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ABSTRACT
It is desired to estimate the proportion of nonconforming items in a population and to
place a two-sided bound on this proportion. Two measuring devices are available to
classify the items -- one device (imperfect) is relatively inexpensive but tends to
misclassify items, while the second device (perfect) is an expensive procedure which
does not misclassify items. A double sampling plan is used to provide information on
the proportion of interest and on the effect of misclassification. Items in an initial
sample are classified by the imperfect classifier into two groups -- those thought to be
“nonconforming", and those thought to be "conforming". A sub-sample is taken from

each group, and these items are reclassified by the perfect classifier.

Bayesian methods are used to obtain a posterior distribution for the proportion of
nonconforming items in the population, which may then be used to obtain a point
estimate and credibility bounds. Prior distributions for the proportion of
nonconforming items and the misclassification rates are modelled by independent beta

priors.

Neden (1986) also used a double sampling scheme and Bayesian methods to obtain a
posterior distribution for the proportion of nonconforming items. However, she dealt
with a one-sided "confirmatory" subsampling plan, (that is, a subsample was taken
either from the "nonconforming" group or the "conforming” group, but not from both
groups) and she produced a conservative one-sided credibility bound. Tenenbein
(1970) also utilized a double sampling scheme, but his estimates and error bounds were
obtained using classical asymptotic methods. His methods are not appropriate in
situations commonly encountered in which the proportion of interest is quite small or in

which the subsample sizes are small.



Economic considerations may necessitate that one choose between the one-sided
"confirmatory” sampling plan of Neden, and the two-sided sampling plah considered
here. That s, for a fixed sample size, this choice may be between taking all of the
samples from one group or taking some from each group. It is shown that there are
situations in which one sampling plan may be more appropriate than the other,
depending on the form of the inferences to be drawn and on the prior information

concerning the misclassification rates.
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CHAPTER 1
INTRODUCTION AND SUMMARY

Taking a sample of items from a population, it is desired to estimate the proportion of
items which have a certain characteristic and to place a one-sided or two-sided bound
on this proportion. Two measuring devices are available to classify the items -- one
device (fallible) is relatively inexpensive but tends to misclassify items, while the

second device (infallible) is an expensive procedure which does not misclassify items.

Factors such as time and cost make it unreasonable to classify all the sample items by
the infallible procedure. In the hope of reducing time and cost while providing an
accurate estimate of the proportion of interest, it seems reasonable to consider a design

which will incorporate both types of measuring devices.

A double sampling scheme may be used to provide information on the proportion of
interest and on the effect of misclassification. At the first stage a random sample of
itens is taken from a lot and classified by the fallible procedure into one of two
categories -- those thought to be conforming and those thought to be nonconforming.
At this stage some of the items may be misclassified. For example, category 1 may
contain both conforming and nonconforming items when in reality it was to contain
only conforming items. Similarly, category 2 may also contain items from both groups
when in fact it should only contain nonconforming items. Due to the fact that some
items at this stage may be misclassified, a second stage sub-sample is taken from both

categories. The items taken at this second stage are then classified by the infallible



procedure. The idea of the two-stage sampling plan is to use the sub-samples to

provide information on the accuracy of the fallible procedure.

In this thesis, Bayesian theory is used to find a solution. The Bayesian approach
allows one to combine direct sample evidence with any prior information that may be

available to form a posterior distribution for the proportion of interest.

In our case, three parameters are involved: p > Which is the proportion of
nonconforming items in the lot, P, which is the probability of a conforming item being

correctly identified at the initial sampling stage, and P, which is the probability of a

nonconforming item being correctly identified at the initial sampling stage.

Bayesian methods allow one to combine information obtained from the double

sampling scheme with the joint prior distribution for p o Py and p, to form a joint

posterior distribution of p o p1 and P,

Bayesian methods also allow for the handling of the nuisance parameters p1 and p2.
Inference on the parameter of interest, P, is based on its marginal posterior
distribution. This marginal posterior distribution is obtained by integrating the joint
posterior distribution of Py p1 and p, over the nuisance parameters p1 and p2. The

marginal posterior distribution of p, or p, can be obtained in a similar manner.

Bayesian methods require that prior distributions be specified for all of the parameters
involved. When the prior information consists of previous sample evidence, the choice

of a prior distribution may be immediate. If this is not the case, the decision maker can



quantify his judgement with regards to the parameters of interest and form a subjective

prior distribution.

Since the testing of items by an infallible method to determine it's correct classification
may be expensive, it is desirable to incorporate any previous data that may be available.
Information on the proportion of nonconforming items in previous lot shipments,
information on the proportion of conforming items correctly classified by the inspection
process, or information on the proportion of nonconforming items correctly classified
by the inspection process may be available. If the process appears fairly stable, then it

seems that this knowledge from previous samples should be utilized in the solution.

For this particular solution, knowledge about p o Py and p, will be modelled by

independent beta priors. The use of independent beta distributions for the priors greatly
simplifies the calculation of the posterior distribution. The use of beta distributions also
provides us with a wide variety of shapes which can be used to approximate many

reasonable prior distributions.

The motivation for this thesis was based on a problem that arose in the grain industry.
A boxcar may contain two varieties of wheat: variety 1, which conforms to grading

standards, and variety 2, which does not. If the proportion of nonconforming kernels
is thought to exceed some specified value the carlot is down graded and the shipper is

paid less.

The two varieties of wheat may be quite similar in appearance making correct visual
identification difficult. Because of this, some kernels of wheat may be misclassified.

Misclassification can occur in either direction: a variety 1 kernel may be classified as



variety 2, or a variety 2 kernel may be classified as variety 1. Laboratory techniques
that provide exact identification of the kernels are available, but this procedure is very

costly and therefore only a small number of kernels can be classified by this procedure.

For example, a grain inspector may visually inspect a sample of 300 kernels and decide
that 255 kernels are "conforming" and 45 kernels are "nonconforming". A sample of
10 kernels is taken from the 255 kernels thought to be "conforming” and a second
sample of 10 kernels is also taken from the 45 kernels thought to be "nonconforming”.
These sub-samples are then classified by the laboratory technique in order to determine
the correct classification. The laboratory analysis may have found 8 out of the 10
kernels taken from the "nonconforming” pile to be nonconforming and 10 out of the 10
kernels taken from the "conforming" pile to be conforming. The sampling scheme for

this example can be seen in Figure 1.1. The problem is to combine all of this

information in order to form inferences about p o

In this case, suitable beta prior distributions may consist of: $(1,10) for p,, B(1,1) for

P, and 3(20,1) for P, The prior for p o, fepresents the feeling that the proportion of

nonconforming kernels in the carlot is small. The prior for P, represents a state of

“ignorance" about the probability of a conforming kernel being correctly identified, and
the prior for P, represents the feeling that the probability of correctly identifying a

nonconforming kernel as nonconforming is very good. These prior distributions can

be seen in Figure 1.2.

After combining the joint prior distribution for p o p1 and P, with the sample evidence,
and integrating with respect to P, and p,, we obtain the posterior distribution for p o I

Figure 1.3. The mean of the posterior distribution provides a point estimate of P, and



the posterior distribution can also used to provide a one-sided or two-sided bound for

Po- In this case, a point estimate for p , Would be 14.31% and a 95% credibility interval

would be 9.76% < P, < 19.24%. The mathematical form of the posterior distribution

can be found in Section 4.4.

SAMPLING SCHEME

CARLOT
po = proportion of nonconforming items

random initial sample

conforming I nonconforming 300 kernels

(1'P2) (1'p1)

" conforming " " nonconforming "

visual
255 classification 45

dom sub-sample random sub-sample
ranof 1rlno llclenielsp of 10 kernels

10 out of 10 perfect 8 out of 10
conforming classification nonconforming

Figure 1.1: Sampling Scheme
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Since varying the prior distributions will cause the posterior distribution to vary, it is of
interest to see how sensitive the posterior distribution is to variations in the prior
distributions. A look at the sensitivity of the posterior distribution can be found in

Section 4.6.

In the grain industry a shipper is paid according to the proportion of kernels not
meeting grading standards. It is therefore of interest to see if the proportion of
nonconforming items p,, exceeds some critical value, say p', and hence to test the
following hypotheses:

Hy: po <p”

H;:p,>p*.
Credibility bounds permit the testing (in a Bayesian sense) of such hypotheses. If a

lower bound for p,, is found to be greater than p*, then the null hypothesis would be

rejected in favor of the alternative.

Similarly, if the hypotheses to be tested is:

Hy:po 2p°

Hp:p, <p*,
an upper bound for p, can be found and used to test this hypotheses. If the upper
bound is found to be less than p*, then the null hypothesis would be rejected in favor

of the alternative.

The work in this thesis is closely related to that of Neden (1986). Neden also used a

double sampling scheme and Bayesian methods to obtain a posterior distribution for

p,- However, Neden dealt with a one-sided "confirmatory" sub-sample, that is, at the

second stage of sampling, a sub-sample was taken from either the "nonconforming"



group or the "conforming™ group, -- the decision whether to draw a sample from the
"nonconforming" or the "conforming" group depending on the size of the
"nonconforming" group at the initial inspection stage. For example, if at the inspection
stage a large number of nonconforming items are found, the inspector may conclude
that the lot is unacceptable. One may then want to confirm that the lot does in fact
contain an unacceptable number of nonconforming items. If this is the case, a sub-
sample from the "nonconforming" group can be taken in order to obtain a lower bound

for the proportion of nonconforming items.

Neden used a one-sided "confirmatory” sub-sampling plan in order to confirm

if p, Sp*or p, > p*. If the proportion of nonconforming items, p,, in the lot was

thought to be unacceptable at the initial sampling stage, a lower bound was desired by
Neden in order to confirm that p, was large. Neden assumed that no misclassification
of nonconforming items could take place and therefore no sub-sample was taken from

the "conforming" category. This assumption provides a conservative result, as any

misclassification of the conforming items would cause the estimated value of P, and the

lower bound to become larger. Therefore, if H, can be rejected under the assumption

that no misclassification of nonconforming items can take place, it will also be rejected

if misclassification of the nonconforming items can take place.

Similarly, if the "nonconforming" group is small at the initial sampling stage, the
inspector may make the decision that the lot is acceptable. One may want to confirm
that the lot is good by taking a sub-sample from the "conforming" group in order to

obtain a upper bound for p,. By assuming that no misclassification of conforming

items can take place, no sub-sample is taken from the "nonconforming” category. This



would provide a conservative result as any misclassification of conforming items would

cause the estimated value of p, and the upper bound to become smaller.

If some point estimate or two-sided interval estimate for the proportion of
nonconforming items was desired, sub-samples would have to be taken from both of
the visually inspected category 1 and category 2 groups (two-sided sub-sampling plan)
in order to see the effect of misclassification in both directions. This thesis will
compare the above two-sided sub-sampling plan with the one-sided "confirmatory"

sampling plan used by Neden.

If a point estimate is not desired but one is interested in a lower bound there are several
ways in which samples may be allocated. All samples could be taken from the
"nonconforming” category (one-sided confirmatory sub-sample), or samples could be
taken from both of the "conforming" and "nonconforming" categories (two-sided sub-

sample).

In reality it is hoped that the probability of correctly classifying a conforming or
nonconforming item be near 1. If prior distributions are used to reflect this
information, there are situations where little difference in the lower regions for the one-
sided and two-sided sampling plans can be seen. For example, such a situation arises
when sub-samples of size 10 are taken from both categories. Similarly, there are
situations where a difference in the lower region between the two sampling schemes

can be seen.

If one is interested only in obtaining a lower bound, and resources permit that only 20

sub-samples may be taken, it seems that the one-sided "confirmatory" sampling plan

10



with 20 samples taken from the "nonconforming" category may be more appropriate
than the two-sided sampling plan with samples of size 10 taken from each category

since it provides a higher lower bound.

Comparisons between the one-sided and two-sided sampling schemes on the lower tail

region of the posterior distribution can be found in Section 4.7.

Tenenbein (1970), Diamond and Lilienfeld (1962) and Deming (1977) also considered
designs which incorporated both fallible and infallible measuring devices. To estimate
the proportion of items belonging to one of two possible categories, Tenenbein (1970)
presented a double sampling scheme similar to that in this thesis. However, his
estimates were obtained using asymptotic methods. Often the proportion of interest
may be quite small, and together with small sub-samples, the use of asymptotic
techniques based on normal theory do not seem appropriate. The use of Bayesian
methods allows one to deal with the small sub-sample sizes. It will also allow us to
deal with nuisance parameters and to incorporate any previous information that we may

have available concerning the parameters of interest.

11



CHAPTER 2

THE PROBLEM

2.1 The General Problem

It is desired to estimate a proportion, p, of items which have a certain characteristic and
to place a one-sided or two-sided bound on this proportion. Two measuring devices
are available to classify the items -- one device is relatively inexpensive but tends to
misclassify items, while the second device is an expensive procedure which does not

misclassify items.

Due to factors such as time and cost it is unreasonable to classify all the sample items

by the expensive procedure. If however the items are only classified by the cheaper
procedure which tend to misclassify items, then we run the risk of inaccurate estimates
and inferences. For example in Diamond and Lilienfeld (1962) a study involving
cancer of the cervix and lack of circumcision is presented, and it is suggested that
misclassification may produce an observed association between cancer of the cervix and

lack of circumcision, when in fact no such association exists.

It therefore seems reasonable to consider a design in which both types of measuring
devices can be used in the hope of reducing time and cost, while providing an accurate
estimate of the proportion of interest. One such application is in the medical field where
a relatively cheap but fallible procedure is an interview of a patient and an expensive
but infallible procedure may involve a physical examination and laboratory test.

Diamond and Lilienfeld (1962) discuss such a situation.

12



2.2 Effects of Misclassification

There are many practical problems when mistakes in classification are going to be
made. In some situations classifications involve almost no risk of error, for example,
classifications involving categories such as "lived" and "died". However many
classifications involve considerable risk of error. For example, in deciding whether
someone has a particular illness the misclassification rates could vary considerably

depending on the facilities available, experience of the doctor and other factors.

Even when exact methods of classification are available they may not be feasible due to
time and cost. This may then necessitate the use of cheaper and faster methods that are
subject to errors. Such procedures can lead to misclassification in several directions.
For example, in the electronics industry certain electrical components may be visually
inspected rather that laboratory tested. The principle advantage of visual inspection
would be its relatively high speed and low cost, but visual inspection in this case may
cause a true defect to be classified as a non-defect, and may cause a non-defect to be

classified as a defect.

It has been shown by Bross (1954) that, under misclassification, if the sample

proportion 3 1S used as an estimate of p, the resulting estimate of p is biased, with

the bias, being a function of the misclassification rate. (Here, n is the sample size and x

is the number of items classified as being in a particular category)

13
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2.3 The Double Sampling Scheme

In many situations there are both true and fallible measuring devices. The true
classifier is an expensive procedure which does not misclassify items, while the fallible
classifier is a relatively inexpensive procedure that tends to misclassify items.
Tenenbein (1970) proposed a two-stage procedure as a compromise between the two
extremes. A sample of size N was taken from the population of interest. A sub-sample
of size n was taken from the original sample of size N and classified by both the fallible
and true classifiers. The remaining (N-n) items were classified by the fallible classifier.
An estimate was obtained by combining the information from both of the samples using
asymptotic methods. The idea of the two-stage plan is to use sub-samples to provide
information on the accuracy of the fallible procedure. In this thesis a double sampling
scheme will be used along with Bayesian methods in order to obtain an estimate of the

number of nonconforming items in a lot.

2.4 Sampling Scheme Notation

The following notation will be used throughout this paper, and is also used in the

description of the sampling scheme (see Figure 2.1).

P, = proportion of nonconforming items

p, = probability of a conforming item being correctly identified

P, = probability of a nonconforming item being correctly identified

n = total number of items in the initial sample

n, = number of items in the initial sample classified as being conforming

n, = number of items in the initial sample classified as being nonconforming

14



y =number of nonconforming items in the initial sample
¥y, = number of nonconforming items in the initial sample classified as conforming
y, = number of nonconforming items in the initial sample classified as nonconforming

m, = total number of items in the sub-sample taken from n,

m, = total number of items in the sub-sample taken from n,
x; = number of items found to be nonconforming in m, by a perfect technique

X, = number of items confirmed to be nonconforming in m, by a perfect technique

SAMPLING SCHEME

CARLOT
po = proportion of nonconforming items

random initial sample

y
n-y TR
P P,
"conforming" (1-p,) (1-p,) "nonconforming"
] visual |
n-y, oY classification n,-Y, | Y,
random sub-sample random sub-sample
I fect I
-X X perfec -X X
. It classification 27 P2

Figure 2.1: Double Sampling Scheme
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A population contains a proportion p , of nonconforming items. An initial sample of

size 1 is taken from this population, and this sample contains y nonconfoiming items.

The sample is inspected and each item is classified into one of two categories, those

items thought to conform to standard, n ;> or those items thought not to conform to

standard, n,.

It is assumed that the inspection process is not perfect. Due to the effect of

misclassification the actual number of conforming items in the category thought to be

conforming is n,-y,, while the actual number of nonconforming items thought to be
nonconforming is ¥, and therefore, the number of conforming items thought to be
nonconforming is 1y Yy

The probability of a nonconforming item being correctly classified as nonconforming is

P,, and the probability of a conforming item being correctly classified as conforming is

p,- The probabilities of p, and p, are not necessarily equal to one another. It is

assumed that the probabilites of correct classification remain constant from item to item,

independent of the classification of the previous items.

Random sub-samples of size m, and m, are taken from the two categories of size n,
and n,, thought to be conforming and nonconforming items respectively. It is assumed
that a perfect technique of classification exists. The sub-samples of sizes m, and m,
are examined using this technique and the actual number of nonconforming items X,

and X,y obtained.

The values n, n,, 0y, m;, m,, X, and X, are observed directly whereas y, y ) and y, are

not observable. For example, a sample of n= 300 might be inspected and the number
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of conforming items observed to be n 1= 240 and the number of nonconforming items

observed to be n,= 60 items. Random sub-samples of size m,= 10 and m,= 10 may be

taken from the 240 conforming items and the 60 nonconforming items respectively.

Using a perfect technique to classify the items it may be found that 1 of the 10 sub-

samples from the conforming items was actually nonconforming, x,= 1, while the sub-

sample of size 10 taken from the nonconforming group may have found 8

nonconforming items, X,= 8, and m, - X,= 2 conforming items.

All of this information can now be combined with any prior information in order to

form inferences about p o
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CHAPTER 3
BAYESIAN ELEMENTS

3.1 Introduction

In Bayesian inference the parameter of interest is looked upon as a random variable
having a prior distribution, that reflect one's opinion or knowledge about the parameter
prior to the collection of the data. The main problem associated with Bayesian
inference is the subjective nature of the prior distribution. The Bayesian approach
consists of a mechanism which incorporates direct sample evidence with any prior
information that may be available to form a posterior distribution. Once the posterior
distribution of a parameter has been obtained, it can be used to produce estimates, or it

can be used to make probability statements about the parameter of interest.

3.2 Prior Distribution

Suppose that someone is interested in making inferences about a parameter p, and it is
assumed that p can take on any value from zero to one. Itis also assumed that this
information concerning p can be represented by a probability distribution, called the

prior distribution of p.

The prior distribution allows one to base inferences and decisions on all available
information. Often one may have some information about a parameter prior to taking a
sample. This information may be based on previous sample results but this is not
always the case. Rather, it may reflect the beliefs of the experimenter concerning the

true value of the parameter before any data is obtained, and in this case the prior
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distribution will be based on subjective probability. In this section we will use h(p) to

represent the prior density function for the parameter p.

Consider a Bernoulli process with parameter p, generating y = (V12 Y -5 Vo)

independent random variables and where the likelihood of the sample outcome is

n
I(p|y) =p* (1-p)"" where O<p<l, y,=Oorl, i=1,2,...,n andk=Y y

o1 h
To choose a prior h(p), a class of distributions is needed which lie in the interval O,1).

One class of distributions with this property is the beta family.
The probability density function for the beta distribution is given by

T'(r+s) 11 s-1
h(p)=mpr (1-p)

for O<p<1, where r>0 and s>0.

Using a beta prior with parameters r and s, denoted by B(r,s), one combines this with

the sample information to obtain the posterior density function forp ,

__ T'(ntr+s) k+r-1 n-k-+s-1
g(p , Y) = I‘(k+r) F(n—k+s) P (l'p)

2

for O<p<1.

This posterior distribution also happens to belong to the beta family. A family of priors
such that the posterior distribution also belongs to that family is known as a conjugate

family. The concept of conjugate priors will be discussed in a later section.
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The beta family provides a wide variety of shapes which can be used to approximate
many reasonable prior distributions. Suppose someone is interested in the proportion
p, of people with a rare disease in a particular city. To get information, a sample of
individuals from the city is taken. Some previous information about p in similar cities
of the country or previous beliefs about p may be expressed in the form of a prior. It
may be felt with certainty that p is near zero which can be obtained by taking r=0.5 and

§=9.5 in the B(r,s) distribution. If it is believed that p concentrates near a small number

such as 0.05 r and s can be chosen so that the mean is 0.05 and the variance is small,
such a value is B(6,114) . If p is of interest but no information or belief concerning p is
available, p may be taken to be uniformly distributed over (0,1) which corresponds to
the beta distribution with r=s=1. Graphs for the above mentioned beta distributions can

be seen in Figure 3.1.

T T T T T T T T ——r
a.2 0.3 0.4 0.5 9.8 0.7 0.8 0.9 1.0

BETA e B1.5:9.5  comecue 861,19 o BIG. 147

Figure 3.1: Examples of Beta Prior Density Functions
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3.3 Posterior Distribution
The prior distribution is combined with the likelihood function through Bayes theorem

to obtain the posterior distribution of the parameter(s) of interest. Given the observed

data y, the conditional distribution of the parameter of interest p is given by

Iply)h@)
[0 1) h(p) dp

gply) =

Here, g(p | y) and h(p) represent the posterior distribution and the prior distribution

respectively, while 1(p | y) represents the likelihood function.

Given the data y, I(p | y) is regarded as a function of p for fixed y. In terms of Bayes
theorem the likelihood is the function through which the data modifies prior knowledge
of p. The likelihood represents information about p coming from the data. The prior
and posterior distributions are proper density functions, that is, both are nonnegative

and integrate to one over the range of p.

3.4 _Conjugate Priors

Due to the subjective nature of prior distributions there are many distributions which
can be used to represent someone's prior beliefs. There are, however, some families of
distributions which may be more desirable than others. The derivation of the posterior
density function may be quite difficult to accomplish in practice, without the use of
numerical methods. This is particularly true if both the prior, h(p), and the likelihood,
I(p | y), do not have simple mathematical forms, making the integration in the

denominator difficult.
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In many problems there are families of prior distributions for which the determination
of the posterior distribution is made computationally easier. Such a famﬂy is referred to

as a conjugate family.

Three properties are desirable for conjugate families of distributions --

(1) analytic tractability, (2) richness, and (3) interpretability.

A prior distribution is analytically tractable if:
a) the posterior distribution is easy to determine given the prior
distribution and the likelihood function
b) the prior is a member of a family then the posterior distribution is also
a member of that family, and

C) expectations are easy to calculate.

The second property, richness, refers to the capability of expressing one's prior
information and beliefs. Such a conjugate family of distributions should include
distributions capable of different locations, dispersions and shapes. Finally, the third
property, interpretability, refers to the ability to parameterize the conjugate family ina
way that makes it easy to verify that a chosen prior agrees with the person's prior

information.

Suppose x is a binomial random variable with likelihood 1(p | x), and the prior

distribution is a beta distribution with parameters r and s, then

n-x
l(pIX)=(z)px(1-P) , x=0,1,2,...,n,
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and

I'(r+s)

h(p) = Wpﬂ (l-p)s'l, for O<p<l.

After applying Bayes theorem the posterior density function is given by

I'(n+r+s) x+1-1 a _p>n-x+s-1

gp|x) = Tr %) Taxrs) , for O<p<l,

which corresponds to a beta distribution with parameters x-+r and n-x+s.

When sampling from a binomial process the beta family satisfies the properties of a
conjugate family. Using the beta prior it is relatively easy to determine the posterior
distribution given the sample results, and the posterior distribution belongs to the same
family as the prior. Since the posterior distribution is a beta, the mean, variance and
other moments may easily be determined. By varying the parameters of the beta
distribution many shapes are possible, and therefore the property of richness is
satisfied. The final property involving the ability to interpret the prior also applies in
this example. The prior information can be interpreted as having roughly equivalent

information as that contained in the sample from the binomial process.

The form of a conjugate family depends on the form of the likelihood function. In
some cases no conjugate family may be found for the model, while in other cases it
may not be possible to find a member of the conjugate family which satisfies all three

properties.
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3.5 Upper and Lower Bounds

Situations may arise where an upper or lower bound on a parameter is desired. For
example, a market researcher may be concerned with the proportion, p; of a population
that will buy a new product. The researcher would be interested in how bad things may

be, that is, a lower bound for p.

The posterior distribution, g(p | y), may be used to construct lower and/or upper
bounds for a parameter of interest. A 100(1-&) % upper credibility bound for a
parameter, p, may be found by finding the value T, such that

Tu
({ g ly)dp=1-c.

Similarly a 100(1-c) % lower credibility bound for a proportion, p, may be found by
finding a value T, such that

Tl
({ glply)dp=a.

A two-sided 100(1-0t) % credibility interval involves the simultaneous specification of
both a lower probability bound, T,, and an upper probability bound Ty, such that the

probability of being between T, and T, is 100(1-0) % . For example, a two-sided 95%

credibility interval could be obtained by using the combination of a one-sided lower

97.5% credibility bound and a one-sided upper 97.5% credibility bound.

24



3.6 Sensitivity

Variation in the prior distribution will cause variation in the posterior distribution,
thereby possibly causing totally different inferences to be drawn. Therefore, it is of
interest to look at the effect on the posterior distribution by varying the prior
distribution. If variations in the prior distribution have little or no effect on the
posterior distribution, then we say that the posterior distribution is insensitive to
changes in the prior distribution. However, if slight changes in the prior distribution
have a large effect on the posterior distribution then it is said that the posterior
distribution is sensitive to changes in the prior distribution. In situations where the
posterior distribution is sensitive to the prior distribution it is vital that the experimenter

adopt a prior that accurately represents his judgement.

3.7 _Nuisance Parameters

In many problems, the underlying probability density function involves parameters in
which there is no interest, these parameters are called nuisance parameters. In the
Bayesian approach, inferences about the parameter of interest are based on the marginal
posterior distribution of this parameter. To obtain the marginal posterior distribution of
the parameter of interest we integrate the joint posterior distribution of the parameters

over the nuisance parameters.
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CHAPTER 4
THE SOLUTION

4.1 Introduction

Tenenbein (1970) used asymptotic methods in order to estimate the proportion of items
of interest in a population where the items are subject to misclassification. Often the
proportion of interest, p,, may be quite small, and together with small sub-sample
sizes, the use of asymptotic techniques based on normal theory are not always
appropriate. The use of Bayesian methods allows one to deal with the small sub-
sample sizes. It also allows one to deal with nuisance parameters and to incorporate
any previous information that one may have available concerning the parameters of

interest.

4.2 Sampling Distribution
From the sampling plan (see Figure 2.1) it can be seen that the random variables
N,, X, and X, are the only ones that may be observed. The probability distribution of

these random variables is conditional on the values of p,, p, and p,,.
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Lemmad.1:

P(N,=n,, X,=x), X,=x, | Po P}, p,) =

n! 1- 0-0,7Yy .- 1,
yzlyzz[(n-nz—yl)! 3, @y vyt PP TPo(l-py)

b

C(Y2?x2) C(nz_yZ’mz_xz) % C(ylle) C(n-nz_ylaml'xl) ]

,Yy '3
[(1-Po)(1-p)T ™ “Tpap,] ™ * C(n,,m,) Cln-ny,m,)

(4.2.1)

for x =0,1,2,...,m1; x2=0,1,2,...,m2;

n,=m,m-+1,...,n; n2=m2,m2+1,...,n;
¥y =X x+1,...,n1-ml+x1; y2=x2,x2+1,...,n2-m2+x2;

= M = . < <
D o+n, =05y +Y,=Y; and O__po,pl,pz__l.

Proof:
It is assumed that there is an ongoing stream of items which can be considered an
infinite population, that the probability of correctly classifying an item is independent of

the classification of another item and that the probabilities of correctly classifying items,

P, and p,, are constant for all items.
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Each item after classification from the initial sample can fall into one of four cells.

Therefore the joint distribution of N 1'Y1’ Yl, N2-Y2, and Y2 is multinomial with

observed values as shown below.

BOo oo v -

B O MmO HMHH®m®OH® A

true
classification
category 1 category 2
category 1 n-y, ¥ o,
category 2 n,-y, Y2 n,
n-y y n
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The associated cell probabilities are shown below.

true
classification
. C
1] category 1 category 2
o a
§ s
category 1

° s Y Wpo)py Po(1-p,) p, + (1-p,-P,)p,
¢ f
t i
i . category 2| (1-p,)(1-p,) PoD, (1-p,) - (1-p,-p,)P,
0 ;
not 1 1

i “Po Po

o ;

n
Therefore

P(Ny=n,, Ny=n,, Y =y,, Y=y, | po, P;> P,) =

n' nl-yl y1 nz'Yz y
~ 1- 1- 1-py)(1- o012,
@Yy, Gyl v, [-po)p ] Ipo(1-pl T(1-po)(1-pI ~ [poD,]

(4.2.2)

where n, = 0,1,2,..,n ; Yy = 0,12, .., n, ; n,+n,=n.
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The conditional distributions of the number of nonconforming items confirmed to be in

the sub-samples by the true classification technique are hypergeometric. Thus,

C(YZ,XZ) C(nz_yZamz"xz)

P(X2= X, | N2= n,, Y2= y2) =

C(n,,m,) ’
4.2.3)
and
C(ylaxl) C(n'nz'Y]_:ml'xl)
P(X1= X, | N1= n,, Y1= y) = C(n-nz,ml) .
4.2.4)

It follows that

P(Ny=ny, X=X, X;=%p, Y;=1> Y,=Y, | P> P;» P,) =
P(N,=n,, Ni=n,, Y,=y,, Y,=, | Po> P;> P,) * P(X,=x, | Ny=n,, Y,=y,)
* P(Xl=x1 |N1=n-n2,Y1=y1),

where the expressions on the right hand side are given in Equations (4.2.2), (4.2.3)

and (4.2.4). Since Y, and Y, are not observable the above probabilities are summed

overy, and y, in order to obtain P(N,=n,, X,=x,, X;=x, | p,, P, D,).
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4.3 Prior Distribution
Before the posterior distribution can be found, prior distributions need to be specified
for p,, p, and p,. In this thesis the solution developed assumes that the parameters for

Py P, and p , are independent. Beta priors were selected due to their ability to provide

a wide variety of shapes which can be used to approximate many prior distributions,

and because of their mathematical manageability. The assumption allows the joint

distribution of p,, p,and p, to be written as the product of three independent beta

distributions.
Therefore
h (Pe Py PY) =h () *h (p) *h(p)  for 0<p,p,p,<1
(4.3.1)
where
_T(@+by) a1 b-1
h (p,) = T(a,) Ty Po. (1-py)
I'(a, +b,) a-1 b,-1
hp)=—=——1=2"p ' (1-p,)
1 I'(a)) I‘(bl) 1 1
and
I‘(a2 + b2) a,1 b,-1

= — L 1-
h (p,) T(a,) T0,) p,” (I1-p,)

for constants 0 <a,, b,,, a, b1’ a,, b2 .

31



Although the beta family is fairly rich, a wider variety of distributional shapes can be
obtained by considering mixtures of beta distributions for the prior distributions of the
parameters p,, p;and p,. These distributions may in fact be more realistic than single
beta distributions. For example, items from a population may have come from several
different locations, and therefore p, may in fact vary because of location. The
information from the various locations can be combined into a single prior distribution.
The use of mixtures of beta distributions allows one the capability to have a number of
modes in the prior distributions for p,, p,and p,. Anexample of a bimodal distribution
is seen in Figure 4.1. Such mixtures are not considered in the thesis, but the work

could easily be extended to handle such mixtures.

Figure 4.1: An Example of a Bimodal Prior Density Function -- A Mixture of Betas
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4.4 Posterior Distribution
Lemma 4.2:

Using independent beta priors for p,,, p,and p,, and having observed the values of

N,, X, and X, the posterior density function of p,, g(p, | n,, X,, X,) is

1 0¥ Yp#be 1
(o-n,y +a -1l @)y, +b,-1)! (7,42,- 1) (y,+b-1)1 pJreaicrp )y 2

;;[ (n—yl—y2+al+b1-1)! (y1+y2+a2+b2-1)! (yz-xz)! (yl—xl)! (nz-yz-m2+x2)! (n-nz-y1~m1+x1)! !

O +y,+a-D! (n-y,-y,+bs-1)! (n—nz-y1+a1-1)! (m,-y,+b,-1)! (¥, +a,-1)! (y1+b2-1)!
f ]
;;L(ma(ﬁbo-l)! (n-yl—y2+a1+bx-1)! (y1+y2+a2+b2—1)! (n2-y2-m2+x2)! (n—nz—yl—m1+x1)! (yz-xz)! (yl-xl)!

(4.4.1)

for 0<p,<1;

where
x1=0,1,2,...,m1; x2=0,1,2,...,n12;

n,=m m1+1,...,n; n2=rr12,m2+1,...,n;

1 1’

y =X x+1,...,n1-m1+x1; y2=x2,x2+1,...,n2-m2+x2.

Proof:

The joint posterior of p,, p,and p, is

P(N2=n2’ X2=x2’ X1=X1 I pO’ pls p2) * h(po’plypz) ,

8(Po> P> Py I 1y X, X)) =
02 Pp» Py 1Ty, X5, Xy P(N2=n2,X2=x2,X1=X1)
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where P(N,=n,, X,=X,, X=X, | Po» Py p,) is given by (4.2.1), h(po,pl,pz) is given

by (4.3.1), and where the normalizing constant is given by

11
P(N2=n2’X2=x2’X1=X1) = J-J- P(N2=n2=X2=x2:X1=x1 ' poapl’pz) * h(Po’pl:pz) dp2 dp1 dpo
Therefore, it follows that the marginal posterior distribution for p,, is
11
8o |15, %5, X)) = [ [ 00s 21, 2y 115, %, %)) dp, dp,
00
and is given by (4.4.1).

The cumulative posterior distribution function is given by

G(po I n2; Xzs xl) =J. g(P l nz; xz, Xl) dp =
0

R
Y Yyl
(an,y, 2, (,79,4b,- 1! (y+2,-D)! (3,4, 1)'fp3”“‘Y2**’°1 1p" TEN g

Ey:; (@-y,-y,+a,+b, -1 (y,+y,+2,+b,-1)! (¥,- X! (¥~ )1 (n Yy my+X))! (00,05 -m, +x,)! ]

(yl+y2+a°-1)! (n-yl—y2+bo-1)! (n-nz—yl-r—al—l)! (nz-y2+b1-1)! (yz+a2-1)! (y1+b2-1)! ]
;Ey;[(n+ao+bo-l)! (n—yl-y2+a1+b1—1)! (y1+y2+a2+b2—1)! (nz-yz-m2+x2)! (n—nz—yl-mlq-xl)! (yz-xz)! (yl-xl)!
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Examples of a posterior distribution and a cumulative posterior distribution can be seen

in Figures 4.2 and 4.3.

POSTERIOR DENSITY FUNCTION
go(po|n2=45 , x1=0 ,x2=8), n=300, m:i=10, m2=10
Prior for p.=g(1,1), Prior for pi=g(1,1), Prior for pz=g(1,1)
POSTERIOR MEAN= 0.1702 , POSTERIOR STANDARD DEVIATION= 0.06254

! T T T T T T T T T 1
0.03 0.08 0.13 0.18 0.23 0.28 0.33 0.38 0.43 0.48 Q.51

Po

Figure 4.2: Posterior Density Function
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CUMULATIVE DISTRIBUTION FUNCTION
go(pelnz=45 , x1=0 ,x2=10), n=300, mi=10, m.=10
Prior for p.=8(1,1), Prior for pi=g(1,1), Prior for p2=g(1,1)
POSTERIOR MEAN= 0.19929 , POSTERIOR STANDARD DEVIATION= 0.06248

CDF VALUE
1.0

Po

Figure 4.2: Cumulative Posterior Distribution Function for p,,
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4.5 Credibility Bounds
Upper and lower credibility bounds for p, may be found by inverting the cumulative

posterior distribution. That is, an 100(1-ct)% upper credibility bound is found by
finding the value T, such that

Tu
G(p, Iny %, %)) = (I) g [0y x,x) dp= 10

and an 100(1-0t)% lower credibility bound is found by finding the value T, such that

T
1
G, 1m0 %)) =({ g iny %, x)dp=a.

For example, 97.5 % upper and lower bounds for the posterior distribution of Pos
8@, | 1y, X,, x,) with n=300, n,=45, m;=m,=10, %,=10, x;=x and with B(1,1)

priors for p,, p; and p, can be found in Table 4.1.

4.6 Sensitivity Analysis

It is of interest to look at the effect of varying the prior distribution on the posterior for

Po. For the parameters p, and p,, three priors are considered, $(1,1) -- representing
ignorance, $(20,1) -- representing quite good inspector accuracy, and B(100,1) --

representing nearly perfect inspector accuracy.
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X %2 | 97.5% lower bound| 97.5% upper bound
0 10 0.1161 0.3612
1 10 0.1425 0.4774
2 10 0.1763 0.5768
3 10 0.2190 - 0.6647
4 10 02711 0.7430
5 10 0.3327 0.8130
6 10 0.4040 0.8734
7 10 0.4860 0.9243
8 10 0.5808 0.9635
9 10 0.6940 0.9888
10 1 10 0.8378 0.9992

Table 4.1: 97.5% upper and lower bounds for g(p, | n,, Xy, X;) Wwith
n=300, n,=45, m,=m,=10, x,=10, x,=x and with 3(1,1) priors for p,, p; and p, .
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For the parameter p,,, three priors are also considered, B(1,1): -- representing
ignorance, 3(1.5,5) -- representing a unimodal prior density function with a mean at

0.23, and B(1,10) -- representing the feeling that the proportion of nonconforming

items is near zero.

Varying the prior distribution for p, does have an effect on both tail regions of the
posterior distribution for p, (Figures 4.4, 4.5 and 4.6). This effect seems to be slightly

more pronounced in the upper tail region.

As the prior for p, is varied, we see only a slight effect on the posterior distribution for
P, in the lower tail region and very little effect in the upper tail region (Figures 4.6, 4.7

and 4.8).

Varying the prior for p,, also results in some change to the posterior distribution for Po-

This effect can be seen in both tails of the posterior distribution, but seems be larger in

the upper tail region (Figures 4.9, 4.10 and 4.11).

As the number confirmed to be nonconforming decreases from X,= 10 to x,= 8 in the
sub-sample there is some increase in the effect of varying the prior p, on the posterior

distribution. This effect is not as noticeable when the priors for p, and p, are varied.

In the sensitivity analysis that follows only selected examples can be presented as there

are a number of quantities that can be varied. For selected samples we will consider the

effect of varying the priors for p,, p, and p,, on the posterior for p,, and at the same

time consider some variation in the proportion of items found to be misclassified.
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Figure 4.4: Effects of varying the prior for p, on the posterior for p, with some
confirmed misclassification, and where a priori p, and p, are uncertain.

g(p, | n,=45, x,=0, x,=8), n=300, m,=10 and m,=10

Prior for p,=B(1,1) and Prior for p1=[3(1,1) .

Po

BIl.i3  ewenees 8r100.11 ——— B120.11

BETA

Figure 4.5: Effects of varying the prior for P, on the posterior for p, with no

confirmed misclassification, and where a priori p, and p | are uncertain.
g(p, | n2=45, x1=0, x,=10), n=300, m1=10 and m,=10
Prior for p,=B(1,1) and Prior for p,=B(,1) .
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0.4 0.5 0.6 a.7

Figure 4.6: Effects of varying the priors for p, and p, on the posterior for p, with no
confirmed misclassification, and where a priori p, is near zero.

2P, | n,=45, x,=0, x,=10), n=300, m,=10 and m,=10

pdf 1: Priors; p,= (1,10), p= B(20,1) and p,=B(20,1)

pdf 2: Priors; p,= B(1,10), P= B(20,1) and p,=B(1,1)

pdf 3: Priors; po= B(1,10), p,;= B(1,1) and p,=B(20,1)

41



-
1
f
i
1
1i
| :
1
!
1
{
I
i

!
1
)
]
17

Q.0 0.1 8.2 |
Po
------- BE100,11  —emme 8120000

Figure 4.7: Effects of varying the prior for p ; on the posterior for p,, with some
confirmed misclassification, and where a priori p, and p, are uncertain.

g(p, [ n,=45, x,=0, x,=8), n=300, m,=10 and m,=10
Prior for p,=B(1,1) and Prior for p2=[3(1,1) .

°
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Figure 4.8: Effects of varying the prior for P, on the posterior for p, with no
confirmed misclassification, and where a priori p, and p, are uncertain

g(p, | n,=45, x,=0, x,=10), n=300, m1=10 and m,=10
Prior for p,=B(1,1) and Prior for p2=[3(1,1) .
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Figure 4.9: Effects of varying the prior for p, on the posterior for D, with some

confirmed misclassification, and where a priori p, and p, are uncertain.
g(Po | n,=45, x,=0, x,=8), n=300, m,=10 and m,=10
Prior for p,=B(1,1) and Prior for p,=B(L,1).
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Figure 4.10: Effects of varying the prior for p, on the posterior for p, with no

confirmed misclassification, and where a priori p, and p, are uncertain
g(po | n,=45, x,=0, x,=10), n=300, m,=10 and m,=10
Prior for p1=[3(1,1) and Prior for p2=B(1,1).
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Figure 4.11: Effects of varying the prior for p, on the posterior for P, With no
confirmed misclassification, and where a priori p, and p, are near one.

g, | n2=45, x1=0, x2=10), n=300, m1=10 and rr12=10

pdf 1: Priors; p,= B(1,1), P= B(20,1) and p2=B(20,1)

pdf 2: Priors; p,= B(1,10), p;= B(20,1) and P,=B(20,1)
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4.7 mparison of One-sided and Two-si mpling Plan

Neden (1986) uses a one-sided "confirmatory" sub-sampling plan, that is, at the second
stage of sampling a sub-sample is taken from either the "nonconforming" group or the
“conforming" group. The decision to draw a sample from the "nonconforming" or the
“conforming" group depends on the size of the "nonconforming" group at the initial
inspection stage. If the "nonconforming” group is large at the initial sampling stage,
the inspector may consider the lot to be unacceptable. In order to confirm that the lot

does contain an unacceptable number of nonconforming items, a sub-sample from the

“nonconforming" group can be taken in order to obtain a lower bound for p o Neden

assumed that p,=1, and because of this assumption no sub-sample was taken from the

group classified as conforming. This assumption provides a conservative result as any
misclassification of the nonconforming items would cause the lower bound to become

larger.

Similarly, if the "nonconforming" group is small at the initial sampling stage, the
inspector may make the decision that the lot is acceptable. One may want to confirm
that the lot is good by taking a sub-sample from the "conforming" group in order to
obtain a upper bound for p,. By assuming that no misclassification of conforming
items can take place, no sub-sample is taken from the "nonconforming" group. This

would again provide a conservative result as any misclassification of conforming items

would cause the estimated value of p, and the upper bound to become smaller.

Due to time and cost, it may only be possible to sample a fixed number of items. Ifa
point estimate for the proportion of nonconforming items was desired, samples would
need to be taken from both groups. However, if a point estimate is not desired but one

is interested in a lower bound, there are several ways in which samples may be
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allocated. All samples could be taken from the "nonconforming” group (one-sided
confirmatory sub-sample), or samples could be taken from both of the "cbnforrning"

and "nonconforming” groups (two-sided sub-sample).

It is of interest to compare the two-sided sampling scheme to the one-sided
confirmatory sampling scheme used by Neden (1986). From Figures 4.12 and 4.13
we see that when sub-samples of size 10 are taken from the "conforming" and
"nonconforming” groups with ignorance priors representing the parameters, there is a
large difference in the posterior distribution compared to the one-sided sampling plan

where a sub-sample of size 10 is taken only from the "nonconforming” group.

When the prior for P, is taken to represent almost perfect inspection in the two-sided

plan and when x, =0, there is little difference in the lower region for both sampling

plans. If the number of items found to be nonconforming, but initially classified as

conforming, increases from X, = 0to X, = 1, a difference in the lower region for both

sampling plans can be seen (Figures 4.14 and 4.15).

It is also of interest to compare the two-sided sampling plan with sub-samples each of

size 10, with the one-sided "confirmatory" sampling plan with a sub-sample of size 10

when an increase in the "nonconforming” group occurs. We see that when n, =45

there is little difference in the lower region of the posteriors, but when n, is increased to

100 the difference increases slightly (Figures 4.16, 4.17, 4.18 and 4.19).
In all the cases observed above, when the sub-sample size for the one-sided sampling

plan is increased to 20, there is a noticeable change in the lower region (Figures 4.15,

4.16, 4.17, 4.18 and 4.19).
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Figure 4.12: Effect of two-sided sampling versus one-sided confirmatory
sampling on the posterior for p, with some confirmed misclassification,

and where a priori p,, p, and p, are uncertain.
pdf 1: g(p, | n,=45, x,=0, x,=10), n=300, m, =10, m,=10, p,= P;=p,= B(1,1)
pdf 2: g(p, | n,=45, x=10), n=300, m=10, p,= p,= B(1,1) and p,= 1
pdf 3: g(p, | n,=45, x,=1, x,=10), n=300, m, =10, m,=10, Po= P;= P,= B(1,1)
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Figure 4.13:

Effect of two-sided sampling versus one-sided confirmatory
sampling on the posterior for p, with some confirmed misclassification,

and where a priori p,, p, and p, are uncertain.

pdf 1: g(p, | n,=45, x,=0, x,=8), n=300, m,=10, m,=10, Pe= p,= p,= B(1,1)

pdf 2: g(p,, | n,=45, x=8), n=300, m=10, p,= p,= B(1,1) and p,= 1

pdf 3: g(p, I n,=45, x,=1, x,=8), n=300, m,=10, m,=10, po=Pp,=p,= B(1,1)
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Figure 4.14: Effect of two-sided sampling versus one-sided confirmatory
sampling on the posterior for p, with some confirmed misclassification,

and where a priori p, and p, are uncertain, and p,, is near one.
pdf 1: g(p, | n,=45, x=8), n=300, m=10, Po= p,= B(1,1) and p,= 1
pdf 2: g(p, | n,=45, x,=0, x,=8), n=300, m, =10, m,=10, p,= p,= B(1,1), and
P,= B(100,1)
pdf 3: g(p, | n,=45, x,=1, x,=8), n=300, m, =10, m,=10, p,= p,= B(1,1), and
P,=B(100,1)
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Figure 4.15: Effect of two-sided sampling versus one-sided confirmatory
sampling on the posterior for p, with some confirmed misclassification,

and where a priori p, and p, are uncertain, and p,, is near one.
pdf 1: g(p, | ny=45, x=20), n=300, m=20, p,=p,= B(1,1) and p,= 1
pdf 2: g(p, | n,=45, x=10), n=300, m=10, p,= p,= B(1,1) and p,=1

pdf 3: g(p, | n,=45, x,=0, x,=10), n=300, m,=10, m,=10, p,=p,;= B(1,1), and
p,= B(100,1)

pdf4 g(po | n2=45, X1=1, X2=10), n=300, m1=10, m2=10, Po= p1= B(l,l), and
P,=B(100,1)
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Figure 4.16: Effect of two-sided sampling versus one-sided confirmatory
sampling on the posterior for p, with no confirmed misclassification,

and where a priori p, is uncertain, p, near one, and p, near one.

pdf 1: g(p, I n,=45, x,=0, x,=10), n=300, m,=10, m,=10, p,= B(1,1), p,= B(20,1)
and pP,= 3(100,1)

pdf 2: g(p, | n,=45, x=10), n=300, m=10, p,= B(1,1), p,= B(20,1) and p,= 1

pdf 3: g(p, ! n,=45, x=20), n=300, m=20, p,= B(1,1), P;= B(20,1) and p,=1
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Figure 4.17: Effect of two-sided sampling versus one-sided confirmatory
sampling on the posterior for p, with no confirmed misclassification,

and where a priori p, is uncertain, p, near one, and p, near one.

pdf 11 g(p, | n,=100, x,=0, x,=10), n=300, m =10, m,=10, po= B(L,1), p,= B(20,1)
and P= B(100,1)

pdf 2: g(p, | n,=100, x=10), n=300, m=10, Po= B(1,1), p;= B(20,1) and p,= 1
pdf 3: g(p, | n,=100, x=20), n=300, m=20, Po= B(1,1), p;= f(20,1) and p,= 1
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Figure 4.18: Effect of two-sided sampling versus one-sided confirmatory

sampling on the posterior for p, with no confirmed misclassification

k4
and where a priori p, is near zero, p, near one, and p, near one.

pdf 1: g(p, | n,=45, x,=0, x,=10), n=300, m, =10, m,=10, p_= f(1,10),
p,= B(20,1) and p,= B(100,1)

pdf2: g(p, ! n,=45, x=10), n=300, m=10, 1;o= B(1,10), p,= B(20,1) andp,=1

pdf3: g(p | n,=45, x=20), n=300, m=20, p,= B(1,10), p = B(20,1) and p,=
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Figure 4.19: Effect of two-sided sampling versus one-sided confirmatory
sampling on the posterior for p, with no confirmed misclassification,

and where a priori p,, is near zero, p, near one, and p, near one.
pdf 1: g(p, | n,=100, x,=0, x,=10), n=300, m,=10, m,=10, p,= B(1,10),
p,= B(20,1) and p,= B(100,1)
pdf 2: g(p, | n,=100, x=10), n=300, m=10, p,= B(1,10), p = B(20,1) and p,= 1

pdf 3: g(p, | n,=100, x=20), n=300, m=20, p,= B(1,10), = B(20,1) and p,= 1
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4.8 _Concluding Remarks

The posterior distribution developed in this thesis illustrates how a double sampling
scheme and prior information may be combined in order to obtain a distribution upon

which inferences about the proportion of interest may be based.

The one-sided "confirmatory" sampling plan of Neden and the two-sided sampling plan
developed in this thesis were compared under various situations. It was shown that
there are situations in which one sampling plan may be more appropriate than the other,
depending on the form of the inference to be drawn and on the prior information

concerning the misclassification rates.

Neden dealt with a one-sided "confirmatory" sub-sample, that is, at the second stage of
sampling, a sub-sample was taken from either the "nonconforming" group or the
“conforming" group -- the decision whether to draw a sample from the
"nonconforming" or the "conforming" group depending on the size of the

“nonconforming" group at the initial inspection stage. If the proportion of

nonconforming items, p,, in the lot was thought to be unacceptable at the initial
sampling stage, a lower bound was desired by Neden in order to confirm that Po Was
large. Neden assumed that no misclassification of nonconforming items could take
place and therefore no sub-sample was taken from the "conforming" category. This

assumption provides a conservative result, as any misclassification of the conforming

items causes the estimated value of p, and the lower bound to become larger. For
example, if at the inspection stage a large number of nonconforming items are found,
the inspector may conclude that the lot is unacceptable. One may then wish to confirm

that the lot does in fact contain an unacceptable number of nonconforming items. If this
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is the case, a sub-sample from the "nonconforming" group can be taken in order to

obtain a lower bound for the proportion of nonconforming items.

Similarly, if the "nonconforming" group is small at the initial sampling stage, the
inspector may make the decision that the lot is acceptable. One may then want to
confirm that the lot is good by taking a sub-sample from the "conforming" group in
order to obtain a upper bound for p,. By assuming that no misclassification of
conforming items can take place, no sub-sample need be taken from the
“nonconforming" category. This again provides a conservative result as any

misclassification of conforming items would cause the estimated value of p,, and the

upper bound to become smaller.

If some point estimate or two-sided interval estimate for the proportion of
nonconforming items is desired, sub-samples would have to be taken from both of the
visually inspected groups in order to see the effect of misclassification in both

directions.

If a point estimate is not required but one is interested only in a lower bound, then there
are several ways in which samples may be allocated. All samples could be taken from
the "nonconforming" group (one-sided confirmatory sub-sample), or samples could be
taken from both the "conforming" and "nonconforming" groups (two-sided sub-
sample). For example, the advantage and disadvantage of (i) taking sub-samples of
size 10 from each group, (ii) taking a sub-sample of size 10 only from the
"nonconforming” group, and (iii) taking a sub-sample of size 20 only from the

“nonconforming" group were examined in this thesis.
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If the distribution of p, is represented by an ignorance prior then (i) is preferred to (ii).

When sub-samples of size 10 are taken from the "conforming" and "nonéonforming"
groups, and compared to the one-sided sampling plan where a sub-sample of size 10 is
taken only from the "nonconforming" group, a large difference in the lower regions of
the posterior distributions is seen. In the situation where the prior distribution
concerning p,, is represented by ignorance, it would seem more appropriate to use the
two-sided sampling plan in order to assess the effect of misclassification in both

directions.

If a priori P, is near one then (i) and (ii) are approximately the same. It is hoped that

the probability of correctly classifying a nonconforming item would be near 1, and, if
prior distributions are used to reflect this information, little differerice in the lower
regions for the one-sided and two-sided sampling plans can be seen in many situations.
However, as the size of nonconforming items in the initial sample increases, the

difference becomes more pronounced. Moreover, if a priori P, is near one, then (iii) is

better than (ii).

If only an upper bound is required then analogous conclusions can be drawn, but with

P, replacing p,,.

If a one-sided "confirmatory" sampling plan is used on an ongoing basis, samples
should still be taken occasionally from each group in order to assess the

misclassification rates in both directions.
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