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A computer aj.gorithm for identifying two-dimensional

binary images is presented. ObJect,s are first chain-

coded using an efficient boundary tracking method. the

boundary curve is then paramsterized by computing the

radiaL distances to the cent,roid as a function of curve

lengt,h. This method of parameterization has severaÌ

advantages over other existing methods when dea).ing

with obJects that are convex and/or have thin radial

extensions. With this parameterization' Fourier

Descriptors (FD' s ) are cal,cuLated using t'he Discrete

Fourier Transform. The resulting FD's are used to form

the coordinates of a mui.ti-dimensional- array which will

identify the object from a data-base of previously self

taught parts. The recognition routine computes only as

many FD's that are required to uniquely identify the

part, avoiding the unnecessary processinE time

tllpically associated with search and match techniques.
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CIIAPTER

1. I ProbLem Definition

INTRODUCTION

Object recognition systems typically rely on a set of

descriptors to identify a part. Àlthough some descriptors are

reLatively simple ( for example' area of an object) ' others are

ext,ract,ed f rom more lengthy routines (such as convolution ¡ '
requiring Ìarge amounts of processing time even with specialized

hardware. With these processing considerat,ions in mind' a few

questions are presented¡ How do we rninimize the number of

descriptors needed to identify a given obJect? How accurate are

the descriptors?

Once the descriptors have been calculated, an additiona.L seÈ

of problems arise when trying to implement recognition routines:

What kind of search method should be used? How many parts can be

successfulty identified with a given number of descriptors? How

reliable is the recognition algorithm?

This report discusses a computer algorithm which addresses

each of these questions. The Program is split into three

rout,ines. The first deaLs with the problem of generating

accurate descriptors that are rotation and size invariant. (This

is called the Boundary Tracking/fO noutine¡. The second provides
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a method of teaching object shapes to the system by generating

codes from these descriptors. (This is the Teach l{ode Routine).

The third then identifies the previously taught objects stored in

the data-base. (This is the ldentification Mode Routine).

L.2 Research Goals

In general, the goaj- of this project was to develop a

reliable and efficient recognition al.gorithm for binary images.

This involves generating accurate descriptors to code the

objects, then extracting the correct part identification from a

data-base of stored codes.

Fourier Descriptors (FD's) have been sel,ected as suitable

descriptors for object coding. Since their introducÈion in the

l-ate 1960's, FD's have been recognized as a very useful tool for

object recognition. Given a properly parameterized representati-

on of the object, the Discrete Fourier Transform (or Fast Fourier

Transform¡ wiJ-L generate a unique set of coefficients which are

invariant to size and orientation. However, the resul-ting FD's

are only as accurate as the parameterization. A research goal,

therefore, was to develop a parameterizing method which addresses

some of the weaknesses of existing techniques.
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As previously mentioned, a goal of the recognition algorithm

was to "extract" the correct part identification, rather than

search f or it. l'leaning that once a code f or the ob ject is

generated, its identity is known inmediately - no searching and

matching is to be performed.

In addition, the recognition routine was to be designed in

such a way that it would caLl descriptor subroutines (such as the

Boundary Tracking/FD routine¡ onJ-y until the computer couLd

uniqueJ-y distingrrist the part from the other Parts in the data-

base. Therefore onìy Lhe rni¡rjmum ¡.u¡nber of desc¡iPlors wouJ.d be

computed, rather than calcuJ,ating a complete set each time a Part

is placed under the camera.

Finally, given a clear binary image, it was int,ended to

develop a recognition algorithm that could be 100t reliable,

making it attractive for industrial applications. the computer

would reserve a set of memory locations for each Part, based on

the maximum error of the descriptors. Àny subsequent (new) part

taught to the system that enters a previously reserved memory

space would be rejected. Thereforer âtrY possibility for error

would be detected when teaching the parts to the system. Further

details of this idea are presented in Chapter 4 of the report.



2.0 LITERÀTURE SURVEY

In many machine vision appJ-icat'ions, .êtr object is sinply

represented by its 2-D binary image. Frorn the image, the

boundary curve is often used for identification' Examples of

this include machine Part,s recognition tlOl and identification of

aircrafts t4l.
analysis is to use Fourier Descriptors, a popular method due to

the rotation invariant ProPerty of the Fourier Transform'

zahn and Roskies t 14 I have developed a Parameterization

method for generating Fourier Descriptors using angular bend as a

function of boundary curve length. Persoon and Fu t10l use this

method in a recognition aJ.gorithm which identifies characters

from a data-base of pre-taught characters. Identification is

accomplished by selecting the part whose set of FD's have the

minimum squared distance from the obJect under the camera' Jiang

and Merickel- t 6 I ProPose a different parameterization of the

boundary curve. This involves finding the centroid of the 2-D

object and cal-culating the radial distance to the boundary edge

at each angular increment around 360- '

These boundary Parameterizations are often quite good for

simple geometric shapes, however their inherent weaknesses become

exposed when dealing with shapes that are convex or shapes that

have many thin radial projections. Section 3.2 discusses these

One of the approaches to 2-D boundary curve



Iimitations in more detaiL.

There is an abundance of literature dealing with the problem

of recognition. A ruJ.e-based system for aeriaÌ images of

airports by l,lcKeown t 9I is used to identify domain restricted

objects. The restricted domain allows the rule-base to call the

descriptor routines in an optirnal manner, reducing the processing

necessary for object identification. Similar algorithms have

been developed by Smyrniotis and Dutta t121. Draper tzl observes

that a more generalized rule-base obJect recognition system can

be developed by invoking 'expert' knowledge bases to extraet

specific image information. Thus a link is established between

high and lower level decision making.

Rul-e-based systems provide an attractive option when dealing

with a restricted domain of obJects where the rules can be weII

defined. However, Niblack and Damian t9l observe that reLiabLe

rules cannot be formulated for measures such as texture, shape or

region segmentation. For this reason they conclude that for low

and mid-Ievel vision, procedural programming is aLmost aJ.ways

more robust than rule-base progranming.

Bolles and Cain tll propose a recognition algorithm based on

finding tvro or three key features of an obJect to narrow down the

search space. If a few features can distinguish between possible

interpretations of a obJect, a matching approach can determine
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the best match between image data and object models. A sirnilar

method by Goad t3l uses preliminary feature matching to enhance

runtime performance. Goad also develops a method for determining

part orientation.

orientation of the obJect relative to the camera predicts the

location of object edges. If these edges are found in the inage'

a better estimate of camera location can be determined.

These are common approaches to object, recognition generate

a descriptor code'for the obJect then search for it in a dat'a-

base of previously coded obJects. Alt,hough there are a number of

methods which can be employed to increase the speed and

efficiency of the search, all are limited by the simple fact that

a search is required. These methods are further limited by their

reJ-iabiJ.ity of object identification. ÀIthough some are very

accurate, there is no guarantee that identification wilL always

be correct.

A hlpothesis about the position and

The recognition algorithm presented in this report uses the

descript,ors (in this example, FD's) as the coordinates of a large

multi-dimensional array that holds Part identities in its memory

Locations. Therefore, once the descriptors have been calculated,

the identity of the part is immediately known - processing time

is not required for searching, as the identity is simply

ext,racted from the multi-dimensional array. To successfuJ-Iy

implement such a system, the maximum possible error range of the
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descriptors must be known. A correct calculation of this error

witl- al-Iow the system to maintain 100t reliability. ÀdditionaL

advantages and requirement,s of this met,hod are discussed in

Chapter 4.. To begin, however, descriptors must first be

generated. The following section provides a brief discussion on

the DiscreÈe Fourier lransform and how it can be used to provide

the descript,ors for our recognition algorithn.



3.0 GENERATING DESCRIPTORS

3. I Fourier Descriptors

The Discrete Fourier

[14]:

¡f- 1
r?D(jc) = + | f(n)

" ñ.0

Transform (DFT) is

where,

Using Euler's

ï1 =
f (n) =

þ=
FD(k) =

N=

defined as follows

index of parameterization
object, parameterization function
frequency leveJ-, k = L12,3...N
The Fourier Coefficient calculated
frequency level k
The number of terms used

we can write equation (i) as:

Identity,

.FD(k) =

e-Jo - cog

JV-1ts )Àr Lt¿r .Er o
f (n) cos ( #,

0-Jsin0

at

-jf(n)sin(ry)""""(ij)
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From equation (ii), lre can see that each FD is calcurated by

summing up all the values of the paraneterization function f(n)
while hording the frequency lever k at a constant value (eg. lç =
1). The next FD is calculated by incre¡nenting k and summing aÌI
values of f(n) at the new freguency lever ft = 2. changing the k
value serves to change the weighting value of the cosine and sine
functions. Therefore, each FD is calculated by taking the set of
all varues in f(n) and applying a unique weighting pattern to it
according to the k value. This is the essence of the rotation
invariant property of the Fourier Transform. The values of f(n)
are not analyzed individualry, but rather as an entire set of
val-ues having a characteristic response to a frequency level.

The number of FDrs one wishes to generate (and therefore the
number of k values used), is indicated by the number of terms (N)

used. The selection of the N value is determined nainly from a

trade-off between processing time and accuracy of resurts.
obviously, the more FDrs we calculate, the more infornation we wiII
obtain about the object. However, the processing tiure increases
exponentially with the number of terms, since N2 calculations are
required. The Fast Fourier Transform (FFT) can reduce the
þrocessing load to NlogrN calculations and is therefore a conmon

substitute for the DFT (see Appendix B). For the purpose of this
paperr rrê will simply use the DFT while keeping in mind the
availability of the FFT to increase the speed. We will however use

N val-ues which are porì'ers of z (ie. N = L6,32,64,12g...,) since this



is a requirement when implementing the FFT.

Each of the resulting FDrs yield both a real and irnaginary

component. If we compute the magnitude of these two components, wê

find the result to be constant for the same object, regardless of

size, orientation and starting point. St,arting point refers to

which value in the set f(n) is used as f(0). This value couLd be

any eJ-ement of f (n) depending on the orientation. For additional

reading on FDrs and rotation invariance, see Appendix D.

From the real and irnaginary components, the corresponding

phase angles can aÌso be calculated. The phase angles, however,

must be normalized since they shift when the orientation changes.

This normalization process requires additional process time and

even then does not provide constant results when using symmetrical

objects t4l. Furthermore, most of the infor¡nation about the shape

of the object is contained in the magnitudes which confirms our

decision to ignore the phase angle calculations.

10

Therefore, the end result is a set of nagnitudes, one for each

frequency level, that are characteristic of the shape of the

object. For example, objects having rapidty changing values in
f(n) will yield larger nagnitudes at the higher freguency IeveIs,

while nagnitudes at the lower frequency levels provide more

infornation about general shape. Once the FDrs have been

generated, the question of what to do with thern is an entirely new



problem. Before

pararneterization

11

attenpting to address this problem, the object

function f(n) must be first deternined.

3.2 Object Parameterization

The accuracy of the FDrs are only as good as the accuracy of

the parameterizing function. It would be nice to parameterize the

object with as many variables as we wish, however each additional
variable íncreases processing time in the DFT by an order of N.

For this reason, single variable functions are used most often.

Therefore we will find a way to accurately represent the object

using only one variable.



Method ( i) :

One method is to locate the centroid of the object and

calcul-ate the radial J.ength to the boundary as the anguj.ar

displacement is incremented, thus yielding radius as a funct,ion

of ang1e. This method is sufficient for simple shapes, however

it becomes useless when dealing with obJects having thin radial
projections extending from the centroid at angles that are

multipJ-es of the resolution of the parameterization. The maximum

possible error for this method can be determined by examining the

following worst case situation.

Consider a thin rod one pixel thick and 500 pixej-s long.

For this example, wê shaLl use N = 256 terms, giving us angular

increments of 1.40625o. In this first orientation the radial

dist.ances from the centroid as we approach the end of the rod

are:

r2

f(n) = radiaL dist = {...0,0,0,250,0, A,0...}

Now, if the rod is rotated 0.7031250

resolution), the vaLues of f(n) at the

f(n) = radial dist = {

AII information about the object, is

( one-haJ.f of the angular

end of the rod become¡

.0, 0, 0, 0, 0, 0, 0...)

lost when the rod is rotated



at n(r) + .5(r¡ degrees, where ¡'r = 0,I,2...N-1, and r = 360./N.

Ànother Limitation to this technique.occurs when viewing

convex objects that have features hidden from the line of sight
between the centroid and boundary. Figure la is a typical
exampJ-e that exPoses this weakness. Since there is no knowledge

of the boundary curve coordinates, the computer must search

outward from the centroid al.ong each radiaL J.ength to find the

boundary edge. As onry one edge point can be recorded per

angular increment, it becomes apparent, that this method has

limitations when more than one boundary edge is detected along a

radial length. rf, for example, onry the outermost edges are

recorded, the convex part of the object in figure la is ignored.

This method, therefore, could not distinguish between other

similar objects that have dj.fferences in this convex region.

Figures lb and lc are exanpj-es of images that wouLd produce the

same parameterization function f(n). Àlthough this probj.em does

not reduce the repeatability of the method, it severely l-imits

the abiJ-ity to handle a wider range of objecÈ types.

13



Flgure la - Convex 2D ObJect

Flgures lb, lc - ObJects
for f(n)

14

Yleldlng Equivalent Values
When Uslng Hethod (l)



Method ( ii) :

Ànother method is to cal.culat,e angle change vaLues along the

boundary to yield a parameterizatj.on of bend as a function of

curve i.ength. However it is difficult to obtain accurate and

repeatabJ-e angle vaLues from boundary curves having many sharp

bends.

If the curve is to be sanpJ.ed using N terms, N evenly spaced

points along the C,rr'rr" must be seLected for angle calculations -

Due to the sPacing between the points, there is a potential for

the entire set of sample points to shift when an object is

rotated (i.e. a different starting point is selected).

Consider the obJect shown in figure 2a. Each straighÈ line

segment of the obJect, is 50 pixels long' yielding a boundary

curve length of L - 1600 pixels. If N = 32 terms are used, then

the boundary curve wiÌl be sampled at every 1600132 = 50 pixels

(sample points are indicated by dots along the object boundary in

the figure). For each value of f(n), the angles at two adJacent

sections of the curve must be subtracted from one another to

yield an angle change value. In the first orientation, the angle

change values ( starting at sample point I shown in figure 2a)

are:

15

f(n) = angle change- = {180r-90r-90'180r-90r-90'f80....N}



sample point 1

\*.

Figure 2a

Centrold

16

sample point 1

Figure 2b

centrold
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If the sample points now shift due to an orientation chanqe of

the object, there is a potential for a large error in the angj-e

change values. fn a new orientat,ion (figure 2b) it is Possibl-e

rhar rhe sÈarting point could shift by.5(L/tl¡ = .5(1500/32¡ = 25

pixei.s (one-half a sample spacing). The angle change val-ues are

nol{:

f(n) = angi.e changeo = {45'-90r45'45'-90r45'45'-90.....N}

The average error per term between the two orientat'ions

to 101.25 degrees. When considering the 360o range

change values, this translates to a terror of:

terror f(n) = error f(n) = 101.25o x 100 = 28.lt
range f (n) 360o

For objects with simple geometry, this method is quite adequate.

However, a high eruor is reaLized on objects having many sharp

bends, reducing the chances of generating reliable descriptors.

is

of

equal

angle



Method(iii):

A third method, and the one presented here in this report'

is to calculate the radial distance from Èhe centroid to selected

sample points on the boundary curve, yielding a Parameterizing

function f(n) that describes radial distance as a function of

curve .ì-ength. This technique has a maximum possibLe error that

is much Less than the two methods previously described. Since

the coordinaÈes of the boundary curve are known, there is no Loss

of information when deaJ-ing with thin rods or convex objects such

as in method (i). Furthermore, since radial- distances are used,

method (iii) is not as sensitive to the shifting of the sample

points along the boundary as is found in the angle cal-cuLations

of method (ii).

If the object in figure 2a is again considered in the first

orientation (using N = 32), the radiaL distances as we start from

sample point I are:

18

f(n) = radial dist to boundary
= {111.8, 100, 50, 70.7, 50r 0, 50, 0, 50, 70.7, 50'100...N}

If the object is now rotated such that the sample

the curve shift by .511,/n¡ = 25 pixels (figure 2b

distances are now:

f(n) = radial dist to boundary
= {103.1, 75, 55.9, 55.9, 25, 25, 25, 25, 55.9,

points along

), the radial

55.9,75. . .N)
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The average error per term between the two orientations is equal

to 16.1 pixels. Considering the range of f(n) values, the

percentage error for this object is:

terror f (n) = grq:!-.1[n) =
range f(n)

The terror is much less than in

advantages of this technique r i'¡e

by computing radial distance as

length.

In the next section an algorithm wiL] be developed to

perform curve tracking, allowing us to obtain the coordinates of

the boundary points. This wiLl provide the preì.iminary

information required to compute the radial distances from the

centroid.

method (ii). Recognizing the

shaLl- parameterize our objects

a function of boundarY curve

x 100 = 10.7 t



3.3 Boundary Tracking

A computer program has been written to perform curve

tracking of the object boundary. The flowchart shown in figure 3

will be used as a guide to explain t,he progranming functions.

The aJ.gorithm uses a blank 3x3 window that scans the binary image

from the top to bottom and left to right, until it encounters a

"I" in the lower-right corner. The center pixel coordinates are

then designated as Èhe starting point. The 3x3 window will track

the curve in a cLóckwise direction, generating a pixel-by-pixel

4-link chain code untiL the center pixel encounters the original

starting point.

The moves of the tracking window are coded as Ir2,3 and 4

corresponding to forward, up, back and down respectively. Before

each move, the al.gorithm examines the contents of the window to

determine the required directionaÌ step. There are I pixeJ-s

surrounding the center of the 3x3 wi-ndow, al.lowing a totaÌ of 2e

= 256 possible combinations of I' I I s '|r and "0's " . Obviously' it is

too time consuming to check every single combination for every

pixel step around the curve, therefore a short,cut wouLd be nice.

The anaJ-ysis of the window can be simpJ.ified significantl-y if the

current window orientation is known. (lhis is not t,o be confused

with the orientation of the objest). Figure 4 shows the four

possibte window orientat.ions which can be assigned to the current

20



Figure 3

Flowchart for Boundary Tracking
and FD Generation
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Figure 4 Window Orientations
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contents of the window. Each orientation provides description of

the situation the tracking window is currently in. For example,

from figure 4, we can see that if we are in orientatión I' the

window is considered to be tracking in either the fo::r'rard or

upward directions. Once this is determined, the correct move is

established by inspecting the right-middle pixel for the presence

of a rt0rr. Here, a rr0rr would indicate there is an open path for a

forward move (chain code 1) , othe::wise the window must move up

(chain code 2).

Like all 4 orientations, orientation 1 can be determined by

examining the corner pixeJ-s of the window. The total number of

" I t s rr in the corners provide a good start,ing context. Once the

corner number is known (ie. corners = I or 2 or 3), it is merely

a matter of inspecting key pixels that wiLl confirm the orientat-

ion. The key pixels for each orientation are the five contained

within the hatched lines in figure 4. If the orienÈation and the

contents of the key pixels are known, the next window move can be

easily determined.

The generation of the 4-link chain code is contained within

the whiLe J-oop starting on Page 66 in Àppendix À. Since the

image is scanned from top to bottom and left to right' the

starting orientation is Pre-set, to 1. Once the chain code move

is determined and the x and y coordinates are recorded, the neb¡

configuration of the window is examined and the appropriate
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orientation is assigned. The while loop continues un-uiL the

starting point is encountered at the center pixel_.

It shoul"d be mentioned that this edge tracking aJ-gorithm is
not restricted to the boundary curve. The 3x3 tracking window

wilL foJ-J.ow any line or edge it comes into contact with and

simply stoP when it returns to the start,ing point. Furthermore,

the curve need not be closed since, Çiven any line, the window

mereJ-y traces around each side of the line until it returns once

again to the initiaL point. Thus, every line can be considered a

closed curve, allowing the algorithm to be applied to edge images

arso. For the purposes of this report, however, we wiLl- only use

the tracking algorithm on boundary curves.

The next step is to calcuLate the centroid of the object. The

centroid can be easily found by:

where,

and sinilarJ-y
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The values of min*, min-¡ IIìâxx¡ rnâxy, are found during the

boundary tracking while loop (Appendix À, page 68).

Radial distances to selected sample points on the boundary

must be calculated nov¡. The locations of Èhese sampJ.e points

will be spaced such that, different inage sizes wil-L still
generate the same number of terms. For exampl-e, if we wish to

obtain 256 terms (ie. 256 FD's) for the curve, we must cal-culate

256 radial distances around the curve regardless of the current

size of the object. To accomplish this, the tota] curve length

must be known this was easily obtained during the chain code

generation (number of chain codes = curve length¡. The tot,aL

length is divided by the desired number of terms, yielding the

increment val-ue that is used to advance to the next sampJ.e point

where a new radial distance will be caLculated. The fractional
part of this division is used to est,abLish a correction factor

that will provide slight adJustments to the increment value as s¡e

cycle through the chain code. The rtCrr language code for these

calcu.Lations appears on pages 73 and 74 of Àppendix À. This

block of code sets up t,he increment values and correction factors

used for the radial distance f(n) calcuLations.

After the desired number of radial distances have been

caJ-culated, they must be normalized for variations in obJect

size. This is accomplished simply by dividing each element in
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f(n) by the average radial distance. The DFT or FFT can now be

appÌied to the normalized f(n) vaLues to produce a set of FDs.

The accuracy of these FDs are presented in the next section.

3.4 Descriptor Error

The error produced at a given frequency level is dependent

on the object shape. For example, if we consider a perfect

circle, there is no error at any of the frequency levels, since

shifting of the sample points does not affect the radial-

distances from the centroid. However, a straight Line , for

example, wiJ-l produce a high error at f requency J.eve1 lç = 2. To

understand the reason for this, a closer look at the behavior of

the sine and cosine waves in the Fourier Transform is reguired.

Figure 5 shows the sine and cosine weighting patterns (at

k=2) as they apply to each term in f (n). In this example we wil-I

use N = I terms. Àt frequency level k=2, the Fourier Transform

will- evaluate and sum the sine and cosine components of f(n) as

it cycles through two periods. À maximum error will be achieved

when the sign of the error vaLue for each element in f(n) folLows

the same sign change pattern as the sine or cosine waves.



For example, if the error of each term in f(n)

Fourier Transform will produce a maximum error at

sign change Pattern is:

TERTfS

- 
sßi -+ cos

Figure 5

5

Weighting Patterns at k=2, N=8

In other words, the total error will- be maximized at leve1 k when

the sign (or direction) of each elemental error in f(n) changes

at every (L/N) / 2*k sarnple points along the boundary curve.

(Note that only the pattern of positive and negative values is

significant. Any element of error(n) could be selected as the

starting Point error(0). )

error( n) = {5.0,5.0, -5.0, -5.0 r 5.0,5.0, -5.0, -5.0}
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Referring back to the straight Ìine

apparent why a maximum error occurs at

is 5.0, the

k=2 when the

example, it becomes

k=2. Consider the
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straight line 500 pixels in length with its centroid located at

midpoint. After the boundary tracking, a curve length of L=1000

pixeJ.s is obtained. SampJ.ing the curve using N=8 tellns will
yield a maximum shifting error of .5(L/n¡ = .5(1000/8¡ = 62.5

pixers. Therefore, in one orientation the distances to the

boundary in f (n) coul,d be:

f(n)r = {0, I25,250t L25,0,125,250,125 }

NormaJ-izing f(n) by dividing each element by the average radiat
distance of 125 yietas,

f (n)r. = {0,I,2, 1,0,I,2rI1

rn a second orientaÈion, it is possible that the sampJ-e points

could shift by as much as 62.5 pixels, yielding:

f (n)z = i62.5, 187.5, 187.5, 62.5, 62.5, 187.5, 187.5, 62.5)

Normalizing f (n)z yields:

f(n)z = {.5, 1.5, 1.5, .5, .5, 1.5, 1.5, .5}

The error between

error(n) = {.5,

For a straight

sampJ-e points,

the two orientations is:
5, -.5, -.5, .5, .5, -.5, -.5)

line, the error

thus producing a

To maximize the error

changes sign at every (L/N) I 2*2

maximum error at k=2.

at the other frequency levels, it is



simply a

shifting errors of .5(L/N) pixels that change sign every (L/N)

/Z*X sample points. To obtain a maximum shifting erior, objects

having only thin Line radiaL projections from the centroid must

be used. This wiII ensure that sample points wiLl always shif+-

directly towards or away from the centroid. The straight line

has two radial projections from its centroid. Three radial

projections from the centroid wiII generate errors that change

sign at every (L/N ) I 2*3 sample Points and therefore will

produce a maximum error aÈ Level k=3. Figure 5 shows the shapes

which wiÌL produce maximum errors at each frequency level

indicated. Note that for k=1, the shape required is a thin line

with its centroid at one end.
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matter of determining which shapes will yieJ-d maximum

A smalL computer routine has been written to calculate the

maximum normalized error aÈ a frequency i,evel indicated by the

user, and to propagate this error through the Fourier lransform

(see Àppendix A). fhe progran was run for the first ten

frequency levels using 256 terms. À summary of the results is

shown in TabLe I.

Note that the error increases linearLy as the frequency

levels increase. This is due to an increase in the normalized

shifting error found on the obJects that maximize the higher

frequencies ( such as the shapes shown for k=5, k=6 ) '



centroid

Figure 5 - Shapes Producing Maximum Error Magnitudes
at Frequency = k

30

k=3

k=2

k

k=4

5



TÀBLE I

Frequency Level k Normalized

1.... ...0.255
2... ....0.764
3.... ...1.255
4... ....1.764
s... ....2.273
6... ....2.782
7... ....3.29L
8... ....3.800
9... ....4.309

10... ....4.818

The l-ast frequency level k=N, represents the average radia]

distance. As indicated in Table I, there is no error associated

with the last frequency leveI. The average radial distance will

not be affected by the shifting of sampJ.e points aJ.ong the

boundary curve, provided that the sanpling frequency is at least

twice the highest frequency in the image. For exarnple, for a

straight l-ine, the highest frequency is only 2. Therefore' at

Least 2*2=4 terms must be used to ensure that the average radial

distance remains constant betvreen rotations. Although it is

highly unJ-ikeJ-y that we wil-l encounter images having frequencies

greater than 256/2 = L28, it should be noted that some error will

occur in the normalizing factor if, for examP1e, the object is a

gear with more than 128 teeth, ox a star with more than 128

points. For the purpose of this report, the maximum frequency in

the images wilL be restricted to less than 128. If greater image

frequencies are to be encountered, the nr¡mber of terms should be

I

256

Error, err(k)
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0.0000



increased to maintained a

rotations.

With these error

recognition algorithn

dimensional array.

resulting advantages

folLowing chapter.
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constant average radial J-ength between

calcuLations, we are now ready to set uP a

that wiLl st,ore part identities in a rnulti-

Details of how this is accomplished, and the

and limitations, are discussed in the



CHAPTER 4 OBJECT RECOGNITION

4.1 Multi-DimensionaJ. Array Concept and Redundant Coding

As mentioned earLier in Chaptex 2, the recognition algoritfun

presented in this report uses the FDs as the coordinates of a

large multi-dimensional array that holds part identities in its

memory .Locations. Once the descriptors have been calculated, the

identity of the part is immediately known - Processing time is

not required for searching. To successfuJ-J-y implement this idea,

the maximum possible error range at each frequency level must be

known. À correct calcul.ation of this error will al-Iow the system

to maintain 100t reliability.

Thus far we have calculated the descriptor error for each

frequency level. The foundation of the recognition algorithm is

based on how the real num.bered FDs are cLassified into integer

coordinates of the mul.ti-dimensional array. This classification

uses the error calculations to determine which memory locations a

given object wil-l- occuPy.
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To classify the FD's into array coordinates, interval-s of

real numbers must be defined such that each intervaL corresponds

to an integer value. Let the range R of an FD be subdivided by B

boundaries bl ¡bz. . .b., each sPaced at equal distances d. If

C'¡Cz...Co are integer coordinate values, where D = the number



descriptors being

FD1rFD2...FDo can
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used, each of the real numbered descríptors

be classified as follows:

FORk:1
FoRj:

IF
THEN

END LOOP
END LOOP

Consider the following

system (we shall call

set of 6 FDrs (D : 6)

section 3.2.

TOD
1 TOB

bj <:.FDk < bi+1
ck=l

example where we wish to teach a part to the

this the teach rnode) . Table II is a sarnple

generated using method (iii) described in

Let the real number range R of the FDU values be O.O to 50.0.

If we subdivide the positive real number range vith 5 boundaries (B

= 5) and set b1 = 0.0, b2 = 10.0, b3 = 2O.O,

b4 = 30.0, b5:40, the resulting integer code is c1 = L'

C2:2, C3:1, C4= 4, C5= 2, C6 = 1. This ObjeCt Would then be

stored in nenory location arraytll t2l t1l t 4)l2l t1l. Clearly, this

approach is insufficient since the error at each freguency leve1 is

greater than zero, allowing an object to be coded differently when
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differently when different orientations are encountered. What is

required is to incorporate an error space that extends a distance

of +/- err(k) from the boundaries b2'b3...bes

TEÀCH MODE CI,ASSIFICÀTION SCHEI'ÍE

FORk=1 TOD
FORJ=1 TOB

IF br-r + err(k)
THEN cx = j
IF br err(k) <=
THEN c¡< = j or j+l

END LOOP
END LOOP

Therefore, if ârr FDt. value is detected wit,hin an error space (ie.

between b1 err(k) and br + err(k) ), the object can be

identified using either one of the two array coordinates c¡. = j t

of c¡< = j+1. using the error values calculated in section 3.4,

err(k) = {.255' .764, 1.255, I.764t 2-273, 2.7821 t the obJect

would now be stored in 2 different memory locations:

<= FD¡.

FDx br+

the FDs =

by,

bs

bs

parttll t2l t 1l t4 I t2l t 1l

- err(k)

err ( k)

19.5 value has fal-len within the error space defined

The object can -now l¡e

- err(5) = (20 2.273)

+ err(S) = (20 + 2.273)

parÈt 1l t2l t 1l t4l t3l tll

-idenÈif ied 'usi.rtg cs : 2 |

L7 .727

22 .27 3

and

of .cs : 3. These
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redundant codes account for the maximum error that could occur

when the object is rotated. An error spacing of b1 +1- err(k)

must be used in the teach mode to ensure .that when this sarne

object is presented to the camera in the identification mode, it
is guaranteed that the code generat,ed will be one of the two

shown above, regardless of the part,s orientation.

Now in the identification mode, the cLassification scheme is
simply:

I DENT I F I CETT O¡I I,IODE CI.ÀS S I F I CAT I ON SCHEI.IE

FORk=1 TOD
FORj=1 TOB

IF b¡ <= FD¡. . b1*r-
THEN cx = j

END LOOP
END LOOP

Error spaces are not required in the identification mode since

the teach mode has el-iminated any possibiJ-ity of

misclassification. This wiLL allow the identification mode to

immediately classify the FD¡. val-ues to integer coordinates.

Of course, there is a chance that a net¡ part taught to the

system will colLide with any existing memory Location containing

a part identity. If a collision is detected, the computer will

inform the user that there are not enough descriptors to code the

part. Further details about dealing with collisions are

discussed in section 4,4, Data-base Capacity.



4.2 Computing a Minimum Number of Descriptors

Às mentioned earLier, there are advantages to using

descriptors as coordinates of an identity array-. The most

obvious is that search ti¡ne is not required since the array

coordinates can immediately extract the part identity from the

data-base. rn addition to this, the argorithm can aLso expJ-oit

the fact that sometimes only a few descriptors are required to

identify a part.

In the teach mode, every descriptor is calcui.ated and

classified as a coordinate(s). However, in the identification
mode it not always necessary to compute everT descriptor. often,
there is sufficient information to dist,inguish a part from the

others in the data-base after computing only two or three

descriptors. To take advantage of thisr wê must develop a scheme

to store part identities after each descriptor is calcul-ated.

For exampfe, if we wish to teach parts to the system using 6

FD's, with each FD subdivided by 5 intervals and 4 error spaces,

the identity array is:

37

partlc'l Ic= ] [c. ] [c" ] [cs ] [cs ]

where each cr. = It2r3t4 or 5
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If we initiaLl-y set cr¡cz...ce = 0, then compute FDr and classify

it as the coordinate crr we can store the part's- identity in

memory location partlc:.l [0] t0l t0l t0l t0l. After comput.ing the

next descriptor FDz, the part's identity can be stored in another

memory Location partlc'l lc'l [0] t0l t0l t0l.
redundant codes generated during this process would also be

stored. )

descriptors are caj-cuJ-ated, resuJ-ting in an identification code

for each descriptor level 1,2...6. If this was the only Part

taught to system, then cJ.early the part could be later identified

(in the identification mode) after the first descriptor without

requiring any further FD calculations. When more than one part

is taught to the system, the memory locations generated at each

descriptor level- must be inspected and altered in the teach mode

as follows:

TEACH MODE I'IEMORY LOCATION INSPECTION

The process can be repeated untiL all of the

(Note that any

IF part I c:. ] [cz
THEN partIcr ] [cz

IF partIcr ] [cz
THEN partIcr] [c:

If a memory location already contains a part identity, its

contents are ehenged to -1, indi-caling the occupying part can no

longer be uniquely distinguished at the current descriptor 1evel.

Thus when a new part is taught to the system, the teach-routine

will store the part's identity at the first unoccupied memory

Ic.
Ic=

Ic.
Ic.

Ica ] [cs
Ica ] [cs

Ic+ ] [cs
Icc ] [c=

Ic.
Ic.
Ic.
Ic-

unoccupied
part identity
occupied
-1
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location defined at descriptor level k, and at locations defined

by each subsequent level- untiL the Last, ÌeveL Jç = 5 is reached.

Once the parts have been taught to the system, the

identification mode is invoked and the following questions are

asked at each descriptor leveL:

IDENTIFICÀTION I'ÍODE MEI1ORY LOCATION INSPECTION

fF parttcrl[c=][c'][c"]lcs][ce] = a part identity
THEN part is found

IF partIc'] [c'][cs ] [c" ] [cs ] [ce ] = -1
THEN compute next descriptor

After each descriptor is computed in the identification mode, the

corresponding memory location is checked for a part identity. If

a part identity is present,, the part has been found, othe:r'rise

another descriptor must be computed. Thus in the identification

mode, onJ.y the rninimum number descriptors are caLculated, saving

processing time whenever possible. Of courser as more and more

parts are taught to the system, there is a decreasing chance of

identifying parts at the lower descriptor levels. The following

secÈion discusses the capacity of the data-base and what options

are available when it becomes saturated.



4.3 Data-base CaPacitY

If k descriptors are used, each uniformly distributed over a

range R and subdivided into n intervals, the number of memory

Iocations available is nk. Using the example of 6 descriptors

subdivided into n = 5 int,ervals yields 56 = f5625 memory

locations. The actual capacity, however is much less than this

due to the generation of redundant codes. If, SâY, each part on

the average has six possible codes, this number would be reduced

by SlA, yielding 2604 possible parts. The capacity is simply:

capacity = nk
codeo--

where, code---

Capacity is dependent on the average nurnber of possible codes per

part, which in turn depends on the size of the error spaces

2*err(k) at each frequency level. The more accurate the

descriptors are, the greater the capaciÈy. The average number of

possible codes per part can be statistically calculated using the

following equation:
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= âvêrâ9e number of possible
codes per part

Ð
eodeo*= Ð T# (r-p)(rå)Ph2h" "'(iv)

å.0



where, D = total number of descriptor
Level-s used

h = number of descriptor levels
having an FD detected within
an error sPace

p = average probability of an FD landing
within an error space at frequency
Ievel.s þ = Lt213...D

pÅ +

ft = range of descriptor

n-l = number of error spaces

D

Ð
k.1

Equation (iv) provides a weighting factor for each possible

number of redundant codes that could be generated (i.e. 1, 2, 32,

64, 128...2t'). Consider an example, using þ = 6 FD's and the

err(k) vaLues calcuLated in section 3.4. If each descriptor

range R = 50 and is subdivided into n = 5 intervaJ.s, we can

cal-culate p from equation (v):

2+etr (k) * (¡-1¡
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r............(v)

Now, using equation (iv)

capacity of our data-base

p= +
b

6

Ek.1
2terr (.k) * (5-1)

50

r wê find codêo--

is then:

= ,252

3.85 codes. The



capacity = rì]<
COd€---

There is enough room in the data-base to theoretically fit

4058 objects into the data-base. The probLem of trying to 'fit'

object codes into a data-base can be best explained by

considering a 2-dimensional coordinate system of area = n)<

representing the data-base, and smaLler areas = codê---

representing each object. When an object is taught to the

system, its area is pJ-aced on the 2-D pj.ane. Às more parts are

taught to the system. more object areas cover the plane. ff' at

any time, one area overlaps with another (equivalent to a

coLLision a the last descriptor leveJ-), the current object being

taught to the system must be removed. Thus' every Part has a

reserved memory area that cannot be accessed by any other part.
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= 15625 memor¡¡ l-ocations = 4058 objects
ect

Clearj.y, if in our example, all 4058 objects were

successfully coded, the areas for each obJect wouLd have to fit

together with no wasted memory space. This situation will onJ.y

occur if the distribution of coordinate vaLues for the object set

is perf ectly uniform at each descriptor level-. Othe:*¡ise a

capacity less t,han the theoretical value of 4058 should be

expected. The expected capacity, therefore, depends on the

descriptor distribution of the objects being coded. To maximize

capacity, a statisticaL study should be performed on the object

set to determine the descriptor disÈribution. The spacing of the

boundaries can then be adJusted to allow an equal probability of



cJ,assifying descriptors in each of the n subdivisions.

At this point, one may be asking themselves if memory can be

used more efficient,ly by varying n (the nr¡mber of subdivisions

used in each descriptor range). For exampfe, say our goal is to

have a theoret,ical capacity of 4000 obJect,s. lùe know this can be

achieved using 6 FDs, each subdivided into n = 5 intervals (since

¡!< / code--- = 4058). However, this can also be achieved using

more FDs and less _intervals. The val-ue of code--- in each case

must be compared to determine which method uses Less memory

Iocations per object.

Figure 6 is a pì.ot of capacity against code--- obtained

using equations (vi) and (v). From the graph, we can see that
as n increases, less memory locations per obJect are required to

achieve a given capacity. Therefore, our goal should be to

maximize n (i.e. use as many subdivisions as possible at each

descriptor level- by naking the subdivision width d as srnall as

possible). It must be observed, however, that each subdivision

of width d cannot be less than the size of err(k). Otherwise it
would be possible for descriptors to falL into both the +/-

err(k) error space surrounding boundary b1, and the +/- err(k)

space surrounding b1*1. The teach mode would then not be able to
generate all possible codes t,hat the identification mode could

find. Therefore, lrê conclude t,hat maximum memory usage is
achieved at the lower width limit of d, when d = err(k). When
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subdividing a descriptor distribution which is not uniform, the

smal-lest subdivision shoui-d be set equal to the size of err(k).

Perhaps a more important question is, what happens when a

Part is taught to the system and a collision occurs at the last
descriptor levei-? Even if a statistical analysis is performed to

determine the descriptor distribuÈion, and the interval sizes are

adjustedr someone wiLL aJ.ways try to code more obJects. The

comPuter can easily inform the user that there are not enough

descriptors availab-le to store the part's identity in unoccupied

memory l-ocations. However, what should be done with this part

that cannot be 'fit' int.o the data-base of existing part

identities? There are basically two options available. The

first is to simply del-ete the part from the data-base,

acknowl-edging that it cannot be coded with the existing number of

descriptors being used. The second option is to add the part to

an array holding the identities of parts that have previously

collided at this last descriptor Level memory location. When

trying to identify this part later, the system will list the

contents of the array, indicat,ing that one of the listed parts is
correet.

Àlthough the second option provides some compensation to

the problem, more descriptors are still needed to uniqueJ.y

identify the part. The first option is sirnple and is consistent

with our goaÌ of maintaining a 100t guarantee that aLl parts
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taught to the system wilL be correctLy identified in the

identification mode. Parts that cannot be unique-Iy coded will
simply be weeded out during the teach mode. If the system is to

handle more parts, it must be expanded so that it can access more

descriptor routines and maintain a larger identity array.

ft should be noted that expanding the system is not a

problem. The identity array can be extended and new descriptor

routines can be added within the main whiLe loop of the program.

Here there is an advantage over the classic rule-based approach

where at least one new ruLe must be added to the system every

time a new part is added. By lengthening the array and

increasing the descriptor levels, our recognition system is

equipped with the capacity to code several more objects before

another expansion is required. Furthermorer âs a rule-base is

developed, the rul-es guickly become specific to tlpes of shapes

that, are being dealt with. Once a rule system is devei-oped,

applying the same set of rules to an entireJ-y new and different
type of part group can be very inefficient. To fully classify

.:h" new parts, it is likely that a major portion of the rul-es, if
not all- of them, have to be rewritten. The algorithm presented

in this report, although much like a rule system, is portable

between obJect groups. It can be either expanded or the data-

base can be simply reset if it is desired to totally transfer the

system to the new object group. Since there are no rules to

rewrite, the transfer can be immediately implemented. If it i.s
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thought to increase the efficiency for classifying the new objects,
the order in which the descriptor routines are called can be

changed

Àn advanced system using this recognition algorithn would have

access to many descriptor routines, greatly reducing the chance of
a collision at the last descriptor level. l{hen teaching a part to
the system, every descriptor routine rsoul-d be executed, storing the
partts identity at all the locations previously discussed. fn the

identificatÍon mode, the computer sirnply has to find the first
memory location containing a part identity. The burk of the
processing time, therefore,

a minimal amount of work to
the identification mode.

Àlthough the system can maintain 1008 reliability and will
compute only the rninimum number of descriptors required to identify
a part, the memory requirements are quj-te Iarge. As a defense, it
is pointed out that memory boards are becouring more affordable as

they are now mass produced. Furthermore, it is accuracy and

processing tine that pose the greatest chaltenge for object
recognition.

IS

be

taken up in the teach mode, leaving

done in the real time conditions of



C}IÀPIER 5 EXPERIMENTAI, RESULTS

5.1 Test Equipment

The program was written in the TURBO C language on a 286

microcomputer. Image acquisition was accomplished using a Sony

CCD camera and a DT-IRIS frame grabber board. DT-IRIS software

routines were linked to the C code to control the image

acquisition from within the program. Binary images with a

resolution of 5L2 -x 480 pixels were displayed on an RGB Sony

monitor

5.2 Experiment,al- Method

The Boundary lracking/ED routine, the Teach Mode routine and

the ldentification Mode routine are listed in Àppendix À. The

flowcharts shown in figures 7 and I provide an overview of the

programming functions in the teach mode and ident,ification mode.

48

In the teach mode, the user can load in the existing data-

base if they wish to add more parts to a set of previously taught

parts. If the existing data-base is no longer needed' it can be

reset, allowing a new data-base to be built.
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Before a new part is taught, the integer coordinates

cr¡cz...c¡. are set to zero. This alLows the conputer to store

part identities at each descriptor LeveL as described in section

4.2. The first descriptor routine is then called which reÈurns

t,he first descriptor value. Àfter this real number is classified

to its integer coordinate, the computer checks if the descriptor

fell within an error space. If sor the appropriate number of

duplicate codes will be generat,ed. The memory location for each

code is then inspected. If a part ident,ity already exists at one

of the memory l-ocations, it is .set to -1, indicating that it can

no longer be uniquely identified at the current descriptor level.

If unoccupied, the identity of the part currently being taught is

wriÈten to the memory location. Once aII descriptors have been

processed in this manner, t,he computer checks if there s¡as a

collision at the last descriptor Level. If so, the current part

being taught is rejected and the memory locations of the data-

base are restored to their previous values. The user then has

the option to teach another part or exit and save the data-base.

The identification mode routine is similar to the teach mode

except that the classification scheme does not contain error

spaces and redundant codes are not generated. Descriptcrs are

simpJ.y processed one at a time until a memory location is found

that contains a part identity.



Figure 7 Fi-owchart, for Teach ltode Routine
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F.l.owchart for Identificati-on
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Test objects were obtained by drawing random shapes on white

paper using a black felt marker to produce a cl-ear binary image.

A total of 23 object shapes have been taught to the system using

the first 4 Fourier Descriptors, each subdivided by 4 error

spaces of distance 2*err(k). During testing, it was found that

objects wouLd yield FD's having an error in excess of the

caÌculated err(k) values. This was due to the shifting of the

centroid Location between rotations and size variations. As this

error is dependent, on the digitizing resolution rather than the

parameterizing method, it was not included in the error analysis

in section 3.4. À theoretical calculation of the digitizing

error is beyond the scope of t,his reportr ês it depends not only

on camera resolution but also on blurring and lighting

conditions. Future improvemenÈs in digitizing resoJ-ution wilL

reduce the effect of this J-imitation, however, for the current

512x480 array, iÈ was found that the size of the err(k) values at

the first, 4 frequency ÌeveIs had to be widened to at Least 2.0 to

account for the additional error incurred with digitization.

A total- of 2 object shapes have been reJected from the system

during the teach mode due t,o collisions occurring at the last
descriptor ÌeveI. These parts y¡ere later successfulJ-y coded by

'adding two new descriptors, shortest and longest radial length.

À11 objects have been tested in the identification mode, each in
at least 3 different orientations and at 2 different sizes. All
of the test objects y¡ere correctly identified each time they were

presented to the camera.
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Figure 9 is a test image showing the boundary trace and 256

radial lines extending from the centroid. Figure 10 lists the

output for the identification mode, indicating the reaL number

descriptor calculations and the integer cLassificqtion' Note

that the object has been identified at descriptor level 4 '

Further descriptor calculations were unnecessary' Àdditional

test images and program results are shown in Àppendix c.



Figure 9 Boundary Trace and Radial Lines
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Figure 10 Identification
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CHAPTER 6 CONCLUSIONS À¡{D RECOMT.fENDÀ,TIONS

.A,n algorithm for object identification of two-dimensional

binary images has been presented. .à,lthough the discussion has

been limited to using Fourier Descriptors, it should be noted

that virtuaLly any type of descriptor can be used provided that

the maximum possible error is correctly calculat,ed. Efficiency

and reliability qake this method well- suited for industrial

applications. The multi-dimensional aray concept alLows onJ-y

the minimum number of descriptors t,o be calculated and does not

require any additional processing time for searching and

matching. Redundant coding accounts for the maximum possible

error of each descriptor, enabling the system to maintain 100t

reliability.
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The largest drawback to the system is that, for a randomly

selected group of parts, there is no guarantee that aÌl parts in

the group will be successfully coded with the existing number of

descriptors. If a collision occurs at the last descriptor level,

the identity array must be expanded to include coordinate vaÌues

calculated from additional descriptor routines.

expanding the system is not a problem, the memory requirements

increase exPonentialJ.y with the number of descriptors used.

Increasing the efficiency of memory usage can be accompJ.ished by

subdividing the descriptor range as much as possibJ-e while

Àlthough
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ensuring that the frequency distribution is uniform between each

subdivision.

For this aJ-gorithm, the bulk of the work remains in setting
up the syst,em, choosing accurate descriptors, calculating their
maximum error, and expanding the system when it is necessary to

code a greater number of parts in the teach mode. Once this
preparatory work is completed, t,he identification mode is
equipped with the abiLity to identify the coded obJect,s with 100t

reliabiJ.ity.
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f * * ** **** * * ***********!k*

This routine generates maximum error magnitudes at the selected
frequency indicated by the variable FREQ. The number of terms
can also be changed. The J-ength of the radial projections from
the centroid is indicated by max_length. Using FREQ, max_Iength
and terms, the error shifting along the boundary curve is matched
to the sign change pattern of a periodic function having
frequency = FREQ.

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * x * f

#incl-ude <stdio. h>
#incl-ude <math. h>
#define PI 3.14 L5926
#define terms 256
#define FREQ 2
#define max length 250

FD ERROR ROUTINE

main( )

{
int srûrcrki
float temp, dfcr,
float error1256J,
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****** ***** *****************

f**** Determine the normal-ized shifting
points required between sign

ave_tength = max_Length / Z;
shift = ( ( (FREQ*max_IengLh*2) / terms)
change_sign = (terms/fnng¡ * .5;

dfci, err[256];
change_sign, shift, ave_Iength;

f********* Match the sign change pattern
cosine function of frequency =

n=0;
for (c=0; c
{
for(s=1's<=
for( s=1's<=
)

<= FREQi c++¡

change_sign ; s++)
change_s ign ; s ++ )

error and the number of sampJ-e
changes of the error ***¡r******* /

5) / ave_length;

{
{

to that of a sine or
FREQ ***************xxf

error I n ]
error I n ]

shifti n++; ¡
-shifti n++; ¡



f********* nr"n.F::Trll"
magnitude

printf
printf
printf
printf

" \n\n\n\n\n\n " )

forlk=1;k<=16;k++¡
{

("

dfcr=0;
dfci=0;
for(n=0; n<=
{

error function errorIn] through the
Transform to determine the resulting error******************************** ****** f

temp=(2*PI*k*n_)
dfcr=dfcr+(error[n]
dfci = dfci (error[n]
)

ì
ERROR MAGNTTUDES FOR
MÀXIMIZING FOR FREQ.

Freq. k

errIk] = hypot(dfcr,dfci)
printf ( "

(terms-1); n++)

I,IETHOD (iii) \n");
K - tld \n\n\n",FREQ);
Error Magnitude\n\n" ¡ ;

*
*

terms;
cos ( temp )
sin(tenp)
* 100;

B3d
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). /,
)/

terms;
terms;

27.4f\n",k,errIk] );



ERROR MAGNITUDES FOR
MÀXTMTZING FOR FREQ.

Freq

1

2
3
+

5
6
7

B

9

10
11
t2
13
L4
15
16

METHOD ( iii )
K=2

Error I'fagnitude

0.0000
0.7640
0.0000
0.0000
0. 0000
0.2549
0.0000
0.0000
0.0000
0. 1532
0.0000
0.0000
0.0000
0.1097
0.0000
0.0000

ERROR MAGNITUDES FOR
MÀXTMIZING FOR FREQ.

Freq. k
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I
2
3
t

5
6
7

B

9
10
11
I2
13
I4
15
16

METHOD ( iii)
.Ö\-I

Error Magnitude

0.2541
0.0000
0.0849
0.0000
0.0510
0.0000
0.0364
0.0000
0.0284
0.0000
o .0232
0.0000
0.0197
0.0000
0 . 0171
0.0000



f *******t*** BOUNDARY TRÀCKING AND FD ROUTINE *tr************i*t*t*

The following program calculates a pixel-by-pixeI 4-Link chain code
from 5t2x480-inpui images. Radial distances from the centroid
t,o points on the boundary curve are calculated to generate an
obJècc paramererizarion iunct,ion ldisttn] ) .which describes radial
distance as a function of curve length. Finally, the Discret'e
Fourier Transform is aPPlied to f(n) yielding a set of
characteristic coefficiénts which are invariant under rotations '
size and starting Point.

* * * * t t * * t * t * t * t i * * !r t * * * t * * * * * !r * * * * * i * t, * * * * * * t * * t * * * t rr * * * * * * t * t t * * * * t * * f

# include
# include
# inc l-ude
# inc Iude
# inc Iude
{Í inc lude
# inc Iude

<stdio. h>
<stdlib. h>
<stddef. h>
<aIloc. h>
<math. h>
"isdecs.h"
"iserrs.h"

#define terms 256
fdefine PI 3. f4 L592654

int pixel[40][s12];

fourier( )

{
extern int start';
extern char oPPs;
extern inÈ *x-coord, *y-coord, *word;
extern int pixef [40] [512], rarrayì
extern floaÈ descriPtor[ 6 J ;
float x-momentf=0 ry-momentf=0 rmassf=0)
fIoat. mãx dist=0,min dist=5000;
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float dist[600], x-dist,Y-dist;
ftoat dfcr[7], dfcilZ¡, temP, mag[7]' point2;
ifour srep) io*r, hiòh, Oec,i ceniioif,y_centroif,normal, f;
int x centroid,y-centroid t x¡YrsampleSt,L,k;
int y-maX=0, y-min=600, x-max=0r- x-min=600;
int 1;), orieñEation = 1, s, end,point, r. status2;
int. start-pti, startjt j ' indx, n, direction, corners ' a'
int splitlÍound=0, cornl, corn2 , corn3 , cornd . t' j-t ;

char FILENÀHE 1.321;
Iong offset,m
int bitarraYI

int, one= 0, zeto=255, colorl= 128 i

= 1 0x000 1, 0x0002,0x0004 ' 
0x0008 ,

0x00 10, 0x0020, 0x004 0, 0x0080 ,

0x0100, 0x0200, 0x0400, 0x0800'
0x1000, 0x2000,0x4000,0x8000 ) ;

status;



f****** Initialize DT-IRIS frame

if ( start == t )

{ is_initializel ¡;
start=0;
is select_iIut(5);
is-select-olut1 6 ) ;
is-set _syñc_source( I ) ;
is-seIãcL_iñput_f ràme ( 0 ) ;
is-se lect-ouLpuã_t rame 1 i ¡is-displait t I I
)

is_acquire( 0,1 ) ;
is set background( 150 ) ;

grabber **** *** f

f***** Acquire a binãry 512x480 image
in *(word + offset)

offset - -l;
forli=0;i < L2;i++¡
{

t

x=Y=o;
k=40*i;
is set active_region( k,0,40,
is-get-regionl 0, epixel ¡ ;
is_put_region( 1, epixel ) ;
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forlj=0; j . t
{
offseÈ++;
for (bit = l5

if (x == 512
if(pixeltyl

* (word +

else
* (word +

x++ i
)

and store in bit-packed format
****+ f

280; J ** )

bit >= 0 ; bit-- )

{ x=0 ìY++ ì Ix] == one)

512);

offset) I = bitarraytbitl;
offset) &= -bitarraytbirl



f***** Scan the image from top to bottom until
encount.ers a ,, I,, *****f

i=j=k=
x = Y = o;
f or (of f ser.
{

if ( x == 5L2\ ix=0;y++; Ifor (bit = 15; found ==
{

if1*(word + offser) &

found=1 ;
x++ i

)

m = n = l;

- 0; found ==

x__; y__ ì

offset--; bit++;
*(x_coord+k) = x;*(y_coord+k) = yi
k++;
start pti = offset;
start ptJ = bit;

is_set_active_region ( 0, 0, 5L2, 5I2) ¡

0; offset++¡

0 e& bit >= 0 ; bit--)

bitarrayI bit ] )

the 3x3 window

l* Track the boundary of the object unt.iL the 3x3 window returns to
the initiaJ. starting point. As the window follows the curve, itwiII generat.e a 4-link chain code corresponding to the direct.ional
moves . * /
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if ( bit == 15 ) splir=I; \
if (bit == 14) spi.iL=2;
if( (bit t= 15) && (bir t- t4) ) splir=3;

while
{ir (

(1)

(m ==
(m ==
(m ==
k

starr_pti¡ && (n
srart_Pri-1) &&
srart_Pt,i+I ) &&

50 ) ) break;

== start
n == 0)
n == i5)

_pt:r
)

)

",1'
&&



switch( split ¡ i
case I :

switch ( orientation 
)

{ case I : if i1*1word + offset,-32) ç bitarraytbitl) == 0)
i bit--;x++; ¡

else
{ offset = offser 32¡y--¡ I break;

case 2 : if ( (*(word + offset-65) e bitarraytOl) == 0)
{ offset = offset 32;y--¡ Ielse
{ bit++; x-- ,ì | break;

case 3 : if ((*(word + offser-33) ç bitarraytil) == 0)
{ bit++ix--; Ielse
{ offset = offset + 32;y++¡ ¡ break;

case 4 :' if ((*(word + offset-I) & bitarrayt0l) == 0)
{ offset = offset + 32;y++¡ ¡

el"se
{ bit--; x++, } break;

) break;

case 2 z

switch lorienration)
{ case I : if ((*(word + offset-32) ç bitarraytbir,l) == 0)

{ bit--;x++; }
e.l_se

{ offset = offser 32;y--; I break;

case 2 : if ((*(word + offset-64) & bitarrayt15l) == 0)
{ offser = offset j2¡y--¡ I .j;

else
{ bir++;x--:. I break;

case 3 : if ((*(word + offser-33) ç bitarrayt0l) == 0)
{ bit++ ì x-- i I

else
{ offset = offset + 32;y**- ¡ break;

case 4 : if 11*1word + offsety t LìLt,arrâ-.-[ i]lr == rì)
{ offset = offset + 32;y*n; ¡

eL se
{ bit--;x++; ¡ break i

) break;
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svritch ( orientat ion )

{ case I : if ((*(word + offset-32) e bitarraytbitl) == 0)
{ bit--; x++; }

e Ise
{ offset = offset 32iy--; } break;

case 2 z if ((*(word + offset-64). a bitarrayIbit,+I]) == 0)
{ offser = offset 32¡y--¡ }

else
{ bit++;x--; } break;

-:: case 3 : if ((*(word + offset-32) ç bitarraylbit+2]) == 0)
{ bit++;x--; i

el se
{ offset = offset + 32;y++ì I break;

case 4 z if ( (*(word + offset) & bitarrayIbit+lì) == 0)
{ offset = offset + 32;y++; }

e_Ise
i bit--;x++. ) break;

i break;

case 3 :

if
if
if
if
if

bit == 16) {offset--; bit=0; }
bit == -1 ) {offset++; bit=15; i
bir == r5) split=l;
bit == l4 ) split=2;
(bir != 14) && (bit != 15) ) splir=3;

l* Store maximum and minimum x and y coordinates of image *l
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if(y > y_max
if(y < y_min
if(x > x_max
if(x < x_min

l* Store the x and y coordinates of the current window position *l

t(y_coord+k) = Y ì

l* Return Eo calling routine if -1x3 window beccmes .lisrr-r-ente'l { /

if ((y > sll) ll (y . 0) ll (x > sll) ll (x < 0) ll tx > 10000¡¡
return(opps='1') i

y_max=f i
y_min=y;
x_max=x;
x min=x;

isjutjixel (I,y, x, 1, &colorl ) ;
k++;m=offset;n=bit.;



l* Inspect key pixels to determine

switch 1 spt it ¡

case l:

corn I =corn2 =co rn 3 =c
if 1 

* (word+offset-65
if ( * (word+offset-64
if 1 

* (word+offset
if1*(word+offset-l

corners = corDl + corn2 + corn3

if (corners <= 1)
{

if((cornL-corn2
orientation = l;

if((cornl+corn3
orientation = 2 i

if((corn2+corn3
orientation = 3;

if((cornl+corn2
orientation = 4 i

if ( (corners == 0 )
orientation = / ;

orn4 =0;

nexË orient,ation

& bitarrayI
& bitarrayI
& bitarrayI
& bitarray[

1l)
rs l
rsl
1l)

cornl=1;
) corn2=1;
) corn3=I;

corn4 = I ;

if ( (cornets == 0) && (r(word + offse
orientation - 1 ì

)
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+ corn4;

if
i
if
{

corn4 )

corn4 )

corn4 )

corn3 )

*/

(corners == 2)

(

if
if
if

== o)

== o)

== o)

== o)

( corn3 + corn4 ) == 2

( * (word * offset-33 )
( r (word + offset-32 )
( (* (word + of f set.-33 )

1 
* (wor( + offset -32)

&& (*(word + offset-65) ç bitarray[0]

if ( (corn2 + corn3) ==
{ if (* (word '+ of f set-l

if (*(word-+ of fser-65
if ((*(v¡ord + offsec-1

(*(word + offset-6

if((cornl+corn2)==21
{ if 1*(word + offset-33) & bitarraylll

if (*(word + offset-32) & bitarray[15
if ((*(word' * offset-33) ç bitarrayIl

(*(wor<ù + offsec-32) ç bitarrayIl

)

e bitarrayI t ]
& bitarray[.15
& bitarrayI I
& bitarrayI f

t-32 ) & bitarray[ 15 I

)
&

&

&

bitarray[ 0 J

bitarray[ 0 ]
bitarray[ 0 ]
bitarray[ 05) &

orientation = 4;
orientation = |

sl
=;&ù

)) orientation = l;

orientation =
orientation =

&&

) ) orientation

orrentaticn =

) orientation =

) &&

I ) ) orientation

t.

¿.



if (

{ if
if
if

(corn1 +
* ( word
* ( word
1 
* lword

( * (word

if
{

corn4) == 2 )+ offset-l) &
+ offser-65) &
+ offset-l) &
+ offser-65 )

( corners == 3 )

if 1corn3 == 0
if 1corn2 == 0
if (cornl == 0
if (corn4 == 0

I
break;

bitarrayt 0 I )
bitarrayt 0 I
bitarray t 0 lç bitarray[ 0

orientation =
orientation =
orientation =
orientation =

se 2'.

rn I =corn2 =corn3 =corn4 =0 ;co
if
if
Lf.
if

* (word+offset-65
* (word+offset-64
*(word+offset.
*(word+offset-1

orientation = 4;
orientation - 3

corners = cornl + corn2 + corn3 + corn4;

&&

)) orientation - 4;

3¡
4;
1;
2;

if
{

(corners <= l)
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if ( (cornl + corn2
orientation - I;
( (cornl + corn3
orientat,ion = 2ì
1 (corn2 + corn3
orientation = 3;
( (cornl + corn2
orientation = 4 i
( (corners == 0 )
orientation = ) ;
( (corners == 0)
orientation = 1;

if

& bitarray[0] ) cornl=l;
& bitarray[ 14 ] ) corn2=1;
& bitarrayt 14 I ) corn3=l;
ç bitarray[0] ) corn4=l;

if

if

if

if

if (corners == 2)
{

corn4 ) ==

corn4 ) ==

corn4 ) ==

corn3 ) ==

if (

{ if
if
if

COrn4 + corn3) == 2 )*1word + offset-33) &*(word + offset-32) &

( * (word + offser-33 )
( * (word + offset-32 )

0)

0)

0)

0)

&& 1* (word

&& 1* (word +

+ offser-64 ¡

offset,-32¡ &

bitarrayt 0 I )

bitarrayt 14 l
ç bitarray[ 0 J

& bitarray[ 14

ç bitarray[ 15 ]

bitarrayt 14 I )

orientat ion
orientat ion
&&

) ) orientation '= 1;

= Ã'
-1



ir (

{ if
if
if

(corn2 +
* (word +
* (word +

(*(word
1* lword

if 1 lcornl + corn2) == 2

{ if (*(word + offset-33)
if (*(word + offser-32)
if ((*(word + offser-33)

( * (word + offset-32 )

cornS ) ==
o f fset
o f fset-6 4

+ offset-1
+ of fset-6

if
{

( (cornl +

if ( * (word
if ( * (word
if ((*(word

( * (word

)

& bitarray[ 15 ]
e bitarrayI f5 ]
& bitarray[ 15 ]
ç bitarrayI f5

if
{

5)

( corners

if ( corn3
if 1corn2
if 1 cornl
if ( corn4

corn4 ) == 2
+ offser )+ offser-64 )+ offset )+ of fset-54

)

& bitarray[ 0 ]
s bitarrayI f4
ç bitarray[ 0
& bitarrayI f

i
break;

a
J

== 0

== 0

==0
==0

orientation =

orientation j
&&

)) orientar,ion

)

& bitarray[ 15 J

& bitarrayI I5
ç bitarray[ 15

) & bit.arrayIl

case

orientation
orientation
orientation
orientation

orientation =
orient,ation =

7T

)

)

l

corn I =corn2 =corn3 =c
if1*(word+offset-64
if ( * (word+offset-64
if ( * lword+offset
if 1 

* (word+offset

&&

) orientation = 3;

).

= ?.
= Á,.

= t.
- aa

orientation =
orientation =
&&

) ) orientation

corners = cornl + corn2 + corn3 + corn4;

2.
't.Lt

if
t

(corners <= 1)

if

orn4=0;

( (cornl + corn2
orientation = l;
( (cornl + corn3
orientation = 2ì
( (corn4 + corn3
orientation = 3;
( (cornl + corn2
orientation = 4;

if

& bitarrayIbit+2]) cornl=1;
& bitarrayIbitJ ) corn2=1;
& bitarrayIbit] ) cbrn3=1;
& bitarrayI bit+2 J ) corn4= I ;

4;
3¡

if

if

= ó,.

corn4 )

corn4 )

corn2 ¡

corn3 )

== 0)

== 0 )

== 0 )

== o)



if ( (corners ==
oriencation =
( (corners ==
orientation =

if

if
{
if
{

( corners == 2)

(

if
if
if

0),).
L¡

0)
1.

(corn4 +

&& 1*(word + offset-54

&& 1*1word + offset-32)

* (word
* ( word
(*(word
(*(word

if (

{ if
if
if

corn3 == 2
+ offset-32 )+ offset-32 )+ offset-32
+ offset-32

corn3 +
* (word +
* (vtord +

(*(word
(*(word

corn2 +
* (word +
* (word +

(*(word
(r(word

if
{

(

if
if
if

corn2 ) ==
o f fset
offset-64

+ offset
+ of fset-6

)

& bitarraylbit+2 l
& bitarrayIbit] )

& bitarrayIbit+2
a bitarrayIbit] )

) & bitarrayIbit+t; ¡

ç bitarrayI bit J ) )

if (

{ if
if
if

cOrnt ) == 2

offset-32 )

offset-32 )+ offset.-32
+ offset-32

)

&

&

&

cornl + corn4 ) == 2
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bitarrayIbit+I]
bitarrayIbit+f JbitarrayIbit+i]

& bitarrayI bit+l

bitarray I bit+2 ]
bitarraytbit I )

& bitarrayIbit+2
e bitarrayIbit] )

bitarrayIbit+1¡
ç bitarray[bit+1
& bitarrayIbit+1
ç bitarrayIbit+

* lword + of f set )*(word + offset-64
1*1word + offset
(*lword + offset-6

if (corners == 3

{

) orientation
orientat.ion =

if
if
if
if

)

&

&

) &&
orientation = l;

corn3
corn2
corn I
corn4

)
break;

i
lr End of boundary tracking

orientat,ion - 1;
orientation - 2;
&&

) ) orient.ation =

== 0
==0
==0
== 0

)
&

= Å,.

I;

l* Return t.o caIJ-ing routine if
instead of the object

orientat ion
orientation
orientation
orientation

4)

orientation =
orientat ion

) &&
orientation - 3;

k--;
if(k
f=k;

= ô,.
- 1.

- Ll

orientation - 4;
) orientation = 3;
) &&

l)) orientat,ion = 4i

< 250 ) return(oPPs=' 1' ) i

L.

- 2.

a noise poinc has*l been t racl:ed



/ * Calculate object mass and x and y moments

x=l;y=I;
for loffset = 0; offset < 15360; offset++)
{

for (bit = 15; bit >= 0 ; bir--)
{

if(x == 5i3) { x=l;y++; ¡
if((*1word + offset) & bitarrayIbit])

&& (y <= y_max) && (y >= y_min¡ ¡

:= 
t 

,nu"" f++',
x momentf += x;
y momentf '= Y;

)
x++ i

)

x centroif = x_momentf/massf;
y-centroif = y momentf/massf;

if ( ( x_centroif
x centroid =

eIsã
x_centroid =

if ( ( y_centroif
y_centroid =

else
y_centroid =

*l

- floor( x_centroif ) ) < 0.5 )
floor( x_centroif ) ;

ceil(x_centroif);

- floor(y_centroif)¡ < 0.5)
floor( y_centroif ) ;

ceil(y_centroif);
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&& (x <= x_max) e&

x centroif -= 0

':
l* Normalize t,he number of slope caLcul-ations so that dif ferent image sizes

will still generate the same number of terms '- * I

s t.ep
Low =
h igh
if ( (

{ if
{

( x >= x_mr

=f/terms;
step - f.loor(step) ;

= ceiJ.(sÈep) - scep ;

high != 0) ll (Ìow r= 0))
( high <= low )

step = ceil ( step¡ ;
dec =Ll high;
status = I¡ l

; Y_centroif {= 0;



eL se
{ step =

dec =
s tatus

else
{dec=Q;

low = dec floor(dec ¡ ;
high=ceil(dec) -dec;
if ((high t- 0) ll (low != 0))
i if t high <= Iow )

{ point = ceil ( dec ) ;
point2 = I / high;
status2 = 1; )

e Ise
i point = fl-oor(dec);

Point2=Lllow;
status2 = 2; )

i
else
{ point = dec;

point2=0ìl

floor( step) ;

L llow;
= 2i ) )

low = point2 floor1point2)
high = eeil ( point2 ) -Point2 ;

if (high <= Iow¡
point2 = ceil(point2);

e Ise
point2 = floor(poinc2) ;

q=Poi
É=poi
i='i=
L)

L = f.i
print f (

s=0;
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nc;
nL2 ¡

l;

"\tt\n" );
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I * Calculate the distance to the centroid at each normalized sample_pt * I
n=0;
is_set_graphic_position 1 y_centroid, x_centroid ) ;is_set_foreground( 70 ) ;

for (sample3t. = 1; sampleSt <= L¡ sample3t .+= step)
{

x_dist = *(x_coord+sample_pt) - x_centroif ;y_dist = * (y_coord+sample_pt) - y_centroif ;distIs J = hypot(x_dist,y_dist) ;
if (distIs] < min_dist) min_dist=disrIs] ;if (distIs] > max_dist) max_disr=distIs] ;*(array+n¡ = * (y_coord+sample_pt) ;
n++ i*(array+n¡ = *(x_coord+sampLe_pt) 

;
n++ i
* ( arraY+n ¡

n++ i
* ( array+n ¡

S++in++i

if ( i == q )

i
if ( staÈus == 2 )

samPle3t++ ì
else

= y_centrord;

= x_centioid;

sample3t - -
q = q + point;
j+* ;

if (

{ if
j == r )
(status2 == 2)
q++ ì

else
Y'

r = r + point2;
)

i++;

n=nf 2;
is draw J.ines( I , ft, array ) ;



Apply the Discrete Fourier Transform to the function distIn] and
calculate the magnitudes for each coefficient. These magnitudes are
unique to the boundary curve and are rotat.ion and size invariant. *l

s=terms;
dfcrIs]
dfciIs]
for (n =

;=: {

= 0;
- 0;

0;

temp=(2 *PI*s*n) /tdfcrIs] = dfcrIsJ + ldistIndfciIsJ = dfciIs] - (distIn
normai- = hypot(dfcrIs ],dfci

n <= tefms; n++)

descriptorI I j = 100*(min_dist/normal) ;
descript,or[ 2 ] = I00*1max_dist/normaL) ;
printf ("\n\nNormaU-zed min_dist = tf ",
printf( "\nNormalized max dist = tf\n\n"

printf( "\n\nFREQ REAI
j=3;
for(s-L¡s<=4;s++)
{

dfcr
dfci
for
{

erms;* cos ( temp)* sin( temp)

sl);

sl
sJ
n=

= 0;
= 0;

0;

\¿
J=
J=
)

temp =

dfcrIs
dfciIs
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magIs] = 100*
printf ( " g2d

descriptorI j ]

)**;

)ltl

n <= ferms; n+.)

r PI * s " n) i t
dfcrIs] + (distIn
dfciIs] - (distIn

t,erms;
terms;

IMÀGINARY

descriptorI I ]
, descripcor [ 2

(hypot(dfcrIs]
\7.2f.....

s,dfcrIs],dfci
= mag[s];

erms;

t'fÀGNITUDE\n\tt" );

It
l);

* cos(* sin(

dfcitsl)) / hormal;
\7.2f t10.4f \n"
sl,mag[s]);

temp) )

temP) )

terms;
terms;
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f *************tr'È** TEASH M9DE RourrNE ************************!t

This routine calls a descriptor routine, fourier( ), and usesthe returned descriptors as coordinates of the muti-dimensionalarray *(part + offs). Rear numbered descriptors areclassified _to int.eger coordinates according to the_ boundaryspacing defined in limittTltTl. Redundanc codes are qenårår"awhen rgal_descriptors fall riin the error spaces defined inerrort7lt51t3l. À whire roop is execured uàrit alldescriptors have been classiiiea. once the part identity isstored in the locationls¡ of the array *1part + offs), anotherpart may be taught to the system.
==* 

* * * * * * * * * * * * * * * * !r * * * * * * * * * * * * * * * * * * * !t * * * * * * * * * * ** * ** * * * * * * * * * * * * * * f

*incLude <stdio. h>
#include <conio. h>
# inc.Lude <aI1oc. h>
# inc i-ude <math . h>

extern unsigned stklen = 20000;
fl.oat descriptor¡O¡;
int *x_coord, *y_coord;
int *word, start=l, *array;
char opps;
float limittTltTl = { { 0, 0,

{ 0, -L,
{ 0, -r,
{ 0, -L,
{ 0, -L,
{ 0, -L,
{ 0, -r,

f loat
{{{
{{
{i
{{
{i
{{
{{

errortTltslt3l
0, 0),{ 0,
0, 01,{ 4,
0, 01,{ tog,
0, 0)'{ 2,
0, 01,{ 2,
0, 0i,{ 2,
0, 0),{ 2,

0,
12,

L20,
6,
6,
6,
6,

o), {L2l'{
120i, {

6),{
6),{
6),{
5i,{

0, o,
24, 36,

160, 200,
12, 18,
12, 18,
L2, 18,
12, lg,

0l
15'

148,
8,
8,
8,
8,

0), {
241,{

160), {
L2l ,{
Lzl , {
T2I ,T
L2l , \

0,
48,

240,
24,
24,
24,
24,

0,
28,

188,
L4,
T4,
14,
l.l ,

0),
600),
5001,

s0 i ,
50 ) ,
5oi 

's0l ) ;

0)'{
36 i ' {200i,{
t8i, i
18 ) , {
i8) ' t
i8), {

0, 0)),
40, 48)),

228, 240l'I ,20, 2411,
20, 24lI ,10, 24)1,
:0. 24 ) ) i



main (

{
char mode, reset='n' , not_unigue;
FILE *f1,*f3;
st,atic int *Part;
extern int *word;
extern char opPs i
int ârb, c,d,ê, f ,Ievel,classifiedrbndryrpart_no,total,i;
int az rbz rcz rdz rez, fz ¡v t rast, *restorejart_ño, *restore_rocat,ion;
unsigned long offs=0;
char k"y;
f Loat cL rc2 ,c3 ,c4 ,c5 ,c6 i
extern float descriptor[ 6 ];extern f loat limit [l ] l,l );extern float errortTl t5l t3l ;

restore_part_no = (int *) mai.l_oc(f000);
rest,ore_location = (int. ") maIIoc1I000);
x_coord = (int. *) maÌloc(300
y_coord = lint *) malloc(300
array = lint *) malloc(10000
part = (int, *
word = lint *
if(part == NULL)

{ printf ( "NUlls pointers
exit(1); i

if(word == NULL)
{ print f ( "word is NULL ¡ "

exit(1); )

malLoc ( 34000
malloc ( 32000

Load in the existing

printf ( " \n Do you
" and

reset = getch( );
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00 ) ;
00);

I

,

Jt

data base of coded parts * I
wish to delete the exLsting DatabaseÀdr
build a new one (y/n)? : " );



if
{

( reset == 'n' 
)

printf("\nPlease wait while existing Database is being loaded in");
fl = fopen( "c:\\J.ut.es\\pn.dat", "r" ) i
f3 = fopen( "c: \\Iutes\\parts.dat", "r" ) i
rewind(ff);
rewind( f3 ) ;

for(offs=0; offs <= f7000; offs++)
fscanf(f3,"t4d", (part + offs));

rewind( ff);
rewind( f3 ) ;
close( f1 ) ;
close( f3 ) ;

l

fscanf ( f 1, "td", &part_no) ;

if ( reset == 'y' 
)

{ printf ("\nReseting database");
part_no = l;

for( offs=0; offs <= i7000; offs++ ¡r(part+offs)=0;

printf("\nPosition part under camera and press any k"y");
getch( ) ;

f*** * This Ioop is
their parts

while ( f )

{
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opps='0' i
not_unique = '0' ;

fourierl ¡; f **** CaIl the descriptor routine ****./
if(opps == '1')

{ printf( "\n\n*** Part not within fielcl of view
"and/or noise sPot detected Ìì
"Reposition Part and/or remove nerse,

"press any key when ready... n");
getch( );
continue;

executed until
**** f

the user has finished teaching
t .--é



aZ=bZ=CZ=Q7=92=fZ=0 ì
C1=C2=C3=C4=C5=C6=0;
v=0;

f**** This Ioop is executed until aII descriptors are classified ****f

for (level=l; level <= 6¡ level++)
{
bndry=1 ; classified=0;

=: while (classified != 1)
{

if ( (descriptorIIeveI] > limitIJ.eveI] [
( descriptorI level ] '= limitI level ] [

{
swit,ch (leveI ) i

case I c l=bndry;
if ( (descriptorI l] >= error

( descriPtorI I ] <= error
az=L; break;

c 2 =bndry;case 2
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case 3

if( (descript,or[2] >= error
( descriptor[ 2 ] <= error

bz=I; break;

c 3 =bndry;
if( (descriptor[3J >= error

(descriptor[3] <= error
cz=!; break;

bndryl ) &&

case 4

bndry+ I 1

case 5

c4 =bndry;
if ( (descriptor¡ 4 ¡ >= error[ 4

ldescriptor[ 4 ] <= error[ 4

dz=I; break;

c5 =bndry;

tll
tll I bndry

I bndry

case 6 : c6=bndry;

if( (descriptor[5] >= error[5
(descriptor[ 5 ] <= error[ 5

ez=I; break;

2
2

0
I

I bndry
I bndry

&&

if ( ldescriptor[ 6 ] >= error[ 6

( descriptor[ 6 ] <= error[ 6

fz=L; break;
)

3

3

t0
[1

bndry
bndry

&&

t0
[1

bndry
I bndry

&&

)

f;

&&

)

0
I

bndry
bndry

0
t

bndry
bndry

&&

0l
i. l



c lass i fied= I ;
i

bndry++;

tOta -ì. =az +bz +c z +dz +ez+ f z i
f**** caLculate offset for ident.ity array ****f

offs = (cl*3125¡+(c2*6251+1c3*125¡+(c4*25¡+(c5*5¡i1c6*r) - 3r25;

if 1 total == 0 )

{ //**** no redundant, codes necessary yet *****f

if1*(part + offs) == 0)*(part + offs) = part_no; f**** memory location unoccupied *r,
else

I(-
if("(parr + offs) !- parr_no)
{
if 1*(parr. + offs) !- -l)
{r(restore_part._no + v) = *(part + offs);*(restore Location * v) = offs;
v++ I
It*(part + offs) - -tì I **** memory location occupied ***f
if(leveÌ == 6) not_unique = '1',.
i
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eÌse f *** À descriptor has fallen ritnir an error roul, therefore
generate the appropriate number of redundant codes ****+ f

{
forl i=1 ; i <= 64; i++)

. { .a=b=c=d=e= 
f =0 ;



sv/itch(i) {

case 1

case 2
case 3
case 4
case 5
case 6
case 7

case I
case 9
case 10
case I I
case L2
case 13
case 14
case 15
case 16
case L7
case r8
case 19
case 20
case 2L
case 22
case 23
case 24
case 25
case 26
case 27
case 28
case 29
case 30
case 3 r
case 32
case 3 3

case 34
case 35
case 35
case 37
case 38
case 39
case 40
case 4 1
case 42
case 43
case 44
case 4 5

case 46
case 47
case 48
case 49

a=0 i break;
f=fz; break;
e=ez; break;
e=ezi f=fzì break;
d=dz; break;
d=dz i f.=fzì break;
d=dz i e=ez; break;
d=dz ì e=ez¡ f--fz¡ break;
c=cz; break;
c=cz; f=fz¡ break;
c=cz'ì e=ez; break;
c=czi e=ez¡ f=fz; break;
c=cz; d=dz; break;
c=cz; d=dz ¡ f=fz; break;
c=ez; d=dz ì e=ez; break;
c=ez; d=dzì e=ez¡ f--fz; break;
b=bz; break;
b=bz ¡ f=fz; break;
b=bz] e=ez; break;
b=bzi e=ez; f=fzi break;
b=bz; d=dz; break;
b=bz; d=dzi f=fz; breaki
b=bz; d=dzì e=ez; break;
b=bz; d=dzi e=ez¡ f=fz; break;
b=bz ì c=cz; break;
b=bz; c=cz¡ f=fz; breakì
b=bz, c=czi e=ez; break;
b=bz ì c=ezi e=ez¡ f=fz; break;
b=bzi c=czì d=dz; break;
b=bz i c=cz; d=dz i f=f.zi break;
b=bz ì c=ez; d=dz ì e=ez; break;
b=bz ì c=cz; d=dz i e=ezì f=fz, break;
a=az; break;
a=az¡ f=fz¡ break;
a=az i e=ez; break;
a=azì e=ezi f=fzi break; '
a=az; d=dz; break;
a=az; d=dz ì f=fz; break;
a=az; d=dz; e=ez; break;
a=az; d=dz ì e=ez ¡ f.=f z; break;
a=az, c=cz; break;
a=az i c=ez; f=fz; break;
a=az ì c=ezì e=ez; break;
a=azì c=ez; ê=êz; f=fz; break;
a=az; c=cz; d=dz; break;
a=azi c=cz; d=dz; f=fz; break;
a=azi c=ez; d=dzi e=ez; break;
a=azi c=cz; d=dzi e=ez; f=fz; break;
a=az; b=bz; break;

B2



case 50 :
case 51 :
case 52 :
case 53 :
case 54 :

case 55 :
case 56 :

case 57 :

case 58 :
case 59 :
case 60 :
case 61 :
case 62 :
case 63 :
case 64 :

a=az i
a=azi
a=az i
a=az ì
a=az;
a=az i
a=az i
a=az i
a=az i
a=azi
a=az ì
a=az;
a=az i
a=az'l
a=az;

b=bzì
b=bz ì
b=bz l
b=bz;
b=bz;
b=bz i
b=bz i
b=bz ¡
b=bz ì
b=bz;
b=bz;
b=bz;
b=bz i
b=bz;
b=bz;

f=tzi
e=ez;
e=ezì
d=dz;
d=dz;
d=dz;
d=dz;
c=cz i
c=cz';
c=cz"
c=czì
c=cz,

c=cz ì
c=czì

i

break;
break;
f=fzi break;
break;
f=fz; break;
e=ez; break;
e=ez; f=fz¡
break;
f=fz; break;
e=ez; break;
e=ezi f=fzì
d=dz; break;
d=dz ¡ f--fz¡
d=dz i e=ez,
d=dz ì e=ezi

offs =(
(

f ****** calcuLate offset
( c I +a ) * 3 1 2 5 ¡ + ( ( c 2 +b ) * 6 2 5 ¡ + 

1

(c5+e)*5)+( (c6+f)*l) 3125

if(*(part + offs) == 0)*(part + offs¡ = part_no;
else
{
if(*(part + offs) != part_no)

t
if1*(part + offs) t= -1)
ir(rest,orejart_no * v) =*(restore i.ocation * v) =
v++ i
)

break;-

83

break;

break;
break;
f=fz; break;

**** f
(c3+c ) * I25 ) +( (c4+d ) *25 

) +

*(part + offs¡ = -1; f*** memory location occupied ***f
if (Ievel == 6) not_unique = '1'' ì -n-

f*** memory location unoccupied ** i

. /*" end of redundant coding loop t***I
f*** end of else *****f

* (part + offs ) i
offs;

f*** get next descriptor **** /



if( not_unique == '1')
{ last=v;

part_no--;
prinrf (,,\n CoIIision ar

Part will_ be
forlv=0;v<lastiv++¡
i *(part + (*(rest.ore

prinrf("\n td,', *(
i
else
{
print f (

print f (

i

"\l\n\t ç:t e1":? :9dg for part no. rd is: r1.0f,s1.0f,r1.0f,
.!1.0f , t1. 0f, tl:.0f \n",. pãrt_no,cI,c2,c3,c4,c5;.6i ;-" Number of possible codeé: tq . Ot \n,, , powiZ, iotuf ¡ 

' 
! ;

printf ( "\n\n Do you wish to code anorher parr ?,,) ¡kev=getch( ) ;put.ch(key);
if (key == 'y')
{ part_no++ iprintf("\n position next part under camera andgetchl ¡ ;

)
else
{ part_no++i

break;
)

last level\n "

dei-eted from system \n" );

_Iocation + v)) ) - *(restorejart_no + v)rest.orejart_no + v) ); i

f****** save the existing part codes *****f 
\

printf ("\n Saving parr Codes. . . ,,);free(word);

I1 = fopen( "c:\\1utes\\p".dat,,,,,w,, 
) ìf.3 = fopen(',c: \\J.utes\\þarts.dat,.,,,w,, ) ;rewind( ff ) ;

rewind( f3 ) ;

f******

84

teach another part *******f

fprintf ( f 1, "td,', part_no);

forloffs=0; offs (=
fprinrf( f3,',94d,,

rewind 1 f I
rewind( f3
cIoselfl)
cJ.ose1f3)

press any k"y,,);

i7000; offs-- ¡

, *(part. + offs));



This routine identifies 2-D binary shapes which have beenpreviously coded into rhe multi-dlmenslonal array*(Part + offs). Descriptors wrLl be classified into integerarray coordinates one at a time until a memory location i;found containing a qaf! identrty. The boundaiies for inÈegerci.assif ication are def ined by llmitti lt Z I .

ittttlttfrtttt*tttttlt!ttt**tti**tlttttrlt*il!rl*tttrtt**tttt*ttltrl,tttttitltttt'tt

#include <stdio.h>
#include <conio.h>
#include <alIoc. h>

== #include <math.h>

rttttrtt*ltttrtf* iDENTIFICATION HODE ROUTINË

extern unsigned stkLen
float descriptortOJ;
int *x_coord, *y_coord,
char opps;
float Limit.tTltTl = {

main( )

{
char fnd;
FILE *fI,*f3;
static int *part;
extern int, *word;
extern char opps;
int å, b, c,drê, f, LeveL
unsigned long offs=0;
char k"y;
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rt*l*it*trttt*ttft*

= 20000;

*word 
r start= 1, *array;

{
{
{
{
{
{
{

o, o, o,
0, -1, 8,
0, -1, 114,
o, -1, 4,
o, -1, 4,
0, -1, 4,
0, -I, 4,

float cIrc2,c3,c4,c5,c6
extern float descriptor
extern float limit[7] [7extern float errortTlt5

x_coord = 1 int
y_coord = ( int
array = lint *)
Part = lint *)
word = (int *)

0,
20,

r54,
10,
t0,
I0'
10,

if(part == NULL)
{ printf ( "NULL poinrers! " ) ;exit(1); )

if (word == NULL)
{ printf( "word is NULLI " );

exit(l); )

, classifiedrbndry, part no, totaI, i;

0,
32,

r94,
t5,
16,
16,
15,

* ) maLl
* ) mall
mal loc
mai.loc
ma I loc

0,
44,

234,
22,
22,
22,
22,

6

t

l

3l;

oc (30000 )

oc (30000 )

0I,
600i,
600),
50),
501 ,
50),
s0))

10000);
34000);
32000);



***r Load in the existing data base of coded parts ****.t

printf ( " \nPlease wait whil.e existing Database is beinq loaded in,,
li = fopen( "c: \\J.ures\\pn.dar,,,',r,,)i
f3 = fopen( "c: \\lutes\\parcs.dar,',,,r,, ) irewind(fI);
rewind( f3 ) ;
fscanf ( f l r "td", &parr_no) ;

for(offs=0; offs <= I2000; offs++)
fscanf(f3,"t4d', (part + offs));

rewind( ff ) ;
rewind(f3);
close(ft);
cl-ose(f3);

printf("\nPosition þart under camera and press any key");gerchl );

f**** This Loop
wishes to

while ( I )

{
opps='0' i
fnd='0' ;
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is executed until the user no longer
identify parts *** f

fourier( );
if(opps ==

i printf( "

f*****t')
\n\¡" * *

getch ( ) ;
continue;

Cl=C2=C3=C4=c5=C6=0;

call the descriptor'routine **** f --

Part not within field of view
"and/or noise spot detected **r\n"
"Reposition part and/or remove noise,

"press any key when ready. . . \n,,);



if(fnd l='1')
printf ("\n This part. has not been taughr to the system yer\n',);

else
printf ("\n\n\n ldentity code for parr no. td is: tl.Of tI.0f ',

" tl.0f tI.0f T1.0f tl.0f \n", r(part+.offs¡rcl,c2,c3,crlrc5,c6¡

printf("\n\n Do you wish to identify another parr?.)i
key=getch( ) ;
putch(key);
if ( key == 'n' ) exit( f ) ;printf('\n Position next part under camera and press any key,');
getch( );

E'l
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THE FÀST FOURIER TRÀNSFORM

ÀPPENDTX B
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In L942, DanieLson and Lanczos showed that a discrete

Fourier transform of length N can be rewritten as the sum of two

discrete Fourier transforms, each of length N/2. One of the two

is formed from the even-numbered points of the original N, the

other from the odd-numbered points. The proof is simply:

FDk =
lv-11¡r

ñr ¿-." n-0

FDx 1=-
JV

N/z-t t -Jzrk(ln) t

Ð t(zn) e'....r'
fl.0

FD*. FÐf + FÐf

The Daniel-son-Lanczos Lemma can be used recursively. Therefore,

having reduced the problem of computing FDx to that of computing

FD,.o and FDl.=r wê can do the same reduction of FDl.o and FD¡.' to

the problem of computing the transform of their ll/4 even-numbered

input data and N/4 odd-numbered data. Furthermore, if N is a

power of 2t we can continue applying the Daniel-son-Lanczos Lemma

until we have subdivided the data down to transforms of J.ength 1.

Consider the input function f (n) where N - 8. The probJ-em

reduction is shown on the next page.
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1
Jf

N/z-L
Ð f (zn+t)
.Í1.0



DFr{f ( 0), f ( 1),f (2),f (3), f (4),f (5), f (6), f (7) }

= DFr{f (0),f (2) ,f (4),f (6)} + DFr{f (1),f (3),f (5),

= DFr{f(0),f(4)} + DFr{f(2),f(6)} + DFr{f(1),f(5
+ DFT{f

= DFr{f(0)} + DFr{f(4)} + DFr{f(2)} + DFr{f(6)}
+ DFr{f(1)} + DFr{f(s)} + DFr{f

Each successive leve1 in the problem reduct,ion is found by

calculating the DFT on the even and odd-numbered elements of each

of the Discrete Fourier transforms in the preceding level-. Thus

the probJ-em has been reduced from computing a single, 8-point

DFT, to that of computing eight, l-point DFT's. The advantage to

this is that the DFT of a l-point function, for example f(4),
sirnply equals the funct,ion itself (i.e. DrT{f(4)} = f (4) ).
Therefore, ca1cuJ-ating t,he 8-point DFT is simply a matter of

adding adjacent pairs from the l-point level to obtain the 2-

point DFT's, then adding adJacent pairs of 2-point DFT's to

obtain 4-point DFT's, then combining once again to get the final
8-point DFT. The combinations at each level take N=8 operaÈions,

and there are Iog=N = 3 leve1s, Èherefore the whole algorithm is
of order Nlog=N = 24 operations. This is significantly Ìess than

the N2 = 64 operations that are required for the DFT.

f(7)Ì

l
3),f(7))
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3)Ì + DFr{f(7)}

Although this seems straightforward, there is one

preliminary requirement to implementing the FFT. If we are to
combine adjacent pairs at the l-point l-evel-r wê must first re-
arrange the order of the elements of the input f(n). Observe
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when we work our !'¡ay down from the 8-point level to the l-point

l-evel, f(0) is mapped into the element position 0, f(1) is mapped

into position 4, f(2) into position 2, f(3) into position 6, and

so on. Therefore, what we wish to do with our input !

f (n) r = { f (0),f (1),f (2),f (3) 'f (4) 'f (5),f (6) 'f (7)

is to re-arrange it such that :

f (n)z = { f ( 0), f (4) ,f (2 ),f (6),f ( 1), f (5) ,f (3) 'f (7 )

If we study this problem closer we observe that the array

coordinates of f(n)z ârê the bit-reversed coordinates of f(n)r.

Denoting the array coordinates in bit notationr wê have:

f (n) r = {f (000),f (001),f (010),f (011)'f ( 100)'f ( 101)'f ( 110)'f ( 111) }

f(n)z = {f(000),f(100),f(010) 'f(1L0) 'f(001),f(101) 'f(011) 'f(111) }

This preliminary operation is accomplished by the computer very

quickly and is no greater than the order of NlogzN. Once the

elements of f (n)' have been re-amanged, the FFT can be computed

by combining adjacent pairs from the l-point l-evel- untiL the ful-l

8-point Fourier transform is achieved.



94

TEST IMÀGES .è,I,ID DATÀ RESULTS
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D,:, y,:,r-t r,JlSl¡ t,I,
P,:'Siti,:,ñ ne:4t

95

N¡l,FrTtåI i:ed rnrn dist
N,trì'rrå I i:ed måx dis t

J.dentify añ¡t,th€r
Part r-tnder Cafnerà

FREO

I

=|

+

REAL

4.37 .

Part nr-rmber is : 3
Identified at descriptc,r leveL 4

;'4. 558(i 1 i
17(i. :74445

-?. L,7

pa r t'T'y
and press àny l,:ey

Identrty c,:,de f¡tF part n,:,.

I MAG I NARY

-(J. 33

D¡ y':'r-t wisl¡ t,t, rdentify an,:,ther partî,

3. l6

MAGNI TUDE

6. 4Ë'r I
? .-J t arîè. J¡UJ

'-¿3.177..'

1 .474(:r

3is:à::1(j(:)
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D,l, yr:'r-t WiE,fr t,:,
P':Siti,:'Ft neyt

N,:rmali:ed rnin_drst
N¡t¡rrrÀl i:ed må:/. dist

tdenti f y åÍl,t,tl¡Er
pårt r-rnder cåfnera

FRECI REAL

l -1.,38...'2 1.8+...
3 ';'3. 3+. . .
4 ().+3...

Part nr-rrnber is : 3
Identlfred åt desc

¿''1 .t(:t5131
LF,5.'-t68çt7'3

pa r t';'y
and press åny [,:ey

i MAG I NARY

- -r¡ì¿. JJ

- .ì,-
J. !U
gtÉ
J. / J

t'r '-.'ar-¿. ¿J

ript,:,r level -l

Identrty c,:'de fEty part nt'. 3 is: 3 3 :' 1 (j (j

\

D,t, y':'r-r wi5,l-r t,t, rdentify åflrt,tl¡er pArtl,

F4AGN I TUDE

+.7 t Lrl
3.'16{:)4

.-re
¿-J.+L/trt
(:).518:'
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D,t' y':¡r-r wisl¡ t,r, identÍ f y åñ,t,tl¡€¡.
P't,siti,t'r-l nel/it part r-rnder cäfnerå

N,l¡FÍtìå1f:ed
N,:,rmå I r:ed

FREA

I
':'

':ì

mrn_drEt
må:/. drst

REAL

ÉJ.II.
':'-J. rt']

Part nr-(mber rs i 2
Identifred at descript,:'r Ievel 5

1 . 4893'3'3
1-7-' _r.:r.:,.:c)_7Lt ¿.¿¿LUU/

partl'y
and preSS any l,: ey

:'. (:)B

1.4(:)...

Identrty c,:'de 1c¡y part n':'. ! is: 1 3:51 (:)

I MAG i NARY

D,I, y¡:'r-r wisl-r t,t, identify àfl,trthpr pårt;'

-6. 6.+
L¿.7b

C,. (:)5
_1 '71

MAGN I TUDE

7. 7'347
!8.6186

r .774Q
.{ .-' t r-'i. +;: / =



9B

D,--' yC¡Lt wiSh t,t,
P,:'SÍ ti,:,n ne)/i t

N¡r¡rrTìåI i :ed rnLn_dist
N¡trrfiìâ i i ¡ed rnax dis t

:.dentrfy åFl¡r,tl-rer
par t r_rnder cåmera

FRECI REAL I MAG I NARY

1 -3.7Ct 6.5:':, 3(1. ':4 . 1 4. (j(j
3 1.1(:r ':.43
+ -(1.61...... -1.:'7

Part nr-rrnber is : :
Identified at degcriptc,r level

3. 334 1 3(l
L7(t.77783,1

parti'y
ånd prÊss crnt [<ey

Identity c,:'de 1'='r part Fìrt¡..r'is: 13l'51(:)

D,:' ytr'Lr wisl-r t,:, rdentrfy ån¡I¡thEl. part?

NAGN I TUDE

6.;77 ''
i7.AeL?
''. .-68'3

3.61-r'-J2
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D,l y':'r-( wisl-¡ t,:'
P,:,Siti,t't-r neyit

N¡r,rflå I .i:ed ¡nin_d ist
N'trrmåli:ed mar/. dist

identi f y ân,trtl-r€r
PArt r-tnder cafnerA

FREO REAL I I"IAG INARY

1 5. f8,...... -3.46
;' '.,7.53 8. 1'3
3 1(1. 17...... 7.83
4 -':.63 1.:(l

Part nr-tmber is : 16
ident:-fied àt descriptrt,r level 5

.-.É É- a E,_r.l¿J. J.] I Jt-r'+

L7t-t.I'37174

pår t'l'y
ånd press åny l,:ey

Identrty c,t¡de f,:,r part nc,. 16 rs: 3 3't.5 3 r:)

D,:, y':'r-t W:.Sl¡ t,t, Identf fy anr:,tl-¡ef partr'

MAGNI TUDE

e È .a-'-
-J. JLriÞ

'f ':, ,:¡qq7

1 (:). I 5:4
':. 31':(j
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D,I, y,: tt W i S lr t,t,
P,l'Siti,l, ll ne:,it

N¡lrrlTìclI i:ed
N,t'tfiìåIi:ed

rdent i f y år-trtrt l-reÍ
part r-rnder cÀrnera

FREA REAL IMAGINARY

I 3.(i3...... 5.4,3
':. -q I '] -a''7 ':.¿:
!J.¡J.:/-LU

3 1(:).41...... 8.6'l
'+ :, .71 1 . .:'5

Part nr-rrnber rs : 16
Identified at descrrptc'r level

rnrn_dist
rnax_dist

:3. €,8'137 4
Lr:-7 . 73')2r,1

pàr t l'y
ånd press any l,: ey

Identrty c':,de fc,Y part ñrtr.

D':, y':,r-t wiSh t,I' identf fy

IlAGN I TUDE

5. (j(j'36
ii- l+tr

1(i. 8':75
.;'. .+(j'1.+

ç

16 is:'3 3 .: 3 3 (:)

ðñCrtl¡€r part:
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D,-, 7':'r-('*';.=L t,::'
lrt'9-t t -i':,n ñr?tr. t

hr -.- - - 1 i _ __ J
lYt-r f lll6 .1, I - t':j

I'J'-rt-¡Îai i:c,d

",jÊn i; i f y .1t-¡':,t her
Fcart l-t-¡cjeì' ic.iI¡Eì'ãr

FREO

frr.t n_dL=t
inå l,i _iJ i = 

t

1

.]

¡l

:ì:i :'

RFAL

':l .-, 
1

r 1.1

-t - 11.-. .

Fa:'t n:-irìtrc:r i= : '!''
Identlfied at d==.:i-:¡rf'1'r Ieve-l F-

- 
Ê a .1-r-.<È

- J. l'+/'trTJ
- 

I õ'-. L<-t--e-' Iõ¿. I'f¡E/-l

ãr'LJ |-' L'i

Idenì;ttr' t,:¡de

I I'4AG I I'JAR'/

D,:, y':'l-l r.ri-rl-r t,:, LdEntii,y

(:). (:!+
,:r î ¡r

r11

ilv

MAGNI TUDE

,{ .-t--.{

'-.: j 
'Jl

Ê t-.':¡i-ìl-ì

=.-rñ-:_:. -_.(_r,J -

.¡ il -r /_
''l:. . + ,:i -r r.:

ãFl,-¡bl¡Èr part'l'
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D,:, Yr¡t-l WiSl-¡ t,t,
P'fSiti¡:rn ne),it

Nrlrl'rTìàli:ed
Norma I i:ed

rdenti f y årtrtrth€F
Pårt ¡-tnder camera

FRECI

1

:!

4

rnin_dist
mali_dist

REAL

Part nr-tfnber is:5
Identified at descriptr:,r IeveI 6

8(1. 5 l'J377
I t9.37Q4-.,-'

1.14 . (t.=7
-1.1É

på r t'ly
and press any

I MAG INARY

Identity c':'de frty part nc,. S is: E 2 I I 1 I

D,:' y,lr-r wish t,:r identify an,:tl-rer part.?

1 . (:r'3

[:: eY

MAGN I TUDE

rr.83L7
1. 1 165
(1.9848
(l . 4351



GENERATING FOURIER DESCRIPTORS,
ROTATION INVARÏÀNCE, AND
INHERENT WEAKNESSES
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The following paragraphs attempt to provide an understanding

of how Fourier Descriptors (F'Ds) are generated, hrhy they are

rotation invariant, and to expose some of the inherent weaknesses

of the method.

To examine how FDs are generated, consider the sguare object
shown in figure 1(a). Figure 1(b) shows the radial distances,

dist(n), from the centroid to each evenly spaced sample poínt along

the boundary (on1y 32 sample points, N:32, have been used to
simplify the analysis). Also shown is the sine weíghting pattern

of the Fourier Transform applied to dist(n) at frequency: 1. I{hen

calculating the FD, each element of dist(n) is rnuttiplied with its
corresponding sine weight, and the sum of each of these products is
evaluated. For the square at frequency : L, the result is zero.

This makes sense since the elements of dist(n) from O to Tï are

repeated in the same pattern from r Eo 2n. Therefore the positive

sum of the products from 0 to n is equal to the negative sum of the

products from Tr to 2Tt, yielding a total sum of zero. This

condition holds true for frequency leve1s 2 and 3 also and can be

described as follows:

Now if the frequenc! = { is applied (figure 1(c) ), there is a

dramatic change in the response. From the graph, ne can see that
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the peaks of the sine wave follow the same pattern of the peaks of

the dist(n) function. The positive sine weights are always applied

to the maximum dist(n) values whereas the negative sine weights are

applied to the minimum dist(n) values, yielding a total sum

response greater than zero. Wtren the dist(n) function has a

pattern similar to the selected frequency, a large response can

always be expected.

One may be asking themselves if the same response can be

obtained when setecting a different st.arting point in dist(n)

(equivalent to a rotation of the object or a phase shift of

dist(n) ). If only the sine weighting pattern is used, the anss/er

is no. Figure 1(d) shows dist(n) shifted by tr/Z at frequencY = 4.

A quick examination of the graph will verify that condition (i) now

exists and the response is zero. To capture the total response

regardless of the starting point, both the sine and cosine

weighting patterns must be used.

If the cosine curve is applied to the graph (figure 1(e)), wê

see that it has recaptured all the response that the sine curve

lost from the phase shift. This represents the extreme case - one

of the weighting patterns is providing al1 the response while the

other is zero. Between these two extremes the total response is

shared. observing the well-known identity,
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it is evident that if lte square and add the sine and cosine

responses, then take the sq.uare root to find the nagnitude, this
magnitude (or Fourier Descriptor) will remain constant regardless
of the starting point (or rotation) of the object. This is the
basic principle behind the rotation invariance of the Fourier
Transform - what is lost in one weighting pattern (due to a phase

shift) will be picked up by the other, and the magnitude derived
from these tnro components witl remain unchanged.

Although the Fourier Transform offers advantages such as

rotation invariance, the rnethod is not without inherent weaknesses.

Distinguishing between objects that differ onry srightly can

sometimes be a difficult task. I{e will first examine a situation
where the Fourier Transform can easily detect a smaIl change in an

object. A second example wilr apply a smatl change that is much

more difficult to detect using FDs.

consider the object shown in figure 2. There has been only
one change made to the square - a corner has been cut off. Despite

this small change, there is a significant difference in the FD

output as shown in Table r. The first frequency level has junped

from zero to 1.051, the second from zero to 1.610.



Frequency
LeveI

TABLE I - FD Outputs for Sguare and Cut Square

1

2

3

FD Magnitude for
Sguare

4

5

6

There are a number of reasons for this change. The average radial

distance (which is used to normalize the object for variations in

object size) has decreased. Since normalization is accomplished by

dividing each elernent of dist(n) by the average radial distance,

there is an irnmediate change in the dist(n) function. The centroid

has also shifted and the object is no longer synrmetrical. The

elements of dist(n) between 0 to Tr are not repeated in the same

pattern from n to 2n and condition (i) does not hold true at any of

the frequency levels. Therefore, all FDs for the new object are

non-zero. Furthermore, the FD at level 4 has decreased since one

of the four strong peaks in dist(n) has been reduced by the cut

corner.

0. 000

o. ooo

o. oo0

4.518

FD Magnitude for.
Cut Sguare

0. 000

0. 000

1. 051

1. 610

2.O49

110

3.323
o.431

o.501

The change between the square and the cut square is detected

quite easily. Hovrever, consider the two objects shown in figi"ures

3 (a) and 4 (a) . Although there is a notable difference betr¡een the

two objects, the centroid l-ocation and average radial distance have
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remained unchanged. If we look at a plot of the dist(n) function
for each case (figures 3 (b) and 4 (b) ) , we see that only elements 4

through 9 are different. The remaining pattern is identical
between the two objects. Detecting the difference in this small

area is a difficult task for the Fourier Transform, especially at
the lower freguency levels where the sine and cosine weighting

patterns change only gradually between the elements. Figures 3(b)

and 4 (b) also show the sine and cosine curves for each object at
frequency = 1. To calculate the difference between the FDs at the

first frequency we need only look at the elements in dist(n) that
are different (elements 4 to 9) (see Tables II and III).

Note in the tables that the average distance for elements 4 -
9 is equal for the two objects. Therefore if a uniform

distribution (with constant weight was applied to dist(n), there

would be no dif f erence between magnitude,, and magnituder. If
frequency : 1 is applied (such as this case), a sma1l change begins

to show due to the slightly changing weights of the sine and cosine

curves (as indicated in the tables this change of rnagnitude is
.O2). If frequency : 2 is applied, the difference in nagnitudes

increases further due to the more rapidly changing sine and cosine

weights that exaggerate the differences between the elements of the

objects.

Tables IV and V show the same cal-eulations

Note how the more extreme maximums and minimums

at

of

frequency = 4.

the weighting
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functions improve on emphasizing the difference in the dist(n) *

sine and the dist(n) * cosine products between the two objects.

the difference between the resulting FDs of the two oÈjects is now

.52. Àlthough this is better than the magnitude difference found

at frequêDcy = 1, more FDs had to be calculated before the change

in object shape could be detected. Furthernore, in this example,

the change in object shape occurs over a fairly large percentage of

dist(n). If the changed area was smaller with respect to the object

size, the differences in the FDs would be reduced even further.

This exampÌe demonstrates how it is difficult for the Fourier

Transform to distinguish between objects having dist(n) functions

that differ by only a few elements. At the lower frequency leve1s,

the change wilI be almost undetectable and any noticeable

difference will not appear until higher frequency FDs are

calculated. In spite of this weakness, FDs offer a good definition

of shape if a sufficient number of FDs are calculated. The

rotation and size invariant properties of the transform are

particularly useful for any type of recognition system.



TABLE fI - Magnitude of Elements 4-9 for Figure 3 (a)
Using Freguency = 1

n dist (n)

4

5

6

2.09

7

1. 69

sLne
weight

I

1. 53

9

1. 09

r-. 50

.555

t.72

.7 07

cosine
weight

ave
dist
: l-. 60

.830

.923

.830

.980

r_. 000

.7 07

dist (n)
* sine

weight

n

.555

TABLE Ir - Magnitude of Elements 4-9 for Figure 3 (b)

.382

dist (n)

1. 16

4

195

1. 19

0. 000

5

dist (n)* cosine
weight

115

r.27

6

1.8r-

Usinq Freguencv = 1

1. O1

sl_ne
weight

7

st-

r-.50

L.47

ö

L.73

1.34

L.72

9

total

= 7.82

1. 19

L.44

quency =

.555

1. 69

.85

cosl_ne
weight

.7 07

magnitude,,
= 9.O1

1.84

.42

ave
dist
: 1.60

.830

.29

Difference in FD at Freguency 1: : lnagnitude, - magnitude2l: ! s.or 9.03 I= .Oz

.923

0. 00

total

= 4.48

.830

.980

l-. ooo

dist, (n)
* sine

weiqht

.7 07

.555

.382

1. OO

.195

0. 000

t_. 06

dist (n)* cosine
weight

1. 11

1.33

1. 66

l-.50

1.84

total

= 8.00

1. 06

.74

magnitude,
= 9.03

.55

.33

o. 000

total

= 4.18



TABLE IV - Magnitude of Elements 4-9 for Figure 3 (a)

n dist (n)

4

5

6

2.09

Usinq Frecruencv = 4

s]-ne
weight

7

st-

1. 69

I

1. 53

9

1. 09

eç[uency =

.7 07

1.50

cosine
weight

0. o00

t.72

.7 07

ave
dist
: 1.60

-1. O00

.707

.7 07

-1.000

dist (n)* sine
weiqht

o. 000

.707

n

TABLE V - Magnitude of Elements 4-9 for Figure 3 (b)
Using Frequency : 4

0. 000

dist (n)

4

1.48

.707

1. 000

dist (n)* cosine
veight

0. oo

5

-1. 08

116

6

l-.81

-1. 09

sine
weight

7

1. 50

-1. 06

-1.48

I

L.34

-1. 69

total
: -1.75

o. oo

9

t.44

1. 08

.7 07

1. 69

cosJ-ne
weight

0. 000

magnitude,,
: 1.88

0.00

1. 84

.7 07

ave
dist
= 1.60

1. 06

-1. 000

total
: .69

r.72

.7 07

Dif f erence in FD at Frequency 1: = lmagnitude,, - magnítude2 
|

= | 1.88 2.4O i: .52

.7 07

dist (n)
* sine

weight

-1. 000

0. ooo

.7 07

0. 000

1,.28

.7 07

dist (n)
* cosine

weight

o. oo

1. 000

.95

-L.44
-1. 19

-L.28

o. oo

total

= -2.3O

-l-. 50

.95

magnitude,

: 2.4O

0. 00

1. 19

total
=-.7O

1 .84
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This example demonstrates how it is difficult for the Fourier

Transforrn to dist,inguish between objects having dist(n) functions

that differ by only a few elements. .â,t the lower freguency levels,
the change will be almost undetect,able and any noticeable

difference will not appear until higher frequency FDs are

calculated. In spite of this weakness, FDs offer a good definition
of shape if a sufficient number of FDs are calculated. Tt¡e

rotation and size invariant properties of the transform are

particularly useful for any type of recognition system.


