THE UNIVERSITY OF MANITOBA WINNIPEG, MANITOBA

-- SONIC TESTING OF CONCRETE --

A CORRELATION OF PULSE VELOCITY TO THE MECHANICAL AND PHYSICAL PROPERTIES OF WINNIPEG CONCRETES

Wayne C. Wagner, B.Sc. (C.E.)

by

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science

Faculty of Graduate Studies and Research

Department of Civil Engineering

March, 1972

TABLE OF CONTENTS

· · · · · · · · · · · · · · · · · · ·			
		Page	
• •			
ABSTRACT		vi	
LIST OF TABLES		viii	
LIST OF FIGURE	S	ix	
LIST OF SAMPLE	CALCULATIONS	xi	
NOTATION		xii	
		•	
CHAPTER		· ·	
I IN	ITRODUCTION	. 1	
1.	.1 Purpose of the Study	1	· · · ·
1.	.2 Statement of the Problem]	
	.3 Scope	3	
II TH	HEORY ON ULTRASONIC PULSE AND REVIEW OF PREVIOUS RESEARCH		
2.	.1 Theory on the Ultrasonic Pulse Test	5	
2.	.2 Review of Previous Research	6	
III TI	ESTING - PROCEDURES AND RESULTS		
IIIA TI	EST SERIES A		
3/	A.1 Introduction	9	
3/	A.2 Aggregates		
	3A.2a Gradation	9	
	3A.2b Specific Gravity	12	
3/	A.3 Cement	12	
3/	A.4 Concrete Mixes	15	
		a de la companya de l	

TABLE OF CONTENTS CONT'D

CHAPTER Page 3A.5 Sampling of the Concrete 17 3A.6 . Curing 21 3A.7 Unit Weights 21 3A.8 Pulse Velocity Determination 3A.8a Operation of Equipment 25 3A.8b Pulse Velocity Readings 25 3A.9 Compressive Strength Determination 31 3A.10 Strain Determination 31 IIIB TEST SERIES B 3B.] Introduction 34 3B.2 Aggregates 3B.2a Gradation 34 3B.2b Specific Gravity 34 3B.3 Cement 38 3B.4 Concrete Mixes 38 3B.5 Sampling of the Concrete 38 3B.6 Curing 42 3B.7 Unit Weights 42 3B.8 Pulse Velocity Determination 3B.8a Test Procedure 42 3B.8b Pulse Velocity Readings 45 3B.9 Compressive Strength Determination 49 3B.10 Strain Determination 49

- ii -

- iii -

TABLE OF CONTENTS CONT'D

CHAPTER		Page	
IV	ANALYSIS OF TEST RESULTS AND CORRELATION OF THESE RESULTS TO PULSE VELOCITY		
	4.1 Introduction	52	
	IVA ANALYSIS OF TEST SERIES A		
	4A.1 Aggregates	52	
	4A.2 Concrete Mix Designs	52	
	4A.3 Unit Weights	53	
	4A.4 Strength Results	54	
	4A.5 Determination of Young's Modulus of Elasticity	55	
	IVB ANALYSIS OF TEST SERIES B		
	4B.1 Aggregates	61	
e Lee Lee	4B.2 Concrete Mix Designs	61	
	4B.3 Unit Weights	62	
	4B.4 Strength Results	63	
•	4B.5 Determination of Young's Modulus of	4 	
	Elasticity	63	
•	IVC CORRELATION OF TEST RESULTS TO PULSE VELOCITY		
	4C.1 Introduction	69	
	4C.2 Pulse Velocity Vs. Strength	69	
	4C.3 Pulse Velocity Vs. Density	72	
	4C.5 Development of a Relationship Between Pulse Velocity, Modulus of Elasticity	•	
	and Density	76	

TABLE OF CONTENTS CONT'D

CHAPTER		Page
•	4C.6 Introduction of K Factor	81
	4C.7 Determination of K Factors for	· ·
	Concretes Investigated	82
	4C.8 Analysis of K Factor Results	85
IVI	D POSSIBLE SOURCE OF ERRORS IN TESTING	86
V v	CONCLUSIONS OF THE STUDY AND APPLICATIONS	
	OF PULSE VELOCITY METHODS	•
•	5.1 Conclusions of the Study	88
	5.2 Recommended Applications of Pulse	
	Velocity Methods	90
	5.2a Quality Control in Precast Plants	90
	5.2b "On-Site" Concrete Evaluation -	•
	New Construction	91
	5.2c Evaluation of the Soundness of	•
	Existing Concrete Structures	93
VI	SUMMARY OF CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH	
and an	6.1 Summary of Conclusions	95
	6.2 Recommendations for Future Research	96

- iv -

TABLE OF CONTENTS CONT'D

		Page	
ACKNOWLEDGMENT	S	99	
BIBLIOGRAPHY		100	1. 1. 1. 1.
APPENDIX A -	BASIC OPERATION OF THE JAMES V-SCOPE	102	
APPENDIX B -	STRESS-STRAIN RELATIONSHIP	108	
	B.1 Mechanical Gauge Data	108	
•	B.2 Test Series A	108	
	B.3 Test Series B	121	

ABSTRACT

- vi

This dissertation deals with the assessment of a nondestructive test method, namely the sonic pulse velocity method, as applied to concretes of known physical and mechanical properties.

Concrete produced by two Winnipeg concrete producers, Building Products and Supercrete, was investigated using three varying mix designs from each plant. Since the aggregate source of the two plants differ, the major difference between the two concretes tested was the properties of the respective aggregates. In hopes that the findings of this study could have a practical local application, mix designs actually used by the two producers in their daily production runs were incorporated into the test program.

While the three Supercrete mix designs closely matched the Building Products mixes, the pulse velocity measurements on the hardened concrete differed substantially between the two concretes. This showed the importance of the need to correlate pulse velocity readings to concretes of different properties before sonic methods could be used effectively. A relationship was developed for each of the mixes for pulse velocity versus strength and pulse velocity versus dynamic modulus of elasticity.

The test results from this study indicate that sonic tests could not be used as substitutes for other tests normally performed on concrete. Since they do provide a basis for evaluating

- viii -

LIST OF TABLES

Table		Page	
1	Classification of Concrete Quality	6	
2	Compressive Strength Comparison of Normal Portland Cement	15	
3	Test Series A - Concrete Unit Weights	24	
4	Test Series A - BPA General Test Data	28	
5	Test Series A - BPB General Test Data	29	
6	Test Series A - BPC General Test Data	30	
7	Test Series B - Concrete Unit Weights	44	
8	Test Series B - SA General Test Data	46	
9	Test Series B - SB General Test Data	47	
10	Test Series B - SC General Test Data	48	
11	Test Series A - Comparison of Actual to Design Water-Cement Ratios	53	
12	Comparison of Modulus of Elasticity Values	60	
13	Test Series B - Comparison of Actual to Design Water-Cement Ratios	61	
14	Test Series B - Comparison of Modulus of Elasticity Values	68	
15	Tabulation of K Factors	84	

LIST OF FIGURES

Figures		Page	
	General Relationship for Velocity and Compressive Strength as a Function of Mix Design	8	
2	Sieve Analysis - BP Coarse Aggregate	10	
3	Sieve Analysis - BP Fine Aggregate	11	
4	Test Series A - Mix Design BPA	18	
5	Test Series A - Mix Design BPB	19	
6.	Test Series A - Mix Design BPC	20	
7	Sonic Testing Equipment	26	
8	Equipment Used for Compressive Strength Determination	32	ی ۲۰۱۰ میر ۲۰۱۰ میر ۲۰۱۰ میر ۲۰۱۰ میر ۲۰۱۰ میر
9	Mechanical Gauge Support	33	
10	Sieve Analysis - Supercrete Coarse Aggregate	35	
11	Sieve Analysis - Supercrete Fine Aggregate	36	
12	Test Series B - Mix Design SA	39	
13	Test Series B - Mix Design SB	40	
14	Test Series B - Mix Design SC	41	
15	Securing Electrical Strain Gauges	50	

- ix -

LIST OF FIGURES CONT'D

Figures		Page	
16	Budd Electrical Strain Indicators	51	
17	Test Series A - Typical Stress-Strain Relationship	57	
18	Test Series B - Typical Stress-Strain Relationship	67	
19	Relationship of Pulse Velocity to Compressive Strength for Saturated Concrete Specimens	70	
20	Relationship of Pulse Velocity to Compressive Strength for Dry Concrete Specimens	71	
		/ 1	
21	Relationship of Compressive Strength to Poisson's Ratio	80	
22	Instrument Panel of V-scope	103	
23	Zero Delay Adjustment	105	
24	Placing of Transducers	106	

- x -

LIST OF SAMPLE CALCULATIONS

Sample	Calculation		Page
• • •	1	Specific Gravity - B.P. Coarse Aggregate	13
	2	Specific Gravity - B.P. Fine Aggregate	14
	3	Test Series A - Unit Weight of Hardened Concrete	23
	4	Test Series A - Pulse Velocity	27
	5	Specific Gravity - Supercrete Coarse Aggregate	37
	6	Test Series B - Unit Weight of Hardened Concrete	43
•	7,	Test Series B - Pulse Velocity	45
· · · ·	8	Test Series A - Modulus of Elasticity	58
	9	Test Series A - Check on Modulus of Elasticity	59
	10	Test Series B - Modulus of Elasticity	65
	11	Test Series B - Check on Modulus of Elasticity	69
	12	K Factor Determination	83

- xi -

- xii -

NOTATION

SSD	= -	Saturated Surface Dry
E	=	Static Modulus of Elasticity
E _D	-	Dynamic Modulus of Elasticity
Ц	-	Poisson's ratio
K	=	Constant allowing for the inelastic, heterogeneous properties of different concrete mixes
9	= .	Density of Concrete (unit weight)
f' c	=	Ultimate Compressive Strength of Concrete
V.	= .	Pulse Velocity
G.F.	=	Gauge Factor
L	=	Physical Length of Cylinder

= Time taken for pulse to travel length of cylinder

Т

CHAPTER I

INTRODUCTION

1.1 Purpose of the Study

The purpose of this study is to apply a non-destructive test method, namely the sonic pulse-velocity method, to concrete of known physical and mechanical properties and correlate these properties to the recorded pulse velocity readings. By establishing a correlation, it could be possible to use sonic methods to determine the quality of "in-situ" concrete in the field providing the mix design and properties of the field concrete were known.

1.2 Statement of the Problem

For many years the standard test for determining the strength of concrete has been a destructive compressive test on specially prepared cylinders. Since the cylinders are laboratory cured they may not be representative of the concrete in the structure. A check may be made by testing a core from the "insitu" concrete, however, this is not always possible since the appearance or performance of the member concerned may be affected.

The disadvantages of the standard test methods has encouraged various attempts to devise non-destructive test methods to be applied to "in-situ" concrete. One method where a considerable

degree of success has been achieved is the <u>ultrasonic pulse method</u>. The application of the ultrasonic pulse method is based on the fact that the propagation velocity of the onset of a pulse of ultrasonic longitudinal waves, or pulse velocity, through a medium is proportional to its density. If a relationship can be determined between density and strength, it may be possible to determine one between pulse velocity and strength. Therefore, the objects of the ultrasonic pulse method are to establish:

- a) the compressive strength of the concrete
- b) the homogeneity of the concrete
- c) defects in the concrete

The pulse method can be applied:

- a) at precast concrete plants
- b) at construction sites
- c) to test structures in use
- d) in research work

While pulse velocity research has been conducted in a number of areas throughout the world, no known attempt has been made to apply this research to local Winnipeg conditions. Since the properties of concrete materials may change appreciably from area to area and it is these properties that affect pulse velocity readings, it is necessary to correlate readings to known local concrete mixes before the pulse velocity method can be applied locally.

- 2 -

1.3 Scope

In hopes that the findings of this study could possibly be applied to actual concrete being placed in Winnipeg, and thereby be of some practical benefit, concrete producted by two local readymix companies was used throughout the investigation. The concrete was batched at two plants, namely Building Products and Supercrete. Actual mix designs used by the respective companies in their daily production runs were incorporated in the test program to further add to the practical benefits of the study.

- 3

Two seperate test programs, designed to measure the physical and mechanical properties of the concrete and the materials that make up the concrete, were run. These are designated as:

Test Series A

All test cylinders were cast with concrete produced at Building Products. The samples are identified in the report by the prefix "BP".

Test Series B

All test cylinders were cast with concrete produced at Supercrete. The samples are identified in the report by the prefix "S".

The basic difference between the two test series was the aggregate used. The respective mix designs were held relatively constant in regards to proportioning. The testing involved the determination of the density, air content, compressive strength,

stress-strain relationship and pulse velocity of the individual concrete test specimens. A correlation was then established between the pulse velocity and the concrete properties of the respective mixes.

4

CHAPTER II

- 5 -

THEORY ON ULTRASONIC PULSE & REVIEW OF PREVIOUS RESEARCH

2.1 Theory on the Ultrasonic Pulse Test

The wave velocity of ultrasonic pulse in concrete is calculated from the time taken by a pulse to travel a measured distance. Mechanical energy in the form of a pulse or sound wave is transmitted between transmitting and receiving transducers. The transducers are in contact with the concrete so that the vibrations travel through it. The electrical signal generated by the transducer is fed through an amplifier to a plate of a cathode-ray tube. A second plate supplies timing marks at fixed intervals. Thus from the measurement of the displacement of the pulse signal relative to the position when the transducers are in direct contact with one another, the time taken by the pulse to travel through the concrete can be measured⁽¹⁾. The velocity can be calculated by dividing the distance between transducers by time. There are two methods of making the measurements:

- a) by direct transmission through the concrete where the transducers are held on opposite faces of the member under test
- b) by propagation along the surface when only one face

of the concrete is accessible. Two disadvantages exists in this method. Since the maximum energy of the pulse is being directed into the concrete, the weaker signal received results in a less accurate reading. Also, measuring the pulse velocity at the surface only measures the surface properties and gives no indication about weaker concrete which may be below a stronger surface layer⁽²⁾.

- 6 -

2.2 Review of Previous Research

Previous studies have been conducted in the classification of the quality of concrete on the basis of pulse velocity. Some figures suggested by Whitehurst⁽³⁾ for concrete with a density of approximately 150 lbs./cu.ft. are given in Table 1.

Table 1

Classification of Concrete Quality

Longitudinal Pulse Velocity 10 ³ ft./sec.	Quality of Concrete
15	excellent
12 - 15	good
10 - 12	doubtful
7 - 10	poor
7	very poor

According to Jones⁽⁴⁾, however, the lower limit for good quality concrete is between 13,500 and 15,000 ft./sec.

- 7 -

This discrepancy, and the generally wide variation in the pulse velocity of concretes are due to the influence of the coarse aggregate. Both its quantity and type affect the pulse velocity while, for a constant water-cement ratio, the influence of the coarse aggregate on strength is comparatively small⁽¹⁾.

It is Muenow's⁽⁵⁾ opinion that the most accurate method of determining compressive strength is a correlation between destructive testing and velocity measurements. He suggests the relationship, shown in Figure 1, for velocity and compressive strength as a function of mix design.

From Figure 1 it can be observed that there is an overlap of readings between different mixes. Therefore, the mix design of the concrete to be tested must be known before a pulse velocity-compressive strength relationship can be applied. FIGURE |

1.403

GENERAL RELATIONSHIP PULSE VELOCITY VS. STRENGTH

CHAPTER III

9 -

TESTING -- PROCEDURES AND RESULTS

IIIA TEST SERIES A

3A.1 Introduction

In this series, tests were carried out on the concrete materials and concrete as produced by Building Products and Concrete Supply, Winnipeg. Following is a breakdown on the various testing procedures and test results conducted on the test samples. All test samples in Test Series A are identified by the prefix "BP".

3A.2 Aggregates

3A.2a Gradation

It was decided to limit the maximum size of aggregate in the concrete mix to 3/4". Since the major applications utilizing sonic equipment would be in thin sections such as walls, slabs, and columns where 3/4" concrete is used, this was thought to be a valid limitation for test purposes.

Gradation tests were conducted on both the fine and coarse aggregates. Methods of sampling and grading were done in accordance with CSA Standard A23.1-1967. The gradation for the 3/4" aggregate is shown in Figure 2 while the sand gradation is shown in Figure 3.

Test Series A -- Sieve Analysis

- 10 -

Building Products 3/4" Coarse Aggregate

A.S.T.M. Standard Sieve Sizes		Total Passing each Sieve Percent by Weight	
	•	Test Aggregate	CSA Standard A23.1-1967 Specification
1"		100.0	100
3/4'	1	98.1	90 - 100
3/8'	1	22.0	20 - 55
#4		3.5	0 - 10
#8		0.6	0 - 5

Test Series A -- Sieve Analysis

Building Products Fine Aggregate

A.S.T.M. Standard Sieve Sizes	Total Passing each Sieve Percent by Weight	
	Test Aggregate	CSA Standard A23.1-1967 Specification
3/8"	100.0	100
#4	96.4	95 - 100
#8	87.7	80 - 100
#16	75.8	50 - 85
#30	49.3	25 - 60
#50	21.3	10 - 30
#100	6.1	2 - 10
#200	2.9	

Figure 3

3A.2b Specific Gravity

Since the sonic pulse velocity is proportional to the density of the medium through which the pulse is transmitted, it is very important to know exactly what densities are being worked with. Therefore, specific gravities were determined on the aggregates in order to help explain the densities obtained in the final concrete mixes.

Typical calculations for the coarse specific gravity is shown in Sample Calculation 1. A dry bulk specific gravity of 2.638 was obtained.

Typical calculations for the fine specific gravity is shown in Sample Calculation 2. A dry bulk specific gravity of 2.602 was obtained.

3A.3 Cement

The cement used throughout the test program conformed to CSA Standard A5-1971 and was Type I Normal Portland Cement. However, this standard is only a minimum requirement. In actual fact, a given market may demand a higher quality cement with respect to minimum strengths. In order for a cement company to market its product in any given area it would be forced to meet these higher strength standards as set by competition. Also, these standards could vary from market area to market area. The Manitoba market compressive strength standard as compared to the CSA standard at the time of testing is shown in Table 2.

- 12 -

Sample Calculation 1

Test Series A -- Coarse Specific Gravity

- 13 -

Building Products 3/4" Coarse Aggregate

Absorption = $\frac{B - A}{A} \times 100 = \frac{2500 - 2447}{2447} \times 100 = 2.168\%$

Bulk Specific Gravity = $\frac{B}{B-C} = \frac{2500}{2500 - 1573} = 2.695$

Apparent Specific Gravity = $\frac{A}{A-C}$ = $\frac{2447}{2447-1573}$ = 2.799

Bulk Specific Gravity (dry) = $\frac{A}{B-C} = \frac{2447}{2500 - 1573} = 2.638$

Sample Calculations 2

Test Series A -- Fine Specific Gravity

- 14 -

Building Products Fine Aggregate

Volume of flask at 20°C "V"	500	c.c.
Wt. of sand (S.S.D.) and flask	676.1	gms
Wt. of flask, sand (S.S.D.) and water at 20°C	987.0	gms
Wt. of flask	176.1	gms
Wt. of sand (S.S.D.) and water	810.9	gms
Wt. of sand (S.S.D.) "Wssd"	500.0	gms
Wt. of water added at 20°C "W"	310.9	gms
Wt. of sand (oven dried) and tare	874.8	gms
Wt. of tare	382.7	gms
Wt. of sand (oven dried) "A"	492.1	gms

Absorption = $\frac{Wssd - A}{A} \times 100 = \frac{500 - 492.1}{492.1} = 1.608\%$

Bulk Specific Gravity (S.S.D.) = $\frac{W_{ssd}}{V - W} = \frac{500}{500 - 310.9} = 2.645$

Apparent Specific Gravity = $\frac{A}{(V - W) - (Wssd - A)}$ =

$$\frac{492.1}{(500 - 310.9) - (500 - 492.1)} = 2.716$$

Bulk Specific Gravity (dry) = $\frac{A}{V - W} = \frac{492.1}{500 - 310.9} = 2.602$

Compressive Strength Comparison

Table 2

of Normal Portland Cement

Age of Test (days)	CSA-A5-1971 Standard (psi)	Manitoba Market Standard at Time of Testing (psi)
3	1800	2600
7	2600	4200
28	3800	5700+

It is critical that the compressive strength of the cement be known before sonic testing methods can be applied. Less cement per cubic yard could be used in a high cement standard market area in comparison to a lower standard market area, to obtain equivalent concrete strengths. However, the densities of the two concretes would be affected by the varying amounts of cement used. This would have to be taken into consideration when correlating pulse velocity to compressive strength for the concretes in question.

3A.4 Concrete Mixes

The decision to use concrete produced at a batch plant throughout the test program was based on two factors:

> Better control in proportioning the materials could be accomplished with large volume batching. Control would be more difficult with a small laboratory mixer.

- 15 -

ii) Concrete produced at a batch plant during a normal days production would be a truer representation of the concrete going into the local market. This, therefore, would add to the practical benefits of the study.

Three different mixes were batched and cylinders cast. The mix designs (BPA, BPB, and BPC), with respective water-cement ratios of 0.4, 0.6, and 0.8, are designs that are actually being used by Building Products in their daily production.

It should be noted that the coarse aggregate was held constant for the complete series of tests. Tests conducted by the research laboratories of James Electronics Inc., Chicago, Illinois, indicate that the coarse aggregate affects the wave velocity much more than the fine $aggregate^{(5)}$. The fine aggregatewas considered to be part of the mortar along with the cement and water. Therefore, while the batch weight per cubic yard was held constant for the three sets, the various materials that made up the mortar were proportioned differently and the coarse aggregate was held constant.

WRDA (water-reducing admixture) was the only admixture used in the concrete mixes. It is an aqueous solution of highly purified metallic salts of lignin sulfonic acids, containing a catalyst which counteracts the normal hydration-retarding effect of other dispersing admixtures. As a dispersing agent it lessens the natural interparticle attraction between cement grains and

- 16 -

water. It does this by colloidal action, which forms a coating on the cement particles. This reduces their tendency to clump together, and makes the mix more workable with less water.

The three mix designs in Test Series A, namely BPA, BPB, and BPC, are outlined in Figures 4, 5, and 6 respectively.

3A.5 Sampling of the Concrete

The batch plant at Building Products is a central mix operation. After the concrete was adequately mixed it was discharged into a transit-mixer truck. The truck was then backed to a platform where the concrete was thoroughly remixed in the transit mixer. Concrete was then sampled from the mixer with a shovel at intermittent periods. These samples were then hand mixed together on the platform in order to ensure a representative sample. Sets of twelve cylinders were then cast for each of the three mixes.

Three separate tests were then carried out on each mix while the concrete was in the plastic state. These were slump, air content, and unit weight determinations. The results of these tests for each of the three mixes are noted in Figures 4, 5, and 6 respectively.

All tests were carried out in accordance with CSA Standard A23.2-1967, Methods of Test for Concrete.

- 17 -

Test Series A -- Mix Design BPA

Materials	Saturated Surface Dry Design Wts. (lbs./cu.yd.)	Actual Design Wts. Allowing for Moisture Content of Sand (lbs./cu.yd.)	Total Actual Batch Weights (lbs.)
3/4" aggregate	1900	1900	10,450
sand	1180	1239	6,814
cement	700	•700	3,845
water	280	221	1215 + 100= 1,315
WRDA (Water Reduc- ing Agent)	40 fl. oz.		220 fl. oz.
Moisture Cor	ntent of Sand	= 5	.0%
Design Water	-Cement Ratio = <mark>280</mark> 700	= 0	.40
Actual Water	$-Cement Ratio = \frac{1315}{3845}$	+ 6814 (.05) = 0	.43
-Note- Additional w a more worka	vater was added to the able mix	final batch in ord	er to obtain
Air Content	1.8%		
Slump	2 1/4"		

Unit Wt. 150.8 p.c.f.

Test Series A -- Mix Design BPB

Materials	Saturated Surface Dry Design Wts. (1bs./cu.yd.)	Actual Design Wts. Allowing for Moisture Content of Sand (lbs./cu.yd.)	Total Actual Batch Weights (lbs.)
3/4" aggregate	1900	1900	9,500
sand	1400	1470	7,400
cement	470	470	2,350
water	280	210	1,050
WRDA (Water Reduc- ing Agent)	27 fl. oz.		135 fl. oz.

Moisture Content of Sand

5.0%

0.60

Design Water-Cement Ratio = $\frac{280}{470}$

Actual Water-Cement Ratio = $\frac{1050 + 7400 (.05)}{2350} = 0.60$

Air Content	2.3%
Slump	3 "
Unit Wt.	149.8 p.c.f.

Test Series A -- Mix Design BPC

Materials	Saturated Surface Dry Design Wts. (lbs./cu.yd.)	Actual Design Wts. Allowing for Moisture Content of Sand (lbs./cu.yd.)	Total Actual Batch Weights (lbs.)	
3/4" aggregate	1900	1900	9,500	
sand	1500	1575	7,775	
cement	350	350	1,750	an an Arthur an Bh
water	280	205	1,025	
WRDA (Water Reduc- ing Agent)	20 fl. oz.		100 fl. oz.	
Moisture Con Design Water Actual Water Air Content	tent of Sand -Cement Ratio = $\frac{280}{350}$ -Cement Ratio = $\frac{1025}{1750}$ 2.5% 2"	= 5. = 0. + 7775 (.05) = 0.	0% 80 81	
Slump	2"			
Unit Wt.	149.4 p.c.f.			

3A.6 Curing

After the cylinders were cast, plastic covers were placed over them in order to prevent the water needed for hydration from evaporating. The cylinders were then set out of the sun and let stand for 24 hours before they were moved. The air temperature during this period ranged from 50 - 70 degrees. The next day the cylinders were carefully loaded into a van and rigidly supported while they were being transferred to the M. Block Testing Laboratory in Winnipeg. Extreme care was taken in handling the cylinders during the transportation and stripping operations in order to minimize any possibility of small fractures developing in the samples.

- 21 -

Cylinders from each of the three sets that were numbered from 1 through 6 were placed in a water bath for wet curing prior to testing. Cylinders numbered 7 through 12 were placed in a room for dry curing.

3A.7 Unit Weights

The unit weight of the concrete was determined at three different periods. The first measurement was taken while the concrete was in the plastic state. The second measurement was taken on four cylinders from each set at the age of one day. The third measurement was taken on the same four cylinders, two of which were wet cured and two of which were dry cured, at the age of 7 days. The test used in determining the unit weight of the hardened concrete utilized the method in which the cylinder was weighed in air and then in water. Since the difference in the weights is equal to the volume of water displaced, the specific gravity of the concrete can be determined. From this, the unit weight can be calculated. The calculations are given in Sample Calculation 3.

A summary of the unit weights is given in Table 3.

Sample Calculation 3

Test Series A

Unit Weight of Hardened Concrete

Test Cylinder BPA1

Wt. of cylinder in air = W_A = 13,635 gms Wt. of cylinder in water = W_W = 7,988 gms Volume of cylinder = V = $W_A - W_W$ = 13,635 - 7,988 = 5647 c.c. Specific gravity of cylinder = $\frac{W_A}{V}$ = $\frac{13,635}{5,647}$ = 2.413 Since unit wt. of water = 62.4 p.c.f.

unit wt. of test cylinder BPA1 = 2.413×62.4 = 150.6 p.c.f.
Test Series A

Concrete Unit Weights

Cylinder	Air Content	Method	Unit Weight (lbs./cu.ft.)			
No.	(Plastic State) %	of Curing	Plastic	Hard 1-Day	ened 7-Day	
BPA1	1.8	Water bath	150.8	150.6	151.8	
BPA2		11	II	151.9	154.0	
BPA7		Air	11	150.6	150.2	
BPA8		11	n	150.6	149.8	
BPB1	2.3	Water bath	149.8	151.3	151.5	
BPB2		II .	-6 11	151.3	152.8	
BPB7		Air	11	150.6	150.0	
BPB8		li	11	151.3	150.8	
BPC1	2.5	Water bath	149.4	151.2	151.2	
BPC2			10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	151.2	152.0	
BPC7		Air	11	150.6	150.9	
BPC8		U	11. 11. 11. 11. 11. 11. 11. 11. 11. 11.	151.2	150.0	

3A.8 Pulse Velocity Determination

3A.8a Operation of Equipment

The instrument used in determining the pulse velocities throughout the test program was the V-scope, Model No. C-4960 as manufactured by James Electronics Inc., Chicago, Illinois. A picture of the instrument is shown in Figure 7.

- 25 -

The operating frequency range of the instrument is 15-300 KC. The higher the frequency, the narrower the beam of pulse propagation but the greater the attenuation (or damping out) of the pulse vibrations. Metal testing requires high frequency pulses to provide a narrow beam of energy but such frequencies are unsuitable for use with heterogeneous materials such as concrete because of the considerable amount of attenuation which pulses undergo when they pass through these materials. The frequency found suitable and used throughout these tests was 50KC which corresponded to a wave length of about 130 mm. The instrument's pulse rate is 69 pulses per second.

The basic operation of the James V-scope is outlined in Appendix A.

3A.8b Pulse Velocity Readings

Pulse velocity readings were taken on both wet cured and dry cured cylinders for each set at 7 and 28 days. Since

the physical length of each cylinder varied slightly, each cylinder was measured in order that the pulse velocity could be calculated accurately. A typical calculation of pulse velocity is shown in Sample Calculation 4.

Tables 4, 5, and 6 outline the individual pulse velocities of the three mixes tested in Test Series A.

Sample Calculation 4

Test Series A

Sample Calculation of Pulse Velocity

Cylinder BPA1

Measured length of cylinder = L = 12.10"

Time taken for sonic wave to traverse length of cylinder = T = 63.0 microseconds

Pulse Velocity = $\frac{L}{T} = \frac{12.10}{12} \times \frac{1}{63.0} =$

.01605 ft./microsecond or 16,050 ft./sec.

-28

Test Series	A	BPA	Genera	l Test	Data
-------------	---	-----	--------	--------	------

Cylinder No.	Method of Curing	Compressiv (psi	ve Strength)	Pulse V (ft./sec	elocity . x 10 ³)	E (psi x 10 ⁶)	$E_{\rm D}$ (psi x 10 ⁶)	Poisson's Ratio
		7-day	_28-day	7-day	28-day			μ
BPA1	Water bath	5089		16.05		4.19	5.37	0.19
BPA2	11	5159		15.85				
BPA3	в	5000		16.05				
BPA4	H		6010		16.35	4.95	6.35	0.17
BPA5	П		6666		16.30			
BPA6	11		6117		16.2			
BPA7	Air	5018		15.7		÷		
BPA8	11	5159		15.7				
BPA9	H	5408		15.9		4.10	5.26	0.18
BPA10	II		6206		15.7	5.04	6. 46	0.17
BPA11	II		6081		15.75			
BPA12	11		6578		15.8	· ·		

fest Series	A	BPB	Genera1	Test	Data

Cylinder No.	Method of Curing	Compressiv (psi	ve Strength)	Pulse V (ft./sec	/elocity x 10 ³)	$E_{(\text{psi x } 10^6)}$	$E_{\rm D}$	Poisson's Ratio
		7-day	28-day	7-day	28-day	(por // 10 /	(Pot / 10)	<u>М</u>
BPB1	Water bath	3865		15.6		3.60	4.61	0.21
BPB2	11	4060		15.6				
BPB3	11	4113		15.65				
BPB4	n		4893		15.8	4.23	5.42	0.19
BPB5	li		5337		16.25			l 6
BPB6	H		5230	n a shekar Mari	16.1	-		
BPB7	Air	3830		15.35				
BPB8	ĸ	3652		15.3				
BPB9	11	3865		15.3		3.91	5.01	0.21
BPB10	II		4823		15.3	4.23	5.42	0.19
BPB11	H		5159		15.5	-		
BPB12	ti .		4805		15.4			

 $i_{ij} h$

30

Cylinder No.	Method of Curing	Compressi (psi 7-day	ve Strength) 28-day	Pulse (ft./sec 7-day	Velocity c. x 10 ³) 28-day	E (psi x 10 ⁶)	E _D (psi x 10 ⁶)	Poisson's Ratio 从
BPC1	Water bath	2801		15.55		3.60	4.61	0.23
BPC2	II	2695		15.5			b	
BPC3	11	2695		15.4				
BPC4	11		3759		15.75	4.46	5.72	0.22
BPC5	BI		3954		15.85			
BPC6	11		3635		15.85			
BPC7	Air	2553		14.55				
BPC8	e It	2660		14.75				
BPC9	II	2411		14.75		2.02	2.59	0.24
BPC10	II		3191		15.05	2.96	3.79	0.23
BPC11	11		3 493		15.05			
BPC12	11		3386		15.05			

Test Series A -- BPC General Test Data

3A.9 <u>Compressive Strength Determination</u>

The compressive strength was determined for each of the cylinders cast. The tests were conducted in accordance with CSA Standard A23.2.13 "Test for Compressive Strength of Moulded Concrete Cylinders". The equipment used in the test is shown in Figure 8. The compressive strengths of the test cylinders for each of the three mixes in Test Series A are given in Tables 4, 5, and 6 respectively.

3A.10 Strain Determination

The unit strain of the concrete under load was recorded at 5 kip load increments. Mechanical gauges (DEMEC) were used throughout the test. Initially the gauges were held in place by hand, however, the slightest hand movement would disrupt the readings. The gauges were then fastened securely to the cylinders by elastic bands as shown in Figure 9.

Strain readings were recorded for the following cylinders:

BPA1, BPB1, BPC1	- 7	day wet	cured
BPA4, BPB4, BPC4	- 28	3 day wet	cured
BPA9, BPB9, BPC9	- 7	7 day dry	cured
BPA10, BPB10, BPC10	- 28	3 day dry	cured

The strain readings on the above cylinders as well as the details of the gauges used are tabulated in Appendix B.

- 31 -

EQUIPMENT USED FOR COMPRESSIVE

- 32 -

STRENGTH DETERMINATION

IIIB TEST SERIES B

3B.1 Introduction

In this series, tests were carried out on the concrete materials and concrete as produced by Supercrete in the City of Winnipeg. Following is a breakdown on the various testing procedures and test results conducted on the test samples. To avoid duplication, where the procedures are the same as followed in Test Series A, it shall be noted as such. All test samples in Test Series B are identified by the prefix "S".

3B.2 Aggregates

3B.2a Gradation

The maximum aggregate size was again limited to 3/4". Gradation tests were conducted on both the fine and coarse aggregate as in Test Series A. The gradation of the coarse aggregate is shown in Figure 10 while the sand gradation is shown in Figure 11.

3B.2b Specific Gravity

The specific gravity of the coarse aggregate was determined as in Test Series A. A dry bulk specific gravity of 2.580 was calculated as shown in Sample Calculation 5.

Test Series B -- Sieve Analysis

Supercrete 3/4" Coarse Aggregate

A.S.T.M. Standard Sieve Sizes	Total Passing each Sieve Percent by Weight			
	Test Aggregate	CSA Standard A23.1-1967 Specification		
1 n	100.0	100		
3/4"	88.3	90 - 100		
3/8"	22.0	20 - 55		
#4	2.5	0 - 10		
#8	0.9	0 - 5		

Test Series B -- Sieve Analysis

- 36

Supercrete Fine Aggregate

A.S.T.M. Standard Sieve Sizes	Total Passing each Sieve Percent by Weight				
	Test Aggregate	CSA Standard A23.1-1967 Specification			
3/8"	100.0	100			
#4	99.7	95 - 100			
#8	90.5	80 - 100			
#16	69.4	50 - 85			
#30	43.3	25 - 60			
#50	17.9	10 - 30			
#100	4.2	2 - 10			
#200	1.9				

Sample Calculation 5

Test Series B -- Coarse Specific Gravity

- 37 -

Supercrete 3/4" Coarse Aggregate

Absorption = $\frac{B - A}{A} \times 100 = \frac{2500 - 2448}{2448} \times 100 = 2.122\%$

Bulk Specific Gravity = $\frac{B}{B-C}$ = $\frac{2500}{2500 - 1552}$ = 2.635

Apparent Specific Gravity = $\frac{A}{A-C}$ = $\frac{2448}{2448-1552}$ = 2.732

Bulk Specific Gravity (dry) = $\frac{A}{B-C} = \frac{2448}{2500-1552} = 2.580$

3B.3 Cement

The cement used in Test Series B again far exceeded CSA Standard A5-1971 strength requirement. The comparison between the CSA standard and the Manitoba market area standard is outlined in Test Series A

- 38 -

3B.4 Concrete Mixes

Three different mixes were batched at Supercrete and the cylinders cast. The designed mixes (SA, SB, and SC), with respective water-cement ratios of 0.40, 0.62, and 0.82, are designs actually being used by Supercrete in their daily production.

A water-reducing admixture, as discussed in Test Series A, was also used in Test Series B.

The comparisons between the design and actual mixes tested, namely SA, SB, and SC, are given in Figures 12, 13, and 14 respectively.

3B.5 <u>Sampling of the Concrete</u>

The batch plant at Supercrete is a central mix operation. Unlike at Building Products where the concrete had to be sampled from the transit-mixer truck, the concrete was sampled directly from the central mixing drum. As the concrete was being discharged from the drum, samples were taken with a shovel and placed in a

Test Series A -- Mix Design SA

Materials	Saturated Surface Dry Design Wts. (lbs./cu.yd.)	Actual Design Wts. Allowing for Moisture Content of Sand (lbs./cu.yd.)	Total Actual Batch Weights (lbs.)
3/4" aggregate	1900	1900	7,600
sand	1260	1329	5,356
cement	700	700	2,800
water	280	211	799
WRDA (Water Reduc- ing Agent)	39.8 fl. oz.		160 fl. oz.
Moisture Cor	itent of Sand	= 5	.5%
Design Water	-Cement Ratio = $\frac{280}{700}$) = 0	.40
Actual Water	-Cement Ratio = $\frac{799}{2800}$	<u>) + (5356) .055</u> _	.039

-Note-

Less water was used than called for in the mix design since a workable mix was obtained with a reduced water content

2800

Air Content	2.3%
Slump	3 1/2"
Unit Wt.	148.0 p.c.f.
Concrete Temp.	75°F

Test Series B -- Mix Design SB

Materials	Saturated Surface Dry Design Wts. (lbs./cu.yd.)	Actual Design Wts. Allowing for Moisture Content of Sand (lbs./cu.yd.)	Total Actual Batch Weights (lbs.)	
3/4" aggregate	1900	1900	7,600	
sand	1368	1470	5,920	
cement	445	445	1,780	
water	275	173	686	
WRDA (Water Reduc- ing Agent)	26.8 fl. oz.		108 fl. oz.	
•				

Moisture Content of Sand

= 7.5%

Design	Water-Cement	Ratio	=	<u>275</u> 445	n an	•	= 0	.62
			•			. ÷		
Actual	Water-Cement	Ratio	=	<u>686 +</u> 1780	(5920)	.075	- = 0	.64

Air Content	3.2%
Slump	4 1/4"
Unit Wt.	146.4 p.c.f
Concrete Temp.	71°F

Test Series B -- Mix Design SC

Materials	Saturated Surface Dry Design Wts. (lbs./cu.yd.)	Actual Design Wts. Allowing for Moisture Content of Sand (lbs./cu.yd.)	Total Actual Batch Weights (lbs.)	
3/4" aggregate	1900	1900	7,600	
sand	1441	1542	6,212	
cement	340	340	1,360	
water	280	179	672	
WRDA (Water Reduc- ing Agent)	20 fl. oz.		80 fl. oz.	

Moisture Content of Sand

= 7.0%

Design Water-Cement Ratio = $\frac{280}{340}$ = 0.82

Actual Water-Cement Ratio = $\frac{672 + (6212) .070}{1360} = 0.81$

Air Content	3.0%
Slump	5 3/4"
Unit Wt.	146.6 p.c.f.
Concrete Temp.	69°F

small buggy. Since samples were taken intermittently as the concrete was being discharged, a good representative sample was obtained. The sample was then dumped from the buggy onto a platform and mixed with a small shovel. Sets of twelve cylinders were then cast for each of the three mixes.

- 42 -

As in Test Series A, slump, air content, and unit weight tests were conducted on each mix. The results of these tests are indicated in Figures 12, 13, and 14 for the respective mixes.

3B.6 Curing

The same techniques as discussed in Test Series A were employed in the curing and transportation operation in Test Series B.

3B.7 Unit Weights

The unit weight of the concrete was determined in both the plastic and hardened state as in Test Series A and a typical calculation is shown in Sample Calculation 6. A summary of the unit weights is shown in Table 7.

3B.8 Pulse Velocity Determination

3B.8a Test Procedure

The instrument used in determining the pulse velocity

Sample Calculation 6

Test Series B

Unit Weight of Hardened Concrete

Test Cylinder SA8

Wt. of cylinder in air = W_A = 13,340 gms Wt. of cylinder in water = WW = 7,750 gms Volume of cylinder = $V = W_A - W_W$ = 13,340 - 7,750 = 5590 c.c. Specific gravity of cylinder = $\frac{W_A}{V} = \frac{13,340}{5,590}$ = 2.39

Since unit wt. of water

= 62.4 p.c.f.

unit wt. of test cylinder SA8 = 2.39×62.4 = 149.0 p.c.f.

Test Series B

Table 7

Concrete Unit Weights

Cylinder	Air Content	Method	Unit Weight (lbs./cu.ft.)		
NO.	(Plastic State) %	or curing	Plastic	Hardened 7-Dav	
······					
SA1	2.3	Water bath	148.0	150.0	
SA2		18	11	150.5	
SA7		Air	11	149.0	
SA8		B	la de la constante de la const La constante de la constante de	149.0	
SB1	3.2	Water bath	146.4	149.5	
SB2		u	H	149.5	
SB7		Air	u U	147.0	
SB8		11	u and an and a second sec	147.5	
SC1	3.0	Water bath	146.6	150.0	
SC2				150.0	
SC7		Air		147.0	
SC8			ана са селото на село Селото на селото на с Селото на селото на с	146.5	

of the test samples in Series B was the same as in Series A. The operation of the equipment is outlined in Appendix A.

3B.8b Pulse Velocity Readings

A typical calculation of pulse velocity is shown in Sample Calculation 7. Tables 8, 9, and 10 outline the individual pulse velocities of the three mixes tested in Test Series B.

Sample Calculation 7

Test Series B

Sample Calculation of Pulse Velocity

Cylinder SA4

Measured length of cylinder = L = 12.15"

Time taken for sonic wave to traverse length of cylinder = T = 64.5 microseconds

Pulse Velocity = $\frac{L}{T} = \frac{12.15}{12} \times \frac{1}{64.5} =$

.01570 ft./microsecond or 15,700 ft./sec.

Test Series B -- SA General Test Data

Cylinder No.	Method of Curing	Compr Streng 7-dav	essive th (psi) 28-dav	Pulse V (ft./sec 7-dav	'elocity . x 10 ³) 28-dav	E (psi x 10 ⁶)	E (elec. ck.) (psi x 10 ⁶)	E _D (psi x 10 ⁶)	Poisson's Ratio M
SA1	Water bath	5727		15.55		3.82		4.90	.18
SA2	, ti	5780		15.55					
SA3	51	5762		15.45					
SA4	H		6879		15.7	4.25		5.45	.15
SA5	II		6737		15.9				
SA6	H		6 879		16.1				
SA7	Air	5443		15.05				•	
SA8	II	5549		15.05					
SA9	B	5869		15.0		3.85		4.94	.18
SA10	11		6312		15.4	4.28	4.08	5.59	.16
SA11	11	• •	6276	e stationer	15.4	· · · · · ·			
SA12	88		6844		15.6				

46 -

47

Test Series B -- SB General Test Data

Cylinder No.	Method of Curing	Compr Streng 7-day	essive th (psi) 28-day	Pulse V (ft./sec 7-day	elocity . x 10 ³) 28-day	E (psi x 10 ⁶)	E (elec. ck.) (psi x 10 ⁶)	E _D (psi x 10 ⁶)	Poisson's Ratio M
SB1	Water bath	3954		14.35		3.26		4.18	0.21
SB2	IC.	3847		14.40					
SB3	80 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	3918	-	14.60	• •				
SB4	8		4663		15.45	3.34		4.28	0.20
SB5	H		5106		15.45				•
SB6	11 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -		4929		15.50				
SB7	Air	3635		14.00				•	
SB8	11	3830		13.90					
SB9	11	3706		13.85		3.14		4.03	0.21
SB10	11 11		4911		14.40	3.68	4.77	4.72	0.19
SB11	li I		4840		14.45			4	•
SB12	5 B (6) 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -		4716		14.45	•			

48

Test	Series	В	 SC	General	Test	Data

Cylinder No.	Method of Curing	Compr Streng 7-day	essive th (psi) 28-day	Pulse V (ft./sec 7-day	elocity . x 10 ³) 28-day	E (psi x 10 ⁶)	E (elec. ck.) (psi x 10 ⁶)	E _D (psi x 10 ⁶)	Poisson's Ratio M
SC1	Water bath	2004		13.90		2.92		3.74	0.25
SC2	11	2110		13.80					
SC3	I	2234		13.80					
SC4	n. Ali		3000		14.60	3.23		4.14	0.23
SC5	10		3289		15.10				
SC6	IL .		3121		15.10				
SC7	Åir	2145		13.15					
SC8	II	2145		13.15					
SC9	11	2199		13.15		2.61		3.35	0.25
SC10	U	1	3280		13.80	3.14	3.26	4.03	0.23
SC11	n ²		3050		13.65				
SC12	11		3156		13.80				

3B.9 Compressive Strength Determination

The test procedure followed in Test Series B was the same as in Test Series A. The compressive strengths of the test cylinders for each of the three mixes in Test Series B are given in Tables 8, 9, and 10 respectively.

49

3B.10 Strain Determination

The unit strain of the concrete under load was determined as in Test Series A. In addition to the mechanical (DEMEC) gauge readings, checks were conducted electrically using SR-4 strain gauges. The cylinders that these checks were made on were SA10, SB10, and SC10 - the 28-day air-cured cylinders from each of the three mixes. The gauges were glued to the cylinders as shown in Figure 15. The gauges were then wired to Budd strain indicators (Figure 16) and the strain readings taken directly.

A tabulation of both the mechanical and electrical strain readings is recorded in Appendix B.

BUDD ELECTRICAL STRAIN INDICATORS

- 51 -

CHAPTER IV

- 52 -

ANALYSIS OF TEST RESULTS AND CORRELATION

OF THESE RESULTS TO PULSE VELOCITY

4.1 Introduction

This chapter will initially deal with an analysis of the physical and mechanical properties of the concretes tested in the individual test series. The discussion will then be enlarged upon to correlate the pulse velocity readings to these properties.

IVA ANALYSIS OF TEST SERIES A

4A.1 Aggregates

The gradation of both the coarse and fine aggregate as shown separately in Figure 2 and Figure 3 - Chapter III, met the requirements as specified in CSA Standard A23.1-1967.

4A.2 Concrete Mix Designs

While the mixes were designed for absolute watercement ratios of 0.4, 0.6, and 0.8, some of the actual mixes were found too dry at these ratios. For this reason water was added to the batch and actual water-cement ratios were calculated and are as follows:

Ta	b1	е	1	1

	Designed Water- Cement Ratio	Actual Water- Cement Ratio
вра	0.40	0.43
BPB	0.60	0.60
BPC	0.80	0.81
· * · · · · · · · · · · · · · · · · · ·		

It can be seen that the ratios did not change appreciably and still gave a good range of concrete mixes to be tested.

4A.3 Unit Weights

The unit weight results as outlined in Table 3 -Chapter III, were predictable. In the plastic state the concrete with the lower water-cement ratio was more dense because of the higher cement content. This was verified in the test results where the densities were 150.8, 149.8, and 149.4 pounds per cubic foot for water-cement ratios of 0.43, 0.60, and 0.81 respectively.

After one day, tests on the hardened concrete generally showed that the unit weights increased slightly. This was due to volume changes resulting from the densification of the concrete. The densification or shrinkage of the concrete was observed physically upon investigation of the cylinder. During casting, the concrete was struck off level with the top of the cylinder. However, during the dissipation of the bleed water, the concrete surface was being slowly depressed and the higher the degree of bleeding, the larger the volume changes. From the test results it can be seen that there was very little difference between the plastic and one-day unit weights of the BPA mix. However, the BPB and BPC mixes showed a larger unit-weight change. This can be explained in that the BPA mix had very little bleeding when compared to the BPB and BPC mixes.

The 7-day unit weight checks again showed changes. However, while the wet cured cylinders showed increases in unit weights, the dry cured cylinders generally showed decreases. Since the voids in the wet cured cylinders would naturally be filled with water, an increase in unit weight would be expected. However, in the case of the dry cured cylinders, the increasing loss of moisture due to the drying out of the cylinder resulted in a general decrease in the unit weights.

4A.4 Strength Results

The results of the compression tests were predictable and are given in Tables 4, 5, and 6 - Chapter III, for the respective mixes. Cylinders with the lower water-cement ratios tested higher than those with higher ratios. Also, the wet cured cylinders generally tested higher than the dry cured. The method of curing, however, did not have as much affect on the BPA mixes as on the

· 54

weaker mixes. There was no appreciable difference in the strengths of the wet and dry cured cylinders for both the 7 and 28 day tests. An explanation for this could be that since hydration is a slow and continuing process as long as water is available, higher cement contents take longer to completely hydrate. After short duration curing there might be no appreciable difference in strength between high cement content mixes cured under different conditions. However, after long duration curing, three months to a year, high strength concrete cured under wet conditions would show higher strength gains in comparison to dry cured concrete.

4A.5 Determination of Young's Modulus of Elasticity

Concrete is not a truly elastic material, and the graphic stress-strain relationship for continuously increasing loading is generally in the form of a curved line. However, for concrete that has hardened thoroughly and has been moderately preloaded, the stress-strain curve is, for all practical purposes, a straight line within the range of usual working stresses. The stress-strain ratio determined from the virtually straight portion of the stress-strain curve is called the "modulus of elasticity". Usually, concretes of higher strength have higher elastic values, although modulus of elasticity is not directly proportional to strength⁽⁶⁾.

The stress-strain readings are tabulated in Appendix B.

- 55 -

The stress-strain relationship was graphed for two cylinders, namely BPA4 and BPC10, and are shown in Figure 17. The calculations to determine "E" for BPA4 and BPC10 are given in Sample Calculation 8. E values were determined for the other cylinders in a similar manner and a complete tabulation of E values is shown in Tables 4, 5, and 6 - Chapter III, for the three separate mixes.

A satisfactory range in E values was obtained with a value of approximately 5.0×10^6 psi calculated for the BPA higher strength concrete as compared to approximately 3.7×10^6 psi for the BPC lower strength concrete. These results fall in the range of elastic moduli for ordinary concretes which range from 2.0×10^6 psi to 6.0×10^6 psi⁽⁶⁾.

A check was made on the graphed E values using the following empirical equation developed by Adrian Pauw of the University of Illinois.

 $E = 33 \sqrt{\frac{9^3 f_1^3}{c}} - \frac{1}{c} - - - -$

where E = static modulus of elasticity of concrete (psi)

- P = unit weight of concrete (p
- f_c = ultimate strength of concrete (psi)

A typical calculation is shown in Sample Calculation 9 and a comparison of the check values to the graphed values is shown

- 56 -

(p.c.f.)

Sample Calculation 8

Typical Calculations in Determining

Modulus of Elasticity

Modulus of Elasticity is defined as the slope of the straight portion of the stress-strain curve. Therefore, two points on the straight portion of the curves in Figure 17 were used as follows:

Test Cylinder BPA4

Stress (psi) 0 0 2123 430

Modulus of Elasticity = E = $\frac{2123}{430 \times 10^{-6}}$ = 4.95 x 10⁶ psi

Test Cylinder BPC10

Stress (psi) 708 2300 5train (in./in. x 10⁻⁶) 216 756

 $= \frac{\text{Stress}}{\text{Strain}} = \frac{2300 - 708}{(756 - 216) \times 10^{-6}} = 2.96 \times 10^{6} \text{ psi}$

in Table 12. While there is some discrepency in a couple of the values, the comparisons are generally within acceptable limits.

Sample Calculation 9

Check on Modulus of Elasticity Values

Cylinder BPA1

From the equation $E = 33 \sqrt{\rho^3 f'_c}$

For cylinder BPA1 c = 151.8 p.c.f. f'_c = 5089 psi

 $\therefore E = 33 \sqrt{151.8^3 (5089)} = 4.39 \times 10^6 \text{ psi}$
Table 12

Comparison of Modulus of Elasticity Values

- 60 -

Cylinder No.	Measured E (x 10 ⁶ psi)	Checked E (x 10 ⁶ psi)
BPA1	4.19	4.39
BPA4	4.95	4.80
BPA9	4.10	4.46
BPA10	5.04	4.79
BPB1	3.60	3.83
BPB4	4.23	4.29
BPB9	3.91	3.76
BPB10	4.23	4.22
BPC1	3.60	3.24
BPC4	4.46	3.77
BPC9	2.02	2.98
BPC10	2.96	3.42

IVB ANALYSIS OF TEST SERIES B

4B.1 Aggregates

The gradation of both the coarse and fine aggregate as shown respectively in Figures 10 and 11 - Chapter III, met the requirements as specified in CSA Standard A23.1-1967. The dry bulk specific gravity of the coarse aggregate in Series B was somewhat lower than that of Series A. (2.638 as compared to 2.580)

- 61 -

4B.2 Concrete Mix Designs

In all the three mixes (SA, SB, and SC) the water contents in the final batch weights were adjusted slightly. These adjustments were made in order to produce a more workable mix. A comparison between the design and actual water-cement ratios is as follows:

Table 13

Mix	Design W/C	Actual W/C
SA	0.40	0.39
SB	0.62	0.64
SC	0.82	0.81

Comparison of Water-Cement Ratios

As in Test Series A, the slight change in water-cement ratios did not deter from the over-all range of mixes tested.

- 62 -

4B.3 Unit Weights

The unit weights of the concrete in Test Series B, as outlined in Table 7 - Chapter III, in both the plastic and hardened states were somewhat lower than those of Test Series A. This can be attributed to two factors:

- The specific gravity of the coarse aggregate used in Series B was lower.
- ii) The air contents of the plastic concrete were slightly higher in Series B.

In general, the lower the water-cement ratio the denser the concrete. This is attributed to the densifying effect of the higher cement contents. However, in Test Series B there was one slight reversal. Mix SC, with a water-cement ratio of 0.81, had a plastic unit weight of 146.6 p.c.f. while mix SB, with a water-cement ratio of 0.64, had a plastic unit weight of 146.4. Since this is only a slight difference, it could be attributed to the testing. However, upon further investigation, it was noted that the air content of mix SB was higher than that of mix SC (3.2% as compared to 3.0%). This higher air content contributed to the lower unit weight of mix SB. The unit weights of the hardened concrete proved interesting also. While the values, as tabulated in Table 7 -Chapter III, did not fluctuate appreciably between the various mixes, the air cured cylinder densities were lower than the wet cured. This difference was due to the voids in the concrete being filled with water in the wet cured cylinders while the air cured cylinders were slowly losing moisture through drying. The effect of cement content on unit weight was brought out in the dry cured cylinders with SA8 having a higher unit weight than SC8 (149.0 p.c.f. as compared to 146.5 p.c.f.)

- 63

4B.4 Strength Results

The results of the compression tests are given in Tables 8, 9, and 10 - Chapter III, for the respective mixes. As expected, cylinders with the lower water-cement ratios tested higher than those with higher ratios. A good range of strengths was obtained with the SA, SB, and SC 28-day wet cured strengths approximately 6700, 4900, and 3200 psi respectively.

4B.5 Determination of Young's Modulus of Elasticity

The modulus of elasticity was determined for the various concrete mixes in Test Series B. The stress-strain readings are tabulated in Appendix B. The stress-strain relationship was graphed for two cylinders, namely SA10 and SB9. These are shown in Figure 18. E values of 4.28×10^6 psi and 3.14×10^6 psi respectively were calculated. In addition, the stress-strain relationship obtained by electrical methods was plotted as a check for cylinder SA10. The E value checked very closely at 4.08×10^6 psi. Calculations for the above values are shown in Sample Calculation 10.

E values were determined for the other cylinders in a similar manner and a complete tabulation of E values is shown in Tables 8, 9, and 10 - Chapter III, for the respective mixes.

Additionally, a check was made on the graphed E values using the following equation developed by Adrian Pauw of the University of Illinois.

$$E = 33 \sqrt{\rho^3 f'_c}$$

Where E = static modulus of elasticity of concrete (psi)

 ρ = unit weight of concrete (p.c.f.)

 f'_c = ultimate compressive strength of concrete (psi)

A typical calculation is given in Sample Calculation 11 and a comparison of the check values to the graphed values is shown in Table 14. The comparisons are, in general, within acceptable limits.

Sample Calculation 10

Typical Calculations in Determining Modulus of Elasticity

Modulus of Elasticity is defined as the slope of the straight portion of the stress-strain curve. Therefore, two points on the straight portion of the curves in Figure 18 were used as follows:

Test Cylinder SA10

Ε

E

Stress (psi)			Strair	n (in.	/in.	x 10	-6)
0						0		
3185		1				746		
$= \frac{31}{746 \text{ x}}$	85 10 ⁻⁶	= 4	.28 x	10 ⁶ psi				

Test Cylinder SA10 (SR-4 strain gauge check)

Stress	(psi)		Strain	(in./i	n. x 10 ⁻⁶
354				12	5
3539				90	9

 $= \frac{3539 - 354}{(909 - 125) \times 10^{-6}} = 4.08 \times 10^{6} \text{ psi}$

Sample Calculation 10 Cont'd.

Table 14

Comparison of Modulus of Elasticity Values

SA1 3.82 4.61 SA4 4.25 5.04 SA9 3.85 4.60 SA10 4.28 4.77 SB1 3.26 3.79 SB4 3.34 4.13 SB9 3.14 3.62 SB10 3.68 4.17	
SA4 4.25 5.04 SA9 3.85 4.60 SA10 4.28 4.77 SB1 3.26 3.79 SB4 3.34 4.13 SB9 3.14 3.62 SB10 3.68 4.17	
SA9 3.85 4.60 SA10 4.28 4.77 SB1 3.26 3.79 SB4 3.34 4.13 SB9 3.14 3.62 SB10 3.68 4.17	
SA10 4.28 4.77 SB1 3.26 3.79 SB4 3.34 4.13 SB9 3.14 3.62 SB10 3.68 4.17	
SB1 3.26 3.79 SB4 3.34 4.13 SB9 3.14 3.62 SB10 3.68 4.17	
SB1 3.26 3.79 SB4 3.34 4.13 SB9 3.14 3.62 SB10 3.68 4.17	
SB4 3.34 4.13 SB9 3.14 3.62 SB10 3.68 4.17	
SB9 3.14 3.62 SB10 3.68 4.17	
SB10 . 4.17	
SC1 2.92 2.72	
SC4 3.23 3.33	
SC9 2.61 2.77	
SC10 3.14 3.38	1

68 -

Sample Calculation 11

Check on Modulus of Elasticity Values

Cylinder SA1

From the equation $E = 33 \sqrt{\rho^3 f'_c}$

For cylinder BPA1 ρ = 150.5 p.c.f.

f' = 5720 psi

$$E = 33 \sqrt{150.5^3 (5720)} = 4.61 \times 10^6 \text{ psi}$$

IVC CORRELATION OF TEST RESULTS TO PULSE VELOCITY

4C.1 Introduction

While the first two segments of this chapter dealt with an analysis of the physical and mechanical properties of the respective concretes tested, the discussion will now be enlarged upon to correlate the pulse velocity readings to these properties.

4C.2 Pulse Velocity Vs. Strength

A relationship of pulse velocity to compressive stength for the two test series is shown in Figure 19 and Figure 20 for the wet and dry cylinders respectively. While there is a tendency for concretes of higher strengths to have higher pulse velocities, no overall relationship can be established. One distinct observation

RELATIONSHIP OF PULSE VELOCITY TO COMPRESSIVE STRENGTH FOR DRY CONCRETE SPECIMENS

was made in that the "S" concretes had lower pulse velocities that the "BP" concretes. The differences ranged from as low as 200 ft./ sec. for the "A" mixes to as high as 1400 ft./sec. for the "C" mixes.

A relationship was established for the various mixes, but this relationship was dependant on the heterogeneous, inelastic properties of the concrete. However, a general relationship could not be established for the mixes as a whole. This would indicate that the mix design of a concrete must be known before a pulse velocity-strength relationship can be applied.

4C.3 Pulse Velocity Vs. Density

Concrete, being a heterogeneous material, is made up of coarse aggregate, a cement-sand mortar, and an air void structure. The density of the concrete is naturally dependant on the proportioning of the above. However, if the aggregate is held constant, lower densities are usually related to the air void structure and water-cement ratio of the concrete. In otherwords, an increase in air content will decrease the density. In the sonic test method, pulses are not transmitted through air voids and if such a void lies in the pulse path, the instrument will indicate the time taken by the pulse to circumvent the void. Therefore, the higher the void structure the longer the time taken by the pulse to travel through the concrete specimen and the lower the pulse velocity.

- 72 -

Differences in densities can be attributed to the following factors:

- 73

i) Coarse Aggregate

Research has shown that both the amount of coarse aggregate used in any mix as well as the specific gravity of the coarse aggregate have an affect on the pulse velocity ⁽⁵⁾. Aggregates with lower specific gravities have shown to contribute to lower pulse velocities. This was borne out in this investigation since the "S" coarse aggregate did have a lower specific gravity then the "BP" coarse aggregate and the "S" pulse velocities were lower.

However, probably more important than the specific gravity of the coarse aggregate would be the gradation of the coarse aggregate. Both the amount and gradation of the coarse aggregate would affect the amount of cement-sand mortar used. The volume of mortar would determine the air void structure which in turn would have an affect on the density and pulse velocity of the concrete. Therefore, while the amount of the coarse aggregate was held constant throughout Test Series A and Test Series B, differences in gradation between aggregate "S" and aggregate "BP" could change the volume of mortar and thereby affect the void structure and pulse velocity. Also, variations in specific gravity between aggregates is usually associated with the void structure within the aggregate. Therefore, an aggregate with a lower specific gravity, such as the "S" aggregate, could have a higher void structure which, in turn, would contribute to lower pulse velocity readings.

ii) Air Content

As already explained, an increase in air content usually results in a decrease in density. In comparing the unit weights in the plastic state of Test Series A (Table 3 - Chapter III) to Test Series B (Table 7 -Chapter III), it can be observed that the "S" mixes have slightly lower densities. However, the air contents of the "S" mixes were slightly higher than those of the "BP" mixes. The increased air contents partially contributed to the lower densities in Test Series B and the increased air void structure, in turn, contributed to the reduced pulse velocity readings.

iii) Moisture Content

A comparison between Figure 19, the relationship of pulse velocity to compressive strength for saturated concrete specimens, and Figure 20, the same relationship for dry concrete specimens, shows that the pulse velocity readings on the dry cylinders were generally lower. This can be explained in that the saturated specimens offered less resistance to the pulse wave being transmitted through the concrete. Since the

- 74

air voids were filled with water, the pulse wave did not have to circumvent the void but could pass right through it. The shorter transit time of the pulse resulted in higher pulse velocities. Jones has suggested that the dry readings can be from 10 to 15 percent lower (7). The results of this study showed a 5 - 10 percent difference in pulse velocity values between the wet and dry cylinders, but only for the B and C mixes of each series. The A mixes showed very little variation. Since the A mixes were richer in cement content, more of the mixing water could be used in the hydration process. Therefore, there would be less water available for bleeding and evaporation resulting in less voids. Because of the lesser void structure, variations in moisture content of the hardened concrete would have a lesser affect on the densities and pulse velocities since there would be fewer voids for the water to exist.

As occurred with compressive strength, no direct relationship could be developed between pulse velocity and density. In comparing the 7-day unit weights for Test Series A in Table 3 - Chapter III, and Test Series B in Table 7 - Chapter III, the only appreciable difference in unit weights is between the wet cured and dry cured cylinders. In fact, for all intents and purposes, the unit weights of the three wet cured mixes of the respective series are equal.

- 75 -

4C.5 Development of a Relationship Between Pulse Velocity, Modulus of Elasticity and Density

- 76 -

The classical formula for the velocity of a pulse travelling in an elastic solid is ⁽⁵⁾:

 $V = \sqrt{\frac{E}{Q}} \qquad ---- \qquad (1)$

Where V = pulse velocity

E = Young's modulus of elasticity

 ρ = density of the material

The velocity of sound propagation through homogeneous elastic materials such as metals is usually considered a standard and will vary only with changes in the alloy. However, with a highly heterogeneous, inelastic material such as concrete, no set standard can be established and equation (1) would not necessarily apply. For example, equation (1) indicates that a reduction in density would result in an increase in pulse velocity providing E is held constant. However, both past research and the test results of this study show that a reduction in density of concrete usually brings about a reduction in pulse velocity. As discussed earlier, an increase in the air void struction of the concrete would reduce the density and also the pulse velocity. This fact was brought out in the difference in pulse velocities between the dry and wet cylinders. The dry cylinders naturally had more air voids and also recorded lower pulse velocities.

- 77 ·

Equation (1) also indicates that the pulse velocity would be directly proportional to the square root of the modulus of elasticity. The tests results of this study indicated that while the concretes with the higher compressive strengths, and therefore the higher moduli of elasticities, generally produced higher pulse velocities, no general relationship could be established.

Since changes in strength and density were not reflected in pulse velocity changes in accordance with equation (1), modifications to the equation have been developed⁽⁸⁾ resulting in the following equation:

$$E_{\rm D} = V^2 \rho \frac{(1 + \mu)(1 - 2 \mu)}{(1 - \mu)} - - - - - (2)$$

Where

E_D = dynamic modulus of elasticity

- V = pulse velocity
- P = density of concrete

 \mathcal{M} = Poisson's ratio

Two of the unkowns in equation (2) are the dynamic modulus of elasticity and poisson's ratio. The determination of these factors for each of the mixes in question was as follows: Determination of Dynamic Modulus of Elasticity

The dynamic modulus of elasticity is normally determined on laboratory specimens subjected to longitudinal vibration at their natural frequency ⁽¹⁾. However, research has been done on the comparison between static and dynamic modulus of elasticity. Takabayashi ⁽⁹⁾ has shown that the ratio of the static to dynamic modulus is higher the higher the strength of concrete. However, the degree of ratio change is more pronounced for concretes under 2000 psi. Once the concrete strengths exceed 2000 psi, the ratio of static to dynamic modulus is steady at 0.78. By applying this ratio to the measured static moduli, it was felt that the calculated dynamic moduli would provide an accuracy within the limitations of this study.

Therefore, the dynamic modulus of elasticity was calculated for each of the mixes tested using the following relationship:

$$E_{\rm D} = \frac{E}{0.78}$$

Where

E

E_D = dynamic modulus of elasticity

= static modulus of elasticity (measured)

The dynamic moduli for the respective cylinders in Test Series A are tabulated in Tables 4, 5, and 6 - Chapter III and for Test Series B in Tables 8, 9, and 10 - Chapter III. Determination of Poisson's Ratio

Poisson's ratio is defined as the ratio between the lateral strain accompanying an applied axial strain. Because lateral strains were not measured in this test program, it was felt that existing relationships between strength of concrete and poisson's ratio could be used without adversely affecting the accuracy of the findings. Neville states that poisson's ratio varies in the range 0.11 to 0.21 for ordinary concrete $\binom{1}{}$. Strength values of 9000 psi and 4000 psi were applied to the 0.11 and 0.21 ratios respectively. The relationship developed between poisson's ratio and compressive strength using the above values is shown in Figure 21.

- 79 -

From this graph, poisson's ratio was determined for each of the test cylinders in question in both Test Series A and Test Series B. The values are given in Tables 4, 5, and 6 -Chapter III for Test Series A, and Tables 8, 9, and 10 - Chapter III for Test Series B.

Once the dynamic modulus of elasticity and poisson's ratio were determined for the various mixes, there were no unknowns in equation (2). However, upon examination it was found that the equation could not be balanced. This was predictable since it has already been established that a direct relationship did not exist between pulse velocity, density and modulus of elasticity.

4C.6 Introduction of K Factor

The fact that a relationship between pulse velocity and the properties of any given mix could be established while an overall relationship could not be established, emphasizes the importance of how changes in mix design can affect pulse velocity readings. It appears that by adjusting a mix, changes in the void structure take place. This change in void structure depends on the gradation of the coarse and fine aggregate and the amount of cement and water used. Since no general relationship could be established for a range of mix designs, a K factor was introduced into equation (2) to allow for the inelastic properties exhibited by concrete and how these properties can have different effects on different mixes.

81

By introducing a K factor, equation (2) becomes:

$$E_{\rm D} = K \rho V^2 \frac{(1 + \mu) (1 - 2 \mu)}{(1 - \mu)} - - - - - (3)$$

Where

- E_D = dynamic modulus of elasticity (psi)
- V = pulse velocity (fps)
- \mathcal{M} = Poisson's ratio

K = constant

The K factor, as well as allowing for the inelastic properties of the concrete, also allows the equation to be balanced with respect to units.

4C.7 Determination of K Factors for Concretes Investigated

By substituting the known factors into equation (3), a K factor was calculated for each mix design under the various conditions tested in both Test Series A and Test Series B. Typical calculations are shown in Sample Calculation 12 and the K factors for the various mixes are tabulated in Table 15.

Sample Calculation 12

K Factor Determination

 $\frac{\text{Test Series A - Cylinder BPA1}}{\text{E}_{D}} = K V^{2} Q \frac{(1 + \mu) (1 - 2 \mu)}{(1 - \mu)}$ $5.37 \times 10^{6} = K (16.05 \times 10^{3})^{2} (151.8) \frac{(1 + .19) (1 - .38)}{(1 - .19)}$ $K = \frac{5.37}{258 (151.8) (0.91)}$ $K = 1.51 \times 10^{-4}$

Test Series B - Cylinder SAl

$$E_{\rm D} = K V^2 \rho \frac{(1 + M) (1 - 2M)}{(1 - M)}$$

$$4.90 \times 10^6 = K (15.55 \times 10^3)^2 (150.0) \frac{(1 + .18) (1 - .36)}{(1 - .18)}$$

$$K = \frac{4.90}{242 (150.0) (0.92)}$$

 $K = 1.47 \times 10^{-4}$

Tabulation of K Factors

,Test Series	Cylinder No.	Age (Days)	Method of Curing	K Factor (x 10 ⁻⁴)
A	BPA1	7	Wet	1.51
	BPA4	28	II	1.68
	BPA9	7	Dry	1.51
	BPA10	28	11	1.88
Α	BPB1	7	Wet	1.41
	BPB4	28	n an an Anna a Anna an Anna an	1.55
	BPB9	7	Dry	1.60
	BPB10	28	1	1.69
			1	
A	BPC1	7	Wet	1.46
	BPC4	28	n n	1.74
	BPC9	7	Dry	0.92
	BPC10	28	\mathbf{n}_{i} , where \mathbf{n}_{i}	1.29
B	SA1	7	Wet	1.47
	SA4	28	B	1.54
	SA9	7	Dry	1.61
	SA10	28	u .	1.67
В	SB1	7	Wet	1.53
	SB4	28	U .	1.34
	SB9	7	Dry	1.59
	SB10	28	u	1.69
В	SC1	7	Wet	1.54
	SC4	28	$\mathbf{H} = \{\mathbf{u}_i, \dots, \mathbf{u}_{i+1}, \dots, $	1.51
	SC9	7	Dry	1.57
	SC10	28		1.67

4C.8 Analysis of K Factor Results

An analysis of the K factors as tabulated in Table 15 tend to indicate that no single K value could be applied to all mixes. Except for a couple of Test Series A readings, there is a general trend for the K factors for the dry concrete specimens to be higher than those for the wet specimens. Also, a pattern seems to have developed in the Test Series B results in that the K factors of the 28-day dry cylinders for each of the three mixes are approximately equal.

ie.	SA10 =	1.67
	SB10 =	1.69
	SC10 =	1.67

This pattern is repeated in the 7-day dry cylinders

ie.	SA9	=	1.61
· · ·	SB9	, =	1.59
	SC9		1.57

and also in the 7-day wet cylinders

ie.	SA1	=	1.47
	SB1	=	1.53
	SC1	=	1.54

However, this pattern did not occur in the 28-day wet cylinders in Test Series B or anywhere in Test Series A. Since the accuracy and methods of testing were the same in Series A as in Series B, no conclusions can be drawn as to the establishment of a single K factor over a range of mixes. Considerably more testing would have to be conducted in order to discover whether a relationship between K factors as occurred in Test Series B really does exist. However, the scope of this study indicates that a K factor must be established for each mix design. Also, the age and moisture content of the concrete must be known before applying a K factor.

IVD POSSIBLE SOURCE OF ERRORS IN TESTING

While extreme care was taken throughout the test program in order to ensure accurate test results, there was always the possibility, as in all test programs, that errors could have affected the results.

Since large volume batching (4 - 6 cu. yds./batch) was used for each concrete mix, it was felt that this diminished the possibility of the samples not being representative of the design. There was always the possibility that hairline cracks could have developed in the test cylinders while they were being transported and stripped after one-day's curing. However, this would have shown up in either the compression or pulse velocity tests. This was not obviously evident.

One possible source of error could have occurred in obtaining the pulse velocity readings. If there was not adequate

- 86 -

acoustical coupling between the concrete and the face of each transducer, the signal curve displayed on the oscilloscope would not be as sharp in that it would be considerably flattened. Since the reading was taken when the trace leaves the horizontal, the flattened signal curve would make this point harder to detect. Most of the cylinder surfaces were sufficiently smooth to ensure good accoustical contact by the use of a coupling medium and by pressing the transducer against the concrete surface. The coupling medium used was simply a liquid soap. However, a few of the cylinders had one rough surface. This resulted in a flattened signal curve and made it difficult to determine an accurate pulse velocity.

- 87 ·

Another source of error could have occurred in the strain readings obtained by means of the mechanical strain gauges. Since the gauges were meant to be held with the hand, this was the method used initially. However, it soon became apparent that the discrepancies in readings between the two gauges was mainly due to the firmness with which the respective gauges were being held. The slightest movement of the hand caused the gauge readings to jump. Before too long it was decided to fasten the gauges snugly to the cylinder by means of elastic bands (Figure 9 - Chapter III). This proved satisfactory since no more large jumps in gauge readings occurred. The affected readings were the BP-7 day tests. However, while these jumps did occur, this was taken into consideration in calculating E values for the cylinders in guestion.

CHAPTER V

- 88 -

CONCLUSIONS OF THE STUDY AND APPLICATIONS

OF PULSE VELOCITY METHODS

5.1 Conclusions of Study Findings

While it was originally hoped to attain a single relationship between pulse velocity and concrete strength over a wide range of mix designs, this could not be clearly established. The classical formula for a pulse travelling in a homogeneous elastic solid (5),

$$V = \sqrt{\frac{E}{Q}} \qquad ---- \qquad (1)$$

cannot be directly applied to concrete. The primary reason for this is that concrete, rather than being homogeneous and elastic is heterogeneous and inelastic. By using a developed modification (8) to equation (1) and including a K factor to allow for the inelastic properties of different mixes, the following equation was used:

$$E_{D} = K V^{2} Q \frac{(1 + M)(1 - 2M)}{(1 - M)}$$

Upon solving for K for the individual mixes, a wide range of K values was obtained (Table 15 - Chapter IV). Even though a certain degree of agreement exists between K factors for the various mixes in Test Series B, no definite conclusions can be drawn as to the establishment of a constant K factor over a range of mix designs. Until further research definitely proves otherwise, it is the author's opinion that a K factor must be determined for each concrete mix, taking into consideration the age and moisture content of the concrete, before pulse velocity methods can be appied.

The study has also shown the importance of knowing the moisture content of a concrete before pulse velocity methods can be applied. Pulse velocity readings on the wet cylinders ranged up to 10 percent higher than on the dry cylinders. Therefore, if the moisture content was disregarded, a wrong correlation between pulse velocity and concrete quality could be made.

While sonic testing methods do have a place in the evaluation of the quality of a concrete section, it is the author's opinion that the test should only be used in conjunction with existing methods of concrete evaluation. In some instances the use of sonic testing procedures may materially reduce the number of other tests, such as compressive strength tests, which might otherwise have to be performed. In other instances the use of sonic techniques may permit the testing of a great many more units or a much greater portion of a structure than would be possible or practicable by other techniques (10). As already stated, correlations between sonic test results and the concrete property to be evaluated must be established through tests on concrete as nearly identical to that under study as possible. If a section of concrete

- 89 -

is found to be substandard by pulse velocity methods, established methods, such as coring, should be used to verify the pulse velocity findings.

In conclusion, it may be stated that sonic tests are not substitutes for other tests normally performed on concrete. The sonic tests do provide excellent tools for the extension of evaluations based on other tests of concrete to specimens or structures which are not themselves tested in another manner. They provide an unparalleled tool for evaluating the uniformity of concrete specimens or structures. They constitute no cure-all for the problems of the concrete testing engineer, but do constitute a valuable addition to the techniques available to him (10).

5.2 Recommended Applications of Pulse Velocity Methods

Following is a breakdown of a number of areas where pulse velocity methods can be effectively applied.

5.2a Quality Control in Precast Plants

Pulse velocity methods can be used for quality control in precast concrete plants. Sonic readings can first be correlated to the required mechanical and physical characteristics of the concrete by means of test specimens. This correlation can be a function of strength, moisture content, mix design, and setting characteristics of the concrete. Pulse velocity methods can then be used to effectively detect daily changes in the mix that may be caused by lack of compac-

- 90 -

tion or change in water-cement ratio. The method can also be used as a tool for the determination of early age strength characteristics. Since the method is non-destructive, a number of tests can be conducted at various sections along a precast member. In this way, any changes and possible weaknesses in the quality of the concrete can be pinpointed.

5.2b <u>"On-Site" Concrete Evaluation - New Construction</u>

Applications where pulse velocity methods can be utilized for structural evaluation of concrete being placed on the job are unlimited. As in the precast plant, the desired physical and mechanical characteristics of the concrete must be correlated to the pulse velocity of the concrete supplied from the batch plant.

Some applications where pulse velocity methods can be used are as follows:

- i) Cast-in-Place reinforced concrete beams and columns. Investigations could be made in areas of high deflection and at connections.
- ii) Pilings and caissons above and below ground as well as below water.
- iii) Wall and floor assemblies, which can be tested either with both transducers on the same surface or on opposing surfaces.

iv) All elements of bridge construction.

A practical application of the pulse velocity test could be to evaluate the action of either an accelerating admixture or a high early strength cement. This evaluation could enable the early removal of forms in jobs where repeated use of forms is desired. The soundness of the concrete could also be evaluated to determine whether future phases of construction, that depend on the soundness of the concrete under test, could proceed.

Another application for "on-site" concrete evaluation is the use of velocity measurements to determine that adequate consolidation and filling of deep forms has been accomplished⁽⁵⁾. In this case, velocity can be measured directly through the forms. Common concrete discontinuities such as "honey-combing", segregation, inadequate compaction and voids can be detected by pulse velocity measurements. The use of the ultrasonic pulse technique for locating the above mentioned defects in concrete is based on the negligible transmission of ultrasonic energy across a concrete-air interface. Thus, any air-filled void lying immediately between two transducers will obstruct the direct ultrasonic beam and will produce lower pulse velocity readings. Completely filled forms with desired consolidation yield maximum velocity readings.

- 92 -

5.2c Evaluation of the Soundness of Existing Concrete Structures

While the findings of this study have indicated that the physical and mechanical characteristics of a concrete should be known before sonic pulse methods can be applied, there are limited uses for the test method for concrete of unknown properties. While strength determinations could not be made since this study has shown that minor or no changes in pulse velocity could be applied to a large range of strengths depending on the mix design, large discrepancies in "in-service" concrete quality and soundness could be located. For example, a number of readings could be taken along the face of a retaining wall. If the readings are uniform then a conclusion could be drawn that the concrete is sound. However, if any extremely low readings occur, this could be evaluated as a weak section in the wall. This weak section could be in the form of a crack or a void.

In addition to retaining walls, other evaluations on existing concrete structures could be made on:

- i) Existing pilings and caissons.
- ii) Roadways where tests could be made either across joints or in the middle of the slab.
- iii) Water reservoir walls, both above and below ground.
- iv) Hydroelectric structures such as dams, powerhouses, penstocks and gate structures.

- 93 -

CHAPTER VI

- 95 -

SUMMARY OF CONCLUSIONS AND RECOMMENDATIONS

FOR FUTURE RESEARCH

6.1 Summary of Conclusions

A) Separate pulse velocity relationships exist for individual mixes, however, a general relationship encompassing a full range of mix designs cannot be established.

B) Because concrete is not an elastic, homogeneous solid, the classical formula for a pulse travelling in an elastic, homogeneous solid $V = \sqrt{\frac{E}{\rho}}$

must be modified by means of a K factor to allow for changes in the inelastic, heterogeneous properties of different concretes.

C) A correlation between pulse velocity readings and the mechanical and physical properties of a concrete must be known before pulse velocity methods can be applied.

D) The moisture content and age of the concrete to be tested must also be known before a pulse velocity analysis can be made.

E) Sonic testing methods should only be used as an extension of existing methods of concrete evaluation and not as a substitute.
F) Sonic methods could be most effectively used as a quality control tool. However, their results should never be used as a basis for rejecting work. Established test methods should be employed to verify sections of questionable quality until more confidence can be achieved with pulse velocity methods. This could be accomplished through more research into the interpretation of results.

- 96 -

6.2 <u>Recommendations for Future Research</u>

This study has indicated that changes in either mix design or materials can have an effect on pulse velocity. Since the investigation was limited to two aggregate sources utilizing three mix designs with each, it is suggested that further research could be done on additional aggregates and by again varying the mix design. Both the aggregates and the mix designs should be confined to what is being used in the Winnipeg area. Only by restricting the research to local concretes until a good statistical correlation is developed, will it ever be possible to utilize sonic methods locally with confidence.

Future research could also include an investigation into an application of pulse velocity methods in determining the resistance of concretes to freeze-thaw. A method is already suggested in A.S.T.M. Specification C666 employing resonance methods using the following equation:

CN² P En Ξ

Where

 E_D = dynamic modulus of elasticity

C = constant factor

N = resonant frequency of concrete

P = density of concrete

The application of the above equation is discussed in A.S.T.M. Sepcification C215.

- 97 -

Basically the test correlates resonant frequency to dynamic modulus of elasticity of the concrete before the initial freeze-thaw cycle. The concrete is then subjected to freeze-thaw cylces and the resonant frequency is measured periodically. When the resonant frequency is such that the dynamic modulus is calculated at 60 percent of the initial, using the above equation, the test is terminated. It should be possible to correlate sonic pulse velocity readings to resonant frequency readings since they are both measuring the same concrete properties. By conducting a research program, it may be found possible to substitute pulse velocity methods into the forementioned freeze-thaw specification with positive results.

Another area where research could be applied would be

in an actual quality control situation such as in a precast plant. For example, the required properties of a given mix could be correlated to pulse velocity. This could be accomplished by running sonic checks on the test cylinders that are normally taken during production. A good correlation to destructive testing could then be made and this correlation could be used in determining the quality of the concrete in the precast member. By periodically taking cores from the member when possible, a further check can be made. By continuously refining the correlation over a large number of tests, an extremely reliable method of rapid non-destructive testing could be achieved.

In conclusion, it is the author's considered opinion that further research into the correlation between pulse velocity and the various physical and mechanical properties of concretes will ultimately yield a reliable non-destructive test method of quickly evaluating the quality of these concretes.

- 98 -

ACKNOWLEDGMENTS

- 99 -

The writer would like to thank all those who have assisted in making this thesis possible. He appreciated the guidance of Prof. J. D. Wiebe and Dr. B. N. Thadani who both took part in supervising the work.

He is most grateful to Building Products and Supercrete, the two ready-mix companies who made their facilities and staff available to provide test samples that were representative of concrete going into the local market.

Special consideration must be given to M. Block and Associates whose laboratory and test equipment was used throughout the program. Sincere thanks are especially extended to Mr. A. F. ("Paddy") McLellen, P. Eng., of this firm, whose comments and advice were very much appreciated.

Finally, the writer would like to extend thanks to his employer, Inland Cement Industries Limited. Without their interest and the liberties they allowed in providing time to carry out the investigations, this thesis would not have been possible.

BIBLIOGRAPHY

- 1) Neville, A. M. "Properties of Concrete" Pitman Publishing pp. 422 - 428 and pp. 280 - 282
- 2) Jones, R. and Facaoaru, I.

"Recommendations for Testing Concrete by the Ultrasonic Pulse Method" Magazine of Materials and Structures R.I.L.E.M. July-August 1969 pp. 276

- 3) Whitehurst, E. A. "Soniscope Tests Concrete Structures" Journal American Concrete Institute 47 pp. 433 - 444 (February 1951)
- Jones, R. and Gatfield, E. N.

"Testing Concrete by an Ultrasonic Pulse Technique" D.S.I.R., Road Research Tech. Paper No. 34 (London, H.M.S.O., 1955)

5) Muenow, R. A.

"Nondestructive Testing of Members" Magazine of Public Works - November 1966

6) United States Department "Concrete Manual" of the Interior - Bureau Seventh Edition pp. 27 of Reclamation 7) Jones, R. and Wright, P. J. F. "Some Problems Involved in Destructive and Non-Destructive Testing of Concrete" Proc. of a Symposium on Mix Design and Quality Control of Concrete pp. 441 - 450 (London Cement and Concrete Assoc.,1954)

Long, B. G.,
Kurtz, H. J. and
Sandenaw, T. A.

9) Takabayashi, T.

"An Instrument and a Technique for Field Determination of the Modulus of Elasticity and Flexural Strength of Concrete" A.C.I. Journal, Proceedings V.41, No. 3, January 1945 pp. 217 - 232

"Comparison of Dynamic Young's Modulus and Static Young's Modulus for Concrete" R.I.L.E.M. Int. Symposium on Non-Destructive Testing of Materials and Structures (1954) pp. 34 - 44

10) Whitehurst, E. A.

"Evaluation of Concrete Properties from Sonic Testing" American Concrete Institute pp. 82

APPENDIX A

- 102 -

BASIC OPERATION OF THE JAMES V-SCOPE

A diagram of the instrument panel is shown in Figure 22.

The start-up procedure for operating the V-scope is

as follows:

- Before plugging the instrument into the power source, the controls must be adjusted as follows:
 - a) The TIME control is turned until digital counter reads zero.
 - b) The INPUT GAIN control is turned to extreme counterclockwise position.
 - c) The RANGE selector switch is turned to 1K position.
 - d) The CAL-LOW-MED-HIGH-ACC power control is set to LOW position.
 - e) The OFF-HEATER-USE selector is set to OFF position.
 - f) The SET TO 120V control is turned completely counterclockwise.
- The coaxial cables are attached to the transducers and then to the connectors on rear of V-scope.
- The line cord is plugged into rear of instrument and into 120V power supply.
- 4) The OFF-HEATER-USE control is turned to HEATER position.

- 5) The SET TO 120V control is turned clockwise until voltmeter on front panel reads 120V.
- 6) A waiting period of approximately one minute is necessary for the V-scope to warm up.
- 7) The OFF-HEATER-USE control is set to USE position. At this time a trace will appear on the cathode ray tube and the transmitting transducer will begin emitting sound.
- 8) The ZERO SET control is adjusted so that the reference marker (see Figure 23) is lined up with the red vertical line on the face of the cathode ray tube.
- 9) It is necessary to wait approximately 5 minutes or until the reference stops drifting to the left. It can be determined when the drift has stopped by continually adjusting ZERO SET until no further adjustment is necessary.
- 10) A small amount of couplant fluid is placed on each of the rubber faces of the transducers and held tightly together.
- 11) The INPUT GAIN control is turned 1/4 turn clockwise.
- 12) The ZERO SET control is adjusted so that the point at which the trace leaves the horizontal is lined up with the red vertical reference line (see Figure 23).
- 13) To measure transit time the cylinder is now placed longitudinally between the transducers with couplant on each to assure a good bond. (Figure 24)

- 104 -

PLACING OF TRANSDUCERS

Figure 24

14) The INPUT GAIN control is turned another 1/4 turn clockwise.

- 107 -

- 15) The TIME control is turned in INCREASE direction until the point at which the trace leaves the horizontal is directly lined up with the red vertical reference line.
- 16) The value is read from the counter. This value, with the RANGE selector in the 1K position, is the number of microseconds required to traverse the specimen. If the selector were in the 0.5K position, the value is divided in half for microseconds. With the selector in the 5K position, the value is multiplied by 5 for the number of microseconds.

APPENDIX B

- 108 -

STRESS-STRAIN RELATIONSHIPS

Bl Mechanical Gauge Data

Following is the data on the mechanical gauges used throughout the test program:

Gauge #1	Gauge #2
DEMEC No. 1271	DEMEC No. 1275
Gauge Factor = 2.49	Gauge Factor = 2.48

Because the gauge factors were so close, the total strain was determined by multiplying the average of the two gauge readings (corrected so that zero strain = zero load) by the average gauge factor.

AV. G.F. =
$$\frac{2.48 + 2.49}{2}$$
 = 2.485

This considerably reduced the amount of calculations but had little or no affect on the final determination of elastic modulus.

B2 Test Series A

Following are the stress-strain readings taken on the various concrete mixes in Test Series A.

CYLINDER NO. BPA1

	\$	· { .			
Total Compressive Load	Stress (psi)	Mechanica (Adj. for	l Strain Gau Zero Load = Zero	Total Strain Avg. Rdg. x Avg. G.F.	
(Kips)		(in	./in. x 10 ⁻⁶	⁵) ·	$(in./in. \times 10^{-6})$
•		Gauge #1	Gauge #2	Average	
0	0.1	0		0	0
5	177	18	18	18	44
10	354	• 36	. 36	36	89
15	531	56	56	56	139
20	708	76	76	76	188
25	885	93	78	86	213
30	1062	111	96	103	255
35	1238	129	106	118	293
40	1415	146	126	136	337
45	1592	161	140	150	372
50	1769	181	156	169	419
55	1946	199	174	187	464
60	2123	218	196	207	514
65	2300	227	216	222	551
70	2477	247	234	241	598
75	2654	272	251	262	651
80	2831	292	266	'279	693
85	, 3008	317	288	303	752
90	3185	334	306	320	795
95	3362	352	321	337	837
100	3539	372	338	355	882
105	3715	392	356	374	929
011	3892	412	376	394	979
115	4069	427	401	414	1028
120	4246	462	431	447	1110
	1				

- 109 -

- 110 -

Total Compressive Load (Kins)	Stress (psi)	Mechanica (Adj. for	l Strain Gau Zero Load = Zero	uge Rdgs. - Strain)	Total Strain Avg. Rdg. x Avg. G.F.	
(11)5)		(in	$1./in. \times 10^{-6}$)	(in./in. x 10 ⁻⁶)	
	÷ .	Gauge #1	Gauge #2	Average		•
0	0	0	0	0	0	, ,
5	177	15	15	15	37	
10	354	30	30 *	30	75	
15	531	45	45	45	112	
20	708	55	60	57	142	
25	885	70	75	72	179	
30	1062	8.5	90	87	216	
35	1238	100	105	102	254	
40	1415	115	120	117	292	
45	1592	140	135	137	341	
50	1769	145	145	145	360	
55	1946	155	165	160	398	
60	2123	170	177	173	430	
65	2300	185	195	190	474	9
70	2477	205	210	205	510	
75	2654	220	225	222	554	
80	2831	235	240	237	590	
85	3008	255	255	255	634	
90	3185	270	270	270	672	
95	3362	285	285	285	710	
100	3539	300	300	300	747	
105	3715	320	315	317	789	
110	3892	335	335	335	834	
115	4069	355	355	355	884	
120	4246				za de la construcción de la constru La maisma de la construcción de la c	

Total Compressive Load (Kips)	Stress (psi)	Mechanica (Adj. for (in Gauge #1	1 Strain Gau Zero Load = Zero ./in. x 10 ⁻⁶ I Gauge #2	uge Rdgs. 	Total Strain Avg. Rdg. x Avg. G.F. (in./in. x 10 ⁻⁶)
0	0	0	0	0	0
5	177	17	17	17	42
10	354	34	34	34	84
15	531	59	40	50	124
20	708	74	54	64	159
25	885	92	69	81	201
30	1062	111	84	98	243
35	1238	129	94	112	278
40	1415	144	104	124	308
45	1592	164	119	142	352
50	1769	209	135	172	427
55	1946	239	149	194	482
60	2123	252	164	208	516
65	2300	264	184	224	556
70	2477	274	198	236	586
75	2654	292	214	253	628
80	2831	314	229	272	675
85	3008	339	244	292	725
90	3185	359	259	309	767
95	3362	374	274	324	805
100	3539	401	294	348	864
105	3715	424	309	367	911
110	3892	439	324	382	949
115	4069	474	339	407	1011
120	4246	509	• 359	434	1078
	1		}		

	1	8				1.
Total Compressive Load	Stress (psi)	Mechanica (Adj. for	l Strain Gau Zero Load Zero	uge Rdgs. = o Strain)	Total Strain Avg. Rdg. x Avg. G.F.	
(Kips)		(in	./in. x 10 ⁻⁰	⁶)	$(in./in. \times 10^{-6})$	
		Gauge #1	Gauge #2	Average		
						•
0	0	0	0	0	0	
5	177	16	16	16	40	
10	354	32	32	32	80	
15	531	52	47	49	122	
20	708	62	57	59	147	
25	885	77	72	74	184	
30	1062	92	87	89	222	•
35	1238	112	102	107	226	
40	1415	137	112	124	309	
45	1592	152	137	144	358	
50	1769	162	147	154	384	
55	1946	182	162	172	428	
60	2123	202	177	189	470	
65	2300	217	192	204	507	
70	2477	237	207	222	553	
75	2654	252	222	237	590	
80	2831	262	257	259	644	
85	3008	287	272	279	694	
90	3185	302	287	286	713	
95	3362	322	297	309	770	
100	3539	342	317	329	820	
105	3715	357	337	347	864	
110	3892					
115	4069					
120	1216					

CYLINDER NO. BPB1

Total Compressive Load (Kips)	Stress (psi)	Mechanica (Adj. for (in	I Strain Gau Zero Load = Zero ./in. x 10 ⁻⁶	uge Rdgs. - 5 Strain)	Total Strain Avg. Rdg. x Avg. G.F. (in./in. x 10 ⁻⁶)	
ана стана стана Стана стана стан		Gauge #1] Gauge #2	Average		
0 5	0	0 18	0	0	0	
10	354	36	36	36	89	
15	531	61	46	54	134	e ja
20	708	81	50	66	164	
25	885)101	62	82	203	
30	1062	126	72 *	99	246	
35	1238	146	85	116	288	
40	1415	166	93	130	323	
45	1592	191	111	15.1	375	•
50	1769	216	121	169	419	
55	1946	241	139	190	472	
60	2123	271	151	211	524	
65	2300	296	161	229	569	
70	2477	314	183	249	618	
75	2654	356	203	280	695	
80	2831	386	223	305	757	
85	3008	411	241	326	810	
90	3185	441	261	351	872	8
95	3362	481	291	386	959	
100	3539	541	311	426	1058	
105	3715	616	331	474	1177	
110	3892					•
115	4069					
120	4246		ta da esta da Andrea 🛔			

- 113 -

- 114 -

TEST SERIES A

Total Compressive Load (Kips)	Stress (psi)	Mechanica (Adj. for	l Strain Ga Zero Load Zero	uge Rdgs. = 5 Strain)	Total Strain Avg. Rdg. x Avg. G.F.	
		(1)	./.in. x 10	~) * -	(in./in. x 10 ⁻⁰)	a databa A
		Gauge #1	Gauge #2	Average		
0	0	0	0	0	0	
5	177	18	18	18	44	
10	354	36	36	36	89	
15	531	51	51	51	126	
20	708	67	67	67	166	
25	885	87	77	82	203	
30	1062	107	92	99	246	
35	1238	127	107	117	290	
40	1415	147	117	132	328	
45	1592	157	132	145	360	
50	1769	187	147	167	414	
55	1946	202	162	182	452	
60	2123	227	177	202	501	
65	2300	252	192	222	551	
70	2477	262	212	237	588	en de la composición de la composición de
75	2654	277	237	257	638	
80	2831	307	242	275	683	
85	3008	337	277	307	762	
90	3185	357	292	325	807	
95	3362	372	312	342	829	
100	3539	392	332	362	877	
105	3715					
110	3892					
115	4069					•
120	4246					

- 115 -

TEST SERIES A

1	· · ·	1			
Total Compressive Load	Stress (psi)	Mechanica (Adj. for	al Strain Ga • Zero Load	uge Rdgs. =	Total Strain Avg. Rdg. x
(Kips)		(5)	2en	ο στιατήγ 6 _λ .	Avg. G.F. $(in (in) - 6)$
		Gaugo #1	1.7 m. x 10	1 Augustan	(In./in. x IU)
		aauge #1	Gauge #2	Average	
0	0	0	0	0	0
5	177	20	20	20	49
10	354	40	40	40	99
15	531	50	60	55	136
20	708	70	75	73	181
25	885	78	90	84	208
30	1062	96	110	103	255
35	1238	111	125	118	293
40	1415	131	145	138	342
45	1592	151	165	158	392
50	1769	170	185	178	442
55	1946	191	208	199	494
60	2123	217	232	224	556
65	2300	256	255	256	636
70	2477	271	280	276	685
75	2654	286	/*** 300	293	728
80	2831	316	1/2 330	323	802
85	3008	346	360	353	877
90	3185	376	400	388	964
95	3362	406	430	418	1038
100	3539	446	480	463	1150
105	3715	506	560	533	1324
110	3892				
115	4069				
120	4246				

- 116 -

TEST SERIES A

	5,	Total Strain Avg. Rdg. x Avg. G.F.	Mechanical Strain Gauge Rdgs. (Adj. for Zero Load = Zero Strain)			Stress (psi)	Total Compressive Load (Kips)
)	(In./In. x IO)	Average	Gauge #2	Gauge #1		
.	•						4
•		0	0	0	0	0	0
		42	17	17	17	177	5
	· · , ·	84	34	34	34	354	10
		146	59	54	64	531	15
i se ja liek ik		159	64	59	69	708	20
		208	84	84	84	885	25
•		253	102	99	104	1062	30
		290	117	114	119	1238	35
		320	129	124	134	1415	40
		370	149	144	154	1592	45
9		402	162	154	169	1769	50
		452	182	174	189	1946	55
		501	202	194	209	2123	60
		539	217	204	229	2300	65
		588	237	224	249	2477	70
		643	259	239	279	2654	75
	i en	675	272	254	289	2831	80
		718	289	274	304	3008	85
		743	299	284	314	3185	90
						3362	95
						3539	100
						3715	105
a a sinan anag T	•					3892	110
						4069	115
						4246	120

CYLINDER NO. BPC1

	Total Compressive Load (Kips)	Stress (psi)	Mechanica (Adj. for (in	l Strain Gau Zero Load = Zero ./in. x 10 ⁻⁶	uge Rdgs. = 5 Strain)	Total Strain Avg. Rdg. x Avg. G.F. (in./in. x 10 ⁻⁶)	
-	· · · · · · · · · · · · · · · · · · ·		Gauge #1	Gauge #2	Average		an a
	0	0	0	0	0	0	
1.	5	177	16	16	16	30	
	01	354	32	22	32	79	
	15	531	18	18	52 /18	110	
	20	708	63		40 50	113	
•	25	885	78	62 57	70	173	
	30	1062	93	71	82	204	
	35	1238	93	88	90	204	
	40	1415	108	103	106	263	
	45	1592	118	120	119	295	
	50	1769	138	138 .	138	342	
	55	1946	173	176	175	434	
	60	2123	203	208	206	512	
	65	2300	253	238	246	611	
	70	2477	303	283	293	728	
,	75	2654	378	333	356	884	
	80	2831					
	85	3008					
	90	3185					1
.,.	95	3362					•
	100	3539					
	105	3715					
	110	3892					antina antina Arti s Artista
	115	4069					
	120	4246					

- 117 -

- 118 -

Total Compressive Load (Kips)	Stress (psi)	Mechanica (Adj. for	l Strain Gau Zero Load = Zero	uge Rdgs.	Total Strain Avg. Rdg. x Avg. G.F.	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
		Gauge #1	Gauge #2	Average	(In./In. X IO)	
0	0	0	0	0	0	
5	177	16	16	16	39	
10	354	33	33	33	82	
15	531	38	`` 48	43	107	
20	708	58	58	58	144	
25	885	73	73	73	181	
30	1062	93	88	91	226	•
35	1238	108	103	106	263	
40	1415	133	118	126	313	
45	1592	143	138	141	350	
50	1769	163	153	158	392	
55	1946	188	168	178	442	
60	2123	308	188	198	492	
65	2300	233	208	221	549	
70	2477	248	228	238	591	-
75	2654	293	243	268	665	
80	2831					
85	3008					
90	3185					
95	3362					
100	3539					
105	3715					
110	3892					
115	4069					
120	4246					

- 119 -

Total Compressive Load (Kips)	Stress (psi)	Mechanica (Adj. for	l Strain Gau Zero Load = Zero	Total Strain Avg. Rdg. x Avg. G.F.	
		(in	./in. x 10)	(in./in. x 10 ⁻⁰)
		Gauge #1	Gauge #2	Average	
0	0		0	0	0
5	177		28	28	69
10	354		56	56	139
15	531		`` 85	85	211
20	708		115	115	285
25	885		140	140	347
30	1062	Jgs	177	177	440
35	1238	il	204	204	507
40	1415	Rea	227	227	564
45	1592	S	257	257	638
50	1769	g1e:	282	282	700
55	1946	ning	314	314	780
60	2123	lear	359	359	892
65	2300		459	459	1140
70	2477				
75	2654				
/ 80	2831				
85	3008			•	
90	3185				
95	3362				
100	3539				
105	3715				
110	3892				
115	4069		3		
120	4246				

CYLINDER NO. BPC10

	1	,			
Total Compressive Load	Stress (psi)	Mechanica (Adj. for	l Strain Gau Zero Load = Zero	Total Strain Avg. Rdg. x Avg. G.F.	
(Kips)) (in	./in. $\times 10^{-6}$	⁵)	$(in./in. \times 10^{-6})$
		Gauge #1	Gauge #2	Average	
0	. 0	0	0	0	0
5	177	23	23	200 U	
10	354	46	25 16	25	70
15	531	71	+0	40 66	
20	708	06	от 10	00	164
25	885	90 101	01	100	216
30	1062	141	90	108	268
35	1002		116	133	331
35	1238	181	136	158	384
40	1415	206	151	.178	443
45	1592	241	167	204	507
5U.	1/69	261	187	224	557
55	1946	291	207	249	619
60	2123	326	227	276	686
65	2300	361	247	304	756
70	2477	391	267	329	818
75	2654	436	287	361	897
80	2831				
85	3008				
90	3185				
95	3362				
100	3539				
105	3715				
110	3892				
115	4069				
120	4246				

- 120 -

B3 Test Series B

Following are the stress-strain readings taken on the various concrete mixes in Test Series B.

- 122 -

TEST SERIES B

	Total	Stress	Mechanical Strain Gauge Rdgs		Total Strain		
	Compressive	(psi)	(Adj. for	(Adj. for Zero Load =		Avg. Rdg. x	
	(Kips)		(in	/in v 10 ⁻⁶	$S_{\rm V}$	AVg. G.F. $(in (in) -6)$	
	** · ·		Gauge #1	$\frac{1}{1000} + \frac{1}{1000} + \frac{1}{10000000000000000000000000000000000$		(1n./1n. X 10 ⁻)	
					Average		
	0	0	0	0	0	0	· · · · ·
	5	177	18	18	18	45	
	10	354	36	36	36	90	
	15	531	56	· · 41	49	122	- Northerner Statistics
	20	708	71	61	66	164	
	25	885	91	76	84	209	
	30	1062	121	91	106	264	••••
	35	1238	126	106	116	289	
	40	1415	141	121	131	326	
	45	1592	151	136	141	359	
	50	1769	176	151	163	405	-
	55	1946	196	171	183	445	
	60	2123	216	191	203	505	
	65	2300	236	206	221	550	
1	70	2477	251	221	236	558	
	75	2654	271	241	256	637	
	80	2831	291	261	276	687	anajaras Alexandros
	85	3008	325	276	301	748	
	90	3185	330	291	311	774	
	95	3362	350	311	330	823	
	100	3539					
	105	3715					
	110	3892					
	115	4069					•
	120	4246					
							4

- 123 -

TEST SERIES B

Total Compressive Load	Stress (psi)	Mechanica (Adj. for	al Strain Ga Zero Load Zero	uge Rdgs. = o Strain)	Total Strain Avg. Rdg. x	
(Kips)		(ir	$1./in. \times 10^{-1}$	6)	$(in./in. \times 10^{-6})$	
		Gauge #1	Gauge #2	Average		
0	0	0	0	0	0	
5	177	16	16	16	40	
10	354	32	32	32	80	
15	531	47	47	47	117	
20	708	62	62	62	155	
25	885	82	72	77	192	· .
30	1062	87	92	89	222	•
35	1238	97	102	100	245	
40	1415	112	107	• 109	272	•
45	1592	132	132	132	328	
50	1769	152	142	147	366	
55	1946	172	162	167	416	
60	2123	202	167	185	461	
65	2300	216	187	202	504	
70	2477	237	202	220	548	
75	2654	247	217	232	578	
80	2831	262	232	247	615	
85	3008	277	247	262	653	
90	3185	307	262	285	710	
95	3362	327	277	302	753	1. S. C. S.
100	3539	337	292	315	785	
105	3715					
110	3892					
115	4069					
120	4246					

CYLINDER NO. SA9

Total Compressive Load (Kips)	Stress (psi)	Mechanica (Adj. for	I Strain Gau Zero Load = Zero	uge Rdgs.	Total Strain Avg. Rdg. x Avg. G.F.	
		Gauge #1	Gauge #2) Average	(In./In. x IO)	2,14 -
0	0	· 0	0	0	0	
5	177	18	18	10	15	
10	354	36	36	36	45	
15	531	51		10	122	
20	708	76	40	49 60	122	
25	885		76	09 01	172	
30	1062		70 10	04 104	209	
35	1002		106	104	249	• • •
10	1/15		100	124	309	
40	1415		121	139	346	
40	1750		130	158	394	
50	1/09	190	146	1/1	426	* * * *
55	1946	221	166	194	483	
6U	2123	241	[8]	211	525	
65	2300	266	196	231	575	
70	2477	286	211	249	620	
75	2654	315	226	271	675	
80	2831	325	241	283	705	
85	3008	355	256	306	760	
90	3185	375	271	323	805	
95	3362	395	286	341	850	
100	3539	420	301	361	900	•
105	3715	440	321	381	954	
110	3892	460	336	398	990	
115	4069					
120	4246					

- 124 -

- 125 -

TEST SERIES B

Total Compressive Load	Stress (psi)	Mechanical Strain Gauge Rdgs. (Adj. for Zero Load = Zero Strain)			Total Strain Avg. Rdg. x Avg. G.F.	
(Kips)) (in	./in. x 10 ⁻⁶	⁵)	(in./in. x 10 ⁻⁶)	u
	1	Gauge #1	Gauge #2	Average		
0	0	0	0	0	0	
5	177	16	16	16	40	
10	354	35	35	35	87	•
15	531	50	50	50	124	
20	708	75	65	70	174	
25	885	90	85	87	217	
30	1062	110	100	105	262	
35	1238	120	115	117	292	
40	1415	140	135	137	342	
45	1592	150	150	150	374	
50	1769	175	160	167	416	
55	1946	190	185	187	466	
60	2123	205	205	205	510	
65	2300	225	220.	222	544	4 (1) (1)
70	2477	235	235	235	578	
75	2654	245	255	250	623	
80	2831	255	270	263	656	
85	3008	275	285	280	697	
90	3185	295	305	300	746	•
95	3362	315	325	320	798	
100	3539	325	330	327	815	
105	3715	- 345	350	.347	864	
110	3892	380	380	380	946	111
115	4069	395	400	397	990	
120	4246				•••• •• ••	•

- 126 - ...

TEST SERIES B

CYLINDER NO. SA10

Total Compressive	Stress (psi)	Electrical (Adj. for	Total Strain Zero Load = Ze	Gauge Rdgs. ero Strain)
(Kips)		(i	n./in. x 10 ⁻⁰)	i -
		Gauge #1	Gauge #2	Average
0	0	0	0 ,	0
5	177	56	38	47
10	354	176	. 75	125
15	531	230	110	170
20	708	279	`148	213
25	885	330	190	260
30	1062	37.2	222	297
35	1238	430	265	348
40	1415	480	300	390
45	1592	515	342	428
50	1769	561	369	465
55	1946	606	418	512
60	2123	651	461	556
65	2300	713	505	609
70	2477	753	545	649
75	2654	811	575	693
80	2831	853	611	732
85	3008	905	646	776
90	3185	960	685	822
95	3362	1000	717	859
100	3539	1071	747	909
105	3715	1122	797	959
110	3892	1163	829	996
115	4069	1231	865	1048
120	4246	1238	898	1091
	•			

- 127 -

TEST SERIES B

	Total Strain Avg. Rdg. x Avg. G.F. (in./in. x 10 ⁻⁶)	al Strain Gauge Rdgs. [•] Zero Load = Zero Strain) n./in. x 10 ⁻⁶)		Mechanica (Adj. for (in	Stress (psi)	Total Compressive Load (Kips)	
		Average	Gauge #2	Gauge #1			
	0	0	0	0	, 0	0	
	54	. 22	20	25	177	5	
	112	45	40	50	354	10	
् सम्बद्धाः संस्थान्	154	62	`` 60	65	531	15	
	212	85	75	95	708	20	
	266	107	95	120	885	25	
•	316	127	115	140	1062	30	
en Antonio de Carlos Antonio de Carlos	374	150	135	165	1238	35	
	429	172	155	190	1415	40	
	478	192	175	210	1592	45	
	548	220	190	245	1769	50	
	585	235	210	260	1946	55	
	654	263	235	290	2123	60	
	723	290	260	320	2300	65	
	784	315	285	345	2477	70	
	859	345	310	380	2654	75	
	934	375	335	415	2831	80	
	1000	402	360	445	3008	85	
	1070	430	385	475	3185	90	
	an a				3362	95	
• •					3539	1 0 0	
					3715	105	
					3892	110	
				4.000	4069	115	
					4246	120	
	and the second secon			1	į		

CYLINDER NO. SB4

Total Compressive Load (Kips)	Stress (psi)	Mechanica (Adj. for	l Strain Gau Zero Load Zero	uge Rdgs. = 5 Strain)	Total Strain Avg. Rdg. x Avg. G.F.	
(1193)		(in	$./in. \times 10^{-1}$	°) -	(in./in. x 10 ⁻⁶)	
		Gauge #1	Gauge #2	Average		
0	0	0	0	0 -	0	
5	177	20	20	20	50	· · · ·
10	354	40	40	40	100	
15	531	50	· 60	55	137	
20	708	75	75	75	187	
25	885	100	95	97	241	
30	1062	125	125	125	311	
35	1238	135	140	137	341	
40	1415	155	150	152	379	
45	1592	175	165	170	424	
50	1769	195	185	190	473	
55	1946	220	205	212	528	
60	2123	235	230	232	578	
65	2300	265	245	255	635	
70	2477	285	265	275	684	
75	2654	295	285	290	722	
80	2831	330	305	317	790	
85	3008	345	330	337	840	
90	3185	370	355	362	903	
95	3362	400	370	385	960	e de la composition d Record de la composition de la compositio
100	3539	430	405	417	1035	
105	3715					
110	3892					
115	4069					
120	4246					

- 128 -

- 129 -

Total Compressive Load (Kips)	Stress (psi)	Mechanical Strain Gauge Rdgs. (Adj. for Zero Load = Avg. Rdg. x Zero Strain) Avg. G.F. (in./in. x 10 ⁻⁶) (in./in. x 10 ⁻⁶)		Mechanical Strain Gauge Rdgs. (Adj. for Zero Load = Avg. Rdg Zero Strain) Avg. (in./in. x 10 ⁻⁶) (in./in. x			Total Strain Avg. Rdg. x Avg. G.F. (in./in. x 10 ⁻⁶)	
		Gauge #1	Gauge #2	Average				
0	0	0	0.	0	0			
5	177	25	20	22	55			
10	354	55	35	45	112	S.		
15	531	75	`` 55	65	162			
20	708	100	70	. 85	212	a di <u>sta</u> Alterna		
25	885	120	95	107	266			
30	1062	145	115	130	324			
35	1238	165	130	147	. 367			
40	1415	190	150	170	424	•		
45	1592	215	170	192	478			
50	1769	245	195	220	548			
55	1946	260	210	235	585			
60	2123	300	240	270	672			
65	2300	325	265	295	735	•		
70	2477	355	295	325	810			
75	2654	385	320	352	878			
80	2831	425	355	390	970			
85	3008	460	385	422	1050			
90	3185	510	440	475	1180			
95	3362							
100	3539							
105	3715							
110	3892							
115	4069		P. C. C. L.					
120	4246							

- 130 -

TEST SERIES B

Total Compressive Load (Kips)	Stress (psi)	Mechanical Strain Gauge Rdgs. (Adj. for Zero Load = Zero Strain)			Total Strain Avg. Rdg. x Avg. G.F.	
		Gauge #1	./ In. x 10 Gauge #2	Average	(1n./1n. x 10 ⁻)	
0	0			0		
5	177			0	U FO	
01	257	20		20	50	
	504	50	30	40	100	
15	531	08	45	63	157	
20	708	100	55	/8	194	
25	885	130	70	100	249	
30	1062	150	80	115	286	•
35	1238	175	95	135	336	
40	1415	200	105	153	382	
45	1592	220	120	170	424	
50	1769	245	135	190	474	
55	1946	260	150	205	510	•
60	2123	300	165	233	580	
65	2300	325	180	253	630	
70	2477	345	195	270	672	
75	2654	360	210	285	710	-
.80	2831	395	225	310	770	
85	3008	415	240	328	817	
90	3185	445	250	. 348	866	
95	3362	475	265	370	921	
100	3539					
105	3715					
110	3892					
115	4069	a far a f				
120	4246					

- 131 -

TEST SERIES B

•

Total Compressive	Stress (psi)	ress Electrical Total Strain Gauge Rdgs. psi) (Adj. for Zero Load = Zero Strain)							
Load (Kips)		(i	(in./in. x 10 ⁻⁶)						
		Gauge #1	Gauge #2	Average					
• 0 ° •	· · 0 ·	0	0	0					
5	177	30	45	38					
10	354	60 - 1	90	75					
15	531	87	127	107					
20	708	118	176	147					
25	885	140	217	179					
30	1062	176	262	219					
35	1238	207	312	259					
40	1415	228	340	284					
45	1592	260	393	326					
50	1769	292	440	366					
55	1946	323	495	409					
60	2123	360	548	454					
65	2300	390	600	495					
70	2477	420	644	532					
75	2654	458	698	578					
80	2831	492	742	617					
85	3008			2 ¹					
90	3185								
95	3362		•@						
100	3539			•					
105	3715	for Upper sectors and							
110	3892								
115	4069	a feature and							
120	4246	**************************************							
	•								
1				•					
Total Compressive Load (Kips)	Stress (psi)	Mechanica (Adj. for	1 Strain Gau Zero Load = Zero	uge Rdgs.	Total Strain Avg. Rdg. x Avg. G.F.	1 1 1			
--	-----------------	---	---	-------------------	--	---			
		Gauge #1	./1n. X IU) Average	(in./in. x 10))			
<u></u>		dauge mi	uauge #2	Average					
0	0	0	0	0	0				
5	1/7	35	20	27	67				
10	354	70	40	55	137				
15	531	105	•• 55	80	199				
20	708	140	75	107	266				
25	885	175	95	135	337				
.30	1062	210	115	162	404				
35	1238	255	135	195	485				
40	- 1415	285	155	220	549				
45	1592	335	175	255	635				
50	1769	415	205	310	773	•			
55	1946	600	240	420	1045				
60	2123					ter and a second state of the second seco			
65	2300								
70	2477								
75	2654								
80	2831	•							
85	3008	and the second se							
90	3185								
95	3362								
100	3539								
105	3715								
110	3892					2. H.			
115	4069	244CT()	The second se						
120	4246								
				e general de la 🛔					

Total Compressive Load (Kips)	Stress (psi)	Mechanical Strain Gauge Rdgs. (Adj. for Zero Load = Zero Strain)		Total Strain Avg. Rdg. x Avg. G.F.		
		Gauge #1	Gauge #2	, Average	(In./In. x IO)	44 (1,1)
0	0	0 ·	0	·	0	
5	177	20	30	25	62	
0 0	354	40	50 60	23 50	124	
15	531	50	·· 80	50 65	124	
20	708	60	100	00	102	
25	885	80	100	105	199	
20	1062	105	150	100	202	
35	1238	105	100	132	329	•
40	1/15	130	210	1/0	423	
45	1502	175	230	190	472	
50	1760	275	270	227	504	
55	1016	215	310	202	052	
60	0100					
65	2123					
70	2300					
70	2477					
75	2004					
00	2000					
65	3008					
90	3185					
95	3362	19.000 (19.000) (19.000)				
100	3539					•
105	3/15		(Tabu Shara a			
IIU	3892					
115	4069					
120	4246					•
an a				1		1

Total Compressive Load (Kips)	Stress (psi)	Mechanical Strain Gauge Rdgs. (Adj. for Zero Load = Zero Strain) (in./in. x 10 ⁻⁶)		Total Strain Avg. Rdg. x Avg. G.F. (in./in. x 10 ⁻⁶)		
		Gauge #1	Gauge #2	Average		
0	0	0	0	0	0	
5	177	30	25	28	70	
10	354	60	50	55	137	
15	531	90	·• 75	83	207	
20	708	120	100	110	274	
25	885	145	120	133	332	
30	1062	180	145	163	406	
35	1238	215	165	190	474	
40	1415	260	190	.225	560	
45	1592	285	220	253	630	
50	1769	345	255	300	748	
55	1946	420	295	358	892	
60	2123					
65	2300					
70	2477					
75	2654					
80	2831					
85	3008					
90	3185					
95	3362					
100	3539					
105	3715					
110	3892					
115	4069	in the second				
120	4246					•
1		ta di kacala 🖡				

TEST SERIES В

	Total Compressive Load (Kips)	Stress (psi)	Mechanica (Adj. for (in	l Strain Gau Zero Load = Zero ./in. x 10 ⁻⁶	ge Rdgs. Strain)	Total Strain Avg. Rdg. x Avg. G.F. (in./in. x 10 ⁻⁶)
			Gauge #1	Gauge #2	Average		
	0	0	0	0	0	0	
1	5	177	25	25	25	62	
	10	354	55	45	50	125	
. •	15	531	80	• 60	70	. 174	
	20	708	90	90	90	224	
• • •	25	885	115	110	113	282	
	30	1062	130	130	130	324	4.
	35	1238	155-	175	165	412	
	40	1415	180	205	193	480	
	45	1592	210	225	218	543	
	50	1769	225	255	.240	599	
	55	1946				•	
	60	2123					
· ·	65	2300					
	70	2477					
	75	2654					
	80	2831					이는 이 것 같은 것 가락할 수요. 같은 이 이 것 같은 것 같은 것 같은 것 같이
	85	3008					
	90	3185				· · · · ·	
	95	3362					
	100	3539					
	105	3715					
	110	3892					
	115	4069					
	120	4246				fa All and a start of the	

			i.		2		

- 136 -

Total Compressive	Stress (psi)	Electrical Total Strain Gauge Rdgs. (Adj. for Zero Load = Zero Strain)				
Load (Kips)		$(in./in. \times 10^{-6})$				
	· ·	Gauge #1	Gauge #2	Average		
0	0	0	0	0		
5	177	60	50	55		
10	354	120	100	110		
15	531	181	138	159		
20	708	238	179	209		
25	885	288	227	258		
30	1062	350	285	317		
35	1238	409	341	375		
40	1415	476	395	435		
45	1592	550	455	503		
50	1769	620	512	566		
55	1946	708	573	640		
60	2123	810	650	730		
65	2300					
70	2477					
75	2654					
80	2831					
85	3008					
90	3185					
95	3362					
100	3539					
105	3715					
110	3892	-				
115	4069					
120-	4246		са, тимо Кол			
	•					

