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Abstract

We propose a simple and general method to obtain the boundary crossing probabil-

ity for Brownian motion. This method can be easily extended to higher dimensional

of Brownian motion. It also covers certain classes of stochastic processes associated

with Brownian motion. The basic idea of the method is based on being able to

construct a finite Markov chain such that the boundary crossing probability of

Brownian motion is obtained as the limiting probability of the finite Markov chain

entering a set of absorbing states induced by the boundary. Numerical results are

given to illustrate our method.
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Chapter 1

Introduction

1.1 One-dimensional processes

Brownian motion. The Brownian motion is one of the most important continu-

ous time stochastic processes and the boundary crossing probabilities (BCP) or first

passage times of one-dimensional Brownian motion processes have tremendous ap-

plications in many fields, including nonparametric statistics (Durbin [27], Sen [76],

Siegmund [77]), sequential analysis (Anderson [2], Sen [76], Siegmund [77]), mathe-

matical finance (Roberts and Shortland [70]), biology (Ricciardi and Sacerdote [68],

Ricciardi et al. [67]), medicine (Madec and Japhet [56]), change-point problems

(Siegmund [77]), and many engineering problems.

Let {W (t) : t ∈ [0,∞)} be a stochastic process defined on the real line R. A

boundary crossing probability for W (t) is defined by

P (a(t) ≥ W (t) or W (t) ≥ b(t), for some t ∈ [0, T ]), (1.1)

where T is fixed and a(t) and b(t) are continuous functions on [0, T ]. There are

various definitions of Brownian motion (see, e.g., Borodin and Salminen [10]). For
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our approach, the boundary crossing probability is cast as the limiting probability

of a finite Markov chain entering a set of absorbing states, and for this reason we

prefer the classical definition of Brownian motion (Karlin and Taylor [42]) given as

follows.

Definition 1.1.1. Brownian motion is a stochastic process {W (t) : t ∈ [0,∞)}

which satisfies the following conditions:

(i) For 0 ≤ s < t, the increment W (t)−W (s) is normally distributed with mean

0 and variance σ2(t− s); σ2 is a constant.

(ii) For any pair of disjoint intervals [t1, t2] and [t3, t4] with t1 < t2 < t3 < t4, the

increments W (t2)−W (t1) and W (t4)−W (t3) are independent.

(iii) W (0) = 0 and W (t) is continuous a.s. at t = 0.

Given t, Brownian motion has density function

f(x, t) =
1√
2πt

exp

{
x2

2t

}
, (1.2)

which satisfies the differential equation

∂

∂t
f(x, t) =

1

2

∂2

∂x2
f(x, t). (1.3)

Four known properties of Brownian motion are given in the following.

1. (scaling) For every c > 0, (1/
√
c)W (ct) is a Brownian motion.

2. (shifting) For each s > 0, W (s+ t)−W (s) is a Brownian motion.

2



3. (time reversal) Consider the time interval [0, 1], W (1−t)−W (1) is a Brownian

motion, i.e.

{W (1− t)−W (1), t ∈ [0, 1]} D
= {W (t), t ∈ [0, 1]},

where X
D
= Y represents X and Y have the same distribution.

4. (inversion) tW (1/t) is a Brownian motion starting from 0.

The study of Brownian motion has been over a century since Robert Brown who

discovered Brownian motion as the movement of pollen particles in water, Thorvald

Thiele who described the mathematics behind Brownian motion and Albert Einstein

who gave an explanation of Brownian motion using the kinetic theory of matter.

There are many historical and recent results for obtaining the boundary crossing

probability for Brownian motion in the literature. We briefly introduce some im-

portant ones in the following. For constant one-sided boundary, given c > 0, let τc

be the first time that Brownian motion crosses or hits c and we have

P (τc ≤ T ) = P

(
sup

0≤t≤T
W (t) ≥ c

)

= P (W (T ) > c) + P

(
sup

0≤t≤T
W (t) ≥ c,W (T ) ≤ c

)
.

It follows from the reflection principle that

P

(
sup

0≤t≤T
W (t) ≥ c,W (T ) ≤ c

)
= P

(
sup

0≤t≤T
W (t) ≥ c,W (T ) ≥ c

)
= P (W (T ) ≥ c).

3



Hence, it immediately follows that the boundary crossing probability to constant

boundary in the time interval [0, T ] is

P

(
sup

0≤t≤T
W (t) ≥ c

)
= 2P (W (T ) > c) =

2√
2πT

∫ ∞
c

exp

{
−x2

2T

}
dx. (1.4)

For a one-sided boundary ξ(t), a well-known tangent approximation was first in-

troduced by Strassen [80] and independently established by Daniels [23] using the

method of images. The two-sided linear boundary crossing probability for t ∈ [0, T ]

was given in an infinite series form in Anderson [2]. Let b(t) = c1 + d1t and

a(t) = c2 + d2t be the upper and lower boundaries, respectively. Denote P1(T )

by the probability that the process touches the upper boundary before touching the

lower boundary and P2(T ) by the probability that the process touches the lower

boundary first. Then,

P (T ) = 1− P1(T )− P2(T )

is the probability that the process always stays between boundaries a(t) and b(t).

4



If c1 > 0, c2 < 0, c1 + d1T ≥ c2 + d2T , then

P1(T ) = 1− Φ

(
d1T + c1√

T

)

+
∞∑
r=1

{
e−2[rc1−(r−1)c2][rd1−(r−1)d2]Φ

(
d1T + 2(r − 1)c2 − (2r − 1)c1√

T

)

− e−2[r2(c1d1+c2d2)−r(r−1)c1d2−r(r+1)c2d1]Φ

(
d1T + 2rc2 − (2r − 1)c1√

T

)

− e−2[(r−1)c1−rc2][(r−1)d1−rd2]

[
1− Φ

(
d1T − 2rc2 + (2r − 1)c1√

T

)]

+ e−2[r2(c1d1+c2d2)−r(r−1)c2d1−r(r+1)c1d2]

[
1− Φ

(
d1T + (2r + 1)c1 − 2rc2√

T

)]}
,

where Φ(·) stands for the cumulative distribution of standard normal distribution.

The probability P2(T ) can be obtained simply by replacing (c1, d1) by (−c2,−d2).

For one-sided linear boundary a + bt, a > 0, Robbins and Siegmund [69] showed,

using martingale theory,

P

(
sup

0≤t≤T
(W (t)− bt) ≥ a

)
= 1− Φ

(
a√
T

+ b
√
T

)
+ exp(−2ab)Φ

(
b
√
T − a√

T

)
.

The first passage time density function for one-sided linear boundary is also known

as inverse Gaussian distribution and the density functions is given by

f(t) =
a√

2πt3/2
exp

(
−(a− bt)2

2t

)
.

Scheike [75] extended Robbins and Siegmund’s [69] result to a piecewise linear

boundary. Also a number of papers obtained the boundary crossing probability
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as an integral equation or in integral form. Durbin [27, 28, 29] computed the

boundary crossing probabilities using the numerical solution of integral equations.

Let 0 < t1 < · · · < tn−1 < tn = T be a partition of interval [0,T]. Wang and

Pötzelberger [84] and Pötzelberger and Wang [65] extended the results of Robbins

and Siegmund [69] and Scheike [75] to derive boundary crossing probabilities for

one-sided and two-sided piecewise linear functions a(t) and b(t):

P (a(t) < W (t) < b(t), for all t ∈ [0, T ]) = Eg(W (t1),W (t2), . . . ,W (tn)),

with

g(x1, . . . , xn) =
n∏
i=1

I(αi < xi < βi)

[
1−

∞∑
j=1

q(i, j)

]
,

and

q(i, j) = exp

{
− 2

∆ti
[jdi−1 + (αi−1 − xi−1)][jdi + (αi − xi)]

}

− exp

{
− 2j

∆ti
[jdi−1di + di−1(αi − xi)− di(αi−1 − xi−1)]

}

+ exp

{
− 2

∆ti
[jdi−1 − (βi−1 − xi−1)][jdi − (βi − xi)]

}

− exp

{
− 2j

∆ti
[jdi−1di − di−1(βi − xi) + di(βi−1 − xi−1)]

}
,

where t0 = 0, ∆ti = ti − ti−1, βi = b(ti), αi = a(ti) and di = βi − αi. It follows

that if it is possible to approximate a general function from above and below by

a piecewise linear function then we can easily obtain the upper and lower bounds

for the boundary crossing probability using the above formula. Several general

non-linear boundaries have been considered and numerical computations were done
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using Monte Carlo simulation method. Novikov et al. [64] also obtained bounds

by piecewise approximation for two-sided boundary crossing probabilities. More

approximations and computational algorithms for boundary crossing probabilities

can be found in Sacerdote and Tomassetti [72] and Di Nardo et al. [63].

Diffusion processes An Itô diffusion process X(t) is the solution of the following

stochastic differential equation:

dX(t) = b(t,X(t))dt+ σ(t,X(t))dW (t), (1.5)

where b(t,X(t)) and σ(t,X(t)) are called drift and diffusion coefficients, respec-

tively. A diffusion process is said to be time homogeneous if the drift and diffusion

coefficients are given by b(X(t)) and σ(X(t)), respectively. The boundary crossing

probability for a diffusion process is similarly defined as in Eq. (1.1). The follow-

ing conditions guarantee the existence of a unique solution of Eq. (1.5): for some

constants C1 and C2, and x ∈ R, t ∈ [0, T ],

|b(t, x)|+ |σ(t, x)| ≤ C1(1 + |x|),

and

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ C2(|x− y|).

There are various methods to obtain boundary crossing probabilities for diffu-

sion processes. The mainstream is to solve the partial differential equation for the

transition density function and approximate the first passage time density function

based on a system of integral equations. For example, Buonocore et al. [15] deter-

mined the first passage time distributions for time homogeneous diffusion processes,
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satisfying a system of second-kind Volterra integral equations with continuous ker-

nels. An numerical procedure for the solution is also provided. Lehmann [51] proved

the existence of a continuous first passage time density of a strong Markov process

with continuous sample paths. He also gave a new Volterra integral equation of the

second kind for the density.

Another method for finding the boundary crossing probabilities for diffusion

processes is to express diffusion processes as functions of Brownian motion, and

then the boundary crossing probabilities for diffusion processes can be obtained

via the boundary crossing probabilities for Brownian motion with transformed time

interval and boundaries. It is known that any time-homogeneous diffusion process

can be transformed into a Brownian motion by using random time change and

change of variable (see Klebaner [43], page 208). Choi and Nam [19] established the

first passage time densities of Ornstein-Uhlenbeck process to exponential boundaries

and Brownian bridge to two linear shrinking boundaries by using deterministic time

change to transform diffusion processes into functions of a Brownian motion. The

first passage time densities of Ornstein-Uhlenbeck process,

dX(t) = −µX(t)dt+ dW (t),

to the exponential boundaries b(t) = ce−µt is given by

f1(t) =
2cµ3/2

√
π(e2µt − 1)3/2

exp

{
2µt− µc2

e2µt − 1

}
, t > 0,

and for b(t) = ceµt,

f2(t) =

{
f1(t) exp {−µc2(e2µt + 1)} if 0 < t <∞,
(1− e−4µc2)δ∞(t) if t =∞,

8



where δ∞(t) is the Dirac-delta function at t =∞, i.e.

δ∞(t) =

{
∞ if t =∞,
0 otherwise,

and ∫ ∞
−∞

δ∞(t)dt = 1.

Wang and Pötzelberger [85] established a class of diffusion processes which can be

transformed into functions of a Brownian motion by using Itô formula and time

change. They also developed the existence of such transformation by satisfying cer-

tain conditions for the drift coefficient b(t,X(t)) and diffusion coefficient σ(t,X(t)).

Many commonly seen diffusion processes are covered in their results, for example

Ornstein-Uhlenbeck processes and Growth processes. Downes and Borovkov [25]

established the existence of the first passage time density and gave an error bound

by replacing the original boundary with one for which the crossing probability can

be evaluated.

The boundary crossing probability plays an important role in finance and biol-

ogy (see, e.g., Allen [1]) as many of the problems can be approximately formulated

by the boundary crossing probabilities of diffusion processes. For example, in credit

analysis and risk management a firm’s asset value is assumed to follow a geometric

Brownian motion in first-passage-time models. Given a lower boundary, if the as-

set value is below the boundary then the firm is declared to be bankrupt and the

bankruptcy probability is obtained by finding the boundary crossing probability of

a geometric Brownian motion. Black and Cox [6] suggested that the lower bound-

ary for a firm to declare bankruptcy is of the form Ce−γ(T−t) where C, γ and T are

9



constants. It also relies on the boundary crossing probabilities to pricing various

options, for example barrier options and exotic options (Lin [54]). An Ornstein-

Uhlenbeck process is used to model the CD4-cell counts of HIV infected patients by

Madec and Japhet [57], and Sæbø, Almøy and Aastveit [73] models the development

of mastitis of cow as a first passage time problem of a diffusion process. The prob-

ability of outbreak of a disease is equivalent to the boundary crossing probability

of the diffusion process.

Random walk to Brownian motion It is well-known that Brownian motion

can be approximated by a simple random walk (see, e.g., Kac [41] and Knight [44]);

i.e.

Sn =

bntc∑
i=1

Xi
D→ W (t),

with P (Xi = ±∆x) = 1/2, i = 1, . . . , n and ∆x2 = ∆t = 1/n, where
D→ denotes

convergence in distribution. The above result can be extended to general inde-

pendent and identically distributed (i.i.d.) random variables with finite variance.

After suitably normalizing, a sequence of partial sums of i.i.d. random variables

converges to Brownian motion in distribution, which is the so-called Donsker’s in-

variance principle (see, e.g., Billingsley [5]), i.e.

Sn =
1√
nσ

bntc∑
i=1

Xi
D→ W (t),

where Xi, i = 1, . . . , n, are i.i.d. random variables with mean 0 and variance σ2.

In this thesis, a new approach inspired by the above idea is introduced to obtain
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the boundary crossing probabilities for Brownian motion to nonlinear boundaries

by using the strong Markov property of Brownian motion and the idea of absorbing

state based on the finite Markov chain imbedding technique (see Fu and Lou [37]).

It follows that the boundary crossing probability can be expressed in terms of the

product of transition matrices of a discrete Markov chain; i.e.

P (W (t) ≤ a(t) or W (t) ≥ b(t), for some t ∈ [0, T ])

= 1− P (a(t) < W (t) < b(t), for all t ∈ [0, T ])

= 1− lim
n→∞

ξ0

(
n∏
i=1

N i

)
1
′
, (1.6)

where 1
′

is the transpose of a row vector 1 = (1, . . . , 1), and N i, i = 1, . . . , n, are

referred to as fundamental transition probability matrices of discrete Markov chain

{Yn} having absorbing states induced by boundaries a(t) and b(t).

To close this section we introduce a recent application to group sequential testing

in clinical trials. The boundary crossing probability for Brownian motion was first

applied by Lan and DeMets [48] to group sequential tests. In a typical group

sequential test, one needs to fix the number of decision times K in advance and

usually the lengths of the time intervals between successive looks are set to be

equal. They introduced the idea of using alpha-spending functions (or boundaries)

to maintain the type-I error and relax the conditions of fix number K of interim

analyses and of equal length intervals between successive interim analyses. In the

paper of Lan and DeMets [48], they studied three different alpha-spending functions:

(i) α∗1(0) = 0, t 6= 1 and α∗1(t) = 2− 2Φ(z 1
2
α/
√
t), 0 < t ≤ 1;

11



(ii) α∗2(t) = α log(1 + (e− 1)t);

(iii) α∗3(t) = αt.

Note that the first function α∗1(t) is corresponding to an one-sided horizontal bound-

ary. All three error spending functions gives prescribed type-I error α at the end

of a trial, t = 1. If α∗1(t) is used, a clinical trial is not likely to stop early and

hence suitable for a trail that long-term treatment effect is the main concern. The

function α∗2(t) usually results in early stop of a trial, but it will suffer a reduction in

power. The function α∗3(t) would be a compromise between (i) and (ii). Recently,

the estimation following group sequential tests has gained popularity in sequential

estimation (see e.g. Emerson and Fleming [30], Ferebee [34], Li and DeMets [53],

Whitehead [88] and Liu et al. [55]).

1.2 Two or higher-dimensional processes

Let {X (t), t ≥ 0} be a two-dimensional correlated Brownian motion with drift

t(µ1, µ2)
′

and covariance matrix

tΣ = t

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

]
,

where µ1, µ2, σ1, σ2 and ρ are constants. Let B(t) ⊆ R2 be a convex set with

non-empty interior Bo(t) /∈ ∅ for all t ∈ [0, T ]. The boundary crossing probability

for two-dimensional Brownian motion is defined by

P (X (t) ∈ ∂B(t), for some t ∈ [0, T ]),
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where X (0) ∈ Bo(0) and ∂B(t) is the boundary of B(t) ⊆ R2 (can be a function

of t). We assume that the boundary crossing probability is well-defined throughout

this thesis (see, e.g., Lefebvre and Labib [50]).

Many applications rest on the boundary crossing probabilities for two or higher-

dimensional Brownian motion and related stochastic processes in many areas. One

of such examples in physics is the study of escape rate from metastable states

utilizing the determination of the first passage time (Talkner [81] and Chen [17]),

and as an application in the field of chemistry that the time it takes for a particle

to pass through a potential barrier for determining reaction-velocities is considered

in Kramers [47]. Another typical example of a simple neuron model is described in

Crescenzo et al. [21] and Iyengar [40] where either the membrane potential and firing

threshold are treated as a two-dimensional random process; or two-dimensional

Brownian motion is used to characterize the electrical state and the firing time.

Then, the time until the firing threshold is reached is equivalent to the first passage

time of two-dimensional Brownian motion. Various examples such as population

genetics can also be found in Mason [58] and Soong [78].

Zhou [91] discussed default correlations and multiple defaults using a first-

passage-time model. Since nowadays many individual companies are linked to-

gether due to the general economic environment or firm-specific conditions, the

default correlation is very important in credit analysis such as asset pricing and

risk management. A simple example given in Zhou [91] explains the effect of de-

fault correlation on multiple defaults. Suppose that firm 1 has a 5% probability of

default and firm 2 has 1% probability of default, and the joint default probability

of both firms is 5% × 1% = 0.05% provided that they are independent. If their
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default correlation is 0.2, then in fact the joint default probability becomes 0.48%

which is much higher than 0.05%. We quote from Zhou [91]: “ Due to the rapid

growth in the credit derivatives market and the increasing importance of measuring

and controlling default risks in portfolios of loans, derivative, and other securities,

the importance of default correlation analysis has been widely recognized by the fi-

nancial industry in recent years”. Hence it is evident that considering marginal

default probabilities is not sufficient to assess the credit risk in such a complex

economic market. In summary, Zhou [91] developed a first-passage-time model of

default correlations and multiple defaults and provided an analytical formula for

computing the joint default probabilities. A generalization of Zhou’s approach is

given in Valužis [82].

There are little known analytic results of boundary crossing probability for

higher dimensional Brownian motion, except for very special cases such as level

boundaries. Several techniques are used to obtain the first passage time distribu-

tion for two-dimensional Brownian motion or related processes. One of the methods

is to solve the transition probability density function associated with diffusion equa-

tions subject to the condition of regarding the boundary as an absorbing barrier.

Thus, the first passage time distribution is obtained by integrating the transition

probability density over the domain. We list a few papers as follows. Crescenzo et

al. [21] obtained the first passage time density function g(∂B(t), τ |x 0, t0), starting

from x 0 = (x1
0, x

2
0) /∈ ∂B(t0) at time t0, through the linear time-dependent bound-

ary ∂B(t) = {x = (x1, x2) ∈ R2 : x1 = cx2 + at + b}, with some constants a and c,
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given by

g(∂B(t), τ |x 0, t0)

=
|x1

0 − h(x2
0, t0)|√

2πR(τ − t0)3
exp

{
− [h(x2

0, t0)− x1
0 − (µ1 − cµ2 − a)(τ − t0)]2

2R(τ − t0)

}
, (1.7)

where h(x2
0, t) = cx2

0 +at+b and R = σ2
2c

2−2σ12c+σ
2
1. Iyengar [40] and Metzler [59]

derived closed forms for the first passage time distribution and joint distribution

of the first passage time and location (τ,X (τ)), etc., by transforming a correlated

Brownian motion to a standard one and using the method of images and polar

coordinates. Define the first passage time

τ = min(τ1, τ2),

where

τi = inf{t ≥ 0 : Xi(t) = 0}, X (0) = x 0.

They first transformed a correlated Brownian motion to an independent one via

Z (t) = σ−1X (t) by writing the covariance matrix Σ = σσ
′
, where

σ =

[
σ1

√
1− ρ2 σ1ρ
0 σ2

]
.

Let Z (0) = z 0 whose polar coordinates are given by

r0 =

√
a2

1 + a2
2 − 2ρa1a2

1− ρ2
,

θ0 =


π + tan−1

(
a2
√

1−ρ2
a1−ρa2

)
if a1 < ρa2,

π
2

if a1 = ρa2,

tan−1

(
a2
√

1−ρ2
a1−ρa2

)
if a1 > ρa2,
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where ai = xi0/σi. Then, the distribution of τ = min(τ1, τ2) is reduced to the first

exit time distribution of Z (t) from the wedge

Cα = {(r cos θ, r sin θ) : r > 0, 0 < θ < α} ⊂ R2,

and given by

P (τ > t) =
2r0√
2πt

e−r
2
0/4t

∑
n: odd

1

n
sin

nπθ0

α
[I(νn−1)/2(r2

0/4t) + I(νn+1)/2(r2
0/4t)],

where νn = nπ/α and Iν is the modified Bessel function of the first kind of order

ν. Buckholtz and Wasan [14] derived the first passage time distribution for two-

dimensional Brownian motion without drift in a series form by solving a diffusion

equation through a scale changing transformation and polar coordinates transfor-

mation. Dominé and Pieper [24] used the similar method due to Buckholtz and

Wasan [14] to generalize the result for the case with drift. Lefebvre [49] computed

the moment generating function of the first passage time density for two-dimensional

diffusion processes for a straight line and a circle boundary using methods of sep-

aration of variables and of similarity solutions. The joint distribution of hitting

time and hitting place is studied by several authors, for example, see Wendel [87]

and Yin [90]. More results and properties concerning the hitting time for two or

higher-dimensional Brownian motion for nice boundaries, such as straight lines or

circles, can be found in Spitzer [79], Bañuelos and Smits [3], Burkholder [16] and

Li [52].

Noticeably, many of the papers we mentioned dealt with boundary crossing

probabilities with level boundaries, hence the boundary crossing probabilities for
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high dimensional Brownian motion for general boundaries are still an open chal-

lenge as mentioned in Crescenzo et al. [21] that boundary crossing problem in two

dimensional is far from being trivial. Since such a wide range of applications are

relevant to boundary crossing probabilities for Brownian motion in different areas,

a simple method of finding boundary crossing probabilities is of great interest and

importance. In this thesis, a unified method is developed for the boundary crossing

probabilities for one or higher-dimensional Brownian motion or related diffusion

processes by using the finite Markov chain imbedding technique as shown in equa-

tion (1.6). The basic idea of our approach is based on being able to construct a

finite Markov chain and the boundary crossing probability for Brownian motion is

cast as the limiting probability of the finite Markov chain entering a set of absorbing

states induced by the boundaries. The method is somewhat simple, but the con-

struction of a finite Markov chain and the sequence of state spaces with absorbing

states plays an important role in obtaining the boundary crossing probability. With

minor modification, this method can be easily extended to the boundary crossing

problems for high-dimensional Brownian motion or general Markov processes.

1.3 Error bound

Let X1, . . . , Xn be independent random variables with common distribution F such

that E(X1) = 0, E(X2
1 ) = 1 and E(|X3

1 |) = c3, and Sn =
∑n

i=1Xi. The rate

of convergence of the distribution of sum of i.i.d. random variables to a normal

distribution has been extensively studied in the literature. It is well-known that

the Berry-Esseen theorem (see [33], page 542) gives an upper bound for the error
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as follows:

|Fn(x)− Φ(x)| ≤ 3c3√
n
,

where Fn(x) stands for the distribution of the normalized sum

(X1 + · · ·+Xn)/
√
n,

and Φ(x) stands for the distribution of standard normal. This remarkable result is

that it depends only on the third moment c3.

It is often called the invariance principle for partial sums of i.i.d. random vari-

ables converging to a Brownian motion, since it does not depend on the underlying

distribution F . The rate of convergence for the invariance principle is a general

term which represents the convergence rate for the functionals of Brownian motion.

In this thesis, the study of convergence rate for the invariance principle means the

study of the error given by

Error =

∣∣∣∣P ( sup
1≤k≤n

Sn <
√
nx)− P ( sup

0≤t≤1
W (t) < x

)∣∣∣∣ .
From the Berry-Esseen theorem, we would expect that the upper bound for the

above error is also of order O(1/
√
n), which is established in Section 3.1.2.

There are three major methods used for establishing the rate of convergence: (1)

Prokhorov distance ; (2) Skorokhod embedding; and (3) inversion formula (char-

acteristic function). The first method was introduced by Prokhorov [66] and he

obtained the estimate of the rate O(log2 n/n1/8). Borovkov [12] improved the con-

vergence rate and showed that the estimate for Prokhorov distance can not be

better than O(n−1/4 logβ n) by using the method of common probability space,

18



where β depends on the distribution of X1. For more detail about the Donsker-

Prokhorov’s invariance principle, readers are referred to the papers by Borovkov [11]

and Dudley [26] which contain surveys about recent results. Skorokhod’s embed-

ding is another useful approach to study the rate of convergence for invariance

principle. The idea is to embed i.i.d. random variables into a Brownian mo-

tion with certain stoping times, i.e. there exists a sequence of nonnegative, mu-

tually independent random variables τ1, τ2, . . . , τn such that the joint distribution

of W (τ1),W (τ1 + τ2)−W (τ1), . . . ,W (τ1 + · · ·+ τn−1)−W (τ1 + · · ·+ τn) are iden-

tical to the joint distribution of i.i.d. random variables X1, . . . , Xn. Thus, the

distribution of Si is the same as that of W (τ1 + · · · + τi). One early result utiliz-

ing Skorokhod’s embedding technique is given by Rosenkrantz [71] who obtained

the convergence rate as O((log n)1/2n−µ), where µ = 1
2
a/(a + 3) and 0 < a ≤ 2.

Heyde [39] improved Rosenkrantz’s result by releasing the condition a ≤ 2 and ob-

tained the convergence rate as O
(
(log n)λn−µ

)
where λ = (1 +a/2)/(a+ 3)(< 1/2),

µ = min(a, 1+a/2)/(2(a+3)). There are many other papers improving the conver-

gence rates using the Skorokhod’s embedding technique, see for example, Fraser [36]

and Sawyer [74]. The anticipated Berry-Esseen bound is achieved by Nagaev [61, 62]

using the method of characteristic function and inversion formula and given by

|P (a(k/n) < Sk < b(k/n), k = 1, . . . , n)−

P (a(t) < W (t) < b(t), t ∈ [0, 1])| ≤ L
c2

3(K + 1)√
n

, (1.8)

where L is an absolute value and a(t) and b(t) are boundaries satisfying the Lipschitz
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condition

|a(t+ h)− a(t)| < Kh,

|b(t+ h)− b(t)| < Kh, h > 0,

for some positive constant K. Up to now, Eq. (1.8) is the best known result of the

rate of convergence for invariance principle, although the constant part can still be

improved.

In some sense, the third method using characteristic function is more straight-

forward to deal with the error problem, hence it may produce better results, since it

simply derives the difference of two probabilities. We will establish our error bound

with rate O(1/
√
n) by combining the results of Nagaev [61, 62] and Borovkov and

Novikov [13] in Section 3.1.2.

To the best of our knowledge, the known error bound for two or high-dimensional

Brownian motion by discrete approximation is of order O(n−
1
8 ) to date (see, e.g.,

Fraser [35]). Hence, it remains an open problem to find a better rate of convergence

for two or high-dimensional Brownian motion.

1.4 Summary

In Chapter 2, we provide some preliminary results for the FMCI technique and ab-

sorption probability of a discrete Markov chain with finite state space. The limiting

absorption probability will later be served as the boundary crossing probability.

In Chapter 3, we give the detail for our main results for calculating the boundary

crossing probabilities for one-dimensional Brownian motion. Based on the FMCI
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technique, a finite Markov chain with absorbing states associated with boundaries

is constructed and we prove the absorption probability of the finite Markov chain

converges to the boundary crossing probability for Brownian motion. In addition,

we introduce a class of irregular boundaries called Y -channel boundaries which have

not been studied yet in the literature, and show how to calculate boundary crossing

probabilities for these. We also derive the error bounds of our approximations.

To improve the speed of computation, an efficient algorithm for computing the

boundary crossing probabilities for time homogeneous boundaries is given by using

eigenvalues and eigenvectors of transition probability matrices.

In Chapter 4, we extend our method to certain classes of diffusion processes.

First we introduce a class of diffusion processes which can be transformed to func-

tions of a Brownian motion and, of course, the boundary crossing probabilities for

this class of diffusion processes can be obtained through the boundary crossing

probabilities for Brownian motion with changed time interval and boundary. Next

we further extend the method to jump diffusion processes.

In Chapter 5, the boundary crossing probabilities for two or higher-dimensional

Brownian motion are considered. Our results can be directly extended to a stan-

dard two-dimensional Brownian motion. For a two-dimensional correlated Brownian

motion, it can be transformed into an independent one. Therefore, the boundary

crossing probabilities for two-dimensional Brownian motion can be obtained by our

method with no additional difficulty.

In Chapter 6, examples and numerical results are given for illustration. We give

examples to show the detail of how to implement the FMCI procedure. From the

numerical results, it shows our method performs well. We also give an applica-
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tion to pricing the corporate debt showing the potential applications in areas like

mathematical finance.

Summary and discussion are given in Chapter 7. We expect that the method

can be eventually extended to general higher-dimensional Markov processes.
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Chapter 2

Preliminary

2.1 Finite Markov Chain Imbedding

Definition 2.1.1 (Fu and Lou (2003)). An integer-valued random variable Xn is

finite Markov chain imbeddable if there exists a finite Markov chain {Yn} defined on

a finite state space Ω = {a1, . . . , am} with initial probability vector ξ such that for

every x, we have

P (Xn = x) = P (Yn ∈ Cx|ξ), (2.1)

where Cx is a subset of Ω corresponding to x, and {Cx} forms a partition on the

state space Ω.

Suppose M is the transition matrix of the imbedded Markov chain {Yn} de-

fined on the state space Ω = {a1, . . . , am} with initial distribution ξ = (P (Y0 =

a1), . . . , P (Y0 = am)). Then, the distribution of a finite Markov chain imbeddable

random variable Xn can be obtained via the following theorem.
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Theorem 2.1.1 (Fu and Lou (2003)). If Xn is finite Markov chain imbeddable,

then

P (Xn = x) = P (Yn ∈ Cx|ξ) = ξM nU
′
(Cx), (2.2)

where U (Cx) =
∑

r : ar∈Cx er, er is a 1×m unit row vector corresponding the state

ar. If the Markov chain is non-homogeneous, then Eq. (2.2) becomes the product of

matrices M t, t = 1, . . . , n.

Proof. The proof is followed directly by the Chapman-Kolmogorov equation.

As shown in Fu and Lou [37], many random variables or statistics related to runs

and patterns are finite Markov chain imbeddable and the exact distributions can be

easily obtained by the FMCI technique, while the results would be tedious or even

intractable by using combinatorial methods. A particularly useful characteristic of

a Markov chain is the absorption probability which can be considered as a special

case of the above theorem. We give more details in the following section.

2.2 Absorption probability of a finite Markov chain

To facilitate our approach, we need a simple result for computing the absorption

probability of a finite non-homogeneous Markov chain. Given n ∈ J+ = {1, 2, . . .},

let us define a sequence of state spaces

Ωi = {c1, c2, . . . , cmi} ∪ {αi}, for i = 0, 1, . . . , n,

where αi stands for an absorbing state (we allow the absorbing state α to be a

function of i) and (mi + 1) is the size of the state space Ωi (the mi do not have
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to be the same). Denote ξ as the initial distribution, and that a finite Markov

chain {Yi}ni=0 is defined on the sequence of state spaces {Ωi}ni=0 with transition

probabilities: for i = 1, 2, . . . , n,

P (Yi = k|Yi−1 = j) =


pi(k|j) if j ∈ Ωi−1\αi−1, k ∈ Ωi\αi,
pi(αi|j) if j ∈ Ωi−1\αi−1, k = αi
0 if j = αi−1, k ∈ Ωi\αi,
1 if j = αi−1, k = αi.

(2.3)

The transition probability matrices associated with the finite Markov chain {Yi}ni=0

will have the form:

M i =

[
N i C i

0 1

]
, (2.4)

where N i = (pi(k|j)), j ∈ Ωi−1\αi−1 and k ∈ Ωi\αi, is a mi−1 × mi rectangular

matrix, often referred as the fundamental matrix, C i = (pi(αi|j)) is a mi−1 × 1

column vector and 0 = (0, . . . , 0) 1×mi row vector. It follows from the Chapman-

Kolmogorov equation and the structure of the matrices M i that the probability that

the Markov chain {Yi}ni=0 never touches the absorbing states, P (Y1 6= α1, . . . , Yn 6=

αn|ξ) can be obtained via the following lemma.

Lemma 2.2.1. Given the state spaces {Ωi}ni=0 and the finite Markov chain {Yi}ni=0

defined on the state spaces {Ωi}ni=0 with corresponding transition probability matrices

defined by the Eq. (2.4). Then

P (Y1 6= α1, . . . , Yn 6= αn|ξ) = ξ0

(
n∏
i=1

N i

)
1′,

where ξ = (ξ0, 0) and N i are given by Eqs. (2.3) and (2.4).
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Proof. It follows from Theorem 2.1.1 that

P (Y1 6= α1, . . . , Yn 6= αn|ξ) = 1− (ξ0, 0)

(
n∏
i=1

M i

)
(0, . . . , 0, 1)

′
.

From Eq. (2.4), we have

1− (ξ0, 0)

(
n∏
i=1

M i

)
(0, . . . , 0, 1)

′
= ξ0

(
n∏
i=1

N i

)
1
′
.

Hence, the proof is completed.

Define the first passage time random variable for the absorbing state αi as

τ = inf{i : Yi = αi}.

It follows immediately from the definition of τ that

P (τ > n) = ξ0

(
n∏
i=1

N i

)
1′. (2.5)

Note that if the finite Markov chain {Yt} is homogeneous, then the above probability

becomes

P (τ > n) = ξ0N
n1′.

The above result allows us to calculate the absorption probability of a finite

Markov chain. In the following, a large deviation approximation is given based on

the eigenvalues and eigenvectors decomposition of transition probability matrix of a

finite Markov chain. If 1
′

can be written as a linear combination of the eigenvectors

η
′
i, i.e.

1
′
=

ω∑
i=1

aiη
′

i, (2.6)

where ω is the size of the matrix N , then we have the following lemmas.
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Lemma 2.2.2. Let 1 > λ[1] ≥ |λ[2]| ≥ · · · ≥ |λ[ω]| be the ordered eigenvalues of N

of size ω. From Fu and Lou [37], we have

ξ0N
n1
′
=

ω∑
i=1

aiξ0η
′

[i]λ
n
[i], (2.7)

where η[i]’s are the eigenvectors associated with λ[i].

Proof. The result of Lemma 2.2.2 is the direct consequence of eigenvalues and eigen-

vectors decomposition of N (see Fu and Lou [37] for details).

By Perron-Frobenius theorem for nonnegative matrix, the eigenvalues of N or-

dered such that 1 > λ[1] ≥ |λ[2]| ≥ · · · ≥ |λ[ω]| is possible. 1
′

may not always be

able to express as linear combination of the eigenvectors of N . Fu and Johnson

[38] discussed the eigenvalues and eigenvectors approximation in detail and pro-

vided several treatments for the situations where Eq. (2.6) is not possible and λ1

has algebraic multiplicity greater than 1.

While the above construction is somewhat simple, the construction of the se-

quence of state spaces and the Markov chain {Yi}ni=0 and absorbing states will play

an indispensable role for our method computing the boundary crossing probabilities.

2.3 Simple random walk

We give some boundary crossing results for simple random walk and take this op-

portunity to show some detail of the FMCI procedure. Let X1, . . . , Xn be i.i.d.
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random variables taking values on ±1 and P (Xi = ±1) = 1/2, i = 1, . . . , n. A

simple random walk is the partial sum

Wn = X1 + · · ·+Xn.

Since Wn = Wn−1 + Xn, clearly {Wn} is a Markov chain taking values on the

state space Ω = {. . . ,−1, 0, 1, . . .} and having transition probabilities

P (Wn = k|Wn−1 = j) =
1

2
, if k − j = ±1.

Consider the first passage time τc = min{i : Wi = ±c}, and we can define an

imbedded Markov chain {Yn} on the state space Ω = {−c+ 1, . . . ,−1, 0, 1, . . . , c−

1, α}, where α is an absorbing state. The transition probability matrix of the

imbedded Markov chain {Yn} is given by

M c =

−c+ 1
−c+ 2

...

c− 1
α



0 1
2

0 0 0 0 1
2

1
2

0 1
2

0 0 0 0
0 1

2
0 1

2
0 0 0

. . . . . .

0 0 0 1
2

0 1
2

0
0 0 0 0 1

2
0 1

2

0 0 0 0 0 0 1


=

[
N c C c

0 1

]
. (2.8)

It follows from Eq. (2.5) that

P (τc > n) = P (Yn 6= α) = ξ0N
n
c1
′
,

where ξ0 = (0, . . . , 0, 1, 0, . . . , 0) is the initial distribution.

We can see that the transition matrix N c is actually a symmetric Toeplitz

matrix which has great advantage on computation. Let λi and ηi, i = 1, . . . , 2c −
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1, be the eigenvalues and corresponding eigenvectors of the Toeplitz matrix N c,

respectively. Let m = 2c − 1, it can be shown that λi = cos(iπ/(m + 1)) and

η
′
i = (sin(1iπ/(m + 1), sin(2iπ/(m + 1)), . . . , sin(miπ/(m + 1)))/

√
m/2 (see, e.g.,

Meyer [60]) after normalization.

It follows from Lemma 2.2.2 that

P (τc > n) =
m∑
i=1

aiξ0η
′

[i]λ
n
[i],

where ai = η[i]1
′

=
∑m

j=1 sin(jiπ/(m + 1))/
√
m/2 and ξ0η

′

[i] = sin(ciπ/(m +

1))/
√
m/2, and

P (τc > n) =
m∑
i=1

(
m∑
j=1

sin

(
jiπ

m+ 1

))
sin

(
ciπ

m+ 1

)
cosn

(
iπ

m+ 1

)
2

m

=
m∑
i=1

(
m∑
j=1

sin

(
jiπ

m+ 1

))
sin

(
iπ

2

)
cosn

(
iπ

m+ 1

)
2

m

=
m∑
i=1

sin
(
iπ
2

)
sin
(

miπ
2(m+1)

)
sin
(

iπ
2(m+1)

)
 sin

(
iπ

2

)
cosn

(
iπ

m+ 1

)
2

m

=
m∑
i=1

cos
(

iπ
2(m+1)

)
− cos

(
(2m+1)iπ
2(m+1)

)
2 sin

(
iπ

2(m+1)

)
 sin

(
iπ

2

)
cosn

(
iπ

m+ 1

)
2

m
.

Also, we have

cos

(
(2m+ 1)iπ

2(m+ 1)

)
= cos

(
−iπ

2(m+ 1)
+ iπ

)
= (−1)i cos

(
iπ

2(m+ 1)

)
.
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Hence,

P (τc > n) =
m∑
i=1

cos
(

iπ
2(m+1)

)
− (−1)i cos

(
iπ

2(m+1)

)
2 sin

(
iπ

2(m+1)

)
 sin

(
iπ

2

)
cosn

(
iπ

m+ 1

)
2

m

=
m∑

i=1,odd

2 cos
(

iπ
2(m+1)

)
2 sin

(
iπ

2(m+1)

)
 sin

(
iπ

2

)
cosn

(
iπ

m+ 1

)
2

m

=
m∑

i=1,odd

cot

(
iπ

2(m+ 1)

)
sin

(
iπ

2

)
cosn

(
iπ

m+ 1

)
2

m

=
m∑

i=1,odd

sin
(
iπ
2

)
cosn

(
iπ
m+1

)
tan
(

iπ
2(m+1)

) 2

m

=
m∑

i=1,odd

(−1)
i−1
2 cosn

(
iπ
m+1

)
m
2

tan
(

iπ
2(m+1)

)

=
c∑
j=1

(−1)j−1 cosn
(

(2j−1)π
m+1

)
m
2

tan
(

(2j−1)π
2(m+1)

) . (2.9)

It is another advantage of the FMCI technique that not only we can calculate

the exact probability via transition probability matrices, but also we can derive

other identities, for example the explicit form for P (τc > n) given in Eq. (2.9). In

a similar fashion, a recursive formula can be derived for the probability P (τc > n)

as follows.

Let αn(x) = P (Yn = x), x = −c+1, . . . , c−1, and αn(c) = P (Yn = α). In view of

the transition probability matrix in Eq. (2.8), from backward matrix multiplication
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it can be shown that the following recursive equations hold: n ≥ 1,

α0(0) = 1,

αn(x) =
1

2
αn−1(x− 1) +

1

2
αn−1(x+ 1), x = −c+ 2, . . . , c− 2,

αn(c− 1) =
1

2
αn−1(c− 2),

αn(−c+ 1) =
1

2
αn−1(−c+ 2), and

αn(c) =
1

2
αn−1(c− 1) +

1

2
αn−1(−c+ 1) + αn−1(c).

Thus,

P (τc > n) = 1− αn(c)

=
c−1∑

i=−c+1

αn(i).

Note that the above recursive equations still hold for asysmetric simple random

walk with P (Xi = 1) = p and P (Xi = −1) = q by simply replacing 1/2 by p or q.
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Chapter 3

Boundary Crossing Probability for

One-dimensional Brownian
Motion

3.1 Boundary crossing probability

3.1.1 Main results

For given ∆t, the Brownian motion W (t) has transition probability density function

f(x, y|∆t) =
1√

2π∆t
exp

{
− 1

2∆t
(y − x)2

}
,

for all x, y ∈ R. Throughout this thesis, let a(t) and b(t) denote the lower and upper

boundaries, respectively, and satisfy the following conditions:

(A) a(t) < b(t) are continuous for t ∈ [0, T ], and

(B) a(0) < 0 < b(0).
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Let h = max
(
sup0≤t≤T |a(t)|, sup0≤t≤T |b(t)|

)
. Since a(t) and b(t) are continuous

functions defined on the compact set [0, T ], we have 0 < h < ∞. Given a large

positive integer m, we define ∆x = h/m and discretize the real line R as Rm =

{k∆x : k = 0,±1, . . .}. We also evenly discretize the time interval [0, T ] into n =

m2T/h2 sub-intervals. Without loss of generality, we may assume T = 1 and n =

m2/h2 is always an integer for, if not, we may take n = bm2/h2c, the integer part

of m2/h2. For given t ∈ [0, 1], we then construct a partial sum

Ŵn(t) =

bntc∑
=1

X̂, (3.1)

where P (Ŵn(0) = 0) = 1 and X̂
′
s are discrete i.i.d. random variables induced by

discretizing the R and the time interval [0, 1], having distribution defined by, for

 = 1, . . . , bntc,

P (X̂ = k∆x) =


C−1
√

2π
exp

(
−k2

2

)
if k 6= 0,

C−1
√

2π

∑
`6=0(`2 − 1) exp

(
− `2

2

)
if k = 0,

(3.2)

where
∑
6̀=0 stands for

∑−1
`=−∞+

∑∞
`=1 and C = 1√

2π

∑
` 6=0 `

2 exp(−`2/2) is the

normalizing constant. Obviously, {Ŵn(t)} is a homogeneous Markov chain having

transition probabilities

p(k|j) = P (Ŵn(t+ ∆t) = k∆x|Ŵn(t) = j∆x)

=


C−1
√

2π
exp

(
− (k−j)2

2

)
if k − j 6= 0,

C−1
√

2π

∑
`6=0(`2 − 1) exp

(
− `2

2

)
if k − j = 0.

(3.3)
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Note that the discrete probability functions defined by Eq. (3.2) have two important

characters: (i) they preserve the basic relationship that the variance of X̂ equals to

∆t = ∆x2, and (ii) the transition probabilities depend only on the difference k− j.

Next we establish that Ŵn(t) converges to a Brownian motion W (t) in distribution.

Theorem 3.1.1. Given t ∈ [0, 1] and ∆t = ∆x2 (n = m2/h2), we have

Ŵn(t)
D→ W (t), as m→∞.

Proof. We denote ϕX(s) as the characteristic function of a random variable X.

According to the continuity theorem,

E[eisX̂1 ]

=
∑
k 6=0

C−1

√
2π

(k2 − 1)e−
k2

2 +
∑
k 6=0

eisk∆x · C
−1

√
2π
e−

k2

2

=
C−1

√
2π

∑
k 6=0

(k2 − 1)e−
k2

2 +
C−1

√
2π

∞∑
k=1

e−
k2

2

(
eisk∆x + e−isk∆x

)

=
C−1

√
2π

∑
k 6=0

(k2 − 1)e−
k2

2 +
C−1

√
2π

∞∑
k=1

e−
k2

2 · 2 cos(sk∆x)

=
C−1

√
2π

∑
k 6=0

(k2 − 1)e−
k2

2 +
C−1

√
2π

∑
k 6=0

e−
k2

2

(
1− (sk∆x)2

2
+O

(
∆x4

))

= 1− s2∆x2

2

C−1

√
2π

∑
k 6=0

k2e−
k2

2 +O
(
∆x4

)

= 1− s2h2

2m2
+O

(
1

m4

)
.

34



Hence, we have

ϕŴn(t)(s) =

(
1− s2h2

2m2
+O

(
1

m4

))m2t/h2

→ exp

(
−ts

2

2

)
, as m→∞.

Let S(t) denote the random variable with distribution function to which Ŵn(t)

converges in distribution. For ε > 0, let the event En = {ω : |S(1/n)| > ε}, and we

have

P (En) = P (|S(1/n)| > ε) = 2P (S(1/n) > ε),

where S(1/n) follows N(0, 1/n). It follows from Feller [32] (Page 175),

P (En) <
2

ε
√
n2π

e−
ε2n
2 .

By the integral test for convergence,

∞∑
n=1

P (En) <∞ if

∫ ∞
1

2

ε
√

2πx
e−

ε2x
2 dx <∞,

and ∫ ∞
1

2

ε
√

2πx
e−

ε2x
2 dx ≤

∫ ∞
1

2

ε
√

2π
e−

ε2x
2 dx

=
2

ε
√

2π

(
− 2

ε2
e−

ε2x
2

∣∣∣∣∞
1

)

=
2

ε
√

2π

(
2

ε2
e−

ε2

2

)
<∞.

Hence, we have

∞∑
n=1

P (En) <∞.

35



By Borel-Cantelli Lemma, S(t) is continuous at t = 0 almost surely. Obviously, S(t)

satisfies the independent increment property, therefore, the process {S(t), t ∈ [0, 1]}

is a Brownian motion owing to its definition.

Remark 3.1.1. It is worth mentioning that the construction of the probability func-

tion in Eq. (3.2) which preserve the variance is not unique, for example, we may

define the discrete distribution by

P (X̂i(t) = k∆x) =


C−1

kp
√

2π
exp

(
−k2

2

)
if k 6= 0,

C−1
√

2π

∑
`6=0( 1

`p−2 − 1
`p

) exp
(
− `2

2

)
if k = 0.

(3.4)

where C = (1/
√

2π)
∑
6̀=0

1
`p−2 exp(−`2/2) and p is even. As p → ∞, the Markov

chain {Ŵn(t : p)} induced by Eq. (3.4) reduces to a simple random walk moving one

step in either the right or left direction with equal probability. For p = 0, it reduces

to Eq. (3.2) and {Ŵn(t)} = {Ŵn(t : 0)}.

In the sequel, we define a non-homogeneous Markov chain with absorbing states

induced by the homogeneous Markov chain {Ŵn(t)} and boundaries a(t) and b(t).

Let ti = i∆t and define ai = ba(ti)/∆xc and bi = bb(ti)/∆xc. Then the induced

boundaries for Ŵn(ti) are a∗(i/n) = ai∆x and b∗(i/n) = bi∆x, for i = 1, 2, . . . , n.

We define an imbedded Markov chain {Yn(i)}ni=0 on the state spaces

Ωi = {j : ai < j < bi} ∪ {αi}, i = 1, 2, . . . , n, (3.5)

by collapsing the values of Ŵn(ti) greater than (bi−1)∆x or smaller than (ai+1)∆x

into an absorbing αi; i.e.

Yn(i) =

{
Ŵn(ti)/∆x if ai∆x < Ŵn(ti) < bi∆x,
αi otherwise .
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Then {Yn(i)}ni=0 is a non-homogeneous Markov chain with absorbing states {αi}

and has transition probabilities given by

P (Yn(i) = k|Yn(i− 1) = j) =


p(k|j) if j ∈ Ωi−1\αi−1, k ∈ Ωi\αi,
pi(αi|j) if j ∈ Ωi−1\αi−1, k = αi,
1 if j = αi−1, k = αi,
0 if j = αi−1, k ∈ Ωi\αi,

(3.6)

where p(k|j) is given by Eq. (3.3) and

pi(αi|j) = 1−
bi−1∑

k=ai+1

p(k|j),

for all j ∈ Ωi−1\αi−1, and Ω0 = {0} and P (Yn(0) = 0) ≡ 1. All of the transition

probability matrices of the Markov chain {Yn(i)}ni=0 have the form

M i =

(
p(k|j) pi(αi|j)

0 1

)
=

(
N i C i

0 1

)
, i = 1, 2, . . . , n, (3.7)

where the fundamental matrix N i are rectangular of size (bi−1−ai−1−1)×(bi−ai−1).

It follows from Lemma 2.2.1 that the probability that the Markov chain {Yn(i)}ni=0

never enters the absorbing states αi is given by the following lemma (see Fu and

Lou [37]).

Lemma 3.1.1. Given m and n = bm2/h2c, we have

P (Yn(1) 6= α1, . . . , Yn(n) 6= αn|Yn(0) = 0) = ξ0

(
n∏
i=1

N i

)
1
′
,

where the N i, i = 1, . . . , n are defined by Eqs. (3.6) and (3.7), and 1 = (1, . . . , 1)

is a row vector of size (bn − an − 1).
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In view of our constructions and Lemma 3.1.1, we have the following result.

Theorem 3.1.2. Let a(t) and b(t) be two continuous functions satisfying conditions

(A) and (B), and W (t) be a standard Brownian motion. Then

P (W (t) ≤ a(t) or W (t) ≥ b(t), for some t ∈ [0, 1])

= 1− lim
m→∞

ξ0

bm2/h2c∏
i=1

N i

1
′
. (3.8)

Proof. We can rewrite the boundary crossing probability as

P (a(t) < W (t) < b(t), 0 ≤ t ≤ 1)

= P (0 < inf
0≤t≤1

(W (t)− a(t)) and sup
0≤t≤1

(W (t)− b(t)) < 0).

As the time interval [0, 1] is divided into n equal sub-intervals, the boundaries, a(t)

and b(t), are also divided into n segments. Then the induced sequences of step

functions an(t) = a∗(bntc/n) and bn(t) = b∗(bntc/n) uniformly converge to a(t) and

b(t), respectively, on the compact set [0, 1]. Since {an(t)} → a(t), {bn(t)} → b(t),

by Slutsky’s theorem, Ŵn(t) − an(t) and Ŵn(t) − bn(t) converge in distribution to

W (t) − a(t) and W (t) − b(t), respectively. Also h1(x) = (supt x(t), inft x(t)) is a

continuous function. As m→∞ (or n→∞), the following holds (see Billingsley [5],

page 77), (
min

0≤i≤n

(
Ŵn(ti)− a∗

(
i

n

))
, max

0≤i≤n

(
Ŵn(ti)− b∗

(
i

n

)))
D→
(

inf
0≤t≤1

(W (t)− a(t)), sup
0≤t≤1

(W (t)− b(t))
)
.
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Hence, the boundary crossing probability for Brownian motion can be approximated

via the constructed Markov chain and calculated using the FMCI technique as

follows:

P (a(t) < W (t) < b(t), 0 ≤ t ≤ 1)

= P

(
inf

0≤t≤1
(W (t)− a(t)) > 0 and sup

0≤t≤1
(W (t)− b(t)) < 0

)

= lim
m→∞

P

(
min

0≤i≤n

(
Ŵn(ti)− a∗

(
i

n

))
> 0 and max

0≤i≤n

(
Ŵn(ti)− b∗

(
i

n

))
< 0

)

= lim
m→∞

P

(
a∗
(
i

n

)
< Ŵn(ti) < b∗

(
i

n

)
, for all 0 ≤ i ≤ n

)
= lim

m→∞
P (Yn(1) 6= α1, . . . , Yn(n) 6= αn)

= lim
m→∞

ξ0

bm2/h2c∏
i=1

N i

1
′
. (3.9)

This completes the proof.

Remark 3.1.2. For the one-sided boundary crossing probability, we simply let

a(t) = −H and H → ∞ (or b(t) = H and H → ∞) in our computation. In

this case, we use h = max(H, sup0≤t≤1 b(t)) (or h = max(H, sup0≤t≤1 |a(t)|)).

If without assuming the relationship ∆t = ∆x2 in advance, then we would have

the induced discrete random variables X̂ ,  = 1, . . . , n, defined as follows:

P (X̂ = k∆x) =

{
C−1∆x√

2π∆t
exp

(
−k2∆x2

2∆t

)
if k 6= 0,

C−1p0 if k = 0,
(3.10)

where C is the normalizing constant and p0 is adjusted to preserve the variance.

We refer Eq. (3.10) as Markov discretization. Let us agree that the symbol O used
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below means the corresponding constant is absolute.

Corollary 3.1.1. Under the Markov discretization, the discrete Markov chain {Ŵn(t)}

converges in distribution to a Brownian motion if and only if ∆t = O(∆x2) provided

that the X̂j’s are not degenerate.

Proof. “ ⇒ ”

Suppose that ∆t 6= O(∆x2), and we assume that ∆t = O(∆x2+a), a 6= 0, which

leads to ∆t = c∆x2+a for some constant c > 0. Then the distribution of X̂ is

P (X̂ = k∆x) =

{
C−1

√
2πc∆xa

exp
(
− k2

2c∆xa

)
if k 6= 0,

C−1p0 if k = 0,
(3.11)

where C = 1√
2πc∆xa

∑
6̀=0 exp(−`2/2c∆xa) + p0 is the normalizing constant.

Case 1. If a > 0, then X̂j degenerates to 0, as n→∞(∆x→ 0).

Case 2. If a < 0, for k 6= 0,

P (X̂ = k∆x) =
C−1

√
2πc∆xa

exp

(
− k2

2c∆xa

)

≤ C−1

√
2πc∆xa

→ 0, as n→∞.

Therefore, X̂j degenerates to 0, as n→∞.

“ ⇐ ”

If ∆t = O(∆x2), then ∆t = c∆x2 for some positive constant c. Then we have the
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distribution function of X̂ given by

P (X̂ = k∆x) =

{
C−1
√

2πc
exp

(
−k2

2c

)
if k 6= 0,

C−1p0 if k = 0,

where C = 1√
2πc

∑
6̀=0 exp(−`2/2c) + p0 is the normalizing constant. In order to

preserve the variance, po must satisfy

Var(X̂j) = ∆t =
C−1

√
2πc

∑
k 6=0

k2∆x2 exp

(
−k

2

2c

)

⇒ c∆x2 =

1√
2πc

∑
k 6=0 k

2∆x2 exp
(
−k2

2c

)
1√
2πc

∑
k 6=0 exp

(
−k2

2c

)
+ p0

⇒ c

(
1√
2πc

∑
k 6=0

exp

(
−k

2

2c

)
+ p0

)
=

1√
2πc

∑
k 6=0

k2 exp

(
−k

2

2c

)
.

Then,

p0 =
1√
2πc

∑
k 6=0

(
k2

c
− 1

)
exp

(
−k

2

2c

)
.

We need to show p0 ≥ 0 for all c > 0. Let ε =
∑∞

k=1 (k2/c− 1) exp(−k2/2c) and

g(k) = (k2/c− 1) exp(−k2/2c). We consider two cases when (i) c < 1/3 and (ii)

c ≥ 1/3. Then, g(k) is decreasing in k in case (i) and decreasing in k >
√

3c in case

(ii). It follows that

Case (i)

ε ≥
∫ ∞

1

(
k2

c
− 1

)
exp

(
−k

2

2c

)
dk

=

∫ ∞
1

k2

c
exp

(
−k

2

2c

)
dk −

∫ ∞
1

exp

(
−k

2

2c

)
dk.
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Set y = k2/2c,
√
y = k/

√
2c and dy = (k/c)dk, then

ε ≥
∫ ∞

1
2c

k2

c
e−y

c

k
dy −

∫ ∞
1
2c

e−y
c

k
dy

=

∫ ∞
1
2c

√
2cye−ydy −

∫ ∞
1
2c

c√
2cy

e−ydy

=
√

2c · Γ
(

3

2
,

1

2c

)
− c√

2c
Γ

(
1

2
,

1

2c

)
,

where Γ is the upper incomplete gamma function. Since

Γ

(
3

2
,

1

2c

)
=

1

2
Γ

(
1

2
,

1

2c

)
+

(
1

2c

) 1
2

e−
1
2c ,

then

ε ≥
√
c√
2

Γ

(
1

2
,

1

2c

)
+ e−

1
2c −

√
c√
2

Γ

(
1

2
,

1

2c

)

= e−
1
2c .

Case (ii)

ε ≥
∫ ∞
d√3ce

(
k2

c
− 1

)
exp

(
−k

2

2c

)
dk

=

∫ ∞
d√3ce

k2

c
exp

(
−k

2

2c

)
dk −

∫ ∞
d√3ce

exp

(
−k

2

2c

)
dk,

where dae is the smallest integer greater than or equal to a. Set y = k2/2c,
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√
y = k/

√
2c and dy = (k/c)dk, then

ε ≥
∫ ∞

3
2

k2

c
e−y

c

k
dy −

∫ ∞
3
2

e−y
c

k
dy

=

∫ ∞
3
2

√
2cye−ydy −

∫ ∞
3
2

c√
2cy

e−ydy

=
√

2c · Γ
(

3

2
,
3

2

)
− c√

2c
Γ

(
1

2
,
3

2

)
.

Since

Γ

(
3

2
,
3

2

)
=

1

2
Γ

(
1

2
,
3

2

)
+

(
3

2

) 1
2

e−
3
2 ,

then

ε ≥
√
c√
2

Γ

(
1

2
,
3

2

)
+
√

3ce−
1
2c −

√
c√
2

Γ

(
1

2
,
3

2

)

=
√

3ce−
1
2c .

We have shown p0 ≥ 0 for any given c > 0, then following exactly the same proof

of Theorem 3.1.1, Ŵn(t) converges in distribution to a standard Brownian motion

W (t).

3.1.2 Error Bound

In this section, we provide the error bound of our approximation for BCP for one-

dimensional Brownian motion. The error bound is established based on the results

of Nagaev [61] and Borokov and Novikov [13].
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Let F = {fp : the family of distributions given by Eq. (3.4) for p = 0, 2, 4, . . .}.

For the proposed approximation Ŵn(t : p) induced by Eq. (3.4) with fp ∈ F , it is

important to know its error bound and numerical performance. Let

P̂(a(k/n), b(k/n)) := P (a(k/n) < Ŵn(tk : p) < b(k/n), k = 1, . . . , n),

P(a(t), b(t)) := P (a(t) < W (t) < b(t), t ∈ [0, 1]).

We present the following theorem.

Theorem 3.1.3. Given fp ∈ F ,

(i) Ŵn(t : p)
D→ W (t), as n→∞, and

(ii) for the boundaries a(t) and b(t) satisfying the Lipschitz condition: there exists

a constant K such that |a(t + h) − a(t)| < Kh and |b(t + h) − b(t)| < Kh,

h > 0, then the error bound is

|P(a(t), b(t))− P̂(a∗(k/n), b∗(k/n))| = O(1/m), as n→∞,

where n = bm2/h2c, a∗(k/n) and b∗(k/n) are the boundaries for Ŵn(tk : p).

The proof of the error bound depends on the results of Nagaev [61] and Borokov

and Novikov [13]. We list their results as lemmas, but provide no proofs.

Lemma 3.1.2 (Nagaev). Assuming that the boundaries a(t) and b(t) satisfy the Lip-

schitz condition, then there exists a constant c1 such that, for any p = 0, 2, . . . ,∞,∣∣∣∣∣P(a(t), b(t))− P̂

(
a

(
k

n

)
, b

(
k

n

)) ∣∣∣∣∣ < c1√
n
,

where c1 is a constant which may depend on p.
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Lemma 3.1.3 (Borovkov and Novikov). Given small δ > 0, there exists a constant

c2 such that

|P(a(t)− δ, b(t) + δ)−P(a(t) + δ, b(t)− δ)| < c2δ.

Lemma 3.1.4. Given small δ > 0,∣∣∣∣∣P̂
(
a

(
k

n

)
− δ, b

(
k

n

)
+ δ

)
− P̂

(
a∗
(
k

n

)
, b∗
(
k

n

)) ∣∣∣∣∣
≤

∣∣∣∣∣P̂
(
a

(
k

n

)
− δ, b

(
k

n

)
+ δ

)
− P̂

(
a

(
k

n

)
+ δ, b

(
k

n

)
− δ
) ∣∣∣∣∣.

Proof. From the definitions of a∗(k/n) and b∗(k/n), the following two inequalities

hold for k = 1, 2, . . . , n:

a

(
k

n

)
− δ < a∗

(
k

n

)
< a

(
k

n

)
+ δ and b

(
k

n

)
− δ < b∗

(
k

n

)
< b

(
k

n

)
+ δ.

The lemma follows immediately from the above two inequalities.

Proof of Theorem 3.1.3. The proof of part (i) follows along the same lines as the

proof of Theorem 3.1.1 and is thus omitted. Given small δ > 0, it follows from

triangle inequality that∣∣∣∣∣P(a(t), b(t))− P̂

(
a∗
(
k

n

)
, b∗
(
k

n

)) ∣∣∣∣∣
≤

∣∣∣∣∣P(a(t), b(t))− P̂

(
a

(
k

n

)
− δ, b

(
k

n

)
+ δ

) ∣∣∣∣∣
+

∣∣∣∣∣P̂
(
a

(
k

n

)
− δ, b

(
k

n

)
+ δ

)
− P̂

(
a∗
(
k

n

)
, b∗
(
k

n

)) ∣∣∣∣∣
= An +Bn.
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Furthermore, using the triangle inequality, we have

An ≤ |P(a(t), b(t))−P(a(t)− δ, b(t) + δ)|

+

∣∣∣∣∣P(a(t)− δ, b(t) + δ)− P̂

(
a

(
k

n

)
− δ, b

(
k

n

)
+ δ

) ∣∣∣∣∣
= Cn +Dn.

By Lemma 3.1.4, we have

Bn ≤

∣∣∣∣∣P̂
(
a

(
k

n

)
− δ, b

(
k

n

)
+ δ

)
− P̂

(
a

(
k

n

)
+ δ, b

(
k

n

)
− δ
) ∣∣∣∣∣

≤

∣∣∣∣∣P̂
(
a

(
k

n

)
− δ, b

(
k

n

)
+ δ

)
−P(a(t)− δ, b(t) + δ)

∣∣∣∣∣
+ |P(a(t)− δ, b(t) + δ)−P(a(t) + δ, b(t)− δ)|

+

∣∣∣∣∣P(a(t) + δ, b(t)− δ)− P̂

(
a

(
k

n

)
+ δ, b

(
k

n

)
− δ
) ∣∣∣∣∣

= En + Fn +Gn.

It follows from Lemma 3.1.2 the Dn, En and Gn terms tend to zero with order

O(1/
√
n). By Lemma 3.1.3, the Cn and Fn terms tend to zero with order O(δ).

Part (ii) is an immediate consequence of taking δ = h/m and n = bm2/h2c. This

completes the proof of part (ii).

For p =∞, it is a simple random walk (SRW). The result Ŵn(t :∞)
D→ W (t) was

given in Kac [41] and we expect the rate of convergence of Ŵn(t :∞) to be slower

than that of Ŵn(t : 0). Table 3.1 provides a small numerical study to illustrate the
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errors and rates of convergence of the boundary crossing probabilities of Ŵn(t : p)

for various p.

Table 3.1: Error (|exact - approximation|) for (a) one-sided Daniels’ boundary 1
2
−

t log(1
4
(1 +

√
1 + 8e−1/t)) and (b) two-sided boundary ±(1 + t) under various p.

(a) m p = 0 p = 2 p = 6 p = ∞ (SRW)

2000 6.605×10−4 8.780×10−4 9.725×10−4 9.799×10−4

4000 3.220×10−4 4.306×10−4 4.778×10−4 4.809×10−4

8000 1.581×10−4 2.124×10−4 2.360×10−4 2.376×10−4

12000 1.046×10−4 1.408×10−4 1.565×10−4 1.576×10−4

(b) m p = 0 p = 2 p = 6 p = ∞ (SRW)

2000 1.651×10−4 2.220 ×10−4 2.467×10−4 2.485×10−4

4000 8.158×10−5 1.101×10−4 1.224×10−4 1.233×10−4

8000 4.035×10−5 5.461×10−5 6.013×10−5 6.124×10−5

12000 2.615×10−5 3.623×10−5 3.762×10−5 4.065×10−5

Several things can be seen from the Table 3.1: (i) the error bound tending to 0 is

with order cp/m with unknown constant cp. (ii) The constant cp not only depends

on p but also on the boundaries. For example, in Table 3.1 (a), for p = 0 and

m = 8000 the error is 1.581×10−4, but, for p =∞ (SRW), it requires m = 12000 to

have the same error. This phenomenon can also be found in Table 3.1 (b). (iii) The

Ŵn(t : 0) has the fastest rate of convergence to a Brownian motion W (t) among all

fp ∈ F . Technically speaking, we have not yet determined if f0 has the best rate

among all possible discretizations.
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3.1.3 Y -channel boundary

We consider a special class of boundaries called Y -channel boundaries. The Y -

channel boundary has the shape as the letter Y . Two examples are given in Fig-

ure 3.1. Let us consider a standard Y -channel boundary (solid lines) as part (a)

of Figure 3.1. The boundary splits into two channels at certain time tY ∈ [0, 1]

which is called a split point. As long as the Brownian motion enters one channel

after time tY , then it can not enter another channel without crossing the boundary.

As a variation of Y -channel boundary, we call part (b) of Figure 3.1 land boundary

(solid lines and curves). For our method developed in Section 3.1.1, it creates no ad-

ditional difficulty for computing the boundary crossing probabilities for Y -channel

boundaries. An imbedded Markov chain can be constructed as usual before time

tY , but the transition probability matrices after time tY will require some minor

modification. The details are given below.

0 1

0

(a) standar Y−channel boundary

0

0

(b) land boundary

ti
1

tY ti
2

ti
2

tY ti
3

tY′

A

A′

B′

C′

A′

B′

C′

D′

E′

A

tY′′

A′′

C′′

ti
1

Figure 3.1: Y -channel boundaries
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Standard Y -channel boundary For a usual band boundary (with only upper

and lower boundaries), at each time t, the set of values within boundaries can be

viewed as an interval. We consider a Y -channel boundary in part (a) of Figure 3.1.

At each time t, the interval between the outer boundaries is partitioned into several

sub-intervals. For example, there is only one interval at time ti1 < tY , denoted by

Ai1 , and there are three intervals at time ti2 ≥ tY , denoted by A
′
i2

, B
′
i2

and C
′
i2

.

Note that once the Brownian motion enters the area A
′

after time tY , it can never

enter area C
′

without crossing the boundary.

As the states associated with the fundamental matrix indicate the situation

that the process stays inside the boundaries, the above idea can then be used to

partition the fundamental matrices of the imbedded Markov chain to accommodate

the irregular boundaries. At each time ti, the fundamental matrix N i is partitioned

into certain number of blocks according to the number of intervals induced by the

boundaries as we illustrated before. For example, in part (a) of Figure 3.1, the

fundamental matrix N i2 at time ti2 is of the form

N i2 =

 N A
′
i2−1A

′
i2

0 0

0 0 0
0 0 N C

′
i2−1C

′
i2

 , (3.12)

where N A
′
i2−1A

′
i2

and N C
′
i2−1C

′
i2

are rectangular blocks composed of the transition

probabilities from states in A
′
i2−1 and C

′
i2−1, at time ti2−1, to states in A

′
i2

and C
′
i2

,

at time ti2 , respectively. Also note that transition probability matrices will change

the form after the split point. For simplicity, we omit the subscripts of the intervals,

for example Ai is written as A. If tj−1 < tY ≤ tj for some j, then, for all i < j, the

49



fundamental matrix N i has the form

N i = (N AA).

After the split point tY , the fundamental matrix N j, is then changed to the form

N j =
(

N AA′ 0 N AC′
)
, (3.13)

and for each i
′
> j, the fundamental matrix N i′ is of the form in Eq. (3.12).

The detailed construction of the imbedded Markov chain is given as follows.

For each i such that ti < tY , the fundamental matrix N i is constructed in the

same way in Section 3.1.1. For each i such that ti ≥ tY , let aUi = bA′Ui /∆xc and

aLi = bA′Li /∆xc be the discrete boundaries for the upper channel where A
′U
i and

A
′L
i are the upper and lower limits of the interval A

′
i, respectively. The discrete

boundaries cUi and cLi for the lower channel can be defined analogously. Thus, at

each time ti ≥ tY , the state space is

Ωi = ΩA
′

i ∪ ΩC
′

i ∪ {αi},

where ΩA
′

i = {j : aLi < j < aUi } and ΩC
′

i = {j : cLi < j < cUi }. The transition

probabilities for the fundamental matrix N A
′
i−1A

′
i
(N C

′
i−1C

′
i
) are given by, for j ∈

ΩA
′

i−1(ΩC
′

i−1) and k ∈ ΩA
′

i (ΩC
′

i ),

(N A
′
i−1A

′
i
)jk = P (Yn(i) = k|Yn(i− 1) = j)

=


C−1
√

2π
exp

(
− (k−j)2

2

)
if k − j 6= 0,

C−1
√

2π

∑
` 6=0(`2 − 1) exp

(
− `2

2

)
if k − j = 0.
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Then the boundary crossing probability for the standard Y -channel boundary can

be calculated by our unified formula

1− lim
m→∞

ξ0

bm2/h2c∏
i=1

N i

1
′
,

where N i can be obtained by the above construction. In a similar fashion, the above

construction of fundamental matrices can be generalized to boundaries with finite

many split points. As a variation of standard Y -channel boundary, the example

given in part (b) of Figure 3.1 which has three split points is in another class of

Y -channel boundaries, called land boundaries.

Land boundary The fundamental matrices play an important role in our method.

Here, we only show how to form the fundamental matrices, as the construction of

the imbedded Markov chain and its state spaces and transition probabilities can be

carried out in a similar fashion in the previous section.

At each time ti, i = 1, . . . , n, the fundamental matrix is of the form given below.

For each i < j such that tj−1 < tY ≤ tj, the fundamental matrix has the form

N i = (N AA),

for t = tj after the first split point tY , the form of the fundamental matrix N j is

changed to

N j =
(

N AA′ 0 N AC′ 0 N AE′
)
,
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for each j < i < j
′

such that tj′−1 < tY ′ ≤ tj′ , the fundamental matrix has the form

N i =


N A′A′ 0 0 0 0

0 0 0 0 0
0 0 N C′C′ 0 0
0 0 0 0 0
0 0 0 0 N E′E′

 ,

for t = tj′ after the second split point tY ′ , the form of the fundamental matrix is

changed to

N j′ =


N A′A′ 0 0

0 0 0
0 0 N C′C′′

0 0 0
0 0 N E′C′′

 ,

for each j
′
< i < j

′′
such that tj′′−1 < tY ′′ ≤ tj′′ , the fundamental matrix has the

form

N i =

 N A′A′ 0 0
0 0 0
0 0 N C′′C′′

 ,

for t = tj′′ after the third split point tY ′′ , the form of the fundamental matrix is

changed to

N j′′ =

 N A′A′′

0
N C′′A′′

 ,

and for all i > j
′′
, the fundamental matrices are again back to whole matrices

N i = (N A′′A′′ ) .

52



Thus, our unified formula

1− lim
m→∞

ξ0

bm2/h2c∏
i=1

N i

1
′
,

still applies for land boundaries with only minor modification in the fundamental

matrices of the imbedded Markov chain. The construction of fundamental matrices

adapted to the combination of finite many standard Y -channel and land boundaries

is a straightforward extension.

3.1.4 Comparison under different underlying distributions

In the preceding section, we construct finite Markov chains based on the family of

distributions given in Eq. (3.4) with p = 0 induced by the distribution of W (∆t).

In this section, we conduct a numerical comparison study on the convergence rates

of approximations based on different underlying distributions for boundary crossing

probabilities for Brownian motion. We discuss the performances of approximations

based on different discrete distributions induced by: (a) standard normal distribu-

tion, (b) Student’s t(ν) distributions with ν degrees of freedom and (c) uniform

distributions.

Finite Markov chain under t(ν) distributions We want to construct finite

Markov chains under distributions induced by the t(ν) distribution, converging to

a standard Brownian motion. For a given degrees of freedom ν, the mean and

variance of t(ν) distribution are 0 and ν/(ν − 2), respectively, hence, t(ν)
√
ν − 2/νn
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has mean 0 and variance 1/n. Thus, we have the induced discrete i.i.d. random

variables with distribution defined by

P (X̂ = k∆x) =

 C−1ktν(k)
√

ν−2
ν

if k 6= 0,

C−1
∑

k 6=0(k2 − 1)ktν(k)
√

ν−2
ν

if k = 0,

where tν(k) stands for the density function of t-distribution with ν degrees of free-

dom and C =
∑

k 6=0 k
3tν(k)

√
(ν − 2)/ν is the normalizing constant. The construc-

tion of partial sums or Markov chains and the corresponding transition probability

matrices can be carried out in a similar fashion in Section 3.1.1. Tables 3.2 and

3.3 show the boundary crossing probabilities for one-sided boundaries 1 + t and

1
2
− t log

(
1
4
(1 +

√
1 + 8e−1/t)

)
under various degrees of freedom ν.

Table 3.2: BCP with boundary 1 + t under t(ν) distribution with various degrees
of freedom.

ν m = 1000 2000 4000 8000
3 0.08969239 0.09006336 0.09022228 0.09031081
4 0.09054673 0.09047365 0.09044276 0.09042948
5 0.09068311 0.09054484 0.09047957 0.09044826
10 0.09079789 0.09060366 0.09050937 0.09046326
50 0.09084067 0.09062534 0.09052028 0.09046873
100 0.09084462 0.09062734 0.09052128 0.09046924
500 0.09084762 0.09062886 0.09052204 0.09046962

Finite Markov chain under Uniform distributions A uniform distribution

is used to construct the Markov chains which converge to a Brownian motion. The

discrete versions of uniform distributions are given by

P (X̂ = k∆x) =
1

2`+ 1
, k = 0,±1, . . . ,±`.
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Table 3.3: BCP with boundary 1
2
− t log

(
1
4
(1 +

√
1 + 8e−1/t)

)
under t(ν) distribu-

tion with various degrees of freedom.

ν m = 1000 2000 4000 8000
3 0.476608391 0.478204077 0.478997126 0.479381061
4 0.479967311 0.479907987 0.479821847 0.479798151
5 0.480450023 0.480146346 0.479939835 0.479841771
10 0.480821185 0.480330928 0.480031893 0.479887744
50 0.480955487 0.480397908 0.480065343 0.479904459
100 0.480967829 0.480404065 0.480068419 0.47990600
500 0.480977188 0.480408734 0.480070751 0.47990716

However, we need to adjust the probability at 0 such that the mean and variance of

the discrete random variable are 0 and 1/n, respectively. Hence, if ` = 5 then the

distribution of X̂ is modified and given by

P (X̂ = 0) =
100

110
,

P (X̂ = ±k∆x) =
1

110
, k = ±1, . . . ,±5, (3.14)

and if ` = 10 then the distribution of X̂ is modified and given by

P (X̂ = 0) =
750

770
,

P (X̂ = ±k∆x) =
1

770
k = ±1, . . . ,±10. (3.15)

By the same token, we can choose any value of ` and construct a sequence of discrete

random variables with mean 0 and variance 1/n. Again, the construction of finite

Markov chains and the corresponding transition probability matrices can be done

in a similar way in Section 3.1.1. The boundary crossing probabilities based on

distributions in Eqs. (3.14) and (3.15), for ` = 5, 10, are given in Table 3.4.
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Table 3.4: The boundary crossing probabilities under uniform distributions.

Boundary 1
2 − t log

(
1
4(1 +

√
1 + 8e−1/t)

)
1 + t

` 5 10 5 10

m = 1000 0.090724 0.471973363 0.480594 0.088052401
2000 0.090566 0.475879864 0.480217 0.089181294
4000 0.090491 0.477799384 0.479975 0.089785615
8000 0.090454 0.478769728 0.479859 0.090098215

Table 3.5: Error (|exact - approximation|) for (a) one-sided Daniels’ boundary 1
2
−

t log(1
4
(1 +

√
1 + 8e−1/t)) and (b) one-sided linear boundary (1 + t) under normal,

t(ν) and uniform distributions.

(a) m Normal t(4) t(10) Uniform(5)

2000 6.605×10−4 1.5899×10−4 5.8193×10−4 4.6784×10−4

4000 3.220×10−4 7.2847×10−5 2.8289×10−4 2.5100×10−4

8000 1.581×10−4 4.9151×10−5 1.3874×10−4 1.1016×10−4

(b) m Normal t(4) t(10) Uniform(5)

2000 2.1141×10−4 5.5880×10−5 1.8589×10−4 1.4833×10−4

4000 1.0442×10−4 2.4988×10−5 9.1595×10−5 7.2795×10−5

8000 5.1902×10−5 1.1710×10−5 4.5489×10−5 3.6085×10−5

Table 3.5 provides a numerical comparison of rates of convergence among ap-

proximations based on distributions induced by normal, t(ν) and uniform distri-

butions. There are several comments we can make from Table 3.5. The t(ν) and

uniform distributions are considered distributions with heavy tails. We expect that

the rate of convergence under the normal distribution is better than the rates of

convergence under t(ν) or uniform distributions. However, in order to preserve the
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variance structure, the discrete versions of t(ν) and uniform distributions actually

have distributions with thin tails. We speculate that the approximation based on

distributions with more weight (probability) on the point 0 would provide better

convergence rate. In order to verify this hypothesis numerically, we reweight the

discrete version of standard normal distribution to have higher probability on the

point 0. The modified discrete distributions are give by, for  = 1, . . . , n,

P (X̂ = k∆x) =

{
C−1wkφ(k) if k 6= 0,
1−

∑
k 6=0C

−1wkφ(k) if k = 0,
(3.16)

where C =
∑

k 6=0wkk
2φ(k) is the normalizing constant and wk, k = ±1,±2, . . . , are

weights chosen to increase the probability on the point 0. For simplicity, we choose

wk the same values for odd and even values of k and denote the two values by wodd

and weven, respectively. The errors for the approximation based on the distributions

in Eq. (3.16) are given in Table 3.6 with wodd = 0.5 and weven = 20 or 50. As we

compare the errors in Tables 3.5 and 3.6, the errors for the approximation based on

distributions in Eq. (3.16) are smaller than that based on t(ν) or uniform distribu-

tions. Thus, we conclude that the approximation, based on the distribution with

suitably more weight on the point 0, would generally provide better convergence

rate.

3.2 Identity from Erdös and Kac

Erdös and Kac [31] have significant contribution on the theory of random walk

and Brownian motion. In their paper in 1946, they gave an infinite series for the

boundary crossing probability for Brownian motion to two-sided constant boundary
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Table 3.6: Errors (|exact - approximation|) for approximations based on distri-
butions in Eq. (3.16) for one-sided linear boundary (1 + t) under two different
combinations of w1 and w2.

wodd 0.5

weven 20 50

m = 2000 3.6283×10−5 2.3676×10−5

4000 1.6320×10−5 9.8813×10−6

8000 7.7331×10−6 4.4800×10−5

as the limiting boundary crossing probability for a random walk. The result is given

as follows. Let X1, . . . , Xn be i.i.d. random variables with mean 0 and standard

deviation 1. Let Wn =
∑n

i=1Xi, then for c > 0,

lim
n→∞

P

(
max

1≤k≤n
|Wk| < cn1/2

)
=

4

π

∞∑
i=0

(−1)i

2i+ 1
exp

(
−(2i+ 1)2π2

8c2

)
. (3.17)

The above probability is indeed the boundary crossing probability for Brownian

motion to two-sided constant boundary ±c, i.e.

lim
n→∞

P

(
max

1≤k≤n
|Wk| < cn1/2

)
= P

(
sup

0≤t≤1
|W (t)| < c

)
.

The above result is the so-called invariance principle, since the limiting distribution

does not depend on the underlying distribution. Here, we will show the strength

of the FMCI technique by using it to derive Eq. (3.17) under the case of simple

random walk.

Lemma 3.2.1. Let n = m2/c2, then

cosn
(
iπ

2m

)
≤ K

i2
, i = 1, . . . ,m− 1,
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for some positive constant K.

Proof. By Taylor expansion, we have, for 0 < ξ < iπ
2m

,

cos

(
iπ

2m

)
= 1− 1

2

(
iπ

2m

)2

+
cos(ξ)

4!

(
iπ

2m

)4

= 1− i2π2

8m2

(
1− i2π2 cos(ξ)

48m2

)

= 1− i2π2

8m2
c1,

where 1 + π2

48
> c1 = 1− i2π2 cos(ξ)

48m2 > 1− π2

48
.

Thus,

cosn
(
iπ

2m

)
= exp

(
n log cos

(
iπ

2m

))

= exp

(
n log

(
1− i2π2

8m2
c1

))

≤ exp

(
−ni

2π2

8m2
c1

)

= exp

(
−i

2π2c1

8c2

)

≤ 1

1 + i2π2c1
8c2

≤ 8c2

i2π2c1

=
K

i2
,

where K = 8c2/π2c1 is bounded above by 8c2/π2(1− π2

48
) . The proof is completed.

59



For one-sided constant boundary c > 0, the fundamental matrix N c of the

imbedded Markov chain is given in Eq. (2.8) and the boundary crossing probability

is given by

P

(
sup

0≤t≤1
|W (t)| < c

)
= lim

m→∞
ξ0N

n
c1
′
.

The following theorem can be derived based on Lemma 3.2.1 and the results in

Section 2.3.

Theorem 3.2.1. For c > 0 and n = m2/c2, we have

lim
m→∞

ξ0N
n
c1
′
=

4

π

∞∑
i=0

(−1)i

2i+ 1
exp

(
−(2i+ 1)2π2

8c2

)
.

Proof. From Eq. (2.9), we have

ξ0N
n
c1

1 =
2m−1∑
i=1,odd

(−1)
i−1
2 cosn( iπ

2m
)

m′ tan( iπ
4m

)

=
m−1∑
i=1,odd

(−1)
i−1
2 cosn( iπ

2m
)

m′ tan( iπ
4m

)
+

2m−1∑
i=m+1,odd

(−1)
i−1
2 cosn( iπ

2m
)

m′ tan( iπ
4m

)

=
m−1∑
i=1,odd

(−1)
i−1
2 cosn( iπ

2m
)

m′ tan( iπ
4m

)
+

m−1∑
i=1,odd

(−1)n+m− i−1
2 cosn( iπ

2m
)

m′ cot( iπ
4m

)

= (1) + (2),

where m
′
= m− 1/2. Let u(m) be the positive integer such that

(i) u(m) < m− 1;

(ii) u(m) = o(m), i.e. u(m)
m
→ 0, as m→∞;
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(iii) u(m)→∞, as m→∞.

Then,

(1) =

u(m)∑
i=1,odd

(−1)
i−1
2 cosn( iπ

2m
)

m′ tan( iπ
4m

)
+

m−1∑
i=u(m)+1,odd

(−1)
i−1
2 cosn( iπ

2m
)

m′ tan( iπ
4m

)

= (3) + (4).

For (3), since c1 → 1 as m→∞, it follows from Taylor expansion,

cosn
(
iπ

2m

)
=

(
1− i2π2c1

8m2

)m2

c2

→ exp

(
−i

2π2

8c2

)
, as m→∞.

m
′
tan

(
iπ

4m

)
→ iπ

4
, as m→∞.

Therefore, we have

(3)→ 4

π

∞∑
i=0

(−1)i

2i+ 1
exp

(
−(2i+ 1)2π2

8c2

)
, as m→∞.

It follows from Lemma 3.2.1,

|(4)| =
m−1∑

i=u(m)+1,odd

|(−1)
i−1
2 cos( iπ

4m
) cosn( iπ

2m
)|

m′ sin( iπ
4m

)

≤
m−1∑

i=u(m)+1,odd

cosn( iπ
2m

)

m′ × 2
π
× iπ

4m

≤
m−1∑

i=u(m)+1,odd

4 cosn( iπ
2m

)

i

≤
m−1∑

i=u(m)+1,odd

4

i
× K

i2
→ 0, as m→∞.
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The first inequality holds, because sin(x) > 2x/π, for −π/2 < x < π/2.

Next we show (2)→ 0, as m→∞.

|(2)| =
m−1∑
i=1,odd

|(−1)n+m− i−1
2 tan( iπ

4m
) cosn( iπ

2m
)|

m′

≤
m−1∑
i=1,odd

cosn( iπ
2m

)

m′

≤ 1

m′

m−1∑
i=1,odd

K

i2
→ 0, as m→∞.

Hence, we have

ξ0N
n
c1
′ → 4

π

∞∑
i=0

(−1)i

2i+ 1
exp

(
−(2i+ 1)2π2

8c2

)
, as m→∞(n→∞).

The proof is completed.

3.3 Efficient approximation by eigenvalues and

eigenvectors

We observe that under certain cases the fundamental matrix N is a Toeplitz ma-

trix, the diagonals of which are of the same values. If the boundary is temporally

homogeneous, we provide an efficient algorithm to approximate Eq. (3.9) by the

eigenvalue-eigenvector decomposition of the matrix N . Let f(θ) be the fourier

series associated with the Toeplitz matrix N . Our approximation requires the con-

dition in Widom [89].
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Condition A (Widom). Let f(θ) be continuous and periodic with period 2π. Let

max f(θ) = f(0) = M and let θ = 0 be the only value of θ (mod 2π) for which

this maximum is reached. Moreover, we assume that f(θ) is even, and has

continuous derivatives up to the fourth order in some neighborhood of θ = 0.

Finally, let σ2 = −f ′′(0) 6= 0.

Lemma 3.3.1 (Widom). Let λ[1] ≥ λ[2] ≥ · · · ≥ λ[ω] be the ordered eigenvalues of

the symmetric Toeplitz matrix N of size ω. If condition A is satisfied, then we have

λ[ν] = M − σ2π2ν2

2ω2
+O(ω−3), for some fixed ν, (3.18)

where M = f(0), σ2 = −f ′′(0) and f(x) is the Fourier series associated with the

Toeplitz matrix N . f
′′

is the second derivative of f .

The proof can be found in Widom [89].

Lemma 3.3.2. For temporally homogeneous boundaries, the symmetric Toeplitz

matrix N defined by Eq. (3.3) is nonnegative definite, i.e. the smallest eigenvalue

of N is nonnegative, and condition A is satisfied.

Proof. The symmetric Toeplitz matrix N of size ω is of the form

N =


c0 c1 c2 · · · cω
c1 c0 c1 · · · cω−1

c2 c1 c0 · · · cω−2
...

. . .
...

cω cω−1 cω−2 · · · c0

 .

The associated Fourier series is f(θ) =
∑∞

j=−∞ cj exp(ijθ). Let m = inf f(θ) and it

is known that λ[ω] ≥ m, where λ[ω] is the smallest eigenvalue of N (see, e.g., Kac
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et al. (1953)).

f(θ) = c0 + 2
∞∑
j=1

cj cos(jθ)

=
C−1

√
2π

∑
` 6=0

(`2 − 1) exp

(
−`

2

2

)
+ 2

∞∑
j=1

C−1

√
2π

exp

(
−j

2

2

)
cos(jθ)

=
2C−1

√
2π

∞∑
k=1

(k2 − 1 + cos(kθ))e−
k2

2 .

After differentiation, we know that the minimum value of f(θ) occurs at θ = π. It

is easy to see that f(π) ≥ 0. In addition, It is easy to see that f(θ) reaches the

maximum at θ = 0 (mod 2π). It follows from the definition of f(θ) that Condition

A is satisfied.

The boundary crossing probabilities for temporally homogeneous two-sided bound-

aries can be efficiently computed by the following theorem.

Theorem 3.3.1. Given the constant boundaries ±h and a large value m (ω =

2m− 1), we have

ξ0N
bm2/h2c1

′
=

2m−1∑
i=1

aiξ0η
′

[i]λ
bm2/h2c
[i]

≤
`−1∑
i=1

aiξ0η
′

[i] exp

(
−i

2π2

8h2

)

+ (2m− 1)2(2m− `) exp

(
−`

2π2

8h2
+ o(1)

)
. (3.19)

Proof. In our settings, it yields f(0) = 1 and σ2 = 1. Since we have (1 + x/n)n =

exp(x) (1− x2/2n+ · · · ) and substituting (3.18) into (2.7) yields, for large m and
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some fixed `,

2m−1∑
i=`

aiξ0η
′

[i]λ
n
[i] ≤ (2m− 1)2

2m−1∑
i=`

λn[i]

≤ (2m− 1)2(2m− `)λn[`]

= (2m− 1)2(2m− `)
(

1− `2π2 + o(1)

2(2m− 1)2

)n

≤ (2m− 1)2(2m− `)
(

1− `2π2 + o(1)

8h2n

)n

≤ (2m− 1)2(2m− `) exp

(
−`

2π2

8h2
+ o(1)

)
.

The cases for one-sided boundaries and asymmetric two-sided boundaries can

be done in the same fashions with minor modifications of replacing the different

boundaries. If we take T = 1, h = 2 and m = 10000, then we can estimate our

boundary crossing probability by the first 30 largest eigenvalues and the associated

eigenvectors with error smaller than 10−100. Therefore, instead of multiplying the

entire matrices, we speed up our calculation by using only the first ` − 1 largest

eigenvalues and the associated eigenvectors.
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Chapter 4

Boundary Crossing Probability for

One-dimensional Diffusion
Processes

An Itô diffusion process is a solution of stochastic differential equation:

dX(t) = b(t,X(t))dt+ σ(t,X(t))dW (t), (4.1)

where the drift b(t, x) : [0, T ] × R → R and diffusion coefficient σ(t, x) : [0, T ] ×

R→ R are measurable functions and W (t) is the standard Brownian motion. The

solution to this stochastic differential equation exists uniquely under the following

Lipschitz and growth conditions (Klebaner [43]): for some constants C1 and C2, and

x ∈ R, t ∈ [0, T ],

|b(t, x)|+ |σ(t, x)| ≤ C1(1 + |x|),

and

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ C2(|x− y|).
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4.1 Transformation to Brownian motion

In this section, we extend the method to a class of diffusion processes which can

be transformed into functions of a Brownian motion. Two such examples are the

Ornstein-Uhlenbeck (O-U) process and the Brownian bridge.

A well-known method for solving the boundary crossing problem for diffusion

processes is to express them as functions of a Brownian motion, and the boundary

crossing probability for diffusion processes is equivalent to a boundary crossing prob-

ability for Brownian motion with transformed time interval and boundaries. There

are a number of papers in the literature concerning the transformation from diffusion

processes to a Brownian motion. The one-to-one transformation of the transition

probability density functions between diffusion processes described by Kolmogorov’s

backward equation was first posed by Kolmogorov [45]. Cherkasov [18] established

a class of diffusion processes transformed into Brownian motion through one to

one transformation of the transition probability density functions. Bluman [9] and

Bluman and Shtelen [8] extended Cherkasov’s [18] result to a wider class of diffu-

sion processes. Wang and Pötzelberger [85] established a class of diffusion processes

which can be expressed as functionals of Brownian motion. It is also known that

any time-homogeneous diffusion process can be transformed into a Brownian mo-

tion by using random time change and change of variables (see Klebaner [43], page

208). Diffusion processes without drift are transformed using random time change

by Watanabe [86].

Using the following well-known results, we give two examples, the O-U process

and the Brownian bridge, to illustrate the transformations.
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1. Itô’s formula:

Let X(t) be an Itô process, f(t, x) be a twice differentiable function on [0,∞)×

R and Y (t) = f(t,X(t)). Then we have

dY (t) =
∂f

∂t
dt+

∂f

∂x
dX(t) +

1

2

∂2f

∂x2
σ(t,X(t))2dt.

2. Time change:

Let f(t) be a continuous function and let X(t) be a process governed by

dX(t) = f(t)dW (t).

Then a Brownian motion W̃ (τt) is a weak solution, where τt =
∫ t

0
f 2(s)ds and

g−1(t) = τt given f(t) > 0. If X(0) = x0 then W̃ (t) starts at x0.

Ornstein-Uhlenbeck Processes

Let X(t) denote the O-U process satisfying

dX(t) = −µX(t)dt+ σdW (t), X(0) = 0.

Let Y (t) = X(t)eµt so that, by Itô’s formula, we have

dY (t) = eµtdX(t) + µeµtX(t)dt

= σeµtdW (t).

In turn, by time change, we have

Y (t) = W̃ (τt),

for some Brownian motion W̃ (t) and τt = σ2(e2µt − 1)/2µ. It follows

X(t) = e−µtW̃ (τt).
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Brownian Bridge

The Brownian bridge is a solution of

dX(t) =
c−X(t)

S − t
dt+ dW (t), for 0 ≤ t ≤ S.

This process is a transformed Brownian motion on [0, S] with X(0) = x0 and X(S)

= c. In viewing the above equation, we define

Y (t) =
X(t)

S − t
− t

S(S − t)
c, Y (0) =

x0

S
.

Again, by Itô’s formula, we obtain

dY (t) =
1

(S − t)2
(X(t)− c)dt+

1

S − t
dX(t)

=
1

S − t

[
X(t)− c
S − t

dt+ dX(t)

]

=
1

S − t
dW (t).

By time change,

Y (t)− Y (0) = W̃ (τt),

for τt = t
S(S−t) and g(t) = τ−1

t = tS2

1+tS
. It yields (see also Klebaner [43])

X(t) = (S − t)W̃ (τt) +
S − t
S

x0 +
t

S
c. (4.2)
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Then, we can compute the boundary crossing probability

P (a(t) < X(t) < b(t), 0 ≤ t ≤ 1)

= P (a(t) < (S − t)W̃ (τt) +
S − t
S

x0 +
t

S
c < b(t), 0 ≤ t ≤ 1)

= P (a
′
(t) < W̃ (t) < b

′
(t), 0 ≤ t ≤ τ1)

= lim
m→∞

ξ0

bm2τ1/h2c∏
i=1

N i

1
′
, (4.3)

where a
′
(t) = a(g(t))/(S− g(t))− (S−g(t))x0+g(t)c

S
/(S− g(t)) and b

′
(t) = b(g(t))/(S−

g(t))− (S−g(t))x0+g(t)c
S

/(S − g(t)).

4.2 Poisson processes and jump diffusion processes

Brownian motoin or a diffusion process driven by a Brownian motion have an impor-

tant property “continuity” which means that their sample paths are a.s. continuous.

Typically, the geometric Brownian motion is used to model a firm’s asset or the price

of a stock. In credit risk analysis, first passage models (FPM) were introduced by

Black and Cox [6] to model that a firm can possibly default at any time before

the maturity date. Classic models, such as the Black and Scholes model, assume

continuity of sample paths, which implies the price of a stock behaves continuously.

However, it is not the case in the real world that the price of a stock behaves

continuously.

A jump diffusion model combines a diffusion process and a jump process, for

example Poisson processes, to capture the behavior of price with jumps as a notion
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of sudden, unpredictable and extreme move (see Cont and Tankov [20]). We give

the definition for a Poisson process.

Definition 4.2.1. A counting process {N(t), t ≥ 0} is a Poisson process having

rate λ > 0 if

(i) N(0) = 0,

(ii) the process has independent increments,

(iii) P (N(t + h) − N(h) = n) = (λt)ne−λt/n! with moment generating function

(m.g.f.), denoted by MN(t+h)−N(h)(s) = eλt(e
s−1).

Sometimes, it is useful to use the alternative definition as follows.

Definition 4.2.2. A counting process {N(t), t ≥ 0} is a Poisson process having

rate λ > 0 if

(i) N(0) = 0,

(ii) the process has stationary and independent increment,

(iii) P (N(h) = 0) = 1− λh+ o(h),

P (N(h) = 1) = λh+ o(h), and

P (N(h) ≥ 2) = o(h).

A jump diffusion process is of the form (see, e.g., Kou and Wang [46])

X(t) = σW (t) + µt+

N(t)∑
i=1

Yi,
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where {W (t), t ≥ 0} is a standard Brownian motion, N(t) is a Poisson process and

the jump sizes Y1, Y2, . . . are i.i.d. random variables which are independent of W (t)

and N(t). In general, W (t) can be replaced by a diffusion process given in Eq. (4.1).

Two well-known jump diffusion models are Merton’s and Kou’s models where the

logarithm of jump sizes are assumed to be normally distributed and a so-called

double exponential distribution, respectively (see, e.g., Bayraktar and Xing [4]).

Specifically, a double exponential distribution is given by

f(y) = pη1e
−η1y1{y≥0} + qη2e

η2y1{y<0},

where p, q ≥ 0, p+q = 1 represent the probabilities of upward and downward jumps

and η1, η2 > 0.

As there are not many closed form results for boundary crossing probabilities

for Brownian motion except for certain limited boundaries, there are also only few

closed form results for boundary crossing probabilities for some special jump diffu-

sion processes, for example when the jump sizes have double exponential distribu-

tion (Kou and Wang [46]) or when the jump sizes can have only nonnegative values

(Blake and Lindsey [7]). Hence, for general jump sizes, a simple and general method

for computing the boundary crossing probabilities for jump diffusion processes is

required, and we provide the details of our unified approach, the finite Markov chain

imbedding technique, to calculate the boundary crossing probabilities for general

jump sizes.
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4.2.1 Finite Markov chain approximation for compound Pois-

son processes

Let N(t) be a Poisson process with rate λ and {Yi} a sequence of i.i.d. continuous

random variables with density function f(y). A compound Poisson process is defined

by

Z(t) =

N(t)∑
i=1

Yi, (4.4)

and Z(t) = 0 if N(t) = 0. We assume the m.g.f. MY1(s) of Y1 exists and is continuous

at s = 0. Thus, the m.g.f. of Z(t) is given by

E[esZ(t)] = E[(MY1(s))
N(t)] = eλt(MY1

(s)−1). (4.5)

For each i, we define a discrete version of Yi:

P (Ŷi = k∆x) =

∫ (k+0.5)∆x

(k−0.5)∆x

f(y)dy, k = 0,±1,±2, . . . , (4.6)

and it follows that Ŷi
D→ Yi as ∆x→ 0.

Remark 4.2.1. If the distribution of random variables Yi is a lattice distribution

then Eq. (4.6) is no longer needed.

Given an integer n, let t0 = 0 < t1 < · · · < tn−1 < tn = 1 be an equal-spaced

partition of [0, 1] and ∆t = 1/n. We define a sequence of Bernoulli random variables

{Nin}ni=1 with P (Nin = 0) = 1 − λ∆t and P (Nin = 1) = λ∆t, i = 1, . . . , n. Then,

we construct a sequence of independent discrete random variables {Ẑin}ni=1 by

Ẑin = ŶiNin. (4.7)
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For simplicity, we suppress the subscript n. Given any t ∈ [0, 1], a partial sum is

then defined by

Ẑn(t) =

bntc∑
i=1

Ẑi, (4.8)

which is a Markov chain having transition probabilities give by

p(k|j) = P (Ẑn(t+ ∆t) = k∆x|Ẑn(t) = j∆x)

= P (Ẑbntc+1 = (k − j)∆x)

= P (Ẑbntc+1 = (k − j)∆x|Nbntc+1 = 0)P (Nbntc+1 = 0)

+ P (Ẑbntc+1 = (k − j)∆x|Nbntc+1 = 1)P (Nbntc+1 = 1)

=

{
1− λ∆t+ P (Ŷbntc+1 = 0)λ∆t if k − j = 0,

P (Ŷbntc+1 = (k − j)∆x)λ∆t otherwise .
(4.9)

Theorem 4.2.1. Let Ẑn(t) be defined as above, we have

Ẑn(t)
D→ Z(t), as n→∞.

Proof. We prove this by using Lévy’s continuity theorem. From the definition of

Ẑn(t), we have

MẐn(t)(s) = E[esẐn(t)]

= E[es
∑bntc
i=1 Ẑi ]

= (E[esẐ1 ])bntc.
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Since N1 and Ŷ1 are independent, it follows that

E[esẐ1 ] = EE[esẐ1|N1] = P (N1 = 0)E[es·0] + P (N1 = 1)E[es·Ŷ1 ]

= 1− λ∆t+ λ∆tMŶ1
(s)

= 1 + λ∆t(MŶ1
(s)− 1).

We know that MŶ1
(s) is the discrete version of MY1(s). From the assumption of

existence of the m.g.f. of Y1 and the sandwich theorem, it is easy to show that

MŶ1
(s)→MY1(s), as ∆x→ 0.

Then,

MẐn(t)(s) = E[esẐn(t)] = (E[esẐ1 ])bntc

=
[
1 + λ∆t

(
MŶ1

(s)− 1
)]bntc

=

[
1 +

λt

nt

(
MŶ1

(s)− 1
)]bntc

→ eλt(MY1
(s)−1) = MZ(t)(s), as ∆t and ∆x→ 0. (4.10)

By assumption that MY1(s) is continuous at 0, the proof is completed.

Remark 4.2.2. It is for the convenience of the proof in Theorem 4.2.1 that we

assume the existence of the m.g.f. of Y1. In fact, we can prove it using characteristic

function.

Let ai = ba(ti)/∆xc and bi = bb(ti)/∆xc, where a(t) and b(t) are the lower and

upper continuous boundaries, respectively. Then the induced discrete boundaries
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for Ẑn(ti) are a∗(i/n) = ai∆x and b∗(i/n) = bi∆x, i = 1, . . . , n. Using the same

argument in the proof of Theorem 3.1.2, we have(
min

0≤i≤n
(Ẑn(ti)− a∗(i/n)), max

0≤i≤n
(Ẑn(ti)− b∗(i/n))

)
D→
(

inf
0≤t≤1

(Z(t)− a(t)), sup
0≤t≤1

(Z(t)− b(t))
)
.

Define an imbedded Markov chain {Yn(i)}ni=0 on the state spaces

Ωi = {j : ai < j < bi} ∪ {αi}, i = 1, . . . , n, (4.11)

by collapsing the values of Ẑn(ti) greater than (bi−1)∆x or smaller than (ai+1)∆x

into an absorbing state αi, i.e.

Yn(i) =

{
Ẑn(ti)/∆x if a∗(ti) < Ẑn(ti) < b∗(ti),
αi otherwise .

Thus, {Yn(i)}ni=0 forms a non-homogeneous Markov chain having transition proba-

bilities given by

P (Yn(i) = k|Yn(i− 1) = j) =


p(k|j) if j 6= αi−1, k 6= αi,
pi(αi|j) if j 6= αi−1, k = αi,
1 if k = αi, j = αi−1,
0 if j = αi−1, k 6= αi,

(4.12)

where the initial probability is P (Yn(0) = 0) ≡ 1, p(k|j) is given in Eq. (4.9) and

pi(αi|j) =
∑
k≥bi

p(k|j) +
∑
k≤ai

p(k|j).

From the FMCI technique, it yields the following theorem.
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Theorem 4.2.2. Let Z(t) be a compound Poisson process as defined in Eq. (4.4).

Then we have

P (Z(t) ≤ a(t) or Z(t) ≥ b(t), for some t ∈ [0, 1])

= 1− lim
n→∞

ξ0

(
n∏
i=1

N i

)
1
′
,

where N i, i = 1, . . . , n, are the fundamental matrices of the imbedded Markov chain

{Yn(i)} with transition probabilities given in Eq. (4.12).

4.2.2 Finite Markov chain approximation for jump diffusion

processes

Now let us return to our main problem: the boundary crossing probabilility for a

jump diffusion process which is given by

P (X(t) ≤ a(t) or X(t) ≥ b(t), for some t ∈ [0, 1]),

where X(t) is given by

X(t) = σW (t) + µt+

N(t)∑
i=1

Yi, (4.13)

and
∑N(t)

i=1 Yi is a compound Poisson process. Without loss of generality, let σ = 1

and µ = 0.

We start with a simple case where Yi, i = 1, . . . , n, are i.i.d. random variables

with distribution given by

P (Y1 = ±1) = 0.5. (4.14)
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In the previous section, we know that

Ẑn(t)
D→ Z(t), as n→∞.

However, in order for Ŵn(t) and Ẑn(t) to be defined on the same space, we need to

rewrite the distribution of Yi as follows. Given a large number m, we can express

the distribution of Yi as

P (Yi = ±m∆x) = 0.5,

where ∆x = 1/m. Then we can adapt the setting (∆x = 1/m) to construct the

Markov chain Ŵn(t) which converges to Brownian motion. Let X̂n(t) = Ŵn(t) +

Ẑn(t). Since W (t) and Z(t) are independent, we have

X̂n(t)
D→ X(t), as n→∞.

By the same token, we can generalize the above construction to a lattice random

variable Yi which takes values on {kd, k = 0,±1, . . .} for some d 6= 0. Given a large

integer m, let ∆x = d/m and Yi now takes values on {km∆x, k = 0,±1, . . .}. A

Markov chain Ŵn(t) can then be constructed using such ∆x, hence, the convergence

of X̂n(t) to X(t) still holds for a sequence of lattice random variables {Yi}. Further-

more, for continuous random variables Y ′i s, we can discretize each Yi as Eq. (4.6),

then it becomes a lattice random variable. Therefore, the following theorem holds

for continuous or lattice random variables Yi, i = 1, . . . , n.

Theorem 4.2.3. Let Ŵn(t) and Ẑn(t) be defined as above, and keep ∆x2 = ∆t.

Then we have

X̂n(t) = Ŵn(t) + Ẑn(t)
D→ X(t) = W (t) +

N(t)∑
i=1

Yi, as n→∞.
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Next, we construct an imbedded Markov chain with a series of absorbing states

associated with the boundaries. We define a two-dimensional non-homogeneous

Markov chain {Y n(i)} on the state spaces

Ωi = {(j1, j2) : ai < j1 + j2 < bi} ∪ {αi}, (4.15)

where ai = ba(ti)/∆xc and bi = bb(ti)/∆xc and αi is an absorbing state representing

the area outside the boundaries at time ti. Thus, the transition probabilities of the

imbedded Markov chain {Y n(i)} are given by, for (j1, j2) ∈ Ωi−1\αi−1 and (k1, k2) ∈

Ωi\αi,

P (Y n(i) = (k1, k2)|Y n(i− 1) = (j1, j2)) (4.16)

= P (Ŵn(ti) = k1∆x|Ŵn(ti−1) = j1∆x)× P (Ẑn(ti) = k2∆x|Ẑn(ti−1) = j2∆x),

where P (Ŵn(ti) = k1∆x|Ŵn(ti−1) = j1∆x) is given in Eq. (3.3) and P (Ẑn(ti) =

k2∆x|Ẑn(ti−1) = j2∆x) is given in Eq. (4.9). We do not provide the transition

probabilities entering or starting from the absorbing states, since they are not re-

quired for computing the boundary crossing probability. The absorption probability

of the imbedded Markov chain is equivalent to the boundary crossing probability of

{X̂n(t)}. The following theorem follows from the FMCI technique.

Theorem 4.2.4. Let X(t) be a jump diffusion process given in Eq. (4.13). Then

we have

P (X(t) ≤ a(t) or X(t) ≥ b(t), for some t ∈ [0, 1])

= 1− lim
n→∞

ξ0

(
n∏
i=1

N i

)
1
′
,
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where N i, i = 1, . . . , n, are the fundamental matrices of the imbedded Markov chain

{Yn(i)} with transition probabilities given in Eq. (4.16).

Remark 4.2.3. The two-dimensional imbedding procedure shown above is simple

and intuitive but is not the best in terms of computational speed. The size of sample

space would increase rapidly when m gets larger. We can resolve this problem using

one-dimensional imbedding procedure. We know that

X̂n(t) = Ŵn(t) + Ẑn(t)

=

bntc∑
i=1

(X̂i + Ẑi).

It then follows that X̂n(t) itself is a Markov chain. Incorporating the boundary

functions, the imbedded Markov chain {Yn(i)} can then be defined on the state spaces

Ωi = {j : ai < j < bi} ∪ {αi},

i.e.

Yn(i) =

{
X̂n(ti)/∆x if a∗(ti) < X̂n(ti) < b∗(ti),
αi otherwise ,

and has transition probabilities as the convolution of distributions of X̂i and Ẑi, i.e.,

for k ∈ Ωi\αi and j ∈ Ωi−1\αi−1,

P (Yn(i) = k|Yn(i− 1) = j) = P (X̂i + Ẑi = (k − j)∆x), (4.17)

where distributions of X̂i and Ẑi are given in Eq. (3.2) and Eq. (4.9), respectively.

Detailed examples are given in Chapter 6.
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Chapter 5

Boundary Crossing Probability for

Two or Higher-Dimensional

Brownian Motion

In this chapter, we extend our results to the high-dimensional Brownian motion.

If the high-dimensional Brownian motion is a standard one (components are in-

dependent), then our method can be extended directly. If it is not a standard

but correlated one, then it can be transformed into a standard one. On the other

hand, we can also approximate the boundary crossing probability by constructing

a Markov chain for a high-dimensional correlated Brownian motion without trans-

formation. We consider the two-dimensional Brownian motion first, and the higher

dimensional one would follow in a similar fashion.

The problem is given as follows. Let {X (t), t ≥ 0} be a two-dimensional corre-

lated Brownian motion with drift µ and covariance matrix

tΣ = t

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

]
,
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where ρ is the constant correlation. For a given boundary ∂B(t) of some nonempty

compact convex set B(t) containing the starting point of the Brownian motion, the

boundary crossing probability is defined by

P (X (t) ∈ ∂B(t), for some t ∈ [0, 1]).

It is known that W (t) = Σ−1/2(X (t)−µt) is a standard two-dimensional Brownian

motion. We can transform the process and the boundary by multiplying Σ−1/2 to

X (t)− µt and B(t)− µt, yielding

P (X (t) ∈ ∂B(t), for some t ∈ [0, 1]) = P (W (t) ∈ ∂B̃(t), for some t ∈ [0, 1]),

where ∂B̃(t) = {Σ−1/2(b −µt) : b ∈ ∂B(t)} and B̃(t) is still a compact convex set

(see, e.g., Walsh [83]).

In the first section, we focus on the boundary crossing probabilities for the

standard high-dimensional Brownian motion (perhaps after transformation), which

is the direct extension of the results in Chapter 3. In the next section, without

transformation, we directly construct a Markov chain to approximate the boundary

crossing probabilities for two-dimensional correlated Brownian motion. We denote

a vector or a matrix in high dimensional by the bold one, e.g. W (t) denotes a two

or higher-dimensional Brownian motion.

5.1 Standard Brownian motion

Let {W (t), t ≥ 0} be a standard two-dimensional Brownian motion with drift 0

and covariance matrix

tΣ = t

[
1 0
0 1

]
.
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Given a boundary ∂B(t) of a compact convex set B(t) ⊆ R2, we denote by Bo(t) the

interior of B(t). Let || · || be the Euclidean norm in R2, and h = sup0≤t≤1 sup{||b|| :

b ∈ ∂B(t)}. Choose a large integer m, we define ∆x = h/m and discretize R2

as R2
m = {(k1∆x, k2∆x), k1, k2 = 0,±1,±2, . . .}. The time interval [0, 1] is corre-

spondingly partitioned into n equal sub-intervals, preserving the scale relationship

∆x2 = ∆t, i.e. n = m2/h2, or n = bm2/h2c if n is not an integer.

Let {0 = t0 < t1 < · · · < tn = 1} be an equal-spaced partition of [0, 1] with

ti = i∆t. In Chapter 3, the partial sum

Ŵn(t) = X̂1 + X̂2 + · · ·+ X̂bntc,

induced by discretizing a standard one-dimensional Brownian motion , converges in

distribution to a standard one-dimensional Brownian motion. Obviously, the con-

vergence in distribution holds for standard two or d-dimensional (d > 2) Brownian

motion whose components are independent. Since the components are independent,

it follows from the construction in Chapter 3 that the transition probabilities of the

two-dimensional Ŵ n(t) are given by

p((k1, k2)|(j1, j2)) = P (Ŵ n(t+ ∆t) = (k1∆x, k2∆x)|Ŵ n(t) = (j1∆x, j2∆x))

= p(k1|j1)p(k2|j2), (5.1)

where

p(ki|ji) =

 C−1 exp
(
− (ki−ji)2

2

)
if ki − ji 6= 0,

C−1
∑

`6=0(`2 − 1) exp
(
− `2

2

)
if ki − ji = 0,

and C =
∑
6̀=0 `

2 exp(−`2/2) is the normalizing constant. Note that the adjustment

in the probability at 0 is used to preserve the variance structure of Brownian motion

and is not unique. See the family of distributions indexed by p in Remark 3.1.1.
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Theorem 5.1.1. Given t ∈ [0, 1] and ∆t = ∆x2 (n = m2/h2), we have

Ŵ n(t)
D→W (t), as n→∞.

Proof. We show that the characteristic function of Ŵ n(t) converges to that of W (t)

for all t. From the proof of Theorem 3.1.1, we know that

E[eisX̂
′
1 ] = E[ei(s1,s2)(X̂11,X̂12)

′

] = E[eis1X̂11 ]E[eis2X̂12 ]

=

(
1− s2

1h
2

2m2
+O

(
1

m4

))
×
(

1− s2
2h

2

2m2
+O

(
1

m4

))

= 1− s2
1h

2 + s2
2h

2

2m2
+O

(
1

m4

)
.

Thus,

ϕ ˆW n(t)
(s) =

(
1− (s2

1 + s2
2)h2

2m2
+O

(
1

m4

))m2t/h2

→ exp

(
−tss

′

2

)
, as m→∞,

where exp
(
−tss′/2

)
is the characteristic function of bivariate normal distribution

with mean 0 and covariance matrix

tΣ = t

[
1 0
0 1

]
.

Imbedding procedure Given an open set A ⊆ R2, we introduce an oriented

distance function g(x,A) = d(x,A)−d(x,Ac), where d(x,A) = inf{||x−y|| : y ∈ A},

Ac is the complement of A and || · || is the Euclidean norm in R2. The function g

is continuous since d is continuous. It is easy to see that if x ∈ A then g(x,A) < 0,
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Figure 5.1: Inner and outer approximations.

and if x ∈ Ac then g(x,A) ≥ 0. In the sequel, we construct an imbedded Markov

chain with absorbing states induced by the boundary ∂B(t). For each ti, we define

the inner and outer approximations of B(ti) as follows. Let Q be the collection of

all squares whose lengths are ∆x and whose centres are in R2
m. Then, the inner and

outer approximations of B(ti) are, respectively, given by

Bi(∆x) = ∪{q ∈ Q : q ⊂ B(ti)} and Bi(∆x) = ∪{q ∈ Q : q ∩B(ti) 6= ∅},

and Bi(∆x) ⊂ B(ti) ⊂ Bi(∆x), Bi(∆x) ↑ B(ti) and Bi(∆x) ↓ B(ti) (see Fig-

ure 5.1 ). We can either use the inner or outer approximations. Here we choose the

inner approximation and define the set B̂o
i (t) = {(

⌊
x1
∆x

⌋
∆x,

⌊
x2
∆x

⌋
∆x) : (x1, x2) ∈

Bi(∆x)}. Thus, we can define a finite Markov chain {Y n(i)}ni=0 on the state spaces;

i = 1, . . . , n,

Ωi = B̂o
i (t) ∪ {αi}, (5.2)

where αi stands for all values outside B̂o
i (t). Then {Y n(i)}ni=0 forms a non-homogeneous
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Markov chain having transition probabilities

P (Y n(i) = (k1, k2)|Y n(i− 1)) = (j1, j2))

=


p((k1, k2)|(j1, j2)) if (j1, j2) ∈ Ωi−1\αi−1, (k1, k2) ∈ Ωi\αi,
pi(αi|(j1, j2)) if (j1, j2) ∈ Ωi−1\αi−1,
1 if (j1, j2) = αi−1, (k1, k2) = αi,
0 if (j1, j2) = αi−1, (k1, k2) ∈ Ωi\αi,

(5.3)

where p((k1, k2)|(j1, j2)) is given by Eq. (5.1), and Ω0 = {(0, 0)} and P (Y n(0) =

(0, 0)) ≡ 1. The probabilities pi(αi|(j1, j2)) are not required for calculating the

boundary crossing probabilities and are omitted. Again, all the transition proba-

bility matrices of the Markov chain {Y n(i)}ni=0 have the form

M i =

(
p((k1, k2)|(j1, j2)) pi(αi|(j1, j2))

0 1

)
=

(
N i C i

0 1

)
, i = 1, 2, . . . , n.

Together with Lemma 2.2.1, we are now in position to prove our main theorem.

Theorem 5.1.2. Let W (t) be a standard two-dimensional Brownian motion. Given

the boundary ∂B(t) of a compact convex set B(t), and assume Bo(0) contains the

starting point (origin) and Bo(t) is not empty for all t ∈ [0, 1]. Given n = bm2/h2c,

then

P (W (t) ∈ ∂B(t), for some t ∈ [0, 1]) = 1− lim
m→∞

ξ0

bm2/h2c∏
i=1

N i1
′
, (5.4)

where the transition probabilities in N i are given in Eq. (5.3).

Proof. Let h(x) = sup0≤t≤1 x(t). From the above definition of function g, it is not

difficult to see that the following two sets are equal:

{
max
1≤i≤n

g(Ŵ n(ti), Bi(∆x)) < 0

}
⇔
{

max
1≤i≤n

g(Ŵ i(t), B̂
o
i (t)) < 0

}
.
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Since W (t) is continuous and is starting within Bo(0), sup0≤t≤1 g(W (t), Bo(t)) < 0

means that W (t) stays inside B(t) for all t ∈ [0, 1]. Thus, due to the continuity

of the probability measure and of the functions h and g, the boundary crossing

probabilities can be obtained by

P (W (t) ∈ ∂B(t), for some t ∈ [0, 1])

= 1− P (W (t) ∈ Bo(t), for all t ∈ [0, 1])

= 1− P
(

sup
0≤t≤1

g(W (t), Bo(t)) < 0

)

= 1− lim
m→∞

P

(
max
1≤i≤n

g(Ŵ n(ti), Bi(∆x)) < 0

)

= 1− lim
m→∞

P
(
g(Ŵ n(ti), B̂

o
i (t)) < 0, for all 1 ≤ i ≤ n

)
= 1− lim

m→∞
P (Y n(1) 6= α1, . . . ,Y n(n) 6= αi)

= 1− lim
m→∞

ξ0

bm2/h2c∏
i=1

N i1
′
.

For the second last equality, g(Ŵ n(ti), B̂
o
i (t)) < 0 represents Ŵ n(ti) stays inside

B̂o
i (t). In other words, it is equivalent to say Yi 6= αi. The last equality follows from

Lemma 2.2.1. The proof is completed.

The above result is proved for two-dimensional Brownian motion, however, it

is straightforward to extend to higher-dimensional Brownian motion. We leave the

details to the reader. In fact, the results derived here are sufficient for general

situations, even for the correlated Brownian motion (since it can be transformed

into uncorrelated Brownian motion), however, we still provide some detail of the
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construction of a finite Markov chain for the correlated Brownian motion in the

next section.

5.2 Correlated Brownian motion

The boundary crossing probabilities may also be obtained for high-dimensional cor-

related Brownian motion without transformation. A two-dimensional correlated

Brownian motion X(t) has mean 0 and covariance matrix

tΣ = t

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

]
.

The construction of a finite Markov chain with absorbing states for a two-

dimensional Brownian motion associated with boundaries is given. Following the

same idea for one-dimensional Brownian motion, we discretize R2 and time interval

[0, 1] in the same way and then construct a two-dimensional Markov chain preserving

the variance and covariance structure of the two-dimensional correlated Brownian

motion. Let Ŵ n(t) = X̂1 + · · ·+ X̂bntc where the distribution of the i.i.d. discrete

random variables X̂ = (X̂1, X̂2),  = 1, . . . , n, is given by

P (X̂1 = (x1∆x, x2∆x)) =


f0C

−1 if x1 = 0 and x2 = 0,
f1C

−1 if x1 = 0 and x2 = ±1,
f2C

−1 if x1 = ±1 and x2 = 0,
f3(x1, x2)C−1 if x1 6= 0 and x2 6= 0,

(5.5)

where C is the normalizing constant, f3(x1, x2) is the density function of bivariate
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normal distribution with mean 0 and covariance Σ , and f0, f1 and f2 are given by

f0 =
∑
x1 6=0

∑
x2 6=0

f3(x1, x2)
x1x2(1− σ2

1 − σ2
2)

σ1σ2ρ
+

∑∑
x1 6=0,\{(±1,0)}

f3(x1, x2)x2
1

+
∑∑

x2 6=0,\{(0,±1)}

f3(x1, x2)x2
2 −

∑∑
\{(±1,0),(0,±1),(0,0)}

f3(x1, x2),

f1 =
∑
x1 6=0

∑
x2 6=0

f3(x1, x2)
x1x2σ1

2σ2ρ
−

∑∑
x1 6=0,\{(±1,0)}

f3(x1, x2)
x2

1

2
,

f2 =
∑
x1 6=0

∑
x2 6=0

f3(x1, x2)
x1x2σ2

2σ1ρ
−

∑∑
x2 6=0,\{(0,±1)}

f3(x1, x2)
x2

2

2
,

where \S = {(x1, x2) : (x1, x2) /∈ S and x1, x2 ∈ Z} for some set S. Thus, from

Eq. (5.5), we have E[X̂2
11] = ∆tσ2

1, E[X̂2
12] = ∆tσ2

2 and E[X̂11X̂12] = ρσ1σ2, and it

follows that

Cov(Ŵ n(t), Ŵ n(t)) = ∆tbntc
[

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]
→ tΣ , as n→∞ (or m→∞).

The partial sum Ŵ n(t) is a Markov chain and the transition probabilities are given

by

p((k1, k2)|(j1, j2)) = P (Ŵ n(t+ ∆t) = (k1∆x, k2∆x)|Ŵ n(t) = (j1∆x, j2∆x))

= P (X̂bntc+1 = ((k1 − j1)∆x, (k2 − j2)∆x)), (5.6)

where P (X̂bntc+1 = (x1∆x, x2∆x)) is given by Eq. (5.5). Therefore, by such con-

struction, we preserve the first two moments of the two-dimensional correlated Brow-

nian motion.

The exact same imbedding procedure provided before can be used for the two-

dimensional correlated dimensional Brownian motion. For a given boundary ∂B(t)
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of a non-empty compact convex setB(t), an imbedded finite Markov chain {Y n(i)}ni=0

is defined on the state spaces; i = 1, . . . , n,

Ωi = B̂o
i (t) ∪ {αi},

where B̂o
i (t) is defined in the same way in Section 5.1 and αi stands for all values

outside B̂o
i (t). Then the transition probabilities of {Y n(i)} are given by

P (Y n(i) = (k1, k2)|Y n(i− 1)) = (j1, j2))

=


p((k1, k2)|(j1, j2)) if (j1, j2) ∈ Ωi−1\αi−1, (k1, k2) ∈ Ωi\αi,
pi(αi|(j1, j2)) if (j1, j2) ∈ Ωi−1\αi−1,
1 if (j1, j2) = αi−1, (k1, k2) = αi,
0 if (j1, j2) = αi−1, (k1, k2) ∈ Ωi\αi,

(5.7)

where the probabilities, p((k1, k2)|(j1, j2)), are given in Eq. (5.6). Therefore, the

boundary crossing probability for two-dimensional correlated Brownian motion to

the boundary of a compact convex set can be approximated by our unified method

P (W (t) ∈ ∂B(t), for some t ∈ [0, 1]) = 1− lim
m→∞

ξ0

bm2/h2c∏
i=1

N i

1
′
, (5.8)

where the transition probabilities in the fundamental matrices N i are given in

Eq. (5.7).

Remark 5.2.1. We have shown how to construct a two-dimensional partial sum

(Markov chain) which converges to a two-dimensional correlated Brownian motion.

In general, the procedure can also be applied to high-dimensional Brownian motion

but we have to adjust the distribution of the discrete partial sum to preserve the first

two moments of the high-dimensional Brownian motion.
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Chapter 6

Examples and Numerical Results

6.1 One-dimensional processes

We give two examples to illustrate how to implement the Markov chain imbedding

procedure for Brownian motion, one example in pricing corporate debt and one ex-

ample where the eigenvalues and eigenvectors decomposition approximation is used.

Numerical examples for three jump diffusion processes with ±1, double exponential

and standard normal jump sizes are also given.

Example 6.1.1 (Standard Brownian motion). Choose T = 1, b(t) = −a(t) = (1+t)

and m = 10, then we have the following quantities:

h = 2, n = 25,∆x = 0.2 and ∆t = 0.04.

We have the state spaces from Eq. (4.11), for example for i from 4 to 5,

Ω4 = {5, 4, . . . ,−4,−5, α4},

Ω5 = {5, 4, . . . ,−4,−5, α5}.
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Eq. (3.2) gives the transition probabilities, for example j = 3 and k = 5,

P (5|3) =
C−1

√
2π
e−

22

2 = 0.054.

Therefore, we can obtain the transition probability matrices from Eq. (3.6) and

calculate the boundary crossing probability by Theorem 3.1.2,

P (W (t) ≤ −(1 + t) or W (t) ≥ (1 + t), for some t ∈ [0, 1]) ≈ 1− ξ0

(
25∏
i=1

N i

)
1
′

= 0.173057.

Example 6.1.2 (Brownian Bridge). Let T = 1, S = 5, c = x0 = 0 and b(t) =

−a(t) = exp(t). Using the transformation in Eqs. (4.2) and (4.3), the new time

interval is [0, τT = 1
20

], and boundaries a
′
(t) and b

′
(t) are given as follows:

a
′
(t) = − exp

(
tS2

1 + tS

)
/

(
S − tS2

1 + tS

)
= − exp

(
25t

1 + 5t

)
/

(
5

1 + 5t

)
,

b
′
(t) = exp

(
tS2

1 + tS

)
/

(
S − tS2

1 + tS

)
= exp

(
25t

1 + 5t

)
/

(
5

1 + 5t

)
.

If we choose m = 10, then n = 11, ∆x = 0.067957 and ∆t = 0.004545. By our

construction of the imbedded Markov chain, we have the state spaces, for example i

from 1 to 2,

Ω1 = {2, 1, 0,−1,−2, α1},

Ω2 = {3, 2, 1, 0,−1,−2,−3, α2},
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and the fundamental matrix is

N 2 =


0.2420 0.4021 0.2420 0.0527 0.0042 0.0001 0.0000
0.0527 0.2420 0.4021 0.2420 0.0527 0.0042 0.0001
0.0042 0.0527 0.2420 0.4021 0.2420 0.0527 0.0042
0.0001 0.0042 0.0527 0.2420 0.4021 0.2420 0.0527
0.0000 0.0001 0.0042 0.0527 0.2420 0.4021 0.2420

 .

Then the boundary crossing probability is approximated by:

P (W (t) ≤ a
′
(t) or W (t) ≥ b

′
(t), for some t ∈ [0, 1

20
]) ≈ 1− ξ0

(∏11
i=1 N i

)
1
′

= 0.081654.

The following Tables 6.1 to 6.3 are boundary crossing probabilities for Brownian

motion and the O-U processes in the time interval [0, 1] for various boundaries.

Figure 6.1 is the plot of boundary crossing probabilities for the Brownian bridge

with T ∈ [0, 1], x0 = c = 0, S = 10 and boundaries ± exp(t).

Table 6.1: One-sided boundary crossing probabilities for Brownian motion.

Boundary m = 100 500 1000 5000

exp(−t) 0.558872 0.560512 0.560866 0.561233

1
2
− t log

(
1
4
(1 +

√
1 + 8e−1/t)

)
0.473422 0.478676 0.479266 0.479635

√
t+ 1 0.193925 0.195480 0.195682 0.195935

1 + t2 0.145849 0.147430 0.147680 0.147900

1 + t− t2 0.253998 0.255644 0.255915 0.256153

1 + t 0.088919 0.090061 0.090232 0.090379

1 +
√
t 0.060808 0.061549 0.061664 0.061762

sin t+ 1 0.101419 0.102643 0.102824 0.102975
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Table 6.2: Two-sided boundary crossing probabilities for Brownian motion.

Boundary m = 100 500 1000 5000
±(1 + t) 0.179427 0.180510 0.180656 0.180779
± exp(−t) 0.984047 0.984366 0.984406 0.984439
±(t2 + 1) 0.293783 0.295293 0.295512 0.295696

±
√
t+ 1 0.389771 0.391084 0.391259 0.391403

±(1 + t− t2) 0.509908 0.510977 0.511128 0.511254

Table 6.3: Two-sided boundary crossing probabilities for the O-U processes.

σ2 0.5 2

ρ 0.5 2 0.5 2

±(1 + t) 0.006915 0.000185 0.445738 0.250645
± exp(−t) 0.855233 0.745546 0.999629 0.999258
±(t2 + 1) 0.029596 0.002957 0.603617 0.430781

Figure 6.1: Plot of boundary crossing probabilities for the Brownian bridge.
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Next, we give a simple application to pricing corporate debt which requires the

boundary crossing probability for geometric Brownian motion.

Example 6.1.3 (Pricing corporate debt). Let X(t) be the asset value of a firm

which follows geometric Brownian motion

dX(t)

X
= rdt+ σdW (t),

where r is risk-free interest rate. The firm issues corporate bond with face value F

paid at maturity T . With some threshold d(t), a firm is said to default if X(t) ≤ d(t)

as shown in the Figure 6.2. The payoff at maturity is

P = F1{τ>T,X(T )≥F} + α1X(T )1{τ>T,X(T )<F} +
α2X(τ)

ν(τ, T )
1{τ≤T},

where ν(t, T ) = e−r(T−t). Hence, the price of the bond at time t is

ν = E[e−r(T−t)P ].

For the threshold d(t), Black and Cox (1976) suggested the boundary

d(t) = de−α0(T−t) = 0.5e−0.5(1−t).

From our result, we have

P (τ > T ) = lim
m→∞

ξ0

bm2T/h2c∏
i=1

N i

1
′
, and

P (τ > T,X(T ) < F ) = lim
m→∞

ξ0

bm2T/h2c∏
i=1

N i

U
′
(X(T ) < F ),
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Figure 6.2: Diagram of the default of a firm.

where U
′
(X(T ) < F ) is a column vector with ones corresponding the states asso-

ciated with values of X(T ) less than F . Given m = 2000, T = 1, X(0) = 1, r =

0.1, σ = 0.6, F = 0.7 and d = α0 = α1 = α2 = 0.5, we obtain the price

ν ≈ 0.498535,

which is close to the known exact price ν = 0.498695.

Example 6.1.4 (Eigenvalues and eigenvectors). We consider the boundary crossing

problem for a standard Brownian motion with one-sided boundary 1 + t and set

m = 2000. Since the boundary is not time homogeneous, if we calculate the boundary

crossing probability by Eq. (3.8), then we have to multiply the fundamental matrices

one by one. However, it is equivalent that if we consider a diffusion process X(t) =

W (t)− t with one-sided boundary 1, then due to the time homogeneous boundary we

can utilize Theorem 3.3.1 to efficiently approximate the boundary crossing probability

by using the first 50 largest eigenvalues and the associated eigenvectors:
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P (W (t) ≥ 1 + t, for some t ∈ [0, 1]) ≈ 1− ξ0

(
n∏
i=1

N i

)
1
′
= 0.090322250840673,

P (W (t)− t ≥ 1, for some t ∈ [0, 1]) ≈ 1− ξ0Ñ
n

i 1
′
= 0.090365465385526

≈
50∑
i=1

aiξ0η
′

[i]λ
n
[i] = 0.090361921767096.

Example 6.1.5 (Jump diffusion process with ±1 jump size). Consider the following

jump diffusion process:

X(t) = W (t) +

N(t)∑
i=1

Yi,

where P (Yi = ±1) = 0.5.

For illustrative purpose, we choose λ = 1, m = 4 and ∆x = 1/4, then we have

n = 16. Let the upper and lower boundaries be 1.5 and -1.5, respectively. We can

rewrite the distribution of Y1 as

P (Yi = ±4∆x) = 0.5.

We construct two partial sums, Ẑn(t) in Eq. (4.8) and Ŵn(t) in Eq. (3.1), to respec-

tively approximate Z(t) =
∑N(t)

i=1 Yi and W (t). Then, taking the boundaries ±1.5

into account, the imbedded Markov chain {Y16(i)}16
i=1 is defined on the state spaces

Ω = {−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5} ∪ {α}.

97



From Eq.(4.17), the fundamental matrix is given by

N =



0.3740 0.2270 0.0523 0.0117 0.0126 0.0076 0.0017 0.0001 0.0000 0.0000 0.0000
0.2270 0.3740 0.2270 0.0523 0.0117 0.0126 0.0076 0.0017 0.0001 0.0000 0.0000
0.0523 0.2270 0.3740 0.2270 0.0523 0.0117 0.0126 0.0076 0.0017 0.0001 0.0000
0.0117 0.0523 0.2270 0.3740 0.2270 0.0523 0.0117 0.0126 0.0076 0.0017 0.0001
0.0126 0.0117 0.0523 0.2270 0.3740 0.2270 0.0523 0.0117 0.0126 0.0076 0.0017
0.0076 0.0126 0.0117 0.0523 0.2270 0.3740 0.2270 0.0523 0.0117 0.0126 0.0076
0.0017 0.0076 0.0126 0.0117 0.0523 0.2270 0.3740 0.2270 0.0523 0.0117 0.0126
0.0001 0.0017 0.0076 0.0126 0.0117 0.0523 0.2270 0.3740 0.2270 0.0523 0.0117
0.0000 0.0001 0.0017 0.0076 0.0126 0.0117 0.0523 0.2270 0.3740 0.2270 0.0523
0.0000 0.0000 0.0001 0.0017 0.0076 0.0126 0.0117 0.0523 0.2270 0.3740 0.2270
0.0000 0.0000 0.0000 0.0001 0.0017 0.0076 0.0126 0.0117 0.0523 0.2270 0.3740


.

The boundary crossing probability can be approximated using the unified formula

and given by

1− ξ0N
161

′
= 0.488740500953723.

Example 6.1.6 (Double exponential jump diffusion process). Let X(t) be the double

exponential jump diffusion process given as follows:

X(t) = σW (t) + µt+

N(t)∑
i=1

Yi,

where Yi, i = 1, . . ., have double exponential distribution and the density function is

given by

f(y) = pη1e
−η1y1{y≥0} + qη2e

η2y1{y<0}.

We shift the mean function (drift) of the Brownian motion to the one-sided boundary

b(t), and the boundary crossing probability becomes

P

W (t) +

N(t)∑
i=1

Y
′

i > b
′
(t), for some t ∈ [0, 1]

 ,
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where Y
′
i = Yi/σ and b

′
(t) = (b(t)− µt)/σ. The density function of Y

′
i is give by

f(y) = σ(pη1e
−ση1y1{y≥0} + qη2e

ση2y1{y<0}).

Then the fundamental matrices of the imbedded Markov chain can be obtained by

Eq. (4.16) and the boundary crossing probability is approximated by

1− ξ0

(
n∏
i=1

N i

)
1
′
.

Table 6.4 provides the boundary crossing probabilities with parameters µ = ±0.1,

σ = 0.2, λ = 0.01, 3, p = q = 0.5, η1 = 1/0.02, η2 = 1/0.03 and b(t) = 0.3 selected

from Kou and Wang [46].

Table 6.4: Boundary crossing probabilities for the double exponential jump diffusion
process.

FMCI Kou and Wang

λ µ = −0.1 µ = 0.1 µ = −0.1 µ = 0.1

0.01 0.0579 0.2601 0.0582 0.2606
3 0.0610 0.2553 0.0612 0.2558

Example 6.1.7 (Standard normal jump diffusion process). We consider the bound-

ary crossing probability for a jump diffusion process with standard normal jump

sizes, i.e.

P

W (t) +

N(t)∑
i=1

Yi > b(t), for some t ∈ [0, 1]

 ,

where Yi, i = 1, . . . , are standard normal. We select µ = 0, σ = 1, λ = 0.01, 1, 3, 5, 10

and b(t) = 1. Table 6.5 shows the performance and convergence rate of our method.
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It can be seen that our approximation provides satisfactory results even with small

n. For comparison, we carry out a Monte Carlo simulation based on 50000 sim-

ulation runs using MATLAB R©. Each simulated Brownian motion path consists of

10000 points between time interval [0, 1].

Table 6.5: Boundary crossing probabilities for the jump diffusion process with stan-
dard normal jump sizes.

m λ = 0.01 λ = 1 λ = 3 λ = 5 λ = 10

10 0.298587485 0.380280088 0.504065883 0.596313143 0.763681994
50 0.310852391 0.395245436 0.515662201 0.602644978 0.752653545
100 0.314353101 0.398456814 0.518330753 0.604913979 0.754009248
200 0.316266681 0.400165201 0.519746437 0.606143368 0.754874404
500 0.317467145 0.401222300 0.520619758 0.606908399 0.755449094
1000 0.317876022 0.401579934 0.520914649 0.607167696 0.755649529

Simulation 0.3137200000 0.399260000 0.519760000 0.606560000 0.752760000

6.2 Two-dimensional Brownian motion

Example 6.2.1 (Straight line). Let {X (t), t ≥ 0} be a two-dimensional correlated

Brownian motion starting at (−1, 0) with σ1 = 1, σ2 = 2 and ρ = −0.5, and ∂B(t) =

{(x1, x2) ∈ R2 : x1 = x2} be the boundary. As it can be seen in Figure 6.3, the

boundary crossing probability for two-dimensional correlated Brownian motion to

the above boundary can be regarded as the boundary crossing probability for one-

dimensional Brownian motion with another correlated one-dimensional Brownian

motion being the one-sided boundary. Since the covariance matrix of X (t) is given

by

tΣ = t

[
1 −1
−1 4

]
,
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Figure 6.3: Linear boundary.

we transform X (t) into W (t) by pre-multiplying Σ−
1
2 , and the boundary is accord-

ingly transformed into {(x̃1, x̃2)} satisfying[
x̃1

x̃2

]
.
=

[
1.1375 0.1984
0.1984 0.5422

] [
x1

x1

]
=

[
1.3360x1

0.7406x1

]
.

Then the boundary after transformation becomes

∂B̃(t) =

{
(x̃1, x̃2) ∈ R2 : x̃1 =

1.3360

0.7406
x̃2

}
.

Therefore, choose m = 100, by Theorem 5.1.2 we obtain the boundary crossing

probability

1− ξ0N
n1
′
= 0.690518396194389.

Example 6.2.2 (Cylinder). Let W (t) be a standard two-dimensional Brownian

motion starting at the origin and ∂B(t) = {(x1, x2) ∈ R2 : x2
1 + x2

2 = 1} be the

boundary. Take m = 100, then we have n = 104, ∆x = 0.01 and ∆t = 10−4. Since

the boundary is temporally homogeneous, we can make use of Theorem 3.3.1 to
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estimate the boundary crossing probability using the first ` = 30 largest eigenvalues

and the associated eigenvectors. We define a finite Markov chain {Y10000(i)}i≥0 on

the state space Ω1 given by Eq. (5.2) and the transition probability matrix can be

built according to Eq. (5.3). Hence, the estimated boundary crossing probability is

P (W (t) ∈ ∂B(t), for some t ∈ [0, 1]) ≈
30∑
i=1

aiξ0η
′

[i]λ
n
[i] = 0.908209579872515.

Nevertheless, the approximate boundary crossing probability by Eq. (5.4) is

P (W (t) ∈ ∂B(t), for some t ∈ [0, 1]) ≈ 1− ξ0N
n1
′
= 0.908209579872503,

which is very close to the above estimated boundary crossing probability.

Example 6.2.3 (Cone). Let W (t) be a standard two-dimensional Brownian motion

starting at the origin and ∂B(t) = {(x1, x2) : x2
1+x2

2 = 1+t} be the boundary. Since

the boundary is a function of t, the imbedded Markov chain is not homogeneous,

and the boundary crossing probability is obtained by multiplying the fundamental

matrices which might not be square or might not be of the same sizes. Take m = 50,

and for each ti, collect the nodes inside the boundary as the states of the fundamental

matrices N i which can be constructed by Eq. (5.3). Then the boundary crossing

0

1

0

Figure 6.4: Cone boundary.
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probability can be approximated by

P (W (t) ∈ ∂B(t), for some t ∈ [0, 1]) ≈ 1− ξ0

n∏
i=1

N i1
′
= 0.849959173588250.
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Chapter 7

Summary and Discussion

In this thesis, we provide a unified approach to calculate the boundary crossing

probabilities for one and high-dimensional Brownian motion and related stochastic

processes including a class of diffusion processes and jump diffusion processes. We

also introduce Y -channel boundaries which has not been studied yet in the litera-

ture. The entire content of this thesis is based on the sole idea that the crossing

probability is treated as the absorption probability of a finite Markov chain; i.e. we

consider the areas outside the boundary as a set of absorbing states, and the bound-

ary crossing probability is cast as the limiting absorption probability. The method

we use to calculate the absorption probability is the FMCI technique. Although the

concept is simple, the construction of finite Markov chains is not trivial.

For the one-dimensional Brownian motion case, we construct a family of discrete

distributions, based on which the partial sums converge to a Brownian motion. In-

terestingly, the partial sum in our family would reduce to a simple random walk

when the parameter p→∞. Based on the results of Nagaev [61, 62] and Borovkov

and Novikov [13], we show the error bound for our approximation of boundary cross-
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ing probability for Brownian motion to Lipschitz boundaries is with order O(1/m).

Also we show that the error bound for boundary crossing probability to Y -channel

boundary is with order O(1/m).

A well-known result is that the boundary crossing probability for Brownian mo-

tion for non-linear boundary 1
2
−t log(1

4
(1+
√

1 + 8e−1/t)) is 0.479749 (see Daniels [22]).

From our unified formula, we obtain the boundary crossing probability 0.47974239

using m = 50000. For one-sided linear boundary (1+ t), our approximate boundary

crossing probability is 0.09041797, using m = 50000, which is close to the exact

value 0.09041777 using the formula given in Robbins and Siegmund [69]. For two-

sided linear boundary ±(1 + t), the exact boundary crossing probability is 0.180812

by Anderson’s [2] formula and our approximate boundary crossing probability is

0.180803 using m = 20000. The errors of those cases are negligible. Clearly, higher

accuracy requires large m. The CPU times with PC for computing the boundary

crossing probabilities using m ≤ 5000 are negligible. There are still various practical

ways to improve the accuracy. For example, instead of rounding down, the discrete

boundaries ai = ba(ti)/∆xc and bi = bb(ti)/∆xc, i = 1, 2, . . . , n, can be round off

to the nearest integer. This can generally increase the accuracy, especially for small

m.

Diffusion and jump diffusion processes are considered in Chapter 4. Many known

diffusion processes can be transformed into a function of a Brownian motion using

Itô’s formula and time change, for example the geometric Brownian motion, O-U

processes and the Brownian bridge. After transformation, the boundary crossing

problem for diffusion processes reduces to that for Brownian motion. Due to the

rapid change in the market, the jump diffusion process is used to capture a sudden
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change. The jump diffusion process is the sum of a continuous-state Markov process

and a jump process, such as Brownian motion and Poisson processes, thus it is

approximated by the sum of two Markov chains. The easiest way to imbed the

sum of two Markov chains is to form a 2-tuple of the two Markov chains. The

2-tuple is no doubt a Markov chain, but the sizes of the state spaces would increase

rapidly. Instead, it is beneficial to imbed into a one-dimensional Markov chain in

the consideration of computational speed. Since the sum of two partial sums can be

viewed as another partial sum, hence the one-dimensional imbedded Markov chain

can be defined and the sizes of the state spaces can be significantly reduced.

In general, the sum of two Markov chains is not necessarily a Markov chain.

Although we did not mention that but, in fact, in our construction the sum of the

two Markov chains in Theorem 4.2.3 is a Markov chain. The sizes of the state spaces

can be dramatically reduced if we directly imbed the sum of the two Markov chains.

The results are extended directly to the higher-dimensional Brownian motion.

The plausible difficulty is when the components of the higher-dimensional Brownian

motion are correlated, but this can be resolved by transforming a correlated one to

a standard one.

Our results require the multiplication of fundamental matrices, which is not

difficult to compute even for large m using a modern computer. The sizes of tran-

sition probability matrices for high-dimensional cases are much larger than that for

one-dimensional cases. We observe that the fundamental matrix of an imbedded

Markov chain is Toeplitz if the boundary is time homogeneous. Hence, we provide

an algorithm to calculate the boundary crossing probability by only using the first `

(≈ 30) largest eigenvalues and the associated eigenvectors. There are built-in func-
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tions in many computing softwares, for example MATLAB R©, for finding the first

few largest or smallest eigenvalues and eigenvectors. Rather than multiplying the

entire matrices, the computation for finding the largest eigenvalues and eigenvectors

of a matrix usually requires less CPU times when n is large.

One last thing we would like to mention is the flexibility of the FMCI technique.

The FMCI technique are not only used to numerically calculate the boundary cross-

ing probability, but it can be used to recover certain identities, such as Erdös and

Kac’s result given in Section 3.2. It can also be seen in pricing corporate debt

example in Section 6.1 that other than default probability, we can also calculate

the probability that Brownian motion stays at a specific region at time T given

that it does not cross the boundaries, by simply replacing the column vector 1
′

in

Eq. (3.9) with a vector with ones in the positions of the states associated with the

specific region and zeros elsewhere. Therefore, with minor modifications, the FMCI

technique can be used to obtained various probabilities under different settings.
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