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Abstract

An important design problem encountered in the implementation of the cell sys-
tem of production is cell formation. Cell formation consists of identifying part families
and machine groups. The basic cell formation procedure consists of rearranging the
part machine matrix in a block diagonal form so that the part families and machine
groups can be easily identified. A perfect decomposition of the part machine matrix
to form exclusive cells (no inter cell movement) is not possible in most manufacturing
situations. However, by counsidering alternate process plans and additional units of
same machines as available, the groupability can be enhanced. A motivating factor
for introducing a cell system is reduction in material handling. As the number of cells
increases the within cell or intra cell material handling decreases but the inter cell
material handling increases. By balancing the intra and inter cell material handling
costs, it is possible to determine the optimal number of cells and cell sizes. Moreover,
the material handling depends on production quantity, sequence of operations of parts
and multiple visits to the same machine. In process industries involved in repetitive
manufacturing, the parts are processed by the same set of machines and in the same
order. Cell formation in this case is affected by the investment and operational costs.
In this thesis, mathematical models for cell formation are developed progressively
considering the issues discussed above. The models simultaneously identify part fam-
ilies and machine groups and do not require any manual intervention. By varying the

weights in the model the designer can forin large loose cells or small tight cells. For



the efficient solution of large problems iterative and simulated annealing based solu-
tion procedures are developed. The results obtained from these procedures compare
favourably with the existing procedures. The iterative solution procedure is very sim-
ple and less computer intensive; and large problems of 400 parts and 240 machines are
solved in less than a minute on a Sun Sparc 2 station. Simulated annealing procedure
gives more consistent results but require considerably higher computation time. It is
recommended that simulated annealing procedure be used for solving smaller prob-
lems. For larger problems, the iterative procedure should be used a few times with
different initial machine assignments. The integer programming models developed in

the thesis can be solved using commercial softwares.
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Chapter 1

Introduction

A traditional manufacturing system employs a process layout in which cach de-
partment consists of a group of functionally similar machines such as lathe, drtll,
cte. (Figure 1.1 (a)). Parts must be moved from department to department in or-
der to perform the required operations. This system provides flexibility to process a
large variety of parts. However, scheduling, sequencing, material handling and overall
managerial control of such a system become difficult because of the size and complex-
ity involved. Moreover, although an individual part may use only a small subset of
machines, it spends a large amount of time for completion of its processing due to

excessive material handling and waiting (Figure 1.1 (c)).

1.1 The Cell System of Production

The cell system of production or cellular manufacturing (CM) is a system where
efficiencies in production are attained by suitably decomposing a larger system into
smaller subsystems or cells by exploiting similarities among the parts (Shafer and
Roger, 1991). In addition to the simplification of management through the creation
of smaller subsystems, CM also leads to reduced material handling, reduced setup
time, reduced work-in-process, reduced throughput time and improved sequencing

and scheduling on the shop floor (Askin et al., 1991).



1.2 Design of the Cell System of Production

Designing a cell system is a complex undertaking with broad implications for the
organization. The number of decisions in a system design process are numetrous. They
are related to system structure and operations. Decisions related to system strue-
ture include part types to be processed in the cell, the type and the number of ma-
chines on which these parts are processed, the type and number of material handling
equipment, the routings, the system layout, tools, and fixtures. Decisions related to
operational procedures include job design, supervisory and support personnel, and
production planning and control, (Wemmerlov and Hyer, 1986). Structure related
decisions often precede the operational decisions. Cell formation {CI'), a structure-
related decision process, takes on a special significance since most subsequent decisions
are influenced by this choice (Wemmerlov and Hyer, 1986). The focus of this thesis

will be on issues related to cell formation (CF).

1.2.1 Cell Formation

Cell formation (CF) consists of identifying part families (PF's) and machine groups
(MGs) or cells, such that the part families are processed with minimum interaction
with other cells. If the problem is reorganizing the existing facilities, information
on machine requirements for each part type can be obtained from the routing cards.
This information is often summarized in the form of a binary part machine matrix.
In the part machine matrix @, an element a,, is 1 if part p requires machine m for
processing, otherwise it is 0 (or blank). Figure 1.1(b) shows a part machine matrix
for the 6 parts and 5 machine types system shown in Figure 1.1(a). In Figure 1.1{h),

all units of the same type of machine are lumped into one, and the sequence of visits



is ignored. Let us consider the cell formation for this given situation. If we wish to
form two cells we can do it in a number of ways. For instance, assume that the first
three parts and three machines are assigned to the first cell and the remaining to the
second cell. The decomposed system and the corresponding part machine matrix are
shown in Figure 1.2. In Figure 1.2(h) each diagonal block represents a cell. The cells
thus formed indicate that except for part 1 the other parts are required to visit both
the cells. This interaction is shown by an entry 1, outside the diagonal blocks and the
corresponding operations are called exceptional elements. Also, not all the machines
in a cell are used by all the parts assigned to the cell. This oceurrence is shown by a
0 entry inside the diagonal blocks referred to as voids (0s outside diagonal blocks are
not voids). In an unpartitioned matrix shown in Figure 1.1(h), all parts and machines
belong to one cell (block). The number of voids is 15 with no exceptional elements.
Thus, we observe that as the manufacturing system is decomposed the number of
exceptional elements will increase with a decrease in voids. Rather than decompos-
ing the system arbitrarily as described above, rearranging the rows and columns of
the part machine matrix to obtain a block diagonal form leads to identification of
better part families and machine groups. Figure 1.3 shows a decomposition of the
same system using this approach. In this rearranged matrix, parts: 1, 4 and 5, and
machines: saw, grinding machine, and lathe are in cell 1; and parts: 2, 3, and 6
and machines: milling and drill are in cell 2. The nunber of voids and exceptional
elements are 2 each, which is less as compared to 7 each in Figure 1.2. Therefore, a
number of heuristic procedures have been proposed to obtain a block diagonal form
of the matrix and by manual intervention identification of part families and machine

groups such that the number of exceptional elements is minimum.



1.2.2 Alternate Routings

Most manufacturing situations are such that a perfect decomposition of part ma-
chine matrix with no voids and exceptional elements is not possible. Two possible
approaches to improve the groupability of the data represented by the part machine
matrix are by considering alternate process plans for parts and considering additional
units of machines as available (Kusiak and Cho, 1992). Alternate process plans are
frequently available for the parts (Kusiak, 1987), and in many instances, additional
units of the same machine type are also available (King and Nakornchai, 1982). To
illustrate the improvement, consider Figure 1.3. If for part 2, the operation performed
on the lathe can be re-scheduled on the milling machine, one exceptional element will
be reduced. In the same example two units of drills are available. If one unit of
drilling machine to each cell is assigned, it will reduce one exceptional element. Thus,
considerations of alternate routings (alternate process plans for parts and additional
units of machines as available) at the time of partitioning the part machine matrix

lead to a better grouping (Figure 1.4).

1.2.3 Material Handling

At the first level it is important to consider the tradeoff between voids and excep-
tional elements in the cell formation. The anticipated improvement of control within
a department, indicated by reduction in voids should not be offset by the increase
in cell dependency indicated by an increase in exceptional elements. A motivating
factor for cell formation is the reduction in material handling. Smaller cells reduce
the physical distance traveled by the parts. Thus, intra cell material handling effort

or cost per operation for a part is expected to decrease in a cell shop. In addition,



material handling equipment can be used more effectively due to reduced scheduling
problems, cluttering and traffic. The unit cost of intra cell material handling to a
great extent depends upon the cell size (McAuley, 1972; Sankaran and Kasilingam,
1993). On the other hand, the cells have fewer machines and therefore, parts vis-
it other cells more often, thus increasing the inter cell material handling cost. By
balancing the intra cell and inter cell material handling costs one should be able to

determine the optimal number of cells and cell sizes.

It should be noted that the material handling cost also depends on production
quantity and other factors. Ior example, some parts may require special handling
equipment because of their size, shape and fragility. The presence of an exceptional
clement represents one or two inter cell movement(s) of a part depending upon the
sequence of operations. The part has to make one intercell move if the operation is
the first or the last and two inter cell moves if the operation is an intermediate one.
For example, in Figure 1.5, part 5 makes two moves for an intermediate operation
(drill) while part 2 makes one move for its last operation {lathe). However, the part
machine matrix shows one exceptional element for both. Furthermore, there are situ-
ations when the same machine is visited more than once by parts for non-consecutive
operations which affect the material handling cost. For example, in Figure 1.4, part
2 visits the drilling machine twice. Thus, cell size, part type and quantity, operation
sequence, and multiple visits to a machine have significant implications for material

handling.

The inter cell moves can be further reduced by considering the following: transfer
an extra unit of machine from another cell to the parent cell of the part; or re-allocate

those operations which resulted in exceptional element to a different type of machine



{capable of processing the operation) in the part’s parent cell.

1.2.4 Investment and Operational Costs

The majority of the cell formation methods consider grouping of parts and ma-
chines by decomposing the part machine matrix. However, in some process industries
involved in repetitive manufacturing, all parts require the same set of machines. The
block diagonalization procedure is not applicable in these cases since all the elements
of the part machine matrix are 1. The cell formation decision in this case involves,
deciding on number of cells to be formed, capacity at each processing stage in a cel-
1, and determining allocation and optimal sequence of part production in the cells.
Moreover, the CI' decision is affected by investment and operation costs such as se-
quence dependence setup, machine idle time, part mventory, part early and late finish

compared to due date.

1.3 Organization of the Thesis

The remainder of the thesis is organized as follows. Chapter 2 provides a review
of existing literature on cell formation. In addition, the chapter describes the mo-
tivation for the current research and the research objectives. In Chapters 3 and 4,
the basic cell formation problem (i.e., to obtain a block diagonal form of the part
machine matrix) is addressed. Cell formation considering alternate routings is pre-
sented in Chapter 5. The material handling aspects of cell formation are considered
in Chapter 6. The influence of investment and operational costs on the cell forma-
tion decision is considered for the repetitive manufacturing environment in Chapter
7. The contributions of the research and directions for future research are given in

Chapter 8.



Pl P4 Pl P;Z , P5

| | Y
\ | Machines
3@ Wyt
2
Parts
—+ P3
P2 4
RS :
M [ M el
J;l —> P6
sblock 1
P3 P6 P5
S: Saw; M: Milling machine; G: Grinding machine;
D: Drilling machine; L: Lathe
b
@ (b)
Time on
machine Moving and Waiting
| ——" N N
S % 95 %
30 % 70 %
M A
v A"
Operation Positioning, loading, gaging, idle etc.

{ Reproduced from Ham et al., 1985)
(c)

Figure 1.1: Traditional manufacturing system.

-1



Pl P4 Pl P‘}Z P5

P4 par Family 11 {P1, P2, P3}

—P3 ot Family 2: {P4, P5, P6}

— P6

S: Saw; M: Milling machine; G: Grinding machine;
C: Drilling machine; L: Lathe.

(a)

Machine

« block 2

D Operation performed in other cell (exceptional element)

A Machine not used by the allocated part (void)

(b)

Figure 1.2: Arbitrary decomposition into 2 cells.



Part family 1: {P1, P4, P5}

Part family 2: {P2, P3, P6}

Pivv P2 P3 P6

S: Saw; M: Milling machine; G: Grinding machine;
D: Drilling machine; L: Lathe

(@)

Machine

block 1

Parts

[ ] Operation performed in other cell (exceptional element)

A Machine not used by allocated part {void)
(b)

Figure 1.3: Decomposition after block diagonalizing the part machine matrix



_— st

=

P2’
Pl = Part family 1: {P1, P4, P5}
Part family 2; {P2’, P3, P&}
P5 =

P4 v P3 P6

S: Saw; M: Milling machine; G: Grinding machine;
D: Drilling machine; L: Lathe

{a)
Machine
s G L D, M Dj
N & 0 0
block 1 ssesniane ....Z 1 & O 0
s 1 1 110 o
P&I‘tS R T e TYURTTCLIELIIEY e ‘. ,

310 0 0 0f1 1H-block2

3

[ ] Operation performed in other cell (exceptional element)

A Machine not used by allocated part {void)
(b)

Figure 1.4: Decomposition into 2 cells considering alternate routings.

10



2

Part family 1: {P1, P4, P5}

Part family 2: {P2, P3, P6}
P5

A

P4 v v P2 P3 P6

S: Saw; M: Milling machine; G: Grinding machine;
D: Drilling machine; L: Lathe.

(@)

Machine

M D

He- block 2

[ ] Operation performed in other cell (exceptional element)
A Machine not used by atlocated part {void)

(b)

Figure 1.5: Decomposition into 2 cells considering sequence of operations.

11



Chapter 2

Literature Review

Design of the cell system of production has gained considerable attention from
the practitioners as well as academicians. The rescarch efforts in this field have
been numerous. Solving the cell formation (CF) problem is the first step towards
implementation of the cell system of production. The complexity of cell formation
procedure varies with the complexity of the cell formation problem. In this chapter a
review of the literature under each category of the cell formation problem introduced
in Chapter 1 is provided. First, the literature on the basic cell formation problem, i.e.,
the partitioning of part machine matrix is reviewed in section 2.1. Next, procedures
considering the effects of alternate routings are reviewed in section 2.2, followed by
literature on material handling in section 2.3. IFinally, cell formation procedures
applicable to the repetitive manufacturing environment are reviewed in section 2.4.
Section 2.5 provides the motivation for the proposed research and section 2.6 states

the objectives of the research.

2.1 Cell Formation

A number of approaches have been reported for cell formation. Extensive re-
view of the techniques are available in the literature (Shafer and Meredith, 1990,
Wemmerlov and Hyer, 1986). A mathematical programming statement of a seem-

ingly small CF problem becomes large, combinatorial, and NP-complete and hence,
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most of the procedures are heuristic in nature. The popular ones are production flow
analysis, PFA (Burbidge, 1989), rank order clustering, ROC (King, 1980), modified
rank order clustering, MODROC (Chandrasckharan and Rajagopalan, 1986), single
linkage clustering, SLC (McAuley, 1972), average linkage clustering, ALC (Seifoddini
and Wolfe, 1986}, bond energy algorithm, BEA (MeCormick et al., 1972), ZODIAC
(Chandrasekharan and Rajagopalan, 1987) and GRAFICS (Srinivasan and Naren-
dran, 1991). Comprehensive review of the methods are provided in: Heragu, 1994;

Cheng, 1992; Miltenburg and Zhang, 1991 and Wemmerlov and Hyer, 1986.

SLC and ALC require a large amount of data storage and computation of simi-
larity matrices and do not form part families (PFs) and machine groups (MGs) si-
multaneously. SLC also suffers from the chaining problem. Algorithms such as ROC,
MODROC, PFA, and BEA, cluster the rows and columns of the part machine matrix
followed by a manual intervention to identify the MGs and PFs. This becomes very
difficult for large problems that are not perfectly groupable. ZODIAC and GRAFICS

identify PFs and MGs simultaneously without any manual intervention.

A few mathematical models have been proposed for clustering (Boctor, 1991;
Kasilingam, 1989; and Kusiak, 1987). These models use indirect measures such as
similarity /compatibility indices for identifying part and for machine grouping. Boctor
(1991) and Kasilingam (1989) developed integer programming models for simultane-
ous grouping of parts and machines. They however considered constraints on number
of parts and/or machines assigned to a cell, that may not uncover natural groupings
existing in the data. The importance of identifying natural groupings existing in the

data 1s explained in Chapter 5 of this thesis.
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Ribeiro and Pradin (1993) proposed a two phase methodology which minimizes the
number of exceptional elements given the number of cells and by imposing constraints
on numbher of parts and machines. To obtain a good partitioning, the procedure re-
quires a number of trials in order to select appropriate values of three parameters
required in computing the distance matrix. Also, a kernel selection rule needs to be

specified {Ribeiro and Pradin, 1993).

None of the above procedures have the flexibility to create large loose cells or small
tight cells to provide the designer with alternate solutions in a controlled manner. In

addition, the performance for larger problems is most often not reported.

2.2 Alternate Routings

Procedures reported for partitioning the part machine matrix, considering alter-
nate process plans and additional units of same machines, have been very few (Kusiak
and Cho, 1992). Assigning additional units of machines as available is often treated

subsequent to the cell formation procedure (King and Nakornchai, 1982).

Kusiak (1987) proposed a p-median formulation for grouping parts and illustrated
the importance of considering alternate process plans in improving the groupability.
He considered the objective as maximizing the similarity. The model requires the
number of medians (p) or cells to be specified. In this procedure, one has to exper-
iment on the value of p before a desired grouping is discovered. Moreover, the best
objective value need not correspond to the objective value for the best grouping of the

data. Subsequently, KKusiak and Cho (1992) developed a branching algorithm. This
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algorithm requires representations of process plan similarities on a transition graph
and then partitioning this graph to obtain part families. The above similarity based
methods identify only the part (process) families. Once part families {PFs) are iden-
tified by the algorithm (or model) the machine groups (MGs) are formed. Kasilingam
and Lashkari (1991) formulated a nonlinear 0-1 integer programming model for siinul-
taneous grouping of parts and machines in the presence of alternate process plans.
The objective considered in the model is to maximize compatibility indices between
machines and parts, based on tooling requirements and processing time. They also
consider the availability of more than one unit of a machine. However, this mod-
el assumes that the upper limits on number of machines and parts in each cell are
known. This model is appropriate to use in a flexible manufacturing system, where
tooling similarity i1s important and restrictions on cell size can be imposed by pro-
duction constraints. Imposing restrictions on number of machines and/or parts in a
cell as assumed by Kasilingam and Lashkari (1991) or specifying the number of cells
as in p-median model will not allow the identification of a diagonal block structure
existing in the data. Moreover, indirect measures such as maximization of similar-
ity /compatibility do not necessarily yield the best block diagonal form of the part

machine matrix (explained in Chapter 5).

2.3 Material Handling

A motivating factor for introducing the cell system of production is the reduction
in material handling. The following papers consider material handling in the cell for-
mation process. Ballakur and Steudel (1987) presented a within cell utilization based
algorithm which considers the minimization of the number of exceptional elements

that were assumed to be a measure of the total inter cell movement. Song and Hitomi
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(1992) developed a nonlinear integer programming model for forming machine groups
with the objective of maximizing the number of parts completely processed inside
the cell in an attempt to minimize the inter cell moves indirectly. Logendran (1990)
proposed a heuristic that considers minimization of a weighed sum of intra cell and
inter cell moves. He ignores the sequence of operations, and assumes that a part
makes n — 1 inter cell moves if it visits n different cells. Similarly, the part makes
m — 1 intra cell moves in a cell where m of its operations are performed. Later Lo-
gendran (1991) incorporated the effects of sequence of operations on inter cell moves
for a given layout of machines and modified his total move equation to compute the
exact number of inter and intra cell moves. However, based on his expression the
minimization is simply equivalent to the minimization of inter cell moves only (as
explained later in Chapter 6). Ahmed ef al. (1991} addressed cell formation consid-
ering the costs of intra cell and inter cell moves and the cost of voids (i.e., skipping
cost). The production quantity is also considered. However, they do not consider
the sequence of operations, hence, the number of intra and inter cell moves are not
exact. The major problem with all of the above procedures except for Logendran
(1991) is that they do not consider the processing sequence and assume either the
number of exceptional elements or the number of cell visits is equal to the total inter
cell movements. This problem is overcome by the heuristics developed by Okoghaa et
al. (1992) and Harhalakis et al. (1990) which attempt to minimize the total inter cell
movements considering the sequence of operations and production quantity. However,

they assumed that the number of cells and/or cell size is known.

The importance of considering the tradeoff between intra cell and inter cell han-
dling costs is often stated in the literature (McAuley, 1972, Logendran, 1990 & 1991).

However, the effect of cell size per intra cell move cost is not considered by any
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of the above papers. A noteworthy attempt in this direction is made by Sankaran
and Iasilingam (1993). The intra cell move cost is assumed to be a stepwise lincar
function of cell size. They have taken into consideration the sequence of operations,
additional units of same machines and the possibility of performing an operation on
alternate machine types. They developed a nonlinear integer programming model
with an objective of minimizing the sum of the costs due to machine amortization,
space use, processing, intra cell handling and inter cell handling. The assumption of a
stepwise linear function for intra cell cost, allows them to linearize the model. Owing
to the integer programming nature of the linearized model, only very small size prob-
lem can be solved optimally. They have also presented a heuristic to solve the model.
However, the heuristic assumes that machine amortization and processing costs are
considerably higher than the sum of intra and inter cell handling costs. This is not
always the case in situations such as the re-organization of the existing shops where

machines are alrcady available and the cost of amortization need not be considered.

The following papers consider the elimination of exceptional elements to reduce
inter cell material handling. Kern and Wei (1991) consider machine duplication and
sttbcontracting as possible alternatives to eliminate exceptional elements, and rank
the exceptional elements based on the tradeoff between costs of machine duplication,
the cost of subcontracting, and the reduction in inter cell transfer cost. Shafer et
al. (1992) developed an integer programming model for the same objective. These

procedures however do not consider allocating an operation to alternate machines.
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2.4 Investment and Operational Costs

A number of approaches have been reported for cell formation. However, the lit-
erature simply isn’t able to determine whether it is the group technology (GT) which
brings the beuefits or if an improved traditional shop gives the same performance.
Some researchers (Flynn and Jacobs, 1986; Morris and Tersine, 1990) studied the per-
formance of GT' cells formed by part machine matrix consideration, and compared
it with traditional shops using simulation techniques. Their reports indicate that
GT cells are inferior in performance to the traditional shops with respect to some
measures, such as WIP inventory, average part waiting times and part flow times.
However, GT cells exhibited superior performance it terms of average move times
and setup times. This questions the use of cell formation methods which only consid-
er part and machine similarities. Wemmerlov and Hyer (1987) have also indicated in
their study that there is a nced to develop procedures in which structural or invest-
ment related variables such as number of machines, are balanced against operational
variables, such as machine utilization, throughput time, etc., during the design of
CM. All this suggests that there is a need to develop a mathematical framework to
consider as many factors as possible, rather than just considering geometrical or pro-

cessing similarities of parts.

Rajamani et al. (1992) developed a mathematical model for cell formation in
repetitive manufacturing. They considered the tradeoff between cost of line (cell) and
sequence dependence cost to decide the number of cells and the number of machines at
each stage in these cells. However, they have not considered the scheduling aspects
such as, the costs of WIP inventory, machine idle time, and part early and late

finish. Gupta and Dudek (1971) studied the effects of these costs, viz., operation, job

18



waiting, machine idle, and penalty cost of job late finish, on a flow shop. They used
a simulation technigue and complete enumeration for small problems, to arvive at an
optimal solution. They found that considering all the costs is necessary if one needs

to find an economic schedule.

2.5 Motivation for Proposed Research

The cell formation (CF) problem has attracted a great deal of research effort and
numerous approaches have heen proposed for partitioning the matrix. The procedures
are evaluated in terms of two objectives: to maximize the usage of machines within
the cell (i.e., minimize the voids) and minimize the interactions between the cells
{i.e., minimize the exceptional clements), after obtaining a block diagonal form of
part machine matrix. The following are the common characteristics of most of the

CF algorithms reported.

They adopt a sequential approach to CI, i.e, machine groups and part families

are formed sequentially.

- Rearrangement of the part machine matrix is often sought by maximizing indi-

rect measures such as the similarity index.

- They do not have the flexibility to create large loose cells or small tight cells to

provide the designer with alternate solutions in a controlled manner.

- They require manual/subjective intervention to identify part families and ma-

chine groups. For large matrices this is very difficult.

- Performance of these algorithms are often reported for only small structured

problems. Computation on large matrices is often not reported.
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- Restrictions on number of parts and/or machines in a cell is imposed, which

does not allow identification of natural groups in the data.

In many cases, a good decomposition can not be obtained. The groupability of the
data can be enhanced by considering alternate process plans for parts and additional
units of same machines as available. The survey of literature reveals the following

facts.

- Models and procedures considering alternate process plans have been very few,

- Assignment of additional units of same machines to the cell is often sought after

the partition is done.

- Available procedures carry most of the drawbacks of the cell formation algo-
rithms deseribed above, including following a sequential approach, not uncov-
ering natural grouping, using indirect measures and requiring subjective judg-

ment.

Cellularization generally reduces the intra cell material handling cost but increases
the inter cell material handling cost. Production quantity, sequence of operations,
cell size, options of assigning an operation to alternate machine types and additional
machine units, have significant effects on the material handling cost. The literature

survey indicates the following,

- There does not exist adequate literature to consider the effect of cell size on

intra cell material handling cost.

- The tradeoff between intra cell and inter cell material handling cost is not

interpreted correctly and considered.
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Cell formation in the repetitive manufacturing environment requires consideration
of investment and operational variables such as sequence dependence set up costs,
inventory and machine utilization costs, part early and late finish costs ete. to arrive

at a good cell design. The literature review gives the following picture in this area.
- The tradeoff between investment and operational costs are not considered.

- Although part inventory, early and late finish and machine utilization are im-

portant they have not heen considered in the literature.

2.6 Objectives of the Research

The following are the objectives of the proposed research.

e Develop mathematical models and solution procedures to provide the simulta-

neous grouping of parts and machines considering the following features:

- consider voids and exceptional elements as explicit measures instead of

indirect measures;

- develop a method which does not require any manual intervention or sub-
jective judgment for identifying part families and machine groups;

- provide the designer with the flexibility for forming large loose cells or
small tight cells;

- develop a robust procedure to provide good solutions for well-structured
as well as ill-structured matrices;

- develop a procedure capable of solving large problems (400x240).

e Counsider alternate routings to allow for a better group formation considering

the above mentioned points.
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e Consider the tradeoff between intra cell and inter cell material handling. In the
material handling cost calculation consider the effects of production quantity,
sequence of operations, cell size, options of assigning an operation to alternate

machine types and additional machine units.

e Develop a mathematical model for cell formation in a repetitive manufacturing
environment considering investment, sequence dependence costs, machine uti-
lization costs, part inventory costs, and part early and part late finish costs.

Also, identify which variables significantly affect the solution time of the model.
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Chapter 3

Cell Formation - Part 1

In this chapter, a nonlinear mathematical programming model is developed for
cell formation (CI) which identifics part families (PFs) and machine groups{MGs)
simultaneously. The objective of the model is to minimize the weighted sum of voids
and exceptional elements. For the solution of large size problems, an iterative proce-
dure called the Assignment Allocation Algorithm (AAA) is proposed. Performance
of the AAA has been evaluated against many well known procedures for problems
selected from published literature. Large problems with 400 parts and 240 machines

are solved.

3.1 Problem Background

The processing requirements of the parts are commonly represented by a two
dimensional binary matrix known as part-machine matrix, e= {a,n}. The typical
element of matrix @, @,, is 1 or 0 depending on whether part p, requires processing
on machine m or not. Table 3.1(a), shows a part machine matrix a;, for a system
which has 6 parts and 6 machines. Row and column permutation of matrix a;, yields
a block diagonal matrix ] shown in Table 3.1(b). In matrix af, one can identify two
diagonal blocks (submatrices) which correspond to two subsystems or cells. The ma-
chine groups are: MG1={1,3,56} and MG2={2,4,6}; the corresponding part families

are PF1={1,4,5} and PF2={2,3,6}.



In the above decomposition there are no 1° outside the diagonal blocks which im-
plies that the two cells are independent, 1.e., each part family is completely processed
within a machine group. Also, there are no (° inside the diagonal blocks which indi-
cates cach part in a part family is processed by every machine in the corresponding
machine group. This example illustrates a case when a perfect decomposition of a
system into two subsystems (cells) is obtained. However, in most of the situations a
perfect decomposttion is hardly obtained. This could be either due to the properties
of the data or the inadequacies in the algorithm or both (Chandrasekharan and Ra-
jagopalan, 1989). An example is shown in Table 3.2, where dependency between cells
cannot be avoided (a9 is the initial matrix and «} is the permuted matrix). In the
current partition, parts 2 and 5 require processing by both the machine groups. Also,
not all the machines are required for processing by every part assigned to cell 1. In
this situation, onc would like to obtain a near perfect decomposition considering the

following objectives while partitioning the matrix.

1. to have minimum number of 0 entries inside the diagonal block (known as voids);

and

2. to have minimum number of 1 entries outside the diagonal block (known as

exceptional elements).

A void indicates that a machine assigned to a cell is not required for the processing of
a part in the cell. When a part passes a machine without being processed on the ma-
chine, it contributes to an additional intra cell handling cost. This leads to ineflicient
large cells. An exceptional element is created when a part requires processing on a

machine not available in the allocated cell. When a part needs to visit a different cell
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for its processing the inter cell handling cost increases. This also requires more co-
ordinating effort between cells. Thus, voids and exceptional elements are undesirable.,
In a manufacturing situation, for different part/machine combinations the associated
costs of voids and exceptional elements may vary and in general they are not the same.
For example, if there is any special machine then all the parts requiring processing on
this machine should be placed in the same cell (Burbidge, 1993). This can be achieved
by giving a high value of weight to the exceptional elements corresponding to this
machine for all the parts. Similarly, if there is any special part that should complete
all its operations in a single cell then a high value of weight should be given to the
exceptional elements corresponding to this part. Thus, there is a need to consider the
importance of voids and exceptional elements explicitly. The voids and exceptional
elements created are dependent on the number of diagonal blocks and the size of cach
diagonal block. In general, as the number of blocks decreases the size of the block
increases. This results in more voids and fewer exceptional elements. If all parts and
machines are grouped as one diagonal block (i.e., the cell is large and loose) we have
maximum voids and no exceptional elements. For example, in Table 3.3, if all parts
and machines are treated as one diagonal block we have 40 voids and no exceptional
elements. For 2, 3 and 4 blocks the corresponding partitions are shown in Tables
3.3(b), 3.3(a) and 3.3(c) respectively. The number of voids and exceptional elements
in these cases are (8,0), (0,0) and (0,8) respectively. Thus, as the number of voids are
reduced, the number of exceptional elements increases and vice versa. In this chapter
we consider the minimization of the weighted sum of the voids and the exceptional
elements explicitly. Thus, combining the cell formation and evaluation procedures in
one step. The proposed model also identifies parts/machines which if not assigned to
a cell (external parts/machines) can enhance the block diagonalization. These parts

can be considered to have the potential for subcontracting and the machines would
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serve as a common resource to the cells. In addition, by providing different values of
weight we can generate alternate solutions. This systematic generation is important
for further refining the cell structures by incorporating other manufacturing aspects
such as: part sequence, processing times and machine capacities (Sule, 1991, Kern
and Wei, 1991, Logendran, 1992, Shafer et al., 1992). It is worth mentioning that
the objective considered in this chapter is not the ultimate objective of the cell for-
mation. Nevertheless, this generates a first cut solution and the exceptional elements
and cach group can be individually considered for a more detailed analysis integrating
other manufacturing aspects. The importance of integrating these aspects is however

acknowledged (Choobineh, 1988; Okogbaa et al., 1992; Rajamani, 1990).

The remainder of the chapter is organized as follows. In section 3.2, a nonlinear
mathematical model is developed and subsequently, in section 3.3 the Assignment
Allocation Algorithm (AAA) to solve the model is presented. In section 3.4, we
itlustrate the procedure with numerical examples. Section 3.5 provides a comparison
of the performance of AAA with existing methods from the published literature. The
performance of AAA for large size (400 parts and 240 machines) problems in which
the data range from well structured (groupable) to ill-structured (ungroupable) are
also included in this section. Discussions and summary are presented in sections 3.6

and 3.7 respectively.

3.2 Mathematical Model

In this section a nonlinear integer programming model is developed for identifica-
tion of PI's and MGs simultaneously. The proposed model is based on the objective

of minimizing the weighted sum of voids and exceptional elements. The model can
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be formulated as.

MODEL - M1

Min » = w. Z Z z ttpmTpe( 1 — Yme) (1 — w). Z Z Z(l = i ) pelme (3.1)

p m e p m ¢
subject to
Z:L’pc =1 YV p (3.2)
Zymc =1 Vv om (33)
Tpey  Yme e {05 1} v pm,c (34)

In the objective function given by equation (3.1}, the first term captures the con-
tribution of the exceptional elements and the second term represents the contribution
of voids. In Table 3.4, these terms have been evaluated for a given part-machine-cell
combination (pmc) for all possible values of the parameters and variables. Coustraints
(3.2) ensure that each part is allocated to one cell. Constraints (3.3) guarantee that
each machine is assigned to a cell. DBinary restrictions on the x and y variables are

imposed by constraints (3.4).

C, the maximum value of cell index ¢ is given as an over-estimate on number of
cells. The model will select the appropriate number of cells. Since no upper limit
constraints on number of parts or machines assigned in a cell are imposed, the model

will identify natural groupings which exist in the data for a given weight.

3.3 An Iterative Algorithm (AAA)

In this section, we develop a solution algorithm for the model developed in the

previous section. In model M1, two sets of variables y,,,. and z,, were defined in which
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the first set relates to the machines and other to the parts. Solution of model M1 is
equivalent to block diagonalization of the part machine matrix minimizing the value

of the objective function considered.

A block, e (¢ =1, 2,...C") represents a cell. y,,. will take a value of 1 or 0 depending
on whether machine m is assigned to cell ¢ or not. Similarly, x,. will take a value of
1 or 0 depending on whether part p is allocated to cell ¢ or not. The objective func-
tion captures the contribution of voids and exceptional elements given the machine

assignment and part allocation.

The nonlinearity of the model arises due to the product terms of these two variable
sets. The model becomes linear if one of the variable sets has known values. The
solution algorithm proposed in this chapter is based on an iterative scheme. I‘irst,
one set of variables (say, ¥,.) is fixed and values of the other set of variables {z,)
are obtained. Then using the values of (z,.) so obtained, the algorithm solves for y,,.
and so on, till a convergence is reached. The step which involves the determination of
values of y,,. variables is referred o as assignment of machines to the cells and the one
which involves determination of values of z,,. is referred to as allocation of parts to the
cell. The algorithm is thus named Assignment Allocation Algorithm (AAA). Srini-
vasan and Narendran {1991) developed a similar approach for part machine grouping
to minimize the sum of the voids and exceptional elements. However, they provided
no mathematical model for the problem. Kasilingam and Lashkari (1991) have pro-
posed a similar procedure for part and machine groupings in the presence of alternate

process plans maximizing compatibility indices between part and machines.

In model M1, if y,,. variables are fixed at value Y,,. for all me, then we get the
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following submodel.

SUBMODEL — M1.1 (Allocation submodel)

Min z1=)_3 . Bumeltpe (3.5)

p m ¢

where, Bye = .0y, (1 — Y,o) + (1 — w).(1 — apm) Yo
suthject to
Z.’L'pc =1 Vp (3.6)
Tpe € {0,1} (3.7)
This submodel is separable by parts. This means the variable z,., can be solved for

each part p (p = 1,2, .., P) independently. The resulting problem for each part p, can

be solved by inspection in the following way. Set z,. = 1 such that,

Min 3 Byne

C m

ch* =

The remaining z,. (¢ # ¢*), should be set equal to 0.

The above can be interpreted as follows. Assume that machine assignment to
the cells is given. Let the number of machines thus assigned in cell ¢ be denoted
by NM.. To find an optimal placement of a part (row) p, one should calculate the
objective value contribution for that part (row). The contribution (due to voids and
exceptional elements) in the objective function of the part (or row) p depends upon
which cell ¢ the part is allocated to. If part p is allocated to cell ¢ the contribution
is By.. The voids and exceptional elements resulting from an allocation can be com-
puted using the information of row p of the part machine matrix. The total number
of ones in the row is OP,. This represents the number of machines required by part

(row) p. The number of ones in the intersection of row p with all machine columns
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assigned to cell ¢ is UP,,. This gives the number of machines in cell ¢, which can
be utilized by part p if allocated to that cell. This allocation will give number of
voids vp,e = NM, — UP,. and number of exceptional element ep,. = OP, — UP,,.
Weighing voids and exceptional elements will give B,. = w ep,. + (1 —w) vpye. The

optimal allocation of the part is to a cell ¢* for which the contribution B, is minimum.

In a similar way we get an assignment submodel. It can be shown that

w. Z Z Z apm-'l?pc(l - ymc) = w. Z Z Z apmymc(]- - J"pc)

P m C P ne C

In order to obtain an expression similar to (3.5) we substitute this relationship for
the exceptional element in the objective function of model M1. Then fixing ,. equal

to X, for all pc will give the following submodel.
SUBMODEL — M1.2 (Assignment submodel)

Min Z9 = D)mcymc (38)
I
p

i [

where, D e = Wy (1 — Xpe) + (1 — w).(1 — p) X
subject to
Zymc =1 Vm (3.9)
Yme € 10,1} (3.10)
This submodel can be solved for each y,,. variable as follows. Set y,,.+ = 1 such that,

Min 3 Dyne

¢ p

me* —

The remaining y,,. (¢ # ¢*), are set equal to 0. The assignment procedure can also

be carried out in a similar way as described for the allocation.

The assignment and allocation submodels are solved iteratively until a convergence

is achieved. The detailed algorithm steps are described next.
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Assignment Allocation Algorithm (AAA)

Step 1: Input

Read input data w, P, M, C, and {a,, } matrix.

Step 2: Initialization
iteration count, 1 — 0
OBJM? (previous objective value for machine assignment step) — — B
OBJIP? (previous objective value for part allocation step) — —B3

where, B is a large positive number.
Step 3: Initial Assignment

[3.1 JAs a starting solution, we assume that each machine is assigned to an
independent cell. Cell C (C =M + 1) is left empty to allow for parts to be
external to cell. Assigning machine 1 to cell 1 in iteration, ¢ = 0, mecans,

set Y4 =1, and Y2 (Ve #£1) =0

[3.2 | Update ¢+ — 1
g0 to step 4.

Step 4: Allocation

[4.1 ] Using the values of 3.} = ¥ ! (from the previous iteration), solve for

2! ie., find X¢

Tpe > in the following way.

Forp=1toP
(a) Count the number of ones in row p (say OP,), of part machine matrix.

(b) forc=1to C
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(1) Count the number of machines assigned to cell ¢ {say NM,).
(ii) In part machine matrix, count the number of ones in the inter-

section of row p, with all the columns(m) for which Y! =1 or

columns corresponding to the machines which are assigned to cell
¢ (say UP,.).
(ili) Set epp. = OP, - UP,,, vppe = NM, - UP,, and B,. = w ep,, +
(1-w) vpp.
(c) Assign part p to cell ¢ (say, ¢*), for which B,. is minimum, i.e., set

X

pc*

= 1 and the remaining values of X' corresponding to part p as 0.

[4.2 ] Set objective value, OBJ! = >p Bes

[4.3 ] If the objective value in the last two iterations for step 4 and step 5
remain the same {i.e., OBJP™! = OBJ and OBJM'~? = OBJM'~!) go to
step 6,

else, update the objective value OBJP! — OBJ? and go to step 5.

Step 5: Assignment

[5.1 JUsing the current values of .’L‘me = X;;C, solve for 3, i.c., find ¥ _ in the
following way.
Form=1toM
(a) Count the number of ones in column m (say OM,,), of part machine
matrix.
(b) forc=1to C

(i) Count the number of parts assigned to cell ¢ {say NP,).

(ii} In part machine matrix, count the number of ones in the inter-

section of column m, with all the rows(p) for which X;;c =1or
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columns corresponding to the parts which are assigned to cell ¢
(say UM,,.).
(ili) Sct emy,e = OM,, - UM, v = NPy - UM,y,., and D, = w
emme + (1-w) UMy,
(c) Assign machine m to cell c(say, c*), for which D,,, is minimum, i.e.,

set ¥ . =1 and rest of the ¥ variable for part m as 0.

mc*

[5.2 ] Set objective value, OBJ' = 3,, Dpes.

[5.3 ] If the objective value in the last two iterations for step 4 and step 5
remain the same (i.e.,, OBJP™! = OBJP! and OBJM~! = OBJ') go to

step 6,

clse, update the objective value OBJM' — OBJ' and iteration count i —

i+ 1 and go to step 4.

Step 6: Termination

Print the results and stop.

Numerical examples are provided in the next section to illustrate the algorithm.

3.4 Hlustrative Examples

In this section, an example problem is solved to illustrate the algorithm steps.
Subsequently it is shown how changes in relative weights to exceptional elements and
voids affect the part and machine grouping solution. The solution algorithm described

in the previous section was coded in Fortran-77 and run on a Sun Sparc 2 station.

3.4.1 Example-1
An example with 6 parts and 5 machines is considered.
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Step 1- Input is shown in Table 3.5.

Step 2- The following initializations were made in this step. ¢ = 0, OBJM =
-1000000.0, and OBJP®= -100000.0.

Step 3- Initially (at i = 0), each machiue is assigned to a separate cell, machine 1
in cell I, machine 2 in cell 2, machine 3 in cell 3, machine 4 in cell 4, machine 5 in cell
5. Cell 6 is left empty. This corresponds to the assignment, Y, Vi) ¥ vV V2 =
and all other ¥ variables are 0. Update the iteration number 7 = 1,

Step 4- In this step, we allocate parts to cells using initial machine assignment
obtained from step 3. Consider part 1 first. The objective function contribution of
part 1 will be calculated for allocation to all possible cells. To do this for cell 1, we
consider row 1 (this corresponds to part 1) and column 1 (since in cell 1 the only
machine assigned is machine I which corresponds to column 1) of the part machine

maftrix.

!
cel =11 2 3 4 5|6
machine (column) — |1 2 3 4 5] -

part (row) |
—- 170 1 0 1 1]-
2

=2 R o T A L

From row 1, the number of machines required by part 1 is OP; = 3 (which is
the sum of ones in the row). The number of machines assigned to cell 1 is NM; =
1. In the intersection of row I and column 1 we have no ones, hence the number of

machines that can be utilized by part 1 when assigned to cell 1 is UPy; = 0. If part 1
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is allocated to cell 1, we have the following. There will be three exceptional elements,
since nonce of the three machines required by part 1 is assigned to cell 1. Also, there
will be one void as machine 1 assigned in cell 1 is not required by part 1. We can

calculate the number of exceptional elements and voids also as:
6])11:OP1—UP11 =3-0=3

VP = NM,; "“UPM =1-0=1

Thus, the objective function contribution will be, By;= 0.5x3 + (1-0.5)x 1= 2. Similar
calculations for allocating part 1 to other cells are:

c=2, OMy=1, UP5=1, ep;9=3-1=2, up1a=1-1=0, Byy= 1,

c=3, OM3z=1, UP3=0, ep;3=3-0=3, vp;3= 1-0=1, Biz= 2,

c=4, OMy=1, UP4=1, ep1y=3-1=2, vpyy= 1-1=0, Bi4= 1,

c=5, OMs=1, UP5=1, ep1s=3-1=2, vpis= 1-1=0, Bj5= 1,

c=6, OMs=0, UP4=0, ep;=3-0=3, vp1g= 0-0=0, B;s= 1.5.

Thus, assigning part 1 to cell 2, 4 or 5 will give the minimum value of 1 as the
objective function contribution. We break ties arbitrarily by picking the last, i.e.,
part 1 will be assigned to cell 5 or ¢*= 5 which gives B5 = 1.

The above calculations for other part allocations (p = 2, 3, 4, 5 and 6) are sum-
marized in the Table 3.6.

Parts 2, 5 and 6 are allocated to cell 4 and parts 1, 3 and 4 are allocated to cell 5
at iteration ¢ = 1.

Step 5- For the part allocation obtained in step 4, we will find machine as-
signments to the cells. To illustrate this procedure let us consider machine 1. The
objective value contribution for this machine assignment in different cells needs to be

caleulated. Since parts ave assigned to cells 4 and 5 the other cells are empty at this
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step. We illustrate calculations for the first non empty cell, i.c., cell 4.

Cell 4 has parts 2, 5, and 6 allocated, hence we have to consider rows, 2, 5 and 6.

The column corresponding to machine 1 is 1.

!
machine (colmmn) - |1 2 3 4 5

cell| part {row) |

5 110

—4 211

5 310

5 410

—4 o1

—4 6|1

The number of parts requiring machine 1 is OM; = 3 (which is sum of ones in
column 1). Total number of parts assigned to cell 4 is NPy = 3. The number of
allocated parts in cell 4 which require processing on machine 1 is the sum of ones in
the intersection of column 1, with rows 2, 5 and 6. This will give UMy, = 3. Thus
number of exceptional elements are ep;y = OM; - UMy = 3-3 = 0, and the number
of voids are vpyy = NP4 - UMy = 3-3 = 0. The objective function contribution D4,
for this assignment will thus be 0.5x0 + (1-0.5)x0 = 0. Remaining caleulations for

this machine and other machines are tabulated in Table 3.7.

Assignment and allocation steps were carried out iteratively till convergence in
the objective function value is obtained after 3 iterations. In Table 3.8, the first line
(corresponding to =0} shows the steps 2 and 3. Then, in the same table steps 4 and

5 for each iteration are shown.
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Table 3.9 shows the final output. The solution identifies 2 cells as below.

MGI = {1, 4}, PF1 = {2, 5, 6}

MG2 = {2, 3, 5}, PF2 = {1, 3, 4}

For the above partition the number of voids and exceptional elements are 1 and

2 respectively.

3.4.2 Example-2

In this section we consider a 22-part, 11-machine problem given in Cheng (1992),
to illustrate the effect of changing weights. Cheng (1992) solved the above problem
using a number of algorithins. The best grouping obtained for this problem from
these algorithms was from ZODIAC which gave 3 cells with 15 voids and 10 excep-

tional clements.

The algorithm developed in this chapter controls the type of cells, {a large number
of tight cells or a smaller number of loose cells) to be formed, by changing the weight
w. Table 3.10 shows the solution for different weights. The types and number of
cells are altered as w is changed. When the least weight is given to the exceptional
element, i.e., w = 0.0, no part is assigned to the cell and all the parts are identified
as external parts. At the other extreme, when the exceptional elements are given the
maximum weight, i.e.; w = 1 and a zero weight is given to the voids, then one cell
is formed to which all the parts are allocated. For weights between 0 and 1, with an
increase in value of w the number of exceptional elements decreases and the number
of voids increases. The best solution from the existing procedures due to ZODIAC
is the same as the solution from the present algorithm with weight for exceptional
elements as 0.7 (see Table 3.10). This solution has a grouping measure (defined in

the Appendix and discussed in section 3.5) of 0.691. AAA gives a better partitioning
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at the weight of 0.6 with a grouping measure of 0.696. This solution is given in Table

3.11.

3.5 Computational Experience

In this section, the performance of AAA is evaluated against a number of exist-
ing procedures for a variety of problems. Computational experience with large size

problems is also reported.

3.5.1 Comparison of AAA with existing algorithms

In section 3.5.1.1, well known CF problems from the open literature are solved.
The performance of AAA is compared with several well known algorithms. All nec-
essary cdata for these problems and results for existing methods are adopted from

Miltenburg and Zhang (1991) and Ribeiro and Pradin (1993).

Insection 3.5.1.2, we study the effect of data types, ranging between well-structured
and ill-structured, on the performance of AAA. For this purpose, we considered data
sets available in (Chandrasekharan and Rajagopalan, 1989). Also, this allows us to
compare AAA with two more algorithms, namely, ZODIAC and GRAFICS. Results
obtained using ZODIAC and GRAFICS for these problems are taken from Srinivasan

and Narendran (1991).

3.5.1.1 Data from open literature

Nine well-known algorithms, referred to as Al - A9, for identifying part families
and machine groups are evaluated and compared by Miltenburg and Zhang (1991)
for eight well known problems, referred to as P1 - P8, from the literature. The de-

tails of the problems and algorithms may be obtained from Miltenburg and Zhang
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(1991). The evaluation criterion to judge the goodness of the solutions considered
is the “grouping measure” (stated as a primary measure by Miltenburg and Zhang,
1991) and is given in the Appendix. The grouping measure is high if use of machines
is greater (fewer voids) and if few parts require processing on machines from more
than one cell (fewer exceptional elements). The results obtained using AAA in com-
parison with the nine algorithms are given in Table 3.12. AAA compares favourably

with the nine algorithms.

We also consider 7 of the 12 problems given in Ribeiro and Pradin (1993). The
remaining 5 problems use multiple copies of machines and are excluded. Table 3.13
provides the results obtained in comparison with Ribeiro and Pradin {1993). For
5 of the 7 problems (except problems HN90 and IKV87) the results are the same in
terms of number of cells, total number of voids and exceptional elements and grouping
measure. It is worth mentioning that in the procedure by Ribeiro and Pradin (1993)
the number of cells is an input parameter, while it is determined by AAA. Also, they
emphasize on minimizing the exceptional elements only. Minimizing only exceptional
elements may not yield a good partition. This is evident from the results obtained for
problems HN90 and KV87. Although the number of exceptional elements are fewer,
this is achieved at the expense of substantial increase in nunber of voids leading to a
low value of grouping measure. AAA provides a better partition with a higher value

of the grouping measure.

3.5.1.2 Well-structured and ill-structured data

Seven data sets from Chandrasekharan and Rajagopalan (1989) are taken which
range from well-structured to ill-structured. All the data matrices consider 40 parts

and 24 machines. They vary only in the degree of groupability. The data sets (D1
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- D7) are arranged in decreasing order of groupability. The first data set (D1) is
perfectly groupable and the last data set (D7) is the least groupable. Two effective-
ness measures, grouping efficiency and grouping efficacy, were used to evaluate the
performance of ZODIAC (Chandrasekharan and Rajagopalan, 1987) and GRAFICS
(Srinivasan and Narendran, 1991). These are defined in Appendix. In order to be
consistent, we compute these measures for the solution obtained by AAA on the da-
ta sets (D1 - D7). We solved the seven data sets using AAA with a weight of 0.7.
A comparison of the performance measures is provided in Table 3.14. Data given in
Chandrasekharan and Rajagopalan (1989) for D3 and D4 were found the same and so,
we treat them as one problem. It can be ohserved from the table that AAA compares

favourably with the two algorithms on both the measures for all the problems.

3.5.2 Computational experience with large problems

In order to study the performance of AAA on larger problems we replicated rows
and columns of the seven problems (D1 - D7) ten times to obtain problems (L1 - L7)
of size 400x240. All these problems were solved with the AAA for a weight of 0.7 and
the results are summarized in Table 3.15. The table shows the computational time,
number of iterations required for the procedure to converge, grouping measure(s},
number of groups, number of voids and exceptional elements in the final solution.
As expected the objective function value was 100 times that of the smaller problems
solved in section 3.5.1.2. The time required to solve these problems on the Sun Sparc 2
station is less than 1 minute in each case. Thus, we can see that the present algorithm

is very effective in solving large size problems.
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3.6 Discussion

If the part machine matrix is small, the model developed in this chapter can be
solved optimally by linecarizing the nonlinear terms in the objective function using
one of the procedures given in Stecke {(1981). For the solution of larger problems we
have proposed AAA in this chapter. It is observed in the preceding section that AAA
provides a good solution to the part machine grouping problem. AAA offers many
other advantages: no manual intervention is required for identifying part families
and machine groups, solution for large size problems can be obtained in reasonable
amount of computer time and alternative solutions can to be generated in a system-
atic way. However, a procedure like AAA may be sensitive to the initial solution. We
considered large problems (L1 - L7) to study the effect of different initial solutions on
the final solution. We randomly generated the initial solution for each of the problems
and solved them using AAA. The number of iterations it took to converge, and the
grouping measures obtained for the solution are given in Table 3.16. The algorithm
converged within 6 iterations. Although it is sensitive to the initial solution it yielded
good solutions (compared to the grouping measures obtained for these problems in

section 3.5.2 and shown in Table 3.15) in all cases.

The parameter w governs the types of cells to be formed and the value of w is
required as input in AAA. Our experimentation indicated that a value of w = 0.7
gives a good value of grouping measure considered. However, due to the nature of
input data we may obtain superior results in the range 0.5 - 0.7 for a few selected
problems. For example in problem P8, the grouping measure was 0.681 for value
of w in the range 0.5 - 0.65 and is superior to that obtained when the weight was

0.7. It should be noted that it is not necessary to have all the voids (or exceptional
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elements) to have the same weights. It is possible to give different weights to different
part/machine combination to reflect the scenario when opportunity costs on machines

and transportation costs of parts are not the same.

3.7 Summary

In this chapter, a nonlinear mathematical programming model, was developed to
identify part families and machine groups simultaneously. The objective of the model
is minimization of the weighted sum of voids and exceptional elements. Subsequently,
an algorithm called the Assignment Allocation Algorithm (AAA) was proposed to
solve the model. The algorithm allows the weighing of voids and exceptional elements
differently and thus gives the designer the flexibility to form large loose or small tight
cells. The algorithm identifies natural groupings present in the data and does not
require any manual intervention or subjective judgment. The results obtained using
AAA compares favorably with 12 well known algorithms. AAA is very simple and less
computer intensive. The solution to problems of size 400x240 using this algorithm in

less than a minute shows the effectiveness of the algorithm in handling large problems.
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Table 3.1: Example of a perfect decomposition.

Machines

1 3 512 4 6
11 1 1]0 0 0
4(1 1 110 0 0
511 1 1:0 0 0
210 0 011 1 1
310 0 01 1 1
6|0 0 o1 1 1

{(b) Matrix @}

Table 3.2: Example of an imperfect decomposition.

Machines
1 2 3 4 5 6
17101 0 1 0
210 1 0 1 0 1
310 1.0 1 0 1
441 0 1 0 1 0
511 0 1 0 1 0
610 1 0 1 0 1

(a) Matrix a;

Machines
1 2 3 4 5 6
11 0 1 0 0 O
210 1 0 1 1 1
3]0 1 0 1 0 1
411 0 1 0 0 0
5011 0 1 0
6({0 1t 0 1 0 1

(a) Matrix as

&

Machines

1 3 512 4 6
1(1 1 0]0 0 0
411 1 00 0 O
510 1 1|1 0 O
210 0 1|1 1 1
3{0 0 01 1 1
6|10 6 071 1 1

(b) Matrix a

Table 3.3: Effects of forming different number of cells.

Machines

1234

Machines

56 78

Parts

(=< = WG R A S N

Machines

2 34

56 78

1

11!11
|1 1l 1
1171 1
11

Parts Ig_ 1

(= R RS L A I

L]
N

1

[11

(c)

C>C*



Table 3.4: Contributions of voids and exceptional elements.

Possible values |  Value of objective terms
Upm | Tpe | Yme First term | Second term
{exceptional) {void)
0 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 1 1 0 (1 —w)
1 0 0 0 0
1 0 1 0 0
1 1 0 w 0
1 1 1 0 0

Table 3.5: Step 1 - input.

w=05P=6M=5C=6

Machines

1 2 3 4 5

110 1 0 1 1

211 0 0 1 0

Parts 3|10 1 1 0 1
410 1 1 0 1

511 0 06 1 0

611 1 0 1 0

INITTAL UN-ARRANGIED MATRIX
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Table 3.6: Computation of objective function contribution for part allocation.

Part p  — 1 2 3 4 5 6 12, B)es
Cell ¢ |
I epy | 3 1 3 3 1 2
vppr | 1 0 1 1 0 0
B, 120]05120(20[05}1.0
2 epy| 2 2 2 2 2 2
vppe | O 1 0 0 1 0
By [10]15(1.010]1.5]1.0
3 eps| 3| 2 2 | 2 2 3
vppz | 1 1 0 0 1 1
By 120151010 ]1.5/2.0
4 epps | 2 1 3 3 1 2
uppe | O 0 1 1 0 0
By [ 1.0]105]20(20]05]1.0
T T 117
O epps | 2 2 2 2 2 3
vpps | 0 1 0 0 1 I
By |1.0]15 101015120
1 [
G epps | 3 2 3 3 2 3
vps | 0| O 0|0 0|0
By [1.5]1.0[15|1.5]1.0]1.5
Solution ¢* 5 4 5 5 4 4
B,-|10]05|10[10}{05|1.0 5.0




Table 3.7: Computation of objective function contribution for machine assignment.

Machine m — 1 2 3 4 5 | 2w Pmer
Cell ¢ |
1 emy | 3 4 2 4 3
iy | 0 0 0 Q0 0

Dy 1512011012015

2 em,s | 3 4 2 4 3
UMy | O 0 0 0 0

Dpe |L15]2.011.072.0]|15

3 emuz | 3 4 2 4 3
UMz | 0 0 0 0 0

D, |1.5720[10]201%1.5

4 empua | 0 2 1 1 3
UMpa | O 2 2 0 3

Dys 0012011505130

(w24

€Mins
UMy | 3 0 1 2 0
D5 3010510525100

6 emug | 3

VMg | 0 0 0 0 0

Do 1151201102015

Solution ¢* 4 5 5 4 5
Dyer [00]05105]05(0.0 1.5




Table 3.8: Steps 2, 3, 4 and 5 - intermediate results.

Elements (part/machine) of cell

Objective function

Part value
Iter | allocation/ 11234 5 6 Previous | Current
no. | machine step oBJPi/ OBJ
i | assignment OBJIM'
0 | machine 23 17234 5 -100000.0 -
1| part 4 == - 125613470 - -100000.0 5.0
machine ) -]- =114 2,35 |- -100000.0 D
2 | part 4 - l-1-120611,341- 5.0 1.5
machine ) - - 1-114 2,35 | - 5 1.5
3 | part 4 -1-1-1256]1,34]1- 1.5 1.9
machine 5 --1-114 1235]- 1.5 1.5
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Table 3.9: Step 6 - final results.

Objective function value = 1.5

Cell # | Machines assigned | Parts allocated
1 none none
2 none none
3 none none
4 1,4 2,5,6
5 2,3,5 1,34
6 none none
Machines
1 412 3 5
241 110 0 0 - exceptional element
511 110 0 0](0)-void
Parts 6|1 1 0 0
t{o [uj| 1 (o) 1
310 01 1 1
410 041 1 1

FINAL ARRANGED MATRIX
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Table 3.10: Effect of weights on cell formation.

Weight | Number | Number of | Number of | Grouping
w of exceptional voids measure
groups clements
0.0 1! 78 0 -1.000
0.1 § 29 0 0.628
0.2 6 29 0 0.628
0.3 5 26 0 0.667
0.4 62 24 2 0.656
0.5 4 13 11 0.688
0.6 31 11 13 0.696
0.7 3 10 15 0.691
0.8 3 9 44 0.495
0.9 2 § 58 0.478
1.0 1 0 164 0.322

L all parts were identified as external parts.
2 part 10 was identified as an external part.
3 parts 7 and 13 were identified as external parts.

4

part 13 was identified as an external part.

Table 3.11: AAA solution to example-2 (Cheng, 1992) for weight = 0.6.

Cell number | Machines assigned | Parts allocated

1 2,3,6 5,8,12,19
1,4,5,10 1,2,3,7.11,15,16,20,21,22
3 7,8,0,11 46,910,14,17,18

- 13 (external part)

49



Table 3.12: Comparison of AAA with existing algorithms for well known problems.

1y from different algorithms

Prob Existing algorithims
-lem | Al | A2 A3 Ad AD AG AT AS A9 | AAA
P1 0.24 1040 035 | 0.35 - 037 | 044 | 0.39 ; 045 | 0.48
' (0.7)*
P2 0.53 {0.76 | 0.76 | 0.76 - 0.76 | 0.73 | 0.76 | 076 | 0.76
(0.7)
P3 0.1810.22 | 0.18 | 0.18 - 0.18 | 0.24 | 0.20 | 0.25 ok

P4 0.66 | 0.85 ] 0.8 0.85 085 | 082 | 0.85 | 6.85 | 0.85 (.85
(0.7)
P5 0.57 {0.57 | 0.57 | 0.57 | 0.57 | 0.57 | 0.57 | 0.57 | 0.57 | 0.57
(0.7)
P6 0.9210.92]0.92% | 0.92% | 0.92*F | 0.92"7 | 0.92% | 0.92% | 0.927 | 0.92
(0.7)
P7 0.81 1081 | 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81
(0.7)
P8 0.68 | 0.57 | 0.63 0.59 0.57 | 059 | 0.68 | 0.58 | 0.64 0.68
(0.5)

- results not available in Miltenbwrg and Zhang (1991)

*number within bracket represents weight (w) at which the

solution was obtained

**modified data for this problem could not be matched with Miltenburg and Zhang
(1991)

* was reported as 0.926 in Miltenburg and Zhang (1991), but acknowledged as typo-
graphical error.



Table 3.13: Comparison of AAA with Ribeiro and Pradin (1993).

Ribeiro & Pradin (1993) | AAA solution for w = 0.7
Problem Size Number [ e | v 7y | Number e |v Ny
of cells of cells
HN9S0 20x20 5 14115 | 0.635 6 16 | 10 | 0.660
4 11|40 | 0.490
SN9O 10x20 4 0 [0 1.000 4 0 [0 | 1.000
KV87 41x30 3 6 | 3131} 0.234 13 34123 ] 0.538
2 3 | 526 | 0.169
CMS81(P8) | 10x15 3 0 |4 0.920 3 0 [4 | 0.920
Ku87 Hx4 2 0 |1 0.900 2 0 }1 | 06.900
BS87 x5 2 2 13 0.716 2 2 |3 | 0716
WS84 x5 2 2 |3 0.699 2 2 |3 | 0.699

e and v are number of exceptional e

lements and voids respectively

Table 3.14: Comparison of AAA with ZODIAC and GRAFICS for well structured
to ill structured problems (Srinivasan and Narendran, 1991).

Prob Grouping efficiency, n Grouping efficacy, 7 from
-lem AAA
ZODIAC GRAFICS AAA | ZODIAC GRAFICS AAA | e v
D1 1.000 1.000 1.000 1.000 1.000 1.0001 0 O
D2 0.952 0.952 0.952 0.851 0.851 0.851 | 10 11
D3/D4 | 0911 0.911 0.918 | 0.378 0.735 0.729 | 23 17
D5 0.773 0.788 0.875 0.204 0.432 0.506 } 56 17
D6 0.724 0.791 0.860 0.182 0.445 0.445| 65 17
D7 0.693 0.791 0.908 0.176 0.416 0437|770 7

e and v are number of exceptional elements and voids respectively
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Table 3.15: Results for large size problems.

Prob | ¢putime | No. | No. € v Measures
-lem of of
(sec) iter- | cells n T Ny
ations

L1 30.1 3 7 0 0 ] 1.000 | 1.000{ 1.000
L2 33.3 3 7 | 1000 1100 | 0.952 | 0.851 | 0.839
L3/L4 33.7 3 8 | 2300 1700 | 0.918 | 0.729 | 0.688
L5 33.5 3 11 15600 | 1700 | 0.875 | 0.507 | 0.388
L6 54.1 5t 12 | 6500 | 1700 | 0.860 | 0.446 | 0.299
L7 33.0 3 14 | 7000 | 700 | 0.908 | 0.438 | 0.357

e and v are number of exceptional elements and voids respectively

Table 3.16: Results for the randomly generated starting solution.

Prob | Number of iterations 1)y for different runs
-lem for different run
1 2 3 4 5 1 2 3 4 5

L1 3 3 3 3 3 1.000 1.000 1.000 1.000 1.000
L2 3 4 4 4 3 0.839 0.839 0.839 0.839 0.839
L3/L4|4 5 5 5 4 0.695 0.695 0.695 0.694 0.690
L5 5 5 5 & 4 0.424 0.393 0412 0.412 0.397
L6 4 5 5 b 4 0.407 0.412 0407 0.356 0.390
L7 4 6 5 4 3 0.388 0.343 0.379 0.315 0.321
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Chapter 4

Cell Formation - Part 2

A nonlinear model to identify machine assignment and part allocation simulta-
neously was developed in Chapter 3. The objective was the minimization of the
weighted sum of voids and exceptional elements. An iterative procedure called t.ﬁc
Assignment Allocation Algorithm (AAA) was proposed to solve the model. Although
it has been observed that the procedure provides a good solution, it can be sensitive
to the initial solution, the number of cells specified and the groupability of the input
part machine matrix. A more robust simulated annealing approach is presented in
this chapter. In section 4.1, we develop a Simulated Aunealing Algorithm (SAA).
Section 4.2 compares the performance of the Simulated Annealing Algorithm (SAA)
with the Assignment Allocation Algorithm (AAA). Section 4.3 presents a case study.

Finally, a summary is presented in section 4.4.

4.1 Simulated Annealing Algorithm (SAA)

Simulated annealing is one of the procedures which has been successfully applied
by researchers in solving large combinatorial problems such as the parallel machine
scheduling problem, the vehicle routing problem etc. Boctor (1991) applied simulated
annealing for solving part-machine grouping problems with the objective of minimiz-

ing the number of exceptional elements assuming that the upper limit on the number
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of machines in a cell is known. Unlike the iterative procedure, the solution obtained
by simulated annealing does not depend on the initial configuration and has an ob-
jective function value closer to the global optimum (Laarhoven and Aarts, 1987).
However, the rate of convergence is slower in simulated annealing in comparison to
the iterative procedure (AAA). A limit on the mumber of iterations is often imposed
when developing the Simulated Annealing Algorithm {SAA). This may restrict SAA
for getting an optimal solution. Thus, the implementation of SAA is a tradeoff be-

tween solution quality and computational time.

The following discussion abstracted from Laarhoven and Aarts (1987) introduces
the analogy between the simulation of the anncaling of solids and the problem of
solving large combinatorial optimization problems. “In condensed matter physics,
anncaling denotes a physical process in which a solid in a heat bath is heated up
by increasing the temperature of the heat bath to a maximum value at which all
particles of the solid randomly arrange themselves in the liquid phase, followed by
cooling through slowly lowering the temperature of the heat bath. In this way, all
particles arrange themselves in the low energy ground state of a corresponding lattice,
provided the maximum temperature is sufficiently high and the cooling rate is carried
out sufficiently slowly. At each temperature value T, the solid is allowed to reach
thermal equilibrium, characterized by a probability function given by the Boltzmann
distribution. As the temperature decreases, the Boltzmann distribution concentrates
on the states with lowest energy and finally, when the temperature approaches zero,
only the minimum energy states have a non-zero probability of occurrence. How-
ever, if the cooling is too rapid without allowing the solid to reach equilibrium for
cach temperature, defects can be frozen into the solid and a metastable amorphous

structure is reached. Furthermore, similar to quenching in which the temperature of
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heat bath is lowered instantly the same result is obtained. To simulate the evolution
to the thermal equilibrium of a solid for a fixed value of temperature T, Metropolis
et al. (Metropolis et al., 1953) proposed a Monte Carlo method, which generates
sequences of states of the solid in the following way. Given the current state of sol-
id a small randomly generated perturbation is applied by a small displacement to a
randomly chosen particle. If the difference in energy between the current state and
the perturbed states is negative, then the process is continued with the new state.
If the difference is positive, then the process is accepted by a probability which is
a function of temperature and difference in energy. This acceptance rule is referred
to as Metropolis criterion. Following this criterion, the system evolves into thermal
equilibrium after a large number of perturbations. The Metropolis algorithm can
also be used to generate sequences of configurations of a combinatorial optimization
problem. In this case, the configurations assume the role of states of solid while the
cost function {objective function) takes a role of energy. Temperature is a control
parameter. The Simulated Annealing Algorithim can now be viewed as a sequence of
Metropolis algorithms evaluated at a sequence of decreasing values of the tempera-

ture.” (Laarhoven and Aarts, 1987)

In this section an implementation of the SAA to obtain grouping of parts and
machines is proposed. The main steps in this algorithm are as follows. The maxi-
mum number of cells to be formed, C' is specified. An initial machine assignment is
generated. Assignment of machines to the cells is done using a predefined rule. For
example, in Chapter 3, it was suggested that the value of C be fixed at one more than
the total number of machines and initially each machine is assigned to a separate cell

leaving one cell empty. Another way is to assign machines to cells randomly. In this



chapter, one of the above two rules will be used to obtain an initial machine assign-
ment. I'or this machine assignment, an initial part allocation is obtained by solving
the allocation submodel (see Chapter 3). Thus, an initial solution (part families and
machine groups) and the objective function value are obtained. At each subsequent
iteration, one machine is moved from the current cell to another cell in order to get
a new machine assignment. The machine to be moved and the cell for this machine
are selected randomly (Boctor, 1991). Part allocation is made for this new machine
assighment and the objective value is computed. The generated solution (new part
fainilies and machine groups} is accepted if the objective function value improves. If
the objective function value does not improve the solution is accepted with a proba-
bility depending upon a cooling temperature, which is set to allow the acceptance of
a large proportion of generated solutions at the beginning. Then, the cooling temper-
ature is modified to reduce the probability of acceptance. This enables the algorithin
to escape from a local optimmum at an early stage. At each cooling temperature many
moves are attempted and the algorithm stops when predefined conditions are met.

The detailed steps of the proposed implementation of SAA are presented below.

Simulated Annealing Algorithm (SAA)
[0 ] Initialize

0.1 Define the annealing parameters: initial temperature Ty, minimum accept-
ed transition at each temperature AT,,;,, decrementing factor o, maximum

number of iterations i,,q., and final acceptance ratio Ry.
0.2 Initialize iteration counter: 1 = 0

0.3 Generate initial machine assignment and allocate parts by solving the al-

location submodel (get SOL®, OBJ®).
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[1 ] Execute outer loop, i.c., steps (1.1 - 1.7) until conditions in step 1.7 are met

1.1 Initialize inner loop counter I = 0, and accepted number of transitions AT
=0
1.2 Initialize solution for inner loop, SOLj = SOL’, OBJ} = OBJ/
1.3 Execute inner loop, i.e., steps (1.3.1 - 1.3.5) until conditions in step 1.3.5
are met
1.3.1 Update: I =141
1.3.2 Generate a neighboring solution by perturbing machine assignment
and obtaining part allocation for new machine assignment (get SOL,
OBJ:)
1.3.3 § = OBJ; - OBIJ}_,
1.3.4 If 6 <0 or random(0,1) < e_% then
e SOL; and OBJ} are accepted
e Update AT = AT + 1
else
e solution is rejected, SOL} = SOL{_, ,0BJi = OBJi_,
1.3.5 If one of the following conditions holds true: AT > AT, or { > M?
(M = number of machines), then assign L; (length of Markov chain)
= [, terminate the inner loop and go to 1.4, else continue the inner

loop and go to 1.3.1.
1.4 Update: i=1+ 1
1.5 Update: SOL' = SOLT " | OBJ' = OBJ; |

1.6 Reduce the cooling temperature: T; = a . T},



1.7 If one of the following conditions holds true: i > i,4.; or the acceptance
ratio (defined as AT/L;) < Ry; or the objective function value for the last
10 iterations remains the same, then terminate the outer loop and go to 2,

clse contimie the outer loop and go to 1.1.

[2 ] Print the best solution obtained and terminate the procedure.

4.1.1 Selection of Simulated Annealing Parameters

The implementation of the Simulated Annealing Algorithm in the previous sce-
tion resorts to generating a sequence of homogeneous Markov chains of finite length
(to ensure the thermal equilibrium is reached) at decreasing values of cooling tem-
perature. The following parameters should be specified {see Laarhoven and Aarts,

1987):

iitial value of temperature, Ty;

length of Markov chain, L; (at iteration, i);

®

a rule for changing the current value of temperature to the next one;

o

e criteria to terminate the algorithm.

A choice for these parameters is referred to as a cooling schedule. In this thesis
we define the cooling schedule in the following way.

The initial value of temperature, Ty, is taken in such a way that virtually all
transitions are accepted. An acceptance ratio, R, is defined as the number of accept-
ed transitions divided by the number of proposed transitions. Ty is set in such a
way that the initial acceptance ratio, Ry is close to 1. Usually, the value of Ty is in

the order of the expected objective function value. The value of Ty is increased or
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decreased to bring the acceptance ratio for the first 10 iterations between 0.95 and 1.0.

Length of the Markov chains L;, are controlled in such a way that for cach value
of temperature, T;, a minimum number of transitions should be accepted, i.e., L; is
determined such that the number of accepted transitions is at least, AT,,;,. However,
as 'I'; approaches 0, transitions are accepted with decreasing probability and thus one
eventually obtains L; — oo for T; | 0. Consequently, L; is bounded by some constant
L (usually chosen polynomial in the problem size) to avoid extremely long Markov
chains for low value of cooling temperature. We define L = o . M?; where M is the
total number of machines and « is a constant. The value of AT,,;, should be high
enough to ensure that an equilibrium is reached at each temperature. Higher the

value choosen for AT,,;,, the better the expected quality of solution is.

To ensure slow cooling, the decrement for temperature should be gradual. We

adopt a frequently used decrement rule given by (Laarhoven and Aarts, 1987)
T =ali,

where o is a constant smaller than but close to 1. Also, if a faster cooling is desired,
AT,,;, is given a high value and « is given a lower value. Thus if fast cooling is done

the Markov chains at each temperature would be longer.

The stopping criterion most often used in simulated annealing is by the value of
the final temperature. In this implementation, the final temperature is not chosen a
priori. Instead, the annealing is allowed to continue until the system is frozen by one

of the following criteria:
e The maximum number of iterations (temperature), i,e.;
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e If the objective function value of the last accepted transition for the temperature

is identical for a number of iterations {(kept as 10 iterations); or
e The acceptance ratio is simaller than a given value, Ry at a temperature.

The value of simulated anncaling parameters used in this chapter are as follows:
Ty = 10; AT, = 25 a = 0.90; ine = 100; and Ry = 0.01. The maximum
number of iterations i,,,, was set at a high value so that the algorithm is terminated
by other criterion. For most problems, 7j is in the order of the objective function
value expected. AT,,;, is taken in the order of munber of machines. Initially, ¢ was
taken as 0.99. The value was reduced to 0.9 since solution quality did not deteriorate.
This reduces the computational time. Ry was sct to a low value of 0.01. As the value

of a decreases, i,,,, can also decrease.

4.2 Computational Experience

First we considered the 8 well known problems (Table 3.12) and problems from
Ribeiro and Pradin, 1993 (Table 3.13) from Chapter 3. The initial machine assign-
ment for SAA to solve these problems were obtained by assigning each machine to a
separate cell as suggested in Chapter 3. The comparison of SAA and AAA is shown
in Tables 4.1 and 4.2. The objective function value obtained by SAA is the same or
better than AAA. However, the ‘grouping measure’ obtained from SAA for the two
problems, HN90 and KV87, were worse. This can be attributed to the fact that this

measure has not been directly considered in the objective function of the model.

To illustrate the robustness of the SAA in comparison with the AAA we study
the effects of initial machine assignment. We considered a perfectly groupable matrix

(problem D1 from Chapter 3) that can form 7 perfect clusters. The maximum number
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of cells C, is varied from 7 to 25. The initial machine assignment is generated by
randomly assigning machines to the cells. AAA and SAA are run for 19 (C = 7,
8,.....25) different initial machine assignments. It was found that AAA gave non-
optimal solutions for the following 13 cases (the table shows grouping measure, 1,

and objective function value, O.V):

C—| 7 8 9 10 11 12 13 14 15 17 20 22
g 064 077 0.64 079 079 079 079 079 0.79 0.79 0.79 0.79

O.V.|225 120 225 105 10,5 105 105 105 105 105 105 10.5

For the remaining 6 cases AAA gave the optimal solution with a ‘grouping mea-
sure’ of T and the objective function value of 0.0. SAA is not sensitive to the initial

solution and gave the optimal solution for all the cases.

We considered problems D2 to D7 from Chapter 3. We generated 10 initial ma-
chine assignments for cach problem. C was varied to take the values 15, 18, 20, 23
and 25. For each value of C'| two random number seeds were used for obtaining the
initial machine assignment. These problems were solved using AAA and SAA on a
Sun Sparc 2 station. The time taken by AAA was less than 1 second for each prob-
lem while the average time taken by SAA was 54.7 seconds. The results from AAA
and SAA are summarized in Tables 4.3 - 4.5. The deviations (o, 1) of the objective
function value and grouping measure are more in the AAA than the SAA. However,
as the groupability of data reduces, the solution from AAA becomes less sensitive to
the initial machine assignment, i.e., deviation in the objective function valuie reduces.
Overall, the SAA gives better (lower value of the mean objective function value and

higher value of the mean grouping measure) and more consistent solutions (objective
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function values and grouping measures close to the mean objective function value and

the mean grouping measure).

4.3 A Case Study

In this section the AAA and SAA are used on the data collected from a local
manufacturing company. The input in the form of a part machine matrix is shown in
Table 4.6. We solved this problem using the AAA and SAA for w = 0.7. The initial
machine solution was obtained by setting the maximmum number of cells, C', to 27 and
assigning cach machine to a separate cell leaving cell 27 empty. The rearranged part
machine matrix from the AAA and SAA are shown in Tables 4.7 and 4.8 respectively.
The AAA gave a solution with the objective function value of 45.8 and grouping mea-
sure of 0.44. It took 0.17 scconds. The SAA gave a hetter solution with the objective
function value of 41.8 and grouping measure of 0.52. The computation time in this
case was 137.5 seconds. We ran the AAA for 3 randomly generated initial machine
assignments. The grouping measures (objective function values) obtained are: 0.52
(42.3), 0.50 (42.6) and 0.44 (45.8) respectively. Computational time for each case was
less than 0.2 seconds. Thus a good solution can be obtained by running the AAA a

few times with different initial machine grouping.

4.4 Summary

A Simulated Annealing Algorithm is proposed to solve cell formation problem. In
general, the Simulated Annealing Algorithm gives better and more consistent results

than the Assignment Allocation Algorithin. However, the computation time required
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is significantly higher. In owr opinion, for smaller problems, the Simulated Annealing
Algorithm is recommended. For large problems, it is preferable to solve the Assign-

ment Allocation Algorithm a few times with different initial machine assignments.
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Table 4.1: Comparison of SAA with AAA for well known problems (see Chapter 3).

Problem From AAA From SAA
Grouping Objective Grouping Objective
measure | function value | measure | function value

P1 0.48 31.4 0.48 31.3
P2 0.76 13.0 0.76 13.0
P4 0.85 6.3 0.85 6.3
P5 0.57 20.7 (0.57 20.7
P6 0.92 1.2 0.92 1.2
P7 0.81 2.3 0.81 2.3
P8 0.68 5.5 0.68 5.5

¥ Input data for P3 is not available (see Chapter 3)

Table 4.2: Comparison of SAA with AAA for problems from Ribeiro and Pradin
{see Chapter 3).

Problem From AAA From SAA
Grouping Objective Grouping Objective
measure | function value | measure | function value
HNS0 (.66 14.2 0.65 14.0
SNS0 1.00 0.0 1.00 0.0
KV87 0.54 30.7 0.53 30.4
CM81 0.92 1.2 0.92 1.2
KU87 0.90 0.3 0.90 0.3
BS87 0.72 2.3 0.72 2.3
WS84 0.70 2.3 0.70 2.3
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Table 4.3: AAA results for well structured to ill structured problems.

Grouping measure and Objective function value
Prob | Ci=15 18 20 25 |
-lem 1* 2 1 2 1 2 1 2 1 2
D1 1.00* {0.79 | 1.00 { 1.00 | 1.00 | 0.79 | 1.00 | 1.00 | 1.00 | 1.00
00" |105] 60 | 0.0 | 0.0 {105 0.0 | 0.0 | 0.0 | 0.0
D2 0.84 |1 0.84]0.84|0.8410.84]0.68]0.8410.84|0.84]0.84
10.3 1103103103103 | 189103103 10.3|10.3
D3/ | 0.69 [ 0.69]0.69| 0.69 | 0.69| 0.55| 0.69 | 0.69 | 0.69 | 0.69
D4 21.2 | 225 (212 21.3 225|285 |225|225(21.2]21.2
D5 038 | 0391037047 040|043 | 0.44 046 0.39[ 0.44
42.8 | 43.1 | 44.6 1 45.2 |1 42.0 | 45.9 | 44.9 | 44.5 | 45.1 | 44.4
D6 0.35 10.34 1 0.37]0.35]0.39 | 0.280.35|0.38 | 0.40| 0.35
48.3 | 47.8 | 49.6 | 48.7 ) 48.2 1 51.2 1 51.4 | 48.2 | 50.2 | 47.5
D7 0.34 1030027028031 |031|0.28(0.37]|0.38/0.29
49.1 [ 50.7 | 51.1 | 50.4 | 52.7 | 51.2 | 50.8 | 51.9 | 50.5 | 51.8

1 maximum number of cells
I seed 1 for initial machine assignment

* grouplg measure

x objective function value



Table 4.4: SAA results for well structured to ill structured problems.

Grouping measure and Objective function value

Prob Ci=15 18 20 23 25
-lem 1 2 1 2 1 2 1 2 1 2
D1 1.007 1100100100} 1.0011.00]1.00]|1.00](1.00] 1.00
go* | 00| 00O |00 00| 0DFO00]|00] 00|00
D2 0.84 | 0.84 1084084084 (0840841084084 0.84
103 1103|103 10.3 (103|103 |10.3}10.310.310.3
D3/ | 0.69 | 0.69 | 0.69 | 0.69[0.690.69] 0.69 | 0.69 | 0.69 | 0.69
D4 20.0 [ 20.0(200|21.2]200|20.0|20.0|20.0420.0]|20.0
D5 040 1040041040041 1039|0421 043]0.4210.38
41,1 | 411 | 413 [ 41.1 [ 41.3 74131427420 42.7| 425
D6 039 |034]0.39]0.38]0.39]0.39]0.39|040]0.39|0.39
46.3 | 46.5 | 46.3 | 46.6 | 46.7 | 46.7 | 46.7 | 46.8 | 46.3 | 46.7
D7 032 (0330310351033 70.357033(0.3110.31]0.35
48.5 | 48,2 | 484 | 484 | 482 | 48.4 | 48.2 | 48.4 | 48.4 | 48.4

1 maximum nuinber of cells
T seed 1 for initial machine assignment

* gl‘Oiipil]g measure

% objective function value
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Table 4.5: Comparison for well structured to ill structured problems.

Grouping measure (Objective function value)

Prob From AAA From SAA
lem | Min. | Max. | Mean | 0,_; | Min. | Max. | Mean | o,_;
D1 | 0.79* | 1.00 0.96 1 0.09 ; 1.00 1.00 1.00 | 0.00
(0.0)* | (10.5) | (2.1) | (44) | (0.0) | (0.0) | (0.0) | (0.0)
D2 (.68 0.84 0.82 | 0.05 | 0.84 0.84 0.84 | 0.00
(10.3) | (18.9) | (11.2) | (2.7) | (10.3) | (10.3) | (10.3) | {0.0)
D3/ | 0.55 0.69 0.68 | 0.04 | 0.69 0.69 0.69 | 0.00
D4 | (21.2) | (28.5) | (22.5) | (2.2) | (20.0) | (21.2) | (20.1) | (0.4)
D5 0.37 0.46 0.42 | 0.04 | 0.38 0.43 041 | 0.01
(42.0) | {45.9) | (44.3) | (1.3) | (41.1) | (42.7) | (41.7) | (0.7)
D6 0.28 0.40 0.36 {1 0.03{ 0.34 0.40 0.39 | 0.02
(47.5) | (b1.4) | (49.1) | (1.4} | (46.3) | (46.8) [ (46.6) | (0.2)
D7 0.27 0.38 031 | 0.04 | 0.31 0.35 0.33 | 0.02
(49.1) | (52.7) | (51.0) | (1.0} | (48.2) | (48.5) | (48.4) | (0.1)

* grouping measure
% objective function value
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Table 4.6: Input part machine matrix for the case study.

Machine
11111111112222222
123456789012345678060123456

Co =1 O O b G0 DD

o T
e QO DN e DO

P 15
a 16
r 17
t 18
19
20
21
22
23
24
25
20
27
28
29
30
31
32
33
34
35
36
37

1 1 1
1 1 11
11 1 111
11 1 1 1 1
1 11 1 1
1 1 1 11
1
1 1 1 1
1
1 1 1
1 1171 1 1 11 1
1 1 1
1 1 1 11
1 11 1 1 11
1 1 11 1 11 1
1 1 11
1 11
11
1 1
1 1
1 1
111 1
111 1
111 1
i11 1
111 1
1 1 1 1 1 1
1 11 1 1
1 11 1 1
1 11 1 1
1 11 1 1
1 11 1 1
1 11 1 1
1
1
1 1
1 1 1
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Table 4.7: Rearranged matrix from AAA,

Machine
111 11 2 2 i12 22211112
8268|1659 14701511293072|3356(1344
1 I 1 1
2111 1 11
31111 1 11
4111 1 1 1 11
1111111 11 1 1
15 1 111111 i 1
27 111141 1
7 1 1
8 1 1 1 1
9 1
10 1 1 !
19 I 1
20 1 1
21 1 1
2211 i 11
231 1 11
24 | 1 1 11
2511 1 11
26| 1 1 11
36 11
37 111
12 I1 1
P 5 Il 1 11
a 14 11111 11
r 181 11
t 28 11111
29 11111
30 11111
31 11111
32 11111
33 11111
6 11 111
13 11 1 11
1611 1 1111
1711 1 1111
34 !
35 1
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Table 4.8: Rearranged matrix from SAA.

Machine
111 110211122 21222 11
5691270022844 (15(40(3563(876(13

3111 11 1 1
151111 1 1 11
2711 11 1 1
5 1 11 11
14 1111 1 11
18 11 1
28 11111
29 11111
30 11111
31 11111
32 11111
33 11111
1 11 1
2 11 11 1
4 1 1111 11
12 11 1
7 1 1

P 3 1 1 11

a 9 1

r 10 1 11

t 19 11
20 11
21 11
36 11
37 11 1
6 11 111
13 11 11
16 1111
17 1111
1111 1 1 11 111
22 1 111
23 1 111
24 1 111
25 1 111
26 1 111
34 1
35 1
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Chapter 5

Cell Formation Considering Alternate

Routings

Many cell formation (CF) procedures use the part machine matrix as an inpuft.
A perfect diagonalization of the part machine matrix to form exclusive part families
and machine groups is not possible in many instances. Considering alternate routings
(i.e., alternate plans for the parts and additional units of same machines) improves
this diagonalization. In this chapter, a nonlinear integer programming model is devel-
oped for cell formation counsidering alternate routings. The model is illustrated with
numerical examples. The optimal solutions for these examples are obtained by solv-
ing the linearized version of the model. For the efficient solution of larger problems a

Simulated Annealing Algorithm is implemented.

5.1 Problem Background

In most manufacturing sitnations, a perfect decomposition of part machine matrix
to form mutually exclusive cells is not possible due to the property of the data and /or
the inadequacies in the algorithm (Chandrasekharan and Rajagopalan, 1989). Two
possible approaches to improve groupability are by considering alternate process plans
for parts and additional units of same machines as available (KKusiak and Cho, 1992).
In this chapter, we consider alternate routings (alternate process plans and additional

units of same machines) during cell formation. The objective of cell formation is to
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identify a near hlock diagonal structure existing in the data. By imposing restrictions
on number of machines and /or parts in a cell (as assumed by Kasilingam and Lashkari,
1991) or specifying the number of cells (as in p-median model, Kusiak, 1987) will not
allow to obtain block diagonal form existing in the data. For example, let us consider
Table 5.1. Table 5.1(a) shows a partition into the optimal number of cells (C* =
3). This forms three fully dense diagonal blocks with no exceptional elements. If we
specify the number of cells as 2 ( €' < C*) this will result in an increase in the number
of voids. For example, Table 5.1(b) shows a possible partition into two cells resulting
in 8 voids and no exceptional elements. Similarly, Table 5.1(c¢) illustrates a situation
when the number of cells is specified as 4 (€' > C*). This will result in an increase
m the munber of exceptional elements to 8 with no voids. We can also observe from
these partitions that restricting the maximum number of parts in a cell to 2 will yield
a partition as shown in Table 5.1(c) which is not the best grouping for this data.
In addition, indirect measures such as maximization of similarity /compatibility do
not necessarily yield the best diagonalization of part machine matrix. This will be
illustrated by modifying the numerical example in Kusiak (1987). The original matrix
is shown in Table 5.2. On solving the p-median model for p = 2, the following part
(process) families are identified.

PF1 = {1(2), 3(2)} and PF2 = {2(2), 4(2), 5(2)}.

The unbracketed number shows the part number and bracketed number shows the
process plan number,

Using the above part grouping and assigning machines to these parts, the final
matrix obtained is shown in Table 5.3 (SOLUTION 1). This solution gives one void
and no exceptional elements.

In the above example (PROBLEM 1), let us assuine an additional process plan for

part 5, say 5(3) is available. The resulting input matrix for PROBLEM 2, is shown

72



in Table 5.4. If this problem is solved using the p-median model, the part (process)
families are modified as follows.

PFI = {1{2), 3(2)} and PF2 = {2(2), 4(2), 5(3)}.

Assigning machines to parts gives a solution (SOLUTION 2) as shown in Table
5.5. This solution gives one exceptional element and no voids.

Both solutions have the same objective function value (similarity index). The
only difference in these solutions is in the plan selection for part 5. SOLUTION 1,
gives 1 void and 0 exceptional elements; and SOLUTION 2 gives 0 voids and 1 ex-
ceptional element. The question arises as to which solution of the two is better. The
answer depends upon whether one gives more importance to voids or to exceptional
clements. The similarity based methods cannot distinguish between the two solution-
s. Therefore, we consider the minimization of the weighted sum of the voids and the
exceptional elements explicitly in the objective.

The remainder of the chapter is organized as follows. In section 5.2, a nonlin-
ear integer programming model is developed. A linear version of the model is also
presented in this section. In section 5.3, we present an iterative solution procedure
and develop a Simulated Annealing Algorithm for solving large problems. In section
9.4, we illustrate the model by considering numerical examples. The effect of forming
loose cells and tight cells is illustrated by solving the model for different weights.
Computational experience with iterative procedure and Simulated Annealing Algo-
rithm is presented in section 5.5. The results obtained are compared with the optimal

solutions. A summary is presented in section 5.6.
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5.2 Mathematical Models

In this section a nonlinear integer programming model is developed for simulta-
neous grouping of parts and machines. A linear model obtained by linearizing the

objective function terms is also presented in this section,

5.2.1 Nonlinear model
The proposed nonlinear model (NLM) considers the objective of minimizing the

weighted sum of the voids and the exceptional elements. The NLM is as follows:

MODEL - NLM (M2)

Min 2z = ) Wom by e (L= Yme) + D (1= wpm) (1= a,) e Yone (5.1)

pmcer pmcr

subject to:

Yoan.=1 Y op (5.2)
Zymc < N, ¥ m (5.3)
Tpey Ume € {0,1} ¥V p,m,e (5.4)

In the objective function given by equation (5.1), the first term captures the con-
tribution of the exceptional clements and the second term represents the contribution
of the voids. Constraints (5.2) guarantee that each part is allocated to one of the cells
and only one process plan is selected for the part. Constraints (5.3) ensure that the
total units of a machine type assigned to different cells do not exceed the available
units for that machine type. Binary restrictions on @ and y variables are imposed by

constraints (5.4).
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C, the maximum value of cell index ¢ is given as an upper limit on the number of

cells. The model selects the appropriate number of cells.

5.2.2 Linear model

The NLM has nonlinear terms in the objective function and linear constraints.

The model can be linearized by introducing additional variables and constraints. The

following additional variables are defined.

+ =

('S])HICJ‘

5-— =

pmcer

-

\

1

0

if part p is allocated to cell ¢, uses process plan r and requires an inter
cell movement for machine me (i.e., an exceptional elemment)

otherwise

if part p is allocated to cell ¢, uses process plan + and does not require
processing on a machine sn which is assigned to cell ¢ (i.e., a void)

otherwise

The linear model (LM) is as follows:

MODEL - LM (M2L)

Min z = 3 W S + D (L= W) 6y (5.5)
pmer pmer
subject to: constraints {(5.2), (5.3), (5.4) and the following
6;;16,, 2 Ppe = Yme (¥ pym,cr & = 1) {(5.6)
bpmer = Tpe tYme — 1 (¥ pm,er & ap, =0) (5.7)
+ - oo
é])mcr’ 51)1]1(:1’ 2 0 V p? ??17 C) 7 (5'8)
It should be noted that although &f  and ¢, .. are defined as continuous non-

negative variables, these variables will take only binary values due to the structure of

the constraints (5.6) and (5.7).



5.3 Solution Procedures

For small problems an optimal solution can be obtained by solving the LM. How-
ever, large problems require a prohibitive amount of computer time. Hence, there is
a need to develop an efficient heuristic procedure which can provide a good solution
in an acceptable amount of time. In section 5.3.1, we extend the iterative procedure
(AAA) which provides good results when alternate routings are not considered. In the
presence of the alternate plaus, this iterative procedure has a tendency to converge to
a local optimum (Adil et al., 1993 and see section 5.5.1). Therefore, in section 5.3.2,
we develop a Simulated Annealing Algorithm that gives an objective value closer to

the global optimum.

5.3.1 An Iterative Algorithm (AAA)

One possible approach could be similar to AAA presented in Chapter 3. Kasilingam
and Lashkari (1991) also used a similar approach in the presence of alternate process
plans. In the NLM, two sets of variables y,,. and ;. were defined. The first set
relates to the machines and other to the parts. The nonlinearity of the model arises
because of the product terms of these two variable sets in the objective function. The
model becomes linear if one of the variable sets has known values. For instance, if

Yme are fixed. This will give the following submodel:

SUBMODEL — M2.1 (Allocation submodel)

Min 2z = Z Bumer®), (5.9)

pmer

'Whel'e; Bpmcr — 'wpm-a';;m(]- - yvmc) + (1 - prm)-(l - a;m)y—mc
subject to:

Z’LPC =1 Vp (5.10)

cr
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2t € {0,1} (5.11)

This submodel is separable by parts. This means the variable x, , can be solved for

each p=1,2, .., P, independently. The resulting model for each part p, can be solved

W

optimally by inspection in the following way. Set z).. = 1 such that,

Min E Bpmcr

cr m

ch*r* -

The remaining a7 (¢ # ¢*, r # 1), should be set equal to 0.

Similarly, if the values of 27, are fixed, ¥,,. can be obtained by solving the following

pe
submodel:
SUBMODEL — M2.2 (Assignment submodel)
Mun zy = Z Wpm (L;;,HX;C + Z mecrymc
pmcer pmer
where, mec" - —'lUpm.(L;m "Y.:’.C + (1 - ’Il)).(l - a’;;m.)"YIJ)‘c
subject to:
Z Yme = Np Vm (512)
Yme € {0; 1} (513)

This submodel can be solved optimally for each y,,. variable as follows. Set

Ymer = 1 such that,

. oo Min 3 Dpper
DmC* = Z wﬂm— apm"ch +
pr cr 1)

The additional units of each machine type can be assigned by arranging the non-

positive Dy, (¢ # ¢*} in ascending order and selecting them in that order.

The assignment and allocation submodels can be solved iteratively until a conver-

gence is achieved. Adil et al. (1993) implemented this procedure for cell formation
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considering alternate process plans. However, when alternate process plans were con-
sidered (with no additional units of same machines, i.e., N,=1) it was observed that
the initial input matrix greatly affects the quality of the solution. This warranted
a further improvement in the solution procedure. In the next section we develop a
Simulated Annealing Algorithm. The part allocation procedure proposed above will

be used with the Simulated Annealing Algorithm as well.

5.3.2 Simulated Annealing Algorithm (SAA)

The Simulated Annealing Algorithm developed in Chapter 4 is extended to consid-
er alternate process plans and additional units of same machines. The initial machine
groupinug in this case is generated as follows. The number of cells, C' is set at AL1+41,
where M1 is the number of machines considering the additional units of the same
machine separately. Initially each machine is assigned to a separate cell and the last
cell is left empty to allow for the parts to be external. For this machine assignment
an initial part allocation is obtained by solving the allocation submodel. Thus, an
initial solution (PFs and MGs) and the objective function value are obtained. At
each subsequent iteration one machine is moved from the current cell to another cell
in order to get a new machine assignment. The machine to be moved and the cell
for this machine are selected randomly. This is done in such a way that the new cell
does not already have a unit of the same machine type. Part allocation is made for

this new machine assignment and the objective value is computed.

The detailed steps of the proposed implementation of SAA considering alternate

routings are presented below:
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Simulated Annealing Algorithm (SAA)

[0 ] Initialize

0.1 Define the annealing parameters: initial temperature Ty, minimum accept-
ed transition at cach temperature AT,,;,,, decrementing factor ¢, maximum
number of iterations i,,4., and final acceptance ratio Ry.

0.2 Initialize iteration counter; 1 = 0

0.3 Generate initial machine assignment and allocate parts by solving the al-

location submodel (get SOLY, OBJY).
[1 ] Execute outer loop, i.e., steps (1.1 - 1.7) until conditions in step 1.7 are met

1.1 Initialize inner loop counter { = 0, and accepted number of transitions AT
=0
1.2 Initialize solution for inner loop, SOL) = SOL!, OBJi = OBJ!
1.3 Execute inner loop, i.e., steps (1.3.1 - 1.3.5) until conditions in step 1.3.5
are mef
1.3.1 Update: I =1+1
1.3.2 Gemnerate a neighboring solution by perturbing machine assignment
and obtaining part allocation for new machine assignment (get SOL;,
OBJi.)
1.3.3 § = OBJ} - OBJi_,
1.3.4 If 6 < 0 or random(0,1) < 6_76'? then
e SOL} and OBJ! arc accepted
e Update AT = AT + 1

else
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e solution is rejected, SOL{ = SOL{ | ,OBJ; = OBJj_,
1.3.5 If one of the following conditions holds true: AT > AT, or{ >
MI1xM1 (M1 = nunber of machines), then assign L; (length of Markov
chain) = I, terminate the inner loop and go to 1.4, else continue the

inner loop and go to 1.3.1.
1.4 Update: i=1+1
1.5 Update: SOL' = SOLy! , OBJ' = OBJ} !
1.6 Reduce the cooling temperature: T; = o Ti_;

1.7 If one of the following conditions holds true: i > i,,..; or the acceptance
ratio (defined as AT/L;) < Ry; or the objective function value for the last
20 iterations remains the same, then terminate the outer loop and go to 2,

else continue the outer loop and go to 1.1.

[2 | Print the best solution and terminate the procedure.

5.4 Numerical Examples

In this section we consider four problems to illustrate the application of the model
developed. The weights for exceptional elements for all part machine combinations
are assumed to be the same in these problems, i.e., Wy, = w V pm. The first prob-
lem is from Kusiak (1987). The second problem shows how this model considers the
tradeofl’ between exceptional elements and voids. Problem 3 illustrates the ability of
the model to form loose or tight cells by changing the value of weights for exceptional
elements and voids. In the above problems it is assumed that only one unit of cach
machine is available. The last problem shows that the groupability can be improved

by considering the additional units of same machines as available. All these problems
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were formulated as linear models (LM) and solved optimally using Hyperlindo on

PC486/33Hz.

PROBLEM 1: The first problem is given in Table 5.2. This problem was solved for
weight w = 0.5. Thus, an equal weight is given to the exceptional elements and the
voids. The following solution was obtained.

PE1 = {1(2), 3(2)}, PF2 = {2(2), 4(2), 5(2)}.

Objective function value = 0.5.

Number of voids = 1, Number of exceptional elements = 0.

This is the same solution as obtained by Kusiak (1987).

PROBLEM 2: To illustrate the tradeoff between voids and exceptional elemcents,
the problem shown in Table 5.4 is solved for weights, w = 0.5 (case 1), 0.3 (case 2),
and 0.7 {case 3). In case 1 both are given equal weights, in case 2 the exceptional
elements are given less weights than the voids, and in case 3 the exceptional elements
are given more weights than the voids. The solutions obtained for the three cases are

as follows.

Case-1

PF1 = {1(2), 3(2)}, PF2 = {2(2), 4(2), 5(2)}.
MG1 = {2, 4}, MG2 = {1, 3}.

Objective function value = 0.5.

Number of voids = 1, Number of exceptional elements = 0.

Case-2
PFL = {1(2), 3(2)}, PF2 = {2(2), 4(2), 5(3)}.
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MG1 = {2, 4}, MG2 = {1, 3}.
Objective function value = 0.3.

Number of voids = 0, Number of exceptional elements = 1.

Case-3

PF1 = {1(2), 3(2)}, PF2 = {2(2), 4(2), 5(2)}.
MGI1 = {2, 4}, MG2 = {1, 3}.

Objective function value = 0.3.

Number of voids = 1, Number of exceptional elements = 0.

Cases 1 and 3, give 1 void and no exceptional elements, while case 2 gives 1 ex-
ceptional element and no voids. This can be explained as follows. In case 1, an equal
weight is given to the voids and the exceptional elements; so, any oue of the above
result will give the same objective function value of 0.5. The model selects the first
solution. In case 2, the exceptional clements are given less importance (weight of 0.3)
than the voids. Hence, the model finds a solution which gives no void. In case 3, the

situation is reversed.

PROBLEM 3: This problem (see Table 5.6) is considered to illustrate how changing
welghts allow the formation of loose or tight cells. The problem was solved for two
weights, 0.3 and 0.7. For weight equal to 0.3, i.e., when exceptional elements have
less weight relative to voids, the solution obtained is shown in Table 5.7. Three cells
are formed. The process plans for parts were such that machine 6 was not selected.
No voids and 4 exceptional elements resulted. Thus the cells here are tight. If we
look at the solution corresponding to the weight, w = 0.7 (shown in Table 5.8), we

have 3 voids, only 1 exceptional element and all the machines are assigned to one of
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the cells. Here the cells are loose compared to the former case.

PROBLEM 4: Finally, we show the improvement in decomposition by considering
additional units of machines as available. 1o illustrate this we modified the following

plan in PROBLEM 3:

part process plan machines required

=

5 2 1,59, 10

The problem was solved for weight = 0.3 and with only 1 unit of each machine type
being available. The result is shown in Table 5.9. The partition yields 4 exceptional
elements and no voids. If two units of machine type 1 are available the resulting
partition for the same weight, i.e., w = 0.3, is shown in Table 5.10. In this case the

number of exceptional elements has decreased from 4 to 3.

5.5 Computational Experience

In this section we will discuss the computational experience with AAA and SAA.
First we compare the quality of the AAA solutions with the optimal solutions in
section 5.5.1. Then we compare the quality of the SAA solutions with the optimal
solutions for an example problem in section 5.5.2. Finally, computational experience
with SAA for larger problems is presented in section 5.5.3. The following values were
selected for the parameters in the SAA.

To=5, AT,iu=30, 1me=300, R;=0.01 and «a =0.98

5.5.1 Comparison of AAA with optimal model

We considered PROBLEM 3 (two cases) and PROBLEM 4 (case 1 which considers

1 unit of machine) to compare the performance of AAA with optimal solutions. The
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following table shows the comparison.

PROBLEM AAA Optimal from LM
Voids Exceptional Objective | Voids  Exceptional Objective
elements function elements function
value value
3 (case 1) 2 5 2.9 0 4 1.2
3 (case 2) 3 1 1.6 3 1 1.6
4 (case 1) 2 5 2.9 0 4 1.2

The AAA identified the optimal solution for 1 problem and nonoptimal solution
for 2 problems. In our experience, even for small problems, this iterative procedure

was observed to converge to a local minimum for most initial solutions provided.

5.5.2 Comparison of SAA with optimal model and iterative

procedure

All the eight problems: PROBLEM 1, PROBLEM 2 {three cases), PROBLEM 3
(two cases) and PROBLEM 4 (two cases) were solved using SAA. The SAA gave an
optimal or an alternate optimal solution for all these problems. Next we considered
a 15 part, 10 machine problem solved by Iasilingam and Lashkari (1991). From the
information given about tools required by parts and tools available on the machines,
the data arve translated into a part machine matrix as shown in Table 5.11. The
rearranged part machine matrix from their solution is shown in Table 5.12. This
solution yields 24 voids and 6 exceptional elements. We solved this problem using
SAA for a value of w equal to 0.8. SAA identified a partition with fewer voids and
exceptional elements (20 voids and 5 exceptional elements). The solution is shown in

Table 5.13.
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5.5.3 Performance of SAA for larger problems

In this section, SAA is applied to large problems. Five large problems are gener-
ated from PROBLEM 3 (Table 5.6) by replicating rows and columns of the matrix.
For example, a 100 part, 50 machine problem can be generated from PROBLEM 3
(10 parts and 10 machines) by replicating each row 10 times and each column 5 times.
We can compute the optimum objective function value for the generated problems
using the solution of PROBLIEM 3. This can be done as follows. Table 5.8 shows the
optimal partition for a value of w=0.7. The objective function value for this solution
1s 0.7x14-0.3x3=1.6. The optimum objective value of a generated problem which is
obtained by copying each row « times and each column b times will be 1.6xaxb. Prob-
lems up to 300 parts (with 720 process plans) and 50 machines were solved on a Sun
Sparc 2 station. A summary of the computational results is provided in Table 5.14.

SAA identified the optimal solutions for all the problems.

5.6 Summary

In this chapter, a nonlinear integer programming model was developed for cell
formation. The model accounts for the possibility of having alternate process plans
for the parts and additional units of same machines. This improves the possibility of
obtaining a good block diagonal matrix. The objective of the model is to minimize
the weighted sam of voids and exceptional elements. Small problems can be solved
using the linear model presented. For solving large problems a Stmulated Anneal-
ing Algorithm is developed. The solutions obtained using the Simulated Annealing

Algorithm were found to be optimal for all the problems tested.



Parts

CO O~ U Wwoh

Table 5.1: Effects of forming different number of cells.

Machines Machines
123456 78 1234 5678
11 1| 1 111 1!
L 11 1 2 11112
111| 3 1111'
L1l Partsy l113.03 |
[T 11 5 RN
11y 6 |1 1
71 7 : 11
i1 8 | 11
{(a)C=0C* (b)C<C*
Table 5

Parts

= e R IV S

Machines

123456 78

2: Original part machine matrix from Iusiak (1987).

Machines — | 1 2 4
1) I
(2) i 1
(3)|1 1
2 (1) 1
(2) |1
Part(process plan) 3(1)|1 1
(2) 1 1
4(1) |1 1
(2) | 1
5(1) 1
(2) | 1

PROBLEM 1
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Table 5.3: Rearranged matrix (SOLUTION 1).

Machines — 1

3

2 4
11
11

Part (process plan)

[ e N I I

(2
(2
(2
(2
(2

e M S N |

Table 5.4: Modified part machine matrix.

Machines — [ 1 2 3
1 (1) 1

1

1 1

1 1

Part (process plan) 3

e

Nt Mt S Mt et e et N e St ot
—

= e

PROBLEM 2
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Table 5.5: Rearranged matrix (SOLUTION 2).

Part (process plan)

Machines —

4

1

3

1

(AR WL

@
(2
(2
(2
(3

R T NN

2
1
1

1
1
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Table 5.6: A 10 parts and 10 machines problem.

Machines — 2 3 4 5 6 7 9 10
Ty|[1 1 1
(2) 11
(3) 11
2 (1) 1
(2) 1 11
3 (1) 1 1
(2) 1 1
(3) 1 I
4 (1) 1 1 1
(2) 1 1
5 (1) 1 1
@ 1 1 11
Part (process plan) 6 (1) 1
(2) 1
(3) 111
)| 1 11
(2) 1 1
(3) 1 1
8 (1) 11 11
(2) 1
9 (1) 1 1
(2) 1 11
10 (1) 1
(2) 1 1
PROBLEM 3
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Table 5.7: Rearranged matrix for weight = 0.3.

Machines
1 2 5 9 103 7
T[T 1T 1
721 1 1
2(2)]1 1
5(2) 1 |1
Part 8 (1) 1 1
(process plan) 3 (1) 11
4 (2) 111
6 (2) 111
9 (1) 1111
10 (2) 111

Table 5.8: Rearranged matrix for weight = 0.7.

Machines
1 9 9 10|12 4 6|3 7
7)1 1 1 1
5(1)]1 1 1
8(2)|1 11
1(2) 11
Part 7(1) 1 11
(process plan) 3 (1) 1 11
1(2) 111
6 (2) 111
9 (1) 1 111
10 (2) 111
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Table 5.9: Rearranged matrix for weight = 0.3 and 1 unit of each machine,

Machines
1 2 415 9 10|13 7 8
TM[1 1 1
721 1 1
7(2) | 1 T 1 1
5(2) |1 11
Part 8 (1) 111 1
(process plan) 3 (1) I 11
4 (2) 111
6 (2) 11 1
9 (1) 1111
10 (2) 111

Table 5.10: Rearranged matrix for weight = 0.3 and 2 units of machine type 1.

Machines
1 2 411 9 1013 7 8|5 6
1)L 1 1
7)1 1 1
2(2) T 1 1 1
5(2) 111 1
Part 8 (2) 111
(process plan) 3 (1) I 11
4 (2) 111
6 (2) 111
9 (1) 1111
10 (2) 111
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Table 5.11: Input matrix from Kasilingam and Lashkari (1991).

Machinetype— |1 2 3 4 5 6 7 8 9 10
Totalunits - |2 1 1 1 1 1 1 1 2 2
11 1 1
2 (1) 1 1 1
(2) 11 1 1 1
(3)i1 1 1
3(1)|1 1 1
(2) 1 1
4 (1) 1 1 1
(2) 1 1 1
(3) 1 11
5 (1) 1 1 1 1
6(1){1 1 1 1
2)j1 1 1 |
Part 7 (1) 11 1
(process plan) 8(1) |1 L1
2)]1 1
9 (1) 1 1 1
10(1) |1 1 11
Iy 1 1
(2) 1 1
(3) 1 1 11
12 (1) 1 1
(2) 1 1 1
13 (1) 1 11
4()|1 1 1
2)|1 1 1
15 (1) 1 1 1 1
(2) 1 1 1 1
(3) i 11
PROBLEM 5
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Table 5.12: Solution from Kasilingam and Lashkari (1991).

Machines
1 3 4 101 2 6 8 9(5 7 9 10
Iy 11
5(1)] 11 1 1
7()] 11 1
8(2)]1 1
10(1)[1 1 11
6 (2) T 1 1 1
9 (1) 1 1
Part 13(1) ] 1 11
(process plan) 14 (1) 1 1
11 (2) 111
3(1) 1 11
3(2) 11
4 (3) 111
12 (2) 11 1
15 (2) 1 1 1 1
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Part
(process plan)

Table 5.13: SAA solution for weight = 0.80.

IND

Machines

10

3

9 4 1

109 5 7

I g g O

—_

P S G T S G S T (Y

w0 N O oo

[ —
[ N}

[W—y
P— e jed

Table 5.14: Computational experience with large problems.

Prob. Number of Objective value | Computation

No. Parts Machines | SAA | Optimum time
(process plans) (in minutes)

1 50 (120) 30 24 24 15.03

2 100 (240) 20 32 32 15.81

3 100 (240) 30 48 48 53.76

4 200 (480) 40 128 128 83.26

5 300 (720) 50 240 240 244.97
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Chapter 6

Cell Formation Considering Material

Handling

Cellular manufacturing aims to achieve the decomposition of a manufacturing
system into smaller subsystems or cells. One motivating factor for introducing a cell
system is reduction in material handling. In this chapter we address the cell formation
problem for an existing shop. The objective considered is to minimize the material
handling costs. Sequence of operations, cell size, options of assigning an operation to
alternate machines, and additional units of same machine are considered. The proh-
lem hecomes intractable when the above factors are considered simultaneously. So
we develop a two stage procedure. In stage 1, machines are partitioned into machine
groups minimizing the total material handling cost. In the calculation of material
handling costs: production quantity, effect of cell size on intra cell handling cost,
effect of sequence of operations and multiple visits to the same machine by parts, are
considered. All the similar machines are lumped into 1 machine type. Although there
may be other machines which can perform the same operation, in stage 1 we consider
only one principal machine for each operation. Generating options to perform each
operation on alternate machines are neither easy nor required. In stage 2, we consider
generating other options for only those operations identified as exceptional elements
in stage 1 solution. Also, additional units of machines available from stage I solution

are considered for reassignment. Thus, in stage 2, by re-allocating operations that



resulted in exceptional elements and reassigning all the extra units of machines avail-

able in the cells, the solution is further improved.

The remainder of the chapter is organized as follows. Section 6.1, presents the
stage 1 procedure. The mathematical model and Simulated Annealing Algorithm are
developed in this section. The tradeoft between intra and inter cell material han-
dling cost trade is also illustrated followed by a comparison with previously published
results. In section 6.2, we develop an integer programming model for stage 2. We
illustrate the two stage procedure developed in this chapter by considering an ex-
ample problem in section 6.3. Sections 6.4 and 6.5 provide discussion and summary

respectively.

6.1 Stage 1: Initial Grouping

At stage 1, initial machine and part groupings are obtained. We make the following

assumptions:

1. All the similar machines are lumped into 1 machine type.
2. A particular operation of a part can be performed by only one type of machine.

3. The unit intra cell move cost is a function of the number of machines assigned
to the cell. We assume the following form of variation of the intra cell cost per

move per unit of material (HCW,,):
HCW,(N€) = AJ + M.N°, for N¢>2 (6.1}
where, N°¢ is the number of machines assigned to the cell; and A & A are

constants. If there is only one machine in the cell the intra cell handling cost is

0 and the function is defined only for more than 1 machine in a cell. Sankaran
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and Kasilingam (1993) made a similar assumption about the intra cell material
handling cost and represented it by a stepwise linear function. It should be
noted that the simulated annealing algorithm presented in this chapter to solve

model M3.1 is not restricted to a linear form.

If assignment of machines to cells is known, then from assumptions (1) and (2),
part routing is unique and material handling costs can be calculated without actually
assoclating the parts to any cell. This means that the material handling cost for a
given machine assignment will be the same regardless of the part allocation. Model
M3.1 identifies machine groups. After machine groups are identified, each part is
allocated to a cell which results in a minimuwm number of exceptional elements. This

allocation is necessary only to proceed to stage 2.

6.1.1 Mathematical model

In this section a nonlinear integer programming model is developed for identifica-
tion of machine groups to minimize total material handling costs. The model is as

follows:

MODEL - M3.1

Min z = Z Z Z Z Z HCT’;VP(Z fvmymc) Cgmm' Yme Ym'e Qp +

c b2 m m! o m

Z Z Z Z Z HCB]J cgmm,-’ Yme (1 - ym’c) Qp (62)

[54 poom gt o

subject to:

> Yme =1 Y m (6.3)

c

Yme € {0,1} ¥V m,c (6.4)
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The objective function given by equation (6.2) has two nonlinear terms. The first
term captures the contribution of the intra cell handling costs and the second term |,
the inter cell handling costs. Constraints (6.3) guarantee that each machine type is

allocated to a cell. Binary restrictions on y variables are imposed by constraints (6.4).

C, the upper limit on the number of cells is given as one more than the total
number of machines and the model will determine the optimal number of cells to be

formed. We use a simulated annealing procedure to solve the model.

6.1.2 Simulated Annealing Algorithm (SAA)

In this section an implementation of the SAA to obtain the machine grouping is
presented. This implementation is similar to that in Chapters 4 and 5. For generating
a starting solution, the number of cells is set equal to M + 1, where M is the number
of machine types. Each machine type is assigned to a separate cell. The last cell, i.e.,
M1, is left empty to allow for the parts to be external. For this machine assignment,
an initial objective function value is calculated from equation (6.2). Thus, an initial
solution (MGs) and the objective function value are obtained. At each subsequent
iteration one machine is moved from the current cell to another cell in order to get
a new machine assignment. The machine to be moved and the cell for this machine
are selected randomly. The objective value is then computed for this new machine
assignment.

The detailed steps of the proposed implementation of SAA are presented below.

Simulated Annealing Algorithm (SAA)

[0 ] Initialize
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0.1 Define the annealing parameters: initial temperature Ty, minimum accept-
ed transition at each temperature AT,,;,, decrementing factor ov, maximum
munber of iterations i,,q., and final acceptance ratio Ry.

0.2 Initialize iteration counter: 1 = 0

0.3 Generate initial machine assignment and compute the objective value (get

SOLY, OBJY).
1 | Execute outer loop, 1.c., steps (1.1 - 1.7) until conditions in step 1.7 are met
1

1.1 Initialize inner loop counter I = 0, and accepted number of transitions AT
=0
1.2 Initialize solution for inner loop, SOL] = SOL’, OBJj = OBJ
1.3 Execute inner loop, i.e., steps (1.3.1 - 1.3.5) until conditions in step 1.3.5
are met
1.3.1 Update: { =1 + 1

1.3.2 Generate a neighboring solution by perturbing machine assignment
and compute the objective value for new machine assignment (get
SOL;j, OBJ:.)

1.3.3 6 = OBJ; - OBJ;_,

_5
T; then

1.34 If § <0 or random(0,1) < e
e SOL} and OBJ! are accepted
e Update AT = AT + 1
else
e solution is rejected, SOL} = SOL;_; ,0BJi = OBJi_,
1.3.5 If one of the following conditions holds true: AT > AT,,;, or [ > 5M?

(M = number of machine types), then assign length of Markov chain,
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L; =1, terminate the inner loop and go to 1.4, else continue the inner

loop and go to 1.3.1.
14 Update:i=1+1
1.5 Update: SOL' = SOL{' , OBJ' = OBJ{ !
1.6 Reduce the cooling temperature: T; = o T,
1.7 If one of the following conditions holds true: 1 > i,,..; or the acceptance
ratio (defined as AT/L;) < Ry; or the objective function value for the last
20 iterations remains the same, then terminate the outer loop and go to 2,

clse continue the outer loop and go to 1.1.

[2 ] Print the best solution obtained and terminate the procedure.

In this chapter, the value of simulated anncaling parameters were selected as
follows: The initial value of cooling temperature Ty is selected in such a way that
the acceptance ratio (ratio of number of accepted solutions to number of generated
solutions) is close to unity. We used T, = 5 when demand for parts was 1 and 7}, =
100xP ( where, P = number of parts) when part demand was of the order 100. The
following values were sclected for the other parameters:

Al pin = 100; @ = 0.99; ine. = 300; and Ry = 0.01.

6.1.3 INustration of inter and intra cell tradeoffs

The tradeoft between intra cell and inter cell handling costs is illustrated in this
section. A six part, five machine problem is considered and the part machine matrix
is shown in Table 6.1. Costs of intra cell material handling vary as given by equation
6.1. The following values are assuined for the constants:

M =05 M=05 ¥
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We considered three cases. All the problems were solved using SAA. In case 1,
inter cell handling cost is taken as $10 per operation for each part. This solution gives
1 cell with the objective value of $27 (Table 6.1). The high cost of inter cell handling
forces it to avoid any inter cell movement. In case 2, the cost of inter cell handling
is reduced to $5. This forms 2 cells with the objective value of $23 ($13 for intra cell
and $10 for two inter cell moves). The resulting partition is shown in Table 6.2. In
case 3, the cost of inter cell handling is kept as $2. The solution gives three cells as
shown in Table 6.3. The objective function value for the solution is $16 in this case
(88 for intra cell and $8 for inter cell moves). Also, in this case machine 5 which is
required by parts from two cells, is assigned to the remainder cell, cell 3. As the inter

cell move cost reduces, more cells are formed.

6.1.4 Comparison of results

In this section we provide a comparison of SAA with published results. The inter
cell flow reduction heuristic due to Okogbaa et al. (1992) and the heuristic procedure
by Harhalalkis et al. (1990) consider the sequence of operations of parts in calculating
the inter cell moves and they capture the material handling moves exactly. However,
they have not considered the intra cell move. For a predefined maximum number of
machines in a given cell, these procedures obtain a grouping which minimize the total
inter cell material handling. To make the comparison with the above two procedures
consistent with the procedure developed in this chapter, we define intra cell move
cost as follows. When the number of machines in a cell is less than or equal to the
maximum specified number of machines in a cell the intra cell cost is taken as 0
otherwise a very high cost is given to the intra cell move cost. This does not allow
formation of a cell which has more machines than the limit specified. The inter cell

handling cost per move is taken as $1 per part per move, because the two heuristics
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mentioned above consider minimizing the total flow of parts.

Okoghbaa et al. (1992) considered three problems with part machine matrices of
size: (i) 14x7; (i1} 7x5; and (ii1) 43x16. FEach of the problems was solved for two
cases. For problem (i) and (ii}, two demand patterns were used. For problem (iii)
two different cell size restrictions were considered. The data and solutions obtained
by SAA for each of the problems are shown in Tables 6.4 to 6.9. The solution obtained
by SAA for these problems were the same as in Okoghaa et al. (1992). Harhalakis
et al. (1990) considered a 20 part, 20 machine problem shown in Table 6.10. Two
cases were considered. The demand for parts are kept uniform in both cases while
the maximum number of machines in a cell are 5 and 7 for case 1 and 2 respeetively.
SAA solution for case 1 is shown in Table 6.11. Harhalakis et al. (1990) obtained the
same solution with the number of inter cell moves as 17. The case 2 solutions from
Harhalakis et al. {(1990) and SAA are shown in Tables 6.12 and 6.13 respectively.
SAA gave a better solution that resulted in 13 inter cell moves as compared to 14
from Harhalakis et al. (1990). We can also observe in these solutions that although
the number of exceptional elements in a solution by SAA is more than that obtained
by Harhalakis et al. (1990) the total inter cell moves is less. This illustrates the
importance of considering the sequence of operations. SAA thus compares favorably
with the existing procedures. In addition, SAA can consider the effect of cell size on
intra cell material handling. An illustrative example considering the effect of cell size

is provided in section 6.4,
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6.2 Stage 2: Improvement in Grouping

Stage I gives the initial part machine groups. This solution may contain a number
of exceptional elements. The exceptional clements can be eliminated if the follow-
ing options are available: if an extra unit of the machine that is required to process
the exceptional element can be moved to the cell where the part is allocated; or the
operation can be re-scheduled on a different machine type that is available in the
part’s parent cell. If the first option is chosen, the inter cell move of the part is
eliminated but at the same time, since, other parts in a cell do not need processing
on this machine the intra cell move costs for these parts will increase. If the second
option is selected, the processing cost for that operation will increase in addition to
an increase in intra cell move cost corresponding to that operation. In this section, we
consider these two options to improve the grouping if this reduces material handling
further. Other options, such as further dividing these operations into two or more

sub-operations could also be considered at this stage.

Before, we start stage 2 we modify the stage 1 solution as follows. All the excep-
tional clements are removed. Loads due to the remaining operations on each type
of machine is calculated. Based on this load the required number of units of each
machine type is determined. Extra units of machines are removed and considered
for reassignment. The new objective function value after removing the exceptional

elements and the extra units of machines is calculated.

Stage 2 considers reducing the exceptional elements by assigning a unit of the
machine to the cell or by re-allocating the operation to alternate machine types with-

in cells. Cell size increases due to the reassignment of the extra units of machines.
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Because of the cell size increase, cost per intra cell move also increases. We com-
pute this increase in cost for all the operation assignment which were made in the
part’s parent cell in stage 1. However, for the operations that resulted in exception-
al elements in stage 1, this increase is small and can be ignored. If an exceptional
element is re-allocated to the parent cell the intra cell handling cost increases; and
if it allocated to a different cell inter cell handling cost increases. We assume that if
the operation is the first or the last operation, it contributes to one intra/inter cell
handling and if it is an intermediate operation it contributes to two intra/inter cell
handling upon re-allocation. The sequence of operations of parts is exactly captured
when the exceptional elements do not correspond to two consecutive operations in

one cell,

6.2.1 Mathematical model

We develop an integer programming model for stage 2. The model is as follows:

MODEL - M3.2

Min # Z Z Z Z Cpm 1])I?EC

c m p e

ZZA‘HCII Zszc + ZZZZQ ‘HC” 'y ";I"CQ

c m [ m

+ ZZZZQ HCBC ‘T;mc Qp (65)

€ m

subject to:

ZZIE;mc =1 Vp;e (66)

i c

Yoyl =1 ¥ om, f (6.7)
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Z Z Qﬁt;m‘q“;mc S b?nc - Z bm y;’:lc v m, ¢ (68)
P e f

:L‘fjmc,y;fw € {0,1} Yoep fim,c (6.9)

The objective function represented by equation (6.5) has 4 terms. The first term
captures the incremental processing cost. This is incurred when an operation is not
assigned to the principal machine. The second term captures the increase in intra cell
handling of assigned parts due to assignment of extra units of machines in the cells.
The third term shows the contribution of intra cell handling of all the exceptional ele-
ments. The fourth term captures the total inter cell handling costs. Constraints (6.6)
state that all the exceptional elements should be re-allocated to a cell. Constraints
(6.7) ensure that each additional unit of a machine is assigned to some cell. Machine
capacity availability is represented by constraints (6.8). Finally, binary restrictions on
x and y variables are imposed by constraints (6.9). If the splitting of part demands
to different machines is allowed then variable » represents the fraction of demand

produced and thus can be specified as a continuous variable.

6.3 An Example Problem

In this section we illustrate the two stage procedure with an example problem.
We counsider the part machine matrix from Harhalakis et al. (1990) shown in Table
6.10. We generate other required data for this problem as shown in Table 6.14.
Processing times of operations are generated randomly between 2 and 5. It is assumed
that machines have different capacities to take into account the variability in down
time, number of shifts the machine can be operated, availability of special tools or
operator cte. Capacities of different machine types are selected between 1,000 and

3,000 time units. Demands for parts are generated between 100 and 250. Based on

105



this information, the load on each type of inachine is calculated. The required munber
of units L,,, of machine type m is the ratio of total load on this machine type to its
capacity by,. L,, is rounded to the next integer, say L,,. The number of units of each
type of machine available &, was assumed to be equal to L,, for this example.

The following parameter values were used in equation (6.1) to calculate intra cell
wove cost per unit of material moved HCW ,(N¢).

Ah = 0.8, Al=01 ¥p

The cost of inter cell move per unit per move HCB,,, was assumed to he $5 for all
pact.

Stage 1: We used data from Table 6.14 on intra cell and inter cell handling costs,
part demand, number of units of each machine type and operation sequence of parts
to solve model M3.1 to obtain the machine groups. Although we use the number
of units of same machine type in cell size calculation, we assign all the units to the
same cell. Parts are assigned to the cell where it results in a minimum nunber of
exceptional elements. The part machine groupings thus obtained is shown in Table
6.15. There are 15 exceptional elements in this solution. The total handling cost
for the solution is $25,270 ($12,270' + $13,0002). It is also worth pointing out that
machine 5 is assigned to cell 4 and it processes 3 parts (parts 6, 7 and 19) from cell 2
and only one part (part 12) from cell 4. Tt appears that for machine 5, cell 2 would
be the better cell assignment than cell 4. However, in doing so it will increase the
net handling cost. The operations of parts 6, 7 and 19 on machine 5 are either the
first or the last operation while the operation of part 12 corresponds to an interme-
diate operation. In the present assignment a total of 350 units are handled once,
while if machine 5 is assigned to cell 2, 250 units of part 12 will have to be moved

twice and the inter cell handling cost will increase by $250. Although the intra cell

lintra cell handling cost;  Zinter cell handling cost
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handling cost will reduce by $139 there will be a net increase of $111 in handling cost.

Stage 2: We now improve the stage 1 solution. We do not change the allocation
of any part operation which is carried out in the part’s parent cell. Thus, only excep-
tional elements resulting from the stage 1 solution are considered for re-allocation.
Similarly, we reassign only additional units of machines available in the cells which
are not required for completing the allocated part operations. In Table 6.16, units of
machine which can be reassigned ave determined in the following way. The load on
cach type of machine due to all the allocated operations in the parent cell, i.e., all
operations excluding the exceptional elements, is caleulated. The sum v, is rounded
to the next integer v,. After assigning v, units of machines to the parent cell, any
additional machine units available are considered for the reassignment. This ensures
that the capacity requirement is met for all the allocated part operations in the par-
ent cell. Irom the table we observe that machine types, 17, 20, 10 and 4 have 1
extra unit each. After removing the extra units from the cell we compute the re-
maining time available 00,., on each machine type. The total number of machines
remaining in each cell, N2, and the cost of intra cell per move HCW,(N%) for the

corresponding cell are given in Table 6.17. The objective function value after remov-

ing extra units of machines and the exceptional elements is recomputed to be $11,170.

Table 6.17 shows the calculation of change in the intra cell move cost of each part
allocated in a cell AHCWY, that would result if an additional machine is assigned
to the cell. To re-allocate exceptional elements we consider alternate machines where
these can be processed. Table 6.18 provides information about the alternate machine

and cell combination, processing time and an incremental processing cost to perform

each exceptional element. If the principal machine is chosen then the incremental
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processing cost is 0. Table 6.18 also shows the valuc of of. Model M3.2 was for-
mulated using the information on Tables 6.16 to 6.18 and solved using Hyperlindo
software. T'wo solutions were obtained. In the first case splitting of part demand into
machines was not allowed by restricting the 2 variables to take a binary value. The
solution is shown in Table 6.19. The number of exceptional clements is reduced from
15 in stage 1 solution to 9. The objective function value is $12,650. Model M3.2 gave
the cost of re-allocating exceptional elements and extra units of machines. We have
the cost of material handling from stage 1 after removing exceptional elements and
extra units of machines as §11,170. Adding these two costs gives the total cost as
$23,820 ($11,170 + $12,650). The cost thus computed may differ from the actual cost
directly obtained from the final part machine groupings shown in Table 6.19. This
is because in the formulation of model M3.2 we ignore the effect of increase in cell
size on intra cell move cost of exceptional clements. Also, if two consecutive oper-

ations arc performed in the same cell it results in overestimating the number of moves.

The actual cost can be computed from the solution (part machine groupings)
shown in Table 6.19 as follows. For each part, the number of inter cell moves
and intra cell moves in different cells can be found. Depending upon the number
of machines assigned to a cell, the cost of unit intra cell move can be computed.
The unit inter cell move cost is taken as $5. The product of the number of in-
tra/inter cell moves, cost per intra/inter cell move and the part demand will give
the total handling cost for the part. The processing cost is calculated by multi-
plying the incremental cost with part demand for those operations which are per-

formed on the machine other than the principal machine as indicated in Table 6.19.
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The actual cost thus obtained is $23,190 ($13,190' + $9000? + $600%). The two costs

differ only by 2.72%.

In the second case splitting of part demand was allowed by defining the z variables
as continuous variables) the solution was obtained as shown in Table 6.20. In this
solution 6 exceptional elements are completely eliminated and 7 elements are partially
transferred to their parent cells. The actual cost for this solution is $22,650 ($15,089"
+ $4857% + $2704%) and that obtained from the modelsis $22,663 ($11,170 + $11,493).

Allowing splitting of demands thus gives a lower total handling plus processing cost.

6.4 Discussion

The importance of considering the tradeoff between intra cell and inter cell han-
dling costs is often stated in the literature (McAuley, 1972, Logendran, 1990 & 1991).
As the system is decomposed into more cells the total inter cell handling cost in-
creases while the total intra cell handling cost decreases. With an increase in number
of cells formed it is likely that the cells are located far apart and physical travel of
part between cells increases. Also, the part visits more cells which requires additional
coordinating effort. The number of inter cell moves and the cost per inter cell move
thus increase. Therefore, the total inter cell handling cost increases. In contrast,
as the number of cells increases the cell size in general decreases which results in a
decrease in the cost per intra cell move and the number of intra cell moves. Hence
the total intra cell handling cost decreases. The material handling cost (MHC) can

be expressed in the following form:

MHC = 91() (131 +92(.) o

3

lintra cell handling cost; Zinter cell handling cost; incremental processing cost
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where, #(.) is a weight reflecting cost per inter cell move;

f2(.) is a weight reflecting cost per intra cell move;

np is the number of inter cell moves; and

n9 18 the number of intra cell moves.
In the above equation #,(.) is a function of number of cells/cell layout; and 65(.)
is a function of size of a cell (number of machines or parts) /cell configuration. In
the literature, the material handling tradeoff is often expressed by assigning constant
values of weights: 0,(.) = 0, and 6,(.) = 65 in such a way that 8; > #5. The purpose
of considering the tradeoff between inter cell and intra cell handling costs is defeated
in this case and the objective simply leads to the minimization of numnber of inter
cell moves (or maximization of number of intra cell moves). This can be explained as
follows. Let a part require n operations. The sum of the number of intra and inter
cell moves is always one less than the number of operations, i.e., ny +ny = n — 1.

The objective function is in this case is minimization of:
010 + Oang = (61 — o)) + 62(n — 1) (by substituting ny =n — 1 —ny)

In the above expression 8, > fy, and all the other parameters except n; are constant,
the objective function then becomes minimization of n; or the number of inter cell

moves.

Logendran (1991) considers the variation of weight 0,(.} assuming that the layout
is known. However, the values of the weights are such that for a given part 6,(.) is
always greater than ¢,. Unless #,(.) becomes less that 85 for some configuration this
is equivalent to the minimization of the number of inter cell moves only. The tradeofl
between intra and inter cell move can not be exploited and will lead to the formation

of one cell unless other restrictions such as minimum number of cells to be formed or
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maximum number of machines in a cell, are imposed.

McAuley (1972) computes material handling cost for different cell configuration
by considering the weight #5(.) as a linear function of number of machines. Weight
0,(.) takes a constant value. Depending upon the type of layout three different linear

equations are defined for y(.).
1 . .
B() = 5(1 + M)y A for astraight line layout
1
Ba{.) = E(R + M) A for arectangular layout with R rows

V2

ba(.) = 3 M A for square layout

where, A is a constant; and M is the number of machines in a cell. This allows
exploitation of the tradeoff between the inter and intra cell handling costs because as
the number of cells decreases the value of 62(.) increases and beyond some point it

becomes greater than 6.

The above expressions (for assumed layout) were used by McAuley {1972) to
evaluate different solutions and it was not a part of the cell formation procedure. In
this chapter, the proposed model identifies the part-machine grouping considering the
intra cell cost #5(.) as a linear function of the number of machines. The linear function
can represent any of the situations considered by McAuley (1972). The model and
solution procedure developed in this chapter can be suitably modified to incorporate

61(.) as a function of number of cells and layout.
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6.5 Summary

Omne major advantage of the cell system of production is the reduction in material
handling. In this chapter, we proposed a two stage procedure for cell formation. In
stage 1, we developed a nonlinear mathematical model to minimize the total intra cell
and inter cell material handling costs. In the caleulation of material handling costs:
production quantity, cffect of cell size on intra cell handling, and effect of sequence of
operations have been considered. A solution procedure based on simulated annealing
was presented. The results compare well with existing procedures. In stage 2, an
integer programming model was developed which considers allocating an operation
to alternate machines and extra units of machines available to further improve the
solution obtained in stage 1. The two stage procedure was illustrated by solving an

example problen:.
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Table 6.1:

a

An un-decomposed system.
Machines
2 3 4 5

111 2T

2 i 2

3 1 2

411 2 3

5 2 1 3

6 1 2

* sequence of operation

Table 6.2:

a

of part

Decomposition into 2 cells.
Machines
1 312 4 5
1{1 2*
411 2 3
2 3 1 2
3 1 2
5 112 3
6 1 2

* sequence of operation

of part
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Table 6.3: Decomposition into 3 cells.

Machines
1 3 :4 215
P 1|1 2t
a 41 2 3
5 1 213
t 2 1 3|2
s 3 2 1
6 2 1

t sequence of operation
of part

Table 6.4: 14x7 matrix from Okogbaa et al. (1992).

Machines
1 2 3 4 5 6 7
1 1 2 3
2 |2 1
3 1
4 1 2
P 5 1 3 2
a 6 3 2 1
r 7 1 2
t 8 |1 2 3
s 9 1 2
10 1 2
11 1 2
12 1 2
13 1
14 | 2 1
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Table 6.5: SAA solution for 14x7 matrix in Table 6.4.

Case 1: (a) Data: (i) Maximun cell size = 3 machines
(ii}Uniform part demand

(b) Solution: Machine groups

Cell number Machine assigned
1 7,2,6
2 5,1
3 4,3

Case 2: (a)Data: (i) Maximum cell size = 3 machines
(ii)Part demand

Part 1 2 3 4 5 G 7
Demand 100 250 200 400 300 100 150
Part 8 9 0 11 12 13 14

Demand 600 300 200 250 300 500 300

(b)Solution: Machine groups

Cell number Machine assigned

1 2.7
2 1,5,6
3 3.4
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Table 6.6: 7x5 matrix from Okoghaa et al. (1992).

Machines
1 2 3 4 5
1 1 2
P 211 2
a 3 2 1 3
r 41 2 3
t 5 2 1
s 6 1 2
712 1

Table 6.7: SAA solution for 7x5 matrix in Table 6.6.

(a)Data: (1) maximum cell size = 3 machines
(ii)Distribution of part demand

Distribution 1

(Case 1)
Part 1 2 3 4 5 6 7
Demand | 100 100 100 100 100 100 100
Distribution 2

(Case 2)
Part 1 2 3 4 5 6 7
Demand | 500 150 100 100 300 200 150

(b)Solution: Machine groupings

Cell Machine assignment
Distribution 1 (Case 1) Distribution 2 {Case 2)
1 1,3 3,4,1
2,54 5,2
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Table 6.8:

43x16 matrix from Okogbaa ct al. {1992).

Machines

6 00000001 11 1 1 11

23 45 6 78 9 01 2 3 4 5 6
1 1 2
2 1 2 4 3
3 1 2
4 1
5 1 3 2
6 2 1
7 2 2
8 1
9 1 2 3
10 1 3 2
11 1
i2 1
13 1 2
14 1 2 3
15 1 2
16 1 2
17 i 2
18 1
19 1 3 2
20 1
21 2 1 3
22 i
23 1 2
24 3 2 1
25 1 2
26 1
27 1 2
28 2 1
29 2 1
30 1 2




(Table 6.8: continued.....)

Machines
0 6 0 0 o0 0 01 11111 1
12 3 4 5 6 78 9 0 1 2 3 4 5
31 1
32 2 2 1
33 1
34 1
P 35 2 1
a 36 1
r 37112 3
. 38 2 3 1
s 39 1
40 1 2
41 1 2
4212 1 3 4
43 3 2 1

‘Typographical crror identified in the paper was suitably corrected.

Table 6.9: SAA solution for 43x16 matrix in Table 6.8.

Cell Machine assignments
Case 1 Case 2
(cell size = 6) (cell size = 4)
1 4,5,11-13,15 4,5,15
2 1,2,3,9,14,16 1,2,9,16
3 7,10 7,10
4 11-13
5 3,14

Part demands were uniform in both cases.
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Table 6.10: A 20x20 matrix from Harhalakis et al. (1990).

Machines
g 0000 00001 11 1 1 1 1 2
12 3 4 5 6 7 8 9 ¢ 1 2 5 6 7 9 0
112 3 1 5
2 3 2 1
3 1 3 2
4 3 1 4 2
5 1 3 4 2
G 5 1 3 4
7 1 2 3
8 5 3 4 1
914 2 3 5
10 3 1 2
11 3 1
1215 3 1 4
13 1 2 3 4
1413 4 1 2
15 3 4
16 3 2 1 4
17 2 1 3
18 1 4 2 3
19 2 1 4 3
2013 2 4
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a

Table 6.11: SAA 5-cell solution of 20x20 matrix in Tahble 6.10.

(i)Maximumn cell size = 5 machines
(ii)Uniform part demand of 1

Machines
0 0 1 1 1|00 1 10 0 01 1/0 1 1|0 1 2
19 2 812 3 1 4|14 6 7 3 5i5 6 718 ¢ 0
112 3 1 4 5
914 2 5 1 3
1235 1 4 2 3
1413 2 4 1
1712 1 3
203 2 4 1
2 3 2 1
4 4 3 1 2
11 3 1 2
19 2 1 3 4
5 1 3 4 2
8 4 5 3 2 1
13 1 2 3 4
16 3 2 1 4
6 1 2 5 3 4
7 1 2 3
15 2 1 3 4
3 1 3 2
10 3 1 2
18 4 1 2 3

Total number of inter cell move = 17
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Table 6.12: Harhalakis et al.’s {1990) 4-cell solution of 20x20 matrix in Table 6.10.

(i)Maximum cell size = 7 machines
(ii)Uniform part demand of 1

Machines
o011 110001 1 1 1]/0001 1101 2
1 90 2 812 3 5 1 4 6 714 6 7 3 58 9 0
112 3 1 4 5
914 2 5 1 3
1215 1 4 2 3
14 (3 2 4 1
1712 1 3
20 | 3 2 4 1
P 2 3 1
a 4 4 3 1 2
r 6 5 1 2 3 4
t 7 1 2 3
s 11 3 1 2
15 2 3 4 1
19 2 1 4 3
5 1 3 4 2
8 4 5 3 2 1
13 4 1 2 3
16 2 1 4
3 1 3 2
10 1 2
18 4 1 2 3

Total number of inter cell move = 14
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Table 6.13: SAA 4-cell solution of 20x20 matrix in Table 6.10.

(i)Maximuim cell size = 7 machines
(ii)Uniform part demand of 1

Machines
1 011 10/00O01 1110210071101
21 9 8 0 433 2 1 4 6 7 5[0 9 6 7 5 8 3
11 2 3 4 5
915 4 2 1 3
1214 5 1 2 3
14 3 2 4
17713 2 1
2004 3 1 2
2 2 3 1
4 4 1 3 2
6 1 2 3 4 5
7 2 3 1
11 3 1 2
15 2 3 4
19 1 2 3 4
3 2 3
5 1 3 4
8 4 5 3 1
10 2 1
13 4 1 2
16 4 2 1
18 4 3 2

Total number of inter cell move = 13
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Table 6.14: Data for example problem.

Machine 000000000111 11111112 Part
type,m — [12345678901234567890 | demand
Processing time of part p Qp
on machine type m, t,,
Part,p 114 4 3 3 5 200
2 34 5 100
3 3 43 200
4 35 33 200
5 3 35 3 100
6 2 3 5 34 100
7 4 45 150
3 3 2 5 4 2 200
915 2 35 2 250
10 3 23 100
11 3 5 3 150
1213 4 6} 2 4 250
13 25 3 4 200
14 (43 2 4 100
15 24 52 150
16 43 3 2 200
1713 5 5 200
18 3 2 22 250
19 43 5 2 100
2013 3 3 4 150
Machine
units, N, 31211211222211112122
m — 1 2 3 4 5 6 7 8 9 10
bf — | 1500 | 2000 | 1200 | 1000 | 2500 | 1000 | 3000 | 2000 | 2500 | 1000
Li — 283|080 | 179|090 | 092|150 |0.83]|093|1821]1.95
m — 11 12 13 14 15 16 17 18 19 20
b — | 1800 | 2000 | 1500 | 2000 | 2000 | 2000 | 1500 | 3000 | 1000 | 1500
Lp— | 1721190 | 0.73 | 0.72 | 0.95 } 0.83 | 1.50 | 0.90 | 1.90 | 1.60

* N, is obtained by rounding L,, to the next integer
T b, is capacity of each machine of type m

i Lm :Zp thpm )

b]]l
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Table 6.15: Part machine grouping solution for stage 1.
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=
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+ sequence of operation of part
[1operation 1 results in an exceptional element
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Table 6.16: Load on machines for stage 1 solution.

C | Machine Fraction of machines Number of machines |Unused
e | type, m used by the allocated requitfassignlavail| extra™ | timef,
1 | assigned part(s), p -ed | -ed |-ablel v.= W,
1 ve | Vil v (v — v
c —=N,,
1 p—| 5 8§ 13 16
m |
15 0.15 0.20 0.30 0.30 0.95] 1 1 0 100
7 0.17 0.13 0.33 0.20 0.831 1 1 0 510
6 0.30 - 0.400.80 1.50| 2 2 0 500
13 - 053 - - 053 1 1 0 705
2 p—| 2 4 6 7 11 15 19
m |
2 015030 - - - - 020(065] 1 1 0 700
11 0.280330.17 - 042 - 0.11(|1.31] 2 2 0 1242
3 033083 - - 038 - 025]1.79; 2 2 0 252
14 - - 025 - 022030 - (077 1 1 0 460
16 - - 015030 - 038 - 083 1 1 0 340
17 - - 027050 - 020 - 1097 1 2 1+ 45
3 p—| 3 10 14 18
m |
8 0.30 0.15 0.10 0.38 0931 1 1 0 140
20 0.40 0.20 - 0.33 0.93]| 1 2 1t 105
19 0.80 0.20 - 0.50 1.50| 2 2 0 500
10 - - 0.400.50 090 1 2 1t 100
4 P — 19 12 17 20
m |
1 0.53 0.83 0.50 0.40 0.30 2.56| 3 3 0 660
12 0.30 0.62 0.25 0.50 0.22 1.89% 2 2 0 220
9 0.32 0.20 0.50 0.40 - 1.42| 2 2 0 1450
18 0.200.170.33 - 0.20 090 1 1 0 300
5 - - 040 - - 040 1 1 0 1500
4 - - - - 0.00) 0 1 1+ 0

* v, is rounded to next integer to get v,
+these machines will be reassigned in the stage-2

L

me — bm(Vu - Vi‘)



Table 6.17: Assigned operations of parts.

cell | number of | part [demand intra cell | number total AHCW]
c machines P Qp move cost | of intra | intra cell |=A].p,.Q,
assigned,N? lallocated| HC\-«V;(NB) moves, [, { move cost
1 5 1.3
5 100 2 260 20
8 200 2 520 40
13 200 2 520 40
16 200 2 520 40
total 1820 140
2 8 1.6
2 100 2 320 20
4 200 2 640 40
6 100 3 480 30
7 150 1 240 15
11 150 2 480 30
15 150 2 480 30
19 100 2 320 20
total 2960 185
3 5 1.3
3 200 2 520 40
10 100 2 260 20
14 160 1 130 10
18 250 3 975 75
total 1885 145
4 9 1.7
1 200 3 1020 60
9 250 2 850 50
12 250 4 1700 100
17 200 2 680 40
20 150 1 255 15
total 4505 265
) 0 0.0 0.0 0.0
total 0.0 0.0
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Table 6.18: Alternate plans for processing exceptional elements.

Current Options available for processing o

c® | p” | e | o | assignment 1 2 3

mt ¢t m! ct m! ¢t | mt ct

1151114 4 4(3,0)7 1,2,3,45% | 6(4,4) 1 |13(6,5)1 | 1
8|11 (49 4 9%(5,0) 4 6(8,4) 1 |7(93) 1| 2
21514 4 4%(3,0) 1,2,3,4,5 115(53) 1 [ 13(6,4)1 | 1
3|1 4717 2 17(4,0) 1,2,34,5 | 6(7,4) 1 111
16111419 3 19(2,0) 3 6(4,5) 1 | 13(54)1 | 1
2 {4 (114103 10(3,0) 1,2,3,4,5 | 14(7,3) 2 1
6|1 |55 4 5(2,0) 4 2(44) 2 |13(53) 2 | 1
711115 4 5(4,0) 4 14(7,4) 2 1
i1 1]131 13(2,0) 1 3(54) 2 12(53) 2 | 1
1911145 4 5(5,0) 4 14(7,3) 2 1
3|14 1| 4]2 2 2(3,0) 2 19(5,3) 3 1
2131 4 1(4,0) 4 19(6,4) 3 2
4117115203 20(5,0) 1,2,34.5 | 5(8,4) 4 1
113|112 11(3,0) 2 5(5,3) 4 2
200112110 3 10(3,0) 1,2,34,5 |9(3,4) 4 |5(53) 4 | 2

o assigned cell of the part

> part

¢ exceptional element

< operation

T machine
T cell where the machine is available/ or may be reassigned

¢ includes the current assignment which can also be selected

+ within bracket are shown processing time(t,,,) and incremental

processing cost

Ce

pm

x cell b is an option given to allow to form a remainder cell
+ machine 9 does not have an extra unit so it is available only in cell 4
* machine 4 has an extra unit so it can be assigned to any

of the cells, 1, 2, 3,4 or
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Table 6.19: Part machine grouping solution for stage 2:

Machines

job splitting not allowed.

10010101011 11][02 11/010102

576347[2 134670/8090[129850
Units
— 1121111 221111|1121|322111
502734 1

8113 25
131321 4

6123
P2 312
a 4 3 21 4
r 6 1 234
t 7 2 3
s 11 132

15 2 3 4

19 2 31
3 12 3

10 32 1

14 i 2| [3]

18 13 24

1 2134 5
9 4521
12 54123
17 231

20 34721

+ sequence of operation of part
operation 1 results in an exceptional element
2 operation 2 is assigned on the same machine type

3 operation 3 is assigned on a different mnachine type
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Table 6.20: Part machine grouping solution for stage 2: job splitting allowed.
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+ sequence of operation of part; m operation 1 results in an exceptional
element; 2 operation 2 is assigned on the same machine type;
3 operation 3 is assigned on a different machine type.

Fraction of demand (x

pme

¢ ) assigned to different

machine(m) and cell(¢) combinations

Part | EE | Operation e (M1,0)

p e o 1 2 3

8 1 4 0.28(7,1) | 0.31(6,1) | 0.41(9,4)
16 1 4 0.49(13,1) | 0.51(19,3) | -

6 1 5 0.50(2,2) | 0.50(3,2) |-

5 | 1 1 0.73(13,1) | 0.27(2,2) | -

19 | 1 4 0.66{14,2) | 0.34(5,4) | -

14 1 2 3 0.51(1,4) | 0.49(19,3) | -

9 1 3 0.42(11,2) | 0.58(5,4) | -




Chapter 7

Cell Formation Considering Investment

and Operational Costs

The majority of the cell formation models consider grouping of parts and machines,
based on clustering techniques. The performance of cells thus formed indicates that
the cellular systems perform more poorly in terms of work-in-process inventory, aver-
age job waiting time and job flow time than the improved job shops. However, they
have superior performance in terms of average move times and setup times. The main
reason for such a poor performance is that the current cell design procedures do not
consider the operational aspects during the cell formation. Therefore, the objective of
this chapter is to consider the investiment and operational costs simultaneously during
the design of a cellular manufacturing system. For this purpose we develop a mixed
integer programming model and ilustrate the tradeoff relationships between the in-
vestment and operational variables, such as sequence dependence setup, machine idle
time, part inventory, part early and late finish {compared with due date), by consid-
ering examples. Computational experience is provided for randomly generated test

problems.

7.1 Problem Background

In this chapter we consider cell formation in flow line manufacturing situations

similar to those in repetitive manufacturing. The parts produced usunally require the
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same sct of machines in the same order, i.e., they go through the same processing
stages. This situation arises in many chemical and processing industries. Typical
examples include manufacture of detergents, paints, etc. The setups incurred dur-
ing changeovers are usually sequence dependent. For example, in the manufacture
of paints the equipment must be cleaned when there is a change from one color to
another. The thoroughness of the cleaning is heavily dependent on the color being

removed and the color for which the machine is being prepared.

In a sequence dependent manufacturing environment, where the demand for parts
is repetitive in nature and the production requirements are similar, one can select
the sequence in which to produce the parts, such that the total cost and time spent
on setup is minimized. The sequence thus determined may give a schedule in which
parts finish early or late as compared to their due dates. In addition one may have
part waiting between machines, or machine idle time. Alternately, one could have a
separate line for producing each part and avoid cost and time lost due to sequence de-
pendence. Also the inventory can be reduced by synchronizing the production rate of
cells with the demand rates. However, in this case the investment cost is high. Clear-
ly, investiment options between these two extremes are also available. For example,
the late finishing of parts can be avoided by increasing capacity of bottleneck stages
or by re-sequencing them after adding a new cell. The sequence of parts also affects
the WIP and utilization of machines. Achieving minimum inventory and minimum
machine idle time are two conflicting objectives as reduction in one often leads to an
increase in other. Depending upon the scenario, the appropriate parameters should

be considered and weighted accordingly.

Analyzing a few of the interactions stated above may be straightforward. However,
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when considered simultaneously, these interactions can be quite complex. As a result
machine investment and operating (scheduling) strategies are rarely obvious and be
counterintuitive. Cell formation under repetitive manufacturing as described in this

chapter, thus, considers the following;:

1. Cell design aspect- how many cells should be formed and what should be the

capacity of each processing stage in a cell?

2. Allocation and sequencing aspect- how the parts are to be allocated, sequenced

and scheduled in these cells?

The main contribution of this work is in providing a mathematical framework
which simultaneously considers the tradeoffs hetween investment and operational
costs (scheduling and sequencing) to address cell design in manufacturing environ-
ments with sequence dependence. The tradeoffs discussed in this chapter are tllustrat-
ed by considering examples. Complexity of the model is studied by first considering a
model which has the least nuiber of variables, and then sequentially adding variables

to it. Computational time for these models is summarized.

The remainder of this chapter is organized as follows. In section 7.2, a mathe-
matical model considering tradeoffs between investment and operational variables is
formulated. The tradeoffs are discussed by solving examples in section 7.3. Comn-
putational experience for the model is provided in section 7.4. Finally, summary is

presented in section 7.5.

7.2 Mathematical Model

An mixed integer programming (MIP) model is formulated which forms cells by

grouping the machines and parts simultaneously while considering the sequencing
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and scheduling of the parts. The following assumptions are made for formulating the

model:

1. Each cell has the same processing stages, but the capacity of a stage may vary
from cell to cell. We assume that the capacity can be increased continuously

(rather than in steps), in the prescribed range (explained later).

0o

Fach part requires processing af all stages.
3. Part processing (throughput) time depends upon the cell capacity at each stage.
4. Setup times and costs are sequence depenclent.

Triangular inequality of setup costs and times is assumed. This means that

ot

setup time (cost) of any part i, from part j, is always less than or equal to setup
time (cost) required for part i, when first part j is produced and then part k is

produced before part i.
6. Only one part type can be processed at each stage at any given time.

An operation once started on a machine cannot be interrupted before comple-

=1

tion.
8. Only permutation scheduling is allowed.
9. No inter cell movement of parts is allowed.
10. Holding costs are directly proportional to the inventory levels.

It is asswmed (assumption 1) that each cell has the same number of processing
stages. The different stages are distinguished by their capacity. The number of copies

of each machine type in different cells can vary. Thus, by increasing or decreasing the
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number of machines of any type the production capacity can be increased or decreased.
Capacity can also be increased by increasing the processor speed by employing some
auxiliary devices, modifying jigs and fixtures, etc. We assume that the capacity can
be increased continuously with a linear cost increase. The increase in capacity results
in a lower processing time for a part. We use the following type of relationship to

model this:

p=u—uvN (7.1}
where p is processing time, u and v are constants, and N is an index showing capacity
level of processor. N takes on the value 0 at minimum capacity and equals 1 at

maximum capacity.

Model - M4

Objective function: Minimize the sum of the costs due to sequence dependence
changeover, work in process inventory, early finish, late finish, machine idle time and
investment on cells. It is assumed that if a cell is formed, there is a minimum fixed
capacity in each stage; therefore, a fixed cost is associated with each cell formed. The
cost of additional capacity, if needed, in different stages is captured separately by the

last term.

E n n n k—1 n n
Min z=3,3 >, CipXip + 22 D Wi+ 3 s Af + 3 BiA7 +
s=1j=1ji= j=1s=1 j=1 j=1
E n n n [S
YD LAY C X+ Y, > UL
s=1j=1j= =1 s=le=1

Constraints

1. Assignment constraint: Each part should be produced once, i.e., it will have
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one follower and one predecessor:

7

Y Xy=1 for j = 1,2,..,n (7.3.a)
t =1
i)
(n+1)
> Xpy=1 for j = 1,2,....,n {7.3.b)
=1
371

These two constraints are assignment constraints. Solution to these may result
in many subtours. Part 0 and (n+1) are dummy parts. By providing a dummy
at the beginning and end we identify each subtour (cell) by a unique number.
This number depends on the first part which follows a dummy 0 in each cell.
For example, if we have 5 part types (i.e., n = 5) and the solution to these
constraints results in the following two subtours: 0-3-4-1-6 and 0-2-5-6, then
we have two cells uniquely numbered as 3 and 2. The parts 0 and 6 at the
beginning and end of each subtour are dummy parts. The unique numbering

of cells as 3 and 2 allows us in the later stages to assign machines and parts to

these cells.

2. First stage completion time constraint: Completion time of any part at

the first stage should be at least equal to its arrival time plus processing time:

le > a; —|—'p} for 3 = 1,2,.....n (7.4)

3. Stage link constraint: For any part, the completion time at stage (s + 1) is
the sum of completion time at stage s, the processing time at stage (s + 1) and

the waiting time after processing at stage s and before starting at stage (s+1):
s+1 __ s A8+1 57S A . _ .
TV =T +p]" +W; for j = 1,2,..,n5 = 1,2,....,k—1 (7.5)
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4.

ot

Sequencing constraint: At any stage s in a cell, the completion time of part
j which suceceeds part j7 in the same cell is the sum of the completion time of
part 3, the setup time of the machine for part j from 7', the idle time of the
machine at stage s in that cell after processing part j° and before starting on

part 7, and the processing tune of part j:

for (7' #4); 7,7 =1,2,..,n;s= 1,2,..., k, and B is a large positive number.

These constraints work in pairs. If a sequence j'-j exists, then the two constraints

will determine the sequencing of the job on all the stages. In this case,
s __ ms s s ;

However, for any pair j-k for which a sequence does not exist, the two coustraints

will be relaxed, allowing 77 > 0.

Capacity change constraint: The processing time of a part at any stage in
a cell is a function of the capacity level of the processor:
pi=ui—viN; for j = 1,2,3,...,n s = 1,2,3,...k {(7.7)

Here, u} and v} are constants, which are determined from equation (7.1).

Part machine link constraint: If two parts are assigned to the same cell,
then the capacity of the processor available to these parts at each stage is the

same:
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for (3 #7) 4,4 =1, ;8= 1, k.

7. Machine cell link constraint: The level of capacity at stage 5 in a cell ¢

{where cell is numbered as ¢ if sequence 0-c exist) is given by

LI> N —DB(l — Xy} for ¢ = 1,2,3.,n; s = 1,2,3..,k (7.9)

The level of capacity at any stage is attached to the part type. If we use variable
N7 in the objective function to capture the cost of additional capacity, then
there will be a multiplicative effect, which depends on the number of parts in a
cell. To avoid this overestimate in the objective we define a variable L7 which
is attached to a cell. This in essence captures the actual additional capacity of

each cell.
8. Modeling constraint: The maximum value of capacity level should be speci-
fied as 1:

Ni <1l for s =1,2,3,.,k j = 1,2,3,..,n (7.10)
N? has the value 0 at minimum capacity and the value 1 at maximum capacity.

9. Due date constraint: Early completion or late completion of a part as com-

pared to its due date is given by

A=Ay =d; =T} for j =1,2,3,..n (7.11)

In this model, there are n? + n binary integer variables, n?k + 4nk + n continuous
variables and 4n%k + 3n constraints, where n is the number of part types and k is
the number of processing stages. In the next section, we solve a few examples using
the model developed and illustrate the importance of considering the investment and

operational aspects simultancously.
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7.3 Examples

In this section, tradeoffs between various costs are illustrated by considering a few
examples. Five part types which require processing in three stages are considered.
Processing times required for these parts decrease with increase in cell capacity. Slope
(u3) and intercept (v3) of lines representing these relationships (p; = u; — viN?) are
shown in Table 7.1. Processing times calculated from these expressions are in hours.
Sequence dependence setup costs (35, Cf;) and times (S5;) are shown in Table 7.2.
The setup time matrix is taken to be the same at each processing stage. Information
regarding part inventory costs, early and late penalty, investment cost to acquire ad-
ditional cell capacity, and cost of machine idle time are shown in Table 7.3. Machine
idle time cost in reality should depend upon the number of idle machines. However,
in the present analysis a constant value is taken. Part arrival time was taken as 0
for all part types. Data given in Tables 7.1-7.3 is the same in all the examples. The
paramcters which we vary to illustrate the tradeoffs are due dates, cost of cell and
machine idle time. The values taken for different cases are shown in Table 7.4. The
problems were formulated and solved on a personal computer 486 (33 MHz) using

the Hyperlindo software package. The results are summarized in Tables 7.5-7.10. We

will discuss the results next.

Case 1: Low cell investment cost- In this case the cell cost is considered to
be lower than the sequence dependence cost. The cost of a cell was taken as $2,
which gives 5 as the optimum number of cells with an objective function value of $10

(10+0+0+0+0+0+0).1 Each part is assigned a separate cell (Table 7.5). This

Ihreak up of costs into line {cell) -+ setup -+ WIP inventory + machine idle time + part early
finish 4 part late finish + additional capacity acquisition costs. The costs obtained for each of the
example problems are shown in Table 7.10.

138



result can be explained as follows. Minimum sequence dependence setup cost for any
pair of parts is $2 (Table 7.3). Also, the cost of new line (cell} is the same. If part
5 or 1 is produced in the same cell as with part 2, then a total of 4 cells instead of
5 will be required which will save on cell cost by $2, but this will increase the cost
due to sequence dependence by the same amount. From this it may appear that both
solutions will give the same cost. This is in fact the solution the model developed by
Rajamani et al. (1992) would give. However, producing two parts in one cell may
result in either machine idle time between the parts or part wait time between the
stages, hence will result in an increased overall cost relative to having a separate cell

for cach part.

Case 2: High cell investment cost- If the cost of the cell is very high as com-
pared to the sum of the costs due to sequence dependence setup, machine idle time
and part waiting time, early and late finish, then it is expected that the number of
cells will be reduced. For instance take the cost of line as $20 keeping all other data
same as in case 1. This results in forming one cell (Table 7.6). The objective function
value is $59.8 (20431+42.84-5.6+0.44040} and part sequence is 1-2-5-4-3. Obviously,
if we have more than one part family or smaller links of part, the scheduling cost
{defined as sum of sequence dependence cost, machine idle time cost or part wait
time cost, part early and late finish costs) may be reduced. But the cost of forming
an additional cell adds $20 to the total cost, which in this case is more than the saving

in scheduling costs that would have resulted in making two or more part families.

Case 3: Intermediate cell investment cost- Now we will explore a few sce-
narios which exist for manufacturing companies in which the investment options lie

between the two extremes. For example, the cost of the cell is taken as $5 keeping
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all other data the same as in case 1. This results in 4 cells, by producing part 2 and
part 5 in one cell and the remaining parts in separate cells (Table 7.7). The objective
function value in this case is $23.11 (204+2+0.140.740+040.31). The above threc
examples show tradeoffs mainly between cost of line and sequence dependence setup
costs. Interactions of other costs in these examples could not be avoided completely

but they had minor influences.

The following examples will show the interactions of other variables.

Case 4: Due date interaction- To illustrate the tradeofl between due date and
other variables, we took the basic data from Case 2 and changed the due dates {Table
7.4). The solution obtained is shown in Table 7.8. The total cost in this case is $52.61
(20+4-244-0.87+7.714+0+0+40.03) and pari sequence is 2-3-4-5-1. If we compare this
with the result of case 2, we observed that a new sequence is obtained to reduce the

high cost of late finishing. Also, in this case additional cell capacity is required.

Case 5: WIP and machine idle time interactions- Case 5 shows the tradeoff
between WIP inventory and machine idle time. All the data from Case 3 were taken
except machine idle time cost. Machine idle time cost was increased from $ 0.02 to
$ 0.1 per hour. The results are shown in Table 7.9. The total cost in this case is $
24.16 (2042+41.854+0+0+0+0.31). This gives no machine idle time, but 40 hours of
waiting time for part 2 and 35 hours for part 5. In Case 3 there was no part waiting
time, instead there was a machine idle time of 40 hours. Thus, the increase in weight

for machine idle has resulted in an increase in WIP and a reduction in machine idle

time.

Thus, we see that different manufacturing situations depending on the costs and
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inieraction of costs considered by investment and operational (scheduling) variables
at design stage can lead to grouping of parts and machines, which are quite different.
This suggests that grouping of parts and machines should simultaneously consider

the interactions explored in this chapter for a good cell design.

7.4 Computational Experience

The computational difficulty in solving the generalized model developed in section
7.2, depends on the number of interactions considered in the objective function, the
data set and the size of the problem. To study the impact of interactions we develop
three sub models, which are obtained by deleting the variables and constraints not
pertinent in the generalized model. Submodel 1 considers only the investment and
sequence dependence costs. Submodel 2 is obtained by including due date and related
variables and constraints to sub model 1. Similarly, submodel 3 is obtained by adding
WIP, machine idle time and corresponding variables and constraints to submodel 1.

The three submodels are briefly stated next.

Submodel 1: This considers the investment cost on cell and sequence dependence

cost,
Objective function:

n it k

Min 2 = Z 3G X + j_j CXot S UPL (712)

s=1j=174'=1 s=]e=1
Constraints: Constraint sets, (7.3), (7.4), (7.7) - (7.10) (refer to section 7.2), and

the following:
Tf“ ZT;—I—p‘;“ for 3 =1, nand s =1, k-1 (7.13)

T7 2 T3 + 55 +p; + B(Xp; — 1) (7.14)
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for (' #4), 7,7 =1, n,s= 1, k and B is a large positive number.

Submodel 2: This considers investment cost of the cell, sequence dependence
cost and early and late finish of the parts as compared to their due dates.

Objective function:

Min 2y =21+ Y oA 4+ 3 AT (7.15)

=1 =1
Constraints: Constraint sets, (7.3), (7.4), (7.7) - (7.11) (vefer to section 7.2}, and

the following:

Tjs+1 2Tj+p§+l for 3 =1, nand s = 1, k-1 (7.16)

for (' # i), 7, 7 = 1, n, s= 1, k and B is a large positive number.

Submodel 3: This model considers investment cost on cell, sequence dependence
cost, WIP and machine idle time,

Objective function:

n k-1 L n =
Min zg=xn+Y > W +3 3 3 L%, (7.18)
j=1s=1 s=ij=1j'=1

Constraints: Constraint sets, (7.3) - (7.10) (refer to section 7.2).

The number of variables and constraints for these submodels and the generalized

model are given in Table 7.11.

In order to study the impact of interactions of the variables considered in the

objective function and the effect of the data set we solved the three submodels and
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the generalized model for the 5 examples discussed in section 7.3. The computational
times for these models are summarized in Table 7.11. The results indicate that the
modlels can be ranked in terns of computational complexity as submodel 1, submodel
2, submodel 3 and the generalized model. Considering WIP and machine idle time
explicitly in the model increases the computational burden to a great extent. Also, we
see that the computational time is dependent on the data set. All the problems are
five-part and three-stage problems, but there is a large variation in the computation

time.

In addition, we also solve larger problems of up to 10 parts. For this purpose we
randomly generated sequence dependence times and costs between 3 to 33, and 2 to
20, respectively. Due dates were randomly selected between G600 to 1000. Process-
ing time data u; were gencrated randomly from 30 to 180. vi were kept as 50% of
the uj. The following information was assumed the same for all problems: k = 3,
hi = §0.01, v* = $0.01, U* = $2, o; = $0.01, §; = $0.05, C° = $4. In randomly
generating the sequence dependence times and costs we have ignored the triangular
incquality. This exists usually in a practical problem and hence an assumption in the
problem statement. It does not however, limit the applicability of the model devel-
oped. Table 7.12 contains a summary of the results. The table shows the number
of variables and constraints, number of nodes solved in branch and bound, the node

at which optimum solution was obtained and the computation time, for ecach problem.

It is worth mentioning that in most cases the number of parts produced in repet-
itive manufacturing is not large. However, the problem size becomes large with an
increase in part types. In such cases the proposed model can be effectively used by

aggregating the part types having similar setups into fewer families. Also, in real life
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a number of sequences are not feasible due to process and product limitations. This

further decreases the computational burden (Rajamani et al., 1992).

7.5 Summary

The majority of the cell formation models consider grouping of parts and machines
based on diagonalization of part machine matrix. This approach is not applicable in
flow shops, where all the parts require the same sct of machines. Also, cellular systems
designed without considering the operational variables can lead to poor performance.
A mixed integer programming model was developed which considers investment cost
(cost of cell and machines) and operational cost (sequence dependence setup, machine
idle time, part WIP inventory, part early and late finish) simultaneously to form cells.
The model determines the economic number of cells, capacities of processing stages in
each cell formed, part allocation, sequencing and scheduling in these cells. Examples
were considered which illustrate the model and cost tradeoffs considered in the model.
Computational experience on up to 10 parts was reported. It was observed that the
consideration of WIP and machine idle time considerably increased the computation

times.
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Table 7.1: Constants of processing time relationships (equation 7.7).

Part, j Processing stage, s —
i 1 2 3
ol a2l a2 o3 | 43
wy | vy Ly | vi | g |

1 100120 80|16 70 | 14

4 210142190118 30 | ©

100 | 20 | 40| 8 | 160 | 32

[
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Table 7.2: Sequence dependence setup costs, 3, C% ($) and times, S¢; (hours) for

parts. ’
To

From 1 2 3 4 5
1 - 18* (16%) | 10 (17) ] 10 {4) 10 {24)
2 2 (20) - 4(22) | 3(3) 2 (24)
3 5(17) | 18 (20) - 8 (3) 10 (22)
4 6 (34) | 17 (26) 7 (30) - 8 (32)
5 4 (21) ] 12(17) 5(20) | 4(3) -

* unbracketed numbers are sctup costs
+ bracketed numbers are setup times (same for each stage, s)
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"Table 7.3: Information on costs related to inventory, early and late finish, invest-
ment cost on additional processor capacity.

Name of variable Costs

Part Inventory*  {same for all part (j) )
After first stage (h}) $0.02 /hour
After second stage (h2) | $0.03/hour
Part early finish aj(same for all part(j)) | $0.04/hour

Part late finish ~ f3; (same for all part (j)) | $ 0.8 /hour
Cost to increase (same for all stage, s) $1

capacity to
maximum, U/*®

* As part goes through stages its value becomes more and
the inventory cost increases. Hence, increased value of
inventory holding cost is taken for successive stage.

Table 7.4: Data for example problems.

Due date for parts, d; Cost of cell, Cost of
Part,j — | 1 2 3 4 5 C* (9) machine
idle time,
Case | 7 {$/hour)
1 250 366 763 613 540 2 0.02
2 250 366 763 613 540 20 0.02
3 200 366 763 613 540 5 0.02
4 766 180 282 475 675 20 (.02
5 250 366 763 613 540 5 0.10
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Table 7.5: Result of Case 1.

Processing | Variable Value
stages
Cell, ¢ 1 2 3 4 D
+Part, j-j' | 1 2 3 4 5
Stage 1
p} 100 | 40 | 70 | 210 100
le 100 | 226 | 613 | 493 340
Wji 0 0 0 0 0
I jlj, 0 0 0 0 0
Ll 0
Stage 2
P 80 [ 60 | 90 | 90 40
" 180 | 286 | 703 | 583 380
I'Vf 0 0 0 0 0
Ifj, 0 0 0 0 0
i 0
Stage 3
pi? 70 | 80 1 60 | 30 160
Tj3 250 ; 366 | 763 | 613 540
Ifo 0 0 0 0 0
Ifj, 0 0 0 0 0
L} 0
Completion
Aﬁ 0 0 0 0 0
A7 0 0 0 0 0

Note: L, = 0, indicates that no increase (from minimum)
in capacity is required.
+j-j’ represents the sequencing of parts within the
allocated cell. Here one part is allocated to each cell.
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Table 7.6: Result of Case 2.

Processing | Variable Value
stages
Cell, ¢ 1
+Part, j-j | 1 2 5 4 3
Stage 1
» 100 | 40 {100 | 210 70
Tf 100 | 156 | 280 { 493 593
% Jl 0 [ 60|60 | O 20
Ij 0 0 0 0 0
Ll 0
Stage 2
p;% 80 | 60 | 40 | 90 90
T? 180 | 276 | 380 | 583 703
1% J? 0 0 0 0 0
Iz, 20 | 407 | 110| © 0
L? 0
Stage 3
p? 70 | 80 | 160 | 30 60
i’? 250 | 356 | 540 | 613 763
Tfo 0 0 0 0 0
I fj, 10 0 | 40 | 60 0
L} 0
Completion
AF 0 {10 0 0 0
A7 0 0 0 0 0

# I3 = 40, indicates that machine idle time between
parts 2 and 5 is 40 hours
+j-j’ represents the sequencing of parts within the
allocated cell. Here it is 1-2-5-4-3 in cell 1.
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Table 7.7: Result of Case 3.

Processing | Variable Value
stages
Cell, ¢ 1 2 3 4
+Part, j-j' 2 5 3 4
Stage 1
p} 100 | 40 | 100} 70 210
le 100 | 226 | 350 | 613 493
W J-l 0 5 0 0 0
I }j, 0 0 0 0 0
L! 0 0 0 0
Stage 2
p;,“)- 80 | 60 | 40 | 90 90
Tj2 180§ 291 ¢ 390 | 703 583
¥ J? 0 0 0 0 0
I}j, 0 | 35| 0 0 0
L2 0 0 0 0
Stage 3
p;?—’ 70§ 75 1150 | 60 30
Tj3 250 | 366 | 540 | 763 613
w3 0000 0
Ifj, 0 0 0 0 0
3 0 0.312 0 0
Completion
A;r 0 0 0 0 0
A7 0 0 0 0 0

+j-j’ represents the sequencing of parts within the
allocated cell. For example, sequence 2-5 exists in cell 2.
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Table 7.8:

Result of Case 4.

Processing | Variable Value
stages
Cell, ¢ 2
+Part, j-j' | 2 3 4 5 1
Stage 1
p} 39.8 ] 69.6 | 208.9]99.5| 99.5
le 40 | 131.6 | 343.5 | 475 | 595.5
W} 0 0.4 9.5 0 0
I J}j, 0 0 0 0 0
Ll 0.025
Stage 2
p]2 60 90 90 40 80
CI}? 100 | 222 | 443 | 515 | 675.5
W J? 0 0 2 0 20.5
Ifj, 10 | 128 0 59.5 0
i 0
Stage 3
? 80 | 60 30 [ 160 | 70
Tj3 180 | 282 | 475 | 675 | 776
W']? 0 0 0 0 0
I 331-, 20 | 160 8 0 0
i 0
Completion
Aj 0 0 0 0 0
A7 0 0 0 0 0

+j-j’ represents the sequencing of parts within the
allocated cell. Here it is 2-3-4-5-1 in cell 2.
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Table 7.9: Result of Case 5.

Processing | Variable Value
stages
Cell, ¢ 1 2 3 4
+Part, -5 | 1 2 5 3 4
Stage 1
p;} 100§ 40 | 100 | 70 210
le 100 | 191 | 315 | 613 493
Wi 0 |40 0 (0 0
I }j, 0 0 0 0 0
L} 0 0 0 0
Stage 2
p? 80 | 60 | 40 | 90 90
TJ-2 180 | 291 | 355 | 703 583
IfVJQ 0 013 0 0
I%, 0 0 0 0 0
L2 0 0 0 0
Stage 3
pi? 70 | 75 ) 150 | 60 30
TJ? 250 | 366 | 540 | 763 613
w3 0] o000 0
I fj, 0 0 0 0 0
L 0 0.312 0 0
Completion
Af 0 0 0 0 0
A7 0 0 0 0 0

+j-j’ represents the sequencing of parts within the
allocated cell. For example, sequence 2-5 exists in cell 2.
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Table 7.10: Comparison of results.

Case Different costs ($) Total
cost
Cell Setup WIP M/c Early Late  Add ($)

idle finish finish machine

1 10 0 0 0 0 0 0 10

2 20 31 2.8 56 0.4 0 0 99.8
3 20 2 0.1 0.7 0 0 0.31 23.11
4 20 24 0.87 7.71 0 0 0.03 52.61
) 20 2 1.85 0 0 0 0.31 24.16




Table 7.11: Computational complexity of models.

Model —

Submodel 1

Submodel 2

Submodel 3

Generalized
Model

Mode] Size!

Number of
variables

(i) continuous 4nk dnk + 2n | 02k + 4nk - n § n%k -+ 4nk + n
(i1} binary n? + 1 n? +n n? 41 n® +n
Nuwmber of | 3n2k+nk+2n | 3n2k+nk-+3n An2k+4-2n 4n%k+3n
constraints
Computational
time?
Case 1 00:03 00:04 00:06 00:06
Case 2 01:13 04:55 06:59 08:51
Case 3 00:07 00:08 00:32 00:32
Case 4 01:13 03:13 07:00 07:45
Case 5 00:07 00:07 00:50 00:56

I n-number of parts and k is number of processing stages
2 computational time (in minute:second) for problem sizen = 5,k = 3
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Table 7.12: Computational results for 6, 7, 8, 9 and 10 part problems.

Number | Number of | Number of | Total Optimuin Time

of variables! | counstraints | nodes found at (min:sec)
parts (pivot) node (pivot)

solved

6 186(42) 450 8(431) 6(230) 00:32

7 238(56) 609 20(1237) | 17(1064) 02:02

8 296(72) 792 59(6341) | 34(3508) 03:00

9 360(90) 999 54(9204) | 31(2780) 25:16

10 430(110) 1230 90(13713) | 39(3687) 40:00

lunbracketed number is for continuous variables
and bracketed is for binary variables.

1

a5




Chapter 8

Conclusions

In this chapter, contributions of the research to cell formation are presented in

section 8.1. Also, divections for future research are briefly discussed in section 8.2.

8.1 Contributions of the Research

The objective of the cell system of production or cellular manufacturing (CM) is to
achieve efficiencies in production by suitably decomposing a larger system into smaller
subsystems. An important issue in designing CM system is cell formation (CF). CF
consists of identifying part families (PFs) and machine groups (MGs) such that the
part families are processed within a machine group with minimum interaction with
other cells. The objectives of this partition are two folds (Miltenburg and Zhang,

1991):

1. Within a part machine group or cell, each machine is visited by many parts,

that is, there is a high usage of the machines by parts; and

2. Few parts require processing on machines in other cells.

The above objectives can be interpreted as minimization of voids and exceptional
clements in a part machine matrix which represents the processing requirements of
parts. The CIF problem has attracted a great deal of research effort and numerous ap-
proaches have been proposed for partitioning the matrix. The common characteristics

of most of the algorithms are the following.
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They do not provide a simultaneous approach to CI.

Rearrangement of matrix is often sought by maximizing indirect measures such

as similarity index or heuristic procedures.

They do not have the flexibility to create large loose cells or small tight cells to

provide the designer with alternate solutions in a structured manner.

They require manual/subjective intervention to identify part families and ma-

chine groups. For large matrices this becomes very difficult.

Performance of these algorithms are often reported for only small structured

problems. Computation on large matrices is usually not reported.

Consideration of the presence of alternate process plans and additional units of

same machines are not adequately addressed.

They do not consider the effect of cell size on material handling during cell

formation, (except Sankaran and Kasilingam, 1993).

No procedure is available to consider operational variables such as WIP inven-
tories, machine utilization, part early and late finish, and sequence dependence;
and considering investment in solving CF problem in a repetitive manufacturing

environment.

In this research we provide cell formation (CF) procedures which overcome the

above drawbacks. In Chapter 3, a nonlinear mathematical programming model is

developed for CF which identifies part families (PFs) and machine groups (MGs)

simultaneously. The model considers minimization of a weighted sum of voids and

exceptional elements as the objective. Then, an iterative procedure called assignment

allocation algorithm (AAA) is proposed to solve the model. Tn AAA changing weights
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for voids and exceptional clements gives the designer alternatives to form large loose
cells or small tight cells. AAA does not require any manual intervention for identify-
ing PFs and MGs. Performance of AAA has been compared with many well known
procedures for the problems selected from literature. The problems tested consist
of well structured as well as ill structured matrices. AAA has been found to be as
good or better on this comparison. AAA is very simple and less computer intensive.
Large problems with 400 parts and 240 machines were solved using this algorithm in
less than a minute on Sun Sparc 2 station. In Chapter 4, a more robust Simulated
Annealing Algorithim (SAA) is developed to solve the nonlinear model developed in
Chapter 3. This procedure gives more consistent results than the iterative proce-
dure, AAA. However, SAA takes significantly higher computation time. For larger
problems it has been found preferable to use AAA a few times with different initial

solution rather than using SAA.

In Chapter 5, the nonlinear model developed is further extended to consider al-
ternate process plans for parts and additional units of same machines. The solution
obtained using AAA on the extended model indicates that in the presence of alternate
process plans the algorithm has a greater tendency to converge to a local minimum.
To overcome this, simulated annealing (SAA) is again used to solve the model. SAA
solutions were found to be optimal for all the problems tested up to a size of 300

parts with 720 process plans, and 50 machines.

A good decomposition of the part machine matrix could be arrived at by consid-
ering the tradeoff between intra cell material handling inter cell material handling. In
Chapter 6, we developed a two stage procedure to handle this situation. In stage 1, a

nonlinear model and Simulated Annealing Algorithm are developed to minimize the
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total intra cell and inter cell material handling costs. In the calculation of the mate-
rial handling costs, production quantity, effect of cell size on unit intra cell handling
costs, cffect of sequence of operations and multiple non-consecutive visits to the same
machine are considered. In stage 2, an integer programming model is developed to
further improve the solution ohtained in stage 1. The model considers the options to
re-assign the operations which resulted in exceptional elements in stage 1, and extra

units of machines as available.

In Chapter 7, we have addressed cell formation in a repetitive manufacturing sys-
tem where the parts produced usually require the same set of machines and in the
same order. A mixed infeger programming model was developed with the objective
of minimizing the investment and operational costs. The operational variables con-
sidered are sequence dependence setup, machine idle time, part inventory, part early
and late finish compared to due date. Computational experience of the model for
problems that consider up to 10 parts, which is usually the case in repetitive manu-

facturing environment, is provided.

8.2 Directions for Future Research
The following are proposed as directions for further research:

e Develop a ‘hybrid’ procedure which uses SAA at the beginning and switching
over to AAA after a few iteration to provide AAA with a good initial solution.

This should provide a good solution with less computational time.

e A more detailed analysis is needed on developing simulated annealing schedules

for different problem sizes and ranges of values of input data. This will provide
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a guideline for setting values of parameters for a particular problem. Also,
for SAA different strategics for generating a neighborhood solution may be
experimented with, instead of the use of random switching of machine strategy

as adopted in this thesis.

The presence of some parts (rows) and machines {columus) in the part machine
matrix, adversely affects the the block diagonalization of the matrix. It would
be useful to develop procedures/guidelines for climinating parts and machines

which affect the groupability of the matrix.

At present, the objectives considered for obtaining a block diagonal matrix is
the weighted sum of the voids and exceptional elements. A procedure which can

directly consider the ‘grouping measure’ as the objective should be developed.

All the models developed in this thesis assume that the data available are erisp.
But in actual practice this may not be true. Procedures considering ‘fuzziness

in data’ should be developed.
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Appendix

Let,

|A| = number of elements in set A

¢ = iudex of cell

d = nuniber of ‘1’s in the diagonal blocks

e = number of exceptional elements in the solution
M = number of machines

M, = set of machines assigned to cell ¢

m = index of machine

—

O = number of ‘1’s in matrix Cpm
P = number of parts

P. = set of parts allocated to cell ¢
p = index of part

v = number of voids in the solution

I

Then,

0= 2 Z Qpm

P m

_ z Z z a’pm
c pelP. meM,

v = Z | M| Pe| — d

d

e=0—-d
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Grouping measure (7,)

Mg = Ny — T

where,
d
Hy =
/ d-+ v
. d
Hm =1 — =
’ 0
Grouping efficiency (#)
O-—e MP-0-—uv
7 =1(1-1w)

O—e—l—v—l—wﬂf[.P«O%—e—v

A value of 0.5 is recommended in ZODIAC (Chandrasekharan and Rajagopalan, 1987)

for w.

Grouping efficacy (7)
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