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Abstract

The problem addressed in this research is how to quantify thenotion of similarity between
two images with the main focus on content-based image retrieval (CBIR). The main strategy
used here is a Near Set approach where each image is considered as a set ofvisual elements
that can be described with a set of visual descriptions (features). The similarity between
images is then defined as the nearness between sets of elements based on their descriptions.

The main contribution of this thesis, is to define nearness measures between sets of ele-
ments based on atolerance relationand afuzzy tolerance relationbetween pairs of elements.
A tolerance relation is used here to describe the limited resolution of the human visual per-
ception to changes in visual stimuli. Also, a fuzzy tolerance relation is adopted here to elim-
inate the need for a sharp threshold and hence model the gradual changes in perception of
similarities by humans. A method for adaptive selection of the threshold is also introduced.

The key idea in defining similarity between images is to consider groups of visual el-
ements that arealmostsimilar to each other in description. These groups can betolerance
classesor neighborhoods. Three novel similarity measures are introduced in this thesis based
on this idea. Furthermore, a fuzzy-valued similarity measure is also proposed where simi-
larity is a fuzzy set rather than a real number. Three other similarity measures are also pro-
posed here based on classical distances (namely, Kantorovich, Hausdorff and Mahalanobis)
between sets of visual elements. All of the proposed methodsare then used as similarity
measures in two CBIR experiments. A new method is also proposedto evaluate image re-
trieval and classification. The proposed method as well as the precision-recall methods are
used for evaluation. The results are also compared with other published research papers. An
important advantage of the proposed methods is their effectiveness in an unsupervised envi-
ronment with no prior information about images. Eighteen different features (based on color,
texture and edge information) are used in all the experiments regardless of the query image.
However, for comparison, a simple feature selection algorithm is used to train the system in
choosing a suboptimal set of visual features and the improvement in accuracy of the results
is shown.

Keywords: Perception of similarity, image similarity, nearness measure, similarity measure,
content-based image retrieval (CBIR), query by content, tolerance spaces, metric spaces,
fuzzy sets, fuzzy metric spaces, fuzzy tolerance spaces, fuzzy valued distance.
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Notation

I Set of images

X ,Y ∈ I Pair of images

O Set of describable objects

X,Y ⊆ O Subsets of describable objects

x, y ∈ O Describable objects

φ : O → R A Probe function

B = {φ1, φ2, ..., φl} A set of probe functions
~φB(x) = [φ1(x), ..., φl(x)]T Feature vector of the objectx

ΞB = Rφ1 ×Rφ2 × ...×Rφl
Feature spaceΞB

ΦO
B ⊂ ΞB Countable set of feature vectors of objects inO

ΦX
B , ΦY

B ⊆ ΦO
B Countable subsets of feature vectors of objects inX,Y

d : ΞB × ΞB → R+ Feature vector distance function

∼B⊆ O ×O Perceptual indiscernibility relation between objects

∼B= {(x, y) ∈ O ×O ‖ ~φB(x) = ~φB(y)}
x/∼B

⊂ O Equivalence class of all the elements indiscernible fromx

O/∼B
Set of all equivalence classes inO determined by∼B

∼=⊆ O ×O A tolerance relation

ε ∈ R+0 Tolerance level (threshold)
∼=B,ε⊆ O ×O Perceptual tolerance relation onO with respect tod andε.

∼=B= {(x, y) ∈ O ×O | d(~φB(x), ~φB(y)) < ε}
(O,∼=B,ε) Tolerance space.
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Notation

n
∼=B,ε

O (x) ∈ N
∼=B,ε

O Tolerance neighborhood ofx in O

N
∼=B,ε

O Set of all tolerance neighborhoods inO

H
∼=B,ε

O Set of maximal pre-calsses of the tolerance space(O,∼=B,ε)

∼̂=B,ε : O ×O → [0, 1] Fuzzy perceptual tolerance relation (soft similarity)

n
∼̂=B,ε

O (x) Fuzzy tolerance neighborhood ofx onO where

µ
(n

∼̂=B,ε
O

)
: O → [0, 1]

F(U) Family of all possible fuzzy sets defined on a setU

B
∼=B,ε
∗ (X) Lower approximation of a subsetX in a tolerance space

B∗
∼=B,ε

(X) Upper approximation of a subsetX in a tolerance space

pdf Probability distribution function of a continuous random variable

cdf Cumulative distribution function of a continuous random variable

pmf Probability mass function of a discrete random variable
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Chapter 1

Introduction and Classical Measures

The objective of this research is to develop computational methods for quantifying the visual

similarity between pairs of digital images. The problem of defining such similarity measures

is an important part of content-based image retrieval (CBIR) systems [11, 63]. A solution

to this problem generally consists of extracting some visual descriptions (i.e features) from

images and then comparing the feature values in order to measure how much they resemble

each other. The motivation for this stream of research is to work toward reaching the ability

of humans in perceiving images and recognizing similarity using computational intelligence.

This is one of the most important aspects of the human intelligence in perceiving the world

around us. We can detect, organize and explore the world based on similarity between ob-

jects or physical stimuli. However, mimicking human intelligence in recognizing similarity

is particularly challenging because the correspondence between physical measurable stim-

uli and its perception (and further psychological experience of the perception) is unknown.

Perception of similarity based on visual stimuli has been always an interesting subject for
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scientists in psychophysics and cognitive psychology and many attempts have been made

to model this relation (see AppendixA). This thesis does not include the psychophysics of

visual perception. The research problem in this thesis is todevelop a computational algo-

rithm for quantifying the level of visual similarity between images. This assumes that some

meaningful visual descriptions of the images (features) are provided.

A common classical approach to comparing features is to calculate some form of distance

(e.g. Minkowski distance: Euclidean or Manhattan distance) either between global or local

feature vectors in the feature space. This approach is oftencalledgeometric approachor

mental distance approach[42]. For example, in [29, 33], and [34], a weighted Minkowski

distance is used to compare global color or texture-based feature vectors. In [27], Euclidean

distance is used to compare feature vectors that are extracted using a wavelet decomposition

to represent texture. Figure1.1for example, is a drawing that shows how each image can be

mapped into a point in 3 dimensional feature space. Image dissimilarity can then be viewed

as distance between the corresponding points. Measures of distance between histograms

have also been used as a measure of dissimilarity. A couple ofexamples includehistogram

intersection[32] andLp norm distance between histograms [66]. To learn more about the

existing methods in image similarity, the reader is encouraged to refer to [3,11,63].

The main approach presented in this research, is based on comparing images as sets

of elements in a tolerance space and fuzzy tolerance space. The idea of using tolerance

spaces in mathematical modeling of visual perception was introduced by Zeeman in 1962

[80] (inspired by the early qualitative discussions by Henry Poincaŕe [52]). Zeeman proposed

a tolerance view of similarity to represent limitation of human visual acuity in distinction

between visual stimuli that are spatially apart [80]. Zeeman’s work was not concerned with

2



Figure 1.1: Distance based approach to similarity

the concept of visual similarity but rather with a mathematical modeling of how the visual

perception is formed. Although Zeemnas’s model of the visual perception is very elementary,

(even as described by himself in his paper) it has a reasonable basis which has inspired

the research in this thesis on the objective of devising new methods to emulate the visual

perception in similarity detection. This tolerance space-based approach to perception of

similarity is also influenced by the observation about perception made by Ewa Orłowska

in 1982, i.e., “classes defined in an approximation space serve as a formal counterpart of

perception” [45, 46]. The mathematical foundations of tolerance space theory in modeling

uncertainty in the real world was further elaborated by Sossinsky in 1986 [65] .

The proposed approach in this thesis can be briefly explainedin two levels as follows,

• In a lower level, similarity between image visual elements is modeled in a classical

3



geometric approach where a metric is used to define the distance between local feature

vectors as an indication of dissimilarity.

• In a higher level, sets of visual elements are compared to each other by forming toler-

ance neighborhoods of visually similar elements and measuring distance between sets

through analyzing how tolerance neighborhoods cover both images.

Consider each image as a set ofvisual elements. Each visual element is a part of the im-

age (a pixel or a group of pixels) that can be visually perceived and mathematically described

by a set of features and can be named as adescribable object. Figure1.2shows an example

pair of images, their visual elements displayed individually and in 3D feature space. At a

lower level, it is necessary to be able to detect similarities between visual elements based on

their description. At this level, parts of image(s) that have similar visual descriptions, can be

easily identified. For higher level comparisons it is more challenging to establish the overall

similarity between pairs of images based on similarity of elements in the images. Dissim-

ilarity between any two elements can be defined by a common distance function between

the corresponding feature vectors in a feature space. However, similarity between two sets

of elements is a more complicated task and it is the subject ofthis research in the following

chapters. Figure1.3shows pairs of images and their corresponding sets of visualelements in

the feature space overlaid on each other.

Figure1.4, provides an outline of the research in this thesis. The mainapproach in this

research is based onNear Setstheory (i.emeasuring the nearness between sets of describable

objects using the nearness between the elements in the sets). Near Set theory, introduced

by James F. Peters in 2006 [48, 49, 51] lays out the necessary foundation for defining the

similarity between sets of objects based on their description. The methodologies used in this

4



research to represent the uncertainty and imprecise natureof the concept of similarity in the

human mind consists of:

1. A tolerance space-based approach is introduced that relaxes the equality requirement

of descriptions into analmost equal requirementwhen comparing elements based on

their descriptions.

2. A fuzzy set-based approach is used to allow for soft (gradual) transition betweenequal,

almost equalandnot equaldescriptions.

1.1 Motivation

The main motivation for this research was to bridge the existing gap between the algorithmic,

computer-generated similarity measures (mainly based on geometric distance approach) and

human judgment of similarity which is bothimpreciseand fuzzyby nature and yet more

reliable.

1.2 Contributions

The main contribution of this thesis is the proposal, implemention and analysis of methods

to usetolerance spaceandfuzzy settheories in defining the visual similarity between pairs

of images. A complete content based image retrieval system for evaluating the proposed

methods is also implemented.

5



(a) Pair of imagesX,Y

(b) Sets of visual elements in both images
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(c) Sets of visual elements in a 3-D feature space

Figure 1.2: Sample pairs of images viewed as sets of visual elements in the feature space.
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(a) Pairs of imagesX,Y (Left) andX,Z (Right)
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(b) Subimages ofX,Y (Left) andX,Z (Right), respectively, in the feature space

Figure 1.3: Distance based approach to similarity. Sets of local feature values

The contributions are elaborated in more detail in the list that follows,

• Introducing and implementation of tolerance neighborhood-based methods for com-

paring images based on their content.

• Introducing a novel fuzzy tolerance relation to describe degree of nearness between

visual elements.

• Introducing new distance/nearness measures based on both tolerance space methods

(named here astcDM andftcDM for conventional and fuzzy tolerance relations, re-

spectively) and also classical methods (Hausdorff, Mahalanobis and Kantorovich dis-

tance) in image feature space (named here asHdNM, gMNM,KdNM respectively).

• Introducing and using a probabilistic approach for representing sets of images and

7



analysis of the neighborhood distance as the building blockof tcNM tolerance based

nearness measure. Providing mathematical proofs and simulation results to show how

neighborhood distances depend on distribution of featuresin sets of images.

• Introducing a method for automatic selection of the tolerance levelε in the tolerance

relation based methods.

• Proposing a novel tolerance Rough Set approach to describe a region of interest in an

image within a tolerance space used for region-based image similarity.

• Introducing the concept of a fuzzy distance function (a fuzzy valued distance) based on

a fuzzy tolerance relation (namelyftcFDM ). The fuzzy distance function represents

the distance with a fuzzy set rather than a real number.

• Using the concepts ofnarrow-domainandbroad-domainin describing a set of images

to categorize the search problem (not the set of images) asbroad-target broad-domain,

narrow-target broad-domain, andnarrow-target narrow-domain. 1

• Implementation of all the proposed nearness/distance measures in a CBIR framework

on two controlled test datasets of images. A benchmark publicly available “broad-

target broad-domain” dataset and a new personally generated dataset of “narrow-target,

broad-domain” images.

• Introducing a newtarget discrimination matrix(TDM) for evaluating the performance

of a CBIR (or image classification). Implementing both the new method and the exist-

ing performance-recall method on the above systems.

1These terms are coined here for the first time, to identify anddistinguish between different types of CBIR
problems.
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Figure 1.4: Outline of the research questions and proposed solutions in 4 steps

• Designing a user friendly program for image analysis and retrieval experiments2

(POINCaŔe: Program for Object and Image Nearness Comparison and Recognition).

2The program is named after Jules Henri Poincaré (1854 - 1912) whose work on the philosophical aspects
of the contrast between the mathematical and physical continua laid out the idea of tolerance space theory.
POINCaŔe is written in MATLAB. A simplified executable version of theprogram can be downloaded from
the Computational Intelligence Laboratory web site.http://wren.ece.umanitoba.ca/
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1.3 Describing an Image as a Set of Visual Elements

This research is based on a set theoretic approach to image analysis where each image is

viewed as a set ofvisual elements(or more generally,describable objects). Each visual

element can be just a pixel, a pixel and its surrounding pixels or any part of the image that

can be visually perceived and described. The reason behind working with a visual element

rather than a single pixel, has both a practical and a physical aspect. From a practical point of

view, it is easier to consider a small patch of adjacent pixels as aunit of visual perception and

thus reducing the amount of information needed to representthe image as it is perceived by

a human. From a physical point of view, we know that we do not see images in a pixel-based

resolution and our local perception of the image is formed bya group of pixels. The size

of a visual element thus represents the granularity of the visual system. Figure1.5(b)shows

a simple image of how two distinct pointsA andB are projected on retina and stimulate

the photo-receptor cells namedconeat pointsD andC. The two points can be perceived as

distinct, if they stimulate two different cones on the retina that are separated by at least one

other cones [31]. For a normal healthy human eye with a pupil size of 8 mm in diameter,

the angle of resolution is about 1 minute of arc or 1/60 of a degree [15, 31]. The maximum

resolution in terms of the distance between pixels on the image, can be calculated using a

little geometry. Assuming that the distance between the image and the lens isr, the minimum

separable distance on an image will be:

dmin = 2× r × tan

(

1

120

)◦

For the sake of practical simplicity, we consider each visual element to be a small square
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(a) An example of a subimage

  ! !" #

"

#

$

%

(b) Spatial resolution of human vision

Figure 1.5: An example of a visual element (Left). Forming animage on retina (Right)

of sizep in pixels and we call it asubimage. Visual elements may or may not have overlap.

The choice ofp is optional. A useful guideline for choosingp is to be small enough to

represent local details in an image and large enough to limitthe number of visual elements

for the sake of speed in the algorithm. Figure1.5(a)shows an image of size 355 by 300

pixels and a sample visual element (describable object) as asquare subimage of size 13 by

13 pixels.

1.3.1 Visual elements as describable objects

In this thesis, we adopt the viewpoint and terminology of Near Set theory as described in

[51]. The elements of a set in Near Set theory are those that represent something in the

physical world and hence they can be perceived and described. Such an element is called

here adescribable object3. Describing the element is possible through a set of characteristics

(features). Avisual element(as described in the previous section) is a good example of a

describable object. A subimage for example is part of an image that can be perceived and

described by color or texture. While the subimage contains local visual information about

the image, the set of describable objects represents the whole image.

3Originally, the termperceptual objectwas used to represent an object that can be perceived and described.
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Let x ∈ X be a describable object in a set. In order to represent features of a describable

object, the concept ofprobe function[50, 51] is used here. A probe function is denoted by

φ and is defined as a function that maps a describable object (such as a visual elementx)

to a feature value that is denoted byφ(x). B is used to denote a set of probe functions that

together are used to describe the object.

B = {φ1, φ2, ...φl} (1.1)

The set of all feature values for a describable objectx can be organized in a vector format

as follows (feature vector):

~φB(x) = [φ1(x), φ2(x), ...φl(x)]T (1.2)

1.3.2 Metric distance between describable objects

Similarity between each pair of describable objects can be measured in a metric approach.

In this approach, a distance is defined between each pair of objects in a space calledfeature

spaceas a measure of dissimilarity between the objects. The feature space is the space of all

possible feature vectors.

Let ΞB be the space of all possible feature vectors defined by a set ofprobe func-

tionsB. Describable objectsx, y are represented with their corresponding feature vectors

~φB(x), ~φB(y) ∈ ΞB. Minkowski distanced of orderp between pairs of feature vectors is

defined as follows:
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d : ΞB × ΞB → R+

d(~φB(x), ~φB(y)) =‖ ~φB(x)− ~φB(y) ‖p =

(

l
∑

k=1

|φk(x)− φk(y)|p
)

1
p

(1.3)

where‖ . ‖p is called p-norm (p ∈ N). Minkowski distance is chosen here as an elementary

distance between visual elements (describable objects).

Proposition 1.1. (ΞB, d) is a metric space.

Proof. The proof forp ∈ N is as follows:

(ΞB, d) has all the required properties of a metric space namely,

∀~φB(x), ~φB(y), ~φB(z) ∈ ΞB

Part 1) Non-negativity:d(~φB(x), ~φB(y)) ≥ 0 .

Proof directly follows from the definition in Equation1.3.

Part 2) Identity of indiscernibles:d(~φB(x), ~φB(y)) = 0 if and only if ~φB(x) = ~φB(y).

A) d(~φB(x), ~φB(y)) = 0⇒
l
∑

k=1

|φk(x)− φk(y)|p = 0

⇒ |φk(x)− φk(y)|p = 0 ∀k ∈ {1, 2, ..., l}

⇒ φk(x) = φk(y) ∀k ∈ {1, 2, ..., l} ⇒ ~φB(x) = ~φB(y).

B) ~φB(x) = ~φB(y)⇒ d = 0 directly follows from definition.

Proof follows from A and B.

Part 3) Triangle inequality:d(~φB(x), ~φB(z)) ≤ d(~φB(x), ~φB(y)) + d(~φB(y), ~φB(z)).

Proof:
(

d(~φB(x), ~φB(z))
)p

=
l
∑

k=1

|φk(x)− φk(z)|p =
l
∑

k=1

|φk(x)− φk(y) + φk(y)− φk(z)|p

Using the binomial theorem in elementary algebra, we know that∀a, b ∈ R, p ∈ N, |a +
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b|p ≤ |a|p + |b|p, therefore:
(

d(~φB(x), ~φB(z))
)p

≤
l
∑

k=1

|φk(x)− φk(y)|p + |φk(y)− φk(z)|p

=
l
∑

k=1

|φk(x)− φk(y)|p +
l
∑

k=1

|φk(y)− φk(z)|p = d(~φB(x), ~φB(y))p + d(~φB(y), ~φB(z))p.

Again, using elementary algebra, we know that∀r, s, t ∈ R, p ∈ N rp ≤ sp + tp ⇒ r ≤

s + t, therefore:

d(~φB(x), ~φB(z)) ≤ d(~φB(x), ~φB(y)) + d(~φB(y), ~φB(z))

Proposition 1.2. (ΞB, ‖ . ‖p) is a normed vector space.

Proof follows from the fact that(ΞB, d) is a metric space.

Let X,Y ⊆ O be sets of describable objects and letΦX
B , ΦY

B , ΦO
B ⊂ ΞB be sets of feature

vectors corresponding to elements ofX,Y andO respectively.

Corollary 1.1. Every non-empty finite set of feature vectors along with the above distance

function forms a finite metric space.

• (ΦX
B , d) d : ΦX

B × ΦX
B → R+ is a finite metric space.

• (ΦY
B , d) d : ΦY

B × ΦY
B → R+ is a finite metric space.

• (ΦO
B , d) d : ΦO

B × ΦO
B → R+ is a finite metric space.

14



1.4 Image Similarity and Classical Measures of Nearness

between Sets

Nearness between sets of describable objects can be defined using a classical method of dis-

tance between sets. In this section, 3 distance/nearness functions are introduced based on

classical methods of Kantorovich distance, Mahalanobis distance, and Hausdorff distance.

While these measures are well-known methods, their application in finding the distance be-

tween sets of visual elements, especially the generalized Mahalanobis distance, is part of the

contribution of this thesis.

1.4.1 Kantorovich distance based nearness measure (KdNM)

A nearness measure based on theKantorovich distance[12,73] between the histograms of the

feature values is introduced in this section. This method assumes a probabilistic nature for

images, where the feature values are sample outcomes of a random variable. The underlying

probability distribution of the features may be unknown. However, histograms of the feature

values are considered as an estimate of the true underlying distribution functions (empirical

distributions).

Definition 1.1. Kantorovich Distance

SupposeF andG are distribution functions of random variablesµ andν, respectively. The

L1 norm basedKantorovichmetric [18,72] is defined as

dw(µ, ν) =

∞
∫

−∞

|F (x)−G(x)|dx =

1
∫

0

|F−1(t)−G−1(t)|dt, (1.4)
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whereF−1 andG−1 are quantile functions of the distributions. It can be proved that the Kan-

torovich metric is equal to the Wasserstein metric [18]. Although the original Kantorovich

metric uses theL1 norm, this metric can also be similarly defined usingLp norms (p > 1).

SupposeX andY are sets of describable objects corresponding to a pair of images. For

each probe functionφk ∈ B (k = 1, 2, ..., l), feature values are normalized between 0 and 1

and the histogram of the features are calculated to represent empirical density functions. Let

{b1, ..., bj, ...bNb
} be the set of bins in calculation of histograms. Forkth feature value, let

Hk
X(bj) be the number of describable objects of imageX where itskth feature value belongs

to jth bin. Distances between distributions are calculated for all the features. Here, cumula-

tive histograms rather than plain histograms have been usedbecause cumulative histograms

tend to be more robust to changes in the bin assignment [63,66]. The normalized cumulative

histogram ofkth feature value in imageX is defined in Equation (1.5).

CHk
X(bj) =

(

i=j
∑

i=1

Hk
X(bi)

)

/

(

i=Nb
∑

i=1

Hk
X(bi)

)

. (1.5)

Definition of CHk
Y (bj) for imageY is similar. Different methods can be used to measure

the difference (distance) between histograms [54, 63]. Forexamples, comparing the sta-

tistical moments of histograms individually or in combination with each other such as the

Mahalanobis distance [35] or weighted-mean-variance as proposed in [38] that considers the

difference between the mean of distributions with reference to the variances. Here, a Kan-

torovich distance between cumulative histograms is used. Corresponding to each descriptive

feature (probe functionφk), a feature specific distancedk(X,Y ) between imagesX andY

with respect tokth feature, is defined using Equation1.6.
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dk(X,Y ) =

j=Nb
∑

j=1

| CHk
X(bj)− CHk

Y (bj) |. (1.6)

Finally, distance (dissimilarity measure) between setsX andY is namedKDM and defined

in Equation1.7 as theLp norm (p = 1 here) of the distance vector~d = [d1, ..., dl]
T where

l = |B| is the number of feature values. The Kantorovich distance based nearness measure

(KdNM ) is defined by normalizing the distance and converting it to nearness measure as

shown in Equation1.8.

KDM(X,Y ) =
1

l

l
∑

k=1

| dk(X,Y ) |, (1.7)

KdNM(X,Y ) = 1−
√

KDM(X,Y ), (1.8)

wherel = |B| is the maximum possible value ofKDM(X,Y ).

Example 1.1. Figure 1.6 shows sample pairs of images and their corresponding distribu-

tion function of a feature value (“entropy” of subimage). Human judgment on similarity

between the first pair of images (X andY ), is higher than the second pair of images (X and

Z). Empirical distributions and Empirical cumulative distribution functions (CDF) are also

displayed and the difference between the two distribution functions is measured by the area

under the function| CH1
X(bj) − CH1

Y (bj) | (marked with dotted line). It can be seen that a

more similar pair of images (1.1) has less distance between the corresponding histograms.
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(a) Pairs of human judged similar imagesX,Y (left), histograms (middle) and commutative histograms
(right) of the entropy feature forX andY
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(right) of the entropy feature inX andZ

Figure 1.6: Difference between histograms for pairs of (a) similar and (b) dissimilar images

1.4.2 Generalized Mahalanobis distance nearness measure (gMNM)

The Mahalanobis distance [35] is a form of distance between two points in the feature space

with respect to the variance of the distribution of points. The original Mahalanobis distance

is defined between two sample multivariate vectors~x and~y as follows [14]

DM(~x, ~y) = (~x− ~y)T Σ−1(~x− ~y), (1.9)
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where the vectors are assumed to have a normal multivariate distribution with the covariance

matrix Σ. This formula can also be used to measure the distanceDM(~x, ~m) between a vec-

tor ~x and the mean of the distribution~m. Following the same approach, the Mahalanobis

distance can be used to define a distance measure between two separate distributions. Lets

assumeχ1 = ( ~m1, Σ1) andχ2 = ( ~m2, Σ2) are two normal multivariate distributions with

means ~m1, ~m2 and covariance matricesΣ1, Σ2. Let P (ω1) andP (ω2) represent prior prob-

abilities of the given distributions. A generalized Mahalanobis distance [4, 14] between the

two distributions is defined in (1.10).

gMD(χ1, χ2) =
√

( ~m1 − ~m2)T Σ−1
W ( ~m1 − ~m2), (1.10)

whereΣ−1
W refers to the within-class covariance matrix defined in (1.11).

ΣW =
∑

i=1,2

(

P (ωi)
∑

x∈χi

(x−mi)(x−mi)
T

ni

)

. (1.11)

The above approach is used here to compare distributions of feature values of describable

objects in two images. Generalized Mahalanobis distance-based nearness measure (gMNM )

between two images is defined as follows.

LetX andY denote sets of describable objects (images). LetΦ̄X
B andΦ̄Y

B represent the mean

feature vector for all the describable objectsx ∈ X andy ∈ Y , respectively. Also, letΣX

andΣY be the covariance matrices of the multivariate distributions ofΦX
B andΦY

B (feature
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Figure 1.7: An example of 3 images and the corresponding describable objects in a 2D
feature space

values), respectively. Then,

gMD(X,Y ) =
√

(Φ̄X
B − Φ̄Y

B )T (ΣX,Y )−1(Φ̄X
B − Φ̄Y

B ), (1.12)

gMNM(X,Y ) =
1

1 + gMD(X,Y )
, (1.13)

where

ΣX,Y =
1

2
(ΣX + ΣY ) . (1.14)

Example 1.2. Pairs of images in Fig.1.1 and 1.1 are considered here again. Figure1.7

shows distribution of subimages in the feature space, where only two probe functions cor-

responding to average gray level (φ1(.)) and entropy (φ2(.)) have been considered. Here,

Φ̄X
B = [0.6186 0.5586]T , Φ̄Y

B = [0.6161 0.5426] andΦ̄Z
B = [0.4298 0.7125]T .

Furthermore, we have
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ΣX = E[
(

ΦX
B − Φ̄X

B

) (

ΦX
B − Φ̄X

B

)T
] =







0.0289 −0.0170

−0.0170 0.0250







ΣY = E[
(

ΦY
B − Φ̄Y

B

) (

ΦY
B − Φ̄Y

B

)T
] =







0.0409 −0.0200

−0.0200 0.0249







ΣZ = E[
(

ΦZ
B − Φ̄Z

B

) (

ΦZ
B − Φ̄Z

B

)T
] =







0.0216 −0.0004

−0.0004 0.0053







ΣX,Y =
1

2
(ΣX + ΣY ) =







0.0349 −0.0185

−0.0185 0.0250







ΣX,Z =
1

2
(ΣX + ΣZ) =







0.0253 −0.0087

−0.0087 0.0152







gMD(X,Y ) = 0.0197 gMD(X,Z) = 2.0608

This means the distance betweenX andZ is significantly greater than distance betweenX

andY .

1.4.3 Hausdorff distance based nearness metric (HdNM)

Hausdorff distance by definition is defined between two finitepoint sets in a metric space.

Assumed(x, y) is a distance function defined between pointsx andy in a metric space. Let

X andY be sets of points in the space. Hausdorff distanceρH(X,Y ) between setsX and
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Y [16] is defined, as in (1.15).

ρH(X,Y ) = max{dH(X,Y ), dH(Y,X)}, (1.15)

where

dH(X,Y ) = max
x∈X
{min

y∈Y
{d(x, y)}}, (1.16)

dH(Y,X) = max
y∈Y
{min

x∈X
{d(x, y)}}. (1.17)

dH(X,Y ) anddH(Y,X) are directed Hausdorff distances fromX to Y and fromY to X,

respectively. It can be proved that ifd is a metric, thenρH is a metric as well [16].

Hausdorff distance measure has been used extensively in image comparison for template

matching problem [20, 28, 57, 81], where the goal is to find a part of the test image that

matches a given template image. In such problems, Hausdorffdistance is defined in the

spatial domain between the points on the edges in the template image and those of the test

image. To the best of the author’s knowledge, most of the applications of the Hausdorff

distance in image comparison problems has been limited to the template matching. In one

case (reference [47]), however, a different approach is taken and a new distance is introduced

that is called a perceptually modified Hausdorff distance (PMHD). PMHD is basically dif-

ferent with Hausdorff distance in the sense that the maximumoperation in the calculation

of directed Hausdorff distances (Equations1.16and1.17) is replaced by a weighted average

operation. Moreover, PMHD is defined between statistical signatures of the color features

after clustering.

In this thesis, however, the Hausdorff distance is used to define nearness between sets
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of feature vectors of describable objects. The proposedHausdorff distance-based nearness

measureHdNM and its corresponding Hausdorff distance measureHDM is defined here

as follows. LetB be a set of probe functions and letX,Y ∈ O be sets of describable object.

Let (ΦO
B , d) be a metric space whered is a distance function between feature vectors inΦO

B .

An example ofd can be theL1-norm based or Manhattan distance defined as follows,

∀x, y ∈ O d(~φ(x), ~φ(y)) =‖ ~φB(x)− ~φB(y) ‖1=
l
∑

k=1

|φk(x)− φk(y)|. (1.18)

The Hausdorff distance is then defined using Equations1.15to1.17and converted to nearness

measure (HdNM ), using Equation1.20.

HDM(X,Y ) = ρH(ΦX
B , ΦY

B ) (1.19)

HdNM(X,Y ) =
1

1 + HDM(X,Y )
. (1.20)
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Chapter 2

Tolerance Spaces and Perception of

Similarity

Describable objects are identified and recognized by their description. In the previous chap-

ter, it was shown how a mathematical description of a describable object is possible through

the use of a feature vector that is created using a set of probefunctions. Therefore, the

first natural approach to defining similarity between objects is to say that, objects are simi-

lar if they have the same (equal) description. This simple and yet fundamental description

of similarity is the basis of the near set theory as developedby James Peters in 2006 (See

e.g. [48, 49, 51]). If two or more describable objects have the same description in terms of

their feature vectors, they areindiscernibleand therefore shall be classified assimilar with a

high level of certainty. This will create anequivalence relationwhich is namedindiscerni-

bility relation in Near Set and Rough Set literature. An indiscernibility relation partitions the

set of objects intoclassesof objects that are indiscernible with respect to their description.
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In a more realistic situation, however, if the descriptionsare close enough, objects can be

consideredalmost similarand thus allowing a small level of error, defined by atolerance

relation. Formalizing the concept of similarity between objects in terms of a tolerance rela-

tion is highly appealing to intuition. Sossinsky, in his paper in 1986 [65], points to this issue

and explains why a tolerance relation is a suitable model to represent similarity both from

a mathematical and philosophical point of view. After some formal definitions, it is shown

here how equivalence and tolerance relations can be used to describe similarity.

2.1 Descriptive-based Equivalence and Tolerance Relation

In general, an equivalence relation is defined as follows. Note that equivalence relation is

different fromequality. However, the later is a special case of the former.

Definition 2.1. Equivalence Relation

A binary relation∼ defined on a setO is an equivalence relation iff∼: O×O → {1, 0} and

∼ has the following properties:

1. Reflexivity:∀x ∈ O x ∼ x

2. Symmetry:∀x, y ∈ O x ∼ y ⇒ y ∼ x

3. Transitivity:∀x, y, z ∈ O x ∼ y andy ∼ z ⇒ x ∼ z.

Note: A binary relationR on a setO can be defined either as a subset ofO × O or as a

mapping fromO×O into the set{0, 1}. We will use the latter method to extend the definition

into fuzzy relations. Therefore, the notations(x, y) ∈∼, ∼ (x, y) = 1, andx ∼ y represent

the same concept.
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Definition 2.2. Descriptive Indiscernibility Relation

A descriptive indiscernibility relation on a setO of describable objects with respect to probe

functions inB, is an equivalence relation shown with∼B and is defined as follows

∼B⊆ O ×O ∼B= {(x, y) ∈ O | ~φB(x) = ~φB(y)}. (2.1)

Definition 2.3. Equivalence Class

Let∼B be an equivalence relation (here, a descriptive indiscernibility relation) defined on a

setO. For every element (describable object)x ∈ O, the set of all the elements inO that are

indiscernible withx is namedthe equivalence class associated withx and is shown asx/∼B
.

x/∼B
= {y ∈ O | x ∼ y} (2.2)

Corollary 2.1. The equivalence relation defined on a setO, partitions the set through equiv-

alence classes. The set of all equivalence classes is shown with O/∼B
.

O/∼B
= {x/∼B

| x ∈ O}
⋃

x∈O

x/∼B
= O

∀x, y ∈ O (x/∼B
) ∩ (y/∼B

) = ∅

Definition 2.4. Tolerance Relation

A binary relation∼= defined on a setO is a tolerance relation iff∼=: O × O → {1, 0} and∼=

has reflexivity and symmetry properties but transitivity isnot required.

1. Reflexivity:∀x ∈ O x ∼= x
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2. Symmetry:∀x, y ∈ O x ∼= y ⇒ y ∼= x

wherex ∼= y means∼= (x, y) = 1 or equivalently(x, y) ∈∼=.

Definition 2.5. Tolerance Space

The setO along with a tolerance relation∼= defined onO is named a tolerance space and is

shown with(O,∼=).

Why tolerance relation?

Although feature vectors can represent the sensory input ofa stimuli, the relation between

sensory input and the resulting induced perception in the mind is not known. Human percep-

tion does not require two objects to have exactly identical feature vectors to consider them

similar. Sensory inputs that are close enough in the featurespace, may induce identical per-

ception although they are actually different. Tolerance space theory can be used to model

suchapproximateequalities. Figure2.1(a)consists of 150 vertical bars (bands) of 10 pixels

width having a gray level values ranging from 51 in the left side up to 200 in the right side.

Figure2.1(b) for example shows three different individual bands with gray level values of

90, 120 and 140. Although human eye can distinguish between all the 255 different gray

levels if looking from a close enough distance, when we are looking at adjacent gray levels

we can safely assume they are approximately similar in color. Descriptive tolerance relation

is defined as follows to model such approximation.

Definition 2.6. Descriptive-based Distance Tolerance Relation

Let O be a set of describable objects and letB be a set of probe functions andε ∈ R. Let

d be a distance function such that(ΦO
B , d) is a metric space whereΦO

B is the set of feature

vectors corresponding to elements ofO. The descriptive-based tolerance relation∼=B on O

27



20051

(a) gray level spectrum

90 120 140

(b) individual gray levels

Figure 2.1: A collection of different vertical bands with different gray values

is defined as follows:

∼=B,ε⊆ O ×O ∼=B,ε= {(x, y) ∈ O ×O | d(~φB(x), ~φB(y)) < ε}, (2.3)

or alternatively

∼=B,ε: O ×O → {0, 1} ∼=B,ε (x, y) = 1 ⇔ d(~φB(x), ~φB(y)) < ε. (2.4)

According to the definition of tolerance relation, the relation that is defined in Equation2.3

or 2.4 is a tolerance relation and hence is named descriptive-based tolerance relation.

In other words, two describable objects arealmost similarto each other with respect to

descriptions given inB, if and only if their corresponding feature vectors with respect toB

have a distance in the feature space which is smaller thanε. Table2.1 summarizes the two

types of similarity between describable objects defined here.

Definition 2.7. Descriptive-based Tolerance Neighborhood

Let (O,∼=B,ε) be a tolerance space and(ΦO
B , d) be a metric space whereB is a set of probe
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Table 2.1: Level of precision in distance based element similarity

Type of similarity Relation Notation Condition

Exact (precise)similarity Indiscernibility ∼B
~φB(x) = ~φB(y)

Almostsimilarity Tolerance ∼=B,ε d(~φB(x), ~φB(y)) < ε

functions. For every elementx ∈ O, the descriptive-based tolerance neighborhood ofx is

shown withn
∼=B,ε

O (x) and defined as follows:

n
∼=B,ε

O (x) = {y ∈ O | d(~φB(x), ~φB(y)) < ε}. (2.5)

The set of all tolerance neighborhoods in a tolerance space is shown here withN
∼=B,ε

O .

N
∼=B,ε

O = {n∼=B,ε

O (x) | x ∈ O} (2.6)

Proposition 2.1. N
∼=B,ε

O is a covering of the setO. Tolerance neighborhoods may have over-

lap but the union of all tolerance neighborhoods is equal toO. Also, some tolerance neigh-

borhoods may be equal to each other and hence

|N∼=B,ε

O | ≤ |O|. (2.7)

Definition 2.8. Tolerance Pre-class

Let (O,∼=B,ε) be a tolerance space. The setA ⊂ O is named apre-classiff ∀x, y ∈ A ⇒

x ∼=B,ε y.

Definition 2.9. Tolerance Class (Maximal Pre-class)

A maximal pre-class (with respect to inclusion) is named atolerance class. Hence, if(O,∼=B,ε
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) is a tolerance space, the setC ⊆ O is a tolerance classiff:

1. ∀x, y ∈ C ⇒ x ∼=B,ε y.

2. @z ∈ O | C ∪ {z} is a pre-class.

The set of all tolerance classes of the tolerance space(O,∼=B,ε) is shown here asH
∼=B,ε

O .

Proposition 2.2. H
∼=B,ε

O is a covering of the setO. Tolerance classes may have overlap but

the union of all tolerance classes is equal toO. Therefore,

|N∼=B,ε

O | ≤ |O|. (2.8)

Example 2.1. SupposeO = {a, b, c, d, e} is a set of describable objects with 2 dimensional

feature vectors given in setΦO
B ⊂ R2. Let (O,∼=B,ε) be a tolerance space defined based on

the metric space(ΦO
B , d) whered is the Euclidean distance between feature vectors and let

ε = 0.25. The set of feature vectors will beΦO
B = {~φB(a), ~φB(b), ~φB(c), ~φB(d), ~φB(e)} and is

shown in Fig.2.2. The tolerance neighborhoods and the tolerance classes of(O,∼=B,ε) are

listed as follows

N
∼=B,ε

O = {{a, b, c, d}, {a, b, c, d, e}, {d, e}}

H
∼=B,ε

O = {{a, b, c, d}, {d, e}}

This follows from the fact thatn
∼=B,ε

O (a) = n
∼=B,ε

O (b) = n
∼=B,ε

O (c) = {a, b, c, d}, n
∼=B,ε

O (d) =

{a, b, c, d, e} and n
∼=B,ε

O (e) = {d, e}. Figure 2.2 shows the set of tolerance classes circled

(left) and the set of tolerance neighborhoods circled (right). BothN
∼=B,ε

O andH
∼=B,ε

O cover the

setO of objects.
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Figure 2.2: Tolerance classes and tolerance neighborhoodsfor an example 2D feature space
with only 5 points

Example 2.2. Covering versus partitioningFigure2.3shows a set of 8 describable objects.

Each object is a disk where the only feature of interest is the radius of the disk. Part (A)

shows how the objects have been divided into 3 clusters based on their description(size).

The resulting clusters are disjoint sets that partition theset of elements. Part (B) shows the

set of tolerance neighborhoods where the centre element of each neighborhood is marked

with black circle.ε = 0.21 and a disk belongs to a tolerance neighborhood if the difference

between the radius is smaller thanε. Part (C) shows the set of tolerance classes in the

same tolerance space. It can be seen that neighborhoods and classes can have nonempty

intersections and hence provide a covering of the set of elements (not a partitioning).

Note: 1

In most practical applications, the number of elements is relatively high such that finding all

the maximal pre-classes is not feasible by an exhaustive search in the set of subsets. Special

algorithms are needed to find all the tolerance classes. Thisis a topic that has not been
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Figure 2.3: An illustrated example of a set of objects (disks) described by their size. (A)
partitioning into 3 different clusters, (B) sets of tolerance neighborhoods and (C) sets of
tolerance classes. (ε = 2.01)

studied extensively in the literature. In few cases, where an algorithm for finding tolerance

classes has been presented, it is either given for special cases [36] or is not able to findall

the tolerance classes [25] and only findsa set of classes that cover the set. In this thesis, an

algorithm is proposed to find tolerance classes (Algorithm1). Figure2.4shows an example

of a set of points in 2D euclidean space and the tolerance classes that have been identified

using this algorithm. The algorithm cannot find all the tolerance classes. However, it finds

a set of tolerance classes that can cover the set. In any case,calculation of tolerance classes

is extremely computationally expensive. The nearness measures in this thesis are based on

tolerance neighborhoods not tolerance classes.

Note 2: In [6], the name tolerance-classhas been used to denote a tolerance neighborhood

(see [6, 67]) and the name tolerance-block is given to a maximal preclass (what is actually
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known as tolerance class). This is contrary to the more commonly accepted terminology in

tolerance space theory. In this thesis, tolerance classes and neighborhoods are defined in the

classical way and the termtolerance blockcan be used such that it can refer to any of the

above.
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Algorithm 1 : Tolerance class calculation
Input : 1. The set of visual elementsO = {x1, x2, ..., xN}.

2. A threshold valueε
3. A distance functiondφ between feature vectors of elements inO.

Output : A set of maximal pre-classesH = {T1, T2, ...} that cover the setO.
initialization: H =∅ (Start with empty set of pre-classes)
for i = 1 : N − 1 do

for j = i : N do
if dφ(~xi, ~xj) < ε then

H = H ∪ {{xi, xj}} ; // Consider {xi, xj} as a pre-class
end

end
end
Level initialization :L = 2;
while (∃T ∈ H such that|T | = L) &L < |H| do

for Tk in H do
// Look in other elements of O

C = O − Tk ; // which are not already in Tk

initialize: new ← 0; ; // No new element is found yet
initialize: j ← 1; ; // start with the first element of C

while new = 0 do
allclear ← 1, xj ∈ C

for xt ∈ Tk do
if d(xj , xt) ≥ ε then

allclear ← 0
end

end
if allclear = 1 then

Tk = Tk ∪ xj ; // Add this element to the pre-class
end

end
end
L← L + 1

end
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Figure 2.4: An example 2-D feature space (top left) and the corresponding tolerance classes
calculated using the algorithm in1 whereε = 0.3
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2.2 New Method: Tolerance Nearness between Sets of Im-

age Visual Elements

In section1.3.2, it was shown how to define a measure of dissimilarity betweendescribable

objects using a distance metric in the feature space. This distance is named here aselementary

distanceand it can be considered as the building block of an image similarity measure. Each

image is considered as a set of describable objects (visual elements) and the overal similarity

between images is defined as the nearness between sets of visual elements. This is aNear

Setsapproach in which the nearness between sets is defined based on the nearness between

elements of the sets [51]. LetI be a set of images and letX ,Y ∈ I be pairs of images.

Let X,Y be sets of visual elements of the images, respectively. A distance measure (DM )

and similarity measure (SM ) between any two images is then defined as the distanceD and

nearnessN between the sets of corresponding describable objects.

DM : I × I → [0,∞) ∀X ,Y ∈ I, DM(X ,Y) = D(X,Y ) (2.9)

SM : I × I → [0, 1] ∀X ,Y ∈ I, SM(X ,Y) = N(X,Y ) (2.10)

A near set approach by itself just reduces the image similarity problem to the problem of

defining nearness between sets of visual elements. This may become possible in different

ways. In this thesis, a tolerance space approach as well as a fuzzy tolerance space approach

are introduced. In a tolerance space view to image correspondence, nearness between sets of

describable objectsX,Y is defined by comparing the tolerance blocks (i.e. neighborhoods

or classes) ofalmost similarobjects in a tolerance space that covers both images. LetX and
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Y be sets of describable objects and letO = X ∪ Y . LetB be a set of probe functions cor-

responding to visual descriptions of describable objects.Let (O,∼=B,ε) be a tolerance space

where∼=B,ε is defined in Equation2.3. N
∼=B,ε

O is the family of all tolerance neighborhoods and

H
∼=B,ε

O is the family of all tolerance classes in the tolerance space(O,∼=B,ε).

Figure2.5 is an example of two images divided into visual elements (non-overlapping

square subimages of size 20 pixels are considered as visual elements).B contains 6 probe

functions that extract RGB and HSV color components of each visual element. All the fea-

ture values are normalized between 0 and 1 andε = 0.8. EachAi represents one of the

tolerance neighborhoods inN
∼=B,ε

O demonstrated in a separate plane in 3D. As one expects,

each tolerance neighborhood represents areas of images that have almost the same color.

In the next section, it is shown how these tolerance neighborhoods can be used to define

similarity.

2.2.1 Neighborhood distances and tolerance covering nearness measure

(tcNM)

Tolerance neighborhoods (and tolerance classes) can be used as building blocks of a near-

ness measure to define similarity between sets of describable objects (visual elements). The

main idea behind using tolerance neighborhoods is the conjecture that when we look at two

images, we tend to group image elements together based on similarity to the element of in-

terest at the point of gaze. This conjecture can be interpreted asthe principle of similarity

in Gestalt’s theory of perceptual organizationin psychology. 1 This principle states that

1Gestalt’s principle of organizations is a descriptive theory about how people perceive visual components as
organized patterns. This theory is part of a school of thought in psychology.
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Figure 2.5: Tolerance neighborhoods

things with similar visual characteristics such as shape, size, color or texture, will be seen

as belonging together as a group. A suitable mathematical model to describe this group of

visually similar elements can be the tolerance neighborhood of elements around the point

of gaze. The similarity is then defined here by comparing how these neighborhoods cover

images. Figure2.6 for example shows a sample neighborhoodA in a pair of imagesX and

Y . A contains subimages from bothX andY . Part of the neighborhood that belongs toX

andY is shown in the figure and denoted byA ∩X andA ∩ Y , respectively. The difference
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between the cardinality of the setA ∩ X and the setA ∩ Y is used as a measure of differ-

ence between the two parts. This difference can be calculated and averaged among all the

neighborhoods in the tolerance space to define an overall distance measure betweenX andY

named here astolerance covering distance measure(tcDM ). The steps involved in defining

tcDM between two images are listed as follows,

• Step 1: Divide both images into sets of visual elementsX andY (visually describable

subimages).

• Step 2: Define a set of probe functionsB = {φ1, φ2, ...φl} that can extract some visual

features of subimages. Each subimagex can then be represented with its feature vector

~φB(x) = [φ1(x) φ2(x) ... φl(x)]T .

• Step 3: Define a distance functiond between feature vectors in the feature space.

L1-norm-based distance function (Manhattan distance) and Euclidean distance are ex-

amples of such distances.

• Step 4: Define a tolerance relation∼=B,ε between feature vectors based on a toler-

ance level of errorε to represent similarity in the subimage level. Two visual ele-

mentsx andy are similar to each other if the above distance between feature vectors

d(~φB(x), ~φB(y)) is smaller than the tolerable level of error threshold,ε.

• Step 5: For each visual elementx0 in the union of all subimages (x0 ∈ X ∪ Y ), find

the tolerance neighborhoodnX∪Y (x0) with respect to the tolerance relation∼=B,ε.

• Step 6: For each tolerance neighborhood, define theneighborhood distancebetween
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X andY with respect tox0 as in Equation2.11.

TX,Y (x0) =

∣

∣

∣

∣

|n(x0) ∩X| − |n(x0) ∩ Y |
|n(x0) ∩X| + |n(x0) ∩ Y |

∣

∣

∣

∣

(2.11)

TX,Y (x0) represents the normalized difference between the size ofn(x0) ∩ X and

n(x0) ∩ Y .

In section2.3and using a probabilistic approach, it is shown whyTX,Y (x0) can be used

as a measure of dissimilarity between images.

• Step 7:tolerance covering distance measure(tcDM ) is defined in the following equa-

tion as an average of the neighborhood distances calculatedfor all the visual elements

of both images.tcDM is a real number between 0 and 1. zero distance represents

maximum similarity (equality) and the higher values of distance represent less similar-

ity.

tcDM(X,Y ) =
1

|N∼=B,ε

O |
∑

n(x0)∈O

TX,Y (x0) (2.12)

where|N∼=B,ε

O | is the total number of tolerance neighborhoods in the tolerance space.

• Step 8: Subsequently,tcNM similarity measure is defined as follows,

tcNM = 1−
√

tcDM. (2.13)

Both tcDM andtcNM can be used to compare images. The former is a measure of

dissimilarity where lower values represent higher similarity. The later is a measure
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of similarity where higher values represent higher similarity.tcNM is a real number

between 0 and 1.

The idea of tolerance covering distance measure was inspired by another tolerance space

based method namelytolerance nearness measuretNM . tNM was first proposed by Henry

and Peters and appeared in [24,51].tNM is defined based on tolerance classes of a tolerance

space as follows,

Let O = X ∪ Y and let(O,∼=B,ε) be a tolerance space and letH
∼=B,ε

O be the family of all

tolerance classes inO. 2

tNM∼=B,ε
(X,Y ) =

∑

A∈H

∼=B,ε
O

T · |A|

∑

A∈H

∼=B,ε
O

|A|
, (2.14)

T =
min{ |A ∩X|, |A ∩ Y | }
max{ |A ∩X|, |A ∩ Y | } . (2.15)

where|A∩X| and|A∩ Y | are part of each tolerance class that are inX andY , respectively,

andT is a measure of difference between their sizes. As one expects,tNM value is between

0 and 1. In this thesis, a faster version oftNM is implemented that uses tolerance neighbor-

hoods (N
∼=B,ε

O ) rather than tolerance classes (H
∼=B,ε

O ). The significance oftcDM (andtcNM )

compared totNM can be summarized as follows,

1. tNM is based on tolerance classes in a tolerance space whereastcNM is based on

tolerance neighborhoods. Algorithms for finding toleranceclasses such as the one

introduced here in Algorithm1 or the method introduced in [25] have much more

2The actual set of tolerance classes which have been used in [25] is notH
∼=B,ε

O
but a subset ofH

∼=B,ε

O
that still

covers the setO.

41



computational complexity than finding the neighborhoods. Also, they cannot find all

the existing tolerance classes.

2. The performance oftcDM in measuring similarity is shown both theoretically and

experimentally in this thesis. A detailed probabilistic approach on describing the cor-

respondence between distribution of feature values in images and their tolerance cov-

ering distance measures is derived and validated in Section2.3.

3. A complete side by side comparison oftcDM with the existing methods in content

based image retrieval is provided fortcDM (Chapter5 of this thesis).

4. The generalization of tolerance based methods to fuzzy tolerance based methods is

introduced fortcDM .

2.2.2 Choosing the value of tolerance thresholdε

The physical and mathematical reason for using a tolerance relation to model the limited

acuity and tolerance of human visual perception is intuitive and simple. However, choosing

a proper value for the threshold levelε may not seem very obvious and may depend on the

situation.

In this section a systematic method for choosing the epsilonvalue is presented based

on the statistical distribution of the distances between the visual elements in a given query

image. The method is based on the idea thatε should not be large enough such that most

of the pairs of elements fall withinε distance of each other. Moreover, it should not be very

small such that most of the pairs of elements are not withinε distance of each other. This can
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(a) Pairs of imagesX (Left) andY (Right)

(b) A tolerance neighborhoodA, A ∩X (Left) andA ∩ Y (Right)

Figure 2.6: Sample pair of imagesX,Y and an example of a tolerance neighborhood that
covers part of each image. Here|A ∩X| = 122 and|A ∩ Y | = 132.

be shown using the distribution function (cdf) of the distance between pairs of elements in an

image. Figure2.7(b)shows an empirical pdf (histogram) of the distances betweenelements

of a sample image where the average RGB color components of thevisual elements are

considered as probe functions (feature values). Fig.2.7(c)shows distribution of the size of

the resulting tolerance neighborhoods in the image, calculated for different values ofε. It

can be seen that very small (or very large) values ofε will cause the tolerance neighborhoods

to be limited to single elements (or cover the whole image), respectively.

Let D represent a distance metric between visual elements. Considering D as a ran-

dom variable for an unknown pair of elements,FD(d) is used to represent the cumulative
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distribution ofD.

FD(d) = Pr(D ≤ d), d ∈ [0, +∞).

Hereετ is defined as the distance value at whichFD equals toτ

FD(ετ ) = τ, τ ∈ [0, 1]. (2.16)

For a fixed and arbitrary chosen value ofτ , ετ can be calculated and adaptively chosen as

ε for each query image in any image comparison. Although the method still depends on a

parameter (τ ), the results are much less sensitive to the selection ofτ rather thanε. This

method can be used for calculation of both tolerance neighborhoods and tolerance classes.

The method for choosingε can be summarized as follows,

• Take the query image and divide it into visual elements (subimages)X = {x1, x2, ..., xN}.

• For each subimagexk, calculate the feature vector~φB(xk) using the given probe func-

tions.

• Construct a distance matrixD by finding the distance between all the pairs of feature

vectors in the image.D(k, j) = d(~φB(xk), ~φB(xj))

• Count the numberM of pairs of elements(x, y) where the distanceD between their

feature vectors is smaller than the threshold levelτ .

• For each query imageX, the value ofε = ετ (X) is calculated using the following

formula

ετ (X) =
M

N2
(2.17)
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(a) An image
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Eps =0.05
Eps =0.15
Eps =0.25
Eps =0.35
Eps =0.45
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(c) cdf of the size of tolerance neighborhoods

Figure 2.7: An image (a), distribution of distances betweenpairs of elements (b), and distri-
bution of the size of tolerance neighborhoods at different values ofε (c)
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2.3 Mathematical basis for the new measure

In this section, a theoretical basis for the proposed methodis introduced using a probabilistic

approach to image description. Images are described as setsof visual elements with visual

features that are considered as random variables with knownprobability density functions.

The probability density function of the neighborhood distance is then defined based on den-

sities of the feature values.

Let I be a set of images and supposeV is the set of all visual elements in images inI.

Let B = {φ1, φ2, ...φl} be a set of probe functions defining visual features of the elements

of V. In a probabilistic approach, the value of each probe function at each visual element is

a random variable. Letπ1, π2, ...πl represent random variables associated withφ1, φ2, ...φl.

All feature values are real numbers. Letfπ1(.), fπ2(.), ..., fπl
(.) be the probability density

function (pdf) of these random variables and hence by definition:

Pr(a ≤ π1 ≤ b) =

∫ b

a

fπ1(π)dπ

Pr(a ≤ π2 ≤ b) =

∫ b

a

fπ2(π)dπ

...

Pr(a ≤ πi ≤ b) =

∫ b

a

fπi
(π)dπ

Example 2.3.As an example, Fig.2.8(a)shows probability distribution functions for feature

values in a 4 dimensional feature space. Feature values are assumed to be normal indepen-

dent random variables with Gaussian distributions. The meanand standard deviation of the

distributions are 0.3, 0.6, 0.6, 0.7 and 0.1, 0.15, 0.05, 0.10 respectively. Also, Fig.2.8(b)
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shows the corresponding empirical distributions (histograms) calculated for 400,000 ran-

domly generated sample feature vectors using the given distributions.
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(a) Probability distribution functions (pdf)
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Figure 2.8: An example of four random variables representing feature values (a) underlying
pdf and (b) empirical distribution of the randomly generated samples.

Proposition 2.3. Let x0 be an arbitrary visual element and~φB(x0) be the corresponding

feature vector in the feature space. Let~π = [π1 π2 ... πl]
T be a random feature vector with

independent feature values wherefπi
is the probability density function of theith feature.

Then,|πi − φi(x0)| is another random variable with the following probability distribution
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function.

∀i f|πi−φi(x0)|(π) = fπi
(π + φi(x0)) + fπi

(−(π + φi(x0))) π ≥ 0

= 0 π < 0

The proof directly follows from Lemma1 and Lemma2 in AppendixB.

Proposition 2.4. Let~π = [π1 π2 ... πl]
T be a random feature vector and let~φB(x0) be the

feature vector corresponding to an arbitrary chosen element x0. Then∆ =‖ ~π − ~φB(x0) ‖1
is another random variable with the followingpdf andcdf where? stands for convolution.

f∆(e) = f|π1−φ1(x0)|(e) ? f|π2−φ2(x0)|(e) ? ... ? f|πl−φi(x0)|(e) (2.18)

F∆(e) =

∫ e

−∞

f|π1−φ1(x0)|(τ) ? f|π2−φ2(x0)|(τ) ? ... ? f|πl−φl(x0)|(τ)dτ

Proof

∆ =‖ ~π − ~φB(x0) ‖1=
i=l
∑

i=1

|πi − φi(x0)| (according to the definition of theL1-norm-based

distance). Therefore, probability distribution functionf∆ is the convolution of the density

functions|πi − φi(x0)| for i = 1, 2, ..., l and hence the proposition is proved.�

Definition 2.10. Probability of being in a neighborhood

LetPε(x0, O) represent the probability that a randomly selected elementy ∈ O satisfies the

inequality‖ ~φB(y) − ~φB(x0) ‖≤ ε (i.e. the distance between feature vectors ofx0 andy is

smaller thanε).
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Proposition 2.5. Let x0 be an arbitrary visual element with feature vector~φB(x0) and let

y be a visual element randomly chosen from a setO of elements with a known distribution

function of feature values.Pε(x0, O) (as defined above) is calculated as follows.

Pr
(

‖ ~φB(y)− ~φB(x0) ‖1≤ ε
)

=

∫ ε

0

f|~φB(y)−~φB(x0)|(e)de (2.19)

wheref|~φB(y)−~φB(x0)|(e) is calculated using Equation2.18in Proposition2.4.

Proof

‖ ~φB(y) − ~φB(x0) ‖1 is a random variable. By definition, the probability that thisrandom

variable is between 0 andε, is calculated by integrating its pdf from 0 toε. �

Proposition 2.6. Probability mass function of the size of tolerance neighborhoods

Let O be a finite set of randomly selected visual elements with known probability density

functions and letnO(x0) be a tolerance neighborhood ofx0 defined as follows,

nO(x0) = {y ∈ O | |~φB(y)− ~φB(x0)| ≤ ε}. (2.20)

The size of the tolerance neighborhood(|nO(x0)|) is a discrete random variable with the

following probability mass function(pmf),

m|nO(x0)|(k) = Pr ( |nO(x0)| = k ) =

(

NO

k

)

Pε(x0, O)k × (1− Pε(x0, O))(NO−k),

whereNO = |O| is the size (cardinality) of the setO andPε(x0, O) is defined as in Equa-

tion 2.19.

Proof
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The feature values of any elementy ∈ O are random variables with given pdfs. For each

elementy, the probability that this element belongs to the toleranceneighborhoodnO(x0) is

shown withPε(x0, O) as defined in Equation2.19. The size of each tolerance neighborhood

is an integer number between 1 andNO. For each value ofk ∈ [1, NO], the size of the toler-

ance neighborhood is equal tok if there arek elements inO that belong to the neighborhood

andNO − k elements that do not belong to the neighborhood. The probability of the former

event isP1 = Pε(x0, O)k and the probability of the later even isP2 = (1−Pε(x0, O))(NO−k).

The total probability of having a tolerance neighborhood ofsizek is then equal to the number

of ways one can choosek elements from a set ofNO elements timesP1 timesP2. �

Definition 2.11. Neighborhood distanceT (x0): Covering of sets by a neighborhood

Let X,Y be two sets of randomly selected visual elements with feature values with known

distribution functions and letO = X ∪ Y . Supposex0 ∈ X ∪ Y is an arbitrary element in

one of the sets. The corresponding tolerance neighborhood in O is shown withnX∪Y (x0).

T (x0) is defined here as follows and named asneighborhood distance.

T (x0) =
||nO(x0) ∩X| − |nO(x0) ∩ Y ||
|nO(x0) ∩X|+ |nY (x0) ∩ Y | =

||nX(x0)| − |nY (x0)||
|nX(x0)|+ |nY (x0)|

(2.21)

Theorem 1.T (x0) is a discrete random variable with the following probability mass function

(pmf) assuming that the cardinality of the setsX andY are the same. (The general formula

for the case of non equal sizes, is given in the proof section of this proposition)
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mT (x0)(t) = Pr (T (x0) = t) =

=
∑

k

(

m|nX(x0)|(k
1 + t

1− t
) + m|nX(x0)|(k

1− t

1 + t
)

)

m|nY (x0)|(k) iff t ≥ 0 (2.22)

= 0 iff t ≤ 0

Proof

Since elements of the setsX and Y are randomly selected, their feature values are ran-

dom variables and hence the size of tolerance neighborhoodsare discrete random vari-

ables. Also, since|nX(x0)| and |nY (x0)| only take finite discrete values,T (x0) only takes

discrete values and henceT (x0) is a discrete random variable.T (x0) can be written as:

T (x0) =
∣

∣

∣

|nX(x0)|−|nY (x0)|
|nX(x0)|+|nY (x0)|

∣

∣

∣
=

∣

∣

∣

∣

|nX (x0)|

|nY (x0)|
−1

|nX (x0)|

|nY (x0)|
+1

∣

∣

∣

∣

According to Lemma3 in Appendix B, the probability mass function of the random

variableT (x0) can be written as:Pr (T (x0) = t) = mT (x0)(t) = m∣

∣

∣

∣

∣

∣

|nX (x0)|
|nY (x0)|

−1

|nX (x0)|
|nY (x0)|

+1

∣

∣

∣

∣

∣

∣

(t)

= m |nX (x0)|
|nY (x0)|

−1

|nX (x0)|
|nY (x0)|

+1

(t) + m |nX (x0)|
|nY (x0)|

−1

|nX (x0)|
|nY (x0)|

+1

(−t) iff t ≥ 0

= 0 iff t ≤ 0

Moreover, the probability mass functionm |nX (x0)|
|nY (x0)|

−1

|nX (x0)|
|nY (x0)|

+1

(t) can be re-written as follows:

m |nX (x0)|
|nY (x0)|

−1

|nX (x0)|
|nY (x0)|

+1

(t) = Pr

(

|nX (x0)|

|nY (x0)|
−1

|nX (x0)|

|nY (x0)|
+1

= t

)

= Pr
(

|nX(x0)|
|nY (x0)|

= 1+t
1−t

)

= m |nX (x0)|

|nY (x0)|

(1+t
1−t

) =

=
∑

k

m|nX(x0)|(
1 + t

1− t
× k) m|nY (x0)|(k)
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Therefore, substituting into the above equation,

Pr (T (x0) = t) = mT (x0)(t) =

=
∑

k

m|nX(x0)|(
1 + t

1− t
× k) m|nY (x0)|(k) +

∑

k

m|nX(x0)|(
1− t

1 + t
× k) m|nY (x0)|(k) iff t ≥ 0

= 0 iff t ≤ 0

For the general case of|X| = |Y | = N , the equation can be simplified as

mT (x0)(t) =
N
∑

k=0

(

m|nX(x0)|(k
1 + t

1− t
) + m|nX(x0)|(k

1− t

1 + t
)

)

m|nY (x0)|(k) iff t ≥ 0

= 0 iff t ≤ 0 (2.23)

The proof is complete.�

In this section, it is shown how the value of the neighborhooddistanceTX,Y (x0) depends

on distribution functions of the feature values in imagesX andY . For any randomly selected

pair of query and test images (X andY ) and any given and known visual elementx0, T (x0)

is a random variable with the probability mass function given in Equation2.22above. This

value is expected to be higher when imagesX andY are selected from two different sets of

images with different distribution of feature values. Thisis shown in the next example.

Example 2.4. Suppose there are two sets of images namelyQ and T . Images in each set

are considered as similar images with known distribution functions of feature values. LetX

(query) andY (test) be two images (sets of visual elements) randomly selected fromQ or T

as shown in Fig.2.9. Each visual element (x) of an image, is described with a 4 dimensional
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Figure 2.9: Comparing a query image (X) and a test image (Y ) where the query image and
the test image come from the same dataset of images (Q) or alternatively from two different
datasets (Q andT ).

feature vector~φB(x) = [π1 π2 π3 π4]
T . Feature valuesπ1 toπ4 are considered as independent

random variables with normal probability density functionsfπ1 to fπ4 as shown in Fig.2.10

for Q and T . Now, letx0 be a sample visual element with a given known feature vector

(e.g. ~φB(x0) = [0.5 0.5 0.5 0.5]T ). The neighborhood distanceTX,Y (x0) between setsX

andY with respect tox0 is a random variable with a probability mass function that canbe

calculated according to Equation2.22. This function represents the nominal distribution of

the values ofTX,Y (x0).

In order to verify Equation2.22in practice, 2000 pairs of setsX andY have been ran-

domly generated using the given pdfs for feature values whereeach set contains 200 visual

elements simulating an image with 200 subimages. For each pair, the deterministic value
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(a) Distribution of feature values in images in data setQ
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(b) Distribution of feature values in images in datasetT

Figure 2.10: Distributions of feature values in (a) query image and (b) test image, an example.

of neighborhood distanceTX,Y (x0) has been calculated according to Equation2.11. The

empirical distribution of the values ofTX,Y (x0) has been calculated and plotted in Fig.2.11.

Also, the nominal distribution function in Equation2.22has been plotted in the same figure.

The was done for two difference cases where (a)X andY are randomly selected from the

same data set (Q) and (b)X andY are randomly selected from different datasetsQ andT ,

respectively.

The following conclusions can be made from the above exampleand the given results in

Fig. 2.11.

• The derived equation for distribution of neighborhood distance in Equation2.22 in

Theorem2.11conforms with the empirical distribution of values measured.
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(a) test and target images selected from different sourcesQ andT
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(b) test and target sets are selected from the same sourceQ

Figure 2.11: Nominal and empirical pmfs ofT (x0) between a query image and a test image
taken from (a) different data sets and (b) the same data sets of images

• The neighborhood distanceTX,Y (x0) will be significantly smaller (higher similarity), if

X andY have the same distribution of feature values (selected fromthe same dataset).

The overall distance measuretcDM is simply the average of the neighborhood distances

calculated at different visual elements. Therefore, the probability mass function of the ac-

tual distance measure can be further calculated by taking the convolution of the individual

distribution functions as stated below.

Proposition 2.7. Distribution oftcDM
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Let X = {x1, x2, ..., xN} and Y = {x1, x2, ..., xN} be sets of visual elements (images)

corresponding to two randomly selected images referred to asquery (X) and test (Y ) image.

Also, let(Q) and (T ) represent dataset of images with known distribution functions of the

feature values. According to Equation2.12, tcDM is the sum of neighborhood distances

(normalized) and hence its probability mass function (pmf)is the convolution of the pmf of

neighborhood distances.tcDM is a discrete random variable with values between 0 and 1

with the following probability mass function

mtcDM(d) = Pr(tcDM = d) =
1

N
×mT (x1)(d) ? · · · ? mT (xN )(d) (2.24)
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Chapter 3

Fuzzy Tolerance Spaces and Similarity

To be or not to be, that is NOT the question.

In the previous chapters, it was shown how tolerance relation can be used in modeling

the existing imprecision in human visual perception of the physical world. Two describable

objects can be consideredalmostindiscernible if the difference between their descriptions

is smaller than a tolerable level of error (ε). Tolerance relations can be used as a basic

framework for modeling this tolerance level of difference in descriptions. Figure3.1 shows

three different images (a),(b) and (c) where the important description (physical feature) is the

height of the man depicted in each picture. A first glance at the images shows that the height

of (c) is higher than (a) and (b). Also, (a) and (b) seem to havethe same height. However,

the actual value of the height of (b) is slightly higher than (a). The small difference in their

visual feature (height) makes us consider (a) and (b) asalmostsimilar. Even if we notice the

difference, we may consider this difference insignificant for many purposes. In mathematical

language, we saya ∼=B,ε b, that means a tolerance relation∼=B,ε exists betweena andb, where
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B = {Height(.)} is the only probe function andε = 1cm. ({a, b, c},∼=B,ε) is a tolerance

space. The existing tolerance in overlooking small changesin visual appearances is one

aspect of the human perception. However, it is not clear if there is a sharp crisp threshold

for this tolerance. In summary, the following three observations can be made about human

perception of the notion of similarity.

(a) Amir (b) Ali (c)
Farshid

Figure 3.1: An example: the human mind tolerance in perception and description of height

• Exact equality of descriptions is not necessary in order to consider two objects similar.

There is always a tolerable level of error in comparing objects by their description.

Incorporating the concept of tolerance is not only allowable but also needed to arrive

atapproximatesolutions of problems in real world. Tolerance space theorycan be used

as a framework to incorporate this idea in a computational model of similarity.

• Transition from “similar” to “dissimilar” in human mind is gradual not abrupt. There

is no boundary between “similar” and “dissimilar” and it is just the matter of degree

of similarity. Therefore, there is an inherent fuzziness inthis concept. Fuzzy relation

is a solution for incorporating the concept of fuzziness or imprecision in definition of

similarity.
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• Human judgment of similarity is normally expressed in natural language. Expres-

sions likevery similar, almost identicaland different are easily used by humans to

express similarity. This judgment is also highly subjective and uncertain in nature. A

fuzzy-valued similarity/distance measure, will make it possible to utilize human do-

main knowledge andapproximate reasoningtechniques in a computational algorithm.

The objective of this chapter is to introduce a more general approach based onfuzzy

tolerance relationsthat can address all the above aspects in defining the similarity between

objects or sets of objects.

Fuzzy setswere introduced in 1965 in a seminal paper by L. A. Zadeh [76].One of

the main advantages of fuzzy sets is their ability in modeling the uncertainty in assigning the

degree of membership of an element in a set. The question ofwhether or notan element be-

longs to a set, is replaced with the question ofhow muchthe element belongs to the set. This

is possible through adopting a so calledfuzzy logicin which the truth value of a statement can

be any real number between 0 and 1 representing the degree of truth. The membership of an

elementx to a setA is then defined by a membership functionµA(x) that representsdegree

of membershipof the element in the set. This property of fuzzy sets was a huge breakthrough

in computational intelligence by proper handling the uncertainty in defining the boundary of

a set.

3.1 Background on Fuzzy Sets and Fuzzy Tolerance Rela-

tions

Definition 3.1. Fuzzy Set[76,79]
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A fuzzy setA defined on a universe of discourseU is characterized by a membership function,

µA : U → [0, 1] that assigns a degree of membershipµA(y) to any elementy ∈ U . A fuzzy

set may be represented as the union of all the pairs of elements of U and their respective

membership grades inA. This is shown in either of the following forms

A = {(y, µA(y)) | y ∈ U, µA(y) ∈ [0, 1]} (3.1)

A =

∫

U

µA(y)/y (3.2)

where(y, µA(y)) (alternativelyµA(y)/y) is named asingleton, and the fuzzy set is defined

as the union of its constituent singletons.

Example 3.1. Let U = [0 200] represent the set of possible values for height of a person

in centimeters. Theory of fuzzy sets allows us to define the concept of “Tall” by defining a

fuzzy set (Tall) that represents the set of tall people. This fuzzy set is given by the grade

of membership of each person to the fuzzy set of tall people using a membership function

µTall : U → [0, 1]. An immediate implication of this, is the subjectivity of the concept.

Degree of membership of any person to the fuzzy set of tall people can then be obtained

by evaluating the membership functionµTall(x) at x, wherex is the height of the person.

Figure3.2shows an example of a membership function defined based on the height.

Since fuzzy set theory is a generalization of the classical set theory, it rapidly found its

way into many areas of mathematics. Fuzzy relations (also introduced in [76]), were one of

the first implications of fuzzy sets. A classical relationR defined on a setX is a subset of

X×X where any of the elements of the Cartesian product has a crisp degree of membership

(0 or 1) in the setR. Similarly, afuzzy relationR̂ defined on a crisp setX is a “fuzzy set”
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Figure 3.2: An example: Tall membership function

defined as follows where the membership function representsdegree of membership of each

pair of elements in the relation (i.e. the degree to which, the elements are related to each

other).

R̂ = {((x, y), µR̂(x, y)) | (x, y) ∈ X ×X, µR̂(x, y) ∈ [0, 1]} (3.3)

Furthermore, many of the conventional concepts in set theory can be “fuzzified”. A con-

ventional equivalence relation is a relation that isreflexive, symmetricand transitive (refer

to Chapter2, Definition 2.1). Therefore, one may defines a fuzzy equivalence relation as

follows.

Definition 3.2. Fuzzy Equivalence Relation[56,77]

Let R̂ be a fuzzy relation defined onX using the membership functionµR̂(x, y). R̂ is a fuzzy

equivalence relation iff it has all the following properties:

• Reflexivity:∀x ∈ X µR̂(x, x) = 1

• Symmetry:∀x, y ∈ X µR̂(x, y) = µR̂(y, x)
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• Transitivity∀x, y, z ∈ X µR̂(x, z) ≥ µR̂(x, y) ? µR̂(y, z)

where? represents atriangular norm(t-norm). A t-norm is a commutative, monotonic and

associative binary operation defined on[0, 1] × [0, 1] into [0, 1]. A simple common example

of such function is the “minimum” function also named as Gōdel t-norm.

NOTE 1: A different definition for reflexivity is also given in [10]: According to this defini-

tion, fuzzy binary relation̂R is reflexive iff∀x, y ∈ X, 0 < µR̂(x, x) ≥ µR̂(x, y).

NOTE 2: The idea of using equivalence relation to represent similarity, is intuitive and

natural. In fact, when Zadeh first introduced fuzzy equivalence relations in 1971 [77], he

named themsimilarity relations. Equivalence relations demonstrate the relation between

indiscernible objects and it is plausible to consider two indiscernible objects as similar. Fuzzy

equivalence relations generalize the idea of similarity from absolute to partial. This can be

done by introducing degree of similarity ranging between 0 and 1.

NOTE 3: There are many philosophical debates and discussions on whether a similarity

relation should require these three properties (seee.g [71]). Transitivity in particular, is not

always believed to be necessary for a similarity relation and that was why tolerance relations

were introduced as an extension of indiscernibility relation (Chapter2). Fuzzification of the

concept of tolerance relation leads us to the concept of fuzzy tolerance relation as defined

in [8,10].

Definition 3.3. Fuzzy Tolerance Relation[8,10]

A fuzzy tolerance relation is a fuzzy relation which is reflexive and symmetric.

Example 3.2. Let X = {1, 0.2,−0.5, 0.3} be a set of numbers and̂R is a fuzzy relation

defined onX by the membership functionµR̂(x, y) = 1− |x− y| ∀x, y ∈ X.
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1 1 0.2 0.5 0.3

0.2 0.2 1 0.7 0.9

-0.5 0.5 07 1 0.3

0.3 0.3 0.9 0.3 1

Figure 3.3: Tabular view of the fuzzy tolerance relation given in Example3.2

R̂ is a fuzzy tolerance relation because it is both reflexive (µR̂(x, x) = 1) and symmetric

µR̂(x, y) = 1− |x− y| = 1− |y− x| = µR̂(y, x). R̂ can be represented using a table shown

in Fig. 3.3.

3.2 Linguistic and Fuzzy-Valued Distances

The main motivation for using fuzzy set theory in definition of similarity measures in this

thesis is to allow a more humanistic natural-language compatible form of distance measures

between pairs of images. Humans do not use numbers to expresssimilarity between images.

Instead, human-judged similarities are expressed in termsof natural language expressions

like identical, very similar, partially similar, not similar, etc. Moreover, what someone

means byvery similar(for example), is highly subjective and also depends on the context.

In this thesis, three different forms of distance/similarity measures can be considered as ex-

plained below.1 Let X ,Y ∈ I be pairs of images whereI is the infinite set of possible

images (or finite set of images under consideration).

• Numerical-valued Distance Measure (NVDM): A distance measure d(X ,Y) ∈ R+

1The terms FVDM and LVDM are introduced here for the first time.
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where the value of distance is represented with a numerical and real positive number.

This is a classical traditional distance that may be boundedor unbounded.

d : I × I → R+ (3.4)

• Fuzzy-valued Distance Measure (FVDM): Distance is represented with a fuzzy set̂D.

Here, no single numerical value can represent the distance,but each numerical value

d has a degree of membershipµD̂(d) that represents degree of truth of the statement

“Distance betweenX andY is d”.

D̂ :I × I → F(R+) (3.5)

D̂(X ,Y) = {(d, µD̂(d)) | d ∈ R+, µD̂(d) ∈ [0, 1]} (3.6)

F(R+) represents the family of fuzzy sets defined on the positive real numbers.

• Linguistic-valued Distance Measure (LVDM): LVDM is a distance that is alinguis-

tic variable (see Definition3.4 below). LVDM can take any value from a set of fi-

nite linguistic values usually represented with a fuzzy set. (e.g. Distance = ‘‘very

small’’)

D̂ : I × I → {’Very Small’, ’Small’, ’Large’, ’Very Large’} (3.7)

Definition 3.4. Linguistic Variable

A linguistic variableis a variable that can take values from natural language terms [78,79].
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Table 3.1: Different types of distance measures

Distance Type Variable Possible Values

Numerical d [0, inf]

Fuzzy Valued D̂ F([0, inf])

Linguistic Valued D̂ e.g.{ ’Very Small’,’Small’,’Large’,’Very Large’ }

For example in the expressionHeight = ’Tall’, the left hand side (Height) is a linguistic

variable. The right hand side is an expression that prior to the invention of fuzzy sets, existed

only in a natural language. However, one can define a fuzzy set that defines the value’Tall’

using a fuzzy membership function (e.g. Fig. 3.2). The ambiguity in defining the concept of

tall using the actual height of a person in centimeter is modeled through allowing the grade

of membership. Other possible values for the linguistic variable ’Height’ can be’Very

tall’,’Not tall’ or ’Short’.

3.3 New Method: Fuzzy Tolerance Relations and Similar-

ity

In this section, a descriptive-based fuzzy tolerance relation is introduced as a generalization

of the perceptual tolerance relation that was defined in Chapter2.

Definition 3.5. Perceptual Fuzzy Tolerance Relation

Let O be a set of describable objects,B be a set of probe functions andΦO
B be the set of

feature vectors corresponding to elements ofO. Supposeρ is a distance metric onΦO
B that

defines the distance between feature vectors (e.gρ =‖ · ‖2). Let ε < ε′ ∈ R. A perceptual
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fuzzy tolerance relation̂∼=B,ε : O ×O → [0, 1] is defined here as follows.

∼̂=B,ε(x, y) = 1 if ρ(~φB(x), ~φB(y)) < ε (3.8)

=
ε′ − ρ(~φB(x), ~φB(y)

ε′ − ε
if ε < ρ(~φB(x), ~φB(y)) < ε′

= 0 Otherwise

∼̂=B,ε is a fuzzy tolerance relation since it is reflexive(∀x ∈ O, ∼̂=B,ε(x, x) = 1) and sym-

metric(∀x, y ∈ O ∼̂=B,ε(x, y) = ∼̂=B,ε(y, x)).

Figure3.4(b)displays how the transition between similarity and non-similarity is gradual

in a fuzzy tolerance relation. This transition in a classical perceptual tolerance relation is

sharp and crisp.
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Figure 3.4: Crisp and fuzzy tolerance relations and the transition between similarity and
non-similarity

Definition 3.6. Fuzzy Tolerance Neighborhood

Let (O, ∼̂=B,ε) be a fuzzy tolerance space. Fuzzy tolerance neighborhood ofan element

x ∈ O (shown here withn
∼̂=B,ε

O (x)) is defined as a fuzzy subset ofO that provides the grade
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of membership of elements in the neighborhood.

n
∼̂=B,ε

O (x) = {(y, µ(
n
∼̂=B,ε
O

(x)

)(y)) | y ∈ O} (3.9)

where the membership value of any elementy in the fuzzy neighborhood ofx, can be defined

as

µ
n
∼̂=B,ε
O

(x)
(y) = ∼̂=B,ε(x, y) (3.10)

For the sake of simplicity, if̂∼=B,ε is known, one may use the notationn̂O to represent

the fuzzy tolerance neighborhood. The family of allfuzzy tolerance neighborhoodsand the

family of all fuzzy tolerance classesin the tolerance space, are shown here withN
∼̂=B,ε

O and

H
∼̂=B,ε

O , respectively.

3.3.1 Fuzzy Similarity/Distance Measure between Sets of Describable

Objects

Fuzzy tolerance covering distance measure: ftcDM

A fuzzy-tolerance-covering-Distance-Measure (ftcDM ) is proposed here as a numerical val-

ued crisp distance measure obtained using a fuzzy toleranceneighborhood.ftcDM between

pairs of imagesX ,Y is defined by the following equation.

ftcDM(X ,Y) =
1

|X|+ |Y |
∑

x∈(X∪Y )

|‖ n̂O(x) ? X ‖ − ‖ n̂O(x) ? Y ‖|
‖ n̂O(x) ‖ (3.11)
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where? is a fuzzyt-normoperation. Note thatX ,Y are pairs of images andX,Y represent

sets of describable objects (visual elements) corresponding to imagesX ,Y. |X|, |Y | are the

cardinality of setsX andY , respectively.‖ . ‖ represents the cardinality of a fuzzy set and is

defined as the sum of the membership values of all the elementsin a set (as defined in [13]).

Fuzzy tolerance covering fuzzy distance measure: ftcFDM

A fuzzy-tolerance-covering-Fuzzy-Distance-Measure (ftcFDM ) is defined here as a fuzzy

valued distance measure (FVDM). Therefore, this distance is a fuzzy set rather than a numer-

ical value.ftcFDM between pairs of imagesX ,Y is defined as follows. LetX,Y be sets

of describable objects corresponding toX ,Y andO = X ∪ Y . Let ρ be a distance function

between feature vectors where(ΦO
B , ρ) is a metric space. Furthermore, let∼̂=B,ε be a fuzzy

tolerance relation where(O, ∼̂=B,ε) is a fuzzy tolerance space. Let? be at− norm operation

such asminimum. First, element-to-set fuzzy-valued distances are defined.

Figure 3.5: Fuzzy distance is defined based on the set of elementary classical distancesρ
between an elementx and all the element of a set.

Definition 3.7. Element-to-set fuzzy-valued distance

An element to set fuzzy valued distance between an elementx and a setY is a fuzzy set defined
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on the set of positive real numbers[0,∞) shown with a membership functionµx→Y (d) that

has the following membership function,

µx→Y (d) = ∼̂=B,ε(x, argmin
y∈Y

{|d− ρ(x, y)|}) d ∈ [0,∞), x ∈ X. (3.12)

In other words, for a particular elementx, membership functionµx→Y (d) at each point

d is defined as the fuzzy tolerance level of those pairs of elements (∼̂=B,ε(x, y)) that have

this distance (ρ(x, y) = d). If no pair of elements with that value of distance exist, then the

closest pair distance tod, (which is(x, argminy∈Y {|d− ρ(x, y)|})) is considered. Figure3.6

shows a table of pairs of values and how they are used to defineµx→Y . Similarly, the distance

between the elementx ∈ X and setX can be defined as:

µx→X(d) = ∼̂=B,ε(x, argmin
s∈X

{|d− ρ(x, s)|}) d ∈ [0,∞), x ∈ X

d µx→Y (d)

ρ1 = ρ(x, y1) µx→Y (ρ1) = µ∼̂=B,ε
(d)|d=ρ1

ρ2 = ρ(x, y2) µx→Y (ρ2) = µ∼̂=B,ε
(d)|d=ρ2

· · · · · ·
· · · · · ·

ρj = ρ(x, yj) µx→Y (ρj) = µ∼̂=B,ε
(d)|d=ρj

· · · · · ·
ρq = ρ(x, yq) µx→Y (ρq) = µ∼̂=B,ε

(d)|d=ρq
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Figure 3.6: The membership functionµx→Y (d) at different values ofd = ρj.
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Definition 3.8. Directional fuzzy distances

Directional fuzzy distance between images is defined by taking the average (over all the

elements of an image) oft-normbetween element-to-set fuzzy distances.

µX→Y (d) =
1

|X|
∑

xi∈X

(µxi→X(d) ? µxi→Y (d)) (3.13)

µY →X(d) =
1

|Y |
∑

yi∈Y

(µyi→Y (d) ? µyi→X(d)) (3.14)

whereµxi→X(d)?µxi→Y (d) is a fuzzy set that represents a fuzzy distance betweenX and

Y with respect to the fuzzy tolerance neighborhood centered at x. The overall (directional)

distance is then calculated by taking the average of all fuzzy distances over all the elements

in X. Finally, fuzzy valued distanceftcFDM is defined as a fuzzy set with a membership

function that is obtained by taking thet-normbetween directional fuzzy distances.

ftcFDM(X ,Y) = {(d, µftcFDM(d)) | d ∈ [0,∞), µftcFDM(d) ∈ [0, 1]} (3.15)

µftcFDM(d) = µX→Y (d) ? µY →X(d) (3.16)

Example 3.3. Let X ,Y be the images shown in Fig.3.7(a), where each image is repre-

sented by four describable objects (squar subimages) and the only probe function is the

average gray scale value of a describable object. HereΦX
gray = {0, 0.3, 0.7, 0.5} and

ΦY
gray = {0.2, 0.8, 0.6, 0.4} are sets of scalar features. Letρ = |.| be the Manhattan dis-

tance (L1) metric between feature vectors. Let∼̂=B,ε be a fuzzy tolerance relation defined as

in Equation3.8whereε = 0.1 andε′ = 0.45. Distance metricρ and tolerance relationŝ∼=B,ε

between describable objects are shown in Fig.3.7(b)and Fig.3.7(c). Here, tDM = 0.14
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and tcDM = 0.08 while ftcFDM is a fuzzy valued measure shown with the membership

function plotted in Fig.3.7(d).

Fuzzy distance measure and ordering

It is natural to think of an ordering relation with respect tothe concept of distance (/nearness)

measure between images. That means some images are closer toeach other and some images

are further apart. When distance between images is defined as areal number, its values will

be a subset of real numbers and hence they can be viewed as an ordered set with conventional

ordering relation between real numbers (shown with< and>). Therefore, ifd(.) is a distance

measure between images, thend(X ,Y) < d(X ,Z) iff X ,Y are closer to each other (more

similar) thanX ,Z. This ordering relation is required in an image retrieval application in

which images are needed to besortedbased on their distances to a query image.

In a fuzzy valued distance/nearness measure, however, thisordering relation may not be

well defined. In the case offuzzy numbers(convex, normalized fuzzy sets), there are existing

methods for ranking/ordering fuzzy numbers. In a more general case, a fuzzy valued measure

is represented with a fuzzy set that may or may not be a fuzzy number. In this case, one can

define apartial ordering relationbetween fuzzy valued measures by defining an inclusion

relation (being a subset of another set) between fuzzy sets.One, may define a fuzzy set

inclusion in different ways (e.g. see [13], pages 22-24). In the original paper on fuzzy sets

by L.A. Zadeh,, the inclusion (/containment) is defined as follows.

Definition 3.9. Let A and B be fuzzy sets defined with membership functionsµA(x) and

µB(x) over the universe of discourseU , thenA is a subset ofB (or A is smaller or equal to

B) iff µA(x) ≤ µB(x) ∀x ∈ U .
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This definition creates apartial ordering relationbecause it is possible to have a pair of

fuzzy sets where none of them is a subset of the other. However, in this thesis, a full ordering

relation is defined between fuzzy valued nearness measures by using the membership value

of the fuzzy setftcFDM atd = 0. ftcFDM0 is defined as follows.

ftcFDM0 = 1− µftcFDM(d)|d=0 (3.17)

Then we sayftcFDM(X ,Y) ≤ ftcFDM(X ,Z) (or equivalentlyX ,Y are closer to each

other thanX ,Z with respect to the fuzzy distance measureftcFDM ), if and only if

ftcFDM0(X ,Y) ≤ ftcFDM0(X ,Z).

The motivation for definition offtcFDM0 is quite intuitive becauseftcFDM0(X ,Y) can

be viewed as the degree of truth of the statement: “Distance betweenX andY is zero” or

equivalently it is the degree of truth of the statement “X andY are the same (completely

similar)”.

Example 3.4. In this example, 4 different pairs of images are compared to each other

(Fig. 3.8). Let D̂ = ftcFDM be the fuzzy valued distance measure. In each case, mem-

bership function of (̂D) is plotted. The plots show thatftcFDM0 is zero for the first given

pair of images (pair1, identical images). The other pairs ofimages (2,3 and 4 in order),

have less similarity (more distance). These results are consistent with human judgment on

the similarity between these images. However, judgment aboutranking of pairs 2 and 3 is

more likely to depend on human opinion.
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(a) X ,Y, two sets, 4 visual ele-
ments each

ρ x1 x2 x3 x4 y1 y2 y3 y4

x1 0.0 0.3 0.7 0.5 0.2 0.8 0.6 0.4

x2 0.3 0.0 0.4 0.2 0.1 0.5 0.3 0.1

x3 0.7 0.4 0.0 0.2 0.5 0.1 0.1 0.3

x4 0.5 0.2 0.2 0.0 0.3 0.3 0.1 0.1

y1 0.2 0.1 0.5 0.3 0.0 0.6 0.4 0.2

y2 0.8 0.5 0.1 0.3 0.6 0.0 0.2 0.4

y3 0.6 0.3 0.1 0.1 0.4 0.2 0.0 0.2

y4 0.4 0.1 0.3 0.1 0.2 0.4 0.2 0.0

(b) Distance Metric

∼̂=B,ε x1 x2 x3 x4 y1 y2 y3 y4

x1 1 1/3 0 0 5/9 0 0 1/9

x2 1/3 1 1/9 5/9 7/9 0 1/3 7/9

x3 0 1/9 1 5/9 0 7/9 7/9 1/3

x4 0 5/9 5/9 1 1/3 1/3 7/9 7/9

y1 5/9 7/9 0 1/3 1 0 1/9 5/9

y2 0 0 7/9 1/3 0 1 5/9 1/9

y3 0 1/3 7/9 7/9 1/9 5/9 1 5/9

y4 1/9 7/9 1/3 7/9 5/9 1/9 5/9 1

(c) Fuzzy tolerance relation
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Figure 3.7: An example of two sets of elements (a), the distance metricρ between elements
(b) and fuzzy tolerance relation̂∼=B,ε onX ∪ Y (c) in Example3.3
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(a) Pair 1

(b) Pair 2

(c) Pair 3

(d) Pair 4
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Figure 3.8: Fuzzy membership functions of the fuzzy valued distances between each pair of
given images
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Chapter 4

Feature Extraction and Visual

Description of Describable Objects

Describing a describable object is possible through a set ofprobe functions that create a fea-

ture vector describing the object. An important question remains that which visual descrip-

tions (features) are important and how to properly extract such features (the choice of probe

functions). A proper answer to this question is highly subjective and depends on the applica-

tion. This chapter deals with the methodologies and algorithms for extraction of some visual

features such as color, texture and edge information. The main focus of this thesis, however,

is not on feature extraction but rather on new methodologiesto accurately define similarity

between sets of describable objects (here, subimages that represent visual elements) based on

the given descriptions. The only contribution in this chapter is the method of defining visual

features corresponding to edges in a subimage, as explainedin Section4.1.5.
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Table 4.1: Probe functions in use:B = {φ1, φ2, ..., φ18}

Probe function Feature Type Description

φ1(x) Color Average gray level of pixels
φ2(x) Texture Entropy of the gray level values

φ3(x), φ4(x), φ5(x) Color R, G and B color components
φ6(x), φ7(x), φ8(x) Color H, S and V color components

φ9(x) Shape Average intensities of edges
φ10(x) Shape Average orientation of edges

φ11(x), φ15(x) Texture Contrast
φ12(x), φ16(x) Texture Correlation
φ13(x), φ17(x) Texture Energy (Uniformity)
φ14(x), φ18(x) Texture Homogeneity

The following sections explain all visual features used in this thesis (see Table4.1).

4.1 List of Probe Functions

The following probe functions are defined for a small subimage that contains local informa-

tion about the image content. Each subimage is named a visualelement and is considered

here as a describable objectx.

4.1.1 Average gray level value

The average of gray level values for all the pixels in a given subimage (x), is calculated as

the first featureφ1(x). In case of color images, the image is first converted into grayscale and

then is used to calculateφ1.
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4.1.2 Information content (entropy)

Suppose there areN different gray levels possible in an image (N = 256 for an 8 bit digital

image). LetM be the number of pixels in a subimage. For each subimage, letnk be the

number of pixels that have thekth gray level. TheShannonentropy of each subimage is

defined as follows,

E = −
N
∑

k=1

pk log2(pk), (4.1)

wherepk = nk

M
is the normalized number of pixels that have a gray level value that belongs

to the kth level. This definition is based on a probabilistic view of theimage where the

gray level of the pixels is considered as a random variable.pk is the probability of a pixel

havingkth gray level andE (Shanon entropy) is a measure of the uncertainty associatedwith

the random variable. A higher value of entropy indicates more information content in the

subimage.φ2(x) is used here to represent the entropy of a subimagex.

4.1.3 Color features

φ3(x), φ4(x), φ5(x) are the averageRed, Greenand Blue color components of the pixels,

respectively.φ6(x), φ7(x), φ8(x) are the averageHue, SaturationandIntensitycolor compo-

nents of the pixels. RGB color components exist in digital images and HSI components can

be obtained using the proper transformations (see [19]).

4.1.4 Texture and statistical features

Texture features in this thesis are defined based on a statistical approach using the gray-

level co-occurrence matrix (GLCM) ( [23], see also [22, 44]).GLCM (also named gray-
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tone spatial-dependence matrix) can be used to define 14 different textural measures [23].

Elements of GLCM consist of the relative frequencies with which two neighboring pixels

(separated by a given offset∆x and∆y in pixels) with gray level valuesi andj, occur in the

image [39].

C∆x,∆y(i, j) =















∑n
p=1

∑m
q=1 1, if I(p, q) = i and I(p + ∆ x, q + ∆ y) = j

= 0, otherwise

For notational convenience and with the understanding thatthe offset(∆x, ∆y) is known, let

pi,j denote(i, j)th element of the normalized GLCM matrix (pij = C∆x,∆y(i, j)/(m × n) ).

The following texture features are used in this thesis basedon GLCM.

• φ11(x) (Contrast): Intensity contrast between a pixel and its neighbors (element differ-

ence moment of order 2) [19], [26]

∑

i

∑

j

(i− j)kpi,j (4.2)

• φ12(x) (Correlation): Correlation between a pixel and its neighborsis defined ( [64])

as
∑

i

∑

j

(ij)pi,j − µxµy

σxσy

. (4.3)

where

µx =
∑

i

∑

j
i · pi,j , µy =

∑

i

∑

j
j · pi,j

σx =
∑

i

∑

j
(i− µx)2 · pi,j σy =

∑

i

∑

j
(j − µy)

2 · pi,j
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• φ13(x) (Energy/Uniformity) andφ14(x) (Homogeneity) are defined as ( [19,26])

Energy=
∑

i,j

p2
ij, (4.4)

Homogeneity=
∑

i

∑

j

pij

1 + |i− j| . (4.5)

4.1.5 Edge features

Edges contain important information about the shape of objects in an image. There are

many methods for detecting the intensity and orientation ofa potential edge at each pixel of

an image (for example, Canny method [9] or compass edge detectors [59, 60]). Here, the

wavelet-based edge detection method by Mallat [37] is used.This method can be used with

different wavelet functions at different scales to extractboth the intensity and orientations of

edges at different levels of details. In each pixel location(x, y), edge intensity and orientation

at a given scale (2j) are defined respectively as follows,

M2j(x, y) =
√

| W 1
2jfx,y |2 + | W 2

2jfx,y |2, (4.6)

A2j(x, y) = arctan
W 1

2jfx,y

W 2
2jfx,y

. (4.7)

whereW 1
2jfx,y andW 2

2jfx,y are 2-D discrete wavelet transforms offx,y at each scale2j. Edge

informations were obtained here using MATLAB wavelet toolbox.

In this thesis, the highest value of edge intensity and its corresponding orientation value (in

radians) in each subimagex are chosen as visual features and shown withφ9(x) andφ10(x),

respectively. Fig.4.2 for example, shows an image, a sample subimage in the image and
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Figure 4.1: Sample images (a), edges after proper thresholding (b), histogram of dominant
edge intensity and orientation in subimages (c,d)

(a) Image (b) A subimage
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(c) Edge intensity

Figure 4.2: An example of an image (a), a sample visual element (b) and the intensity of
edges at different pixels in a visual element (c)

the edge intensity of pixels in the subimage. Brighter gray levels represent higher intensity.

φ9(x) is then defined as the maximum intensity in this subimage andφ10(x) is defined as the

edge orientation of the pixel that has the highest edge intensity.
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Chapter 5

Experimental Results

In this chapter, performance of the proposed image similarity/distance measures, is evaluated

using experiments in content-based image retrieval. The human judgment of similarity is

very subjective and depends on the problem domain. Therefore, evaluation of similarity

measures is not a well defined task because there is no ground truth to compare the result

with. An exception to this is the trivial requirement for similarity, taking the highest value

when an image is compared to itself.

In order to have a consistent method of evaluating the measure, we need acontrolled

datasetwhere images have already been judged by a human and categorized into groups

of similar images. The similarity measure between images within a group is expected to

be higher compared to images between different groups. When aparticular given image is

compared with a set to find those that are similar, we use the term query imagefor the given

image of interest and the termtest imageto refer to an image in the set.
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5.1 Content-Based Image Retrieval (CBIR)

CBIR is an important application of image similarity measures. In a traditionaltext-based

image retrieval system, search and retrieval are based on textual information attached to an

image (such as keywords, labels or captions). However, in a CBIR system the search is based

on the image content (i.e. information about the pixel values in images) to find similarimages

in a dataset.

In a query by example1 CBIR, the query is an example image and the objective is to

search in a set of test images and find those that are similar tothe given query. In this thesis,

we are dealing with a query by example CBIR problem. A measure isused to calculate the

similarity between the query image and each test image in a data set. The images are then

sorted based on their similarity to the query image.

Figure5.1shows a schematic of a CBIR system where a query image is compared to all

test images in a dataset. The images are then sorted based on their similarity to the given

query image. Due to the subjective nature of the concept of similarity, it is very hard to

evaluate a CBIR system. One common approach to evaluation of a CBIR system is using a

controlled test data set of images containing different subsets (target sets). Images in each

subset are manually chosen to represent the same (or similar) object or concept. The subset

of test images that are similar to a query image is named here as thetarget setof that query

image. The retrieval result for each query image is then evaluated by counting the number

of images retrieved from the target set (i.e. the images that belong to the same subset as the

query image). The performance measuresprecisionandrecall are commonly used in CBIR

1Other types of query techniques are possible in general CBIRsystems. Examples arequery by visual sketch
or query by providing semantics.
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are defined as follows [43].

Figure 5.1: Schematic of a content-based image retrieval where a query image is compared
to a set of test images.

Let q represent a query image,A(q) is the set of retrieved images based on the relevance

to the query andT (q) is the set of target images (all relevant images in the database for the

given query imageq). PrecisionP (q) and recallR(q) for this query image are defined in

Equations (5.1) and (5.2), respectively.

P (q) =
|A(q) ∩ T (q)|
|A(q)| , (5.1)

R(q) =
|A(q) ∩ T (q)|
|T (q)| . (5.2)
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In other words, precisionP (q) in (Equation5.1) is the fraction of the retrieved images (A(q))

that are also in the set of target images (correctly retrieved) and recallR(q) in (Equation5.2)

is defined as the fraction of the target images (R(q)) which have been recalled and hence

exist in A(q). Higher values of precision at each particular value of recall indicates more

accurate retrieval. There are three possible ways of evaluating the performance. They include

precision versus the number of images retrieved, recall versus the number of images retrieved

and precision versus recall.

When we search for images in a dataset, it is important to know the range of variability

of images. This is something that is commonly overlooked in the study of image similarity

measures. An exception, is a survey paper by Smeulderset. al in [63] where the concept

of variability is introduced by defining two types of image domains. Anarrow-domainset

of images has a limited and predictable variability in content and appearance and abroad-

domainset of images has unlimited and unpredictable variability.For example, if a set of

images consists of images of automobiles, it is an example ofanarrow-domain. An example

of abroad-domaincan be an online image archive such as Picasa or Flickr. In this thesis, this

concept has been used to define the type of CBIR problem based on the range of variability

for target and test images. Herein, CBIR problems are divided into 3 categories:

• narrow-target, narrow-domainsearch problem

There is little variability in both thetarget imagesandtest images. For example, when

the test dataset contains images of the motorcycles as seen in Fig.5.2(a)and the target

images are a subset of test images that have the same shape andmodel of the query

image. Another example is searching in a dataset (test images) of human faces where

the query image is a particular face and the target images arefaces that resemble it.
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• narrow-target, broad-domainsearch problem

There is little variability in target images but the set of test images has a high vari-

ability. An example of such a search problem is searching forimages of motorcycles

(target images) in a dataset that contains different imagesrandomly selected from a

picture archive or the Internet (see Fig.5.2(b)).

• broad-target, broad-domainsearch problem

In this type of search problem bothtarget imagesand test imageshave a relatively

high variability rate. However, variability of the target images are expected to be less

than the test images. An example of such a search problem is looking for images of

“buildings” in an image archive of various images.

(a) A narrow-domain dataset of images (b) A broad-domain dataset of images

Figure 5.2: Human judgment of similarity depends on the variability of the test data set.
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Semantic gap

It is important to note that in a CBIR system, images are compared to each other solely based

on their content (visual descriptors). However, the association between images is not always

based on appearance. In other words, theconceptbehind an image may not be directly related

to the visiblecontentof the image. This existing gap between visual content and the semantic

interpretation of the image is namedsemantic gap[63]. It is important to acknowledge this

limitation in a content-based image retrieval system. In order to have aconcept-basedimage

retrieval system, further techniques such ashuman assisted content-annotationor relevance

feedback[58,82] may be useful.

In Sections5.3and5.4, the performance of the proposed measures of image similarity are

evaluated in two different types of CBIR problems. Each experiment consists of a number

of trials. In each trial, one of the images in the dataset is considered a query image and is

compared to the rest of images in the dataset. Experiments were performed using MATLAB.

An executable program (POINCaRé) has also been developed with a GUI for simple CBIR

experiments (see AppendixC).
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5.2 Target Discrimination Matrix (TDM): A new measure

for evaluation of image retrieval and classification

Precision and recall have been commonly used in CBIR as standard measures of evaluating

data retrieval. In this approach, a retrieved image either belongs to the set of target images

(and thus relevant to the query) or is considered irrelevant. This explains why the retrieval

accuracy may change significantly if one extends the set of target images to a larger subset

of test images. In other words, precision and recall only represent how the “target” images

are being retrieved and hence a measure of separability between target sets and the rest of

the data set. However, if the image dataset consists of different classes of similar images, it

is important to know which target sets have greater similarity to each other.

In this section a new method is proposed to measure how a similarity measure may dis-

criminate between different sets of target images in an image database.

Let I = {I1, ..., IN} be a set of test images in a database. LetC1, C2, ..., Cm bem differ-

ent subsets ofI such thatCi∩Cj = ∅ ∀i, j where eachCi consists of visually similar images

that represent the same object or concept. The similarity matrix S = sij = s(Ii, Ij) can be

defined as the similarity between imagesIi andIj calculated using a similarity measure such

astcNM . A distance matrix can also be defined accordingly.

A reliable similarity measure is expected to have a high value for pairs of images that

belong to the same set (within a target set) and low value for pairs of images selected from

two different sets (between target sets). In order to quantify this in a statistically meaningful

manner, it is proposed here to use a statistical test to compare all the numerical values of

distances that belong to the same or different target sets. the Target Discrimination Matrix
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(TDM) is introduced here as follows:

Let Ci, Cj ⊂ I be sets of target images. Each target set may represent a class of images

that have been previously manually classified and can be consideredsimilar to each other.

Let

Si,j = {s(Ii, Ij) |Ii ∈ Ci, Ij ∈ Cj}

be the set of all similarity measures calculated between images in a target set and

Si = {s(Ip, Iq) |Ip, Iq ∈ Ci}

is calculated between images from different target sets. The Welch’s t-testbetween the two

sets of samples (distances) starts by calculating thet parameter as follows [75].

t = t(Si, Si,j) =
S̄i − S̄i,j

√

(σ2(Si)
|Si|

+
σ2(Si,j)

|Si,j |
)

(5.3)

WhereS̄i is the mean (average) of all the elements inSi and|Si| represents the number of

elements (similarity measures) inSi. The value oft represents the statistical significance of

the difference between samples inSi and samples inSi,j.

the Target Discrimination Matrix (TDM) for this image database is then defined here as

TDM(I) = [ti,j]m×m |ti,j = t(Si, Si,j), i, j ∈ {1, 2, ...,m} (5.4)

where each element of the matrix (ti,j) is the output of thet-testbetween the samples inSi and

Si,j. Therefore,ti,j represents the significance level of the difference betweenthe similarity

of pairs of images selected from the same targetCi and from two separate targetsCi,Cj. The
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values of the elements of this matrix are 0 (no significant difference) along the diagonal of

the matrix and the value of all other elements are expected tobe as high as possible.

Example 5.1.The role of the proposed TDM matrix in demonstrating the difference between

classes of similar images is shown here through an experiment. A set of 300 images are

considered that consists of 3 different groups (subsets)T1, T2 andT3. The first subset (T1)

consists of 100 randomly selected images from “The BerkeleySegmentation Dataset and

Benchmark” images [40] (available online). The second and third subsets of images (T2 and

T3) consist of 100 images randomly selected from “motorbike” and “leaves” image datasets,

respectively. These images are available online at the Computational Vision Laboratory at

Caltech2. Samples of images from subsetsT1, T2 andT3 are shown in Fig.5.3. Images in

subsetT1 are pictures of various objects or scenes with a high degree ofvariability. Subsets

T2 andT3 are all images of motorbikes and leaves respectively and hence have less variability

compared toT1. All images are 400 pixels wide and the height of images variesbetween 220

to 330 pixels. Square subimages of size40 × 40 pixels with 50% overlap have been used.

Color, texture and edge feautures all have been included (seeTable4.1). The experiment

(a) T1 (b) T2 (c) T3

Figure 5.3: An example of a dataset of images containing three different target setsT1 to T3

consists of comparing each image to the rest of the images andhence
(

300
2

)

pairs of images are

2http://www.vision.caltech.edu/archive.html
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compared to each other and the value of thetcNM similarity measure has been calculated

for each pair according to Equation2.13in Section2.2.1. The similarity matrix is shown in

Fig. 5.4(a). There are 3 sets of target images (setT1,T2 andT3) and theWelch’s t-testhas

been performed between samples of similarity measures corresponding to images from the

same or different target sets. Figure5.4(b)is a graphical representation of theTDM matrix
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Figure 5.4: A graphical representation of a sample similarity matrix andTDM matrix for its
3 target sets

values. Darker colors represent lower values and brighter colors represent higher values.

The figure clearly shows that the difference between the targetsetT2 (corresponding to the

second row in the TDM matrix) and the other two target sets is more significant.
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5.3 Experiment 1: SIMPLIcity Broad-Domain, Broad-Target

Dataset

The SIMPLIcity 1000 test images dataset [1, 74] (available for download from [1]) is used

here in a broad-domain, broad-target CBIR experiment. This isa controlled test dataset and

images are numbered between 0 to 999 and divided into 10 conceptually different categories

(named here as target sets C0 to C9). Figure5.5displays the first 8 images in each category.

Images are 384×256 pixels (dimensions). Any image from the dataset can be selected as a

query image and compared to all images in the dataset.

The experiment consists of calculating the similarity measures between each query image

and all 1000 test images, resulting in 1,000,000 trials of image comparison. Subsequently,

the images will be sorted based on their similarity to the query image. The experiment is

performed using each one of the proposed similarity measures in previous chapters. The list

of probe functions (visual features) in use is shown in Table4.1and is explained in Chapter4.

The size of subimages is20 × 20 pixels. The value ofε has been selected automatically for

each query image using the method discussed in Section2.2.2. All feature values have been

normalized and scaled between 0 and 1. In addition, for each of the 10 categories a feature

selection algorithm is performed as explained in Section5.3.1and the results are calculated

with an optimal subset of features.

Precision and recall have been calculated for each image in the database (chosen as a

query) and the values have been averaged among all queries. Three different methods were

used in this experiment to evaluate accuracy of the image retrieval. In the first evaluation

method,P20 (defined as the precision of the twenty most similar images) was calculated
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Figure 5.5: Sample images from 10 different categories (target sets) in the SIMPLIcity image
dataset
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for each query image and the averageP20 for all query images is used as a measure of

accuracy. Table5.1 shows the averageP20 precision for all similarity measures (without

feature selection) compared with the results published in [27, 29] and [33]. The tolerance

based methodstcNM , ftcNM andftcFNM are shown to have better performances. Also,

a feature selection method is used in each category and the precision results forftcFNM

are compared to those published in [33] (see Table5.3).

In a second method of retrieval evaluation, both precision and recall were calculated at

each number of thek most similar images and the values of precision were plottedagainst

recall. This method is more informative than using the averageP20 measure because it eval-

uates the retrieval performance for all relevant images andnot just the first 20.

Figure5.6 shows an example query image (top left) and the 49 most similar images to

the given query (sorted) based ontcNM similarity measure. Precision, recall and precision

versus recall in this example have been plotted in Fig.5.6(a)and5.6(b), respectively.

However, in order to properly evaluate these methods, the results are then averaged

among all query images in order to demonstrate overall performance regardless of the cho-

sen query image. Average precision-recall plots for each category have been calculated and

plotted in Fig.5.7 to Fig. 5.11. Vertical bars on each plot represent the standard deviation

of variation of precision at each recall rate. Note that the values are not normally distributed

and a few outliers contribute to the high values of standard deviation.

5.3.1 Feature Selection

Eighteen different probe functions have been defined here toextract visual features of subim-

ages (visual elements) in an image. Probe functions and their corresponding visual features
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Figure 5.6: An example query image (top left corner), the most similar images and Precision-
Recall plots
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Figure 5.7: Average Precision-Recall plots for images in target sets C0 and C1.
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Figure 5.8: Average Precision-Recall plots for images in target sets C2 and C3.
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Figure 5.9: Average Precision-Recall plots for images in target sets C4 and C5.
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Figure 5.10: Average Precision-Recall plots for images in target sets C6 and C7.
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Figure 5.11: Average Precision-Recall plots for images in target sets C8 and C9.
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(a) KdNM (b) gMNM (c) HdNM

(d) tNM (e) tcNM (f) ftcNM

(g) ftcFNM

Figure 5.12: A visual representation of the TDM for 10 targetsets in Simplicity data set
(calculated for each similarity measure)
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Table 5.1: Average precisionP20 among all query images in each category for the seven
proposed methods (feature selection not included)

CBIR results in CBIR results in this paper (without feature selection)

Set
[27] [29] [33] KdNM tNM gMNM HdNM tcNM ftcNM ftcFNM0

C0 42.40 45.25 68.3059.35 66.60 69.70 36.95 73.70 71.70 76.05

C1 44.55 39.75 54.0050.05 36.85 34.40 51.70 41.20 50.10 55.45
C2 41.05 37.35 56.1547.55 47.50 47.95 36.30 69.70 59.10 65.80
C3 85.15 74.10 88.8075.90 57.50 89.40 38.00 62.50 81.40 74.05
C4 58.65 91.45 99.2599.25 99.75 99.15 99.30 99.95 100.00 100.00
C5 42.55 30.40 65.8056.80 50.25 49.15 50.50 60.60 60.65 66.10
C6 89.75 85.15 89.1092.55 89.55 83.60 80.15 95.00 93.20 95.30
C7 58.90 56.80 80.2581.10 83.40 79.75 67.95 89.20 87.35 94.60
C8 26.80 29.25 52.1546.10 34.25 41.60 44.35 43.15 50.90 54.50
C9 42.65 36.95 73.2557.00 70.55 76.80 34.50 78.75 72.75 75.05

Avg. 53.24 52.64 72.70 66.57 63.62 67.15 53.97 71.38 72.7275.69

are listed in Table4.1. However, it is important to note that using all available features does

not necessarily imply better retrieval results. For any experiment, a subsetB ⊆ F of probe

functions can be selected and used as a sub-optimal set of features. In this thesis, a Sequen-

tial Backward Selection (SBS) algorithm (see: [2,53,68]) is used to find a set of sub-optimal

probe functionsB selected from all available probe functions (features) inF . This method

starts with the set of all features and leaves one out at each level. The choice of feature to be

removed at each level depends on the performance function that is defined for each specific

problem. It is important to note that in the present experiments, the number of possible fea-

tures (eighteen) is not very high and the purpose of feature selection is not feature reduction.

Features are removed at each level only if their removal increases the performance measure.

The algorithm is given in Algorithm2. The algorithm is performed on a user selected subset
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Algorithm 2 : Feature Selection Method
Input : 1. The full set of potential probe functionsF ,

2. A real valued evaluation performance functionJ(B).
Output : Selected suboptimal set of probe functionsB ⊆ F .
initialization : k = 0;
Start with the full setBk = F ;
∆J = 0;
while ∆J ≥ 0edo

φ∗
k = arg max

φj∈Bk

(J(Bk − {φj})); Find the worst probe function and leave it out;

Bk+1 = Bk − {φ∗
k};

∆J = J(Bk − {φ∗
k})− J(Bk);

k = k + 1;
end
B = Bk+1;

of images as training data. In each category, 20 images (out of 100) were handpicked as

representatives of images for that category. Half of those images were used for the feature

selection algorithm. At each level, the precision of the twenty most similar images (P20) was

used as the performance measureJ(B) (refer to Algorithm2) and the average was taken

among all selected 10 query images. Table5.3shows the selected features (probe functions)

for each category. These features are selected by the SBS algorithm (Algorithm 2) based on

the selected subset of training images. The performance offtcFNM0 in each category using

only the selected features is shown in Table5.3and compared with results published in [33].
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Table 5.2: Selected features in each category

φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9 φ10 φ11 φ12 φ13 φ14 φ15 φ16 φ17 φ18

C0 X X X X X - X X X X X X X X - - - -

C1 - - - - X X - - X X - - - X X X X X

C2 X X X X X X X X X X - X X X - - - -
C3 X X - X - X - X X X X X X X - - - -
C4 - - - X X X X X X X X X X X - - - -
C5 X X - X - X - X X - X X - - - - - -
C6 X X X X X X X X X X X X X X X X X X

C7 - - X X - X X - - - - X - - X - - X

C8 - X X X X X X X X X X X X X X X X X

C9 X X X X X X X X X X X X X X X X X X

Table 5.3: Comparison of average precisionP20 between the best proposed methods
tcNM, ftcFNM0 and results published in [33]

Set Sample Results reported tcNM ftcFNM0 ftcFNM0 Accuracy
in [33] selected features selected features improvement

C0 68.30 75.48 76.05 + 7.75

C1 54.00 51.38 63.8 + 9.80
C2 56.15 70.95 71.05 + 14.90
C3 88.80 85.76 80.1 - 8.70
C4 99.25 100 100 + 0.75
C5 65.80 57.48 67.45 + 1.65
C6 89.10 93.48 95.55 + 6.45
C7 80.25 90.0 95.1 + 14.85
C8 52.15 50.62 55.50 + 3.35
C9 73.25 80.67 76.8 + 3.55

Avg. 72.70 75.58 78.14 + 5.44%
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5.4 Experiment 2: TasviR-3x70: A Broad-Domain-Narrow-

Target Controlled Set of Test Images

In this experiment a controlled test dataset of images has been created to test similarity mea-

sures in abroad-domain, narrow-targetCBIR problem. An HP PhotoSmart R725 point-

and-shoot camera was used to take the photos (640x480 image size). The photos were later

downsampled to 240 by 180 pixels and a subimage size of20x20 pixels was used to define

visual elements. In order to create this database, photos were taken of different subjects

ranging from objects with a clear background to natural scenes or indoor spaces. Therefore,

the variability of the database is very high. However, for each subject 3 different pictures

were taken, either from a different point of view or by takinga different picture in the same

area. The images can be divided into 70 different categories, each representing a different

subject where each category consists of 3 images that are very similar with little variability.

The target set for each query image is the set of 3 images similar to the query. All proposed

similarity measures in the previous chapters have been usedto sort images based on their

similarity to the query image. Figure5.14shows the average recall rate (out of 3) plotted for

each target set. Figure5.15shows the five most similar images in the dataset for the first 20

images as an example calculated usinggMNM , tNM andtcNM . the TDM matrix (70×

70) was also calculated. As an example, Fig.5.16shows the values of4th row of the TDM

matrix (t in the t-testcalculated between target set 4 and all the other 70 target sets). The

plots clearly show that target set 12 and 37 are less significantly different from target set 4.

Sample images from these target sets are shown in Fig.5.16and their similarity compared to

other target sets is evident.
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Figure 5.13: A collection of 210 images with 70 target sets (Tasvir-3x70)
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Figure 5.14: Average recall among all 210 query images calculated using different measures
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(a) gMNM (b) tNM (c) tcNM

Figure 5.15: Examples of the three most similar images to a query image obtained using
gMNM, tNM andtcNM . Each row corresponds to one query image.
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(h) Sample images from Target sets 4, 12 and 37

Figure 5.16: An example of thet-testvalues versus target set number representing the signif-
icance of difference between the 4th target set and the rest of the 70 target sets in Experiment
2
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5.5 Discussion of the Experimental Results

The importance and significance of the experimental resultsare discussed in this section. The

benefits of the proposed methods based ontolerance relationsandfuzzy tolerance relations

(namelytNM , tcNM , ftcNM and ftcFNM ) will be discussed here in comparison to

the classical methods that are either introduced and implemented here (namelyKdNM ,

HdNM andgMNM ) or in other literature (see [27,29,33]). Some of the highlights of these

experiments are as follow.

1. In all the experiments that have been implemented in this thesis, a near set approach has

been adopted. This means that images are divided into visualelements (subimages) and

similarity between sets of elements has been introduced andimplemented. The global

spatial information of images will not be used in this approach. However, this can be

beneficial for searching in a broad domain target set of images.

2. Each subimage has been described using only 18 visual features corresponding to

color, texture and edge information. In all the experiments, except in Section5.3.1,

(where a simple feature selection has been implemented) feature selection was not

used.

3. The adaptive selection of epsilon value (ε) makes the proposed methods parametric but

automatic and adaptive. The value ofε is automatically selected for each query image.

4. Experimental CBIR results in Experiment 1 on a standardbroad-domain, broad-target

dataset demonstrates a significant improvement in accuracyof the image retrieval using

tolerance based near set methods compared to classical methods of distance between
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sets.

5. tcNM outperformstNM .

6. Comparison of the proposed methods with other existing methods has been shown in

Table5.1and5.3. The performance measure that is used here isP20 (the precision of

the twenty most similar images). This measure is used to havea side by side com-

parison between the new results and the ones published in [27, 29, 33]. According to

this table, the new results are significantly more accurate than the two older methods

published in [27, 29]. On average, the new results are also better than the most recent

method published in [33].

7. It is important to note that the proposed methods in this thesis (both tolerance based

methods and classical distance based methods) are completely unsupervised and re-

quire no prior information about the images in the dataset. However, as is stated in [33],

their method relies on clustering the pixels of all the images in the database using a K-

means clustering algorithm to be used for calculation of color histograms.

8. Using a simple feature selection method, improved the results as shown in Table5.3.

However, feature selection requires training the system with a training set of images

from each category and thus it will depend on the training set. High variability of target

images in this dataset makes it less robust to the choice of query image. The advantage

of the proposed methods in this thesis is their competitive performance even without

any feature selection in a completely unsupervised setting.

9. The proposed classical distance based measures are more promising when the target

set has low variability (e.gtarget sets C4 (dinosaurs) C6 (flowers) C7 (horses) and C3
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(buses) in Experiment 1). In one example,gMNM outperforms all the other methods

for target set C3 (buses).

10. The performance of fuzzy tolerance methods (i.e. ftcFNM0, ftcNM ) show an im-

provement overtcNM . However, it is important to note that the reason and the impor-

tance of introducing fuzzy tolerance relations is to increase robustness when choosing

the epsilon value. The epsilon value is in fact a threshold between similarity and dis-

similarity of visual elements based on their distance in feature space. Defining a fuzzy

threshold (gradual transition from similar to non-similar) makes the methods more ro-

bust to changes in parameters. The automatic method of selecting this threshold (for

both tolerance and fuzzy tolerance) makes it adaptive and hence also more robust to

changes in the query image.

11. Plots of averageprecision versus recallin Fig. 5.7 to Fig. 5.11show the full range of

precision averaged for all the queries along with the standard deviation of changes in

precision. When the target set has high variability, (broad-domain, broad-target CBIR)

precision rate drastically drops at high rates of recall. This can be attributed to very

highsemantic gapbetween some of the target images in each category.

12. Category C4 (dinosaurs) is a very narrow-domain target setand hence can be easily

retrieved in broad-domain sets of images. The precision-recall plots show that the

average precision for all the methods is very close to 100%. The standard deviation of

values is much lower forftcNM andftcFNM0.

13. Precision and recall plots demonstrate the performanceof the methods in retrieving the

target images corresponding to a query image. As long as a target image is ranked in
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similarity above a non-target test image, it is not important if the difference between

target and non-target is significant. The new proposedTDM matrix provides more

information about the separability of target sets. This is done by calculating the statis-

tical significance of the difference between similarity values of different subsets of a

test dataset. Figure5.12gives more insight about this, by visualizing TDM using gray

color coding. It can be seen that target sets C1 and C8 are the most challenging target

sets to be retrieved. For example, if the query image is selected from category C1, the

most similar results are more likely from not only target sets C1 but also C2 or C8.

14. The performance of the new methods has also been verified on a broad-domain, narrow-

target CBIR experiment (Experiment 2). In this experiment, there is almost zero se-

mantic gap between images of the same target set. However, there are occasional

strong visual similarities between images that are semantically different.
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Chapter 6

Conclusions and Future Work

“The whole is greater than sum of its parts”.

Different similarity measures were introduced in this research to quantify the level of

similarity between two images based on their content using visual descriptions. This is an

example of a task that is very challenging for computers and yet a basic task for humans.

Therefore, the main motivation for this research was to explore methodologies which are in-

spired by the visual perception of the human mind. The exact mechanism and the neurosci-

entific basis of the perception especially perception of similarity is not well known. However,

we may be able to use some of the intuitive models that can be hypothesized about the way

information is perceived in our brain. The following list shows how different mathematical

methods were used here inspired by conjectures about the human perception.

• Visual perception has limited resolution. Objects that areclose enough in terms of

their visual features, are seen as almost similar. This hypothesis (that can be easily

verified) is the basis for using tolerance space theory in modeling similarity between
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images at an elementary level.

• Similarity is not a black and white concept. Human perceptionof similarity is approx-

imate with no sharp threshold. This hypothesis was the basis for using fuzzy tolerance

relations to improve upon tolerance relations.

• Human perception in viewing an image is formed by grouping similar parts of the im-

age(s) together. This conjecture (which is based on the second principle of Gestalt

theory of visual perception) [30] as well as the work of Ewa Orłowska [45,46] is the

motivation behind using tolerance classes and tolerance neighborhoods asgroupsof

similar elements. Therefore, we can group similar perceptual elements based on their

visual descriptions allowing for imprecision and small discrepancies between descrip-

tions.

• Tolerance classes and tolerance neighborhoods can both be used to group elements of

an image together. In this research, tolerance neighborhoods were used. The accom-

panying hypothesis is when looking at an image, the elementsthat are visually similar

to the point of gaze will be grouped together based on their similarity to the point of

focus. Therefore, the similarity between a given element and the centre is important.

Also, using tolerance neighborhoods has significant computational advantages over

tolerance classes.

• The purpose of using fuzzy set theory is twofold. The first reason is to eliminate the

need for a sharp boundary when forming sets ofsimilar elements, allowing a grad-

ual transition between the concepts ofsimilar anddissimilar. The second reason is to

emulate how humans describe similarity between visual stimuli. An automatic com-
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puter algorithm may generate a numerical valued measure of similarity represented by

a real number that reflects degree of similarity. Humans, however, can easily recognize

similarity and describe it in the form of natural language statements. The fuzzy val-

ued nearness/distance measure proposed in this research isintended to provide a more

human interpretation through generating a fuzzy set instead of a numerical value.

The above methodologies were employed to introduce new similarity measures between

images that are considered as sets of visual elements. The similarity measures were also

tested in CBIR experiments to retrieve images based on similarity. Since the image similarity

problem is subjective by nature, there is no direct way of evaluating a nearness measure.

However, a content-based image retrieval task using a controlled test dataset of images was

used to evaluate the performance of the similarity measures. Here, the final results of the

experiments on broad-domain sets of images have an average performance that is higher

than the latest published results even without feature selection. This is the main points of

strength relating to CBIR in this thesis. The experiments wereperformed in a completely

unsupervised system using some arbitrary chosen visual features such as color and texture.

The methods presented in this thesis are universal. For a specific image retrieval problem,

feature selection will lead to better results.

Also it is important to note that in all the experiments in this thesis, images are compared

only based on their content. There are significantsemantic gapsbetween some of the images

in Experiment 1 which will contribute to lower precision rates at very high recall values.
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6.1 Future Work

Future avenues of this research:

1. To improve upon and expand a region-based distance/similarity measure between a

region of interest in one image and another. The method has already been introduced

and published by the author [55] introducing a rough set-based boundary (upper and

lower approximations) for the region of interest in the tolerance space. This method

has not been included in this document because further experimental work is required.

2. To use proposed similarity measures for theimage classificationproblem. Having a

distance/similarity measure between each pair of images enables us to implement a

completely unsupervised two-class classification problemthat divides pairs of images

into similar or dissimilarclasses. One such experiment has already been presented by

the author to be published in [41].

3. Development of a new form offuzzy metric spaceswith fuzzy membership functions

that are defined asfuzzy numbersand studying the topology that may be induced by

this new kind of fuzzy metric space.

4. Exploring partial or full ordering relations between fuzzy sets (or fuzzy numbers) used

in ranking images based on fuzzy valued distances.

5. Using the proposed fuzzy valued similarity measure in a full knowledge-based system

that involves online or offline human interaction.

6. To implement more visual features (probe functions) for comparing images and to

incorporate more powerful feature extraction/selection methods.
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7. To expand the capabilities of the image retrieval system to include concept based image

retrieval.
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Appendix A

Psychological Views of the Perception of

Similarity

Some of the psychophysical models of similarity have inspired researchers in computer sci-

ence and artificial intelligence to develop mathematical methods to measure the similarity

using the visual information available in images. One of theearliest quantitative studies

in psychophysics of perception goes back to 1850 when GustavFechner [17] hypothesized

that physical quantities and their corresponding psychological experiences are mathemati-

cally related. [42]. His one dimensional logarithmic modelbetween the physical intensity

and perceived intensity was later challenged by Thurstone in 1927 [69] with a more complex

statistical model that is based on discriminal differencesbetween a pairs of stimuli. These

studies were limited to the special case of a one dimensionalstimuli. Visual perception how-

ever, (like many other real situations) requires a combination of stimuli from a set of separate

dimensions to achieve a full perception. In 1950, Attneave published a seminal paper [5],
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in which he studied judgment of similarity between stimuli with multiple dimensions. He

was one of the first people who proposed a view of (dis)similarity as distance in a mental

space. This mental distance approach (or geometric approach) which was further elaborated

by Shepard in 1962 [62], is still one of the basic assumptionsused in many of the compu-

tational methods for image similarity in computer science.This approach (as was further

studies in [7]), assumes a metric structure for the mental space where a similarity function

has to satisfy the metric axioms namelysymmetry, positivityandtriangle equality.

However, metric assumptions have been challenged by later approaches such as featural ap-

proach by Tversky in 1977 [70, 71] or recent transformational approach [21]. Thecontrast

modelas proposed by Tversky assumes a feature matching process for describing similarity

rather than a geometric representation. Tversky’s model can be viewed [61] as a set-theoretic

model in which stimuli has binary features or attributes. Degree of similarity is then defined

based on the linear function of their common features. A survey of similarity models from

a psychological and computer-science point of view can be found in [42] and [61], respec-

tively. In the present research, the so called mental distance approach is used only to describe

the similarity /distance between visual elements while theoverall distance between images

is defined using a Near Set approach.
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Appendix B

Mathematical Proofs

Lemma 1. Absolute value of a random variable

If X is a continuous random variable with probability density function (pdf) defined as

fX(x) and (cumulative) distribution functionFX(x), then|X| is another random variable

with the following probability distribution function:

f|X|(x) = fX(x) + fX(−x) iff x ≥ 0

f|X|(x) = 0 iff x < 0

Proof

Starting with CDF of|X| and∀x > 0

F|X|(x) = Pr (|X| ≤ x) = Pr (−x ≤ X ≤ x) = FX(x)− FX(−x)

120



Taking derivative of both sides

f|X|(x) = fX(x)− (−1)× fX(−x) = fX(x) + fX(−x) (B.1)

∀x ≤ 0, Pr (|X| < x) = 0 and henceF|X|(x) = f|X|(x) = 0. Lemma is proved.�

Lemma 2. If X is a random variable with probability density function(pdf) defined as

fX(x) and (cumulative) distribution functionFX(x), and if a is a constant, thenX − a is

another random variable with the following probability distribution function:

f(X−a)(x) = fX(x + a) (B.2)

Proof

Starting with CDF,

F(X−a)(x) = Pr ((X − a) ≤ x) = Pr ((X ≤ x + a) = FX(x + a)

Taking derivative of both sides,f(X−a)(x) = fX(x + a). Proof is completed.�

Lemma 3. Operations on discrete random variables

Let X and Y be independent discrete random variables with probability mass functions

mX(x) andmY (y). Then

1. The absolute value of the random variable(|X|) is another random variable that has
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the followingpmf:

m|X|(x) = mX(x) + mX(−x) iff x ≥ 0 (B.3)

= 0 iff x < 0

2. The sum of the above random variables (Z = X + Y ) has the followingpmf; where?

stands for convolution.

mZ(z) = mX(z) ? mY (z) =
∑

xk

mX(xk)mY (z − xk) (B.4)

3. The difference between the two random variables (Z = X−Y ) has the followingpmf:

mZ(z) =
∑

xk

mX(xk)mY (xk − z) (B.5)

4. The absolute difference between the two random variables:(Z = |X − Y |) has the

followingpmf:

m|X−Y |(z) =
∑

xk

mX(xk)mY (xk − z) +
∑

xk

mX(xk)mY (xk + z) iff z ≥ 0 (B.6)

= 0 iff z < 0

5. The ratio of two discrete random variables,Z = X
Y

has the followingpmf

m(X
Y )(z) =

∑

xk

mX(z × xk)mY (xk) (B.7)
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Proofs

1. Using the definition of pmf and absolute value function:

∀x ≥ 0 m|X|(x) = Pr (|X| = x) = Pr ((X = x) ∨ (X = −x))

= Pr (X = x) + Pr (X = −x) = mX(x) + mX(−x)

∀x < 0 m|X|(x) = Pr (|X| = x) = 0

Proof is complete.�

2. Using the formula for total probability based on conditional probabilities:

mZ(z) = Pr (Z = z) = Pr (X + Y = z)

=
∑

xk

Pr (X + Y = z | X = xk)× Pr (X = xk)

=
∑

xk

Pr (xk + Y = z)× Pr (X = xk) =
∑

xk

mY (z − xk)mX(xk)

Proof is complete.�

3. Similarly, forZ = X − Y

mZ(z) = Pr (Z = z) = Pr (X − Y = z)

=
∑

xk

Pr (X − Y = z | X = xk)× Pr (X = xk)

=
∑

xk

Pr (xk − Y = z)× Pr (X = xk) =
∑

xk

mY (xk − z)mX(xk)

Proof is complete.�
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4. Using parts 1 to 3 (above) of this lemma,

∀z ≥ 0 m|X−Y |(z) = mX−Y (z) + mX−Y (−z)

=
∑

xk

mY (xk − z)mX(xk) +
∑

xk

mY (z − xk)mX(xk)

∀z < 0 m|X−Y |(z) = Pr (|X − Y | < 0) = 0 Proof is complete.�

5. Using the formula for total probability based on conditional probabilities:

mZ(z) = Pr (Z = z) = Pr

(

X

Y
= z

)

=
∑

yk

Pr

(

X

Y
= z | Y = yk

)

× Pr (Y = yk)

=
∑

yk

Pr

(

X

yk

= z

)

× Pr (Y = yk) =
∑

yk

Pr (X = z × yk)× Pr (Y = yk)

=
∑

yk

mX(zyk)×mY (yk)

Proof is complete.�
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Appendix C

POINCaRe

POINCaRe is a computer application developed for image similarity analysis and content

based image retrieval. A simplified executable version of POINCaRe can be downloaded

from the Computational Intelligence Laboratory web site at University of Manitoba. POINCaRe

was originally written in MATLAB but is also available as a standalone executable program.

POINCaRe is named after Jules Henri Poincar (1854 - 1912), whose work on the philosoph-

ical aspects of the contrast between the mathematical and physical continua laid out the idea

of tolerance space theory. POINCaRe can be also read as the initials for: Program for Object

and Image Nearness Comparison and Recognition.

C.1 Program Features

The current released version of POINCaRe (beta 0.1) has the following capabilities:

• Calculating 8 different similarity measures between digital images based on the visual

features.
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• CBIR: Calculating the similarity between a given query image anda selected directory

of images and sorting the images in an HTML file, based on similarity to the query

image.

• Specifying a region of interest (ROI) in a query image and comparing the ROI with the

test image(s).

• Individual analysis of images such as edge detection, plotting the histogram of local

feature values, and finding tolerance neighborhoods in images.

FigureC.1shows a snapshot of the graphical user interface (GUI) of theprogram.

Figure C.1: A snapshot of the GUI of POINCaRe beta version 0.1
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C.2 POINCaRe Download and Install Instructions

POINCaRe is a standalone executable application that has beenimplemented with MATLAB

but does not need MATLAB to run. However, you need to have the proper version of MAT-

LAB Compiler Runtime (MCR) installed on your computer. You can read about MCR from

Mathworks web site. Follow the following steps to install MCRand POINCaRe. If a recent

version of MATLAB is installed on your computer, then you already have MCR installed.

You can check the version of your MCR and go directly to step 2 below. If there is an MCR

problem, you can always come back to step 1 and install a proper MCR.

Step 1: Download and Install MATLAB Compiler Runtime (MCR): Skip this step if an

updated version of MATLAB or MCR has already been installed onyour computer. You

need MCR version 7.15 or higher to run version 0.1 (beta) of POINCaRe. If MATLAB is

installed on your computer, you can type:[major, minor] = mcrversion at your

MATLAB command prompt to see what is the version of MCR on your computer. If you

don’t have MATLAB or an updated version of MCR, you need to install MCR on your com-

puter (only once). MCRInstaller.exe will install MCR on your computer. Due to licensing

issues, MCRInstaller.exe file cannot be uploaded with open access. However, you can obtain

this file from any licensed MATLAB distribution that comes with MATLAB compiler. In

MATLAB 7.5 (R2007b) and newer, the command (mcrinstaller) can be used to deter-

mine where the installer is located. You can copy the file intoyour computer and run it.

Step 2: Download and Install POINCaRe

Currently, there is only a 64 bit version of POINCaRe available for Microsoft Windows.
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Check the web site1or contact us for updates and new versions. Download the selfex-

tracting executable file. Copy the file into a directory in yourPC. Double click on the file

and the contents will be extracted into the same directory. Double click on the main file

Poincare_win64_b01.exe to run the program.

C.3 Using the Program

Follow the following steps to use the program

C.3.1 Selecting images

Figure C.2: Image Directory Figure C.3: Parameters

You can browse and select a directory that contains your images using the controls shown

in Fig. C.2. This directory should contain only images. Most of the common image file

formats are supported. The images do not have to be the same size. However, since the

granularity parameter (subimage size) will be the same for all images, it is strongly suggested

1http://wren.ece.umanitoba.ca
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to avoid using images with significantly different sizes so that the ratio of the subimage size

to the image itself has little variations for the sake of consistency. There is a default directory

with 30 sample images located in the same path that the program is installed. These images

are selected from Tasvir3x70 dataset. There is no limit in the number of images. However, a

thumbnail view of the first 12 images in the directory are shown in theImage Data Base

panel. Pairs of images can be selected from this panel to be compared.

C.3.2 Selecting Parameters

All of the methods implemented in POINCaRe are based on dividing images into subimages

and calculating the local features at each subimage.Granularity (in pixels) is the size of

square subimages andOverlap is a number between 0 and 1 that represents degree of overlap

between subimages. Default value of overlap is zero. FigureC.4 shows where to enter the

parameters. The current implemented methods require both epsilon values for image 1 and 2

to be the same.

Note that the value of granularity depends on the size of images. As a suggested com-

promise between accuracy and speed, it is recommended to choose the sub image size such

that there are no more than approximately 500 subimages in each image. The Epsilon value

(ε) for tolerance based methods can be selected as a fixed value.The method for adaptive se-

lection of epsilon value based on the image data has not been implemented in this simplified

version of POINCaRe. Other parameters can also be selected as it can be seen in Fig.C.3as

follows:

• Histogram Bins: This is a vector with values between 0 and 1 representing thenor-

malized histogram bins in any method that is based on histogram calculations (KdNM
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Figure C.4: POINCaRe: Image Panels

or WdNM )

• Gamma (γ): This parameter is a scaling parameter in converting distance measure to

similarity measure. ifD is a distance measure, similarity or nearness measure (NM )

is calculated using the mappingNM = 1 − Dγ if D ∈ [0, 1] or NM = 1
1+Dγ if

D ∈ [0, +∞).

• Norm Type: The norm type is the type of the vector norm used in calculation of the

distance between visual elements. Default isL1 norm or Manhattan distance.

• Wavelet NameandThreshold: Wavelet functions of typeWavelet Namewill be used

for calculating the edge intensity and edge orientations based on the edge detection

method in [37]. The threshold valueThreshold is used to detect an edge if the edge

intensity is above the threshold. The parameterEdge Filter is the type of filter for

another method of edge detection base on the gradient of the image using different
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operators such assobelor prewitt ( [19]). This method will be used if the 19th feature

(Edge filtering) is selected (see Fig.C.5).

• Fuzzy EpsanddRange: The parameterFuzzy Eps is a vector that contains the two

corner parameters of the fuzzy tolerance relationε1 andε2 as is shown in Fig.3.4(b).

dRange is a vector of values where the membership function of the fuzzy distance

µftcFDM is calculated.

Figure C.5: POINCaRe: Features and Methods Panel

C.3.3 Choosing the features (probe functions) and methods

The user can select up to 19 different features to be used in the feature vector for each visual

element (subimage). Features will be later normalized between 0 and 1. For more informa-

tion on how each feature is calculated, you can refer to Chapter 4. These features describe

average color, texture and edge information in each subimage. Note that POINCaRe ver 0.1

does not have the ability to automatically choose the tolerance threshold (ε). Therefore, the

user is advised to choose the fixed epsilon value according tothe number of selected fea-

tures in each experiment. Each normalized feature has a range of variation between 0 and
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1. Therefore, the range of variation ofd(x, y) =‖ ~φB(x) − ~φB(y) ‖1 (assuming anL1 norm

distance is used) is between 0 andM whereM is the number of features.

C.4 Types of Analysis

There are 3 different types of analysis possible in POINCaRe. The first type is individual

analysis on the image content of each single image. The second type is pairwise comparison

of a pair of images and calculating the similarity and/or distance between images. The last

type of analysis is CBIR image analysis by calculating the similarity/distance between a

query image and all the images in a directory and sorting the images based on similarity. The

program can perform all the above analysis types as follows:

C.4.1 Pairwise image comparison

A pair of images loaded into Image Panel 1 and Image Panel 2 canbe directly compared

to each other. Each image can be selected by using the[Select Image] button in each

panel or by choosing the corresponding thumbnail image fromthe[Image Data Base]

panel. Similarity between images is calculated using the given parameters in the GUI after

the user clicks on[Compare Images] button in the[Analysis Type] section of the

program as shown in Fig.C.5. Selected nearness and distance measure will be shown in this

panel. Nearness is a normalized number between 0 and 1 and distance is a non-normalized

positive real number.
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C.4.2 Histogram of features

Clicking on [Display Histograms] will open a new window where the histograms

of all the selected feature values for the subimages in each image will be displayed. The

histogram bins are used as mentioned earlier. FigureC.6 shows an example of histograms

generated by the program when only average R, G and B color components are selected as

the features.
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Figure C.6: POINCaRe: Histograms of the subimage average R,G andB for the pair of
images shown in Fig.C.1

C.4.3 Finding tolerance neighborhoods and manual selection of a neigh-

borhood

Clicking on Find Tolerance NBs for each image, calculates the tolerance neighbor-

hoods and the number of tolerance neighborhoods and a graphical representation of the size

of each neighborhood is shown in each image panel. Moreover,by clicking on any point
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on an image in the image panel, the corresponding tolerance neighborhood around the se-

lected subimage will be calculated and displayed on each image panel. FigureC.4 shows

sample tolerance neighborhoods selected this way after clicking on the centre of each image.

Note that in this example, only R, G and B features are selectedand the resulting tolerance

neighborhoods represent parts of the images with almost thesame color.

C.4.4 Edge detection

After clicking onFind Edges, edge intensity and orientation is calculated at each point

and edge intensity id thresholded by the given threshold level to produce a binary image of

detected edges shown in the last image window of the image panel.

C.4.5 Selecting a region of interest (ROI)

Instead of image comparison between a query image (image 1) and a test image (image 2),

the program can compare part of image 1 (a region of interest as a query image) with image 2.

After clicking on[Select ROI] in image panel 1, the user can select a region of interest

by clicking on the top left and bottom right corner of a regionof interest in the image and the

ROI will be selected as a set of subimages. FigureC.7 shows the steps needed to select an

ROI.

Upper and lower approximation of ROI using tolerance neighborhoods

After selection of an ROI, lower and upper approximations inthe tolerance space will be

automatically calculated and displayed on GUI. Roughly speaking, lower approximation of

an ROI is defined here as the union of all the tolerance neighborhoods (/tolerance classes)
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which are a proper subset of the ROI. Moreover, upper approximation of an ROI is defined

as the union of all the tolerance neighborhoods (/toleranceclasses) which have a non-empty

intersection with the ROI. Therefore, visual elements in the lower approximation, have very

similar descriptions to ROI and objects that do not belong toupper approximation have very

different description from ROI. The exact definitions of these approximations and some ex-

amples are as follow.

Definition C.1. Lower ApproximationB∗(ROI) and Upper ApproximationB∗(ROI)

Let Q be the set of subimages in a query image andY be the set of subimages in— a test

image. O = Q ∪ Y is the set of all subimages. LetROI ⊆ Q be a region of interest in

query image andN
∼=B,ε

O be the set of all tolerance neighborhoods in the union of query and

test image. Then:

B∗(ROI) =
⋃

{

A ∈ N
∼=B,ε

O such that (A ∩Q) ⊆ ROI
}

(C.1)

B∗(ROI) =
⋃

{

A ∈ N
∼=B,ε

O such that (A ∩Q) ∩ROI 6= ∅
}

(C.2)

Nearness between ROI and a test image

Region of interest (ROI) can be selected to show an object of interest for example in a query

image where the rest of image is not important for image comparison problem. After an ROI

is selected and displayed as a query itself, the user can click on [Compare two images]

button to compare the ROI with the test image.

NOTE: Many nearness measures need a relatively large number of subimages in each image

for the comparison to be meaningful. Therefore, selecting asmall ROI that contains very few
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number of subimages, yields a nearness measure which is lessmeaningful because the set of

subimages is not a good representative of the image anymore.

C.4.6 Content-based image retrieval

In an image retrieval experiment, a query image (or a region of interest in the query image)

is compared with all the images in an image dataset. The path to the directory of images in

image dataset is specified by [Image directory] edit box in the top left corner of the

GUI. After choosing the path and selecting the query image inimage panel 1, choosing

the required parameters and probe functions, the user can start image retrieval by clicking on

[Image Retrieval] button. All the images in image directory will be compared against

the given query and the results will be stored and saved in an HTML file. Depending on

the number of images and the size of subimages, image retrieval may take some time to

complete. A status bar and sand-watch icon in the bottom right corner of GUI update the

user about the status of the experiment and the time to completion. After all the images are

compared, the program automatically opens the default Internet browser and displays the

data. The program is tested with Google chrome. If you cannotsee the images or if the

HTML output file has not been opened for any reason, go to the program directory and open

the file: (Poincare-CBIR.html) using a different web browser. FigureC.8 is an example

of an output file generated after the given query image is compared with 210 test images in

Tasvir-3x70 data set. Images are ranked based on their similarity to the query image and the

values of nearness and distance are displayed for each image.
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(a) (b)

(c)

Figure C.7: Steps in selecting an ROI and rough set approximation of ROI with tolerance
neighborhoods
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Figure C.8: An example of an output file generated by POINCaRe after CBIR
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