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Abstract

In this thesis, we formulate two kinds of bandit models for the investment-

consumption problem. Two risky assets with uncertainty in the returns are

represented by the two arms of the bandit model. Both arms follow inde-

pendent Poisson distributions with intensity rates À and ¡.1 respectively. For

the first kind of bandit model, we take a fixed proportion of the total wealth

to consume at each time and reinvest the remaining portion. For the second

kind of bandit model, we invest a fixed amount at each time and consume all

wealth after the investment. The objective is to maximize the total expected

discounted consumption.

Under the Bayesian approach, the unknown À is assumed to follow a gamma

prior distribution, and its posterior distribution is updated in a discrete setting

with the availability of new complete information. A key issue in making

investment-consumption decisions is to balance between information gathering

about the uncertainty in the returns and immediate payoff for maximizing

consumption.

The value function and the advantage function of the unknown arm over

the known arm are introduced and properties are examined and described in

detail. An index value is introduced which acts as the benchmark to measure

the performance of both arms. The myopic strategy and the play-the-winner

strategy are derived and shown to be optimal in different cases of this model.
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Chapter 1

Introduction

1.1 Modern Portfolio Theory

Over the past 20 years, portfolio management has evolved enormously.

The basic investment-choice problem for an individual is to determine the

optimal allocation of his or her wealth among the available investment

opportunities. The theory for solving the general problem of choosing the

best investment combination is called the portfolio-selection theory.

The seminal paper Markowitz (1952) developed a theory for the portfo-

lio choice in an uncertain environment. Markowitz was the first to quantify

the difference between the risk of individual portfolio assets and the over-

all risk of the portfolio. He considered the portfolio as a whole, whereas

previous studies had been focused on securities on an individual basis.

Markowitz's work founded the modern portfolio theory.

Portfolio theory assumes that for a given level of risk, investors prefer



higher returns to lower returns. Similarly, for a given level of expected

return, investors prefer less risk to more risk. The expected return of

the portfolio is measured by its mean return. The risk corresponds to the

uncertainty of obtaining the return and is measured in terms of the variance

or standard deviation of the returns. The measure is under the assumption

that returns are distributed normally.

The theory developed by Markowitz is based on maximizing the utility

of the investor's terminal wealth. This utitity function is defined according

to the expected return and the standard deviation of the wealth. Us-

ing linear regression, the solution to the optimization problem of choosing

the optimal portfolio can be offered to a risk-averse investor: the optimal

portfolios are defined as those having the largest mean returns, subject to

keeping the risks (i.e., the variances) below a specified acceptabie thresh-

old, or as those giving the lowest level of risk for each level of expected

return. The complete set of these portfoiios forms the efficient frontier,

and the selections are limited to this efficient frontier, which constitutes

the convex envelope of all the portfolios that can be obtained.

Markowitz's approach is described as a mean-variance approach because

only two parameters, the mean return and the return variance, are taken

into account. That is, only the first two moments of their distribution are

used to characterize the investor's portfolio. The constraint is that either

the returns are assumed to be normally distributed or the investor's utility

function is quadratic. Markowitz also proposed semi-variance as a good

measure of risk, but finally chose variance due to practical implementation



reasons.

1.1.1 Tbansaction Cost on Portfolio Selection

When determining the optimal portfoiio, the impact of transaction costs is

not taken into account in the mathematical model developed by Markowitz,

although these costs have a significant impact on portfolio performance.

But transaction costs are difficult to estimate because they are not fixed,

and the exact values of the costs can't be possibly obtained until the se-

curity trade has taken place. The costs include the commission, which is

the tax per security paid to execute the transaction; the bid/ask spread,

which is the differential between the requested price and the offered price;

and the liquidity or market impact cost, which is the additional cost of

trading several securities compared with the cost of trading a single secu-

rity. To optimize the portfolio while taking transaction costs into account,

the amounts of transaction costs are introduced into the utility function.

The higher the chosen value of transaction costs, the less the portfolio will

evolve.

L.L.z The Capital Asset Pricing Model (CAPM)

Initiated by Sharp (i964) and Lintner (1965), the CAPM has played an im-

portant role in finance and has been a focus point in the empirical finance

literature. The CAMP is a single-period specialization of the fundamental

valuation equation. The contribution of the model is that it relates the ex-



pected excess returns to the market portfolio return. However this feature

of the CAMP is criticized by Fama (1926), Roll (1977), and others, who

point out that the model is testable only if the market portfolio return is

observable. The only empirically testable implication of the CAPM is that

the market portfolio is mean-variance efficient. Then the arbitrage pricing

theory (APT) is put forth by cox and Ross (1976, rgTT) to address the

criticism on the observabiiity of the market portfolio return levelled against

the CAPM.

Let's discuss the CAPM in detail. Merton (1969) regards the behavior

of a single agent acting as a market price-taker and seeks to maximize

the expected utility of consumption. The utility function of the agent is

assumed to be a power function, and the market is assumed to comprise

a risk-free asset with a constant rate of return and several stocks, each

with constant mean rate of return and volatility. With only information

of current prices, with infinitely divisible assets, and without transaction

costs, Merton was able to derive a closed-form solution to the stochastic

control problem faced by the agent. Later on, by assuming nonconstant

market coefficients which depend on a "state" variable, Merton addressed

the issue of price formation with necessary conditions for equilibrium prices.

However he didn't resolve the question of the existence of a solution to these

conditions.

Based on Merton's model, several directions \¡rere generalized. The

restriction to utility functions of a power form was removed in Karatzas,

Lehoczky, Sethi and Shreve (1986). Market coefficients depending in an



adapted way on an underlying Brownian motion were treated in Cox and

Huang (1989), Karatzas, Lehoczk¡and Shreve (1987) and Pliska (1986).

Later, in an important breakthrough, Cox and Huang (1989a) and

Karatzas, Lehoczky, and Shreve (1986, 1987, 1990) showed that the martin-

gale representation theory can be applied to reduce the stochastic dynamic

programming problem to a static problem in complete markets.

An important innovation of the model by Liu (1998) is that the stock re-

turns exhibit stochastic volatility or predictability and he is able to consider

incomplete markets explicitly. Wachter (1999) used martingale methods to

characterize the consumption and portfolio strategies in complete markets

when stock returns are predictable. Chacko and Viceira (1999) developed

portfolio and consumption rules under an incomplete market setting with

stochastic volatility. They relied on an approximation scheme to solve the

Bellman equation in their general applications. Kogan and Uppal (1999)

provided approximation methods for solving consumption and portfolio

problems in a continuous-time setting.

Based on CAPM, Sharp, Lintner and Mossin (SLM) have developed

mean-variance equilibrium capital asset pricing under uncertainty. The

model shows that there is a linear relationship between the equilibrium

expected return on an asset and its systematic risk which is measured

by the covariance between the asset's return and the return on market

portfolio. The SLM capital asset pricing modei and many of its extended

versions are formulated in nominal terms under the constraint of assuming

implicitly that there are no price level changes.



1.1.3 Continuous-time method

Continuous-time methods have proved to be the most attractive way to

conduct research and gain economic intuition in certain core areas in fi-

nance (such as, asset pricing, derivatives valuation, and portfolio selection).

These methods can be traced backed to the seminal contributions of Mer-

ton (1969, 797I,I973b) in the late 1969s and early 1970s. Merton (1969)

initiated the study of financial markets using continuous-time stochastic

models. He examined the continuous-time consumption-portfolio problem

for an individual whose income is generated by capital gains on invest-

ments in assets under the "Geometric Brownian motion" hypothesis, which

implies that asset prices are log-normally distributed with temporaily con-

stant parameters. He derived explicit solutions for the above problem under

the additional assumption of a constant relative or constant absolute risk

aversion utility function.

The estimation strategies used in continuous-time models can be cate-

gorized into the following areas:

1. Maximum likelihood method;

2. Generalized method of moments (GMM);

3. Simulated method of moments (SMM);

4. Efficient method of moments (EMM);

5. Nonparametric approaches;

6. Methods based on empirical characteristic functions;

7. Bayesian methods.



Later, the seminal contributions on options pricing by Black and Sc-

holes (1973) and Merton (1973a) was made, which provided the first truly

satisfactory model for pricing options on equity. These contributions made

a strong impact in this field during the period from 1969 through 19g0, and

changed the way in which the practitioners viewed the finance research.

There are two key ingredients to pricing and hedging in the Black-

Sholes framework. The first one is that the discounted asset prices are

martingales by changing the probability measure, and the second is that

the pricing formula is in the form of the discounted expected value of a

claim.

The original Black-Scholes formula only applies to European call and

put options. Probably the Black-Scholes formula is the most famous model

used in the theory of option pricing. However the equity options pricing

formulation was criticized by a number of scholars, and some formulas that

have varying resemblances to the Black-Scholes model were introduced.

These formulations depend on subjective discount rates or risk aversion

parameters and are not fully supported by an arbitrage-free argument.

L.2 Bandit Processes

In the present thesis, We use a bandit model to formulate the optimal

investment-consumption problem. Let's introduce bandit processes briefly.

Bandit processes study optimal sequential selections from several popu-

lations or stochastic processes (or arms) with unknown characteristics. The

7



objective is to choose an optimal strategy for making selections among the

arms in order to maximize the total expected discounted reward from all

selections. Authors making early significant contributions on bandit prob-

Iems include Thompson (1933, 193b), Robbins (1952,19b6), Bradt, John-

son, and Karlin (1956), Bellman (1956), Feldman (7962), Gittins and Jones

(7974), Rodman (1978), Bather (i981), and Berry and Fristedt (198b).

Most papers in the bandit literature are applied to clinical trials with the

assumption that complete information of past history is known or is ob-

served before the next patient. This kind of model is called the bandit

model with immediate responses.

The basic bandit model and many extensions are based on the follow-

ing essential components: the decision times (continuous or discrete), the

number of arms, the types of the arms (a variety of kinds of population dis-

tributions or stochastic processes), the discount sequence, the availability

of historic information, and different estimation methods (minimax, para-

metric, non-parametric, Bayesian, etc.). For a detailed introduction, refer

to Wang (2001).

Bandit processes concern the trade-off between high immediate ex-

pected payoff and information gathering. The benefit of inforrnation gath-

ering is not immediate but potentially advantageous in that the uncertainty

about the unknoïvn arms (or populations) is reduced and better informed

decisions with higher payoffs in the future are expected. There are two typ-

ical kinds of strategies, one is of the complete randomization among arms

(which only gathers information but ignores immediate payoff), the other



is of the myopic strategy (which always selects the arm with the highest

immediate payoff at each stage, but ignores information gathering). Gen-

erally speaking, both strategies are not optimal. The main goal of bandit

processes is to combine the two typical strategies to obtain the overall best

performance throughout the horizon of successive decision-making stages.

It is a trade-off that makes bandit problems attractive in theory, useful in

applications (in clinical trials generally), but difficult in obtaining explicit

solutions.

For the traditional bandit problem, it is assumed that the state of the

arm will change only if the arm is selected for observation. This means that

we freeze the arms that are not selected for observation. But in financial

markets, if each asset is regarded as an arm, then we can no longer use

this traditional bandit model, because the market information on those

unselected assets still evolves over time. This implies that the state of

an arm changes over time no matter whether or not the arm is selected

for observation. Such a bandit process is called a restless bandit model.

Mathematically speaking, restless bandit models are more complicated to

formulate and more difficult to solve.

Define a strategy n : (nr,r2,...) as a sequence of rules such that

at each time n : 7,2, "., the population to be selected (or the arm to

be pulled) is specified by ,rn based on the (partial or entire) history of

previous selections and observations. Denote e' as the population selected

at time n under the strategy z and zn as the corresponding response.

Then DËr anZn is a utility for the sequence (ir,,ir,...) resulting from the



strategy n. Define the value of the strategy z- as

W("): E"(ÐanZn),
n=l

whereo : (at, az,. . .) is the discount sequence, an ) 0 and !p, 17¿ < oo.

sup*W (tr) is called the value of the bandit problem.

Three major approaches are frequently used in the bandit literature:

(1): the minimax approach, with which important contributions include

vogel (1960a, 1960b), Fabius and van zwer (1970), Bather (i988), Berry

and Fristedt (1985), Reimnitz (1986), and Kulkarni and Lugosi (2000);

(2): the utility comparison approach, which was initiated by Robbins

(1952). Strategies are restricted to be Markovian. A further contribution

is given in Robbins (1956) for the class of strategies with a finite memory.

(3): ihe Bayesian approach, which specifies a prior distribution, then

updates it to a posterior distribution with new available observations. This

approach takes advantage of all the available information for decision-

making and updates the states of the bandit at the decision stages. This

approach will be adopted in the present thesis and will be described in the

following Chapters in detail.

L.z.L Bandit problems and Markov decision processes

Following the Bayesian approach, the basic discrete time bandit model with

immediate responses can be formulated as a Markov decision process. On

the other hand, bandit processes with delayed responses can only be for-

mulated as â general controlled stochastic processes (see Wang and Bickis

10



(2003) for details).

consider a bandit with an unknown parameter á, then the state space ,S

consists of all distributions over the parameter space O. The action space is

Z: {1,2,.-.,k}, where k is the number of arms (or distributions). With

the known current state s,, (which is described by the current prior) at

stage n, if action 2,, is taken (arm in is selected), an immediate expected

reward is calculated as foliows:

rdF¿.(r)ds"(0),

where F¿-(*) is the conditional distribution function of X. The state tran-

sition law is determined by the Bayes's formula.

Following the theory of Markov decision processes with a Borel state

space, Bickis and wang (2004) prove the existence of an optimal strategy

given that the posterior distribution is updated continuously by both the

current observation and the prior distribution. In the spirit of controlled

stochastic processes (Gihman and Skorohod 197g), Bickis and wang (2004)

further show the existence of an optimal deterministic strategy if the pos-

terior distribution is updated continuously by all past observations and the

current state. Bandit processes are defined as semi-Markov decision pro-

cesses in Gittins (1989) and as vector-valued Markov decision processes in

Glazebrook (1991, 1993).

In a multi-armed Bernoulli bandit problem, all arms yield a payoff of 0

1 when selected, but with different payoff probabilities. As the number

observations increases, the decision maker gets an increasingly more

r(sn,i,n): l"l:

OI

of

11



accurate estimate of each arm's payoff probability. The decision maker,s

goal is to determine a sequence of arms so as to maximize the expected

sum of discounted rewards. The multi-armed bandit problem is easily

formulated as a dynamic allocation problem, and the aim is to allocate a

limited amount effort to a number of independent projects, each generating

a specific stochastic reward proportional to the effort spent on it.

There are several strategies that can be carried out practically to obtain

the performance of the whole bandit processes, such as the myopic strategy

and the play-the-winner strategy. The myopic strategy says that the arm

with the highest immediate expected payoff is selected at each stage. The

deterministic play-the-winner rule was initially proposed in Zelen (1969).

Assuming a bandit process with two unknown and independent Bernoulli

arms, the first selection is made randomly between the arms. After that, if

the result is a success, then the second selection is made on the same arm.

otherwise, the other arm is selected. zeren (1969) and wang and Pullman

(2001) prove that using this strategy, the proportion of selections of the

superior arm is maximized in long run. Samaranayake (1992) studies the

randomized play-the-winner rule for dependent arms, and Bandyopadhyay

and Biswas (2002) make a contribution in the use of randomized play-the-

winner rule with delayed responses.

12



t.2.2 The Gittins index strategy for bandit models

Gittins and Jones (L974), and Gittins (1929) propose the Gittins index

strategy, which is one of the most significant contributions to bandit pro-

cesses. The Gittins index strategy can offer a nice complete solution to the

geometrically discounted bandit processes with k independent unknown

arms. The theory of Gittins indices is followed by many papers concerning

such dynamic allocation probiems.

The crucial idea of Gittins (1979) is concerned with reducing the multi-

dimensional optimization problem to a family of simpler benchmark prob-

lems. Hence the Gittins index strategy is to define a dynamic performance

measure separately for each of the arms in such a way that an optimal

choice can be determined by an index-rule. The dynamic performance

measure is called the Gittins index, and the unknown arm with the current

highest Gittins index is shown to be optimal.

The Gittins index is based on two components: the "immediate reward"

component and the "learning" (or information gathering) component. Its

process can be viewed as the solution to a representation problem, and

its intrinsic mathematical interest and its unifying role is easily applied to

a number of different applications, including the areas of economics and

finance.

Gittins (L979) and Whittle (i980) consider a discrete-time Markovian

setting, Karatzas (19s4) and Mandelbaum (1987) extend the analysis to

diffusion models. El Karoui and Karatzas (lgg4) develop a general martin-

13



gale approach in continuous time. One of their results is that the Gittins

indices can be viewed as solutions to a representation problem.

L.2.3 The use of bandit models in economics and fi-

naflce

There are very few papers that deal with the economic or financial ap-

plications of bandit models. Bank and Föllmer (2002) seems to be the

only paper in the mathematical finance area that develops continuous-time

multi-armed bandit models. Coming from the microeconomic theory of in-

tertemporal consumption choice, the singular control problem is reduced

to a stochastic representation problem in Bank and Föllmer (2002). Fol-

lowing the stochastic representation approach, existence and uniqueness of

a solution is easily demonstrated by backwards induction in discrete time.

In the case of option pricing, the methods of bandit models are also

adopted, such as the optimal stopping method. The usual approach to

option pricing and to the construction of replicating strategies is combined

with an optimal stopping problem in Karatzas (1988).

However, bandit models have been used in economics for several types

of problems. For example, Jovanovich (1979), Miller (1984) and Mortensen

(19S5) use bandit models to analyze job-search problems in labor markets.

Rothschild (7974) and Schmalensee (1975) use bandit models to derive dy-

namic pricing problems in the face of unknown demand functions. They

assume that the demand is a function of the unknown probability of pur-

T4



chasing the product. Recentiy Wang (2004) extends the results to a bandit

model where the unknown demand function depends on both an unknown

Poisson rate of buyers and the unknown probability of purchase.

1.3 About My Thesis

In this thesis, we introduce two new bandit models to study investment-

consumption problems.

we formulate two kinds of bandit models for this problem. The two

arms in each bandit model denote two risky assets with uncertainty in the

returns. Both arms follow independent Poisson distributions, with intensity

À and ¡; respectively. The parameter À is assumed to be unknown, hence

the arm with intensity rate À is named the unknown arm. The parameter¡.1

is known, hence the arm with ¡l is called the known arm.

For the first kind of bandit model, at every point of time, we take a

fixed proportion of the total wealth to consume, and re-invest the remaining

portion. The objective is to maximize the total expected discounted con-

sumption. For the second kind of bandit model, we invest a fixed amount

at every time and consume the remaining wealth after the investment.

we wish to find the index value for the model such that at this index

value both arms are equivalent. This means that if p is the same as this

index value, there is no difference between investing in this unknown arm

and investing in the known arm.

We show that the investment decision rule based on the advantage

15



function can be simplified to be based on a break-even index value of the

parameter /-¿. We also demonstrate some properties of the index value.

The main results in this thesis are concerned with the value of the ban-

dit models and the total expected discounted reward obtained sequentially

from the consumption at every single time, the dynamic programming so-

lution for two risky assets with different returns, which are evaluated using

the index values, and the structure of the optimal strategy for a particu-

lar class of gamma prior distributions G(qo,ro). Chapter 2 describes the

formulation of the portfolio selection problem with constant proportion of

consumption in two-armed bandit processes. The uncertainty inherent in

each asset is reflected by the number of payoffs during the corresponding

investment period.

Chapter 3 provides the solution to the investment-consumption problem

and discusses the properties of the index value, which is a useful measure

to evaluate the two risky assets (two arms) and is a unique solution to

the advantage equation. Chapter 4 looks at an alternative model with

the assumption that the amount of investment is fixed every time, and

the remaining amount of the wealth after the previous investment is taken

out for consumption. Similar results are obtained, but myopic strategy

is proved to be not optimal in this case. An optimal stopping solution

and a version of the play-the-winner strategy are derived. Then the final

chapter concludes the thesis with a discussion on possible future research

directions.

16



Chapter 2

A bandit model for optimal

portfolio problem

In this chapter, we discuss an optimization problem arising in the microe-

conomic theory of inter-temporal consumption decisions. We formulate

such a consumption-investment problem as a restless bandit model with

two Poisson arms.

In the first section, we give a general description of the investment-

consumption problem. Then this problem is formulated as a restless Pois-

son bandit model in section 3. In the third section, we discuss the method

of dynamic programming and the optimal equation, which form the foun-

dation for solving the bandit model and discuss various properties.

t7



2.L The consumption-investment problem

In the mathematical finance literature, there is a variety of ways to define

consumption patterns and objective functions. However in this chapter we

look at a special situation in which a fixed proportion of the total wealth

is taken out for consumption at the beginning of each period, and the

remaining part is invested at the same time. This process is repeated over

a finite period of discrete time. The time interval between two consecutive

investments is assumed to be of fixed length such as a week or a month, or

even a year.

We consider an investment-consumption model consisting of two risky

assets with the mean rate of return higher than the risk-free asset. The

number of payments from each asset during every period is assumed to

be a random variable following a certain distribution. To be specific, we

consider the case of independent Poisson distributions for the number of

payments from two assets. For each asset, investments grow according to

fixed compound interest rates but the number of interest payments are

independent and identically distributed with poisson distribution.

The variation in returns is introduced through the variation in the fre-

quency with which cash flows are paid. This means that the uncertainty

inherent in each asset is reflected by the number of payoffs during the

corresponding investment period.

For one risky asset, we assume that the intensity rate of the poisson

distribution is unknown and this asset is called the unkno\ryn arm. The

18



intensity rate of the Poisson distribution for the other risky asset is assumed

to be known. we name this asset the known arm. The Bayesian approach

is followed and the unknown intensity rate of the unknown arm follows a

gamma prior distribution. At each point of time of investment, we update

the distribution based on the observed number of interest payments during

the previous investment period on the unknown arm. Such a posterior

distribution comprises all the information necessary for making the current

investment decision. The state of the bandit model then consists of the

posterior distribution and the amount of wealth available for investment.

Taking inflation into consideration, we incorporate a discount factor into

the model.

our objective is to choose an optimal strategy for making selections

between the unknown arm and known arm in order to maximize the total

expected discounted consumption from all the selections. We consider an

investor who is uncertainty-averse with the additional assumptions that no

transaction costs exist for switching between the two arms, and the returns

on the two risky assets are independent.

2.2 The restless Poisson bandit model

Suppose that selections between the unknown arm and the known arm are

made at every time point n:0,L,2,...,N. Let fu denote the expected

return rate of the unknown arm. Assume h > 0 and it is also unknown.

Similarly let B2 denote the return rate of the risk-free arm. Assume þz > 0

19



and it is known. Based on all the information gathered to date, if the

investor's perception about the quality of assets is that the unknown arm

is inferior to the known arm over the entire interval, he (or she) would

invest nothing in the unknown arm, and he would invest all of his wealth

in it if the unknown arm is considered to be superior to the known arm.

Let's now introduce some notation.

Assume the frequencies of payments during each period are governed

by Poisson distributions with intensity rates À and ¡; respectively for the

unknown and known arms. The assumption is that cash flow streams

for the two arms follow two independent Poisson processes, where À is

assumed to be an unknown random variable which follows a gamma prior

distribution

À - G(r¡s,rs), ?o ) 0,rs ) 0.

The parameter I is the j,r-p rate of the Poisson process, which is the

expected number of cash payments that accrue over one time period. On

the other hand, the parameter p, is assumed to be a known jump rate of

the other Poisson process.

suppose further that the initial wealth at the starting time n : 0 is Mo,

which would be entirely invested without consumption. Because gamma

distributions for the unknown Poisson intensity rate À form a conjugate

class, the posterior distribution of À at any time n : L,2,. . . ,N, is still a

gamma distribution G (r¡n, rn).

We let X, denote the number of payments from the unknown arm
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during each investment period. At any time of investment, the observation

of events of payment during the previous time interval on the unknown arm

updates the prior distribution. Then at the time of the nth investment, the

updated posterior distribution of À is G(r¡n,r,,), conditional on the observed

values rn of Xrr, where Tn: To * n, rln: rlo ! DLtr¿.

we now consider the discrete, truncated geometric discount sequence

Ax : (Irara2r...reN-L,,...),0 ( o ( 1.

Denote that

Ak : (o,, on*t,. . ., 0N-1, . . .) : arA¡v_n

where n means that n investments have been made up-to-date. one ad-

vantage of using geometric discounting is that the problem at each stage

essentially is the same for the decision maker except for the change in the

state.

Let Y" denote the number of payments from the known arm during the

period from time n - 7 to time TL,,t7, : 1,2,..'. Then Y' follows a Poisson

distribution with a known intensity p.

Denote the expected amount of wealth before reinvestment and con-

sumption at time n as Mn. Assuming that a fixed proportion c,0 1 c 17,

of the total wealth is taken out for consumption, the amount of investment

at time n is (1 - c)M,. We call the two independent Poisson processes

with intensity rates À and p respectively a (À, p)-bandit process. At the

time of the nth investment, the state of the (À, p)-bandit is described by

S": (G(rln,rn), Mn).
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An investment strategy 7r : (nr,nr,. . .) consists of a sequence of rules

such that the investment decision at time n is determined by rn. Ãt time n,

the history of past investment decisions and observed numbers of payments

from the unknown arm is denoted as hn: (zo,rrt...,zn_t,rn). The ø-

algebra generated by the set of all observed histories prior to time n is

denoted as Hn. At the initial time n : 0 of investment, no history is

availabie and we define É10 as the trivial ø-algebra, {Õ, C¿}.

Because the bandit model is a special kind of Markov decision processes

and standard results in the theory of Markov decision processes show that

there is a deterministic strategy which is optimal, we restrict our discussion

to deterministic strategies only. By a deterministic strategy zr, we mean

that for each n, the functioî ,Ìrn : Hn -+ {I,2} is measurable. Here for

any observed path of history hn, rn(hn): 2 means that the known arm is

selected for investment at time n and rn(hn): 1 means that the unknown

arm is seiected for investment. In fact, the theory of Markov decision

processes further shows that there is a Markov strategy which is optimal. A

Markov strategy is one in which the investment decision at time zz depends

only on the current state ,9rr.

Suppose that the investment strategy z is deterministic and Markovian

and that Mn is the total wealth at time rz generated by the strategy n.

Then Sn,fr:I,2,'.., forms a Markov process. The worth of the strategy

zl is defined as

W(G(rlo,ro), Mo,¡r) : W(So,r) : E^(Ð[=ra"-LcnMnlG(r]o,ro), Mo)
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where CL:C2:...: CN-1 : C, CN:1, and the subscriptr means that

the expected value depends on the sample path generated by the strategy

1T.

The optimal value of the consumption-investment problem is given by

V(G(no,ro), Mo): y(,S6) - sup W(G(qo,rs), Ms,r),

which is the supremum of the worth over the set of all strategies. our ob-

jective is to find the optimal value V(G(qo,ro), Mo) and an optimal strategy

z* such that

W(G(no,ro), Mo,r*) : V(G(qo,ro),, Mo).

2.3 The method of dynamic programming

Since the above formulated bandit model is essentially a Markov decision

process, we have indicated that there is a deterministic Markov strategy

which is optimal. To find the optimal strategy, we apply the dynamic

programming backward induction method. Based on this method, the

optimal investment decision at time n and the optimal value starting at

lime n are characterized by the so called optimality equation at n. The

most crucial part of the equation is the description of the state transition

at this time point.

If the state of the bandit model at time n is ,9r, : (G(rt,,rr),Mn),

then the posterior distribution G(Tn+t,rn¡1) at time n * 1 of the unknown

intensity rate À is given by ,lr+, : Tlr* rn¡1 â,nd Tn+L : rnj-I, where ørr..1



is the observed number of payments from the unknown arm no matter

which arm is selected for investment at time n.

The conditional probability distribution of x,,a1 given the state ,g,, is

P (X n+t : r n+rlG (rl^, rn)) : P (P (X 
^+L 

: r n+rl À)lG (n,, r,))

: ¡æ e-À^r-+t 1 _ _

lo 
'r*rt- 

r0ù74n 
\rtn-L"-À"d^

rfl^l(rn¡1-l rl")
r n+l.l (Tn) (rn + L)t.+t+¡t"
/¡oo 1I - (rn + I)r.+t+î!. 

^nn+t*?n-7e-À(r.*r)¿¡
lo f(z",+r+q",)\'

rfl'l(rn¡1I rÌ")
r "¡ll (r¡,) (r, + \)t.+t+t¡"

The decision on investing in which arm at time n, which is the beginning

time of the investment period, has an impact on the wealth Mn+rt which

is the expected wealth at the end of this period. If we invest in the known

arm with the current state Sn at time n, which is ^gr,: (G(q,Tn),Mn),

then we have

MyJ, : EIQ - c)M,(r + þr)"'*'lr,(,s,) : ol

: (7 - c)M, Ë (t + þr)0.*,e-::P"*
o.ir:o\ 

t '/ Un+l
: (L - c)MneÊru.

where the superscript (2) or MfJ, indicates that the known arm is selected

at the decision time n.

on the other hand, if we invest in the unknown arm when the state at

time n is .9r, : (G(rt",rn), Mn), then we have

M:!, : Elí - c)M,(r + þr)*^*'lG(q,,r,),rn(s,) : 11
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: EIE((I - c)M"(L + þr)*^*,1À)lG\Ì",r,)l

I 1 roo oo --À \ ø.+t: çt - c)M" l^ Ð (r + Br¡""*'#g(q^,r,)d,ÀJo ,.¡r=g fn+Il

: (r - c)M, 
lo* "P,^fi/n\\n-1"-À,-d^

11 rrn: \L - c)M" ?,: pry^

where g(Tn,rn) : fi;rfl" Àqn-'"-\rn is the gamma density of the unknown

intensity À. Similarly, the superscript (1) of M:!, indicates that the un-

known arm is selected at the decision time n.

fn essence, the optimality equation gives us a recursive relationship for

the optimal value starting at each investment time point. For this purpose,

we define the worth of the strategy z- starting at time n with the state

S": (G(q",rn), M,) as

W¡¡-n(Sn,r) : W¡o-"(G(q",Tn), Mn, Ak,,")

: E*(D!n*rat-r qM¿lG(nn, r,,), Mn).

The optimal value of the bandit problem starting at time n with the

state ,9r, : (G(n*,rn), Mn) is defined as

V* -"(S ") 
: Vw -n(G (Tn, rn), M 

", 
Ak) - sup W 7¡ -n(S n, r) .

1Í

For i : 1,2, and n -- 0,1, . . . ,I/, let trÍJ) ¡" the set of all strategies

that select arm'i at time n.

Define

V@ (G(q,, rn), Mn, ATò :;îor, t(" (rtn, rn), Mn, A'lo,r).
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Then

2

V (G (q", rn), M n, Ak) : V ytol (G (n,, rn), M^, A,|o)
:1

where
2

V ø(¿l - aG) V oø : max{ø(l) , aQ)¡.
,i,:l

The investor's decision problem is to choose zr to maximize v¡¡-n for

every tu : 0,7,2,. .. , ly'. Based on the principle of optimality, if the known

arm is selected for investment at time r¿ and an optimal strategy is followed

starting at time n + 7, the value of the strategy is given by

v[?,çs,,.a7¡

: v{')^çc 1n^, r,-), Mn, A\,)

: a"v{2,(c(Tn,rn), Mn, An-n)

: a"c(l - c)Mneþ'P

*Ðfl*r:6V¡¡-(n+r) (G(q" r tn+t,rn i I), (1 - c)2 M,"q'u, A'!v+r)

, rT"l(rn+t * rln)

r "¡ll (r¡") (r, + 1)' ^+t+n"

: a"cM[!,

+ a"+r Df.*r=sV u - çn¡rl (G (rl, I n n¡r t rn * I), (I - ò M Y] t, A ¡v - (n+Ð)

rfi"l(rn¡1+ q")
" **r,.f çrO¡¡^ * 1¡"*,*^'

where M:?r: (1 - c)Mn¿7"u.

Similarly, if the unknown arm is selected for investment at time n and

an optimal strategy is followed starting at time ni-7, then the value of the

strategy is given by

v#),6^,,qk)



: vt!,G Ø*, r,-) , Mn, A'|¡)

: a"v$!,(c(qn, r,-), Mn, Aw--,-)

: c(r - r)m"6!p,¡;

-F xfr*,:ov¡¡-(n+1) (G(n. * rn+r,rn r r), (L - c)2 M,6IÐr, A?u*t)

rfl^l(rna1rfl^l(rna1* T").' 
rn¡lf.(qn)(r" + I)r'+t+t¡"

: 
"MÍ!,
+c"+1x;* ,:ovx-(n+rl(G(q,l rn+t,rn ! 7), (l - ÒM:,tr, A¡¡-(,,+r))

, rl"l(rn+t + rln)

r "¡ll (r¡,) (rn + \)'.+r+n"'

where M:!r: (1 - ÒM"#Ðr.
The method of the dynamic programming backward induction works

as follows. At the last investment time N - 1, the investment decision is

myopic because there is only one decision to make. If the updated state is

,Siv-r, the asset to be invested is arm z such that

Mf,) - max(M$), MÍ?).

Then we go backward and derive the optimal decision and the optimal

value at time N - 2 based on the optimality equation. That is, if the

updated state is Sw_2, the asset to be invested in is arm,i such that

vfl_tw_zt(sr-r, A{,-r)

: -u"((tÌ1, -r¡(s ro -'r, A{,-'), vt2 
rw _z¡(s"-r, A{,-r)) .

This process is repeated until time n : 0, at which time we have found the

optimal value of the overall bandit problem.
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2.4 Conclusion

In this chapter we formulated a restless Poisson bandit model for an investment-

consumption problem. There were two risky assets in this model, and each

of them was regarded as one arm. The variation in returns was reflected by

the variation in the frequency with which cash flows are paid. The nota-

tion was introduced, and the value function of the strategy was established.

The dynamic programming backward induction method can be applied to

find an optimal strategy, which is deterministic and Markovian.
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Chapter 3

The Allocation fndex and

Properties

FYom the end of the previous chapter \^/e see that both the optimal value

of the bandit model and the optimal strategy are characterized by the

backward induction equations. So in principle both the optimal value and

the optimal strategy may be found by recursively applying these equations

with the initial value determined at the last investment time of r/ - 1.

Although this algorithm is more effective than the method of comparing

the worths of all possible strategies, we still face the curse of dimensionality

of the state space which is in fact uncountable. This means that practically

the algorithm of backward induction is computationally impossible at least

for moderately large investment horizon l/.

In this chapter we start by defining the advantage function of the un-

known arm over the known arm. This function is defined at every time
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point of investment to be the difference between the best possible perfor-

mances of starting the investment in the rival arms. Consequently the

unknown arm is optimal at an investment time if and only if the advantage

function at this time point is nonnegative, and the known arm is optimal

otherwise.

Then in the second section, we show that this investment decision rule

based on the advantage function can be simplified to be based on a break-

even index value of the parameter p. In the third section, we demonstrate

some properties of the index value.

3.1 The advantage function and its proper-

ties

Following the notations introduced in the previous chapter, the advantage

function of the unknown arm over the known arm is defined to be

ary-,,(,9,, ù : vt!,(s^, tò - v*'),6,, t)

or with more specific notations,

Ln-,(G(rtn,rn),, Mn, tò : V{!,çC(rtn,rn), M,, ¡l-V[2),(G(n,,rn), Mn, þ).

The unknown arm is optimal at state,S' if and only if A¡r_r,(,5r,, lt) > 0,

and both arms are optimal at state S" if AN-, (Sn, tr) : 0.

If the unknown arm is invested initially at time n:0, recall that

vlP 6o, t')
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: vlot) (c(qo,ro), Mo, AN, [ù

: ,rr(#ñ)
*aEfr=sVN-r(G(rto I 11,16 + 1), (1 - ÒMÍ') , Au_t, tt)

r{ol(q + to)
z1!l(4s)(re + 1¡"'+ao

where M{t) : ut(#ø)'o is the total wealth available for consumption-

investment at time n:1. Notice that there is no consumption from Ms

at the initial time 0.

on the other hand, if the known arm is invested initially at time n : 0,

we have

v#) 60, p)

: v|? (cØo,ro), Mo, Arv, tò

: cMssÞru * axfr=¡vrv-r(G(qo * 11,rs + 1), (1 - emlz),ANt,lt)
r[ol(q + r?o)^6

where MÍ') : MseÞ'u is the total wealth available for consumption-investment

at time n: I.

Hence the advantage function at time n : 0 of the first investment is

A¡¿(So, p)

: A1u(G(qo, ro), Mo, Aw, þ)

: vlo') (c(qo,ro), Mo, Aw, þ) - vØ (G|to,ro), Mo, A¡t, tò

: c(m|) - u{t))

+aÐff=61l/,.r t(G(qo * r1,rs + i), (1 - Qu{r) , Au¡, tt)
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-Vw-t(G(rtol- r1,rs+ 1), (1 - ")M{'),Aw-t,r)f m
where M{') - M{') : *rl(#ø)n'- 

"Þzul.
similarly, the advantage function of the unknown arm over the known

arm at time n of the (n + 1)"¿ seiection is defined as

Lw(V¡¡-n,lt)

: L*(G(q",rn), Mn, Aw-.n, þ)

: vf),çc1q,,rn), Mn, AN-n, t) - V#)*(G(rt,,rn), Mn, A¡¡_n, þ)

: 
"(MÍ!, - utÍ?r)

+oxfr*,=olVu-@+r)(G(q" * rn+L,rn * l), (1 - ÒM:?r, Aw-@+r), þ)

-V¡r-@+t)(G(rt" r rn+r,rn f- L), Q - ÒM:?t, Aw-@+tl, tòlGî,+,

where

G* , - 
rl'l(rn+t*qn)rn*I w,

M:1, : e- c)M,(J ^)r",Tn- þt

MÍ?,: (r-c)Mn¿o,u.

Lemma 3.1.L For any n : 0,I,2,. . . 
, N, and any strategy r, all functi,ons

W w -"(G (nn, rn), Mn, þ, T),

V¡o -"(G (n", rn), Mn, lr),

and

VP-^GOt,, rn), Mn, lr),,i : 0, I,

are cont'inuous and'i,ncreas,ing i,n both p, and Mn, and li,near i,n Mn.
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Note: The continuity and monotonicity of these functions in other pa-

rameters, such as rln,Tn, and so on, can be established in a similar manner.

But our primary focus is on discussing the properties of the functions of p

in this chapter.

Proof. Because the discount sequence is geometric, it suffices to show

the Lemma by induction on the investment horizon l/, with the use of the

backward induction equations.

When ly': 1, we have

Wr(G(qo,ro),Mo, tf,,T): MÍ') : mr(--f "\\ro - Þt/

if the unknown arm is selected for investment, and

Wr(G(rto,ro), Mo, p,T) : MÍ') : Moeþ"P,

if the known arm is selected for investment. The Lemma is clearly true in

this situation.

Suppose the Lemma is true for horizon l/. For the geometric discount

sequence of horizon ¡/ + 1, we have

Vt\rGQ6,ro), Mo, tt)

: cMlr)

laÐfi:sVn(G(qo * 11,16+ 1), (1 - ")M{'),r)ffi
: 

"two 
( ,o 

^\'o--'-" 
\to - o, )

+a(1 - c)Mol=-)'o ,;=or*(G(q, t ry,rs -t r),r, ¡t)
\'0-Ál1/

r{ol(q + qo)

z1lf (4s)(16 a l)cr+no'
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Similarly,

v*!rQØ¡, ro), Mo, tt)

: cMÍz)

+oEfr=6I4,,, (G(qo * 11,rs+ 1), (1 - ")M{o), ùffi
: cMoeÞru

+c(1 - c)Mo¿0,uÐ;:=0yN(G (no + rr,ro * 1),I, þù

r{ol(q + qo)

ø1!l(46)(16 f 1)"r+no'

The convergence of the infinite sum xff=o warrants the inter-change of

limit and summation. so the Lemma is true after applying the induction

hypothesis at horizon l/. Q.E.D.

Corollary 3.1.1 For any n : 0,I,. . . 
, N, the function L(G(q,,T,*), Mn,lt)

'is conti,nuous i,n p,.

Corollary 3.L.2 For any gi,uen T,T, þ, M * 0, and, any strategy r,

W(G(rt,r),M, tt) : MW(G(q,r),L, Lr).

Therefore, the opti'mal strategy for the (G(rt,r),M, p,,)-bandit d,oes not

depend on the wealth M and hence

V(G(q,r),M, tt) : MV(G(r¡,r),I, p,).

Lemma 3.1.2 For any gi,uen q, r, and B, we haue

(i) EÊ.åffi6ffi:t
(2) ÐË,#ffiG"f'*ffi:(:r),
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Proof. For the first identity, we have

s\co 1l(rr + k) rn
uk=o k! r\n) G + IFTE

t T \r,.-1oo 1f(ri+k) 1
\1 + 1/ 

,2.n=o ¡¡.iç¡ GTIF(#Y['.¿.*ffi+ +*@jfr#-. 
]

Notice that the Taylor expansion of f (r) : (*)' at zs - 0 is

r@): (=)'
: t +!, - *øY*, +... * !þt + "l:r) "'n 

rn +...

Then taking ,: il, we get

rn + ...

L (rt+k-r)...r1s10c) * \', ' '" -/
"k=o td. (t + ly

(rt+n+1)...21

- þ)n+n

(n+n-I)...n,
(î + 1f¿ -r "'

On the other hand,

hence

Í(r)1,=+¡:(+)',

(rt+k-1)...rt
(r + 1)fr

:(+)'
Therefore

Foo 1f(a+fr) rtt _:¡_._\r(rtr)r:r"n=o ¡7 Ylr¡ G +tr+Ë 
: \r + 1/'t "

consequently for the second equation, replace r by r - þ ín the first

identity and we have

\roo I l(q + k) rq (r + L¡n+*
"n=o ¡rr.- ¡77¡) GTtf+EG +r _W

soo 1
un=O 

H.
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: {6"*å1ffi)4#4*
.Tn

G-W QE'D

Lemma 3.1.3 For any ly': 1,2,..., the functi,on L¡¡(G(rì,r),M,¡t) i,s

decreasi,ng i,n p, when other parameters are fired,.

Proof- we proceed by induction. The result is true when .4¡¿ :
(1,0,0, . . .) i. of horizon ly' : 1 since

Ll(G(rt,r),M, tt) : M lç--:-ry - "o'*] 
.

L't -Pt I

Suppose that A¡¡ (G (q, ,) , M , p,) is decreasing in ¡r for any fixed 4, r and

M. If the horizon is l/ * 1, we have

A¡,'+t(G(ry,r), M, Lr)

: "lwl( ' 1n-"0,u]
L'' - þ'''' l

*oxpor¡¡ (G(rt + k,r -r1), (1 - ÒM(: 
þr)r, 

rlfiSffi
-aXpoy¡¡ (G(rt + k,r l-1), (1 - c)Me\,t", flffiffi

: "ul( ' -1, - "o"r]| \_ D
l-'r - lï J

+a(7 - ùM(; pr)rXËorr( G(rt + k,r -r t¡,t, u)fr$ffi
-.,(7 - c)MsÞ,utË0y¡,,(G (rt + k,r * I),r, r1ffiffi

For any function /(z), define

f*(") -max{0, f @)}, f-(r):max{O, -Í(r)}.

Let's write

v¡¡(G(rt+k,r+r),1, p) : vP GOtk,r+t),1, p)+Afi( G(r¡-tk,r+7),r, tò
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for the first V¡¿ function, and

Vu(G(q+k, r*1), I, p) : VP GØ+k,rrl),1, p)+Ar(G(q+k,r+I),I, tr)

for the second I/¡¡ function.

Notice that for V*') GOt I k,r + I), M : I, þ), we have

M;t) : E(MlG(rt,r))

: E(E(MlG(q + k,r + 1))lG(rt,ò)

ç,oo Q+t¡n+n 1f(a+fr) rtt
"re=oÇ * 1 - B¡n*/'l {4,-GTT,+E: (_+\'
\t -P/

Therefore,

A¡r+r (G(n,r), M, u)

: ,ul( '-1r-uø,u]'Lt"-13'' " 
I

+a(1 - ÒM(: pr)qÐi=rlce\"p + a(L - c)eÞ"u

XËOI/"-, (G(rt + lc + l,r -t2),1, r1@1*' lllçr¡ + k)(r + z)k+I+n r

t(k + q)rn
^ ¡¡1n¡" * t¡r*n
+c(1 - ùM(: pr)nÐËoal Gþt + k,r-r r¡,t, u)ffiffi
-ù.(r - e M eÞ,uÐ;.-ol"M[') + o(1 - e u[r)

EËolzr-, (G(rt + lc + l, r -t 2),f , ¡,,) @1*' 
ilrçrt + k)(r + 2)k+t+n r

l(k + q)rn
^ nnçr,¡¡ * 1¡n+,

-a(I - c)M¿Þ,uXË'At(G (rt + k,r * I),t, r¡ffiffi
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: ,1tl( ' 1n -.a,u]l\_ DL'r-þt j

+c(1 - òM(:pr)rlËonl Gþt + k,r * 7¡,t, ,,t r(te * rùr't
-' kll(rù(r + L)r,+n

-a(I - c)M¿Þ"uÐËoA¡¡(G (q + k,r i r),t,r)#8#*
after cancelling all other terms.

By the induction hypothesis, Lw(G(q r Ie ,r + 1), 1, p) is decreasing in

¡-r, for any k' Therefore afi(G(a * k,r + 1), 1, ¡;) is nonincreasing in p but

Añ(G(rl * lc,r + 1), 1, p) is nondecreasing in p.

Hence both

tËo¡il(c (rt + k,r *r),r,r)#ffiH*
and

- -þzps,c-e,--LLoAr(G(q i le,r+ 1),1, ,ò###jrñ
are nonincreasing in p. Therefore aru+r (G(q,r), M,¡-r) is decreasing in

tL. Q.E.D.

3.2 Existence and properties of index values

In this section, we show that there is a unique solution to the equation

L¡u(G(q",Tn),Mn, þn+t): 0 in ¡l,r-.1 denoting the known intensity rate of

Poisson process in the known arm during the interval between time point

n and nJ-1, where n:0,I,2,....

Theorem 3.2.1 For any I[ : 1, 2,. . . , anA T,r, M, and, A¡¡, there eri,sts
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o, un'ique Lt* : lÌ(n,r,M,A¡¡) such that

L*(G(q,r),þ*, M, A*) : g.

Moreouer, the unlcnown arrn i,s opti,mar for hori,zon N, i,Í and only ,if 
Lt 1 þf ,

and the Imown arm 'is opti,mal if and only i,f l.t ) Ë.

Proof. It is clear that

L(G(rt,r),0, M, A¡¡)

,J:g ¡ (ct\, r), þ, ¡4, Ax)

The theorem is true by corollary 8.1.1 and Lemma 3.1.8. e.E.D.

Theorem 3.2.2 Let p,i*r: uir+t(G(rln,rn),M,) be such that

Lw-"(G(rt",r,), Mn, p!,+) :0.

Then ¡-ti*1 i,s increasi,ng i,n r¡n, but decreasing ,in rn, and, ¡,ti*1 does not

depend on the wealth Mn at ti,me poi,nt n.

Proof. First of all, A¡¡-,r(G(n,,rn), Mn, ti,+): 0 means that

"[MÍ!, - mÍ?,]

*aDfr*,=oVu-@+t)(G(rt" t rn+t,rn + 7), (1 - ÒM::Jt, A¡v-(n+tl)Gå+,

-oxfr*,=oVw-@+t)(G(rt" r rn+t,rn * l), (1 - ÒM:?t, An-@+tl)Gî,+t

: 
"tMÍt, - MfJ,l

+aEfr *, =o G - Ò M :ltV¡v - (n+t) (G (rt, * t n+r, rn * 7), r, A ¡v - (n+tl) Gî,*,

- oxfr *, =o Q - Ò M:?tVw - @+t) (G (q, * r n+1, rn * L), L, A w - (n+tl ) Gå+,



: lM:!' - uÍ?rl

x 
{ 

c + Q - c) c,Dfi*r=oVN - ç.-¡tl (G (qr r r n+r, r, * 1), r, A ¡¡ - (n+tl ) Gå*r }
U

where

G!,,: rT'l(rn+t+rl,')
lL-rL rnall(r¡n)(rn + L)tn+t+nn't

and MfJr,'i: r or 2, denote the total wealth at time point nrr,which is

the gain due to the previous investment, d : 1 or 2 indicates the arm that

is invested in, either the unknown arm or the known arm.

Notice that in the above equation the term

{c + (r - Qc"Dfi=oVu-@+t)(G(rt^ * rn+t,rn * I),r, AN_@+tl)Gå*r}

is positive at any time n, because

1) 0<c<1,

2) V¡v-(n+t)(G(q" i rn+r,rn * 1),L, Ax-@+tt) > 0,

3) Gå*, ) 0,

Hence L*-r(G(q,,rn), Mn, Fn+t): 0 is equivalent to M[J1_ M[?r: O,

where

M:t, : e-c)M,(ffi;)r",
M:?, : (I - c)M,eþutn+t.

Therefore, solve the equation

(1- c)M*(f 
^l^: 

(1 - c)MneÊzun+t,
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v/e obtain

1

t'Ë,+t : *n"n(ffi1: fi{,'-'¡',)'"(##)
: *Ø, * Eirr¿)r,r1-31 "--y

P2 To- lJtln'

(3.1)

(3.2)

(3 3)

Flom the equation (3.i), ¡;[*, shows to be increasing in ,ln, but de_

creasing inrn, but independent on the wealth Mn at time point n. Hence

Theorem 3.2.2. is proved. I.E.D.

Here the index value pir+t is acting as a benchmark for evaluating the

two arms and determining which arm should be invested in. At any be-

ginning time n of an investment period, the known arm is regarded to be

equivalently optimal as the unknown arm, if and only if the value of ¡_r

equals to the index value þi,+t. rf p < þî,+t, the known arm is regarded as

inferior to the unknown arm, and vice versa. In other words, the investor

makes her decision by comparing p, and þî,+t, if ¡l is higher, the risky asset

on the known arm would be considered, and if pî.,+t is higher, the other

risky asset on the unknown arm would be invested. Hence the availability

of the specific index values for successive investment periods provides a

solution to the investment-consumption problem in the discrete setting.

As in the definition of myopic strategy, at each stage the arm with the

highest immediate expected payoff is selected. Hence the solution to the

above two-risky assets bandit model provides a myopic strategy, without

the necessity of considering the issue of complete information gathering.

Therefore the myopic strategy in this special situation is optimal, the in-
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tuition is that the market information on an asset evolves over time, no

matter whether this asset is invested or not.

Similarly, the index value pi during the previous period of investment

with the corresponding parameters is

Both the parameters rn-rt Tn-1 ã.re known from the information gath-

ering until the current time point t: n- r. nn is regarded as a random

variable at time tu-L, which follows a Poisson distribution with unknown

intensity rate À during the next period interval from time point n - r to

n. It means that the detailed information on this Poisson process can be

gathered at time point n, and the specific value of rn can be obtained and

hence be regarded as known at that time.

Theorem 3.2.3 Let G(r¡s,r6) be the pri,or di,stri,buti,on of À, where À i,s the

unlcnown intensi,ty rate of the Poi,sson process on the unknown arm.

Il pi,+r: þlr+t(G(q",rn),Mn) i,s the i,ndex ualue duri,ng the,inuestment

peri,od from ti,me n to n + 7 such that

L¡v -"(G (q", rn), Mn, Iti,+r) : 0,

then

tti,+t 2 PT"

tt';: Ër,-rr"f#ø): 
ärr, + Ði=lr¿)t"f###Ð)

,",lffi#':l\
42
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{0,
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Proof. If p!,+r) p!o, from the equations (3.2) and (5.4), we get

Ërr,-,¡,n)m(# ø) 
r- är,-,h(# B,)

Soiving it, we have

trn ''rL-L 
L n(#ø) l

Hence

ln r -'\ffi)] (36)

Similarly equation (8.6) implies that pi+r Z t-ti. e.E.D.

If at any time n, lt < t-ti, the investment is made on the unknown

arm. If the observed value r, satisfies the above equation (s.o), then

lt < þi+t.This means that for the next investment, the unknown remains

to be invested again. That is called the play-the-w,inner strategy from the

perspective of bandit processes.

From the equations (3.3) and (B.b), þL+tZ pi is equivalent to

*,n=l*! u> (rto+Ei=rrr¿)t" (,É) ,rstn-P1 \I-;j*,,-,,
which is further equivalent to

ry l¡ To*n

,o<Æ-ET=lro.
'"('--ËJ

Definingn:#,wegetTo{7nrn-ÐT=|,¿'Recallthatit
lnl - ,q+¿ 

|

is assumed that r¡st\;..+=/
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On the other hand, the state þi,+t S ¡;[ is equivalent to

To) jnrn-DT:|"u.

Actually,

4¡ ) max{0, .y,rn - Ð?:l*¿},

where 7," is defined as above.

3.3 Conclusion

In this chapter the advantage function of the unknown arm over the known

arm ïvas established. A geometric discount sequence was introduced to

make the two-armed Poisson bandit model well defined. Besides assum-

ing that the numbers of payoff for both assets follow independent Poisson

distributions, there were two key assumptions within the derivation of the

advantage function. One was that the fixed proportion of wealth is taken

for consumption at every beginning time of the successive investment pe-

riods, except for the initial time rz : 0. The other was that the complete

information gathered to-date is possible, therefore the state at every invest-

ment time is updated continuously. We adopted the Bayesian approach and

used the conjugate prior (gamma prior and updated gamma posterior) to

describe the changing of states over time.

By backward induction method, the continuity and monotonicity prop-

erties of both the value function and the advantage function were proved

and discussed. An important result in this chapter was the decreasing in ¡-l
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property of the advantage function, which was proved in Lemma 3.1.3. In

section 3 the concept of index value was introduced, which is a useful mea-

sure to evaluate the two risky assets (two arms), and is a unique solution to

the advantage equation. The existence and properties of index values were

also discussed in detail. From the index value equation, the myopic strat-

egy was shown to be optimal in the special two-risky assets bandit model.

If the number of cash flow X satisfied the inequality (3.7), the tendency

of index values was proved to be increasing, hence from the perspective of

bandit processes, the play-the-winner strategy would be used.
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Chapter 4

An alternative bandit model

In the previous chapter, we formulated a particular bandit model for the

investment-consumption problem. Because of the particular ways of con-

suming a fixed proportion of the wealth and re-investing the remaining

amount, we ended up with a myopic optimal strategy. But we allowed for

the continual movement of the asset, whether or not it was selected for

investment. Hence the bandit model in Chapter 3 was of the restless type.

In this chapter, we examine an alternative bandit model for another

type of consumption-investment problem. Such a bandit model is of the

classicai type and is not restless. This scenario of the consumption-investment

problem does not seem to be realistic in the financial world, but neverthe-

Iess the statistical problem itself seems to be interesting.

In the first section, \rye introduce the corresponding Poisson bandit

model with two arms. In the second section, we assume that one arm

is known but the other is unknown, and derive the existence and proper-
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ties of the optimal strategy. In particular we show that the myopic strategy

is not optimal and that there is an optimal stopping solution. We then dis-

cuss the play-the-winner strategy in the third section for the case of two

unknown arms.

4.L A Poisson bandit model

Similar to the last chapter, we assume that there are two financial assets

available for investment. Again, investments are made at discrete time

points n:0,L,2,.' ',-Ay', where we allow for I/: oo. However, at each

time point, we invest a fixed amount in one and only one of the two assets.

The whole amount of payoff of each investment is taken for consumption.

Without a loss of generality, we assume one unit of investment at each

time.

The uncertainty inherent in each asset is also reflected by the number

of payoffs during each investment period. We still assume two independent

Poisson distribution for the number of payments from the two assets. For

these assets, investments grow according to fixed compound interest rates

þt ) 0, and þ2 ) 0, and the numbers of interest payments are independent

and identically distributed following Poisson distributions.

The intensity rate I for the unkno\ryn arm is unknown but follows a

gamma prior distribution G(rto,ro),To ) 0,16 > 0. The intensity rate p'

for the known arm is a fixed constant. Moreover, 0t ) 0, and þ2 > 0 are

known expected return rates on the unknown and known arms respectively.
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The discount sequence is ,4;y : (1,a,e2,... ,dN-L,0,0,'.'), where 0 <

a 11.

For any investment strategy n : (trt,Tz,...), denote the payoff at time

n as Zn. Our objective is to find an optimal strategy r* to maximize

W * (G (rt o, ro), þ, r) : E * (DÏ=ta"-r Z nlG (rto, ro))

and to find the optimal value

V*(G(no,ro), tt) - sup W*(G(nr,ro), p,r).

Let Xn be the random variable representing the number of events

of payments from the unknown arm during the nth investment period,

n : 7,2,...,N. Then at the time of the nth investment, the updated

posterior distribution of À is again a gamma distribution G(qn,r,,), where

n : 1r2r. . ' ,ly', and Tn : T0 -f n, nn : rlo I ETlr¿.

Notice that the state of the bandit model only consists of the posterior

distribution because the amount of investment is fixed.

4.2 The case of one unkno\{/n arm

At the time of the nth investment, the posterior is G(nn,r,,) and the dis-

count sequence is

Ak : (on, dn*t,. . ., oN-' r0, . . ., 0) : a"Aw-n,

where A¡,t-n is defined in chapter 2.
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If at time n : 0, the state is G(4, r) and the unkno\ryn arm is selected

for investment and followed by an optimal strategy, we have

vlo') Gþt,r), t)

: (r=)' * o'7ovx-'(G(n * k,r + L), tòåry# G#*
On the other hand, if the known arm is selected for investment and

followed by an optimal strateg¡ we have

vP GØ,r), p) - "ezu 
t av¡¡-1(G(q,Ò, t").

Therefore the optimality equation becomes

V,,t(G(rt, r) , p) : max {V#' (C(, , r), p), VS) GQt, Ò, ù}

and the advantage function is

Ar (G(ry, Ò , tò : max {vlr" (c(r, r) , p) - vØ (GØ, r) , ù} '

Using arguments similar to the last chapter, we have

Lemma 4.2.L The functions V¡¡(G(n,r), [r) and A,¡¡(G(n,r), p,) are con-

ti,nuous i,n p,.

We show that the advantage function A is decreasing in ¡r.

Lemma 4.2.2 The function L,¡¡(G(q,,r), [r) i.s decreasi,ng i'n ¡1" for any N :

7,2," "

Proof. We proceed by induction similar to the steps in Lemma 3.1.3.
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The result is true when ly' : 1 because

/ ' \'--u,,A'(G(z, ,), tr) : l" _ 0J - eP'P.

Suppose that the result is true for horizon l/ so that Lw(G(q,r), M, p,) is

decreasing in ¡l for any fixed r¡,r. Then for the horizon l/ + 1, we have,

A¡r+r (G(q,r), p)

: l'i^'-*"f
*oÐp6V.¡y (G(rt + le ,,r * 1), p)#$#r-
-aV¡¡(G(q,r), Lt).

Write

V¡u(G(q * k,r+ 1),¡r) : VS) GØ + k,r 1-1), p) + Afi(G(a t k,r+ 1),p)

and

v*(G(rt,r), p): y,9) (GØ,r), p) + a¡¡(c(a ,r), [t).

Then

Aru+r (G(rt,r), t")

: l'Jø'-"u"f
*oxpo leÞ'u + ,,Vx-t(G(rì + k,r *r), p)] #8H*
+oEpoAfi (G(n + k,r t t¡, r¡ -!!)A! -klf (a)Q + t¡n+n

l' T \? r ^,\-co Í/-- (/1(^ t L - Lr', ,,', f(k+q)rt? I-a l(r _ p.)a 
+ axpoV¡u-t(G(rì t Ie ,r + 1), ø)Eitffil

-cA[(G(q,r), Lr)



: (1 -*) lrJø, -"u',f

+aEpoAfi (C(rt + k,r -r L), tt)
l(k + q)rq

'*' letl(n)Q + r¡n+n

-aA[(G(q,r), tt).

By the induction hypothesis, A*(C(ri * k,r + 1), p) is nonincreasing

in ¡r for any k, and Ar(G(rl,r),¡;) is nondecreasing in ¡r. However (1 -
*) l(;Ð, - "Þzu) 

is decreasing in p, so is Ar+r(G(ry ,r), p). 8.8.D.

Theorem 4.2.L For any N,r¡, andr, there eri,sts a uni,que i,nder ualue

tLTv : tr\v(rl,r) such that L1¡(G(q,r),pi¡) : 0.

Moreouer, the unlcnown o.rrn i,s opti,mal if and only if p < [Liv and the

lcnown arm'is opti,mal if and only i,f p> p|.r.

Proof. Cleariy L*(G(rt,"),0) > 0 and lim¡,-+- L*(G(q,r), tt) < 0. The ex-

istence and uniqueness of ¡-li, follows from the continuity and monotonicity

of A¡y(G(r7,r), p,) in p,.

The unknown arm is optimal for the (G(q,r),p,)-bandit if and only

if A¡y(G(a,r),Lr) ) 0, which is equivalent to tt < l.Li,r. The known â,rm

is optimal for the (G(n,r), ¡,t)-bandit if and only if A¡¡(G(a,r), u) 1 0,

which is equivalent to ¡t > pi,r. Q.E.D.

Although we have demonstrated the existence of the index value pfu,

there is no closed form solution as opposed to the results in the last chapter.

We point out that the index value ¡;i is not the Gittins index because

we have a finite horizon model. But it is the Gittins index when .Ay': oo.
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To make a connection with the Gittins index, we check the monotonicity

and limit of the sequence p,i!, N : I,2,. . . , of index values.

Lemma 4.2.3 For any q,r and Ax : (7,a,...,dN-r,,0,...),0 < o ( 1,

,,i

Aru(G(4, r), tr) :0,

then

A¡¡+r (G(rl,r), tt) > 0.

Proof. The equation A¡¡(G(q,r), þ) : 0 implies both

( '^)'-"Þzu
T-lJt

: aV¡¡a(G(rl,r),lt)

-.,,Ðþov¡¡-t(G(n+k, ¡ r\ ' f(fr+q)rn't -r L), P) klf Ø)(,r + \)k+n

and Iz¡¿(G(rt,r), ¡t) : ¿Þzu I aV¡¡-r(G(rt,r), p).

Therefore,

A¡¡+r (G(q,r), p)

: ( '^)'-"Þzur-lJt

*aÐpov¡¡ (G(rt + k,r * L), p)#$#k+,
-aV1¡(G(q,r), Lr)

: aXËo lV*(G(q * k,r + 1), t") - Vw_{G(rt * k,r + 7), ¡.t)l

l(k + q)rn
^ \tr.¡çr¡ç, * 1¡nn

-o"oz+ + o(1 - a)vw_{G(rt,Ò, tò.
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For any given k and any optimal strategy for V¡y-1(G(q+k,r* 1),¡z), we

follow the same strategy for V¡¡(G(rl*k,r *7), ¡t) for the first ¡/- 1 invest-

ments, and then always invest in the known arm for the last investment,

then

V* (G (rt I le, r + 7), t") - Vw _1(G (rt + k, r * 1), p) > oN -t 
"02u 

.

On the other hand, if we always invest in the known arm, then

V¡v-r(G(rt,r), p) > (1 + a * .. .+ oN-2¡"Þ'ø.

Therefore,

V¡u+r(G(rt,r), pt)

-o"Þzu + o(1 - d)(1 I a I . .. * or'r-z¡"Þzu

:0. Q.E.D.

Theorem 4.2.2 For any gi,uen r¡ and r, Iet piv(rt,r) be such that

Ar(G(q,7), pi¡) : 0.

For eøch ly': 1,2,- -.,

rl , ( r \
=-ln I 1 l: pi(n,r) < pi(rt,r) <...< túv(rl,r) <....
þz \"-,6t) '""

Moreoaer, the li,mi,t É¿* : lim¡v-* ¡rTs eri,sts such that

#r^(Je) .,..*
and L(G(n,r),þ*,A):0, where A: (\,a,d2,...).



Proof. By the Lemma, we have A¡¿+r (G(q,r), piò > 0. But

A¡r+r (G(rt,1), pi,) : 0.

So by the monotonicity of A,y-.1(G(rl,r), p) in p, we have

P'k < Fi'+r.

The limit p* : lim.¿y*- piv of a non-decreasing sequence of positive

numbers exists. Based on the continuity of A¡¡(G(a,r),lt) on.ly', we see

that the limit satisfies

L(G(n,r),tÌ,Á) : 0

for A : (1, a, a2,. . .).

If p* -- oo, then V(G(rt,r),þ*,A) : oo which contradicts with the

finiteness of V(G(q,r),Lf ,A).

We show that ftt" (ú;) < t);, and hence ht"(=ø) . r..
Suppose that p,i: fiIn(*). Then

0 : Az(G(q,r), pä)

: cuDf=sa(G(rt + k,r * l), ti)###*
-afi(G(q,r), pi)

: 0ÐËo [-* { 
(i+),+k, (; 

ø,),} - rJø,r)
l(k + q)rn

kll(rù(r * 1)t+z

Let k* be the smallest integer such that

( l:r 
^)4+e. 

> ( '^)'.tr*1-0t' -'r-þr'
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Then the right hand side is positive. This is a contradiction. 8.8.D.

The limit ¡.r* is the index value for the infinite horizon geometric dis-

count sequence, and is in fact the Gittins index. Moreover, this theorem

has two very interesting corollaries.

Corollary 4.2.t The myopi,c strategy i,s not opti,mal in general.

Proof. Take l/ : 2 and p be such thal p,j(r¡,r) < p < tö(n,r). Then

the unkno\ryn arm is uniquely optimal for the (G(q,r),p)-bandit, but the

myopic strategy selects the known arm. Q.E.D.

A myopic strategy focuses only on immediate payoff and ignores infor-

mation gathering. This corollary says that in order to achieve the best

performance, information gathering is necessary so we can make better

informed decisions in the future.

Corollary 4.2.2 If the lcnown arm is uni,quely opti,mal at some i.nuestment

ti,me, then'i,t remai,ns opti,mal for the rest of the inuestment horizon.

Proof. If the known arm becomes uniquely optimal, when there are n

investments to be made, we have p > p;.

But this implies that ¡-t ) þ1,-t, since there is no change in the state.

Hence the known arm is again uniquely optimal at the next investment

time. Repeat the argument and we finish the proof. Q.E.D.

This is an optimal stopping solution which says that when no further

information is gained on the unknown arm and the known arm appears to

be uniquely better, then the known arm remains optimal forever.
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4.3 The case of two unknown arms

In this section, r¡ve assume that the intensity rates À and p, for the two

Poisson distributions are both unknown. À is assumed to follow a gamma

prior distribution G(rtr,r1) and p follows another gamma prior distribution

G(qr,"r)'

In a way simiLar to that in the previous section, we define the following

functions:

W * (G (nt, rt), G (qz, rz), r),

vP (cØr, rt), G(rtz, rr)), i : 1, 2,

Vu (G(qt, r) , G(r¡2, r2)) ,

AÍ'/ (c(rir, r¡), G (r72, r2)).

In this section, we focus on deriving a special case of the play-the-winner

strategy.

Lemma 4.3.L For any G(rl,,,rr),G(rtz,r2) and Aw : (1,o, ' " ,dN-r,0, " '), 0 <

a 1I, we haue

Af? (c (,7t, r), G (r¡2, r2))

l r"^ l: (r - ") l( 
11 \?r r r2-¡n'l

L'n - þt) 
", 

- l', I

+aXpoAfi -r(G(n, t k,r1-t I),G(q2,rnffi

-oXpoA; -r(G 
(qr,, rt), G (nz I l, 12 * rD ffi*

Proof. Using the equationVQ) + A+ and V(1) * A-, we have

A¡r (G(rit, r), G (q2, r2))
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r Tr \41\ ^ /'h- Pt

+">i=ot(# 
ø)n' 

+ c"EToVw-.r(G(rtt r lç,r1-t L),G(rt, + t,rz + I))

f(¿+ qz)r|', f(k +nr)r?'
^ ttr(Jì2)?2 + rryr ¿trln¡ 1", * 1¡o*^

+aXpoAfi -r(G 
(n, * le, 11 + l), G (q2, rll ffi

-(_" u)r,'t2 - p2

-">?rt(f ø)4' 
+ oÐ;i oV*-r(G(rh I k,rr * 1), G(rt, + t,rz-t L))

f(k+q)rl' , f(¿*qz)r|'
^ ¿¡¡1nr¡", * 1¡t+a' I 1tf (gr)?, + lW
-axfloAr -r(G(q, I lr, 11 + l), G (q2, rll ffi**

which implies the desired equation after cancelling out aIIV¡,¡-2 functions.

Q.E.D.

Lemma 4.3.2 Suppose that the di,scount sequence Ax : (1, 1,''', 1, 0,''')

i,s uni,form (by setti,ng a: \). If L¡¡(G(rÌt,rt),G(rtr,rr)) > 0, then there

eri,sts an i,nteger k* > 0 such that

Aru-r (G(rl, * l{,11+ 1),G(q2, 
"r)) 

> 0.

Proof. By the Lemma, we have

A¡r (G(ryr, r), G (q2, r2))

: axp6A|- ,(G(rtr l k,r1.- \),G(q2,r))ffi

-aXpoAr -r(G 
(qr, rù,, G (rtz t l, 12 + \D #!:lÐË -tz ' ')'¿ ' -,'t lll(q2)(r2+I)t+n,

If no such fr* exists, then

A*-t (G(qt I k,r1 * 7),G(r¡2,r2)) : o
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for all k. This implies that

Ar(G(qt, n),G(qz,rr)) < 0,

which is a contradiction. Q.E.D.

Similarly, if A¡y(G(at,rt),G(nr,rr)) < 0, then there exists an integer

¿*>0suchthat

Ary-r (G(qt,rt),G(nz * l*,r2 + i)) < o.

These results mean that if one unknown arm is optimal, then there is a

positive probability that it remains optimal again at the next stage. But

unfortunately it is impossible to derive the formulas for k* and l*.

4.4 Conclusion

In this chapter, an alternative bandit model for a new type of consumption-

investment problem was examined in detailed. A key assumption in this

model was that the amount of investment is fixed, while the remaining

part is taken out for consumption. This is different from the assumption

of fixed proportion consumption in the previous bandit model in Chapter

3. The consumption pattern is also different, besides the difference in the

amount of investment.

Keeping other notations consistent in this new model, we derived the

new value functions, and the advantage function of one ârm over the other

arm. In Lemma 4.2.!, the properties of continuity and monotonicity in ¿z

were examined for these functions. With the establishment of these new
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formulae, we demonstrated the existence of the index value pir. The closed

form solution of pi, is not available.

Extending the horizon from finite to infinite and taking a limit of the

index values, we obtained the limit ¡.i*, which is in fact the Gittins index.

Two interesting corollaries were provided in Corollary 4.2.L and Corollary

4.2.2, which are different from the results obtained from the bandit model

in the previous chapter.

In section 3, the case of two unknou/n ârms was discussed in detail. We

assumed that both arms lvere unknown, with unknown intensity rate À and

¡; for the Poisson distributions. A version of the play-the-winner strategy

was derived.
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Chapter 5

Conclusions

In this thesis, I considered the investment-consumption decision problem

in two different settings, Poisson bandit models with two arms. The uncer-

tainty inherent in the investment return is reflected by the number of cash

flows (payoff) from the investment. The investor is uncertainty averse, and

tries to learn from historical data. The Bayesian approach was used to

describe the information gathering process on these assets. A geometric

discount sequence was incorporated in the bandit model.

The dynamic programming backward induction method can be applied

to find an optimal strategy, which is deterministic and Markovian. An

attractive feature of the problem formulation presented here was that it

did not entail computing the return distribution of the assets.

We assumed that the numbers of payoff for both assets follow inde-

pendent Poisson distributions. There were two additional assumptions

introduced to the restless Poisson bandit model in Chapter 3. One was
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that the fixed proportion of wealth is taken out for consumption at every

beginning time of the successive investment periods, except for the initial

time r¿ : 0. The other was that it is possible to have complete information

gathered to date, therefore the state at every investment time is updated

continuously. In an alternative modei in Chapter 4, we assumed that the

amount of investment is fixed, while the remaining part is taken out for

consumption.

Both in Chapter 3 and Chapter 4, we derived the similar value functions,

and the advantage function of one arm over another arm. Similar results

obtained were the properties of continuity and monotonicity in p for these

functions. I payed special attention to the existence and monotonicity of

the index values. The existence of the index values ¡-lir was demonstrated

in both models. For the restless Poisson bandit model in Chapter 3, we

worked out the specific form of these index values as time evolved during a

finite horizon. For the alternative model in Chapter 4, we couldn't obtain

the closed form solution. But extending the horizon from finite to infinite

and taking a limit of the index values, the limit ¡.r,* was obtained, which is

the Gittins index. These index values are the benchmark for an investor

to evaluate and compare the different risky assets by ranking.

However, the models that were discussed in this thesis are just basic

general two-armed bandit models. For a large number of risky assets,

which are not independent of each other, how to approximate the optimal

value function and advantage function is still an open question in bandit

processes. It will be interesting in the future to establish a bandit model
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for the optimal consumption-investment problems with multi-risky assets.
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