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Abstract 

Let H be a standard analytic functional Hilbert space over a bounded domain $2 c C. 

Ive examine the Berezin symbols -3 of bounded operators A E B ( H )  and characterize the 

compact operators K ( H )  by Berezin syrnboi behavior. ive show that -4 f K ( H )  iff the 

Berezin symbol of every uni tay  conjugate of A is in Co(!?) (Sordgren and Rosenthal. 

1994). Special attention is dso given to examples and the  theory of Berezin symbois on 

the Bergman and Hardy space. We show a characterization (Ader and Zheng. 1998) of 

compact Toeplitz operators on the Bergman space t hat generalizes to  Hankel operators. 

The condition il is compact iff -4?il(z) - O as IzI - 1- holds for al1 Toeplitz. Hankel. 

and composition operators on both the Bergman and Hardy spaccs. 
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Chapter 1 

Introduction 

Operators on complex Hilbert spaces are wonderfui things that have many. many talents. 

Tfiey ha\-e an algebraic structure. They have multiple natiiral topologies. They transform 

other objects and can rnathematically mode1 -changew. Operators are useful in nlany 

different realms of mathematics. and like any freqiient traveller. they carry a lot of 

baggage. In particular. n.e note a seornent of canonical literatiire dcvoted t o  set functions 

of Hilbert space operators and their properties. Xmong these we would find the kerncl 

and the range (functions into subsets of the Hilbert space itself). and the spectrum and 

nu~nerical range (functions into subsets of the coniples pIanc). WC sur\-e- in this pupcr 

anot her item in the operator's baggage: a -ftinction7 function. I ve  will define a rnap frorn 

bourided operators 0x1 a standard analytic functional Hilbert spacc to boundcd continuoiis 

functions and examine some of the  operator theoretic resillts from t his association. 

Let kz be norrnalized reproducing kernels for a Hilbert space H .  Thcn for the boundcd 

operator -4 on H. the Berezin symbol of A is the bounded continuous function 

and the rnopping A - A is called the Bewrin tmnsjorm 

The Berezin s w ~ b 0 1  of an operator was first introduced hy F. A. Berezin i-11 as an  
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extension of Rïck synbols on the Fock spacel. Several topics branch froni his original 

n-ork. One branch uses the transform as an algebraic isomorphism to formillate function 

spaces with a non-commutative (non-pointwise) product which is useful in the  quanti- 

zation of physical sustems. see [SI - Another branch asks operator theoretic questions 

about how properties of the Berezin syrnbol are related to  the properties of -4. Among 

today's authors working in the fields of Toeplitz. HanErel. and composition operators. the 

Berczin symbol has becorne another item of bagage camed bu operators that is usehil 

in the characterizat ion of operator classes. 

Our goaI in this thesis is to present the Bernin symbol-3 from t his operator theoretic 

point of view and demonstrate its relationship to the compact ness of -4. Specificaily in 

Chapter 2 we demonstrate Sordgren and Rosenthal's compactness characterization for 

general operators on standard functionaI Hilbert spaces using the Berezin syrnbols of 

iinit arj- conjugates: 

Theorem 1 Let N be a standard functional Hilbert space ozver the domain 5 2 .  Let -4 E 

B ( H ) .  Then the compactness of -4 is characterized bg the continuous extension to O on 

3-2 of al2 Berezin spnbols of conjugates of -4. That is 

- 
-4 E K ( H )  VU unitanj and z ,  - z E 8R. lim .4['(:,) = 0. 

n-= 

Subsequently, in Chapter 4. we study the compactness of Toeplitz. Hankel. and corn- 

position operators on the Bergman or Hardy spaces r i a  the  Ber-in symbol function. 

The conunon condition to ail the cases proven herc is 

- 
A is conipact ,A8.-L(2) - O as z - 3D. 

wfiere D is the unit disk. Chapter 3 prescnts the  preliniinaries requircd for this t h e o ~  

and shows by example tha t  the  above condition is not true in general. The centre of this 

analysis is a rheorem by AAer and Zheng: 
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Theorem 2 Let T be the set of al1 linear combinations of finite products of Toeplitz 

operators on the Bergman space. L:. Then the compact operntors in 7 are charucte~=ed 

Dy oanishing Bererin syrnbols. In fact. for .-1 +S 7. the following are equiualent: 

(i). -4 E K(L~) n 7 

uhere the C/'- are M6bian unitan/ operators as defined in section 3.1. 

Rifling through this item of operator baggage lets o u  uncover rnany interesting r c  

lationships- T h e  cornpactness of an operator is rclated to the boundary behavïor of 

boimded continuous functions. 'clobius transformations on D define an often-used class 

of self-adjoint unitary operators reiated to a change of ~xr iable  in Berezin symbols (sec- 

tions 3.1 and 3.2). Berezin symboIs connect n-ith integral operator theory (section 1.1). 

the theory of function spaces like LP. BMOû. V.\IOa. (sectioii 4.2.2) and classical re- 

siilts froni complex function theory like the if'eierstrairss approximation theorein (sec- 

t iou 1.2.3). t lie Littlewood subordination t heorem. and the Lit t lewooci-Paley ident ity 

(section 4.3.1). And. of course. it does not stop there. Questions raiseci by this account 

of Berezin symbol t h e o n  are discussed in Chapter 5. 

An outline of the topics covered in the paper is as fo1lon.s: 

Chapter 2: Reproducing kernels. Sota t  ion and terminology. The definition of the 

Bcreziii symbol. Compact operators (on standard H) have symbols that continuoiisly 

csterid to O on the  boundary. Unitary conjugates. Essential ni;merical range. Theorem 1. 

Chapter 3: 'LIobiirs autoniorphisrns. The Bergman spacc. Thc Hardy spacc. llobiiis 

cliangc of \=riables and 'c4obian unitaries. Berezin symbols of Toeplitz operators. com- 

position operators. and Mobian unitaries. Son-compact operators nitii Berezin synibols 

that \-anish on dD. 
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Chapter 4: Compact ToepIitz operators and Berezin symbols on L:. Theorern 2. 

Compact Toeplitz operators 'and Berezin symbols on H'. Compact Hankel operators and 

Berezin symbok on L:. Berezin symbols. Hankel operators and the B-11 Oa and 1 Oa 

spaces. Compact Hankel operators and Berezin symbols on H" Compact composition 

operators and Berezin symbois on H'. Sek-anlinna function. Compact composition 

operators and Berezin synbols on L:. Generalized Setcuilinna firnction. 

Chapter 5: Remark and furt her questions. 



Chapter 2 

Berezin Symbols on General H 

2.1 Basic Definitions and Properties 

Here we will introduce the definitions and notation required for our consideration of 

Berezin symbols. Let II c C be an open simply-connected doniain for a collection of 

coinplex-valueci functions. Let H be the Hilbert space of these functions undcr  the  usual 

pointn-ise vector operations and some inncr product (-. -). (Then H is complete in the  

natural inner product norm [(-Il = (-. -)'/'.) If t h e  point e ~ d u a t i o n  E = (  f )  = fi:) for 

t E I I  is a bounded linear functional on H. then by ~ i r t u e  of the Rcisz Representation 

Theorcm of Hilbert spaces there exists a function Ic2 in H ~ 4 t h  the reproducing proper tc  

E : (  f )  = (f. Kz j. G i w n  a Hilbert space where point e\aluations are bounded for every 

2 E 0. nre cal1 H a functional Hilbert spuce- The  normali,ted rept-oducing kernels of H 

are  the functions k, = I(;/ IIIC;II. which have norm equal t o  one. (~[h'.l!' = If-e 

n-il1 denote the algebra of bounded linear opcrators on  H by the syrnbol B ( H ) .  and the  

Hcrmitian adjoint of an operator -4 E B ( H )  by A'. The symbols D and d D  ni11 be uscd 

to represent the unit disk and its boiindaq- respectively The  overbar Z on  a coiiiples 

niirnber z n?ll be  indicate the comples conjugate of 2. wtiiie the set closure of ! I  wiI1 bc 

noted by n-here necessa- 

Assume !l  t o  b e  bounded. W e  n-il1 often be considering function b e h a ~ i o r  in the  Iirnit 
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near the b o u n d w .  X l .  of II. The notation 

lim f ( t )  
:-a2 

d l  consis-ently mean the convergence of f in the lirnit as the distance cf(:. 312) go= 

to zero uniformly in the Euclidean metric. Specifically considering !! = D. rhk ni11 

t ypically be m i t  ten 

If these lirnits converge to O. we niIl say -f \.anishes on XI" and resewe that phrase for 

sud1 cases. 

Let H be a functional Hilbert space o\*er some bounded domain ! I  C C. -4s defincd in 

[11]. we cal1 H standard if the normalized reprodricing kemeIs k= satisfj- the con\-ergence 

property 

(2.1) zn - E l ==. k,,, - O weakly. 

H will be uniformly standard if it satisfies the siightly stronger condition 

\\'e will most often consider Hilbert spaces of analytic functions on a bounded dornain 

! I .  or analytic Hilbert spaces. \\.'ben an analj-tic spacc H is a closed subspace of sonic 

larger Hilbert space H f .  the orthogonal projection froni H' ont0 H niIl be w i t t e n  P. 115 

n-il1 oftentimes be  using functions from the classical LP(!2) spaces. These n-il1 c a r n  thcir 

usual I i - I I ,  n o m '  1 5 p < r. n-ith respect to the iisual normalized Lebcspe  nieasutc 

d772. ie: m(!t)  = 1. 

Son.. let us make the fundancntal definition of the Berezin synibol of an  operator in 

W H ) .  

Definition 2.1 Let H be a standard functional Hilbert space over 9 C C. Then for 

A E B ( H ) .  the Bemrin symbol of -4. written .:, is the function defined by 

- 
A(=) := (Ak, .  k,) : z E 52. 



T h e  following sliows that Berezin symbols of operators on  analflic spaces are nicely- 

behaved bounded continuous functions. 

Proposition 2.2 Let H be a standard analytic finctional Hilbert space oz7er the s y n -  

metric domain !I. The Berezin s?/mbol of an operator -4 E B ( H )  satisfies the follouing: 

(ii). .x k mal analytic (ie.- in Cz(z. y ) )  and hence is continuous- 

- - 
(iii). -4' = A. 

Pmof. 

(i). From the  definition. Id(:) 1 = I(Ak,. kL) j 5 Il.41iL/I i j  k- 11 by the Cauchy-Selim-art 

ineqiinlity. Sinre l/k.ll = 1 for d l  z. it follorvs that I$(z)/ 5 11.1 11 independent of 2. 

(ii). Let W. z E ! I  and let K, and Kz be the reproducing kernels in H for t hese points. 

Consider t he  fiinction in two cornples cxiables defined by -i(u. z )  := K:) . Since 

! I  is syrnmetric (ie: u: E 11 iff F E O ) .  E H is analytic. n-hcrcby we note that 

is anal>-tic in z because of the reproducing property of K=. Considering the equality 

.4(tc. 2) = (=l*Kz'h-, j .  n.c sirnilariy s e t  tliat -4 is andyt ic  in W .  Therefore -4 is analytic 

on ! I  x I I .  Considering the special case of -4 equalling the  identity. n-c also get t h  

Ar=) is analytic on !I x II. The  quotient function defined Li. 

is t herefore andyt ic  wlierever (h',. K z )  # O .  Recall t hat a function is rcal analyt ic on $ 2  

if it is espressibk as a power series in the  real and i m a g i n v  coordinates t h  con\-ergcs 

absolutely and  iiniformly on compact subsets of 52. It is sufficient. then. tha t  a fiinction 

be analytic in 2 and Z for it t o  be rcal analytic in (r. y). I t  follows that i ( z )  = Q(t .  z )  is 

real analytic by the subsitution w = Z in (2.3). Hence A has infinitel- rnnny deriiativej 
& 

with respect t o  (x. y )  (or ( z . 7 ) )  and  is continuous in c. (That  -4 is a restriction to the 
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antidiagonal iTi = z of !t x 51 of the analflic function Q(w. r) shows also that  the  map 

- - - 
(iii). The identity follows from A 9 ( t )  = {rl*k,-,, k:) = (k: .  -4k:) = (.-lk,. kz) = .4(:). 

The rnapping A - -3. called the Berezin tmnsfonn. is also well-behax-ed. It is a 

continuous linear and injective map frorn B ( H )  to C X ( ! t ) .  Property (iii) of the  above alr;o - - -  
shows that the transform preçertTes involution. We note. however. that .-I1,.lc + --lI.-l-. 

so the transform is not multiplicative. 

The Berezin transform also has several good operator theoretic properties which we 

non- consider. Recall that the definition of the n.trmen'ca1 mnge. Ii'(,-I). of the operator 

-4 E D ( H )  is 

II*'(A) = ((-4 f. f) : 1 1  f 11 = 1). 

Clearly .<(il) is a subset of I1,'(,-1)! since the k,'s arc of unit norni. Therefore. the Berezin 

t ransforni inherits some properties of I I,'(.-I). namely. 

( i ) .  If A is positive. A 2 0. then .i >r O. 

- 
(ii). If -4 is self-adjoint. -4' = -4. thcn A is real. 

(iii). If -4 is scalar. -4 = X I .  then -3 is the coristant A. 

Each of t hcse proofs are trivial uses of the inncr produçt. and ço w n-il1 not include them 

herc. But of particular interest t o  Our discussion is tlic behavior of tlic Berezin symbol 

n-hen the operator -4 is compact. 

Recall that an operator -4 E B ( H )  is compact if the image of the open unit hall 

of H has compact closirre. This is equit-alent to the property that -4 maps al1 walily 

convergirig seqiienccs into st rongly converging ones. (See [7]. ) 
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Proposition 2.3 Let -4 be a compact operator on a standard finctional H i l k r t  space 

H .  Then 

Proof. Using ttie "standardness" of H. (2.1). and the property that a compact -4 niaps 

weakly converging sequences iiito strongly converging ones. the result directly follows 

froni the Cauchy-Schwarz inequdity: 

If .i is aiso continuous. as it is when H is analytic. then the above is q u i d e n t  t o  -4 

compact A E Ca(9). 

Ive are interested to knon- if the conwrse t o  Proposition 2.3 is also true. It is not. 

however. as we will show wïth some counteresamples later in sections 3.1 and 3.2. but 

there is a stronger condition on Berezin symboI boundary behavior that gr-es necessap 

and sufficient conditions for the  compactness of a n  operator. C C é  demonst rate t his in the 

nek-t section. 

2.2 General Compactness Condition 

T h e  set of compact operators forrns the lardest tvio-sided idcal in the algcbra B ( H ) .  

Dcnotc this ideal K ( H ) .  T h e  image of this ideal under the Bermin transform miist 

be characterized bu some function theoretic property - but what property'.' 11-e have 

reniarkeci that liaving .< continuously estend to zero on W2 is not sufficient t o  malte 

A compact. WC proceed non- to work toward a result due to Sordgretr and Rosenthal 

[ I l ]  n-hich characterizes the compactness of a general operator in D ( H )  iir ternis of 

the Berezin symbol boundan  behavior of al1 operators unitarily equixdent to  it. For 

notational purposes. we introduce an algebraic notation for unit'? equi\-alence. 



Definition 2.4 Let H be a standard functional Hilbert space and let u' be a bounded 

unit- operator on H. Then for any -4 E B ( H )  the conjugate of A by 15' is defined as 

By definition. then. B is unitarily e q u i d e n t  to -4 iff B is a conjugate of .4. S o t e  ,&O 

t hat conjugates behave well under adjoints and products. since 

- 
Son-. in general. A(:) = (..II;,. k:) # AL'(=) = (AC/'k,. b'k,). and in çorne cases their 

b o t i n d e -  behavior can be strikingly different (see Esample 3.16). This lack of uniforrnity 

in symbol behavior is what prevents Proposition 2.3 from characterizing the image of 

tlic ideal K ( H )  in the Berezin symbols: the function theoretic property of compactnes 

rnust be shared b -  -3 and .p. 
To help in the proof of the general compactness condition. we obserl-e the follon-ing 

definition fiom [9]: 

Definition 2.5 The  essential numerical mngc of an operator -4 E B ( H )  is the  set 

IiC(.4) C C giwn by the closed niurierical range common to  al1 compact pertiirbatioiis 

of .A. That is 

II;(A) = n { l t - ~ 4  + K )  : A- K ( H ) )  

whcrc Il'(.4) is the numerical range of -4. Equi~a len t l .  X E ICé(,.I) is characterized 

(Corollary to  Tlieorern 5.1 of [91) by 

(2.5) ( A h .  h )  - X for some weak nul1 squencc {h,).  Il hnll = 1.  

('2.6) (-Agn+ gn) - X for somc ort honormal scquence { g ,  ). 

This is relevant to  our pursuit by its appeauance in the follon-ing useful descriptions 

of cornpactness. 
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Proposition 2.6 (Compactness) For an operator -4 E B ( H ) .  the follouing are equic- 

aient: 

( i ) .  -4 is compact. 

(ii). -4' is compact. 

(i i i) .  .-l'A is compact. 

(iv). There e&t. a seq,uence -4, of compact ope,mtors such that A,  - -4 f in the operator 

n o m  topology). 

(v). The essential numerical mnge of -4 is trivial. ie If3i(,4) = { O ) .  

References: The equitdence of (i) - (iv) is fundamentai and can be found in any test 

like [la]. That (v) is equitdent to (i) follows directiy from the Calkin algebra character- 

izat ion of r he essent i d  numerical range. 

IIé are nom- able to present the proof of the general ttieorem characteriziiig t h e  

compactness of -4 in function theoretic t c r m .  

Theorem 1 (Nordgren and Rosenthal, 1994) Let H be a standardfunctional Hilbert 

space ot7er f l .  Let -4 E L?(H). Then the compactness of -4 is charactenzed by  the contin- 

vous eztension to O on 352 of the Berezin syrnbols of ail conjugates of -4. That is 

il E K ( H )  c--. V U  unitary and r, - r E 851. lim =1'(:,) = 0. 
n-3c 

The proof is done by demonstrating tha t  the boundary cluster t-alues of =,ic deterinine 

the essential numerical range. ie: 

Thcn clic essentid numerical ratigc compactness condition in Proposition 2.6 csterids to 

give the conciusion. When the uiiitary operator Cr is given. the proof of inclusion ( > ) is 
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quite simple. However. the other direction requires iis t o  produce from the condition (2.6) 

a unitary operator that  will give us the right Berezin s>mbol. For this. ive niake of 

the  foilowing lemnia. 

Lemma 2.7 (Dixmier) Let { f n )  be a wenk nul1 sequence of unit cectors in a Hilbert 

space. Then there ezists a subsequence which is -appmximately orthononnal". That is. 

for any sequence of positizfe numbers 6,. uve can jind a n  orthonormal sequence {h,,) and 

a subsequence { fn,,) such that 11 f,,, - hm/[  < Jm 'dm. 

Pmof  of Lemma. We use a Grahrn-Schmidt orthonormdization process. Start the 

induction process a t  n 1  = 1 and h l  = f l ,  and p r o c d  froxn the mth  stage defining 

t lie vectors 

where Pm = Cy=l (-. h, j hj is the projection ont0 the  subspace spanned by { h l . .  . . .hm). 

S o t e  that since the fk's are weakly cont-erging to zero. tlien Pm fk - O as k increzses. 

Using R, fk := fk - Pm fk for notational s imp l i c i t~  we have that. 

So we pick sufficently large 11. validating Il fK - gm,Kll < and set n , , , ~  = K 

and h,,+ = gm.K t o  fully describe t he  next stage. D 

Pmof of Thwrem 1. 

Let -4 ~1 B ( H )  be given. Recall WC wish to prove 

- 
LI;(.4) = {A = lim Ac(z,) : z ,  - z E afl. iinirary} . 

n-mz 
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( 3 ) Let X E C and let O' be unitary such that for a sequence Zn converging to il!, 

we have 

A = lirn .4C.r(tn) = lirn ( , .IC*k,, .Uk,,)  
n-cc n-iy; 

SOW. since H is assumeci standard, the sequence { k : , }  is weakly conrerging to zero. 

Then the functions UA-,,, also weakly converges to zero (b- is continuoiis) and so by 

applying the first Fillmore-Stampfli-\ViIliams characterization of the essent i d  numerical 

range ( 2 5 )  to the above. we have X E 11>(.4). 

( C ) SOR'. let X E C i f i  (-4) wc-here, by (2.6). { g , )  is an orthonormai sequence such 

that  lim,,, (..tgn. g,) = A.  Let also { z , )  be a sequence converging to a point z E ai2 
so that we have the weak nul1 sequence { f n  = Ir,, }. Frorn Disrnier's ienma generate an 

orthonormal çequence {h,} -approsimate" to the reproducing kerneis. IVitliout loss of 

generalit- let us assimie (by passing to subquences  and relabeling) that 

(3.8)  lim llhn - fnj /  = O .  
n-cr; 

and &O assume that hoth t h e  sequences { g , )  and {h,} ha\-e 'an infinite orthocomple- 

ment. The  unitary operator matching u'h, = gn and the orthocomplements is then well 

defincd. 

So n calculation shows 

lirn ( A c h . .  h,) = lirn ( -49 , .  9,) = A.  
n-rit r i  - rx 

But the hn approximation t o  fn  = kZ,, is good enough. for by (2.8). 

I ( A ~ L .  h n )  - (-4'' f n . f n ) /  = l ( - 4 c ~ ) ~ n  - fn). h n }  (-4' f n .  ( fn - h n ) ) i  

5 11-411 . lihn - fn II + /I--li/ . llhn - fnll - 0- 

- 
giving that X is dso a boundary clustcr cal~ie of AC at  t E t3Il as rcqiiircd: 

lin1 (Ai'k=,, . I r , , , )  = lirn (-4' f n .  f , , )  = A. 
n-.s n - x  

Thus the equality (3.7)  is proven. C3 
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This t heoreni therefore identifies the  ideal Ki H) wit h the functionai tlieoretic p r o p  

erty that  the farnily of functions =IL' al1 be continuoiisly emendable t o  O o n  a51. ie: a 

behac-ior invariant under unitary conjugation. Bu reformulating the e q x e s i o n  of Theo- 

rem 1 n-ith the  operator .-I*.4 we get 

- 
4 E K )  VL;' unit- and  :, - : f dil. lim (.4*--l)C'(,) = 0. 

Tr-Cs 

which in turn can be written as 

-4 E K ( H )  QU unitary and z ,  - z  E iXl. lim Il=l5k,,,il = 0. 
n-cc 

In this way. t he  colIection of weak null sequences {(C~k,,,) : ' u n i t q  and  z ,  - z E 8 2 ) .  

is sufficient to determine the behatior of al1 weak null sequences. 

Ive n-il1 leave the  general case with a summary of the general conipactness condition. 

C o r o l l a r y  2.8 Let H be a standard fvnctional Hilbert space. Let -4 E L?(H). Then the 

following are equiralent- 

(i j. -4 zs compact. 

- 
(,ii). lim,,, (-4*.;i)t'(z,,) = O. Y t.7 unitary and z, - 2 E ail. 

(iii). Iim,,, I j  .4Cik,,, 11 = 0. V 0- unitarg and z ,  - z  E a i l .  

- 
(iv). liin,,, A L . ( , )  = O. VU rrnitanj and z ,  - z E d! l .  

- 
If H is analytic. then (iv) is e q u i d e n t  to  {Ar : C; unitary) c Co ( i l ) .  



Chapter 3 

Berezin Symbols on the Bergman 

and Hardy Spaces 

1% Kant to examine the Berezin sj-mbol behatior of some concrete operators on two 

classical esamples of standard analytic functional Hilbert spaces over the  unit disk D. 

These are the Bergman space L:. and the Hardv space H ~ .  In the follon-ing. n-e define 

these spaces and develop the  t h e o n  of Berezin symbols on them from the definition of 

their rcproducing kernels. \Ve a h  prcsent somc concrete esamples of q-mi101 bchakior 

at the boundary i3D. 

First. let us note some properties of automorphisrns on D that d l  be an iniportant 

technique in our analysis. The following properties of Ilobius transformations are casiIy 

found in tests such as [7. 181 or can be proved by simple technical cdculations. 

Definition 3.1 The MObius Tmnsfonnations g, defined for each cr E D 

satisfy the follom-ing properties: 

( i ) .  ,-, is analytic on D and continuous on B. 

(ii). ;,(O) = a and y,(a) = 0. 



(iii). y, is injective, ç,(D) = D and ,c,(OD) = i3D. Furthemore. ;,' = ;,. 

(iv).  -4ny disk automorphism v can be written as v = A;, for sorne X E i3D. and a E D. 

(v). 1 - e a ( w )  = (1  - iaf2)/(1 - üw). 

Fresent iii t he  first section the developrnent for L:, and where the Hardy spacc 

proofs are similar. they mil1 be orriitted in section 3.2. 

3.1 The Bergman Space 

Definition 3.2 The  Bergman space. L:. is the closed subspace of analytir functions in 

L'(D). That is 

L: = {f anaiytic an  D : /D / f j 2  d m  < 2) . 

where dm is the norrnalized Lebesgue measure on D. and t he  inner product is the usiial 

That  each f in L: is anal'-tic, of course. irnplies it has the ponrcr series cx~ansion 

f ( z )  = ET=-, un$ n-hich converges absdutely and uniformly on compact siibsets of D. 

The following properties of L: arc fundarnerital and easily proved. sec 1181. 

Proposition 3.3 The  following are findamental pmperties of the Bergman space. 

(i). L: has the canonicnl orthonormal basis 

(ii). For every z in  D.  L: has the mprodiicing kemel  K,(zc) = 1/(1 - ~ u r ) ' .  



(iii). Let LP(D)  be the classical Banach space of Lebesgue-p-integrnble functions and 

let LO(D) be the subset of analytic LP functions. Then the Bergman projection 

P : LP(D) c- LE(D) has the integral f o m  

and jPf I l p  < cp 1 1  f i l p  for al1 1 < p < r. (See specificnllg /18. page 55].,) 

The use of the  LP space and norm in the Iast propcrty wiil be usefiil in Iater sections. but 

iinless othemise specified w ml11 always be considering the Bergman projection between 

the Hilbert spaces L h n d  L:. 

It follows directly from the above definition of the reproducing kernels t h a t  the nor- 

malized BerOman reproducing kernels kz are defined by 

1 - 121- 
(3.2) "(4 = (1 - for eveq 2 E D. 

The following properties of norrnalked reproducing kerneIs ni11 be used repeatedly 

in oiir calculations. The first property proves that L: is in fact uniformiy standard. 

Proposition 3.4 The Bergman nonnalized reproducing kernels. A-, c L:, satisfy the 

follou;ing: 

( i ) .  k, - O .weakly as /t! - 1- . (ie: L: is unifonnly s tandad.)  

(ii). Let be a hlobius transformation. Then g,-', = -k:. 

Pnoof. 

( i ) .  Let f E L: bc a r b i t r q  and let c > O. f is the Lv imi t  of its SIacLaiirin series. so 

there exists a polynomial p ,  to within c/2 off in the norm. S o w  @,. k:) = (1 - 1:') p,(r) 
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is boiiiided by the finite value (1 - 1-1') lipn i l x  Therefore picking - 1  close erioiigh to  

one. we get 

(ii). We proceed bu direct calculation using the quotient rule. Let z E D. 

(iii). Differentiate the  Mobius identity ut = y:(,-=(rcj). Then using the substitution 

from the preceeding property we get 

(iv). This follows directly from the 'rlacLaurin expansion of ( 1 - ZW)-' . C! 

It n-il1 be useful to note that  properties (ii) and (iii) combine t o  make the identity 

Using the  propositions stated. we can non-show how the inner prodrict of the Bergman 

spacc reacts t o  an autoniorphic change of L-ariables. 

Lernma 3.5 (Mobius Change of Variables) Let f.g E L: and let y, be the 316bius 

transformation for a E D. Then 
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b ~ ,  the change of variable z = ça(u) .  Therefore. using (ii) from the previous Proposition 

we get 

( f  0 9a.g 0 ;a) = f ( ~ ) r n l - ~ a ( : ) 1 2  d d 4  l, 
= L ka(:) f (=)k,(c)g(z) dm( : )  = (ka/. kag) 

as desired. iï 

The Toeplitz operators on L: wiI1 be an important class of operators for us to  study. 

Here we give their definition and note somc useful properties. 

Definition 3.6 Let u E LS(D). and let P be the Bergman projection. Then u induces 

a Toeplitz operator Tu on L: defined by Tuf := P ( u f )  for d l  f E L:. Tu E B ( L ~ )  and 

satisfies the folIon-hg: 

(ii). Tautsr = ÛT, + flL, for u. v E L Z ( D )  and a. d E C. 

(iii). T,: = Tu. 

(iv). T,, has the integral form 

(Tuf )(i) = u ( w )  f (ru)K=(w) dm(w)- 
D 

Reference: pages 10.5-106. [18]. 

Son;. let us work out our first esample of a Berezin s~mbol .  The Berezin synibols of 

Toeplitz operators are so often of interest. is predominantly u-ritten shortliand in the 

litcrature as ti. 

Example 3.7 (Berezin Symbol of Tu) Let T,, be a Tocplitz operator on the  Bergrnari 

space. Then. 
.- 



For Ü ( z )  = (uk,, k,) = ( u  O y,. 1) = (Pu ~ = k ~ . k o )  by the change of t-ariable formula 

( 3 . 4 )  D 

Sext we examine the class of composition operators which d l  al50 be important for 

both the theory and providing concrete examples. 

Definition 3.8 Let Q : D c- D be anaIrtic. Then o indiices a composition opemtor Co 

on L:. defined by Co f := f O Q for ô11 f E L:. The composition operator Co sntisties the 

following: 

(i). Co E B(L~). 

Refemnce: page 11 7 of 181. 

The definition of Co rnakes it very easy t o  calculate Co. and also demonstrates hon- 

the boundaw behavior of O is important to  t h e  Berezin sp ibo l  beliat-ior. 

Example 3.9 (Berezin Symbol of Co) Let Co be a composition operator or1 t h e  

Bcrgnian space. Then. 

- 
For Co(:) = (k, o o. k,) = ( 1  - 1-i2)k, o O ( - )  by the rcproducing propcny of the kcrncl 

K .  a 

The follow-ing class of weighted composition operators ha\*e been a principal tool in 

proofs involving Berezin sjrnbols on L:. see il91 and [2] among others. These unitary 

operators are fundamental in hon- they arise from the SIobius change of variables and 

tlicir rcIation to  normalized reproducing kcrnels. equation (3.4). 



Proposition 3.10 (Môbian Unitary Operators) Let a E D.  The uieighted compo- 

sition opemtor on L: dejined by Cia f := I;,C;,, f satisfies the follouing: 

(i). L a  zs a self-adjoint u n i t a q  operator. 

(iii). Uak, = ûkGU(+) where û = û,(c) E dD. 

Pmof. 

(i). Let f . g  be arbitrary elements of L:. First. we mi11 prove that L;, is self-adjoint. 

where we have used the change of ~ w i a h l e  (3.4) and the identity ;, O <,(UV) = uT. Son.. 

by Proposition 3.4. (kaka O ,za)(w) = and thus ( I / o ' f . g )  = (L/', f.g) from the above. 

That & is un i tne  follows sirniIarily. Simply rewrite Lemma 3.5 replacing f b ~ -  f s ,-,. 
and simplifi the result n-ith the identity (iii) from Proposition 3.4. 

Combinirig these results yields 

pro\-ing (i). 

(ii). Let f E LE be arbitrary. Then as M e r  did in ! I .  Proposition '2.'26j. we calculatc. 

troving tlic idcntity. 

(iii). This identity cornes from adjusting the  former with the appropriate nornis. 
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Setting o = aa(s) = I / ~ ~ , ~ ( = , / l i l ~ ~ / l - ' k . ( - )  we get the desired identi t .  To pproe oc(:) E 

LU3 we use (3.1) and (3.2) and calculate 

The following discussion serves as  a counteresampIe to the converse of Proposition 2.3. 

It proves t hat t he  Berezin symbol of many non-compact operators \.anish at  the b o u n d q  

Exarnple 3.11 (Berezin Symbol of M6bian Unitaries) Consider the Mobian uni- 

tary operator L',. The  Berain symbol E(z) is then 

Son-. since 

iniplying that for a Lved a in D. 

This proves that. for fived a E D. is bounded above since t he  far Ieft hand 

side of (3.8) is 1 kGLl,)(2)i. Therefore. from (3.7). a-e obserw that the Bcrnin  symbol C'. 
vnnishcs on the boundary since 

and jlIï,/j-' = (1 - Iz12) converges to zero as 2 - t3D. However C', is u n i t a n  and highly 

non-compact . O 



Theorem 1 proves that for <any operator -4 E ~ ( ~ 2 1 .  the family of Berezin syrnboIs 

created by unit- conjugation will satisfy (-4"') c Co(D).  The folloning denlonstrates 

t hat the Ilobian conjugates are too well-mannered to be important in the theorem. The 

identity makes for a L r e r y  useful technique in calcuIations. and so n-e specifically nanie the 

operators .,lLr: for z E D the MObian cunjugates of -4. Due to  the relationsliip betn-een 

llobian unitaries and autornorphic changes of variable and the  precedent of Example 3.7. 

it m a -  corne as no surprise that t h e -  induce a change of m.rïabie in the Berezin symboi. 

Proposition 3.12 (Berezin Symbols of M6bian Conjugates) Let -4 E B ( L ; ) .  Let 

Li, be the ,hiobian unitary for z f D. Then 

Pmof. We use property (ii) of Proposition 3.10 to calculate 

- 
Clearly if . i ( w )  - O as /ici - 1-.  then so does Ac: since. for eacli 2 E D. it follom froni 

- 
the continuity of y, that  I,-=(w)( - 1- too. (ie: -2 E Co(D) * {,IL'= : : E D) c Co(D).) 

3.2 The Hardy Space 

The second standard analytic functional Hilbert space we n-il1 study is the Hardy space 

~2 

Definition 3.13 The H a d g  space. H' = H2(D).  is the Hilbert space of analutic fiiiic- 

tions on D satisfying the growtli condition 

where the inner product is defined by 

dl) 
(f. 9) = iim Izii /(rei8)9(rez0) - 

r-1- 0 27 ' 



Refemnce: pages 9-12 of 181. 

A11 functions f E H' have a pon-er series f ( z )  = Cz=o an?' with coefficients a n  froni 

1'. ie: E,X=-, /an 1' < cc. It is possible to consider H' as a subspace of L"(~D) by looliing 

at the extension of t hese series onto aD (ie: H2(dD)  ). There. the inner product has the 

form 

.Jiist as n-ith the Bergman space. we n-ill begin m-ith a List of properties of H'. 

Proposition 3.14 The following are fundamental properties of H'. 

(i). H' has the canonical orthono.nna1 basis {en(:) = zn : n = 0.1. ...). 

(ii).  For every t in D. H' has the mproducing kernel K: ( w )  = 1/(1 - fw). 

liii). H2 is a subspace of hannonic functions. 

(iv). Let LP(DD) be the clussical Banach spaces and let HP(D) be the clussicul H u d y  

spaces. Then the Szëgo projection P : LP(t3D) - HP(D) has the integml fonn 

Reference: Sec Zhu [18]. 

1 t follows directly from the above definition t bat the normalizcd Hardy reproducing 

kcrnels arc defined by 
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The following results on Hardy space normalized reproducing kerneIs show that they 

are very similar in behavior t o  the ones we studied on  the Bergman space. so the proofs 

which rcquire only trivial adaptation are omitted. This does not indicate. however. that 

HL has nothing t o  add to the discussion. T h e  final statement in the  folloning connects 

t hc Hardy Berezin symbol wit h the Poisson transform on L ' ( ~ D ) .  

Proposition 3.15 (i). k= - O weakiy a9 (21 - 1-. lie: H 2  is vniformly standard.) 

2 
(iv). /ls,(et6 11 = ~ e ~ *  the Poisson hrnel of D. 

\!'e observed in the preceding section an  esample of a non-compact operator wliose 

Berczin symbol did tanish on  the boundaq-. Here n-e present another esample of t his 

behavior in a positive n o n - i i n i t q  operator on  H' due to .&der. j l L ] .  

E x a m p l e  3.16 Let -4 be the projection frorn H* t o  the space spanned by the  canonical 

vcctors { e p  : rr = 0.1, .  . .). Since the sequence {-kp) = { e p )  has no converging 
- 

subsequence. -4 is not compact. Som- .A cal1 be calciilated as 

- (1 - i..lzj 72" 3 +ln  - .. e p  (z) = (1 - 1 2 1 ~ )  x(/zl-)- . 
n =O n =O 

Since t = / Z I *  < 1. ne have 
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Equat ion (3.1 1) is t herefore bounded above by a finite sum and a geornetric senes. It is 

then casy to  see that 

(1 - I#) 
lim - x ( z )  5 lim (1 - +- 1) + 

[= l - i  - 1:1-1- 1 - 

where the limit of the second term is etduated using I'Hopitd's rule. Since 3: can be 
- 

chosen arbitrarilu large, n-e have -4 - O as 1 z j increases to 1. 

Giwn the general theorem. nom-. there m u t  exist a u n i t q  C.- on H' siich that -4'. 

does not have a Berezin symbol t hat ~xnishes on i)D. W e  can determine a suit able If' in 

the falloning n-ay. 

Define a unitary operator V by mapping 

and mapping the odd basis vectors onto a basis for the orthocornp1enicrit of the e2n-s. 

Thcn 

whicli is nowhere \lanishing. 

X sirnilar projection operator on the  Bcrgnlan space cari be constriicted, see ['LI. 

\Ve noted in the last section trou- the 'clobius transformations on D w r c  coiincctcd 

ta Bergman reproducing kernels. IF% find the srunc is true for H'. 

Lemma 3.17 (Mobius Change of Variables) Let f. g f H 2  and let ;, be the 3lobiu.s 

transformation for a E D. Then 
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Pmof. Let f , g  and g, be in H'. 1% will proceed to calculate their inner product in 

the H ~ ( B D )  form. Then 

SOW consider the change of variable elt = ,-,(e"). gic-ing eitdt = , - ~ ( e ' e ) e ' e d ~  as the 

appropriate substitution. With the self i n ~ w s e  of ça. then. WC get 

But the fraction in the  integrand simplifies (using the identity (3.3) ) as 

wtiich when reorganized in (3.13) yields (3.12). O 

The Toeplitz operators on H' are defined in esact analos to the L: case (howewr. 

their beliavior can be quite different). For sirnplicity. we will always consider a Tocplitz 

operator to use H' = H2(dD)  in its dornain and H' = H'(DJ in its range. 

Definition 3.18 Let u E LX(8D). and let P : L"(âD) + H2(D) bc the Szëgo 

projection. Then u induces a Toeplit: opemtor Tu on H' defincd by T u f  := P(u f )  for 

al1 f E H 2 .  Tu E B ( H 2 )  and satisfies tlic following: 

(ii). Tau-Jc = aTu i JTc for u. L* E LX(dD) and a. 3 E C. 

(iii). T,' = Tu. 

(iv). T,, has the form 
de 

( T J )  (2) = /lii u(e iO)  f (e ie)  K: ( c l @ )  l_< 
O . r d 1  
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Reference: pages 193-194 of 1181. 

The  Berezin synbok  of Toeplitz operators on W' actually are a well studied classical 

object: t he  Poisson integral. 

Example 3.19 Let Tu be a Toeplitz operator on the Hardy space. Then using the 

H2(dD)  inner product ive have that 

and 

E = P[u] 

whcre P[u] is the Poisson integral (or harmonic estension) of u over D. The first eqiiation 

cornes from the change of variable formula applied to (uk=. k z ) .  (The same argument as 

the Bergman case.) The second cornes from the correspondence of the Hardy kernels 

n-ith the Poisson kernel ~k,(rc)l? = P:(w) as in Proposition 3.15.(i\-). C 

The class of composition operators niIl also be important in thc H' analysis. 

Definition 3.20 Let O : D - D be anaiytic. Then o induccs a compo.sztion operutor 

Cc on H'. defined by Co f := f O O for d l  f E H'. The composition opcrator Co satisfies 

t lie follon-ing: 

(ii. C, E L3(H2). 

(ii)- C&o, = Co,om. 

(iii). Co( fg) = Co f - C o g .  

Reference: page 11 7 of [8]. 

The composition operators on H- have a Berezin symbol structure very similar to 

t lie L: case. as we note here. 
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Exarnple 3.21 (Berezin Symbol of Co) Let Co be a coniposition operarar on the 

Hardy space. Then. 

- 
For Co(-) = j l ,  O o. k:) = J-ki c O ( - )  by the reproducing property of the kernel 

Considering the depth of their application in the Bergman Space. we present the 

analogoiis definition of JIobian unitary operators on H'>. 

Proposition 3.22 (Mobian Unitary Operators) Let a E D- The weighted compo- 

sition operator on H' defined by Lia f := k,C;,, f satisfies 

(i). Oc, zs a self-adjoint unitant opemtor. 

Pmof. The method of proof is identicai to that useci in Proposition 3.10 using the rcsults 

of Propositions 3.1. and 3-15 and the change of twiable. equation (3.12). For the H" 

case. we find t hat 

These H'udy Ilobian unitaries also have Berezin synibols that vanish on 3D 

Example 3.23 (Berezin Symbol of Mobian Unitaries) The proof is idcntical to 

the  Bergman case, Esample 3.11, with the modification that the left Iland side of 
I 2 (3.5) is now 1 ki,,(L) (2) 1 using the Hardy reproducing kernel. Sirnilarly. now ii K: i! -' = 

1 - d l  - IZ / '  - O as lzl - 1-. a-hich still squeezes Ua(z) to zero. G 

1Iobian conjugates in H') also do nothing more than pro\-ide a change of ~xriable. 

The proof is the s ~ m e  as Proposition 3.12. 

Proposition 3.24 (Berezin Symbols of Mobian Conjugates) Let -4 E B ( H 2 ) .  Lct 

Ca be the Mcïbian unitani for  a E D. Then 

- - 
(3.16) = -4 O ;,. 



-4s ni th  the projection operator of Example 3.16. there must exist sonie conjiigate 

of Ua n?th a non-t-anshing Berezin symbol in order to s a t i s e  Theorem 1. The c~ase of 

general a E D is rather difficult. so we will consider thc simplest case a = 0. 

Example 3.25 Our goal is to determine a unit- operator CI such that 

- 
lim # O .  

:=1-1- 

Sote that  & f (w) = )(-u) and L;o is a diagonal operator in the canonical H2 basis n-ith 

diagonal entries ( - l ) n .  Define the operator V on the H -  canonical b a i s  as the  block 

diagonal matriu with identical blocks Vb 

V is a unitary operator on H2 since V,Vb is the 2 x 2 identity niatri\-. It is a simple 

niatter of rnatrix computation. then. that in the canonical H' basis. 

Bo = 

Algebraically. then. R-e have 

If R-e calculate the Berezin symbol of this conjugate of Uo using the even-odd expansion 

ki ( UI) = ~ ~ = 0 ( f 2 m I L . 2 m  + S m +  l u,2m+l ), m-e get 

- 
~;*( r )  = ( ~ : k = . k ~ )  



n-hich vanishes oriiy at ii. 



Chapter 4 

Special Cases of the Compactness 

Condit ion 

-4s WC see from ExampIes :3.11. 3.16. and 3-25 in the pre\-ioirs chapter. given a standard 

functional Hilbert space H. the  ideal of compact operators K(H) is not sirnply identified 

under the Bere~in  transform as the set of operators n i th  symbols vanishing o n  the bound- 

an.. However. it is quite possible that such a characterization e-uists for smaller classes 

of operators. We examine here mine results iric-olving Toeplitz. Haiikel. and corlipositiori 

operators. 

4.1 Toeplitz Operators 

4.1.1 Compact Toeplitz Operators on 

ToepIitz operators as defined in section 3.1 have heen a staple topic in operator theon.. 

and work linking compactncçs and the Berezin synibol fias attracted the  iiitercst of 

multiple authors. Since 1988. K. Zhii. B. Korenblum. K. Stroethotf. S. Asler. and D. 
- 

Zheng have al1 contributed to  characterizations tliat state Tu is compact iff T,, \1=inishes on 

i3D provided we makc some special assiunption on the symbol u. (See ['Z] for references.) 



The most general result is due to ,-lulm and Zheng (1998). on which we n-ill focus the 

bulk of this section. Before stating the theorem. we inchde a lemma that  s i m a r i z e s  

some properties of Ah',. and gives the in t e sa l  fortn of -4. 

Lemma 4.1 Given arbitmry f E L: and -1 E B ( L a ) .  u?e have the following: 

.4'h'z(u~) = ( ,4*K,.  h',) = (Ah',. K,)  = .LIKIL'(:) 

thereby writing A as  an  integral operator with kernei .a(:. UV) = Ah-,.(=).  

In the followirig we will use 7 to rcpresent the set of al1 finite sums of finite prodiicts 

of Toeplitz operators on the Bergman space. 

Theorern 2 (Axler and Zheng, 1998) Let 7 be the algebm genemted by the Toeplitz 

opemtors o n  L:. Then  the compact opemtors in I am chamctefized by ~?anishing Berezin 

syrnbols. In  fact. for A E 7. the foliowing are equivalent: 

(i). -4 E K ( L : )  n 7. 

In particdar. a Toeplitz opemtor Tu on L: is compact iff il (or  T:Tu) canish on 3D. 

Discussion of the P m f .  The implication ( i )  - ( i i )  is the gencrd resiilt for staridard 

furictional Hilbert spaces (Proposition 2.3). A lemma for -4 E 7 çtion-s (ii) + (iii). The 

niost clifficult step. (iii) (i). uses Lcnuna 1.1 and techniques of i n t c g d  operators to 

dernonstrate that -4 E 7 u-ith the & - e n  propcrty implics -4 is a Iimit of a sequencc of 

compact opcrators as described belon-. 

From the integral form of -4 (equation (1.2)). define for eveq positive r < 1 the 

Bcrgriian space operator .'lfrl by the equation 
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where y, is the characteristic function of the disk rD. To complete the  proof of the  

theorem we will show: 

1. .4[r1 is compact for e v e q  O < r < 1. 

Y. If A E 7 svch that (iii) holds. then li-,, - .Airj = -4 in the opemtor norm. 

Let us deai a-ith the  technicalities in a burich of lemmas and proceed n-ith the neces- 

sa- proofs. 

The  most important propeny particular t o  operators in 7 used in -4der and Zheng's 

proof is the  following. 

Lemma 4.2 ([2]) Let A E 7 be arbitmq. Then the set (A'-= 1 1 z E D) is bounded in 

the LP(D. dnz) norm for al1 1 < p < x;. That is. 

sup  ll.4'': 111, < r. 
i E D  

Pmof. Consider first orily the finite product -4 = Tu,Tu,. . .Tu,,. where the u,  are 

bounded fiinctions on D- Then 

and for evcry f. 9 in LO 

Thus TL'= = TT,,, . l l ak ing  a replacenient in (4.4) wc therefore have 

Xow. the Bergman projection opcrator P : LP(D) - L:(D) is bounded for each p. that 

is 11  P f il, 5 cp Il f 11,. (see Proposition 3.3.(iii) ). so 
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which is bounded independent of z .  

For general -4 E T. the pretious result estends bu the triangle ineqirality to prove 

the iemrna. 0 

Lemma 4.3 Gizen an operutor -4 bounded on L:. there erists a constant c < x such 

that 

(4.7) 

for al l  u: E D. and 

for al1 z E D. (The particular use of the L 6 ( ~ )  n o m  t s  by convenience.) 

Pmof. \Ve note tliat since Uu,l = k ,  = (1 - Iuil'l)Krc. 

Rcn-riting Our integral we get 

Applying the change of \-ariable t = G~,(X) and some manipulation of reproducing kernels 

and SIobius transformations this becomes 
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Then by applying Holder's inequality %<th p = 6 to  t he  numerator and y = 6/5 t o  the 

deriorninator R-e get 

1f:e are rnotivated to use this p = 6 case because t he  integrai on the right is knonm to  

be bounded independent of z by a result from ,Lxier (Lcnima 4 [l]) .  but any p leai-ing 

an integral bounded over z is sufficient. Therefore. taking c ~ / ~  as an upper bound t o  the 

integral we arrive at (4.7). 

It would perhaps be simplest to  tC& p = q = 2 in this final stage. but urifortiinately 

t hc integral 

does not converge for any  u: E D. (Ot hem-ise. it would aiways be true t h  -4 is compact 

iff .< vanishes on S)D.) 

To determine inequaiity (4.8). use equation (4.1) to v i t e  

So by rcplacing -4 with A' and switching the  roles of : and w in inequdity (4.7)- 

actually obtain t he  desired result by applj-ing the above identity. C 

Ive nom- proceeà n-it h the  proof of t tie t heorem. 

Pmof of  Theumm 2. 

(ii) e- (iii). 

Clairn: Let -4 E 7 and let .% vanish on aD. Then 11.4'=1 - O as 2 - BD for an!, 

p > 1. 
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Proof. First. we would Like to observe the behavior of the vectors ( ~ ~ ' ~ 1 )  under the 

hypothcses. Let us fk a positive r < 1. Using the equality of Proposition 3.12. Xe 

observe, using power expansions of kA, that the integral 

So we can make, for any positive r < 1, the estimate 

By the h-vpothesis of our lemma, for any fixed r < 1, the integral will converge to O as 

[z [  - I- makes lp=(X)I increase to 1. (The integrand is bounded by 11 Ai! (1 - r2)-* so 

the limit can pass inside the integral sign.) The sum in equation 4.10 can also be chosen 

arbitrarily small independent of z for 

which converges t o  zero as r approaches O. 

Since we have proved that (Auzl, wn) converges to  zero for al1 integers n, we have 

that as IL[ -+ 1-, the vectors A*Z 1 weakly converge to O in L:, or, equivdently, that they 

uniformly converge to  zero on compact subsets of D. (For details see page 74 of [18].) 

This enables us t o  prove Our daim as follows. 
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Divide the P n o m  integral of .4C': 1 over a closed disk and an open anniilus. as 

For any choice of r < 1 the second integral n-il1 converge to zero because the integrand 

vanishes uniforrnly on the compact set as - 1 - - It suffices. then. to shon- that 

the first integral can be chosen arbitrarily srnall uniformly in :. To do this n-e lise 

P P 
the substitution I(rlu=l)(u)1 = 1 - j ( ~ ~ ' l ) ( ~ o ) l  and HiMer-s inqualit- (mith tlie case 

l 

p = q = 3) to bound the integral as folIows: 

2. I,'.? 
~ ( 1 - r 2 ) 1 / 2 1 1 ~ ~ L . = ï j 1 ~ p < ( 1 - r  ) c 

n-here m-e bound the 2pnorm of .4L'= 1 by Lemma 4-2. Taking r sufiiciently close to 1 m-e 

can therefore make the integral converge to O uniforrnly in z .  Claim Q.E.D. 

(iii) 3 (i). Recall that the proof cornes in tn-O parts. 

Claim 1: Giren .î E B(L:). the optmztor .qIrI defined in (4.3) 2s compact for e w r y  

O < r < l .  

Proof of Claim 1 .  We n-ill show. in fact. that .Air! is in the Hilbert-Schmidt c l s s  S2. 

\\ë do this by calculating ([18. pages 39-41j) 

Claim 1 Q.E. D. 

Clairn 2: Giuen A E 7 and A(:) - O as l z /  - 1-. then -.liri - -4 as Iz! - 1 - -  

' 1  P m f  of Claim 2. W e  wiah to demonstrate that  il.4 - Alri(l - O as r increases to 1. 

but note that -4 - is an integral operator Rith kernel 



C'If-4 PTER 4. SPECI.4 L CASES OF THE CO J 1 P.4 CT-\-ESS COS DI TIOS 39 

mat ive Therefore WC can apply the Schur test (see 53.2 and Xotes. p8j)  on the nonne, 

meastirable function of two v.ariablcs I.-lK,(c)(l - i r ( ~ ) ) / .  1% obse~l'e. then. tha t  t h e  

relations from Lernma 4.3 can be applied in such a way that 

(4.11) 

and 

Applying the Schur's test. we get the bound 

The first siipremum over D is bounded using Lemrna 4.2 applied to .A'. However. by the 

tiypothcsis of (iii)? we have that  

so the second supremum converges to O as r increases t o  1. Hence -4 is the limit to the 

compact operators .illr1. and -4 is compact. Claim 2 Q.E.D. 

This conlpletes the proof of Thmrem 2. o 

The following theorem is a direct result of our characterization. It niceiy cxpreçscs the 

condition for compactness in a form sirnilar to the hypothesis condition in Lemma 4.2. 
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Theorem 3 (Zheng, 1989 [16)) Let Tu be a Twplitc opemtor on L:. Then Tu is 

compact zff 

I I T u r ; , l I I p = l l P ( ~ ~ ~ r ) l l , - O  as Ir1 - 1-. 

for al! p E (1. x;). 

Pmof. Apply condition (iii) of Theorem 2 to the operator A = Tu and use the result of 

Lenmia4.2that T ~ - : = T , , ~ = .  E 

S o t e  t hat the bounded supremiim property of Lemma 4.2 is the onlj- special property 

of eIements of 7 used in the proof. So it is naturai to  extend this cliaracterization to the  

c l C s  of operators 7' defilied as ail  il E f3(L:) for which s u p Z E ~  1 I l p  < x. However. 

n-e do not Linon. m-hat is in 7' \ 7 or even if it is nonenipty. But it does follon. frorn our 

preb-ious obsenations that not al1 bounded operators can be included in T'. 

Example 4.4 Since the Slobian i i n i t q  operator Uo of Escample :3.11 is non-compact 

and has a Berezin symbol that c-anishes on t3D. it must not satisfy sorne hypothesis of 

Tlieorern 2. Let us cdculate II@= i Ilp. 

wiiere a = k / ( 1  + jr12) E D. The last integral on the  riglit is known to have an 

as>mptotic relationship as 1zI - 1-. [la. page 531. 
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'> .> 
Remark tha t  (1  i ( z1 ' )~ (1  - [al2) = (1 i lz(')? - 4 1 - 1 '  = (1 - 1 - 1 - ) - .  and so 

. Thus we see that for p > '2. 

sup il~t=ill 3 ~ i m  11~:b>~;;111, > 
:ED P Izl-1- 

and & does not satis- Lemma 4.2. G 

In summary. we formulate the following identification of K(L: )  ri 'T. 

Corollary 4.5 Let 7 be the set of al1 finite sums of finite pmducts of Toeplitz opemtors 

on LO. Let A E T .  Then the follo,wing are equiralent. 

(iii). .4*A(z) - O us lzi + 1-. 

(iv). IIAk,, II - O for e v e q  sequence 2, uhem 1 %  / - 1-. 

- 
Specjjicallg. we note that Tu is compact iffÜ(2) orT,'T,(=) - O o n 3 D .  or ilTucG_ 1/Ip - O 

as Iz[ - 1- for al1 p E ( 1 . x ) .  

4.1.2 Compact Toeplitz Operators on H2 

The question of characterizing compact Toeplitz operators on the Hardy space is a trivial 

one: by a classical result only To is compact. In t his n-ay the anaiog of Theorern 2 is t rue 

for Toepiitz operators on H'. for 

- 
Tu on I f ' ( t 3 ~ )  is compact u u = O a.e. - Tu \-anislies on i3D. 

The second equiialence above cornes from the relationship betwecn and the Poisson 

intcgral. Recall tliat for u E La(BD). the Berezin syrnbol Z = P[u]  is the Iiarmonic 

extension of u onto D. Example 3.7. It follon-s from the theory of the Poisson integral 

and hartnonic function theor;). (see Zhu [18]) that 
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( i ) .  l@,,- P[u](reie) = u(el* )  aimost eveqvhere 8. 

jii). (Sfean Value Theorem) P[u! ( z )  = Plu] o ;,(O) = 1i2" ~(; ,(e '~))d8/2s.  

CIearly Ü = Plu! = O iff u = O a.e.. cornpleting our remark. 

In fact. more c m  also be said parallel t o  the BerOman results. 

Theorem 4 Let u f Lx(dD) .  Then the compact Toeplitz o p m t o r . ~  T,, on H 2  am 

characterired by 

Tu compact u vonishes on aD. 

Proof. The  fortvard direction is the  general result for standard functional Hilbert spaces 

(Proposition 2.3). However. the Cauchy-Schwam inequality is enough t o  make the back- 

ward direction work. 

and so if T - T ~  mnishes on BD. so does Ü. By the above reniark. Tu is compact. C 

itë ha\-e not. unfortunately. even approached in the Hardy space case the çenerality 

of Theorcm 2. The Ader  and Zheng characterization also succeeded for operators -4 

ttiat are finite surns of finite products of Toeplitz operators. and thcre are definitely 

nontrivial compact operators of this type on H? (Consider. for esample. the operator 

-4 = Ti - T,T: = Po. a projection of rank one.) But it is not yct estabIisfid whethcr 

al1 compact operators that are finite siims of finite products of Toeplitz operators on H'> 

can be charactcrized by vanishing Berezin symbols. 
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4.2 Hankel Operators 

4.2.1 Compact Hankel Operators on L: 

II'e have considered Toeplitz operators on the Bergman space and the beharioiir of their 

Berezin s_vrnbols under compactries. \Ve a b  want to  study a related Linear transfornia- 

tion on L:: the (-large" ) Hankel operator. 

Definition 4.6 Let P : L'(D) - LO be the Bergman projection. Then for e v e n  

u E L"(D) the Hankel operator Hu : La + ( L 2 ) I  is defined by 

for e v e n  f in L:. It follows that  Hu is bounded and IIH,,i! 5 iiul!, 

Definition 4.6 makes Hankel operators distinct among the operators we will consider 

because Hu is not a linear self-transformation on a standard functional Hilbert space 

of analj-tic functions. It is a transformation from an  analytic sribspace of L- CO its 

ort hocomplement. making Hu f necessarily orthogonal to f wlicnever f is analytic. It 

follows that = O for al1 Hu. However H ; H ,  is an operator from L: into L:. aiid there 

is a well known relationship be twxn this and Toeplitz operators: 

which dernonstrates that HiH,.  can be written as a finite sum of finite prodiicts of 

Toeplitz operators. 

Using the -4xIer-Zheng theorem of the previous section and the relationship (4.13). 

t hereforc. 1t.e can determine a compactnas critcrion for HankcI operators on the Bergninn 

space using Berezin sjmbols. 

Theorem 5 Let u f L X ( D ) .  Then the compact Hankel opemtors Hu on L E  are char- 

acterized by 
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Proof. Using (4.13) we have H,'Hu E 7. and so this product is compact iff its Berezin 

symbol ~anishes by Theorem 2. The proof is finished by noting that in order for Hu to 

be compact. it is necessary and sufficient chat H,' Hu be compact. 3 

Hankel operators on the Bergman space have been exxençively stiidied and se\-eral 

characterizations of compact Hu have alrcady been proven. In this subsection. we nlll 

build some required prelirninaries and state these characterizations. and then demon- 

strate how the result (4.14) can be used as an alternate means of proof for theni. 

The first collection of rsul ts  characterize compact Hu using L P  norm beharior which 

involves the following lemrna. the anaIog to Lemma -1.2. 

Lemma 4.7 Let u E L"(D) and 2 E D .  Then for arbifmrrj 1 < q < x. 

Proof. Ive have 

Tlien ( I  - P) is 

sup II Hu,,; 1 II, < x- 
:CD 

from 3.3 that the Bergman projection P is bounded for e\-ery 1 < q < x. 

also boiinded. and so. 

jlHu,î,l/l, = l I ( I - P ) u o ~ ~ l l ~ C c ~ / ; ~ o ; ~ i ~ ~ ~ c ~ / / ~ / I ,  < x. 

Theorern 6 Let u E L X ( D )  and let 1 < p < x. Then the following are equivalent: 

(i). Hu is compact. 

(ii). (Zheng, 1989 [16]). IIHukz/l., - O as Iz1 - 1-. 

(iii). (Stroethoff. 1990 jll]). O ;; - P(u O ;-)Ilp - O as ~1 - 1-. 

Pmof. To show (i)  is equivalent to (ii). wc simply note that 

- 
H z H u ( 2 )  = ( H i H , k z .  k z )  = ( H u k = .  H,,k,) = ~H.I;,I[;. 

The cquic-alence follows from Theorem 5.  
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To show (i) is q u i d e n t  to (iii). nre use the Toeplitz form of H,'Hu to caicuhte 

by steps sirnilar to the  proof of Lemma -1-2. Sot according to property (iii) of Theorern 2. 

Hu is compact iff ~ I H : o G ~ H , o G , l ~ ~ p  - O as ; - BD. XOW. 

so Hu is compact iff I I  HuoG, 1 Il2 vanishes on BD. But a calculat ion shows t hat 

Holderts inequality and Lernma 4.7 are then enough to generalize to arbitra-. p > 1. For 

observe that in light of the pboundedness of llHuop, I l i  (Lemma 4.7) K-e have by Holcier's 

incqunlity. 

l i ~ u o G $ ! l ~  5 l~HuoGJl12 - ilfLWJ~l!&, 5 c / ]HuoG, l i i2  

50 /JHuo,,l l l ,  - O implies IIH"oG,l/jp - O as well. In fact they are equikdent. for. if 

p 2 2 then l l f f u w .  Ili, 2 I]H,oG, directly- nnd if 1 < p < 2. tlien another application 

of Holder's inequality fields j j  Hu,-= I j / -  5 jiHuoTz l/lp jjHuoGi 1 i l q  where g = p / ( p  - 1 )  > 1. 
- 

Therefore HcHu(:)  is equi\dent to  j/HuoG, 111,. and by Tlieorem 5 we have an  equi\a- 

lcnce wit il the compactness of Hu. O 

Since we have completed the primary focus of our stirdy. n-e forrnulate here a summa- 

of t lie function t heoretic identifications of compact Hankel operators on L: : 

Corollary 4.8 Let u E L X ( D ) .  Let H, be the h k e l  operator on L: with synlrol 1, .  

Then the folloving are equivalent. 

( i ) .  Hu is compact. 

(ii). HTH"(Z) - O as lzl - 1 - .  
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(k). II Hu k,,, [l - O for e v e q  sequence =, whem j z,l - 1 - . 

4.2.2 HFH~ and hnction Spaces 

There are some other points of interest regarding Berezin synbols and compact Hankcl 

operators which touch on the structure of function spaces. This is reaily no surprise. a5 

n-e have becn studying a function theoretic characterizatiori of an  ideal. ICë n-ould like to  

iriclude the following exposition to note hon- spaces with w-eil-mannered oscillation" arc 

related to the cornpactness of HankeI operators and Berezin symbol beha\-ior near OD. 

First. a discussion of integral averages of L2 firnctions over Berman disks is riecessan 

to define the BMOa and b-XIOa spaces. 

Definition 4.9 The Bergman disk of radius r and centre 2 is the  Euclidean disk in D 

defined by 

D(:. r )  := {UV E D 1 d ( z .  u) < r }  

nrhcre .j is the Bergman metric on D. 

1 l f ! y ~ = ( w ) j  
j(:, w)  = log - 1 - l & ( f f ) [ .  

Ber--an disks provide a natural neighborhood on which to  a\-crage a function. Sotc 

that even though D(2. r )  is an Euclidean disk. = and r are neither the  centre or radius 

in tliis geometric sense. Instead. because the Bergman rnetric 3 is 'clobius in\ariant. tlic 

disks behave nicely under 'clobian autoniorphisms: qa( D ( z .  r ) )  = D ( ; , ( z ) .  II) for evep 

llobius traiisformation 9,. 
- 

Sow. let f E L X ( D ) .  Né define the auemge off over D ( z .  rj. f,(z). as the iritegriil 

a\-erage 
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The oscillation of f from f; on the disk D(z.  r)' or the mean oscillation of f at z .  is 

then logically defined as 

v-hcre the second espression cornes from espanding the in tesand.  

The behakior of the  mean oscillation MO,( f) is the source of the following spaces of 

funct ions. 

Definition 4.10 Let f E Lm(D).  We make the folloniiig definitions for the BMOa 

and V:\lOa spaces. For details consult [181. 

(i). The serni-norm 11 f l f s r o ,  := s u p Z E ~  :\IO,( f ) ( z )  is bounded independent of r. There- 

fore the space BMOa of functioris of bovnded mean oscillation at  the boundanj is 

defined as 

(ii). The Banach space of functions of vanisiring mean oscillation at the bouridan~. 

I,'MOa. is dcfined a s  

VAIOa = { f E Br\fOa : lim MO,( f ) ( z )  - O for some r > 0) .' 
i:i-t - 

The definitions of these spaces naturally relate them to Berezin s ~ m b o l s  by the fol- 

lowing correspondence whidi we leave without proof. Details can be found in cliapter 7 

of [18]. 

'T11csc two spaces are. in f x t .  examples of using Carleson m e s u r a  to define fiiriction classes. 

Let the function / define the  positive rneasure p i  on Bergman disks by the definition p / ( D ( = .  r ) )  := 

ID, :, ,, f (IE) - f;(=) 1' Then BdlOo is the collection of functions chat induce "big-oh- Carleson 

nieasurcs, ic: measurcs satisfying S U P Z E ~  pf ( D ( : .  r ) ) / r n ( D ( t .  r )  < x. and L'.\lOo is the collcction that 

induce -litt le-oh" Carleson measures. ie: lim sup,, ,- ,  p f ( D ( : ,  r ) ) / r n ( D ( z ,  r )  - 0.  



f roposition 4.11 L,et f E Ls(D) .  Then MO,( f)(c). the mean oscillation of f over 

the Bergman disk D ( z . r ) ,  is compamble to a calculation of Berezïn symbols: 

-AfO,(f)(=) = 

Thus B:VOa and VMOa 

lozcing: 

arr also chamctek-ed in terms of Berezin symbols by  the fol- 

From this. we can show that  VMOa generates compact Hankel operators. \i-e ni11 
9 1/2 

w i t e  J I O ( ~ ) ( Z )  for (i?(z) - ~y(z) l - )  . 

Theorem 7 (Zhu, 1987 [17]) Let u E Lm(D). Then Hu and HE are compact zff u E 

VMOa.  

P m f .  IVe will use the result (4.14) t o  establish the theorem. but first we require some 

identities. Let u E Lcc(D) and let Ü be the Berezin symbot of its Toeplitz operator. Let 

r E (O. 1) be arb i t ran .  Then 

Ive n-ill aiso need the following. 



where the equaiity between the second and third Iines cornes froni the fact that t he  

only analytic part of the anti-analytic function fi O ,-z is its constant Pü O ,-,(O). That 

constant is the same as the  constant P G ( 0 )  = Pu O ;,(O) which makes the final 

equal i t -  

\lé n-ant to prove tha t  J f O ( u j ( ~ )  - O as / z [  - 1-. and therefore u E V.\fOa. iff 

the Berezin symbols HGHu and HGHE mnisti on aD. Starting from equation (4.15). we 

make a change of ~a r iab le  %<th the Slobius transformation gz yieiding 

It follon-s that 

Since i\iO,(u)(z) = Af O , ( ü ) ( z ) .  the last inequality also holds with u replaced by ü pro\-- 

ing the equivalence. G 

4.2.3 Compact Hankel Operators on H 2  

The open question of the last section regarding an analagous '-Theorem 2" for finite sums 

of finite products of Toeplitz operators on the Hardy space w u l d  have consequences for 

Hankel operators. just as it did on the Bergman space. Since the Toeplitz representation 
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H:Hu = qui' - T A .  equation (4.13). &O holds for H' (a-ith a similar proof). it is 

possible that similar arguments for current characterizations of compact Hu could be 

reduced to Berezin symbol analysis. \\é can. liowever, as we did in the H' Toeplitz case. 

use a current theorem to prot-e that mnishing Berezin symbolç do characterize compact 

Hankel operators. 

l\k ni11 begin by obserl-ing that the Hardy space has BA10  and k'il10 spaces as 

n-ell. 

Definition 4.12 The follo~ing are the definitions for B A I 0  = BMO(aD) and VJfO = 

1711@(BD). Let I be an arc length in BD. The naemge o f f  oorr I is f y = & Ir f (8)dd. 

(i). The collection of functions in L2(DD) of bounded mean oscillation. B M O .  are those 

sat isfying 

(ii). The collection of functions in B M O  of vanishing mean oscillation. LrXIO. are those 

These spaces also have a characterization in terxns of Berezin synibols. !lS. page 17.5. 

1833 : 

Thc collection of al1 analytic V.\fO functions is calkd VM0-4. The fo1Imlng lertirna 

is proven in [l8]. 

Lemma 4.13 VMOA is the SzEgo projection of ail continuous finctions o n  BD. 

\Vc can now prove the follom~ng. 
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Theorem 8 Let u E Lm(dD). Then the compact Hadiel  operators Hu on H" a e  

chamcterized 63 

Hu compact o HTH. canishes on BD. 

Prwof. AS usuaI. only the proof of the backward direction is n e c e s s a -  Considering u as 

- 
sri L'(DD) function. we can split it into analj-tic and anti-analytic parts. u = u i  - u". 

wlicre both ui are analytic. Son.. by the definiton of Hu. the anal>-tic part u~ does - 
not affect the  behavior of the Hankel operator. if,> have tha t  Hu = HE and HU Hu = 
- 

H&HE. The caicuIation of :\lO(ua) carries over directly froni the previous subsection 

(equation (4.16) ), making 

Therefore our hypothesis of ianishing H ~ H ~  irnplies ui E VMO-4- 

Using Our lernma above. then. there is a continuouç fiinction g on I)D siich tliat 

Pg = u". Sow the Weierstrauss approsimation theorem [7! generates a sequerice of 

polynon~ials p , ( z .  f) t hat converge to  g in the LX(BD) norm. Froni this. -ive can see that 

HF is the Iirnit of a sequence of compact operators. For the  pol>noniial p, (= .  5) l ias a 

finite order r. and nTe have that ( I  - P)p , zm = O for al1 m 2 r .  So. a t  most. therc arc r 

independent vectors' in the range of HP;. making the operator of finite rank. Further. 

the operators HK converge to Hg. since 

Thus  Hg is compact. and. therefore. so is Hu = HE = Hp? = Hg. wbere the l u t  iii- 

cquality follows because ( I  - P)g is analvtic and ignorable in a Hankel operator. C: 

2~pecifical~u. the vectors {Ur;''' : in = 0. 1. .... r - 1) 
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To close. we mention a Hardy space theorem parallel to Theorem 7. .A proof may be 

found in Chapter 9 of (181. 

Theorem 9 (Sarason, 1975) Let u E L X ( D ) .  Then H, and Hu are compact iff u E 

I,*MO. 
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4.3 Composition Operators 

tinlike our previous cases. no characterization of compact composition operators Co \-k 

Berezin symbol methods has appeared in the Iiterature. It is apparent froni current 

theory. however. that such an approach is possible. \\+ niIl present in ttiis section somc 

current conditions for the compactness of Co on H2 and L.2 that arc linked to Bermin 

s>mbol calculations and ToepIitz operators. 

4.3.1 Compact Composition operators on H' 

\\é break our trend and considcr the Hardy space case first. This imitates the origind 

consideration by SIiapiro [12] and ne11 clearly rnot i~xte  the formulation for the Bergman 

space that mil1 follom- in section 4.3.2. 

To begin our study of composition operators we require an alternate norm for the  

Hardy space and a few definitions from \ d u e  distribution theors For the rather con- 

surning proofs of the results. we refer the reader to  the appropriate literature. 

Lemma 4.14 (Littlewood-Paley Identity, 1931) Let f . g  6e functions on  the Hardy 

space HYD). Then the inner pmdvct ( f .  g )  is e p a l  to the calcuiation 

whem (( f. 9)) 2s defined as a weighted integral over D of the derizwfizex 

Proof. See [IO]. O 

Definition 4.15 Let d : D + D be an analflic function. Thcn the Nevaniinnu counting 

function o f o  is the function iVo defined on D \ {o(O)} as  
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and n.e assume that if the set on the right is empty. :\o is a v e n  the  value O. Son-. 

since the analytic function ~ ( w )  - z can have a t  most countably many roots. the nurnber 

of elernents in the right hand set is countable and  we will typically n-rite this as  an 

indexed surn. .No(=) = x j  - log 1 %  ( z )  1. where the wj(z) are the p r ~ i m a g e s  of : rinder 

o. Considering that the u f J ( z ) ' s  are the elements of the zero sequencc for an analytic 

function. the sum is also guaranteed to converge. (See (131.) 

The importance of the Sevanlinna counting function is its appearance in the non- 

bijective change of variable forrnuia below. 

Lemrna 4.16 (Properties of iVo) Let 6 : D - D be a nonconstant anaiytic function. 

Then the Nezanlinna fvnction X,, satisfies the following: 

(i). (Change of Variable) Let g be analytic on  D. Then 

(ii). (Littlewood's Inequaiity, 1925) X o ( z )  5 - log Ir,(:) 1 where a = o(0). 

( i i i ) .  (Sub-Mean-Value Property) 2.9 a fimit of subhamonic functions and wtrc I I  

r < i d o ( 0 ) ) l .  

( iv ) .  E L1 (D). 

Pmof. (i) - (iii) Eqiiation (4.18) cornes from cornparing the definition of ({o. O)) to the 

first change of variable forniula and using the  identity - log lm/' = -2log 1u.i. For the 
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rest. see Zhu [I8. Chapter IO] for the proofs. 

(il.) Substitute f(z) = z into equation (4.18): 

((o. O)) = 2 /D No(:) d m ( - ) .  

Since lloll, < 1 and ((0.0)) = jlo[ll - !o(O)! 5 Ilo!l, - !o(O)!. n-e have that -4, is in L I -  

and in fact il..hÏoll 5 1/2- O 

The SIobius disk automorphisms cy = being in\-ertible. have the Sc \ml inna  

functions ;\,(t) = -Iogig,(z)[ where a = v(0) E D. According to Littlen-ood's In- 

equalit- t hese are in fact the  maximal ones. 

The  classical characterization of compact composition operators on thc Hardy space 

is the  following, due to J. Shapiro [12]. 

Theorem 10 (Shapiro. 1987) Let o : D c- D be analytic. Then the composition 

operator Co on H Z ( ~ )  is compact (ie: in K ( H ' ) )  iff 

Proof. ( ) .Assume Co is compact. Then iiC,X-,!l - O as izl - 1- since H' is 

tiniforrnly standard. Xpplying the Littlcwood-Paley identity and the cliangc of \ariable 

formula to the norrn calculation I~c,A.,II'. n-e have 

and 

by explicitly calculating k:. Recall that g'; = -(1 -lt12)/(1 -?u*)'. Slakinç a substitution 

iind Mobius change of t-ariable. the abovc becornes 
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Using the s u b m e a n  value theorem over rD as an estirnate. where r = Iç, (o(0)) j .  a-e ,pet 

ifé thercfore bave the inequality 

which as the n o m  converges to zero is qui \ -dent  in the h i t  of 1 t l  - 1 - t o  

( t= ) Let E > O. Let f, be a sequence wealily converging to zero i r i  H". This implies 

that sup,, Il f,ll < E and fn uniformly converges to zero on compact subsets of D (sec i18. 

page 1891). It follows from classical complcs ana1ysis that fk - O uniformly on compact 

subsets too (see [T. page 1511). ?Tow mmaking a calcidation mith the Littlewood-Paleu 

identity and equation (4.18). 

The first term is sirnplj- / ( f , . ~ ~ ( ~ ) ) l '  and so niII converge to zero as n - r sincc 

the f,'s are a weak nul1 sequence. Son. pick an r E (O, 1) such that by oiir hypotliesis 

ilo(:) < c log 1 l / z  j for al1 lz j  > r .  Then dividing the integral above O\-er t h e  conipact set 
- 
r D  and the open annulus r < iz l  < 1. n-c can make the estirnate 

for large cnough n. Therefore Co is compact. Z 

As a Corollary to the Shapiro theorem. we can show that Berezin symbols behave 

nicely for compact composition operators on H2. 
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Coroilary 4.17 Let O : D t. D be analytic. Then the compact composition operutor Co 

on H2(D) is compact iff CF,, vanishes on t3D. 

Proof. -4s usud. u-e are only required to prove that the twishing Berezin symbol impIies 

Co is compact. Using Theorem 10. it is enough to show 

O b e n e ,  however? frorn equation (4.19) t hat 

This git-es the n e c e s s q  implication. O 

In our previous section we observeci the characterization for Hankel operators on LO 

stcninied from a result for Toeplitz operators. Things are not so different here. %y making 

the non-unident  change of \wiable (4.18). we introduce a muItipIication function into 

an integral. but the  integral does not correspond to  either L: or H'. However. if n-e 

write 

({f 00. f 00)) = 

Xo(:) ( -  log jzl) dm(=) 
- log 121 

This dernonstrates a 

erators on n-eighted 

CGCo = TrQ in this ((-. -$  inner product. n-herc T, is defined 

connection between Hardy composition operators and Toeplitz op- 

Bergman spaces. .At least in an interpretive sense. the Shapiro 

cliaracterization is a result from a Berezin symbol theo- for Toeplitz operators on a 

weighted Bergman space. Hom-ever furt her considerat ion of t his goes well berond t hc 

scope of this paper. For a discussion about Serezin symbols and positive Toeplitz oper- 

ators on weighted Bergman spaces. see [18. 56.43. 
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4.3.2 Compact Composition operators on L: 

The theory of the precious subsection is robust enough to  transfer ec-en to  t he  Bergnian 

space. S hapiro generalized the classicaI definit ions of t he  Lit t lewood-Paley ident i ty  cand 

Sevanlinna functior, in [12] in the folIoning wa. For brevity. n-e will omit al1 proof. 

Lemma 4.18 (Littlewood-Paley Identim on L:) Let f. g be functions on the Haniy 

space L:. Then the inner p d u c t  (f , g )  on L: is q u a i  to the calculation 

xhere ((f, 9)) is defined as a wezghted integml over D of the deriaatives: 

Definition 4.19 Let O : D c- D be an  analytic function. Then t h e  Bergman .'Vez*an- 

linna counting fvnction of o is the  function 1V0.2 defined on  D \ {o(O) ) as 

and n.e assume tha t  is O if there arc no pre-images Uj(2). 

The Bergnian Secanlinna function also contains al1 the  necessary change of x-ariabie 

information. 

Lemma 4.20 (Properties of :hb2) Let o : D - D be a nonconstant analytic func- 

tion. Then the Nevanlinna function satisfies the folIowing: 

( i ) .  (LO Change of Variable) Let g be analytic on D .  Thcn 



(i ij .  (L: Littlewood's Inequaiity) rL-0.2(=) ( (- log 1,-,(z)I)' where a = o(0). 

( i i i ) .  (LO Sub-Mean-Value Property) is a lirnit of subhannonic functions and 

when r < lg,(~(O))l. 

The characterization of compact composition operators or1 L: using :Vo:r is the fol- 

lowing. 

Theorern 11 (Shapiro) Let o : D .- D be analytic. Then the compact compositiorr 

opemtor Co on L: is compact (ie: in K(L~)) iff 

fvo:2 (2) 
lim = O. 

1~1-1- ( -  log IzI)~ 

The corollary for Theorem 11 follows the esact lines of the Hardy space consideration. 

Corollary 4.21 Let o : D +- D be analptic- Then the compact composition operator 

Co on L,' is compact if/ CF~ uanishes on BD iff r,2 uanishcs on 3D. rrhere Ï,,? = 

.Vo.2(=)/( - log 1 ~ 1 ) '  is a syrnbol for a Toeplitz opemtor on a zueigh ted Bergman space 

(-43. 



Chapter 5 

Furt her Questions 

\Ve have demonstrated in this paper tliat. on a standard a n d y t i c  Hilbert spacc. the 

Bcrezin symbol of a bounded operator is relatcd to  operator compactness by sercrai 

kinds of boundary behat-ior. Espressing these conditions in the case of the Bermanian 

space. t hev are: 

(i). -4 is compact iff -4' E Co(D) for al1 unit- 0.. 

(ii). For a class of operators 7' defined by the condition of L e n m a  4.2. -4 is compact 

iff ! I A &  lllp - O as / i l  - 1- for al1 p E (1. r). This applies ro d l  finite sunis of 

finite products of Toeplitz operators. 

(iii). For a class of operators V. which includes al1 Toeplitz. Hankel. and composition 

opcrators. -4 is compact iff A9.4 \-anislies on the boundau.  

\\ë record here sorne questions for funhcr investigation: 

1. W h a t  are the contents of Tt:> (ie: for wliich opcrators -4 is s u p , , ~  -4'': 1 / /  < xi) 
' P  

Are thcre any other necessa- and sufficient conditions? Does the class Ti,? liavc any 

nieaiiing for operators on  the  Hardy space:' If so. what are  its contents ,uid eqtiit-alerit 

characterizat ions? 



2. LVhat are the contents of the class V:' (ie: for m-hich operators .4 is -4 compact 

iff -474 ianishes on the boundary?) In the Hardy space class Vff2 in particular. are 

finitc suis of finite products of Toeplitz operators in vH2'! Il.'hat characterization is 

there? Can every operator in V and be w i t t e n  as a Toeplitz operator on a n-eighteci 

Bergman space'! Or  an operator in the algebra generated by the Toeplitz operators on a 

tvcighted Bergman space? 

3. Hos do Ir and V compare? If -4 f 7'. according to  our proof of Theorem 2. then 

-4 E K ( L ~ )  iff -474 converges to zero on aD. That  is. -4 E V .  Ué tlierefore observe that 

Ir c V. The reverse incllision appears false. because composition operators are in V but 

the lfobian i i n i t q -  0-O = C-, of ExarnpIe 3.1 is not included in I'. Hon- does a clcass 

defined b>- the condition S U P ~ ~ D  I I ( I I * A ) ~ =  111 < r compare? 
P 

1. il'hat connection is there betwcen arbitra- unitary conjiigates and the cIasses I f  

and V:' i l i a t  is it about the projection operator of Exarnple 3.16 that e,xcludes it from 

V'! Does the polar decomposition have sorne role to be considered? 
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