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Abstract

Let H be a standard analytic functional Hilbert space over a bounded domain Q c C.
We examine the Berezin symbols A of bounded operators A € B(H) and characterize the
compact operators K{H) by Berezin symbol behavior. We show that 4 € K(H) iff the
Berezin symbol of every unitary conjugate of A is in Co(€?) (Nordgren and Rosenthal.
1994). Special attention is also given to examples and the theory of Berezin symbols on
the Bergman and Hardy space. We show a characterization (Axler and Zheng. 1998) of
compact Toeplitz operators on the Bergman space that generalizes to Hankel operators.
The condition A is compact iff .E—'l(:) — 0 as |z| — 1~ holds for all Toeplitz. Hankel.

and composition operators on both the Bergman and Hardy spaces.
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Chapter 1

Introduction

Operators on complex Hilbert spaces are wonderful things that have many. many- talents.
They have an algebraic structure. They have multiple natural topologies. They transform
other objects and can mathematically model “change”. Operators are useful in many
different realms of mathematics. and like any frequent traveller. they carry a lot of
baggage. In particular. we note a segment of canonical literature devoted to set functions
of Hilbert space operators and their properties. Among these we would find the kernel
and the range (functions into subsets of the Hilbert space itself). and the spectrum and
numerical range (functions into subsets of the complex plane). We survey in this paper
another item in the operator’s baggage: a “function™ function. We will define a map from
bounded operators on a standard analytic functional Hilbert space to bounded continuous
functions and examine some of the operator theoretic results from this association.

Let k. be normalized reproducing kernels for a Hilbert space H. Then for the bounded

operator 4 on H, the Berezin symbol of A is the bounded continuous function
A(z) = (Ak- k)

and the mapping A — A is called the Berezin transform.

The Berezin symbol of an operator was first introduced by F. A. Berezin {4 as an
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extension of Wick symbols on the Fock space!. Several topics branch from his original
work. One branch uses the transform as an algebraic isomorphism to formulate function
spaces with a non-commutative (non-pointwise) product which is useful in the quanti-
zation of physical systems. see [5]. Another branch asks operator theoretic questions
about how properties of the Berezin symbol A are related to the properties of 4. Among
today’s authors working in the fields of Toeplitz. Hankel. and composition operators. the
Berezin symbol has become another item of baggage carried by operators that is useful
in the characterization of operator classes.

Qur goal in this thesis is to present the Berezin symbol A from this operator theoretic
point of view and demonstrate its relationship to the compactness of A. Specifically. in
Chapter 2 we demonstrate Nordgren and Rosenthal’s compactness characterization for
general operators on standard functional Hilbert spaces using the Berezin symbols of

unitary conjugates:

Theorem 1 Let H be a standard functional Hilbert space over the domain Q2. Let A €
B(H). Then the compactness of A is characterized by the continuous ertension to 0 on

I of all Berezin symbols of conjugates of A. That is
AeK(H) <= VU unitary and z, — z € 99 nli_n;lc .IE(:,,) =0.
where AY = U AU.

Subsequently, in Chapter 4. we study the compactness of Toeplitz. Hankel. and com-
position operators on the Bergman or Hardy spaces via the Berezin symbol function.

The ccmmon condition to all the cases proven here is
A is compact <— .»F;l(:) — 0as : — JD.

where D is the unit disk. Chapter 3 presents the preliminaries required for this theory
and shows by example that the above condition is not true in general. The centre of this

analysis is a theorem by Axler and Zheng:

'See [4].
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Theorem 2 Let T be the set of all linear combinations of finite products of Toeplitz
operators on the Bergman space. L2. Then the compact operators in T are characterized

by vanishing Berezin symbols. In fact. for A € T. the following are equivalent:
(i) AeK(L)NnT

(ii). limyy ;- A(z) =0

(iii). limy;_;- [(UZAU:)1],=0. ¥l<p<x

where the U. are Mébian unitary operators as defined in section 3.1.

Rifling through this item of operator baggage lets you uncover many interesting re-
lationships. The compactness of an operator is related to the boundary behavior of
bounded continuous functions. Mabius transformations on D define an often-used class
of self-adjoint unitary operators related to a change of variable in Berezin symbols (sec-
tions 3.1 and 3.2). Berezin symbols connect with integral operator theory (section 4.1).
the theory of function spaces like LP. BMOg. VAIOy. (section 4.2.2) and classical re-
sults from complex function theory like the Welerstrauss approximation theorem (sec-
tion 4.2.3), the Littlewood subordination theorem. and the Littlewood-Paley identity
(section 4.3.1). And. of course. it does not stop there. Questions raised by this account

of Berezin symbol theory are discussed in Chapter 5.

An outline of the topics covered in the paper is as follows:

Chapter 2: Reproducing kernels. Notation and terminology. The definition of the
Berezin symbol. Compact operators (on standard H)} have symbols that continuously
extend to 0 on the boundary. Unitary conjugates. Essential numerical range. Theorem 1.

Chapter 3: Mdbius automorphisms. The Bergman space. The Hardy space. Mabius
change of variables and Mébian unitaries. Berezin symbols of Toeplitz operators. com-
position operatars. and Mdbian unitaries. Non-compact operators with Berezin symbols

that vanish on dD.
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Chapter 4: Compact Toeplitz operators and Berezin symbols on L2. Theorem 2.

Compact Toeplitz operators and Berezin symbols on H?. Compact Hankel operators and
Berezin symbols on L;':. Berezin symbols. Hankel operators and the BAfOy and V"M Oy
spaces. Compact Hankel operators and Berezin symbols on H%. Compact composition
operators and Berezin symbols on H?. Nevanlinna function. Compact composition
operators and Berezin symbols on L2. Generalized Nevanlinna function.

Chapter 5: Remarks and further questions.



Chapter 2
Berezin Symbols on General H

2.1 Basic Definitions and Properties

Here we will introduce the definitions and notation required for our consideration of
Berezin symbols. Let ¢ € C be an open simply-connected domain for a collection of
complex-valued functions. Let H be the Hilbert space of these functions under the usual
pointwise vector operations and some inner product {-.-). (Then H is complete in the
natural inner product norm [|-| = (-.-)!/2.) If the point evaluation e.(f) = f(z) for
z € Q is a bounded linear functional on H. then by virtue of the Reisz Representation
Theorem of Hilbert spaces there exists a function KA. in A with the reproducing property.
e:(f) = {f.K.). Given a Hilbert space where point evaluations are bounded for every
: € Q, we call H a functional Hilbert space. The normalized reproducing kernels of H
are the functions k: = K./ | K:|. which have norm equal to one. (J|A-|* = A:(z).) We
will denote the algebra of bounded linear operators on H by the symbol B(H). and the
Hermitian adjoint of an operator A € B(H) by A*. The symbols D and dD will be used
to represent the unit disk and its boundary respectively. The overbar = on a complex
number z will be indicate the complex conjugate of z. while the set closure of €2 will be
noted by 2 where necessary.

Assume €2 to be bounded. We will often be considering function behavior in the limit
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near the boundary, 992, of €2. The notation

Iim_ f(z)

=30
will consis*ently mean the convergence of f in the limit as the distance d(z.9%) goes
to zero uniformly in the Euclidean metric. Specifically considering 2 = D. this will
tvpically be written

Jim_f(2).
If these limits converge to 0, we will say ~f vanishes on 92" and reserve that phrase for
such cases.

Let H be a functional Hilbert space over some bounded domain €2 C C. As defined in

i11]. we call H standard if the normalized reproducing kerneis k. satisfy the convergence
property

(2.1) th — €00 = k. — 0 weakly.

~n zn

H will be uniformly standard if it satisties the slightly stronger condition
(2.2) :— 90 = k. — 0 weakly.

We will most often consider Hilbert spaces of analytic functions on a bounded domain
2. or analytic Hilbert spaces. When an analytic space H is a closed subspace of some
larger Hilbert space H’. the orthogonal projection from H' onto H will be written P. \We
will oftentimes be using functions from the classical LP(Q2) spaces. These will carry their
usual H-!Ip norms, 1 < p < oc. with respect to the usual normalized Lebesgue measure
dm, ie: m(Q2) = 1.

Now. let us make the fundamental definition of the Berezin symbol of an operator in

B(H).

Definition 2.1 Let H be a standard functional Hilbert space over 2 C C. Then for

A € B(H). the Berezin symbol of A, written A, is the function defined by

AGR) = (Ak= k) 1 zef
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The following shows that Berezin symbols of operators on analytic spaces are nicely-

behaved bounded continuous functions.

Proposition 2.2 Let H be a standard analytic functional Hilbert space over the sym-

metric domain €. The Berezin symbol of an operator A € B(H) satisfies the following:
(i). sup:eq|A(z)] < | All. (ie: A € L*(Q)).

(i1). A is real analytic (ie: in C>=(z.y)) and hence is continuous.

—~

(iii). I* = A.

Proof.

(i). From the definition. |A(z)| = [(Ak..k.)i < [ Ak:( {[k:]| by the Cauchy-Schwarz
inequality. Since [[k.|| =1 for all =. it follows that H(:)i < [|Afi independent of =.

(ii). Let w.z € Q and let K, and A", be the reproducing kernels in H for these points.
Consider the function in two complex variables defined by A(w. z) := (AR%. K.) . Since
Q2 is symmetric (ie: w € Q iff T € Q). AKg € H is analytic. whereby we note that
A is analytic in = because of the reproducing property of A.. Considering the equality
A(w. 2) = (A*K., Ag). we similarly get that A is analytic in w. Therefore A is analvtic
on 2 x 2. Considering the special case of A equalling the identity. we also get that

{Rz. K.) is analytic on © x Q. The quotient function defined by

i Qs = R - S

is therefore analytic wherever (R'g. Az) # 0. Recall that a function is real analytic on 2
if it is expressible as a power series in the real and imaginary coordinates that converges
absolutely and uniformly on compact subsets of €2. It is sufficient. then. that a function
be analytic in = and < for it to be real analytic in (z.y). [t follows that A2)=Q(=.2)is
real analyvtic by the subsitution w = = in (2.3). Hence A has infinitelv many derivatives

with respect to (z,y) (or (z.%)) and is continuous in 2. (That A is a restriction to the
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antidiagonal @ = z of Q2 x Q of the analyvtic function Q(w. =) shows also that the map

A—Adis one-to-one.)

(iii). The identity follows from A=(z) = (A*ks. k:) = (ks. Ak:) = (k. ko) = A(2).

0

The mapping A — A. called the Berezin transform. is also well-behaved. It is a
continuous linear and injective map from B(H) to C"™°({2). Property (iii} of the above also
shows that the transform preserves involution. We note. however. that A‘l:ig #* Il :f_
so the transform is not multiplicative.

The Berezin transform also has several good operator theoretic properties which we
now consider. Recall that the definition of the numerical range. W(A). of the operator
AeB(H)is

W(A) = {(Af.N) : If) =1}
Clearly A(9) is a subset of 11"(A), since the k.'s are of unit norm. Therefore. the Berezin

transform inherits some properties of 11"(4). namely.
(i). If A is positive. A > 0. then A>0.

(ii). If A is self-adjoint, A* = A. then A is real.

(iii). If A is scalar. A = AI. then A is the constant A.

Each of these proofs are trivial uses of the inner product. and so we will not include them
here. But of particular interest to our discussion is the behavior of the Berezin symbol
when the operator A is compact.

Recall that an operator 4 € B(H) is compact if the image of the open unit ball
of H has compact closure. This is equivalent to the property that A maps all weakly

converging sequences into strongly converging ones. (See {7].)
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Proposition 2.3 Let A be a compact operator on a standard functional Hilbert space
H. Then

Proof. Using the “standardness™ of H. (2.1), and the property that a compact -4 maps
weakly converging sequences into strongly converging ones. the result directly follows

from the Cauchy-Schwarz inequality:
|A(zn)| < 1Akl ks, )| = [lARs, [ — 0. ©

If 4 is also continuous. as it is when H is analytic. then the above is equivalent to A
compact = A € Cy(N).

We are interested to know if the converse to Proposition 2.3 is also true. It is not.
however, as we will show with some counterexamples later in sections 3.1 and 3.2. but
there is a stronger condition on Berezin symbol boundary behavior that gives necessary
and sufficient conditions for the compactness of an operator. We demonstrate this in the

next section.

2.2 General Compactness Condition

The set of compact operators forms the largest two-sided ideal in the algebra B(H).
Denote this ideal X(H). The image of this ideal under the Berezin transform must
be characterized by some function theoretic property — but what property” \We have
remarked that having A continuously extend to zero on 9% is not sufficient to make
A compact. We proceed now to work toward a result due to Nordgren and Rosenthal
[11] which characterizes the compactness of a general operator in B(H) in terms of
the Berezin symbol boundary behavior of all operators unitarily equivalent to it. For

notational purposes. we introduce an algebraic notation for unitary equivalence.
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Definition 2.4 Let H be a standard functional Hilbert space and let I’ be a bounded

unitary operator on . Then for any A € B(H) the conjugate of A by [V is defined as
(2.4) AV .=vrav.

By definition. then. B is unitarily equivalent to A iff B is a conjugate of . Note also
that conjugates behave well under adjoints and products. since
(4)" = @
(A14)Y = AfAf.

Now, in general. .—’I(:) = (Ak..k:) # .IE(::) = (AUk..Uk.). and in some cases their
boundary behavior can be strikingly different (see Example 3.16). This lack of uniformity
in symbol behavior is what prevents Proposition 2.3 from characterizing the image of
the ideal X(H) in the Berezin symbols: the function theoretic property of compactness

must be shared by A and AT,

To help in the proof of the general compactness condition. we observe the following
definition from [9]:
Definition 2.5 The essential numerical range of an operator 4 € B(H) is the set
11.(A) € C given by the closed numerical range common to all compact perturbations
of A. That is
We(A) = ﬂ{u"(.{ +AR): R e K(H)}
where 11°(A4) is the numerical range of A. Equivalently. A € ¥ (A) is characterized

(Corollary to Theorem 5.1 of {9]) by
(2.5) (Ahn.hy) — A for some weak null sequence {h,}. [[ha]l = 1.

ar

(2.6) (Agn.gn) — X for some orthonormal sequence {gn}.

This is relevant to our pursuit by its appearance in the following useful descriptions

of compactness.
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Proposition 2.6 (Compactness) For an operator A € B(H). the following are equit-
alent:
(i). A ts compact.
(it). A is compact.
(iii). A*A is compact.

(iv). There ezxists a sequence A, of compact operators such that A, — A (in the operator

norm topology).
(v). The essential numerical range of A is trivial. ie: W.(A) = {0}.

References: The equivalence of (i) - (iv) is fundamental and can be found in any text
like [18]. That (v) is equivalent to (i) follows directly from the Calkin algebra character-

ization of the essential numerical range.

We are now able to present the proof of the general theorem characterizing the

compactness of A in function theoretic terms.

Theorem 1 (Nordgren and Rosenthal, 1994) Let H be a standard functional Hilbert
space over §2. Let A € B(H). Then the compactness of A is characterized by the contin-

uous ertension to 0 on I of the Berezin symbols of all conjugates of A. That is
AeK(H) <= VU unitary and z, — 2 € J. nli_‘nalc F(:n) =0.

The proof is done by demonstrating that the boundary cluster values of AL determine

the essential numerical range. ie:
(2.7) We(4d) = {A = ,,li.",}; :l?(::n) 1Ip — 2 €0U unitary} .

Then the essential numerical range compactness condition in Proposition 2.6 extends to

give the conclusion. When the unitary operator U is given. the proof of inclusion ( 2 ) is
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quite simple. However. the other direction requires us to produce from the condition (2.6)
a unitary operator that will give us the right Berezin symbol. For this. we make use of

the following lemma.

Lemma 2.7 (Dixmier) Let {f,} be a weak null sequence of unit vectors in a Hilbert
space. Then there exists a subsequence which is ~“approrimately orthonormal™. That is.
for any sequence of positive numbers d;,. we can find an orthonormal sequence {h,,} and

a subsequence { fn,.} such that {| fn,, — Amil < 6m ¥Ym.

Proof of Lemma. We use a Grahm-Schmidt orthonormalization process. Start the
induction process at n; = 1 and h; = f;, and proceed from the mth stage by defining

the vectors

Gk = fe = Pm(fk)
" Il fi = P (fic)l
where P = 3_7_, (-, k) h; is the projection onto the subspace spanned by {A;..... hm}.

Note that since the fi.’s are weakly converging to zero. then Py, fr — 0 as k increases.

Using R fi. := fr — Pm fi for notational simplicity. we have that.
im {[Rmfil] = lim {[fi]l =1
k—nc k—xc

and so.

_ HUIBmfiell = 1) f + P ficll
1 — | R fiil

1Pnfell
”RmfA“

So we pick sufficently large A validating || fx — gm.xll < dm=1 and set np,.; = K
and hpm+1 = gm.x to fully describe the next stage. O
Proof of Theorem 1.

Let A € B(H) be given. Recall we wish to prove

W.(A) = {A = lim AC(z3) 1 zp — 2 € OOU unitary} .
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( > ) Let A € C and let U be unitary such that for a sequence =, converging to Jf2

we have

A= lim AT(za) = lim (AUks,.Uks,)
Now, since H is assumed standard. the sequence {k.,} is weakly converging to zero.
Then the functions Uk., also weakly converges to zero (U is continuous) and so by
applying the first Fillmore-Stampfli-Williams characterization of the essential numerical
range (2.5) to the above. we have A € W, (A).

( C )} Now, let A € W,(A) where. by (2.6). {gn} is an orthonormal sequence such
that limn_.. (Agn.gn) = A. Let also {z,} be a sequence converging to a point = € 99
so that we have the weak null sequence {f; = k., }. From Dixmier’s lemma generate an
orthonormal sequence {h,} “approximate” to the reproducing kernels. Without loss of

generality. let us assume (by passing to subsequences and relabeling) that
(2.8) Jim_ lha = fall = 0.

and also assume that both the sequences {g,} and {h,} have an infinite orthocomple-
ment. The unitary operator matching Uh, = g, and the orthocomplements is then well

defined.

So a calculation shows

lim A["hn.hn> = lim (Agn.gn) = A.
=2

n—nc

But the h, approximation to f, = k., is good enough. for by (2.8).

[(A%hn.bn) = (A% fa-fa)| = (A% (hn = fa)-hn) = (A" fa. (Fa = hn)}
1A - ik = falt + A1 - 1hn = falf = 0.

IA

giving that X is also a boundary cluster value of Al at = € 992 as required:

tim (A%, ko) = lim (AYfa fa) = A

n—oc

Thus the equality (2.7) is proven. O
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This theorem therefore identifies the ideal KX(H) with the functional theoretic prop-
erty that the family of functions AU all be continuously extendable to 0 on 9¢). ie: a
behavior invariant under unitary conjugation. By reformulating the expression of Theo-

rem 1 with the operator 4*4 we get
A€K(H) < VU unitary and zp — = €902 lim (A*A) (z) = 0.
which in turn can be written as
AeXK(A) <= VU unitary and z5 — z € d. "li_rxgC AUk, || = 0.

In this way. the collection of weak null sequences {{Uk-,} : U unitary and z, — z € 9Q}.
is sufficient to determine the behavior of all weak null sequences.

We will leave the general case with a summary of the general compactness condition.

Corollary 2.8 Let H be a standard functional Hilbert space. Let A € B(H). Then the

following are equivalent.

(i). A is compact.

(ii). limp_—ec (.47.—;)("(2,.) =0. YU unitary and z, — 2 € 990
(ifi). limp—~ [JAUK:, || =0. YU unitary and =z, — = € 99.
(iv). limp—~ F(:n) =0, VU unitary and =, — = € dfd.

If H is analytic, then (iv) is equivalent to {IL— : U unitarv} C Co(92).



Chapter 3

Berezin Symbols on the Bergman

and Hardy Spaces

We want to examine the Berezin symbol behavior of some concrete operators on two
classical examples of standard analytic functional Hilbert spaces over the unit disk D.
These are the Bergman space L2. and the Hardy space H?. In the following. we define
these spaces and develop the theory of Berezin symbols on them from the definition of
their reproducing kernels. We also present some concrete examples of symbol behavior
at the boundary 9D.

First. let us note some properties of automorphisms on D that will be an important
technique in our analysis. The following properties of Mobius transformations are easily

found in texts such as {7, 18] or can be proved by simple technical calculations.

Definition 3.1 The Mébius Transformations 2, defined for each e € D as

a—uw
1 —aqw

va(w) =
satisfy the following properties:
(i). \q is analytic on D and continuous on D.
(ii). ¥a(0) = a and zq(a) = 0.

15
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(ili). o is injective, y=¢(D) = D and (D) = 8D. Furthermore. ;! = ;.

(iv). Any disk automorphism v can be written as v = Az, for some A € 9D. and @ € D.
(v). 1 —8ga(w) = (1 - laf*)/(1 - aw).
(vi). |y¥a(w)| = |y (a)| and

(3.1) 1 — ;\;a(w)‘l - (1 - ia[-)(l - !I.L'g-)

; —2
i1 — aw|

We present iu the first section the development for L2. and where the Hardy space

proofs are similar. they will be omitted in section 3.2.

3.1 The Bergman Space

Definition 3.2 The Bergman space. L2. is the closed subspace of analytic functions in
L*(D). That is
L= {f analytic on D : f 7 dm < :)C}.
D

where dm is the normalized Lebesgue measure on D. and the inner product is the usual
.9y = [ flw)glw)dm(uw).

That each f in L2 is analytic. of course, implies it has the power series expansion
f(z) = ¥ ganz™ which converges absolutely and uniformly on compact subsets of D.

The following properties of L2 are fundamental and easily proved. see {18].
Proposition 3.3 The following are fundamental properties of the Bergman space.
(i). L2 has the canonical orthonormal basis
{ea(z)=vn+1:z":n=0.1...}.

(ii). For every z in D. L2 has the reproducing kernel K.(w) = 1/(1 — Tuw)2.
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(iii). Let LP(D) be the classical Banach space of Lebesgue-p-integrable functions and
let LE(D) be the subset of analytic LP functions. Then the Bergman projection
P: LP(D)+— L2(D) has the integral form

Pf(z) = /D flw)YK - (w)dm(w)
and {[Pfflp < ¢ Hfllp for all1 < p < . (See specifically (18. page 55].)

The use of the LP space and norm in the last property will be useful in later sections. but
unless otherwise specified we will always be considering the Bergman projection between
the Hilbert spaces L2 and L2.

It follows directly from the above definition of the reproducing kernels that the nor-

malized Bergman reproducing kernels k. are defined by

\
(3.2) ko(w) = ——20 0 for every z € D.
(1 —Zw)?

The following properties of normalized reproducing kernels will be used repeatedly

in our calculations. The first property proves that L2 is in fact uniformly standard.
Proposition 3.4 The Bergman normalized reproducing kernels. k. € L2. satisfy the

following:
(i). k. — O weakly as |z| — 1~. (ie: L2 is uniformly standard.)
(ii). Let z: be a Mébius transformation. Then . = —k:.

(iii). k:o ps(w) = kx(w)™h

(iv). ks(w) = (1 - |2*) ZoZo(n + 1) Zwm.

Proof.
(i). Let f € L2 be arbitrary and let € > 0. f is the L? limit of its MacLaurin series. so

there exists a polynomial p,, to within €/2 of f in the norm. Now (p,.k.) = (1—- [:}'2) pn(2)
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is bounded by the finite value (1 — |z]*) lipril - Therefore picking [z} close enough to

one. we get

Lo
[N Ry}

[(fokeo)l = I(f = Paskz) + (Pr- k) S U = pall + (1= 121%) lipall. <

(ii). We proceed by direct calculation using the quotient rule. Let = € D.

d z-—w _(1-Zw)(-1)—(z—w)(=3)

7a(w) = dw (1 —zuw) (1 — =w)?
-1 +zP o
(1 —=uw)? —h=()

(iii). Differentiate the Mébius identity w = 2.(y:(w)). Then using the substitution

from the preceeding property we get
1 = ¢l (e (w))et(w) = k: 0 o (w)k:(w).

(iv). This follows directly from the MacLaurin expansion of (1 —Zw)™2. O

[t will be useful to note that properties (ii) and (iii) combine to make the identity

(3.3) o o va(w) = —

Using the propositions stated. we can now show how the inner product of the Bergman

space reacts to an automorphic change of variables.

Lemma 3.5 (M&bius Change of Variables) Let f.g € L2 and let 24 be the Mdbius

transformation for a € D. Then
(34) (f o va-go¥a) = (kaf.kag) -
Proof. Let f.g and 2, be as given. Then

(fovagcya) = Lf°$a(w)g°¢a(w) dm(w)

= [ f@aG ) dm()
D
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by the change of variable z = zq(w). Therefore. using (ii) from the previous Proposition
we get
(Fovagora) = [ G0 I~ka()l? dim(z)
= [ @ADRGGE dm(z) = (kaf. kag)

as desired. O

The Toeplitz operators on L2 will be an important class of operators for us to study.

Here we give their definition and note some useful properties.

Definition 3.6 Let u € L>(D). and let P be the Bergman projection. Then u induces
a Toeplitz operator T, on L2 defined by T, f := P(uf) for all f € L?2. T,, € B(L?) and
satisfies the following;:

(). 1Tyl = lfull-

(ii). Tay+3e = Ty + 3T, for u.v € L>=(D) and a, J € C.
(iii). T,; = Tx-
(iv). T, has the integral form

(Tuf)(2) = /D u(w) f(w) K () dm(w).

Reference: pages 105-106. [18].

Now. let us work out our first example of a Berezin symbol. The Berezin symbols of

Toeplitz operators are so often of interest, ﬁ is predominantly written shorthand in the
literature as u.
Example 3.7 (Berezin Symbol of T7,,) Let T, be a Toeplitz operator on the Bergman

space. Then,
u(z) = /Duo;:(w) dm(w) = uo¢:(0).
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For a(z) = (uk.,k:) = {uo -, 1) = {(Puo zs-ko.ko) by the change of variable formula
(3.4). O

Next we examine the class of composition operators which will also be important for

both the theory and providing concrete examples.

Definition 3.8 Let 0 : D — D be analyvtic. Then o induces a composition operator C,

on L2, defined by Cof := foo for all f € L2. The composition operator C,, satisfies the
following:
(i). C, € B(L?).
(ii). CO’.'COI = Coy002-
(ii)). Co(fg) = Cof - Cog.
Reference: page 117 of [8].
The definition of C, makes it very easy to calculate CT,. and also demonstrates how

the boundary behavior of o is important to the Berezin symbol behavior.

Example 3.9 (Berezin Symbol of C,) Let C, be a composition operator on the

~ 1 — |z ?
Co(:)=(1—:%(£:)) .

For C‘;;(:) =(kzo00. k) =(1- [ziz)k: o o(z) by the reproducing property of the kernel

Bergman space. Then.

KR.. O

The following class of weighted composition operators have been a principal tool in
proofs involving Berezin symbols on L2. see [19] and [2] among others. These unitary
operators are fundamental in how they arise from the Mobius change of variables and

their relation to normalized reproducing kernels, equation (3.4).
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Proposition 3.10 (Mabian Unitary Operators) Let a € D. The weighted compo-

sition operator on L2 defined by Upf := koC ., f satisfies the following:

(i}. U, ts a self-adjoint unitary operator.

(ii). UgK: = kg

23

—
=
’

(iii). Ugk: = akg, (.) where a = aq(z) € dD.

Proof.

(i). Let f.g be arbitrary elements of L'ﬁ. First. we will prove that U, is self-adjoint.
(Ugf.9) = (f.Usg) = (f.kag © #a) = {(kof © Ca-ka(ka © £a9)) = (Uaf. (kake © va)g)

where we have used the change of variable (3.4) and the identity , o zo(w) = w. Now.
by Proposition 3.4. (kqkg © 2q){w) = w and thus (U] f. g) = (U, f. g) from the above.

That U, is unitary follows similarily. Simply rewrite Lemma 3.5 replacing f by fc zq.
and simplify the result with the identity (iii) from Proposition 3.4.

Combining these results yields
(3-5) Uit =U; =Ua

proving (i).

(ii). Let f € L2 be arbitrary. Then as Axler did in [2. Proposition 2.26]. we calculate.

(fUaR:) = (Uaf.K:) =Uaf(z) = ka(z)f(£a(2))
= ka(2){f- Kpuiey) = {f FalD)K 505 ) -

proving the identity.

(iii). This identity comes from adjusting the former with the appropriate norms.

. 1 . [Py —
Usk: = UK = ka(:)f‘va(:) = (wkﬂ(:)) ka2
! \:11
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Setting a = aq(z) = HI\'\;‘,(;)“ill\':“—lka(:) we get the desired identity. To prove aq(z) €
9D we use (3.1) and (3.2) and calculate

_ 1—[z2 1l _ jl-az?
1= lga(x)P (1 —a9)? (1 -a3)?

(3.6) aq(2)

tl 2

The following discussion serves as a counterexample to the converse of Proposition 2.3.

[t proves that the Berezin symbol of many non-compact operators vanish at the boundary.

Example 3.11 (Berezin Symbol of Mdbian Unitaries) Consider the Mobian uni-

tary operator U,. The Berezin symbol E";( z) is then

Oa(z) = (Usks.ks) = {@a(2k i k2)
(37) = aa(s) (ko) ks ) = aa(2Vkpy o) (2)/ 1K) -
Now, since
_ l-az—-%(a-r= 1—-az—Za+ |z
1 =Zpz4(2) = I _.( ) = 1 —a-
- @z —a:
_ 1—l|aP+(laP-az—Za+|:[*) 1-la]*+j@- 22
- 1 —a= - 1-a:z
we observe that
i1 —azj

implying that for a fixed a in D.

1 - [a(2)
(1 - 7a(2)2)?

This proves that. for fixed @ € D. k_,(;)(z) is bounded above since the far left hand

:1—az1)2< 4

(38) <1 ({20p) S oap

side of (3.8) is lk‘,“(:)(z)i. Therefore. from (3.7). we observe that the Berezin symbol Ca

vanishes on the boundary since
Jim [Ga(2)] < Haa(2)] - k()] - IR < const. K™

and HI\':H" =(1- |:E2) converges to zero as = — JD. However U, is unitary and highly

non-compact. g
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Theorem 1 proves that for any operator 4 € K(L2). the family of Berezin symbols
created by unitary conjugation will satisfy {TIE } € Co(D). The following demonstrates
that the Mobian conjugates are too well-mannered to be important in the theorem. The
identity makes for a very useful technique in calculations. and so we specifically name the
operators AY: for z € D the Mébian conjugates of A. Due to the relationship between
Mdbian unitaries and automorphic changes of variable and the precedent of Example 3.7.

it may come as no surprise that they induce a change of variable in the Berezin symbol.

Proposition 3.12 (Berezin Symbols of Mdbian Conjugates) Let A € B(L2). Let

U. be the Mébian unitary for z € D. Then
(3.9) AT = 3o o

Proof. We use property (ii) of Proposition 3.10 to calculate

.‘T‘F—:(w) = <-4U:kwe ku-) = (AU:ky . Uzky) = {a;(w)i?' <Aks::(u:}‘k;:(u:)>
= .-‘I(',:‘_._(w)). 4
Clearly if A(w) — 0 as fw| ~—~ 17, then so does AC: since. for each = € D. it follows from

the continuity of . that [zs(w)| — 1~ too. (ie: A € Co(D) = {AL: : z € D} € Co(D).)

3.2 The Hardy Space

The second standard analytic functional Hilbert space we will study is the Hardy space
H2.
Definition 3.13 The Hardy space. H?> = H*(D). is the Hilbert space of analytic func-

tions on D satisfying the growth condition

2= 0, |2 d6
sup If(re'o)l 5o < .
O<r<1i J0 E7o

where the inner product is defined by

S —; T
(f.9) = tim [ f(re)glre®s .
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Reference: pages 9-12 of [8].

All functions f € H? have a power series f(z) = 355y a,z" with coefficients a,, from
Plie: T, lan|? < oc. It is possible to consider H? as a subspace of L2(dD) by looking
at the extension of these series onto 9D (ie: H?(dD)). There. the inner product has the

form

2= —d#

.90 = [ £ 5.

0 %
Just as with the Bergman space, we will begin with a list of properties of H?.
Proposition 3.14 The following are fundamental properties of H?.

(i). H? has the canonical orthonormal basis {e,(z) = z* : n =0.1....}.

(ii). For every = in D. H? has the reproducing kernel K.(w) = 1/(1 - Zw).
(iii). H? is a subspace of harmonic functions.

H*D)cH = {f(:) =3 anz" +bpTV S ianl® + ibnatl? < x} i
n=0 n

(iv). Let LP(OD) be the classical Banach spaces and let HP(D) be the clussical Hardy
spaces. Then the Szégo projection P : LP(OD) — HP(D) has the integral form

2= 9 ——db
Pi) = [ (e K(e) g
and HPf[|p <cpllfll, foralll <p <. (See [18. pg. 164].)

Reference: See Zhu [18].

It follows directly from the above definition that the normalized Hardy reproducing

kernels are defined by

1 -
(3.10) ka(w) = \/— for every = € D.
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The following results on Hardy space normalized reproducing kernels show that they
are very similar in behavior to the ones we studied on the Bergman space. so the proofs
which require only trivial adaptation are omitted. This does not indicate. however. that
H? has nothing to add to the discussion. The final statement in the following connects

the Hardy Berezin symbol with the Poisson transform on L*(9D).
Proposition 3.15 (i). k- — 0 weakly as |{z] — 17. (ie: H? is uniformly standard.)
(if). kzopz(w) = ka(w)™'.

(iii). ks(w) = /1 - 2P TTo7"

‘9)|; = %’& the Poisson kernel of D.

E‘

(iv). [k
i
We observed in the preceeding section an example of a non-compact operator whose

Berezin symbol did vanish on the boundary. Here we present another example of this

behavior in a positive non-unitary operator on H? due to Axler. {11].

Example 3.16 Let A be the projection from H? to the space spanned by the canonical
vectors {esn : n = 0.1....}. Since the sequence {Ae} = {ey} has no converging

subsequence. A is not compact. Now A can be calculated as
2) = (ke k) = (1- %) (AR K:)

(3.11) = (1—,!)2“"ew:—(1~l!)2(:

Since t = |z|2 < 1. we have

x N " oc on N on x oN o
ST = e S =Y ey ()
n=0 n= n=N\-+1 n=0 J=1
N o ~c oN : AY o tg.\'
< ;::t ';?“ ) n§=:0t + TS
t«_).\
< N+1



CHAPTER 3. BEREZIN SYMBOLS ON L? AND H? 26

Equation (3.11) is therefore bounded above by a finite sum and a geometric series. It is

then easy to see that

s E. . 2y N (1 -1z 1
iJT}-A(“) = |::hf}— <(1 = +1) - 1-(i:!2)2“') = g%

where the limit of the second term is evaluated using I'Hopital’s rule. Since N can be
chosen arbitrarily large. we have A—0as {z| increases to 1.

Given the general theorem, now. there must exist a unitary V" on H? such that A"
does not have a Berezin symbol that vanishes on dD. We can determine a suitable V" in
the following way.

Define a unitary operator " by mapping
Veop, =e€an. n=0....

and mapping the odd basis vectors onto a basis for the orthocomplement of the ejn’s.

Then

AV() = (1-—i:{g)if"<V'l.-le".K:>:(1—1:{2)i52]<w21.1{:>.
J=0

n=0
2, o 1= 1
= —!"!2 “'.l-7= it =
(== Y=Y = 155 = e

which is nowhere vanishing. O

A similar projection operator on the Bergman space can be constructed. see 2}

WWe noted in the last section how the Mébius transformations on D were connected

to Bergman reproducing kernels. We find the same is true for H>.

Lemma 3.17 (Mdbius Change of Variables) Let f.g € H? and let 7, be the Mdbius

transformation for a € D. Then

(3.12) (fova-g°va) = (kaf kag)
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Proof. Let f.g and £, be in H?. We will proceed to calculate their inner product in
the H2(9D) form. Then
2= ————do
(fosa-gosa) = /0 forale®)go fale?)=.
Now consider the change of variable e = .(e'?). giving e'dt = 2. (e'%)e'?dd as the
appropriate substitution. With the self inverse of ;,. then. we get

et dt
cu(Falet))galelt) 2x”

But the fraction in the integrand simplifies (using the identity (3.3)) as

(3.13) (o fagoia) = fo 7 fle)a(en)

e't _ 1 —|al? 1 —aet\
FalfaleD)valed) ~ T(1—a@e)? \a-et )°
(1—ia!2)( -1 )
(1 —@et) \ae i -1
oy 1—|ai2 PPN
(3.14) Fd—e:‘? = ’kc(e )!

which when reorganized in (3.13) yields (3.12). O

The Toeplitz operators on H? are defined in exact analogy to the L2 case (however.
their behavior can be quite different). For simplicity. we will always consider a Toeplitz

operator to use H2 = H?(dD) in its domain and H? = H*(D) in its range.

Definition 3.18 Let u € L>~(3D). and let P : L®(JD) — H?*(D) be the Szégo
projection. Then u induces a Toeplit: operator T, on H? defined by T, f := P(uf) for

all f € H2. T, € B(H?) and satisfies the following:

(). ITull = llull -

(ii). Tausge = aT, + 37T, for u.v € L>=(ID) and a. 3 € C.
(iii). T2 = T

(iv). Ty has the form
(T = [ u(e?) f(e*)Ko(e) ao.
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Reference: pages 193-194 of {13].

The Berezin symbols of Toeplitz operators on H? actually are a well studied classical

object: the Poisson integral.

Example 3.19 Let T, be a Toeplitz operator on the Hardy space. Then using the

H?(9D) inner product we have that
2T )
u(z) =/ uo;:(e‘g).)— = uc-(0).
0 2

and

T. = Ply]

where P[u] is the Poisson integral (or harmonic extension) of u over D. The first equation
comes from the change of variable formula applied to (uk:.k.). (The same argument as
the Bergman case.) The second comes from the correspondence of the Hardy kernels

with the Poisson kernel Ik;(w)l2 = P.(w) as in Proposition 3.15.(iv). C
The class of composition operators will also be important in the H? analysis.

Definition 3.20 Let ¢ : D — D be analytic. Then o induces a composition operator
C. on H?. defined by C,f := foo for all f € H?. The composition operator C,, satisties

the following:
(i). C, € B(H?).
(ii). Coy,Co, = Cojo0n-
(iit). Co(fg) = Cof - Cog.
Reference: page 117 of [8].

The composition operators on H 2 have a Berezin svmbol structure veryv similar to

the L2 case. as we note here.
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Example 3.21 (Berezin Symbol of C,) Let C, be a composition operator on the

Hardy space. Then.
1— |22
1 —Zo(z)’

For CA';(:) = (k;00.k:) = \/1 — |z{%k: c o(z) by the reproducing property of the kernel
K. C

Colz) =

Considering the depth of their application in the Bergman Space. we present the

analogous definition of Mé&bian unitary operators on H>.

Proposition 3.22 (Mdébian Unitary Operators) Let a € D. The weighted compo-
sition operator on H> defined by Usf := koC;, f satisfies

(1). Ug is a self-adjoint unitary operator.

(ii). UsK: = ko(2)K .. and Uyk. = ak;, ;) where a = a.(z) € dD.

Ca
Proof. The method of proof is identical to that used in Proposition 3.10 using the results
of Propositions 3.1, and 3.15 and the change of variable. equation (3.12). For the H*
case. we find that

(3.15) Qq(z) =

These Hardy Moébian unitaries also have Berezin symbols that vanish on 9D.

Example 3.23 (Berezin Symbol of Mébian Unitaries) The proof is identical to
the Bergman case, Example 3.11, with the modification that the left hand side of
‘2

(3.8) is now ik;“(:)(::) using the Hardy reproducing kernel. Similarly. now A |7 =

— i ~
V1 —Iz{" — 0as |z} — 17, which still squeezes U,(z) to zero. O
Mobian conjugates in H? also do nothing more than provide a change of variable.

The proof is the same as Proposition 3.12.

Proposition 3.24 (Berezin Symbols of Mdbian Conjugates) Let 4 € B(H?). Let

U, be the Méobian unitary for a € D. Then

—

(3.16) Als = A0 2.
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As with the projection operator of Example 3.16. there must exist some conjugate
of U, with a non-vanshing Berezin symbol in order to satisfy Theorem 1. The case of

general a € D is rather difficult, so we will consider the simplest case a = 0.

Example 3.25 Our goal is to determine a unitary operator ¥~ such that

Jlim U§ #0.
Note that Uy f(w) = f(—w) and Uy is a diagonal operator in the canonical H? basis with
diagonal entries (—1)". Define the operator V" on the H 2 canonical basis as the block

diagonal matrix with identical blocks Vp

% 0 0
) 0 Vo 0 --- . 5 s

(3.17) V= . Vo= 2V
- . —l A

0 0% R

V is a unitary operator on H?> since VgVj is the 2 x 2 identity matrix. It is a simple
matter of matrix computation. then. that in the canonical H? basis.

Bo 0 O0°

. G Bg 0

(3.18) U =V lgV = °

0 0 B
where

01

By =

1 O
Algebraically. then. we have
(3.19) [j(} W™ = w2+l and D’OVwEnH—l ——

If we calculate the Berezin symbol of this conjugate of Uj using the even-odd expansion

k:(u.') — Z:=0(32mw2m + 52m+lw2m+l)’ we get

US(z) = (USkeks:)
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V1 -z i (z2m <U3"w2'".k;> +32m (U w? ™ kL))

m=0

= /11— HE - (E?.m <w2m+l.k:> 4 FIm+l <w‘2m' k:>)
=0

m
axc

(1- izi‘.’) Z (E-‘.’m:'.’.mfl +—:-2m+1:2m)

m=0

oC

(1-1= Y (=P +2)

m=0
47 I+Zz
= 1- 32 = T
( | l)l_l:il 1+[:|3

which vanishes only at £:. O



Chapter 4

Special Cases of the Compactness

Condition

As we see from Examples 3.11. 3.16. and 3.25 in the previous chapter. given a standard
functional Hilbert space H. the ideal of compact operators K(H) is not simply identified
under the Berezin transform as the set of operators with symbols vanishing on the bound-
ary. However. it is quite possible that such a characterization exists for smaller classes
of operators. We examine here some results involving Toeplitz. Hankel. and composition

operators.

4.1 Toeplitz Operators

4.1.1 Compact Toeplitz Operators on L2

Toeplitz operators as defined in section 3.1 have been a staple topic in operator theory.
and work linking compactness and the Berezin symbol has attracted the interest of
multiple authors. Since 1988, K. Zhu. B. Korenblum. K. Stroethoff. S. Axler. and D.
Zheng have all contributed to characterizations that state 7, is compact iff fu vanishes on

JD provided we make some special assumption on the symbol u. (See [2! for references.)
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The most general result is due to Axler and Zheng (1998). on which we will focus the
bulk of this section. Before stating the theorem. we include a lemma that summarizes

some properties of AR, and gives the integral form of A.

Lemma 4.1 Given arbitrary f € L2 and A € B(L2). we have the following:

(4.1) AR (w) = (A*K..K,) = (AK,.K.) = AR (2)
(4.2) Af(z) = (Af.K:) = (f.A"R:) = /D Flu) AR L(z) dmiw)
thereby writing A as an integral operator with kernel A(z.w) = AR, (z).

In the following we will use 7 to represent the set of all finite sums of finite products

of Toeplitz operators on the Bergman space.

Theorem 2 (Axler and Zheng, 1998) Let T be the algebra generated by the Toeplit:
operators on L2. Then the compact operators in T are characterized by vanisking Berezin

symbols. In fact. for A € T. the following are equivalent:

(i). A€ K(L2)NT.

(ii). lim,_;- A(z) = 0.
(iii). liml_.l_l_ “AL':IH = 0 v1 < P < .

p

In particular. a Toeplitz operator T,, on L2 is compact iff 4 (or T;‘_Tu) vanish on 9D.
Discussion of the Proof. The implication (i) = (ii) is the general result for standard
functional Hilbert spaces (Proposition 2.3). A lemma for A € T shows (ii) = (iii). The
most difficult step, (iii) = (i), uses Lemuma 4.1 and techniques of integral operators to
demonstrate that A € 7 with the given property implies A is a limit of a sequence of
compact operators as described below.

From the integral form of 4 (equation (4.2)). define for every positive r < 1 the

Bergman space operator Ay by the equation

(43) Apf(3) = [ F(0) AR () (w) dm(w)
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where Y, is the characteristic function of the disk rD. To complete the proof of the

theorem we will show:
1. Ay is compact for every 0 <r < 1.
2. If A €T such that (iii) holds. then lim._,- A = A in the operator norm.

Let us deal with the technicalities in a bunch of lemmas and proceed with the neces-

sarv proofs.

The most important property particular to operators in 7 used in Axler and Zheng’s

proof is the following.

Lemma 4.2 ([2]) Let A € T be arbitrary. Then the set {At=1 | z € D} is bounded in
the LP(D. dm) norm for all 1 < p < x. That is.

sup “AU:IH < oc.

zeD p
Proof. Consider first only the finite product A = T, Ty, -.-Ty,. where the u, are

bounded functions on D. Then
(44) AY = U.T, Tuy - - - TuaUs = (UsTu, U)(UsTinUs) - - (U T, U,

and for every f.g in Lz,

(U.T,U-f.g) = (PvU.f.U.g) = (tU-f.PU.g)
(4.5) = (U.vopofU.g) =(vog:f.g) = (Trop. f-9) -
Thus Tt* = Tyop,. Making a replacement in (4.4) we therefore have

D’:(TulTuz .. Tu.l )U: = Ldujoy: Tugo;: s I-“uo‘;: .

Now. the Bergman projection operator P : LP(D) — L2(D) is bounded for each p. that

is {Pfll, < cplIfll,. (see Proposition 3.3.(iii) ). so

sup [[(Tw, Tuz - - Tua) 1| = sup I Turop. Tunop: - - - Tanog: L1,
zeD! p zeD
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= Sup cp lur o #zTuzep. - - - Tuyo: L,
S supc Hur o eailoc {1 Tuzogs - - - Tunop: 1,
n
< supch lfug o o=
:EDcp kl:__Il v
n
{4.6) < Jlehiuslix
k=1

which is bounded independent of =.
For general 4 € 7. the previous result extends by the triangle inequality to prove

the lemma. O

Lemma 4.3 Given an operator A bounded on L2, there erists a constant ¢ < x such

that ‘ l
i AK,) ()] c|j4°1]
(4.7) Dl dm(z) € ===
A J1- 2P V1= fwp?
for all w € D. and ’
J(AK) () el (4n)ea|,
(4.8) L dn W) < e 6
/ 1-|u|~ VAt

for all z € D. (The particular use of the L5(D) norm is by convenience.)

Proaof. We note that since Uyl = k. = (1 — le"’)Kw.

AUl Uw.-ly“‘l ky(AY«1) o Fu

AK, = : S =
YUl —wi? - 1—jwl®

Rewriting our integral we get

|(4Aw)( i 1 [ (2)(AE*1) © 2 (2)]

——dm(2) = / = dm(z).
~|z? L=l V1 -1zl

Applying the change of variable z = ~,,(A) and some manipulation of reproducing kernels

and Mobius transformations this becomes

C S L .
/ b © e VO] k(N2 dm(X)
1—|w|

V1= el M)
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1 ke
= =7 ol o) Ny
1 [(AL=1)()
(4.9 = L dm(])).
9 \/1a|w{‘2/0|1—w;'\ﬂ—1,\g2 e

Then by applying Hélder’s inequality with p = 6 to the numerator and ¢ = 6/5 to the

denominator we get

JRCTSES LU ) SR
\/1—||' B 1—Jul Dll—‘zEAiG/°(1_|,\|2)3/5

We are motivated to use this p = 6 case because the integral on the right is known to

be bounded independent of z by a result from Axler {Lemma 4 {1]). but any p leaving
an integral bounded over : is sufficient. Therefore, taking % as an upper bound to the
integral we arrive at (4.7).

It would perhaps be simplest to take p = ¢ = 2 in this final stage. but unfortunately

/ dm(A)
D |1 —mA* (1~ [Af)

does not converge for any w € D. {Otherwise. it would always be true that A is compact

the integral

iff 1 vanishes on aD.)

To determine inequality (4.8). use equation (4.1) to write

/ |<‘4k'w)<:)|dm(w)=/[)r<“\u>< 2 / A K@)

V1= lwf Iu"

So by replacing 4 with A* and switching the roles of : and « in inequality (4.7). we
actually obtain the desired result by applying the above identity. T
We now proceed with the proof of the theorem.
Proof of Theorem 2.
(i) = (iii).
Claim: Let A € T and let A vanish on 8D. Then “AL'ELHP — 0 as z — 0D for any

p>1.
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Proof. First, we would like to observe the behavior of the vectors {AY:1} under the
hypotheses. Let us fix a positive r < 1. Using the equality of Proposition 3.12. we

observe, using power expansions of k), that the integral

= —n AL AYky k) X"
Alpz A" ) = / AT (A oy = /Di——*i—drnm

D (1 - [A[%)? rD (1 — [A])? (1 -2
- f: L+1)(m=+1) / (.4U=w',wm)x‘+",\"=dm(,\)
{,m=0 rD
- i (z+1)(m+1)(AU=w‘,wm>/ AHAM dm(A)
{,m=0 rD
- i(l + 1) <AU:wl,wl+n>r2[+2n+?‘
=0

o
= r2n¥2 ((AU‘ 1,w"> + Z(l +1) <Au‘w', wl+"> rm) )
=1
So we can make, for any positive r < 1, the estimate

A(p:(A)X"
Lo (- ey '

KAU: L wn> I s ,.2:+2

i(l + 1) <AU’wl, wl+n>r2l
=1

(4.10) +

By the hypothesis of our lemma, for any fixed r < 1, the integral will converge to Q as
{z] — 1~ makes [:()\)| increase to 1. (The integrand is bounded by [|Afl (1 = r?)"2 so
the limit can pass inside the integral sign.) The sum in equation 4.10 can also be chosen

arbitrarily small independent of z for

o x
<Al Y@+ ! flwt+n]| #* < 1an 23
=1 =0

o
g_-:l(l +1) <AU‘w',w'+"> r

which converges to zero as r approaches 0.

Since we have proved that <AUZI,w"> converges to zero for all integers n, we have
that as [z| — 17, the vectors AY=1 weakly converge to 0 in L2, or, equivalently, that they
uniformly converge to zero on compact subsets of D. (For details see page 74 of [18].)

This enables us to prove our claim as follows.
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Divide the p-norm integral of A%=1 over a closed disk and an open annulus. as
1] = [ 00007 ) + [t ef dmie
For any choice of r < 1 the second integral will converge to zero because the integrand
vanishes uniformly on the compact set rD as |z| — 17. It suffices. then. to show that
the first integral can be chosen arbitrarily small uniformly in =. To do this we use

the substitution g(AU“I)(w) Po1. g(.-‘lr"=1)(1v)!lp and Hdlder’s inequality (with the case

p = g = 2) to bound the integral as follows:

Joog A% D) dme)

12 . 1/
T, 12p
< (/D\F[_)ldm(w)) (/D\mi(AL-U(w), dm(w))

<(1-r3)'2? .4L'=1i|: <(1-r)2c
2p

2

where we bound the 2p-norm of AY=1 by Lemma 4.2. Taking r sufficiently close to 1 we

can therefore make the integral converge to 0 uniformly in z. Cleim Q.E.D.

(iii) = (i). Recall that the proof comes in two parts.
Claim 1: Given A € B(L2). the operator Apy defined in (4.3) is compact for every
O<r<l
Proof of Claim 1. We will show. in fact. that Ay, is in the Hilbert-Schmidt class S».

We do this by calculating ([18. pages 39-41])

/D/D]AK,L.(:)xr(w)|Q dm (=) dm(w) =/rD/DIAK"'(:)|2 dm(z)dm(w)

2

= / |AK[* dm(w) < [|A|? / UK |? dm(w) = [lA]? —— < x.
D rD (1 -r2)
Claim ! Q.E.D.
Claim 2: Given A€ T and A(z) — 0 as |z| — 1. then Ay —Adaes |zl —17.

Proof of Claim 2. We wish to demonstrate that iid - A[,.]“ — 0 as r increases to 1.

but note that 4 — Ay is an integral operator with kernel

AR ()1 — xr(w)).
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Therefore we can apply the Schur test (see §3.2 and Notes. [18]) on the nonnegative
measurable function of two variables |AAR . (z)(1 — xr(w))|. We observe. then. that the

relations from Lemma 4.3 can be applied in such a way that

[ AR ()1 = xe(w) (—A—_—:) dm(w)
D V1w

A - - 1 '
s/DJAAwul (——m) dm(w)

(4.11) < (EM

l _ e\Ueq! 1
o) el ()

and
[ AR = xr(w)) L Vame
D 1—|z?
1
< (1 - xrl(w)) / |AK ()] (———— dm(z)
P \ﬂ—hF)
c”‘qvwl}s Y AR 1
(4.12) S —\r(w) [ ——=—=2 | =c sup ”A‘"l;ls —_— |
1-— :u_v{' r<iw|<1 ' | — [u‘l"

Applying the Schur’s test. we get the bound

2 _ o el AUl
< (supfarral,) (sup farl, ).

The first supremum over D is bounded using Lemma 4.2 applied to A*. However. by the

4=

hypothesis of (iii), we have that

s

; —0as w — ID.
6

so the second supremum converges to 0 as r increases to 1. Hence A is the limit to the
compact operators Aj. and A is compact. Claim 2 Q.E.D.

This completes the proof of Theorem 2. O

The following theorem is a direct result of our characterization. It nicely expresses the

condition for compactness in a form similar to the hypothesis condition in Lemma 4.2.
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Theorem 3 (Zheng, 1989 [16]) Let T, be a Toeplit: operator on L2. Then T, is
compact iff
HTuwow. L, = |P(uoy:)ll, ~0as |z] — 17,

for all p € (1. ).
Proof. Apply condition (iii) of Theorem 2 to the operator 4 = T, and use the result of

Lemma 4.2 that T" =Tuoe.- O

Note that the bounded supremum property of Lemma 4.2 is the only special property

of elements of T used in the proof. So it is natural to extend this characterization to the

class of operators 7" defined as all A € B(L?) for which SUP.e¢p i .4(":1“ < x. However.
p
we do not know what is in 7'\ 7 or even if it is nonempty. But it does follow from our

previous observations that not all bounded operators can be included in 7.

Example 4.4 Since the Mobian unitary operator Uy of Example 3.11 is non-compact
and has a Berezin symbol that vanishes on dD. it must not satisfy some hvpothesis of

Theorem 2. Let us calculate WU b= IH

VLU B = k:C Unksll? = fiksks o (=)
= /D s ()P [k (— 22 (w))P dm(u)

1- [.zl2 ‘
(I +3¢:(w))?

(2y2 L
O e e P IEG
_ (1—1-1")‘3”/ L dm(w)

(1+ 2% Jo |1 —aw|®

9
L -z

=) dm(w)

il

where @ = 2:2/(1 + {z/?) € D. The last integral on the right is known to have an

asymptotic relationship as |z| — 17, [18. page 53],

1 1
li — _d > lim c————s.
11'33—/ T mw) 2 T e
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Remark that (1 +!z[2)2(1 = |al®) = (1 +|z1*)2 — 4]z = (1 — Iz]*)2. and so

1 (14 |z
(1 ~ia})®=2 "~ (1 —{z[?)¥p-1"

. Thus we see that for p > 2,

sup |[U§=1] > lim |U.UoL.1], > lim (
zeD 14 lzj—1~- Jz]—1 -

and Uy does not satisfy Lemma 4.2. ©
In summary. we formulate the following identification of K(L2) N T.

Corollary 4.5 Let T be the set of all finite sums of finite products of Toeplitz operators

on L. Let A € T. Then the following are equivalent.
(i) Ae K(L2)NT.
(ii). A(z) — 0 as|2] —1~.
(iii). A*A(z) — 0 as |z| — 1~.
(iv). |Ak:, |l — O for every sequence =, where {zp| — 1.

Specifically. we note that T, is compact iff u(z) or Tﬁu(:) —00ndD. ori[Tye. 1il, — 0

as |z| — 17 for all p € (1.x).

4.1.2 Compact Toeplitz Operators on H*

The question of characterizing compact Toeplitz operators on the Hardy space is a trivial
one: by a classical result only T is compact. In this way the analog of Theorem 2 is true

for Toeplitz operators on H?. for
T, on H%(9D) is compact <= u =0 a.e. < ﬁ vanishes on JD.

The second equivalence above comes from the relationship between f,, and the Poisson
integral. Recall that for u € L>(JD). the Berezin symbol T. = P[u] is the harmonic
extension of u onto D, Example 3.7. It follows from the theory of the Poisson integral

and harmonic function theory (see Zhu [18]) that
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(i). lim,_,- Pluj(re*?) = u(e'®) almost evervwhere 6.
(ii). (Mean Value Theorem) Plul(z) = Plu] o 2:(0) = [F™ u(,z-(e?))d6 /2.

Clearly & = Plu} =0 iff u = 0 a.e.. completing our remark.

In fact, more can also be said parallel to the Bergman results.

Theorem 4 Let u € L>(dD). Then the compact Toeplitz operators T, on H? are

characterized by

T, compact < T;‘_Tu vanishes on JD.

Proof. The forward direction is the general result for standard functional Hilbert spaces
(Proposition 2.3). However, the Cauchy-Schwarz inequality is enough to make the back-

ward direction work.
() = |(Tuke k) < Tkl = TeTu(z).

and so if Tﬁu vanishes on dD. so does &. By the above remark. T, is compact. C

We have not. unfortunately. even approached in the Hardy space case the generality
of Theorem 2. The Axler and Zheng characterization also succeeded for operators A
that are finite sums of finite products of Toeplitz operators. and there are definitely
nontrivial compact operators of this type on H>. (Consider, for example, the operator
A =T, —T.T= = Py, a projection of rank one.) But it is not yet established whether
all compact operators that are finite sums of finite products of Toeplitz operators on H?>

can be characterized by vanishing Berezin symbols.
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4.2 Hankel Operators

4.2.1 Compact Hankel Operators on L2

We have considered Toeplitz operators on the Bergman space and the behaviour of their
Berezin symbols under compactness. We also want to study a related linear transforma-

tion on LZ: the (-large™) Hankel operator.

Definition 4.6 Let P : L?(D) ~— L2 be the Bergman projection. Then for every
u € L>(D) the Hankel operator H, : L2 — (L2)* is defined by

Huf =({ - P)(U.f)
for every f in L. It follows that H, is bounded and [|H.}| < jjull .

Definition 4.6 makes Hankel operators distinct among the operators we will consider
because H, is not a linear self-transformation on a standard functional Hilbert space
of analytic functions. It is a transformation from an analvtic subspace of L2 to its
orthocomplement. making H, f necessarily orthogonal to f whenever f is analytic. It
follows that H, = 0 for all H,. However HH, is an operator from L2 into L2. and there

is a well known relationship between this and Toeplitz operators:

(HeHu)f.g) = (Huf.(I - Plug) = (H.f.ug) = (vf - T.f. ug)
(4.13) = ((@ —-uT.)f.g) = (T — TaTe)f. 9)

which demonstrates that HjH, can be written as a finite sum of finite products of
Toeplitz operators.

Using the Axler-Zheng theorem of the previous section and the relationship (4.13).
therefore. we can determine a compactness criterion for Hankel operators on the Bergman

space using Berezin symbols.

Theorem 5 Let u € L=(D). Then the compact Hankel operators Hy on L2 are char-

acterized by

—

(4.14) H, compact <= H!H, =u]® - TaTy vanishes on 9D.
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Proof. Using (4.13) we have H}H, € T. and so this product is compact iff its Berezin
symbol vanishes by Theorem 2. The proof is finished by noting that in order for H, to

be compact, it is necessary and sufficient that H;H, be compact. T

Hankel operators on the Bergman space have been extensively studied and several
characterizations of compact H, have already been proven. In this subsection. we will
build some required preliminaries and state these characterizations. and then demon-

strate how the result (4.14) can be used as an alternate means of proof for them.

The first collection of results characterize compact H, using LP norm behavior which

involves the following lemma. the analog to Lemma 4.2.

Lemma 4.7 Let u € L>(D) and = € D. Then for arbitrary 1 < ¢ < .
sup I|Hu°¢:ll|q < x.
€D

Proof. We have from 3.3 that the Bergman projection P is bounded forevery 1 < g < x.

Then (I — P) is also bounded. and so.
Huop Ly = (I = Puo 2l < cqliwo wely < cqllull < x. O
Theorem 6 Let u € L™(D) and let 1 < p < xx. Then the following are equivalent:
(i). Hy is compact.
(ii). (Zheng, 1989 [16]). |Hyk:{l, — 0 as |zf — 1.
(iii). (Stroethoff. 1990 {14}). luo 2. — P(uo )M, —0as izl —17.
Proof. To show (i) is equivalent to (ii). we simply note that

H:{Hu(:) = (HiHyk:. k:) = (Hyk:, Huk:) = ”Huk:uj .

The equivalence follows from Theorem 5.
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To show (i) is equivalent to (iii). we use the Toeplitz form of H;H, to calculate
(HoH) s = Hy,, Huop.

by steps similar to the proof of Lemma 4.2. So, according to property (iii) of Theorem 2.

H, is compact iff “ o uo;__l”p — 0 as z — JD. Now,
1 Huor 1y < | Hic Huop 1], < [Hi, b i Huor 1y
so H, is compact iff |[Hyo..1l|, vanishes on D. But a calculation shows that
lHuop 1ll, = (I = P)uo :ll; = llucy: — Pluo 2:)lly -

Hoélder’s inequality and Lemma 4.7 are then enough to generalize to arbitrary p > 1. For
observe that in light of the p-boundedness of ||Hyo_.1|| (Lemma 4.7) we have by Hélder's
inequality.
i Huow 112 < || Huog. Uy - [ Huop, LIZE ) < €l Huos 11l

50 ||Hyopz. 1], — O implies |lHu°¢:1“p — 0 as well. In fact they are equivalent. for. if
p 2 2 then {[Hyop. 1|, 2 [|Hya,:. 1], directly. and if 1 < p < 2. then another application
of Holder’s inequality yields j{ Hyo,:. 1il, < [[Huoy: < Ll [ Huoy :lil, where ¢ = p/(p—1) > 2.
Therefore HEFI,,(:) is equivalent to || Hyo 1| p- and by Theorem 5 we have an equiva-

lence with the compactness of H,. 0O

Since we have completed the primary focus of our study. we formulate here a summary

of the function theoretic identifications of compact Hankel operators on L2:

Corollary 4.8 Let u € L>*(D). Let H, be the Hankel operator on L2 with symbol u.

Then the following are equivalent.
(i). Hy is compact.

(ii). HoHy(z) — 0 as|z| — 1-.
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(iii). [[Hy

Oy:

lup—'Oas!:l—l‘foralll<p< .

(iv). |Huk:,|| — O for every sequence =, where |z, — 1

4.2.2 H:H, and Function Spaces

There are some other points of interest regarding Berezin symbols and compact Hankel
operators which touch on the structure of function spaces. This is really no surprise. as
we have been studying a function theoretic characterization of an ideal. We would like to
include the following exposition to note how spaces with “well-mannered oscillation™ are
related to the compactness of Hankel operators and Berezin symbol behavior near dD.
First. a discussion of integral averages of L? functions over Bergman disks is necessary

to define the BAfOy and V' MOy spaces.

Definition 4.9 The Bergman disk of radius r and centre = is the Euclidean disk in D
defined by
D(z.r) ={weD|J:zuw)<r}

where .3 is the Bergman metric on D,

I + i ()]

J(.. lL') = - lool—m.

Bergman disks provide a natural neighborhood on which to average a function. Note
that even though D(z.7) is an Euclidean disk. = and r are neither the centre or radius
in this geometric sense. Instead, because the Bergman metric 3 is Mobius invariant. the
disks behave nicely under Moébian automorphisms: 2,(D(z.7)) = D(ze(z).7) for every
Mobius transformation 2q.

Now. let f € L>=(D). We define the average of f over D(z.r). fr(z). as the integral

average
1

f-(z) = m/l)(:.r) flwydm(w). z€ D.
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The oscillation of f from fr on the disk D(z.r), or the mean oscillation of f at =. is

then logically defined as

2

1 - 2 L
MO-(f)(z) = (Wz-r‘))/o(:.r)!ﬂw)_fr(:)! dm(w))
a2
)

where the second expression comes from expanding the integrand.

= (IfPea -

The behavior of the mean oscillation MO, (f) is the source of the following spaces of

functions.

Definition 4.10 Let f € L>(D). We make the following definitions for the BAOy

and VA[Oy spaces. For details consult [18].

(i). Thesemi-norm {| flly;5, := sup.ep MO/(f)(z) is bounded independent of r. There-

fore the space BAM Oy of functions of bounded mean oscillation at the boundary is

defined as

BMOg = {f € L™(D) : ||flly;0, < x for some r > 0}.

(ii). The Banach space of functions of rvanishing mean oscillation at the boundary.

V' M[Og. is defined as

VMO ={f e BMOy: }m} MO (f)(z) — O for some r > 0}.}
izf—1~

The definitions of these spaces naturally relate them to Berezin symbols by the fol-

lowing correspondence which we leave without proof. Details can be found in chapter 7

of [18].

'These two spaces are. in fact. examples of using Carleson measures to define function classes.

Let the function f define the positive measure i1y on Bergman disks by the definition us(D(z.r)) :=

fD(:.r)

measures, ie: measures satisfying sup_.p /(D(z.7))/m(D(z.r} < nc, and VMO is the collection that

flw) - fr(:) i} dm(w). Then BA Oy is the collection of functions that induce “big-oh™ Carleson

induce “little-oh™ Carleson measures, ie: limsup,,,_, #s(D(z.7))/m(D(z.7) — 0.
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Proposition 4.11 Let f € L>(D). Then MO.(f)(z). the mean oscillation of f over

the Bergman disk D(z.r), is comparable to a calculation of Berezin symbols:
- PN AT TN e
20,00 = (IFF, ) - (R ) 7 ~ (e - 7))

Thus BMOg and V MOy are also characterized in terms of Berezin symbols by the fol-

2
)<

feVMOy = limsup (:?P(:) - ff(:),z) —0.

g

lowing:

f€ BM0Oy <« sup (i}?(:) - Eﬂ:)

From this. we can show that VM Oj generates compact Hankel operators. \We will

write MO(f)(z) for (;}P(:) - [f(:)|2) v

Theorem 7 (Zhu, 1987 [17]) Let u € L>~(D). Then H, and Hy are compact iff u €
VAIO)y.

Proof. We will use the result (4.14) to establish the theorem. but first we require some
identities. Let u € L*(D) and let & be the Berezin symbol of its Toeplitz operator. Let

r € (0.1) be arbitrary. Then

ii(u — @(2))k: |

((u = u(z))k:. (u — a(z))k:)
= (Tuks. k:) — G(2) ke uks) — U(2) (koo k:) + 172(2)1? (ko k2)

(4.15) uf(z) — [@(z)]2 = (MO(u)(2))>.

We will also need the following.

PHgzo..l = P(iog:— Puoy:)

= Puoy: - PPuoy;
= Puocyg.— Puog-(0)

= Puoyg;— Puog:(0)
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where the equality between the second and third lines comes from the fact that the
only analytic part of the anti-analytic function Pt o 2. is its constant P o -.(0). That
constant is the same as the constant Pio ;.(0) = Pu o ~-(0) which makes the final
equality.

We want to prove that MQO(u)(z) — 0 as |z — 1~. and therefore u € VMOQy. iff
the Berezin symbols H;H, and HgHy vanish on dD. Starting from equation (4.15). we

make a change of variable with the Mo6bius transformation . vielding

(u = @(2))k:ll® = lluo g — a(z)|?

(AO(u)(2))?

I

luoy: — P(ueg:) + P(uo ;) — Puoz:(0) + Puo z:(0) — a(=)]?

i
I'.’

Now uU(z) = uc£:(0) = (Tyop.kg- ko) = Puo 2:(0). so in fact.

|Huop.1 — PHgo .1 + Puo 2:(0) — (=)

2

(£16)  (MO()(2)* = [|Huos.l = PHaa 1| = | Huop 1 + | PHes T

It follows that

(MO(u)(2))? < |Huk:li* + |Hek{> = HiH, + HoHz

and

HiH, = |Hk.||> < (MO(u)(2))?.

Since MO, (u)(2) = MO.(T)(z). the last inequality also holds with u replaced by u prov-

ing the equivalence. O

4.2.3 Compact Hankel Operators on H*

The open question of the last section regarding an analagous “Theorem 2 for finite sums
of finite products of Toeplitz operators on the Hardy space would have consequences for

Hankel operators. just as it did on the Bergman space. Since the Toeplitz representation



CHAPTER 4. SPECIAL CASES OF THE COMPACTNESS CONDITION 50

HiH, = T, — Tg1,. equation (4.13). also holds for H? (with a similar proof). it is
possible that similar arguments for current characterizations of compact H, could be
reduced to Berezin symbol analysis. We can. however, as we did in the H#* Toeplitz case.
use a current theorem to prove that vanishing Berezin symbols do characterize compact
Hankel operators.

We will begin by observing that the Hardy space has BMO and VMO spaces as

well.

Definition 4.12 The following are the definitions for BAIO = BAMO(8D) and VA O =
VALO(ID). Let I be an arc length in dD. The average of f over [ is f; = ;(’-,—, J; f(8)d6.

(i). The collection of functions in L*(9D) of bounded mean oscillation. BAIO. are those
satisfving
1 i > 172
sup — ([ 710) - fr0) a0) " < <.
(ii). The collection of functions in BM O of vanishing mean oscillation, V AIO. are those
satisfying

. 1 a2
Jim s [170) - f1O) db < .

These spaces also have a characterization in terms of Berezin svmbols. [18. page 175.
183i:
f € BMO <— §28 (I_‘f.]dz(:) - if(:)lz) < .
feVMO < llifln_slu_p <i}?(:) — ‘f(:)l*') =0.
The collection of all analytic VMO functions is called VAIOA. The following lemma

is proven in [18].
Lemma 4.13 VAMOA is the Szégo projection of all continuous functions on §D.

\We can now prove the following.
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Theorem 8 Let u € L>(9D). Then the compact Hankel operators H, on H® are
characterized by

H, compact <+— H::\f{u vanishes on 9D.

Proof. As usual. only the proof of the backward direction is necessary. Considering u as
an L2(9D) function, we can split it into analytic and anti-analytic parts. uv = u; ~ 3.
where both u; are analytic. Now. by the definiton of H,. the analytic part u; does
not affect the behavior of the Hankel operator. We have that H, = Hyzz and H::?Iu =
H;—:HE' The calculation of AfO{u-s) carries over directly from the previous subsection

(equation (4.16) ), making

2

luai?(z) = [@() = || Hazaz LI® + || PHuzors ]

By the analyticity of us. this simplifies to
|lu2l*(2) — [@2()* = | Hagop. 111> = Hi Hus(2).

Therefore our hypothesis of vanishing H:{f'lu implies uy € VAMOA.

Using our lemma above. then. there is a continuous function g on dD such that
Pg = us. Now the Weierstrauss approximation theorem [7] generates a sequence of
polynomials p,(z.Z) that converge to g in the L>(dD) norm. From this. we can see that
Hg is the limit of a sequence of compact operators. For the polynomial p,(:.Z) has a
finite order r. and we have that (I — P)pzz™ =0 for all m > r. So. at most. there are r
independent vectors? in the range of Hxr. making the operator of finite rank. Further.

the operators Hp;; converge to Hy. since
|Hprf — Hzfll = (I = PYPa —9)fli
< |ipn =3l NSl

Thus Hj is compact. and. therefore. so is Hy = Hgz = Hp; = Hy. where the last in-

equality follows because (I — P)g is analytic and ignorable in a Hankel operator. C

*Specifically. the vectors {Hpzz™ :m =0.1....7 — 1}
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To close. we mention a Hardy space theorem parallel to Theorem 7. A proof may be

found in Chapter 9 of [18].

—

Theorem 9 (Sarason, 1975) Let u € L><(D). Then H, and Hy are compact iff u <

VMO.
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4.3 Composition Operators

Unlike our previous cases, no characterization of compact composition operators C, via
Berezin symbol methods has appeared in the literature. It is apparent from current
theory. however. that such an approach is possible. We will present in this section some
current conditions for the compactness of C,, on H> and L2 that are linked to Berezin

symbol calculations and Toeplitz operators.

4.3.1 Compact Composition operators on H?

We break our trend and consider the Hardy space case first. This imitates the original
consideration by Shapiro [12] and will clearly motivate the formulation for the Bergman
space that will follow in section 4.3.2.

To begin our study of composition operators we require an alternate norm for the
Hardy space and a few definitions from value distribution theory. For the rather con-

suming proofs of the results. we refer the reader to the appropriate literature.

Lemma 4.14 (Littlewood-Paley Identity, 1931) Let f.g be functions on the Hardy

space H*(D). Then the inner product {f.g) is equal to the calculation
(f-g9) = f(0)g(0) + (f.9))
where {(f.g)) is defined as a weighted integral over D of the derivatives:

(r.9) = [ g log;j?dm(w).

Proof. See {10]. O

Definition 4.15 Let ¢ : D — D be an analytic function. Then the Nevanlinna counting

function of & is the function NV, defined on D \ {o(0)} as

(4.17) No(2) =3 {‘%L rotw) = :}

w|
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and we assume that if the set on the right is empty. N, is given the value 0. Now.
since the analytic function o{(w) — = can have at most countably many roots. the number
of elements in the right hand set is countable and we will typically write this as an
indexed sum. Ny(z) = ¥°; —log|w;(z)|. where the w;(z) are the pre-images of = under
o. Considering that the w;(z)’s are the elements of the zero sequence for an analytic

function. the sum is also guaranteed to converge. (See [13].)

The importance of the Nevanlinna counting function is its appearance in the non-

bijective change of variable formula below.

Lemma 4.16 (Properties of N,) Let ¢ : D — D be a nonconstant analytic function.

Then the Nevanlinna function N, satisfies the following:

(i). (Change of Variable) Let g be analytic on D. Then

[ 190 0(w)l0'()  log T dm(w) = [ lg(2)] No(=) dmz).
D fw| D
Equally, taking g = (f')>.
(4.18) (foo.foo) = 2/ ()P N (2) dm).
D

(i1). (Littlewood’s Inequality, 1925) N, (z) < —logie(z)] where a = o(0).

(iii). (Sub-Mean-Value Property) N, is a limit of subharmonic functions and when
r < [e:z(o(0))[.

Nol2) = No o 7:(0) < 5 [ Noop(A) dm(A).
rD

po
(iv). N, € LI(D).

Proof. (i) - (iii) Equation (4.18) comes from comparing the definition of ((0.0)) to the

first change of variable formula and using the identity — Iogiw["2 = —2log |u|. For the
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rest. see Zhu [18, Chapter 10] for the proofs.
(iv) Substitute f(z) = z into equation (4.18):

(0.0) = / No(z)dm(z)

Since {|ol| . < 1 and {o.0) = ||lofl, — |0(0)] < {loli. — lo(0)], we have that N, is in L'.

and in fact |Nylf, <1/2. O

The Mobius disk automorphisms v = Agz,. being invertible., have the Nevanlinna
functions N,(z) = —logigza(z)| where a = ©(0) € D. According to Littlewood’s In-
equality. these are in fact the maximal ones.

The classical characterization of compact composition operators on the Hardy space

is the following, due to J. Shapiro {12].

Theorem 10 (Shapiro, 1987) Let o : D — D be analytic. Then the composition
operator C, on H2(D) is compact (ie: in K(H?)) iff

No(=z
lim ——O(—.)—,— = 0.
lzl—t- —log j=f

Proof. ( = ) Assume C, is compact. Then }[Cok:ll — 0 as {z] — 1~ since H? is
uniformly standard. Applying the Littlewood-Paley identity and the change of variable

formula to the norm calculation |[Cok |1 we have

[Coksl? = 1k:(0(0))]? + (Cok:. Cok:)

and
(Coks.Coks) = 2 [ [Ki(w)[* Nouw) dm(w)
2]z° / (1= z}?
= - No(w)dm(w)
1-|: /o |1 -zul o
by explicitly calculating £%. Recall that 2. = —(1 —|2}%)/(1==w)2. Making a substitution

and Mobius change of variable. the above becomes
2I 2

(Cokz. Cok:)) = 9

/ No(pa(w)) dm(w).
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Using the sub-mean value theorem over rI) as an estimate, where r = [2.(0(0))|. we get
DR

[~
!

1-|z%)

2
|

(Cok:. Cok:) > ( No(£:(0)) [=(o(0)]* .

We therefore have the inequality

(T_—:—!g—)-'\"o(z) ivz(e(0))”

which as the norm converges to zero is equivalent in the limit of || — 17 to

No(z
ol )I -0
lz{—1- —log|z|

(4.19) | Cok:l? >

(< ) Let € > 0. Let f, be a sequence weakly converging to zero in H>. This implies
that sup, || fall < oc and f, uniformly converges to zero on compact subsets of D (see {18.
page 189]). It follows from classical complex analysis that f], — 0 uniformly on compact
subsets too (see [7. page 151]). Now making a calculation with the Littlewood-Paley

identity and equation (4.18),
1Cofall® = 1a(0(O) +2 [ 1£2(2)* Nofz) dmlz).

2
The first term is simply !<f,1.1\"0(0,>! and so will converge to zero as n — oc since
the f.’s are a weak null sequence. Now pick an r € (0,1) such that by our hypothesis
No(2) < elog|1/z] for all |z] > r. Then dividing the integral above over the compact set

rD and the open annulus r < |2/ < 1. we can make the estimate

[ 17 Nofz) dm(z) + /KH([ F(2) P No(z) dm(=)

rD

< s;gif;(:)lzfrﬁ:vo(ndm(:)

+ sup —eld) £ (~ log |=1) dim(=)
reizi<t —loglz] Jrejzi<t
<e !l‘\.o”[ + € {(fn: fn))
for large enough n. Therefore C, is compact. O

As a Corollary to the Shapiro theorem. we can show that Berezin symbols behave

nicely for compact composition operators on H2.
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Corollary 4.17 Let ¢ : D — D be analytic. Then the compact composition operator C,
on H*(D) is compact iff CZC"O vanishes on 8D.

Proof. As usual, we are only required to prove that the vanishing Berezin symbol implies

C, is compact. Using Theorem 10. it is enough to show

_ . Ne(z)
I= P—I'Ill €iC sColz) =0= :lh—x-rll‘ - log |=| =0
Observe, however. from equation (4.19) that
2|z
CICo(2) = ICok: I 2 22 No(2) (0O

T (1-iz)

This gives the necessary implication. O

In our previous section we observed the characterization for Hankel operators on L3
stemmed from a result for Toeplitz operators. Things are not so different here. By making
the non-univalent change of variable (4.18). we introduce a multiplication function into
an integral, but the integral does not correspond to either L2 or H2. However. if we

write

(foofool = 2 [ F(a) Na(z)dm(2)

= 2 [ ireF S2k (- logizh dm()
= (ro(2)f. )
we see we would say C;C, = T+, in this ((-.-)) inner product. where 7, is defined
No(2)
7 — >0.
o) = Tlog 2

This demonstrates a connection between Hardy composition operators and Toeplitz op-
erators on weighted Bergman spaces. At least in an interpretive sense. the Shapiro
characterization is a result from a Berezin symbol theory for Toeplitz operators on a
weighted Bergman space. However further consideration of this goes well beyond the
scope of this paper. For a discussion about Berezin symbols and positive Toeplitz oper-

ators on weighted Bergman spaces, see [18. §6.4].
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4.3.2 Compact Composition operators on L2

The theory of the previous subsection is robust enough to transfer even to the Bergman
space. Shapiro generalized the classical definitions of the Littlewood-Paley identity and

Nevanlinna functior: in [12] in the following way. For brevity. we will omit all proof.

Lemma 4.18 (Littlewood-Paley Identity on L2) Let f.g be functions on the Hardy

space L2. Then the inner product (f.g) on L2 is equal to the calculation
(f-g) = f(0)g(0) + (f.g)

where (f, g)) is defined as a weighted integral over D of the derivatives:

(f9h = [ (w)gTwrg(log —)? dm(w).

el
Definition 4.19 Let © : D — D be an analytic function. Then the Bergman Nevan-

linna counting function of @ is the function N, » defined on D\ {o(0)} as
(4.20) Noa(z) = Y _(=logluw;()D)* @ of(u;(2)) ==

7
and we assume that N, 2 is 0 if there are no pre-images w;(z).

The Bergman Nevanlinna function also contains all the necessary change of variable

information.

Lemma 4.20 (Properties of N,3) Let o : D — D be a nonconstant analytic func-

tion. Then the Nevanlinna function N, o satisfies the following:
(i). (L? Change of Variable) Let g be analytic on D. Then
[ 190 0wl 10/(w)? 5(~2log fuwl)? dm(w) = 2 [ 1g(:)| Noa(z) dm(z).
Equally. taking g = |f')°.

(4.21) (foo. foo) =2 /D 1/(2)[2 Noa(=) dm(=)
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(ii). (L2 Littlewood’s Inequality) N, 2(z) < (—loglyza(2)])? where a = o(0).

(iii). (L2 Sub-Mean-Value Property) N, is a limit of subharmonic functions and
when r < |2:(0(0))].
- 1 R .
Noa(2) = Vo2 2 22(0) € 75 [ Nozoz2(A) dm(A).

(iv). Non c LY(D).

The characterization of compact composition operators on L2 using N, 2 is the fol-

lowing.

Theorem 11 (Shapiro) Let ¢ : D — D be analytic. Then the compact composition
operator C, on L2 is compact (ie: in K(L2)) iff

. N, -)(Z)
lim o2
lzl—1- (— log |=|

7 =0

The corollary for Theorem 11 follows the exact lines of the Hardy space consideration.

t

Corollary 4.21 Let ¢ : D — D be analytic. Then the compact composition operator
C. on L2 is compact iff CgZ‘o vanishes on OD iff 755 vanishes on OD. where 7,5 =

Noa(z)/(~log|z|)? is a symbol for a Toeplit: operator on a weighted Bergman space

(A3).
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Further Questions

We have demonstrated in this paper that. on a standard analytic Hilbert space. the
Berezin symbol of a bounded operator is related to operator compactness by several
kinds of boundary behavior. Expressing these conditions in the case of the Bergman

space, they are:
(i). A is compact iff AC ¢ Co(D) for all unitary U.

(ii). For a class of operators 7" defined by the condition of Lemma 4.2. 4 is compact
iff ”.4“1” — 0 as jz] — 1~ for all p € (1.x). This applies to all finite sums of
! p

finite products of Toeplitz operators.

(iif). For a class of operators V. which includes all Toeplitz. Hankel. and composition

operators. 4 is compact iff 4*4 vanishes on the boundary.

We record here some questions for further investigation:
| . o
A=l < x?)
lip

1. What are the contents of 7’7 (ie: for which operators 4 is sup.ep |
Are there any other necessary and sufficient conditions? Does the class T}, have any

meaning for operators on the Hardy space? If so. what are its contents and equivalent

characterizations?”

60
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2. What are the contents of the class V? (ie: for which operators 4 is 4 compact
iff A*4 vanishes on the boundary?) In the Hardy space class V= in particular. are
finite sums of finite products of Toeplitz operators in Vg2? What characterization is
there” Can every operator in V and Vy- be written as a Toeplitz operator on a weighted
Bergman space? Or an operator in the algebra generated by the Toeplitz operators on a
weighted Bergman space?

3. How do 7’ and V compare? If A £ T'. according to our proof of Theorem 2. then
A e K(LY) iff A4 converges to zero on dD. That is. 4 € V. We therefore observe that
7' C V. The reverse inclusion appears false. because composition operators are in V but
the Mébian unitary Uy = C-; of Example 4.4 is not included in 7’. How does a class
defined by the condition sup.cp ”(A‘A)Uﬂ“p < o¢ compare?

4. What connection is there between arbitrary unitary conjugates and the classes 7'

and V? What is it about the projection operator of Example 3.16 that excludes it from

V? Does the polar decomposition have some role to be considered?
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