this
mechanism, as reviewed in Chapter Two, requires the assistance of thermal activation,
therefore, is often observed only at high temperatures. The critical particle size that
delineates the cutting mechanism and Orowan bowing out mechanism at 625°C in Inconel
718 was experimentally determined to be 23.2 nm[200] 1p present studies most of the
experiments on material A were conducted on specimens aged at 725°C for 25 hours.

This treatment produced v" discs of 16.3 nm diameter. At this size of v", two type of
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interactions between a moving dislocation and particles may possibly occur, That is,

dislocations cutting through precipitates at higher stress levels and dislocations climbing

over the precipitates in the lower stress region.

Cutting Bowing

AT

Climbing

16.3 23.2
Disc Diameter of Gamma Double Prime Particle

Fig. 5.1 Schematic aging hardening curves illustrating the particle size of the optimum
high temperature creep resistance and the particle size in the material used in present

studies.

Many creep studiesl205] on precipitate-strengthened alloys have shown that,
irrespective of the volume fraction and average size of precipitates, the magnitude of the
stress exponent decreases with decreasing applied stress, i.e. in all cases, the value of n
decreases from ~ 12 to ~5 over the stress range examined. This decrease in the value of n
is accompanied by a decrease in the measured activation energy for creep. From the
examination of surface of specimens of copper-cobalt alloys after creep deformation,

Whilsire and his co-workers[205] suggested that at higher stresses where a higher value of
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n is found, moving dislocations can either cut through or bow between the particles. While
at lower stresses where a lower value of n is observed, dislocations move by climbing over
the particles.

The above observations are quite similar to what has been observed during the
creep deformation of material A. At higher stress levels, a stress exponent of about 11 at
both the test temperatures was observed. At lower stresses, an exponent of 5 was
observed when the material was tested at 6000C. Therefore, it is believed that the
dislocation cutting mechanism operates at higher stresses, and dislocation climbing is

responsible for deformation at lower stresses.

5.1.2 CREEP MECHANISM IN MATERIAL B

Unlike material A, the creep behaviour of material B, as summarized below, has
been observed to be very grain boundary dependent.

(i) There exists a range of size of y" particles, within which the secondary creep
rate of the material does not vary with the size of y".

(i) The values of back stress is observed to depend on the initial applied stress,
and is also influenced by grain size and density of grain boundary precipitates. However,
this was not the case in material A.

(i) The secondary creep rate increases with an increase in grain size, Such a
dependence contradicts the generally held belief that the secondary creep rate either
decreases with an increase in grain size due to grain boundary sliding, or does not vary
significantly with grain size as observed in material A.

(iv) Not only the secondary creep rate, but all the creep curves of material B are
entirely different than those observed for material A

All these features observed during creep deformation in material B indicate that the

creep deformation of this material may be also affected by the microstructure of the grain
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boundaries. Part of these effects is reflected in the nature of creep equation for the alloy,

which is presented next.

The apparent dependence of steady state creep rate on applied stress can be

written as follows,

A e

where 4 is a structural constant and d is the grain size. By considering the dependence of

back stress on applied stress and grain size, presented in Chapter Four, Eq. 5.1 can be

rewritten as,

The equation thus obtained does not resemble any of the creep equations reviewed
in Chapter Two, except for the one proposed by Robinson and et al (refer to section

2.2.2.2). They suggested an equation of following form:
. D\ A (o)
eff
= —|{= 5.3
& é(bz ](b) (E) 3

where § is a microstructural constant dependent upon the stacking fault energy and

dislocation structure, Dejf is the effective diffusion coefficient, exponent N and p are
constant, A is the subgrain size.

This suggests that, when grain boundaries of a material are decorated with
particles, they can behave like sub boundaries developed during the creep of pure metals,

and single phase alloys that exhibit Class II type of creep behaviour.



To confirm the above hypothesis, two important aspects may have to be
addressed.

(1) Characterization of grain boundary sliding in both the materials. This is because
grain boundary sliding is believed to be a major deformation factor that may contribute to
the total creep strain in the region of power-law dislocation creep (section 2.3.3).

(i) The dependence of back stress on applied stress and grain size. The unusual
behaviour in material B was due to the unique dependence of back stress on applied stress
as well as on grain size, Therefore, to determine the actual creep mechanism that governs
the deformation of the material, the origin of the back stress in both the materials may

have to be determined.
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5.2 CHARACTERIZATION OF GRAIN BOUNDARY
SLIDING

3.2.1 GRAIN BOUNDARY SLIDING PROCESS IN MATERIAL A
AND MATERIAL B

3.2.2.1 INCUBATION TIME FOR GRAIN BOUNDARY SLIDING

As reviewed in Chapter Two, grain boundary sliding contributes to total creep
strain to a significant extent only when the deformation at grain boundaries occurs at a
rate that is faster than the deformation rate within the grain materials. Under these
circumstances, the grain boundaries cannot transmit the full shear traction. The shear
stress across the relaxed grain boundaries, then, would cause the boundaries to slide. In
the situation where precipitates are present on the grain boundaries, the grain boundary
sliding process is rather complicated.

Although an extraordinary amount of work has been reported[126, 206, 207} the
general understanding of the effect of precipitates on grain boundary sliding has not
changed as noted in many reviews of the literature published from time to time. They
indicate that (i) precipitates at grain boundaries do not inhibit grain boundary sliding (ii)
The sliding rate is decreased after the formation of particles at the boundaries. (1ii) In most
cases, an incubation period for grain boundary sliding is observed whose magnitude
increases with an increase in the size of grain boundary precipitates, (iv) The amount of
grain boundary sliding depends on the volume fraction, size, shape and distribution of
particles at the grain boundaries. For examples, platelet-type precipitates permit larger
amounts of grain boundary sliding than do the rod-shaped particles.

The characterization of incubation time for grain boundary sliding may be
particularly important in the present studies since it can define when grain boundary sliding

starts to contribute to the total creep deformation. Although the existence of incubation

164



time has been reported several time, a satisfactory explanation, especially quantitative
description, is lacking. The only explanation has been provided by Ishida et all208] who
studied the siding behaviour in a two-phase aluminum 3% copper alloy. They suggested
that, the incubation period may represent the time taken by the grain boundaries to migrate
into precipitate-depleted zones where sliding can take place. However, such suggestions
contradict many experimental findings. An example is the experiments of Gittins on single
phase brass, and two phase brass with an almost continuous distribution of v' precipitates
along the grain boundaries. He observed that sliding was possible without migration but it
was considerably impeded by the precipitates, for although both creep and sliding rates
were lower in the two-phase alloy, there was a proportionally greater reduction in the
sliding rate. The mechanism provided by Ishidal208] may not be true in the present
studies, since the migration of grain boundary was not observed in the materials heat
treated either to have precipitate-free boundaries or have precipitates on the grain
boundaries. In addition the precipitate-depleted zones along grain boundaries did not exist
in material B. Therefore, other mechémism may be responsible for the grain boundary

siding observed in this study.
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Fig. 5.2 Relaxation of shear stress along a sliding grain boundary between boundary

particles by viscous sliding of the bozmdafy[zlo].



In order to define the conditions under which creep voids might develop at triplé
points of grain boundaries or around precipitates at the grain boundaries, Argon et al[210]
have characterized the sliding process of grain boundary under the influence of grain
boundary precipitates. The introduction of their concept may help explain the grain
boundary sliding that was observed in the present studies.

Consider a set of relatively equiaxed grains containing grain boundary precipitates
as shown in Fig. 5.2, It may be assumed that all boundaries and interphases are incoherent
and can slide at the temperature under consideration, and that grains have isotropic elastic
properties and plastic resistance. When a tensile stress o, is applied at time £ = 0, a
combination of homogeneous elastic, plastic, and creep deformation is initiated in all the
grains. For a brief period traction of all types are transmitted across all grain boundaries
and interfaces during which no stress concentration exists. Within a period Tz after the
application of stress, however, the viscous sliding of all free segments of grain boundaries,
not pinned by particles, will relax the shear stress acting across them. This produces a
concentration of stress on all the particles on the sliding grain boundaries, which initiates
accelerated power-law creep in the grain matrix around particles and diffusion flow along
boundaries with particles. This tends to reduce the stress concentration. Thus, after a
period 7, , the stress distribution away from the boundaries in the polycrystalline sample
will still be largely uniform. At these locations, however, the initially uniformly distributed
shear traction will have been taken up by concentrated stress at particles. Within an
additional increment of time Az, or Az, however, accelerated power-law creep or
diffusional flow around the particles will begin to transfer matter around these grain
boundary particles and will set up an initial steady state stress concentration around them
as overall shear displacements across the boundary begin to occur. Such shear
displacements along the boundaries, over the particles, will over a period of At 'or

Aty ' gradually reduce the shear support offered by the grain boundary particles. This will
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relax even the average shear traction along the entire length of the sliding boundaries, and
will build up stress concentrations at triple grain Junctions. Thus, after initiation of creep,
and as time goes on, stress redistribution occurs over a gradually increasing scale of
characteristic dimension until a final steady state distribution gets established with a wave
length on the scale of grain size.

On the basis of the above hypothesis, it may be accepted that the grain boundary
sliding may start to contribute to total creep strain only when the shear support offered by
the grain boundary particles is lost. That is, the incubation period may be assumed to be
equal to 7= 7y, + 7, + 7' and 7= 75, + 7, + 7, ", both of which correspond to the
moment when the concentrated shear stress around particles is relaxed by the diffusion of
matter and dislocation creep, respectively.

The characteristic time as described above was determined by Argon , Chen and

Laul210] by the following expressions:

T =B(L/b) (5.4)
Aty = %(%3) (5.5)
Az, =B -g (5.6)
Aty.'= A7, (%)% (5.7)

(5.8)
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where

gzc):cos'l ——I———— . (5.9)
ﬂ(l’ cosf[l—ﬁ)
2 L
B =1[ kT ]ﬁ(ﬂ) (5.10)
ml poDy [\ L
m—1 %
A= [(P_J Q4D "J (5.11)
L &T

In these expressions, p is the particle size, L the particle spacing; & the thickness of
grain boundaries; Dy the grain boundary self-diffusion coefficient; & the length of Burger's
vector; £ the Boltzmann's constant; {2 the atomic volume; d the grain size; D, the volume
self diffusion coefficient; m the stress exponent, and A is a characteristic scaling
dimension. As discussed above, within a time increment of approximately Az, or Aty
an initial steady state of stress distribution gets established around the grain boundary
particles as matter begins to be transported around them between oppositely stressed
regions of the particle. This occurs either by diffusional flow along the particle interface or
by accelerated power-law creep in the surrounding matrix. The former mechanism
dominates for small particles with a size less than the characteristic scaling dimension A |

while the latter mechanism is dominant for particles much larger than A.

5.2.1.2 INCUBATION TIME OF GRAIN BOUNDARY SLIDING IN PRESENT
MATERIALS

Consider the situation in material B where the material was heat treated to have

various densities of precipitates at grain boundaries, and was creep tested at 795 MPa and
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6250C. The values of various constants of the material are as follows: G = 64.9x109 Pa;

5=2.5x10"10 m; 2=23x1029 m3; R=1.987 cal(mol K); #=138x10-23 JK:
8D, =2.8x107'% exp(~27.4kecalmol™ | RT)m"s™. Based on these data, the characteristic

time and scaling dimension A for material B were calculated, and are listed in Table 5.1.

Table 5.1 Characterization of grain boundary sliding in the material with grain

boundary precipitates
9000C 9250C 9500C 9750C 10000C
p(m) | 43x107 | 52x10°7 | 3.9x10°7 | 3.4x10-7 | 3.7x 10-7
L(m) | 71x107 | 77x10°7 | 77x10-7 | 75%x 107 | 16.9 x 10-7
c | 0606 0.675 0.506 0.453 0.219
& (SD | 1.25% 108 | 128 x 108 | 132x 108 | 99x10-8 | 8.3 x 10-8
A(m) |557x106/852x10°6]2.66x106]188x106] 0.3 x 106
7o (S) | 1.92 x 107 | 1.68 x 10-7 | 2.72 x 10°7 | 3.03 x 10-7 | 12.06 x 10-7
Aty (8) 12.92x 1072 | 4.16 x 102/ 2.85 x 1072 | 2.15 x 102 | 4.91 x 10-2
Az, (S) 5.9 9.7 4.1 2.8 1.6
Az, (S) | 5074 1463.9 72.4 29.1 69.8
Az,," (h) 28.5 94.3 2.86 1.04 0.62

Note: Applied stress is 795 MPa; test temperature is 6250C; grain size is 59 L.

It can be seen from Table 5.1 that, the relaxation of shear stress on the segment of
grain boundary between two precipitates is rather rapid. When this relaxation is
completed, the shear traction will be concentrated on the particles. This concentrated
stress around particles, will be further relaxed either by the diffusion of matter around the

particles when the characteristic scaling dimension A is larger than the size of precipitates,

or by power-law dislocation creep when A <p.

169



The calculated values of A listed in Table 5.1 indicates that the size of precipitates
is less than A in all cases except for the material with a second solid solution treatment at
1000°C. In this material, the grain boundaries were decorated with very low density of
precipitates. This suggests that the relaxation will take place favourably by matter
diffusion around the precipitates. Under this relaxation process, the stress concentrations
are generally considered to be too low to initiate cavities around them( for the initiation of
cavities around precipitates, stress concentration between 10-20 are needed ).

Microstructural examination of crept sample of material B contradicts the above
suggestions. As shown in Fig. 5.3, the creep voids were observed even in the steady state
stage of creep, and had developed around almost all of the precipitates at grain boundaries

in the latter stages of creep.

Fig. 5.3 Microstructures of grain boundaries in material B. The material has been

tested and interrupted at a) position A, b) Position B, ¢) position C as in Fig. 4.13.
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The inconsistency between results of the calculations and the experimental
obéervations probably can be bridged by the fact that the size of grain boundary particles is
not constant, but varies over a wide ranée. An example of such a distribution is presented
in Fig. 5.4, in which the material was given a second solid solution treatment at 975°C for
one hour. Fig. 5.4 indicates that the grain boundaries of the material contain two major
groups of precipitates: one with a size below the average diameter; another has a size
above the average diameter. This broad difference in grain boundary particle size probably
is caused by the heat treatment procedures used. The group of precipitates with a larger
size would be introduced during furnace cooling and would be further coarsened during
the subsequent partial solid solution heat treatment, while the group of precipitates with

smaller size might be produced only in the course of the second solid solution heat

treatment.
-
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Fig. 5.4 Size distribution of grain boundary precipitates in the material with a second

solid solution treatment at 975°C for one hour.
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If it is considered that A is lafger than p, then the time needed for the completion
of relaxation of concentration around particles by matter diffusion will vary with the size
of the individual particles ( refer to Eq. 5.5). For example, when the precipitate size is 0.1
pm, Az, " is about 0.703 second, while when the size is 1.0 pm, Az,,.' is 703.1 seconds.
The much sooner completion of relaxation around small particles may make the segment
of the grain boundary containing them behave like the part of a grain boundary which is
originally free of precipitates. Therefore, the actual density of grain boundary precipitates
— the density of those bigger precipitates that are still undergoing relaxation by matter-
diffusion around them, will be decreased. At the same time, the average size of these
precipitates will be much bigger than the average size which were calculated with an
inclusion of all particles on grain boundaries.

Consider the situation in the inaterial that was given a second solid solution heat
treatment at 9750C, and assume that all the particles with a size equal to and below 0.3 p
m belong to a group denoted P;, and the rest of them belong to Group P, . The particles
in Group P; were found to have a fraction of 51.9 % of the total precipitates, while the
particles in Group P, have a fraction of 48.1% of total precipitates. The average particle
size in Group P and P, is about 0.11 pum and 0.653 pm, respectively. The density of
precipitates in Group P, is 0.653 x 0.481 + 0.75 = 0.419. Based on this the characteristic
scaling dimension was calculated to be 0.137 um. This value of A is smaller than the size
of the particles in group P, . Therefore, diffusion around particles will not be a favoured
relaxation process; instead, power-law creep may take place to relax the concentrations.

The calculation above might be helpful in understanding the grain boundary sliding
behaviour that occurred in material-B.  Within a very short time of applying stress,
relaxation of shear traction can occur on the segment of grain boundaries which are free of
precipitates, and concentration of shear traction on particles can set up. The relaxation
of concentrations around particles will occur either by mass diffusion around particles or

by power-law dislocation creep. The calculations in Table 5.1 indicates that
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the diffusion of matter around particles will be favoured under the test conditions.
However, because of the large differences in the size of precipitates on grain boundaries,
the relaxation time will vary significantly with the size of particles on grain boundaries, the
small particles will need much shorter time than bigger particles. The early completion of
relaxation of small particles will reduce the number, and also increase the average size of
the precipitates that are still undergoing relaxation by the matter diffusion process. This
change will cause the characteristic scaling dimension to decrease to a value that might be
less than the average size of those grain boundary precipitates around which relaxation by
matter diffusion is not completed. As a result, the power-law creep relaxation will prevail
the on-going relaxation by matter-diffusion around the precipitates. Therefore, the
initiation of creep voids around particles will become possible. When the stress
concentration around the bigger precipitates is completely relaxed, it may be also possible
for the smaller particles to undergo the power-law creep relaxation. This is because when
the bigger particles loose their pinning to the sliding boundaries, the part of grain
boundaries surrounding them will resemble the segment which was originally free of any
precipitates. In this situation, the density of small particles has to be considered, which
may cause a characteristic scaling dimension smaller than their average size. When this is
true, the concentration of stress around precipitate particles can be relaxed by power-law
creep deformation. Therefore, it may be aiso possible to initiate void formation around
them. For example, in the case of the material with a solid solution treatment at 975°C,
the density of small precipitates is about 0.11 x 519/0.75 = 0.076 pm which gives a value
of A of 0.00015 um. This value of A is much smaller than the average size of small
particles (0.11 gm), suggesting that power-law relaxation can take place.

The proposed mechanism can explain (i) why the creep voids can be initiated
around precipitates at grain boundaries even though the matter diffusion around
precipitates is a preferred mechanism; (ii) why creep voids can be observed sooner or

latter around all the precipitates. The most important purpose of this discussion is to
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determine when is the relaxation of stress concentration around particles completed, i.e.
when does the grain boundary sliding start to contribute significantly to the total creep
strains?

Suppose that the stress concentration around particles is relaxed by power-law
créep deformation, then, the starting time for grain boundary sliding can be calculated by,
T= Ty + ATy +At,, ' The variation of 1 with the average density of grain boundary
precipitates is shown in Table 5.1. The value of t has been found to be 94.3 hour for the
material with a partial solid solution treatment at 9250C. The actual time that the
precipitates may pin the grain boundaries in this material may be slightly less than 94.3
hour. This is because the density of those precipitates that can undergo power-law creep
relaxation should be slightly smaller than the density of precipitates which is obtained by
an inclusion of all the particles at the grain boundaries. However, such a decrease in the
value of Az, ' should be minor since the smaller particles shares an insignificant fraction
of total density, although they greatly influence the value of average size of precipitates.
The secondary creep stage of material B tested at 6250C and 795MPa starts after about
15 hour and ends after about 40 hour( Fig. 4.14c). From Eqn. 5.8, it can be also noticed
that, Az, ' increases with an increase in grain size. This suggests that, with a same density
of grain boundary precipitates, grain boundary sliding can be delayed to a later stage of
creep if the material has a bigger grain size. Therefore, it may be safe to assume that grain
boundary sliding does not make a significant contribution to total creep strain in the
primary and secondary stage of creep at all grain size levels in the material with a second
solid solution treatment at 925°C.,

This assumption can be verified by examining the profile of creep curves illustrated
in Figs.4.30 and 4.31. When grain boundary sliding occurs, a negative dependence of
creep rate on grain size should be observed. In the material with clean grain boundaries,
the creep rate in the primary stage does decrease with increase in grain size. However, in

material B, the creep rate in the primary stage does not vary with grain size at all,
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indicating a non-occurrence of grain boundary sliding. In the secondary creep stage of the
material, the creep rate increases with an increase in grain size. This dependence is
opposite to the normally observed effect of grain size on creep rate due to grain boundary

sliding.

5.2.1.3 EFFECT OF INCUBATION TIME ON FRACTURE BEHAVIOUR

The suggestion that the critical time to start grain boundary sliding depends on the
precipitate parameters at grain boundaries can be also verified by the fracture
characteristics of the material presented in section 4.5.2. The correlation between the
calculated results and the experimental observations is given below in terms of crack

initiation, propagation and complete rupture.

Crack Initiation: It was found that wedge cracks formed at the triple points

of grain boundaries when a materials had either a very low precipitate density at grain
boundaries or clean grain boundaries. However, creep-void formed cracks on normal
boundaries were often observed in the material with high precipitate density at grain
boundaries. These observations are consistent with the calculated values given in Table
5.1, where it is seen that the time for which precipitates can effectively pin the sliding
boundaries are sharply decreased with a decrease in the density of precipitates at the grain
boundaries. Therefore, the concentration of shear stress at triple points of grain boundaries
will occur much earlier in the material with a lower density of precipitates at grain
boundaries than the material with a higher precipitate density at the grain boundaries. This
implies that, an increase in the density of precipitates at grain boundaries will increase the
incubation time for the initiation of a wedge crack at the triple points. This process is
schematically illustrated by a straight line marked 7, . in Fig. 5.5. On the other hand,
when precipitates act as a barrier to grain bouﬁdary sliding, the high concentration of

stress may cause the formation of creep voids, as is observed in Fig. 5.3. These creep
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voids may also grow and link up to form an unstable crack size. With an increase in the
precipitate density at grain boundaries, the time required-for voids to become unstable
cracks will also increase. This is because the higher the density, the value of the shear
stress shared by each precipitate is reduced and a longer time is needed for the growth of
such voids. This creep void-induced crack forming process is presented by a straight line

denoted by ¢,_, in Fig. 5.5.

Creep time or Creep Strain

Particle Density at Grain Boundaries

Fig. 5.5 Schematic diagrams illustrating the dependence of creep time or creep strain on

particle density at grain boundaries.

The ¢, , line intercepts the #,_, line. The intercept delineates the process of
wedge-crack initiation at a triple point of grain boundaries and that of void-crack
development on normal grain boundaries, i.e. wedge cracks are dominant in the material

with lower density of precipitates at grain boundaries, while void-formed cracks might be
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associated in the material with higher density of precipitates at grain boundaries. This is

exactly what has been observed in Fig. 4.29.

Crack Propagation: After the crack has been initiated, its propagation will take
place. The wedge cracks in the low density region will propagate in a way like a wedge
chiseling into the openings. Therefore, the stress normal to the grain boundaries, and the
bonding strength between the grains that may determine the propagation process. The
presence of precipitates, which introduced creep voids around them, will actually weaken
the bonding strength of the two grains in a direction perpendicular to the boundary. As a
result; the propagation process can be accelerated with an increase in precipitate density at
grain boundaries. This process is demonstrated by the ¢,_, line in Fig. 5.5.

In contrast to the propagation of a wedge crack, the propagation of void-formed
cracks on a normal boundary may depend on the magnitude of the shear stress acting on
individual cracks and the resistance to the propagation in the sliding direction of a grain
boundary. It is believed that, an increase in precipitate density at grain boundaries, will
decrease the shear stress available to act on the propagating cracks, and may also increase
the resistance for propagation. Both these factors will decelerate the propagation process,
as indicated by ¢,,_,, line in Fig. 5.5.

The above analysis of the manner in which the state of stress controls the crack
propagation process, depending upon the nature of the crack can be verified by the
examination of fracture surfaces shown in Fig. 4.28 and Fig. 5.6. For example, the material
with the lowest rupture time has been identified to fracture by the propagation of wedge
cracks. Its intergranular boundary facets are scattered with the precipitates and cavities
with shapes similar to those of the precipitates that have been pulled out from the surface.
Indications of deformation around the precipitates as well as on the grain boundary surface
are not evident. This is also true for the material with clean grain boundaries, in which the

trace of slip lines due to the deformation of grain material are well preserved. In contrast
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to this, the material which is suggested to have fractured by the propagation of void-
formed cracks shows massive deformation on the grain boundaries, which must be by a

stress acting in the plane of the grain boundary surface.

Fig. 5.6 SEM photos showing the microstructure on the intergranular surface of the

material with a precipitate density at grain boundaries of 67% and 45%, respectively

The Complete Rupture Process: The complete rupture process, as

represented by a solid line in Fig. 5.5, includes both the initiation and propagation process.
In the low precipitate density region, an increase in the precipitate density at grain
boundaries may increase the time needed for wedge cracks to develop, but will shorten the
propagation process. For example, the material with clean grain boundaries or with a small
amount of precipitates on them may require a shorter time to initiate wedge cracks, but
may need a longer time for them to propagate because of the smaller amount of damage
caused by the smaller precipitates at the grain boundaries. This will reduce the total
rupture time. When the grain boundary precipitate density is relatively high, the unstable
cracks on normal boundaries can develop earlier than wedge cracks at triple points, and
the propagation process will rely on the shear condition along the grain boundary and

increase the overall rupture time as the particle density is increased further.
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5.2.2. CONTRIBUTION OF GRAIN BOUNDARY SLIDING TO
TOTAL CREEP STRAIN

In material B, grain boundary sliding can be inhibited in the earlier stage of creep.
However, this does not mean that grain boundary sliding can not occur at all during the
whole course of creep deformation. In fact, grain boundary sliding will resume when the
concentrated stress around precipitates is relaxed. However, the contribution of
deformation by the sliding to the total creep strain might be smaller than in the material
without any precipitates on grain boundaries. This is because the presence of precipitates

will change grain boundary viscosity which is given by[119, 128]
P 2
Mg = UBOVf[E} (5.12)

where, #y, = kT /86D, is the intrinsic viscosity of a flat grain boundary, b is the atomic size,
and Dy is the grain boundary diffusion coefficient, p is the diameter of particles.
The grain boundary viscosity is related to the grain boundary sliding displacement

U, throughl128]

U,, = [;"LJ (5.13)

where w is boundary thickness typically twice the atomic size.

The maximum contribution of grain boundary sliding to the total creep rate is

[128]
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Substituting Eq.5.12 into Eq.5-14, gives

— 2
pe = .*i__f..i(ﬁj (5.15)

Eq. 5.15 indicates that with an increase in particle size or volume fraction of
particles, the maximum contribution of grain boundary sliding to total strain rate will
decrease.

In the material with clean grain boundaries, grain boundary sliding should
contribute significantly to the total creep strain during the course of all the vartous creep
stages. From creep curves shown in Fig.4.30, it is seen that, the creep rate in primary
stage increases with a decrease in grain size. The difference in creep rate in the material
with different grain sizes is magnified in creep curves presented by creep rate versus creep
strain plots as compared to creep rate versus creep time plots (Fig.4.30a).

Langdonl126] has indicated that the dependence of grain boundary sliding rate
should be determined at the same condition at which the same grain deformation is
obtained, since creep resistance of grain material does not vary with grain size. At the
same applied stress, it might be appropriate to assume that approximately the grain matrix
of the material A with different grain sizes has been subjected to the same amount of
deformation after a given creep time and at the same applied stress. With this assumption,
the creep rate in the primary stage of the material with different grain sizes is plotted
against the grain size in Fig. 5.7. It is seen that the creep rate varies with grain size by an
exponent of about 0.5 or less. This dependence of creep rate on grain size is smaller than
that observed in most other cases.

In the secondary creep stage of material A, creep rate is observed to be nearly

independent of grain size (Fig. 4.32). This might not be because the grain boundary sliding
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does not occur during this stage. Instead, an alternative process might be in effect. One
possible process could be the positive dependence of minimum creep rate on grain size,
which is observed in the material ( material B) in which grain boundary sliding does not
occur during this stage. The negative grain boundary sliding rate with grain size may be
balanced out by the positive dependence of creep rate of grain material on grain size. The

net result is an insignificant influence of grain size on the total creep rate.
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Fig. 5.7 Dependence of creep rate in primary stage on creep time in the material with

clean grain boundaries
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The second possibility is that, cracks may initiate earlier in the material with larger
grain size. The observed secondary creep rate.of a material, then, may reflect the creep
rate at the creep time (or strain) at which the further decrease in creep rate in primary
stage with creep time or creep strain is interrupted by the occurrence of tertiary stage. The
creep rate of material A in primary stage is observed to decrease with increase in grain size
(Fig. 4.30). However, the tertiary stage does start earlier in the larger grained materials.
Both factors, then, may result in an observed minimum creep rate virtually insensitive to
grain size (Fig. 4.32).

However, if the tertiary stage does not start earlier in the material with larger grain
size, the further decrease in creep rate in primary stage may be caused by either the
increase in work-hardening of grain material or the decrease in the contribution of grain
boundary sliding to total creep strain. The former may be impossible since the strain
needed to reach the steady state stage for grain material is believed to be very low. Then
the occurrence of the latter process suggests that the rate of grain boundary sliding
continues to decrease even when the steady-state stage of creep in grain interiors is
reached.

This analysis suggests the following which may be helpful in determining the actual
dependence of grain boundary sliding rate on grain size.

(i) The amount of deformation by grain boundary sliding decreases with an
increase in creep strain or creep time, even though a steady-state creep stage for grain
interior is established. This means, the ratio, &= £g5s/ &5, Which is often used to determine
the dependence of sliding rate on grain size and applied stress (refer to Chapter Two ), is
not constant.

(i) There is no evidence showing that there is a steady state stage for grain
boundary sliding. This suggests that no unique equation exists to describe the grain

boundary sliding in a material.
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5.3 GRAIN BOUNDARY DEPENDENT CREEP
BEHAVIOUR

5.3.1 THEORETICAL BASIS

The above discussion suggests that grain boundary sliding may not occur in the
carlier stages of creep in a material with precipitates at grain boundaries, However,
significant differences exist in the two types of materials, with and without precipitates on
the grain boundaries. These differences do not seem to be able to be bridged on the basis
of the differences in the grain boundary sliding. In this respect, the following two points
should be noted.

(i) Material with precipitates at grain boundaries shows a much higher creep rate
than the material with clean grain boundaries. Firstly, this observations can not be caused
by a reduction in grain strength due to the formation of grain boundary precipitates since it
contradicts the results (Fig. 4.10 ) that the secondary creep rate does not vary with the
strength of grain material in terms of the size of y" precipitates. It should also be noted
that as the grain size increased, the total surface of the grain boundary is reduced in a
larger grain material. Such a material will have fewer total number of precipitates,
provided the density of the precipitate particles does not change. In such a situation, the
amount of solute atoms available for the precipitates to form within the grains will
increase. This will increase the strength of the grains of the material. This should reduce
the creep rate, however, this is not observed in larger grain material. Secondly, this
observation should not relate to grain boundary sliding, since creep rate of the material is
increased with increase in grain size (Fig. 4.32).

(ii) The back stress of material B was observed to depend on the applied stress and

grain size, which should not be influenced by grain boundary sliding,
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Besides the grain boundary sliding which depends on the size and interparticle
spacing of grain boundary precipitates, it is clear that the deformation of grain boundaries
in material B must also contribute to total creep rate through a mechanism which might be
independent of grain boundary sliding. To determine this mechanism, it is better to
distinguish the deformation due to grain boundary sliding from the deformation due to an
unknown alternative grain boundary deformation mechanism. The characterization of
grain boundary sliding in material B shows that, when this material was partially solid
solution treated at 925°C for one hour, the precipitates that were introduced at grain
boundaries could delay the grain boundary sliding to the end of the steady state creep
stage. Therefore, in this material, grain boundary sliding may be ignored, and creep rate
will be determined by the deformation of grain interior and by the deformation of grain
boundaries which occurs by a mechanism that needs to be determined. Due to this reason,
material B in the following section (except where specifically indicated), refers only to the

material which was given a second solid solution treatment at 925°C for one hour.

3.3.1.1 BASIC CONSIDERATION

It is generally believed that in polycrystalline materials the applied stress is
uniformly distributed throughout the grain material at a level equal to the macroscopic
value of o,. When the deformation inhomogeneity is considered the concept of uniformly
distributed stress may not hold true.

Mayers and Ashworth[211] proposed that the yield stress dependence of grain size
is due to the elastic incompatibility stresses at the grain boundaries. They divided the
process of yielding into three stages. In the first stage (prior to microyielding) ( Fig.5.8a),
the differences in elastic properties arising from the elastic anisotropy of adjacent grains
establish localized stress concentration at the grain boundaries. In the second stage the
stress concentration at the grain boundaries results in a localized plastic flow. This marks

the onset of micro yielding. The dislocations do not propagate throughout the whole grain
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because of cross-slip induced by the difference in orientation between the maximum shear

stress (due to the applied load) and the stress concentration caused by plastic

incompatibility. The work hardened grain boundary layer has a flow stress O g, While the
bulk has a flow stress o ( o453 > o ). The material behaves, at increasing applied loads,

as a composite made out of a continuous network of grain -boundary film with flow stress

op and of discontinuous ' island ' of bulk material with flow stress op. The increasing
applied stress o, does not produce plastic flow in the bulk, in spite of the fact that o, >
o, because the continuous grain boundary network provides the structure with rigidity
(Fig.5.8b). The total strain in the continuous grain-boundary network does not exceed
0.005, since it is elastic; hence plastic deformation in the bulk is inhibited. This situation is

termed plastic incompatibility.
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Fig. 5.8 Sequence of stages in polycrystalline deformation, starting with (a,b) localized
plastic flow in the grain-boundary regions ( microyielding), forming a grain-boundary
work-hardened layer (c, d) that effectively reinforces the microstructure, and leading to

(e, ) macroyielding in which the bulk of the grains undergo plastic deformation[211],




In the third stage, when the applied stress is such that the stress in the grain
boundary region becomes equal to oy;,, plastic deformation re-establishes itself in this
region. The plastic deformation of the continuous matrix result in an increase in stress in
the bulk with plastic flow (Fig. 5.8c). This marks the onset of macroyielding. After a
certain amount of plastic flow, dislocation densities in the butk and grain -boundary
regions become the same. Since both regions have the same flow stress, plastic
incompatibility disappears and o, = o, = o, ( Fig 5.8f).

During creep deformation conditions, applied stress is usually less than the
macroyielding stress. This means, the elastic and plastic incompatibility will exist in the
grain boundary region when the load is fully applied. Since the applied stress is constant,
the third stage as described by Mayers and Ashworth[211] will not appear. That is, the
elastic and plastic incompatibility will remain in the grain bou_ndary area unless some other
process may take place to attenuate the stress concentrations in the grain boundary

regions.

(b}

Fig, 5.9 Intergranular substructures developing: a) at high strain rates and/or low
temperatures; b) at high temperatures and/or small flow rates where recovery processes

are importam(170]
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During the creep deformation, the incompatibility can be attenuated by the
diffusion controlled deformation processes, which might involve either the vacancy
transportation or dislocation annihilation depending on the level of applied stress and
testing temperature. When the test temperature or the applied stress is relative low, the
developed incompatibility at the moment of the application of stress may exist for a quite
long time. Opposite to this, the incompatibility may disappear very quickly after the stress
is applied. An example of this is shown in Fig. 5.9(170] Fig.5.9a corresponds to the
intergranular substructures developed at high strain rates and/or low temperatures, while
Fig. 5.9b shows the intergranular substructures established at high temperatures and/or
small flow rates where recoifery process is important. Since the subgrain is a reverse
function of applied stress, it can be seen that, the applied stress at grain boundaries in
Fig.5.9a must be higher than in the grain interior. This will be opposite in Fig.5.9b.

When the incompatibility is relaxed, the applied stress can be uniformly distributed
throughout the material. This will be similar to the third stage under tensile testing
condition although the former was achieved by increasing the applied stress.

Even the type of incompatibility described by Mayérs and Ashworth can be relaxed
very quickly and very effectively. Similar incompatibility may be created in the course of
creep around the grain boundary region or even in the grain interior: (i) when grain
boundary has precipitate particles on it, the tendency of grain boundary sliding will
produce stress concentration around these particles. If the precipitates at grain boundaries
are so dense that concentrated stress field around each particle can overlap with that from
its neighbours, the material may be considered to consist of a hard layer around grain
boundaries and soft region in the grain interior. The applied stress will then be
heterogeneously distributed. This might be true for material B since it has a very high
density of grain boundary precipitates and the relaxation of concentrated stress occurs
over an appreciable period of time; (ii) The incompatibility can be created in the material

that can form subgrains. In these type of material, the concept of hard region of sub
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boundaries and soft region of subgrain interior was introduced by Nix and Ilshner[212]

and was experimentally verified by Morris and Martin.also[213, 214],

3.3.1.2 QUANTITATIVE DESCRIPTION OF HETEROGENEITY OF APPLIED
STRESS

1. NIX AND ILSHNER'S CONSIDERATION

Nix and Iishnerl212] believe that the existence of cellular or subgrain structure

reflects a heterogeneity in dislocation distribution in the crystal. The regions of dislocation

walls contain a high dislocation density p,,, while dislocation density inside the cells or
subgrains, p, is relatively low. Thus, the local glide stresses 7,, and 7, corresponding to
these dislocation densities must also be different. A condition of compatibility of
deformation in both regions under the applied (shear) stress requires that

Ty = TG (¥ pre = ¥ ptow) (5.16)
and that

7o = T=Gf (¥ pre = ¥ piw s | (5.17)
where f, and f, are the glide plane area fractions of walls and cell interior, respectively
such that (f,+ £,=1), and Yt~ 7 pise 18 the plastic strain mismatch between the cells and
the walls. As y,,. > 7, the local shear stress within the walls is higher than in the cell
interior, i.e., 7, > 7,. This is why the walls are called hard regions and the cell interior soft
regions. The stress 7, acting in the hard regions is higher than the applied stress, and
stress 7, acting in the soft regions is smaller. The compatibility of deformation in the hard
and soft regions is provided by dislocations generated at the interface between the regions.
These dislocations accommodate the mismatch of the elastic strain and act as sources of
long-range internal stresses. The sub-boundaries, forming during creep at homologous
temperatures higher than about 0.4, are frequently represented by planar dislocation

networks near to the low-energy structure of ideal tilt and twist boundaries. In such
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substructure, the long-range internal stresses may appear due to elastic bending of sub-
boundaries under the applied stress. Gibeling and Nix[215] approached this problem by
computer simulation. Their results are shown schematically in Fig. 5.10. Again, the stress
near the sub-boundaries ( hard regions ) is higher than the applied stress and it is lower in

the subgrain interiors ( soft regions ).
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Fig. 5.10 A model of the internal stress due to elastic bending of sub-boundaries: t? is

the internal stress field of sub-boundaries; because of ©° the local stress - v.% is high at

the sub-boundaries and low in the subgrain interior[215],

Morris and Martinf213, 214] measured the local stress in the vicinity of
subboundaries and found it to increase with strain in primary creep ( Fig. 5.11). This
supports the concept of the long-range internal stress resulting from the inhomogeneous
distribution of dislocations in the hard and soft regions. The local stress is related to sub-
boundary mesh size which depends on dislocation density stored in the sub-boundary and

is a function of the applied stress and temperature. Morris and Martin also considered hard
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and soft subgrains in an effort to take into account further inhomogeneities in the

dislocation density and microstructure within a specimen.
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Fig. 5.11 Variation of the local stress with distance from a sub-boundary for different

creep strains; Al-11Zn solid solution alloy crept at 523 K and 8 MPal213],
Although these investigators indicated the existence of heterogeneities in the

applied stress, the actual partitioning of the applied stress to different regions has not been

given. This will be the purpose of the following discussion.

2. PARTITIONING OF APPLIED STRESS BETWEEN THE GRAIN

BOUNDARY AND THE GRAIN: BASED ON HALL-PETCH

RELATIONSHIP

The Hall-petch relationship gives

o, =0, +k/Jd (5.18)
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where o, is the yield stress, o, is a frictional stress required to move dislocations, d is the

grain size, k is a constant.

Let o, = k/v/d, Eqn. 5.18 then becomes

o, = 0, +0y (5.19)

Eq. 5.19 indicates that the yield stress is due to the strength of grain material and
the strength of grain boundaries. For a given microstructure of a material, the ratio f

between o, and o, is given by

f=2e=2e /7 (5.20)

o, &k

where f can be considered as a microstructural constant although k varies with

deformation strain.

When a stress o, is applied to the very same material, the elastic and plastic
incompatibility as proposed by Meyers and Ashworth{211] will cause the applied stress

heterogeneity. Assume the applied stress shared by all the hard region of grain boundaries

is 0, and by all the soft region of grain interiors is o, . The total applied stress can be

expressed as
Cc,=0,+0, (5.21)

It might be reasonable to believe that the ratio of o, and o, £, is similar to the

ratio f as defined in the tensile test conditions, that is,
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f:fzzzf:%.ﬁ (5.22)

Oap

a

For a given microstructure and at a given temperature, o, and k are constant.

These may define a new constant R

2 =R =2 (5.23)

where d, is a constant which defines a special grain size aspect of the microstructure of a

material. Substituting Eqs. 5.22 and 5.23 into Eq.5.21, results in

o =t (5.24)
1
+1

Rd

1
O, = — 5.25
@ = 21 (525)

The Hall-Petch relation can be also obtained from Eq.5.24. The macroyielding is
observed when the applied stress within the grain interior is equal to the frictional stress
experienced by a moving dislocation, o, that is,

o,, =0, = ———0, (5.26)

In this situation, the total applied stress will be the yield stress. From Eqns. 5.26

and 5.23, it is given by:

k
O, =0, =0, +—e= 5.27
¥ a g, \/&_ ( )
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which is identical to the Hall-Petch relation given in Eq. 5.19.

Eqgs.5.24 and 5. 25 indicate that the stress shared by all the grain interiors and by
all the region of grain boundaries is only a fraction of the applied stress. It should be noted
that o, and o, are not the actual applied stress acting in the region of the grain interior
and in the region of grain boundaries, respectively. The actual stress acting in the
individual region may have to consider the effect of area fraction of each region.
According to the " law of mixture" for composite materials, the actual stress acting in each

region can be given by:
o,=4,0,,'+4,0,' (5.28)

where o,,'=0,,/A, is the actual stress acting in the region of grain interior, and

a.

26 = O/ A, 18 the actual stress actipg in the hard region of grain boundaries. 4, and 4,

are the area fraction of grain interior and the grain boundary, respectively. Both area

fractions have been estimated by Meyers and Ashworth[211] and are given by:

2
A, =(—d—df—’) (5.29)
d? —(d-21)*
4, = ——(dz——)— (5.30)

where 7 is the thickness of grain boundary. Since d>>t, Eqs.5.29 and 5.30 can be

simplified to:

A =1 - (5.31)



A== (5.32)

0= 0 =——0, (533)
—=+1
RJd
d 1
"= — 5.34
Uab 2 R‘\/C—i-'i'] Ja ( )

2. PARTITIONING OF APPLIED STRESS BETWEEN THE GRAIN

BOUNDARY AND THE GRAIN: BASED ON THE DEFORMATION

BEHAVIOUR OF HARD AND SOFT REGION

Eq. 5.33 and 5.34 can also be developed based on the deformation behaviour of
hard regions of grain boundaries and soft regions of grain interior.

Assume that a grain has a cubic shape( Fig. 5.12), it is subjected to a tensile stress,

0, and the grain boundary has a thickness of #. When stress is applied to the grain, it may

have:

F,=2F+F, (5.35)

where Fg is the force acting in the whole grain , Fj, and F,, are the forces acting in the
region of grain boundary and grain interior, respectively. The stress acting in each region

can be written as

o d=20,1+0,' (d-21) (5.36)

or
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Fao=(d"2t)c ao'

Fab =tGab'

< d-2t —

Fig. 5.12 Diagram showing a cubic grain with a diameter of d
and grain boundary thickness of 2t is applied with a

stress G 4




e +fi—;ﬁaao' (5.37)

Under creep conditions, the applied stress is less than the macroyielding stress.
This means plastic deformation does not occur in the grain interior, therefore, the stress

acting in the region can be given by

o, =E( al ) (5.38)

d-2t

where E is Young' modulus of the grain interior, A/ is the elongation of the grain material
corresponding to stress o, . Unlike the situation in grain interior, plastic deformation has
occurred at grain boundaries. The relation between the stress acting in the grain boundary

region and the strain that occurs can be written as:
A2
aab'zK(———) (5.39)

where K is a constant which varies between G/100 and G/1000. Eq. 5.39[216] has been
one of the most commonly used equation during the last few decades to describe the
stress-strain curve of polycrystalline metals. A//d is the total strain which includes the
elastic and plastic deformation in the grain boundary region. In addition, A//d should be

equal to the total strain in the material. This is the condition required by Eq. 5.39.

The ratio between o,,' and o, can be written as

O, E1 %
p-o (1) (541
A

o
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Let R'= E/(X/Al), then

o, 1
a0 = RI
O-ab' (\[G—i)

Substituting Eq. 5.41 into Eq. 5.37, gives

Let

O-GO = 1 O’a
4]
RJd
o '-—(—d—)——l o
@ “\2t)RJd+1 °

(5.41)

(5.42)

(5.43)

(5.44)

(5.45)

(5.46)
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Eqns. 5.45 and 5.46 are absolutely identical to Eqs 5.33 and 5.34, both of which
were developed from Hall-Petch relation. By modifying the expression for R, it is possible

to obtain the Hall-Petch relationship from Eq. 5.45. Eq. 5.44 can be re-written as:

(5.47)

Macroyielding will begin when the stress within the grain interior is equal to the

frictional stress experienced by a moving dislocations, c,, therefore,

E(ﬂ) =0,=0,, (5.48)

At this stage, the macro-applied stress will be the yielding stress. Let Alld = & and
if the assumption of Meyers and Ashworth that t:~21— d is accepted, then Eq. 545,
a

becomes

o, =0, +k71_5 (5.49)

where

k=—Kg? (5.492)

1
Eq. 5.49a) indicates that the value of k in the Hall-Petch relation depends on aé.
This observation has been experimentally observed and theoretically verified by several

researchers[ 1741,
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3.3.2 CORRELATION BETWEEN PROPOSED MECHANISM AND
EXPERIMENTAL RESULTS

5.3.2.1 ON THE CREEP RATE DEPENDENCE

In material B, particularly when it was given a second solid solution treatment at
9259C for 1 hour, the distribution of precipitates at grain boundaries is such which can
cause a continuous layer of concentration of stress for a long time. This will cause the
material to have a situation which is similar to that described in the previous section, that
is, a strong work-hardened grain boundary region, and a relatively soft grain
interior(which is not hardened). As indicated by Eqns. 5.33 and 5.34, the total applied
stress is divided into two parts. Therefore, it might be reasonable to assume that it is the
applied stress that is actually acting in each region which will be responsible for its

deformation.

1 IN THE MATERIAL WI’i‘H CLEAN GRAIN BOUNDARIES

As discussed earlier, when the stress is applied to a material, the elastic and plastic
incompatibility could build around grain boundaries at the very beginning of creep
deformation. However, this incompatibility could be eased quickly by the diffusion-
controlled deformation. When this happens, the applied stress would be distributed
uniformly throughout the material, and the actual stress every where would be equal to the
macro applied stress. Under these circumstances, the creep resistance of the material will
be due to the microstructures of grain interior and the grain boundary could contribute an

additional deformation to the total creep strain only by sliding along each other.
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2 INTHE MATERJAL WITH PRECIPITATES AT GRAIN BOUNDARIES

(1) Deformation Contribution By Grain Interior: The deformation of
grain interior of material B may depend on two factors, i.e. its microstructure in terms of
precipitate distribution parameters, and the actual stress applied to the grain interior.

a) The Microstructures: In material B, precipitates at the grain boundaries

may consume some y" + y'-forming elements, resulting in a reduced strength of the grain
interior, therefore, causing a higher creep rate. This consideration, probably, can only
partly explain why creep rate in material B is always higher than that observed in material
‘A. This is because when the material B was heat treated to have the same microstructure
at grain boundaries but different within the grains, its steady-state creep rate still did not
vary with the strength of the grain material ( Fig. 4.10)

(b) The actual stress applied to the grain interiors:  As presented in Eq. 5.33, the

stress actually applied to the grain matrix of material B is less than the macro applied
stress by a factor of [1/ (1/ RJd +1)]._ The results presented in Fig. 4.10 are from various

specimens of the material which have the same grain boundary microstructure including
precipitate parameters, and the same grain size. The only difference is the strengthening

state of the grain interior. Therefore, the only variable that could influence the value of the
factor [ 1/ (1/ RJd + 1)] is R—the ratio between o, and k. With an increase in the strength

of grain material, it is believed that the value of o, will increase and the value of k will

decrease. For example, with the same grain boundary microstructures, the Hall-Petch

| relationship is observed to be,

o, =122.6+963. 7(%)”2 (5.50)

when the material interior is free of precipitates. However, when the same material was

aged at 7259C for 25 hour, the Hall-Petch relationship became:
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o, = 726+689(21i—)”2 (5.51)

Eq. 5.50 and 5.51 yield a value of R equal to 0.127 z™¥? and 1.05 pm V2
respectively, and the critical grain size corresponding to these values of R are about 61.8
pm and 0.9 gan, respectively. Therefore, the value of R will increase with an increase in
strength of grain interior. The increase in R(or decrease of d,) will increase the actual
stress that is applied to the grain interior. This will cause a higher creep rate. Suppose that
the critical grain size is decreased to about 0.1 um in the material with an ageing treatment
at 7259C for 50 hours. The creep rate, caused by the change in d, can be estimated. This
is shown in Table 5.2, in which the material with a grain size of d=59 pm is supposed to
be tested at 770 MPa. As listed in Table 5.2, it is found that a substantial increase in both
the actual stress applied to the grain interior and the creep rate due to the grain interior
occurs. This increased applied stress in the material with higher strength state causes the
creep rate to be 2.7 time higher than that is observed in the material which was aged at
7259C for 25 hours. At the same macro applied stress, therefore, a decrease in creep rate
due to an increase in strength of grain material may be balanced by the increase in creep
rate due to an increase in actual stress applied to the grain material. As a result, the
secondary creep rate of the material with a different grain interior strength can remain
constant. As shown in Fig. 4.10, the secondary creep rate of material B is indeed not
influenced by the size of ¥" when the material was heat treated to have a size of y" from
about 17.3 to 26.2 nm. Beyond this range of y"-size, the creep rate was observed to either
increase or decrease in a way similar to material A ( in which grain boundaries are free of
precipitates ). This is because the applied stress in these regions is beyond the yield point
of the material. When this happens, the third stage as proposed by Mayers and

Ashworth[211] can be reached. In this stage the elastic and plastic incompatibility can
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disappear, which will lead to an uniform distribution of applied stress. As a result, the
creep rate dependence of y"-size similar to that observed in material A should be observed.
The yield stress of material B is plotted against the size of ¥" in Fig. 5.13. It can be seen
that when the size of ¥" is 14.6 and 29.5 nm, the yield stress of both the materials is below

or about the level of the applied stress (770 MPa).

Table 5.2 Variation in stress factor for grain material with dp

1 1 1
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d, i 1 1 1 G4 (“'1—:) Increment in
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Jd/\4, ‘/3/ Jd, v/ \d, creep rate
I um 0.89 685.4 MPa 0.22 1
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Fig. 5.13 Variation of yielding stress with y"-disc diameter



It should be also noted that, the creep rate of material B with a y"-disc diameter
less than 17.3 nm or bigger than 26.2 nm is also higher than that of material A which has a
similar size of y". This probably is caused by a decrease in the strength of grain material,
due to the formation of grain boundary precipitates. However, the increase in creep rate in
material B due to this reason might be only minor. This can be seen by comparing the
difference in creep rate in the region in which both materials show a same dependence of
creep rate on y"-size, with that in the region where creep rate is virtually independent of

y"-size

(2) Deformation from grain boundaries: In the previous discussion, it
has been indicated that the actual stress applied to the grain interior of material B is less
than the full amount of applied stress, which should give a creep rate much smaller than
that of material A, even if a reduced strength in the grain interior of material B due to the
formation of grain boundary precipitates is considered. However, a much higher creep rate
was always observed in material B. Therefore, the contribution to deformation from grain
boundaries may have to be taken into consideration. According to Eq.5.§4, the
deformation at grain boundaries depends on two factors, (i) the strength of grain material
and (2) the grain size. The thickness of grain boundary is assumed to be a function of grain

size, therefore, it can be considered together with grain size.

Table 5.3 Variation in stress factor for grain boundaries with dy

1 1 1 5
Lo TG Jagg e Sager
0.9 um 0.11 84.6 MPa 3.4x107"

0.1 pm 0.04 30.4 MPa 5.7x107Y




Effect of the strength of grain material: Similar to the analysis of stress acting

in the grain interior, the actual stress acting at grain boundaries also depends on the value
of R. With an increase in grain material strength, the stress acting at grain boundaries

should be smaller, which should contribute less to creep rate. This is opposite to the effect

of grain interior strength on o,,'. However, due to d >>d_, the stress factor I/ (R-\/E + l)
for a,,'is very small as compared to the stress factor for grain interior. This can be seen

from the results of calculation presented in Table 5.3 in which the same common
parameters were used as those used for calculations presented in Table 5.2. Even if the
stress factor is magnified by d/2t (Eq.5.34), the obtained stress is still much smaller than
stress concentration, which is believed to be about 10-20 times the applied stress.
Therefore, the local stress in grain boundary region is insignificantly influenced by the
value of R. This means the grain boundaries contribute an amount of deformation which is
irrespective of the strength of grain material ( this is true only in the situation where the
total applied stress is less than the flow stress of a material ).

Effect of grain size: The thickness of grain boundaries is assumed to be a

function of grain size, which can be expressed by[211],

(=L g7 (5.52)
2¢

Substituting Eq. 5.52 into Eq. 5.34 and accepting the fact that Rvd >> 1, Eq.5.34

can be re-written as:

Oy = 8 (5.53)
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which indicates that the contribution of grain boundary deformation to total creep strain is

not influenced by grain size.

(3) Dependence Of Creep Rate On Applied Stress: The previous
discussion simply indicates that the deformation of grain boundaries may contribute to the
total creep strain. However, the amount of this contribution in the material used in this
study is either influenced insignificantly by the strength of grain material, or is simply
independent of the grain size. Therefore, the observed creep rate is suggested to be
exclusively a function of the creep resistance of the grain material and the stress actually
acting in the grain interior. The balance between these two factors results in the
observations shown in Fig.4.10. When the effect of grain size is considered, the difference
in the variation in creep rate with grain size, will be exclusively a result of the difference in
the actual stress applied to grain interior, which is determined by Eq.5.33. It is found that
when d, is assigned a value of about 0.37 pm, the creep rate obtained in the material B

with different grain sizes can be represented by a single creep equation. Table 5.4 shows
the applied stresses modified by the factor 1/[(1/}%./3 )+1}: The creep rate is plotted against

the modified applied o,,' in Fig. 5.14. It is seen that, the creep rate obtained at different
stress levels in all the materials with different grain sizes is exclusively dependent on the
actual applied stress o,,'.

The critical grain size &, used in the calculations shown in Table 5.4 is a little
smaller than the value experimentally determined ( refer to Eq. 5.51). Causes for this are
suggested below:

(a) The value k is found to be a function of strain, as indicated by Eq. 5.49a).
Under the creep conditions, the steady state creep stage normally starts before 0.2 %
strain. This means, the actual value of % under creep conditions could be much smaller,

which will result in a smaller value of d,.
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Table 5.4 Modification of applied stress by the stress factor given in Eq 5.33

Grain Size (1m) o, (MPa) cra/ [ff— + 1) (MPa) £(S™H

175 822.2 786.2 3.15x1078
797 762.2 2.2x107%

770 736.3 1.24x107®

135 747.3 710.3 6.7x10™°
771.8 733.6 1.11x107°

90 770.0 723.8 9.0x107°
796.7 748.9 1.45x1078

820.9 771.7 2.27x1078

59 745 690.6 4.5%107°
770.0 713.8 7.8x107°

794.7 736.7 1.2x1078

819.8 759.9 2.0x107%

* d =0.37um
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(b) The creep rate is normally much smaller than the strain rates used in normal
tensile testing. This slow rate will permit the hardened grain boundaries to undergo
relaxation, which in turn, may reduce the degree of work-hardening. As a result, the
critical yield stress of grain boundary material r,, will be reduced. This will also reduce the

value of k, since it is found that it is proportional to /2.

(4) Dependence Of Creep Rate On Grain Size: The change in creep
rate with grain size under the same applied stress can be predicted from Eq. 5.33. As

discussed earlier, the creep equation for material B can be written as:

' \13
. o,
= A —2- 5.54
¢ ( G ) (5:34)
That is,

. 1 e c, B

13
The values of [1/ (l/ RJd +1)] are calculated from Eqn. 5.55. These values are

then plotted against the grain size as shown in Fig. 5.15. In this figure, the slope of the
predicted curve is observed to be very close to the slope of the best fitting plot obtained

from the experimental results

(5) Dependence Of Creep Rate On Creep Strain : In contrast to material
A, the creep curve observed for material B is characterized by an extended steady state
creep stages. These observations can also be related to the balance between a decreased
creep rate due to an increase in the strength of grain material and the increased applied

stress to the grain interior due to an increase in the value of R. The increase in the strength
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of grain material is due to an increase in work-hardening due to the deformation that
occurred in the grain interior. Therefore, the steady state creep stage may start even when

the maximum work-hardening of grain interior is not reached.

(6) Dependence Of Creep Rate On Density Of Grain Boundary Precipitates: A high
density of grain boundary precipitates, will cause the formation of a continuous work-
hardened layer around the grain boundaries, which will prevent an uniform distribution of
applied stress. Because of high local stress, grain boundaries will contribute a significant
amount of deformation to total creep strain, which will be more than enough to
. co»mpensate for the decrease in creep rate of grain interior due to the decreased applied
stress in the grain interior. When the precipitate density is decreased, the material will
behave more like the material with clean grain boundaries. This is because a) the
precipitates may not form a continuous hardened layer in the region of grain boundaries,
which will eliminate the heterogeneity in applied stress; b) the stress concentration can be
relaxed more quickly and effectively, which will be able to contribute an extra amount of

deformation to total creep strain.

5.3.2.2 ON THE ORIGIN OF BACK STRESS

By the consideration of the concept of hard and soft regions within a matériai, the
origin of back stress can be also treated differently. In the material with clean grain
boundaries, the stress acting on the grain material is equal to the applied stress, and the
back stress is the applied stress at which the dislocations are just able to cut through the
precipitates in their glide planes. Tilat is to say, the back stress is a function of the
microstructure of the grain material. |

In contrast to material A, the back stress of material B with precipitates at grain

boundaries could be influenced by two factors. That is, microstructure of the grain interior
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and microstructure of the grain boundaries. These two situations are considered separately

next.

1 THE ORIGIN OF THE BACK STRESS DUE TO THE
MICROSTRUCTURE OF THE GRAIN INTERIOR
Similar to the situation in material A, if the back stress is considered to be the

applied stress above which dislocations can cut through particles, then

Opp = O,,'= 7 1 o, (5.56)
1
R;d *

Under these circumstances, the remaining applied stress will be the back stress for the

material. That is:

o {Elﬁ“}”m (5.57)

Eq.5.57 indicates that, the back stress of material B will be always greater than
that of material A, and the back stress will decrease with an increase in grain size. These
two conclusions are obviously in contradiction to what has been observed in material B.
Therefore, back stress of material B may have to be related to its microstructure at the

grain boundaries.

2 THE ORIGIN OF THE BACK STRESS DUE TO THE
MICROSTRUCTURE OF THE GRAIN BOUNDARIES

According to Nix and lishner( Fig. 5.10)[212= 215] the local stress is high at sub

boundaries, and decreases to a negative value towards the center of the subgrains. The

actual local stress at subboundaries is the sum of applied stress and internal stresses. The
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actual local stress fn grain material, however, is the difference between the applied stress
and local stress. Introducing this concept to material B, the internal stress at grain
boundaries can be related to the concentrated stress around particles due to the tendency
of grain boundaries to slide. The concentrated stress around particles on grain boundaries,
as determined by Argon, Chen and Laul210] was found to be a function of applied stress
and distribution parameters of the precipitates. For a given grain boundary microstructure,

the concentrated stress can be given by
oy = fo, (5.58)

where 3 is a parameter dependent on morphology, distribution and volume fraction of

precipitates.

Combining Eq. 5.34, 52 and 58, the total stress at grain boundary, o, can be

given by,
Oy = 0o +0, = JE;“J%’B:LQ 3 B (5.59)
Since RVd>>1, Eq. 5.59 can be simplified to:
. =[(“ij) +=Lto, (5.60)
(a) Dependence of back stress on grain size: Because of high stress at

grain boundaries, grain boundary deformation in terms of dislocation emission and
absorption from and to grain boundaries may be likely, even when the applied stress is
decreased to the level at which deformation within the grain interior is impossible. That is

to say, material B could stop deforming only when the local stress at grain boundaries is
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decreased to the level below which the emission or absorption of dislocations can not

occur. At that moment, the remaining applied stress will be the back stress of the material.

Assuming that the critical stress required to initiate grain boundary deformation is Cppo »

then
Oppo = Oy = _(a+ﬂR)+ £ ops(=0,) (5.61)
bbo th ] R R\/C? bb a :
1 1 [e+pR B
or p = o TR +R JE] (5.62)

where o, is the back stress for material B.

Suppose that o,,, is constant at the same applied stress and will not be influenced
by grain size, then , Eq.5.62 indicates that the back stress will vary with /¥d. In
accordance with this, 1/g, is plotted against 1/vd, and is seen to be a straight line in Fig.

5.16.

(b) Effect of applied stress on back stress: Besides being dependent on the grain

size, the back stress of material B is also found to depend on the applied stress. This
phenomenon may be related to the value of R, as presented in Eq. 5.62, which can be re-

written as:

B N Y O
o = o { +R[a+ﬂﬂ (5.63)

With an increase in applied stress, the deformation at grain boundaries will be higher.
According to Eq. 5.47, the value of R will increase accordingly. Therefore, a higher back

stress can be expected ( refer to Eq. 5.63).
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(iii) Dependence of back stress on the density of grain boundary particles: As

shown in Fig. 4.25, the dependence of back stress on the density of grain boundary
precipitates may have something to do with the value of 4 given in Eq. 5.58. Argon, Chen

and Laul210] have found that B varies inversely with the density of grain boundary

precipitates. That is:

ﬂccc(-l—J (5.64)
Je)

where ¢ is a constant and p is the density of grain boundary precipitates. Eq. 5.64)
indicates that with a decrease in p, the concentrated stress around precipitates will be
higher.

It has been suggested that the concentrated stress around particles in all the
material except the one with a solid solution treatment at 9250C, can be relaxed very
quickly ( Table 5.1). However, this suggestion may not be valid when the applied stress is
reduced. As indicated in Eq. 5.11, the characteristic scaling dimension, A, increases with
applied stress and decreases with an increase in creep rate. Because & varies with applied
stress much faster than the change in applied stress itself (£ o« 0”), the decrease in applied
stress during the back stress measurement will cause a rapid decrease in the value of A .
This should be able to produce a condition at which A becomes smaller than the particle
size. As a result, a layer of concentrated stress around grain boundary particles in these
materials can be established, and their creep behaviour will also become similar to the

material with a second solid solution treatment at 9259C, Because the value of g is
inversely proportional to p, a decrease in density of precipitates at grain boundaries,
according to Eq. 5.62, should cause a decrease in back stress

The above analysis may not be valid if the density of precipitates at grain

boundaries is too low. This is because the isolated stress field around the widely separated
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particles can not form a continuous layer of stress field, and therefore, a heterogeneity in
applied stress is not caused even if the reduced stress has caused a value of A to be smaller
than the particle size. The back stress obtained in this situation, then should be similar to

that observed in the material with no precipitates at grain boundaries.
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3.4 APPLICATION TO OTHER SITUATIONS—GRAIN
SIZE DEPENDENCE OF CREEP RATE

The literature review, present in chapter two, suggests that the steady state creep
rate varies with grain size in two different ways: i). In the region of fine grain size, the
creep rate decreases with an increase in grain size; ii). In the region of coarse grain size,
creep rate increases with an increase in grain size. A satisfactory unified explanation for
the two different types of dependence of creep rate on grain size is not available.

The mechanism proposed in section 5.3.1.2 can provide a new explanation for the
effect of grain size on steady state creep rate. This mechanism considers the heterogeneity
of applied stress distributed in grain interior and in the region of grain boundaries. This
heterogeneity of applied stress is believed to be caused by grain size and the value of R.
The latter reflects a balances between the stress acting in grain interior and in the region of
grain boundaries.

Refer to the situation shown in Fig. 5.12, where the grain is considered to be a
cubic box, outside of which is a hard shell and inside of which is a relatively soft pocket.
To produce a deformation in the cubic grain, both the hard shell and the soft pocket have
to deform compatibly. For example, when the hard region is driven by the stress o, to
produce a deformation of Ag, the soft region may have to deform nearly by the same
amount before the "cubic box" can deform as a whole. That is to say, the force applied to
the hard region is also supported by the soft region. The force applied to hard region is

Fa =(2)o b » Which is supported by the entire grain. The stress responsible for the

deformation, then will be

=Zs, =0, (5.65)
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where o, is given in Eq. 5.25. Similarly, when the soft region is to deform Ae, the force
actihg in this region may have to be supported by the hard region as well. The stress .
actually causing the deformation in this region will be o, (given in Eq. 5.24). instead of
O » although both of them are close to each other when d >>d..

With the presence of both o, and o, the total deformation will consist of two
parts. That is, deformation caused by o, and o, respectively. Particularly, when d < d,
O, Is much bigger than o, deformation may be simply considered to be as a result of
O, When d2do, o, becomes significant, deformation due to o, can be ignored. This
analysis agrees with the discussion in Section 5.3.2, in which ¢,<<o_, the extra
deformation from grain boundaries is provided by the concentrated stress around particles.

By this consideration the effect of grain size on creep rate can be visualized. The
creep rate has been often observed to decrease with increase in grain size up to a point and
is then observed to increase with increase in grain size. That is, the creep rate equation can

be written as:

o)

g = A | ——2—— atd <d 5.66
gab ab d/do +1 o ( )
e =4 I atd>d, (5.67)

where A, and A, are constants and depend on the test temperature and microstructure

of the material. Since o, and o,, are two stresses that are responsible for the

deformation of the material with the same microstructure, it may be assumed that,

A, =4, =4 (5.68)
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The total creep rate can be written as

2 2
a*+d

—————(dllz T )n o, (5.69)

Eor = a

The minimum creep rate can be obtained by setting

o = () (5.70)

By solving Eq. 5.70:

d. =d (5.71)

mimn -]

where d___ is the grain size at which the creep rate is minimum, Eq. 5.71 indicates that the

grain size corresponding to the minimum creep rate is equal to d_ which is a variable

defined in Eq. 5.23

Eqn 5.69 suggests that, i) For a material with the same microstructures {except
grain size), the secondary creep rate will depend on the modified stress no matter which
range the grain size belongs to; ii) Even for materials with different microstructures, the
secondary creep rate will depend on the applied stress normalized by both grain size and
the value of R. The latter variable should be able to represent the change in
microstructure.

Under the same macro applied stress, the variation in total creep rate with grain

size can be expressed as

/2 /2
dvs +d"

(d1/2 +d0|/2)?’ 6.72)

Cror =
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where
B=A4c" (5.73)

Assuming B=1, the variation in &, with grain size at various values of d, and # s

shown in Figs. 5.17 and 5.18, respectively. The value of n in Fig. 5.17 is chosen to be
equal to 5, the value of @ is chosen to be 1 and 100 pm. The following conclusions can
be drawn from these two figures.

i). The slope in the curve of creep rate versus grain size is a function of grain size.

In the region where d<<do or d>>do, the dependence is rather weak. However, when the
grain size is close to d , the dependence becomes stronger. In the region where d is very
close to d, the dependence becomes weak again. These predictions are rather logical. For
example, when d>>d , the effect of grain boundaries may be ignored and the creep rate
will be more dependent of the microstructure of the grain material. When d << d,, the
creep rate predicted in Eqn. 5.69 (' which is not due to grain boundary sliding ) will reach a
limiting value as grain size is decreased. In this situation, the material can be considered to
consist of grain boundaries and creep rate will depend on the deformation resistance
provided by the grain boundaries. This is different from the mechanism of grain boundary
sliding in which the creep rate will increase to an infinite value as grain size is decreased to
an infinitesimal value,

it). The dependence of creep rate on grain size is greatly influenced by the value of
d,. When d_ is very small, a positive dependence of creep rate on grain size will be often
observed when the grain size is in the range normally observed in real materials. Opposite
to this, when d is very large, a negative dependence of creep rate on grain size will be
observed in normal materials. In addition, the value of &, is not randomly chosen, but
depends on the microstructure of a material and the magnitude of applied stress which will

affect the level to which grain boundaries are hardened.
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iii). The slope in the curve of creep rate versus grain size is also a function of stress
exponent. At a very low stress exponent, creep rate is influenced only to a minor extent by
the grain size. With an increase in stress exponent, the slope of the creep rate-grain size
curve increases (Fig. 5.18).

Finally, it should be noted that the above analysis is only suitable for a material in
which incompatibility exists at the grain boundaries. For a material in which the
incompatibility can be eased due to a diffusion process at grain boundaries, the creep rate
may be found to be independent of grain size. This might be the case for the results
reported in Fig. 2.19 in which the creep rate is observed to be insensitive to the change in
grain size when d is larger than about 100 pm[158] Fig. 2.19 also shows a negative
dependence of creep rate on grain size when d <d,. However, when the creep rate in this
region is plotted against grain size on a double logarithm scales, it is found that the
dependence of creep rate on grain size is rather weak ( the slope of the curve is less than |-
0.5 ). This weak dependence is not comparable with those results in which the slope is
found to be as high as |-2].

The following is an example which explains the dependence of creep rate on grain
size by the mechanism proposed in this study.

Fig. 5.19, as reported by Garofalo[160] shows the dependence of creep rate on
grain size of a 17 Cr-14 Ni austenitic stainless steel creep deformed at 7040C. The results
obtained by Garafalo have been analyzed by quite a few researchers[161, 162, 164, 217] (
refer to Chapter two ). The most recent analysis was provided by Fang and Murty[164],
They assumed that in the region where the steady state creep rate increases with a

decrease in mean grain diameter d, the following relationship holds
£ Gb(bY( o\"
D, kr\d)\G
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where, A, is a constant and n=5.5 is the stress exponent for steady-state creep rate in the

region of mean grain diameter where creep rate does not depend on d. In this grain size

region, creep rate is given by

Lo A, —G—b(—q) (5.75)
D, °kr\G

and the total creep rate will be given by:
oY bY( o\ | D,Gb
E =14l = | Y4, = || = L 5.76
tot G(G) GB(dJ (G) kT ( )

This equation has several fundamental shortcomings as indicated below:

i) It can predict only the negative dependence of creep rate with grain size.
However, the creep rate indeed does increase with increase in grain size when grain size is
greater than a certain critical value. Such positive dependence in the coarse grain size
region has also been confirmed by many other investigators.

if) The slope of the £—~d curve has been assumed to be 2. This assumption is not
reasonable. First of all, the actual slope in Fig. 5.19 is less than two and also varies with
grain size. Secondly, Eq. 5.74 was developed based on the grain boundary sliding
mechanism. The most convincing experimental results involving grain boundary sliding
show that this slope is close to onel114]

iif) Eq. 5.74 assumes that the stress exponent in the region with fine grain size is
n—1. This assumption contradicts the experimental results. As shown in Fig. 5.20, the
actual stress exponent in Garafalo's work is observed to increase with the increase in grain

size.
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Using Eq. 5.69, the Garafalo's work can be re-analyzed. According to Eq. 5.47,

d,( or R ) should be also a function of applied stress. From the plots presented in Fig.

5.19, the values of d were determined and are listed in Table 5.5.

Table 5.5 Parameters used for calculations

Applied stress (MPa) 128 .4 85.4 65.8
d, (pm) 65 80 95
B 0.07759 0.0068 0.001649
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Together with the value of @, the value of B in Eq. 5.72 is also given in this table.
Using the value of ¢, and B, and assuming #=5.5 (which is the average value of stress
exponent for the material), the creep equation at different levels of applied stress can be
established, which is also depicted in Fig. 5.21 by the dotted line. The results obtained at
106.7 MPa are not presented in Fig. 5.21, since it does not provide a clear minimum value
of creep rate. In Fig. 5.21, the experimental results obtained by Garafalo are also
presented. As can be seen, the predicted equation fits the experimental results very well
except at very small grain sizes where the experimentally obtained values are always
higher than the predicted values. This deviation is quite reasonable because Eq. 5. 69 does
not predict the effect of grain size on creep rate on the basis of grain boundary sliding. As
a matter of fact, grain boundary sliding does exist. However, it may only become
significant when the grain size is very small. In addition, it is noticeable that the deviation
between the experimentally obtained and the predicted value increases with decreasing
applied stress. This observation is consistent with the theory of grain boundary sliding. As
illustrated in Fig. 2.15 in detail, with a decrease in applied stress, the contribution of grain
boundary shding to the overall creep rate will be increased.

In Eq. 5.73, the value of B should depend on the applied stress with an exponent
equal to about 5.5. To confirm this, the value of B listed in Table 5.5, is plotted against
o,. As shown in Fig. 5.22, a very good correlation is observed between the values of B
and the applied stress. The slope of the straight line has been determined to be 5.6 by
using curve fitting techniques, which is nearly the same as the average value of the stress
exponent ( 5.5) determined from Garafalo's work.

The variation of d;, with the applied stress is also plotted and is shown in Fig. 5.23.

The curve yields the following equation:

d, =10%% 5 056 (5.77)
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This dependence can be related to the definition of &,. From Eqns. 5.23, 5.47 and 5.52,

the following can be obtained:

Lo E g

T %

(5.78)

1/2

Accepting the fact that o, o« £/, Eqn, 5.78 can be modified to

L, o, or d oo, (5.79)

Eqn. 5.79 is consistent with Eqn. 5.77. This indicates that the critical grain size

corresponding to the minimum creep rate should depend on the applied stress.
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CONCLUSIONS

Precipitation-strengthened nickel base Inconel 718 has been used in this study, The
alloy was heat treated to produce two types of materials which are different only in the
microstructures of their grain boundaries. The grain boundaries of one type were free of
precipitates ( material A) and those of the second type were decorated with &-phase
particles ( material B). Creep tests on specimens with these two microstructure were
comparatively conducted at temperatures in the range of 600°9C to 650°C and at constant
applied stress in the range of 745 MPa to 860 MPa. The following experimental results

have been obtained:

1. For the materials with identical grain boundary precipitate conditions, the
secondary creep rate was found to be independent of the size of strengthening precipitates
within the grain interior. However, for the material with clean grain boundaries, the
secondary creep rate was found to depend on the size of this precipitates within the grain

interior, and the dependence was observed to be similar to those reported elsewhere.

2. The dependence of creep rate on applied stress was observed to be stronger in
the material with precipitates at grain boundaries than the material with clean grain
boundaries. The back stress was also found to be dependent on applied stress in the
former material. However it was insensitive to applied stress in the latter material. When
the effective stress was considered instead of applied stress, the effective stress exponent

was determined to about 7 for material B and 3 for material A.

3. The effective activation energy for creep of both the materials was similar to

that of lattice diffusion.
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4. The creep behaviour of material B was found to depend on the grain boundary
precipitate density, p, in the following ways:

(1) The secondary creep rate is observed to be insensitive to a change in p, when
the value of p is either very high or very low. The creep rate in the high p value region is
higher than that in the low p region.

(ii) The same trend observed in the variation of creep rate, was also observed in
the variation of back stress with p, except that the back stress is higher in the region with
low values of p than the region with high values of p.

(ili) The curve describing the variation in rupture time and total creep strain
exhibited a V-shape with a minimum occurring at a value of p of about 45%. In addition,
void-forming cracks on normal grain boundaries were observed only in the material with
high grain boundary precipitate density, while wedge cracks at the triple points of grain
boundaries were observed in the material with a low precipitate density at grain

boundaries.

5. Both the creep rate and the back stress were found to increase with an increase
in grain size in the material with precipitates at grain boundaries, however, they were

insensitive to grain size in the material with clean grain boundaries.

The observed creep behaviour has been analyzed in the following two aspects:

1. Grain Boundary Sliding: It is proposed in this study that, the incubation time
for grain boundary sliding can be determined by using the concept which was originally
proposed by Argon et al to define the conditions under which creep voids might develop
at triple points of grain boundaries or around precipitates at grain boundaries. The

introduction of their concept has yielded the following conclusions:
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(1) By the consideration of the variation in the size of particies at grain boundaries,
it is suggested that the stress relaxation process around particles can be changed from due
to matter diffusion to power law dislocation relaxation. The latter process leads to a
longer period for precipitates to pin the. sliding grain boundaries, but can cause the
formation of creep voids.

(i1) The length of time in which the grain boundary precipitates in present study can
hold the grain boundaries from sliding increases with the increase in the density of grain
boundary precipitates. This has caused an insignificant contribution of grain boundary
sliding to total creep strain up to the tertiary stage in the material with a high grain
boundary density of precipitates. This suggestion is supported by the observations that a)
the creep rate in such a material increases with an increase in grain size, b) wedge cracks

are only observed in the material with low precipitate density at grain boundaries. -

2. Partitioning of Applied Stress: It is suggested that the elastic and
plastic incompatibility around grain boundaries has caused heterogeneity distribution of
applied stress. The incompatibility is described by a variable R, which considers the
strengthening state of grain interior and of grain boundaries. The partitioning of the
applied stress in both regions, then is quanﬁtatively given by a factor which includes the
effect of R and the grain size. Based on these ideas, the following suggestions have been
made:

(i) A heterogeneity in applied stress is suggested to occur in material B since the
concentrated stress around grain boundary precipitate in the material has formed a work-
hardened layer along the grain boundaries. However, the incompatibility in material A can
be eliminated by relaxation, which will permit a uniform distribution of applied stress.

(i) It is found that the variable R increases with an increase in strengthening state
of grain material. This will cause a larger share of applied stress in grain interior.

Therefore, a decrease in creep rate due to the increase in the strength of grain interior is
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balanced by an increase in the creep rate due to an increase in the stress acting in the
region. This mechanism explains why the creep rate is observed to be insensitive to the
strength of grain interior in material B. Such a mechanism is also applicable during the
entire course of creep of an individual sample.

(iii} The higher creep rate observed in material B is a result of high internal stress
around its grain boundaries. The high stress levels can provide extra deformation to total
creep strain by dislocation emission and absorption to and from grain boundaries.

(iv) The back stress in material B is the remaining applied stress at which the
deformation at grain boundaries can not take place. However, in the material with clean
grain boundaries, this back stress is the minimum applied stress required to initiate the
deformation of grain interior. Due to these differences, the back stress in material B was
observed to be a function of microstructure at grain boundaries and the stresses acting in
the grain boundary region, while the back stress of material A was observed to be
independent of grain size and applied stress.

(v) The above proposed mechanism has been also successfully applied for the

explanation of the dependence of creep rate on grain size.

Finally it should be pointed out that the grain boundary dependent creep behaviour
can be observed only when an incompatibility exists between the grain boundary and grain
interior. This incompatibility always exists in the beginning of creep deformation.
However, it may disappear towards the secondary creep stage. When this happens, the
creep behaviour will depend on the microstructure of the grain interior. For creep
deformation of the pure metals and Class II type alloys, where an incompatibility will
occur at subboundaries, the mechanisms proposed in this study should be also applicable.

This aspect needs to be studied in the future.
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