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Al1 the veins and urteries proceed fmm the heart; and the 

the reason is that the muxirnum thickness that is found in thesc 

veins and arteries is at the junction that they make with the 

heart; and the farther away they are jrom the heart, the 

thinner they become and tliey are ciiikkd inio the nrare 

minute mmificutions.. . 
- Leonurdo de Vinci 

The heurt, consequently, is the beginning of life; the srrn of 

the microcosm, evrn us the sun in his turn might well be 

designated the heart of the world; for it is ihe heurt &y whose 

virtue und pulse the bluod is moved, perfected, mude upt to nourish, 

and is preservedfrorn corruption and coagulation; it is the house- 

hold divinity which, dischwging itsjùnction, nourishes, cherishes, 

quickens the whole body, und is indeed the foundation of life, the 

source of d l  action ... 
- Dr. William Harvey 

La coeiir a ses raisons que lu raison ne connuit point ... 
- Blaise Pascal 
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ABSTRACT 

Increased sympathetic activity, due to stressful events, leads to chronically 

increased release of catecholamines from the sympathetic nervous system, 

resulting in deleterious effects on cardiac cells. Oxidative stress, due to excessive 

catecholamine release, affects the calcium handling ability of cardiomyocytes. It is 

believed that excess catecholamines exert cardiotoxic effects primarily via binding 

to adrenoceptors and causing intracellular calcium overload. However, excess 

catecholarnines have additional influences that are linked to their chernical 

structure and sensitivity to oxidation. Catecholamines are known to undergo 

oxidation to generate free radicals, which are highly toxic, and in turn effect the 

calcium handling ability of cardiomyocytes and consequently, there occurs a 

massive influx of calcium into the myocardial ce11 to subsequently cause 

cardiomyopathy. This study was therefore undertaken to investigate the role of 

oxidative stress underlying the impaired ca2' homeostasis induced by excess 

catecholamines during catecholamine-induced cardiornypathy. By using 

isoproterenol, a synthetic catecholamine, which is known to produce cardiac 

hypertrophy and induce biphasic changes in calcium transport, we can study the 

ability of cardiomyocytes in handling the intracellular calcium during oxidative 

stress. 

Treatment of rats with a high dose of the synthetic catecholamine, 

isoproterenol, resulted in an increase in left ventricular end diastolic pressure and 



concomitant loss of contractile function (+ dP/dtmx). This was accompanied by 

increased myocardial caZ' and malondialdehyde content, as well as increased 

formation of conjugated dienes. Furthemore, these hearts showed depressions in 

the cardiac ce11 plasma membrane sarcolemma (SL) ATP and Na+-dependent ca2+ 

accumulation and ca2'-stimulated ATPase activity. These changes were 

significantly attenuated by pretreatment with Vitamin E. Likewise, a depressed 

cardiac performance. accompanied by an increase in myocardiül ca2+ content. and 

attenuated SL ATP and Na'odependent ca2+ uptake activities were seen in 

adrenochrome (a catecholamine oxidation product) perfused isolated rat hearts. 

By employing isoproterenol. adrenochrome, and vitamin E it is concluded that 

catecholarnine oxidation products affect ca2' transport mechanisms and therefore 

provides and additional mechanism leading to the occurrence of intracellular caZt 

overload during catecholarnine-induced cardiomyopathy. The protective effect of 

vitarnin E suggests the inclusion of antioxidants for the therapy of stress-induced 

heart disease. 
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1. INTRODUCTION 

Stress plays a prominent role in the genesis of heart disease whereby a significant 

increase in the levels of catecholamines such as epinephrine, norepinephrine, and 

dopamine were reported as the major elements in response to a variety of stresshl 

conditions (Seyle, 1977; Eliot, 1988). These catecholamines aiong with 

isoproterenol, a synthetic catecholamine are capable of producing consistent 

cardiac hypertrophy andor myocardial lesions when administered in large doses 

(Szakacs, 1958; Rona et al, 1959). These myocardial lesions are called 

"catecholamine-induced cardiomyopathy" and thus, the occurrence of excessive 

catecholamine release is often associated with stress and is known to induce 

cardiomyopaihy. Several mechanisms such as cardiovascular hemodynamic 

changes (Regan et al, 1972), in the sarcolemmal pertneability (Boutet et al, 1976; 

Todd et al, 1980), the oxidation products of catecholamines, and the products of 

catecholamine metabolism during the monoamine oxidase reaction, (Sobel et al, 

1966) have been thought as the pathogenesis on catecholamine-induced 

cardiomyopathy . 

The sympathetic nervous system provides a major mechanism for adapting the 

hearts performance to circulatory demands by varying heart rate, cardiac 

contractility, and peripheral vascular tone since the hormones of the 

sympathoadrenal system (epinephrine, norepinephrine, and dopamine) are the 

primary elements in mponse to severe stress and are therefore a requirement for 



stress adaptation. Thus, catecholamines are very important regulators of 

rnyocardial contractility and metabolism (Szakacs and Cannon, 1958). Low 

concentrations of catecholamines exert positive inotropic action on the 

myocardium and are therefore considered beneficial in regulating the heart 

function. On the other hand, not only high concentrations of catecholamines, cven 

low concentrations of catecholamines over a prolongeci period, produce 

deleterious effects on the cardiovascular system, including myocardial ce11 injury. 

Catecholamines injection in study animais produce a number of dramatic 

phannacological effects, including changes in hemodynamic factors such as 

peripheral resistance, arterial blood pressure, cardiac output, venous return and 

coronary flow, all of which increases heart rate and cardiac work, thereby causing 

increased myocardial oxygen demand. This in tum further releases amounts of 

catecholamine from the adrenergic nerve endings, producing alterations in lipid 

and carbohydrate metabolism to resulting in the accumulation of exogenous lipids 

in the heart. 

The oxidation of catecholamines results in the formation of aminochromes 

(such as adrenochrome; an oxidation product of epinephrine) and free radicals 

(Pearce, 1906). It has been suggested that free radicals are involved in the 

development of catecholamine-induced cardiotoxicity and produce abnomalities 

in heart function (Pearce, 1906; Ziegler, 1905). In this regard, it has been 

previously demonstrated that exogenous oxygen free radicals depressed the 

cardiac sarcolemmal membrane (SL) hIa'-ca2' exchange (Szakacs and Cannon, 



1958; (Rona et al, 1959) and ca2' - pump activities (Boutet et al, 1973) 

Depression of ~a ' -K '  ATPase, known to affect ca2' movements in the ceIl 

through ~ a ' - ~ a ~ '  exchange, has also been observed during treatrnent of the SL 

membrane with oxygen free radicals (Handforth, 1962). 

There is, however, increasing evidence that the catecholamine oxidation 

products may also be involved in catecholamine-induced myocardial cell damage 

(Handforth, 1962; Rona et al, 1973). In this regard, adrenochrome (a 

catecholamine oxidation product) has been reported to produce ce11 damage and 

contractile failure in the isolated perfised heart (Rona et al, 1963; Mamffo, 1967), 

and was suggested to affect ca2' movements in the myocardial ceIl due to its 

action on subcellular membranes, which could interfere with normal function of 

the heart cells (Ostadal, 1968). Preîreatment of rats with vitamin E, a well known 

fiee radical scavenger, has been shown to prevent the isoproterenol induced 

depression of SL ca2' transporting activities cells (Ostadal, 1968), this protective 

eifect was attributable to preclusion of catecholamine oxidation, as vitamin E has 

no adrenoceptor blocking properties. 

Although, it is generally believed that excess catecholamines cause an 

intracellular ca2' overload in the myocardial ce11 through the activation of SL ca2' 

channels mediated by P-adrenoceptor-cyclic AMP (Regan et al, 1972; Resenblum 

et al, 1965). Additional mechanisms, could involve aminochromes and their 

effects on ca2+ transport. The present study was tbereforc conducted to 

examine the bypothesis that 1) the deleterlous effets on cardiac 



performance o f  excessive catecholamines, are due to oxidation reaction, and 

their subsequent actions on SL ca2+ movements, 2) the changes in 

mechanical function and SL ca2+ transporting activities are attenuated by 

vitamin E. 



II. LITERATURE WVIEW 

A. Characteristics and implications of  catecholamines 

1. Sympathetic activity and plasma catechoiamines 

The sympathetic nervous system provides a major mechanism for adapting the 

performance of the heart to the circulatory demands by regulating heart rate, 

peripheral vascular tone, and cardiac contractility. The sympathetic influence of 

the heart muscle becomes impaired in a number of finctional States of the heart 

(Stiles et al, 1983; Brodde et al, 1986; Daly et al, 1990). The sympathetic activity 

can also effect the molecular structure of the heart muscle cell. A significant 

increase in the levels of catecholamines were reported in a vanety of stressfùl 

conditions, such as severe emotional stress, acute physiological stress, onset of 

chest pain, and acute MI (Somerville, 1973; Jequier et al, 1970). The sympathetic 

nervous system richly innervates the myocardium and its activity is modulated by 

a variety of controlling mechanisms, in order to fine tune the sympathetic nervous 

system under divers physiologic conditions, such as exercise and stress. 

However, these adaptations are not suited for conditions of heart failure, where 

they are thought to perhaps contribute toward excessive sympathetic drive and the 



clinical expression of heart failure (Francis and Cohn, 1986). 

a) Synthesis, release, and uptake of catecholamines 

Catecholamines such as epinephrine and norepinephrine are synihesized in the 

adrenal medulla whereas norepinephrine is also synthesized in the sympathetic 

nervous system. The uptake of catecholamines via nerve terminal is mediated by 

the axonal membrane within the sympathetic neuron or via extraneuronal 

processes (Axelrod and Weinshilboum, 1972). Local catecholamine release 

within the myocardium can be evoked by exocytotic release, elicited by increased 

cardiac efferent sympathetic nerve activity, and by local metabolic release? which 

is indcpendent of central sympathetic activity. On the other hand. the release of 

norepinephrine occurs via four ways: (a) resting secretion, (b) release of 

norepinephrine by nerve impulses, (c) release of norepinephrine by tyramine-like 

(a decarboxylation product of tyrosine, which may be converted to cresol and 

phenol; closely related stnicturally to epinephrine and norepinephrine, it has a 

similar but weaker action) drugs, and (d) release of norepinephrine by reserpine (a 

substance used as an antihypertensive agent). Catecholamines are powerful 

compounds which have very low endogenous circulating concentrations (5 IpM) 

resulting in early failures to measure endogenous levels of these compounds 

chemically. A catecholamine consists of a catechol nucleus and a short 



hydrocarbon chain that ends in an amine group. The three endogenous 

catecholamines identified in human plasma are norepinephrine, epinephrine, and 

dopamine. Norepinephrine is convened to epinephrine by phenylethanolamine-N- 

methyltransferase in the adrenal medulla. Whereas, dopamine is converted tu 

norepinephrine by the enzyme dopamine-P-hydroxylriçe in vesicles ai the 

sympathetic nerve endings, the adrenal medulla, and noradrenergic centers in the 

brain. 

Catecholamines are synthesized in neuronal tissue througli a series of 

biochemical steps that take place prirnarily in the cell body (Axelrod and 

Weinsiiilboum, 1972). Once synthesized, the catec holamines are transported to 

distal neuron varicosities where it is stored in large storage granules (75-90 nm) 

and smaller granules (45-55 nm) for release purposes. Release occun when a 

voltage-dependent ca2' channel in the presynaptic neuronal membrane opens, 

allowing cal' to enter the ceIl and diffuse into the cytoplasm. The binding of cale 

at a cytopiasmic sight triggers the exocytotic release of catecholamines (Katz, 

1971; Augustine et al, 1987). A single nerve impulse empties only a small 

fraction of the granule, rnaybe releasing only 300-400 catecholamine molecules 

per varicosity. However, each neuron may have up to 25,000 varicosities, thus 

allowing for substantial amplification of the signal. 



b) Plasma norepinephrine and epinephtine 

In the bloodstrearn NE originates prirnanly from nurnerous networks of 

sympathetic nerve endings that entrap blood vessels, especially artenoles, 

throughout the body and diffuses the parenchyma of the heart. viscera. and 

endocrine glands. Most of the endogenously released NE does not reach the 

bloodstream, since the major route of inactivation is by reuptake into the 

sympathetic nerve terminals. Difhsion of NE from the synaptic clefts into the 

circulation varies with the cleft width. Only a small proportion of NE that is 

released from the sympathetic nerve endings actually reaches the circulation, 

while the majority of it is "recycled"/removed back into the axonal cytoplasm via 

neuronal reuptake (a process called uptake-1). The NE entry rate into the 

bloodstream could increase if a patient was taking a dmg that blocks uptake- l (ex. 

Tricyclic antidepressant) or if the disease process involved defective uptake- 1, 

when the rate of release From the nerve endings was normal. For a given amount 

of sympathetic nerve action, the NE has the possibility to modulate the rate of 

transmitter release. Furtherrnore, the contribution of plasma NE levels fiom the 

adrenomedullary may change dunng stress responses, even though plasma NE is 

derived to only a v e r -  small amount fiom the adrenal medulla. 

Plasma levels of catecholamines are determined by the rate of removal 

(clearance) of the substrate fiom the bloodstream and the rate of release (spillover) 



of the substance into the bloodstream. This is  important for NE because of its 

continuous release into, and rapid removal from, the plasma. Since only a very 

srnall percentage of the cardiac output is distributed to the adrenal gland, the 

contribution of the adrenal to plasma NE in arterial blood is small in humans. The 

contribution of the heart to arterial plasma NE is also small because of the 

relatively small arteriovenous increment NE (due to the fact that NE spillover rate 

exceeds the rate of NE removal) and the relatively small proportion of the cardiac 

output which flows to the heart. The kidneys, which receive approximately 1/5 of 

the cardiac ouput, and skeletal muscles both considerably contribute to arterial NE 

plasma levels. Since most of the NE is taken back up into the nerve (uptake-i), 

only a small fraction engages the effector organ receptor or exits into the plasma. 

The levels of Eph in the bloodstream are low, with normal values as little as 

5 pg/ml. Plasma Eph levels generally reflect adrenomedullary activity since Eph 

i s  secreted directly into the bloodstream. Epinephrine can be takcn up from the 

bloodstream, then stored and subsequently released during sympathetic 

stimulation in sympathetically innervated organs. During hypoglycemia, 

hemorrhage, and hypoxia, the adrenomedullary activity increases markedly and 

therefore plasma Eph concentration increases to a much greater extent that do NE 

concentrations. 



2. Cardiotoxicity of catecholamines 

Circulating levels of catecholamines are increased dramatically under stresshl 

conditions and these hormones are generally considered responsible for the 

development of stress-associated cardiomyopathy (Rona et al, 1959). Low 

concentrations of circulating catecholamines exert positive inotropic action on the 

myocardium and thus are considered beneticial in regulating the heart function. 

On the other hand, high concentrations of these hormones over a prolonged pcriod 

produce deleterious effects on the cardiovascular system. For many years it has 

been known that Eph and NE can cause cardiac lesions when administered in large 

doses (Pearce, 1906). In various studies, enhanced circulating levels of 

catecholmaines have been reported in patients with acute MI, re flecting systemic 

sympathetic activation (Gazes et al, 1959; McDonald, 1972). Enhanced plasma 

catecholamines can be seen after 2 min of regional myocardial ischemia, as has 

been demonstrated during percutaneious transluminal coronary angioplasty 

(PTCA) in patients with coronary heart disease (Richardt et al, 1990). 

In the clinical settings, myocardial lesions similiar to those produced by 

catecholamine injections heve been reported in patients with pheochromocytorna 

(Kline, 1961), subarachnoid hemorrhage and various other intracranial lesions 

(Greenhoot and Reichenbach, 1969) (Reichenbach and Benditt, 1970). These 

studies not only demonstrate that catecholamines are capable of producing 



myocardial necrosis but also suggest that myocardial ce11 damage seen in patients 

may be the result of high levels of circulating catecholamines for a prolonged 

period. However, revcrsible catecholamine-induced cardiomyopaihy has also 

been reported (Wood et al, 199 1 ; Elian et al, 1993; Powers et al, 1994). 

The lesions caused by Eph, NE, and ISO were qualitatively similiar, but the 

lesions which were seen after isoproterenol treatment were more severe than those 

produced by Eph or NE (Chappel et al, 1959), whereby ISO was found to be 29 to 

72 times more potent in producing myocardial lesions of equal severity than Eph 

or NE. With respect to Eph, not only relatively high dose levels but also 

continuous infusion of Eph for 120 to 289 hours at a rate considered to be well 

below the maximum physiological rate of secretion by the adrenal gland, could 

cause small endocardial lesions in the left ventricle of dog hearts (Samson et al, 

1932). With respect to prolonged NE infusion, it was found that NE caused focal 

myocarditis in association with subendocardial and subepicardial hemorrhages 

(Hackel and Catchpole, 1958). A series of experiments with both Eph and NE 

proved that Eph, NE, or both caused extensive lesions of the myocardium (Maling 

and Highman, 1958). The duration of infusion appears to be an important factor in 

determining whether a particular dose of NE is likely to produce myocardial 

lesions, since it was found that dosages considered physiologic and harmless, if 

administered for short periods of time, might become lethal after prolonged 

infusion (Szakacs and Mehlman, 1960). In addition to myocardial ceIl damage, 



NE was also demonstrated to produce derangements of the metabolic processes in 

the heart. For example, a fatty degeneration of the myocardium under the 

influence of high doses of NE was reported (Maling and Highman, 1958). In 

subsequent studics similiarities were found in heart triglyceride content and NE as 

well as following myocardial infarction produced by coronary artery occlusion 

(Highman et al, 1959; Maling et al, 1960). 

It was discovered that small fiaction of the median lethal dose of 

isoproterenol could cause severe myocardial necrosis (Rona et a11959; Chappe1 et 

al, 1959). Although the LCSo of ISO in rats was reported to be 680 mgkg, doses 

as low as 0.02 mgkg produced microscopie focal necrotic lesions. The severity of 

myocardial damage was closely related to the dosage of ISO used and thus 

isoproterenol-induced myocardial lesions were generally found to be localized in 

the apex and left ventncular subendocardium, being observed less fiequently in 

the papillary muscle and right ventricle. In 1959, the synthetic catecholamine ISO 

was discovered to produce massive "infarct-like" myocardial necrosis, apical 

lesions, and disseminated focal necrosis in experimental animais (Rona et al, 

1959), however, these lesions were fiequently fatal and the median lethal dosage 

was much lower. The close correlation of ISO dose to the degree of severity of 

myocardial necrosis ofirered standardized technique for studying the effect of 

various protective and aggrevating factors on cardiac muscle cell injury (Chappe1 

et al, 1959). On one hand, ISO infusion resulted in a decrease of coronary 



endothelial transport of horseradish peroxidase while Eph and NE inhsion 

resulted in an overall improvement in coronary blood flow and myocardial 

perfusion (Rona et al, 198 1). 

a) Catecholamine and myocardial disease and cardiomyopathy 

In the cardiornyopathic hamster, catechoimaine stimulation appears to be 

fundamental to the pathogenesis of the cardiomyopathy (Sole and Liew, 1988). 

This mode1 exhibits myocyte hypertrophy, myocytolytic or contraction-band 

necrosis, and fibrosis - changes characteristic of catecholamine damage, 

reperfûsion damage, or both (Bishop et al, 1979). In some perspectives, the 

catecholamine-induced myocardial injury is a classical example of 'stress 

cardiornyopathy', which is also used to denote sudden unexplained cases of human 

death elicited by extreme stresshl life circumstances (Cebelin and Hirsch, 1980) 

(Selye, 1970). In the majority of autopsy cases, characteristic myocardial changes 

are found resembling those occurring after catecholamine administration 

(Reichenbach et al, 1977). In addition to hypoxia, coronary microcirculatory 

effect altered membrane permeability, myofilament overstimulation, high energy 

phosphate deficiency and finally ca2+ overload, several other mechanism may 

contribute to the development of myocardial injury induced by the various 

endogenous and exogenous catecholamines (Syrnes et al, 1977). These are 



mobilization of free fatty acids (Kjekshus, 1975), increased intracellular acidity 

(Mosinger et al, 1977) and semm fatty acid levels (Rosenblum et al, 1965), 

increased platelet aggregation (Hoak et al, 1969), changes in diet (Balazs et al, 

1972), changes of intermediary cardiac muscle cell metabolism (Balazs et al, 

1972 .), inefficient oxygen utilization (Raab et al, l962), defects of endogenous 

catecholamine storage (Mueller and Axwelrod, 1968), increased turnover of 

cardiac NE (Mueller and Thoenen, 1978), and increased myocardial CAMP 

content (Blaiklock et al, 1978), and mechanical or dynamic hiderance of coronary 

circulation (Handforth, 1962). 

Sympathetic stimulation and catecholamine release are particularly 

important in the presence of impaired coronary artery dilatability (Raab et al, 

1962). The result is myocardial vulnerability which in tum evokes hrther changes 

in electrolyte balance and myocardial metabolism. In humans subjected to stress, 

it is possible to hypothesize that the release of excessive catecholamine amounts is 

responsible for the characteristic myocardial pathology (Cebelin and Hirsch, 

1980.). Under physiological conditions, catecholamines have been demonstrated 

to increase heart hinction by binding to the P-adrenergic receptor, by activating the 

adenylate cyclase system, and by increasing calcium fluxes across the 

sarcolemmal membrane (Dhalla et al, 1977). On the contrary, excessive amounts 

of circulating catecholamines are known to produce myocardial ce11 damage, 

which has been shown to be associated with a massive influx of calcium leading to 



intracellular calcium ovcrload and is believed to be due to the interaction of the 

hormone with adrenergic receptors and activation of the adenylate cyclase system 

(Dhalla et al, 1982.). In acute MI, Plasma catecholamine levels have been 

demonstrated to be inversely proportional to left ventricular ejection fraction 

(Schomig et al, 1985). The highest plasma catecholamine concentrations are 

observed in patients with pulrnonary edema or cardiogenic shock (Schomig et al, 

1985). Therefore, systemic concentrations of catecholamines reflect the extent of 

myocardial infarction and the hemodynamic alterations evoked by acute MI. The 

plasma concentrations of catecholamines have been related to the occurrence of 

ventricular arrhythmias in myocardial infarction (Videbaek et al, 1972). Low 

doses of catecholamines have also been shown to stimulate myocardial 

hypertrophy (Ostman-Smith, 198 1). A study conducted demonstrating that after 

three months of NE infusion, the right and left ventricles increased in weight, the 

left ventricular ejection fraction increase, ce11 length and ce11 size increased in al1 

areas of the ventricle (Le. base and apex), the cells hypertrophied more at the base 

(left ventricular fiee wall) than at the apex, and the ce11 size paralleled the increase 

in ventricular weight (Laks et al, 1973). Thus, norepinephrine is considered a 

myocardial cellular hypertrophying homone that results in an increase in 

ventricular function and an increase in myocardial ce11 volume to produce 

physiologic hypertrophy. Therefore, norepinephrine produced ventricular 

hypertrophy via direct effect on the myocardium and thus plays a central role in 

the hypemophy process. It is important to note that catecholamines in this respect 



is synonymously used for NE since the other natural catecholamines, Eph and 

dopamine, constitute only a minor fraction (2-5%) of the total catecholamines. 

Alterations of membrane permeability following catecholamine administration has 

been considered one of the important mechanisms involved in catecholamine 

cardiotoxicity (Rona, 1985). The accumulation of oxidation products of 

catecholamines in myocardium could directly or indirectly, acting by themselves 

or in conjunction with other effects of catecholamines, initiate processes leading to 

myocardial necrosis (Yates et al, 198 1). In fact, adrenochrome has been shown to 

impair the contractile function of the heart and this deleterious action is clearly a 

dose- and time-dependent phenornenon (Singal et al, 1982). The toxic influences 

of adrenochrome on the myocardium support the participation of this oxidation 

product in the pathogenesis of catecholamine-induced cardiomyopathy. It appears 

that catecholarnine-induced cardiomyopathy must be considered to be of a mixed 

pathogenesis, involving both direct actions on the myocardium as well as indirect 

actions secondary to the vascular and hemodynamic effects. 

b) Protective effects of vitamin E 

Vitamin E is a known as a lipid soluble antioxidant which has been shown to 

prevent arrhythmias in rats induced by a pliarmacological dose of isoproterenol 

(Singal et al, 1982; Singal et al, 1996). Its protective effect was also accompanied 



by the maintenance of ce11 structure and high-energy phosphate pools of the 

myocardiiim (Singal et al, 1982). Furthemore, the increase in lipid peroxide 

activity in response to isoproterenol treatment diminishes in vitamin E protected 

animals (Singal et al, 1983). Vitamin E is known to neutralize superoxide radicals 

as well as hydroxyl radicals, both of which are extremely cytotoxic radical species 

produced during fiee radical chah reactions (Nishkimi et al, 1980; Halliwell 

1994). Vitamin E has also been suggested to play a direct role in membrane 

permeability and stability (Lucy, 1972). Pretreatrnent of rats with vitamin E was 

found to prevent the isoproterenol-induced arrhythmias, lipid peroxidation, 

myocardial cell damage and loss of high energy phosphates, whereas vitamin E 

deficiency was shown to increase the sensitivity of animals to the cardiotoxic 

actions of isoproterenol (Singal et al, 1985; Singal et al, 1982; Singal et al, 1983). 

Exercise training is considered to increase the antioxidant reserve and is reported 

to decrease the myocardial ce11 damage due to catecholamines (Rupp et al, 1983; 

Mitova et al, 1983). The presence of antioxidants such as vitamin E, cysteine or 

superoxide dismutase may promote the synthesis of PGIz which is a powerful 

vasodilator (Panganamala et al, 1982). Furthemore, the PG12 level in vitamin E 

deficient rats has been found to be low and in diet supplemented with vitamin E 

can restore the PGI, levels (Panganamala and Comwell, 1982). Vitamin E is also 

known to diminish arachidonic acid release form membrane lipids, and 

consequently lowers thromboxane (a vasoconstrictor) biosynthesis (Panganamala 

and Comwell, 1982). It i s  conceivable that the increase in PGJz and decrease in 



thromboxane synthesis induced by vitamin E may play a complementary role in 

maintaining an adequate coronary supply to the heart. Thus the above studies with 

various vitamin E concentrations reduced the incidence of epinephnne-induced 

arrhythmias suggesting a role of free radicals in the pathogenesis of 

catecholamine-induced arrthymias and that antioxidants have a beneficial effect in 

preventing arrhythmias due to excessive amounts of circulating catecholarnines 

(Singal et al., 1982). It should be further noted that an intriguing association 

between a high vitamin E intake and a lower risk for coronary heart disease has 

been obsewed (Rimm et al, 1993). 

During vitamin E supplementation in a study of healthy adults, resistance of 

LDL to oxidation was also significantly higher (Dieber-Rotheneder et al, 199 1). 

The effect of vitamin E supplementation on oxidative susceptibility of LDL has 

also been evaluated in patients with diabetes, who are at increased risk for 

development of coronary heart disease (Reaven et al, 1995). A number of animal 

studies have evaluated the protective effects of vitamin E on the development and 

progression of atherosclerosis. When rabbits were fed a high fat diet containing 

coconut oil and cholesterol, elevated concentrations of senim total lipids, total 

choles terol, mgl ycerides, lipoproteins and 1 ipid peroxides were markedl y 

suppressed by supplementation with vitamin E (Wojcicki et al, 1991). Plasma 

levels of total cholesterol, LDL cholesterol and triglycerides were 20.30% lower 

in the vitamin E-supplemented group compared to the control groups (Willingham 



et al, 1993). Blood and aortic tissue levels of MDA (an index of lipid 

peroxidation) increased in unsupplemented rabbits on a high cholesterol diet but 

decreased in vitamin E-supplemented rabbits on high cholesterol diets. 

Atherosclerotic plaques were significantly smaller in the cholesterol-fed rabbits on 

vitamin E supplementation than in unsupplemented rabbits (Prasad et al, 1993). In 

a study that investigated the effects of vitamin E pretreatment on restenosis after 

angioplasty in established atherosclerotic lesions in rabbits, vitamin E pretreatment 

significantly inhibited restenosis (Lafont et al, 1995). Women who took vitamin E 

supplements for more than two years had a 41% Iower reiative risk of major 

coronary disease and thus suggests that vitamin E supplements may decrease heart 

disease risk (Stampfer et al, 1993). 

B. Pathophysiology of catecholamine-induced cardiomyopathy: 

1 . C haracteristics of catecholamine-induced cardiomyopathy 

a) Ultrastructural and biochemical changes: 

Studies conducted on the development and healing of catecholamine-induced 

myocardial lesion leading to the production of necrosis indicate ultrastuctural and 



biochemical changes following isoproterenol injections (Reichenbach et al 1970; 

Csapa et al, 1982; Kutsuna, 1972; Ferrans et al, 1964). The tubular elements and 

mitochondria commence swelling vcry soon after catecholmaine injection and 

within minutes myofilament disonentation, irregular sarcomere length, and 

regional rupture of myofilaments, and slight dilatation of SR is evident. Within an 

hour afier injection, there also occurs a multitude of damage to the contractile 

filaments including fusion of sarcomeres into confluent masses, many lipid 

droplets, as well as swelling and disruption of the transverse tubules (Bloom and 

Cancilla, 1969; Csapa et al, 1972; Ferrans et al, 1969). Over the next few hours 

al1 the above changes becomc severe and distributed throughout the myocardium 

whereby extensive inflammation, myocytoiysis, interstitial and intercellular 

edema, and hemiation of intercellular discs become evident. The effects of NE, 

Eph , and isoproterenol are qualitatively the same at the cellular level (Ferrans et 

al, 1972; Lehr, 1 WZ), except that glycogen depletion (Ferrans et al, 1970) and fat 

deposition (Lehr et al, 1969) were significantly prominent with epinephrine thnn 

with isoproterenol or NE. 

Wi th respect to biochemical changes involved following catecholamine 

administration, the coronary blood flow, cardiac respiratory quotient, and 

myocardial oxygen uptake were increased (Regan et al, 1966). Blood content 

levels of glucose, triglycerides and nonesterified fatty acids, GOT, GPT, LDH, and 

CP were markedly elevated, without any change in blood cholestero! levels, 



during the acute phase of necrotization following catecholamine administration 

(Wexler et al, 1968; Wexler et al, 1972; Zbinden and Moe, 1969; Wexler, 1970). 

While no significant increase in the free fatty acid nor phospholipid content 

following epinephrine infusion was evident in the left ventricle, the triglyceride 

content was significantly elevated in every layer of the LV wall predominantly in 

the endocardium (Regan et al, 1972). Furthermore, the increased TG uptake i s  

consistent with the appearance of many lipid droplets seen in histological and 

ultrastructural studies (Regan et al, 1968). Following isoproterenol injection, the 

total cardiac AST(G0T) activity decreased, correlating with the occurrence and 

severity of macroscopic lesions (Wenzel and Chau, 1 966). Furthermore, the total 

cardiac LDH activity decreased as well apparently due to a decrease in the ratio of 

H to M isoenzymes, which is evident by the increase in plasma transaminases and 

LDH concentrations (Wenzel and Lyon, 1967). It has been reported that a single, 

large subcutaneous dose of NE, Eph, or isoproterenol produced uncoupling of 

oxidative phosphorylation in rat heart mitochondria (Sobel et al, 1966), although 

these catecholamines in vitro did not effect normal rat heart mitochondria. 

Impairment in the process of energy production due to high doses of 

catecholamines resuit in lowering of the energy state of the myocardium 

(Fleckenstein et al, 1974). 

b) Histological and histochernical changes 



Histological changes on catecholamine-induced cardiomyopütliy are gencrally 

characterized by 1 )  degencration and necrosis of myocardial fiber, 2) 

accumulation of inflammatory cells (leukocyte, histolocyte, plasnia cells, etc.), 3) 

interstitial edema, 4) lipid droplet (Le. fat deposition), and 5)  endocardial 

hemorrhage upon isoproterenol injections (Rona et al, 1959; Rona et al, 1963; 

Maruffo, 1967; Rona et ai, 1959; Ferrans et al. 1969, 1972; Schenk and Moss. 

1966; Khullar et al, 1989). Following epinephrine or NE injections, the interstitial 

edema and inflammation are much more prominent even though isoproterenol is 

more potent in producing cellular damage (Rosenblum et al, 1965; Ferrans et al, 

1969). Accordingly, it has been suggested that edema and inflammation result 

from mechanisms different from those causing necrotic tissue damage during the 

development of catecholamine-induced cardiomyopathy. Within 12 to 24 hours, 

myocardial tissue damage is readily apparent as well as segmentation. 

fragmentation, and hyalinization of fibers, swelling, and fat deposition is evident. 

Subsequent to administration of doses of catecholamine, the histochemical 

alterations involve a marked loss of glycogcn (Fenans et al, 1964; Ferrans et al, 

1970). A biphasic change in the activity of the oxidative enzymes are produced 

with al1 three catecholarnines. A rapid incrcase in the activity of the enzymes is 

evident immediately after catecholamine injection which in tum i s  followed by a 

gradua1 decline in activity. The decline in oxidativc enzyme activity of certain 



fibers progresses until necrosis is evident and eventually complete loss of activity 

occurs. Cytochrome oxidate activity decreases only when evidence of early 

necrosis is seen. Furthemore, al1 three agents cause a slight increase in the 

staining of cytoplasm for lysosomal esterase activity (Lehr et al, 1969), as well as 

increase in lipid droplet on norepinephrine-induced cardiomyopathy (Khuller et al, 

1989). 

c) Electrolyte and membrane changes 

Following catecholamine administration, the earliest and most prominent changes 

in tissue ions content were found to be a decrease in both magnesium and 

phosphate from the left ventricle (Lehr, 1966). Thus serum electrolyte 

measurements appear to confimi the loss of these two electrolytes and the uptake 

of calcium as early important events in the etiology of catecholamine induced 

necrosis. Measurements of electrolyte semm levels three hours after isoproterenol 

injection have revealed an increase of serum magnesium and a decrease of calcium 

and sodium levels and by 24 hours al1 serum electrolyte levels retumed to nomal 

except calcium, which remained slightly low (Regain et al, 1966). In studies 

concemed with the cardiotoxicity of epinephrine both an increase and a decrease 

in the potassium content of the myocardium have been reported and was hirther 

validated by reports indicating that NE caused a dose dependent uptake of 



potassium (Lehr et al, 1969; Regan et al, 1972; Stanton et al, 1967). Since both net 

increases and decreases of myocardial and semm potassium have been found at 

different times, it is possible that potassium may be taken up by more or less 

undamaged myocardial cells while it is being released from fibers undergoing 

necrotic changes. 

Alterations of membrane permeability following catecholamine 

administration has been considered one of the important mechanisms involved in 

catecholamine cardiotoxicity (Rona, 1985). The different membrane systerns such 

as sarcolemma, SR, and mitochondria are considered to determine the status of 

heart function in health and disease due to their ability to regulate cal'- 

movements in the myocardial ce11 (Dhalla et al, 1977; Dhalla et al, 1978; Dhalla et 

al, 1982; Dhalla et al, 1991). Accordingly, upon treatment of animals with high 

doses of isoproterenol, alterations in SR, mitochondria and sarcolemmal 

membranes were observed, suggesting that excessive amounts of circulating 

catecholamine are responsible for alteration of membrane permeability which in 

turn can be conceived to result in myocardial ceIl damage (Fedelesova et al, 1974; 

Varley and Dhalla, 1973). Fleckenstein et al (1973) found that the isoproterenol- 

induced necrosis and decline in high energy phosphates were associated with a 6- 

to 7-fold increase in the radioactive ca2' uptake and a doubling of net myocardial 

ca2' content. The activities of sarcolemmal ~ a ~ ' - ~ u r n ~  (ATP-dependent ca2'- 

uptake and ca2'-stimulated ATPase), which is concemed with the removal of ca2' 



from the cytoplasm, were increased at 3 hr and decreased at 24 hr of isoproterenol 

injection (Dhalla et al, 1983; Makino et al, 1985; Panagia et al, 1985). On the 

contrary, ~a+-dependent ca2'-uptake was decreased. The sarcolemmal ATP- 

independent ca2' binding, which is considered to reflect the status of superficial 

stores of caZ' at the ce11 membrane were increased. The early increase in 

sarcolemmal ~ a ~ ' - ~ u r n ~  rnay help the ceIl to remove cal' whereas deprcssed Na'- 

ca2' cxchange can been seen to contribute towards the occurrence of intracellular 

Ch2+-overload. Likewise, an increase in the entry of cal' from the elevated 

sarcolemmal superficial ca2' stores as well as depressed sarcolemmal ~ a ~ ' - ~ u r n ~  

may contribute towards the occurrence of intracellular ca2' overload during the 

late stage of catecholamine-induced cardiomyopathy. Thus it was postulated that 

catecholamine-induced intracellular cal'-overload initiates a high energy 

phosphate deficiency due to excessive activation of myofibrillar ~ a ' * - ~ ~ ~ a s e s  

and by impairing mitochondrial oxidative phosphorylation. When the high energy 

phosphate exhaustion reaches a critical level, fiber necrosis results. 

Relaxation of the cardiac muscle is primarily determined by the ~ a ~ ' - ~ u r n ~  

located in the SR whereas the interaction of ca2' with myofibrils determines the 

ability of myocardium to contract. The mitochondria, which is mainly concemed 

with ATP production, are also known to accumulate ca2' in order to lower the 

intracellular ca2+ concentration under pathological conditions (Dhalla et al, 1983; 

Panagia et al, 1985; Dhalla et al, 1987). However, from these studies, indications 



of biphasic changes in the SR ~ a ~ ' - ~ u r n ~  activities, increase in mitochondrial ca2' 

uptake, and decreased myofibrillar M ~ ~ '  ATPase activity were present within 24 

hrs after isoproterenol injections. Time-dependent changes in the adrenergic 

receptor mechanisms, which are also concemed with the regulation of ca2' 

movements in myocardium, were also seen d u h g  the development of 

catecholamine-induced cardiomyopathy (Corder et al, 1984), especially the 

number of P-adrenergic receptors was decreased upon isoproterenol injection. 

Thus, in this regard it should be noted that subcellular rnechanisms concemed with 

the regulation of ca2' movements are altered in catecholamine-induced 

cardiomyopathy. Overall, it appears that some of the changes in heart membranes 

are adaptive in nature whereas others contributc towards the pathogenesis of 

myocardial ceIl damage and contractile dysfbnction. The early increase in 

sarcolernmal and SR ~ a ' ' - ~ u r n ~  mechanisms as well as late changes in 

mitochondrial ca2' uptake seems to help the myocardial cell in lowering the 

intracellular ca2' concentration. On the other hand, the early depression in 

sarcolernmal ~ a + - ~ a ~ '  exchange and late decrcase in sarcolernmal and SR ca2'- 

purnp may lead to the development of intracellular ca2'-overload. This change 

may result in activation of other mechanisms for the dismption of the myocardial 

cell due to high levels of circulating catecholamines (Roman et al, 1985). 

2. Mechanisms involved in catecholamine-induced cardiomyopathy 



The majority of the factors found to influence the severity of catecholaiiiine- 

induced lesions can be understood in tems of their effects on hcmodyiiamic 

factors, delivery of oxygen to the myocardium, elcctrolyte balance, or the 

metabolism of calcium and lipids. It would thus appear that hernodynamic and 

coronary vascular factors contribute significantly to the severity of myocardial 

damage following catecholamine administration, but that some primary 

pathogenic mechanism acting directly on the myocardial ceIl is probably involved 

as well. Furthemore, exhaustion of high-energy phosphate store and disruption of 

electrolyte balance are crucial events in the etiology of irreversible ceIl damage. 

Although rnetabolism of lipid and calcium are involved the nature of the direct 

pathogenic influence following injection of catecholamines is yet unknown. 

a) Metabolic effects 

Catecholamine-induced myocardial necrosis must be considered to be a mixed 

pathogenesis involving both direct metabolic actions on the fibers as well as 

factors secondary to vascular and hemodynamic effects (Bajusz, 1975). The 

increased O2 consumption caused by catecholamines produced a relative hypoxia 

if coronary flow could not be sufficiently increased yet, the increased Oz 



consumption of the intact heart following administration of Eph or NE is 

secondary to the increased contractility (Lee and Yu, 1964). It was found that the 

increase of O2 consumption of the potassium-arrested lieart caused by 

catecholamines was 5.20% of that found in the beating heart, concluding that 

most, but not all, of the increased O2 consurnption was secondary to hemodynamic 

alterations and increased cardiac work (Klocke et al, 1965). In a similar 

cornparison of the effects of Eph on Oz consumption in beating hearts was 

accounted for by a metabolic effect dissociable fiom increased work (Challoner 

and Steinberg, 1965). The excessive catecholamine concentrations cause 

"oxygen-wasting" (i .e. increased oxygen consumption without inotropic effect) 

due to an oxidation product of epinephrine, called adrenochrorne, which has been 

shown to uncouple mitochondria (Park et al, 1956). 

I t  was found that the P/O ratio of heart mitochondria by NE, Eph, or ISO 

was significantly low (Sobel et al, 1966) and that adrenochrome or one of its 

metabolites might be responsible for the observed effects. The heart mitochondria 

f o m  catecholamine treated rats were uncoupled and thus fkee fatty acid levels of 

the mitochondria can be determined since fne fatty acids are known to uncouple 

mitochondria (Sobel B, et al., 1966). There are no differences in rnitochondtial 

free fatty acid content or composition found and it was thus concluded that the 

observed uncoupling was not due to accumulation of fatty acids. However, it was 

found that inhibition of lipolysis by nicotinic acid, beta pyridyla carbinol, or high 



plasma glucose concentrations during infusion of isoproterenol could substantially 

d u c e  the increase in myocardial oxygen consumption, possibly by preventing an 

uncoupling action of high intracellular concentrations of free fatty acid in the heart 

following catecholamine administration (Mjos, 197 1). It was further suggested 

that metabolism of free fatty acids in some way aggravated the cardiotoxic effects 

of catecholamines (Mjos, 1971) as well as the previous correlation of severity of 

lesions with the amount of body fat (Kahn et al, 1969). 

It has been suggested that change in myocardial electrolyte content initiated by 

altered ionic transfer ability of rnyocardial cells at the plasma membrane and 

subcellular membrane sites contribute to irrevenible failure of cell function (Lehr, 

1969). The most critical in the pathogenesis of irreversible damage was the loss of 

cellular magnesium (Lehr et al, 1972). Magnesium is reported to cause a decrease 

in the respiration supported uptake of calcium by isolated heart mitochondria and 

could thus be important in regulating mitochondrial function in terms of oxidative 

phosphorylation versus calcium uptake (Sordahl and Sliver, 1975). Similarly 

argued is the derangement of myocardial electrolyte balance, especially the loss of 

K' and M ~ ~ '  ions fiom the myocardium, that is the central mechanism in a variety 

of cardiomyopathies (Raab, 1969). But this derangement of electrolyte balance 

was considered to be secondary to an inadequate supply of energy for 

transmembrane ion pumps required for maintenance of electrolyte equilibrium 

which occurs with oxygen deficiency or impaind energy production. It has also 



been suggested that electrolyte shifts are an important component in the 

development of irreversible damage produced by both direct and indirect 

pathogenic mechanisms, and that myocardial resistance is related to the ability of 

the heart to maintain a normal electrolyte balance when Facing potentially 

cardiotoxic episodes (Bajusz, 1 975). 

It was found that the isoproterenol-induced necrosis and decline in high 

energy phosphates wete associated with a 6-7 fold increase in the rate of 

radioactive calcium uptake and a doubling of net myocardial calcium content 

(Fleckenstein et al, 1974), suggesting that isoproterenol causes a greatly increased 

influx of calcium which overloads the fiber. It was postulated that the intracellular 

calcium overload initiates a high energy phosphate deficiency by excessive 

activation of ca2'-dependent intracellular ATPase and by impainng mitochondrial 

oxidative phosphorylation. When high energy phosphate exhaustion reaches a 

critical level, fiver necrosis results. This may explain why myocardium can be 

sensitized to isoproterenol-induced necrosis by factors such as high extracellular 

calcium, or increased blood pH, w hich favor calcium overload (Lossnitzer et al, 

1975). Consistent with this hypothesis, K' and M ~ ~ '  salts, low extracellular 

calcium, thyrocalcitonin, low blood pH, or specific blockers of ttansmemebrane 

calcium fluxes protect the heart against isoproterenol, presumably by preventing 

calcium overload. To support this central role for ca2'in the pathogenesis of 

necrosis is the finding that spontaneous necrotization of cardiac tissues of 



rnyopathic hamster, which exhibit high levels of circulating catecholamines, is 

prevented by treatment with the calcium blocker verapamil (Jasmin et al, 1975). 

However, it has been found that myocardial calcium content increased in a manner 

well correlated to isoproterenol dose in the range fom 0.1 to 10 pgkg, but did not 

hrther increase with higher dose levels required to produce myocardial lesions 

(Bloom and Davis, 1974). Thus, inotropic response may be related to calcium 

entry, but that necrosis is due to some other factor, possibly including the 

intracellular metabolism of calcium. Furthemore, it was reported that the 

dramatic modification of necrosis by factors influencing transmembrane calcium 

fluxes clearly suggests the involvement of calcium at some level in the etiology of 

necrosis caused by catecholamines (Bloom and Davis, 1974). 

b) Coronary insufficiency 

Isoptoterenol was found to change the uniformal distribution of coronary flow in 

endomyocardium (Handsforth, 1962). This suggests that dilatation of 

arteriovenous shunts might be responsible for the endocardial ischemia, since 

coronary flow is usually increased with isoproterenol. Blood flow to lefi 

ventncular subendocardial muscle has been suggested to be compromised during 

systole and to occur mainly during diastole because intramyocardial compressive 

forces are greatet in this region (Cutlery and Levy, 1963). Furthemore, it has 



been shown that when aortic diastolic pressure was lowcred or diastole shortened 

and myocardial oxygen demands simultaneously raised, myocardial performance 

was found to be impaired (Buckberg et al, 1972). When isoproterenol was infused 

at a rate which failed to maintain an increase in contractile force, i t  was found that 

subendocardial flow fell by 35% while subepicardial flow increased by 19%. 

Thus, although spasm of coronary arteries and/or veins may well occur, it is 

possible that increased cardiac activity, reduced aortic pressure and greatly 

decreased diastole could also be responsible for an underperfusion of the 

endocardium (Buckber and ROSS, 1973). 

c) Hypoxia and hemodynamic changes 

Both high and low doses of isoproterenol increased heart rate similady, but higher 

lesion producing doses of isoproterenol decreased blood pressure, suggesting that 

the fa11 in aortic blood pressure was of such a degree that a reduced coronary flow 

could be infemed (Rona and Dusek, 1972). It was further posnilated that the 

necrotic lesions are an ischemic infarct due to a decreased coronary flow during a 

time when both amplitude and fiequency of cardiac contractions are increased. 

Thus the greater cardiotoxicity of isoproterenol as compared to Eph or NE was 

attributed to the dramatic hypotension, and various factors, such as previous 

myocardial damage or previous isoproterenol injections, activate metabolic 



processes which provide cardiac muscle cells with an enhanced adaptation to 

withstand the increased demand and relative hypoxia produced by isoproterenol 

(Rona and Dusek, 1972). 

Accordingly, drugs with both positive inotropic and chronotropic actions 

may not produce cardiac lesion (Rosenblum et al, 1965). l n  a study of the 

hemodynamic effects of "pharmacological" and "lesion-producing" doses of 

sympathomimetics were compared, it was found that lesion-producing doses of 

isoproterenol caused a decrease in aortic flow and heart rate as compared to 

pharmacological doses (Rosenblum et al, 1965). The evidence of impaired 

myocardium function wi th inadequate hemodynamic change to produce 

insufficient myocardial perfusion suggests that the effects of isoproterenol were 

due to some direct action on the myocardial ce11 and not solely to the 

hemodynamic effects (Rosenblum et al, 1 965). Thus, hypotension is non-essential 

for cardiac necrosis production by isoproterenol after finding that verapamil was 

effective in protecting the heart f om isoproterenol-induced necrosis even though 

blood pressure fell alrnost twice as much when verapamil was administered 

together with isoproterenol as it did following administration of isoproterenol 

alone (Stubelt and Siegen, 1975). 

3, Intervention for CIC 



a) Phannacological intervention 

It appears that factors tending to increase the work load of the hcart, increase the 

metabolic rate of the heart, interfere with oxygen supply to myocardial cells, favor 

the electrolyte change, or favor mobilization of lipids aggravate the necrotic 

influence of catecholamine administration. On the other hand, factors which block 

the stimulatory effects of catecholamines, thereby reducing cardiac work, or 

otherwise reduce rnyocardial metabolic rate, aid in the supply of oxygen to the 

myocardium, limit the mobilization of lipids, or counteract the ionic shifts can at 

least reduce the severity of necrotic changes. In particular, interventions which 

prornote the occurrence of intracellular ca2'-overload have been shown to 

aggravate and those which reduce the intracellular ca2'-overload have been 

reported to prevent the catecholamine-induced cardiotoxicity. 

(1) a- and P-adrenergic blocking agents 

The P-receptor blocking compounds, propranolol, pronethalol and 

dichloroisoproterenoI were found to reduce the incidence and severity of 

myocardial lesions induced by isoproterenol (Kahn et alJ969; Dorigotti et al, 

1969). In another study, it has been reported that pronethalol afforded some 



protection against the loss of myocardial aspartate rminotransferase (AST) activity 

caused by Eph, NE, and high doses of ISO, but potentiated the loss of AST 

activity with moderate lesion producing doses of isoproterenol (Wenzel and Chau 

RYP, 1966). Propranolol has also been found to completely prevent electrolyte 

shi fts (increased myocardial ca2' and decreased ~ a " )  associated wi t h  

isoproterenol induced necrosis, thus producing an apparent dichotomy between the 

occurrence of lesions and electrolyte shifts since myocardial lesions were still see, 

although less severe (Bloom and Davis, 1974). It has becn reported that 

propranolol reduced the amount by which myocardial ATP declined following 

isoproterenol-induced damage (Kako, 1966). Propranolol appean to have a more 

selective action on endocardial versus midmyocardial or epicardiac changes in 

metabolism due to catecholamines (Pieper et al, 1979). One can thus conclude 

that the P-adrenergic blocking agents are capable of modifying certain cardiotoxic 

effects of catecholamines. 

Alpha-adrenergic blocking compounds, such as azapetine, phentolamine, 

dibenamine, dihydroergocryptin, and tolazoline are ineffective against ISO - 

induced cardiomyopathy, however, they are able to reduce the incidence and 

severity of lesions caused by a-receptor agonists such as Eph and NE (Mehes et 

al, 1967). The a-blocken also ameliorated the loss of myocardial AST and LDH 

activity, and shifb of electrolytes caused by Eph and NE (Lehr et al, 1969). These 

agents were usually more effective against Eph lesions when used in combination 



with a beta-blocker. It should be pointed out that ISO has been shown to reduce 

the endogenous NE stores fiom the nerve endings and it is possible that the 

endogenously released NE may also be participating in producing the cardiotoxic 

effects upon injecting the animals with ISO (Dhalla et al, 197 1). 

(2) Calcium channel blockers 

Calcium channel blockers exert the majority of their effects on cardiac and 

vascular smooth muscle as well as on the cardiac conduction system. The calcium 

channel blockers such as verapamil, D-600, phenylamine, and V ~ S C O ~  reduced the 

severity of lesions and prevented the decrease in high energy phosphate stores and 

accumulation of calcium by the myocardium caused by isoproterenol injections 

(Fleckenstein, 1971). Another ca2+ antagonist, diltiazem, also prevented 

isoproterenol-induced changes in myocardial high energy phosphate stores in rats 

(Takeo and Takenaka, 1977). Furthemore, it has been reported that clentiazem 

prevented Eph-induced myocardial lesions and death (Deisher et al, 1993). By 

inhibiting the inward flow of calcium, the calcium channel blockers slow SA 

pacemaker activity and conduction through the AV node, leading to a decrease in 

heart rate. Verapamil is known to be a potent arteriolar vasodilator and is used for 

the treatment of hypertension and angina. 



(3) Monamine oxidase inhibitors and ACEI 

Monoamine oxidase inhibitors (MAOI) of the hydrazine type have been found to 

decreasc thc incidcncc and scvcrity of myocardial lesions following 

catecholamines administration and to antagonize increases in myocardial water, 

sodium, and chloride as well as loss of potassium (Stanton et al, 1967). The 

hydrazine type inhibitors investigated include isocarboxazide, iproniazide, and 

phenylzine. It was also found that hydrazine type MAOI protected the heart 

whereas non-hydrazine type MAOI did not, but pointed out that hydrazine type 

inhibition are long lasting in their effects whereas tranylcypromine is a compctitve 

blocker with an intense but transient effect ad thus the inhibition produced by this 

dnig may be of insufficient duration to afford protection. With respect to ACEl's, 

it has been reported that trandolapril prevented both cardiac hypemophy and 

increase in angiotensin II content by ISO and that captopril improved 

cardiomyopathy with pheochromocytorna (Nagano et al, 1992; Hu et al, 1990). 

a) Hormonal, metabolic, and electrolyte intervention 

The mineral corticoids, such as deoxycoricosterone and 9-a-fluorocortisol, 



increased the severity of myocardial lesions. the level of ca2' accumulation, and 

the severity of high energy phosphate depletion caused by isoproterenol 

(Fleckenstein et al, 1974). Among the other steroids, estrone and testosterone also 

increased the severity of necrotic lesions, whereas estrogen, progesterone, 

glucocorticoids, and cortisone were without effect. High sodium or low potassium 

diets were similar to mineralocorticoid therapy in increasing the severity of 

lesions, whereas low sodium or high potassium diets reduced the incidence and 

severity of lesions. Administration of KC1, MgCl*, or NH&12 reduced the seventy 

of lesions and protected against the electrolyte shifts and reduction of high energy 

phosphate stores. On the other hand, if plasma M ~ ~ ' ,  K', or H' concentration 

were low, isoproterenol-induced lesions were potentiated (Slezak et al, 1975). 

Administration of K'- M ~ ~ ' -  aspartate together with isoproterenol has also been 

found to prevent or reduce the changes in myofibrillar ATPase activity, ca2+ 

accumulation by mitochondria and microsomes, and high energy phosphates 

stores, and to decrease the severity of ultrastnictural damage to the myocardium 

Thyroxine and hyperthroidism increased the severity of lesions whereas 

thyroidectomy, thiouracil, or propylthiouracil decreased the extent of necrosis with 

isoproterenol (Melville and Korol, 1958). Calciferol increased the severity of 

necrotic lesions. The increased seventy of the lesions was associated with a further 

increase in the uptake of ~a~~ and a greater fall of high-energy phosphate stores of 

the heart. Administration of glucose, lactate or pynivate had no effect on the 



extent and severity of catecholamine-induced lesions. The severity was increased 

with increased body weight and excess body fat (Balazs, 1972). The severity of 

lesions did increase with age, but this is probably an indirect effect to increase of 

body weight with age. It was further reported thai the character of cütecholamine- 

induced cardiomyopathy is not uniform and depends strictly on the stage of 

cardiac growth (Pelouc et al, 1995). 

Previous myocardial damage markedly reduced the severity of lesions 

produced by high doses of ISO (Balazs et al, 1962). This protective effect 

disappeared with time, was independent of the part of the heart previously 

damaged, and did not result from necrosis of extracardiac tissues. Similarly. 

previous ISO injections and coronary arteriosclerosis increased the resistance of 

the heart to ISO-induced damage (Jasmin, 1966). Cardiac hypertrophy or a 

simultaneous hypoxia increased the extent and severity of the lesions. A higher 

temperature also potentiated the necrotic effect of isoprotercnol, possibly due to 

the increased work load of the heart during thermoregulatory vasodilation as well 

as changes in the calcium transport mechanisms (Panagia et al, 1985). On the 

other hand, high altitude acclimitizaiion or hyperbaric oxygen tended to protect the 

heart against necrotic damage. Isolation stress due to cold exposure both 

increased the severity of isoproterenol-induced lesion and electrolyte shifts, 

although this may be an indirect result of increased mineralocorticoid production 

which occurs under these conditions. 



C. The role of calcium in catecholamine-induced cardiomyopathy 

1. Pathophysiological studies of calcium in cardiac cell damage 

An important aspect of the cardiotoxic action of catecholamines is the 

involvement of abnonnal movements of calcium, which is required to activate 

biochemical processes dunng cardiac contraction, regulation of metabolism, and 

maintenance of cellular integrity of cardiomyocytes. Upon administration of large 

amounts of catecholamine. a marked increase in the entry of calcium into the 

cardiac ce11 occurs, so that cardiac muscle fibers are stmcturally and functionally 

damaged (Fleckenstein et al, 1 973). Under normal conditions the extracel Mar 

concentration of ionized calcium is about 1.25 mM, whereas the intracellular 

(cytoplasmic) concentration of ionized calcium varies in the range of 0.1-10 FM, 

and thus cardiomyocytes can be seen to maintain a large ca2' concentration 

gradient across their ceIl membrane. This regulation is primarily achieved by the 

presence of different ca2+-influx and ca2'-efflux mechanisms as well as regulatory 

systems in the sarcolemmal membrane. Furthermore, the low level of ca2' in the 

cytoplasm is maintained by the presence of ~ a ~ ' - ~ u r n ~  mechanisms in the 

sarcoplasmic nticulum under physiological conditions. On the other hand, 



mitochondria are involved in accumulating a large amount of cd', mainly under 

situations where the cell is faced with high concentrations of calcium and thus 

prevents the cell form the toxic cffects of the elevated lcvels of cytoplasniic ca2' 

(intracellular ca2' overload). 

Calcium in low concentrations is reqiiired for cardiac function. whereas 

high concentrations on intracellular calcium are known to result in cardiotoxicity. 

Although it is possible that factors other than calcium could be etiologically 

related to myocardial lesion, the electron rnicroscopic data combined with changes 

in myocardial ca2' content suggest that this cation plays a crucial role in the 

development of catecholamine-induced cardiomyopathy (Makino et al, 1985). 

Excessive levels of calcium within the heart muscle cells occurs, and a reduction 

in cellular ATP levels due to enhanced actomyosin ATPase activity (Ganguly et 

al, 1985) and uncoupling of oxidative phosphorylation (Sobel et a1,1966) 

precipitate the cardiac lesions. The calcium transport systems within different 

cardiac subcellular membranes initially exhibit adaptive changes in order to handle 

ca2' homeostasis efficiently. If the capacity of these membranes to accumulate 

calcium are impaired, the myofilaments remain contracted and undergo 

degenerative changes (Reichenbach et al, 1970). Thus high calcium 

concentrations in the ceIl exert derangement of metabolism, elec troph ysiologicai 

abnomalities, disruption of membrane integrity, leakage of intracellular enzymes, 

ultrastmctural changes, cellular damage, and heart dysfunction (Nayler et al, 1989) 



(Billman et al, 199 1 ; Bjua et al, 1990). 

Generally, it is believed that intracellular cd'-overload causes 

overstimulation of energy utilization processes, such as activation of iiiyofibrillar 

ATPase which in turn leads to decreased ATP content. Elevated levels of 

cytoplasmic ca2' concentration can be seen to cause overloading of mitochondria 

which may result in depression of energy production and decreased ATP content. 

In turn, the cardiocytes with ATP insufficiency are then unable to maintain their 

structure and hnction. Excessive ATP hydrolysis and depressed ATP production 

are comrnonly associated with the occurrence of intracellular ca2' overload, which 

is usually reflected as increased tissue ca2' content. However it should be pointrd 

out that maximal stimulation of myofibrillar ca2'-stimulated ATPase is seen ai 

about 10 PM ca2', and a further increase in the concentration of ca2' is found to 

depress the enzyme activity. When the cytoplasmic concentration of calcium is 

increased without any changes in the tissue ca2' content, the activation of 

phospholipases and proteases by high levels of cytoplasmic ca2+ would result in 

membrane defects and disniption of proteins, respectively (Dhalla et al, 1982). 

These changes then can cause contractile dysfunction and myocardial ce11 damage. 

Thus, intracellular ca2' overload without any change in the tissue ca2' content can 

occur due to some specific defect in ca2'- handling properties of SR and/or 

mitochondria. On the contrary, association of intracellular ca2' overload with 

increased tissue calcium content usually occurs upon changes in the sarcolemmal 



membrane with respect to excessive ca2' entry or insufficient ca2+ rernoval from 

the cytoplasm. 

a) ca2'- pûradox phenomenon: 

When the heart is perfused with a ca2'-fiee medium, it loses its ability to generate 

contractile force within seconds. Reperfusion of the heart with a medium 

containing ca2', after a brief perfusion with ca2'- free medium, results in an 

irrevenible loss of active tension generation, contractor, and severe ul trastnictural 

damage (Zimrnennan and Hulsmann, 1966; Yates and Dhalla, 1975; Ruigrok et al, 

1972). This ~ a " -  paradox phenomenon has becn postuiated to be the result of an 

excessive accumulation of calcium in the ce11 during reperfusion of the ca2'- 

depleted heart with ca2+- containing medium. Changes in SL ~a'-ca'' exchange 

and ~ a ~ + - ~ u r n ~  activi ties seem to contribute to the occurrence of intracellular ca2' 

overload in this condition (Makino et al, 1988; Alto and Dhalla, 1981; Dhalla et al, 

1983). Increased intracellular ~ a '  concentration was evident upon perfusing the 

hearts with ca2'- fkee medium which leads to the development of intracellular 

ca2' overload (Tumstall et al, 1986). Furthermore, lowering the concentration of 

~ a '  in the ca2'- fiee was found to prevent the occurrence of the ca2' (Dhalla et al, 

1988; Alto and Dhalla, 1979). 



2. ca2+ transport systems in cardiomyoc ytes 

The SL plays an important role as a source of activating ca2' during the process of 

excitation-contraction coupling in the heart as weil as being intimateiy involved in 

lowering the cytoplasmic ca2' level for the occurrence of relaxation (Dhalla et al, 

1977; Dhalla et al, 1978; Dhalla et al, 1982; Langar, 1984). These studies revealed 

that the magnitude of SL ca2' stores and opening of ca2' channels determine the 

amount of ca2' that enters the ceIl upon excitation of the myocardium, whereas 

ca2' efflux is carried out by the SL ~ a ' - ~ a ~ '  exchange and ~ a " - ~ u r n ~ .  SL 

preparations have been demonstrated to exhibit ATP-dependent ca2' uptake, cal'- 

stimulated ATPase, and ~ a + - c a ~ '  exchange activities (Dhalla et al, 1977; Dhalla et 

al, 1978; Dhalla et al, 1982; Langar, 1984). The ca2'-stimulated ATPase has been 

shown to utilize MgATP as substrate, while the ~ a ' - ~ a ~ '  antiporter, which is 

believed to carry out ~a'-ca2'exchange, has also been isolated from the heart ce11 

membrane (Caroni and Carafoli, 198 1). In addition to cal+- stimulated ATPase, 

heart sarcolemrnal preparations have also been shown to contain Na, K-ATPase 

and ca2'/blg2' ecto-ATPase activities (Dhalla et al, 1982; Langer 1984). Vanous 

divalent cations, such as ~ i ~ + ,  col', and ~ n ~ +  which are known to block calcium 

currents, were found to decrease the SL c a 2 ' - ~ ~ p a s e  activity (Harrow et al, 

1978). Furthemore, cyclic AMP-protein kinase dependent phsophorylation, 



which is considered to mediate the increase in ca2+ influx due to hormone action, 

has been shown to increase the SL C ~ " - A T P ~ S ~  activity (Ziegelhoffer et al. 1979). 

The SL c a 2 ' - ~ ~ p a s e  activity was found to be altered in diseased hearts whereby 

the contractile force development was impaired (Singh et al, 1975; Dhalla et al, 

1976; Moffat et al, 1985; Dhalla et al, 1986; Heyliger and Dhalla, 1986). Several 

cardiodepressants have been reported to decrease the SL c ~ * ' - A T P ~ s ~  activity, 

such as plasma factors, quinidine, lidocaine, procainamide, propranolol, 

pentobarbiral, volatile anesthetic agents, and ~ a "  (Dhalla et al, 1978; Dhalla et al, 

1977). Thus, the c ~ ~ ' / M ~ ~ ' - A T P ~ s ~  in sarcolemma is a viable site for dmg 

actions and is altered due to pathophysiological manipulations. 

The opening of ca2' channels is a voltage- and time-dependent manner 

when membrane permeability is increased upon depolarization and may involve 

c ~ ~ ' / M ~ ~ ' -  ATPase for opening ca2' gates in the SL membrane (Dhalla et al, 

1977,1978,1982). Studies have indicated that ca2' entry into the cardiac ce!! 

occurs not only through SL ca2' channel, but the SL ~ a + - ~ a ~ '  exchange may also 

participate in this process (Sheu et al, 1986; Leblanc et al, 1990). Furthemore, 

ca2' influx through the SL membrane is rnodulated by the sympathetic nervous 

system via the release of NE and by adrenergic receptors (Reuter, 1985; Tsien, 

1983). The activation of P-receptors leads to the formation of CAMP throught G 

proteins and adenylyl cyclase, and this then results in CAMP-dependent protein 

kinase mediated phosphorylation of ca2+-channels and increased ca2' entry into 



the cell. On the contrary, a-adrenergic receptors have been shown to stimulate 

phosphatidylinositol turnover in the SL membrane resulting in DAG-mediated 

activation of PKC mediated phosphorylation of the SL membrane which may bc 

associated with an increase in ca2+ entry (Lindemann, 1986). The entry of in 

myocardium has also been shown to be increased by ATP, and this is associated 

with increased contractile force development (Ikonomids et al, 1990; Christie et al, 

1992). It is important to note that ATP is released as a cotransmitter with NE 

(Bumstock, 1972). 

Besides the SL, other membrane systems. such as the SR and mitochondria, 

are known to regulate the intracellular concentration of ca2' (Carafoli, 1987; 

Dhalla et al, 1991). The SR network contains caZ' sequestration, storage, and 

release system, and is intimately involved in delivering ca2' to the contractile 

apparatus upon excitation of the cell. ca2' release from the SR is camed out by 

the activation of caz'-release channels, which are in turn affected by ryanodine 

and thus called ryanodine receptors, therefore indicating that ca2' induced ca2' 

release for the occurrence of cardiac contraction (Sutko et al, 1986; Beudkelmann 

and Wier, 1988; Hansfor and Lakatta, 1987; Nabauer and Morad, 1990). On the 

other hand, the cytoplasmic level of ionized ca2' is lowered by the activation of 

ca2'-stimulated ATPase, which requires MgATP as a substrate, in the SR. This 

energy-dependent ca2' uptake in the SR is primarily responsible for the relaxation 

of the myocardium. C yclic- AMP-dependent as well as calmodulin-dependent 



protein kinases phosophorylate phosopholamban, a SR bound protein (Inui et al, 

l986), and thus increase the cal'-stimulated ATPase activity. 

a) ca2'  rnovement across cardiac membrane 

Calcium in known to be essential for the regulation of metabolism and 

maintenance of cellular integrity of cardiornyocytes. The movements of ca2' are 

regulated by a number of external factors, including catecholamines which are 

directly involved in the alteration of ca2' transport at different membrane levels. 

Catecholamines, under physiological conditions, have been dernonstrated to 

increase heart fùnction by binding to the B-adrenergic receptor, activating the 

adenylate cyclase system, and increasing caZ4 influxes across the cardiac 

membranes (Dhalla et al, 1977). The key mediator in tlie catecholamine-induced 

stimulation is CAMP which elicits a variety of responses in the ce11 and modulates 

cardiac contractility. It has been shown that CAMP-dependent protein kinase 

phosphorylation of the SR and SL membrane proteins is associated with the 

activation of ca2' pumps, a decrease in the cytoplasmic concenttation of free ca2', 

and a faster rate of relaxation (Dhalla et al, 1982). Cyclic AMP also acts on the 

rnyofibrillar ATPase systern and decreases its sensitivity to ca2+ activation so that 



a faster rate of relaxation occurs. Once ca2' has accumulated across the SR 

membrane it is then bound to calsequestrin, a high-capacity cal'-binding proiein 

and is  stored in the lumen of this tubular network (Jorgcnsen et al. 1988). In 

contrast to the SR, the mitochondria possess a low-affinity ~ a ' *  -uptake system, 

yet have the capacity to accumulate large Ca '' quantities and thus can be serve as 

cytoplasmic ca2' buffer system (Carafoli, 1987). 

3. Intracellular cal'-overload and catecholamine-induced cardiornyopathy 

In view of the fact that catecholamines have been shown to increase the entry of 

ca2' through CAMP-dependent mechanisms by acting on beta-adrenergic 

receptors, it was proposed that myocardiai cell damage due to high levels of 

circulating catecholamines is mediated through the occurrence of intracellular ca2' 

overload (Fleckenstein, 1971 ; Fleckenstein et al, 1974). The fact that tissue ca2+ 

content was increase by high doses of catecholamines further supports this 

concept. However, it appears that some other derangement, possibly a defect in 

the regdation of intracellular ca2' metabolism, is required before the occurrence 

of cardiac necrosis as a consequence of intracellular ca2' overload since findings 

observed that myocardial ca2' content increased in a manner correlated to ISO 

doses in the range fiom 0.1 to 10 p g k g  body weight but did not further increase 

with higher doses of catecholamine required to produce myocardial ce11 damage 



(Bloom and Davis, 1974). Thus, it was suggested that the inotropiç response is 

related to calcium entry, but the necrosis is due to sorne other factor, possibly 

including the intracellular rnetabolism of calcium. It was further s h o w  by these 

researchers that propranolol could completely block the increase of calcium 

content of the myocardium but would only reduce the incidence of lesions rather 

than preventing them. Consequently, the dramatic modification of necrosis by 

factors influencing transmembrane calcium fluxes clearly suggests the 

involvement of calcium at some level in the etiology of necrosis caused by 

catecholamines (Bloom and Davis, 1974). Marked alteration in the cal' -handling 

ability of the SR and sarcolemmal membrane have been observed due to high 

doses of catecholamines (Panagia et al, 1985; Dhalla et al, 1987). Indication of 

impairment of the sarcolemmal ATP-dependent calr uptake and Na'-dependent 

ca2' uptake as well as SR ATP-dependent ca2' uptake activities show that such 

derangements can be seen to further contribute to the occurrence of intracellular 

ca2' overload (Dhalla et al, 1987). 

Perfusing the hearts with high concentrations of catecholarnines did not 

result in contractile failure or myocardial ce11 damage as long as the oxidation of 

catecholamines was prevented, whereas oxidized catecholamines was found to 

cause cardiotoxic effects (Yates and Dhalla, 1975; Yates et al, 1981). It was found 

that the isoproterenol-induced necrosis and decline in high energy phosphates 

were associated with a 6-7 fold increase in the rate of radioactive calcium uptake 



and a doubling of net myocardial calcium content (Fleckenstein et al, 1974). This 

suggests that isoproterenol causes a significant increased influx of calcium which 

overloads the fiber. It was postulated that the intracellular calcium overload 

initiates a high cnergy phosphate deficiency by excessive activation of ca2'- 

dependent intracellular ATPase and by impairing mitochondrial oxidative 

phosphorylation, such that when high energy phosphate exhaustion reaches a 

critical level, fiber necrosis results. This hypothesis may explain why the 

myocardium can be sensitized to ISO-induced necrosis by factors, such as 9 a- 

fluorocortisol acetate, dihydrotachysterol, NaH2P04, high extracellular calcium, or 

increased blood pH, which favors calcium overload. Supporting this hypothesis, K 

and Mg salts, low extracellular calcium, thyrocalcitonin. low blood pH, or specific 

blocks of transmembrane calcium fluxes protect the heart against isoproterenol. 

presumably by preventing calcium overload. Further supporting this concept of a 

central role for ca2' in the pathogenesis of necrosis is the finding that spontaneous 

necrotization of cardiac tissues of myopathic hamster, which exhibit high levels of 

circulating catecholamines, is prevented by treatment with the calcium blocker 

verapamil (Lossnitzer et al, 1975; Jasmin et al, 1975). 

a) Effect of adrenochrome in catecholamine-induced cardiomyopathy 

Adrenochrome is an oxidative product of epinephrine, produced by an 

50 



autocatalytic process. It exhibits homeostatic properties because of the effccts on 

capillary permeability and is enzymatically formed in mammalian tissues. On the 

other hand, adrenolutin is a degradation product of adrenochrome and thus high 

levels indicated in plasma suggests the presence of an efficient mechanism for the 

oxidation of catecholamines. Adrenochrome has been demonstrated to exert their 

action on mitochondrial membranes, SL, and SR which disturb calcium 

movements in the myocardial cells leading to intracel Mar calcium-overload 

(Taarn et al, 1986; Dhalla et al, 1992; Rump et al, 1994). Fiinctionally speaking, 

adrenochrome causes vasoconstriction, contractile dysfunction, and decreased 

capillary pemeability, causing inadequate oxygen supply, as well as inhibits of 

myosin ATPase activity in the heart and smooth muscle (Rump and Klaus, 1994). 

Adrenochrome was shown to produce marked constriction of the coronary artet-ies 

as well as arrhythmias (Karmazyn et al, 1981; Singal et al, 1982; Beamish et al, 

198 1). Current findings illustrate that adrenochrome greatly reduced the coronary 

flow at high concentrations (104), worsening the myocardiai oxygen 

demanâlsupply balance which may somehow contribute to the deleterious effects 

on myocardial ischernia (Rurnp, 1994). In addition to impairing the ca2' - 

transport activities of the SR and mitochondria (Takeo et al, 1980; Takeo et al, 

198 1 ), adrenochrome was reported to depress SL N ~ ' - K + - A T P ~ s ~  activity (Takeo 

et al, 1980). These studies indicate that perfusion of the heart with adrenochrome 

was found to decrease SL ATP-dependent cal' uptake and ~a'wdependent ca2' 

uptake, as well as SR ATP-dependent ca2' uptake activities, showing that 



adrenochrome is capable of inducing membrane defects with respect to ca2' 

handling and thus can be seen to be involved in the genesis of catecholamine- 

induced cardiornyopathy. Consequently, studies show that micromolar 

concentrations of adrenochrome possess no deleterious effects nor actions on 

regional myocardial ischemia. Therefore only at very high concentrations do 

adrenochrorne acquire deleterious effects on regional myocardial ischemia (Rump 

and Klaus, 1994). 

b) Implication of free radical generation 

Besides the adrenochrome fonnation, oxidation of catecholamines is also 

associated with the generation of fiee radicals which are known to be highly toxic 

and thus may also be involved in the development of catecholamine-induced 

cardiotoxicity (Bindoii et al, 1989; Halliwall, 1994). During acute myocardial 

ischemia, the oxygen fiee radicals generated from NE has been shown to 

contribute to tissue injury (Rump and Klaus, 1994; Kukreja and Hess, 1992). 

Pretreatrnent of rats with vitamin E, a well known free radical scavenger, was 

found to prevent the isoproterenol-induced arrhythmias, lipid peroxidation, 

myocardial ce11 damage, coronary spasm, contractile failure, and loss of high 

energy phosphates, whereas vitamin E deficiency was shown to increase the 

sensitivity of animals to the cardiotoxic actions of 1SO (Singal et al, 1985; Singai 



et al, 1982; Singal et al, 1983). Pretreatment of animals with vitamin E was also 

found to prevent the catecholamine ISO-induced membrane dcfects with respect to 

ca2' -transport. The free radical generating systern has also been reported to 

depress the SL ca2' pump and bla+-ca2' exchange as well as SR Ca' activities 

(Keneko et al, 1989; Hata et al, 199 1; Kaneko et al, 1994). Thus, i t  appears that 

formation of both free radicals during oxidation of catecholamines may be 

intimately involved in exerting cardiotoxic effects such as membrane defects, 

intracellular ca2' overload, subcellular alterations, and subsequent 

cardiomyopathy. (Gupta et al, 1989). 



III. MATERIAL AND METHODS 

A. Experimental animals 

Al1 experimental protocols for animal studies were approved by the Animal Care 

Cornmittee of the University of Manitoba, following the guidelines established by 

the Canadian council on Animal Care. Adult male Sprague-Dawley rats (200- 

250g) were used in this study. The animals were treated with Vitamin E (25 

mgkg body weight, intraperitoneal daily) for two days p ior  to isoproterenol 

injection (40 mgkg body weight). Control animals received a similar injection of 

saline solution. The groups studied were as follows: (a) control (b) vitamin E 

treated (c) isoproterenol treated (d) vitamin E and isoproterenol treated. 

B. Methods 

1. Isolated heart perfusion & hemodynamic assessment: 

Male Sprague-Dawley rats (200-2500) were anesthetized with ketamine (60 

mgkg) and xylazine (10 mgkg) mixture, i.p. After heparinization (1,000 U), the 

heart was exposed through the lefi thoracotomy between the sth and 6'h ribs and 



the pericardium was cut. The hearts were rapidly dissected out and immediatcly 

placed into ice-cold saline. The adherent connective tissue was removed and the 

heart was perfused by the Langendorff technique at a constant flow. The 

perfusion medium (Krebs-Henseleit solution) containing 120 m M  NaCI, 25 mM 

NaHC03, 4.7 mM KCI, 1.2 mM KH2P04,  1.25 mM CaC12, and 1 1  m M  glucose 

was continuously oxygenated with 95% O2 - 5% CO2 mixture and maintained at 

pH 7.4 at 3 7 O C .  The hearts were paced ai 300 beatdmin by an electrical stimulator 

(Phipps and Bird, Richmond, VA), and the coronary flow rate was maintained at 

10 mlhin .  

To assess the cardiac hemodynamic performance parameters durhg the study, the 

left ventricular developed pressure, left ventricular end-diastolic pressure, as well 

as the maximum rate of isovolumic pressure development change du ring 

contraction (+dP/dt rnax) and the maximum rate of isovolumic pressure decay 

change during relaxation (-dP/dt max) were measured using a microtop pressure 

transducer connected with a latex balloon inserted through the mitral valve into the 

lefi ventricle. The balloon was initially filled with perfusion medium to produce a 

left ventncular end diastolic pressure of 9- 10mm Hg. 

The above data was obtained through the program AcqKnowledge for Windows 

3.0 (biopac Systems, Goleta, CA), These hearts were perfused with oxygenated 

medium for 30 minutes for stabilization before being used in the experiments 



camed out in this study. 

2. Cardiac sarcolemmal fractions 

Experimental animals were killed by decapitation and the hearts were excised 

rapidly into ice-cold 0.6 M sucrose, 10 m M  imidazole, pH 7.0 (buffer A). The 

atria, connective tissue, scar tissue, right ventricle, and any large vessels were 

carefully ttimmed, and the remaining viable left ventricular tissue from 3 to 5 

hearts was pooled and processed for the isolation and preparation of the 

sarcolemmal membrane fraction. All isolation steps were camed out at O - 4°C. 

The tissue was washed, minced, and homogenized in 3.5 ml of buffer A/g with a 

Polytron (6 x 10 s, setting 5). Large particles were rernoved by centrifugation at 

12,000g for 30 mins at 4 ' ~ .  A smail aliquot of the first supernatant was 

centrifuged at 110,000 g (30 min., 4 ' ~ )  and the resulting supematant was frozen 

and stored (-80'~) as the soluble cytosolic fraction. The rest of the first 

supematant was diluted with 300 mM KCI buffer to solubilize accessorial proteins 

and then fùrther processed for the preparation of sarcolemmal membranes 

according to the method of Pias (1979), as detailed (Meij et al, 1997). The final 

sarcolemmal pellet was resuspended in 250 rnM sucrose, 10 mM histidine (pH 

7 4 ,  frozen in liquid N2 and stored at - 8 0 ' ~  until assayed. As reported in pior 

studies in post-MI CHF (Dixon et al, 1992), the values of the relative specific 

activity (specific activity in the SL/specific activity in the homogenate ) for K'-p- 



nitrophenol phosphatase (SL marker), cytochromc c oxidase (mitochondrial 

marker) and rotenone-insensitive NADPH-cytochrome c reductase (SR marker) 

indicated an equal degree of enrichment (14-fold) of the SL membrane in control 

and experimental SL preparations. Thus, marker enzyme activi ties in the control 

and experirnental heart SL preparations revealcd minimal (3-4%) cross- 

contamination with other subcellular organelles. Protein concentrations were 

detemined by the Lowry method as described elsewhere (Dixon et al, 1992). 

3. Measurement of ~a ' -K'  ATPase activities 

The ~ a ' - K '  ATPase is a ubiquitous transmembrane enzyme that transports Na- 

ions out of the ce11 and moves K' ions into the ce11 by utilizing ATP as the driving 

force (Skou 1 990). The N~'-K+ ATPase maintains the electrochemical gradient 

across the ce11 membrane and is coupled to other transport mechanisms that are 

important for ce11 homeostasis and specialized hnction. The characteristic feature 

of the ~a ' -K '  ATPase is that it is activated by a combined effect of ~ a '  on 

cytoplasmic sites and of Kt on extracellular sites in the presence of ATP and 

M ~ ~ ' .  The cytoplasrnic K' inhibits the activity of N~' -K'ATP~s~ by competing 

for the binding of cytoplasmic Na', whereas the extracellular Na' inhibits by 

competing for the binding of extracellular K'. In the heart, ~ a ' - K '  ATPase 

participates in repolarization of the membrane during phase 4 of the action 



potential. The specific inhibition of N~+-K'  ATPase by cardiac glycosides leads to 

a positive inotropic effect by increasing the intracellular ~ a '  concentration, which 

in tum results in the elevation of the intracellular concentration of ca2' and an 

increase in the force of contraction of the heart. Estimation of Na%' ATPase 

activity was camed out by a method described previously (Pierce and Dhalla, 

1983) with some modification. Briefly, phosphorylated and unphosphosphorylated 

SL membrane were assayed for total ATPase activity in a medium containing (in 

mM) 50 Histidine-HCI, pH 7.4, 5 NaN3, 6 MgCl*, 100 NaCI, 10 KCl, 2.5 

phosphoenol pymvate (PEP), and 10 lUlml pymvate kinase. PEP and pynivate 

kinase were used as an ATP-regenerating system to maintain the concentration of 

ATP in the incubation medium. The medium was preincubated at 37°C for five 

minutes. The reaction was started immediately after the transfer of the 

phosphorylated and unphosphorylated membranes by the addition of 0.025ml of 

80 mM ATP, pH 7.4, and teminated five minutes afier with O.Sm1 of ice-cold 

12% tricholoroacetic acid. The liberated phosphate was measured by the Taussky 

and Shorr method (Taussky and Shon; 1953). The M ~ ~ ' - A T P ~ S ~  activity of the 

phosphorylated and unphosphorylated membranes can also be determined in this 

manner except that both NaCl and KCI would be omitted from the reaction 

medium. The ~a'-K'  ATPase activity was calculated as the difference between 

the total ATPase and M ~ ~ ' - A T P ~ s ~  activities. 



4. Na*- dependent ca2' uptake: 

The SL ~ a ' - ~ a ~ '  exchanger only regulates between 10 -20% of the intracellular 

ca2' in cardiomyocytes as opposed to the SR which regulaies about 80% of the 

intracellular ~ a ' ~  in cardiomyocytes (Ben et al, 1993). This exchanger is a major 

pathway for transrncmbrrtne calcium fluxes in the SL membrane. I t  1s known to 

play a significant role in the excitation-contraction coupling process in cardiac 

muscle and is a carrier-mediated transport process in which the movement of 

calcium ions across the membrane is coupled to the rnovement of Na' ions in the 

opposite direction, in order to pump ca2' out of the cell. The exchanger is 

distnbuted in the transverse tubule, intercalated disc area, adjacent to gap 

junctions, and the peripheral SL. The mcthod for Na' - dependent ca2' uptake 

measurement has been described in detail elsewhere (Dixon et al, 1992). The 

method involves 5 pl of SL vesicles (1.5 mglml; 7.5 pg/tube) preloaded with 

NaCVMOPS buffer at 3 7 ' ~  for 30 minutes, were rapidly diluted 50 tirnes with 

ca2' uptake medium containing 140 m M  KCl, 20 mM MOPS., 0.4 FM , 0.3 

u ~ i ~ ~ ~ a ~ '  and various concentrations (5-80 vM) of CaC12, pH 7.4. Because 

ethylene glyco-bis (B-aminoethylether) - N, N. N: N' - tetraacetic acid (EGTA) is 

known to alter the ~ a ' - ~ a ~ '  exchange activity, we did not use this agent to buffer 

ca2' concentrations in the incubation medium. Purification of water by the 

Millipore filters allowed us to maintain calcium contamination at a submicromolar 

ievel, which did not affect the calcium concentrations in the assays for the ~ a ' -  



dependent ca2'- uptake activity . After an appropriate time, t hc reaction was 

stopped by the addition of 0.03 ml of ice-cold solution containing 140 m M  KCI, 1 

m M  LaCl], 20 mM MOPS, pH 7.4. Saniples (0.25 ml from 0.28 ml of total 

reaction mixture) were filtered through Millipore filters (Millipore Corporation, 

Bedford, MA; poresize 0.45 um) and washed twice with 2.5 ml of ice-cold 

washing solution containing 140 m M  KC1,O. 1 m M  LaC13, 20 m M  MOPS, pH 7.4. 

The filters were dried and radioactivity of filters was counted by using a Beckman 

counter (mode1 LS 170 1, Beckman Instruments). Parallel to ihese samples, 

nonspecific ca2' uptake was determined in the ca2' uptake medium that contained 

140 mM NaCl instead of KCI. Na'-dependent ca2' uptake activity was conected 

by subtracting nonspecific calcium uptake from the total calcium uptake values. 

5. Measurement of ca2' - stimulated ATPase activities 

The total ( M ~ ~ '  and cal') and basal ( M ~ ~ ' )  ATPase activities were determined in 

the presence or absence of free calcium ( 1 0 " ~ )  in a reaction by taking 

sarcolemmal vesicles (20-40 pg protein) and preincubating them at 3 7 ' ~  for 5 

minutes in 0.5 ml of medium containing (in mM) 100 KCI, 20 Tris-HCl, 5 MgCI2, 

and 5 sodium azide, respectively. The concentration of free calcium in the 

solution (pH 6.8) was buffered by EGTA and was calculated according to the 



method of Fabiato and Fabiato (Fabiato and Fabiato, 1979). The reaction was 

started with the addition of 5 m M  Tris-ATP, (pH 7.4), in the presence of 0.05 - 

0.08 mg/ml of SR protein and was terminated with five minutes later with 1.0 ml 

of cold 12% (weight/volume) trichloroacetic acid. The inorganic phosphate 

liberaied during the reaction was measured by the method of Tausky and Shorr 

(Tausky et al, 1953). The ca2'-stimulated M$- dependent ATPase (ca2' pump 

ATPase) activity is reported as the difference between the total (ca2'-stimulated 

plus M ~ ~ ' )  and basal ( M ~ ~ ' -  ATPase). 

6. Determination of ATP-dependent ca2' uptake 

Sarcolemmal vesicles (100 kg) were preincubated at 3 7 ' ~  for 5 minutes in 0.5 ml 

of medium containing (in mM), 140 Kcl-10 MOPS-Tris, pH 7.4, 2 MgCl*, 

4 5 CaC12-EGTA, which contained 10" M free ca2*. Calcium uptakc was initiated 

by adding 4 m M  Tris-ATP, pH 7.4. After a 5 minute incubation at 3 7 ' ~ ,  250 pl 

aliquots were immediately filtered through Millipore filters (0.45 pm), washed 

twice with 3 ml ice-cold KCL-MOPS and 1 mM LaC13, pH 7.4, dtied, and the 

radioactivity was determined for calculating the total calcium accumulation. 

Nonspecific calcium binding was measured in the absence of ATP for each set of 

experiments. The ATP-dependent calcium accumulation was calculated by 

subtracting nonspecific calcium binding from the total calcium accumulation. 



7. Measurement of lipid peroxidation 

The lipid peroxidation was assayed by measuring the formation of 

malondialdehyde by the thiobarbituric acid method as described by Beuge et al 

(Buege and Aust, 1978). In addition, conjugated diene formation was determined 

according to the method of Esterbauer et al (Esterbauer et al, 1989). Heart 

homogenate (10% w/v) was prepared in 0.2 M Tris, 0.16 M KCI buffer of pH 7.4 

and incubated for 1 hour at 3 7 ' ~  in a water bath. A 1 ml aliquot was withdrawn 

from the incubation mixture and pipetted into an 8 ml Pyrex tube. This was 

followed by the addition of 0.5 ml of 40% trichloroacetic acid and 0.25 ml of 5 N 

HCI. AAer mixing, 0.25 ml of 2% sodium a-thiobarbihirate was added promptly. 

The tubes were boiled for 15 minutes and cooled on ice. One ml of 70% 

trichloroacetic acid was then added and tubes were allowed to stand for 20 

minutes, centrifbged at 2500 rpm for 10- 15 minutes, and the absorbance recorded 

at 532 nm. The standard tubes contained 1 pM of malondialdehyde. 



8. Measurement of myocardial glutathione 

Glutathione and its oxidized disulphide form were measured by the lutathione 

reductase-dithionitrobenzoic acid (DTNB) recycling assay (Anderson. 1 985). In 

this system, GSH is oxidized to GSSG by DTNB to yield 5-thio-2-nitrobrnzioc 

acid (TNB). The rate of TNB forniation is rnonitorcd speçtropliotometricaI 1 y rit 

412 nm. Oxidized glutathione is rereduced to GSH in the assay by glutathione 

reductase. Non-specific reactions of other this with DTNB are accounted for by 

subtracting the absorbancy change mcasured in a sample blank that contains no 

glutathione reductase. Myocardial tissue was homogenized in 5% sulphosalicyclic 

acid and centrifuged at 10,000 g for I Omin. Oxidized glutathione was determincd 

by derivatizing an aliquot of the supematant with 2-vinylpyridine and 

triethanolamine for 60 min. The sample was then assayed following the rate of 

TNB formation at 412 nm in a pH 7.5 solution containing NADPH. glutathioiis 

reductase and DTNB. Total glutathione was measured by assaying an 

underivatizcd aliquot of the supernatant in the same manner. GSH was 

determined as the difference between GSSG and total (GSH+ GSSG) assay values. 

9. Measurement of myocardial calcium content: 

Total cellular ca2' content was determined according to the procedures of 



Alto and Dhalla (Alto and Dhalla, 1979). Briefly, after hemodynamic assessrnent 

of the animals were done, ca2' content in the myocardium were measured (Table 

2). This was done by removing the hearts from the perfusion apparatus, after 

being flushed with 6-10 ni1 of ice-cold sucrose solution, then drird and processed 

for ca2' content: HCL extraction was performed and the supernatant analyzed for 

ca2' cation contents using a Zeiss atomic absorption spectrophotometer. 

C. Statistical analysis: 

Al1 values are expressed as mcan I SEM. The differences between two groups 

were evaluated by Student's t-test. The data from more than two groups were 

evaluated by one-way analysis of variance (ANOVA) followed by Duncan's 

multiple cornparison test. A probability of 95% or more was considered 

signi ficant. 



IV. RESULTS 

A. General characteristics and status o f  cardiac oxidative stress in rats with 

or  without vitamin E treatment 24 hr after the administration o f  

isoproterenol 

The general characteristics of the untreated and 2 day vitamin E-treated rats after 

isoproterenol injection are shown in Table 1. Consistent with Our earlier 

observations, (Dhalla et al, 1992) the heart muscle of isoproterenol groups with or 

without vitamin E pretreatment underwent significant hypertrophy. as indicated by 

an increase in heart weight and by the augmented ratio of heart weight to body 

weight, compared with control values (Table 1). Malondialdehyde (MDA) contents 

aiong with the formation of conjugated dienes and GSHIGSSG ratio were measured 

in hearts from experimental animals treated with isoproterenol with or without 

vitamin E pretreatment. The levels of MDA and conjugated diene formation, which 

is indicative of lipid peroxidation, were markedly increased in isoproterenol treated 

hearts; these changes were attenuated on vitamin E pretreatment. The glutathione 

redox ratio is a reasonable estimation of the redox state as well as oxidative stress 

in the cell, i.e. the lower the ratio, the higher the oxidative stress (Alto and Dhalla, 

1979). In this regard, a reduction of the glutathione redox ratio (78 % of control) 

was noted in the isoproterenol group which was completely reversed by vitamin E 

pretreatment (Table 1). 



Table 1. General characteristics and status of cardiac oxidative stress in 

rats with or without vitamin E treatment 24 h r  after the administration of 

isoproterenol 

Untreated Vitamin E-treated 

Saline Isoproterenol Saline lsoproterenol 

Heart wt (mg) 

Heartmody wt ratio 
(mgM 

Conjugated dienes 

(nmolhg tissue 
lipids) 

MDA levels 
(nmol/mg tissue 
lipids 

GSHGSSG ratio 

Values are rneans f SEM of 8 animals in each group. Treatment of rats with 

vitamin E (25 mg/kg, i.p./day) was carried out for 2 days before injecting 

isoproterenol (40 mgkg body wt; i.p.). Malondialdehyde (MDA), reduced 

glutathione (GSH) and oxidized glutathione (GSSG) were measured as described 

in the Materials and Methods section. * Significantly different (P<0.05) vs control 

group, # si gni ficantl y different (Pe0.05) vs untreated isoproterenol group. 



B. Hemodynamic parameters and myocrrdial ~ a "  content in rats with or 

without vitamin E treatment 

1. Cardiac performance in untreated and vitamin E-treated rat 

The increase in left ventricular end diastolic pressure and the concomitant loss of 

contractile function (+ dPldt ,,,) observed in the isoproterenol group were almost 

completely nomalized by the vitamin E pretreatment. The left ventricular systolic 

pressure was significantly deprcssed in the isoproterenol group. vitamin E 

pretreatment was able to protect against the decrease induced by isoproterenol 

(Table 2). Determination of the myocardial calcium contents revealed a 

considerable increase (272 % of control) in the isoproterenol group, which was 

almost totally nomalized by vitamin E pretreatment (Table 2). It should be pointed 

out that the method employed for the measurement of calcium content has been 

shown to remove extracellular calcium from the heart and primarily yield values 

for total calcium present in the myocardial cell (Alto and Dhalla, 1979). 



2. Measurement of myocardial ca2' contents in rats with or without vitamin E 

treatment 24 hr after the administration of isoproterenol 

In table 2, the myocardial ca2' content (pmol/g dry wt) was measured after 

assessing the hemodynamic functions of the experimental animals in order to 

relate cardiac performance to the sarcolemmal ca2' transporting activities. I t  is 

clearly evident in Table 2 that a myocardial ca2+ content overload is indicated by a 

3 fold increase (272% of control) in the untreated isoproterenol expenmental rats. 

However, in the vitamin E-treated isoproterenol group, an almost total 

normalization of the ca2' content was seen. Thus, cardiac dysfunction, as reflected 

by depressed LVSP, +dP/dt, and -dP/dt as well as elevated LVEDP, in the 

catecholamine-induced cardiornyopathic heart is associated with increased 

myocardial ca2' content. 



Table 2. Hemodynamic parameters and myocardial cii2' content in rats 

with or without vitamin E treatment 24 hr after the administration of 

isoproterenol 

Untreated Vitamin E-treated 

Saline Iso~roterenol Saline Iso~roterenol 

Heart rate (beatdmin) 302 k 14 

LVSP, mm Hg 120 I4.5 

LVEDP, mm Hg 3.3 f 0.4 

+ dPldt,,,, mm Hgisec 5830 + 256 

- dP/dt,,,, mm Hg/sec 5740 + 2 87 

Myocardial ca2' 6.7 + 0.5 
content (pmol/g dry wt) 

Values are means + SEM of 4 to 6 animals in each group. Treatment of rats with 

vitamin E (25 mgkg, i.p./day) was camed out for 2 days before injecting 

isoproterenol (40 mgkg body wt; i.p.). Left ventricular systolic pressure (LVSP), 

lefi ventricular end diastolic pressure (LVEDP), maximum rate of isovolumic 

pressure development (+ dP/dt,,), maximum rate of isovolumic pressure decay (- 

dPIdt,,,) were detennined as previously described (Matsubara and Dhalla, 1996). 

ca2' contents in the rnyocardium were measured afier hemodynamic assessrnent 

of the animals as described in the Materials and Methods section. * Significantly 

di fferent (Pc0.05) vs control group, # Significantly different (Pc0.05) vs untreated 

isoproterenol group. 



C. Cardiac ATPase activities in untreated and treated vitamin E 

experimenial rats 

In view of the increase in the myocardial calcium content observed in the 

isoproterenol group, the changes in SL functions for the occurrence of calcium 

handling abnormalities in the myocardium were examined. For this purpose SL 

ATPase activities were measured. Of note, only the SL ca2' - stimulated ATPase 

activity, which represents the ca2' pump at the cell membrane, was significantly 

depressed to 41 % of control in the isoproterenol group. This depressed activity 

was partially normalized by vitamin E pretreatment (Table 3). Furthemore, ATP- 

dependent ca2' accumulation in the presence of different concentrations of ca2' 

was markedly attenuated in this group at every point by 45 to 57 %. These changes 

were associaied with a significant depression in V,,, value (control, 36.9 + 3.4 

nmol/mg/S min vs isoproterenol, 16.0 k 1.22 nmollmg/S min, PcO.05) without any 

change in Km value. These alterations were significantly restored by vitamin E 

pretreatment (V,,, value 32.0 f 2.6 nmollmg/S min) (Figure 1 ). 



Table 3. Cardiac sarcolemmal yield and ATPase activities in rats wit h or 

without vitamin E treatment 24 hr after the administration of  isoproterenol 

Untreated Vitamin E-treatcd 

Saline I soproterenol Saline Iso~roterenol 

~ a '  - K' ATPase 23.4 $ 1.9 23.7 + 1.6 24.6 k 1.5 23.5 i 1.6 
(pmol/ Pihglhr) 

Ouabain sensitive 2.5 + 0.4 2.6 + 0.3 2.4 f 0.5 2.5 i 0.3 

~ a '  - K' ATPase 
(pmol/ Pi/mg/hr) 

M ~ ~ '  - ATPase 188 +, 7.4 194 -t 6.5 186 ii 5.7 191 + 6.8 
(pmol/ Pi/mg/hr) 

ca2' - stirnulated 14.4 f 0.3 8.5 + 0.2* 13.6 -t 0.5 11.8 + O S #  
ATPase 

Values are means f SEM of 4 different sarcolemmal preparations in each group. 

Each sarcolemmal preparation was isolated fiom the ventricular tissue from 3-5 

hearts. Each preparation yielded 2.8-3.2 mg sarcolemmal protein. Treatment of 

rats with vitamin E (25 mgkg, i.p./day) was camed out for 2 days before injecting 

isoproterenol (40 mgkg body wt; i.p.). Sarcolemmal ATPase activities were 

measured as described in the Materials and Methods section. * Significantly 

different (Pc0.05) vs control group, # significantly different (W0.05) vs untreated 

isoproterenol group. 
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Figure 1: ATP-dependent ca2' uptake at different concentration of ~ a "  in cardiac 

sarcolernmal vesicles from rats with and without vitamin E (25 mgkg body wt., i.p./day) 

treatment 24 hr after the administration of isoproterenol (40 mgkg; ip). Note: Vitamin E 

pretreatment was conducted 2 days prior to isoproterenol administration. Control ani mals 

received a similar treatment with saline. Each value is a mean * SEM o f  4 different 

sarcolemmal preparations in each group. Each sarcolemmal preparation was isolated from 

the ventricular tissue from 3-5 hearts. Each preparation yielded 2.8-3.2 mg sarcolemmal 

protein. * Significantly different (Pc0.05) us control group; # significantly different 

(P4.05) vs untreated isoproterenol group. 



D. Cardiac sarcolemmal ~a+-dependent ca2+-uptake activity 

The ~ a ' - ~ a ~ '  exchanger is a major pathway for transmembrane calcium fluxes in 

the SL membrane, yet only contributes to - 10-20% in regulating intracellular 

calcium in cardiomyocytes (Bers et al, 1993). It is known to play a significant role 

in the excitation-contraction coupling process in cardiac muscles and is a camer- 

mediated transport ptocess whereby the movement of calcium ions across the 

membrane is coupled to the movement of sodium ions in the opposite direction (3 

~ a '  per 1 ca2') (Negretti et al, 1993; Reeves and Hale, 1984). It has a high 

capacity and low affinity for calcium. In the heart the ~ a ' - c a " '  exchanger is 

thought to hnction primarily as a mechanisrn for pumping calcium out of the cell, 

but the exchanger is also known to promote the net entry of calcium into the cell 

under certain circumstances such as membrane depolarization (Philipson, 1990). 

The ~ a ' - ~ a ~ '  exchanger is regulated by calcium, ATP, phosphorylation, and lipids 

whereby the calcium regdates both outward and inward exchanger currents 

(Matsuoka et al, 1995; Schulze et al, 1993). 



Figure 2 shows the results of the time course of depression of Na' -dependent caZ' 

uptake in SL vesicles in isoproterenol treated groups witli or without vitamin E 

pretreatment. I t  can be seen that Na' -dependent ca2& uptake activities in thc thrce 

experimental groups were almost linear within 5 seconds. However. in ail 

experimental groups, in this study, Na' -dependent caZ' uptake was measured at 2 

seconds of initiating the reaction. As shown in Figure 3, a significant depression of 

~ a '  -dependent ca2' uptake activities at each of the different ca2' concentrations 

by 25 to 54 %. These changes were associated with a significant depression in V,,, 

value (control, 8.48 t 0.82 nmol/mg/2sec vs isoproterenol. 4.07 + 0.38 

nmol/mg/2sec, P<0.05) without any change in Km value, was sern in the 

isoproterenol group. Vitarnin E pretreatment exerted a si gni ficant protective e ffect 

on the decrease induced by isoproterenol (V,,, value 7.86 k 0.63 nmollmgi2sec). 

The decreased ~ a ' - ~ a ~ '  exc hange activity in catecholamine-induced 

cardiomyopathy is consistent with an earlier report (Mallov, 1984). 
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Figure 2: Time course of ~a'-dependent ca2' uptake in cardiac sarcolemmal vesicles 

from rats with or without vitarnin E treatment 24 hr afer the administration of 

isoproterenol (40 mgkg; ip). Each value is a mean * SEM of 4 different sarcolemmal 

preparations in each group. Each sarcolemmal preparation was isolated from the 

ventricular tissue from 3-5 hearts. Each preparation yielded 2.8-3.2 mg sarcolemmal 

protein. The concentration of ~ a * + - e m ~ l o ~ e d  in this experiment was 40 PM. * 
Significantly different (PeO.05) vs the control group; # significantly different (P~0.05) vs 

untreated isoproterenol group. 
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Figure 3: ~a+-dependent ca2' uptake at different concentrations of ca2' in cardiac 

sarcolemmal vesicles from rats with or without vitamin E treatmeni 24 hr after the 

administration of isoproterenol(40 mgkg; ip). Each value is a mean k SEM of 4 different 

sarcolennal preparations in each group. Each sarcolemmal preparation was isolated from 

the ventncular tissue from 3-5 hearts. Each preparation yielded 2.8-3.2 mg sarcolemmal 

protein. * Significantly different (PcO.05) h m  the control group; # significantly 

di ff-t (P<O.OS) h m  the untreated isoprotereno 1 group. 



E. Effects of  adrenochrome on cardiac ATP-dependent ca2+ uptake and Na'- 

~ a "  exchange activities 

The oxidation of epinephrine is known to result in the formation of adrenochrome 

and adrendutin and it has been suggested tliat oxidation products of 

catecholamines such as adrenochrome may be involved in catecholamine-induced 

myocardial cell darnage (Yates et al, 198 1; Singal et al, 198 1 ; Yates et al, 1980a; 

Yates et al, 1980b). Previous studies have revealed that adrenochrome is capable 

of inducing coronary spasm (Karmazyn et al, 1981), arrhythmias (Beamish et al. 

1981), ultrastructural damage (Singal et al. 1982), and ventricular dysfunction 

(Yates et al, 198 1). 

In order to further examine the nature of isoproterenol-induced depression of both 

ATP - and ~a -dependent ca2' uptake, the in vitro effect of adrenochrome on 

ATP - and Na' -dependent ca2' uptake activities was investigated. A dose- 

dependent inhibition of ATP -dependent ca2' uptake, with an ICSo of 50 @ml 

(Figure 4A) and Na' -dependent ca2' uptake, with an ICso of 20 pglrnl (Figure 48)  

activities was observed. 



F. Effect of adrenochrome on cardinc performance and myocardial ca2+ 

content 

Perfusion of hearts with or without 10 and 25 pg/ml adrenochrorne for 30 min, 

produced a decrease in leA ventricular systolic pressure and associated loss of 

contractile performance (Table 4). Furthemore, anal ysis of the m yocardial ca2' 

content revealed a significant increase in the adrenochrome perfused hearts (141 

and 182 % of control, with 10 and 25 pglml adrenochrome, respectively). This was 

accompanied by a marked depression, in a dose-dependent manner, of the SL ATP 

- dependent cap uptake activity (75 and 46 % of control, with 10 and 25 pg/ml 

adrenochrome, respective1 y). Likewise, the ~ a '  - dependent ca2' uptake activity 

was also similarly depressed (74 and 43 % of control, with 10 and 25 pg/ml 

adrenochrome, respectively) (Table 4). 



Table 4. Cardiac performance, myocardial ca2' content and sarcolemmal 

ATP - dependent and ~ a '  - dependent ca2+ uptake activities in isolated rat 

heart perfused with different adrenochromr concentrations 

Control Adrenocliroitie 

LVSP, mm Hg 86 + 2.7 60 k 4.2* 39 I 3 . 1 *  

+ dPIdt,,,, mm Hglsec 1912 + 72 1368 I 5 7 *  865 -t 42* 

Myocardial ca2' content 8.2 +, 0.4 11.6 +0.7* 14.9 i 0.8* 

(pmol/g dry wt) 

ATP - dependent ca2' 24.5 2 0.9 18.3 k 0.4* 1 1 .Z + 0.3* 
uptake 

(nmol Ca 2'/mg/5 min) 

~ a '  - dependent ca2' - 4.6 T 0.3 3.4 k 0.2* 2.0 4 0.2" 
uptake 

(nmol Ca 2"1mg/2 sec) 

Values for cardiac performance, myocardial ca2+ content and sarcolemrnal ca2+ - 

uptake activities are means + SEM of 8, 4 and 4 hearts in each group. Hearts werc 

perfused with or without adrenochrome for 30 min. LVSP = left ventricular 

systolic pressure; + dP/dt = rate of pressure development; - dP/dt = rate of pressure 

decay. * Significantly different (Pc0.05) vs control group. 



Adrenochrome concentration (pglrnl) 

Figure 4: In vitro effects of different concentrations of adrenochrome on cardiac 

sarcolemmal ATP-dependent ca2+ uptake activities. Each value is a mean I SEM of 4 

different sarcolemmal preparations in each group. Each sarcolemmal preparation was 

isolated from the ventncular tissue from 3-5 hearts. Each preparation yielded 2.8-3.2 mg 

sarcolemrnal protein. * Signi ficant ly di fferent (Pc0.05) vs control group. Sarcolemmal 

ATP (A) and ~ a + -  dependent (B) ca2' uptake activities were determined as describecl in 

the Matenals and Methods section. 



V. DISCUSSION 

It is well established that oxygen free radicals exert cardiotoxic effects such as 

ca2' overload, myocardial cell damage and contractile failure (Kaul et al, 1993; 

Singal et al, 1998). In addition, large amounts of catecholamines have been 

demonstrated to produce heart hypertrophy and cardiomyopathy (Laks, 1994). 

Experimental studies have demonstrated rnarked changes in SL ~ a ~ ' - ~ u r n ~  and 

Na'- ca2' exchange activities in ischemic myocardium, catecholamine - induced 

cardiomyopathy, diabetic cardiomyopathy, aging myocardium 1 and ca2' paradox 

(Panagia et al, 1984; Dhalla et al, 1983). A depression in the number of SL ca2+ 

channels has also been reported to occur during CHF in cardiornyopathic hamsters 

as well as due to MI in rats (Wagner et al. 1989). Oxygen free radicals have also 

been shown to affect other sarcolemmal activities such as N a ' K  ATPase, which 

is known to affect ca2+ movements in the ce11 indirectly, and ca2* (Kim and Akera, 

1987; Kaneko et al, 1990). In the present study we provide fùrther evidence that 

catecholamine oxidation products could be involved in initiating the processes that 

lead to intracellular ca2' overload and subsequent loss of contractile performance 

during catecholarnine-induced cardiomyopathy. In this study, and inhibition of SL 

ATP and ~a - dependent ca2' accumulation and ca2'-stimulated ATPase activity 

(Dhalla et al, 1996) was demonstrated in experimental animals injected with a 

high dose of isoproterenol. Such depressions of SL ca2'-transporting activities 

cari be seen to contribute towards the occurrence of intracellular ca2+-overload 



dunng catecholarnine-induced cardiomyopathy. Thus, accompanying these 

changes was a dramatic increase in total cellular ca2' content, with a concomitant 

deterioration of contractile function. Peroxidation of lipids in the myocardium due 

to excess release of catecholamines has been reported in severe emotiona! and 

painful stress and can explain the occurrence of intracellular calcium overload 

often isoproterenol treatment (Fleckenstein et al, 1973). One of the stable end 

products of lipid peroxidation is MDA (Barber et al, 1967). Earlier reports of the 

protective effect of vitamin E against catecholamine-induced rhythm changes, 

myocardial ceIl damage, decline in high energy rates may have been due to a 

reduction in the lipid peroxide content in the vitamin E protected hean (Singal et 

al, 1981). The occurrence of intracellular calcium overload, accumulation of 

hydrogen peroxide and lipid peroxidation have been reportcd in ischemic- 

reperhsed hearts (Ceconic et al, 1991). The increase in malondialdehyde and 

conjugated diene formation indicated the occurrence of an oxidative damage, in 

the isoproterenol-injected rats, indicating that lipid peroxide activity in the 

myocardium increases in response to isoproterenol treatment. Pretreatment with 

vitamin E (a membrane soluble antioxidant) resulted in a significant protection 

from isoproterenol induced changes, indicating that such protective action is due 

to preclusion of catecholamine oxidation, since vitamin E has no adrenoceptor 

blocking properiies, and, therefore, could have a protective action in preventing 

catecholamine oxidation by possibly reducing circulating catecholamines. In this 

regard, earlier studies have shown that perfusion of the isolated rat heart with 



oxidized isoproterenol produced dramatic cardiac contractile, morphological and 

subcellular defects (Yates et al, 1975; Dhalla et al, 1978). Also, toxic effects of 

isoproterenol on cultured cardiac muscle cells were shown to be due to its 

oxidation (Severin et al, 1977). Notably, other antioxidants such as ascorbate and 

sodium bisulfate have also been demonstrated to prevent the cytoioxic effects of 

isoproterenol in cultures rat myocardial cells (Ramos and Acosta, 1953; Ramos et 

al, 1983). 

From the above, the injection of catecholamines into animals can be 

conceived to result in the formation of oxidation products in the circulating blood 

as well as in the myocardial cell, which could act independently or in conjunction 

with other effects of catecholamines, directly or indirectly to iniiiaie myocardial 

necrosis. A single toxic dose injection of ISO revealed the development of LV 

dilation and hypertrophy which in turn is the initial insult triggering the 

development of heart failure (Grimm et al, 1998). The accumulation of these 

oxidation products in the myocardium has been reported (Fliegal et al, 1985). 

Moreover, it has also been shown that adrenochrome binding to the SL membrane 

is irreversible in nature (Fliegal et al, 1985). In vivo administration of 

adrenochrorne has been shown to cause both arrhythmia's and myocardial cell 

damage in a dose dependent manner (Beamish et al, 1981). There is strong 

evidence that adrenochome and other catecholamine oxidation metabolites can 

cause ce11 neurosis and contractile failure in the rat heart (Beamish et al, 198 1 ;  



Yates and Dhalla, 1975). In this regard, incubation of cardiac SL preparations 

with different concentrations of adrenochrome, resulted in a dose-dependent 

inhibition of both ATP and ~a'-dependent ~ a "  uptake activities. Such direct 

actions of adrenochrome can be seen to decrease cal'  extrusion from the 

myocardium and result in the occurrence of intrücellular ~ a " '  overload and 

subsequent loss of contractile function. Previous studies in Our 1ab demonstrated 

that adrenochrome depressed rather than stimulated micromal and mitochondrial 

ca2' uptake and binding as well as ca2' stimulated and bIg2' dependent ATPase 

activities (Takeo et al, 198 1). In support of this, we observed a marked increase in 

the myocardial ca2' content as well as a cardiodepressant effect upon perfusion of 

rat hearts with adrenochromc, which was dose-dependent. In fact, the contractile 

dysfunction and myocardial ceIl damage in the isolated perfused rat hean due to 

adrenochrome, which was dose-dependent. In fact, the contractile dysfunction and 

rnyocardial ceIl damage in the isolated perfused rat heart due to adrenochrome has 

been shown to depend upon the concentration as well as time of perfusion. (Yates 

et al, 1981). Furthemore, analysis of SL preparations of these hearts confirrned 

the attenuation of both ATP and ~ a '  - dependent ca2' uptake activities seen in the 

in vitro experiments. As studies indicate, depression in SL N~'/K' - ATPase 

causes an increase in the intracellular concentration of sodium resulting in the 

occurrence of intracellular calcium in cardiomyocyte through the sodium-calcium 

exchange mechanism (Dhalla et al, 1999). In an earlier study we have reported the 

inhibition of SL ~ a '  - K' ATPase activity by adrenochrome, (Takeo et al, 1980), 



which would result in the occurrence of intracellular Na' overload. It has been 

demonstrated that an elevatioii of the intracellular Na* would either increase ca2' 

influx or decrease ca2' efflux through the participation of the Na' -cal' çxchangc 

(Philipson and Ward, 1986). In view of the depressed Nat-dependent ca2' uptake 

activity observed in the present study, such an action of adrenochrorne could be 

seen to contribute to the development of ca2' overload in the myocardial cytosol. 

Vanous phamacological agents and cations, which prevent the occurrence of 

intracellular ca2' overload, have been observed to reduce the cardiac contractile 

failure and cell damage due to adrenochrome (Yates et al, 1980; Yates et al, 1980). 

Although not determined, the findings of the present study are suggestive of a 

protective role of vitamin E from adrenochrome-induced cal'-overload. Previous 

studies have shown that pretreatment of animals with vitamin E was found to 

prevent the catecholamine - induced membrane effects with respect to calcium 

transport. Since calcium is known to activate a multitude of energy - consuming 

reactions of the k a r t  muscle cell, calcium overload would result in increased 

energy expenditure, which would be detected by a reduction in high energy stores. 

Experimental studies show that isoproterenol injection of rats results in depletion 

of high energy phosphates in the heart muscle and in tum, pretreatment of rats 

with vitamin E, prevented the depletion of high energy phosphates to therefore 

preserve the integrity of calcium transport system. 



It  has been suggested that the inhi bitory effects of catecholainine oxidation 

products on ca2' - transporting activities rnay be due to their direct interaction 

with sulfhydryl groups, which are considered essential for proper functioning of 

the membrane-bound enzymes (Belomo et al, 1983; Scberer and Deamcr, 1986). 

In this regard, we have previously shown that DTT and cysteine were found to 

exert protective effects on the depression of ca2' - pump activities due to 

oxidation reactions (Kaneko et al, 1989). I t  should be noted that differences exist 

in the rates of cyclization of catecholamines i.e. norepinephrine cyclization is 

much lower, and thus makes a nucleophilic attack on the thiol groups of proteins 

more likely. Such differences in the level of covalent binding can be seen to affect 

the activities of susceptible membrane bound enzymes differentially. In view of 

this, the reported inhibitory action of adrenochrome on the SL Na- - K' ATPase 

appears to be specific in nature, as in the current study isoproterenol did not 

influence SL ~ a '  - K* ATPase activity. This could be accounted for, by the fact 

that differences in the rates of cyclization of naturally occurring and synthetic 

catecholamines may exist, thereby resulting in differences in their potencies for 

producing cardiotoxic effects under in vivo conditions, (Singal et al, 1981 ; 

Bcamish et al, 1981), oxidation products other than adrenochrome have also been 

suggested to be involved in the genesis of catecholamine-induced cardiotoxicity, 

(Singal et al, 1981), which could therefore, further account for the differences in 

potencies. 



From the foregoing discussion it is evident that aminochromes niay play an 

important role in the pathogenesis of cardiotoxicity under conditions associatcd 

with high levels of circulating catecholarnines and the occurrence of an oxidative 

stress. This situation may occur dunng congestive heart failure (CCIF), subsequent 

to myocardial infarction, where an increase in circulating catecholarnines. and 

oxygen free radicals have been reported to occur (Singal et al, 1998). Furthemore, 

chronic diabetes is associated with increased levels of circulating catecholarnines 

as well as myocardial ischemiahypoxia, which are known to promote the 

formation of oxyradicals and oxidants and subsequent heart dysfunction (Dhalla et 

al, 1998). In addition, Vitamin E was found to prevent the depressions in cardiac 

SL N&K' ATPase and ~ a ' - ~ a ' '  exchanger activities during diabetic 

cardiomyopathy. In vivo administration of adrenochrome has been shown to cause 

both arrhythemias and myocardial ceIl damage in a dose dependeni manner 

(Beamish et al, 1981). Furthemore, autoxidation of catecholamines (which 

results in the generation of highly cytotoxic free radicals), and of membrane 

phospholipids is shown to be inhibited by vitamin E (Singal et al, 1982). Further 

findings show that depression in ca2' - stimulated ATPase activity and SL ~ a '  - 

dependent ca2' uptake due to ISO injection were significantly prevented by 

vitarnin E pretreatment (Dhalla et al, 1996). Although this remains to bc 

determined during CHF, recently it has been reported that vitamin E improved 

hemodynamic function in rats at a chronic stage of CHF (Palace et al, 1999). 

Nonetheless, the present experirnents, demonstrate the occurrence of an oxidative 



stress, and depressed SL C'a2' transport mechanisms due to catecholamine 

oxidation products, which can be seen as a contributory factor for the occurrence 

of intracellular ca2-' overload dunng catecholamine-induced cardiomyopathy. The 

protective effect of vitamin E suggests the inclusion of antioxidants for the therapy 

of stress-induced heart disease. While some caution should be exercised while 

interpreting the results from animal experiments in tenns of processes associated 

with human disease, it should be noted that a link between a high vitamin E intake 

and a lower risk of  coronary heart disease has been observed (Rimm et al, 1993). 

Consequently, a antioxidant dnig action therapy involving agents that may inhibit 

the release of excess catecholamines, prevent the oxidation of catecholamines, and 

block the adrenoceptors, may prove more usehl in preventing stress - induced 

heart disease before carrying out procedures such as angioplasty, coronary bypass 

and thrombolysis, al1 of which may produce oxidative stress. 



VI. CONCLUSION 

1. Experimental rats with a high dose of the synthetic catecholamine, 

isoproterenol, resulted in an increase in lefi ventricular end diastolic 

pressure and concomitant loss of contractile function (+ dP/dt,,,). This was 

accompanied by increased myocardial ca2' and malondialdehyde content, 

as well as increased formation of conjugated dienes. Furthemore, these 

hearts showed depressions in the cardiac ce11 plasma membrane 

sarcolemma (SL) ATP and Na'-dependent ca2' accumulation and caly- 

stimulated ATPase activi ty . The above changes were signi ficantly 

attenuated by pretreatment with Vitamin E. 

2. A depressed cardiac performance, accornpanied by an increase in 

myocardial ~ a "  content, and attenuated SL ATP and Na'-dependent ca2' 

uptake activities were seen in adrenochrome perfused isolated rat hearts. 

3. By employing isoproterenol, adrenochrome, and vitamin E it is concluded 

that catecholamine oxidation products affect caZ' transport mechanisms 

and therefore provides and additional mechanisrn leading to the occurrence 

of intracellular ca2' overload during catecholamine-induced 

cardiomyopathy. The protective effect of vitarnin E suggests the inclusion 

of antioxidants for the therapy of stress-induced heart disease. 
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