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Abstract

A topological surface S can be obtained from the sphere by adding a number
of handles and/or cross-caps. Any topological surface can be represented as
a polygon whose sides are identified in pairs. The projective plane can be
represented as a circular disk with opposite pairs of points on its boundary
identified. The torus can be represented as a rectangle with opposite sides of

its boundary identified.

Given a graph G and a topological surface S, we ask whether it is possible to
draw the graph on the surface without edge crossings. Such a drawing of G
on the surface is called an embedding of G in S. It divides the surface into
connected regions called faces. An embedding is 2-cellif each face is equivalent

to an open disk.

Efficient embedding algorithms for the plane are well-known. By Kuratowski’s
Theorem, a non-planar graph G contains a subdivision of K5 or K33 as a
subgraph. The objective of this thesis is to devise efficient practical embedding

algorithms for the projective plane and torus.

The major contributions of the thesis are:

e A new linear time algorithm to detect a projective planar graph;

ii



e Given a Ks-subdivision in G, a linear time algorithm to determine if G

is toroidal or to provide a K3 s-subdivision in G

e Simple methods to transform a planar embedding into a 2-cell projective

planar or toroidal embedding.

The known linear time algorithm for the projective plane in [28] appears to be
infeasible and it is not clear if the approach is correct. The practical linear time
projective planarity algorithm of the thesis improves the O(n?) time algorithm
of [30]. The algorithm for the torus permits to reduce toroidality testing to a
constant number of planarity checks or to a Kjs-subdivision in the graph. It
runs in linear time and can be used to simplify algorithms presented in [21]

and [31].
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Chapter 1

Introduction

One of the fundamental classical problems in modern graph theory and com-
binatorics is the problem of embedding graphs in topological surfaces. A topo-
logical surface can be obtained from the sphere by adding a number of handles
or crosscaps. A graph is a pair G = (V, E) such that V is a set and F is a
subset of V). The elements of V are the wertices or points of G and the ele-
ments of F are its edges or lines. The notation {u,v} or uv is used to denote
an edge of G. Usually a graph is pictured by drawing a dot for each vertex
and a line joining two corresponding dots for each edge. Given a graph, one

wants to draw it on a surface without edge crossings whenever it is possible.

One of the initial results in graph theory is a structural characterization of pla-



nar graphs through excluded subdivisions of K5 and K33 by K. Kuratowski
[25]. This was published in the 1930s. However efficient algorithms to rec-
ognize if a graph is planar appeared much later. For example, the popular
linear time planarity-testing algorithm by J. Hopcroft and R. Tarjan [19] was
published only in 1974. The orientable (non-orientable) genus of a graph is
the smallest orientable (non-orientable) genus of a surface in which the graph
can be embedded. In general, the problem of finding the genus of a graph was

proved to be N P-complete by C. Thomassen [36].

Recently, Kuratowski’s characterization of planar graphs was generalized for
non-orientable surfaces by D. Archdeacon and J.P. Huneke [2] and for ori-
entable surfaces by R. Bodendiek and K. Wagner [3]. In a series of papers
on graph minors, N. Robertson and P. Seymour [35] generalized Kuratowski’s
result for an arbitrary surface. This implies that for a given surface the ques-
tion of whether a graph is embeddable into the surface can be answered in

polynomial time.

Moreover, B. Mohar [29] claimed to develop a series of linear time algorithms
to answer the question. Unfortunately, these linear time algorithms appear
to be infeasible, and are more of theoretical interest than practical. The de-
scriptions of [28], [21] and [29] are missing many of the details necessary for an
implementation of them. It is not clear if the approach is correct and covers all
the cases providing a linear time algorithm. However, as it is mentioned in [41],

the description of [28] gives some insights into the problem. The only known




efficient implemented algorithm is the O(n?) projective planarity-checking al-

gorithm by W. Myrvold and J. Roth [30].

This thesis is focussed on devising linear time practical algorithms to determine
if there exists an embedding of a graph in the projective plane and/or torus.
These are the topological surfaces closest to the plane. Early algorithms for
these surfaces described in [12] and [32] are known to be wrong (personal
communication by W. Myrvold). Many known algorithms for the projective
plane and torus (eg. [30], [28] and [21]) begin with a Kuratowski subgraph
Ks or K33 in a graph, and try to extend an embedding of K5 or K33 to
an embedding of the whole graph on the corresponding surface. For a graph
G containing a Ks-subdivision, this thesis presents new algorithms to reduce
the projective planarity or toroidality testing of G to a constant number of
planarity checks or to a Kjg-subdivision in G. For a graph G containing a
K3 3-subdivision, the thesis provides a new detailed algorithm to tell if G is
projective planar. In summary, we have devised a new linear time algorithm
to detect a projective planar graph and a linear time algorithm that either

determines the toroidality of a graph or returns a K3 s-subdivision in it.

Chapter 2 provides basic notation, definitions and results related to the prob-
lem and algorithms. Chapter 3 describes the main ideas of the Hopcroft-Tarjan
planarity algorithm. The ideas and concepts of the planarity algorithm are
used in different forms for other algorithms in the thesis. Necessary conditions

for a 2-cell embedding of a graph on the projective plane and torus are given




in Chapter 4. Section 4.3 presents methods for transforming a planar embed-
ding into a 2-cell embedding on the projective plane and torus. The methods
are another main contribution of the thesis. They are used in the software

Groups&Graphs [24].

In Chapter 5, we describe known implemented general algorithms for the pro-
jective plane and torus from [30] and [31]. These algorithms help us to better
understand surfaces with respect to the problem and its practical solution. The
projective planarity checking algorithm of W. Myrvold and J. Roth has O(n?)
time complexity, whereas the toroidality checking algorithm is exponential in

the worst case.

We have completely characterized projective planar and toroidal embeddings of
certain kinds of graphs containing a Ks-subdivision and developed linear time
algorithms to tell if the graphs are projective planar or toroidal. Structural
results for graphs containing a subdivision of Kj; are presented in Chapter
6. Given a non-planar graph G with a subdivision of K5 as a subgraph, we
can either transform the Kj-subdivision into a Kj3s-subdivision in G, or else
we obtain a partition of the vertices of G\ K} into equivalence classes. As a
result, we can reduce a projective planarity or toroidality algorithm to a small
constant number of planarity checks as in [19], or to a graph G containing a
K3 3-subdivision. The corresponding new algorithms are described in Section
7.1 for the projective plane and in Chapter 9 for the torus. Our new algorithms

are reasonable to implement. This approach significantly simplifies algorithms



presented in [21], [28] and [30]. We then need to consider only the embeddings
on the given surface of a K3 s-subdivision, which are much less numerous and
more symmetric than those of K5. Also our new linear time algorithm of
Chapter 9 can be used to restrict the exponential algorithm of [31] to graphs

containing a K3 s-subdivision.

A description of our new linear time projective planarity algorithm is presented
in Chapters 7 and 8. This algorithm is more efficient than the O(n?) time
algorithm of [30] described in Section 5.1. Chapter 7 describes structural
results and all possible cases to complete a K3 s-subdivision to an embedding
of a graph G in the projective plane. We consider a spanning subdivision
of K33 in the graph. A case of a non-spanning K3 3-subdivision in G can
be treated recursively by using the recursion ideas of the Hopcroft-Tarjan

planarity algorithm.

Recent results of [11] suggest an efficient method to compute the orientable
genus for a graph embedded in the projective plane. Our projective planarity

algorithm can be used as a preliminary step to use the approach of [11].

A graph embedding can be used to design a VLSI layout. Given a VLSI to
design, we can represent its elements and wire connections by vertices and
edges of a graph. Since connections between elements should not cross, we are
interested in a drawing of the graph without edge crossing. This provides a

practical motivation to obtain a graph embedding with particular properties.



Chapter 2

Graphs and Surfaces: Basic

Notation and Results

Basic graph-theoretic terminology in this thesis follows Bondy and Murty [4]
and Diestel [8]. A graph G = (V| E) is undirected if the edges of G are un-
ordered pairs of vertices and G is simple if there are no multiple edges or loops.
A graph G = (V, E) is 2-connected if for any two vertices, u,v € V, there are
two internally disjoint paths in G with endpoints u and v. In other words, any

two vertices u,v € V are on a cycle in G.

In this thesis we consider the graph embedding problem for 2-connected, undi-

rected, simple graphs. For graphs that are not 2-connected we can decide on




their embedding in the plane, projective plane or torus by considering their

maximal 2-connected subgraphs.

Chapter 2 describes the polygon representation of the surfaces, defines an
embedding of a graph and related things. Finally, the chapter describes basic
results related to the graph embedding algorithms.

2.1 Basic Notation and Definitions

The description of topological closed surfaces is taken from [13]. The only
topologically distinct (i.e. non-homeomorphic) types of closed orientable sur-
faces are the sphere, the torus, and, in general, the generalized torus with p
holes or the sphere with p handles (p = 1,2,3,...). For closed non-orientable
surfaces, the only topologically distinct types are given by the sphere with ¢
cross-caps (¢ = 1,2,3,...).

According to [13], any closed surface S can be constructed from a curvilinear
polygon homeomorphic to a circular disk by identifying sides in pairs. Each
side from a pair is denoted by the same indexed symbol and is oriented on
the polygon boundary. We use the superscript “+” to denote a clockwise
orientation of a side, like a*, and the superscript “ —” to denote a counter-
clockwise orientation of a side, like a™, on the polygon boundary. Also it can

be proved that any surface S can be decomposed into such a polygon.
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Figure 2.1: The polygonal representation of the sphere

Theorem 2.1 ([13]) Any surface S can be obtained from a polygon home-
omorphic to a circular disk by identifying pairs of sides denoted by the same
symbol where the symbolic side representation of the cyclic polygon boundary

is one of the following types:

(i) a*a~ (the sphere),

(ii) af b aybyazbyaz by ... afbra by, (the sphere with p handles),

(iii) af afag a3 .. .afa}, (the sphere with q cross-caps).

The polygon representation of the sphere is depicted in Figure 2.1. We obtain

the sphere from the circular disk by identifying its two sides a* and a™.

Since the sphere is equivalent to the plane, the polygon representation of the
sphere is not used to embed graphs on the surface. However it is convenient

to consider other topological surfaces as polygons. This simplifies the surface

8
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Figure 2.2: The polygonal representation of the projective plane

representation and drawings on the surface. Also an embedding in the inte-
rior of the polygon is planar and we need only consider combinatorially its

boundary to decide on an embedding.

The polygon representation of the projective plane is depicted in Figure 2.2.
We obtain the projective plane from the circular disk by identifying its two
sides a™ and a*. This is equivalent to identifying opposite points on the
circular disk boundary. Therefore we will consider the projective plane as a

circular disk with opposite pairs of points on its boundary identified.

The polygon representation of the torus is depicted in Figure 2.3. We can
obtain a cylinder from the rectangle by identifying two opposite sides a™ and
a~, or b" and b~. Then we obtain the torus by identifying the remaining
opposite sides. We will consider the torus as a rectangle with the opposite

sides having opposite orientation on its boundary identified.

The cylinder is an intermediate surface for the torus construction and it can
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Figure 2.3: The polygonal representation of the torus

Figure 2.4: The plane drawing of the cylinder

be depicted in the plane as a cyclic band (see Figure 2.4) or as a rectangle with
one pair of opposite sides identified. The cylinder and its planar properties

play an important role in the torus embedding algorithms.

Given a graph G, we want to determine if G can be drawn on a surface
S without edges crossing. This problem is known as the graph embedding

problem.

Definition 2.1 An embedding 1¥s(G) of graph G on a surface S is a mapping of

10



its vertices into distinct points of the surface S, and its edges into simple curves
on S meeting only in common endpoints. A graph G is called embeddable on
the surface S if it admits an embedding on S. Otherwise G is non-embeddable

on S.

Definition 2.2 For an embedding ¥s(G) of graph G on a surface S, the

connected regions of S\G are called the faces of the embedding.

A walk in a graph G is a non-empty alternating sequence voegvie; . . . ex_1x of
vertices and edges in G such that e; = {v;,v;41} for 0 <4 < k. If vy = vy, the
walk is closed. Every face is an open set on the surface bounded by edges and
vertices of the graph. The closure of a face contains the edges and vertices
of the graph on its boundary. To every face then corresponds its boundary,

which is a closed walk in the graph.

A graph G embeddable on the sphere is planar since the sphere is equivalent
to the plane plus one point at infinity (for example, see [13]). Clearly, a planar
embedding of the graph G can be drawn on any other surface as well. However
a planar embedding of G on the torus would have a face that is not equivalent
to an open disk and it does not completely “fit” the surface. Therefore we are

interested in embeddings of G that use the surface in full.

Definition 2.3 An embedding of G on the surface S is a 2-cell embedding if

each face of the embedding is homeomorphic to an open disk.

11



The algorithms described in the thesis are for constructing a 2-cell embedding
of the graph G. Given a 2-cell embedding of G on a surface .S, the follow-
ing definition provides a description of the faces of the embedding and their

interrelations with the graph edges.

Definition 2.4 Given a 2-cell embedding ¥s(G) of G on the surface S, the
dual graph ¥$(GQ) = (V*, E*) of the embedding ¢s(G) is defined as:

(i) each face f of ¥s(G) is a vertex f € V* of 95(G);

(ii) for each edge e € G on the boundary of faces f; and f2 of ¥s(G) (it might
be that fi = f3), there is an edge e* = {f1, fo} € E* corresponding to e.

By the definition, a dual graph ¢¥%(G) = (V*, E*) can be considered as embed-
ded on the same surface S. Then the dual graph of the embedding of ¢¥§(G)
naturally gives back ¥g(G).

Definition 2.5 A rotation system of a graph is a set of cyclically ordered

adjacency lists of its vertices.

A rotation system provides a combinatorial description of a graph embedded
on a surface and can be constructed by an algorithm. For a non-orientable
surface, the rotation system also includes a signature for every edge. The

signature can be defined as follows.

12



Definition 2.6 The signature of an edge in a rotation system is +1 or —1. It
is negative when the edge “crosses the boundary” of a non-orientable surface

and positive otherwise.

A more formal description of a rotation system and the signature is provided

in [17].

Definition 2.7 Two embeddings ¥1(G) and ¥3(G) of graph G are combina-
torially equivalent if there is an isomorphism from ¥%(G) to ¥2(G) respecting

or reversing the rotation system.

An embedding of a graph on a surface is described by a rotation system only up
to a continuous transformation of the surface that does not cut the surface. For
example, the transformation of the torus known as a Dehn twist (see [18]) can
give two combinatorially equivalent, but distinct non-isotopic embeddings as
in [15]. A cycle on the torus is essential if it cannot be contracted continuously
on the torus into a point. The Dehn twist consists of cutting the torus along
an essential cycle to create a cylinder. Then one end of the cylinder is given
- one full twist, and the ends are glued back together to create a torus.- The
Dehn twist demonstrates that a rotation system does not always specify an

embedding completely.

Consider the embedding of K33 on the projective plane of Figure 2.5 as an

example of a graph embedding. The rotation system for the embedding of

13
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Figure 2.5: An embedding of K33 on the projective plane

Figure 2.5 is:

a; — (b1, —1), (b, +1), (ba, +1),
ag — (bg, —1), (b1, +1), (b3, +1),
az — (b3, —1), (ba, +1), (by, +1),
by — (a1, -1), (a3, +1), (as, +1),
by — (ag, —1), (a1, +1), (as, +1),
by — (as, —1), (ag, +1), (a1, +1).

Definition 2.8 A subdivision of a graph G is a graph that can be obtained
from G by substituting paths of non-zero length for its edges. We denote a
subdivision of G by T'G.

Informally, a subdivision T'G can be viewed as produced by successively adding
some new vertices of degree 2 on the edges of G = (V, E'). In graph-theoretical

terms adding a new vertex of degree 2 on an edge {u,v} € E corresponds to
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deleting the edge {u,v} from F, and then adding a new vertex w into V and
two new edges {u,w} and {w,v} into E\{u,v}. Clearly, if G is embeddable
on a surface .S, then any subdivision T'G is also embeddable in S and vice

versa.

2.2 Overview of the Related Results

Any topological surface can be considered as obtained from the sphere by
adding a number of handles and/or crosscaps (see [37]). When we add A > 0
handles to the sphere Sy we obtain the orientable surface S;. When we add
k > 1 crosscaps to Sy we obtain the non-orientable surface Np. Thus S;
denotes the torus, N; denotes the projective plane and N, denotes the Klein
bottle. The following theorem relates a surface S to a 2-cell embedding of a

graph G on S.

Theorem 2.2 (Euler’s formula, [37]) Let G be a connected graph with n
vertices and m edges having a 2-cell embedding with f faces on a surface S.
Then S is homeomorphic either to the orientable surface Sy, where h is defined
by the equation

n—m+ f=2-—2h;

or S is homeomorphic to the non-orientable surface Ny, where k is defined by

the equation
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n—-m+ f=2-k.

The equation of Theorem 2.2 is usually known as Euler’s formula for a graph
G which is 2-cell embedded on a surface S. However Fréchet and Fan’s book
[13] gives priority of this formula for the sphere to Descartes. According to
[17], Lhuilier generalized the formula to all orientable surfaces. The following

theorem for planar graphs is well known.

Theorem 2.3 (Kuratowski, [25]) A graph G is non-planar if and only if it

contains a subdivision of K33 or Ks.

Kuratowski’s Theorem was proved independently and published in 1927 by
Pontryagin (see [27]). The theorem implies that the problem of recognizing
if a graph is planar or not can be resolved in polynomial time (for example,
see [22]). Hopcroft and Tarjan [19] were the first to devise a practical linear
time algorithm to check if a graph G is planar or not. If G is a non-trivial
2-connected planar graph having at least four vertices, then a planar rotation
system for G can always be transformed into a 2-cell toroidal or projective pla-
nar rotation system. Several methods to do this transformation are described
in [15] and in Chapter 4 of this thesis. Some of the methods are implemented
in the software Groups&Graphs [24].

There exist a number of linear time planarity testing algorithms described, for

example, in [5], [19], [23] and [39]. In general, a planarity testing algorithm

16



can be modified so that in the case of a non-planar graph G it will return a
subdivision of K5 or K33 in G (a subdivision of K5 or K33 exists in G by
Theorem 2.3). A planar graph can be trivially embedded on the projective
plane and torus. Therefore we can assume that G is a non-planar, 2-connected
graph with no vertices of degree two (see previous remarks for graphs that are

subdivisions or not 2-connected).

The projective plane and torus are the topological surfaces closest to the sphere
in genus. Known embedding algorithms for these surfaces in [21], [28] and [30]
begin with a subdivision of K5 or K33 in G, and try to extend an embedding
of it to an embedding of G in the projective plane or torus. The results of
this thesis and [14] simplify this approach by reducing projective planarity and
toroidality for graphs with a Ks-subdivision either to planarity checks, or to

the case of a K3 s-subdivision in the graph.

Definition 2.9 To contract an edge {z,y} of graph G means to remove the
edge and both its endpoints z and y from G, and add a new vertex to G
adjacent to all vertices in the neighborhood of x or y in G instead. The
resulting graph is denoted by G/{z,y}. A graph H is a minor of G if H can
be obtained from G by removing and/or contracting some subset of its edges,
deleting resulting isolated vertices and identifying multiple edges. We write

H = MG to denote a minor H of G.
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The following theorem is a generalization of Kuratowski’s Theorem 2.3 and is

known as Wagner’s theorem.

Theorem 2.4 (Wagner’s theorem, [8]) A graph G is non-planar if and

only if it contains K33 or K5 as a minor.

Initially, a generalization of Kuratowski’s theorem for non-orientable surfaces
was described in [2]. For orientable surfaces, this was done in [3]. The following

theorem is a generalization of Wagner’s theorem for an arbitrary surface.

Theorem 2.5 (Robertson and Seymour, [35]) For every surface S there
exists a finite set of graphs {Hy,Hs,...,H,} such that a graph G is non--
embeddable in S if and only if it contains a minor from the set { Hy, Ha, ..., H,}.

The result of Theorem 2.5 is usually stated as a corollary to the Graph Minor
Theorem as in [8]. The fact that there is a finite set of minors Hy, Ha, ..., H,
for any surface S implies a polynomial time algorithm to determine if G is
embeddable on any given surface S (see [28] and [29]). However the explicit
list of minors is known only for the sphere [8] and projective plane [1]. There
are tens of thousands of known minors for the torus (personal communication
by W. Myrvold and [6]). References [21], [28] and [29] present linear time al-
gorithms for the torus, projective plane and an arbitrary surface, respectively.

There are currently no known implementations of these algorithms. So many
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details have been omitted and the algorithms are sufficiently complex, that
implementing them or checking their correctness are not easy. This is men-
tioned in the review [41]. The algorithms may be considered as theoretical
models for graphs on surfaces. They provide some interesting insights into the

algorithmic aspects of the problem as stated in [41].
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Chapter 3

Planarity Testing

This chapter contains a description of the Hopcroft-Tarjan planarity testing
algorithm. Some of the points and ideas of the algorithm are used or developed
later for our new projective planarity and toroidality testing algorithms. A
planarity testing algorithm is used in the new algorithms for graphs with Ks-
subdivisions. The description of this chapter is based on the book of Reingold,
Nievergelt and Deo [33] and the paper of W. Kocay [23]. The algorithm is very
involved with details and references to other algorithms. Therefore we provide

a description that reasonably highlights all the main points and ideas.

Notice that there are several versions of the Hocroft-Tarjan planarity algorithm

presented in [19], [39], [23]. The algorithm can be modified to find a K-
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subdivision or K3 s-subdivision in a non-planar graph G. Such a procedure is

described, for example, in [40] and is mentioned as an exercise in [33].

The algorithm of Boyer and Myrvold [5] is a simplification of known linear
time planarity algorithms. However the description of [5] omits details for a

better understanding of the algorithmic correctness.

A very simple planarity testing algorithm is described by Klotz in [22]. The
algorithm is based on a constructive proof of Kuratowski’s Theorem 2.3. How-

ever its time complexity is O(n?).

Definition 3.1 A graph G is planar if it is embeddable in the plane.

As it is stated in [33], “the problem of determining whether a graph can be
drawn on a plane without any edges crossing is of great practical interest”.
The problem is different from other graph-theoretical problems in that a graph
drawn on a surface has an interplay between continuous properties of the
surface and discrete properties of the graph. The characterization of Theorem

2.3 provides a classical example of this interplay.

The main idea of the algorithm presented here consists of considering consec-
utively bigger planar subgraphs of a graph and trying to complete them to a
planar embedding of the whole graph. Clearly, a simple graph G is planar if
and only if a directed graph obtained by orienting edges of G is planar. Also

G is planar if and only if all its connected components are planar. Finally, it is
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easy to see that G is planar if and only if all its 2-connected components called
blocks are planar (for example, see [27]). So, for the algorithm, we consider

simple 2-connected graphs.

For a connected graph G = (V| E) embedded in the plane, Euler’s formula
relating the number of vertices |V| = n, edges |E| = m and faces f of the

embedding is

fHn=m+2.

The formula implies that a graph G with n > 2 and m > 3n — 6 can never be
planar (for a proof see [27]). A graph G is complete if every pair of distinct
vertices is an edge in G. The complete graph on four vertices, Ky, is clearly
planar. Therefore all subgraphs of K are planar. By Theorem 2.3, a minimal
non-planar graph has at least 9 edges. Therefore, the planar cases of n < 5 or
m < 9 can be described explicitly, and we can assume that graph G is simple,

2-connected, n > 5 and 9 <m < 3n — 6.

Initially the Hopcroft-Tarjan algorithm finds a cycle C' in G and embeds C as
a simple closed curve in the plane. By Jordan’s Theorem, it divides the plane
into two separate regions: the interior and exterior of C. Denote the edges of
C by EC. Then the algorithm decomposes G\ EC into edge-disjoint paths and
tries to embed each path entirely either in the interior of C or in the exterior
of C. If it succeeds in embedding the entire graph G in this way, then G is

planar. Otherwise G is non-planar and it is possible to modify the algorithm
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to find a subdivision of K5 or K33 (for example, see [40]) which exists by
Kuratowski’s Theorem. The difficulty of this approach is in embedding the
paths of G\EC. It must be guaranteed that an initial wrong embedding of a
path does not lead us to an incorrect conclusion that G is non-planar when G
still admits a planar embedding. So, the Hopcroft-Tarjan algorithm considers
the paths in an appropriate order to choose the right place to embed them

and, possibly, rearranges embedded paths to properly add the remaining ones.

3.1 Cycle and Paths Decomposition

The Hopcroft-Tarjan algorithm considers the graph as decomposed into a cy-
cle and a set of edge disjoint paths. Initially a depth-first search is run on
the graph to obtain a DFS-numbering of its vertices. A DFS-numbering cor-
responds to the order in which the vertices are visited by a depth-first search.
Then we need to reorder the vertices and the adjacency lists of G according

to the DFS-numbering. This is done to ensure the algorithm’s correctness.

First we run a depth-first search algorithm on G to obtain a DFS-numbering
of G (for example, see [33] or [27]). Also the DFS algorithm constructs a
spanning tree of GG called a DFS-tree. It is convenient to consider graph G
as converted into a digraph G’ according to the DFS-tree labelling. The DFS

partitions the m edges of GG into n — 1 spanning tree edges and m —n+1 back
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edges or fronds not in the DFS-tree. Now we can refer to a vertex v of G by
its DFS-number. The DFS-tree edges are oriented from a smaller label vertex
towards a bigger label vertex. By the DFS properties, a back edge e = ab is
always directed from a vertex a of higher DFS-number to a vertex b of lower
DFS-number of a DFS-tree such that vertex b is an ancestor of @ in the tree.
An example of a DFS-tree and a digraph G’ is shown in Figure 3.1. Trees will

be drawn growing upwards from their root vertex.

Let lowpt(v) (see [33]) be the lowest numbered vertex reachable from vertex
v or from any of its descendants in the DFS-tree by means of at most one
back edge. When it is not possible to reach a vertex below v by means of a
single back edge from a descendant, v itself becomes lowpt(v). Similarly, let
neztlowpt(v) be the next lowest vertex below v, excluding lowpt(v), that can
be reached in the same way. If there is no such vertex, nextlowpt(v) is equal

to v.

If we denote by S, the set of all vertices lying on any directed path from vertex
v consisting of zero or more DFS-tree edges and ending in at most one back

edge of G/, then we have the following formal definition.

Definition 3.2 The low point of vertex v in G, denoted by lowpt(v), is

lowpt(v) = min(S,)
and the second low point of v in G’, denoted by nextlowpt(v), is
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Figure 3.1: DFS-tree and digraph G’ with low points
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nextlowpt(v) = min({v} U (S, — {lowpt(v)})).

For example, for vertex 8 in Figure 3.1, lowpt(8) = 1 and neztlowpt(8) = 4.

The root vertex of the DFS-tree is labelled 1. Since graph G is 2-connected,
we can always reach a vertex lower than v by means of paths ordered from
v and ending by a back edge except when v is the root of the DFS-tree.
This implies that for v # 1, v > nextlowpt(v) > lowpt(v), and for the root
v =1 = lowpt(v) = nextlowpt(v).

The low points are used to re-order the adjacency lists of G’ so that during
a second depth-first search on G’, the paths in G’ are generated in a certain
necessary order. To do this efficiently, it is necessary to use the following

function on directed edges of G'.

Definition 3.3 For each directed edge ab of G', its weight ¢(ab) is defined as:

2 x lowpt(b), if ab is a tree edge and nextlowpt(b) > a
#(ab) = ¢ 2 lowpt(b) + 1, if ab is a tree edge and nextlowpt(b) < a, and
2% b, if ab is a back edge.

Assuming the low point values are known, the weight function ¢ is easy to
calculate. Then for each vertex a, the edges incident to a can be sorted into a
non-decreasing order according to their weights. The sorting of the adjacency

lists can be done in O(n+m) time by using well-known sorting algorithms (for
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example, see [33]). Now we use this order for the adjacency lists of G’ and call
them properly ordered. In [23] the author uses a refinement of the reordered
adjacency lists of G’ and shows that it can be crucial to determine a planar

graph.

Hereafter, we assume that the adjacency lists of G’ are ordered according to
the weight values. Notice that in the reordered adjacency list of any vertex w,
a back edge uv always precedes a back edge uw if v < w. Also the tree edges
uz are considered in a non-decreasing order according to their ability to lead

to a vertex below u through a single back edge.

For example, the reordered adjacency lists of the DFS-numbered directed

graph of Figure 3.1 are:

1—(2);
2—(3);
3— (4);
4—(5);

5 — (6);

6 — (8,7,3);
7—(2,3);

8 — (9,5);

9 — (1,10);
10 — (11, 8);
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11— (4,5,9).

Having obtained the ordered adjacency lists for the digraph G’, another depth-
first search can be used to decompose G’ into a cycle C and a set of edge
disjoint paths {p1,p2,...,Pm-n} of G'\EC. The cycle C and each path of {p,,
D2y -, Pm—n} is determined by and contains a back edge of G’. The pseudo-
code presented in Algorithm 3.1 does the cycle and path decomposition of G’

according to the reordered adjacency lists AdjList(v) for vertices v of G'.

Algorithm 3.1 Decomposes a DFS-digraph G’ represented by properly or-
dered adjacency lists into a cycle py and paths p1, D2, ..., Pm—n-

Input: A DFS-digraph G’ represented by properly ordered adjacency lists.

Output: Cycle py and edge disjoint paths p1,Da, ... ,Pm—n of G'.

begin

1.¢=0

2.0, =0

3. Path(1)

end

procedure Path(a)

for each b € AdjList(a) considered in the order of AdjList(a) do

pi = p; U {ab}
if a < b then /* ab is a tree edge */
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Path(b)
else /* ab is a back edge */

t=1+1
P =0
end if-else
end for
return

Informally, starting at the root vertex 1, the initial cycle py is obtained by
adding consequently the first edge in the vertex adjacency list which is a DFS-
tree edge until we encounter a vertex z such that the first edge in the reordered
adjacency list of z is a back edge. The back edge from z goes back to the root
vertex 1. This back edge together with the path of tree edges from 1 to z

forms the initial cycle C' = pg.

Then we begin from z and start a new path p; with the next edge out of z (the
first edge out of z is the back edge to the root 1). Each time that we traverse
a tree edge, we continue building the current path. When we traverse a back
edge, it becomes the last edge of the current path. Thus each path consists of
a sequence of zero or more tree edges followed by a single back edge. A new
path is started from the initial vertex of the last back edge. If this vertex has
no more unexplored edges, we back up to the previous vertex on the last path.

The process is continued until G’ has no more untraversed edges.
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For example, Algorithm 3.1 working on the reordered adjacency lists of the
DFS-numbered directed graph G’ of Figure 3.1 provides the following cycle

and path decomposition of G":

C =Po = (1)273)4757678)9)1);
n = (9, 10)1174)a

p2 = (11,5);
p3 = (11, 9);
ps = (10, 8);
ps = (8,5);
ps = (6,7,2);
pr=(7,3);
ps = (6.3).

3.2 Properties of the Path Decomposition

The initial DFS-numbering of G provides a unique decomposition of G’ into
the cycle and paths. In general, the decomposition of a given graph G into
a cycle C = pg and a sequence of edge-disjoint paths pi,ps, ..., Pm—n is not
unique. However the number of paths is m — n, since the cycle and each path

ps, © > 1, contains exactly one back edge.
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We describe some properties of the decomposition that are used for the pla-
narity testing algorithm. The vertices of G have been relabelled by their
DFS-numbers. Suppose the generated cycle C is po = (v1,vs,...,Vk,v1),
where v; = 1 and v; < v3 < ... < v,. Every path p; has only its end
vertices in common with the union of previously generated cycle and paths
poUptUpaU...Up;—1, 2 > 1. Only the two end vertices of each path are
required to distinguish between paths for the algorithm. Therefore for a gen-
erated path p;, ¢ > 1, we denote its start vertex by s;, its finish vertex as f;

and we refer to the path as p; = (s;, fi)-

3.2.1 Path Properties

Each path generated by Algorithm 3.1 ends with a back edge. From all avail-
able back edges incident on a particular vertex, Algorithm 3.1 selects the back
edge that leads to the vertex with the smallest depth-first number of those
which has not been used before. The selection happens automatically because
of the non-decreasing order of the adjacency lists with respect to the weight

function ¢.

Lemma 3.1 ([19]) For a path p; = (s;, f), fi is the lowest vertex reachable
from s; by a sequence of tree edges and any one of the back edges that have not
been used in any path when the first edge in path p; is traversed. Furthermore,

for an intermediate vertex v in path p;, t.e. v € p;, v # 8 and v # f;,
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fi = lowpt(v).

Proof. The lemma follows from the fact that all edges from v and its de-
scendants are untraversed when the first edge in p; is taken, and from the

re-ordering of the adjacency lists according to the weight function values. m

Lemma 3.2 ([19]) For two generated paths p; = (s;, fi) and p; = (s, f5),

J>12>1,if s; is an ancestor of s; in the tree (s; < s;), then f; < f;.

Proof . This is true because the back edge ending p; was unused when p; was
being generated. By Lemma 3.1, p; takes the back edge reaching the lowest

possible vertex in G’ at this time. |

Lemma 3.3 ([19]) For two generated paths p; = (s;, f;) and p; = (s, f3),
J>12>1, such that s; = s; = s, f; = f; = f, z; is the second vertex in path
p; and x; s the second vertex in path p;, if edge sx; is not a back edge and

nextlowpt(x;) < s, then sz; is not a back edge and nextlowpt(z;) < s.

Proof. By Lemma 3.1, since z; # f, f = lowpt(x;). Since sz; is a tree edge

and nextlowpt(z;) < s, by definition, the weight function value of the edge is

d(sz;) = 2lowpt(x;) + 1 =2f + 1.

Since p; is generated after p;, vertex z; must appear later than z; in the

properly ordered adjacency list AdjList(s). Therefore we have

32




$(sz;) 2 d(szs) = 2f + 1.

Thus sz; is not a back edge either and z; # f. Also, nextlowpt(z;) < s,

otherwise we would have

@(sz;) = 2lowpt(z;) = 2f,
a contradiction. |

Notice that Lemma 3.3 uses the nextlowpt values. We will need the nextlowpt
values to break a tie between two tree edges wv and ww, directed from a
common vertex u and having lowpt(v) = lowpt(w) in G'. Lemmas 3.1-3.3 and

their proof provide insight into a correct working of the planarity algorithm.

3.2.2 Segments

If we remove edges of the cycle C = pp from G, the subgraph induced by
the edges of the remaining digraph G'\EC partitions the vertex set of G into
connected components. Each connected component of G'\EC consists of one

or more segments defined as follows.

Definition 3.4 A segment S of G’ with respect to the cycle C is either a
single back edge v;w such that v,;w ¢ C, but v; € C and w € C, or a subgraph

consisting of a tree edge v;w, v; € C, w ¢ C, and the directed subtree rooted

33



at w, together with all back edges from this subtree. The vertex v; € C at

which segment S originates is called the base vertez of S.

Each segment S is a connected subgraph of G’'\ EC, but not every connected
subgraph of G'\EC is a segment. For example, several segments may have a
common base vertex. Algorithm 3.1 generates segments in a decreasing order
according to the depth-first numbers of the base vertices. Moreover, all paths
of a segment are generated before any path of the next segment. Clearly, all
paths of the same segment must be embedded together either inside or outside
of the cycle C. This is a reason to group paths into the segments and to

consider them in segments.

For example, the DFS-numbered directed graph G’ of Figure 3.1 has a decom-
position into the cycle C' = pg and four following segments S;, So, S3 and Sy

(see Section 3.1 for an explicit description of py and the paths py,ps,...,ps):

S1 = {p1,p2, 3, P4 };

So = {ps};
S3 = {ps, p7};
Sy = {ps}

While embedding a segment, the Hopcroft-Tarjan algorithm can be applied

recursively and can generate segments inside of a segment with respect to
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another cycle. This is another main idea of the algorithm.

3.3 Main Features of the Embedding Algo-

rithm

The cycle C can be embedded either clockwise or counter-clockwise in the
plane as a simple closed curve. Without loss of generality, we assume that C
is embedded counterclockwise in the plane and we need to add the segments
to the embedding of C' without any edges crossing. Consider a segment S with

the base vertex v; and the first edge v;w.

Definition 3.5 Segment S is said to be embedded inside of C, if the edges
incident on the base vertex v; appear in the adjacency list of v; clockwise
as v;_1Y;, VW, UVip1. Otherwise S is embedded outside of C and the edges
incident on the base vertex v; appear in the adjacency list clockwise as v;_1v;,
ViVit1, V;w, where 1 —1 and ¢4 1 are taken modulo k. A back edge zv;, v; € C,
belonging to a segment embedded on the inside of C, is said to be entering C
from inside. Otherwise the segment is embedded on the outside of C and its

back edge zv;, v; € C, is entering C from outside.
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3.3.1 Embedding the First Path of a Segment

The segments of G'\EC' are generated by Algorithm 3.1 in a certain order.
We are trying to embed the segments of G'\EC one at a time in the same
‘order. To embed a segment S, we consider the first path p of S generated by
Algorithm 3.1. Without loss of generality, we are trying to embed p inside of
C by examining the previously embedded paths in constant time as follows.
If p can be embedded inside of C, we embed it there. Otherwise all the
previously embedded segments that are blocking the embedding of p inside of
C are moved to the outside of C. Moving the segments from inside to outside
of C' may force some other segments to be moved from outside to inside of C,
etc. If p cannot be embedded inside of C' after the rearrangement of segments,
then graph G is non-planar. If p can be embedded inside of C, we embed it
there and try to embed the remaining paths of segment S by applying the
embedding algorithm recursively. When we successfully embed .S, we continue

with the next segment in the same way.

The following theorem is used to check efficiently if the first path p of segment
S can be embedded on a specific side of C' during the embedding algorithm.
Suppose p = (v;,v;), where v;,v; € C, v; < v;, and all the segments generated

before S have been successfully embedded.

Theorem 3.1 ([33]) Path p can be embedded inside of C, if there is no pre-

viously embedded back edge xv;, vy € C, entering C from inside such that

36



v; < vy < v;. Furthermore, if there is such a back edge xv:, then S cannot be

embedded inside of C.

Proof. The segments are generated in the decreasing order of the depth-first
labels of their base vertices. Therefore none of the edges embedded so far can
be leaving any of the vertices smaller than v; in C. Thus if no back edges enter
C from inside between v; and v;, nothing prevents us from embedding p inside

of C by placing p sufficiently close to C.

Suppose that there is an embedded back edge zv; entering C from inside such
that v; < v, < v;. Back edge zv; belongs to a previously generated segment
S’ embedded inside of C. Denote by v, the base vertex of segment S’. Notice,
that if S’ is a single back edge zv;, then v, = z. Since S’ was generated before
S, then v, > v;. If vy > v;, then the sequence of edges in S from v, to v;
would cross an embedding of p inside of C and we cannot embed p inside of

C without edges crossing.

Therefore we assume that v, = v;. It means that segments S and S’ have a
common base vertex. We consider the first path p’ = (v, v,), v, € C, of &
generated by Algorithm 3.1. Lemma 3.2 implies v, < v;. Thus vertex v, # v;
and there are at least two paths in S, one entering C at v; and the other at

vp. Also it means that the first path p’ of S’ is not just a back edge.

If v, < vj, then it is clear that path p cannot be embedded inside of C' without
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edges crossing. The last possibility is that v, = v; and paths p and p’ have
both end vertices in common, i.e. v; = v, and v; = v,. Let w and w’ be the
second vertices on paths p and p’ respectively. Since the first edge of p’ is not a
back edge, w’ # v,. Moreover, there are at least two back edges in S’ entering
C below v, at v; and v,. This implies neztlowpt(w') < v,. This gives w # v,
and v; < nextlowpt(w) < v; by Lemma 3.3, i.e. there are at least two back
edges in S going to v; and to nextlowpt(w) that lies between v; and v;. The
sequence of edges from v; to nextlowpt(w) in S together with path p cannot
be embedded inside of C' without crossing an edge of S’. Therefore S cannot

be embedded inside of C' without edges crossing. ]

By Theorem 3.1, we need to know just the start and end vertices of a path to

check its embeddability.

3.3.2 Recursion
Denote by Fp the set of edges of the path p. Having embedded the first path

p = (s, f) of a segment S, it is necessary to decide if S\ Ep can be added to
the planar embedding.

Lemma 3.4 ([33]) S\Ep can be added to the planar embedding constructed
before if and only if the subgraph S U C is planar.
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Proof. By Theorem 3.1, there are no previously embedded back edges entering
C from inside in the interval from f to s. On the other hand, all the back
edges of S\Ep are entering p or C in the interval from f to s. The lemma

follows. ]

Therefore the next step is to decide on the planarity of the subgraph SUC of
G’. This can be accomplished by applying Theorem 3.1 recursively to SU C.
For the recursion, the DFS-tree edges from f to s on C and the first path p
of S serve as the initial cycle C' for S U C. Then removing the cycle C’ from
SUC may further partition the remaining digraph (SUC)\EC’ into segments
of SUC with respect to the cycle C'. We can apply recursion to the segments
of S U C by considering them one by one as well. We continue the recursive
process for segments and a cycle till all the paths of segment S are embedded

in the plane or some path cannot be added to the embedding by Theorem 3.1.

3.3.3 Data Structures

For the segment embedding we consider them in a non-increasing order of the
DFS-numbers of their base vertices on the cycle C. Suppose we are embedding
a segment S with base vertex s € C. To decide on the embeddability of S,
we need to know which vertices of C' smaller than s already have back edges
entering from either the inside or the outside. Knowing these vertices of C, we

can tell if we can embed S by using Theorem 3.1. Therefore we will use two
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stacks InsideStack and OutsideStack to list vertices of C smaller than the
current base vertex and having back edges entering C from the inside and the
outside respectively. The stacks contain the vertices in increasing order with

the biggest DFS-number vertex on top.

It is always attempted to embed a new segment inside of C first. Therefore,
when the first path p = (s, f) of S is generated, vertex f # 1 must be added
on top of InsideStack. During the recursion, all the end vertices of the paths
of S are added to InsideStack as well. Clearly, a new vertex is added to
InsideStack if and only if its DFS-number is bigger than the top vertex in
the stack. Otherwise the DFS-number of the vertex is the same as the top one

and is already represented in the stack.

The segments are generated in a non-increasing order of the DFS-numbers of
their base vertices on C. When we are moving down a tree edge v;_;v; during
the generation and embedding of the segments, we have all the segments with
base vertices higher than v;_; successfully embedded. Thus, by Theorem 3.1,
the back edges entering cycle C at vertex v;—; or higher do not interfere with
the paths of the remaining segments. Therefore we can remove vertex v;_1
from InsideStack and OutsideStack as we move down from v; to v;—; on the

edge v;_1v;.

The segments may be moved from inside to outside of C' or vice versa several

times. Moving one segment can initiate moving other segments. Clearly, the
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corresponding entries of InsideStack and OutsideStack must be shifted as
well. It is necessary to group back edges which are moving simultaneously as

a. bundle.

Definition 3.6 A bundle is a maximal set of entries in InsideStack and
OutsideStack that corresponds to back edges such that an embedding of one
of the back edges determines the embedding of all others.

When the stacks change, the set of bundles changes as well. However the
bundles always partition the entries of both stacks. Furthermore, from the
order of path generation and adding the new entries on top of a stack, all

entries in each stack corresponding to the same bundle are adjacent.

Consider the embedding of a new segment S with the first path p = (s, f)
inside of C. When all entries corresponding to back edges in S are added to
InsideStack, a new bundle B is formed. B contains the InsideStack entries
for the segment S as well as any entry for a back edge that interferes with .S,
ie. a vertex v such that f < v < s. Therefore every bundle that contains
such a vertex v must be combined with the new entries of S to form the new
bundle B. The vertices v’ in all other bundles must satisfy v < f. Some
members of B will be in InsideStack, others will be in QutsideStack, but
they all will be on top in both stacks. Since an embedding of a back edge in
a bundle completely determines just the embedding of all other edges of the

same bundle, it is useful to keep the back edges in bundles.
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The information about bundles can be stored in a third stack BundleStack.
Each entry in BundleStack is an ordered pair (z,y) for a bundle, where z is
the lowest entry in InsideStack and y is the lowest entry in QutsideStack for
the bundle. z = 0 means the bundle does not have any entry in InsideStack
and y = 0 means the bundle does not have any entry in OutsideStack. It
is convenient to implement entries (z,y) of BundleStack as pointers to the

corresponding entries of InsideStack and OutsideStack.

This presentation of the algorithm is taken from [33]. An actual embedding
algorithm is developed inside of the path decomposition Algorithm 3.1. Its

complete detailed description is provided in [33].

3.3.4 Complexity of the Algorithm

The DFS path generation part of the algorithm requires O(n +m) operations.
The embedding part uses information about m — n endpoints of the generated
paths. It consists only of a sequence of stack manipulations, and adding or
deleting an element requires a constant time. The total number of entries in
the stacks is O(n+m). Therefore the entire algorithm runs in O(n+m) time.
Since m < 3n — 6 for a planar graph, the algorithm requires O(n) operations.
The storage memory use is also O(n). A more subtle analysis of the algorithm

and its complexity can be found in [23].
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The algorithm can be modified to obtain a rotation system for an actual em-
bedding of the graph by using information about the stacks and their changes.
Also it can be modified to return a subdivision of K5 or K33 in G when the
graph is non-planar. A description in [33], [23] and [40] provides more detailed

ideas to do it in linear time as well.

3.4 Summary of the Hopcroft-Tarjan Planarity
Algorithm

In this section we consider the Hopcroft-Tarjan planarity algorithm in a sim-
plified intuitive form. The simplified ideas are used later for the projective

planarity algorithm for graphs with a K3 s-subdivision.

3.4.1 A Spanning Initial Cycle

Suppose we first consider a graph GG with a spanning DFS-tree that is a path
and the spanning cycle C = pp is the starting subgraph for an embedding of
G. The cycle C divides the plane into 2 regions. Each back edge is a chord
of the cycle. We then have to place the remaining chords of G either inside or

outside the cycle.
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If G has n vertices, the vertices of the cycle are then DFS-numbered 1,2, ...,n
along the cycle. We sort the adjacency lists in order of increasing DFS-number

of adjacent vertices.

To embed the chords, first we start at vertex numbered 1, and travel along the
cycle to the last vertex n as the first DFS algorithm does. We then consider
all chords at n. Since they are ordered by their endpoints, we can easily place
them inside C. Then we move back to vertex n — 1 and place the chords
whose higher endpoint is n — 1. It is easy to tell if a chord can be embedded
on the inside of C, because the cycle is ordered by the DFS-numbers. We just
compare endpoints. If a chord does not embed on the inside, we embed it on
the outside. If a chord cannot be embedded on either side, it may be possible
to switch a bundle of chords from the inside to the outside, and vice versa, as

shown in Figure 3.2.

When we return to vertex 1 on the cycle, all the chords are embedded, and it
provides a planar embedding of G. Instead of moving forward and backward
to traverse the cycle C, it is possible to consider starting at the vertex labelled
n, and simply following the cycle back to vertex 1. A similar technique is used
in the projective planarity algorithm to traverse the boundaries of the faces of

an embedding of K3 3.
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Figure 3.2: Embedding chords around a DFS-cycle C
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3.4.2 Recursion for Traversing a Non-Spanning Initial

Cycle

Now, if C' = po is not a spanning cycle, consider a vertex v € C visited by
the algorithm as we move backward on the cycle C. If v is adjacent to some
vertex u ¢ C, there will be a path p’ beginning with the edge vu, and meeting
C in another vertex w € C (w is the end vertex of p’). Then path pc from w
to v on C and path p’ together form a cycle C' = pc U p'. We can apply the

same approach recursively to embed the cycle C" and all its back edges.

Each back edge of C’ is either placed inside C’, or outside C’. The path p’ itself
is either placed inside C, or outside C. In general, we use recursively a depth-
first search algorithm DFS(u) for each vertex u adjacent to v (each vertex
of the graph is visited just once). Thus, the Hopcroft-Tarjan algorithm is
the recursive generalization of the algorithm which places chords either inside
or outside of a cycle C. Its outline with the pseudo-code for the recursive
EmbedBranch procedure is given in Algorithm 3.2. A detailed pseudo-code
for the subroutine SwitchSides(v, u) is provided in [23]. Similar detailed ideas

are described in [33].

Algorithm 3.2 The Hopcroft-Tarjan Planarity Testing.
Input: A graph G represented by adjacency lists
Output: G is planar or non-planar
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(1) Choose a starting vertex v of G

(2) Run LowPoint DF'S(v)

/*The procedure assigns DFS-numbers, calculates LowPoints, and orders
the adjacency lists. We have now constructed a DFS-tree T' that will be
used to order the embedding of back edges. */

(3) Run EmbedBranch(v)

/¥ We must traverse the DFS-tree T to its first leaf and find the initial cycle C.
We then back up the tree as the recursion unfolds, and call the EmbedBranch
procedure recursively to embed each branch of the tree that has its root on the
cycle C. Each branch of the tree T corresponds to a segment of the DFS-digraph
G'. The entire algorithm can be written as a DF'S procedure to traverse T'

and to embed back edges. The procedure EmbedBranch does a traversal of T
which starts at the top of T, and then descends the DFS-tree T', embedding back
edges as the recursion unwinds. The procedure is calling itself recursively for

each branch of the tree.*/

procedure EmbedBranch(v)
for each u adjacent to v do
if (u has not been visited before)
EmbedBranch(u)

/*The first back edge encountered will be incident to a point visited
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before and having a smaller DFS-number in the tree. This creates
a cycle C. Subsequent back edges and branches will be embedded
either inside C, or outside C.*/
if (NonPlanar) return
else
/*vu is a back edge. Either u is above v in the tree, or below
this can be detected by comparing DFS-numbers.*/
if (u is above v in T') return; /* The adjacency lists are ordered.*/
/*Otherwise u is below v in the tree.*/
if (DFS-number of w fits inside C)
place uv inside C
else if (DFS-number of w fits outside C)
place uv outside C
else
/*uv does not fit inside or outside C.
Try switching sides.*/
k = SwitchSides(v, u)
if (k = 0)
/*Switching sides does not help.*/
NonPlanar = true
return
/¥ Otherwise switching sides made it possible to embed wv.*/

if (k = 1) place uv inside C
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else place uv outside C
end if-else DFS-number of u fits
end if-else u visited
end for

end EmbedBranch

A description of how to store the back edges uv in the linked lists InsideStack
and QutsideStack, and how to switch sides using BundleStack for the inside
and outside of the cycle are presented in Section 3.3.3. The details for an

implementation of the stacks as linked lists are given in [33].
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Chapter 4

Essential Cycles on the

Projective Plane and Torus

This chapter presents graphs embedded on surfaces of higher genus than the
plane. Let G = (V, E) be a 2-connected graph, |V| = n,|E| = m. We are
interested in 2-cell embeddings of graphs on the projective plane and torus.
An embedding of G on a surface that is not a 2-cell embedding does not fit the
surface and can be considered as an embedding on a surface of smaller genus.

Let C be a cycle in graph G.

Definition 4.1 A cycle C is contractible or null homotopic with respect to

an embedding of G on a surface if C can be contracted continuously on the
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surface into a point. Otherwise C is an essential cycle of the embedding.

A spanning tree T of graph G has n—1 edges. Each o.f the remaining m —n+1
edges e1, €, ..., €m—nt1 of G\ET determines a unique cycle C; in T'Ue;, i =
1,2,...,m —n+ 1, called the fundamental cycle of e; with respect to T". The
fundamental cycles {C1, Ca, . ..,Cm_ni1} are pairwise distinct and any closed
circuit of G can be uniquely represented as a linear combination of the cycles
C1,Co,y ..., Cp—nyy with respect to exclusive OR operation on the edges of two
cycles. The set {C |C' is a closed circuit in G} is a vector space over GF(2)
with basis {C1,Cs,...,Crnnt1}. A good description of fundamental cycles

and circuit spaces of a graph is provided in [16].

Definition 4.2 ([16]) The set of fundamental cycles {C1,Cs,...,Cnont1}
corresponding to a spanning tree T of graph G is called a cycle basis of G with

respect to T.

4.1 Embedding Cycles on the Projective Plane

According to Chapter 2 and [13], we consider the projective plane as a disk with
antipodal boundary points identified. For any 2-cell embedding of graph G on
the projective plane, there is a cycle C' € G that is essential for the embedding
(see Figure 4.1). Otherwise G is planar embedded in the projective plane and
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Figure 4.1: Essential and contractible cycles on the projective plane

one face of the embedding is not equivalent to an open disk. If we cut the
projective plane along an essential cycle, we obtain a unique face equivalent to
an open disk (the disk boundary consists of two copies of the cycle). Denote
by F' the face obtained by cutting the projective plane along the essential cycle
C. G\C is then planar embedded in F'. However the cycle C appears twice
on the boundary of F' and initially we do not know which copy of C on the

facial boundary is adjacent to a vertex of G\C.

Theorem 4.1 ([34]) For a non-planar graph G embedded on the projective
plane, there is a cycle C of any cycle basis {C1,Ca,...,Cm-nt1} of G such

that C is essential in the projective planar embedding of G.

Proof . Suppose all the cycles of a cycle basis {C1,Ca,...,Cm_nt1} are con-
tractible. A linear combination of contractible cycles is a contractible cycle.
However, by Theorem 2.3, G contains a subgraph of TKj5 or TK33 and any

embedding of TK’5 or T K33 on the projective plane contains an essential cycle
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(see Figure 7.1 and Figure 7.2). A contradiction. [

Corollary 4.1 ([34]) Any cycle basis of TKs or TK33 in G contains a cycle

C that is essential in any gwen embedding of G on the projective plane.

4.2 Embedding Cycles on the Torus

.According to Chapter 2 and [13], the torus can be represented as a rectangle
with opposite sides identified. Consider a 2-cell embedding of graph G on
the torus. The embedding of G cuts the torus surface into open disk cells.
Therefore there is a cycle C' of G that is essential on the torus. The essential
cycle C cuts the torus surface into a surface homeomorphic to a cylinder
surface as in Figure 4.2. The cylindrical face is not equivalent to an open disk
either. Therefore there must be a path P in GG as in Figure 4.2 which cuts the
cylindrical face into a 2-cell. All the faces of the embedding of G are obtained
by cutting the 2-cell determined by the cycle C and the path P of G.

The 2-cell face can be drawn as a rectangle having two copies of C and P on

opposite sides of its boundary as in Figure 4.3.

Definition 4.3 ([27]) A 0-graph H is a graph consisting of two vertices of
degree 3 connected by three internally disjoint paths.
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Figure 4.2: Cutting the torus surface into a 2-cell

Y

Figure 4.3: The torus cut into a 2-cell
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If PNC is a single vertex, then P is another essential cycle for the embedding
of G and C'U P are two edge disjoint cycles sharing a unique common vertex.
Otherwise C U P contains two other different essential cycles for the torus
embedding of G. The cycles share path P. In this case, C U P is a f-subgraph
in G.

Theorem 4.2 ([34]) For a non-planar toroidal graph G, at least two cycles

of any cycle basis of G are essential in any embedding of G on the torus.

By Theorem 2.3, a non-planar toroidal graph G contains a subdivision T K3

or TK3’3.

Corollary 4.2 ([34]) At least two cycles of any cycle basis of TKs or TKs3

in G are essential in any embedding of G on the torus.

4.3 2-Cell Embeddings of Planar Graphs on

the Projective Plane and Torus

Consider a planar, 2-connected graph G that is not a cycle. We can embed G
on the projective plane or torus in an arbitrary 2-cell disk. Clearly, a planar

embedding of G on the projective plane or torus is not a 2-cell embedding.
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Figure 4.4: Planar embedding of G on the projective plane

However we can construct a 2-cell projective planar or toroidal embedding

from a planar embedding of G as follows.

Suppose wv is an edge on the outer face boundary of a planar embedding of G,

where G is embedded on the projective plane in an open disk as in Figure 4.4.

Then to transform the planar embedding of GG into a 2-cell embedding of G on
the projective plane we can just re-draw edge uv across the projective plane
boundary as in Figure 4.5. Since G is 2-connected, edge wv will cross the
projective plane boundary on an essential cycle for the embedding, creating a
2-cell embedding of G. In this case the rotation system of G does not change,

but the edge uv has its signature changed from +1 to —1.

To obtain a toroidal 2-cell embedding of a planar graph G, we can use a 6-

subgraph in G. A 2-connected graph G that is not a cycle must contain a
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Figure 4.5: 2-cell embedding of planar G on the projective plane

f-subgraph. To find a #-subgraph H in G, we can either take the boundaries
of two adjacent faces of a planar embedding of G or construct H by using
a depth-first or breadth-first search. Denote by A and B the two vertices of
degree 3 in H and by P, = (A,a1,...,b1,B), Po» = (A,a9,...,b2,B), P3 =
(A, as,...,bs, B) the three paths connecting A and B in H as in Figure 4.6.

The 6-subgraph H divides the plane into 3 regions. Without loss of gen-
erality, assume that path P, is inside the region bounded by P, U P as in
Figure 4.6. The region of the plane bounded by P; U P, contains a planar
embedding of component Cs; the region bounded by P» U Ps contains a planar
embedding of component C7; and the region bounded by Ps U P; contains a
planar embedding of component Cy of G\H (see Figure 4.6). Then the ad-
jacency list for vertex A in the planar embedding of G can be described as
A = (a1,v1,...,02, a2, W1, ..., Ws, a3, U1, . .., Uz), Where (vq,...,v2) is the or-

dered neighborhood of A in Cs, (wy,...,ws) is the ordered neighborhood of A
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Figure 4.6: #-subgraph in a planar embedding of G

in C; and (ug,...,us) is the ordered neighborhood of A in Cy (see Figure 4.6).
Similarly, the adjacency list for vertex B in the planar embedding of G can be

described as B — (bl,a:2, B AT b3, 29y ...y 21, bg, Ya,. - ,yl) (see Figure 46)

A graph G with a rotation system r is denoted by G". Suppose G is planar
with a f-subgraph H as described above. Let GP be the graph where p means a
rotation system for its planar embedding. We can construct a rotation system

G* for a toroidal 2-cell embedding of G as follows.

Theorem 4.3 Changing the adjacency list for vertex A of H from

A— (al,'vl,...,vz,ag,wl,...,wg,ag,ul,...,m) to
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Figure 4.7: Converting a planar embedding into a 2-cell toroidal

A — (ag,v1,...,02,01,W1,..., W, a3,U1,...,Us)
in the planar rotation system GP provides a rotation system G* for a toroidal

2-cell embedding of G.

Proof . Notice that we change the adjacency list of A by altering the positions
of just two vertices a; and ap corresponding to paths P; and P,. This gives a
2-cell embedding of the f-subgraph H on the torus in which the 3 paths Py,
P, and P; cut the torus surface into a single 2-cell as in Figure 4.7. We embed
the remaining induced subgraphs C;, Cs and Cs in the torus with the same
rotation systems as in the plane. We just need to check that the connections
of Ci, Cs and C3 to the vertices of H are in the same cyclic order in the
torus as in the plane. This can be verified directly from Figure 4.7. Since the

f-subgraph H is 2-cell embedded on the torus, so is the entire graph G. ]
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Theorem 4.3 provides a convenient way to convert a planar embedding of G
into a 2-cell embedding of G on the torus. It requires interchanging just two
edges in the adjacency list of one vertex. There are other methods that can
be used to transform the planar rotation system GP into a toroidal rotation

system G*.
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Chapter 5

Graph Embedding Algorithms
Currently Implemented for the

Projective Plane and Torus

This chapter contains a description of the implemented algorithms of [30] and
[31] for the projective plane and torus. We outline the main ideas of the
algorithms that are important for better understanding of the correspond-
ing surfaces, the data structures used by a computer program and the time
complexity. The linear time algorithms of [21], [28] and [29] are more of a
theoretical interest. We do not know of any linear time implementations of

them.
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5.1 Practical Projective Planarity Testing

The algorithm of [30] tries to complete an embedding of a subdivision TKs or
TK33 to an embedding of a graph G, as does the algorithm of [28].

Definition 5.1 A bridge of a graph G with respect to an embedded subgraph
H is a subgraph B of G such that B is either an edge {v,w} € G\EH with
v,w € H, or a connected component C € G\ H plus all edges {v, w} such that
v € C and w € H. The vertices of BN H are called attachment points of the
bridge.

The algorithm in [30] is based on the idea of reduction to a 2-SAT problem.
The 2-SAT problem is used to select an assignment of bridges to faces of an
embedded T'K33 or TK5. This is possible because an embedding of T K5 or
T K33 on the projective plane (see Figure 5.1 and Figure 5.2) can be completed
to a graph G by adding each bridge into at most three faces of the embedding.
There can be just a constant number of bridges which are embeddable into
three faces. After a preliminary selection of all possible embeddings for these
bridges, the remaining bridges can be added into at most two faces of the
embedding. The 2-SAT problem is used to assign the remaining bridges to

faces.
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Figure 5.1: Embedding of K33 on the projective plane

Figure 5.2: Embeddings of K5 on the projective plane
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5.1.1 Basic Ideas

By Theorem 2.3, a non-planar graph G contains a subdivision of K5 or K33. A
modification of the planarity algorithm of Chapter 3 can return a subdivision

TKs or TK33 in G. We denote by TK a subdivision of K5 or K33 in G.

For each embedding of TK on the projective plane, the algorithm of [30] tries
to embed the bridges of G’ with respect to TK in the faces of the embedding
of TK. Each face of an embedding of TK is equivalent to an open disc (see
Figure 5.1 and Figure 5.2). Therefore when a bridge is embedded into a face,
the embedding of the bridge must be planar.

The algorithm in [30] considers all inequivalent embeddings of TK on the
projective plane. By Definition 2.7, two embeddings are inequivalent if there
is no such isomorphism between the corresponding rotation systems. Two
embeddings with distinct face boundary walks have distinct rotation systems

and therefore are inequivalent.

Theorem 5.1 ([21]) T K33 has one unlabelled embedding in the projective
plane as in Figure 5.1 and T Ky has two unlabelled embeddings in the projec-
tive plane as in Figure 5.2(a) and Figure 5.2(b). Furthermore, the number
of inequivalent ways to label the embedding of T K33 is 6, the number of in-
equivalent labellings of the embedding of Figure 5.2(a) is 12, and the number
of inequivalent labellings of the embedding of Figure 5.2(b) is 15.
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A bridge B can be embedded in a face with boundary F if its attachment
points are all in /" and there is a planar embedding of BU F.

Definition 5.2 A bridge B is called a k-face bridge with respect to an em-
bedding of T K if it can be embedded in & different faces of the embedding.

For any embedding of TKs or T K33 in the projective plane, there can be
1-face, 2-face or 3-face bridges of G with respect to the embedding. The
algorithm considers all the different assignments of the types of 3-face bridges
to the faces of an embedding of TK. Then for each face of the embedding
the algorithm determines the pairs of 1-face and 2-face bridges that cannot
be embedded together in the face. This provides a 2-SAT problem to decide
if there is an assignment of the bridges to the faces for an embedding of the

whole graph G.

5.1.2 3-Face Bridges

For an embedding of the subgraph TK of G, there can be 3-face bridges of
G. However it is possible to consider a small constant number of embeddings
for the 3-face bridges to reduce the embedding problem to only 2-face and
1-face bridges. Here all the possibilities and combinations for embedding 3-
face bridges are described. It is also explained how they are handled by the

algorithm.
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Any 3-face bridge B of a 2-connected graph G has just two attachment points
in the vertices of TK corresponding to the vertices of K5 or K33. Referring
to Figure 5.1 and Figure 5.2, the possible sets of the 3-face bridges according

to their attachment points are:

for T K33 of Figure 5.1:
{a,d} for faces 0,1, 3, {b, e} for faces 0,1,2, {c, f} for faces 0,2, 3;

for TK of Figure 5.2(a):
{a,c} for faces 0,1,5, {a,d} for faces 0,1,2, {b,d} for faces 0,2,3, {b,e} for
faces 0, 3,4, {c,e} for faces 0,4, 5;

for TKj5 of Figure 5.2(b):
{b,c} for faces 0,1,3, {b,e} for faces 0,1,2, {c,d} for faces 0,1,4, {d,e} for
faces 0,1, 5.

Without loss of generality, the 3-face bridges with the same set of attachment
points can be treated as one 3-face bridge. Therefore the 3-face bridges are
considered in groups corresponding to different pairs of attachment points.
There is only a constant number of ways to assign the 3-face bridges to faces
for an embedding of TK. It is necessary to consider all the combinations of
embeddings for 3-face bridges to cover all possibilities and to leave at most two
faces available for each remaining 3-face bridge. Then it is possible to apply

the 2-SAT approach to embed the remaining bridges.
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For the embedding of T'K3 3 in Figure 5.1, there is at most one group of 3-face
bridges that can be embedded into face 0 without edges crossing. Thus, there
are four ways to place 3-face bridges with respect to an embedding of T'Kj 3:
any of three groups of 3-face bridges can be embedded in face 0 or none of
them is placed in face 0. In any case there are at most two remaining faces

available to embed the 3-face bridges.

Consider the embedding of TKj of Figure 5.2(a). For all 3-face bridges, one
of the possible faces to embed it is face 0. Thus, it is sufficient to choose
the bridges that are placed in face 0 since there are only two choices for the
other 3-face bridges. There are five different ways to simultaneously place two
groups of 3-face bridges in face 0. Two groups must have a common corner as
an attachment point. There are also five different ways to place just one group
of 3-face bridges in face 0. Finally, there can be no 3-face bridges in face 0 at

all. Thus, in total there are eleven cases to consider.

Consider the embedding of TKj of Figure 5.2(b). Bridges with attachment
points {b, e} and {c,d} cannot simultaneously be embedded into face 0. Sim-
ilarly, bridges with the attachment points {b,c} and {d,e} cannot simulta-
neously be embedded into face 1. Therefore there are nine different ways to
assign 3-face bridges to faces so that face 0 contains either one group or none
of 3-face bridges with attachment points {b,e} and {c, d}, and face 1 contains
either one group or none of 3-face bridges with attachment points {b,c} and

{d,e}. As a result, the remaining 3-face bridges have just two faces available
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for their embedding. Thus, in total there are nine cases to consider.

To summarize the discussion, there can be at most three different groups of 3-
face bridges for an embedding of T'K3 3, at most five different groups of 3-face
bridges for an embedding of T'Ks of Figure 5.2(a), and at most four different
groups of 3-face bridges for an embedding of T'Ks of Figure 5.2(b). The number
of preliminary assigned embeddings of the 3-face bridges to faces is four for

T K33, eleven for T K of Figure 5.2(a), and nine for TKj5 of Figure 5.2(b).

5.1.3 Conflicts Between Bridges and 2-SAT Problem

All the faces of a projective planar embedding of T'Ks or T K33 are equiva-
lent to an open disk and no vertex of T K5 or T K33 appears twice on a face

boundary.

Definition 5.3 Two bridges B; and B; are compatible for a face if both can
be embedded in the face simultaneously. Otherwise, they are called conflicting

for the face.

Clearly, if bridges of a set are pairwise compatible for a face, then they can
‘be embedded in the face simultaneously. We describe the ideas from [30] to
determine conflicting pairs of bridges for a face. Since now we have just 1-face

and 2-face bridges, the conflicting pairs provide us an instance of a 2-SAT
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problem that can be resolved in linear time.

The number of bridges can be O(n). Therefore the number of bridge pairs can
be quadratic in n. Information about conflicting bridges can be computed in

O(n?) time.

To find the pairs of conflicting bridges for a face, the vertices on the face
boundary are considered in a cyclic order. In [30], a finite state machine
(FSM) is used to determine if a pair of bridges (B;, B;) is conflicting. The
FSM makes its transitions depending on whether the current face boundary
vertex is an attachment point to B;, B; or both. The FSM computes the pairs

of conflicting bridges in O(n?) time.

The remaining bridges are assigned to faces of an embedding of T'K so that all
the bridges embedded in the same face are compatible. If such an assignment
exists, the input graph G is projective planar. The algorithm finds an assign-
ment of the bridges to faces, or else it determines that no such assignment

exists by formulating and resolving the corresponding 2-SAT problem.

Definition 5.4 ([30]) A literal is a boolean variable z or its complement Z.
A set of literals is a clause. For a set of clauses, the satisfiability problem (SAT)
is to determine whether there is an assignment of true and false values to the

boolean variables so that at least one literal in each clause is true.
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It is known that SAT is NP-complete [7] even when each clause contains at
most three variables, i.e. 3-SAT. However if each clause has at most two vari-
ables, i.e. 2-SAT, the problem becomes linear and can be efficiently resolved

by an algorithm like in [9)].

Let F' be a face of an embedding of TK and B be a bridge that can be
embedded in face . A literal Br is assigned the value true if and only if
bridge B is embedded in face F. Otherwise By is assigned the value false. If
bridge B can only be embedded in face F, then a clause {Bp, Br} is added
to the 2-SAT instance. This guarantees that Bp is assigned the value true. If
bridge B is embeddable into two faces Fy and F3, two clauses {Bp,, Bg,} and
{Br,, Br,} are added to the 2-SAT instance to guarantee that B is embedded
in exactly one face. Finally, for each pair of bridges B; and B, conflicting in
face F, a clause {B1p, Bop} is added to the 2-SAT instance to guarantee that

they both are not embedded in F' simultaneously.

There can be O(n) bridges, giving at most O(n?) conflicts between pairs of
bridges. Thus it takes O(n?) time to resolve a 2-SAT instance using the al-
gorithm of [9]. A solution to the 2-SAT instance provides an assignment of
bridges to the faces of an embedding of TK that corresponds to an embedding
of G.
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5.1.4 Outline of the Quadratic Projective Planarity Al-

gorithm

The algorithm of [30] runs on 2-connected graphs. If a connected graph G is
not 2-connected, then it is necessary to find the blocks of G first. This can
be done in O(n) time by using a modified depth-first search as done in [33].
It is known that G is projective planar if it contains at most one projective
planar block and all the other blocks are planar. Therefore, G is assumed to

be 2-connected. If G is planar, then it is clearly projective planar.

Algorithm 5.1 ([30]) Projective Plane Embedding Algorithm.

Input: A 2-connected graph G = (V, E) represented by adjacency lists, |V| =

n, |[El=m

Output: Projective planar embedding of G or G is not projective planar

if m > 3n — 3 then
return(not projective planar)
if G is planar then
return(planar embedding of G)
else G is non-planar
Find a subgraph K in G that is a subdivision of K5 or Ks3.
for each labelled projective planar embedding K’ of K do
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Find all the bridges of K’ and
determine which faces they can be embedded in.
if a bridge b cannot be embedded in any face of K’ then
return(not projective planar)
Compute the conflicts between pairs of bridges in the faces
for each arrangement of 3-face bridges do
if there is an assignment of bridges to the faces of K’ then
return(projective planar embedding of G)

return(not projective planar)

5.1.5 Amnalysis and Complexity of the Algorithm

If graph G has more than 3n — 3 edges, it cannot be projective planar, and
the algorithm returns. For the other steps of Algorithm 5.1, G has at most
3n — 3 edges, i.e. O(n) edges.

If graph G is planar, it is also projective planar. We can easily transform a
planar rotation system of 2-connected graph G into a rotation system for a
2-cell embedding of the graph on the projective plane as described in Section
4.3. If GG is not planar, then we can find a subgraph TK in G in O(n) time by
modifying a planarity algorithm as in [40].

The external loop is executed at most six times when TK = T'K33 and at
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most 27 times when T K = T K by Theorem 5.1. In either case it is executed

a constant number of times.

The bridges can be found in O(n) time by using a breadth-first or depth-first
search. For a bridge B, it is possible to use a planarity testing algorithm
to determine the faces in which it can be embedded. The planarity testing
of bridges in a face can be done in the total computational time of O(n).
An embedding of T K33 has four faces and an embedding of TKs has six
faces. This gives O(n) computational time for the bridge finding and testing

embeddability in the faces.

An approach to find pairs of conflicting bridges is given in Section 5.1.3. Its
time complexity is O(n?). The internal loop runs a constant number of times
as discussed in Section 5.1.2. Every run consists of solving a 2-SAT problem

instance in O(n?) time.

For the output, the projective planar embedding can be described by indicating
planar embeddings of the bridges in the faces. To actually embed bridges
inside of face F', we can connect a new vertex w to each vertex on the face
boundary, add the bridges and invoke a planarity testing algorithm. Without
loss of generality, we can assume that vertex w is embedded outside of the face
boundary. Then bridges embedded outside of the face boundary can have the
attachment points just in two adjacent vertices on the face boundary. We can

easily flip these bridges inside of F' to obtain a planar embedding of F' with
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all the bridges embedded inside. Therefore it takes O(n) time to obtain the

projective planar embedding of G given an assignment of bridges to the faces.

The conflicting bridges calculations for 2-SAT provides the worst case running
time for the whole algorithm. Therefore the running time complexity of the

algorithm is O(n?).

5.2 Practical Toroidality Testing

The toroidality testing algorithm of [31] is an exhaustive search method with a
number of preliminary checks for sufficient properties of non-toroidal graphs.
It is based on the properties of cycles in a graph G embedded in the torus.
This is the only known implemented toroidality testing algorithm. This section

provides the main ideas of the algorithm.

5.2.1 Flat Cycles and Non-Toroidal Graph Constraints

Here we describe some properties of non-toroidal graphs for a fast preliminary
detection of such graphs. This simplifies the main exponential time algorithm

which is an exhaustive search.
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Definition 5.5 A cycle C of toroidal graph G is flat with respect to the

surface if it is contractible in every torus embedding of G.

Let C' be a cycle in graph GG. The following theorem provides a characterization

of flat cycles in a toroidal graph.

Theorem 5.2 ([31]) A cycle C is flat in the toroidal graph G if deleting the
vertices of C from G gives a non-planar graph G\C. Furthermore, if the flat
cycle C is chordless and G\C' is connected, then C is a facial boundary in any

2-cell embedding of G on the torus.

Proof . If the cycle C' is not flat, then there exists a toroidal embedding of G
such that C is essential. Such an embedding of G has G\C embedded on the
cylinder and therefore planar. Otherwise, by Theorem 2.3, a non-planar G\C
contains a subgraph of T K5 or TK33. All the faces in any embedding of T K
or TK3 3 on the torus (see Figure 9.1 and Figure 10.1) are 2-cell. The cycle C
must be added into the interior of a face in an embedding of TKs or T'K3 3.

Therefore C is contractible in any embedding of G on the torus.

If C is chordless and G\C is connected, then C must be embedded in the inte-
rior of a face in an embedding of G\C'. In this case nothing can be embedded

in the interior of C. ]
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According to Theorem 2.2, Euler’s formula for a 2-cell embedding of a con-
nected graph G with n vertices, m edges and f faces on the torus is

n—m+ f=0.

Euler’s formula gives the following two constraints for embedding on the torus.

Property 5.1 If m > 3n, then G is non-toroidal.

Proof. This property is a corollary of Euler’s formula of Theorem 2.2. Given
a 2-cell toroidal embedding, we can add edges while preserving toroidality by
triangulating 2-cell faces. A triangulated 2-cell embedding has m = 3n edges.

The inequality follows. u

Property 5.2 If f > m —n for any embedding of G, then G is non-toroidal.

Property 5.2 is also a corollary of Euler’s formula for the torus. We can
determine some 2-cell faces by chordless flat cycles using Theorem 5.2. The
number of 2-cell faces in Theorem 5.2 gives a lower bound for the number of
faces f. Also, given a rotation system for an embedding of G on a surface, we

can easily count its number of faces f.

The 2-cell faces of Theorem 5.2 provide some other constraints for any em-
bedding of graph G on the torus. Precisely, if vertices a and b are adjacent

to vertex v on a 2-cell face boundary, then we write (a, b), to indicate that a
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Figure 5.3: Edge vz overused by toroidal constraints

and b must appear consecutively in a cyclic adjacency list of v for a toroidal

rotation system.

Property 5.3 Any edge {z,v} € G occurs on the boundary of at most two

faces of an embedding of G on a surface.

Clearly, if an edge {z,v} € G must occur on the boundary of three or more
faces for an embedding on the torus, the graph is non-toroidal. Property
5.3 is used by the algorithm in [31] in the following way. If we find an edge
{z,v} € G that is shared by at least three 2-cell faces given by chordless flat
faces of Theorem 5.2, then we have a set of constraints {(z, a)y, (%,b)s, (%,¢)s}

which is incompatible with any torus embedding (see Figure 5.3).

Property 5.4 ([31]) If there exists a cyclic set of constraints {(a1, az)y, (a2, as)w,
.., (ag,a1)o } of size k < deg(v) for an embedding of vertexv € G on the torus,

then G is non-toroidal.
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Figure 5.4: Embedding for a cyclic set of toroidal constraints

Proof . A rotation system contains all deg(v) vertices adjacent to v in cyclic or-
der. Therefore the cyclic set of constraints {(ay, a2)v, (a2,a3)v, - -, (G, @1)s},
where k < deg(v), v € G, is not compatible with any toroidal rotation system

of G (see Figure 5.4). [

Notice that for a toroidal embedding of G, if vertex v has deg(v)—1 compatible
constraints or deg(v) — 2 consecutive compatible constraints, we can complete

them to the cyclic set of constraints of size deg(v).

Property 5.1 can be checked directly from the graph input information. To
detect a non-toroidal graph faster, we can take a collection of short cycles and
use Theorem 5.2 to find 2-cell faces among them. The 2-cell faces provide sets
of constraints. We can use the information to check Properties 5.2 - 5.4 for

non-toroidal graphs.

In some cases, the determination of 2-cell faces using Theorem 5.2 results in

a complete set of constraints. Then it is possible to unify the constraints to
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obtain a toroidal embedding of the graph or to conclude that none exists in

O(n) time.

5.2.2 Essential Cycles and Toroidality Testing

The main strategy of the algorithm is to reduce the toroidality problem to
planarity testing. The first step is to find an essential cycle C in the graph
G for its embedding on the torus. We assume the graph is toroidal and the
essential cycle C cuts the torus into a cylindrical surface as described in Chaper

4.

Since we do not know precisely which cycles of G are essential, we need to
try several candidates. The number of candidates for an essential cycle is
relatively small, either O(n) by Theorem 4.2, or O(1) by Corollary 4.2. Since
by Theorem 2.3, a non-planar toroidal graph G contains a subdivision T'K or
TKj3 3, we can use Corollary 4.2 as well. The theorem guarantees that at least

one of the cycles must work.

Now we assume G could be embedded on the torus with the cycle C' embed-
ded as an essential cycle. According to Chapter 4, C cuts the torus into a
cylinder. This corresponds to cutting G on the torus along the cycle C, du-
plicating cycle C as C; and Cb, and marking the interior of two copies of C

as forbidden regions for any embedding of G (see Figure 5.5). This gives a
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Figure 5.5: Cylinder embedding for G cut along cycle C

cylinder embedding. Now suppose there is an embedding of G in the plane
such that attaching the edges incident to cycle C either to copy C; or Cs gives
a cylinder embedding of Figure 5.5. Then gluing the two copies C; and Cs
back to C gives a torus embedding of the initial graph G (see Figure 5.5).

There are two problems with the cylinder embedding. First of all, we do not
know which copy C; or Cy of C an edge of G should be incident to. To cover
all possible cases, the implemented algorithm checks all bipartitions for the

edge endpoints on cycle C. This makes the algorithm exponential in time.

The second problem is the initial cylinder face F' between two copies C; and
Cs of C. Face F is not equivalent to an open disk, therefore it is not possible
to use planarity testing directly to add G\C into F. However if we can find
two edge disjoint paths p; and p, having one end on C; and the other end on

Cs, the paths would divide face F' into two faces F} and Fj both equivalent to
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Figure 5.6: Two edge disjoint paths to cut the cylinder face

an open disk without repeating vertices on the face boundary (see Figure 5.6).

For faces F; and Fj it is possible to use planarity testing to embed G\(C U
p1 Upe2). To find two edge disjoint paths p; and pe between C; and Cs, two
new vertices s and ¢ are added so that vertex s is incident to all vertices of C;
and ¢ is incident to all vertices of Cy. Now it is possible to use a standard flow
algorithm to find two edge disjoint (s, t)-paths. This provides paths p; and p,
necessary for planarity testing. If there are no two edge disjoint paths p; and
po between C; and Cs, then, by Menger’s theorem [4], there is a cut vertex w.
It is possible to split the graph into two pieces at the cut vertex w, then to
decide on a planar embedding of each piece separately and to glue the pieces

together to get a cylinder embedding of G.

Since we need to check all the bipartitions of edges incident on the vertices of

C, it is reasonable to select cycles C' with few incident edges. For this pur-
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pose, cycles provided by Theorem 4.2 are better than cycles of Corollary 4.2.
To choose a cycle basis of Theorem 4.2 that minimizes the exponential time

component of the algorithm, Myrvold and Neufeld [31] use Horton’s algorithm
of [20].
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Chapter 6

Graphs Containing

Ks-Subdivisions

Let G be a non-planar graph. By Kuratowski’s Theorem [25], G contains a
subdivision of K5 or K33 as a subgraph. We denote by T'K5 a subdivision of
K5 and by T'K3 3 a subdivision of K33 in G.

Definition 6.1 The vertices of degree 4 or 3 are corners of TKs or TKsg3

respectively and the vertices of degree 2 are inner vertices of TKs or T K3 3.

The corners of TKy or TKj33 have been called main vertices in [28], [21] and

[30].
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Definition 6.2 A path of T K5 or T K33 whose endpoints are two distinct
corners and all other vertices are inner vertices of TK5 or T K33 is called a

side of TKs or TKs3.

Notice that two sides of T K5 or T'K33 can have at most one common corner

and no common inner vertices.

Definition 6.3 A side having a common corner with another side of T K5 or
T K33 is called adjacent to that side. Two sides having no common corner are

called non-adjacent.

6.1 Short Cuts and 3-Corner Vertices

Suppose G contains a subdivision T K5 as a subgraph. This section describes
how the subdivision T'Ks can be transformed into a subdivision TK33 in G.
Notice that a pair of corners of T'Ky5 determines a unique side of T'Kj, an
inner vertex is on a uniquely determined side and each corner is on exactly

four distinct sides.

Definition 6.4 A path P in G whose one endpoint v is an inner vertex of
TK5, the other endpoint is not on the side of u, and all other vertices and

edges are in G\T K is called a short cut of the Ks-subdivision.
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Definition 6.5 A vertex u € G\T'Kj5 is called a 3-corner vertezx with respect
to TKs if G\T K5 contains internally disjoint paths from u to at least three

corners of the Ks-subdivision (see Figure 6.4).

We begin by proving some basic structural results for graphs containing a T K.
Similar structural results have been proved by M. Fellows and P. Kaschube in
[10]. Notice that the proof of Theorem 1 in [10] is missing the case indicated
by Figure 6.1 of Proposition 6.1.

Proposition 6.1 ([10]) A non-planar graph G with a Ks-subdivision T Ky
for which there is either a short cut or a 3-corner vertex contains a K-

subdivision.

Proof. To prove the proposition, we exhibit a Kj3-subdivision in G. In the
following diagrams the bipartition of K33 is indicated by black and white

vertices. Vertices which are not part of K33 are shaded grey.
The following cases are possible.

Case 1. Both endpoints of a short cut P are inner vertices of T K5 and the
corresponding two sides are non-adjacent. Figure 6.1 shows a K3 3-subdivision

in G.

Case 2. Both endpoints of a short cut P are inner vertices of T K5 and the

corresponding two sides are adjacent. Figure 6.2 shows a K3 3-subdivision in
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Figure 6.2: K33 created by short cut P

the graph G.

Case 8. One of the endpoints of a short cut P is a corner of TKjy. Figure 6.3

shows a K3 s-subdivision in G.

Now suppose there is a 3-corner vertex u € G\TKs. Then Figure 6.4. shows

a K3 s-subdivision in G.
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Figure 6.3: K33 created by short cut P

TKs u

Figure 6.4: K33 created by 3-corner vertex u
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Thus any short cut or 3-corner vertex of TKj in G gives a K3 s-subdivision. m

6.2 Side Components

Let G be a graph having no 3-corner vertex and no short cut of TK5. Denote
by K the set of corners of T'K5. Consider the set of connected components of

G\K. Let C be any connected component of G\ K.

Proposition 6.2 ([10]) For a graph G with T Ky and no short cut or 3-corner
vertex of TKs, a connected component C of G\K contains inner vertices of
at most one side of TKs. Moreover vertices of C' are adjacent in G to exactly

two corners of TKs.

Proof. Suppose a connected component C' contains inner vertices of two dif-
ferent sides of TKs. Then clearly C contains a short cut of TKs in G, a

contradiction.

Suppose C has vertices which are adjacent to at least three different corners
of TK5 in G. Then it is not difficult to see that there is either a short cut or
a 3-corner vertex of TKs in G, a contradiction. Therefore, vertices of C' are
adjacent to at most two corners of TKs in GG. Since G is 2-connected, there

are exactly two corners of T K5 adjacent to vertices of C' in G. |
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Definition 6.6 Given a graph G without a short cut or a 3-corner vertex of
T K5 we define a side component of T Ky as a subgraph in G induced by a pair
of corners a and b of TKj; and all connected components of G\ K which have

vertices adjacent to the two corners a and b in G.

Corollary 6.1 Two side components of T K5 in G have at most one vertex in
common. The common vertex is the corner of intersection of two corresponding

sides of T K.

Proof. Any pair of corners of TKj5 defines a side. Since G is 2-connected, by
Proposition 6.2, we can associate every connected component of G\K with
a unique side of TKs. This gives a partition of vertices of G\K into side

components of T K. |

Notice that side components, however, can contain a K3 s-subdivision. Thus,
given a graph G with a Ks-subdivision T K5, either we can find a short cut
or a 3-corner vertex of T Ky in the graph, or else we can partition the vertices
and edges of G\TK} into equivalence classes according to the corresponding

side components of TKj in G.
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6.3 Augmented Side Components

Every side component H of T' K5 contains exactly two corners a and b corre-
sponding to a side of T K. If edge ab between the corners is not in H, we can

add it to H to obtain H + ab. Otherwise H +ab = H.

Definition 6.7 Given two corners a and b of a side component H, edge ab
is called the corner edge of H + ab and H + ab is called an augmented side

component of TKs.

We use the following general lemma for side components of a Ks-subdivision
in the embedding algorithms. By the lemma, a corner edge can be added into
every side component H to test easily if there exists an embedding of H with
both corners on the outer face and to find such an embedding. The lemma
presents a well known fact for planar embeddings. The use of the lemma and
the augmented side components will be explained in Section 7.1 and Chapter

9.

Lemma 6.1 There is a planar embedding of a graph G with two vertices u
and v on the outer face if and only if there exists a planar embedding of the

graph G + uv.

Proof. It can be seen by drawing any planar embedding on the sphere that

any face of a planar embedding can be considered as an outer face. Now if
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there exists an embedding of graph G on the sphere with both vertices u and
v on the same face, then we can just add the edge between them into the face.
Otherwise for any embedding of G on the sphere the edge cannot be added

into the planar embedding. Hence G + wwv is not planar. |
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Chapter 7

Embedding Graphs on the

Projective Plane

7.1 Ks-Subdivisions and Planarity

The algorithm in this section applies standard planarity techniques to find a
Kuratowski subgraph in a graph G. If the found subgraph is T' K, then either
Proposition 6.1 is used to find a T'K33 subgraph, or Proposition 6.2 applies
to reduce the projective planarity determination to the planarity checks. This
provides a linear time practical algorithm to check if a non-planar graph G is

projective planar or if it contains a K3 3-subdivision.
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7.1.1 Characterization for Projective Planarity Check-

ing

Let G be a 2-connected non-planar graph with a Kjs-subdivision TKs. We
begin with a characterization of projective planarity for graphs with a K-

subdivision.

Theorem 7.1 A graph G with a Ks-subdivision T K5 and no short cut or 3-
corner vertex of T Ky is projective planar if and only if all the augmented side

components of T K5 are planar graphs.

Proof . By Corollary 6.1, all the vertices and edges of G\T' K are partitioned
into side components. The sufficient and necessary conditions of the theorem

can be proved as follows.

First we show that the sufficient conditions hold. Take any embedding of T K}
on the projective plane (see Figure 7.1). For each side of T K5, make a planar
embedding of its side component with both corners on the outer face. By
Lemma 6.1, there exists such an embedding of a side component if and only
if the augmented side component is a planar graph. By Corollary 6.1, we can

embed every side component independently.

Now we prove the necessary conditions of the theorem. Figure 7.1 shows the

two possible non-isomorphic embeddings of T'Ks on the projective plane (see
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Figure 7.1: K; on the projective plane
[28] and [30] for details).

The sides of T K5 must create one of these embeddings. FEach embedding
divides the projective plane into faces. Each vertex of T Ky appears at most
once on the boundary of any face, and every side of T'K is incident to exactly
two faces. Call these faces F] and F5, and let K be the set of corners of T K.
For some sides, it is possible that the two corners a and b also appear on the
boundary of a third face, as non-consecutive vertices. But since GG has no short
cut or 3-corner vertex of T' K, every connected component C of G\ K, adjacent
to @ and b and embedded in a third face can also be embedded in Fj or Fs.
This shows that it is always possible to embed every side component of T Kj
in an open disk contained in £y U Fy, i.e. every augmented side component

must be planar. ]
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7.1.2 Graphs with a Ks-Subdivision

Let G be a 2-connected non-planar graph with a Ks-subdivision T'Ks. Theo-
rem 7.1 provides the basis for a linear time practical algorithm to check if the

graph is projective planar or if it contains a K3 s-subdivision.

Algorithm 7.1 Embedding Graphs with a Kg-Subdivision on the Projective

Plane.
Input: A 2-connected graph G

Output: Fither a projective planar rotation system of G, or a K 3-subdivision

in G, or an indication that G is not projective planar

(1) Use a linear time planarity checking algorithm (eg. [19], [33], [23], [5], [39]
and [40]) to determine if G is planar. If G is planar then return its planar
rotation system. If G is not planar and the planarity check returns a Kj3-

subdivision in G then return the K3 3-subdivision in G.

(2) If G is not planar and the planarity check returns a Ks-subdivision TKjs
in G, then do a depth-first or breadth-first search to look for either a short
cut or a 3-corner vertex of TK5 in G. If a short cut or a 3-corner vertex is
found, then return a K3 s-subdivision in G as per Proposition 6.1. If there are
no short cut or 3-corner vertices, the depth-first or breadth-first search returns

the side components of T K.
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(8) For each side component H of T K5 in G, if it is necessary, augment H by
adding the corner edge ab to have H + ab, and check if H + ab is planar. If
all the augmented side components are planar, then return a projective planar
rotation system of GG. If there is a non-planar augmented side component of

T K5, then return G is not projective planar.

Every step in this algorithm has linear time complexity. Therefore the entire

algorithm is also linear.

7.2 A Spanning Kj33-Subdivision

In this section we describe the possible embeddings of a K3 s-subdivision on
the projective plane and the possible ways to complete an embedding to a pro-
jective planar graph G. First we cover the case where a K3 3-subdivision T K33 3
is a spanning subgraph in G. In Section 8.3 we describe how to generalize it to
an arbitrary Kjs-subdivision in G. A generalization for a non-spanning K s-
subdivision in G can be done by analogy with the recursion in the Hopcroft-
Tarjan algorithm of Chapter 3. This section describes the structure of the

projective planar graphs with respect to the spanning K3 3-subdivision.

Let G be a non-planar graph with a spanning Kjs-subdivision TK33. We
assume that K33 has a bipartition of its vertices labelled as {a1, az,a3} and

{b1,b2,b3} (see Figure 7.2).
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Figure 7.2: K33 and its embedding on the projective plane
F3

F1 FZ
Figure 7.3: The dual graph of the projective planar embedding of K33

Figure 7.2 shows the unique embedding of K33 on the projective plane. The
dual graph for the embedding of K33 of Figure 7.2 is shown in Figure 7.3.
Notice that Figure 7.3 depicts a planar drawing of the dual graph, not a
projective planar embedding. Therefore it does not show mutual positions of

the faces of Figure 7.2 on the projective plane.

The embedding of Figure 7.2 is a 2-cell embedding and, according to Section
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Figure 7.4: Unfolded faces of an embedding of T K33

4.1, there is a cycle of K33 that is essential for the embedding. An essential
cycle crosses the projective plane boundary an odd number of times. K33 has
six distinct hamiltonian cycles. Each hamiltonian cycle C of K33 corresponds
to a perfect matching K33\ EC. The embedding of Figure 7.2 has two essen-
tial hamiltonian cycles and four contractible hamiltonian cycles. Therefore in
a projective planar embedding of a graph G with a spanning K3 s-subdivision
TKsgs, the T K33 always has an essential cycle which corresponds to an essen-

tial hamiltonian cycle of the embedding of K3 3.

Figure 7.4 shows the embedding of Figure 7.2 cut along the essential hamilto-
nian cycle C = (a;biagbsagbs) of K33 of Figure 7.2. We say that the faces of
T K33 have been unfolded.

An embedding of T'K33 on the projective plane has one face bounded by 6
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Figure 7.5: Mobius band cut along a side

sides and three faces bounded by 4 sides of T K33. We call the 6-sided face
the hezagon, and the 4-sided faces the quadragons of a T'K33-embedding. In
the diagram of Figure 7.4, the hexagon is denoted by Fp and each quadragon
is denoted by F;, i = 1,2, 3, where ¢ is the missing subscript of the corners of
the quadragon boundary. We call the sides a;b;, ¢ = 1,2, 3, quadragon sides,
and the sides a;b;, 4,5 = 1,2,3, © # J, hezagon sides.

Definition 7.1 Given an embedding of T K33 on the projective plane with
the labelling of Figure 7.4, a Mdbius band consists of two opposite hexagon
sides a;b; and b;a;, 3,5 = 1,2,3, © # j, plus the interior of the hexagon and

the interior of the quadragon (see Figure 7.5).

Figure 7.5 shows a Mobius band cut along the side a;b;. Each Mdbius band
has two parts corresponding to the two faces. One part contains the two sides

appearing on its boundary in cyclic order as a;b; and b;a;, and the other part
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in cyclic order as a;b; and a;b;, ¢,7 = 1,2,3, ¢ # j. There are three different
Moébius bands, corresponding to the 3 pairs of opposite sides of the hexagon.
All three Mobius bands share the hexagon interior (face Fp in Figure 7.4), but

have different quadragons.

7.2.1 The Labelled Embeddings of T'K33

There are six different ways to label the corners of an embedding of T'Ks3
on the projective plane (see Figure 7.6). The labellings of Figure 7.6 can be
obtained from the labelling of Figure 7.2 by successively applying the permu-
tation (ay)(agas)(bibebs). This is a convenient way to obtain all the labellings

in a computer program, starting from the initial labelling of Figure 7.2.

Since T K33 is supposed to be spanning, it is necessary to determine if it is
possible to add the remaining edges of G, without crossing, into the 4 faces
for at least one of the 6 labelled embeddings. The labelled embeddings have
distinct closed walks on the face boundaries. They correspond to 6 different
hamiltonian cycles of K33 appearing as the hexagons. The example of Fig-
ure 7.8 shows that all the six labelled embeddings must be considered as a
possible initial embedding of T K33 to complete it to an embedding of a graph
G. The example of Figure 7.8 will be considered in detail in Subsection 7.2.2.

Without loss of generality, assume the embedding of T K33 is labelled as the
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Figure 7.6: The six labelled embeddings of T K3 3

first one in Figure 7.6. We will consider this labelled embedding in more detail.

The results and discussion are true for any embedding of T'K3 3.

7.2.2 Chords and Faces

This subsection describes different types of edges of G\T' K3 3 and possible ways
to add them to an embedding of T K33 on the projective plane. Later sub-
sections will provide more detail for each particular type and for the interplay

between different types.
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Figure 7.7: Two chords crossing in a face

Definition 7.2 An edge of G\T' K33 is called a chord.

Definition 7.3 Two chords u;v; and ugvy are said to cross in face F' iff they
are disjoint and their endpoints alternate on the boundary of F' in a cyclic

order as w, ug, V1, v2, clockwise or counter-clockwise (see Figure 7.7).

Clearly, two adjacent chords with 3 different endpoints on a face boundary can
always be drawn in the face without crossing. Similarly, two disjoint chords
with their endpoints on a face boundary in a non-alternating cyclic order can

always be drawn in the face interior without crossing.

We will consider the unfolded faces of Figure 7.4 corresponding to the em-
bedding of Figure 7.2 in more detail to develop an algorithm which efficiently

decides if we can complete an embedding without chords crossing.
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Definition 7.4 A chord is called a k-face chord if it admits an embedding in
exactly k different faces of the embedding of T'K33 on the projective plane
(see Figure 7.2 and Figure 7.4).

Proposition 7.1 Referring to the labelling of Figure 7.4, a chord uv is a
(i) 3-face chord if and only if wv = a;b;, i1 = 1,2,3;

(i) 2-face chord if and only if both endpoints u and v are on the same side
except uv = a;b;, 1 = 1,2,3, or one endpoint of uv is on the side with corners

a; and b; and the other is on the side with corners b; and a;, 1,7 = 1,2,3,

J#

(ii1) 0-face chord if and only if one endpoint is in the interior of the side with
endpoints a; and b;, © = 1,2, 3, and the other is in the interior of a side a;by,

7, k=1,2,3, where j #£i, k+#1i and j # k.

Otherwise uv is a 1-face chord.

Proof. Consider all the possible cases for adding a chord in the diagram of
Figure 7.4 with respect to the side labelling. Any chord incident to a corner
has “access” to all sides of the hexagon and quadragons. Any chord having
both endpoints on the same side can be placed in two faces separated by the

side. This gives 2-face chords. However chords a;b;, 7 = 1,2, 3, having both
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endpoints in the side corners can be placed in the hexagon as well. This gives

3-face chords.

Any chord with an endpoint on a hexagon side and the other endpoint on an
opposite hexagon side can be placed in a quadragon as well. This gives 2-face

chords.

Any chord having an endpoint in the interior of a quadragon side a;b;, i =
1,2, 3, does not have “access” to the interior of a hexagon side not incident to

the corners a; and b;. This gives 0-face chords.
In all the remaining cases a chord can be placed in a unique face. n

Proposition 7.1 gives us a characterization of the chords. We can determine
if uv is a k-face chord, k = 0,1,2,3, by checking its endpoints with respect
to the sides and their subscript labelling. This can be done efficiently in a
computer program. If a 0-face chord is detected for an embedding of T K33,

then the embedding is not projective planar.

Before we analyze the chords with respect to a labelled embedding of T K33 3, we
show an example that all six labelled embeddings of Figure 7.6 are important
and must be considered to obtain an embedding of a graph G. Figure 7.8
illustrates a graph G = TK33U {e1, €2, e3} whose embedding on the projective
plane can be obtained from just one labelled embedding of Figure 7.6. The
graph G is obtained from T K33 by adding three chords e; = zy, e = wz
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Figure 7.8: The unique embedding of G = T K33 U {e1, €2, €3}
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and es = uv in the quadragons of the first diagram of Figure 7.8. The other
labellings of T'K3 3 either have one of e;, €9, e3 as a 0-face chord, or else have
a crossing of 1-face chords ey, es, e3. A similar example can be constructed for

every labelled embedding of T'Kj3 3.

7.2.3 1-Face Chords and Forced Chords

Figure 7.9 shows the pattern of 1-face chords drawn in the faces of Figure 7.4.
Clearly, a 1-face chord must be placed in a unique face. If any two 1-face
chords cross in some face, then the current embedding of T'K33 can not be
extended to G. We can check this by examining the endpoints of a 1-face

chord on the face boundary with respect to the other 1-face chords.

Now suppose some of the six labelled embeddings of T' K3 3 have no two 1-face
chords crossing. Then it is necessary to decide efficiently if there is a way to

add 2-face and 3-face chords into such an embedding.

Uniquely Embeddable Chords Generated by 1-Face Chords
Let e be a 2-face or 3-face chord. Such a chord e can be placed in several

faces of the T'K3s-embedding. However a 1-face chord or another uniquely

embeddable chord may cross some possible embeddings of e, forcing e to have
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Figure 7.9: The pattern of 1-face chords

at most one permitted embedding remaining.

Definition 7.5 Given a labelled embedding of T' K3 3, a chord e is called forced

if it is either

(i) a 1-face chord, or

(ii) e has just one embedding which does not cross a 1-face chord or another

previously forced chord.

Forced chords are generated by 1-face chords and behave exactly like 1-face

chords. They must be embedded in the unique face which results in no conflicts
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Figure 7.10: The pattern of 3-face chords

with other forced chords.

7.2.4 3-Face Chords

According to Proposition 7.1, an embedding of T K33 admits at most three
3-face chords corresponding to three pairs of opposite corners of the hexagon
or to three sides separating the quadragons. Figure 7.10 shows all possible

embeddings for 3-face chords a;1b1, asbs and agbs.

Each 3-face chord can be embedded in one of two quadragons or in the hexagon.

Lemma 7.1 A 3-face chord a;b;, i = 1,2,3 can be placed in a quadragon if

and only if there is no 1-face chord having one endpoint which is an interior
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vertez of the side a;b; of the quadragon. At most one 3-face chord can be placed

in the hezxagon.

Proof . Referring to Figure 7.9, a 3-face chord a;b;, i = 1,2, 3, may potentially
cross only the 1-face chords in the quadragons. Therefore if there are no 1-
face chords to cross the 3-face chord in a quadragon, we can embed it in the
quadragon. Otherwise the 3-face chord is forced and must be embedded in
the hexagon. As can be seen from Figure 7.10, all three 3-face chords cross
each other in the hexagon. Therefore at most one of them can be placed in

the hexagon. ]

As a result, we can decide on the embedding of a 3-face chord independently
by trying embedding it into a quadragon if there is one which has no 1-face
chords to cross the 3-face chord. If a 3-face chord cannot be embedded in
a quadragon, it must be placed in the hexagon. A 3-face chord embedded
in the hexagon causes a special case for an embedding which is discussed in

Subsection 7.3.1 and is shown schematically in Figure 7.15.

7.2.5 2-Face Chords

In this section we consider 2-face chords that are not forced. These chords
can be numerous and complicated to decide on their embedding. However

we can classify them to show that it is possible to decide on their embedding

109



efficiently.

Definition 7.6 Two 2-face chords corresponding to the same two faces are
said to be in conflict if and only if they cross when drawn in the same face.
We define a conflict graph H = (V(H), E(H)), where V(H) is a set of 2-
face chords, i.e. V(H) C E(G), and for e;,e; € V(H), there is an edge

{es,e;} € E(H) if and only if corresponding chords e; and e; are in conflict.

Clearly, for any embedding of graph GG on the projective plane it is necessary
for the conflict graph H to be bipartite. For a pair of 2-face chords in conflict,
embedding one of them in one face forces the other one to be embedded in the

other face to avoid a crossing.

Definition 7.7 A bundleis a set of 2-face chords corresponding to a connected

component of the bipartite conflict graph H.

An embedding of one of the chords in a bundle determines the embedding of

all other chords from the same bundle.

Quadragon 2-Face Chords

Definition 7.8 A 2-face chord that has both endpoints on a side a;b;, 1 =

1,2,3, separating two quadragons in Figure 7.4, is called a quadragon 2-
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Figure 7.11: The pattern of quadragon 2-face chords

face chord (see Figure 7.11). A group of quadragon 2-face chords is a set

of quadragon 2-face chords having both endpoints on the same side.

A quadragon 2-face chord can only be in conflict with quadragon 2-face chords
from the same group. The other 2-face and 3-face chords can avoid a crossing
with the quadragon 2-face chords by an appropriate drawing in the quadragon.
There are exactly three sides separating three quadragons of the embedding.

This provides three different groups of quadragon 2-face chords.

Lemma 7.2 For any embedding of graph G, each group of quadragon 2-face
chords admits a bipartition with one part embedded in one quadragon and the

other part embedded in the other quadragon without crossing.
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Proof. Otherwise there would be two quadragon 2-face chords crossing in a

quadragon. ]

A group of quadragon 2-face chords is completely determined by the chord
endpoints on the same side a;b;, ¢ = 1,2,3. We can decide separately on an
embedding for each group of the quadragon 2-face chords by constructing a

bipartition for its embedding.

Parallel and Perpendicular 2-Face Chords

In this section we consider 2-face chords having both endpoints on the hexagon
boundary of Figure 7.4. Each of the chords can be placed either in the hexagon

or in one of the quadragons. We can distinguish two types of the chords.

Definition 7.9 For an embedding of T K33 on the projective plane, a 2-face
chord having both endpoints on the same side of the hexagon is called parallel
to the side (see Figure 7.12). A 2-face chord having its endpoints on two
opposite sides of the hexagon is called perpendicular to the corresponding sides
(see Figure 7.12). A perpendicular chord whose both endpoints are corners of

T K3 is called a diagonal (chord ajas in Figure 7.12).

For each labelled embedding of T K33 on the projective plane, there are six

different groups of parallel chords corresponding to the hexagon sides and
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Figure 7.12: The pattern of parallel and perpendicular 2-face chords

three different groups of perpendicular chords corresponding to three pairs of
opposite sides of the hexagon (see the embedding of Figure 7.2 and the unfolded
embedding of Figure 7.4). There can be at most six diagonals, namely ajas,

biba, asas, babs, aias, bibs shown in Figure 7.13.

Parallel chords can be in conflict only with parallel chords or perpendicular
chords having an endpoint on the same side. A perpendicular chord having
both endpoints in interior vertices definitely crosses any perpendicular chord
from a different group when embedded in the hexagon. However a perpen-
dicular chord having an endpoint in a corner does not cross other parallel or
perpendicular chords incident to the same corner. Also a perpendicular chord
might interfere with the other chords of the same group and with parallel
chords of two groups on opposite sides of the hexagon. Each parallel and per-

pendicular chord must be embedded in the hexagon or associated quadragon
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of the T'K3 3 embedding (Figure 7.12).

7.3 The Mobius Band

In this section we consider the structure of chords in a Mobius band and the
compatibility of two or three different Mobius bands. All three Mdbius bands
of Figure 7.4 share the hexagon interior. A parallel or a perpendicular chord

can be embedded into any of two faces of its corresponding Md&bius band.

Definition 7.10 A M®dbius band is called flat if there exist an embedding of
its parallel and perpendicular chords without crossing such that all the perpen-
dicular chords are embedded in the quadragon (for example, see Figure 7.20
and Figure 7.21). Otherwise it is non-flat (for example, see Figures 7.19, 7.22).
A Mobius band is called diagonal compatible if there exist an embedding of its
parallel and perpendicular chords without crossing such that just one diagonal
is embedded in the hexagon and all the other perpendicular chords are embed-
ded in the quadragon (for example, see Figure 7.13). A Mdbius band is called
corner compatible if there exist an embedding of its parallel and perpendicular
chords without crossing such that some perpendicular chords incident on one
corner are embedded in the hexagon and all the other perpendicular chords
are embedded in the quadragon (for example, see Figure 7.14). Otherwise it

is unmatchable (for example, see Figures 7.19, 7.22, 7.23). A Mobius band is
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Figure 7.13: Three matched diagonal compatible Mébius bands

called embeddable if there exists an embedding of corresponding parallel and

perpendicular chords without crossing.

Definition 7.11 Diagonal compatible Mobius bands are matched if they ad-
mit a simultaneous embedding without diagonals crossing. T'wo corner com-
patible Mobius bands are matched if they admit an embedding without per-

pendicular chords crossing in the hexagon. Otherwise they do not match.

Figure 7.13 shows three matched diagonal compatible Mébius bands. Notice
that the Mobius bands of Figure 7.13 are matched and diagonal compatible

for the other diagonals as well.
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Figure 7.14: A pair of matched corner compatible Mobius bands

Figure 7.14 depicts a pair of matched corner compatible Mobius bands. Notice
that the bands are corner compatible and matched for both common corners
a; and b;. As can be seen from Figure 7.14, there can be at most two matched
corner compatible Mébius bands, the bands have to be compatible on the same

corner and the third Mobius band must be flat to avoid chords crossing.

Proposition 7.2 If graph G is projective planar, then there is a labelled em-
bedding of TKss such that either Mobius bands are oll flat, or one of the
following 3 conditions hold:

(1) non-flat Mcobius bands are matched diagonal compatible;

(ii) at most two of the Mobius bands are non-flat and matched corner compat-

ible on the same corner;
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(1ii) at most one of the Mébius bands is non-flat unmatchable and embeddable.

Proof . Since all three M&bius bands corresponding to three different quadrag-
ons are mutually crossing in the hexagon, we can embed only three diagonals
in the hexagon as in Figure 7.13, or perpendicular chords incident on the same
unique corner of the hexagon as in Figure 7.14. Otherwise all the perpen-
dicular chords in the hexagon must correspond to the same Ma&bius band to
avoid chords crossing. In any case, perpendicular chords that do not fit in the
hexagon must be embedded without crossing in their corresponding quadrag-
ons. This gives at least one flat Mobius band for part (ii) and at least two flat

Mobius bands for part (iii). =

Corollary 7.1 A projective planar embedding of G contains at most one un-

matchable Mébius band with respect to an embedding of T Ks 3.

Section 7.3.2 shows how to determine if an unmatchable Mobius band can be

completed without chords crossing.

7.3.1 Diagonal and Corner Compatible Mo6bius Bands

Diagonal compatible Mobius bands are embeddable without chords crossing if

they are matched on the appropriate diagonals. Referring to Figure 7.13, we
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have just two triples of appropriate diagonals, namely, (aias, azas, aga;) and
(b1bg, bobs, bgby). All the other perpendicular chords different from a triple of
diagonals must be placed without crossing in the quadragons. So, two triples
of diagonals provide two particular cases of Mobius bands similar to the flat
ones. In each particular case, we just embed the appropriate diagonals in the
hexagon and check if the embedding of the other perpendicular chords in the
quadragons causes any chords to cross. If crossing chords exists, the matched

embedding of diagonal compatible Mobius bands is not possible.

It is convenient to consider a pair of matched corner compatible Mdbius bands
(see Figure 7.14) when a 3-face chord is embedded in the hexagon as in Fig-
ure 7.15.

Proposition 7.3 A 3-face chord embedded in the hezagon makes one Mdbius
band flat and the other two must be matched corner compatible on the same
corner, or one of the two is flat and the remaining one is embeddable (possibly,

unmatchable).

Proof. Suppose a 3-face chord is embedded in the hexagon as chord a;b; in
Figure 7.15. Then perpendicular chords of the Mobius band with sides boas
and bza; must fit in the quadragon not to cross the 3-face chord a;b; in the
hexagon. Perpendicular chords of the two other Mdbius bands that are not
incident on corner a; or by, must fit in their quadragons as well. The chords

incident on corners a; and b; should not cross in the hexagon. B
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Figure 7.15: A 3-face chord in the hexagon

Notice that when embedded in the hexagon a 3-face chord becomes uniquely

embeddable and is forced by 1-face chords as described in Section 7.2.3.

Two possibly corner compatible Mébius bands of Figure 7.14 have two common
corners a; and b;. The bands can be matched on either of the two common
corners. So, we need to consider each corner separately to determine if we
really have a pair of matched corner compatible M6bius bands. There are two

cases to check, if the bands are matched depending on the common corner.

Suppose the bands of Figure 7.14 are matched on corner a;. Clearly, perpen-
dicular chords having both endpoints in interior vertices of the bands must
be embedded in the quadragon, i.e. they become uniquely embeddable. The
same is true for perpendicular chords having an endpoint in corner b;. There-

fore we need to place the perpendicular chords not incident on corner a; as
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uniquely embeddable in the corresponding quadragon and this must not cause

any chords to cross, to complete the embedding.

Now for perpendicular chords incident on corner a;, we need to check if these
perpendicular chords admit a bipartition such that one part of them is em-
bedded in the hexagon and the other in the corresponding quadragon. Since
any two perpendicular chords incident on the same corner never cross, we just
need to check their possible crossings with other chords already embedded in

the quadragon, for perpendicular and parallel chords.

Therefore each common corner a1 and b; gives a special case for the completion
of both Mobius bands. We can check the special cases of Mobius bands by

using the results presented in the following section.

7.3.2 2-Face Chords in a Mobius Band

Finally, it is necessary to decide efficiently if there exists a bipartition of the
parallel and perpendicular chords between the hexagon and quadragon for
the only possible unmatchable Mobius band. If an embedding of T K33 can
be completed to G, then parallel and perpendicular chords of the unique un-
matchable Mobius band admit a bipartition. Chords corresponding to one
part of the bipartition are placed in the hexagon, and chords corresponding

to the other part of the bipartition are placed in the quadragon and no two of

120




them cross. To determine efficiently if such a bipartition exists, we examine
the possible crossings of chords in the Mdbius band and a restriction of the

conflict graph H to the corresponding chords.

The Structure of Crossing Chords

Lemma 7.3 Given a Mdbius band, two parallel chords of the same group cross
in one face of the band if and only if they also cross in the other. A parallel
chord crosses a perpendicular chord in one face of the band if and only if it

also crosses in the other face.

Proof . Each side of the Mobius band appears on the boundary of both faces.
Clearly, the crossing of two parallel chords in one face implies that they cross
in the other face as well (see Figure 7.16). The order of the endpoints of the
parallel chords is just reversed in the other face. Similarly for a parallel and a

perpendicular chord (see Figure 7.16). [ ]

Therefore, for either two parallel chords, or for a parallel and a perpendicular
chord, we can determine if they are in conflict or not. Clearly, two chords in

conflict must be placed in different faces of the M&bius band.

Lemma 7.4 For a Moébius band, two perpendicular chords are
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Figure 7.16: Chords in conflict

(i) disjoint if and only if they cross in one face and do not cross in the other

face of the band.

(1i) adjacent if and only if they do not cross in either face of the Mobius band.

Proof. Part (i). For a Mobius band, two sides appear in a reversed order
with respect to each other on the boundary of the two faces (see Figure 7.5).
Therefore two disjoint perpendicular chords always cross in one face and do
not cross in the other face as in Figure 7.17. Clearly, two perpendicular chords

which cross in a face can not be adjacent.

Part (ii). As mentioned before, two adjacent chords never cross in a face. By
part (i), two disjoint perpendicular chords cross in a face. Figure 7.18 gives

an example of two adjacent perpendicular chords. |

Corollary 7.2 Two perpendicular chords corresponding to the same Mobius
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Figure 7.18: Adjacent perpendicular chords
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band are never in conflict.

Definition 7.12 M(H) denotes a restriction of the conflict graph H to chords
corresponding to the Mobius band, i.e. M(H) is a subgraph of H induced by
vertices of the conflict graph which correspond to the chords of the Mobius

band.

For a projective planar embedding of G, the conflict graph M(H) must be
bipartite. Otherwise, by Lemma 7.3, we can not draw the chords of the Mobius
band without two parallel chords, or a parallel and a perpendicular chord

crossing in one of the faces.

However even if the conflict graph M (H) is bipartite, no two perpendicular
chords are in conflict by Corollary 7.2 to Lemma 7.4. Therefore we need to
check if there exists a bipartition of M (H) corresponding to an embedding of

the chords with no two perpendicular chords crossing in a face.

Components of the Restriction M(H) of the Conflict Graph

Hereafter we assume the graph M (H) is bipartite. To decide on the embeddi-
bility of perpendicular chords corresponding to M (H ), we need to consider the
connected components of M (H). We can distinguish three types of connected

components of M(H) according to internal properties of the component.
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Let C be a connected component of M(H) with bipartition (A, B). Without
loss of generality, assume A # . Chords corresponding to A and B must be
embedded in different faces of the Mdbius band to avoid crossings of chords
in conflict. Chords corresponding to A can be placed in either face. Therefore
there are two different ways to embed C without two parallel chords or a

parallel and a perpendicular chord crossing.

Definition 7.13 A component C is called non-embeddable if both possible
embeddings of the component contains two perpendicular chords of A or B

crossing in a face. Otherwise C' is called embeddable.

Figure 7.19 shows an example of a non-embeddable component C of M(H).

Notice that the component of Figure 7.19 is bipartite.

Definition 7.14 A component C' is called 1-way embeddable if one of two pos-
sible embeddings of the component contains two perpendicular chords crossing
in a face but the other does not. A component C is called 2-way embeddable
if both possible embeddings of the component contain no two perpendicular

chords crossing.

Figure 7.20 shows an example of a 1-way embeddable component C of M (H).
Figure 7.21 shows an example of a 2-way embeddable component C of M (H).
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Figure 7.20: A 1-way embeddable component C of M (H)
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Figure 7.21: A 2-way embeddable component

Proposition 7.4 An embeddable component C of M(H) with bipartition
(A, B), is 1-way embeddable if and only if A or B contains a pair of disjoint
perpendicular chords. Otherwise C' is 2-way embeddable.

Proof. Necessity. By Lemma 7.4(i), if A or B contains a pair of disjoint
perpendicular chords, the chords are crossing when embedded simultaneously
in one of two faces of the Mobius band. Therefore all of A (or B) must be
placed in the other face of the Mobius band and the component C is 1-way
embeddable. Sufficiency. An embeddable component has its perpendicular
chords split into two parts corresponding to A and B. Since C is 1-way
embeddable, some perpendicular chords of the same part cross in one face

but not in the other. By Lemma 7.4(i), two of these chords are disjoint. ]
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Figure 7.22: Embedding of component C; flips component Cy

Definition 7.15 Given an embedding of component C;, we say the embedding
of C; flips an embedding of component C; if the simultaneous embedding of
C; and C} has corresponding perpendicular chords crossing. Component Cj is

then embedded in the other way and called flipped.

Figure 7.22 shows an embedding of component C; that flips Cy. Notice that
two components of Figure 7.22 are 2-way embeddable, and component Cs has

perpendicular chords in both faces of the Mobius band.

Definition 7.16 A component C of M (H) is called forced if it is either

(i) a 1-way component, or
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(ii) flipped by a l1-way component or by another forced component of M(H).

Therefore a forced 2-way component is either uniquely embeddable, or not

embeddable at all.

Proposition 7.5 If G is projective planar, then there is an embedding of

TK33 such that:

(i) M(H) is bipartite;

(i) all connected components of M(H) are embeddable;

(#1) no two perpendicular chords from different 1-way or forced 2-way embed-

dable components are crossing.

Proof . Part (%) is a necessary condition to successfully embed the chords in con-
flict. Part (i%) is a necessary condition to have an embedding of a component
without its own perpendicular chords crossing. Part (i¢) is a necessary con-
dition to successfully embed the uniquely embeddable components of M(H).
Figure 7.23 gives an example of two different 1-way embeddable components

with perpendicular chords crossing. =
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Figure 7.23: 1-way components with perpendicular chords crossing

2-Way Embeddable Components

It remains to choose an embedding for 2-way embeddable components of M (H)
that are not forced by 1-way embeddable components. By Proposition 7.4, all
the perpendicular chords of each part of the bipartition of a 2-way embeddable
component have a common endpoint (see Figure 7.21). We need to decide if
it is possible to embed the 2-way embeddable components of M (H) without

their perpendicular chords crossing.

Let C; and C; be 2-way embeddable components of M(H). There are 4 dif-

ferent ways to embed C; and C; simultaneously.

Definition 7.17 Components C; and C; are independent if perpendicular
chords of C; and C; do not cross in any embedding of the components. Oth-

erwise they are dependent.
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Figure 7.24: Independent 2-way components

Figure 7.24 shows a set of independent 2-way embeddable components and
Figure 7.22 shows a pair of dependent 2-way embeddable components. By

Lemma 7.4(ii), perpendicular chords of independent components are adjacent.

The following chapter explains how to use the structural results for different
types of chords with respect to an embedding of T'K3 3 on the projective plane
to devise a linear time embedding algorithm. The approach presented in Chap-
ter 8 is similar to the Hopcroft-Tarjan planarity testing algorithm and is very
complicated. The simple structural results of Chapter 7 can lead to a simpler

projective planarity testing algorithm for graphs with a K3 s-subdivision.
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Chapter 8

The Projective Planarity
Algorithm for Graphs

Containing a K3 3-Subdivision

This chapter provides a description of a linear time algorithm to check if
there is an embedding in the projective plane for a graph containing a K3 3-
subdivision. The structural results of Sections 7.2 and 7.3 form the basis for the
algorithm. The algorithm presented here can be considered as a generalization

of the Hopcroft-Tarjan planarity algorithm.

First we describe an algorithm that decides if it is possible to embed chords
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in the Mobius band and provides an embedding whenever one exists. The
algorithm for the Mobius band is used in the projective planarity algorithm
for graphs with a spanning Kjs-subdivision. Clearly, some embeddings of
parallel and perpendicular chords in the Mébius band can be forbidden by 1-
face chords and forced uniquely embeddable chords (see Figures 7.5 and 7.9).
This would make the parallel and perpendicular chords forced and uniquely
embeddable. Also, referring to Figure 7.5, this can make a Mobius band

restricted to shorter paths instead of whole sides of T'K3 3.

After the Mdbius band algorithm, we present a general projective planarity
algorithm given a spanning Kjs-subdivision in the graph. Finally, a gener-
alization for a non-spanning K3 s-subdivision is described. This approach is

similar to the Hopcroft-Tarjan algorithm of Chapter 3.

8.1 Embedding Chords in the Mobius Band

Consider a Mobius band determined by the hexagon interior and one of the
quadragons. Without loss of generality, we can take the quadragon to be
(a1, b2, a2,b1) (see Figure 7.4). In Figure 8.1 the quadragon is denoted by @,
and the hexagon is denoted by H. We assume that vertices of one side of
the Mobius band are labelled and ordered as v, vp—1, . . . ,v1. Correspondingly,

vertices of the other side of the Mobius band are labelled and ordered as
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Figure 8.1: Mobius band labeling
U1, Usg, . . ., Uq (see Figure 8.1).

8.1.1 Embedding Perpendicular Chords in the Mobius
Band

First suppose we need only to decide if a set of perpendicular chords is em-

beddable into the two faces @ and H of the Mdbius band (see Figure 8.1).

Perpendicular chords v;u; incident on the vertex v; are considered in de-
creasing order of index ¢ = p,p — 1,...,1. We assume the adjacency list
of v;, AdjList(v;) = {ui;, Uiy, .-, s}, is ordered in increasing order of in-
dices i < 4 < ... < i;, and denote by LastPerpPt(v;) = wu,;, the last
vertex in the adjacency list of v;, i = p, p—1, ...,1. We embed the chords

ViU, Vslliy, - - ., Villy; incident to vertex v; by considering them one by one.
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By Lemma 7.4(i), any two disjoint perpendicular chords that cross in one face
of the Mobius band do not cross in the other. To decide on the embedding
of chord v;u;, we consider the next disjoint chord closest to v;u; defined as

follows.

Definition 8.1 Let v;u; be a perpendicular chord. Denote by vnu; the
perpendicular chord such that m < 4, & # j, m is the largest index for
which such a chord exists, and k is the smallest possible index. If such a
chord vn,uy exists, it is called the next disjoint chord closest to v;u;. De-
fine NextDisjPt(viu;) := ug, if vmur exists. If vnpux does not exist, define

NextDisjPt(viu;) := Ugy1, where gy is a dummy vertex after u,.

Given an embedding of perpendicular chords vyuy, z =¢+41,...,p, in faces @
and H of Figure 8.1, we denote by HiPtg the vertex uy such that £ = maz{y|
chord vyuy, z =i+1,...,p, is embedded in @Q}. If the current chord to embed,
v;u;, has j < k, it would cross a previously embedded chord in Q. Therefore

v;u; can not be placed in the face Q.

Similarly, we denote by HiPty the vertex u; such that k& = min{y| chord
Vgly, T = 1+ 1,...,p, is embedded in H}. If the current chord to embed,
v;u;, has j > m, it would cross a previously embedded chord in H. Therefore

v;u; can not be placed in the face H.

The embedding algorithm places each chord v;u;, 1 =p, p—1, ..., 1, into face
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Q or H according to the highest available point HiPtg and HiPty in each face.
If u; > HiPtg and u; < HiPty, then chord v;u; can be placed in both faces
without crossing previously embedded chords. We consider NextDisjPt(v;u;)
and LastPerpPt(v;) to decide on its embedding.

The auxiliary variables NextHiPty and NextHiPtg are used to calculate

HiPty and HiPtg at the next iteration of algorithm for vertex v;—;.

Algorithm 8.1 Embedding Perpendicular Chords in the Mdbius Band.

Input: A sequence of perpendicular chords for the Mobius band, AdjList(v;),

i=p,p—1,...,1, sorted in increasing order of u;, 7 =1,2,...,q

Output: An embedding of the chords, or “not possible to embed”

(1) Initialization:
for each vertex v;, 1 = p,p —1,..., 1, calculate LastPerpPt(v;)
for each perpendicular chord v;u; calculate NextDisjPt(viu;)
HiPtg=wu
HiPtyg = uq4
(2) for every perpendicular chord v;u;
(in decreasing order of ¢ and increasing order of j)
if u; < HiPtg
chord viu; does not fit in face Q

if’U,j > HiPiy
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chord v;u; does not fit in face H
NonProjective = true
return

else

chord vyu; can be placed in face H
place v;u; in the hexagon H
NextHiPty = u;

end if-else

else

chord vyu; fits in face Q
if u; > HiPty
chord viu; does not fit in face H
place v;u; in the quadragon @
NextHiPtg = u;
else
viu; can be placed in both face H and Q
consider NextDisjPt(v;u;)
if u; > NextDisjPt(v;u;)
place v;u; in the hexagon
it does not cross the next disjoint chord in the hezagon H
if LastPerpPt(v;) > HiPty
the whole adjacency list of v; will not fit in the hexagon H

place v;u; in the quadragon @
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NextHiPtg = u;
else
the whole adjacency list of v; will fit in the hexagon H
place v;u; in the hexagon H
NextHiPty = u;
end if-else
else
we have u; < NextDisjPt(vu;)
place v;u; in the quadragon Q)
place v;u; in the quadragon @
NextHiPty = u;
end if-else
end if-else
end if-else
update the highest available points for faces Q) and H
HiPtg = NextHiPtg
HiPty = NextHiPty

end for

Theorem 8.1 If there is an embedding of perpendicular chords in faces Q) and

H of the Mobius band without crossing, then Algorithm 8.1 finds an embedding.

138



u=b1

£ E

u=dy V\l;jal
Figure 8.2: Configuration of perpendicular chords in the Mobius band

Proof . Referring to Algorithm 8.1, suppose we can embed chord v;u; in both
faces Q and H without crossing previously embedded chords. First, assume
NextDisj Pt(viu;) = ug > u; and vnug is the next disjoint chord closest to
v;u; (see Figure 8.2). So v;u; and vpuy do not cross in face ). Then any chord
Vs, crossing v;u; from below in face @), crosses v, uy as well when embedded
simultaneously in face @ (see Figure 8.2). If v,u; is embedded in @, then v;u;
and v,,ur must be embedded in face H and they cross in H. Therefore vsu;
must be embedded in H to avoid v;u; and vn,uy crossing in H. Just one of v;u;
and v,ux can be embedded in H. Any perpendicular chord crossing v;u; in
face @ also would cross v,uy in @ because v,uy is the disjoint perpendicular

chord next to v;u;. Therefore we place v;u; in face Q.

The case NextDisjPt(vsu;) = ur, < u; is symmetric in face H. However if the
last chord from the adjacency list AdjList(v;) of v; will not fit in the hexagon

H, without loss of generality we place v;u; in the quadragon @ to have HiPty
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smaller for an embedding of the remaining chords. Otherwise we place v;u; in

the hexagon H by analogy with the previous case. |

8.1.2 Embedding Bundles in the Mobius Band

Algorithm 8.1 can be generalized to find an embedding for bundles of parallel
and perpendicular chords in the M&bius band. Each bundle corresponds to a
non-embeddable, 1-way or 2-way embeddable component of the conflict graph
M (H) of Section 7.3.2. Therefore we call the bundles non-embeddable, 1-way

or 2-way embeddable respectively.

For each bundle B, we can tell if it is a non-embeddable, 1-way or 2-way
embeddable bundle by testing for disjoint perpendicular chords in each part
of its bipartition. These are the internal properties of the bundle B and they

can be detected in a process of bundle construction as a bipartite component.

If we know the bundles information in advance, we could easily decide on their
embedding. For a 2-way bundle B, if it is possible, we embed the bundle to
minimize both high available points HiPtg and HiPty for the next iteration
of the algorithm. For example, if we embed the bundle of Figure 8.3 in the
other way, both HiPtg and HiPty will be lower for the next iteration and
the perpendicular chords of the bundle would cross chord €' in both faces Q)

and H. Therefore we place the bundle as it is.
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usdy v,‘:’aI uq=b 1
Figure 8.3: An optimal placement of a 2-way bundle

In the case when an optimal placement to minimize both HiPtg and HiPty is
not possible, we consider the closest chord disjoint from a perpendicular chord
of the bundle and try to place the bundle to avoid an intersection with the
closest disjoint chord at the next iteration of the algorithm as in Algorithm

8.1.

The pure Hopcroft-Tarjan approach as in Chapter 3 does not assume that we
know the bundles in advance — we construct and manipulate them during the
embedding process. Therefore in this case we will need to know how to flip

the bundles and how to determine when this is possible.

Interchanging Two Stars of Perpendicular Chords

Algorithm 8.1 constructs an embedding of a set of perpendicular chords in the

Mobius band whenever such an embedding exists. However a set of perpen-
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dicular chords can admit several different embeddings in the Mobius band and

it can be necessary to add an embedding of parallel chords.

Having a simultaneous embedding of parallel and perpendicular chords in the
Moébius band, the chords are in bipartite bundles corresponding to the con-
nected components of the bipartite conflict graph. Since two perpendicu-
lar chords are never in conflict, the bundles are glued together by parallel
chords. Without consideration of parallel chords, the embedding of perpen-
dicular chords obtained by Algorithm 8.1 can be different from the embedding
of the perpendicular chords in bundles. Therefore it can be necessary to mod-
ify the embedding of perpendicular chords of Algorithm 8.1 to add parallel

chords to the embedding without crossing.

Suppose we have an embedding of perpendicular chords in faces H and () of
Figure 8.1. The vertices of side a;b, are labelled in increasing order from a;
to by, and the vertices of side agb; are labelled in increasing order from ap to
by (see Figure 8.1). The embedding of perpendicular chords is obtained after
traversing side ajby from v, = by to v1 = a1. Let’s assume that there is no
parallel chord having both endpoints on the side a1b; and each perpendicular
chord itself is a bundle. The algorithm has to traverse the other side bjas of
the Mobius band from u, = b; to u; = ay to decide if we can complete an
embedding with parallel chords having both endpoints on the side bya;. The
example of Figure 8.4 shows that it can be necessary to flip a perpendicular

chord from one face to another to add the parallel chords without crossing.
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Figure 8.4: Perpendicular chord e, flipped by e; via parallel chords €/, e”

Definition 8.2 A set of perpendicular chords having one endpoint in common

is called a perpendicular star. The common endpoint is called the star center.

By Lemma 7.4, we can flip at most one perpendicular chord from any set of
disjoint perpendicular chords embedded in face ). The same is true for any
set of disjoint perpendicular chords embedded in face H. Since perpendicular
chords incident to the same vertex do not cross in either face H or @, we can

move at most one perpendicular star from face @ to face H. The same holds
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for perpendicular chords embedded in face H.

Definition 8.3 For a perpendicular chord e = v;u; embedded in face @, its
closest upper chord is a perpendicular chord € = v,u., embedded in the
other face H such that v,, > v;, vyp and u,, are the smallest possible (see
Figure 8.5). If such a chord does not exist, we put e = uqvp41 the closest
upper chord for e, where vp1; is a dummy vertex right after v,. Similarly, for
a perpendicular chord e = v;u; embedded in face @, its closest lower chord
is a perpendicular chord e’ = wj,u;, embedded in the other face H such that
Vo < Vi, Ui and uy, are the biggest possible (see Figure 8.5). If such a chord
does not exist, we put €’ = wu;vg the closest upper chord for e, where v is
a dummy vertex right before v;. Then the flip interval for chord e = vu; is

defined as [0, Uiot1, - - - » Uup)-

An initial flip interval for each perpendicular chord can be determined after
running Algorithm 8.1 or its analogue. The flip interval bounds can be saved

in an additional field for each perpendicular chord in the adjacency list.

If wo < uj < Uup, then chord e = v;u; can be flipped from face ¢ to face H
without any problem. However if u; < w, Or u; > Uyp, then chord e in face H
would cross its closest upper or lower chord respectively. In this case we can
initiate flipping of a perpendicular star with center o, Vio, Uyp OF Uyp from face

H to face Q to make the flip interval wider for e in H. For a perpendicular
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Figure 8.5: The flip interval for chord e

chord placed in face H, we can similarly define its flip interval in face Q) to flip

the chord from H to Q.

In summary, it can be necessary to move a perpendicular star from each face
of the Mobius band to add parallel chords to an embedding without crossing.
Moreover, moving a perpendicular star from a face of the Mdbius band can
force moving another perpendicular star from the other face of the Mobius
band. The center of the last perpendicular star is defined by vertices like uy,,

Vjo, Uyp OT Uyp of Figure 8.5.

Bundles in the Hopcroft-Tarjan Algorithm and in the Moébius Band

In the Hopcroft-Tarjan algorithm, the bundles are nested inside each other

forming a stack. The innermost bundle is on top of the stack. Chords of each
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Figure 8.6: Consecutive chords in a bundle

bundle form a set of consecutive chords on left and right sides of the DFS-cycle

or DFS-tree (see Figure 8.6).

When a chord uv is to be embedded, but conflicts with chords on both sides of
the DFS-cycle or DFS-tree, then there is a possibility of switching the chords
in the bundle to the other side that would permit chord wv to be embedded.
This is only possible if the conflicting chords on both sides are not in the same

bundle (see Figure 8.7).

After flipping chords of the innermost bundle, we merge the bundles containing
conflicting chords and add uw to this bundle. Again, the new bundle consists
of consecutive chords. Since the chords are always consecutive, we only need
to store the first and last chords of the bundle on each side of the DFS-tree.
Since switching the bundles can be done in constant time, the algorithm is

linear. These properties are important for the linear time complexity of the
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Figure 8.7: Flipping a bundle

Hopcroft-Tarjan algorithm and we can modify them to embed bundles in the

Modbius band.

In a Mdbius band there are two types of chords: parallel and perpendicular.
Parallel chords behave exactly like chords in the Hopcroft-Tarjan algorithm.
They form bundles that can be switched from one face to the other in the

same way.

However there is an interaction between parallel and perpendicular chords that
makes the algorithm more complicated. It is convenient to consider bundles
that consist only of parallel chords first and then add perpendicular chords to
them. If there are two disjoint perpendicular chords of the bundle embedded
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in the same face, then it is not possible to flip the bundle by Lemma 7.4.
Therefore to flip a bundle in the M6bius band, it is necessary that perpendic-
ular chords of the bundle embedded in either face of the Mobius band have
a common endpoint and form a perpendicular star. There can be a perpen-
dicular star of the bundle embedded in the hexagon and a perpendicular star
of the bundle embedded in the quadragon. There are four different cases of
perpendicular stars in a bundle that can occur corresponding to four distinct

combinations of two star centers (see Figure 8.8).

In the Mobius band bundles are not nested as in the Hopcroft-Tarjan Al-
gorithm. If the bundles are nested in the Mobius band, only the outermost
bundle can contain perpendicular chords, the inner bundles consist just of par-
allel chords, and it is possible to flip them as in the Hopcroft-Tarjan algorithm.
Therefore we will assume that we have a Mobius bundle containing at least

one perpendicular chord.

When we are trying to embed a parallel chord uwv, if the chord uv must cross
two disjoint perpendicular chords, then it is a forced chord, and we must embed
wv in one face and the disjoint perpendicular chords in the other face without
crossing. Therefore we assume that uv crosses one or more perpendicular

chords that form a perpendicular star in a bundle.

If uv were to cross chords of the same bundle in the hexagon and quadragon,

then flipping of the bundle would not help and we could not add uv to the em-
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Figure 8.8: Four combinations of perpendicular stars in a bundle
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bedding without crossing. Therefore the chords that uv crosses in the hexagon
and quadragon are in different bundles. This is similar to the Hopcrof-Tarjan
Algorithm. Then either uv crosses two perpendicular chords, or else a perpen-
dicular and a parallel chord (see Figure 8.9). If vertex u is within a bundle,
then we try to flip the bundle that contains w. If flipping the bundle that con-
tains u is not possible without crossing, then we try to flip bundles that are
the nearest to the bundle of u. It is possible to move just one perpendicular
star out of each face of the Mo6bius band. As soon as we know the centers of
two perpendicular stars that we need and can move from each face, the per-
pendicular chords that are not in the two perpendicular stars become fixed.
Then it may become possible to embed other parallel chords without crossing

or flipping any perpendicular chord not in the two perpendicular stars.

Consider flipping a perpendicular star with center A and possibly a perpen-
dicular star with center B (see Figure 8.9). When the perpendicular chords
incident to A are moved to the hexagon, they can cross the perpendicular
chords immediately preceding the chords incident to B and those immediately
following the chords incident to B. We look at the perpendicular chords imme-
diately preceding and following the perpendicular star with center B to check
if they would cross the perpendicular star with center A in the hexagon. If
moving the perpendicular star with center A into the hexagon does not create
any crossing, then the star with center A is moved into the hexagon and we
proceed similarly with the star having center B. If there are conflicts, they

must not be with two disjoint perpendicular chords. The only allowed con-
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Figure 8.9: Flipping bundles to embed a parallel chord
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flicts are with a perpendicular star, and then we need to move the conflicting
perpendicular star too. This allows us to embed the chord uv. After flipping
the two perpendicular stars, all the other perpendicular chords become rigid
and it may become possible to complete the embedding without flipping any

perpendicular chord.

Since chords in a perpendicular star are consecutive, flipping a perpendicular
star takes a constant number of steps. It is necessary to know just the first and
last chord of the star. The parallel chords in the bundle are also consecutive.
If a bundle becomes rigid, we need to mark every chord in it as a rigid. This
can happen at most once for each chord. This provides a linear running time

for the entire algorithm.

8.2 Algorithm Given a Spanning 7' K33

8.2.1 Data Structures

The graph G is represented by its adjacency list. Each edge of a linked list is
marked either as an edge of T K33 or as a chord of TK33. The six vertices of
T K33 are marked as corners, the other vertices of T K33 are marked as inner
vertices. For each chord e € G\ET K33 in the linked list, we store its face

indez set, the set of faces in which e can be embedded. The face index is
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stored as a field for each entry of the linked list.

For each face Fj, i = 0,1,2,3, we will use a linked list of chords to indi-
cate the embedding of chords in the face as in the Hopcroft-Tarjan algorithm
of Chapter 3. Thus we have four linked lists: FaceOChords (the hexagon),
FacelChords, Face2Chords, and Face3Chords (the quadragons). As the
side between faces F; and Fj, ¢ # j, 4,5 = 0,1,2,3, is traversed, the infor-
mation from the FaceiChords linked list and FacejChords linked list is used

later by the other sides on the face boundaries.

For bundles of quadragon chords, and parallel and perpendicular Mobius
chords, a bundle stack is used to keep information about the bundles and
their flips. A bundle is said to be fized if it can not be flipped. Then all the
chords in the same bundle are forced. Therefore the forced chords will appear
as fixed bundles of quadragon chords in the QuadragonPath procedure and as

fixed bundles of parallel and perpendicular chords in MobiusPath procedure.

8.2.2 DFS-numbering of the Kj3-subdivision

We start with a K3 s-subdivision T'K33. We are considering the case where
TKj 3 is spanning. T'K33 divides the projective plane into four faces — three
quadragons and a hexagon. The faces interact through their common bound-

aries — the sides of the T K3 3.
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With the plane, there was a cycle C' with two faces — the inside and outside.
A sequential numbering of C' which extends to a DFS-numbering of all of G

is used to place the chords either inside C' or outside C.

Now there is a spanning T'K3 3 instead of C, and four faces instead of two.
However it is possible to treat the faces by considering them in pairs. We need

a numbering of T K33 that will extend to a DFS-numbering of all of G.

Consider the numbering schematically presented in Figure 8.10. Let the cor-
ners of T K33 be ay,as,as and by, by, bs. Denote a closed side of the T K33 as
[az, bs], indicating that the corners as and bs are included in the side. Denote
an open side as (b3, as), indicating the inner vertices of the path. Start at a,
and number it 1. Then number the vertices of T'K3 3 by taking the sides in the
following sequence: [ag, b3], (b3,as), (az,b1), [as, b1], (as,b2), (b1,a1), [a1,b2),
(a1, b3), (be,az). It can be verified that every vertex of T'K33 is numbered,
and that the corners are labelled once only, and in the correct sequence. No-
tice that this defines an ordering of the sides of T'K3 3 as nine directed paths
p1,P2,--.,Pe. The inner vertices of each path p; have numbers less than the

vertices of any path p;, when j > 1,4, =1,2,...,9.

Lemma 8.1 With the numbering of Figure 8.10, the vertices of the facial

boundaries of the three quadragons are numbered in increasing order.

Proof. Consider the DFS-numbering of Figure 8.10. The boundaries of the
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Figure 8.10: DFS-ordering of sides and face labelling of T'K3 3
quadragons have the numbering shown in Figure 8.11. ]

Having numbered the vertices of T' K3 3, we then traverse the sides of T K33, in
reverse order by decreasing DFS-numbers, exactly as the cycle C was traversed
in reverse order by the DFS in Section 3.4, and assign a low point to each
chord. In the case of a spanning T'K33, the low points are DFS-numbers of
the adjacent vertices. We also order the adjacency lists of each vertex in order
of increasing DFS-number. (We will come to the non-spanning case later.) We
also determine which faces of the TKj3 3 each chord may be embedded in, and

store this as a field in the adjacency lists.

We can determine the allowed faces for each chord in terms of the subscript

numbers of the sides a;b;, 3,7 = 1,2,3, by using Proposition 7.1 and the face
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Figure 8.11: DFS-ordering of the quadragon facial boundaries

labelling of Figure 7.4. If we detect a 0-face chord, the embedding is not
possible.

We are now ready to embed the chords. Notice that there are two kinds of
sides in T K3 3 — sides separating two quadragons and the Mobius band sides.
Accordingly we have two procedures QuadragonPath() and MobiusPath() for
embedding chords with an endpoint in one of these sides. We call quadragon
paths the sides separating pairs of quadragons and Mdbius paths the Mobius

band sides.

8.2.3 The Quadragon Paths

While embedding chords on a quadragon path, there is a quadragon on each

side of the path. Both quadragons have a DFS-numbering of their facial

156



boundaries as in Figure 8.11. Therefore they can be treated exactly as in
the Hopcroft-Tarjan algorithm. To determine if a chord vu fits inside a face,
we need only compare DF Num|u] with the chord currently at the head of the
list of chords for that face.

Algorithm 8.2 Procedure QuadragonPath(a;,b;, Facel, Face2) (embedding

chords incident to a quadragon side a;b;, i =1,2,3)

Follow the quadragon path from a; to b;, embedding each chord with

an endpoint in this path. Facel is to the “left” of the path,

Face2 is to the “right”

v=a

while (true)

for each u adjacent to v do

vu 18 a chord. Either u is above v in the TKss, or below;
this can be detected by comparing DFS-numbers
if (u is above v in TK33) goto L1; the adj lists are ordered
if (uv is an edge of T'K33) goto L2; uv is not a chord in this case
otherwise uv is a chord with u below v in the T K33 DFS-labelling
FacelOK = true, if uv’s allowed faces include Facel
Face20K = true, if uv’s allowed faces includes Face2
if (FacelOK)

uv may fit in Facel
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if (DF Numlu] fits inside Facel)
place uv inside Facel
else if (Flace20K)
uv may fit in Face2
if (DF Numlu] fits inside Face2)
place uwv inside Face2
else
uv is compatible with Facel and Face2,
but does not fit inside either;
try switching sides
k = QuadragonSwitchFaces(v,u, Facel, Face2)
if (k=0)
switching faces does not help
NonProjective = true
return
end if
otherwise switching faces made it possible to embed uv
if (k = 1) place uv inside Facel
else place uv inside Face2
end if Face20K
otherwise uv is incompatible with Face2, and will not fit inside Facel;
there is still a possibility that it will fit in the heragon if v is a corner

if (Facel is the only allowed face for uv)
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NonProjective = true
return
end if
otherwise this frond will be considered later by MobiusPath()
remove Facel from uv’s allowed faces
end if FacelOK
else if (Face20K)
uv 18 not compatible with Facel, but may fit in Face2
if (DF Numlu] fits inside Face2)
place uv inside Face2

else

uv will not fit inside Face2. There is still a possibility that it will fit

in the hexagon if v is a corner
if (Face2 is the only allowed face for uv)
NonProjective = true
return
end if
otherwise this frond will be considered later by MobiusPath()
remove Face2 from uv’s allowed faces
end if-else
end if Face20K
L2: go to the next u

end for
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L1: prepare for the next v in the path
if (v = b;) return all vertices of a;b; done
v = next vertex in the path

end while

end QuadragonPath

This procedure works very much like the Hopcroft-Tarjan embedding algo-
rithm, except that we must indicate in which faces we are embedding the
chords. It works because by Lemma 8.1 the facial boundaries of the quadrag-
ons are ordered by increasing DFS-numbers, and because the adjacency lists

are ordered by the DFS-numbering.

We must always check each chord uv to see if it is compatible with Facel or
Face2 before embedding it. As before we have a linked list of chords for each
face. QuadragonSwitchFaces() works very much like SwitchSides() of the
Hopcroft-Tarjan algorithm except that there are more faces to consider. A
stack of bundles of chords is required to indicate the chords which are grouped
together. A bundle may be fixed by a 1-face or forced chord to become a

bundle of forced quadragon chords.
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Figure 8.12: DFS-ordering of the hexagon facial boundary

8.2.4 The Mobius Paths

MobiusPath() is more complicated than QuadragonPath(). The reason is
that the hexagon boundary is not ordered by increasing DFS-numbers. This is
simply not possible if the ordering of the quadragon boundaries are increasing,
because the projective plane is an unoriented surface. However, we do have
an ordering of the hexagon’s facial boundary with interesting properties. The

boundary of the hexagon is shown in Figure 8.12.

Lemma 8.2 Given the DFS-numbering of TKs3 of Figure 8.10, the hezagon
boundary consists of paths of T K33 taken in order of increasing subscript in-

dez, i.e. pi, P3, Ps, Ds, Pr, Ps- The paths of TKss are followed alternately
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according to decreasing and then increasing DFS-numbers, as we follow the

hexzagon boundary from the root vertex bs to its leaf on the path pg.

Proof. See Figures 8.10 and 8.12. [

Definition 8.4 We say that a path on which the DFS-numbers increase as we
follow the path clockwise on the hexagon boundary is a forward path. A path
in which the DFS-numbers decrease as we follow it clockwise on the hexagon

boundary is a reversed path.

The algorithm needs to know which type of path it is following.

Algorithm 8.3 Procedure MobiusPath(b;, a;, Facel,isReversed):

embed the chords incident on a hexagon side bia;, 4,5 =1,2,3, i # j

Follow the Mobius path from b; to a;, embedding each chord with an endpoint
in this path. isReversed is true if this is a reversed path. Facel (a quadragon)
is to the “left” of the path, Face2 (= F0, the hezagon) is always to the “right”.
We always try to embed a chord in the quadragon Facel before the hexagon.
We follow the path in order of decreasing DFS-numbers.

In Facel (a quadragon), this will be the usual order of the facial boundary;

in Face2 (the hezagon), this will be the alternating hexagon order.

This means that from the point of view of the hexagon, we may be ascending
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along the facial boundary, or descending.
v = b;
Face2 = FO
while (true)
for each u adjacent to v do
vu is a chord. If it has already been embedded,
we can tgnore it, and proceed to the nexrt v
if (u has been embedded) goto L1; the adjacency lists are ordered
if (uv is an edge of T K3 3) goto L2; wv is not a chord in this case
otherwise uv is a chord with u below v in the T K33 DFS-labelling
FacelOK = true, if uv’s allowed faces include Facel
Face20K = true, if uv’s allowed faces include Face2
if (FacelOK)
uv may fit in Facel
if (DF Num/|u] fits inside Facel)
place uv inside Facel
else if (Face20K)
wv may fit inside the hexagon
if (IsCompatible(u,v))
place uv inside Face2
else
wv is allowed in Facel and Face2,

but it does not fit inside either. Try switching faces.
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k = MobiusSwitchFaces(v,u, Facel)
if (k =0)

Switching faces does not help.

NonProjective = true

return

end if
Otherwise switching faces made it possible to embed uv.
if (k = 1) place uv inside Facel
else place uv inside Face2
end if Face20K
Otherwise uv 15 not allowed in Face2, and will not fit inside Facel.
There is still a possibility that it will fit into another quadragon,
if v is a corner.
if (Facel is the only allowed face for uv)
NonProjective = true
return
end if
otherwise this chord will be considered later by QuadragonPath()
remove Facel from uv’s allowed faces
end if FacelOK
else if (Face20K)

uv 1s not allowed in Facel, but may fit in Face2

if (IsCompatible(u,v))
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place uv inside Face2
else
wv will not fit inside Face2. There is still a possibility that
it will fit in a quadragon if v is a corner
if (Face2 is the only allowed face for uv)
NonProjective = true
return
end if
otherwise this frond will be considered later by QuadragonPath()
remove Face2 from uv’s allowed faces
end if-else
end if Face20K
L2: go to the next u
end for
L1: prepare for the next v in the path
if (v = a;) return all vertices of b;a; done
v = next vertex in the path
end while

end MobiusPath

MobiusPath() must be coded separately from QuadragonPath() because of

the hexagon boundary order. A procedure [sCompatible(u,v) is used to de-
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termine whether a chord uv can be placed in the hexagon. It must determine
whether u and v are in forward or reversed paths of the hexagon boundary,
and decide on how to compare uv with the chord currently at the head of
Face0Fronds, the list of chords embedded in the hexagon. Then it decides
whether the chord will fit into the hexagon. The handling of the linked lists
of bundles of chords is also different for MobiusPath(), because sometimes we

are ascending the facial boundary, and sometimes descending.

If a chord does not fit into the hexagon, then we call MobiusSwitchFaces().
This is where a bundle of one or more chords may be switched between the
hexagon and its adjacent quadragon. Section 8.1 explains how to decide on an
embedding of parallel and perpendicular chords into the Mobius band in more
detail. The algorithms of Section 8.1 must be inserted into the MobiusPath()

procedure.

8.2.5 Mbobbius Bands and the General Algorithm

Proposition 7.2 and Corollary 7.1 simplify the embedding along the Mobius
paths by reduction to the special cases. In general case, we run MobiusPath()
procedures assuming at most one non-flat embeddable Mébius band. Other-
wise the general case run of the algorithm will determine the number of non-flat
Mobius bands and their common corners in case of a pair of corner-compatible

Mobius bands. If all the Mobius bands are flat or only one is non-flat and
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embeddable, we obtain an embedding.

If there are three non-flat Mobius bands, we try two cases of the diagonal com-
patible bands by making the diagonals uniquely embeddable in the hexagon,
and all the other perpendicular chords, uniquely embeddable in the corre-
sponding quadragons. If there are two non-flat Mdbius bands, we try two
cases of the corner compatible bands by making the perpendicular chords not
incident on the corresponding corner uniquely embeddable in the quadragons.
Finally, if we have just one non-flat Mobius band, the first run of the algorithm
will provide an embedding, if one exists. The general embedding algorithm

can now be described as follows.

Algorithm 8.4 Given a spanning TKs3, embed its chords in the projective

plane

(1) Construct the DFS-numbering of T K33
(2) Assign the allowed faces for each chord
if (NonProjective) return there was a 0-face chord
Now follow the paths of TK33 in reverse order, embedding chords as we go
(3) QuadragonPath(as, ba, Fi, F3) path pe
if (NonProjective) return
(4) MobiusPath(bs, a1, Fy, false) path pg
if (NonProjective) return

(5) MobiusPath(bs,ay, Fs,true) path pq
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if (NonProjective) return
(6) QuadragonPath(ay, by, Fz, F3) path pe
if (NonProjective) return
(7) MobiusPath(by,as, Fi, false) path ps
if (NonProjective) return
(8) MobiusPath(by, as, Fy, true) path ps
if (NonProjective) return
(9) MobiusPath(by,as, Fs, false) path ps
if (NonProjective) return
(10) QuadragonPath(as, bs, F1, Fy) path pa
if (NonProjective) return
(11) MobiusPath(bs,az, F1,true) path py
if (NonProjective) return
The embedding is now complete
(12) Calculate a rotation system

return

8.2.6 Assigning a Rotation System to the Embedding

When Algorithm 8.4 completes an embedding of T'K3 3 to an embedding of the

whole graph G on the projective plane, we still need to calculate a rotation sys-
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Figure 8.13: The embedding of T'K3 3 used to calculate a rotation system

tem of the embedding. We know the assignment of chords to faces of T'K3 3.
The cyclically ordered adjacency lists for an embedding of G can be con-
structed from the labelled embedding of T'K 3, and the assignment of chords to
the faces. Also we can use the information from the linked lists FaceOChords,
FacelChords, Face2Chords and Face3Chords calculated during the previ-

ous computations.

A rotation system for a projective planar embedding requires assigning a sig-
nature of “+1” or “1” to each edge of the embedding. The value of “1” is
assigned to the edges crossing the projective plane boundary. All the remain-

ing edges are assigned the value of “+1”.

The embedding of Figure 8.13 is used to assign signature values to the edges of

an embedding. This embedding of T K5 5 is a continuous transformation of the
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embedding of Figure 7.2 used by the algorithm. The value of “-1” is assigned
to perpendicular chords of the Mdbius bands embedded in the quadragons and
to the 1-face chords having endpoints on the opposite quadragon sides a;b; and
a;b;, 1,5 =1,2,3, 1 # j, or on the quadragon sides incident to the same corner
ai, t = 1,2,3. In Figure 8.13, only the quadragons are separated into two parts
by the projective plane boundary on their diagonal with respect to a pair of
opposite corners. Therefore the only chords that must cross the projective
plane boundary will be embedded in a quadragon and have endpoints on the
quadragon opposite or corresponding adjacent sides. All other chords can be

drawn without crossing the boundary and are assigned the value of “+1".

8.3 Generalization for a Non-Spanning T'K33

The case of a non-spanning T'K3 3 is a reasonably straight-forward extension
of the spanning case. We first assign the DFS-numbering of the T K33 ex-
actly as in the spanning case. Then we follow the paths of the T'K33, in
reverse order. While visiting a vertex v, if we encounter a vertex u which
is not part of the TK33 and that has not been numbered, we call a recur-
sive procedure LowPtDFS() at vertex u. LowPtDFS(u) proceeds exactly
as in the Hopcroft-Tarjan algorithm. The entire DFS-tree constructed by
LowPtDF S(u) must fit inside one face of the TK33. We calculate the allowed
faces for this tree as LowPtDFS(u) proceeds by checking the attachments of
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each tree leaf, and store the tree’s allowed faces in the adjacency list of v when
LowPtDFS(u) returns. Thus we can treat the entire tree recursively as a
chord at v. When we have followed all nine paths of TK3 3, the entire graph
G has been numbered, and the allowed faces have been calculated for every

chord and DFS-tree which attaches to the T'K3 3.

Then the algorithm proceeds to embed the chords and back edges in the linked
lists. The same sequence of calls to QuadragonPath() and MobiusPath()
as in Algorithm 8.4 above will embed the graph. The only change is that
we must add some additional statements to each of QuadragonPath() and
MobiusPath(). The additional statements for QuadragonPath() are as fol-

lows. The statements for MobiusPath() are similar.

Algorithm 8.5 Extension of QuadragonPath() procedure for non-spanning
TK3’3

for each u adjacent to v do
if (u has not been visited)
v 18 the root of a DFS-tree T attaching to the T Ka 3.
FacelOK = true, if T is allowed in Facel
Face20K = true, if T is allowed in Flace2
if (FlacelOK)
EmbedBranch(u, Facel)
if (successful) goto L2;
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Otherwise try Face2
if (Face20K)

EmbedBranch(u, Face2)

if (successful) goto L2;

Otherwise T' will not fit inside Face2. Try switching faces.

k = QuadragonSwitchFaces(v, u, Facel, Face2);

if (k=0)

NonProjective = true
return

end if

if (k = 1) EmbedBranch(u, Facel)

else EmbedBranch(u, Face2)
end if Face20K
Otherwise T is not allowed in Face2, and will not fit inside Facel.
There is still a possibility that it will fit into the hezagon
if v is a corner.
if (Facel is the only allowed face for T

NonProjective = true

return
end if
Otherwise T will be considered later by MobiusPath().
remove Facel from T’s allowed faces

end if FacelOK
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else if (Face20K)
EmbedBranch(u, Face2)
if (successful) goto L2;
Otherwise T is not allowed in Face2, and will not fit inside.
There is still a possibility that it will fit into the hezagon
if v is a corner.
if (Face2 is the only allowed face for T')
NonProjective = true
return
end if
Otherwise T will be considered later by MobiusPath().
remove Face2 from T’s allowed faces
end if Face20K
Otherwise T will be considered later by MobiusPath().
else
vu s a chord of TKs3. Previous code to embed

chords at vertez v by QuadragonPath() goes here.

end if-else
L2: go to the next u

end for
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The procedure EmbedBranch(u, Face) is similar to the procedure used for the
plane. It follows a DFS-tree to a leaf node, finds the initial cycle C, and then
returns along the tree as the recursion unwinds, and places chords in one of two
linked lists, one for the inside of C, the other for the outside. All fronds must
fit inside the given face of TK33. The alternating hexagon boundary DFS-
ordering must be used to embed a branch in the hexagon. The implementation
can be simplified by storing an additional array HezagonNum[v], giving a

consecutive numbering of the vertices on the hexagon boundary.

8.4 Analysis and Complexity of the Algorithm

A final algorithm can be constructed from Algorithms 8.1-8.3 and 8.5 for all
cases of flat, compatible and unmatchable M6bius bands. It can be done
similar to Algorithm 8.4. The two possible cases of three matched diagonal
compatible Mobius bands, and two possible cases of two matched corner com-
patible Mdbius bands can be programmed separately. The entire algorithm
treats the case of three flat Mobius bands, and the case of two flat and one

unmatchable Mobius bands before the special cases.

The algorithm is similar to the Hopcroft-Tarjan planarity algorithm of Chapter
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3. It consists of a constant number of DFS procedures. Each DFS procedure

runs in linear time.

The algorithm considers in turn all six labelled embeddings of T'K3 3 from Sec-
tion 7.2.1. The DFS-numbering of T'K’3 3 and DFS-tree generation in G\T'K3 3
require O(n + m) operations. The embedding part uses information about
edges of G not in TK33 and not in the spanning DFS-trees of G\T'K33. It
consists of a sequence of linked list manipulations, adding or deleting infor-
mation from the adjacency lists fields. The adding or deleting of an element
requires a constant time. The total number of entries in the linked lists is
O(n + m). Therefore the entire algorithm runs in O(n + m) time. Since
m < 3n — 3 for a projective planar graph, the algorithm requires O(n) opera-
tions. Since we use a constant number of fields for each entry of the adjacency

list, the memory storage is also O(n).

The algorithm can be followed by a procedure to convert the linked lists
FaceiChords, i = 0,1,2,3, to a rotation system for an actual embedding

of the graph as described in Section 8.3.6.

Since we have to check all six labelled embeddings of T'K3 3 to tell if a graph
G is non-projective planar, the algorithm can be difficult to modify to find
a minimal non-projective planar subgraph in G. In addition, a distinct non-

projective planar obstruction can appear for each labelled embedding of T'K33 3.
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3 ! L(Petersen)

13

Figure 8.14: The line graph of the Petersen graph

8.5 Examples

The program implementing this algorithm is currently in the debugging phase.
One example in which it embedded the line graph of the Petersen graph is

illustrated.

Figure 8.14 shows the line graph of the Petersen graph. This is a 4-regular
graph with fifteen vertices and thirty edges. The K3 s-subdivision is shown by
bold lines, the chords of T K3 3 are shown by thin lines. The corners of T'K3 3
are labelled a; = 1,a3 = 10,a3 = 8 and b; = 4,b, = 12,b3 = 13.

The program tried to complete all six labelled embeddings of the K3 3-subdivision

with twelve chords. Three labelled embeddings of T K33 had a 0-face chord
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Figure 8.15: A projective planar embedding example
and therefore were rejected by the program.

Two embeddings of T K3 3 gave actual embeddings of the line graph of the Pe-
tersen graph on the projective plane. The embeddings are shown in Figure 8.15

and Figure 8.16.

Finally, one labelled embedding had both embeddings of the 2-face chord with
endpoints 11 and 13 crossed by 1-face chords in two corresponding quadragons

as in Figure 8.17.
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Figure 8.17: Non-projective configuration example
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Chapter 9

Torus Embeddings of Graphs

Containing Ks—Subdivisions

In this chapter, we describe a partial algorithm to embed graphs in the torus.
The algorithm checks if a graph G containing a Ks-subdivision is toroidal or if
it contains a K3 s-subdivision. The algorithm has linear time complexity and
is similar to the algorithm for the projective plane presented in Section 7.1. It

can be implemented in a straightforward way to return an actual embedding

of the graph.
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by By Eg

Figure 9.1: The embeddings of K5 on the torus

9.1 Embedding K5-Subdivisions on the Torus

and Planar Side Components

We begin with the six embeddings of K5 on the torus, shown as E,..., Es
in Figure 9.1. Some embeddings have one face whose boundary contains a
repeated vertex or repeated edge. Such a face is labelled F' in the diagram.
Vertices which are repeated on the boundary of F' are shaded black. Repeated

edges are drawn with thicker lines.
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Let G be a non-planar graph with a Ks-subdivision T K5 and no short cut or
3-corner vertex of TKy in G. Notice that a side component of TKs in G can
contain a subdivision of K33. Therefore G can contain a TK33 as well. The
following propositions and theorem provide a characterization of toroidality

for such graphs.

Proposition 9.1 Let G be a 2-connected non-planar graph with a Ks-subdivision
TKx and no short cut or 3-corner vertex of TKy in G. If G is toroidal, then

at most one augmented side component of T' Ky is non-planar.

Proof. Let G be embedded on the torus. Consider the embeddings of K on
the torus E4,..., Eg of Figure 9.1. TK5 must be embedded in one of these
configurations. Let H be any side component with corners a and b. The
vertices of H cannot be adjacent to any part of T K5, except those vertices
on the {a,b}-side. We show that either H + ab is planar, or else all other

augmented side components are planar.
Case 1. TK5 is embedded as Fy or FE5 of Figure 9.1.

E; and E; have the property that each vertex appears at most once on the
boundary of any face. A side {a,b} appears on the common boundary of two
faces, say F; and Fp. Vertices a and b may also appear as non-consecutive
vertices on the boundary of a third face. We proceed as in Theorem 7.1. Any

portion of H embedded in a third face can be moved to Fy or Fy, so that H
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a1 b a1 b

Figure 9.2: A face with one repeated vertex

can always be embedded in an open disk contained in F; U F5, with a and b

on the outer face of H. Lemma 6.1 implies that H + ab is planar.
Case 2. TKj5 is embedded as Eg of Figure 9.1.

The boundary of the face F' contains one vertex repeated twice as in Figure 9.2.
Without loss of generality, we can assume that a is the repeated corner, and b
is adjacent to a on the boundary of F'. Otherwise H + ab would be planar, as
in Case 1. Let C be a part of H embedded in the interior of . Let a; and ag
be the two occurrences of a on the boundary of F', and let a; be adjacent to b
on the facial foundary. The edges from ay to vertices v € C can be replaced by
edges from a; to v, as indicated in the diagram. This gives a planar embedding

of H with a and b on the outer face. Hence H 4 ab is planar.

Case 3. TK; is embedded as E; of Figure 9.1.
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ay

Figure 9.3: A face with two repeated vertices

The boundary of the face F' of E; has two vertices repeated twice as in Fig-
ure 9.3. Without loss of generality, we can take one of them to be a. Let its
two occurrences on the facial boundary be a; and ag. If b is not the other
repeated corner, we can proceed as in Case 2 and H + ab is planar. Hence,
we can assume that b is also repeated. Let its two occurrences be b; and by,
where b; is adjacent to a; on the facial boundary. Let C be the portion of
H embedded inside F. Each of a; and b, must be adjacent to one or more
vertices of C, or else we can proceed as in Case 2, and H +ab is planar. Having
embedded C as shown in Figure 9.3, all faces of the embedding now have no
repeated vertices on their boundaries. Consequently, all remaining augmented
side components must be planar, as in Case 1. It follows that H + ab is the

only possible non-planar augmented side component.

Case 4. T K5 is embedded as Ey of Figure 9.1.
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a (1) a b (i)
Figure 9.4: A face with three repeated vertices

The boundary of the face F' of E5 has an edge and another vertex repeated
twice as in Figure 9.4. If just one corner of the side {a, b} is repeated twice on
the boundary of F, then it is equivalent to Case 2 and H +ab is planar. If both
corners a and b are repeated twice on the boundary of F', but the side itself
appears just once (Figure 9.4(i)), we have a case similar to Case 3 and H +ab
is the only possible non-planar augmented side component in G. Suppose the
entire side {a,b} appears twice on the boundary of F', and H is embedded in
F as in Figure 9.4(ii). Then we find that after embedding H, any face of the
embedding has at most one repeated corner as in case 2. Consequently, there

can be at most one non-planar augmented side component H + ab.
Case 5. T K5y is embedded as E» of Figure 9.1.

The boundary of the face F' of E; has two edges repeated twice as in Figure 9.5.

If a and b are endpoints of a repeated edge as in Figure 9.5(ii), it is equivalent to
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a (i) a b (ii)
Figure 9.5: A face with four repeated vertices

Case 4 in Figure 9.4(ii). Otherwise we get the case of Figure 9.5(i) equivalent
to Case 3. In both cases, if H + ab is non-planar, then all the other augmented

side components are planar. ||

Corollary 9.1 IfG is toroidal, then there can be at most one non-planar side

component of T Ks.

Proposition 9.2 If all the side components of TKy in G are planar and at

most one of the augmented side components is non-planar, then G is toroidal.

Proof. If all the augmented side components are planar, then by Lemma 6.1
we can embed all the side components as planar graphs with two corners on
the outer face in any of the embeddings of T K5 on the torus.

Suppose one of the augmented side components of T K5, say H + ab, is not
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planar. Then it is not possible to embed the corresponding planar side compo-
nent H into an open disk with both corners a and b on the boundary. However,
there are two embeddings of T' K on the torus (Ey and E5 of Figure 9.1) with
a side appearing exactly twice on the boundary of a face. Denote such a face
by F. The face F is indicated in the diagram of E; and Es of Figure 9.1, and
a side which appears twice is drawn in bold. A face F with a side appearing
twice on its boundary defines a cylinder. We can create a cylindrical embed-
ding of the planar graph H as follows. Embed H on the sphere, and cut a
small open disk which touches a from the interior of a face having a on its
boundary, and cut another open disk which touches b from the interior of a
face having b on its boundary. This converts the sphere into a finite cylinder.
Now H contains an ab-path, namely the side {a,b} of TKj5. Cut the cylinder
along this ab-path to convert it into an open disk with a repeated ab-path on
its boundary. This cylindrical embedding of H can then be placed in the face
F of the TK5 embedding E, or Es of Figure 9.1. Any planar rotation system
of H provides such a cylindrical embedding of the side component H, and vice

versa.

Since all the other augmented side components of T'K are planar, by Lemma
6.1 any side component different from H can be embedded in an open disk

with both corners on the outer face. =
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Ny N3

NS
Figure 9.6: Non-toroidal graphs Ny, Na, N3

9.2 A Unique Non-Planar Side Component

We now consider graphs G with a non-planar side component of T'Ks. Before
we give an equivalent of Theorem 7.1 for the torus, we show two families of
graphs which can be considered as combinations of two Ks-subdivisions having
at most one side in common. One family is presented in Figure 9.6 and another

in Figure 9.7.

Lemma 9.1 None of graphs N1, Ny or N3 of Figure 9.6 can be embedded on

the torus.

Proof. Consider all embeddings of K5 on the torus (see Figure 9.1). Clearly,

it is not possible to embed a non-planar component Ky into an open disk.
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Figure 9.7: Toroidal graph M

Therefore we can not complete any of the embeddings of Figure 9.1 to graph
N;. Now to extend one of the embeddings of Figure 9.1 to Vs, it is necessary to
embed K} into a face equivalent to an open disk and then add edges between
all vertices of K4 and one corner on the boundary of the face. Since K is
not outer-planar, it is not possible to do so without edge crossings. Therefore
N, is non-toroidal. Finally, to extend one of the embeddings of Figure 9.1 to
N3, we need to embed K into a face equivalent to an open disk and then add
edges between all four vertices of K, and two corners on the boundary of the
face. Since K, is not outer-planar, it can not be done without edge crossings.

Therefore N;, Ny and N3 are not toroidal. : L]

It can be seen that we can complete some of the embeddings of K5 on the
torus to an embedding of graph M of Figure 9.7. We must add a K3 into one
of the faces of an embedding of K5, and join each vertex of K3 to two corners
of Ks. This can be done in several ways (using E,, Fy or Es of Figure 9.1).

Notice that any embedding of M on the torus has similar properties to the
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embeddings of Ky on the projective plane. We state them in the following

lemma.

Lemma 9.2 In any embedding of the graph M on the torus, every vertex of
M appears at most once on the boundary of any face of the embedding and

every edge of M is on the boundary of exactly two faces.

Proof. A proof of Lemma 9.2 is done by adding a triangle into a face of the
torus embeddings of Ky (E», F4 and Fs of Figure 9.1) and all edges between
the triangle and two corners of Ky in all possible ways. This cuts the face
F of the embeddings E,, E4 and Ey of Figure 9.1 into smaller faces whose

boundary has no multiple appearance of vertices and edges. ]

The graph M can be viewed as two K3’s with one edge identified. Let T'M be
a subdivision of M. T'M contains two Ks-subdivisions, TK{ and TKY, with
one side in common. A corner of TM is a corner of any of the two TKs’s. A
side of TM is a side of any of the T Ks’s. A vertex of T M is called inner if it

is an inner vertex in any of the T'K5’s.

Now suppose graph G has TM as a subgraph and there is no short cut or
3-corner vertex of any of two corresponding T'K5's of TM in G. Then TKj is
contained in a side component of TKY in G and vice versa. As in Proposition

6.2, let K be the set of corners of TM. We define a side component of T'M
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as a subgraph in G induced by a pair of corners a and b of TK{ or TKY in
TM and all connected components of G\ K adjacent to a and b. Clearly, any
two side components of T'M can intersect just in the common corner of TM if
one exists. An augmented side component of TM is defined as before. Clearly,

Lemma 6.1 holds as well for the side components of T M.

The next proposition provides an alternative proof of Corollary 9.1.

Proposition 9.3 If there is more than one non-planar side component of T Ky

in G, then G is not toroidal.

Proof. Two side components each containing a subdivision of K5 or K33 can
intersect in at most one vertex. Therefore (G contains as a minor one of Vg,
N, of Figure 9.6 or one of the graphs of Figure 9.8. This covers all possible

combinations of K5 and Ks 3.

Similar reasoning to Lemma 9.1 shows that graphs Nj, N5, Ng and Ny of
Figure 9.8 are not toroidal. It is not possible to embed K33 into an open disk.
This rules out Ng and Ng. Consider Ny and N7 as K33 or Ks, respectively,
with one vertex adjacent to three independent vertices of Ky3. Kp3 is not
outer-planar, yet must be embedded in an open disk. There is always one
vertex of a set of three independent vertices of K3 that cannot be joined to a
vertex on the boundary of the disk. Consequently, it is impossible to complete

an embedding of K33 to N5 or K5 to N7. Thus G has a non-toroidal minor. m
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Figure 9.8: Non-toroidal graphs

Now let us assume that there is exactly one non-planar side component H of
TKs in G. Denote the corresponding side of T K5 by h and its corners by a
and b. Suppose that H contains a Ks-subdivision TK{ and that there is no

short cut or 3-corner vertex of TKy in G.

Theorem 9.1 Let graph G have a Ks-subdivision T Ks with no short cut or
3-corner vertex in G. Let there be one non-planar side component H of T K
which contains a Ks-subdivision T K} with no short cut or 3-corner vertex in
G. Then G is toroidal if and only if T K5 and T K{ have two common corners,
and TKs U TK} contains an M-subdivision TM all of whose augmented side

components in G are planar.
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Proof. First we prove the sufficient conditions. In any embedding of TM
on the torus, for each side of TM construct a planar embedding of its side
component with both corners on the outer face. By Lemma 6.1, there exists
such an embedding of a side component if and only if the augmented side
component is a planar graph. Clearly, we can embed every side component

independently to obtain an embedding of G.

Now we prove the necessary conditions. We consider all possible cases of
intersection of TKs and TK{ in G. If TKs NTK{ = @, then G has minor N;
of Figure 9.6 and G is not toroidal.

LI TKsNTKY, # D, let h be the side of T K which is contained in a non-planar
side component H, and let a and b be the corners of H. Denote by = the vertex
of h N TK} closest to a on side h and by y the vertex of h N T Ky closest to b
on side h. If z = y, then G has minor N, of Figure 9.6, obtained by possibly
contracting the edges of a path, and so G is not toroidal. So, = # y.

Without loss of generality, suppose = # a. The following cases are possible.
1) z is an inner vertex on a side of TKj.

If y is on the same side of TK} as z, then G contains minor N3 of Figure 9.6
and G is not toroidal. Otherwise y is on a different side of TKj, and T K
contains a short cut of TK{ in G with endpoints  and y — a contradiction

since G has no short cut of TKs or TKj.
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2) x is a corner of TKjg.

If y is on the same side of TK{ as x, then G contains a minor N3 of Figure 9.6
and G is not toroidal. Otherwise y is on a different side of TK§. Then y is an
inner vertex of TK{ and T K5 contains a short cut of TKj in G with endpoints

z and y — a contradiction.

Hence z = a and y = b. Now suppose z or ¥ is an inner vertex of TK{. If z
and y are on the same side of T'K{, we have a minor N3 of Figure 9.6 in G and
G is not toroidal. If z and y are on different sides of TKY{, then T K5 contains
a short cut of TK} in G — a contradiction. Thus z and y are both corners of

TKL..

Without loss of generality we can substitute the side h of T'K5 by the side
between z and y in TKY. Clearly, the substitution does not create any short
cut or 3-corner vertex of T K5 in G and it does not affect the side components
of TKs in G. On the other hand, T K5 and T K} now have a common side and
give us an M-subdivision TM in G. Clearly, Lemma 6.1 holds for the side
components of TM in G too. By using Lemma 9.2, the same reasoning as in
Theorem 7.1 shows that an embedding of TM on the torus can be extended
to G if and only if all the side components of TM in G are planar with both
corners on the outer face. A non-planar augmented side component of T'M in

G can not be added into any of the embeddings of TM on the torus. ]
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9.3 Description of the Algorithm

Propositions 9.1 and 9.3 as well as Theorem 9.1 give us a linear time practical

algorithm for graphs with a Ks-subdivision.

Algorithm 9.1 Torus Embedding Algorithm for Graphs with a Ks-Subdivision.
Input: A 2-connected graph G

Output: FEither a toroidal rotation system of G, or a Kss-subdivision in G,

or an indication that G is not toroidal

(1) Use a planarity checking algorithm (eg. [19]) to determine if G is planar.
If G is planar then return its planar rotation system. If G is not planar
and the planarity check returns a K3 s-subdivision in G then return the K3 3-

subdivision in G.

(2) If G is not planar and the planarity check returned a Ks-subdivision T'Ks
in G, then do a depth-first or breadth-first search to find either a short cut or
a 3-corner vertex of TKs in G. If a short cut or 3-corner vertex is found, then
return a K3 s-subdivision in G. If there is no short cut or 3-corner vertex, the

depth-first or breadth-first search returns the side components of T'Ks.

(3) If there are two non-planar augmented side components of TKs in G,

then return G is not toroidal. If there is at most one non-planar augmented
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side component of TKs and the corresponding side components of TKs in G
is planar, then return a toroidal rotation system of G. If the side component
corresponding to the non-planar augmented side component is not planar then

go to the next step.

(4) There is exactly one non-planar side component of TKs in G. If the pla-
narity check for the side component returned a Kj s-subdivision, then return
the Kj3s-subdivision in G. If the planarity check for the side component re-
turned a Kjs-subdivision TKY, then do a depth-first or breadth-first search to
check if there is a short cut or a 3-corner vertex of TK{ in G. If a short cut

or a 3-corner vertex of T'K} is found, then return a Kjs-subdivision in G.

(5) Check if T K5 and T'K{ have two common corners. If they do not have two
common corners, then return G is not toroidal. If they do have two common
corners, then construct an M-subdivision TM in G. Find the side components

of TM using a depth-first or breadth-first search.

(6) For each augmented side component of TM in G, check if it is planar. If
all the augmented side components are planar, then return a toroidal rotation
system of G. If there is a non-planar augmented side component of T'M, then

return G is not toroidal.

Each step in this algorithm consists of a constant number of linear time pla-

narity checks or of a linear time depth-first or breadth-first search. The steps
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are executed in a consecutive order . Therefore the entire algorithm has a
linear time complexity. The linear time planarity checks can return a planar

embedding. This would provide a toroidal embedding of the whole graph.

196



Chapter 10

Conclusions and Future Work

The thesis describes and develops fundamental ideas of graph embedding al-
gorithms for the plane, projective plane and torus which can be implemented
by a computer program. The polygonal surface representation is used for the
graph embedding problem. The polygonal surface representation allows to

have planar pictures of complex graphs embedded on a surface.

In general, the graph embedding problem is difficult and hard to deal with. It
is N P-complete to determine the genus of a graph (see [36]). The problem has
a double nature: we need to assign a combinatorial object which is a graph
to a surface that has mostly continuous properties. However it is possible to

solve the embedding problems using signed rotation systems of a graph, and
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by using Euler’s formula. These are strictly combinatorial methods. A signed
rotation system is a combinatorial representation of a graph embedding which

can be constructed by a computer program.

The Hopcroft-Tarjan linear time planarity algorithm is complicated and in-
volved with many details. However it became popular and had many im-
provements and modifications as in [23], [39], [40]. The projective plane and
torus are the topological surfaces closest to the plane. The work presented
in this thesis generalizes the ideas of the Hopcroft-Tarjan planarity algorithm
and uses planarity algorithms to devise linear time algorithms for embedding

graphs in the projective plane and torus.

In Chapter 4 we described new methods to transform a planar embedding of
a graph into a 2-cell embedding on the projective plane and torus. It provides
easy algorithms to do the transformation in O(1) time and to draw planar

graphs on the projective plane and torus as 2-cell embeddings.

We simplified the algorithms of Chapter 5 by using two different approaches.
Each approach was based on the structural properties and embeddings of two
minimal non-planar Kuratowski graphs K5 and K33 on the projective plane

and torus.

The first approach is based on the structural results for Ks-subdivisions in a
graph described in Chapter 6. This allows projective planarity and toroidal-

ity algorithms to be reduced to a constant number of planarity checks as in
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the Hopcroft-Tarjan algorithm, or to a subdivision of the other Kuratowski
graph K33 in the graph. The algorithms to embed graphs containing a K-
subdivision are presented in Section 7.1 for the projective plane, and in Chap-
ter 9 for the torus. The algorithms are relatively easy to implement and they
simplify algorithms in [21], [28] and [30]. By using the algorithm for the pro-
jective plane, we exclude 27 initial labelled embeddings of K5 and need to
consider only the remaining 6 labelled embeddings of K33 on the projective
plane in [28]. The algorithm of Section 7.1 was implemented by W. Myrvold
(personal communication). By using the algorithm for the torus of Chap-
ter 9, we exclude 6 unlabelled embeddings of K5 and need to consider just 2

unlabelled embeddings of K33 on the torus for [21].

We hope to develop these ideas and techniques for Ks-subdivisions to devise
practical and more efficient general algorithms. Also, the approach of exclud-
ing Ks-subdivisions can likely be generalized for graph embedding algorithms

in orientable and non-orientable surfaces of higher genus.

The second approach consists in considering the embedding of the other Ku-
ratowski graph K33 on the projective plane and in generalizing the Hopcroft-
Tarjan algorithm. The structural results for K33 embeddings on the projec-
tive plane are given in Sections 7.2 and 7.3. They result in the algorithms of
Chapter 8 which yields a linear time projective planarity algorithm. The basic
strategy is a development of the Hopcroft-Tarjan algorithm for the embedding

of K33 on the projective plane by using the special features of the embedding.
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(@) (b)
Figure 10.1: The two embeddings of K33 on the torus

Future work could consist in simplifying the algorithm of Chapter 8 and in
devising a practical polynomial time algorithm for toroidal graphs with a K3 3-
subdivision. The two embeddings of K33 on the torus are depicted in Fig. 10.1.
It is likely that the embedding of Fig. 10.1(b) can be treated in a similar way
to the embedding of K33 on the projective plane. However the embedding of
Fig. 10.1(a) has a face with two edges of K33 appearing twice on its boundary.
The multiple appearance of vertices and edges on a face boundary complicates
the completion of an embedding of 7' K3 3. The next step of the research would

be to find an efficient approach in this case as well.

We hope that ideas for the projective plane and torus will lead to an efficient
and practical way to decide on an embedding of a graph into an arbitrary

surface. One motivation for this problem is in its possible use for VLSI design.

Another closely related interesting problem is to distinguish different embed-

dings on a surface and to enumerate them. Whitney’s theorem [38] says that
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3-connected graphs can have at most one planar embedding up to isomor-
phism. As the results in [15] show, there may be many 2-cell embeddings of
3-connected graphs on the torus. We would like to use our structural and al-
gorithmic results to see if there is an analogue of Whitney’s theorem for other

surfaces.

In general, we would also like to obtain all possible embeddings of a graph on
a surface and determine how many different embeddings exist. As described
in [15], we can make a distinction between orientable and non-orientable em-
beddings on an orientable surface. A regular embedding gives us a tiling of
the plane. We are interested in possible classifications of the embeddings and
their characterizations. Also it can be interesting to consider the dual graphs

of the embeddings in more detail.
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