
202

equationReader extension

This documentation and the associated source code are not approved or endorsed by OpenCFD Ltd. (ESI Group), producer of
the OpenFOAM software and owner of the OpenFOAM® and OpenCFD® trade marks.

equationReader has been publicly released on github at https://github.com/Marupio/equationReader/

Refer to this website for the latest documentation and source code.

1 Introduction

Latest version 0.6.0, released August 29, 2013. Known to work with:

 OpenFOAM 1.6-ext

 OpenFOAM 1.7.x

 OpenFOAM 2.0.x

 OpenFOAM 2.1.x

 OpenFOAM 2.2.x

1.1 What is it?

equationReader is an extension to OpenFOAM that allows you to work with user-entered equations. For

example:

U.x "sin(pi_ * t / 4)";

U.y "rho * nut / L";

U.z 0;

nu nu [0 2 -1 0 0 0 0] "1.2 + 3 * alpha^sin(pi_/6)";

aScalar "nu / max(5, alpha)";

alpha 1.3;

1.2 What it isn’t

Installing equationReader will not give any existing solvers the capability to read equations from

dictionaries. It will only work on custom solvers that specifically include the equationReader in their

inner-workings.

203

In the future, I plan to create a branch of OpenFOAM® that integrates equationReader directly into its

core libraries, thus giving every existing solver equation-reading capabilities.

1.3 Features

 Works with most fields - Now works with single

elements, fields, DimensionedFields and GeometricFields;

 Works with most Types - Now works with scalars, vectors, and all kinds of tensors;

 Flexible data sources - In addition to these types, equations can also lookup values

from dictionaries, and you can create anactiveVariable that derives its value on-the-fly.

 Order of operations - it is fully compliant with the conventional order of operations to an

arbitrary parenthesis depth;

 Equation dependency tracking - equations can depend on one another to an arbitrary hierarchy

depth;

 Circular-reference detection - it will halt computations when a circular reference is detected;

 On-the-fly equation mapping - it will automatically perform substitution on other equations

when they are needed, even if they aren't specifically called for in the solver; and

 Dimension-checking - fully utilizes OpenFOAM's built-in dimension-checking, or you can force

the outcome to a specific dimension-set to quickly disable it (if you are lazy).

Limitations: Although equationReader works with all Types, at its core, it is just a scalar calculator

with dimensions. Therefore, you can't use vector operators, let alone tensor operators. Each equation

must be expressed in scalar components.

204

1.4 Why would you need this?

Let the user define their own equations - this makes your application more user-friendly, and more

flexible. But don't reinvent the wheel - if you are only working with boundary conditions or initial

conditions, Bernhard's swak4Foam would probably be more suitable.

1.5 Update Info

 2010-07-21: Initial release

 2010-08-05: Bug-fix - differentiated versions for OpenFOAM-1.5.x/1.5-dev and OpenFOAM-

1.6.x+

 2010-08-12: Major upgrade

o Introducing IOEquationReader - EquationReader is now an IOobject. This enables

automatic output

o Added support for scalarList data sources - including scalarField,

volScalarField, etc.

o Removed the need for pointers for data sources

o Cleaned up available functions

 2010-10-16: Bug fixes and added full support for fields

 2011-04-06: Major upgrade

o Efficiency improvement - pointer functions have been implemented to increase

computation speed by an order of magnitude (at least).

o Improved dimension-checking on all functions.

o Added a fieldEvaluate function for active equations whose output is to a scalar field.

o Bug fix to get it working with 1.6-ext and higher.

 2011-09-13: Major upgrade

205

o Now a stand-alone library.

o Now works with vectors and tensors:

 scalar;

 vector;

 tensor;

 diagTensor;

 symmTensor; and

 sphericalTensor.

o Now works with GeometricFields

o Dimension checking is now performed separately, improving efficiency of field and

GeometricField calculations.

o Interface changes:

 Add data functions reorganized / changed.

 Evaluate functions reorganized / changed.

 Update functions removed.

 2011-09-25: Version 0.5.0

o Improved treatment of fields - now approximately 10x faster.

o Introduced version numbers to keep track of changes.

 2012-10-25: Version 0.5.1

o Moved to git

o Bug fixes:

 Circular reference detection now working

 2013-08-29: Version 0.6.0

o Uploaded to github and OpenFOAM-extend

206

o Restructured applications and tutorials directories for consistency

o Made opening splash optional

2 Efficiency

2.1 How fast is equationReader?

The most recent version of equationReader (Version 0.5.0, released September 25th, 2011) handles

fields roughly 10x faster than the previous version. Overall, equationReader now takes approximately

5.87 times longer than a hard-coded solution when handlingGeometricFields. That's for a simple

equation. For more complex equations, equationReader's performance improves.

Straight up scalars are still much slower. I haven't benchmarked the latest version, but previous

versions were coming in at around 300 x slower.

2.2 Will it get faster?

Yes! The next plan is to have equationReader compile your equations at runtime. In theory, they will

execute as fast as a hard-coded solution, less a small amount of overhead with the function call.

2.3 Parsing and evaluating

There is a difference between parsing and evaluating. When the equation is first read, it is a human-

readable string expression.equationReader translates the human-readable form into an operation list.

This is parsing. To calculate the result, equationReader does a forAll(operations, i). This

is evaluating.

207

Parsing happens only once, and is slow. Evaluating happens at every cell index, at every timestep (or

however you've used it), and it is fast.

3 Installation

3.1 OpenFOAM-extend

If you have a recent version of OpenFOAM-extend, you may already have equationReader installed.

Type this command:

 [-d "$WM_PROJECT_DIR/src/equationReader"]&&echo "Yes"||echo "No"

If the response is "Yes" then you already have it.

3.2 Git installation

A git installation will allow you to download the latest updates to equationReader.

equationReader is git-tracked seperately from OpenFOAM, so if your OpenFOAM installation is also git-

tracked, it is advisable to put it in a seperate directory. Alternatively, if you use the latest version of

OpenFOAM-extend, equationReader is incorporated within the main git repository.

Therefore, choose a seperate directory, for example:

 -OpenFOAM

 |-OpenFOAM-2.2.x

 | |-applications

 | |-src

 | '-etc, and so on

 '-equationReader

To duplicate the structure above:

 cd $WM_PROJECT_DIR

 cd ..

 git clone https://github.com/Marupio/equationReader.git

208

NOTE: If you have OpenFOAM 1.7.x or earlier, at this point you need to edit the file

src/equationReader/include/versionSpecific.H:

Comment out the second line:

//#define ThisIsFoamVersion2

For any version of OpenFOAM, complete the installation:

 cd equationReader/src/equationReader

 wmake libso

 cd ../../applications/solvers/equationReader/equationReaderDemo

 wmake

To later update equationReader:

 cd $WM_PROJECT_DIR

 cd ..

 git pull

 cd equationReader/src/equationReader

 wmake libso

 cd ../../applications/solvers/equationReader/equationReaderDemo

 wmake

3.3 Manual installation

To manually install equationReader:

1. Download the code:

 get the latest code from https://github.com/Marupio/equationReader/archive/master.zip

 or use the zip file stored on the website linked-to from the DOI.

2. Open a terminal window and browse to the folder with your download.

3. Execute the following commands. You should be able to just copy and paste all 8 lines into your

terminal:

unzip equationReader-master.zip

mv equationReader-master/README equationReader-master/tutorials/equationReader

cp equationReader-master/* $WM_PROJECT_DIR

rm -rf equationReader-master

cd $WM_PROJECT_DIR/src/equationReader

wmake libso

cd $FOAM_APP/solvers/equationReader/equationReaderDemo

wmake

209

equationReader should now be installed.

4 Testing the installation

To test the installation, copy the new tutorials/equationReader/ directory to your run

directory, and run equationReaderDemo.

5 Using equationReader

5.1 Dictionary syntax

Any of these formats are acceptable to equationReader:

5.1.1 Standard equation

keyword "equation";

keyword scalar;

e.g.:

endTime "2*pi_/360*60";

gamma 1.58e-6;

The standard equation format performs dimension checking for every operation. Use this if you want

OpenFOAM to be strict about the dimensions you use. This has may unexpected consequences. For

example:

 sin(time) is wrong because you can't have dimensions in any transcendental functions; and

 max(deltaT, SMALL_) is wrong because SMALL is dimensionless.

If this is too troublesome, you can also use:

5.1.2 Dimensioned equation

keyword [dimensionSet] "equation";

keyword [dimensionSet] scalar;

keyword ignoredWord [dimensionSet] "equation";

keyword ignoredWord [dimensionSet] scalar;

210

e.g.:

nu [0 2 -1 0 0 0 0] "1 / (1e-5 + 2.3/4000 + SMALL_)";

rho [1 -3 0 0 0 0 0] 1.235;

delta delta [0 1 0 0 0 0 0] "sin(pi_ * t)";

alhpa alpha [0 1 0 0 0 0 0] 3.2;

The dimensioned equation format disables dimension checking, and forces the final result to a

given dimensionSet. Also note the optional ignoredWord - this allows equationReader to be compatible

with dimensionedScalar formats.

5.2 Equation syntax

equationReader uses the conventional order of operations BEDMAS, then left to right:

 Brackets (and functions);

 Exponents;

 DM - division and multiplication; and

 AS - addition and subtraction.

It's just like Excel, except exponents 'a^b' don't work - use 'pow(a,b)' instead.

 you can use any amount of whitespace you want (use a backslash for a line break);

 multiplication is *, for example 2*3 is 6;

 there is no implied multiplication - you must explicitly use *. For example:

2 sin(theta) INCORRECT

2 * sin(theta) CORRECT

and

2(3 + 4) INCORRECT

2 * (3 + 4) CORRECT

211

5.2.1 Mathematical constants

equationReader recognizes all the mathematical constants I could find in the OpenFOAM library. To

specify a mathematical constant, append the regular OpenFOAM format with an underscore '_'. The

available constants are:

 e_ (Euler's number);

 pi_;

 twoPi_;

 piByTwo_;

 GREAT_;

 VGREAT_;

 ROOTVGREAT_;

 SMALL_;

 VSMALL_; and

 ROOTSMALL_.

5.2.2 Functions

Functions available to equationReader are:

 pow(x)

 sign(x)

 pos(x)

 neg(x)

 mag(x)

 limit(x, y)

 minMod(x, y)

212

 sqrtSumSqr(x, y)

 sqr(x)

 pow3(x)

 pow4(x)

 pow5(x)

 pow6(x)

 inv(x)

 sqrt(x)

 cbrt(x)

 hypot(x, y)

 exp(x)

 log(x)

 log10(x)

 sin(x)

 cos(x)

 tan(x)

 asin(x)

 acos(x)

 atan(x)

 atan2(x, y)

 sinh(x)

 cosh(x)

 tanh(x)

 asinh(x)

213

 acosh(x)

 atanh(x)

 erf(x)

 erfc(x)

 lgamma(x)

 j0(x)

 j1(x)

 jn(x, y)

 y0(x)

 y1(x)

 yn(x, y)

 max(x, y)

 min(x, y)

 stabilise(x, y)

5.3 Troubleshooting your equations

Your equations may cause you trouble, such as:

 Giving you a SIGFPE; or

 Failing dimension checks.

If this happens and you don't know why, equationReader has a detailed set of debug switches to help.

To change the debug switch, edit the OpenFOAM/etc/controlDict file and add:

equationReader integerValue;

to the DebugSwitches list.

The debug switches available are:

214

0. silent mode;

1. scalar logging (light);

2. scalar logging (verbose);

3. dimension logging (light);

4. dimension logging (verbose);

5. scalar & dimension logging (light); or

6. scalar & dimension logging (verbose).

The scalar logging will report scalar-related operations to the console. The dimension logging, relates to

dimensionSet operations. verbose reports operation-by-operation, so it can be overwhelming.

6 Programming with equationReader

Most of the programming features can be gleaned from the equationReader demo application. Please

also refer to that.

6.1 Creating an equationReader object

To add equationReader to an application:

 Put #include "IOEquationReader.H" at the top of your main source file;

 Put #include "createEquationReader.H" somewhere after createTime;

6.2 Adding data sources

You need to add data sources - this is where equationReader looks for its variables.

6.2.1 Beware of duplicate sources

Currently, equationReader does not check if you are adding multiple variables of the same name. When

this happens, you never know which source will be used. I didn't add it because it didn't occur to me

until I started writing this paragraph. Expect it in the future.

215

6.2.2 Is the data permanent?

Data must be permanently available. For instance, mesh.C() is a valid data source because it returns a

&reference. But turbulence->R() is not valid because it returns an object (or tmp<object>), and

hence is derived from other permanent sources.

To use derived data sources, there are two options:

1. Create a permanent copy, and update it at every timestep. This is demonstrated in the

equationReaderDemo application.

2. Create an activeVariable.

6.2.3 Active variables (advanced developers)

An activeVariable is one that does not permanently store its data, and provides values on-

demand to equationReader. The key to this is it must be able to calculate a single cell value on-demand,

and not the entire field at once. The interface is given in the

equationReader/equationVariable/equationVariable.H file.

6.2.4 Functions to add data sources

To add data sources:

 for scalars, dimensionedScalars, scalarFields, GeometricScalarFields,

etc.:

 eqns.scalarSources().addSource(scalarObject);

or if it doesn't have its own name (i.e. scalars and scalarFields) or you want to assign it a

different name:

 eqns.scalarSources().addData(scalarObject, name);

 for vectors, dimensionedVectors, vectorFields, GeometricVectorFields, etc.:

 eqns.vectorSources().addSource(vectorObject);

216

or if it doesn't have its own name (i.e. scalars and scalarFields) or you want to assign it a

different name:

 eqns.vectorSources().addSource(vectorObject, name);

 and so on for other Types (tensor, diagTensor, symmTensor,

and sphericalTensor);

 for dictionaries or activeVariables:

 eqns.addSource(dataObject);

6.3 Reading in the equations

To read equations from a dictionary use:

eqns.readEquation(dictionaryName, equationName);

6.4 Searching the equations

equationReader allows you to search its equations. Similar to the dictionary object, this will

return true if equationName exists:

eqns.found(equationName);

The evaluate functions below call for eqnNameOrIndex. This means you can either use

a word (the equationName), or a label (the equationIndex). The equationIndex is faster,

as equationReader doesn't have to perform its own lookup. Never assume the equationIndex is equal

to the order in which the equations were read. If the equations depend on one another, they may not

always be in the same index. To learn the equationIndex, use:

equationIndex = eqns.lookup(equationName);

6.5 Evaluating equations

Once you are done adding data sources, and reading equations, you can start evaluating equations.

6.5.1 All data sources required

When evaluating an equation, equationReader needs access to all the possible variables and other

equations that equation might depend on. If that variable or equation isn't found, equationReader

217

produces a FatalError. Therefore it is a mistake to try adding more data sources after the first

evaluation.

6.5.2 No mesh available

equationReader doesn't care about the mesh... all it cares about are the sizes of the the fields. The size

of the variable fields must match. Index checking is expensive, so it is only available

in FULLDEBUG mode. These rules apply:

 a single-element variable (e.g. a scalar, or a dimensionedVector) is assumed uniform

throughout the entire domain, and can be used in any equation;

 a field variable (e.g. a scalarField, or a DimensionedVectorField) does not have a

boundary field, therefore it is only available to equations of other fields or internal fields.

Attempting to use it in a GeometricField is a mistake; and

 a GeometricField variable can be used with any equation.

There are two indices to indicate field / boundary field position:

 cellIndex - this is the position within a field (e.g. cell number in the internal field, or face

number on a boundary patch);

 geoIndex:

o 0 = the internal field;

o greater than 0 = the boundary patches. The geoIndex is therefore 1-indexed on the

boundaryField: patchI = geoIndex - 1.

If you omit either of these in the evaluation equations, they are assumed equal to zero.

6.5.3 Evaluation functions

 for single element types:

 scalarA = eqns.evaluateScalar

 (

 eqnNameOrIndex,

218

 [cellIndex],

 [geoIndex]

);

 vectorA.x() = eqns.evaluateScalar

 (

 xEqnNameOrIndex,

 [cellIndex],

 [geoIndex]

); // and so on for all its components

 tensorA.xx() = eqns.evaluateScalar

 (

 xxEqnNameOrIndex,

 [cellIndex],

 [geoIndex]

); // and so on for all its components

 for dimensionedScalars:

 dimensionedScalarA = eqns.evaluateDimensioned

 (

 eqnNameOrIndex,

 [cellIndex],

 [geoIndex]

);

 for other dimensionedTypes - there is no elegant dimensionChecking... use this hack:

 vectorA.x() = eqns.evaluateScalar

 (

 xEqnNameOrIndex,

 [cellIndex],

 [geoIndex]

);

 vectorA.y() = eqns.evaluateScalar

 (

 yEqnNameOrIndex,

 [cellIndex],

 [geoIndex]

);

 vectorA.z() = eqns.evaluateScalar

 (

 zEqnNameOrIndex,

 [cellIndex],

 [geoIndex]

);

 vectorA.dimensions() = eqns.evaluateDimensions(xEqnNameOrIndex);

 vectorA.dimensions() = eqns.evaluateDimensions(yEqnNameOrIndex);

 vectorA.dimensions() = eqns.evaluateDimensions(zEqnNameOrIndex);

 for scalarFields:

 eqns.evaluateScalarField(resultScalarField, eqnNameOrIndex, [geoIndex]);

or

 eqns.evaluateTypeField

 (

 resultScalarField,

 dummyWord,

 eqnNameOrIndex,

 [geoIndex]

);

 for vectorFields:

 eqns.evaluateTypeField

219

 (

 resultVectorField,

 "x", // this is the component name

 xEqnNameOrIndex,

 [geoIndex]

); // and so on for the "y" and "z" components

 and so on for other typeFields;

 for DimensionedScalarFields:

 eqns.evaluateDimensionedScalarField

 (

 resultDimensionedScalarField,

 eqnNameOrIndex,

 [geoIndex]

);

do not use evaluateDimensionedTypeField - this will fail for scalars;

 for DimensionedVectorFields:

 eqns.evaluateDimensionedTypeField

 (

 resultDimensionedVectorField,

 xEqnNameOrIndex,

 "x",

 [geoIndex]

); // and so on for the "y" and "z" components

 and so on for other DimensionedTypeFields;

 for GeometricScalarFields:

 eqns.evaluateGeometricScalarField

 (

 resultGeometricScalarField,

 eqnNameOrIndex

);

do not use evaluateGeometricTypeField - this will fail for scalars;

 for GeometricVectorFields:

 eqns.evaluateGeometricTypeField

 (

 resultGeometricTypeField,

 "x",

 xEqnNameOrIndex

); // and so on for the "y" and "z" components

 and so on for other GeometricTypeFields;

220

7 Uninstallation

7.1 The stand-alone (new) version

7.1.1 Am I running the stand-alone version?

Does src/equationReader/ exist? If so, then you have the stand-alone version. You can check by

entering the following command:

 [-d "$WM_PROJECT_DIR/src/equationReader"]&&echo "Yes"||echo "No"

If it says Yes then you have the stand-alone version.

7.1.2 How do I uninstall the stand-alone version?

Enter the following commands into your console:

rm -rf $WM_PROJECT_DIR/src/equationReader

rm -rf $WM_PROJECT_DIR/applications/solvers/equationReader

rm -rf $WM_PROJECT_DIR/tutorials/equationReader

The stand-alone version of equationReader has been uninstalled.

7.2 The integrated (old) version

Since the integrated version of equationReader is compiled into the core of OpenFOAM, uninstallation

requires file editting and recompiling of OpenFOAM.so.

7.2.1 Am I running the integrated version?

Does src/OpenFOAM/db/dictionary/equation/ exist? If so, then you have the integrated version.

You can check by entering the following command:

 [-d "$WM_PROJECT_DIR/src/OpenFOAM/db/dictionary/equation"]&&echo "Yes"||echo "No"

If it says Yes then you have the integrated version.

7.2.2 How do I uninstall the integrated version?

To uninstall the integrated equationReader:

221

1. Edit the src/OpenFOAM/Make/files file:

Find and delete the bold lines below:

functionEntries = $(dictionary)/functionEntries

$(functionEntries)/functionEntry/functionEntry.C

$(functionEntries)/includeEntry/includeEntry.C

$(functionEntries)/includeIfPresentEntry/includeIfPresentEntry.C

$(functionEntries)/inputModeEntry/inputModeEntry.C

$(functionEntries)/removeEntry/removeEntry.C

equation = $(dictionary)/equation

$(equation)/equationReader/equationReader.C

$(equation)/equationReader/equationReaderIO.C

$(equation)/equation/equation.C

$(equation)/equation/equationIO.C

$(equation)/equationOperation/equationOperation.C

IOEquationReader = db/IOobjects/IOEquationReader

$(IOEquationReader)/IOEquationReader.C

$(IOEquationReader)/IOEquationReaderIO.C

IOdictionary = db/IOobjects/IOdictionary

$(IOdictionary)/IOdictionary.C

$(IOdictionary)/IOdictionaryIO.C

2. Edit the src/OpenFOAM/primitives/Scalar/Scalar.C file:

Near the top, delete this line:

#include "equationReader.H"

Near line 84, delete the bold section below:

 if (t.isNumber())

 {

 s = t.number();

 }

 else if (t.isString())

 {

 // DLFG 2010-07-21 Modifications for equationReader

 equationReader eqn;

 eqn.readEquation

 (

 equation

 (

 "fromScalar",

 t.stringToken()

)

);

 s = eqn.evaluate(0).value();

 }

 else

 {

 is.setBad();

 FatalIOErrorIn("operator>>(Istream&, Scalar&)", is)

 << "wrong token type - expected Scalar found " << t.info()

 << exit(FatalIOError);

 return is;

 }

From the terminal, enter the following commands:

222

rm -rf $WM_PROJECT_DIR/src/OpenFOAM/db/dictionary/equation

rm -rf $WM_PROJECT_DIR/src/OpenFOAM/db/IOobjects/IOEquationReader

rm -rf $WM_PROJECT_DIR/src/OpenFOAM/lnInclude

rm -rf $WM_PROJECT_DIR/applications/solvers/equationReader

rm -rf $WM_PROJECT_DIR/tutorials/equationReader

rm $FOAM_USER_APPBIN/equationReader*

rm $FOAM_APPBIN/equationReader*

cd $WM_PROJECT_DIR/src/OpenFOAM

rmdepall

wmake libso

The integrated version of equationReader has been uninstalled.

