
Graph Embedding Algorithms

by

ANDREI GAGARIN

A Thesis
Submitted to the Faculty of Graduate Studies

in Partial Fblfillment of the Requirements
for the Degree of

DOCTOR OF PHILOSOPHY

Department of Computer Science

University of Manitoba
Winnipeg, Manitoba, Canada

@ Copyright by Andrei Gagarin, 2003

June 11, 2003

THE UNIVERSITY OF MANITOBA

FACULTY OF GRADUATE STUDIES
*t***

COPYRIGHT PERMISSION PAGE

GRAPH EMBEDDING ALGORITHMS

BY

ANDREI GAGARIN

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University

of Manitoba in partial fulfillment of the requirements of the degree

of

Doctor of Philosophy

ANDREI GAGARIN @ 2OO3

permission has been granted to the Library of The University of Ma¡ritoba to lend or sell copies of this

thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend or sell copies

of the film, and to University Microfilm Inc. to publish an abstract of this thesis/practicum.

The author reserves other publication rights, and neither this thesis/practicum nor exteruive extracts

from it may be printed or otherwise reproduced without the author's written permission.

Abstract

A topologi,cal surface,S can be obtained from the sphere by adding a number

of handles and/or cross-caps. Any topological surface can be represented as

a polygon whose sides are identified in pairs. The projectiue plane can be

represented as a circular disk with opposite pairs of points on its boundary

identified. The torus can be represented as a rectangle with opposite sides of

its boundary identified.

Given a graph G and a topological surface ^9, we ask whether it is possible to

draw the graph on the surface without edge crossings. Such a drawing of G

on the surface is called an embeddi,ng of. G in S. It divides the surface into

connected regions called faces. An embedding is 2-cell if each face is equivalent

to an open disk.

Efficient embedding algorithms for the plane are well-known. By Kuratowski's

Theorem, a non-planar graph G contains a subdivision of K5 or K3,3 as a

subgraph. The objective of this thesis is to devise efficient practical embedding

algorithms for the projective plane and torus.

The major contributions of the thesis are:

o A new linear time algorithm to detect a projective planar graph;

Given a K5-subdivision in G, a linear time algorithm to determine if G

is toroidal or to provide a K3,3-subdivision in G;

o Simple methods to transform a planar embedding into a 2-cell projective

planar or toroidal embedding.

The known linear time algorithm for the projective plane in [28] appears to be

infeasible and it is not clear if the approach is correct. The practical linear time

projective planarity algorithm of the thesis improves the O(n2) time algorithm

of [30]. The algorithm for the torus permits to reduce toroidality testing to a

constant number of planarity checks or to a Ks,g-subdivision in the graph. It

runs in linear time and can be used to simplify algorithms presented in [21]

and [31].

1ll

Acknowledgements

I am very thankful to my advisor, Professor William Kocay, for invoiving me

in algorithmic and topological graph theory research. Without his experience,

intuition, calm, confidence and understanding this thesis definitely would not

be possible. I hope we will collaborate on these nice problems in the future.

I would like to thank:

my parents and friends overseas for their direct or indirect moral support

and encouragement;

my former scientific advisors, Professors Igor E. Zverovich, Regina I.

Tyshkevich, Pierre Duchet, Charles Payan and Lynn Batten for showing

me the taste of real research and for introducing me to such a wonderful

research area as Graph Theory and Combinatorics;

The Department of Mathematics at the University of Manitoba for pro-

viding me the opportunity to study in Winnipeg;

The Fields Institute (University of Toronto) and the Department of Com-

binatorics and Optimization (University of Waterloo) for inviting me to

the Special Year 1999-2000 on Graph Theory and Combinatorial Opti-

mization at The Fields Institute;

o Professor Helen Cameron and Administrative Assistant Lynne Romuld

1V

(Department of Computer Science) for their understanding and help in

difiÊcult situations during my studies at the University of Manitoba.

List of Figures

2.L The polygonal representation of the sphere

2.2 The polygonal representation of the projective plane .

2.3 The polygonal representation of the torus .

2.4 The plane drawing of the cylinder

2.5 An embedding of Ks,s on the projective plane

3.1 DFS-tree and digraph G'with low points

3.2 Embedding chords around a DFS-cycle C

4.I Essential and contractible cycles on the projective plane

8

I

10

10

T4

25

45

52

vt

4.2 Cutting the torus surface into a 2-cell

4.3 The torus cut into a 2-cell

4.4 Planar embedding of G on the projective plane 56

57

58

4.5 2-cell embedding of planar G on the projective plane

4.6 d-subgraph in a planar embedding of G

4.7 Converting a planar embedding into a 2-cell toroidal . 59

Embedding of Ks,s on the projective plane

Embeddings of K5 on the projective plane

5.3 Edge ur overused by toroidal constraints

5.4 Embedding for a cyclic set of toroidal constraints

5.5 Cylinder embedding for G cut along cycle C

5.6 Two edge disjoint paths to cut the cylinder face

6.1 K3,3 created by short cut P

6.2 K3,3 created by short cut P

54

54

63

63

77

78

80

81

86

86

5.1

5.2

vlr

94

97

97

7.2

ntr.()

6.3 K3,3 created by short cut P

6.4 K3,3 created by 3-corner vertex z

7.I K5 on the projective plane

K3,3 and its embedding on the projective plane

The dual graph of the projective planar embedding of Ks,s

7.4 Unfolded faces of an embedding of TKs,s 98

7.5 Möbius band cut along a side

7.6

7.7

7.8

7.9

The six labelled embeddings of TKs3 101

Two chords crossing in a face

The unique embedding of G: TKs,s U {"t, ez,es}

The pattern of 1-face chords

7.10 The pattern of 3-face chords

7.11 The pattern of quadragon 2-face chords 111

7.I2 The pattern of parallel and perpendicular 2-f.ace chords 113

vlll

87

87

99

t02

105

r07

108

7.13 Three matched diagonal compatible Möbius bands . i15

7.I4 A pair of matched corner compatible Möbius bands 116

7.L5
^

3-face chord in the hexagon 119

7.16 Chords in conflict

7.17 Disjoint perpendicular chords

7.18 Adjacent perpendicular chords

7.I9
^

non-embeddable component C of M(H) 726

7.20 A 1-way embeddable component C of M(H) 126

7.27 A Z-way embeddable component

7.22 Embedding of component C1 flips component C2

7.23 l-way components with perpendicular chords crossing

7.24 Independent 2-way components

8.1 Möbius band labeling .

8.2 Configuration of perpendicular chords in the Möbius band

r22

t23

r23

127

128

130

131

134

139

IX

8.3

8.4

An optimal placement of a 2-way bundle I4l

Perpendicular chord e2 flipped by er via parallel chords €',€" 743

8.5 The flip interval for chord e 745

8.6 Consecutive chords in a bundle r46

747

t49

151

155

8.7 Flipping a bundle

8.8 Four combinations of perpendicular stars in a bundle

8.9 Flipping bundles to embed a parallel chord

8.10 DFS-ordering of sides and face labelling of.TKz,s

8.1i DFS-ordering of the quadragon facial boundaries 156

8.12 DFS-ordering of the hexagon facial boundary . 161

8.13 The embedding of.TK3p used to calculate a rotation system 169

8.14 The line graph of the Petersen graph

8.15 A projective planar embedding example

8.16 A projective planar embedding example

776

777

178

8.17 Non-projective configuration example 778

9.1 The embeddings of K5 on the torus 180

9.2 A face with one repeated vertex

9.3 A face with two repeated vertices

782

183

1849.4 A face with three repeated vertices

9.5 A face with four repeated vertices . 185

9.6 Non-toroidal graphs ¡ú,
^¡2,

Ng

9.7 Toroidal graph M

9.8 Non-toroidal graphs 191

10.1 The two embeddings of Kg,s on the torus

r87

188

200

X1

Contents

1 Introduction

2 Graphs and Surfaces: Basic Notation and Results

2.I Basic Notation and Definitions

2.2 Overview of the Related Results

3 Planarity Testing

3.1 Cycle and Paths Decomposition

3.2 Properties of the Path Decomposition

3.2.1 Path Properties

6

n
I

15

20

oe
Lù

30

31

xlt

3.2.2 Segments

3.3 Main Features of the Embedding Algorithm

3.3.1 Embedding the First Path of a Segment

3.3.2 Recursion

3.3.3 Data Structures

3.3.4 Complexity of the Algorithm

3.4 Summary of the Hopcroft-Tarjan Planarity Algorithm .

3.4.I A Spanning initial Cycle

3.4.2 Recursion for taversing a Non-Spanning Initial Cycle

4 Essential Cycles on the Projective Plane and Torus

4.I Embedding Cycles on the Projective Plane

4.2 Embedding Cycles on the Torus

4.3 2-Cell Embeddings of Planar Graphs on the Projective Plane

and Torus

.).)
ùù

35

36

38

39

42

43

43

46

50

51

53

55

xlll

Graph Embedding Algorithms Currently Implemented for the

Projective Plane and Torus

5.1 Practical Projective Planarity Testing

5.i.1 Basic Ideas

5.7.2 3-Face Bridges

5.1.3 Conflicts Between Bridges and 2-SAT Problem

5.7.4 Outline of the Quadratic Projective Planarity Algorithm

5.1.5 Analysis and Complexity of the Algorithm

5.2 Practical Toroidality Testing

5.2.I Flat Cycles and Non-Toroidal Graph Constraints

5.2.2 Essential Cycles and Toroidality Testing

6 Graphs Containing K5-Subdivisions

6.1 Short Cuts and 3-Corner Vertices

6.2 Side Components

61

62

64

65

68

7I

72

74

74

79

83

84

88

xtv

6.3 Augmented Side Components

7 Embedding Graphs on the Projective Plane

7.I Ks-Subdivisions and Planarity

7.7.I Characterization for Projective Planarity Checking

7.I.2 Graphs with a Ks-Subdivision

7.2 A Spanning K¡,s-Subdivision .

7.2.7 The Labelled Embeddings of TKs,s

7.2.2 Chords and Faces

7.2.3 1-Face Chords and Forced Chords . 106

7.2.4 3-Face Chords

7.2.5 2-Face Chords

7.3 The Möbius Band 1I4

90

92

92

93

95

96

100

101

108

109

7.3.L Diagonal and Corner Compatible

7.3.2 2-Face Chords in a Möbius Band

Möbius Bands T17

720

8 The Projective Planarity Algorithm for Graphs Containing a

Ks,g-Subdivision L32

8.1 Embedding Chords in the Möbius Band . 133

8.1.1 Embedding Perpendicular Chords in the Möbius Band I34

8.I.2 Embedding Bundles in the Möbius Band I40

8.2 Algorithm Given a Spanning TKs,s I52

8.2.7 Data Structures 152

8.2.2 DFS-numbering of the K¡.g-subdivision 153

8.2.3 The Quadragon Paths 156

8.2.4 The Möbius Paths 161

8.2.5 Möbius Bands and the General Algorithm 166

8.2.6 Assigning a Rotation System to the Embedding 168

Generalization for a Non-Spanning 7K3,3 I70

Analysis and Complexity of the Algorithm 774

Examples 776

XVT

8.3

8.4

8.5

I Torus Embeddings of Graphs Containing K5-Subdivisions

9.1 Embedding Ks-Subdivisions on the Torus and Planar Side Com-

ponents

9.2 A Unique Non-Planar Side Component

9.3 Description of the Algorithm

10 Conclusions and F\rture'Work

L79

180

187

194

t97

xvil

Chapter 1

fntroduction

One of the fundamental classical problems in modern graph theory and com-

binatorics is the problem of embedding graphs in topological surfaces. A topo-

Iogi,cal surface can be obtained from the sphere by adding a number of handles

or crosscaps. A gro,ph is a pair G : (V, E) such Lhat V is a set and .Ð is a

subset of. V(2) . The elements of I/ are the uert'ices or points of G and the ele-

ments of. E are its ed,ges or lznes. The notation {u,u} or za is used to denote

an edge of G. Usually a graph is pictured by drawing a dot for each vertex

and a line joining two corresponding dots for each edge. Given a graph, one

wants to draw it on a surface without edge crossings whenever it is possible.

One of the initial results in graph theory is a structural characterization of pla-

nar graphs through excluded subdivisions of Ks and Ke,¡ by K. Kuratowski

''251. This was published in the 1930s. However efficient algorithms to rec-

ognize if a graph is planar appeared much later. For example, the popular

linear time planarity-testing algorithm by J. Hopcroft and R. Tarjan [19] was

published only in 7974. The ori,entable (non-ori,entable) genus of a graph is

the smallest orientable (non-orientable) genus of a surface in which the graph

can be embedded. In general, the problem of finding the genus of a graph was

proved to be l/P-complete by C. Thomassen [36].

Recently, Kuratowski's characterization of planar graphs v/as generalized for

non-orientable surfaces by D. Archdeacon and J.P. Huneke [2] and for ori-

entable surfaces by R.Bodendiek and K. Wagner [3]. In a series of papers

on graph minors, N. Robertson and P. Seymour [35] generalized Kuratowski's

result for an arbitrary surface. This implies that for a given surface the ques-

tion of whether a graph is embeddable into the surface can be answered in

polynomial time.

Moreover, B. Mohar [29] claimed to develop a series of linear time algorithms

to answer the question. Unfortunately, these linear time algorithms appear

to be infeasible, and are more of theoretical interest than practical. The de-

scriptions of [28], [21] and [29] are missing many of the details necessary for an

implementation of them. It is not clear if the approach is correct and covers all

the cases providing a linear time algorithm. However, as it is mentioned in [41],

the description of 128] gives some insights into the problem. The only known

efficient implemented algorithm is the O(n') projective planarity-checking al-

gorithm by W. Myrvold and J. Roth [30].

This thesis is focussed on devising linear time practical algorithms to determine

if there exists an embedding of a graph in the projective plane and/or torus.

These are the topological surfaces closest to the plane. Early algorithms for

these surfaces described in [12] and [32] are known to be wrong (personal

communication by W. Myrvold). Many known algorithms for the projective

plane and torus (eg. [30], [28] and [21]) begin with a Kuratowski subgraph

Ks or K¡,s in a graph, and try to extend an embedding of K5 or Ks,s to

an embedding of the whole graph on the corresponding surface. For a graph

G containing a K5-subdivision, this thesis presents new algorithms to reduce

the projective planarity or toroidality testing of G to a constant number of

planarity checks or to a K¡,s-subdivision in G. For a graph G containing a

K3,3-subdivision, the thesis provides a new detailed algorithm to tell if G is

projective planar. In summary, we have devised a ne'vr/ Iinear time algorithm

to detect a projective planar graph and a linear time algorithm that either

determines the toroidality of a graph or returns a K3,3-subdivision in it.

Chapter 2 provides basic notation, definitions and results related to the prob-

lem and algorithms. Chapter 3 describes the main ideas of the Hopcroft-Tarjan

planarity algorithm. The ideas and concepts of the planarity algorithm are

used in different forms for other algorithms in the thesis. Necessary conditions

for a 2-cell embedding of a graph on the projective plane and torus are given

in Chapter 4. Section 4.3 presents methods for transforming a planar embed-

ding into a2-cell embedding on the projective plane and torus. The methods

are another main contribution of the thesis. They are used in the software

Groups€JGraphs [2a].

In Chapter 5, we describe known implemented general algorithms for the pro-

jective plane and torus from [30] and [31]. These algorithms help us to better

understand surfaces with respect to the problem and its practical solution. The

projective planarity checking algorithm of W. Myrvold and J. Roth has O(n2)

time complexity, whereas the toroidality checking algorithm is exponential in

the worst case.

We have completely characterized projective planar and toroidal embeddings of

certain kinds of graphs containing a K5-subdivision and developed linear time

algorithms to tell if the graphs are projective planar or toroidal. Structural

results for graphs containing a subdivision of K5 are presented in Chapter

6. Given a non-planar graph G with a subdivision of Ks as a subgraph, we

can either transform the K5-subdivision into a Ks,g-subdivision in G, or else

we obtain a partition of the vertices of G\/(s into equivalence classes. As a

result, 'ù/e can reduce a projective planarity or toroidality algorithm to a small

constant number of planarity checks as in [19], or to a graph G containing a

Ks,s-subdivision. The corresponding new algorithms are described in Section

7.1 for the projective plane and in Chapter 9 for the torus. Our new algorithms

are reasonable to implement. This approach significantly simplifies algorithms

presented in [21], [28] and [30]. We then need to consider only the embeddings

on the given surface of a K3,3-subdivision, which are much less numerous and

more symmetric than those of K5. Also our new linear time algorithm of

Chapter 9 can be used to restrict the exponential algorithm of [31] to graphs

containing a K3,3-subdivision.

A description of our new linear time projective planarity algorithm is presented

in Chapters 7 and 8. This algorithm is more efficient than the O(n2) time

algorithm of [30] described in Section 5.1. Chapter 7 describes structural

results and all possible cases to complete a Ks,s-subdivision to an embedding

of a graph G in the projective plane. We consider a spanning subdivision

of. K3p in the graph. A case of a non-spanning Ks,s-subdivision in G can

be treated recursively by using the recursion ideas of the Hopcroft-Tarjan

planarity algorithm.

Recent results of [11] suggest an efficient method to compute the orientable

genus for a graph embedded in the projective plane. Our projective planarity

algorithm can be used as a preliminary step to use the approach of [11].

A graph embedding can be used to design a VLSI layout. Given a VLSI to

design, we can represent its elements and wire connections by vertices and

edges of a graph. Since connections between elements should not cross, v/e are

interested in a drawing of the graph without edge crossing. This provides a

practical motivation to obtain a graph embedding with particular properties.

Chapter 2

Graphs and Surfaces: Basic

Notation and Results

Basic graph-theoretic terminology in this thesis follows Bondy and Murty [4]

and Diestel [8]. A graph G : (V, E) is undi,rected 1f. the edges of G are un-

ordered pairs of vertices and G is si,mple if there are no multiple edges or loops.

A graph G : (V, E) is 2-connected if for any two vertices)'tLiu e V, there are

two internally disjoint paths in G with endpoints z and a. In other words, any

two vertices u,u e V are on a cycle in G.

In this thesis we consider the graph embedding problem for 2-connected, undi-

rected, simple graphs. For graphs that are not 2-connected we can decide on

their embedding in the plane, projective plane or torus by considering their

maximal 2-connected subgraphs.

Chapter 2 describes the polygon representation of the surfaces, defines an

embedding of a graph and related things. Finally, the chapter describes basic

results related to the graph embedding algorithms.

2.L Basic Notation and Definitions

The description of topological closed surfaces is taken from [13]. The only

topologically distinct (i.e. non-homeomorphic) types of. closed ori,entable sur-

faces arc the sphere, the torus, and, in general, the generalized torus with p

holes or the sphere with p handles (p:1,2,3,...). For closed non-ortentable

surfaces, the only topologically distinct types are given by the sphere with q

cross-caps (q : L,2,3,.. .).

According to [13], any closed surface ^9 can be constructed from a curvilinear

polygon homeomorphic to a circular disk by identifying sides in pairs. Each

side from a pair is denoted by the same indexed symbol and is oriented on

the polygon boundary. We use the superscript " * " to denote a clockwise

orientation of a side, like a+, and the superscript " - " to denote a counter-

clockwise orientation of a side, like ø-, on the polygon boundary. Also it can

be proved that any surface ^9 can be decomposed into such a polygon.

Figure 2.1: The polygonal representation of the sphere

Theorem 2.1 ([13]) Any surface S can be obtained from a polygon home-

omorphic to a circular disk by identifying pairs of sides denoted by the same

symbol where the symbolic side representation of the cyclic polygon boundary

is one of the following types:

(i) a+a- (the sphere),

(ii) a{b{arb¡a[b[a;b, . a[b[a;b;, (the sphere with p handles),

(iii) af af a[a[. . . oT ol , fthe sphere with q cross-caps).

The polygon representation of the sphere is depicted in Figure 2.1. We obtain

the sphere from the circular disk by identifying its two sides ø+ and ø-.

Since the sphere is equivalent to the plane, the polygon representation of the

sphere is not used to embed graphs on the surface. However it is convenient

to consider other topological surfaces as polygons. This simplifies the surface

Figure 2.2: The polygonal representation of the projective plane

representation and drawings on the surface. Also an embedding in the inte-

rior of the polygon is planar and we need only consider combinatorially its

boundary to decide on an embedding.

The polygon representation of the projective plane is depicted in Figure 2.2.

We obtain the projective plane from the circular disk by identifying its two

sides ¿+ and ø+. This is equivalent to identifying opposite points on the

circular disk boundary. Therefore we will consider the projective plane as a

circular disk with opposite pairs of points on its boundary identified.

The polygon representation of the torus is depicted in Figure 2.3. We can

obtain a cylinder from the rectangle by identifying two opposite sides ¿+ and

a-) or b+ and b-. Then we obtain the torus by identifying the remaining

opposite sides. We will consider the torus as a rectangle with the opposite

sides having opposite orientation on its boundary identified.

The cylinder is an intermediate surface for the torus construction and it can

Figure 2.3: The polygonal representation of the torus

Figure 2.4: The plane drawing of the cylinder

be depicted in the plane as a cyclic band (see Figure 2.4) or as a rectangle with

one pair of opposite sides identified. The cylinder and its planar properties

play an important role in the torus embedding algorithms.

Given a graph G, we want to determine if G can be drawn on a surface

,S without edges crossing. This problem is known as the graph embeddi,ng

problem.

Definition 2.1 An embeddi.ng rþs(G) of graph G on a surface,9 is a mapping of

10

its vertices into distinct points of the surface .9, and its edges into simple curves

on ^9 meeting only in common endpoints. A graph G is called ernbeddable on

the surface ^9 if it admits an embedding on ,9. Otherwise G is non-embeddable

on ,S.

Definition 2.2 For an embedding 1þs(G) of graph G on a surface 5, the

connected regions of S\G are called the faces of the embedding.

A walk in a graph G is a non-empty alternating sequence u¡€su1€1 . . . e¡-p¡ of.

vertices and edges in G such that e¿: {u¿,u¿a1} for 0 <i <le. If.us:ak,the
walk is closed. Every face is an open set on the surface bounded by edges and

vertices of the graph. The closure of a face contains the edges and vertices

of the graph on its boundary. To every face then corresponds its boundary,

which is a closed walk in the graph.

A graph G embeddable on the sphere is planar since the sphere is equivalent

to the plane plus one point at infinity (for example, see [13]). Clearly, a planar

embedding of the graph G can be drawn on any other surface as well. However

a planar embedding of G on the torus would have a face that is not equivalent

to an open disk and it does not completely "fit" the surface. Therefore \¡/e are

interested in embeddings of G that use the surface in full.

Definition 2.3 An embedding of G on the surface ,S is a 2-cell embedd,i,ng if

each face of the embedding is homeomorphic to an open disk.

1i

The algorithms described in the thesis are for constructing a 2-cell embedding

of the graph G. Given a 2-cell embedding of G on a surface ^9, the follow-

ing definition provides a description of the faces of the embedding and their

interrelations with the graph edges.

Definition 2.4 Given a 2-cell embedding ,þt(C) of G on the surface ,S, the

dual graph rþ\(G) : (V*, E*) of the embedding 1þs(G) is defined as:

(i) each lace f of tþs(G) is a vertex f e V. of tþþ(G);

(ii) for each edge e € G on the boundary of faces fi and f2 of tþs(G) (it might

be that h-_ fù, there is an edge e*: {fr,fz) e E. corresponding to e.

By the definition, a dual graph ,þ3G) : (V*,-E*) can be considered as embed-

ded on the same surface ,9. Then the dual graph of the embedding of tþþ(C)

naturally gives back ,þs(G).

Definition 2.5 A rotati,on system of a graph is a set of cyclically ordered

adjacency lists of its vertices.

A rotation system provides a combinatorial description of a graph embedded

on a surface and can be constructed by an algorithm. For a non-orientable

surface, the rotation system also includes a signature for every edge. The

signature can be defined as follows.

T2

Definition 2.6 The si,gnature of an edge in a rotation system is *1 or -1. It
is negative when the edge "crosses the boundary" of a non-orientable surface

and positive otherwise.

A more formal description of a rotation system and the signature is provided

in [17].

Definition 2.7 Two embeddingslþbÇ) and tþ'zr(G) of graph G are combi,na-

tori,ally equiualent if there is an isomorphism from tþt (G) to tþ'r(G) respecting

or reversing the rotation system.

An embedding of a graph on a surface is described by a rotation system only up

to a continuous transformation of the surface that does not cut the surface. For

example, the transformation of the torus known as a Dehn twi,st (see [18]) can

give two combinatorially equivalent, but distinct non-isotopic embeddings as

in [15]. A cycle on the torus is essentzalifit cannot be contracted continuously

on the torus into a point. The Dehn twist consists of cutting the torus along

an essential cycle to create a cylinder. Then one end of the cylinder is given

one full twist, and the ends are glued back together to create a torus. The

Dehn twist demonstrates that a rotation system does not always specify an

embedding completely.

Consider the embedding of 113,3 on the projective plane of Figure 2.5 as an

example of a graph embedding. The rotation system for the embedding of

13

Figure 2.5: An embedding of Ks,g on the projective plane

Figure 2.5 is:

04 -+ (b1, -1), (br, +1), (ö2, a1),

a2 ---+ (b2, -1), (öt, +1), (ôs, +1),

ø3 ---+ (ó3, -r),(br,+1), (b1,1t),

b1 ---+ (a1, -1), (or, *1), (a2, f 1),

b2 ---+ (a2, -1), (ot, *1), (a3, *1),

b3 ---+ (as, -I), (or, *1), (ør, +1).

Definition 2.8 A subdi,ui,si,on of a graph G is a graph that can be obtained

from G by substituting paths of non-zero length for its edges. We denote a

subdivision of G by TG.

Informally, a subdivisionTG can be viewed as produced by successively adding

some new vertices of degree 2 on the edges of G : (V, E). in graph-theoretical

terms adding a nev/ vertex of degree 2 on an edge {2, u) e E corresponds to

74

deleting the edge {u,o} from E, and then adding a ne\¡/ vertex t¿ into V and

two new edges {2,u.,} and {.,o} into E\{u,u}. Clearly, if G is embeddable

on a surface ^9, then any subdivision ?G is also embeddable in ,S and vice

versa.

2.2 Overvie\v of the Related Results

Any topological surface can be considered as obtained from the sphere by

adding a number of handles and/or crosscaps (see [37]). When we add h > 0

handles to the sphere ^9¡ we obtain the orientable surface ,S¿. When we add

k > 1 crosscaps to ,56 we obtain the non-orientable surface ly'¡. Thus ,S1

denotes the torus, .l[denotes the projective plane and l/2 denotes the Klein

bottle. The following theorem relates a surface ^9 to a 2-cell embedding of a

graph G on
^9.

Theorem 2.2 (Euler's formula, [37]) Let G be a connected graph withn

vertices and m edges having a 2-ceII embedding with f faces on a surface S.

Then S is homeomorphic either to the orientable surface S¡, where h is defrned

by the equation

n-r'n-t f :2-2h;

o¡,S is homeomorphic to the non-orientable surface N¡r, wherc k is defrned by

the equation

15

n-rn*f:2-k.

The equation of Theorem 2.2 is usually known as Euler's formula for a graph

G which is 2-cell embedded on a surface ,S. However FÌéchet and Fan's book

[13] gives priority of this formula for the sphere to Descartes. According to

[tZ], Lhuilier generalized the formula to all orientable surfaces. The following

theorem for planar graphs is well known.

Theorem 2.3 (Kuratowski, 125]) A graph G is non-planar if and only if it
contains a subdivision of Ks,s or K5.

Kuratowski's Theorem was proved independently and published in 1927 by

Pontryagin (see [27]). The theorem implies that the problem of recognizing

if a graph is planar or not can be resolved in polynomial time (for example,

see [22]). Hopcroft and Tarjan [19] were the first to devise a practical linear

time algorithm to check if a graph G is planar or not. If G is a non-trivial

2-connected planar graph having at least four vertices, then a planar rotation

system for G can always be transformed into a 2-cell toroidal or projective pla-

nar rotation system. Several methods to do this transformation are described

in [15] and in Chapter 4 of this thesis. Some of the methods are implemented

in the software GroupsüGraphs l2A).

There exist a number of linear time planarity testing algorithms described, for

example, in [5], [19], [23] and [39]. In general, a planarity testing algorithm

i6

can be modified so that in the case of a non-planar graph G it v/iil return a

subdivision of K5 or Ks3 in G (a subdivision of. Ks or Ks,s exists in G by

Theorem 2.3). A planar graph can be trivially embedded on the projective

plane and torus. Therefore r,¡/e can assume that G is a non-planar, 2-connected

graph with no vertices of degree two (see previous remarks for graphs that are

subdivisions or not 2-connected).

The projective plane and torus are the topological surfaces closest to the sphere

in genus. Known embedding algorithms for these surfaces in [21], [28] and [30]

begin with a subdivision of lls or Ks,s in G, and try to extend an embedding

of it to an embedding of G in the projective plane or torus. The results of

this thesis and [i] simplify this approach by reducing projective planarity and

toroidality for graphs with a K5-subdivision either to planarity checks, or to

the case of a K3,3-subdivision in the graph.

Definition 2.9 To contract an edge {r,A} of graph G means to remove the

edge and both its endpoints ¿ and gr from G, and add a new vertex to G

adjacent to all vertices in the neighborhood of r or A in G instead. The

resulting graph is denoted by Gl{r,A). Ã graph fI is a minor of G if H can

be obtained from G by removing and/or contracting some subset of its edges,

deleting resulting isolated vertices and identifying multiple edges. We write

H : MG to denote a minor H of G.

77

The following theorem is a generalization of Kuratowski's Theorem 2.3 and is

known as Wagner's theorem.

Theorem 2.4 (Wagner's theorem, [8]) A graph G is non-planar if and

only if it contains Ks,s or Ks aß a minor.

Initially, a generalization of Kuratowski's theorem for non-orientable surfaces

was described in [2]. For orientable surfaces, this was done in [3]. The following

theorem is a generalization of Wagner's theorem for an arbitrary surface.

Theorem 2.5 (Robertson and Seymour, [35]) For every surface S there

exists a frnite set of graphs {Ht,Hr,...,H*} such that a graph G is non--

embeddable in S if and only if it contains a minor from the set {Hr, Hr, . . . , H*}.

The result of Theorem 2.5 is usually stated as a corollary to the Graplt, Minor

Theorern as in [8]. The fact that there is a finite set of minors Ht, Hz, . . . , Hn

for any surface ,S implies a polynomial time algorithm to determine if G is

embeddable on any given surface,9 (see [28] and [29]). However the explicit

list of minors is known only for the sphere [8] and projective plane [1]. There

are tens of thousands of known minors for the torus (personal communication

by W. Myrvold and [6]). References [21], [28] and [29] present linear time al-

gorithms for the torus, projective plane and an arbitrary surface, respectively.

There are currently no known implementations of these algorithms. So many

18

details have been omitted and the algorithms are sufficiently complex, that

implementing them or checking their correctness are not easy. This is men-

tioned in the review [41]. The algorithms may be considered as theoretical

models for graphs on surfaces. They provide some interesting insights into the

algorithmic aspects of the problem as stated in [a1].

19

Chapter 3

Planarity Testing

This chapter contains a description of the Hopcroft-Tarjan planarity testing

algorithm. Some of the points and ideas of the algorithm are used or developed

later for our ne'\¡/ projective planarity and toroidality testing algorithms. A

planarity testing algorithm is used in the new algorithms for graphs with Kr-

subdivisions. The description of this chapter is based on the book of Reingold,

Nievergelt and Deo [33] and the paper of W. Kocay [23]. The algorithm is very

involved with details and references to other algorithms. Therefore we provide

a description that reasonably highlights all the main points and ideas.

Notice that there are several versions of the Hocroft-Tarjan planarity algorithm

presented in [19], [39], [23]. The algorithm can be modified to find a Ks-

20

subdivision or K3,3-subdivision in a non-planar graph G. Such a procedure is

described, for example, in [40] and is mentioned as an exercise in [33].

The algorithm of Boyer and Myrvold [5] is a simplification of known linear

time planarity algorithms. However the description of [5] omits details for a

better understanding of the algorithmic correctness.

A very simple planarity testing algorithm is described by Klotz in [22]. The

algorithm is based on a constructive proof of Kuratowski's Theorem 2.3. How-

ever its time complexity is O(n').

Definition 3.1- A graph G is planar if it is embeddable in the plane.

As it is stated in [33], "the problern of determi,nzng whether a graph can be

drawn on a plane wi,thout any edges cross'i,ng i,s of great practi,cal 'interest".

The problem is different from other graph-theoretical problems in that a graph

drawn on a surface has an interplay between continuous properties of the

surface and discrete properties of the graph. The characterization of Theorem

2.3 provides a classical example of this interplay.

The main idea of the algorithm presented here consists of considering consec-

utively bigger planar subgraphs of a graph and trying to complete them to a

planar embedding of the whole graph. Clearly, a simple graph G is planar if

and only if a directed graph obtained by orienting edges of G is planar. Also

G is planar if and only if all its connected components are planar. Finall¡ it is

27

easy to see that G is planar if and only if all its 2-connected components called

bloclcs are planar (for example, see [27]). So, for the algorithm, we consider

simple 2-connected graphs.

For a connected graph G : (V,E) embedded in the plane, Euler's formula

relating the number of vertices lI/l : n, edges lÐl : m and faces / of the

embedding is

f+n:m*2.

The formula implies that a graph G with n > 2 and m) 3n - 6 can never be

planar (for a proof see [27]). A graph G is completeif. every pair of distinct

vertices is an edge in G. The complete graph on four vertices, Ka, is clearly

planar. Therefore all subgraphs of K¿ are planar. By Theorem 2.3, a minimal

non-planar graph has at least 9 edges. Therefore, the planar cases of n 1 5 or

m < 9 can be described explicitly, and we can assume that graph G is simple,

2-connected, n) 5 and g 1 m 1 3n - 6.

Initially the Hopcroft-Tarjan algorithm finds a cycle C in G and embeds C as

a simple closed curve in the plane. By Jordan's Theorem, it divides the plane

into two separate regions: the interior and exterior of C. Denote the edges of

C by EC. Then the algorithm decomposes G\EC into edge-disjoint paths and

tries to embed each path entirely either in the interior of C or in the exterior

of C. If it succeeds in embedding the entire graph G in this way, then G is

planar. Otherwise G is non-planar and it is possible to modify the algorithm

22

to find a subdivision of K5 or K3,3 (for example, see [40]) which exists by

Kuratowski's Theorem. The difficulty of this approach is in embedding the

paths of G\EC. It must be guaranteed that an initial wrong embedding of a

path does not lead us to an incorrect conclusion that G is non-planar when G

still admits a planar embedding. So, the Hopcroft-Tarjan algorithm considers

the paths in an appropriate order to choose the right place to embed them

and, possibly, rearranges embedded paths to properly add the remaining ones.

3.1 Cycle and Paths Decomposition

The Hopcroft-Tarjan algorithm considers the graph as decomposed into a cy-

cle and a set of edge disjoint paths. Initially a depth-first search is run on

the graph to obtain a DFS-numbering of its vertices. A DFS-numbering cor-

responds to the order in which the vertices are visited by a depth-first search.

Then we need to reorder the vertices and the adjacency lists of G according

to the DFS-numbering. This is done to ensure the algorithm's correctness.

First we run a depth-first search algorithm on G to obtain a DFS-numbering

of G (for example, see [33] or 127)). Also the DFS algorithm constructs a

spanning tree of G called a DFS-tree. It is convenient to consider graph G

as converted into a digraph G' according to the DFS-tree labelling. The DFS

partitions them edges of G into n- 1 spanningtree edges andrn-ni-7 back

.'ta,zò

edges or fronds not in the DFS-tree. Now rve can refer to a vertex u of. G by

its DFS-number. The DFS-tree edges are oriented from a smaller label vertex

towards a bigger label vertex. By the DFS properties, a back edge e : ab is

always directed from a vertex ø of higher DFS-number to a vertex b of lower

DFS-number of a DFS-tree such that vertex ö is an ancestor of ¿ in the tree.

An example of a DFS-tree and a digraph G' is shown in Figure 3.1. TYees will

be drawn growing upwards from their root vertex.

Let lowpt,(u) (see [33]) be the lowest numbered vertex reachable from vertex

'¿r or from any of its descendants in the DFS-tree by means of at most one

back edge. When it is not possible to reach a vertex below tr by means of a

single back edge from a descendant, u itself becomes lowpt(u). Similarly, Iet

nertlowpt(u) be the next lowest vertex below u, excludinglowpt(u), that can

be reached in the same way. If there is no such vertex, nertlowpt(u) is equal

to v.

If we denote by ,S, the set of all vertices lying on any directed path from vertex

o consisting of zero or more DFS-tree edges and ending in at most one back

edge of G', then we have the following formal definition.

Definition 3.2 The low poi,nt of vertex u in G' , denoted by lowpt(u), is

lowPt(a) : mi'n($,)

and the second low poi,nt of 'r,, in G', denoted by nertlowpú(u), is

24

,/ 1bta,s)

{\
t\ \
t\\| \.
l'1
t\

1,2) /

1,2) t

Figure 3.1: DFS-tree and digraph G' with low points

25

,, ií,,'.\

nertlowpt(u) : rni'n({?/} U (S" - {Iowpt(u)})).

For example, for vertex 8 in Figure 3.7,Iowpt(8) : 1 and nertlowpt(8) : 4.

The root vertex of the DFS-tree is labelled 1. Since graph G is 2-connected,

we can always reach a vertex lower than zr by means of paths ordered from

u and ending by a back edge except when u is the root of the DFS-tree.

This implies that f.or u I I, u) nertlowpt(u) > lowpt('r.,), and for the root

'u :7 : lowpt(u) : nentlowpt(u).

The low points are used to re-order the adjacency lists of G' so that during

a second depth-first search on G', the paths in G' are generated in a certain

necessary order. To do this efficiently, it is necessary to use the following

function on directed edges of G'.

3.3 For each directed edge ab of. G' , its wei.ght þ(ab) is defined as:

2 x lowpt(b), i,f ab i,s a tree edge and nertlowpt(b) > o

2 + lowpt(b) + l, i.f ab i,s a tree edge and nertlowpt(b) < a, and

2 * b, i,f ab i,s a back edge.

Assuming the low point values are known, the weight function / is easy to

calculate. Then for each vertex o, the edges incident to ø can be sorted into a

non-decreasing order according to their weights. The sorting of the adjacency

lists can be done in O(nim) time by using well-known sorting algorithms (for

Definition

,,,r, :
{

26

example, see [33]). Now we use this order for the adjacency lists of G' and call

them properly ordered. In [23] the author uses a refinement of the reordered

adjacency lists of G' and shows that it can be crucial to determine a planar

graph.

Hereafter, ,vr/e assume that the adjacency lists of G' are ordered according to

the weight values. Notice that in the reordered adjacency list of any vertex u,

a back edge zo always precedes a back edgeuw if u 1tr.,. Also the tree edges

1rz are considered in a non-decreasing order according to their ability to lead

to a vertex below u through a single back edge.

For example, the reordered adjacency lists of the DFS-numbered directed

graph of Figure 3.1 are:

1 --- (2);

2---' (3);

3--+ (a);

a--+ (5);

5--+ (6);

g ---+ (8,7,3);

7 ---+ (2,3);

3 ---+ (9,5);

I ---+ (1,10);

10 -+ (11,8);

27

11 -' (4,5,9).

Having obtained the ordered adjacency lists for the digraph G', another depth-

first search can be used to decompose G' into a cycle C and a set of edge

disjoint paths {pt,pr, . . . ,p*-n} of G'\EC. The cycle C and each path of {pt,

Pz,. .. ,p*_nj is determined by and contains a back edge of G'. The pseudo-

code presented in Algorithm 3.1 does the cycle and path decomposition of G'

according to the reordered adjacency lists AdjLi,sú(u) for vertices u of G'.

Algorithm 3.L Decomposes a DFS-digraph G' represented by properly or-

dered adjacency lists into a cycle ps and paths pt,pz,. .. ,p^-n.

Input: A DFS-di,graph G' represented by properly ordered adjacency li,sts.

Output: Cycle ps and edge di,sjoi,nt path,s p1,p2,. . . ,p*-n of G'.

begin

1. z:0
2'P¿:Ø

3. Path(I)

end

procedure Path(a)

for each b e AdjLi,sú(a) considered in the order of AdjList(a) do

p¿: p¿ U {ab}

if a < b then f* ab i,s a tree edge*f

28

Path(b)

else /* ab zs a baclc edge * f
i,:i-17

P;: @

end if-else

end for

return

Informally, starting at the root vertex 1, the initial cycle ps is obtained by

adding consequently the first edge in the vertex adjacency list which is a DFS-

tree edge until we encounter a vertex z such that the first edge in the reordered

adjacency list of z is a back edge. The back edge ftom z goes back to the root

vertex 1. This back edge together with the path of tree edges from I to z

forms the initial cycle C : po.

Then we begin from z and start a new path p1 with the next edge out of z (the

first edge out of z is the back edge to the root 1). Each time that we traverse

a tree edge, we continue building the current path. When we traverse a back

edge, it becomes the last edge of the current path. Thus each path consists of

a sequence of. zero or more tree edges followed by a single back edge. A new

path is started from the initial vertex of the last back edge. If this vertex has

no more unexplored edges, we back up to the previous vertex on the last path.

The process is continued until G' has no more untraversed edges.

29

For example, Algorithm 3.1 working on the reordered adjacency lists of the

DFS-numbered directed graph G' of Figure 3.1 provides the following cycle

and path decomposition of G':

C : po : (1,2,3,4,5,6, 8, 9, 1);

Pt : (9,10, 11,4);

?z : (11,5);

or : (11,9);

,n : (10,9);

trs : (8,5);

Pe : (6,7,2);

nz : (7,3);

p8 : (6.3).

3.2 Properties of the Path Decomposition

The initial DFS-numbering of G provides a unique decomposition of G' into

the cycle and paths. In general, the decomposition of a given graph G into

a cycle C : po and a sequence of edge-disjoint paths pt,pz,. . . ,p*-, is not

unique. However the number of paths is zn - n, since the cycle and each path

p¿, 'i) 1, contains exactly one back edge.

30

We describe some properties of the decomposition that are used for the pla-

narity testing algorithm. The vertices of G have been relabelled by their

DFS-numbers. Suppose the generated cycle C is ps: (at,'u2¡...,un,at),

where ut : I and r.,1 1 a2 1 . .. 1 ux. Every path p¿ has only its end

vertices in common with the union of previously generated cycle and paths

poUhUpzu...l)p¿-t, i > I. Only the two end vertices of each path are

required to distinguish between paths for the algorithm. Therefore for a gen-

erated path p¿, i) I, we denote its start vertex by su, its finish vertex as /¿

and we refer to the path ú p¿: Go, fò.

3.2.1, Path Properties

Each path generated by Algorithm 3.1 ends with a back edge. Flom all avail-

able back edges incident on a particular vertex, Algorithm 3.1 selects the back

edge that leads to the vertex with the smallest depth-first number of those

which has not been used before. The selection happens automatically because

of the non-decreasing order of the adjacency lists with respect to the weight

function @.

Lemma 3.1 ([19]) For a path.p¿: (s¿, fo), fo i,s the lowest uerter reachable

from s¿ by a sequence of tree edges and anA one of the back edges that haue not

been used i,n any path when th,e first edge i,n path p¿ i,s trauersed. Furthermore,

for ani,ntermedi,ateuerteru inpath,pi,'i.e. u € p¿,a I s¿ andu f f¿,

31

Í¿ : lowpt(u).

Proof . The lemma follows from the fact that all edges from u and its de-

scendants are untraversed when the first edge in p¿ is taken, and from the

re-ordering of the adjacency lists according to the weight function values. r

Lemma 3.2 ([19]) For two generated paths p¿: (s¿, f¿) and p¡ : (s¡,Í¡),

j > i> 7, i,f s¿'is an ancestor of s¡ i,nth,etree (s¿1t¡), then f¿S f¡.

Proof . This is true because the back edge ending p¡ was unused when p¿ was

being generated. By Lemma 3.1, p¿ takes the back edge reaching the lowest

possible vertex in G' al this time.

Lemma 3.3 ([19]) For two generated paths p¿: (s¿, f¿) and, p¡ : (s¡,f¡),

j > i> I, such that s¿: sj : s, f¿: f¡: f , r¿ i,s the second uerter i,n path

p¿ and, ri i,s the second uerter i,n path p¡, if edge sr¿ i,s not a baclc edge and

nertlowpt(r¡) 1 s, then sr¡ i,s not a back edge andnertlowpt(r¡) < s.

Proof . ByLemma3.1, since r¿# f , f :Iowpt(ø¿). Since sr¿isa treeedge

and nertlowpt(r¿) (s, by deflnition, the weight function value of the edge is

ó(sr):2lowpt(r¿) + 1:2f +7.

Since p¡ is generated after p¿, vertex í0, must appear later than r¿ in the

properly ordered adjacency líst AdtjLisú(s). Therefore we have

32

ó(tr¡) > ó(tro) :2f + 7.

Thus sr¡ is not a back edge either and x¡ I f . .Nlso, nertlowpt(r¡) < s,

otherwise we would have

ó(sr¡) : 2lowpt(ri) :2f
,

a contradiction.

Notice that Lemma 3.3 uses the nertlowpú values. We will need the nertlowpt

values to break a tie between two tree edges uu and uu.r, directed from a

common vertex z and having lowpt(u) : Iowpt(w) in G'. Lemmas 3.1-3.3 and

their proof provide insight into a correct working of the planarity algorithm.

3.2.2 Segments

If we remove edges of the cycle C - p6 from G', the subgraph induced by

the edges of the remaining digraph G'\EC partitions the vertex set of G into

connected components. Each connected component of G'\EC consists of one

or more segments defined as follows.

Definition 3.4 A segment S of. G' with respect to the cycle C is either a

single back edge u¿?rl such lhat u¿w /. C, bul u¿ € C and tu € C , or a subgraph

consisting of a tree edge u¿w, u¿ e C, w ø C, and the directed subtree rooted

Ðoùù

at tr.r, together with all back edges from this subtree. The vertex u¿ €. C at

which segment S originates is called the base uerter of S.

Each segment ,S is a connected subgraph of G'\EC, but not every connected

subgraph of G'\EC is a segment. For example, several segments may have a

common base vertex. Algorithm 3.1 generates segments in a decreasing order

according to the depth-first numbers of the base vertices. Moreover, all paths

of a segment are generated before any path of the next segment. Clearly, all

paths of the same segment must be embedded together either inside or outside

of the cycle C. This is a reason to group paths into the segments and to

consider them in segments.

For example, the DFS-numbered directed graph G' of Figure 3.1 has a decom-

position into the cycle C : p6 and four following segments Sr, Sz, ,Ss and
^9¿

(see Section 3.1 for an explicit description of ps and the paths pt,pz,...,pe):

Sl : {pr, Pz,Ps,Pa}l

Sz: {ps};

Ss: {pa,pz);

^9¿
: {pe}.

While embedding a segment, the Hopcroft-Tarjan algorithm can be applied

recursively and can generate segments inside of a segment with respect to

34

another cycle. This is another main idea of the algorithm.

3.3 Main Features of the Embedding Algo-

rithm

The cycle C can be embedded either clockwise or counter-clockwise in the

plane as a simple closed curve. Without loss of generality, r¡/e assume that C

is embedded counterclockwise in the plane and we need to add the segments

to the embedding of C without any edges crossing. Consider a segment ,S with

the base vertex u¿ and the first edge u¿w.

Definition 3.5 Segment 5 is said to be embedded inside of C, if. the edges

incident on the base vertex u¿ appear in the adjacency list of u¿ clockwise

ãs't)¿-1'u¿,'u¿1r,'t)¿'t)¿¡1. Otherwise ^9 is embedded outsi,de of C and the edges

incident on the base vertex ?r¿ appeff in the adjacency list clockwise ãs u¿-1u¿,

1)¿u¿+r,ailuujwhere z-l andif l aretaken modulo k. A back edgeru¡,u¡ e.C,

belonging to a segment embedded on the inside of C, is said to be entering C

from i,nside. Otherwise the segment is embedded on the outside of C and its

back edge ru¡, u¡ € C, is enteri,ng C from outsi,de.

ox
ÙU

3.3.1- Embedding the First Path of a Segment

The segments of G'\EC are generated by Algorithm 3.1 in a certain order.

We are trying to embed the segments of G'\EC one at a time in the same

order. To embed a segment ^9, we consider the first path p of ,S generated by

Algorithm 3.1. Without loss of generality) we are trying to embed p inside of

C by examining the previously embedded paths in constant time as follows.

If p can be embedded inside of C, we embed it there. Otherwise all the

previously embedded segments that are blocking the embedding of p inside of

C are moved to the outside of C. Moving the segments from inside to outside

of C may force some other segments to be moved from outside to inside of C,

etc. If p cannot be embedded inside of C afber the rearrangement of segments,

then graph G is non-planar. If p can be embedded inside of C, we embed it

there and try to embed the remaining paths of segment ^9 by applying the

embedding algorithm recursively. When we successfully embed ^9, we continue

with the next segment in the same way.

The following theorem is used to check efficiently if the first path p of segment

,S can be embedded on a specific side of C during the embedding algorithm.

Suppose p: (a¿,u¡), where u¡,u¡ € C, uj 1u¿, ând all the segments generated

before .9 have been successfully embedded.

Theorem 3.1 ([33]) Pathp can be embedded i,nsi,de of C, i,f there i,s no pre-

ui,ously embedded back edge ru¿, 'u¿ e. C, enteri,ng C from insi,de such that

36

a¡ 1u¡ 1 u¿. Furtherrnore, i,f there i,s such a back edge ru¿, then S cannot be

embedded i,nsi,de of C.

Proof. The segments are generated in the decreasing order of the depth-first

Iabels of their base vertices. Therefore none of the edges embedded so far can

be leaving any of the vertices smaller than u; in C. Thus if no back edges enter

C from inside between a¿ and ø¡, nothing prevents us from embedding p inside

of C by placing p sufficiently close to C.

Suppose that there is an embedded back edge ru¿ entering C from inside such

that u¡ 1 a¿ 1 u¿. Back edge ru¿ belongs to a previously generated segment

,S' embedded inside of C. Denoteby un the base vertex of segment ,9'. Notice,

that if ,S' is a single back edge ru¡, then uq: r. Since ^9' was generated before

,S, then un) u¿. If. un > o¿, then the sequence of edges in ,S' from un to u¡

would cross an embedding of p inside of C and we cannot embed p inside of

C without edges crossing.

Therefore we assume that uo : ai. It, means that segments S and ,9' have a

common base vertex. We consider the first path p' : (uq,a,), u, € C, of. S'

generated by Algorithm 3.1. Lemma 3.2 implies u, I aj. Thus vertex u, f u¿

and there are at least two paths in ,S', one entering C at u¿ and the other at

tr,. Also it means that the first path p' of S' is not just a back edge.

If u, < ar., then it is clear that path p cannot be embedded inside of C without

,fi

edges crossing. The last possibility is that u, : aj and paths p and p' have

both end vertices in common, i.e. u¿ : us ãrrd uj : 'ur. Let w and w' be the

second vertices on paths p andp'respectively. Since the first edge ofp'is not a

back edge, u' # u,. Moreover, there are at least two back edges in S' entering

C below u, at u¿ and u,. This implies nertlowpt(.') < on. This gives w f u¡

and u¡ 1 nertlowpt(.) < a¿ by Lemma 3.3, i.e. there are at least two back

edges in ,S going to u¡ and to nertlowpú(tu) that lies between u¡ and u¿. The

sequence of edges from u¿ to nertlowpú(tr.,) in ^9 together with path p cannot

be embedded inside of C without crossing an edge of ,S'. Therefore ,S cannot

be embedded inside of C without edges crossing. r

By Theorem 3.1, we need to know just the start and end vertices of apath to

check its embeddability.

3.3.2 Recursion

Denote by Ep the set of edges of the path p. Having embedded the first path

p : (s, /) of a segment ,S, it is necessary to decide if S\Ep can be added to

the planar embedding.

Lemma 3.4 ([33]) S\Ep can be added to the planar embeddi,ng constructed

before i,f and only i,f the subgraph S U C i,s planar.

38

Proof . By Theorem 3.1, there are no previously embedded back edges entering

C from inside in the interval from / to s. On the other hand, all the back

edges of S\Ep are entering p or C in the interval from / to s. The lemma

follows. r

Therefore the next step is to decide on the planarity of the subgraph S ¿ C of

G'. This can be accomplished by applying Theorem 3.1 recursively to SUC.

For the recursion, the DFS-tree edges from / to s on C and the first path p

of ^9 serve as the initial cycle C' for ,S U C. Then removing the cycle C' from

SUC may further partition the remaining digraph (SUC)\EC'into segments

of ,9 U C with respect to the cycLe C' . We can apply recursion to the segments

of .9 U C by considering them one by one as well. We continue the recursive

process for segments and a cycle till all the paths of segment ,9 are embedded

in the plane or some path cannot be added to the embedding by Theorem 3.1.

3.3.3 Data Structures

For the segment embedding we consider them in a non-increasing order of the

DFS-numbers of their base vertices on the cycle C. Suppose we are embedding

a segment ,S with base vertex s € C. To decide on the embeddability of ,9,

we need to know which vertices of C smaller than s already have back edges

entering from either the inside or the outside. Knowing these vertices of C, we

can tell if we can embed ,S by using Theorem 3.1. Therefore we will use two

39

stacks Insi,deStack and Outsi,deStack to list vertices of C smaller than the

current base vertex and having back edges entering C ftom the inside and the

outside respectively. The stacks contain the vertices in increasing order with

the biggest DFS-number vertex on top.

It is always attempted to embed a new segment inside of C first. Therefore,

when the first path p : (s, /) of
^9

is generated, vertex f + L must be added

on top of Insi,deStack. Dwing the recursion, all the end vertices of the paths

of 5 are added to InsideStack as well' Clearly, a nev/ vertex is added to

Insi,deStack if and only if its DFS-number is bigger than the top vertex in

the stack. Otherwise the DFS-number of the vertex is the same as the top one

and is already represented in the stack.

The segments are generated in a non-increasing order of the DFS-numbers of

their base vertices on C. When we are moving down a tree edge u¿-tu¿ during

the generation and embedding of the segments, we have all the segments with

base vertices higher than u¿-i successfully embedded. Thus, by Theorem 3.1,

the back edges entering cycle C at vertex u¿-1 or higher do not interfere with

the paths of the remaining segments. Therefore we can remove vertex u¿-1

from Insi,deStack and OutsideStaclc as we move down from u¿ to u¿-1on the

edge u¿-1u¿.

The segments may be moved from inside to outside of C or vice versa several

times. Moving one segment can initiate moving other segments. Clearly, the

40

corresponding entries of Insi,deStaclt and Out,si,deStack must be shifted as

well. It is necessary to group back edges which are moving simultaneously as

a bundle.

Definition 3.6 A bundle is a maximal set of entries in Insi,deStaclc and

Outsi,deStack that corresponds to back edges such that an embedding of one

of the back edges determines the embedding of all others.

When the stacks change, the set of bundles changes as well. However the

bundles always partition the entries of both stacks. F\rrthermore, from the

order of path generation and adding the new entries on top of a stack, all

entries in each stack corresponding to the same bundle are adjacent.

Consider the embedding of a nerv segment ^9 with the first path p : (s,.f)

inside of C. When all entries corresponding to back edges in ^9 are added to

InsideStack, a new bundle B is formed. B contains the Insi,deStack entries

for the segment ,9 as well as any entry for a back edge that interferes with ,S,

i.e. a vertex o such that / < u < s. Therefore every bundle that contains

such a vertex u must be combined with the new entries of ,5 to form the new

bundle B. The vertices o' in all other bundles must satisfy a' < f . Some

members of B will be in Insi,d,eStack, others will be in Out,si,d,eStack, brt
they all will be on top in both stacks. Since an embedding of a back edge in

a bundle completely determines just the embedding of all other edges of the

same bundle, it is useful to keep the back edges in bundles.

47

The information about bundles can be stored in a third stack BundleStack.

Each entry in BundleStaclc is an ordered pair (2, y) for a bundle, where r is

the lowest entry in Insi,deStack and gr is the lowest entry in Outsi,deStack for

the bundle. r : 0 means the bundle does not have any entry in Insi,d,eStack

and y : 0 means the bundle does not have any entry in Outsi,deStaclc. It

is convenient to implement entries (r,A) of Bund,leStaclc as pointers to the

corresponding entries of I nsi,de St ack and Out si,de Staclt.

This presentation of the algorithm is taken from [33]. An actual embedding

algorithm is developed inside of the path decomposition Algorithm 3.1. its

complete detailed description is provided in [33].

3.3.4 Complexity of the Algorithm

The DFS path generation part of the algorithm requires O(n+rn) operations.

The embedding part uses information about n'L-n endpoints of the generated

paths. It consists only of a sequence of stack manipulations, and adding or

deleting an element requires a constant time. The total number of entries in

the stacks is O(n+m).Therefore the entire algorithm runs in O(n+rn) time.

Since rn (3n - 6 for a planar graph, the algorithm requires O(n) operations.

The storage memory use is also O(n). A more subtle analysis of the algorithm

and its complexity can be found in [23].

42

The algorithm can be modified to obtain a rotation system for an actual em-

bedding of the graph by using information about the stacks and their changes.

Also it can be modified to return a subdivision of K5 or K:,s in G when the

graph is non-planar. A description in [33], [23] and [40] provides more detailed

ideas to do it in linear time as well.

3.4 Summary of the Hopcroft-Tarjan Planarity

Algorithm

In this section we consider the Hopcroft-Tarjan planarity algorithm in a sim-

plified intuitive form. The simplified ideas are used later for the projective

planarity algorithm for graphs with a Kg,g-subdivision.

3.4.L A Spanning Initial Cycle

Suppose we first consider a graph G with a spanning DFS-tree that is a path

and the spanning cycle C : po is the starting subgraph for an embedding of

G. The cycle C divides the plane into 2 regions. Each back edge is a chord

of the cycle. We then have to place the remaining chords of G either inside or

outside the cycle.

43

If G has n vertices, the vertices of the cycle are then DFS-numbered I,2,...,n

along the cycle. We sort the adjacency lists in order of increasing DFS-number

of adjacent vertices.

To embed the chords, first we start at vertex numbered 1, and travel along the

cycle to the last vertex n as the first DFS algorithm does. We then consider

all chords at n. Since they are ordered by their endpoints, 'vr/e can easily place

them inside C. Then we move back to vertex n - I and place the chords

whose higher endpoint is n - 1. It is easy to tell if a chord can be embedded

on the inside of C, because the cycle is ordered by the DFS-numbers. We just

compare endpoints. If a chord does not embed on the inside, we embed it on

the outside. If a chord cannot be embedded on either side, it may be possible

to switch a bundle of chords from the inside to the outside, and vice versa, as

shown in Figure 3.2.

When we return to vertex 1 on the cycle, all the chords are embedded, and it

provides a planar embedding of G. Instead of moving forward and backward

to traverse the cycle C, it is possible to consider starting at the vertex labelled

n, and simply following the cycle back to vertex 1. A similar technique is used

in the projective planarity algorithm to traverse the boundaries of the faces of

an embedding of K3,3.

44

Figure 3.2: Embedding chords around a DFS-cycle C

45

3.4.2 Recursion for Tlaversing a Non-Spanning Initial

Cycle

Now, if C : po is not a spanning cycle, consider a vertex u € C visited by

the algorithm as we move backward on the cycle C. If u is adjacent to some

vertex u ø C , there will be a path p' beginning with the edge uu, and meeting

C in another vertex u e C (Tr.r is the end vertex of p'). Then path ps ftom w

to u on C and path p' together form a cycle C' : pc l) p'. We can apply the

same approach recursively to embed the cycle C' and all its back edges.

Each back edge of C' is either placed inside C' , or outside C' . The path p' itself

is either placed inside C, or outside C. In general, we use recursively a depth-

first search algorithm DFS(u) for each vertex z adjacent to r.r (each vertex

of the graph is visited just once). Thus, the Hopcroft-Tarjan algorithm is

the recursive generalization of the algorithm which places chords either inside

or outside of a cycle C. Its outline with the pseudo-code for the recursive

ErnbedBranch procedure is given in Algorithm 3.2. A detailed pseudo-code

for the subroutine Swi,tchSi,des(u , u) is provided in [23] . Similar detailed ideas

are described in [33].

Algorithm 3.2 The Hopcroft-Tarjan Planarity Testing.

Input: A graph G represented by adjacency li,sts

Output: G i,s planar or non-pLanar

46

(1-) Choose a starting vertex u of. G

(2) Run LowP oi,ntD F S(u)

l*The procedure asszgns DFS-numbers, calculates LowPoi.nts, and orders

the adjacency li,sts. We haue now constructed a DFS-tree T that wi,ll be

used to order the embeddi,ng of back edges. * f

(3) Run EmbedBranch(u)

l*W" must trauerse th,e DFS-tree T to i,ts first leaf and find tÌte i,ni,ti,al cycle C.

We then baclc up the tree as the recurs'ion unfolds, and call the EmbedBranch

procedure recurs'iaely to embed each branch of the tree that has i,ts root on the

cycle C. Each branch of the tree T corresponds to a segment of the DFS-di,graph

G' . The ent'ire algorithm can be wri,tten as a DFS procedure to trauerse T

and to ernbed back edges. The procedure EmbedBranch does a trauersal of T

whi,ch starts at the top of T, and then descends the DFS-tree T, embedding baclc

edges as the recurszon unw'inds. Th,e procedure i,s calli,ng i'tself recursi'uely for

each branch of the tree.+ f

procedure E mb ed B r anch(u)

for each z adjacent to u do

if (z has not been visited before)

Embed,Branch(u)

l*The first back edge encountered wi,ll be i,nci,dent to a poi,nt ui,si,ted

47

before and ltauing a smaller DÛS-number i,n the tree. Thts creates

a cycle C. Subsequent back edges and branches wi,ll be embedded

ei,ther i,nsi,de C , or outsi,de C.* f
if (NonPlanar) return

else

f*uu is a back edge. Ei,ther u 'is aboue u i,n the tree, or below

thi,s can be detected by compari,ng DFS-numbers.* f
if (z is above u inT) return; l*The adjacency I'ists are ordered.*f

f
x Otherwi,se u 'is below u i,n the tree.* f

if (DFS-number of z fits inside C)

place uu inside C

else if (DFS-number of z fits outside C)

place uu outside C

else

f
*uu does not f,t tnsi,de or outszde C.

Tly swi.tching si,des.* f
k: Sw'itchSi.des(u,u)

if(k:0)
f*Swi,tchi,ng si,des does not help.*l

NonPlanar : trLle

return

f
* Otherwise swi,tchi,ng si,des made i,t possi,ble to embed ua.* I

if (k : 1) place zu inside C

48

else place zu outside C

end if-else DFS-number of z fits

end if-else u visited

end for

end EmbedBranch

A description of how to store the back edges zu in the linked lists Insi,deStack

and Outsi,deStack, and how to switch sides using BundleStaclc lor the inside

and outside of the cycle are presented in Section 3.3.3. The details for an

implementation of the stacks as linked lists are given in [33].

49

Chapter 4

Essential Cycles on the

Projective Plane and Torus

This chapter presents graphs embedded on surfaces of higher genus than the

plane. Let G : (V,Ð) be a 2-connected graph, lvl : n,lÐl : zn. We are

interested in 2-cell embeddings of graphs on the projective plane and torus.

An embedding of G on a surface that is not a 2-cell embedding does not fit the

surface and can be considered as an embedding on a surface of smaller genus.

Let C be a cycle in graph G.

Definition 4.L A cycle C is contracti,bLe or null homotopic with respect to

an embedding of G on a surface 1f. C can be contracted continuously on the

50

surface into a point. Otherwise C is an essential cycle of the embedding.

A spanning treeT of graph G has n-1 edges. Each of the remainingm-n:_I

edges e1, e2t. . .t€m-n*r of G\EZ determines a unique cycle C¿ in 7 U ei, i :
7,2, . . . ,n'L - n * I, called the fundamental cycle of e¿ with respect to 7. The

fundamental cycles {Cr,Cz,. . .,C*-.n+t } are pairwise distinct and any closed

circuit of G can be uniquely represented as a linear combination of the cycles

Ct,Cz,. . . ,C*-n+L with respect to exclusive OR operation on the edges of two

cycles. The set {C lC is a closed circuit in G} is a vector space over GF(2)

with basis {Ct,Cz,...,C*-n+t}. A good description of fundamental cycles

and circuit spaces of a graph is provided in [16].

Definition 4.2 ([16]) The set of fundamental cycles {Cr,Cr,...,C^-n+r}
corresponding to a spanning tree 7 of graph G is called a cycle basi,s of. G with

respect to 7.

4.L Embedding Cycles on the Projective Plane

According to Chapter 2 and [13], we consider the projective plane as a disk with

antipodal boundary points identified. For any 2-cell embedding of graph G on

the projective plane, there is a cycle C e G that is essential for the embedding

(see Figure 4.1). Otherwise G is planar embedded in the projective plane and

51

Figure 4.1: Essential and contractible cycles on the projective plane

one face of the embedding is not equivalent to an open disk. If we cut the

projective plane along an essential cycle, we obtain a unique face equivalent to

an open disk (the disk boundary consists of two copies of the cycle). Denote

by F the face obtained by cutting the projective plane along the essential cycle

C. G\C is then planar embedded in -F. However the cycle C appears twice

on the boundary of .F and initially we do not know which copy of C on the

facial boundary is adjacent to a vertex of G\C.

Theorem 4.1 ([34]) For a non-planar graph G embedded on the projecti,ue

plane, there zs a cycle C of any cycle basi,s {CuCz,...,C^-n+t} of G such

th,at C i,s essent'ial i,n the pro.jecti,ue planar embeddi,ng of G.

Proof . Suppose all the cycles of a cycle basis {C1, Cz,. .. ,C^-n+t} are con-

tractible. A linear combination of contractible cycles is a contractible cycle.

However, by Theorem 2.3, G contains a subgraph of. TK5 or TK3,s and any

embedding of T K5 or T K33 on the projective plane contains an essential cycle

52

(see Figure 7.1 and Figure 7.2). A contradiction.

Corollary 4.1 (134)) Any cycle basi,s of TK5 orTKz,s i,nG contai,ns a cycle

C th,at 'is essenti,al in any gi,aen embeddi,ng of G on the projecti,ue plane.

4.2 Embedding Cycles on the Torus

According to Chapter 2 and 113], the torus can be represented as a rectangle

with opposite sides identified. Consider a 2-ceLI embedding of graph G on

the torus. The embedding of G cuts the torus surface into open disk cells.

Therefore there is a cycle C of. G that is essential on the torus. The essential

cycle C cuts the torus surface into a surface homeomorphic to a cylinder

surface as in Figure 4.2. The cylindrical face is not equivalent to an open disk

either. Therefore there must be a path P in G as in Figure 4.2 which cuts the

cylindrical face into a 2-cell. AII the faces of the embedding of G are obtained

by cutting the 2-cell determined by the cycle C and the path P of G.

The 2-cell face can be drawn as a rectangle having two copies of C and P on

opposite sides of its boundary as in Figure 4.3.

Definition 4.3 (L271) A,?-graph fI is a graph consisting of two vertices of

degree 3 connected by three internally disjoint paths.

53

Figure 4.2: Cutting the torus surface into a 2-cell

Figure 4.3: The torus cut into a 2-cell

54

If P n C is a single vertex, then P is another essential cycle for the embedding

of G and C U P are two edge disjoint cycles sharing a unique common vertex.

Otherwise C U P contains two other different essential cycles for the torus

embedding of G. The cycles share path P. In this case, C U P is a á-subgraph

in G.

Theorem 4.2 (1341) For a non-planar toroi,dal graph G, at least two cycles

of any cycle basi,s of G are essenti,al i,n any embeddi,ng of G on tlte torus.

By Theorem 2.3, a non-planar toroidal graph G contains a subdivision TK5

or TK3,s.

Corollary 4.2 (1341) At least two cycles of any cycle baszs of TKs orTKs,s

in G are essenti,al i,n any embeddi,ng of G on the torus.

4.3 2-Cell Embeddings of Planar Graphs on

the Projective Plane and Torus

Consider a planar, 2-connected graph G that is not a cycle. We can embed G

on the projective plane or torus in an arbitrary 2-cell disk. Clearly, a planar

embedding of G on the projective plane or torus is not a 2-cell embedding.

55

Figure 4.4: Planar embedding of G on the projective plane

However r!¡/e can construct a 2-celI projective planar or toroidal embedding

from a planar embedding of G as follows.

Suppose zo is an edge on the outer face boundary of a planar embedding of G,

where G is embedded on the projective plane in an open disk as in Figure 4.4.

Then to transform the planar embedding of G into a2-ceII embedding of G on

the projective plane \Me can just re-draw edge uu across the projective plane

boundary as in Figure 4.5. Since G is 2-connected, edge uu will cross the

projective plane boundary on an essential cycle for the embedding, creating a

2-cell embedding of G. in this case the rotation system of G does not change,

but the edge zu has its signature changed from *1 to -1.

To obtain a toroidal 2-cell embedding of a planar graph G, we can use a 0-

subgraph in G. A 2-connected graph G that is not a cycle must contain a

56

Figure 4.5: 2-ceIl embedding of planar G on the projective plane

d-subgraph. To find a 0-subgraph /1 in G, we can either take the boundaries

of two adjacent faces of a planar embedding of G or construct .ll by using

a depth-first or breadth-first search. Denote by A and B the two vertices of

degree 3 in Il and by Pr: (A,at,...,bt,B), P2: (A,a2t...,b2,8), P3:
(A, as, . . . ,bz, B) the three paths connecting A and B in H as in Figure 4.6.

The á-subgraph 11 divides the plane into 3 regions. Without loss of gen-

erality, assume that path P2 is inside the region bounded by Pr U Ps as in

Figure 4.6. The region of the plane bounded by Pr U P2 contains a planar

embedding of component Cz; the region bounded by P2U Ps contains a planar

embedding of component Cü and the region bounded by Ps U Pr contains a

planar embedding of component Cz of G\f/ (see Figure 4.6). Then the ad-

jacency list for vertex A in the planar embedding of G can be described as

A- (at,'tJr¡...,'u2,a2ru)t¡...,'u)2,ay,'lt'1.t--.,u2), where (rt,.'.,u2) is the or-

dered neighborhood of ,4. in Cs, (rr,. .. ,w2) is the ordered neighborhood of ,4.

57

Figure 4.6: 0-subgraph in a planar embedding of G

in Cr and (ur,...,u2) is the ordered neighborhood of A in C2 (see Figure 4.6).

Similarly, the adjacency list for vertex B in the planar embedding of G can be

described as B --- (bt,rz,...,rL,bs,z2,...,zr,bz,Az,...,At) (see Figure 4.6).

A graph G with a rotation system r is denoted by G'. Suppose G is planar

with a d-subgraph ,Él as described above. Let Gp be the graph where p means a

rotation system for its planar embedding. We can construct a rotation system

Gt f.or a toroidal 2-cell embedding of G as follows.

Theorem 4.3 Changi,ng the adjacency li,st for uerter A of H þom

A - (AUUI¡. . . r'l)2, A2rU)tt. . . r'11)2, AS,'l.Ltt. ..,U2) tO

58

Figure 4.7: Converting a planar embedding into a 2-cell toroidal

A - (AZ,'I)tt . . . ,'U2, AL,'IItt . . . ,'1/,2, A¡rll;t, . . . ,..}iZ)

in the planar rotat'ion systen-L Ge proui,des a rotat'ion sAsten'L Gt for a toroi,d,al

2-cell embeddi,ng of G.

Proof . Notice that we change the adjacency list of ,4. by altering the positions

of just two vertices ø1 and a2 corresponding to paths Pr and Pz. This gives a

2-cell embedding of the d-subgraph I/ on the torus in which the 3 paths P1,

P2 and Ps cut the torus surface into a single 2-cell as in Figure 4.7. We embed

the remaining induced subgraphs Ct, C, and C3 in the torus with the same

rotation systems as in the plane. We just need to check that the connections

of. C1, Cz and Cs to the vertices of fl are in the same cyclic order in the

torus as in the plane. This can be verified directly from Figure 4.7. Since the

d-subgraph 11 is 2-cell embedded on the torus, so is the entire graph G. r

59

Theorem 4.3 provides a convenient way to convert a planar embedding of G

into a 2-cell embedding of G on the torus. It requires interchanging just two

edges in the adjacency list of one vertex. There are other methods that can

be used to transform the planar rotation system Gp into a toroidal rotation

system Gr.

60

Chapter 5

Graph Embedding Algorithms

Currently Implemented for the

Projective Plane and Torus

This chapter contains a description of the implemented algorithms of [30] and

[31] for the projective plane and torus. We outline the main ideas of the

algorithms that are important for better understanding of the correspond-

ing surfaces, the data structures used by a computer program and the time

complexity. The linear time algorithms of [21], [28] and [29] are more of a

theoretical interest. We do not know of any linear time implementations of

them.

61

5.1 Practical Projective Planarity Testing

The algorithm of [30] tries to complete an embedding of a subdivisionTKs or

TKs,s to an embedding of a graph G, as does the algorithm of [28].

Definition 5.1 A bri,dge of a graph G with respect to an embedded subgraph

.I1 is a subgraph B of. G such that B is either an edge {o,r} € G\EII with

u,ru € H, or a connected component C e G\11 plus all edges {u, tu} such that

u e C and r¿' € fI. The vertices of B n H are called attachment por,nts of the

bridge.

The algorithm in [30] is based on the idea of reduction to a 2-SAT problem.

The 2-SAT problem is used to select an assignment of bridges to faces of an

embedded TKs,s or TK5. This is possible because an embedding of TK5 or

TK\s on the projective plane (see Figure 5.1 and Figure 5.2) can be completed

to a graph G by adding each bridge into at most three faces of the embedding.

There can be just a constant number of bridges which are embeddable into

three faces. After a preliminary selection of all possible embeddings for these

bridges, the remaining bridges can be added into at most two faces of the

embedding. The 2-SAT problem is used to assign the remaining bridges to

faces.

62

Figure 5.1: Embedding of Ks,s on the projective plane

Figure 5.2: Embeddings of Ks on the projective plane

63

5.1.1 Basic Ideas

By Theorem 2.3, a non-planar graph G contains a subdivision of K5 or Ks,e. A

modification of the planarity algorithm of Chapter 3 can return a subdivision

TK5 or TKs,s in G. We denote by TK a subdivision of. Ks or K3,3 in G.

For each embedding of TK on the projective plane, the algorithm of [30] tries

to embed the bridges of G with respect to TK in the faces of the embedding

of TK. Each face of an embedding of TK is equivalent to an open disc (see

Figure 5.1 and Figure 5.2). Therefore when a bridge is embedded into a face,

the embedding of the bridge must be planar.

The algorithm in [30] considers all inequivalent embeddings of TK on the

projective plane. By Definition 2.7, two embeddings are inequivalent if there

is no such isomorphism between the corresponding rotation systems. Two

embeddings with distinct face boundary walks have distinct rotation systems

and therefore are inequivalent.

Theorem 5.1 ([21]) TKs,s has one unlabelled embedding in th,e projecti.ue

plane as i,n Fi,gure 5.1 andTK5 has two unlabelled embeddi.ngs i,n the projec-

tiue plane as zn Fr,gure 5.2(a) and Figure 5.2(b). Furthermore, the number

of i,nequiuaLent ways to label th,e embeddi,ng of TKs¡ i,s 6, th,e number of i,n-

equzualent labelli,ngs of the embeddi,ng of Fi,gure 5.2(a) i,s L2, and the number

of znequi.ualent labelli.ngs of the embeddi,ng of Fzgure 5.2(b) i,s 75.

64

A bridge B can be embedded in a face with boundary .F if its attachment

points are all in -F and there is a planar embedding of. B ¿ F.

Definition 5.2 A bridge B is called a k-face bri,dge with respect to an em-

bedding of TK if it can be embedded in k different faces of the embedding.

For any embedding of. TK5 or TKs,s in the projective plane, there can be

1-face, 2-face or 3-face bridges of G with respect to the embedding. The

algorithm considers all the different assignments of the types of 3-face bridges

to the faces of an embedding of. TK. Then for each face of the embedding

the algorithm determines the pairs of l-face and 2-face bridges that cannot

be embedded together in the face. This provides a 2-SAT problem to decide

if there is an assignment of the bridges to the faces for an embedding of the

whole graph G.

5.L.2 3-Face Bridges

For an embedding of the subgraph TK of. G, there can be 3-face bridges of

G. However it is possible to consider a small constant number of embeddings

for the 3-face bridges to reduce the embedding problem to only 2-face and

l-face bridges. Here all the possibilities and combinations for embedding 3-

face bridges are described. It is also explained how they are handled by the

algorithm.

65

Any 3-face bridge B of. a 2-connected graph G has just two attachment points

in the vertices of. TK corresponding to the vertices of Ks or K3p. Referring

to Figure 5.1 and Figure 5.2, the possible sets of the 3-face bridges according

to their attachment points are:

f.or TKs3 of Figure 5.1:

{o,d} for faces 0, 1,3, {b, e} for faces 0, 7,2, {c, f} for faces 0,2,3;

for TK5 of Figure 5.2(a):

{4, c} for faces 0,7,5, {a,d} for faces 0, I,2, {b,d} for faces 0,2,3, {b,e} for

faces 0, 3,4, {c,e} for faces 0,4,5;

f.or TK5 of Figure 5.2(b):

{b,c} for faces 0,1,3, {b,e} for faces 0,I,2, {c,d} for faces 0,7,4, {d,e} for

faces 0, 1,5.

Without loss of generality, the 3-face bridges with the same set of attachment

points can be treated a.s one 3-face bridge. Therefore the 3-face bridges are

considered in groups corresponding to different pairs of attachment points.

There is only a constant number of ways to assign the 3-face bridges to faces

for an embedding of TK. It is necessary to consider all the combinations of

embeddings for 3-face bridges to cover all possibilities and to leave at most two

faces available for each remaining 3-face bridge. Then it is possible to apply

the 2-SAT approach to embed the remaining bridges.

66

For the embedding of TKs,s in Figure 5.1, there is at most one group of 3-face

bridges that can be embedded into face 0 without edges crossing. Thus, there

are four ways to place 3-face bridges with respect to an embedding of TKsp:

any of three groups of 3-face bridges can be embedded in face 0 or none of

them is placed in face 0. In any case there are at most two remaining faces

available to embed the 3-face bridges.

Consider the embedding of TK5 of Figure 5.2(a). For all 3-face bridges, one

of the possible faces to embed it is face 0. Thus, it is sufficient to choose

the bridges that are placed in face 0 since there are only two choices for the

other 3-face bridges. There are five different ways to simultaneously place two

groups of 3-face bridges in face 0. Two groups must have a common corner as

an attachment point. There are also five different ways to place just one group

of 3-face bridges in face 0. Finally, there can be no 3-face bridges in face 0 at

all. Thus, in total there are eleven cases to consider.

Consider the embedding of TK1 of Figure 5.2(b). Bridges with attachment

points {ó, e} and {c, d} cannot simultaneously be embedded into face 0. Sim-

ilarly, bridges with the attachment points {b, c} and {d, e} cannot simulta-

neously be embedded into face 1. Therefore there are nine different ways to

assign 3-face bridges to faces so that face 0 contains either one group or none

of 3-face bridges with attachment points {b, e} and {c, d}, and face 1 contains

either one group or none of 3-face bridges with attachment points {b, c} and

{d,"}.As a result, the remaining 3-face bridges have just two faces available

67

for their embedding. Thus, in total there are nine cases to consider.

To summarize the discussion, there can be at most three different groups of 3-

face bridges for an embedding of TK33, at most five different groups of 3-face

bridges for an embedding of.TK5 of Figure 5.2(a), and at most four different

groups of 3-face bridges for an embedding of TKs of Figure 5.2(b). The number

of preliminary assigned embeddings of the 3-face bridges to faces is four for

TKs,s, eleven for TK5 of Figure 5.2(a), and nine f.or TK5 of Figure 5.2(b).

5.1.3 Conflicts Between Bridges and 2-SAT Problem

All the faces of a projective planar embedding of TK; or TK3,s are equiva-

lent to an open disk and no vertex of. TKs or TKs,s appears twice on a face

boundary.

Definition 5.3 Two bridges B¿ and B¡ arc compati,ble for a face if both can

be embedded in the face simultaneously. Otherwise, they are called confi,i,cti'ng

for the face.

Clearly, if bridges of a set are pairwise compatible for a face, then they can

be embedded in the face simultaneously. We describe the ideas from 130] to

determine conflicting pairs of bridges for a face. Since now we have just l-face

and 2-face bridges, the conflicting pairs provide us an instance of a 2-SAT

68

problem that can be resolved in linear time.

The number of bridges can be O(n). Therefore the number of bridge pairs can

be quadratic in n. Information about conflicting bridges can be computed in

O(n2) time.

To find the pairs of conflicting bridges for a face, the vertices on the face

boundary are considered in a cyclic order. In [30], a finite state machine

(FSM) is used to determine if a pair of bridges (Bo, B¡) is conflicting. The

FSM makes its transitions depending on whether the current face boundary

vertex is an attachment point to B¿, Bi or both. The FSM computes the pairs

of conflicting bridges in O(n2) time.

The remaining bridges are assigned to faces of an embedding of. T K so that all

the bridges embedded in the same face are compatible. If such an assignment

exists, the input graph G is projective planar. The algorithm finds an assign-

ment of the bridges to faces, or else it determines that no such assignment

exists by formulating and resolving the corresponding 2-SAT problem.

Definition 5.4 ([30]) A, Ii,teral is a boolean variable z or its complement z.

A set of literals is a clause. For a set of clauses, the sati,sfiabi,li,ty problem (SAT)

is to determine whether there is an assignment of true and /alse values to the

boolean variables so that at least one literal in each clause is true.

69

It is known that SAT is NP-complete [7] even when each clause contains at

most three variables, i.e. 3-SAT. However if each clause has at most two vari-

ables, i.e. 2-SAT, the problem becomes linear and can be efficiently resolved

by an algorithm like in [9].

Let F be a face of an embedding of. TK and B be a bridge that can be

embedded in face -F. A literal B¡ is assigned the value true if and only if

bridge B is embedded in lace F. Otherwise B¡ is assigned the vahte false. If.

bridge B can only be embedded in face -F, then a clause {Be, Be} is added

to the 2-SAT instance. This guarantees that B¡ is assigned the vahte true. If.

bridge B is embeddable into two faces F1 and F2,two clauses {Bp'Bp"} and

{Br, Br"} are added to the 2-SAT instance to guarantee that B is embedded

in exactly one face. Finally, for each pair of bridges ,B1 and B2 conflicting in

f.ace F, aclause {Btr,B2r} is added to the 2-SAT instance to guarantee that

they both are not embedded in F simultaneously.

There can be O(n) bridges, giving at most O(n') conflicts between pairs of

bridges. Thus it takes O(nz) time to resolve a 2-SAT instance using the al-

gorithm of [9]. A solution to the 2-SAT instance provides an assignment of

bridges to the faces of an embedding of T K that corresponds to an embedding

of. G.

70

5.L.4 Outline of the Quadratic Projective Planarity Al-

gorithm

The algorithm of [30] runs on 2-connected graphs. If a connected graph G is

not 2-connected, then it is necessary to find the blocks of G first. This can

be done in O(n) time by using a modified depth-first search as done in [33].

It is known that G is projective planar if it contains at most one projective

planar block and all the other blocks are planar. Therefore, G is assumed to

be 2-connected. If G is planar, then it is clearly projective planar.

Algorithm 5.1 ([30]) Projective Plane Embedding Algorithm.

Input: A 2-connected graph G : (V, E) represented by adjacency li,sts, lVl :

n, lÛl: vn

Output: Projectiue planar embeddi,ng of G or G i,s not projecti,ue planar

ifm>3n-3then
return(not projective planar)

if G is planar then

return(planar embedding of G)

else G 'is non-planar

Find a subgraph K in G that is a subdivision of K5 or Ks,s.

for each labelled projective planar embedding K' of K do

7I

Find all the bridges of K' and

determine which faces they can be embedded in.

if a bridge ô cannot be embedded in any face of K' tlren

return(not projective planar)

Compute the conflicts between pairs of bridges in the faces

for each arrangement of 3-face bridges do

if there is an assignment of bridges to the faces of K' tlren

return(projective planar embedding of G)

return(not projective planar)

5.1.5 Analysis and Complexity of the Algorithm

If graph G has more than 3n - 3 edges, it cannot be projective planar, and

the algorithm returns. For the other steps of Algorithm 5.1, G has at most

3n - 3 edges, i.e. O(n) edges.

If graph G is planar, it is also projective planar. We can easily transform a

planar rotation system of 2-connected graph G into a rotation system for a

2-cell embedding of the graph on the projective plane as described in Section

4.3. If G is not planar, then we can find a subgraph TK in G in O(n) time by

modifying a planarity algorithm as in [40].

The external loop is executed at most six times when TK : TKs,s and at

72

most 27 times when TK : TKs by Theorem 5.1. In either case it is executed

a constant number of times.

The bridges can be found in O(n) time by using a breadth-first or depth-first

search. For a bridge B, it is possible to use a planarity testing algorithm

to determine the faces in which it can be embedded. The planarity testing

of bridges in a face can be done in the total computational time of O(n).

An embedding of TKs,s has four faces and an embedding of 7K5 has six

faces. This gives O(n) computational time for the bridge finding and testing

embeddability in the faces.

An approach to flnd pairs of conflicting bridges is given in Section 5.1.3. Its

time complexity is O(r').The internal loop runs a constant number of times

as discussed in Section 5.7.2. Every run consists of solving a 2-SAT problem

instance in O(n2) time.

For the output, the projective planar embedding can be described by indicating

planar embeddings of the bridges in the faces. To actually embed bridges

inside of face F, we can connect a new vertex t¿ to each vertex on the face

boundary, add the bridges and invoke a planarity testing algorithm. Without

loss of generalit¡ v¡e can assume that vertex t¿ is embedded outside of the face

boundary. Then bridges embedded outside of the face boundary can have the

attachment points just in two adjacent vertices on the face boundary. We can

easily flip these bridges inside of .F to obtain a planar embedding of F with

t,j

all the bridges embedded inside. Therefore it takes O(n) time to obtain the

projective planar embedding of G given an assignment of bridges to the faces.

The conflicting bridges calculations for 2-SAT provides the worst case running

time for the whole algorithm. Therefore the running time complexity of the

algorithm is O(n2).

5.2 Practical Toroidality Testing

The toroidality testing algorithm of [31] is an exhaustive search method with a

number of preliminary checks for sufficient properties of non-toroidal graphs.

It is based on the properties of cycles in a graph G embedded in the torus.

This is the only known implemented toroidality testing algorithm. This section

provides the main ideas of the algorithm.

5.2.L Flat Cycles and Non-Toroidal Graph Constraints

Here we describe some properties of non-toroidal graphs for a fast preliminary

detection of such graphs. This simplifies the main exponential time algorithm

which is an exhaustive search.

74

Definition 5.5 A cycle C of toroidal graph G is fl,at with respect to the

surface if it is contractible in every torus embedding of G.

Let C be a cycle in graph G. The following theorem provides a characterization

of flat cycles in a toroidal graph.

Theorem 5.2 ([31]) A cycle C i,s fl.at i,n the toroi,dal graph G i,f deleting the

uer-tzces of C from G gi,ues a non-planar graph G\C. Furtherrnore, i,f th,e fl,at

cycle C ts chordless and G\C 'is connected, then C i,s a faci,al boundary i,n any

2-cell embeddi.ng of G on the torus.

Proof .If the cycle C is not flat, then there exists a toroidal embedding of G

such that C is essential. Such an embedding of G has G\C embedded on the

cylinder and therefore planar. Otherwise, by Theorem 2.3, a non-planar G\C

contains a subgraph of T K5 or T Ks,s. All the faces in any embed ding of. T K5

or TKs,s on the torus (see Figure 9.1 and Figure 10.1) are 2-cell. The cycle C

must be added into the interior of a face in an embedding of TK5 or TKs,z.

Therefore C is contractible in any embedding of G on the torus.

If C is chordless and G\C is connected, then C must be embedded in the inte-

rior of a face in an embedding of G\C. In this case nothing can be embedded

in the interior of C.

75

According to Theorem 2.2, Euler's formula for a 2-cell embedding of a con-

nected graph G with n vertices, rn edges and / faces on the torus is

n-n'L*.f:0.

Euler's formula gives the following two constraints for embedding on the torus.

Property 5.L If m) 3n, then G i,s non-toroi,dal.

Proof . This property is a corollary of Euler's formula of Theorem 2.2. Given

a 2-cell toroidal embedding, \Me can add edges while preserving toroidality by

triangulating 2-cell faces. A triangulated 2-cell embedding has rn : 3n edges.

The inequality follows.

Property 5.2 If f >rn-n for any embeddi,ng of G, tltenG i,s non-toroi,dal.

Property 5.2 is also a corollary of Euler's formula for the torus. We can

determine some 2-cell faces by chordless flat cycles using Theorem 5.2. The

number of 2-cell faces in Theorem 5.2 gives a lower bound for the number of

faces /. Also, given a rotation system for an embedding of G on a surface, we

can easily count its number of faces /.

The 2-cell faces of Theorem 5.2 provide some other constraints for any em-

bedding of graph G on the torus. Precisely, if vertices ¿ and b are adjacent

to vertex ?r on a 2-cell face boundary, then we write (ø, b), to indicate that a

76

Figure 5.3: Edge uz overused by toroidal constraints

and b must appear consecutively in a cyclic adjacency list of u for a toroidal

rotation system.

Property 5.3 Any edge {r,u} e G occurs on th,e boundary of at most two

faces of an embeddi,ng of G on a surface.

Clearly, if an edge {*,o} € G must occur on the boundary of three or more

faces for an embedding on the torus, the graph is non-toroidal. Property

5.3 is used by the algorithm in [31] in the following way. If we find an edge

{r,o} € G that is shared by at least three 2-cell faces given by chordless flat

faces of Theorem 5.2, then we have a set of constraints {(r, o) o, (r, b),, (*,
") "}

which is incompatible with any torus embedding (see Figure 5.3).

Property 5.4 ([31]) If th.ere erists a cycli,c set of constrai,nts {(ot, or),, (or, ot),,

...,(or,a1),) of si,zek < d,eg(u) for an embeddi,ng of uerteru e G onth,etorus,

then G i,s non-toroi,dal.

77

Figure 5.4: Embedding for a cyclic set of toroidal constraints

Proof. A rotation system contains all deg(u) vertices adjacent to z in cyclic or-

der. Therefore the cyclic set of constraints {(or,or),, (or,ot),, ..., (or,at),},

where k < deg(u), u e. G, is not compatible with any toroidal rotation system

of G (see Figure 5.4).

Notice that for a toroidal embedding of G, if vertex u has deg(u)- 1 compatible

constraints or deg(u) - 2 consecutive compatible constraints, we can complete

them to the cyclic set of constraints of size d,eg(u).

Property 5.1 can be checked directly from the graph input information. To

detect a non-toroidal graph faster, 'ive can take a collection of short cycles and

use Theorem 5.2 to find 2-cell faces among them. The 2-cell faces provide sets

of constraints. We can use the information to check Properties 5.2 - 5.4 for

non-toroidal graphs.

In some cases, the determination of 2-cell faces using Theorem 5.2 results

a complete set of constraints. Then it is possible to unify the constraints

1n

to

78

obtain a toroidal embedding of the graph or to conclude that none exists in

O(n) time.

5.2.2 Essential Cycles and Toroidality Testing

The main strategy of the algorithm is to reduce the toroidality problem to

planarity testing. The first step is to find an essential cycle C in the graph

G for its embedding on the torus. We assume the graph is toroidal and the

essential cycle C cuts the torus into a cylindrical surface as described in Chaper

4.

Since we do not know precisely which cycles of G are essential, we need to

try several candidates. The number of candidates for an essential cycle is

relatively small, either O(n) by Theorem 4.2, or O(1) by Corollary 4.2. Since

by Theorem 2.3, a non-planar toroidal graph G contains a subdivisionTKs or

T Ks,s, we can use Corollary 4.2 as well. The theorem guarantees that at least

one of the cycles must work.

Now we assume G could be embedded on the torus with the cycle C embed-

ded as an essential cycle. According to Chapter 4, C ctús the torus into a

cylinder. This corresponds to cutting G on the torus along the cycle C, du-

plicating cycle C as C1 and C2, and marking the interior of two copies of C

as forbidden regions for any embedding of G (see Figure 5.5). This gives a

79

Figure 5.5: Cylinder embedding for G cut along cycle C

cylinder embedding. Now suppose there is an embedding of G in the plane

such that attaching the edges incident to cycle C either to copy C1 or C2 gives

a cylinder embedding of Figure 5.5. Then gluing the two copies Ct and Cz

back to C gives a torus embedding of the initial graph G (see Figure 5.5).

There are two problems with the cylinder embedding. First of all, we do not

know which copy Ci or Cz of. C an edge of G should be incident to. To cover

all possible cases) the implemented algorithm checks all bipartitions for the

edge endpoints on cycle C. This makes the algorithm exponential in time.

The second problem is the initial cylinder f.ace F between two copies C1 and

Cz of. C. Face ll is not equivalent to an open disk, therefore it is not possible

to use planarity testing directly to add G\C into -F. However if we can find

two edge disjoint paths p1 and p2 having one end on C1 and the other end on

C2, the paths would divide face F into two faces Fr and F2 both equivalent to

80

Figure 5.6: Two edge disjoint paths to cut the cylinder face

an open disk without repeating vertices on the face boundary (see Figure 5.6).

For faces .F'1 and Fz it is possible to use planarity testing to embed G\(C U

q1Up2). To find two edge disjoint paths p1 and p2 between Ct ard C2, two

new vertices s and ú are added so that vertex s is incident to all vertices of C1

and ú is incident to all vertices of. C2. Now it is possible to use a standard flow

algorithm to find two edge disjoint (s, ú)-paths. This provides paths p1 and p2

necessary for planarity testing. If there are no two edge disjoint paths pi and

p2 between Ct and C2,then, by Menger's theorem [a], there is a cut vertex t¿.

It is possible to split the graph into two pieces at the cut vertex'u.r, then to

decide on a planar embedding of each piece separately and to glue the pieces

together to get a cylinder embedding of G.

Since we need to check all the bipartitions of edges incident on the vertices of

C, it is reasonable to select cycles C with few incident edges. For this pur-

B1

pose, cycles provided by Theorem 4.2 are better than cycles of Corollary 4.2.

To choose a cycle basis of Theorem 4.2 that minimizes the exponential time

component of the algorithm, Myrvold and Neufeld [3f] use Horton's algorithm

of [20].

82

Chapter 6

Graphs Containing

K5-Subdivisions

Let G be a non-planar graph. By Kuratowski's Theorem 125), G contains a

subdivision of K5 or Ks,s as a subgraph. We denoteby TK5 a subdivision of

K5 and by TKs3 a subdivision of Kg,s in G.

Definition 6.1 The vertices of degree 4 or 3 are corners of TK1 or TKs,3

respectively and the vertices of degree 2 are'inner ueri'ices of TKs or TKs,s.

The corners of TK; or TK33 have been called ma'in uert'ices in [28], [21] and

[30]

83

Definition 6.2 A path of TK5 or TKs,s whose endpoints are two distinct

corners and all other vertices are inner vertices of TK5 or TKs,s is called a

si,de of TK5 or TKs,z.

Notice that two sides of TK5 or TKs,s can have at most one common corner

and no common inner vertices.

Definition 6.3 A side having a common corner with another side of. TK5 or

TKs,s is called adjacent to that side. Two sides having no common corner are

called non-adjacent.

6.1 Short Cuts and 3-Corner Vertices

Suppose G contains a subdivisionTKs as a subgraph. This section describes

how the subdivision TK5 can be transformed into a subdivision TKs,s in G.

Notice that a pair of corners of TK5 determines a unique side of TK1, an

inner vertex is on a uniquely determined side and each corner is on exactly

four distinct sides.

Definition 6.4 A path P in G whose one endpoint u is an inner vertex of

TK5, the other endpoint is not on the side of z, and all other vertices and

edges are in G\"Ks is called a short cut of. the Ks-subdivision.

84

Definition 6.5 A vertex u e G\TK1 is called a 3-corner uerier with respect

Lo TK5 if G\7K5 contains internally disjoint paths from z to at least three

corners of the K5-subdivision (see Figure 6.4).

We begin by proving some basic structural results for graphs containing aTKs.

Similar structural results have been proved by M. Fellows and P. Kaschube in

[10]. Notice that the proof of Theorem 1 in [10] is missing the case indicated

by Figure 6.1 of Proposition 6.1.

Proposition 6.1- ([10]) A non-planar graph G wi,th a K5-subd,r,ui,si,on TKs

for wlti,ch there i,s ei,ther a short cut or a 3-corner uerter conta'i,ns a Ks,s-

subdi,uisi,on.

Proof . To prove the proposition, we exhibit a K:,¡-subdivision in G. In the

following diagrams the bipartition of K¡,e is indicated by black and white

vertices. Vertices which are not part of K3,3 are shaded grey.

The following cases are possible.

Case 1. Both endpoints of a short cut P are inner vertices of TKs and the

corresponding two sides are non-adjacent. Figure 6.1 shows a Ks,s-subdivision

in G.

Case 2. Both endpoints of a short cut P are inner vertices of TK5 and the

corresponding two sides are adjacent. Figure 6.2 shows a K3,3-subdivision in

85

Figure 6.1: K3,r created by short cut P

Figure 6.2: Ks,s created by short cut P

the graph G.

Case 3. One of the endpoints of a short cut P is a corner of TK5. Figure 6.3

shows a Ks,g-subdivision in G.

Now suppose there is a 3-corner vertex u e G\TK;. Then Figure 6.4. shows

a K¡,s-subdivision in G.

Figure 6.3: K3,3 created by short cut P

Figure 6.4: Ksp created by 3-corner vertex z

87

Thus any short cut or 3-corner vertex of TK5 in G gives a Ks,s-subdivision. ¡

6.2 Side Components

Let G be a graph having no 3-corner vertex and no short cut of TK;. Denote

by K the set of corners of TKs. Consider the set of connected components of

G\lf. Let C be any connected component of G\K.

Proposition 6.2 ([10]) For a graphG wi,tl¿TK5 and, no short cut or3-corner

uerter of TK5, a connected component C of G\K conta'ins 'inner uert'ices of

at most one si,de of TK1. Moreouer uert'ices of C are adjacent i,nG to enactly

two corners o.f TKs.

Proof . Suppose a connected component C contains inner vertices of two dif-

ferent sides of ?K5. Then clearly C contains a short cut of TK5 in G, a

contradiction.

Suppose C has vertices which are adjacent to at least three different corners

of.TK5 in G. Then it is not difficult to see that there is either a short cut or

a 3-corner vertex of. TKs in G, a contradiction. Therefore, vertices of. C are

adjacent to at most two corners of.TK5 in G. Since G is 2-connected, there

are exactly two corners of. TK5 adjacent to vertices of C in G. r

88

Definition 6.6 Given a graph G without a short cut or a 3-corner vertex of

T K5 we define a si,de component of T K5 as a subgraph in G induced by a pair

of corners ¿ and b of. TKs and all connected components of G\K which have

vertices adjacent to the two corners ¿ and b in G.

Corollary 6.1 Two s'ide cornponents of TK5 i,nG haae at most one uerterin

con'Lrnon. The common uerter i,s the corner of i,ntersecti,on of two correspondi,ng

si,des of TK5.

Proof . Any pair of corners of.TKs defines a side. Since G is 2-connected, by

Proposition 6.2, we can associate every connected component of G\K with

a unique side of ?K5. This gives a partition of vertices of G\11 into side

components of TK5.

Notice that side components, however, can contain a Ke,:-subdivision. Thus,

given a graph G with a Ks-subdivision 7K5, either we can find a short cut

or a 3-corner vertex of TKs in the graph, or else IMe can partition the vertices

and edges of G\fK5 into equivalence classes according to the corresponding

side components of TKs in G.

89

6.3 Augmented Side Components

Every side component fI of. TK5 contains exactly two corners ø and b corre-

sponding to a side of.TKs. If edge ab between the corners is not in.I/, we can

add it to -É1 to obtain H + ab. Otherwise H + ab: H.

Definition 6.7 Given two corners ¿ and ö of a side component f[, edge aó

is called the corner edge of H + ab and Í1 * ab is called aL augn'Lented side

cornponent of TK5.

We use the following general lemma for side components of a K5-subdivision

in the embedding algorithms. By the lemma, a corner edge can be added into

every side component .Il to test easily if there exists an embedding of 11 with

both corners on the outer face and to find such an embedding. The lemma

presents a well known fact for planar embeddings. The use of the lemma and

the augmented side components will be explained in Section 7.1 and Chapter

L

Lemma 6.L There 'is a planar embeddi,ng of a graph G wi,th two uert'ices u

and u on the outer face i,f and only i,f there erists a planar embeddi,ng of the

graph G + uu.

Proof . It can be seen by drawing any planar embedding on the sphere that

any face of a planar embedding can be considered as an outer face. Now if

90

there exists an embedding of graph G on the sphere with boih vertices z and

u on the same face, then we can just add the edge between them into the face.

Otherwise for any embedding of G on the sphere the edge cannot be added

into the planar embedding. Hence G + uu is not planar. r

91

Chapter 7

Embedding Graphs on the

Projective Plane

7.L Ks-Subdivisions and Planarity

The algorithm in this section applies standard planarity techniques to find a

Kuratowski subgraph in a graph G. If the found subgraph is TK5, then either

Proposition 6.1 is used to find a TKsp subgraph, or Proposition 6.2 applies

to reduce the projective planarity determination to the planarity checks. This

provides a linear time practical algorithm to check if a non-planar graph G is

projective planar or if it contains a Ks,s-subdivision.

7.L.L Characterization for Projective Planarity Check-

mg

Let G be a 2-connected non-planar graph with a Ks-subdivision TKs. We

begin with a characterization of projective planarity for graphs with a Ks-

subdivision.

Theorem 7.L A graph G wi,th a K5-subd,i,ai,si,on TK5 and no short cut or 3-

corner uerter of TKs i,s projecti,ue planar i,f and only i,f all the augmented, si,de

components of TK5 are planar graphs.

Proof . By Corollary 6.1, all the vertices and edges of G\7K5 are partitioned

into side components. The sufficient and necessary conditions of the theorem

can be proved as follows.

First we show that the sufficient conditions hold. Take any embedding of.TK5

on the projective plane (see Figure 7.1). For each side of.TK5, make a planar

embedding of its side component with both corners on the outer face. By

Lemma 6.1, there exists such an embedding of a side component if and only

if the augmented side component is a planar graph. By Corollary 6.1, I¡/e can

embed every side component independently.

Now we prove the necessary conditions of the theorem. Figure 7.1 shows the

two possible non-isomorphic embeddings of TK5 on the projective plane (see

93

Figure 7.7: K5 on the projective plane

[28] and [30] for details).

The sides of. TK1 must create one of these embeddings. Each embedding

divides the projective plane into faces. Each vertex of TK5 appears at most

once on the boundary of any face, and every side of T Ks is incident to exactly

two faces. Call these faces l¡1 and F2, and let K be the set of corners of TK5.

For some sides, it is possible that the two corners ¿ and ö also appear on the

boundary of a third face, as non-consecutive vertices. But since G has no short

cut or 3-corner vertex of. T K5, every connected component C of G\K, adjacent

to ¿ and b and embedded in a third face can also be embedded in F1 or F2.

This shows that it is always possible to embed every side component of.TK5

in an open disk contained in F1U F2, i.e. every augmented side component

must be planar.

94

7.L.2 Graphs with a Ks-Subdivision

Let G be a 2-connected non-planar graph with a K5-subdivision 7K5. Theo-

rem 7.1 provides the basis for a linear time practical algorithm to check if the

graph is projective planar or if it contains a Kg,s-subdivision.

Algorithm 7.1 Embedding Graphs with a K1-Subdivision on the Projective

Plane.

Input: A 2-connected graph G

Output: Ei,ther a projecti,ue planar rotat'ion system of G, or a K3p-subd,i,ui,si,on

'in G, or an i,ndi,cati,on th,at G i,s not projecti,ae planar

(1) Use a linear time planarity checking algorithm (eg. [19], [33], [23], [5], [39]

and [40]) to determine if G is planar. If G is planar then return its planar

rotation system. If G is not planar and the planarity check returns a Kt,s-

subdivision in G then return the K3,3-subdivision in G.

(2) If G is not planar and the planarity check returns a K5-subdivision ?Ks

in G, then do a depth-first or breadth-first search to look for either a short

cut or a 3-corner vertex of TK5 in G. If a short cut or a 3-corner vertex is

found, then return a K3,3-subdivision in G as per Proposition 6.1. If there are

no short cut or 3-corner vertices, the depth-first or breadth-first search returns

the side components of TK5.

95

(3) For each side component H of TK1 in G, if it is necessary, augment 11 by

adding the corner edge ab to have H + ab, and check 1f H + ab is planar. If

all the augmented side components are planar, then return a projective planar

rotation system of G. If there is a non-planar augmented side component of

TK5, then return G is not projective planar.

Every step in this algorithm has linear time complexity. Therefore the entire

algorithm is also linear.

7.2 A Spanning K3,3-Subdivision

In this section we describe the possible embeddings of a K¡,s-subdivision on

the projective plane and the possible ways to complete an embedding to a pro-

jective planar graph G. First we cover the case where a K3,3-subdivision TKs,s

is a spanning subgraph in G. In Section 8.3 we describe how to generalize it to

an arbitrary K3,3-subdivision in G. A generalization for a non-spanning K3,3-

subdivision in G can be done by analogy with the recursion in the Hopcroft-

Tarjan algorithm of Chapter 3. This section describes the structure of the

projective planar graphs with respect to the spanning K3,3-subdivision.

Let G be a non-planar graph with a spanning K3,3-subdivision 7K3,3. We

assume that K3,3 has a bipartition of its vertices labelled æ {¿t, a2,a3} and

{br,bz,b3} (see Figure 7.2).

96

Figure 7.2: K33 and its embedding on the projective plane

Fl

Figure 7.3: The dual graph of the projective planar embedding of. Ks3

Figure 7.2 shows the unique embedding of Ks,s on the projective plane. The

dual graph for the embedding of. Ks,s of Figure 7.2 is shown in Figure 7.3.

Notice that Figure 7.3 depicts a planar drawing of the dual graph, not a

projective planar embedding. Therefore it does not show mutual positions of

the faces of Figure 7.2 on the projective plane.

The embedding of Figure 7.2 is a 2-cell embedding and, according to Section

97

Figure 7.4: Unfolded faces of an embedding of TK3,3

4.1, there is a cycle of Ks3 that is essential for the embedding. An essential

cycle crosses the projective plane boundary an odd number of times. Ks,¡ has

six distinct hamiltonian cycles. Each hamiltonian cycle C of Ks,s corresponds

to a perfect matching K1¡\EC. The embedding of Figure 7.2 has two essen-

tial hamiltonian cycles and four contractible hamiltonian cycles. Therefore in

a projective planar embedding of a graph G with a spanning Ks,s-subdivision

TKs,s, the TK3,3 always has an essential cycle which corresponds to an essen-

tial hamiltonian cycle of the embedding of Ks,s.

Figure 7.4 shows the embedding of Figure 7.2 ctfi along the essential hamilto-

nian cycle Ç : (a1fua3fua2b2) of Ks,s of Figure 7.2. We say that the faces of

TKs,s have been unfolded.

An embedding of TKs,s on the projective plane has one face bounded by 6

98

lnterior
of
Hexagon

lnterior
of
Quadragon

Figure 7.5: Möbius band cut along a side

sides and three faces bounded by 4 sides of TKs,s. We call the 6-sided face

the heragon, and the 4-sided faces the quadragons of aTK3,s-embedding. In

the diagram of Figure 7.4, the hexagon is denoted by Fo and each quadragon

is denoted by Fo,'i : I,2,3, where ¿ is the missing subscript of the corners of

the quadragon boundary. We call the sides ø¿b¿, i : I,2,3, quadragon s'ides,

and the sides a¿b¡, 'i, j : I,2,3, i + j, heragon s'ides.

Definition 7.L Given an embedding of TKs,s on the projective plane with

the labelling of Figure 7.4, a Möbi,us band consists of two opposite hexagon

sides a¿b3 andb¿a¡,'i, j :7,2,3, i,+ j, plus the interior of the hexagon and

the interior of the quadragon (see Figure 7.5).

Figure 7.5 shows a Möbius band cut along the side a¿b¡. Each Möbius band

has two parts corresponding to the two faces. One part contains the two sides

appearing on its boundary in cyclic order as a¿bi andb¿o,¡, and the other part

99

in cyclic order as a¿b¡ and aib¿, i, j :7,2,3, i I j. There are three different

Möbius bands, corresponding to the 3 pairs of opposite sides of the hexagon.

All three Möbius bands share the hexagon interior (face F6 in Figure 7.4),bat

have different quadragons.

7.2.L The Labelled Embeddings of TKs,z

There are six different ways to label the corners of an embedding of TKs,s

on the projective plane (see Figure 7.6). The labellings of Figure 7.6 can be

obtained from the labelling of Figure 7.2 by successively applying the permu-

tation (a1)(a2a3)(btbzbs).This is a convenient way to obtain all the labellings

in a computer program, starting from the initial labelling of Figure 7.2.

Since 7K3,3 is supposed to be spanning, it is necessary to determine if it is

possible to add the remaining edges of G, without crossing, into the 4 faces

for at least one of the 6 labelled embeddings. The labelled embeddings have

distinct closed walks on the face boundaries. They correspond to 6 different

hamiltonian cycles of Ks,s appearing as the hexagons. The example of Fig-

ure 7.8 shows that all the six labelled embeddings must be considered as a

possible initial embedding of TKs,s to complete it to an embedding of a graph

G. The example of Figure 7.8 will be considered in detail in Subsection 7.2.2.

Without loss of genelality, assume the embedding of TKz3 is labelled as the

100

Figure 7.6: The six labelled embeddings of TKs,s

first one in Figure 7.6. We will consider ihis labelled embedding in more detail.

The results and discussion are true for any embedding of TKs,s.

7.2.2 Chords and Faces

This subsection describes different types of edges of G\"Ks,s and possible wâ.ys

to add them to an embedding of TKs,s on the projective plane. Later sub-

sections will provide more detail for each particular type and for the interplay

between different types.

101

Figure 7.7: Two chords crossing in a face

Definition 7.2 An edge of G\"Kr,r is called a chord.

Definition 7.3 Two chords uyul and u2u2 àrê said to cross 'in face F iff they

are disjoint and their endpoints alternate on the boundary of .t' in a cyclic

order as LL!,'u2,'ut,'t)2, clockwise or counter-clockwise (see Figure 7.7).

Clearly, two adjacent chords with 3 different endpoints on a face boundary can

always be drawn in the face without crossing. Similarly, two disjoint chords

with their endpoints on a face boundary in a non-alternating cyclic order can

always be drawn in the face interior without crossing.

We will consider the unfolded faces of Figure 7.4 corresponding to the em-

bedding of Figure 7.2 in more detail to develop an algorithm which efficiently

decides if we can complete an embedding without chords crossing.

r02

Definition 7.4 A chord is called a lc-face chord if it admits an embedding in

exactly k different faces of the embedding of TKs,s on the projective plane

(see Figure 7.2 and Figure 7.4).

Proposition 7.L Referri,ng to the labelling of Fi,gure 7./r, a ch,orduu 'is a

(i,) 3-face chord i,f and only i.f uu : a¿b¿, i :7,2,3;

(i,i,) 2-face chord i.f and only i,f both endpoi.nts u and a are on the same si,de

ercept'tL'u : o,¿b¿, i:7,2,3, or one endpo'int of uu i,s on the si,de wi,th corners

o,¿ and, b¡ and, the oth,er i,s on the si,de wi,th corners b¿ and, a¡, 'i,i : 1,2,3,

i #i;

(ä.i,) \-face chord i,f and only if one endpo'int i,s i,n the i,nteri,or of the side wi,th

endpoints a¿ and, b¿, i : I,2,3, and the otlter i,s i,n the interi,or of a si,de a¡b¡",

j,lç : I,2,3, where j + i, k I i, and j * k.

Otherwi,se uu 'is a l-face chord.

Proof . Consider all the possible cases for adding a chord in the diagram of

Figure 7.4 wilh respect to the side labelling. Any chord incident to a corner

has "access" to all sides of the hexagon and quadragons. Any chord having

both endpoints on the same side can be placed in two faces separated by the

side. This gives 2-face chords. However cholds o,¿b¿,'i : I,2,3, having both

103

endpoints in the side corners can be placed in the hexagon as well. This gives

3-face chords.

Any chord with an endpoint on a hexagon side and the other endpoint on an

opposite hexagon side can be placed in a quadragon as well. This gives 2-f.ace

chords.

Any chord having an endpoint in the interior of a quadragon side a¿b¿, 'i :

I,2,3, does not hâ,ve "access" to the interior of a hexagon side not incident to

the corners a¿ arLd b¿. This gives O-face chords.

In all the remaining cases a chord can be placed in a unique face.

Proposition 7.1 gives us a characterization of the chords. We can determine

if zu is a k-face chord, k : 0, I,2,3, by checking its endpoints with respect

to the sides and their subscript labelling. This can be done efficiently in a

computer program. If a O-face chord is detected for an embedding of TKz,s,

then the embedding is not projective planar.

Before we analyze the chords with respect to a labelled embedding of 7K3,3, we

show an example that all six labelled embeddings of Figure 7.6 are important

and must be considered to obtain an embedding of a graph G. Figure 7.8

illustrates a graph G : T K3p U {"t, ez, es) whose embedding on the projective

plane can be obtained from just one labelled embedding of Figure 7.6. The

graph G is obtained from TKs,s by adding three chords €1 : rA, êz : 'trz

104

Figure 7.8: The unique embedding of G: TKs,s U {"t, ez,es}

105

and e3 : ua in the quadragons of the first diagram of Figure 7.8. The other

Iabellings of TKs,s either have one of e1,e2,es LS 8,0-face chord, or else have

a crossing of l-face chords €rt€2te3. A similar example can be constructed for

every labelled embedding of TKs,s.

7.2.3 l-Face Chords and Forced Chords

Figure 7.9 shows the pattern of l-face chords drawn in the faces of Figure 7.4.

Clearly, a 1-face chord must be placed in a unique face. If any two l-face

chords cross in some face, then the current embedding of. TKs,s can not be

extended to G. We can check this by examining the endpoints of a l-face

chord on the face boundary with respect to the other l-face chords.

Now suppose some of the six labelled embeddings of ?K3,3 have no two l-face

chords crossing. Then it is necessary to decide efficiently if there is a way to

add 2-face and 3-face chords into such an embedding.

Uniquely Embeddable Chords Generated by 1-Face Chords

Let e be a 2-face or 3-face chord. Such a chord e caî be placed in several

faces of the ?K3,3-embedding. However a l-face chord or another uniquely

embeddable chord mav cross some possible embeddings of e, forcing e to have

106

Figure 7.9: The pattern of l-face chords

at most one permitted embedding remaining.

Definition 7.5 Given a labelled embedding of TKs,s, a chord e is called forced

if it is either

(i) a l-face chord, or

(ii) e has just one embedding which does not cross a 1-face chord or another

previously forced chord.

Forced chords are generated by 1-face chords and behave exactly like 1-face

chords. They must be embedded in the unique face which results in no conflicts

107

Figure 7.10: The pattern of 3-face chords

with other forced chords.

7.2.4 3-Face Chords

According to Proposition 7.1, an embedding of TKs,z admits at most three

3-face chords corresponding to three pairs of opposite corners of the hexagon

or to three sides separating the quadragons. Figure 7.10 shows all possible

embeddings for 3-face chords a1b1, o.2b2 and o3b3.

Each 3-face chord can be embedded in one of two quadragons or in the hexagon.

Lemma 7.L A 3-face chord a¿b¿,'i:7,2,3 can be placed i,n a quadragon i,f

and only i,f there i,s no l-face chord h,auing one endpoi,nt whi,ch'is an'interi,or

108

uer-te:L of the si,de a¿b¿ of tlt e quadragon. At most one 3-face chord can be placed

i,n the heragon.

Proof . Referring to Figure 7.9, a 3-face chord a¿b¿,'i: I,2,3, may potentially

cross only the l-face chords in the quadragons. Therefore if there are no 1-

face chords to cross the 3-face chord in a quadragon, we can embed it in the

quadragon. Otherwise the 3-face chord is forced and must be embedded in

the hexagon. As can be seen from Figure 7.10, all three 3-face chords cross

each other in the hexagon. Therefore at most one of them can be placed in

the hexagon.

As a result, we can decide on the embedding of a 3-face chord independently

by trying embedding it into a quadragon if there is one which has no 1-face

chords to cross the 3-face chord. if a 3-face chord cannot be embedded in

a quadragon, it must be placed in the hexagon. A 3-face chord embedded

in the hexagon causes a special case for an embedding which is discussed in

Subsection 7.3.1 and is shown schematically in Figure7.I5.

7.2.5 2-Face Chords

In this section we consider 2-f.ace chords that are not forced. These chords

can be numerous and complicated to decide on their embedding. However

we can classify them to show that it is possible to decide on their embedding

109

efficiently.

Definition 7.6 Two 2-f.ace chords corresponding to the same two faces are

said to be i,n confii,ct if and only if they cross when drawn in the same face.

We define a confl,i,ct graph ¡7 : (V(H),E(H)), where V(H) is a set of 2-

face chords, i.e. V(H) a Ð(G), and for €,¿,€¡ € V(H), there is an edge

{e¿,e¡} e E(H) if and only if corresponding chords e¿ aírd e¡ àre in conflict.

Clearly, for any embedding of graph G on the projective plane it is necessary

for the conflict graph 11to be bipartite. For a pair of 2-face chords in conflict,

embedding one of them in one face forces the other one to be embedded in the

other face to avoid a crossing.

Definition 7.7
^

bundle is a set of.2-face chords corresponding to a connected

component of the bipartite conflict graph 11.

An embedding of one of the chords in a bundle determines the embedding of

all other chords from the same bundle.

Quadragon 2-Face Chords

Definition 7.8 A 2-f.ace chord that has both endpoints on a side a¿b¿, i
I,2,3, separating two quadragons in Figure 7.4, is called a quadragon .t

110

Figure 7.11: The pattern of quadragon 2-face chords

face chord (see Figure 7.11). A group of quadragon 2-face chords is a set

of quadragon 2-face chords having both endpoints on the same side.

A quadragon2-face chord can only be in conflict with quadragon 2-f.ace chords

from the same group. The other 2-face and 3-face chords can avoid a crossing

with the quadragon 2-f.ace chords by an appropriate drawing in the quadragon.

There are exactly three sides separating three quadragons of the embedding.

This provides three different groups of quadragon 2-face chords.

Lemma 7.2 For any embeddi,ng of graplt G, each group of quadragon2-face

chords admi,ts a bi,parti,ti,on wi,th one part ernbedded 'in one quadragon and the

other part embedded i,n the other quadragon wi,thout crossi,ng.

111

Proof . Otherwise there would be two quadragon 2-f.ace chords crossing in

quadragon.

A group of quadragon 2-face chords is completely determined by the chord

endpoints on the same side a¿b¿,'i : I,2,3. We can decide separately on an

embedding for each group of the quadragon 2-face chords by constructing a

bipartition for its embedding.

Parallel and Perpendicular 2-Face Chords

In this section we consider 2-face chords having both endpoints on the hexagon

boundary of Figure 7.4. Each of the chords can be placed either in the hexagon

or in one of the quadragons. We can distinguish two types of the chords.

Definition 7.9 For an embedding of TKs,s on the projective plane, a2-face

chord having both endpoints on the same side of the hexagon is called parallel

to the side (see Figure 7.I2). A 2-face chord having its endpoints on two

opposite sides of the hexagon is called perpendi,cular to the corresponding sides

(see Figure 7.12). A perpendicular chord whose both endpoints are corners of

TKs,s is called a di,agonal (chord a1a3 in Figure 7.I2).

For each labelled embedding of TKs,s on the projective plane, there are six

different groups of parallel chords corresponding to the hexagon sides and

112

a

T

Figure 7.72: The pattern of parallel and perpendicular 2-face chords

three different groups of perpendicular chords corresponding to three pairs of

opposite sides of the hexagon (see the embedding of Figure 7.2 and the unfolded

embedding of Figure 7.4). There can be at most six diagonals, namely 4142,

b1b2, a2as, b2bs, oaa,s, b1b3 shown in Figure 7.13.

Parallel chords can be in conflict only with parallel chords or perpendicular

chords having an endpoint on the same side. A perpendicular chord having

both endpoints in interior vertices definitely crosses any perpendicular chord

from a different group when embedded in the hexagon. However a perpen-

dicular chord having an endpoint in a corner does not cross other parallel or

perpendicular chords incident to the same corner. Also a perpendicular chord

might interfere with the other chords of the same group and with parallel

chords of two groups on opposite sides of the hexagon. Each parallel and per-

pendicular chord must be embedded in the hexagon or associated quadragon

i13

of the TKs3 embedding (Figure 7.12).

7.3 The Möbius Band

In this section we consider the structure of chords in a Möbius band and the

compatibility of two or three different Möbius bands. All three Möbius bands

of Figure 7.4 share the hexagon interior. A parallel or a perpendicular chord

can be embedded into any of two faces of its corresponding Möbius band.

Definition 7.10 A Möbius band is called fl,atif there exist an embedding of

its parallel and perpendicular chords without crossing such that all the perpen-

dicular chords are embedded in the quadragon (for example, see Figure 7.20

and Figure 7.21). Otherwise it is non-fl,at (for example, see Figures 7.19, 7.22).

A Möbius band is called di,agonal compati,ble if there exist an embedding of its

parallel and perpendicular chords without crossing such that just one diagonal

is embedded in the hexagon and all the other perpendicular chords are embed-

ded in the quadragon (for example, see Figure 7.13). A Möbius band is called

corner compati,ble if there exist an embedding of its parallel and perpendicular

chords without crossing such that some perpendicular chords incident on one

corner are embedded in the hexagon and all the other perpendicular chords

are embedded in the quadragon (for example, see Figure 7.I4). Otherwise it

ís unmatchable (for example, see Figures 7.I9, 7.22, 7.23). A Möbius band is

'J,74

Figure 7.13: Three matched diagonal compatible Möbius bands

called embeddable if there exists an embedding of corresponding parallel and

perpendicular chords without crossing.

Definition 7.1-1- Diagonal compatible Möbius bands are matched if they ad-

mit a simultaneous embedding without diagonals crossing. Two corner com-

patible Möbius bands are matched if they admit an embedding without per-

pendicular chords crossing in the hexagon. Otherwise they do not match.

Figure 7.13 shows three matched diagonal compatible Möbius bands. Notice

that the Möbius bands of Figure 7.13 are matched and diagonal compatible

for the other diagonals as well.

115

Figure 7.74: A pair of matched corner compatible Möbius bands

Figure 7.14 depicts a pair of matched corner compatible Möbius bands. Notice

that the bands are corner compatible and matched for both common corners

a1 and b1. As can be seen from Figure 7.14, there can be at most two matched

corner compatible Möbius bands, the bands have to be compatible on the same

corner and the third Möbius band must be flat to avoid chords crossing.

Proposition 7.2 If graph G i,s project'iae planar, then th,ere i's a labelled em-

beddi,ng of TKs3 such that ei,ther Möbi'us bands are all fl'at, or one of the

.followi,ng 3 condi,ti,ons hold:

(i,) non-fl,at Möbi,us bands are matched di,agonal compati'ble;

(i,i,) at most two of the Möbi,us bands are non-fl'at and matched corner compat-

i,ble on the same corner;

116

(ä,i,) at most one of the Möbius bands i,s non-fl,at unmatch,able and embeddable.

Proof . Since all three Möbius bands corresponding to three different quadrag-

ons are mutually crossing in the hexagon, rve can embed only three diagonals

in the hexagon as in Figure 7.13, or perpendicular chords incident on the same

unique corner of the hexagon as in Figure 7.74. Otherwise all the perpen-

dicular chords in the hexagon must correspond to the same Möbius band to

avoid chords crossing. In any case, perpendicular chords that do not fit in the

hexagon must be embedded without crossing in their corresponding quadrag-

ons. This gives at least one flat Möbius band for part (ii) and at least two flat

Möbius bands for part (iii).

Corollary 7,L A projecti,ue planar embeddi,ng of G contai,ns at most one un-

matchable Möbi,us band wi,th, respect to an embeddi,ng of TKs,s.

Section 7.3.2 shows how to determine if an unmatchable Möbius band can be

completed without chords crossing.

7.3.L Diagonal and Corner Compatible Möbius Bands

Diagonal compatible Möbius bands are embeddable without chords crossing if

they are matched on the appropriate diagonals. Referring to Figure 7.13, we

117

have just two triples of appropriate diagonals, namely, (oto", a2a3, a3o,1) and

(b1b2, b2b3, b3b1). All the other perpendicular chords different from a triple of

diagonals must be placed without crossing in the quadragons. So, two triples

of diagonals provide two particular cases of Möbius bands similar to the flat

ones. In each particular case, we just embed the appropriate diagonals in the

hexagon and check if the embedding of the other perpendicular chords in the

quadragons causes any chords to cross. If crossing chords exists, the matched

embedding of diagonal compatible Möbius bands is not possible.

It is convenient to consider a pair of matched corner compatible Möbius bands

(see Figure 7.14) when a 3-face chord is embedded in the hexagon as in Fig-

ure 7.15.

Proposition 7.3 A 3-face chord embedded i,n the heragon maltes one Möbi,us

band fl,at and the oth.er two must be rnatch,ed corner compati,ble on the same

corner, or one of tlte two i,s fl,at and the remai,ni,ng one i,s embeddable (possi'bly,

unmatchable).

Proof . Suppose a 3-face chord is embedded in the hexagon as chord ø1b1 in

Figure 7.15. Then perpendicular chords of the Möbius band with sides bzøs

and bsa2 must fit in the quadragon not to cross the 3-face chord a1b1 in the

hexagon. Perpendicular chords of the two other Möbius bands that are not

incident on corner {11 or b1, must fit in their quadragons as well. The chords

incident on corners a1 and b1 should not cross in the hexagon. r

118

Figure 7.15: A 3-face chord in the hexagon

Notice that when embedded in the hexagon a 3-face chord becomes uniquely

embeddable and is forced by 1-face chords as described in Section 7.2.3.

Two possibly corner compatible Möbius bands of Figure 7.l|have two common

corners ø1 and b1. The bands can be matched on either of the two common

corners. So, we need to consider each corner separately to determine if we

really have a pair of matched corner compatible Möbius bands. There are two

cases to check, if the bands are matched depending on the common corner.

Suppose the bands of Figure 7.74 are matched on corner 41. Clearly, perpen-

dicular chords having both endpoints in interior vertices of the bands must

be embedded in the quadragon, i.e. they become uniquely embeddable. The

same is true for perpendicular chords having an endpoint in corner br. There-

fore we need to place the perpendicular chords not incident on corner ø1 as

119

uniquely embeddable in the corresponding quadragon and this must not cause

any chords to cross, to complete the embedding.

Now for perpendicular chords incident on corner o1, vr'€ need to check if these

perpendicular chords admit a bipartition such that one part of them is em-

bedded in the hexagon and the other in the corresponding quadragon. Since

any two perpendicular chords incident on the same corner never cross, we just

need to check their possible crossings with other chords already embedded in

the quadragon, for perpendicular and parallel chords.

Therefore each common corner a1 and b1 gives a special case for the completion

of both Möbius bands. We can check the special cases of Möbius bands by

using the results presented in the following section.

7.3.2 2-Face Chords in a Möbius Band

Finally, it is necessary to decide efficiently if there exists a bipartition of the

parallel and perpendicular chords between the hexagon and quadragon for

the only possible unmatchable Möbius band. If an embedding of TK3,s can

be completed to G, then parallel and perpendicular chords of the unique un-

matchable Möbius band admit a bipartition. Chords corresponding to one

part of the bipartition are placed in the hexagon, and chords corresponding

to the other part of the bipartition are placed in the quadragon and no two of

r20

them cross. To determine efficiently if such a bipartition exists, we examine

the possible crossings of chords in the Möbius band and a restriction of the

conflict graph .tI to the corresponding chords.

The Structure of Crossing Chords

Lemma 7.3 Gi,uen a Möbi,us band, two parallel chords of the san'Le group cross

'in one face of the band i,f and only i,f they also cross in the other. A parallel

chord crosses o, perpendi,cular chord i,n one face of the band i,f and only i,f i,t

also crosses i,n the other face.

Proof . Each side of the Möbius band appears on the boundary of both faces.

Clearly, the crossing of two parallel chords in one face implies that they cross

in the other face as well (see Figure 7.16). The order of the endpoints of the

parallel chords is just reversed in the other face. Similarly for a parallel and a

perpendicular chord (see Figure 7.16).

Therefore, for either two parallel chords, or for a parallel and a perpendicular

chord, we can determine if they are in conflict or not. Clearly, two chords in

conflict must be placed in different faces of the Möbius band.

Lemma 7.4 For a Möbi,us band, two perpendtcular chords are

I2T

Figure 7.16: Chords in conflict

(i.) di,sjoint i,f and only i,f they cross 'in one face and do not cross 'in the other

face of the band.

(ä) adjacent i,f and only i,f they do not uoss i,n ei,ther face of the Möbi,us band.

Proof . Part (i). For a Möbius band, two sides appear in a reversed order

with respect to each other on the boundary of the two faces (see Figure 7.5).

Therefore two disjoint perpendicular chords always cross in one face and do

not cross in the other face as in Figure 7.77. CIearly, two perpendicular chords

which cross in a face can not be adjacent.

Part (ii). As mentioned before, two adjacent chords never cross in a face. By

part (i), two disjoint perpendicular chords cross in a face. Figure 7.18 gives

an example of two adjacent perpendicular chords. I

Corollary 7.2 Two perpendi,cular chords conespond'ing to the same Möbi'us

r22

Figure 7.17: Disjoint perpendicular chords

Figure 7.18: Adjacent perpendicular chords

123

band are neuer i,n confl,i,ct.

Definition 7 .L2 M (H) denotes a restriction of the conflict graph -FI to chords

corresponding to the Möbius band, i.e. M(H) is a subgraph of // induced by

vertices of the conflict graph which correspond to the chords of the Möbius

band.

For a projective planar embedding of G, the conflict graph M(H) must be

bipartite. Otherwise, by Lemma 7.3, we can not draw the chords of the Möbius

band without two parallel chords, or a parallel and a perpendicular chord

crossing in one of the faces.

However even if the conflict graph M(H) is bipartite, no two perpendicular

chords are in conflict by Corollary 7.2 to Lemma 7.4. Therefore we need to

check if there exists a bipartition of M(H) corresponding to an embedding of

the chords with no two perpendicular chords crossing in a face.

Components of the Restriction M(H) of the Conflict Graph

Hereafter we assume the graph M (H) is bipartite. To decide on the embeddi-

bility of perpendicular chords corresponding to M (H), we need to consider the

connected components of M(H). We can distinguish three types of connected

components of M(H) according to internal properties of the component.

124

Let C be a connected component of M(H) with bipartition (,4, B). Without

loss of generality, assume A + Ø. Chords corresponding to ,4, and B must be

embedded in different faces of the Möbius band to avoid crossings of chords

in conflict. Chords corresponding to A can be placed in either face. Therefore

there are two different ways to embed C without two parallel chords or a

parallel and a perpendicular chord crossing.

Definition 7.1-3 A component C is called non-embeddable if. both possible

embeddings of the component contains two perpendicular chords of A or B

crossing in a face. Otherwise C is called embeddable.

Figure 7.19 shows an example of a non-embeddable component C of M(H).

Notice that the component of Figure 7.19 is bipartite.

Definition 7.1,4 A component C is called 7-way embeddable if one of two pos-

sible embeddings of the component contains two perpendicular chords crossing

in a face but the other does not. A component C is called 2-way embeddable

if both possible embeddings of the component contain no two perpendicular

chords crossing.

Figure 7.20 shows an example of a 1-way embeddable componenl C of. M(H).

Figure 7.21 shows an example of a 2-way embeddable component C of M(H).

r25

Figure 7.I9: A, non-embeddable component C of M(H)

Figure 7.20: A.l-way embeddable component C of M(H)

126

Figure 7.27: A 2-way embeddable component

Proposition7.A An embeddable component C of M(H) wi,th bi'partiti'on

(A,B), i,s I-way ernbeddable i,f and only if A or B conta'i'ns a pair of di'sjoi'nt

perpendi,cular chords. Otherwi,se C i,s 2-way embeddable.

Proof . Necessity. By Lemma 7.4(i), if ,4 or B contains a pair of disjoint

perpendicular chords, the chords are crossing when embedded simultaneously

in one of two faces of the Möbius band. Therefore all of A (or B) must be

placed in the other face of the Möbius band and the component C is l-way

embeddable. Sufficiency. An embeddable component has its perpendicular

chords split into two parts corresponding to A and B. Since C is l-way

embeddable, some perpendicular chords of the same part cross in one face

but not in the other. By Lemma 7.4(i), two of these chords are disjoint. I

r27

arx
Figure 7.22: Embedding of component C1 flips component C2

Definition 7.15 Given an embedding of component C¿, v/e say the embedding

of. C¿ fi,i,ps an embedding of component C¡ if the simultaneous embedding of

C¿ and C¡ has corresponding perpendicular chords crossing. Component Ci is

then embedded in the other way and called fl,i,pped.

Figure 7.22 shows an embedding of component C1 that flips C2. Notice that

two components of Figure 7.22 are 2-way embeddable, and component C2 has

perpendicular chords in both faces of the Möbius band.

Definition 7.L6 A component C of M(H) is called forced if it is either

(i) a 1-way component, or

128

(ii) flipped by a 1-way component or by another forced component of M(H).

Therefore a forced 2-way component is either uniquely embeddable, or not

embeddable at all.

Proposition7.S If G is projecti,ae planar, then there'is an embeddi,ng of

TKs,s such that:

(x) M(H) i,s bipartite;

(i,i,) aII connected components of M(H) are embeddable;

(i,i,i,) no two perpend'icular chords from different l-way or forced 2-way embed-

dable components are cross'ing.

Proof . Part (z) is a necessary condition to successfully embed the chords in con-

flict. Part (zz) is a necessary condition to have an embedding of a component

without its own perpendicular chords crossing. Paú (i.i,i,) is a necessary con-

dition to successfully embed the uniquely embeddable components of M(H).

Figure 7.23 gives an example of two different 1-way embeddable components

with perpendicular chords crossing.

L29

Figure 7.23: 7-way components with perpendicular chords crossing

2-Way Embeddable Components

It remains to choose an embedding for 2-way embeddable componenrs of M(H)

that are not forced by 1-way embeddable components. By Proposition 7.4, all

the perpendicular chords of each part of the bipartition of a2-way embeddable

component have a common endpoint (see Figure 7.2I). We need to decide if

it is possible to embed the 2-way embeddable components of M(H) without

their perpendicular chords crossing.

Let C¿ ard C¡ be 2-way embeddable components of M(H). There are 4 dif-

ferent ways to embed C¿ and C¡ simultaneously.

Definition 7.1-7 Components C¿ and C¡ are independenú if perpendicular

chords of C¿ and Ci do not cross in any embedding of the components. Oth-

erwise they are dependent.

130

c,o
{

.{ .{

Figure 7.24: Independent 2-way components

Figure 7.24 shows a set of independent 2-way embeddable components and

Figure 7.22 shows a pair of dependent 2-way embeddable components. By

Lemma 7.4(ä), perpendicular chords of independent components are adjacent.

The following chapter explains how to use the structural results for different

types of chords with respect to an embedding of T K3p on the projective plane

to devise a linear time embedding algorithm. The approach presented in Chap-

ter 8 is similar to the Hopcroft-Tarjan planarity testing algorithm and is very

complicated. The simple structural results of Chapter 7 can lead to a simpler

projective planarity testing algorithm for graphs with a K3,3-subdivision.

131

Chapter I

The Projective Planarity

Algorithm for Graphs

Containing a Kg,3-Subdivision

This chapter provides a description of a linear time algorithm to check if

there is an embedding in the projective plane for a graph containing a Ks,s-

subdivision. The structural results of SectionsT.2 and 7.3 form the basis for the

algorithm. The algorithm presented here can be considered as a generalization

of the Hopcroft-Tarjan planarity algorithm.

First we describe an algorithm that decides if it is possible to embed chords

r32

in the Möbius band and provides an embedding whenever one exists. The

algorithm for the Möbius band is used in the projective planarity algorithm

for graphs with a spanning Kg,s-subdivision. Clearly, some embeddings of

parallel and perpendicular chords in the Möbius band can be forbidden by 1-

face chords and forced uniquely embeddable chords (see Figures 7.5 and 7.9).

This would make the parallel and perpendicular chords forced and uniquely

embeddable. Also, referring to Figure 7.5, this can make a Möbius band

restricted to shorter paths instead of whole sides of TKs,s.

After the Möbius band algorithm, we present a general projective planarity

algorithm given a spanning K3,3-subdivision in the graph. Finally, a gener-

alization for a non-spanning Ks,g-subdivision is described. This approach is

similar to the Hopcroft-Tarjan algorithm of Chapter 3.

8.1 Embedding Chords in the Möbius Band

Consider a Möbius band determined by the hexagon interior and one of the

quadragons. Without loss of generality, we can take the quadragon to be

(ar,bz,az,bt) (see Figure 7.4). In Figure 8.1 the quadragon is denoted by Q,

and the hexagon is denoted by H. We assume that vertices of one side of

the Möbius band are labelled and ordered as l)pt'up-Lt. . . ,uL. Correspondingly,

vertices of the other side of the Möbius band are labelled and ordered as

1tÐlùù

Ulr'\tr2r. , .

Figure 8.1: Möbius band labeling

,un (see Figure 8.1).

8.1_.1_ Embedding Perpendicular Chords in the Möbius

Band

First suppose we need only to decide if a set of perpendicular chords is em-

beddable into the two faces Q and ff of the Möbius band (see Figure 8.1).

Perpendicular chords u¿u¡ incident on the vertex u¿ àre considered in de-

creasing order of index ¿ : p,p - 1, . . . ,1. We assume the adjacency list

of. u¿, Ad,jLi,st(u¿) : {u¿r,'tlizt...,u¿r}, is ordered in increasing order of in-

dices z1 1 i.z 1

vertexinthe adjacency list of ui,i:P, P- 1, ...,1. We embedthechords

't)¿'tL¿r,'t)¿'tl¿",. . . ,'ui'ttri¡ incident to vertex u¿ by considering them one by one.

134

By Lemma 7.4(i), any two disjoint perpendicular chords that cross in one face

of the Möbius band do not cross in the other. To decide on the embedding

of chord u¿tl¡, we consider the next disjoint chord closest to u¿u¡ defined as

follows.

Definition 8.1 Let a¿u¡ be a perpendicular chord. Denote by u*u¡, the

perpendicular chord such that m 1 i, k + j, rn is the largest index for

which such a chord exists, and ,k is the smallest possible index. If such a

chord ?mufr exists, it is called the nert di,sjoi,nt chord closest to u¿u¡. De-

frne NertDi,sjPt(u¿u¡) ': 'u,rct if u*u¡ exists. If u*u¡ does not exist, define

NertDi,sjPt(a¿u¡) i:'tlq+tt where unal is a dummy vertex after uo.

Given an embedding of perpendicular chords u;u,a) r:'i-1t,...,p, in faces Q

and f/ of Figure 8.1, we denote by Hi,Ptq the vertex ?/r such that k : rnaï{Al

chord nrlt.y) t : dJ_7, . . . ,p, is embedded in Q). If the current chord to embed,

u¿u¡, haß j < k, it would cross a previously embedded chord in Q. Therefore

a¿u¡ can not be placed in the face Q.

Similarly, we denote by Hi,Pt¡1 the vertex ur such that k : m¿n{al chord

't)Í'u,sjr : i I !,. .. ,p, is embedded in I1). If the current chord to embed,

u¿u¡, haß j) m, it would cross a previously embedded chord in I/. Therefore

u¿u¡ carr not be placed in the face H.

The embedding algorithm places each chord a¿u¡,'i : p, p - 1, . . ., 1, into face

i35

Q or H according to the highest available point Hi,Ptq and Hi,Ptø in each face.

If. u¡ 2 HiPta and u¡ 1 Hi,Ptø, then chord u¿1r¡ can be placed in both faces

without crossing previously embedded chords. We consider NertDi,sjPt(u¿u¡)

and LastPerpPt(u¿) to decide on its embedding.

The auxiliary variables NertHiPt¡¡ and NertHi,Ptq are used to calculate

Hi,Ptn and Hi,Ptq at the next iteration of algorithm for vertex u¿-r.

Algorithm 8.7 Embedding Perpendicular Chords in the Möbius Band.

Input: A sequence of perpendi,cular chords for the Möbi,us band, AdjLi'st(u¿),

,i: p,p - 1,. . .,I, sorted i,n i,ncreasi,ng order of u¡, i : L,2,...,e

Output: An embeddi,ng of the chords, or "not possi'ble to embed"

(1) Initialization:

for each vertex 1)i, 'i : p,p - 1, . . . , 1, calculate LastPerpPt(u¿)

for each perpendicular chord u¿u¡ calculate NertDi'sjPt(u¿u¡)

Hi,Ptq: v,

Hi,Pt¡y :11n

(2) for every perpendicular chord u¿u¡

(in decreasing order of ¿ and increasing order of 7)

if u¡ < HiPta

cl¿ord u¿u¡ d,oes not fi,t i.n face Q

if u¡ > Hi,Ptu

136

chord u¿u¡ does not fit i,n face H

NonProject'iue: true

return

else

cltord u¿u¡ can be placed i,n face H

place u¿u¡ in the hexagon I/
NertHi,Pt¡1 : u¡

end if-else

else

chord u¿u¡ fits i,n face Q

if u¡ > Hi,Ptn

chord u¿u¡ does not fi,t in face H

place u¿u¡ in the quadragon Q

NertHi,Ptq : ut

else

a¿u¡ can be placed i,n both face H and Q

co ns'i der N ert D i,s j Pt (u ¿u ¡)

if u¡ > NertDi,sjPt(u¿u¡)

place u¡u¡ i,n the heragon

tt does not cross the nert di,sjoi,nt ch,ord i,n the heragon H

if LastPerpPt(u¿) > Hi,Ptu

the whole adjacency li,st of u¿ wi,il not fit i,n the heragon H

place u¡u¡ in the quadragon Q

r37

NertHi,Ptq: u,

else

the wltole adjacency li,st of u¿ wi,ll fi,t i,n the heragon H

place a¿u¡ in the hexagon -Fl

NertHi,Pt¡1 : ut

end if-else

else

we haue u¡ 1 N ertDi.s j Pt(u¿u¡)

place u¿u¡ i,n the quadragon Q

place u¿u¡ in the quadragon Q

NertHiPtq : ut

end if-else

end if-else

end if-else

update the hi.ghest auazlable poi,nts for faces Q and H

HiPtA: NertgiPtq

Hi,Ptn: Nert,HiPta

end for

Theorem 81 If there i,s an embeddzng of perpendzcular clt'ords i,n faces Q and

H of the Möbi.us band wi,thout cross'ing, then Algori'th'm 8.1 finds an embedding.

138

u*=NextDisj P(v¡u¡)

Figure 8.2: Configuration of perpendicular chords in the Möbius band

Proof . Referring to Algorithm 8.1, suppose we can embed chord u¿u¡ ínboth

faces Q and .I1 without crossing previously embedded chords. First, assume

NertDisjPt(u¿u¡) :'Ìtk) u¡ and u*u* is the next disjoint chord closest to

u¿u¡ (see Figure 8.2). So u¿u¡ andu*u¡, do not cross in face Q. Then any chord

us?r¿, crossinga¿u¡ from below in face Q, crosses u^'t-L¡ ãs well when embedded

simultaneously in face Q (see Figure 8.2). If u"?.r¿ is embedded in Q,Ihen u¿u¡

and u*u¡ must be embedded in face H and they cross in ll. Theref.ore u"u¿

must be embedded in fI to avoid u¿u¡ and u*u¡ crossing in ,F/. Just one of. u¿u¡

and u*u¡" can be embedded in //. Any perpendicular chord crossing u¿u¡ in

f.ace Q also would cross u-?-ú¡ in Q because't)*1r¡ is the disjoint perpendicular

chord next to z¿z¡. Therefore we place u¿u¡ in face Q.

The case N ertDi,s j Pt(u¿u¡) : lt k 1z¡ is symmetric in f.ace H . However if the

last chord from the adjacency list Ad;jList(u¿) of o¿ will not fit in the hexagon

.11, without loss of generality we place a¿u¡ irt the quadragon Q to have Hi,Pta

139

smaller for an embedding of the remaining chords. Otherwise we place a¿u¡ ir:t

the hexagon H by analogy with the previous case. r

8.1.2 Embedding Bundles in the Möbius Band

Algorithm 8.1 can be generalized to find an embedding for bundles of parallel

and perpendicular chords in the Möbius band. Each bundle corresponds to a

non-embeddable, 1-way or 2-way embeddable component of the conflict graph

M(H) of Section 7.3.2. Therefore we call the bundles non-embeddable,I-way

or 2-uay embeddable respectively.

For each bundle B, we can tell if it is a non-embeddable, 1-way or 2-way

embeddable bundle by testing for disjoint perpendicular chords in each part

of its bipartition. These are the internal properties of the bundle B and they

can be detected in a process of bundle construction as a bipartite component.

If we know the bundles information in advance, we could easily decide on their

embedding. For a 2-way bundle B, if it is possible, we embed the bundle to

minimize both high available points Hi,Pta and Hi,Ptu for the next iteration

of the algorithm. For example, if we embed the bundle of Figure 8.3 in the

other way, both Hi,Ptq and Hi,Ptu will be lower for the next iteration and

the perpendicular chords of the bundle would cross chord e' in both faces Q

and -Ël. Therefore we place the bundle as it is.

140

Figure 8.3: An optimal placement of a 2-way bundle

In the case when an optimal placement to minimize both HiPtç and Hi,Pts is

not possible, we consider the closest chord disjoint from a perpendicular chord

of the bundle and try to place the bundle to avoid an intersection with the

closest disjoint chord at the next iteration of the algorithm as in Algorithm

8.1.

The pure Hopcroft-Tarjan approach as in Chapter 3 does not assume that we

know the bundles in advance - we construct and manipulate them during the

embedding process. Therefore in this case \Me will need to know how to flip

the bundles and how to determine when this is possible.

Interchanging Two Stars of Perpendicular Chords

Algorithm 8.1 constructs an embedding of a set of perpendicular chords in the

Möbius band whenever such an embedding exists. However a set of perpen-

t47

dicular chords can admit several different embeddings in the Möbius band and

it can be necessary to add an embedding of parallel chords.

Having a simultaneous embedding of parallel and perpendicular chords in the

Möbius band, the chords are in bipartite bundles corresponding to the con-

nected components of the bipartite conflict graph. Since two perpendicu-

Iar chords are never in conflict, the bundles are glued together by parallel

chords. Without consideration of parallel chords, the embedding of perpen-

dicular chords obtained by Algorithm 8.1 can be different from the embedding

of the perpendicular chords in bundles. Therefore it can be necessary to mod-

ify the embedding of perpendicular chords of Algorithm 8.1 to add parallel

chords to the embedding without crossing.

Suppose we have an embedding of perpendicular chords in faces H and Q of

Figure 8.1. The vertices of side a1b2 are labelled in increasing order from ø1

to ô2, and the vertices of side a,2b1 are labelled in increasing order from a2 to

b1 (see Figure 8.1). The embedding of perpendicular chords is obtained after

traversing side a1b2 from uo : bz to'ut : a7. Let's assume that there is no

parallel chord having both endpoints on the side o,1b2 àrd each perpendicular

chord itself is a bundle. The algorithm has to traverse the other side brøz of

the Möbius band from us : bt to 'u4 : øz to decide if we can complete an

embedding with parallel chords having both endpoints on the side bpz. The

example of Figure 8.4 shows that it can be necessary to flip a perpendicular

chord from one face to another to add the parallel chords without crossing.

r42

uI 2

H

v2

e1

a

ut vl

o$,

Figure 8.4: Perpendicular chord e2 flipped by e1 viaparallel chords et,et'

Definition 8.2 A set of perpendicular chords having one endpoint in common

is called a perpendzcular star. The common endpoint is called íhe star center.

By Lemma 7.4, we can flip at most one perpendicular chord from any set of

disjoint perpendicular chords embedded in face Q. The same is true for any

set of disjoint perpendicular chords embedded in face fl. Since perpendicular

chords incident to the same vertex do not cross in either f.ace H or Q, we can

move at most one perpendicular star from face Q to face l/. The same holds

743

for perpendicular chords embedded in face fI.

Definition 8.3 For a perpendicular chord e : uiuj embedded in face Q, its

closest upper chord is a perpendicular chord et : 'uup'tluo embedded in the

other face -Ël such that uuo) 'u¿, 'uu, and uu, are the smallest possible (see

Figure 8.5). If such a chord does not exist, we put e' : 'tLq't)pir the closest

upper chord for e, where up+t is a dummy vertex right after to. Similarly, for

a perpendicular chord € : 't)¿'ì:L¡ embedded in face Q, its closest lower chord

is a perpendicular chord e't : '¿)¿o'tL¿o embedded in the other face .F/ such that

Lt¿o 1'u¿, u¿o â.nd 1r¿o à,re the biggest possible (see Figure 8.5). If such a chord

does not exist, we put e" : 'ttrr'uo the closest upper chord for e, where us is

a dummy vertex right before 41. Then the fl,i,p 'i,nterual for chord e : uiuj is

defined as lu¿o,ll¿o+rt. . . ,uup).

An initial flip interval for each perpendicular chord can be determined after

running Algorithm 8.1 or its analogue. The flip interval bounds can be saved

in an additional field for each perpendicular chord in the adjacency list.

If u¿o 1 Lr¡ 1 Ltur, then chord € : 't)¿'tl¡ can be flipped from face Q lo face H

without any problem. However if u¡ 1 't-L¿6 ot Lt¡) Ltu, then chord e in f.ace H

would cross its closest upper or lower chord respectively. In this case'ffe can

initiate flipping of a perpendicular star with center 'tJto,'utot'u,u.p or u,o from face

f/ to face Q to make the flip interval wider for e in -Il. For a perpendicular

744

Figure 8.5: The flip interval for chord e

chord placed in face H , we can similarly define its flip interval in face Q to flip

the chord from H to Q.

In summary, it can be necessary to move a perpendicular star from each face

of the Möbius band to add parallel chords to an embedding without crossing.

Moreover, moving a perpendicular star from a face of the Möbius band can

force moving another perpendicular star from the other face of the Möbius

band. The center of the last perpendicular star is defined by vertices like u¿o,

't)¿o, 1)up or uup of Figure 8.5.

Bundles in the Hopcroft-Tarjan Algorithm and in the Möbius Band

In the Hopcroft-Tarjan algorithm, the bundles are nested inside each other

forming a stack. The innermost bundle is on top of the stack. Chords of each

L45

Figure 8.6: Consecutive chords in a bundle

bundle form a set of consecutive chords on left and right sides of the DFS-cycle

or DFS-tree (see Figure 8.6).

When a chord utr is to be embedded, but conflicts with chords on both sides of

the DFS-cycle or DFS-tree, then there is a possibility of switching the chords

in the bundle to the other side that would permit chord uu to be embedded.

This is only possible if the conflicting chords on both sides are not in the same

bundle (see Figure 8.7).

After flipping chords of the innermost bundle, v/e merge the bundles containing

conflicting chords and add zu to this bundle. Again, the new bundle consists

of consecutive chords. Since the chords are always consecutive, we only need

to store the first and last chords of the bundle on each side of the DFS-tree.

Since switching the bundles can be done in constant time, the algorithm is

linear. These properties are important for the linear time complexity of the

I46

Figure 8.7: Flipping a bundle

Hopcroft-Tarjan algorithm and we can modify them to embed bundles in the

Möbius band.

In a Möbius band there are two types of chords: parallel and perpendicular.

Parallel chords behave exactly like chords in the Hopcroft-Tarjan algorithm.

They form bundles that can be switched from one face to the other in the

same v/ay.

However there is an interaction between parallel and perpendicular chords that

makes the algorithm mole complicated. It is convenient to consider bundles

that consist only of parallel chords first and then add perpendicular chords to

them. If there are two disjoint perpendicular chords of the bundle embedded

147

in the same face, then it is not possible to flip the bundle by Lemma 7.4.

Therefore to flip a bundle in the Möbius band, it is necessary that perpendic-

ular chords of the bundle embedded in either face of the Möbius band have

a common endpoint and form a perpendicular star. There can be a perpen-

dicular star of the bundle embedded in the hexagon and a perpendicular star

of the bundle embedded in the quadragon. There are four different cases of

perpendicular stars in a bundle that can occur corresponding to four distinct

combinations of two star centers (see Figure 8.8).

In the Möbius band bundles are not nested as in the Hopcroft-Tarjan Al-

gorithm. If the bundles are nested in the Möbius band, only the outermost

bundle can contain perpendicular chords, the inner bundles consist just of par-

allel chords, and it is possible to flip them as in the Hopcroft-Tarjan algorithm.

Therefore we will assume that we have a Möbius bundle containing at least

one perpendicular chord.

When we are trying to embed a parallel chord uu, if the chord uu must cross

two disjoint perpendicular chords, then it is a forced chord, and we must embed

zr.r in one face and the disjoint perpendicular chords in the other face without

crossing. Therefore rve assume that uu crosses one oI more perpendicular

chords that form a perpendicular star in a bundle.

If uu were to cross chords of the same bundle in the hexagon and quadragon,

then flipping of the bundle would not help and we could not add uu to the em-

148

uq+ vr=92 2

)
a

H
:

u

(

(

H

Figure 8.8: Four combinations of perpendicular stars in a bundle

749

bedding without crossing. Therefore the chords that uu crosses in the hexagon

and quadragon are in different bundles. This is similar to the Hopcrof-Tarjan

Algorithm. Then either ?^¿u crosses two perpendicular chords, or else a perpen-

dicular and a parallel chord (see Figure 8.9). If vertex z is within a bundle,

then we try to flip the bundle that contains t"l. If flipping the bundle that con-

tains z is not possible without crossing, then we try to flip bundles that are

the nearest to the bundle of z. It is possible to move just one perpendicular

star out of each face of the Möbius band. As soon as we know the centers of

two perpendicular stars that we need and can move from each face, the per-

pendicular chords that are not in the two perpendicular stars become fixed.

Then it may become possible to embed other parallel chords without crossing

or flipping any perpendicular chord not in the two perpendicular stars.

Consider flipping a perpendicular star with center A and possibly a perpen-

dicular star with center B (see Figure 8.9). When the perpendicular chords

incident to ,4 are moved to the hexagon, they can cross the perpendicular

chords immediately preceding the chords incident to B and those immediately

following the chords incident to B. We look at the perpendicular chords imme-

diately preceding and following the perpendicular star with center B to check

if they would cross the perpendicular star with center l, in the hexagon. If

moving the perpendicular star with center ,4. into the hexagon does not create

any crossing, then the star with center ,4 is moved into the hexagon and we

proceed similarly with the star having center B. If there are conflicts, they

must not be with two disioint perpendicular chords. The only allowed con-

150

uo=bt

,þ,uþ

Figure 8.9: Plipping bundles to embed a parallel chord

151

H

I
a

u

2

H a
l¡

I

flicts are with a perpendicular star, and then we need to move the conflicting

perpendicular star too. This allows us to embed the chord uu. After flipping

the two perpendicular stars, all the other perpendicular chords become rigid

and it may become possible to complete the embedding without flipping any

perpendicular chord.

Since chords in a perpendicular star are consecutive, flipping a perpendicular

star takes a constant number of steps. It is necessary to knowjust the first and

last chord of the star. The parallel chords in the bundle are also consecutive.

If a bundle becomes rigid, we need to mark every chord in it as a rigid. This

can happen at most once for each chord. This provides a linear running time

for the entire algorithm.

8.2 Algorithm Given a Spanning TKs,s

8.2.L Data Structures

The graph G is represented by its adjacency list. Each edge of a linked list is

marked either as an edge of TKsp or as a chord of.TKsp. The six vertices of

TKs,s are marked as corner-s, the other vertices of.TKsp are marked as inner

vertices. For each chord e e G\ETKs,s in the linked list, we store its /ace

'inder set, the set of faces in which e caî be embedded. The face index is

752

stored as a field for each entry of the linked list.

For each f.ace F¿, 'i : 0,I,2,3, we will use a linked list of chords to indi

cate the embedding of chords in the face as in the Hopcroft-Tarjan algorithm

of Chapter 3. Thus we have four linked lists Face\Chords (the hexagon),

FacelChords, Face2Chords, and FaceSChords (the quadragons). As the

side between faces,fl and Fi, i I j, i,j:0,1,2,3, is traversed, the infor-

mation from the Face'iChords linked list and FacejChords linked list is used

later by the other sides on the face boundaries.

For bundles of quadragon chords, and parallel and perpendicular Möbius

chords, a bundle stack is used to keep information about the bundles and

their flips. A bundle is said tobe f,red if it can not be flipped. Then all the

chords in the same bundle are forced. Therefore the forced chords will appear

as fixed bundles of quadragon chords in the QuadragonPath procedure and as

fixed bundles of parallel and perpendicular chords in Mobi'usPaúå, procedure.

8.2.2 DFS-numbering of the K3,3-subdivision

\Me start with a Ks,s-subdivision TK3,3. We are considering the case where

TKs¡ is spanning. TKs,s divides the projective plane into four faces - three

quadragons and a hexagon. The faces interact through their common bound-

aries - the sides of the TKs,s.

153

With the plane, there was a cycle C with two faces - the inside and outside.

A sequential numbering of C which extends to a DFS-numbering of all of G

is used to place the chords either inside C or outside C.

Now there is a spanning TKs,s instead of C, and four faces instead of two.

However it is possible to treat the faces by considering them in pairs. We need

a numbering of. TKsS that will extend to a DFS-numbering of all of G.

Consider the numbering schematically presented in Figure 8.10. Let the cor-

ners of TKs,s be ø1, a2,as ã\db1,b2,bs. Denote a closed side of the TKs,s as

lor,btl, indicating that the corners o,2 and b3 are included in the side. Denote

an open side as (br, or), indicating the inner vertices of the path. Start at o2

and number it 1. Then number the vertices of. T Kz,s by taking the sides in the

following sequence: ïor,btl, (bs,øs), (or,br), [ot,br], (as,bz), (bt,ot), lot,br),

(ot,bs), (bz,az). It can be verifred that every vertex of.TKz,s is numbered,

and that the corners are labelled once only, and in the correct sequence. No-

tice that this defines an ordering of the sides of T Kzp as nine directed paths

pt,pz,. . .,pg. The inner vertices of each path p¿ have numbers less than the

vertices of any path p¡, when 7) i, i, j :7,2,...,9.

Lemma 8.1- With the numberzng of Fi,gure 8.10, the uert'ices of the faci,al

boundaries of the three quadragons are numbered'in i'ncreasi'ng order.

Proof . Consider the DFS-numbering of Figure 8.10. The boundaries of the

t54

Figure 8.10: DFS-ordering of sides and face labelling of TKs,s

quadragons have the numbering shown in Figure 8.11. r

Having numbered the vertices of. T Ks,s, we then traverse the sides of T Ks,s, in

reverse order by decreasing DFS-numbers, exactly as the cycle C was traversed

in reverse order by the DFS in Section 3.4, and assign a low point to each

chord. In the case of a spanning TKs,s, the low points are DFS-numbers of

the adjacent vertices. We also order the adjacency lists of each vertex in order

of increasing DFS-number. (We will come to the non-spanning case later.) We

also determine which faces of theTKs3 each chord may be embedded in, and

store this as a field in the adjacency lists.

We can determine the allowed faces for each chord in terms of the subscript

numbers of the sides a¿b¡, i, j : I,2,3,by using Proposition 7.I and the face

155

5

ã3

Pz

b3

Pr

'ã2

Figure 8.11: DFS-ordering of the quadragon facial boundaries

Iabelling of Figure 7.4. If we detect a O-face chord, the embedding is not

possible.

We are norü/ ready to embed the chords. Notice that there are tv/o kinds of

sides in TKs,s - sides separating two quadragons and the Möbius band sides.

Accordingly we have two procedtres QuadragonPath) and Mobi'usPath) f.or

embedding chords with an endpoint in one of these sides. We call quadragon

paths the sides separating pairs of quadragons and Möbi'us paths the Möbius

band sides.

8.2.3 The Quadragon Paths

While embedding chords on a quadragon path, there is a quadragon on each

side of the path. Both quadragons have a DFS-numbering of their facial

Fr

156

t6

b,

)4

à1

)2

b

7

ar

6

b1

boundaries as in Figure 8.11. Therefore they can be treated exactly as in

the Hopcroft-Tarjan algorithm. To determine if a chord uu frhs inside a face,

we need only compare DFNurnfz] with the chord currently at the head of the

Iisi of chords for that face.

Algorithm 8.2 Procedure Quadr ag on P ath(a¿, b¿, F ace|, F ace2) (embeddi,ng

chords inczdent to a quadragon si,de a¿b¿, 'i: 1,2,3)

Follow the quadragon path from a¿ to b¿, embeddi,ng each ch,ord wi'th

an endpo'int in thi,s path. Facel i,s to the "\eft" of the path,,

Face2 i,s to tlte "r'ight"

U:O,i

while (true)

for each z adjacent to u do

uu'is a chord. Ei,th,er u'is aboue u i,n theTK\s, or beLow;

thzs can be detected by cornpari.ng DFS-numbers

if (z is above u in TKs3) goto L1; tlte adj li,sts are ordered

if (uu is an edge of. TK33) goto L2; uu 'is not a cltord i'n thi's case

otherw'ise uu 'is a chord wi,th u below u i,n tl¿e TKs,s DFS-labelli'ng

F acelO K : tru,ê, if. uu's allowed faces include FaceI

Face2OK : tru,€t if uu's allowed faces includes Face2

if (FacelOK)

ua nLaA fit in Face|

r57

if (DFNum[u] fits inside Facel)

place uu inside Facel

else if (Face2OK)

ua may frt in Face2

if (DFNum[z] fits inside Face2)

place uu inside Face2

else

uu 'is compati,ble wi,th, Facel and Face2,

but does not fit i,nsi,de ei,ther;

try swi,tching si,des

¡ç : Quadr ag onS witchF aces (u, u, F aceI, F ace2)

if(k:0)
swi,tch,i,ng faces does not help

NonProject'iue: true

return

end if
otherwzse swztclting faces made i't possible to embed uu

if (k : 1) place zu inside Facel

else place zo inside Face2

end if Face2OK

otherw'ise uu 'is 'incompati,ble wi,th, Face2, and wi'll not fit i'nsi,de Facel;

there i,s sti,ll a possi.bi,li,ty tltat i,t wi,Il fit i'n th'e heragon i'f u i's 0' corner

if (Facel is the only allowed face f.or uu)

158

NonProjectiue: true

return

end if
otÌterwi,se thi,s frond wi,ll be conszdered later by MobiusPath0

remove Facel from z¿,'s allowed faces

end if FaceTOK

else if (Face2OK)

uu 'is not compati,ble with Facel, but may fi't in Face2

if (DFNum[z] fits inside Face2)

place uu inside Face2

else

uu wi,ll not fit znsi,de Face2. Tltere i,s sti,ll a possi.bi.Iity that i,t wi,ll fit
i,n the heragon i,f u i,s a corner

if (Face2 is the only allowed face f.or uu)

NonProject'iue : true

return

end if
otherwi,se thi,s frond wi,ll be consi,dered later by Mobi'usPath)

remove Face2 from uu's allowed faces

end if-else

end if Face2OK

L2: go to the nert u

end for

159

LI: prepare for the nert u i,n the path

if (u : b¿) return all uerttces of a¿b¿ done

u : rreXt vertex in the path

end while

end QuadragonPath

This procedure works very much like the Hopcroft-Tarjan embedding algo-

rithm, except that we must indicate in which faces we are embedding the

chords. it works because by Lemma 8.1 the facial boundaries of the quadrag-

ons are ordered by increasing DFS-numbers, and because the adjacency lists

are ordered by the DFS-numbering.

We must always check each chord zu to see if it is compatible wilh Facel or

Face2 before embedding it. As before we have a linked list of chords for each

face. Quadragonswi.tchFacesQ works very much Iike Swi'tchSi'des} of the

Hopcroft-Tarjan algorithm except that there are more faces to consider' A

stack of bundles of chords is required to indicate the chords which are grouped

together. A bundle may be fixed by a l-face or forced chord to become a

bundle of forced quadragon chords.

160

'lPt
ar

Pt
aì
p I

I

I

I

\

8.2.4

Figure 8.12: DFS-ordering of the hexagon facial boundary

The Möbius Paths

Mobi,usPathQ is more complicated than QuadragonPath). The reason is

that the hexagon boundary is not ordered by increasing DFS-numbers. This is

simply not possible if the ordering of the quadragon boundaries are increasing,

because the projective plane is an unoriented surface. However, we do have

an ordering of the hexagon's facial boundary with interesting properties. The

boundary of the hexagon is shown in Figure 8.12.

Lemma 8.2 Giuen the DFS-numberi,ng of TKsp of Fi,gure 8.10, the heragon

boundary cons'ists of paths of TKs,s talcen i,n order of increas'ing subscri,pt i'n-

der, i.e. pt, ps, p¿, Pst Pz, Pe. The paths of TKs,s are followed alternately

161

P¡

Pr
a2

\

accordi,ng to decreasing and tÌten increasi,ng DFS-numbers, as ue follow

heragon boundary from the root uerter bz to i,ts leaf on the path ps.

Proof . See Figures 8.10 and 8.12.

Definition 8.4 We say that a path on which the DFS-numbers increase as we

follow the path clockwise on the hexagon boundary is a forward path. A path

in which the DFS-numbers decrease as we follow it clockwise on the hexagon

boundary is a reuersed path,.

The algorithm needs to know which type of path it is following.

Algorithm 8.3 Procedure M obius P ath(b¿, a¡, F acel, i,s Reuer sed) :

embed tlte chords i,nci,dent on a heragon si,de b¿a¡, 'i, j :7,2,3, i, + j

Follow the Möbi,us path, from b¿ to a¡, embedding each chord wi,th an endpoi,nt

i,n thi,s path. i,s&euersed 'is true i,f thi,s 'is a reuersed path. FaceT (a quadragon)

i,s to the "left' of the path, Face2 (: F0, the heragon) r's always to the "r'ight".

We always try to embed a chord i,n the quadragon Facel before th'e h'eragon.

We follow th,e path i,n order of decreasi,ng DFS-numbers.

In Facel (a quadragon), this wi,ll be the usual order of th'e faci'al boundary;

i,n Face2 (the heragon), thi,s wi,ll be tlte alternati,ng heragon order.

Th'is means that from the poi,nt of ui,ew of the heragon, ue rnaA be ascendi,ng

the

r62

along the faci,al boundary, or descend'ing.

u:b¡
Face2: F0

while (true)

for each z adjacent to u do

uu 'is a chord. If i,t has already been embedded,

we can 'ignore 'it, and proceed to the nert u

if (z has been embedded) goto L7; the adjacency li,sts are ordered

if (uu is an edge of TK3,s) goto L2; uu 'is not a chord i'n thi's case

otherwi,se uu 'is a chord wi,th u below u i,n the TKs,s DFS-labelli'ng

FaceIOK : tru,€t if uu's allowed faces include Facel

Face2OK : tru,€¡ 1f. uu's allowed faces include Face2

if (FacelOK)

uu rnay fi,t i,n Face|

if (DFNum[u] fits inside FaceI)

place uu inside Facel

else if (Face2OK)

uu rnaA fit i,nside the heragon

if (I sC ompati,ble(u, u))

place uu inside Face2

else

uu i,s allowed i,n Facel and Face2,

but i,t does not f,t inside ei,ther. Try swi'tch'i'ng faces.

163

k : M obi,us SwitchF aces(u, u, F acel)

if(k:0)
Switching faces does not help.

NonProject'iue: true

return

end if
Otherwzse sui,tch,i,ng faces made i,t possi,ble to embeduu.

if (k : 1) place zu inside FaceT

else place trø inside Face2

end if Face2OK

Otherwzse uu 'is not allowed'in Face2, and wi'il not fit i,nsi'de Face7.

There i,s sti.ll a possi,bi,li,ty that i.t will fi,t i,nto another quadragon,

i,fui,sacorner.

if (FaceI is the only allowed face for uu)

NonProject'iue: true

return

end if
otherwi,se thi,s cltord wi,II be cons'idered later by QuadragonPath)

remove FaceL from uo's allowed faces

end if FaceIOK

else if (Face2OK)

uu 'is not allowed'in Facel, but may fit i'n Face2

if (I sC ompati,ble(u, u))

164

place uu inside Face2

else

uu wzII not fi,t i,nsi,de Face2. There is sti'll a possi'bi,li'ty that

i,t wi,ll fit i,n a quadragon i,f u i,s a corner

if (Face2 is the only allowed face for zu)

NonProject'iae: true

return

end if
otherw'ise thi,s frond wi,ll be consi,dered later by QuadragonPath)

remove Face2 ftom zu's allowed faces

end if-else

end if Face2OK

L2: go to the nert u

end for

Ll: prepare for the nert u i,n the path,

if (u : ai) return aII uerti,ces of b¿a¡ done

?J : next vertex in the path

end while

end Mobi,usPath

Mobi.usPatåQ must be coded separately from QuadragonPath0 because of

the hexagon boundary order. A procedure IsCompatible(u,a) is used to de-

165

termine whether a chord ua can be placed in the hexagon. It must determine

whether z and u are in forward or reversed paths of the hexagon boundary,

and decide on how to compare uu with the chord currently at the head of

Face\Fronds, the list of chords embedded in the hexagon. Then it decides

whether the chord will fit into the hexagon. The handling of the linked lists

of bundles of chords is also different f.or MobiusPath), because sometimes we

are ascending the facial boundary, and sometimes descending.

If a chord does not fit into the hexagon, then we call Mobi,usSwitchFaces).

This is where a bundle of one or more chords may be switched between the

hexagon and its adjacent quadragon. Section 8.1 explains how to decide on an

embedding of parallel and perpendicular chords into the Möbius band in more

detail. The algorithms of Section 8.1 must be inserted into the MobiusPath0

procedure.

8.2.5 Möbius Bands and the General Algorithm

Proposition 7.2 and Corollary 7.1 simplify the embedding along the Möbius

paths by reduction to the special cases. In general case, \ile nn Mobi'usPath)

procedures assuming at most one non-fl.at embeddable Möbius band. Other-

wise the general case run of the algorithm will determine the number of non-flat

Möbius bands and their common cor-ners in case of a pair of corner-compatible

Möbius bands. If all the Möbius bands are flat or only one is non-flat and

166

embeddable, we obtain an embedding.

If there are three non-flat Möbius bands, we try two cases of the diagonal com-

patible bands by making the diagonals uniquely embeddable in the hexagon,

and all the other perpendicular chords, uniquely embeddable in the corre-

sponding quadragons. If there are two non-flat Möbius bands, we try two

cases of the corner compatible bands by making the perpendicular chords not

incident on the corresponding corner uniquely embeddable in the quadragons.

Finally, if we have just one non-flat Möbius band, the first run of the algorithm

will provide an embedding, if one exists. The general embedding algorithm

can now be described as follows.

Algorithm 8.4 Gi.uen a spanni,ng TKs,s, embed i,ts chords i'n the projecti'ue

plane

(1) Construct the DFS-numbering of TKs,s

(2) Assign the allowed faces for each chord

if (NonProjecti,ue) return tl¿ere was a }-face ch'ord

Now follow the paths of TKs,s'in reuerse order, embeddi'ng ch'ords as we go

(3) QuadragonPath(az,bz, Ft, ft) path ps

if (N onPr oj ectiu e) return

(4) Mobi,usPath(fu,a!, F2, f alse) path ps

if (N onPr oj ecti.u e) return

(5) M obi,us P ath(b2, at, Fs, true) path p7

167

if (N onP r o j ec-ti.u e) return

(6) QuadragonPath(at,bt, F2, Fs) path p6

if (N onPr oj ectiue) return

(7) MobiusPath(b2,az, Fr, f alse) path p5

if (N onPr oj ecti.u e) return

(8) M obius P ath(fu , as, F2, true) path pa

if (N onPr oj ecti.ue) return

(9) Mobi.usPath(\,a2, Fs, f alse) path ps

if (N onPr oj ectiue) return

(LO) QuadragonPath(as,bs, Ft, Fz) path p2

if (N onPr oj ecti,u e) return

(LL) M obius P ath(fu , az, Ft,true) path p1

if (N onProj ecti.ue) return

The embeddi,ng i,s now complete

(12) Calculate a rotation system

return

8.2.6 Assigning a Rotation System to the Embedding

\Mhen Algorithm 8.4 completes an embedding of.TK3,s to an embedding of the

whole graph G on the projective plane, we still need to calculate a rotation sys-

168

Figure 8.13: The embedding of.TKs,s used to calculate a rotation system

tem of the embedding. We know the assignment of chords to faces of. TK3,s.

The cyclically ordered adjacency lists for an embedding of G can be con-

structed from the labelled embedding of TKs,s, and the assignment of chords to

the faces. Also we can use the information from the linked lists Føce0Chords,

FaceIChords, Face2Chords and FaceSChords calculated during the previ-

ous computations.

A rotation system for a projective planar embedding requires assigning a sig-

nature of "+1" or "-1" to each edge of the embedding. The value of "-1" is

assigned to the edges crossing the projective plane boundary. AII the remain-

ing edges are assigned the value of "-l1".

The embedding of Figure 8.13 is used to assign signature values to the edges of

an embedding. This embedding of.TKw is a continuous transformation of the

169

embedding of Figure 7.2 used by the algorithm. The value of "-1" is assigned

to perpendicular chords of the Möbius bands embedded in the quadragons and

to the 1-face chords having endpoints on the opposite quadragon sides a¿ö¿ and

a¡b¡, ,i, j : \,2,3, 'i + j, or on the quadragon sides incident to the same corner

o,i,'i, : I,2,3. In Figure 8.13, only the quadragons are separated into two parts

by the projective plane boundary on their diagonal with respect to a pair of

opposite corners. Therefore the only chords that must cross the projective

plane boundary will be embedded in a quadragon and have endpoints on the

quadragon opposite or corresponding adjacent sides. All other chords can be

drawn without crossing the boundary and are assigned the value of "+1".

8.3 Generalization for a Non-Spanning TKs,s

The case of a non-spanning TKs,s is a reasonably straight-forward extension

of the spanning case. We first assign the DFS-numbering of the TK3,s ex-

actly as in the spanning case. Then we follow the paths of the TK3,s, in

reverse order. While visiting a vertex u, if we encounter a vertex u which

is not part of the TKs3 and that has not been numbered, we call a recur-

sive procedure LowPtDFS} at vertex ,r^l. LowPtDFS(z) proceeds exactly

as in the Hopcroft-Tarjan algorithm. The entire DFS-tree constructed by

LowPtDFS(z) must fit inside one face of the TKz,s. We calculate the allowed

faces for this tree as LowPtDFS(u) proceeds by checking the attachments of

170

each tree leaf, and store the tree's allowed faces in the adjacency list of z when

LouPtDF^9(z) returns. Thus we can treat the entire tree tecursively as a

chord at ø. When we have followed all nine paths of. TK3,s, the entire graph

G has been numbered, and the allowed faces have been calculated for every

chord and DFS-tree which attaches to the TKs,s.

Then the algorithm proceeds to embed the chords and back edges in the linked

lists. The same sequence of calls to QuadragonPath) and Mob'iusPath0

as in Algorithm 8.4 above will embed the graph. The only change is that

we must add some additional statements to each of. QuadragonPath0 and

MobiusPath0. The additional statements f.or QuadragonPath) are as fol-

lows. The statements for Mobi.usPath) are similar.

Algorithm 8.5 Ertensi,on of QuadragonPath} procedure for non-spann'ing

TKs,s

for each z adjacent to u do

if (z has not been visited)

u zs the root of a DFS-treeT attachi,ng to theTKs,s.

FaceTOK:tru,€t if ? is allowed in FaceI

Face2OK :tru,e, if 7 is allowed in Face2

if (FaceTOK)

EmbedBranch(u, Facel)

if (successful) goto L2;

777

Otherwi,se try Face2

if (Face2OK)

EmbedBranch(u, Face2)

if (successful) goto L2;

Otherui,seT wi,il not fit insi,de Face2. TYy swi'tchi'ng faces.

þ : Quadr agonswitchF aces(u, u, F ace7, F ace2) ;

if(k:0)
NonProject'iue: true

return

end if
if (k : I) Embed,Branch(u, Facel)

else EmbedB r anch(u, F ace2)

end if Face2OK

Otherwi,seT i,s not allowed in Face2, and wi'il not fit i'nsi'de Face|.

There i,s sti,ll a possi.bi,h,ty that i,t wi'll fi't i'nto the heragon

i,f u i,s a corner.

if (Facel is the only allowed face for 7)

NonProject'iue: true

return

end if
Otlterwzse T will be cons'idered later by Mobi'usPath).

remove Facel from ?'s allowed faces

end if FaceIOK

172

else if (Face2OK)

EmbedÛranch(u, Face2)

if (successful) goto L2;

Otherwi,se T i,s not allowed in Face2, and wi'll not fit i'nsi'de.

There i,s sti,il a possi,bili.ty that i,t wi,Il fit i,nto the heragon

i,f u i,s a corner.

if (Face2 is the only allowed face for 7)

NonProject'iue: true

return

end if
Otherwi,se T wiII be cons'idered later by Mobi'usPath0.

remove Face2 from 7's allowed faces

end if Face2OK

Otherwi,se T will be cons'idered later by MobiusPath).

else

uu'is a chord of TK3p. Preu'ious code to embed

cltords at uerter u by QuadragonPath0 goes h'ere.

end if-else

L2: go to the nert u

end for

173

The procedve EmbedBranch(u, Face) is similar to the procedure used for the

plane. It follows a DFS-tree to a leaf node, finds the initial cycle C, and then

returns along the tree as the recursion unwinds, and places chords in one of two

linked lists, one for the inside of C, the other for the outside. All fronds must

fit inside the given face of TKs,s. The alternating hexagon boundary DFS-

ordering must be used to embed a branch in the hexagon. The implementation

can be simplified by storing an additional array HeragonNumlul, giving a

consecutive numbering of the vertices on the hexagon boundary.

8.4 Analysis and Complexity of the Algorithm

A final algorithm can be constructed from Algorithms 8.1-8.3 and 8.5 for all

cases of flat, compatible and unmatchable Möbius bands. It can be done

similar to Algorithm 8.4. The two possible cases of three matched diagonal

compatible Möbius bands, and two possible cases of two matched corner com-

patible Möbius bands can be programmed separately. The entire algorithm

treats the case of three flat Möbius bands, and the case of two flat and one

unmatchable Möbius bands before the special cases.

The algorithm is similar to the Hopcroft-Tarjan planarity algorithm of Chapter

174

3. It consists of a constant number of DFS procedures. Each DFS procedure

runs in linear time.

The algorithm considers in turn all six labelled embeddings of TKe,s from Sec-

tion7.2.I. The DFS-numbering of TKs3 and DFS-tree generation in G\TK3,3

require O(n+ rn) operations. The embedding part uses information about

edges of G not in TKz,s and not in the spanning DFS-trees of G\TKs,s. it

consists of a sequence of linked list manipulations, adding or deleting infor-

mation from the adjacency lists fields. The adding or deleting of an element

requires a constant time. The total number of entries in the linked lists is

O(n + m). Therefore the entire algorithm runs in O(n + m) time. Since

m 13n - 3 for a projective planar graph, the algorithm requires O(n) opera-

tions. Since we use a constant number of fields for each entry of the adjacency

list, the memory storage is also O(").

The algorithm can be followed by a procedure to convert the linked lists

Facei,Chord,s, 'i : 0,7,2,3, to a rotation system for an actual embedding

of the graph as described in Section 8.3.6.

Since we have to check all six labelled embeddings of.TKs,s to tell if a graph

G is non-projective planar, the algorithm can be difficult to modify to find

a minimal non-projective planar subgraph in G. In addition, a distinct non-

projective planar obstruction can apped for each labelled embedding of.TKs,s'

175

L(Petersen)

3

Figure 8.14: The line graph of the Petersen graph

8.5 Examples

The program implementing this algorithm is currently in the debugging phase.

One example in which it embedded the line graph of the Petersen graph is

illustrated.

Figure 8.14 shows the line graph of the Petersen graph. This is a 4-regular

graph with fifteen vertices and thirty edges. The Ks,s-subdivision is shown by

bold lines, the chords of.TK3,s are shown by thin lines. The corners of TKs,s

are labelled aL:7,a2: I},øs : 8 and br :4,b2:72,bs: 13.

The program tried to complete all six labelled embeddings of the Ks,¡-subdivision

with twelve chords. Three labelled embeddings of 7K3,3 had a 0-face chord

176

br:rã

Figure 8.15: A projective planar embedding example

and therefore were rejected by the program.

Two embeddings of TKs,s gave actual embeddings of the line graph of the Pe-

tersen graph on the projective plane. The embeddings are shown in Figure 8.15

and Figure 8.16.

Finally, one labelled embedding had both embeddings of the 2-f.ace chord with

endpoints 11 and 13 crossed by l-face chords in two corresponding quadragons

as in Figure 8.17.

777

br:a
6

5

Figure 8.16: A projective planar embedding example

Ft2
5
?

-Ílr: I

bz=r

íl,3=

6

Figure 8.17: Non-projective configuration example

778

Chapter I

Torus Embeddings of Graphs

Containing Ks-Subdivisions

In this chapter, we describe a partial algorithm to embed graphs in the torus.

The algorithm checks if a graph G containing a K5-subdivision is toroidal or if

it contains a Ks,s-subdivision. The algorithm has linear time complexity and

is similar to the algorithm for the projective plane presented in Section 7.7. It

can be implemented in a straightforward way to return an actual embedding

of the graph.

779

_1 F

E2

E6

Figure 9.1: The embeddings of K5 on the torus

9.1 Embedding Ks-Subdivisions on the Torus

and Planar Side Components

We begin with the six embeddings of K5 on the torus, shown as Ey,. . ., Ee

in Figure 9.1. Some embeddings have one face whose boundary contains a

repeated vertex or repeated edge. Such a face is labelled .t' in the diagram.

Vertices which are repeated on the boundary of .F are shaded black. Repeated

edges are drawn with thicker lines.

i80

Let G be a non-planar graph with a Ks-subdivision ?K5 and no short cut or

3-corner vertex of TK5 in G. Notice that aside component of TK5 in G can

contain a subdivision of K3,3. Therefore G can contain aTKs3 as well. The

following propositions and theorem provide a characterization of toroidality

for such graphs.

Proposition 9.1- Let G be a2-connected non-planar graph with a Ks-subdivision

TKs and no short cut or3-corner vertex of TKs in G. If G is toroidal, then

at most one augmented side component of TK5 is non-planar.

Proof . Let G be embedded on the torus. Consider the embeddings of K5 on

the torus Et,. ..,86 of Figure 9.I. TKs must be embedded in one of these

configurations. Lel, H be any side component with corners ¿ and b. The

vertices of f/ cannot be adjacent to any part of TKs, except those vertices

on the {a, b}-side. We show that either H + o,b is planar, or else all other

augmented side components are planar.

Case 1. TK5 is embedded as E1 or E3 of Figure 9.1.

.Ð1 and .Ð3 have the property that each vertex appears at most once on the

boundary of any face. A side {4, b} appears on the common boundary of two

faces, say J¡r and Fz. Vertices ø and b may also appear as non-consecutive

vertices on the boundary of a third face. We proceed as in Theorem 7.1. Any

portion of 11 embedded in a third face can be moved to F1 or F2, so that H

181

Figure 9.2: A face with one repeated vertex

can always be embedded in an open disk contained in .Fr U f!, with a and b

on the outer face of ,11. Lemma 6.1 implies that H + ab is planar.

Case 2. TK5 is embedded as ,Ðo of Figure 9.1.

The boundary of the face F contains one vertex repeated twice as in Figure 9.2.

Without loss of generality, we can assume that ¿ is the repeated corner, and b

is adjacent to ¿ on the boundary of .F. Otherwise H + ab would be planar, as

in Case 1. Let C be a part of fl embedded in the interior of ,t'. Let a1 and o'2

be the two occurrences of a on the boundary of F, and let ø1 be adjacent to b

on the facial foundary. The edges from a2 to vertices u € C can be replaced by

edges from al to u, as indicated in the diagram. This gives a planar embedding

of .[/ with ø and ô on the outer face. Hence H + ab is planar.

Case 3. TK5 is embedded as Ea of. Figure 9.1.

182

Figure 9.3: A face with two repeated vertices

The boundary of the face F of. Ea has two vertices repeated twice as in Fig-

ure 9.3. Without loss of generality, v¡e can take one of them to be ¿. Let its

two occurrences on the facial boundary be a1 and a2. If b is not the other

repeated corner) rve can proceed as in Case 2 and H * ab is planar. Hence,

we can assume that b is also repeated. Let its two occutrences be b1 and b2,

where b1 is adjacent to ø1 on the facial boundary. Let C be the portion of

-FI embedded inside F. Each of a2 and b2 must be adjacent to one or more

vertices of C, or else we can proceed as in Case 2, and H +ab is planar. Having

embedded C as shown in Figure 9.3, all faces of the embedding now have no

repeated vertices on their boundaries. Consequently, all remaining augmented

side components must be planar, as in Case 1. It follows that H + ab is the

only possible non-planar augmented side component.

Case 4. TKs is embedded as Es of Figure 9.1.

183

(Íi)

Figure 9.4: A face with three repeated vertices

The boundary of the face F of. Es has an edge and another vertex repeated

twice as in Figure 9.4. If just one corner of the side {4, b} is repeated twice on

the boundary of F, then it is equivalent to Case 2 and H * ab is planar. If both

corners ¿ and b are repeated twice on the boundary of F, but the side itself

appears just once (Figure 9.4(i)), we have a case similar to Case 3 and H + ab

is the only possible non-planar augmented side component in G. Suppose the

entire side {ø, b} appears twice on the boundary of. F, and H is embedded in

.F as in Figure 9.4(ii). Then we find that after embedding ,I/, any face of the

embedding has at most one repeated corner as in case 2. Consequently, there

can be at most one non-planar augmented side component H + ab.

Case 5. TKs is embedded as E2 of Figure 9.1.

The boundary of the face F of E2 has two edges repeated twice as in Figure 9'5.

If ¿ and ô are endpoints of a repeated edge as in Figure 9.5(ii), it is equivalent to

184

Figure 9.5: A face with four repeated vertices

Case 4 in Figure 9.4(ii). Otherwise we get the case of Figure 9.5(i) equivalent

to Case 3. In both cases, if. H + ab is non-planar, then all the other augmented

side components are planar.

Corollary g.L If G is toroidal, then there can be at most one non-planar side

component of TK5.

Proposition 9.2 If all the side components of TK5 in G are planar and at

most one of the augmented side componenús is non-planar, then G is toroidal.

Proof .If all the augmented side components are planar, then by Lemma 6.1

we can embed all the side components as planar graphs with two corners on

the outer face in any of the embeddings of TK5 on the torus.

Suppose one of the augmented side components of. TK5, say H * øb, is not

185

planar. Then it is not possible to embed the corresponding planar side compo-

nent f/ into an open disk with both corners ¿ and b on the boundary. However,

there are two embeddings of TK5 on the torus (82 and.Ð5 of Figure 9.1) with

a side appearing exactly twice on the boundary of a face. Denote such a face

by F. The face ,l¡ is indicated in the diagram of. Ez and E5 of Figure 9.1, and

a side which appears twice is drawn in bold. A face F with a side appearing

twice on its boundary defines a cylinder. We can create a cylindrical embed-

ding of the planar graph .Él as follows. Embed .EI on the sphere, and cut a

small open disk which touches ¿ from the interior of a face having ¿ on its

boundary, and cut another open disk which touches b from the interior of a

face having b on its boundary. This converts the sphere into a finite cylinder.

Now 11 contains an ab-path, namely the side {a,b} of TKs. Cut the cylinder

along this øÞpath to convert it into an open disk with a repeated øb-path on

its boundary. This cylindrical embedding of f/ can then be placed in the face

-F' of the 71(5 embedding E2 or .Ð5 of Figure 9.1. Any planar rotation system

of fI provides such a cylindrical embedding of the side component I/, and vice

versa.

Since all the other augmented side components of TK5 àre planar, by Lemma

6.1 any side component different from H can be embedded in an open disk

with both corners on the outer face. r

186

9.2

Figure 9.6: Non-toroidal graphs ¡6, ¡/2,
^/3

A Unique Non-Planar Side Component

We now consider graphs G with a non-planar side component of. TKs. Before

we give an equivalent of Theorem 7.1 for the totus, we show two families of

graphs which can be considered as combinations of two K5-subdivisions having

at most one side in common. One family is presented in Figure 9.6 and another

in Figure 9.7.

Lemma 9.1 -lüone of graphs Nt, Nz or N3 of Figure 9.6 can be embedded on

the torus.

Proof . Consider all embeddings of Ks on the torus (see Figure 9.1). Clearly,

it is not possible to embed a non-planar componenl K5 into an open disk'

187

Figure 9.7: Toroidal graph M

Therefore rve can not complete any of the embeddings of Figure 9.1 to graph

l[. Now to extend one of the embeddings of Figure 9. 1 to
^¡2

, it is necessary to

embed Ka into a face equivalent to an open disk and then add edges between

all vertices of K¿ and one corner on the boundary of the face. Since K¿ is

not outer-planar, it is not possible to do so without edge crossings. Therefore

l/2 is non-toroidal. Finally, to extend one of the embeddings of Figure 9.1 to

.ðy'3, we need to embed Ka into a face equivalent to an open disk and then add

edges between all four verticesof. Ka and two corners on the boundary of the

face. Since Ka is not outer-planar, it can not be done without edge crossings.

Therefore Nt, Nz and À/s are not toroidal. I

It can be seen that we can complete some of the embeddings of K5 on the

torus to an embedding of graph M of Figure 9.7. We must add a Ks into one

of the faces of an embedding of K5, and join each vertex of. Ks to two corners

of K5. This can be done in several ways (using Ez, E¿ ot E5 of Figure 9.1)'

Notice that any embedding of. M on the torus has similar properties to the

188

embeddings of K5 on the projective plane. We state them in the following

lemma.

Lemma 9.2 In any embedding of the graph M on the torus, every vertex of

M appears at most once on the boundary of any face of the embedding and

every edge of M is on the boundary of exactly two faces.

Proof . A proof of Lemma 9.2 is done by adding a triangle into a face of the

torus embeddings of. K5 (82, Etand.E5 of Figure 9.1) and all edges between

the triangle and two corners of. K5 in all possible ways. This cuts the face

F of the embeddings 82, Ea and Es of Figure 9.1 into smaller faces whose

boundary has no multiple appearance of vertices and edges. r

The graph M can be viewed as two K5's with one edge identified. Let TM be

a subdivision of. M. TM contains two Ks-subdivisions, TK'u and TK'{, wilh

one side in common. A corner of TM is a corner of any of the two ?Ks's' A

szde of.TM is a side of any of the TKs'* A vertex of TM is called i,nner if it

is an inner vertex in any of the TK5's.

Now suppose graph G has TM as a subgraph and there is no short cut or

3-corner vertex of any of two corresponding 7K5's of TM in G. Then TK'u is

contained in a side component of TK'! in G and vice versa. As in Proposition

6.2,let K be the set of corners of.TM. We define a side component of TM

r89

as a subgraph in G induced by a pair of corners ø and b of TK't or TK'{ in

TM and all connected components of G\K adjacent to a and b. Clearly, any

two side components of.TM can intersect just in the common corner of.TM if.

one exists. At augmented side component of TM is deflned as before. Clearly,

Lemma 6.1 holds as well for the side components of TM.

The next proposition provides an alternative proof of Corollary 9.1.

Proposition 9.3 If there is more than one non-planar side component of T K5

in G, then G is not toroidal.

Proof . Two side components each containing a subdivision of. Ks or K3,3 can

intersect in at most one vertex. Therefore G contains as a minor one of ly'1 ,

l/z of Figure 9.6 or one of the graphs of Figure 9.8. This covers all possible

combinations of K5 and Ks,s.

Similar reasoning to Lemma 9.1 shows that graphs
^/4,

¡y's, l/6 and I/z of

Figure 9.8 are not toroidal. It is not possible to embed Ks,s into an open disk.

This rules out -AI¿ and À/0. Consider ÀI5 and Nz as K3,3 or K5, respectively,

with one vertex adjacent to three independent vertices of. K2,s. K2,3 is not

outer-planar, yet must be embedded in an open disk. There is always one

vertex of a set of three independent vertices of K23 that cannot be joined to a

vertex on the boundary of the disk. Consequently, it is impossible to complete

an embedding of Kz,s to l/s or lfs to Nz. Thus G has a non-toroidal minor. I

190

X
w

N4

X
X

Figure 9.8: Non-toroidal graphs

Now let us assume that there is exactly one non-planar side component ,FI of

TK5in G. Denote the corresponding side of TK5by h and its corners by ø

and b. Suppose that.Él contains a lls-subdivision TKI and that there is no

short cut or 3-corner vertex of TK'uin G.

Theorem 9.L Let graph G have a Ks-subdivision TK5 with no short cut or

3-corner vertex in G. Let there be one non-pl.anar side component H of T Ks

which contains a Ks-subdivision TK'u with no short cut or 3-corner vertex in

G. Then G is toroidal if and only if T K5 and T K'5 have two common corners,

andTK5OTKI contains an M-subdivisionTM aLl of whose augmented side

components in G are planar.

191

Proof . First we prove the sufficient conditions. In any embedding of TM

on the torus, for each side of TM consftuct a planar embedding of its side

component with both corners on the outer face. By Lemma 6.1, there exists

such an embedding of a side component if and only if the augmented side

component is a planar graph. Clearly, we can embed every side component

independently to obtain an embedding of G.

Now we prove the necessary conditions. We consider all possible cases of

intersection of TK5 andTK'u in G. If TKsaTKt: Ø, then G has minor /y'1

of Figure 9.6 and G is not toroidal.

If.TK¡Àf KL I Ø,Iet ä be the side of TKs which is contained in a non-planar

side component 11, and let a andb be the corners of 1/. Denoteby r the vertex

of h n TKl closest to a on side h and by gr the vertex of h,ltZK{ closest to b

on side h. If. r: g/, then G has minor l/z of Figure 9.6, obtained by possibly

contracting the edges of a path, and so G is not toroidal. So, r f y.

Without loss of generality, suppose r I a. The following cases are possible.

1) r is an inner vertex on a side of TK'5.

If 3r is on the same side of TK'u as r, then G contains minor Ä/s of Figure 9.6

and G is not toroidal. Otherwise 3r is on a different side of TK's, and TK5

contains a short cut of TK't in G with endpoints r and A - a contradiction

since G has no short cut of TK5 or TK'u.

t92

2) r is a corner of T K'u.

If g is on the same side of TK'u as z, then G contains a minor t/s of Figure 9.6

and G is not toroidal. Otherwise 3l is on a different side of TK'u. Then 3t is an

inner vertex of T KI and T Ks contains a short cut of T K| in G with endpoints

r and E - a contradiction.

Hence r : o, and y : b. Now suppose r or A is an inner vertex of TK';. If r
and y are on the same side of TK's, we have a minor l/3 of Figure 9.6 in G and

G is not toroidal. If r and gr are on different sides of TK'u,then TKs contains

a short cut of TK', in G - a contradiction. Thus z and g are both corners of

rK'u'

Without loss of generality v/e can substitute the side h of TKs by the side

between ø and y in TK'u. Clearly, the substitution does not create any short

cut or 3-corner vertex of.TKs in G and it does not affect the side components

of. T K5 in G. On the other hand, T K5 and T K't now have a common side and

give us an M-subdivision TM in G. Clearly, Lemma 6.1 holds for the side

component s of T M in G too. By using Lemma 9.2, the same reasoning as in

Theorem 7.1 shows that an embedding of. TM on the torus can be extended

to G if and only if all the side components of TM in G are planar with both

corners on the outer face. A non-planar augmented side component of TM in

G can not be added into any of the embeddings of TM on the torus. r

193

9.3 Description of the Algorithm

Propositions 9.1 and 9.3 as well as Theorem 9.1 give us a linear time practical

algorithm for graphs with a K5-subdivision.

Algorithm 9.1 Torus Embedding Algorithm for Graphs with a K1-Subdivision.

Input: A 2-connected graph G

Output: Ei,ther a toroi,dal rotati'on system of G, or a K3p-subd'i'ui,si,on i'n G,

or an indi,cation that G i,s not toroi'dal

(1") Use a planarity checking algorithm (eg. [i9]) to determine if G is planar'

If G is planar then return its planar rotation system. If G is not planar

and the planarity check returns a Ks,s-subdivision in G then return the Ks,s-

subdivision in G.

(2) If G is not planar and the planarity check returned a Ks-subdivision 7K5

in G, then do a depth-first or breadth-first search to flnd either a short cut or

a 3-corner vertex of.TKs in G. If a short cut or 3-corner vertex is found, then

return a Ks,s-subdivision in G. If there is no short cut or 3-corner vertex, the

depth-first or breadth-first search returns the side components of. TK5.

(3) If there are two non-planar augmented side components of ?K5 in G,

then return G is not toroidal. If there is at most one non-planal augmented

194

side component of TKs and the corresponding side components of TK5 in G

is planar, then return a toroidal rotation system of G. If the side component

corresponding to the non-planar augmented side component is not planar then

go to the next step.

(4) There is exactly one non-planar side component of. TKs in G. if the pla-

narity check for the side component returned a Ks,s-subdivision, then return

the K3,3-subdivision in G. If the planarity check for the side component re-

turned a K5-subdivision TK's,lhen do a depth-first or breadth-first search to

check if there is a short cut or a 3-corner vertex of TK'u in G. If a short cut

or a 3-corner vertex of TK'u is found, then return a Ks,s-subdivision in G.

(5) Check if.TKs andTK'u have two common corners. If they do not have two

common corners, then return G is not toroidal. if they do have two common

corners, then construct an M-subdivisionTM in G. Find the side components

of.TM using a depth-first or breadth-first search.

(6) For each augmented side component of.TM in G, check if it is planar' If

all the augmented side components are planar, then return a toroidal rotation

system of G. If there is a non-planar augmented side component of T M , then

return G is not toroidal.

Each step in this algorithm consists of a constant number of linear time pla-

narity checks or of a linear time depth-first or breadth-first search. The steps

i95

are executed in a consecutive order Therefore the entire algorithm has a

linear time complexity. The linear time planarity checks can return a planar

embedding. This would provide a toroidal embedding of the whole graph.

196

Chapter 10

Conclusions and F\rture \Mork

The thesis describes and develops fundamental ideas of graph embedding al-

gorithms for the plane, projective plane and torus which can be implemented

by a computer program. The polygonal surface representation is used for the

graph embedding problem. The polygonal surface representation allows to

have planar pictures of complex graphs embedded on a surface.

In general, the graph embedding problem is difficult and hard to deal with. It

is NP-complete to determine the genus of a graph (see [36]). The problem has

a double nature: we need to assign a combinatorial object which is a graph

to a surface that has mostly continuous properties. However it is possible to

solve the embedding problems using signed rotation systems of a graph, and

797

by using Euler's formula. These are strictly combinatorial methods. A signed

rotation system is a combinatorial representation of a graph embedding which

can be constructed by a computer program.

The Hopcroft-Tarjan linear time planarity algorithm is complicated and in-

volved with many details. However it became popular and had many im-

provements and modifications as in [23], [39], [40]. The projective plane and

torus are the topological surfaces closest to the plane. The work presented

in this thesis generalizes the ideas of the Hopcroft-Tarjan planarity algorithm

and uses planarity algorithms to devise linear time algorithms for embedding

graphs in the projective plane and torus.

In Chapter 4 we described new methods to transform a planar embedding of

a graph into a 2-cell embedding on the projective plane and torus. It provides

easy algorithms to do the transformation in O(1) time and to draw planar

graphs on the projective plane and torus as 2-cell embeddings.

We simplified the algorithms of Chapter 5 by using two different approaches.

Each approach was based on the structural properties and embeddings of two

minimal non-planar Kuratowski graphs K5 and Ks,s on the projective plane

and torus.

The first approach is based on the structural results for Ks-subdivisions in a

graph described in Chapter 6. This allows projective planarity and toroidal-

ity algorithms to be reduced to a constant number of planarity checks as in

198

the Hopcroft-Tarjan algorithm, or to a subdivision of the other Kuratowski

graph Ks,s in the graph. The algorithms to embed graphs containing a Ks-

subdivision are presented in Section 7.1 for the projective plane, and in Chap-

ter 9 for the torus. The algorithms are relatively easy to implement and they

simplify algorithms in [21], [28] and [30]. By using the algorithm for the pro-

jective plane, we exclude 27 initial labelled embeddings of 1(5 and need to

consider only the remaining 6 labelled embeddings of Kg,g on the projective

plane in [28]. The algorithm of Section 7.1 was implemented by W. Myrvold

(personal communication). By using the algorithm for the torus of Chap-

ter 9, we exclude 6 unlabelled embeddings of K5 and need to consider just 2

unlabelled embeddings of K3,3 on the torus for [21].

We hope to develop these ideas and techniques for Ks-subdivisions to devise

practical and more efficient general algorithms. AIso, the approach of exclud-

ing K5-subdivisions can likely be generalized f.or graph embedding algorithms

in orientable and non-orientable surfaces of higher genus.

The second approach consists in considering the embedding of the other Ku-

ratowski graph Ks,¡ on the projective plane and in generalizing the Hopcroft-

Tarjan algorithm. The structural results for Ks,s embeddings on the projec-

tive plane are given in Sections 7.2 and 7.3. They result in the algorithms of

Chapter I which yields a linear time projective planarity algorithm. The basic

strategy is a development of the Hopcroft-Tarjan algorithm for the embedding

of. Ks,s on the projective plane by using the special features of the embedding.

199

Figure 10.1: The two embeddings of Ks,s on the torus

F\rture work could consist in simplifying the algorithm of Chapter 8 and in

devising a practical polynomial time algorithm for toroidal graphs with a Ks,s-

subdivision. The two embeddings of Ks,s on the torus are depicted in Fig. 10.1'

It is likely that the embedding of Fig. 10.1(b) can be treated in a similar way

to the embedding of. Ks,s on the projective plane. However the embedding of

Fig. 10.1(a) has a face with two edges of Ks,s appearing twice on its boundary.

The multiple appearance of vertices and edges on a face boundary complicates

the completion of an embedding of TKs,s. The next step of the research would

be to find an efficient approach in this case as well.

We hope that ideas for the projective plane and torus will lead to an efficient

and practical way to decide on an embedding of a graph into an arbitrary

surface. One motivation for this problem is in its possible use for VLSI design.

Another closely related interesting problem is to distinguish different embed-

dings on a surface and to enumerate them. Whitney's theorem [38] says that

200

3-connected graphs can have at most one planar embedding up to isomor-

phism. As the results in [15] show, there may be many 2-cell embeddings of

3-connected graphs on the torus. We would like to use our structural and al-

gorithmic results to see if there is an analogue of Whitney's theorem for other

surfaces.

In general, we would also like to obtain all possible embeddings of a graph on

a surface and determine how many different embeddings exist. As described

in [15], we can make a distinction between orientable and non-orientable em-

beddings on an orientable surface. A regular embedding gives us a tiling of

the plane. We are interested in possible classifications of the embeddings and

their characterizations. Also it can be interesting to consider the dual graphs

of the embeddings in more detail.

20r

Bibliography

[1] D. Archdeacon, "A Kuratowski theorem for the projective plane", J.

Graph Theory, 5 (1981), no. 3, 243-246.

[2] D. Archdeacon and J.P. Huneke, "A Kuratowski theorem for non-

orientable surfaces", J. Comb. Theory Ser. B, 46 (1989), L73-237.

[3] R. Bodendiek and K. Wagner, "Solution to König's graph embedding

problem", Math. Nachr., 140 (1989), 251-272.

[4] J.A. Bondy and U.S.R. Murty, Graph Th'eory wi'th Appli'cat'ions, Elsevier

Publishing, New York, 1976.

[5] J. Boyer and W. Myrvold, "Stop minding your P's and Q's: A simplified

O(n) planar embedding algorithm", Proceedings of the Tenth Annual

ACM-SiAM Symposium on Discrete Algorithms (SODA), 140-146, 1999.

[6] J. Chambers, "Hunting for Torus Obstructions", Master's thesis, Univer-

sity of Victoria, 2002.

[7] S.A. Cook, "The complexity of theorem-proving procedures" , in Srd ACM

SA*p. Theory of Cornp.,151-158, 1971.

[8] R. Diestel, Graph Theory,2nd edition, Springer, New York, 2000.

[9] S. Even, A. Itai, and A. Shamir, "On the complexity of timetable and

multicommodity flow problems", SIAM J. of Computing, 5 (1976)' 691-

703.

[10] M. Fellows and P. Kaschube, "Searching for Kg,s in linear time", Linear

and Multilinear Atgebra,2g (1991), 279-290.

[11] J.R. Fiedler, J.P. Huneke, R.B. Richter, and N. Robertson, "Computing

the orientable genus of projective graphs", J. Graph Theory, 20 (1995),

297-308.

[12] I.S. Filotti, "An algorithm for embedding cubic graphs in the totus", J.

Comp. Sys. Sci., 2 (1980), 255-276.

[13] M. Fléchet and K. Fan, Ini,ti,ati'on to Combi'natorial Topology, Prindle,

Weber and Schmidt, Boston, 1967.

[14] A. Gagarin and W. Kocay, "Embedding graphs containing K5-

subdivisions" , Ars Combinatoria, 64 (2002), 33-49.

[15] A. Gagarin, W. Kocay, and D. Neilson, "Embeddings of small graphs on

the torus", Cubo, 5 (2003), no.2, to appear.

203

[16] A. Gibbons, Algori,thmi,c Graph Theory, Cambridge University Press,

Cambridge, 1985.

l17l J.L. Gross and T.W. Tucker, Topologi,cal Graph Theory , Wiley, New York,

1987.

[18] M. Henle, A Combi,natorzal Introducti,on to Topology, Dover Publications,

New York, 1994.

[19] J.E. Hopcrofi and R.E. Tarjan, "Efficient planarity testing", Journal of

Assoc. Comput. Mach. 27 (1974),549-568.

[20] J.D. Horton, "A polynomial time algorithm to find the shortest cycle basis

of a graph", SIAM J. Comp., 16 (1987), 358-366.

[21] M. Juvan, J. Marincek, and B. Mohar, "Embedding graphs in the torus

in linear time", Integer programming and combinatorial optimization

(Copenhagen, 1995), Lecture Notes in Comput. Sci., 920, Springer, Berlin,

360-363.

[22] W. Klotz, "A constructive proof of Kuratowski's theorem", Ars Combi-

natoria, 28 (1989), 5I-54.

[23] W. Kocay, "The Hopcroft-Tarjan planarity algorithm", 1993, unpub-

lished, http: //bkocay. cs.umanitoba.ca/G&G/G&G.html

204

[24] W. Kocay, "Groups & Graphs, a Macintosh application for graph theory",

Journal of Combinatorial Mathematics and Combinatorial Computing 3

(1988),195-206.

[25] K. Kuratowski, "Sur Ie problème des courbes gauches en topologie", Fund.

Math. 15 (1930), 27I-283.

[26] B. Mohar and C. Thomassen, Graphs on Surfaces, The Johns Hopkins

University Press, Baltimore and London, 2001.

l27l O. Melnikov, R. Tyshkevich, V. Yemelichev, and V. Satvanov, Lectures

on Graph Theory, Bibliographisches Institut, Mannheim, 1994.

[28] B. Mohar, "Projective planarity in linear time", Journal of Algorithms 15

(1993), 482-502.

[29] B. Mohar, "A linear time algorithm for embedding graphs in an arbitrary

surface", SIAM J. Discrete Math. 12 (1999), no. 1,6-26 (electronic).

[30] W. Myrvold and J. Roth, "Simpler projective plane embedding", Ars

Combinatoria, to appear.

[31] W. Myrvold and E. Neufeld, "Practical toroidality testing", Proceedings

of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms

(New Orleans, LA, 1997), 574-580, ACM, New York, 1997.

[32] B. Perunicic andZ. Duric, "An efficient algorithm for embedding graphs in

the projective plane" ,Tn The íth quadrenntal'internati'onal conference on

205

the theory and appli,cati,ons of graphs wi,tlt, speci,al emphasi,s on algorzthms

and computer sc'ience appli,cati,ons, \Mestern Michigan University, June

4-8, 1984, John Wiley and Sons, Inc.

[33] E.M. Reingold, J. Nievergelt and N. Deo, Combi,natori,al Algori'th'ms: The-

ory and Practice, Prentice-Hall, Englewood Cliffs, New Jersey, 1977.

[34] B. Richter and H. Shank, "The cycle space of an embedded graph", J.

Graph Theory, 8 (1984), 365-369.

[35] N. Robertson and P. Seymour, "Graph minors. VIIL A Kuratowski the-

orem for general surfaces", J. Comb. Theory Ser. 8,48 (1990), 255-288.

[36] C. Thomassen, "The graph genus problem is -ðy'P-complete", J. Algo-

rithms, 10 (1989), 568-576.

[37] C. Thomassen, "The Jordan-Schönflies Theorem and the Classification of

Surfaces", Amer. Math. Monthly, 99 (1992), no.2,116-131.

[38] H. Whitney, "2-isomorphic graphs", American J. of Math., 55 (1933),

245-254.

[39] S.G. Williamson, "Embedding graphs in the plane - algorithmic aspects",

Ann. Disc. Math., 6 (1980), 349-384.

[40] S.G. Williamson, "Depth-first search and Kuratowski subgraphs", Journal

of Assoc. Comput. Mach., 31 (1984), 681-693.

[41] S.G. Williamson, Math. Reviews, 94f:05I4I,1994.

206

