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ABSTRACT

The electrical resistivity of two giant moment
systems—-(Pd95Rh5)Fe containing between 0.8 and 1,85 at,.
% Fe and (PdggRhg)Co containing between 1.0 and 2.6 at.%
Co-~has been measured from 1,4 to 300K, The incremental
resistivity in (PdRh)Fe alloys containing more than 1.25
at.% Fe and (PdRh)Co alloys containing more than 1.4 at,
% Co is found to exhibit a T2 limiting low temperature
form, However for the 0.8 and 1,1 at,% Fe alloys and the
1.0 at.% Co alloy, such a T2 form is not clearly discern-
able, with Afp(T) exhibifing a temperature dependence inter-
ﬁediate between T2 and T3/2. The former result is predicted
from conduction electron-magnon scattering for which wave
vector conservation holds, from which it is inferred that
the criterion for wave vector conservation in this type of
alloy is EEE determined by mean free path effects. Esti-
mates of the acoustic spinwave stiffness D are derived
from the measured T2 coefficients,

' These resistivity data also enable the magnetic
ordering temperature, Tc’ and the exchange coupling para-
meters, Jg_jocal 204 Jg_jpcay» tO be evaluated.

In the disordered phase, the measured incremental
resistivity of the (PdRh)Fe system is found to contain a

term which decreases approximately linearly with increasing

i




temperafure, at a rate of ~(1.1 % 0,45) x 10-3 /L{)cm/K-
at.% Fe, Using existing‘pressure data on both Pd and PdRh
based alloys, it is shown that both the sign and magnitude
of this term can be accounted for in terms of the volume
dependence of the potential and exchange terms, in con-

Jjunction with a large coefficient of thermal expansion,
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CHAPTER ONE

THEORETICAL CONCEPTS



1,1 Localized Magnetic Moments in Metals

If a dilute alloy is made by dissolving a first
row (3d) transition atom impurity (like Fe) in a simple
metal, it is often found that the impurity atom possesses
a net magnetic moment. Some time ago, Friedel was able to
explain the formation of these local moments in terms of the

concept of the virtual bound state (VBS).1’2

In metals, the bandwidths of the free electron
states are so broad that the energy levels of the impurity
lie, in general, within the conduction band. So, let's
begin by considering a localized level (representing a
d-state of the impurity atom) immersed in a sea of mobile
electrons (representing the conduction band of the host).
The mixing between the conduction s-electrons and the
localized d-electrons shifts and broadens the energy of the
localized d-state--making it into a virtual level i.e,,
one which is spread out in energy because of s-d inter-
actions (see Fig, 1-1). The virtual state can accommodate
the same number of d-electrons as the original localized
state, However, the d-electrons (or, more rigorously, the
magnetic electrons) are partially itinerant because of the
possibility that they will transfef to s.states having
similar energies. As a result, the virtual bound state
describes something intermediate between a localized and an
itinerant situation,

To explain the presence of a net magnetic moment on
the impurity, Friedel pointed out that, since the electrons

in a virtual state are well localized, exchange and
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correlation forces will be very effective, especially for

a narrow level, with a téndency to favouring spin alignment,
When these forces prevail, the virtual bound d-state splits
into two localized substates, one for spin-up (+) electrons
and one for spin-down (-) electrons, having different
energies, When these two states accommodate unequal numbers
of electrons up to the Fermi level, a magnetic moment results,

localized on the impurity site,

1.2 The Anderson Model

To put these ideas on a more quantitative basis,

Anderson3

solved the following simple model, Let us assume
that the impurity atom is magnetic (possesses a magnetic
moment). This means that a d-state of, say, spin up on the
impurity atom is occupied, while one of spin down is empty.
Now, a spin-down electron within the d-shell will see the
repulsion of the spin-up electron in the filled d-state
(another spin-up electron will not, since parallel spin
electrons can have no exchange energy). Thus, if the
energy of the spin-up state lies a distance E4 below the
Fermi surface, the energy of the spin-down localized state
will be E4 + U, where U is the repulsive d-d interaction,
This must lie above the Fermi level, because we assume this
state to be empty,

As before, the mixing between the s and d electrons

shifts and broadens the energy of the filled spin-up d--state

(and the empty spin-down state above the Fermi level),




making it into a virtual state., However, the broadening
pushes a portion of the ;pin~up virtual state above the
Fermi level reducing the number of localized spin-up
d-electrons, In the same way, a portion of the spin-down
virtual state is pulled below the Fermi level thus in-

creasing the number of localized spin-down d-electrons

(see Fig, 1-2)., These changes in the number of electrons

are such as to decrease the difference U between the spin-up

and spin-down energies--E4q moves up and E4 + U moves down,
The larger the s-d admixture, the smaller the energy differ-
ence between the spin-up and spin-down states, Eventually,
the configuration collapses into two degenerate levels and
it is no longer possible'to maintain a magnetic moment,

The Anderson Hamiltonian may be expressed in the
following way:

H =Hg + Hy + Hoopy + Hyqg (1)

The first term, Hg, is the unperturbed energy of
the free conduction s-electrons, In second-quantized

notation

Hg = Z Ex Cxi Cko (2)
k,o

where Ck; and Ckv are the creation and annihilation
operators, respectively, for a conduction electron of wave
vector k, energy Ej and spin o (g can be + or =),

The second term, Hd? is the unperturbed energy of
the d-states on the impurity atom., In our discussion, we

will assume the physically unrealistic case of a single
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Density of states in the magnetic case,
The '"humps" are the virtual d states of
width 2A for up and down spins. The
numbers of electrons occupying them are
computed from the area of the unshaded
portion, below the Fermi surface,

P_(E)




nondegenerate level, because the principle of the method
is easily extended to thé more complicated many-level d shell,
This term in the Hamiltonian is written

Hy = Eq(n gy *ng) (3
where n g4 and ng4_ are the numbers of spin-up (+) and
spin-down (-) d electrons, respectively,

The third term, H is the repulsive energy among

corrs
the d electrons, For electrons of the same spin, the
Coulomb integral cancels the Exchange integral, This leaves
us with only the antiparallel part of the Coulomb integral:

H Un g, nqg. (4)

corr "
Heopyr is responsible for splitting a virtual state into two
substates, one for each spin direction,

The fourth essential part of the Anderson Hamiltonian
is the s~d interaction term, de. It allows for the mixing

of the conduction electron state k with an electron in one

of the virtual d-states, Usually, Hp 4y takes the form

+ * + N :

where Viq describes the strength of the s-d mixing
(Vég is the conjugate of de). Cd;.and Cqo are the
creation and annihilation operators, respectively, for
a d-electron of spin O . It is the mixing term, de,
which broadens the localized d-state, making it into a
virtual state,

If we solve the Anderscn Hamiltonian, we arrive

at the following expression for the density of states




Pd(E) of the spin-up (+) and spin-down (-) virtual

\

d-states:3
1 A

(E) = — 6

where o
E+ = Eg + p.p.j‘N(Ek) led, dEy + U {ngz)
E - Ek

= Ed + r' + U <nd;> (7)

and A = T |vgl®? N® . (8)

E+ are the energies around which the spin-up and
spin-down virtual states are centered, and 2 is the width
of a virtual state, N(E) is the density of states in the
conduction band,

| We can now determine the number of electrons,
<ﬁ1d£> , occupying the two virtual d-states, merely by
integratinngdi(E) up to the Fermi energy Ef (since all
the states below E; are full, at least at absolute zero),

Thus
Eg

1 A
n dE
(nae) = — TRERCIW:

- 00

1 - F
= cot-l { Ex - Eg | (9)
T A

Using the expression for E+ in (7) with E4 +I

It

1
replaced by E4, we obtain



R (1 -~
<nd+>~ ! cot~! Ed +U<nd"> Ef} (10)

T ., A
<nd > =1 cot ! Ed.+[1<nd;> - Es

T A

The solutions of these two coupled equations are

the intersectlons of the two curves obtained when<<n >
is plotted as a function of<<nd > . Those solutions for
which <nd+>3é<:nd_> are at a minimum of the energy and

represent the magnetic impurity states,

1.3 The s-d Model

Suppose we characterize a magnetic impurity atom
by simply assigning it a spin S. This spin will interact
With the itinerant conduction electrons, of spin S, through
an exchange coupling of the form -2J§o§, where J is the
strength of the exchange interaction. This is the s-d
model, so called because it really describes a coupling
between two kinds of electrons..-the d electrons (which give
rise to the impurity spin §) lucalized at the impurity sites,
and the s electrons in the conduction band,

The s-d Hamiltonian consists of two terms--a spin-
independent term and a spin-dependent - term—-and is usually

written in the form4

where r; and En represent the position vectors of the ith
conduction electron and the nth impurity atom, and Sy and

Sp are their respective spin operators,
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In the first (spln independent) term, V(r - R )
is the deviation of the potential from perfect periodicity,
due to the impurity atoms, and in the second (spin-dependent)
term, J(£i - En) is the effective exchange integral between
the conduction electron and the impurity atom.

In second-quantization notation, the Hamiltonian in

(11) becomes5

klo 2y )
-1 Z i (k_kl) [ * z
~N %;IEL J(k k )Ye (akl - akl_ ak_) Sp
* st 4+ aX ST 12
+ a,1_ ak+ n * ak1+ ak_ n] ) (12)

In this expression, the z axis is the spin quantization

axis and S§ represents S§ + isg. The quantities a:i and

a), are the creation and annihilation operators for a
conduction electron with wave vector E.and with spin parallel
(+) or antiparallel (-) to the z axis. N is the total

number of lattice points, V(E,El) and J(E,El) are related

to the matrix elements of V(zi - En) and J(£i - En) between

1

two states with wave vectors k and k— as follows:

vk, k) = Ne “1(5“51)'En5¢§1<£) V@ - R ¢y (rdc
- (13)

|

e, kY) = Ne ~iCk-KD)Rn Squ;l(_z;) I - R p(ydT ,

where ¢)k represents the wave function of the conduction
electron with wave vector k., In general, V(k,kl) and

J(k,El) depend only on [E - Ell
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A close relationship exists between the s-d model
and the Anderson model, 'Schrieffer and Wolffg have shown
in the limit of small s-d mixing (|Vpgq|<« 1), which is the
most favourable case for the occurrence of a localized
moment, that the two models are in fact equivalent, and the
Anderson Hamiltonian can be transformed into a form similar
to (11)., Moreover, the energy-dependent exchange inter-
action J(k,k'), for k and Elcz.gf, is given by the following

expression

J(O) = 2 ledlz U ~~ constant. (14

Now since Ed is measured relative to the Fermi energy Ef,

it will be negative when a local moment exists. Consequently,
J will be negative. This means that the coupling between

the impurity spin and the conduction electron spins is

antiferromagnetic,

1,4 The Polarization of the Conduction Electrons

How do the free electrons in the conduction band
respond to the localized s-d exchange interaction? Suppose
we consider only the second (spin-dependent) term in the
s~d Hamiltonian given by (12)., This term has the following

diagonal (k = kl) element,,7

N1 3 (m, -0 s, (15)
n

where n, and n_ represent the number of conduction electrons
of up (+) and down (-) spin, respectively., This diagonal

energy becomes lower and lower as (n+ - n ) increases, and
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consequently the conduction electron spins are polarized
by the spin on the impurity.

In order to obtain the Spacial distribution of the
conduction electron polarization U (r) around a magnetic
impurity, we will replace the effect of the impurity spin
with an effective magnetic field h(r).8 In this way, we
can simplify our calculations without losing any of the
essential features, If we assume that the s-d exchange
interaction is of the 8’-function type (in reality, the s-d
interaction has a finite range), the effective field h(r)

may be written

h(r) = Js; & (r) (16)
€48

where we have taken the site of the impurity to be at the
coordinaté origin (r = 0). Sz is the z- component of the
localized impurity spin, and J is a constant representing
the s-.d coupling,.

The conduction electron spin polarization T(r)
around the impurity (at r = 0) is given by8

O(r) = n+(r) - n_(r)
(1/gup) )" h(a) X (@) exp(igr) (17)
q

I

where g is the electronic g~factor and/1B is the Bohr
magneton. h(q) is the Fourier transform of the effective
field h(r):

h(q) = JSz/g/uB (18)

andj{(q) is the wave-number.dependent susceptibility of the
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host metal, For a free electron gas:x(q) may be written
\

2 y1 Ik4q - 1 2 19
Ky = 2pl )l ked ~ ok e pud N(E) Ula/2ke) . (19)
E - E
k “k+q k
E, is the one-particle energy of a conduction electron with

k

momentumfik, f, is the Fermi distribution function, and

k
N(Ef) is the density of states at the Fermi surface per
spin orientation of the host metalp U(x) is the Lindhard

function given by:

U(x)=—1—[1+3--’—35-2—1n 1L+ x (20)
2 2x 1 - x
with x = q/2k;.
Using (18) for h(q) and (19) for X (a), the
expression for U (r) becomes
T(r) - ?_‘ls_-"ig_ff‘il U(a/2ks) exp (ig-r) (21)
g

q

7
If we perform the integration over gq in (21) as follows

Z:U(q/2kf) exp (ig+r) = a constant x F(Zkfr) (22)
3 AT
where F(X) = X cos X -~ sin x (23)
x4

we finally obtain
U(r) = a constant x F(Zkfr), (24)
The spin polarization given by (24) and shown in
Fig. 1-3, oscillates and rapidly vanishes as r tends to
infinity., Consequently, the polarization of the conduction
electrons is concentrated in the neighbourhood of the
impurity site., The oscillations in O (r) are known as the

RKKY (Ruderman - Kittel - Kasuya -~ Yosida) oscillations.5’7’9
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0(r) = n (r) - n_(r)

° ~—_ _— A

Fig, 1-3., The polarization of the conduction

R electrons around a magnetic impurity,.
The arrows indicate the dominant Spin
in each region, The impurity site is
located at the origin.




1.5 Exchange Enhancement and Giant Moments

So far in our discussion, we have not taken into
account Coulomb interactions between conduction electrons,
When we include these exchange forces, we find that the spin
susceptibility has increased when.compared to that of a
non-interacting free electron gas. This effect is known as

exchange enhancement,

For simplicity, we will replace the actual Coulomb
interaction by a 5 -function interaction of strength v,
localized on the lattice sites. The host metal exchange

enhanced spin susceptibility QC(q) is then given by10

XXq)
- 25
Xta) =— VN(E;) U(a/2kp) (25

where 7C%q) 2/1% N(Ef) ll(q/Zkf) is the susceptibility

of a non~interacting free electron gas, As a result of the

I

enhancement factor'q = [1 - N(Ef) V'U(q/2kf)] “1, X (q)
is larger than Qﬁ%q) for all values of q. However, the
enhancement is much greater for low q (see Fig, 1-4), and
when q = 0 and VN(Ef) U(0) = 1, X (0) becomes infinite,
implying the existence of ferromagnetic ordering among the
conduction electrons, (This is the Stoner condition for
ferromagnetism).11

Exchange enhancement is essentially a property of
transition metal hosts (like Pd) in which there are d
electrons in the conduction band, These d electrons belong
to a narrow band, where exchange interaction effects are

of prime importance, so that the Coulomb repulsion, V, is

strong. This, coupled with a high density of states at the
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Fermi level (due to the narrow d band), gives a large value
for VN(E;), and hence for the susceptibility,

Since the enhanced susceptibility X (q) can be
related to an exchange interaction between d electrons in
the conduction band, we are now led to consider how this
exchange interaction affects the RKKY oscillations in the
conduction electron spin polarization. The polarization
O (r) is again given by

T = (Wepp) 21 B@ X (@ explig-r) (26)

but QC(q) is now the exchange enhanced susceptibility in

s

(25). 1If, as before, we assume a O -function coupling bet-
ween the magnetic impurity spin and the conduction electron

spins, then h(q) is again given by

h(q) = iEf s 27

%UB

and the spin polarization (26) becomes

]

g (r) a constant X gX(q) exp(ig**z)

(a constant) X (Fourier transform on{(q)) (28)
Thus O (r) is proportional to the Fourier transform

of ?C(q). But in Fig, 1-4 we see that the effect of exchange

enhancement is to build up the low q region so that 7C(q)

looks more and more peaked (for small values of q) as

VN(Ef) increases, This results in a longer and longer range

for o (r) as the ferromagnetic instability [VN(Ef)[I(O) = 1]

is approached, The exchange enhancement thus pushes out the

first zero of the RKKY oscillations (we say that the RKKY

oscillations have been suppressed) and increases their
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Susceptibility

10 P —

X (q) for VN(E,) = 0.9

\ X° ()

Fig, 1-4,

The g-dependent susceptibility of

an electron gas, The solid curve
X°(q) is drawn for no electron-
electron interactions; the dashed
curve is the exchange enhanced
susceptibility X (q) for the case
N(E;)V = 0,9, Note that the enhance-
men¥ is q dependent, being largest

at low q,
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amplitude (see Fig, 1-5)., However, at sufficiently large
distances from the impurity the polarization is again
oscillatory.

Had we considered the finite range of the Coulomb
interaction, the V appearing in the expression (25) for

?C(q) would have become effectively g-dependent. This

causes an even more rapid increase in ?C(q) with decreasing
q, and accordingly contributes to make the range of the
magnetic disturbance even longer.

A direct consequence of the enhancement of the
range of the induced spin polarization in transition metal
hosts, is the formation of giant magnetic moments associated

with the impurity atoms.' The giant moment consists of the

on-site impurity moment plus the attendant spin polariza-
tion in the host's d band, Moments as large as 1%“8 have

been observed per Fe impurity in Pd,,12

- 1,6 The Ordered Ground State of the Alloy

We have seen that when a localized moment (in the
form of a magnetic impurity atom of spin §1) is introduced
into a metal, the conduction electron spins develop an
oscillating polarization in the vicinity of this moment,

If there is another localized spin §2 present, it will
interact with this induced spin polarization, resulting

in an indirect coupling bhetween the two localized impurity
spins, so that §2 tends to line up parallel or antiparallel

to El“ In this way, impurity-impurity interactions eventually



U(r) (arbitrary scale)

enhanced RKKY oscillations

simple RKKY oscillations

" Fig.

1-5.

r(AO)

Exchange enhancement pushes out the
first zero of the RKKY oscillations
and thus increases the range of the
conduction electron polarization

g(r).
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lead to magnetic ordering of the impurity system.

In the low-concentration limit (< 1- at.% impurity),
the nature of the ordered ground state of the alloy is
determined essentially by the spacial variation of the
conduction band polarization., The relatively rapid RKKY
oscillations induced in the host's conduction band lead to
a "disordered" antiferromagnetic ground state.13 In transi-
tion metal hosts (like Pd), where the effect of exchange
enhancement suppresses the RKKY oscillations out to rela-

14,15 the ordered

tively large distances from the impurity,
ground state is of predominantly ferromagnetic character,
being determined by a ferromagnetic coupling between giant
moments, However, there are still some impurities (at least
in the less concentrated alloys) which reside in regions of
oscillating spin polarization and these remain frozen in an
antiferromagnetic configuration,

In alloys containing several atomic percent impurity,
complications arise due to the effect of direct inter-
impurity coupling (coperative virtually only when impurities

16

are nearest neighbours), Alexander and Anderson, and

17 have investigated the effects due to a direct

Moriya
interaction between two nearest-neighbour magnetic
impurities, The relevant conclusions reached on the basis
of their approach are that impurities with nearly half.
filled d shells tend to couple antiferromagnetically;

ferromagnetic coupling is increasingly favoured as the

number of d electrons increases,




We will now proceed to investigate the dynamic
properties of the ordereé phase of dilute alloys, in parti-
cular those alloy s which form a well defined ferromagnetic
ground state, even at very low concentrations of dis-
solved impurity, A typical such alloy is PdFe, Let's
begin by considering a model in which the impurity (Fe)
spins E are coupled to the itinerant d electrons (of spin
Er) in a single Pd d band via an exchange interaction of

18,19
the form -2J4_j30ca1 STy, ’

The dynamical spin states
that we are studying, arise from a coupling between the Fe
spins §, which results from the polarization they induce in
the itinerant Pd d band--in other words, a Heisenberg
coupling between Fe spiné via an ekchange enhanced, frequency
dependent RKKY interaction,

In order to discuss the dynamic properties of the
combined system of the localized Fe spins coupled to the
itinerant Pd spins, it is convenient to consider a generalized

space and time dependent susceptibility function for the

whole system:18

KR, - By, t - tly = -0 - th <[O‘—(§i,’c), 04'(5,1:1):1> (29)

In this equation, é}(t) is the unit step function and
E} and Bﬂ

. label the lattice sites, cr+(5,t) and g (R,t)
are the + components of the spin density of the d-band
electrons,

The total Hamiltonian H for the coupled system of
d-band electrons plus the impurities is given by

H = Hpy + H (30)

int
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de is the Hamiltonian for the Pd d electrons
— 4“
Hpg *Z Ex Cxo Cxe * IZ Div Mo (31)
k,0 i

where the E, are the single-particle d-band electron

k

energies, I is the strength of the repulsion between d
electrons of opposite spin on the same atomic site, and
n;, and n;_ are the numbers of spin up (+) and spin down

+
(-) d electrons on the ith lattice site. Cx

O..and C

ko
are the creation and annihilation operators for the d-band

electrons,

Hint is the Hamiltonian for the interaction between

the set of localized iron spins S, on the impurity sites

Zi
Rze and the spin density'Oh(Ej) of the itinerant Pd d

electrons at lattice site j:
—— . e
Hint = - Jd—local Z: §i ‘Zﬂ(gi ) (32)
i

where Jd—local 1s an energy parameter measuring the
effective exchange coupling.
If we calculate the Fourier transform K(q,0) of the

generalized susceptibility function in (29) we find

%o(ng)
1 - { I+ 2J2R1“/(Jn—w)} KL, w)

Qﬁéq,w) is the unenhanced susceptibility function for the

K(q,w) =

(33)

magnetized (polarized) Pd d band,

1 Op 4+ = Dkiq, -
X $4a,%) ~-ﬁz 2 d : (34)
k W=~ By -E o) - IR - 2JR

where np, is the number of d electrouns with wave vector

k and spin up and N is the total number of lattice sites,



R and R1 are the reduced magnetizations of the Pd and Fe

spin systems, respectively, and are defined by
N Z
R =1 Zj (n -n_); rl - . Fe <S > . (35)
—_ K4 kK- N
Nk

2.1
Note that, in (33), we may regard'{I + 2J°R7/(JR -~ W )}
as an effective frequency dependent interaction constant
Ieff (w) .
Now (33) may be rewritten in an alternative form,
For this purpose we introduce the exchange enhanced

susceptibility function

X(a,w) - XL ®) (36)
B 1 -1 Xda,w)
where jXég,w) is given by (34), The function K(g)w) then
becomes
K(q,w) - GR -w) X(q,W)
- JR ~ 232R1 ¥ (q,w) - (37)
Also, from (34) and (36), if q—s 0 and(W—> ©
X (0,0) = R/2JRY, (38)
so that (37) may be written in the form
K(gw) - 5% X (g ) © o (39)

22g1 [X(o,o) - X(g,w)] -W

The energies of the dynamical spin states of the
system are given by the position of the poles of (39), that
is, by _

w = 23%g! [X(o,o) - X(g_,w)] ) (40)
This relation is precisely of the form appropriate to Spin
waves in a Heisenberg spin system in which the spins are
coupled by an interaction analogous to the RKKY inter-

action.20 In the present case, the form of the RKKY



24

interaction is modified by exchange enhancement, see (36),
and contains an essential frequency dependence resulting
from the magnetization of the Pd d band, This strong
frequency dependence leads to a new dynamical consequence:
the appearance of an "optical" mode (finite frequency at
q = 0) branch of the magnon spectrum, This mode would not
be obtained if the usual, frequency independent form of the
RKKY interaction were used,.

If we evaluate (40), in the limit q—> 0, we find
that it takes the form

1

WER + 2JR™ -W) =0 as q—»0 (41)

Hence there are twc spin wave models at q—>0, namely, an
acoustic mode
Cdac =0 (42)

an an optical mode

Wop = JR + 2JRT

(43)
The presence of two branches in the spin wave spectrum

(see Fig, 1-6) is natural for a material in which two non-
equivalent spin systems (local moments and itinerant d
electrons) contribute to the magnetization process,

So, in summary, we can say that

14

1, At temperatures well below the magnetic ordering

temperature, T the coupled motion of the

c?
localized Fe spins and d electrons can bhe

described by spin waves, These spin waves
result from a Heisenberg model in which the

impurity spins interact with one ancther via



Energy (MeV)

20

10 j=

a4 (arbitrary units)

Fig. 1-6., A sketch of the predicted Spin
wave spectrum of a 1.0 at. %
PdFe alloy. O is the optical
mode, a is the acoustic mode,
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an exchange enhanced, frequency dependent RKKY
coupling; thié coupling results from the mag-
netization of the itinerant d electrons which
can be associated with the occurrence of giant
moments,

2, As a result of the coupling between the two
spin systems (local moments and itinerant d
electrons), the spin wave spectrum is shown to
have two branches, only one of which has zero
frequency in the long wavelength limit (the

acoustic mode),

1.7 Conduction Electron:yagnon Scattering

We are now in a position to calculate the addi-
tional resistivity Zﬁp(T) of the alloy (PdFe) over that of
the pure host (Pd) by considering the scattering of s
conduction electrons from acoustic mode spin wave excitations
(the s electrons dominate the conductivity in view of their
relatively low effective mass)., The s band electrons
couple,at the impurity sites, to these excitations via an
isotropic coupling ~2J§‘259 with the effective exchange
constant J having two contributions., The first comes from
"direct" coupling of the s electrons to the localized (Fe)
spins, the second from an "indirect" coupling via the
excitation of an electron-hole pair in the coupled d band,
which then scatters from a localized spin.z1

The Hamiltonian which describes the s electron-

magnon sScattering is the s.d Hamiltonian given by (12).
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We will denote it by Hs-local and write it in the following

way: §

= N'IZ«ZZ exp {i(}_{_ - 51)-_%} X

k k! n
1 z 1 *
{[V(_lg,_l_t_ ) - S,J(k,k )J apl, &,

sk
+[V(_15,§1) + ssJ(E,kl)] a,l_ a

Hs-local

k.-

* - * '
- J(E:El) (ak1+ ak_Sn + apl_ ak+Sg)}‘ . (44)
The probabilities P(k+, kli) for scattering from
conduction electron state k+ (with spin parallel (+) or
antiparallel (-) to the z axis and energy E; ) to state kli,

can be obtained from (44) using the Golden rule:
1, _ 1 o
P(k—k7) = gﬁlr I<k l Hs-local, k>

where Nf(Erl) is the final density of states with energy

PN B, (45)

Ey 1.

(a) With Wave-vector Conservation

Suppose that we conserve both energy and wave-
vector for scattering of an s electron from state k to kl.

Then

It

1. for ki —k'y; Bl = B, and k! - k

2, for k-—s»kl4; E
o) >k Kl q

and k! = x . g (46)

= Ek - E

3. for k+~e»k1-; Exl = Ey + Eq

and k1 =Kk + g

where Eq is the energy of a spin wave of wave-vector g
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Remember that at\temperatures T K Tc, the dynamic
behaviour of the coupled‘impurity spin system can be
described by spin waves, Hence, the local spin operators
Si and Si in (44) can be transformed into spin wave
variables, Neglecting 3- and 4.- operator terms at low

. 2
temperatures, we obtain 2

P(kt, k') = zgc [IV(E»EI)IZ 208 - i%i’%;nq)

N
«[vaid] 1] @ - Ry [rah]’

e [1-10h] 8o B8 -xh L @D
P(k-, k' 4) = i‘._%_s.% J(g,gl)fz ng 100 [1 - f(gl)]

x$ (B - By -E 18 (x - a - KD . (48)
P(ke, k') = 2708 |k, 55]2 (n, + 1) f(_lg)[l - f(_l_c_l)J

x G (B, + Eq - EDS G+ g - K (49)

nq is the number operator for spin waves of wave vector

4. The factor c, representing the concentration, is the
result of performing an ensemble average over impurity spin
positions, The f's are the Fermi factors.

With tke above scattering probabilities, we can pro-

23,24
ceed to solve the steady state Boltzmann equation.

:
Note, however, that as far as scattering from spin wave

excitations is concerned, elastic scattering events (as in
(44) where the electron scatters without flipping its spin)

induce no change in k and hence do not contribute tozﬁp(t).

If we use the fact that for acocustic mode spin wave excita-
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2

tions Eq = Dq” for low temperatures (where D is the acoustic
spin wave stiffness constant) and if we assume that V(k,kl)

1, . .
and J(E,E ) in (44) are independent of k and kl, we finally
obtain??

| ) ,
Ap(rgty) = 3TMmc | |y|2 4 T lds-10ca1l® s (kBT \2
2e2ANEs 12 Dkp2) |2 (50

after including a contribution to AP(T) from straight for-
ward potential scattering, Here m* is the effective mass

of the s band electrons, E_, is the Fermi energy, kg is

¥
‘Boltzmann's constant and kF is the Fermi wave vector, Thus
a Tz limiting form for AfD(T) is predicted for electron-
magnon scattering in which wave-vector conservation does

hold,

(b) Without k-~vector Conservation

However, the absence of translational invariance
in the impurity spin system (assumed randomly distributed
in the dilute alloy) implies a lack of translational
symmetry in the s-d Hamiltcnian for the alloy and suggests
that wave-vector conservation need not hold for electron-
magnon scattering in such systems., If we now calculate
" the scattering probabilities conserving energy but not the

k-vector, we find25
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P(ke, k'e) = | |[v(k, Kb

i

2 4 1
=2 (s, - _ n.)

x[vas b [re |+ 6} - 22 P lJQs,zsl)lﬂ
- q

x § (Ek:t -E 14 . (51)
P(k-,kl4) = O n-1 % IJ(E'EI)IZ 25 (ng + 1)

x By - Ea, - E) . (52)
P(k+,k =) = O, N-1 Zq: |7, 50| 2 25;n,

x & (B, + B, - Bl (53)
where O = 2Tec (AW~ ,

Solving the Boltzmann equation once again, enables
us to derive the following expression for the temperature

dependent resistivi“cyz6

Ap(rgr,y - 3Tmkdlc [vz _ 35252 , 32s{l [ xpT) 372
f © 2e2 E;NFR 7T \" o

X {4 F(—%) G (%) . F,z(é)} _ (54)

f7(x), G(x) and Fy (x) are the appropriate gamma, Riemann-
Zeta and Fermi.Dirac functions, and&l is the atomic volume,

Thus a T3/2

limiting low temperature form is predicted for
the resistivity ZXF(T) in the absence of k-vector con-

servation,
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2.1 Abparatus

The resistance Sf the various alloys was measured
using the standard four probe technique (refer to Fig. 2-1).
A Guildline constant current source (model 9770B, stable
to 1 part in 106) was used to supply a highly stable
current to the series connected samples. A Guildline low
thermal selector switch (model 9145 A10) applied the volt-
age drop from across a particular sample to a Tinsley
Diesselhorst thermoelectric free potentiometer (type
3589 R)., The potentiometer, in combination with a Tinsley
photocell galvanometer amplifier (type M.S.2 45E), was
used to measure both the sample voltage and current,
(The potentiometer-galvanometer combination was capable

of reproducible measurements to 10"8

volts). The current
through the samples was determined by measuring the voltage
that it produced across an 0,10() Guildline standard
resistor (model 9200) cénnected in series with the speci-
mens, A Tinsley thermoelectric free reversing switch

(type 4092) allowed both direct and reverse readings to

be taken, so that thermal voltage effects would be can-
celled out.

For good temperature homogeneity, the samples
were mounted in thermal contact with a high conductivity
copper block, (The temperatures of the specimens never
differed by more than a few millidegrees), The copper

block was designed to hold up to six specimens (usually

five alloys and one pure metal), each of them to be mounted
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on a pair of knife-edge supports, located near opposite
ends of the block,. Wirés, attached to the base of each
of the knife-edge supports, provided the voltage tap-off
connections,

Since resistivity as a function of temperature
was being sought, a means of varying and controlling the
temperature was necessary.

Temperatures below 4,2K were obtained by pumping
on liquid ge4 contained in a dewar vessel surrounding the
samples; pressure stabilization was achieved using a mano-
stat device (refer to Fig. 2-2 for a flow diagram of the
vacuum system), while the temperature was measured to
within 5 millidegrees by observing the He‘4 vapour pressure
With a system of two manometers connected to the He bath,

Temperatures above 4.,2K were obtained by slowly
heating up the copper mounting block, and hence the samples,
with a heater coil wound around “he block. For temperature
sensing, a carbon resistor (100() Allen Bradley) was
mounted clcse to the samples in thermal contact with the
specimen block., The resistance of the carbon resistor
(which varies roughly logarithmically with temperature)
was monitored using an a-c phase-sensitive Wheatstone
bridge, the rectified output from which was fed into the
heater coil (see Fig., 2-3)., The feedback current from
the bridge proved sufficient to obtain regulated tempera-
tures up to 25K. Above this point, a Heathkit pover

supply (model IP-27), was series connected to the bridge
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output; permitting temperatures beyond room temperature,
Above 4.2K, the temperature was measured using a non-
linear gas thermometer. The uncertainty in the tempera-
ture was always less than 0.5% of the temperature and
over much of the range it was considerably less than this

value,

2.2 Preparation of the Alloys

The starting materials used in the present investi-
gation were 99,999% pure Pd wire, 99,999% pure Rh sponge,
99.9985% pure Fe rod (all supplied by Johnson Matthey,
Londeon) and 99,998% pure Co sheet (obtained from Metals
Research, Cambridge, U.XK.).

The Rh sponge was fashioned into a compacted pellet
form using a hardened stainless steel dye, and metallic
Rh was produced by melting several such pellets on the
water cooled copper hearth of an argon arc furnace, using
a tungsten electrode,

A host alloy, of approximate composition PdgsRhS
was then prepared by arc melting the appropriate amounts
of the two elements., The alloy was inverted and remelted
several times to ensure homogeneity,. Next, two master
alloys of 5 at % Fe in (Pdgsﬂhs) and 2.6 at % Co in
(Pd95Rh5) were prepared, (PdRh)Fe alloys containing
nominally 0.8, 1,1, 1,25, 1.5 and 1.85 at % Fe, and
(PdRh)Co alloys containing nominally 1.0, 1.4, 1.8 and 2.2
at % Co were produced by successively diluting each of the

two master alloys, At each stage, melting losses were




negligibly small (weight losses < 0.03%). Each alloy
was homogenized hy inverting and remelting it several
times,

After melting, the button-shaped alloy s were cold
rolled between Melinex sheets (to prevent the transfer of
impurities from the rollers to the alloys) and long, narrow
resistance specimens were cut in the form of strips of
approximate dimensions 10 cms x 0.2 cms x 0.01 cms.,

After etching in a warm dilute acid (consisting of
1/5 Hy0, 1/5 conc, HNOg, and 3/5 HC1 by volume plus a few
drops of Ho09) to remove surface contamination, the samples
were given a strain relieving anneal at 850°C for 30 hrs,
in vacuo,

The absclute resistivity P of the samples was

obtained from the formula

p - R(f‘*_)

1
by measuring their form factors (ratio of the cross-sectionzl
area A to length 1) to within +0.5% using a technique

recently described by Loram et, al,.
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CHAPTER THREE

RESULTS AND DISCUSSION



3.1 Introduction

The occurrence of giant moments associated with
small amounts of {transition metal impurities dissolved in
exchange enhanced matrices has been known for many years,l’z
yet the nature of the ordered ground state of such alloy
systems, and especially the elementary excitations from it,
are currently far from well understood.sm6 In particular,
the interpretation of transport measurements, at low
temperatures, on the ordered phase of these and related

systems6'13

appears to indicate that wavevector (E vector)
conservation may not hold for electron-local moment scatter.
ing, even when the local moment dynamics are represented by
collective modes (spin waves).13’14’15

For the giant moment alloys of Pd containing less
than 1 at. % Fe or Co, the incremental resistivity AFJ(T)
follows a T3/2 limiting low temperature (T K Te) form,7’9
as would be predicted on the basis of electron-spin wave
scattering with non conservation of the E vector (see
Chapter 1, equation (54)). For Fe or Co concentrations

2

greater than 2 at.%, it is found that zﬁp(T? X T for

T<K’TC. A T? limiting form for AFD(T) is that predicted
from electron-magnon scattering in which wavevector con-
al6,17

servation does hol (see Chapter 1, equation (50)),.

For a 1 at.% Fe or Co alloy,zﬁP(T) exhibits a limiting
temperature dependence intermediate hetween T3/2 and T2.

In the isolated (or single) impurity limit, the

impurity potential clearly lacks translational symmetry,
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Fig. 3-1.
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The measured resistivities of the (PdRh)Fe alloys
plotted as a function of temperature. The lowest
curve is the PdgsRhs host, The other curves are

arranged in order of increasing Fe content,
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The measured resistivities of the (PdRh)Co
alloys plotted as a function of temperature,

The lowest curve is the PdgsRh. host, The
other curves are arranged in order of increasing
Co content,




and calculations of the incremental resistivity ZAP(TU

based on conduction electron scattering from such a potenilial
should consequently proceed without conservation of the E
vector, However, it is not clear at what point, or on

what basis, k vector conservation is restored, as the
impurity concentration c increases, As we have seen, in

both the PdFe and PdCo systems, the transition from a

3/2 (nonconservation) to a Tz (conservation) form for

T

AP(T) when T<<TC, occurs around 2 at, % impurity. Skalski
11

et al point out that, at and above this concentration,

the induced polarization in the Pd (host) d-band displays

considerable homogeneity.

3.2 (PdRh)Fe and (PdRh)Co

In this chapter, we will discuss electrical
resistivity measurements on dilute alloys of Fe and Co in
(Pd95Rh5), In this host, the effects of exchange enhance-~
ment (for second transition series alloys) reaches s
maximum.18 This implies that a homogeneous polarization
should be induced in the host's d band at Fe and Co con-
centrations rather less than 2 at,%. However, the effect
of 5 at.% Rh should substantially reduce the mean free
path of the conduction electrons,.

In figures 3-1 and 3-2, the general features of
the data are reproduced by plotting the measured resistivi-
tiesfg as a function of temperature T up to 300K, From
these two figures, we see that the zero.temperature resisti-

vities of the two PdRh (host) alloys containing nominally
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Fig. 3~3. The incremental Fe resistivity at T = 0 plotted
against the nominal Fe concentration,
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Fig. 3-4. The incremental Co resistivity at T =
against the nominal Co concentration,

0 plotted



49
the same concentration of Rh (5 at. %), are 9,337 /i(l-cms
and 9,120 /A(Z~cms respéctively. Both of these values
are in good agreement with recent measurements by Purwins
et al.19 In addition, no temperature dependence in the
resistivity of either PdQSRhS host was observed in the low
temperature region., From figures 3-1 and 3-2, we can also
estimate [ﬁf)(T = 0) for the addition of both Fe and Co
impurities to this host, and these values are plotted
against the nominal Fe and Co concentrations in figures 3.3
and 3-4 respectively. The data in the figures indicate
that, for Fe in PdRh

AP(T = 0) = 1,90 + 0,05 /th/cms/a"c.% Fe (1)
and for Co in PdRh

AP(T = 0) = 1.46 + 0.08 ,(,(Qcms/at.% Co (2)
very close to the values for Fe in Pd7 and Co in Pd,zo

3.2 (a) Estimates of the Magnetic Ordering
Temperature and Spin Disorder Resistivities

To date, two techniques have been adopted to
estimate the magnetic ordering temperature TC in giant
moment systems., The first identifies TC with the maximum
in‘AF)(T),7'9 the other with the maximum in dp/dT,ll’21
In any event, the presence of shoft range order above TC
causes the resistivity to rise with increasing temperature.
Such an effect should be more pronounced in the alloys
examined here, compared with similar amounts of Fe or Co

in Pd, due to statistically fluctuating environments present

in two-component host matrices (like PdRh). Under the
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circumstances, the maxima in dp/dT should represent a
better estimafe of Tc in %hese systems. However, the
presence of 5 at. % Rh presents additional complications
since the Rh atoms produce a very large potential scattering
background which substantially reduces the fractional
contribution of the spin disorder component to the total
resistivity. These complications are evident in figures 3-5
to 3-10, in which an attempt is made to establish the
maxima in dp/dT for both the (PdRh)Fe and (PdRh)Co alloys.
These figures are "enlargements" of rather small temperature
intervals of the data in figures 3-1 and 3-2, since only
in this way can we pick out the spin disorder contribution.
It is clear however, from these figures, that the tempera-
ture interval between successive points, in the appropriate
temperature range, is too large to use a point by point
technique for estimating dp/dT. It should be noted that the
size of the points in figures 3-5 to 3-10 exceed the esti-
mated error in bothAP and T. Consequently, we simply
draw smooth curves through the "high" and "low" tempera-
ture points, taking TC as the temperature at which these
curves intersect. The shape of the curves implies that
dp/dT increases from the low temperature side to a maximum
at the point of intersection. The uncertainty in the value
for TC estimated in this way is typically half the tempera-
ture interval between successive points at Tc' The estimated
Tc's are listed in Table One.

In figures 3-11 and 3-12, T. is plotted against'

C
the Fe and Co concentrations c. These figures closely

resemble the corresponding situation in PdFe and PdCo
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alloys of comparable concentration,zl'lz In the case of
both (PdRh)Fe and (PdthCo, T, increases at a rate of about
48K/ at 9% impurity, slightly more rapidly than in either
PdFe or PdCo, This result is not unexpected in view of the
increased effects of exchange enhancement,

In figures 3-13 to 3-16, the impurity (F¢ and Co)
resistivities AP(T) = Palloy (™ - Phost (T) are plotted
against temperature up to 300K. The vertical arrows mark
the positions of the estimated magnetic ordering temperatures
T,, obtained above (from dp /dT)., In all the alloys, there
is a significant rise in zﬁP(TO above T . As previously
mentioned, this rise is associated with the presence of
short range order, which is rather more pronounced here
than in the PdFe and PdCo systems, due pfesumably to statisti-
cally fluctuating environments present in two component
host matrices, The presence of appreciable short range
order was the reason for using dp/dT to define T,, as
opposed to other methods.

In subsequent discussion, we will make use of an
expression for the spin disorder contribution to the
incremental resistivity. To aid in this discussion,

[SFJ(T = Q) and zAFD(peak) are also listed in Table One.
The difference, Ap(peak) - Ap (T = 0), measures the
total change in the spin disorder contribution to the
incremental resistivity, with ,Af)(peak) representing the
contribution from the totally disordered state. This

latter state is onme in which short range order is also
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dispersed and consequently we do Bgi use [ﬁP(TC from
dp/dT) . |

We will also comment, in a later section, on the
negative temperature coefficient in [XP(T) at higher
temperatures, clearly evident in the (PdRh)Fe alloys

(see figures 3-13 to 3-15),

3.2 (b) The Temperature Dependence of Zﬁp(T)
T
Well Below T,
Figures 3-17 and 3-18 show an attempt to establish

the presence of a T2 term at low temperatures in some of
the (PdRh)Fe and (PdRh)Co alloys. The technique employed11
for the (PdRh)Fe system is to plot the thermal part of the
incremental resistivity; i.e.,

A = Apm - Ap(r = 0) (3)
against T2. For the (PdRh)Co system, the incremental
resistivity A¢D(T) itself has been plotted asgainst T2_
Figure 3-17 demonstrates the presence of a substantial T2
term in the 1,25, 1.5 and 1.85 at % Fe alloys, while
figure 3-18 shows a similar T2 behaviour for the 1.4, 1.8,
2.2 and 2,6 at % Co alloys., The estimated magnitude of

these Tz

terms are listed in Table Two. They are approxi-
mately concentration independent (for the range investi-
gated here), and their magnitudes in the (PdRh)Fe system
correspond closely with those observed in EEFG alloys
containing up to 4 at % Fe, The magnitudes of the T2
terms in the (PdRh)Co system are slightly higher than

those observed in PdCo alloys of comparable concentration.
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For the 0.8 and 1.1 at. % Fe and the 1.0% Co samples, no
clear temperafure depende;wce is established, with A (T)
(or AP(T)) exhibiting a behaviour intermediate between
T2 and T3/2. We do not regard the variation in the T2
coefficients listed in Table One as significant.

In very dilute PdFe and PdCo alloys (C < 0.8 at. %
impurity), where the induced d-band polarization is
inhomogeneous (and the ordered ground state, although of
predominantly ferromagnetic characfer, contains a signi-
ficant fraction of antiferromagnetically coupled impuri-

5,22,23) a T3/2 1imiting low temperature form for

3/2 2

ties,
Ap (T) is observed. The transition from a T to T
Timiting form occurs at concentrations for wh{ch this
d-band polarization displays considerable homogeneity
(around C~ 1 to 2 at. % impurity).24 While the T2 limiting
form for A{.) (T) is restored, for both Fe and Co in Pd95Rh5,
at s1ightly lower concentrations than for Fe and Co in Pd,
the situation here mirrors the characteristics of this
latter system. |
Measurements have recently been performed25 on the
Matthiessen's Rule deviation A (T) =Pa110y(T) 'Paﬂoy(o)
-f’host(T), in dilute, non magnetic, Al based alloys
containing small amounts of transition metal impurity.
The analysis of these measurements indicated that ZS(T)
has a T3 1Timiting low temperature form. Such a temperature
dependence could be reproduced within the usual Bloch-

Gruneissen formulation by invoking impurity induced electron-

phonon scattering events for which k vector conservation
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was reiaxed. The rationale for this procedure lay in the
impurity-limited mean ffee path of the conduction electrons
(the alloys were considered to be in the "dirty" limit),
from which it followed via the Uncertainty Principle, that
momentum conservation could be relaxed,

In magnetically ordered EEFe and ESCO alloys, there
must also be an impurity-limited electronic mean free path,

3/2 (non conservation) to T2 (conservation) form for

yet a T
zﬂfD(T) is effected by in increasing the Fe or Co concentra.-
tion, If indeed a mean free path effect were responsible
here for the T3/2 (non conservation) form forlﬁP(T), it
should follow that in PdggRh. based alloys, this T3/2
limiting form should persist to higher Fe and Co concentra-
tions than in either PdFe or ggCo, since in two component
hosts the mean free path is considerably shorter than in

single component hests (as evidenced by the large values

forlﬁfb(T = 0)). Just the opposite effect is observed,

A T2 limiting form for A{g (T) is established at lower Fe
and Co concentrations. From this we can infer that the
restoration (or the removal) of k vector conservation in

these types of alloys is not a mean free path effect.

However, the restoration does appear to be correlated

with the onset of homogeneous d.band polarization,
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3.2 (¢) DNumerical Estimates for Various Parameters

In this section we will attempt to extract from
the experimental data, numerical estimates of various

physical parameters (such as exchange coupling, etc.),

3.2 (c) (1) From the Magnetic Ordering Temperature

On the assumption that the onset of magnetic order
is regulated by the characteristics of the alloy's d-band,
Long and Turner14 derived the following expression for TC:

Ja-1oca|” C8T (st + 1) N(Ef>(2)2/3 (4)

7] 7
30K,

Here kp is Boltzmann's constant, Jq_jpeal iS the effective

kBTC =

exchange coupling between the impurity (Fe and Co) moments
and the d-band electrons, ¢ is the impurity concentration
and Sl is the "on site" impurity spin. N(Ef) is the bare
(unenhanced) density of states at the Fermi energy Ef,
while Ko"z is the exchange enhancement factor and Z is the
number of d-holes per atom. For Fe in PdRh, we will take
s! = 1.5 (as for Fe in pd)?? while for Co in Pdrh, s = 1.0
(as for Co in pd)26,

The static susceptibility of the PdgsRhg host may

be written as:

9 2
y - BeMB NEg) (5)
4K 2 |
where ge is the conduction electron g-factor. Assuming
2

B = 2 and using K; =~ 9 (from high field measurements on
Pd95Rh5 at low temperatures)27 and with %f= 12.73 e,m,u./gnm

(Bud‘;vorth),28 we obtain a value for the bare density of
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states:
N(Ef) =¥ 4.6 states /eV atom , (6)
Using this value in equation (4), along with Z = 0.36 (as
24

in Pd) and the estimates of T, listed in Table One, we

obtain the values for Jg_jocz1 Shown in Table Two,

3.2 (¢) (1i) From the Spin Disorder Resistivity

In Table One, values were listed for AP(peak),
the estimated contribution to the incremental resistivity
from the totally disordered (paramagnetic) state, and
ZXP(T = 0), the estimated contribution from the completely
ordered phase, Using the usual form for the s-d Hamiltonian
(see Chapter 1, equation (12)), we can modify Yosida's
calculationBO for the case of ferromagnetic ordering, to
yield, in the limit where potential scattering is much
stronger than exchange scattering:

AP(peak) - AP(T = 0) = 37ngnrc [Jge-local S(1 + 48)], (7)
2e27, E¢N

The coefficient before the square bracket in this equation
is the result of assuming that the conductivity is dominated
by s-band electrons, these being treated in an effective
mass (m%) approximation.6 In the absence of detailed
information, we assume that various parameters, such as

the s-electron effective mass, the number of atoms per unit
volume (NJL“I), the Fermi Energy Ef, etc, are the same here
as in Pd, The numerical value for this coefficient is then
G.SQM(Zcms/(eV)z at.%. Within the framework of an s-d

model, S is identified with the giant moment Spin19 (and
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is 4.5 for dilute Fe in Pd19 and 4,7 for dilute Co in

: 29
22 Adopting these values here, along with the

Pd),
estimates of Ap(peak) - AP (T = 0) listed in Table One,
the values of IJS—locallShown in Table Two are obtained
from equation (7)., The slight concentration dependence in
IJs—locall for the (PdRh)Fe system, results from

Ap(peak) - AP(T = 0) increasing rather faster than linearly

4/3 L
with ¢ (actually marginally faster than c / ~~this is con-

siderably slower than the c2 11

dependence observed in PdFe,
but this could be the result of our inclusion of the effects

of short range order inAf)(peak)).

3.2 (c¢) (iii) From the T® Coefficient

In Chapter 1, section 7, a calculation was performed
on the basis of the s-~d Hamiltonian, and an expression for

the resistivity obtained assuming k vector conservation,

This yielded the following eguation for the Tz coefficient:
% 2 2 2
Coeff. of T° term = 3Tmille . 725 ‘Js_locall kg }  (8)
2e? NE, %, 12 Dk

Here D is the acoustic spin wave stiffness, and ky is the

Fermi wave vector, With the aid of equation (7):

T2 coeff, = lz<k3 2 [Ap(peak) - AP(T = 0)] (9)
12 \Dkg2 ' (1 + 45) ‘

Using the measured T2 coefficients in conjunction with

equation (9) means that estimates for D can be obtained
which depend only on the values assigned to S and kf.
Again, the lack of detailed information forces us to use

values for S and kf (= O,QAO"l) estimated for Pd,12 These

lead to the values for D listed in Table Two, For the
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(PdRh)Fe system D increases with concentration approximately
as 02/3. The corresponding approach applied to the T2
coefficients in Eﬁpo alloyslz leads to slightly larger
values for D, which is observed to increase linearly with c.
These discrepancies are attributed to our using S = 4.5 for
(PdRh)Fe and S = 4.7 for (PdRh)Co, obtained from magneto
resistance measurement819’22 on Pd - 0,1 at % Fe and on
Pd - 0,098 at % Co respectively, Certainly, as the impurity
concentration increases, so does giant moment overlap,
leading to a decreasing giant moment spin S (hence the
actual concentration dependence of D will be faster than
that predicted by equation (9) using a concentration

independent spin).32

3.2 (c) (iv) Temperature Dependence of Z&p(T)
For the (PdRh)re System in the
Parswuagnetic Regime

From second order perturbation theorySO based on
the s-d Hamiltonian, the incremental (Fe) resistivity
ZSFD(T) in the paramagnetic regime is given by:

3MmEc
Ap (t»1y) = - msz 4 [vz b 32 el S(S 1)] (10)
fie Ef N

and is clearly temperature independent., An inspection of
figures 3-13 to 3-15 indicates that this is not so for the
(PdRh)Fe alloys examined here; experimentallyjﬁP(Ti>TC)

is observed to have a considerable negative temperature
coefficient, Within experimental error this amounts to a
linear decrease of £¥3(T2>Tc) with increasing temperature.

In figure 3-19, the high temperature slopes, ie

—————

»
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are plotted against the impurity (Fe) concentration, The
large error bars in this figure result from our including
the estimated i+ 0,59% shape factor uncertainty in computing
these slopes, Again, within experimental error, these
Slopes scale linearly with impurity concentration, i.e,,

1d [AP(T)}TC)] = - (1.1 + 0.45) x 10-3uflen /K at, 4

c 4T

We now discuss possible sources for such an effect,
Certainly, third order perturbation theory calculations
using the s-d Hamiltonian33-wou1d lead to a temperature
dependence in AfD(T2>TC) (the Kondo effect). This source,
however, may be rejected on the basis of the observed
temperature dependence (linear versus logarithmic) on the
temperature region in which it occurs (T>60 K). &
temperature dependent AP(T»TC) could also arise from
conduction electron scattering from localized spin fluctua-
tions (1sf) at the impurity site.34’35’36 Recent phase
shift calculations,37’38’39 which phenomenologically
introduce potential scattering of arbitrary strength into
the 1sf model, appear to correctly reproduce the sign of
the lsf-induced temperature coefficient in ZSP(T) for all
first transition series impurities in Pd,40 and for latter
half first transition series impurities in Rh,39 Such an
approach predicts a positive temperature dependence in

AP(T»TC) for both Fe in Pd and Fe in Rh. Furthermore,

this would only be observable at temperatures well below 1 K
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in PdFe, although it has been observed above He tempera-

41 Once again, such a2 mechanism may be

tures in EEFe,
rejected here, since it requires that the addition of 5

at % Rh to Pd not only raise its characteristic 1sf temp-
erature (Tg) by many orders of magnitude, but also produce
a temperature coefficient in;AfD(T2>TC) opposite in sign
to that predicted for Fe in either host.

Having rejected these two mechanisms, let us

examine possible sources for this effect in "conventional"

Mattheissen's Rule deviations.42 We begin by correcting

this data for the effects of thermal expansion.43 From

equation (10):

din[Ap(T»T)] =1 + — 2|v|() oV
O1nd) [V + J§-.1local S(S + lﬂ of)

Jg-local S|{2(8 + 1) Oln Js_1ocal

alnfz
(28 + 1) 5lns] . (11)

+

-+

[

bln{m

If we assume that O0ln Jg.local 1is equal to

bln&l

Oln J4.local , then it, and O1nS , can be taken directly

o 1n{) d1nf)

from Fawcett's work,4% However, we still need to evaluate

AV . This can be obtained by noting that:

B
din[Aper = o)) =1 + ! 2|v|[(), ov
d in(} [VZ - 352 Jgulocaﬂ of
MGJ%_local.E#2< O1ndg 1601 + OLnS . (12)
o1nd) o1nf)
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In both equations (11) and (12), band parameters (mg and Eg)
are assumed to be volume independent, From pressure data45

on PdFe, the estimated value for 1 thFD(T = )

Ap(r = 0) "a)

is 5 x 10-6 per bar, leading to

51n[A()(T -0)] = -10
d 1ny)

Using the same value for Fe in PdgsRhg, and noting that

(v2 - 358° Jg_local) and [Vz + Jg-local S(S + 1)]
can be obtained from the measured AP(T = 0) and AP (T = Tc)

7,8,9

respectively, leads via the assumptions following

equation (11) and the use of equation (12) to:

2[vm%}_f;=-’3.e , (13)

With this value in equation (11) we get:

Oin[Ap¢r»T)] = - 10.6 . (14)
o lnil
It is straight forward to show that:
a[ Apcrsr)] - SY‘bln [Aprst,)] }-AP(T’.‘: Te)  (15)
S dr “ O1n ()

where Y is the linear coefficient of thermal expansion,

At 4.2K, Y (PdgsRhg) = 1.6 Y (pd).%? Using this ratio at
higher temperatures46 yields

Y(Pdg5Rh5) = 19 x 10~ per k
in the appropriate temperature range.47 From equation (15):

d [AP(T»TC)] ~ - 1.3 x 10-3Uldcn/k at 4

arT
and thus appears to account?8 for the measured temperature

variation in AWD(Tt»Tb). (A value of 0.8 x IO”BfLKZcm/K at, %

is obtained assuming [ (PdgsRhg) = Y (Pd)). While
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other éorrections, such as atomic volume changes on alloy-
ing, can undoubtedly cohtribute totﬁf)(T>>Tc), an evalua -
tion of such a contribution to equation (15) requires a
knowledge of the temperature variation of the volume
dependence of the resistivity of the PdgsRhS host.42
Such information is currently not available,

We conclude this section by noting that the large

measured values for 1 d[AHD(T}>TC)] are accounted for
c dT

by the large volume dependence of the potential (V) and
exchange (Jg.local) integrals associated with Fe in
PdgsRhs, in conjunction with a large thermal expansion

coefficient.

3.2 (c) (v) The (PdRh)Co System in the
Paramagnetic Regime

In contrast to the (PdRh)Fe system, which we have
Jjust examined, the decrease in the incremental resistivities
of the (PdRh)Co alloys above the 'peak" is very gradual,
In fact, the "peaks" in the Co resistivities occur at such
high temperatures and are so much broader than those in
the corresponding Fe resistivities, that it is very diffi-
cult to establish any temperature dependence at high
temperatures with any degree of certainty (compare figure
3~16 with figures 3-13, 3-14 and 3-15), This difference
in behaviour between the two systems has a possible
explanation on the basis of localized spin fluctuations
(LSF) .

In developing the theory in Chapter 1, we confined
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our discussion to exchange enhanced systems which possess
well defined local momeﬁts. However, some alloys (like
BEF@) belong to the class of '"nearly magnetic'" alloys,
This means that in these alloys (which contain 3-d transi-
tion metal impurities) the host metal, which may or may
not exhibit an enhanced susceptibility, will support
localized moments, but these may not be well defined due
to the constant flipping of the impurity spin §. In the
LSF model, we assume that there exists a characteristic
time T gf, corresponding to the lifetime of these fluctua-
tions of the localized spin § and which governs the
magnetic behaviour of the impurity. When the LSF's are
faster than the fluctuations induced by temperature
(thermal fluctuations), one observes a non-magnetic be-
haviour, Consequently, the conduction electrons do not
""see" & magnetic moment and no scattering occurs. How-
ever, as the temperature increases, the LSF's eventually
become slower than the thermal fluctuations and, in fact,
become indistinguishable from a genuine spin (in other
words, a magnetic behaviour is observed), As a result,
the conduction electrons will be scattered by the LSF's.
The transition between the non-magnetic and magnetic regime
is smooth and occurs near the spin fluctuation temperature
Tgf, which is defined by thevrelation

Tar = R ae)

k'Csf
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The resistivity component f)sf’ due to the scatter-
ing of conduction electrons from localized spin fluctuations
at the impurity sites, increases with temperature successively

as T2, T and 1InT, finally tending to the Yosida unitarity

2
limitso (fDSf(T)~e»J S(S + 1) as T—> 0o ). A character-
istic knee in the curve occurs at the spin fluctuation
temperature Tgy and marks the onset of the logarithmic

regime (see Figure 3-20),

P st é

725 + 1) |- 1“?"\
T2 %a\_m;M“ T

g T
st

Fig, 3-20. The spin fluctuation resistivity

D — as a function of temperature.

Above Tgy, where the resistivity shows a logarith-
mic temperature dependence, there is no gqualitative
difference between the resistivity due to LSF's and that
characteristic of the spin flip scattering of conduction

electrons by a well defined localized magnetic moment,
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In the following table we have listed estimates
of the spin fluctuation temperatures Tgy for several

related systems.

Alloy Tst
PdFe & 1K
PdCo < 1K
RhF e 30 ~ 2K
RhC o049 ~ 102 _ 103

The data in this table implies that the addition
of Rh to PdFe and PdCo should increase the spin fluctuation
temperature Tsf’ Moreover, if the spin fluctuation temp-
erature behaves in a similar manner to the Kondo temperature
Ty in systems like CuAuFeSO#Sl (where Cu plays the same
role as Rh), then it is not unreasonable to expect the
presence of 5 at % Rh in (PdRh)Fe and (PdRh)Co to increase
Tgg by a factor of 3 or 4 over that in Pdre and PdCo,

However, despite the presence of Rh, the spin
fluctuation temperature of (PdRh)Fe undoubtedly remains
considerably less than 1K. Consequently, the only observ.-
able portion of fhe P gf curve in figure 3-20 which con-
tributes to the Fe resistivity is the flat {(temperature
independent) region. This means that spin fluctuations
will have no observable effect on the Fe resistivities in
the paramagnetic region,

On the other hand, judging ffom the table, the

effect of Rh on (PdRh)Co is probably significant enough
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to cause the logarithmic portion of thefDSf curve to play
an important'part in theGCo resistivities, even in the
paramagnetic region, It is because the Co resistivities
contain this logarithmically increasing spin fluctuation
component, that the Co resistivity curves continue to rise
well above the magnetic ordering temperature Tc and alsq
exhibit much broader maxima than do the Fe resistivities,
It is pfobably also the reason why the Co resistivities
do not fall off nearly as abruptly in the péramagnetic
region‘as the Fe resistivities,

It is interesting to note that the same sort of
behaviour can be observed in the closely related PdCo9
and PdFe7 systems. Here again, the transition from
ferromagnetic to paramagnetic regions is much less clearly
defined in the PdCo system than in the PdFe system due

to the much higher spin fluctuation temperature of PdCo,

Summarx

The electrical resistivity of two giant momént sys-
tems - (PdRh)Fe and (PdRh)Co - has been measured from 1.4 to
300K. It is found that the incremental resistivity of
(PdRh)Fe alloys containing more than 1.25 at. % Fe and
(PdRh)Co alloys containing more than 1.4 at. % Co exhibit
a T2 Timiting low temperature form (a result predicted from
conduction electron-magnon scattering for which wave vector
conservation holds). The resistivity data also enabled us

to evaluate the magnetic ordering temperature, T and the

c’
exchange coupling parameters J and J

d-local s-local”
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Table One

(5) (PdRh)Fe

Alloy Tc (from _(}_E) Ap(T-—O) Ap(peak) AP(peak)-Ap(T==0)
(at % Fe) daT Quflcm,) 9u&)cm,1) (ﬁd)cm,)

0.8 22,5 +1 K 1.618 1.803 0.185

1.1 44 + 2.5 2,148 2.386 0.238

1.25 47 + 2,5 2,328 2,664 0.336

1.5 62.5 + 2.5 2.710 3.165 0.455

1,85 70 + 2.5 3.413 4,011 0.588

(b) (PdRh)Co

Alloy T, (from dp) AP(T=O) Ap(peak) AP(peak)~Ap(T=O)
(at % Co) g;. gu()cm.) (}d)cm.) gu(zcm.)

1.0 97.7 + 2,5 K 1,715 2,470 0.765

1.4 66.6 + 2.5 2,161 2,700 0.539

1.8 87.2 + 1.5 2.641 3.800 1.159

2.2 105.4 + 1.5 3.389 4,815 1.425

2.6 124.0 + 2.5 3.582 5.239 1.657
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Table Two

(a) (PdRh)Fe

Alloy T2 coefficient Jdd-local Js_1local Doz

(at % Fe)  (10-4u{lem/K?) (eV) (eV) (KA~
0.8 no clear temp. 0.041 0.020 -
1,1 dependence 0,048 0.020 -_—
1,25 2.4 + 0.15 0.047 0.022 9.61 + 0.3
1.5 2,6 + 0,15 0.049 0.023 10.75 + 0.3
1,85 2.4 + 0.15 0.047 0.024 12.82 + 0.3

(b) (PERh)Co

Alloy T2 coefficient Jd_-1local Je_ Lgeal D 0

(at % co)  (10~tullen/K?) (ev) 75 (KA ©2)
1.0 no clear temp. 0,080 0.0385 —

dep,

1.4 3.3 + 0.15 0.073 0.025 10,17 + 0.3
1.8 3.5 + 0.15 0.073 0.032 14,48 + 0.3
2.2 3.4 + 0,15 0,073 0.033 16.29 + 0.3
2.6 3.4 + 0,15 0.073 0,032 17.57 + 0.3
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