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Abstract

A technique for establishing L1 asymptotic unbiasedness of a kernel density

estimator in Rd that does not depend on the form of the kernel function will be

demonstrated. We will introduce the concept of a region sequence of a sequence

of kernel functions and show how this can be used to give necessary and sufficient

conditions for L1 asymptotic unbiasedness. These results are then applied to kernel

density estimators whose form is given and a number of known and novel results

are obtained.
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Chapter 1

Introduction

Let gn be a density that depends on a random sample of size n drawn from a

population in Rd with density f . This random function gn is a density estimator.

We would like to know how well gn estimates the density f . One property that we

would like gn to have is the property of L1 asymptotic unbiasedness. This means

that
∫
|Egn − f | tends to 0 as n tends to ∞ where Egn is the expectation of gn.

The L1 norm provides a useful measure of error in the context of density estima-

tion in Rd. This is due to Scheffé’s Theorem (Theorem A.5) which states that for

densities f and g we have
∫
|f − g| = 2 supA

∣∣∫
A
f −

∫
A
g
∣∣. This shows that bound-

ing the L1 difference between f and g will also bound the difference between any

probabilities calculated with these densities. Other measures of distance, including

the L2 norm, do not have this property.

There is a large variety of density estimators in use. All of the common ones

may be written in the form gn(y) = 1
n

∑n
i=1 gnXi

(y) where Xi is the ith observation

and gnx(y) is the kernel function. These estimators are known as kernel density

estimators. In order to study the various kinds of L1 convergence of such a large
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class of estimators many different techniques have been developed. These techniques

tend to require that the form of the kernel function is known and so apply only to

a special subclass of these estimators.

Here we will demonstrate a general method for establishing L1 asymptotic unbi-

asedness that can be applied to many different kernel density estimators. This will

be done using the concept of a region sequence of the sequence of kernel functions

which will allow us to ignore, to some extent, the form of the kernel function used.

Region sequences describe, roughly speaking, regions that are almost the support of

the kernel functions. It will be shown that the property of asymptotic unbiasedness

depends on the properties of these regions. Once this is shown we will then deter-

mine particular region sequences for different classes of kernel density estimators

and deduce necessary and sufficient conditions for asymptotic unbiasedness that

are described in terms of the parameters of the kernel functions and not the region

sequences. This will show that the concept of a region sequence may be used as

an intermediary to deriving results of interest. In addition a number of technical

results will need to be shown and these are included in the Appendix.
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Chapter 2

Preliminaries

Before we establish the general results regarding asymptotic unbiasedness, we will

need to do some preliminary work. This includes describing some of the notation

used in this document and introducing some concepts that will prove useful in

subsequent chapters.

Definition 2.1 (Some Notation). The following notational conventions and defi-

nitions are used throughout this document. Let N, Z, and R denote the set of

natural numbers, the set of integers, and the set of real numbers respectively. Let

P(E) denote the probability of event E. For a random variable X let E(X) and

V(X) denote the expectation and variance of X respectively. Let d be in N. Let

A be a subset of Rd. We define the following:

1. Let λ(A) be the Lebesgue measure of A.

2. Let δ(A) be the diameter of A, that is, δ(A) = supx1,x2∈A ‖x1−x2‖ where ‖x‖

denotes the Euclidean norm of x.

3. Let Å be the interior of A.
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4. Let A be the closure of A.

5. Let A′ be the complement of A.

6. Let IA be the characteristic function of A.

7. For any y in Rd and positive real number ε, let B(y, ε) be the open ball of

radius ε around y.

8. If f is a real valued function with domain D then the support of f is defined

as the closure of the set {x ∈ D : f(x) 6= 0}.

9. For a real number t let [t] denote the greatest integer less than or equal to t.

All subsets of Rd and functions are assumed to be Lebesgue measurable. Also we

will often use the same notation to indicate a sequence and the value of a sequence.

It should be clear from the context which is being denoted.

Definition 2.2 (Kernel Function Sequence). For G,H ⊆ Rd, we define a sequence

of kernel functions on G×H to be a sequence of functions

sn : Rd ×Rd → R

where n in N (with sn being the nth kernel function), if the following hold:

1. For all x and y in Rd and n in N, sn(x, y) ≥ 0.

2. For all n in N, we have that

∫
H

gnx(y)dy =

{
1 x ∈ G
0 x /∈ G
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where gnx is defined by the equation

gnx(y) = sn(x, y).

3. For all n in N, we have that

∫
G

hny(x)dx =

{
1 y ∈ H
0 y /∈ H

where hny is defined by the equation

hny(x) = sn(x, y).

Remark. In other words a kernel function sequence is a sequence of functions

whose cross-sections are densities. This makes it a sequence of doubly-stochastic

functions. In addition since these cross-sections are integrable, double integrals of

products involving these functions may be evaluated in any order provided that the

other factors make the product integrable. This will be made use of in subsequent

calculations.

Definition 2.3 (Kernel Density Estimator). For each i in N let Xi be a continuous

random variable with density f . Let sn be a sequence of kernel functions. We define

the kernel density estimator of the density f from the sequence of random variables

Xi, for each n in N by the equation

gn(y) =
1

n

n∑
i=1

gnXi
(y).

Remark. The above definition of a kernel density estimator will be used in this

document. This definition is broader than the definition used in many other works.
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In particular this definition includes rectangular histograms. For other examples see

Chapter 4. Also note that G and H will typically be the same set in any application.

The notational distinction will be kept even in this case to aid in the understanding

of the proofs.

Definition 2.4 (Region Sequence). Let sn be a sequence of kernel functions on

G×H, let ε be a positive real number and let V be a subset of both G and H. Let

Sn be a sequence of subsets of Rd ×Rd and denote the cross-sections of Sn by the

following:

1. Gnx = {y ∈ H : (x, y) ∈ Sn} for x in G.

2. Hny = {x ∈ G : (x, y) ∈ Sn} for y in H.

We say that Sn is a region sequence of significance ε on V for sn (ε, V -RS for sn)

if the following hold:

1. If x ∈ G, y ∈ H, and x = y then (x, y) ∈ Sn.

2. δ(Gnx) <∞ for all x in G and n in N.

3. δ(Hny) <∞ for all y in H and n in N.

4. There is an N in N such that for all n in N, x in V , y in V , if n > N we have

∫
G′nx

gnx(y)dy < ε and

∫
H′ny

hny(x)dx < ε.

In addition the number ε is referred to as the level of significance of the region

sequence and V is referred to as the region of significance of the region sequence.
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Remark. Intuitively a region sequence for a sequence of kernel functions is a se-

quence of regions that are almost the supports of the cross-sections of the cor-

responding kernel functions. The level and region of significance determine what

counts as “almost”. The region of significance determines which cross-sections of

the region sequence are close to being the supports and the level of significance

determines how close they are to being the supports. For an example of such a

region sequence see Section 4.1. Also note that condition 1 states that the diagonal

belongs to the region sequence.

Definition 2.5 (Narrowing Region Sequence). An ε, V -RS for sn is narrowing (ε, V -

NRS for sn) if

lim
n

sup
y∈H

δ(Hny) = 0.

Definition 2.6 (Regular Region Sequence). For a region sequence Sn that is an

ε, V -RS for sn we define the following regularity conditions:

1. The region sequence Sn is regular in size if

lim
n

infy∈H λ(Hny)

supy∈H δ(Hny)d
> 0.

2. The region sequence Sn is regular in height if

lim
n

sup
y∈V

λ(Hny) sup
x∈Hny

hny(x) <∞.
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3. The region sequence Sn is regular in shape if for each y in H̊ there is a positive

real number R and N in N such that for all n in N if n > N

B

(
y,R sup

y∈H
δ(Hny)

)
⊆ Hny.

Finally an ε, V -RS for sn is regular if it is regular in size, height, and shape.

This will be abbreviated by ε, V -RRS. If the region sequence is also narrowing, we

will write ε, V -NRRS.

Remark. Note that in the limits in the above definition, the level of significance

ε and the region of significance V for the region sequence are fixed as n tends

to infinity. Also while the statements of these conditions may seem complicated,

they all have reasonable geometric interpretations and are usually easy to apply

to particular examples. In particular condition 1, regularity in size, requires that

the cross-sectional volumes of the region sequence ultimately do not decrease faster

than the corresponding diameters. Condition 2, regularity in height, requires that

the height of the cross-sectional densities ultimately do not increase faster than the

rate at which the corresponding volumes of their supports decrease. Note that this

only needs to work for y in V and not for all y in H. And condition 3, regularity

in shape, requires a ball around the diagonal in each cross-section whose diameter

ultimately changes uniformly with the diameter of the cross-section. Note that the

radius of this ball may depend on y through R but that the rate at which the radius

changes must be uniform.

Definition 2.7 (Relevant Region). For a subset V of Rd, we call V relevant for sn

if V ⊆ H̊, V ⊆ G̊, V is compact, and λ(V ) > 0.
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Definition 2.8 (Relevant Density). A density f : Rd → R is relevant for sn if the

support of f lies in both H and G.

Remark. Note that in the above two definitions, relevance is dependent on the

sequence of kernel functions under discussion. This is different from significance

which relates to a sequence of regions for the sequence of kernel functions. Roughly

speaking relevant regions will be the only regions that need to be considered when

discussing regions of significance for a region sequence. All others will be degenerate

in some way. Similarly relevant densities will be the only ones worth considering as

others will be impossible to estimate in an asymptotically unbiased manner by the

kernel density estimator under consideration.
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Chapter 3

Asymptotic Unbiasedness

In this chapter we will prove three theorems that we will later use to derive necessary

and sufficient conditions for asymptotic unbiasedness for some common types of

density estimators.

The first of these theorems, Theorem 3.1, provides a sufficient condition in terms

of the existence of certain region sequences for asymptotic L1 unbiasedness of the

kernel density estimator. Applications of this theorem will simply require the con-

struction of such region sequences and in Chapter 4 we will show how this can be

done.

The second theorem, Theorem 3.2, provides something close to the converse of

Theorem 3.1. However, since the conclusion of this theorem simply states the exis-

tence of a region sequence with certain properties, it is difficult to use in application

as we cannot conclude directly that it applies to our constructed region sequence.

The third theorem, Theorem 3.3 will show us how to deal with this issue. It

states that, under the appropriate conditions, if there are region sequences with a

certain property, then all region sequences have this property.

10



Theorem 3.1 (A Sufficient Condition for Asymptotic Unbiasedness). Let sn be a

sequence of kernel functions. If for each positive real number ε and each relevant

region V , there is a sequence of regions Sn such that Sn is an ε, V -NRS for sn , then

for any relevant density f , we have that

∫
Rd

|Egn(y)− f(y)|dy → 0 as n→∞

where Egn(y) =
∫
gnx(y)f(x)dx.

Remark. This theorem will provide us with our basic tool for establishing a suf-

ficient condition for asymptotic unbiasedness. In rough outline it follows the proof

of Theorem 2.3 in [Dev85] but the details are somewhat different due to the more

general setting. It involves using Theorem B.1, the uniform approximation of a den-

sity, whose proof is given in the Appendix, to choose an appropriate approximation

of the given density and then show that the resulting differences can all be made

sufficiently small. In particular we will show that
∫
Rd |Eg∗n(y)−f ∗(y)|dy is small for

n sufficiently large where Eg∗n(y) =
∫
gnx(y)f ∗(x)dx and f ∗ is the approximating

density. To do this we will take an appropriately large region sequence and find an

upper bound for the part of this integral over the region sequence and another for

the part not over the region sequence. Note that no regularity conditions are used

to establish this result.

Proof of Theorem 3.1. Let ε be a positive real number. Using Theorem B.1, choose

a density f ∗ with compact support V such that∫
Rd

|f(x)− f ∗(x)|dx < ε

3
, (3.1)
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V ⊆ S̊ ⊆ G,H and f ∗ is uniformly continuous, where S is the support of f . Note

that V is a relevant region for sn.

Let W =
⋃
x∈V {y ∈ H : ‖x− y‖ < 1} and let M = λ(W ). Since V is compact,

V is bounded which makes W bounded and so 0 < M = λ(W ) < ∞. Using the

uniform continuity of f ∗ we may choose a positive real number δ such that for any

x1, x2 in Rd if ‖x1 − x2‖ < δ then

|f ∗(x1)− f ∗(x2)| <
ε

9M
. (3.2)

Now choose a region sequence Sn such that Sn is an ε
9
, V -NRS for sn. Since Sn is a

narrowing sequence, we may choose an N0 in N such that for any n in N if n > N0,

sup
y∈H

δ(Hny) < min(δ, 1).

This implies that for y in H and x in Hny, if n > N0, we know that ‖x − y‖ ≤

δ(Hny) < min(δ, 1) ≤ δ, since y ∈ Hny. Using inequality (3.2) this implies that

|f ∗(x)− f ∗(y)| < ε

9M
. (3.3)

Now let Vn be a sequence of sets defined by

Vn = {y ∈ H : Hny ∩ V 6= ∅}.

Again y ∈ Hny so we see that if n > N0,

y ∈ Vn ⇒ Hny ∩ V 6= ∅

⇒ there is an x in V such that x ∈ Hny

⇒ there is an x in V such that ‖x− y‖ ≤ δ(Hny) < min(δ, 1) ≤ 1

⇒ y ∈ W
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This shows that Vn ⊆ W and hence

λ(Vn) ≤ λ(W ) = M. (3.4)

Furthermore if y ∈ H but y /∈ Vn then

y /∈ V and Hny ∩ V = ∅. (3.5)

In addition since Sn is a region sequence, we may choose N1 in N such that, for any

n in N and x, y in V , if n > N1,∫
H′ny

hny(x)dx <
ε

9
and

∫
G′nx

gnx(y)dy <
ε

9
. (3.6)

We will now show that the above inequalities and propositions lead to the desired

conclusion. Let N = max(N0, N1) and suppose that n ∈ N and that n > N .

Consider the following:∫
Rd

|Eg∗n(y)− f ∗(y)|dy =

∫
H

∣∣∣∣∫
G

gnx(y)f ∗(x)dx− f ∗(y)

∣∣∣∣ dy
=

∫
H

∣∣∣∣∫
G

hny(x)f ∗(x)dx−
∫
G

hny(x)f ∗(y)dx

∣∣∣∣ dy
≤
∫
H

∫
G

hny(x)|f ∗(x)− f ∗(y)|dxdy

=

∫
H

∫
Hny

hny(x)|f ∗(x)− f ∗(y)|dxdy

+

∫
H

∫
H′ny

hny(x)|f ∗(x)− f ∗(y)|dxdy

= I + II

Using inequalities (3.3) and (3.4), and statement (3.5), we have that
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I =

∫
Vn

∫
Hny

hny(x)|f ∗(x)− f ∗(y)|dxdy

≤
∫
Vn

∫
Hny

hny(x)
ε

9M
dxdy

≤ ε

9M

∫
Vn

dy

=
ε

9M
λ(Vn)

≤ ε

9M
M =

ε

9
.

Furthermore using statement (3.6) we have that

II =

∫
H

∫
H′ny

hny(x)|f ∗(x)− f ∗(y)|dxdy

≤
∫
H

∫
H′ny

hny(x)f ∗(x)dxdy +

∫
H

∫
H′ny

hny(x)f ∗(y)dxdy

=

∫
G

∫
G′nx

gnx(y)f ∗(x)dydx+

∫
H

∫
H′ny

hny(x)f ∗(y)dxdy

≤ ε

9

∫
G

f ∗(x)dx+
ε

9

∫
H

f ∗(y)dy

=
ε

9
+
ε

9
=

2ε

9
.

It then follows that∫
Rd

|Eg∗n(y)− f ∗(y)|dy ≤ I + II <
ε

9
+

2ε

9
=
ε

3
. (3.7)

Finally note that
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∫
Rd

|Egn(y)− Eg∗n(y)|dy =

∫
H

∣∣∣∣∫
G

gnx(y)f(x)dx−
∫
G

gnx(y)f ∗(x)dx

∣∣∣∣ dy
≤
∫
G

∫
H

gnx(y)|f(x)− f ∗(x)|dydx

=

∫
Rd

|f(x)− f ∗(x)|dx

and thus using inequalities (3.1) and (3.7) we have∫
Rd

|Egn(y)− f(y)|dy

≤
∫

Rd

|Egn(y)− Eg∗n(y)|dy +

∫
Rd

|Eg∗n(y)− f ∗(y)|dy +

∫
Rd

|f ∗(y)− f(y)|dy

≤
∫

Rd

|Eg∗n(y)− f ∗(y)|dy + 2

∫
Rd

|f ∗(y)− f(y)|dy

<
ε

3
+ 2

ε

3
= ε.

The conclusion follows.

Theorem 3.2 (A Necessary Condition for Asymptotic Unbiasedness). Let sn be a

sequence of kernel functions. Suppose that for each positive real number ε and each

relevant region V there is a region sequence Sn such that Sn is an ε, V -RRS for sn.

If for all relevant densities f ,

∫
Rd

|Egn(y)− f(y)|dy → 0

as n → ∞, then for each positive real number ε and relevant region V there is a

region sequence Tn such that Tn is an ε, V -NRRS.
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Remark. This theorem will give us partial converse to Theorem 3.1. Note that the

regularity conditions play a role in this theorem but did not in the previous theorem.

Also note that while the theorem is stated in terms of regular region sequences, no

use of regularity in shape is actually used. The proof is by contradiction. The main

idea of this proof is to use the non-narrowing of a regular region sequence to find a

density that cannot be estimated in an asymptotically unbiased manner.

Proof of Theorem 3.2. Suppose the antecedent is true and the consequent is false.

Choose a positive real number ε0 and relevant region V0 such that, for any region

sequence Tn, Tn is not an ε0, V0-NRRS. Let the number ε1 be given by the equation

ε1 = min(ε0,
1
6
). Note that the number 1

6
is somewhat arbitrary. It is chosen to

make ε1 sufficiently small so that the contradiction is easily obtained. Now choose a

region sequence Sn such that Sn is an ε1, V0-RRS. Note that Sn cannot be narrowing

and so

lim
n

sup
y∈H

δ(Hny) > 0.

Thus we may choose a positive real number A such that for each N in N there is a

number m in N such that m > N and

sup
y∈H

δ(Hmy) > A. (3.8)

Since Sn is regular in height we may choose a positive real number B and N0 in N

such that for each n in N if n > N0,

sup
y∈V0

λ(Hny) sup
x∈Hny

hny(x) < B. (3.9)

Since Sn is regular in size we may choose a positive real number C and N1 in N

such that for each n in N if n > N1 then

16



inf
y∈H

λ(Hny) > C sup
y∈H

δ(Hny)
d. (3.10)

Furthermore, since Sn is a region sequence for sn we may choose N2 in N such that

for each n in N if n > N2 then∫
G′nx

gnx(y)dy < ε1 and

∫
H′ny

hny(x)dx < ε1 (3.11)

for any x, y in V0.

Now let D = B
CAd . Choose a subset V1 of V0 such that V1 is a relevant region

with a volume small enough so that

0 < λ(V1) <
1− 3ε1
D

. (3.12)

Note that number on the right hand side is positive since ε1 ≤ 1
6
. Define a function

f : Rd → R by

f(x) =

{
1

λ(V1)
if x ∈ V1

0 otherwise.

Clearly f is a relevant density. By assumption we can choose N3 in N such that for

any n in N if n > N3, we have∫
Rd

|Egn(y)− f(y)|dy < ε1. (3.13)

Now N = max(N0, N1, N2, N3). Using inequality (3.8) we can choose a number m

in N such that m > N and

sup
y∈H

δ(Hmy) > A. (3.14)
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Now we will show that the above inequalities lead to a contradiction. Using

inequalities (3.9), (3.10), and (3.14), we see that for any y in V1 and x in Hmy we

have

hmy(x) ≤ sup
x∈Hmy

hmy(x) <
B

λ(Hmy)
≤ B

infy∈H λ(Hmy)

<
B

C(supy∈H δ(Hmy))d
<

B

CAd
= D

and so for y in V1 we have∫
Hmy

hmy(x)f(x)dx =
1

λ(V1)

∫
Hmy∩V1

hmy(x)dx

≤ Dλ(Hmy ∩ V1)

λ(V1)
≤ D. (3.15)

Note that D < 1
λ(V1)

and so using inequalities (3.12) and (3.15) we have

∫
H

∣∣∣∣∣
∫
Hmy

hmy(x)f(x)dx− f(y)

∣∣∣∣∣ dy
≥
∫
V1

∣∣∣∣∣
∫
Hmy

hmy(x)f(x)dx− f(y)

∣∣∣∣∣ dy ≥
∫
V1

(
1

λ(V1)
−D)dy

= (
1

λ(V1)
−D)λ(V1) = 1−Dλ(V1) > 1−D1− 3ε1

D
= 3ε1.

But using inequalities (3.11) and (3.13) we have
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∫
H

∣∣∣∣∣
∫
Hmy

hmy(x)f(x)dx− f(y)

∣∣∣∣∣ dy
≤
∫
H

∣∣∣∣∣
∫
Hmy

hmy(x)f(x)dx−
∫
G

hmy(x)f(x)dx

∣∣∣∣∣ dy
+

∫
H

∣∣∣∣∫
G

hmy(x)f(x)dx− f(y)

∣∣∣∣ dy
=

∫
H

∫
H′my

hmy(x)f(x)dxdy +

∫
Rd

|Egm(y)− f(y)|dy

=

∫
G

(∫
G′mx

gmx(y)dy

)
f(x)dx+

∫
Rd

|Egm(y)− f(y)|dy

≤ ε1

∫
G

f(x)dx+

∫
Rd

|Egm(y)− f(y)|dy

< ε1 + ε1 = 2ε1

and so

3ε1 <

∫
H

∣∣∣∣∣
∫
Hmy

hmy(x)f(x)dx− f(y)

∣∣∣∣∣ dy < 2ε1,

which gives us the wanted contradiction.

Theorem 3.3 (Narrowing Region Sequences). Let sn be a sequence of kernel func-

tions. Suppose that for each positive real number ε and relevant region V , there is a

region sequence Sn for sn such that Sn is an ε, V -NRRS. Then for each positive real

number ε and relevant region V , if Tn is an ε, V -RRS then Tn is an ε, V -NRRS.

Remark. Roughly speaking this theorem states that if there is an narrowing regular

region sequence then every regular region sequence is narrowing, or alternatively

that narrowing is really a property of the sequence of kernel functions and not any
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particular region sequence. Like Theorem 3.2, the proof is by contradiction. Note

that regularity in shape plays a crucial role in the proof of this theorem.

Proof of Theorem 3.3. Suppose the antecedent is true and the consequent is false.

Then choose a positive real number ε0 and relevant region V0 and region sequence

Tn such that Tn is an ε0, V0-RRS but not an NRRS. Let ε1 = min(ε0, 1/2) so that

0 < ε1 < 1. Choose a region sequence Sn such that Sn is an ε1, V0-NRRS. Hence

there is an N0 such that, for any n in N, and y in V0, if n > N0 we have∫
H′ny

hny(x)dx < ε1. (3.16)

Let Qny = {x ∈ G : (x, y) ∈ Tn}. Since Tn is not narrowing we can choose a positive

real number A such that for any N in N there is a number m in N such that m > N

and

sup
y∈H

δ(Qmy) > A. (3.17)

We know that Tn is regular in height and so we may choose a positive real number

B and a number N1 in N such that for any n in N and y in V0 if n > N1, we have

λ(Qny) sup
x∈Qny

hny(x) < B. (3.18)

Since Tn is regular in size, there is a positive real number C and a number N2 in N

such that for any n in N if n > N2, we have

inf
y∈H

λ(Qny) > C(sup
y∈H

δ(Qny))
d. (3.19)

Now choose a point y0 in V0. Since Tn is regular in shape we know that there is a

positive real number R0 and a number N3 in N such that for any n in N if n > N3

we have
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B

(
y0, R0 sup

y∈H
δ(Qny)

)
⊆ Qny0 . (3.20)

Now define a positive real number ε2 by the equation

ε2 = min

((
1− ε1

2B
C

) 1
d

A,
R0A

2

)
. (3.21)

Since Sn is narrowing, we may choose N4 in N such that for any n in N, if n > N4,

we have

sup
y∈H

δ(Hny) < ε2. (3.22)

Let N = max(N1, N2, N3, N4). Using statement (3.17) we can choose m in N such

that m > N and

sup
y∈H

δ(Qmy) > A. (3.23)

Now we will show that the above inequalities lead to a contradiction. Using

equality (3.21) and inequality (3.22) we have the inequalities

δ(Hmy0) ≤ sup
y∈H

δ(Hmy) < ε2 ≤
R0A

2
. (3.24)

Then using the fact that y0 ∈ Hmy0 , statement (3.20), and inequalities (3.23) and

(3.24), we have the following containments:

Hmy0 ⊆ B(y0, R0A) ⊆ B(y0, R0 sup
y∈H

δ(Qmy)) ⊆ Qmy0 . (3.25)

This shows that

sup
x∈Hmy0

hmy0(x) ≤ sup
x∈Qmy0

hmy0(x). (3.26)
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In addition using inequality (3.16) we have

λ(Hmy0) sup
x∈Hmy0

hmy0(x) ≥
∫
Hmy0

hmy0(x)dx = 1−
∫
H′my0

hmy0(x)dx > 1− ε1

which can be rearranged so that

sup
x∈Hmy0

hmy0(x) >
1− ε1
λ(Hmy0)

. (3.27)

Now using inequalities (3.17) and (3.19) we have

CAd < C sup
y∈H

δ(Qmy)
d < inf

y∈H
λ(Qmy). (3.28)

Using inequalities (3.18), (3.26), and (3.27) we have

λ(Qmy0) <
B

supx∈Qmy0
hmy0(x)

<
B

supx∈Hmy0
hmy0(x)

<
Bλ(Hmy0)

1− ε1
. (3.29)

Using inequality (3.22), definition (3.21), and the fact that in general, for any region

E of Rd, λ(E) < δ(E)d, we have the inequalites

Bλ(Hmy0)

1− ε1
<
Bδ(Hmy0)

d

1− ε1
<

Bεd2
1− ε1

≤ B

1− ε1

(
1− ε1

2B
C

)
Ad =

1

2
CAd. (3.30)

Finally combining the inequalities (3.28), (3.29), and (3.30), we have

CAd <
1

2
CAd,

the wanted contradiction.
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Chapter 4

Kernel Density Estimators

In this chapter we will use the theory developed in the previous chapters to establish

useful conditions for the asymptotic unbiasedness of some commonly used density

estimators.

In each case we will define a sequence of kernel functions sn and then define

a region sequence Sn for this sequence of functions for any level and region of

significance. These region sequences will be defined carefully using the parameters

of the given kernel functions so that the conditions of narrowing and regularity are

equivalent to easily verified propositions. In fact the final statements of this chapter

will not make reference to region sequences at all. This will show that the notion of

a region sequence may be used as an intermediate step to get some well known as

well as novel results concerning the L1 asymptotic unbiasedness of commonly used

density estimators.

The proof of each result is similar in outline. Each sequence of kernel functions

is related to one or more known probability density functions and this, together

with Boole’s and Chebyshev’s inequalities (Theorems A.4 and A.3 respectively)
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in some cases, is used to establish that the given definition of Sn is an ε, V -RS.

The conditions of narrowing and regularity are stated in terms of diameters and

volumes of the cross-sections Hny so expressions for these quantities (or bounds

for these quantities) will be established. Finally using these expressions we will

establish propositions in terms of the parameters of sn that are equivalent to the

conditions of narrowing and regularity. The arguments used to do this sometimes

make use of some technical results that can be found in the Appendix. In particular

dealing with regularity in size will make use of Lemma E.1 and regularity in height

will sometimes require one of the uniform approximation theorems (Theorems C.1

and D.1). Finally we use the theorems of Chapter 3 to derive a result concerning the

asymptotic unbiasedness of the particular kernel density estimator which does not

reference any region sequences and is expressed solely in terms of the parameters of

the sequence of kernel functions.

We will now introduce some notation. For a given sequence of kernel functions

sn, for each y in H, let Xyn be a random variable with density given by fXyn(x) =

sn(x, y) and, for each x in G, let Yxn be a random variable with density given by

fYxn(y) = sn(x, y). The kth components of the random variables of Xyn and Yxn

are denoted by Xynk and Yxnk respectively.

4.1 Standard Kernel Density Estimator

For each k = 1, . . . , d let hk be a sequence of positive real numbers, depending on

n, where n is in N. Let H be a d × d diagonal matrix whose kk entry is hk, that

is, H = diag(h1, . . . , hd). Let K be a bounded density on Rd with finite marginal
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expectations and variances. Then define the sequence of functions sn by

sn(x, y) = det(H−1)K(H−1(y − x))

where x, y ∈ Rd. It is clear that sn is a sequence of kernel functions on Rd ×Rd.

Using this sequence of functions, the density estimator gn from Definition 2.3 is

given by

gn(y) =
1

n

n∑
i=1

det(H−1)K(H−1(y −Xi))

where Xi is the ith sample observation. We will call this estimator the standard

kernel density estimator.

To use the theory from the previous chapters we need to define a region sequence

for the given sequence of kernel functions sn. To this end let Ak be a positive

constant for k = 1, . . . , d and let Sn be a sequence of sets defined by

Sn = {(x, y) ∈ Rd ×Rd : |yk − xk| ≤ Akhk, for all k = 1, . . . , d}. (4.1)

Furthermore, let Zk be a random variable with density given by the kth margin

of K so that

Xynk ∼ yk − hkZk and Yxnk ∼ xk + hkZk

for any x in Rd and y in Rd.

Theorem 4.1 (Region Sequences for the Standard Kernel Density Estimator). For

each positive real number ε, and relevant region V , there are positive real numbers

Ak, for k = 1, . . . , d such that Sn is an ε, V -RS for sn. Furthermore, the following

hold:
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1. limn hk = 0 for k = 1, . . . , d if and only if Sn is narrowing.

2. limn
mink hk

maxk hk
> 0 if and only if Sn is regular.

Remark. Note that this case is the easiest of those considered to work with. This

is mainly due to the fact that the cross-sectional densities are just shifted and

scaled versions of the same densities, the marginal densities of K. This leads to the

construction of a region sequence that is very easy to work with. In particular we

will be able to easily calculate cross-sectional diameters and volumes that do not

depend on y. In addition the region of significance V plays essentially no role in

the proof. This is to be expected as the theorems of Chapter 3 are based on proofs

found in [Dev85] that deal with standard kernel density estimators.

Proof of Theorem 4.1. Let ε be a positive real number and V be a relevant region.

For each k = 1, . . . , d choose positive real numbers Ak such that

Ak >

(
d

ε
(V(Zk) + E(Zk)

2)

) 1
2

.

Then, using Boole’s and Chebyschev’s inequalities (Theorems A.4 and A.3), for y

in V we have
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∫
H′ny

hny(x)dx = P(Xyn ∈ H ′ny)

= P(|yk −Xynk| > Akhk for some k = 1, . . . , d)

≤
d∑

k=1

P(|yk −Xynk| > Akhk)

≤
d∑

k=1

V(Xynk) + (E(Xynk)− yk)2

A2
kh

2
k

=
d∑

k=1

h2
k(V(Zk) + E(Zk)

2)

A2
kh

2
k

=
d∑

k=1

V(Zk) + E(Zk)
2

A2
k

<
d∑

k=1

V(Zk) + E(Zk)
2

d
ε
(V(Zk) + E(Zk)2)

=
d∑

k=1

ε

d
= ε.
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Similarly for x in V we have∫
G′nx

gnx(y)dy = P(Yxn ∈ G′nx)

= P(|Yxnk − xk| > Akhk for some k = 1, . . . , d)

≤
d∑

k=1

P(|Yxnk − xk| > Akhk)

≤
d∑

k=1

V(Yxnk) + (E(Yxnk)− xk)2

A2
kh

2
k

=
d∑

k=1

h2
k(V(Zk) + E(Zk)

2)

A2
kh

2
k

=
d∑

k=1

V(Zk) + E(Zk)
2

A2
k

≤
d∑

k=1

V(Zk) + E(Zk)
2

d
ε
(V(Zk) + E(Zk)2)

=
d∑

k=1

ε

d
= ε.

Thus for each positive real number ε and relevant region V , we can find positive

real numbers Ak, for k = 1, . . . , d, such that Sn is an ε, V -RS for sn.

We will now find expressions for the volumes and diameters of the cross-sections.

Note that Hny is a d-dimensional rectangle whose kth side has length 2Akhk and so
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δ(Hny) = 2

(
d∑

k=1

A2
kh

2
k

) 1
2

(4.2)

λ(Hny) = 2d
d∏

k=1

Akhk. (4.3)

To see that Sn is regular in height, note that

sup
y∈V

λ(Hny) sup
x∈Hny

hny(x) =

(
2d

d∏
k=1

Akhk

)
sup
y∈V

sup
x∈Hny

det(H−1)K(H−1(y − x))

≤

(
2d

d∏
k=1

Ak

)(
d∏

k=1

hk

)
1∏d

k=1 hk
sup
z
K(z)

=

(
2d

d∏
k=1

Ak

)
sup
z
K(z) <∞.

In addition

Sn is narrowing⇔ sup
y
δ(Hny)→ 0 as n→∞

⇔ 2

(
d∑

k=1

A2
kh

2
k

) 1
2

→ 0 as n→∞

⇔ hk → 0 as n→∞ for all k = 1, . . . , d.

Furthermore we have, using Lemma E.1 and equalities (4.2) and (4.3),
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Sn is regular in size ⇔ lim
n

infy∈H λ(Hny)

supy∈H δ(Hny)d
> 0

⇔ lim
n

∏d
k=1A

2
kh

2
k(∑d

k=1A
2
kh

2
k

)d > 0

⇔ lim
n

mink hk
maxk hk

> 0.

Finally we need to show that Sn is regular in shape if limn
mink hk

maxk hk
> 0. Choose a

positive real number B and a number N in N such that, for any n in N, if n > N ,

min
k
hk > Bmax

k
hk.

Now let

R =
Bmink Ak

2
(∑d

k=1A
2
k

) 1
2

.

Then for all n in N, if n > N , we have, again using equality (4.2),

R sup
y∈H

δ(Hny) = 2R

(
d∑

k=1

A2
kh

2
k

) 1
2

=
Bmink Ak(∑d

k=1A
2
k

) 1
2

(
d∑

k=1

A2
kh

2
k

) 1
2

≤ Bmink Ak(∑d
k=1A

2
k

) 1
2

(
d∑

k=1

A2
k

) 1
2

max
k
hk

= B(min
k
Ak) max

k
hk

< (min
k
Ak) min

k
hk

30



implying that R supy∈H δ(Hny) ≤ Akhk for all k = 1, . . . , d, and so

B

(
y,R sup

y∈H
δ(Hny)

)
⊆ Hny,

that is, Sn is regular in shape.

Theorem 4.2 (Asymptotic Unbiasedness of the Standard Kernel Density Estima-

tor). Given that limn
mink hk

maxk hk
> 0, the standard kernel density estimator is asymp-

totically unbiased if and only if limhk = 0 for k = 1, . . . , d.

Proof of Theorem 4.2. Suppose that limn hk = 0 for k = 1, . . . , d. Then by Theorem

4.1 we know that for each positive real number ε and relevant region V , there

is an ε, V -NRS, and so by Theorem 3.1 the standard kernel density estimator is

asymptotically unbiased.

Now suppose that limn
mink hk

maxk hk
> 0 and that we have asymptotic unbiasedness.

By Theorem 4.1 we know that for each positive real number ε and relevant region

V there is an ε, V -RRS. Hence, using the assumption of asymptotic unbiasedness,

by Theorem 3.2, for each positive real number ε and relevant region V there is an

ε, V -NRRS. Using Theorem 3.3, we then know that for each positive real number

ε and relevant region V , Sn (given by definition 4.1) is an ε, V -NRRS, since it is

ε, V -RRS, and hence we have that limn hk = 0 for k = 1, . . . , d.

Remark. This result is similar to Theorem 2.3 in [Dev85]. That result provides only

a sufficient condition and considers only the case where hk = h for k = 1, . . . , d.

In this case the sufficient condition for asymptotic unbiasedness of Theorem 4.2

reduces to that of Theorem 2.3 in [Dev85]. There are also similarities in the proofs
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used to establish these theorems as the proof of the main theorem used, Theorem

3.1, is based on the the proof of Devroye’s theorem.

4.2 Rectangular Histogram Density Estimator

Let hk be a sequence of positive real numbers, depending on n, for each k = 1, . . . , d,

where n is in N. For each j in Zd, y in Rd, k = 1, . . . , d, and n in N, let Anjk =

[jkhk, (jk + 1)hk), Anj = Anj1× · · · ×Anjd, pnj(y) = IAnj
(y)/λ(Anj), and finally let

sn(x, y) =
∑
j

pnj(y)IAnj
(x)

where x ∈ Rd. The sequence of functions sn is a sequence of kernel functions on

Rd×Rd. Using this sequence of functions, the density estimator gn from Definition

2.3 is given by

gn(y) =
1

n

n∑
i=1

∑
j

IAnj
(y)

λ(Anj)
IAnj

(Xi)

where Xi is the ith sample observation. We will call this estimator the rectangular

histogram density estimator.

As before to use the theory from the previous chapters we need to define a region

sequence for this sequence of kernel functions. For n in N, x in Rd and k = 1, . . . , d,

let jxk = [xk

hk
], jx = (jxk)k=1,...,d, and

Sn = {(x, y) ∈ Rd ×Rd : |jxk − jyk| ≤ 1 for k = 1, . . . , d}.

Furthermore note that, for any x in Rd and y in Rd, we have

Xynk ∼ Uniform(jykhk, (jyk + 1)hk) and Yxnk ∼ Uniform(jxkhk, (jxk + 1)hk)
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and in addition we have jXynk = jyk and jYxnk = jxk with probability one.

Theorem 4.3 (Region Sequences for the Rectangular Histogram Density Estima-

tor). For each positive real number ε, and relevant region V , Sn is an ε, V -RS for

sn. Also the following hold:

1. limn hk = 0 for k = 1, . . . , d if and only if Sn is narrowing.

2. limn
mink hk

maxk hk
> 0 if and only if Sn is regular.

Remark. This case is also easy to work with. As in Theorem 4.1, the cross-sectional

diameters and volumes are easy to calculate and the the region of significance V

plays essentially no role. The region sequence Sn defined above may seem unneces-

sarily large at first (its cross-sections cover the supports of the functions hny by a

large margin), but its size is actually required to allow for Sn to be regular in shape.

Proof of Theorem 4.3. Let V be a relevant region. Then, using Boole’s inequality

(Theorem A.4), for y in V we have∫
H′ny

hny(x)dx = P(Xyn ∈ H ′ny)

= P(|jXynk − jyk| > 1 for some k = 1, . . . , d)

≤
d∑

k=1

P(|jXynk − jyk| > 1) = 0.

Similarly for x in V we have
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∫
G′nx

gnx(y)dy = P(Yxn ∈ G′nx)

= P(|jYxnk − jxk| > 1 for some k = 1, . . . , d)

≤
d∑

k=1

P(|jYxnk − jxk| > 1) = 0.

So trivially, for each positive real number ε and relevant region V , Sn is an ε, V -RS

for sn.

We will now find expressions for the diameters and volumes of the cross-sections.

Each cross-section Hny is a d-dimensional rectangle whose kth side has length 3hk.

To see this note that for a fixed yk, if |jxk − jyk| ≤ 1 then either jxk = jyk − 1, jyk,

or jyk + 1. Each case corresponds to an interval of length hk. Thus

δ(Hny) = 3

(
d∑

k=1

h2
k

) 1
2

(4.4)

λ(Hny) = 3d
d∏

k=1

hk. (4.5)

Thus, using equality (4.4), we see that

Sn is narrowing⇔ sup
y
δ(Hny)→ 0

⇔ 3

(
d∑

k=1

h2
k

) 1
2

→ 0 as n→∞

⇔ hk → 0 for all k = 1, . . . , d.

In addition Sn is regular in height since, using equality (4.5),
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sup
y∈V

λ(Hny) sup
x∈Hny

hny(x) = 3d
d∏

k=1

hk
1∏d

k=1 hk
= 3d <∞.

Furthermore, using Lemma E.1 and equalities (4.4) and (4.5), we see that

Sn is regular in size⇔ lim
n

infy∈H λ(Hny)

supy∈H δ(Hny)d
> 0

⇔ lim
n

∏d
k=1 h

2
k(∑d

k=1 h
2
)d > 0

⇔ lim
n

mink hk
maxk hk

> 0.

Finally we will show that Sn is regular in shape if limn
mink hk

maxk hk
> 0. To see this

choose a positive real number B and N in N such that for any n in N, if n > N ,

min
k
hk > Bmax

k
hk.

Let R = B

3d
1
2

so that using equality (4.4), if n > N ,

R sup
y∈H

δ(Hny) = 3R

(
d∑

k=1

h2
k

) 1
2

=
B

d
1
2

(
d∑

k=1

h2
k

) 1
2

=
B

d
1
2

d
1
2 max

k
hk < min

k
hk

implying thatR supy∈H δ(Hny) < hk for all k = 1, . . . , d. So if x ∈ B
(
y,R supy∈H δ(Hny)

)
then for each k = 1, . . . , d, |yk − xk| ≤ ‖y − x‖ < hk which implies that

∣∣∣∣ykhk − xk
hk

∣∣∣∣ < 1⇒ |jyj − jxk| ≤ 1⇒ x ∈ Hny.

Thus Sn is regular in shape.
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Theorem 4.4 (Asymptotic Unbiasedness and the Rectangular Histogram Density

Estimator). Given that limn
mink hk

maxk hk
> 0, the rectangular histogram density estimator

is asymptotically unbiased if and only if limn hk = 0 for k = 1, . . . , d.

Proof. The argument here is essentially the same as the above argument in Theorem

4.2 for the standard kernel density estimator with Theorem 4.3 replacing Theorem

4.1.

Remark. The asymptotic unbiasedness of histograms has been studied before. In

particular Abou-Jaoude in [AJ76] provides necessary and sufficient conditions for

the asymptotic unbiasedness of histograms. The method of proof used by Abou-

Jaoude is completely different from that used above. The histograms he considers

are built on an arbitrary partition of a space and not necessarily a rectangular

partition as in Theorem 4.4. In the case of a rectangular partition and equality of

rate parameters, that is, hk = h for k = 1, . . . , d, there is agreement in these two

results. In addition the results of Abou-Jaoude do not seem to require anything

analogous to the regularity conditions used in Theorem 4.4. This may be due to the

general regularity conditions being too strong in the case of a rectangular histogram.

However Theorem 4.4 may be extended in various ways to kernel functions whose

cross-sectional supports are contained in rectangles and are not necessarily uniform.

It is not readily clear how one might do this with the results in [AJ76].
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4.3 Gamma Smoothed Histogram Density Esti-

mator

Let mk be a sequence of positive integers, depending on n, for each k = 1, . . . , d,

where n is in N. For each j in Zd with jk ≥ 0, y in (0,∞)d, k = 1, . . . , d, let

Anjk = [ jk
mk
, jk+1
mk

), Anj = Anj1 × · · · × Anjd, pnjk(yk) = mk
(mkyk)jk

jk!
e−mkyk , pnj(y) =∏d

k=1 pnjk(yk), and finally let

sn(x, y) =
∑
j

pnj(y)IAnj(x)

where x ∈ (0,∞)d. The sequence of functions sn is a sequence of kernel functions

on (0,∞)d × (0,∞)d. Using this sequence of functions, the density estimator gn

from Definition 2.3 is given by

gn(y) =
1

n

n∑
i=1

∑
j

d∏
k=1

mk
(mkyk)

jk

jk!
e−mkykIAnj

(Xi) (4.6)

where Xi is the ith observation. We will call this estimator the Gamma smoothed

histogram density estimator.

Next we define a region sequence for this sequence of kernel functions. Let

jxk = [xkmk] and jx = (jxk)k=1,...,d. Let Ak be a positive constant for k = 1, . . . , d

and let

Sn =

{
(x, y) ∈ (0,∞)d × (0,∞)d :

∣∣∣∣ jxkmk

− yk
∣∣∣∣ < Akm

− 1
2

k , for all k = 1, . . . , d

}
.

It is easy to see that

Ynxk ∼ Gamma

(
jxk + 1,

1

mk

)
and jXnyk ∼ Poisson(mkyk).
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Theorem 4.5 (Region Sequences for the Gamma Smoothed Histogram Density

Estimator). For each positive real number ε, and relevant region V , there are con-

stants Ak for k = 1, . . . , d such that Sn is an ε, V -RS for sn. Also the following

hold:

1. limnmk =∞ for k = 1, . . . , d if and only if Sn is narrowing.

2. limn
maxk mk

mink mk
<∞ if and only if Sn is regular.

Remark. There are number of challenges in proving this result that did not appear

in Theorems 4.1 and 4.3. The cross-sectional diameters, volumes, and probabilities

outside Sn are not uniform and depend on what cross-section is being considered.

In addition establishing regularity in height is technically difficult and requires a

theorem found in the Appendix. The compactness of the region of significance V

will be important in overcoming these challenges.

Proof of Theorem 4.5. Let ε be a positive real number and V be a relevant region.

Since V is compact, for each k = 1, . . . , d there is a real number vk that is an upper

bound for each yk, where y ∈ V . For each k = 1, . . . , d choose a positive real number

Ak such that

Ak >

(
vk + 2

ε

) 1
2

.

Then, using Boole’s and Chebyshev’s inequalities (Theorems A.4 and A.3), for y in

V , we have
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∫
H′ny

hny(x)dx = P(Xny ∈ H ′ny)

= P

(∣∣∣∣jXnyk

mk

− yk
∣∣∣∣ > Akm

− 1
2

k for some k = 1, . . . , d

)

≤
d∑

k=1

P

(∣∣∣∣jXnyk

mk

− yk
∣∣∣∣ > Akm

− 1
2

k

)

=
d∑

k=1

P(|jXnyk −mkyk| > Akm
1
2
k )

=
d∑

k=1

V(jXnyk)

A2
kmk

=
d∑

k=1

mkyk
A2
kmk

=
d∑

k=1

yk
A2
k

≤
d∑

k=1

vk + 2

A2
k

<
d∑

k=1

vk + 2
vk+2
ε
d

= ε,
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and for x in V we have∫
G′nx

gnx(y)dy = P(Ynx ∈ G′nx)

= P

(∣∣∣∣ jxkmk

− Ynx
∣∣∣∣ > Akm

− 1
2

k for some k = 1, . . . , d

)

≤
d∑

k=1

P

(∣∣∣∣ jxkmk

− Ynx
∣∣∣∣ > Akm

− 1
2

k

)

≤
d∑

k=1

V(Yxnk) +
(
E(Yxnk)− jxk

mk

)2

A2
km
−1
k

=
d∑

k=1

jxk+1
m2

k
+
(
jxk+1
mk
− jxk

mk

)2

A2
km
−1
k

=
d∑

k=1

jxk+1
mk

+ 1
mk

A2
k

=
d∑

k=1

jxk

mk
+ 2

mk

A2
k

≤
d∑

k=1

mkxk

mk
+ 2

mk

A2
k

≤
d∑

k=1

xk + 2

A2
k

≤
d∑

k=1

vk + 2

A2
k

<
d∑

k=1

vk + 2
v+2
ε
d

= ε.

Thus for each positive real number ε and relevant region V , there are positive real

numbers Ak for k = 1, . . . , d such that Sn is an ε, V -RS for sn.

In order to deal with the diameter and volume of the cross-sections Hny, we will

find related regions that are simpler to deal with. Note that

jxk = [mkxk] ≤ mkxk < [mkxk] + 1 = jxk + 1

so that ∣∣∣∣ jxkmk

− xk
∣∣∣∣ < 1

mk

. (4.7)

40



Now for each k = 1, . . . , d choose Ak such that 0 < Ak and Ak + 1 ≤ Ak and choose

Ak such that Ak ≥ 1 + Ak and define the following sets:

Hny = {x ∈ (0,∞)d : |xk − yk| ≤ Akm
− 1

2
k for all k = 1, . . . , d}

Hny = {x ∈ (0,∞)d : |xk − yk| ≤ Akm
− 1

2
k for all k = 1, . . . , d}

We have Hny ⊆ Hny since, using inequality (4.7), for k = 1, . . . , d∣∣∣∣ jxkmk

− yk
∣∣∣∣ ≤ ∣∣∣∣ jxkmk

− xk
∣∣∣∣+ |xk − yk|

<
1

mk

+ Akm
− 1

2
k

≤ (1 + Ak)m
− 1

2
k

< Akm
− 1

2
k .

Also we have Hny ⊆ Hny since, for k = 1, . . . , d

|xk − yk| ≤
∣∣∣∣ jxkmk

− xk
∣∣∣∣+

∣∣∣∣ jxkmk

− yk
∣∣∣∣

≤ 1

mk

+ Akm
− 1

2
k

≤ (1 + Ak)m
− 1

2
k

≤ Akm
− 1

2
k .

It is clear that {xk ∈ R : yk ≤ xk ≤ yk + Akm
− 1

2
k } is contained in the kth side

of Hny. Thus Hny always contains a d-dimensional rectangle whose kth side has

length Akm
− 1

2
k . In addition {xk ∈ R : yk − Akm

− 1
2

k ≤ xk ≤ yk + Akm
− 1

2
k } contains
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the kth side of Hny and so Hny is always contained in a d-dimensional rectangle

whose kth side has length 2Akm
− 1

2
k . Thus the following hold:

d∏
k=1

Akm
− 1

2
k ≤ λ(Hny) ≤ λ(Hny) ≤ λ(Hny) ≤ 2d

d∏
k=1

Akm
− 1

2
k . (4.8)

(
d∑

k=1

A2
km
−1
k

) 1
2

≤ δ(Hny) ≤ δ(Hny) ≤ δ(Hny) ≤ 2

(
d∑

k=1

A
2

km
−1
k

) 1
2

. (4.9)

Using statement (4.9) it is clear that supy∈H δ(Hny)→ 0 if and only if mk →∞

for k = 1, . . . , d and so Sn is narrowing if and only if mk →∞ for k = 1, . . . , d.

Furthermore using statements (4.8) and (4.9), we have that

∏d
k=1Akm

− 1
2

k

2d
(∑d

k=1A
2

km
−1
k

) d
2

≤ infy∈H λ(Hny)

supy∈H δ(Hny)d
≤ 2d

∏d
k=1Akm

− 1
2

k(∑d
k=1A

2
km
−1
k

) d
2

(4.10)

and we see that Sn is regular in size if and only if

lim
n

minkm
− 1

2
k

maxkm
− 1

2
k

> 0

which is equivalent to

lim
n

maxkmk

minkmk

<∞.

We will now show that Sn is regular in shape if limn
maxk mk

mink mk
<∞. For each y in

(0,∞)d and k = 1, . . . , d choose a positive real number Bk such that yk > Bk and
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Ak > Bk. Also choose a positive real number B and a number N in N such that

for all n in N, if n > N we have

min
k
m
− 1

2
k > Bmax

k
m
− 1

2
k .

Now let

R =
Bmink Bk

2
(∑d

k=1A
2
) 1

2

.

It follows that, using statement (4.9), for all n in N, if n > N ,

R sup
y∈H

δ(Hny) ≤ 2R

(
d∑

k=1

A
2

km
−1
k

) 1
2

=
Bmink Bk

2
(∑d

k=1A
2

k

) 1
2

2

(
d∑

k=1

A
2

km
−1
k

) 1
2

≤ B(min
k
Bk)(max

k
m
− 1

2
k )

≤ (min
k
Bk)(min

k
m
− 1

2
k )

≤ Bkm
− 1

2
k

Thus if x ∈ B
(
y,R supy∈H δ(Hny)

)
we have, for k = 1, . . . , d,

|xk − yk| ≤ ‖x− y‖ ≤ Bkm
− 1

2
k < Akm

− 1
2

k

and

|xk − yk| ≤ Bkm
− 1

2
k ≤ Bk
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so that

0 < yk −Bk ≤ xk.

This shows that B
(
y,R supy∈H δ(Hny)

)
⊆ Hny ⊆ Hny and so Sn is regular in shape.

Finally we will show that Sn is regular in height. For each k = 1, . . . , d choose

a compact set Wk contained in (0,∞) such that V ⊆ W1 × · · · ×Wd and let ak be

the smallest value in Wk. Now note that

x ∈ Hny ⇔ x ∈ (0,∞)d and

∣∣∣∣ jxkmk

− yk
∣∣∣∣ ≤ Akm

− 1
2

k , k = 1, . . . , d.

Thus using Theorem C.1, there is an N in N such that for all y in V and x in Hny,

if n > N , then

Pnjx(y) < 2Fnjx(y), (4.11)

where the functions P and F are defined as in the referenced theorem. Now define

a positive real number C by

C = (2π)
d
2

d∏
k=1

a
1
2
k

so that, using the definition of F we have,
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(
d∏

k=1

mk

) 1
2

Fnjx(y)

=

∏d
k=1m

1
2
k

(2π)
d
2

(∏d
k=1mkyk

) 1
2

exp

(
−

d∑
k=1

mk

2yk

(
jxk
mk

− yk
)2
)

≤ 1

(2π)
d
2

(∏d
k=1 yk

) 1
2

≤ 1

(2π)
d
2

∏d
k=1 a

1
2
k

=
1

C
(4.12)

for y in V , x in Hny, and n in N. In addition we have that

hny(x) = pnjx(y)

=
d∏

k=1

mk
(mkyk)

jxk

jxk!
e−mkyk

=

(
d∏

k=1

mk

)(
d∏

k=1

(mkyk)
jxk

jxk!
e−mkyk

)

=

(
d∏

k=1

mk

)
Pnjx(y). (4.13)

Then, using inequalities (4.8), (4.11), and (4.12), and equality (4.13), it follows that,
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if n > N ,

sup
y∈V

λ(Hny) sup
x∈Hny

hny(x)

≤ 2d

(
d∏

k=1

Akm
− 1

2
k

)
sup
y∈V

sup
x∈Hny

(
d∏

k=1

mk

)
Pnjx(y)

≤ 2d+1

(
d∏

k=1

Akm
− 1

2
k

)(
d∏

k=1

mk

) 1
2

sup
y∈V

sup
x∈Hny

(
d∏

k=1

mk

) 1
2

Fnjx(y)

≤ 2d+1

C

d∏
k=1

Ak

Thus Sn is regular in height.

Theorem 4.6 (Asymptotic Unbiasedness of the Gamma Smoothed Histogram Den-

sity Estimator). Given that limn
maxk mk

mink mk
<∞, the gamma smoothed histogram den-

sity estimator is asymptotically unbiased if and only if limnmk =∞ for k = 1, . . . , d.

Proof. Again the argument here is essentially the same as the above argument in

Theorem 4.2 for the standard kernel density estimator with Theorem 4.5 replacing

Theorem 4.1.

Remark. Gamma smoothed histograms have not been widely studied. They are

mentioned only in a small number of articles and few seem to deal with L1 asymp-

totic unbiasedness. In [Sta83], Stadtmüller considers weak uniform consistency of

a variety of smoothed histograms, including the Gamma smoothed histogram. In

[BS05], Bouezmarni and Scaillet consider the one-dimensional case of the Gamma

smoothed histogram density estimator and study L1 consistency of the estimator
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and asymptotic unbiasedness but provide only a sufficient condition. Their method

of proof relies on specific characteristics of the Gamma distribution.

4.4 Beta Smoothed Histogram Density Estimator

Let mk be a sequence of positive integers, depending on n, for each k = 1, . . . , d,

where n is in N. For each y in (0, 1)d, k = 1, . . . , d, j in Zd with 0 ≤ jk ≤ mk,

and n in N, let Anjk = [ jk
mk+1

, jk+1
mk+1

), Anj = Anj1 × · · · × Anjd, pnjk(yk) = (mk +

1)
(
mk

jk

)
yjkk (1− yk)mk−jk , pnj(y) =

∏d
k=1 pnjk(yk), and finally let

sn(x, y) =
∑
j

pnj(y)IAnj(x)

where x ∈ (0, 1)d. The sequence of functions sn is a sequence of kernel functions

on (0, 1)d × (0, 1)d. Using this sequence of functions, the density estimator gn from

Definition 2.3 is given by

gn(y) =
1

n

n∑
i=1

∑
j

d∏
k=1

(mk + 1)

(
mk

jk

)
yjkk (1− yk)mk−jkIAnj

(Xi)

where Xi is the ith observation. We will call this estimator the the Beta smoothed

histogram density estimator.

Next we define a region sequence for this sequence of kernel functions. Let jxk =

[xk(mk + 1)] and jx = (jxk)k=1,...,d. Let Ak be a positive constant for k = 1, . . . , d

and let

Sn =

{
(x, y) ∈ (0, 1)d × (0, 1)d :

∣∣∣∣ jxkmk

− yk
∣∣∣∣ < Akm

− 1
2

k , for all k = 1, . . . , d

}
.
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It is easy to see that

Yxnk ∼ Beta(jxk + 1,mk − jxk + 1) and jXynk ∼ Binomial(mk, yk).

Theorem 4.7 (Region Sequences for the Beta Smoothed Histogram Density Esti-

mator). For each positive real number ε, and relevant region V , there are positive

real numbers Ak for k = 1, . . . , d such that Sn is an ε, V -RS for sn. Also the follow-

ing hold:

1. limnmk =∞ for k = 1, . . . , d if and only if Sn is narrowing.

2. limn
maxk mk

mink mk
<∞ if and only if Sn is regular.

Proof of Theorem 4.7. Let ε be a positive real number and V be a relevant region.

For each k = 1, . . . , d choose a real number Ak such that Ak > max((5d
ε

)
1
2 , 3). Then,

using Boole’s and Chebyshev’s inequalities (Theorems A.4 and A.3) for y in V we

have
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∫
H′ny

hny(x)dx = P(Xny ∈ H ′ny)

= P

(∣∣∣∣jXnyk

mk

− yk
∣∣∣∣ > Akm

− 1
2

k for some k = 1, . . . , d

)

≤
d∑

k=1

P

(∣∣∣∣jXnyk

mk

− yk
∣∣∣∣ > Akm

− 1
2

k

)

=
d∑

k=1

P
(∣∣jXnyk −mkyk

∣∣ > Akm
1
2
k

)

≤
d∑

k=1

V(jXnyk)

A2
kmk

=
d∑

k=1

mkyk(1− yk)
A2
kmk

=
d∑

k=1

yk(1− yk)
A2
k

≤ 1

4

d∑
k=1

1

A2
k

<
1

4

d∑
k=1

1
5d
ε

<
1

d

d∑
k=1

ε = ε.

Similarly for x in V , we have
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∫
G′nx

gnx(y)dy = P(Ynx ∈ G′nx)

= P

(∣∣∣∣ jxkmk

− Ynx
∣∣∣∣ > Akm

− 1
2

k for some k = 1, . . . , d

)

≤
d∑

k=1

P

(∣∣∣∣ jxkmk

− Ynxk
∣∣∣∣ > Akm

− 1
2

k

)

≤
d∑

k=1

V(Ynxk) +
(
E(Ynxk)− jxk

mk

)2

A2
km
−1
k

≤
d∑

k=1

(jxk+1)(mk−jxk+1)
(mk+2)2(mk+3)

+
(
jxk+1
mk+2

− jxk

mk

)2

A2
km
−1
k

=
d∑

k=1

“
jxk+1

mk

”“
1− jxk−1

mk

”
“
1+ 2

mk

”2“
1+ 3

mk

” +mk

(
1− 2jxk

mk

mk+2

)2

A2
k

≤
d∑

k=1

22 + 1

A2
k

=
d∑

k=1

5

A2
k

<
d∑

k=1

5
5d
ε

= ε.

So for each positive real number ε and relevant region V , there are positive real

numbers Ak for k = 1, . . . , d such that Sn is an ε, V -RS for sn.

Now in order to deal with the diameter and volume of the cross-sections Hny,

we will find related regions that are simpler to deal with. To this end note that

jxk = [xk(mk + 1)] ≤ xk(mk + 1) < [xk(mk + 1)] + 1 = jxk + 1,

and so

jxk
mk

≤ mk + 1

mk

xk <
jxk + 1

mk

,
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which implies that ∣∣∣∣mk + 1

mk

xk −
jxk
mk

∣∣∣∣ ≤ 1

mk

.

Hence∣∣∣∣ jxkmk

− xk
∣∣∣∣ ≤ ∣∣∣∣mk + 1

mk

xk −
jxk
mk

∣∣∣∣+

∣∣∣∣mk + 1

mk

xk − xk
∣∣∣∣ < 1

mk

+
1

mk

=
2

mk

. (4.14)

Choose positive real numbers Ak and Ak such that 0 < Ak <
1
2

and Ak > Ak+2.

We define the following sets:

Hny = {x ∈ (0, 1)d : |xk − yk| ≤ Akm
− 1

2
k for all k = 1, . . . , d}

Hny = {x ∈ (0, 1)d : |xk − yk| ≤ Akm
− 1

2
k for all k = 1, . . . , d}

Note that Hny ⊆ Hny since, if x ∈ Hny, for any k = 1, . . . , d, we have, using

inequality (4.14), that ∣∣∣∣ jxkmk

− yk
∣∣∣∣ ≤ ∣∣∣∣ jxkmk

− xk
∣∣∣∣+ |xk − yk|

<
2

mk

+ Akm
− 1

2
k

≤ (2 + Ak)m
− 1

2
k

< 3m
− 1

2
k

≤ Akm
− 1

2
k .

Similarly, we have Hny ⊆ Hny, since, if x ∈ Hny, for any k = 1, . . . , d, we have that
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|xk − yk| ≤
∣∣∣∣ jxkmk

− xk
∣∣∣∣+

∣∣∣∣ jxkmk

− yk
∣∣∣∣

<
2

mk

+ Akm
− 1

2
k

≤ Akm
− 1

2
k .

Since, for each k = 1, . . . , d, Ak <
1
2
, we see that either {xk ∈ R : yk ≤ xk ≤

yk + Akm
− 1

2
k } or {xk ∈ R : yk − Akm

− 1
2

k ≤ xk ≤ yk} is contained in the kth side

of Hny. Thus Hny always contains a d-dimensional rectangle whose kth side has

length Akm
− 1

2
k . In addition {xk ∈ R : yk − Akm

− 1
2

k ≤ xk ≤ yk + Akm
− 1

2
k } contains

the kth side of Hny and so Hny is always contained in a d-dimensional rectangle

whose kth side has length 2Akm
− 1

2
k . Thus

d∏
k=1

Akm
− 1

2
k ≤ λ(Hny) ≤ λ(Hny) ≤ λ(Hny) ≤ 2d

d∏
k=1

Akm
− 1

2
k (4.15)

(
d∑

k=1

A2
km
−1
k

) 1
2

≤ δ(Hny) ≤ δ(Hny) ≤ δ(Hny) ≤ 2

(
d∑

k=1

A
2

km
−1
k

) 1
2

. (4.16)

Using statement (4.16) it is easy to see that supy∈H δ(Hny) → 0 if and only if

mk →∞ for k = 1, . . . , d so Sn is narrowing if and only if mk →∞ for k = 1, . . . , d.

Also using statements (4.15) and (4.16) we see that

∏d
k=1Akm

− 1
2

k

2d
(∑d

k=1A
2

km
−1
k

) d
2

≤ infy∈H λ(Hny)

supy∈H δ(Hny)d
≤ 2d

∏d
k=1Akm

− 1
2

k(∑d
k=1A

2
km
−1
k

) d
2
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and so using Lemma E.1 we see that Sn is regular in size if and only if

lim
n

minkm
− 1

2
k

maxkm
− 1

2
k

> 0

and this is equivalent to

lim
n

maxkmk

minkmk

<∞.

We will now show that Sn is regular in shape if limn
maxk mk

mink mk
< ∞. For y in

(0, 1)d and each k = 1, . . . , d, choose Bk > 0 such that yk−Bk > 0, yk +Bk < 1 and

Bk < Ak for each k = 1, . . . , d. Now choose a positive real number B and a number

N in N such that for each n in N, if n > N ,

min
k
m
− 1

2
k > Bmax

k
m
− 1

2
k .

Now let

R =
Bmink Bk

2
(∑d

k=1A
2

k

) 1
2

53



so that, using (4.16), for n > N ,

R sup
y∈H

δ(Hny) ≤ 2R

(
d∑

k=1

A
2

km
−1
k

) 1
2

=
Bmink Bk

2
(∑d

k=1A
2

k

) 1
2

2

(
d∑

k=1

A
2

km
−1
k

) 1
2

≤ B(min
k
Bk)(max

k
m
− 1

2
k )

≤ (min
k
Bk)(min

k
m
− 1

2
k )

≤ Bkm
− 1

2
k .

Hence if x ∈ B
(
y,R supy∈H δ(Hny)

)
then

|xk − yk| ≤ Bkm
− 1

2
k < Akm

− 1
2

k

and

|xk − yk| ≤ Bkm
− 1

2
k ≤ Bk.

This implies that 0 < yk −Bk ≤ xk ≤ yk +Bk < 1 and so

B

(
y,R sup

y∈H
δ(Hny)

)
⊆ Hny ⊆ Hny.

Thus Sn is regular in shape.

Finally we will show that Sn is regular in height. For each k = 1, . . . , d choose

a compact set Wk contained in (0, 1) such that V ⊆ W1 × · · · ×Wd and let ak and
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bk be the smallest and largest values respectively in Wk. Now note that

x ∈ Hny ⇔ x ∈ (0, 1)d and

∣∣∣∣ jxkmk

− yk
∣∣∣∣ ≤ Akm

− 1
2

k , k = 1, . . . , d.

Thus using Theorem D.1, there is an N in N such that for all y in V and x in Hny,

if n > N , then

Pnjx(y) < 2Fnjx(y), (4.17)

where the functions P and F are defined as in the referenced theorem. Now define

a positive real number C by

C = π
d
2

d∏
k=1

(ak(1− bk))
1
2

so that, using the definition of F we have,(
d∏

k=1

(mk + 1)

) 1
2

Fnjx(y)

=

∏d
k=1(mk + 1)

1
2

(2π)
d
2

(∏d
k=1mkyk(1− yk)

) 1
2

exp

(
−

d∑
k=1

mk

2yk(1− yk)

(
jxk
mk

− yk
)2
)

≤

∏d
k=1

(
1 + 1

mk

) 1
2

(2π)
d
2

(∏d
k=1 yk(1− yk)

) 1
2

≤ 1

π
d
2

(∏d
k=1 ak(1− bk)

) 1
2

=
1

C
(4.18)

for y in V , x in Hny, and n in N. In addition we have that
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hny(x) = pnj(y)

=
d∏

k=1

(mk + 1)

(
mk

jxk

)
yjxk

k (1− yk)mk−jxk

=

(
d∏

k=1

(mk + 1)

)(
d∏

k=1

(
mk

jxk

)
yjxk

k (1− yk)mk−jxk

)

=

(
d∏

k=1

(mk + 1)

)
Pnjx(y). (4.19)

Then, using inequalities (4.15), (4.17), and (4.18), and equality (4.19), it follows

that, if n > N ,

sup
y∈V

λ(Hny) sup
x∈Hny

hny(x)

≤ 2d

(
d∏

k=1

Akm
− 1

2
k

)
sup
y∈V

sup
x∈Hny

(
d∏

k=1

(mk + 1)

)
Pnjx(y)

≤ 2d+1

(
d∏

k=1

Akm
− 1

2
k

)(
d∏

k=1

(mk + 1)

) 1
2

sup
y∈V

sup
x∈Hny

(
d∏

k=1

(mk + 1)

) 1
2

Fnjx(y)

≤ 2d+1

C

d∏
k=1

Ak

(
1 +

1

mk

) 1
2

≤ 2
3d
2

+1

C

d∏
k=1

Ak.

Thus Sn is regular in height.

Theorem 4.8 (Asymptotic Unbiasedness of the Beta Smoothed Histogram Den-

sity Estimator). Given that limn
maxk mk

mink mk
<∞, the beta smoothed histogram density

estimator is asymptotically unbiased if and only if limnmk =∞ for k = 1, . . . , d.
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Proof of Theorem 4.8. Again the argument here is essentially the same as the above

argument in Theorem 4.2 for the standard kernel density estimator with Theorem

4.7 replacing Theorem 4.1.

Remark. Beta smoothed histogram density estimators have been extensively stud-

ied. These estimators are often referred to by other names such as Bernstein or

Kantorovich polynomial density estimators. Vitale in [Vit75] proposed using this

estimator and established some of the basic convergence properties of this estima-

tor. This work was extended by Babu et al. in [GJB02] where results on uniform

strong consistency and other types of convergence for the one-dimensional case are

obtained. In [Ten95], Tenbusch considers the multidimensional case and obtains the

same result as Theorem 4.8 for the case of uniform rate parameters, that is, mk = m

for k = 1, . . . , d. The method of proof is very different from that used in the above

theorem and is very reliant on specific properties of the Bernstein polynomials.
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Appendix A

Useful Results

Listed here are some standard results used in mathematical analysis and statistics

that are made use of in this document. Proofs of these results can be found in many

books on analysis and topology and mathematical statistics. In particular Theorem

A.1 and Lemma A.2 can be found in [Rud87] and Theorems A.3 an A.4 can be

found in [BE00]. Theorem A.5 can be found in [Dev85].

Theorem A.1 (Monotone Convergence Theorem). Let fn be a sequence of measur-

able functions on measure space X with measure µ and suppose that the following

hold:

1. 0 ≤ fn(x) ≤ fn+1(x) for all x in X and n in N.

2. limn fn(x) = f(x) for all x in X.

Then the function f is measurable and

lim
n

∫
X

fndµ =

∫
X

fdµ.

58



Lemma A.2 (Urysohn’s Lemma). Suppose that X is a locally compact Hausdorff

space, V is open in X, K ⊆ V , and K is compact. Then there exists a function f

such that the following hold:

1. f is continuous.

2. IK ≤ f ≤ IV .

3. The support of f is compact.

where IS is the characteristic function of S.

Theorem A.3 (Chebyshev’s Inequality). Let X be a real valued random variable,

x be a real number and A be a positive real number. Then

P(|X − x| > A) ≤ V(X) + (E(X)− x)2

A2
.

Theorem A.4 (Boole’s Inequality). For each k = 1, . . . , d let Ek be an event. Then

P

(
d⋃

k=1

Ek

)
≤

d∑
k=1

P(Ek).

Theorem A.5 (Scheffé’s Theorem). Let f and g be densities. Then

∫
|f − g| = 2 sup

A

∣∣∣∣∫
A

f −
∫
A

g

∣∣∣∣ .
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Appendix B

Uniform Approximation of a

Density

The following theorem is essentially a version of the theorem that compactly sup-

ported continuous functions are dense in L1. It plays an important role in estab-

lishing the basic result on asymptotic unbiasedness, Theorem 3.1.

Theorem B.1 (Approximation of a Density by a Compactly Supported Uniformly

Continuous Density). Let f : Rd → R be a density with support S. Then for any

positive real number ε, there is a density g with compact support T such that T ⊂ S̊,

g is uniformly continuous, and

∫
Rd

|f − g| < ε.

Remark. In real analysis a standard theorem states that functions in Lp may be

approximated by compactly supported continuous functions. Usually this is stated

by saying that compactly supported continuous functions are dense in Lp. The

above theorem differs slightly from this in that it states that the approximating
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function may be chosen so that its support lies inside the interior of the support of

the original function and that if the original function is a density, the approximating

function may be chosen to be a density as well. The proof is largely the same and

roughly follows that of theorem 3.14 given in [Rud87]. Only a few details need to

be changed to show that the approximating function may be chosen to have the

desired properties.

Proof of Theorem B.1. Let f be a density with support S and let ε be a positive

real number. For each i in N define a subset Fi of Rd by

Fi =

(⋃
x∈S′

B(x, 1/i)

)′
∩ B(0, i).

It is clear that Fi is compact and that Fi ⊆ S̊ for each such i. In addition Fi ⊆ Fi+1

for each i in N, which makes F an increasing sequence of sets with limit S̊.

Define the function fi : Rd → R for each i in N by

fi = min(i, IFi
· f).

The functions fi define an increasing sequence of bounded integrable functions that

converge pointwise to f . So by the Monotone Convergence Theorem A.1 we can

choose a k in N such that ∫
Rd

|f − fk| < ε/3. (B.1)

Now define the function φi : [0,∞]→ R for each i in N by

φi(t) = ai

[
t

ai

]
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where ai = k/2i−1. We then have an increasing sequence of integrable functions

si : Rd → R where si = φi ◦ fk which converge pointwise to fk. Again by the

monotone convergence theorem we can choose a p in N such that∫
Rd

|sp − fk| < ε/3. (B.2)

Define the function ti : Rd → R for each i in N by the equation ti = si − si−1,

where s0 = 0. It can be shown that ti/ai = ITi
for some set Ti contained in the

support of fk. To see this note that

ti
ai

=
si − si−1

ai

=
φi(fk)− φi−1(fk)

ai

=

[
fk
ai

]
− ai−1

ai

[
fk
ai−1

]

=

[
fk
ai

]
− 2

[
fk
2ai

]

=

{
0 fk

ai
∈
⋃
n∈N[2n− 2, 2n− 1)

1 fk

ai
∈
⋃
n∈N[2n− 1, 2n).

Note that the number k in the above definition of ai is needed to ensure that the

above statement is true for i = 1. Furthermore sp =
∑p

i=1 ti.

Choose an open set W that contains the support of fk, and hence the support

of si for i in N, such that W̄ ⊆ S̊. This can be done since the support of fk is

contained in Fk and Fk is compact and contained in S̊.

62



For each i in N, select a compact set Ki and an open set Vi such that Ki ⊆ Ti ⊆

Vi ⊆ W and

λ(Vi\Ki) <
ε

9 · 2ik
. (B.3)

By Urysohn’s Lemma A.2 there are continuous functions with compact support

hi : Rd → R such that 0 ≤ hi ≤ 1, hi = 1 on Ki, and hi = 0 outside of Vi. Define

the function g : Rd → R by the equation g =
∑p

i=1 aihi. By construction g is equal

to sp except on
⋃p
i=1 Vi\Ki, g is continuous with compact support contained in S̊,

and g ≤ 2k.

Thus using inequality (B.3) we have that

λ(

p⋃
i=1

Vi\Ki) ≤
p∑
i=1

λ(Vi\Ki) <

p∑
i=1

ε

9 · 2ik
<

ε

9k
, (B.4)

and so, using inequalities (B.1), (B.2), and (B.4), it follows that∫
Rd

|f − g| ≤
∫

Rd

|f − fk|+
∫

Rd

|fk − sp|+
∫

Rd

|sp − g| ≤
ε

3
+
ε

3
+ 3k

ε

9k
= ε.

This shows that we can always approximate f by a non-negative continuous function

g with compact support (and hence uniformly continuous) contained in the interior

of S.

Finally, since f is a density and
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∫
Rd

|f − g∫
Rd g
| ≤

∫
Rd

|f − g|+
∫

Rd

∣∣∣∣g − g∫
Rd g

∣∣∣∣
=

∫
Rd

|f − g|+
∣∣∣∣1− 1∫

Rd g

∣∣∣∣ ∫
Rd

g

=

∫
Rd

|f − g|+
∣∣∣∣∫

Rd

g − 1

∣∣∣∣
=

∫
Rd

|f − g|+
∣∣∣∣∫

Rd

g −
∫

Rd

f

∣∣∣∣
≤ 2

∫
Rd

|f − g|,

we see that g may be chosen to be sufficiently close to f so that normalizing g gives

us a density with the desired properties.
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Appendix C

Uniform Approximation of a

Poisson Distribution

Here we prove a theorem dealing with a uniform approximation of the Poisson distri-

bution. This result does not rest on any the work done in the rest of this document

but is useful in establishing the results for Gamma smoothed histogram density

estimators (see Section 4.3), in particular, it is useful in establishing regularity in

height.

Theorem C.1 (Uniform Approximation for the Poisson Distribution). Let m be in

Nd and j be in Zd with jk ≥ 0 for k = 1, . . . , d and suppose that m depends on n

where n belongs to N. Let the functions Pnj and Fnj be given by

Pnj(y) =
d∏

k=1

(mkyk)
jk exp(−mkyk)

jk!
,

Fnj(y) =
1

(2π)
d
2

(∏d
k=1mkyk

) 1
2

exp

(
−

d∑
k=1

mk

2yk

(
jk
mk

− yk
)2
)
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where yk > 0 for each k = 1, . . . , d. Let α be a positive real number such that α > 1
3
.

For each k = 1, . . . , d, let Wk be a compact subset of the open interval (0,∞), and

Ak be a positive real number and suppose that mk → ∞ as n → ∞. Then for any

positive real number ε, there is an integer N , such that for all n in N, if n > N ,

∣∣∣∣Pnj(y)

Fnj(y)
− 1

∣∣∣∣ < ε

for all yk in Wk and jk = 0, . . . such that
∣∣∣ jkmk
− yk

∣∣∣ ≤ Akm
−α
k for each k = 1, . . . , d.

Remark. Like Theorem D.1 the proof of this result follows that of Theorem 1.5.2

(Laplace’s formula of the theory of probability) in [Lor86]. This theorem of Lorentz

is stated for the binomial distribution (not the Poisson distribution), handles only

the one-dimensional case, and deals with point-wise convergence (not uniform con-

vergence). The generality stated here requires a number of changes to the proof.

Proof of Theorem C.1. Note that it suffices to prove that each factor of a finite

product satisfies the above type of uniform convergence to prove that the product

also satisfies it. We have

Pnj(y)

Fnj
=

∏d
k=1

(mkyk)jk exp(−mkyk)
jk!

1

(2π)
d
2 (
Qd

k=1mkyk)
1
2

exp

(
−
∑d

k=1
mk

2yk

(
jk
mk
− yk

)2
)

=
d∏

k=1

(mkyk)
jk

jk!
exp(−mkyk)(2πmkyk)

1
2 exp

(
mk

2yk

(
jk
mk

− yk
)2
)
.

We will consider one factor of the above product. For ease of notation we will drop

the subscript in what follows and let u = j
m
− y. Let Q be the factor, so that
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Q =
(my)j

j!
exp(−my)(2πmy)

1
2 exp

(
m

2y
u2

)
.

From Sterling’s formula, for any n in N, we have that

n! = (2πn)
1
2nnenHn (C.1)

where Hn is some sequence of real numbers such that Hn → 1 as n→∞. Rewriting

Q using equation (C.1) we have

Q =
(my)j exp(−my)(2πmy)

1
2

(2πj)
1
2 jj exp(−j)Hj

exp

(
m

2y
u2

)

=
1

Hj

(
my

j

) 1
2
(
my

j

)j
exp

(
mu+

m

2y
u2

)
.

We need to show that Q is a product of factors, each of which satisfies the type of

uniform convergence from the statement of the theorem.

First we will show that the factor 1
Hj

converges uniformly to 1. Let y∗ = infy∈W y.

Since W is compact and contained in the interval (0,∞) we see that y∗ > 0 and so

for
∣∣ j
m
− y
∣∣ ≤ Am−α, we have

j ≥ my − Am1−α ≥ my∗ − Am1−α = m(y∗ − Am−α). (C.2)

Let ε be a positive real number. Choose N0 in N such that for all n in N if

n > N0 then |Hm − 1| < ε. This can be done since m → ∞ as n → ∞. Since

m(y∗ − Am−α) → ∞ as n → ∞ we can choose N1 in N such that if n > N1 then

m(y∗−Am−α) > N0. Using inequality (C.2) we see that for n > N1, and any y and

j such that
∣∣ j
m
− y
∣∣ ≤ Am−α we have j ≥ m(y∗−Am−α) > N0 and so |Hj − 1| < ε.

This shows that Hj converges uniformly to 1.
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Now we will show that the factor (my
j

)
1
2 converges uniformly to 1. Using in-

equality (C.2) again we have, for y and j such that | j
m
− y| ≤ Am−α,∣∣∣∣ y

j/m
− 1

∣∣∣∣ ≤ Am1−α

j
≤ Am1−α

my∗ − Am1−α =
A

mαy∗ − A
. (C.3)

Since this bound tends to 0 as n→∞ we see that my
j

converges uniformly to 1.

Finally we will show that the remaining factor of Q,

R =

(
my

j

)j
exp

(
mu+

m

2y
u2

)
,

converges uniformly to 1. Using a Taylor expansion about zero, we have

log(1 + x) = x− 1

2
x2ρ1 (C.4)

where ρ1 = 1 + ε1x, ε1 = −2
3
(1 + θ1x)−3. Here 0 < θ1 < 1 , θ1 depends on x. Note

that ε1 is bounded for x near 0. Using equation (C.4)
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− log(R) = j log

(
j

my

)
−mu− m

2y
u2

= j log

(
1 +

u

y

)
−mu− m

2y
u2

= j

(
u

y
− u2

2y2
ρ1

)
−mu− m

2y
u2

=

(
j

y
−m

)
u−

(
jρ1

2y2
+
m

2y

)
u2

=
m

y
u2 −

(
m

2y

(
1 +

u

y

)(
1 + ε1

u

y

)
+
m

2y

)
u2

=

(
m

y
− m

2y
− mε1

2y2
u− m

2y2
u− mε1

2y3
u2 − m

2y

)
u2

= −
(
ε1
2y

+
1

2y2
+

ε1
2y3

u

)
mu3.

The first factor of the above product is bounded for large n, and y and j such that∣∣ j
m
− y
∣∣ ≤ Am−α and y ∈ W . Let B be the bound so that

| log(R)| ≤ Bm|u|3 ≤ BA3m1−3α,

which converges to zero since α > 1
3
. Thus R converges uniformly to 1 and this

shows that Q converges uniformly to 1.
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Appendix D

Uniform Approximation of a

Binomial Distribution

Here we prove a theorem dealing with a uniform approximation of the binomial

distribution. This result is useful in establishing the results for Beta smoothed his-

togram density estimators (see Section 4.4), in particular, it is useful in establishing

regularity in height. It also does not rest on any the work done in the rest of this

document.

Theorem D.1 (Uniform Approximation for the Binomial Distribution). Let m be

in Nd and j be in Zd with mk ≥ jk ≥ 0 for k = 1, . . . , d and suppose that m depends

on n where n belongs to N. Let the functions Pnj and Fnj be given by

Pnj(y) =
d∏

k=1

(
mk

jk

)
yjkk (1− yk)mk−jk ,

Fnj(y) =
1

(2π)
d
2

(∏d
k=1mkyk(1− yk)

) 1
2

exp

(
−

d∑
k=1

mk

2yk(1− yk)

(
jk
mk

− yk
)2
)
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where 0 < yk < 1 for each k = 1, . . . , d. Let α be a positive real number such that

α > 1
3
. For each k = 1, . . . , d, let Wk be a compact subset of the open interval (0, 1),

and Ak be a positive real number and suppose that mk → ∞ as n → ∞. Then for

each positive number ε, there is an integer N for any n in N such that if n > N ,

∣∣∣∣Pnj(y)

Fnj(y)
− 1

∣∣∣∣ < ε

for all yk in Wk and jk = 0, . . . ,mk such that
∣∣∣ jkmk
− yk

∣∣∣ ≤ Akm
−α
k for each k =

1, . . . , d.

Remark. Like Theorem C.1 the proof of this result follows that of Theorem 1.5.2

(Laplace’s formula of the theory of probability) in [Lor86]. This theorem of Lorentz

handles only the one-dimensional case, and deals with point-wise convergence (not

uniform convergence). The generality stated here requires a number of changes to

the proof.

Proof of Theorem D.1. As in Theorem C.1 it suffices to prove that each factor of

a finite product satisfies the above type of uniform convergence to prove that the

product also satisfies it. To this end note that
Pnj(y)

Fnj
is equal to

∏d
k=1

(
mk

jk

)
yjkk (1− yk)mk−jk

1

(2π)
d
2 (
Qd

k=1mkyk(1−yk))
1
2

exp

(
−
∑d

k=1
mk

2yk(1−yk)

(
jk
mk
− yk

)2
)

=
d∏

k=1

(
mk

jk

)
yjkk (1− yk)mk−jk(2πmkyk(1− yk))

1
2 exp

(
mk

2yk(1− yk)

(
jk
mk

− yk
)2
)
.
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We will consider one factor of the above product. For ease of notation we will drop

the subscript and let k = m− j, z = 1− y, and u = j
m
− y. Let Q be the factor, so

that

Q =

(
m

j

)
yjzk(2πmyz)

1
2 exp

(
m

2yz
u2

)
. (D.1)

From Sterling’s formula, for any n in N,we have that

n! = (2πn)
1
2nnenHn (D.2)

where Hn is some sequence of real numbers such that Hn → 1 as n → ∞. We can

use equation (D.2) to rewrite the expression for Q so that

Q =
(2πm)

1
2mme−mHm

(2πj)
1
2 jje−jHj(2πk)

1
2kke−kHk

yjzk(2πmyz)
1
2 exp

(
m

2yz
u2

)

=
Hm

HjHk

(
m2yz

jk

) 1
2 mm

jjkk
yjzk exp

(
m

2yz
u2

)

We now need to show that Q is a product of factors each of which satisfies the type

of uniform convergence from the statement of the theorem.

First we will show that the factor Hm

HjHk
converges uniformly to 1. Note that

trivially Hm converges uniformly to 1. Let y∗ = infy∈W y. Since W is compact and

contained in the interval (0, 1) we see that y∗ > 0 and so for
∣∣ j
m
− y
∣∣ ≤ Am−α, we

have

j ≥ my − Am1−α ≥ my∗ − Am1−α = m(y∗ − Am−α) (D.3)

Let ε be a positive real number. Choose N0 in N such that for all n in N if

n > N0 then |Hm − 1| < ε. Since m(y∗ − Am−α) → ∞ as n → ∞ we can choose
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N1 in N such that if n > N1 then m(y∗ − Am−α) > N0. Using inequality (D.3)

we see that for n > N1, and any y and j such that
∣∣ j
m
− y
∣∣ ≤ Am−α we have

j ≥ m(y∗ − Am−α) > N0 and so |Hj − 1| < ε. This shows that Hj converges

uniformly to 1.

Similarly let z∗ = 1 − y∗ where y∗ = supy∈W y so that y∗ < 1 and z∗ > 0. For∣∣ j
m
− y
∣∣ ≤ Am−α, we have

k = m− j = m− (my + Am1−α) = mz − Am1−α

≥ mz∗ − Am1−α = m(z∗ − Am−α)

and also m(z∗ − Am−α) → ∞ as n → ∞. Arguing as before, we see that Hk

converges uniformly to 1.

Now we will show that the factor
(
m2yz
jk

) 1
2

converges uniformly to 1. For y and

j such that
∣∣ j
m
− y
∣∣ ≤ Am−α we have that∣∣∣∣ y

j/m
− 1

∣∣∣∣ ≤ Am1−α

j
≤ Am1−α

my∗ − Am1−α =
A

mαy∗ − A

and that ∣∣∣∣ 1− y
1− j/m

− 1

∣∣∣∣ =
|j/m− y|
1− j/m

≤ Am−α

1− j/m

=
Am1−α

k
≤ Am1−α

mz∗ − Am1−α =
A

mαz∗ − A

Both bounds tend to 0 as n → ∞ so both y
j/m

and 1−y
1−j/m converge uniformly to 1

and since
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(
m2yz

jk

) 1
2

=

(
y

j/m

z

k/m

) 1
2

=

(
y

j/m

1− y
1− j/m

) 1
2

the factor converges uniformly to 1 as well.

Finally we will show that the remaining factor of Q,

R =
mm

jjkk
yjzk exp

(
m

2yz
u2

)
=

(
my

j

)j (mz
k

)k
exp

(
m

2yz
u2

)
,

converges uniformly to 1. Note that, using Taylor’s expansion about zero, we have

log(1 + x) = x− 1

2
x2ρ1 and log(1− y) = −y − 1

2
y2ρ2 (D.4)

where ρ1 = 1 + ε1x, ε1 = −2
3
(1 + θ1x)−3, ρ2 = 1 + ε2y, and ε2 = 2

3
(1 − θ2y)−3.

Here 0 < θi < 1 for i = 1, 2, θ1 depends on x and θ2 depends on y. Note that ε1

is bounded for x near 0, and ε2 is bounded for y near 0. Using the equations in

statement (D.4), we have
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− log(R) = j log

(
j

my

)
+ k log

(
k

mz

)
− m

2yz
u2

= j log

(
1 +

u

y

)
+ k log

(
1− u

z

)
− m

2yz
u2

= j

(
u

y
− u2

2y2
ρ1

)
+ k

(
−u
z
− u2

2z2
ρ2

)
− m

2yz
u2

=

(
j

y
− k

z

)
u−

(
jρ1

2y2
+
kρ2

2z2

)
u2 − m

2yz
u2

=

(
m

(
1 +

u

y

)
−m

(
1− u

z

))
u

−
(
m

2y

(
1 +

u

y

)(
1 + ε1

u

y

)
+
m

2z

(
1− u

z

)(
1 + ε2

u

z

))
u2 − m

2yz
u2

=
m

yz
u2 −

(
m

2y
+
mε1
2y2

u+
m

2y2
u+

mε1
2y3

u2

+
m

2z
+
mε2
2z2

u− m

2z2
u− mε2

2z3
u2

)
u2 − m

2yz
u2

= −
(
ε1

2y2
+

1

2y2
+

ε1
2y3

u+
ε2

2z2
− 1

2z2
− ε2

2z3
u

)
mu3.

The first factor of the above product is bounded for large n and y and j such that∣∣ j
m
− y
∣∣ ≤ Am−α and y ∈ W . Let B be the bound so that

| log(R)| ≤ Bm|u|3 ≤ BA3m1−3α,

which converges to zero since α > 1
3
. Thus R converges uniformly to 1 and this

shows that Q converges uniformly to 1.
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Appendix E

A Characterization of a Limit of a
Ratio of Volumes

The following technical lemma allows us to restate a limit that involves a ratio of

volumes in terms of a limit that involves only minimums and maximums of certain

parameters. It is used to simplify regularity conditions that show up when dealing

with particular density estimators.

Lemma E.1 (A Characterization of a Limit of a Ratio of Volumes). For each

k = 1, . . . , d let hk be a sequence of positive numbers that depends on n, which

belongs to N, and Ak a positive constant. Then

lim
n

mink hk
maxk hk

> 0 if and only if lim
n

∏d
k=1A

2
kh

2
k

(
∑d

k=1A
2
kh

2
k)
d
> 0

Proof of Lemma E.1. First, suppose that

lim
n

mink hk
maxk hk

> 0.

Then
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lim
n

∏d
k=1A

2
kh

2
k

(
∑d

k=1A
2
kh

2
k)
d
≥

∏d
k=1A

2
k

(
∑d

k=1A
2
k)
d

(
lim
n

mink hk
maxk hk

)2d

> 0.

Conversely, suppose that

lim
n

∏d
k=1A

2
kh

2
k

(
∑d

k=1A
2
kh

2
k)
d
> 0

so that, for each k = 1, . . . , d, we have

lim
n

A2
kh

2
k

(
∑d

k=1A
2
kh

2
k)
d
> 0.

Thus for each k = 1, . . . , d there is a positive real number Bk and an Nk in N such

that for any n in N if n > Nk,

A2
kh

2
k > Bk

d∑
k=1

A2
kh

2
k. (E.1)

Now let the number N be given by the equation N = maxkNk. Suppose that

n ∈ N and n > N . Using inequality (E.1) this implies that, for each k = 1, . . . , d,

we have

(max
k
Ak)

2h2
k ≥ A2

kh
2
k > Bk

d∑
k=1

A2
kh

2
k ≥ (min

k
Bk)

d∑
k=1

A2
kh

2
k

so that

(max
k
Ak)

2(min
k
hk)

2 > (min
k
Bk)

d∑
k=1

A2
kh

2
k > (min

k
Bk)A

2
kh

2
k ≥ (min

k
Bk)(min

k
Ak)

2h2
k

and so
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(max
k
Ak)

2(min
k
hk)

2 > (min
k
Bk)(min

k
Ak)

2(max
k
hk)

2.

It follows that

mink hk
maxk hk

>
(mink Bk)

1
2 mink Ak

maxk Ak
> 0.

This shows that

lim
n

mink hk
maxk hk

> 0.

and the conclusion follows.

78



Bibliography
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(1976), 213–231. (Cited on page 36.)

[BE00] L. J. Bain and M. Engelhardt, Introduction to probability and mathematical

statistics, Duxbury Press, Pacific Grove, CA, 2000. (Cited on page 58.)

[BS05] Taoufik Bouezmarni and Olivier Scaillet, Consistency of asymmetric kernel

density estimators and smoothed histograms with application to income

data, Econometric Theory 21 (2005), 390–412. (Cited on page 46.)

[Dev85] Luc Devroye, Nonparametric density estimation: The L1 view, Wiley, New

York, NY, 1985. (Cited on pages 11, 26, 31 and 58.)

[GJB02] Yogendra P. Chaubey G. Jogesh Babu, Angelo J. Canty, Application of

bernstein polynomials for smooth estimation of a distribution and density

function, Journal of Statistical Planning and Inference 105 (2002), 377–

392. (Cited on page 57.)

[Lor86] G. G. Lorentz, Bernstein polynomials, Chelsea Publishing Company, New

York, NY, 1986. (Cited on pages 66 and 71.)

79



[Rud87] Walter Rudin, Real and complex analysis, WCB/McGraw-Hill, Boston,

MA, 1987. (Cited on pages 58 and 61.)

[Sta83] U. Stadtmüller, Asymptotic distributions of smoothed histograms, Metrika

30 (1983), 145–158. (Cited on page 46.)

[Ten95] A. Tenbusch, Nonparametric curve estimation with bernstein estimates,

Ph.D. thesis, University of Osnabrück, 1995. (Cited on page 57.)

[Vit75] Richard A. Vitale, A bernstein polynomial approach to density estima-

tion, Statistical Processes and Related Topics 2 (1975), 87–100. (Cited on

page 57.)

80


	Contents
	Introduction
	Preliminaries
	Asymptotic Unbiasedness
	Kernel Density Estimators
	Standard Kernel Density Estimator
	Rectangular Histogram Density Estimator
	Gamma Smoothed Histogram Density Estimator
	Beta Smoothed Histogram Density Estimator

	Useful Results
	Uniform Approximation of a Density
	Uniform Approximation of a Poisson Distribution
	Uniform Approximation of a Binomial Distribution
	A Characterization of a Limit of a Ratio of Volumes
	Bibliography

