OBJECT RECOGNITION USING

BOUNDARY CURVE TRACKING AND FOURIER DESCRIPTORS

by

DAVID GEORGE LUTES

A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

THE UNIVERSITY OF MANITOBA
DEPARTMENT OF INDUSTRIAL ENGINEERING
WINNIPEG, MANITOBA

OCTOBER, 1991

National Library
of Canada

Acquisitions and
Bibliographic Services Branch

Bibliotheque nationale
du Canada

Direction des acquisitions et
des services bibliographiques

335 Wellington Street
Ottawa, Ontario
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellington
Ottawa (Ontario)

Your file Votre rélérence

Our file Notre rétérence

- L’auteur a accordé une licence

irrévocable et non exclusive
permettant a la Bibliothéque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniere et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protege sa
thése. Ni la these ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN ©-315-77984-5

g

Canada

OBJECT RECOGNITION USING

BOUNDARY CURVE TRACKING AND FOURIER DESCRIPTORS

BY

DAVID GEORGE LUTES

A thesis submitted to the Faculty of Graduate Studies of

the University of Manitoba in partial fulfillment of the requirements

of the degree of

MASTER OF SCIENCE

© 1991

Permission has been granted to the LIBRARY OF THE UNIVER-
SiTY OF MANITOBA to lend or sell copies of this thesis. to

the NATIONAL LIBRARY OF CANADA to microfilm this
thesis and to lend or sell copies of the film, and UNIVERSITY
MICROFILMS to publish an abstract of this thesis.

The author reserves other publication rights, and neither the
thesis nor extensive extracts from it may be printed or other-

wise reproduced without the author’s written permission.

ABSTRACT

A computer algorithm for identifying two-dimensional
binary images is presented. Objects are first chain-
coded using an efficient boundary tracking method. The
boundary curve is then parameterized by computing the
radial distances to the centroid as a function of curve
“length. This method of parameterization has several
advantages over other existing methods when dealing
with objects that are convex and/or have thin radial
extensions. With this parameterization, Fourier
Descriptors (FD's) are calculated using the Discrete
Fourier Transform. The resulting FD's are used to form
the coordinates of a multi-dimensional array which will
identify the object from a data-base of previously self
taught parts. The recognition routine computes only as
many FD's that are required to uniquely identify the
part, avoiding the unnecessary processing time

typically associated with search and match techniques.

ii

iii

ACKNOWLEDGEMENTS

I would like to thank David Young of the Faculty of
Engineering Computer Services for his helpful advice
and assistance in linking the Turbo C program to the
DT-IRIS frame grabber. His patience, clarity and
computing experience were greatly appreciated. Craig
Muller also pgbvided many helpful hints when I ran into
trouble debugging the code. Lastly, I would 1like to
thank Dr. John Jenness not only for his advice, but
also for having the enthusiasm and approachable manner
that provided an excellent environment to exchange

ideas.

TABLE OF CONTENTS

PAGE

ABSTRACT.!“. ‘.‘...0000......'...QQ....O......ii
ACKNOWLEDGEM—ENTSQl’..'.l'tl..ll..'.‘.......iii
TABLE OF CONTENTS.....cceeeenn cetesesteseersnanne ceeddiv
CHAPTER 1 INTRODUCTION

1.1 Problem Definition....... Cetrere s 1

1.2 Research Goals......ccivvvinveens e o2
CHAPTER 2 LITERATURE SURVEY...... Y
CHAPTER 3 GENERATING DESCRIPTORS

3.1 Fourier DesSCriptOrS....ccceseeeescsss8

3.2 Object Parameterization....... Ceeees 11

3.3 Boundary Tracking......c.ceveeeee...20

3.4 Descriptor Error....cceeeveececccss .26
CHAPTER 4 OBJECT RECOGNITION

4,1 Multi-Dimensional Array Concept
and Redundant Coding.....seveeeeessa33

4.2 Computing a Minimum Number
Of DesSCriptOrS....eveeecesssancasessd?

4.3 Data-base Capacity....ceeveeeesees..40

iv

CHAPTER 5

EXPERIMENTAL RESULTS
5.1 Test Equipment......

5.2 Experimental Method.

CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS..
BIBLIOGRAPHY .. vttt eteresrsnsenoennansonnnssns
APPENDIX A ERROR GENERATION,

FOURIER DESCRIPTOR AND

OBJECT RECOGNITION ROUTINES.....
APPENDIX B THE FAST FOURIER TRANSFORM......
APPENDIX C TEST IMAGES AND DATA RESULTS....
APPENDIX D GENERATING FOURIER DESCRIPTORS,

ROTATION INVARIANCE, AND
INHERENT WEAKNESSES.....

* e 0 s 0 00

® o 0 0 v 00

..48

..60

«+90

.103

CHAPTER 1: INTRODUCTION

1.1 Problem Definition

Object recognition systems typically rely on a set of
descriptors to identify a part. Although some descriptors are
relatively simple (for example, area of an object), others are
extracted from more lengthy routines (such as convolution),
requiring large améunts of processing time even with specialized
hardware. With these processing considerations in mind, a few
questions are presented: How do we minimize the number of
descriptors needed to identify a given object? How accurate are

the descriptors?

Once the descriptors have been calculated, an additional set
of problems arise when trying to implement recognition routines:
Wwhat kind of search method should be used? How many parts can be
successfully identified with a given number of descriptors? How

reliable is the recognition algorithm?

This report discusses a computer algorithm which addresses

each of these questions. The program is split into three
routines. The first deals with the problem of generating
accurate descriptors that are rotation and size invariant. (This

is called the Boundary Tracking/FD Routine). The second provides

2
a method of teaching object shapes to the system by generating
codes from these descriptors. (This is the Teach Mode Routine).
The third then identifies the previously taught objecfs stored in

the data-base. (This is the Identification Mode Routine).

1.2 Research Goals

In general,t the goal of this project was to develop a
reliable and efficient recognition algorithm for binary images.
This involves generating accurate descriptors to code the
objects, then extracting the correct part identification from a

data-base of stored codes.

Fourier Descriptors (FD's) have been selected as suitable
descriptors for object coding. Since their introduction in the
late 1960's, FD's have been recognized as a very useful tool for
object recognition. Given a properly parameterized representati-
on of the object, the Discrete Fourier Transform (or Fast Fourier
'Transform) will generate a unique set of coefficients which are
invariant to size and orientation. However, the resulting FD's
are only as accurate as the parameterization. A research goal,
therefore, was to develop a parameterizing method which addresses

some of the weaknesses of existing techniques.

3

As previously mentioned, a goal of the recognition algorithm

was to "extract" the correct part identification, rather than
search for it. Meaning that once a code for the object is
generated, its identity is known immediately - no searching and

matching is to be performed.

In addition, the recognition routine was to be designed in
such a way that it would call descriptor subroutines (such as the
Boundary Tracking/FD routine) only until the computer could
uniquely distinguiéh the part from the other parts in the data-
base. Therefore only the minimum number of descriptors would be
computed, rather than calculating a complete set each time a part

is placed under the camera.

Finally, given a clear binary image, it was intended to
develop a recognition algorithm that could be 100% reliable,
making it attractive for industrial applications. The computer
would reserve a set of memory locations for each part based on
the maximum error of the descriptors. Any subsequent (new) part
taught to the system that enters a previously reserved memory
:Space would be rejected. Therefore, any possibility for error
would be detected when teaching the parts to the system. Further

details of this idea are presented in Chapter 4 of the report.

2.0 LITERATURE SURVEY

In many machine vision applications, an object is simply
represented by its 2-D binary image. From the image, the
boundary curve is often used for identification. Examples of
this include machine parts recognition [10] and identification of
aircrafts [4]. One of the approaches to 2-D boundary curve
analysis is to use Fourier Descriptors, a popular method due to

the rotation invariant property of the Fourier Transform.

Zahn and Roskies [14] have developed a parameterization
method for generating Fourier Descriptors using angular bend as a
function of boundary curve length. Persoon and Fu [10] use this
method in a recognition algorithm which identifies characters
from a data-base of pre-taught characters. Identification is
accomplished by selecting the part whose set of FD's have the
minimum squared distance from the object under the camera. Jiang
and Merickel [6] propose a different parameterization of the
boundary curve. This involves finding the centroid of the 2-D
object and calculating the radial distancé to the boundary edge

‘at each angular increment around 360<.

These boundary parameterizations are often quite good for
simple geometric shapes, however their inherent weaknesses become
exposed when dealing with shapes that are convex or shapes that

have many thin radial projections. Section 3.2 discusses these

limitations in more detail.

There is an abundance of literature dealing with the problem
of recognition. A rule-based system for aerial images of
airports by McKeown [9] is used to identify domain restricted
objects. The restricted domain allows the rule-base to call the
descriptor routines in an optimal manner, reducing the processing
necessary for object identification. Similar algorithms have
been developed by Smyrniotis and Dutta {12]. Draper [2] observes
that a more genefalized rule-base object recognition system can
be developed by invoking ‘'expert' knowledge bases to extract
specific image information. Thus a link is established between

high and lower level decision making.

Rule-based systems provide an attractive option when dealing
with a restricted domain of objects where the rules can be well
defined. However, Niblack and Damian [9] observe that reliable
rules cannot be formulated for measures such as texture, shape or
region segmentation. For this reason they conclude that for low
and mid-level vision, procedural programming is almost always

" more robust than rule-base programming.

Bolles and Cain [l1] propose a recognition algorithm based on
finding two or three key features of an object to narrow down the
search space. If a few features can distinguish between possible

interpretations of a object, a matching approach can determine

6

the best match between image data and object models. A similar
method by Goad [3] uses preliminary feature matching to enhance
runtime performance. Goad also develops a method for determining
part orientation. A hypothesis about the position and
orientation of the object relative to the camera predicts the
location of object edges. If these edges are found in the image,

a better estimate of camera location can be determined.

These are common approaches to object recognition - generate
a descriptor codeifor the object then search for it in a data-
base of previously coded objects. Although there are a number of
methods which can be employed to increase the speed and
efficiency of the search, all are limited by the simple fact that
a search is required. These methods are further limited by their
reliability of object identification. Although some are very

accurate, there is no guarantee that identification will always

be correct.

The recognition algorithm presented in this report uses the
descriptors (in this example, FD's) as thé coordinates of a large
“multi-dimensional array that holds part identities in its memory
locations. Therefore, once the descriptors have been calculated,
the identity of the part is immediately known - processing time
is not required for searching, as the identity is simply
extracted from the multi-dimensional array. To successfully

implement such a system, the maximum possible error range of the

7
descriptors must be known. A correct calculation of this error
will allow the system to maintain 100% reliability. Additional
advantages and requirements of this method are discussed in
Chapter 4. To begin, however, descriptors must first be
generated. The following section provides a brief discussion on
the Discrete Fourier Transform and how it can be used to provide

the descriptors for our recognition algorithm.

3.0 GENERATING DESCRIPTORS

3.1 Fourier Descriptors

The Discrete Fourier Transform (DFT) is defined as follows

[14]:

index of parameterization

object parameterization function
frequency level, k = 1,2,3...N

The Fourier Coefficient calculated at
frequency level k

The number of terms used

oo

=z
n

Using Euler's Identity,
e’ mcosf-7s8inb

we can writée equation (i) as:

N-1
_ 1 2nkn, _ . . 2nkn .
FD(k) = & Y £(n) cos!() = J £lm) sin(=5=) e (ii)

=0 N

9
From equation (ii), we can see that each FD is calculated by
summing up all the values of the parameterization function f(n)
while holding the frequency level k at a constant value (eg. k =
1). The next FD is calculated by incrementing k and summing all
values of f(n) at the new frequency level k = 2. Changing the k
value serves to change the weighting value of the cosine and sine
functions. Therefore, each FD is calculated by taking the set of
all values in f(n) and applying a unique weighting pattern to it
according to the k value. This is the essence of the rotation
invariant property of the Fourier Transform. The values of f(n)
are not analyzed individually, but rather as an entire set of

values having a characteristic response to a frequency level.

The number of FD's one wishes to generate (and therefore the
number of k values used), is indicated by the number of terms (N)
used. The selection of the N value is determined mainly from a
trade-off between processing time and accuracy of results.
Obviously, the more FD's we calculate, the more information we will
obtain about the object. However, the processing time increases
exponentially with the number of terms, since N? calculations are
required. The Fast Fourier Transform (FFT) can reduce the
processing load to Nlog,N calculations and is therefore a common
substitute for the DFT (see Appendix B). For the purpose of this
paper, we will simply use the DFT while keeping in mind the
availability of the FFT to increase the speed. We will however use

N values which are powers of 2 (ie. N = 16,32,64,128...) since this

10

is a requirement when implementing the FFT.

Each of the resulting FD's yield both a real and imaginary
component. If we compute the magnitude of these two components, we
find the result to be constant for the same object, regardless of
size, orientation and starting point. Starting point refers to
which value in the set f(n) is used as f(0). This value could be
any element of f(n) depending on the orientation. For additional

reading on FD's and rotation invariance, see Appendix D.

From the real and imaginary components, the corresponding
phase angles can also be calculated. The phase angles, however,
must be normalized since they shift when the orientation changes.
This normalization process requires additional process time and
even then does not provide constant results when using symmetrical
objects [4]. Furthermore, most of the information about the shape
of the object is contained in the magnitudes which confirms our

decision to ignore the phase angle calculations.

Therefore, the end result is a set of magnitudes, one for each
frequency 1level, that are characteristic of the shape of the
object. For example, objects having rapidly changing values in
f(n) will yield larger magnitudes at the higher frequency levels,
while magnitudes at the 1lower frequency levels provide more
information about general shape. Once the FD's have been

generated, the gquestion of what to do with them is an entirely new

11

problem. Before attempting to address this problem, the object

parameterization function f(n) must be first determined.

3.2 Object Parameterization

The accuracy of the FD's are only as good as the accuracy of
the parameterizing function. It would be nice to parameterize the
object with as many variables as we wish, however each additional
variable increases processing time in the DFT by an order of N.
For this reason, single variable functions are used most often.
Therefore we will find a way to accurately represent the object

using only one variable.

12

Method (1i):

One method 1is to locate the centroid of the object and
calculate the radial 1length to the boundary as the angular
displacement is incremented, thus yielding radius as a function
of angle. This method is sufficient for simple shapes, however
it becomes useless when dealing with objects having thin radial
projections extending from the centroid at angles that are
multiples of the resolution of the parameterization. The maximum

possible error for this method can be determined by examining the

following worst case situation.

Consider a thin rod one pixel thick and 500 pixels long.
For this example, we shall use N = 256 terms, giving us angular
increments of 1.40625°. In this first orientation the radial
distances from the centroid as we approach the end of the rod

are:

f(n) = radial dist = {...0, 0, 0, 250, 0, G, 0...}

‘Now, if the rod is rotated 0.703125° (one-half of the angular

resolution), the values of f(n) at the end of the rod become:

f(n) = radial dist = {(...0, 0, 0, 0, O, O, 0...}

All information about the object is lost when the rod is rotated

13

at n(r) + .5(r) degrees, where n = 0,1,2...N-1, and r = 3609/N.

Another limitation to this technique occurs when viewing
convex objects that have features hidden from the line of sight
between the centroid and boundary. Figure 1la is a typical
example that exposes this weakness. Since there is no knowledge
of the boundary curve coordinates, the computer must search
outward from the centroid along each radial length to find the
boundary edge. As only one edge point can be recorded per
angular increment; it becomes apparent that this method has
limitations when more than one boundary edge is detected along a
radial length. If, for example, only the outermost edges are
recorded, the convex part of the object in figure la is ignored.
This method, therefore, could not distinguish between other
similar objects that have differences in this convex region.
Figures 1b and lc are examples of images that would produce the
same parameterization function f(n). Although this problem does
not reduce the repeatability of the method, it severely limits

the ability to handle a wider range of object types.

Figure la - Convex 2D Object

Figures 1b, lc - Objects Yielding Equivalent Values
for f(n) When Using Method (1)

14

15

Method (ii):

Another method is to calculate angle change values along the
boundary to yield a parameterization of bend as a function of
curve length. However it is difficult to obtain accurate and
repeatable angle values from boundary curves having many sharp

bends.

If the curve is to be sampled using N terms, N evenly spaced
points along the éurve must be selected for angle calculations.
Due to the spacing between the points, there is a potential for
the entire set of sample points to shift when an object is

rotated (i.e. a different starting point is selected).

Consider the object shown in figure 2a. Each straight line
segment of the object is 50 pixels long, yielding a boundary
curve length of L = 1600 pixels. If N = 32 terms are used, then
the boundary curve will be sampled at every 1600/32 = 50 pixels
(sample points are indicated by dots along the object boundary in
the figure). For each value of f(n), the angles at two adjacent
:sections of the curve must be subtracted from one another to
yield an angle change value. 1In the first orientation, the angle

change values (starting at sample point 1 shown in figure 2a)

are:

f(n) = angle changea = {180,-90,-90,180,-90,-90,180....N}

16

Figure 2a

sample point 1 Centroid

Figure 2b

sample point 1 centroid

17
If the sample points now shift due to an orientation change of
the object, there is a potential for a large error in the angle
change values. In a new orientation (figure 2b) it is possible
that the starting point could shift by .5(L/N) = .5(1600/32) = 25
pixels (one-half a sample spacing). The angle change values are

now:
f(n) = angle changer = {45,-90,45,45,-90,45,45,-90..... N}

The average error per term between the two orientations is equal
to 101.25 degrees. When considering the 360° range of angle

change values, this translates to a %error of:

serror f(n) = error f(n) = 101.25° x 100 = 28.1%
range f(n) 360°

For objects with simple geometry, this method is quite adequate.
However, a high error is realized on objects having many sharp

bends, reducing the chances of generating reliable descriptors.

18

Method (iii):

A third method, and the one presented here in this report,
is to calculate the radial distance from the centroid to selected
sample points on the boundary curve, yielding a parameterizing
function f(n) that describes radial distance as a function of
curve length. This technique has a maximum possible error that
is much less than the two methods previously described. Since
the coordinates of the boundary curve are known, there is no loss
of information wheh dealing with thin rods or convex objects such
as in method (i). Furthermore, since radial distances are used,
method (iii) is not as sensitive to the shifting of the sample
points along the boundary as is found in the angle calculations

of method (ii).

If the object in figure 2a is again considered in the first
orientation (using N = 32), the radial distances as we start from

sample point 1 are:

radial dist to boundary

£(n)
; {1i11.8, 100, 50, 70.7, 50, O, 50, O, 50, 70.7, 50,100...N}

If the object is now rotated such that the sample points along
the curve shift by .5(L/N) = 25 pixels (figure 2b), the radial

distances are now:

£(n)

radial dist to boundary
{103.1, 75, 55.9, 55.9, 25, 25, 25, 25, 55.9, 55.9,75...N}

19
The average error per term between the two orientations is equal
to 16.1 pixels. Considering the range of f(n) values, the

percentage error for this object is:

serror f(n) = error f(n) = 16.1 pixels x 100 = 10.7 %
range f(n) 150 pixels
The %error is much less than in method (ii). Recognizing the

advantages of this technique, we shall parameterize our objects
by computing radial distance as a function of boundary curve

length.

In the next section an algorithm will be developed to
perform curve tracking, allowing us to obtain the coordinates of
the Dboundary points. This will provide the preliminary
information required to compute the radial distances from the

centroid.

20

3.3 Boundary Tracking

A computer program has been written to perform curve
tracking of the object boundary. The flowchart shown in figure 3
will be used as a guide to explain the programming functions.
The algorithm uses a blank 3x3 window that scans the binary image
from the top to bottom and 1left to right until it encounters a
"1" in the iower—right corner. The center pixel coordinates are
then designated as the starting point. The 3x3 window will track
the curve in a ciﬁckwise direction, generating a pixel-by-pixel
4-link chain code until the center pixel encounters the original

starting point.

The moves of the tracking window are coded as 1,2,3 and 4
corresponding to forward, up, back and down respectively. Before
each move, the algorithm examines the contents of the window to
determine the required directional step. There are 8 pixels
surrounding the center of the 3x3 window, allowing a total of 2%
= 256 possible combinations of "l1's" and "0's". Obviously, it is
too time consuming to check every single combination for every
.'pixel step around the curve, therefore a shortcut would be nice.
The analysis of the window can be simplified significantly if the
current window orientation is known. (This is not to be confused
with the orientation of the object). Figure 4 shows the four

possible window orientations which can be assigned to the current

Figure 3

Flowchart for Boundary Tracking
and FD Generation

scan for b}
start pixel acquisition
detersine
winoow
orientation
inspect key
pixels to
deteraine
next window
sove
record
boundar
coordinates
calculate calculate
returned compute sample pt. radial
to start centroid -3 increment, [~ dist(n] to
pixel? correction esch of N
factor sampls pts.
y
norsalize
dist (n)
calculste OFT of
FD e dist (n)

nsgnitudes

22

Figure ¢ Window Orientations

Pegd A Y YT
> - - o

! P S e .
h =
¢ ¢
x_l - - -I M
-1' x-1, x~-1, " x-1, x-1, x=-1, 4
Y y y+1 g y-1 Y y+li &
! 4
i M
.
(nh IJIXYXII IXX JYIIIIIYIIIII ‘
I. Ii ;I Ih
x x Hl x f [!
l' LA LN +ll ’: X, X, :. x' i
- ¢ o
Y Y it Y i y-1 Y i y+1]
q "
P > a v - = P S > G A P > o I. ,J.
:. 1: :!
f . .
x+i, X+1, x+i, f x+1, x+1, f x+1 i

- + - M

Y 1y ! y-1 Y 1 Y+l 4

Orientation #1 ' Orientation #2

LT X XX > S i P S s S 4 > M > W S - 4

K1 ;
"
'
:: X-i' x-l' x‘l' ’ X"l, X-l, X'-l,
- + M k - B
%Y Y Y+l ' ‘W oy-1 Y X Y+l
F
o ' "
 x H x X N |
*: 1! :. ’ ’ N X, :l X, X,
Y J: Y y+l Al Y-1 ' Y+l
b ! { : :

XXX
o

h !

i H '

. .

x+1, Hx+1, x+1, ﬁ X+1, x+1, x+1 '
X y-1 | +1 : -

1Y § Y Y i v-1 Y y+1

X

o e Wy, 0§

Orientation #3 Orientation #4

23
contents of the window. Each orientation provides description of
the situation the tracking window is currently in. For example,
from figure 4, we can see that if we are in Qrientatidn 1, the
window 1is considered to be tracking in either the forward or
upward directions. Once this is determined, the correct move is
established by inspecting the right-middle pixel for the presence
of a "0". Here, a "0" would indicate there is an open path for a
forward move (chain code 1), otherwise the window must move up

(chain code 2).

Like all 4 orientations, orientation 1 can be determined by
examining the corner pixels of the window. The total number of
"l1's" in the corners provide a good starting context. Once the
corner number is known (ie. corners = 1 or 2 or 3), it is merely
a matter of inspecting key pixels that will confirm the orientat-
ion. The key pixels for each orientation are the five contained
within the hatched lines in figure 4. If the orientation and the
contents of the key pixels are known, the next window move can be

easily determined.

The generation of the 4-link chain code is contained within
the while loop starting on page 66 in Appendix A. Since the
image is scanned from top to bottom and left to right, the
starting orientation is pre-set to 1. Once the chain code move
is determined and the x and y coordinates are recorded, the new

configuration of the window is examined and the appropriate

24
orientation is assigned. The while loop continues until the

starting point is encountered at the center pixel.

It should be mentioned that this edge tracking algorithm is
not restricted to the boundary curve. The 3x3 tracking window
will follow any line or edge it comes into contact with and
simply stop when it returns to the starting point. Furthermore,
the curve need not be closed since, given any line, the window
merely traces around each side of the line until it returns once
again to the initiél point. Thus, every line can be considered a
closed curve, allowing the algorithm to be applied to edge images
also. For the purposes of this report, however, we will only use

the tracking algorithm on boundary curves.

The next step is to calculate the centroid of the object. The

centroid can be easily found by:

max, max,
X M(x,y)
moment, _ X=min, y=min,
mass max, max,

vl (144)

centrold, =

M(x,y)
X=min, y=min,

where,

object mass = M(x,y) € (0,1)

and similarly for centroid,

25
The values of minx, miny, maxx, maxy,, are found during the

boundary tracking while loop (Appendix A, page 68).

Radial distances to selected sample points on the boundary
must be calculated now. The locations of these sample points
will be spaced such that different image sizes will still
generate the same number of terms. For example, if we wish to
obtain 256 terms (ie. 256 FD's) for the curve, we must calculate
256 radial distancés around the curve regardless of the current
size of the object. To accomplish this, the total curve length
must be known - this was easily obtained during the chain code
generation (number of chain codes = curve length). The total
length 1is divided by the desired number of terms, yielding the
increment value that is used to advance to the next sample point
where a new radial distance will be calculated. The fractional
part of this division is used to establish a correction factor
that will provide slight adjustments to the increment value as we
cycle through the chain code. The "C" language code for these
calculations appears on pages 73 and 74 of Appendix A. This
“block of code sets up the increment values and correction factors

used for the radial distance f(n) calculations.

After the desired number of radial distances have been
calculated, they must be normalized for wvariations in object

size. This is accomplished simply by dividing each element in

26

f(n) by the average radial distance. The DFT or FFT can now be
applied to the normalized £(n) values to produce a set of FDs.

The accuracy of these FDs are presented in the next section.

3.4 Descriptor Error

The error pro&uced at a given frequency level is dependent
on the object shape. For example, if we consider a perfect
circle, there is no error at any of the frequency levels, since
shifting of the sample points does not affect the radial
distances from the centroid. However, a straight line , for
example, will produce a high error at frequency level k = 2. To
understand the reason for this, a closer look at the behavior of

the sine and cosine waves in the Fourier Transform is required.

Figure 5 shows the sine and cosine weighting patterns (at
k=2) as they apply to each term in f(n). 1In this example we will
"use N = 8 terms. At frequency level k=2, the Fourier Transform
will evaluate and sum the sine and cosine components of f(n) as
it cycles through two periods. A maximum error will be achieved
when the sign of the error value for each element in f(n) follows

the same sign change pattern as the sine or cosine waves.

27

TERMS

—— SIN ~— CO0S

Figure 5 Weighting Patterns at k=2, N=8

For example, if the error of each term in f(n) is 5.0, the
Fourier Transform will produce a maximum error at k=2 when the

sign change pattern is:

error(n) = {5.0,5.0,—5.0,—5.0,5.0,5.0,—5.0,—5.0}.

In other words, the total error will be maximized at level k when
the sign (or direction) of each elemental error in f(n) changes
at every (L/N) / 2*k sample points along the boundary curve.
(Note that only the pattern of positive and negative values is
significant. Any element of error(n) could be selected as the

starting point error(0).)

Referring back to the straight line example, it becomes

apparent why a maximum error occurs at k=2. Consider the

28
straight line 500 pixels in length with its centroid located at
midpoint. After the boundary tracking, a curve length of L=1000
pixels is obtained. Sampling the curve using N=8 terms will
yield a maximum shifting error of .5(L/N) = .5(1000/8) = 62.5
pixels. Therefore, in one orientation the distances to the

boundary in f£(n) could be:

f(n). = {0, 125, 250, 125, 0, 125, 250, 125 }
Normalizing f(n) by dividing each element by the average radial
distance of 125 yiélds:

f(n). = {0,1,2,1,0,1,2,1}

In a second orientation, it is possible that the sample points

could shift by as much as 62.5 pixels, yielding:
f(n)= = {62.5, 187.5, 187.5, 62.5, 62.5, 187.5, 187.5, 62.5}
Normalizing f(n)= yields:

f(n)Z = {QS, 105, 105, -5, ;5, 1.5, 105, -5}

The error between the two orientations is:

: error(n) = {.5, .5, -.5, -.5, .5, .5, -.5, -.5}

For a straight line, the error changes sign at every (L/N) / 2*2

sample points, thus producing a maximum error at k=2.

To maximize the error at the other frequency levels, it is

29
simply a matter of determining which shapes will yield maximum
shifting errors of .5(L/N) pixels that change sign every (L/N)
/2*k sample points. To obtain a maximum shifting~error, objects
having only thin line radial projections from the centroid must
be used. This will ensure that sample points will always shift
directly towards or away from the centroid. The straight line
has two radial projections from its centroid. Three radial
projections from the centroid will generate errors that change
sign at every (L/N) / 2*3 sample points and therefore will
produce a maximum-error at level k=3. Figure 5 shows the shapes
which will produce maximum errors at each frequency level
indicated. Note that for k=1, the shape required is a thin line

with its centroid at one end.

A small computer routine has been written to calculate the
maximum normalized error at a frequency level indicated by the
user, and to propagate this error through the Fourier Transform
(see Appendix A). The program was run for the first ten
frequency levels using 256 terms. A summary of the results is

shown in Table 1I.

Note that the error increases linearly as the frequency
levels increase. This is due to an increase in the normalized
shifting error found on the objects that maximize the higher

frequencies (such as the shapes shown for k=5, k=6).

30

Figure 5 - Shapes Producing Maximum Error Magnitudes
at Frequency = k

ce?id/ /
k =1

k =2

k = 4
k = 6

X
K

31

TABLE I
Frequency Level k Normalized Error, err(k)
1 iiieiiieinnnnnns 0.255
N 0.764
S 1.255
4 1‘764
5 2.273
Bttt 2.782
T i i e e 3.291
N 3.800
. 4.309
10, ittt 4.818
256 . ittt 0.0000

The last frequency level k=N, represents the average radial
distance. As indicated in Table I, there is no error associated
with the last frequency level. The average radial distance will
not be affected by the shifting of sample points along the
boundary curve, provided that the sampling frequency is at least
twice the highest frequency in the image. For example, for a
straight 1line, the highest frequency is only 2. Therefore, at
least 2*2=4 terms must be used to ensure that the average radial
distance remains constant between rotations. Although it 1is
~highly unlikely that we will encounter images having frequencies
greater than 256/2 = 128, it should be noted that some error will
occur in the normalizing factor if, for example, the object is a
gear with more than 128 teeth, or a star with more than 128
points. For the purpose of this report, the maximum frequency in
the images will be restricted to less than 128. If greater image

frequencies are to be encountered, the number of terms should be

32
increased to maintained a constant average radial length between

rotations.

With these error calculations, we are now ready to set up a
recognition algorithm that will store part identities in a multi-
dimensional array. Details of how this is accomplished, and thé
resulting advantages and limitations, are discussed in the

following chapter.

33

CHAPTER 4 OBJECT RECOGNITION
4.1 Multi-Dimensional Array Concept and Redundant Coding

As mentioned earlier in Chapter 2, the recognition algorithm
presented in this report uses the FDs as the coordinates of a
large multi-dimensional array that holds part identities in its
memory locations. Once the descriptors have been calculated, the
identity of the part is immediately known - processing time is
not required for séarching. To successfully implement this idea,
the maximum possible error range at each fregquency level must be
known. A correct calculation of this error will allow the system

to maintain 100% reliability.

Thus far we have calculated the descriptor error for each
frequency level. The foundation of the recognition algorithm is
based on how the real numbered FDs are classified into integer
coordinates of the multi-dimensional array. This classification
uses the error calculations to determine which memory locations a

given object will occupy.

To classify the FD's into array coordinates, intervals of
real numbers must be defined such that each interval corresponds
to an integer value. Let the range R of an FD be subdivided by B
boundaries bi,b2...bs, each spaced at egual distances d. If

Ci,Cz...Co are integer coordinate values, where D = the number

34
descriptors being used, each of the real numbered descriptors

FD,,FD,...FD, can be classified as follows:

FOR k =1 TO D
FOR j = 1 TO B

IF bj <=.FDk < bj+1
THEN Cx = 3]
END LOOP
END LOOP

Consider the following example where we wish to teach a part to the
system (we shall call this the teach mode). Table II is a sample
set of 6 FD's (D = 6) generated using method (iii) described in

section 3.2.

TABLE IX
freq. level k FD,
l........ vessee7.5
200 s o 16.7
B3ieeenn seeesssal.d
T S see.34.0
L eee.+.19.5
2 2.2

Let the real number range R of the FD; values be 0.0 to 50.0.
If we subdivide the positive real number range with 5 boundaries (B
= 5) and set b, = 0.0, b, = 10.0, by = 20.0,
'b4 = 30.0, by = 40, the resulting integer code is ¢; = 1,
cC, =2, €C3=1,¢c4=14, cg =2, cg = 1. This object would then be
stored in memory location array[1][2][1]([4][2][1]. Clearly, this
approach is insufficient since the error at each frequency level is

greater than zero, allowing an object to be coded differently when

35
differently when different orientations are encountered. What is
required is to incorporate an error space that extends a distance

of +/- err(k) from the boundaries b2,b3...bs:

TEACH MODE CLASSIFICATION SCHEME

FOR k =1 TOD
FOR j =1 TOB
IF bs_1 + err(k) <= FDix < by - err(k)
THEN Cx = j
IF by - err(k) <= FDx < by + err(k)
THEN cCik = j or j+l
END LOOP
END LOOP

Therefore, if an FDix value is detected within an error space (ie.
between by - err(k) and by + err(k)), the object can be
identified using either one of the two array coordinates cix = j,
or cx = j+l. Using the error values calculated in section 3.4,

err(k) = {.255, .764, 1.255, 1.764, 2.273, 2.782}, the object

would now be stored in 2 different memory locations:

part[1][2](1]1(4][2][1] part[1][2]1[1]1[4]1[3]1[1]

The FDs = 19.5 value has fallen within the error space defined

by:

bs - err(5) = (20 - 2.273) = 17.727 and

22.273

bs + err(5) = (20 + 2.273)

The object can mow be -identified using ts = 2, 0r Ts = 3. These

36
redundant codes account for the maximum error that could occur
when the object is rotated. An error spacing of bis +/- err(k)
must be used in the teach mode to ensure that whén this same
object is presented to the camera in the identification mode, it
is guaranteed that the code generated will be one of the two

shown above, regardless of the part's orientation.

Now in the identification mode, the classification scheme is
simply:

IDENTIFICATION MODE CLASSIFICATION SCHEME

FOR k=1 TOD
FOR j =1 TOB
IF by <= FDx < by+a
THEN Cx = J
END LOOP
END LOOP

Error spaces are not required in the identification mode since
the teach mode has eliminated any possibility of
misclassification. This will allow the identification mode to

immediately classify the FDix values to integer coordinates.

Of course, there 1is a chance that a new part taught to the
system will collide with any existing memory location containing
a part identity. If a collision is detected, the computer will
inform the user that there are not enough descriptors to code the
part. Further details about dealing with collisions are

discussed in section 4.4, Data-base Capacity.

37

4.2 Computing a Minimum Number of Descriptors

As mentioned earlier, there are advantages to using
descriptors as coordinates of an identity .array. The most
obvious 1is that search time is not required since the array
coordinates can immediately extract the part identity from the
data-base. In addition to this, the algorithm can also exploit
the fact that sometimes only a few descriptors are required to

identify a part.

In the teach mode, every descriptor 1is calculated and
classified as a coordinate(s). However, in the identification
mode it not always necessary to compute every descriptor. Often,
there is sufficient information to distinguish a part from the
others in the data-base after computing only two or three
descriptors. To take advantage of this, we must develop a scheme

to store part identities after each descriptor is calculated.

For example, if we wish to teach parts to the system using 6
FD's, with each FD subdivided by 5 intervals and 4 error spaces,

the identity array is:

part{ci][c=z][cs][ca][Cs][Ccs]

where each ¢k = 1,2,3,4 or §

38
If we initially set ci,c2...Ce = 0, then compute FD: and classify
it as the coordinate c¢i1, we can store the part's identity in
memory location part[c:][0][0][0]J[0][0]. After computing the
next descriptor FDz, the part's identity can be stored in another
memory location part{c.1{c=]1[0][0][0]([0]. (Note that any
redundant codes generated during this process would also be
stored.) The process can be repeated until all of the
descriptors are calculated, resulting in an identification code
for each descriptor level 1,2...6. If this was the only part
taught to system, then clearly the part could be later identified
(in the identification mode) after the first descriptor without
requiring any further FD calculations. When more than one part
is taught to the system, the memory locations generated at each
descriptor level must be inspected and altered in the teach mode

as follows:

TEACH MODE MEMORY LOCATION INSPECTION

IF part[ci][c=z][cs][ca]l[cs][Ccs] = unoccupied
THEN part{ci}[cz][cs][cs][Ccs][ce] = part identity
IF part{ci][cz][cs][cs][cs][Ce] = occupied

THEN part{cai][cz][cz][ca][cs][Cs] = -1

If a memory location already contains a part identity, its
contents are changed to -1, indicating the occupying part can no
longer be uniquely distinguished at the current descriptor level.
Thus when a new part is taught to the system, the teach routine

will store the part's identity at the first unoccupied memory

39
location defined at descriptor level k, and at locations defined

by each subsequent level until the last level k = 6 is reached.

Once the parts have been taught to the system, the
identification mode 1is invoked and the following questions are

asked at each descriptor level:

IDENTIFICATION MODE MEMORY LOCATION INSPECTION

]

IF part[cil[cz][ca][cs]}[cs][Cse]
THEN part is found

a part identity

-1

IF part{ci][c=][cs][csa][cs][Cs]
THEN compute next descriptor

After each descriptor is computed in the identification mode, the
corresponding memory location is checked for a part identity. If
a part identity is present, the part has been found, otherwise
another descriptor must be computed. Thus in the identification
mode, only the minimum number descriptors are calculated, saving
processing time whenever possible. Of course, as more and more
- parts are taught to the system, there is a decreasing chance of
identifying parts at the lower descriptor levels. The following
section discusses the capacity of.the data-base and what options

are available when it becomes saturated.

40

4.3 Data-base Capacity

If k descriptors are used, each uniformly distributed over a
range R and subdivided into n intervals, the number of memory
locations available is n*. Using the example of 6 descriptors
subdivided inton = 5 intervals yields 5 = 15625 memory
locations. The actual capacity, however is much less than this
due to the generation of redundant codes. If, say, each part on
the average has six possible codes, this number would be reduced
by 5/6, yielding 2604 possible parts. The capacity is simply:

capacity = _ n*
codeave

where, codeave = average number of possible
codes per part

Capacity is dependent on the average number of possible codes per
part, which in turn depends on the size of the error spaces
2*err(k) at each frequency level. The more accurate the
descriptors are, the greater the capacity. The average nunber of
possible codes per part can be statistically calculated using the

following equation:

—p) (D-B) ph ok ;
code,,, PO hl(D) (1-p) pr22. ...V

41

where, D = total number of descriptor
levels used

h = number of descriptor levels
having an FD detected within
an error space

p = average probability of an FD landing
within an error space at frequency
levels k = 1,2,3...D

l. = 2*612’(1{)*(!1—1) (V’)
va:a =

o)
]

range of descriptor

number of error spaces

=
[

[u
n

Equation (iv) provides a weighting factor for each possible

number of redundant codes that could be generated (i.e. 1, 2, 32,

64, 128...2n). Consider an example, using k = 6 FD's and the
err(k) values calculated in section 3.4. If each descriptor
range R = 50 and 1is subdivided inton = 5 intervals, we can

calculate p from equation (v):

- ikzs 2*err(k)*(5 1) 259
z .

Now, wusing equation (iv), we find codeave = 3.85 codes. The

capacity of our data-base is then:

42

capacity = nk = 15625 memory locations = 4058 objects
codeave 3.85 memory locations/object

There is enough room in the data-base to theoretically fit
4058 objects into the data-base. The problem of trying to 'fit’

object codes into a data-base can be best explained by

considering a 2-dimensional coordinate system of area = nx
representing the data-base, and smaller areas = codeave
representing each object. When an object 1is taught to the

system, its area is placed on the 2-D plane. As more parts are
taught to the system, more object areas cover the plane. If, at
any time, one area overlaps with another (equivalent to a
collision a the last descriptor level), the current object being
taught to the system must be removed. Thus, every part has a

reserved memory area that cannot be accessed by any other part.

Clearly, if in our example, all 4058 objects were
successfully coded, the areas for each object would have to fit
together with no wasted memory space. This situation will only
occur if the distribution of coordinate values for the object set
- is perfectly uniform at each descriptor level. Otherwise a
capacity less than the theoretical value of 4058 should be
expected. The expected capacity, therefore, depends on the
descriptor distribution of the objects being coded. To maximize
capacity, a statistical study should be performed on the object
set to determine the descriptor distribution. The spacing of the

boundaries can then be adjusted to allow an equal probability of

43

classifying descriptors in each of the n subdivisions.

At this point, one may be asking themselves if memory can be
used more efficiently by varying n (the number of subdivisions
used in each descriptor range). For example, say our goal is to
have a theoretical capacity of 4000 objects. We know this can be
achieved using 6 FDs, each subdivided into n = 5 intervals (since
n* / codeave = 4058). However, this can also be achieved using
more FDs and less intervals. The value of codeave in each case

must be compared to determine which method uses less memory

locations per object.

Figure 6 is a plot of capacity against codeave Obtained
using equations (vi) and (v). From the graph, we can see that
as n increases, less memory locations per object are required to
achieve a given capacity. Therefore, our goal should be to
maximize n (i.e. use as many subdivisions as possible at each
descriptor level by making the subdivision width d as small as
possible). It must be observed, however, that each subdivision
of width d cannot be less than the size of err(k). Otherwise it
;ould be possible for descriptors to fall into both the +/-
err(k) error space surrounding boundary by, and the +/- err(k)
space surrounding bj+i. The teach mode would then not be able to
generate all possible codes that the identification mode could
find. Therefore, we conclude that maximum memory usage is

achieved at the lower width limit of d, when d = err(k). When

44

Figure 6 Capacity vs Codeave

CAPACITY (4 Objects)

~ M

T,

0 L ! !
0 0.5 1 1.5 2 2.5

CODE ave (# Memory Locations/ Object)

- n =2 '“+—'n‘= 3 ‘9%—;n = 4

45
subdividing a descriptor distribution which is not uniform, the

smallest subdivision should be set equal to the size of err(k).

Perhaps a more important gquestion is, what happens when a
part is taught to the system and a collision occurs at the last
descriptor level? Even if a statistical analysis is performed to
determine the descriptor distribution, and the interval sizes are
adjusted, someone will always try to code more objects. The
computer can easily inform the user that there are not enough
descriptors availagie to store the part's identity in unoccupied
memory locations. However, what should be done with this part
that cannot be 'fit' into the data-base of existing part
identities? There are basically two options available. The
first is to simply delete the part from the data-base,
acknowledging that it cannot be coded with the existing number of
descriptors being used. The second option is to add the part to
an array holding the identities of parts that have previously
collided at this last descriptor level memory location. When
trying to identify this part 1later, the system will 1list the
contents of the array, indicating that one of the listed parts is

correct.

Although the second option provides some compensation to
the problem, more descriptors are still needed to uniquely
identify the part. The first option is simple and is consistent

with our goal of maintaining a 100% guarantee that all parts

46
taught to the system will be correctly identified in the
identification mode. Parts that cannot be uniquely coded will
simply be weeded out during the teach mode. If the system is to
handle more parts, it mﬁst be expanded so that it can access more

descriptor routines and maintain a larger identity array.

It should be noted that expanding the system is not &
problem. The identity array can be extended and new descriptor
routines can be added within the main while loop of the program.
Here there is an advantage over the classic rule-based approach
where at least one new rule must be added to the system every
time a new part is added. By lengthening the array and
increasing the descriptor levels, our recognition system is
equipped with the capacity to code several more objects befors
another expansion is required. Furthermore, as a rule-base is
developed, the rules quickly become specific to types of shapes
that are being dealt with. Once a rule system is developed,
applying the same set of rules to an entirely new and different
type of part group can be very inefficient. To fully classify
the new parts, it is likely that a major portion of the rules, if
hot all of them, have to be rewritten. The algorithm presented
in this report, although much 1like a rule system, is portable
between object groups. It can be either expanded or the data-
base can be simply reset if it is desired to totally transfer the
system to the new object group. Since there are no rules to

rewrite, the transfer can be immediately implemented. If it is

47
thought to increase the efficiency for classifying the new objects,
the order in which the descriptor routines are called can be

changed.

An advanced system using this recognition algorithm would have
access to many descriptor routines, greatly reducing the chance of
a collision at the last descriptor level. When teaching a part to
the system, every descriptor routine would be executed, storing the
part's identity at all the locations previously discussed. In the
identification mode, the computer simply has to find the first
memory location containing a part identity. The bulk of the
processing time, therefore, is taken up in the teach mode, leaving
a minimal amount of work to be done in the real time conditions of

the identification mode.

Although the system can maintain 100% reliability and will
compute only the minimum number of descriptors required to identify
a part, the memory requirements are quite large. As a defense, it
is pointed out that memory boards are becoming more affordable as
they are now mass produced. Furthermore, it is accuracy and
processing time that pose the greatest challenge for object

recognition.

48

CHAPTER 5 EXPERIMENTAL RESULTS
5.1 Test Equipment

The program was written in the TURBO C language on a 286
microcomputer. Inmage acquisition was accomplished using a Sony
CCD camera and a DT-IRIS frame grabber board. DT-IRIS software
routines were linked to the C code to control the image
acquisition from within the program. Binary images with a

resolution of 512 "x 480 pixels were displayed on an RGB Sony

monitor.

5.2 Experimental Method

The Boundary Tracking/FD routine, the Teach Mode routine and
the Identification Mode routine are 1listed in Appendix A. The
flowcharts shown in figures 7 and 8 provide an overview of the

Aprogramming functions in the teach mode and identification mode.

In the teach mode, the user can load in the existing data-
base if they wish to add more parts to a set of previously taught
parts. If the existing data-base is no longer needed, it can be

reset, allowing a new data-base to be built.

49

Before a new part is taught, the integer coordinates
Ci1,C2...Ck are set to zero. This allows the computer to store
part identities at each descriptor level as described in section
4.2. The first descriptor routine is then called which returns
the first descriptor value. After this real number is classified
to its integer coordinate, the computer checks if the descriptor
fell within an error space. If so, the appropriate number of
duplicate codes will be generated. The memory location for each
code is then inspected. If a part identity already exists at one
of the memory loc;tions, it is set to -1, indicating that it can
no longer be uniquely identified at the current descriptor level.
If unoccupied, the identity of the part currently being taught is
written to the memory location. Once all descriptors have been
processed in this manner, the computer checks if there was a
collision at the last descriptor level. If so, the current part
being taught is rejected and the memory locations of the data-
base are restored to their previous values. The wuser then has

the option to teach another part or exit and save the data-base.

The identification mode routine is similar to the teach mode
except that the classification scheme does not contain error
spaces and redundant codes are not generated. Descriptors are
simply processed one at a time until a memory location is found

that contains a part identity.

Figure 7 Flowchart for Teach Mode Routine

LOAD
FET EXTSTING
CLC2... G0 DATA BASE
OR REBET
COMPUTE OESCRIPTOR
m.x‘mm AOUTINES
]
CLASSIFY TO
AN INTEBER
COORDIMATE

LOCATION
OCCUPTED?

part (C4) .QI‘ pert (CU w’

cesead eesaall

L

(e fca1 c
part Ie8{ Pt 12

part identity pert identity

y
NA YeS
REIRMDANT

RESTORE
DATA-BASE

SAVE
ANOTHER | DATA-BASE

51

Flowchart for Identification Mode Routine

YES

SET LOAD
Ci C2...0xm0 EXISTING
DATA BASE
COMPUTE
DESCRIPTOR

DESCRIPTOR
ROUTINES

0BJECT
IDENTIFIED

IDENTIFY
ANGTHER

NO

52

Test objects were obtained by drawing random shapes on white
paper using a black felt marker to produce a clear binary image.
A total of 23 object shapes have been taught to the system using
the first 4 Fourier Descriptors, each subdivided by 4 error
spaces of distance 2*err(k). During testing, it was found that
objects would yield FD's having an error in excess of the
calculated err(k) values. This was due to the shifting of the
centroid location between rotations and size variations. As this
error is dependent on the digitizing resolution rather than the
parameterizing method, it was not included in the error analysis
in section 3.4. A theoretical calculation of the digitizing
error is beyond the scope of this report, as it depends not only
on camera resolution but also on blurring and 1lighting
conditions. Future improvements in digitizing resolution will
reduce the effect of this limitation, however, for the current
512x480 array, it was found that the size of the err(k) values at
the first 4 frequency levels had to be widened to at least 2.0 to

account for the additional error incurred with digitization.

A total of 2 object shapes have been rejected from the system
during the teach mode due to collisions occurring at the last
descriptor level. These parts were later successfully coded by
‘adding two new descriptors, shortest and longest radial length.
All objects have been tested in the identification mode, each in
at least 3 different orientations and at 2 different sizes. All
of the test objects were correctly identified each time they were

presented to the camera.

53

Figure 9 is a test image showing the boundary trace and 256
radial lines extending from the centroid. Figure 10 lists the
output for the identification mode, indicating the real number
descriptor calculations and the integer classification. Note
that the object has been identified at descriptor level 4.
Further descriptor calculations were unnecessary. Additional

test images and program results are shown in Appendix C.

54

Boundary Trace and Radial Lines

Figure 9

Figure 10 Identification Mode Output

Do you wish tao identify ancther partty
Pxsiticn next part under camera and press any ey

Normalized min_dist = 17.83901=
Normalized max_dist 186. 2543273

FREQ REAL IMAGINARY MAGNITUDE
1 0.40,..... 5.€68 S.9413
= 12.62...... -2.27 13.4466
3 14.58...... 14,24 1'3.8361
3 -2.E69. ..., . ~-12.09 12,0661

Part number is : 1
Identified at descriptor level 4

A

e]
P S

O}

Identity code far part no. 1 is:

Do you wish to identify ancther part?

56

CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS

An algorithm for object identification of two-dimensional
binary images has been presented. Although the discussion has
been limited to using Fourier Descriptors, it should be noted
that virtually any type of descriptor can be used provided that
the maximum possible error is correctly calculated. Efficiency
and reliability make this method well suited for industrial
applications. The multi-dimensional array concept allows only
the minimum number of descriptors to be calculated and does not
require any additional processing time for searching and
matching. Redundant coding accounts for the maximum possible
error of each descriptor, enabling the system to maintain 100%

reliability.

The largest drawback to the system is that, for a randomly
selected group of parts, there is no guarantee that all parts in
the group will be successfully coded with the existing number of
‘descriptors. If a collision occurs at the last descriptor level,
the identity array must be expanded to include coordinate values
calculated from additional descriptor routines. Although
expanding the system is not a problem, the memory requirements
increase exponentially with the number of descriptors used.
Increasing the efficiency of memory usage can be accomplished by

subdividing the descriptor range as much as possible while

57
ensuring that the frequency distribution is uniform between each

subdivision.

For this algorithm, the bulk of the work remains in setting
up the system, choosing accurate descriptors, calculating their
maximum error, and expanding the system when it is necessary to
code a greater number of parts in the teach mode. Once this
preparatory work is completed, the identification mode is
equipped with the ability to identify the coded objects with 100%

reliability.

(1]

(2]
(3]
(4]
(3]
(6]
(7]
(8]

9]

(10]

BIBLIOGRAPHY

Bolles and Cain, "Recognizing and Locating
Partially Visible Objects: The local Feature Focus
Methods", Int. Journal of Robotics Research,
vol.l, n.3, pp.57-82, 1982.

Draper et al, "Image Interpretation by Distributed

Cooperative Processes", IEEE Trans Computer Vision and

Pattern Recognition, pp. 129-135, 1988.

Goad, "Fast 3D Model Based Vision", From Pixels to
Predicates, Albex, Norwood, New Jersey, 1986

Hall, Computer Image Processing and Recognition,
Academic Press, pp. 416-419, 1979

B.K. Horn, Robot Vision, MIT Press, pp.152-153, 1986

Jiang and Merickel, "Boundary Estimation

in Complex Imagery Using Fourier Descriptors", IEEE
Trans Pattern Analysis and Machine Intelligence,
pp. 187-190, 1988.

Krzyzak, Leung and Suen, "Reconstruction

of Two Dimensional Patterns by Fourier Descriptors”,
IEEE Trans on Systems, Man and Cybernetics,

pp. 555-558, 1988.

McKeown, Jr., Harvey, Jr., and McDermott,
"Rule-Based Interpretation of aerial imagery", IEEE
Trans Pattern Analysis and Machine Intelligence,
v.7, n.5, pp.570-585, 1985

Niblack and Damian, "Experiments and Evaluations

of Rule-Based Methods in Image Analysis", IEEE Trans
Computer Vision and Pattern Recognition, pp. 123-128,
1988.

Persoon and Fu, "Shape Discrimination Using

‘Fourier Descriptors", IEEE Trans on Systems Man and

Cybernetics, v.7, pp. 170-179, 1977.

58

(11]

(12}

[13]

[14]

59

Press, Flannery, S.A. Teukolsky and W.T.
Vetterling, Numerical Recipes in C - The Art of
Scientific Computing, Cambridge University Press,
pp. 407-412, 1989 ’

Smyrniotis and Dutta, "A Knowledge-Based

System for Recognizing Man-Made Objects in Aerial
Images", IEEE Trans Computer Vision and Pattern
Recognition, pp. 111-117, 1988

Wallace and Wintz, "An Efficient Three
Dimensional Aircraft Recognition Algorithm Using
Normalized Fourier Descriptors", Computer Graphics
and Image Processing, v.13, pp. 99-126, 1980

zahn and Roskies, "Fourier Descriptors for
Plane Closed Curves", IEEE Trans on Computers,
v. c-21, n.3, pp. 269, 1972.

APPENDIX A

ERROR GENERATION
FOURIER DESCRIPTOR AND
OBJECT RECOGNITION ROUTINES

60

.61

/*********************** FD ERROR ROUTINE khkhhhkhkhhkhkhhkdhrbhkdkhhhbhdbdrhhrhkdx

This routine generates maximum error magnitudes at the selected
frequency indicated by the variable FREQ. The number of terms
can also be changed The length of the radial projections from
the centroid is indicated by max_length. Using FREQ, max_length
and terms, the error shifting along the boundary curve is “matched
to the sign change pattern of a periodic function having
frequency = FREQ.

***/

#include <stdio.h>
#include <math.h>
#define PI 3.1415926
#define terms 256
#define FREQ 2

#define max_length 250

main{)
{
int s,n,c,k;
float temp, dfcr, dfci, err([256];
float error({256], change_sign, shift, ave_length;

/**** Determine the normalized shifting error and the number of sample
points required between sign changes of the error rr*xxxkxxsis/

ave length = max_length / 2;
shift = (((FREQ*max_length*2) / terms) * .5) / ave length;
change sign = (terms/FREQ) * .5;

J/**x*xxx*xx% Match the sign change pattern to that of a sine or
cosine function of frequency = FREQ ‘x*kkkkkkkdkdksrsk /

n=0;

for (¢c=0; c <= FREQ; c++)

{
for(s=1;s<= change_sign ;s++) { error(n] = shift; n++;}
for(s=1;s<= change_sign ;s++) { error[n] = -shift; n++;}

}

[****x%%+%x* Propagate the error function error{n] through the

Fourier Transform to determine the resulting error
magnitude **************************************/

printf("\n\n\n\n\n\n");

(
printf (" ERROR MAGNITUDES FOR METHOD (iii) \n");
printf (" MAXIMIZING FOR FREQ. K = %1d \n\n\n",FREQ);
printf(" Freg. k Error Magnitude\n\n");
for(k=1;k<=16;k++)
{
dfcr=0;
dfci=0;
for(n=0; n<= (terms-1); n++)
{
temp = (2 * PI * k * n) / terms;
dfcr = dfcr + (error(n) * cos(temp)) / terms;
dfci = dfci - (error(n] * sin(temp)) / terms;
}
err[k] = hypot(dfcr,dfci) * 100;
printf(" %$3d $7.4£f\n",k,err[k]
}

62

p—
~s

ERROR MAGNITUDES FOR METHOD (iii)
MAXIMIZING FOR FREQ. K = 2

Freg. k Error Magnitude
1 0.0000
2 0.7640
3 0.0000
4 0.0000
5 0.0000
6 0.2549
7 0.0000
8 0.0000
S 0.0000

10 0.1532
11 0.0000
12 0.0000
13 0.0000
14 0.1097
15 0.0000
16 0.0000

ERROR MAGNITUDES FOR METHOD (iii)
MAXIMIZING FOR FREQ. K = 1

Freg. k Error Magnitude
1 0.2547
2 0.0000
3 0.0849
4 0.0000
5 0.0510
6 0.0000
7 0.0364
8 0.0000
S 0.0284

10 0.0000
11 0.0232
12 0.0000
13 0.0197
14 0.0000
15 0.0171
16 0.0000

64

/*********** BOUNDARY TRACKING AND FD ROUTINE 'TEXEEZEZEZE R R LR R R R R B B A& &8

The following program calculates a pixel-by-pixel 4-link chain code
from 512x480 input images. Radial distances from the centroid

to points on the boundary curve are calculated to generate an
object parameterization function (dist(n}) which describes radial
distance as a function of curve length. Finally, the Discrete
Fourier Transform is applied to f(n) yielding a set of
characteristic coefficients which are invariant under rotations,
size and starting point.

**********ﬁ****i****************i*********i**********t*****t**t****t**/ i

#include <stdio.h>
2include <stdlib.h>
#include <stddef.h>
¢include <alloc.h>
¢include <math.h>

#¢include “isdecs.h"
¢include "iserrs.h"

(define terms 256
#define PI 3.141592654

int pixel(40](512];

fourier()
{

extern int start;

extern char opps;

extern int *x coord,*y_coord,*word;

extern int pixel[40)(512], *array;

extern float descriptor(6]};

float x_momentf=0,y_momentf=0,massf=0} =S

float max dist=0,min_dist=5000;

float dist{600), x_dist,y dist;

float dfcr(7], dfci(7], temp, mag(7], point2;

float step, low, high, dec,x_centroif,y_centroif,normal,f;

int x_centroid,y_centroid, x,y,sample_pt,L, k;

int y max=0, y_min=600, x_max=0, x_min=600;

int i,j, orientation = 1, s, end,point, r, status?;

int start pti, start_ptj, indx, n, direction, corners. 7. status;

int split,found=0,cornl,corn2,corn3,cornd,bit:

char FILENAME([32];

long offset,m;

int bitarray{] = {0x0001,0x0002,0x0004,0x0008,
0x0010,0x0020,0x0040,0x0080,
0x0100,0x0200,0x0400,0x0800,
0x1000,0x2000,0x4000,0x8000};

int one=0,zero=255,color1=128;

65

[****** Injtjalize DT-IRIS frame grabber *****+x/

if(start == 1)
{ is_initialize();

start=0;
is_select _ilut(6);
is_select _olut(6);
is_set_sync_source(l);
is_select_input_frame(0);
is_select_output frame(l);
is display(l);
}

is_acquire(0,1);

is_set_background(150);

/****x* Acquire a binéry 512x480 image and store in bit-packed format
in *(word + offset) * %% %% [

offset = -1;

for(i=0;1i < 12;i++)

{
x=y=0;
k=40*i;
is_set_active_region(k,0,40,512);
is_get_region(0,&pixel);
is_put _region(l,&pixel);

for(j=0; j < 1280; j++)

{

offset++;

for (bit = 15; bit >= 0 ; bit--)

{) ==
1f(x == 512) { x=0;y++; }
if(pixel(y]}(x]) == one)
*(word + offset) |= bitarray[bit};
else

*(word + offset) &= " bitarray(bit];

X++:

}

66

/****+ Scan the image from top to bottom until the 3x3 window
encounters a "1°" *****/

i:j:k:m:n:l;
x =y =0;
for (offset = 0; found == 0; offset++)
{
1f(x == 512) {x=0;y++;} .
for (bit = 15; found == 0 && bit >= 0 ; bit--)
{
f(*(word + offset) & bitarray(bit])
found=1 ;
=== X++;
}
}
X==;y-=i
X==;

offset--;bit++;
*(x_coord+k)
*{(y_coord+k)
k++:
start_pti = offset;
start _ptj = bit;

X
i

is_set_active reqgion(0,0,512,512);

/* Track the boundary of the object until the 3x3 window returns to
the initial starting point. As the window follows the curve, it
will generate a 4-link chain code corresponding to the directional

moves. * /
if(bit == 15) split=1; s -
if(bit == 14) split=2;
1f((bit 1= 15) && (bit I= 14)) split=3;
while(1l)
{ -
if (((m == start_pti) && (n == start pti)) ||
((m == start pti-1) && (n == 0)) |
((m == start pti+l) && (n == 15)) &&
(k > 50)) break; -

switch(split)
case 1

67

{

switch (orientation)

{ case 1 if ((*(word + offset-32) & bitarray(bit]) == 0)
{ bit-=;x++; }
else
{ offset = offset - 32;y--; } break;
case 2 if ((*(word + offset-65) & bitarray(0)]) == 0)
. { offset = offset - 32;y--;
=== else
{ bit++;x--; } break;
case 3 1f ((*(word + offset-33) & bitarray(l]) == 0)
{ bit++;x--; }
else
{ offset = offset + 32;y++; } break;
case ¢ if ((*(word + offset-1) & bitarray(0]) == 0)
{ offset = offset + 32;y++; }
else
{ bit--;x++; } break;
} break;
case 2
switch (orientation)
{ case 1 if ((*(word + offset-32) & bitarray(bit]) == 0)
{ bit--;x++; }
else
{ offset = offset - 32;y--; } break;
case 2 if ((*(word + offset-64) & bitarray({l5)) == 0)
{ offset = offset - 32;y--; } .
else
{ bit++;x--; } break;
case 3 if ((*(word + offset-33) & bitarray(0]) == 0)
{ bit++;x%x--; }
else
{ offset = offset + 32;y++; } break: -
case ¢ 1f ((*(word + offset) & bitarray(iZ]» == n)
{ offset = offset + 32;y++; }
else -
{ bit--;x++; } break;
} break;

68
case 3

switch (orientation)
{ case 1 : 1if ((*(word + offset-32) & bitarray(bit]) == 0)
{ bit--;x++; }
else
{ offset = offset - 32;y--; } break;

case 2 : 1if ((*(word + offset-64) & bitarray(bit+l]) == 0)
{ offset = offset - 32;y--; } B
else
{ bit++;x--; } break;

=== case 3 : 1f ((*(word + offset-32) & bitarray(bit+2]) == 0)
{ bit++;x--; }
else
{ offset = offset + 32;y++; } break;

case 4 : 1f ((*(word + offset) & bitarray(bit+l}) == 0)
{ offset = offset + 32;y++; }
else
" { bit--;x++; } break;
} break;
}
if(bit == 16) {offset--; bit=0; }
if(bit == -1) {offset++; bit=15;}
if(bit == 15) split=1;
if(bit == 14) split=2;
if((bit 1= 14) && (bit != 15)) split=3;

/* Store maximum and minimum x and y coordinates of image */

if(y > y_max) y_max=y;
if(y < y_min) y min=y;
1f(x > x_max) x_max=x;
1f(x < x_min) x_min=x; | —

/* Store the x and y coordinates of the current window position +/

*(x_coord+k)

X 7
*(y_coord+k) Y

- /

/* Return to calling routine if 3x3 window becomes disoriented

if((y > 511y || (y < 0y || (x > 511) || (x < 0) || (k > 10000))
return(opps='1"); -

is put pixel(1l,y,x,1,&colorl);
k++:m = offset; n = bit;

69

/* Inspect key pixels to determine next orientation */

switch(split) {

case 1l:

cornl=cornZ2=corn3=corn4=0;
if(*(word+offset-65) & bitarray(l]) corni=1;
f(*(word+offset-64) & bitarray{l5]) corn2=1i;

if(*(word+offset) & bitarray(15}) corn3=l;
if(*(word+offset-1) & bitarray{l]) cornd=1;

corners = cornl + corn2 + corn3 + corné:;

if (corners <= 1)

{
if ((cornl! + corn2 + cornd) == 0)
orientation =];
if ((cornl + corn3 + corn4) == 0)
orientation = 2;
if ((corn2 + corn3 + corn4) == 0)
orientation = 3;
if ((cornl + corn2 + cornl3) == 0)
orientation = 4;
if ((corners ==) && (*(word + offset-65) & bitarray{0])
orientation = 2 ;
if ((corners == 0) && (*(word + offset-32) & bitarray([15])
orientation = 1 ;
}
if (corners == 2)
{
if ((corn3 + cornd) == 2
{ if (*(word + offset-33) & bitarray(l)) orientation = 4;
if (*(word + offset-32) & bitarray(lS5]) orientation = 1 ;
if ((*(word + offset-33) & bltarray[l]) && i
(*(word + offset-32) & bitarray(l5]))) orientation = 1;
if ((corn2 + corn3) == 2)
{ if (*(word '+ offset-1) & bitarray({0]) orientation = 1;
if (*(word + offset-65) & bitarray{0]) orientation = 2;
if ((*(word + offset-1) & bitarray(0]) &&
(*(word + offset-65) & bitarray({0])) orientation = I;
if ((cornl + corn2) ==)
{ 1f (*(word + offset-33) & bitarray(l)) orientation = };
if (*(word + offset-32) & bitarray[l5]) orientation = ;
if ((*(word + offset-33) & bitarray(l]) &&
(*(word + offset-32) & bitarray({l5})) orientation = 3;

70

if ((cornl + corn4) ==)
{ 1f (*(word + offset-1) & bitarray[0]) orientation = 4;
if (*(word + offset-65) & bitarray[0]) orientation = 3;

if ((*(word + offset-1) & bitarray(0]) &&
(*(word + offset-65) & bitarray[0]))) orientation

i

4;

if (corners == 3)

{
if (corn3 == 0) orientation = 3;
if (corn2 == 0) orientation = 4;
i1f (cornl == 0) orientation = 1;
if (corn4 == 0) orientation = 2;
}

break;

case 2:

cornl=corn2=corn3=corn4=0;

if(*(word+offset-65) & bitarray(0]) cornl=l;
if(*(word+offset-64) & bitarray(l4]) corn2=1;
if(*(word+offset) & bitarray({14}) corn3=1;
if(*(word+offset-1) & bitarray[0]) cornd=l;

corners = cornl + corn2 + corn3 + cornd;

if (corners <= 1)

{

if ((cornl + corn2 + corn4) == 0)
orientation = 1;
if ((cornl + corn3 + cornd4) == 0)
orientation = 2;
if ((corn2 + corn3 + corn4) == 0)
orientation = 3; . =
if ((cornl + corn2 + corn3) == 0)
orientation = 4;
if ((corners == 0) && (*(word + offset-64) & bitarray[1l5])
orientation = 2 ;
if ((corners == 0) && (*(word + offset-32) & bitarray(l14])
orientation = 1 ;
}
if (corners == 2)
{
if ((corn4 + corn3d) == 2) -
{ if (*(word + offset-33) & bitarray({0]) orientation = 4;
if (*(word + offset-32) & bitarray(l4]) orientation = 1 ;
if ((*(word + offset-33) & bitarray[0]) &&

(*(word + offset-32) & bitarray[l4])) orientation = 1;

}

)

}

offset~1

if ((corn2 + cornl) == 2
{ 1f (*(word + offset
1f |
1f ((*(word +
i1f | ornl + corn2) ==

Te:

if

)
) & bitarray[1l5
*(word + offset-64) & bitarray([l5
) & bitarray[15
(*(word + offset-65) & bitarray(l

1)
1)
1)
51)

ori

orientation

&&
) ©

*(word + offset-33) & bitarray(0]) &&

entation

(LT}

rientation

(c ‘
(*(word + offset-33) & bitarray(0]) orientation = 3
if (*(word + offset-32) & bitarray({l4]) orientation =
((
(

*(word + offset-32) & bitarray[l4])) orientation

if ((cornl + corn4) ==

{ 1if (*(word +

}
if (corners == 3)
{
if (corn3 == 0)
if (corn2 == 0)
if (cornli == 0)
if (corn4 == 0)
}
break;
case 3:

2)
offset) & bitarray[15
if (*(word + offset-64) & bitarray([l
1f ((*(word + offset

(*(word + offset-64) & bitarray(

orientation
orientation
orientation
orlientation

cornl=corn2=corn3=cornd4=0;
if(*(word+offset-64) & bitarray(bit+2]) cornl=1l;

if(*(word+offset-

i1f(*(word+offset
1f(*(word+offset

corners = cornl + corn2 + corn3 + corn4;

if (corners <= 1)

{

64

& bitarray{bit+2})

if { (cornl + corn2 + corné)

orientation = 1;
if ((cornl + corn3 + cornd)
orientation = 2;

if ((cornd + corn3 + corn2)

orientation

:3;

if ((cornl + corn2 + corn3)

orientation

=4;

B b B

s we wa wma

)} & bitarray(l

])

57)
51)
15]

orientation =
orientation =

&&
))

) & bitarray(bit]) corn2=1;
) & bitarray(bit]) cbrn3=1;
)

orientation

corngd=1;

71

4;

}

72

if ((corners == 0) && (*(word + offset-64) & bitarray(bit+l]) !
orientation = 2 ;
= 0
=1

if ((corners =) && (*(word + offset-32) & bitarray(bit]))
orientation ;
}
1f (corners == 2)
{
if ((corn4 + cornld ==))
{ if (*(word + offset-32) & bitarray(bit+2]) orientation = 4;
if (*(word + offset-32) & bitarray(bit]) orientation = 1 ;
if ((*(word + offset-32) & bitarray[bit+2]) &&
== (*(word + offset-32) & bitarray[bit])) orientation = 1; }
if ((corn3 + corn2) ==
{ 1f (*(word + offset bitarray(bit+l}]) orientation = 1;
:2;

if ((*(word + offset bitarray[bit+l1l]) &&

2)
() &)
if (*(word + offset-64) & bitarray(bit+l]) orientation
() &)
(*({word + offset-64) & bitarray(bit+l])) orientation = 2;

if ((corn2 + cornl) == 2)
{ if (*(word + offset-32) & bitarray(bit+2]) orientation = 3;

if (*(word + offset-32) & bitarray({bit]) orientation = 2;

if ((*(word + offset-32) & bitarray(bit+2]) &&

(*(word + offset-32) & bitarray(bit])) orientation = 3; }
if ((cornl + corn4) == 2)
{ 1if (*(word + offset) & bitarray[bit+l)) orientation = 4;
if (*(word + offset-64) & bitarray(bit+l]) orientation = 3;

)
if ((*(word + offset) & bitarray[bit+l]) &&
(*(word + offset-64) & bitarray{bit+l])) orientation = 4;

}
if (corners == 3)
{
if (corn3 == 0) orientation = 3;
if (corn2 == 0) orientation = 4; A =
if (cornl == 0) orientation = 1;
if (corn4 == 0) orientation = 2;
}
break;
}
} /* End of boundary tracking */

/* Return to calling routine if a noise point has been tracked
instead of the object */

k-=;
if(k < 250) return(opps='1');
f=k;

73

/* Calculate object mass and x and y moments */

-_-;Y
(

1;y=1;
r (offset = 0; offset < 15360; offset++)

~~
O

for (bit = 15; bit >= 0 ; bit--)
{
if(x == 513) { x=1l;y++; }
if((*(word + offset) & bitarray({bit]) && (x <= x_max) && (x >= x_mi
&& (y <= y_max) && (y >= y_min))

{
— massf++;
x_momentf += Xx;
y_momentf += y;
}
X++3

x_centroif = x_momentf/massf;
y_centroif = y momentf/massf;

if((x_centroif - floor(x_centroif)) < 0.5)
x_centroid = floor(x_centroif);

else _
Xx_centroid

1

ceil(x_centroif);

if((y_centroif - floor(y centroif)) < 0.5)
y_centroid = floor(y_centroif);

else
y_centroid = ceil(y_centroif);

b

x_centroif -= 0 ; y _centroif += 0; A

/* Normalize the number of slope calculations so that different image sizes
will still generate the same number of terms. : , o/

step = £ / terms ;

low = step - floor(step) ;
high = ceil(step) - step ; . -
if ((high t= 0) || (low != 0))

{ 1if (high <= low)
{ step = ceil(step);
dec =1 / high;
status = 1; }

else
{ step = floor(step);
dec =1/ low;

status = 2; } }
else
{ dec = 0 ; }

low = dec - floor(dec);
high = ceil(dec) - dec;
if ((high 1= 0) || (low != 0))

{ 1if (high <= low)

{ point = ceil(dec);
point2 = 1 / high;
status?2 = 1; }

else

{ point = floor(dec);
point2 = 1 / low ;
status2 = 2; }

y

else

{ point = dec;
point2 = 0 ; }

low = point2 - floor(point2);
high = ceil(point2) -point2;
if (high <= low)

point2 = ceil(point2);
else

point2 = floor(point2);

g = point;

r = point2;
i=3=1;

L = f;
printf("\n\n");
s=0;

74

75

/* Calculate the distance to the centroid at each normalized sample_pt

n=0;

is_set_graphic_position(y_centroid,x_centroid);
1s_set foreground(70);

for (sample pt

{

Xx_dist

= 1; sample_pt <= L; sample_pt += step)'

*(x_coord+sample pt) - x_centroif;

y_dist = *(y_coord+sample pt) - y_centroif;
dist(s] = hypot(x_dist,y dist);

if(dist{s]
if(dist(s]
*(array+n)
n++;
*(array+n)
n++;
*(array+n)
n++;
*(array+n)
S++;n++;

if (1 == g
{

if (status

<
>

1

min_dist) min_dist=dist(s];
max_dist) max dist=dist(s];
*(y_coord+sample pt);
*(x_coord+sample pt);

y_centroid;

X_centroid;

==)

sample pt++ ;

else

sample pt-- ;
g = g + point;

jt+

if (j ==1)

{ 1f (status2 == 2) '

qg++
else
g-- ;

r = r + point2;
}

i++;

n=n/2;

is draw_lines(1l,n,array);

*/

% Apply the
calculate
unique to

s=terms;
dfcr(s)
dfci(s]
for (n
{
temp
dfcr{
dfcif
}
normal
descri
descri
printf
printf

printf("\n
j=3;
for (

{

S

dfcr{s]
dfci(s])
for (n

{

mag(s]
printf

descri
j++;

S
S

76

Discrete Fourier Transform to the function dist(n] and
the magnitudes for each coefficient. These magnitudes are
the boundary curve and are rotation and size invariant.

0;
0;

0; n <= terms; n++)

(2 * PI * s * n) / terms;

dfcr(s] + (dist{n] * cos(temp)) / terms;
dfci(s] - (dist(n] * sin(temp)) / terms;

) =
] =

hypot (dfcr{s],dfci(s});

ptor(1l] 100*(min_dist/normal);
ptor{2] = 100*(max_dist/normal);
(“\n\nNormalized min_dist $f,
("\nNormalized max dist $f\n\n

)

descriptor(1l]);
1)7

)
= “,descriptor(?2

\nFREQ REAL IMAGINARY MAGNITUDE\n\n");
1; s <= 4; s++)
= O;
= 0;
0; n <= terms; n++)
(2 * PI * s * n) / terms;
] = dfcr(s] + (dist{n] * cos(temp)) / terms;
] = dfci[s]) - (dist(n] * sin(temp)) / terms;
} A
= 100* (hypot(dfcr(s),dfci{s])) / normal; ==
(" %2d $7.2f...... $7.2f $10.4f \n",
s,dfcr(s],dfci(s],mag{s]):
ptor{j] = mag({s};

* /[
!

/

77

/***************** TEACH MODE ROUTINE LA R AR R E XL R R REE R B RPN,

This routine calls a descriptor routine, fourier(), and uses
the returned descriptors as coordinates of the muti-dimensional

array *(part + offs). Real numbered descriptors are

classified to integer coordinates according to the boundary
spacing defined in limit{7][7]. Redundant codes are generated

when real descriptors fall with the error spaces defined
error(7][{5)[3]. A while loop is executed until all

in

descriptors have been classified. Once the part identity is
stored in the location(s) of the array *(part + offs), another

part may be taught to the system.

****-ﬁ********-ﬁ*************************************i***************/

#include <stdio.h>
¢include <conio.h>
#include <alloc.h>
#include <math.h>

extern unsigned stklen = 20000;
float descriptor(6];

int *x_coord, *y _coord;

int *word,start=1, *array;

char opps;

float 1limit{7][7] = { { 0, 0, 0, 0, 0, 0,

{ 0, -1, 12, 24, 36, 48,

{ 0, -1, 120, 160, 200, 240,

{ 0, -1, 6, 12, 18, 24,

{ .0, -1, 6, 12, 18, 24,

{ Or "lf 61 12, 181 24!

{ 0, -1, 6, 12, 18, 24,

float error{(7])({5](3] =

{({{ 0, 0}, { 0, 0}, { 0, 0}, { 0, 0}, { 0,
{{ O, 0},¢ 4, 12}, ¢ 16, 24}, ¢ 28, 36}, 40,
{{ 0O, Oy,{ 108, 120},{ 148, 160},{ 188, 200},{ 228,
{{ 0, 0}, 2, 6}, 8, 12}, ¢ 14, 18}, 20,
{({ O, 0}, 4 2, 6}, 8, 12}, 4 14, 18}, 20,
{({ 0, 0},{ 2, 6}, { 8, 12}, ¢ 14, 18y.{ 20,
{{ 0, 0},{ 2, 6}, { 8, 12},{ 14, 18),{ 20,

0},
600},
600},

50},
50},
50},
50}};

48
240
24
24
24
24

et i e
b i e o e)

inadie BN S N R

main()

{

char mode,reset='n',not _unique;
FILE *f1,*f3;

static int *part;

extern int *word;

extern char opps;

int a,

b,c,d,e,f,level,classified,bndry,part no,total,i;

78

int az,bz,cz,dz,ez,fz,v,last,*restore_part_no,*restore_location;
unsigned long offs=0;

char key;

float cl,c2,c3,c4,c5,c6;
extern float descriptor(6];
extern float limit(7])(7];
extern float error(7})([(5][3);

restore_
restore_

X_coord
y_coord
array =
part

word =
if(part

part no = (int *) malloc(1000);
location = (int *) malloc(1000);
= (int *) malloc(30000);

= (int *) malloc(30000);

(int *) malloc(10000);

(int *) malloc(34000);

(int *) malloc(32000);

== NULL)

{ printf("NUlls pointers!");
exit(l); }

if(word

== NULL)

{ printf("word is NULL!");
exit(l); }

;* Load in the existing data base of coded parts */

printf("\n Do you wish to delete the existing Databasein

" and build a new one (y/n)? : ");

reset = getch();

79

if (reset == 'n')
{ .
printf("\nPlease wait while existing Database is being loaded in");
f1 = fopen("c:\\lutes\\pn.dat","r");

£3 = fopen(“"c:\\lutes\\parts.dat","r");

rewind(fl);

rewind(£3);

fscanf(fl,"%d",&part_no);

for(offs=0; offs <= 17000; offs++)
fscanf(f3,"%4d", (part + offs));
rewind(fl);
rewind(£3);
close(fl);
close(£f3);

}
if(reset == 'y'))
{ printf("\nReseting database");
part no = 1;
for(offs=0; offs <= 17000; offs++)
*(part + offs) = 0;
}

printf(“\nPosition part under camera and press any key");
getch();

/**** This loop is executed until the user has finished teaching

their parts ****/

A

while (1)
{
opps='0";
not_unique = '0°';
fourier(); /**** Call the descriptor routine ***+/ _
if(opps == '1")

{ printf("\n\n*** Part not within field of view
"and/or noise spot detected -** n’
"Reposition part and/or remove ncise,
"press any key when ready...'.n"); -
getch();
continue;

}

80

az=bz=cz=dz=ez=£fz=0;
cl=c2=c3=c4=c5=c6=0;
v=0;

/**** This loop is executed until all descriptors are classified ****/

for (level=1; level <= 6; level++)

{
bndry=1; classified=0;

while (classified != 1)

{

if((descriptor{level] > limit{level][bndry]) &&
(descriptor{level] <= limit({level]{bndry+1}))

switch (level) {
case 1 : cl=bndry;
if((descriptor{l] >= error{l][bndry][0]) &&
(descriptor(l) <= error{l]}{bndry])(1]))
az=1l; break;

case 2 : c2=bndry;
if((descriptor{2] >= error{2])(bndry)(0]) &&
(descriptor{2] <= error(2}{bndry]}{1l]))
bz=1; break;

case 3 : c3=bndry;
if((descriptor(3] >
(descriptor({3] <
cz=1; break;

error(3]{bndry]}[0]) &&
error{3])(bndryj(l]))

[

case 4 : c4=bndry; s =<
if((descriptor(4] >= error(4](bndry}(0]) &&
(descriptor{4] <= error(4)(bndry](1l]))
dz=1; break; '
case 5 : cS5=bndry;
&&

if((descriptor{5] >= error(5])(bndry}[0
(descriptor{S] <= error{5){bndry](1l
ez=1; break;

1)
IR

case 6 : cb=bndry;
if((descriptor(6] >
(descriptor(6] <
fz=1; break;

}

error{6)(bndry}(0]) && -
error{6j[bndry][1]))

81

classified=1;

}
bndry++;

}

total=az+bz+cz+dz+ez+fz;

/**** calculate offset for identity array *#*=*/
offs = (CLl*3125)+(c2+%625)+(Cc3*125)+(c4*25)+(c5%5)+(c6*1) - 3125;

if (total == 0) A
{ /**** no redundant codes necessary yet ****%/
if(*(part + offs) == 0)
*(part + offs) = part no; /**** memory location unoccupied *=*-
else
{ -
if(*(part + offs) != part _no)
{
if(*(part + offs) != -1)
{
*(restore_part no + v) = *(part + offs);
*(restore_location + v) = offs;
V++
} .
*(part + offs) = -1; /**** memory location occupied *xw /
if(level == 6) not unique = '1';
}
}

A _

A descriptor has fallen within an error space, therefore
generate the appropriate number of redundant codes **ww+/

else J*E*

switch(1i)

case
case
case
case
case
case
case
case

case

case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case

WO~ U=

.o

oo

ee a8 a0 se e

se or sae

es es os se o

48 o0 s ea s

[y

NN NN N NN N N ~e e vo s v ~e

NS NS Ne Mo uE Ns we ws wa

T e e NS TS N NE NS T NG NE N NE Me Ve e Ne Ne e we N8 w6 we ws ~we lme

break:

break:
break:
f=fz;
break;
f=fz;
e=ez;
e=ez;
break;
f=fz; break:
e=ez; break;
e=ez; f=fz; break
d=dz; break;
d=dz; f=fz; break
d=dz; e=ez; break
d=dz; e=ez; f=fz:
break;
f=fz;
e=ez;
e=ez;
d=dz; break;
d=dz; f=fz; break
d=dz; e=ez; break
d=dz; e=ez; f=fz;
c=cz; break:;
c=cz; f=fz;
c=cz; e=ez;
c=Ccz; e=ez;
c=cz; d=dz;
c=cz; d=dz;
c=cz; d=dz;
c=cz; d=dz;
break;
f=fz; break:
e=ez; break;
e=ez; f=fz; break
d=dz; break;
d=dz; f=fz; break
d=dz; e=ez; break
d=dz; e=ez; f=fz;
c=cz; break;
c=cz; f=fz;
c=Ccz;: e=ez;:
c=cz; e=ez;
c=cz; d=dz;
c=cz; d=dz;
c=cz; d=dz;
c=cz; d=dz;
b=bz; break;

break:

break;
break;
f=fz; break;

break:
break;

f=fz; break

break
break
f=fz;
break
f=£fz;
e=ez;
e=ez;

break
f=fz;
f=fz;

e=ez;
e=ez;

break;

break;

-
’
.
14

.
’

break:

.
14

.
4
.
4

break;

e we

break;
break;
break;

f=fz; break;

. A
14

s we

break;

M
break;
break;
break;

f=fz; break;

83

case 50 : a=az; b=bz; f=fz; break:

case 51 : a=az; b=bz; e=ez; break:

case 52 : a=az; b=bz; e=ez; f=fz; break;

case 53 : a=az; b=bz; d=dz; break;

case 54 : a=az; b=bz; d=dz; f=fz; break;

case 55 : a=az; b=bz; d=dz; e=ez; break:;

case 56 : a=az; b=bz; d=dz; e=ez; f=fz; break;.
case 57 : a=az; b=bz; c=cz; break;

case 58 : a=az; b=bz; c=cz; f=fz; break;

case 59 : a=az; b=bz; c=cz; e=ez; break:

case 60 : a=az; b=bz; c=cz; e=ez; f=fz; break;
case 61 : a=az; b=bz; c=cz; d=dz; break:

case 62 : a=az; b=bz; c=cz; d=dz; f=fz; break;
case 63 : a=az; b=bz; c=cz; d=dz; e=ez; break;
case 64 : a=az; b=bz; c=cz; d=dz; e=ez; f=fz; break;

}

J****** calculate offset **%+/
offs = ((cl+a)*3125)+((c2+b)*625)+((C3+C)*125)+((cd+d)*25)+
((c5+e)*S)+((cb+f)*1) - 3125;

if(*(part + offs) == 0) . ‘
*(part + offs) = part no; /*** memory location unoccupied **/

else
{
if(*(part + offs) != part_no)
if(*(part + offs) 1= -1)
{
*(restore_part_no + v) = *(part + offs);
*(restore location + v) = offs;
v+t
} .
*(part + offs) = -1; /*** memory location occupied ***/
if(level == 6) not unique = '1v; s
}
}

/** end of redundant coding loop ****/
/*** end of else *#*#*xx/

/*** get next descriptor ****/

84

if(not_unique == ‘1)
{ last=v;
part_no--;
printf("\n Collision at last level\n"
Part will be deleted from system \n");
for(v=0; v < last: V++)
{ *(part + (*(restore_location + v))) = *(restore_part_no + V)
printf("\n %d-, *(restore_part no + v)); }
}

else

{
printf(“\n\n\n Complete code for part no. %d is: %1.0f,%1.0f,%1.0f,

¥1.0£,%1.0f,%1.0f \n", part_no,cl,c2,c3,c4,c5,c6); N v
printf(" Number of possible codes: %4.0f \n",pow(2,total)); o

}

printf("\n\n Do you wish to code another part?");
key=getch(); -
putch(key);
if (key == 'y
{ part_no++;
printf("\n Position next part under camera and press any key");
getch();

else
{ part_no++;
break;

}

} /*****+ teach another part AR AL

- L
/****** Save the existing part codes xrwww [

printf("\n Saving Part Codes...");
free(word);

£l = fopen("c:\\lutes\\pn.dat", "w");

£3 = fopen(“c:\\lutes\\parts.dat","w");
rewind(fl);

rewind(£f3);

fprintf(f1l,"%d", part_no);

for(offs=0; offs <= 17000; offs++)
fprintf(£3, "%4d", *(part + offsy);

rewind(fl);
rewind(£3);
close(fl);
close(£3);

85

, LA A AR EEE RS XX R X E X IDENTIFICATION MODE ROUTINE A A S AL RS EE X XN XX NE XY

This routine identifies 2-D binary shapes which have been
previously coded into the multi-dimensional array

*(part + offs). Descriptors will be classified into integer
array coordinates one at a time until a memory location is
found containing a part identity. The boundaries for integer
classification are defined by limit{73)(7]. -

t't'tittt*t**tﬁt***t**t*ttttttt*it*i*ﬁ*i**t***i****tt***'t**ttﬁ*t"

#include <stdio.h>
#include <conio.h>
#include <alloc.h>
#include <math.h>

extern unsigned _stklen = 20000;

float descriptor(6};

int *x coord, *y coord, *word,start=1, *array;
char opps;

float limit(7])[7) = { { 0, 0, 0, 0, 0, 0, 0},
A 0, -1, 8, 20, 32, 44, 600},

{ 0, -1, 114, 154, 194, 234, 600},
{ 0, -1, 4, 10, 16, 22, 50},
{ 0, -1, 4, 10, 16, 22, 50},
{ 0o, -1, 4, 10, 16, 22, 50},
{ 0, -1, 4, 10, 16, 22, 50}};

main()

{

char fnd;

FILE *f1l,*£f3;

static int *part;

extern int *word;

extern char opps;

int a,b,c,d,e,f,level,classified,bndry,part_no,total,i:
unsigned long offs=0;
char key;

float cl,c2,c3,c4,c5,c6; e
extern float descriptor(6];
extern float limit([7]([7)
]

extern float error({7][5 E3];

Xx_coord = (int *) malloc(30000);
y_coord = (int *) malloc(30000);
array (int *) malloc(10000);
part (int *) malloc(34000);
word = (int *) malloc(32000);
if(part == NULL)
{ printf("NULL pointers!");
exit(1l); }
if(word == NULL)
{ printf("word is NULL!");
exit(l); }

86

f**** load in the existing data base of coded parts **w«

printf("\nPlease wait while existing Database is being loaded in":
fl = fopen("c:\\lutes\\pn.dat",“r");

£3 = fopen("c:\\lutes\\parts.dat", "r*);

rewind(fl);

rewind(£3);

fscanf(fl,"%¥d",&part _no);

for(offs=0; offs <= 17000; offs++)
fscanf(£3,"%4d", (part + offs));
rewind(fl);
rewind(£3);
close(fl); .
close(£f3);

printf("\nPosition part under camera and press any key");
getch();

/**** This loop is executed until the user no longer
wishes to identify parts #*++/

while (1)

{
opps='0";
fnd='Q';

fourier(); /***** call the descriptor 'routine *hwk [
if(opps == '1")
{ printf("\n\n*** Part not within field of view °
"and/or noise spot detected ***\n"
"Reposition part and/or remove noise,
"press any key when ready...\n");
getch(); |
continue;

}

cl=c2=cl3=cd4=c5=c6=0;

87

if(fnd 1= *1")
printf("\n This part has not been taught to the system yet\n");
else
printf(“\n\n\n Identity code for part no. %d is: %1.0f %1.0f"
" $1.0f %1.0f %1.0f %1.0f \n", *(part+offs),cl,c2,c3,cd,c5,c6);

printf("\n\n Do you wish to identify another part?");

key=getch();
putch(key):

if (key == 'n') exit(l);

printf("\n Position next part under camera and press any key");

getch();

THIS PAGE LEFT BLANK INTENTIONALLY

88

89

THIS PAGE LEFT BLANK INTENTIONALLY

APPENDIX B

THE FAST FOURIER TRANSFORM

90

91

In 1942, Danielson and Lanczos showed that a discrete
Fourier transform of length N can be rewritten as the sum of two
discrete Fourier transforms, each of length N/2. One of the two
is formed from the even-numbered points of the original N, the

other from the odd-numbered points. The proof is simply:

N-1 -Jankn
1 (=)
n=(
N/2-1 -2nk(2n) N/2-1 - jank(2n+1)
{) {)
FD, = = Y, f(2n) e ¥ y X Y f(2n+1) e ¥
N a0 N A

FD, m FD; + FDy

The Danielson-Lanczos Lemma can be used recursively. Therefore,
having reduced the problem of computing FDx to that of computing
FDxo and FDx=, we can do the same reduction of FDx® and FDx= to
‘the problem of computing the transform of their N/4 even-numbered
input data and N/4 odd-numbered data. Furthermore, if N is a
power of 2, we can continue applying the Danielson-Lanczos Lemnma
until we have subdivided the data down to transforms of length 1.
Consider the input function f(n) where N = 8. The problen

reduction is shown on the next page.

92

DFT{£(0),£(1),£(2),£(3),£(4),£(5),£(6),£(7)}

DFT{£(0),£(2),£(4),£(6)} + DFT{£(1),£(3),£(5).£(7)}

DFT{f(0),f(4)} + DFT{f(2),f(6)} + DFT{f(1),£(5)}
+ DFT{f(3),£(7)}

DFT{f(0)} + DFT{f(4)} + DFT{f(2)} + DFT{f(6)}
+ DFT{f(1)} + DFT{f(5)} + DFT{f(3)} + DFT{f(7)}

Each successive 1level in the problem reduction is found by
calculating the DFT on the even and odd-numbered elements of each
of the Discrete Fourier transforms in the preceding level. Thus
the problem has been reduced from computing a single, 8-point
DFT, to that of computing eight, l-point DFT's. The advantage to
this is that the DFT of a l-point function, for example £(4),
simply equals the function itself (i.e. DFT{f(4)} = £(4)).
Therefore, calculating the 8-point DFT is simply a matter of
adding adjacent pairs from the 1l-point level to obtain the 2-
point DFT's, then adding adjacent pairs of 2-point DFT's to
obtain 4-point DFT's, then combining once again to get the final
8-point DFT. The combinations at each level take N=8 operations,
and there are logzN = 3 levels, therefore the whole algorithm is
of order Nlog=N = 24 operations. This is significantly less than

the N2 = 64 operations that are required for the DFT.

Although this seems straightforward, there is one
preliminary requirement to implementing the FFT. If we are to
combine adjacent pairs at the 1l-point level, we must first re-

arrange the order of the elements of the input £f(n). Observe

93
when we work our way down from the 8-point level to the l-point
level, £(0) is mapped into the element position 0, f(1) is mapped
into position 4, f(2) into position 2, f(3) into position 6, and

so on. Therefore, what we wish to do with our input :

f(n). = { £(0),£(1),£(2),£(3),£(4),£(5),£(6),£(7) }
is to re-arrange it such that :

f(n)= = { £(0),£(4),£(2),£(6),£(1),£(3),£(3),£(7) }

If we study this problem closer we observe that the array
coordinates of f(n)= are the bit-reversed coordinates of f(n)a.

Denoting the array coordinates in bit notation, we have:

{£(000),£(001),£(010),£(011),£(100),£(101),£(110),£(111)}

f(n)a

f(n)= {f(000),£f(100),£(010),£f(110),£(001),£(101),£(011),£(111)}
This preliminary operation is accomplished by the computer very
quickly and is no greater than the order of Nlogz=N. Once the
elements of f(n). have been re-arranged, the FFT can be computed
by combining adjacent pairs from the l-point level until the full

8-point Fourier transform is achieved.

APPENDIX C

TEST IMAGES AND DATA RESULTS

94

Do yau wish tao identify ancther partty

Pasition next part under camera and press any

Normalized min_dist = 24.558017%
Normalized max_dist = 170.274445

FREQ REAL IMAGINARY
1 B.37...... -0.33
= =2.07...... 3.16
3 S2.1t.... .. -5.33
4 —0.64. 1.80

Part number is : 2
Identified at descriptor level 4

(J-

Identity code for part nao. 2 is:

MAGNITUDE

&.4621
2.3133
£5.1772
1.4740

Q)
.
—

Do you wish to identify ancther part?

key

i
3
S 4
T
H
H
H
i

95

i

Do you wish to identify ancther part?y

Pxsition next part under camera and press any key

Normalized min_dist = 23.605131
Normalized max_dist = 165.'368073
FREQ REAL IMAGINARY

1 -1.98...... -3.93

Z 1.84...... -3.26

3 23.34. ..., 2.75

4 0.43..... . 0.23

Part number is : 3
Identified at descriptor level ¢

Identity code for part no. 3 is:

o
)

AN

MAGNITUDE

4.7110
3.37604
28.417&
0.318=

21 00

Do youw wish to identify another part?

96

Do you wish to identify ancther partty

Position next part under camera and press any key

il

Normalized min_dist
Normalized max_dist

1.4833973
177.332687

FREQ REAL IMAGINARY
1 5.2, -6.64
P 2.0 16.76
] 2.080..... 0.05
<4 1.40...... -3.77

Part number isg : 2
Identified at descriptor level S

Identity code for part no. I is:

MAGNITUDE

7.1347
28.6186
1.7780
S.4273

122510

A

Do you wish to identify another part?

ey

97

Do you wish to identify ancther part?y
Pasition next part under camera and press any

Normalized min_dist = 3.33241350
Normalized max_dist 170.777832

FREQ REAL IMAGINARY MAGNITUDE
1 =3.70...... 6.5 €.2772
= S0.Z240 ..., 14,00 27.8813
3 1.200 ..., 2.933 . 2687
4 -0.6l...... s 2.6032

Part number is : =
Identified at descriptor level 3

Identity code for part no. & is: 1 2 25 1 0O

Do you wish to i1identify another part?

key

Y

98

D Ot
Pusition next part under camera and press any key

Nzrmalized
Normalized mawx_dist

yt:l 14

FREQ

B b e

wish

Part number is

Identified at descriptor level

Identity code for part no.

D [}

Yzt

wish

min_dist

16

to identify ancther part?y

= £35.831504

IMAGINARY

- N0 W
[SO ST N
LM

o~
v [

16

170.137174

MAGNITUDE

5.503¢6
22.955
10,1524

2.3120

to i1identify ancther part?

-

99

100

Do you wish to identify another part?y
Positicon next part under camera and press any key

Normalized min_dist = Z3.€69374

Normalized max_dist = 167.733201

FREQ REAL IMAGINARY MAGNITUDE
1 2.032...... S.43 S.0036
2 -3.13...... -27.26 2201492
3 10,41, ..., 8.63 10.8276
4 Z.740 ... -1.25 Z.4024

Part number is : 1€

Identified at descriptor level S

Identity code for part no. 16 is:v 3 2 25 3 0

Do you wish to identify another part?

D i

~/ et

Wi sk

- s oo -
GOSLTON new

Norm
Niorm

D [

alic
hl
Fe

ragnd

=

\,/ (R

=

-
1
1.
4.,
beEr L
ed at

wich

~
d nax

i S
v R
-t -
-
Ad -
DagYan]
ey 4
= .
de

t it

icentify another
part under camera

<
“~

O T
o
0 =

ot
T)
—

i)

H
<t
t

S. 147645

182.147€75

i
(4
]

IMAGINARY MAGNITURE

3

“ e 0.Q4

DN

s s« & e st

4 mo

“ e S)

Piten B ba fon

. s e e e w2
a -y
el

criptor level ©

rdentify anather part™

Ay

7

IOV

101

102

Do you wish to identify ancther partty
Positicn next part under camera and press any key

80.3513577

Normalized min_dist

Normalirzed max_dist = 119.370422 .
FREQ REAL IMAGINARY MAGNITUDE

1 1.14...... 0.57 0.8917

e -l.16...... 1.03 1.116S

3 0.83...... -1.08 0.3848

4 -0.32...... -0.523 0.43351

=

Part number is : S5
Identified at descriptor level &

Identity code for part no. S is: S 21 1 1 1

Do you wish to identify anather part?

103

APPENDIX D

GENERATING FOURIER DESCRIPTORS,
ROTATION INVARIANCE, AND
INHERENT WEAKNESSES

104

The following paragraphs attempt to provide an understanding

of how Fourier Descriptors (FDs) are generated, why they are
rotation invariant, and to expose some of the inherent weaknesses

of the method.

To examine how FDs are generated, consider the square object
shown in figure 1(a). Figure 1(b) shows the radial distances,
dist(n), from the centroid to each evenly spaced sample point along
the boundary (only 32 sample points, N=32, have been used to
simplify the analysis). Also shown is the sine weighting pattern
of the Fourier Transform applied to dist(n) at frequency = 1. When
calculating the FD, each element of dist(n) is multiplied with its
corresponding sine weight, and the sum of each of these products is
evaluated. For the square at frequency = 1, the result is zero.
This makes sense since the elements of dist(n) from 0 to m are
repeated in the same pattern from 7 to 2m. Therefore the positive
sum of the products from 0 to 7 is equal to the negative sum of the
products from 7 to 27, yielding a total sum of zero. This
condition holds true for frequency levels 2 and 3 also and can be

described as follows:

Now if the frequency = 4 is applied (figure 1(c)), there is a

dramatic change in the response. From the graph, we can see that

slne welght

Figure 1(a)

Figure 1gb)
Freq. = 1 Applied fo Square
1 / N 80
0-3‘! 70
0.6 7 60
0.4
/ ' 50
027 / \

0 {” / 40
—0.2'? -30
0.4

1 20
—0.6-] /
0.8 UL 10

—l l T T Y T T Y T TrTTrTTT T ToTrTY 11 TT YT rT 0

1357 91113151719212325272931

2 4 6 B101214161820222426283032

n

dist(n)

‘105

Figure 1 gc)

Freq = 4 Applied to Square

0.8 4
0.6 -1
0.4
0.24

sine welght

S

—0.4-
—0.6 -
0.8

-1 .
1

Al TR

57 9 111315171921232527 29 31

3

2 4 6 8 101214161820222426283032

n

Figure 1(d)

Freq = 4 Applied to Square (shifted)

0.8 1
0.6 1
0.4
0.2

80

~60

50

e welght

€ 0.2-
~0.4
~0.6
—0.8 1

s!

\

-1 .
1

40

-20

-10

w n L Ty TOTRTTT T

79 11131517 192123 2527 29 31

35

2 4 6 8101214161820222426283032

n

dist(n)

dist(n)

106

107
the peaks of the sine wave follow the same pattern of the peaks of
the dist(n) function. The positive sine weights are always applied
to the maximum dist(n) values whereas the negative sine weights are
applied to the minimum dist(n) values, yielding a total sum
response dgreater than zero. When the dist(n) function has a
pattern similar to the selected frequency, a large response can

always be expected.

One may be asking themselves if the same response can be
obtained when selecting a different starting point in dist(n)
(equivalent to a rotation of the object or a phase shift of
dist(n)). If only the sine weighting pattern is used, the answer
is no. Figure 1(d) shows dist(n) shifted by m/2 at frequency = 4.
A quick examination of the graph will verify that condition (i) now
exists and the response is zero. To capture the total response
regardless of the starting point, both the sine and cosine

weighting patterns must be used.

If the cosine curve is applied to the graph (figure 1(e)), we
see that it has recaptured all the response that the sine curve
lost from the phase shift. This represents the extreme case - one
éf the weighting patterns is providing all the response while the
other is zero. Between these two extremes the total response is

shared. Observing the well-known identity,

cosine*ee
=}
E_S
1

Figure 1(e)
Freq = 4, Cosine Curve Added

0.8 1

M\

[tip2e-101

135 7 911131517192123252729 31
2 4 6 8 10121416 182022 24 26 28 30 32
4]

Figure 2

sl t tptiR11] TR e i THR T

dist(n)

108

109
it is evident that if we square and add the sine and cosine
responses, then take the square root to find the magnitude, this
magnitude (or Fourier Descriptor) will remain constant regardless
of the starting point (or rotation) of the object. This is the
basic principle behind the rotation invariance of the Fourier
Transform - what is lost in one weighting pattern (due to a phase
shift) will be picked up by the other, and the magnitude derived

from these two components will remain unchanged.

Although the Fourier Transform offers advantages such as
rotation invariance, the method is not without inherent weaknesses.
Distinguishing between objects that differ only slightly can
sometimes be a difficult task. We will first examine a situation
where the Fourier Transform can easily detect a small change in an
object. A second example will apply a small change that is much

more difficult to detect using FDs.

Consider the object shown in figure 2. There has been only
one change made to the square - a corner has been cut off. Despite
this small change, there is a significant difference in the FD
output as shown in Table I. The first frequency level has jumped

from zero to 1.051, the second from zero to 1.610.

110

TABLE I - FD Outputs for Square and Cut Square

l Frequency ’ FD Magnitude for FD Magnitude for.
Level Square Cut Square

1 0.000 1.051

2 0.000 1.610

3 0.000 2.049

4 4.518 3.323

5 0.000 0.431

6 0.000 0.501

There are a number of reasons for this change. The average radial
distance (which is used to normalize the object for variations in
object size) has decreased. Since normalization is accomplished by
dividing each element of dist(n) by the average radial distance,
there is an immediate change in the dist(n) function. The centroid
has also shifted and the object is no longer symmetrical. The
elements of dist(n) between 0 to m are not repeated in the same
pattern from 7 to 27 and condition (i) does not hold true at any of
the frequency levels. Therefore, all FDs for the new object are
non-zero. Furthermore, the FD at level 4 has decreased since one
of the four strong peaks in dist(n) has been reduced by the cut

corner.

The change between the square and the cut square is detected
quite easily. However, consider the two objects shown in figures
3(a) and 4(a). Although there is a notable difference between the

two objects, the centroid location and average radial distance have

111
remained unchanged. If we look at a plot of the dist(n) function
for each case (figures 3(b) and 4(b)), we see that only elements 4
through 9 are different. The remaining pattern is identical
between the two objects. Detecting the difference in this small
area is a difficult task for the Fourier Transform, especially at
the lower frequency levels where the sine and cosine weighting
patterns change only gradually between the elements. Figures 3 (b)
and 4(b) also show the sine and cosine curves for each object at
frequency = 1. To calculate the difference between the FDs at the
first frequency we need only look at the elements in dist(n) that

are different (elements 4 to 9) (see Tables II and III).

Note in the tables that the average distance for elements 4 -
9 is equal for the two objects. Therefore if a uniform
distribution (with constant weight was applied to dist(n), there
would be no difference between magnitude, and magnitude,. If
frequency = 1 is applied (such as this case), a small change begins
to show due to the slightly changing weights of the sine and cosine
curves (as indicated in the tables this change of magnitude is
.02). If frequency = 2 is applied, the difference in magnitudes
increases further due to the more rapidly changing sine and cosine
weights that exaggerate the differences between the elements of the

objects.

Tables IV and V show the same calculations at frequency = 4.

Note how the more extreme maximums and minimums of the weighting

Figure 3(a)

Figure 3(b
Freq = 1 Applied to Fig. 3(a)

1 e e 100
$ 0.8- \ f L90
‘0.6 \ \ ¥ 80
ig: 0.4) \ \ /J L70
° 0.21 I \x\) ¥ -60

/

0 * 7 50

0.2 1 3 \ /*E / -40

i —0.4 ! N) 30

| ~0.6 - E’; k’ / -20
<

< -0.8 1 \M,ﬁ \) 4 -10

—1 AR BRI T T T YT TUTT T 7T (;I 1111 T T TT o

1357 91113151719212325272931

2 4 6 8101214161820222426283032
n

dist(n)

112

113

Figure 4(a)

Figure 4(b
Freq = 1 Applied to Fig. 4(a)

g 0.8 - -90
‘0.1 , N }g 80
~§ 0.4 1 -70
g { \ 60
0.2 s
/ / 50 <
0 =
| \ / C
_02": u\ ¥ "40
L 0.4 § [30
-0.6 / r20
©
L ’ / !
,,—0.81 | |) 10
—11 T 1 1T T 7T v T 7T 17T U0 T7TTTT IIIITTII; T 1T 1T 17 ¢
1357 9 1113151719212325272931

2 4 6 8101214161820222426283032
n

114
functions improve on emphasizing the difference in the dist(n) *
sine and the dist(n) * cosine products between the two objects.
The difference between the resulting FDs of the two objects is now
.52. Although this is better than the magnitude difference féund
at frequency = 1, more FDs had to be calculated before the change
in object shape could be detected. Furthermore, in this example,
the change in object shape occurs over a fairly large percentage of
dist(n). If the changed area was smaller with respect to the object

size, the differences in the FDs would be reduced even further.

This example demonstrates how it is difficult for the Fourier
Transform to distinguish between objects having dist(n) functions
that differ by only a few elements. At the lower frequency levels,
the change will be almost undetectable and any noticeable
difference will not appear until higher frequency FDs are
calculated. In spite of this weakness, FDs offer a good definition
of shape if a sufficient number of FDs are calculated. The
rotation and size invariant properties of the transform are

particularly useful for any type of recognition systemn.

115

TABLE II - Magnitude of Elements 4-9 for Figure 3(a)
Using Frequency = 1

dist(n)

sine
weight

cosine
weight

dist(n)
* sine

dist(n)
* cosine

weight weight
4 2.09 .555 .830 1.16 1.73
5 1.69 . 707 . 707 1.19 1.19
6 1.53 .830 .555 1.27 .85
7 1.0¢9 .923 .382 1.01 .42
8 1.50 .980 .195 1.47 .29
9 1.72 1.000 0.000 1.72 0.00
ave total total
dist
= 1.60 = 7.82 = 4.48
magnitude,
= 9.01

TABLE II - Magnitude of Elements 4-9 for Figure 3(b)
Using Frequency = 1

dist(n)

sine
weight

cosine
weight

dist(n)
* sine
weight

dist(n)
* cosine
weight

4 1.81 . 555 .830 1.00 1.50
5 1.50 . 707 . 707 1.06 1.06
6 1.34 .830 .555 1.11 .74
7 1.44 .923 .382 1.33 .55
8 1.69 .980 .195 1.66 «33
9
ave total total
dist
= 1.60 = 8.00 = 4.18
magnitude,
= 9,03
Difference in FD at Frequency 1: magnitude1 - magnitudeﬂ

9.01 - 9.03 !
.02

116

TABLE IV - Magnitude of Elements 4-9 for Figure 3(a)

Using Frequency = 4

dist (n)

sine
weight

cosine
weight

dist(n)
* sine

dist(n)
* cosine

weight

weight weight
4 2.09 .707 - .707 1.48 =1.48
5 1.69 0.000 -1.000 0.00 ~-1.68%
6 1.53 - .707 - .707 -1.08 1.08
7 1.09 -1.000 0.000 -1.09 0.00
8 1.50 - .707 .707 -1.06 1.06
9 1.72 0.000 1.000 0.00 1.72
B%
ave total total
dist
= 1.60 = ~-1.75 = .69
magnitude,
= 1.88
TABLE V - Magnitude of Elements 4-9 for Figure 3(b)
Using Frequency = 4
n dist(n) sine cosine dist(n) dist(n)
weight weight * sine * cosine

weight

4 1.81 .707 - .707 1.28 ~-1.28
5 1.50 '0.000 -1.000 0.00 -1.50
6 1.34 - .707 - .707 - .95 - .95
7 1.44 -1.000 0.000 =-1.44 0.00
8 1.69 - .707 . 707 -1.19 1.19
9 1.84 0.000 1.000 0.00 1.84
' ave total total
dist
= 1.60 = =2.30 = - ,70
magnitude,
= 2.40

Difference in FD

at Frequency 1:

.52

imagnitude, - magnitude,]
! 1.88 - 2.40

117

This example demonstrates how it is difficult for the Fourier
Transform to distinguish between objects having dist(n) functions
that differ by only a few elements. At the lower frequency levels,
the change will be almost undetectable and any noticeable
difference will not appear until higher frequency FDs are
calculated. In spite of this weakness, FDs offer a good definition
of shape if a sufficient number of FDs are calculated. The
rotation and size invariant properties of the transform are

particularly useful for any type of recognition system.

