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Abstract 

This report is further developrnent of a methodology known as lterated Fractional 

Factorial Design Analysis (IFFDA). IFFDA uses experimental designs to identify 

the influential parameters in systems with many (hundreds or thousands) of 

parameters. At its previous stage of developrnent, IFFDA gives no welldefined 

measure of the reliability of the results. This report includes enhancements to 

assign confidenœ levels and confidenœ bounds to the estimates produœd by 

IFFDA. These enhancements can be incorporated into the application of IFFDA 

and the result is a more objective analysis. 

Two examples are discussed. The first is smail and contrived and used to 

illustrate the capabilities of 1 FFDA in previous applications. A larger system is 

required to demonstrate how the confidence bounds and confidenœ levels c m  

be estimated and a computer mode1 known as SYVAC3-CC3 is used. SYVAC3- 

CC3 was chosen because it is well known (Goodwin et al 1994 for example) and 

yet has enough systern parameters (-3300) to be non-trivial. 

Two strategies are given for incorporating confidence levels and confidence 

bounds into IFFDA. The first assumes that no expert knowledge of the system is 

available and the second incorporates expert knowledge into the analysis. 

In the SYVAC3-CC3 example, the enhanced methodologies gave results that are 

consistent with the understanding of the system. Results are even more 

satisfactory when expert knowledge is incorporated into the analysis. 
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Chapter 1 

Introduction and Summary 

1.1 Motivation for IFFDA 

lterated Fractional Factorial Design Analysis (IFFDA) was developeâ for 

sensitivity analysis of a family of cornputer models associated with SYstems 

Variable Analysis Code (SYVAC) (Goodwin et al. 1 994 and Goodwin et al. 1 996). 

These rnodels are used to predict the impact of nuclear waste repositories. 

Sensitivity analysis of these models is challenging because: 

There are many (hundreds or thousands) of system parameters. 

Many fields of expertise are incorporated (metal corrosion, hydrogeology, 

chemistry, dosimetry, etc) into the models. 

For some of the system parameters, the value is uncertain and could Vary 

by several orders of magnitude. 

Generally, SYVAC models are constructeci to run probabilisticaliy. The system 

parameters are assigned probability density functions (PDFs) instead of single 

values. The parameter values are sampled randomly according to the assigned 

PDFs and the corresponding responses (radiological dose for example) can be 

estimated. By repeated ly sam pling the parameter values and re-calculating the 

responses, a sample of system responses can be generated. From this sample, 

it is possible to make statistical inferences about the behaviour of the systern. 

For SYVAC models, IFFDA has been used to identw the systern parameters 

where uncertainty in the values (as expressed through the assigned PDFs) leads 



to significant vanability in the system response. An example of a direct 

conclusion made as a result of IFFDA îs: 

When the tomiosity of the lower rock is increased from a low to a high 

value. the dose rate decreases by 1.7 orders of magnitude. 

Indirectly, IFFDA can identrfy other important features of the system. For 

example: 

If the characteristics of a layer of rock influence the estimateci dose 

rate. then at least under sorne circumstanœs that layer of rock is an 

important barrier to the flow of radioactive contaminants. 

1.2 History of IFFDA 

lterated Fractional Factorial Design Analysis (IFFDA) was developed as part of 

the Canadian Nuclear Fuel Waste Management Program. It has been used in 

two assessments of the long-term impacts of a hypothetical repository for high- 

level nuclear waste (Goodwin et al. 1 994. Goodwin et al. 1 996). 

Nuclear waste management has been the motivation for much of the 

development of sensitivity analyses for large predictive amputer models (Andres 

1987, Andres and Hajas 1993 and Goodwin et al. 1984 and Iman and Conover 

1980). Of particular interest, are Satelli. Andres and Hornma 1993 and 1995 

where cornparisons are made of eight methodologies. 



Sensitivity analysis of large predictive computer models has received some 

attention outside the field of nuclear waste management. Kliejnen 1992 for 

example proposes an approach that has similarities to IFFDA. 

Though many approaches have been devised for the sensitivity analysis of large 

predictive computer rnodels, IFFDA has the distincüon that it is the only one that 

has been applied to systems with hundreds and thousands of parameters in a 

real application. IFFDA has the following advantages that make it well suited to 

the task: 

1. Able to deal with a large number of system parameters (hundreds 

or thousands). 

2. Minimal assumptions about the behaviour of the system when the 

design iç applied. 

3. For the applications that have been made so far, the number of 

simulations required for the analysis is manageable (hundreds). 

Previous applications of IFFDA were successful in identifymg the main and 

quadratic effects as well as interactions in SYVAC models. However those 

applications relied on expert knowledge of the system and on other statistical 

methods to establish confidence in the results. This paper enhances IFFDA so 

that confidence coefficients and confidence bounds are generated for the 

estimated effects. The confidence coefficients can be incorporated into the 

application of I FFDA. 



1.3 A Brîef Summary Of The Methodology 

IFFDA is the implementation of an experimental design and the analysis of the 

resulting system responses. Experirnental designs are usually applied to 

physical systerns but this report will consider their application to two 

mathematical functions. 

1.3.1 The Design 

As the name suggests, IFFDA is closely related to fractional factorial designs 

(Montgornery.1991). In fact, IFFDA uses a fractional factorial design as a sub- 

design. The same sub-design is repeated many times. 

In the sub-design. experimental factors (as opposed to the system parameters) 

are toggled between LOW and HlGH as they would be in a standard fractional 

factorial design. Each experirnental factor controis a random group of system 

parameters. 

Consequently, many system effects will be aliased in an iteration of the sub- 

design. However, the assignment of system parameters to experirnental factors 

is different for each iteration; thus the alias structure of the system effects is also 

diff erent. 



1.3.2 Estimating Main Effects And Interactions 

A simplistic approach is used to estirnate main effects and interactions for the 

systern parameters. These values are the averages of the estimable effects of 

the experimental factors that contain thern. 

The estirnated value of Me system effects are subject to error due to aliasing, but 

the aliasing structure changes with each iteration of the sub-design. Given 

enough iterations, the enor due to aliasing will "average downn to an acceptable 

level. 

1.3.3 Confidence Coefficients and Confidence Bounds For Main Effects 

And Interactions 

As discussed in Section 1 -3.2, the estimated value of a systern effect is the 

average of estimable effects. If the estimable effects have a Normal distribution 

(as appears to be the case in one of the examples). then the mean of a random 

set of these effects can be cbnverted to a variable having a Student-t distribution. 

Standard statistical procedures are available to assign confidence coefficients 

and confidence bounds to these estimates. 

1.3.4 Refining The Estimated Values Of Main Effects And Interactions 

The estimated system effects are subject to error due to aliasing that occurs 

wiaiin the iterations of the sub-design. However. there is a step-wise approach 

to reducing this error. 

The system effects are estimated from the effects that can be estimated from 

individual iterations of the sub-design. Conversely, the effects that can be 



estimated are approximately a sum of rnany system effects. If there is a good 

estimate of a systern effect. the appropriate estimable effects can be adjusted to 

remove the estimated effect. When the other system effects are recalculated 

from the adjusted estimable effects, the error due to aliasing with the removed 

systern effect will approximately disappear. 

1.3.5 Estimating Quadratic Effects 

The quadratic effect of a system parameter is illustrated in Figure 1.3.5.1. A 

convenient definition is: 

Mean of the response where the system parameter is held MEDIUM 

minus the mean of the responses for the iterations where the system 

parameter toggles between LOW and HIGH. 

1.3.6 Confidence Coefficients And Confidence Bounds For Quadratic 
Effects 

Estimates of quadratic effects are calculated from the means of the systern 

responses for each iteration of the sub-design. If the estirnated quadratic effects 

are random combinations of iteration means, then they can be transformed to 

variables with a Student-t distribution. Standard statistical procedures are 

available to assign confidence coefficients and confidence bounds to the 

associated t-variates. 
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Figure 1.3.5.1 : illustration Of A Quadratic Effect 

1.3.7 Refining The Estimated Values Of Quadratic Effects 

The estimated quadratic effects can be refined in much the same way main 

effects and interactions were refined. 

When system parameters are held MEDIUM in the same iteration of the sub- 

design, their quadratic effects will be wnfounded for that iteration. However. if 

there is a good estimate of one quadratic effect, the appropriate iteration 

averages can be adjusted to take away its influence from the estimated value of 

other quadratic effects. 



Experimental designs are more typically applied directly to physical systems such 

as a biological or manufaduring proces. However. as disaisseci in Section 1.1, 

IFFDA was developed to identify the important features in large. cornplex 

computer models. Consequently, one of the examples chosen for this report is a 

large computer model. The other example is a very simple mathematical function 

used to demonstrate sorne of the calculations. 

The major impact of applying an expefirnental design to a computer mode1 

instead of a physical system is that there is no natural variability in the system. 

The first example is small and contrived. It is presented to demonstrate how tne 

system effectç are estimated and how those estimates c m  be refined. In a real 

situation. other methods would be more appropriate for investigating this system. 

The system is a simple mathematical function of four system parameters: 

Each variable has three possible values; LOW, MEDIUM and HlGH are defined 

to be -1, O and 1 respectively. 

Ideally, the effects that IFFDA will find are: 

x, and x, have main effects of 4 and 2 respectively. 

The interaction between x, and x, has a value of 2 

x, has a quadratic effect of -1 



In this report, IFFDA will also be applied to a computer model known as 

SWAC3-CC3 (see Goodwin etal 1994). SYVAC3-CC3 was developed to 

estimate the impacts of a hypothetical nuclear waste repository. It is used in this 

report to demonstrate how confidence lirnits and confidence bounds c m  be 

incorporateci into IFFDA. 

ÇYVAC3-CC3 has approximately 3300 system parameters. These are variables 

in the computer model that the user can control independently. Each of the 

system parameters is assigned an appropriate probability density function (PDF) 

so that the model can be run stochastically. 

These PDFs are also convenient for defining the parameter levels used in 

experimental designs. In the SYVAC3-CC3 example, LOW, MEDIUM and HlGH 

are defined as equally probable ranges of values as determined from the PDFs. 

Table 1.4.2.1 describes some of the system parameters in SYVAC3-CC3. In the 

sample calculations, the systern parameters are referenced by the parameter 

number, p, which is an arbitrary index. 

The user rnust choose a suitable system response for the analysis. In the 

sample calculations, the objective function is the log ,, of the maximum 

radiological dose to 100 000 years after the closure of the repository. 

There are two reasons for choosing SYVAC3-CC3 for the sample calculations: 

SYVACS-CC3 has enough system parameters to be non-trivial. 



SYVAC3-CC3 has k e n  studied extensively (Goodwin et al 1984 for 

example) and new features of IFFDA can be evaluated with respect to 

expert knowledge of the systern. 

Table 1.4.2.1 : Some SWACSCCB Parameters Discussed In This Report. 

i Panmater 
1 Numbedp) Parameter ûescrïption 
I 1 04 Buffer anion correlation parameter 
, t 

2239 Tortuosrty of the lower rock zone i 

2355 j Aquatic mass loading coefficient for the lake for iodine 
1 

l 2443 ( Source of dornesttc water (lake or well) I 

I 2803 j Retardation factor for iodine in compacted lake sediment j 
1 

i 2825 \ lodine plant/soil concentration ratio 1 

2826 1 Gaseous evasion rate of iodine from soi1 I 



Chapter 2 

Experimental Designs In The Example Applications 

There is flexibility in the choice of the sub-design. In Andres(1996) and Andres 

and Hajas (1 993), the only restriction on the sub-design is that it is Resolution IV 

fractional factorial. In this report the SYVAC3-CC3 example takes advantage of 

some specific characteristics of the sub-design. 

It is easy to speculate how many of the ideas in IFFDA could be generalized to 

accommodate other sub-designs. However, many important features are 

inherited from the fractional factorial sub-designs; most notably the ability to 

express results as main effects and interactions. 

For the small example, the experimental design consists of six iterations of a 

sub-design. The subdesign is a p' fractional factorial design(M0ntgomery 

1991). In each iteration, four experimental factors are toggled between LOW and 

HlGH in eight experirnents. In common notation, the defining contrast is I=ABCD 

(Montgomery 1991 ). 

It should be noted that these experirnental factors are different than the systern 

parameters. An  experirnental factor represents â iandom combination of system 

parameters. The assignment of system parameters to experimental factors is 

different for each iteration of the sub-design. Table 2.1.1 shows how these 

assignments were made for the small example. The system parameters are 

represented by columns and iterations by rows. 



Table 2.1.1 Assignment Of System Parameten To Experimental 
Factors For The Small Example 

In an iteration, a system parameter does one of three things: 

Toggle between LOW and HlGH with an experirnental factor (positive 

value in Table 2.1 -1 ) 

For example, in iteration number one, system parameter number four 

toggles in the same direction as experirnental factor number three. 

Toggle between LOW and HlGH in the opposite direction to an 

experimental factor (negative value in Table 2.1.1 ) 

For example, in iteration number two, system parameter number one 

toggles in the opposite direction as experimental factor number two. 



Remain at MEDIUM and not be induded in the su&-design(zer0 value in 

Table 2.1 .l) 

For example, in iteration number one. systern parameter number one is 

held at MEDIUM. 

Each system parameter is randomly assigned to experimental factors with the 

restriction thai in one third of the iterations, it is held MEDIUM and not included in 

the sub-design. There is an equal probability that a system parameter will be 

assigned to toggle with or against an experimental factor. 

Table 2.1.2 shows how the system parameters are set for each of the 48 

experirnents. The experimental factors are subjected to the ?' sub-design and 

the system parameters follow the experimental factors they were assigned in 

Table 2.1.1 . 

In the small example, there are seven effects mat c m  be estimated for each 

iteration. These estimable effects can be expressed in terms of the experimental 

factors. They are: 

where E ,,, is the effect of experimental factor number e in the ith iteration 

of the sub-design and E ,,,,, is the interaction between experimental 

factors e, and e2. 



Table 2.1.1 c m  then be used to express these estimable effects in ternis of the 

system effects. Using iteration 3 as an example: 

Syçtern parameters one. two and three are assigned to experimental 

factor num ber one. Therefore: 

E 3. ,=S,+S*+S3 

where S, is the main effect of system parameter number p. 

There are no system parameters assigned to experimental factors 

numbered three and four. Therefore E, does not represent 

interaction of system parameters and E ,.,=O. 

E ,, +E ,, can be estimated and 

E,,,+E3., =S,+S,+S, 

Table 2.1.3 shows al1 the estimable effects in the small exarnple. The effects are 

listed according tu the experimental effects they represent. The numerical values 

are calculateci according to standard methods (Montgomery 1991). 
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Numerical 
Value 

Systern 
Effects 

Numerical 
- Value 

System 
Effects 

Numerical 
Value 

System 
Effects 

Numerical 
Value - 

Systern 
Effects 

Numerical 
Value 

System 
Effects 

Numerical 
Value 

System 
Effects 

Estlmable Eftect 

rable 2.1.3 Estimable Effects For The Small Example. lnltlal Estlmates. 



The design used for the SYVAC3-CC3 example is sirnilar to the small example 

except that it is done on a larger scale. The subdesign is a pfractional 

factorial design and it is iterated 30 times. There are approximately 3300 system 

parameters. 

The larger sub-design means that interactions of up to order seven will exist. 

There are fmeen estimable effects for each iteration of the sub-design. 

The large number of system parameters means that more system effects are 

aliased with each estimable effect. For example. the number of main system 

sffects aliased with a single main experimental effect is -3300B*(2B)= 275. 

Table 2.2.1 shows how some of the system parameters were assigned to 

experimental factors for the sample calculations. In the table. the rows represent 

iterations of the sub-design and the columns represent system parameters. 

As with the small design, the iterated fractional factorial design has introduced 

aliasing into the analysis. For example. in the first iteration of the sub-design. 

system parameters 2239 and 2443 are bath assigned to the same experimental 

factor and will be aliased for those 16 simulations. However, the aliasing 

between system parameters is different in each iteration. 

The SYVAC3-CC3 example takes advantage of another characteristic of the sub- 

design. Even-ordered interactions are only aliased with other even-ordered 

interactions while odd-ordered interactions (including main effects) are only 



aliased with other odd-ordered interactions. Cansequently, there are two distinct 

groups of estimable effects. 

It should be noted that this design is slightly different #an those used in Goodwin 

et al 1994 and therefore results will also be slightly different. 



Table 2.2.1 : Assignment Of Som SWAC3-CC3 Parameters To 
Experlrnental Factors. 



Chapter 3 

Estimating Effects In The Small Example 

3.1 btirnating Main Effects And Interactions 

Once the system responses are generated. the estimable effects are readily 

calculated (Table 2.1 -3 for example). From the information given in Table 2.1 -3, 

there are various ways the system effects could be calculated, but a method has 

been devised Mat can easily be extended to larger systems. The small example 

will be used to demonstrate how this method works. 

Table 2.1.3 does not give a direct estimate of S,. However, it dues identrfy 

estimable effects that are aliased with S,. For example, in iteration number three 

one of the estimable effects is S,+S2+S3=6. 

The method that will be used to estimate SI is to take the average of al1 the 

estimable effectç where S, makes a contribution. From Table 2.1 .1 or 2.1 -3, the 

estimated value of S, is the average of: 

0 -(-s 1) iteration number 2 

+(S1+s2+S3) iteration number 3 

-(-s I ) iteration number 4 

-(-S,+S,-s,-s,) iteration number 5 

Negative signs are used where the systern parameter toggles in the opposite 

direction to the experimental factor. 

Obviously, there is potential error due to the aliasing of system parameters. 

However since there is an equal probability of any two system parameters 



toggling in the same or opposite directions, the expected value of error due to 

aliasing is zero. The error due to aliasing will become closer to zero as the 

number of iterations of the sub-design is increased. 

Table 3.1.1 shows the first estimate of the system effects for the small example. 

Some important considerations about interactions are illustrated in Table 3.1.1. 

The number of estimable effectç that can be used to estimate system 

interactions is variable. 

Generally, for higher order interactions there are fewer estimable effects 

that c m  be used to estimate the systern interactions. 

It is impossible to estimate some of the system interactions because they 

are not aliased with any of the estimable effects. 

Table 3.1.1 shows more information than is actually required to estimate the 

system effects. It is not necessary to explicitly deal with the aliasing between 

system effects. It is only neœssary to identrfy the estimable effects that are 

aliased with a system effect. Such information can be generated from Table 

2.1.1. For example: 

Table 2.1.1 tells us that in iteration number three, the first system parameter 

is aliased with the first experimental factor. In the averaging process to 

estimate SI, we need to use the estimable effect that is aliased with b,,. 
Even though it is informative to know that E3,,+&., =S,+S,+S, , it is only 

necessary to know that S., and S, are aliased and to be able to calculate the 

estimable effect that is aliased with hm,. 



iteration # 3 
iteration # 4 
iteration # 5 
iteration # 6 
iteration # 1 
iteration # 2 
itera tion # 3 
iteration # 6 

! syçtem / Effect 

1 +(SI,) 1 SI, , iteration # 2 1 0  I 
! , +s ) i iteration # 4 i 
i s,, 

4 
p -(-SI3) iteratiun # 4 1 0 i 

I 
SM I +(SI,) itera tion # 2 1 0  1 i j -( s,,+s,-S,) iteration # 3 j 

1 

' +(Sa) 1 sa iteration # 4 / 2 i 
j i i 
2 I l 

/ '24 1 ' 
i , 

itera tion # 2 1 O 
I 

1 
1 +( Sl4+SP4-S3,,,) iteration # 3 1 i l 

S, 1 -( S14+s24-S34) 

. 
iteration # 3 ' 0  ! 

i l I i 

sl 1 -(-SI) iteration # 2 ! 4 I 

i 1 

1 
[ +(S,+S,+S,) iteration # 3 8 

l I 
1 

f 

1 1 -(-SI) iteration # 4 I 1 I 

I 

I . -(-S,+S,-S~S,) iteration # 6 I I 

I 
2 

f s 2 1 -(-S.j iteration # 2 j 2 
1 
I 

! i +( Sl+S,+S,) iteration # 3 
i +(SJ iteration # 4 
I 

i i +(-S ,+S&-S,) iteration # 6 
I l ! I 

Estimable Eflects Used in the Calwlation 
Estimated 
Vai ue 

Table 3.1.1 The Calculation Of Main Effects And Interactions For The 
Small Example. 

1 Sm 
1 SI*4 

iteration # 4 j O 1 . +s 1 iteration # 2 1 O 1 

! SI, / none available 1 
i 

I 7 S I 



Table 3.1 -2 shows the information that is necessary to estimate main effects and 

interactions without explicitly dealing with the aliasing amongst system 

parameters. This strearnlined approach is readily applied to larger systems and 

larger experimental designs. 

As mentioned, the system effects that are estimated so far are a first 

approximation. It is possible to revise the estimated values to reduœ the error 

due to aliasing. The results will be refined in Section 3.3. 

3.2 Estimated Quadratic Effects 

Quadratic effects are defined as shown in Figure 1 -3.5.1 . As a simple 

approximation: 

If there is no quadratic effect, the average response where a parameter is 

held MEDIUM is equal to the average responses where the parameter 

toggles between LOW or HIGH. 

The difference between these two averages is used to estimate the 

quadratic effect 

For the actual calculations, it will be convenient to use the average responses for 

the iterations of the sub-design rather than the results from individual 

experiments. A, is used to represent the average response from iteration i of the 

sub-design. Table 2.1.1 can be used to determine in which iterations the system 

parameter is MEDIUM and in which iterations it toggles between LOW and HIGH. 

Table 3.2.1 shows the iteration averages for the small example and Table 3.2.2 

shows how the iteration averages are wed to estimate the quadratic effects. 



l i 
l 

l 
i I t available 

S, i I I 1 

1 I not i I 
, i i available j 

i 

- - - - 

! 1 4 

1 Aliased Experirnental Eff ects 1 

Table 3.1.2 System Effects As Estimated By The Streamlined Approach 

For The Small Example. Original Estimates. 

! 
I 

Esürnated 1 
Value 1 

I 
I t Neration I 

3.3 Refining Estimates of Main Effects And Interactions 

A stepwise approach is used refine the estimated main effects and interactions. 

1 sl 1 1 

I -L 1 h.1 1 -E4.4 i 4% 1 4.0 1 I 

/ System 
i Effect 

Accarding to Tables 3.1.1 and 3.1.2. one of the largest system effects is S, and 

wnsequentiy S,  will be one of the largest sources of error due to aliasing. Given 

an estimate of S,, it is possible to reduce the error it induces in estimates of the 

other system effects. 

1 2 3 4 5 6 



iteration(i) 1- I - t - 2 -- 1 - -  3 - l 4 5 1 

? - 1  

- i - - 

Iteration t---- 1 t l i -1 
Table 3.2.1 lteration Averages For The Smail Example. 

Table 3.2.2: Estirnated Quadratic Effects For The Small Example. Original 
Estimates. 

I 1 Estimated / - Systern lterations Where The 1 Iterationç Where The Quadratic i 
Parameter I Parameter Is Held 1 Parameter 1s HlGH and 1 Effect 1 

I I 
I MEDIUM LOW I 

For example, according to Table 2.1 -3: 

&-,+&., =S,+S,+S, =6.0 

' (P) i 1 Mean 
I 1 Response 

I 

To remove the disruptive influence of S,, a very simplistic approximation can be 

made for the third iteration: 

(&.1+&.234 )-S,=~-O-SI 

(SI +S2+S3)-S S . 0 - S  

s2+s,~.o-4.0=~.o 

I 1 

i I Mean 
I j Response , 

1 CQ,) : 

Information from Table 2.1.1 c m  be used to determine the other estimable 

effectç to adjust with respect to SI. Table 3.1 -2 can be transformed into Table 

3.3.1 by reducing the error due to aliasing with S, . Note that the refinement is 

only applied to system effects other than SI. 

I 1 I 1.5 1 0.50 2.3.4.6 i 0.75 1 -0.25 / 



Table 3.3.1 suggests the next step in the refinement S, is the next major source 

of error due to aliasing and its influence should be removed from the estimable 

effects. The resuIt is Table 3.3.2. 

Table 3.3.2 represents as much refinernent as cm be made to the estimated 

main system effects. They are al1 fall into one of three categories: 

Their influence has ken removed from the estimable effecff. (S, and Sd. 

Their estimated value is small and unlikely to lead to error in the estimated 

values of the other system effects. (S3, S4, . . .). 

They are not aliased with any other system effects except for those that no 

longer influence the estimable effects. 

A cornparison of Table 3.3.2 and the results that were predicted in Section 1.4.1 

demonstrates that the step-wise refinement has performed well for main effects 

and interactions. 



i I 
I / Çystem Effect 1 
I 
i Aliased Experimental factors 
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I 
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6 

Table 3.3.1 Estirnated Main Effects And Interactions For The Small 
Example After One Refinernent Of The Results. 

Estirnated 1 
1 I 
j S, 6 - 2  ! 6.1 1 4%4 i i ' k . 3  

Value I 
4.0 1 



Table 3.3.2 Estimated Main Effects And Interactions For The Small 
Example After Two Refinements Of The Results. 

I Aliased Gcperirnental Factors ! 
l 

I 
I 

1 
1 

Estimated 
Value 

4-0 

i 
system 

i Effect 
1 

lterahion 

2 3 1 4 5 6 

; s, i 
1 

'E22 i 6 . 1  1 -E4.4 ! I 

I - 4 3  



3.4 Refining Estimates of Quadratic Effects 

Just as the estimates of the main effects were refined by adjusting the estimable 

effects, the estimates of the quadratic effects can be refined by adjusting the 

iteration averages. From Table 3.2.2, it appears the largest quadratic effect is 

Q,. The average response for iterations 1 and 2 can be adjusted to remove the 

estimated influence of Q,. Tables 3.4.1 and 3.4.2 show the result of the 

adjustment. The row for Q, is shaded because it shows results from a previous 

estimate. 

Table 3.4.1 lteration Averages For The Small Example After One 
Ref inement. 

Iteration(i) 
Iteration 

Average(A3 

1 1 2 ! 3 j 4 j 5 / 6  
0-6, O -  1 1 1 

1 i 1 1 2 1 1  i l i 0  
I i 1 I 

I i 

Table 3.4.2 Estimated Quadratic Effects For The Small Example After One 
Refinement. 

1 
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i 
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1 
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1 
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I 4 i 4,5 
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0.00 
1.00 

3.41516 
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Chapter 4 

Confidence Coefficients And Confidence Bounds ln The SWAC3-CC3 

Example 

4.1 The Estimated Effects 

The calculations made for the small example are very transferable to the 

SYVAC3-CC3 example. However, the sheer number of effects prevents the 

luxury of a cornplete description of the aliasing structure as was done in 

Table 2.1 -3. Fortunately. calculations such as those in Table 3.1.2 are possible. 

Also, even for a system as large as SYVAC3-CC3 it is practical to estimate al1 

the main effects and al1 the quadratic effects. 

Table 4.1.1 shows the largest estimated main effects and Table 4.1 -2 shows the 

largest estimated quadratic effects as determined from the initial estimates. 

Of concern are the columns labeled "Actual Effect". The information in these 

columns is based on expert knowledge of SYVAC3-CC3. According to expert 

knowledge, many of the system parameters (number 1927 for example) can 

have no influence on the measured response of the system but the S, and Q, 

columns suggest some of these parameters do have effects. 

In Tablas 4.1.1 and 4.1.2, CL,(S,), c&(s,), CLQ,(Q,) and CQLJQ,) represent 

confidence coefficients and CB(S,) and CBQ(Q,) are confidence bounds. 

Sections 4.2 and 4.3 will discuss confidence coefficients and confidence bounds. 

The estimated effects can be revised as was done in Sections 3.3 and 3.4. 



4.2 Main Effects and Interactions 

For the SYVAC3-CC3 example. it is possible to assign confidence bounds and 

confidence coefficients for the system effects. These assignments are based 

upon the assumption that the estimable effects have a Normal distribution. 

Normal distributions are not unexpected s ine a estimable effect is approximately 

the sum of a random set of systern effects and the Central Lima Theorem is likely 

to take effect. As will be shown. this assurnption can be easily supported 

through probit plots. 

To look at the distribution of the estimable effects, there is a useful property of 

the sub-design used in the SYVAC3-CC3 example : 

The estimable effects can be divided into two mutually exclusive sets; one 

is aliased with odd-ordered interactions (including main effectç) and the 

other is aliased with even-ordered interactions. 

This property is a result of the aliasing structure used in the sub-design 

which in cornmon notation (Montgomery 1991 ) can be expressed as: 



1 .O00 1 .O00 0.334 Yes 
1 .O00 1 .O00 0.358 ves 

Table 4.1.1 : The Largest Main Effects For SWACSCC3. Original 
Estimates. 



Table 4.1.2: The Largest Estimated Quadratic Effects For SWACSCC3 . 
Original Estimates. 



Figure 4.2.1 consists of a probit plot for both of the groups of the estimable 

effects. Bath appear to have an approximately Normal distribution. 

Either of these two groups is expected to have a mean of zero. In the 

assignrnent of system parameters to experimental factors, there is an equal 

probability of a system parameter and an experimental factor moving in the same 

or opposite direction and consequently there is an equal probability that a system 

effect will be added to or subtracted from a estimable effect. 

The standard deviations of these hivo groups. STDEV,, and STDEV,,, are 

readily estimated from the samples of values. 

There is now enough information to predict the distribution of the estimated main 

effects and interactions of the system parameters. If these effects are simply 

averages of random estimable effects. the expected distribution is: 

where: 

s is the main effect or interaction 

N is the number of iterations used to calculate s 
STDEVE~~,, 1s STDEVE(,~I ., STDEV,,, depending on the order of the 

interaction 

t,, is the students t-variate with N-1 degrees of freedom 



Confounded with 
Odd-Ordered Interactions 

Estimable Effect 

Confounded with 
Even-Ordered Interactions 

/'* 
7' 

1 I I I 1  I 1 

O 

Estimable Effect 

Flgure 4.2.1 : Dlstrlbution Of Estimable Effects. 



Original Estimate of Main System Effects 

Estimated Main System Effects 

Figure 4.2.2: Distribution of Estimated Main System Effects. 

Figure 4.2.2 is used to determine if the estirnated main systern effects are 

distributed as though they are rnerely randorn combinations of estimable effects. 

The figure is similar to a probit plot except that the transformation applied to the 

y-axis is based upon a t-distribution instead of a Normal distribution. Each point 

on the plot represents the original estimate of the value of a main system effect 

The same number of iterations (two-thirds of the total) is used to estimate each of 

the main system effects. 

According to Figure 4.2.2, the predicted distribution was a good approximation 

for al1 but two of the main system effects. These two effects have magnitudes 

that are much larger than would be expected given the sample size and the 



predicted distribution. The figure gives us confidence that these two main 

system effects are not occurring randomly and instead represent actual effects 

that occur in the system. 

It is also possible to calculate confidence coefficients for the estimated system 

effects. A suitable nuIl hypothesis is: 

Ho: The system effect (main or interaction) is zero. S=û 

Two variations on the confidence coefficient are necessary; one is useful for 

single effects and the other is useful for screening a large number of estimates 

for statistical significance. 

To test individual estimates, very standard methods are available. A t-variate 

corresponding to the estimated effect is calculated and a pvalue is generated. 

Corresponding confidence coefficients are assigned and listed in the table as 

CL,( SPI- 

Table 4.1 -1 also demonstrates why cL,(s) is inappropriate for screening a large 

number of effects for statistical significance. To produce the table. approximately 

3300 main linear effects were screened. The expected number of estimated 

main system effects to be declared 99% significant on a purely spurious basis is 

(1 % '3300) -33. In Table 4.1 -1, there are many system parameters known to 

have no influence on the system response (expert judgement) and yet by CL,(S) 

they appear significant It is useful to have a confidenœ coefficient that 

considers the number of estimates that are tested. 



where 

N, is the number of effects tested for statistical significanœ 

is such a value. Under the predicted distribution. it is a first-order approximation 

to the probability that al1 mernbers of the sample are smaller than the tested 

estimate. 

CL(S) values are also included in Table 4.1 -1 . Under Mis coefficient, only two 

system effects achieve a 99% tevel of confidence. These two effects are 

consistent with expert knowledge of SYVAC3-CC3. However, according to expert 

knowledge. some of the other parameters in Table 4.1.1 should also have 

significant main effects. 

The cl&) values are more consistent with knowledge of SYVAC3-CC3 than 

the CL,(S) values but they are still not entirely satisfactory. However, as the 

estimable effects are modified to refine the estimated effects, the cunfidence 

coefficients and confidence bounds are also recalculated and the results are 

expected to improve. 

How accurate are the estimates of S? We can find CB(S) such that s r CB(S) 

forrns the 95% confidence bound. We assume: 

STDEV . 
- t N - 1  

€ 1  Si 

where 

s is the estimated system effect 
- 

Err(S) is the error made in estirnating S 

N is the number of iterations used to estimate S 



STDEVEf& is an estirnate of the standard deviation of the rneasurable effects 

after the estimated influence of S has been removed. 

STDEV,, i, is ctosely related to STDEV,, or STDEV,,, depending on the 

order of S. For example, STDEVEtL, is the same as STDN,,, except that: 

* 

E, , + S, is used instead of E, , 
E2.8 + ~ 2 2 3 9  is used instead of E2.8 

E63 - 52239 iç used instead of E63 

etc. 

Confidence bounds are shown for the main system effects in Table 4.1 -1. Since 

the major source of error is aliasing, it is not surprising that the narrowest 

confidence bounds are açsociated with the largest effectç. 

As with the small example, the SYVAC3-CC3 results can be refined by adjusting 

the estimable effects for the estimated influence of a system effect. Not only can 

the effects be re-calculateci, but so c m  the confidence coefficients and 

confidence bounds. 

Table 4.2.1 shows the main effects when the estimated error due to aliasing with 
S, is removed. 



P S. CL&) &(S.) CB(SJ Effect 
2239 -1 -725 1.000 1.000 0.334 YeS 
2443 1.533 1 .O00 1 1 .O00 0.262 Yes 
2355 0.732 1 .O00 0.732 0.319 Yes 
2803 0.608 0.999 0.08 O 0.324 Yes 
2992 0.5 5 5 0.998 0-002 0.326 no 

1 04 0.55 1 0.998 0.002 0.326 Yes 
2712 0.5 1 1 0.996 0.000 0.327 no 
2026 0.499 0.996 0.000 0.327 no 
2796 0.49 5 0.995 0.000 0.3 27 no 
328 0.475 0.994 0.000 0.328 no 

2856 0.4 7 2 0.993 0.000 0.328 no 
2448 0.469 0.993 0.000 0.328 no 

1272 -0.469 0.993 0.000 0.328 no 

2793 0.467 0.993 0.000 0.328 no 

376 0.464 0.993 0.000 0.3 28 no 

2826 -0.460 0.992 0.000 0.3 28 Yes 
1 0.45 7 0.992 0.000 0.329 no 

2588 0.446 0.990 0.000 0.329 no 
1152 -0.438 0.989 0.000 0.3 29 no 
405 0.436 0.989 0.000 0.329 no 
1612 -0.434 0.988 0.000 0.329 no 
3290 -0.43 1 0.988 0.000 0.329 no 

Table 4.2.1 : The Largest Estimated Main Effects For SWAC3-CC3 After 
One Revision. 



Actual 
P S. CL&) CI&,) CB(S,) Effect 

I 2239 -1 -725 1.000 1 1 -0ao 1 0.334 1 Y s  
2443 1.533 i .ooot r.ml 0.262 1 Y= 
2355 0.655 7 .O00 0351 f 0.247 Y- " 

2803 0.608 1 .O00 0.94 1 0.232 Yes 
1461 0.41 4 0.999 0 .O44 0.225 no 

Table 4.2.2: The Largest Estimated Main Effects For SWAC3-CC3 After 
Three Revislons. 



Table 4.2.1 suggests that the next refinement to make is to adjust the estimable 

effects to remove the estimated error due to aliasing with S,-. And of course 

the step-wise refinement can continue. Table 4.2.2 shows the results after three 

refinements are made. 

After three refinements of the results, there are no more main effects that are 

statistically significant (confidence coefficient greater than 95%) according to 

CL(S) However, the information in Table 4.2.2 suggests some non-zero main 

effects are not signlicant according to cLJs). According to expert knowledge, 

S,,S,,S,,S,, and S, ,, could be non-zero. According to CL, ( s), their 

estimated effects are statistically significant but so is s,,, which is known to 

have no achial effect. Chapter 5 will discuss how expert knowledge can be 

incorporated into the application of IFFDA. 

When confidence coefficients and confidence bounds are calculated for 

interactions, the only special concern is that a variable number of iterations of the 

sub-design are used to estirnate the interactions. 

4.3 Quadratic Effects 

Confidence coefficients and confidence bounds can also be calculated for the 

quadratic effects. The methods are very analogous to those used for main 

effects and interactions. 

Quadratic effects are estimated from the mean responses as calculated for the 

iterations of the sub-design(Section 3.2). The Central Limit Theorem suggests 

that the iteration means could have a Normal distribution. Figure 4.3.1 is a probit 

plot of the iteration means for the SYVAC3-CC3 example and shows that the 

distribution is at least approximately Normal. 



If the estirnated quadratic effects are created from random combinations of 

iteration averages, then they are expected to be transformable to a Student-t 

distribution. 

where 

Q, is the estimated quadratic effect of parameter p 

is the number of iterations where parameter p is included in the 

sub-design 

&, is the number of iterations of the sub-design 

STDEV, is the standard deviation of the iteration rneans 

t w  is the Student-t distribution with - 2 degrees of freedom. 

There are - 2 degrees of freedom because two values are required 

to estimate a difference, 

Figure 4.3.2 is a graphical test of whether the estimated quadratic effects have 

the predicted distribution. It is similar to a probit plot except that the 

transformation on the y-axis is based upon a Student-t distribution instead of a 

Normal distribution. Very low and very high Q, values do not occur as frequently 

as predicted. However, the predicted distribution is close and will be assumed 

for the rest of the calculations. 

A suitable nuIl hypothesis is: 

Ho: The quadratic effect is zero. Q,=U 



As for the main effects, two variations of a confidence coefficient will be used. 

CLQ,(Q,) uses standard p-values and is suitable for testing individual quadratic 

effects. CLO,(Q,) is suitable for screening a large number of quadratic effects 

for statistical significance. The relationship between the two coefficients is: 

where 

N, is the number of effects tested for statistical significanœ 

Table 4.1.2 includes the confidence coefficients for the largest quadratic effects 

in the SYVAC3-CC3 example. None of the quadratic effects are statistically 

significant under CLQ,(Q,). However, this is not to say there are no achial 

quadratic effects. As shown with the linear effects, confidence coefficients such 

as c ~ ( s )  and CLQ,(Q,) are very restrictive due to the large sarnple sizes. If a 

justification can be found to use CLQ,(Q,) for some of the paramelers. the 

estimated effects may be significant. 

It is convenient to apply CLQ,(Q,) to sets of one hundred system parameters. 

For a set of one hundred CLQ,(Q,) values, the expected number of effects to 

falsely appear significant (CLQ, ( ÔP)>99% ) is manageable (-1 ). 

The obvious parameters to test for significant quadratic effects are those with the 

largest linear effects. Two assumptions are required to justify this choice: 

The system parameters with the largest quadratic effects also have the 

largest linear effects. 



The error in the estirnated quadratic effects occur independently of the 

error in estimating the linear effects. 

Therefore we can test the 100 system parameters with the largest linear effects 

to see if their quadratic effects are significant Or these 100 quadratic effects. 

Table 4.3.1 shows the largest ones. Even if the quadratic effects are tested 

individually, no statistical significance (990h confidence coefficient) can be 

attributed to any of these 100 quadratic effects. As was the case for the main 

effects. the user has the option of spending more resources to further investigate 

the quadratic effects of any suspicious parameters. 

The confidence bounds for the quadratic effects. CBQ( Q,) can of course be 

calculated. The methodology is very similar to that used for the linear effects. 

We use the assurnption that: 

STD EV,. , p, - hW -2 

where: 

ERR(&) is the error in the estimate of Q, 

2 is the Student-t distribution with b, - 2 degrees of freedom 

STDEV,.,,, is the standard deviation of al1 A, values without the 

estimated influence of O, 



STDEV, is transfoned into STDNx,p, by modQïng A, values that are affected 

by Q,. Using parameter number 2239 from the example: 
CI 

A, - Q, will be used instead of A, 
* 

A,- Q, will beused instead of A, 

etc 

The estimated 95% confidence bounds are included in Table 4.1 -2 



Iteration Averages 

1 

-8 s -go -7-5 -7 O - 6s 
Average System 

Responses 

Figure 4.3.1 : Distribution Of Average Responses From lterations Of The 
SubDesign. 



Original Estimate of 
Quadratic System Effects 

Estimated System Quadratic Effects 

Figure 4.3.2: Distribution Of Estimated Svstem Quadratic Effects. 





CHAPTER 5 
Applying The Calculations To A Large System 

Previous sections have discussed the calculations that are made as part of 

I FFDA. However, there are other issues that must be resoived for l FFDA to be 

applied to a large system such as S WAC3-CC3. 

In what order should the system effects be removed from the estimable 

eff ects or the system averages so that the results can be refined? 

Which system effects should be reported? 

The following assumptions are made to deal with these issues: 

The easiest system effects to detect are the main effects. 

Any parameter with a significant quadratic effect or involved in a 

significant interaction will also have a relatively large main effect. 

The error in estimating main effects, quadratic effects and interactions 

occur independently. 

Under these assumptions it is still necessary ta screen the system parameters to 

determine which ones may be important. As a result. some systern effectç will 

have to be subjected to the more restrictive tests of statistical significance. 

cLJs) and CLQ,(Q). However, the screening will also provide the basis for 

identifying other system effects to test individually with the l e s  restrictive tests of 

significance, CL,(S) and CLQ,(Q). 



It is convenient to apply CL, (s) or CLQ, (6)  to sets of approximately one 

hundred estimated system effects. W hen a set of one hundred system effects 

are tested with cL,(s) or CLQ,(Q), approximately one of them will be assigned 

statistical significance (confidence coefficient greater than 99%) even though it 

isn't actually significant. If too many estimated effects are tested. then a large 

number of the effects will appear significant on a purely spurious basis. If too few 

effects are tested. then more significant effects will be missed because they were 

not tested. 

The steps for the analysis of results of the experimental design can be 

summarized as follows: 

1. Screen al1 the main effects (S,) to determine which estimates are 

statistically significant (see Sections 3.1 and 3.3). The step-wise 

refinement of the results is applied as statistically significant estimates 

are identif ied. 

2. Screen al1 the quadratic effects (Q,) to deetmine if any estimates are 

statistically significant. (see Sections 3.2 and 3.4). The iteration 

averages are adjusted as statistically significant system estirnates are 

identified. 

3. Take the 100 system parameters with the largest main effects 

(significant or not) and test their quadratic effects individually. Record 

any Q, values that are statistically signlicant when tested individually 

and adjust the experimental averages accordingly. 



4. Select 15 system parameters to test for statistically significant second 

order interacûons. These 1 5 parameters include: 

the pararneters wiai statistically significant main effects 

the parameters with statistically significant quadratic effects 

enough of the parameters with the largest non-signlicant main 

effects to bring the total number up to 15 

All 105 possible pairs of these system parameters are tested 

individually for statistical significance (C hapters 3 and 4). Adjust the 

estimable effectç to acknowledge these significant effects. 

5. Select 10 system pararneters to test for statistically significant third 

order interactions. These 10 parameters include: 

the parameters with statistically significant second order 

interactions 

the parameters with statistically significant main effects 

the parameters with statistically significant quadratic effectç 

enough of the parameters with the largest non-signlicant main 

effects to bring the total number up to 10 

All 120 possible third order interactions are tested individually for 

statistical significanœ. Adjust the estimable effects to acknowledge 

these significant effects. 



6. Fourth, fiih,. . . etc interactions can be tested similarly if there are 

enough iterations that can be used to make the estimates. 

7. The main effects should be re-scanned using the revised estimable 

effects. The revisions of the experimental effects may lead to more 

statistically signlicant eftects. If such is the case then the rest of the 

analysis should also be repeated. 

Table 5.1 -1  shows the results of IFFDA using the above methodology. No expert 

knowledge of SYVAC3-CC3 is used. The confidence coefficient refers to C ~ ( S )  

or c ~ ( s )  depending on whether the estimated effect was tested as part of a 

screening process or as a member of a relatively small group. 

With the introduction of confidence coefficients, IFFDA can be applied on a 

purely statistical basis without any expert knowledge of the system. 

5.2 lncorporating Expert Knowledge Of A System 

Section 5.1 showed how IFFDA can be applied if expert knowledge of the system 

is not available. However, the resuRs in the table are not entirely consistent with 

expert knowledge of SYVAC3-CC3. 

In Table 5.1 -1 there are two "false positives". Confidence coefficients of over 

95% were calculated for interactions that are known to have no actual effect. 

This is understandable given that over 200 interactions were tested individually 

for statistical significance. 



1 2355 2443 1 -0.669 1 1.000 1 0.286 1 ves 

1 

P Effect Coefficient Ef fect 
I Main 

Eff ects 

Table 5.1.1 : Results Of IFFDA If No Expert Knowledge Of SWAC3-CC3 Is 
Availa ble. 

Third Order 
Interactions 

linear effects(acc0rding to expert knowledge). Unfortunately. these estimates 

1 

2239 
2443 
2355 
2803 

were tested as part of a screening proces and the more restrictive test of 

973 2355 
104 2355 

104 772 973 

significance. c ~ ( s ) ,  has to be used. These effects are not statistically 

-1.725 
1.533 
0.655 
0.608 

significant under the appropriate test. To be pragmatic the user may wish to 

0.41 6 
0.34 

-0.607 

take advantage of expert knowledge and do any of the following: 

1.000 
1 -000 
0.95 1 
0.94 1 

lnclude these parameters in the sets of interactions to test for statistical 

significance. 

0.972 
0.966 

0.9 64 

Find some justification for testing these system effects individually for 

statistical significance. 

0.3 34 
0.262 
0.247 
0.232 

Yes 
Yes 
Yes 
Yes 

0.357 
0.308 

0.606 

no 

Yes 

no 



Do further analysis using more simulations to look specifically at these 

system effects. 

lncrease the number of iterations of the sub-design and repeat IFFDA. 

Repeat the analysis with a different objective function. 

The first option will be discussed here. 

For SYVAC3-CC3. the influence of the majority (at least 2000) of the system 

parameters can be dismiççed on the basis of expert knowledge. In such a 

situation. expert knowledge is very valuable. In fact, previous applications of 

IFFDA depended entirely on expert knowledge to guide the refinement of the 

results. For example: 

The estimated effects in Table 4.2.2 suggests that system parameter 

number 1461 has an influence on the estirnated dose rate. However, 

according to expert knowledge of SYVAC3-CC3. this system parameter 

is assigned a constant value and cannot contribute to the variability of the 

dose estimate. On this basis, we have no confidence that parameter 

nurnber 1461 has any sort of influence on the systern response. 

Also, Table 4.2.2 suggests that one of the largest system effects is S,. 

Expert knowledge gives no simple reason why S, can't be important. 

In the previous applications of IFFDA, there confidence coefficients were 

not used and S, would warrant further analysis to determine its effect 

on the system. 



The oppominity to incorporate expert knowledge cornes in the choie of 

quadratic effectç and interactions to test individually. lnstead of just using the 

system parameters with the largest estimated main effects, we can be selective 

and give preferenœ to those system parameters expected to have an influence 

on the system. 

For example, when Table 4.2.2 is used to identify system parameters to check 

for second order interactions, the selection can be restricted to those marked 

"y& in the Actual Effect column. This approach only gives eight parameters but 

the table could be extended to get more systern parameters to test for second 

order interactions. 

Table 5.2.1 shows the results if the estimated interactions associated with the 

eight parameters are tested for significance. Parameters 104, 1 126, 2803 and 

2826 are involved in statistically significant interactions. They can be considered 

important to the system even though there is no statistical reason for believing 

their main effects are significant. 

However, we are still have not found any statisticaliy significant estimate 

associated system parameter number 2825. With the amount of data that is 

used in the example (30 iterations of the sub-design), there is no statistically 

justifiable reason for saying that this systern parameter has an influence on 

SYVAC3-CC3. 



1 1 1 Estimatedl Confidence f Confidence 1 Actual 

Main 

r -  2826 3 -0.356 1 0.000 1 0.21 8 1 yes 

Effects 

r-  11261 0.3141 0.000 1 0.214 1 yes 

P 

Second Oder 1 1 1 1 1 

2239 
2443 

Eff- 

Interactions I I I 

-1.725 
1.533 

fnteractions 

Table 5.2.1 : Results Of IFFDA When Expert Knowledge Of SYVAC3-CC3 
Is Available. 

Coefficient 

1 -000 
r -000 

2355 2443 

Bound(I) Ef fect 

0.334 
0.262 

1 
-0.669 1 1 .O00 

Yes 
Y= 

0.286 yes 



CHAPTER 6 
Conclusions 

The ability to calculate confidence bounds and confidence coefficients for the 

results of IFFDA has been demonstrated. Sample calculations have k e n  used 

to dernonstrate this capability. 

With confidence bounds and confidence coefficients, IF FDA can be applied 

without any expert knowledge of the system, but in the SWAC3-CC3 example, 

IFFDA gives better results if expert knowledge of the system is incorporated into 

the analysis. 

CHAPTER 7 

Recommendations 

lterated Fractional Factorial Analysis (IFFDA) has already proven itself to be a 

powerful tool for the sensitivity analysis of computer models. This report 

illustrates how the introduction of confidence bounds and confidence coefficients 

enhance the value of IFFDA. Five further steps are possible to increase the 

effectiveness of IFFDA: 

1. lnvestigate Variations On The Experirnental Designs To Optimize Results. 

2. Incorporate Better Statistical Methods To Estimate The Confidence 

Coefficients For The Estimated System Effects. 

3. lnvestigate Using ANOVA To Screen The Main Effects and Interactions. 

4. lnvestigate The Influence Of Aliased System Effects On the Estirnated 

Quadratic Effects. 

5. l ncorporate The Analysis Stage Of IFFDA lnto A Fonal  Software 

Package. 



7.1 lnvestigate Variations On The Experirnental ùesigns To Optimlze 

Results 

lt is desirable to optimize the designs uçed in IFFDA to maximize the amount of 

information that can extracted from a given amount of data. Even for cornputer 

simulations, data can be expensive to generate. For a given number of 

simulations, the following features of the experimental designs are still 

adjustable: 

The definition of LOW. MEDIUM and HlGH for the system parameters. 

The choice of sub-designs 

The sub-design in the sample calculations is a 284fractional factorial 

design. IFFDA could be generalized to accommodate any other sub- 

design. 

The obvious sub-designs to consider are other two-level fractional 

factorial designs. 

The number of iterations of the sub-design. 

If the sub-design is changed, the number of simulations per 

iteration will change and more or fewer iterations will be possible 

with the same total number of experirnents. 

7.2 tncorporate Better Statistical Methods To Estimate The Confidence 

Coefficients And Confidence Bounds 

The statistical meaiods in this report use the assumption that the measurable 

effects and the iteration averages have an approximately Normal distribution. 

The approximation appears to be more valid for the estimable effects than the 



iteration averages (Figures 4.2.1 and 4.3.1 ). As a result. there is a concern that 

in future applications of IFFDA, the assumption of Normal distributions would not 

be suitable. In such a situation, some of the statistical methods used in this 

report would not be valid. Other statistical methods may have to be found. 

For CL,(S), CLQ,(Q), CB(S), and CBQ(Q), a simple non-parametric is possible. 

A large number (thousands) of "pseudo system parameters" could be generated 

and assigned to experimental factors. Since the effects of these pseudo 

parameters would be zero, their estimated effects can be used to estimate the 

error which is likely to occur in the estimated effects of the actual system 

parameters. Confidence coefficients and confidence bounds could be generated. 

Unfortunately, this approach would be impractical to replace CL(S) and 

CLQ,(Q). Millions of the pseudo system parameters would be required. 

7.3 lnvestigate Using ANOVA To Screen The Main Effects And 

Interactions 

It may be possible to use one-way ANOVA to estimate main effects and 

interactions. It may also be possible to treat the iterations of the sub-design as 

experimental blocks. A block would represent an alias structure whereas in 

most experimental designs a block represents something physical (a plot of 

ground or a petri dish) or a period of tirne. 

In order to revise results, responses of individual experiments would be adjusted 

instead of the measurable effects. 

The major advantage of this approach would be that standard statistical methods 

could be used to analyze the results. 



7.4 Investigate The Influence Of Aliased System Parameters On the 

Estimated Quadratic Effects 

For the estirnates of the quadratic effects, the iteration averages were adjusted 

with respect to the most significant estimated quadratic effects. However, the 

iterations are possibly influenced by interactions as well. 

If a group of system parameters is aliased in an iteration. then their interaction 

will remain at a constant level instead of toggling between LOW and HIGH. 

As a result, the average response for the iteration may be raised or lowered due 

to interactions between system parameters that are aliased together. 

Consequently, estimated quadratic effects will also be influenced. 

This concern should be further investigated and i f  warranted. IFFDA should be 

modified to reduce the influence of interactions on the iteration averages and 

estimated quadratic effects. 

7.5 Incorporate The Analysis Stage Of IFFDA lnto A Formal Software 

Package 

Cornputer software to generate the designs for IFFDA has been created. 

However, at this time. the development of software to perform the analysis part of 

IFFDA is still in a prototype phase. 

When software is further developed to perform the analysis part of IFFDA. 

confidence coefficients and confidence bounds should be inwrporated. Not only 

do these values put the results of IFFDA in better perspective, they also provide 

some objective guidance when the user is revising results to reduce error due to 

aliasing between system eff ects. 
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Appendix 

Glossary of Terms and Symbols 

A 4 

the mean of the response for the ith iteration of the sub-design 

ms1 
the confidence bounds for a main effect or interaction 

~t CB(S) forms the 95% confidence band 

the confidence bound for Q 

~t CBQs ( Q )  forms the 95% confidence band 

CL1 (SI 

the confidence coefficient for S if it is tested as an individual effect 

CU ( s r  
the confidence coefficient for s if it is tested as part of a screening of many 

eff ects 

the confidence coefficient for Q if it is tested as an individual effect 

the confidence coefficient for Q if it is tested as part of a screening of many 

effects 



indeces used to identfy experimental effects 

Ei. e 

effect of experimental factor e in iteration i of the sub-design 

Ei.e 1 .e2 e3.. . . 

interaction of experimental factors e l .  e2. e3 ... . in iteration i of the sub design 

eff ects : 

the response of the system to a change in the value of a systern parameter or 

an experimental factor 

in particular 

i f  

x, are parameters normalized to a range of [O, 1] 

y is the system response 

y-L,'x, + q'x& + r*x,'x, 

then 

LI, L, are main effects 

-.25'q is a quadratic effect 

.5'r is an interaction of order 2 

estimable effect 

an effect that can be estimated from an experimental design 

typically. aliasing occurs in the design and the estimable effect represents a 

combination of many effects 



experimental desian 

a methodical way of setting parameter values in order to optimize the 

resulting information about the system 

in IFFDA, the experimentai design consists of iterations of a sub-design 

experimental factor 

a construct used in IFFDA 

ievel set according to a sub-design 

represents a different set of systern parameters in each iteration of the sub- 

design 

its effects are assumed to be a sum of the effects of its member system 

parameters 

an index used to identify iterations of the sub-design 

N. -.= 
the number of effects being tested for statistical significance 

N -2 

the number of iterations where a system parameter is included in the sub- 

design 

QP 
the quadratic effect of system parameter p 



e 
parameter number 

an index used to identw the system parameters 

S 
the linear effect of system parameter s 

STDEV, - 

the standard deviation of the Ai values 

S T D E V , t , , , n ,  
the standard deviation of measured experirnental effects that are aliased with 

odd/even ordered interactions 

STDEV, 

the standard deviation of estimable effects without the contribution of S. 

STDEV, 

the standard deviation of the iteration averages without the contribution of Q,. 

sub-desion 

a relatively small and standard experimental design 

typically in IFFDA the sub-design is a 2- fractional factorial design 

fractional factorial design 

svstem 

the entity being analyzed 

in the sarnple calculations it is a mathematical or computer model but a 

system could be a manufacturing or a biological proœss 



svstem parameter 

something in the systern that can be controlled 
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