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Abstract

Investigations in vitro have shown the importance of bFFGF as a mitogen
for astrocytes and as a neurotrophic factor for many neuronal populations in
different regions of the brain. During postnatal growth and development of the
rat brain, bF'GF gene activity may be important for diversity of functions. To
examine the pattern of bFGF gene expression, reverse transcription-
polymerase chain reaction (RT-PCR) was used to quantitate the expression of
bFGF messenger ribonucleic acid (mRNA) in various regions of the rat brain
in early postnatal development. Basic FGF mRNA levels were determined
relative to the level of mRNA for Glyceraldehyde-3-phosphate dehydrogenase
(GAPDH), the latter remains constant at the ages being studied. The levels of

bFGF gene expression were compared in the cerebrum from male rats of ages . .

one, three, seven, fourteen, twenty one, twenty eight days and one year. The

brain bFGF mRNA level within the first postnatal week remained low and
constant, followed by a sharp rise in the following two weeks and reached the
adult level (5.9-fold over one day old) by 28 days. Analysis of different regions
of 28-day-old rat brains revealed that the highest levels of bFGF mRNA occur
in the hippocampus, followed closely by occipital cortex, cingulate cortex and
inferior colliculus. The hypothalamus and combined pons-medulla showed

intermediate levels of bFGF mRNA. The lowest levels of bFGF mRNA occur

in cerebellum. When changes in bFGF mRNA levels in four brain regions were
examined during development, different patterns of expression emerged. The
combined pons-medulla exhibited little change in bFGF expression, but the
occipital cortex and inferior colliculus achieved major increases (2.5-fold and
2.9-fold, respectively) of bFGF gene expression over the first four weeks of life.
The cerebellum, however, possessed its highest levels of bFGF mRNA at one
day, and then showed a 2.6-fold drop in bFGF mRNA during the next 28 days,
such that by four weeks of age, the cerebellum has the lowest level of bFGF
mRNA among many brain regions tested. The temporal and spatial changes
in bFGF mRNA expression in various brain regions in early postnatal
development suggest that bFGF may exert different physiological effects on

different brain regions at different ages.
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Introduction

I. Fibroblast growth factor family

Fibroblast growth factor (FGF) was first identified as an activity in
extracts of pituitary (Hoffman 1940) and brain (Trowell 1339) that stimulated
the growth of BALB/c 3T3 cells (see Gospodarowicz et al, 1987a,b for review).
Two proteins were found to be responsible for such an effect, a basic protein
(pI: 9.6) called basic fibroblast growth factor (bFGF, FGF-2), that was able to
stimulate the proliferation and phenotypic transformation of BALB/c 3T3
fibroblasts, and an acidic one (pI: 5.8), acidic fibroblast growth factor (aFGF,
FGF-1), that was able to cause proliferation and delay differentiation of
myoblasts. Acidic FGF was later rediscovered on the basis of its ability to
stimulate the proliferation of endothelial cells (reviewed in Baira and Bohlen
et al, 1990 and Gospodarowicz et al 1987a,b). The similar biological effects of
aFGF and bFGF is due to the fact that they are structurally related molecules.
Significant portions of the FGF-like activities present in tumor extracts were
found to bind to heparin (Shing et al, 1984). The feature that FGF's bind with
high affinity to heparin helped in the isolation of highly purified native and
recombinant FGF's (Gospodarowicz et al, 1984). Within the past six years, the
FGF family expanded to include seven members after the characterization of
another five novel factors, int-2 (FGF-3, Moor et al, 1986), hst/K-fgf (FGF-4,
Sakamoto et al, 1986; Terada et al, 1986), FGF-5 (Zhan et al, 1987), FGF-6
(Marics et al, 1989) and KGF (FGF-7, Finch et al, 1989). Acidic and basic
FGF's are the most characterized FGFs and are considered the prototype of the
FGF family. FGF family members play important roles in vivo in different

normal physiological processes such as embryonic development, angiogenesis,
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nervous system differentiation and wound repair (Baird and Bohlen 1990).
The amino acid-core homology between the 7 members of the FGF family
ranges from 33 to 69%, and only 19% of residues within the core are invariant
among all the seven members (for review see Goldfarb 1990). Basic FGF
protein is expressed in a wide range of tissues of mesodermal and
neurocectodermal origin. Basic FGF was detected in brain, retina, pituitary
gland, macrophages, prostate, bone, cartilage, ovary, endothelial cells,
myoblast, lens epithelial cells and in the developing embryo, a wide range of
tissue specificity which suggests that bFGF is a multipotent growth factor
(Goldfarb 1990). Acidic FGF shares 55% sequence identity with basic FGF and
is 10-100 times less potent than bFGF, and its expression is mainly restricted
to the nervous system (brain and photoreceptors; Baird and Bohlen 1990).
Acidic and basic FGF have been detected in mouse embryo throughout
gestation (Hebert et al, 1990). The expression of int-2, hst/K-fgf, FGF-5 and
FGF-6 genes is mainly restricted to the developing embryo. The RNA of int-2
is expressed throughout embryogenesis and at birth but not in adult tissues
(Goldfarb 1990; Benharroch and Birnbaum 1990). The temporal and spatial
expression of int-2 suggests possible roles for int-2 in mesoderm migration,
inner ear formation and development of cerebellar and retinal neurons
(Wilkinson et al, 1988 and 1989). The expression of hst/K-fgf was found to be
restricted to embryogenesis prior to gastrulation (Hebert et al, 1990). FGF-5
and FGF-6 genes are expressed throughout embryogenesis as well as in
restricted sets of adult tissues (Hebert et al, 1991, De Lapeyriere et al,1990).
Similar to the effect exerted by basic and acidic FGFs, the newer FGF
members (int-2, hst/K-fgf, FGF-5 and FGF-6) stimulate the proliferation of
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fibroblasts. FGF-5 and hst/K-fgf are endothelial cell mitogens and int-2 and
hst/K-fgf act as mesoderm inducers (See Benharroch and Birnbaum 1990 for
review). KGF, the seventh member of the FGF family is a potent mitogen for
keratinocytes but not fibroblasts, and its expression is detected in dermis,
kidney and gastrointestinal tract. Some endodermal cell types such as thyroid
cells, prostatic cells and pancreatic cells were shown to respond to FGFs.

A possible role for FGF's in abnormal cellular processes such as cancer
has become clear with the identification of oncogenes that belong to the FGF
family. These oncogenes include int-2 (Peters et al, 1983), hst/K-fgf (Sakamoto
et al, 1986) and FGF-5 (Zhan et al, 1987). Acidic and basic FGFs were detected
in glioblastoma (Stefanik et al, 1990). Two of the high affinity FGF receptors
(bek and flg) were coamplified in subsets of breast tumors (Adnane et al,
1991), suggesting the involvment of FGF's in the transformation of these cells.
II. Gene structure of bFGF

Basic FGF is the product of a single copy gene, located dn chromosome
5 (Jaye et al, 1986) which spans at least 38 kb of genomic DNA and possesses
3 exons separated by two large introns. The first intron is at least 16 kb, and
separates codons 60 and 61, while the second inton is 16 kb long separating 95
and 96 codons (Shibata et al,1991). The exon boundaries of bFGF, int-2, hst/ks
and FGF-5 align perfectly, except the exon 1/intron boundary for bFGF is
shifted by 3 nucleotides, suggesting that the exon structure did not change
among FGF family members during evolution. Also, the high degree of
similarity of bFGF and othef members of the FGF family suggest that they are
derived from a single ancestral gene, which became separate genes through the

processes of duplication and evolutionary divergence (reviewed in Baird and
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Bohlen 1990, Gospodarowicz et al, 1987a,b). At the amino acid level, human
bFGF has 98.7% sequence homology with the bovine bFGI" and 87% homology
with the rat bFGF sequence (Kurokawa et al, 1987 and 1988). The high
conservation of the coding region of bFGF gene among different species implies
a strong selective evolutionary pressure for maintenance of function and
structure. The open reading frame of the bFGF ¢cDNA sequence suggests an
AUG (Met) initiation of translation site that generates a 155 amino acids (a.a;
18 KDa form), and the proteolytic cleavage of this form results in the 146 a.a
(16 KDa) form. The absence of any stop signal in the nearby 5 upstream
sequence of its ¢cDNA suggests the possibility of the existence of higher
molecular weight forms of bFGF (18 KDa to 29 KDa), which could be generated
by two predicted leucine, (CUG) initiation sites in the nearby 5 upstream
region (Florkiewicz and Sommer 1989; Sommer et al, 1989). In vitro and in
vivo studies showed the existence of multiple molecular weight forms reported
by Grothe et al 1990 {(18, 24, 30-33 and 46 Kilodaltons (Klja)}, Florkiewicz et
al 1991 (18, 22, 23 and 24 KDa), Woodward et al, 1992 (18, 21.5 and 22.5
KDa), Giordano et al, 1991 (18, 21, 22 and 24 KDa) and Li and Shipley 1991 -
(18, 24 and 27 KDa). Various studies showed that multiple forms of the bFGIF
protein are temporally and spatially distributed and are highly regulated
(Florkiewicz and Sommer 1989, Prats et al, 1989, Renko et al, 1990 and Bugler
et al, 1991). The exact function of those multiple forms is not yet understood,
but some studies suggest different functional importances of the multiple
existing forms (Couderc et al, 1991 and Quarto et al, 1991). The ¢cDNAs for
bFGF and aFGF lack a classical signal peptide sequence (Jaye et al, 1986).
Although aFGF and bFGF were localized in the basement membrane, the mode
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of their release from cells is unclear. The lack of signal peptide sequence and
the observation that little or no bFGF was detected in the conditioned media
of endothelial cells (Schweigerer et al, 1987) led to the “conclusion" that no
FGF is released from cells under normal conditions. Later studies argued
against that conclusion as it was found that an astrocytoma cell line released
15 to 50 times more of bFGF compared to a corneal endothelial cell line (Sato
et al, 1989). The stimulation of the bovine aortic endothelial cell proliferation
and migration by the addition of exogenous FGF (Sato et al, 1989) suggested

that extracellular FGF is important for normal cell function. Anti-bFGF- -~

antibodies inhibited the autocrine growth of endothelial cells (Schweigerer et
al, 1987). Kimelman and Maas (1992) showed that injecting synthetic XbFGF
mRNA into cells of early Xenopus embryos resulted in mesoderm induction.
Also, Amaya et al, (1991) demonstrated that the extracellular domain of the
Xenopus bFGF receptor (XbFGFR) was essential for mesoderm induction.
These observations suggested that a classical signal peptide for FGF secretion
was not required for normal FGF functioning. From the above mentioned
observations, it seems that bFGF resembles interleukins and some other
proteins that can be released from cells despite the lack of a signal peptide
(reviewed in D’Amore et al, 1990; Baird and Bohlen 1990)., One of the possible
factors that may interfere with the detection of the released bFGF is its rapid
association with some of the extracellular matrix components as well as its
binding to the cell surface receptors. Other possible pathways were suggested
for the release of FGF from cells. Angiogenesis is often observed in tissues
where there are ischemic events, suggesting the release of angiogenic factors,

such as bFGF, can take place due to cell death and lysis. The release of a
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significant amount of FGF-like growth factor activity in transiently injured
cells by scraping, demonstrates another possible way of FGF release without
the need of cell death (reviewed in D’Amore 1990). FGF may be delivered
locally by FGF-containing blood cells such as platelets and macrophages. The
existence of a secreted form of the FGF receptor (Johnson et al, 1991), which
can bind bFGF, suggests another possible mechanism for FGF transport
outside the cell. A possible way of FGF release, which is consistent with the
fact that FGF is associated with cell surfaces and extracellular matrix, was
suggested by a novel mechanism reported for the secretion of lectin, a protein
that lacks a signal peptide, from mouse muscle cells through plasma- |
membrane evaginations (Cooper et al, 1990). The 37 residues upstream of the
Met initiation site (present in the high molecular weight forms of bFGF), a
glycine-rich sequence with interspaced arginines, is implicated for the presence
of nuclear signal sequences that direct the internalized bF'GF into the nﬁcleus
(Bugler et al, 1991; Amalric et al, 1991; Renko et al, 1990).

Multiple transcripts (7.0, 3.7 and 1.4 Kb) of the bFGF gene were
detected in human tissues (Baird and Bohlen 1990), while a single major 6.0
Kb transcript for the rat bFGF mRNA (Emoto et al, 1989 and Shimasaki et al,
1988) and other smaller minor transcripts (3.0 and1.8 kb, Emoto et al, 1989)
were reported. Ernfors et al, (1990) reported the presence of a major 3.7 Kb
bFGF transcript as well as shorter 1.8 and 1.5 Kb mRNA species in the
developing rat brain. Powell et al, (1990) detected 6.0, 3.7, 2.5, 1.8, 1.6, 1.4
and 1.0 Kb bFGF mRNA in the developing rat brain. The significance and
functional importance of the existence of multiple bFGF transcripts is not yet

clear,



III. FGF Receptor Family
Low and High affinity FGF binding sites

The biological response of cells to FGFs is mediated through specific
high affinity cell surface receptors (kd=2-20x10''M) that possess intrinsic
tyrosine kinase activity and are phosphorylated upon binding to FGFs
(Coughlin et al, 1988). Low affinity FGF receptors (kd=2x10*M) have also
been identified (Moscatelli et al, 1988) and were found to be heparin sulfate
proteoglycans (HSPGs) that are present on the cell surface (Moscatelli et al,
1988) and in the extracelluar matrix (Voldavsky et al, 1987). Basic FGF could
be specifically released from these low affinity binding sites by an excess of
heparin or by enzymatic digestion with heparinases but not with closely
related glycosaminoglycans (Moscatelli et al, 1988). The affinity of bFGF for
heparin (Klagsbrun and Shing 1985) and aiong- with the observation that
various cell types express heparin-like molecules on their cell surfaces suggest
a physiological function(s) for heparin-like, low affinity FGF receptors. Studies
on chinese hamster ovary (CHO) mutant cells, expressing high affinity FGF
receptors but lacking HSPGs, do not bind bFGF unless heparin or heparin
sulfate is included in the binding medium (Yayon A. et al, 1991). These results
suggest that HSPGs play a role not only in the stabilization of FGI but they
are also crucial for FGF to bind to its high affinity receptors, probably through
changes in the confirmation of FGF molecules. Syndecan, an integral
membrane proteoglycan, contains both heparin sulfate and chondroitin sulfate
glycosoaminoglycan (GAG) chains, (Rapraeger et al, 1985) originally isolated
from mouse mammary epithelial cells. Syndecan binds to heparin-binding
growth factors and acts as a low affinity FGF receptor (Kiefer et al, 1990).
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High affinity FGF receptors (FGFRs) belong to the receptor tyrosine
kinase (RTK) family (Ullrich and Schlessenger 1990). They show high degree
of similarity to another member of the RTK family, the PDGF receptor family.
The structural similarity of FGF receptors to other receptor-linked tyrosine
kinases, has helped in predicting of the mode of signal transduction through
these receptors (Ullrich and Schlessenger, 1990). On binding to FGF, the
receptors form dimers, a process that is essential for signal transduction
(Ullrich and Schlessenger, 1990). The formation of heterodimers with a
mutant truncated high affinity FGF receptor that either lacked the first Ig-like
domain (Ueno et al, 1992) or the tyrosine kinase domain (Amaya et al, 1991) -
lead to the inhibition of signal transduction by wild type FGF receptors. FGF
receptors have been shown to activate tyrosine phosphorylation of several
substrates in addition to phospholipase C-y{(PLC-y), Burgess et al, 1990}. A
partial cDNA for human fIg (fms-like gene), the first high affinity FGF receptor
to be cloned, was isolated on the basis of its homology to the tyrosine kinase
domain of the CSF-1 receptor (Ruta et al, 1989). The second high affinity FGF
receptor to be cloned, bek (bacterially expressed kinase), was isolated by
phosphotyrosine antibody screening of a mouse liver expression library
(Kornbluth et al, 1988). The third member of FGF receptors , FGFR-3, can be
activated by aF'GF and bFGF (Keegan et al, 1991). The fourth member of the
FGF receptor family, FGFR-4, is 55% identical with fIg and bek and binds
specifically with high affinity to aFGF but not bFGF (Partanen et al, 1991).
Chick embryo kinase (CEK-3) as well as chicken flg and bek were also isolated
by the use of phosphotyrosine antibody screening of a chicken embryo
expression library (Pasquale et al 1990; Pasqual and Singer 1989). Each
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receptor consists of an extracellular domain that contains 2 to 3
immunoglobulin (Ig) like domains, a transmembrane domain and an
intracellular tyrosine kinase domain. The Ig-like domains indicate that FGF
receptors belong to Ig superfamily (Williams and Barclay 1988). Between the
first and the second Ig-like domains is a region with a high concentration of
acid residues, acid box; it is especially noticeable in flg. The intracellular
domain consists of a single chain, contains a relatively long juxtamembrane
sequence and has an insertion of 14 amino acids in the conserved tyrosine
kinase domain., Each FGF receptor was found to exist in multiple forms
generated mainly by alternative splicing of the native mRNA of the receptor
(Eisemann et al, 1991; Robinson 1991; Dionne et al, 1991). The multiple forms
of each receptor mainly vary in the extracellular region. For example, one
form of flg and bek is missing the first Ig-like domain. Another form of the bek
gene product, the smallest extracellular domain of the FGF receptors yet
reported, is missing both Ig-like domain and the acid box linker region. Other
cDNAs predict soluble, secreted forms of the receptors (Johnson et al, 1991), ;
the main function of which is still under investigation, but they may play a
role in down regulation of FGF signalling or they may function as a carrier
molecule to transport FGFs to their proper site of action. An alternative exon
usage is a possible mechanism in producing the second half of the third Ig-like
domain, which may be involved in the specificity of ligand-receptor binding.
For example, usage of one exon shows high affinity binding to aFGF and bFGF
(Dionne et al, 1990; Houssaint et al, 1990; Crumley et al, 1991), while usage
of a different exon confers high affinity binding to aFGF and KGF but not
bFGF (Miki et al, 1991). The diversity of FGF receptors produced by
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alternative splicing, and the ability of these different forms to interact with
more than one of the FGFs generated a high level of redunduncy in FGF
receptor/ligand interactions. The spatial and temporal expression of specific
forms of the receptors (Wanaka et al, 1990 and 1991) may be a factor in
determining ligand specificity. In chick embryos, FGF receptor mRNAs were
expressed abundantly in the germinal neuroepithelial layer and during late
maturation of neuronal populations in the regions examined such as
cholinergic nuclei of the basal forebrain, brain stem reticular and motor nuclei
and cerebellar Purkinje and granule neurons (Heuer et al, 1990). This pattern
of FGFR gene expression was generally reciprocal to that of NGF-R in the CNS
and in some periods of development of the PNS (Heuer et al, 1990). These
observations suggested sequential rather than simultaneous effects of FGF and

NGF on neuronal development.
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IV. Neurotrophic factors
Depending on their locations, 20 to 70% of the neurons of the developing
nervous system will be eliminated through a process known as the naturally
occurring neuronal programmed cell death, or apoptosis. This process is
thought to be regulated by proteins called neurotrophic factors (NTFs). Nerve
growth factor (NGF), for a long time, was the only known NTF (reviewed in
Levi Montalcini 1987). Barde (1988) defined a NTF as a protein that is
synthesized in the respective neuronal target tissue, present in a limited
concentration, taken up by receptor-mediated retograde axonal transport, and
able to prevent the ontogenetic neuron death, Only NGIF completely f_ulﬁls
Barde’s criteria for defining a NTF. In general, development and maintenance
of the vertebrate nervous system requires NTFs. Recent studies have shown
that these factors can also stimulate neuronal sprouting in the brain (Ernfors
et al, 1991). Studies on dorsal root ganglia (DRG) neurons suggest that NGF
is produced by innervated target tissue, where it is taken up by nerve
terminals to be transported to the neuronal soma to regulate gene
transcription. At some developmental stages NGF is required for neuronal
survival. Later on in the adult nervous system, it appears to regulate neurite
outgrowth, synaptic connections and the quantity of neurotransmitter
produced. However only a small minority of the neurons in the brain and

spinal cord are responsive to NGF.

1. The neurotrophins
Although NGF was the only known NTF for several decades, the cloning
of the brain-derived neurotrophic factor (BDNF, Leibrock et al, 1989) revealed
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striking structural similarities between BDNF and NGF, suggesting the
existence of a gene family of neurotrophic factors which allowed the
characterization of three additional neurotrophins named: NT-8 (Maisonpierre
et al, 1990a,b), NT-4 (Hallbsok et al,1991), NT-5 (Berkemeier et al, 1991), All
the above mentioned five neurotrophins are capable of promoting the survival
and differentiation of many types of sensory neurons.

a. Nerve Growth Factor (NGF)

It is becoming clear that polypeptide growth factors play important roles
in the development and maintenance of neural circuits (Snider and Johnson
1989). NGF is the most thoroughly studied neuronal growth factor that
promotes the survival and outgrowth of peripheral sensory and sympathetic
neurons (Levi-Montalcini and Calissana 1986). NGF also influences the
development of certain groups of neurons including those of the basal
forebrain-septum (Hartikka and Hefti 1988). NGF has a limited set of neural
targets in comparison to other growth factors such as bFGF, and is believed to
be active mainly in cholinergic neurons (Morrison et al 1988; Knusel et al
1990; Hefti et al, 1990). NGF interacts with several different types of
receptors and a fast response involves the low affinity receptors (Radeke et al,
1987) while a slow response is mediated by the high affinity receptors such as
NGT binding to the #% proto-oncogene product (Kaplan et al, 1991). In vitro
studies on cultured neurons showed that NGF did not promote neuronal
survival or neurite outgrowth in hippocampus or cortical neurons (Mattson et
al, 1990). Low affinity NGF receptors are normally sparse or absent in
hippocampal and cortical neurons (Koh et al, 1989) suggesting that NGIF may

not have biological activity in neurons at these brain sites. NGF can prevent
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the damage of cholinergic neurons associated with brain lesions in animal
models of neurodegenerative disorders (Hefti et al, 1989), and protect human
and rat neurons against hypoglycaemic damage (Cheng and Mattson, 1991).
NGTF promotes the survival and differentiation of neural crest-derived sensory
and sympathetic neurons during development and their maintenance in the
adult (Barde 1989). Injury to the rat sciatic nerve leads to the induction of
NGF receptors on the denervated Schwann cells and their disappearance on
the regenerating axons of the axotomized, normally NGI n-sensitive sensory
and sympathetic neurons (Raivich et al, 1991). These results suggest that
while sensory and sympathetic neurons are primary targets of NGF, Schwann
cells may become its primary target in the aftermath of nerve injury (Raivich
et al, 1991).

b. Brain-derived neurotrophic factor (BDNFK)

Originally characterized as a factor that increases the survival of DRG
neurons, BDNF synthesis occurs mainly in the CNS, particularly in cortical
and hippocampal neurons (Hofer et al, 1990). The trk B (Klein et al, 1990), the
BDNF receptor, a tyrosine kinase, is also expressed in the same neuronal
populations, which suggests an autocrine function for the BDNF in these
tissues. The spatial and temporal distribution of BDNF mRNA (Maisonpierre
et al, 1990b) suggests a possible role for BDNF in supporting the survival of
CNS sensory neurons (Hofer and Barde 1988). BDNF promotes differentiation
of basal forebrain cholinergic and mesencephalic neurons in vitro (Alderson et
al, 1990, Hyman et al, 1991). All these observations have led to the hypothesis
that BDNT is a specific regulator of CNS growth for a variety of peripheral

sensory neurons. In the adult brain, BDNF mRNA concentrations increase as
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a result of seizures (Isackson et al, 1991) and ischemia (Lindvall et al, 1992)
indicating a role for BDNF in neurodegeneration-neuroprotection and neural
plasticity. The highest levels of BDNF mRNA within the hippocampus are
found in the pyramidal layer of the CA2 and CA3 regions as well as the
dentate gyrus and hilus. BDNF has the most widespread distribution in
comparison to the other neurotrophins in different regions of the brain (Ernfors
et al, 1991) and its highest gene expression occurs two weeks after birth, a
week before NGF reaches its peak (Ernfors et al, 1991)
c. Ciliary Neurotrophic factor (CNTT)

CNTF was originally identified and partially purified from avian ocular
tissue and later isolated from the siatic nerve of rodents (Lin et al, 1990).
Chemical studies showed that peripheral nerve is the richest tissue source of
CNTF (Rende et al, 1992). CNTF was first demonstrated to support the
survival of embryonic chick parasympathetic ciliary ganglion neurons in vitro
and later was shown to support motor neurons of the spinal cord (Arakawa et
al, 1990) and sympathetic neurons (Barbin et al, 1984). CNTF has been shown
to rescue motor neurons from naturally occurring cell death during
development of the chick embryo (Oppenheim et al, 1991). Recent in vitro
studies have shown that CNTF promotes the survival of certain neuronal
subpopulations of the hippocampus (Ip et al, 1991). An investigation by Hagg
et al, (1992) on the effect of CNTF on axotomized neurons in the adult brain,
showed that CNTF has a rescue effect on those neurons.
d. Epidermal growth factor (EGF)

EGF is a mitogenic peptide, first isolated from the male mouse

submaxillary gland (Cohen 1962), influencing the growth and development of
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a variety of tissues (for review see Carpenter and Wahl 1990). EGF has been
shown to promote proliferation and differentiation of glia (Honegger and
Guentert-Lauber 1983) and to enhance neuronal survival and process
outgrowth (Morrison et al, 1988, Casper et al, 1991), EGF (Lazar and Blum
1992) and EGF receptors (Werner et al, 1988) are also detected in the
developing and adult CNS. The level of expression of EGF mRNAs were shown
to increase in the developing brain reaching its maximum level in the adult
(Lazar and Blum, 1992). Also the EGF mRNAs were detected in all the
different regions examined of the adult brain (Liazar and Blum 1992). These 7
results suggested a role for EGF in the development of the mammalian CNS.
e. Platelet derived growth factor (PDGF) |
Human PDGF is a major mitogen for cells of connective tissue origin and
is involved in development and wound heéling (Smits et al, 1991) and may be
acting as a key growth regulator during normal development including
neurodevelopment (Mercola et al, 1990). PDGF is disulphide linked homo- or
hetero- dimer consisting of two related polypeptide chains, the A and B
subunits, that are products of two different genes. In the embryo the PDGF
A-chain mRNA was restricted to the PNS and CNS (Yeh et al, 1991). In adult
mice, PDGF A-chain mRNA was abundant in neurons throughout the spinal
cord, peripheral ganglia and brain, and the protein was present in both
neurons and glial cells, PDGF-BB and PDGF-AB were present in neurons in
many regions of the adult monkey brain (Sasahara et al, 1991). The presence
of PDGF in axon terminals (Sasahara et al, 1991) raises the possibility that it

may be involved in nerve-target interactions.
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2. Basic FGF and its roles in the developing and adult nervous system
a. Basic FGF as a neurotrophic factor |
Recently, bF'GI has emerged as a growth factor that is produced in the
nervous system and exerts a variety of in vivo and in vitro effects, stimulating
mitogenesis, differentiation and maintenance of cells of neuroectodermal and
mesodermal origin including neurons and glial cells suggesting a major role for
bFGF in maintaining the integral function of various parts of the nervous
system. Evidences for the direct action of bFGF on glial and neuronal cells
were derived from various studies (Unsicker et al, 1990; Mattson and Rychlik
1990). Walicke and Baird (1991) showed that exogenous bFGF is internalized
into vesicles in the cytoplasm of both astrocytes and hippocampal neurons, and
then translocated to chromatin structures of the nucleus, suggesting a role for
bFGF in gene regulation. The processed internalized bFGF fragments (15.5,
9 and 4 KDa) were similar in both the astrocytes and the neuroectodermal cells
(neurons), suggesting a similar manner of metabolizing of bFGF in both major
CNS cell types. Studies by Ferguson et al, (1990) showed that bFGF is
transported anterogradely by retinal ganglion cells in vivo, an important step
for a neurotrophic factor to interact with and exert its effects on the target
Nneurons.
b. Basic FGF expression by neurons and glial cells
Pettmann et al, 1986 and Janet et al, 1988 detected bFGF
immunoreactivity in neurons but not in glial cells in cultured brain and
peripheral ganglia cells. Others reported the expression of bFGF mRNA only
in cultured astrocytes (Emoto et al, 1989) and bFGF mRNA and protein in
astrocytes from adult bovine corpus callosum (Ferrara et al, 1988). On the
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other hand, in situ hybridization studies by Emoto et al, 1989 showed that
neurons of several brain regions contained the bFGF mRNA. Gémez-Pinilla
et al, (1992) showed that bFGF immunoreactivity was mainly localized in
astrocytes and occasionally in microglial cells throughout the normal rat brain.
Few neuronal populations in the septohippocampal nucleus, CA-2 field of the
hippocampus, cingulate cortex, cerebellar Purkinje cells, deep nuclei, facial
nerve nucleus and the motor and spinal subdivisions of the trigeminal nucleus
and facial nerve nucleus were expressing bFGF mRNA (G6émez-Pinilla et al,
1992). Studies on the distribution of bFGF mRNA by Emoto et al, 1989, using
in situ hybridization, showed similar distribution of bFGF mRNA compared to
the distribution of the bFGF protein detected by Gémez-Pinilla et al, (1992),
with a more restricted distribution in neuronal populations (CA-2 region of the
hippocampus, layers 2 and 6 of the cingulate cortex, indusium griseum and
fasciola cinereum). Put all the above mentioned observations together, it
seems that bFGT is synthesized by both glial cells and specific neurons of the
CNS, however, the exact neuronal cells synthesizing it and the amount

produced by each neuronal population is still unclear.

c. In vitro effects of bFGF on
i. Neurons

One of the most important reported effects of bFGF on nervous system
cells is the promotion of neuronal survival and neurite outgrowth. Basic FGF
maintained the survival of many neurons of the CNS obtained from cerebral
cortex, thalamus, striatum, septum (Walicke 1988), hippocampus (Walicke et
al, 1986), mesencephalon (Ferrari et al, 1989) and spinal cord (Unsicker et al,
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1987). In the PNS, application of bFGF to the proximal end of a severed
sciatic nerve enhanced the remyelinization of its neuronal sheath and
prevented the death of dorsal root ganglia (Baird and Boehlen 1990). Studies
on the rat retina ganglion cells, showed that bFGF was able to enhance their
survival and neurite outgrowth (Bahr et al, 1989). Neurons located in the
subiculum (Walicke 1988), rat rondose and superior cervical ganglia as well as
chick sympathetic and DRG (Unsicker et al, 1987) were not affected by bFGF
addition. The mitogenic activity of bFGF was also exerted on neuroblast and
neuroblastoma cells (Gensburger et al, 1987, Ludecke and Unsicker 1990).
Other cellular changes following addition of bFGF were also reported such as
the increase in the Choline-acetyltransferase activity iﬁ ciliary ganglion
neurons (Unsicker et al, 1987), septal neurons (Grothe et al, 1989a,b) and
spinal cord neurons (McManaman et al, 1989). Hippocampal neurons were
rescued by bFGF from glutamate toxicity (Mattson et al, 1989).
ii. Glial cells
Basic FGF acts as a mitogen for astrocytes and oligodendrocytes
(Delaunoy et al, 1988), stimulates the proliferation of different types of glial
cells, and maturation of astrocytes, but as an inhibitor of the differentiation of
glioblasts and maturation of oligodendrocytes (Westermann et al, 1990). Yong
et al, 1988a,b found that bFGF is a mitogen for fetal, but not adult human
astrocytes, oligodendrocytes and Schwann cells. In vitro studies showed that
addition of bFGF to astrocytes (Perraud et al, 1990) and oligodendrocytes
(Delaunoy et al, 1988) obtained from various regions of the brain resulted in
changes of the morphology of these cells. Heparin and other

glucosoaminoglycans are potent enhancers of the bFGF effects on glial cells
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(Perraud et al, 1988a,b). In contrast, NGF does not exert any of the bFGF
effects on the physiology and morphology of glial cells. Proliferation and
neurite outgrowth induction by bFGF (Stemple et al, 1988) were observed on
noradrenergic chromaphin cells (a type of the PNS neurons that contain bFGF)
(Grothe and Unsicker 1990). Similar effects of bF'GF on neurite outgrowth of
a tumor cell line of the chromaffin cells,PC12, were reported (Neufeld et al,
1987).
d. In vivo effects of bFGF on neuroectodermal cells:

The naturally occurring death of the chick ciliary ganglion neurons
between embryonic day 8 and day 14 (loss of 56% of the neurons), is almost
completely prevented by the application of bFGF (Dreyer et al, 1989). Fimbria-
fornix lesions and optic nerve transéction were used to study the effect of bFGE
on CNS injury. Fimbria-fornix transection results in the loss of about 87% of
the neurons (Otto et al, 1989). About 60% of the cholinergic neurons in the
medial septum (Anderson et al, 1988) dies after fimbria-fornix transection, 20%
of those neurons were rescued from death by bFGF, and almost 80% of the
dying (50%) cholinergic neurons in the diagonal band of Broca on the
ipsilateral side (Anderson et al, 1988) survived after bFGF application.
Twenty five percent of the retinal ganglion neurons were rescued from death
by bFGF after optic nerve fiber transection (Sievers et al, 1987). Treatment
with bFGT reduced the lesion-induced loss of choline acetyltransferase activity
and increased the number of reactive astrocytes in the hipocampus (Barotte et

al, 1989).
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V. Angiogenesis

Proliferation of blood vessels (angiogenesis) is a process that is
important for the normal growth and development of tissues (Folkman 1971).
Blood vessel growth in early embryonic development and in the adult animals
is tightly controlled. Some developing organs (like brain) are vascularized by
sprouts branching from preexisting blood vessels (Klagsbrun and D’Amore
1991). In the adult, angiogenesis is not a common process except in few tissues
such as female reproductive system, in the development of corpus luteum
during ovulation and in the placenta after pregnancy. In normal adult tissues
angiogenesis is induced in tissue repair processes such as wound healing
(Broadley et al, 1989) and fractures (reviewed in Klagsbrun and ID’Amore
1991).

In the brain, endothelial cells originate from outside the nervous system.
Sprouts of endothelial cells form as compact masses with a 1umen,.which are
produced as a result of secretion of extracellular matrix materials by
endothelial cells (Gordon et al, 1985). Trophic factors produced by astrocytes
play a role in the regulation of development of brain capillary endothelial cells.
Angiogenesis increases within the period of glial cell proliferation, growth and
differentiation of dendrites, synaptogenesis and myelination (within the first
3 weeks in postnatal rats). Capillaries formed in the brain are unique in that
the capillary endothelial cells form continuous tight junctions, a feature that
prevents molecules from passing between them, and form what is known as
blood-brain barrier (reviewed in Jacobson et al, 1990). Abnormal blood vessel
proliferation can lead to pathological conditions, as in the case of the growth
of solid tumors that depend on the vascularity of those sites (Folkman et al,



21
1972). Angiogenesis is a multistep process that involves the degradation of the
capillary basement membrane, the migration and proliferation of endothelial
cells and tube formation. The search for candidate factors influencing
angiogenesis was suggested by Folkman (1972) when he recognized that unless
solid tumors become vascularized, they can remain embedded in tissues for a
long period of time without noticeable tumor growth. DBased on this
observation, he suggested the presence of tumor angiogenesis factor (TAF).
Soluble factors were identified that either stimulate or inhibit one step or more
in the process of angiogenesis (reviewed in Klagsbrun and D’Amore 1991).
FGF and TGF-o are growth factors that exert direct effect on endothelial cells,
stimulating their proliferation and migration. Different studies reported the
presence of a highly specific mitogen for vascular endothelial cells known as
vascular endothelial growth factor (VEGF; Conn et al, 1990, Connolly et al,
1989). Besides being an endothelial cell mitogen and angiogenic factor, VEGF
is a vascular permeability factor (Connoly et al, 1989). In contrast, angiotropin
stimulates the migration but not the proliferation of endothelial cells, while
angiogenin has no effect on their proliferation and migration- (Klagsbrun and
D’Amore, 1991). FGFs were identified on their ability to stimulate the
proliferation of endothelial cells (reviewed in Folkman and Klagsbrun 1987)

and their involvement in angiogenesis will be discussed in more details below.

1. FGF As an activator of angiogenesis

Endothelial cells synthesize large amounts of bFGF (Schweigerer et al,
1987) that remains associated with the cell and the subendothelial cell
extracelluar matrix (ECM) (Baird and Ling 1987; Vlodavsky et al, 1987) and
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released by the action of heparinase (Bashkin et al, 1989). The storage
mechanism of FGF in the ECM may be an important process in the rapid»
response of FGF to stimulate angiogenesis and cell proliferation in wound
healing. Basic FGF synthesis was also detected during the process of
development of granulosa cells into the corpus luteum (the target of
neovascularization in the ovary) ( Neufeld et al, 1987). Basic FGF is a mitogen
and is chemotactic for endothelial cells (Gospodarwicz et al, 1987a and b;
Thomas et al, 1987 and Terranova et al, 1985). Basic FGF also stimulates the
production of collagenase and plasminogen activator proteases that are capable
of degrading the basement membrane (Mignatti et al, 1989). Basic FGF is an
inducer of the migration of capillary endothelial cells to the collagen matrices
and the formation of capillary-like tubes (Montesano et al, 1986). FGF's have
been implicated in the process of formation of collateral vessels in ischemia
from the observations that FGF's are localized in the heart and the brain and
can stimulate vascularization when injected into the brain (Cuevas et al, 1988).
FGF stimulates the production of new matrix components such as collagen
(Davidson et al, 1985) and GAGs (Gordon et al 1985). FGF maintéu'ns the
differentiated state of endothelial cells through delaying senescence
(Gospodarwicz et al, 1986), stimulation of expression of nonthrombogenic apical
cell surface (Vlodavsky et al, 1979) and increasing cell attachment to the
substratum (Schubert et al, 1987). In vifro studies showed that bF'GF can
induce the rearrangement of endothelial cells to form tubular structures
(Montesano et al, 1986). From all the above gathered information about the
involvement of FGF in the process of angiogenesis, it seems that FGF directs

endothelial cells at the site of neovascularization, breaks down the ECM in
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that region to clear the path for the formation of new blood vessels and

eventually, participates in the process of damage repair of the injured tissue.

2. FGF in Wound healing

FGF has been detected at the site of the focal brain wounds (Finkelstein
et al, 1988). Acidic FGF is released early after rat brain injury (Neito-
Sampedro and Cotman 1988). Addition of FGF to the injured corneal
epithelium stimulated its healing (Muller et al, 1985). FGFs accelerate the
wound healing process through triggering cellular responses that are important
for the tissue repair such as attraction of important cells to the wound site
(Sprugel et al, 1987) and the stimulation of fibroblast proliferation and extra
cellular matrix components synthesis (Davidson et al, 1985, Spfugei et al,
1987, Buntrock et al, 1984).
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VI. Factors involved in embryonic development
At the early blastula stage, the amphibian embryo (e.g Xenopus) consisté
of two cell types: presumptive ectoderm in the animal hemisphere, and
presumptive endoderm in the vegetal hemisphere. Until fertilization, the egg
is radially symmetrical around the animal-vegetal axis. Upon fertilization,
sperm enters the ventral vegetal side of the egg causing a rotation of the cortex
of the egg relative to its cytoplasmic core. This cortical rotation brings large
yolk platelets and animal pole cytoplasm into close contact. The orientation
of this rotation accurately predicts the future dorsoventral polarity in the
vegetal hemisphere. Most of the dorsoventral patterning information is
generated in the vegetal hemisphere (for review see Kay and Smith 1989,
Hopwood 1990, Slack 1990, Slack et al 1990). Determination of both the
dorsal-ventral and anterior-posterior axes are the most early major events in
the development of an embyo. In the developing embryo cells are progressively
specialized by a series of cellular interactions called inductions, in which a
group of cells is affected by a signal from an adjacent group (Sﬁemann et al,
1921). The first detected inductive signals during early amphibian
development, produced by the endoderm of the blastula (vegetal hemisphere)
result in the generation of mesoderm from ectoderm (the animal hemisphere
of the embryo) around the blastula equator. Mesoderm, the middle germ layer,
comprises the largest part of the body of vertebrates, such as muscles,
connective tissues, most of the skeleton, the vascular system and most of
urinary and genital systems. There are at least two types of signals that
induce mesoderm formation. The first signal is generated from the dorsal

vegetal hemisphere that induces dorsal mesoderm cell types (such as muscle
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and notochord), and the second one derived from the ventral vegetal
hemisphere of the embryo that induces mainly ventral tissue type (such aé
blood and mesothelium). A third interaction, known as dorsalization, takes
place between the newly formed dorsal mesoderm and the nearby ventral
mesoderm region and results in a further specialization to form other ventral
mesodermal tissues. The furthermost dorsal mesodermal structure, the
notochord, is the first to differentiate. Somites, lie on either side of the
notochord, later differentiate to muscle, skeleton and connective tissue of the
skin. The lateral plate mesoderm will give rise to heart, smooth muscle of the
gut, the mesenteries and blood. The urinary and genital systems arise from
the mesodermal region that connect lateral plate and somites. The second
major induction interaction at the gastrula stage between the newly formed
dorsal mesoderm and dorsal ectoderm leads the formation of neuroectoderm

(Ruiz 1990).

1. Mesoderm inducing factors (MIF)

Factors from two growth factor families have been identified as the most
potent mesoderm inducers in embryos. These include the dorsal mesoderm
inducers, activin, XTC-MIF (the Xenopus homologue of the mammalian activin,
Smith et al, 1990), and TGFB2 from the TGFpB superfamily (Roberts et al,
1990), and ventral mesoderm inducers, members of the FGF family (aF'GF,
bFGF, hst-2/kFGF, FGF-5 and int-2, Slack 1990 and Paterno et al, 1989).
Studies showed that low concentrations of activin induces the formation of
ventral mesodermal tissues (mesenchyme and mesothelium), higher

concentrations produces dorsal mesoderm (Muscle, Green et al, 1990a,b) and
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highest concentrations induce notochord. On the other hand bFGF at both
high and low concentrations only induces ventral mesoderm formation. The
exact mechanism and the product of these induction processes are not clear
yet, but these results suggest that each cell has a threshold corresponding to
each response. Alternately, all cells would have one threshold and their
response depends on the proportion of induced cells in each tissue. Xwnt-8, a
member of the Wnt gene family that also has been hypothesized to play a role
in embryonic patterning (Gavin et al, 1990) was localized to cells within the
ventral vegetal region of the gastrula. Another member of the Wnt gene
family, Wnt-1 is expressed in a temporally and spatially restricted féshion
during murine embryogenesis (Shackleford and Varmus 1987). Both XTC-MIF
and bFGF are activators of Xwnt-8 expression. FGFs and Wnt gene family
members may cooperate to initially specify the complete dorsal-ventral axis of

the mesoderm.

2. FGFs and their role in mesoderm induction

Many observations showed that FGF family members are the potential
factors for the ventral mescderm induction of embryonic ectoderm (reviewed
in Smith et al, 1989). The detection of FGF or FGF-like molecules in the
developing chick brain and in the kidney mesenchyme of the mouse embryo
(Risau 1986; Risau et al, 1988; Risau and Ekblom 1986) as well as the
presence of bFGF in the human placenta (Moscatelli et al, 1986) led to the
hypothesis that FGFs could support the proliferation and differentiation of
specific tissue cells during embryonic and fetal development. Later studies

showed that FGF family members can induce all mesodermal derivatives
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except notochord, and enhanced by TGF-B to induce mesoderm (Hopwood
1990). In vitro studies showed the response of ectoderm to FGF rises from
about the 128-cell stage and falls again by the onset of gastrulation. The
mRNAs and the protein for bFGF (Kimelman et al, 1988) and its receptor
(Gillespie et al, 1989 and Musci et al, 1990) are present in the Xenopus
embryos. Mesoderm induction in Xenopus embryos occurs over approximately
a seven-hour time span from the 64-cell stage until the beginning of
gastrulation (Woodland and Jones 1987), and the exposure of the animal cap
cells to as little as 10 minutes for the added Xenopus bFGF (XbFGF) protein
was sufficient to induce the formation of ventral mesoderm (Green et al 1990;
Green 1990). Differential expression of two of the FGF receptors, flg and bek,
in the mesenchyme and in the epithelium respectively in a variety of
embryonic tissues including skin, limb, gut and respiratory tract (Peters et al,
1992) suggest the mediation of different functions of FGF's duriﬁg development.
A negative dominant mutant form of the FGF receptor failed to induce
mesoderm in response to FGF in embryonic explants, causing specific defects
in gastrulation and in posterior development in the whole embryo (Amaya et
al, 1991). These defects were rescued by overexpression of the wild type of the
FGYF receptor, suggesting an important role for FGF in the formation of the
posterior and lateral mesoderm in early embryogenesis. The low-affinity FGF
receptor, syndecan, was detected at the 4-cell stage, and at cell-cell boundaries
at the blastula stage. At the time of endoderm segregation, it become
restricted to the interface between the endoderm and ectoderm (Sutherland et
al, 1991) suggesting a role in mesoderm formation. In other studies, syndecan

expression was found to undergo striking changes during epithelial-
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mesenchymal transitions; it is turned on in mesenchymal cells that will become
epithelial and turned off in epithelial cells that will become mesenchymal
(Vainio et al, 1989 and Trautman et al, 1991). These observations suggest
roles in stabilization of epithelia in the early pattern formation of embryonic
mesoderm. A very recent study by Kimelman and Maas (1992) on Xenopus
embryos, showed that XbFGF induces the formation of dorsal mesodermal
structures when translated from injected synthetic RNA, suggesting a role for
bFGF in establishing the dorsoventral axis of the embryonic mesoderm. The
discrepency between this observation and the previous studies that showed
bFGF as a ventral mesoderm inducer was explained by the difference in-the
way bFGF was delivered to the animal cap cells. Another member of the FGF
family, int-2 was detected in the developing mouse rhombencephalon in a
spatial and temporal pattern suggesting its importance in the normal
development of the inner ear (Represa et al, 1991). The fourth member of the
FGF family, hst/kFGF, was detected in the late blastocyst stage of the
developing mouse embryo, in cells that give rise to all embryonic lineages,
suggesting the maintenance of different cell types in that cell population.
Later in development, hst/kFGF become restricted to the primitive streak and
continues to be expressed at the gastrula stage in the distal two thirds of the
primitive streak that will give rise to the future mesoderm and definitive
endoderm. During subsequent development, its expression becomes localized
in the branchial arch units, somatic myotome, the apical ectoderm ridge of the
developing limb bud and tooth bud (Niswander et al, 1992), suggesting
multiple roles for hst/kFGF during embryogenesis. The hst/kI'GIF is expressed

in ectodermal cells near and in the primitive streak, while int-2 is expressed
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at high levels in the mesoderm as cells leave the streak and move laterally
(Niswander et al, 1992). These observations reveal a complementarity in thé
pattern of their mRNAs expression. FGF-5 mRNAs are detected in visceral
endoderm surrounding the embryo, and in the ectoderm prior to the formation
of the primitive streak (Hébert at al, 1991). A possible novel member of the
FGF family that was cloned from Xenopus laevis embryo ¢cDNA, eFGF, was
shown to be expressed maternally and zygotically with a peak during the
gastrula stage, and its expression was concentrated in the posterior of the body
axis and later in the tailbud, suggesting its involvement in mesoderm
induction at the blastula stage and in the formation of the anterior-posterior
body axis at the gastrula stage (Isaacs et al, 1992). Taken toge.ther, the data
suggest that different members of the FGF family are involved in a variety of
processes such as a role in specific epithelial mesenchymal interactions,

mesoderm formation, body plans formation and embryonic organogenesis.

3. Anterior-Posterior body axis formation

In the early amphibian gastrula, the vegetal side in contact with the
animal hemisphere of the embryo releases growth factors that induce the
activity of a region known as Spemann’s organizer (Spemann et al, 1921) in
overlying cells at the dorsal side of the embryo (Smith et al, 1989, Thomsen et
al, 1990). Spemann’s organizer induces the invagination of cells through the
blastopore lip and consequently the extent of the future anterior-posterior body
plan (A-P). There are at least forty homeobox (HOX) genes in the genome of
the mouse and most other vertebrates that encode transcription activators,

through protein-DNA interaction, and play a major role in the cell specification
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along the A-P body axis of developing embryos. Those genes are located in four
clusters, of about ten genes each, with genes located at the 5’ end expressed in
posterior regions of the embryo, and those in more 3’ regions expressed in a
more anterior parts of the embryo (reviewed in De-Robertis et al 1989). HOX
gene expression is highly specific and show a gradient field of distribution of
their mRNAs. One of the major sites of their expression is the nervous system,
with distinct pattern of expression of each individual HOX gene, with distinct
anterior boundaries mainly in the spinal cord and the hind brain (Hunt et al,
1991). Their distribution and pattern of expression suggest a fundamental role
in the organization of the nervous system and the specification of the
craniofacial and branchial structures. For example, the expression of the
XlHbox 1 protein occurs in a narrow region in the anterior trunk of Xenopus
embryo at the tail bud stage that includes mesoderm, anterior spinal cord and
neural crest (De-Robertis et al, 1989), Three weeks later, XlHbox 1 protein
was found to be distributed in a A-P gradient with maximal expression at the
anterior. The field of XIHbox 1 expression shows its high specificity to the
forelimb but not the hind limb (Hunt and Krumlauf 1991). The effect of growth
factors in the A-P body plan formation may be through the activation of
expression of certain HOX genes in specific regions of the developing embryos.
FGF induces high levels of Xhox 3, a posterior member of the HOX gene family
(Ruiz and Melton 1989), while activin induces the Xlhbox 6, an anterior
marker (Cho and De Robertis 1990). these observations suggested the role of

FGF as a posterior inducer, while activin is an anterior inducer.
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VII. Research objectives
While bFGF protein is widely distributed in variety of adult tissues of
mesodermal and neuroectodermal origin the expression of bFGF mRNA is only
readily detectable in the brain (Shimasaki et al, 1988). Other studies showed
that exogenous bFGF regulates the functions of cells in the nervous system
(Walicke, 1988; Walicke and Baird, 1988). Those observations support the
assumption that bFGF has important roles in the nervous system and may act
as a neurotrophic factor. Whether endogenous bFGF exerts similar or identical
effects on various parts of the developing CNS has to be determined. A first
step toward understanding the endogenous effects exerted by bFGF on the
developing nervous system, is to study its gene expression. The aim of this
study is to reveal the regional distribution of bIF'GF mRNA in the developing
rat brain in order to provide us with insight into the significance of bFGF in
the development of the nervous system. RT-PCR provides a sensitive technique
for detection of low abundance messages such as bFGF mRNA. To be able to
determine the relative expression of bFGF mRNA in various regions of the -
developing rat brain, it was necessary to establish a quantitative RT-PCR
protocol to be able to compare relative amounts of bFGF mRNA present on

those tissues.
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Materials and Methods

I. Tissue collection

Male Sprague-Dawley rats were anesthetized with isoflurane before
their sacrifice. All the experimental procedures were performed in accordance
with protocols authorized by the University of Manitoba Committee on animal
care, which conforms to the procedures approved by the Canadian Council on

animal care. With the brain still in the skull and after the removal of the

superficial meninges, the following regions were dissected with a microknife . |

and placed on dry ice; the same order was always used: occipital cortex,
inferior colliculus and cerebellum, then with the brain removed and put on ice,
the pons and medulla were taken as one piece. For one separate set of 28-day-
old rats, in addition to the above regions, hypothalamus was separated at the
optic tracts from one thick coronal cerebral slice, along with hippocampus and
cingulate cortex (For diagrams showing positions of dissected regions. see.
figures 17 and 18).

The cerebrum was used in an initial series and included cerebral
hemispheres and most of the diencephalon except for part of hypothalamus.
Five to ten minutes on average were required for dissection and collection of
various brain structures. After collection, tissues were immediately stored at -

70 °C. Information about animals used in this study is summarized in table 13.

II. Total RNA extraction

Total RNA was extracted either by the guanidine hydrochloride/cesium
chloride method (for large amount of tissues, Chirgwin et al, 1379) or by the
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fast single step method (for small amount of tissues, Chomczynski et al, 1987).
1. Guanidine hydrochloride/cesium chloride method
The same procedure described in Chirgwin et al, 1979 for RNA
extraction using the guanidine hydrochloride/cesium chloride method was used.
2. Single step method for RNA extraction
A fast method for RNA extraction from small amount of tissues (50-200
mg), was adapted from the published protocol by Chomezynski et al, 1987.
Tissue was homogenized with 1 ml of solution A (4 M guanidium thiocyanate,
25 mM sodium citrate, pH 7;0. 5% sarcosyl, 0.1 M 2-Mercaptoethanol) at room
temperature. After tissue homogenization, 0.1 m! of 2 M sodium acetate, pH
4; 1 ml of phenol (water saturated) and 0.2 ml! of chloroform/isoamyl alcohol
mixture (49:1) were added to the homogenate, mixed thoroughly first by
inversion then vigorously by vortexing for 10 sec.. The mixture was cooled on
ice for 15 min., then centrifuged at 10000 rpm for 20 min. at 4 °C. After
centrifugation, the aqueous phase (upper layer) was transferred to a fresh tube,
mixed with 1 ml of isopropanol and placed at -70 °C for 1 hr. to precipitate
RNA. Then the samples were centrifuged at 10000 rpm for 20 min. at 4 °C and
the precipitated RNA pellet was dissolved in 0.3 ml of solution A, transferred
to a 1.5 m! eppendorf tube that contains 1 volume of isopropanol and kept at -
70 °C for at least 2 hrs.. The samples were centrifuged at 10000 rpm for 10
min. at 4 °C, and the RNA pellet was resuspended in 75% ethanol, sedemented,
vacuum dried for 7 min. and dissolved in 50-200 ul of high performance liquid

chromatography (HPLC) water.
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1. Northern analysis
Northern analysis was carried out as described in Maniatis et al. (1982).
Total RNA was thawed in a 65 °C water bath, and then kept on ice, denatured
in 33% formamide and 2.2 M formaldehyde at 65 °C for 15 minutes. The RNA
was then electrophresed in a 1% (w/v) agarose gel containing 2.2 M
formaldehyde, 40 mM MOPS ph 7.0, 10 mM NaAc pH 5.2, 1 mM EDTA pH 8.0,
and 0.06 png/ml ethidium bromide (EtBr). The RNA was transferred to a
nitroplus 2000 (Micon Separations Inc.) hybridization filter using 20 X SAC
(1X SAC = 0.15 M NaCl, 0.015 M sodium citrate). The filter was baked for 2 V
hours under vacuum at 80 °C. The major, EtBr stained, total RNA bands
(mainly the 28 S and the 18 S ribosomal RNA bands of rat total RNA) were
visualized under ultraviolet (UV) light. DNA probes were labelled by random
priming. Labelling was carried out using *P-dCTP (3000 Ci/mmol) by the use
of a random priming kit (Amersham). Filters containing total RNA were placed
into Seal-o-Meal plastic bags and prehybridized for at least 2 hours at 42 °C
in hybridization solution containing 40% (v/v) formamide, 5§ X Denhardt’s
solution (1X Denhardt’s = 0.02% (w/v) each of bovine serum albumin, Ficoll,
and polyvinylpyrrolidine), 5X SSPE (1X SSPE = 1.16 M NaCl, 0.01 M
NaH,PO,, 1 mM EDTA), 250 ng/ml denatured salmon sperm DNA andr 0.1%
sodium dodecyl sulfate (SDS)]. After prehybridization, the prepared DNA
probes were added to the bags using a 10 ml syringe. The bags were then
resealed and placed in a 42 °C shaking water bath for approximately 16 hours.
Tollowing hybridization, the filters were washed 1 time in 2 X SAC/0.1% SDS
at room temperature for 15 minutes, followed by 1 wash in 0.2 X SAC/0.1%

SDS at 65 °C for 30 minutes. The filters were then autoradiographed using
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Kodak XAR x-ray film and an intensifying screen at -70 °C.

IV. Reverse transcription (RT)

Total RNA (0.03-1.5 ng) was incubated with 200 units of MMLYV reverse
transcriptase (RTase; BRL) in a buffer containing a final concentration of 50
mM Tris-HCI (pH 8.8), 75 mM KC1, 3 mM MgCl,, 10 mM DTT, 5% DMSO, 19
units of RNase Inhibitor (Pharmacia), 0.01% BSA, 0.25 png of RT primer
(AGCTACAGCTGAGCTGAGCTCAGT,;,), and 0.5 mM of each dNTP
(Pharmacia) in a final volume of 10 pl. The reaction mixture was incubated for

2 hours at 37 °C, and then stored at -20°C.

V. Polymerase Chain Reaction (PCR)
1. Procedure

One twentieth of the RT reaction was used in the PCR reaction in a 50
nl final volume containing 200 pM of each dATP, dCTP, dGTP and 400 nM of
dUTP, 50 pmol of each primer, 2 units of Taq Polymerase (BRL), 0.5 unit 6f
uracil DNA glycosylase (UDG, BRL), 10 mM Tris (pH 8.4), 1.5 mM MgCl,, 50
mM KCl, and 0.02% gelatin. The mixture was overlayed with two drops of
mineral oil to avoid evaporation, and then incubated in a GTC-1 genetic
thermal cycler (Scientific Precision) for 35 cycles (in case of bFGF
amplification) or 22 cycles {(in case of GAPDH and actin) using the following
profile: an initial denaturation step at 94 °C for 7 minutes, then repeated cycles
of 94 °C for 45 seconds (denaturation), 55 °C for 45 seconds (annealing), and 72
°C for 90 seconds (elongation). The samples were finally incubated at 72 °C for

7 minutes, and then stored at 4 °C. The samples were run on 1,.2% agarose gels
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and the PCR product was visualized under UV light and then photographed
using black and white Polaroid films (high speed 4X5 in. instant sheet film).
The actual size of PCR product was determined by the use of DNA marker (¢X
DNA digested with Hae III).

2. Primers used for the quantitative analysis of the levels of bFGF
mRNA

a. Rat bFGF ¢DNA: Expected PCR product size = 372 bp

Predicted from the published rat bFGFEF ¢cDNA sequence by Shimasaki et al,
(1988)

Pf (forward primer): 5 AAGCGGCTCTACTGCAAG 3’; position: 617 -634

Pr (reverse primer): 8 AGCCAGACATTGGAAGAAACA 3’; position: 969-988
b. Rat GAPDH cDNA: Expected PCR product size = 343 bp
Predicted from the published rat GAPDH ¢DNA sequence by Tso et al, (1985)
Pf (forward primer): 5 GCTGGGGCTCACCTGAAGGG 3’; position: 346-365
Pr (reverse primer): 5 GGATGACCTTGCCCACAGCC 3’; position: 669-688
¢. Rat actin ¢cDNA: Expected PCR product size = 291 bp

Predicted from the published rat B actin sequence by Nudel et al, (1983)

Pf (forward primer):5’ TGAACCCTAAGGCCAACCGT 3’; position: 1657-1676
Pr (reverse primer): 5 CGCACGATTTCCCTCTCAGC 3’; position: 2402-2421

3. Primers used during the process of optimizing the amplification of
bFGF

Different primers were tested for the amplification of a portion of the coding
region of bFGF mRNA. Best primers (that gave strong signal and with

minimum non-specific amplified products) were used for the quantitation of
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bFGF mRNA levels in the rat brain (as described above). Other primers tested

for the amplification of bFGF mRNA, but not used for quantitation are
described below:

a. Expected PCR product size=201 bp

(Predicted from the published rat bFGF sequence by Shimasaki et al, 1988).
Pf (forward primer): ¥ CGGTACCTGGCTATGAAGGA ®; position: 770-789
Pr (reverse primer): ¥ CAGTATGGCCTTCTGTCCAG ¥ position: 951-970

b. Expected PCR product size=301bp

(Predicted from the published rat bFGF sequence by Shimasaki et al, 1988).
Pf (forward primer): *\GGAGAAGAGCGACCCACACGT? position: 688-705
Pr (reverse primer). ¥ AGCAGACATTGGAAGAAACA ¥, position: 963-988

c. Expected PCR product size=354bp

(Predicted from the published rat bFGF sequence by Shimasaki et al, 1988).
Pf (forward primer): YAACGGCGGCTTCTTCCTG?®; position: 635-652

Pr (reverse primer) YAGCAGACATTGGAAGAAACA?Y; position: 969-988

d. Expected PCR product size=415 bp

Pf (forward primer): YAACGGCGGCTTCTTCCTG* 7

Pr (reverse primer): “CTACAAGCTCTACCACAGGGGA?

VI. Detection of PCR product by the incorporation of ¥*P-dATP

In addition to the PCR protocol described above, a 2 pci of «-3*P-dATP
was added to each PCR reaction. The samples were amplified for 30 cycles in
the case of bFGF or 20 cycles in the case of GAPDH. PCR products were
separated using 6% polyacrylamide gels. The polyacrylamide gel used was
prepared as 50ml of 6% polyacrylamide gel containing 5ml of 10 X TBE buffer,
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8.33 ml of 29:1 acrylamide/bisacrylamide, 36.67 ml H20, and 0.2 pg/ml EtBr.
After degassing the gel mixture for few minutes, 25 nl of TEMED and 250 gl
of ammonium persulfate were added to start polymerization. After preparing
the polyacrylamide gel, one tenth of the PCR product was loaded into the gel,
ran for 2-4 hours using 1 X TBE buffer at 100v. The gel was then transferred
to a whatman paper, dried under vacuum and then exposed to XAR x-ray film

O/N. The intensities of the signals were quantitated by densitometry.

VII. Southern analysis (for detection of non-radioactive PCR
product)

Detection of DNA molecules were performed accofding to the method of
Southern (1975). Fifteen microliters of the PCR reaction was run on a 1.2%
agarose gel which was stained with 0.2 pg/ml ethidium bromide to visualize
the PCR product bands under the UV light. The PCR products were then
transferred to a nitrocellulose filter (Thomas 1980). The filter was baked for
2 hours under vacuum at 80 °C, and then prehybridized with 40% formamide .
prehybridization solution [40% (v/v) deionized formamide, 5X Denhardt’s |
solution (1X Denhardt’s = 0.02% (w/v) each of bovine serum albumin, Ficoll,
and polyvinylpyrrolidine), 56X SSPE (1X SSPE = 1.15 M NaCl, 0.01 M
NaH,PO,, 1 mM EDTA), 250 pg/ml denatured salmon sperm DNA and 0.1%
sodium dodecy! sulfate] for at least 2 hours at 42 °C. A **P labeled rat bFGF
¢DNA and mouse GAPDH c¢DNA (prepared by using Amersham random
priming kit) were hybridized with the filter at 42 °C for 24 h. The filter was
washed first with 2X SAC ( 1X SAC = 0.15 M Na(l, 0.015 M sodium citrate)

containing 0.1% SDS at room temperature for 15 minutes, followed by one
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wash in 0.2X SAC containing 0.1% SDS at 65°C for 15 minutes. The filter was

then exposed to X-ray film (XAR-5 Kodak) at -70 °C with intensifying screens.

VIII. Diagnostic digestion of PCR product or plasmids

PCR product or plasmid DNA was digested with restriction
endonucleases (RE) obtained from either Pharmacia, Besthesda Research
Laboratories (BRL), or Boehringer Mannheim at 37 °C for no longer than 3
hrs.. Either the buffer supplied with the enzyme, or the appropriate RE buffer
as described in Maniatis et al (1982) was used in the digestion reactions. When
regiured, the RE were inactivated following digestion by heating at 65°C 61* 85
°C for 20 minutes, or by addition of 80 pl of DDH,0. The method of Andrews
et al (1982) was used to separate the RE digested DNA fragments. The DNA
was electrophoresed in 1.2% agarose gels stained with 0.2 pg/ml EtBr. The gels
were run at room temperature in TBE and the DNA bands were visualized

under UV light.

IX. Small scale preparation of Plasmid DNA (Minipreps)

Minipreps were performed according to the method of Serghini et al
(1989). Single colonies of bacteria, transformed with plasmid were picked from
plates and grown O/N in 5§ mls of LB broth, that contains 45 pg/ml ampicillin
or 15 pg/ml of tetracyclin depending on the resistance of the plasmid, by
shaking at 37 °C at 250 RPM. After O/N incubation, 1.5 mls of culture were
transferred to an eppendorf tube and the bacteria were collected as a pellet by
centrifugation. The bacterial pellet was resuspended in 50 pl of TE and equal
volume of phenol/chloroform/isoamyl alcohol (25/24/1) was added. The mixture
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was vortexed and centrifuged and the aqueous layer was removed. To
precipitate the DNA in the aqueous layer, a 2 M (final concentration) of
ammonium acetate and 2 vol. of ethanol were added, and the mixture then
kept at -70 °C. The sedimented DNA by centrifugation was then dried and
resuspended in 20 pl of TE buffer. The DNA was analyzed by RE digestion and
electrophoresis. DNase-free RNase (50ng/ml) was added to the RE buffer to

degrade any RNA present in the samples.

X. Large scale preparation of plasmid DNA

Plasmids were amplified for use in experiments by the method outlined
in Maniatis et al (1982). Bacteria, transformed with the plasmid of interest
were grown O/N in 5§ mls of LB broth containing ampicillin or tetracycline to
select for those bacteria containing the plasmid. The 5§ ml O/N cultures were
added to 500 mls of fresh LB broth containing the appropriate antibiotic for
plasmid selection and grown until the optical density (ODg,,) was greater than
0.6. To stop bacterial growth and allow plasmid amplification, chloramphenicol
was added to a final concentration of 10 pg/ml, and the culture was grown for
a further 16 hours. The bacteria containing the amplified plasmids were
collected by centrifugation at 6000 RPM for 10 minutes in a Beckman JA-10
rotor. The bacterial pellet was either stored at -70°C or used immediately. The
pellet was resuspended in 9.5 mls of lysis buffer (25 mM Tris-HCI pH 8.0, 10
mM EDTA, 50 mM glucose), transferred to sterile 50 ml Oakridge tubes
(Nalgene), and 0.5 mls of freshly prepared lysozyme (20 mg/ml) was added. The
tubes were placed sideway on ice and shaken for 30 minutes. Ten mls of a

0.2M NaOH/0.2% SDS solution was then added and the tubes were left to
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shake for further 30 minutes. The mixture was centrifuged in a Beckman JA-

20 rotor for 30 minutes at 17000 RPM at 4 °C and the supernatant was
removed and extracted once with 20 mls of phenol/chloroform/isoamy! alcohol
(25/24/1). The aqueous phase was seperated from the organic phase by
centrifugation at 3000 RPM in 50 ml centrifuge tubes, removed, and the DNA
in it was precipitated by the addition of 0.6 vol. of isopropanol. The DNA was
pelleted by centrifugation in a JA-20 rotor at 15000 RPM for 10 minutes at 20
°C, and then resuspended in 6.0 mls of TE buffer. After DNA resuspension, 6.6
g of cesium chloride (CsCl) to yield 5.7 M was dissolved in the TE buffer and .
the mixture was transferred to a Beckman Quickseal centrifuge tube (16 x 76
mm). The TE buffer was overlayed with 0.2 ml of 10 mg/m! EtBr and the tube
was filled to the top with mineral oil, balanced, sealed, and centrifuged in a
Beckman Ti75 rotor at 55000 RPM for 16 hours at 20 °C. After 16 hours, the
speed was reduced to 45000 RPM for 45 minutes. Following centrifugation, the
UV light was used to differentiate between the plasmid and bacterial genomic
DNA bands. The plasmid band was removed by a needle or syringe, and
extracted several times with 2-8 volumes of isoamyl alcohol until the solution |
color is clear, as an indication of removal of the EtBr. The DNA was then

ethanol precipitated and dried pellet redissolved in TE buffer pH 7.5.

XI. Sequence Analysis

The PCR product was purified from the gel using a 0.45 nM Ultrafree-
MC polysulfone column (Millipore), made blunt ended with incubation with
Klenow, and subcloned into EcoRI site in the plasmid pVZ I (Bluescribe vector
modified by S. Henikoff, Fred Hutchinson Cancer Research Centre). The
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subcloned PCR product was sequenced by the dideoxy termination method
(Sanger et al, 1977). Upper and lower PCR primers and the universal primer
for the PVZ sequence were used to initiate the sequencing reaction in the
presence of T, DNA polymerase and the 4 dNTP’s (the dCTP was labelled with
32P), One pg/ul of the subcloned PCR product was annealed to 0.5 pmol/ pul of
primer in the presence of 1 pl of 100 mM Tris, pH 8.0 and 1 nl of 50 mM Mgel,
buffer. After gentle mixing, the mixture was incubated at 65 °C for 5 min. to
allow strand-primer annealing and then allowed to cool gradually at room
temperature for 20 min..This mixture was divided into 4 tubes, (2 nl each),
labelled G,A,T,C. To another 4 tubes, each containing 5 nl of **S-dATP, 0.5 mM
of one type of ANTP was added followed by the addition of the corresponding
ddNTP (0.25 mM) in a total volume of 10 nl. Those components were mixed by
gentle pipetting and then 2 pl from each labelled tube was added to the
labelled G,A,T,C tubes. The mixture was then incubated with 0.5 U/ul of T,
DNA polymerase at room temperature for 17 min., then 2 pl of 2 mM of cold
dNTP was added and the mixture was incubated again for 15 mm To stop the i
reaction, 5 pl of formamide dye was added, boiled for 3 mih, and then cooled

quickly on ice before loading them into sequencing gel.

XII. Recombinant DNA probes
bFGFE Rat bFGF ¢DNA (0.8 kb) in PVZ1 (Kurckawa et al, 1988)
GAPDH Mouse GAPDH cDNA (1 kb) in PVZ1 (Tso et al, 1985)
8 actin Mouse B actin ¢cDNA (2 kb) in pBR322 (Nudel et al, 1983)
28S 288S ribosomal RNA ¢cDNA (5 kb) in pBR322
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XI11. Statistics
To test the significance of change in the levels of bFGF mRNA in different
brain regions and different ages, the mean value for each brain region at one age was
compared with that of the same brain region of a different age using ANOVA-
Duncan’s method. For brain regions of 28-day-old rats, a similar analysis was carried
out to compare the mean value of each brain region with that of other brain regions

at the same age.



Results

I. Optimization of ¢cDNA amplifications by RT-PCR

During the course of optimizing the conditions of the PCR reaction,
critical components for the efficiency of the RT-PCR reaction were investigated.
The major components of the PCR reagents which dramatically influence the
efficiency of the PCR reaction are discussed below.
1. MgCl,
MgCl, is required for the functioning of the Taq polymerase enzyme, and its
concentration can influence the efficiency and the accuracy of Taq polymerase
in the polymerization step. Very low concentrations of MgCl, in the PCR
reaction leads to poor amplification of fhe ‘target sequence, while high
concentrations of it affects the specificity of the Taq polymerase and can result
in multiple nonspecific amplified PCR products. Consequently, inefficient

target specific amplification is expected due to faster depletion of the PCR-

reagents and coamplification of more than one target simultaneously. PCR
buffers with serial dilutions of MgCl, were tested, and a range of 0.5-1.56 mM
of MgCl, (final), was found to be appropriate for amplification of bEFGF ¢DNA
and the other control gene products actin and GAPDH,
2. Taq polymerase

The number of units of Taq polymerase can affect (in a similar way to
the effects of MgCl,) the stringency of the PCR reaction. Taq polymerase (1.5
to 2.5 units; BRL) gave reproducible amplification of all cDNA sequences under

study.

44



45

3. Primers

For specific and efficient amplification of cDNA or DNA sequences by
PCR, selection of primers is a very critical step. To select suitable PCR
primers, the following criteria should be applied as much as possible: upper
and lower primers should match the target sequence (avoid any base mismatch
at the 3’ end of the primer sequence), similar annealing temperature required
for the upper and lower primers to hybridize to the target sequence and G+C
content of the primer should be close to the A+T content. RNA extracted from
tissues is often contaminated with minute amounts of genomic DNA.
Coamplification of the genomic DNA sequence with its corresponding RNA
species is not desired. To decrease the chance of genomic DNA amplification,
and to be able to differentiate it from its corresponding RNA sequence, primer
pairs were designed such that the intervening sequence contained at least one
intron. The selection of the PCR primers was carried out by ﬁsing primer
analysis software (Oligo; version 4.0; National Biosciences) that searches for
best matched primers.
4. Annealing temperature

Although target specific primers were designed according to the criteria
described above, it is useful to determine the actual optimum temperature
required for the target c¢cDNA amplification. This can be achieved by
comparing the amplification of the target ¢DNA at different annealing
temperatures. Varying the annealing temperature (50 °C, 56 °C, 60 °C and
65°C) to test the efficiency of amplification of bFGF, GAPDH and actin ¢cDNAs

revealed that 56°C the optimum temperature for target specific amplification.
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5. RT-PCR controls
To avoid PCR-product carryover or contamination (false positives), a
major problem encountered by the use of the RT-PCR (Longo et al, 1990), clean
environment and strict conditions were applied during reagents preparation.
Tissue collection, RNA extraction and RT-PCR reactions were carried outin a
physically distant laboratory from the site of PCR product isolation and
storage. Gloves were changed 2-3 times while carrying out a PCR or an RT
reaction, Separate pipetman and tips were devoted for the PCR reaction. Tips
were changed whenever using a reagent or RNA/cDNA samples. Positive
displacement PCR micropipets were used for aliquoting and addition ‘of
RNA/cDNA molecules to the RT/PCR reaction mixtures. Proper negative
controls (blank) that contain all RT-PCR reagents, including enzymes and PCR
primers but no RNA/cDNA were carried out. Other negative controls that
contain all RT-PCR reagents including RNA, PCR primers and Taq polymerase
but no reverse transcriptase were also examined. The substitution of dTTP
with dUTP and the addition of uracil DNA glycosylase to the PCR master
mixture was incorporated in the PCR protocol to eliminate product
contaminant (Longo et al, 1990). Addition of UDG to the PCR reaction
mixture had no effect on the PCR efficiency (Fig. 1a).

I1. Identification of PCR product
1. Ethidium bromide (EtBr) stained gels: Agarose gels stained with EtBr

were used to detect the amplified PCR product. The size of the PCR product
was determined by the use of DNA markers (0X DNA digested with Hae III).
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2. Southern analysis: The correct size bEFGF or GAPDH PCR products were
also tested by southern analysis using the appropriate %2P-labeled ¢cDNA
probes.
3. Restriction enzyme digestion: The expected size bFGF PCR product was
also confirmed by diagnostic cutting, using the appropriate restriction enzyme.
Figure 1c shows the digestion of bFGF PCR product with Dde I results in two
expected smaller fragments deduced from the published rat bFGF ¢DNA

sequence (Kurokawa et al, 1988).

ITI. Parameters of quantitative RT-PCR

The goal of this study is to establish the relative expression of bFGF in
different stages and regions of the rat brain in development. As with most
growth factor genes, the half life of bFGF mRNA is short (Murphy, P.R. et al,
1990). The expected lower level of bFGF mRNA (Emoto et al, 1989, Riva and
Mocchetti, 1991) and small size of the normal brain regions to be analyzed,
necessitate the use of a highly sensitive technique for RNA detection.
Northern blot technique was not used as a routine quantitative procedure
because it requires 5 to 10 pg of poly (A)* RNA. Figure 2 shows that bFGF
mRNA was barely detectable using 40 ng of total RNA obtained from adult rat
brain. In situ hybridization, a more sensitive technique for RNA detection than
Northern analysis, is not a suitable method for quantitation of gene expression,
specially if the expression of the gene is very low and if cells expressing it are
sparse (Emoto et al, 1989). The RT-PCR method was therefore employed in a
quantitative manner (Murphy, L.D. et al, 1990, Becker-Andre and Hahlbrock,
1989, Gilliand et al, 1990, Horikoshi et al, 1992, Lugmani et al, 1992). A
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method by Becker-Andre and Hahlbrock, (1989) and Gilliand et al, (1990)
utilized ¢cDNA standard templates, added in serial dilutions to aliquots of the
¢DNA mixture to be analyzed. However, such an approach does not control for
variations in the quality and the quantity of RNA samples. Also, restriction
enzyme digestions often used to separate the internal control PCR product
from the target one are usually incomplete. To avoid these problems, an
authentic internal standard which is expressed equally in the tissues to be
studied was used. An internal standard ¢cDNA ideally should be one whose
expression is constant among different tissues. To test the approach for
quantitation described by Becker-Andre and Hahlbrock, 1989, Gilliand et al,
1990, coamplification of bFGF and an internal control (actin) was examined.
A dramatic reduction in the PCR efficiency for both the bFGF and actin was
noticed (Fig.1B). The coamplification inhibition effect was also observed by
Horikoshi et al, (1991). For the comparison of relative gene expression it is not
necessary that the target and the internal control cDNA be amplified with the
same efficiency, only that the efficiency of the PCR amplification of the same
c¢DNA remains constant among different samples. Amplification of the target
and the internal control gene products in separate tubes would be possible as
long as their amplifications lie in the linear range. For that reason it was first
necessary to establish the optimum number of PCR cycles and the RNA input
that would give exponential amplification of both the target and the internal
control cDNAs (Fig. 7,8). Genes like actin (Horikoshi et al, 1992) and GAPDH
(Zentella et al, 1991; Bosma et al, 1991; Clontech 1992; Lugmani et al, 1992)
have been reported to be equally expressed in different tissues and used as
internal standards. GAPDH mRNA was less abundant than actin (Clontech
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1992) and was chosen as the internal control for bFGF mRNA quantitation.
The expression of GAPDH and actin detected by RT-PCR was similar in
various regions of the brain of 28-day-old rats and in the rat cerebrum during
the first month after birth (Fig. 3A and 3B). Also, Northern analysis confirmed
that GAPDH expression was similar in various regions of the brain of 28-day-
old rat (Fig. 4) and in the cerebrum of the developing rat (Fig. 5 ).

Previous quantitative studies using RT-PCR utilized radioactivity as a
method for detection of the PCR product (Gilliand et al, 1990, Singer-Sam et
al, 1990). A non-radioactive procedure in which PCR products were detected
with ethidium bromide after gel electrophoresis was evaluated. Aliquots of the
same RT reaction product (cDNA) were subjected to PCR amplification for
bFGF and GAPDH using *P-labelled dATP. The bands of the photographs of
the ethidium bromide stained gels and autoradiograms (Of *P-labelled PCR
product) were quantitated by scanning densitometry. Results obtained by the
two methods used for PCR product detection and quantitation were very
similar (Fig. 6), confirming the reliability of using ethidium bromide stained
gels as a method for detection of PCR product. This approach is fast, easier
to perform and in turn, can be applied to compare large number of samples at

the same time.

Relationship of PCR product as a function of PCR cycles for both
bFGF and GAPDH c¢DNAs

The PCR reaction has two phases, an exponential phase and saturation
phase. The length of the first phase depends on various factors mainly on the
amount of ¢cDNA template used, the amount of PCR product generated
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(efficiency of amplification) and depletion of PCR reagents (during the PCR
reaction) such as primers and dNTPs. Also, the exposure of Taq polymerase
to high temperatures during each PCR cycle (94° C) reduces its activity. All
those factors will affect the efficiency of the RT-PCR reaction and inturn
quantitation by this method. Plotting the number of PCR cycles against the
amount of PCR product obtained at each cycle, a graph can be obtained and
the linear range of amplification can be determined (Fig. 7).
Relationship of the PCR product as a function of the amount of
template RNA input
As the amount of RNA used will determine the amount of ¢cDNA that |
will be generated in the RT reaction and later on, the quantity of the PCR
product produced, serial dilutions of RNA were reverse transcribed and then
amplified to determine the range of RNA concentration that results in a linear
PCR product amplification. Results obtained from analyzing different RNA
samples from different tissues showed that amplification of cDNAs under study
was linear when 0.07 to 0.25 pg of total RNA was reverse transcribed and PCR
amplified, (Fig. 8). Also, table 12A shows that results obtained from seﬁal

dilutions of RNA obtained from various brain regions were similar.,

IV. PCR detection of a novel sequence in the 3’ untranslated

(UT) region of bFGF mRNA
In an effort to optimize the conditions for the amplification of bFGF
¢DNA by the reverse transcription-polymerase chain reaction (RT-PCR), three

primers were designed (P,,P,,P3) according to the published ¢DNA sequence for
rat bFGF ¢DNA (Shimasaki et al, 1988; Fig. 11). P, (forward primer) and P,
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(reverse primer) correspond to positions 635 to 652, and 969 to 988
respectively, within the coding region. Also used was a second reverse primer
P, which corresponds to position 1028 to 1049 in the 3’ untranslated (UT)
region of the published sequence (Shimasaki et al, 1988; see also Fig. 8). As
expected, a 354 bp PCR product (lane 6, Fig. 9A) was obtained with the P, and
P, primers. However, when primers P, and P, were used a single 722 bp PCR
product (lane 1, Fig. 9) was obtained instead of a 415 bp product predicted by
the published sequence (Shimasaki et al, 1988). Figure 9 also shows that no
PCR product was detected when either RNA samples (lanes 3 and 5) or RTase
(lanes 2 and 4) was omitted, a result indicating that the 722 bp PCR product
was derived from authentic RNA transcript. The 722 bp PCR product was also
obtained when RNA from adult rat ovary and 3 day and 21 day rat kidneys
were reverse transcribed and amplified (FFig. 10). The same 722 bp PCR
product was obtained from RNA extracted from brains of rats of four older
ages: 21 days, 28 days, 4 months and 1 year old (results not shown). The 722
bp RT-PCR product from brain RNA, which we refer to as RATBFGF3, was
subsequently sequenced (Fig. 11; El-Husseini et al, 1992). The sequence
revealed an open reading frame identical to the coding region of the published
rat ovary derived bFGF mRNA sequence (RATGFFO, Shimasaki et al, 1988)
and rat brain derived bFGF mRNA sequence (RATGFBF, Kurokawa et al,
1988). These results revealed an additional 307 bp in the 3’ UT region. This
sequence (position 383 to 689 of RATBFGFS3; Fig. 9) represents an insertion
between positions 1016 and 1017 of the sequence published by Shimasaki et
al, (1988; Fig. 12).
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V. Basic FGF gene expression in the rat brain
1. Basic FGF mRNA levels in the rat cerebrum during early postnatal
development
The levels of bFGF mRNA in the cerebrum obtained from male rats of
ages 1 to 28 days and one year were first compared. For results obtained by
RT-PCR, see tables 1A and 1B. Figure 13 shows a gradual increase in bFGF
mRNA levels, reaching high levels at the end of the first month (about 5.9-fold
of that of 1-day-old, Fig. 13). One year old rat cerebrum bFGF mRNA levels
were as high as that from 28-day-old rats. Table 2A summarizes the results
obtained from 3 independent sets of animals (see table 13). GAPDH mRNA
levels remained relatively constant. Hence bFGF signals were equalized with
respect to the GAPDH signal intensities for quantitation. Figure 13 shows
that the greatest increase in the levels of bFGF mRNA occurred between the
first and the second postnatal weeks (3.4 fold). The adult level of bFGF
expression was reached by 3 weeks of age, its level being 4.8-fold over that of
newborn rat cerebrum. For comparison, all the PCR results obtained were
expressed relative to 21-day-old rat cerebrum set as 100%. Statistical analysis
was carried out using AN OVA-Dunc_an’s test (for summary of the analysis, see

table 2B).

2. Regional distribution of bFGF mRNA in 28-day-old rat brain

The RT-PCR applicationrevealed an uneven distribution of bFGF mRNA
in several structures of 28-day-old rat brain (Fig. 14; also see tables 3, 4 and
5). The regional analysis of 28-day-old rat brain showed that the lowest levels
of bFGF mRNA occur in the cerebellum while the highest levels are found in
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the hippocampus (7 fold of that of cerebellum). Also the levels of bFGF gene
expression were high in the occipital cortex and cingulate cortex (5 fold),
followed by inferior colliculus (3.7 fold). Intermediate levels were observed in
the hypothalamus and combined pons-medulla (2 fold). For relative
comparison, all PCR results were expressed relative to the Inferior colliculus
of 28-day-old rat set at 100%. Summary of PCR results obtained from different
sets of animals is in table 6A. In situ hybridization studies by (Emoto et al,
1989) showed that bFGF gene transcripts are widely distributed in the cerebral
cortex of the adult rat brain, and the highest levels were found in hippocampus
and cingulate cortex. These results indicate that levels of bFGF gene
expression are similar in the 28-day-old and the adult rat brain regions
discussed above. Figure 6 (for PCR results see table 12B) shows that the
results obtained by the non-radioactive PCR method were comparable to that
obtained by the **P-dATP incorporation protocol, thus validating accuracy of
the non-radioactive quantitative RT-PCR method. Statistical analysis was
carried out using ANOVA-Duncan’s test (for summary of the analysis, see table
6B).

3. Regional differences in bFGF gene expression during postnatal
development

Four brain regions were selected to examine if different loci exhibit
different time of bFGF expression during early postnatal development. In the
occipital cortex (0.C.) and inferior colliculus (I.C.), a gradual increase in the
levels of expression of bFGF within the first month of postnatal brain growth
was observed, reaching high levels in 28 day [2.5 fold and 2.9 fold of the levels
of bFGF mRNA in occipital cortex (Fig. 15; table 7A;B) and inferior colliculus
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(Fig. 15; table 8A;B) respectively, when compared to the levels in 1-day-old].
For relative comparison, all the PCR results obtained were expressed relative
to the inferior colliculus of 28-old-rat set at 100%. This increase of bI'GF gene
expression in early brain development correlates with the finding obtained by
Riva and Mocchetti (1991), in various regions of the developing rat brain
(cerebral cortex, hippocampus, striatum, hypothalamus and spinal cord). In
the developing rat cerebellum (CB), in contrast, the highest levels of bFGF
mRNA were at postnatal day one, which decreased by 1.8 fold at day seven
and by 2.6 fold at days 14 and 28 (Fig. 15; table 9A;B). Expression of bFGF"'
was the lowest in the cerebellum by two weeks of age. A third pattern of
bFGF gene expression was observed for the pons-medulla (P&M) in which
moderate levels of bFGF gene expression were detected in one day old rats,
and this level of bFGF mRNA remained fairly constant throughout the active
period of postnatal development (Fig. 15; table 10A and 10B). Results obtained
by RT-PCR from different animal sets are summarized in table 11. Statistical
analysis was carried out using ANOVA-Duncan’s test (for summary of the
analysis for O.C,, I.C. CB and P&M see tables 7C, 8C, 9C and 10C

respectively).

4, Basic FGF mRNA in non-neuronal elements

The levels of bFGF mRNA in the rat meninges (collected from 1 day and 7
days or 28-day-old rats) were much lower than the levels in 28-day cerebellum
(Fig. 16). PCR product of the meninges was barely detectable by Southern
blotting with a **P labelled bFGF ¢DNA probe. No PCR product was detected
(using ethidium bromide stained gels) when RNA from blood (collected from 7-
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day-old rats) was reverse transcribed and amplified (not shown). These
observations indicate that contamination of brain tissues by blood or meningeé
would have negligible effect on changing the actual amount of bFGF detected
in the cerebrum and other brain regions. The bFGF gene expression also
detected in the kidney and liver of 7 days and the kidney of 21-day-old rats
(data not shown).
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Discussion

I. Distribution of bFGF in the rat brain

Neurotrophic factors are molecules that increase neuronal survival and
stimulate neurite outgrowth. Theories concerning the regulation of brain
growth during development frequently postulate a major role for neurotrophic
factors (NTF). Basic FGF is produced in the nervous system and exerts a
variety of in vivo and in vitro effects, stimulating mitogenesis, differentiation
and maintenance of cells of neuroectodermal and mesodermal origin includiﬁg
neurons and glial cells (Walicke and Baird 1988, Delaunoy et al, 1988, Perraud
et al, 1990).

Although bFGF protein is presentin different tissues (Baird and Bohlen
1990, Gospodarowicz et al, 1987) its mRNA was only detectable in the brain
(Emoto et al, 1989). In order to reveal the role of bFGF in the CNS, in vitro
and in vivo models were designed to study the effect of bFGF on various cell
types and tissues of the CNS (Westermann 1990, Walicke and Baird 1988). A
direct effect of bE'GF on glial and neuronal cell gene regulation was implicated
by Walicke and Baird (1991). Basic FGF promotes neuronal survival and
neurite outgrowth (Westermann 1990). Other cellular changes in certain
metabolic compounds in neurons and glial cells after the application of FGF
were also reported (Westermann 1991). The naturally occurring death of
neurons was prevented by the application of bFGF (Dreyer et al, 1989). About
25% of the retinal ganglion neurons were rescued from death by bFGF after
optic nerve fiber transection (Sievers et al, 1987).

Researchers investigated the importance of bFGF in the CNS through
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studying its presence and distribution in different brain structures and cell
types (Emoto et al, 1989, Caday et al, 1988, Riva and Mocchetti 1991, Grothé
et al, 1991). The results reported about the cell type(s) and loci of bFGF gene
transcription were not consistent. Some discrepancies in detecting bFGF
transcripts were due to the technical difficulties in detecting the low quantities
of bFGF mRNA and the number of cells expressing it. Is it glial cells or
neuronal cells or both that express bFGF ? The answer is not clear. Pettman
et al, (1987) and Janet et al, (1988) detected bFGF immunoreactivity in
neurons but not in glial cells in cultured brain and peripheral ganglia cells.
Others reported the expression of bFGF mRNA only in cultured asﬁdcﬁes
(Emoto et al, 1989). Also, bFGF mRNA and protein have been detected in
astrocytes from adult bovine corpus callosum (Férrara et al, 1988). In situ
hybridization studies by Emoto et al, 1989 showed that neurons of several
brain regions contained the bFGF mRNA. Gémez-Pinilla et al, (1992) points
out that bFGF immunoreacitvity was mainly localized in astrocytes and
occasionally in microglial cells throughout the normal rat brain and only
detected in a few neuronal populations, specifically the septohippocampal
nucleus, CA-2 field of the hippocampus, cingulate cortex, cerebellar Purkinje
cells, deep nuclei, facial nerve nucleus and the motor and spinal subdivisions
of the trigeminal nucleus and facial nerve nucleus. Studies on the distribution
of bFGF mRNA by Emoto et al, 1989, using in situ hybridization, showed a
similar distribution of bFGF mRNA when compared to the distribution of the
bFGF protein detected by Gémez-Pinilla et al, 1992, only with a more
restricted localization in neuronal populations (CA-2 region of the
hippocampus, layers 2 and 6 of the cingulate cortex, indusium griseum and
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fasciola cinereum).

II. Basic FGF gene expression in the rat brain during early
postnatal development

Comparison of the levels of bFGF mRNA in the cerebrum obtained from
male rats of ages 1 to 28 days and one year revealed a gradual increase in
bFGF mRNA levels, reaching high levels at the end of the first month. The
levels of bFGF mRNA of the third postnatal week were as high as that from
one year old rat cerebrum (as shown in Fig. 13). Similar progression in both
bioactive and immunoreactive bFGF levels in the rat brain in early postnatal
ages that plateaued in the adult, was reported by Caday et al, (1990). Riva
and Mocchetti (1991) used the RNase protection assay to study the level of
bFGF mRNA in rat cerebral cortex, hippocampus, striatum and hypothalamus
(all are regions that represent major part of the cerebfum) in early postnatal
development. In agreement with the results obtained by RT-PCR used in the
present study, Riva and Mocchetti found that the levels of bFGF mRNA in all
the rat cerebrum regions mentioned above, were low in newborn rats and
increased gradually to a peak of expression around the third postnatal week.

Much of neuronogenesis in the rat cerebrum takes place in the
embryonic stage except few regions such as CA2 field and the granule cells of
dentate gyrus of the hippocampus and granule cells of the olfactory bulbs
(reviewed in Jacobson 1991)., However, the maximum increase in brain
angiogenesis, glia proliferation and maturation, axonal myelination and
synaptogenesis occur mostly within the first 2 to 3 postnatal weeks in the

brain of the developing rat (Fig. 19). As it was shown by several in vitro
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studies, basic FGF plays important roles in angiogenesis, astroglial
proliferation and in axonal and dendritic growth. The increase in bFGF gené
expression in early postnatal ages in the rat cerebrum may reflect an
important role of bFGF in vivo in regulating different processes occurring
simultaneously in the rat brain such as glial proliferation, axonal myelination,
synaptogenesis and brain angiogenesis .

The distribution of bFGF mRNA in several regions of 28-day-old rat
brain (Fig. 14) correlate with the results obtained by in sifx hybridization
(Emoto et al, 1989) which showed that bFGF gene transcripts are widely
distributed in the cerebral cortex of the adult rat brain, and the highest lefels
were found in hippocampus and cingulate cortex. Similar results obtained by
Emoto et al, (1989) using Northern analysis to study the distx'ibution of the 6
kb rat bFGF mRNA in various regions of the adult rat brain, suggesting that
the single PCR product for bFGF obtained by RT-PCR of total RNA may
represent the more abundant 6 kb bFGF transcript. Similarly, by RNase
protection assay it was found that bFGF mRNA levels in the adult rat brain
regions were highest in hippocampus and cerebral cortex, intermediate in
hypothalamus and brain stem and lowest in cerebellum (10% of the cerebral
cortex; Riva and Mocchetti, 1991).

Neurotrophic factors play an important role in preventing the naturally
occurring neuronal cell death and maintaining their survival (Barde et al
1988). Different studies indicated that bFGF enhances the survival in vitro of
neurons obtained from various regions of the brain (reviewed in Walicke and
Baird 1988). Considering the fact that most of the postnatal developmental

events in the rat brain (formation and closure of the blood brain barrier, glia
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proliferation and axonal growth and myelination) occur within the first three
weeks after birth (Jacobson 1991; see also Fig. 19), the high expression of
bFGF in 28-day-old rat hippocampus, cingulate cortex, occipital cortex and
inferior colliculus may suggest an important role for bFGF in maintaining the
survival of neurons of those brain regions.

When levels of bFGF mRNA were examined in four structures of rat
brain in early postnatal development, three different patterns of bFGF gene
expression were observed: 1)steady increase in occipital cortex and inferior
colliculus; 2)constant level in pons/medulla; 3)decrease in cerebellum.

The increase of bFGF gene expression in the occipital cortex and
inferior colliculus within the first month of postnata}- brain growth correlates
with the finding obtained by Riva and Mocchetti (1991), in various regions of
the developing rat brain (cerebral cortex, striatum, hypothalamus and spinal
cord). In contrast, the variations in the expression of bFGF mRNA in the
cerebellum (decreases with age in early postnatal rats) and pons/medulla
(constant) in early postnatal ages (Fig. 15) differ from the general pattern
(increases with age in early postnatal rats) observed in all the regions studied
by Riva and Mocchetti (1991).

In the rat, the volume density of blood vessels in the inferior colliculus
reaches maximum levels 24 days after birth (Andrew and Paterson 1989). Also
vascularization of the cerebral cortex takes place within the first two postnatal
weeks (Nieto-Sampedro and Cotman 1985). Thus, the increase in the bFGF
mRNA levels within the first three postnatal weeks in those brain regions may
suggest the involvement of bFGF (a potent angiogenic factor) in the formation

and sprouting of those blood vessels. The maximal astroglial proliferation,
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synaptogenesis and dendritic growth which take place in early postnatal
development, suggest other possible physiological demands for bFGF in the
occipital cortex and inferior colliculus for that period of time. During the first
two postnatal weeks, major morphological and physiological changes occur in
the rat inner ear and the onset of hearing happens between 9 and 12 days
after birth (Uziel et al, 1981). The increase in the levels of bFGF gene
expression in the inferior colliculus at this period of time may indicate the
participation of bFGF in the development of auditory pathways. On the other
hand, the bFGF mRNA increase could be a result of the development of those
brain regions either because of increased number or increased differentiation
of cells that make bFGF. |

The increase of bFGF mRNA in the developing inferior colliculus does
not correlate with the levels of the immunoreactive bFGF (bFGF-IR) detected
in this region; bFGF-IR was detectable in postnatal .days 8 and 11 but absent
in postnatal day 28 and the adult (Grothe et al, 1991). The reason why the
bFGF mRNA and not the protein was detected is not clear. Multiple molecular
weight (MW) forms of bFGF were detectable in different studies (Baird and
Bohlen 1990). The absence of the bFGF-IR in 28-day-old inferior colliculus
may be due to the inability to detect the MW form produced from the bFGF
RNA transcript at that age using the specific antibody (Grothe et al 1991).

In the developing rat cerebellum, the highestlevels of bFGF mRNA were
at postnatal day one, and they decreased by 1.8 fold at day seven and by 2.6
fold at days 14 and 28 (when compared to 1 day cerebellum; Fig. 15). Much
of the neurogenesis in the rat brain takes place during embryonic development

(Fig. 19, Jacobson 1991). The granule cells of the cerebellum constitute one of
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only four brain loci that possesse active neurogenesis within the first two
weeks after birth (other sites of active postnatal neurogenesis are
hippocampus, olfactory bulb and some nuclei of the brain stem). The high level
of bFGF mRNA at postnatal day one correlates with the period when postnatal
neurogenesis is actively taking place in the cerebellum, suggesting a
neurotrophic function for bFGF on cerebellar neurons in early postnatal
development. The low level of bFGF gene expression in cerebellum in later
stages of postnatal development may suggestless dependence of cerebellar cells
on bFGF, and neurotrophic factors other than bFGF may be involved in
maintaining the survival and function of cerebellar neurons.

Moderate levels of bPGF gene expression were detected in the combined
pons-medulla in 1-day, 14-day and 28-day-old rats (shown in Fig. 15). The
expression of bFGF gene in the pons-medulla remained fairly constant during
the period between 1 day and 28 days. It is possible that the role played by
bFGF in the pons-medulla in early postnatal development varies in different

regions of the brain.

II1. Kidney, liver, ovary and meninges express bFGF mRNA
Using the RT-PCR, the expression of bFGF was detected in the kidney
and liver of 7 days, kidney of 21 days, meninges (collected from 1 day and 7
days or 28-day-old rats) and ovary of the adult rat. The detection of bFGF
mRNA in the kidney, liver and ovary by RT-PCR and not by northern analysis
(Emoto et al, 1989), demonstrate the sensitivity of this technique and the

advantage of using it.
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IV. PCR detection of the rat brain bFGF mRNA containing a
unique 3-untranslated (UT) region
When RT-PCR was employed to detect the presence of bFGF messenger
RNA in rat brain, ovary and kidney, the use of P; and P, primers (Fig. 11)
resulted in an unexpected PCR product (722 bp instead of 415 bp PCR band).
The sequence of the 722 bp PCR product revealed an identical coding region
to the published rat ovary derived bFGF mRNA sequence (RATGFFO,
Shimasaki et al, 1988; see diagram in Fig. 8) and rat brain derived bFGF
mRNA sequence (RATGFBF, Kurckawa et al, 1988). However, these results
revealed an additional 307 bp in the 3’ UT region. This sequence (position .383
to 689 of RATBFGF3, Fig. 12) represents an insertion between positions 1016
and 1017 of the sequence published by Shimasaki et al, 1988, Similar 722 bp
PCR product was also obtained when total RNA from adult rat ovary, 3 days
and 21-day-rat kidneys and rat brains of four older ages: 21 days, 28 days, 4
months and one year old (results not shown) were reverse transcribed and PCR
amplified. The 722 bp PCR product was the single major band obtained (Fig.
9, 10) suggesting that the bFGF mRNA containing the novel 307 bp 3’ UT
sequence is the major transcript form of bFGF mRNA of rat tissues. In
support of this finding, the 3° UT sequence from positions 383 to 458 of
RATBFGF3 was identical to the sequence between positions 738 to 813 of the
rat bFGF mRNA sequence, RATGFBF, reported by Kurokawa et al, (1988)
(Fig. 11; Fig. 12). Also, the additional 307 bp 3’ UT sequence shares 57%
similarity to a 3’ UT region in the human bFGF mRNA positions 873 to 1210
(Fig. 12; Kurokawa et al, 1987). Therefore, the ovarian bFGF mRNA species
published by Shimasaki et al, 1988, which lacks the 307 bp 3’ UT sequence,
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may have been generated as a result of cDNA cloning artifact or may represent
a minor bFGE transcript.

There is increasing evidence suggesting that regulation of many genes
is accomplished through posttranscriptional mechanisms [Brawerman 1987].
A+T rich sequences conserved in the 3’ UT region of mRNA’s of growth factors,
oncogenes and cytokines were shown to play a major role in the regulation of
the stability of those mRNA’s [Akashi et al, 1991]. Two such examples, (ATTT),
[Akashi et al, 1991] and (TATT), [Reeves et al, 1987], have been demonstrated
to affect mRNA stability. In the novel 3’ UT region of bFGF mRNA , we have
identified eight repeats of the (ATTT) motif and four of the (TATT) motif (Fig. -
11). The presence of these motifs suggest a possible role for the 3’ UT region
as a determinant of bFGF mRNA stability (Brawerman 1987).

V. The use of RT-PCR as a method for quantitation of relative
levels of expression of mRNAs of growth factors
The polymerase chain reaction (PCR) has enhanced the abilii:y of

detecting very low concentration of DNA molequles (Saiki 1985), Asit was only
possible to detect DNA and not RNA with PCR, a combination of PCR and
another technique, reverse transcription (RT), can be applied to detect cDNA
molecules synthesized from mRNAs under investigation (Rappolee et al, 1988).
The RT-PCR technique was later used in a quantitative manner (Becker-Andre
and Hahlbrock 1989). Amplification by PCR of cDNA obtained from RNA is
theoretically suited to such situations. To control for errors that could arise
from RNA preparation or from variation in the RT-PCR reaction efficiency, an

authentic internal standard that is expressed equally in the tissues to be
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studied was used. As the approach selected in this study does not employ the
coamplification of the target cDNA and the internal control in the same tube,
determination of the linearity of the PCR reaction was a critical step.
Exploration of the linearity of the PCR reaction was shown in figures 6, 7 and
table 12A (by varying the number of the PCR cycles, the input of RNA into the
RT reaction and the input of cDNA into the PCR reaction). Because several
tissues were to be compared, application of a simple method for such
comparison is necessary. The use of non-radioactive method for detection of
PCR product (using ethidium bromide stained PCR product) instead of the
commonly used radioactive method (incorporation of radiolabelled
deoxynucleotide into the PCR product) was possible. Results obtained from the
two methods for the linearity of the PCR reaction and quantitation of the
relative amounts of bFGF mRNA to GAPDH mRNA in various brain structures
were similar (Fig. 6; table12B). This comparison indicated that the use of the
non-radioactive method for PCR product detection and quantitation is as
reliable as the radioactive one.

Similar results were obtained when the expression of bFGF mRNA in
the occipital cortex of the rat in early postnatal ages were studied by
quantitative RT-PCR (Fig. 15) or by RNase protection assay (Riva and
Mocchetti 1991). Using quantitative RT-PCR, high levels of bFGF mRNA was
detected in the rat brain in fourth week after birth and in the adult rat brain
(Fig. 13). The same results were obtained using northern analysis by Emoto
et al, 1989 and RNase protection assay by Riva and Mocchetti 1991. These
results demonstrate the reliability of the RT-PCR as a tool for studying the

relative expression of low abundance messages. Besides being a fast technique
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(results can be obtained in one day), the advantage of using the RT-PCR is due
to its high sensitivity for detection of very low amounts of messages and the
use of nanograms of total RNA (instead of micrograms in case of Rnase

protection assay or Northern analysis).
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Fig. 1A Uracil DNA glycosylase (UDG) in the PCR reaction. Lanes 1 and 2
show bFGF PCR product obtained when UDG was added to the PCR mixture
(lane 1) or eliminated (lane 2). B. RT-PCR coamplification of bIFGF and actin
mRNAs., PCR product obtained using actin primers only (lane 1), bFGF
primers (lane 3) or both actin and bFGF primers (lane 2). C. Restriction
enzyme analysis of bFGF PCR product. Southern analysis of bFGF PCR
product using P labelled rat bFGF ¢cDNA probe was used. Lane 1 bFGF PCR
product after digestion with Dde I enzyme. Lane 2 undigested bFGF PCR

product. Positions of the expected size products are indicated by arrows.
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Fig. 2 Northern analysis of bFGF gene expression. **P labelled rat bFGF
c¢DNA probe was used. Forty micrograms of total RNA obtained from a human
astrocytoma cell line U-87 (lane 1), rat brain (lane 2) and rat kidney (lane 3).
The size of bFGF mRNA bands and the 285 RNA band are indicated by

arrows.
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Fig. 3 RT-PCR Amplification of bFGF, GAPDH and actin cDNAs. A, upper
panel: results obtained from postnatal rat cerebrum of: 1) 1 day, 2) 3 days, 3)
7 days, 4) 14 days, 5) 21 days, 6) 28 days and 7) one-year-old rats; B. lower
panel: results obtained from a 28-day-old rat: occipital cortex (0.C.), inferior
colliculus (1.C.), cerebellum (CB), pons-medulla (P&M) and hypothalamus
(HYPO).
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Fig. 4 Northern analysis of expression of the GAPDH gene in the brain of 28-
day-old rat. *?P labelled mouse GAPDH c¢DNA probe was used. Twenty
micrograms of total RNA was used. Results obtained from a 28-day-old rat:
1) occipital cortex (O.C.), 2) inferior colliculus (I.C.), 3) cerebellum (CB), 4)
pons-medulla (P&M), 5) hypothalamus (HYPO), 6) cingulate cortex (C.C.) and
and 7) hippocampus (HIPPO). Results were expressed relative to the 28S

signal and then expressed as a percentage of I.C. set at 100%.
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Fig. 5 Northern analysis of expression of the GAPDH gene in the rat brain in
early postnatal development. 3°P labelled mouse GAPDH cDNA probe was
used. Results obtained from the rat cerebrum obtained from 1 day, 14 days,
21 days and 28-day-old rats using twenty micrograms of total RNA, Results
were expressed relative to the 288S signal and then expressed as a percentage

of 21-day-old cerebrum set at 100%.
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Fig. 6 Comparison between the non-radioactive and *P-labeling RT-PCR
methods for the study of bFGF gene expression. Results obtained from 33P-
labelled (dotted bars) or ethidium bromide-stained (EtBr) PCR products (black
bars) from 28-day-old rat: occipital cortex (O.C.), inferior colliculus (I1.C.),
cerebellum (CB), and pons-medulla (P&M). Results are expressed as percentage
of Inferior colliculus of 28-day-old rat. Basic FGF and GAPDH ¢cDNAs from the
same RT sample were amplified in separate tubes. All bFGF PCR results were
expressed relative to the internal control GAPDH., All subsequent quantitative

analysis was carried out using ethidium bromide staining,
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Fig. 7 A. Relationship of PCR products as a function of PCR cycles for both

bFGF and GAPDH c¢DNAs. Total RNA (0.07 ng) from occipital cortex was
reverse transcribed. The RT reaction was used to: A. amplify bFGF ¢cDNA for
25 to 45 PCR cycles B. amplify GAPDH ¢DNA for 10 to 35 PCR cycles. Similar
results were obtained when *P labelling was used as a method of PCR product
detection (not shown). Results were expressed as percentage of the 35 PCR
cycles in case of bFGF and 20 cycles in case of GAPDH.
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Fig. 8 Relationship of the PCR products as a function of the amount of
template RNA input. bFGF and GAPDH cDNAs were amplified in two
separate reactions. Serial dilutions of RNA (0.03 pg to 1 png of total RNA) were
reverse transcribed (RT) and PCR amplified. GAPDH ¢DNA samples (bottom
pannel) were amplified for 22 cycles while bFGF ¢cDNAs (upper pannel) were
amplified for 35 cycles. The PCR products from both bFGF and GAPDH
respectively, were plotted as a function of total RNA used in the RT reaction.
Results were expressed as percentage of the 0.12 pg RNA dilution. Inset:
shows the range of total RNA concentrations that gives linear PCR product
amplification for both bFGF and GAPDH.
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Fig.9 Ethidium bromide staining of RT-PCR products of rat brain total RNA.
Primers used were: P1 (forward primer): Y AACGGCGGCTTCTTCCTG?; P2
(reverse primer) YAGCAGACATTGGAAGAAACA?; P3 (reverse primer):
YCTACAAGCTCTACCACAGGGGA?®. Upper panel: lanes 1 - 3 : results obtained
using P1/P3 primers. Lanes 4 - 6 : results obtained using P1/P2 primers.1) 722
bp product, 2) negative control (no RTase), 3) negative control (no RNA), 4)
negative control (no RTase), 5) negative control (no RNA), 6) 354 bp product,
7) ¢x DNA digested digested Hae III. Fig. 9B is a diagram explaining the
discrapncy between the expected size PCR product (415 bp) and the observed
one (722bp). The positions of primers used are indicated by arrows. Lower
panel: Diagram repesents an explanation for the discrepency between the

expected and the observed PCR products.
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Fig. 10 RT-PCR product of bFGF mRNA from adult rat ovary and 3 day old
rat brain revealed by Southern analysis; **P labelled rat bFGF cDNA (800 bp)
was used as a probe. A 354 bp PCR product band was observed when P1/P2
primers were used (lanes 1, 3, 5), while a 722 bp PCR product band was
observed when P1/P3 primers were used (lanes 2, 4, 6). The RT-PCR
conditions were optimized for each tissue separately to provide a clearly visible

signal, and therefore signal intensities are not quantitative.
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Fig, 11  Sequence comparison between the rat brain bFGF c¢DNA
(RATBFGF3), rat brain bFGF ¢DNA (RATGFBF; Kurokawa et al, 1988) and
rat ovary bFGF ¢cDNA (RATGFFO; Shimasaki et al, 1988). The stop codon is
shown in lower case letters. The novel sequence is from positions 383 to 689
of the RATBFGF3. The positions of the three primers used in this study are
marked by arrows. The conserved A+T rich motifs, (ATTT), and (TATT), are

shaded and overlined respectively.
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ATGGCTGCCGGCAGCATCACTTCGCTTCCCGCACTGCCGGAGGACGGCGGCGGCGCCTTCCCACC
ATGGCTGCCGGCAGCATCACTTCGCTTCCCGCACTGCCGGAGGACGGCGGCGGCGCCTTCCCACT

CGGCCACTTCAAGGATCCCARGCGGCTCTACTGCAAGAACGGCGGCTTCTTCCTGCCCATCCATC
CGGCCACTTCAAGGATCCCAAGCGGCTCTACTGCAAGAACGGCGGCTTCTTCCTGCGCATCCATC
ARCGGCGGCTTCTTCCTGCGCATCCATC

o

Pl

CAGACGGCCGCGTGGACGGCETCCGGGAGAAGAGCGACCCACACGTCAARACTACAGCTCCAAGCA
CAGACGGCCGCGTGGACGGCGTCCGGGAGARGAGCGACCCACACGTCAAACTACAGCTCCARGCA
CAGACGGCCGCGTGGACGGCGTCCGGGAGAAGAGCGACCCACACGTCAAACTACAGCTCCARGCA

GAAGAGAGAGGAGTTGTGTCCATCAAGGGAGTGTGTGCGAACCGGTACCTGGCTATGARGGAAGA
GAAGAGAGAGGAGTTGTGTCCATCAAGGGAGTGTGTGCGAACCGGTACCTGGCTATGARGGAAGA
GAAGAGAGAGGAGTTGTGTCCATCAAGGGAGTGTGTGCGARCCGGTACCTGGCTATGAAGGAAGA

TGGACGGCTGCTGGCTTCTAAGTGTGTTACAGAAGAGTGTTTCTTCTTTGAACGCCTCGGAGTCCA
TGGACGGCTGCTGGCTTCTARGTGTGTTACAGRAAGAGTGTTTCTTCTTTGAACGCCTGGAGTCCA
TGGACGGCTGCTGGCTTCTAAGTGTGTTACAGAAGAGTGTTTCTTCTTTGAACGCCTGGAGTCCA

ATAACTACAACACTTACCGGTCACGGARATACTCCAGTTGGTATGTGGCACTGARACGAACTGGG
ATAACTACAACACTTACCGGTCACGGARATACTCCAGTTGGTATGTGGCACTGARACGAACTGGG
ATAACTACAACACTTACCGGTCACGGAARTACTCCAGTTGGTATGTGGCACTGAAACGAACTGGG

CAGTATAAACTCGGATCCAAAACGGGGCCTGGACAGAAGGCCATACTGTTTCTTCCAATGTCTGC
CAGTATAAACTCGGATCCAAAACGGGGCCTGGACAGAAGGCCATACTGTTTCTTCCAATGTCEGC
CAGTATAAACTCGGATCCAAAACGGGGCCTGGACAGARGGCCATACTGTTTCTTCCAATGTCTGC

<

TAAGAGCtgaCTCTCTTTAGACACTGTCA - P2
TAAGAGCtgaCTCTCTTTAGACACTGTCACTGAGAGRAAAGAAAAGAATGTATACAGCTAAGTTT
TAARGAGCtgaCTCTCTTTAGACACTGTCACTGAGAGARAAGAAAAGAATGTATACAGCTAAGTTT

GGATGCCTTTTATGTARCAATAARGACACTTAGCCATTACC
GGATGCCTTTTATGTAACAATAAGACACTTAGCCATTACCTCAGTARAGARRAACAAC

;TATATAGCTTTGGTTGTGACCCAGTGAAAATTCTAGCCAC

AAACATATATTCACARRATTCACAT

CTCTCAGGCAGTCCCCTGTGGTAGAGCTIGTAG
CAGCCTTCTACCTCTCAGGCAGTCCCCTGTGGTAGAGCTTGTAG

P3
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Fig. 12 Diagram comparing the sequence of published bFGF ¢cDNAs. The rat
bFGF sequences are obtained from 3 day old rat brain (RATBFGF3; El-
Husseini et al, 1992); adult ovary (RATGFBF; Kurokawa et al, 1988) and adult
brain (RATGFFO; Shimasaki et al, 1988). HBFGF is the human bFGF ¢cDNA
sequence (Kurokawa et al, 1987). Position of the primers used to amplify the
rat brain bFGF ¢DNA are indicated by arrows. For description of primers see
Fig. 11. Unshaded areas represent the coding region and shaded areas
represent the 3’ UT region of the bFGF ¢cDNA, Identical regions positions are

shown above each sequence.
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Fig. 18 Basic FGF gene expression in the cerebrum of male rats in early
postnatal development. Values were equalized with respect to GAPDIH signal.
Results are expressed as percentage of the cerebrum of 21-day-old rat.

This graph shows that levels of bFGF increased significantly between the first
and the second weeks of postnatal brain growth,

(*)= Levels of bFGF mRNA in the cerebrum of 14, 21 and 28-day-old rats were
significantly different from those from 1 day, 3 days and 7-day-old rats. Only
2 sets of one-year-old rats were tested. Statistical analysis was carried out

using ANOVA-Duncan’s analysis; p<0.05.
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Fig. 14 Regional comparison of bFGF mRNA in the brain of 28-day-old male
rats. Regions of the brain used are: O.C. (occipital cortex), I1.C. (inferior
colliculus), CB (cerebellum), P&M (combined pons-meduula), HYPO
(hypothalamus), C.C. (cingulate cortex) and HIPPO (hippocampus). Levels of
bFGF mRNA were highest in HIPPO followed closely by O.C., C.C. and L.C..
Moderate levels of bFGF mRNA were in HYPO and P&M, while lowest levels
were in CB. (NB: For only one set of 28 day old rats, hypothalamus was
separated at the optic tracts from one thick coronal cerebral slice, along with
hippocampus and cingulate cortex). Results are expressed as percentage of
Inferior colliculus of 28-day-old rat set at 100%.
Statistical analysis was carried out using ANOVA-Duncan’s analysis; p<0.05.
(*): level of bFGF mRNA in the CB was significantly different from O.C.,

1.C., and P&M.

level of bFGF mRNA in O.C. was significantly different from P&M and

CB

level of bFGF mRNA in I.C. was significantly different from CB
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Fig. 15 Regional comparison of bFGF mRNAs in early postnatal
developmment Results are expressed as percentage of inferior colliculus of 28-
day-old rat. This graph shows that bFGF mRNA expression is temporally and
spatially regulated in various brain regions in early postnatal development: in
occipital cortex and inferior colliculus; bFGF mRNA level increases during the
first month after birth; in cerebellum: bFGF mRNA level was highest at
postnatal day one; in pons-medulla: bFGF mRNA level was moderate during
the first postnatal month,
(*) = Significantly different from day one for each region. Statistical analysis

was carried out using ANOVA-Duncan’s analysis; p<0.05.
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Fig. 16 Southern analysis of bFGF gene expression in the brain meninges of
neonatal rats. a. The hybridization bands of the PCR products from rat
cerebellum (28-day old; lane 1) and meninges (1 day and 7-day-old pool; lane
2) are compared. *’P labelled bFGF ¢DNA probe was used as probe. b. ethidium
bromide stained GAPDH and actin PCR products generated after the RT-PCR

amplification of total RNA obtained from cerebellum and meninges.
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Fig. 17 Diagram comparing the relative size and structure of the rat brain in
early postnatal development. Saggital section in the brain to show regions
dissected for the study of bFGF mRNA expression are indicated. O.C.=occipital

cortex; I.C.=inferior colliculus; CB=cerebellum; P&M=pons-medulla.
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Fig. 18 Coronol section of the brain of 28 old rat. This diagram shows
positions of cingulate cortex (C.C.), Hippocampus (HIPPO) and hypothalamus
(HYPO) dissected from 28 old rats.
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Fig. 19 Events taking place in most regions of the rat brain in early postnatal

development.
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TABLE 1A
The RT-PCR analysis of bFGF gene expression in the cerebrum of 1 day, 3

days and 7-day-old rats
All numbers are relative to 21 day cerebrum set at 100%

142

M=Mean; SD= Standard deviation; d=Day;S=Set {one tissue pooled from various animals and
used for subsequent analysis); n= number of independent sets; n®= number of repeated PCR

runs.

Age 1d 1d 1d 3d 3 d 34 74 7d |74d

Set s#l | s#2 | s#3 |[s#l |s#2 |s#3 | s#l s#2 | s#3

PCR 1 1 4 20 6 16 12 49 12 19 27
2 | 29 26 7 25 26 16 24 25 33
3 || 16 37 24 40 19 16 22 32 27
4 24 33 52 33 33 | 64 86
5 15 14 15 56
6 42 39 46
7 32
8

M+SD 16213 | 2747 2114 | 33t16 | 2149 2814 | 19i6 35120 | 44121

n™ n¥=3 | n"=4 n¥=g n*=4 n"= n¥=6 n®®=3 n¥=4 | n¥=7

Total 2116 271§ 3313

MESD

n n=3 n=3 n=
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TABLE 1B

The RT-PCR analysis of bFGF gene expression in the cerebrum of 14 days
and 28-day-old rats

All numbers are relative to 28 day inferior colliculus set at 100%

M=Mean; SD= Standard deviation; d=Day; y=Year; S=Set (one tissue pooled from various
animals and used for subsequent analysis); n= number of independent sets; n®'= number of
repeated PCR runs.

Age 14d{14d |144d |284d |284d 28d |1vy 1y
Set s#1l | s#2 s#3 | s#l s#2 s#3 sl s#2
PCR 1 44 33 125 | 155 58 107 129 176
2 || 36 100 129 | 225 121 124 63 111
3 || 55 104 63 97 90 223 133 59
4 | 88 90 111 | 134 105 86 85 113
5 53 48 104 48
6 73 153
7 64 131
8
MESD 56£23 | 7631 | 88£33 | 153154 | 9427 125455 | 103:34 | 115%48
n n®=4 | n"=5 n=7 | n®=4 N5 =7 n™=4 n=7
Total 7316 124430 10949
MESD
n n= n=3 n=
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TABLE 2A

The RT-PCR analysis of the bFGF gene expression in the developing rat
cerebrum

All numbers are relative to 21 day cerebrum set at 100%

M=Mean; SD= Standard deviation; d=Day; y=Year; S=Set (one tissue pooled from
various animals and used for subsequent analysis); n= number of independent sets;
n*=number of repeated PCR runs.

Age 1d 3d 7 d 14d (214 (28 d ly
Set 1 16%13 | 33+16 | 1246 5623 | 100 15354
n=3 | n®=4 | n*=6 | n"=4 nff=4
Set 2 277 21+9 35420 | 76431 | 100 94+27
nff=4 nf¥=5 ntf=4 nf¥=5 n*=5H
Set 3 21+14 | 2814 | 44421 | 88433 | 100 12555 | 103+34
nff=6 | nf¥=6 | n®®=7 | n®=7 nf*=7 nf=4
Total 2116 2716 33113 7316 100 124+30 10915
MESD
n n=3 n=3 n=3 n= n=3 n=3 n=2
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Table 2B
Statistical analysis of bFGF gene expression in the cerebrum of the
developing rat in early postnatal ages (using ANOVA-Duncan’s test).

Tissue was pooled from individual animals to create sets for each day. Total
RNA from each set-day was analyzed repeatedly by RT-PCR as described in
tables 1A and 1B. To simplify comparisons of different tissues, results were
expressed as a percentage of one of the brain regions selected as a reference
point. Because of its intermediate band intensity, 21-day-old rat cerebrum was
set at 100% and all other cerebrums obtained from other postnatal ages (see
table 2A) were expressed relative to it. Data were averaged for all PCR runs
to create a mean for each set-day.

Set-day means were averaged to create a mean for each age.

(Remarks: RT-PCR data obtained from all the other brain regions tested
(tables 3 to 10) was treated similarly).

Age Mean SD | 1 day 3 day 7day | 14day | 21day | 28day
Average

1 day 21 8 . . . 8 s )

3 day 27 8 . . . 8 g )

7 day 33 13 . . . s s )

14 day 73 16 s s 8 . . s

21 day 100 -* 8 8 5

28 day 124 30 s s ) s |

* All numbers are relative to 21 day cerebrum set as 100%
s = significantly different; p<0.05
. = not significantly different



TABLE 3

The RT-PCR Analysis of bFGF gene expression in 28 d rat O.C. and CB

All numbers are relative to 28 day inferior colliculus set at 100%

146

M=Mean; SD= Standard deviation; d=Day;S=Set (one tissue pooled from various animals and
used for subsequent analysis); n= number of independent sets; n**= number of repeated PCR

runs.

#¥ The rest of RT-PCR results for this set are in table 7b

Region | O.C. 0.C. 0.C. 0.C.** | CB CB CB CB
Set s#l s#2 s#3 s#4 si#l s#2 s#3 s#4
PCR1 63 154 151 126 9 9 S 43

2 145 156 107 393 17 10 66 20

3 116 129 172 278 47 5 31 11

4 84 143 306 15 19 59

5 147 172 28 80 38

6 89 47

7 124 18

8 66 31

9 93 50

10 152 36

i1 82 31
M+SD 102436 | 146415 | 144+24 | 142%71 | 23+15 | 843 41#31 | 3515
™ n=4 n®=3 | n®=5 | n¥=32 |n®=5 |n®=3 |n®=5 |n¥=11
Total 134121 2715
M+SD
n n=3 n=4




TABLE 4

The RT-PCR Analysis of bFGF gene expression in 28 d rat P&M
All numbers are relative to 28 day inferior colliculus set at 100%
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M=Mean; SD= Standard deviation; d=Day;S=Set (one tissue pooled from various animals and used

for subsequent analysis); n= number of independent sets; n™'= number of repeated PCR runs.

Region | P&M P&M P&M P&M
Set s#l s#2 s#3 s#4
PCR1 73 47 107 91

2 70 78 87 45

3 58 43 15 33

4 82 109 55

5 63 80

6 69

7 48

8 61

9 50

10 36

11 61
M*SD 71%10 56 19 | 88 20 |57 %18
o nf=4 n*= n¥=5 n®=11
Total 68 %15
AvEsSD
n n=4




148

TABLE 5

The RT-PCR Analysis of bFGF gene expression in 28 d rat hypothalamus
(HYPO), cingulate cortex (C.C.) and hippocampus (HIPPO).

All numbers are relative to 28 day inferior colliculus set at 100%.

M=Mean; SD= Standard deviation; d=Day; S=Set (one tissue pooled from various
animals and used for subsequent analysis); n= number of independent sets; n®*'=
number of repeated PCR runs.

Region || HYPO C.C. HIPPO
Set sl s#l s#l
PCR1 56 143 218

2 64 159 152

3 33 118 116

4 56 200 267

5 63 134 207

6 38 99 129

7 47 119 182

8 64 108 201

9 76 139 174

10 96 137 166

11 64 91
M+SD 60+17 132430 | 180455
n™ =11 | n®=11 n®=10
Total 60%17 *133432 | 18046
MESD
n n=1 n=1 n=1
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TABLE 6A
The RT-PCR analysis of bFGF gene expression in 28 d old rat brain

All numbers are relative to 28 day inferior colliculus set at 100%

M=Mean; SD= Standard deviation; d=Day;S=Set (one tissue pooled from various animals and
used for subsequent analysis); n= number of independent sets; n®*=number of repeated PCR
runs. O.C.=occipital cortex; I.C.=inferior colliculus; CB=cerebellum; P&M=pons-medulla;
HYPO=hypothalamus; C.C.=cingulate cortex; HIPPO= hippocampus

Region || O.C. I.C. CB PeM HYPO c.C. HIPPO
Set 1 102+36 | 100 23%15 71410
nif=4 nff=5 nff=4
Set 2 146+15 | 100 8+3 56+19
nf=3 nf*=3 n=
Set 3 144424 100 41431 e8120
ntf=5 n**=5 ntf=5
Set 4 142471 | 100 35+15 57+18 60+17 132430 | 180455
nf®=32 n®=11 nff=11 nff=11 n*=11 n®=10
Total 134321 100 27%15 68+15 60%17 132130 180155
MESD
n n=4 n=4 n=4 =4 n=1 n=1 n=1




Table 6B 150
Statistical analysis of the significance of bFGF gene expression in
regions of the brain of 28-day-old rat (using ANOVA-Duncan’s test).

Because of its intermediate band intensity, 28-day-old-rat inferior colliculus
(I1.C.) was set at 100% and all the other brain regions examined from all
postnatal ages (table 3 to 10) were expressed relative to it.

For explanation of RT-PCR data treatment for regional comparisons and
statistical analysis, see table 2B (also see page 43).

Region Mean SD 0.C. |1.C. CB P&M
Average

Occipital cortex 134 21 . . S S
(0.C)
Inferior colliculus 100 E . . . 8
(I.C.)
Cerebellum 27 15 S S ) 8
(CB)
Pons-Medulla 68 15 s ) s
(P&M)

*All numbers are relative to 21 day inferior colliculus set as 100%
s = significantly different; p<0.05
. = not significantly different
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TABLE 7a

The RT-PCR Analysis of bFGF gene expression in the occipital cortex of
the developing rat.

Al numbers are relative to 28 day inferior colliculus set at 100%

M=Mean; SD= Standard deviation; d=Day

S=8et (one tissue pooled from various animals and used for subsequent analysis); n= number
of independent sets; n®= number of repeated PCR runs

Age 1d 1d 1d 74 7 4 14 d 14 d 14 d
Set s#l s#2 s#3 s#l s#2 sl s#2 si#3
PCR 1 43 89 45 91 66 97 84 102
2 70 76 T 70 43 122 76 78
3 47 30 47 55 54 86 64 93
4 58 50 29 68 57 84 65 97
5 73 45 45 87 42 100 76 89
6 21 63 103 39 45
7 34 45
M+SD 58413 | 52426 | 5117 | 79%18 | 5210 | 8032 | 63+15 | 92%9
n® n=5 n®*=6 n™’=6 n*=g n=5 n®¥=7 n™F= nf=5
Total 54+4 6519 78%15
M:+SD
n n=3 n= n=3
TABLE 7b
Age 284d 284 284
Set st4 sfi4 sHd
PCR 70 216 94
138 180 85
134 124 123
97 106 171
101 122 106
116 173 106
182 114 106
M+SD 12737
n® n=21




Table 7C 152
Statistical analysis of bFGF gene expression in the occipital cortex of
the developing rat in early postnatal ages (using ANOVA-Duncan’s
test). :

To relatively compare all RT-PCR data obtained from different brain regions,
28-day-old-rat inferior colliculus (I.C.) was set at 100% and all the other brain
regions examined from all postnatal ages (table 3 to 10) were expressed
relative to it.

For explanation of RT-PCR data treatment for regional comparisons and
statistical analysis, see table 2B (also see page 43).

Age Mean SD 1day |7 day 14 day | 28 day
Average
1 day 54 4 . . . -
7 day 65 19 . . . s
14 day 78 15 . . . s
28 day 134 21 S S S

All numbers are relative to 21 day inferior colliculus set as 100%
s = significantly different; p<0.05
. = not significantly different
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TABLE 8a

The RT-PCR Analysis of bFGF gene expression in the inferior colliculus of
the developing rat

*All numbers are relative to 28 day inferior colliculus set at 100%.

S=Set (one tissue pooled from various animals and used for subsequent analysis); n= number
of independent sets; n®= number of repeated PCR runs

Age 1d id 14d 7 d 7 4d i4 d 14 4 14 4
Set s#l | s#2 s#3 s#l | s#2 s#l | s#2 s#3
PCR 1 56 49 8 25 73 108 83 117
2 29 32 7 81 16 79 44 59
3 38 32 12 42 32 42 42 48
4 47 86 24 47 20 65 124 67
5 19 51 22 54 43 52 82 63
6 65 69
7 54
8
M+3SD 381%15 53121 1518 50120 37+23 69126 73130 T1+27
n® n™=5 n*=6 n®=5 n™=5 n®*=5 n*=5 n¥=7 n*=5
Total 35%19 4449 712
MESD n=3
n n=3 n=
ABLE 8b
Age 28d 284 284d
Set sk4 s#4 sid
PCR 100 100 100
100 100 100
100 100 100
100 100 100
100 100 100
100 100 100
100 100 100
M1SD 1000
o =21
Total
M£SD 100+0
n n=4




Table 8C 154
Statistical analysis of bFGF gene expression in the inferior colliculus
of the developing rat in early postnatal ages (using ANOVA-Duncan’s

To relatively compare all RT-PCR data obtained from different brain regions,
28-day-old-rat inferior colliculus (I.C.) was set at 100% and all the other brain
regions examined from all postnatal ages (table 3 to 10) were expressed
relative to it.

For explanation of RT-PCR data treatment for regional comparisons and
statistical analysis, see table 2B (also see page 43).

Age Mean SD 1 day 7 day 14 day | 28 day
Average

1 day 35 19 S s

7 day 44 9 S s

14 day 71 2 S s s

28 day 100 =¥ s S 8

*All numbers are relative to 21 day inferior colliculus set as 100%
s = significantly different; p<0.05

. = not significantly different
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TABLE 9a

The RT-PCR Analysis of bFGF gene expression in the cerebellum of the
developing rat.

All numbers are relative to 28 day inferior colliculus set at 100%. M=Mean; SD=Standard
deviation; d=Day; S=Set (one tissue pooled from various animals and used for subsequent
analysis); n=number of independent sets; n*= number of repeated PCR runs

Age 1d i1 d id 7 4d 7 d 14 d 14 4 14 4
Set s#l | s#2 s#3 s#l s#2 s#l s#2 s#3
PCR 1 || 64 |114 |35 35 45 37 30 35
2 1136 |69 54 31 |36 38 29 32
3 1123 |59 74 20 75 53 17 12
4 60 |95 42 33 |51 50 |25 25
5 || 74 59 31 52 56 14 9
6 86 30 12 28 11
7 51 33 54 11
8 77
M+SD 71+£32 84+25 56117 3015 52414 34+14 28113 19111
o n¥= n"P=4 n*=g n*=6 n=5 n"= n®=7 nRf=
Total 71113 40+18 2718
MiSD
n n=3 n= =
'ABLE 9b
Age 284 28d 284d
Set sHid sHd sfid
PCR 37 30 35
38 29 32
8 17 12
11 25 25
11 i4 9
12 28 11
33
M=SD 26414
n=t n®=19
MLSD 2048
n n=4




Table 9C
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Statistical analysis of bFGF gene expression in the cerebellum of the
developing rat in early postnatal ages (using ANOVA-Duncan’s test).

To relatively compare all RT-PCR data obtained from different brain regions,
28-day-old-rat inferior colliculus (I.C.) was set at 100% and all the other brain
regions examined from all postnatal ages (table 3 to 10) were expressed

relative to it.

For explanation of RT-PCR data treatment for regional comparisons and
statistical analysis, see table 2B (also see page 43).

Age Mean SD 1 day 7 day 14 day | 28 day
Average

1 day 71 13 s S S

7 day 40 18 s

14 day 27 8 8

28 day 27 15 S

All numbers are relative to 21 day inferior colliculus set as 100%
s = significantly different; p<0.05

. = not significantly different




TABLE 10A
The RT-PCR Analysis of bFGF gene expression in the pons-medulla of the
developing rat.
All numbers are relative to 28 day inferior colliculus set at 100%
M=Mean; SD= Standard deviation; d=Day; S=Set (one tissue pooled from various animals and
used for subsequent analysis); n= number of independent sets; n®*= number of repeated PCR
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runs

Age 1d 14d 1d 74d 7 d 14 d 14 4 14 4

Set s#l s#2 s#3 s#l s#2 s#l s#2 s#3

PCR 1 | 83 43 38 79 71 63 59 46
2 || 58 56 58 300 36 68 75 66
3 73 59 16 278 75 91 59 48
4 | 36 7% 15 327 51 118 40 51
5 | 47 37 20 268 52 21 31 68
6 || 17 43 31 117 20 39 27
7 26 214 36 57
8 27 186 64
9 95

MESD 52424 | 53115 | 20%14 | 196195 | 57+16 | 64%38 | 48+16 | 53114

n® n=6 n*= nF=8 n*=9 n¥=5 n=6 n®= n**=8

Total 45%14 5518

MEsSD

n n= n=3




TABLE 10b

Age 28d | 284d 28 d

Set std s#4 sHd

PCR 83 88 42
35 70 91
100 63 88
70 46 108
96 39 56
39 55 96
61 80 98

47

M+SD 71423

n®* nRf=22

Total

M£SD 70£13

n n=4
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Table 10C 159
Statistical analysis of bFGF gene expression in combined pons-medulla
of the developing rat in early postnatal ages (using ANOVA-Duncan’s
test). :

To relatively compare all RT-PCR data obtained from different brain regions,
28-day-old-rat inferior colliculus (I.C.) was set at 100% and all the other brain
regions examined from all postnatal ages (table 3 to 10) were expressed
relative to it.

For explanation of RT-PCR data treatment for regional comparisons and
statistical analysis, see table 2B (also see page 43).

Age Mean SD 1 day 14 day | 28 day
Average
1 day 45 14
14 day 55 8
28 day 68 15

All numbers are relative to 21 day inferior colliculus set as 100%
s = significantly different; p<0.05

. = not significantly different




TABLE 11

The RT-PCR analysis of bFGFE gene expression in various regions of the

developing rat brain

All numbers are relative to 28 day inferior colliculus set at 100%
M=Mean; SD= Standard deviation; S=Set; n=Number of sets; d=Day; n®=number of
repeated PCR runs.
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Age 14d 1d 14 1d 7 d 7 4d 7 d 7 4

Region O.C. I.cC. CB PeM GC.C,. I.C. CB P&M

Set 1 58413 38%15 71%32 52124 79118 50120 30£5 196195
n*=5 n*®=5 nf=5 n*=6 n*=6 n®®=5 nff=6 nff=9

Set 2 52126 53%21 84425 53115 52110 37423 52%14 57%16
n*= nff=g n®= nf=4 n*¥=5 nke= n=5 nkff=5

Set 3 51+17 1548 59%17 29%14
n®=6 n*f=5 n®=8 n®=8

Total 5414 35119 7it13 45+14 65119 4449 40t1sg

MtsD

n n=3 n=3 n= n=3 n= n= =2

Age 14d l4d 144 14 d 28 d 28 d 28 d 28 d

Region | O.C. I.C. CB P&M 0.C. I.C. CRB P&M

Set 1 80132 | 69426 | 34+£14 64+38 102%36 100 23115 71+10
nRP:7 n¥=5 nkf="7 nRP=6 nht=4 nRP=5 nf=4

Set 2 63115 } 73+£30 | 28%13 48+%16 146£15 100 8+3 56x19
n*f=8 n®*=7 nff=7 nf=7 n®=3 ntf=3 nkff=3

Set 3 9249 T1+27 19411 | 53%14 144+24 100 4131 88£20
n*=5 nt=5 n®=7 nf=8 n¥=5 n*=5 n®¥=5

Set 4 142171 100 35115 57118

nfF=32 n®*=11 nf¥=11

Total T8%15 7ii2 2748 5518 134121 100 27415 68115

Mtsp

n n= n= n=. n=3 n=4 n=4 n=4 n=




Table 12

Comparative analysis of bFGE gene expression in brain regions of 28 day old rat:

A. Using serial dilutions of RNA

All numbers are relative to 28 day inferior colliculus set at 100%. n**= number of repeated PCR

TUIsS.

RINA Conc. 0.25 pg 0.15 pg 0.07 pg

Method of detection EtBr stained EtBr stained EtBr stained
gels gels gels

O.C. 143%13 135466 127437
nff=2 n*=§ nff=21

1.C. 100 100 100
=2 nff=21

CB 39+16 3417 2614
n*f=2 n*f=10 n*f=19

P&M 58+11 59+£18 T1+23
nf'=2 n®f=9 n®=22

HYPO 64£17 5846 ND
nfP=2 n®=6

C.C. 13744 135433 ND
n®f=2 n"f=8

HIPPO 145 171342 ND
nR?.:I DRP=

B. Non-radioactive and radioactive PCR product detection.

All numbers are relative to 28 day inferior colliculus set at 100%. n**= number of repeated PCR

runs.

RNA Cone. 0.07 pg 0.07 pg

Method of detection EtBr stained P labeled
gels PCR product

O.C. 127437 121£ 9
nff=21 =5

I.C. 100 100
n**=21 =

CB 26+14 2548
n**=19 n"f=4

rP&M 71+23 72414
n®*=22 n®f=




Table 13

Discription of Animals used
A. Animals used to study the bFGF gene expression in the cerebrum of the
developing rat.
M=Mean; SD= Standard deviation; S=Set; n=Number of sets; g=gram;
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WT=weight

Age 1 day 3 day 7 day 14 day 21 day 28 day 1 year

s1

rat # 9042 9039 9035 9131 9040 9041 9048a
1 1 1 1 1 1 1

rats Pool
5.5 12.4 14.5 28.0 50.0 84.0 1000

Rat Wt g g g g g g g

s2

rat # 9158 9039 9035 9131 9040 9112 9048b
1 1 1 1 1 1 1

rats Pool 5.5 g 11.2 g 14.0 g 33.0 g 52.0 g 103.0 g | 1000 g

Rat Wt.

S3

cu 9158 9129 9159 9173 9111b 5041

ra 1 1 1 1 1 1

rats Pool 6.0 g 9.5 g 14.0 g 22,0 g 50.0 g 2.0 g

Rat Wt.

B. Animals used to study the bFGF gene expression in different regions of
the brain of 28 day old rat.

0.C.=occipital cortex; 1.C.=inferior colliculus; CB=cerebellum; P&M=pons-medulla;

HYPO=hypothalamus; C.C.=cingulate cortex; HIPPO= hippocampus

Region 0.C. I.C. CB P&M HYPO C.C. HIPPO
s1
rat # 9112a 9112a 9112a 9112a
rats Pool 2 2 2 2
96 96 96 96
Rat Wt g g s g
s2
at i 9043+911 | 91344511 | 9043 9043
rats Pool 2c 25 2 2
2 2 108 g 108 g
Rat Wi 103 g 107 ¢
s3
rai # 9201 9201 5201 9201
4 4 4 4
rats Pool
90 g0 90 90
Rat Wt g g g g
S4
rat ¥ 9205 9205 9205 5205 9205 5205 9205
rats Pool 4 4 4 4 4 4 4
82 g 82 g 82 g B2 g 82 g 82 g 82 g
Rat wt
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C. Animals used to study the bFGF gene expression in different regions of the  brain of 1 day
old rat.

Region 0.C. L.C. CB P&M
81

rat # 9038 9038 9038 9038
rats Pool 1 1 1 1
Rat Wt 35¢g 35¢g 3sg 35¢g
s2

rat # 9131 9131 9131 9131
rats Pool i 1 1 i
Rat Wt g 30g 30g 30g
s3

rat # 9173 9173 9173 9173
rats Pool 1 2 2 2
Rat wt 22 g 22 g 22 g 22 g

D. Animals used to study the bFGF gene expression in different regions of the brain of 7 day old
rat.

Region | O.C. I.C. CB P&M
s1

rat # 9233 9233 9233 9233
rats Pool { 7 7 i 7

Rat Wt 3¢ 13¢g 13 ¢ 13 g
S2

rat # 9237 9237 9237 9237
rafs Pool | 6 6 ) 6

Rat Wt 12 g 12¢g 12 g 12 g

E. Animals used to study the bFGF gene expression in different regions of the brain of
14 day old rat.

Region | O.C. 1.C. CB P&M
s1

rat # 9038 9038 9038 9038
rats Pool | 1 i 1 1

Rat Wt 35¢ 35¢g 35¢ 35g
s2

rat # 9131 9131 9131 9131
rats Pool | 1 1 1 1

Rat Wt 30g 30 g 30¢g 30 g
S3

rat # 8173 9173 2173 9173
rats Pool |1 2 2 2
Rat wt 22 g 22 g 22 g 22 g




