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ABSTRACT

An interactive computer program which provides a heuristic
technique for the design of network geometry for rural natural gas
distribution systems, was developed. The program is coded in two
parts, a procedural component which combines the best features of
two common network optimization algorithms - the Minimal Spanning
Tree and Dijkstra’s algorithm - and a cognitive component which
incorporates rules derived from field experience for improving the
layouts generated by the procedural component. Iteration between
these two components can result in many near-optimal alternative

solutions rather than convergence on a single solution.
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CHAPTER 1: INTRODUCTION

The model described in this thesis was developed to facilitate
the design of rural natural gas distribution networks. This study
extends previous work on the subject (Davidson and Goulter, 1989)
and focuses specifically on the issue of the computer assisted
design of the network geometry. The previous work by Davidson and
Goulter (1989) considered the issues of hydraulic design and cost
analysis in conjunction with geometric design. While it was
relatively easy to achieve success in automating the hydraulic
design and cost analysis components with that approach, the
geometric design component proved to be considerably more
difficult. Various strategies were tried but the problem was left
substantially unresolved, and instead relied heavily on user

judgment.

While geometric design is the primary emphasis in this work, it
is not possible, or even desirable, to isolate this aspect of the
problem from the physical reality for which the work is intended,
namely the design of rural gas networks. This model is intended for
practical application and therefore, "real world" concerns such as
hydraulics, cost, physical and legal constraints on the systenm
geometry are considered to be issues that are integral to the

success of a particular system layout.

The proposed methods combine heuristics and user interaction.
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This approach is preferred over conventional optimization. What is
meant by conventional optimization is that approach which involves
formulating the problem as an objective function and a set
constraints for which a single optimal solution exists that may be
obtained using some standard algorithmic technique such as linear
programming. Experience has shown that the problem of proposing
network geometry does not lend itself to conventional optimization

techniques and there are three major reasons for this:

1. It is extremely difficult, if not impossible, to
formulate mathematical expressions for the constraints
for a problem of this type. The greatest difficulties
would be encountered in articulating the physical and
legal geography of the project area as mathematical
expressions.

2. The cost of compiling all the required information for
the entire project area would be prohibitive, possibly
exceeding the cost of constructing the project.

3. There is no known algorithm that can solve the problem
in a practical length of time.

Common engineering practice is to use successive refinements to
obtain the final layout. The actual procedure is as follows. An
initial layout is proposed before all the constraints are fully
understood. Physical and legal barriers, which will require that
revisions be made, will be imposed once this 1layout has been
proposed. A project may have to undergo numerous revisions of this

type before a final layout is obtained.

The procedure for designing these networks is very tedious, time

consuming and prone to error. Davidson and Goulter (1989) showed
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that successive revisions could be accomplished more gquickly and
easily if the entire process of selecting the network geometry,
hydraulic design and cost analysis could be integrated into a
single computer program. The major weakness of their method was in
the way in which the initial network was selected and the work

presented here addresses this problemn.



CHAPTER 2: PROBLEM DEFINITION

Physical Characteristics of the Problem

The natural gas distribution systems that are considered in this
work are based on design standards for the Saskatchewan Natural Gas
Distribution Program (SNGDP) initiated by the Saskatchewan
Government and the Saskatchewan Power Corporation in the early
1980’s. The networks themselves are constructed from polyethylene
pipe. They are branched networks with a single gas source. Since
redundancy is not a requirement there are generally no loops in
these networks. The gas source, or regulator station, is assumed
to operate continuously at a pressure of 550 kPa. The minimum
allowable outlet pressure is specified as 140 kPa. This defines a
range of pressure referred to as intermediate pressure. In addition
a maximum hydraulic gradient of 20 kPa per km is recommended.
Davidson (1988) describes the physical characteristics of these

networks in more detail.

There are many natural and man-made obstacles to the
_construction of pipe networks of this type. The natural obstacles
include rivers and lakes and the man-made obstacles include roads,
railways, pipelines and cables. Some obstacles such as rivers can
be crossed at an additional cost, while some obstacles such as
lakes simply must be avoided. Experience has shown that the problem

- of obtaining land easement does more to determine the final layout
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than any of the other constraints.

Rectilinear geometry is also an important restriction. At a
later date it may be necessary to locate components of the systenm,
either to modify it or to allow some other underground utility to
cross it. To facilitate locating the pipe, the requirement is made
that the system be orthogonal to the survey grid. In practice this
turns out to be an extremely costly restriction which has never
been strictly adhered to. In recent years, this restriction has
been relaxed substantially to reduce costs. Some recent work has
shown some success in applying techniques involving fuzzy set
theory to design networks in compliance with this relaxed
constraint (Davidson, 1989). The use of these techniques is beyond
the scope of this work, however it will be assumed throughout this

work that the rectilinearity constraint must not be violated.

Graphic Interface and User Regquirements

In the previous work by Davidson and Goulter (1989), an
_interactive graphic interface was found to be a very effective
means to satisfy all the user requirements. A similar interface is
used with the current program. The computer programs that performed
the difficult tasks were non-interactive programs and could be
called from the main program which was interactive and graphics

oriented in nature. AutoCAD provided the graphics environment and
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the user interface was programmed in AutoLISP. LISP was found to
be particularly well suited to this task because the language is
interactive, extensible and handles dynamic memory easily. In this
study the same interactive approach has been taken, but since fewer
tasks are required to be performed, the user interface is scaled

down slightly.

The interactive routines that comprise the user interface have
been arranged in four different categories. The routines in the
first of these categories are required for the input of data. The
only input data required from the user are the set of nodes for a
particular problem. The input of these data can be achieved easily
and naturally using a digitizer. The connectivity between these
nodes, which in effect, is the geometric design of the system, is
created and maintained internally by the computer. All of the
processes and data structures associated with the maintenance of
the connectivity are deliberately hidden from the user. Any
alterations in the connectivity must be accomplished by changing
the configuration of nodes, essentially through the addition of so
called dummy nodes. The process is described in more detail by

Davidson and Goulter (1989).

While the process as described here may seem cumbersome, it is,
in fact, extremely simple and easy to perform in practice. The
objective is to achieve as simple an interface as possible by

limiting the type of information that can be provided as input. In
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addition to achieving simplicity of input, the internal generation
of connectivity by algorithms will ensure that the proper network
structures are created. This feature cannot be ensured by manual

input in the case of a careless or an inexperienced user.

Other routines allow the user to submit data to any of the hon—
interactive programs. Output data from these programs are
automatically displayed in a graphical form when the program
terminates. Another category of routines allows the user to control
the graphic display. Successive revisions of a design may require
the user to clear a previous design from the screen, or to overlay

two designs for comparison.

The final category of routines is only required for larger
projects. The nodespace, or memory reserved for the LISP
interpreter, is 45 kilobytes which is unfortunately very small.
Routines are provided to empty the nodespace and reload the LISP

programs if the nodespace becomes full.

'Network Theory Applications

A network of the type described in this thesis is generally
referred to as a Rectilinear Steiner Tree (RST). In the field of
Graph Theory the problem of finding the minimal cost RST is

generally regarded as being a computationally hopeless task (Garey
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and Johnson, 1977). Additionally, as networks become more complex,
the use of a mathematical model to select the best solution from
a set of sufficiently good solutions may not be advisable. There
is always some discrepancy between a mathematical model and the
physical reality that is being modelled. Many of the feasible
solutions that are to be assessed using the model may be so close
to each other in their evaluation, that the difference between
evaluations is smaller than the accepted precision of the
mathematical model. It is also possible that the criterion used for
evaluating solutions may be sufficiently imprecisé and may not
adequately reflect all aspects of a solution which determine that
solution’s desirability in the context of the physical reality.
Dubois (1983) has suggested two reasons why a good (heuristic)

solution may be preferable to the global minimum:

1. As the network size increases, the optimum ...
degenerates into a group of equivalent solutions whose
evaluations are very close to each other. The more
complex the network, the more insensitive the
criterion, when a link is dropped or added.

2. Owing to the uncertainties on the data, the system
structure, and the criterion formulation, the optimal
solution of the mathematical problem may not

correspond with the optimal solution in the real
world.

Rather than to attempt to find the global minimum, the approach
that has been taken in this study is one of relying on heuristics

to obtain a reasonably good solution.



9
For the sake of simplicity, in this study many of the accepted
conventions of Graph Theory have been set aside or changed.
Typically a graph is composed of a set of nodes, a set of edges and
some function which describes the connectivity between the nodes
and edges. The convention that has been adopted in this study is
that a pipe network is described by a set of nodes and a set of

lines.

The nodes are assumed to exist in two dimensional space. They
are numbered and each node has an x and y coordinate. One node acts
as a source which is assumed to be capable of supplying all the
required gas at a consistent pressure. Other points act as sinks

which determine the load throughout the system.

All 1lines are assumed to be straight 1lines and to have
directions. Each line originates at one node and terminates at
another. Since only straight lines are permitted, additional nodes
are required to produce the tees and elbows found in a rectilinear
network. These nodes do not contribute any load to the system and

are referred to as dummy nodes.

The convention that has been adopted for the representation of
the networks in the figures throughout this work is as follows.
The source node is represented as a circle with the letter "g®
drawn in the centre. All nodes are numbered and the source node is

considered to be node 1, although this number is never displayed.
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The sink nodes are represented by solid black circles. The number
assigned to a sink node may be displayed to the immediate right of
a node or concealed as required. Dummy nodes may be represented in
a network or they may be left out to improve the clarity of a
figure. If represented, dummy nodes appear as circles that are not
solid and the node numbers may be represented to the right of the
node. Connecting lines are simply represented as straight lines.
Alternatively, an arrowhead may indicate the direction of flow of

gas in a line.

Principal Obiectives of Geometric Design

Experience shows that experts in the field of gas network design
rely heavily on intuition when designing systems. Typically the
designer’s methods become less systematic as his ability improves.
It would be extremely difficult to produce a set of rules or
procedures that would emulate the entire design process from
beginning to end, but three major issues, or objectives, have been

identified based on the author’s experience, as follows:

1. Eliminate as much of the parallel piping as possible to
reduce the total system length.

2. Branch as "early" as possible without conflicting with
the first objective.

3., Eliminate as many bends or elbows in the system as
possible without conflicting with the first two

objectives.
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The first objective results from the fact that the cost-to-
capacity ratio for larger diameter pipe is more favourable than for
smaller diameter pipe. Parallel pipes should be replaced by a
single pipe of larger diameter where possible. Figure la shows a
system serving two sinks with parallel segments in the system.
Figure 1b shows the sahe system with the parallel piping
eliminated. The total cost of the system in Figure 1b will be lower
than the cost of the system in Figure la even if the system in
Figure 1b requires a largér diameter pipe for the common segment.

The total length of pipe in the systems shown in Figure lc and
Figure 1d is the same. The layout in Figure 1d is superior to the
layout in Figure 1c because the branch occurs "earlier" (i.e.,
closer to the source). Placing the branch at node 5 rather than
node 2 has decreased the flow of gas through the segment from node
5 to node 2 which may permit the use of a smaller diameter pipe

for this segment.

The systems shown in Figure le and Figure 1f are equivalent in
terms of total length and hydraulics, however, the system in Figure
1f has one less bend and is considered to be superior to the system
in Figure le for this reason. While the elimination of unnecessary
bends does not translate directly into an improved cost, the system
with fewer bends has an improved general form and will be easier

to install and survey.
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CHAPTER 3: PROCEDURAI, COMPONENT OF THE PROGRAM

Automated Selection of Dummy Nodes

The procedural component of the program consists of a set of
global data structures which can be operated on by a set of
subroutines. The development strategy adopted was one of
exploratory programming. The design of the data structures and
subroutines evolved together. The mechaniéms used in the procedure

are best explained by tracing their development.

The previous work by Davidson and Goulter (1989) used the
Minimal Spanning Tree (MST) algorithm to establish the connectivity
of a set of input nodes. This approach had the advantage of
ensuring that a relatively efficient network that was continuous
and contained no cycles, would be produced. The major disadvantage
of this method was that it produced trees composed of diagonal
lines rather than rectilinear lines. One method that was explored
to overcome this problem of diagonal lines was to enclose each
diagonal 1line in a rectangle. If an additional node was
incorporated at one of the corners of the rectangle a second
iteration of the MST algorithm would replace that diagonal with a
pair of rectilinear lines. This procedure is called the Boxplot

Method and is described in Figure 2.
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Several difficulties were encountered with the Boxplot Method,

namely:

1. The method is time consuming for large networks.

2. Each rectangle offers two potential candidates for the
location of a single dummy node. Since each diagonal line
requires one dummy node there exists a very large set of
combinations of corner nodes to choose from. The method
relies on user judgment to select the appropriate set of
corner locations.

3. Even the best selection of corner nodes does not ensure

that the Minimal Rectilinear Steiner Tree (MRST) solution
will be achieved.

The first step in the evolution of the present algorithm was to
automate the selection of corner nodes. This was accomplished by
including both candidate corner nodes for a given boxplot and
running the MST algorithm for another iteration. The nodes that are
added are flagged as dummy nodes. The tree network that results
from the second iteration of the MST algorithm contains many lines
that supply terminal dummy nodes. A terminal dummy node is a node
that occurs at the end of a branch in a tree. Since a dummy node
does not contribute any load to the system, the line supplying a
'terﬁinal dummy node serves no purpose. A procedure was developed
that identified and removed these terminal dummy nodes and the
lines that supply them. Figure 3 shows the sequence of steps for

a simple example.

In general, the MST algorithm selects the shortest spanning tree
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subgraph (or subset of lines) from a supergraph (or superset of all
candidate lines). A spanning tree is a tree graph which connects
all the nodes in the set. In this program the MST algorithm is
implemented to select a spanning tree from a complete graph. A
complete graph is the set of lines connecting every node to every

other node in the set of nodes.

Dijkstra’s algorithm can be used as an alternative to select a
spanning tree from a supergraph (Bondy and Murty, 1976). Dijkstra’s
algorithm is a procedure that is used to find the shortest distance
between two points in a graph. The algorithm generates the entire
set of shortest paths from a single point to every other point on
the graph. This set of shortest paths takes the form of a tree
graph which is different from the Minimal Spanning Tree. Unlike the
Minimal Spanning Tree, a different tree is produced when a
different node is used as the origin or starting point. In this
program Dijkstra’s algorithm is implemented with the source as the
starting point, since it is advantageous from the point of view of
hydraulics to minimize line haul distances from the source to all

sinks.

An example configuration of nodes is shown in Figure 4a. The
complete graph formed from these nodes is shown in Figure 4b. If
Dijkstra‘’s algorithm is executed using Node 1 as the source node
and the complete graph in Figure 4b as input, the graph in Figure

4c is the result. This is a star graph; it is composed of straight
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lines from the source to each of the sinks. This type of geometry
is extremely impractical. Dijkstra’s algorithm will always produce

a star graph of this type from a complete graph.

It is necessary, therefore, to use some other type of supergraph
with Dijkstra’s algorithm. The following method combines the MST
algorithm with Dijkstra‘’s algorithm. The graph in Figure 4d results
from the MST algorithm with the complete graph in Figure 4b as
input. The graph in Figure 4e is composed of rectangles drawn from
the diagonal lines of the graph in Figure 4d using the Boxplot
Method. If the graph shown in Figure 4e is used as a supergraph for
Dijkstra’s algorithm the result is the graph in Figure 4f. The
graph in Figure 4f has had the terminal dummy nodes and supplying

links removed.

The graph in Figure 4f is a more practical solution than the
graph in Figure 4c but some shortcomings are still evident in the
paréllel piping used to serve nodes 9 and 10. Dijkstra’s algorithm
typically produces layouts that have a greater overall length than
layouts produced by the MST algorithm. However, the circuitous
routings that the MST algorithm often produces can be avoided

because Dijkstra’s algorithm minimizes individual path lengths.
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Use of Heuristic Technigues

Two heuristic techniques were developed to combine the best
features of the MST algorithm and Dijkstra’s algorithm. One of
these techniques works by trying to eliminate the parallel lines
produced by Dijkstra’s algorithm. This heuristic is referred to as

the "concept" heuristic and it will be explained in detail later.

The other heuristic technique will be described first. It can
be illustrated by considefing the following problem. A system is
composed of three nodes, one source and two sinks. The MST
algorithm is used to generate the graph in Figure 5a. The corner
points of the rectangles enclosing the diagonal lines are added as
dummy nodes and a supergraph is generated containing only the edges

of the rectangles as shown in Figure 5b.

The four possible rectilinear solutions for this system are
depicted in Figures 5c, 5d, S5e, and 5f. If minimum length is used
as the criterion for optimality, the layout in Figure 5f is
superior to the other three because the rectilinear pathways to
‘each of the two sinks share a common line segment, namely the
segment connecting node 5 and the source. It is this common 1line
segment that results in the improved solution. The heuristic
technique employed here is to find these common line segments in
the supergraph and assign them artificially reduced lengths which

are substantially shorter than their actual 1length. Dijkstra’s
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algorithm selects the shortest path to a node through a supergraph
by minimizing individual path lengths. The distance transformation
will ensure that Dijkstra’s algorithm will choose the paths to the
sinks which contain common segments in favour of the paths which
do not contain these common segments. The MST algorithm on the
other hand minimizes overall system length and will not ensure that
segments with artificially reduced lengths will be incorporated
along a path to a sink. It should be noted that the two rectilinear
solutions corresponding to the graphs in Figures 5e and 5f can both
be generated using the MST algorithm even when the distance

transformation is performed.

Since the technique just described requires Dijkstra’s algorithm
to operate effectively another heuristic is employed to improve the
inefficient layouts that Dijkstra’s algorithm creates. Dijkstra’s
algorithm does not attempt to minimize the total length of the
system in the same way as the MST algorithm does. As mentioned
previously, Dijkstra’s algorithm often selects layouts with many
parallel lines which could be eliminated. The other heuristic
technique identifies certain paths in the system as central
‘"spines" and tries to connect the nodes directly to these paths by
the shortest distance. It is possible to use Dijkstra’s algorithm
in successive iterations in combination with this technique to

remove parallel lines.

The technique is similar to a method that is used by engineers
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in practice. In proposing a layout an engineer will often select
a very simple layout composed of a few lines which do not actually
connect all the sinks but pass through the centres of clusters.
This simple layout forms the structure, or concept, of the final
layout. The final complete layout is created by connecting the

sinks to this structure with short lines as shown in Figure 6.

The heuristic technique begins with a 1layout that has been
generated from the modified supergraph of rectangles using
Dijkstra’s algorithm in the manner explained above. The longest
path is identified by finding the node that is the most distant
from the source. Each line on the path to this node has its length
artificially reduced to zero in the supergraph. This single path
of "zero length" 1lines designates, or defines, the initial

"concept".

Dijkstra‘’s algorithm is run again using the modified supergraph
with this "concept" of a long path of "zero 1length". Since
Dijkstra’s algorithm minimizes the individual path lengths, nodes
in the vicinity of the "zero length" path will be connected by the
shortest line to that path in the same way the sinks are connected
to the "concept" in practice. To determine if a node is in the
vicinity of a "zero length" path the following rule can be used.
If there is no path on the supergraph to the source that is shorter
than the shortest path to a "zero length" path, then the node is

in the vicinity of that "zero lengfh" path and will be connected
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to the "zero length" path. Otherwise the node will be connected to
the source in the usual manner and not through the "zeroc length”

path.

This process of identifying the longest path as the "concept"”
can be repeated for several iterations. Each iteration identifies
a new "most distant" node and converts the path from the source to
this node to a "zero length" path. Thus each iteration adds a new
n"zero length" path to the "concept". When a second iteration is
tried the longest path isilikely to be a long path proceeding in
a different direction from the first path. This is because nodes
in the vicinity of the previously selected path may be physically
very distant from the source, but, due to their connection to a
"zero length" path, appear to the algorithm to be only as far from

the source as the distance to the nearest "zero length" path.

Figure 7 illustrates this point. In Figure 7c, node 4 is
identified as being most distant from the source and the path to
node 4 is identified as the "concept". During the second iteration
node 8 is identified as the "most distant" node and node 8’s path
'is included in the concept. Node 2 may actually be more distant
than node 8, but to the algorithm the distance from the source to

node 2 is only the length of the dashed line.

It is possible to iterate on this process until all the paths

on the tree subgraph have a zero length, but in practice it is not
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necessary. For the reason just explained, and on the basis of
experience with the algorithm, four iterations are generally all

that is required to "tighten-up" the most complex network.

Figure 8a shows the same layout as Figure 4f developed using
Dijkstra’s algorithm. The layout in Figure 8b is generated from
the same set of nodes using both of the heuristic techniques that
have been described. The "concept" heuristic was allowed to iterate
to the completion point when all paths have become "zero length”
paths. The parallel lines serving nodes 9 and 10 have been
eliminated but new problems have resulted in the lines serving
nodes 5 and nodes 7. These problems occurred because the dummy
nodes at both the elbows adjacent to nodes 5 and 7 were found to
be the end nodes of a "most distant" path. When these most distant
paths were converted to “zero length" paths in subsequent
iterations of the "concept" heuristic, the shortest path to the
nodes 5 and 7 is to connect to the "zero length" paths. The problem
is referred to as a "hook" in the next chapter and does not occur
as frequently as this example might suggest. The rule based
techniques that will be discussed in the next chapter are used to

correct the problem.

The graph in Figure 8c is the layout produced by the algorithm
as it was finally implemented. In the final algorithm the "concept"
heuristic is allowed to iterate to a maximum of four times. The

following series of procedures is then performed. All terminal
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dummy nodes and serving links are removed. A complete graph is
constructed and a tree graph is extracted using the MST algorithm.
If no diagonal lines occur in the tree graph then the process
terminates. If diagonal lines are found, rectangles are substituted
for the diagonals and Dijkstra’s algorithm is run again. The
process iterates until a layout containing no diagonal lines is

produced by the MST algorithm.

This final series of iterations corrected the problenms
associated with nodes 5 and 7 in Figure 8. Unfortunately in this
instance the corrections of this type are due to chance alone and

will not always occur.

In most cases the final series of iterations improves the
layout. An improved layout may occur because the MST algorithm can
find diagonal "short cuts" in the solution produced using
Dijkstra’s algorithm. However, it is not correct to assume that
iterating between the MST and Dijkstra algorithms always reduces
the system length. This point is explained further in more detail

in Chapter 5.

A more significant reason for this final iteration process is
to produce skewed rectilinear layouts of the type shown in Figure
9. It is often desirable to have a set of sinks and dummy nodes
that will produce a completely rectilinear system when the MST

algorithm is run on a complete graph of these nodes. A set of
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nodes, such as that shown in Figure 9, can be rotated to any angle.
When the MST algorithm is run with a complete graph of these nodes
as input, the result will be a rectilinear system skewed at the

angle of rotation.

It may be necessary to design skewed layouts because the axes of
the survey grid often do not correspond to the axes of the
coordinate system used to produce CAD drawings. The example
presented in Figure 29 in Chapter 5 uses the Universal Transverse
Mercator (UTM) system of coordinates. At the particular location
chosen as the example the survey grid is rotated 3 degrees counter-

clockwise from the axes of the UTM coordinate system.

The technique that is employed to rotate the coordinates of
nodes 1is to multiply the node- vectors by a rotational
transformation matrix. The network is designed on the basis of the
rotated nodes. The design program produces the dummy nodes required
to reproduce the final layout using the MST algorithm alone. All
nodes including the dummy nodes are then rotated back to the
original position by the reverse procedure of that used to rotate
the layout originally. Running the MST algorithm alone produces a
skewed layout. The example in Figure 9 shows how a grid skewed at

15 degrees can be produced.
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Limits of the Procedural Approach

Figure 10 shows a flowchart of the procedural component of the
program as it was finally implemented. After several experiments
with alternative arrangements of the procedures described so far,
it became apparent that there was no single arrangement of these
procedures that could produce results that were consistently better
than any other arrangement. The problems that resulted were always

due to one of two reasons:

1. The program chose an inefficient layout because it was
incapable of generating a dummy node at a particular
location.

2. The program chose an inefficient layout because the

program had generated a dummy node at the wrong location
and was unable to eliminate it.

These problems may be due to inherent limitations in the
approach taken. The approach has been to combine the MST and
Dijkstra algorithms to exploit the best features of each of then.
The two algorithms have distinctly different properties and
behaviour. If the algorithms are examined carefully in terms of the
‘way in which each of them handles the problem of selecting and
incorporating dummy nodes into the network, the major weaknesses

of either of the two algorithms become obvious.

The specific strengths and weaknesses of the two algorithms can

be described as follows. If an arbitrary arrangement of nodes is
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considered and orthogonal lines are extended from each node to the
perimeter of the smallest rectangle enclosing all of the nodes, a
grid is produced similar to the one shown in Figure lla. It is not
possible to prove at this time whether or not the minimal RST is
a subset of this graph. It will be assumed however that the optimal
solution, or a solution suitably close to the optimum, is contained
within this graph. If this is correct, only the intersections of
each of these lines need to be considered as potential candidates
for the location of dummy nodes. Use of these intersections
produces the complete set of potential dummy nodes shown in Figure
11b. Both the MST and Dijkstra algorithms produce very poor
solutions if they are given the full set of potential dummy nodes.
Yet, the algorithms behave poorly under these conditions for

opposite reasons.

Both algorithms generate paths between the source and sink
nodes. The MST algorithm will try to incorporate every dummy node
along or near a path to a sink in accordance with its objective to
produce the smallest network that includes all the nodes. The
result is very circuitous paths as the algorithm detours to
incorporate nearby dummy nodes whether they are required nodes or

not.

Figure 12a shows the results of the MST algorithm using the set
of nodes in Figure 11b as input. The system would be a very compact

and efficient system if all the nodes shown were actually required
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to be served. When all the dummy nodes and redundant links are
removed, the system shown in Figure 12b is the result. The
circuitous paths to nodes 5 and 6 are obvious shortcomings of this
layout. From Figure 12a it 1is apparent that these paths were

selected to incorporate nearby dummy nodes.

Dijkstra’s algorithm behaves in the opposite manner to the MST
algorithm. Its objective is to minimize path lengths regardless of
overall system length. The algorithm generates paths with complete
disregard to the location of other sinks. The length of the overall
system would be reduced if the algorithm were capable of generating

paths with an occasional detour to incorporate a nearby sink.

Figure 13a shows the results of Dijkstra’s algorithm with the
same set of input nodes. This system is much larger than the one
generated by the MST algorithm and contains far more parallel
lines. This would be a very inefficient layout if all the nodes
were required to be served, but when the dummy nodes and redundant
links are removed the remaining system, shown in Figure 13b, is not
nearly as inefficient. However, there are still some obvious
problems, particularly in the lines which encircle node 4. This
node could have been incorporated at no additional cost in either
of the paths to node 8 or nodes 5 and 2. Dijkstra’s algorithm makes

this mistake, because of its tendency to consider paths

independently.



e} < & \L —O
o & b G & —
G— < & < () © —Q
o— 1=t t G——=~@ & -0
o— & g © —
G ©

b L

a) Results from Dijkstra‘’s algorithm with
dummy nodes shown in Figure 11(Db)

o

[ .
&=
oD

0]

?6

—@ 7

D

3
B4
L ——e2
[5

b) Results from Dijkstra’s algorithm with
terminal dummy nodes and supplying
links removed

Figure 13: Results from Dijkstra’s algorithm

with all potential dummy nodes



39
In summary, both algorithms require some preselection of
potential dummy nodes. Both algorithms are just as incapable of
producing good solutions when given too many candidates for dummy

nodes, as when they are given too few candidates.
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CHAPTER 4: COGNITIVE COMPONENT OF THE PROGRAM

Nature of the Control Strateqgy

Many of the limitations of the numerical approaches described
in the previous chapter can be overcome by using an approach which
is' essentially cognitive in nature. The concept of coupling
procedural and cognitive approaches has been used with success in
the domain of floorplan design of integrated circuits (Jabri and

Skellern, 1988).

The idea of combining these two approaches grew from the
observation that deficiencies in the layouts that the procedural
component produced occurred in certain patterns. Each of these
patterns required a specific type of modification to correct the
deficiency. The modification could be made once the type and the
location of the deficiency had been identified. This "diagnose and
correct" technique could best be accomplished with a rule based
program. The formal structure that was adopted after some

experimentation was a data driven production system.
A production system is a program composed in three parts:

1. Objects - data that symbolically represent the problem
in a particular state.

2. Operators - rules that describe how the objects can
be transformed from one state to another.
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3. A control strategy - a program that translates the

operators into procedures that the computer can
perform.

The operators or rules are written in a declarative format. This
means that the rules state the actions that the computer can
perform on the objects but the rules do not state specifically what
procedure is to be used to determine when a rule is to be used or
not. The production system relies on the control strategy to

translate the rules to a procedural form.

The term "data driven" means that the operators act on the
objects which are in some initial state, transforming the objects
to approach some predefined goal state, or in some cases, simply
an improved state. The other approach is a goal driven system. With
this approach the objects are assumed to be in the goal state and
are transformed in reverse order to the initial state. In most
expert system shells the data driven approach is referred to as
forward chaining or forward reasoning. The goal driven approach is
referred to as backward chaining. Since the goal state or optimal
solution is unknown, the goal driven approach cannot be used for

this problem.

The objects and operators for this instance of the Minimal
Rectilinear Steiner Graph problem system are unusually simple. In
many respects the problem resembles the "toy" problems used to

illustrate the production system concept in textbooks on artificial
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intelligence. The objects are essentially of two types: the nodes

and their coordinates; and the lines or connections between nodes.

Another important aspect of this problem is that it is possible
to define the production rules so precisely that the effect of any
rule can be known a priori, before that rule is applied. In other
words it is possible to know if the rule will decrease the overall
length of the system and, if so, by what amount; or if the rule
will improve the system’s hydraulics. It is not possible, however,
to know a priori if the rule will allow further rules to be applied
subsequent to its application. For this type of knowledge a
"generate and test" procedure would be required, an approach which
was not taken with this program but will be discussed later in

Chapter 5.

Each rule is composed of two sets of clauses - antecedent
clauses and consequent clauses. The rules are similar in structure
to the "if ... then ... else ..." structures in conventional
programming languages. The antecedent clauses are predicates, or
statements that are to be verified as true. The antecedent clauses
correspond to the "if" clauses in the conventional programming
language structures. If the data describing the objects can be
matched to the variables in the antecedent clauses such that all
the antecedent clauses can be verified as true, the control passes
to the consequent clauses. The consequent clauses perform the

actions that transform the data. The consequent clauses correspond
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to the "then" clauses in the conventional programming structure.
There is nothing that corresponds to the conventional "else"

clauses in the type of rules implemented in this program.

Each rule in the rule base is, in effect, a small program which
transforms the data describing the network. All of these sﬁall
programs have to be coordinated in some way to produce the desired
results. This coordinated action of rules is accomplished by a
larger program under which the rules operate. This larger program
is the control strategy mentioned earlier. In many rule based
applications, such as expert systems, the control strategy is not
designed by the programmer but is an integral part of the
development tool, or shell. In this application the control
strategy was largely custom designed. The portion of the program
described here was written in PROLOG. PROLOG provides the advantage
of the kind of control that a procedural language allows, and which
is necessary in designing the control strategy, but still maintains
the declarative syntax necessary for the rule base. Some aspects
of the control strategy, namely unification and backtracking, were
also provided by the PROLOG language. Forward-chaining and conflict
resolution are not provided by the language and have to be included

as part of the overall program.

Before the specific details of any of the rules in the rule base
can be understood it is necessary to become familiar with the

control strategy under which these rules operate. A rule is
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activated in two steps. The first step is to search the data to
find every possible instance where a rule could be applied. This
can be accomplished easily with PROLOG’s wunification and
backtracking algorithms. If a particular combination of data
fulfils a rule’s antecedent clauses, the rule is said to have
instantiated. If‘instantiation occurs a copy of the name of the
rule and the data which instantiates the rule is recorded in an
area of the computer memory designated as the conflict set. At this
point the rule is said to have triggered. If a rule has triggered
it may be used to alter the data, but at this stage it has not yet
done so. The rule is being held on "stand by" while other

instantiations of the rule, or other rules are being investigated.

Once all the successful instantiations of all the rules have
been recorded in the conflict set the second step begins. The
different instantiations of the rules are réted according to some
predefined criteria and the best instantiation is chosen. This
mechanism is referred to as conflict resolution. The chosen
instantiation is then fired. Firing a rule means that the program
described by the consequent clauses of the rule is executed.
Typically only one instantiation of a rule in a conflict set fires.
The rest of the triggered rules do not fire. However, in this case
it was possible to adopt a slightly different strategy that
resulted in a substantial improvement in the programs’s execution

time.
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In most instances rules that are applied behave independently
of each other. This is due to the fact that the problem is composed
of several independent sub-problems. Another way to regard this is
that the single object in the production system is actually a
collection of connected yet independent objects. If the sub-
problems are truly independent the order in which the rules are

applied does not affect the final outcome.

Figures l4a and 14b represent examples of this type of problem.
Rule 1 can be applied to one part of the network and Rule 2 can be
applied to another. These two parts of the network are physically
distant from each other and modifications in one part do not affect
the other. Each rule can be applied only once to its respective
area. Figure 1l4a shows the search space of a conventional
production system. Since the results of the two paths are the same,
the order in which the rules are applied is of no consequence and
it would be simpler to think of the two rules as being applied

simultaneously as shown in Figure 14b.

In most cases it is possible to apply the rules simultaneously.
However, conflict will result when more than one rule applies to
the same section of a network. In this case the order of
application of the rules will effect the outcome. If one of the
conflicting rules is applied the layout of the network will be
transformed so that the other rule (or rules) cannot be applied.

Therefore, a systematic conflict resolution mechanism should be
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applied in this conflicting situation.

Figures 14c and 14d illustrate the conflict problem. Rule 1 and
Rule 2 affect the same area of the network while Rule 3 is
independent of Rule 1 and Rule 2. Rule 1 and Rule 2 are mutually
exclusive. The application of one rule precludes the use of the
other. Expanding the system in the conventional manner produces the
graph in Figure l4c. Four different paths are produced but only two
different objects result. The graph in Figure 14d represents the

problem in simpler terms as a conflict between two rule sets.

A simple but effective conflict resolution strategy can be
achieved if each rule is assigned a level of priority as it is
triggered. This level of priority can be determined from the a
priori knowledge about the rule’s effect on the network. Rules are
to be fired in order of priority and each rule must be verified
before it is fired. If verification fails the rule does not fire.
Verification consists of checking to see if the portion of the
network that triggered the rule has not been changed. If a rule of
higher priority were triggered by the same portion of a network as
.a rule of lower priority, the rule bf higher priority would be
fired first, transforming the portion of the network that was also
responsible for triggering the rule of lower priority. Verification
of the rule of lower priority would fail and therefore the rule of

lower priority would not fire.
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Using the example in Figure 14d the procedure is as follows.
Rule 1, Rule 2 and Rule 3 are triggered. In this example the levels
of priority have been assigned so that Rule 1 has the highest
priority followed by Rule 3 and then Rule 2. This creates the
firing order. Rule 1 is to be fired first, but the rule must be
verified. Since no rules have fired the network has not yet been
modified. For this reason the verification of the rule of highest
priority is not required, however, the conflict resolution strategy
treats all rules in the same manner. The verification of Rule 1

naturally succeeds and Rule 1 fires.

Rule 3 is next to fire and similarly must be verified before
firing. The network has been transformed by the firing of Rule 1,
but since these two rules are independent the section of the
network transformed by Rule 1 has not affected the section of the
network that triggered Rule 3. The verification of Rule 3 succeeds

and Rule 3 fires.

Now Rule 2 is to be fired, but Rule 1 has transformed the
section of the network that triggered Rule 2. The verification of
Rule 2 fails and Rule 2 will not fire. The conflict between Rule

1 and Rule 2 is resolved.

In summarizing the technique, a rule only transforms the part
of the network that triggers it. If two rules are triggered by the

same part of a network and the rule with the highest priority is
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fired first, the resulting transformation will not allow the rule

of lower priority to fire.

Figure 15 shows the scheme that has been adopted. The triggering
stage produces a set of rules to be fired. Conflict resolution will
eliminate some of these rules so that the remaining rules act
independently of each other and can be thought of as acting
simultaneously as discussed previously. The effect of firing rules
simultaneously is to reduce the number of iterations that would be
required to reach the point where the rule base can no longer
improve the system. If only one rule in the conflict set was
allowed to fire during an iteration, the process of searching the
rule base, creating a new conflict set, and firing the best rule
would have to be repeated many times. If a conflict set initially
contained five independent instantiations of rules, five iterations
would be required for all the rules to fire. The process of
grouping the instantiations into sets and firing the rules
simultaneously will only require one iteration to achieve the same
result. Clearly, grouping the rules in this way can achieve a

significant improvement in the execution time of the program.

Often the firing of a rule will transform the network to allow
new instantiations of rules. Therefore, it is necessary to perform
a series of iterations even when rules are grouped in sets and
fired simultaneously. The loop labelled "A" in Figure 15 performs

these iterations which are analogous to the forward chaining
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technigques used in expert systems.

A special set of rules must be incorporated to ensure that the
ruies in the rule base can trigger correctly. This set of rules is
necessary because dummy nodes with only two incident lines are
often found such that the line directed toward the node and the
line directed away from the node form a 180 degree angle. This type
of dummy node does not define a tee or an elbow, but exists as a
point on a straight line. Dummy nodes of this type result through
the course of manipulations performed by the procedural and
cognitive components of the program. During the execution of the
procedural component of the program, these nodes may exist to
. ensure that the MST algorithm creates a desired rectilinear line,
but during the execution of the cognitive component of the program
these nodes serve no function and can prevent the triggering of
rules. In the context of the cognitive component these nodes are
referred to as redundant nodes. A simple rule based procedure that
identifies and removes redundant nodes is incorporated before the
loop that triggers the rules. The procedure is represented 1in

Figure 15 as the box labelled "remove redundant nodes".

Nature of the Rules

It is now possible to describe the nature of the rules in the

rule base in the context of the control strategy. The rule base has
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been designed to fulfil the three objectives described in Chapter
2, to reduce the total length of the system, to improve hydraulics
by branching early, and to eliminate unnecessary bends. The system
of priorities which are applied to the rules correspbnds directly
to these three objectives. The three levels of priority are
positive, zero, and negative, with rules being fired in order from
highest priority to lowest. There are three types of rules. Each
rule type corresponds to one of the three objectives stated
previously. The rule types have been tentatively referred to as

"hooks", ¥"slides" and "elbows".

"Hooks" are rules which decrease the overall system length.
Figure 16a shows an example of a "hook". Figure 16b shows the
solution to the "hook" problem. The rule will transform the layout
in Figure 16a to the layout in Figure 16b if it is applied. It is
possible to calculate the decrease in the system length before the
rule is applied. In this instance the improvement is equal to the
length of the segment connecting node 4 to node 2. The level of
priority assigned to a "hook" rule when triggered is equal to the
incremental decrease in the system length. The priority is assigned
‘as a positive number. A separate number is calculated and assigned
to each instantiation or triggering of a rule. "Hooks" are the only
rules to receive a priority greater than zero. Since rules are
fired in order of priority from highest to lowest, "hooks" are the
most preferred rules, with those "hooks" which result in the

greatest improvement in the system length being preferred over
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those which make smaller improvements.

Rules at the next level of priority are referred to as "slides".
"Slides" improve the hydraulics but do not affect the overall
system length. An example of a "slide" is shown in Figure 16c and
the solution is shown in Figure 16d. This is the same example shown
in Figure 1c and 1d and the resulting improvements in hydraulics
are the same as explained previously. The term "slide" refers to
the transformation process. Two parallel lines are connected by a
transverse line. The solution is to slide the transverse line
upstream as close to the source as possible to make the branch

occur as "early" as possible.

"slide" rules are all assumed to be equivalent. All such rules
are triggered with zero priority. Conflict between rules of this
type would be resolved arbitrarily in order of the instantiation
of the rules. The conflict condition is unlikely to result due to
the nature of the geometry of this pattern. More than one
transverse line connecting a pair of parallel lines would result
in a loop. Since these systems are not looped, only one transverse

line can exist per pair of parallel lines.

Rules in the final category are those that remove superfluous
bends. These rules are referred to as "elbows". The example problem
shown in Figure 16e and Figure 16f is the same set of graphs in

Figure le and 1f. The desired transformation is accomplished by
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"flipping” the bend over. The bend node is a dummy node of degree
two. The node has the x coordinate of one the adjacent nodes and
the y coordinate of the other adjacent node. In the example shown
in Figure 16e, node 5 is the bend node with the x coordinate of
node 4 and the y coordinate of node 6. To "flip" the elbow the x
and y coordinates of the bend are reassigned to the other pair of
coordinates of the adjacent nodes. In Figure 16f node 5 has the x

coordinate of node 6 and the y coordinate of node 4.

The priority for Yelbow" rules is calculated by taking the
negative of the straight line distance from the source to the bend
node with the transformed coordinates. The effect of this is to
favour bends which "flip" in toward the source in the hope that the

resulting layout will be more compact.

An Example Rule

The following example will illustrate how a simple rule is
implemented with consideration to the points that have been
-discussed. Figure 17a shows a fragment of a network and Figure 17b
shows the same fragment which has been improved by changing the
location of point P2 and making the appropriate changes in the
connecting lines. Arrows shown in Figure 17 represent the direction

of fluid flow in the pipe segments.
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The layout of the pipe network is described using three types
of objects. These objects are maintained as relations in PROLOG’s
dynamic data base. The relations are "count", "point" and "lin" and

are explained as follows:

1. count - This relation occurs only once in the data base. It
has a single integer argument which is set equal to the number
of nodes in a network.

2. point - This relation occurs once for every node in the
network. The relation has five arguments which are as follows:

i. node label - an integer number selected arbitrarily
(each one must be unique).

ii. X-coordinate - a real number.
iii. Y-coordinate - a real number.

iv. sink - an integer number used as a flag (1 indicates
that the node is a sink and its position cannot be
altered; 0 indicates that the node is a dummy and
can be moved or deleted).

v. degree - an integer number between 1 and 4 which
indicates the number of lines incident at the node.
If orthogonal networks are used the number of lines
incident on a node has the maximum of four.

3. 1in - This relation occurs once for every pipe segment or line
in the network. There are two arguments to this relation. The
arguments are the labels of the two points connected by the
line. The direction of fluid flow in each segment is assumed
to be from the node specified as the first argument to the
node specified as the second.

The antecedent clauses of the example rule will describe the
features of all layouts of the type shown in Figure 17a and the
consequent clauses will transform that layout to the one shown in
Figure 17b. The definition of the rule begins as follows. The point

P1 is assumed to have the coordinates X1 and Y1 and the point P3
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has the coordinates X3 and Y3. On examining Figure 17a it is
apparent that the point P2 has the x-coordinate of point P3 and the
y-coordinate of point P1l. Therefore, P2’s coordinates are X3 and
Yl. Similarly P4 has the same x-coordinate as Pl and a unigue y-
coordinate. P4’s coordinates are X1 and Y4. The rule must determine
whether P2 is a dummy node of degree two (having two incident
lines). The degree and type of the other two nodes are not

important.

The data that are required to describe the connecting lines are
simply that a line connects P4 to P1, Pl to P2, and P2 to P3. A set
of clauses must also determine if the y-coordinate of node P3 (Y3)
falls between Y4 and Y1. The point and line data can be summarized
in the PROLOG clauses below which constitute the complete set of
antecedent clauses for this rule . These PROLOG clauses use the

representation scheme discussed previously.

point(P1, X1, Y1, Si, D1),
point(P2, X3, Y1, 0, 2),
point(P3, X3, Y3, _, _).
point(P4, X1, Y4, _, _),
1in(P4, P1),

1in(P1, P2),

lin(P2, P3),

Y1 > Y3, ¥3 > Y4,

It is necessary to obtain information about the type of node Pl
(S1) and the degree of node Pl (D1). The consequent clauses will
need this information to retract and reassert node Pl with the

proper degree since Pl changes from degree 2 in Figure 17a to



5%
degree 1 in Figure 17b. The necessary consequent clauses for this

rule are shown below:

retract(point (P2, X3, Yi, O,
assertz(point (P2, X1, Y3, O,
retract(lin(P4, P1)),
assertz(lin(P4, P2)),
retract(lin(P1, P2)),
assertz(lin(P2, P1)),

Dinew = D1 - 1,
retract(point(P1, X1, Y1, Si, D1)),
assertz(point(P1l, X1, Y1, S1, Dlnew)).

W N
~—
-
- -

In order to permit separate triggering and firing of the rules,
the antecedent and consequent clauses must be grouped as separate
procedures. Data that was established by the antecedent clauses
will be required by the consequent clauses. These data consist of
the node number, coordinates, degree and sink flag for the
different nodes in the pattern. The data are passed between the two
procedures by means of a list. In this list the functor "i" is used
for integer data types and "r" is used for real data. Only the x

and y coordinates are represented as real data.

In addition to this list of parameters which must be passed to
the consequent clauses, two pieces of information must be passed
along another path between the antecedent clauses and the control
strategy. The first of these pieces of information is a label that
identifies which set of consequent clauses are to be executed, in
other words, which set of consequent clauses correspond to this
rule. The second piece of information is the priority that the rule

is to have. In summary, three pieces of information must be
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generated by the antecedent clauses - a label used to select the
proper set of consequent clauses, a level of priority for
resolution of possible conflict, and a list of parameters to be

used by the consequent clauses.

The procedure containing the antecedent clauses is called
"find". The procedure "find" is required to calculate the reduction
in length to determine the priority of this instance of the rule.
By inspecting Figure 17a and 17b, it is clear that the reduction
in length is equal to Y3 - Y1. "Find" will pass the priority (the
length Y3 - Y1) along with the parameter list and the label of the
required consequent clauses. In this example rule the label
"rexample" ( for Rule EXAMPLE ) will be used. The label, the
priority and the parameter list are passed to a procedure called
"trigger". As the name implies, "trigger" triggers the rule by
placing all of the data passed to it into the conflict set. Each
entry passed to "trigger" appears as a relation, or fact, in the

dynamic data base.

The consequent clauses for the example rule are grouped in a
‘procedure called "execute" which is responsible for firing the
rule. The consequent clauses for all rules are grouped in
procedures that have the name "execute". This is why a label is
required to select the correct set of consequent clauses. The label
"rexample" identifies the proper set of consequent clauses in this

instance.
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As part of the conflict resolution strategy the procedure
nexecute" must establish that data describing the part of the
network that triggered the rule have not changed since the rule was
triggered. This process was referred to previously as verifying the
rule. If a rule of higher priority was triggered by the data, a
change of this type will occur and verification will not succeed.
The antecedent clauses are placed at the beginning of the procedure
nexecute" to determine if a change has occurred. If any of these
clauses are not satisfied the rule will not fire.

The rule has the following form:

find :-
point(P1, X1, Y1, Si, D1),
point(P2, X3, Yi, 0, 2),
point(P3, X3, Y3, _, _),
point(P4, X1, Y4, _,
1in(P4, P1),
lin(P1, P2),
1in(P2, P3),
Y4 > ¥3, ¥3 > Y1,
Priority = ¥3 - Y1,
trigger(Priority, rexample,
[i(P1), r(X1), r(vl), i(s1), i(Db1),
i(p2),
i(P3), r(X3), r(¥3),
i(P4), r(Y4)1),

fail.
find.

execute(rexample, ] )
[i(Pl), r(X1), r(¥Y1l), i(sl), 1(D1),
i(P2),
i(P3), r(X3), r(¥3),
. i(Pa), r(¥Ya)]) :-

point(P1, X1, Y1, si, D1),

point(P2, X3, Yi, 0 2),

point(P3, X3, Y3, _, _).

point(P4, X1, Y4, _, _),
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lin(P4, P1),

lin(P1, P2),

lin(P2, P3),

Y4 > ¥3, ¥Y3 > Y1,
retract(point (P2, X3, Yi, O,
assertz(point (P2, X1, ¥3, O,
retract(lin(P4, P1)),
assertz(lin(P4, P2)),
retract(lin(P1, P2)),
assertz(lin(P2, Pl1)),

Dinew = D1 - 1,
retract(point(P1, X1, Y1, Si, D1)),

assertz(point(Pl, X1, Y1, S1, Dlnew)),
1

W N
N e
S S
- -

execute(_, _).

The second "find" clause and the second "execute" clause are
required for similar reasons. The first "find" clause ends with a
fail predicate. The procedure will fail even if all the sub-clauses
can be satisfied. In this way the procedure will consider every
possible combination that could satisfy it and every time the
procedure is satisfied another instance of the rule is triggered.
The second nfind" clause allows "find" to finally succeed so the

flow of control can proceed.

Unlike the first "find" clause which always fails, the first
"execute" clause will only fail if a particular triggered instance
of the rule is to be eliminated by the conflict resolution
mechanism. The second "execute" 1is provided to ensure that
nexecute" always succeeds regardless of whether or not the rule
actually fires. "Execute" must succeed in order for the program to
continue, either to fire other rules, to perform an another

iteration, or simply for the program to terminate properly. The
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first "execute” clause ends with a cut (!) predicate to ensure that
the backtracking algorithm will not return control to this point

at a later time.

If other rules are to be included in the rule base they should
be grouped into a "find" procedure and an "execute® procedure. The
"find" and "execute" procedures that always succeed must be placed

physically last in the list of these clauses.

Structure of the Rule Base

The problems identified by rules in each of the three
categories, "hooks", "slides" and "elbows", were found to occur in
different variations. For example, "hooks" occur in eighteen
different variations. The different variations can be organized
into a tree structure. If the rule base is structured in accordance
with this tree, it is possible to focus the search of the rule base

which drastically reduces the program’s execution time.

The concept of focusing the search was applied to all three
categories of rules. The structure of only one of these categories,
the "hooks", is described here, since the process is essentially
the same for each category. The identification of a "hook" begins
as follows. First, a dummy node of degree two must be found. The

pattern described in the previous section as the example rule was
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a "hook". In the case of this pattern the dummy node of degree two
is node P2 in Figure 17a. Since the node is of degree two there are
two incident lines. One of these lines is directed to the node
(i.e., P1 to P2 in Figure 17a) and the other line is directed away
from the node (i.e., P2 to P3 in Figure 17a). These two lines must
form a 90 degree angle. If all these conditions are met then the
search begins at the root of the tree graph in Figure 18. The root
of the graph is labelled "elbow". The first branch in the tree
indicates two possible configurations of this 90 degree elbow - the

line connecting P1 to P2 may be a vertical or a horizontal line.

The next branch occurs as a result of the third line that is
required to repeat the pattern. This line connects point P4 to the
elbow. The line can connect to point Pl or to point P3. The line
can be directed toward the elbow -~ this is referred to as "in"; or
the line can be directed away from the elbow - referred to as
"out". With two possible points of connection and two possible
directions of flow in the lines indicated, four combinations should
exist. However, the combination of a line directed "in" at point
P3 cannot exist. It has already been established that a line is
.directed at P3 from P2. In a tree network with a single source, two
lines cannot be directed at a single point without forming a loop.
Therefore only three combinations are possible: P1 "in", shown as

i1 in Figure 18; Pl Y“out", shown as ol; and P3 "out", shown as o03.

The final consideration is the relative length of the line
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connecting point P4. The corrective procedure that must be
specified in the consequent clauses, depends on whether the length
of this line is greater than (g), equal (e), or less than (1) the
length of the line that is opposite and parallel to it. This

completes the tree.

Each rule is given a name that is an abbreviation of its path
on the tree. The name of the rule featured in the example in the
previous section is "gilh". The name means that the rule identifies
a horizontal elbow connected to a line directed in at Pl and that
line is longer than the line that connects P2 to P3.

This tree structuring of the rules applies only to the
antecedent clauses of the rules. It was discovered that the
consequent clauses occur as distinct types and could be written
generically so that fewer sets of consequent clauses were required
than rules. For example, the eighteen rules required to find all

the "hooks" required only seven sets of consequent clauses.

The search of the tree is accomplished by PROLOG’s unification
and backtracking algorithms. A search performed in this manner is
highly focused and will avoid inapplicable rules, reducing the

execution time of the program.
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CHAPTER 5: DEMONSTRATION OF THE MODEL

The use of the model is demonstrated through the following two

examples.

Example 1

Table 1 shows the set of x and y coordinates for this example.
The problem is representative of a typical rural gas distribution
system comprised of a single source and 28 sinks. The sinks are all
considered to be the same type of load, namely, an intermittent
load of 6 cubic meters per hour. The x and y coordinates in Table
1 are taken from the Universal Transverse Mercator System and given
in meters. A "1" shown in the column labelled "sink" in Table 1

indicates that the node is a sink.

For the purpose of comparison, the layouts that follow will
undergo hydraulic design and cost analysis using a computer program
similar to the program used by Davidson and Goulter (1989). The
program uses the MST algorithm to construct a layout from input
‘data describing the nodes. The program selects the diameter of pipe
for each segment with the objective of selecting the smallest
diameter that will produce a pressure gradient below a certain
specified allowable maximum. For this example 18 kPa/km was used
as the maximum allowable gradient. While individual pipe segments

are being sized, the hydraulic profile of the system is computed.



TABLE 1: NODE COORDINATES FOR EXAMPLE 1

68

745967.5
745351.1
743467.1
748789.2
748823.9
750196.5
751874.9
754009.4
753775.5
744538.9

- 743837.8

744960.2
745868.6
746816.3
747739.6
747439.9
747166.1
750561.6
749234.6
751255.2
748052.3
752144.3
751092.7
750284.9
746868.1
746238.7
743672.0
742793.8
741954.1

5452799.0
5449946 .0
5448719.0
5448974.0
5448269.0
5450686 .0
5449961.0
5448723.0
5446768.0
5443649.0
5443005.0
5441010.0
5441052.0
5443452.0
5442789.0
5442146.0
5439477.0
5439203.0
5438837.0
5437691.0
5437874.0
5435890.0
5434093.0
5434061.0
5432885.0
5432853.0
5437664.0
5436483.0
5437152.0
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An estimate of the cost of the system is produced based on the
total length of the various sizes of pipe that are required. The
cost of crossings can also be estimated. Road and cable crossings
are estimated on the basis of the total length of the system, while
the number of river and railway crossings must be stated

explicitly.

In previous work by Davidson and Goulter (1989), the cost
analysis program established the number of river and railway
crossings by grouping the nodes in sets. For example, the nodes on
one side of a river will be grouped in one set and the nodes on
another side will be grouped in another set. A crossing is
indicated by a line with end points in different sets. In the
previous work all the nodes in a system were entered manually. As
each node was entered the user was prompted to provide the number

of the set for that node.

A problem related to this set numbering 1is created by the
approach described in the study through the automated selection of
dummy nodes. Both the procedural and cognitive components of the
program add dummy nodes to the system without any user interaction.
In order to assess in which set a particular dummy node should
belong, the program would have to know the side of the river, or
railroad, where the dummy node is located. The task is particularly
difficult in the case of rivers with many meander bends and nodes

located within meander bends. The program based on the new approach
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does not possess the capability to recognise where a node is in

relation to a river or railroad at this point.

Since no simple solution to this problem has been found, the
method relies on user interaction to ensure that river and railway
crossings have been accommodated appropriately. User interaction
takes two forms, namely, modification and selection. Modification
involves the manual input of additional dummy nodes to minimize the
number of crossings in a layout. Selection involves selecting the
most appropriate layout in the case where several alternatives have
been generated. Of course, any layout that is selected from a set
of alternatives can be modified as well. The example presented here
is not a case in which multiple alternatives have been generated.
Multiple alternatives are demonstrated in Example 2. In Example 1

the iterative processes converge on a single solution.

Figure 19 shows the nodes for Example 1 from Table 1 graphically
and Figure 20 shows the Minimal Spanning Tree for this set of
nodes. The results of the hydraulic design and cost analysis
program for the MST layout are given in Table 2. The headings are

-explained as follows:

the origin node number of a pipe segment

FROM -

TO - the destination node number of a pipe segment
LENGTH - 1length of the segment in m

NUM - the number of intermittent loads on that segment

(used to calculate the coincidence factor that will
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Figure 20: Minimal Spanning Tree for Example 1
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be applied to the load)

LOAD - the factored load in w/h

SIZE - nominal diameter of the pipe in mm (chosen by the
program)

PI - inlet pressure of the pipe segment in kPa

PO - outlet pressure of the pipe segment in kPa

PD - average pressure gradient of the pipe segment in
kPa/km

WO -~ warning flag (set to 1 if the outlet pressure falls

below 140 kPa)

WD - warning flag (set to 1 if the pressure gradient is
above the specified gradient)

Figure 21 shows the layout produced by the procedural component
of the program as described in Chapter 3. To aid in the clarity of
the figure the dummy nodes have not been plotted. Table 3 is a
description of the locations of the dummy nodes, from 30 to 58,
that are added by the program to make this layout rectilinear.
Using the method described previously by Davidson and Goulter
(1989) these 29 nodes would have to be entered manually and their
locations would have to be determined using some combination of the
Boxplot Method and user judgment - a process that would be both
difficult and time consuming even though it might assist in
locating the dummy nodes in the correct set as far as crossings of

rivers and railways are concerned.

In Figure 22 the rectilinear layout is shown superimposed on the

MST layout. It is clear from this figure that much of the general



TAB
FROM TO
ki X X3
1 2
2 3
2 4
4 5
4 6
6 7
7 8
8 9
3 10
10 11
10 14
14 15
15 16
16 13
13 12
13 17
17 21
21 19
19 18
18 20
20 22
22 23
23 24
12 27
27 28
28 29
24 25
25 26
PIPE SIZE
Tk khdkhrd
26.7 mm
33.4 nmm
48.3 mm
60.3 mm
88.9 mm
TOTAL
TOTAL NUMBER
TOTAL NUMBER
TOTAL NUMBER
TOTAL NUMBER
TOTAL
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LE 2: HYDRAULIC PROFILE FOR MST LAYOUT OF EXAMPLE 1

LENGTH NUM
kdkkhkhd k%
2918.8 28
2248.3 21

3572.8 6
705.9 1
2216.2 4
1828.3 . 3
2467.5 2
1968.9 1l
5182.0 20
952.0 1

2285.9 18
1136.7 17
709.4 16
1914.6 15
909.4 4
2040.6 10
1831.6
1524.9
1376.5
1663.5
2008.5
2082.1
808.4
3585.4
1471.7
1073.6
3613.5
630.3

FNRDWLWWLOIOIOW

TOTAL LENGTH
Fhkkkhhhhhkk
14712,
15183.
21914.
2919.

0.

54728.

OF ROAD CROS
OF RAIL, CROS
OF CABLE CROS
OF CREEK CROS

LOAD
dekdkk
106.0
82.6
33.9
6.0
24.0
18.0
12.0
6.0
79.2
6.0
72.4
68.9
65.3
61.7
24.0
42.9
41.7
39.8
37.2
33.9
30.0
24.0
18.0
18.0
12.0
6.0
12.0
6.0

SINGS
SINGS
SINGS
SINGS

COST OF SYSTEM $149536.

SIZE PI
kkdd  dkddk
60.3 550.0
48.3 531.2
33.4 531.2
26.7 477.6
33.4 477.6
26.7 458.4
26.7 430.0
26.7 409.0
48.3 503.6
26.7 439.3
48.3 439.3
48.3 412.9
48.3 400.6
48.3 393.4
33.4 375.4
48.3 375.4
48.3 365.0
48.3 355.8
48.3 348.7
48.3 342.9
33.4 337.0
33.4 301.4
33.4 274.9
33.4 365.8
26.7 342.8
26.7 327.8
26.7 268.5
26.7 221.9
COST
dhhkkkk
23833.
29910.
63113.
11880.
0.
128736.
31 COST
0 COSsT
37 CosT
0 CoST

PO
Tkkhk
531.2
503.6
477.6
475.9
458.4
430.0
409.0
403.8
439.3
436.9
412.9
400.6
393.4
375.4
365.8
365.0
355.8
348.7
342.9
337.0
301.4
274.9
268.5
342.8
327.8
324.4
221.9
219.2

17471.
0.
3330.
0.

PD
Thkkk

6.4
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Figure 21: Rectilinear layout produced by the procedural

component for Example 1
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745967.5
745351.1
745351.1
748789.2
748823.9
748789.2
750196.5
751874.9
753775.5
744538.9
743837.8
746816.3
747439.9
747439.9
745868.6
747166.1
748052.3
748052.3
750561.6
750561 .6
751255. 2
751092.7
751092.7
743672.0
742793.8
742793.8
750284.9
746868.1
743837.8

5449946.0
5448719.0
5448974.0
5449946.0
5448974.0
5450686.0
5449961.0
5448723.0
5448723.0
5448719.0
5443649.0
5442789.0
5442789.0
5441052.0
5441010.0
5441052.0
5439477.0
5438837.0
5438837.0
5437691.0
5435890.0
5435890.0
5434061.0
5441010.0
5437664.0
5437152.0
5432885.0
5432853.0
5441010.0

DUMMY NODE COORDINATES FOR EXAMPLE 1

=jejejejojojolofo oo oloRolfoNofoNoYoloRoRololoRoe oo Re)



Figure 22: The rectilinear layout for Example 1 generated by the

procedural component superimposed on the MST
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form of the two layouts is similar. In general a rectilinear layout
requires greater total system length than the MST. The results of
the hydraulic design and cost analysis for this rectilinear layout
are shown in Table 4. (The complete hydraulic profile is included
in Appendix A.) In this case the change from a diagonal layout to
a rectilinear layout involves an increase in total length of 13.8%

with a corresponding increased cost is 10.0%.

TABLE 4: RESULTS FROM PROCEDURAL COMPONENT
FOR EXAMPLE 1

PIPE SIZE TOTAL LENGTH COST

dThhkdkhkhxRk whhdhhkkkkkikk E XX XX KX

26.7 mm 23281. 37715.

33.4 mm 14283. 28138.

48.3 mm 21886. 63032.

60.3 mm 2853. 11612.

88.9 mm . o.

TOTAL 62303. 140496,

TOTAL NUMBER OF ROAD CROSSINGS 36 COST 20289.
TOTAL NUMBER OF RAIIL, CROSSINGS 0 COSsT 0.
TOTAL NUMBER OF CABLE CROSSINGS 42 COST 3780.
TOTAL NUMBER OF CREEK CROSSINGS 0 COSsT 0.

TOTAL COST OF SYSTEM $164564.

Next, the cognitive component of the program is applied to
improve the layout. For illustration purposes the control strategy
of this portion of the program has been modified slightly to permit

the results from each individual iteration to be examined and

plotted.
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An iteration of the cognitive component involves three stages.
The first stage is to search for and remove all redundant nodes.
The next stage is to trigger all rules that can be triggered. The
final stage is to fire the rules in order of priority and resolve
conflicts. Figure 23 is the contents of a spill file that traces
the execution of the rule base. The file shows that one redundant
node was removed; one "hook" was triggered and fired; four ¥slides"
were triggered, only two of which fired; and ten "elbows" were
triggered, only four of these fired. Figure 24 shows the changes
generated by the cognitive component superimposed on the previous
layout. The rules that caused each change are identified by their
type and name. Table 5 shows the results from the hydraulic design
and cost analysis of the improved layout which is shown in Figure
25. The result is a 1.4% improvement in cost and a 1.1% decrease

in the total system length.

TABLE 5: RESULTS FROM THE FIRST ITERATION OF THE
COGNITIVE COMPONENT FOR EXAMPLE 1

PIPE SIZE TOTAL LENGTH COST

dhkhkhhhktk dhdhhkhkhdkrt®k kkhkhkkkk
26.7 nmm 23648. 38309.
33.4 mm 13438. 26472.
48.3 mm 21640. 62322.
60.3 mnm 2853. 11612.
88.9 mm 0. 0.
TOTAL 61578. 138715.

TOTAL NUMBER OF ROAD CROSSINGS 35 COST 19725.

TOTAL NUMBER OF RAIL CROSSINGS 0 COST 0.
TOTAL NUMBER OF CABLE CROSSINGS 42 COST 3780.
TOTAL NUMBER OF CREEK CROSSINGS 0 COosT 0.

TOTAL COST OF SYSTEM §$162220.



1 redundant node removed

Search terminated

e3ilv triggered
elilh triggered
lo3v triggered
esilv triggered
e3ilv triggered
e3ilh triggered
e303v triggered
e303h triggered
e3ilh triggered
esilv triggered
elilv triggered
ghs triggered
ghs triggered
lhs triggered
gvs triggered
earch terminated

MRERRPRRERRPRRPRRRRERER

(elbow)
(elbow)
(hook)

(elbow)
(elbow)
(elbow)
(elbow)
(elbow)
(elbow)
(elbow)
(elbow)
(slide)
(slide)
(slide)
(slide)

lo3 entered (hook)
lo3 fired

gs entered (slide)
rule is not fired

gs entered (slide)
rule is not fired

1s entered (slide)
1s fired

gs entered (slide)
gs fired

eil entered (elbow)
eil fired

eil entered (elbow)
eil fired

esil entered (elbow)
rule is not fired

eil entered (elbow)
rule is not fired

eil entered (elbow)
rule is not fired

eo3 entered (elbow)
rule is not fired

eo3 entered (elbow)
eo3 fired

eil entered (elbow)
rule is not fired

esil entered (elbow)
esil fired

eil entered (elbow)
rule is not fired

All rules exhausted
Iterations complete

Figure 23: Spill file from the first iteration of the

cognitive component for Example 1
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Figure 24: Modifications produced by the first iteration

of the cognitive component for Example 1



Figure 25: Layout produced by the first iteration of the

cognitive component for Example 1
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Figure 26 shows the spill file from the next iteration. A single
redundant node is removed. No "hooks" are identified. One "slide"
is triggered and fired. Three "elbows" are triggered and two are
fired. Figure 27 shows the resulting modifications graphically. The
"elbows" do not result in any improvement in the system length or
cost. The "slide" which is not visible at the scale of Figure 27
contributes a small improvement in the hydraulics resulting in the
highly insignificant improvement in cost of five dollars. The final

layout is shown in Figure 28 and the results are shown in Table 6.

TABLE 6: RESULTS FROM THE SECOND ITERATION OF THE
COGNITIVE COMPONENT FOR EXAMPLE 1

PIPE SIZE TOTAL LENGTH COosT

hkkkkkdhdk Tkkkdhhkkrhk Tkkdkdk
26.7 mm 23663. 38333
33.4 nm 13423. 26442,
48.3 nmm 21640. 62322.
60.3 nmm 2853. 11612.
88.9 mm 0. 0.
TOTAL 61578. 138710

TOTAL NUMBER OF ROAD CROSSINGS 35 COST 19725.

TOTAL NUMBER OF RAIL CROSSINGS 0 COST 0.
TOTAL NUMBER OF CABLE CROSSINGS 42 COST 3780.
TOTAL NUMBER OF CREEK CROSSINGS 0 COST 0.

TOTAL COST OF SYSTEM $162215.
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1 redundant node removed
Search terminated

1 e3ilv triggered (elbow)
1 e3ilh triggered (elbow)
1 e303v triggered (elbow)
1 1lhs triggered (slide)
Search terminated

1s entered (slide)
ls fired
eil entered (elbow)

rule is not fired

eo3 entered (elbow)
eo3 fired

eil entered (elbow)
eil fired

All rules exhausted
Iterations complete

Figure 26: Spill file from the second iteration of the

cognitive component for Example 1
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Figure 27: Modifications produced by the second iteration

of the cognitive component for Example 1



Figure 28: Layout produced by the second iteration of the

cognitive component for Example 1
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The results from this first example are summarized below.

TABLE 7: SUMMARY OF RESULTS FROM EXAMPLE 1

Method Length Cost
(meters) (dollars)
Minimal Spanning Tree 54728 149536

(not rectilinear)
Procedural Component 62303 164564
Cognritive Component

First iteration 61578 162220
Second iteration 61578 162215

If the cognitive component is executed for another iteration,
two redundant nodes are removed but no rules trigger and no
subsequent modifications to the layout occur. In some cases it is
possible that the procedural component can generate further
improvements in a layout if the procedural component is executed
using the layout modified by the cognitive component as input. For
this example a further iteration of the procedural component did
not result in any changes to the layout. The two components of the
program have converged on a layout that neither component can
improve. The next example will show that a series of iterations

'does not always end in this type of convergence.
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Example 2

The second example is presented in Figures 29 through 34. The
same nodes as the previous example are used. However, the survey
grid is assumed to be at an angle three degrees counter-clockwise
to the UTM coordinate system. Therefore, the problem requires a
skewed rectilinear solution similar to those discussed in Chapter
3. In addition, the solution to this problem is considered with
respect to a river that flows through the project site. The problem
is exactly the same as the previous example in every other aspect,
yet, as will be shown later, the small angle of rotation produces

surprisingly different results.

The network in Figure 29 is the result of the first iteration
of the procedural component of the program. The nodes are first
submitted to a program that rotates their positions three degrees
clockwise. The procedural component is used to create a rectilinear
layout by adding dummy nodes to these rotated nodes. All the nodes,
including the newly added dummy nodes are rotated three degrees
counter-clockwise back to the original position. The 1layout in
Figure 29 is created using the MST algorithm. Hydraulic design and
cost analysis are performed on this layout in the same manner as
the previous example with the maximum pressure gradient set at 18

kPa/km.

Next, the network is modified using the cognitive component and
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Figure 29: First iteration of the procedural component

for Example 2
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Figure 30: First iteration of the cognitive component

for Example 2
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Figure 31: Second iteration of the procedural component

for Example 2



Figure 32: Second iteration of the cognitive component

for Example 2




Figure 33: Third iteration of the procedural component

for Example 2
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Figure 34: Third iteration of the cognitive component

for Example 2
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the modified network is shown in Figure 30. Hydraulic design and
cost analysis were performed on this network. It is difficult in
this instance to submit the output data from the cognitive
component of the program to the program that is used to perform the
hydraulic design and cost analysis. Some modification of the node
data is required to evaluate the performance of the layout. The
modifications are necessary because of a program design decision
that was made during the development of the hydraulic design

program.

The hydraulic design program is an older program that was
developed before work began on the automated selection of dummy
nodes. At the time of the older development all node data were
entered manually and links were generated using the MST algorithm.
The modifications that the cognitive component makes and redundant
nodes that are removed at that stage can result in an efficient
rectilinear layout that is not necessarily a Minimal Spanning Tree.
In other words, there may exist diagonal links which can produce
a more efficient layout. Since the hydraulic design program, as
presently written, can only accept node data as input, and because
the hydraulic design program always begins by connecting the nodes
using the MST algorithm, the hydraulic design program often
generates a layout that is different than the layout originally
created by the cognitive component. A layout of this type,

generated in error, will contain diagonal lines.
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The problem does not occur with the procedural component because
the output generated by the procedural component is always a
Minimal Spanning Tree. The problem only occurs when a layout
generated by the cognitive component is used as input to the
hydraulic design program, and even then only in some cases - for

instance, the problem did not occur in the previous example.

The proper solution to the problem would be to rewrite the
hydraulic design program. The new program would not use the MST
algorithm, or any other algorithm, to redesign the layout, i.e.,
connect the nodes. The new program would be capable of accepting
as input, data describing connections between nodes that have been
established previously using any network algorithm, not just the
MST algorithm. Until this new program is created an alternative
technique will be used in conjunction with the existing program.
Dummy nodes can be added to force the MST algorithm in the
hydraulic design program to generate the same layout as the layout
produced by the cognitive component. This is the method that is
used in this example. The nodes that were added during the first
iteration of the cognitive component for Example 2 are listed

below:

FIRST ITERATION

NODE NUMBER X Y
58 1028417.0 5399793.0
59 1029614.0 5396906.0

60 1028700.0 5393042.0
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The cognitive component receives input from a file generated by
the procedural component. This file is created before the nodes
have been rotated back to their original position. It is essential
that the nodes are in the same position as they were during the
execution of the procedural component for the cognitive component
to function properly. Once the additional nodes that must be added
to generate the layout using the MST algorithm have been entered,
the set of nodes can be rotated back to the original position to
produce the final drawing shown in Figure 30. If a further
iteration of the procedural component is to be attempted it is best
not to rotate the nodes back to their original positions at this

time.

In the next step, the output node data produced by the first
iteration of the cognitive component are used as input for a second
iteration of the procedural component. The network produced by the
second iteration of the procedural component is shown in Figure
31. The process of iterating between the cognitive component and
the procedural component is repeated to produce the networks shown
in Figures 31 to 34. Each time the results from the cognitive
kcémponent were to be evaluated additional dummy nodes were
required. The coordinates of these dummy nodes are listed below.
In the case of this example convergence was not reached after many
iterations and, in fact, it is not even known whether the problem

will converge.
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SECOND ITERATION

NODE NUMBER X Y

58 1028700.0 5395713.0
59 1030824.0 5391291.0
60 1028693.0 5391291.0

THIRD ITERATION

NODE NUMBER X Y
58 1029442.0 5396906.0
59 1028700.0 5392901.0

It can be seen that a new set of dummy nodes is added at each
iteration. For example, node 58 has different coordinates for the
second and third iterations. This situation occurs because the
additional dummy nodes are only required for rotéting’ or for
performing hydraulic designs on the results of the cognitive
component. The results of the cognitive component that are used as
input for a further iteration of the procedural component do not

have any additional nodes added.

The results of an analysis of cost are summarized in Table 8.
As mentioned previously it is not possible at this point for the
cost analysis program to determine the number of river crossings
that occur if the dummy nodes are generated internally by the
computer. Given the small differences in cost between the six

systems presented here, the relationship between the river and the
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different systems may be the deciding factor in selecting the final

layout.

TABLE 8: SUMMARY OF EXAMPLE 2 RESULTS

METHOD , LENGTH COST
PROCEDURAL COMPONENT ;
first iteration 62452 166332
second iteration 63011 164926
third iteration 63574 165841
COGNITIVE COMPONENT
first iteration 61996 162185
second iteration 63010 164924
third iteration 63286 165492

The results produced by the program are consistent with the
assumptions made in Chapter 2 regarding the nature of complex
problems. It was stated that many near-optimal solutions can be
generated which are close enough to each other in their evaluations
that the solutions should be regarded as equivalent given the
precision of the model. It was also stated that criteria for the
evaluation of solutions often exist which cannot be modelled
easily. In this instance the criterion that could not be modelled
was the number of river crossings. However, many other criteria of

this type are certain to exist in complex real problems.

Example 1 and Example 2 differ from each other only in the angle
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of rotation. It is important to recognize that it is the change in
the configuration or position of nodes that is brought about by
rotation and not the process of rotation that is responsible for
the phenomenon of non-convergence. The specific causes of non-

convergence are examined in more detail in the next section.

Problems and Benefits of the Iterative Approach

Iteration forms the basis of the organizational structure of the
program. The iterative processes result in unpredictable behaviour
both in terms of the execution time of the program and the quality
of the results the program produces. Iteration occurs on many
different levels in the program both within and between the two
components of the program. Essentially the same processes are
involved at any level. In some way, at any of these levels, the MST
algorithm is used to determine a layout based on the proximity
relationships between the nodes. The term "proximity relationships"
is used to denote the spatial "closeness", or clustering of the

nodes.

The cognitive component, in contrast to the procedural
component, recognizes and manipulates patterns formed by
connections that have been established between nodes previously.
The cognitive component cannot recognize if these manipulations of

patterns have changed the proximity relationships between the nodes
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within the pattern, or whether the manipulations have changed
proximity relationships between the pattern and the surrounding
nodes, to permit a more efficient layout to be produced. In other
words, the cognitive component cannot perceive and take advantage
of new clusters of nodes that may have been created by the firing
of rules. The problem is not necessarily due to the rule based
approach. It may be possible to formulate rules to perform this
task. In the present form, the cognitive component relies on a
further iteration of the procedural component to accomplish the
task of reestablishing proximity relationships, hence the iteration
between the two components. The difficulty with this approach is
that the procedural component can react to the new placement of
nodes in the wrong manner, dgenerating a layout which is less
efficient than the layout from the previous iteration, as occurs

in Example 2.

The series of graphs shown in Figure 35 illustrate how the
generation of a less efficient layout can occur. The procedure that
was used to generate the graphs in Figure 35 is not a procedure
that is used in the program in its present form. The procedure is
an early prototype of the procedural component of the program which
provided some insight into problems with the iterative approach.
The graphs are presented to illustrate these problems and explain
the solution strategies that were adopted. The procedure consists
of iterations of the MST algorithm in combination with a routine

that produces supergraphs containing rectangles where diagonals
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were produced by the MST algorithm.

The MST algorithm is used to establish the initial layout shown
in Figure 35a. In Figure 35b dummy nodes are added at the corners
of rectangles to make the layout rectilinear as explained 1in
previous examples. Occasionally a dummy node will be placed
adjacent to another node and a diagonal line connecting the two
nodes will be selected by the MST algorithm. The diagonal line is
chosen over an competing rectilinear line because the diagonal line
is shorter. Often diagonal lines of this type result in improved
solutions when the diagonals are replaced with rectilinear lines
in a subsequent iteration. However, in some cases the pair of
rectilinear lines that replaces a diagonal on the subsequent
iteration may be longer than the original rectilinear line that was
replaced during the previous iteration. The design becomes less

efficient rather than more efficient.

In Figure 35d a rectilinear line connects node 2 to node 25. In
the Figure 35e this rectilinear line has been replaced by a shorter
diagonal line from node 33 to node 27. In Figure 359 the diagonal
has been replaced by a pair of lines one from node 33 to node 37
and one from node 37 to node 27, which are longer than the original

line from node 2 to node 25.

This explains the fact that the subsequent iterations of the

procedural component in Example 2 produced layouts with greater
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total length and higher costs than previous iterations of the
cognitive component. A clear example of this can be seen by
comparing Figure 30 with Figure 31. A straight line connects the
tee adjacent to node 3 with node 10 in Figure 30. In Figure 31 this
line has been replaced by an elbow that connects node 5 with the
tee adjacent to node 14. This elbow has a greater total length than
the line it replaces however the diagonal distance is shorter. It
is this shorter diagonal distance that is responsible for the

error.

One possible solution to this problem would be to search for all
the diagonal lines in the supergraph and replace the actual lengths
of each diagonal 1line with artificial 1lengths equal to the
rectilinear distance of the diagonal line. However, this technique
would not produce a final layout that can be generated by the MST
algorithm from a complete graph of the nodes. Furthermore, it would

not be possible to rotate the nodes to produce skewed networks.

It is preferable to leave the error in the algorithm since small
errors of this type are useful. The error permits the algorithm to
‘bypass 1local optima allowing the algorithm to generate many
alternative layouts rather than simply converging to one layout
that can no longer be improved. Non~convergence requires that not
all the modifications made on the system during an iteration be
improvements. Some modifications may slightly reduce the level of

performance of the system, but these modifications are performed
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in combination with modifications that improve the systen’s
performance. In this way an iteration may produce a system that is
geometrically different from the previous system, yet more or less

equivalent in terms of cost and other aspects of performance.

Example 2 illustrates this point. In the case of Example 2 it
was clearly beneficial to have several layouts of equivalent
performance and cost to choose from when considering the problems
imposed by river crossings. The property of non-convergence was
discovered by accident, as the result of a programming error.
However, the error points to a direction for further program
development. It is desirable to have many "errors" of this type to
delay convergence in the case of problems that converge too
rapidly, thereby generating more alternative layouts to choose
from. This type of approach will require a new high level control
strategy which is larger and more sophisticated, to guide the

process of generating and evaluating alternatives.

Figure 35 illustrates another problem caused by successive
iterations of this early prototype procedure. As more dummy nodes
‘are added to make diagonal lines rectilinear, more diagonal
"shortcuts" become possible. The figure shows that the process of
adding nodes and rerunning the MST algorithm had to be repeated
four times before an entirely rectilinear solution could be
generated. By this time the number of input dummy nodes is so large

that the MST algorithm cannot generate an efficient layout. The
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final layout, shown in Figure 353j, has inefficiencies similar to

those shown in Figure 12b.

The problem of increasing numbers of dummy nodes and the
consequent inefficient layouts does not occur to the same extent
in the current version of the program. Applying the cognitive
component with each successive iteration tends to "clean up" the
system. As mentioned in Chapter 4, redundant nodes are removed,
thus reducing the number of dummy nodes. Additionally, "hooks",
"glides", and "elbows" are rules that identify many of the
inefficiencies created through iteration. One way to regard the
cognitive component is that it is used to ensure that a certain
level of performance is maintained. In a similar way, an effective
cognitive component appears to be the key to the success of any
program that is developed to produce a large number of alternative
layouts using the proposed method of non-convergence. In the
proposed non-convergence method, the procedural component would
generate sub-optimal "concepts" for layouts while the local optimal
would be avoided. The fine tuning of the "concepts" would be
performed by the cognitive component bringing the solutions to, or

near, local optima.
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CHAPTER 6: SUMMARY

A microcomputer based model for the design of rural natural gas
distribution systems has been developed. The model,which is based
upon mathematical network optimization algorithms, has been
designed to accommodate as many "real world" concerns as could be
identified while recognizing at the same time that many aspects of
the problem are extremely difficult or impossible to model
effectively. The model relies on user Jjudgment to accommodate the
aspects of the problem which cannot be modelled. As in previous
work the use of an interactive, graphics-based user interface is

considered to be essential to best facilitate user judgment.

The model combines programs designed for user interaction with
non-interactive programs that generate layouts, perférm hydraulic
designs and analyze costs. Rectilinear layouts are generated by a
procedure that combines two common algorithms, the Minimal Spanning
Tree and Dijkstra’s Algorithm, with two heuristic techniques to
assist in the selection of dummy nodes. As development of the
procedure progressed and its performance improved it became
increasingly difficult to identify errors in the layouts created
by the procedure and substantially more difficult to devise
routines to ensure that these errors would not be repeated in an

improved version of the program.

As a result another component of the pfogram, ‘a cognitive
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component, was created to diagnose and correct errors created by
the procedural component. The majority of errors created by the
procedure were found to belong to one of three categories,
tentative referred to as "hooks", "slides", and "elbows". A rule
base and control strategy were developed to identify and correct

all possible occurrences of these three problems.

The program is presently composed of these two distinct
components. The procedural component is written in C, which is a
procedural language and the cognitive component is written in
PROLOG, which is a declarative language. In early trials, the two
components would be used in successive iterations to converge on

a single layout that neither component could improve.

Later, it was discovered that a small error in programming logic
existed in the procedural component, which, in certain cases,
caused the program to produce many alternative layouts without
converging. The ability to generate many alternatives is considered
to be highly advantageous in view of the fact that certain aspects
of the problem cannot be modelled and ultimately some user
.interaction will be required. 1In the previous work, user
interaction took the form of repeated and extensive modification
of a single layout based on the Minimal Spanning Tree. Using a
program of the type based on the concept of non-convergence, the
user would select a layout that is the best of the alternatives

that the program generates. Some modification to this layout may
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be required but this modification would likely be very minor in

contrast to the extensive manual work required by previous methods.

A means to ensure non-convergence has not been developed. In
addition, some larger and more sophisticated control strategy will
be required to manage the interaction of the two components of the
program during the generation of alternatives. Future development
of the network generating algorifhms developed in this study should

proceed in these two directions.
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APPENDIX A: HYDRAULIC PROFILES FOR VARIOUS FIGURES




Hydraulic Profile for Figure 21
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23 52
52 24
24 56
53 27
27 54
54 55
55 28
55 29
56 25
25 57
57 26
PIPE SIZE
whkhkhkrhkhk
26.7 mm
33.4 mm
48.3 mnm
60.3 nmm
88.9 mm
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL

TOTAL

NUMBER OF CREEK CROSSINGS

COST OF SYSTEM 1645

64.
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SIZE PI
fkkdk  kkkwk
33.4 297.5
33.4 274.4
33.4 274.2
26.7 267.8
33.4 391.1
26.7 370.8
26.7 362.4
26.7 357.5
26.7 357.5
26.7 253.3
26.7 207.2
26.7 207.1

COoST
kkhkhkkhkk
37715.
28138.
63032.
11612.
o.

140496.

36 COST
0 COST
42 COST
0 COosT

PO
EE 3 22
274.4
274.2
267.8
253.3
370.8
362.4
357.5
355.5
355.0
207.2
207.1
204.3

20289.
0.
3780.
0.

PD
hdkdhkk

12.8
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Hydraulic Profile for Ficure 25

FROM
dddk

1

27 .

2
56
31
27
28

TO

hhwR
27

2

56
31

3

28

57

53

19

LENGTH
ek hkkk
2853.0
616.4
812.3
1227.0
1071.8
2821.7
972.0
705.0
34.7
1407.3
15.0
725.0
1678.4
1238.0
1900.6
233.9
1955.0
5070.0
701.1
644.0
1995.0
1122.4
908.4
42.0
1297.5
42.0
273.8
1094.0
643.0
299.8
623.6
663.0
1533.0
886.2
640.0
963.0
1182.3
1327.0
366.0
1146.0
531.1
162.5
1801.0
162.5
889.1

NUM
k%
28
22
21
21

HERENNWERER LR NDORE

PFROORPOAORNOFOOWORRFREREDWWW

LOAD

hhxhk

106.0
85.9
82.6

FPRE DN
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SIZE
Fk ko
60.3
48.3
48.3
48.3
26.7
33.4
26.7
26.7
26.7
33.4
33.4
26.7
26.7
26.7
26.7
26.7
26.7
48.3
48.3
48.3
48.3
48.3
48.3
26.7
48.3
33.4
33.4
33.4
26.7
26.7
26.7
26.7
48.3
48.3
48.3
26.7
48.3
48.3
26.7
48.3
48.3
26.7
33.4
26.7
26.7

PI
Tdkddk
550.0
531.7
523.6
513.6
498.3
531.7
489.7
482.4
480.8
489.7
477.9
477.7
477.7
452.7
442.7
426.9
426.9
498.3
434.8
426.1
417.9
393.9
383.5
375.8
375.8
365.8
365.6
363.8
356.9
350.6
350.6
348.7
365.8
357.9
353.4
350.1
350.1
344.5
338.9
338.9
334.8
332.9
332.9
300.8
300.3

PO
*kk ko
531.7
523.6
513.6
498.3
495.9
489.7
482.4
480.8
480.7
477.9
477.7
476.1
452.7
442.7
426.9
426.3
422.0
434.8
426.1
417.9
393.9
383.5
375.8
375.7
365.8
365.6
363.8
356.9
350.6
349.7
348.7
346.8
357.9
353.4
350.1
347.2
344.5
338.9
337.8
334.8
332.9
332.4
300.8
300.3
297.3

PD
ddddk

6.4
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FROM TO LENGTH NUM
%% % kXk%k Thkddht xx%k
54 20 1797.0 4
20 40 32.0 3
40 21 807.8 3
44 58 3346.0 3
58 24 165.8 3
24 41 878.2 2
41 42 512.0 2
42 25 669.0 1
42 26 839.7 1
21 59 3416.8 2
59 22 1176.0 2
22 43 32.0 1
43 23 629.4 1
PIPE SIZE TOTAL LENGTH
dkkhhhhik FE R R T LR TS
26.7 mm 23648.
33.4 mm 13438.
48.3 mm 21640.
60.3 nmnm 2853.
88.9 mm 0.
TOTAL 61578.
TOTAL NUMBER OF ROAD CROS
TOTAL NUMBER OF RAIL CROS
TOTAL NUMBER OF CABLE CROS

TOTAL

TOTAL

NUMBER OF CREEK CROS

COST OF SYSTEM 1622

LOAD

kkkkk
24.0
18.0

SINGS
SINGS
SINGS
SINGS

20.
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SIZE
*kkk
33.4
33.4
33.4
33.4
26.7
26.7
26.7
26.7
26.7
26.7
26.7
26.7
26.7

COST
Tkhkkkk

PI
khkkhk
300.8
278.0
277.7
393.9
373.7
370.8
362.4
357.5
357.5
271.4
227.9
211.5
211.4

38309.
26472,
62322.
l11612.

0.

138715.

35
0
42
0

COosT
COoST
CosT
COST

PO
hkkdk
278.0
277.7
271.4
373.7
370.8
362.4
357.5
355.5
355.0
227.9
211.5
211.4
208.6

19725.
0.
3780.
0.

PD
22313
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Hyvdraulic Profile for Figqure 28

FROM
Fdkkk
1
26
2
50
30
26
27
4
51
27
56
54
56
57
57
28
29
29
30
8
31
9
42
10
45
45
46
58
34
13
33
33
32
46
14
59
35
35
16
36
36
37
49
49
48

TO

Thkk
26
2
50
30
3
27
4
51
5
56
54
43
57
55
28
29
6
7
8
31
9
42
10
45
44
46
58
34
i3
33
12
32
11
14
59
35
17
16
36
15
37
49
47
48
i8

LENGTH
hekkhkdk
2853.0
616.4
812.3
1227.0
1071.8
2821.7
972.0
705.0
34.7
1407.3
15.0
725.0
1678.4
15.0
1223.0
1900.6
233.9
1955.0
5070.0
701.1
644.0
1995.0
1122.4
908.4
42.0
1297.5
273.8
42.0
1094.0
643.0
299.8
623.6
663.0
1533.0
640.0
886.2
963.0
1182.3
1327.0
366.0
1146.0
531.1
162.5
1801.0
1051.6

NUM
fdk
28
22
21
21
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)
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LOAD
hdhk
106.0
85.9
82.6
82.6
6.0
33.9
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SIZE
*kkk
60.3
48.3
48.3
48.3
26.7
33.4
26.7
26.7
26.7
33.4
26.7
26.7
26.7
26.7
26.7
26.7
26.7
26.7
48.3
48.3
48.3
48.3
48.3
48.3
26.7
48.3
33.4
33.4
33.4
26.7
26.7
26.7
26.7
48.3
48.3
48.3
26.7
48.3
48.3
26.7
48.3
48.3
26.7
33.4
26.7

PI
hvekdk
550.0
531.7
523.6
513.6
498.3
531.7
489.7
482.4
480.8
489.7
477 .9
477.8
477.9
452.8
452.8
442.9
427.2
427.2
498.3
434.8
426.1
417.9
393.9
383.5
375.8
375.8
365.8
364.1
363.8
356.9
350.6
350.6
348.7
365.8
357.9
354.7
350.1
350.1
344.5
338.9
338.9
334.8
332.9
332.9
300.8

PO
kkkkk
531.7
523.6
513.6
498.3
495.9
489.7
482.4
480.8
480.7
477.9
477.8
476.2
452.8
452.8
442.9
427.2
426.6
422.2
434.8
426.1
417.9
393.9
383.5
375.8
375.7
365.8
364.1
363.8
356.9
350.6
349.7
348.7
346.8
357.9
354.7
350.1
347.2
344.5
338.9
337.8
334.8
332.9
332.4
300.8
297.3

PD
dek kK
6.4
i3.1
12.3
12.5
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LENGTH NUM
T T T T NN 21
1797.0
32.0
807.8
3346.0
165.8
878.2
512.0
669.0
839.7
3416.8
1176.0
32.0
629.4

FEREMOMNNERERFODDDWWWWD

TOTAL LENGTH
khkhkhhhkhhhdk
23663.
13423.
21640.
2853.

0.

61578.

LOAD
o g d % ok
24.0
18.0
18.0
18.0

NUMBER OF ROAD CROSSINGS

NUMBER OF RAIL CROSSINGS

FROM TO
X X3 wRR%E
48 19
19 38
38 20
42 52
52 23
23 39
39 40
40 24
40 25
20 53
53 21
21 41
41 22
PIPE SIZE
LT R XX .. %3
26.7 mm
33.4 nmm
48.3 mm
60.3 mm
88.9 mm
TOTAL
TOTAL
TOTAL
TOTAL

TOTAL

TOTAL

NUMBER OF CABLE CROSSINGS
NUMBER OF CREEK CROSSINGS

COST OF SYSTEM 162215.

120

SIZE
Txkk
33.4
33.4
33.4
33.4
26.7
26.7
26.7
26.7
26.7
26.7
26.7
26.7
26.7

cosT

kkkkhik

PI
b 5 %
300.8
278.0
277.7
393.9
373.7
370.8
362.4
357.5
357.5
271.4
227.9
211.5
211.4

38333.
26442.
62322.
11612.

0.

138710.

35
0
42
0

cosT
COST
cosT
COoSsT

PO
gtk Rk
278.0
277.7
271.4
373.7
370.8
362.4
357.5
355.5
355.0
227.9
211.5
211.4
208.6

19725.

3780.

PD
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Hydraulic Profile for Figure 29

FROM
khkdk
1
30
2
31
38
30
32
32
33
4
34
6
35
7
36
37
37
38
10
10
39
40
14
41
42
42
16
43
45
13
44
45
17
46
47
60

47
19
48
48
49
20
50
50

TO

fekkk
30
2
31
38
3
32
34
33
4
5
6
35
7
36
37
8
9
10
40
39
11
14
41
42
15
16
43
45
13
44
12
17
46
47
60
21
59
19
48
18
49
20
50
51
22

LENGTH
kkdkkkhk
2816.9
765.0
1126.5
1141.1
805.0
2617.1
485.7
1150.5
1.9
704.9
1495.0
811.1
1637.9
1347.9
1730.9
336.0
1940.7
5119.0
315.4
734.0
605.8
2264.0
710.0
554.0
333.0
626.9
1010.4
413.0
1212.9
909.0
6.0
1641.3
801.0
747.0
880.2
20.0
801.0
1231.0
1345.1
295.4
1250.7
613.0
1844.5
350.0
794.0

NUM
*kk
28
22
21
21

el e e -
NNWRFNUOUORNNORRFO0ORRENNWOWWSRNNBOR

F_OONOR N0 WE &

LOAD
Fodedekk
106.0
85.9
82.6
82.6
6.0
33.9
24.0
12.0
12.0
6.0
24.0
18.0
18.0
12.0
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SIZE
*hhk
60.3
48.3
48.3
48.3
26.7
33.4
33.4
26.7
26.7
26.7
33.4
26.7
26.7
26.7
26.7
26.7
26.7
48.3
48.3
26.7
26.7
48.3
48.3
48.3
26.7
48.3
48.3
48.3
26.7
26.7
26.7
48.3
48.3
48.3
33.4
26.7
33.4
48.3
48.3
26.7
48.3
48.3
48.3
33.4
26.7

PI
khkkk
550.0
531.9
521.9
508.0
493.6
531.9
493.1
493.1
484.5
484.5
489.1
476.5
464 .5
439.4
428.2
413.5
413.5
493.6
428.9
428.9
427.0
425.2

398.3 .

390.4
384.2
384.2
377.6
367.9
363.8
352.1
349.4
363.8
350.8
345.1
339.6
329.6
329.6
339.6
333.7
327.8
327.8
323.2
320.9
315.3
315.3

PO
kkkkdk
531.9
521.9
508.0
493.6
491.8
493.1
489.1
484.5
484.5
482.9
476.5
464.5
439.4
428.2
413.5
412.6
408.4
428.9
425.2
427.0
425.5
398.3
390.4
384.2
383.3
377.6
367.9
363.8
352.1
349.4
349.4
350.8
345.1
339.6
329.6
329.6
324.1
333.7
327.8
326.9
323.2
320.9
315.3
311.1
312.7

PD
EL R L 8
6.4
13.1
12.3
12.6
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FROM TO LENGTH NUM LOAD

L XX X3 xxk% Thkhhkk KR %X khkh®
51 52 1729.4 4 24 .0
52 23 11.0 4 24.0
23 53 808.8 3 18.0
53 24 11.0 1 6.0
53 57 985.3 2 12.0
59 54 2122.0 3 18.0
54 27 1462.0 3 18.0
27 55 939.0 2 12.0
55 56 421.6 2 12.0
56 28 712.0 1 6.0
56 29 803.0 1 6.0
57 25 3473.0 2 12.0
25 58 1.0 1 6.0
58 26 631.0 1 6.0

PIPE SIZE TOTAL LENGTH

EE T XX L X X X X XXX T L E

26.7 mm 23354,

33.4 mnm 12762.

48.3 mnm 23519.

60.3 mm 2817.

88.9 mm 0.

TOTAL 62452,

TOTAL NUMBER OF ROAD CROSSINGS

TOTAL NUMBER OF RAIL CROSSINGS

TOTAL NUMBER OF CABLE CROSSINGS

TOTAL NUMBER OF CREEK CROSSINGS

TOTAL COST OF SYSTEM 166332.
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SIZE
* %k
33.4
33.4
33.4
26.7
26.7
33.4
33.4
26.7
26.7
26.7
26.7
26.7
26.7
26.7

COST
Tkdhkk
3783
2514
6773
1146

14217

36
0
43
0

PI
hhdk
311.1
289.8
289.6
283.5
283.5
324.1
309.2
298.6
288.0
283.2
283.2
271.9
227 .7
227.7

*

3.
1.
4.
5.
0.

3.

cosT
COST
COST
COoST

PO
kkkkk
289.8
289.6
283.5
283.5
271.9
309.2
298.6
288.0
283.2
280.7
280.3
227 .7
227.7
225.1

20289,
0.
3870.
0.
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Hydraulic Profile for Figure 30

FROM
khdk
1
23
2
51
26
26
58
38
55
53
55
59
54
57
27
27
12
46
10
28
28
46
47
47
29
30
30
14
31
31
32
50
60
56
20
34
35
35
50
49
49
33
33
23
44

TO
%ok kK
23
2
51
26
3
58
38
55
53
8
59
54
57
27
11
12
46
10
28
9
60
47
29
45
30
15
14
31
i3
32
50
48
56
20
34
35
21
22
49
16
33
17
18
44
43

LENGTH
hhkdkhkkihk
2816.9
765.0
1141.0
1127.5
805.0
2547.5
2571.5
315.4
290.4
734.0
1196.9
1067.1
553.9
710.0
333.0
626.9
1010.4
1625.9
909.0
6.0
1517.1
1641.2
388.1
412.9
747.0
900.2
1231.0
1345.1
295.4
1250.7
263.0
350.0
1751.4
1462.0
939.0
421.6
712.0
803.0
1844.5
1144.0
1729.4
11.0
809.1
2615.1
1150.6

NUM
%%k
28
22
21
21
1
20
20
19
1

1
18
18
17
17
1
16
15

NOAWFMPRPUORPPVMNNMNWOVWRPROOARNNORFRPOROOWER DO

LOAD
dodedkk
106.0
85.9
82.6
82.6
6.0
79.2
79.2
75.8
6.0
6.0
72.4
72.4
68.9
68.9
6.0
65.3
61.7
30.0
24.0
6.0
18.0
42.9
41.7
6.0
41.7
6.0
39.8
37.2
6.0
33.9
33.9
6.0
18.0
18.0
12.0
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SIZE
fkkk
60.3
48.3
48.3
48.3
26.7
48.3
48.3
48.3
26.7
26.7
48.3
48.3
48.3
48.3
26.7
48.3
48.3
33.4
33.4
26.7
33.4
48.3
48.3
26.7
48.3
26.7
48.3
48.3
26.7
48.3
48.3
26.7
33.4
33.4
26.7
26.7
26.7
26.7
33.4
26.7
33.4
26.7
33.4
33.4
26.7

PI
E k5
550.0
531.9
521.9
507.8
493.6
493.6
462.3
428.8
424.9
424.1
424.9
410.8
398.0
391.8
383.8
383.8
377.3
367.5
341.0
330.7
330.7
367.5
359.1
359.1
357.1
3563.3
353.3
347.5
341.9
341.9
337.4
336.5
320.2
307.9
297.2
286.6
281.7
281.7
336.5
303.9
303.9
282.1
282.1
531.9
493.2

PO
Fkk kR
531.9
521.9
507.8
493.6
491.7
462.3
428.8
424.9
424.1
422.3
410.8
398.0
391.8
383.8
382.9
377.3
367.5
341.0
330.7
330.7
320.2
359.1
357.1
357.9
353.3
350.6
347.5
341.9
341.0
337.4
336.5
335.4
307.9
297.2
286.6
281.7
279.2
278.9
303.9
300.1
282.1
282.1
275.9
493.2
484.5

PD
hkkkk
6.4
13.1
12.3
12.6
2.3
12.3
13.0
12.5
2.5
2.6
11.7
12.0
11.1
11.3
2.8
10.4
9.7
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FROM TO
EX X% X & X3
43 42
42 4
44 36
36 24
36 37
24 5
5 52
52 25
25 6
25 7
18 39
39 41
41 40
41 19
PIPE SIZE
*kAhhkhkhhitx
26.7 mm
33.4 nmm
48.3 mm
60.3 mnm
88.9 mm
TOTAL
TOTAL NUMBER
TOTAL NUMBER
TOTAL NUMBER
TOTAL NUMBER
TOTAL COST O

LENGTH NUM
Tkdkkkihk  hkk
1.9
704.9
1496.9
325.5
485.7
1637.9
1731.0
1347.8
336.0
1940.7
3473.0
995.4
1.0
631.0

HFREREOMNNRFRFRFRFNNNDWERE WS

TOTAL LENGTH
kkkkkhkhhkkhk
22920.
15760.
20499.
2817.

0.

61996.
OF ROAD CROS
OF RAIL CROS

OF CABLE CROS
OF CREEK CROS

F SYSTEM 1621

LOAD
2223
12.0
6.0

SINGS
SINGS
SINGS
SINGS

85.
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SIZE
B3
26.7
26.7
33.4
26.7
26.7
26.7
26.7
26.7
26.7
26.7
26.7
26.7
26.7
26.7

cosT
kkdhkk
3713
3104
5903
1146

13868

35
0
42
0

PI
bk
484.5
484.5
493.2
480.6
480.6
475.9
451.3
437.2
426.0
426.0
275.9
232.2
218.6
218.6

*

0.
8.
8.
5.
0.

0.

CoSsT
CosT
COoSsT
CcosT

PO
Tdedkkk
484.5
482.9
480.6
475.9
479.5
451.3
437.2
426.0
425.2
421.1
232.2
218.6
218.6
215.9

19725.
0.
3780.
0.

PD
Hfkdk
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Hydraulic Profile for Figure 31

FROM
*kkk
1
23
23
2
51
26
61
44
43
42
44
36
36
24
4
5
52
25
25
58
57
57
27
27
12
46
10
28
9
46
47
47
29
30
62
62
30
14
31
31
32
50
50
49
49

TO

kR
23
2
61
51
26
3
44
43
42
4
36
24
37
5
58
52
25
6
7
57
54
27
11
12
46
10
28
9
59
47
29
45
30
62
15
60
14
31
13
32
50
48
49
16
33

LENGTH
hhkhkdkd
2816.9
765.0
912.1
1141.0
1127.5
805.0
1703.0
1150.6
1.9
704.9
1496.9
325.5
485.7
1637.9
1703.0
1731.0
1347.8
336.0
1940.7
4706.4
553.9
710.0
333.0
626.9
1010.4
1625.9
909.0
6.0
283.0
1641.2
388.1
412.9
747.0
880.2
20.0
801.0
1231.0
1345.1
295.4
1250.7
263.0
350.0
1844.5
1144.0
1729.4

NUM
kK
28
2
26
1

1

1
26
22
22

N N
=
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39.8
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SIZE
Fkdk
60.3
26.7
48.3
26.7
26.7
26.7
48.3
48.3
48.3
48.3
33.4
26.7
26.7
26.7
48.3
26.7
26.7
26.7
26.7
48.3
26.7
48.3
26.7
48.3
48.3
33.4
33.4
33.4
26.7
48.3
48.3
26.7
48.3
33.4
26.7
33.4
48.3
48.3
26.7
48.3
48.3
26.7
48.3
26.7
33.4

PI
Fkkdk
550.0
531.9
531.9
526.5
524.1
521.7
516.5
486.7
470.4
470.3
486.7
474.0
474.0
469.2
460.9
444 .4
430.1
418.7
418.7
438.9
372.8
372.8
362.7
362.7
354.4
342.0
323.4
317.1
317.1
342.0
328.3
328.3
325.4
319.7
309.2
309.2
319.7
313.4
307.3
307.3
302.4
301.4
301.4
295.5
295.5

PO
hhkkkk
531.9
526.5
516.5
524.1
521.7
520.0
486.7
470.4
470.3
460.9
474.0
469.2
472.9
444.4
438.9
430.1
418.7
417.9
413.7
372.8
371.2
362.7
361.8
354.4
342.0
323.4
317.1
317.1
314.0
328.3
325.4
327.0
319.7
309.2
309.1
303.4
313.4
307.3
306.3
302.4
301.4
300.2
295.5
291.6
273.2

PD
Tkdkk
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FROM TO LENGTH NUM LOAD

hkdkh  kkkdh  hkdkhkkk  kkh  Ahkdk
33 17 11.0 1 6.0
33 18 809.1 3 18.0
59 53 2050.8 2 12.0
53 55 290.4 1 6.0
55 38 315.4 1 6.0
53 8 734.0 1 6.0
60 56 2122.0 3 18.0
56 20 1462.0 3 18.0
20 34 939.0 2 12.0
34 35 421.6 2 12.0
35 21 712.0 1 6.0
35 22 803.0 1 6.0
18 39 3473.0 2 12.0
39 41 995.4 2 12.0
41 40 1.0 1 6.0
41 19 631.0 1 6.0

PIPE SIZE TOTAL LENGTH

Tkkkdkdhkk hhkdkkkhkhhkdk

26.7 mm 26413.

33.4 mm 11842.

48.3 mm 21940.

60.3 nm 2817.

88.9 mm o.

TOTAL 63011.

TOTAL NUMBER OF ROAD CROSSINGS

TOTAL
TOTAL
TOTAL

TOTAL

NUMBER OF RAIL CROSSINGS
NUMBER OF CABLE CROSSINGS
NUMBER OF CREEK CROSSINGS

COST OF SYSTEM 164926.

126

SIZE PI
Tkkdk  Ahkkk
26.7 273.2
33.4 273.2
26.7 314.0
26.7 291.4
26.7 290.4
26.7 291.4
33.4 303.4
33.4 287.7
26.7 276.5
26.7 265.2
26.7 260.1
26.7 260.1
26.7 266.8
26.7 221.9
26.7 207.8
26.7 207.8
cosT
Thkdkhkk
42789,
23328.
63186.
11465.
0.
140768.
36 COST
0 CcosT
43 COST
0 COST

PO
Tkkkk
273.2
266.8
291.4
290.4
289.4
288.9
287.7
276.5
265.2
260.1
257.4
257.1
221.9
207.8
207.8
205.1

20289.
0.
3870.
o.
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Hydraulic Profile for Fiqure 32

FROM
hkkk
1
22
2
52
22
41
40
39
41
33
33
23
5
48
24
24
4
53
57
56
55
57
11
43
10
25
9
58
54
49
49
43
44
44
26
27
51
51
27
i3
28
28
29
47
47

TO
hhkk
22
2
52
3
a1
40
39
4
33
23
34
5
48
24
6
7
53
57
56
55
11
50
43
10
25
9
58
54
49
35
8
44
26
42
27
51
14
59
13
28
12
29
47
45
46

LENGTH
kkkkkkk
2816.9
765.0
1946.0
1126.5
2615.1
1150.6
1.9
704.9
1496.9
325.5
485.7
1637.9
1731.0
1347.8
336.0
1240.7
4706.4
1370.0
710.0
333.0
626.9
887.0
1010.4
1625.9
909.0
6.0
1147.6
903.2
282.9
605.8
734.0
1641.2
388.1
412.9
747.0
880.2
20.0
799.0
1231.0
1345.1
295.4
1250.7
263.0
350.0
1844.5

NUM ©LOAD
*kk  khkkkk
28 106.0
2 12.0
1 6.0
1 6.0
26 99.3
22 85.9
22 85.9
21 82.6
4 24.0
3 18.0
1 6.0
3 18.0
2 12.0
2 12.0
1 6.0
1 6.0
20 79.2
20 79.2
19 75.8
18 72.4
18 72.4
1 6.0
17 68.9
4 24.0
3 18.0
3 18.0
2 12.0
2 12.0
2 12.0
1 6.0
1 6.0
13 54.4
12 50.6
1 6.0
12 50.6
4 24.0
1 6.0
3 18.0
8 39.8
7 37.2
1 6.0
6 33.9
6 33.9
1 6.0
5 30.0
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SIZE
*kkk
60.3
26.7
26.7
26.7
48.3
48.3
48.3
48.3
33.4
26.7
26.7
26.7
26.7
26.7
26.7
26.7
48.3
48.3
48.3
48.3
48.3
26.7
48.3
33.4
33.4
33.4
26.7
26.7
26.7
26.7
26.7
48.3
48.3
26.7
48.3
33.4
26.7
33.4
48.3
48.3
26.7
48.3
48.3
26.7
48.3

PI
kK
550.0
631.9
526.5
522.4
531.9
486.7
470.4
470.3
486.7
474.0
474.0
469.2
444.4
430.1
418.7
418.7
460.9
397.7
377.8
367.8
363.5
377.8
355.2
342.8
324.3
317.9
317.9
305.5
295.5
292.3
292.3
342.8
329.1
329.1
326.2
320.5
310.0
310.0
320.5
314.3
308.1
308.1
303.3
302.3
302.3

PO
fkkkk
531.9
526.5
522.4
520.0
486.7
470.4
470.3
460.9
474.0
469.2
472.9
444.4
430.1
418.7
417.9
413.7
397.7
377.8
367.8
363.5
355.2
375.3
342.8
324.3
317.9
317.9
305.5
295.5
292.3
290.2
289.8
329.1
326.2
327.8
320.5
310.0
310.0
304.3
314.3
308.1
307.1
303.3
302.3
301.1
296.4

PD
Kkkhk
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FROM TO LENGTH NUM LOAD

Tdkkk  kkEkk  kkkkkdk  hkk  kkkkdk
46 15 1144.0 1 6.0
46 - 30 1729.4 4 24.0
30 16 11.0 1 6.0
30 17 809.1 3 18.0
59 60 2131.0 3 18.0
60 19 1455.0 3 18.0
19 31 939.0 2 12.0
31 32 421.6 2 12.0
32 20 712.0 1 6.0
32 21 803.0 1 6.0
17 36 3473.0 2 l12.0
36 38 995.4 2 12.0
38 37 1.0 1 6.0
38 18 631.0 1 6.0

PIPE SIZE TOTAL LENGTH

Fkdkkdkhkk kkkkkhhhhhhk

26.7 mm 26412.

33.4 mm 11842.

48.3 mm 21940.

60.3 mm 2817.

88.9 mm 0.

TOTAL 63010.

TOTAL NUMBER OF ROAD CROSSINGS

TOTAL NUMBER OF RAIL CROSSINGS

TOTAL NUMBER OF CABLE CROSSINGS

TOTAL NUMBER OF CREEK CROSSINGS

TOTAL COST OF SYSTEM 164924.
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SIZE PI
xRkt khkkhk
26.7 296.4
33.4 296.4
26.7 274.2
33.4 274.2
33.4 304.3
33.4 288.5
26.7 277.4
26.7 266.2
26.7 261.0
26.7 261.0
26.7 267.8
26.7 223.0
26.7 209.0
26.7 209.0
COST
khkkkkk*k
42787.
23328.
63186.
11465.
0.
140766.
36 cosT
0 CosT
43 cosT
0 COoSsT

PO
%ok de ko
292.5
274.2
274.1
267.8
288.5
277.4
266.2
261.0
258.4
258.0
223.0
209.0
209.0
206.2

20289.
0.
3870.
0.

PD

%
%
%
*
*

=

°

P e
SRR OWWLNNINWOW
BWRONNINO R OO0

e © © o © o & o © o © @

WO
hkkdk

COO0O0OO0O0O0OO0COO0OO0O0OO0O0O

WD
%kkk

QOO OO0O0O0O0O00OOOO00O




Hydraulic Profile for Figure 33

FROM
Tkkk
1
22
2
52
22
41
40
39
41
33
33
23
5
48
24
24
4
53
57
61
60
55
60
58
55
11
43
10
25
25
43
44
44
26
27
51
27
13
28
28
29
47
47
46
46

TO

Tdkk
22
2
52
3
41
40
39
4
33
23
34
5
48
24
6
7
53
57
61
60
55
56
58
50
11
43
10
25
9
59
44
26
42
27
51
14
13
28
12
29
47
45
46
15
30

LENGTH
Thkkkhkk
2816.9
765.0
1946.0
1126.5
2615.1

1150.6

1.9
704.9
1496.9
325.5
485.7
1637.9
1731.0
1347.8
336.0
1940.7
4706.4
1370.0
289.4
333.0
419.6
333.0
554.1
290.4
626.9
1010.4
1625.9
909.0
6.0
1462.0
1641.2
388.1
412.9
747.0
880.2
20.0
1231.0
1345.1
295.4
1250.7
263.0
350.0
1844.5
1144.0
1729.4

NUM
*kk

28

BEEOROOONRRNORROROVOWRSWG

LOAD
dkkkx
106.0
12.0
6.0
6.0
99.3
85.9
85.9
82.6
24.0
18.0
6.0
18.0
12.0
12.0
6.0
6.0
79.2
79.2
79.2
79.2
68.9
6.0
18.0
6.0
65.3
61.7
30.0
24.0
6.0
18.0
42.9
41.7
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SIZE
hkkk
60.3
26.7
26.7
26.7
48.3
48.3
48.3
48.3
33.4
26.7
26.7
26.7
26.7
26.7
26.7
26.7
48.3
48.3
48.3
48.3
48.3
26.7
33.4
26.7
48.3
48.3
33.4
33.4
26.7
33.4
48.3
48.3
26.7
48.3
26.7
26.7
48.3
48.3
26.7
48.3
48.3
26.7
48.3
26.7
33.4

PI
Tkkkk
550.0
531.9
526.5
522.4
531.9
486.7
470.4
470.3
486.7
474.0
474.0
469.2
444 .4
430.1
418.7
418.7
460.9
397.7
377.8
373.4
368.4
363.5
368.4
365.0
363.5
356.6
346.4
318.5
307.6
307.6
346.4
337.6
337.6
335.5
331.5
328.8
331.5
325.4
319.4
319.4
314.8
313.8
313.8
308.0
308.0

PO
kxkh*k
531.9
526.5
522.4
520.0
486.7
470.4
470.3
460.9
474.0
469.2
472.9
444 .4
430.1
418.7
417.9
413.7
397.7
377.8
373.4
368.4
363.5
362.5
365.0
364.1
356.6
346.4
318.5
307.6
307.6
297.0
337.6
335.5
336.3
331.5
328.8
328.7
325.4
319.4
318.5
314.8
313.8
312.6
308.0
304.3
286.5
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NUM
dedk

LENGTH
*hdkkhdk
11.0
809.1
1980.9
282.9
605.8
734.0
3267.5
939.0
421.6
712.0
803.0
3473.0
995.4
1.0
631.0

FREROMRPEFRDODDORRDDND W

TOTAL LENGTH
khkkkhhhkdhkx
26965,
11854.
21939.
2817.

0.

63574.

LOAD
Tkkdd
6.0
18.0
12.0
12.0

B

2
GO NN OOV N O OO

e & 8 © 6 © o © o o

QOO0 O0OO0OCOOO0

NUMBER OF ROAD CROSSINGS
NUMBER OF RAIL CROSSINGS
NUMBER OF CABLE CROSSINGS

FROM TO
*kk% k%%
30 16
30 17
58 54
54 49
49 35
49 8
59 19
19 31
31 32
32 20
32 21
17 36
36 38
38 37
38 18
PIPE SIZE
L EE X F X 5
26.7 mnmm
33.4 mm
48.3 mm
60.3 mm
88.9 mm
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL

TOTAL

NUMBER OF CREEK CROSSINGS

COST OF SYSTEM

1658

41.
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SIZE
Tk
26.7
33.4
26.7
26.7
26.7
26.7
33.4
26.7
26.7
26.7
26.7
26.7
26.7
26.7
26.7

CosT
*hkkkik
43683
23352
63183

PI
edkddk
286.5
286.5
365.0
345.7
342.8
342.8
297.0
272.1
260.7
255.5
255.5
280.3
237.3
223.9
223.9

°
°

11465.

0

141683

36
0
43
0

coSsT
COST
cosT
COosT

PO
X T LX)
286.5
280.3
345.7
342.8
341.0
340.6
272.1
260.7
255.5
252.8
252.4
237.3
223.9
223.8
221.2

20289.

3870.
0.

PD
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Hydraulic Profile for Figure 34

FROM
ket
1
22
2
49
22
41
40
39
41
33
33
23
5
48
24
24
4
50
54
52
51
54
11
53
58
56
56
57
43
10
25
43
44
44
26
27
27
13
28
28
29
47
25
59
55

TO

Fkkk
22
2
49
3
41
40
39
4
33
23
34
5
48
24
6
7
50
54
52
51
11
53
43
58
56
57
35
8
10
25
9
44
26
42
27
14
13
28
12
29
47
45
59
55
19

LENGTH
khdkkhkk
2816.9
765.0
1946.0
1126.5
2615.1
1150.6
1.9
704.9
1496.9
325.5
485.7

1637.9 »

1731.0

1347.8"

336.0
19406.7
4706.4
1370.0

710.0

333.0

626.9

887.0
1010.4
1239.1
1024.9

290.4

315.4

734.0
1625.9

909.0

6.0
l1641.2

388.1

412.9

747.0

900.2
1231.0
1345.1

295.4
1250.7

263.0

350.0
1658.3
1610.2
1462.0

NUM
LX 23

28

WWWRFROORNORFRP OROOR D U RN

LOAD
*kkhk
106.0
12.0
6.0
6.0
99.3
85.9
85.9
82.6
24.0
18.0
6.0
18.0
12.0
12.0
6.0
6.0
79.2
79.2
68.9
65.3
65.3
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SIZE
k%%
60.3
26.7
26.7
26.7
48.3
48.3
48.3
48.3
33.4
26.7
26.7
26.7
26.7
26.7
26.7
26.7
48.3
48.3
48.3
48.3
48.3
33.4
48.3
26.7
26.7
26.7
26.7
26.7
33.4
33.4
26.7
48.3
48.3
26.7
48.3
26.7
48.3
48.3
26.7
48.3
48.3
26.7
33.4
33.4
33.4

PI
*hkdd
550.0
531.9
526.5
522.4
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APPENDIX B: SOURCE CODE_FOR PROCEDURAL COMPONENT
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#include <stdio.h>
#include "size.c"

int n; /* the number of nodes

float x[SIZE]: /% the x-coordinate of a node
float y[SIZE]; /* the y-coordinate of a node
int sink[SIZE]:; /* flag ( 0 = dummy node )

int deg[SIZE]: /* the degree of a node

float dist[SIZE]; /* the distance to the source
int 1; /* the number of lines

int ifr[SIZE]: /% origin node of a line

int ito[SIZE]: /% destination node of a line
float x0[SIZE]; /* x~-coord of origin node
float yo[SIZE]: /* y-coord of origin node
float xd[SIZE]:; /* x-coord of destination node
float yd[SIZE]; /% y-coord of destination node
float alen[SIZE]:; /* length of a line

float a[SIZE][SIZE]; /* adjacency matrix

int lmax; /% the highest level in a tree */
int lev[SIZE]: /* the level of a line

int diag:; /* flag ( 0 = no diagonal lines ) */
int overflow; /* flag ( 1 = too many nodes )
int stopbu; /* flag ( 1 = backup complete)
float rpi; /* performance index

int i; /* counter

#include "rstpro.c"

void main()

{

nread(&n, x, y, sink):
printf("First iteration\nBeginning MST\n");
table(n, x, v, a);
mst2(n, x, y, a, &1, ifr, ito, xo, yo, xd, yd, dist);
printf ("Boxes\n");
boxes3(1l, ifr, ito, xo, yo, x4, yd, &n, x, y, sink, a, &diag,
&overflow);
printf ("Graph\n"):;
graph(n, x, vy, a, &1, ifr, ito, xo, yo, xd, yd):
printf ("Achange\n"):;
achange(l, ifr, ito, xo, yo, xd, yd, a):
printf ("Beginning Dijkstra\n"):
dijk2(n, x, y, a, &1, ifr, ito, xo, yo, xd, yd, dist);
printf ("Entering Backup\n");
backup(dist, 1, ifr, ito, a, &stopbu);
for (1 = 1; 1 <= 4; i++) {
if (stopbu == 1) break:
dijk2(n, %, vy, a, &1, ifr, ito, xo, yo, xd, yd, dist):
backup(dist, 1, ifr, ito, a, &stopbu):

printf("Backup complete\n"):
level(1l, ifr, ito, &lmax, lev):;
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cleanup(&n, x, y, sink, dist, &1, ifr, ito, xo, yo, x4, vyd,
&lmax, lev, a):
table(n, %, y, a);
mst2(n, %, vy, a, &1, ifr, ito, xo, yo, xd, yd, dist):;
boxes3(1l, ifr, ito, xo, yo, xd, yd, &n, x, y, sink, a, &diag,
&overflow);
while (diag == 1) {
printf("New iteration diag = %d\n", diag):
graph(n, x, y, a, &1, ifr, ito, xo, yo, x4, yd);
achange(1l, ifr, ito, xo, yo, xd, yd, a):
printf("Entering Dijkstra\n");
dijk2(n, x, y, a, &1, ifr, ito, xo, yo, xd, yd, dist):
printf("Dijkstra complete\n");
level(l, ifr, ito, &lmax, lev):
cleanup(&n, x, y, sink, dist, &1, ifr, ito, xo, yo, x4, vd,
&lmax, lev, a);
table(n, %, y, a):
mst2(n, x, y, a, &1, ifr, ito, xo, yo, xd, yd, dist):
boxes3(1, ifr, ito, xo, yo, xd, yd, &n, x, y, sink, a, &diag,
&overflow);

printf("Iterations complete”):;

level(l, ifr, ito, &lmax, lev):;

cleanup(&n, x, y, sink, dist, &1, ifr, ito, xo, yo, xd, yd,
&lmax, lev, a);

table(n, x, y, a):

mst2(n, x, y, a, &1, ifr, ito, xo, yo, xd, yd, dist):

rindex(n, x, y, sink, 1, xo, vo, xd, yd, alen, &rpi):

degree(n, 1, ifr, deg):

rbwrit(n, %, y, sink, deg, 1, ifr, ito);

nwrit(n, x, y, sink);

lwrit2(1, xo, yo, xd, yd, rpi);

con2(n, x, y, sink);
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/* This line should be included in a separate file called "size.c" */
#define SIZE 120

/* The following should be included in a separate file called "rstpro.c"
*/
void main(void);
void nread(int#*, float[SIZE], float[SIZE], int[SIZE]):
void table(int, float[SIZE], float[SIZE], float[SIZE][SIZE]);
void mst2(int, float[SIZE], float[SIZE], float[SIZE][SIZE], int*,
int[SIZE], int[SIZE], float[SIZE], float[SIZE], float[SIZE],
float[SIZE], float[SIZE]):
void boxes3(int, int[SIZE], int[SIZE], float[SIZE], float[SIZE],
float[SIZE], float[SIZE], int*, float[SIZE], float[SIZE],
int[SIZE], float[SIZE][SIZE], int*, int#*);
void graph(int, float[SIZE], float[SIZE], float[SIZE][SIZE], intx*,
int[SIZE], int[SIZE], float[SIZE], float[SIZE],
float[SIZE], float[SIZE]):;
void achange(int, int[SIZE], int[SIZE], float[SIZE], float[SIZE],
float[SIZE], float[SIZE], float[SIZE][SIZE]);
void dijk2(int, float[SIZE], float[SIZE], float[SIZE][SIZE], int*,
int[SIZE], int[SIZE], float[SIZE], float[SIZE], float[SIZE],
float[SIZE], float[SIZE]):
void backup(float[SIZE], int, int[SIZE], int[SIZE],
float[SIZE][SIZE], int¥*);
void level(int, int[SIZE], int[SIZE], int#*, int[SIZE]):
void cleanup(int*, float[SIZE], float[SIZE], int[SIZE], float[SIZE],
int*, int[SIZE], int[SIZE], float[SIZE], float[SIZE],
float[SIZE], float[SIZE], int*, int[SIZE],
float[SIZE][SIZE]):
void rindex(int, float[SIZE], float[SIZE], int[SIZE], int,
float[SIZE], float[SIZE], float[SIZE], float[SIZE],
float[SIZE], float*);
void degree(int, int, int[SIZE], int[SIZE]):;
void rbwrit(int, float[SIZE], float[SIZE], int[SIZE], int[SIZE],
int, int[SIZE], int[SIZE]):
void nwrit(int, float[SIZE], float[SIZE], int[SIZE]):
void lwrit2(int, float[SIZE], float[SIZE], float[SIZE], float[SIZE],
float);
void con2(int, float[SIZE], float[SIZE], int[SIZE]):




/*********************************************************************/

VA subroutine nread
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/* This subroutine reads in the values of the coorinates
* of nodes in the nodes file.

*

/*********************************************************************/

/% nread(&n, X, y, sink);

#include <stdio.h>
#include <math.h>
#include vsize.c"

void nread(int*, float[SIZE], float[SIZE], int[SIZE]);

void nread

/* output parameters

int *n, /%
float x[SIZE], /*
float y[SIZE}], /*
int sink[SIZE] S*

2
/* local variables

int i; /*
char 1ine[80]; /*
FILE *sysin; /*
sysin = fopen("nodes2", "r");

fgetc(sysin);

fgets(line, 80, sysin);

*n = atoi(line);

for (i = 1; i <= *n; ++i) {
fgets(line, 80, sysin);
x[1i] = atof(line):
fgets(line, 80, sysin);
y[i] = atof(line);
fgets(line, 80, sysin);
sink[i] = atoi(line);

fclose(sysin);
return;

the number of nodes

the x-coordinate of a point
the y-coordinate of a point
flag ( 0 = dummy node )

a counter
input buffer
input stream

*/
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/**********************************************************************/

/*

/* subroutine table

VA This subroutine co
/* matrix.

mputes the lengths in the adjacency

/**********************************************************************/

/* table(n, %, y, a);

#include <math.h>
#include "size.c"

void table(int, float[SIZE]
void table

/* input parameters
int n,
float x[SIZE],
float y[SIZE],
/* output parameters
float a[SIZE][SIZE]
)

/* local variables
float dx:
float dy:
int i, 3:

oo

for (i = 1; 1 <= n; ++1)
a[il[i] = -1.0;
return;

, float[SIZE], float[SIZE][SIZE]):

/* the number of nodes
/* the x-coordinate of a node
/* the y-coordinate of a node

/* the adjacency matrix

/* x displacement of two nodes
/* y displacement of two nodes
/* counters

*/
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/***********%**********************************************************/

* */
/% subroutine mst2 %/
/* *
VA This subroutine performs the minimum spanning tree */
;: algorithm using the indirection method. *;

*

* *

P T AR L L A R SRR L i iy

#include "size.c"

void mst2(int, float[SIZE], float[SIZE], float[SIZE][SIZE], int%*,
int[SIZE], int[SIZE], float[SIZE], float[SIZE], float[SIZE],
float[SIZE], float[SIZE]):

void mst2

/* input parameters */
int n, /* the number of nodes */
float x[SIZE], /* the x-coordinate of a point %/
float y[SIZE], /* the y-coordinate of a point */
float a[SIZE][SIZE], /* the adjacency matrix */

/* output parameters % /
int *1, /* the number of lines */
int ifr[SIZE], /* the origin node of a line */
int ito[SIZE], /* the destination node of a line * /
float xo[SIZE], /* the x-coord of the origin */
float yo[SIZE], /% the y-coord of the origin */
float xd[SIZE], /* the x-coord of the destination */
float yd[SIZE], /* the y-coord of the destination */
float dist[SIZE] /* the distance from the source */

2

/* local variables */
int nrow; /* the number of nodes in the tree */
int ncol; /* the number of nodes not in the tree */
int row[100]; /* the nodes in the tree * /
int col[100]; /* the nodes not in the tree */
float alow, comp; /* temporary variables */
int il, j1; /* captures new line in the tree */
int i, 7J: /* counters */

*1 = n ~ 1;
ncol = n;

for (i = 1; 1 <= n; ++1)
col[i] = i;
i1 = 1;
dist[1] = 0.0;
for (nrow = 1; nrow <= *1; ++nrow) ({
row{nrow] = jl;
J=1;
for (i = 1; 1 <

ncol; ++1i)
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if (col[i] != row[nrow]) {
col{j] = col[i];
++j,°
}
--ncol;
alow = 1.0E30;
for (i = 1; 1 <= nrow; ++i)
for (j = 1; Jj <= ncol; ++3) {
comp = a[row[i]][col[]]];
if (comp < alow) {
alow = comp;

il = row[i];
jl = col[j]:
}
o) :
ifr[nrow] = il;

ito[nrow] 31

dist[jl] = dist[il] + alow;
}
for (1 = 1; i <= *1; ++1i) {

xo[i] = x[ifr[i]]};
yo[i] = y[ifr[i]];
xd[1] = x[1ito[1]]’
yd[i] = y[ito[1]]7
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/**********************************************************************/

/% */
/* subroutine boxes3 . */
/* , *
/* This subroutine finds the rectilinear cycles for each */
/* line in the minimum spanning tree. The node coordinates */
/% and the adjacency matrix are updated and returned. The */
/* flag "diag®" is set to 1 if diagonal lines are found. The */
/* flag "overflow" is set to 1 if the maximum number of nodes */
/% specified by "SIZE" is exceeded. */
/* */
/* calls: b_error (integer function) */
1z */
* */
/**********************************************************************/
/* boxes3(1l, ifr, ito, xo, yo, x4, yd, &n, X, Y, sink, a, &diag, */
/% &overflow); */

#include <stdio.h>
#include <math.h>
#include '"size.c"

void boxes3(int, int[SIZE], int{SIZE], float[SIZE], float[SIZE],
float[SIZE], float[SIZE], int*, float[SIZE], float[SIZE],
int[SIZE], float[SIZE][SIZE], int*, int*); ,

int b _error(int);

void boxes3

/* 1input parameters */
int 1, /* the number of lines */
int ifr[SIZE], /* the origin node of a line */
int ito[SIZE], /* the destination node of a line */
float xo[SIZE], /* x-coord of origin node */
float yo[SIZE], /* y=-coord of origin node */
float xd[SIZE], /* x-coord of destination node */
float yd[SIZE], /* y-coord of destination node %/

/* output parameters */
int *n, /* the number of nodes */
float x[SIZE], /* x-coordinate of a node */
float y[SIZE], /* y=-coordinate of a node %/
int sink[SIZE], /* flag ( 0 = dummy node ) */
float a[SIZE][SIZE], /* adjacency matrix */
int *diag, /* flag ( 0 = no diagonal lines ) */
int #*overflow /* flag ( 1 = too many nodes ) */

)

/* local variables */
float dx: /* x displacement */

float dy: /% y displacement %/
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int i, j, k: /* counters
kK =%n+ (2 % 1);
if (k > SIZE - 1)
.k = SIZE - 1;
for (1 = 1; i <= k; ++1)
for (j = 1; j <= ki ++3)
~afil[j] ="-1.0;
*diag = 0;
*overflow = 0;
j = *n + 1;
i=1;
while ((i <= 1) && (*overflow == 0)) {
if (x0[i] == Xd[l]) {
dy = fabs(yd[i] - yo[m])
a[ifr[i]][ito[i]] = dy;
afito[i]][ifr[i]] = dy:
} else { i
if (yo[i] == yd[i]) {
dx = fabs(xd[{1] - xo[1i]):
alifr[i]][ito[i]1] = dx;
afito[i]][ifr[i]] = ax;
} else {
*diag = 17

dx = fabs(xd[i] - xo[i])
dy = fabs(yd[i] - yo[i])

x[J] = xo[i]:
y[J] = yd[1i];
51nk[j] = 03

a[ifr[i]1][]] = dy;
afjllifr[i]] = dy’
a[ito[i]][J] = ax;
a[jllito[i]] = dx;
J++i

*overflow = b_error(]);
x[J] = xd[1];

y[J]] = yo[1i]:
sink[3]j] = O;
a[ifr[i]][]] = ax:
a[J][ifr[1]] = dx;
afito[i]][J] = dy:
a[jllito[1]] = dy;
J++;

*overflow = b _error(j):

}
I
++1;
} .
*n = —-—];
return;

*/




/*
/*
/*
/%
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This function determines if the maximum number of nodes has
been exceeded.

int b_error

(

)
{

int i

int j;

if (i >= SIZE) {

j=1;

printf("Error: Maximum number of nodes exceeded.\n"):;
} else

3 =0;
return(j);
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/**********************************************************************/

/* */
/% subroutine graph */
/* *
/* This subroutine returns the from-to table and the */
VA coordinates of lines given the coordinates of nodes */
/* and the adjacency matrix. Only half the adjacency */
/* matrix is used. This subroutine should only be used */
/* if directionality is not important. */
/* */
*

/**********************************************************************/
/* graph(n, x, y, a, &1, ifr, ito, %o, yo, xd, yd); */
#include "size.c"

void graph(int, float[SIZE], float[SIZE], float[SIZE][SIZE], int%*,

int[SIZE], int[SIZE], float[SIZE], float[SIZE],
float[SIZE], float[SIZE]):

void graph
/* input parameters */
int n, /* the number of nodes %/
float x[SIZE], /* the x-coordinate of a node */
float y[SIZE], /* the y-coordinate of a node */
float a[SIZE][SIZE], /* the adjacency matrix */
/* output parameters */
int *1, /* the number of lines */
int ifr[SIZE], /* the origin node of a line %/
int ito[SIZE], /* the destination node of a line */
float xo[SIZE], /* x-coord of origin node %/
float yo[SIZE], /* y=-coord of origin node */
float xd[SIZE], /* x-coord of destination node */
float yd[SIZE] /* y-coord of destination node %/
2
/* local variable */
int i, 3, k; /* counters */
k=1;
for (i = 1; 1 <= n - 1; ++i)
for (3 =i + 1; j <= n; ++3)
if (afi][3] >= 0.0) {
ifr{k] = 1;
xo[k] = x[i];
yo[k] = y[1];
ito[k] = J:
xd[k] = x[]]:
ydal(k] = y[J1s
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kK++;

}
*] = Kk =1;
return:
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/**********************************************************************/

1z */
/* subroutine achange */
/* %/
/* This subroutine removes the double lines from the %/
/* adjacency matrix of a rectilinear cycles supergragh. */
/* The double line segment is replaced by a line segment */
/* that is half the actual length. The procedure returns */
/* the adjacency matrix. %/
/% A *
/* calls : achangel (procedure) */
* *
o y

/**********************************************************************/

/* achange(l, ifr, ito, xo, yo, xd, vd, a); */

#include <math.h>

#include "size.c"

void achange(int, int[SIZE], int[SIZE], float[SIZE], float[SIZE],
float[SIZE], float[SIZE], float[SIZE][SIZE]);

void achangel(int, int, double, double, double, int, int, double,
double, double, float[SIZE][SIZE]);

void achange

/* 1input parameters */
int 1, /* the number of lines */
int ifr{SIZE], /* the origin node of a line */
int ito[SIZE], /* the desination node of a line */
float xo[SIZE], /* the x-coord of the origin */
float yo[SIZE], /* the y-coord of the origin % /
float xd[SIZE], /* the x-coord of the destination */
float yd[SIZE], /* the y-coord of the destination * /

/* output parameters *
float a[SIZE][SIZE] /* the adjacency matrix */

2

/* local variables */
float di; /* the displacement of the i line */
float dj: /% the displacement of the j line * /
int i, Jj: /* counters */

for (1 = 1; 1 <=1 -1; ++1)
if (xo[i] == xd[i])
di = fabs(yd[i] - yo[i]):
for (3 =1 + 1; j <= 1; ++3)
if (xo[]j] == xd[]] && xo[i] == xo[]]) (
dj = fabs(yd[j] - yol[J]): ,
achangel(ifr[i], ito[i], yo[i], yd[i], d4i,
ifr[3j], ito[J], yol3l, vdl[3jl, 4], a):




147

} else { -
di = fabs(xd[i] - xo0[1i]):
for (J =1 + 1; j <= 1; ++3j)
if (yo[3j] == yd[]] && yo[i] == yo[]]1) {
dj = fabs(xd[j] - xo0[3]1):
achangel(ifr[i], ito[i], xo[i], xd[i], di,
} ifr[j], ito[j1, xo[]], xd[J]1, 4j, a):
}

return;
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/**********************************************************************/

/* */
/% subroutine achangel */
/% */
/* This subroutine determines the order that should be %/
/* used to pass parameters to the subroutine achange2. */
/% */
/* calls : achange2 (procedure) *

/* */
/* *

/**********************************************************************/

#define I_POINTS_POS (i_origin < 1i_dest)
#define J_POINTS _POS (j_origin < Jj_ “dest)
#define COMMON(X, Y) (X == Y)

#define I GREATER (zi > z3j)

#define SAME 1

#define DIFF 2

void achange2(int, int, int, double, double, float[SIZE][SIZE]);

void achangel

(

/* input parameters */
int oi, /* the origin node of line i %/
int di, /* the destination node of line */
double i_origin, /* the coord of the i origin %/
double i dest, /* the coord of the i destination %/
double zi, /* the displacement of line i * /
int oj, /* the origin node of line i */
int 4j, /% the destination node of line %/
double j_ origin, /* the coord of the i origin %/
double j_dest, /* the coord of the i destination */
double z73, /* the displacement of line j */

/* output parameters */
float a[SIZE][SIZE] /* the adjacency matrix */

2

/* local variables */
int direct; /* the direction of lines i and j */

if I POINTS POS
if J POINTS POS
direct = SAME
else
direct = DIFF

~o

~o

else
if J_POINTS_POS
direct = DIFF
else
direct = SAME

~o

~8

switch (direct) ({




case SAME :
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if COMMON(i origin, j_origin)

if I_GREATER
achange2(oi, dj,
else
achange2(oi, di,
else if COMMON(i_dest,
if I_GREATER
achange2(di, oj,
else
achange2(di, oi,
break:;
case DIFF :

ai, zi, zi,

dj, zi, zj,
j_dest)

oi, zj, zi,

oj, zi, zj,

if COMMON(i origin, j_dest)

if I_GREATER
achange2(oi, o],
else
achange2(oi, di,
else if COMMON(i_dest,
if I_GREATER
achange2(di, d4dj,
else
achange2(di, oi,
break:;

return;

ai, zj, zi,

oj, zi, z3,
j_origin)

oi, 2zj, zi,

dj, zi, z3j,
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/**********************************************************************/

segl = short_seg / 2.0;

seg2 = long_seg - short_seg;

a[common][end] = -1.0;
a[end][common] = =1.0;
a[common][mid] = segl;
a[mid][common] = segl;

a[mid][end] = seg2:;
alend][mid] seg2;
return;

[

/% */
/* subroutine achange2 */
/% */

/% This subroutine removes the line from the common point */

VA to the end point in the adjacenceny matrix. A line from %/

/* the common point to the mid point is entered at half the */

/* actual length and a line from the mid point to the end */

/* is entered at the actual length. */

% *

x 7

/**********************************************************************/

void achange?2

(

/* input parameters */
int common, /* the number of the common point */
int mid, /* the number of the mid point */
int end, /* the number of the end point */
double short_seq, /* distance from common to end %/
double long_seq, /* distance from common to mid */

/* output parameters ‘ */
float a[SIZE][SIZE] /* the adjacency matrix */

%

/* local variables */
float segl:; /* half the common distance * /
float seg2; /* +the distance from mid to end %/
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/****************************'k****************'k************************/

/* */
/* subroutine dijk2 %/
/% */
/* This subroutine finds the shortest path from the source */
/% to each node using the indirection method. */
%* *
/: :/

/**********************************************************************/
VA dijk2(n, x, y, a, &1, ifr, ito, xo, yo, x4, yd, dist): %/
#include "size.c"

void dijk2(int, float[SIZE], float[SIZE], float[SIZE][SIZE], int%,

int[SIZE], int[SIZE], float[SIZE], float[SIZE], float[SIZE],
float[SIZE], float[SIZE]);

void dijk2

(

/* input parameters * /
int n, /* the number of nodes */
float x[SIZE], /* the x-coordinate of a point */
float y[SIZE], /* the y-coordinate of a point */
float a[SIZE][SIZE], /* the adjacency matrix */

/* output parameters */
int *1, /* the number of lines */
int ifr[SIZE], /* the origin node of a line */
int ito[SIZE], /* the destination node of a line %/
float xo[SIZE], /* the x-coord of the origin * /
float yo[SIZE], /* the y-coord of the origin */
float xd[SIZE], /* the x-coord of the destination * /
float yd[SIZE], /* the y-coord of the destination */
float dist[SIZE] /* the distance from the source %/

2

/* 1local variables */
int nrow; /* the number of nodes in the tree */
int ncol; /* the number of nodes not in the tree */
int row[100]; /* the nodes in the tree */
int col[100]; /* the nodes not in the tree * /
float alow, comp; /* temporary variables %/
int i1, jl; /* captures new line in the tree */
int i, 33 /* counters %/

*1 =n - 1;

ncol = n;

for (1 = 1; i <= n; ++i)
col[i] = i

il = 1;

dist[1] = 0.0;
::1,

for (nrow nrow <= *1; ++nrow) {
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row[nrow] = Jjl;
J=1;
for (i = 1; 1 <= ncol; ++i)
if (col[i] != row[nrow]) {
col[j] = col[i]:
++33
}
--ncol;
alow = 1.0E30;
for (i = 1; i <= nrow; ++1i)
for (3 = 1; j <= ncol; ++3j) {
if (a[row[i]][col[]j]] >= 0.0)
comp = dist[row[i]] + a[row[i]][col[]]]:
if (comp < alow) {
alow = comp;
il = row[i]:
jl1 = col[j]:
} B

}
}
ifr[nrow] = il;
ito[nrow] = jl;

dist[]jl] = alow;

}
for (i = 1; i <= *1; ++i) {

xo[i] = x[ifr[i]]:
yo[i] = y[ifr[i]];
Xd[1i] = x[1to[1]]:
yd[i] = y[ito[1]];

)

return:;
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/**********************************************************************/

/*
/*
/*
/*

/*

subroutine backup

This subroutine assigns a length of zero to all segments
in the longest leg of a tree.

*/

*/

/**********************************************************************/

/*

backup(dist, 1, ifr, ito, a, &stopbu):

#include "size.c®

void backup(float[SIZE], int, int[SIZE], int[SIZE],

£loat[SIZE][SIZE], int*);

void backup

(
/%

input paramters

float dist[SIZE], /* the distance from the source
int 1, /* the number of lines

int ifr[SIZE], /* the origin node of a line

int ito[SIZE], /* the destination node of a line

output paramters
float a[SIZE][SIZE], /* the adjacency matrix
int *stopbu /* flag ( 1 = stop 1terat10ns )

local variables

int fpoint; /% furthest point from the source
float maxdist; /* maximum distance

int line; /% temporary pointer to a line
int i; /* counter

fpoint = ito[l]:
maxdist = dist[fpoint]:
if (maxdist > 0.0)
while (fp01nt > 1) {
for (1 = 1; i <= 1; ++i)

if (1to[1] = fpoint) {
line = 1i;
break;
)
a[lfr[llne]][lto[llne]] .0;

fpoint = ifr[line];
}

else
*stopbu = 1;
return:

*/
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/**********************************************************************/
/* */
/* subroutine level */
/* */
/% This subroutine finds and returns the level of each line */
/* in the tree as well as the highest level in the tree. */
/% */
/% */
/**********************************************************************/
/* level(l, ifr, ito, &lmax, lev): */
#include "size.c"
void level(int, int[SIZE], int[SIZE], int*, int[SIZE]):
void level
/* 1input parameters */
int 1, /* the number of lines * /
int ifr[SIZE], /* the origin node of a line %/
int ito[SIZE], /% the destination node of a line * /
/* output parameters */
int *1lmax, /* the highest line level in the tree */
int lev[SIZE] /* the level of a line %/
)
/* local variables */
int i, 3: /* counters * /

*1lmax = 17
for (i =1; i <= 1; ++1i)

if (ifr[i] == 1)
lev[i] = 1:
else
for (j = 1; Jj <= 1; ++3)
if (ito[j] == ifr[i]) {
lev[i] = lev[]] + 1
if (lev[i] > *1lmax)
1

)

*1lmax = lev[i
break;

return;
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/**********************************************************************/

/* */
/* subroutine cleanup %/
/* %*
/* This subroutine removes all redundant nodes and lines */
/* from the tree. */
/* %/
* *
Vdkkddkkkk kR kR R Rk kR Rk Rk R kR Rk kR Rk kR kR R Rk Rk kR kR ok )/
/* cleanup(&n, x, y, sink, dist, &1, ifr, ito, xo, yo, xd, vyd, */
/* &lmax, lev, a):; */

#include "size.c®

void cleanup(int*, float[SIZE], float[SIZE], int[SIZE], float[SIZE],
int*, int[SIZE], int[SIZE], float[SIZE], float[SIZE],
float[SIZE], float[SIZE], int*, int[SIZE],
float[SIZE][SIZE]):

void cleanup

/* input/output parameters */
int *n, /* the number of nodes */
float x[SIZE], /* the x-coordinate of a node */
float y[SIZE], /* the y-coordinate of a node * /
int sink[SIZE], /* flag ( 0 = dummy node ) %/
float dist[SIZE], /* distance from the source * /
int *1, /* the number of lines */
int ifr[SIZE], /* the origin node of a line */
int ito[SIZE], /* the destination node of a line */
float xo[SIZE], /* x-coord of the origin node */
float yo[SIZE], /* y-coord of the origin node */
float xd[SIZE], /% x-coord of the destination node */
float yd[SIZE], /* y-coord of the destination node */
int *1lmax, /* the highest level in the tree */
int lev[SIZE], /* the level of a line */
float a[SIZE][SIZE] /* the adjacency matrix */

)

/* local variables *
static int nincl[SIZE]; /* flag ( 0 = redundant node ) %* /
static int lincl[SIZE]; /* flag ( 0 = redundant line ) %/

int i, j, k, m; /* counters */

for (i = 1; 1 <= *n; ++1)
if (sinkf[i] !
nincl{i] = 1
else
nincl{i] = O
*

for (i = 1; i <= *1; ++1i)
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lincl[i] = 0O;
for (k = *1lmax; k >= 1; =--k)
for (i = 1; i <= *1; ++1i)
if (lev[i] == k)
if (sink[ito[i]] != 0)
lincl[i] = 1;
else

for (j = 1; J <= *1; ++3)
if ((1fr[j] == 1to[1]) && (lincl[j]

r

*/

llncl[l]
nlncl[lto[l]] = 13
break:
}
/* remove all redundant rows
k = 1;
for (i = 1; 1 <= #*n; ++1i)
if (nincl[i] != 0)
for (j = 1; J <= *n; ++3)
alk][j] = a[i1][3]:
}
m = --k;
/* remove all redundant columns
k= 1;

for (j = 1; 3 <= *n; ++3)
if (nincl[j] != 0) {
for (i = 1; i <= m; ++1)
a[i]{k] = a[11[J]7
++k;
}
/* remove all redundant nodes
J=1;
for (i = 1; i <= *n; ++1i)
if (nincl[i] != 0) {
x[]J] = x[1]:

Y[J] = y[il;
sink[j] = sink[i];
dist[]j] = dist[i];
J++7
Yoo
*n = -——j;
/* remove all redundant lines

j = 1;
for (i =1; 1 <= *1; ++1i)
if (lincl{i] != 0) {
ifr[j] = ifr{i]:
ito[]Jj] = ito[i]:

xo[]j] = xo[1]:
yo[]] = yo[i];s
xd[Jj] = xd[i]:
ya[j] = yd[i}]:

lev[j] = lev[i]:

*/

*/

1= 0)) {




J++s

Yoo
*] = -=33
*1lmax = 0;
for (i = 1; i <= *1; ++i)
if (lev[i] > *1lmax)
*1lmax = lev[i]:;
return;
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/***************************‘k******************************************/

/* , * /
/% subroutine rindex */
* *
/* This subroutine computes the efficiency of the */
/* Rectilinear Steiner Tree using Chung and Hwang’s ratio. %/
/* The true length of each line is computed as well. */
/* *
/* *

/**********************************************************************/
/* rindex(n, ¥, y, sink, 1, xo, yo, xd, yd, alen, &rpi): */

#include <math.h>
#include "size.c"

void rindex(int, float[SIZE], float[SIZE], int[SIZE], int,
float[SIZE], float[SIZE], float[SIZE], float[SIZE],
float[SIZE], float#*);

void rindex

(

/* input paramters */
int n, /* the number of nodes */
float x[SIZE], /* the x-coordinate of a node %/
float y[SIZE], /* the y-coordinate of a node */
int sink[SIZE], /* flag ( 0 = dummy node ) */
int 1, /* the number of lines */
float xo[SIZE], /* the x-coord of the origin node */
float yo[SIZE], /* the y-coord of the origin node * /
float xd[SIZE], /* the x-coord of the destination */
float yd[SIZE], /* the y-coord of the destination */

/* output paramters ' %/
float alen[SIZE], /* the length of a line */
float *rpi /* the performance index */

)

/* local variables */
float dx: /* the x displacement of a line * /
float dy: /* the y displacement of a line */
float xmax; /* the maximum x-coordinate * /
float xmin: /* the minimum x-coordinate %/
float ymax; /* the maximum y-coordinate */
float ymin; /* the minimum y-coordinate %/
float 1ls; /* the length of the tree */
float 1lr:; /* the length of the semiperimeter %/
float ro; /* the ratio for the tree */
float romin; /* the calculated ratio * /
int num; /* the number of sinks */
int i; /* a counter */

ls = 0.0;




159

for (i = 1; i <= 1; ++i) {
dx = fabs(xd[i] - xo[i]):
dy = fabs(yd[i] - yo[i]):
alen[i] = sgrt((dx * dx) + (dy * dy)):
ls = 1s + alen[i]:

}

xmax = xX[1];
xmin = x[1]:
ymax = y[1];
ymin = y[1]:
num = 1;

for (i = 2; i <= n; ++i) {

if (x[i] > xmax)
xmax = x[i];

if (x[1] < xmin)
xmin = x[i];

if (y[i] > ymax)

__ ymax = y[i];

if (y[i] < ymin)
ymin = y[il:

if (sink[1i] == 1)
++num;

1r = (xmax - xmin) + (ymax - ymin);
ro = 1ls / 1r;

romin = (sqrt(num) + 1.0) / 2.0;
*rpi = (romin / ro) * 100.0;
return;
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/***************************************************'k******************/

* *
/* subroutine degree ®/
/* x/
/* This subroutine find the degree or the number of lines %/
/* incident on a node. */
/* %/
/% */

/**********************************************************************/
/% degree(n, 1, ifr, deg); */
#include “size.c"

void degree(int, int, int[SIZE], int[SIZE]);

void degree

/* input parameters */
int n, /* the number of nodes %/
int 1, /* the number of lines */
int ifr[SIZE], /* the origin node of a line */

/* output parameters */
int deg[SIZE] /* the degree of a node */

)

/* local variables */
int i, 37 /* counters */

deg[l] = 0;

for (3 = 1; j <= 1; ++3J)
if (ifr[j] == 1)
++deg[1l];
for (i = 23
deg[i] =
for (J =

++i) |

A
Il
3

j <= 1; ++3)
if (ifr[3J]
++deg[i]
}

return:
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/**********************************************************************/

/%

/% subroutine rbwrit

/%

/* This subroutine creates the file "wm.dat" that the rule-
/% based program uses as input.

/*

*

/**********************************************************************/

/* rbwrit(n, x, y, sink, deg, 1, ifr, ito):

#include <stdio.h>
#include Ysize.c"

void rbwrlt(lnt float[SIZE], float[SIZE], int[SIZE], int[SIZE],
int, int[SIZE], int[SIZE]):

void rbwrit

/* input parameters

int n, /* the number of nodes

float xX[SIZE], /* the x-coordinate of a node
float y[SIZE], /* the y-coordinate of a node

int sink[SIZE], /* flag ( 0 = dummy node )

int deg[SIZE], /* the degree of a node

int 1, /* the number of lines

int ifr[SIZE], /* the origin node of a line

int ito[SIZE] /* the destination node of a line

/* local variables
int i: /* a counter
FILE #*sysout; /* output stream

sysout = fopen("wm.dat", "w");

fprintf(sysout, "3%d\n", n);

for (i = 1; 1 <= n; ++i) {
fprintf(sysout, "%d\n", i):
fprintf(sysout, ny 1f\n", x[i
fprintf(sysout, "%.1f\n", y[i
fprintf(sysout, "%d\n", sink{
fprintf(sysout, "%d\n", deg[i

}

fprlntf(sysout "0\n0.0\no0.0\no0\no\n");

for (1 = 1; i <= 1; ++i) {
fprintf(sysout, "%d\n", ifr[i
fprintf(sysout, ngd\n", itoli

o
St L
e g

}

fprintf (sysout, "0\noO\n"):
fclose(sysout):;

return;

*/
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/**********************************************************************/

/* %7

/* subroutine nwrit 5/

/* ny

/* This subroutine writes the coordinates of nodes in the */
VA nodes.lsp file. %

/* %7
* *

/**********************************************************************/
/* nwrit(n, x, y, sink): */

#include <stdio.h>
#include 'size.c"

void nwrit(int, float[SIZE], float[SIZE], int[SIZE]):

void nwrit

/* input parameters */
int n, /* the number of nodes */
float x[SIZE], /* the x-coordinate of a node */
float y[SIZE], /* the y-coordinate of a node * /
int sink[SIZE] /* flag ( 0 = dummy node */

.

/* local variables */
int 1i; /* a counter */
FILE *sysout: /* output stream %/

sysout = fopen("nodes2.lsp", "w");
fprintf(sysout, " (setq nodes (quote ( %4d ( \n", n);
for (i = 1; 1 <= n; ++1i)
fprintf(sysout, " ( %9.1f %9.1f %2d ) \n", x[i], y[i], sink[i]):
fprintf(sysout, " )))) \n"):
fclose(sysout):;
return;
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/**********************************************************************/

/% */
/* subroutine lwrit2 */
/% */
/% This subroutine writes the coordinates of the lines */
/* in the lines.lsp file. */
/% */
* *

VkkdkkkkkR Rk kR kAR AR R AR Rk ER kR R Rk Rk R R Rk R Rk R ek ek /
/% lwrit2(1, xo0, yo, xd, yd, rpi):; */

#include <stdio.h>
#include Y"size.c®

void lwrit2(int, float[SIZE], float[SIZE], float[SIZE], float[SIZE],
float):

void lwrit2

(

/* input parameters */
int 1, /% the number of lines * /
float xo[SIZE], /* x-coord of origin node */
float yo[SIZE], /* y=-coord of origin node */
float xd[SIZE], /* wx~-coord of destination node */
float yd[SIZE], /* y-coord of destination node */
float rpi /* the performance index */

)

/* local variables */
int i; /* a counter */
FILE #*sysout; /* output stream */

sysout = fopen("lines2.1lsp", "w");

fprintf(sysout, " (setqg lines (quote ( \n"):

for (i = 1; i <= 1; ++1)
fpriptf(sysgut, "o(( %$9.1f %9.1f ) ( %9.1f %9.1f )) \n",
xo[1], yo[1i], xd[i], yd[i]);

fprintf(sysout, " ))) \n%):

fprintf(sysout, " (setq rpi %6.2f ) \n", rpi);

fclose(sysout);

return;
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/**********************************************************************/

/% */
/* subroutine con2 */
* *
/* This subroutine creates the input file for the hydraulic */
/* design program "submit". *
/* */
* */

/**********************************************************************/

/% con2(n, %X, y, sink); */

#include <stdio.h>
#include "size.c"

void con2(int, float[SIZE], float[SIZE], int[SIZE]):

void con2

/* input parameters */
int n, /* the number of nodes */
float x[SIZE], /* the x-coordinate of a node */
float y[SIZE], /% the y-coordinate of a node */
int sink{SIZE] /* flag ( 0 = dummy node ) %/

)

{

/* local variables */

int i; /* counter %/
FILE *sysout; /* input stream */

sysout = fopen('nodes", "w");
fprintf (sysout, "\n%d\n", n):
fprintf(sysout, "$f\n%f\n", x[1], y[1]1):
fprintf(sysout, "0\n0.0\n");
fprintf(sysout, "0.0\n0.0\nl\nl\n");
for(i = 2; i <= n; ++1i)
fprintf(sysout, "%f\n%f\n", x[i], y[i]):
if (sink[i] == 0)
fprintf(sysout, "0\n0.0\n");
else
fprintf(sysout, "1\n6.0\n"):;
fprintf(sysout, "0.0\n0.0\nl\nl\n");

}

fprintf(sysout, "nil\n");
fclose(sysout);

return;
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APPENDIX C: SOURCE CODE FOR COGNITIVE COMPONENT
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code = 4096
project "RSTRB2"
include "global2.pro"

database - flags
invoke

predicates
mainl
enter
enterpoint(integer, real, real, integer, integer)
enterline(integer, integer)
main2
loop2
set_invoke
/* redun
decount
find
dist
trigger */
clear_invoke
add_priority(real)
inc_trignum
fire
firel (integer)
repeat(integer)
new_priority(real)
maximum(plist, real, plist)
maxl(real, plist, plist, real, plist)
new_action(real)
/* execute
incount
decount */
keep
linwrit
pointwrit

goal
mainil.

clauses
‘mainl :-
enter,
main2,
write("Iterations complete\n"),
keep.

enter :-
openread(sysio, "wm.dat"),
readdevice(sysio),
readint(cC),
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assertz(count(C)),
c2 = C,
assertz(count2(C2)),
readint(N),

readreal (X),
readreal(Y),

readint(Ss),

readint (D),
enterpoint(N, X, ¥, S, D),
readint(F),

readint(T),

enterline(F, T),
readdevice(keyboard),
closefile(sysio), '
write("Data loaded\n"),
assertz(priorities([])),
assertz(trig num(0)),
point{1i, XS, ¥S, _, _),
assertz(xsource(XS)),
assertz(ysource(YS)),
write("System initialized\n"),
!

’ ):_

enterpoint(N, _, _,
N =0,
|

enterpoint (N1, X1, Y1, Si1, D1) :-
assertz(point(N1, X1, Y1, Si, D1)),
readint(N2),
readreal (X2),
readreal(Y2),
readint(S2),
readint(D2),
enterpoint(N2, X2, Y2, S2, D2).

enterline(F, _) :-
F =20,
t

. o

enterline(Fl, T1) :-
assertz(lin(F1, T1)),
readint(F2),
readint(T2),
enterline(F2, T2).

main2 :-
loop2,
set_invoke,
redun,
find,
fire,
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fail.
main2.
loop2.

loop2 :-
not(invoke),
loop2.

set_invoke :-

invoke,
t

set_invoke :-
assertz(invoke).

decount :-
count(C),
D=¢C -1,
retract(count(cC

assertz(count(D
1

)
)+

S S

dist(X, Y, Priority) :-
xsource(XS),
ysource(YS),
DX = X - XS,
DY = Y - ¥S,

DXa = abs(DX),
DYa = abs (DY),
DX2 = DXa * DXa,
DY2 = DYa * DY¥a,
SUM = DX2 + DY2,

D = sgqrt(SUM),
Priority = 0.0 - D.

trigger(Priority, Action, Params) :-
clear_invoke,
add_priority(Priority),
inc_trignum,
assertz(trig(Priority, Action, Params)).

clear_invoke :-
invoke,

retract(invoke),
!

° ©

clear_invoke :
not(invoke).

add_priority(P) :-
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priorities(Plst),
retract(priorities(Plst)),

assertz(priorities([P | Plst])),
!

inc_trignum :-
trig_num(N),
Nnew = N + 1,
retract(trig num(N)),
assertz(trig num(Nnew)),
!

fire :-
trig_num(N),
firel(N),
retract(trig num(N))
assertz(trig_num(0))
priorities(P),
retract(priorities(P
assertz(priorities([

) ),
1)

firel(0) :-
write("No rules triggered\n"),
!

firel(N) :-
repeat(N),
not(priorities([1)),
new priority(P),
new_action(P),
fail.

firel(_) :-
write("All rules exhausted\n").

repeat(_).

repeat(N) :-
not(N = 0),
Nnew = N - 1,
repeat(Nnew).

new_priority(P) :-
priorities(Plst),
maximum(Plst, P, Plst2),
retract(priorities(Plst))
)

assertz(priorities(Plst2
i

)

maximum([X | L1], Max, L2) :-
max1l(X, [], L1, Max, L2).
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maxl(X, L1, [], X, L1) :-
i

e o

maxl(X, L1, [X2 | L2], Max, L3) :-
X2 > X,
max1l(X2, [X | L1], L2, Max, L3),
1

maxl(X, L1, [X2 | L2], Max, L3) :-
max1(X, [X2 | L1], L2, Max, L3).

new_action(P) :-
trig(P, Action, Plst),
retract(trig(P, Action, Plst)),

execute(Action, Plst),
1

incount(Dnew) :-
count(C),
Cnew = C + 1,
retract(count(C)),
assertz(count(Cnew)),
count2 (D),
Dnew = D + 1,
retract(count2(D)),
assertz(count2(Dnew)),
{

keep :-

openwrite(sysio, "lines3.1lsp"),

writedevice(sysio),

write("(setq lines (quote ("),

nl,

linwrit,

write(")))"),

nl,
writedevice(screen),
closefile(sysio),
openwrite(sysio, "nodes3.1lsp"),
writedevice(sysio),
count(C),
writef (" (setq nodes (quote ( %4d ( \n", C),
retract(count(C)), ‘
retract(count2(_)),
point(1l, X, Y, S, _).,
retract(point(l, X, Y
writef(" ( %9.1f %9.
pointwrit,
writef(" )))) \n"),
writedevice(screen),
closefile(sysio),

v Sy )y
1f %24 ) \n", X, Y, S),
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write("Data written\n").

linwrit :-
lin(F, T),
point(F, X1, Y1, _, _).
point(T, X2, Y2, _, _),
writef ("(( %9.1f ¥9.Tf) ( %9.1f %9.1f))", X1, Y1, X2, Y2),
nl,
retract(lin(F, T)),
fail. :

linwrit.

pointwrit :-
point(_, X,

Y
retract(pointf_, X, &, S, _)),
writef(" ( %9.1f %9.1f %24 ) \n", X, Y, S),
fail.

pointwrit.
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/* The following should be included in a separate file called
"global2.pro" #*/

global domains
file = sysio
paramlst = param¥*
param = i(integer) ; r(real)
plist = real#*

global database
count(integer)
count2(integer)
point(integer, real, real, integer, integer)
lin(integer, integer)
xsource(real)
ysource(real)
trig_num(integer)
priorities(plist)
trig(real, symbol, paramlst)

global predicates
nondeterm redun
nondeterm decount
nondeterm find
nondeterm dist(real, real, real) - (i,i,0)
nondeterm slide(integer,
integer, real, real,integer, integer,

integer) - (i,i,i,i,i,1i,1)
nondeterm trigger(real, symbol, paramlst) - (i,i,i)
nondeterm execute(symbol, paramlst) - (i, i)

nondeterm incount(integer) - (0)
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code = 4096
roject "RSTRB2"
include "global2.pro®

predicates
rfix(integer, integer, integer, real, real)

clauses
redun :-
point (P2, Xm, ¥m, 0, 2),
lin(P1, P2),
lin(P2, P3),
rfix(P1, P2, P3, Xm, ¥Ym).

redun :-
write("Search terminated\n"),

s ©

rfix(P1, P2, P3, X1, ¥2) :
point(P1, X1, _, ,
point(P3, X1, _, _, _),
retract(point(P2, X1, Y2, 0, 2)),
decount,
retract(1lin(P1, P2)),
retract(lin(P2, P3)),
assertz(lin(P1, P3)),
write("1 redundant node removed\n"),
fail.

—r )
;)

rfix(P1, P2, P3, X2, Y1) :
point(P1, _, Y1, ,
point(P3, , Yi, , ),
retract(point(P2, X2, Y1, 0, 2)),
decount,
retract(lin(P1, P2)),
retract(lin(P2, P3)),
assertz(lin(P1i, P3)),
write("1l redundant node removed\n"),
fail.

_r )
;)




code = 4096
project "RSTRB2"
include "global2.pro*

predicates
elbow(integer,
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integer, real, real,

integer)

horiz(integer, real, real, integer, integer,

integer,

integer, real, real, integer, integer)

ilh(integer, real, real,

integer,

integer, real, real,
integer, real,
olh(integer, real, real,

integer,

integer, real, real,
integer, real,
o3h(integer, real, real,

integer,

integer, real, real,

integer, real,

vert(integer, real, real,

integer,

integer, real, real,
ilv(integer, real, real,

integer,

integer, real, real,

integer, real,

olv(integer, real, real,

integer,

integer, real, real,

integer, real,

o3v(integer, real, real,

integer,
integer, real, real,
integer, real,
clauses
find :-

integer, integer,

integer, integer,
integer, integer)
integer, integer,

integer, integer,
integer, integer)
integer, integer,

integer, integer,
integer, integer)
integer, integer,

integer, integer)
integer, integer,

integer, integer,
integer, integer)
integer, integer,

integer, integer,
integer, integer)
integer, integer,

integer, integer,
integer, integer)

point (P2, X2, Y2, 0, 2),

lin(P1, P2),
lin(P2, P3),
elbow(P1,
P2, X2, Y2,
P3).

find :-

point(P2, X2, Y2, S2, D2),

iin(P1, P2),
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lin(P2, P3),

slide(P1,
P2, X2, Y2, S2, D2,
P3).
find :~-

write(“Search terminated\n"),
i

e o

elbow(P1,
P2, X3, Y1,
P3) :-
point(P1, X1, Y1, Si, D1),
point(P3, X3, ¥3, S3, D3),
horiz(P1, X1, Y1, Si, D1,
p2,
P3, X3, ¥3, 83, D3).

elbow(P1,
P2, X1, Y3,
P3) -
point(P1, X1, Y1, S1, D1),
point(P3, X3, ¥3, S3, D3),
vert(P1l, X1, Y1, Ssi, D1,
P2,
P3, X3, ¥3, S3, D3).

horiz(P1, X1, Y1, Si, D1,
P2,
P3, X3, Y3, S3, D3) :-
lin(P4, P1),
point(P4, X1, Y4, S4, D4),
ilh(P1, X1, Y1, S1, D1,

P2,
P3, X3, Y3, S3, D3,
P4, Y4, S4, D4).

horiz(P1, X1, Yi, Si, D1,
P2,
P3, X3, Y3, S3, D3) :-
1lin(P1, P4),
point (P4, X1, Y4, S4, D4),
oilh(P1, X1, Yi, S1, D1,

P2,
P3, X3, ¥3, S3, D3,
P4, Y4, S4, D4).

horiz(P1, X1, Y1, S1, Di,
P2,
P3, X3, Y3, S3, D3) :-
lin(P3, P4),
point(P4, X4, Y3, S4, D4),
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o3h(P1, X1, Y1, si, Di,

P2,
P3, X3, Y3, S3, D3,
P4, X4, S4, D4).

ilh(P1, X1, VY1, s1, D1,
Pz,
— X3, Y3,
P4, va, —, _
Y4 > ¥3, ¥3 > Y1,
Priority = ¥3 - Y1,
trigger(Priority, rgil, [i(P1), r(X1), r(¥Yl), i(s1), i(D1),
i(P2), r(X3), r(Yl), r(X1i), r(ys3),

L

-

, , Ci(Pa)]),
write("1 gilh triggered\n%),
fail.

ilh(P1, Xi, Y1, Ss1, D1,
P2,
_r» X3, Y3, _, _,
P4, Y4, , ) -

Y4 < Y3, Y3 < Y1,

Priority = Y1 - Y3,

trigger(Priority, rgil, [i(Pl), r(X1), r(¥Y1l), i(s1), i(b1l),
i(P2), r(X3), r(¥l), r(Xi), r(¥3),

i(P4)1),
write("1l gilh triggered\n"),
fail.
ilh(P1, X1, Y1, Si, D1,
P2,
P3, X3, Y3, ., _,
P4, Y4, S4, D4) :-

Y4 = Y3, ¥3 > Y1,
Priority = ¥3 - Y1,
trigger(Priority, rel, [i(P1l), r(X1), r(Yi), i(sS1), i(D1),
i(P2), r(X3), r(Y1),
i(p3), )
i(p4), r(X1), r(v4), i(s4), i(D4)]),
write("1l eilh triggered\n"),
fail.

ilth(P1, X1, Y1, Si, Di,

P2,

P3, X3, Y3, ., _,

P4, Y4, S4, D4) :-

Y4 = Y3, Y3 < Y1,

Priority = Y1 - ¥3,

trigger(Priority, rel, [i(Pl), r(X1), r(Y¥Yl), i(s1t), i(D1),
i(p2), r(X3), r(Yyl),
i(P3), . .
i(P4), r(X1), r(Y4), i(s4), 1(D4)1),
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write("1 eilh triggered"),
fail.

ilh(P1, X1, Y1, Si, D1,

P2,

_r X3, Y3, _, _,

P4, Y4, S4, D4) =~

Y3 > Y4, Y4 > Y1,

Priority = Y4 - Y1,

trigger(Priority, rlil, [i(Pl1), r(X1l), r(¥Yl), i(s1), i(D1),

i(pP2), r(X3), r(¥l), r(X3), r(y4d),
, , i(Pa), r(X1), r(v4), i(s4), i(D4)1),

write("1l lilh triggered\n"),

fail.

iih(P1, X1, Y1, Si, D1,
P2,
_r X3, Y3, _, _,
P4, Y4, S4, D4) :-
Y3 < Y4, Y4 < Y1,
Priority = Y1 - Y4,

trigger(Priority, rll, [i(Pl), r(X1l), r(Y1l), i(si), i(D1),
i(P2), r(X3), r(Y1l), r(X3), r(v4),
i(P4), r(X1), r(Y4), i(s4), i(D4)1),

write("1 1lilh triggered\n"),
fail.

ilh(P1, X1, Y1, Si1, 2,
P2,
P3, X3, Y3, S3, 1,
P4, Y4, S4, D4) :-
Y4 > Y1, Y1 > Y3,
dist(X1, ¥3, Priority),
trigger(Priority, reil, [i(P1l), r(X1), r(¥Yl), i(si), i(2),
i(p2), r(X3), r(yYl), r(x1), r(¥3),
i(P3), r(x3), r(¥3), i(s3), i(1),
) ) i(pP4), r(X1), r(v4), i(s4), 1(D4)1]),
write("1l elilh triggered\n"),
fail.

iih(P1, X1, Y1, S1, 2,

P2,
P3, X3, Y3, S3, 1,
P4, Y4, S4, D4) :-

Y4 < Y1, Y1 < Y3,

dist(X1, Y3, Priority),

trigger(Priority, reil, [i(Pl), r(X1), r(¥Yl), i(s1l), i(2)},
i(P2), r(X3), r(¥l), r(Xl1), r(¥3),
i(P3), r(x3), r(¥3), i(s3), i(1),
i(P4), r(X1), r(v4), i(s4), i(D4)1),

write("1l elilh triggered\n"),

fail.
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ilth(P1, X1, Yi, Si, 2,

P2,
P3, X3, Y3, S3, 3,
P4, Y4, S4, D4) :-

Y4 > Y1, Y1 > Y3,

dist(X1, Y3, Priority),

trigger(Priority, reil, [i(P1l), r(X1), r(¥Yl), 1i(Sl)
i(P2), r(X3), r(¥1i), r(X1), r(¥Y3)
i(P3), r(X3), r(¥3), i(s3), i(3),
i(P4), r(X1), r(Y4), i(s4), i(D4)

wrige("l e3ilh triggered\n"),

fail.

ilh(p1, X1, Y1, S1, 2,

P3, X3, Y3, S3, 3,
P4, Y4, S4, D4) :-
Y4 < Y1, Y1 < Y3,
dist(X1, Y3, Priority),
trigger(Priority, reil, [i(Pl), r(X1), r(Yl), i(s1), i(2),
i(P2), r(X3), r(Yl), r(X1), r(¥3),
i(P3), r(X3), r(y3), i(s3), i(3),
i(p4), r(X1), r(v4), i(s4), i(D4)1]),
write("1l e3ilh triggered\n"),
fail.

ilth(P1, X1, Y1, Ss1, 2,
P2,
P3, X3, Y3, 83, 2,
P4, Y4, S4, D4) :-
lin(P3, P5),
point(P5, X5, ¥3, S5, D3),
X1 > X3, X3 > X5,
Y4 > v1, Y1 > Y3,
dist(X1, Y3, Priority),
trigger(Priority, resil, [i(Pl), r(X1), r(¥Yl), i(s1), i(2),
i(p2), r(X3), r(vl), r(Xi), r(y3),
i(P3), r(X3), r(¥3), i(sS3), 1(2),
i(P4), r(X1), r(Y4), i(s4), i(D4),
» i(pP5), r(X5), r(¥3), i(s5), 1(D5)1]),
write("1 esilh triggered\n"),
fail.

ilth(P1, X1, Y1, si, 2,
P2,
P3, X3, Y3, S3, 2,
P4, Y4, S4, D4) :-
1in(P3, P5),
point(P5, X5, ¥3, S5, D5),
X1 > X3, X3 > X5,
Y4 < Y1, Y1 < Y3,
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dist(X1, Y3, Priority),

trigger(Priority, resil, [i(P1l), r(X1), r(¥Yl), i(Sl), i(2y,
i(P2), r(X3), r(¥Yl), r(X1), r(¥Y3),
i(P3), r(X3), r(¥3), i(s3), i(2),
i(P4), r(X1), r(v4), i(s4), i(D4),
i(p5), r(xs5), r(¥3), i(s5), i(bP5)1),

write("1 esilh triggered\n"),

fail.

ilh(P1, X1, Y1, si, 2,
P2,
P3, X3, Y3, S3, 2,
P4, Y4, S4, D4) :-
1in(P3, P5),
point(P5, X5, ¥3, S5, D5),
X1 < X3, X3 < X5,
Y4 > Y1, Y1 > ¥3,
dist(X1, Y3, Priority),
trigger(Priority, resil, [i(Pl), r(Xl), r(Y1l), i(s1), i(2),
i(pP2), r(X3), r(¥l), r(X1i), r(¥s), -
i(P3), r(X3), r(¥3), i(s3), i(2),
i(Pa), r(X1), r(Ys), i(s4), i(D4),
i(p5), r(xs), r(¥3), i(s5), i(b5)1),
write("l esilh triggered\n"),
fail.

ilh(P1, X1, Yi, Si, 2,
P2,
P3, X3, ¥3, S3, 2,
P4, Y4, S4, D4) :-
1in(P3, P5),
point(P5, X5, ¥3, S5, D5),
X1 < X3, X3 < X5,
Y4 < Yi, Y1 < Y3,
dist (X1, ¥3, Priority),
trigger(Priority, resil, [i(P1l), r(X1l),
i(P2), r(X3), r(Yl), r
i(P3), r(X3), r(¥3), i(s3), i(2),
i(P4), r(X1), r(¥4), i(s4), 1(D4),
i(p5), r(X5), r(¥3), i(ss5), i(D5)]),
write("1l esilh triggered\n"),
fail.

r(y1l), i(si), i(2),
r(x1), r(y3),

olh(P1, X1, Yi, si, Di,
P2,
—r X3, Y3, _, _,
P4, Y4, ., _) -
Y4 > Y3, ¥3 > VY1,
Priority = ¥3 - Y1,
trigger(Priority, rgol, [i(P1l), r(X1), r(¥l), i(sl), i(D1),
i(P2), r(X3), r(¥1l), r(X1), r(¥3),
i(P4)1]),
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write("1 golh triggered\n"),
fail.

olh(P1, X1, Y1, 81, D1,

P2,

7 X3, Y3, _, 1

P4, va, —, ) :-

Y4 < ¥3, ¥3 < Y1,

Priority = Y1 - Y3,
trigger(Priority, rgol, [i(Pl), r(X1), r(Yl1), i(s1), i(b1),

1(P2), r(X3), r(yil), r(Xi), r(¥Y3s),

, _i(ea)1),
write("1l golh triggered\n"),
fail.

olh(P1, Xi, Y1, Si1, D1,
P2,
P3, X3, ¥3, _, _,
P4, Y4, S4, D4) -

Y4 = Y3, ¥3 > Y1,
Priority = ¥3 - Y1, ‘
trigger(Priority, rel, [i(P1l), r(X1l), r(Yl), i(s1i), i(b1),
i(p2), r(X3), r(¥l),
i(P3),
) Ji(p4), r(Xl), r(y4), i(s4), i(b4)1),
write("1l eolh triggered\n"),
fail.

olh(P1, X1, Y1, Si, DI,
P2

4
P3, X3, Y3, _, _,
P4, v4, S4, D4) :-
Y4 = ¥3, ¥3 < Y1,
Priority = Y1 - ¥3,
trigger(Priority, rel, [i(P1), r(X1l), r(Yl), i(s1), i(bl),
i(pP2), r(X3), r(¥l),
i(p3),
_ i(P4), r(X1), r(v4), i(s4), 1(D4)1]),
write("1l eolh triggered"),
fail.

oih(P1, X1, Y1, si, D1,
P2,
— X3, Y3, _ 7
P4, v4a, S4, D4) :-
Y3 > Y4, Y4 > Y1,
Priority = ¥4 - Y1,
trigger (Priority, rli, [i(P1), r(Xl), r(Yl), i(s1i), i(b1),
i(P2), r(X3), r(¥il), r(X1), r(y¥3),
i(p4), r(X1), r(v4), i(s4), i(D4)1),
write("1l lolh triggered\n"),
fail.
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olh(P1, X1,

14

¥i, Si, D1,

X3, Y3, _, _,
v4, 54, D4) :-
Y4 < Y1,

= Yyl - Y4,

4
P4,
Y3 < v4,
Priority

trigger(Priority, rll, [i(P1), r(X1l), r(¥1), i(s1), i(D1),
i(P2), r(X3), r(Yil), r(x1), r(¥3),
i(P4), r(X1), r(Y4), i(s4), i(D4)1),

write("1l lolh triggered\n"),

fail.

O3h(__l X1, Y1, 7 —t
P2,
P3, X3, Y3, S3, D3,
P4, X4, ) =
X4 > X1, X1 > X3,
Priority = X1 - X3,

trigger(Priority, rgo3, [i(P2), r(X3),
i(P3), r(X3), r(¥3),

i(P4)1),
write("1l go3h triggered\n"),
fail.
o3h(_, X1, Yi, _, _,

P2,

P3, X3, Y3, S3, D3,

P4, X4, R I

X4 < X1, X1 < X3,

Priority = X3 - X1,

trigger(Priority, rgo3, [i(P2), r(X3),
i(P3), r(X3), r(¥3),
i(p4) 1),

write("1 go3h triggered\n"),

fail.

o3h(P1, X1, Y1, _, _,
Pz,
P3, X3,
P4, X4,
X4 = X1, X1 > X3,
Priority = X1 - X3,
trigger(Priority, reo3, [i(P1),
i(p2), r(X3),
i(P3), r(X3),
i(P4), r(X4),
write("1l eo3h triggered\n"),
fail.

Y3, 83,

s4,

D3,
D4) :-

r(yl),
r(¥3),
r(¥3),

o3h(P1, X1, Y1, _, _,
P

4

r(Yl), r(Xi), r(¥3),
i(s3), i(p3),

r(¥Yl), r(Xi), r(Y3),
i(s3), i(D3),

i(s3), 1(D3),
i(s4), i(D4)1),




P3,
P4,
X4 =

X3,
X4,
X1,

Y3, 83,
sS4,
X1 < X3,

182

D3,
D4) :-

Priority = X3 - X1,

trigger(Priority, reo3,

[i(P1),
i(P2), r(X3),
i(P3), r(X3),
i(P4), r(X4),

write("1l eo3h triggered\n%),

fail.

o3h(_,
P2,
P3,
P4,
X1 >

X1,

X3,
X4,
X4,

vi, _,

¥3, S3,
sS4,

X4 > X3,

—

D3,
D4) :-

Priority = X4 - X3,

trigger(Priority, rlo3,

[i(P2),
i(P3), r(X3),
i(P4), r(X4),

write("1 lo3h triggered\n"),

fail.

o3h(_,
P2,
P3,
P4,
X1l <

Priority
trigger (Priority, rlo3,

X1,

X3,
X4,
X4,

vi, ,

Y3, S3,
s4,

X4 < X3,

— 4

D3,
D4) :-

= X3 - X4 + 2,

[i(p2),
i(P3), r(X3),
i(P4), r(x4),

write("1l lo3h triggered\n"),

fail.

o3h(P1,
p2,
P3,
P4,
X1 >
dist(

trigger(Priority, reo3,

X1,

X3,
X4,
X3,
X1,

Y1,
Y3,

s1,

s3,
s4,

X3 > X4,
Y3, Priority),

1,

2,
D4) :-

[i(P1),
i(P2), r(X3),
i(P3), r(X3),
i(P4), r(X4),

write("1 elo3h triggered\n"),

fail.

03h(P1,

P2,
P3,
P4,

X1,

X3,
X4,

Y1,

Y3,

s1,

s3,
s4,

1,

2,

D4) :-

r(X3),
r{¥3),
r(¥3),

r(X3),
r(y¥3),
r(¥3),

i(s3),
i(s4),

r(Yl),
i(s3),
i(s4),

r{Yl),
r(xi1),
i(s3),
i(s4),

i(D3),
i(p4)1),

r(Xi), r(¥3),
i(D3),
i(D4)1),

r(X1), r(¥3),
i(D3),
i(b4)1),

i(s1), i(1),
r(¥3),

i(2),
1(D4)1),
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X1 < X3, X3 < X4,
dist(X1, Y3, Priority), :
trigger(Priority, reo3, [i(Pl), r(X1l), r(¥1), i(sSil), i(1),
i(pP2), r(X3), r(¥Yi), r(X1), r(¥3),
i(P3), r(X3), r(¥3), i(s3), i(2),
i(P4), r(x4), r(¥3), i(s4), i(D4)1),
write("1l elo3h triggered\n"),
fail.

o3h(P1, X1, Y1, Si, 3,
P2,
P3, X3, ¥3, S3, 2,
P4, X4, S4, D4) :-
X1 > X3, X3 > X4,
dist(X1, ¥3, Priority),
trigger(Priority, reo3, [i(P1l), r(X1l), r(¥l), i(si), i(3),
i(p2), r(x3), r(Yi), r(X1), r(ys),
i(P3), r(x3), r(Y3), i(s3), i(2),
_ i(P4), r(x4), r(¥3), i(s4), i(D4)1),
write("1l e3o03h triggered\n"),
fail.

o3h(P1, X1, Y1, 81, 3,
P2,
P3, X3, Y3, S3, 2,
P4, X4, S4, D4) :-
X1 < X3, X3 < X4,
dist(X1, Y3, Priority), .
trigger (Priority, reo3, [i(Pl), r(Xl), r(¥l), i(sl), i(3),
i(p2), r(X3), r(¥l), r(X1), r(¥s3),
i(P3), r(X3), r(Y3), i(s3), i(2),
. i(P4), r(X4), r(¥3), 1(s4), i(b4)1),
write("1l e303h triggered\n"),
fail.

vert(Pl1, X1, Y1, S1, D1,
P2,
P3, X3, Y3, S3, D3) :-
1in(P4, P1),
point(P4, X4, Y1, S4, D4),
ilv(pP1, X1, Y1, si, D1,

P2,
P3, X3, Y3, 83, D3,
P4, X4, sS4, D4).

vert(Pl1, X1, Y1, Si, D1,
P2

4
P3, X3, Y3, S3, D3) :-
1in(P1, P4),
point(P4, X4, Y1, S4, D4),
olv(P1, X1, Y1, S1, D1,
P2,
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P3, X3, Y3, S3, D3,
P4, X4, S4, D4).

vert(P1, X1, Y1, Si, D1,
P2,
P3, X3, Y3, S3, D3) :-
1in(P3, P4),
point(P4, X3, Y4, S4, D4),
o3v(Pl, X1, Y1, Si1, D1,

P2,
P3, X3, ¥3, 83, D3,
P4, Y4, S4, D4).
iiv(P1, X1, Y1, S1, D1,
P2, _
— X3I Y3I —1 _— 4
P4, X4, ) -

—
X4 > X3, X3 > Xi,
Priority = X3 - X1,

trigger(Priority, rgil, [i(P1l), r(X1l), r(Yl), i(s1), i(bl),

i(p2), r(x1), r(¥y3), r(x3), r(¥yl),

_ . _i(P4)]),
write("1l gilv triggered\n"),
fail.

ilv(P1, X1, Y1, Si, D1,
P2,
, X3, Y3, _, _,

P4, X4, ) -
X4 < X3, X3 < X1,
Priority = X1 - X3,

trigger(Priority, rgil, [i(P1l), r(X1), r(Yl), i(s1), i(b1),
r(¥Y3),

i(p2), r(X1), r(X3), r(yl),

_ , Ci(p4)]),
write("1 gilv triggered\n"),
fail.

iiv(P1, X1, Yi, Si, Di,
P2,
P3, X3, Y3, _, _.,
P4, X4, S4, D4) -

X4 = X3, X3 > X1,
Priority = X3 - X1,

trigger(Priority, rel, [i(P1), r(Xl), r(Yl), i(s1i), i(b1),

i(P2), r(X1), r(Y3),

i(P3),

i(P4), r(xX4), r(Y1), i(s4), i(D4)]),
write("1 eilv triggered\n"),
fail.

iiv(P1, X1, Y1, s1, D1,
P2,
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P3, X3, Y3, _, _,
P4, X4, S4, D4) :-
X4 = X3, X3 < X1,
Priority = X1 - X3,
trigger(Priority, rel, [i(Pl), r(X1l), r(¥l), i(si), i(pl),
i(P2), r(X1), r(¥3),
i(P3),
i(P4), r(X4), r(¥1l), i(s4), i(D4)]),
write("1 eilv triggered\n%),
fail.

ilv(pP1, X1, Y1, 81, DI,
bpz,
7 X3, ¥3, —y —
P4, X4, S4, D4y -
X3 > X4, X4 > X1,
Priority = X4 - X1,
trigger(Priority, rll, [i(P1l), r(X1), r(¥Y1l), i(Sl), i(Dl),
i(P2), r(X1), r(¥Y3), r(X4), r(y3),
i(P4), r(X4), r(¥Y1l), i(s4), 1(D4)]),
write("1 lilv triggered\n"),

fail.
iiv(pP1, X1, Y1, S1, Di,
P2,
— X3I Y3I ) I 4
P4, X4, sS4, D4) :-

X3 < X4, X4 < Xi,

Priority = X1 - X4,

trigger(Priority, rll, [i(Pl), r(X1l), r(Yl)
i(P2), r(X1), r(¥3), r(x4)
i(Pa), r(xX4a), r(yl), i(s4)

write("1 lilv triggered\n"),

fail.

i(s1), i(p1),
r(¥Y3),
i(b4)1),

- wm W=

ilv(P1, X1, Y1, Ss1, 2,
P2,
P3, X3, ¥3, S3, 1,
P4, X4, S4, D4) :-
X4 > X1, X1 > X3,
dist (X3, Y1, Priority),
trigger(Priority, reil, [i(Pl), r(X1l), r(¥l), i(s1), i(2),
i(p2), r(X1), r(¥3), r(xX3), r(yl),
i(P3), r(X3), r(y¥3), i(s3), i(1l),
i(P4), r(X4), r(¥Y1l), i(s4), 1(D4)1),
write("l elilv triggered\n"),
fail.

iiv(P1, X1, Y1, S1, 2,
P2,
P3, X3, Y3, S3, 1,
P4, X4, S4, D4) :-
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X4 < X1, X1 < X3,

dist(X3, Y1, Priority),

trigger(Priority, reil, [i(P1), r(X1l), r(Y¥l), i(s1), i(2),
i(P2), r(X1), r(¥3), r(X3), r(vl),
i(P3), r(X3), r(¥3), i(s3), i(1),

, , i(P4), r(Xa), r(¥1), i(s4), i(D4)1),
write("1 elilv triggered\n"),
fail.

iiv(P1, X1, Yi, s1, 2,
!
P3, X3, ¥3, 83, 3,
P4, X4, sS4, D4) :-
X4 > X1, X1 > X3,
dist(X3, Y1, Priority),
trigger(Priority, reil, [i(Pl), r(X1l), r(Y1l), i(si), i(2),
i(p2), r(X1), r(¥y3), r(X3), r(¥l),
i(P3), r(x3), r(y¥3), i(s3), i(3),
_ , i(p4), r(X4), r(¥l), 1(s4), i(D4)1),
write("1l e3ilv triggered\n"),
fail.

iiv(pP1, X1, Y1, sS1, 2,
P2,
P3, X3, ¥3, S3, 3,
P4, X4, sS4, D4) :-
X4 < X1, X1 < X3,
dist(X3, Y1, Priority),
trigger(Priority, reil, [i(P1l), ¥(X1l), r(yi), i(s1i), i(2),
i(P2), r(X1), r(¥3), r(x3), r(vl),
i(p3), r(X3), r(¥3), i(s3), i(3),
, , i(P4), r(X4), r(¥1), i(s4), 1(D4)]),
write("1 e3ilv triggered\n"),
fail.

i1v(P1, X1, Y1, Si, 2,
P2

4
P3, X3, ¥3, 83, 2,
P4, X4, S4, D4) :-
1in(P3, P5),
point(P5, X3, ¥5, S5, D5),
X4 > X1, X1 > X3,
Y1 > Y3, ¥3 > Y5,
dist(X3, Y1, Priority),
trigger (Priority, resil, [i(Pl), r(X1), r(yi), i(s1), i(2),
i(P2), r(X1), r(¥3), r(X3), r(yl),
i(P3), r(x3), r(¥3), i(s3), i(2),
i(pa), r(x4), r(Yy1), i(s4), i(D4),
, _ i(ps), r(X3), r(¥s), i(s5), 1(D5)1),
write("1l esilv triggered\n"),
fail.
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ilv(P1, X1, Y1, Si1, 2,

P2,
P3, X3, Y3, S3, 2,
P4, X4, S4, D4) :-

lin(P3, P5),

point(P5, X3, Y5, S5, D5),

X4 > X1, X1 > X3,

Y1 < ¥3, Y3 < Y5,

dist(X3, Y1, Priority),

trigger(Priority, resil, [i(Pl), r(X1), r(¥l), 1(S1)
i(p2), r(X1), r(¥3), r(X3), r(vl)
i(p3), r(X3), r(¥3), i(s3), i(2),
i(pPa), r(x4), r(yl), i(sa), i(D4)
i(P5), r(X3), r(¥s), i(s5), i(D5)

write("l esilv triggered\n"),

fail.

ilv(P1, X1, Y1, S1, 2,
P2,
P3, X3, Y3, S3, 2,
P4, X4, sS4, D4) :-
1lin(P3, P5),
point(P5, X3, ¥5, S5, D5),
X4 < X1, X1 < X3,
Yl > Y3, ¥3 > Y5,
dist(X3, Y1, Priority),
trigger(Priority, resil, [i(P1l), r(X1l), r(¥l), i(Sl1)
i(P2), r(X1l), r(¥3), r(X3), r(vyl)
i(P3), r(x3), r(¥3), i(s3), i(2),
i(P4), r(X4), r(vi), i(sa), i(D4)
i(P5), r(x3), r(ys), i(ss5), i(D5)
write("l esilv triggered\n"),
fail.

ilv(P1, X1, Y1, S1, 2,
P2,
P3, X3, ¥3, S3, 2,
P4, X4, S4, D4) :-
1in(P3, P5),
point(P5, X3, ¥5, S5, D5),
X4 < X1, X1 < X3,
¥l < ¥3, ¥3 < Y5,
dist (X3, Y1, Priority),
trigger(Priority, resil, [i(P1l), r(X1),
i(P2), r(X1), r(¥3), :
i(P3), r(X3), r(¥3), i(s3), i(2),
i(P4), r(X4), r(¥l), i(s4), 1(D4),
i(P5), r(X3), r(¥s5), i(s5), 1(b5)1]),
write("1l esilv triggered\n"), -
fail.

r(yl), i(s1i), i(2),
r(X3), r(Y¥1l),

olv(P1l, X1, Y1, S1, D1,
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P2,

7 X3, Y3, —t —T

P4, X4, S, T

X4 > X3, X3 > X1,

Priority = X3 - X1,

trigger(Priority, rgol, [i(P1l), r(X1), r(¥Yl), i(s1i), i(D1),
i(P2), r(X1), r(¥3), r(x3), r(yi),

,  i(4)1),
write("1l golv triggered\n"),
fail.

olv(P1, X1, Y1, Si, D1,
P2,
, X3, Y3, _, _,

P4, X4, L,y -

X4 < X3, X3 < X1,

Priority = X1 - X3,

trigger(Priority, rgol, [i(P1l), r(X1l), r(Y1l), i(si), i(Db1),
i(P2), r(X1l), r(¥3), r(X3), r(Yl),

i(P4)1),
write("1l golv triggered\n"),
fail.
olv(P1, X1, Y1, S1, D1,
P2,
P3, X3, Y3, ., _,
P4, X4, sS4, D4) :-

X4 = X3, X3 > X1,
Priority = X3 - X1,
trigger(Priority, rel, [i(Pl), r(X1l), r(Yl), i(si), i(b1),
i(P2), r(X1), r(Y3),
i(p3),
i(P4), r(X4), r(vl), i(s4), i(D4)1),
write("1l eolv triggered\n"),

fail.
olv(P1, X1, Y1, S1, D1,
P2,
P3, X3, Y3, _, _,
P4, X4, S4, D4y :-

X4 = X3, X3 < X1,

Priority = X1 - X3,

trigger(Priority, rel, [i(Pl), r(X1)
i(P2), r(X1), r(¥Y3)
i(P3),

. (i(P4), r(X4), r(yl), i(s4), i(D4)1]),
write("1l eolv triggered\n"),
fail.

r(vyi1), i(si), i(b1),

-

olv(P1, X1, Y1, S1, D1,

P2,
—r X3, Y3, _, _,
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P4, X4, S4, D4) -
X3 > X4, X4 > X1,
Priority = X4 - X1,

trigger(Priority, rll, [i(P1l), r(X1l), r(Y1l),
i(P2), r(X1), r(¥3), r(X3),
i(P4), r(X4), r(Y1l), i(S4),
write("1 lolv triggered\n"),
fail.
olv(P1l, X1, Y1, S1i, Di,
P2,
—r X3, Y3, _, _,
P4, X4, sS4, D4) :-
X3 < X4, X4 < X1,
Priority = X1 - X4,
trigger(Priority, rl1l, [i(P1l), r(X1l), r(¥1),
i(P2), r(X1), r(¥3), r(X3),
i(P4), r(X4), r(Y1l), i(s4),

write("1 lolv triggered\n"),

fail.

o3v(_, X1, yi, _, .y
P2,
P3, X3, Y3, S3, D3,
P4, Y4, _, ) -
Y4 > Y1, Y1 > Y3,

Priority = Y1 - Y3,
trigger (Priority, rgo3,

i(s1), i(p1),
r(yl),
i(D4)1),

i(s1), i(p1),
r(Yl),
i(b4)1),

[i(P2), r(Xl), r(¥3), r(x3), r(¥l),

i(P3), r(X3), r(¥3), i(s3), i(D3),

, ci(ea)1),
write("1l go3v triggered\n"),
fail.

o3v(_, Xi, Yi, _, _,
P2,
P3, X3, ¥3, 83, D3,
P4, Y4, , _) -
Y4 < ¥1, Y1 < Y3,

Priority = ¥3 - Y1,

trigger(Priority, rgo3, [i(P2), r(X1),
i r(¥Y3),

1(P3), r(X3),
, , i(pa)1),
write("1l go3v triggered\n"),
fail.
o3v(P1, _, Yi, _, _,

P2,

P3, X3, ¥3, 83, D3,

P4, Y4, S4, D4) :-

Y4 = Y1, Y1 > Y3,

Priority = Y1 - Y¥3,

trigger(Priority, reo3, [i(P1l),

r(¥3),
i(s3),

r(Yl),

-

(X3),
(D3),
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i(P2), r(X3), r(Yl),
i(P3), r(X3), r(¥3), i(s3), i(b3),
i(pa), r(x3), r(Y4), i(s4), i(b4) 1),

write("1l eo3v triggered\n"),
fail.
o3v(PL, _, Yi, _, _,
P2,
P3, X3, ¥3, 83, D3,
P4, Y4, S4, D4) :-
Y4 = Y1, Y1 < ¥3,

Priority = ¥3 - Y1,

trigger(Priority, reo3, [i(P1),

i(P2), r(X3), r(Yl),
i(pP3), r(x3), r(¥3), i(s3), i(b3),
i(P4), r(X3), r(y4), i(s4), i1(b4)1]),
write("1l eo3v triggered\n"),
fail.
o3v(_, Xi, Y, _, _.
P2,
P3, X3, Y3, S3, D3,
P4, Y4, S4, D4) :-
Y1 > Y4, Y4 > Y3,
Priority = Y4 - ¥3,
trigger(Priority, rlo3, [i(P2), r(Xl1l), r(¥3), r(X3), r(¥l),
i(P3), r(x3), r(¥3), i(s3), i(D3),
i(P4), r(X3), r(v4), i(s4), i(D4)1),
write("1l lo3v triggered\n"),
fail.
o3v(_, X, Y11, _, _.,
P2,
P3, X3, ¥3, S3, D3,
P4, Y4, S4, D4) :-
Y1 < Y4, Y4 < Y3,
Priority = ¥3 - Y4,
trigger(Priority, r103 [i(p2), r(X1), r(¥3), r(X3), r(¥l),
l(P3): r(X3), r(¥3), i(s3), i(D3),
. _i(P4), r(X3), r(Y¥4), i(s4), i(b4)1),
‘write("1 lo3v triggered\n"),
fail.
o3v(P1, X1, Y1, Ss1, 1,
P2,
P3, X3, ¥3, 83, 2,
P4, Y4, S4, D4) :-
Y1l > ¥3, Y3 > Y4,
dist (X3, Y1, Priority),
trigger(Priority, reo3, [i(Pl), r(X1), r(¥l), i(S1l), i(1),
l(P2), r(Xi), r(¥3), r(x3), r(Yl),
i(P3), r(X3), r(¥3), i(s3), 1(2),
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i(P4), r(X3), r(Y4), i(s4),
write("1 elo3v triggered\n"),
fail.

o3v(P1, X1, Y1, S1, 1,

P3, X3, Y3, 83, 2,
P4, Y4, S4, D4) :-
Yl < ¥3, Y3 < Y4,
dist(X3, Y1, Priority),
trigger(Priority, reo3, [i(P1l), r(Xl1l), r(Yl),
i(P2), r(X1), r(¥Y3), r(x3),
i(P3), r(X3), r(y3), i(s3),
i(P4), r(X3), r(Y4), i(s4),
write("1l elo3v triggered\n"),
fail.

o3v(P1, X1, Y1, Si, 3,
P2,
P3, X3, Y3, S3, 2,
P4, Y4, S4, D4) :-
Y1 > Y3, ¥3 > Y4,
dist(X3, Y1, Priority),
trigger(Priority, reo3, [i(P1l), r(Xl), r(Yl),
i(P2), r(X1i), r(¥3), r(X3),
i(P3), r(X3), r(¥3), i(s3),
i(P4), r(X3), r(va), i(s4),
write("1l e3o03v triggered\n"),
fail.

o3v(P1l, X1, Y1, Si, 3,
P2,
P3, X3, Y3, S3, 2,
P4, Y4, S4, D4) :-
Y1l < ¥3, Y3 < Y4,
dist(X3, Y1, Priority),
trigger(Priority, reo3, [i(P1l), r(Xl), r(Yl),
i(p2), r(X1), r(¥3), r(x3),
i(P3), r(x3), r(¥3), i(s3),
i(P4), r(X3), r(v4), i(s4),
write("1 e303v triggered\n"),
fail.

i(D4)1),

i(s1), i(1),
r(Yli),

i(2),

i(b4) 1),

i(s1), i(3),
r(Yl),

i(2),
i(b4)1),

i(s1), i(3),
r(vYlil),

i(2),
i(D4)1),
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project "RSTRB2"
include "global2.pro"

predicates
hs(integer,
integer,
integer,
integer,
vs(integer,
integer,
integer,
integer,

clauses
slide(P1,

real, real, integer, integer,
integer, integer,

real, real, integer, integer,
real, integer, integer)

real, real, integer, integer,
integer, integer,

real, real, integer, integer,
real, integer, integer)

P2, X3, Y1, S2, D2,

P3) :

—

point(P1, X1, Y1, Si, D1),
point(P3, X3, Y3, S3, D3),

lin(P4,

P1), ‘

point (P4, X1, Y4, S4, D4&),
hs(P1, X1, Y1, si, D1,

P2, s2, D2,
P3, X3, Y3, S3, D3,
P4, Y4, S4, D4).
slide(P1,
P2, X1, Y3, S2, D2,
P3) :-
point(P1, X1, Y¥Yi, Si, D1),

point(P3, X3, Y3, S3, D3),

lin(P4,

Pl),

point (P4, X4, Y1, S4, D4),
vs(P1, X1, Y1, si, D1,

P2, s2, D2,
P3, X3, Y3, S3, D3,
P4, X4, sS4, D4).
hs(P1, X1, Y1, si, Di,
P2, s2, D2,
P3, X3, Y3, 83, D3,
P4, Y4, S4, D4) :-
Y4 > Y3, ¥3 > VY1,
trigger(0, rgs, [i(Pl), r(X1), r(Yl), i(si), i(D1),
i(p2), r(X3), r(yl), i(s2), i(b2),
i(P3), r(Xx3), r(¥3), i(s3), i(D3),
i(P4), r(X1), r(v4), i(s4), i(D4),

r(x1), r(y3)l),

write("1l ghs triggered\n"),

fail.
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hs(P1, X1, Y1, Si, Di,

P2, s2, D2,
P3, X3, Y3, S3, D3,
p4, Y4, S4, D4) :-

Y4 < ¥3, ¥3 < Y1,
trlgger(o rgs, [1(P1), r(X1), r(yi), i(s
i(p2), r(X3), r(yl), i(s2), i(
i(P3), r(X3), r(¥3), i(s3), i(
i(P4), r(X1), r(Y4), i(s4), 1i(
r(X1), r(¥3)l),
write("1l ghs triggered\n"),

fail.

hs(P1, X1, Y1, S1, D1,
P2, s2, D2,
P3, X3, Y3, 83, D3,
P4, Y3, S4, D&y :-

trlgger(o, res, [i(P1), r(X1), r(¥Y1l), i(s1i), i(b1),
i(p2), r(x3), r(yl), i(s2), i(b2),
i(P3), r(X3), r(¥3), i(s3), i(D3),
i(P4), r(X1), r(Y3), 1(34), i(D4)1),

write("1 ehs triggered\n"),

fail.

hs(P1, X1, Yi, Ssi, D1,

P2, s2, D2,

P3, X3, ¥3, S3, D3,

P4, Y4, S4, D4) :-

Y3 > Y4, Y4 > Yl

trlgger(o, rls, [1(P1), r(Xi), r(vi), i(s1), i(b1),
i(P2), r(X3), r(yl), i(s2), i(b2),
i(p3), r(x3), r(y3), i(s3), i(b3),
i(P4a), r(X1), r(Ya), i(s4), i(D4),

, Cr(x3), r(va)l),
write("1 lhs triggered\n"),
fail.

hs(P1, X1, Y1, si, Di,
P2, s2, D2,
P3, X3, Y3, S3, D3,
P4, Y4, S4, D4) :-
Y3 < Y4, Y4 < Y1,

trigger(0, rls, [i(P1), r(X1), r(¥y1l), i(s1), i(Db1),
i(Pp2), r(X3), r(y¥l), i(s2), i(b2),
i(P3), r(X3), r(¥3), i(s3), i(D3),
i(P4), r(X1), r(Y4), i(s4), i(D4),
r(x3), r(¥4)1,

write("1 lhs triggered\n"),
fail.

vs(P1, X1, Y1, S1, D1,
P2, s2, D2,
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P3, X3, Y3, S3, D3,

P4, X4, S4, D4) :-

X1 > X3, X3 > X4,

trigger(0, rgs, [i(Pl), r(X1), r(Y¥Y1l), i(sl), i(Dl),
i(P2), r(X1), r(¥3), i(s2), i(b2),
i(P3), r(X3), r(¥3), i(s3), i(p3),
i(pP4), r(X4), r(Y1l), i(s4), i(D4),

_ . xr(x3), r(¥1)l),
write("1 gvs triggered\n"),
fail.

vs(P1, X1, Y1, Si, D1,
P2, s2, D2,
P3, X3, Y3, S3, D3,
P4, X4, S4, D4) :-
X1 < X3, X3 < X4,

trigger(o, rgs, [i(Pl), r(X1l), r(Yl), i(sl), i(D1),
i(p2), r(x1), r(¥3), i(s2), i(b2),
i(P3), r(X3), r(¥3), i(s3), i(Db3),
i(p4), r(X4), r(Y1l), i(S4), 1i(D4),

, . r(X3), r(v1)l),
write("1l gvs triggered\n"),
fail.
vs(P1, X1, Y1, Si, D1,

P2, s2, D2,

P3, X3, Y3, S3, D3,

P4, X3, S4, D4) :-

trigger(0, res, [i(P1l), r(Xl), r(Yl), i(si i(Db1),

)y
i(P2), r(X1), r(¥3), i(S2), i(D2)
i(P3), r(X3), r(¥3), i(s3), i(D3)
i(P4), r(X3), r(Y1l), i(s4), i(D4)

write("1l evs triggered\n"), '

fail.

1,

vs(P1, X1, Y1, sSi, Di,

P2, sz2, D2,

P3, X3, Y3, S3, D3,

P4, X4, S4, D4) :-

X1 > X4, X4 > X3,

trigger(0, rls, [i(P1l), ¥(X1), r(Yl), i(S1), i(D1),
i(pP2), r(xX1), r(¥3), i(s2), i(b2),
i(P3), r(X3), r(¥3), i(s3), i(b3),
i(P4), r(X4), r(¥Y1l), i(sS4), i(D4),

, r(x4), r(¥3)]),
write("1l lvs triggered\n"),
fail.

vs(P1, X1, Y1, S1, Di,
P2, s2, D2,
P3, X3, Y3, S3, D3,

P4, X4, S4, D4) :-
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X1 < X4, X4 < X3,

trigger(0, rls, [i(Pl), r(X1), r(vyi), i(sl), i(D1),
i(pP2), r(X1), r(¥3), i(sz2), i(b2),
i(P3), r(X3), r(¥3), i(s3), i(D3),
i(P4), r(X4), r(¥1l), i(s4), i(D4),

r(x4), r(¥3)l),
write("l 1lvs triggered\n"),
fail.
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code = 4096
project "RSTRB2"
include "global2.pro¥®

clauses
execute(rgil, [i(Pl), r(X1), r(¥Y1), i(s1), i(Dp1),
1(P2), r(X2), r(Y¥2), r(X2new), r(Y2new),
, 1(P4)]) :-
write("gil entered\n"),
point(P2, X2, Y2, 0, 2),
lin(P1, P2),
point(P1, X1, Y1, S1, Di),
1in(P4, P1),
Dinew = D1 - 1,
retract(point(P2, X2, Y2, 0, 2)),
assertz(point(P2, X2new, Y2new, 0, 3)),
retract(lin(P1, P2)),
assertz(lin(P2, P1)),
retract(point(P1, X1, Y1, S1, D1)),
assertz(point(P1, X1, Y1, S1, Dlnew)),
retract(lin(P4, P1)),
assertz(lin(P4, P2)),
write("gil fired\n\n"),
I

execute(rel, [i(P1l), r(X1l), r(Y¥Yl), i(s1i), i(b1iy,
i(P2), r(x2), r(yz),
i(P3),
i(P4), r(X4), r(v4), i(s4), i(D4)]) :-
write("el entered\n"),
point(P2, X2, Y2, O, 2),
lin(P1, P2),
lin(P2, P3),
point(P1, X1, Y1, Si, D1),
point (P4, X4, Y4, S4, D4),
Dlnew = D1 - 1,
D4new = D4 + 1,
retract(point (P2, X2, Y2, 0, 2)),
decount,
retract(lin(P1, P2)),
retract(lin(P2, P3)),
assertz(lin(P4, P3)),
retract(point(P1, X1, Y1, Si, D1)),
assertz(point(Pl, Xl, Y1, S1, Dinew)),
retract(point (P4, X4, Y4, S4, D4)),
assertz(point (P4, X4, Y4, S4, Dénew)),
write("el fired\n\n"),
!

execute(rll, [i(Pl), r(X1l), r(¥1), i(si), i(p1y,
i(P2), r(X2), r(Y¥2), r(X2new), r(Y¥2new),
i(P4), r(X4), r(Y4), i(S4), i(D4)]) :-
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write("11l entered\n"),
point(P2, X2, Y2, 0, 2),
1in(P1, P2),
point(P1, X1, Y1, Si, Di1),
point (P4, X4, Y4, S4, D4),

. Dlnew = D1 - 1,
Ddnew = D4 + 1,
retract(point(P2, X2, Y2, 0, 2)),
assertz(point(P2, X2new, Y2new, 0, 2)),
retract(lin(P1, P2)),
assertz(1lin(P4, P2)),
retract(point(P1, Xi, Yi, Si, D1)),
assertz(point(P1, X1, Y1, Si, Dlnew)),
retract(point (P4, X4, Y4, S4, D4)),
assertz(point(P4, X4, Y4, S4, Dénew)),
write("11l fired\n\n"),
!

execute(rgol, [i(Pl), r(X1l), r(¥1i), i(s1i), i(p1),
i(P2), r(X2), r(¥2), r(X2new), r(¥Y2new),
i(P4)]) :-

write("gol entered\n"),
point(P2, X2, Y2, 0, 2),
1in(P1, P4),
point(P1, X1, Y1, S1, D1),
Dlinew = D1 -1,
retract(point (P2, X2, Y2, 0, 2)),
assertz(point(P2, X2new, Y2new, 0, 3)),
retract(lin(P1l, P4)),
assertz(lin(P2, P4)),
retract(point(P1, X1, Y1, Si, Dl1)),
assertz(point(P1, X1, Y1, S1, Dlnew)),
write("gol fired\n\n"),
1

execute(rgo3, [i(P2), r(X2), r(Y¥2), r(X2new), r(¥2new),
i(P3), r(X3), r(¥3), i(s3), i(b3),

. i(P4)]) :-

write("go3 entered\n"),

point(P2, X2, Y2, 0, 2),

1in(P3, P4),

point(P3, X3, Y3, S3, D3),

D3new = D3 - 1,

retract(point(P2, X2, Y2, 0, 2)),

assertz(point(P2, X2new, ¥Y2new, 0, 3)),

retract(lin(P3, P4)),

assertz(lin(P2, P4)),

retract(point(P3, X3, ¥3, S3, D3)),

assertz(point(P3, X3, ¥3, S3, D3new)),

write("go3 fired\n\n"),

!

s o
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execute(reo3, [i(P1),
i(P2), r(X2), r(y2),
i(P3), r(X3), r(y3), i(s3), i(D3),
i(P4), r(xX4), r(va), i(s4), i(p4)]) :-
write("eo3 entered\n\n"),
point (P2, X2, Y2, 0, 2),
lin(P1, P2),
lin(P2, P3),
1in(P3, P4),
point(P3, X3, ¥3, S3, D3),
point (P4, X4, Y4, S4, D4),
D3new = D3 - 1,
Dinew = D4 + 1,
retract(point (P2, X2, Y2, 0, 2)),
decount,
retract(lin(P1, P2)),
retract(lin(P2, P3)),
assertz(lin(P1, P4)),
retract(lin(P3, P4)),
assertz(lin(P4, P3)),
retract(point(P3, X3, ¥3, S3, D3)),
assertz(point(P3, X3, Y3, S3, D3new)),
retract(point(P4, X4, Y4, S4, D4)),
assertz(point(P4, X4, Y4, S4, Dénew)),
write("eo3 fired\n\n"),
!

execute(rlo3, [i(P2), r(X2), r(Y2), r(X2new), r(¥Y2new),

i(P3), r(x3), r(¥3s), i(s3), i(D3),
i(P4), r(X4), r(¥4), i(s4), 1(D4)]1) :-

write("lo3 entered\n"),

point (P2, X2, Y2, 0, 2),

lin(P2, P3),

1in(P3, P4),

point(P3, X3, Y3, S3, D3),

point (P4, X4, Y4, S4, D4),

D3new = D3 - 1,

Dinew = D4 + 1,

retract(point(P2, X2, Y2, 0, 2)),

assertz(point(P2, X2new, Y2new, 0, 2)),

retract(lin(P2, P3)),

assertz(lin(P2, P4)),

retract(lin(P3, P4)),

assertz(lin(P4, P3)),

retract(point(P3, X3, ¥3, S3, D3)),

assertz(point(P3, X3, ¥3, S3, D3new)),

retract(point(P4, X4, Y4, S4, D4)),

assertz(point(P4, X4, Y4, S4, D4new)),

write("lo3 fired\n\n"),

i

execute(resil, [i(P1l), r(Xl), r(¥Yl), i(s1), i(D1),
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i(P2), r(X2), r(Y2), r(X2new), r(¥2new),
i(P3), r(X3), r(¥3), i(s3), i(Db3),
i(p4), r(X4), r(¥4), i(s4), i(D4),
~ i(P5), r(Xs5), r(vy5), i(85), i(D5)]) :-

write("esil entered\n'"),

point(P1, X1, Y1, S1, Di),

point (P2, X2, Y2, 0, 2),

point(P3, X3, Y3, S3, D3),

point(P4, X4, Y4, S4, D4),

point(P5, X5, Y5, S5, D5),

lin(P1, P2),

1in(P2, P3),

lin(P4, P1),

lin(P3, P5),

retract(point (P2, X2, Y2, 0, 2)),

assertz(point (P2, X2new, Y2new, 0, 2)),

write("esil fired\n\n"),’

1

execute(reil, [i(Pl), r(X1), r(¥Yl), i(si), i(D1),
i(P2), r(X2), r(¥2), r(X2new), r(¥Y2new),
i(P3), r(x3), r(y3), i(s3), i(b3),
_i(Pa), r(xXa), r(va), i(s4), i(D4)]) :-

write("eil entered\n"),

point(P1, X1, Y1, S1, D1),

point(P2, X2, Y2, O, ,

point(P3, X3, Y3, 8§83, D3),

point (P4, X4, Y4, S4, D4),

1in(P1, P2),

1in(P2, P3),

lin(P4, P1),

retract(point (P2, X2, Y2, 0, 2)),

assertz(point (P2, X2new, Y2new, 0, 2)),

write("eil fired\n\n"),

|

execute(reo3, [i(P1l), r(Xl), r(Yl), i(s1), i(bi1),
i(P2), r(X2), r(Y2), r(X2new), r(¥2new),
i(P3), r(X3), r(y3), i(s3), i(D3),
~i(P4), r(X4), r(¥v4), i(s4), i(D4)]) :-

write("eo3 entered\n"),

point(P1, X1, Yi, S1, D1),

point(P2, X2, Y2, 0, 2),

point(P3, X3, Y3, S3, D3),

point (P4, X4, Y4, 5S4, D4),

lin(P1, P2),

lin(P2, P3),

1in(P3, P4),

retract(point(P2, X2, Y2, 0, 2)),

assertz(point(P2, X2new, Y2new, 0, 2)),

write("eo3 fired\n\n"),

|




execute(rgs, [i(Pl), r(X1l), r(Yl), i(s1i), i(Db1),
i(p2), r(x2), r(v2), i(s2), i(b2),
i(p3), r(X3), r(¥3), i(s3), i(b3),
i(P4), r(X4), r(Y4), i(S4), i(D4),
) r(X5), r(¥s)l) :-

write("gs entered\n"),

point(P1, X1, Y1, 81, D1),

point (P2, X2, Y2, S2, D2),

point(P3, X3, Y3, S3, D3),

point(P4, X4, Y4, S4, D4),

lin(P1, P2),

1in(P2, P3),

lin(P4, P1),

Dlnew = D1 - 1,
D2new = D2 - 1,
D3new = D3 + 1,

retract(point(P1, X1, Y1, Si, D1)),
assertz(point(P1, X1, Y1, S1, Dlnew)),
retract(point(P2, X2, Y2, S2, D2)),
assertz(point (P2, X2, Y2, S2, D2new)),
retract(point(P3, X3, ¥3, S3, D3)),
assertz(point(P3, X3, Y3, S3, D3new)),
incount(P5),

assertz(point(P5, X5, ¥5, 0, 3)),
retract(lin(P4, Pl1)),

assertz(lin(P4, P5)),

assertz(lin(P5, P1))
retract(lin(Pl, P2))
assertz(lin(P5, P3))
retract(1lin(P2, P3))
assertz(1lin(P3, P2))
write("gs fired\n\n"

Ll N Y

execute(res, [i(P1l), r(X1), r(¥Yl), i(s1i), i(Db1),
i(P2), r(X2), r(y2), i(s2), i(p2)
i(P3), r(x3), r(¥3), i(s3), i(D3)
i(P4), r(X4), r(v4), i(s4), i(D4)
write("es entered\n"),
point(P1, X1, Y1, Si, Di1),
point (P2, X2, Y2, S2, D2),
point(P3, X3, Y3, S3, D3),
point (P4, X4, Y4, S4, D4),
1in(P1, P2),
1in(P2, P3),
1in(P4, P1),

Dinew = D1 - 1,
D2new = D2 - 1,
D3new = D3 + 1,

Dinew = D4 + 1,
retract(point(P1, X1, Y1, s1, D1)),
assertz(point(P1l, X1, Y1, S1, Dinew)),
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retract(point(P2, X2, Y2, S2, D2)),
assertz(point (P2, X2, Y2, S2, D2new)),
retract(point(P3, X3, ¥3, S3, D3)),
assertz(point(P3, X3, Y3, S3, D3new)),
retract(point(P4, X4, Y4, S4, D4)),
assertz(point(P4, X4, Y4, S4, Dédnew)),
retract(lin(P1, P2)),

assertz(lin(P4, P3)),

retract(lin(P2, P3)),

assertz(1lin(P3, P2)),

write("es fired\n\n").

execute(rls, [i(P1l), r(X1), r(¥Yl), i(s1), i(D1),
i(p2), r(X2), r(y2), i(s2), i(bz),
i(P3), r(X3), r(¥3), i(s3), i(D3),
i(pP4), r(X4), r(v4), i(s4), i(D4),
, r(X5), r(vs)]) :-

write("1ls entered\n"),

point(P1, X1, Y1, S1, D1),

point (P2, X2, Y2, S2, D2),

point(P3, X3, ¥3, S3, D3),

point (P4, X4, Y4, S4, D4),

1in(P1, P2),

lin(P2, P3),

1in(P4, P1),

Dinew = D1 - 1,

D2new = D2 - 1,

D4dnew = D4 + 1,

retract(point(P1, X1, Y1, Si, D1)),

assertz(point(P1, X1, Y1, S1, Dlinew)),

retract(point(P2, X2, Y2, S2, D2)),

assertz(point(P2, X2, Y2, S2, D2new)),

retract(point (P4, X4, Y4, S4, D4)),

assertz(point(P4, X4, Y4, S4, Dédnew)),

incount(P5),

assertz(point(P5, X5, ¥5, 0, 3)),

retract(lin(P1, P2)),

assertz(lin(P4, P5)),

retract(lin(P2, P3)),

assertz(lin(P5, P2)),

assertz(1lin(P5, P3)),

write("ls fired\n\n").

execute(_, _) :-
write(%rule is not fired\n\n").
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APPENDIX D: SOURCE CODE FOR HYDRAULIC DESIGN COMPONENT
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R R R R R T T PR T P L L L L R R R R R A g o s

ucze7
UC334
UC483
Uceo03
Ucss89e
UCROAD
UCRAIL
UCABLE
UCREEK
RPERKM
CPERKM
RLEN
CLEN

N

X

Y
NUMN
QIN
QCN
QDN
IRSET
ICSET

NL

THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE

NODE VARIABLES

THE
THE
THE
THE
THE
THE
THE
THE
THE

LINE VARIABLES

THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE

VARTIABLE DICTIONARY

CONFIGURATION VARIABLES

UNIT COST OF 26.7 P.E. PIPE ($/m)
UNIT COST OF 33.4 P.E. PIPE ($/m)
UNIT COST OF 48.3 P.E. PIPE ($/m)
UNIT COST OF 60.3 P.E. PIPE ($/m)
UNIT COST OF 88.9 P.E. PIPE ($/m)

COST OF A ROAD CROSSING (%)

COST OF A RAILROAD CROSSING ($)

COST OF A CABLE CROSSING (S)

COST OF A CREEK/RIVER CROSSING ($)
NUMBER OF ROAD CROSSINGS PER KILOMETER
NUMBER OF CABLE CROSSINGS PER KILOMETER
EQUIVALENT LENGTH OF A RAILROAD CROSSING
EQUIVALENT LENGTH OF A CREEK CROSSING

NUMBER OF NODES
X-COORDINATE OF EACH NODE (m)
Y-COORDINATE OF EACH NODE (m)
NUMBER OF INTERMITTENT LOADS
INTERMITTENT LOAD (m~3/hr)
CONTINUOUS LOAD (m~3/hr)
DRYER LOAD (m~3/hr)

RAILROAD SET

RIVER/CREEK SET

NUMBER OF LINES
ORIGIN NODE NUMBER

DESTINATION NODE NUMBER

LENGTH OF A LINE (m)

X~COORDINATE OF ORIGIN (m)

Y-COORDINATE OF ORIGIN (m)

X~COORDINATE OF DESTINATION (m)
Y-COORDINATE OF DESTINATION (m)

MAXIMUM LEVEL IN THE TREE

LEVEL OF A LINE

LENGTH OF THE LONGEST LEG IN THE TREE (m)
DISTANCE FROM DESTINATION TO SOURCE (m)
NUMBER OF INTERMITTENT LOADS
INTERMITTENT LOAD (m~3/hr)

CONTINUOUS LOAD (m~3/hr)

Fok ok ko % o b sk sk % o ok otk Sk Sk ok b s N % o b ok b % oo M % % ok % ook ok o A sk N ok o ok 3 N N % ¥ %
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QDL
FC = THE COINCIDENCE FACTOR

QTL - THE TOTAL LOAD OR DESIGN LOAD (m*3/hr)
PDMAX THE OPTIMUM PRESSURE DROP PER KM (kPa/m)
PIN THE INLET PRESSURE (kPa)

POUT - THE OUTLET PRESSURE (kPa)

PD - THE PRESSURE DROP PER KILOMETER (kPa/km)
SIZE THE DIAMETER OF A PIPE SEGMENT (mm)

THE DRYER LOAD (m~3/hr)

SYSTEM VARIABLES

TRUE IF LAYOUT FAILS
FAIL2 - FLAG TRUE IF MAX. CAPACITY EXCEEDED )
FAIL3 - FLAG TRUE IF INSUFFICIENT END PRESSURE)

%
*
*
*
*
*
*
*
*
*
*
*
% FAIL1 - FLAG
*
*
* FAIL4 - FLAG ( TRUE IF PRESSURE DROP .GT. 20 kPa/km)
*
*
*
*
*
%
*
*
*
*
*
*
*
*
*
*
*

P -~

*

%

*

*

*

%

*

*

*

%

*

*

*

*

%

*

AL267 - THE TOTAL LENGTH OF 26.7 P.E. PIPE (m) *
AL334 - THE TOTAL LENGTH OF 33.4 P.E. PIPE (m) *
AL483 - THE TOTAL LENGTH OF 48.3 P.E. PIPE (m) *
AL603 - THE TOTAL LENGTH OF 60.3 P.E. PIPE (m) *
AL889 - THE TOTAL LENGTH OF 88.9 P.E. PIPE (m) *
IROAD - THE NUMBER OF ROAD CROSSINGS *
IRAIL - THE NUMBER OF RAIL CROSSINGS *
ICABLE ~ THE NUMBER OF CABLE CROSSINGS *
THE NUMBER OF CREEK CROSSINGS *
THE TOTAL LENGTH OF PIPE (m) *
OUTLET PRESSURE BELOW 140 kPa *
PRESSURE DROP OF 20 kPa/km EXCEEDED *
*

*

*

*

*

*

*

*

*

*

*

*

*

%

*

%

*

ICREEK
ALTOT

IWARN1
IWARN2

COST VARIABLES

c267 - THE COST OF 26.7 P.E. PIPE ($)
* C334 = THE COST OF 33.4 P.E. PIPE ($)
* C483 - THE COST OF 48.3 P.E. PIPE ($)
* C603 =~ THE COST OF 60.3 P.E. PIPE ($)
* c889 = THE COST OF 88.9 P.E. PIPE ($)
* CPIPE -~ THE TOTAL COST OF ALL PIPE ($)
* CROAD - THE COST OF ALL ROAD CROSSINGS (s)
* CRAIL - THE COST OF ALL RAIL CROSSINGS ($)
* CCABLE -~ THE COST OF ALL CABLE CROSSINGS ($)
* CCREEK -~ THE COST OF ALL CREEK CROSSINGS (%)
* cToT - THE TOTAL COST OF THE SYSTEM ($)
*
*****************************************************************

GLOBAL VARIABLES

CONFIGURATION VARIABLES

REAL UC267,UC334,UC483,UCGO3,UC889,UCROAD,UCRAIL,UCABLE,UCREEK
REAL RPERKM,CPERKM,RLEN,CLEN

NODE VARIABLES
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INTEGER N,NUMN(200),IRSET(200),ICSET(200)
REAL X(200),Y(200),QIN(200),QCN(200),QDN(200)

LINE VARIABLES

INTEGER NL,IFR(200),ITO(200),LMAX,LEV(200),NUML(200)

REAL ALEN(200),DMAX,DIST(200),X1(200),Y1(200),X2(200),Y2(200)
REAL QIL(200),QCL(200),QDL(200),FC(200),QTL(200)

REAL PDMAX,PIN(200),POUT(200),PD(200),SIZE(200)

SYSTEM VARIABLES

LOGICAL FAIL1,FAIL2,FAIL3,FAIL4

INTEGER IROAD,IRAIL,ICABLE,ICREEK,IWARN1(200),IWARN2(200)
REAL AL267,AL334,ALA83,AL603,ALTOT

COST VARIABLES

REAL C267,C334,C483,C603,C889,CPIPE,CROAD,CRAIL,CCABLE,CCREEK,CTOT

MAIN LINE

CONFIGURE THE PROGRAM
CALL UCREAD (UC267,UC334,UC483,UC603,UC889,UCROAD,UCRAIL,UCABLE,
*UCREEK , RPERKM , CPERKM , RLEN , CLEN )

READ NODES FILE

CALL NDREAD (N,X,Y,NUMN,QIN,QCN,QDN,IRSET,ICSET)

WRITE NODES.LSP FILE

CALL NDLRIT (N,X,Y,NUMN,QIN,QCN,QDN,IRSET,ICSET)

WRITE NODES.DAT FILE

CALL NDDRIT (N,X,Y,NUMN,QIN,QCN,QDN,IRSET,ICSET)

FIND LAYOUT

CALL ROUTE (RLEN,CLEN,N,X,Y,IRSET,ICSET,NL,IFR,ITO,ALEN,X1,Y1,X2,
*Y2,IRATIL, ICREEK) ,

FIND THE LEVEL OF THE LINES IN THE TREE

CALL LEVEL (NL,IFR,ITO,ALEN,LMAX,LEV,DMAX,DIST)
FIND THE LOAD ON EACH LINE

CALL LOAD (NUMN,QIN,QCN,QDN,NL,IFR,ITO,LMAX,LEV,NUML,QIL,QCL,QDL)
FIND THE DESIGN LOAD FOR EACH LINE

CALL FLOAD (NL,NUML,QIL,QCL,QDL,FC,QTL)

CHECK LAYOUT

CALL CHECK1 (NL,QTL,FAIL1,FAIL2)

IF (FAIL1.OR.FAIL2) GO TO 100

GET DESIRED PRESSURE DROP PER KM

CALL MAXPD (DMAX,PDMAX)

FIND PIPE SIZES AND PRESSURES

CALL PRESS (NL,IFR,ITO,ALEN,LMAX,LEV,QTL,PDMAX,PIN,POUT,PD,SIZE,
*IWARN1, IWARN2)

CHECK FOR SUFFICIENT END PRESSURE AND PRESSURE DROP CONSTRAINT
CALL CHECK2 (NL,IWARN1,IWARN2,FAIL3,FAIL4)

TOTAL PIPE LENGTHS

CALL TOTAL (RPERKM,CPERKM,NL,ALEN,SIZE,AL267,AL334,AL483,AL603,
*AL889 , IROAD, ICABLE,ALTOT)

FIND COSTS

CALL COSTS (UC267,UC334,UC483,UC603,UC889,UCROAD,UCRAIL,UCABLE,
*UCREEK,AL267,AL334,AL483,AL603,AL889,IROAD,IRAIL, ICABLE, ICREEK,
%C267,C334,C483,C603,C889,CPIPE, CROAD,CRAIL,CCABLE , CCREEK, CTOT)
WRITE LINES.DAT FILE



206

CALL LNDRIT (NL,IFR,ITO,ALEN,NUML,QTL,PIN,POUT,PD,SIZE,IWARN1,
*IWARN2,AL267,AL334,AL483,AL603,AL889,IROAD, IRAIL, ICABLE, ICREEK,
*ALTOT,C267,C334,C483,C603,C889,CPIPE,CROAD,CRAIL,CCABLE, CCREEK,
*CTOT)

WRITE LINES.LSP FILE

CALL LNLRIT (NL,X1,Y1,X2,Y2,SIZE)

GO TO 101

100 CONTINUE

WRITE ERROR LINES.DAT FILE

CALL FDRIT (NL,IFR,ITO,ALEN,NUML,QTL)

WRITE ERROR LINES.LSP FILE

CALL FLRIT (NL,X1,Y1l,X2,Y2,FAIL1)

101 CONTINUE

STOP

END
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SUBROUTINE UCREAD (UC267,UC334,UC483,UC603,UC889,UCROAD,UCRAIL,

*UCABLE , UCREEK ,RPERKM, CPERKM , RLEN ,CLEN)
L L T L I T T LY

uca2e7
UC334
Uuc483
Uce03
Ucssoe
UCROAD
UCRAIL
UCABLE
UCREEK
RPERKM
CPERKM
RLEN
CLEN

o Ak A o ok ok M sk ok b Sk ko ok % % N N Sk % N S

LR R R R T R T T L Y

OUTPUT PARAMETERS

OUTPUT PARAMETERS

THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE

THIS SUBROUTINE READS IN DATA FROM THE FILE
AND CALCULATES THE LENGTH OF 26.7 mm PIPE EQUIVALENT
TO A RAILWAY CROSSING AND A CREEK CROSSING.

VARIABLE DICTIONARY

UNIT
UNIT
UNIT
UNIT
UNIT
COST
COosT

COST
COoST
COST
COST
CosT
OF A
OF A
COST OF A
COST OF A
NUMBER OF
NUMBER OF

PIPE
PIPE
PIPE
OF 60.3 P.E. PIPE
OF 88.9 P.E. PIPE
ROAD CROSSING ($)
RAILROAD CROSSING
CABLE CROSSING ($)

P.E.
P.E.
P.E.

OF
OF
OF

26.7
33.4
48.3

CREEK/RIVER CROSSING ($)

ROAD CROSSINGS PER KILOMETER
CABLE CROSSINGS PER KILOMETER
EQUIVALENT LENGTH OF A RAILROAD CROSSING
EQUIVALENT LENGTH OF A CREEK CROSSING

"gcosT"

JLILL
533553

R T W W NP N

(s

*
*
%
%
*
*
*
*
*
*
*
*
*
*
%
*
*
*
*
*
*
*
*
*
*

REAL UC267,UC334,UC483,UC603,UC889,UCROAD,UCRAIL,UCABLE , UCREEK
REAL RPERKM,CPERKM,RLEN, CLEN
OPEN(UNIT=1,FILE=’UCOST’)

READ(1,150)UC267
READ(1,150)UC334
READ(1,150)UC483
READ(1,150)UC603
READ(1,150)UC889
READ( 1,150 )UCROAD
READ(1,150)UCRAIL
READ(1,150)UCABLE
READ (1,150 )UCREEK
READ( 1,150 )RPERKM
READ (1,150 )CPERKM
CLOSE(UNIT=1)
RLEN=UCRAIL/UC267
CLEN=UCREEK /UC267
RETURN
FORMAT ( 20X,F8.2)
END
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SUBROUTINE NDREAD (N,X,Y,NUMN,QIN,QCN,QDN,IRSET,ICSET)
R TR s R R R L Y E EE A A R A X XX X R R R R A X A S A R k3

N -
X -
\'4 -
NUMN -
QIN
QCN
QDN
IRSET
ICSET

W kN b ok W N W o ok o % ook ok Sk ok N % N % ok ok %

OUTPUT PARAMETERS

THE
THE
THE
THE
THE
THE
THE
THE
THE

LOCAL VARIABLES

THIS SUBROUTINE READS IN DATA IN THE "NODES" FILE
CREATED BY THE AUTOLISP ROUTINE "“SUBMIT".

VARTIABLE DICTIONARY

*
*
*
*
*
*
*
%
*
NUMBER OF NODES *
X-COORDINATE OF EACH NODE (m) *
Y-COORDINATE OF EACH NODE (m) *
NUMBER OF INTERMITTENT LOADS *
INTERMITTENT LOAD (m~3/hr) *
CONTINUOUS LOAD (m~3/hr) *
DRYER LOAD (m~3/hr) *
RAILROAD SET *
RIVER/CREEK SET *

*

%

*®

*

*

*

*

I - A COUNTER

hhkkhkhkhdhkhkhhhkhhkhkhkhdhhhhhhhhhhhhhhhdhhdhdrhhdrdhdddhdddrdddddbdhdbhbhthx

OUTPUT PARAMETERS

INTEGER N,NUMN(200),IRSET(200),ICSET(200)
REAL X(200),Y(200),QIN(200),0CN(200),Q0DN(200)

LOCAL VARIABLES
INTEGER I

OPEN (UNIT=1,FILE='NODES’)

READ(1,150)N
DO 100 I=1,N,1

READ(1,*)X(I),Y(I),NUMN(I),QIN(I),QCN(I),QDN(I),

*IRSET(I),ICSET(TI)
100 CONTINUE
CLOSE (UNIT=1)
RETURN
150 FORMAT(/I4)
END
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SUBROUTINE NDLRIT (N,X,Y,NUMN,QIN,QCN,QDN,IRSET,ICSET)
R R I T T F P T P P E T T LT R

* %
*  THIS SUBROUTINE CREATES A NEW "NODES.LSP" FILE *
*  USED BY THE AUTOLISP ROUTINES. *
% *
%* *®
*  VARIABLE DICTIONARY *
* *
¥  INPUT PARAMETERS *
* *
* N - THE NUMBER OF NODES *
* X - THE X-COORDINATE OF EACH NODE (m) *
* Y - THE Y-COORDINATE OF EACH NODE (m) *
% NUMN - THE NUMBER OF INTERMITTENT LOADS *
* QIN - THE INTERMITTENT LOAD (m~3/hr) *
* QCN - THE CONTINUOUS LOAD (m~3/hr) *
* QDN - THE DRYER LOAD (m~3/hr) *
* IRSET - THE RAILROAD SET *
* ICSET ~- THE RIVER/CREEK SET *
% *
* *
* LOCAL VARIABLES *
* *
* I -~ A COUNTER *
* *
222 R Y R R E R R R LRI,

INPUT PARAMETERS
INTEGER N,NUMN(200),IRSET(200),ICSET(200)
REAL X(200),Y(200),QIN(200),QCN(200),0QDN(200)
LOCAL VARIABLES
INTEGER I
OPEN(UNIT=1,FILE='NODES.LSP’)
WRITE(1,150)N
DO 100 I=1,N,1
WRITE(1,151)X(I),Y(I),NUMN(I),QIN(I),QCN(I),QDN(I),IRSET(I),
*ICSET(I) .
100 CONTINUE
WRITE(1,152)
CLOSE(UNIT=1)
: "RETURN
150 FORMAT(’(setq nodes (quote ( 7,I3,’ (')
151 FORMAT(’( 7,2(F9.1,2X),I3,3(2X,F6.1),2(2X,1I2),’ )")
152 FORMAT(’ ))))’)
END
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SUBROUTINE NDDRIT (N,X,Y,NUMN,QIN,QCN,QDN,IRSET,ICSET)
******************************************************************

* *
*  THIS SUBROUTINE CREATES THE "NODES.DAT" FILE WHICH *
* IS PRINTED BY THE "NODEDATA" AUTOCAD MACRO. *
* *
* *
*  VARIABLE DICTIONARY *
* *
*  INPUT PARAMETERS *
* *
* N - THE NUMBER OF NODES *
* X - THE X-COORDINATE OF EACH NODE (m) *
* Y - THE Y-COORDINATE OF EACH NODE (m) - *
* NUMN - THE NUMBER OF INTERMITTENT LOADS *
* QIN - THE INTERMITTENT LOAD (m~3/hr) *
* QCN - THE CONTINUOUS LOAD (m~3/hr) *
* QDN - THE DRYER LOAD (m”3/hr) *
* IRSET - THE RAILROAD SET *
* ICSET - THE RIVER/CREEK SET *
* *
* %
*  LOCAL VARIABLES *
% %
* I - A COUNTER *
*® *
******************************************************************

INPUT PARAMETERS
INTEGER N,NUMN(200),IRSET(200),ICSET(200)
REAL X(200),Y(200),QIN(200),QCN(200),QDN{200)
LOCAIL VARIABLES
INTEGER I
OPEN (UNIT=1,FILE=’(C)NODES.DAT’)
WRITE(1,150)
DO 100 I=1,N,1
WRITE(1,151)I,X(I),¥(I),NUMN(I),QIN(I),QCN(I),QDN(I),IRSET(I),
*ICSET(I)
100 CONTINUE
WRITE(1,152)
CLOSE (UNIT=1)
RETURN
150 FORMAT(’ POINT’,6X,’X’,10X,’Y’,6X,/NUM’,3X,’QIN’,5X, QCN’,5X,
*’QDN’ ,4X, 'RSET CSET/ /f #%kk%/ D(7 skkkkkkkk’) 1  dkk/
*¥3(7 kkkkkk/) 2(7  kkkk/))
151 FORMAT(’ ’,I5,2(2X,F9.1),2X,I3,3(2X,F6.1),3X,I2,4X,I2)
152 FORMAT(’17)
END
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SUBROUTINE ROUTE (RLEN,CLEN
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*Y¥1,X2,Y2,IRAIL,ICREEK)
R L L T T L L L L LT

ﬁ-*******ﬂ-*****%**%**************%*******#X-*ﬁ-%***ﬂ-

THIS SUBROUTINE FINDS THE MINIMUM SPANNING TREE
THROUGH THE SET OF NODES GIVEN. NODES ARE GROUPED
INTO RAIL AND CREEK SETS TO DETERMINE IF A RAILWAY
OR CREEK CROSSING OCCURS. IF A LINE IS FOUND TO
CROSS A RAILWAY OR CREEK THE LENGTH IS WEIGHTED IN
PROPORTION TO THE COST OF THAT CROSSING. THE TREE
IS DETERMINED ON THE BASIS OF THE WEIGHTED LENGTHS.

THIS SUBROUTINE RETURNS THE ACTUAL LENGTHS OF LINES
RATHER THAN THE WEIGHTED LENGTHS.

VARIABLE DICTIONARY

INPUT PARAMETERS

RLEN - THE EQUIVALENT LENGTH OF A RAILROAD CROSSING
CLEN - THE EQUIVALENT LENGTH OF A CREEK CROSSING

N — THE NUMBER OF NODES

X - THE X-COORDINATE OF EACH NODE (m)

Y - THE Y-COORDINATE OF EACH NODE (m)

IRSET - THE RAILROAD SET

ICSET - THE RIVER/CREEK SET

OUTPUT PARAMETERS

NL - THE NUMBER OF LINES
IFR THE ORIGIN NODE NUMBER

ITO - THE DESTINATION NODE NUMBER

ALEN - THE LENGTH OF A LINE (m)

X1 - THE X-COORDINATE OF ORIGIN (m)

Y1 = THE Y-COORDINATE OF ORIGIN (m)

X2 - THE X~-COORDINATE OF DESTINATION (m)

Y2 - THE Y~-COORDINATE OF DESTINATION (m)
IRATIL THE NUMBER OF RAIL CROSSINGS
ICREEK THE NUMBER OF CREEK CROSSINGS

LOCAL VARIABLES

B - THE TABLE OF WEIGHTED LENGTHS (m)

ICOLS - THE LIST OF COLUMNS (NODES) IN THE TREE

HIGH - THE LONGEST LENGTH (m)

ALOW - THE SHORTEST LENGTH FOUND IN A SEARCH (m)
IL,JL. - THE INDICES OF LINE WITH THE SHORTEST LENGTH
I,J,K,L - COUNTERS

,N,X,¥,IRSET,ICSET,NL,IFR,ITO,ALEN,X1,

*******>(->i-******%**********X—#******#****%**#%**%&*
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INPUT PARAMETERS
INTEGER N,IRSET(200),ICSET(200)
REAL RLEN,CLEN,X(200),Y(200)
OUTPUT PARAMETERS

INTEGER NL,IFR(200),ITO(200) ,IRAIL,ICREEK
REAL ALEN(200),X1(200),Y1(200),X2(200),Y2(200)
LOCAL VARIABLES

INTEGER ICOLS(200),IL,JL,I,J,K,L
REAL B(200,200),HIGH,ALOW
IRAIL=0

ICREEK=0

BUILD TABLES

NL=N-1

HIGH=0.0

DO 107 I=1,NL,1

DO 106 J=I+1,N,1
B(I,J)=SQRT((ABS(X(I)-X(J))**2.0)+(ABS(Y(I)=-Y(J))*%2.0))
IF(IRSET(I)-IRSET(J))100,101,100
CONTINUE

B(I,J)=B(I,J)+RLEN

CONTINUE
IF(ICSET(I)~ICSET(J))102,103,102
CONTINUE

B(I,J)=B(I,J)+CLEN

CONTINUE

B(J,I)=B(I,J)
IF(B(I,J)-HIGH)105,105,104
CONTINUE

HIGH=B(I,J)

CONTINUE

CONTINUE

CONTINUE

HIGH=HIGH+1.0

SET DIAGONAL TO HIGH

DO 108 I=1,N,1

B(I,I)=HIGH

CONTINUE

START SEARCH IN COLUMN 1
ICOLS(1)=1

DO 118 L=1,NL,1

WIPE OUT SELECTED ROW

I=ICOLS(L)

DO 109 J=1,N,1

B(I,J)=HIGH

CONTINUE

INITIALIZE FOR SEARCH
ALOW=B(1,1)

IL=1

JL=1

BEGIN SEARCH FOR SMALLEST DISTANCE
DO 113 K=1,L,1
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J=ICOLS(K)
DO 112 I=1,N,1
IF (B(I,J)-ALOW) 110,111,111
110 CONTINUE
ALOW=B(I,J)
IL=I
JL=J
111 CONTINUE
112 CONTINUE
113 CONTINUE
IFR(L)=JL
ITO(L)=IL
ALEN(L)=B(IL,JL)
IF(IRSET(JL)-IRSET(IL))114,115,114
114 CONTINUE
ALEN(L)=ALEN(L)-RLEN
IRAIL=IRATL+1
115 CONTINUE
IF(ICSET(JL)~-ICSET(IL))116,117,116
116 CONTINUE
ALEN(L)=ALEN(L)-CLEN
ICREEK=ICREEK+1
117 CONTINUE
X1(L)=X(JL)
Y1(L)=Y(JL)
X2 (L)=X(IL)
Y2(L)=Y(IL)
ICOLS (L+1)=IL
118 CONTINUE
RETURN
END




OOOOOOOOOOOOQOOOOOOOOOOOOOOOOO

®]

101

102
104

214

SUBROUTINE LEVEL (NL,IFR,ITO,ALEN,LMAX,LEV,DMAX,DIST)
******************************************************************

THIS SUBROUTINE CALCULATES THE LEVEL OF EACH LINE

IN THE TREE AND THE DISTANCE OF THE DESTINATION NODE
FROM THE SOURCE.

VARIABLE DICTIONARY

INPUT PARAMETERS

NL - THE NUMBER OF LINES

IFR - THE ORIGIN NODE NUMBER

ITO - THE DESTINATION NODE NUMBER
ALEN - THE LENGTH OF A LINE (m)

OUTPUT PARAMETERS

LMAX - THE MAXIMUM LEVEL IN THE TREE

LEV —= THE LEVEL OF A LINE

DMAX ~ THE LENGTH OF THE LONGEST LEG IN THE TREE (m)
DIST - THE DISTANCE FROM DESTINATION TO SOURCE (m)

LOCAL VARIABLES
I,J = COUNTERS

Wk Aok ok o ok N ok % N N % o W o ok N b W % N % % %

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*****************************************************************

INPUT PARAMETERS
INTEGER NL,IFR(200),ITO(200)
REAL ALEN(200)

OUTPUT PARAMETERS

INTEGER LMAX,LEV(200)

REAL DMAX,DIST(200)

LOCAL VARIABLES

INTEGER I,J

FIND THE CORRESPONDING LEVELS OF ALL LINES
FIND THE MAXIMUM LEVEL
LMAX=0

DMAX=0

DO 100 I=1,NL,1
IF(IFR(I)-1)102,101,102
CONTINUE

LEV(I)=1

DIST(I)=ALEN(I)

GO TO 103

CONTINUE

J=1

CONTINUE
IF(IFR(I)-ITO(J))105,106,105



106

105

103
108
107
110
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CONTINUE
LEV(I)=LEV(J)+1
DIST(I)=DIST(J)+ALEN(I)

GO TO 103

CONTINUE

J=J+1

GO TO 104

CONTINUE
IF(LEV(I)-LMAX)107,107,108
CONTINUE

LMAX=LEV(I)

CONTINUE
IF(DIST(I)-DMAX)109,109,110
CONTINUE

DMAX=DIST(I)

CONTINUE

CONTINUE

RETURN

END
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SUBROUTINE LOAD (NUMN,QIN,QCN,QDN,NL,IFR,ITO,LMAX,LEV,NUML,QIL,

*QCL,QDL)
e i L T Y Y Y S I L

%* %
*  THIS SUBROUTINE FINDS THE NUMBER OF LOADS AND THE *
*  LOAD ON THE LINES IN THE TREE. *
* *
*  VARIABLE DICTIONARY *
%* *
*  INPUT PARAMETERS *
% ’ %
* NUMN - THE NUMBER OF INTERMITTENT LOADS *
* QIN -~ THE INTERMITTENT LOAD (m*3/hr) *
* QCN - THE CONTINUOUS LOAD (m”3/hr) *
* QDN - THE DRYER LOAD (m~3/hr) *
* NL - THE NUMBER OF LINES *
* IFR - THE ORIGIN NODE NUMBER *
* ITO - THE DESTINATION NODE NUMBER *
* LMAX - THE MAXIMUM LEVEL IN THE TREE *
* LEV - THE LEVEL OF A LINE *
* *
% *
*  OUTPUT PARAMETERS *
%* *
* NUML - THE NUMBER OF INTERMITTENT LOADS *
* QIL -~ THE INTERMITTENT LOAD (m~3/hr) *
* QcL - THE CONTINUOUS LOAD (m*3/hr) *
* QDL - THE DRYER LOAD (m~3/hr) *
* *
* *
%*  LOCAL VARIABLES *
* *
* 1,7,k - COUNTERS *
* *
EE 2R R R I T Y R R P N Y R L R L Ly

INPUT PARAMETERS
INTEGER NUMN(200),NL,IFR(200),ITO(200),LMAX,LEV(200)
REAL QIN(200),QCN(200),QDN(200)

OUTPUT PARAMETERS

INTEGER NUML(200)

REAL QIL(200),QCL(200),QDL(200)

LOCAL VARIABLES

INTEGER I,J,K

FIND LOAD FOR EACH LINE

DO 100 I=LMAX,1,-1

DO 101 J=1,NL,1

IF(LEV(J)-1)102,103,102

CONTINUE

NUML (J)=NUMN(ITO(J))

QIL(J)=QIN(ITO(J))

QCL(J)=QCN(ITO(J))

QDL (J)=QDN(ITO(J))
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106
104
102
101
100

DO 104 K=1,NL,1
IF(IFR(K)-ITO(J))106,105,106
CONTINUE

NUML (J ) =NUML (J ) +NUML (K )
QIL(J)=QIL(J)+QIL(K)
QCL(J)=QCL(J)+QCL(K)

QDL (J)=QDL(J)+0ODL(K)
CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

RETURN

END

217
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SUBROUTINE FLOAD
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(NL, NUML, QIL,QCL,QDL, FC,QTL)

A R T I Y L R Y Y E XX 3

NL -
NUML -
QIL -
QCL -
QDL -

FC -
QTL -

FACT
QWL
QSL
I,J

Wk ok ok e ok N N b ok b M N % % Sk W N ok o M S N N o N M

R R R R R R Y T T LRI LT N

INPUT PARAMETERS

THIS SUBROUTINE COMPUTES THE FACTORED LOADS FOR ALL
THE LINES. COINCIDENCE FACTORS ARE OBTAINED FROM A
LOOK-UP TABLE
VARIABLE DICTIONARY

INPUT PARAMETERS

OUTPUT PARAMETERS

LOCAL VARIABLES

"FLOOKUP"Y.

THE NUMBER OF LINES
THE NUMBER OF INTERMITTENT LOADS
THE INTERMITTENT LOAD (m~3/hr)
THE CONTINUOUS LOAD (m~3/hr)

THE DRYER LOAD (m~3/hr)

THE COINCIDENCE FACTOR
THE TOTAL LOAD OR DESIGN LOAD (m”3/hr)

THE TABLE OF COINCIDENCE FACTORS
THE WINTER LOAD OF A LINE
THE SUMMER LOAD OF A LINE

®
*
%
*
%
*
*
%
*
*®
*
*
k3
*
*
*®
*
*
*
*®
*
%
*
x
*
*
%
COUNTERS *
%*
*

INTEGER NL,NUML(200)
REAL QIL(200),QCL(200),QDL(200)

OUTPUT PARAMETERS

REAIL FC(200),QTL(200)

LOCAL VARIABLES

REAL FACT(36),QWL,QSL

INTEGER I,J

READ LOOKUP TABLES
OPEN(UNIT=1,FILE=’FLOOKUP')

DO 100 I=1,36,1
READ(1,*)FACT(I)
CONTINUE

CLOSE (UNIT=1)

FACTOR THE LOAD OF EACH LINE

DO 101 I=1,NL,1

IF(NUML(I)-0)102,

CONTINUE
J=1
GO TO 106

102,103
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107
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109
101
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CONTINUE
IF(NUML(I)-36)105,105,104
CONTINUE

J=36

GO TO 106

CONTINUE

J=NUML(I)

CONTINUE

FC(I)=FACT(J)
QWL=(QIL(I)*FC(I))+QCL(I)
QSL=(0.4*FC(I)*QIL(I))+QCL(I)+QDL(I)
IF(QSL-QWL)107,107,108
CONTINUE

QTL(I)=QWL

GO TO 109

CONTINUE

QTL(I)=QSL

CONTINUE

CONTINUE

RETURN

END
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SUBROUTINE CHECK1 (NL,QTL,FAIL1l,FAIL2)
S Y Y I Y I I X,

THIS SUBROUTINE CHECKS TO SEE IF A TERMINAL DUMMY NODE
HAS BEEN CREATED. IF A LINE IS FOUND WITH NO LOAD, THE
FLAG FAIL IS RETURNED AS TRUE.

VARIABLE DICTIONARY

INPUT PARAMETERS

QTL - THE TOTAL LOAD OR DESIGN LOAD (m"3/hr)
NL - THE NUMBER OF LINES
OUTPUT PARAMETERS
FAIL1 - FLAG ( TRUE IF LAYOUT FAILS
FAIL2 - FLAG ( TRUE IF MAX. CAPACITY EXCEEDED )
LOCAL VARIABLES
I - A COUNTER

LA R A IR G A R R EE EEE N

*
*
*
*
*
*
*
*
*
%
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*****************************************************************

INPUT PARAMETERS
INTEGER NL
REAL QTL(200)
OUTPUT PARAMETERS
LOGICAL FAIL1,FAIL2
LOCAL VARIABLES
INTEGER I
FAIL1=.FALSE.
FAIL2=.FALSE.
DO 100 I=1,NL,1
IF (QTL(I)~0.0)101,101,102
101 CONTINUE
FAIL1=.TRUE.
‘102 CONTINUE
IF (QTL(I)~-600.0)103,103,104
104 CONTINUE
FAIL2=.TRUE.
103 CONTINUE
100 CONTINUE
RETURN
END
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SUBROUTINE MAXPD (DMAX,PDMAX)
e L R T e T T T T

*
THIS SUBROUTINE DISPLAYS THE OPTIMUM PRESSURE DROP

PER KILOMETER AND GETS THE OVERRIDE FROM THE KEYBOARD.
VARIABLE DICTIONARY
INPUT PARAMETERS

DMAX - THE LENGTH OF THE LONGEST LEG IN THE TREE (m)

OUTPUT PARAMETERS

oo % % ok kN % % o W ¥

PDMAX - THE OPTIMUM PRESSURE DROP PER KM (kPa/m)
*
T T L T T T L L L T L I T I Y T

INPUT PARAMETERS
REAL DMAX
OUTPUT PARAMETERS
REAL PDMAX
OPEN (UNIT=5,FILE='TERMINAL’ )
OPEN(UNIT=6,FILE=’(C)TERMINAL')
PDMAX=630000.0/DMAX
IF (PDMAX-20.0)100,100,101
101 CONTINUE
PDMAX=20.0
100 CONTINUE
WRITE(6,150)DMAX
WRITE(6,151)PDMAX
READ( 5, * ) PDMAX
PDMAX=PDMAX/1000.0
CLOSE (UNIT=6)
CLOSE (UNIT=5 )
RETURN
150 FORMAT(’ THE LONGEST LEG IS ’,F8.1,’ m.’)
151 FORMAT(’ THE RECOMMENDED PRESSURE DROP PER KM = ’,F4.1,’ kPa’/
*/ INPUT THE DESIRED PRESSURE DROP PER KM IN KILOPASCALS’)

END

*
*
*
%
*
*
*
%
%
*
*
*
*
*
*
%
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SUBROUTINE PRESS (NL,IFR,ITO,ALEN,LMAX,LEV,QTL,PDMAX,PIN,POUT,PD,

*SI1IZE, IWARN1 , IWARN2)
R Y Y Y S R LRI

THIS PROGRAM CALCULATES THE APPROPRIATE DIAMETER
AS WELL AS THE INLET AND OUTLET PRESSURES FOR EACH
LINE SEGMENT. THE CALCULATIONS ARE PERFORMED WITH
THE AID OF A LOOK-UP TABLE OF GAS FLOW FORMULA
CONSTANTS.

VARIABLE DICTIONARY
INPUT PARAMETERS

NL - THE NUMBER OF LINES
IFR - THE ORIGIN NODE NUMBER

ITO - THE DESTINATION NODE NUMBER

ALEN - THE LENGTH OF A LINE (m) ‘

LMAX - THE MAXIMUM LEVEL IN THE TREE

LEV - THE LEVEL OF A LINE

PDMAX - THE OPTIMUM PRESSURE DROP PER KM (kPa/m)
QTL - THE TOTAL LOAD OR DESIGN LOAD (m~3/hr)

OUTPUT PARAMETERS

PIN - THE INLET PRESSURE (kPa)
POUT - THE OUTLET PRESSURE (kPa)

PD - THE PRESSURE DROP PER KILOMETER (kPa/km)
SIZE - THE DIAMETER OF A PIPE SEGMENT (mm)

IWARN1 - OUTLET PRESSURE BELOW 140 kPa
IWARN2 PRESSURE DROP OF 20 kPa/km EXCEEDED

LOCAL VARIABLES

AK - THE FLOW FORMULA CONSTANTS
IQ - THE INDEX TO THE TABLE OF FLOW CONSTANTS
PIA - THE ABSOLUTE INLET PRESSURE

AKMIN - THE MINIMUM ALLOWABLE FLOW CONSTANT
I,3,K - COUNTERS

IR R R L R R E R E R T % % % % %

*
*
*
*
*
*
*
*
*
*
*
*
*
%
*
*
*
*
*
*
*
*
*
*
*
*
*
*
%*
*
*
*
*
*
*
*
*
*
*
*
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INPUT PARAMETERS
INTEGER NL,IFR(200),ITO(200),LMAX,LEV(200)
REAL ALEN(200),QTL(200),PDMAX

OUTPUT PARAMETERS

INTEGER IWARN1(200),IWARN2(200)

REAL PIN(200),POUT(200),PD(200),SIZE(200)
LOCAL VARIABLES

INTEGER IQ,I,J,K

REAL AK(120,5),PIA,AKMIN
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READ IN LOOK-UP TABLE
OPEN (UNIT=1,FILE='KLOOKUP’)
DO 100 I=1,120,1
READ(1,*)(AK(I,J),J=1,5)
100 CONTINUE
CLOSE(UNIT=1)
SET WARNINGS TO 0
DO 101 I=1,NL,1
IWARN1 (I)=0
IWARN2(I)=0
101 CONTINUE
DESIGN PIPES AT EACH LEVEL
DO 102 I=1,LMAX,1
FIND ALL PIPES AT LEVEL I
DO 103 J=1,NL,1
IF(LEV(J)~-I)104,105,104
105 CONTINUE
FIND INLET PRESSURE
IF(LEV(J)-1)107,106,107
106 CONTINUE
PIN(J)=550.0
GO TO 108
107 CONTINUE
K=1
109 CONTINUE
IF(ITO(K)-IFR(J))110,111,110
110 CONTINUE
K=K+1
GO TO 109
111 CONTINUE
PIN(J)=POUT(K)
CHECK TO SEE IF INLET PRESSURE IS ZERO
IF(PIN(J)-0.0)117,117,108
108 CONTINUE
FIND THE MINIMUM K REQUIRED
IQ=INT( (QTL(J)/5.0)+0.5)
PIA=PIN(J)+94.1
AKMIN=QTL(J)*SQRT (ALEN(J)/( (PIA**2)~( (PIA-(PDMAX*ALEN(J)))**2)))
FIND MINIMUM K POSSIBLE
K=1
112 CONTINUE
IF(AK(IQ,K)~-AKMIN)113,114,114
113 CONTINUE
IF(K-5)116,115,115
115 CONTINUE
IWARN2 (J)=1
GO TO 114
116 CONTINUE
K=K+1
GO TO 112
114 CONTINUE
CALCULATE OUTLET PRESSURE
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POUT (J)=SQRT( (PIA**2)—( ( (QTL(J)/AK(IQ,K))**2)*ALEN(J)))-94.1
CHECK TO SEE IF OUTLET PRESSURE IS SUFFICIENT
IF(POUT(J)-140.0)117,118,118
117 CONTINUE
POUT(J)=0.0
PD(J)=0.0
SIZE(J)=0.0
IWARN1 (J)=1
GO TO 119
118 CONTINUE
CALCULATE PRESSURE DROP PER KM
PD(J)=(PIN(J)-POUT(J))/(ALEN(J)/1000)
PICK PIPE SIZE
IF (K-1)120,120,121
120 CONTINUE
SIZE(J)=26.7
GO TO 119
121 CONTINUE
IF(K-2)122,122,123
122 CONTINUE
SIZE(J)=33.4
GO TO 119
123 CONTINUE
IF(K-3)124,124,125
124 CONTINUE
SIZE(J)=48.3
GO TO 119
125 CONTINUE
IF(K-4)126,126,127
126 CONTINUE
SIZE(J)=60.3
GO TO 119
127 CONTINUE
SIZE(J)=88.9
119 CONTINUE
104 CONTINUE
103 CONTINUE
102 CONTINUE
RETURN
END
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SUBROUTINE CHECK2 (NL,IWARN1,IWARN2,FAIL3,FAIL4)
R T L T Y X I eI

THIS SUBROUTINE CHECKS TO SEE IF SUFFICIENT END
PRESSURE HAS BEEN MAINTAINED OR THE MAXIMUM PRESSURE
DROP CONSTRAINT OF 20 kPa PER km HAS BEEN VIOLATED.

INPUT PARAMETERS
NL - THE NUMBER OF LINES
IWARN1 - OUTLET PRESSURE BELOW 140 kPa
IWARN2 - PRESSURE DROP OF 20 kPa/km EXCEEDED
OUTPUT PARAMETERS

FAIL3 =~ FLAG ( TRUE IF INSUFFICIENT END PRESSURE)
FAIL4 - FLAG ( TRUE IF PRESSURE DROP .GT. 20 kPa/Km)

LOCAL VARIABLES
I - A COUNTER

Bk sk d ko ok N N N ok ook % % o ok % % o o
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INPUT PARAMETERS

INTEGER NL,IWARN1(200),IWARN2(200)
OUTPUT PARAMETERS

LOGICAL FAIL3,FAIL4

LOCAL VARIABLES

INTEGER I

FAIL3=.FALSE.
FAILA4=,FALSE.

DO 104 I=1,NL,1
IF(IWARN1(I)=-0)100,101,100
CONTINUE

FAIL3=.TRUE.

CONTINUE
IF(IWARN2(I)-0)102,103,102
CONTINUE

FAIL4=.TRUE.

CONTINUE

CONTINUE

RETURN

END
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SUBROUTINE TOTAL (RPERKM, CPERKM, NL ,ALEN, SIZE,AL267 ,AL334,AL483,

*AL603,AL889, IROAD, ICABLE, ALTOT)
******************************************************************

THIS SUBROUTINE FIND THE TOTAL LENGTHS OF PIPE USED
AND THE NUMBERS OF ROAD AND CABLE CROSSINGS.

VARIABLE DICTIONARY

INPUT PARAMETERS
RPERKM - THE NUMBER OF ROAD CROSSINGS PER KILOMETER

CPERKM - THE NUMBER OF CABLE CROSSINGS PER KILOMETER
NL - THE NUMBER OF LINES

ALEN - THE LENGTH OF A LINE (m)

SIZE - THE DIAMETER OF A PIPE SEGMENT (mm)

OUTPUT PARAMETERS

AL267 - THE TOTAL LENGTH OF 26.7 P.E. PIPE (m)
AL334 - THE TOTAL LENGTH OF 33.4 P.E. PIPE (m)
AL483 - THE TOTAL LENGTH OF 48.3 P.E. PIPE (m)
AL603 - THE TOTAL LENGTH OF 60.3 P.E. PIPE (m)
AL889 =~ THE TOTAL LENGTH OF 88.9 P.E. PIPE (m)

IROAD - THE NUMBER OF ROAD CROSSINGS

ICABLE - THE NUMBER OF CABLE CROSSINGS

ALTOT - THE TOTAL LENGTH OF PIPE (m)
LOCAL VARIABLES

AKM - TOTAL LENGTH OF PIPE (km)
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*
*
*
*
I - A COUNTER *
: *
%

*****************************************************************

INPUT PARAMETERS
INTEGER NL

REAL RPERKM,CPERKM,ALEN(200),SIZE(200)
OUTPUT PARAMETERS

INTEGER IROAD, ICABLE

REAL AL267,AL334,AL483,AL603,AL889,ALTOT
LOCAL VARIABLES

INTEGER I

REAL AKM

AL267=0.0

AL334=0.0

AL483=0.0

AL603=0.0

AL889=0.0

DO 109 I=1,NL,1
IF(SIZE(I)-26.7)100,100,101
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100 CONTINUE
AL267=AL267+ALEN(I)
GO TO 108

101 CONTINUE
IF(SIZE(I)~-33.4)102,102,103

102 CONTINUE
AL334=AL334+ALEN(I)
GO TO 108

103 CONTINUE
IF(SIZE(I)-48.3)104,104,105

104 CONTINUE
ALA483=ALA83+ALEN(I)
GO TO 108

105 CONTINUE
IF(SIZE(I)-60.3)106,106,107

106 CONTINUE
AL603=AL603+ALEN(I)
GO TO 108

107 CONTINUE
AL889=AL889+ALEN(I)

108 CONTINUE

109 CONTINUE
ALTOT=AL267+AL334+ALA483+AL603+AL889
AKM=ALTOT/1000.0
IROAD=INT (RPERKM#*AKM )
ICABLE=INT (CPERKM*AKM)
RETURN
END



cEeNvEeNoRo oo ReNoRo ko NoRoNoNoNo XoNoNo o NoNoRo R RoXo XoXo oo RoloRoXe e Ro o R oo N e o Ro Ro X o

228

SUBROUTINE COSTS (UC267,UC334,U0C483,UC603,UC889,UCROAD,UCRAIL,
*UCABLE ,UCREEK,AL267 ,AL334 ,AL483,A1.603,AL889,IROAD,IRAIL,ICABLE,
*ICREEK,C267,C334,C483,C603,C889,CPIPE,CROAD,CRAIL,CCABLE,CCREEK,

*CTOT
****i)t*************************************************************
* *
*  THIS SUBROUTINE TOTALS THE COSTS FOR THE SYSTEM *
* %
% *
*  VARIABLE DICTIONARY *
* *
*® %*
*  INPUT PARAMETERS *
% *
* UC267 =~ THE UNIT COST OF 26.7 P.E. PIPE ($/m) *
* UC334 - THE UNIT COST OF 33.4 P.E. PIPE ($/m) *
* UC483 - THE UNIT COST OF 48.3 P.E. PIPE (S$/m) *
* UC603 ~- THE UNIT COST OF 60.3 P.E. PIPE ($/m) *
* UC889 - THE UNIT COST OF 88.9 P.E. PIPE ($/m) *
* UCROAD - THE COST OF A ROAD CROSSING ($) *
* UCRAIL - THE COST OF A RAILROAD CROSSING *
* UCABLE - THE COST OF A CABLE CROSSING ($) *
* UCREEK - THE COST OF A CREEK/RIVER CROSSING ($) *
% AL267 =~ THE TOTAL LENGTH OF 26.7 P.E. PIPE (m) *
* AL334 - THE TOTAL LENGTH OF 33.4 P.E. PIPE (m) *
* AL483 =~ THE TOTAL LENGTH OF 48.3 P.E. PIPE (m) *
* AL603 - THE TOTAL LENGTH OF 60.3 P.E. PIPE (m) *
* AL889 - THE TOTAL LENGTH OF 88.9 P.E. PIPE (m) *
* IROAD - THE NUMBER OF ROAD CROSSINGS *
* IRAIL - THE NUMBER OF RAIL CROSSINGS *
* ICABLE - THE NUMBER OF CABLE CROSSINGS *
* ICREEK - THE NUMBER OF CREEK CROSSINGS *
* *
% %
%¥  OUTPUT PARAMETERS *
*x *®
* C267 - THE COST OF 26.7 P.E. PIPE ($) *
* C334 - THE COST OF 33.4 P.E. PIPE ($) *
* C483 - THE COST OF 48.3 P.E. PIPE ($) *
* C603 - THE COST OF 60.3 P.E. PIPE ($) *
* C889 - THE COST OF 88.9 P.E. PIPE ($) *
* CPIPE - THE TOTAL COST OF ALL PIPE ($) *
* CROAD - THE COST OF ALL ROAD CROSSINGS ($) *
* CRAIL - THE COST OF ALL RAIL CROSSINGS ($) *
* CCABLE - THE COST OF ALL CABLE CROSSINGS ($) *
* CCREEK - THE COST OF ALL CREEK CROSSINGS ($) *
* CTOT ~- THE TOTAL COST OF THE SYSTEM ($) *
%* %
A E R I E R LI T PRI LI EI X E LT IR I T LT E T EFLFETEL LT LT L LT LTI FE Y T T T R e

INPUT PARAMETERS
INTEGER IROAD,IRAIL,ICABLE,ICREEK
REAL UC267,UC334,0C483,UC603,UC889,UCROAD,UCRAIL,UCABLE,UCREEK
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REAL AL267,AL334,AL483,AL603,AL889
OUTPUT PARAMETERS

REAL C267,C334,C483,C603,C889,CPIPE
REAL CROAD,CRATL,CCABLE,CCREEK,CTOT
C267=AL267*UC267

C334=AL334%UC334

C483=AL483*UC483

C603=AL603*UC603

C889=AL889*UC889
CPIPE=C267+C334+C483+C603+C889
CROAD=TIROAD*UCROAD
CRATL=IRAIL*UCRAIL
CCABLE=ICABLE*UCABLE
CCREEK=ICREEK*UCREEK
CTOT=CPIPE+CROAD+CRAIL+CCABLE+CCREEK
RETURN

END
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SUBROUTINE LNDRIT (NL,IFR,ITO,ALEN,NUML,QTL,PIN,POUT,PD,SIZE,
*IWARN1, IWARN2,AL267,AL334,AL483,AL603,AL889, TROAD, IRAIL, ICABLE,
*ICREEK,ALTOT,C267,C334,C483,C603,C889,CPIPE,CROAD,CRAIL, CCABLE,

*CCREEK, CTOT)
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*

NL

IFR
ITO
ALEN
NUML
QTL
PIN
POUT
PD
SIZE
IWARN1
IWARN2
AL267
AL334
AL483
AL603
AL889
TROAD
IRATIL
ICABLE
ICREEK
ALTOT
cz267
C334
€483
Cé603
c889
CPIPE
CROAD
CRAIL
CCABLE
CCREEK
CTOoT

x-x-x-x-x-x-x-x-ﬂ-a-x-a-x-x-x-x-x-:(-x-x-x-x-x-x-x-x-x-x-x-x-x—x-x-x—x-x-x-x-ﬁ-»x-x-x-a-x-#

I,J

INPUT PARAMETERS

- THE
~ THE
- THE
- THE
- THE
- THE
- THE
- THE
- THE
~ THE

THIS SUBROUTINE CREATES THE "LINES.DAT" FILE WHICH
IS PRINTED BY THE

"LINEDATA" AUTOCAD MACRO.

VARIABLE DICTIONARY

NUMBER OF LINES
ORIGIN NODE NUMBER

DESTINATION NODE NUMBER

LENGTH OF A LINE (m)

NUMBER OF INTERMITTENT LOADS

TOTAL LOAD OR DESIGN LOAD (m~3/hr)
INLET PRESSURE (kPa)

OUTLET PRESSURE (kPa)

PRESSURE DROP PER KILOMETER (kPa/km)
DIAMETER OF A PIPE SEGMENT (mm)

- OUTLET PRESSURE BELOW 140 kPa
= PRESSURE DROP OF 20 kPa/km EXCEEDED

- THE
- THE
- THE
- THE
- THE
- THE
~ THE
- THE
- THE
- THE
- THE
- THE
- THE
~ THE
- THE
- THE
- THE
- THE
- THE
- THE
- THE

LOCAL VARIABLES

TOTAL LENGTH OF 26.7 P.E. PIPE (
TOTAL LENGTH OF 33.4 P.E. PIPE (
TOTAL LENGTH OF 48.3 P.E. PIPE (
TOTAL LENGTH OF 60.3 P.E. PIPE (
TOTAL LENGTH OF 88.9 P.E. PIPE
NUMBER OF ROAD CROSSINGS
NUMBER OF RAIL CROSSINGS
NUMBER OF CABLE CROSSINGS
NUMBER OF CREEK CROSSINGS
TOTAL LENGTH OF PIPE (m)
COST OF 26.7 P.E. PIPE
COST OF 33.4 P.E. PIPE
COST OF 48.3 P.E. PIPE
COST OF 60.3 P.E. PIPE
COST OF 88.9 P.E. PIPE
TOTAL COST OF ALL PIPE
COST OF ALL ROAD CROSSINGS ($
COST OF ALL RAIL CROSSINGS ($
(
(

RO R GEOEHTHET)

)
)
)
)
)
)
S

EEN SN I~

COST OF ALL CABLE CROSSINGS
COST OF ALL CREEK CROSSINGS
TOTAL COST OF THE SYSTEM (%)

)
)
$)
$)

- COUNTERS

**x-x—x-x-x-x-x-x-x-x-x-x-*x-x—x-x-x-x-x—x-x-x-x-x—x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-wx-x-
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INPUT PARAMETERS

INTEGER NL,IFR(200),ITO(200),NUML(200),IWARNL(200),IWARN2(200)

REAL ALEN(200),QTL(200),PIN(200),POUT(200),PD(200),SIZE(200)

INTEGER IROAD,IRAIL,ICABLE,ICREEK

REAL AL267,AL334,ALA83,AL603,AL889,ALTOT,C267,C334,C483,C603

REAL C889,CPIPE,CROAD,CRAIL,CCABLE,CCREEK,CTOT

LOCAL VARIABLES

INTEGER I,J

OPEN (UNIT=1,FILE='(C)LINES.DAT")

1=45

DO 104 J=1,NL,1

IF (I-45)101,100,100
100 CONTINUE

TYPE HEADING

WRITE(1,151)

1=0
101 CONTINUE

TYPE ONE LINE

WRITE(1,152)IFR(J),ITO(J),ALEN(J),NUML(J),QTL(J),SIZE(J),PIN(J),

*POUT (J) ,PD(J), IWARNL (J) , IWARN2 (J)

I=I+1

IF(I-45)103,102,102
102 CONTINUE

WRITE(1,150)
103 CONTINUE
104 CONTINUE

WRITE(1,153)

WRITE(1,154)AL267,C267

WRITE(1,155)AL334,C334

WRITE(1,156)ALA83,C483

WRITE(1,157)AL603,C603

WRITE(1,158)AL889,C889

WRITE(1,159)ALTOT,CPIPE

WRITE(1,160)IROAD,CROAD

WRITE(1,161)IRAIL,CRAIL

WRITE(1,162)ICABLE,CCABLE

WRITE(1,163)ICREEK,CCREEK

WRITE(1,164)CTOT

CLOSE (UNIT=1)

RETURN

150 FORMAT(’17)

151 FORMAT(’ FROM TO LENGTH NUM LOAD SIZE PI PO,
x PD WO WD’ /7 %%%k hkkk hkkkkkk Kkx Kkkkk  kkkk/

X4 E X Rk X X XX Thkkk X XX 3 ****’)
152 FORMAT(’ ‘,2(I4,2X),F7.1,2X,I3,2X,F5.1,2X,F4.1,3(2X,F5.1),4X%,1I1,

*5X,I1)
153 FORMAT(‘1PIPE SIZE TOTAL LENGTH COST’ /
k7 Kkhkkhkkhhk hkhkkkihkkkdhiikk *******’)

154 FORMAT(’ 26.7 mm’,8X,F7.0,8X,F8.0)
155 FORMAT(’ 33.4 mm’,8X,F7.0,8X,F8.0)



156
157
158
159
160
161
162
163
164

FORMAT ( /
FORMAT (
FORMAT (
FORMAT ( /
FORMAT ( /
FORMAT( *
FORMAT(
FORMAT ( /
FORMAT( *
END

48.3
60.3
88.9
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
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mn’ ,8X,F7.0,8X,F8.0)
mm’,8%X,F7.0,8%X,F8.0)

mm’ ,8X,F7.0,8X,F8.0/)
*,8X,F7.0,8%X,F8.0//)
NUMBER OF ROAD CROSSINGS
NUMBER OF RAIL CROSSINGS
NUMBER OF CABLE CROSSINGS
NUMBER OF CREEK CROSSINGS

COST OF SYSTEM ' ,F7.0)

L
- w w =

H
WwWwww

m wm o w oW

™ w w N

COoSsT
COST
COST
COST

™oy w9

,F7.0)
,F7.0)
,F7.0)

+F7.0//)
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SUBROUTINE LNLRIT (NL,X1,Y1,X2,Y2,SIZE)
R R R R T T F LT T L L R R T B R R g A AN

*

THIS SUBROUTINE CREATES THE FILE WLINES.LSP" WHICH IS *
USED BY THE AUTOLISP ROUTINES TO PLOT THE SELECTED *
LAYOUT AND DESIGN. *
%*

*

VARIABLE DICTIONARY *
*

INPUT PARAMETERS *
*

*

NL - THE NUMBER OF LINES *

X1 - THE X-COORDINATE OF ORIGIN (m) *

Y1 - THE Y-COORDINATE OF ORIGIN (m) *

X2 - THE X-COORDINATE OF DESTINATION (m) *

Y2 - THE Y-COORDINATE OF DESTINATION (m) *
SIZE - THE DIAMETER OF A PIPE SEGMENT (mm) *

*

*

LOCAL VARIABLES *
*

I - A COUNTER *

*

*

R R T I T T T T T T PR T T PR Y R R e A e
INPUT PARAMETERS

INTEGER NL

REAL X1(200),Y1(200),X2(200),Y2(200),SIZE(200)

LOCAL VARIABLES
INTEGER I

WRITE LINES.LSP FILE
OPEN(UNIT=1,FILE='LINES.LSP’)
WRITE ALL 88.9 mm LINES

WRITE(1,150)
DO 100 I=1,NL,1

IF (SIZE(I)-88.9)103,102,103

CONTINUE

WRITE(1,151)X1(I),Y1(I),X2(I),Y2(I)

CONTINUE
CONTINUE
WRITE(1,152)

WRITE ALL 60.3 mm LINES

WRITE(1,153)
DO 104 I=1,NL,1

IF (SIZE(I)-60.3)106,105,106

CONTINUE

WRITE(1,151)X1(I),Y1(I),X2(I),¥2(I)

CONTINUE
CONTINUE
WRITE(1,152)

WRITE ALL 48.3 mm LINES
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WRITE(1,154)
DO 107 I=1,NL,1
IF (SIZE(I)-48.3)109,108,109
108 CONTINUE
WRITE(1,151)X1(I),Y1(I),X2(1I),¥Y2(I)
109 CONTINUE
107 CONTINUE
WRITE(1,152)
WRITE ALL 33.4 mm LINES
WRITE(1,155)
DO 110 I=1,NL,1
IF (SIZE(I)-33.4)112,111,112
111 CONTINUE
WRITE(1,151)X1(I),Y1(I),X2(I),¥Y2(I)
112 CONTINUE
110 CONTINUE
WRITE(1,152)
WRITE ALL 26.7 mm LINES
WRITE(1,156)
DO 113 I=1,NL,1
IF (SIZE(I)~-26.7)115,114,115
114 CONTINUE
WRITE(1,151)X1(I),Y1(I),X2(I),Y2(I)
115 CONTINUE
113 CONTINUE
WRITE(1,152)
END OF FILE
CLOSE(UNIT=5)
RETURN
150 FORMAT(’(setqg 1889 (quote (’
151 FORMAT(’(( ’,F9.1,2X,F9.1,"’
152 FORMAT(’ )))’)
153 FORMAT(’(setqg 1603 (quote
154 FORMAT(’(setq 1483 (quote
155 FORMAT(’ (setq 1334 (quote
156 FORMAT(’ (setq 1267 (quote
END

( *,F9.1,2X,F9.1,7 ))")

)
)
)
)
)
)

e T e e

- wm N W
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SUBROUTINE FDRIT (NL,IFR,ITO,ALEN,NUML,QTL)
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NL -
IFR -
ITO -
ALEN
NUML -
QTL -

% o Rk %k % ok ¥ % N W % % o % ok % % %

hhkhhhdhhhhhhhdhhdhhhrrdhrdhdiddhhdddddhdhdddddhddhrdhdhhddddtrdditrs

INPUT PARAMETERS

INTEGER NL,IFR(200),ITO(200),NUML(200)

INPUT PARAMETERS

THE
THE
THE
THE
THE
THE

LOCAL VARIABLES

THIS SUBROUTINE CREATES THE

IS PRINTED BY THE "LINEDATA"

VARIABLE DICTIONARY

NUMBER OF LINES

ORIGIN NODE NUMBER

DESTINATION NODE NUMBER

LENGTH OF A LINE (m)

NUMBER OF INTERMITTENT LOADS
TOTAL LOAD OR DESIGN LOAD (m”3/hr)

I,J - COUNTERS

REAL ALEN(200),QTL(200)

LOCAL VARIABLES
INTEGER I,J

OPEN(UNIT=1,FILE='(C)LINES.DAT’)

I=41
DO 100 J=1,NL,1

IF (I-41)102,103,

103 CONTINUE
TYPE HEADING
WRITE(1,150)NL
WRITE(1,151)
I=1

102 CONTINUE
TYPE ONE LINE

103

YLINES.DAT"
AUTOCAD MACRO.

FILE WHICH

*
%
%
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

WRITE(1,152)IFR(J),ITO(J),ALEN(J) ,NUML(J),QTL(J)

I=I+1

100 CONTINUE
CLOSE (UNIT=2)
RETURN

150 FORMAT(’1 /,I3,’ LINES TOTAL’//)

151 FORMAT(’ FROM

TO

LENGTH

*/' khkk hkkk kkkdddk k%

152 FORMAT(’ ’,2(I4,2X),F7.1,2X,I3,2X,F5.1)

END

NUM LOAD’

*****’)



ILEeReNeNeReRe o Re Re oo e NoXoRe o Ro e oo Ro o ReXe)

9]

100

101

102

150
151
152
153
154

236

SUBROUTINE FLRIT (NL,X1,Y1,X2,Y2,FAILl)

******************************************************************

THIS SUBROUTINE CREATES THE FILE "LINES.LSP" WHICH IS
USED BY THE AUTOLISP ROUTINES TO PLOT THE SELECTED
LAYOUT AND DESIGN. IN THIS CASE AN ERROR HAS BEEN
FOUND IN THE DESIGN. IN THIS INSTANCE EITHER A LINE
WAS FOUND WITH NO LOAD OR THE MAXIMUM CAPACITY OF THE
SYSTEM HAS BEEN EXCEEDED.

INPUT PARAMETERS

NL - THE NUMBER OF LINES

X1 - THE X-COORDINATE OF ORIGIN (m)

Y1 - THE Y-COORDINATE OF ORIGIN (m)

X2 = THE X-~COORDINATE OF DESTINATION (m)
Y2 — THE Y~COORDINATE OF DESTINATION (m)
FAIL1 - FLAG ( TRUE IF LAYOUT FAILS )

LOCAL VARIABLES

I = A COUNTER

Bk ok ok N Ok % A % %k b ok N ok o N N N b N

*****************************************************************

INPUT PARAMETERS
LOGICAL FAIL1

INTEGER NL

REAL X1(200),Y1(200),X2(200),Y2(200)
LOCAL VARIABLES

INTEGER I

WRITE LINES.LSP FILE
OPEN(UNIT=1,FILE=/LINES.LSP’)
WRITE(1,150)

DO 100 I=1,NL,1
WRITE(1,151)X1(I),Y1(I),X2(I),¥2(I)
CONTINUE .

WRITE(1,152)

IF (FAIL1) GO TO 101

WRITE(1,153)

GO TO 102

CONTINUE

WRITE(1,154)

CONTINUE

CLOSE(UNIT=1)

RETURN

FORMAT ('’ (setq lines (quote (‘)

FORMAT(’(( ’,F9.1,2X,F9.1,7 ) ( /,F9.1,2X,F9.1,’ ))’)
FORMAT(" )))”*)

FORMAT(’ (princ "ERROR: MAX. CAPACITY EXCEEDED ") 600 ’)
FORMAT( ’ (princ "ERROR: LINE WITH NO LOAD "y 0 7)

END

*
%
*
*
%
*
%
*
*
*
*
%
*
*
*
*
*
*
*
*
*
*
*
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The following should be included in a separate file called "ucost".

0.75 IN PIPE +0001.62
1.00 IN PIPE +0001.97
1.50 IN PIPE +0002.88
2.00 IN PIPE +0004.07
3.00 IN PIPE +0007.85
ROAD CROSSING +0563.57
RATILWAY CROSSING +1449.00
CABLE CROSSING +0090.00
CREEK CROSSING +0542.00
ROADS PER KM +0000.58

CABLES PER KM +0000.69
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The following should be included in a separate file called "flookup®.

1.0000
1.0000
1.0000
1.0000
1.0000
0.9430
0.8860
0.8291
0.7721
0.7151
0.7091
0.7032
0.6974
0.6917
0.6861
0.6806
0.6752
0.6700
0.6649
0.6601
0.6555
0.6511
0.6469
0.6431
0.6396
0.6365
0.6337
0.6312
0.6292
0.6274
0.6260
0.6250
0.6242
0.6236
0.6233
0.6232



3.69037
4.05659
4.25167
4.40290
4.51557
4.62725
4.,69857
4.75809
4.83024
4.89478
4.95317
5.00647
5.05550
5.10090
5.12167
5.14044
5.17757
5.21259
5.24571
5.27713
5.30702
5.33552
5.36275
5.38882
5.41383
5.43785
5.46097
5.46316
5.48466
5.48598
5.50606
5.52551
5.54436
5.56265
5.58041
5.59767
5.61445
5.63079
5.64670
5.66221
5.67734
5.69210
5.70651
5.72059
5.73436
5.74783
5.76100
5.77390
5.78653
5.79890

6.20531
6.84478
7.18541
7.49313
7.68815
7.84122
8.00610
8.14893
8.27492
8.34725
8.41030
8.50337
8.5889¢9
8.66825
8.74205
8.81109
8.87593
8.93707
8.95737
8.97597
9.02816
9.07792
9.12547
9.17099
9.21466
9.25661
9.29698
9.33588
9.37341
9.40968
9.44475
9.47871
9.51163
9.51541
9.53949
9.56962
9.59205
9.62058
9.62128
9.64836
9.67477
9.70055
9.72572
9.75031
9.77435
9.79786
9.82086
9.84338
9.86544
9.88705

14.73307
16.20134
17.29060
17.82969
18.42916
18.91896
19.33308
19.47677
19.79319
20.07624
20.33228
20.56603
20.78106
20.87877
20.96641
21.13979
21.30266
21.45621
21.60146
21.73926
21.87033
21.99530
22.11472
22.22905
22.33872
22.34981
22.45120
22.45783
22.55210
22.64317
22.73126
22.81655
22.89922
22.97942
23.05729
23.13297
23.20658
23.27822
23.34800
23.41602
23.48235
23.54709
23.61030
23.67206
23.73244
23.79148
23.84926
23.90582
23.96121
23.92739
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30.23703
31.09201
31.81488
32.44107
32.99340
33.48747
33.93442
34.34245
34.71780
33.99955
34.44650
34.85453
35.22988
35.57740
35.90094
36.20359
36.48788
36.40839
36.66194
36.90247
37.13127
37.34942
37.55787
37.75745
37.94888
38.13280
38.30978
38.48032
38.64488
38.80386
38.95762
39.10651
39.08625
39.22624
39.20320
39.33530
39.46379
39.58884
39.71066
39.82938
39.94517
40.05817
40.16852
40.27633
40.38171
40.48478
40.58563
40.68436
40.78105
40.87579

The following should be included in a separate file called "klookup".

83.32298
83.32298
83.32298
83.32298
83.32298
83.32298
84.50130
85.57704
86.56662
85.83196
87.01029
88.08602
88.57092
89.48711
89.85519
90.65309
81.40260
92.10926
92.77769
93.41184
94.01504
94.59017
95.13973
895.66591
95.70400
96.18890
96.20586
96.65548
97.08932
97.50845
97.91383
98.30634
98.68678
99.05585
99.41423
99.76251
100.10120
100.43090
100.75210
101.06510
101.37040
101.66830
101.95920
102.24340
102.52130
102.79300
102.62500
102.88530
103.14020
103.39000



5.79591
5.80780
5.81575
5.82720
5.83474
5.84578
5.85662
5.86727
5.87774
5.87345
5.88358
5.89354
5.90334
5.91299
5.92249
5.93184
5.94105
5.95013
5.95907
5.96788
5.97657
5.98514
5.99359
6.00193
6.01015
6.01826
6.02627
6.03417
6.04198
6.04968
6.05729
6.06481
6.07224
6.07957
6.08682
6.09399
6.10107
6.10807
6.11499
6.12184
6.12861
6.13530
6.14192
6.14847
6.15496
6.14361
6.14996
6.15625
6.16246
6.16862
6.17472
6.18075

9.90823

9.92900

9.94937

9.96937

9.98899
10.00827
10.02720
10.04580
10.06409
10.08206
10.09974
10.11714
10.13425
10.11818
10.13477
10.15110
10.16718
10.18303
10.19218
10.20757
10.19728
10.21224
10.22699
10.24154
10.25590
10.27007
10.28405
10.29786
10.31148
10.32494
10.33822
10.35135
10.36431
10.37712
10.38978
10.40229
10.41466
10.42688
10.43897
10.45092
10.46274
10.47443
10.48600
10.49743
10.50875
10.51995
10.53104
10.54201
10.55287
10.56362
10.57426
10.58480

23.98059
24.03276
24.08393
24.04885

24.09815

24.14655
24.19410
24.24083
24.28675
24.33190
24.37631
24.41999
24.46297
24.50528
24.54693
24.58795
24.62835
24.66815
24.70737
24.74602
24.78413
24.82170
24.85876
24.89531
24.93137
24.96695
25.00207
25.03673
25.07095
25.10475
25.13812
25.17108
25.20364
25.23582
25.26761
25.29903
25.33009
25.36079
25.39115
25.42116
25.45085
25.39754
25.42659
25.45532
25.48375
25.51188
25.53972
25.56727
25.59454
25.62154
25.56808
25.59454
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40.96865
41.05971
41.14903
41.23669
41.32273
41.40723
41.49023
41.57179
41.65195
41.73077
41.80828
41.73077
41.80580
41.87965
41.95235
42.02395
42.09447
42.01506
42.08352
42.15099
42.21751
42.28310
42.34778
42.41158
42.47453
42.53664
42.59794
42.65845
42.,71819
42.77718
42.83543
42.89297
42.94981
43.00597
43.06147
43.11631
43.17053
43.22412
43.27711
43.32951
43.38132
43.43258
43.48327
43.53342
43.58305
43.63215
43.68075
43.,72884
43.77645
43.82358
43.87024
43.91645

103.21570
103.45580
103.69130
103.92230
104.14920
104.37200
104.59080
104.80580
105.01720
105.22490
105.42930
105.63030
105.82810
106.02280
106.21450
106.40330
106.58920
106.77230
106.95280
107.13070
107.30610
107.47900
107.64950
107.81770
107.98370
108.14740
108.30910
108.46860
108.62610
108.78160
108.93520
109.08690
109.23670
109.38480
109.53110
109.67570
109.81860
109.95990
109.69420
109.83240
109.96900
110.10410
110.23770
110.37000
110.50080
110.63030
110.75840

©110.88520

111.01070
110.74240
110.86550
110.98730



6.18673
6.18%16
6.19502
6.20083
6.20658
6.21228
6.21792
6.22352
6.21529
6.22079
6.22623
6.23163
6.23698
6.24228
6.24754
6.25276
6.25793
6.26305

10.59524
10.60557
10.61581
10.62595
10.63599
10.64594
10.65580
10.66557
10.67525
10.68484
10.69435
10.70377
10.71312
10.72238
10.73156
10.74066
10.74969
10.75864

25.62075
25.64671
25.67242
25.69788
25.72311
25.74810
25.77286
25.79739
25.82170
25.84580
25.86968
25.89335
25.91681
25.94007
25.96313
25.98599
26.00866
26.03114

241

43.96220
44.00750
44.05238
44.09683
44.14086
44.18448
44.227790
44.27053
44.31297
44.35503
44.39671
44.29373
44.33468
44.37528
44.41553
44 .45544
44.49502
44.39427

111.10790
111.22730
111.34560
111.46280
111.57890
111.69390
111.80790
111.92080
112.03270
112.14350
112.25340
112.36240
112.47030
112.57740
112.68350
112.78870
112.89300
112.99650
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APPENDIX E: SOURCE CODE FOR LISP ROUTINES




(defun C

(defun C

(defun C

200.0)))

(defun C
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:EMPTY ()
(setqg atomlist (member ‘C:EMPTY atomlist)) ‘DONE)

¢SOURCE ()

(setq scmde (getvar "cmdecho'))

(setqg sblip (getvar "blipmode"))

(setq shigh (getvar "highlight"))

(setvar "cmdecho" 0)

(setvar "blipmode" 0)

(setvar "highlight" 0)

(command "layer" "get" "nodeg" "")

(setq ptl (getpoint "\nEnter coordinates of source: "))
(setq pt2 (list (car ptl) (- (cadr ptl) 200.0)))
(command "circle" ptl 400.0)

(command "text" "c" pt2 400.0 0.0 ¥S%)

(setq nodes (list 1 (list (append ptl (list 1)))))
(command "layer" Mfgeth non un)

(setvar "cmdecho" scmde)

(setvar "blipmode" sblip)

(setvar "highlight" shigh))

:SINK ()
(setq scmde (getvar “cmdecho!))
(setq sblip (getvar "blipmode"))
(setqg shigh (getvar "highlight"))
(setvar "cmdecho" 0)
(setvar "blipmode" 0)
(setvar "highlight" 0)
(command "layer" "set" "nodes" ")
(setqg num (+ 1 (car nodes)))
(setq ndlst (cadr nodes))
(print (quote NODE)) (print num) ,
(setqg ptl (getpoint "\nEnter coordinates of node: "))
(while pt1
(setq pt2 (list (+ (car ptl) 500.0) (- (cadr ptl)

(setq a (itoa num))
(command "doughnut" 0.0 400.0 ptl ")
(command "text" pt2 400.0 0.0 a)

(setq ndlst (append ndlst (list (append ptl (list 1)))))

(setqg num (+ 1 num))
(print (quote NODE)) (print num)

(setqg ptl (getpoint "\nEnter coordinates of node: %)))

{setg num (- num 1))

(setq nodes (list num ndlst))
(command "layer" "set" no" un)
(setvar "cmdecho"™ scmde)
(setvar "blipmode" sblip)
(setvar "highlight" shigh))

:DUMMY ()
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(setg scmde (getvar "cmdecho'))
(setq sblip (getvar "blipmode"))
(setq shigh (getvar "highlight"))
(setvar "cmdecho" 0)
(setvar "blipmode™ 0)
(setvar "highlight" 0)
(command "layer" Yset" "nodes" "")
(setqg num (+ 1 (car nodes)))
(setg ndlst (cadr nodes))
(print (quote NODE)) (print num)
(setqg ptl (getpoint "\nEnter coordinates of node: "))
(while ptl
(setq pt2 (list (+ (car ptl) 500.0) (- (cadr ptl)
200.0)))
(setqg a (itoa num))
(command "circle" ptl 200.0)
(command "text" pt2 400.0 0.0 a)
(setq ndlst (append ndlst (list (append ptl (list 0)))))
(setq num (+ 1 num))
(print (guote NODE)) (print num)
(setq ptl (getpoint "\nEnter coordinates of node: ")))
(setqg num (- num 1))
(setqg nodes (list num ndlst))
(command "layer" "Set" |l0ll IIII)
(setvar "cmdecho" scmde)
(setvar "blipmode" sblip)
(setvar "highlight" shigh))

(defun subl ()
(setq nodes (list (- num 1) (append ndlstl (cdr ndlst2))))
(setq ndlst2 nil))

(defun sub2 ()
(setq ndlstl (append ndlstl
(list (car ndlst2))))
(setq ndlst2 (cdr ndlst2)))

(defun C:SUBNODE ()
(setq pt (getpoint "\nEnter coordinates of node to remove: "))
(setq x (fix (car pt)))
(setq v (fix (cadr pt)))
(setg num (car nodes))
(setqg ndlstl “())
(setq ndlst2 (cadr nodes))
(while ndlst2
(if (and (= x (fix (caar ndlst2)))
(= v (fix (cadar ndlst2))))
(subl)

(sub2))))
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(defun nodesave ()

(setqg £ (open "NODES2" "yw"))

(print (car nodes) £f)

(setg ndlst (cadr nodes))

(while ndlst
(print (caar ndlst) £f)
(print (cadar ndlst) f)
(print (caddar ndlst) f)
(setq ndlst (cdr ndist)))

(print nil f£)

(close £))

(defun rnodesave ()

(setq ang (getreal "\nInput the angle of rotation: "))

(setg £ (open YRNODES" Uyw'))

(print ang f) _

(print (car nodes) f)

(setq ndlst (cadr nodes))

(while ndlst
(print (caar ndlst) f)
(print (cadar ndlst) f
(print (caddar ndlst)
(setq ndlst (cdr ndlst

(print nil f)

(close £f))

)
£)
)))

(defun C:COMP ()
(setqg scmde (getvar "cmdecho'))
(setvar "cmdecho" 0)
(nodesave)
(command Y“shell"™ "comp")
(graphscr) :
(setvar "cmdecho" scmde))

(defun C:DIJK1l ()
(setq scmde (getvar "cmdecho'))
(setvar "cmdecho" 0)
(nodesave)
(command "shell" "dijki")
(graphscr)
(setvar "cmdecho" scmde))

(defun C:DIJK2 ()
(setq scmde (getvar "cmdecho'))
(setvar "cmdecho" 0)
(nodesave)
(command "shell" "dijk2")
(graphscr)
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(setvar "cmdecho® scmde))

(defun C:MST ()
(setq scmde (getvar "cmdecho'))
(setvar "cmdecho" 0)
(nodesave)
(command "shell" "mst_2")
(graphscr)
(setvar "cmdecho" scmde))

(defun C:RST2 ()
(setq scmde (getvar "cmdecho"))
(setvar "cmdecho" 0)
(nodesave)
(command "shell" Wrst2")
(graphscr)
(setvar "cmdecho" scmde))

(defun C:ROT ()
(setq scmde (getvar "cmdecho"))
(setvar "cmdecho" 0)
(rnodesave)
(command "shell" "rotate")
(graphscr)
(setvar "cmdecho" scmde))

(defun C:LINEPLOT ()

(setqg scmde (getvar "cmdecho"))

(setqg sblip (getvar "“blipmode"))

(setvar "cmdecho®™ 0)

(setvar "blipmode" 0)

(command "layer" "set" "lines" "")

(setg lnlst lines)

(while lnlst
(setqg ptl (caar 1lnlst))
(setq pt2 (cadar lnlst))
(command "line"™ ptl pt2 "")
(setq lnlst (cdr 1lnlst)))

(command "layer" Ngeth wgn ww)

(setvar "cmdecho" scmde)

(setvar "blipmode" sblip))

(defun C:NODEPLOT ()
(setq scmde (getvar "cmdecho'))
(setq sblip (getvar "blipmode"))
(setq shigh (getvar *"highlight"))
(setvar "cmdecho" 0)




200.0)))
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(setvar "blipmode" 0)
(setvar "highlight" 0)
(command "layer" Yset" "nodes® %)
(setq ndlst (cadr nodes))
(setqg ptl (car ndlst))
(setq pt2 (list (car ptl) (- (cadr ptl) 200.0)))
(command Ycircle" ptl 400.0)
(command "text" "c¢" pt2 400.0 0.0 ¥s")
(setqg ndlst (cdr ndlst))
(setq num 2)
(while ndlst
(setq a (itoa num))
(setq temp (car ndlst))
(setqg ptl (list (car temp) (cadr temp)))
(setq flag (caddr temp))
(setqg pt2 (list (+ (car ptl) 500.0) (- (cadr ptl)

(if (/= flag 0)
(command "doughnut" 0.0 400.0 ptl 7))
(command "circle" ptl 200.0 ))
(command "text" pt2 400.0 0.0 a) “
(setqg ndlst (cdr ndlst))
t + ]
(command(ﬁiagegﬁm"éet% ?gw)%%)
(setvar "cmdecho" scmde)
(setvar “b}ipque" sblip)
(setvar "highlight"™ shigh))

(defun C:WIPE ()

(setqg scmde (getvar "cmdecho"))
(setq sblip (getvar "blipmode"))
(setqg shigh (getvar "highlight"))
(setvar "cmdecho" 0)

(setvar "blipmode" 0)

(setvar "highlight" 0)

(setqg ptl (getvar "extmin"))
(setq pt2 (getvar "extmax"))
(command "erase" "w" ptl pt2 "%)
(setvar "cmdecho" scmde)

(setvar "blipmode" sblip)
(setvar "highlight" shigh))

(defun C:SUBMIT ()

(setq scmde (getvar "cmdecho'))
(setvar "cmdecho" 0)

(command "shell" "submit")
(graphscr)

(setvar "cmdechoY scmde))
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(defun C:NODEDATA ()
(setqg scmde (getvar "cmdechoV))
(setvar Ycmdecho" 0)
(command "'shell" "type nodes.dat >1lptl")
(graphscr)
(setvar "cmdecho" scmde))

(defun C:LINEDATA ()
(setq scmde (getvar "cmdecho'))
(setvar "cmdecho®™ 0)
(command "shell" "type lines.dat >1lptl")
(graphscr)
(setvar "cmdecho" scmde))

(defun lplot (1lnlst)
(while 1nlst
(setqg ptl (caar 1lnlst))
(setq pt2 (cadar 1lnlst))
(command "line" ptl pt2 #")
(setg 1nlst (cdr 1lnlist))))

(defun C:DPLOT ()
(setq scmde (getvar "cmdecho))
(setq sblip (getvar "blipmode"))
(setvar "cmdecho" 0)
(setvar "blipmode" 0)

(command "layer® 'get? 1"11889% uin)
(lplot 1889)
(command "1ayer" oot 116030 )

(1lplot 1603)

(command "“layer" Uset!" "11483%" uw)
(1plot 1483)

(command "layer" "set' "11334" nn)
(1lplot 1334)

(command "layer" "set" "]11267%" "")
(lplot 1267)

(command "layer" "set" wow mnm)
(setvar "cmdecho" scmde)

(setvar "blipmode" sblip))

(defun C:FAILPLOT ()
(setq scmde (getvar "cmdecho"))
(setqg sblip (getvar "blipmode®))
(setvar "cmdecho! 0)
(setvar "blipmode" 0)
(command "layer" "set" "lines'" "")
(1plot lines)
(setvar "cmdecho" scmde)
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(setvar "blipmode" sblip))
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APPENDTIX F: SOURCE CODE FOR MENU
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*#**BUTTONS

Spl=+
rche
~B

~0

~G

~D

~E

~T
**kXAUX]

;

$p1=*

~CAC

~B

~0

~G

~D

~B

AT
*%*SCREEN
**TORNADO
[ TORNADO ]
[********]

[ MAIN ]

INPUT ]$S=INPUT

LAYOUT ]$S=LAYOUT
DESIGN ]}$S5=DESIGN
DISPLAY ]$S=DISPLAY
OUTPUT ]$S=0UTPUT
MEMORY ]$S=MEMORY

[aam ) men Bane B oses S aune B o |

[ RSTRB ](LOAD "LINES3")(LOAD "NODES3")(C:LINEPLOT)
[ FUZZY ](LOAD "LINES4")(LOAD "NODES4")(C:LINEPLOT)
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*%*INPUT
[ TORNADO ]$S=TORNADO
[********]

[ INPUT ]

[ SOURCE](C:SOURCE) (C:SINK)
[ SINK ](C:SINK)

[ DUMMY ](C:DUMMY)

[ SUBNODE ] (C : SUBNODE )

[ END ]END;

**LAYOUT
[ TORNADO ]1$S=TORNADO
[Fxkkhkdhkk]

[ LAYOUT ]

COMP ](C:COMP)(LOAD "LINES2")(C:LINEPLOT)

DIJK1 ](C:DIJK1l)(LOAD "LINES2")(C:LINEPLOT)

DIJK2 ](C:DIJK2)(LOAD "LINES2")(C:LINEPLOT)

MST  ](C:MST)(LOAD "LINES2")(C:LINEPLOT)

RST2 ](C:RST2)(LOAD "LINES2")(LOAD "NODES2")(C:LINEPLOT)
ROT  ](C:ROT)(LOAD "NODES2")(C:WIPE) (C:NODEPLOT)

[l omn Nonsa B amme Euun N oen |
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*%*DISPLAY
[ TORNADO ]$S=TORNADO
[********]

[ DISPLAY]

[NODESON ]LAYER;ON;NODES; ;
[ NODESOFF |LAYER; OFF ; NODES ; ;
[ NODEPLOT ] (C: NODEPLOT)
[LINESON ]LAYER;ON;LINES;;
[ LINESOFF ]LAYER; OFF ; LINES; ;
[ LINEPLOT ] (C:LINEPLOT)

[ WIPE ](C:WIPE)

[ LWIPE JLAYER;OFF;NODES;; (C:WIPE);+
LAYER;ON; NODES; ;

[ LWIPEP ]LAYER;OFF;NODES;;(C:WIPE);+
LAYER; ON; NODES; ; (C:LINEPLOT)

[ RVALUE ](C:RVALUE)

* *MEMORY
[ TORNADO ]$S=TORNADO
[********]

[ MEMORY ]

[ LOAD ](LOAD "TORNADO")
[ EMPTY ](C:EMPTY)
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*#**DESIGN

[ TORNADO ]$S=TORNADO
[*rkkkkdkx]

[ DESIGN ]

[ SUBMIT ](C:SUBMIT)(LOAD "LINES")(C:DPLOT)

**DISPLAY

[ DESIGN ]$S=DESIGN
[*kdkskdsns]

[ LAYERS ]$S=LAYERS
[ LINEPLOT] (C:LINEPLOT)

[ NODEPLOT ] ( C : NODEPLOT)
[ FAILPLOT] (C:FAILPLOT)

[ WIPE ](C:WIPE)
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*#*QUTPUT
[ TORNADO ]$S=TORNADO
[F*xxkddkn)]

[ OUTPUT ]

[ NODEDATA] (C:NODEDATA)
[LINEDATA] (C:LINEDATA)
[ PRPLOT ]JPRPLOT



