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ABSTRACT

It is desired to estimate the proportion of nonconforming items in a population and. to

place a nvo-sided bound on this proportion. Two measuring devices a¡e available to

classify the items -- one device (imperfect) is relatively inexpensive but tends to

misclassify items, while the second device (perfect) is an expensive procedure which

does not misclassify items. A double sa:npling plan is used to provide information on

the proportion of interest and on the effect of misclassification. Items in an initiat

sample are classified by the imperfect classifîer into two gïoups -- those thought to be

"nonconforming", and those thought to be "conforming". A sub-sample is taken from

each group, and these items a¡e reclassified by the perfect crassifier.

Bayesian methods are used to obtain a posterior distribution for the proportion of

nonconfonning items in the population, which may then be used to obtain a point

estimate and credibitity bounds. P¡ior distributions for the proportion of

nonconforrning items and the misclassification rates are modelled by independent beta

priors.

Neden (1986) also used a double sampling scheme and Bayesian merhods to obtain a

posterior distribution for the proportion of nonconforming items. However, she dealt

with a one-sided "confirmatory" subsampling plan, (that is, a subsample was taken

either from the "nonconforming" group or the "conforming" group, but not from both

groups) and she produced a conservative one-sided credibility bound- Tenenbein

(1970) also utilized a double sampling scheme, but his estimates and error bounds were

obtained using classical asymptotic methods. His methods are not appropriate in

situations commonly encountered in which the proportion of interest is quite small or in

which the subsample sizes a¡e small.



Economic considerations may necessitate that one choose berween the one-sided

"confirrnatory" sampling plan of Neden, and the nvo-sided sa:npling plan considered

here. That is, for a fixed sample size, this choice rnay be betrveen taking all of the

samples from one group or taking some from each group. It is shown that there are

situations in which one sampling plan may be more appropriate than the other,

depending on the form of the inferences to be drawn and on the prior information

concerning the misclassification rates.
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CFIAPTER 1

INTRODUCTION AND SUMMARY

Taking a sample of items from a popuiation, it is desired to estimate the proportion of

items which have a certain characteristic and to place a one-sided or nvo-sided bound

on this proportion. Two measuring devices are available to classify the items -- one

device (fallible) is reiatively inexpensive but tends to misclassiÛ iæms, while the

second device (infallible) is an expensive procedure which does not misclassiff items.

Facton such as time and cost make it unreasonable to classif all the sample items by

the infallible procedure. In the hope of reducing time and cost while provid.ing an

accxßate estimaæ of the proportion of interest, it seems reasonable to consider a design

which will incorporate both rypes of measuring devices.

A double sampling scheme may be used to provide information on the proportion of

inærest and on the effect of misclassification. At the first stage a random sample of

items is taken from a lot and classified by the fallible procedure into one of two

caægories -- those thought to be conforming and those thought to be nonconforming.

At this stage some of the items may be misclassified. For example, category 1 may

contain both conforming and nonconforming items when in reality it was to contain

only conforming items. Similarly, category 2 may also contain items from both groups

when in fact it should only contain nonconforming iæms. Due to the fact that some

iûems at this stage may be misclassified a second stage sub-sample is taken from both

categories. The iæms taken at this second stage are then classified by the infallible



procedure. The idea of the two-stage sampling plan is to use the sub-samples to

provide information on the accuracy of the fallible procedwe.

In this thesis, Bayesian theory is used to find a solution. The Bayesian approach

allows one to combine direct sample evidence with any prior information that may be

available to form a posterior distribution for the proporrion of interest.

In our case, three parameters are involved: po, which is the proportion of

nonconforming items in the lot, p' which is the probability of a conforming item being

correctly identified at the initial sampling stage, 
^6p2, 

which is the probability of a

nonconforming iæm being correctly identified at the initiat sampling stage.

Bayesian methods allow one to combine information obtained from the double

sampling scheme with the joint prior distribution for po, p, and p, to form a joint

posterior distribution of po, p, and pr.

Bayesian methods also allow for the handling of the nuisance parameters p, and pr.

Inference on the parameter of interesg po, is based on its marginal posterior

distribution. This marginal posterior distribution is obtained by integrating the joint
posterior distribution of po, p, and p, over the nuisance parameters p, and pr. The

marginal posterior distribution of p, or prcan be obtained in a simila¡ manner.

Bayesian methods require that prior distributions be specified for all of the parameters

involved. When the prior information consists of previous sample evidence, the choice

of a prior distribution may be immediate. If this is not the case, the decision maker can



quantify his judgement with regards to the par¿rmeters of interest and form a subjective

prior distribution.

Since the úesting of iæms by an infallible method to determine it's correct classification

may be expensive, it is desirable to incorporate any previous datarhatmay be available.

Information on the proportion of nonconforming iæms in previous lot shipments,

information on the proportion of conforming iæms correctly classifred. by the inspection

process, or information on the proportion of nonconforming iæms correctly classified

by the inspection process may be available. If the process appears fairly stable, then it

seems that this knowledge from previous sampies should be utilized. in the solution.

For this particular solution, knowledge about ps, p1 
^6pzwi1l 

be modelled by

independent bet¿ priors. The use of independent beta distibutions for the priors greatly

simplifies the calculation of the posærior distribution. The use of beta distributions also

provides us with a wide variety of shapes which can be used to approxjmate many

reasonable prior distributions.

The motivation for this thesis was based on a probiem that arose in the grain industry.

A boxcar may contain two varieties of wheat: variety 1, which conforms to grading

standards, and variety 2, which does not. If the proportion of nonconforming kernels

is thought to exceed some specifîed value the carlot is down graded and the shipper is

paid less.

The two varieties of wheat may be quite similar in appearance making correct visual

identification difficult. Because of this, some kemels of wheat may be misclassified.

Misclassifi.cation can occur in either direction: avanety 1 kernel may be classified as



variety 2, or a variety 2 kernel may be classified as variety 1. Laboratory techniques

that provide exact identification of the kernels are available, but this proced.ure is very

costly and therefore only a small number of kernels can be classified by this procedure.

For example, a grain inspector may visually inspect a sample of 300 kemels and. decide

that 255 kernels are "conforming" and 45 kernels are "nonconforming". A sample of

10 kemels is t¿ken from the 255 kernels thought to be "conforming" and a second

sample of 10 kernels is also taken from the 45 kernels thought to be "nonconforming".

These sub-samples are then classified by the laboratory technique in order to determine

the correct classification. The laboratory analysis may have found 8 out of the 10

kernels taken from the "nonconforming" pile to be nonconforming and 10 out of the 10

kernels taken from the "conforming" pile to be conforming. The sampling scheme for

this example can be seen in Figure 1.1. The problem is to combine all of this

information in order to form inferences about po.

In this case, suitable betapriordistributions may consist of: B(1,10) forpo, B(t,t; for

P, and P(20,1) for P" The prior for po represents the feeling that the proportion of

nonconforming kernels in the carlot is small. The prior for p, represents a state of

"ignorance" about the probabitity of a conforming kernel being correctly identified, and.

the prior for Prrepresents the feeling that the probability of correctly identifying a

nonconforming kemel as nonconforming is very good. These prior distributions can

be seen in Figure 1.2.

After combining the joint prior distribution for po, p, and p, with the sample evidence,

and integrating wittr respect to P, and P, we obtain the posærior distribution for po in

Figure 1.3. The mean of the posterior distribution provides a point estimate of po, and

4



the posterior distribution can also used to provide a one-sided or two-sided bound for
Po. h this case, a point estimate for po would be 74.37Vo and,a95Vo credibility interval

would be 9-76Vo'po S 19.24Vo. The mathematical form of the posterior distribution

can be found in Section 4.4.

" conforming nonconforming "

SAMPLING SCFIEME

CARI.,OT

po: proportion of nonconforming iæms

random initial sample

ing "

conforming I nonconforming 300 kernels

P2

L-p) (l-pr)
tt 

r:

255
visual

classification 45

ra.lrdom
of 10

ub-sample random sub-s
kernels- of 10 kern

amr
els

8
no

,le

10 out of 10
conforming

perfect
classification

out of 10
nconforming

Figure 1.1: Sampling Scheme
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Figure 1.3: Posterior Density Function for po



Since varying the prior distributions will cause the posterior distribution to vary, it is of

interest to see how sensitive the posúerior distribution is to variations in the prior

distributions. A look at the sensitivity of the posterior distribution can be found in

Section 4.6.

In the grain indusüry a shipper is paid according to the proportion of kemels not

meeting grading standards. It is therefore of interest to see if the proportion of

nonconforming items po, exceeds some critical value, Say p*, and hence to test the

following hypotheses:

Ho: po I p*

Ht:Po>P*'

Credibility bounds permit the testing (in a Bayesian sense) of such hypotheses. If a
lower bound for po is found to be greater than p*, then the null hypothesis would be

rejected in favor of the alternative.

Similarly, if the hypotheses to be æsæd is:

Hol Po ) P*

Hrrpo(p*,

an upper bound for po can be found and used to test this hypotheses. If the upper

bound is found to be less than p*, then the null hypothesis would be rejecæd in favor

of the alternative.

The work in this thesis is closely related to that of Neden (1986). Neden also used a

double sampling scheme and Bayesian methods to obtain a posterior distribution for

Po. However, Neden deatt with a one-sided "confirmatory" sub-sample, that is, at the

second stage of sampling, a sub-sample was taken f¡om either the "nonconforming"



group or the "conforming" group, -- the decision whether to draw a sample from the

"nonconforming" or the "conforming" group depending on the size of the

"nonconforming" group at the initial inspection stage. For exampie, if at the inspection

stage a large number of nonconforming items are found, the inspector may conclude

that the lot is unacceptable. One may then want to confirm that the lot does in fact

contain an unaccept¿ble number of nonconforming items. If this is the case, a sub-

sample from the "nonconforming" group can be taken in order to obtain a lower bound

for the proportion of nonconforming items.

Neden used a one-sided "confirmatory" sub-sampling plan in order to confrrm

if po s p* or po > p*. If the proportion of nonconforming items, po, h the lot was

thought to be unacceptable at the initial sampling stage, a lower bound was desired by

Neden in order to confirm that po was large. Neden assumed that no misclassification

of nonconforming items could take place and therefore no sub-sample was taken from

the "conforming" category. This assumption provides a conservative resuit, as any

misclassification of the conforming iæms would cause the estimaæd value of po and. the

lower bound to become larger. Therefore, if Ho can be rejected under the assumption

that no misciassification of nonconforming items can take place, it will also be rejected

if misclassification of the nonconforming items can take place.

Similarly, if the "nonconforming" group is small at the initial sampling stage, the

inspector may make the decision that the lot is accept¿ble. One may want to confirm

that the lot is good by taking a sub-sample from the "conforming" group in order to

obtain a upper bound for po. By assuming that no misclassifrcation of conforming

items can take place, no sub-sample is taken from the "nonconforming" category. This

9



would provide a conseryative result as a¡y misciassification of conforming items would

cause the estimaæd value of po and the upper bound to become smaller.

If some point estimaúe or two-sided interval estimaæ for the proportion of

nonconforming items was desired, sub-samples would have to be taken from both of

the visually inspected category 1 and caægory 2 groups (two-sided sub-sampling plan)

in order to see the effect of misclassification in both directions. This thesis wül

compare the above two-sided sub-sampling ptan with ttre one-sided "conflrmatory"

sampling plan used by Neden.

If a point estimate is not desired but one is interested in a lower bound there are several

ways in which samples may be allocated- All samples could be t¿ken from the

"nonconforming" category (one-sided confirmatory sub-sample), or samples could be

taken from both of the "conforming" and "nonconforming" categories (rwo-sided sub-

sample).

In reality it is hoped that the probability of correctly classifying a conforming or

nonconforming item be near 1. If prior distributions a¡e used to reflect this

information, there are situations where little difference in the lowerregions for the one-

sided and two-sided sampling plans can be seen. For example, such a situation a¡ises

when sub-samples of size 10 are taken from both categories. Similarly, there are

situations where a difference in the lower region between the two sampling schemes

can be seen.

If one is interested only in obtaining a lower bound" and resources permit that only 20

sub-samples may be taken, it seems that the one-sided "confirmatory" sampling plan

10



with 20 samples taken from the "nonconforming" category may be more appropriate

than the two-sided sampling plan with samples of size 10 taken from each c at1gory

since it provides a higher lower bound-

Comparisons between the one-sided and two-sided sampling schemes on the lower tail

region of the posterior distribution can be found in Section 4.7.

Tenenbein (1970),Diamond andLilienfeld(1962) andDeming (1977) also considered

designs which incorporated both fallible and infallible measuring devices. To estimate

the proportion of items belonging to one of two possible categories, Tenenbein (Ig70)

presented a double sampling scheme similar to that in this thesis. However, his

estimates were obtained using asymptotic methods. Often the proportion of interest

may be quite small, and together with small sub-samples, the use of asymptotic

techniques based on normal theory do not seem appropriate. Ttre use of Bayesian

methods allows one to deal with the small sub-sample sizes. It will also allow us to

deal with nuisance parameters and to incorporate any previous information that we may

have available concerning the parameters of interest.

11



CIIAPTER 2

THEPROBLEM

2.1 The General Problem

It is desired to estimate a proportion, p, of items which have a cerûain characæristic and

to place a one-sided or two-sided bound on this proportion. Two measuring devices

are available to classify the items -- one device is relativeþ inexpensive but tends to

misclassify items, while the second device is an expensive proced.ure which does not

misclassify items.

Due to factors such as time and cost it is unreasonable to classify all the sample items

by the expensive procedure. If however the items are only classified. by the cheaper

procedure which tend to misclassify items, then we run the risk of inaccurate estimates

and inferences. For example in Diamond and Lilienfeld, (1962) a study involving

cancer of the cervix and lack of circumcision is presented, and it is suggested that

misclassiñcation may produce an observed association between cancer of the cervix and

lack of circumcision, when in fact no such association exists.

It therefore seems reasonable to consider a design in which both types of measuring

devices can be used in the hope of reducing time and cos! while providing an accurate

estimate of the proportion of interesl One such application is in the medical field where

a relatively cheap but fallibie procedure is an interview of a patient and an expensive

but infallible procedure may involve a physical examination and laboratory test.

Diamond and Lilienfeld (1962) discuss such a siruarion.

L2



2.2 Effects of Misclassification

There are many practicai problems when mistakes in classification a¡e going to be

made. In some situations classifications involve almost no risk of error, for example,

classifications involving caægories such as "lived" and "died". However many

classifications involve considerable risk of error. For example, in decid.ing whether

someone has a particular illness the misclassification rates could vary considerably

depending on the facilities available, experience of the doctor and other facton.

Even when exact methods of classification are available they may not be feasible due to

time and cost. This may then necessitate the use of cheaper and faster methods that are

subject to errors. Such procedures can lead to misclassification in several directions.

For example, in the elecüonics indusûry certain electrical components may be visually

inspectedrather that laboratory æsæd- The principle advantage of visual inspection

would be its relatively high speed and low cost, but visual inspection in this case may

cause a true defect to be classifred as a non-defec! and may cause a non-defect to be

classified as a defect

It has been shown by Bross (1954) that, under misclassification, if the sample

proportion fi is usea as an estimate of p, the resulting estimate of p is biased, with

the bias, being a function of the misclassification rate. (Ilere, n is the sample size and x

is the number of iæms classified as being in a particular category)

13



2.3 The Double Sampling Scheme

In many situations there are both true and faltible measuring devices. The true

classifier is an expensive procedure which does not misclassify items, while the fallible

classifier is a relatively inexpensive procedure that tends to misclassiry iûems.

Tenenbein (1970) proposed a two-stego procedure as a compromise between the two

extemes. A sample of size N was taken from the population of interest. A sub-sample

of size n was taken from the original sample of size N and classified by both the fallible

and true classifiers. The remaining (f{-n) items were classified by the fallible classifier.

An estimate was obtained by combining the information from both of the samples using

asymptotic methods. The idea of the two.stage plan is to use sub-samples to provide

information on the accuracy of the fallible procedure. In this thesis a double sampling

scheme will be used along with Bayesian methods in order to obtain an estimaûe of the

number of nonconforming items in a lot.

2.4 Samnling Scheme Notation

The following notation will be used throughout this paper, and is also used in the

description of the sampling scheme (see Figure 2.1).

po = proportion of nonconforming ítems

p1 = probability of a conforming item being correctiy identified

p2 = probability of a nonconforming iæm being correctly identified

n = total number of items in the initial sample

û1 = Dumber of items in the initial sample classified as being conforming

û2 = Dumber of iæms in the initial sample classified as being nonconforming

L4



y = number of nonconforming items in the initial sample

Yr = number of nonconforming items in the initial sample classified as conforming

Yz = number of nonconforming iæms in the initial sample classified as nonconforming

flr = tot¿l number of items in the sub-sample taken from n,

mz : total number of items in the sub-sample taken from n,

xl : rumber of items found to be nonconforming in m, by aperfenttechnique

x2 = rümber of iæms confirmed to be nonconforming in rn, by aperfect technique

SAMPLING SCIIEME

CARLOT

po = proportion of nonconforming items

random initial sample

P1

ing"

n-y , Y

r-p) (1-Pr

sub-sa

P2

ttnor

n1 -Y1 Y1

visual
classification

I

nz-Yz 
I

Y2

random ;ub-sampie randon mple

In\-xr I *r perfect
classification

Ifnr-xr, x,

"conformin nonconforming"

Figure 2.1: Double Sampling Scheme
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A population contains a proportion po of nonconforming iæms. An initial sample of

size n is taken from this population, and this sample contains y nonconformjng items.

The sample is inspected and each item is classified into one of two categories, those

items thought to conform to standard, nl, or those items thought not to conform to

standard, nr.

It is assumed that the inspection process is not perfect. Due to the effect of

misclassification the actual number of conforming iæms in the category thought to be

conforming is nr- Y1, while the actual number of nonconforming items thought to be

nonconformingisyz, and therefore, the number of conforming iæms thought to be

nonconforming is nr- y2.

The probability of a nonconforming iæm being correctly classified as nonconforming is

P2, ao'rd the probability of a conforming iæm being correctly classified as conforming is

p1. The probabilities of p, 
^dpzare 

not necessarily equal to one another. It is

assumed that the probabiliæs of correct classifi.cation rem¿in constant from item to item,

independent of the classif,rcation of the previous items.

Random sub-samples of size m, and mzaÍetaken from the two categories of size n,

andnrthought to be conforming andnonconforming items respectively. Itis assumed

that a perfect technique of classification exists. The sub-samples of sizes m, and m,

are examined using this technique and the actual number of nonconforming iæms x,

and x, obtained.

The values tt, Itlr î2, frr, mz, xt andxra¡e observed directly whereas y, y, and yz*

not observable. For example, a sample of n: 300 might be inspected and the number
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of conforming items observed to be nr= 240 andthe number of nonconforming iæms

observed to be nr:60 items. Random sub-samples of size mt= 10 and n5= 10 may be

taken from the 240 conforming items and the 60 nonconforming iæms respectively.

Using a perfect technique to classify the iæms it may be found that 1 of the 10 sub-

samples from the conforming items was actualry nonconforming, X1= l, while the sub-

sample of size 10 taken from the nonconforming group may have found g

nonconforming items, xz= 8, rttd tn2 - xz= 2 conforming items.

All of this information can now be combined with any prior information in order to

form inferences about po.
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CI{APTER 3

BAYESIAN ELEMENTS

3.1 Introduction

In Bayesian inference the parameter of inærest is looked upon as a random variable

having a prior distribution, that reflect one's opinion or knowledge about the parameter

prior to the collection of the data. The main problem associated with Bayesian

inference is the subjective nature of the prior distribution. The Bayesian approach

consists of a mechanism which incorporates direct sample evidence with any prior

information that may be available to form a posterior distibution. Once the posterior

distribution of a parameter has been obtained" it can be used. to produce estimates, or it

can be used to make probabitity statements about the parameter of interest.

3.2 PriorDistribution

Suppose that someone is inæresæd in making inferences about a parameterp, and it is

assumed that p can take on any value from zero to one. It is also assumed. that this

information concerning p can be repnesented by a probability distribution, called the

prior distribution of p.

The prior distribution allows one to base inferences and decisions on all available

information. Often one may have some information about apara:irretüprior to taking a

sample. This information may be based on previous sample results but this is not

aiways the case. Rather, it may reflect the beliefs of the experimenter conceming the

true value of the parameter before any data is obtained, and in this case the prior
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distribution will be based on subjective probabiJity. h this section we will use h(p) to

represent the prior density function for the parameter p.

Consider a Bernouili process with parameter p, generating y = (yr, !2, . .. , yo)

independent random variables and where the likelihood of the sample outcome is

l(ply)=pk(l-p)"-k where0<p<1, yi=0or 1, i:1,2,.. .,n andk= Ë r,.
i=l I

To choose a prior h(p), a class of distributions is needed which lie in the inærval (0,1).

One class of distributions with this property is the beta family.

The probability density function for the beta distribution is given by

h(p):ffir"t (l-p)'-t ,

for 0<p<1, where >0 and s>0.

Using abetaprior with par¿tmeters r and s, denoted by B(r,s), one combines this with

the sample information to obtain the posterior density function for p ,

e(p ly) = r#ffi*rÐ nk+r-l (r-p)n-k*'-l ,

for 0<p<1.

This posterior distribution also happens to belong to the beta family. A family of priors

such that the posterior distribution also belongs to that family is known as a conjugate

family. The concept of conjugate priors witl be discussed in a later section.
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The beta family provides a wide variety of shapes which can be used to approximate

many reasonable prior distributions. Suppose someone is inæresæd in the proportion

p, of people with a rare disease in a particular city. To get information, a sample of

individuals from the city is taken. Some previous information about p in similar cities

of the country or previous beliefs about p may be expressed in the form of a prior. It

may be felt with certainty that p is nea¡ zero which can be obtained. by taking r:0.5 and

s=9.5 in the 0(r,s) distribution. If it is believed that p concentrates near a small number

such as 0.05 r and s can be chosen so that the mean is 0.05 and the variance is small,

such a value is B(6,114) . If p is of interest but no information or belief concerning p is

available, p may be taken to be uniformly distributed over (0,1) which coresponds to

the beta distribution with r=s=l. Graphs for the above mentioned beta distributions can

be seen in Figure 3.1.

Figure 3.1: Examples of Beta PriorDensity Functions
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3.3 PosteriorDistribution

The prior distribution is combined with the likelihood function through Bayes rheorem

to obtain the posærior distribution of the parameter(s) of inærest. Given the observed

datay, the conditional distribution of the parameter of interest p is given by

g(p ly) =
l(p ly) h(p)

J tCp t vl h(p) dp

Here, g(p I y) and hþ) represent the posterior distribution and the prior distribution

respectively, while l(p lV) represents the likelihood function.

Given the data y, l(p I y) is regarded as a function of p for fixed y. In terms of Bayes

theorem the likelihood is the frurction through which the data modiJies prior knowledge

of p. The likelihoodrepresents information aboutp coming from the daø. The prior

and posterior distributions are proper density functions, that is, both are nonnegative

and integrate to one over the range of p.

3.4 Conjugate Priors

Due to the subjective nature of prior disributions there are numy distributions which

can be used to represent someone's prior beliefs. There are, however, some families of

distributions which may be more desirable than others. The derivation of the posterior

density function may be quite difficult to accomplish in practice, without the use of

numerical methods. This is particularly true if both the prior, hþ), and the likelihood,

l(p I y), do not have simple mathematical forms, making the integration in the

denominator difficult.
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In many problems there are families of prior dishibutions for which the deærmination

of the posterior distribution is made computationally easier. Such a family is referred to

as a conjugate family.

Three properties are desirable for conjugate families of distributions --

(1) analytic ûactabiliry, (2) richness, and (3) inærpretability.

A prior distribution is analytically fractable if:

a) the posterior distribution is easy to determine given the prior

distribution and the likelihood fi.rnction

b) the prior is a member of a family then the posterior distribution is also

a member of that family, and

c) expectations are easy to caiculate.

The second propery, richness, refers to the capability of expressing one's prior

information and beliefs. Such a conjugate family of distributions should include

distributions capable of different locations, dispersions and shapes. Finally, the third

properry, inteqpretability, refers to the ability to parameterize the conjugate famüy in a

way that makes it easy to verify that a chosen prior agrees with the person's prior

information.

suppose x is a binomiai random variable with likelihood tþ | x), and the prior

distibution is a beta distribution with parameters r and s, then

l(p lx) = (T) p* (l-p)n-* , x=0, r,z, .. . , n,
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and

h(p) : ffit'-t (l-p)t-t, for ocp<l.

After appiying Bayes theorem the posterior density function is given by

g(p lx) : *ffio, nx+r-l (1-p)o-**'-t, for 0<p.1,

which corresponds to a beta distribution with parameters x+r and n-x+s.

When sampling from a binomial process the beta family satisfies the properties of a

conjugate family. Using the beta prior it is relatively easy to determine the posterio Í
distribution given the sample results, and the posterior distribution belongs to the same

family as the prior. Since the posterior distribution is a beta, the mean, variance and

other moments may easily be determined. By varying the parameten of the beta

distribution many shapes are possible, and therefore the property of richness is

satisfied- The finai property involving the ability to interpret the prior also applies in

this example. The prior information can be inærpreted as having roughly equivalent

information as that contained in the sample from the binomial process.

The form of a conjugate family depends on the form of the likeähood function. In

some cases no conjugate family may be found for the model, whle in other cases it

may not be possible to find a member of the conjugate family which satisfies ali three

properties.
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3.5 Upper and Lower Bounds

Situations may arise where an upper or iower bound on a parameter is desired. For

example, a market researcher may be concerned with the proportion, p, of a population

that wiil buy a new product The resea¡cher would be interested in how bad. things may

be, that is, a lower bound for p.

The posterior distribution, g(p I y), may be used to construct lower and/or upper

bounds for a parameter of interest. A 100(1-u) Vo upper credibility bound for a

parameter, p, may be found by finding the value To such that

Tu

J e(p ly) dp = 1-q.
0

Simäarly a 100(1-ø) vo Iower credibility bound for a proportion, p, may be found. by

frnding a value \ such that

T,

J g(p ly) dp: cr.
0

A two-sided 100(1-a) Vo credtbiliry interval involves the simult¿neous specification of
both a lower probability bound, T' and an upper probability bound Tu, such that the

probability of being between T, and \ is 100(1-u) vo. For example, atuto-sidedg1vo

credibility interval couid be obtained by using the combination of a one-sided lower

97.5vo credibility bound and a one-sided upper 97.Svo credibility bound.
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3.6 Sensitivitv

Variation in the prior distribution will cause variation in the posúerior distribution,

thereby possibly causing totalty different inferences to be d.rawn. Therefore, it is of

interest to look at the effect on the posterior distribution by varying the prior

distribution. If variations in the prior distribution have little or no effect on the

posterior distribution, then we say that the posterior distribution is insensitive to

changes in the prior distribution. However, if slight changes in the prior distribution

have a large effect on the posterior distribution then it is said ttrat the posterior

distribution is sensitive to changes in the prior distribution. In situations where the

posterior distribution is sensitive to the prior distribution it is vital that the experimenter

adopt a prior that accurately represents his judgement

3.7 Nuisance Parameters

In many problems, the underþing probability density function involves parameters in

which there is no interest, these parameters are called nuisance parameters. In the

Bayesian approach, inferences about the parameær of interest are based on the marginai

posterior distribution of this parameter. To obtain the marginal posterior distribution of

the parameter of interest we integrate the joint posterior distribution of the parameters

over the nuisance parameters.
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CHAPTER 4

TT{E SOLUTTON

4.1 Introduction

Tenenbein (1970) used asymptotic methods in order to estimaæ the proporrion of items

of interest in a population where the items are subject to misclassification. Ofæn the

proportion of interest, ps, mây be quiæ small, and together with small sub-sample

sizes, the use of asymptotic techniques based on normal theory are not always

appropriate. The use of Bayesian methods allows one to deal with the small sub-

sample sizes. It also ailows one to deat with nuisance parameten and to incorporate

any previous information that one may have available concerning the parameters of

interest.

4.2 Sampling Distribution

From the sampling plan (see Figure 2.1) itcan be seen that the random variables

N, X, and X, a¡e the only ones that may be observed. The probability distribution of

these random variables is conditional on the values of pe, p1 and pr.
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Lemma 4.1:

P(Nr=n2, Xr=x, X1:xt lpo, p1, pz) =

Ð 
t ffi [(1-PJPr] 

-o'-t'[no('- 
Pr)Y' *

n¡-Yt . 
-n 

.tY, * C(yr,\) C(nr-y,mr-xr) * C(y'xr) C(n-nr-y'mr-*r) .,[(1-poX1-pr)l 
- "llonrL ----cr(nz,^z) 

ffiJ,

(4.2.r)

for xl =0,L,2,...,ffil ; xz:0, 1,2,...,rnr;
n, = Ítrr mr+l.,..., ft ; nZ- m2,mr+7,..., û i

Yl =xl, xr+1,...,trl- m1+xl i yz= x,xr*7,. ..,flz- mz+ x2;

n, *n,=n i yr+yr:y i and 0<ps,p1,pZíl.

Proof:

It is assumed that there is an ongoing stream of iæms which can be considered an

infinite population, that the probability of correctly classifing an item is independent of

the classification of another iæm and that the probabiJities of correctly classi$ing items,

p, and p2, ãÍa constant for all iæms.
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Each item afær classification from the initial sample can fall into one of four cells.

Thereforethe jointdistributionof Nr-Y¡ yl, N2-y2,and,yrismultinomialwith

observed values as shown below-

true

classification

.c1l
na
SS
Psei
cf
!i1c
oa
nt

i
o
n

category 7 category 2

category I n1 -Y1 Y1 nl

category 2 nz- Yz Y2 n2

n-y v n
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The associated cell probabilities are shown below.

true

classification

.c1l
na
ss
Psei
cf
li1c
oa
nt

i
o
n

Therefore

P(Nr=n7 Nr=ry Yt=yl, Yz=yzlpo, pt, pz) =

n!
[ ( 1 -p")pr] t-t' [po( 1 -pr)]v' I( i -pox 1 -pr)lot-t'[ p op 2Jv 

r,

(4.2.2)

(nr-1,)! vl.(y-v)t vr!

where A2 = 0, 1,2, ...., n . y2= 0, I,2,....,frz ; nt + 1z=fl

29
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category 1 (1-po)pr po(1-pz) P1 + (l-Pt-P2)Po

category 2 (1-poX1-pr) PoP2 (1-pr) - (l-pr-pz)po

1-Po Po I



The conditional distributions of the number of nonconforming iæms confirmed to be in

the sub-samples by the true classification technique are hypergeometric. Thus,

and

P(X2=x, INr:n'Yr=Ð:ry,¿ . ¿. C(n,mr) ,

(4.2.3)

P(Xl= x, I Nr= n' Yr= rr, : W
(4.2.4)

It follows that

P(Nr=n' X1=x1, Xr:x2, Yl=yt, Yz=yzlpo, p' pz) =

P(Nr:n7 Nl=fll, Yt=yl, Yz:yz I po, pt, p2) * P(Xz:x, I Nr=n 2,Y2=y2)
* Pqxr:x1 lNr=n-n'Y1=y1),

where the expressions on the right hand side are given in Equations (4.2.2), (4.2.3)

and (4.2.4). Since Y, and Yr * not observable the above probabilities are summed

over yl 
^dyzin order to obtain P(Nr=nr, \=x2, X1=x1 I po, p' pr).
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4.3 Prior Distribution

Before the posærior distribution can be found, prior disnibutions need. to be specified.

for po, Pr and Pz. h this thesis the solution deveioped assumes that the parameters for

Ps, P1 trrdpz are independenl Beta priors were selected due to their ability to provide

a wide variety of shapes which can be used to approximate many prior distributions,

and because of their mathematical manageability. The assumption allows the joint

distribution of po, pland p2tobe written as the product of three independent beta

distributions.

Therefore

h (po, PyP2) = h (po) * h (pr) * h (pz) for 0 (po,p1, p2 s 1

(4.3.r)

where

and

h (po) =ffiffi pou" (1 - po)bo-l

h (pr) :#B pi'-' qr - p,¡b,-t

h (pz) = ffffi p],-' çt - pr¡b'-r

for constants 0 < ao, bo, al, bl, uz,bz.
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Although the beta family is fairly rich, a wider variety of distributional shapes can be

obtained by considering mixtures of beta distributions for the prior distributions of the

parameÛers Po, Piand P2. These distributions may in fact be more realistic than single

beta distributions. For example, items from apopulation may have come from several

different locations, and therefore po rnay in fact vary because of location. The

informaÍion from the various locations can be combined into a single prior disfibution.

The use of mixtures of beta distributions allows one the capability to have a number of
modes in the prior distributions for po, prand p2. An example of a bimodal distribution

is seen in Figure 4.1. Such mixtures are not considered in the thesis, but the work

could easily be extended to handle such mixtures.

Figure 4.1: An Example of a Bimodal Prior Density Function -- A Mixture of Betas
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4.4 PosteriorDistribution

I-,emma4.2:

using independent beta priors for po, prand p, andhaving observed the values of

N2 X, and X¡ the posterior density function of ps , g(po I n2, x7 xr) is

FF. (n-nr-y,+a,-1)! (nr-yr+br-l) I (yr+ar-t)l(Vr+br-l)l p]'*v.*t(1-porn-¡-v,+bal

îî' (n-yr-yr+ar+br-I)l (yr+yr+ar+br-1)! (y¡xr)t (1,-xr)! (nr-yr-ør+xr)! (n-nr-y¡n1+x¡ I

T
Yr

(n+ao+bo-1)!(n-y,-y,+a,+b,-1)!(y,+y,+a,+b¡|)t.(n,-v,-n5+x'@
(y'+yr+ao-l)! (n-yr-yr+bo-1)! (n-nr-yr+ar-1)! (g-yr+br-l)l (yr+ar-I)l (1,+br-l)t

(4.4.1)

for 0<po<1;

where

Xl :0, I,2,... , fll ; xz:0, 1, 2,.. .,mr;
o, =tn1: m1+1,...,n ; nZ-\,mZ+\,...,fl i

Yl =Xl, xl+1, . . .,fl1- ml* xl' y2=\txr*Lt. . .,îz- mz+ \

Proof:

The jointposteriorof po, prand p, is

P(Nr=nz Xr:xz Xr:x, lpo, pr pz) * h(po,p1,p2)
g(Po, P¡ Pzlnz, x' xr) =

JJ



where P(Nr=n2, \=x2, Xl=xl I po, p' p2) is given by (4.2.I), h(po,p'pz) is given

by (4.3.1), and where the normalizing constant is given by

111

P(Nr:n,X r=x,Xr:xr, = JJJ 
P(Nr:n'X r=x,Xr:x1 lpo,p1,p2¡ * h(pe,p1,p) dvrdpr dpo

000

Therefore, it follows that the marginat posterior distribution forpo is

i¡
g(po | \, \, *t) = 

J J s(no, py p2l n, x, xr) dp, dp,
00

and is given by (a.a.l).

The cumulative posterior distribution function is given by

II'hh

È

(n-nr-y, +a, -1) ! (nr-yr+br- 1) t e r+y-t)t (1, +br-l) ! 
J dnt *- 

t (l-p)o 
-t'o+ t 

dp

0

(n-yr¿+ar+b,-1)! (yr+yr+ar+br-t)l (y;xr)l (lr-xr)l (nr.lr-mr+xr)l (n-n¡y,-n1+x¡

Po

G(po I fz, xz,*r) = J 
g(p I nz, x2, xl) dp =

0

5-5-r, , 0,ll1r*"t1)! G-Yt 
.,

ÇÇ'(n+U+bo-l)! (n-yr-yr+ar+br-1)! (!r+yr+ar+brL)t (n -y¡ør+4)! (n-n2-yr-n\+xr)t (ryxr)! 0r-xr)! 
I
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Examples of a posterior distribution and a cumulative posterior distribution can be seen

in Figures 4.2 and 4.3.

POSTERiOR DENSITY FUNCTION
Ç.(p"f nz=45 , x, =O ,xe=8), n=300, ffir= i O, mz= 1O

^^___frior for p"=ß(1 ,1), Prior for pt=p(i,1), príor for pz=B(1 ,l)
POSTERIOR MEAN= 0.1 702 , POSTERIOR STANDARD DEVtATtoN'= 0'.06254

0.33 0 .38

Po

Figure 4.2: Posterior Density Function
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CUMULATIVE DISTRIBUI'ION TUNCTION
g.(p"lnr=45 , x,:0 ,xr:10), n:300, r-flr= 10, mz:10

frior f or p"=B(1 ,1), Prioi f or p,:,8(1,1), prìor f or pz=B(1,1)
POSTERIOR MEAN: 0.19929 , POSTERIOR STANDARD DEVIÀIIoÑ: o.06248

CDF VALUE

0.6

0.5

0.4

0.3

o.?

0.t

0.0

Figure 4.2: Cumulative Posærior Distribution Function for po

Po
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4.5 Credibility Bounds

Upper and lower credibility bounds forpo may be found by inverting the cumulative

posterior distribution. That is, an 100(1-a)Vo upper credibüity bound is found by

finding the vaiue \ such that

G(po I nz, x2, xr) g(p I nz, *2, *r) dp = 1-s

and an LO}(L-u)Vo lower credibility bound is found by tinding the value T, such thar

T,

G(po I nz, xz, *r) = 
J 

g(p I nz, *2, *r) dp = s

For example,97.5 Vo upper and lower bounds for the posterior distribution of po,

g(po | \, x2, xr) with n=300, nr=45, mr=mr=10, xr:L}, xl=x ând. with B(i,l)
priors for po, p1 and p2canbe found in Table 4.1.

4.6 Sensitivitv Ana[,sis

It is of inærest to look at the effect of varying the prior distribution on the posterior for
po. For the parameters pl ffidpz, three priors are considered, p(1,1) - representing

ignorance, B(20,1) -- representing quite good inspector accuracy, and B(100,1) --

representing nearly perfect inspector accuracy.

Tu

=J
0

37



x1 \ 97.5Vo lower bound 97.5Vo upper bound

0 10 0. 1 161 o.3612

I l0 o,1425 o.477 4

2 10 0.1 7 63 0,5768

3 r0 o.21 90 0,6647

,/1 10 o.27 1 1 0.1430

5 10 o.3327 0.81 30

6 10 o.4040 o.B7 3 4

7 l0 0.4860 o.9243

a(J 10 0.5808 0.9635

Y t0 o.6940 0,9888

t0 10 0,8578 0,9992

Table 4.1: 97 .5Vo upper and lower bounds for g(po I î2, x2, xr) with

n=300, nr=45, mr=fir=10, xr=L}, x1=x and with B(1,1) priors for po, p1 and. p, .
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For the parameter po, tluee priors are also considered, p(1,1): -- representing

ignorance, P(1.5,5) -- representing a unimodal prior density function with a mean at

0.23, and P(1,10) -- representing the feeling that the proportion of nonconforming

iæms is neaÍ zeÍo.

Varying the prior distribution for prdoes have an effect on both tail regions of the

posterior distribution for po ffigures 4.4,4.5 and4.6). This effect seems to be slightiy

more pronounced in the upper tail region.

As the prior for p, is varied, we see only a slight effect on the posterior distribution for

po in the lower tail region and very little effect in the upper tail region (Figures 4.6,4.7

and 4.8).

Varying the prior for po also results in some change to the posterior distribution for po.

This effect can be seen in both tails of the posterior distribution, but seems be larger in

the upper tail region ffigures 4.9, 4.10 and 4.11).

As the number confirmed to be nonconforming decreases from xr= 10 to xr= 8 in the

sub-sample there is some increase in the effect of varying the prior p1 on the posûerior

distribution. This effect is not as noticeable when the priors for po 
^dpzare 

varied.

In the sensitivity analysis that follows only selecæd examples can be presented as there

are a number of quantities that can be varied. For selected samples we will consider the

effect of varying the priors for po, p1 and p2 on the posterior for p6, and at the same

time consider some variation in the proportion of iæms found to be misclassified.
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Figure 4.4: Effects of varying the prior for p, on the posterior for po with some

confirmed misclassification, and where apriori po md p1 are uncertain.

g(po I nr=45, x1:0, xz=8), n=300, mt=10 and mr=lQ
Prior for po=F(1,1) and Prior for pr:B(1,1) .

EErF 

-8rt.¡r 
.-..-lo",,oo.,t ---Er2o,rl

Figure 4.5: Effects of varying the prior for p, on the posterior for po with no

confirmed misclassifi.cation, and where apriori po md p1 are uncerûain.

g(po I nr:45, x1=0, xr=10), n:300, mt=10 and rn =lQ
Prior for po=P(1,1) and Prior for pr:B(l,1) .
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Figure 4.6: Effects of varying the priors 1¡1r pz and pl on the posterior for po with no

confirmed misclassification, and where a priori po is near zero.
g(po I nr=45, xl=0, xr=I}), n=300, mt:10 and rn :lQ
pdf 1: Priors; po= P(1,10¡, pr: P(20,1) and pr=B(20,1)
pdf 2: Priors; po= P(1,10¡, p1= B(20,1) and pr=B11,1¡

pdf 3: Priors; po= B(1,10¡, pr= P(1,1) and pr=B(20,1)
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Figure 4.7: Effects of varying the prior for p, on the posterior for po with some

confrrmed misclassification, and where a p riori po md p 
2 ue uncertiain.

g(po I nr:45, x1=0, xz:8), n:300, mt=10 and n1:16
Prior for po=Ê(1,1) and Prior for pr:B(1,1) .
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Figure 4.8: Effects of varying the prior for p, on the posærior fo, poiith ,,o

confrrmed misclassification, and where apríorí po md p2arcuncerLain.

g(po I nr:45, Xt:O, xr=10), n=300, mt=10 and ng:1Q
Prior for po=F(1,1) and Prior for pr=B(1,1) .
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Figure 4.e: Errect",;;;;;j;; ;;;,*- ro,n] **,o-"
confirmed misclassification, and where apriorí p1 and p2areuncertain.

g(po I nr=45, Xt:0, xz=8), n=300, m1:10 and mr=1Q

Prior for p1:F(1,1) and Prior for pr:Bil,1¡.
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Figure 4.10: Effects of varying the prior for po on the posterior for po with no

confirmed misclassification, and where apriori p, and p2are uncertain.

g(po I \=45, x1=0' xr=10), n:300, flr=10 and n5:lQ
Prior for pr=F(l,1¡ and Prior for pr=B(1,1).

0.7
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Figure 4.71: Effects of varying the prior for po on the posterior for po with no

confirmed misclassification, and where a priori p1 and p2arc near one.

g(po I nr:45, x1:0, xr=10), n=300, mt=10 and rn =lQ
pdf 1: Priors; po= F(1,1),pt: B(20,1) and pz=þ(20,1)

pdf 2: Priors; po= P(l,10¡, pr= B(20,1) and pr:B(20,1)
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4.7 Comparison of One-sided and Two-sided Samoling plans

Neden (1986) uses a one-sided "confirmatory" sub-sampling plan, that is, at the second.

stage of sampling a sub-sample is uken from either the "nonconforrning" goup or the

"conforrning" group. The decision to draw a sample from ttre "nonconforrning" or the

"confomting" goup depends on the size of the "nonconforming" gtoup at the initial

inspection stage. If the "nonconforming" group is large at the initial sampling stage,

the inspector may consider the lot to be unacceptable. In order to confirm that the lot

does contain an unacceptable number of nonconforming items, a suÞsample from the

"nonconforming" group can be taken in order to obtain a lower bound forpo. Neden

assumed that pr=l, and because of this assumption no sub-sample was taken from the

group classified as confonning. This assumption provides a conservative result as any

misclassification of the nonconforming items would cause the lower bound to become

larger.

similarly, if the "nonconforming" goup is small at the initial sampling stage, the

inspector may make the decision that ttre lot is acceptable. One may,want to confirm

that the lot is good by taking a sub-sample from the "conforming" group in order to

obtain a upper bound for po. By assuming that no misclassification of conforming

items can take place, no sub-sample is taken from the "nonconforming" group. This

would again provide a conservative result as any misclassification of confomring items

would cause the estimated value of po and the upper bound to become smaller.

Due to time and cost, it may only be possible to sample a fixed number of items. If a

point estimate for the proportion of nonconforming items was desired, samples would

need to be taken from both groups. However, if a point estimate is not desired but one

is interested in a lower bound, there are several ways in which samples may be
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allocated. All samples could be taken from the "nonconforming" group (one-sided

confirmatory sub-sample), or samples could. be taken from both of the "conforming"

and " nonconfonning " groups (two- sided sub- sample).

It is of interest to compare the nvo-sided sampling scheme to the one-sided

confirrratory sampling scheme used by Neden (19S6). From Figures 4.12 and 4.13

we see that when sub-samples of size 10 are taken from the "conforming" and

"nonconforming" groups with ignorance priors representing the parameters, there is a

large difference in the posterior distribution compared to ttre one-sided sampling plan

where a sub.sample of size 10 is taken only from the "nonconforming" group.

When the prior for p, is taken to represent almost perfect inspection in the two-sided.

plan and when Xl = 0, there is little difference in the lower region for both sampling

plans. If the number of items found to be nonconforming, but initially classified. as

conforming, increases from x, = 0 to Xl = 1, a difference in the lower region for both

sampling plans can be seen (Figures 4.I4 and 4.15).

It is also of interest to compare the ¡po-sided sampling plan with sub.samples each of

size 10, with the one-sided "confirmatory" sampling plan with a sub.sample of size 10

when an increase in the "nonconforming" group occurs. we see that when nr= 45

there is liule difference in the lower region of the posteriors, but when n, is increased to

100 the difference increases slightly (Figures 4.16, 4.17,4.18 and 4.rg).

In all the cases observed above, when the sub-sample size for the one-sided sampling

plan is increased to 20, there is a noticeable change in the lower region (Figures 4.15,

4.76, 4.I7, 4.18 and 4.19).
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Figure 4.72:Effect of nvo-sided sampling versus one-sided confirmatory
sampling on the posterior for po with some confirmed misclassification,

and where a priori po, pi *d pz are uncertain.

pdf 1: g(po | \=45, *l{, xr=10), n=300, mr=10, ob=10, po= p1= p2= Þ(1,1)

pdf 2: g(po I nz=45, x=10), n=300, m=10, po= p1= P(1,1) andp2= 1

pdf 3: g(po I nr=45, X1=1, xr=10), n=3@, mr=10, or2=10, po= p1= pz= p(1,1)
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Figure 4.13: Effect of two-sided sampling versus one-sided confirrratory
5ampling on the posterior for po with some confirrned misclassification,

and where a príori po, pr and p2 are uncertain.

pdf 1: g(po I nr=45, xl=0, xz=8), n=300, mr=10, -2=10, po= p1= p2= P(1,1)

pd12: g(po I nr=45, x=8), n=300, m=10, po= p1= P(1,1) andp2= 1

pdf 3: g(po I nr=45, xt=l, x2=8), n=300, mr=L0, q=10, po= p1= p2= B(1,1)
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Figure 4.l4:Effect of two-sided sampling versus one-sided confinnatory
sampling on the posterior for po with some confirmed misclassification,

and where a priorí po md p, are uncertain, -d pz is near one.

pdf 1: g(po I nz=45, x=8), n=300, m=10, po= p1= P(l,1) and Pr= 1

pdf 2: g(po I nr=45, x1=0, xz=8), n=300, mr=10, nr,=10, po= p1= Þ(1,1), and

P2= B(100,1)

pdf 3: g(po I nr=45, xt=l, xz=8), n=300, mr=10, *z=10, po= p1= Ê(1,1), and

P2= p(100,1)
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Figure 4.15: Effect of two'sided sampling versus one-sided confirmatory
sampling on the posterior for po with some confirmed misclassification,

and where a priori po md p1 are uncertain, *d pz is near one.

pdf 1: g(po I nr45, x=20), n=300, m=20, po= p1= B(1,1) andp2= I

pd12: g(po I nr=45, x=10), n=300, m=10, po= p1= P(1,1) andp2= 1

pdf 3: g(po I nz=45, *t{, xr=10), n=300, mr=10, n 2=10, po= p1= F(1,1), and

Pz= F(100,1)

pdf 4: g(po I nz=45, x1=1, xr=10), n=300, mr=10, nt2=10, po= p1= F(1,1), and

P2= p(100,1)
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Figure 4.16: Effect of two-sided sampling versus one-sided confirmatory
sampling on the posterior for po with no confirmed misclassification,

and where a priori po is uncert¿in, pt near one, *d pz near one.

pdf 1: g(po I nr=45, *14, xr=10), n=300, mr=L0, or2=10, po= F(1,1), pi= P(20,1)

and pr- p(100,1)

pdf 2: g(po I nr=45, x=10), n=300, m=l0, po= Ê(1,1), p1= F(20,1) andpr= 1

pdf 3: g(po I nr=45,x=20), n=300, m=20, po= Þ(1,1),pl= P(20,1) andpr= 1
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Figure 4.17:Etrect of two-sided sampling versus one-sided confirmatory
sampling on the posterior for po with no confrmed misclassification,

and where a priori po is uncert¿in, pr near one, *d pz near one.

pdf 1: g(po I nr=L00, xt=0, L=10), n=300, mr=10, rb=10, po= F(1,1), pl= P(20,1)

andp2 p(100,1)

pdf 2: g(po I nr=l00, x=10), n=300, m=l0, po= Þ(1,1), pl= P(20,1) andpr= 1

pdf 3: g(po lnr=l00, x=20), n=300, m=20, Po= Þ(1,1), pl= P(20,1) andpr= 1
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Figure 4.18: Effect of two-sided sampling versus one-sided confirmatory
sampling on the posterior for po with no confirmed misclassification,

and where apríorí po is near zeÍo,pLnear one, and p2 near one.

pdf 1: g(po I nr=45, *1=0, xr=10), n=300, mr=10, mr=10, po= P(1,10),

p1= 9(20,1) andpr= B(100,1)

pdf 2: g(po I nr=45, x=10), n=300, m=10, po= F(1,10), p1= P(20,1) andp2= 1

pdf 3: g(po I nr=45, x=20), n=300, m=20, po= Ê(1,10), pr= P(20,1) andpr= 1
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Figure 4.I9:Effect of t'wo-sided sampling versus one-sided confirmatory
sampling on the posterior for po with no confirmed misclassification,

and where a priori po is near zeÍo,ptnear one, *d pz near one.

pdf 1: g(po I nr=100, *14, xr=L0), n=300, mr=10, n 2=10, po= P(1,10),

p1= F(20,1) and pr= p(100,1)

pdf 2: g(po I nr=100, x=10), n=300, m=10, po= F(1,10r, pt= P(20,1) andpr= 1

pdf 3: g(po lnr=100, x=20), n=300, m=20, po= Ê(1,10r, pl= B(20,1) andpr= 1
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4.8 Concluding Remarks

The posterior distribution developed in this thesis illustrates how a double sampling

scheme and prior information may be combined in order to obtain a distribution upon

which inferences about the proportion of interest may be based.

The one-sided "confirmatory" sampling plan of Neden and the two-sided sampling plan

developed in this thesis were compared under va¡ious situations. It was shown that

there are situations in which one sampling plan may be more appropriate than the other,

depending on the form of the inference to be d¡awn and on the prior information

concerning the misclassification rates.

Neden dealt with a one-sided "confirmatory" sub-sample, that is, at the second stage of

sampling, a sub-sample was taken from either the "nonconforming" goup or the

"conforrning" group -- the decision whether to draw a sample from the

"nonconforming" or the "conforming" group depending on the size of the

"nonconforming" group at the initial inspection stage. If the proportion of

nonconforming items, po, h the lot was thought to be unacceptable at the initial

sampling stage, a lower bound was desired by Neden in order to confirm that po was

large. Neden assumed that no misclassification of nonconforming items could take

place and therefore no sub-sample was taken from the "conforming" category. This

assumption provides a conservative resulg as any misclassification of the confonning

items causes the estimated value of po and the lower bound to become larger. For

exampie, if at the inspection stage a large number of nonconforming items a¡e found,

the inspector may conclude that the lot is unacceptable. One may then wish to confirm

ttrat the lot does in fact contain an unacceptable number of nonconforming items. If this
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is the case, a sub-sample from the "nonconforming" group can be taken in order to

obtain a lower bound for the proportion of nonconforming items.

similarly, if the "nonconforming" group is small at the initial sampling stage, the

inspector may make the decision that the lot is acceptable. One may then wanr to

conflrm that the lot is good by taking a sub-sample from the "conforming" group in

order to obtain a upper bound for po. By assuming that no misclassifïcation of

conforming items can take place, no sub-sample need be taken from the

"nonconfonning" category. This again provides a conservative result as any

misclassification of conforrning items would cause the estimated value of po and the

upper bound to become smaller.

If some point estimate or two-sided interval estimate for the proportion of

nonconforming items is desired, sub'samples would have to be taken from both of the

visually inspected groups in order to see the effect of misclassification in both

directions.

If a point estimate is not required but one is interested only in a lower bound, then there

are several ways in which samples may be allocated. All samples could. be taken from

the "nonconforming" group (one-sided confirmatory sub'sample), or samples could be

taken from both the "conforming" and "nonconforming" groups (nro-sided sub-

sample). For example, the advantage and disadvantage of (i) taking suÞsamples of

size 10 from each group, (ü) taking a suÞsample of size 10 only from the

"nonconforming" group, and (iü) taking a sub-sample of size 20 only from the

"nonconforming" group were examined in this thesis.
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If the distribution of p, is represented by an ignorance prior then (i) is preferred to (ii).

When sub-samples of size 10 are taken from the "confomring" and "nonconforming"

groups, and compared to the one-sided sampling plan where a sub-sample of size 10 is

taken only from the "nonconforming" group, a large difference in the lower regions of

the posterior distributions is seen. In the situation where the prior distribution

concerning P, is represented by ignorance, it would seem more appropriate to use the

two-sided sampling plan in order to assess the effect of misclassification in both

directions.

If a priori p, is near one then (i) and (ü) are approximately the same. It is hoped that

the probability of correctly classifying a nonconforming item would be near 1, and, if
prior distributions are used to reflect this information, little difference in the lower

regions for the one-sided and two-sided sampling plans can be seen in many situations.

However, as the size of nonconforming items in the initiat sample increases, the

difference becomes more pronounced- Moreover, rf a príorí p, is near one, then (iii) is

better than (ii).

If only an upper bound is required then analogous conclusions can be drawn, but with

Pt rePlacing Pr.

If a one-sided "confirmatory" sampling plan is used on an ongoing basis, samples

should still be taken occasionally from each group in order to assess the

misclassification rates in both directions.
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