
Fully Automated Quality of Service (QoS)

Aware Service Composition

by

Md. Mahfuzur Rahman

A Thesis submitted to the Faculty of Graduate Studies of the University of

Manitoba in partial fulfilment of the requirements of the degree of

MASTER OF SCIENCE

Department of Computer Science, University of Manitoba, Winnipeg

Copyright c© 2010 by Md. Mahfuzur Rahman

Thesis advisor Author

Dr. Peter Graham Md. Mahfuzur Rahman

Fully Automated Quality of Service (QoS)

Aware Service Composition

Abstract

In distributed computing, service composition provides the ability to combine ex-

isting services to produce new, value-added composite services that can be offered to end

users. In general, when the type of the output data produced by one service matches the

type of the input data needed by another service, then a composite service can be pro-

duced. Such Input/Output (IO) compatibility plays a major role in identifying potential

composite services. A trivial example of such a composition might be combining the out-

put of a scanner (a PDF file) with the input of a printer (also a PDF file) to produce a

photocopy service. Ninja, eFlow, SpiderNet, TaskComputing, and CoSMoS are examples of

service composition platforms [FS05; KKS06a], but they all lack support for several prac-

tical features including multiple protocol (e.g., UPnP, JINI) interoperability and handling

of complex, multiple input services. Further, all existing systems depend on direct user

involvement, which is unavailable in many pervasive-computing application environments.

Earlier work by Pourreza and Graham [PG06a] looked at fully automating the composition

process between services offered by the devices in a home area network. The work presented

in this thesis focuses on two extensions to this earlier work: adding support for Quality of

Service (QoS) to the composition process and extending the compositions outside of a single

pervasive environment (e.g., home) to include offerings from third-party service providers

(e.g. those provided via available Internet or 3G network access). I extend the existing

ii

Abstract iii

OWL-S -based composition system using properties to describe non-functional (i.e., QoS)

constraints on services. I also introduce a means of describing services provided externally

by service providers as software stubs installed automatically on a local gateway device.

The ultimate goal is to offer only the most useful services to users thereby reducing their

involvement in the composition process. I have built a prototype for the system to illus-

trate feasibility and to assess the overhead of supporting QoS in composition. I have also

developed a regression model (based on collected user input regarding QoS preferences for

services) that can be used to effectively rank compositions based on QoS for a variety of

persistent environments. My results show that my approach is both feasible and effective.

Contents

Abstract . ii
Table of Contents . v
List of Figures . vi
List of Tables . viii
Acknowledgments . ix

1 Introduction 1
1.1 Motivation and Expected Contributions . 3
1.2 Use of Example Scenarios . 5
1.3 Thesis Organization . 6

2 Background and Related Work 8
2.1 Pervasive Computing and Service Orientation 8
2.2 Service Orientation and Composition in Pervasive Environments 11
2.3 Service Description Languages . 17
2.4 Service Discovery . 20
2.5 Service Registry and Matching Techniques for Service Composition 22

2.5.1 Semantic Matching . 23
2.6 User Interaction and Automated Composition 25
2.7 Context Information and QoS parameters 26

3 Problem Description and Solution Strategy 27
3.1 Solution Strategy . 28

4 Prototype Architecture and Implementation 32
4.1 Implementation Details . 36

4.1.1 Domain Ontology . 36
4.1.2 Service Description . 38
4.1.3 Composition Manager . 39
4.1.4 Service Registry . 41
4.1.5 User Profile Management Module (UPMM) 43

Ranking Function . 44

iv

Contents v

5 Evaluation 46
5.1 Overview of Assessment . 47
5.2 Experiments . 48

5.2.1 Experiment-1 (Matching Time) . 49
IO Matching Time . 49
QoS Matching Time . 52

5.2.2 Experiment-2 (Number of Composite Services) 54
5.2.3 Experiment-3 (Number of Composite Services for varying numbers of

associated QoS parameters) . 58
5.3 A Model for the Expected Number of Composed Services 58

5.3.1 Model Data vs Experimental Data 62
5.3.2 Scalability Analysis . 62

5.4 Regression Models . 64
Summary . 67

6 Conclusion and Future Work 68
6.1 Contribution . 68
6.2 Future Work . 69

A Acronyms and Definition 71

B Survey Questions 72

List of Figures

1.1 Service Composition . 2

2.1 Pervasive Devices [CMS] . 9
2.2 Actor’s interaction in SOA [PD03] . 10
2.3 OSGi platform [PG06b] . 12
2.4 Physical Space and Active Space [RHR+01] 17
2.5 OWL-S Ontology [Con] . 19
2.6 Centralized Coordinator-based Architecture; adapted from [KKS06b] 21

3.1 QoS for selecting best services [DD04] . 28
3.2 QoS aware composition . 30

4.1 High Level Structure of the Prototype . 33
4.2 Ontology for different Media Types . 37
4.3 Service Description for PrintService . 38
4.4 Selecting Ontologies for Composition Engine 41
4.5 Service Registry . 42

5.1 IO Matching Time with No QoS parameters 49
5.2 IO Matching Time with One QoS parameters 50
5.3 IO Matching Time with Two QoS parameters 51
5.4 IO Matching Time with Three QoS parameters 51
5.5 IO Matching Time with Four QoS parameters 52
5.6 QoS Matching Time with One QoS parameters 53
5.7 QoS Matching Time with Two QoS parameters 53
5.8 QoS Matching Time with Three QoS parameters 54
5.9 QoS Matching Time with Four QoS parameters 54
5.10 Number of new Composite services with No QoS parameters 55
5.11 Number of new Composite services with One QoS parameters 55
5.12 Number of new Composite services with Two QoS parameters 56
5.13 Number of new Composite services with Three QoS parameters 56
5.14 Number of new Composite services with Four QoS parameters 57

vi

List of Figures vii

5.15 Number of Composite Service with different number of associated QoS pa-
rameters . 57

5.16 Mathematical Model vs Experimental Data-1 61
5.17 Mathematical Model vs Experimental Data-2 61

B.1 Movie Source Selection Scenario for User Preference Survey 72
B.2 Print Service Selection Scenario for User Preference Survey 73
B.3 Telephone Service Company Selection Scenario for User Preference Survey . 74
B.4 Video Conference Source Selection Scenario for User Preference Survey . . . 75

List of Tables

2.1 Device classification chart [KKS05] . 12

4.1 Tested Linear Regression Models . 45
4.2 Tested Ordinal Regression Models . 45

5.1 Regression Models . 65
5.2 Analysis Results on Linear Regression Models 66
5.3 Analysis Results on Ordinal Regression Model 66
5.4 Regression Coefficients of Model-I . 67

viii

Acknowledgments

I would like to express my deepest gratitude to my advisor, Dr. Peter Graham,

for his inspiration, guidance and support along the way. Thanks go to my committee, my

parents, and all the people who have supported me. Finally, I would like to thank TRLabs

for providing me their facility to pursue my research.

ix

Chapter 1

Introduction

Pervasive computing is considered by many to be the next generation computing

environment. In pervasive computing, devices with computing ability are everywhere and

interact with one another and with users frequently, ideally, in intuitive ways. For this rea-

son, users find pervasive environments to be very user-friendly environments that appear to

understand and take care of user preferences. Pervasive devices are typically interconnected

with each other in a mostly ad-hoc way. Each pervasive device must be able to advertise its

available services and to recognize the services provided by other devices. Device mobility

is also very common in pervasive computing environments. Thus, pervasive environments

must be able to adjust to both topology and device availability changes. While meeting per-

ceived user needs, the big-picture goal of my research is to explore how computing devices

in pervasive environments can be made easier to use and more useful to their users.

Pervasive computing builds on five research areas: mobile computing, wireless

networks, embedded computing, context awareness using sensor technology, and human

computer interaction (HCI). Rapid developments in these research fields has recently made

it possible to turn theoretical pervasive computing research into practical systems. A simple

1

2 Chapter 1: Introduction

example scenario of a pervasive environment could be the following: “When Bob enters his

livingroom to watch a movie on television, the lights and TV in the room automatically

turn on and the room temperature controls adjust to Bob’s preferences. During the movie,

Bob wants to cook something in the kitchen. When he goes to the kitchen, the pervasive

computing system senses Bob’s change in location and plays the movie audio on speakers

on the kitchen wall. The pervasive environment resumes playing the movie on the television

when Bob re-enters his livingroom.” Pervasive computing systems treat cameras, set-top-

boxes, sensors and the like as pervasive devices and use HomePNA [All], X-10 [xEEd],

Bluetooth [Grob], IP [dmo], and other protocols to provide networking among those devices.

‘

Figure 1.1: Service Composition

In pervasive environments, a service is a piece of software or hardware that does

something useful. Service composition provides the ability to create new compound services

using available ones. Each service has at least one input and output type. When the output

type of one service matches the input type of another service, then a new composite service

can be introduced. In Figure 1.1, the output type of a service, Si, matches the input type

of another service, Sk, as a result, a new composite service, SiSk, can be created. The input

Chapter 1: Introduction 3

type of SiSk is the same as the input type of Si and the output type of SiSk is the same as the

output type of Sk. Naturally, this composability generalizes to sequence of more than two

component services. Using composition, it is possible to automatically create a number of

useful services that can be made available to users in a given pervasive environment. Service

composition techniques can also be used for such purposes as automatically configuring

devices, integrating devices together, and upgrading device firmware. In this way, service

composition provides a very simple, but attractive, as well as inexpensive, way to increase

the ease of use and capabilities of a pervasive environment.

1.1 Motivation and Expected Contributions

To make service composition attractive to a broad audience, it is highly desirable

to keep users free from any significant technical burden. With this in mind, earlier work

has looked at designing a fully-automated service-composition platform. This has been

explored for relatively simple applications and applied to managing devices within a home

area network by Pourreza and Graham [PG06a]. Each participating service in a composi-

tion is referred to as a component service and described in such a way (using semantics)

that they can be glued together on-the-fly by a composition manager. In this approach,

all services must have semantic descriptions associated with them. These semantic descrip-

tions include, at least, information about the input and output type of the services but

may also include other information about, for example, the use of the services. The com-

position manager can use this semantic information to check the Input/Output (IO) type

compatibility among available services. eFlow [CIJ+00], Ninja [ea01], SpiderNet [GNY04],

Task Computing [MPL03; KKS06a], and CoSMoS [FS05] are different semantics-based ser-

vice composition platforms. All these platforms need a user’s requested composite service

4 Chapter 1: Introduction

as well as direct user involvement to complete the composition process. Moreover, none

of them support multiple protocols or accept multiple inputs. Pourreza’s fully-automated

service-composition platform [PG06a] has successfully solved these problems. His frame-

work provides two major improvements. First, it composes services on the fly without

user involvement by introducing third party Service Enablers (SE) into the composition

process. When a device enters a pervasive computing environment, the device automat-

ically not only announces its own available services, but also uses the SEs to discover

others (including composites) that are available. Second, Pourreza’s framework optimizes

the composition-matching process using repository-based matching and semantic caching.

There is an SE-based workflow repository in Pourezza’s framework used to store already-

discovered composite services. The service composition matching algorithm tries to match

newly-discovered services with components of existing composite services to recognize new

composite services. Pourreza’s use of the Open Services Gateway Initiative (OSGi) makes

his prototype able to support multiple protocols and also helps to overcome both protocol,

as well as hardware, heterogeneity.

Pourreza’s service-composition framework is extended in this thesis. I make two

major improvements to his framework. First, his composition process does not consider non-

functional or QoS aspects (such as response time, cost, etc.) associated with services . Non-

functional properties do not affect the correctness of composition, but do affect the quality

of composition with respect to a users’s QoS preferences. Non-functional properties can

sometimes, but not always, be captured by the type specification. For example, the sampling

rate for an MP3 file could be a separate QoS property or captured by specific subtypes of an

MP3 supertype. What constitutes a non-functional property is commonly domain specific.

In Pourreza’s framework, whether or not two services may be composed is determined only

by the compatibility of the data the first produces and the second consumes. This means

Chapter 1: Introduction 5

that, for example, he cannot control the rate of consumption or limit the combined cost

of composed services. I introduce QoS constraints (to satisfy user preferences) into the

framework to obtain more useful service compositions. User preferences are simply the

QoS choices of the users which are used to help enhance the effectiveness and usability

of service composition. With QoS constraints, the composition process can consider not

only functional aspects but also non-functional aspects such as network bandwidth and

cost to select the best possible service from available similar services. By associating QoS

characteristics with each service and considering QoS in composition, it is possible to respect

the QoS preferences of the users. With QoS aware composition, it is possible to offer the

best preferred or suitable services to users in a pervasive environment.

Pourreza’s composition framework also does not support linkage between in-home

services and those provided outside the home (e.g., an IP TV service from an Internet

Service Provider (ISP)). It is important to introduce a means to make compositions between

locally-provided services and those provided by an external service provider. Integration of

locally-provided services with external services increases the domain of services from which

to choose the best suitable services. I also introduce the ability to discover external services

and use them in compositions to Pourreza’s framework.

1.2 Use of Example Scenarios

To help make discussions of service composition concrete later in this thesis, I use

various real life scenarios. For example, when a User A starts a movie at home, the service

composition manager might discover ISP MovieSource and ISP QualityChannel services

offered by a service provider and also the Home DisplayService offered by multiple in-home

devices (e.g., TVinLivingRoom, PDA, Laptop 1024x768, or some other available display

6 Chapter 1: Introduction

device). Associated with each service (local or external) will be certain QoS parameters.

Thus the composition manager might find the following QoS information associated with

the discovered services:

Home DisplayService: (resolution, refresh rate)

ISP QualityChannel: (data rate)

ISP MovieSource: (cost, availability)

The composition manager would then compose services using the available services

to show the movie. Some possible composite services for this example might be:

• PlayMovieOnTV = ISP MovieSource. ISP QualityChannel . TVinLivingRoom

• PlayMovieOnPDA = ISP MovieSource . ISP QualityChannel . PDA

• PlayMovieOnLaptop = ISP MovieSource . ISP QualityChannel . Laptop 1024x768

To support QoS, the composition manager must select the most suitable composite

services considering both the compatibility of the QoS characteristics of the component

services and the user’s QoS preferences. Each user will have different importance (i.e.,

expressed, possibly, as weights on various QoS parameters) for each QoS parameter. The

composition manager will have to consider those QoS parameter weights in offering services

to users. The composition manager will also have to consider the user’s as well as computing

device’s location (availability in the environment) as context to the composition process.

1.3 Thesis Organization

The rest of the thesis is organized as follows. I discuss the necessary background

and work related to my research in Chapter 2. I provide a problem description in Chapter 3

Chapter 1: Introduction 7

as well as a solution strategy; Chapter 4 describes my prototype architecture and the

implementation details of my fully automated QoS aware service composition platform.

Chpater 5 gives my experimental design and evaluation methods and presents the results

of my research. Finally, Chapter 6 concludes the thesis and suggests some directions for

possible future work.

Chapter 2

Background and Related Work

2.1 Pervasive Computing and Service Orientation

Some user environments are now populated with computing capabilities/sevices

that are even embedded transparently to users in thin devices (see Figure 2.1) [CMS]. Per-

vasive computing is a paradigm to integrate these computing capabilities through underlying

communication/network and other technologies. Pervasive computing thus can be consid-

ered as a distributed computing environment where there are different computing devices

which have different operating environment, different level of mobility and heterogeneous

network connectivity but which are able to automatically work together to provide useful

services to users .

The primary objective of pervasive computing is to provide further use of consumer

equipment (e.g. Mobile, Television etc.) and to serve users in the most effective way. In

pervasive computing, service composition is one way to create new and useful services

using existing services. This can increase the use and value of consumer devices. Since

composed services can be made available to devices through the composition framework,

devices with limited computational power can also use the computational capacity of higher-

8

Chapter 2: Background and Related Work 9

Figure 2.1: Pervasive Devices [CMS]

end computational devices in the environment, if required to extend their capabilities. In

this way, service composition provides an inexpensive way to enhance the usability of the

available resources in a pervasive environment for users. Service composition also makes it

possible to provide a great number of additional services in a pervasive environment which

may be useful to the users. Unconstrained application of service composition may result in

very many new services, some of limited usefulness. Therefore it is not practical or desirable

to offer all available abstract or composite services to the users. Abstract services are basic

services which can not be decomposed and composite service are composed of two or more

abstract and/or other composite services. It is better to offer a select, reduced number of

only the most useful services to users. This will require ranking to be done based on user

preferences and/or present context information.

10 Chapter 2: Background and Related Work

I will follow the Serviced Oriented Architecture (SOA) [PD03] actor style for de-

scribing QoS aware service compositions in pervasive environments (refer to Figure 2.2).

SOA is the set of rules or design principles followed in service oriented development. SOA

Figure 2.2: Actor’s interaction in SOA [PD03]

considers services as basic computational entities or functional units which have well de-

fined interfaces. In SOA, those entities that offer services are known as service providers

and those that consume/use specific services are known as service users/requesters. There

are also intermediary entities known as service brokers or service aggregators. Service ag-

gregators maintain information regarding available services from service providers to satisfy

lookup requests from service requesters. Service brokers also maintain information about

how to access the offered services. The key steps in SOA (Figure 2.2) are as follows:

Chapter 2: Background and Related Work 11

• Step 1: The service providers advertise their available services with one or more service

brokers

• Step 2: The service requesters come to know about all the available services from

different service providers through requests to service broker(s)

• Step 3: The service brokers maintain registries of the available services from different

service sources (or service providers) and provide the service requesters the required

information to access services

• Step 4: The service requesters can then place requests to service provider(s) directly

using the information obtained from service broker(s)

• Step 5: The service providers serves the requests from service requesters, and respond-

ing accordingly

2.2 Service Orientation and Composition in Pervasive Envi-

ronments

In a pervasive environment, there may be many different types of devices with

varying capabilities. Many of the devices are embedded and devices are generally connected

with each other using either wired or wireless connectivity. Kalasapur et al. [KKS05] cat-

egorizes the devices of pervasive environments using the classification shown in Table 2.1

which assigns a level (from L0 to L3) to each pervasive device based on its capabilities.

Level 0 devices are resource poor and need to communicate with more resourceful devices

to provide their services. Though Level 1 devices do not have significant resources, they

themselves can host software to advertise services in a local environment. Due to resource

limitations, they can not act as proxies for other devices. Level 2 devices possess sufficient

12 Chapter 2: Background and Related Work

memory and computational power to also act as a proxy for other devices. Level 3 devices

possess rich resources but they are not mobile as level 2 devices may be. The level assigned

to devices can help in service discovery and in preparing a “service directory” in which

services may be looked-up within a distributed pervasive computing environment.

Level Features Examples
0 No native personalization support Sensors, legacy printers

1 Cannot be a proxy, possibly mobile Cell-phone, mote sensors, smart printer

2 Can act as a proxy, possibly mobile, resource rich PDA, laptop

3 Can act as a proxy, not mobile, resource rich Server, PC, clusters

Table 2.1: Device classification chart [KKS05]

The Event Heap Framework [JF02] is an architecture supporting interaction among

applications running in a pervasive environment. This framework focuses on the collabo-

ration between applications when the applications address multiple devices simultaneously

and coordinates such device usage.

Figure 2.3: OSGi platform [PG06b]

There may also be devices using different protocols present in a single pervasive

environment. To perform service composition with such devices, hardware heterogeneity

Chapter 2: Background and Related Work 13

needs to be handled. Bottaro et al. [BBEL07] propose the use of the OSGi platform [Osc]

to provide a common framework for the different types of protocols. OSGi has an API

for the installation, activation, deactivation, update and removal of “deployment units” for

the services of different protocols (e.g. Jini [Deva], UPnP [Devb]), but first, all services

need to register with OSGi. Telecommunication Internet Gateways, TV connected set-top-

boxes and utility service gateways already exist in many home environments. Bottaro et

al. [BBEL07] propose an architecture to host their service composition framework on any of

these gateways. Pourreza et al. [PG06b] also use the OSGi platform to deal with hardware

heterogeneity in pervasive environment(refer to Figure 2.3).

Nakazawa et al. [NYT04] propose their Galaxy system as a framework to address

the problems of device heterogeneity and the hidden service problem (when an application

can not find the required services even though the services are present in the environment).

In this framework, they suggest describing the capabilities of each service in an associated

XML file. The capability description includes interfaces, operations and dependencies of

the service. An application can easily transform such an XML document to other required

formats using XSLT and can also search for a needed service.

Once all the available services are known, service composition can be used to

produce more complex services. Each service has associated input and output type infor-

mation. Syntactic matching is matching based only on the names (e.g. “print service”,

“scan service”, etc.) of the services or types. Syntactic matching is possible when all the

service providers agree on the names in advance. Otherwise, semantic matching can be

used. Semantic matching not only uses the name of the services but also considers concepts

in matching. A concept depends on the relationship (subclass, superclass, equivalent etc.)

among services or their types.

Service composition using available services may be either static or dynamic. In

14 Chapter 2: Background and Related Work

static composition, a “composition manager” knows before hand about the location and

availability of the devices and their corresponding services. Accordingly, there exists an ex-

ecution plan which includes devices that will participate in the composition. This approach

is very common in web services applications. In dynamic composition, the composition

manager dynamically selects the devices for composition on demand. Due to the mobile

nature of many pervasive computing devices, dynamic composition serves applications best

in many pervasive environments.

There may, of course, be more than one running pervasive application at a time.

Thompson et al. [eab] define each composed service as a session and discuss the network

component requirements to achieve various collaboration possibilities among different ses-

sions in a pervasive environment. They introduce a proxy device architecture that does

all the required work for the collaboration among the sessions in the environment.Gu et

al. [GNY04] describe a very similar approach with Spidernet. Spidernet proposes a service

composition framework for peer to peer networks 1. Spidernet prepares a graph of the

devices that are participating in the execution of an application and also keeps a backup

graph of alternate devices. Spidernet uses this graph for interoperation between appli-

cations. When there are any changes in the environment affecting the composite service

described by the primary graph, Spidernet can use the backup graph for the application.

Buford et al. [BKP06] propose a set of rules known as composition trust bindings

(CTB) for use in service composition. During service composition, one device needs to

access the resources of other devices so, there need to be some policies established for

resource security and efficiency. The devices participating in a service composition should

have an agreement among themselves about the use of their resources. A service invoking

device sends its CTB to the service providing node(s) and the service providing node(s)
1Peer to peer networks are collections of devices where each device is considered as an equal peer. Such

peer to peer networks are completely decentralized and self-organizing.

Chapter 2: Background and Related Work 15

follow the constraint rules during execution.

Pervasive computing can provide the user with control over the devices and services

used. But since pervasive computing mostly focuses on the personal and domestic aspects of

life and typically most users are non-technical people, automation of service discovery, selec-

tion and composition is preferable. To get everything automated, context-awareness plays

a vital role. In context aware systems, the composition manager considers “context infor-

mation” during composition. Context depends on the current physical and environmental

situations of the user as well as the devices involved in a composition. Context information

helps the pervasive computing system to “understand” the user’s environment: location, the

current temperature, time, etc. Context allows composition according to a user’s desires.

Context awareness make pervasive environments user-centric and automatic [Lok].

Since many of the devices in pervasive environments are mobile, adaptation plays

a major role in pervasive computing. During the execution of an application if any par-

ticipating device becomes unavailable, then this problem needs to be solved by dynamic

adaptation (to automatically provide an alternate composition to continue/complete the

execution). To handle device mobility, Becker et al. [BHSR04] introduce three types of

“adaptation” to their architecture : user specific manual adaptation, application specific

adaptation and automatic adaptation. Manual adaptation involves user interaction which

is not convenient. In this case, the users need to specify the alternative device(s) as well

as service(s) to support the adaptation. In application specific adaptation, the service de-

velopers need to consider all possible cases, a-priori, and specify possibly complex routines

to provide adaptation. Automatic adaptation reduces the burden on both the users and

developers. In this case, the service developers only need to specify the input and output

parameters of the services and the users need to provide their preferences before being able

to use automatically created alternate services. OSGi also has an ongoing effort to address

16 Chapter 2: Background and Related Work

service adaptation through a dynamic registry [Osc].

An operating system provides an efficient way to manage and use the resources of

a computing system. Operating systems govern and control all the system components and

provide tools and techniques for their use by end-users. Developing operating systems for

pervasive computing systems is a challenge because of the constraints of many pervasive

devices. Limited work has been done in this area. The Gaia OS [RHR+01] considers a per-

vasive environment as a distributed computing environment and provides an appropriate

operating system for such an environment. Gaia OS assumes all the devices in the environ-

ment to be available hardware resources within the distributed system. Gaia keeps track of

the services available from each of the devices and provides an efficient way to use those ser-

vices for the execution of applications. The devices, on which Gaia can function, makes an

“active space” (refer to Figure 2.4). Gaia OS integrates the management of hardware, soft-

ware, networking, security of the devices in Active space. Gaia OS also hosts distributed

applications. Any application running on Gaia OS needs to register first and then Gaia

oversees all the necessary collaboration for the execution of the application. Applications

are normally component based and run on multiple devices. Gaia performs the component

creation, distribution and integration tasks for the application. To keep information about

the devices in the active space as well as to present the available services, Gaia uses various

components in its kernel.

Menon [Men03] proposes a file system protocol for pervasive environments. The

protocol supports both wired and wireless connectivity. Three phases: negotiation phase,

authentication phase and data transfer phase are used for the file system operations. In

pervasive file systems, as files may remain in different devices, device mobility and data

security are two major aspects to consider. Menon’s protocol uses the mentioned three

phases to address security problem. Research can be carried out to find out an efficient

Chapter 2: Background and Related Work 17

replication algorithm to solve the device mobility problem for pervasive file system protocol.

Figure 2.4: Physical Space and Active Space [RHR+01]

2.3 Service Description Languages

Service description plays a very important role in service discovery as well as service

composition. To do composition, the services need to be described in a common way so that

the composition task is feasible. Thompson et al. [TM05] introduce the ‘Pervasive Service

Description Language (PSDL)’ to describe services. PSDL is based on XML and specifies all

the required information regarding a service. Thompson et al. also introduce the ‘Pervasive

Service Query Language (PSQL)’ to discover services that satisfy user requirements from

a list of known services. Fujii et al. [FS04a] designed a ‘Component Service Description

Framework (CSDF)’ to describe the semantic information associated with services. CSDF

uses the Resource Description Framework (RDF) [Bri] Schema. The OWL-S (Ontology Web

Language for Services) language [eaa] describes all the semantic information associated with

services and is appropriate for an architecture that performs semantic matching for service

composition. All of these description languages share some common elements and many

18 Chapter 2: Background and Related Work

build on their predecessors but they have somewhat different goals.

Researchers have targeted four primary automation tasks for semantic description

languages: automatic discovery, automatic service invocation, automatic service compo-

sition and interoperation, as well as automatic service execution monitoring. Semantic

markup languages provide a framework to help achieve these goals [DFR04].

The Resource Description Framework (RDF) [HSB] is a platform that opened

the door to semantic description. RDF primarily supports meta data about resources. A

resource can be a service, QoS properties, context information or even objects that do not

exist in the pervasive environment. Anything that can be described by an RDF expression

is considered as a resource. RDF uses properties to define specific pieces of information

(metadata) about a resource. Resources are named using Universal Resource Identifiers

(URIs) and a property value can be another resource (again, identified by a URI).

Further, an RDF Schema (RDFS) provides a mechanism to describe concepts

(about resources) as instances of classes. RDFS also considers subclass-superclass rela-

tionships and can define the properties of a resource as sub properties of other properties.

Thus, RDFS enriches the vocabulary of a given domain by describing relationships between

existing definitions.

OWL [Her] stands for Web Ontology Language. An earlier release of this language

was known as DAML+OIL. DAML stands for the DARPA (Defense Advanced Research

Projects Agency) Agent Markup Language and OIL stands for Ontology Interchange Lan-

guage. OWL is richer in features than RDF and possesses a larger vocabulary and syntax

than RDF. OWL provides a basis for performing automatic reasoning to infer informa-

tion that doesn’t explicitly exist. In OWL, it is possible to do “subsumption matching”,

“equivalence matching”, and “consistency matching” among resources in the domain. Sub-

sumption matching denotes a concept (i.e., a resource) that can be more general than

Chapter 2: Background and Related Work 19

another concept (to create subclass-superclass relationship). Equivalence matching denotes

two concepts that are exactly the same (to create synonyms). Consistency matching en-

sures that the matchings of the concepts (in terms of relationship among the resources) are

accurate and consistent.

OWL-S is the OWL-based web service language. Previous releases of OWL-S were

known as DAML-S. OWL-S provides a detailed representation of an ontology 2 with ser-

vices. OWL-S supplies service providers with a core set of markup-language constructs for

describing the properties and capabilities of their services in an unambiguous and computer-

interpretable form. OWL-S markup of services facilitates the automation of service com-

position tasks, including automated service discovery, execution, composition, and inter-

operation. OWL-S offers control constructs (sequence, split, split+join, any order, choice,

if-then-else, repeat-while) to create descriptions of potentially complex composite services

from existing services [Con].

Figure 2.5: OWL-S Ontology [Con]

2A data model to describe a set of concepts and their relationships

20 Chapter 2: Background and Related Work

OWL-S contains a rich service ontology and can describe a service in terms of

service profiles, service process models and service grounding. A profile tells what the

service does, a process model tells how the service works, and a grounding tells how to

access the service (refer to Figure 2.5) [Con]. In OWL-S, a service profile includes the

service name, contacts, and an abstract description of the service. This information is

used in composition. The process model describes the services and tells us what happens

when the service is carried out. The process model also specifies whether the service is

a composite service or a simple service. The grounding specifies all the mechanisms (e.g.

WSDL/SOAP) to allow access to the service’s functionalities.

The Amigo Research Group [Groa] suggests that OWL-S does not provide all the

required features to support specifying QoS characteristics for services. They have extended

the OWL-S vocabulary to support additional, service-related QoS properties [KKR+07], for

different domains (e.g., personal computing, mobile communications, consumer electronics,

and home automation). Such service-related QoS properties will also be used in my fully

automated QoS-aware service composition platform.

2.4 Service Discovery

In pervasive computing environments, devices provide one or more services. Dis-

covering services within a pervasive environment and from external service providers is an-

other issue in service composition. Each device needs to know about the services provided

by others. There exist two common approaches to service discovery. A fixed (non-mobile)

device (i.e. central coordinator) can collect all the information about the services in an

environment and about services offered from associated service providers and then notify

other devices of the services available. Alternatively, each device could individually can be

Chapter 2: Background and Related Work 21

responsible for collecting the available service information for themselves.

In the first approach, a composition manager can perform the necessary service

composition using the collected information and the central coordinator can inform all the

devices about the available services in the environment. New devices are also informed about

all pervasive services when they enter the environment. Using this approach, each device

is only responsible for the advertisement of its own services. When a user wants to run

a composite service (application) using the available services, the centralized coordinator

takes responsibility for the execution of the service by distributing the work among the

devices providing the service(s) participating in the composition. In this case, the devices

complete the responsibilities assigned by the coordinator. A problem with this approach

is the single point of failure. Figure 2.6 shows a service-oriented architecture (SOA) with

centralized-coordinator-based service composition [KKS06b].

Figure 2.6: Centralized Coordinator-based Architecture; adapted from [KKS06b]

In the second approach, there exists no central coordinator to handle discovery

and composition. Rather, all the devices have to individually collect service information

from other devices in the environment. In this approach, when a user wants to execute a

22 Chapter 2: Background and Related Work

composite service, the user device either itself acts as a coordinator or it dynamically selects

another device to act as a coordinator for the composition. Basu et al. [TB05] describe the

coordination of composition by a user device. Due to the resource limitations of many of

the devices in a pervasive environment, this is not always feasible.

Pourreza uses a gateway device as the composition engine as well as the central

coordinator for service composition. This provides a managed and reliable platform for

composition, though computational limitations is still an issue. I will extend Pourreza’s

approach by including the feature of service discovery provided by the service providers.

2.5 Service Registry and Matching Techniques for Service

Composition

Specific technique(s) for deciding how services can be composed are also needed.

The services in a pervasive environment have input and output type information associated

with them. An available service composition manager can use this information to do com-

position. There are different ways to do the composition. All require some kind of matching

to recognize potential composite services.

In template-based matching, as described by Casati et al. [CIJ+00], the composi-

tion takes place following a user-provided template. A template contains the sequence of

“abstract” services required and the rules for composition. The user creates a template or

the composition manager can obtain it from a repository of existing templates. This type

of matching requires a user-specific service goal (and corresponding template) and it is not

usable when any of the component services are absent.

In interface-based matching [ea01], the composition manager does not depend

on a template, rather it discovers the sequence of appropriate services based only on the

Chapter 2: Background and Related Work 23

provided input and output type information. Interface-based composition is more adaptive

than template-based composition. Interface-based matching is not usable when services

have unknown input or output types.

In logic-based composition [WPS+03], the composition manager uses first order

logic for composition. In this approach, each service needs to have extra associated infor-

mation (i.e., preconditions and postconditions). Logic-based matching does not explicitly

understand the meanings of data, it only follows the defined rules. This type of matching

can only perform exact matching of input or output types. Exact matching allows substi-

tution of an IO type for another type only if specific rules exist to declare their equivalency.

Logic-based matching is complex and is not easily extensible.

2.5.1 Semantic Matching

Semantic-based matching allows in-exact (“partial”) matches in addition to ex-

act matches of IO types. Such partial matches allow inferencing about close and relative

substitutes for any type even when there is no specific rule to specify the equivalency of

those types. For example, if there is no exact matching for a particular type- “ColorPDF”

then “PDF” (a superclass type of “ColorPDF” type) can suffice in that case. In the case of

semantic matching, the matching engine, in some sense, understands the meanings of data

and can perform composition even when the output type of one service does not exactly

match the input type of the next. This understanding is achieved using an ontology that

describes domain knowledge. In this case, each service needs to include its own semantic

information. Semantic information may take different forms, often it is based on relatively

simple knowledge about how types are related (e.g. Mokhtar et al. [MPG+08]).

Fujii et al. [FS04b] propose a semantic matching architecture, Semantic Graph-

based Service Composition (SeGSeC), for service composition. SeGSeC uses its Component

24 Chapter 2: Background and Related Work

Service Model with Semantics (CoSMoS) [FS04a] to describe the services in an environment

semantically. Their Component Runtime Environment (CRE) helps SeGSeC to discover the

services required for composition. Using the available semantic information about services,

the composition manager prepares a workflow from a user’s request and forwards the work-

flow to the composition coordinator for execution.

Lee et al. [LFBW04] introduce a “personal router”, which is responsible for service

selection in pervasive service composition. In their system, cost and quality (e.g., speed)

parameters are associated with each service. The user can specify cost and quality for the

services they want. A user’s personal router performs negotiation and reasoning in selecting

the services needed considering cost and quality constraints. It also has provisions for the

user to specify either better or cheaper selections. But, in this system, the compositions

are not done semantically.

COCOA [MGI06] provides two algorithms for dynamic composition of services.

The COCOA Service Discovery (COCOA-SD) algorithm is responsible for interacting with

the user. When the user enters a pervasive environment, COCOA-SD collects information

about all the available services, determines the potential composed services, and shows

them to the user. When the user selects any composite service to execute, COCOA-SD

finds out which component services can perform the task. There may be more than one

choice, but COCOA-SD selects only those choices that exactly match the inputs, outputs,

preconditions, and effects of the user task. Then COCOA-SD finalizes the selection of the

useful services that can participate in the composition. The COCOA Conversation Integra-

tion (COCOA-CI) algorithm oversees of communication between the services participating

in the composition. COCOA-CI uses finite state automata for managing communication

between, and integration of, the selected services.

Mingkhwan et al. [MFAM04] propose an architecture where a Service Integration

Chapter 2: Background and Related Work 25

Controller (SIC) is responsible for the composition of services. The SIC implements seman-

tic interoperability and signature matching for the composition of services. SIC uses an

ontology with IOPE (Input, Output, Pre-conditions, Effects) information for all available

services. In creating its ontology, ‘subclass’, ‘superclass’ and ‘equivalent’ relationships are

used to provide meaning to the matching process. SIC handles all service requests through

its matching process.

I will use semantic-based matching for service composition. Moreover, QoS pa-

rameters will also be supported as semantic characteristics in the composition process.

2.6 User Interaction and Automated Composition

In pervasive environments, the user needs to decide what to do, but should not

have to consider how to do it. Moreover, users normally do not even know about the

location and functions of devices. They should just place their requests and the pervasive

computing system should provide them with the needed solutions. Research is going on to

lessen user involvement in composition and to develop attractive user interaction techniques.

In SeGSeC [FS04b], users can use natural language to place their requests. In Ninja [ea01],

the user only needs to specify the input and output information of the requested composite

service to the system. In e-Flow [CIJ+00], the user needs to prepare a request template,

which is actually a service structure flowchart. In all these cases, the service composition

starts after the user places the request. The execution of an application is efficient and

fast when there is less user interaction with the system. ARIS [BB04] provides a graphical

interface showing the available devices in a given environment allowing the user to select

services for interest. ARIS runs on the Gaia OS [RHC+02] and helps the user to locate and

interact with devices easily. Preuveneers et al. [PB05] suggest that pervasive services need

26 Chapter 2: Background and Related Work

to support user personalization since users may have their own choices for service selection,

resource selection, and choices of service behaviour.

In the architecture of Pourreza et al. [PG06a], the system itself tries to find all the

potential using the available services and then presents those composite services to the user.

This framework automatically composes services on the fly when new devices (and their

services) are discovered. When any device enters a pervasive computing environment, the

device automatically attempts to discover atomic or composed services that are available

with the help of third party service enablers [PG06a]. The users of devices need only select

their preferred service(s) at time of use. In this approach, the user may need to choose

from a long list of similar services, so a ranking system is used to offer only the most

useful/desired services to the user.

2.7 Context Information and QoS parameters

To make a pervasive environment smart, context information plays a vital role.

Context is any information regarding the physical situations of users (e.g., user’s location,

orientation, distance from a particular device etc.) or environmental situations (e.g., tem-

perature, humidity, time of day). Context information can be used to better help a pervasive

computing system understand a user’s present requirements. Thus, the computing system

can offer better services to the user. Context information can be obtained through different

sensor devices employed in the environment. I will also consider such context information

in my system to improve the quality of compositions in terms of how well they meet a user’s

current QoS preferences [TBM+].

Chapter 3

Problem Description and Solution

Strategy

QoS is important to provide useful composite services generated from the services

provided by underlying devices. Provision of QoS helps ensure that the system (and compos-

ite services therein) are performing at a user’s desired level. QoS awareness in composition

allows the selection of the most suitable services for a particular user in a given environment.

For example, in Figure 3.1 there are three services (each one either atomic or composite):

Service A, Service B, and Service C, all having the same functionality. To determine the

most suitable service among these three, the QoS information associated with each can be

used. Assessment of the QoS of composite services avoids the undesirable situation where

functionally correct but inadequate composite services are provided to end users.

It is essential to be able to associate non-functional (i.e., QoS-related) properties

with each service to enable QoS-aware service composition. It must then be possible to

incorporate the provided QoS properties into the composition process and to be able to

calculate the aggregate QoS properties for the resulting composite services. Finally, it must

27

28 Chapter 3: Problem Description and Solution Strategy

Figure 3.1: QoS for selecting best services [DD04]

be possible to select the most desirable composition (in terms of QoS properties) from among

a set of otherwise equivalent compositions. This must also be done with reference to a set

of desired QoS preferences for a given user (e.g., User A may have a QoS preference that

states “low cost is more important than high quality, while user B may have the opposite

preference”).

To produce more useful composite services, it is also important to add support

for compositions involving services from outside a persistent computing environment. For

this, it is essential to develop “service broker” which can collect all available services from

outside the persistent environment. Service brokers must consider the ontology aspects of

persistent computing environment (before offering any service to it) to avoid conceptual

ambiguity.

In the rest of the thesis, I will explain my strategy to design and to implement

QoS aware service composition prototype. I will also explain how I asses any limitation to

the strategy through experiments.

3.1 Solution Strategy

Pourreza’s prototype [PG06a] uses the Web Ontology Language for Services (OWL-

S) system together with some custom optimizations to provide fast and fully automated

service composition. Additionally, this prototype uses OSGi to support both protocol as

Chapter 3: Problem Description and Solution Strategy 29

well as hardware heterogeneity. The input and output properties of OWL-S specifications

are used to implement IO type matching. Pourreza’s system, however, does not provide

support for QoS aware matching on for composing services from local devices with those

from external sources.

OWL-S does not directly provide support for expressing QoS properties or for

matching subject to them. I propose to include XML based QoS descriptions in OWL-S

specifications in the same way as is done in Amigo [Groa]. The XML based QoS descriptions

will be associated with service description in such a way that the service registry and

composition engine can easily extract the required QoS information from the description.

When a new composite service is found, its QoS properties will also be saved using XML

tags in its OWL-S based description. I plan to use QoS properties such as those from the

Amigo ontology [Groa] to add support for QoS properties in my prototype.

Each service may have many possible QoS properties associated with it. The

following are some possible QoS properties :

Response Time (T): The time interval between service invocation and completion,

Availability (A): The probability that the service is available at some period of time,

Reliability (R): The probability that a request is correctly serviced within the expected

time, and

Service Cost (C): The price that has to be paid to use the service

Many other QoS properties, of course, may also apply to specific services. It is important

to mention here that different QoS properties may not have identical QoS characteristics.

Some QoS properties may contain continuous values whereas some may only contain discrete

values. High values of some QoS properties (e.g. ResponseTime) may be considered as good

30 Chapter 3: Problem Description and Solution Strategy

Figure 3.2: QoS aware composition

whereas high values may be bad for some other QoS properties (e.g. Cost). Some QoS

properties (e.g. Reliability) may contain ordinal values whereas some (e.g. Security) may

contain nominal values. These characteristics are needed to be considered in computing the

QoS values of the QoS parameters of newly created composite services.

For a given service, there are two aspects for each QoS property. One is the

specific QoS that the service offers and the other is the QoS the service requires. For

example, for each service, there will be a required response time and a provided response

time reflecting the two dimensions of the single “response time” QoS property. I will consider

the compatibility of the provided-QoS values of the QoS parameters of first service and the

required QoS values of the QoS parameters of second service along with IO compatibility.

If the services are IO compatible (i.e. output type of first service matches the input type of

second service) and the provided QoS values of all the QoS parameters of the first service

Chapter 3: Problem Description and Solution Strategy 31

(e.g. Si) exceeds or equal to the QoS values of corresponding QoS parameters of second

service (e.g. Sk), then I produce the composite services (e.g. SiSk) (refer to Figure 3.2).

In this figure, the second service requires encrypted data with at most 10 msec of response

time and 80% of availability along with its input type and the first service is capable to

satisfy second service providing all those QoS with its output type. The composite service,

SiSk will have the QoS values for its QoS parameters computed from participating services

(i.e. Si and Sk). Each abstract or composite service possess QoS values for different QoS

parameters which are considered to offer services to the users.

I plan to develop service broker which can act as an intermediary between ser-

vice providers and persistent computing environment. Before offering any service from

service providers to persistent computing environment, the service broker should prepare

the required OWL-S description of the offering service and should also include QoS char-

acteristics. In constructing the description, the service broker needs to consider IO types

and QoS properties of the service in such a way that those are supported by the ontology

of persistent computing environment and the presentation should support service ranking

or filtering.

Chapter 4

Prototype Architecture and

Implementation

I extended Pourreza’s framework to support QoS-aware service composition. Fig-

ure 4.1 shows the high level structure of my QoS-aware service-composition prototype. This

prototype performs composition, making the following assumptions and using the following

steps.

• Each service carries its own semantic description, which provides enough QoS infor-

mation in the form of <attribute, operator, value> triples (e.g., <bandwidth, equals,

100>) and input/output type information for the compatibility matching required to

do QoS-aware service composition.

• The gateway device in each pervasive environment (refer to Figure 4.1) maintains a

“directory” that includes a Service Information Module (SIM) and a Context Infor-

mation Module (CIM). The SIM collects, maintains, and updates information about

the currently-available devices and their services in the pervasive environment and

also the services available in the environment from external service providers. The

32

Chapter 4: Prototype Architecture and Implementation 33

Figure 4.1: High Level Structure of the Prototype

CIM collects, maintains, and updates context information about the environment es-

pecially about the users in the environment (including user QoS preferences that may

depend on current environmental conditions).

• The SIM detects and responds to any change in the environment regarding services

and updates the service registry. The CIM updates the User Profile Management

Module (UPMM) about any changes made in user preferences or context.

• The service registry maintains a listing of all available services in the environment

(local or from known service providers). This registry also includes QoS information

for each of the services.

• The User Profile Management Module (UPMM) contains all users’ QoS preferences

represented in the same way as for service QoS parameters. If there is any change in the

34 Chapter 4: Prototype Architecture and Implementation

context of the environment, the CIM updates the UPMM as described. The UPMM

must also be capable of aggregating multi-user QoS preferences. In multi-user QoS

aggregation, the QoS preferences of different users are maintained in different profiles,

but they are aggregated to determine the overall QoS preferences for multiple users

in an environment. This is necessary since individuals QoS preferences may vary (e.g.

Alice may like bright lighting in a room while Bob prefers it to be dim).

• The IO matcher, the repository matcher and the workflow repository form the compo-

sition manager 1. The composition manager obtains the QoS information about each

service from the service registry and collects the most up-to-date QoS preferences of

users from the user profile management module. The composition manager selects the

best services by considering a user’s preferences, context information, and service QoS

properties. User preferences are represented using relative weights for available QoS

properties (e.g., weight(cost) = 0.3 and weight(availability) = 0.7, etc.) and each user

may have different preferences/weights for different QoS parameters. These weights

are used to combine more constraints in the case of multiple QoS parameters.

• In Pourreza’s IO matcher, compound services are created incrementally by combining

services that are IO type compatible. My IO matcher also considers QoS properties

and produces QoS compatible (in terms of provided and required QoS levels) compos-

ite services with aggregate/combined QoS properties based on the component services.

These aggregate QoS parameters are then later compared to user’s QoS preferences

to select the most useful composite services.
1In Pourreza’s system, these were done outside the pervasive environment. I have integrated these

functionalities into the gateway device in my prototype but that could equally well be implemented by a
composition manager outside the pervasive environment to allow sharing of discovered compositions between
environments.

Chapter 4: Prototype Architecture and Implementation 35

• In the workflow repository, all the created composite services (with QoS parameters

in my implementation) are stored to serve the repository matcher, which reduces

computation overhead by avoiding unnecessary expensive re-execution of IO matching.

• In the repository matcher, previously discovered and stored composite services are

searched to find composite services satisfying a user’s QoS preferences.

• The workflow execution engine running on the gateway device oversees the execution

of QoS-aware composite services.

Some specific challenges that I addressed in implementing my proof-of-concept

prototype include:

• How to represent QoS properties using OWL-S and how to overcome any inherent

limitations therein (e.g., handling QoS properties taking on discrete vs continuous

values).

• How to combine QoS properties during composition (e.g., which properties should

assume minimum versus maximum versus average values and how to handle multiple

inputs).

• How to represent user QoS preferences (e.g., what limits should be placed on the

complexity of specification, how types or media-specific specifications should be rep-

resented).

• How to combine multiple users’ QoS preferences (e.g., how to handle conflicting pref-

erences?)

• How to compare a composite service’s QoS properties to user (single or multiple)

QoS preferences to select the best (or a set of acceptable) available service(s) (e.g.,

mapping different representations).

36 Chapter 4: Prototype Architecture and Implementation

How I met these challenges is described later in this chapter.

Service providers normally use gateway devices to offer services in a home area

network or other pervasive environment (e.g. airport terminal, meeting facility). I also

provide support to integrate services from external service providers with the services avail-

able in a pervasive environment (refer to Figure 4.1). I represent the services offered to

the environment by service providers using software stubs for each provided service that

are registered automatically on the gateway device and which act as proxies in the service

composition process. Naturally, I also associate QoS parameters with these stubs. It is

assumed that service providers provide the necessary QoS parameters such as the service

response time and cost for their offered services. Such externally-provided services are then

treated identically to local ones for the purpose of composition.

4.1 Implementation Details

In this section, I explain the different aspects of my implementation. This explana-

tion includes describing the assumed domain ontology of type information, how I describe

services and my QoS aware composition process. My implementation was done through

different modules and most of the modules were developed using Visual Studio .Net. I

chose Visual Studio .Net because it is an integrated development environment from Mi-

crosoft which has extensive support for the development of service oriented application and

graphical user interface based applications.

4.1.1 Domain Ontology

I used the portege software tool [IP] [CP] to develop different ontologies descrip-

tions and saved them as separate own files. For a particular ontology, concepts in a domain

are related using subclass and superclass relationships. These concepts of the ontologies are

Chapter 4: Prototype Architecture and Implementation 37

Figure 4.2: Ontology for different Media Types

used to describe both the IO types and QoS characteristics of different services. I designed

four different test cases to study user preferences as well as user-oriented service-ranking.

For each test case, I developed a number of ontologies to describe a range of abstract

services.

As an example, the skeleton of a media ontology is shown in Figure 4.2 which

was used to describe the IO types of services in a particular test case. In this simple

ontology, different media types like Audio, Text, Video etc. are represented as classes.

ImageOnDisplayDevice, ImageOnPaper are two subtypes of Image and the description (in

Figure 4.2) includes the subclass-superclass relationship for Image as well as for other media-

types. Naturally other ontological entries would need to be created for different persistent

scenarios not considered in my test cases and devices but the principles involved are the

38 Chapter 4: Prototype Architecture and Implementation

same as in my test cases.

Figure 4.3: Service Description for PrintService

4.1.2 Service Description

Services are described using OWL-S. It was because OWL-S provides the neces-

sary “properties” support to describe QoS properties and for compatibility with Pourreza’s

Chapter 4: Prototype Architecture and Implementation 39

existing code that I chose to use OWL-S. For each service, there is an individual descrip-

tion file. This description includes information regarding service profile, process model and

grounding. The profile includes QoS information for the services. Figure 4.3 shows selected

portions of a PrintService description encoded in OWL-S. In this PrintService description,

DigitalTextFile is shown as an InputType and TextOnPaper as an OutputType. Reliability

(in respect to paper jam here) is the only QoS property and its value is 90%. The QoS prop-

erties are specified in this way extending service profile in OWL-S and also extending the

QoS ontology obtained from Amigo [Groa]. For new composite services, a new description

file is created along with IO and QoS information.

4.1.3 Composition Manager

My composition manager was developed in Java. I chose Java because it is platform

independent and provides extensive coding supports for computation limited devices (thus

allowing the use of simple devices as a composition manager). The composition manager

is responsible for performing IO and QoS matching. For this, I have used a hash table

design, like Pourreza, to achieve lookup efficiency. I also developed a web-based interface

to control the composition manager i.e. starting, stopping, restarting, including/excluding

ontologies etc. (Figure 4.4). The web interface was developed using Visual Studio .Net

with Windows Communication Foundation (WCF) because WCF supports asynchronous

and secured message transfer.

The composition manager produces new composite service through the matching

of IO types and QoS characteristics of the available services. In my prototype, QoS matching

takes place only when IO matching was successful beforehand. That means, if two services

are not IO compatible then the composition manager will not do for QoS checking thereby

saving time. The algorithm for QoS aware service composition is shown in Algorithm 1.

40 Chapter 4: Prototype Architecture and Implementation

Algorithm 1: QoS aware Service Composition Algorithm
1: Ii=input of Service Si and Oi=output of Service Si
2: QR

i,j= Required QoS values for QoS parameter j of service Si
3: QP

i,j= Provided QoS values for QoS parameter j of service Si
4: for each Sk of already registered services do

5: Ik=input of Service Sk and Ok=output of Service Sk
6: QR

k,j= Required QoS values for QoS parameter j of service Sk
7: QP

k,j= Provided QoS values for QoS parameter j of service Sk
8: if Oi matches Ik then

9: for each qi of QP
i,j do

10: for each qk of IRk,j do

11: if parameterName(qi) equals parameterName(qk) then

12: if valueof(qi) satisfies valueof(qk) then set success to 1

13: end if

14: else set success to 0 and go to step 18

15: end if

16: end for

17: end for

18: if success equals 1 then add composite service SiSk to service registry and exit

19: end if

20: else if Ok matches Ii then

21: for each qk of QP
k,j do

22: for each qi of IRi,j do

23: if parameterName(qk) equals parameterName(qi) then

24: if valueof(qk) satisfies valueof(qi) then set success to 1

25: end if

26: else set success to 0 and exit

27: end if

28: end for

29: end for

30: end if

31: if success equals 1 then add composite service SkSi to service registry and exit

32: end if

33:end for

Chapter 4: Prototype Architecture and Implementation 41

Figure 4.4: Selecting Ontologies for Composition Engine

In this algorithm, each arrival of a new service leads to compatibility checking with all the

registered services. If the composition manager finds any IO compatibility, then it does QoS

compatibility checking. When both IO and QoS matching are successful for a particular

pair, then the composition manager registers the newly created service.

4.1.4 Service Registry

The service registry is an index of registered services that are available within a

persistent environment from either local devices or external service providers. Every service

42 Chapter 4: Prototype Architecture and Implementation

needs to be registered to participate in composition or to be offered to the users. If new

Figure 4.5: Service Registry

composite services are generated from the available services, these composite services are

also registered in the service registry before being offered to any user. I implemented the

registry, by extending Pourreza’s registry to include QoS parameters. I also developed an

interface tool to observe presently available services in the registry (refer to Figure 4.5).

This interface tool allows the easy visualization of IO and QoS information for any registered

service, atomic or composite.

There are two main types of sources from which services are available i.e. devices

in a persistent environment and services from service providers. I developed my Service

Information Module (SIM) using Visual Studio .Net so that it listens to a particular port

for newly discovered services from both sources. In my implementation, a ServiceSender

Chapter 4: Prototype Architecture and Implementation 43

module (developed using the compact framework of Visual Studio .Net) running on a PDA

(playing the role of an arbitrary local device) is responsible for sending available service

information to the SIM using Bluetooth connectivity. A Service Broker was developed (in

Visual Studio .Net using Windows Communication Foundation (WCF)) as a component

to collect all available services from outside the persistent environment and send the cor-

responding service registration requests to the SIM. When a service registration request

(including an abstract service description) arrives, the SIM first checks whether the IO type

and QoS parameters of the service are supported by the installed ontology in the composi-

tion manager or not. If the installed ontology supports the IO and QoS parameters of the

service then the SIM sends the information to the composition manager to check if com-

position is possible. The composition manager performs IO matching and QoS matching

as described earlier and registers all newly available services in the service registry. The

SIM also collects, updates and maintains information about the currently-available services

by keeping track of the devices in the environment. Device related updates (e.g. due to

a mobile device leaving the environment) are important because of the need to de-register

currently unavailable services.

4.1.5 User Profile Management Module (UPMM)

The responsibility of the UPMM is to offer only the most highly ranked services

to a particular user. The services are ranked according to the user’s QoS preferences. The

CIM collects, maintains, and updates information regarding the presently available users

in the environment and their QoS preferences to the UPMM. The UPMM uses a ranking

function to find the best suited services for each particular user. Each user may have

different QoS preferences for different QoS properties, so UPMM produces service specific

particular profile for each user using the ranking function.

44 Chapter 4: Prototype Architecture and Implementation

Ranking Function

Initially my QoS aware service composition prototype used to offer services to

the users ranked using a simple weighting of some of the values of QoS properties. These

weights were obtained from the users’ preferences for QoS parameters. To improve the

ranking function, I later created an online survey on user preferences on which to develop an

enhanced ranking system. The survey described 4 real-life scenarios (refer to Appendix B).

In each scenario, participants were asked to provide their QoS preferences and also to provide

relative rankings for 5 functionally identical services with varying QoS characteristics. In

general, the participants had to consider given QoS values (Q1, Q2, Q3) for three QoS

parameters associated with each service and corresponding self-given weights (W1, W2,

W3) for the QoS parameters generally (i.e. the user QoS preferences which represent the

relative importance to an individual user of the three QoS values Q1-Q3 that might be used

to decide the ranking of services).

For example, among the 4 real-life scenarios, the first one gathered information

about how one deals with ordering an online movie. In this scenario the users were asked

to assign importance to certain service characteristics (such as the cost of the movie) and

to rate (considering their QoS preferences) some sample movie sources. The user’s assigned

importance for certain service characteristics was represented by weights (W1, W2, W3) for

QoS parameters.

From the collected data, I performed a linear regression analysis across all re-

sponses to develop a model of ranking for use in the UPMM. To perform the regression

analysis, I used the R statistical software package [Wie]. I considered a total of seven dif-

ferent models. In the regression models shown in Table 4.1, A1 = Q1 * W1, A2 = Q2 * W2,

A3 = Q3 * W3. The check marks (
√

) indicate which factors were included in each model.

I also developed a series of ordinal regression models (refer to Table 4.2) that

Chapter 4: Prototype Architecture and Implementation 45

Q1 Q2 Q3 W1 W2 W3 A1 A2 A3 W1*W2*W3 A1*A2*A3

Model A
√ √ √ √ √ √

Model B
√ √ √ √ √ √ √ √ √

Model C
√ √ √ √ √ √ √ √ √ √

Model D
√ √ √ √ √ √ √ √ √ √ √

Model E
√ √ √

Model F
√ √ √ √

Model G
√ √ √ √

Table 4.1: Tested Linear Regression Models

Q1 Q2 Q3 W1 W2 W3 A1 A2 A3 W1*W2*W3 A1*A2*A3

Model H
√ √ √ √ √ √

Model I
√ √ √ √ √ √ √ √ √

Model J
√ √ √ √ √ √ √ √ √ √

Model K
√ √ √ √ √ √ √ √ √ √ √

Model L
√ √ √

Model M
√ √ √ √

Model N
√ √ √ √

Table 4.2: Tested Ordinal Regression Models

parallel the non-ordinal models. Ordinal regression considers one or more parameters (par-

ticipating in the regression) as ordinal data. Ordinal data normally considers the importance

of order or magnitude (along with data values in a data series). In my ordinal regression

models, I considered the human responses as ranked/ordinal data because it applied relative

importance on human responses.

Chapter 5

Evaluation

Accuracy in composition corresponds to the perceived quality of the composition.

If the accuracy in selecting the best component services is high, then the composition will be

considered valuable by the end user. Speed of composition is also important. If composition

is fast, then more QoS preferences can be imposed on the composition and, naturally, more

compositions can be done in a given time. While speed of composition is unlikely to directly

affect a single user in a given pervasive environment it is a factor, when compositions for

many users in different environments need to be done concurrently by one composition

provider offering composition services for many pervasive environments.

Accuracy of selection of composite services is assessed because it determines the

usefulness of the system. Accuracy in composite service selection helps us to answer the

following questions:

• Do we really select services that meet user needs?

• How effective is our strategy for combining user preferences vs. the quality of match

for an individual user?

Speed of composition will determine whether or not the system is practical to use.

46

Chapter 5: Evaluation 47

We need to assess speed of composition:

• with and without QoS support,

• for different numbers of QoS parameters,

• for different types of QoS parameters,

• for scalability with: more/fewer services available, and

• for many services from providers.

5.1 Overview of Assessment

I have initially implemented the gateway device components (refer to Figure 4.1)

using a PC. In my testbed, this PC acts as a gateway device to compose local services in

the persistent environment and also to compose the local services with services provided by

service providers outside the pervasive environment. I used a number of emulated UPnP

devices [TR-] (running on both normal PCs and Pocket PCs) with several sample Jini and

UPnP services [For], which act as the available local services. I also considered IPTV service,

Video-on-Demand service, Telephony Service, and a Video-Conference Service as examples

of services from external service providers. When my composition system receives services

from an external service provider, the system consumes network resources (bandwidth)

and also incurs computational overhead to do the necessary composition to discover new

compositions involving the newly introduced services. These costs must be considered in

any performance assessment.

To assess my QoS aware composition approach, I have performed composition

with QoS and without QoS constraints and in each case, I have varied the total number

of available services from which compositions may be created. This results in changes to

48 Chapter 5: Evaluation

the number of matches considered in doing composition. I have thus determined how much

time is required to do composition under different scenarios. Similarly, I have also done

experiments to assess how closely the composite services generated support different user

preferences by changing the values of user QoS preferences.

To measure the accuracy of QoS-aware composition, I tried to find out how the

offered services match with the user preferences. As described, I created a survey to collect

user responses about QoS for different real-life scenarios and I compared the survey-results

to the results produced by my composition system to assess my original ranking technique.

To measure the composition speed, I first considered cases in which there were

no QoS parameters associated with any service and measured the time to compose the

services. I then varied the total number of services and measured the required times. I then

associated QoS parameters with each component service and measured the relative speed

of service composition (comparing composition with and without QoS parameters). For the

evaluation of the relative speed of composition and number of produced composite services,

I ran different experiments with varying numbers of services available to compose. I also

developed a general mathematical model to approximate the number of composite services

for a given number of abstract services and number of QoS parameters. This number helps

to predict the expected usefulness, computational efficiency and speed of QoS aware service

composition over compositions without QoS.

5.2 Experiments

As a basis for the experiments, I created different ontologies (e.g. Media On-

tology, QoS Ontology etc.) using the Pellet ontology editing tool [IP] [CP]. Using the

created ontologies, I chose uniform randomly the IO types of each simulated service. QoS

Chapter 5: Evaluation 49

characteristics were similarly selected according to the described ontologies.

Figure 5.1: IO Matching Time with No QoS parameters

5.2.1 Experiment-1 (Matching Time)

The goal of this experiment was to find out how much the matching time varies

when the number of abstract services changes. I ran the experiment each time with a fixed

number of abstract services ranging from 5 to 10. I did 50 runs for each case and calculated

the average of the results. In my prototype, the total matching time is the summation of

IO matching time and QoS matching time. In the results, both types of matching times are

presented individually. The error bars shown in the following graphs always consider +/−1

SE (Standard Deviation Error).

IO Matching Time

Figure 5.1 shows how the IO matching time varies with the number of abstract

services when there were no QoS parameters associated with abstract services. From this

50 Chapter 5: Evaluation

Figure 5.2: IO Matching Time with One QoS parameters

figure, we see that the IO matching time increases when the number of abstract services

increases. This is because, with the increased number of abstract services, each service

needed to do IO compatibility checking with more services (abstract and/or composite).

Figure 5.2 shows how the IO matching time changes with the number of abstract services

when there was one QoS parameter associated with each service. The reason for getting

wide variances in the case of a larger number of abstract services is that the abstract services

were selected uniform randomly and for some of the cases the composition system produced

a larger number of composed services (for further IO consideration) and for some of the cases

it produced less. With more experimental runs, the variance can be reduced. Moreover,

using the prediction model for the expected number of composite service (proposed later

in this chapter), the variation issue can be better understood. It is noteworthy that IO

matching time had a very sharp decrease when I associated a QoS parameter with each

service (refer to Figures 5.1, 5.2). The reason is that the composition engine had to

Chapter 5: Evaluation 51

do fewer IO compatibility checks when there were one QoS parameter compared to no

QoS parameters associated with each service because QoS incompatibility eliminated many

potential composite services from further consideration.

Figure 5.3: IO Matching Time with Two QoS parameters

Figure 5.4: IO Matching Time with Three QoS parameters

In general, I found there was an increase in IO matching time against number of

abstract services (refer to Figures 5.3, 5.4 and 5.5 where there are different numbers of

52 Chapter 5: Evaluation

Figure 5.5: IO Matching Time with Four QoS parameters

associated QoS parameters).

QoS Matching Time

Figure 5.6 shows how the QoS matching time varies with the number of abstract

services when there was a single QoS parameter associated with each abstract service. From

this figure, we see that the QoS matching time appears to increase linearly as the number of

abstract services increases. This is because, with the increased number of abstract services,

each service needed to do QoS compatibility checking with more services (abstract and/or

composite). Figure 5.7 shows the QoS matching time when there were two QoS parameters

associated with each service. It is noteworthy that QoS matching time increased slightly

with an increase in the number of QoS parameters from 1 to 2. (refer to Figures 5.6

and 5.7). The reason is that the composition engine had to consider more QoS parameters

in each QoS compatibility checking.

In general, I found an increase (appears linearly) in QoS matching time with in-

creasing numbers of abstract services (refer to Figures 5.8 and 5.9). This linear relationship

Chapter 5: Evaluation 53

Figure 5.6: QoS Matching Time with One QoS parameters

Figure 5.7: QoS Matching Time with Two QoS parameters

of number of abstract services with both IO and QoS matching time suggests that it should

be quite feasible to do QoS aware service composition. Since individual compositions are

independent of one another, pools of composition processors could be easily be used.

54 Chapter 5: Evaluation

Figure 5.8: QoS Matching Time with Three QoS parameters

Figure 5.9: QoS Matching Time with Four QoS parameters

5.2.2 Experiment-2 (Number of Composite Services)

The goal of this experiment was to find out the total number of new composite

services produced when the number of abstract services changes. I ran the experiment

each time with a fixed number of abstract services ranging from 5 to 10. I did 50 runs for

each case and calculated the average of the results. The error bars shown in the following

Chapter 5: Evaluation 55

graphs always consider +/-1 SE(Standard Deviation Error) Figure 5.10 shows how the total

Figure 5.10: Number of new Composite services with No QoS parameters

Figure 5.11: Number of new Composite services with One QoS parameters

number of new composite services produced varies with the number of abstract services when

there were no QoS parameters associated with abstract services. From this figure, we see

that the number of produced composite services increases when the number of abstract

service increases. This is because, with the increased number of abstract services, each

service performed both IO and QoS compatibility checking with more services (abstract

56 Chapter 5: Evaluation

and/or composite). Figure 5.11 shows how the number of produced composite services

Figure 5.12: Number of new Composite services with Two QoS parameters

Figure 5.13: Number of new Composite services with Three QoS parameters

changes with the number of abstract services when there was only one QoS parameter

associated with each service. It is noteworthy that the number of produced composite

services slightly decreased when I associated a QoS parameter with each service (refer to

Figures 5.10, 5.11). The reason is that the increased number of QoS parameters applied

more constraints on producing composite services. In general, I found there was an increase

Chapter 5: Evaluation 57

Figure 5.14: Number of new Composite services with Four QoS parameters

Figure 5.15: Number of Composite Service with different number of associated QoS
parameters

in the number of produced composite services against the number of abstract services as

the associated number of QoS parameters increased (refer to Figures 5.12, 5.13 and 5.14).

This relationship of the number of composite service with the number of abstract services

again suggests that it should be feasible to do QoS aware service composition.

58 Chapter 5: Evaluation

5.2.3 Experiment-3 (Number of Composite Services for varying numbers

of associated QoS parameters)

In this experiment setup, I found out how the total number of composite services

varies when the number of QoS parameters changes. In this case, I fixed the total number of

abstract services at 6 and in later cases at 8 and 10. It is noteworthy that the total number

of composite services decreases with an increase of the number of QoS parameters associated

with each abstract service (refer to Figure 5.15). The reason, again, is that the increased

number of QoS parameters applied more constraints on producing composite services. This

suggests that the QoS aware service composition can effectively reduce the total number of

composite services, since it only allows production of useful composite services.

5.3 A Model for the Expected Number of Composed Services

In QoS aware service composition, the number of compositions varies with the

number of abstract services. The developed model for the expected number of composite

service can provide a rough estimate for how many composite services the composition

manager can produce for a given number of abstract services and also for a given number

of QoS parameters. Thus, this model gives a rough explanation of how the number of

compositions varies with the number of abstract services and QoS parameters in the case

of uniform distributions for QoS values.

Assume we have selected two services which have the same number (i.e K) of total

QoS parameters. The functional and QoS properties of those services can be defined as,

First Service: S1=(I1, O1, qR1,1, qR1,2, qR1,3 , . . , qR1,K , qP 1,1, qP 1,2, qP 1,3, . . , qP 1,K)

and

Second Service: S2=(I2, O2, qR2,1, qR2,2, qR2,3 , . . , qR2,K , qP 2,1, qP 2,2, qP 2,3, . . , qP 2,K)

Chapter 5: Evaluation 59

where,

Ii = Input type of service i

Oi = Output type of service i

qRi,j = Required QoS values for for j-th QoS parameter of service i

qP i,j = Provided QoS values for for j-th QoS parameter of service i

qP 1,j = Provided QoS value for j-th QoS parameter of selected First service

qR2,j = Required QoS value for j-th QoS parameter of selected Second service

Q = Number of possible values for j-th QoS parameter

In QoS aware service composition, QoS compatibility for a particular QoS param-

eter only becomes successful when the Provided-QoS value of the j-th QoS parameter of the

selected, First, service is greater than or equal to the Required-QoS value of the j-th QoS

parameter of the selected, Second, service which is denoted as case 4 in the following text.

To find out the probability of successful QoS checking, I have introduced 3 additional cases

(cases 1, 2 and 3) which are defined as follows.

case1 = Provided-QoS value of j-th QoS parameter of selected First service is equal

to the Required-QoS value of the j-th QoS parameter of selected Second service

case2 = Provided-QoS value of j-th QoS parameter of selected First service is

different from the Required-QoS value of the j-th QoS parameter of selected Second service

case3 = Provided-QoS value of j-th QoS parameter of selected First service is

greater than the Required-QoS value of the j-th QoS parameter of selected Second service

case4 = Provided-QoS value of j-th QoS parameter of selected First service is

greater than or equal to the Required-QoS value of the j-th QoS parameter of selected

Second service

P(case1) = P(Provided-QoS value of j-th QoS parameter of selected First service

is equal to the Required-QoS value of the j-th QoS parameter of selected Second service) =

60 Chapter 5: Evaluation

P(qP 1,j = qR2,j) = 1
Q

P(case2) = P(Provided-QoS value of j-th QoS parameter of selected First service is

different from the Required-QoS value of the j-th QoS parameter of selected Second service)

= P(qP 1,j 6= qR2,j) = 1- 1
Q

P(case3) = P(Provided-QoS value of j-th QoS parameter of selected First service is

greater than the Required-QoS value of the j-th QoS parameter of selected Second service)

= P(qP 1,j >qR2,j | case2) =
(1− 1

Q
)

2

P(case4) = P(Provided-QoS value of j-th QoS parameter of selected First service

is greater than or equal to the Required-QoS value of the j-th QoS parameter of selected

Second service) = P(qP 1,j ≥ qR2,j)

Assume that p (i.e. provided QoS values of selected First Service) and q (i.e. re-

quired QoS values of selected Second Service) are chosen from the same discrete uniform dis-

tribution with Q possibilities. Then P(p ≥ q)=
∑Q
j=1P(qP 1,j ≥ qR2,j)=

∑Q
j=1 P(q = j)P(p≥

j)=
∑Q
j=1(1

Q)(jQ) = Q+1
2Q .

A service composition only takes place when the output type of the first service

matches the input type of the second service (O1 = I2) along with successful QoS matching.

If there are a total of T Input/Output types then:

P(Output type of selected First service matches the Input type of Second service

and Provided-QoS values of First service is greater than or equal to corresponding Required-

QoS values of selected Second service) = P(O1 = I2 and p ≥ q) = 1
T ∗

(Q+1)
2Q

If A is the total number of abstract services and P(A,T,Q) denotes the probability

of service composition, then if we choose two abstract services uniformly at random then,

we get a binomial distribution for service composition of the form, B(A(A-1), (Q+1)
2QT).

Knowing the number of compositions with this model would be used for capacity

planning of composition manager (i.e. required number of CPUs, disks, RAMs etc.). This

Chapter 5: Evaluation 61

model can also estimate the maximum number of QoS constraints which can be applied in

service composition to produce expected number of composite services. In the next section,

I have verified the correctness of this mathematical model with the help of experimental

data.

Figure 5.16: Mathematical Model vs Experimental Data-1

Figure 5.17: Mathematical Model vs Experimental Data-2

62 Chapter 5: Evaluation

5.3.1 Model Data vs Experimental Data

The model provides only a rough approximation. In the experiment, QoS values

and I/O types are drawn from a uniform distribution as in the model. However, the abstract

services are created at the outset and re-used, in the sense that they are compared with each

other abstract service. The sampling of QoS and I/O parameters therefore follows a complex

pattern, whereas, in the model, they are simply sampled from a uniform distribution and

therefore comprise a stream of independent and identically distributed random variables. In

the experiment, the independence assumption is not satisfied. However, the model provides

a good rough approximation which explains much of the behavior.

I compared my experimental data and the data obtained from my model for the

expected number of composite services. The approximation appears to get better as the

number of abstract services increases. In the first case (refer to Figure 5.16), there were a

total of 5 IO types (to assign to the services) and in the second case (refer to Figure 5.17)

there were total of 10 IO types. Other parameters were kept identical. In the first case,

when the number of IO types was less (compared to the second case), the composition en-

gine produced a higher number of composite services (in the experiment). As a result, the

approximation was more accurate for higher numbers of composite services in the first case.

In the second case, the approximation of lower number of composite services also became

closer to experimental results since the composition engine produced fewer composite ser-

vices than in first case. These graphs strongly suggest that the proposed model represents

my composition prototype quite well.

5.3.2 Scalability Analysis

From the experimental results, I calculated that, over all experiments when there

were no QoS parameters associated with services, each composite service had an average

Chapter 5: Evaluation 63

service composition time (IO matching time plus QoS matching time) of 100 milliseconds.

This service time increased to 166 milliseconds when there were 2 QoS parameters associated

with each service and to 250 milliseconds when there were 4 QoS parameters associated with

each service. Since there was no queuing delay in my simulation, I considered the arrival

rate and the service rate to be identical. Thus, the arrival rate (λ) for different numbers of

associated QoS parameters was:

• λ(QoS=0) = 10 services/second,

• λ(QoS=2) = 6 services/second, and

• λ(QoS=4) = 4 services/second

To determine scalability of my prototype in real life environment, I considered

home as a persistent environment where there are less frequent arrival of new device with

new service(s). Assume that, every 7 days there arrives a new service in the home en-

vironment i.e. the average arrival rate of a new service in home environment(λ(home)) =

1
(7∗24∗3600)=1.65x10−6 services/second.

So, with a single composition engine,

• Maximum number of homes supported when there is no associated QoS,

Max(n)(QoS=0) =λ(QoS=0))
λ(home)

= 6.0x106 homes

• Maximum number of homes supported when there are 2 associated QoS,

Max(n)(QoS=2) =λ(QoS=2)

λ(home)
= 3.6x106 homes

• Maximum number of homes supported when there are 4 associated QoS,

Max(n)(QoS=4) = λ(QoS=4)

λ(home)
= 2.4x106 homes

64 Chapter 5: Evaluation

So, my QoS aware service composition approach appears to be capable of support-

ing a reasonable number of concurrent requests and should be highly scalable in real life

environments.

5.4 Regression Models

To find out an effective ranking function, I created an online survey and collected

survey responses. With these survey responses, I developed seven different regression mod-

els, as described in chapter 4. I used the statistical package R [Wie] to find out the predicted

values for each of these models and to compare those models. In R, the lm() function was

used for linear regression models and the polr() function was used for ordinal regression

models. The models along with the R functions are shown in Table 5.1 where Y is assumed

as user responses.

There were 4 real-life scenario in the survey and in each scenario there were 5

functionally identical services with varying QoS characteristics and users were asked to rate

the quality of the services based on their QoS preferences. For regression, I calculated

normalized QoS values (i.e. q1, q2, q3) from the associated QoS values (i.e. Q1, Q2, Q3) of

the offered services. For the QoS normalization in a particular scenario, I used the following

function:

qi = Qi −Minimumof the values of QoS parameteri
Range of the values of QoS parameteri(max−min)

where, Qi was the QoS value of the i-th QoS parameter before normalization and qi was

the QoS values of the i-th QoS parameter after normalization. Normalization was done in

such a way that normalized QoS values always remained between 0 and 1 (where 0 was

considered as the best QoS value and 1 was the worst) thus, I could use survey results of all

4 scenarios altogether for regression. Again, W1, W2, W3 were the users’ QoS preferences

Chapter 5: Evaluation 65

or “weights” for corresponding QoS parameters and Y was the ranking of the users for

services. Finally, I defined, the weighted QoS values (normalized), A1 = q1 * W1, A2 = q2

* W2, A3 = q3 * W3.

Models R functions for Regression
Model-A lm(Y∼q1+q2+q3+W1+W2+W3)

Model-B lm(Y∼A1+A2+A3+q1+q2+q3+W1+W2+W3)

Model-C lm(Y∼A1+A2+A3+q1+q2+q3+W1+W2+W3+W1*W2*W3)

Model-D lm(Y∼A1+A2+A3+q1+q2+q3+W1+W2+W3+W1*W2*W3+A1*A2*A3)

Model-E lm(Y∼A1+A2+A3)

Model-F lm(Y∼A1+A2+A3+A1*A2*A3)

Model-G lm(Y∼A1+A2+A3+W1*W2*W3)

Model-H polr(as.ordered(Y)∼q1+q2+q3+W1+W2+W3)

Model-I polr(as.ordered(Y)∼A1+A2+A3+q1+q2+q3+W1+W2+W3)

Model-J polr(as.ordered(Y)∼A1+A2+A3+q1+q2+q3+W1+W2+W3+W1*W2*W3)

Model-K polr(as.ordered(Y)∼A1+A2+A3+q1+q2+q3+W1+W2+W3+W1*W2*W3+A1*A2*A3)

Model-L polr(as.ordered(Y)∼A1+A2+A3)

Model-M polr(as.ordered(Y)∼A1+A2+A3+A1*A2*A3)

Model-N polr(as.ordered(Y)∼A1+A2+A3+W1*W2*W3)

Table 5.1: Regression Models

To compare the regression models, I used the probability function, P(|Z-R|≤ x).

P(|Z-R|≤ x) is the probability of a prediction deviating from the human response in the

range [1,5] (corresponding to survey question responses) to within x, where Z, in [1,5], is

the predicted response and R, in [1,5], is the actual response.

Among the models, Model-I was found to perform the best (within 1 deviation)

with the probability of prediction deviation (from human response) is 0.82 within 1(refer

to Table 5.3. Though Model-K has a prediction deviation probability of .81 (slightly less

than Model-I) within 1, Model-I has the highest probability of exact prediction which is

66 Chapter 5: Evaluation

P(|Z-R|≤ x) Model-A Model-B Model-C Model-D Model-E Model-F Model-G
x=1 0.59 0.63 0.63 0.63 0.53 0.53 0.54

x=2 0.92 0.93 0.92 0.92 0.92 0.92 0.91

x=3 0.99 0.99 0.99 0.99 0.99 0.99 0.99

x=4 1.00 1.00 1.00 1.00 1.00 1.00 1.00

x=5 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 5.2: Analysis Results on Linear Regression Models

P(|Z-R|≤ x) Model-H Model-I Model-J Model-K Model-L Model-M Model-N
x=0 0.36 0.37 0.37 0.38 0.27 0.31 0.35

x=1 0.80 0.82 0.81 0.81 0.73 0.73 0.76

x=2 0.94 0.94 0.94 0.94 0.93 0.92 0.93

x=3 0.99 0.99 0.99 0.99 0.99 0.98 0.98

x=4 1.00 1.00 1.00 1.00 1.00 1.00 1.00

x=5 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 5.3: Analysis Results on Ordinal Regression Model

.38. Model-H is almost as good and it is significant that removing the Ais from Model-I has

only minimal effect, especially since those were the only terms in my original model (i.e.

before survey). My results suggest that I could improve my ranking function significantly

with the regression model-I. Thus, the final model proposed for use by the UPMM is,

p(ranki)=αi+
∑k
j=1β

q
jqj +

∑k
j=1β

W
j Wj+βA1 A1 +βA1 A1+...+βAk Ak

Here, i is the index of the ranking, j is the index of the QoS parameter, k is the total

number of QoS parameter, αi is the intercept for a particular ranking. βqj , β
W
j and βAj

are the coefficients. The values of these coefficients for my survey results are shown in

Table 5.4. The Model-I looks like best we can predict is within 1, essentially giving us 3

divisions instead of 5.

This ranking model can be used to find the rank of an offered service (among other

Chapter 5: Evaluation 67

Coefficients Values
βA1 0.03

βA2 1.49

βA3 -0.8

βq1 -0.42

βq2 -6.3

βq3 1.49

βW1 .009

βW2 -0.8

βW3 0.46

Table 5.4: Regression Coefficients of Model-I

available services) in a particular scenario. This model also tells us which factors are more

sensitive in QoS aware service composition. I successfully used this model to predict the

ranking for services in my QoS aware service composition prototype.

Summary

From the results shown above, it can be said that this QoS aware composition is

an efficient strategy. Though this model introduces QoS matching overhead along with IO

type matching overhead during composition, the total matching time remains acceptable

and appears to be highly scalable using modest computing equipment. Finally with the

help of the regression models I developed, QoS aware service composition should be able to

offer the most useful services to the users.

Chapter 6

Conclusion and Future Work

Service composition is an important aspect in pervasive computing environments.

QoS-aware service composition provides a way of obtaining the most useful compositions in

pervasive environments. Further, this supports full automation of the composition process

can make persistent computing accessible to a wider range of users and can enhance the use

of existing resources. Implementing ontologies for QoS aware service composition makes

the composition process easier to automate and thus more useful.

6.1 Contribution

In this thesis, I have made the following contributions:

• I have developed a fully automated QoS aware service composition prototype which

can support external services along with local services in any persistent environment.

• My prototype can consider any number of QoS parameters and match them to user

QoS preferences to produce useful services.

68

Chapter 6: Conclusion and Future Work 69

• My prototype can offer only the best services to users using an efficient ranking func-

tion. I developed this ranking function using a regression model which satisfies users’

QoS preferences. This ranking function automates the process of offering suitable

services to end users and performs better than the original ranking scheme proposed.

• I have developed a mathematical model to predict the total number of composite

services that my QoS aware service composition prototype can produce for a given

number of abstract services and for a given number of QoS parameters.

Using my prototype, users can more easily exploit the best suitable services for

them with less involvement in the composition process. The use of fully automated QoS

aware service composition should be beneficial to any pervasive computing environment.

6.2 Future Work

My contribution in this thesis can be extended in following ways:

• In this work, I didn’t consider the actual execution of services. So, the grounding

information associated with each service can be used easily for real execution of the

services.

• During development it was assumed that the service broker would only register those

services whose IO and QoS types are supported by the ontology in the persistent

environment. If ontology integration support can be developed, then the service broker

could register services with any IO and QoS types and integrate the needed ontology

components into the persistent environment.

• It might be useful to explore more complex regression models.

70 Chapter 6: Conclusion and Future Work

• It would be valuable to formally assess the ranking model produced for different QoS

scenarios.

Appendix A

Acronyms and Definition

Abstract Service Abstract services are basic services which can not be decomposed,

i.e. “atomic”.

Composite Service Composite service are composed of two or more abstract and/or

other composite services.

Component Service The participating services in a composite services are called

component service.

71

Appendix B

Survey Questions

Figure B.1: Movie Source Selection Scenario for User Preference Survey

72

Appendix B: Survey Questions 73

Figure B.2: Print Service Selection Scenario for User Preference Survey

74 Appendix B: Survey Questions

Figure B.3: Telephone Service Company Selection Scenario for User Preference Survey

Appendix B: Survey Questions 75

Figure B.4: Video Conference Source Selection Scenario for User Preference Survey

Bibliography

[All] HomePNA Alliance. HomePNA Home Networking. http://www.homepna.org.

Accessed on August 10, 2009.

[BB04] Jacob T. Biehl and Brian P. Bailey. ARIS: An interface for application relocation

in an interactive space. In GI: Proceedings of Graphics Interface, pages 107–116.

Canadian Human-Computer Communications Society, 2004.

[BBEL07] Andrȩ Bottaro, Johann Bourcier, Clement Escoffier, and Philippe Lalanda.

Context-aware service composition in a home control gateway. In International

Conference on Pervasive Services, pages 223–231. IEEE, 2007.

[BHSR04] Christian Becker, Marcus Handte, Gregor Schiele, and Kurt Rothermel. PCOM:

A component system for pervasive computing. In Proceedings of the Second

Annual Conference on Pervasive Computing and Communications (PerCom),

pages 67–76. IEEE, 2004.

[BKP06] John Buford, Rakesh Kumar, and Greg Perkins. Composition trust bindings in

pervasive computing service composition. In PERCOMW: Proceedings of the 4th

annual International Conference on Pervasive Computing and Communications

Workshops, pages 261–266. IEEE Computer Society, 2006.

76

Bibliography 77

[Bri] Dan Brickley. RDF vocabulary description language: RDF Schema. URL:

www.w3.org/TR/rdf-schema/.

[CIJ+00] F. Casati, S. Ilnicki, L.J. Jin, V. Krishnamoorthy, and M.C. Shan. Adaptive

and dynamic service composition in e-Flow. In Proceedings of the International

Conference on Advanced Information Systems Engineering (CAiSE), pages 13–

31, 2000.

[CMS] CMSimple. Project nightingale. http://praxis.cs.usyd.edu.au/ peter-

ris/?Projects/Virtual+Personal+Server. Accessed on January 10, 2010.

[Con] W3C Consortium. OWL-S: Semantic markup for web services.

http://www.w3.org/Submission/OWL-S/. Accessed on August 10, 2009.

[CP] Clark and Parsia. Pellet: Owl 2 reasoner for java. http://clarkparsia.com/pellet.

Accessed on August 15, 2009.

[DD04] Julian Day and Ralph Deters. Selecting the best web service. In Proceedings of

the Grad Symposium, CS Dept, University of Saskachewan, 2004.

[Deva] Jini Developers. Community resource for Jini technology. http://www.jini.org.

[Devb] UPnP Developers. UPnP forums. http://www.upnp.org.

[DFR04] N J Davies, D Fensel, and M Richardson. The future of web services. BT

Technology Journal, 22:118–130, 2004.

[dmo] dmoz. Open directory project. http://www.dmoz.org/Computers/Internet/Protocols/IP/.

Accessed on May 8, 2010.

[eaa] David Martin et al. OWL-S semantic markup for web languages.

http://www.w3.org/Submission/OWL-S/.

78 Bibliography

[eab] Thompson et al. Ad-hoc networking support for pervasive collaboration.

http://ubicomp.org/ubicomp2004/adjunct/posters/thompson.pdf.

[ea01] Steven D. Gribble et al. The Ninja architecture for robust internet-scale systems

and services. Computer Networks, 35(4):473–497, 2001.

[For] Jini Forum. Jini architecture overview. http://www.jini.org/wiki/. Accessed

on August 15, 2009.

[FS04a] Keita Fujii and Tatsuya Suda. Component service model with semantics (CoS-

MoS): A new component model for dynamic service composition. In SAINT-W:

Proceedings of the International Symposium on Applications and the Internet-

Workshops (SAINT Workshops), pages 348–354. IEEE, 2004.

[FS04b] Keita Fujii and Tatsuya Suda. Dynamic service composition using semantic

information. In ICSOC: Proceedings of the 2nd International Conference on

Service Oriented Computing, pages 39–48. ACM, 2004.

[FS05] K. Fujii and T. Suda. Semantic-based dynamic service composition. IEEE

Journal on Selected Areas in Communications, 23(12):2361–2372, 2005.

[GNY04] Xiaohui Gu, Klara Nahrstedt, and Bin Yu. Spidernet: An integrated peer-to-

peer service composition framework. In Proceedings of the 13th International

Symposium on High Performance Distributed Computing, pages 110–119. IEEE,

2004.

[Groa] Amigo Research Group. Amigo project. http://www.hitech-

projects.com/euprojects/amigo/. Accessed on August 15, 2009.

[Grob] Bluetooth Special Interest Group. Bluetooth program, initiatives and wireless

Bibliography 79

technology development. http://www.bluetooth.org. Accessed on August 15,

2009.

[Her] Ivan Herman. Web Ontology Language (OWL). www.w3.org/tr/wsdl20-rdf.

Accessed on August 15, 2009.

[HSB] Ivan Herman, Ralph Swick, and Dan Brickley. Resource description framework.

http://www.w3.org/RDF/. Accessed on August 15, 2009.

[IP] Maryland Information and Network Dynamics Lab Semantic Web Agents

Project. Pellet. http://www.mindswap.org/2003/pellet/. Accessed on August

15, 2009.

[JF02] Brad Johanson and Armando Fox. The Event Heap: A coordination infras-

tructure for interactive workspaces. In Proceedings Fourth Workshop on Mobile

Computing Systems and Applications, pages 82–93. IEEE, 2002.

[KKR+07] Jarmo Kalaoja, Julia Kantorovitch, Ioanna Roussaki, Dimitrios Tsesmetzis,

and Ioannis Papaioannou. On the Move to Meaningful Internet Systems 2007:

OTM 2007 Workshops, chapter Ontology Modelling for Ambient Intelligent

Home Environments, pages 15–16. Springer, 2007.

[KKS05] Swaroop Kalasapur, Mohan Kumar, and Behrooz Shirazi. Seamless service

composition (SeSCo) in pervasive environments. In MSC: Proceedings of the

First International Workshop on Multimedia Service Composition, pages 11–

20. ACM, 2005.

[KKS06a] Swaroop Kalasapur, Mohan Kumar, and Behrooz Shirazi. Evaluating service

oriented architecture (SOA) in pervasive computing. In Proceedings of the

80 Bibliography

Fourth Annual IEEE International Conference on Pervasive Computing and

Communication, pages 276–285, 2006.

[KKS06b] Swaroop Kalasapur, Mohan Kumar, and Behrooz Shirazi. Evaluating service

oriented architectures (SOA) in pervasive computing. In PERCOM: Proceedings

of the Fourth Annual International Conference on Pervasive Computing and

Communications, pages 276–285. IEEE Computer Society, 2006.

[LFBW04] George Lee, Peyman Faratin, Steven Bauer, and John Wroclawski. A user-

guided cognitive agent for network service selection in pervasive computing

environments. In Proceedings of the Second Annual Conference on Pervasive

Computing and Communications (PerCom), pages 219–228. IEEE, 2004.

[Lok] Seng Loke. Context-aware pervasive systems: Architecture for a new breed of

applications. Auerbach Publications.

[Men03] Prasad K. P. Menon. Ubiquitous file system protocol. Master’s thesis, University

of Florida, 2003.

[MFAM04] A. Mingkhwan, P. Fergus, O. Abuelmaatti, and M. Merabti. Implicit function-

ality: Dynamic services composition for home networked appliances. In IEEE

International Conference on Communications, pages 43–47, 2004.

[MGI06] S. B. Mokhtar, N. Georgantas, and V. Issarny. COCOA: Conversation-based

service composition for pervasive computing environments. In ACS/IEEE In-

ternational Conference on Pervasive Services, pages 29–38, 2006.

[MPG+08] Sonia Ben Mokhtar, Davy Preuveneers, Nikolaos Geogantas, Valerie Issarny,

and Yolande Berbers. EASY: Efficient semanAntic Service discoverY in perva-

Bibliography 81

sive computing environments. Journal of System and Software, 81(5):785–808,

2008.

[MPL03] R. Masuoka, B. Parsia, and Y. Labrou. Task Computing - the semantic Web

meets pervasive computing. In Proceedings of the 2nd International Semantic

Web Conference (ISWC), pages 866–881, 2003.

[NYT04] Jin Nakazawa, Junichi Yura, and Hideyuki Tokuda. Galaxy: A service shaping

approach for addressing the hidden service problem. In Proceedings of the Second

Workshop on Software Technologies for the Future Embedded and Ubiquitous

Systems, pages 35–39. IEEE Computer Society, 2004.

[Osc] Oscar. An OSGi framework implementation. http://oscar.objectweb.org/. Ac-

cessed on August 15, 2009.

[PB05] Davy Preuveneers and Yolande Berbers. Semantic and syntactic modeling of

component-based services for context-aware pervasive systems using OWL-S.

In Proceedings of the 1st International Workshop on Managing Context Infor-

mation in Mobile and Pervasive Environments (MCMP), pages 30–39, 2005.

[PD03] M.P. Papazoglou and D.G. Service-oriented Computing, chapter Special section

in Communications of the ACM. ACM Press, 2003.

[PG06a] H. Pourreza and P. Graham. On the fly service composition for local interaction

environemnts. In Proceedings of the Fourth IEEE International Conference on

Pervasive Computing and Communications Workshops, PerWare, pages 393–

398. IEEE, 2006.

[PG06b] Hossein Pourreza and Peter Graham. On the fly service composition for local

interaction environments. In PERCOMW: Proceedings of the 4th Annual Inter-

82 Bibliography

national Conference on Pervasive Computing and Communications Workshops,

pages 393–398. IEEE, 2006.

[RHC+02] Manuel Román, Christopher Hess, Renato Cerqueira, Anand Ranganathan,

Roy H. Campbell, and Klara Nahrstedt. Gaia: a middleware platform for

active spaces. SIGMOBILE Mobile Computing and Communications Review,

6(4):65–67, 2002.

[RHR+01] Manuel Roman, Christopher K. Hess, Anand Ranganathan, Pradeep Mad-

havarapu, Bhaskar Borthakur, Prashant Viswanathan, Renato Cerqueira,

Roy H. Campbell, and M. D Mickunas. Gaia OS: An infrastructure for ac-

tive spaces. Technical report, University of Illinois, USA, 2001.

[TB05] D.C. Thomas and Little Prithwish Basu. A novel approach for execution of

distributed tasks on mobile adhoc networks. Journal on Selected Areas in Com-

munications, 23(12):2361–2372, 2005.

[TBM+] Graham Thomson, Sebastein Bianco, Sonia Ben Mokhtar, Nikolaos Geogantas,

and Valerie Issarny. Constructing Ambient Intelligence, chapter Amigo Aware

Services, pages 385–390.

[TM05] M.S. Thompson and S.F. Midkiff. Service description for pervasive service dis-

covery. In Proceedings of the 25th International Conference on Distributed Com-

puting Systems Workshops, pages 273–279. IEEE, 2005.

[TR-] DSL Forum TR-069. CPE WAN management proto-

col. http://www.broadband-forum.org/technical/download/TR-

069Amendment1.pdf. Accessed on August 15, 2009.

Bibliography 83

[Wie] WU Wien. The r project for statistical computing. http://www.r-project.org/.

Accessed on November 8, 2009.

[WPS+03] Dan Wu, Bijan Parsia, Evren Sirin, James Hendler, and Dana Nau. Automat-

ing DAML-S web services composition using SHOP2, chapter Semantic Web

Services, pages 195–210. Springer Berlin, 2003.

[xEEd] x10 Europe Equipments developer. Wireless solutions for 230 volts.

http://www.x10europe.com. Accessed on August 15, 2009.

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgments
	Introduction
	Motivation and Expected Contributions
	Use of Example Scenarios
	Thesis Organization

	Background and Related Work
	Pervasive Computing and Service Orientation
	Service Orientation and Composition in Pervasive Environments
	Service Description Languages
	Service Discovery
	Service Registry and Matching Techniques for Service Composition
	Semantic Matching

	User Interaction and Automated Composition
	Context Information and QoS parameters

	Problem Description and Solution Strategy
	Solution Strategy

	Prototype Architecture and Implementation
	Implementation Details
	Domain Ontology
	Service Description
	Composition Manager
	Service Registry
	User Profile Management Module (UPMM)
	Ranking Function

	Evaluation
	Overview of Assessment
	Experiments
	Experiment-1 (Matching Time)
	IO Matching Time
	QoS Matching Time

	Experiment-2 (Number of Composite Services)
	Experiment-3 (Number of Composite Services for varying numbers of associated QoS parameters)

	A Model for the Expected Number of Composed Services
	Model Data vs Experimental Data
	Scalability Analysis

	Regression Models
	Summary

	Conclusion and Future Work
	Contribution
	Future Work

	Acronyms and Definition
	Survey Questions

