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Abstract

Biomedical imaging at microwave frequencies has shown potential for breast cancer

detection and monitoring. The advantages of microwave imaging over current imaging

techniques are that it is relatively inexpensive, and uses low-energy, non-ionizing

radiation. It also provides a quantitative measurement of the dielectric properties of

tissues, which offers the ability to characterize tissue types.

Microwave imaging also comes with significant drawbacks. The resolution is poor

compared to other imaging modalities, which presents challenges when trying to re-

solve fine structures. It is also not very sensitive to low contrast objects, and the

accuracy of recovered tissue properties can be poor.

This thesis shows that the use of prior information in microwave imaging inver-

sion algorithms greatly improves the resulting images by minimizing mathematical

difficulties in reconstruction that are due to the ill-posed nature of the inverse prob-

lem. The focus of this work is to explore novel methods to obtain and use prior

information in the microwave breast imaging problem. We make use of finite element

contrast source inversion (FEM-CSI) software formulated in two and three dimen-

sions (2D, 3D). This software has the ability to incorporate prior information as an

inhomogeneous numerical background medium.

We motivate the usefulness of prior information by developing a simulated anneal-

ing technique that segments experimental human forearm images into tissue regions.

Tissue types are identified and the resulting map of dielectric properties is used as

prior information for the 2D FEM-CSI code. This results in improvements to the

reconstructions, demonstrating the ability of prior information to improve breast im-
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ages.

We develop a combined microwave tomography/radar algorithm, and demonstrate

that it is able to reconstruct images of superior quality, compared to either technique

used alone. The algorithm is applied to data from phantoms containing tumours of

decreasing size and can accurately monitor the changes.

The combined algorithm is shown to be robust to the choice of immersion medium.

This property allows us to design an immersion medium-independent algorithm, in

which a numerical background can be used to reduce the contrast. We also develop

a novel march-on-background technique that reconstructs high quality images using

data collected in multiple immersion media.
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Contributions

This thesis focuses on the development of microwave breast imaging techniques

in two and three dimensions. The work relies heavily on software that implements

different versions of a finite element contrast source inversion (FEM-CSI) algorithm,

which is not my own. However, my specific contributions to the field presented in

this work are as follows:

• The development of a simulated annealing algorithm for microwave imaging,

which is designed to detect regional information in blind microwave tomogra-

phy reconstructions. These regions are incorporated into FEM-CSI as prior

information and are used to improve the reconstructed images. The contribu-

tion focuses on experimental forearm images, but the algorithm can also be

applied to any blind reconstruction as long as the user has basic knowledge of

the structure being imaged.

• The development of a novel combined radar-microwave tomography (MWT)

algorithm for breast cancer imaging. This algorithm was tested using realistic

2D numerical breast phantoms. The combined algorithm significantly improves

reconstructions compared to standard CSI.

• The extension of the combined method to 3D MRI-based phantoms and the use

of 3D FEM-CSI on high contrast numerical breast phantoms. Results show an

enhanced ability to detect tumours when using the combined method.

• An analysis of the effect of different types of prior information on 2D and 3D

breast reconstructions.
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• The application of the combined radar-MWT imaging algorithm to tumour size

monitoring during cancer treatment. Results demonstrate the algorithms ability

to accurately detect changes over time.

• The development and demonstration of a novel technique for 2D immersion

medium independent microwave imaging.

• The development of a novel march-on-background technique, which uses data

collected in multiple immersion media to reconstruct a single object of interest.

• The introduction of FEM-CSI as a tool for microwave imaging using electric and

magnetic contrast sources. The algorithm’s unique inhomogeneous background

feature is ideal for this application, as it can utilize data collected before and

after the injection of contrast agents. As this thread of research is tangential

to the main theme of this thesis, it has been included as an appendix for the

reader’s interest.
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Chapter 1

Introduction

Biological imaging at microwave frequencies has become a prominent research

topic because of the ability of microwaves to interrogate biological objects of interest

(OI) while posing very little risk to patients [1–4]. Microwaves are low-energy and

non-ionizing, making this harmless imaging modality particularly attractive for breast

cancer detection and monitoring. Microwave Imaging (MWI) systems can also be

built at a fraction of the cost of current imaging systems, and are highly portable.

Making MWI commonplace in clinics and hospitals would mean increased comfort

for patients, and it could have a particular impact on regions of the world where

prohibitively expensive imaging equipment prevents many from receiving adequate

care. Breast cancer detection and treatment monitoring has been identified as an

important niche for this type of technology [2–18] and will be the main focus of this

thesis, but there have also been investigations into imaging extremities (which will be

discussed) [19], brain imaging [20], lung cancer diagnosis [21] and cardiac imaging [22].

This thesis will focus mainly on breast cancer imaging using microwave tomography

(MWT), but will also discuss combining MWT with microwave radar techniques.
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Human tissues exhibit distinct, complex dielectric properties at microwave fre-

quencies. These properties, known as the complex permittivity, are shown for a

realistic numerical breast phantom in Figure 1.1, where the colour bar represents

the real and imaginary parts of the permittivity of certain tissues. Numerical breast

phantoms for MWI algorithm testing are typically derived from a combination of

magnetic resonance imaging (MRI) scans that provide the location of the different

tissues, and dielectric properties obtained from a large-scale study of breast tissue

described in [4]. This study, which measured the properties of freshly excized breast

tissue, revealed that the dielectric difference between a malignant tumour and healthy

fibroglandular tissue can be less than 10% - making it a challenge to detect tumours

at microwave frequencies. In order to take advantage of the aforementioned benefits

of MWI, techniques must be developed to detect tumours despite this small differ-

ence. Microwave tomography (MWT) is the method of choice when attempting to

quantitatively reconstruct the permittivity of breast tissues.

In a typical microwave tomography system, the breast is submerged in an immer-

sion liquid with a known permittivity. This liquid is chosen to maximize interrogation

energy into the breast by matching its average permittivity [2], but it can also be used

to optimize antenna performance and data collection inside the imaging system by

changing the wavelength of the incident radiation. The breast is illuminated with

narrow-band energy and data is collected at several receiver locations surrounding

the breast. This typical MWT setup is shown for two and three dimensions (2D, 3D)

in Figure 1.3. Here the OI represents a breast inside the imaging chamber. In this

scenario, we refer to the electric field in the chamber without an OI as the incident

field Einc, the field collected at the receiver points when the OI is present as the total

field Etot and the scattered field as Esct = Etot − Einc.
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Figure 1.1: Real (left) and imaginary (right) 2D coronal slice of a realistic numerical
breast phantom, showing the range of complex dielectric properties in breast tissue
at 1GHz. From lowest to highest magnitude, the figure shows fat, fibroglandular, and
tumour tissue, with a skin layer around the exterior.

The total field or scattered field at the data points can be used, along with a model

of the imaging system, to solve a large non-linear inversion problem and reconstruct

a quantitative map of the breast tissues, including any tumours or anomalies. The

MWT work herein uses a 2D and 3D finite element contrast source inversion (FEM-

CSI) algorithm written by Dr. Amer Zakaria at the Electromagnetic Imaging Labora-

tory (EIL) at the University of Manitoba (UM) [23]. The finite element formulation of

this inversion algorithm makes it particularly useful for modelling the irregular shapes

that are often characteristic of biological tissues, as well as any irregular boundaries

in the imaging chamber itself. It also allows for non-uniform discretization of the

problem, which can be useful when considering the changes in wavelength resolution

for tissues with different permittivities. Figure 1.2 shows a FEM discretization of a

2D breast that has been segmented into regions by tissue type. The meshes used in

this thesis work were generated by the Gmsh mesh generator [24].

An additional commonly used MWI method is radar-based imaging. Radar-based

imaging is a qualitative method used to detect regions of increased scattering due to
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Figure 1.2: 2D finite element mesh used for representing irregular shapes of biological
tissues. Right: breast tissue regions represented in the mesh. Left: zoomed in view
of the region interface.

abrupt changes in dielectric properties. The transition between normal healthy breast

tissue and a malignant tumour would represent such an area. In radar-based imaging

the breast is illuminated with a time-domain wide-band pulse. The backscattered field

is measured using one or more receivers (monostatic and multistatic) and can be used

to determine the location of scatterers. Radar-based imaging is advantageous because

of its speed and efficiency. The reconstruction algorithms are not as complicated as

in the MWT case as they do not require solving a large inverse problem [25].

Both of these MWI techniques come with some significant drawbacks. There are

limitations in the (i) resolution of fine structures, (ii) sensitivity to small and low

contrast objects, and (iii) accuracy of recovered tissue properties [7, 25–27]. This

thesis outlines techniques that help to overcome these drawbacks in order to take

advantage of the benefits of MWI.
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1.1 Inverse Scattering in Microwave Tomography

While radar-based imaging is an integral part of this work, MWT will be the

primary imaging method used in this thesis. The techniques introduced will help to

limit problems that arise due to the complexities introduced by the inverse problem.

This inverse scattering problem can be modelled as an optimization problem in which

the electrical properties of the breast tissues are the unknowns.

The problem is non-linear and ill-posed, meaning that (i) the solution is not

unique, in general. The non-uniqueness of the solution arises from the fact that the

scattered fields from an object, in this case a breast, are non-linearly related to its

dielectric inhomogeneities - making more than one permittivity distribution possible

for a given data set. The non-linearity is a result of multiple scattering in the object

and is a function of the frequency of the incident field. As frequency increases, or when

an dielectric contrast increases, this multiple scattering effect is more pronounced.

Also, (ii) the solution can be unstable. Instability presents itself as large changes in

the reconstructed solution when small changes are made to either the data, or the

constraints on the problem. Lack of stability also increases the inversion algorithm’s

sensitivity to noise in the collected data, and constraints on the problem [28–30].

1.1.1 Finite Element Contrast Source Inversion

In order to find a solution to these non-linear, ill-posed problems, an appropriate

inversion algorithm must be used. Our FEM-CSI algorithm features the ability to

invert synthetic and measured data for two dimensional transverse magnetic (TM),

transverse electric (TE), and full three dimensional cases [23,31].

When using FEM-CSI, the MWT setup as shown in Figure 1.3 includes the OI

being imaged, which is located within a bounded chamber. The boundary of the
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problem is represented by Γ, and the domain of the computational problem by Ω.

The imaging domain in which the OI is reconstructed is D. The antennas which

illuminate the breast, and collect Etot are located on the surface S.

FEM-CSI solves for the unknown contrast variables in the problem. The contrast

is typically defined as:

χ(~r) =
εr(~r)− εb

εb
, (1.1)

where εr is the relative permittivity and εb is the relative background permittivity. In

this formulation, the background permittivity is that of the homogeneous immersion

medium in which the breast is submerged. However, this FEM-CSI algorithm allows

for the use of a relative numerical inhomogeneous background, εn(~r), redefining the

contrast as

χ(~r) =
εr(~r)− εn(~r)

εn(~r)
. (1.2)

This new definition, which is now a function of position, allows us to incorporate

known information about the electrical and geometric properties of our object of

interest into the inverse problem, helping to reduce the ill-posedness and improve

our reconstructions by numerically reducing the contrast. Other easily obtainable

prior information, such as restricting the imaging domain D to the object itself, does

the same, improving results by removing unknowns from the problem. It is worth

noting that the inhomogeneous background is not an initial guess of the solution,

but remains in the contrast formulation throughout the optimization process as a

numerical background permittivity. The mathematical formulation of the scattering

problem is provided in Appendix: B.
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Figure 1.3: Left: two-dimensional and right: three dimensional models of the imaging
problem. Here the OI is the object of interest being imaged, Ω is the problem domain,
D is the imaging domain, Γ is the problem boundary and S is the surface where the
receivers and transmitters are positioned. This image has been used with permission
from Dr. Amer Zakaria.

The FEM-CSI algorithm solves for the contrast of an OI from scattered field data,

by minimizing the following cost functional:

FCSI(χ,wt) = FS(wt) + FD(χ,wt), (1.3)

where

FS(wt) =

∑
t

∥∥Esct,meas
t −MSL[wt]

∥∥2

S∑
t

∥∥Esct,meas
t

∥∥2

S

, (1.4)

and

FD(χ,wt) =

∑
t

∥∥χ� Einc
t − wt + χ�MDL[wt]

∥∥2

D∑
t

∥∥χ� Einc
t

∥∥2

D

(1.5)

are updated sequentially. Here Esct,meas
t ∈ CR is the measured data at R receiver

locations per transmitter, wt ∈ CI is the contrast source values at I locations inside

the domain D, χ ∈ CI are the contrast values at I locations inside the imaging domain

D and Einc
t ∈ CI is the incident field inside D. The matrix operator MS ∈ CR×N
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transforms scattered field values in Ω to R receiver points per transmitter on S,

MD ∈ CI×N transforms nodal values in Ω to I nodes in the imaging domain D, and

L ∈ CN×I is the inverse FEM operator which transforms wt in D to Esct
t,Ω.

The ill-posedness of the inverse problem can be mitigated using the algorithm’s op-

tional multiplicative regularization (MR) feature. The regularization has been shown

to enhance the quality of reconstructions due to its edge preserving characteristics and

its ability to suppress noise in experimental data. Complete details and a derivation

of this algorithm can be found in [32].

1.1.2 Prior Information

Non-linearity and ill-posedness are moderated using various techniques. One such

technique is the incorporation of prior information into the inversion [33–35]. For

example, [2] discusses using a patient-specific matching fluid, which is based on the

known properties of the patient’s breast, to optimize the amount of interrogation

energy. In this case, the prior information is the known, patient specific, electrical

properties of the breast. [27] uses the known upper and lower bounds of the elec-

trical properties of breast tissue in order to constrain the imaging algorithm. This

information is obtained from a set of literature values outlining the dielectric prop-

erties of breast tissues at microwave frequencies, and is not patient specific [4]. A

regularization technique that derives patient specific prior information from MRI and

computed tomography (CT) images is discussed in [33].

This thesis outlines ways in which we can take advantage of this particular FEM-

CSI algorithm’s ability to use a numerical inhomogeneous background, and applies

new techniques to synthetic and experimental biological OIs. Initially, methods are

developed to use prior information about the OI as a numerical background per-
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mittivity, but this evolves into a method to use a general numerical background to

regularize the problem that is independent of immersion medium or known electrical

properties of the OI.

In order to incorporate the chosen numerical background into FEM-CSI, a nu-

merical incident field, Einc
n , is computed. This incident field is equivalent to the total

field collected from the numerical background as a scatterer. The scattered field data

used for inversion in the prior information case is then Esct = Etot − Einc
n .

1.1.3 Inverse Crime

The term “Inverse Crime” describes a situation in which synthetic data is gener-

ated using a forward solver which is inherent in the inverse solver, and a mesh that

is the same in the forward and inverse problems [36]. The 2D and 3D FEM forward

and inverse solvers used in this thesis share the same theoretical formulation [32].

Therefore, in order to avoid an inverse crime, synthetic data is generated on a mesh

that is distinct from the inverse mesh. Additionally, noise is added to all of the fields

used for inversions. Due to the unique requirements of the 2D and 3D codes, the

addition of noise is treated differently in the 2D and 3D cases.

In 2D, noise is added such that:

Esct
noisy = Esct + ||Esct||∞

η√
2

(τ1 + jτ2) (1.6)

where Esct is the scattered field data vector, which is synthetically generated on a

unique mesh on the domain S, ||Esct||∞ is the maximum magnitude of the complex

values of Esct, τ1 and τ2 are uniformly distributed random numbers between -1 and

1, and η is the desired noise level. In this thesis we typically choose to contaminate

our synthetic data with 5% noise, therefore typically η = 0.05.
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The addition of noise can be complicated by the addition of prior information

as numerical background. For example, in 2D, the FEM forward solver generates

synthetic data, which is then passed to CSI. If prior information is introduced, the

scattered field data must be appropriately adjusted to account for the new numerical

incident field. Noise is added to the scattered field before any adjustment is made.

Therefore, the noise percentage is applied to the scattered field from the entire OI.

In 3D, the data collected has been shown to demonstrate some dependence on the

mesh being used. Computational restrictions prevent the elimination of this depen-

dence by further refining the mesh. Therefore in order to incorporate a numerical

background, the background permittivities are introduced into the forward solver.

The scattered field output from this process can be quite different from the scattered

field of the entire OI, and so the noise addition process must be adjusted accordingly.

This is accomplished by adding the equivalent amount of noise to the total field,

and then subtracting the noiseless incident field data from the introduced numerical

background.

1.1.4 Reconstruction Evaluation

When using simulated data, the quality of the reconstructed images can be evalu-

ated by comparing them to the profile of the numerical phantom from which the data

was collected. Various metrics can be used to assess the quality of an image, some of

which will be discussed in more detail in Chapter 4. However for the majority of this

thesis image evaluation will be performed using the L2 vector error-norm given by

L2 =
||εphantom(r)− εrecon(r)||2

||εphantom(r)||2
, (1.7)

where εphantom and εrecon are the complex permittivities of the phantom and the recon-
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struction, and r is inside the phantom. These norms are calculated by interpolating

the compared images onto uniform square grids of decreasing cell size until the norms

converge - a method described in [23]. The error norms for reconstructions of syn-

thetic data sets are presented in each chapter in tabular form.

1.2 Outline

In Chapter 2, a simulated annealing (SA) algorithm is described, which is designed

to detect prior information regions in reconstructed images of a human forearms. This

SA algorithm utilizes data obtained from a human trial in which volunteers forearms

were imaged using a 2D dipole array array in a saltwater immersion medium. FEM-

CSI is used to reconstruct a 2D image of the volunteer’s forearm, and the SA algorithm

uses this image to search for regions of fat and muscle tissue. These regions are used

as a numerical background and FEM-CSI is run again, resulting in an improvement

on the original image [37].

Chapter 3 introduces a hybrid radar-MWT algorithm for breast cancer imaging

using clinically (anatomically) realistic, MRI-based 2D numerical breast phantoms.

The combined algorithm is developed for 2D imaging in a lossy glycerin immersion

medium. Inversions are performed at various frequencies and show that the combined

algorithm improves the quality of the reconstructions over either technique used alone.

It also stabilizes inversions that converged to spurious solutions using the traditional

FEM-CSI approach [38]. This method is extended to 3D numerical phantoms. Ro-

bustness to prior information, frequency, and boundary type is discussed.

The combined algorithm discussed in Chapter 3 has been identified as a poten-

tial tool for monitoring tumour size changes during cancer treatment. In Chapter

4, this application is explored using simulations using 2D and 3D numerical breast
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phantoms that feature tumours of different sizes, representing various stages during

cancer treatment. The results show that the increased sensitivity provided by the

combined method allows for a reliable monitoring of size changes in the tumour.

The use of an appropriate immersion medium has been thought to be instrumental

in reconstructing a high quality breast image for cancer detection. However, Chapter

5 shows that the FEM-CSI algorithm does not depend on immersion medium. The

contrast can be reduced by defining a numerical background, and detailed reconstruc-

tions of the breast interior can be obtained in many different immersion media. The

independence of the reconstruction algorithm to the immersion medium demonstrates

the flexibility of choosing imaging system parameters based on considerations such

as the wavelength in the surrounding medium, which affects the size and number of

sensors that can occupy the imaging system.

The thesis is concluded in Chapter 6, with a summary of the impact of this research

and a discussion of future work.
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Chapter 2

Estimation of Prior Information

Regions Using Simulated

Annealing

In this chapter, a simulated annealing (SA) algorithm is used to detect prior

information regions in reconstructed forearm images. The algorithm is applied to

experimental data collected from a group of volunteers using a 2D dipole array pic-

tured in Fig. 2.1. Reconstructions were performed using the 2D TM formulation of

FEM-CSI. The SA algorithm works on the reconstructed images, detecting a number

of discrete regions within the image. These regions are identified as fat and muscle

tissue, and their location and electrical properties are reintroduced into FEM-CSI as

prior information in the form of an inhomogeneous numerical background. The re-

sulting reconstructions are an improvement on the original images. Comparisons are

made to an ad-hoc method in which prior information regions are obtained visually

from the imaginary part of the original reconstructed image.
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2.1 Introduction to Human Forearm Study

While the focus of this thesis is breast cancer imaging, the forearm study described

here was the EIL’s first experimental test to image human volunteers. This study

allowed for the testing of reconstruction algorithms on data obtained from biological

tissues and set the stage for future clinical trials. The forearms of five volunteers were

imaged using a 2D array of 24 dipole antennas that were submerged in a saltwater

immersion medium with a permittivity of εb ≈ 77 − j15. The data were collected

inside a metallic chamber with a radius of 22.4 cm. The antennas were positioned 9.4

cm from the centre of the chamber and polarized along the z-coordinate.

We show images obtained from three volunteers, labelled volunteer 1, volunteer 2,

and volunteer 3. While this method was used on data collected from other volunteers,

these were chosen because they display a diverse fat tissue thickness as shown by an

MRI scan, providing an ideal testbed for the designed imaging method. Collected data

was inverted using 2D TM MR FEM-CSI using a square imaging domain D, chosen

to contain the arm and minimize the number of unknowns being reconstructed in

the immersion medium. The resulting images, which we typically refer to as “blind”

images because they are the result of a reconstruction that uses little or no prior

information, are shown in Figs. 2.5, 2.6, 2.7, a and b. The term “blind” reconstruction

will be carried throughout this thesis. A blind inversion may use minimal prior

information such as restricting the upper and lower bounds of the unknowns to the

known dielectric limits of biological tissues, or restricting the imaging domain to

eliminate unknowns that are known to be within the immersion medium. A blind

inversion will not use a numerical background or initial guess that is based on known

properties of the OI.

FEM-CSI is able to reconstruct a reasonable image of volunteer 1’s forearm. How-
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ever the bones are not apparent in the reconstructions for volunteer 2 and 3. There

is also a considerable amount of blurring around the exterior of the arm, making it

difficult to determine its exact location, and the variability in the fat layer is poorly

reconstructed. These blind images provide us with the motivation to use prior infor-

mation about the volunteers forearm to improve the reconstruction.

An ad-hoc method designed by Zakaria is described in [37]. However this method

requires the user to estimate the fat layer by eye, and manually input regions of

immersion medium, fat tissue, and muscle tissue into the inhomogeneous background.

This method is undeniably user dependent, and an automated method was designed

to overcome this dependency. This method, which is based on a simulated annealing

optimization algorithm, is described in the following section.

2.2 Simulated Annealing

Simulated annealing (SA) is a stochastic global optimization technique that min-

imizes a cost functional that may have several local minima. The basic idea is that

the distribution of energy states remains close to statistical equilibrium if the cool-

ing is slow, such that the global ground state can be achieved as the temperature

approaches zero. A well-annealed metal contains large crystals and few defects, such

that the Gibb’s free energy is near the theoretical minimum. The configuration of

atoms in the material should be arranged such that the size of the crystals is large,

and the material contains minimal defects. The characteristics of the solid depend

on the Gibbs free energy. Therefore the defined cost functional has the form of an

energy function. Random perturbations in the variables change the value of the en-

ergy function, and the probability of acceptance of this new state is weighted by the

Boltzmann probability factor exp(−∆U/kboltzT ) where ∆U is the change in the en-
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(a) (b)

Figure 2.1: (a) Dipole antenna for 1GHz incident field transmission in saltwater
immersion medium. (b) Data being collected from volunteer’s forearm.

ergy configuration, kboltz is Boltzmann’s constant, redefined here to avoid confusion

with background wave number, and T is the temperature. A cooling schedule is de-

fined for T . Perturbations that increase energy are common near the start of an SA

run, but become less common as the temperature decreases [39].

When the SA run reaches it’s final “frozen” state, it is at a minimum energy

configuration. In SA, the search space is discrete, making it a good tool for finding

distinct tissue regions in an image. The algorithm is also fast, and because 2D TM

FEM-CSI is not particularly sensitive to small variations in prior information regions,

finding an acceptable global minimum is sufficient if it can be found quickly [40].

In this formulation, the cost functional or energy function is the statistical corre-

lation coefficient between a vectorized image of the reconstructed forearm Dn, and a

segmented image and parameter set Sn, It is defined as

U =
sDS

σdev,Dσdev,S
, (2.1)
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where sDS is the covariance between D and S, and σdev,D and σdev,S are the standard

deviations of D and S respectively.

We defineM = 6 distinct dielectric regions to represent tissue types in the forearm,

and transitions between tissue boundaries that FEM-CSI may reconstruct as artifacts.

The number of dielectric regions is chosen by the user. It assumes some knowledge

of how dielectric regions present themselves in a blind reconstruction. For example,

the boundary between the arm and the immersion media may not necessarily be

reconstructed as sharp, but as a gradual progression between the properties of muscle

tissue and immersion medium. A dielectric region should be chosen to account for

this transitional layer, and any others that may present themselves in the blind image.

The regions are assigned integer values m = 1, 2, . . . ,M . The algorithm initializes

N pixels in a segmented image Sn, with a random value from the parameter set

Sn ∈ {1, 2, . . . ,M}, where n ∈ {1, 2, . . . , N}.

At each iteration, the algorithm randomly perturbs one of the parameters of Sn,

creating a new segmented image S
′
n, and a new energy U

′
is calculated. The proba-

bility of U
′

being accepted as the new state given by

P (U
′
) =


1 if U

′ ≤ U

exp(−(U
′ − U/)Tk) if U

′
> U

The temperature at iteration k, Tk, is initialized at infinity, but after every 100

iterations is defined as the standard deviation of the previous 99 energies. The opti-

mization is terminated when a convergence criteria is met, defined as when perturbing

a single pixel does not change the energy more than a defined amount that is regarded

as negligible [40].

This algorithm was initially tested on data collected from a 2D numerical forearm
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phantom. Fig. 2.2 a, b and c, show the SA algorithm applied to the blind recon-

struction of the numerical phantom, at various stages of convergence. The overlayed

contour plots show the regional variations in the blind reconstruction.

2.3 Fat Region Creation and Refinement

The converged segmented images with contours of the blind image superimposed

are shown in Figure 2.2 c. Here, the colour bar shows the segmentation levels. In

order to obtain accurate prior information about the fat layer and interior of the

forearm, the regions corresponding to areas outside of the arm must be removed.

First, the pixels in the highest integer state are set to zero, as this state is located

outside of the arm in the immersion medium. The next highest corresponds to the

transitional area between the arm and the immersion medium, and is also set to zero.

The remaining states are set to one, creating a binary image of the arm location that

can be utilized by the function edge. This function, which is found in the MATLAB

image processing toolbox, returns an image of the edge of the non-zero pixels. A two

pixel dilation towards the centre of the edge is used in order to avoid an overly thin

estimation of the fat layer. The dielectric values are assigned according to Table 2.1,

where the interior is assigned the permittivity of muscle and the outer layer the

permittivity of fat tissue. The remaining region is assigned the permittivity of the

immersion medium. The prior information regions determined from the numerical

phantom reconstruction are shown in Figure 2.2 d. Prior information regions from

the actual biological targets is shown in Figure 2.3 and Figure 2.4.

Further refinement of the region is applied using the CSI algorithm. If the size

of the arm is overestimated, the reconstruction shows a saturation of the maximum

allowed permittivity in the immersion medium. This instability is a result of inac-
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(a) (b)

(c) (d)

Figure 2.2: Simulated annealing algorithm run on synthetic data after (a) ran-
dom initialization, (b) 8000 iterations, (c) convergence and (d) after the fat layer
is determined.

Imaging Region Permittivity

Immersion Medium 77-j15
Fat Layer 10-j1
Muscle Interior 50-j20

Table 2.1: Inhomogeneous numerical background permittivities for human forearm
tissue [1].
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curately constraining the background permittivity values as fat tissue, increasing the

contrast in a region that should have the properties of saltwater. The number of

saturated pixels in the immersion medium decreases as the size of the arm region is

reduced and approaches the true size. In order to minimize this effect and accurately

reconstruct the arm, the size of the forearm prior information region is uniformly

reduced, and chosen as the size at which the permittivity saturation begins to stop,

and the immersion medium is accurately reconstructed.

2.4 Reconstructions Using Prior Information

Figures 2.5, 2.6, 2.7 c and d show reconstruction results using the manual method,

in which the fat tissue region is drawn by eye. Figures 2.5, 2.6, 2.7 e and f show results

using the automated method.

Both the manual and the automated methods show a large improvement over the

blind images. The bones are distinguishable in all of the reconstructions, and the mus-

cle layer becomes more uniform after the inclusion of prior information. The blurring

of features is significantly reduced, creating sharper boundaries between tissue types

and creating a more diagnostically useful image.

A drawback of the automated method is that although it can find the location

of the fat layer, it could not assign it a variable thickness - a more realistic scenario

accounted for in the manual method. However, the manual method can suffer from

user inconsistency. Visually, it is difficult to distinguish any quality difference between

the manual and SA methods when considering the interiors of the arms. MRI images

of the volunteer’s forearms are available for comparison in [41]. Note that these images

were not used in either method to derive prior information, but are provided for a

visual comparison only. Image registration limitations prevent a direct comparison
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(a) (b)

(c) (d)

(e) (f)

Figure 2.3: Real part of prior information: (a) Ad-hoc and (b) SA methods prior
information regions for volunteer 1. (c) Ad-hoc and (d) SA methods prior information
regions for volunteer 2. (e) Ad-hoc and (f) SA methods prior information regions for
volunteer 3. Some images appear in [37]. c© 2012 IEEE. Used with permission.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.4: Imaginary part of prior information: (a) Ad-hoc and (b) SA methods prior
information regions for volunteer 1. (c) Ad-hoc and (d) SA methods prior information
regions for volunteer 2. (e) Ad-hoc and (f) SA methods prior information regions for
volunteer 3. Some images appear in [37]. c© 2012 IEEE. Used with permission.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.5: Volunteer 1: (a), (b) Real and imaginary blind reconstructions of forearm.
(c), (d) Real and imaginary reconstructions using prior information derived using the
ad-hoc method. (e), (f) Real and imaginary reconstructions using prior information
derived from SA method. Some images appear in [37]. c© 2012 IEEE. Used with
permission.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.6: Volunteer 2: (a), (b) Real and imaginary blind reconstructions of forearm.
(c), (d) Real and imaginary reconstructions using prior information derived using the
ad-hoc method. (e), (f) Real and imaginary reconstructions using prior information
derived from SA method. Some images appear in [37]. c© 2012 IEEE. Used with
permission.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.7: Volunteer 3: (a), (b) Real and imaginary blind reconstructions of forearm.
(c), (d) Real and imaginary reconstructions using prior information derived using the
ad-hoc method. (e), (f) Real and imaginary reconstructions using prior information
derived from SA method. Some images appear in [37]. c© 2012 IEEE. Used with
permission.
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between the estimated and actual thickness of the fat layers.

This initial human volunteer study influenced decisions for building the current

breast imaging systems being used by the EIL and also advanced our understanding

of how important prior information is when attempting to solve ill-posed problems

in MWI. While the SA method has only been tested on forearm images, it could be

applied to any biological reconstructions that are known to contain an inhomogeneous

dielectric profile.

The conclusion of this forearm study marked the beginning of a three year Cana-

dian Breast Cancer Foundation funded collaboration between the University of Man-

itoba and the University of Calgary. The work from this collaboration, which will be

discussed in upcoming chapters, shifted our focus to ways of obtaining prior infor-

mation using the imaging system itself, rather than using post-processing techniques

such as the SA algorithm.
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Chapter 3

Combined Radar/Microwave

Tomography Algorithm

This chapter outlines a method that combines MWT and radar techniques. MWT

and a MW radar tissue region estimation method are combined in a novel algorithm

with potential application to breast tumour detection, and the monitoring of tumour

size during treatment. The radar technique is used to derive a patient specific re-

gional tissue map, which is incorporated into FEM-CSI as a numerical inhomogeneous

background. The regional tissue map contains regions of skin, fat and fibroglandular

tissue, the dielectric properties of which are estimated by an intermediate inverse

solver. Results from 2D realistic numerical phantoms are used to demonstrate this

algorithm, which is then verified in 3D using numerical phantoms and 3D tomography

and radar algorithms.
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3.1 Using Radar-Derived Regional Maps as Prior

Information in MWT

Two imaging techniques that utilize energy at microwave frequencies are radar

imaging and microwave tomography. Radar imaging provides low resolution infor-

mation about an object’s electrical and physical structure by taking advantage of

the time of arrival and amplitude of backscattered fields that arise due to dielectric

contrasts. In a typical setup, a single antenna is used to transmit an ulrawideband

(UWB) pulse that penetrates into the breast and is scattered by any tissues that ex-

hibit a dielectric difference. A tumour is a significant scatterer that can be detected

using this technique. However difficulties arise when that tumour is embedded in

dense fibroglandular tissue that produces its own reflections and reduces the interro-

gation energy due to its high loss.

The radar technique used in this combined algorithm is not subject to these lim-

itations since the intention is not to produce a high resolution image to detect a

tumour, but to determine the breasts basic structure and generate a regional map of

breast tissues that can be used in FEM-CSI [42].

Before the technique is applied, 2D realistic phantoms are generated from a coronal

slice of high-resolution MRI data. They are constructed by mapping the MRI pixel

intensity values to the dielectric property intervals shown in Table 3.1. Details on

the mapping procedure can be found in [43]. The phantoms from which radar and

tomography data are collected are shown in Figures 3.4 - 3.7 a and b.

The radar technique, developed by Dr. Douglas Kurrant at the University of Cal-

gary, uses reflection data collected with a monostatic, co-located transmitter/receiver,

that is rotated to equally spaced points surrounding the breast. The transmit-
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ter/receiver positions are shown in Figure 3.1 a. The breast is illuminated with a

-3 dB UWB differentiated Gaussian pulse with a bandwidth of 4.14 GHz, and a fre-

quency range of 1.45-5.59 GHz. These specifications are based on the range of the

antennas used in the University of Calgary’s experimental system [25]. The data are

obtained using the finite difference time domain (FDTD) technique, where noise is

added to the backscattered fields such that the signal-to-noise (SNR) ratio is 20 dB.

Here the time domain SNR is defined as the ratio of scattered field energy to the

energy of the added noise.

Each region is first approximated using points, shown in Figure 3.1 b, which are

located along the tissue interfaces. A 2 mm uniform skin layer is assumed, as the

location of the skin is easily determined clinically by using a laser. The remaining

regions are estimated by fitting contours to the radar interface points. An example of

the segmented regions, which represent skin, fat, and fibroglandular tissues are shown

for a particular phantom in Figure 3.2.

Once the spatial properties are determined, the average dielectric properties of

the segmented regions must be found. This is accomplished using the distorted Born

iterative method (DBIM), where the unknowns are the three tissue regions. The result

is a patient specific spatial map of breast tissues, shown for two different numerical

phantoms in Figures 3.4-3.7 e and f. This map is incorporated into FEM-CSI as a

Tissue Type, Re{ε} Im{ε}
Fibroglandular-high (36.41,47.45] (10.95,15.32]
Fibroglandular-medium (34.91,36.41] (10.22,10.95]
Fibroglandular-low (21.55,34.91] (10.13,10.22]
Fat - high (4.73,8.19] (0.78,9.49]
Fat - medium (4.07,4.73] (0.5,0.78]
Fat - low [2.42,4.07] [0.06,0.50]

Table 3.1: Breast dielectric property ranges at 1GHz [4].
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(a) (b)

Figure 3.1: Radar regional algorithm: (a) Transmitter receiver positions with respect
to breast phantom. (b) Regional interface points. Images used with permission from
Dr. Douglas Kurrant, University of Calgary.

(a) (b) (c)

Figure 3.2: Segmented radar regions : (a) Skin (b) fat and (c) fibroglandular tissues.
Images used with permission from Dr. Douglas Kurrant, University of Calgary
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numerical inhomogeneous background.

The MWT component of this algorithm collects single-frequency, TM polarized

scattered field data from the 2D numerical phantoms. Data are collected with 24

receiving and transmitting antennas in a circular configuration around the breast.

The technique is demonstrated using a glycerin solution immersion medium with a

permittivity of εb = 23.3 − j23.4 at 1GHz and a medium with a permittivity of

εb = 38 − j13 at 2 GHz. These two different immersion media are not optimized

for the phantoms being imaged, but are intended to show the techniques robustness

to frequency and background permittivity. For example, while the glycerin solution

immersion medium is used for breast imaging [26], the second medium was based on

one used for a brain imaging study described in [44]. Note that the radar data are

collected using air as an immersion medium, but the same results can be obtained in

any medium. Absorbing boundary conditions are assigned to the boundaries of the

MWT imaging chamber. Note that these parameters are specific to the simulation

results that are being presented, but in practice, and in other simulations, we are not

restricted to this particular polarization, antenna configuration, immersion medium,

frequency or boundary condition.

An “inverse crime” is avoided by collecting the forward data on a different mesh

than the one used in in the inversion. Additionally, the scattered field tomography

data is contaminated with 5% noise. This corresponds to an SNR equivalent to the

20 dB used in the radar data collection.

The tomography data are first inverted using 2D TM MR FEM-CSI without

the radar regional information. The result is a blind reconstruction of the complex

permittivity of the breast phantoms, shown for each of the two cases in Figures 3.4 -

3.7 c and d. The reconstructions are of poor quality. However they are presented in
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order to compare traditional MWT results with those using the combined radar-MWT

approach.

When using the combined method, the radar regional map is incorporated into the

contrast function given in Equation 1.2 as a numerical inhomogeneous background

εn(r). The results using the combined method are shown in Figures 3.4 - 3.7 g and h.

A flowchart describing the traditional and combined techniques is shown in Figure 3.3.

Note that the results are labelled by case, where the leading number represents the

phantom being imaged, and the following number represents the frequency of the

incident field.
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Figure 3.3: Algorithm Flowchart : (a) Standard FEM-CSI algorithm progression. (b)
FEM-CSI algorithm including radar derived prior information.

3.2 Analysis of Reconstruction Improvement

Visually, there is a noticeable improvement in the reconstructions when using

the combined method. The improvement of the combined approach over the blind
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Figure 3.4: Case 1-1, 1 GHz incident field : (a) and (b): Real and imaginary parts of
breast phantom. (c) and (d): Real and imaginary parts of FEM-CSI reconstruction
without prior information. (e) and (f): Real and imaginary parts of prior informa-
tion obtained from radar-based imaging. (g) and (h): Real and imaginary parts of
FEM-CSI reconstruction with prior information. Images appear in [38]. Used with
permission.
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Figure 3.5: Case 1-2, 1 GHz incident field : (a) and (b): Real and imaginary parts of
breast phantom. (c) and (d): Real and imaginary parts of FEM-CSI reconstruction
without prior information. (e) and (f): Real and imaginary parts of prior informa-
tion obtained from radar-based imaging. (g) and (h): Real and imaginary parts of
FEM-CSI reconstruction with prior information. Images appear in [38]. Used with
permission.
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Figure 3.6: Case 2-1, 2 GHz incident field : (a) and (b): Real and imaginary parts of
breast phantom. (c) and (d): Real and imaginary parts of FEM-CSI reconstruction
without prior information. (e) and (f): Real and imaginary parts of prior informa-
tion obtained from radar-based imaging. (g) and (h): Real and imaginary parts of
FEM-CSI reconstruction with prior information. Images appear in [38]. Used with
permission.
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Figure 3.7: Case 2-2, 2 GHz incident field : (a) and (b): Real and imaginary parts of
breast phantom. (c) and (d): Real and imaginary parts of FEM-CSI reconstruction
without prior information. (e) and (f): Real and imaginary parts of prior informa-
tion obtained from radar-based imaging. (g) and (h): Real and imaginary parts of
FEM-CSI reconstruction with prior information. Images appear in [38]. Used with
permission.
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inversion is also quantified by calculating the L2 norms, which are listed in Table 3.2.

Cross sectional plots, in which the cross section bisects the tumour are shown in

Figure 3.8. The position of this cross section on the phantom can be seen as a dashed

white line in Figures 3.4 a and 3.5 a. The results show an improvement in our ability

to detect details, such as potential tumours, within the fibroglandular region of the

breast. The regional maps created by the radar-based technique provide a context for

the potential tumour detections, showing that they have been located, as expected, in

the fibroglandular region. This context validates the detection, as we do not expect to

see tumours in the fat tissue. All of the results, with the exception of Case 1-2, show

a quantifiable improvement when using the combined method. This case is unique in

that the quality of the blind reconstruction is high and already provides some useful

diagnostic information.

Using the radar regional maps also provides the regularization required in the

inverse problem to stabilize previously unstable solutions. This is particularly evident

in the 2 GHz cases, where the blind reconstruction converged to an inaccurate solution

saturated by the maximum allowed dielectric value. The regional map also provides

balancing of the real and imaginary variables. It is typical in MWT reconstructions

to have difficulty reconstructing the imaginary part of the image because it is much

smaller than the real part, and therefore has much less of an impact on the objective

Model Number L2 Blind Inversion L2 Prior Information

1-1, 1GHz 55.7% 49.6%
1-2, 1GHz 65.3% 71.3%
2-1, 2GHz 154.1% 48.7%
2-2, 2GHz 114.1% 72.5%

Table 3.2: L2 norms for FEM-CSI reconstructions with and without radar-derived
prior information.
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function. This is evident in the imaginary parts of the blind reconstructions, which are

blurry and show no potential tumour detection. Once the regional map is introduced,

the quality of the imaginary reconstruction is increased, and we begin to see the

correlation that we expect between the real and imaginary parts of the permittivity.

Case 1-1 shows details in the fibroglandular region that are similar to the known

structure of the phantom. The reconstruction is improved in the combined method,

since it recovers the properties of the different tissue types more accurately than the

blind reconstruction. The regional transitions are also more defined. Case 1-2 shows

an increase in L2 using the combined method, which is likely due to the overestimation

of the imaginary part of tumour. Regardless, the combined method still provides

useful information. The tumour is located at the edge of the fibroglandular region,

supporting its classification as a tumour.

Case 2-1 and Case 2-2 both show the regularization feature that is associated

with adding high quality prior information to our problem. The blind reconstruction

shows a completely unstable solution that contains no useful diagnostic information.

Once the regional map is used, the solution is stabilized in both cases. The tumour

and detailed variations within the fibroglandular region also appear in Case 2-1.

Unfortunately, although the solution is stabilized in Case 2-2, no useful details are

reconstructed within the breast.

3.3 3D Combined Algorithm

In this section we extend the methods presented in the 2D simulations to a com-

plete 3D scenario. The phantom used for this study, shown in Figures 3.13 - 3.15

a and b, is a simplified version of the realistic MRI phantoms used in the 2D case.

The dielectric properties of the tissue regions shown in Table. 3.3 are realistic, but
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Figure 3.8: Cross Sections : Real and imaginary cross sections of Case 1-1 ((a) and
(b)), Case 1-2 ((c) and (d)), Case 2-1 ((e) and (f)) and Case 2-2 ((g) and (h)) of images
that bisect the tumour. Here s is the distance in cm, the blue solid line represents
the phantom, the black line represented by bars is the regional reconstruction, the
red line represented by ‘-.’ is the blind inversion and the green dashed line is the
reconstruction with prior information. Note the blind inversions are not included at
2 GHz as they are unstable. Images appear in [38]. Used with permission.
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uniform. The phantom consists of a skin layer, a fat region, and a fibroglandular

region in which a spherical tumour with a 1.5 cm diameter is embedded. The tumour

is centred at (1.3 cm, 0.0 cm, 4.4 cm). The 3D phantoms are interpolated on to a 3D

tetrahedral mesh, which is used by a 3D FEM forward solver to collect data. These

phantoms are simpler than the ones used in the 2D code, because this is the EIL’s

first pursuit of imaging high contrast biological-type objects in 3D. This 3D phantom

is also a numerical representation of a physical phantom at the University of Calgary,

and simulation results will be useful in the planning of future experiments.

The 3D radar regional algorithm operates similarly to its 2D analogue. The main

difference in the 3D case is that the points that are detected along 2D tissue interfaces

form a 3D point cloud to which a closed surface is fit. These surfaces divide the breast

into fibroglandular and fat tissue regions, with an assumed uniform skin layer. The

dielectric properties of these three regions are approximated using DBIM, where each

tissue region is treated as an unknown. The resulting permittivity values of the 3D

radar regions are shown in Table 3.4.

3.3.1 3D Tomography Data Collection

When using a first order finite element code, errors can arise due to mesh de-

pendence when collecting forward data. Mesh dependence implies that the mesh

Region Permittivity

Immersion Medium 24-j1.13
Skin 43.81-j16.11
Fat 4.73-j0.78
Glandular 36.41-j10.13
Tumour 56.62-j17.56

Table 3.3: 3D phantom properties at 1.2GHz.
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Region Permittivity

Immersion Medium 24-j1.13
Skin 42.87-j15.06
Fat 5.67-j0.94
Glandular 28.68-j7.38

Table 3.4: 3D numerical background properties at 1.2GHz.

discretization is not sufficiently fine, and as a result, forward data collected from the

same object on a different mesh will produce two unique data sets. This is especially

apparent when using a numerical background, because the numerical incident field

must be subtracted from the total field, and may be collected on a different mesh.

The 3D FEM forward solver is able to collect data from numerical phantoms in two

ways. The first is by reading a forward mesh that contains the contours of the dielec-

tric regions of the OI. Each of these regions is assigned a physics number in Gmsh,

which is present in the mesh file read by the forward solver. Each physics region is

assigned a dielectric property of OI, and a numerical background permittivity. With

this option, the physics numbers of the OI and the numerical background must both

be present on the forward mesh.

The second option involves a preprocessing step in which both the properties of

the phantom and the numerical background can be interpolated on to a general mesh

that does not contain any contours. The permittivity values for the phantom and

background are sorted in order of mesh elements and read by the forward solver. This

is the method used for the 3D breast reconstruction study because this option is less

prone to inverse crime and mesh dependency errors.

Although these errors are present in the 2D code, they do not affect data collec-

tion and inversion in a significant way. For example, consider the meshes given in

Figure 3.9. Mesh (a) contains the OI from which data will be collected, and mesh
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(b) contains the numerical background to be incorporated into the inversion as prior

information. When inverting with prior information in the 2D case, data are collected

from the OI on mesh (a), and then inverted on mesh (b). The incident field is calcu-

lated on mesh b. That is, Esct
a = Etot

a −Einc
b . These data can be inverted successfully

using 2D FEM-CSI in both TM and TE cases with negligible error.

Tomography simulations become considerably more complicated when moving to

3D. The first order 3D FEM code being used to collect forward data can be sensitive

to changes in the mesh. As a result, if the approach taken to data collection is the

same as in 2D, the scattered field signal required for inversion is substantially lower

in magnitude than the noise generated by subtracting data collected on two different

meshes. In order to overcome this problem, the OI in mesh (a) and the numerical

background in mesh (b) are interpolated on to a general mesh (c), shown in Figure 3.9.

Sensitivity to loss in the immersion medium also increases in 3D. For example,

as shown in Figure 3.10, the lossy glycerin-water solution immersion medium that

was used in 2D produces a very low received scattered field signal. When solving for

200,000 unknowns in 3D (as compared to 15,000 in 2D), this field magnitude is no

longer sufficient to reconstruct the breast properties. This problem is addressed by

both reducing the loss in the immersion medium to a complex permittivity of εb = 24−

j1.13 and imaging the breast inside a perfect electric conductor (PEC) enclosure to

eliminate loss due to absorption at the boundaries [45]. The field magnitudes with the

low-loss immersion medium, inside the metallic enclosure, are plotted in Figure 3.11

for various frequencies. The plot shows that the received signal is considerably higher

than in the high-loss case. The highest magnitude of the scattered field signal occurs

at 1.2 GHz. Therefore data is collected and inverted at this frequency to ensure

reconstructions with the maximum amount of scattered field information. Although
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Figure 3.9: Forward problem mesh examples: The mesh containing the (a) OI and
(b) the numerical background are interpolated onto a (c) general mesh in order to
reduce errors associated with calculating the incident field on two different meshes.
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imaging using absorbing boundary conditions is possible, receiver locations must be

carefully considered and related to the OI being imaged. To generalize the imaging

chamber, all of the 3D results presented will be for data collected and inverted inside

a metallic chamber.

The 3D cylindrical PEC imaging chamber contains 80 receivers and transmitters.

The antenna position and polarization are shown in Figure 3.12. The antennas are

placed in a circular configuration at a 6.5 cm radius within a 8.0 cm cylindrical metallic

chamber in which the top and bottom are also PEC. The circular arrays are placed in

5 layers of 16 antennas with z-coordinates of z = [−7.00,−5.75,−4.50,−3.25,−2.00]

cm, where z = 0 is the top of the imaging chamber. A z-polarized 3D point source

transmits a 1.2 GHz field and the x, y and z field components are received at the

antenna locations. The equivalent of 5% noise in the scattered field of the OI, is

added to the total field data collected, and a noiseless incident field is subtracted.

3.3.2 3D Inversion and Results

The z component of the data is inverted using 3D FEM-CSI. For this reconstruc-

tion, no MR is used. Much like the 2D code, a numerical inhomogeneous background

can be incorporated by the user. The numerical background used in the inversion

must match the one used in the forward solution. As in the forward solver, this can

either be done by assigning the permittivity of the background to physics numbers in

the mesh, or from a permittivity map to related to individual mesh elements.

Figures 3.13 - 3.15 c and d show the result of the blind reconstruction in a cylin-

drical imaging domain. In the images, the black dashed line shows the location of

the tumour. The blind reconstructions, which have L2 = 37.32%, provide no useful

diagnostic information. However the algorithm is able to detect some centrally lo-
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Figure 3.10: Magnitude of Esct
z for multiple frequencies in a lossy glycerin-water

solution. Shown here for all receivers of transmitter number 40.
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Shown here for all receivers of transmitter number 40.



3.3. 3D Combined Algorithm 46

Figure 3.12: Antenna positions and polarizations in 3D chamber.

cated region of high permittivity tissue, possibly corresponding to the fibroglandular

region. The outside of the breast is discernible in the image. There are stability

problems with the imaginary part of the reconstruction, which present themselves

as an ellipsoidal ring of the highest allowed permittivity value (a user defined algo-

rithm constraint). Similar problems with imaginary reconstructions are common in

2D when prior information or regularization is poor.

The radar regions are shown in Figures 3.13 - 3.15 e and f and Table 3.4. The

result of using the combined algorithm, which has L2 = 25.94%, is shown in Figs. 3.13

Actual Numerical Background χreal χimag

Fat Fat -0.1659 0.0007
Fat Fibroglandular -0.83 0.01
Fat Skin -0.89 0.01
Fibroglandular Fibroglandular 0.275 -0.020
Fibroglandular Fat 5.53 0.7
Tumour Fibroglandular 0.99 0.09
Skin Skin 0.02 0.01
Skin Fat 6.97 1.51

Table 3.5: Actual regional contrast values in radar numerical background scenario.
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- 3.15 g and h. The real part of the reconstruction is able to detect the location of the

tumour. The imaginary part of the reconstruction is not as reliable, since it appears

to contain significant imaging artifacts, especially in the skin region. This can once

again be attributed a lack of balancing between the real and imaginary variables.

The tumour reconstruction results are verified by running the same experiment on a

phantom without a tumour. In this case, our results demonstrate that we correctly

no longer detect the tumour. The reconstructions, which show the absence of the

tumour, are shown in Figure 3.16.

Difficulty reconstructing 3D breast images can be partially attributed to the large

number of unknowns in areas of high contrast. Table 3.3.2 shows the actual contrast

values for the 3D phantom and the radar numerical background regions. The table

shows that errors in the numerical background corresponding to over- or under- esti-

mation of the radar regions result in high contrasts. For example, if the radar region

overestimates the fibroglandular region, the algorithm must reconstruct a contrast

of χ = −0.89 + 0.01, and if the radar technique underestimates the fibroglandular

region, the algorithm must reconstruct a contrast of χ = 5.53 + 0.70. These large

contrast values can be difficult for the algorithm to reconstruct, and can divert the

solution from one that properly reconstructs the tumour.

3.3.3 Introduction to Tumour Detection Methods

As described for the forearm case in Chapter 2, automated methods for deter-

mining tissue regions remove user bias from the detection process. This is also true

of tumour detection and monitoring methods. This section describes a basic tumour

detection method using the 3D radar region reconstructions, which identifies artifacts

in the reconstructions and separates them from the tumour.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.13: 3D Breast Phantom x-slice (a) and (b): Breast phantom. (c) and (d):
Blind reconstruction (e) and (f): Prior information regions obtained from radar-based
imaging. (g) and (h): Reconstruction with prior information.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.14: 3D Breast Phantom y-slice (a) and (b): Breast phantom. (c) and (d):
Blind reconstruction (e) and (f): Prior information regions obtained from radar-based
imaging. (g) and (h): Reconstruction with prior information.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.15: 3D Breast Phantom z-slice (a) and (b): Breast phantom. (c) and (d):
Blind reconstruction (e) and (f): Prior information regions obtained from radar-based
imaging. (g) and (h): Reconstruction with prior information.



3.3. 3D Combined Algorithm 51

Phantom with tumour and corresponding reconstruction:

Phantom without tumour and corresponding reconstruction:

Figure 3.16: Tumour Detection Confirmation: Comparison of reconstructions in
which the phantom contains and tumour and when it does not. Results show that
the detection in the vicinity of the tumour is a positive response and not an imaging
artifact.
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Using quantitative microwave tomography methods to reconstruct breast images

has an advantage in that we know that the largest permittivity value in a breast cor-

responds to a tumour, if it is present [4]. Even if there are errors in the reconstruction,

for example, if the tumour value reconstructed does not reach its known permittivity

value, we can conclude that the highest value in the reconstruction likely belongs to

the tumour. Unfortunately, imaging artifacts typically present in the higher range of

permittivities in the reconstruction also, so when utilizing techniques like thresholding

to detect a tumour, these artifacts might appear as a false positive.

Image post-processing procedures can be used to reduce these artifacts and deter-

mine the location of the tumour. In this basic technique, the contrast reconstruction

is used for detection. Typically, the permittivity is the only quantity displayed when

analyzing reconstructions from microwave imaging. However, because CSI is being

used, the contrast images can also be viewed, as they provide a unique visualization

of the reconstruction. It could be argued that the contrast reconstructions for this

breast phantom, shown in Figure 3.17, are more visually useful for tumour detection

because the range of the values enhances the tumour more than in the permittivity

images. The artifacts are still present in these images, particularly around the lower

parts of the fat/fibroglandular interface.

For this detection method, we consider the real part of the contrast image. The

first step in the detection process is to determine a reasonable range in which we

should find the tumour. As shown in Table 3.3.2, our highest expected contrast

value, with the exception of regional errors, should be the tumour. A range within

25% of the maximum contrast values are selected as tumour candidates. These values

are displayed as an isosurface in Figure 3.18 a. This figure shows a surface that

overlaps with the position of the tumour. However there is also a significant extended
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detection below the tumour. This could be confused with a positive response if being

used diagnostically. Therefore, a reasonable elimination process must be created to

remove this artifact.

To isolate the artifacts, the MATLAB image processing toolbox function bwlabeln

is used to determine 26-connected regions. Pixel regions that are 26-connected are

neighbours to every pixel that touches their face, edge or corner. This tool should

locate tumour regions and any extended artifacts. The function determined there were

two regions with this connectivity. The MATLAB function regionprops is used to

analyze the two regions identified by bwlabel as potential tumours. The regionprops

function allows the user to extract the dimensions of a box bounding each of the

regions. A bounding box around each object is analyzed, and shows that the object

corresponding to the artifact is elongated in the x and y direction, but very short in

z. This would not be the feature of a tumour, which has a relatively square bounding

box. Figure 3.18 b shows the tumour response in red and the eliminated artifact in

blue. Methods to confirm the tumour response are currently being developed and

tumour detection using 3D microwave breast reconstructions will be investigated as

future work. Diagnostic tools for tumour detection will help make this technology

more attractive to clinicians.

Figure 3.17: Real part of contrast reconstruction used for tumour detection.



3.3. 3D Combined Algorithm 54

Figure 3.18: Tumour detection isosurfaces using (a) thresholding methods and (b)
basic tumour detection.



55

Chapter 4

Analysis and Applications of

Radar/MWT Breast Imaging

Algorithm

In this chapter, the potential of the combined algorithm for tumour monitoring

during cancer treatment is assessed. Before investigating this application, an eval-

uation of the role of prior information in FEM-CSI inversions is first performed in

2D and 3D to ensure that using the combined method provides the most accurate

reconstructions. Simulated data collected from phantoms with varying tumour sizes

are inverted to determine the extent to which tumour size changes can be evaluated.

4.1 Prior Information Study

As mentioned in Section 1.1.2, there have been several ways in which prior in-

formation has been used in MWI in order to improve reconstructions and detect



4.1. Prior Information Study 56

potential tumours. The effect of prior information on FEM-CSI reconstructions is

analyzed in a recently submitted paper by D. Kurrant, A. Baran, J. LoVetri and E.

Fear titled “ Impact of detail in prior information on microwave tomography image

quality”. Section 4.1.1 summarizes the 2D results from this paper so that they may

be expanded on for use in tumour monitoring applications.

4.1.1 Effect of Prior Information on 2D Reconstructions

The impact that prior information has on image quality was first evaluated in 2D

using models 1 and 2, introduced in Chapter 3. The goal of the study is to be able to

assess structural changes within the breast and detect malignant tumour tissue if it

is present. Reconstructions are assessed for four different types of prior information.

First, a blind image was reconstructed. Then, prior information cases that included

the average properties of the interior, the skin regions and average properties of the

interior, and the radar derived regional maps. In the last three cases the imaging

domain was restricted to the breast region.

Image Analysis Tools

For this study, a convergence criterion was introduced into FEM-CSI to determine

the impact of prior information on algorithm convergence. The inversion algorithm

is terminated when the change in the domain cost functional between two successive

iterations is less than 0.1%. That is,

% change in FD =
|FDi −FDi−1|
FDi

, (4.1)

where FD is the domain cost functional and i is the iteration number.

In order to determine how image quality changes with added prior information,
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the breast phantoms and reconstructions were segmented into fat, fibroglandular and

tumour tissue regions. The skin was not used for this analysis because it provides little

diagnostic information. These regions were segmented using the dielectric property

intervals given in Table. 3.1. These segmented regions were used as a binary reference

mask for reconstruction analysis. The FEM-CSI reconstructions were also segmented

into binary masks using the same regional thresholding technique. We defined the

masks as refmask and recmask respectively. The following metrics were used to

evaluate the quality of the image:

The accuracy of the reconstructed geometric properties were qualified using the

geometric cross correlation, which is defined as

xrefmask(refmask, recmask) =
(refmaskT recmask)

||refmask||2||recmask||2
, (4.2)

The geometric cross correlation is a value between 0 and 1, where 0 represents no

similarity between the phantom and the reconstructions, and 1 represents a perfect

correlation. This metric was used to evaluate the fat and glandular regions.

The proportion of tumour reconstructed (PTR) in the reference mask is given by,

PTR(refmask, recmask) =
|refmask ∩ recmask|

|refmask|
, (4.3)

The PTR is a number between 0 and 1, where 0 is no tumour reconstructed in the

known tumour and region, and 1 is a perfect reconstruction.

The correct tumour reconstructed (CTR) measures correctly reconstructed tu-

mour tissue,
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CTR(refmask, recmask) = 1− |recmask| − |refmask ∩ recmask|
|refmask|

. (4.4)

The CTR metric is a value between −∞ and 1, where the low end of the scale

represents most tumour tissue reconstructed outside of the tumour region, and one

represents all of the tumour tissue reconstructed within the tumour region.

Results

The convergence behaviour of the algorithm by iteration (up to 500 iterations) is

shown in Figure 4.1 for models 1 and 2, and the iteration at which the convergence

criteria is met is shown in Table 4.1. The table shows that with increasing prior infor-

mation, the convergence criteria was met with fewer iterations. Therefore, increasing

the quality of prior information reduces computational time to a solution.

Figure 4.2 shows a plot of CTV vs. PTR for the real and imaginary tumour

reconstructions for models 1 and 2. The range of the plots for model 1 and model 2

are different because artifacts are more apparent in model 2. The CTR for the real

part of the tumour quantifies the improvement when using the radar regional maps.

For example, the real part of the tumour region increases from 0 to 0.96 for model

1 and 0 to 0.95 for model 2. Negative CTR values are observed in the imaginary

Prior Information Model 1 Model 2

Blind 1200 1150
Average Properties 450 300
Skin Known 500 400
Radar Derived Regions 300 175

Table 4.1: Number of iterations required to satisfy convergence criteria.
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Figure 4.1: Percent change in FD for: Blind reconstruction (red), skin surface regional
map (blue), skin region regional map (green), and internal structure regional map
(black) for (a) Model 1, and (b) Model 2. Image used with permission from Dr.
Douglas Kurrant, University of Calgary.

part, as artifacts present as tumour reconstruction outside of the actual area of the

tumour.

Figure 4.3 shows the geometric cross correlation for the real and imaginary parts

of models 1 and 2. With this measure, the quality of the reconstruction within the fat

and fibroglandular regions is quantified. These results also confirm that the increase

in prior information leads to a better reconstruction.

Overall the results from this paper support the use of radar-derived prior informa-

tion for tumour monitoring applications. In a paper currently in preparation, it was

further determined that in 2D reconstructions, it is beneficial to expand the fibrog-

landular prior information towards the sensors when incorporating the radar regional

maps as prior information. This expansion reduces artifacts in the reconstruction

and reduces false positives. The effect of this expansion is shown in Figure 4.4. The

expanded fibroglandular regions are used for the 2D tumour monitoring application.
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Figure 4.2: CTR-PTR scatter plot of real (circle) and imaginary (cross) part of recon-
structed tumour region using different amounts of prior information for (a) model 1
and (b) model 2. Image used with permission from Dr. Douglas Kurrant, University
of Calgary.

Figure 4.3: Geometric cross correlation of real and imaginary fat (blue/light blue)
and glandular (green/light green) tissue regions for models 1 (a) and 2 (b). Image
used with permission from Dr. Douglas Kurrant, University of Calgary.
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(a) (b)

Figure 4.4: (a) Radar region reconstruction containing artifacts and (b) expanded
fibroglandular region reconstruction used to reduce artifacts.

4.2 Tumour Monitoring Using the 2D Combined

Method

Physical exams, ultrasound, mammography and MRI are currently used to both

detect tumours and assess their size. However, these techniques are not ideal for

the monitoring of tumour progress over the course of a chemotherapy treatment.

Microwave imaging for tumour monitoring has been described in some reports, and

the combined radar/MWT algorithm was investigated for this purpose [26].

Figures 4.5, 4.6, 4.8 and 4.9 show the model 1 and model 2 phantoms with varying

tumours sizes, representing what might happen to a tumour over the course of can-

cer treatment. These figures also show the corresponding blind reconstruction, and

the reconstruction with prior information. As the images and the previous section

have shown, using prior information from the radar regional map provides a superior

reconstruction to blind images or those using lesser prior information. Therefore,

this study investigated the clinical use of the radar prior information with expanded

fibroglandular regions.
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We use the real part of the reconstruction for tumour monitoring purposes. While

the imaginary part of the reconstruction is greatly improved when using the radar

prior information, the real part is more reliable as it has a greater contribution to

the FEM-CSI objective function. In order to detect a tumour, a threshold value of

Re {εtumour} > 43.92 was applied to the phantom and to the reconstruction. This

value is based on tumour dielectric properties provided in [4]. As this technique is

being investigated for tumour monitoring during treatment, we can assume that the

patient has had high resolution imaging to determine the location of the tumour.

Thus, it is valid to assume that the tumour location is known. Therefore, skin tissue

and artifacts, which typically have a permittivity above this threshold can be removed

due to their location.

Figures 4.7 and 4.10 show the real part of the phantom, the radar prior recon-

struction, and an overlap plot of the phantom tumour and the reconstructed tumour.

In the tumour plots, light grey represents the actual tumour, grey is the reconstructed

tumour, and black is the region of overlap. The figure shows that the reconstructions

are able to track the location of the tumour. Although it is not always exact, there is

significant overlap between the actual tumour and the reconstruction. The figure also

shows that the size of the reconstructed tumour decreases with the size of the actual

tumour. This is further supported by Table 4.2, which shows the areas of the actual

tumour, reconstructed tumour, and the overlap region. These areas also show that

there is a significant overlap between the phantom and the reconstructed tumour,

and that changes in size are detectable. There is no false positive detection for either

of the models in the case in which the tumour has disappeared. This shows that if

prior knowledge of the tumour location is known, the method is not prone to artifacts

that can be mistaken for false positives. It should be noted that the tumour recon-
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structions do not meet the threshold criteria when this tumour analysis technique is

applied to blind images.

4.2.1 Effect of Prior Information on 3D Reconstructions

In 3D, a the effects of increasing the amount of prior information are investigated

by examining four cases. First, we examine a blind reconstruction in which no dielec-

tric prior information is provided and the imaging domain is a cylinder, as described

in Chapter 3. In the next case the average properties of the interior are known.

Then, the skin region and average dielectric properties are known. In the last case,

the radar region scenario given in Chapter 3 was used. In the last three cases the

imaging domain was restricted to the breast region.

The 3D results show a trend that is similar to the one found for the 2D results,

where we found that the results improve as more prior information is added. The

real part of the 3D reconstruction results, which show the improvement as more prior

information is added, are presented in Figure 4.12 and 4.13. This improvement is

supported by the L2 norms given in Table 4.3, and the geometric cross correlation

given in Figure 4.11.

Phantom Actual Area (cm2) Reconstruction Area (cm2) Overlap Area (cm2)

1-1 4.62 1.91 1.73
1-2 2.54 1.66 1.29
1-3 1.10 0.37 0.09
1-4 0 0 0
2-1 6.026 3.47 3.10
2-2 1.93 1.64 1.39
2-3 0.88 0.79 0.61
2-4 0 0 0

Table 4.2: Areas of actual, reconstructed and overlap of tumours using thresholding
method.
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Figure 4.5: Left: Real part of model 1 phantom with decreasing tumour size. Middle:
Blind reconstruction. Right: Reconstruction with prior information.
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Figure 4.6: Left: Imaginary part of model 1 phantom with decreasing tumour size.
Middle: Blind reconstruction. Right: Reconstruction with prior information.
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Figure 4.7: Left: Real part of model 1 phantom with decreasing tumour size. Middle:
Reconstruction with prior information. Right: Actual tumour and reconstructed
tumour overlap plot. Here light grey is the actual tumour, grey is the reconstructed
tumour, and black is the region of overlap.
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Figure 4.8: Left: Real part of model 2 phantom with decreasing tumour size. Middle:
Blind reconstruction. Right: Reconstruction with prior information.
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Figure 4.9: Left: Imaginary part of model 2 phantom with decreasing tumour size.
Middle: Blind reconstruction. Right: Reconstruction with prior information.
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Figure 4.10: Left: Real part of model 2 phantom with decreasing tumour size. Middle:
Reconstruction with prior information. Right: Actual tumour and reconstructed
tumour overlap plot. Here light grey is the actual tumour, grey is the reconstructed
tumour, and black is the region of overlap.
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Prior Information L2

Blind 41.41%
Average Properties 41.32%
Skin Known 35.25%
Radar Derived Regions 20.22%

Table 4.3: 3D L2 norms for different types of prior information.

Figure 4.11: Geometric cross correlation of real and imaginary fat (blue/light blue)
and glandular (green/light green) tissue regions for 3D model. Image used with
permission from Dr. Douglas Kurrant, University of Calgary.
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(a) (b)

(c) (d)

(e)

Figure 4.12: Real part of 3D z-slice reconstructions using increasing amounts of prior
information. Images show (a) the 3D phantom, (b) blind reconstruction, (c) average
property reconstruction, (d) average property and skin reconstruction and (e) radar
region reconstruction.
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(a) (b)

(c) (d)

(e)

Figure 4.13: Real part of 3D y-slice reconstructions using increasing amounts of prior
information. Images show (a) the 3D phantom, (b) blind reconstruction, (c) average
property reconstruction, (d) average property and skin reconstruction and (e) radar
region reconstruction.
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Tumour monitoring in 3D

We have performed a preliminary analysis of the tumour monitoring potential of

the 3D combined algorithm. The same thresholding technique used in the 2D case was

applied to the real part of a 3D reconstruction, one of which contains a tumour and

one in which no tumour is present. The results of the threshold detection are shown

in Figure 4.14, where the tumour region is indicated with the dashed circle. The

figure shows that, although we were able to detect some regions within the tumour

that satisfy the thresholding criteria, it does not accurately represent the 3D phantom

tumour.

Techniques for 3D tumour monitoring will be investigated as future work. The

detection may be improved by increasing the amount of receivers around the location

of the tumour, since we assume that we know the location of the tumour from an

earlier scan. Another option may be to reduce the thresholding level, but this would

have to be done is such a way that the choice is not ad-hoc, but represents a reasonable

approximation of tumour tissue. Note the skin and artifact responses are still present

in the 3D images.
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Figure 4.14: Thresholding detection method applied to 3D phantoms left: with a
tumour, right: without a tumour.
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Chapter 5

Immersion Medium Independent

Inversion Algorithm

This chapter demonstrates that when using high quality prior information such as

the radar-derived tissue regions presented in Chapter 3, the inversion is significantly

regularized to the point where imaging can be done in any immersion medium. Results

are presented for reconstructions that utilize a general numerical background, and

show that a user defined numerical background permittivity can be used to regularize

the problem and significantly improve the quality of microwave breast reconstructions.

The immersion medium in a MWI system is typically chosen to maximize inter-

rogation energy into the breast. However, the technique and results presented in this

chapter will show that FEM-CSI can be made independent of the physical background

medium by introducing a numerical background permittivity into the contrast func-

tion. This independence from the physical medium allows for a considerable amount

of flexibility when designing an experimental or clinical imaging system. For example,

immersion fluid can be chosen based on factors such as ease of use and wavelength
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within the medium, which dictates antenna placement and spacing in the imaging

system.

Results are shown for a variety of immersion media. A novel march-on-background

technique in which an OI is reconstructed from data collected in multiple immersion

media is presented.

5.1 Matching Fluids in Microwave Imaging

The immersion medium, also referred to as a “matching fluid”, “matching medium”

or “immersion fluid”, has a significant impact on the microwave breast imaging prob-

lem. The primary goal when choosing an immersion medium is to match the proper-

ties of the fluid to the properties of the breast in order to minimize reflections from

the breast surface, and maximize interrogation energy. The matching of properties

ensures that a tumour that is embedded in the breast has a maximum potential con-

tribution to the overall scattering of the object. If the information received from the

tumour is maximized, this provides a greater chance of accurately determining the

tumour’s properties and location. This is also true of the fibroglandular tissue, where

optimal interrogation energy allows for the reconstruction of details within the breast,

and potentially improves the delineation between the tumour and fibroglandular tis-

sues.

There have been a number of studies investigating the impact of the matching fluid

on reconstructions at microwave frequencies. For example, [46] studies the dependence

of experimental forearm reconstructions on loss in the immersion medium. By slowly

adding salt to water to increase its conductivity, it is demonstrated that reconstruc-

tions suffer for low and high loss fluids. In [47], immersion fluids with properties

similar to that of breast tissues are evaluated for their effect on system performance
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and breast imaging using microwave radar techniques. [2] suggests that in order to

obtain the best images using microwave tomography, the matching medium should

be patient specific - matching the average properties of the fat and fibroglandular

tissues in the patients breast.

It is clear that the immersion medium plays an important role in the quality

of reconstructed images. However, there are many competing factors to consider

besides the interrogation energy when deciding on which medium to use. For example,

the wavelength of the incident field and antenna type, size and dynamic range are

all dictated by the complex permittivity of the immersion medium. These factors

determine the resolution limits of the reconstruction, and the sensitivity to small

scatterers in the OI. The antenna of choice must also be operable in the chosen

immersion liquid. Antennas might be chosen based on their size, as smaller antennas

could collect more independent data within the imaging chamber, reducing the under

determinedness of the inverse problem.

Ease of use is an important factor when working with these fluids in a lab or

clinical setting. The fluid should be environmentally friendly, easy to dispose of,

and patient friendly in that it is non-toxic and easy to clean. Air (εb = 1 − j0) is

the ideal fluid choice for ease of use and patient comfort. However, it is a challenge

to reconstruct images in this medium because of the high contrast between air and

breast tissue. This high contrast also means that the breast surface will reflect a

considerable amount of the incident radiation, reducing the amount of interrogation

energy.

The following section shows how the combined radar/MWT algorithm motivated

the use of FEM-CSI as an immersion medium independent algorithm. This algorithm

allows us to make design decisions based on number of receivers and transmitters in
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an imaging chamber, ease of use, etc., rather than on interrogation energy alone,

because it utilizes a numerical background in order to reduce the contrast in the

imaging domain, thereby making the inverse problem easier to solve.

5.2 Immersion Medium Independent Combined Al-

gorithm

Chapter 4 showed that the quality of a FEM-CSI reconstruction depends on the

amount and quality of the prior information used. Basic and easily obtainable prior

information, such as restricting the imaging domain to the breast region, helps to

mitigate the ill-posedness of the inverse problem. However, the use of high quality

prior information such as the radar-derived regional map greatly improves recon-

structed images. We have found that using high quality prior information in the

numerical background has a unique benefit in that it allows the algorithm to recon-

struct the breasts interior in immersion media ranging from air (εb = 1− 0), to water

(εb = 79− j4.5), with varying losses.

Five commonly used (experimental and/or synthetic) immersion media are se-

lected for this study: air, oil (εb = 5−j1), two water-glycerin solutions (εb = 24−j18)

and (εb = 39 − j13), and water. Inversions are performed in a completely blind sce-

nario to provide a rigorous methodology to compare the images generated from this

study. The only quantity known in this case is the permittivity of the immersion

medium. The imaging domain is taken to be the entire computational domain. The

results of these blind inversions are shown in Fig. 5.1.

The figure shows that when inverting in air, the breast location is not detected in

the real part of the reconstruction, and there is a minimal detection in the imaginary
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part. When inverting in oil, reconstructed features are present in both the real and

imaginary part, but there is no distinct location of the breast itself or its constituent

tissues. Neither of these reconstructions provide useful diagnostic information. The

inversion in the glycerin solution 1 shows the breast location with a blurred edge.

There is delineation between the fat, fibroglandular and tumour regions in both the

real and imaginary reconstruction. While the location of the tumour is not accurate,

it is significant that the reconstruction algorithm detects a tumour within the breast.

This particular glycerin-water solution is used frequently in breast microwave imaging

because of its close match the the average properties of breast tissue. The glycerin-

water solution 2, and water on its own, produce unstable results, and while the

location of the breast is determined, the images are spurious and contain no reliable

information.

The lack of prior information and the large imaging domain in the blind images are

unrealistic. Image domain restriction to a known region around the object of interest

is very common in MWT, and this information can be obtained using approximations

or by using a laser to find the exterior of the OI. The number of unknowns in the

problem is vastly reduced by restricting the imaging domain to the location of the

breast. Fig. 5.2 shows that this technique allows for a significant improvement in

the quality of the reconstructions. The quality of these imaging domain restricted

reconstructions is determined by the L2 error norm, given in Table. 5.1.

In the previous case, reconstructions of the breast in the air and oil immersion

media were not possible. With the imaging domain restriction, distinct tissue regions

emerge in the real part for both of these immersion media. The specific tissue re-

gions are apparent, including the tumour, which is accurately reconstructed in both

dielectric property and location. The quality and similarity between these two recon-
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structions is reflected in their L2 error norm. Glycerin solution 1 provides the best

reconstruction as determined by the L2 norm. As in the other cases, the real part

of the reconstruction delineates the tissues and provides an accurate tumour recon-

struction. The blurriness present in the air and oil reconstructions are not apparent

in this case, and there is much more uniformity within the individual tissue regions.

The reconstructions in the glycerin solution 2 and in water once again produce an

unstable result with no usable information. In all of these cases, the imaginary part of

the reconstruction is not accurately reconstructed due to a lack of balancing between

the real and imaginary contrast within the FEM-CSI code.

The next set of images to be considered utilizes the radar-derived prior information

regions. These prior information regions are applied to the data collected in the

various immersion media and are shown in Fig. 5.5. All of the images with prior

information are high quality reconstructions. It is difficult to visually differentiate

between the real parts of the reconstruction, but it is in the imaginary part that

we see the most dramatic effect. Solutions from air, oil and both glycerin-water

solutions show the tumour as two distinct dielectric objects. However the imaginary

reconstruction in the water immersion medium shows a single mass at the tumour

site, accounting for the improvement in the L2 norm given in Table. 5.1. The tissue

regions provided as prior information allow the FEM-CSI to converge to a similar, and

accurate solution. In this case, the radar regions also provide enough regularization

to balance the imaginary part of the complex permittivy, allowing tumour tissues

and details within the fibroglandular region to appear. The L2 error norms after

the addition of the radar-derived prior show the opposite of what we observe in the

blind case. The prior information not only stabilizes the solution in glycerin-water

solution 2 and water, but the resulting reconstruction is a 7% improvement over the
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previously best glycerin-water solution 1 in the glycerin solution 2 case and a 20%

improvement in the case of water. The trend is interesting because these immersion

media are displayed in order of decreasing incident wavelength. As wavelength gets

shorter, the resolution of the image improves, as we are observing here. These results

show that with enough high quality prior information, inversions should be possible

in any reasonable immersion medium.

5.3 Immersion Medium Independent Imaging with

FEM-CSI

The results presented so far have shown that both imaging domain restriction and

high quality prior information allow imaging in immersion media with a large range

of permittivity values. However, high quality prior information is not limited to the

radar-derived regions that were presented in the previous section. In fact, any prior

information that is incorporated into FEM-CSI in the form of an inhomogeneous

numerical background is useful if it reduces the contrast in the imaging domain,

thereby making it easier for CSI to converge to an accurate solution.

The flexibility of the inhomogeneous background in FEM-CSI allows the user to

define a numerical background of their choice, with the hope of improving the resulting

reconstruction. Before moving forward, it is helpful to reiterate the difference between

the background types that have been discussed. Here εb is used to refer to the physical

Air Oil Glycerin Sol 1 Glycerin Sol 2 Water

L2 60.54% 56.98% 43.79% 132.02% 134.22%
LPrior

2 48.73% 47.48% 57.84% 36.63% 23.71%

Table 5.1: L2 norm errors for various immersion media, with and without a numerical
radar region background.
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(a) (b)

(c) (d)

(e)

Figure 5.1: Real part of blind reconstructions in (a) air, (b) oil, (c) glycerin solution
1, (d) glycerin solution 2, and (e) water immersion media.
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(a) (b)

(c) (d)

(e)

Figure 5.2: Imaginary part of blind reconstructions in (a) air, (b) oil, (c) glycerin
solution 1, (d) glycerin solution 2, and (e) water immersion media.
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(a) (b)

(c) (d)

(e)

Figure 5.3: Real part of blind reconstructions with restricted imaging domain in (a)
air, (b) oil, (c) glycerin solution 1, (d) glycerin solution 2, and (e) water immersion
media.
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(a) (b)

(c) (d)

(e)

Figure 5.4: Imaginary part of blind reconstructions with restricted imaging domain in
(a) air, (b) oil, (c) glycerin solution 1, (d) glycerin solution 2, and (e) water immersion
media.



5.3. Immersion Medium Independent Imaging with FEM-CSI 86

(a) (b)

(c) (d)

(e)

Figure 5.5: Real part of radar-region prior reconstructions with restricted imaging
domain in (a) air, (b) oil, (c) glycerin solution 1, (d) glycerin solution 2, and (e) water
immersion media.
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(a) (b)

(c) (d)

(e)

Figure 5.6: Imaginary part of radar-region prior reconstructions with restricted imag-
ing domain in (a) air, (b) oil, (c) glycerin solution 1, (d) glycerin solution 2, and (e)
water immersion media.
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immersion medium in which the breast is submerged. As mentioned in the previous

section, this background medium has a significant effect on many imaging parameters.

However, εb has no effect on the inversion algorithm itself. FEM-CSI is able to invert

using the immersion medium alone, where the contrast equation is given in Eq. 1.1.

In the EIL’s formulation of CSI, a a spatially varying numerical background εn(r) can

be introduced into the contrast, as shown in Eq. 1.2. This numerical background can

be uniform or inhomogeneous, and can be assigned any complex permittivity value,

chosen by the user to optimize the reconstruction.

To demonstrate the independence of the inversion to εb, consider the Helmholtz

equations governing the microwave imaging problem. Specifically we consider the TM

case, where the electrical properties and fields are not varying in ẑ. The electric field

in this formulation is z polarized and there are no transverse components in x− y. It

is also assumed that the material is non-magnetic, that is µr = 1.

For clarity, the equations for the contrast given in Eq. 1.1 and Eq. 1.2 can be

rewritten such that,

χb(~r) =
εr(~r)− εb

εb
(5.1)

is the contrast with respect to the physical background εb, and,

χn(~r) =
εr(~r)− εn(~r)

εn(~r)
(5.2)

is the contrast with respect to a numerical background εn. The Helmholtz equations

can now be written as:

∇2Esct
t,z (r) + k2

b (χb(r) + 1)Esct
t,z (r) = −k2

bχb(r)Einc
t,z (r) (5.3)
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or

∇2Esct
t,z (r) + k2

b (r)Esct
t,z (r) = −k2

bE
sct
t,z (r)wt,z(r). (5.4)

Here t is the transmitter index, kb(r) is the background wavenumber, and wt,z(r) are

the contrast sources such that wt,z(r) = χb(r)Et,z(r) where χb is the contrast with

respect to the immersion medium, and Esct and Einc are the scattered and total fields

respectively. The subscript b indicates that the corresponding variable is taken with

respect to the immersion medium. Therefore, FEM-CSI would use these equations

when solving for the contrast as given with respect to the physical background.

These equations can also be written with respect to a numerical background:

∇2Esct
t,z (r) + k2

n(χn(r) + 1)Esct
t,z (r) = −k2

nχn(r)Einc
t,z (r) (5.5)

or

∇2Esct
t,z (r) + k2

n(r)Esct
t,z (r) = −k2

nE
sct
t,z (r)wt,z(r). (5.6)

Here kn(r) is the numerical background wavenumber, and wt,z(r) are the contrast

sources such that wt,z(r) = χn(r)Et(r) where χn is the contrast with respect to the

numerical background. The subscript n indicates that the corresponding variable is

taken with respect to the numerical background.

Equations 5.5 and 5.6 do not depend on the physical background εb, and conse-

quently the FEM-CSI algorithm is completely independent of the complex permit-

tivity of the immersion medium. This allows for the reconstruction of the breast

interior in various immersion media, so long as adequate prior information is intro-

duced to regularize unstable solutions and make use of limited interrogation data due
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to excessive scattering from the surface of the OI.

The immersion medium continues to affect the overall imaging system perfor-

mance, even with the use of a numerical background, because the obtainable inter-

rogation energy arriving at the receivers from the inside of the breast depends on

the electromagnetic match between the immersion medium and the breast’s surface.

However, the independence of the reconstruction algorithm with respect to the im-

mersion medium provides us with the flexibility to choose system parameters that

are influenced by other considerations, such as the wavelength in the surrounding

medium, which affects the size and number of sensors that can occupy the imaging

system.
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(a) (b)

(c) (d)

(e)

Figure 5.7: Real part of reconstruction with data collected in air immersion medium,
inverted in (a) air numerical background, (b) oil numerical background, (c) glycerin
solution 1 numerical background, (d) glycerin solution 2 numerical background, (e)
water numerical background.
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(a) (b)

(c) (d)

(e)

Figure 5.8: Imaginary part of reconstruction with data collected in air immersion
medium, inverted in (a) air numerical background, (b) oil numerical background, (c)
glycerin solution 1 numerical background, (d) glycerin solution 2 numerical back-
ground, (e) water numerical background.
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5.4 General Numerical Backgrounds for Regular-

ization

It is of interest to find a numerical background that sufficiently regularizes the in-

verse problem for MWI situations in which detailed interior prior information is not

available. The ideal numerical background might not be the same for every clinical

patient or every experimental or synthetic breast phantom, since the interior proper-

ties may vary, and therefore the complex permittivity required to reduce the contrast

may also vary. We perform simulations in which the five immersion medium presented

in Section 6.1, are used to collect data, but are inverted using a numerical background

with different properties. For simplicity, the same permittivities were used in different

combinations of physical and numerical backgrounds. Data are collected and inverted

using the same circular imaging chamber and antenna configurations as in all of the

previous chapters. The inversions are performed without the addition of noise. How-

ever, the inverse and forward meshes are different to reduce possible inverse crime

effects.

Figures 5.7 to 5.16 show the real and imaginary parts of the FEM-CSI recon-

struction, inverted in numerical backgrounds of air, oil, glycerin solution 1, glycerin

solution 2 and water. The corresponding L2 error norms are shown in Table 5.2. The

discussion below focuses on the real part of the results, since the imaginary part does

not reconstruct any diagnostically useful information due to poor balancing. The

numerical background and imaging domain are both assigned to the region within

the outer skin layer of the breast.

An air immersion medium is considered first, with results shown in Figure 5.7

and Figure 5.8. We observe similar results between numerical backgrounds of air
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(a) (b)

(c) (d)

(e)

Figure 5.9: Real part of reconstruction with data collected in oil immersion medium,
inverted in (a) air numerical background, (b) oil numerical background, (c) glycerin
solution 1 numerical background, (d) glycerin solution 2 numerical background, (e)
water numerical background.
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(a) (b)

(c) (d)

(e)

Figure 5.10: Imaginary part of reconstruction with data collected in oil immersion
medium, inverted in (a) air numerical background, (b) oil numerical background, (c)
glycerin solution 1 numerical background, (d) glycerin solution 2 numerical back-
ground, (e) water numerical background.
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(a) (b)

(c) (d)

(e)

Figure 5.11: Real part of reconstruction with data collected in glycerin solution 1
immersion medium, inverted in (a) air numerical background, (b) oil numerical back-
ground, (c) glycerin solution 1 numerical background, (d) glycerin solution 2 numer-
ical background, (e) water numerical background.
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(a) (b)

(c) (d)

(e)

Figure 5.12: Imaginary part of reconstruction with data collected in glycerin solution
1 immersion medium, inverted in (a) air numerical background, (b) oil numerical
background, (c) glycerin solution 1 numerical background, (d) glycerin solution 2
numerical background, (e) water numerical background.
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(a) (b)

(c) (d)

(e)

Figure 5.13: Real part of reconstruction with data collected in glycerin solution 2
immersion medium, inverted in (a) air numerical background, (b) oil numerical back-
ground, (c) glycerin solution 1 numerical background, (d) glycerin solution 2 numer-
ical background, (e) water numerical background.
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(a) (b)

(c) (d)

(e)

Figure 5.14: Imaginary part of reconstruction with data collected in glycerin solution
2 immersion medium, inverted in (a) air numerical background, (b) oil numerical
background, (c) glycerin solution 1 numerical background, (d) glycerin solution 2
numerical background, (e) water numerical background.
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(a) (b)

(c) (d)

(e)

Figure 5.15: Real part of reconstruction with data collected in water immersion
medium, inverted in (a) air numerical background, (b) oil numerical background,
(c) glycerin solution 1 numerical background, (d) glycerin solution 2 numerical back-
ground, (e) water numerical background.
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(a) (b)

(c) (d)

(e)

Figure 5.16: Imaginary part of reconstruction with data collected in water immer-
sion medium, inverted in (a) air numerical background, (b) oil numerical background,
(c) glycerin solution 1 numerical background, (d) glycerin solution 2 numerical back-
ground, (e) water numerical background.
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and oil. This similarity is also reflected in the L2 error norms, which is likely due to

the similarity of the permittivity values of these two media. The reconstruction in

the glycerin solution 1 numerical background is similar. However it better delineates

the fat, fibrogandular and tumour regions, and reconstructs the tumour permittivity

closer to the actual value. The glycerin solution 2 and the water numerical background

produce an unusable result, although this is not reflected in the L2 norms. Results

in the oil and glycerin solution 1 immersion media, shown in Figure 5.9, 5.10, 5.11

and 5.11, produce very similar results to that of air, with the same trend for the air,

oil, and glycerin solution 1 numerical background. The glycerin solution 2 and water

inversions are also not diagnostically useful.

The principal result of this study presents itself when inversions are performed in

physical immersion media of glycerin solution 2 and water. No reliable images are

produced when inverting with numerical backgrounds of air, oil, glycerin solution 2

or water when using these immersion media. However, inverting using the glycerin

solution 1 as a numerical background generates the most accurate reconstruction in

terms of tissue region delineation and permittivity reconstruction within that region.

In fact, in the case of the water immersion medium, the L2 norms show that the

inversion in the glycerin solution 2 numerical background only differs from the radar

region prior case by 2.15%. This is likely due short wavelength of the incident field

εn, εb Air Oil Glycerin Sol 1 Glycerin Sol 2 Water

Air 57.53% 60.53% 64.60% 57.11% 48.42%
Oil 58.45% 57.69% 58.91% 50.69% 33.15%
Glycerin Sol 1 59.28% 58.70% 55.24% 47.14% 25.86%
Glycerin Sol 2 164.08% 172.70% 169.86% 132.02% 33.00%
Water 206.16% 214.66% 209.56% 166.40% 106.00%

Table 5.2: L2 Error norms for various combinations of immersion medium and uniform
numerical background.
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provided by the water immersion medium, combined with the closeness of glycerin

to the average properties of the breast, which lowers the contrast within the breast

significantly.

These results show that in most immersion media, reconstructions are possible as

long as an optimal numerical background is used. This implies that microwave imag-

ing system parameters can be chosen based on patient comfort, and the wavelength

of the incident radiation.

5.5 March-On-Frequency and March-On-Background

Techniques

The inverse MWI problem is ill-posed and contains many more unknowns in the

imaging domain than there are collected field data at the receiver locations. This

means that diverse data is required for an accurate reconstruction of the OI, and

increasing that diversity often further improves the reconstruction. There are tech-

niques that take advantage of data diversity, such as frequency-hopping or march-on-

frequency, where reconstruction results at different frequencies are used as an initial

guess for the next, and simultaneous frequency inversions that assume little change

in permittivity of the OI over short frequency steps [48].

March-on-frequency techniques can be uniquely applied in FEM-CSI reconstruc-

tions by utilizing the inhomogeneous background. Figure 5.17 shows an example of

such a technique, where the radar regional map is used as prior information. In this

scenario, a blind reconstruction is performed on data collected at 1GHz. Data is

then collected at 1.25GHz and is inverted using the result at the previous frequency

as prior information. This is then repeated at 1.5GHz, where the solution of the
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previous reconstruction is used as an inhomogeneous background. As the frequency

increases, we obtain a higher resolution of fine structures within the breast - even

resolving a small tumour that was undetectable at lower frequencies.

The immersion medium independent nature of the FEM-CSI algorithm presents

a unique opportunity to diversify data. We introduce a march-on-background tech-

nique, in which data are collected from the same OI in different immersion media.

The wavelength and interrogation energy of the incident radiation are dictated by the

various immersion media, and a unique data set is collected in each one.

When using march-on-background, data are collected in a particular immersion

medium and inverted in any numerical background. Data are then collected from the

same OI in a different immersion medium, but the previous result is used as a nu-

merical background when reconstructing the new image. This procedure can be done

as many times as required to improve the reconstruction, keeping in mind that not

every addition necessarily produces a better result, and often different combinations

of media must be tried before seeing an improvement. Fortunately, there are many

immersion media with large ranges of complex permittivity, making successful com-

binations likely. Figure 5.18 shows one of these combinations. Figure 5.18 a shows a

reconstruction of the phantom in an oil immersion medium, with corresponding L2

norm shown in Table. 5.3. This is an average result with limited resolution, but it

does provide an indication that a tumour is present, and gives its general location.

Figure 5.18 b shows the inversion in glycerin solution 2. This poor reconstruction

Immersion Medium L2

Oil 57.69%
Glycerin Solution 2 132.02%
March-on 46.03%

Table 5.3: Improvements using march-on-background technique
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Figure 5.17: Model 2, March-on-frequency: (a), (b): numerical phantom, (c),(d):
1GHz, (e), (f) 1.25GHz, (g),(h): 1.5GHz

.
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provides no diagnostic information and its L2 norm reflects its poor quality.

Figure 5.18 c was obtained using the march-on-background technique. When

inverting using the glycerin solution 2 immersion medium, the solution from the oil

reconstruction is incorporated as a numerical background. This not only regularizes

the solution, but it greatly improves the result over either of these immersion media

used alone. Details in the shape of the tumour that were not previously detectable

become apparent. This improvement is reflected in the L2 norm.
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(a) (b)

(c)

Figure 5.18: March-on-background: (a) blind inversion in oil, (b) blind inversion in
glycerin solution 2 (c) reconstructing using march-on-background technique.
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Chapter 6

Conclusions and Future Work

This thesis demonstrated the successful implementation and analysis of 2D and

3D microwave imaging techniques for breast cancer detection and monitoring. In

summary:

• A simulated annealing algorithm was developed to locate prior information re-

gions in experimental human forearm images, and motivated the need to obtain

high quality prior information for biological OIs, particularly those that exhibit

high contrasts.

• A combined radar-MWT algorithm was developed for breast imaging using

numerical phantoms. The hybrid algorithm was tested extensively on realistic

MRI derived numerical phantoms in 2D, and realistic, high-contrast, numerical

breast models in 3D.

• The effect of prior information on inversion results was analyzed using synthetic

data in 2D and 3D.

• The combined algorithm was applied to numerical phantoms with varying tu-
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mour sizes in order to determine if these size differences could be detected. The

successful detection of these differences show the algorithm to be a potential

tool for tumour monitoring during cancer treatment.

• An immersion medium independent algorithm was introduced and demonstrated

using 2D numerical breast phantoms.

• March-on-background and march-on-frequency techniques were used to show

that diversity of data can increase reconstruction quality.

6.1 Future Work

The following items will be investigated as future work on this topic:

• Finite element inverse solvers with higher order basis functions will most likely

be required for this work to continue. These solvers will increase the accuracy

while reducing the number of elements in the mesh [49].

• Non-uniform MRI-based numerical phantoms have recently been supported by

the 3D FEM-CSI code. Analysis of the presented techniques on more realistic

datasets will be essential for proper analysis and characterization of our 3D

reconstruction capabilities.

• Balancing of both real and imaginary variables, and the data and domain errors

in both the 2D and 3D implementations of FEM-CSI could greatly improve

the imaginary part of the reconstruction result. Complete confidence in the

reconstruction results is not achieved without quality reconstructions in both

parts of the complex permittivity.
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• Experimental verification of the combined radar-MWT algorithm is currently

underway. This process will be tested using several imaging systems with var-

ious boundary conditions at the EIL at the UofM. This study will utilize both

2D and 3D phantoms, imaging chambers and reconstruction algorithms. Sim-

ulations of the experimental setup and preliminary experimental results are

promising.

• This work will be expanded into a multi-modality breast imaging study funded

by a 3 year Canadian Breast Cancer Foundation grant. This grant, which is

held by the University of Manitoba and the University of Calgary, will introduce

ultrasound tomography and radar techniques into the imaging algorithm, and

will develop an experimental system. The final year of this project will involve

clinical trials.
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Journal Publications

• D. Kurrant, A. Baran, J. LoVetri and E. Fear, Evaluating Impact of Errors in

Prior Information on Microwave Tomography Image Quality, Medical Physics,

2016 (submitted)

• D. Kurrant, A. Baran, J. LoVetri and E. Fear, Impact of Detail in Prior In-

formation on Microwave Tomography Image Quality, Medical Physics, 2016

(submitted)

• A. Baran, D. Kurrant, A. Zakaria, E. C. Fear, and J. LoVetri. ”Breast Imaging

Using Microwave Tomography with Radar-Based Tissue-Regions Estimation.”

Progress In Electromagnetics Research vol. 149, pp 161-171, 2014.

• A. Zakaria, A. Baran and J. LoVetri, Estimation and Use of Prior Information

in FEM-CSI for Biomedical Microwave Tomography, IEEE Antenna Wireless

and Propagation Letters, vol. 11, pp. 1606-1609, 2012.
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Conference Publications

• D. Kurrant, A. Baran, E. C. Fear, and J. LoVetri. “Evaluating Impact of errors

in Prior Information on Performance of Microwave Tomography”, 17th Inter-

national Symposium on Antenna Technology and Applied Electromagnetics,

Montreal, QC, Canada, July 10-13, 2016.

• D. Kurrant, A. Baran, E. C. Fear, and J. LoVetri. “Iterative Refinement of

Fibroglandular Region with Microwave Breast Imaging”, Numerical Electro-

magnetic and Multiphysics Modeling and Optimization, Ottawa, ON, Canada,

August 11-14, 2015.

• A. Baran, D. Kurrant, E. C. Fear, and J. LoVetri“Monitoring Breast Can-

cer Treatment Progress with Microwave Tomography and Radar-based Tissue-

regions Estimation”, 9th European Conference on Antennas and Propagation,

Lisbon, Portugal, April 12-17, 2015.

• A. Baran, C. Kaye, A. Zakaria, J. LoVetri. “Investigation of Tumour Detection

Using Contrast Agents and FEM-CSI in Biomedical Microwave Tomography”,

IEEE International Symposium on Antennas and Propagation and USNC/URSI

National Radio Science Meeting, Orlando, FL, USA, July 7-13, 2013.
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Appendix B: Mathematical Formulation

This appendix outlines the mathematical formulation for electromagnetic scatter-

ing and reconstructions using a numerical background medium. We begin with the

differential form of Maxwell’s equations,

∇× ~E(~r, t) = −∂
~B(~r, t)

∂t
, (6.1)

∇× ~H(~r, t) =
∂ ~D(~r, t)

∂t
+ ~J (~r, t), (6.2)

∇· ~D(~r, t) = ρv(~r, t), (6.3)

∇· ~B(~r, t) = 0, (6.4)

where ~E is the electric field intensity in [volts/metre], ~D is the electric flux den-

sity in [coulombs/metre2], ~H is the magnetic field intensity in [amperes/metre], ~B

is the magnetic flux density in [webers/metre2], ~J is the electric current density in

[amperes/metre2] and ρv is the electric change density in [coulombs/metre3]. These

quantities are functions of position ~r = x, y, z and time t. Note that,

~J = ~Jc + ~Ji (6.5)

where ~Jc describes medium’s ability to conduct current and ~Ji is due to impressed

current sources.

The equations needed to describe the constituent relationships between the field
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quantities and the medium in which the fields exist are,

~D = ε0ε
′

r(~r)~E(~r, t) (6.6)

~B = µ0µr(~r) ~H(~r, t) (6.7)

~Jc = σ(~r)~E(~r, t). (6.8)

Here ε0 is the permittivity of free space in [farads/metre], ε
′
r is the real relative

permittivity (unitless), µ0 is the permeability of free space in [henrys/metre], µr is

the relative permeability (unitless) and σ is the conductivity in [siemens/metre]. The

medium considered is linear. Therefore, ε
′
r, µr and σ are scalar quantities that do not

depend on field strength.

The work presented in this thesis uses the time-harmonic form of Maxwell’s equa-

tions with dependance ejωt, where j2 = −1 and the angular frequency ω = 2πf in

[radians/second]. That is, the fields can be represented using complex quantities. For

example, ~E is related to instantaneous ~E by

~E =
√

2Re( ~Eejωt). (6.9)

The time-harmonic form of Maxwell’s equations are then,

∇× ~E(~r) = −jω ~B(~r), (6.10)

∇× ~H(~r) = jω ~D(~r) + ~J(~r), (6.11)
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∇· ~D(~r) = ρv(~r), (6.12)

∇· ~B(~r) = 0. (6.13)

The relationships between the fields in time-harmonic form are written using complex

quantities as,

~D = ε̂(ω) ~E (6.14)

~B = µ̂(ω) ~H (6.15)

~Jc = σ(ω) ~E. (6.16)

Here µ̂ is the complex permeability of the medium, σ is the conductivity of the

medium and ε̂ is the complex permittivity of the medium such that,

ε̂(ω) = ε
′ − jε′′ or, (6.17)

ε̂(ω) = ε0(ε
′

r − jε
′′

r ). (6.18)

We assume that our problem is free of charge (ρ = 0) and magnetic materials

(µ = 1) and derive a partial differential equation that involves only the electric

field vector ~E. ~H is eliminated from Equations 6.10 and 6.11 using the constituent

relationships and the result is the Helmholtz equation given by,
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∇×∇× ~E(~r)− ω2µ0ε0εr(~r) ~E(~r) = −jωµ0
~Ji(~r). (6.19)

This equation is also known as the inhomogeneous vector wave equation. We define

the complex relative permittivity as the bracketed term in Equation 6.18, that is,

εr(~r) = ε
′

r(~r)− jε
′′

r (~r). (6.20)

We assume that this term takes into account dielectric and conductive losses, including

losses due to the dielectric strength of biological tissue as modelled by the Cole-Cole

formula [50]. The corresponding electric contrast is defined as

χ(~r) =
εr(~r)− εn(~r)

εn(~r)
(6.21)

where εn is the the complex numerical background permittivity.

Consider the imaging setup presented in Figure 1.3. The chamber is illuminated

by a transmitter T and the field is measured at receiver points R. If there is no OI

present, the field produced is referred to as the incident field ~Einc
t . This results in the

vector wave equation,

∇×∇× ~Einc
t (~r)− ω2µ0ε0εr(~r) ~E

inc
t (~r) = −jωµ0

~Ji(~r). (6.22)

When the OI is present the equation becomes

∇×∇× ~Etot
t (~r)− ω2µ0ε0εr(~r) ~E

tot
t (~r) = −jωµ0

~Ji(~r). (6.23)

If the scattered field due to the OI is ~Esct
t = ~Etot

t − ~Einc
t , the vector wave equation

governing the scattered field is
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∇×∇× ~Esct
t (~r)− ω2µ0ε0εr(~r) ~E

sct
t (~r) = −jωµ0

~Ji(~r). (6.24)

This equation can be written in terms of the contrast χ(~r) as

∇×∇× ~Esct
t (~r)− k2

n(~r)(χ(~r) + 1) ~Esct
t (~r) = k2

n(~r)χ(~r) ~Einc
t (~r), (6.25)

where kn is the numerical background wavenumber. This can be rearranged to give

∇×∇× ~Esct
t (~r)− k2

n(~r) ~Esct
t (~r) = k2

n(~r)~wt(~r) (6.26)

where ~wt(~r) are the contrast sources defined as

~wt(~r) = χ(~r) ~Etot
t (~r). (6.27)

The contrast sources are scattering sources located inside the OI that produce ~Esct
t

in the background medium. We can rewrite the vector wave equation in operator

notation as

~Hn

{
~Esct
t

}
= k2

n(~r)~wt(~r). (6.28)

Given the contrast sources ~wt(~r) and the numerical background wavenumber k2
n, the

inverse of this operator evaluates scattered field values in Ω. To solve inverse scat-

tering problems for the electrical properties of the OI, field values are required on

the measurement surface S where the receivers are located and inside the imaging

domain D. In order to obtain these values, we introduce two operators, ~Ms which

takes ~Esct
t in Ω to the receiver points, and the imaging domain operator ~MD which

provides the field values in the imaging domain D. These operators, which contain
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the inverse FEM operator L derived in [32], make up the FEM-CSI functional given

in Equation 1.3.
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Appendix C: Tumour Detection Using Con-

trast Agents and FEM-CSI

The well-known study by Lazebnik et al., which characterized the ultra-wideband

dielectric properties of excised breast tissue, revealed that the difference in permittiv-

ity between a malignant carcinoma and normal fibroglandular tissue is intrinsically

low [4]. This discovery triggered investigations into the use of contrast agents in

MWI [51] [52] [53]. The conceivable utility of contrast agents creates a unique way

to use prior information in the FEM-CSI algorithm to detect breast tumours. This

method is described in the following sections.

Phantoms

Phantoms were obtained from the University of Wisconsin breast phantom repos-

itory, which is a collection of MRI data of breasts with different classifications. The

data are divided into classes one through four, where the class refers to the amount of

fibroglandular tissue found in the breast. Class One is a breast that contains mostly

adipose tissue, Class Two contains scattered fibroglandular tissue, Class Three con-

tains heterogeneously dense fibroglandular tissue, and Class Four is very dense. The

repository assigns to the breast phantoms the microwave dielectric properties reported

in [4].

The phantoms are interpolated on to an FEM mesh and two circular tumours

are added. These tumours have an initial dielectric value of ε = 59.97 − j19.82 [4]

and a radius of r = 0.5 cm. A low loss immersion medium with ε = 23.0 − j1.13 is
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used. The addition of a contrast agent is simulated by increasing the permittivity

value of the tumours. In the conference paper, we conducted a theoretical study in

which the permittivity was raised by 15%. However, we have since performed further

investigations for realistic contrast agents that have been approved for clinical use.

We have also examined the potential to image magnetic contrast agents.

Detecting Permittivity Changes with Prior Infor-

mation

Forward data were collected from the initial phantom using a finite element for-

ward solver. We then used the FEM-CSI algorithm to invert the data using no prior

information other than upper and lower bounds of the known tissues. The result

was a blind reconstruction of the breast, which typically does not contain any useful

diagnostic information. The use of a contrast agent was simulated by increasing or

decreasing the permittivity of the tumours. Forward data were collected from the

phantom with the contrast agent, and the FEM-CSI algorithm was used to recon-

struct the image of the breast. In this case, the initial blind reconstruction was used

as prior information in the form of an inhomogeneous background. This method is

demonstrated in Figure 6.1.

The difference between the two reconstructions is so small that it is not observable

by in the permittivity images by eye. In order to detect the location of the tumours,

we must look at the contrast χ(~r), which was defined in Eq. 1.2. The image of the

contrast shows that at the location of the tumours. While the contrast reconstruction

does not reach the actual known contrast value, the accuracy in location demonstrates

a successful tumour detection.

A similar procedure was followed to simulate the use of a magnetic contrast agent.
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Figure 6.1: Flowchart describing contrast agent imaging using FEM-CSI.

When forward data were collected with a contrast agent present, the change was ap-

plied to the permeability of the tumours while the permittivity remained unchanged.

The FEM-CSI algorithm was unable to directly solve for magnetic contrasts. However

a change in the permeability of the tumours presents itself as a change in permittiv-

ity in the reconstruction, and the tumours were still detectable. This method is

demonstrated in Figure 6.2.

Results and Conclusions

Figure 6.4 shows an initial test case that used a 15% increase for both a realistic

class two breast phantom and a forearm phantom (a biological test case from our

earlier study). Reconstructions from both phantoms show detectable tumours in the

final contrast image.

Figure 6.4 shows a successful tumour detection for Class Two and Class Three



122

E	
  field	
  data	
  
εT(r)	
  =εT1(r)	
  	
  
μT(r)	
  =μT1(r)	
  	
  

Prior	
  informa7on:	
  none	
  
	
  

E	
  field	
  data	
  
εT(r)	
  =εT1(r)	
  	
  

μT(r)	
  =μT1(r)+μc(r)	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

Prior	
  informa7on:	
  “Blind”	
  
inversion	
  image	
  of	
  εr1(r)	
  	
  	
  

	
  
	
  

FEM-­‐CSI	
  
	
  

FEM-­‐CSI	
  
	
  

“Blind”	
  inversion	
  image	
  
of	
  εr1(r)	
  	
  

	
  

Contrast:	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

! (r) = "r (r)!!b(r)
!b(r)

Figure 6.2: Flowchart describing magnetic contrast agent imaging using FEM-CSI.

breasts using carbon nanotubes (+22% in permittivity) as the contrast agent. Fig-

ure 6.4 a-d also shows a detection for a Class Four breast, although the algorithm

has difficulty detecting the upper tumour, likely because it is imbedded in a patch

of dense fibroglandular tissue. Figure 6.4 e-f shows contrast reconstructions using

micro bubbles (−30% in permittivity) and g-h shows the reconstruction for a change

in permeability from µ = 1 to µ = 2. Both of these contrast agents produce a recon-

struction that contain artifacts, and it may be difficult to extract useful diagnostic

information from them. Note that the magnetic case uses an unrealistically high

permeability and was intended to test our ability to detect magnetic contrasts.

More realistic scenarios are currently being tested in the EIL by Mr. Cameron

Kaye, who is investigating the use of magnetic nanoparticles as contrast agents in

MWT. A high-order 2D inversion code that can simultaneously reconstruct electric

and magnetic contrasts has been developed, as have algorithmic techniques for de-

tecting the very small permeability changes introduced by the nanoparticles.
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III. RESULTS AND DISCUSSION

Fig 1(e) shows a positive detection in the real part of �(r)
at the location of the tumours. We present results in the real
part only as the imaginary part of �(r) does not produce a
reliable detection. Fig. 1(c) shows the real permittivity map of
the breast that contains the contrast agent.

(a) (b)

(c) (d)

(e) (f)

Fig. 1. (a) Re(✏r(r)) of numerical breast phantom. (b) Re(✏r(r)) of numerical
forearm phantom. (c) Re(✏(r)) inversion result for breast data after the
inclusion of the contrast agent. (d) Re(✏(r)) inversion result for forearm data
after the inclusion of the contrast agent. (e) Re(�(r)) for the breast phantom
showing the detection of the tumours where their actual location is shown with
the dashed line. (f) Re(�(r)) for the forearm phantom showing the detection
of the tumours where their actual location is shown with the dashed line.

Although the most developed application for MWT has cer-
tainly been the imaging of breast tumours, other anatomical re-
gions have been recently explored, notably the musculoskeletal
imaging of distal extremities. Semenov et al. published such a
study in the context of simulated compartment syndrome in a
porcine hind limb with promising results [8], which served to
motivate a volunteer imaging trial of human forearms recently
conducted at the University of Manitoba [6]. Consequently, a
2D human forearm phantom is presented here as an additional
numerical example of a more complex imaging problem than
the relatively homogeneous breast permittivity profile. The
forearm model contains the prominent bony features of the

radius and ulna, and the crude circular inclusions within the
surrounding muscle tissue could represent a number of differ-
ent pathological conditions, including edematous, hypoxic or
necrotic tissue, traumatic vascular injury, or cancerous masses.

A 2D phantom used to create this data and the reconstructed
real permittivity map of the forearm that contains a contrast
agent are shown in Fig. 1(b) and (d). It can be noted that the
permittivity map does not contain reliable visual information
related to the location of the tumours. A positive detection of
these lesions in the real part of the complex contrast for the
synthetic forearm data is shown in Fig. 1(f).

A. Conclusions and Future Work

We are able to detect the location of pathological inclusions
in an anatomical region with a large amount of inhomogeneity
by simulating the use of a contrast agent. While we are
currently unable to obtain the expected value of �(r) at the
location of the inclusions, the location, size, and shape is
clearly detectable.

The results presented are for inclusions of a specific size and
dielectric value. This method will be refined using image post-
processing algorithms, which have already shown promise in
the detection of tumours of smaller size. The physical limits
of the dielectric properties of tissues that accumulate specific
contrast agents will also be investigated.
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Figure 6.4: (a,b,c,d) Class Two breast phantom and reconstruction using carbon
nanotubes, and (e,f,g,h) class three breast phantom and reconstruction using carbon
nanotubes.
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Figure 6.5: (a,b,c,d) Class Four breast phantom and reconstruction using carbon
nanotubes, (e,f) reconstruction using micro bubbles, and (g,h) reconstruction using
magnetic contrast agent.
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