
High Level Design and Test Methodologies
with VHDL

by

Ruomei Wang

A Thesis
Submitted to the Faculty of Graduate Studies

in Partial Fulfilment of the Requirements
for the Degree of

Master of Science

Depaltment of Electrical and Computer Engineering
University of Manitoba

Winnipeg, Manitoba

@ 1996 Ruomei Wang

l*I N,Son'Librav

Acquisitions and
Bibliographic Services Branch

395 Wellington Street
Ottawa, Ontario
K1A ON4

The author has granted an
i rrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell cop¡es of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

Bibliothèque nationale
du Canada

Direction des acquisitions et
des services bibliograPhiques

395, rue Wellington
Ottawa (Ontar¡o)
K1A ON4

ISBN 0-6t2- 16366-0

L'auteur a accordé une licence
irrévocable et non exclus¡ve
permettant à la Bibliothèque
nationale du Ganada de
reproduire, prêter, distribuer ou
vendre des copies de sa thèse
de quelque manière et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
thèse à la disposition des
personnes intéressées.

L'auteur conserve la propriété du
droit d'auteur qu¡ protège sa
thèse. Ni la thèse ni des extraits
substantiels de cglle-ci ne

doivent être imprimés ou
autrement reproduits sans son
autorisation.

Yout l¡le Volre Élércnce

Our l¡le Notre élércnce

C¿nadä

THE UNfyERSITy OF ùfATYITOBA

FACULTY OF GRADUATE STUDIES

COPYRIGHT PER}trSSION

trIGE IÆVEL DESIGN AIID TEST HBTEODOLOCIES I{ITE VEDL

BY

RUOHEI I{ANG

A ThesisPracticum submitted to the Faculty of Graduate Studies of the University of ùfanitoba in partiat
fulfillment of the requirements for the degree of

}'ÁSTER OF SCIENGE

Ruonei l{ang O 1996

Permission has been granted to the LIBRARY oF TIIE UNTTERSITY oF IvfÀ\IToBA to lend or seil copies
of this thesis/practicum, to the NATIoNAL LIBRARY oF CAN.{-DA to microfilm this thesis/practicum åsd

to lend or sell copies of the film, and to UNTVERSITY ìVtrCROFILñIS Ir\C. ro publish an abstract of this
thesis/practicu m..

This reproduction or coPy of this thesis has been made available by authorilv of the copyright orvner solel;-
for the purpose of private study and research, and may only be reproduced and copied ai permitted by

copyright laws or with express written authorization from the copyright o\yner.

I hereby declare that I am the sole author of this thesis.

I authorize the University of Manitoba to lend this thesis to other institutions or individuals

for the pulpose of scholarly research.

I further authorize the University of Manitoba to reproduce this thesis by photocopying or

other means, in whole or in part, at the request of other institutions or individuals for the

purpose of scholarly research.

- Il -

ABSTRACT

The growing complexity and density of integrated circuits requires that good design and test

methodologies be utilized throughout the design process. This thesis presents high level

design methodologies typically involved in the design process, from behavioral to gate-level

structural descriptions. Test and design for testability techniques are reviewed, and experi-

ence with the Synopsys test synthesis tools is presented. The diverse styles and advantages

of testbenches are also discussed. A novel approach for doing testbench simulation on RTL

level and gate-level circuits and comparison of the outputs from both versions of the design

is demonstrated. As a real design, an elevator controller is developed utilizing these method-

ologies, and the simulation results aro presented. The Synopsys CAD tools are involved in

each design and test stage, which greatly relieves the designer from tedious and error prone

tasks.

ACKI{OWLEDGEMENTS

I would like to express my sincerc thanks and appreciation to my supervisor, Dr. Robert

Mcleod for his intellectual advice throughout my study at the University of Manitoba. Even

though he is very busy at the University and TRLabs, he still made time to support and

guide my study. I would also like to thank some other students in the VLSI group, Guy

Jonatschick and Budi Rahardjo for their helpful discussions and suggestions. Special thanks

go to Ken Ferens for his invaluable assistance. Also, Kevin Zong's encouragement is grate-

fully acknowledged.

Heartfelt appreciation goes to my parents. Even though they are very far away from me,

their understanding and love made me overcome all the difficulties.

CMC and Micronet who provided financial support are highly appreciated.

TABLE OF CO¡{TEI{TS

Chapterllntroduction1
Motivation1

LevelsofAbstraction..2
Introduction to High Level Design Flow3
Introduction toHDLTestbenches andTheirApplications4
Organization of theThesis6

Chapter 2 Test and Design-for-Testability Overview 7
Introduction....7
TestingOveruiew1
Design-for-Testability(DFT)9
ScanDesignMethodology.9

InternalScan (ScanDesign)9
FullScanandPartialScan.10
BoundaryScan.13

Design Flow Using Synopsys Test Synthesis Tools14
TestSynthesisI4
Design Flow Using Synopsys Test Compiler Tool15

ExperienceWithSynopsysTestSynthesistools20
UtilizingATPcTestVectors...21
IC Testing Using VXI and IC Test Head26
Summary27

Chapter3 HighLevelDesignMethodologies 29
Introduction29
High Level Design Process29
The VHDL Hardware Description Language31

FunctionalPartitioning33
Design Entry --- Schematic and VHDL34

-vl-

Table of Contents

FromBehavioralDescriptiontoRTLCode.35
From RTL Level to Gate Level37
Summary42

Chapter 4 Testbench Generation and Application Methodologies 43
Introduction43
VHDlTestbench43
Testbench Styles and Coding Strategies46

Ad-Hoc46
Algorithmic47
VectorFiles.48

Testbench For RTL and Schematic Model Equivalence Checking51

Testbench For Mixed Level Simulation56
SimulationWithBack-annotation56
BehavioralTestPatternGenerationAlgorithmsSurvey58
SimulationResults andDiscussions.61
Summary65

Chapter5ConclusionsandFutureWork67
SummaryandConclusions.67
FutureWork69

APPENDIX A Design Example 1: Elevator Controller . . . 70
FunctionalSpecificationsandAssumptions70
SchematicDiagram71
SignalNamesandAssignments11
Finite State Machine for Module decision rnake13
VHDlTemplateGeneratedbySGE16
BehavioralVHDLSourceCodeforSubdesigns80
Synthesized Schematic of Module decision make.93

APPENDIX B Design Example 2: ALU Function generator DM74181.. 94
BehavioralDescription ...94
SourceCodeforAlU94
Functional Testbench for ALU98
SimulationResults100
ATPG Results by Test Compiler . . .100

BIBILIOGRAPHY . ..103

- VII

LIST OF FIGURES

Fig. 1.1:TheY-chart....3
Fig. 1.2: High Level Design Flow4

Fig. 1.3: HDLtestbenchanditsapplications....5
Fig.2.I: Design Before and After Adding Scan Circuitry1 I

Fig. 2.2: Full Scan and Partial Scan Symbolic Representation1 1

Fig.2.3: Full, Partial, and Non-Scan Trade-offs . . .I2

Fig.2.4: BoundaryScan.13
Fig. 2.5: Module and Chip Level Testability Analysis and Design11

Fig. 2.6: Board Level Testability Design18

Fig.2.7: FaultSimulationStrategies20
Fig.2.8: Multi-style,Multi-passCapability20
Frg.2.9: ATPG Vectors Simulation in RTL Level22

Fig.2.10: Two-inputsAndGatewithRegisteredOutput(circuitANDGATE)23
Fig. 2.1 1: VHDL Code for the Register (1) Before and (2) After Test Structure Insertion 24

Fig.2.I2: ATPG Vectors Simulation Results25

Fig.2.l3: SignalRouting andDistribution21
Fig. 3.i: High Level Design Flow30

Fig.3.2: ElevatorControlleranditsSubmodules34
Fig.3.3: MealyStateTransitionDiagram35
Fig.3.4: StateMachine for door_controlModule36
Fig. 3.5: Typical VHDL Coding for State Machine37

- vlll -

list of Figures

Fig.3.6: FromRTLLeveltoGate-Level38
Fig.3.7:Multiplexer...40
Fig. 3.8: RTL Level VHDL Description for Multiplexer40

Fig. 3.9: Gate-level VHDL Description for Multiplexer41

Fig.4.1:Structureof atestbench44
Fig. 4.2: Testbench Structural Contents45

Fig. 4.3: Ad-hoc Style and Simulation Results41

Fig.4.4: Algorithmic Style for ALU Testbench . . .48

Fig.4.5: Example: and_249
Fig. 4.6: Testbench Fetch Test Vectors From Data File and Data File50

Fig. 4.7: Simulation Result for Circuit and 250

Fig.4.8: ClockGenerationProcess.50
Fig.4.9: Equivalence Checking for RTL and Schematic Model51

Fig. 4.10: Design Example52

Fig. 4.11: RTL Version (V1) for the Design52

Fig.4.12: Schematic Version (V2) for the Design53

Fig. 4.13: Design in two versions Vl and V254

Fig.4.l4: VHDL Model for UUT54

Fig.4.15: Testbench Simulation on UUT . . .55

Fig.4.16:TestbenchSimulationonRTLandGate-levelEquivalenceChecking........56

Fig.4.l7: UUT(TOP)anditsComponents...57
Fig. 4.18: Configuration Statement for TOP Design51

Fig.4.19: ConfigurationStatementforTestbench58
Fig.4.20: Simulation Results for door_control Module64

Fig.4.2l:SimulationResultsforbutton_timing_lighrModule63
Fig. 4.22: Simulation Results for tlecísion rnake Module64

Fig.4.23: Simulation Results for Elevator Contoller Zop Module.65

Fig.4.1 ButtonSignalNameAssignment71
Fig. 4.2 Schematic Entry--- Block Diagram for elevator_controller12

Fig. B.1 Simulation Results . .100

-lx-

CHAPTER 1

INTRODUCTION[

1.1 Motivation

Conventional electronic design begins by manually entering the logic diagram, followed by

timing verification at the gate-level. Only after this is done can comprehensive functional

verification be performed. As a result, any functional specification errors or deficiencies will

not be detected and corrected until alater stage in the design process. This means that any

modification in the logic diagram requires long iteration loops. This iterative design process

takes too long and results in low productivity. Because of the fast growth of VLSI designs,

there is a need to improve designer's productivity and shorten time-to-market.

High level top-down design can significantly increase the designer's productivity. High

level design flow methodologies are currently an active area of research. CAD and CASE

tools play important roles in the design flow: synthesizing behavioral code to gate-level

implementations, high-level simulation, gate-level simulation, insertion of scan chains, gen-

eration of test patterns, and board-level simulation. Automation of these tasks saves

designer's time and energy. CAD and CASE tools continuously need to be improved to meet

the increasing demands of IC designers.

Chapter l: Introduction

According to many designers' experience, the majority of time in designing a system is

spent on capturing and verifying the functional design. CAD tools can carry out most of the

remaining tasks. Thus the design methodology focuses on capturing and verifying the

design. Time is spent on writing behavioral code and a good testbench, modifying the

behavioral code, until the behavior is satisfactory. As a result, verification at a high level has

significant meaning. Functional testbench generation and application methodologies need to

be developed for high level verification.

1.2 Lev els of Abstraction

Any complex system may be broken down into gates and memory elements by successively

subdividing the system in a hierarchical manner. This subdivision may be done manually or

by automated techniques. To do this, integrated circuits may be described at different

abstraction levels. There are three design domains that represent a system: behavioral, shuc-

tural, and physical domains. Behavioral representation specifies what a system does, the

structural domain specifies how entities are connected together, and the physical domain

binds the system in space or to silicon. Each design domain may be specified at a variety of

abstraction levels. From highest to lowest, these include: system, RTL (Register-Transfer-

Level), logic and circuit level. The Y-chart [20] of Figure i.1 illustrates the tripartite repre-

sentation of design.

Design Strategies

A good VLSI design system should be capable of providing consistent descriptions in all

three domains and at all abstraction levels. The design parameters may be described in terms

of performance, size of die, time to design, ease of test generation and testability. The design

process involves trade-offs to achieve good results for all of the parameters. There are some

-2-

Chapter I : Introduction

classical approaches to reducing the complexity of IC design including: hierarchy, regular-

ity, modularity, and locality.

Structural
Domain

Behavioral
Domain

owchaftsProcessors

Registers, ALUs Register Transfers

Gates, Flip-flops' Boolean exprcssions

Transistor functions

Transistor layouts

Cells

Chips

Boards

Physical Domain

Fig. I.I : The Y-chart

1.3 Introduction to High Level Design Flow

Figure 1.2 shows a high level design methodology [28]. In the Design Entry stage, design

description consists of schematic diagrams and Register-Transfer-Level HDL code (such as

Verilog or VHDL) which define the behavior of the designs. The validation phase is used for

simulating the source code and making sure the RTL code behaves in the way it is intended

to. This phase involves interactive simulation and source code debugging. The next phase is

implementation where logic and test synthesis tools are used to translate RTL code to a. gate-

level schematic (or netlist). Test synthesis performs scan insertion in addition to logic syn-

thesis. tn the verification phase, the HDL testbench is designed for testing against the RTL

description, and also against the gate-level implementation. The HDL testbench and test

vectors are used to automatically exercise the circuit during simulation. In this phase, a wide

-3

Chapter 1: Introduction

range of struc-

Tools:

VSS
(scE)

VSS
(vhdldbx)

DC
TC

VSS

Phase: descriptions:

schematic block diagrams,
RTL HDL code

interactive simulation and
source code debugging

use logic- or test-synthesis
tools to translate RTL code to
gate-level netlist

Design HDL testbench.
Validate the testbench against
your RTL description. Then
you can perform tests on your
gate-level implementation

I

I

from layout

Fig. 1.2 : High Level Design Flow

tural and behavioral altematives can be explored, and the best trade-offs among speed, size,

and testability are chosen. If there are malfunctions or effors detected in the verification

phase, the design is returned to the design entry phase, with subsequent modification of the

code or gate-level structure. The Synopsys tools help in each phase and are indicated in the

design flow of Figure 1.2. VSS is the VHDL System Simulator, DC is the Design Compiler,

SGE is the Synopsys Graphical Environment, and ZC is the Test Compiler.

1,.4 Introduction to HDL Testbenches and Their Applications

This thesis proposed a complete scheme for HDL testbench methodologies. The scheme is

shown in Figure 1.3.

Design Entry

lmplementation

+
to layout

-4-

Chapter 1: Introduction

HDL testbenches basically divide into two types: structural and behavioral testbenches.

A structural testbench is generated by an ATPG (Automatic Test Pattern Generator) using

DFT (Design-for-Testability) techniques developed from the structural model (gate-level

schematic or netlist). This is simulated on the gate-level design, detecting gate-level faults,

and generating a fault coverage report. This work can be done using CAD tools such as the

Synopsys Test Compiler and TestSim. A complete set of test vectors is generated by the

Synopsys Test Compiler. This set of test vectors can be simulated at the module, chip and

system level.

It simulation
(TestSim)

faults
fault simulation

(TestSim)
report

test s ¡sfault coverage
(Test Compiler)

logic synthesis vèrify

simulation
functionality

Fig. 1.3: HDL Testbenches andTheir Applications

A behavioral testbench is manually generated. It is developed from the behavioral model

(RTL code, State Machine, BDD, Petri-Nets, etc.), and is used to verify the design's compli-

ance to its functionality i.e. to check its behavior. A behavioral testbench is also called a

functional testbench. If there are Hard-To-Detect (HTD) faults in the gate-level design,

I
havioral

-5-

Chapter 1: Introduction

behavioral testbenches can help detect them. Both ATPG and functional test vectors are

used for gate-level simulation (this is called a multi-pass, multi-style test process, which is a

feature of the Synopsys test synthesis tools). In this way, higher fault coverage is achieved.

Before doing test synthesis, a functional testbench (without scan) is written for the RTL

HDL code to verify its functionality. It can also be used at the gate-level, which is one of the

HDL testbench's advantages, mixed level simulation. Synopsys SGE can generate the func-

tional HDL testbench template, while the user writes the behavioral part by hand.

1.5 Organization of the Thesis

In Chapter 2, test and design for testability techniques are reviewed. Experiences using the

Synopsys test synthesis tools are then presented.

Chapter 3 discusses all the methodologies involved in the entire high level design process,

such as fi¡nctional partitioning, schematic generation, VHDL design entry, synthesis and

optimization.

In Chapter 4, functional testbench styles and generation methodologies are presented, and

how such a testbench works on the RTL and gate level descriptions is demonstrated. A cou-

ple of behavioral test pattern generation algorithms are also given. Testbench simulation

results for the elevator conûoller design are also demonstrated in this chapter.

Chapter 5 presents a summary and general conclusions, as well as future work.

Design schematics, behavioral descriptions, source code and experimental results using test

synthesis tools are shown in APPENDIX A and APPENDIX B.

-6-

CHAPTER 2

TEST AI{D DESIGI{FOR TESTABILITY
OVERVIEW

2.1 Introduction

The purpose of testing is to detect faults and locate the faults in the design. As such, testing

is an important issue in VLSI design. In this chapter, some fundamental concepts in testing,

such as ATPG, testability, DFT, and scan-based design will be presented. Testing techniques

have been developed to greatly improve test efficiency and flexibility. These techniques will

be discussed. The test synthesis approach is presented. The results for several examples

using these test methodologies and CAD tools will be given. Experience with physical test-

ing of a chip (DM74181) using the VXI bus test system and IC test head is also presenred.

2.2 Testing Overview

Tests

Design quality implies three aspects: usability, reliability and efficiency [20]. Usability

refers to the functionality of design and what it can do. Reliability means how long the

design functionality can last and efficiency asks the question "Is it worthwhile using it?".

There are always some faults that occur in a design, due to the VLSI processing, packaging

and assembly, and/or specification ambiguity. Testing helps detect malfunctions and errors

-7-

Chapter 2: Test and Design-for-Testability Overview

in the system thus ensuring that it is fault free. Therefore, testing ensures a high quality

design.

Tests may be divided into two categories: functional tests and manufacturing tests t201. A

functionality test vedfies that the system performs as intended. It is used in the early design

stages. In a high level design cycle, this is called validation. It proves that the design per-

forms according to some specifications. The specification might be a verbal description, a

plain-language textual specification, or a high-tevel computer language such as C, FOR-

TRAN, VHDL, SDL, tables of inputs and required outputs, or high level languages such as

statecharts. Functional test pattern generation methodologies are discussed in Chapter 4. In

this chapter, test refers to manufacfuring test.

A manufacturing test verifies internal gates, detects manufacturing defects which might

come from fabrication or ware out. Normally, three kinds of fault models are defined: the

stuck-at fault, stuck-open fault and line-delay fault. The stuck-at fault is the most common

in industry and is the only gate-level fault model examined in this thesis.

Testability

The quality of testing is evaluated by testability. According to R.G. Bennetts f27l,"Testabll-

ity is the ability to generate, evaluate, and apply tests to satisfy a number of predefined test

objectives (e.g. fault coverage, fault isolation, runtime, time-to-plofit) subject to the two

fundamental constraints of time and money".

Thele arc two attributes used to evaluate testability. They are controllability and observabil-

ity. Controllability is the ability to drive an internal node to a specified logic value by setting

primary inputs to specific values. Observability is the ability to predict the response of an

-8

Chapter 2: Test and Design-for-Testability Overview

internal node and propagate the response to primary outputs t281. A design is testable when

it can be put into a known initial state, and the internal nodes are controllable and observa-

ble.

2.3 Design-for-Testability (DFT)

Traditionally, design and test were separate processes. In today's design flow, test and

design are merged early in the design cycle. This approach improves controllability and

observability. The incorporation of test hardware into a circuit design is called Design-for-

Testability.

Generally speaking, there are two approaches to DFT: Ad-Hoc and Structured. Ad-Hoc

DFT does not make big changes to the design. It includes: minimizing redundant logic, min-

imizing asynchronous logic, isolating clocks from the logic, and adding internal control and

observation points. Structured DFT is a more systematic and automated approach to

enhance design testability and thus is a more popular one. The purpose of structured DFT is

to increase the controllability and observability of a circuit. There are various methods to

reach this goal. Scan design is the most common method. It changes the internal sequential

circuitry of the design. Another method is boundary scan which modifies the chip circuitr.y

and increases board level testability. DFT techniques lower test cost, improve product qual-

ity, and reduce time-to-market.

2.4 Scan Design Methodology

There are two main types of scan circuitry: internal scan and boundary scan. Internal scan

(also refened as scan design) can be full scan or partial scan. Internal scan modifies circuiÍy

-9-

Chapter 2: Test and Design-for-Testability Overview

within the original design itself and increases chip level testability. Boundary scan adds cir-

cuitry around the periphery of the design and increases board level testability.

2.4.llnternal Scan (Scan Design)

A sequential circuit is much more difficult to test, compared with a combinational circuit.

Scan design makes a sequential circuit behave like a combinational circuit when the design

is in test mode. To achieve this goal, sequential elements are replaced by scannable sequen-

tial cell (scan cells), then scan cells are stitches together into scan chains. These serially-

connected scan cells can shift data in and out during the test process [28].

Scan design methodology is depicted in Figure 2.I.The original design contains combina-

tional and sequential portions. Before scan circuitry is added, the design has three inputs: A,

B, and C, and two outputs, OUTI, OUT2. This "before scan" circuit is difficult to test

because it is hard to initialize the design to a known state. Thus it is difficult to control and

observe its behavior by using the primary inputs and outputs. After adding scan circuitry

(shown by -----lines), therc are two additional inputs, sc_in (scan input) and sc_en (scan

enable), and one additional output, sc_out (scan output). The original sequential elements

are replaced by scan elements, to allow data to be read in from sc_in and shifted out to

sc-out when sc-en line is enabled. The se_out line from each flip-flop feeds into the next

flip-flop's se-in, and sc-en is connected in parallel to each sequential element. This permits

serial I/o to the scan elements which requires minimal pin out overhead.

2.4.2Full Scan and Partial Scan

In full scan design, all storage elements are replaced by their scannable equivalents and

stitched into scan chains. Whereas in partial scan design, only the storage elements of inter-

est are replaced by their scannable equivalents and stitched into scan chains [28].

l0-

Chapter 2: Test and Design-for-Testability Overview

OUTI

sc_in

CLK sc_out

OUT2

SC-EIL J

C

F ig. 2. I : D e s i g n B eþ re ctnd After Adding Sc an C ircuitry

Figure 2.2 gives a symbolic representation of a

rounded boxes represent combinational portions.

elements and black rcctangles are sequential cells

The line connecting them is the scan chain.

full scan and partial scan design. The

Rectangular boxes represent sequential

that have been converted to scan cells.

Scan output

Scan input

Fig.2.2: Full Scan and Partial Scan Symbolic Representation

- ll

Scan output

O-ouu Ll

u_- u

Scan input

Chapter 2: Test and Design-for-Testability Overview

There are trade-offs among full scan, partial scan and non-scan designs as shown in Figure

2.3. Full scan requires a significant amount of area overhead because all the sequential cells

arc replaced by scannable cells. However it requires less test generation effort and since the

scan insertion process is automated, it ensures high efficiency, high fault coveÍage and high

quality. Partial scan is more flexible with respect to area overhead and fault coverage. Partial

and non-scan designs require much less area overhead but far more test generation effort.

Full scan employs a combinational ATPG algorithm, while partial scan utilizes sequential

ATPG. The Synopsys Test Compiler only has combinational ATPG algorithm, while Test

compiler Plus has both combinational and sequential ATPG algorithms [28].

(Well-Behaved
Sequential Scan)

(Mostly-Sequential
Scan)

Full Partial Scan

I

I

I

I.- .l-| \
I

No d"un
or Oþer

DFT Tqch

.- - Area
Oveiheld- -

<- Combinational AIPG ------>
(Test Compiler)

Sequential ATPG
(Test Compilel Plus)

Fig. 2.3: Full, Partial, and Non-Scan Trade-oJl's

There are some limitations to the scan design technique. For example, scan design tech-

niques do not work well with certain circuit structures, including:

-12-

Chapter 2: Test and Design-for-Testability Overview

Large, nonscan macro functions (e.g., microprocessor cores).

Compiled cells (e.g., RAMs and ALUs).

Analog circuitry.

2.4.3 Boundary Scan

Boundary scan improves board level testing by providing an interface through which data

can shift between circuits on the board, thereby, making each net on a board accessible.

Boundary scan is also referred to as JTAG (Joint Tþst Action Group) and IEEE standard

1149.1testing. Figure 2.4 shows how boundary scan works.

package interconnect

TDI

TCK

TMS

TDO

boundary scan cell test interconnect

Fig.2.4: Boundary Scan

The input and output ports of each chip are stitched together into a scan path [13]. The scan

path begins at TDI (test data in) and ends at TDO (test data out). The TDO line of one chip

is connected to TDI of the next chip. TCK (test clock) and TMS (test mode select) are inputs

connected to every boundary scan device. The scan path connects all the boundary scan

devices on the board. This configuration allows board interconnection test, snapshots of nor-

13 -

Chapter 2: Test and Design-for-Testability Overview

mal system data, and testing of individual chips.

The IEEE standard 1149.1Boundary Scan interface consists of:

' TAP (Test Access Port): At least four signals TMS, TCK, TDI, TDO compose the test

bus, TRST (asynchronous test reset signal) is optional.

' TAP Controller: Controls the operation of the instruction and test data registers.

' Instruction Register: At least two bits long, it decodes at least three instructions which

are BYPASS (allows testing a specific chip in the scan chain without shifting through

the SR stages in all chips), EXTEST (allows testing of off-chip circuitry), SAMPLE/

PRELOAD (places the boundary-scan register in the DR chain, and samples or preloads

the chip I/Os).

' Boundary Scan Register: A shift register consisting of the connection of boundary scan

cells that can parallel/serially load and unload the input and output data of the circuit.

' Bypass register: shortens the serial path between TDI and TDO when there is no require-

ment to test the current device. In this manner data bypasses the current chip and are

shifted to other chips more directly.

' Tþst Data Register: includes the optional device identification register and data-specific

registers.

2.5 Design Flow Using the Synopsys Test Synthesis Tools

2.5.I Test Synthesis

Test Synthesis is a technique which incorporates test and synthesis into one [14]. Tradition-

ally, DFT circuitry is added manually after logic synthesis, however this is very time-con-

suming. Test synthesis approaches shorten design time and arc therefore an increasingly

t4-

Chapter 2: Test and Design-for-Testability Overview

important part of circuit design.

There are two classes of test synthesis tools available: gate-level and RTL test synthesis. In

gate-level test synthesis, the gate-level model is used to drive the test synthesis process.

First, logic synthesis of RTL code is performed, then test circuitry is added and test vectors

are generated for the synthesized model. In RTL synthesis, designers add the test circuitry in

the RTL code, then conduct logic synthesis for this RTL code with the test circuitry. Gate-

level test synthesis is more mature and morc suitable for full scan design. The Synopsys Test

Compiler family and Mentor Graphics FastScan use gate-level test synthesis techniques.

RTL test synthesis is newer and more suitable for a boundary scan methodology.

2.5.2 Design Flow Using the Synopsys Test CompÍler Tool

A typical DFT design flow using the Synopsys test compiler is described below. The fea-

tures of the Test Compiler tools are also illustrated within the flow. The Test Compiler is

used in three hieratchical stages: module level, chip level, and board level. A complex

design is partitioned into subdesigns which are less complex, subdesigns are at the module

level. At this level, scan compliance is analyzed, fault coverage is estimated and testability

problems are identified and solved. These activities are called testability analysis. By doing

testability analysis at the module level, problems are conected early in the design cycle and

time-to-market is shortened. At the chip level, testability analysis on the top level design is

done as was done for the module level, this ensures all the test violations are solved, then the

scan structure is inserted into the design. If boundary scan is not to be added to the design,

final test vector sets are generated and formatted. However, if boundary scan is to be added,

the process moves to the board level test process, in which JTAG is added, and the final test

vectors are generated and formatted for a specif,c technology.

t5-

Chapter 2: Test and Design-for-Testability Overview

Referring to Figure 2.5, the methodology for using the Tþst Compiler on subdesigns is [29]:

1. Choose scan styles. If the design is purely combinational, define combinational as the

scan style. If the design is sequential, select one of the styles the Test Compiler suppofis,

which are Multi flip-flop, Clock Scan, LSSD and Auxiliary Clock LSSD. The Test Compiler

requires that the same scan style be used on the entire chip.

2. Optimize the subdesign by using the Design Compiler.

3. Check design rules. For combinational designs, the Test Compiler checks combinational

feedback loops. For sequential designs, it analyzes the design for compliance with the scan

design rules associated with the selected scan style, and reports any violations.

4. Estimate fault coverage. Design rule violations cause significantly lower fault coverage.

Statistical ATPG can quickly estimate the fault coverage.

5. Fix testability problems. If the fault coverage estimated is not acceptable, the designer

needs to fix the testability problems which were detected in step 2. The best method is

selected to fix the problem. The target for modification might be the RTL description or

gate-level netlist. After the design modification, the cycle from step 1 to step 5 is repeated

until an acceptable fault coverage result is achieved.

After module level testability analysis is done for all the subdesigns, the next step should be

chip level testability design. The methodology using the Test Compiler at this level is:

1. The same testability analysis is done on the top design as it is done on module level, this

ensures that all the violations have been identified and resolved. 1007o fault coverage esti-

mated on each module does not ensure l00o/o fault coverage at the chip level.

2. Insert scan circuitry. Although the scan logic is inserted at the top level, the Test Compiler

can automatically insert the scan test stlucture through the r,vhole hierarchy. Single or multi-

ple scan chains, full or partial scan style can be chosen. The Test Compiler supports full scan

design. The Test Compiler Plus supports partial scan design, by selecting a percentage of

16-

Chapter 2: Test and Design-for-Testability Overview

sequential cells to scan according to performance, atea, and testability constraints.

Module level Chip level

Board level

to chip level

Fig. 2.5: Module and Chip Level Testability Analysis and Design

3. If necessary, perform timing analysis and incremental optimization.

4. Generate and fotmat manufacturing test patterns. An AIPG is used to generate the final

set of manufacturing test pattems which is targeted to a specific semiconductor vendor (for

example, FPGA, BiCMOS, i.e.). After the generation, you can format the pattems to one of

the following styles: Synopsys generic format, TDS ASCII format, WGL forrnat, Verilog

format, oI VHDL fonnat. If you want to do board level testability design, test patterns can

be generated and formatted later.

optimize

top design
f.c. estimation

fix ATPG
conflicts

insert
scan circui

generate and
at test vec

t7-

Chapter 2: Test and Design-for-Testabiliry Overview

tt---
I generate

: JTAG reporr---t--
I anatyzT -,

insert JTAG

-l

I

J

Fig.2.6: Board Level Testability Design

The fault coverage used by the Test Compiler is defined as follows. It is used to calculate

both incremental and cumulative fault coverage 1281.

faults detected
x I00Vo

total faults - tied - redundant

A tied fault cannot be tested because it is connected to logic i (tied high) or logic 0 (tied

low). A redundant fault cannot be tested because the overall static behavior of the circuit is

independent of the values at this node. Test compiler and Test Compiler Plus use a combina-

tional AIPG algorithm for full-Scan designs; Test Compiler Plus uses a Sequential ATPG

algorithm for partial-scan designs. Combinational AIPG uses random and deterministic

techniques to generate test pattems for stuck-at faults. Sequential AIPG uses deterministic

techniques to generate patterns for stuck-at faults.

After the chip level testability design is completed, a core design is ready for board level

boundary scan insertion. This is shown in Figure 2.6. The Test Compiler does not support

boundary scan synthesis on designs without an I/O pad ring. It synthesizes the 1149.1JTAG

-18-

Chapter 2: Test and Design-for-Testability Overview

logic around the core logic design. After the insertion, a boundary scan report is generated

and testability is analyzed. Finally, test patterns are generated for the entire design with

JTAG circuitry included. The Test Compiler does not generate test patterns to test boundary

scan logic, so the fault coverage of this test set is low. When the fault coverage is checked,

the fault coverage for the core design will be close to the fault coverage obtained for the

chip level testability design before the JTAG was inserted.

After the DFT and AIPG is done for the design using the Test Compiler, fault simulation

using TestSim may be performed. Preparation for the fault simulation includes generating a

TestSim library, generating a TþstSim model for the design, and starting the fault simulation.

TestSim can simulate both the patterns generated by Test Compiler AIPG and functional

vectors generated manually. TestSim fault simulates ATPG vectors either in serial mode (for

multi flip-flop designs only), or in parallel mode. TestSim does not support fault simulation

for LSSD designs. The fault coverage results reported by TestSim are greater than or equal

to those reported by Test Compiler. This is because Test Compiler úeats some cells as black

boxes due to design rule violations, but these cells are not black boxes for TestSim. The

functional vectors which TestSim can use must meet two requirements. One is that the vec-

tor file must be one of the formats accepted by TestSim which are TSSI TDS, ASCII, TSSI

WGL, or WIF, the other is that the vectors must be cycle-based. A set of vectors is cycle-

based when this sequence of events is of the same period (or cycle) throughout the vector

set.

TestSim automatically disables the scan functionality at the stzut of the fault simulation, so

the verifrcation result of the pre-scan logic simulation can be used on the scannable design.

The Multi-Style, Multi-Pass capability of the Tþst Manager enhances fault coverage [28].

This is shown in Figure 2.8.

19

Chapter 2: Test and Design-for-Testability Overview

gate-level schematic
(with scan circuitry)

Functional
test pattems

fault simulati
(TestSim)

detect faults
report f.c.

test syn
(Test Compiler)

Fig. 2.7 : Fault Simulation Strategies

Fault
Coverage

I00o/o

v.'{.Íí.!í//l!/.,:/,i;fif.iulilii:äit7/..ti.Fl,f¡l},!Æi!ií/:i/Llíi?,tî/lt/l;Ni?/.ti,://í/¿,{.i.!'t::r..} ii

ûal Vectors Manual Vectors

Com ational Vectors
binational Vectors

tional Vectors

Running Time

2.6 Experience \ryith the Synopsys Test Synthesis Tools

Testability Analysis and Design Results

Testability analysis and design results for five examples are reported here. A brief descrip-

tion and test results are given below. Time reported is on a SUN/SPARC5 with 64 MB of

-20 -

Chapter 2: Test and Design-for-Testability Overview

memory. The designs are denoted rom (Read-Only-Memory), tlc (traffrc light controller),

wJþ (wavefotm generator), vend (vending machine), aîd counts (count zeros circuit). Test

synthesis was used both for combinational and sequential circuits, with a scannable cell

number up to 49. Fault coverage of l00o/o is achieved for all of the circuits, with run time

being very short. The number of scannable cells is the same as the number of clocks per pat-

tern. The synopsys test synthesis system has proven to be quite successful.

Täble l: Experiment results using the Synopsys Test Compiler

2.7 Utilizing ATPG Test Vectors

ATPG test patterns generated by the Synopsys Test Compiler are developed from the gate-

level model. These ate used for detecting stuck-at faults and reporting fault coverage results.

In addition to this original purpose, the author developed two new methods to use this ATpG

in which ATPG works as the normal functional VHDL testbench, simulating at the RTL and

gate-level of the design. The simulation results are shown as waveforms for all the input and

output signals, thus giving us a quick idea about how the signals look. If it is a sequential

circuit, the signals also include the clock, test-sc, test_se and test_so signals. All the incor-

rect responses can be detected and the error message will be shown on the screen. Ar?G test

Circuit
name

I of faults
'non-collapsed)

of faults
(collapsed)

cpu time
(sec)

f.c
(vo\

of tes
patternt

of compacted
patterns

of scannable

squential cells
of clocks
per pattern

rom 47)'7 0.t2 100 4 4 0

counts M4 267 0.29 100 34 29 tl 11

wfg 641 375 0.85 r00 43 35 ll 12

vend 388 261 0.29 r00 26 25 J J

tlc 2143 2093 3.12 100 90 61 49 49

-21

Chapter 2: Test and Design-for-Testability Overview

patterns used for this purpose must be formatted in VHDL.

ATPG Test Vectors Simulated at the RTL Level

The first method developed for AT?G simulation at the RTL

2.9.

level is illustrated in Figure

verify
functionality

Fig.2.9: ATPG Vectors Simulated at the RTL Level

Originally, in the ATPG testbench, the target model is the gate-level netlist synthesized and

optimized from the RTL code, with scan circuitry inserted if it is a sequential circuit. But if
add scan circuitry code into the original RTL code by hand, then replace the target model

with this RTL code, and conduct simulation with the ATPG test patterns, the AIPG test pat-

terns can be used as a functional testbench. Waveforms for the simulation results can be

obtained and the functionality of the circuit can be verified. In this waveform representation,

each input and output signal is clearly shown.

The VHDL configuration file feature enables the user to change the target model. For the

original ATPG test patterns in VHDL format, its configuration file is as follows.

manually add
scan circuitry code

-22 -

Chapter 2: Test and Design-for-Testability Overview

CONFIGURATION TOP_ctl OF TOP_tb IS
FOR testbench

FOR U0: TOP USE ENTITY WORK.TOP (SYN_SCHEMATIC);
END FOR:

END FOR;
END TOP_ctl;;

It can be changed into the one as follows:

CONFIGURATION TOP ctl OF TOP tb IS
FOR testbench

FOR U0: TOP USE
END FOR:

END FOR;
END TOP_ctl;

ENTTTY WORK.TOP (SCI-IEMATTC);

A simple example is used to present this methodology. The circuit ANDGAIE is shown in

Figure 2.10. After scan insertion, the circuit has three additional signals test_si, test_se, and

test_so. As before, test_si is the scan input signal, test_se is the scan enable signal, and

test_so is the scan output signal.

a
b

clk
test sl

test se

c / test so

Fig.2.10: Two-input And Gate with Registered Output (circuit ANDGATE)

The code for the register part before and after scan s[ucture insertion is as follows. When

test-se is active, the circuit is in test mode, it shifts test_in to test_out. When test se is inac-

tive, the circuit wolks in normal mode.

-23

Chapter 2: Test and Design-for-Testability Overyiew

enriry REG is
port (CI: in std_logic;

CLK: in std_logic;
C: out std_logic);

end REG;

architecture BEHAVIORAL of REG
begin

process(clk)
begin
if (clk'event and clk:'1 ') then
c<:cii
end if;
end process;

end BEHAVIORAL:

entity REG is
port (CI: in std_logic;

CLK: in std_logic;

test_si: in std_logic;
test_se: in std_logic;
test_so: out std_logic;
C: out std_logic);

end REG;

architecture BEHAVIORAL of REG is
begin

process(clk)
begin

if (clk'event and clk:'l') then

if (test_se:'1') then
test_so<:test_si;

else
c<: cil

end if;
end if;
end process;

end BEHAVIORAL'

(2)

IS

(1)

Fig. 2.11: VHDL Code for the Registen (l) Before, and (2) After Test Structure Insertion

Similarly, for the top level code, signals test_si and test_se are added as inputs, and test_so

is added as an output in the entity port statement, and the same is done to the REG compo-

nent port statement and the REG instantiation statement.

This technique is suitable for combinational circuits and simple sequential circuits. For

combinational circuits, the designer only needs to modify the conf,guration file, and no scan

insertion is needed. Manual scan structure insertion at the RTL level for complex sequential

circuits may be complicated.

24-

Chapter 2: Test and Design-for-Testability Overview

ATPG Test Vectors Simulated at the Gate-level

ATPG test vectors can also be used to stimulate the gate-level version of the design, For the

sequential circuit, this gate-level version has scan circuitry added. Figure 2.12 shows how to

get a gate-level VHDL description for the design. Test Synthesis transfers the RTL code to a

Synopsys Database file, which is a gate-level netlist with scan circuitry inserted. The Synop-

sys SGE tool translates the database file into SGE graphics symbolic and schematic files.

The Synopsys SGE tool then translates these graphics files into VHDL. Details about these

processes will be discussed in Chapter 3. The gate-level VHDL description is the UUT

(Unit Under Test) which will be instantiated in the AIPG testbench.

Modiûcation of the configuration file should be done to make sure the UUT is a gate-level

description. FOR U0: TOP USE ENTITY WORK. TOP (SYN_SCHEMAZIC) should be

replaced by FOR U0: TOP USE ENTITY WORK. TOP (SCHEMATIC).

simulation results
waveforms

Fig.2.l2: ATPG Vectors Simulctîed at the Gate-Level

database file to
SGE file transfer

SGE file to
VHDL file

(with scan)

-25 -

Chapter 2: Test and Design-for-Testability Overview

2.8 \C Testing Using VXI and the IC Test Head

VXIbus Test System

VXI stands for VMEbus eXtensions for Instrumentation. VMEbus is a standard protocol

(IEEE STD 1014) for interconnecting digital subsystems. The VXIbus has additional con-

nections for a variety of trigger and clock signals. By using the VXIbus, an open hardware

intetface between the test inshuments of a testing system is defined. Greater flexibility and

higher speed communication between instruments becomes possible.

The VXI test system consists of one hardware platform, the HP 75000 Model D201261, and

a number of software platforms that can be used with this hardware. These software plar

forms include: llP 81496, SCPI, SICL and HP VEE.

The FIP 81496 software was used in the experiment. It consists of a vector spreadsheet and

a timing cycle spreadsheet. The user can define test patterns, pin groups and timing cycles in

the spreadsheets. Test patterns can be stored in a PCF (Pattern Capture Format) file and

imported to the spreadsheet or put into the spreadsheet manually. After all the deûnitions,

test data can be sent to the DUT (Design Under Test), through the I/O pattem pod or timing

control pod. The PCF file can be generated in an automated way.

ATPG test sets are generated by the Test Compiler and formatted into WGL (Waveform

Generation Language) style, then modified into PCF format. This is the automated way the

author developed to get the PCF file.

The VXI system has the following features: it is standard, flexible, and upgradable. Figure

2.13 illustrates the IC Test Head and its interface to the vXI test system.

-26 -

Chapter 2: Test and Design-for-Testability Overview

IC Tþst Head

I

I

I

Test Head

VXIbus test system

Fig.2.13: Sigrul Routing and Distribution

The Test Head and DUT board are the hub of any IC test system. The CMC TH1000 mixed

signal IC Test Head [25] is a low cost test fixture designed to test mixed signal integrated

circuits. External signals are introduced through SABs (signal adaptor boar-ds), which can

carry digital and/or analog signals for testing.

This section is included to illustrate a physical test environment that could be used for man-

ufacturing test within the test framework developed in thesis.

Because of the faults in relay boards and lacking of SABs, the author did not finish the test-

ing of the ALU.

2.9 Summary

This Chapter reviewed test and Design-for-Testability techniques including full scan, partial

scan and boundary scan approaches. As a more and more important technique for testability

design, test synttresis was also discussed. Design flows using the Synopsys test synthesis

tools on module, chip and board level were presented, experimental results were also

-27 -

Chapter 2: Test and Design-for-Testability Overview

shown. The author developed two novel approaches for utilizing the test vectors generated

by the Synopsys AT?G, one for RTL simulation, the other for gate-level simulation. Finally,

Component overview for physical testing of a chip using VXIbus test system and CMC IC

test head was presented.

-28 -

CHAPTER 3

HIGH LEVEL DESIGN
METHODOLOGIES

3.1 Introduction

This chapter will describe how a design can be developed, from a behavioral description

down to a gate-level structural description. High level design methodologies and the Synop-

sys tools are involved in each stage, including functional partitioning, state machine to RTL

code transfer, schematic and VHDL design entry, logic synthesis and optimization, database

file to SGE file transfer and SGE file to VHDL model transfer. The features of Synopsys

SGE, VHDL Compiler and Design Compiler tool will be presented. VHDL plays an impor-

tant role in the high level design process.

3.2The High Level Design Process

Figure 3.1 is a traditional flow producing a chip from a behavioral description. The behavio-

ral description could be natural language (e.g. English), an executable programming lan-

guage (e.g. C) or some other behavioral model (e.g. Finite State Machine, Petri Net, etc.).

Simulation at this stage is for identifying malfunctions, weakness or ambiguities in the

behavioral description. The behavioral description can be translated into RTL code, manu-

ally or mechanically (by automation tools). The RTL model is verif,ed with a testbench. The

-29 -

Chapter'3: High Level Design Methodologies

functional
test pattems

With this design method, specification errors are

plocess, and conections are performed in shorter

re-usable for other projects.

equivalence checks

equivalence checks

identified in the early stages of the design

iteration cycles. The functional blocks are

Fig. 3.1 : High Level Design Flow

behavioral and RTL models can be fed with the same functional test pattenìs and the

responses must be the same. The RTL code may be then synthesized into a gate-level form

and finally transformed to layout. This could also be done by hand or automatically. The

functionality of different descriptions must be proved isomorphic. This is done by applying

a stimulus to different abstraction levels and comparing their results.

Methodologies for applying stimuli to RTL and layout simulation and for comparison of

their results will be discussed in Chapter 4. Designers spend most of their time in the design

cycle on high-level design and validation, including checking compliance to expected

behavior and modifying the design as needed. As such, this is one of the most important

aspects ofthe design process.

Behavioral
Description

silicon

-30-

Chapter 3: High Level Design Methodologies

3.3 The VHDL Hardware Description Language

Because of the rapid growth of IC design complexity, hierarchical top-down design methods

are utilized. An efficient approach is to incorporate a hierarchical hardwarc description lan-

guage. VHDL (Very High Speed Integrated Circuit Hardware Description Language) is

such a language and helps top-down design in two ways. First, as a specification tool, simu-

lation of complex systems can begin before implementation details are realized. Second,

VHDL facilitates the top-down design process where the higher level specification is devel-

oped, debugged and finally used to judge the correctness of the next lower level specifica-

tion and implementation.

VHDL plays a significant role in high-level VLSI design. VHDL has been standardized as

IEEE Standard 1076 and is accepted world-wide. It is a comprehensive language that makes

dealing with design complexity easier. With VHDL, data and the design process are man-

aged effectively. VHDL itself is not overly complex, but it is rich and powerful. The scope

of VHDL includes descriptions from behavioral and architectural levels to the gate level.

The language is hierarchical and mixed-level simulation is supported. VHDL covers a wide

range of what other languages can not. Moreover, design automation, CAD tool develop-

ment, logic synthesis, simulation and test pattenì generation are made much easier using

VHDL [30].

VHDL has the following features: a simulation modeling language, a design entry language,

a test language, a netlist language and a standard language. In the design process, there are

many points at which VHDL can be helpful: design specification, design capture and design

simulation, design documentation, as an alternative to schematics, and as an alternative to a

proprietary language.

-31 -

Chapter'3: High Level Design Methodologies

By using VHDL, the designer's productivity can be dramatically improved, and he/she can

take advantage of powerful tools for simulation and design verification. The reasons a-re:

1) High reuse of VHDL by building and using libraries of commonly-used VHDL modules,

2) With the rapid pace of development in electronic design automation (EDA) tools and tar-

get technologies, using VHDL can help you move into more advanced tools without having

to re-enter your circuit descriptions. Unlike other programming languages, VHDL can

describe concurrent (parallel) processes and their timing.

As a summary, the primary benefits of using VHDL are as follows:

. Makes the design specification more technology-independent:

- Allows the use of multiple vendors

- Avoids part obsolescence

- Documents in a standard way

. Automates low-level design details:

- Reduces design time

- Gets the design to market quicker

- Reduces design cost

- Eliminates low-level errors

. Improves design quality:

- Allows exploration of alternatives

- Verifies the design function at a higher level

- Verifies that the implementation matches the expected functionality

- Promotes design component re-use and shar.ing

VHDL has three types of descriptions: behavioral, dataflow, ancl structural. In the behavioral

description, the sequential VHDL process is used to express the algorithm or behavior of a

design. The structural description describes the interconnection of the components of a

-32-

Chapter 3: High Level Design Methodologies

design, by instantiating components. The dataflow description is in between, and is an oper-

ation defined in terms of a collection of data transformations.

3.4 Functional Partitioning

In the example elevator controller system, the system is partitioned into three modules. Each

module performs a specific and relatively independent function. The modules have signals

interconnecting them, so they can communicate with each other. The three modules work

together to carry out the functions of the whole system. The three modules are:

. door_control

. button_timing_light

. decision_make

The door_control module controls the movement of the elevator door when the elevator

stops at a certain floor. The button_timing_light module performs whenever the user presses

the button making a request to go to a certain floor, times each request, and controls the but-

ton light turning on and off. If a request is made, the button light is turned on. Once the

request is met, the button light is turned off. The final module is decision_make.It makes the

decision whether the elevator should go up or down. After the decision is made, the motor

and arrow lights are given proper signals. If the elevator goes up, the motor drives the eleva-

tor up and the up an'ow light is tumed on. If it goes down, the motor drjves the elevator

down and the down arrow light is turned on. The decision is made based on comparing

which request timing is the longest and which floor the elevator is currently on.

-33 -

Chapter 3: High Level Design Methodologies

NUI,IBælLIGHT (2:ø

5TARI_CoUNT (6: ø)

_COUttT(6:01 C

Fig.3.2: Elevator Controller and its Submodules

3.5 Design Entry --- Schematic and VHDL

After the functional partitioning, the user can start entering a design either through sche-

matic or VHDL code. Synopsys SGE (Synopsys Graphical Environment) is used for design

entry and simulation of the design interactively. It consists of a schematic editor, a symbolic

editor, a hierarchy navigator and a VHDL netlister. ln the first two windows, the block dia-

gram can be drawn and the signal names and types can be defined as shown in Figure 3.2.

The VHDL netlister can generate the top level design structural VHDL, the top level design

VHDL testbench template, and the bottom level module behavioral VHDL template. The

user can use the text editor to manually enter behavioral code into the testbench and RTL

level behavioral VHDL.

-34-

Chapter'3: High Level Design Methodologies

3.6 From Behavioral DescrÍption to RTL Code

The finite state machine is a very popular tool for defining the behavior of a system. It is a 5-

tuple,F:(x,Q,Z,ô,crl),whereXisafinitesetofinputs,Qisafinitesetofstates,zisa

finite set of outputs, ô is an output function, c'¡ is the next state function.There are two kinds

of finite state machines, one is the Mealy machine, another is the Moorc machine. Mealy

outputs are a fi¡nction of state and input (Q xX-->Z), while Moore outputs are a function of

state (Q-->Z) alone.

conditions_ 1 /actions_ 1

Fig. 3.3: Mealy State Trrmsition Diagram

State Transition Diagrams and State Transition Matricies are two styles for representing

state machines. The general structure of a Mealy State Transition Diagram is shown above.

The diagram consists of states (circles) and transitions (arrows). Transitions are made up of

input conditions that cause the transition and output actions that happen along with the state

transitions.

The door-control module in the elevator_controller design is used to illustrate a realistic

Mealy State Transition Diagram (see figure 3.4). Door-control controls the movement of the

elevator door when the elevator stops at a certain floor. For the signal names, refer to Figure

3.2. There are four states for the door: closed, opening, open, closing. At any time, when rsl

is effective, regardless of what state the door is in, the door goes to the closetl state. When

the current state is closed, there is one possible next state: opening. When ready_to_go is

conditions Oiactions 0

-35-

Chapter 3: High Level Design Methodologies

'I' , manual_open is effective, someone presses the open door button, or a delay for 3 sec-

onds occurs, the door will open. The door goes to opening state, and the output action is:

open_drive is '1', close_drive is '0', which allows the motor to drive the door open. Other

transitions are easy to understand in the same way. In Figure 3.4, all'l' values moan signal

effective, '0' values mean ineffective.

rst: '1'/
open_drive:
close drive:

ready-to-stop: '1 '
' and (manual_open: '1' or button_open:

or wait for 3

open_drive: '1'
close_drive:'0'

close_done:'1

open_drive:'0'
close drive:'0'

Fig. 3.4: State Machine for Door Control Module

A state machine may be coded using one or two case statements, but one case statement is

preferable, because it is more concise and clear. Figure 3.5 shows a typical VHDL coding

strategy for a state machine.

Mentor Glaphics SDS tools have State Transition Diagram (STD) and State Transition

Matrix (STM) editors. The tools can generate VHDL code from STD or STM automatically

and do animation in STM to simulate the behavior of the system. These tools were not used

for the elevator controller design. They are mentioned here and have been previously used

open-done:'l/
open-drive:"0',
close drive:'0'

/ open-drive:'1',

I close_drive:'0'

manual_close:' l/open_drive:'0',
or wait for 5 secs/ close_drive: 'l'

-36-

Chapter 3: High Level Design Methodologies

by the author merely to illustrate that commercial high level graphical STD tools are availa-

ble.

architecture State_Machine of module_A is

type state_type is (state_1 , state_2, state_3);
signal cun'ent_state, next_state: state_type;

begin

process (inp ut - I is t, cun ent_state)
begin
-----synchronous reset
if (rst:'0') then
outputs and next state initialiation
else
-------state transitions and output logic
case cuffent_state is
when state_l :> if (input condition is true)then

next_State <: state_2;
assign output;
end if;

eäb process;

process(clk)

begin

if (clk'event and clk:'1') then
curren t_state<:nex t_state;
end if;
end process;
end State_Machine;

Fig. 3.5: Typical VHDL Coding for ct State Machine

3.7 From RTL Level to Gate Level

The process which transfers RTL level code to gate-level code is shown in Figure 3.6. The

process includes three stages: logic synthesis and optimization, database file to SGE file

transfer, and SGE file to VHDL file transfer. Each stage will be discussed below.

--tt-

Chapter 3: High Level Design Methodologies

Logic synthesis and opt¡mization:

Synthesis is a process that transforms a circuit defined at one level of abstraction into a

lower level definition subject to contain constraints. Optimization modifies the structure of

the

logic according to timing and area constraints which are defined by the user, and maps the

netlist to a certain technology.

File sub-fixles Flow Tool

.vhd - -
VHDL Compiler

Design Compiler'

.db_ _

SGE
.sym
.scn

SGE

.vhd - -

Fig. 3.6: From RTL Level to Gate-Level

The Synopsys VHDL Compiler and Design Compiler are synthesis tools that work together

to carry out the logic synthesis and optimization tasks. The Synopsys VHDL Compiler tools

optimize the VHDL design at the architecture level. The Design Compiler tools optimizethe

design at the gate-level. The VHDL Compiler accomplishes two things: converting VHDL

to an internal format, and optimizing block level representation through different optimiza-

tion methods. The Design Compiler reads the design in internal format from the VHDL

logic synthesis
and optimization

database f,le to
SGE file transfer

SGE file to
VHDL file transfe

'gate-level codd

-38-

Chapter 3: High Level Design Methodologies

Compiler, then optimizes and maps the design's structure for a specific technology. The

VHDL Compiler synthesizes VHDL according to a certain synthesis policy. A synthesis

policy consists of three parts: design methodology, design style, and language constructs.

The Design Compiler takes the internal database format generated by the VHDL Compiler,

performs logic optimization for area and timing, reconstructs part or all of the design, and

maps it to a target technology.

Accurate and achievable constraints must be set before a design is optimized. These con-

straints include: clock constraints (clock period and edge), time delay constraints (for rising

edge and falling edge, the maximum rise and fall, the minimum rise and fall times), and area

constraints. After constraints are set for a design and before a design is compiled, the

check_design command is run to identify and help correct any problems in the design.

Database file to SGE file transfer:

After synthesis and optimization using the VHDL Compiler and the Design Compiler, the

technology-dependent gate-level netlist of the design will be a Synopsys database file (.db).

To transfer this file to SGE graphics, the technology library must be translated to VHDL.

The symbols for the CLASS library should be added to the Symbol Library search parh in

the .synopsys-sge.setup file. Using the"db2sg¿" command or the SGE Hierarchy Navigator

window menu "setup>DA to SGE transfer", the database file is transfened to SGE files, a

schematic file (.sch) and a symbolic f,le (.sym).

SGE file to VIIDL file transfer:

Finally, a new VHDL design description can be created, by using the Synopsys SGE win-

dow menu command "code VHDL models". This a structural VHDL design. The architec-

-39 -

Chapter 3: High Level Design Methodologies

ture consists of instantiation statements for gate-level components (refer to Figure 3.8 which

presents architecture level VHDL for the multiplexer of Figure 3.7).Library CLASS is the

ASIC vendor technology for this design. Port maps in the component instantiation state-

ments express network connectivity. The configuration statement (see Figure 3.9) refers to

primitives from the library CLASS with architecture FTSM. At this stage, a gate-level

VHDL file (.vhd) is created for the design. In Chapter 4, this gate-level VHDL file will be

shown to be very useful when doing after-synthesis simulation or mixed level simulation for

a design.

when c is '1', f is a;

f when c is '0', f is b;

a,b, c, f are all one bit.

Fig.3.7: Multiplexer

The RTL version for multiplexer is:

entity MUL is
port(a,b,c: in std_logic; I out std_logic);
end MUL;

architecture BEHAVIORAL of MUL is

begin
process(a,b,c)
begin
if c:'1'then
f<:a;
else
f<:b;
end if;
end process;

end BEHAVIORAL;

Fig. 3.8: RTL LevelVHDL DescriptionJ'or Multiplexer

a

b

c

-40-

Chapter 3: High Level Design Methodologies

--- VHDL Model created from SGE schematic mul.sch -- Apr 2614:.13:36 1996

Iibrary IEEE;
use IEEE.std_logic_ I I 64.all:
use IEEE. std_logic_arith.all ;

Iibrary CLASS;
use CLASS.components.all;

entiry MUL is
Port(A:INSTD_LOGIC;

B : IN STD_LOGIC;
C : IN STD_LOGIC;
F : OUT STD_LOGIC);

end MUL;

architecture SCHEMATIC of MUL is
signal n17 : stcl_logic;
signal f_DUMMY: std_logic;

begin

f <: f_DUMMY;
U8 : IVA

Port Map (A:>b, Z:>nl7);
U7 : EON1

Port Map (A:>ni7, B:)c, C:)â, D:)c, Z:>f_DUMMY);

end SCHEMAIIC;

conf,guration CFG_MUL_SCHEMATIC of MUL is

for SCHEMATIC
for U8: IVA

use entity CLASS.IVA(FTGS);
end for;
forUT: EON1

use entity CLASS.EON i (FTGS);
end for;

end for;

end CFG_MUL_SCHEMATIC;

Fig. 3.9 : Gate-level VHDL Description for Multiplexer

-4t-

Chapter 3: High Level Design Methodologies

Some statements are non-synthesizable, such as'. wait for, assert, reacl, readline, while(),

loop.

3.8 Summary

This chapter considers the issues of high level design methodologies, cliscusses how to

develop a design from the initial specification down to gate-level implementation. The state

machine is presented as a very useful behavior description tool. RTL VHDL code can be

derived from the state machine model. Logic synthesis and optimization can be done auto-

matically using CAD tools. A gate-level version of a VHDL file can be transferred from the

RTL version of the VHDL file using the CAD tool Synopsys SGE. The VHDL feature dem-

onstrated is that it works as both behavioural and implementation language. This is illus-

trated using an elevator controller design example.

-42-

CHAPTER 4

TESTBEI{CH GEi\ERATIOI\ A¡{D
APPLICATIOI\ METHODOLOGIES

4.1 Introduction

In Chapter 3, it was mentioned that one of VHDL's benefits is that it is a test language. How

VHDL works as a test language will be discussed in this chapter. This feature of VHDL is

referred to as the VHDL testbench. Testbenches wolk for both manufacturing and functional

verification purposes. The testbench that works for manufacturing verification purposes can

be generated automatically by CAD tools, as was discussed in Chapter 2. This chapter

focuses on functional testbench generation and application methodologies. In this chapter,

testbench concepts, styles, generation methodologies, and how a testbench simulates at dif-

ferent levels of abstraction will be discussed. The testbench simulation results for the eleva-

tor controller design will also be presented.

4.2 YIJDL Testbench

A testbench is a functional block, where the UUT (Unit Under Test) and reference models

are embedded (it is also called a test bed). Responses from the reference model and from the

UUT will be compared at certain clock periods. From this idea, a practical testbench scheme

has been developed as illustrated in Figure 4.1 which shows the high level structure of the

-43-

Chapter 4: Testbench Generation and Application Methodologies

testbench.

I

I

I

I

I

I

I

I

L

---'t
I

¡Response Gol
No Go

_ i'yi'l _

Fig. 4.1: Structure oJ A Testbench.

The testbench consists of a Stimulus Generator block and a Comparator block. The design

to be tested, is instantiated in the testbench as the unit under test (UUT). The Stimulus Gen-

erator block is responsible for stimulating the UUT and is the heart of the testbench. The

Comparator block monitors device outputs and compares the expected outputs with the real

outputs. If the real response does not match the expected response, an error message will be

shown, and modification of the testbench, UUT, or test vectors is needed. The goal of a test-

bench is to thoroughly exercise the UUT by creating stimulus generators and comparators

that exercise the UUT to verify its compliance to specification.

The testbench can be used to verify behavioral descriptions at the RTL level and to verify

structural descriptions at the gate-level. The higher the abstraction level the testbench is

generated in, the more convenient it is to control. The trend is to use a high level to generate

test programs.

VHDL based testbenches have the following charactedstics:

. Developmentefficiency

. Reusability

l----¡

Expected Response

- 44-

Chapter 4: Testbench Generation and Application Methodologies

Inherent documentation

Tool vendor independence

Mixed level simulation - VHDL based testbenches allow simulation at all levels. From

the behavioral level down to the gate level

A testbench consists of four major sections: library inclusions, entity declaration, test archi-

tecturc and configuration statements. Libraries contain packages of shared subprograms.

The testbench is the uppermost level of the hierarchy. All operations are performed inside

the testbench, so it has no input and output signals in its entity. In the architecture declara-

tion, there arc component declarations (indicating which design is used as the UUT), signal

declarations, and input stimulus generation and response checking processes. The compo-

nents are instantiated in the configuration statement.

library IEEE;
use IEEE. std_logic_ 1 | 64.all;

Section 1 Library Inclusion

entity testbench is
end testbench; Section 2Top Level Entity

architecture A of testbench is
end A; Section 3 Test Architecture

Configuration cfg_A of testbench is
end cfg_A;

Section 4 Test Conf,gurations

Fig. 4.2 : Testbench Structural Confents

Functional behavior is more easily described, analyzed and debugged when working with

high level descriptions of the design. The same applies to a testbench. Tests are more easily

described, analyzed, and debugged when working with high level descriptions of the test-

bench. In this thesis, high level descriptions have the same meaning as functional and

behavioral descriptions.

-45

Chapter 4: Testbench Generarion and Application Methodologies

Developing HDL (Hardware Description Language) testbenches at high levels of abstrac-

tion is the cunent trend. It is desirable to raise the level of abstraction, allowing testbench

reuse and achieving higher quality results. Post synthesis (gate-level) simulation represents

a minimal percentage of overall simulation activity in an HlD-based methodology. RTL

level simulation occupies the greater percentage of the simulation activities.

The values used for input stimulus and output comparison are called test vectors. Tþst vec-

tors can be created and made available during simulation in many different ways. They may

be used in various combinations. For example, you can generate stimulus with a VHDL

process, and use some other method to check the circuit response.

4.3 Testbench Styles and Coding Strategies

There are different ways to do stimulus generation, application, and response checking. As a

result, testbench design has numerous styles. Although it is not necessary to do comparisons

of real responses with expected responses, it is recommended to do so. Generally speaking,

testbenches have three major styles: Ad-Hoc, algorithmic, and vector files [30]. These styles

are discussed below.

4.3.1 Ad-Hoc

An ad-hoc collection of stimulus cases are used to exercise the basic functions of the UUT.

The ad-hoc style is used in the cloor-control testbench as shown is Figure 4.3. This example

intends to check if the manual_open signal can ddve the open_clrive signal, and that

manual_clos¿ can drive the close_drive signal. The simulation result is shown in section

4.8. Ad-Hoc was the major testbench style used for the elevator_controller design.

-46-

Chapter 4: Testbench Generation and Application Methodologies

signal_stimulus: process
begin
ready_to_stop<:t6tt
manual_open<:'0r;
manual_close<:'0';
close_donea:t0t;
open_donea:'0';
interrupt<:'0';
wait for 50 ns;
rcady_to_stop<:t 1tt

wait for 40 ns;

ready_to_stop<:t6t,
wait for 200 ns;
manual_open<:r1r;
wait for 40 ns;
manual_open<:rO'l
wait for 200 ns;
open_done<:'1';
wait for 40 ns;
open_done<:'0';
wait for 200 ns;
manual_close<:t1';
wait for 40 ns;
manual_close<:'0r;
wait for 200 ns;
close_done<:'1';
wait for 40 ns;
close_donea:'O';
wait for 1500 ns;
end process;

Fig. 4.3: Ad-Hoc Test Vector Coding Jitr door control Module

4.3.2 Algorithmic

Another way to generate stimuli is to write an algorithm. For example, in Figure 4.4, aloop

statement is used to generate an incremental signal value. This code was used in the func-

tional verification of a74181ALU. The simulation results are shown in Appendix B.

-47

Chapter 4: Testbench Generarion and Application Methodologies

A_stimulus: process
variable i: integer;
variable seed: std_logic_vector(3 downto 0);
begin
A<:"0000";
seed::r10000rr;

wait for 20 ns;
foriin I toTloop
seed: :seed+"00 1 0";
A<:seed,
wait for 20 ns;
end loop;
end process;

Fig. 4.4: Algorithmic Test Vector Coding for the ALII Testhench

4.3.3 Vector Files

A testbench process fetches test vectors (including input stimuli and expected responses)

from a data file. Thus it reads the vectors as stimulus and also monitors whether the behavior

of the UUT matches the expected response in the test vector file. These test vectors might be

captured during an interactive simulation session oï generated using an algorithmic

approach.

Figure 4.6 shows one style of a testbench which obtains test vectors from an external data

file. The design is a double and gate QtndJ) as shown in Figure 4.5.Inthis case, two pack-

ages textio and std_logic_textio must be included in the library inclusion statement. The

process begins with a set of variable declarations. The declaration of F tells the simulator the

name of the test vector frle, and2.vec. TIte readline statement allows one line read from the

file F to be placed to the variable L. The read operations allow values from the line L to be

"read" into a variable. The code fbr fètching and reading the values into variables is in the

section labelled get a vector. Any difference between expected and real outputs are reported

-48

Chapter 4: Testbench Generation and Application Methodologies

by the assert statements.

Fig.4.5: Example: and 2

test: process
file F: text is in "and2.vec";
variable L: line;
variable a_in,b_in,c_in,d_i n,x_ou t,y_ou t: std_logic;

a
b

c
d

begin
readline (F,L);
read (L,a_in);
read (L,b_in);
read (L,c_in);
read (L,d_in);
read (L,x_out);
read (L,y_out);

if endfile(F) then
wait;
end if;
wait for 400 ns;

a<:a_in;
b<:b_in;
c<:c_in;
d<:d_in;

wait for 100 ns;

assert x:x_oùt
report t'Unexpected

assert |:!_out
report " Unexpected
wait for 400 ns;

end process;

\ , set a vector'I

- -1.
-'t7 assign input values

response on xt';

[esponse on y";

\

- Í check outPut values

49

Chapter 4: Testbench Generation and Application Methodologies

Data file and2.vec:

000000
010100
111111

Fig. 4.6: Testbench Fetch. Test vectors From Data File anel Data File

In the vector file, the storage order is a,b, c, d, x, y, i.e. a is the left most bit, and y is the

right most bit. The simulation waveforms produced are illustrated in Figure 4.7.

Fig. 4.7: Simulation Result J'or Circuit c¿nd 2

For a sequential circuit, the clock can be generated using an independent process like the

one shown in Figure 4.8. In this case, after the input value assignment, the statem ents "wait

until clk'event an¿ clk=' I"' ot "if (clk'event and clk=' I')" canbe used to perform synchro-

nization for output value checking. The vector file has no clock information in it.

clock_generation: process
begin
clk<:'1';
wait for half_period;
clk<:'0';
wait for half_period;
end process;

Fig. 4.8: Cktck Generation Process

-50-

Chapter 4: Testbench Generation and Application Methodologies

4.4 Testbenches for RTL and Schematic Model Equivalence Checking

After the RTL model is verified to be ñrnctionally coruect, it can be synthesized and opti-

mized into a schematic model (e.g., gate-level netlist). Does the optimized model still main-

tain the right functionality? In the following scheme, the same set of test vectors are applied

to both the RTL and schematic models of the circuit, then the outputs from the two versions

are compared. If they are equal, it means the optimized model has the right functionality.

test vec
equivalence checks

Fig.4.9: Equivalence Checking for RTL and Sch.ematic Models

There is more than one way to perform this task. One method is to plug the gate-level ver-

sion of the design into the same testbench used for the RTL level functional verification and

simulation. As long as no assertion errors are generated, it assures that the gate-level version

of the design is error-free. Another method is to use the same set of test vectors (or same

testbench) to stimulate both pre-synthesis and post-synthesis design, then save the wave-

form file (.ow) which contains simulation results for each of them, and finally compare the

two waveform files, i.e., compare simulation results with ttre General Purpose Post Proces-

sor (GPP).

A novel approach has been developed by the author to realize this scheme. In this approach,

a testbench is used to generate input stimuli, and compare the outputs fi'om the RTL and the

schematic models. Both RTL and schematic components are instantiated in this testbench. A

small example shown in Figure 4.10 is used to illustrate this methodology.

-51

Chapter 4: Testbench Generation and Application Methodologies

The design has two inputs: i1 and i2, one output o. Their types are respectively il_type,

i2-type, o-type. The RTL version for the design is shown in Figure 4.11, and the schematic

model is shown is Figure 4.l2.The name DESIGN is given to the design. The RTL version

and schematic version have the same entity DESIGN, but different architecture bodies, one

is DESIGN (BEHAVIORAL), the other is DESIGN (SCHEMATIC).

inputs: i 1, i2
outputs: o

F ig. 4. I 0 : Design Example

entity DESIGN is
port (i1: in il_type; i2: ini2_type; o: out ol_type)
end DESIGN;

architecture BEHAVIORAL of DESIGN is
begin

end BEHAVIORAL;

configuration CFG_DESIGN_BEHAVIORAL of DESIGN
for BEHAVIORAL
end for;
end CFG_DES IGN_BEHAVIORAL;

Fig.4.l1: RTLVersion (VI)for the Design

In Figure 4.I3, the RTL version for the design is represented by Vl and the schematic ver-

sion for the design is represented by Y2. V I combined with V2 are looked at as the UUT, so

the UUT has two inputs i1, i2 and two outputs o_v 1 and o_v2. The UUT is considered a new

component whose name is DESIGN_U. Vl andY2 arc two components of the UUT, which

is a design with a mixed level description. This is realized by using the port map statement

(component DESIGN is used, V1 and Y2have the same inputs and different outputs o_v1

-52-

Chapter 4: Testbench Generation and Application Methodologies

and o_v2), and component instantiation configuration file (for component Vl, use the RTL

entity DESIGN is
port (i1: in il_type; 12: iniZ_type; o: out ol_type)
end DESIGN;

architecture SCHEMATIC of DESIGN is
begin

end SCHEMATIC;

configuration CFG_DESIGN_SCHEMAIIC of DESIGN
for SCHEMATIC
end for;
end CFG_DESIGN_SCHEMATIC;

Fig. 4.12: Schematic Version (V2) J'or the Design

version, for Y2, use the schematic version). The VHDL model for the UUT is shown in Fig-

ure 4.14.

Figure 4.15 shows how to use the testbench to input stimuli to the UUT and compare the

outputs from the UUT. The UUT is incorporated into the testbench as component

DESIGN-U. There are two kinds of processes in the testbench: stimulus generation and

response comparison processes. The stimulus generation process generates test vectors for

the UUT, while the response comparison process compales the outputs from the UUT, (i.e.,

compares outputs from two components Vl and V2). This is done by using the assert and

report statements. If o_vi is not equal to o_v2, the message "There is a difference between

two versions of the design!" will be displayed on the screen. There may be some vaúations

for the VHDL model shown in Figule 4.15. For example, the stimulus generation process

may be partitioned into a number of processes to make it easier to design complex stimuli.

And the response comparison process may be merged into the same process as the stimulus

generation. The stimulus generation process can also be the same one used in the testbench

for the RTL level verification.

-53-

Chapter 4: Testbench Generation and Application Methodologies

I UUT
stimulus

generation
process response

comparison
process

Fig.4.I3: Design inTwo Versions Vl andV2

entity DESIGN_U is
port (i1: in il_type; 12: in i2_type; o_v1 , o_v2'. out ol_type)
end DESIGN_U;

architecture MIX of DESIGN_U is
component DESIGN
port (i1: in il_type; i2: in l2_type; o: out ol_type)
end component;

begin
Vi: DESIGN port map (i1, i2, o_vl);
V2: DESIGN port map (i1, i2, o_vZ);
end MIX;

configuration CFG_DESIGN_U_MIX of DESIGN_U is
for MIX
for V 1 : DESIGN use conf,guration work.CFG-DESIGN-BEHAVIORAL;
end for;
for V2: DES IGN use confi guration work.CFG-DESIGN-S CHEMATIC ;

end for;
end CFG_DESIGN_U_MIX;

Fig.4.I4: VHDL Modelfor UUT

-54-

Chapter 4: Testbench Generation and Application Methodologies

entity E is
end E;

architecture TB of DESIGN_U is
component DESIGN_U
port (i I : in i i _typ e; 12: in i2_type; o_v I , o_v2: out o_type)
end component;

signal i1: i 1_type;
signal 12: i2_type;
signal o_v 1, o_v2'. o_type;
begin
UUT: DESIGN_U
port map(i1 ,72, o_vI, o_v2);

stimulus_generation : process
begin
...end process;

response_comparison: process
begin
...assert(o_v1 : o_vZ)
report "There is difference between the two versions of the design! "
...end process;

end TB;

configuration CFG_E_TB of E is
for TB
for UUT DESIGN_U use confi guration work.CFG_DESIGN_U_MIX;
end for;
end for;
end CFG_E_TB;

Fig.4.I5: Testbench Simulation on UUT

This approach can be applied to designs of arbitrary complexity, both for combinational and

sequential circuits.

Simulation results for the multiplexer example are shown in Figure 4.16. The output from

the RTL version of the design, f1, is the same as the output, f, from the gate-level version.

-55-

Chapter 4: Testbench Generation and Application Methodologies

There is no assertion error message output.

Fig.4.I6: Testbench Simulation on RTL and Gate-level Equivalence Checking

4.5 Testbench For Mixed Level Simulation

By modifying testbench configuration statements, the same testbench can also be simulated

at different levels. The technique is demonstrated below.

Consider the UUT of Figure 4.17 which consists of three components: Ul, lJZ, and.lJ3.

They have several signals connecting them. lJl,IJ2, and U3 are instantiated in the TOP

VHDL code, and in Figure 4.18, we can see ttrat Ul and U3 are instantiated with a BEHAV-

IORAL statement which is at the RTL level, while U2 is instantiated with a SCHEMATIC

statement which is at the gate-level. The TOP component is the UUT instantiated in the test-

bench. By using the configuration files shown in Figure 4.i8 and 4.19, testbench simulation

on a mixed level can be performed.

4.6 Simulation With Back-annotation

After equivalence checking for the RTL and schematic models has succeeded, the schematic

model can be transfotmed into a layout for a specific technology. Timing information intro-

-56-

Chapter 4: Testbench Generation and Application Methodologies

duced by the layout can be applied to the testbench simulation. Timing information is asso-

ciated with the simulation results. The Synopsys Design Compiler can generate a SDF

(Standard Delay Format) file which contains timing data information derived from the lay-

out.

By doing simulation with back-annotation, functional and timing verification can both be

done at the layout level.

stimulus response

Fig.4.l7: UUT (TOP) and its Components

configuration CFG_TOP_SCHEMATIC of TOP is
for SCHEMATIC
for Ul: A use configuration work. CFG_A_BEHAVIORAL;
end for;
for U2: B use configuration work. CFG_B_SCHEMATIC;
end for;
for U3: C use configuration work. CFG_C_BEHAVIORAL;
end for;
end for;
end CFG_TOP_S CHEMATIC ;

Fig. 4.18: Configuration Statement Jbr TOP Design

^57

Chapter 4: Testbench Generation and Application Methodologies

configuration CFG_TB_BEHAVIORAL of TB is
for BEHAVIORAL
for UUTI TOP use configuraion work. CFG_TOP_SCHEMATIC;
end for;
end for;
end CFG_TB_BEHAVIORAL;

Fig. 4.19: Configuration Statement Jbr Testbench.

4.7
^

survey of BehavÍoral rest Pattern Generation Algorithms

The classical test generation approaches described in Chapter 2 operate at the gate level.

DFT techniques, such as scan, add chip area, decrease circuit performance. Further, gated

clock signals make the creation of a complete scan path unachievable. In addition, asynchro-

nous designs make it important to resort to a complete scan solution. It is pointless to design

a 10 million gate chip which works perfectly to specification if the speciflcation is wrong.

Test generation at the behavioral level has become increasingly important in verifying that

the specification is also correct. IVhen the circuit is very large and complicated, hand coded

functional testbenches are hard pressed to satisfy the verification completeness. As a result,

some algorithms are used for generating functional test vectors from a high level descrip-

tion. Within these algorithms, vaúations of the D-algorithm arc the most important ones.

These test vectors then augment the test suite of hand code and structurally derived test vec-

tors.

ATPG Views

Automatic test pattem generation has structural and behavioral views. The structural view

was discussed in Chapter 2. Ttre behavioral view can be realized by means of two kinds of

representation: alphanumeric or graph-based. Alphanumeric representations include differ-

-58-

Chapter 4: Testbench Generation and Application Methodologies

ential equations, boolean equations, truth tables, state tables, and programs. Graph-based

representations include BDDs (Binary Decision Diagrams), Transformation Graphs, and

Petri-Nets. Alphanumeric representations can be transformed into graph-based reprcsenta-

tions. When the circuit is very large, the alphanumeric representation grows exponentially

with the number of variables involved, in this case, it is better to use a BDD which is a very

promising representation. There are various techniques available, the most popular one is

the path sensitization method. A few representative publications will be used to discuss this

method in the following. No matter what name they call their approaches (B-algorithm, E-

algorithm, etc.), or what kind of circuit representation they use, or what kind of fault models

they deûned, the basic idea is path sensitization.

Path sensitization is an extension of the D-algorithm, including three steps: 1) sensitization -

--the effect of the fault is made to manifest itself at the fault site,2) fault propagation--- the

fault is moved through the circuit until it can be observed at an output, and 3) justification---

the procedure required to establish the propagation path back to the inputs. Path sensitiza-

tion employs a standard notation, using logical values 0, 1, X, D, D . This principle has been

applied to several abstraction levels: logic level [3], RTL level[23],and higher levels [12].

Levendel and Menon [3] proposed extensions to the gate-level D-algorithms to handle faults

in functional blocks of HDL's. The test generation algorithm consists of the following con-

ceptual steps: l. insert a fault effect, 2. propagate the fault effect to an observable point, 3.

justify all the decisions made in I and 2 by sequences applied at the primary inputs of the

circuit. Their approach gives strategies for D-propagation through functional blocks, but has

a high computational cost for complex control structures.

The fault model they used are: function variables stuck at 0 or 1, control faults, and general

function faults.

59-

Chapter 4: Testbench Generation and Application Methodoìogies

The E-algorithm [23] is another approach to test generation from a Hardware Description

Language, using propagation rules proposed by Levendel and Menon. It generates tests for

the following modeled faults: control, operation, and data faults (stuck-at faults in data or

control lines and defects in functional operation blocks). The HDL it uses is limited to non-

procedural data-flow representations. It uses a graph transformation representation derived

from the VHDL description.

Barclay and Armstrong's approach [4] employs the FCON (involves faulting the control

points that switch between sequences) and FMOP (involves faulting the individual micro-

operations) fault models, and attempts to develop an equivalence of the D-algorithm for

HDL descriptions of the chip logic. The approach is as follows. Given a FMOP or FCON, a

test is developed by 1) activating the faulted operation (fault sensitization),2) propagating

the effect of the fault to an output (path sensitization), and 3) determining input combina-

tions that will justify the path sensitization. The models are represented in VHDL, and the

form of the representation is resúicted to data flow models. Barclay's algorithm first gener-

ates the fault list which gives chip-level faults for each statement, then starts the test genera-

tion process. They used the artificial intelligence concept of goal trees to organize the

algorithm sûucture. Their technique generates tests for faults in control structures as well as

data path faults, but is computationally expensive.

Some other approaches are also based on the D-algorithm. The B-algorithm [5] uses three

behavioral faults: behavioral stuck-at faults (BSA), behavioral stuck-open faults (BSO), and

miclo-operation faults (MOP). It defines its own activation and propagation rules. The B-

algorithm has two unique features, one is that it can generate tests for behavioral stuck-open

faults, which can detect some gate-level transition faults. The other is that it incorporates the

concept of two-phase testing, a testing strategy where a fault is detected using two consecu-

tive test sequences. Abadir and Reghbati [15] use two kinds of fault models. A class I fault

-60-

Chapter 4: Testbench Generation and Application Methodologies

is a single stuck-at fault affecting a module input line, output line, or memory element. A

class 2 fault is a module internal fault which adversely affects the outcome of one of its

experiments. They used a BDD representation to do path sensitization. Courbis [21] uses

three fault models which are F1: Stuck-at fault of an element of the data model, F2: stuck-at

fault of an element of the control model, and F3: stuck-at fault of an element of the interac-

tion. He uses Petri-Nets to do activation and propagation to derive test vectors.

4.8 Simulation Results and Discussions

The elevator controller design example was developed utilizing ttre high level design meth-

odology previously discussed. Simulation with the testbench was used to verify the func-

tionality of each sub-module and the top module. During this phase, the behavioral VHDL

code for each module was iteratively modified, satisfactory simulation results were obtained

and are presented in detail as follows. For additional information on the design, refer to

Appendix A.

Figure 4.20 gives the simulation results for the door_control module. The states "00" , "01",

"10", and "11" stand for closed, opening, open, and closing respectively.lf rst is effective,

the elevator goes to the initial state which is ck¡sed. Af:rur ready_tojstop is effective (which

means the elevator is going to stop), if manual_open is' 1', the door starts opening. When

the open_done signal is active (which means the door has finished opening), the door state

becomes open.In this state, if the manual_close becomes '1', the door state becomes clos-

ing,untilthe close_done signal is active, and the next state is closed.

-61

Chapter 4: Testbench Generation and Application Methodologies

/ED/ÊEADV-TO_

ÆD4NTEBRUPT

/ED/trlAl'tUAL-OPEN

/tD/BUIIC¡I_OPEN

/ED,tvr^¡JUAL-CIOSE

/ED/CLOSE_DONE

ÆD/OPEN-DONE

/ÊD/RST

/ED/CtK

/ED/CLOSE_DÂIVE

/ED/OPEN DRIVE

ÆD/UUT/next stãÎe(t

Fig. 4.20: Simulation Result for door_control Module

Figure 4.21 shows the simulation results for the bunon_timing_light module. In this simula-

tion, the button increments by 2, e.g., at first, the buttonis "0000001", which me¿ms the but-

ton tol is pressed, the next time, button is "000001i", which means the button tol and to2

are pressed, incrementally, until the button is "78". When start_counr is effective, and ceL-

tain buttons are pressed it starts counting the time for buttons which have been pressed, dur-

ing which time those buttons' lights are on. When start_counr is ineffective, the timing

count for the buttons become zero, and the buttons' lights are off.

-62-

Chapter 4: Testbench Generation and Application Methodologies

.>
1000 1500 2000 2500 3000 35(n 4000 4500 5o0o 55oo

/EBÌ/BST

/EBI/CLK

> /EBIÆUTT0N(6;0)

Þ /EBT/START_

/EBT/C.TO1

IEBTtC-102

/EBf/C_To3

/ËBT/C.UP1

IEEIIC-UPz

/EBT/C_DOWN2

/E8T/C_D0WN3

Þ ÆBÏ/BUTTON L

Fig. 4.21: Simulation Results for button_timing_light Module

Simulation results for the decision_make module are demonstrated in Figure 4.22. After rst

is effective, the initial state is w_1 (waiting on the first floor), when c_to3 is "50" (button to3

is ptessed, timing is "50"), the elevator will go up to the third floor, so the elevator state

becomes tl3, consequently, driveltp and ligh.t_up signals are effective. lWhen

ready_to_stop is'1', the elevator stops, the state becomesl'3 which means the elevator

reaches the third floor, it loads or unloads the passengers. After the close_clone is ' 1', the

state becomes w_3. In this state, c-to1 - "4D" is checked, so the elevator returns to the first

floor, the state then becomes t31,...

-63-

Chapter 4: Testbench Generation and Application Methodologies

/EDUC_TOI

|EDEJCJ02

rfDUC_TO3

/EDE/C-UPI

IEDEIC-UPz

/ËDE/C_D0WN2

/EDÚC-DOWN3

ÆDEßST

/EDE/CLK

/EDE/FEADY TO

iEDElCLOSE_DONE

/EDEOBIVE-DOWN

/EDgDRIVE-UP

/EDEiLIGHT-DOWN

/EDE/L IGHT_UP

/EDE/BUTTON-OPEN

Þ /EDE/BUTTON(6:0)

Þ /EDSSTABT

Þ /EDúSENSOR(z:0)

Þ /EDE,î]UMBER T

,€DúUUT/next state

UU

76

Fig.4.22: Simulation Results Jor clecision make Module

Figure 4.23 shows the simulation waveforms for the elevator_controller top module. After

rrl is effective, the initial state is nr_1. When the button is "04" (button to3 is pressed), the

next state is tl3, consequently, the drive_up and light_up signals are effective, and the sen-

sor is 4, which means the destination is the third floor. When ready_to_stop is '1', the state

becomes I 3 which means the elevator has reached the third floor. At this point, the door

control signals start working. manual_open, open_done, manual_close, and close_clone

work orderly to control the door opening and closing. After the close_done is' 1', the state

becomes w_3 (elevator is standing at the third floor and waiting for a call). In this state,

when button is "02" (button to2 is pressed), the elevator goes down to the second floor,...

-64-

Chapter 4: Testbench Generation and Application Methodologies

Þ /E/BUTTON(610)

IE]CLK

iElCLOSE-DONE

/E/IN'fEBRUPT

/Eí\4ANUAL_CLOSE

/EA4ANUAL_OPEN

/E/OPEN-DONE

/E/BEADY_TO_STOP

/E/BST

0

0

0

Þ /EÆUTTON-L

/E/CLOSE-DBIVE

/UDRIVE_DOWN

/E/DRIVE_UP

/E/LIGHT-DOWN

/E/LIGHT-UP

Þ /UNUMEER-LIGH

/ElOPEN-DBIVE

Þ /E/SENSOR(z:o)

Þ /EruUT/I-ZSTABT_

/EruUI/l_t/next_state

0

?

Û

Fig.4.23: simulation Result J'or Elevator contoller Top Mot)ule

The simulation wavefonns indicate that the design elevator controller work according to its

intentions. This type of functional test although is informal, is sufficient for many designs

and is largely successful as a direct consequence of a designer's experience. In reality, a

design is validated based on the functional tests provided by the designer.

4.9 Summary

Tþstbenches provide an environment where a design can be stimulated to verify compliance

to a specification. Testbenches work as a part of the high level design process. This greatly

helps improve productivity, and facilitates simulation of a design at different levels, from

RTL to implementation. VHDL-based testbenches take advantage of VHDL features. The

-6s

Chapter 4: Testbench Generation and Application Methodologies

user can choose the style he/she likes to write for different designs. The diversity of test-

bench design allows the designer to take advantage of each style. The concurrent approach

developed for checking the equivalence of RTL and gate-level rcpresentation has proven to

be efficient.

A series of behavioral test pattern generation algorithms were presented. There is a correla-

tion between structural-level fault coverage and behavioral-level fault coverage. However,

at this time, there are no good standard behavioral fault models available.

-66-

CHAPTER 5

COI{CLUSIONS AND FUTURE WORK

5.1 Summary and Conclusions

This thesis has presented state-of-the-art methodologies for productive ASIC design and

test.

High level design flow addresses the problem of designing the right system.It solves this

problem by taking advantage of the ability of VHDL to act both as a specification language

and as an implementation language which is capable of representing the detailed behavior of

a digital ASIC. High and low level descriptions can both be simulated with the same VHDL

testbench and simulator. VHDL features are especially suitable for synthesis and simulation.

Logic and optimization tools are used to achieve an almost entirely automatic implementa-

tion of the ftinctional description in a specific technology, thus the designer can concentrate

on his/her primary task which is to define the circuit's behavior and architecture. Any mal-

functions and errors can be identified and eliminated early in the design process.

Chapter 3 presented methodologies typically employed in a high level design flow. The state

machine is a very useful method to describe the behavior of the system, and this chapter

-61-

Chapter 5: Simulation Results and Conclusions

demonstrated a very efficient way to derive RTL VHDL code from a Mealy Søte Transition

Diagram. The flow described used the Synopsys tools to get a gate-level VHDL file from the

RTL VHDL.

As an important aspect of IC design, IC test strategies were over viewed, and developed

from the testbench point of view. Testbench approaches split into two main categories:

structural and behavioral. The structural approach is for manufacturing testing purposes,

while the behavioral approach is for functional verification. Behavioral testing occurs in the

early stages of the design process.

The structural approach was discussed in Chapter 2. Traditional DFT concepts and tech-

niques were reviewed in this chapter. Test synthesis strategies utilize these techniques in an

automatic way, (i.e. scan chain insertion) and ATPG can be done by the test synthesis tools.

Design flow using the Synopsys Test Compiler tool includes: module level, chip level, and

board level testability analysis and design. The ATPG test vectors generated by the Test

Compiler can be simulated on both RTL and gate-level descriptions.

Behavioral testbenches can be used to simulate RTL and gate-level descriptions, and to

check the equivalence of the two descriptions. Furthemore, mixed level simulation can be

done. There are various coding styles (such as behavioral VHDL code, VHDL data struc-

ture, and reading test vectors from an extemal file) for testbenches, and the designer's expe-

rience and imagination will suggest the combinations of the styles and other possibilities

best suited to a particular application. Thele ale a couple of ways to drive simulation of the

optimized gate-level design using the functional testbench for comparison with the result

from the RTL description. A novel approach developed by the author combines the RTL and

gate-level description as the UUT, and uses a process to compare the responses from the two

versions. This approach turned out to be very efflcient and accurate. Details were discussed

-68-

Chapter 5: Simulation Results and Conclusions

in Chapter 4.

Testbenches have high reusability, and are applicable for components of different complex-

ity, i.e., for sub-module test and system test. Complex systems are usually partitioned into

smaller, less complex modules, thus testbench simulation is done first on the sub-modules to

ensure that the functionality of each sub-module is correct, then on the system level to check

the system level functionality.

5.2 Future Work

Cunently, the Synopsys tools can only do automated structural testing which happens in a

later stage of the design process. If the functionality of the system is wrong, there is actually

no point in doing so. As a result, future work should focus on raising ttre level of testbench

generation, and automating the functional test vector generation process. First, choosing an

algorithm (refer to section 4.7) which is used to derive the test vectors, then writing pro-

grams to automate the process of functional test vector generation.

In addition, the clock generation and reset signal generation processes should also be devel-

oped in an automatic way.

-69 -

APPEi\DIX A

DESIGI{ EXAMPLE 1:
ELEYATOR COI{TROLLER

The elevator controller design was selected as a design example as it illustrated many of the

design flow and methodologies addressed in the thesis.

A..1 Functional Specifications and Assumptions

The elevator operates in a building with 3 floors and it serves all floors.

In the elevator, there are two arrow lights indicating whether the elevator is moving up or

down, three number lights showing which floor the elevator is at, and three number buttons

for the users to make rcquests for which floor they want to reach. On the second floor, there

arc two an'ow buttons to choose for going up or down. On the first floor, there is only a

going up alrow button, on the third floor, there is only going down arrow button. Within the

elevator, there are two door control buttons---for open and close. The door automatically

closes if no one presses the "close" button and no one comes in or out for 5 secs, and also

automatically opens if the elevator reaches a required floor but no one presses the "open"

button for 3 seconds. When there are people getting inlout of the elevator during the time the

door is closing, the state of the door will change to open.

For simplicity, some other assumptions were also made: in particular, buttons were ignored

-10 -

Appendix A: Design Example l: Elevator Controller

for emergency or other services. Requests from users standing on the three floors and those

inside the elevator are all queued on the basis of their initiated timings, which is a First

come, first Served fashion. Some additional signals are also assumed by the designer as

shown in A.2.

4.2 Schematic Diagram

The Synopsys SGE schematic and symbolic editors were used to enter the following top

level schematic.

Fig. A.I: Schematic Entry--- Block DiagramJ'or Elevator Controller

TOI ÉR

:uP! sE'lsûR(2:o

:o) LI6HT

;ooNÊ SlaRl-couNT(6:

-TO_Sf0P

ToN (6:0 l
rART_COUNI (6: g l

6UlT0fr-.]L rcHT (6:0

-7t -

Appendix A: Design Example l: Elevator Controller

4.3 Signal Names and Assignments

Button Names and Assignments are shown in Figure 4.2.

System Signals:

Input signals:

manual_open (manual_close): open (close) dool button signal in the elevator.

open_done (close_done): the elevator door has finished opening (closing).

interrupt: when the door is closing, and some one is getting in or out the elevator, a sensor

gives this signal to the elevator.

ready_to_stop: the elevator has reached the intended floor.

button (6:0): anay of the button signals (Button names and bit assignments are shown in

Figure 4.2).

inside elevator

+

outside elevator
I

V

down3 + floor3

uo2' +_ floor 2

down2

to3

to2

to1

button(2)

button(1)

button(0)

button(5)

button(4)

button(6)

butron(3) <- floor Iupl

Fig. A.2: Button Signal Name Assignment

Output signals:

drive-up (drive_down): the motor gets this signal to drive the elevator up (down).

light-up (light_down): the up (down) anow light which indicates that the elevator is moving

-72

Appendix A: Design Example 1: Elevator Controller

up (down).

open_drive (close_drive): úte motor gets this signal to drive the elevator door open (close).

button-light (3:0): anay of button light signals. If the light is on, someone has made a

rcquest.

sensor (2:0): array of signals. Indicates the next floor the elevator is going to, e.g., "010"

means the destination floor of the elevator is the second floor.

fnternal signals:

c_toI: storcs the timing of button tol.

start_count (6:0): array of signals for enabling the buttons to count their timing, e.g.,

stúrt_count = "III0l10" means sf¡.r,count signal enables the button to2, upZ, down3, and

down2 to count their timing, but does not enable button tol and upl to count their timing.

4.4 Finite State Machine for the Module decision-makez

-73 -

Appendix A: Design Example 1: Elevator Controller

Decísíon_makeModule ---- Comparison of the Button Timing:

A:maxZ (c_toi, c_upl)

B : max3 (c_to2, c_up2, c_down2)

C : max2 (c_to3, c_down3)

X: max3 (4, B, C)

max2 (a, b) is the function fol choosing the largest number from a and b. For example,

Function max2 (c-to1, c-upi) is the longer button request timing from button tol and upl.

If X : A, the elevator should go to the first floor; if X : B, the elevator should go to the sec-

ond floor; If X:C, the elevator should go to the third floor.

Notations for the States:

w-l: elevator is stopped on the first floor, waiting for a call, door is closed (initial state).

f_1: elevator arrived to the first floor, door is going to open, then close.

t12: elevator is moving up, the origin is the first floor, the destination is the second floor.

t32: elevator is moving down, the origin is the third floor, the destination is the second floor.

-74-

Appendix A: Design Example 1: Elevator Controller

Notations for the T[ansitions:

Table 1: Notations for T[ansÍtions

transition condition

ZC X:0 and close done: '1

ac X:A and close_done: '1' light_down:' l', drive_down:' 1'
SeflSOr: "001"

bc1 X:B and close done: '1 light_up: '1', drive_up: '1 '
SeDSOI': "010"

bc3 X:B and close_done: '1 light_down: 'l' , drive_down: '1'
SgIlSOf: "010"

cc x:C and close done:'1 light_up: '1', drive_up: 'l
SerlSOr: "100"

a X:A light_down:' l', drive_down:' 1

SOnSOf: "001"

b1 X:B light-up: 'l', drive_up: '1

Se[SOr: "010"

b3 X:B light_down:' l', drive_down:' I'
SOnSo[: "010"

c X:C light_up: '1', drive_up: '1
SeflSof: "100"

zl X:0 and
button(O): '1' or button(3): 'l'

button_open : '1

z2 X:0 and
button(1): '1' or button(4): '1 ' or
button(6): '1 '

button-open : '1'

z3 X:0 and
button(3): '1' or button(5): '1'

button_open : '1'

r ready_to_stop light_up: '0', light_down: '0',
drive-up: '0', drive_down: '0'

-75 -

Appendix A: Design Example l: Elevaror Controller

4.5 VHDL Template Generated by SGE

Synopsys SGE can generate structural VHDL and the testbench template for the top level

design, and generate behavioral VHDL templates for every bottom level subdesign. These

are illustrated below.

4.5.1 Structural VHDL for Top Design

-- VHDL Model Created from SGE Schernatic top.sch -- Jun 5 I9:53:58 1996

library IEEE;
use IEEE.std_logic_l 164.all;
use IEEE.std_logic_misc.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_cornponents.all;

entity TOP is

Port (BUTTON : In std_logic_vector (6 downto 0);
CLK: In STD_LOGIC;

CLOSE_DONE:ln STD_LOGIC;
INTERRUPT:In STD-LOGIC;
MANUAI-CLOSE: In STD_LOGIC;
MANUAT OPEN: In STD_LOGIC;
OPEN_DONE: In STD_LOGIC;
READY_TO_STOP: In STD_LOGIC;

RST:In STD_LOGIC;
BUTTON_LIGHT : Out std_logic_vector (6 downro 0);
CLOSE_DRIVE: Out STD_LOGIC;
DzuVE_DOWN : Out STD_LOGIC;
DRIVE_UP: Out STD LOGIC;
LIGHT_DOWN: Out STD_LOGIC;
LIGHT_UP: Out STD LOGIC;
NUMBER_LIGHT : Out std_logic_vector (2 downto 0);
OPEN_DRIVE : Out STD_LOGIC;
SENSOR: Out std_logic_vector (2 downto 0));

end TOP;

architecture SCHEMATIC of TOP is

signal START_COUNT : std_logic_vec10r(6 downto 0);
signal C_DOWN2 : INTECER RANGE 0TO 5l t;
signal C_DOWN3 : INTEGER RANGE 0 TO 5 I l;
signal C_UP2 : INTEGER RANGE 0 TO 5l I ;
signal C_UPI : INTEGER RANGE 0 TO 5l l;
signal C_TO3 : INTEGER RANGE 0 TO 5ll;
signal C_TO2 : INTEGER RANGE 0 TO 5tl;
signal C_TOl : INTECER RANGE 0TO 5ll;
signal button_open: std_logic;

cornponent DECISION_MAKE
Port (BUTTON : ln std_logic_vector (6 downto 0);

C_DOWN2 : In INTEGER RANGE 0 TO 5il;
C_DOWN3 : In INTEGER RANGE 0TO 5ll;
C_TOI : In INTEGER RANGE 0TO 5lt;
C_TO2 : In INTEGER RANGE 0TO slt;

-76 -

Appendix A: Design Example l: Elevator Controller

C_TO3 : In INTEGERRANGE 0TO 5lt;
C_UPI : In INTEGER RANGE 0TO 5ll;
C_UP2 : In INTECER RANGE 0 TO 5ll;
CLK: In STD_LOGIC;

CLOSF._DONE: In STD_LOGIC;
READY_TO_STOP : In STD_LOGIC;

RST: In STD_LOGIC;
DRIVF_DOWN : Out STD_LOGIC;
DRIVE_UP: Out STD_LOGIC;
LICHT_DO'WN : Out STD_LOGIC;
LIGHT_UP: Out STD LOGIC;
button_OPEN : Out STD_LOGIC;
NUMBER_LIGHT: Out std_logic_vector (2 dorvnto 0);
SENSOR : Out std_logic_vector (2 downto 0);

START_COUNT : Out std_logic_vecror (6 downro 0));
end cornponent;

co¡nponenr B UTTON_TIMING_LIGHT
Port (BUTTON : In std_logic_vector (6 downto 0);

CLK: In STD_LOGIC;
RST: In STD_LOGIC;

START_COUNT: In std_logic_vector (6 downto 0);
BUTTON_LIGHT : Out std_logic_vector (6 downto 0);
C-DOWN2: Out INTEGER RANGE OTO 5II;
C_DOWN3 : Out INTEGER RANGE OTO 5II;
C_TOI : Out INTEGER RANGE 0 TO 5ltl
C_TO2 : Out INTEGER RANGE 0TO 5ll;
C_TO3 : Out INTEGER RANGE 0TO 5tl;
C_UPI : Out INTEGERRANGE 0TO 5lt;
C_UP2 : Out INTEGER RANGE 0 TO -s t I);

end cornponent;

component DOOR_CONTROL
Port (CLK: In STD_LOGIC;

CLOSE_DONE:In STD_LOGIC;
INTERRUPT:In STD-LOGIC;
MANUAT:CLOSE: IN STD_LOGIC;
MANUAL_OPEN:ln STD_LOGIC;

button_open: in std_logic;
OPEN_DONE: In STD_LOGIC;
READY_TO_STOP: In STD LOGIC;

RST: In STD_LOGIC;
CLOSE_DRM: Out STD_LOGIC;
OPEN_DRIVE: Out STD-LOGIC);

end component;

begin

I_l : DECISION_MAKE
Port Map (BUTTON(6 downto 0¡:¡ggTTON(6 downro 0),

C_DO'ù/N2=>C_DOWN2, C_DOWN3:>C_DOWN3, C_TO I :>C_TO l,
C_TO2=>C_TO2, C_TO3->C_TO3, C_UPl=>C_UPI, C_UP2=>C_UP2,
CLK=>CLK, CLOS F-DONE=>CLOSE_DONE,
READY_TO_STOP:>READY_TO_STOP, RST=>RST,
DRIVE_DOWN=>DRIVE_DOWN, DRIVF:UP=>DRIVE_UP,
LICHT_DOWN=>LIGHT_DOWN, LIGHT-UP:>LICHT_UP,
button_OPEN=>butron_OPEN,
NUMBER_LIGHT(2 dOWNtO O)=>NUMBER-LIGHT(2 dOWNtO O),

SENSOR(2 downro 0)=>SENSOR(2 downro 0),
STARI_COUNT(6 downto 0)=>STARI_COUNT(6 downto 0));

I_2 : BUTTON_TIMING_LIGHT
Port Map (BUTTON(6 downto 0¡=¡B¡TTON(6 downro O), CLK=>CLK,

RST=>RST,

START_COUNT(6 downro 0):>START_COUNT(6 downro 0),
BUTTON_LIGHT(6 downto 0)=>BUTTON_LIGHT(6 downro 0),

-77 -

Appendix A: Design Example l: Elevator Controller

C_DOWN2=>C_DOWN2, C_DOWN3=>C_DOWN3, C_TOt=>C_TOl,
C_TO2=>C_TO2, C_TO3=>C_TO3, C_UPt =>C_Upl, C_Up2:>C_Up2);

I_3: DOOR_CONTROL
Port Map (CLK=>CLK, CLOSE_DONE=>CLOSE_DONE, INTERRUPT:>INTERRUPT,

MANUAL_CLOSE:>MANUAI -CLOSE, MANUAL-OPEN=>MANUAL-OPEN,
button_open:>button_open,

OPEN-DONE:>OPEN_DONE, REA DY_TO-STOP:>READY_TO-STOP,
RST=>RST, CLOSE-DRIVE:>CLOSE_DRIVE,
OPEN_DRIVE=>OPEN_DRIVE);

r êltd SCHEMATIC;

configuration CFG_TOP_SCHEMATIC of TOp is

for SCHEMATIC
forl_l: DECISION_MAKE

use confi guration WORK.CFG_DECISION_MAKE_BEHAVIORAL;
end for;
for I_2: BUTTON_TIMING_LIGHT

. use configurarion WORK.CFG_BUTTON_TIMING_LIGHT_BEHAVIORAL;
end for;
for I_3: DOOR_CONTROL

, use configurarion WORK.CFG_DOOR_CONTROL_BEHAVIORAL;
: end for;

end for;

end CFG_TOP_SCHEMATIC;

 .S.2ßehavioraMDl Template for Subdesign ---- door_control block

-- VHDL Model Created from SGE Symbol door_cont¡ol.sym -- Jun lO 15:55:22 1996

library IEEE;
use IEEE.std_logic_ 1 t64.all;
use IEEE.std_logic_misc.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_components,all;

entity DOOR_CONTROL is

Port (BUTTON_OPEN : In STD_LOGIC;
CLK: In STD_LOGIC;

CLOSE_DONE: In STD_LOGIC;
INTERRUPT:In STD-LOGIC;
MANUAL_CLOSE: In STD_LOGIC;
MANUAT-OPEN: In STD_LOGIC;
OPEN_DONE: In STD_LOGIC;
READY_TO_STOP: In STD_LOGIC;

RST : In STD_LOGIC;
CLOSE_DRIVE: Out STD_LOGIC;
OPEN_DRIVE: Out STD_LOGIC):

end DOOR_CONTROL;
j

I arclútecture BEHAVIORAL of DOOR_CONTROL is

begin

end BEHAVIORAL:

configuration CFG_DOOR_CONTROT,BEHAVIORAL of DOOR_CONTROL is
for BEHAVIORAL

-78-

Appendix A: Design Example 1: Elevator Controller

end fo¡;

end CFG_DOOR_CONTROL_B EHAVIORAL;

4.5.3 Testbench Template for Top Design

-- VHDL Test Bench Created frorn SGE Syrnbol top.syrn.syrn -- Jun I0 15:55:22 1996

library IEEE;
use IEEE.std_logic_l l64.all;
use IEEE.std_logic_rnisc.all ;

use IEEE.std_logic_arith.all;
use lEEE.std_logic_cotnponents.all ;

entity E is
end E;

ArchitectureAofEis

signal BUTTON : std_logic_vector (6 downto 0);
signal CLK: STD_LOGIC;
signal CLOSE_DONE : STD_LOGIC;
signal INTERRUPT : STD_LOGIC;
signal MANUAL*CLOSE : STD_LOGIC;
signal MANUAL_OPEN : STD_LOGIC;
signal OPEN_DONE : STD_LOGIC;
signal READY_TO_STOP : STD_LOGIC;
sìgnal RST: STD_LOGIC;
signal BUTTON_LIGHT : std_logic_vector (6 downto 0);
signal CLOSF_DRIVE : STD_LOGIC;
signal DRIVF_DO'ü/N : STD_LOGIC;
signal DRIVE_UP : STD_LOGIC;
signal LIGHT_DOWN : STD_LOGIC;
signal LIGHT_UP : STD_LOGIC;
signal NUMBER_LIGHT : std_logic_vecror (2 downto 0);
signal OPEN_DRIVE : STD_LOGIC;
signal SENSOR: std_logic_vector (2 downto O);

component TOP
Port (BUTTON : ln std_logic_vector (6 downto 0);

CLK: In STD_LOGIC;
CLOSE_DONE: In STD_LOGIC;
INTERRUPT:In STD_LOGIC;
MANUAT,CLOSE:In STD_LOGIC;
MANUAT:OPEN:In STD_LOGIC;
OPEN_DONE: In STD_LOGIC;
READY_TO_STOP: In STD_LOGIC;

RST: In STD_LOGIC;
BUTTON_LIGHT : Out std_logic_vecror (6 dorvnto 0);
CLOSE_DRIVE: Out STD_LOGIC;
DRIVE_DO\4/N: Out STD LOGIC;
DRIVF UP: Out STD-LOGIC;
LIGHT_DOWN : Out STD_LOGIC;
LIGHT_UP : Out STD_LOGIC;
NUMBER_LIGHT : Out std_logic*vector (2 downto 0);
OPEN_DRIVE : Out STD_LOGIC;
SENSOR: Out std_logic_vector (2 downto 0));

end componenq

begin
UUT: TOP

79-

Appendix A: Design Example l: Elevator Controller

Port Map (BUTTON, CLK, CLOSE_DONE, INTERRUPT, MANUAL_CLOSE,
MANUAL_OPEN, OPEN-DONE, READY_TO-STOP, RST,
B UTTON_LIGHT, CLOSE-DRIVE, DRIVE_DOWN, DRIVE_UP,
LIGHT_DOWN, LIGHT_UP, NUMBER_LIGHT, OPEN_DRIVE,
SENSOR);

-- **'r Teçt Bench - User Defined Section x*:i
TB : block
begin

end blockl
-- 'r*'¡ End Test Bench - User Defined Section +*:i

end A;

configuration CFG_TB_TOP_BEHAVIORAL of E is
for A

for UUT : TOP
use confi guration WORK.CFG_TOP_SCHEMATIC;

end for;

-- :k:¡:3 User Defined Configuration ,r*+

for TB
end for;

-- :k;k:i End User Defined Configuration x,i*

end for;
end CFG_TB_TOP_BEHAVIORAL;

4.6 Behavioral VHDL Source Code for Subdesigns

4.6.1 do or _c ontrol Module

-- VHDL Model Created frorn SCE Syrnbol door_conrol.syrn -- Jun 5 Ig:51:57 1996

Iibrary IEEE;
use IEEE.std_logic_l l64.all;
use IEEE.std_logic_misc.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_cornponents.all;

entity DOOR_CONTROL is
Port (CLK: In STD_LOGIC;

CLOSF-DONE: In STD_LOGIC;
INTERRUPT:In STD_LOGIC;
MANUAL_CLOSE: In STD_LOGIC;
IvIANUAL_OPEN : In STD_LOCIC;

button_open: in STD_LOGIC;
OPEN_DONE: In STD_LOGIC;
READY_TO_STOP: In STD_LOGTC;

RST: In STD_LOGIC;
CLOSE_DRIVE: Out STD_LOCIC;
OPEN_DRIVE: Out STD_LOGIC);

end DOOR_CONTROL;

arclúæcture BEHAVIORAL of DOOR_CONTROL is

signal current_state, next_state: std_logic_vector(l downto 0);

-80-

Appendix A: Design Example l: Elevator Controller

signal keep:std_logic;
tegin

process(rst,clk,ready_to_stop, interrupt, rnanual_open,button_open, ¡nanual_close,

variable count, countl: integer range 0 to 10000;

begin

--default assignment

--sychronous reset

if (rst='0') then
next-state<=rr00'r;
close_drive<='0';
open-drive<='0';
count::0;
cOuntl:=0;
keep<='6';

else

-- state tansition and output logic
case cuFent_state is
when "00" =>if(ready_to_stop:'1,) then
keep<:'1't
end if;
if (keep<='1'¡¡¡sn

if(rnanual_open:' I'or button_open:' I') then
close_drive<='0';

open_drive<='l ';

next_state<:"0 1 ";
else

count::count+l;
if (counÞ1000) then
close_drive<:'0';

open_drive<='t ';

next_state<:r'01 ";
count:=0i
end if;
end if:
end if;

when "01 " =>keep<='O';
if (open_done:'l')then
close_drive<:'0';

open_drive<='0';
neXt_State<="1 0";

end if;

when "l0" => keep<='6';
if (rnanual_close:'l ') then
close_drive<:'l';
open-drive<:'0';

next-state<=" 1 i ":
else

countl:-COuntl +I ;

if (coun>1000) then
close_drive<='I';

open_drive<:'0';
next_state<="1 I ";

close_done, open_done, current_state)

-81

Appendir A: Design Example l: Elevator Controller

countl:=0;
end if;

end if;

when "Il" =>keep<:'o';
if (close_done='l') then
close_drive<='0';

open_drive<='0';
next_state<:"00";

else

.if(interrupt='1' or manual_open:'l') then
close_drive<:'0';

open_drive<='l';
next_state<:r'0 I

rr;

end if;
end if;

when others => null;

end case;

end if:

end process;

----synchronize state value with clock
process(clk)

begin
if (clk'event and clk:'l') then
current_state<=nex t_state;
end if;
end process;

end BEHAVIORAL;

confi guration CFG_DOOR_CONTROL_BEHAVIORAL of DOOR_CONTROL is
for BEHAVIORAL

end for;

end CFG_DOOR_CONTROL BEHAVIORAL:

4.6.2 b att o n _t imin g _lig h/ Module

- VHDL Model created frorn SGE Syrnbol button_tirning_light.syrn - Jun 5 19:53:57 1996

library IEEE;
use IEEE.std_logic_ I l64.all;
use IEEE.std_loeic_misc.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_components.all;

entity B UTTON_TIMING_LIGHT is
Port (BUTTON : ln std_logic*vector (6 downto O);

CLK: In STD_LOGIC;
RST: In STD_LOGIC;

START_COUNT : In std_logic_vecror (6 downto O);
BUTTON_LICHT : Out std_logic_vector (6 downto 0);
C_DOWN2: Out INTEGER RANGE 0TO str;
C-DOWN3 : Out INTEGER RANGE O To 5II:

-82 -

Appendix A: Design Example l: Elevator Controller

C_TOI : Out INTEGER RANGE 0TO 5tl;
C_TO2 : Out INTEGER RANGE 0TO 5l l;
C_TO3 : Our INTEGER RANGE 0TO 5lt;
C-UPI : Out INTEGER RANGE OTO 51I;
C-UP2: Out INTEGERRANGE0TO5il);

end BUTTON_TIMING_LIGHT;

architecture B EHAVIORAL of B UTTON_TIMING_LICHT is

signal keep0, keepl, keep2,keep3,keep4,keep5,keep6: std_logic;

begin

process(rst,cl k,button,start_count)
variable cc_tol,cc_to2,cc_to3,cc_upl,cc_up2,cc_dorvn2,cc_dorvn3:integerrange0to5ll;
begin

-----default assigrxnents

------synchronous reset

if (rst:'0') then
c-to I <=0;
c-to2<:0:
c-to3<:0;
c_up l<=0;
c-uP2<:0;
c down2<:0:
c_dorvn3<=0;
button_li ght<="0000000";
keep0<:'0';
keep I <:'0r;
keep2<='0';
keep3<='0';
keep4<='0';
keep5<='0';
keep6<='0';

elsif (clk'event and clk='l') then

if (start_count(0)='I') then
if (button(0):'l')then
keepO<=' l';
cc_tol:=cc_to l+ I ;

button_ligh(0)<=rl';
else

if (keep0:'l')then
cc-tol::cc_to I +l i
button_light(0)<:' l';
end if;
end if;
else

keep0<:'0';
cc_tol::0;
button_ligh(0)<:'0';
end if;

if (start_coun(I):' l') rhen
if (button(1)='t)then
keep l<='l';
cc-to2: =cc_to2+ I i
button_light(I)<:'l ';
else

83

Appendix A: Design Example 1: Elevator Controller

if (keepl:'t')then
cc-fo2:=cc_lo2+ll
button_light(I)<:'l';
end if;
end if;
else

keep l<:'0';
cc-lo2i:0i
burton_lighr(l)<:'0';
end if;

if (start_count(2)='l ') then
if (button(2.¡=' l')il1s¡
keep2<:'l';
cc-to3::cc_to3+l;
button_light(2)<:' 1';

else

if (keep2:'l')then
Cc_to3:=cc_to3+ I ;

button_light(2)<='l';
end if;
end if;
else

keep2<='0';

cc_to3::0;
button_light(2)<='0';
end if;

if (staÍ_count(3):'l ') then
if (button(3)=' t')then
keep3<:'l ';

cc_upl::cc_upl+1;
button_light(3)<='l';
else

if (keep3:'l')then
cc_up l: =cc_up I + l;
button_light(3)<=' l';
end if;
end if;
else

keep3<:'0';
cc-up l: =0;
button_light(3)<='0';
end if;

if (start_count(4):'l ') then
if (button(+)=' t')then
keepek='l';
cc_up2: =cc_up2+ l;
button_light(4)<=' l';
else

if (keepzF'l')then
cc_up2: =cc_up2+ I ;

button_light(4)<=' l';
end if;
end if;
else

keep4<='0';
cc_up2::0;
button_light(4)<:'0';
end if;

if (start_count(5)='l') then

84

Appendix A: Design Example l: Elevator Controller

if (button(5):'l')then
keep5<:'l ';

cc_dorvn3 ::cc_down3+ I ;

button_light(5)<=' l';
else

if (keep5='l')then
cc_dorvn3 ::cc_dorvn3+ I ;

button_light(5)<:' t';
end if;
end if;
else

keep5<='0';
cc_down3:=0;
button_li ght(5)<='Q';
end if;

if (start_count(6)=' l') then
if (button(6)='l')then
keep6<='l';
cc_dorvn2::cc_down2+ I ;

button_light(6)<:' 1';

else

if (keep6:'l ')then
cc_down2:=cc_down2+ I ;

button_light(6)<:' l';
end if;
end if;
else

keep6<='0';
cc_down2::0;
button_light(6)<='0';
end if;

c_to I <:cc_to l;
c_to2<:cc_to2i
c_to3<:cc_to3;
c_up I <=cc_up l;
c_up2<:cc_up2;
c_down3<:cc_down3;
c_down2<=cc_down2;

end if;

end process;

end BEHAVIORAL;

configuration GFG-BUTTON_TIMING_LIGHT_BEHAVIORAL of BUTTON_TIM]NG_LIGHT is
foTBEHAVIORAL

end for;

end CFG_B UTTON_TIMING_LIGHT_B EHAVIORAL;

4.6.3 de c isio n _møke Module

-- VHDL Model Created from SGE Symbol decision_make.sym - Jun 5 19:53:57 1996

library IEEE;
use IEEE.std_logic*1 I 64.all;
use IEEE.std_logic_rnisc.all;

-85-

Appendix A: Design Example 1: Elevator Controller

use lEEE.std_logic_arith.all;
use IEEE.std_logic_cornponents.all;

package MAX is

functjon max2(arg l,arg2: .integer) return integer;
function rnax3(arg l,arg2,arg3: integer) return integer;
function rnax4(argl,arg2,arg3,arg4: integer) retum integer ;

end MAX;

package body MAX is
function rnax2(argl,arg2: integer) return integer is
variable arg: integer;
begin
arg:=argl;
if (argl<arg2) then

arg::arg2;
end if;
return afg;
end ;

function lnax3(argl,arg2,arg3: integer) retum integer
variable arg,argl 2: integer;
begin
argl2::arg l;
if (arglcarg2) then

arg12::arg2i
end if;
arg:=arg I 2;

if (argl2<arg3) t.hen

arg::arg3;
end if;
fetum arg;

end :

functi on rnax4(a r gl,aryz,ar g3,arg4: i nte ger) return integer is
variable arg,argl 2,arg34: integer;
begin
argl2::argl;
arg34::arg3;
if (argl<arg2) then
argl2:=arg2;
end if;
if (arg3<arg4) then
ar934::ar94;
end if;
arg::argl2;
if (argl2<arg34) then
arg:=atg34;
end if;
feturn arg;

end ;

end MAX;

library IEEE;
use IEEE.std_logic_l l64.all;
use IEEE.strl_logic_arith.all;
use work.MAX.all;

entity DECISION_MAKE is
Port (BUTTON : In std_logic_vector (6 downro O);

C_DOWN2: In INTEGER RANGE 0 TO 5l l;
C_DOWN3 : In INTEGER RANGE 0 TO sl t;
C_TOI : In INTEGERRANGE 0TO 5u;
C_TO2 : In INTEGERRANGE 0TO 5il;

86

Appendix A: Design Example l: Elevator Controller

C_TO3 : In INTEGER RANGE 0TO 5ll;
C_UPI : In INTEGER RANGE 0TO 5lt;
C_UP2 : In INTEGER RANGE0TO 5ll;
CLK: In STD_LOGIC;

CLOSE_DONE:ln STD_LOCIC;
READY_TO_STOP: ln STD_LOGIC;

RST: In STD_LOGIC;
DRM_DOWN: Out STD_LOGIC;
DRIVE_UP: Out STD_LOGIC;
LIGHT_DOV/N : Out STD_LOGIC;
LIGHT_UP: Out STD_LOGIC;
BUTTON_OPEN : Out STD_LOGIC;
NUMBER_LIGHT: Out std_logic_vector (2 downto 0);
SENSOR : Out std_logic_vector (2 dorvnto 0);

START_COUNT : Out std_logic_vector (6 downro 0));
end DECISION_MAKE;

architecture BEHAVIORAL of DECISION_MAKE is

type stâte_type is (f_ I,w_ I ,f_2, w_2,f _3,w _3,tt2,t}t,tt3,t3 t,t23,t32);

signal current_state,next_state: state_type;

begin

process(c-to l, c-to2,c-to3,c-up l,c-up2,c-down2,c-dorvn3, rst,clk,READY_TO_STOp,CLOSE_DONE,button,current-state)

variable A,B,C,X: integer;

begin

--default assigrunent

next_stale<:current_state ;

--sycluonous reset

if (rst='0')then

next_state<:w_ l;
LIGHT_UP<:'O';
LIGHT-DOWN<:'O';
DRIVF DOWN<:'O';
DRIVE-UP<='0';
start_count<:"1 I l0l 10";

sensor<="000";
NUMBER_LlcHT<="001"'
BUTTON_OPEN<:'O';

else

A::rnax2(c_to l,c_upl);
B : :rnax3(c_to2,c_up2,c_dorvn2);

c::rnax2(c_to3, c_down3);
X:=max3(A,B,C);

-- state transition and output logic

case current_state is

rvhen f_ I =>start_coun(0)<:'0';
start_count(3)<='0';
LIGHT_UP<='0';
LIGHT_DOIVN<='0';
DRIVE_DOWN<:'O';
DRIVE_UP<:'O';
sensor<="000";

-87 -

Appendix A: Design Example l: Elevator Controller

NUMBER-LIGHT<:"OO I'';
button_OPEN<='0';

if (X=0 and close_done=,1')then
neXt_State<:w_ l;
else

if (X:B and close_done:'l ') then
next-st¿te<=t l2;
start_count(0)<='l r;

start_count(3)<='l';
LIGHT_UP<:'I';
LIGHT DOWN<='O'I
DRIVE-UP<:'I';
DRIVE_DOWN<:'O';
sensor<:"0 1 0";
end if;

if (X:C and close_done:'l ') rhen
start_count(0)<:'l ';

stalt-count(3)<='l ';

next-stÂte<=t l3;
LIGHT UP<:'I':
LIGHT_DOWN<='O'l
DRIVE-UP<:'I';
DRIVE_DOWN<='0';
NUMBER_LlcHT<="69¡ "'
sensor<:"100";

end if;
end if;

whenw_1 =>

start_count(0)<='0r;
start_coun(3)<:'0';
LIGHT-UP<:'O';
LIGHT-DOWN<:'O';
DRIVE-DOWN<='0';
DRIVE_UP<='0';
sensor<="000"i
NUMBER_LIGHT<="001"'
button-OPEN<='0';

if (X=0)then

if ((button(O)='t') or (button(3):'l')) then
next_state<=f_ I ;

button_open<:'l ';

end if;
else

if (X=B) then
next_state<=tl 2;

start_count(0)<='l';
start_coun(3)<=rl r;

LIGHT-UP<='l';
LIGHT-DOWN<='0';
DRIVE_UP<='I';
DRIVE_DOWN<='O';
Sensor<="010";
end if;

if (X=C) then
start_count(0)<='l r;

88

Appendix A: Design Example l: ElevatorController

start_count(3)<='l r;

next_state<:tl 3;

LIGHT_UP<='l';
LIGHT-DOWN<:'O';
DRIVE-UP<:'I';
DRIVF_DOWN<='0';
sensor<="1 00";
end if;
end if;

when f_2 =>sta¡t_count(I)<:'0';
start_count(4)<=r0';
start_count(6)<='0';
LIGHT_DOWN<='0';
DRIVF-DOWN<:'O';
DRIVF-lJPq='Q';
sensor<="000";
NUMBER_LIGHT<:''O I O'';

button_OPEN<='0';

if (X:0 and close_done:,1,)then
nex t_state<=w_2;
else

if (X:A and close_done='l ') then
next_state<:t2l i
start_count(l)<:'lr;
start_count(4)<:'l ';
start_count(6)<='l';
LIGHT_UP<='O';
LIGHT_DOWN<='l';
DRIVE_UP<:'O';
DRIVF.DOWN<:'I':
sensor<="001 ";
end if;

if (X=C and close_done='l') then
start_count(I)<='l';
start_count(4)<='1 ';
start_count(6)<=r|;
next_state<=t23;
LIGHT-UP<:'1';
LIGHT-DOWN<='O';
DRIVF_UP<:'l''
DRIVE-DOWN<:'O';
sensor<:r'1 00";
end if;
end if;

when w_2 :>start_count(I)<='0';
start_count(4)<=r0';
start_count(6)<=r0';

LIGHT_UP<='0';
LIGHT-DOWN<:'O';
DRIVF._DOWN<='0';
DRIVE*UP<='0';
sensor<="000";
NUMBER-LICHT<=I'OI O''.

button_OPEN<='0';

if (X=0)then
if ((button(l)='l') or (bufton(4)='l')or (buuon(6)='t')) rhen

-89

Appendix A: Design Example l: Elevator Controller

next_state<:f_2;
button-open<=r1';
end if;
else

if (X:A) then
next_state<=t2 l;
start_count(I)<=rl ';

start_count(4)<:'l ';

start_count(6)<='l ';

LTGHT UP<='O':
LIGHT_DOWN<='l';
DRIVF-UP<='0';
DRIVE-DOWN<:'I';
sensor<="00 1 ";
end if;

if (X=C) then

start_count(I)<:'l ';

sta¡t_count(4)<:'l';
start_count(6)<:'l';
nexf_state<=t23;
LIGHT_UP<='l';
LIGHT_DOWN<='0';
DRIVE-UP<:'I';
DRIVE_DOWN<='0';
sensor<:"100rr;
end if;
end if;

when f_3 :>sta¡t_count(2)<:'0';

start_count(5)<:'0';
LIGHT-UP<='0';
LIGHT_DOWN<:'O';
DRIVE_DOWN<:'O';
DRIVF:UP<:'O';
senSor<="000";
NUMBER-LIGHT<='' I OO''.

button_OPEN<='0';

if (X:0 and close_done='1,)then
next_state<:w_3;
else

if (X:B and close_done='l') then
neKt state<=t32:
start_coun(2)<='l';
start_count(5)<:'l ';

LIGHT-UP<='0';
LIGHT DOWN<:'I':
DRIVF-UP<:'O';
DRIVE-DOWN<:'I';
Sensor<:r'0l0rr;
end if;

if (X=A and close_done:'l') then
start_count(2)<:'l';
start_coun(5)<:rl r;

next-st¿te<:t3l;
LIGHT_UP<='O';
LIGHT_DOWN<='l';
DRIVE_UP<='0';
DRIVF DOWN<='I';
sensOr<='r00'I 'r;

90

Appendix A: Design Example l: Elevator Controller

end if;
end if:

rvhen w_3 :>start_count(2)<=,0';

start_count(5)<='0';
LIGHT-UP<:'O';
LIGHT_DOWN<-'0';
DRIVE_DOWN<='0';
DRIVE_UP<='0':
sensor<:r'000rri
NUMBER-LIGHT a='' 1 66II.
button_OPEN<='0''

if (X=0) then

if ((button(2):'l') or (buuon(5)='l')) then
next_state<=f_3;
button_open<='l ';

end if;
else

if (X:B) tlren
next_state<=t32;

start_count(2)<:rI';
start_count(5)<:'l ';
LIGHT_UP<='0';
LIGHT_DO!ù/N<='l';
DRIVF_UP<='0';
DRIVF_DOWN<:'I';
sensor<="010";
end if;

if (X=A) then
start_count(2)<='|;
start_count(5)<='l r;

next_state<=t3 l;
LIGHT UP<:'O':
LIGHT_DOIù/N<:'I';
DRIVE_UP<:'O';
DRIVE_DOWN<='1';
sensOr<:"001 ";
end.if;
end if;

when tl2 :> start_count<:"1 lt I ll I ";
if (ready_to_stop='l ') then
next-state<=f_2;
LIGHT_UP<='0';
LIGHT-DOWN<='O';
DRIVF-[JPq='6'¡
DRIVE-DOWN<:'O';
end if;

when t2l :> start_count<="1I I I II l";
if (ready_to_stop='1') then
next-state<:f_l;
LIGHT_UP<='O':
LIGHT_DOWN<:'O';
DRIVF-UP<='O';
DRIVF_DOWN<=,0':

-9t

Appendix A: Design Example l: Elevator Controller

end if;

when tl3 :> start_count<:"1 I I I I I l ";
if (ready_to_stop:' l') then
nex t_state<:f_3;
LIGHT_UP<='0';
LIGHT_DOWN<='0';
DRIVF_UP<='0'.
DRIVF_DOWN<='0';
end if;
when t3 I => start_count<:"1 ll I ll l";
if (ready_to_stop=' t') then
nexf_State<:f_ l;
LIGHT_UP<='0';
LIGHT_DOWN<='0';
DRIVF UP<='o';
DRIVE_DOWN<='0';
end if;

when t23 => start_count<=',1 I I I I I l ";
if (ready_to_stop:' l') then
next_state<:f_3;
LIGHT UP<:'O':
LIGHT-DOWN<:'O';
DRIVE-UP<='O';
DRIVF-DOWN<:'O';
end if;

when t32 :> start_count<:"1 I I I I I l ";

if (ready_to_stop='l') then
next_stâte<:f_2;
LIGHT_UP<='0';
LIGHT_DOWN<='O';
DRIVF-UP<='0';
DRTVF_DOWN<='0';
end if;

when others:>null;
end case;

end if;

end process;

process(clk)

begin

if (clk'event and clk='l ') then
c urrent_state<:next_state;
end if;
end process;

end BEHAVIORAL;

confi guration cFG-DECISION-MAKE-BEHAVIORAL of DECISION_MAKE is
for BEHAVIORAL

end fot

end CFG_DECISION_MAKF-BEHAVIORAL;

92

Appendix A: Design Example l: Elevator Controller

4.7 synthesized schematic of Module decision make

f.::i.l l '!'ílljz.r, :i, i.þ,. i
cLr,: l*":r.*í

i
r.. r._05F_._tJ0ruE ¡ ':;,-i

i .. itiii_i¡i2 i ii ¿> {i_,,.*;t
í.. ... ì,)i_ìt..iirjiì ¿. E , li ; '{|þ*i

r....jt)) <i , tz> {))j;v.i+
i.. .. i i),¿ < i :, .t> ti"-,,i:,..i,,

c... f *3.í |, e> l*-";t.:;.
l' iiQ ì ¡i.t:'. ï ",,, iç-.-f I..I t.. l,,","¿;i.,i.j

f ...i.r:r;- r:e , r:> {))i7,"_
Fl iAüY-Tü-S T oF i'-)',>*i,

¡iS|i ''> i i

Ðãtr5-Iût,l_tYl\KE

î
r

I
;.i ';: ul'; ii:t.J__cjph.tl
I .,,-....

I-4)r DRIVã_DOt..JtrJ

i ..i ": IìR i\/í: j i'r
2 t...--..t' ""t*^
i | ';), LfiìHT_l_:ùL.lt'l| .:.:::::.

i-a ;) L_].r.;Fl t ___,-_JItrt'::
¡.]¡. .

-..?;. i l|.tt1Rl ñ... t.. TrìHT.í l . Ð)I ::.::

'r"4 ":;t;;i..¡'-¡-tli il :)1't

f,.î.þ çt ¡p ¡..-i:.0i.-:í..iT (È r't 2
I
i,

-93 -

APPEI{DIX B

DESrcl{ EXAMPLE 2: aLu Fuf[cTro¡{
GEI{ERATOR DM74I81

8.1 Behavioral Description

Refer to [24), p5-100__p5_107.

8.2 Source Code for the ALU

------- VHDL behaviorat code for alu (ctrip DM74l8l)
------- Written by Ruomei Wang, March 10, 1996

library IEEE;
use IEEE.srd_logic_I l64.all;
use IEEE.std_logic_arith.all;

package ART00 is
function "+"(argl,arg2:std_logic_vector(3 downto 0)) return stcl_logic_vector;
function "-" (argl,arg2:std_logic_vector(3 downto 0)) retum std_logic_vector;
function cy(argl,arg2:std_logic_vector(3 Uownto O¡j retum std_logic;
fu¡rction cn(argl,arg2:std_logic_vector(3 <to*nto Ojj return std_logic;
end ARTOOI

package body ART00 is

function "+" (argl,arg2:st._logic_vector(3 downto O)) return std_logic_vector isvariable sum: std_logic_vector(3 downto 0);
variable carry:std_logic;
begin
cíury::'0r;
foriin0to3loop
sum(i):=argl(i) xor arg2(i) xor carry;

-94-

Appendix B: Design Example 2: ALIJ Funcrion Generator DMT4tgl

cary:=(argl (i)and arg2(i)) or (argl(i)and carry) or (carry and arg2(i));
end loop;
return sum;

end;

function "-"(argl,arg2:std-logic-vector(3 downto 0)) return std_logic_vector is
variable sum,arg22:std_logic_vector(3 downto 0);
variable carry:std_logic;
begin
carry;=rl';
arg22:=not(arg2)i
foriin0to3loop
sum(i):=argl(i) xor ary22(i) xor carry;
carry::(argl (i)and, ar+22(i)) or (argl(i)and carry) or (carry and arg2z(i));
end loop;
return surn;

end;

function cy(argl,arg2:std_logic_vector(3 downto 0)) retum std_logic is

variatrle surn: std_logic_vector(3 downto 0):
variable carry:std_logic;
begin
cíury::r0r;
foriin0to3loop
sum(i)::arg I (i) xor arg2(i) xor carry;
carry:=(argl(i)and arg2(i)) or (argl(i)and carry) or (carry and arg2(i));
end loop;
return carry;
end;

function cn(argl,arg2:std_logic_vector(3 downto 0)) retum std_logic is
variable sum,arg22:std_logic_vector(3 downto O);
variable carry:std_logic;
beg.in

carrY::rlr;
arg22::not(arg2);
foriin0to3loop
sum(i):=argl(i) xor arg22(i) xor cíury;
carry: :(arg I (i)an d ar g22(i)) or (arg I (i)and carry) or (carry and ar g22(i));
end loop;
carry::not(carry);
return carry;
end;

end ART00;

library IEEE;
use IEEE.std_logic_l I 64.all;
use I EEE.std_logic_ar.ith.all;
use work.ART00.all;

entity alu00 is
port(A,B,S: in std_logic_vector(3 downto 0);
F: out std_logic_vector(3 downto O);

cin: in std_logic;
m: in std_logic;
cout: out std_logici
comp: out std_logic;
P: out std_logic;

9s

Appendix B: Design Example 2: ALIJ Function Generator DMT41g l

G: out std_logic

end alu00;

archítecture læhavioral of alu00 is
begin

process(A,B,S,rn,cin)
variable D: std_logic_vector(3 dorvnto 0):=,'0001',;
begin
if (A=B) rhen

colllp<=rlr;
else

comp<=r0r;

end if;
P<:A(3) and B(3);
G<:A(3) or B(3);
if(rn='0') thsn
cout<:'0'i
case S is

when "0000,' => if (cin:'o') then
F<=A;
else

F<:A+Di
cout<:cy(A,D);
end if;
when "0001" :> if (cin:,0')rhen
F<:A or B;
else

F<:(A or B)+D;
cout<=cy(A or B,D);
end if;
rvhen "0010" => if (cin:,0,)rhen
F<=A or (not(B));
else

F<=(A or (nor(B)))+D:
cout<:cy(A or (not(B)),D);
end if;
when "001 t " => if (cin='0')then
F<= (A or B)+(A and B);
else

F<='r0000";

end if;
rvhen "0100" => if (cin:'0')then
F<=A + (A and (not(B)));
cout<=cy(A,A and not(B));
else

F<:(A + (A and (not(B))))+"0001 ";
cout<=cy(A,A and (nor(B))) or cy(A+A and (nor (B)),D);
encl if;
rvhen "0t01', => if (cin='0,)rhen
F<=(A or B) + (A and (not(B)));
cout<=cy(A or B, A and not(B));
else

F<:(A or B) + (A and (not(B)))+"000t,';
cout<:cy(A or B, A and (not(B))) or cy((A or B)+(A and (nor(B))), D);
end if;
rvhen "0110" :> if (cirì=,0')t.hen
F<=(A-B)-"0001 ";
cout<:cn(A,B) or cn(A-B,D);
else

F<=A-B;
cout<:cn(A,B);
end if;

-96-

Appendix B: Design Example 2: ALL| Function Generator DMT4lg l

rvhen "01 I I " =>if (cin='0')then
F<:A and (not(B))-D;
cout<=cn(A and (nor(B)),D);
else

F<=A and not(B);
end if;
rvhen "I000" =>if (cin='0')then
F<=A+(A and B);
cout<:cy(A,A and B);
else

F<=(A+(A and B))+"000 I,,;
cout<=cy(A,A and B) or cy(A+(A and B), D);
end if;
rvhen "1001" :>if (cin:'0')then
F<=A + B;
cout<=cy(A,B);
else

F<=(A +B)+"000t":
cout<=cy(A+B,D) or cy(A,B¡;
end if;
when "10t0" =>if (cin='0')then
F<=(A or (not(B)))+ (A and B);
cout<=cy(A or (not(B)),A and B);
else

F<:(A or (not(B)))+ (A and 8)+"0001";
cout<=cy(A or (not (B)), A and B) or cy((A or (not (B)))+(A and B),D);
end if;
when "l0l l":>if (cin='0')then
F<=A and B-D;
cout<=cn(A and B,D);
else

F<=A and B;
end if;
when "l 100" :>.if (cin='0')then
F<:A + A;
cout<=cy(A,A);
else

F<:(A+A)+,'0001,';
cout<=cy(A,A) or cy(A+A,D);
end if;
rvhen ,,1 101,, =>if (cin:,0,)then
F<:(A or B)+A;
cout<=cy(A or B, A);
else

F<:((A or B) + A)+"0001 ".
cout<=cy(A or B,A) or cy(A or B+A,D);
end if;
when "11 10" :>if (cin=,0')then
Pa=(A or (nor(B)))+A;
cout<=cy(A or no(B),A);
else

F<:(A or (nor(B))+A)+',0001 ";
cout<=cy(A or not(B),4)or cy(A or not(B)+A,D);
end if;
when others =>if (cin='0,)then
F<=A-D;
cout<=cn(A,D);
else

F<=A;
end if;

end case;

else

cout<='0';

-97 -

Appendix B: Design Exampre 2: ALIJ Function Generaror DM74rg1

case S is
rvhen "0000" :> F<=not(A);
rvhen "0001,' => F<=not(A or B);
when "0010', _> p<=(not(A)) and B;
when "001 I " => F<="0000t1
when "0100', =t f.=not(e -¿ S);
rvhen "0101" => F<=not(B)i
when "01 10" => F<:A xor B;
when "01 I t,' :> F<=A and (not(B));
when "1000,'=> F<=(no(A))or B;
when "1001 " => F<=not(A xor B);
tvhen "1010,'=> F<=B;
when "l0l l" => F<=A and B;
when "l100" => F<=,'l l l l ";
when "l t0l " => F<=A or (not(B));
when "llt0"=> F<=A orB;
when odrers:> F<=A;

end case;

end if;
end process;

end behavioral;

8.3 Functional Testbench for the ALU

-------VHDL tesrbench for alu (chip 74LS t 8 I)----- Vy'ritten by Ruomei Wang, March l0, 1996

libra¡y IEEE;
use IEEE.std_logic_ I I 64.ail;

package Op is
fun¡!9n ''+"(argl,arg2:srd_logic_vecror(3 downto 0)) return srd_logic_vecror;
end OP;

package body Op is
function '?" (argl,arg2:std_logic_vector(3 downto 0)) return std_logic_vector isvariable sum:std_logic_vector(3 downto 0);
variable carry:std_logic;
begin
carry:='0r;
foriin0to3loop
sum(i)::argl (i) xor arg2(i) xor carry;
carry:=(argl (i)and arg2(i)) or (argl(i)and carry) or (carry and arg2(i));
encl loop;
retum sum;

end;

end OP;

Iibrary IEEE;
use IEEE.std_logic_ I l64.all;

-98-

Appendix B: Design Example Z: ALIJ Function Generator DMT4lg l

use work.OP.all;

entityEll is
end;

architecture AEll of Eil is

signal A,S: std_logic_vector(3 downto 0);
signal B: std_logic_vector(3 downto 0);
signal F: std_logic_vector(3 downto 0);
signal m,cin,cout,cornp,p,C:std_logic;

component aiu I I
port(A,B,S: in std_logic_vector(3 downto O);
F: out std_logic_vector(3 downto 0);
cin: in std_logic;
m: in std_logic;
cout: out std_logic;
comp: out std_logic;
P: out std_logic;
G: out std_logic
);

end component;

begin

UUT: alull
port rnap(A,B,S,F,cin,rn,cout,comp,p,G);

M_C_stirnulus: process
begin
m<='0';
cin<='0';
wait for 3200 ns;

cin<='l';
wait for 3200 ns;

m<:'l';
wait for 3200 ns;

end process;

S_stimulus: process
variable í: integer;
variable seed: std_logic_vector(3 downto 0);
begin
S<:rr0000r'.
seed:="0000";
rvait for 200 ns;
for i in I to t5 loop
seed:=seed+"000 1

,';

S<:seed;
wait for 20O ns;
end loop;
end process;

A_stimulus: process

variable i: integer;
variable seed: std_logic_vector(3 downto 0);
begin
A<="0000";
seed::"0000',;
rvait for 20 ns;
foriinltoTloop
seed::seed+"001 0,':

99

Appendix B: Design Example 2: ALIJ Function Generator DMT4lgl

A<=seed;
rvait for 20 ns;

end loop;
end process;

B_stirnulus: process

variable i: integer;
variable seed: std_logic_vector(3 downto O);
begin
B<="0000"
seed:="0000";
rvait for 20 ns;
foriin I to5loop
seed:=seed+"001 l ";
B<:seed;
wait for 20 ns:

end loop;
end process;

end AEI l;

configuration cfg_El I of El I is
for AEI I

for UUT: alu I I
end for;
end for;
end cfglEll;

8.4 Simulation Results

r./Ell/S(3;0)

/Ël 1/m

/El l/cin

> /Ell/A{3:0)

Þ /El l/B(3r0)

> /El1/F(3:0)

/EI 1/corrt

/El l/comp

3100 3200 3300

Fig. B.I: Simulation Results

370036003500 3800 3300 400(

c

0

I

8.5 ATPG Results by Test compiler (in wGL format)

#=:===:=:===
DESIGNNAME: atull

r00 -

Appendix B: Design Example 2: ALIJ Function Generator DMT4lg l

CUSTOMER:
LIBRARY TYPE: class

REVISION:1.00
DATE: O3/13196

#::=:==::===

'rvavefor¡n alu I I

signal

"A<3>" : input;
"A<2>" : input;
"A<l>" : input;
"A<0>" : input;
"B<3>" : input;
"B<2>" ; input;
"B<l>" : input;
"B<0>" : input;
"S<3>" : input;
"S<2>" : input;
"Scl>" : input;
"S<0>" : input;
"F<3>" : output;
"F<2>" : output;
"F<l>" : output;
"F<0>'r : output;
cin : input;
m : input;
cout : output;
comp : output;
P : output;
G: output;

end

tirneplate alu I l_tp period l00NS
'A<3>" :: inpur[OPS:P, 5NS:S];
" A<2>" :: input[OPS:P, 5NS:S];
"A<1>" :: input[OPS:P, 5NS:S];

input[0PS:P, 5NS:Sl;

"B<2>tt :: input[OPS:P, 5NS:S];

"S<3>" :: input[OPS:P, 5NS:S];

"S<0>" := input[oPS:P, SNS:Sì;
rrF<3>rr'= output[0PS:X, 95NS:e'edge, 100NS:X];
"F<2>" := output[0Ps:X, 95NS: e'edge, I 00NS:X];
"F<l>"'= output[0Ps:X, 95NS:Q'edge, 10ONS:X];
"F<0>" :: output[0PS:X, 9-5NS:e'edge, I 00NS: X];
cin :: input[0PS:R 5NS:S];
m :: input[OPS:R SNS:Sì;
cout :: output[oPS:X, 95NS:Q,edge, l00NS:X];
comp := output[OPs:X, 95NS:Q'edge, l00NS:X];
P :: output[OPS:X, 95NS:Q'edge, l00NS:X];
G :: output[0PS:X, 95NS:Q'edge, l00NS:X];

end

pattern group_Al-I- ("4<3>" ,,'A<2>,,, "A<t>" , 'A<o>" , "B<3>", 'B<2>", ',8<l>,, ,
"B<0>", "s<3>" , "S<2>", "S<l>", "s<0>", ',F<3>", "F<2>" , "F<l>" ,
"F<0>", cin, m, cout, cornp, p, G)

Synopsys Test compile¡ v3.3b (Aug 27, 1995) was used to generate trús pattem set
INPUT VECTOR FILE = alul l.vdb was the source file for this pattern set

vector(alut l_rp) := [x x x x x x x x x x x x x x x x X X X x X X];

101

Appendix B: Design Example Z: ALLJ Function Generator DMT41gl

vector(alul l_tp) :: I X];
Pattern 0

vector(alull_tp)::[0000 I I I I 10000000 I 0000 I];
Pattern I

vector(alull_tp):=[I I I I 0000 1 I 0 I 0000 I 0000 I];
Pattern 2

vector(alu I l_tp) :: I I I 0 0 0 I 0 0 0 I 0 0 I I 0 O I 0 I 0 0 I];
Pattern 3

vector(alull_tp)'= [000000000 I I I 0000 I 00 I 00];
Pattern 4
vector(alull_tp):=[0 1000 I 000 I I I I I 00 I 00 I 00]i

Pattern 5

vector(alull_tp)'=[t 00 I I I I 00 I 0 I I 000 I 0 I 0 I I];
Pattern 6

vector(alull_tp)::I I I I I I 0 I I 0 I I 000 I I 0000 I I l;
Pattern 7

vector(alull_tp)::I I I I I I I 00 t00t I t O0 I 0 I 0 I I J;
Pattern 8

vector(alul l_tp) :: I I 0 0 0 0 0 0 0 0 I 0 0 I 0 0 0 I 0 I 0 0 I l;
Pattem 9
vector(alull_tp):=[I I I I l0l 001 0 I I 0 lol 010 I I];

Pattern 10

vector(alu[_tp)¡=[0I I l0l t 00l0l I I 10100000];
Pattern I I

vector(alull_tp)¡=[0 I 00 I 0l I I 0000 I 00 I 0 I 001];
Pattern 12

vector(alull_tp)::[000 I I I 1 0 I 000000 I I 0 I 001];
#Pattern 13

vector(alul1_tp)::[0 I I I I I I l000l0l I O000O0t];
Pattern l4
vector(alull_tp) ::[00000000 t 0 I I 000 I t 0O I 00];

Pattern l5
vector(alul l_tp) :: [0 0 0 0 0 0 0 0 0 I 0 0 O 0 0 O I 0 0 I O 0];

Pattern 16

vector(alull_tp):= [0 t l0l00l I0000 t l0I0l00l];
Pattern 17

vector(alull_tp):=[1 I I I 0 I 00 I I 010 100 I 0 I 001];
Pattern I 8

vector(alull_tp):=[l I I I 1000001 00 1 100000 1 I];
Pattern l9
v vector(alull_tp)::I I I 0 I 0 t 00 I 0 I 00 I I I I 0 I 00 I];

(ornit)

Pattern I 87

vector(alul l_tp) '= [0 0 0
Pattern I 88

vector(alull_tp) :: I I t I
Pattern 189

vector(alull_tp) := [I I I
Pattern I 90
vector(alull_tp) :: I I I I

end

end

l 001 000000001 I 000001;

I 10010010100101001 I l;

r 10001 I l00t l000l0l ll;

r r 0001 I l 0xxxx00XXXX l;

102 -

BIBLIOGRAPHY

tll M.Masud and M. Karunaratne, "Test Generation based on Synthesizable VHDL Descrip-

tions", Proc. oJ'European DAC, pp.446-451, 1993.

[2] V. Pla, J. Santucci, N. Giambiasi, "On the Modeling and Testing of VHDL Behavioral

Descriptions of Sequential Circuits", Proc. of Euro-VHDL, pp. 440-445, 1993.

l3l Y. H. Levendel, P. R. Menon, "Test Generation Algorithms fol Computer Hardware Descrip-

tion Languages", IEEE Trans. on Computers, vol. c-3 1, no. 7, July 1982.

l4l R. Khorram, "Functional Test Pattem Generation For Integrated Circuits", IEEE ITC, lg}4.

[5] Chang Hyun Cho, James R. Armsüong, "B-algorithm: A Behavioral Test Generation Algo-

rithm", Proc. oJ IEEE ITC, 1994.

16l A. Ghosh, S. Devadas, "Test Generation and Verification for Highly Sequential Circuits",

IEEE Trans. on CAD, Vol.10, No.5, pp.652-666,May 1991.

t7l J. R. Armstrong, "Hierarchical Test Generation: Where We Are, And Where We Should Be

Going", P roc. oJ E urop ean DAC, pp.434-439, 1993.

[8] T. Murata, "Peüi Nets: Plopelties, Analysis and Applications", IEEE, I9B9

l9l S. Olcoz, J. M. Colom, "Toward a Formal Semantics of IEEE Std. VHDL 10J6", Proc. oJ'

Ettropeun DAC, pp.526-53l, 1993.

ll0l J. Muller, H. Kramer, "Analysis of Multi-Processor VHDL Specifications with a Petri Net

Model", P roc. of Euro-VHDL, pp.47 4-479, 1993.

-103-

t

Bibliography

[11] D.Boussebha, N. Giambiasi, J. Magnier, "Temporal Verification of Behavioral Descriptions

in VHDL", Proc. oJ European DAC, pp.692-697, 1992.

U2l J. R. Armstrong, Chip-Level Modeling with.VHDL, Prentice Hall, Eaglewood Cliffs, New

Jersey 01632,1989.

t13l J. B. Gosling , Simulation in the Design of Digital Electronic Systems, Cambridge University

Press,1993.

i14l A. Bechir and B. Kaminska, "CLCLOGEN: Automatic, Functional-Level Test Generator

Based on the Cyclomatic complexity Measure and on the ROBDD Representation", IEEE Trans.

on Circuits nnd Systems, Vol. 42, No. 7,Iuly 1995.

[15] M. S. Abadir, H. K. Reghbati, "Functional Test Generation for digital Circuits Described

Using Binary Decision Diagrams", IEEE Trans. on computers, vol.C-35, no. 4, pp. 375-379,

1986.

t16l R. E. Bryant, "Graph-Based Algorithms for Boolean Function Manipulation",\EEE Trans.

on Computers, vol.C-35, no. 8, pp. 617-691, 1986.

[17] M. Fujita, H. Fujisawa, N. Kawato, "Evaluation and Improvements of Boolean Comparison

Method Based on Binary Decision Diagrams",IEEE ICCAD,lggg.

t18l H. P. Chang, W. A. Rogers, and J. A. Abraham, "structured Functional Level Test Genera-

tion Using Binary Decision Diagrams" IEEE ITC, pp.97-104,1986.

t19l R. C. Oaken, "An Overview of Test Synthesis Tools" , IEEE Design anrl Test of Computers,

1995.

l20i N. H. E. West, C. Thrashing, Principles of CMOS VLY Design -A Systems Perspective, Sec-

ond E dir io n, Addison-Wesley Publishing Compan y, 1993

l2ll A. Courbis, J. Santucci, N. Giambiasi, "Automatic Behavioral Test Pattern Generation for

Digital Circuits", P roc. oJ' E uro-VHDL, pp. I I2-I lj, 1992.

t22l S. B. Akers, "Binary Decision Diagrams" , IEEE Truns. on Computers, vol.C-2| , no.6, pp.

509-516, June 1978.

[23] F. E. Norrod, "An Automatic Test Generation Algorithm for Hardware Description Lan-

- 104-

Bibliography

guages", Proc. oJ European DAC, pp. 429-434, June, 1989.

[24] National Semiconductor Corporation, Logic Databook,Volume II, 1984.

[25] Applied Microelectronics lnc., CMC IC Test Head operating Manual,Version 1.0, Document

#:1025,1995.

[26] Hewlett Packard, HP 75000 Model D20 Digital Functional Test System, 1992.

[27] R.G.Bennetts, "Progress in Design for Test: A Personal Vie'w", IEEE Design and Test oJ'

Computers, pp. 53-58, Spring, 1994.

[28] Synopsys, krt C omp iler ReJere nc e, V 3.2b, 1995.

[29] Synop sys, Te s t C omp ile r Tuto rial, V 3.2b, 1995 .

t30l S. Mazor and P. Langstraat, A Guide to VHDL, Kluwer Academic Publishers, 1993.

105 -

