
A transport layer protocol for cognitive radio
networks

by

Aminu Muhammad Musa

A thesis submitted to

The Faculty of Graduate Studies of

The University of Manitoba

in partial fulfillment of the requirements

of the degree of

Master of Science

Department of Computer Science

The University of Manitoba

Winnipeg, Manitoba, Canada

July 2012

c© Copyright by Aminu Muhammad Musa, 2012

Thesis advisor Author

Rasit Eskicioglu and Attahiru Alfa Aminu Muhammad Musa

A transport layer protocol for cognitive radio networks

Abstract

For years, TCP has been the first choice for data transportation for the Internet.

It provides reliable data delivery with the help of its flow control and congestion

control mechanism. In order to improve TCP performance many modifications were

proposed to the TCP congestion control mechanisms. However, some of the features

of cognitive radio networks make TCP perform poorly in terms of throughput. Some

of these features of cognitive radio networks are frequent bandwidth variation, licensed

user interruption, and disconnections due to spectrum sensing. These features cause

packet losses and time-outs which are mistakenly categorized as congestion losses by

TCP. In this thesis, the TCP framework was modified to work efficiently in cognitive

radio networks. Markov model that captures the behaviour of TCP is developed and

used to evaluate the performance of the proposed protocol.

ii

Contents

Abstract . ii
Table of Contents . iv
List of Figures . v
List of Tables . vi
Acknowledgments . vii
Dedication . viii

1 Introduction 1
1.1 Overview . 1
1.2 Cognitive Radio Networks . 4
1.3 TCP . 6
1.4 TCP in Cognitive Radio Networks . 11
1.5 TCP as a Queueing Model . 12
1.6 Summary . 13

2 Related Work 15
2.1 Performance of TCP on Cognitive Radio Networks 15
2.2 Transport Layer Protocols for Cognitive Radio Networks 17
2.3 Embedded Markov Chain for TCP Reno 18

3 Modifications to TCP Reno 23
3.1 Delay caused by Cognitive Radio Network Features 27
3.2 Proposed Scheme . 28

4 Performance Evaluation 32
4.1 Original TCP with LU Interruption and Spectrum Sensing 32
4.2 Capturing LU Interruption and Spectrum Sensing in TCP 34

4.2.1 Capturing LU Interruption in TCP 34
4.2.2 Capturing both LU Interruption and Spectrum Sensing in TCP 36

4.3 Capturing Proposed Modifications to TCP 37
4.4 Performance Measures . 38

iii

Contents iv

4.4.1 Average Number of Visits to TR State 41
4.4.2 Time to Complete Transmission 42
4.4.3 Total Number of Re-transmissions 42
4.4.4 Average Number of Visits to the OFF and the SNS States . 43

4.5 TCP . 44
4.5.1 Transmission of a 2 KB File 44
4.5.2 Transmission of a 20 KB File 46
4.5.3 Transmission of a 200 KB File 47

4.6 Original TCP with LU Interruption and Spectrum Sensing 48
4.6.1 Transmission of a 2 KB File 49
4.6.2 Transmission of a 20 KB File 50
4.6.3 Transmission of a 200 KB File 50

4.7 Modified TCP with LU Interruption and Spectrum Sensing 51
4.7.1 Transmission of a 2 KB File 52
4.7.2 Transmission of a 20 KB File 53
4.7.3 Transmission of a 200 KB File 54

4.8 Discussion . 55
4.8.1 Effects of LU Interruption and Spectrum Sensing 55

Average Number of Visits to TR 56
Time to Complete Transmission 56
Number of Re-transmissions 57

4.8.2 Explicit Effects of LU Interruption and Spectrum Sensing on
TCP . 59
LU Interruption . 60
Spectrum Sensing . 61

4.8.3 Proposed Modifications to TCP 62
Average Number of Visits to TR 62
Number of Re-transmissions 64
Time to Complete Transmission 65

4.8.4 Overall Analysis . 66
Average Number of Visits to the TR State 66
Number of Re-transmissions 67
Time to Complete Transmission 69

5 Conclusions and Future Work 71

Bibliography 77

List of Figures

1.1 TCP Reno Transition Diagram . 7

3.1 Congestion window increment in the SS state 24
3.2 Congestion window increment in the CA state 25

4.1 Average Number of Visits to TR State: Normal TCP vs TCP with LU
interruption and spectrum sensing. 57

4.2 Time to Complete Transmission: Normal TCP vs TCP with LU inter-
ruption and spectrum sensing. 58

4.3 Number of Re-transmissions: Normal TCP vs TCP with LU interrup-
tion and spectrum sensing. 59

4.4 Licensed user interruptions . 60
4.5 Spectrum sensing interruptions . 61
4.6 Average Number of Visits to TR State: Normal TCP vs TCP with LU

interruption and spectrum sensing. 63
4.7 Number of Re-transmissions: Normal TCP vs TCP with LU interrup-

tion and spectrum sensing. 64
4.8 Time to Complete Transmission: Normal TCP vs TCP with LU inter-

ruption and spectrum sensing. 65
4.9 Average Number of Visits to TR State: Overall Analysis. 67
4.10 Number of Re-transmissions: Overall Analysis. 68
4.11 Time to Complete Transmission: Overall Analysis. 69

v

List of Tables

4.1 Original TCP: Transmission of a 2 KB File 46
4.2 Original TCP: Transmission of a 20 KB File 47
4.3 Original TCP: Transmission of a 200 KB File 48
4.4 Original TCP with LU Interruption and Sensing: Transmission of a 2

KB File . 49
4.5 Original TCP with LU Interruption and Sensing: Transmission of a 20

KB File . 50
4.6 Original TCP with LU Interruption and Sensing: Transmission of a

200 KB File . 51
4.7 Modified TCP with LU Interruption and Sensing: Transmission of a 2

KB File . 53
4.8 Modified TCP with LU Interruption and Sensing: Transmission of a

20 KB File . 54
4.9 Modified TCP with LU Interruption and Sensing: Transmission of a

200 KB File . 55

vi

Acknowledgments

I would like to begin by thanking almighty God for giving me the strength to

carry out this research.

They say it takes a village to raise a child. In my case, it took a group of people

like my professors, family and friends that got me through this phase of my life.

My research project would have not been possible without the support, time and

effort put in by my two supervisors Dr. Rasit Eskicioglu and Dr. Attahiru Alfa.

They constantly communicated with me through emails, and finding time in their

busy schedules to meet with me at moments notice. They have my utmost gratitude.

I also appreciate my examination committee members Dr. Neil Arnason and Dr.

Dean McNeill for their suggestions that forced me to dig deeper into my research.

Thank you all.

I will also want to express my gratitude to all my professors that their classes help

prepare me for my research project. To all my fellow graduate students, especially

Hesham Elsawy.

A big thank you to all my family and friends that prayed for me and gave me the

space and time to concentrate on my work without any distractions. A big hug to

my room-mates, Aliyu Zango, Ismail Aliyu, and Abdullahi Shehu. Last but not in

anyway the least, I will like to thank Dr. Abba Gumel, Miss Fiona Clarke, and Dr.

Sule Mundi, you all were my biggest support away from campus.

vii

This thesis is dedicated to my parents, Mrs. Hadiza Imam and Mr.

Muhammad Musa Gumel. There is no way I can pay you back for all

you did to me. I appreciate it all from the bottom of my heart.

viii

Chapter 1

Introduction

1.1 Overview

Network access for wireless devices is mostly limited to the unlicensed spectrum

bands [9]. Unlicensed bands include the 900 MHz band and the 2.4 GHz Industrial

Scientific Bands (ISM). Due to increasing number of wireless devices, the unlicensed

spectrum bands are becoming congested. On the other hand, research by the Federal

Communication Commission (FCC) reveals that the licensed spectrum bands, such

as TV bands, are underused. To ease the overuse of the unlicensed bands, the FCC

approved the use of licensed bands by unlicensed devices [9]. However, whenever a

licensed device wants to make use of the licensed band, the unlicensed devices have

to immediately stop using the licensed band. Therefore, the unlicensed devices must

have the ability to detect unused licensed bands, the ability to detect the arrival of a

licensed user, and the ability to dynamically modify their antenna settings. Cognitive

radio techniques were designed for this environment.

1

Chapter 1: Introduction 2

A cognitive radio is a transceiver that has the ability to sense its environment for

available channels and also the ability to re-configure its transmission or receiving

parameters to operate on the channel to be used. A cognitive radio network [13] is

a wireless network of cognitive radio nodes. On detection of a licensed device by a

cognitive radio node, the cognitive radio node switches to a new spectrum band. Un-

licensed devices are equipped with cognitive radios, so that they can use the licensed

bands opportunistically.

To apply cognitive radio techniques, we need to modify almost all the protocols in

the TCP/IP Internet stack [5]. This is because the existing protocols in the TCP/IP

stack were not designed to capture the sensing feature of cognitive radios. The lower

layers (physical layer and the data link layer) deal with spectrum sensing and decision.

Whereas, the transport layer handles end-to-end data transmission. The focus of this

work is on the transport layer protocols of the TCP/IP stack.

Transmission Control Protocol (TCP) [20] is the most widely-deployed transport

layer protocol on the Internet. TCP connects two applications running on two hosts.

TCP is considered to be a reliable transport layer protocol because it provides flow

control and congestion control services [20]. Flow control [20] is the mechanism used

by TCP to prevent the sender from overwhelming the receiver with segments. On

the other hand, congestion control [3] is the mechanism used by TCP to respond

to congestion in the path between the sender and the receiver. Therefore, a TCP

sender starts sending segments to the receiver at a very slow rate, and then gradually

increases the sending rate as it receives acknowledgements from the receiver. This

technique is called the slow-start feature of TCP. On receiving a segment, the receiver

Chapter 1: Introduction 3

sends an acknowledgement message to the sender and the sender resets a timer called

the retransmission time-out timer. When this timer expires, the sender will assume

there is a possible congestion in the path and responds by reducing the rate at which

it sends segments to the receiver.

The reliability of TCP in general made it the natural choice for use in cognitive

radio networks. However, in cognitive radio networks, the arrival of a licensed user

interrupts data transmission. Also, spectrum sensing causes temporary disconnec-

tions. Unfortunately, TCP assumes that these interruptions are caused by congestion

in the path. Hence, a TCP sender unnecessarily decreases the rate at which it sends

segments to the receiver.

TCP variations differ in how they update their sending rate. TCP Reno [15, 16]

is one of the most commonly-used variation of TCP. Arvidsson and Krzesinski [4]

modelled TCP Reno as an embedded Markov chain. They computed performance

measures such as segment loss probability, throughput rate, carried load, and average

download time.

Slingerland et al. [23] and Issariyakul et al. [14] evaluated the performance of TCP

Reno on cognitive radio networks. Felice et al. [10] evaluated the performance of TCP

Reno on cognitive radio ad hoc networks. The common result obtained by all these

performance evaluations is that existing variations of TCP yield low throughput in

cognitive radio networks.

Chowdhury et al. [8] designed a new transport protocol for cognitive radio ad hoc

networks. However, their protocol requires explicit feedbacks from intermediate nodes

and destination nodes. Sarkar and Narayan [22] designed rules for transportation in

Chapter 1: Introduction 4

cognitive radio infrastructure networks. Their proposed rules are augmented with

TCP and TCP Westwood [7]. However, Sarkar and Narayan did not capture the

effect of the arrival of licensed users.

We propose to modify TCP Reno [15, 16] to work efficiently in cognitive radio

networks. We will maintain the connection set-up, flow control, and congestion con-

trol features of TCP Reno. However, we will take into consideration licensed user

interruption, and temporary disconnection due to spectrum sensing.

For performance evaluation, we will modify the model by Arvidsson and Krzesin-

ski [4] to capture the behaviour of cognitive radio networks. This modified model will

be used to evaluate the performance of the proposed modification to TCP Reno.

1.2 Cognitive Radio Networks

A cognitive radio network [13] is a wireless network of cognitive radio nodes.

Cognitive capability and reconfigurability are the two main characteristics of cognitive

radios. Cognitive capability is the ability of a cognitive radio to sense its environment

for currently unused licensed bands, perform an analysis on the Licensed User (LU)

activity on the band, and finally make a decision on whether to access the band or not.

On the other hand, reconfigurability is the ability of cognitive radios to reconfigure

their antenna settings dynamically to adapt to the newly selected spectrum band [13].

The tasks required for a cognitive capable radio are categorized into three groups:

spectrum sensing, spectrum analysis, and spectrum decision. These tasks form a cycle

known as the cognitive cycle [13].

Spectrum sensing is the process of trying to detect unused licensed bands by

Chapter 1: Introduction 5

cognitive radio nodes. Spectrum sensing usually is a binary result, 0 if the channel is

vacant, or a 1 if the channel is in use by an LU. Spectrum sensing is a difficult task

and has many challenges [13]. Some of the spectrum sensing techniques are, energy

detection, matched filter, cyclostationary detection, wavelet detection, decision fusion,

data fusion, and multi-user diversity.

Spectrum analysis is carried out based on the spectrum sensing information gath-

ered. It is used to categorize the currently unused licensed bands. In addition to the

LU activity on the bands, interference level, channel error rate, path-loss, link layer

delay and holding time are also taken into consideration [1]. History is also taken

into consideration by some spectrum analysis models.

Deciding on which band to access based on spectrum sensing results and spectrum

analysis model is referred to as spectrum decision. Decisions are made taking into

consideration the quality of service requirement of the user application. Parameters

considered include data rate and acceptable error rate.

Cognitive radio networks access techniques can be classified as: an overlay ac-

cess technique or an underlay access technique [14]. In an overlay access technique,

the Unlicensed Users (UU) are allowed access to the licensed bands only when the

bands are not currently being used by any LU. This technique is also known as the

opportunistic spectrum access model [24]. On the other hand, in an underlay access

technique, the UUs are allowed access to the licensed bands even in the presence of

LUs. Therefore, UUs transmissions may interfere with the LUs transmissions. How-

ever, in this model, UUs are allowed to interfere with LUs transmission only up to a

certain level [24].

Chapter 1: Introduction 6

Our focus in this thesis is on the overlay spectrum access technique. Therefore,

we assume that unlicensed users access the licensed bands only when the bands are

not currently being use by any LU.

We also assume that cognitive radio nodes are equipped with a single transceiver.

Therefore, cognitive radio nodes alternate between two modes, sensing mode and

transmission mode. In sensing mode, the cognitive radio node will disconnects itself

from all other connections and listens to the environment for signals from licensed

devices. When in transmission mode, the cognitive radio node can engage in data

transmission activities. Also, the cognitive radio node does not listen for signals

from licensed devices. Therefore, the more time a cognitive radio node spends in

transmission mode, the more data is transmitted. On the other hand, the more time

a cognitive radio node spends in sensing mode, the more protection is given to licensed

devices. Hence, we need to find a workable balance between sensing mode time and

transmission mode time. It was shown that the optimal channel sensing time and

transmission time pair is (0.2s, 1.0s) [10, 17].

1.3 TCP

TCP [20] is the most widely-deployed transport layer protocol on the Internet.

TCP connects two applications running on two hosts. The host that establishes the

connection is called the sender, and the other host is called the receiver. The sender

gets data from the application process and stores it in a buffer. The sender periodically

takes some chunk of data from the buffer, encapsulates the chunk into what is called

a segment, assigns a sequence number to the segment, and then sends the segment

Chapter 1: Introduction 7

Figure 1.1: TCP Reno Transition Diagram

to the receiver. On receiving each segment, the receiver sends an acknowledgement

message to the sender. The receiver uses the sequence numbers to reorder the received

segments correctly.

TCP is considered to be a reliable transport layer protocol because it provides flow

control [20] and congestion control [20, 3]. In particular, to control congestion, TCP

requires the sender to keep a variable called the congestion window (w) [3]. The value

w is the maximum number of unacknowledged segments the sender can send to the

receiver. Therefore, the sender has to make sure that the amount of unacknowledged

data in the network is always less than the w value. Hence, to control the sending rate,

the TCP sender either increases or decreases the value of w. All TCP variations are

based on the w reduction and increment technique. However, TCP variations differ in

how they update the w value. TCP Reno [15, 16] is one of the most commonly-used

variation of TCP.

Arvidsson and Krzesinski [4] explain TCP Reno transmission using four states;

Chapter 1: Introduction 8

Slow Start (SS), Congestion Avoidance (CA), Duplicate acknowledgement Retrans-

mission (DR), and Time-out Retransmission (TR). Figure 1.1 shows a transition

diagram for TCP Reno. The conditions for the transitions in the diagram are rep-

resented by numbers on each link in the figure. Descriptions for the numbers are as

follows:

1: Congestion window reaches the threshold (wn = wthresh).

2: segment loss detected by DA.

3: segment loss detected by TO.

4: Acknowledgements for retransmitted packets are received.

5: Acknowledgements for retransmitted packets are not received and timer expires.

When a connection is established, the sender begins in the SS state, sending seg-

ments with w of size 1 Maximum Segment Size (MSS). The sender increases the value

of w by 1 after each acknowledgement received from the receiver. In addition, the

sender keeps a threshold wthresh. When the w value reaches wthresh, the transmission

moves to the CA state. In the CA state, when the sender perceives that the network

is congestion free, the sender continues to increase its rate, but slower than the incre-

ment in the SS state. In particular, the sender increases the w value by 1/w for each

acknowledgement received. On the other hand, when the sender detects congestion

while in the CA state, the sender multiplicatively decreases its sending rate. This

technique is known as Additive-Increase Multiplicative-Decrease technique.

Chapter 1: Introduction 9

TCP Reno relies on segment loss to detect congestion in the network. There are

two ways a sender can detect a segment loss. One way is by the use of a Time-

Out (TO) timer. Here, the sender resets a timer called the timeout-interval when

it receives an acknowledgement from the receiver. Therefore, when the timeout-

interval timer expires, it means the segments in transit are not yet received by the

receiver or the acknowledgement message gets lost. Hence, the sender concludes

that there is congestion in the path. The other way of detecting segment loss is

by the use of Duplicate Acknowledgements (DA). The receiver sends three duplicate

acknowledgements to the sender when the receiver detects a missing segment.

When there is a segment loss, the threshold wthresh is set to half of the current w,

but it has to satisfy the inequality 2 ≤ wthresh ≤ wrcv, where wrcv is the maximum

number of segments the receiver can receive at a time.

If a segment loss is detected by DA, then transmission enters the DR state. In

DR, the missing segment is retransmitted. If the sender received an acknowledgement

for the retransmitted segment, then the state changes to CA and w is set equals to

wthresh. If the retransmitted segment was not acknowledged and the TO timer expires,

then the state changes to TR.

If a segment loss is detected by TO, the transmission enters the TR state. In

TR, the scaling factor that is used to set the time-out timer is doubled, and the

lost segment is retransmitted. If the sender received an acknowledgement for the

retransmitted segment, then the state changes to SS and w is set equals to 1, otherwise

the state remains in TR and the process is repeated.

Some other variations of TCP include TCP New Reno [11], TCP Westwood [7],

Chapter 1: Introduction 10

TCP SACK [19], TCP CUBIC [12], and TCP Vegas [6].

TCP New Reno [11] and TCP SACK [19] are very much similar to TCP Reno.

These newer protocols also relied on segment losses to detect congestion. They be-

have exactly like TCP Reno when segment loss is detected by TO. However, they

react different from TCP Reno when segment loss is detected by duplicate acknowl-

edgements. TCP Westwood [7] uses end-to-end bandwidth estimate to update its

congestion window. However, similar to TCP Reno, it sets the congestion window

to 1 when segment loss is detected by TO. On the other hand, TCP Vegas does not

rely only on duplicate acknowledgements or time-out to detect congestion. It can

detect congestion even before a segment is lost by calculating the expected traffic and

the actual traffic and then set the congestion window size based on the difference.

One of the disadvantages of TCP Vegas is that it is not as aggressive as TCP Reno.

When in the SS state, it stops the increase in its congestion window sooner than

TCP Reno [6]. TCP CUBIC is the most recent among the TCP variations mentioned

above. It was designed specifically for high-speed networks. In network set-ups where

TCP Reno performs reasonably well, it was shown that TCP CUBIC does not give

any significant improvement [12].

TCP Reno, TCP New Reno, TCP SACK, and TCP Westwood all reduce their

congestion window to 1 when they detect a time-out event. We chose TCP Reno pri-

marily because it is the most commonly-used among them all. In addition, the other

variants result from modifications to TCP Reno, therefore, the same modifications

can easily be made to our proposed modifications to TCP Reno to work in cognitive

radio networks.

Chapter 1: Introduction 11

From now on when we write just TCP we are referring to TCP Reno.

1.4 TCP in Cognitive Radio Networks

Here, we will describe how TCP behaves when employed in cognitive radio net-

works. In cognitive radio networks, the arrival of a licensed user interrupts data

transmission. Also, spectrum sensing causes temporary disconnections that leads to

TCP time-outs. Unfortunately, TCP assumes that these time-outs are caused by con-

gestion in the path. Hence, a TCP sender unnecessarily decreases the rate at which

it sends segments to the receiver.

Suppose we employ TCP to work in cognitive radio networks. In addition to the

events that lead to the reduction of sending rate, as we saw in the previous section,

there are other new events. Suppose the sender is transmitting at rate µc, and an LU

arrived. The sender then has to look for another channel and resume transmission.

However, TCP always starts transmission at a slower rate say µ1, and µ1 ≤ µc. Hence,

arrival of an LU leads to the reduction of the sending rate. Therefore, frequent arrival

of LUs will lead to frequent reduction of the sending rate.

Another event that leads to reduction of sending rate is when the receiver is en-

gaged in spectrum sensing. Here, we assumed that the receiver is using a single

transceiver, therefore, it alternates between sensing mode and transmission mode.

Therefore, when in sensing mode, it cannot participate in transmission, hence, the

sender will experience a temporary disconnection which will lead to timer expira-

tion. Unfortunately, the TCP sender will assume that the timer expired because of

congestion and it will reduce its sending rate.

Chapter 1: Introduction 12

In our design, we will assume a cross layer design. Therefore, we assume that

information flows from one layer to another. We will assume that TCP relies on

the lower layers for spectrum sensing and spectrum decision. The lower layers notify

TCP about which channel to use for transmission and which channel to move to when

an LU arrives on the current channel. Therefore, TCP does not have to make any

decision regarding which channel to sense.

In our design, we have to prevent the reduction of sending rate due to LU arrival

and due to engagement of the receiver in spectrum sensing. The sender can also go

into sensing mode, therefore, we have to prevent the sender from reducing its sending

rate when transmission resumes.

1.5 TCP as a Queueing Model

We can capture the behaviour of the TCP described above as a queueing model.

Let us represent the path (channel) that connects the sender and the receiver as a

server. Therefore, the rate at which segments are sent can be represented as the service

rate. However, we have seen that, in order to control congestion in the network, TCP

keeps on varying the sending rate. Therefore, the service rate in the model is not

fixed. If the server starts serving at rate µ1, then the service rate will keep increasing

to µ2, . . . , µc where µ2, . . . , µc ≥ µ1, and µc is the current service rate. When the

TCP sender perceives that the path is congested, then it drops the service rate to

µp, where µp < µc. The TCP sender continues to decrease the service rate until

when it perceives that the path is less congested, then it starts increasing the service

rate again. Therefore, we can see that the service rate varies based on the level of

Chapter 1: Introduction 13

congestion in the server.

Similarly, we can model TCP in cognitive radio networks as a queueing model.

Suppose we have two channels to use for transmission. We can model this as a single

server that serves two queues one at a time. We set the probability of the server

attending to the first queue Q1 to be p1, where p1 is the probability that the first

channel is idle. Similarly, we set the probability of the server attending to the second

queue Q2 to be p2, where p2 is the probability that the second channel is idle. Since

the server can remain idle, then p1 + p2 ≤ 1. Therefore, if the server is attending

to Q1 at service rate µ1 and an LU arrives, then the server switches to attend to Q2

but at a rate µ2 and µ2 ≤ µ1. On the other hand, suppose the server is attending to

Q1, and it experiences temporary disconnection due to sensing by the receiver. Here,

when connection resumes, the server continues to attend to Q1, but at a slower rate.

In a situation where TCP is waiting for notification about the new channel to move

to, the server remains idle.

1.6 Summary

The concept of cognitive radio networks was introduced to solve the spectrum

shortage problem. It allows unlicensed users to access the licensed spectrum oppor-

tunistically. The main features of cognitive radio networks are spectrum sensing,

spectrum analysis, and spectrum decision. To incorporate these features into the

existing TCP/IP protocol stack, some modifications are needed. Our focus is on the

transport layer protocol of the TCP/IP stack, TCP Reno in particular.

Features of cognitive radio networks such as frequent bandwidth variation, inter-

Chapter 1: Introduction 14

ruptions due to licensed user arrival, and temporary disconnections due to spectrum

sensing were not captured by the existing transport layer protocols for wireless net-

works. Therefore, the existing transport layer protocols perform poorly in cognitive

radio networks, in terms of throughput. We need an efficient transport layer protocol

that will capture all the features of cognitive radio networks and achieves a reasonable

throughput.

In this thesis, we made some modifications to TCP Reno to capture some of

the features of cognitive radio networks. The features we captured are licensed user

interruptions and spectrum sensing.

Chapter 2

Related Work

The existing research work that evaluated the performance of TCP in cognitive

radio networks are summarized. From this research, we identified characteristics that

are needed to modify the standard TCP in order for it to work efficiently in cognitive

radio networks. Some of the proposed modifications to TCP and other transport

protocols for cognitive radio networks will be discussed later. How they differ from

our proposed modification to the TCP Reno protocol will also be discussed. Finally,

we discussed a proposed scheme to model TCP Reno as an embedded Markov chain

and how it is related to our proposed scheme.

2.1 Performance of TCP on Cognitive Radio Net-

works

Slingerland et al. [23] evaluated the performance of TCP on cognitive radio net-

works. They considered different TCP variations including TCP NewReno [11] and

15

Chapter 2: Related Work 16

TCP Vegas [6]. They performed simulations with the NS-2 simulator using the source

code of the Linux TCP stack. They concluded that time taken by cognitive radio

nodes in sensing mode affects the throughput of the TCP connections.

Akildiz et al. [2] in their survey discussed the research challenges for developing

a transport layer protocol for cognitive radio ad hoc networks. They concluded that

modifications can be made to TCP [20] to obtain higher throughput.

Issariyakul et al. [14] evaluated the performance of TCP [20] on cognitive radio

networks. They only considered licensed-user interruption. Their simulation results

showed that the throughput of the unlicensed users increases as the number of chan-

nels increases. However, when the number of channels reaches some threshold, the

TCP throughput starts to drop. Hence, they concluded that there is an optimum

number of channels for unlicensed users to achieve maximum aggregate throughput.

The optimum number of channels depends on the number of licensed users and also

the number of unlicensed users on the network.

Felice et al. [10] evaluated the performance of TCP over cognitive radio ad hoc

networks. They considered different TCP variations including TCP Reno [15, 16],

TCP NewReno [11] and TCP Vegas [6]. They extended the standard NS-2 simulator

to support unique features of cognitive radio ad hoc networks. They used the extended

version of the NS-2 to evaluate the TCP performance. In summary, their results

showed that TCP experiences the highest throughput when the duration of licensed

user presence is long and it is followed by long absence of a licensed user. Also,

they showed that (0.2s, 1.0s) is the optimal choice of sensing period and transmission

period that yields higher throughput.

Chapter 2: Related Work 17

2.2 Transport Layer Protocols for Cognitive Radio

Networks

Chowdhury et al. [8] designed a transport protocol for cognitive radio ad hoc net-

works. They modeled the transport protocol as a six-state system. Some of the events

that cause the system to change state are route failure, congestion notification, node

mobility, and spectrum change. However, their protocol requires explicit feedbacks

from intermediate nodes and the destination.

Luo et al. [18] designed a scheme that optimizes TCP throughput without making

changes to TCP. The variation of TCP they used is the TCP Reno [15, 16]. To achieve

higher TCP Reno throughput, their scheme optimized the low-layer parameters of

the network, such as modulation and coding scheme in the physical layer, and frame

size in the data-link layer. However, they did not modify the congestion control

mechanism in TCP Reno. Their scheme treats all type of losses as congestion losses.

Hence, sometimes a TCP Reno sender unnecessarily decreases the speed at which it

transmits data.

Sarkar and Narayan [22] designed, implemented, and evaluated a transport pro-

tocol for cognitive radio networks. They augmented their protocol with TCP [20]

and TCP Westwood [7]. Their protocol handles temporary disconnections caused

by spectrum sensing. Also, their protocol handled frequent bandwidth variation as

the connection moves from one channel to another. However, they did not handle

disconnection caused by licensed user arrival.

Chapter 2: Related Work 18

2.3 Embedded Markov Chain for TCP Reno

Arvidsson and Krzesinski [4] modelled TCP Reno [15, 16] as an embedded Markov

model (See Section 1.3). Their model is based on the following assumptions and

representations [4]:

• The lengths of the files to be transmitted are assumed to be geometrically

distributed with parameter ϕ.

• The minimum file size is one packet and the average file size is 1/(1− ϕ).

• q = 1−pf denotes the probability that a segment is received successfully, where

pf is the probability that a segment is lost in the forward direction.

• r = (1 − pf)(1 − pb) denotes the probability that a segment is received and

acknowledged successfully, where pb is the probability that a segment is lost in

the backward direction.

• s = 1 − r denotes the probability that a segment is not successfully received

and acknowledged.

• To represent successful transmission in the SS and the CA states, q is used. In

the TR and DR state, the chance of losing acknowledgements is higher (since

the network is already congested). Therefore, for these states, r is used to

represent successful transmission.

• The first visit to the SS state is treated as a different state denoted by SS ′.

Chapter 2: Related Work 19

• NSS′ =
∞∑
n=1

nq∗(n−1)(1− q∗) = 1/(1− q∗) denotes the number of segments trans-

mitted when in the SS ′ state, where q∗ = ϕ(1−pf) is the probability that there

is a segment and it is successfully transmitted.

• NSS = min(NSS′ , wthresh−1) denotes the number of segments transmitted when

in the SS state.

• NCA = 1/(1− q∗) denotes the number of segments transmitted when in the CA

state.

• NDR = 1 denotes the number of segments transmitted when in the DR state.

• NTR =
∞∑
n=1

ns∗(n−1)r = 1/r denotes the number of segments transmitted when

in the TR state.

The state space for their Markov model is the set {SS ′, SS, CA,DR, TR,OK},

where OK is the final state that represents file transmission completion. The transi-

tion probability matrix is given below:



0 0 0 πSS′,DR πSS′,TR πSS′,OK

0 0 πSS,CA πSS,DR πSS,TR πSS,OK

0 0 0 πCA,DR πCA,TR πCA,OK

0 0 πDR,CA 0 πDR,TR πDR,OK

0 πTR,SS 0 0 0 πTR,OK

0 0 0 0 0 1


.

The arrangement of the columns corresponds to the states order: SS ′, SS, CA,DR, TR,

and OK. The state transition probabilities are denoted by πi,j. Where i and j are

Chapter 2: Related Work 20

states in the Markov model.

The transition probabilities are defined by Arvidsson and Krzesinski [4] as follows:

πSS′,OK =
∞∑
n=1

ϕn−1(1− ϕ)qn = q(1− ϕ)
1

1− qϕ
,

πSS,OK =

wthresh−1∑
n=1

ϕn−1(1− ϕ)qn = q(1− ϕ)
1− (qϕ)wthresh−1

1− qϕ
,

πCA,OK =
∞∑
n=1

ϕn−1(1− ϕ)qn = q(1− ϕ)
1

1− qϕ
,

πDR,OK = (1− ϕ)r,

πTR,OK = (1− ϕ),

πSS,CA =
∞∑

n=wthresh

ϕn−1(1− ϕ)qwthresh−1 = (qϕ)wthresh−1,

πSS′,DR = (1− πSS′,OK)(1− ρTO(WSS′)) ,

πSS′,TR = (1− πSS′,OK)ρTO(WSS′) ,

πSS,DR = (1− πSS,OK − πSS,CA)(1− ρTO(WSS)) ,

πSS,TR = (1− πSS,OK − πSS,CA)ρTO(WSS) ,

πCA,DR = (1− πCA,OK)(1− ρTO(WCA)) ,

πCA,TR = (1− πCA,OK)ρTO(WCA) ,

πDR,CA = ϕr,

πDR,TR = s,

πTR,SS = ϕ,

Chapter 2: Related Work 21

where ρTO is the probability that a lost segment is detected by TO,

ρTO(WSS′) = min(1, 3/(min(NSS′ , wrcv)ϕ)) ,

ρTO(WSS) = min(1, 3/(min(NSS, wrcv)ϕ)),

ρTO(WCA) = min(1, 3/((wthresh + TCA)ϕ)),

wrcv is the maximum number of segments the receiver can receive at a time,

and TCA is the average time spent in CA.

For performance evaluation, Arvidsson and Krzesinski [4] begin with an estimate

of offered load to compute the segment loss probability. They use the segment loss

probability to compute the state transition probabilities, which are in turn used to

compute the average number of visits to each state.

They compute the average number of visits (V) to each state as follows:

VSS′ = 1,

VOK = 1,

VSS = VTRπTR,SS ,

VCA = VSSπSS,CA + VDRπDR,CA ,

VDR = VSS′πSS′,DR + VSSπSS,DR + VCAπCA,DR ,

VTR = VSS′πSS′,TR + VSSπSS,TR + VCAπCA,TR + VDRπDR,TR.

They compute the following performance measures: RTT, total number of pack-

ets sent during an average file transmission, total time to complete an average file

transmission, throughput rate, and average download time.

Chapter 2: Related Work 22

In this thesis, we made some modifications to TCP Reno, to capture some of

the features of cognitive radio networks. Features we captured are licensed user

interruptions and spectrum sensing. To evaluate our work, we extended the TCP

model by Arvidsson and Krzesinski [4] to capture licensed user interruptions and

spectrum sensing.

Chapter 3

Modifications to TCP Reno

Here, we use difference equations to show how TCP Reno updates the value of

it’s congestion window w. We show how licensed user arrival and spectrum sensing

affect the window size w. Finally, we propose some modifications to TCP and show

how the proposed modifications could help prevent TCP from unnecessary reduction

of the value of w.

TCP provides a logical connection between two processes running at two end

systems. The sending application passed a stream of data to its TCP module. TCP

establishes a connection with the receiver and sends the data to the receiver. To

establish a connection, TCP initializes some variables and buffers, which are released

when data transmission is completed. Applications experience delay, when TCP takes

a long time before it completes transmission. This delay is caused by the congestion

and flow control mechanisms used by TCP to ensure reliable data delivery.

To ensure reliable data delivery, TCP uses the window principle when transmitting

data. A window wn is used to specify the amount of data bytes the sender can

23

Chapter 3: Modifications to TCP Reno 24

Figure 3.1: Congestion window increment in the SS state

send to the receiver at time n, and then waits for acknowledgement. To control the

congestion in the network, TCP keeps on varying the size of wn depending on the

level of congestion in the network at time n.

Suppose a TCP connection is established between a sender and a receiver. Let

the discrete random variable Xn denote the number of segments in the TCP sending

buffer at a given time n. Our interest is to determine when data transmission will be

completed. In other words to determine when the value of Xn will become zero. Let

us define an equation for Xn as:

Xn+1 = max{0, Xn − wn}, (3.1)

where wn ≥ 0.

Chapter 3: Modifications to TCP Reno 25

Figure 3.2: Congestion window increment in the CA state

Now, we can see that the rate at which Xn becomes zero depends on wn, and

wn depends on the congestion level in the network. When TCP detects congestion

in the network at time n, it decreases the value of wn. On the other hand, if no

congestion is detected by TCP at time n, then it increases the value of wn. By how

much exactly TCP increases or decreases the value of wn depends on the current state

of transmission, and also how the congestion was detected.

When in the SS state and the network is perceived to be free of congestion, TCP

increases the value of wn by 1 MSS after each acknowledgement received from the

receiver. MSS is the maximum size a segment can be. Therefore, after every 1 Round-

Trip Time (RTT), the value of wn will be doubled. This can be seen more clearly

with the aid of an example.

Figure 3.1 shows an example where transmission is in the SS state. The sender

Chapter 3: Modifications to TCP Reno 26

begins sending data to the receiver with wn = 1 MSS. Upon receiving the 1 segment,

the receiver sends an acknowledgement for it. On receiving the acknowledgement,

the sender increases the value of wn by 1 MSS, now wn = 2 MSS. This completes

the first RTT . Now, the sender sends two segments back-to-back to the receiver.

The receiver sends an acknowledgement for each of the segments. On arrival of each

acknowledgement, the receiver increases the value of wn by 1 MSS. RTT becomes

complete when all the packets sent are acknowledged. Therefore, at the end of this

RTT , wn will be set to 4 MSS. The process continues until a segment get lost or

wthresh is reached.

When in the CA state and the network is perceived to be free of congestion, TCP

increases the value of wn by 1/wn for each acknowledgement received. Therefore,

after every 1 RTT, the value of wn will be increased by 1 MSS. This also can be

described more clearly with the aid of an example.

Figure 3.2 shows an example where transmission is in the CA state. The value

of wn is set at 4 MSS. The sender sends four segments back-to-back to the receiver.

The receiver sends an acknowledgement for each of the segments. On arrival of each

acknowledgement, the receiver increases the value of wn by 1/wn. Therefore, at the

end of this RTT , wn will be set to 5 MSS. The process continues until a segment get

lost.

As we have seen earlier, TCP relies on segment loss to detect congestion in the

network. There are two ways a sender can detect a segment loss. One way is by the

use of a Time-Out (TO) timer. The other way of detecting segment loss is by the

use of Duplicate Acknowledgements (DA). If a segment loss is detected by DA, then

Chapter 3: Modifications to TCP Reno 27

transmission enters the DR state. In DR, the missing segment is retransmitted. If

the sender received an acknowledgement for the retransmitted segment, then state

changes to CA and wn is set equals to wn/2. If the retransmitted segment was not

acknowledged and the TO timer expires, then state changes to TR. On the other

hand, if a segment loss is detected by TO, the transmission enters the TR state. In

TR, the scaling factor that is used to set the time-out timer is doubled, and the

lost segment is retransmitted. If the sender received an acknowledgement for the

retransmitted segment, then the state changes to SS and wn is set equal to 1 MSS,

otherwise the state remains in TR and the process is repeated. Therefore, we can

now define an equation for the value of wn at a given time n. Here, we will assume

that time is in units of RTT. Therefore, the time difference between time n and time

n+ 1 is 1 RTT. Hence, we define the wn equation as follows:

wn+1 =



2wn, if there is no congestion & in the SS state;

wn + 1, if there is no congestion & in the CA state;

wn/2, if congestion was detected by DA;

1MSS, if congestion was detected by TO.

3.1 Delay caused by Cognitive Radio Network Fea-

tures

Cognitive radio network features introduce an extra delay due to LU interruption

and spectrum sensing. Licensed user arrival interrupts transmission and spectrum

sensing caused time-outs. TCP considers time-outs to be caused by congestion in the

Chapter 3: Modifications to TCP Reno 28

network. Therefore, whenever there is a time-out, the value of wn is decreased to 1

MSS. Hence, we now have a new equation for the value of wn as follows:

wn+1 =



2wn, if LU is off & no sensing & no congestion & in SS state;

wn + 1, if LU is off & no sensing & no congestion & in CA state;

wn/2, if LU is off & no sensing & congestion detected by DA;

1, if LU is off & no sensing & congestion detected by TO;

1, if LU is off & sensing & no congestion;

1, if LU is off & sensing & congestion detected by DA or TO;

1, if LU is on.

3.2 Proposed Scheme

We assume that the transport layer can exchange information with the lower lay-

ers. Therefore, the lower layers can notify the transport layer when an LU arrives.

Moreover, the transport layer can get the spectrum sensing schedule from the lower

layers. We also assume that, each cognitive radio node uses a single transceiver, there-

fore, each node (sender or receiver) alternates between sensing mode and transmission

mode.

The main idea behind our proposed scheme is to prevent the reduction of the value

of wn, caused by either LU interruption or spectrum sensing. We know that TCP

is a connection-oriented protocol. During connection set-up, information like initial

sequence number and maximum segment size are exchanged between the sender and

the receiver. We proposed to add other information to the connection set-up messages.

Chapter 3: Modifications to TCP Reno 29

Spectrum sensing is periodic and its duration is constant, therefore end systems

can share their spectrum sensing schedules during connection set-up. We will add

spectrum sensing schedule information to the messages exchanged during connection

set-up. The information can be of the form < t1, t2, t3, t4 >, where t1 is the current

time, t2 is the time at which the node will begin its next sensing, t3 is the sensing

time (duration of each sensing), and t4 is the transmission time. Similar idea was

used by Chowdhury et al. [8]. They designed their protocol for cognitive radio ad

hoc networks and to exchange sensing schedule they modified the way TCP NewReno

set up a connection. Their protocol requires that the end nodes exchange their ids.

However, our model do not require any id exchange. We add the sensing information

on the TCP segment header in the Option field.

Therefore, the sender now has the knowledge about when and for how long the

receiver will be in sensing mode. Hence, instead of dropping the value of wn to 1

MSS, we now freeze the value of wn and resume transmitting with it when sensing is

over.

When a LU arrives, transmission has to stop until the LU leaves the channel or

a new vacant channel has been found. To prevent the TCP sender from setting the

value of wn to 1 MSS, our TCP model will continue to measure the Expected Available

Bandwidth (EAB) of the channel. Therefore, when an LU leaves the channel or a

new available channel is found, our model will use EAB as the new sending rate.

Therefore we now have a modified equation for the value of wn:

Chapter 3: Modifications to TCP Reno 30

wn+1 =



2wn, if LU is off & no sensing & no congestion & in SS state;

wn + 1, if LU is off & no sensing & no congestion & in CA state;

wn/2, if LU is off & no sensing & congestion detected by DA;

1, if LU is off & no sensing & congestion detected by TO;

wn, if LU is off & sensing & no congestion;

wn/2, if LU is off & sensing & congestion detected by DA;

1, if LU is off & sensing & congestion detected by TO;

wn, if LU is on.

Note that, when LU is on, the value of wn does not change. However, in this case,

it does not really matter what we set the value of wn to, since, transmission has to

stop and when connection resumes, wn will be set to a value computed based on the

measured EAB.

We consider LU on to be the dominant case over the following cases: LU on &

there is congestion, LU on & there is no congestion, LU on & no sensing in progress,

and LU on & sensing in progress.

Modifications of the wn value equation leads to a little a modification to equation

(1), therefore, Equation (1) becomes:

Xn+1 = max{0, Xn − wn ∗ k}, (3.2)

where wn ≥ 0 and k = 0 or 1.

The value for the variable k is given by the following formula:

Chapter 3: Modifications to TCP Reno 31

k =



1, if LU is off & no sensing & no congestion;

1, if LU is off & no sensing & congestion detected by DA or TO;

0, if LU is off & sensing & no congestion;

0, if LU is off & sensing & congestion detected by DA or TO;

0, if LU is on.

Chapter 4

Performance Evaluation

In Section 2.3, we have presented the embedded Markov model built by Arvidsson

and Krzesinski [4] to evaluate the performance of TCP Reno. However, that model

did not capture any of the unique features of cognitive radio networks. Here, cognitive

radio features are introduced to the model of Arvidsson and Krezesinski and the per-

formance of TCP Reno is observed. In addition, we extended their model to capture

separately the effects of LU interruption and spectrum sensing. The performance of

our proposed modifications to TCP Reno was evaluated. Finally, we presented some

tables and graphs.

4.1 Original TCP with LU Interruption and Spec-

trum Sensing

LU interruption introduces an extra delay to TCP transmission. In particular, LU

interruption causes more packet losses. Let us denote the probability of an LU arrival

32

Chapter 4: Performance Evaluation 33

on a channel by p. In addition to LU interruption, spectrum sensing also introduces

an extra delay to TCP transmission. This is because packets sent when the receiver is

in sensing mode are dropped, and hence TCP reduces its sending rate. Also, when the

sender is in sensing mode it cannot transmit packets. Let us denote the probability

that one of the nodes is in sensing mode by d. Since both p and d contributes to

packets loss, they should be included in packet loss probability estimation. To do

that, we made the following changes to the model of Arvidsson and Krzesinski [4].

We replace:

• The probability that a segment is received successfully q = 1− pf by

q = (1− pf)(1− p)(1− d),

where pf is the probability that a packet is lost in the forward direction.

• The probability that a segment is received and acknowledged successfully

r = (1− pf)(1− pb) by

r = (1− pf)(1− p)(1− pb)(1− d),

where pb is the probability that a packet is lost in the backward direction.

• The probability that there is a packet and it is successfully transmitted

q∗ = ϕ(1− pf) by

q∗ = ϕ(1− pf)(1− p)(1− d).

We assume a cross-layer architecture, therefore the transport layer can communi-

cate with the other layers of the TCP/IP stack. Lowers layers (Physical and Data

Link layers) handle spectrum sensing, we assume that the value p and d will be

communicated to the transport layer from the lower layers.

Chapter 4: Performance Evaluation 34

4.2 Capturing LU Interruption and Spectrum Sens-

ing in TCP

In order to see explicitly the effects of LU interruption and spectrum sensing, there

is need to capture them separately. In other words, there is need to differentiate losses

caused by LU arrival and spectrum sensing from losses caused by congestion in the

network. To capture separately the effect of LU interruption and spectrum sensing,

we modify the transition probability matrix by Arvidsson and Krzesinski [4]. We

begin by capturing the effect of LU interruption and later capture the effect of both

LU interruption and spectrum sensing.

4.2.1 Capturing LU Interruption in TCP

To capture separately the effect of LU arrival, we modify the transition probability

matrix by Arvidsson and Krzesinski [4] by introducing a new state OFF . The OFF

state will be the state where the model goes into when a licensed user is detected.

Regardless of the current state of the model, whenever a licensed user arrives, the

model switches to the OFF state. We now set the transition probability from each of

the six states to the OFF state to be equal to p, where p is the probability of licensed

user arrival on the current channel. Whenever the model enters the OFF state it

will remain in the OFF state until a new channel is found or the current channel has

become vacant again.

Another new state MS is introduced. The MS state is where connection goes from

the OFF state. When a new channel is found, transmission resumes in the MS state.

Chapter 4: Performance Evaluation 35

The state MS is similar to the DR state. When in the MS state, missing segments are

retransmitted and if acknowledgements are received for the retransmitted segments,

then the state changes to CA. However, if the retransmitted segments were not

acknowledged and the TO timer expires, then state changes to TR.

These modifications lead to a modified transition probability matrix with two

additional states shown below:



0 0 0 p̄ · πSS′,DR p̄ · πSS′,TR p 0 p̄ · πSS′,OK

0 0 p̄ · πSS,CA p̄ · πSS,DR p̄ · πSS,TR p 0 p̄ · πSS,OK

0 0 0 p̄ · πCA,DR p̄ · πCA,TR p 0 p̄ · πCA,OK

0 0 p̄ · πDR,CA 0 p̄ · πDR,TR p 0 p̄ · πDR,OK

0 p̄ · πTR,SS 0 0 0 p 0 p̄ · πTR,OK

0 0 0 0 0 p 1− p 0

0 0 p̄ · πMS,CA 0 p̄ · πMS,TR p 0 p̄ · πMS,OK

0 0 0 0 0 0 0 1



.

The arrangement of the columns corresponds to the states arrangement: SS ′, SS,

CA, DR, TR, OFF , MS, and OK. The state transition probabilities are denoted

by π. The term p denotes the probability of a licensed user arrival on the current

channel and p̄ = 1− p. πMS,CA = πDR,CA, πMS,TR = πDR,TR, and πMS,OK = πDR,OK .

All other probabilities remain the same as defined by Arvidsson and Krezesinski (see

Section 2.3).

Chapter 4: Performance Evaluation 36

4.2.2 Capturing both LU Interruption and Spectrum Sensing

in TCP

The transition probability matrix above did not capture the effect of spectrum

sensing. We introduce two new states, the spectrum sensing state denoted by SNS

and the state where transmission goes after spectrum sensing is over, denoted by FZ.

Hence, when spectrum sensing is in progress, transmission switches to the SNS state.

In the SNS state, no segments are transmitted. Transmission remains in the SNS

state for the duration of spectrum sensing period. When spectrum sensing is over,

transmission moves to the FZ state. The FZ state is similar to the DR and the MS

states.

In our proposed design (Section 3.2), we let the end systems share their spectrum

sensing schedules during connection set-up. The information exchanged can be of

the form < t1, t2, t3, t4 >, where t1 is the current time, t2 is the time at which the

node will begin its next sensing, t3 is the sensing time (duration of each sensing), and

t4 is the transmission time. The probability that a node is in sensing mode can be

represented as d = t3
t4+t3

.

Let A and B be two nodes connected via TCP. Suppose that the probability that

A is in sensing mode is dA and the probability that B is in sensing mode is dB. The

probability that the connection is in sensing mode (one of the nodes is in sensing

mode) can be computed as dA + dB − dAdB.

Below is the new transition probability matrix after the modification above.

Chapter 4: Performance Evaluation 37



0 0 0 p̄ · d̄ · πSS′,DR p̄ · d̄ · πSS′,TR πSS′,OFF 0 p̄ · d 0 p̄ · d̄ · πSS′,OK

0 0 p̄ · d̄ · πSS,CA p̄ · d̄ · πSS,DR p̄ · d̄ · πSS,TR πSS,OFF 0 p̄ · d 0 p̄ · d̄ · πSS,OK

0 0 0 p̄ · d̄ · πCA,DR p̄ · d̄ · πCA,TR πCA,OFF 0 p̄ · d 0 p̄ · d̄ · πCA,OK

0 0 p̄ · d̄ · πDR,CA 0 p̄ · d̄ · πDR,TR πDR,OFF 0 p̄ · d 0 p̄ · d̄ · πDR,OK

0 p̄ · d̄ · πTR,SS 0 0 0 πTR,OFF 0 p̄ · d 0 p̄ · d̄ · πTR,OK

0 0 0 0 0 p 1− p 0 0 0

0 0 p̄ · d̄ · πMS,CA 0 p̄ · d̄ · πMS,TR πMS,OFF 0 p̄ · d 0 p̄ · d̄ · πMS,OK

0 0 0 0 0 πSNS,OFF 0 p̄ · d p̄ · d̄ 0

0 0 p̄ · d̄ · πFZ,CA 0 p̄ · d̄ · πFZ,TR πFZ,OFF 0 p̄ · d 0 p̄ · d̄ · πFZ,OK

0 0 0 0 0 0 0 0 0 1



.

The arrangement of the columns corresponds to the states arrangement: SS ′, SS,

CA, DR, TR, OFF , MS, SNS, FZ, and OK.

πFZ,CA = πDR,CA ,

πFZ,TR = πDR,TR ,

πFZ,OFF = πSNS,OFF = p , and

πFZ,OK = πDR,OK .

4.3 Capturing Proposed Modifications to TCP

To capture our proposed modifications to TCP, we used the transition probability

matrix that incorporates LU interruption and spectrum sensing (the matrix in Sec-

tion 4.2.2). We chose this matrix because it captured LU interruption and spectrum

sensing explicitly.

Recall that in our proposed design (Section 3.2), we use the measured Expected

Available Bandwidth (EAB) as the value of wn whenever connection resumes from

LU interruption. To capture this modification, we made the following changes to

the wn value update in the MS state (MS is the state where transmission goes to

whenever an LU frees the channel or a new channel is found). When in the MS

Chapter 4: Performance Evaluation 38

state, instead of setting the value of wn to wn/2 as in the DR state, we set the

value of wn to EAB. This will stop TCP sender from setting its sending window to

1 MSS whenever an LU interrupts transmission, but rather to the measured expected

available bandwidth.

Recall that in our proposed design, we freeze the value of wn whenever the con-

nection goes into sensing mode (Section 3.2). To capture this modification, we made

the following changes to the wn value update in the FZ state (FZ is the state where

transmission goes to whenever spectrum sensing is over). When in the FZ state,

instead of setting the value of wn to wn/2 as in the DR state, we keep the value

of wn as it is. This will stop the TCP sender from setting its sending window to

1 MSS whenever one of the nodes goes into sensing mode, but rather keep the current

window size.

4.4 Performance Measures

We developed MATLAB programs to compute the entries of the transition prob-

ability matrices we discussed in the previous sections (Sections 2.3, 4.1, and 4.2). We

assigned hypothetical values to the following parameters: pb, pf , ϕ, wrcv, and wthresh.

For all the programs we fixed the maximum number of segments the receiver can

receive at a time to 16 segments (wrcv = 16). Loss probabilities pf and pb are varied

from 0.1 to 0.5. We consider files of three different sizes, a small file of size 2 KB,

a little bit larger file of size 20 KB, and a larger file of size 200 KB. Arvidsson and

Krzesinski [4] limited their model to geometrically distributed file lengths. The av-

erage size of file is 1/(1 − ϕ) packets, where ϕ is the parameter for the distribution.

Chapter 4: Performance Evaluation 39

Since MSS = 536 octets [21], then there will be an average of 2×1024
536

, 20×1024
536

packets,

and 200×1024
536

packets in 2 KB file, 20KB file, and 200 KB file respectively. For 2 KB

file, ϕ = 1 − 1/3.82 ≈ 0.74. For 20 KB file, ϕ = 1 − 1/38.2 ≈ 0.97. For 200 KB

file, ϕ = 1 − 1/382.1 ≈ 0.997. We begin each program with wthresh initially set to

the value of wrcv which is equal to 16 (wthresh = wrcv = 16). All the programs iterate

and update the value of wthresh after each iteration according to the wthresh update

formula provided by Arvidsson and Krzesinski [4] as follows:

wthresh =
gSS

gSS + gCA

wSS
thresh +

gCA

gSS + gCA

wCA
thresh, (4.1)

where gSS is the number of losses in the SS state, gCA is the number of losses in the

CA state, and

wSS
thresh = max(2,WSS/2), (4.2)

wCA
thresh = max(2,WCA/2). (4.3)

WSS is the average window size at which the first loss occurs in the SS state and

WCA is the average window size at which the first loss occurs in the CA state.

Equation 4.1 is a fixed point equation. It can be solved by a one dimensional root

finding method. We used a bisection method to solve it in our programs.

We run our programs iteratively. Iterations stop when the difference between the

previous wthresh value and the current is less than 10−6.

Our MATLAB programs compute the entries of the transition probability matri-

ces. The display format used is “long“, which rounds and display results up to 15

Chapter 4: Performance Evaluation 40

decimal places. For convenience, the values displayed in the matrices presented later

in this chapter are rounded to 4 decimal places. However, the original values (values

with 15 decimal places) are used to compute all the performance measures considered

in this thesis. The performance measures computed are presented in tables and the

values are rounded to 3 decimal places for better visual presentation.

Remember that OK state is an absorbing state. Hence, the matrices our programs

will compute are going to be absorbing Markov chains. Recall that a transition

probability matrix P for an absorbing Markov chain can be written in the form:

P =

Q H

0 1

 ,
where,

Q is a square matrix that contains the transition probabilities within the tran-

sient states,

H contains transition probabilities from the transient states to the absorbing

state,

1 is a column vector, and

0 is a zero matrix.

Based on the absorbing Markov chains, we computed performance measures that

include, average number of visits to the TR state before absorption given that trans-

mission starts from SS ′, Time to Complete Transmission (TCT), total number of

re-transmissions during an average transmission, and average number of visits to the

OFF and the SNS states.

Chapter 4: Performance Evaluation 41

To validate the results obtained by running our programs, a comparison can be

made with the results obtained by Arvidsson and Krzesinski [4]. This will validate the

results obtained by running the unmodified TCP program. Arvidsson and Krzesinski

derived formulas to compute average number of visits to TR state. We compute

average number of visits to TR state differently by computing the fundamental matrix

of the Markov chain. We compare the results obtained by the fundamental matrix

with the results obtained by using the formulas derived by Arvidsson and Krzesinski.

These two results are almost identical. However, Arvidsson and Krzesinski presented

only one performance measure, the average download time. This value is computed

based using the Round Time Trip (RTT), which is not applicable in our model.

Therefore, we cannot compute the average download time as they did.

4.4.1 Average Number of Visits to TR State

Let us consider the transition probability matrix by Arvidsson and Krzesinski [4]

(See Section 2.3). We have seen earlier that transmission experiences the highest

delay when it enters the TR state. This is because, whenever transmission enters

the TR state, the congestion window is reduced to 1 MSS. Hence, computing the

average number of visits to the TR state will give us the average number of times the

congestion window (w) is reduced to 1 MSS.

We compute the fundamental matrix for the absorbing transition probability ma-

trix above using the formula:

F = (I −Q)−1. (4.4)

Chapter 4: Performance Evaluation 42

We assumed that transmission always begins in the SS ′ state. Therefore, we

consider only the (SS ′, TR) entry of F . This will give us the average number of visits

to the TR state since when transmission begins.

4.4.2 Time to Complete Transmission

We have seen that the OK state is the only absorbing state in our transition

probability matrices. We also know that the OK state is visited only when transmis-

sion is complete. Therefore, if we compute the mean time to absorption, it will give

us the mean time for transmission completion. We can compute the mean time to

absorption using the formula:

d̂ = a(I −Q)−2H, (4.5)

where a is a vector for which each of its entries ai represent the probability of

starting transmission from the transient state i. Our interest is to compute the

mean time to absorption from the moment transmission begins. We assume that

transmission always begins in the SS ′ state. Therefore, in all our programs, we set

the first entry of a to 1, and set all the remaining entries to 0. The model we based

our model on did not specify any unit for time. The time unit depends on the unit

of the sending rate used during implementation.

4.4.3 Total Number of Re-transmissions

Total number of packets retransmission increases as loss probability increases.

This is because, more packets will get dropped and hence need to be retransmitted.

Chapter 4: Performance Evaluation 43

Our interest is to see by how much CRN features increase the number of packets

retransmitted during a file transfer. In other words, this will give us a measure of

the additional packets that get dropped due to CRN features. We use the average

number of visits to each state and the average number of packets transmitted in each

state to compute the average number of packets transmitted in each state during a file

transfer. The total number of packets transmitted successfully Npts can be computed

using the formula below:

Npts =
∑
i

NiVi, ∀i ∈ {SS ′, SS, CA}, (4.6)

where Ni is the average number of packets transmitted while in state i and Vi is

average number of visits to state i. The Nis and the Vis were defined in Section 2.3.

Similarly, the total number of packets retransmitted Ntpr using the formula below:

Ntpr =
∑
i

NiVi, ∀i ∈ {DR, TR,MS, FZ}, (4.7)

where NMS = NFZ = NDR = 1 and NTR = 1/r (defined in Section 2.3).

4.4.4 Average Number of Visits to the OFF and the SNS

States

Let us consider the transition probability matrix in Section 4.2.2. Recall that this

matrix captured LU interruption and spectrum sensing separately. Computing the

average number of visits to the OFF state will give us the average number of times

LUs interrupt transmission. Similarly, computing the average number of visits to

Chapter 4: Performance Evaluation 44

the SNS state will give us the average number of times spectrum sensing interrupts

transmission.

We compute the fundamental matrix for the absorbing transition probability ma-

trix above using the formula:

F = (I −Q)−1. (4.8)

We assumed that transmission always begins in the SS ′ state. Therefore, the

(SS ′, OFF) entry of F is the average number of visits to the OFF state since when

the transmission began. The average number of visits to the SNS state since when

the transmission began is the (SS ′, SNS) entry of F .

4.5 TCP

We begin with the transition probability matrix by Arvidsson and Krzesinski [4].

Remember that their model is for TCP without any of the cognitive radio network

features. We set pf = pb = 0.01, wrcv = wthresh = 16, and run our MATLAB program

designed for normal TCP without any cognitive radio network features. The program

ran for files of sizes 2 KB, 20KB, and 200 KB.

4.5.1 Transmission of a 2 KB File

For file of size 2 KB, we have 2×1024
536

packets. ϕ = 1−1/3.82 ≈ 0.74. The program

computed the transition probability matrix below:

Chapter 4: Performance Evaluation 45

P =



0 0 0 0 0.0372 0.9628

0 0 0.1114 0 0.0330 0.8556

0 0 0 0.0275 0.0097 0.9628

0 0 0.7236 0 0.0199 0.2565

0 0.7383 0 0 0 0.2617

0 0 0 0 0 1


.

From the transition probability matrix P , we can see that,

Q =



0 0 0 0 0.0372

0 0 0.1114 0 0.0330

0 0 0 0.0275 0.0097

0 0 0.7236 0 0.0199

0 0.7383 0 0 0

0 0 0 0 0


,

H =



0.9628

0.8556

0.9628

0.2565

0.2617


,

0 =

(
0 0 0 0 0

)
,

1 =

[
1

]
.

Chapter 4: Performance Evaluation 46

Table 4.1: Original TCP: Transmission of a 2 KB File

Loss Probability 0.01 0.1 0.2 0.3 0.4 0.5

Avg. # of Visits to TR 0.038 0.373 0.733 1.109 1.496 1.888

Time to Complete Tx1 1.070 1.722 2.603 3.454 4.203 4.904

Total # of re-Tx 0.039 0.472 1.194 2.339 4.245 7.642

We set a = [1, 0, 0, 0, 0], and compute average number of visits to TR, time to

complete transmission, and total number of re-transmissions.

Varying the packet loss probability from 0.01 to 0.5, we obtained the values in

Table 4.1. As expected, we can see that as the packet loss probability increases, the

average number of visits to the TR state increases as well. Remember that the more

the packet losses, the more the number of time-outs and hence more visits to the TR

state. The time to complete transmission and the total number of re-transmissions

were also computed.

4.5.2 Transmission of a 20 KB File

For file of size 20 KB, we have 20×1024
536

packets. ϕ = 1 − 1/38.2 ≈ 0.97. The

program computed the transition probability matrix below:

1Transmission is abbreviated as Tx in tables.

Chapter 4: Performance Evaluation 47

Table 4.2: Original TCP: Transmission of a 20 KB File

Loss Probability 0.01 0.1 0.2 0.3 0.4 0.5

Avg. # of Visits to TR 0.088 2.468 6.587 10.930 15.056 19.061

Time to Complete Tx 1.826 10.552 21.485 31.436 40.138 47.877

Total # of re-Tx 0.390 4.717 11.940 23.393 42.454 76.418

P =



0 0 0 0.2249 0.0536 0.7215

0 0 0.7741 0.0352 0.0277 0.1630

0 0 0 0.2050 0.0734 0.7215

0 0 0.9544 0 0.0199 0.0257

0 0.9738 0 0 0 0.0262

0 0 0 0 0 1


.

We vary the packet loss probability from 0.01 to 0.5 and we obtained the values

in Table 4.2. Similarly, as expected, we can see that as the packet loss probability

increases, the average number of visits to the TR state increases as well. We also

compute the time to complete transmission and the total number of re-transmissions.

4.5.3 Transmission of a 200 KB File

For file of size 200 KB, we have 200×1024
536

packets. ϕ = 1 − 1/382.1 ≈ 0.997. The

program computed the transition probability matrix below:

Chapter 4: Performance Evaluation 48

Table 4.3: Original TCP: Transmission of a 200 KB File

Loss Probability 0.01 0.1 0.2 0.3 0.4 0.5

Avg. # of Visits to TR 0.820 25.449 66.108 109.024 150.799 190.999

Time to Complete Tx 9.441 100.565 210.866 311.703 399.899 477.727

Total # of re-Tx 3.898 47.172 119.403 233.932 424.544 764.179

P =



0 0 0 0.6449 0.1493 0.2058

0 0 0.9151 0.0384 0.0290 0.0175

0 0 0 0.6375 0.1567 0.2058

0 0 0.9775 0 0.0199 0.0026

0 0.9974 0 0 0 0.0027

0 0 0 0 0 1


.

We vary the packet loss probability from 0.01 to 0.5 and we obtained the values

in Table 4.3. Similarly, as expected, we can see that as the packet loss probability

increases, the average number of visits to the TR state increases as well. The time to

complete transmission and the total number of re-transmissions were also computed.

4.6 Original TCP with LU Interruption and Spec-

trum Sensing

Here, we consider the original TCP model with LU interruption and spectrum

sensing (the model in Section 4.1). We set the probability of an LU interrupting

transmission to 0.4 (p = 0.4), the probability that a node is in sensing mode to 0.167

(d = 0.306). The choice of d is based on the optimal sensing time and transmission

Chapter 4: Performance Evaluation 49

time pair [10, 17]. We set pf = pb = 0.1, wrcv = wthresh = 16, and run our MATLAB

program designed for normal TCP with LU interruption and sensing effect. The

program was ran for a file of size 2 KB, of size 20KB, and of size 200 KB.

4.6.1 Transmission of a 2 KB File

For file of size 2 KB, we set ϕ = 0.74. Below is the transition probability matrix

computed by the program.

P =



0 0 0 0 0.8448 0.1552

0 0 0.3045 0 0.5875 0.1080

0 0 0 0.1678 0.6769 0.1552

0 0 0.3015 0 0.5916 0.1069

0 0.7383 0 0 0 0.2617

0 0 0 0 0 1


.

Varying the packet loss probability from 0.01 to 0.5 we compute the average

number of visits to the TR state, the time to complete transmission, and the total

number of re-transmissions (See Table 4.4).

Table 4.4: Original TCP with LU Interruption and Sensing: Transmission of a 2 KB
File

Loss Probability 0.01 0.1 0.2 0.3 0.4 0.5

Avg. # of Visits to TR 2.209 2.360 2.527 2.692 2.856 3.019

Time to Complete Tx 5.451 5.689 5.944 6.188 6.423 6.649

Total # of re-Tx 5.497 7.076 9.552 13.256 19.104 29.039

Chapter 4: Performance Evaluation 50

4.6.2 Transmission of a 20 KB File

For file of size 20 KB, we set ϕ = 0.97. The program computed the transition

probability matrix below:

P =



0 0 0 0 0.9820 0.0180

0 0 0.4017 0 0.5875 0.0108

0 0 0 0 0.9820 0.0180

0 0 0.3977 0 0.5916 0.0107

0 0.9738 0 0 0 0.0262

0 0 0 0 0 1


.

Varying the packet loss probability we computed the average number of visits

to the TR state, the time to complete transmission, and the total number of re-

transmissions (See Table 4.5).

Table 4.5: Original TCP with LU Interruption and Sensing: Transmission of a 20 KB
File

Loss Probability 0.01 0.1 0.2 0.3 0.4 0.5

Avg. # of Visits to TR 22.448 23.881 25.473 27.065 28.657 30.249

Time to Complete Tx 54.089 56.629 59.331 61.907 64.358 66.682

Total # of re-Tx 54.969 70.757 95.522 132.562 191.045 290.388

4.6.3 Transmission of a 200 KB File

For file of size 200 KB, we set ϕ = 0.997. The program computed the transition

probability matrix below:

Chapter 4: Performance Evaluation 51

P =



0 0 0 0 0.9982 0.0018

0 0 0.4114 0 0.5875 0.0011

0 0 0 0 0.9982 0.0018

0 0 0.4073 0 0.5916 0.0011

0 0.9974 0 0 0 0.0026

0 0 0 0 0 1


.

.

Varying the packet loss probability we computed the average number of visits

to the TR state, the time to complete transmission, and the total number of re-

transmissions (See Table 4.6).

Table 4.6: Original TCP with LU Interruption and Sensing: Transmission of a 200
KB File

Loss Probability 0.01 0.1 0.2 0.3 0.4 0.5

Avg. # of Visits to TR 224.478 238.806 254.726 270.647 286.567 302.488

Time to Complete Tx 541.481 567.071 594.251 620.111 644.652 667.872

Total # of re-Tx 549.685 707.573 955.224 1325.617 1910.448 2903.881

4.7 Modified TCP with LU Interruption and Spec-

trum Sensing

Here, we consider our modified TCP model that captured LU interruption and

sensing separately (the model in Section 4.2.2). We set the probability of an LU

interrupting transmission to 0.4 (p = 0.4), the probability that one of the nodes is

in sensing mode to 0.167 (d = 0.306), pf = pb = 0.01, wrcv = wthresh = 16, and run

Chapter 4: Performance Evaluation 52

our MATLAB program designed for modified TCP with LU interruption and sensing.

The program was ran for a file of size 2 KB, of size 20KB, and of size 200 KB.

4.7.1 Transmission of a 2 KB File

For file of size 2 KB, we set ϕ = 0.74. The program computed the transition

probability matrix below:

P =



0 0 0 0 0.0155 0.4 0 0.1833 0 0.4012

0 0 0.0464 0 0.0138 0.4 0 0.1833 0 0.3565

0 0 0 0.0114 0.0040 0.4 0 0.1833 0 0.4012

0 0 0.3015 0 0.0083 0.4 0 0.1833 0 0.1069

0 0.3076 0 0 0 0.4 0 0.1833 0 0.1090

0 0 0 0 0 0.4 0.6 0 0 0

0 0 0.3015 0 0.0083 0.4 0 0.1833 0 0.1069

0 0 0 0 0 0.4 0 0.1833 0.4167 0

0 0 0.3015 0 0.0083 0.4 0 0.1833 0 0.1069

0 0 0 0 0 0 0 0 0 1



.

Varying the packet loss probability we compute the average number of visits to

the OFF state, the average number of visits to the SNS state, average number of

visits to the TR state, total number of re-transmissions, and the time to complete

transmission. The values we obtained are shown in Table 4.7.

Chapter 4: Performance Evaluation 53

Table 4.7: Modified TCP with LU Interruption and Sensing: Transmission of a 2 KB
File

Loss Probability 0.01 0.1 0.2 0.3 0.4 0.5

Avg. # of Visits to OFF 3.610 5.258 7.417 9.779 12.293 14.942

Avg. # of Visits to SNS 0.993 1.446 2.0340 2.689 3.380 4.109

Avg. # of Visits to TR 0.040 0.496 1.201 2.069 3.085 4.226

Time to Complete Tx 9.025 13.146 18.543 24.447 30.732 37.354

Total # of re-Tx 2.630 4.435 7.254 11.293 17.437 27.655

4.7.2 Transmission of a 20 KB File

For file of size 20 KB, we set ϕ = 0.97. The program computed the transition

probability matrix below:

P =



0 0 0 0.0937 0.0223 0.4 0 0.1833 0 0.3006

0 0 0.3226 0.0147 0.0115 0.4 0 0.1833 0 0.0679

0 0 0 0.0854 0.0306 0.4 0 0.1833 0 0.3006

0 0 0.3977 0 0.0083 0.4 0 0.1833 0 0.0107

0 0.4058 0 0 0 0.4 0 0.1833 0 0.0109

0 0 0 0 0 0.4 0.6 0 0 0

0 0 0.3977 0 0.0083 0.4 0 0.1833 0 0.01069

0 0 0 0 0 0.4 0 0.1833 0.4167 0

0 0 0.3977 0 0.0083 0.4 0 0.1833 0 0.0107

0 0 0 0 0 0 0 0 0 1



.

Varying the packet loss probability we compute the average number of visits to

the OFF state, the average number of visits to the SNS state, average number of

visits to the TR state, total number of re-transmissions, and the time to complete

transmission. The values we obtained are shown in Table 4.8.

Chapter 4: Performance Evaluation 54

Table 4.8: Modified TCP with LU Interruption and Sensing: Transmission of a 20
KB File

Loss Probability 0.01 0.1 0.2 0.3 0.4 0.5

Avg. # of Visits to OFF 7.018 30.694 58.921 87.698 116.887 146.208

Avg. # of Visits to SNS 1.930 8.441 16.203 24.117 32.144 40.207

Avg. # of Visits to TR 0.1312 3.621 10.739 19.900 30.531 42.273

Time to Complete Tx 17.546 76.735 147.302 219.245 292.218 365.520

Total # of re-Tx 5.425 27.834 60.196 104.143 168.793 273.682

4.7.3 Transmission of a 200 KB File

For file of size 200 KB, we set ϕ = 0.997. The program computed the transition

probability matrix below:

P =



0 0 0 0.2687 0.0622 0.4 0 0.1833 0 0.0857

0 0 0.3813 0.0160 0.0121 0.4 0 0.1833 0 0.0073

0 0 0 0.2656 0.0653 0.4 0 0.1833 0 0.0857

0 0 0.4073 0 0.0083 0.4 0 0.1833 0 0.0011

0 0.4156 0 0 0 0.4 0 0.1833 0 0.0011

0 0 0 0 0 0.4 0.6 0 0 0

0 0 0.4073 0 0.0083 0.4 0 0.1833 0 0.0011

0 0 0 0 0 0.4 0 0.1833 0.4167 0

0 0 0.4073 0 0.0083 0.4 0 0.1833 0 0.0011

0 0 0 0 0 0 0 0 0 1



.

Varying the packet loss probability we compute the average number of visits to

the OFF state, the average number of visits to the SNS state, average number of

visits to the TR state, total number of re-transmissions, and the time to complete

transmission. The values we obtained are shown in Table 4.9.

Chapter 4: Performance Evaluation 55

Table 4.9: Modified TCP with LU Interruption and Sensing: Transmission of a 200
KB File

Loss Probability 0.01 0.1 0.2 0.3 0.4 0.5

Avg. # of Visits to OFF 30.679 279.059 570.554 865.484 1162.575 1459.041

Avg. # of Visits to SNS 8.437 76.741 156.902 238.008 319.708 401.236

Avg. # of Visits to TR 0.947 35.268 106.222 197.978 305.096 422.970

Time to Complete Tx 76.699 697.647 1426.384 2163.709 2906.436 3647.603

Total # of re-Tx 25.902 257.417 587.001 1031.330 1682.255 2734.603

4.8 Discussion

In this section, we discuss the effects of LU interruption and spectrum sensing

on TCP based on the performance measures computed in the previous sections. We

begin with the overall effects of LU interruption and spectrum sensing on original

TCP. We later discuss how exactly LU interruption and spectrum sensing affect TCP

explicitly. Discussion on the proposed modifications to TCP follows. Finally, we

make an overall comparison of all the TCP models we discussed in this chapter. In

the figures presented in this chapter we used the following labels for the TCP models:

• Normal TCP : The original TCP without any cognitive radio network feature.

• Normal TCP with LU interruption and sensing: The original TCP with LU

interruption and sensing (the model in Section 4.1).

• Modified TCP: The modified TCP with LU interruption and sensing (the model

in Section 4.2.2).

4.8.1 Effects of LU Interruption and Spectrum Sensing

Both LU interruption and spectrum sensing caused packet losses. TCP considered

losses caused by these cognitive radio network features as congestion losses. TCP

Chapter 4: Performance Evaluation 56

decreases its congestion window in the event of losses caused by either LU interruption

or spectrum sensing. Packet losses lead to increase in the average number of visits

to the TR state, increase in the time to complete transmission, and also increase

in the total number of re-transmissions. Here, we show by graphs the effects of LU

interruption and spectrum sensing on the original TCP. We considered files of 2KB

size, 20KB size, and 200KB size.

Average Number of Visits to TR

Figure 4.1 shows a comparison in terms of average number of visits to TR state

between an original TCP without any of the CRN features and an original TCP

with LU interruption and spectrum sensing. From all the graphs (Figure 4.1(a),

Figure 4.1(b), and Figure 4.1(c)), we can see how LU interruption and spectrum

sensing increase the average number of visits to the TR state. The reason for the

increase in average number of visits to TR state is because LU arrival interrupts

transmission and spectrum sensing lead to time-outs. Remember that for every time-

out TCP transmission switches to the TR state.

Time to Complete Transmission

Figure 4.2 shows a comparison in terms of time to complete transmission between

an original TCP without any of the CRN features and an original TCP with LU

interruption and spectrum sensing. Similar to the case of average number of visits to

TR, here also, we can see how LU interruption and spectrum sensing increase the time

to complete transmission. This is because interruptions by LUs and spectrum sensing

caused more packet losses and hence transmission takes more time to complete.

Chapter 4: Performance Evaluation 57

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1

2

3

4

5

Loss Probability

A
ve

ra
ge

 n
um

be
r

of
 v

is
its

 to
 T

R

Normal TCP
Normal TCP with LU interruption and sensing

(a) Transmission of a 2KB file.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

5

10

15

20

25

30

35

Loss Probability

A
ve

ra
ge

 n
um

be
r

of
 v

is
its

 to
 T

R

Normal TCP
Normal TCP with LU interruption and sensing

(b) Transmission of a 20KB file.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

50

100

150

200

250

300

350

400

450

Loss Probability

A
ve

ra
ge

 n
um

be
r

of
 v

is
its

 to
 T

R

Normal TCP
Normal TCP with LU interruption and sensing

(c) Transmission of a 200KB file.

Figure 4.1: Average Number of Visits to TR State: Normal TCP vs TCP with LU
interruption and spectrum sensing.

Number of Re-transmissions

Figure 4.3 shows a comparison in terms of total number of re-transmissions be-

tween an original TCP without any of the CRN features and an original TCP with LU

interruption and spectrum sensing. Here also, LU interruption and spectrum sensing

increase the total number of re-transmissions. This is because these factors caused

Chapter 4: Performance Evaluation 58

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

2

4

6

8

10

Loss Probability

T
im

e
to

 c
om

pl
et

e
tr

an
sm

is
si

on

Normal TCP
Normal TCP with LU interruption and sensing

(a) Transmission of a 2KB file.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

10

20

30

40

50

60

70

Loss Probability

T
im

e
to

 c
om

pl
et

e
tr

an
sm

is
si

on

Normal TCP
Normal TCP with LU interruption and sensing

(b) Transmission of a 20KB file.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

100

200

300

400

500

600

700

Loss Probability

T
im

e
to

 c
om

pl
et

e
tr

an
sm

is
si

on

Normal TCP
Normal TCP with LU interruption and sensing

(c) Transmission of a 200KB file.

Figure 4.2: Time to Complete Transmission: Normal TCP vs TCP with LU inter-
ruption and spectrum sensing.

more packet losses and hence more re-transmissions.

Chapter 4: Performance Evaluation 59

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

5

10

15

20

25

30

35

40

Loss Probability

T
ot

al
 n

um
be

r
of

 r
et

ra
ns

m
is

si
on

s

Normal TCP
Normal TCP with LU interruption and sensing

(a) Transmission of a 2KB file.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

50

100

150

200

250

300

Loss Probability

T
ot

al
 n

um
be

r
of

 r
et

ra
ns

m
is

si
on

s

Normal TCP
Normal TCP with LU interruption and sensing

(b) Transmission of a 20KB file.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

500

1000

1500

2000

2500

3000

Loss Probability

T
ot

al
 n

um
be

r
of

 r
et

ra
ns

m
is

si
on

s

Normal TCP
Normal TCP with LU interruption and sensing

(c) Transmission of a 200KB file.

Figure 4.3: Number of Re-transmissions: Normal TCP vs TCP with LU interruption
and spectrum sensing.

4.8.2 Explicit Effects of LU Interruption and Spectrum Sens-

ing on TCP

Here, we discuss the effects of LU interruption and spectrum sensing on TCP

explicitly. The modified TCP model differentiates losses caused by LU interruption

and spectrum sensing from losses caused by congestion in the network. We show by

Chapter 4: Performance Evaluation 60

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

200

400

600

800

1000

1200

Loss Probability

Li
ce

ns
ed

 u
se

r
in

te
rr

up
tio

ns

2KB
20KB
200KB

Figure 4.4: Licensed user interruptions

graphs how LU arrivals and spectrum sensing interrupt transmission as loss proba-

bility varies. We also compare the original TCP with LU interruption and spectrum

sensing to the modified TCP that captured LU interruption and spectrum sensing.

We consider three file sizes; a 2KB file, a 20KB file, and a 200KB file.

LU Interruption

Figure 4.4 shows licensed user interruptions as loss probability varies. We can

see that as loss probability increases the licensed user interruption increases as well.

This is because increase in loss probability leads to increase in the time to complete

transmission. As a result, the sender and the receiver need the services of the licensed

channels for a longer period of time. The more time transmission remain on the

Chapter 4: Performance Evaluation 61

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

50

100

150

200

250

300

Loss Probability

S
pe

ct
ru

m
 s

en
si

ng
 in

te
rr

up
tio

ns

2KB
20KB
200KB

Figure 4.5: Spectrum sensing interruptions

licensed channels, the higher the interruptions by LUs. We can also see that the

larger the file size, the higher the licensed user interruption. This is also because

larger files require more time to complete transmission.

Spectrum Sensing

Figure 4.5 shows spectrum sensing interruptions as loss probability is varied. We

can see that as loss probability increases the spectrum sensing interruption increases

as well. Similar to the case of LU arrival, this is because increase in loss probability

leads to increase in the time to complete transmission. Since spectrum sensing is

periodic then the more time transmission is in progress the higher the interruptions

caused by spectrum sensing. Here also, we can see that the larger the file size, the

Chapter 4: Performance Evaluation 62

higher the spectrum sensing interruption. This is also because larger files require

more time to complete transmission.

4.8.3 Proposed Modifications to TCP

Our proposed modifications to TCP are to make sure that the TCP sender does

not reduce it’s congestion window value to 1 MSS when either an LU arrived or

spectrum sensing interrupts transmission. Remember that congestion window value

is set to 1 MSS when transmission goes to the TR state. To get a measure of how

much the proposed modifications to TCP reduces the number of visits to the TR state,

we compute the average number of visits to the TR state. We compare the average

number of visits to the TR state for the original TCP with LU and spectrum sensing

and the TCP model that captured the proposed modifications. We also compare the

two in terms of number of re-transmissions and the time to complete transmission.

Similar to all the evaluations in this work, we consider files of sizes 2KB, 20KB, and

200KB.

Average Number of Visits to TR

Figure 4.6 shows a comparison in terms of average number of visits to TR between

an original TCP with LU interruption and spectrum sensing and the TCP model that

captured the proposed modifications. From the figure we can see that the proposed

modifications were able to reduce the average number of visits to the TR state com-

pared to the the original TCP with LU interruption and spectrum sensing. However,

when loss probability becomes greater than 0.35 (more than 35% packet loss), the

Chapter 4: Performance Evaluation 63

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1

2

3

4

5
A

ve
ra

ge
 n

um
be

r
of

 v
is

its
 to

 T
R

Loss Probability

Normal TCP with LU interruption and sensing
Modified TCP

(a) Transmission of a 2KB file.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

5

10

15

20

25

30

35

40

A
ve

ra
ge

 n
um

be
r

of
 v

is
its

 to
 T

R

Loss Probability

Normal TCP with LU interruption and sensing
Modified TCP

(b) Transmission of a 20KB file.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

50

100

150

200

250

300

350

400

450

A
ve

ra
ge

 n
um

be
r

of
 v

is
its

 to
 T

R

Loss Probability

Normal TCP with LU interruption and sensing
Modified TCP

(c) Transmission of a 200KB file.

Figure 4.6: Average Number of Visits to TR State: Normal TCP vs TCP with LU
interruption and spectrum sensing.

average number of visits to the TR state for the TCP with the proposed modifications

becomes higher than that for the original TCP with LU interruption and spectrum

sensing.

Chapter 4: Performance Evaluation 64

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

5

10

15

20

25

30

35

40
T

ot
al

 n
um

be
r

of
 r

et
ra

ns
m

is
si

on
s

Loss Probability

Normal TCP with LU interruption and sensing
Modified TCP

(a) Transmission of a 2KB file.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

50

100

150

200

250

300

T
ot

al
 n

um
be

r
of

 r
et

ra
ns

m
is

si
on

s

Loss Probability

Normal TCP with LU interruption and sensing
Modified TCP

(b) Transmission of a 20KB file.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

500

1000

1500

2000

2500

3000

T
ot

al
 n

um
be

r
of

 r
et

ra
ns

m
is

si
on

s

Loss Probability

Normal TCP with LU interruption and sensing
Modified TCP

(c) Transmission of a 200KB file.

Figure 4.7: Number of Re-transmissions: Normal TCP vs TCP with LU interruption
and spectrum sensing.

Number of Re-transmissions

Figure 4.7 shows a comparison in terms of total number of re-transmissions be-

tween an original TCP with LU interruption and spectrum sensing and the modi-

fied TCP with LU interruption and spectrum sensing. From the figure, we can see

that the TCP with the proposed modifications was able to reduce the number of

Chapter 4: Performance Evaluation 65

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

5

10

15

20

25

30

35

40
T

im
e

to
 c

om
pl

et
e

tr
an

sm
is

si
on

Loss Probability

Normal TCP with LU interruption and sensing
Modified TCP

(a) Transmission of a 2KB file.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

50

100

150

200

250

300

T
im

e
to

 c
om

pl
et

e
tr

an
sm

is
si

on

Loss Probability

Normal TCP with LU interruption and sensing
Modified TCP

(b) Transmission of a 20KB file.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

500

1000

1500

2000

2500

3000

T
im

e
to

 c
om

pl
et

e
tr

an
sm

is
si

on

Loss Probability

Normal TCP with LU interruption and sensing
Modified TCP

(c) Transmission of a 200KB file.

Figure 4.8: Time to Complete Transmission: Normal TCP vs TCP with LU inter-
ruption and spectrum sensing.

re-transmissions compared to the original TCP.

Time to Complete Transmission

Figure 4.8 shows a comparison in terms of time to complete transmission between

an original TCP with LU interruption and spectrum sensing and the modified TCP

Chapter 4: Performance Evaluation 66

with LU interruption and spectrum sensing. From Figure 4.8(b) and Figure 4.8(c) we

can see that the modified TCP reduces the time to complete transmission until when

loss probability reaches 0.09. This is because, the modified TCP model has to do

an extra work to differentiate losses caused by congestion in the network from losses

caused by either LU arrival or spectrum sensing.

4.8.4 Overall Analysis

Average Number of Visits to the TR State

Figure 4.9 shows a comparison in terms of average number of visits to the TR

state between an original TCP without CRN features, an original TCP with LU

interruption and spectrum sensing, and TCP with the proposed modifications. Fig-

ure 4.9(a) is for a 2KB file transmission. From the figure, we can see that for all of

the TCPs, the average number of visits to TR increases with increase in loss prob-

ability. This is because as loss probability increases, number of timeouts increases,

and hence more visits to the TR state. As expected, TCP without any of the CRN

features has the lowest average number of visits to the TR state. The TCP with

the proposed modifications has lower average number of visits to the TR state than

the original TCP with the CRN features. However, when loss probability reaches

0.35, the average number of visits to the TR state for the TCP with the proposed

modifications becomes higher than the original TCP with the CRN features. We can

also see the similar result in the case of a 20KB file and a 200KB file transmissions

from Figure 4.9(b) and Figure 4.9(c), respectively.

Chapter 4: Performance Evaluation 67

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1

2

3

4

5
A

ve
ra

ge
 n

um
be

r
of

 v
is

its
 to

 T
R

Loss Probability

Normal TCP
Normal TCP with LU interruption and sensing
Modified TCP

(a) Transmission of a 2KB file.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

5

10

15

20

25

30

35

40

A
ve

ra
ge

 n
um

be
r

of
 v

is
its

 to
 T

R

Loss Probability

Normal TCP
Normal TCP with LU interruption and sensing
Modified TCP

(b) Transmission of a 20KB file.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

50

100

150

200

250

300

350

400

450

A
ve

ra
ge

 n
um

be
r

of
 v

is
its

 to
 T

R

Loss Probability

Normal TCP
Normal TCP with LU interruption and sensing
Modified TCP

(c) Transmission of a 200KB file.

Figure 4.9: Average Number of Visits to TR State: Overall Analysis.

Number of Re-transmissions

Figure 4.10 shows a comparison in terms of number of re-transmissions between an

original TCP without CRN features, an original TCP with LU interruption and spec-

trum sensing, and TCP with the proposed modifications. For a 2KB file transmission

see Figure 4.10(a). From the figure, we can see that for all of them, number of re-

Chapter 4: Performance Evaluation 68

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

5

10

15

20

25

30

35

40
T

ot
al

 n
um

be
r

of
 r

et
ra

ns
m

is
si

on
s

Loss Probability

Normal TCP
Normal TCP with LU interruption and sensing
Modified TCP

(a) Transmission of a 2KB file.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

50

100

150

200

250

300

T
ot

al
 n

um
be

r
of

 r
et

ra
ns

m
is

si
on

s

Loss Probability

Normal TCP
Normal TCP with LU interruption and sensing
Modified TCP

(b) Transmission of a 20KB file.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

500

1000

1500

2000

2500

3000

T
ot

al
 n

um
be

r
of

 r
et

ra
ns

m
is

si
on

s

Loss Probability

Normal TCP
Normal TCP with LU interruption and sensing
Modified TCP

(c) Transmission of a 200KB file.

Figure 4.10: Number of Re-transmissions: Overall Analysis.

transmissions increases with increase in loss probability. As expected, TCP without

any of the CRN features has the lowest number of re-transmissions. The TCP with

the proposed modifications has lower number of re-transmissions than the original

TCP with LU interruption and spectrum sensing. Figure 4.10(b) and Figure 4.10(c)

show similar results for a 20KB file and a 200KB file transmissions, respectively.

Chapter 4: Performance Evaluation 69

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

5

10

15

20

25

30

35

40
T

im
e

to
 c

om
pl

et
e

tr
an

sm
is

si
on

Loss Probability

Normal TCP
Normal TCP with LU interruption and sensing
Modified TCP

(a) Transmission of a 2KB file.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

50

100

150

200

250

300

T
im

e
to

 c
om

pl
et

e
tr

an
sm

is
si

on

Loss Probability

Normal TCP
Normal TCP with LU interruption and sensing
Modified TCP

(b) Transmission of a 20KB file.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

500

1000

1500

2000

2500

3000

T
im

e
to

 c
om

pl
et

e
tr

an
sm

is
si

on

Loss Probability

Normal TCP
Normal TCP with LU interruption and sensing
Modified TCP

(c) Transmission of a 200KB file.

Figure 4.11: Time to Complete Transmission: Overall Analysis.

Time to Complete Transmission

Figure 4.11 shows a comparison in terms of time to complete transmission between

an original TCP without CRN features, an original TCP with LU interruption and

spectrum sensing, and the modified TCP with the LU interruption and spectrum

sensing. For a 2KB file transmission, Figure 4.11(a) shows that for for all the TCPs,

Chapter 4: Performance Evaluation 70

the time to complete transmission increases with increase in loss probability. However,

the rate at which the time increases for the modified TCP is higher than the other

two TCPs. As expected, TCP without any of the CRN features has the lowest

time to complete transmission. The modified TCP has the highest time to complete

transmission. When transmitting a 20KB file and a 200KB file, the time to complete

transmission for the modified TCP is lower than that of the unmodified TCP until

when loss probability reaches around 0.09 (See Figure 4.11(b) and Figure 4.11(c)).

For most applications the acceptable loss probability is somewhere between 0.01 to

0.02, where the modified TCP was able to reduce the time to complete transmission.

The modified TCP model accounted for changes in window size. The MS state

and the FZ state are modelled just like the DR state. They have same transition

probabilities with DR state. Therefore, when in the MS state or the FZ state, wn

is set to wn/2. What the model did not account for is our proposal to set wn to the

measured expected window size when in the MS state and to keep wn as it is when

in the FZ state (See Section 4.3). However, the model still improves the window

utilization of TCP. This is because the unmodified TCP will set wn to 1 when an LU

arrival or spectrum sensing interrupts transmission, where as the modified TCP will

set wn to wn/2.

Chapter 5

Conclusions and Future Work

Despite the world-wide deployment of TCP in the Internet, TCP cannot be di-

rectly deployed in cognitive radio networks. Several research results show how poor

TCP performs in cognitive radio networks. To design an efficient transport protocol

for cognitive radio networks, a new transport protocol needs to be designed or modi-

fication should be made to TCP. In this thesis, we showed how we modified TCP to

work better in cognitive radio networks in terms of average number of visits to the

TR state, total number of retransmissions, and time to complete transmission.

To evaluate our work, we introduced cognitive radio network features to the TCP

Reno model of Arvidsson and Krzesinski [4]. We observed how original TCP Reno

performs in the presence of cognitive radio features. We later extended their model

to capture our proposed solution and evaluated its performance.

We developed MATLAB programs that compute the entries of the transition prob-

ability matrices we used for evaluation. We assigned values to the following param-

eters: pb, pf , ϕ, wrcv, and wthresh and vary the loss probabilities, pf and pb from 0.01

71

Chapter 5: Conclusions and Future Work 72

to 0.5. We considered file of three different sizes, a small file of size 2KB, a little bit

larger file of size 20KB, and a larger file of size 200KB. We ran our program itera-

tively, iterations stop when the difference between the previous wthresh value and the

current is less than 10−6.

Based on the absorbing Markov chains we obtained from our MATLAB programs,

we computed performance measures that include average number of visits to TR state,

time to complete transmission, total number of retransmissions during an average

transmission, licensed user interruptions, and spectrum sensing interruptions.

Finally, we presented some figures that showed comparison between the original

TCP Reno with CRN features and our modified TCP Reno in terms of average number

of visits to TR state, time to complete transmission, and total number of total number

of retransmissions during an average transmission. In the presence of LU interruption

and spectrum sensing, the modified TCP was able to perform better than the original

TCP in almost all the cases. The modified TCP was able to reduce the total number

of retransmissions in all the file sizes we considered. When loss probability reaches

0.09, the modified TCP failed to reduce the time to complete transmission. However,

for most applications the acceptable loss probability is less than 0.05.

For future work, we will try to implement our proposed modifications to TCP

on radio devices equipped with cognitive features. We will also try to run some

experiments using the NS-2 simulator. Since we require end systems to exchange

spectrum sensing information during connection set-up, we proposed that this should

be added to the TCP segment header. TCP segment header has an option field

called Options. The length of the Options field is variable between 0 − 320 bits.

Chapter 5: Conclusions and Future Work 73

During connection set-up, TCP uses the Options field to specify options such as

acknowledgement policy and maximum segment size. The Options field can be used

to exchange spectrum sensing schedule during connection set-up. We will also try to

run some simulations using the NS-2 simulator.

Bibliography

[1] I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty. Next genera-

tion/dynamic spectrum access/cognitive radio wireless networks: A survey. Com-

puter Networks Journal, 50(13):2127–2159, September 2006.

[2] I. F. Akyildiz, W.-Y. Lee, and K. R. Chowdhury. CRAHNs: Cognitive radio ad

hoc networks. Ad Hoc Networks, 7(5):810–836, July 2009.

[3] M. Allman, V. Paxson, and W. Stevens. RFC 2581 : TCP congestion control.

Internet Engineering Task Force (IETF), April 1999.

[4] A. Arvidsson and A. E. Krzesinski. A model of a TCP link. In 15th Spe-

cialist Seminar on Internet Traffic Engineering and Traffic Management (ITC),

Wurzburg, Germany, 2002.

[5] R. Braden. RFC 1122 : Requirements for internet hosts – communication layers.

Internet Engineering Task Force (IETF), October 1989.

[6] L. S. Brakmo and L. L. Paterson. TCP Vegas: End to end congestion avoidance

on a global Internet. IEEE Journal on Selected Areas In Communications, 13

(8):1465–1480, October 1995.

74

Bibliography 75

[7] C. Casetti, M. Gerla, S. Mascolo, M. Y. Sanadidi, and R. Wang. TCP westwood:

End to end congestion control for wired/wireless networks. Wireless Networks,

8(5):467–479, September 2002.

[8] K. R. Chowdhury, M. Di Felice, and I. F. Akyildiz. TP-CRAHN: A transport

protocol for cognitive radio ad-hoc networks. In Proceedings of the IEEE Interna-

tional Conference on Computer Communications (INFOCOM), Rio de Janeiro,

Brazil, pages 2482–2490, April 2009.

[9] FCC. Federal communications commission spectrum policy task force. Report

of the Spectrum Efficiency Working Group, November 2002.

[10] M. D. Felice, K. R. Chowdhury, and L. Bononi. Modeling and performance

evaluation of transmission control protocol over cognitive radio ad hoc networks.

In Proceedings of the 12th ACM International Conference on Modeling, Analysis

and Simulation of Wireless and Mobile Systems (MSWiM), Tenerife, Canary

Islands, Spain, pages 4–12, October 2009.

[11] S. Floyd and B. Henderson. RFC 2582 : The NewReno modifications to TCP’s

fast recovery algorithm. Internet Engineering Task Force (IETF), April 1999.

[12] S. Ha, I. Rhee, and L. Xu. CUBIC: A new TCP-friendly high-speed TCP variant.

Operating Systems Review, 42(5):64–74, July 2008.

[13] E. Hossain and V. Bhargava, editors. Cognitive Wireless Communication Net-

works. Springer, 2007.

[14] T. Issariyakul, L. S. Pillutla, and V. Krishnamurthy. Tuning radio resource in

Bibliography 76

an overlay cognitive radio network for TCP: Greed isn’t good. IEEE Communi-

cations Magazine, 47(7):57–63, July 2009.

[15] V. Jacobson. Congestion avoidance and control. Computer Communication

Review, 18(4):314–329, August 1988.

[16] V. Jacobson. Modified TCP congestion avoidance algorithm. end2end-interest

mailing list, ftp://ftp.isi.edu/end2end/end2end-interest-1990.mail, April 1990.

[17] W.-Y. Lee and I. F. Akyildiz. Optimal spectrum sensing framework for cognitive

radio networks. IEEE Transactions on Wireless Communications, 7(10):3845–

3857, October 2008.

[18] C. Luo, R. F. Yu, H. Ji, and V. C. M. Leung. Cross-layer design for TCP

performance improvement in cognitive radio networks. IEEE Transactions on

Vehicular Technology, 59(5):2485–2495, June 2010.

[19] M. Mathis, J. Mahdavi, F. S., and A. Romanow. TCP selective acknowledgement

options. RFC 2018, Internet Engineering Task Force (IETF), October 1996.

[20] J. Postel. RFC 793 : Transmission control protocol. Internet Engineering Task

Force (IETF), September 1981.

[21] J. Postel. RFC 879 : The TCP maximum segment size and related topics.

Internet Engineering Task Force (IETF), November 1983.

[22] D. Sarkar and H. Narayan. Transport layer protocols for cognitive networks. In

IEEE Conference on Computer Communications Workshops (INFOCOM), San

Diego, CA, USA, pages 1–6, March 2010.

Bibliography 77

[23] A. M. Slingerland, P. Pawelczak, R. Prasad, A. Lo, and R. Hekmat. Performance

of transport control protocol over dynamic spectrum access links. In Proceedings

of the 2nd IEEE International Symposium on New Frontiers in Dynamic Spec-

trum Access Networks (DySPAN), Dublin, Ireland, pages 486–495, April 2007.

[24] Q. Zhao and B. M. Sadler. A survey of dynamic spectrum access. IEEE Signal

Processing Magazine, 24(3):79–89, May 2007.

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgments
	Dedication
	Introduction
	Overview
	Cognitive Radio Networks
	TCP
	TCP in Cognitive Radio Networks
	TCP as a Queueing Model
	Summary

	Related Work
	Performance of TCP on Cognitive Radio Networks
	Transport Layer Protocols for Cognitive Radio Networks
	Embedded Markov Chain for TCP Reno

	Modifications to TCP Reno
	Delay caused by Cognitive Radio Network Features
	Proposed Scheme

	Performance Evaluation
	Original TCP with LU Interruption and Spectrum Sensing
	Capturing LU Interruption and Spectrum Sensing in TCP
	Capturing LU Interruption in TCP
	Capturing both LU Interruption and Spectrum Sensing in TCP

	Capturing Proposed Modifications to TCP
	Performance Measures
	Average Number of Visits to TR State
	Time to Complete Transmission
	Total Number of Re-transmissions
	Average Number of Visits to the OFF and the SNS States

	TCP
	Transmission of a 2 KB File
	Transmission of a 20 KB File
	Transmission of a 200 KB File

	Original TCP with LU Interruption and Spectrum Sensing
	Transmission of a 2 KB File
	Transmission of a 20 KB File
	Transmission of a 200 KB File

	Modified TCP with LU Interruption and Spectrum Sensing
	Transmission of a 2 KB File
	Transmission of a 20 KB File
	Transmission of a 200 KB File

	Discussion
	Effects of LU Interruption and Spectrum Sensing
	Average Number of Visits to TR
	Time to Complete Transmission
	Number of Re-transmissions

	Explicit Effects of LU Interruption and Spectrum Sensing on TCP
	LU Interruption
	Spectrum Sensing

	Proposed Modifications to TCP
	Average Number of Visits to TR
	Number of Re-transmissions
	Time to Complete Transmission

	Overall Analysis
	Average Number of Visits to the TR State
	Number of Re-transmissions
	Time to Complete Transmission

	Conclusions and Future Work
	Bibliography

