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Abstract

This report is further development of a methodology known as lterated Fractional
Factoriai Design Analysis (IFFDA). IFFDA uses experimental designs to identify
the influential parameters in systems with many (hundreds or thousands) of
parameters. At its previous stage of development, IFFDA gives no weil-defined
measure of the reliability of the resuits. This report includes enhancements to
assign confidence levels and confidence bounds to the estimates produced by
IFFDA. These enhancements can be incorporated into the application of IFFDA

and the result is a more objective analysis.

Two examples are discussed. The first is small and contrived and used to
illustrate the capabilities of IFFDA in previous applications. A larger system is
required to demonstrate how the confidence bounds and confidence levels can
be estimated and a computer model known as SYVAC3-CC3 is used. SYVAC3-
CC3 was chosen because it is well known (Goodwin et al 1994 for example) and

yet has enough system parameters (~3300) to be non-trivial.

Two strategies are given for incorporating confidence levels and confidence
bounds into IFFDA. The first assumes that no expert knowledge of the system is

available and the second incorporates expert knowledge into the analysis.

In the SYVAC3-CC3 example, the enhanced methodologies gave results that are
consistent with the understanding of the system. Resuits are even more

satisfactory when expert knowledge is incorporated into the analysis.




Acknowledgements

I would like to thank my supervising committee for their help in developing and
documenting the methods presented in this report; Terry Andres of AECL and
Lynn Batten, Lai Chan, and Ken Mount of the University of Manitoba.



Table Of Contents

Abstract
Acknowledgements
Table Of Contents
List Of Tables

List Of Figures

1. Introduction And Summary
1.1. Motivation For {FFDA
1.2. History Of IFFDA
1.3. A Brief Explanation Of The Methodology
1.3.1. The Design
1.3.2. Estimating Main Effects And Interactions
1.3.3. Confidence Coefficients and Confidence Bounds For
The Estimated Main Effects And interactions
1.3.4. Refining The Estimated Values Of Main Effects
And Interactions
1.3.5. Estimating Quadratic Effects
1.3.6. Confidence Coefficients and Confidence Bounds For
The Estimated Quadratic Effects
1.3.7. Refining The Estimated Values Of Quadratic Effects

1.4. Examples To Be Discussed
1.4.1. Small Example

1.4.2. SYVAC3-CC3 Example

2. Experimental Designs In The Example Applications

N O b~ WON

10
12

13

13

13
14

14
15

16

16

17

19



2.1.Small Example
2.2. SYVACS3-CC3 Example

. Estimating Effects In The Small Example
3.1. Estimating Main Effects And Interactions

3.2. Estimated Quadratic Effects
3.3. Refining Estimates Of Main Effects And Interactions

3.4. Refining Estimates Of Quadratic Effects

. Confidence Levels And Confidence Bounds In The SYVAC3-CC3
Example

4.1. The Estimated Effects

4.2. Main Effects And Interactions

4 3. Quadratic Effects

. Applying The Calculations To A Large System
5.1. A Purely Statistical Basis
5.2. Incorporating Expert Knowledge Of A System

. Conclusions

. Recommendations

7.1.Investigate Variations On The Experimental

Designs To Optimize Results
7.2. Incorporate Better Statistical Methods To Estimate

The Confidence Coefficients And Confidence Bounds
7.3. Investigate Using ANOVA To Analyze Main Effects And

Interactions

19
25

28
28
31
32
37

38

38

39

50

58

59

61

66

66

67

67

68



7.4. Investigate The Influence Of Aliased System Parameters On The

Estimated Quadratic Effects

7.5. Incorporate The Analysis Stage Of IFFDA Into A

Bibliography

Formal Software Package

Appendix : Glossary Of Terms And Symbois

1.4.2.1

211

212

2.1.3

2.2.1

3.1.1

3.1.2

List Of Tables

Some SYVAC3-CC3 Parameters Discussed In This Report

Assignment Of System Parameters To Experimental

Factors For The Small Example

Experimental Factors, System Parameters and System

Responses for the Smali Example

Estimabie Effects For The Small Example. [nitial

Estimates.

Assignment Of Some SYVAC3-CC3 Parameters To

Experimental Factors.

The Estimation Of Main Effects And Interactions For
The Smali Example.

System Effects As Estimated By The Streamlined

69

69

70

71

20

23

24

27

30



3.1.2

3.21

3.2.2:

3.3.1

3.3.2

3.4.1

3.4.2

411

41.2

421

System Effects As Estimated By The Streamlined
Approach For The Small Example. Original Estimates.

Iteration Averages For The Small Example.

Estimated Quadratic Effects For The Small Example.

Original Estimates.

Estimated Main Effects And Interactions For The Small
Example After One Refinement Of The Results.

Estimated Main Effects And Interactions For The Small
Example After Two Refinements Of The Results.

Iteration Averages For The Small Example After One

Refinement.

Estimated Quadratic Effects For The Small Example After One

Refinement.

The Largest Estimated Main Effects For SYVAC3-CC3.

Original Estimates.

The Largest Estimated Quadratic Effects For SYVAC3-CC3.

Original Estimates.

The Largest Estimated Main Effects For SYVAC3-CC3
After One Revision.

32

33

33

35

36

37

37

40

41



422

431

511

521

1.3.5.1

421

422
431

43.2

The Largest Estimated Main Effects For SYVAC3-CC3

After Three Revisions. 49

Estimated Quadratic Effects For SYVAC3-CC3 Parameters With
The Largest Estimated Main Linear Effects (Not All Shown). 57

Resuits Of IFFDA if No Expert Knowledge Of SYVAC3-CC3
Is Available. 62

Results Of IFFDA When Expert Knowledge Of SYVAC3-CC3
is Available. 65

List Of Figures

lltlustration Of A Quadratic Effect 15
Distribution Of Estimable Effects

Distribution Of Estimated Main System Effects 44
Distribution Of Average Responses From Iterations Of The
Sub-Design 55
Distribution Of Estimated Quadratic Effects 56



Chapter 1
Introduction and Summary

1.1 Motivation for IFFDA

Iterated Fractional Factorial Design Analysis (IFFDA) was developed for
sensitivity analysis of a family of computer models associated with SYstems
Variable Analysis Code (SYVAC) (Goodwin et al. 1994 and Goodwin et al. 1996).
These models are used to predict the impact of nuclear waste repositories.

Sensitivity analysis of these models is challenging because:

s There are many (hundreds or thousands) of system parameters.

s Many fields of expertise are incorporated (metal corrosion, hydrogeology,
chemistry, dosimetry, etc) into the models.

s For some of the system parameters, the value is uncertain and could vary

by several orders of magnitude.

Generally, SYVAC models are constructed to run probabilistically. The system
parameters are assigned probability density functions (PDFs) instead of single
values. The parameter values are sampled randomly according to the assigned
PDFs and the corresponding responses (radiological dose for example) can be
estimated. By repeatedly sampling the parameter values and re-calculating the
responses, a sample of system responses can be generated. From this sample,

it is possible to make statistical inferences about the behaviour of the system.

For SYVAC models, IFFDA has been used to identify the system parameters
where uncertainty in the values (as expressed through the assigned PDFs) leads



to significant variability in the system response. An example of a direct

conclusion made as a result of IFFDA is:

When the tortuosity of the lower rock is increased from a low to a high

value, the dose rate decreases by 1.7 orders of magnitude.

Indirectly, IFFDA can identify other important features of the system. For

example:

If the characteristics of a layer of rock influence the estimated dose
rate, then at least under some circumstances that layer of rock is an

important barrier to the flow of radioactive contaminants.

1.2  History of IFFDA

iterated Fractional Factorial Design Analysis (IFFDA) was developed as part of
the Canadian Nuclear Fuel Waste Management Program. It has been used in
two assessments of the long-term impacts of a hypothetical repository for high-
level nuclear waste (Goodwin et al. 1994, Goodwin et al. 1996).

Nuclear waste management has been the motivation for much of the
development of sensitivity analyses for large predictive computer models (Andres
1987, Andres and Hajas 1993 and Goodwin et al. 1984 and Iman and Conover
1980). Of particular interest, are Satelli, Andres and Homma 1993 and 1995

where comparisons are made of eight methodologies.

10



Sensitivity analysis of large predictive computer models has received some
attention outside the field of nuclear waste management. Kliejnen 1992 for

example proposes an approach that has similarities to IFFDA.

Though many approaches have been devised for the sensitivity analysis of large
predictive computer models, |IFFDA has the distinction that it is the only one that
has been applied to systems with hundreds and thousands of parameters in a

real application. IFFDA has the following advantages that make it well suited to

the task:

1.  Able to deal with a large number of system parameters (hundreds

or thousands).

2.  Minimal assumptions about the behaviour of the system when the

design is applied.

3. For the applications that have been made so far, the number of

simulations required for the analysis is manageabie (hundreds).

Previous applications of IFFDA were successful in identifying the main and
quadratic effects as well as interactions in SYVAC models. However those
applications relied on expert knowledge of the system and on other statistical
methods to establish confidence in the results. This paper enhances IFFDA so
that confidence coefficients and confidence bounds are generated for the
estimated effects. The confidence coefficients can be incorporated into the

application of IFFDA.

I



1.3 A Brief Summary Of The Methodology

IFFDA is the implementation of an experimental design and the analysis of the
resulting system responses. Experimental designs are usually applied to

physical systems but this report will consider their application to two

mathematical functions.

1.3.1 The Design

As the name suggests, IFFDA is closely related to fractional factorial designs
(Montgomery,1991). In fact, IFFDA uses a fractional factorial design as a sub-

design. The same sub-design is repeated many times.

In the sub-design, experimental factors (as opposed to the system parameters)
are toggled between LOW and HIGH as they would be in a standard fractional
factorial design. Each experimental factor controls a random group of system

parameters.

Consequently, many system effects will be aliased in an iteration of the sub-
design. However, the assignment of system parameters to experimental factors

is different for each iteration; thus the alias structure of the system effects is also

different.

12



1.3.2 Estimating Main Effects And Interactions

A simplistic approach is used to estimate main effects and interactions for the
system parameters. These values are the averages of the estimable effects of
the experimental factors that contain them.

The estimated value of the system effects are subject to error due to aliasing, but
the aliasing structure changes with each iteration of the sub-design. Given
enough iterations, the error due to aliasing will “average down” to an acceptable

level.

1.3.3 Confidence Coefficients and Confidence Bounds For Main Effects
And Interactions

As discussed in Section 1.3.2, the estimated value of a system effect is the
average of estimable effects. If the estimable effects have a Normal distribution
(as appears to be the case in one of the examples), then the mean of a random
set of these effects can be converted to a variable having a Student-t distribution.
Standard statistical procedures are available to assign confidence coefficients

and confidence bounds to these estimates.

1.3.4 Refining The Estimated Values Of Main Effects And Interactions

The estimated system effects are subject to error due to aliasing that occurs
within the iterations of the sub-design. However, there is a step-wise approach

to reducing this error.

The system effects are estimated from the effects that can be estimated from
individual iterations of the sub-design. Conversely, the effects that can be

13




estimated are approximately a sum of many system effects. If there is a good
estimate of a system effect, the appropriate estimable effects can be adjusted to
remove the estimated effect. When the other system effects are recalculated
from the adjusted estimable effects, the error due to aliasing with the removed

system effect will approximately disappear.
1.3.5 Estimating Quadratic Effects

The quadratic effect of a system parameter is illustrated in Figure 1.3.5.1. A

convenient definition is:

Mean of the response where the system parameter is held MEDIUM
minus the mean of the responses for the iterations where the system

parameter toggles between LOW and HIGH.

1.3.6 Confidence Coefficients And Contidence Bounds For Quadratic
Effects

Estimates of quadratic effects are calculated from the means of the system

responses for each iteration of the sub-design. If the estimated quadratic effects

are random combinations of iteration means, then they can be transformed to

variables with a Student-t distribution. Standard statistical procedures are

available to assign confidence coefficients and confidence bounds to the

associated t-variates.

14
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Figure 1.3.5.1: lilustration Of A Quadratic Effect

1.3.7 Refining The Estimated Values Of Quadratic Effects

The estimated quadratic effects can be refined in much the same way main

effects and interactions were refined.

When system parameters are held MEDIUM in the same iteration of the sub-
design, their quadratic effects will be confounded for that iteration. However, if
there is a good estimate of one quadratic effect, the appropriate iteration
averages can be adjusted to take away its influence from the estimated value of

other quadratic effects.
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1.4 Examples To Be Discussed

Experimental designs are more typically applied directly to physical systems such
as a biological or manufacturing process. However, as discussed in Section 1.1,
IFFDA was developed to identify the important features in large, complex
computer models. Consequently, one of the examples chosen for this report is a
large computer model. The other example is a very simple mathematical function

used to demonstrate some of the calculations.

The major impact of applying an experimental design to a computer model

instead of a physical system is that there is no natural variability in the system.
1.4.1 Small Example
The first example is small and contrived. It is presented to demonstrate how the
system effects are estimated and how those estimates can be refined. In a real
situation, other methods would be more appropriate for investigating this system.
The system is a simple mathematical function of four system parameters:

V(X X5, X5.X) = 2% X, + X5 +X32 +3 ¥ X,
Each variable has three possible values; LOW, MEDIUM and HIGH are defined

to be -1, 0 and 1 respectively.

Ideally, the effects that IFFDA will find are:
* X, and x, have main effects of 4 and 2 respectively.

= The interaction between x, and x, has a value of 2

* X, has a quadratic effect of -1

16



1.4.2 SYVAC3-CC3 Example

In this report, IFFDA will also be applied to a computer model known as
SYVAC3-CC3 (see Goodwin et.al 1994). SYVAC3-CC3 was developed to
estimate the impacts of a hypothetical nuclear waste repository. it is used in this
report to demonstrate how confidence limits and confidence bounds can be

incorporated into IFFDA.

SYVAC3-CC3 has approximately 3300 system parameters. These are variables
in the computer model that the user can control independently. Each of the
system parameters is assigned an appropriate probability density function (PDF)

so that the model can be run stochastically.

These PDFs are alsc convenient for defining the parameter levels used in
experimental designs. In the SYVAC3-CC3 example, LOW, MEDIUM and HIGH
are defined as equally probable ranges of values as determined from the PDFs.
Table 1.4.2.1 describes some of the system parameters in SYVAC3-CC3. In the
sample calculations, the system parameters are referenced by the parameter

number, p, which is an arbitrary index.

The user must choose a suitable system response for the analysis. In the

sample calculations, the objective function is the log,, of the maximum

radiological dose to 100 000 years after the closure of the repository.

There are two reasons for choosing SYVAC3-CC3 for the sample calculations:

s SYVAC3-CC3 has enough system parameters to be non-trivial.

17



s SYVAC3-CC3 has been studied extensively (Goodwin et al 1984 for
example) and new features of IFFDA can be evaluated with respect to

expert knowledge of the system.

r Parameter

| Number{p) Parameter Description

i 104 Buffer anion correlation parameter ‘

2239 | Tortuosity of the lower rock zone -

v 2355 | Aquatic mass loading coefficient for the lake for iodine

| 2443 | Source of domestic water (lake or well) i

i 2803 . Retardation factor for iodine in compacted lake sediment |
2825 ! lodine plant/soil concentration ratio |
2826 | Gaseous evasion rate of iodine from soil

Table 1.4.2.1: Some SYVAC3-CC3 Parameters Discussed In This Report.

18



Chapter 2
Experimental Designs In The Example Applications

There is flexibility in the choice of the sub-design. In Andres(1996) and Andres
and Hajas (1993), the only restriction on the sub-design is that it is Resolution {V
fractional factorial. In this report, the SYVAC3-CC3 example takes advantage of

some specific characteristics of the sub-design.

it is easy to speculate how many of the ideas in IFFDA could be generalized to
accommodate other sub-designs. However, many important features are
inherited from the fractional factorial sub-designs; most notably the ability to

express results as main effects and interactions.

2.1 Small Example

For the small example, the experimental design consists of six iterations of a
sub-design. The sub-design is a 2*' fractional factorial design(Montgomery
1991). In each iteration, four experimental factors are toggled between LOW and

HIGH in eight experiments. In common notation, the defining contrast is I=ABCD

(Montgomery 1991).

it should be noted that these experimental factors are different than the system
parameters. An experimental factor represents a random combination of system
parameters. The assignment of system parameters to experimental factors is
different for each iteration of the sub-design. Table 2.1.1 shows how these
assignments were made for the small example. The system parameters are

represented by columns and iterations by rows.

19



System
Parameters
Iteration| I} 2] 3
i| O 0; 3
2| 2] 3| of -4
31 1] 1} 1] -2
4| -4| 11 3/ 0
5| 0] o 4
6| -3} 3| -3 -3
Table 2.1.1 Assignment Of System Parameters To Experimental

Factors For The Small Example

In an iteration, a system parameter does one of three things:

» Toggle between LOW and HIGH with an experimental factor (positive

value in Table 2.1.1)

For example, in iteration number one, system parameter number four

toggles in the same direction as experimental factor number three.

» Toggle between LOW and HIGH in the opposite direction to an

experimental factor (negative value in Table 2.1.1)

For example, in iteration number two, system parameter number one

toggles in the opposite direction as experimental factor number two.

20



* Remain at MEDIUM and not be included in the sub-design(zero value in

Table 2.1.1)

For example, in iteration number one, system parameter number one is
held at MEDIUM.

Each system parameter is randomly assigned to experimental factors with the
restriction that in one third of the iterations, it is heild MEDIUM and not included in
the sub-design. There is an equal probability that a system parameter will be

assigned to toggle with or against an experimental factor.

Table 2.1.2 shows how the system parameters are set for each of the 48
experiments. The experimental factors are subjected to the 2*' sub-design and
the system parameters follow the experimental factors they were assigned in

Table 2.1.1.

In the small example, there are seven effects that can be estimated for each
iteration. These estimable effects can be expressed in terms of the experimental

factors. They are:

E u_1+E 1.234 E |.12+E 1.34
E+E 15 B iatE 2
E 1.3 +E 1124 E 1,14+E 1,23
E 14 +E 11123

where E . is the effect of experimental factor number e in the ith iteration

of the sub-design and E is the interaction between experimental

1e1€2

factors e, and e,.

21



Table 2.1.1 can then be used to express these estimable effects in terms of the

system effects. Using iteration 3 as an example:

s System parameters one, two and three are assigned to experimental
factor number one. Therefore:
E,; ,=S;+5,+S;

where S, is the main effect of system parameter number p.

s There are no system parameters assigned to experimental factors
numbered three and four. Therefore E ;,;, does not represent

interaction of system parameters and E , ,,,=0.

s E,, +E ;44 Can be estimated and
Ea1+Es200 =5,+5,+5;

Table 2.1.3 shows all the estimable effects in the small example. The effects are
listed according to the experimental effects they represent. The numerical values

are calculated according to standard methods (Montgomery 1991).
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Iteration

Estimable Effect

Iy E, +E EotE | a4 EstEiia]l EitEim| EietEis] EigtEias] EetEiz

1 Numerical 0 0 0 0 0 0 0
Value B | N R I
System 34
Effects

2 Numerical 0 -4 -2 0 0 0 0
Value R R D
System -S 124 -S, -S, -S, Sy S, S
Effects

3 Numerical 6 0 0 0 0 0 0
Value I _ i R
System S,+5,+S, -S, -514-S24
Effects -S

>34

4 Numerical 2 0 0 -4 0 2 0
Value I R R v_ . B
System S, -S,23 S; -S, -85 Sy -S,,
Effects

5 Numerical 0 0 0 0 0 0 0
Value S Y o
System -S,
Effects

6 Numerical 0 0 -2 0 0 0 0
Value o D Y D R ]
s 'S'+SQ
ystem Q.
Effects SaS,

Table 2.1.3 Estimable Effects For The Small Example. Initial Estimates.
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2.2 SYVAC3-CC3 Example

The design used for the SYVAC3-CC3 example is similar to the small example
except that it is done on a larger scale. The sub-design is a 2**fractional
factorial design and it is iterated 30 times. There are approximately 3300 system

parameters.

The larger sub-design means that interactions of up to order seven will exist.

There are fifteen estimable effects for each iteration of the sub-design.

The large number of system parameters means that more system effects are
aliased with each estimable effect. For example, the number of main system
effects aliased with a single main experimental effect is ~3300/87(2/3)= 275.

Table 2.2.1 shows how some of the system parameters were assigned to
experimental factors for the sample calculations. in the table, the rows represent

iterations of the sub-design and the columns represent system parameters.

As with the small design, the iterated fractional factorial design has introduced
aliasing into the analysis. For example, in the first iteration of the sub-design,
system parameters 2239 and 2443 are both assigned to the same experimental
factor and will be aliased for those 16 simulations. However, the aliasing

between system parameters is different in each iteration.
The SYVACS3-CC3 example takes advantage of another characteristic of the sub-

design. Even-ordered interactions are only aliased with other even-ordered

interactions while odd-ordered interactions (including main effects) are only

25



aliased with other odd-ordered interactions. Consequently, there are two distinct

groups of estimable effects.

It should be noted that this design is slightly different than those used in Goodwin
et al 1994 and therefore resuilts will also be slightly different.

26



Parameter Number (p)

1126

0l

0]

7

-7

104 { 2825 ] 2826

2803

0]

2!

-7

-5‘

2

2239 | 2443 | 2355

31

4——- -8

o

teration (i)

10
11
12
13
14
15
16
17
18
19
20
21

22
23

24
25
26
27

28
29
30

Assignment Of Some SYVAC3-CC3 Parameters To

Experimental Factors.

Table 2.2.1
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Chapter 3
Estimating Effects in The Smali Example

3.1 Estimating Main Effects And Interactions

Once the system responses are generated, the estimable effects are readily

calculated (Table 2.1.3 for example). From the information given in Table 2.1.3,
there are various ways the system effects could be calculated, but a method has
been devised that can easily be extended to larger systems. The smalil exampie

will be used to demonstrate how this method works.

Table 2.1.3 does not give a direct estimate of S,. However, it does identify
estimable effects that are aliased with S,. For example, in iteration number three

one of the estimable effects is S,+S,+S,=6.

The method that will be used to estimate S, is to take the average of all the
estimable effects where S, makes a contribution. From Table 2.1.1 or 2.1.3, the

estimated value of S, is the average of:

. -(-S,) iteration number 2
. +(S,+S,+S,) iteration number 3
. -(-S,) iteration number 4
. -(-S,+S,-S;-S,) iteration number 5

Negative signs are used where the system parameter toggles in the opposite

direction to the experimental factor.

Obviously, there is potential error due to the aliasing of system parameters.

However since there is an equal probability of any two system parameters
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toggling in the same or opposite directions, the expected value of error due to
aliasing is zero. The error due to aliasing will become closer to zero as the

number of iterations of the sub-design is increased.

Table 3.1.1 shows the first estimate of the system effects for the small example.

Some important considerations about interactions are illustrated in Table 3.1.1.

¢ The number of estimable effects that can be used to estimate system

interactions is variable.

¢ Generally, for higher order interactions there are fewer estimable effects

that can be used to estimate the system interactions.

* ltis impossible to estimate some of the system interactions because they

are not aliased with any of the estimable effects.

Tabie 3.1.1 shows more information than is actually required to estimate the
system effects. It is not necessary to explicitly deal with the aliasing between
system effects. It is only necessary to identify the estimable effects that are
aliased with a system effect. Such information can be generated from Table

2.1.1. For example:

e Table 2.1.1 tells us that in iteration number three, the first system parameter
is aliased with the first experimental factor. In the averaging process to
estimate S,, we need to use the estimable effect that is aliased with E;,.
Even though it is informative to know that E, .+E; ,,, =S,+S,+S; , itis only
necessary to know that E;, and S, are aliased and to be able to calculate the
estimable effect that is aliased with E,,.
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System Estimated
Effect | Estimable Effects Used in the Calculation Value
F S, e -(-8) iteration # 2 L 4 ;
| ‘e +(S,+5,+S,) iteration # 3 |
| e (-S)) iteration # 4 |
| e (-S,+S,-S58,) iteration # 6 1 I
LS, i+ «(-S) iteration # 2 2
¢ +(S,+S,+S,) iteration # 3 ;
; Lo +(S)) iteration # 4
| i e +(-S,+S,-5;-S,) iteration # 6 ;
) ! !
Sy [+ +(S4545)) iteration # 3 ‘2
| e #(8,) iteration ¥ 4 E
| e -(-S,) iteration # 5 j |
; . *_(-5,+5,-5;-8,) iteration # 6 é ‘
1 S, le +(S,) iteration # 1 1 0.5
g e -(-S.) iteration # 2 : i
| e -(-S,) iteration # 3 | :
o -(-5,+5,-S,-S,) iteration # 6 | :
! i |
i\ S * +Sn) iteration # 2 0 1
L ~(-S;) iteration # 4 i ;
Sa i * +(-S.) iteration # 4 i 0 B
s, o +(S,) iteration # 2 0 !
| e (S,+S5Sa) iteration # 3 !
Sy | * +Su) iteration # 4 Jﬁ 2 |
Sae  |* +(Sa) iteration # 2 ‘0
*  +(S,+S,,-S.) iteration # 3 i
; Si o -(S,+S,-Su) iteration # 3 f ;
!
| S |* (S iteration # 4 0 |
Size s -(-Sp) iteration # 2 0
S,a. * none available
Sos * none available

Table 3.1.1 The Calculation Of Main Effects And Interactions For The

Small Example.
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Table 3.1.2 shows the information that is necessary to estimate main effects and
interactions without explicitly dealing with the aliasing amongst system
parameters. This streamlined approach is readily applied to larger systems and

larger experimental designs.

As mentioned, the system effects that are estimated so far are a first
approximation. It is possible to revise the estimated values to reduce the error

due to aliasing. The results will be refined in Section 3.3.
3.2 Estimated Quadratic Effects

Quadratic effects are defined as shown in Figure 1.3.5.1. As a simple

approximation:

¢ If there is no quadratic effect, the average response where a parameter is
held MEDIUM is equal to the average responses where the parameter

toggles between LOW or HIGH.

The difference between these two averages is used to estimate the

quadratic effect.

For the actual calculations, it will be convenient to use the average responses for
the iterations of the sub-design rather than the results from individual
experiments. A, is used to represent the average response from iteration i of the
sub-design. Tabie 2.1.1 can be used to determine in which iterations the system
parameter is MEDIUM and in which iterations it toggles between LOW and HIGH.
Table 3.2.1 shows the iteration averages for the small example and Table 3.2.2

shows how the iteration averages are used to estimate the quadratic effects.
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Aliased Experimental Effects

!
r
; fteration
| System Estimated
| Effect 1 2 3 4 5 6| \Value
7 T ¥ 1 1
}r S : -Es» ‘E s, i “Eaa [ ; -Eea 4.0
i S2 ' 'Eza f ES.1 :l E4.1 : [ Es.3 2.0 ‘
sa ' =9 xL E.s : 'Es_-sj -Ess 2.0 }
; S‘ Era | 'Eza l =y ' ' -Ees 0.5
, s12 ; E2_23 I 'Em-‘. :: I E 0.0
s, ! | - B | ' 00
Su E E224 | 'E:uz i f 1' I 0.0
S T Ee 20
Su | . Basy  Egnj | : 0.0
Sa % Bz ; ‘ ; 0.0
. Sm  Eus oo
r Si2 : -Es 20 ; ‘r ! E 0.0
T Sa | | s | ot
5 | | : ! | available
 Sa | | ? 1 , ot
| ! | f | available |

JE

Table 3.1.2 System Effects As Estimated By The Streamlined Approach

For The Small Example. Originat Estimates.

3.3 Refining Estimates of Main Effects And Interactions

A step-wise approach is used refine the estimated main effects and interactions.

According to Tables 3.1.1 and 3.1.2, one of the largest system effects is S, and

consequently S, will be one of the largest sources of error due to aliasing. Given

an estimate of S,, it is possible to reduce the error it induces in estimates of the

other system effects.
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| Meration@) | 1 | 2 | | 5 1 6
Iteration T | T i T
Average(A) o 0 | 2 | 1 . I
| { | } i
Table 3.2.1 Reration Averages For The Smail Example.
] - Estimated |
. System . Iterations Where The lterations Where The | Quadratic |
| Parameter | Parameter Is Held Parameter is HIGH and Effect |
{ ! MEDIUM LOW ’ |
(P) " Mean | Mean Q) |
3 | i | Response i Response :
; 1 1,5 0.50 2346 | 075 -0.25 |
L 2 1,5 ! 0.50 23,46 075 | -025 |
| 3 1,2 0.00 3,4,5,6 100 | -1.00
! 4 4,5 1.00 1,2,3,6 0.50 | +0.50

Table 3.2.2: Estimated Quadratic Effects For The Small Example. Original
Estimates.

For example, according to Table 2.1.3:
Es14E5200 =5,+5,45; =6.0

To remove the disruptive influence of S,, a very simplistic approximation can be
made for the third iteration:

(Ea1+Eq 234 )-8,=6.0-S,

(S,+S,+S,)-S, =6.0-S,

S,+5,=6.0-4.0=2.0

Information from Table 2.1.1 can be used to determine the other estimable
effects to adjust with respect to S,. Table 3.1.2 can be transformed into Table
3.3.1 by reducing the error due to aliasing with S,. Note that the refinement is
only applied to system effects other than S,.



Table 3.3.1 suggests the next step in the refinement. S, is the next major source
of error due to aliasing and its influence should be removed from the estimable
effects. The result is Table 3.3.2.

Table 3.3.2 represents as much refinement as can be made to the estimated

main system effects. They are all fall into one of three categories:

s Their influence has been removed from the estimable effects. (S, and S.,).

s Their estimated value is small and unlikely to lead to error in the estimated

values of the other system effects. (S,, S,, ...).

s They are not aliased with any other system effects except for those that no

longer influence the estimable effects.
A comparison of Table 3.3.2 and the results that were predicted in Section 1.4.1

demonstrates that the step-wise refinement has performed well for main effects

and interactions.

34



Aliased Experimental factors
! Iteration
| System
Effect 1 2 3 4 5 6{ Estimated
Value
S, -E,, E,, -Eis { L = 4.0
S, . Bl E,-S, E., | Eoo+S, 2.0
S, i i E..-S, Eds -Esa ; -Eeg-é, 0.0
S, | Ea Bl Ea ‘ | EesSi| 0.5
S, [ : Bz B ; f H 0.0
L Sis } ; ! Bz 'L 0.0
_ Su_ | . Bl Ean | | 0.0
S, | ! ! | Eara , 20
Su | Ezaa Bz | ' ! 0.0
S | “Eqro | 0.0
Sz Earaal 0.0
_ Sw | 1 | | : |
Sa | ? |

Table 3.3.1 Estimated Main Effects And Interactions For The Small
Example After One Refinement Of The Results.
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Aliased Experimental Factors

Iteration g
System '
Effect 1 2 3 4 5 6| Estimated
‘ ‘ Value
“ S, } 'Ezz Es 1 ‘Eu 'Ee.s 4.0
S, E Ees Ea.1'é1 =y f E6_3+é1 20
| S, ; j _ EG.J' E.s Es. [ A'Ee;‘a" 0.0

:; i S 1'82 | ; i SL+82 ‘
Sa } Ev 3 [ 'Ee_4 'Eaz : A'Ee_‘a' 0.0

S E— | —Ses,
f Si. | Eaza Eira f 0.0
S13 { ; ‘E4,34 { : 0.0
Su ! | B2z =t ' ‘ ! 0.0
s
| Sa | B Egp g | 0.0
. Su ‘ . Ean 0.0
E 3123 ‘ i i ‘E47134 i ‘I : 0.0
| Sue | “Eozs | é g 0.0

" Sw | | | | i

| Spe | H | | |
i : i i H ! |
Table 3.3.2 Estimated Main Effects And Interactions For The Small

Example After Two Refinements Of The Results.
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3.4 Refining Estimates of Quadratic Effects

Just as the estimates of the main effects were refined by adjusting the estimable

effects, the estimates of the quadratic effects can be refined by adjusting the

iteration averages. From Table 3.2.2, it appears the largest quadratic effect is

Q,. The average response for iterations 1 and 2 can be adjusted to remove the
estimated influence of Q,. Tables 3.4.1 and 3.4.2 show the resuit of the

adjustment. The row for Q, is shaded because it shows results from a previous

estimate.
Iteration(i) 1, 2 3 4 | 5 6
Iteration 0-Q,= E 0-Q,= f
Average(A) 1 g 1 2 1 ! 1 0
f ; . |
Table 3.4.1 lteration Averages For The Small Example After One
Refinement.
| | Estimated |
. System lterations Where The Iterations Where The Quadratic |
| Parameter | Parameter Is Held Parameter Is HIGH and Effect |
| MEDIUM LOwW ;
; (o) ' Mean ' Mean Q) f
i . Response i | Response i
| 1 15 | 100 2,3,4.6 1.00 0.00
: 2 1,5 1.00 23,46 1.00 0.00
3 1,2 0.00 3,456 1.00 -1.00
4 4,5 1.00 1.23.6 1.00 0.00

Table 3.4.2 Estimated Quadratic Effects For The Small Example After One

Refinement.
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Chapter 4
Confidence Coefficients And Confidence Bounds In The SYVAC3-CC3
Example

4.1 The Estimated Effects

The calculations made for the small example are very transferable to the
SYVACS3-CC3 example. However, the sheer number of effects prevents the
luxury of a complete description of the aliasing structure as was done in

Table 2.1.3. Fortunately, calculations such as those in Table 3.1.2 are possible.
Also, even for a system as large as SYVAC3-CC3 it is practical to estimate all

the main effects and all the quadratic effects.

Table 4.1.1 shows the largest estimated main effects and Table 4.1.2 shows the

largest estimated quadratic effects as determined from the initial estimates.

Of concern are the columns labeled “Actual Effect”. The information in these
columns is based on expert knowledge of SYVAC3-CC3. According to expert
knowledge, many of the system parameters (number 1927 for example) can

have no influence on the measured response of the system butthe S, and Q,

columns suggest some of these parameters do have effects.

In Tables 4.1.1 and 4.1.2, CL,(S,), CL(S,), CLQ,(Q,) and CQL,(Q,) represent
confidence coefficients and CB(ép) and CBQ(d,,) are confidence bounds.

Sections 4.2 and 4.3 will discuss confidence coefficients and confidence bounds.

The estimated effects can be revised as was done in Sections 3.3 and 3.4.
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4.2 Main Effects and Interactions

For the SYVAC3-CC3 example, it is possible to assign confidence bounds and
confidence coefficients for the system effects. These assignments are based
upon the assumption that the estimable effects have a Normal distribution.
Normal distributions are not unexpected since a estimabie effect is approximately
the sum of a random set of system effects and the Central Limit Theorem is likely
to take effect. As will be shown, this assumption can be easily supported

through probit plots.

To look at the distribution of the estimable effects, there is a useful property of
the sub-design used in the SYVAC3-CC3 example :

The estimable effects can be divided into two mutually exclusive sets; one
is aliased with odd-ordered interactions (including main effects) and the

other is aliased with even-ordered interactions.

This property is a result of the aliasing structure used in the sub-design

which in common notation (Montgomery 1991) can be expressed as:

I=ABCD=ABEF=ABGH=ACEG
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Actual

P Sl CL(s,)] CL(S.)j CB(S,)| Effect
2239 -1.725 1.000 1.000 0.334 yes
2443 1.447 1.000 1.000 0.358 yes
2355 0.818 1.000 0.412 0.392 yes
1927 0.753 0.999 0.114 0.395 no
1335 -0.741 0.999 0.077 0.395 no
2633 -0.666 0.998 0.001 0.397 no
336 -0.665 0.998 0.001 0.398 no
1259 -0.643 0.997 0.000 0.398 no
2992 0.641 0.997 0.000 0.398 no
1996 -0.634 0.997 0.000 0.399 no
1 0.630 0.997 0.000 0.399 no
2973 0.620 0.996 0.000 0.399 no
2803 0.608 0.996 0.000 0.399 yes
1514 -0.596 0.995 0.000 0.400 no
593 0.560 0.992 0.000 0.400 no
2553 0.559 0.992 0.000 0.400 no
2448 0.555 0.991 0.000 0.401 no
1272 -0.555 0.991 0.000 0.401 no
545 -0.553 0.991 0.000 0.401 no
104 0.551 0.991 0.000 0.401 yes
1147 -0.548 0.991 0.000 0.401 no
693 0.543 0.990 0.000 0.401 no
36 -0.541 0.990 0.000 0.401 no
2420 -0.531 0.988 0.000 0.401 no
405 0.523 0.987 0.000 0.401 no
2472 0.520 0.987 0.000 0.402 no
1789 0.514 0.986 0.000 0.402 no
686 0.512 0.986 0.000 0.401 no
2782 0.511 0.985 0.000 0.402 no
868 -0.510 0.985 0.000 0.402 no

Table 4.1.1: The Largest Main Effects For SYVAC3-CC3. Original
Estimates.



Actual

P Qp CLQ,(Qg)| CLQ(Q.)| CBQ(Q,)| Effect

1419 -0.300 0.997 0.000 0.275 no
396 -0.286 0.995 0.000 0.268 no
2315 -0.272 0.993 0.000 0.262 yes
1060 0.260 0.991 0.000 0.257 no
1550 0.255 0.990 0.000 0.255 no
1428 -0.252 0.989 0.000 0.254 no
2271 -0.252 0.989 0.000 0.254 no
2835 0.251 0.989 0.000 0.253 no
610 -0.249 0.988 0.000 0.252 no
2707 -0.248 0.988 0.000 0.252 no
2354 -0.245 0.987 0.000 0.250 no
3072 -0.245 0.987 0.000 0.250 no
24 0.239 0.985 0.000 0.248 no
2737 -0.238 0.984 0.000 0.247 no
1209 -0.234 0.982 0.000 0.246 no
1375 -0.234 0.982 0.000 0.246 no
2031 -0.234 0.982 0.000 0.246 no
3211 0.233 0.982 0.000 0.246 no
2428 -0.232 0.981 0.000 0.245 no
301 -0.226 0.978 0.000 0.242 no
581 0.226 0.978 0.000 0.242 no
1186 0.226 0.978 0.000 0.242 no
1138 -0.226 0.978 0.000 0.242 no
2243 -0.224 0.978 0.000 0.242 yes
2895 0.224 0.977 0.000 0.242 no
1239 -0.223 0.977 0.000 0.241 no
1170 0.222 0.976 0.000 0.241 no
2780 -0.221 0.975 0.000 0.240 no
1791 -0.220 0.975 0.000 0.240 no
2419 0.220 0.975 0.000 0.240 no
3021 0.220 0.975 0.000 0.240 no
1682 -0.219 0.974 0.000 0.240 no
927 0.218 0.974 0.000 0.240 no

Table 4.1.2: The Largest Estimated Quadratic Effects For SYVAC3-CC3 .

Original Estimates.
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Figure 4.2.1 consists of a probit plot for both of the groups of the estimable
effects. Both appear to have an approximately Normal distribution.

Either of these two groups is expected to have a mean of zero. In the
assignment of system parameters to experimental factors, there is an equal
probability of a system parameter and an experimental factor moving in the same
or opposite direction and consequently there is an equal probability that a system
effect will be added to or subtracted from a estimable effect.

The standard deviations of these two groups, STDEV ., and STDEV.,are

readily estimated from the samples of values.

There is now enough information to predict the distribution of the estimated main
effects and interactions of the system parameters. If these effects are simply
averages of random estimable effects, the expected distribution is:
SWN
STDEV b

B odd even,

where:

S is the main effect or interaction

» Nis the number of iterations used to calculate S

v STDEVgggeven 1S STDEVg eyer o STDEVe o depending on the order of the
interaction
ty. is the students t-variate with N-1 degrees of freedom
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Figure 4.2.1; Distribution Of Estimable Effects.
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Figure 4.2.2: Distribution of Estimated Main System Effects.

Figure 4.2.2 is used to determine if the estimated main system effects are
distributed as though they are merely random combinations of estimable effects.
The figure is similar to a probit plot except that the transformation applied to the
y-axis is based upon a t-distribution instead of a Normal distribution. Each point
on the plot represents the original estimate of the value of a main system effect.
The same number of iterations (two-thirds of the total) is used to estimate each of

the main system effects.

According to Figure 4.2.2, the predicted distribution was a good approximation
for all but two of the main system effects. These two effects have magnitudes
that are much larger than would be expected given the sample size and the



predicted distribution. The figure gives us confidence that these two main
system effects are not occurring randomly and instead represent actual effects

that occur in the system.

It is also possible to calculate confidence coefficients for the estimated system

effects. A suitable null hypothesis is:
Ho: The system effect (main or interaction) is zero. S=0

Two variations on the confidence coefficient are necessary; one is useful for
single effects and the other is useful for screening a large number of estimates

for statistical significance.

To test individual estimates, very standard methods are available. A t-variate
corresponding to the estimated effect is calculated and a p-value is generated.

Corresponding confidence coefficients are assigned and listed in the table as

CL,(S,).

Table 4.1.1 also demonstrates why CL,(é) is inappropriate for screening a large
number of effects for statistical significance. To produce the table, approximately
3300 main linear effects were screened. The expected number of estimated
main system effects to be declared 99% significant on a purely spurious basis is
(1% °3300) ~33. In Table 4.1.1, there are many system parameters known to
have no influence on the system response (expert judgement) and yet by CL1(é)
they appear significant. Itis useful to have a confidence coefficient that

considers the number of estimates that are tested.

CL,(S)=CL (S~
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where
s N, is the number of effects tested for statistical significance

is such a value. Under the predicted distribution, it is a first-order approximation
to the probability that all members of the sample are smaliler than the tested

estimate.

CLe(é) values are also included in Table 4.1.1. Under this coefficient, only two
system effects achieve a 99% level of confidence. These two effects are
consistent with expert knowledge of SYVAC3-CC3. However, according to expert
knowledge, some of the other parameters in Table 4.1.1 should also have

significant main effects.

The CLz(é) values are more consistent with knowledge of SYVAC3-CC3 than
the CL,(S) values but they are still not entirely satisfactory. However, as the
estimable effects are modified to refine the estimated effects, the confidence
coefficients and confidence bounds are also recalculated and the resuits are

expected to improve.

How accurate are the estimates of S? We can find CB(S) such that S = CB(S)

forms the 95% confidence bound. We assume:

ErmS)JyN N
STDEVE' 5 s

where

« Sis the estimated system effect

o EmMS) s the error made in estimating S
» N is the number of iterations used to estimate S

* tis avarnate with a Student-t distribution



STDEVE'é’ is an estimate of the standard deviation of the measurable effects

after the estimated influence of S has been removed.

STDEV, ., is closely related to STDEVgqq OF STDE Vg4, depending on the

order of S. For example, STDEV, S is the same as STDEVg,,, except that:

s E .+ émg is used instead of E,
+ E2.8+ S2239 is used instead of E2.8

» E63- S2239is used instead of E6.3

* efc.

Confidence bounds are shown for the main system effects in Table 4.1.1. Since
the major source of error is aliasing, it is not surprising that the narrowest

confidence bounds are associated with the largest effects.

As with the small example, the SYVAC3-CC3 resulits can be refined by adjusting
the estimable effects for the estimated influence of a system effect. Not only can
the effects be re-calculated, but so can the confidence coefficients and

confidence bounds.

Table 4.2.1 shows the main effects when the estimated error due to aliasing with
S_.q iS removed.
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Actual
p Sol CL(S;)| CL(S;)| CB(S,)| Effect
2239] 1725 1.000 1.000 0.334 yes
2443 1.533 1.000 1.000 0.262 yes
2355 0.732 1.000 0.732 0.319 yes
2803 0.608 0.999 0.080 0.324 yes
2992 0.555 0.998 0.002 0.326 no
104 0.551 0.998 0.002 0.326 yes
2712 0.511 0.996 0.000 0.327 no
2026 0.499 0.996 0.000 0.327 no
2796]  0.495 0.995 0.000 0.327 no
328 0.475 0.994 0.000 0.328 no
2856 0.472 0.993 0.000 0.328 no
2448 0.469 0.993 0.000 0.328 no
1272]  -0.469 0.993 0.000 0.328 no
2793 0.467 0.993 0.000 0.328 no
376 0.464 0.993 0.000 0.328 no
2826]  -0.460 0.992 0.000 0.328 yes
1 0457 0.992 0.000 0.329 no
2588 0.446 0.990 0.000 0.329 no
1152 -0.438 0.989 0-000 0.329 no
405 0.436 0.989 0.000 0.329 no
1612 -0.434 0.988 0.000 0.329 no
3290 -0.431 0.988 0.000 0.329 no
2210 -0.429 0.987 0.000 0.329 no
2626 0.429 0.987 0.000 0.329 yes
686 0.426 0.987 0.000 0.329 no
2128] 0425 0.987 0.000 0.329 no
868|  -0.424 0.986 0.000 0.329 no
1002]  -0.424 0.986 0.000 0.329 no
1033] -0.421 0.986 0.000 0.329 no
2825 0.420 0.985 0.000 0.329 yes
2264 0.420 0.985 0.000 0.329 no
2318 0.417 0.985 0.000 0.329 no
2358 -0.412 0.984 0.000 0.330 no
1943 0.412 0.984 0.000 0.329 no

Table 4.2.1: The Largest Estimated Main Effects For SYVAC3-CC3 After
One Revision.



Actual
P Sol CL(S.)| CLx(S,)] CB(S,)| Effect
2239 -1.725 1.000 1.000 0.334 yes
2443 1.533 1.000| 1.000 0.262 yes
2355 0.655 1.000 0.951 0.247 yes
2803 0.608 1.000 0.941 0.232 yes
1461 0.414 0.999 0.044 0.225 no
772 -0.375 0.998 0.000 0.227 no
2825 0.371 0.997 0.000 0.227 yes
994 0.357 0.996 0.000 0.227 no
2826 -0.356 0.996 0.000 0.227 yes
2712 0.343 0.995 0.000 0.228 no
973 -0.332 0.994 0.000 0.228 no
603 0.331 0.994 0.000 0.228 no
842 -0.330 0.994 0.000 0.228 no
104 0.324 0.993 0.000 0.228 yes
1480 -0.311 0.990 0.000 0.229 no
2613 -0.307 0.989 0.000 0.229 no
1956 0.303 0.989 0.000 0.229 no
756 0.301 0.988 0.000 0.229 no
1126 0.298 0.987 0.000 0.229 yes
2910 -0.296 0.987 0.000 0.229 no
2413 0.296 0.987 0.000 0.229 no
2307 0.294 0.986 0.000 0.229 no
1726 0.293 0.986 0.000 0.229 no
639 -0.292 0.986 0.000 0.229 no
1205 0.292 0.986 0.000 0.229 no
2638 -0.290 0.985 0.000 0.229 no
2992 0.289 0.985 0.000 0.229 no
1024 -0.289 0.985 0.000 0.229 no
2313 0.288 0.984 0.000 0.229 no
2115 -0.285 0.983 0.000 0.229 no
1222 -0.285 0.983 0.000 0.229 no
2108 0.284 0.983 0.000 0.229 no
105 0.283 0.983 0.000 0.229 no
1943 0.412 0.984 0.000 0.229 no

Table 4.2.2: The Largest Estimated Main Effects For SYVAC3-CC3 After
Three Revisions.
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Table 4.2.1 suggests that the next refinement to make is to adjust the estimable
effects to remove the estimated error due to aliasing with S,,,;. And of course
the step-wise refinement can continue. Table 4.2.2 shows the results after three

refinements are made.

After three refinements of the resuits, there are no more main effects that are

statistically significant (confidence coefficient greater than 95%) according to
CLQ(é) However, the information in Table 4.2.2 suggests some non-zero main
effects are not significant according to CLe(é). According to expert knowledge,
S a0 S omoe: Sasos: S10s AN S, COUID be non-zero.  According to CL,(S), their
estimated effects are statistically significant but so is é,‘e,, which is known to
have no actual effect. Chapter 5 will discuss how expert knowledge can be

incorporated into the application of IFFDA.

When confidence coefficients and confidence bounds are calculated for
interactions, the only special concern is that a variable number of iterations of the

sub-design are used to estimate the interactions.
4.3 Quadratic Effects

Confidence coefficients and confidence bounds can also be calculated for the
quadratic effects. The methods are very analogous to those used for main

effects and interactions.

Quadratic effects are estimated from the mean responses as caiculated for the
iterations of the sub-design(Section 3.2). The Central Limit Theorem suggests
that the iteration means could have a Normal distribution. Figure 4.3.1 is a probit
plot of the iteration means for the SYVAC3-CC3 example and shows that the
distribution is at least approximately Normal.



If the estimated quadratic effects are created from random combinations of
iteration averages, then they are expected to be transformable to a Student-t

distribution.
g« [Ne NNy
ner
STDEV, " -2

where

-

Q, is the estimated quadratic effect of parameter p
N, is the number of iterations where parameter p is included in the

sub-design
N, is the number of iterations of the sub-design

STDEV, is the standard deviation of the iteration means

ty, o s the Student-t distribution with N, -2 degrees of freedom.
There are N, -2 degrees of freedom because two values are required

to estimate a difference,

Figure 4.3.2 is a graphical test of whether the estimated quadratic effects have

the predicted distribution. It is similar to a probit plot except that the
transformation on the y-axis is based upon a Student-t distribution instead of a

Normal distribution. Very low and very high ép values do not occur as frequently

as predicted. However, the predicted distribution is close and will be assumed

for the rest of the calculations.

A suitable null hypothesis is:

Ho: The gquadratic effectis zero. Q=0



As for the main effects, two variations of a confidence coefficient will be used.

CLQ,((:JD) uses standard p-values and is suitable for testing individual quadratic

effects. CLQ,( ép) is suitable for screening a large number of quadratic effects

for statistical significance. The relationship between the two coefficients is:

CLQ,(Q) =CLQQ)™=

where
s N, is the number of effects tested for statistical significance

Table 4.1.2 includes the confidence coefficients for the largest quadratic effects

in the SYVACS3-CC3 example. None of the quadratic effects are statistically
significant under CLQ,( ép). However, this is not to say there are no actual
quadratic effects. As shown with the linear effects, confidence coefficients such

as CL,(S) and CLQ,(Q,) are very restrictive due to the large sample sizes. If a

justification can be found to use CLQ,(f)a) for some of the parameters, the

estimated effects may be significant.

It is convenient to apply CLQ,(ép) to sets of one hundred system parameters.
For a set of one hundred CLQ,(f)p) values, the expected number of effects to

falsely appear significant (CLQ,( ép)>99% ) is manageable (~1).

The obvious parameters to test for significant quadratic effects are those with the

largest linear effects. Two assumptions are required to justify this choice:

¢ The system parameters with the largest quadratic effects aiso have the

largest linear effects.
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 The error in the estimated quadratic effects occur independently of the

error in estimating the linear effects.

Therefore we can test the 100 system parameters with the largest linear effects
to see if their quadratic effects are significant. Of these 100 quadratic effects,
Table 4.3.1 shows the largest ones. Even if the quadratic effects are tested
individually, no statistical significance (99% confidence coefficient) can be
attributed to any of these 100 quadratic effects. As was the case for the main
effects, the user has the option of spending more resources to further investigate

the quadratic effects of any suspicious parameters.

The confidence bounds for the quadratic effects, CBQ(ép) can of course be

calculated. The methodology is very similar to that used for the linear effects.

We use the assumption that:

ERR(Q,)-
STDEV ~ 2

Ap)

JNM'(N -N,,

where:
* ERR(Q,) is the error in the estimate of Q,
* 1y, . is the Student-t distribution with N, - 2 degrees of freedom

* STDEV

A(p)

is the standard deviation of all A, values without the

estimated influence of Q,
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STDEV, is transformed into STDEV,,,, by modifying A, values that are affected
by Q,. Using parameter number 2239 from the example:

¢ A,- Q,,, will be used instead of A,

s A, - Q,, will be used instead of A,

e etc

The estimated 95% confidence bounds are included in Table 4.1.2
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Actual
P Q.| CLQ.Q,)| CLQ(Q,)| CBQ(Q,)| Effect
2796 0.199 0.959 0.000] 0.232 no
1267 0.188 0.947 0.000{ 0.228 no
2673 0.186 0.944 0.000] 0.227 no
2646 -0.181 0.938 0.000] 0.225 no
768 -0.175 0.929 0.000{ 0.223 no
2239 0.151 0.883 0.000] 0.216 yes
1592 0.148 0.877 0.000] 0.215 no
2355 -0.148 0.876 0.000] 0.215 yes
662 0.146 0.871 0.000] o0.214 no
546 -0.142 0.860 0.000] 0.213 no
1126 0.138 0.851 0.000] 0.212 yes
405 -0.138 0.851 0.000] 0.212 no
2803 0.131 0.828 0.000{ 0.210 yes
708 -0.131 0.828 0.000{ 0.210 no
1927 0.129 0.823 0.000{  0.209 no
2108 0.128 0.820 0.000] 0.209 no
2143 -0.118 0.785 0.000] 0.207 no
935 -0.117 0.781 0.000] 0.206 no
1987 -0.111 0.756 0.000] 0.205 no
2857 0.108 0.743 0.000] 0.204 no
772 0.108 0.741 0.000] 0.204 no
104 0.104 0.726 0.000] 0.203 yes
3278 -0.103 0.719 0.000]/ 0.203 no
1024 0.098 0.696 0.000] 0.202 no

Table 4.3.1: Estimated Quadratic Effects For SYVAC3-CC3 Parameters
With The Largest Estimated Linear Effects (Not All Shown).
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CHAPTER 5
Applying The Calculations To A Large System

Previous sections have discussed the caiculations that are made as part of
IFFDA. However, there are other issues that must be resoived for IFFDA to be

applied to a large system such as SYVAC3-CCa3.

* In what order should the system effects be removed from the estimable
effects or the system averages so that the results can be refined?

*»  Which system effects shouid be reported?
The following assumptions are made to deal with these issues:
¢ The easiest system effects to detect are the main effects.

¢ Any parameter with a significant quadratic effect or involved in a

significant interaction will also have a relatively large main effect.

¢ The error in estimating main effects, quadratic effects and interactions

occur independently.

Under these assumptions it is still necessary to screen the system parameters to
determine which ones may be important. As a result, some system effects will
have to be subjected to the more restrictive tests of statistical significance,
CLQ(é) and CLQz(é). However, the screening will also provide the basis for

identifying other system effects to test individually with the less restrictive tests of

significance, CL,(S) and CLQ,(Q).



it is convenient to apply CL,( é) or CLQ,(é) to sets of approximately one
hundred estimated system effects. When a set of one hundred system effects
are tested with CL,(S) or CLQ,(Q), approximately one of them will be assigned
statistical significance (confidence coefficient greater than 99%) even though it
isn’t actually significant. (f too many estimated effects are tested, then a large
number of the effects will appear significant on a purely spurious basis. If too few
effects are tested, then more significant effects will be missed because they were

not tested.
5.1 A Purely Statistical Basis

The steps for the analysis of results of the experimental design can be

summarized as follows:

1. Screen all the main effects (S,) to determine which estimates are
statistically significant (see Sections 3.1 and 3.3). The step-wise
refinement of the results is applied as statistically significant estimates

are identified.

2. Screen all the quadratic effects (Q,) to determine if any estimates are
statistically significant. (see Sections 3.2 and 3.4). The iteration
averages are adjusted as statistically significant system estimates are

identified.

3. Take the 100 system parameters with the largest main effects
(significant or not) and test their quadratic effects individually. Record

any ép values that are statistically significant when tested individually

and adjust the experimental averages accordingly.
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4. Select 15 system parameters to test for statistically significant second

order interactions. These 15 parameters include:

s the parameters with statistically significant main effects
s the parameters with statistically significant quadratic effects
* enough of the parameters with the largest non-significant main

effects to bring the total number up to 15

All 105 possible pairs of these system parameters are tested
individually for statistical significance (Chapters 3 and 4). Adjust the

estimable effects to acknowledge these significant effects.

5. Select 10 system parameters to test for statistically significant third

order interactions. These 10 parameters inciude:

* the parameters with statistically significant second order
interactions

¢ the parameters with statistically significant main effects

¢ the parameters with statistically significant quadratic effects

s enough of the parameters with the largest non-significant main

effects to bring the total number up to 10

All 120 possibie third order interactions are tested individually for
statistical significance. Adjust the estimable effects to acknowledge

these significant effects.



6. Fourth, fifth, ... etc interactions can be tested similarly if there are

enough iterations that can be used to make the estimates.

7. The main effects should be re-scanned using the revised estimable
effects. The revisions of the experimental effects may lead to more
statistically significant effects. If such is the case then the rest of the

analysis should also be repeated.

Table 5.1.1 shows the resuits of IFFDA using the above methodology. No expert
knowledge of SYVAC3-CC3 is used. The confidence coefficient refers to CL,( é)
or CLz(é) depending on whether the estimated effect was tested as part of a

screening process or as a member of a relatively smail group.

With the introduction of confidence coefficients, IFFDA can be applied on a

purely statistical basis without any expert knowledge of the system.
5.2 Incorporating Expert Knowledge Of A System

Section 5.1 showed how IFFDA can be applied if expert knowledge of the system
is not available. However, the results in the table are not entirely consistent with
expert knowledge of SYVAC3-CC3.

In Table 5.1.1 there are two “false positives”. Confidence coefficients of over
95% were calculated for interactions that are known to have no actual effect.
This is understandable given that over 200 interactions were tested individually

for statistical significance.
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Estimated| Confidence Confidence Actual
p Effect | Coefficient Bound(+) Effect
Main
Effects
2239 -1.725 1.000 0.334 yes
2443 1.533 1.000 0.262 yes
2355 0.655 0.951 0.247 yes
2803 0.608 0.941 0.232 yes
Second Order
interactions
2355 2443 -0.669 1.000 0.286 yes
104 2239 -0.337 0.980 0.272 yes
973 2355 0.416 0.972 0.357 no
104 2355 0.34 0.966 0.308 yes
Third Order
Interactions
104 772 973 -0.607 0.904 0.606 no

Table 5.1.1: Results Of IFFDA If No Expert Knowledge Of SYVAC3-CC3 is
Available.

Also, in Table 4.2.2, S,z Sosoe. Saa2s.S 104 aNd S5 could all possibly have actual
linear effects(according to expert knowledge). Unfortunately, these estimates

were tested as part of a screening process and the more restrictive test of

significance, CLe(é), has to be used. These effects are not statistically
significant under the appropriate test. To be pragmatic the user may wish to

take advantage of expert knowledge and do any of the following:

¢ Include these parameters in the sets of interactions to test for statistical

significance.

* Find some justification for testing these system effects individually for

statistical significance.
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¢ Do further analysis using more simulations to look specifically at these

system effects.

* [ncrease the number of iterations of the sub-design and repeat IFFDA.

s Repeat the analysis with a different objective function.

The first option will be discussed here.

For SYVAC3-CC3, the influence of the majority (at least 2000) of the system
parameters can be dismissed on the basis of expert knowledge. In such a

situation, expert knowledge is very valuable. In fact, previous applications of
IFFDA depended entirely on expert knowledge to guide the refinement of the

results. For example:

The estimated effects in Table 4.2.2 suggests that system parameter
number 1461 has an influence on the estimated dose rate. However,
according to expert knowiedge of SYVAC3-CCS3, this system parameter
is assigned a constant value and cannot contribute to the variability of the
dose estimate. On this basis, we have no confidence that parameter

number 1461 has any sort of influence on the system response.

Also, Table 4.2.2 suggests that one of the largest system effects is S.
Expert knowledge gives no simple reason why S,.,; can't be important.
In the previous applications of IFFDA, there confidence coefficients were
not used and S5, would warrant further analysis to determine its effect

on the system.



The opportunity to incorporate expert knowledge comes in the choice of
quadratic effects and interactions to test individually. Instead of just using the
system parameters with the largest estimated main effects, we can be selective
and give preference to those system parameters expected to have an influence

on the system.

For example, when Table 4.2.2 is used to identify system parameters to check
for second order interactions, the selection can be restricted to those marked
“yes” in the Actual Effect column. This approach only gives eight parameters but
the table could be extended to get more system parameters to test for second

order interactions.

Table 5.2.1 shows the results if the estimated interactions associated with the
eight parameters are tested for significance. Parameters 104, 1126, 2803 and
2826 are involved in statistically significant interactions. They can be considered
important to the system even though there is no statistical reason for believing

their main effects are significant.

However, we are still have not found any statistically significant estimate
associated system parameter number 2825. With the amount of data that is
used in the example (30 iterations of the sub-design), there is no statistically
justifiable reason for saying that this system parameter has an influence on
SYVAC3-CC3.



Estimated| Confidence Confidence Actual
p Effect] Coefficient Bound(+) Effect
Main
Effects
2239 -1.725 1.000 0.334 yes
2443 1.533 1.000 0.262 yes
2355 0.655 0.951 0.247 yes
2803 0.608 0.941 0.232 yes
104 0.324 0.000 0.228 yes
2826 -0.356 0.000 0.218 yes
1126 0.314 0.000 0.214 yes
Second Order
Interactions
2355 2443 -0.669 1.000 0.286 yes
2239 2803 0.302 0.961 0.282 yes
104 2239 -0.369 0.986 0.276 yes
1126 2826 0.298 0.965 0.273 yes
Third Order
Interactions
104 1126 2803 0.482 0.989 0.344 yes
1126 2355 2826 -0.468 0.980 0.367 yes
Table 5.2.1: Results Of IFFDA When Expert Knowledge Of SYVAC3-CC3

is Available.
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CHAPTER6
Conclusions

The ability to calculate confidence bounds and confidence coefficients for the
results of IFFDA has been demonstrated. Sample calculations have been used

to demonstrate this capability.

With confidence bounds and confidence coefficients, IFFDA can be applied
without any expert knowledge of the system, but in the SYVAC3-CC3 example,
IFFDA gives better results if expert knowledge of the system is incorporated into

the analysis.

CHAPTER 7

Recommendations

lterated Fractional Factorial Analysis (IFFDA) has already proven itself to be a
powerful tool for the sensitivity analysis of computer models. This report
illustrates how the introduction of confidence bounds and confidence coefficients
enhance the value of IFFDA. Five further steps are possible to increase the

effectiveness of IFFDA:

—h

. Investigate Variations On The Experimental Designs To Optimize Results.

2. Incorporate Better Statistical Methods To Estimate The Confidence
Coefficients For The Estimated System Effects.

3. Investigate Using ANOVA To Screen The Main Effects and Interactions.

4. Investigate The Influence Of Aliased System Effects On the Estimated
Quadratic Effects.

5. Incorporate The Analysis Stage Of IFFDA Into A Formal Software

Package.



7.1 Iinvestigate Variations On The Experimental Designs To Optimize

Results

It is desirable to optimize the designs used in IFFDA to maximize the amount of
information that can extracted from a given amount of data. Even for computer
simulations, data can be expensive to generate. For a given number of
simulations, the following features of the experimental designs are still

adjustable:

¢ The definition of LOW, MEDIUM and HIGH for the system parameters.

* The choice of sub-designs
* The sub-design in the sample calculations is a 2** fractional factorial
design. IFFDA could be generalized to accommodate any other sub-
design.
* The obvious sub-designs to consider are other two-level fractional

factorial designs.

¢ The number of iterations of the sub-design.
* If the sub-design is changed, the number of simulations per
iteration will change and more or fewer iterations will be possible

with the same total number of experiments.

7.2 Incorporate Better Statistical Methods To Estimate The Confidence
Coefficients And Confidence Bounds

The statistical methods in this report use the assumption that the measurable

effects and the iteration averages have an approximately Normal distribution.
The approximation appears to be more valid for the estimable effects than the
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iteration averages (Figures 4.2.1 and 4.3.1). As a result, there is a concern that
in future applications of IFFDA, the assumption of Normal distributions would not
be suitable. In such a situation, some of the statistical methods used in this
report would not be valid. Other statistical methods may have to be found.

For CL,(S), CLQ,(Q), CB(S), and CBQ(Q), a simple non-parametric is possible.
A large number (thousands) of “pseudo system parameters” could be generated
and assigned to experimental factors. Since the effects of these pseudo
parameters would be zero, their estimated effects can be used to estimate the
error which is likely to occur in the estimated effects of the actual system

parameters. Confidence coefficients and confidence bounds could be generated.

Unfortunately, this approach would be impractical to replace CLe(é) and

CLQz(é). Millions of the pseudo system parameters would be required.

7.3 Investigate Using ANOVA To Screen The Main Effects And

Interactions

it may be possible to use one-way ANOVA to estimate main effects and
interactions. It may also be possible to treat the iterations of the sub-design as
experimental blocks. A block would represent an alias structure whereas in
most experimental designs a biock represents something physical (a plot of
ground or a petri dish) or a period of time.

In order to revise results, responses of individual experiments would be adjusted

instead of the measurable effects.

The major advantage of this approach would be that standard statistical methods
could be used to analyze the results.



7.4 Investigate The Influence Of Aliased System Parameters On the
Estimated Quadratic Effects

For the estimates of the quadratic effects, the iteration averages were adjusted
with respect to the most significant estimated quadratic effects. However, the

iterations are possibly influenced by interactions as well.

If a group of system parameters is aliased in an iteration, then their interaction

will remain at a constant level instead of toggling between LOW and HIGH.

As a result, the average response for the iteration may be raised or lowered due
to interactions between system parameters that are aliased together.

Consequently, estimated quadratic effects will also be influenced.

This concern should be further investigated and if warranted, IFFDA should be
modified to reduce the influence of interactions on the iteration averages and

estimated quadratic effects.

7.5 Incorporate The Analysis Stage Of IFFDA Into A Formal Software

Package

Computer software to generate the designs for IFFDA has been created.
However, at this time, the development of software to perform the analysis part of

IFFDA is still in a prototype phase.

When software is further developed to perform the analysis part of I[FFDA,
confidence coefficients and confidence bounds should be incorporated. Not only
do these values put the results of IFFDA in better perspective, they also provide
some objective guidance when the user is revising resulits to reduce error due to

aliasing between system effects.
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Appendix
Glossary of Terms and Symbols

A
s the mean of the response for the ith iteration of the sub-design

CB(S)
o the confidence bounds for a main effect or interaction

« S+ CB(S)forms the 95% confidence band

CBQ (Q)
* the confidence bound for d

« Q=CBQs (é) forms the 95% confidence band

CL1(S)
¢ the confidence coefficient for S if it is tested as an individual effect

CL2(S)
« the confidence coefficient for S if it is tested as part of a screening of many

effects

CLQ, (Q)
¢ the confidence coefficient for Q if it is tested as an individual effect

CLQ, (Q)
s the confidence coefficient for Q if it is tested as part of a screening of many

effects

e ele2...
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« indeces used to identify experimental effects

Eie

=

+ effect of experimental factor e in iteration i of the sub-design

Eiel.e2 e3....

+ interaction of experimental factors e1, e2, €3,... in iteration i of the sub design

effects:
¢ the response of the system to a change in the value of a system parameter or
an experimental factor
= in particular
o i
* x are parameters normalized to a range of [0,1]
s yis the system response
o Y~LTX TG + QTR 1K TX,
* then
* L, L, are main effects
s -257qis a quadratic effect

¢ 5% is an interaction of order 2

estimable effect

s an effect that can be estimated from an experimental design
* typically, aliasing occurs in the design and the estimable effect represents a

combination of many effects
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experimental design

s+ a methodical way of setting parameter values in order to optimize the
resulting information about the system
* in IFFDA, the experimental design consists of iterations of a sub-design

experimental factor

s a construct used in IFFDA

+ level set according to a sub-design

s represents a different set of system parameters in each iteration of the sub-
design

s its effects are assumed to be a sum of the effects of its member system

parameters

~ anindex used to identify iterations of the sub-design

—est

~ the number of effects being tested for statistical significance
N,

~ the number of iterations where a system parameter is included in the sub-

design

Qp

~ the quadratic effect of system parameter p
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R
s parameter number

* an index used to identify the system parameters

S,
s the linear effect of system parameter s

STDEV,
* the standard deviation of the Ai values

STDEVe ggeven
s+ the standard deviation of measured experimental effects that are aliased with

odd/even ordered interactions

STDEV, s,
s the standard deviation of estimable effects without the contribution of S.

STDEV, s,
+ the standard deviation of the iteration averages without the contribution of Q..

sub-design
* arelatively small and standard experimental design

~ typically in IFFDA the sub-design is a 2** fractional factorial design

« fractional factorial design

system
» the entity being analyzed

* inthe sample calculations it is a mathematical or computer model but a

system could be a manufacturing or a biologicai process
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system parameter
~ something in the system that can be controlled
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