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Abstract

The problem addressed in this research is how to quantifiyatien of similarity between
two images with the main focus on content-based image vati{€BIR). The main strategy
used here is a Near Set approach where each image is codsadeneset ovisual elements
that can be described with a set of visual descriptions feaj. The similarity between
images is then defined as the nearness between sets of eddyasatl on their descriptions.

The main contribution of this thesis, is to define nearnesssoes between sets of ele-
ments based ontalerance relatiorand afuzzy tolerance relatiobetween pairs of elements.
A tolerance relation is used here to describe the limitedlugi®n of the human visual per-
ception to changes in visual stimuli. Also, a fuzzy tolemnelation is adopted here to elim-
inate the need for a sharp threshold and hence model thealrelsanges in perception of
similarities by humans. A method for adaptive selectiornefthreshold is also introduced.

The key idea in defining similarity between images is to cd@sgroups of visual el-
ements that aralmostsimilar to each other in description. These groups catolegance
classe®r neighborhoodsThree novel similarity measures are introduced in thisithieased
on this idea. Furthermore, a fuzzy-valued similarity meass also proposed where simi-
larity is a fuzzy set rather than a real number. Three othmilaiity measures are also pro-
posed here based on classical distances (namely, Kantbrdvausdorff and Mahalanobis)
between sets of visual elements. All of the proposed methoelthen used as similarity
measures in two CBIR experiments. A new method is also propmsedaluate image re-
trieval and classification. The proposed method as well aptacision-recall methods are
used for evaluation. The results are also compared witlr pitdished research papers. An
important advantage of the proposed methods is their eféass in an unsupervised envi-
ronment with no prior information about images. Eightedfedent features (based on color,
texture and edge information) are used in all the experismesgardless of the query image.
However, for comparison, a simple feature selection allgoris used to train the system in
choosing a suboptimal set of visual features and the impnewt in accuracy of the results
is shown.

Keywords: Perception of similarity, image similarity, nearness mea, similarity measure,
content-based image retrieval (CBIR), query by content, aoleg spaces, metric spaces,
fuzzy sets, fuzzy metric spaces, fuzzy tolerance spacesy ftalued distance.
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Chapter 1

Introduction and Classical Measures

The objective of this research is to develop computatiorethwds for quantifying the visual
similarity between pairs of digital images. The problem efiding such similarity measures
is an important part of content-based image retrieval (CBIR}esys [11, 63]. A solution
to this problem generally consists of extracting some Videacriptions i(e features) from
images and then comparing the feature values in order touresasw much they resemble
each other. The motivation for this stream of research isdxkwoward reaching the ability
of humans in perceiving images and recognizing similarging computational intelligence.
This is one of the most important aspects of the human igeilie in perceiving the world
around us. We can detect, organize and explore the worldlmassimilarity between ob-
jects or physical stimuli. However, mimicking human inigdince in recognizing similarity
is particularly challenging because the correspondenteees physical measurable stim-
uli and its perception (and further psychological expereenf the perception) is unknown.

Perception of similarity based on visual stimuli has beevagt an interesting subject for



scientists in psychophysics and cognitive psychology aadyrattempts have been made
to model this relation (see Appendl). This thesis does not include the psychophysics of
visual perception. The research problem in this thesis geteelop a computational algo-
rithm for quantifying the level of visual similarity betwe@mages. This assumes that some
meaningful visual descriptions of the images (features)aovided.

A common classical approach to comparing features is tautzksome form of distance
(e.g. Minkowski distance: Euclidean or Manhattan distance)egitietween global or local
feature vectors in the feature space. This approach is ctibed geometric approaclor
mental distance approadd2]. For example, in [29, 33], and [34], a weighted Minkowsk
distance is used to compare global color or texture-bassdrievectors. In [27], Euclidean
distance is used to compare feature vectors that are eedrastng a wavelet decomposition
to represent texture. Figufiel for example, is a drawing that shows how each image can be
mapped into a point in 3 dimensional feature space. Imagéndigrity can then be viewed
as distance between the corresponding points. Measurestahce between histograms
have also been used as a measure of dissimilarity. A cougrashples includ@istogram
intersection[32] and L,, norm distance between histograms [66]. To learn more al@ut t
existing methods in image similarity, the reader is encgedeo refer to [3,11, 63].

The main approach presented in this research, is based opaciogp images as sets
of elements in a tolerance space and fuzzy tolerance spalge.id€a of using tolerance
spaces in mathematical modeling of visual perception waiedaced by Zeeman in 1962
[80] (inspired by the early qualitative discussions by HePoincae [52]). Zeeman proposed
a tolerance view of similarity to represent limitation ofrhan visual acuity in distinction

between visual stimuli that are spatially apart [80]. Zerimaork was not concerned with
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Figure 1.1: Distance based approach to similarity

the concept of visual similarity but rather with a mathematmodeling of how the visual
perception is formed. Although Zeemnas’s model of the Vipaeception is very elementary,
(even as described by himself in his paper) it has a reasermsis which has inspired
the research in this thesis on the objective of devising n&thods to emulate the visual
perception in similarity detection. This tolerance spbhesed approach to perception of
similarity is also influenced by the observation about pgtioa made by Ewa Ortowska
in 1982,i.e,, “classes defined in an approximation space serve as a forimahierpart of
perception”[45, 46]. The mathematical foundations of tolerance sphaeery in modeling
uncertainty in the real world was further elaborated by Be&y in 1986 [65] .

The proposed approach in this thesis can be briefly explamteb levels as follows,

¢ In a lower level, similarity between image visual elemestsniodeled in a classical



geometric approach where a metric is used to define the destagtween local feature

vectors as an indication of dissimilarity.

¢ In a higher level, sets of visual elements are compared to eder by forming toler-
ance neighborhoods of visually similar elements and maagdistance between sets

through analyzing how tolerance neighborhoods cover bo#ges.

Consider each image as a sewisual elementsEach visual element is a part of the im-
age (a pixel or a group of pixels) that can be visually peegand mathematically described
by a set of features and can be named dssxribable object Figurel.2 shows an example
pair of images, their visual elements displayed individuahd in 3D feature space. At a
lower level, it is necessary to be able to detect similagiietween visual elements based on
their description. At this level, parts of image(s) thatéaimilar visual descriptions, can be
easily identified. For higher level comparisons it is morallgnging to establish the overall
similarity between pairs of images based on similarity enetnts in the images. Dissim-
ilarity between any two elements can be defined by a commdandie function between
the corresponding feature vectors in a feature space. Howswilarity between two sets
of elements is a more complicated task and it is the subjettti®fesearch in the following
chapters. Figur&.3shows pairs of images and their corresponding sets of videialents in
the feature space overlaid on each other.

Figurel.4, provides an outline of the research in this thesis. The rapproach in this
research is based dvear Setsheory {.e measuring the nearness between sets of describable
objects using the nearness between the elements in the Bktaj Set theory, introduced
by James F. Peters in 2006 [48, 49, 51] lays out the necessangdtion for defining the

similarity between sets of objects based on their desonpilhe methodologies used in this
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research to represent the uncertainty and imprecise naittine concept of similarity in the

human mind consists of:

1. A tolerance space-based approach is introduced thaeeethe equality requirement
of descriptions into aalmost equal requirementhen comparing elements based on

their descriptions.

2. Afuzzy set-based approach is used to allow for soft (ggBdransition betweeaqual

almost equalndnot equaldescriptions.

1.1 Motivation

The main motivation for this research was to bridge the mgsiap between the algorithmic,
computer-generated similarity measures (mainly basecomgtric distance approach) and
human judgment of similarity which is botimpreciseand fuzzyby nature and yet more

reliable.

1.2 Contributions

The main contribution of this thesis is the proposal, impgetion and analysis of methods
to usetolerance spacandfuzzy setheories in defining the visual similarity between pairs
of images. A complete content based image retrieval systenevlaluating the proposed

methods is also implemented.
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The contributions are elaborated in more detail in the liat follows,

Introducing and implementation of tolerance neighborhbagded methods for com-

paring images based on their content.

¢ Introducing a novel fuzzy tolerance relation to describgrde of nearness between

visual elements.

e Introducing new distance/nearness measures based ondiertéince space methods
(named here ag:D M and ftcDM for conventional and fuzzy tolerance relations, re-
spectively) and also classical methods (Hausdorff, Mattddes and Kantorovich dis-

tance) in image feature space (named hel®@@&¥ M, gM N M, KdN M respectively).

e Introducing and using a probabilistic approach for repnéeg sets of images and



analysis of the neighborhood distance as the building béde¢k/N M tolerance based
nearness measure. Providing mathematical proofs andatiomkesults to show how

neighborhood distances depend on distribution of feaiarssts of images.

¢ Introducing a method for automatic selection of the toleealevele in the tolerance

relation based methods.

e Proposing a novel tolerance Rough Set approach to descrdggamrof interest in an

image within a tolerance space used for region-based imaglasty.

¢ Introducing the concept of a fuzzy distance function (a yuzued distance) based on
a fuzzy tolerance relation (namefycF DM). The fuzzy distance function represents

the distance with a fuzzy set rather than a real number.

e Using the concepts afarrow-domainandbroad-domairin describing a set of images
to categorize the search problem (not the set of imagdspasl-target broad-domain

narrow-target broad-domairandnarrow-target narrow-domaint

e Implementation of all the proposed nearness/distanceuneas a CBIR framework
on two controlled test datasets of images. A benchmark gybdivailable “broad-
target broad-domain” dataset and a new personally gewetataset of “narrow-target,

broad-domain” images.

e Introducing a newarget discrimination matriXTDM) for evaluating the performance
of a CBIR (or image classification). Implementing both the negthnd and the exist-

ing performance-recall method on the above systems.

1These terms are coined here for the first time, to identify@istinguish between different types of CBIR
problems.



Background theory

Philosophy,
Psychophysics of
visual perception

Image processing
techniques

Metric space theory

Tolerance space and
fuzzy set theories

J
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Research Question

How to define similarity
between two images?

How to describe each
visual element?

How to define similarity
or distance between
pair of elements?

How to define similarity
or distance between
sets of elements?

=

Proposed solution in this thesis

Divide images into sets of visual
elements and define a measure of
nearness between the sets using
the nearness between elements.

An element is described with a
feature vector containing its
color, texture, edge information.

Dissimilarity between each pair of
elements is defined as a distance
metric between the
corresponding feature vectors.

Construct the (fuzzy) tolerance

neighborhoods and measure the
difference between the coverage
of neighborhoods in each image.

Figure 1.4: Outline of the research questions and propasletdans in 4 steps

e Designing a user friendly program for image analysis andenatl experiments

(POINCaFe: Rogram for bject and mage Nearness Gmparison ad Recognition).

2The program is named after Jules Henri Poiggdi854 - 1912) whose work on the philosophical aspects
of the contrast between the mathematical and physical ragatiaid out the idea of tolerance space theory.
POINCaRe is written in MATLAB. A simplified executable version of tlpgogram can be downloaded from

the Computational Intelligence Laboratory web sitiet.p: / / wr en. ece. umani t oba. ca/
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1.3 Describing an Image as a Set of Visual Elements

This research is based on a set theoretic approach to imadgsisnwhere each image is
viewed as a set ofisual elementgor more generallydescribable objec)s Each visual
element can be just a pixel, a pixel and its surrounding pigelany part of the image that
can be visually perceived and described. The reason betlorking with a visual element
rather than a single pixel, has both a practical and a physspeect. From a practical point of
view, it is easier to consider a small patch of adjacent pigslaunit of visual perception and
thus reducing the amount of information needed to reprakentage as it is perceived by
a human. From a physical point of view, we know that we do netiseges in a pixel-based
resolution and our local perception of the image is formedlgroup of pixels. The size
of a visual element thus represents the granularity of thealisystem. Figurg.5(b)shows

a simple image of how two distinct point$ and B are projected on retina and stimulate
the photo-receptor cells namedneat pointsD andC'. The two points can be perceived as
distinct, if they stimulate two different cones on the ratthat are separated by at least one
other cones [31]. For a normal healthy human eye with a pugel sf 8 mm in diameter,
the angle of resolution is about 1 minute of arc or 1/60 of aeedl5, 31]. The maximum
resolution in terms of the distance between pixels on thegenaan be calculated using a
little geometry. Assuming that the distance between thgevaand the lens is the minimum

separable distance on an image will be:

1 o
Apin, = 2 X r X tan | —
120

For the sake of practical simplicity, we consider each \isiement to be a small square

10



(a) An example of a subimage (b) Spatial resolution of human vision

Figure 1.5: An example of a visual element (Left). Formingraage on retina (Right)

of sizep in pixels and we call it ®aubimage Visual elements may or may not have overlap.
The choice ofp is optional. A useful guideline for choosingis to be small enough to
represent local details in an image and large enough to fimeinumber of visual elements
for the sake of speed in the algorithm. Figur&(a)shows an image of size 355 by 300
pixels and a sample visual element (describable object)samiare subimage of size 13 by

13 pixels.

1.3.1 Visual elements as describable objects

In this thesis, we adopt the viewpoint and terminology of IN8at theory as described in
[51]. The elements of a set in Near Set theory are those tpatsent something in the
physical world and hence they can be perceived and describach an element is called
here adescribable object. Describing the element is possible through a set of cheriatits
(features). Avisual elemenfas described in the previous section) is a good example of a
describable objectA subimage for example is part of an image that can be pexdeand
described by color or texture. While the subimage containalleisual information about

the image, the set of describable objects represents thie whage.

3Originally, the termperceptual objecivas used to represent an object that can be perceived anibeesc
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Letz € X be a describable object in a set. In order to represent fatfra describable
object, the concept girobe function50, 51] is used here. A probe function is denoted by
¢ and is defined as a function that maps a describable objeth @sia visual element)
to a feature value that is denoted bir). B is used to denote a set of probe functions that

together are used to describe the object.

B = {¢17¢27---¢l} (1.1)

The set of all feature values for a describable objezdin be organized in a vector format

as follows (feature vector):

o5(2) = [p1(x), Pa(2), ...(2)]” (1.2)

1.3.2 Metric distance between describable objects

Similarity between each pair of describable objects can basured in a metric approach.
In this approach, a distance is defined between each paij@tsbn a space calldeature
spaceas a measure of dissimilarity between the objects. Thereapace is the space of all
possible feature vectors.

Let =3 be the space of all possible feature vectors defined by a sptobie func-
tions B. Describable objects, y are represented with their corresponding feature vectors
5B(x), $B(y) € Z. Minkowski distancel of orderp between pairs of feature vectors is

defined as follows:

12



d: EB X EB — R*
d(¢s(x), d5(y) = ¢5(x) = d5(y) [, = (Z\qﬁk ) (1.3)

where|| . ||, is called p-normy € N). Minkowski distance is chosen here as an elementary

distance between visual elements (describable objects).
Proposition 1.1. (=3, d) is a metric space.

Proof. The proof forp € N is as follows:

(=g, d) has all the required properties of a metric space namely,

Yo5(z), d5(y), d5(2) € Z

Part 1) Non-negativityd(¢s(z), ds(y)) > 0

Proof directly follows from the definition in Equatidn3.

Part 2) Identity of indiscernibleﬁ(ﬁg(x), gEB(y)) — 0 ifand only if gs(z) = du(y).
A) d(ds(x), s(y) =0 = Zm =0

= [on(r) — de(y)I" = 0 Vk€{12 1Y

= ¢r(x) = drly) VE € {1,2,..,1} = dp(x) = ¢n(y).

B) ¢5(z) = ¢p(y) = d = 0 directly follows from definition.

Proof follows from A and B.

Part 3) Triangle inequalityd(%s(x) 53(2)) < d(a%(%% 53(3/)) + d(d;B(y), 65(2)).
Proof: (d(ds(x). ds(2)) ) Z 6n(2) = ou(2) = Z 91(2) = 0r(y) + 01(y) — ()P

Using the binomial theorem i |n elementary algebra We knat'th,b € R, p e N, |a+

13



bP < |al? + |bJ?, therefore

((s(x). ) Z 6n(@) = ou ()l + [6x(y) — or()”

l
=D low(@) — o)’ + Z |1y )P = d(bs(x), o(y))? + d(Ps(y), G(2))P-
Ag%:iﬁl, using elementary algebra, we know thats,t e R, pe N P < P 4P = r <

s + t, therefore:

d(¢5(x), ¢5(2)) < d(ds(@), o5(y)) + d(d5(y), P5(2)) [

Proposition 1.2. (=3, || . ||,,) is @ normed vector space.

Proof follows from the fact thaEg, d) is a metric space.

Let X,Y C O be sets of describable objects anddgt, ®%, &Y C =5 be sets of feature

vectors corresponding to elements)ofY andO respectively.

Corollary 1.1. Every non-empty finite set of feature vectors along with thevatlistance

function forms a finite metric space.
o (B5,d) d:d5 x &% — RT is afinite metric space.
o (B),d) d:®f x &% — RT is a finite metric space.

o (0F,d) d:dF x ®§ — R* is a finite metric space.
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1.4 Image Similarity and Classical Measures of Nearness
between Sets

Nearness between sets of describable objects can be desimgdaclassical method of dis-
tance between sets. In this section, 3 distance/nearnesBdius are introduced based on
classical methods of Kantorovich distance, Mahalanolstadce, and Hausdorff distance.
While these measures are well-known methods, their apgicat finding the distance be-

tween sets of visual elements, especially the generalizgtblnobis distance, is part of the

contribution of this thesis.

1.4.1 Kantorovich distance based nearness measure (KdNM)

A nearness measure based onKlaatorovich distanc§l2,73] between the histograms of the
feature values is introduced in this section. This meth@times a probabilistic nature for
images, where the feature values are sample outcomes ad@marariable. The underlying
probability distribution of the features may be unknownwgwer, histograms of the feature
values are considered as an estimate of the true underligtrgodtion functions (empirical

distributions).

Definition 1.1. Kantorovich Distance
Supposd’ and G are distribution functions of random variablesand v, respectively. The

L, norm based&antorovichmetric [18, 72] is defined as

(1, V) = /!F(ﬂf) — G(2)|de = /IFl(t) — G7H(t)|dt, (1.4)
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whereF~! andG~! are quantile functions of the distributions. It can be prdteat the Kan-
torovich metric is equal to the Wasserstein metric [18].haligh the original Kantorovich

metric uses thé.,; norm, this metric can also be similarly defined usiignorms ¢ > 1).

SupposeX andY are sets of describable objects corresponding to a pairajés. For
each probe function, € B (k = 1,2, ...,1), feature values are normalized between 0 and 1
and the histogram of the features are calculated to represgpirical density functions. Let
{by,...,bj,...by, } be the set of bins in calculation of histograms. E&r feature value, let
HY% (b;) be the number of describable objects of imagevhere itsk'" feature value belongs
to j** bin. Distances between distributions are calculated dhalfeatures. Here, cumula-
tive histograms rather than plain histograms have beenhsealise cumulative histograms
tend to be more robust to changes in the bin assignment [3[66 normalized cumulative

histogram ofk*" feature value in imag& is defined in Equationi(5).

i=j =Ny
CHy(b;) = (Z Hé%(bz-)> / (Z HQ@D) : (1.5)

i=1 i=1
Definition of CH{(b;) for imageY is similar. Different methods can be used to measure
the difference (distance) between histograms [54, 63]. éxamples, comparing the sta-
tistical moments of histograms individually or in combiioat with each other such as the
Mahalanobis distance [35] or weighted-mean-variance @zqsed in [38] that considers the
difference between the mean of distributions with refeeetacthe variances. Here, a Kan-
torovich distance between cumulative histograms is usede§monding to each descriptive
feature (probe functio), a feature specific distanek (X, Y’) between image&” andY

with respect tak!” feature, is defined using Equatiars.
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J=Ny
= > | CHY (b)) — CHY (b)) |. (1.6)
Finally, distance (dissimilarity measure) between séndY is namedk DM and defined
in Equationl1.7 as theL,, norm (p = 1 here) of the distance vectdr= [dy, ..., dl]T where
| = |B| is the number of feature values. The Kantorovich distanseth@earness measure
(KdN M) is defined by normalizing the distance and converting itéarness measure as

shown in Equatiori..8.

l

=2 |d (1.7)

k=1

KANM(X,Y)=1—+/KDM(X,Y), (1.8)

KDM(X,Y)

NIH

wherel = |B| is the maximum possible value 6f DM (X, Y).

Example 1.1. Figure 1.6 shows sample pairs of images and their correspandistribu-
tion function of a feature value (“entropy” of subimage). iHan judgment on similarity
between the first pair of image&X (andY’), is higher than the second pair of images and
7). Empirical distributions and Empirical cumulative digiution functions (CDF) are also
displayed and the difference between the two distributiontians is measured by the area
under the function CH (b;) — C Hy-(b;) | (marked with dotted line). It can be seen that a

more similar pair of imagesl(1) has less distance between the corresponding histograms.
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Figure 1.6: Difference between histograms for pairs of i@)lar and (b) dissimilar images

1.4.2 Generalized Mahalanobis distance nearness measure (gMNM)

The Mahalanobis distance [35] is a form of distance betweerpbints in the feature space
with respect to the variance of the distribution of pointeeToriginal Mahalanobis distance

is defined between two sample multivariate vectoesdy as follows [14]

DM(fv ?7) = (f_ g)TE_l(f_ g)a (19)
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where the vectors are assumed to have a normal multivargtéodtion with the covariance
matrix X. This formula can also be used to measure the distanger, ni) between a vec-
tor £ and the mean of the distributioft. Following the same approach, the Mahalanobis
distance can be used to define a distance measure betweeaparate distributions. Lets
assumey; = (m, %) andy, = (ns, ¥9) are two normal multivariate distributions with
meansiii;,m, and covariance matrices;, ¥,. Let P(w;) and P(ws) represent prior prob-
abilities of the given distributions. A generalized Mahadhis distance [4, 14] between the

two distributions is defined in(10.

gMD(x1,x2) = \/(Tﬁl — i) T (T — my), (1.10)

whereX;} refers to the within-class covariance matrix definedlirL .

S (P(w» Y et mi)T) - (1.11)

i=1,2 TEX;

The above approach is used here to compare distributionsatifire values of describable
objects in two images. Generalized Mahalanobis distaasednearness measuyé{/N M)
between two images is defined as follows.

Let X andY denote sets of describable objects (images) deandd) represent the mean
feature vector for all the describable objects X andy € Y, respectively. Also, leEx

andXy be the covariance matrices of the multivariate distrimgiof ®; and®), (feature
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Figure 1.7: An example of 3 images and the correspondingritbedte objects in a 2D
feature space

values), respectively. Then,

GMD(X,Y) = /(B — D)7 (Sxy) L (B — DY), (1.12)
1
MNM(X,Y)= 1.13
where
1
Yxy = 3 (Ex +2y). (1.14)

Example 1.2. Pairs of images in Figl.1and 1.1 are considered here again. Figute7
shows distribution of subimages in the feature space, whdsetao probe functions cor-
responding to average gray leveb,(.)) and entropy ¢-(.)) have been considered. Here,
dx =[0.6186 0.5586]7, % = [0.6161 0.5426] and®Z = [0.4298 0.7125]7.

Furthermore, we have
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) ) 0.0289 —0.0170
Sy = E[(®F — ) (@ — o)) =

—0.0170  0.0250

) ) 0.0409 —0.0200
Sy = E[(®) — ®)) (B) — 0%)"] =

—0.0200  0.0249

0.0216  —0.0004
= =\ T

Yz = Bl(®5 — P5) (25 — 25)'] =
—0.0004  0.0053

1 0.0349 —0.0185
Yxy = 5 Ex+Xy) =
—0.0185 0.0250
1 0.0253 —0.0087
Yxz = 5 Ex+Xz) =
—0.0087 0.0152

gMD(X,Y) =0.0197 gMD(X,Z) = 2.0608

This means the distance betweErand 7 is significantly greater than distance betwe®n

andY'.

1.4.3 Hausdorff distance based nearness metric (HANM)

Hausdorff distance by definition is defined between two fipét sets in a metric space.
Assumed(z, y) is a distance function defined between poinendy in a metric space. Let

X andY be sets of points in the space. Hausdorff distamg¢eX,Y') between setx and
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Y [16] is defined, as in1(.15.

pr(X,Y) = max{dy(X,Y),du (Y, X)}, (1.15)

where
dp(X,Y) = max{min{d(z,y)}}, (1.16)
d (Y, X) = max{min{d(z, y)}}. (1.17)

dy(X,Y) anddy (Y, X) are directed Hausdorff distances froxhto Y and fromY to X,
respectively. It can be proved thatiis a metric, themy is a metric as well [16].

Hausdorff distance measure has been used extensively geiotamparison for template
matching problem [20, 28, 57, 81], where the goal is to find & phthe test image that
matches a given template image. In such problems, Hausdistéince is defined in the
spatial domain between the points on the edges in the temiptaige and those of the test
image. To the best of the author's knowledge, most of theiegmns of the Hausdorff
distance in image comparison problems has been limitedet¢etmplate matching. In one
case (reference [47]), however, a different approach etakd a new distance is introduced
that is called a perceptually modified Hausdorff distanddKi®). PMHD is basically dif-
ferent with Hausdorff distance in the sense that the maxiroperation in the calculation
of directed Hausdorff distances (Equatidn6andl.17) is replaced by a weighted average
operation. Moreover, PMHD is defined between statisticghaiures of the color features
after clustering.

In this thesis, however, the Hausdorff distance is used fme@l@earness between sets
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of feature vectors of describable objects. The propad$aasdorff distance-based nearness
measureH dN M and its corresponding Hausdorff distance meagiife) is defined here
as follows. LetB be a set of probe functions and I8t Y € O be sets of describable object.
Let (®9, d) be a metric space whetkis a distance function between feature vector$éh

An example ofd can be the.;-norm based or Manhattan distance defined as follows,

Vo,y € O d(d(x), 6(y) =I| ¢s(x) — ds(y) 1= |os(@) — éx(y)]. (1.18)

The Hausdorff distance is then defined using EquatlobSto 1.17and converted to nearness

measure i/ dN M), using Equatiori.20

HDM(X,Y) = p (3, ®F) (1.19)

1
HINM(X,Y) = . 1.20
(X, Y) 1+ HDM(X,Y) (1.20)
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Chapter 2

Tolerance Spaces and Perception of

Similarity

Describable objects are identified and recognized by tlesicidption. In the previous chap-
ter, it was shown how a mathematical description of a deabléobject is possible through
the use of a feature vector that is created using a set of grotmions. Therefore, the
first natural approach to defining similarity between olgastto say that, objects are simi-
lar if they have the same (equal) description. This simpk yt fundamental description
of similarity is the basis of the near set theory as develdpedames Peters in 2006 (See
e.g.[48,49,51]). If two or more describable objects have theesaescription in terms of
their feature vectors, they amediscernibleand therefore shall be classifiedsasiilar with a
high level of certainty. This will create agguivalence relationvhich is namedndiscerni-
bility relation in Near Set and Rough Set literature. An indiscernibilitatien partitions the

set of objects intalassesf objects that are indiscernible with respect to their dpson.
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In a more realistic situation, however, if the descripti@ame close enough, objects can be
considerecdalmost similarand thus allowing a small level of error, defined byoserance
relation. Formalizing the concept of similarity between objectsamis of a tolerance rela-
tion is highly appealing to intuition. Sossinsky, in his pap 1986 [65], points to this issue
and explains why a tolerance relation is a suitable mode¢poasent similarity both from
a mathematical and philosophical point of view. After somerfal definitions, it is shown

here how equivalence and tolerance relations can be usedtoiloe similarity.

2.1 Descriptive-based Equivalence and Tolerance Relation
In general, an equivalence relation is defined as followsteNloat equivalence relation is
different fromequality However, the later is a special case of the former.

Definition 2.1. Equivalence Relation
A binary relation~ defined on a s&b is an equivalence relation ift: O x O — {1,0} and

~ has the following properties:
1. ReflexivityVx € O z ~=x
2. SymmetryVz,y € O x~y=y~zx
3. Transitivity:Vz,y,z € O z~yandy ~ z= x ~ z.

Note: A binary relationR on a setD can be defined either as a subsetiok O or as a
mapping fromO x O into the sef0, 1}. We will use the latter method to extend the definition
into fuzzy relations. Therefore, the notatioppsy) €~, ~ (z,y) = 1, andx ~ y represent

the same concept.

25



Definition 2.2. Descriptive Indiscernibility Relation
A descriptive indiscernibility relation on a sét of describable objects with respect to probe

functions inB, is an equivalence relation shown withs and is defined as follows

~5C O x 0  ~p={(z,y) € 0| ds(z) = ds(y)}. (2.1)

Definition 2.3. Equivalence Class
Let ~5 be an equivalence relation (here, a descriptive indisdality relation) defined on a
setO. For every element (describable objectfE O, the set of all the elements inthat are

indiscernible withr is namedhe equivalence class associated withnd is shown as..,.
Tjg ={y €0 |z ~y} (2.2)

Corollary 2.1. The equivalence relation defined on a &gfpartitions the set through equiv-

alence classes. The set of all equivalence classes is shotvyit .

O/NB = {x/NB ‘ T e O}

Um/NB =0

z€0

e,y €0 (2)mg) O (Yng) = 0

Definition 2.4. Tolerance Relation
A binary relation= defined on a sab is a tolerance relation ift2: O x O — {1,0} and=

has reflexivity and symmetry properties but transitivitpasg required.
1. ReflexivityVx € O =z =z
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2. SymmetryVr,y € O z=y=y=x

wherex = y means= (z,y) = 1 or equivalently(z, y) €=.

Definition 2.5. Tolerance Space
The seD along with a tolerance relatiofZ defined orO is named a tolerance space and is

shown with(O, ).

Why tolerance relation?

Although feature vectors can represent the sensory inpatstimuli, the relation between
sensory input and the resulting induced perception in tmansi not known. Human percep-
tion does not require two objects to have exactly identieatdre vectors to consider them
similar. Sensory inputs that are close enough in the feafaee, may induce identical per-
ception although they are actually different. Tolerancacsptheory can be used to model
suchapproximateequalities. Figur@.1(a)consists of 150 vertical bars (bands) of 10 pixels
width having a gray level values ranging from 51 in the lefiesup to 200 in the right side.
Figure2.1(b) for example shows three different individual bands withygevel values of
90, 120 and 140. Although human eye can distinguish betwkehea255 different gray
levels if looking from a close enough distance, when we ap&itg at adjacent gray levels
we can safely assume they are approximately similar in c@lescriptive tolerance relation

is defined as follows to model such approximation.

Definition 2.6. Descriptive-based Distance Tolerance Reilan
Let O be a set of describable objects and kbe a set of probe functions ande R. Let
d be a distance function such thagb?, d) is a metric space wheré{ is the set of feature

vectors corresponding to elements(af The descriptive-based tolerance relatisiz on O
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(a) gray level spectrum (b) individual gray levels

Figure 2.1: A collection of different vertical bands witHfdrent gray values

is defined as follows:

~5.C0x0 =Zg.={(z,y) €0 xO0|ds(x),ds(y)) < e}, (2.3)

or alternatively

2500 x0—{0,1} 2. (1,9) =1 & d(ds(x), dsly)) < e (2.4)

According to the definition of tolerance relation, the redat that is defined in EquatioR.3

or 2.4is a tolerance relation and hence is named descriptive-théskerance relation.

In other words, two describable objects atmost similarto each other with respect to
descriptions given irB, if and only if their corresponding feature vectors withpest to3
have a distance in the feature space which is smaller¢hdable2.1 summarizes the two

types of similarity between describable objects defined.her

Definition 2.7. Descriptive-based Tolerance Neighborhood

Let (O, ~5.) be a tolerance space an@g, d) be a metric space whet# is a set of probe
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Table 2.1: Level of precision in distance based elementaiityi

Type of similarity \ Relation

Notation Condition
~B os(z) = ds(y)

AN
~
=—B,e

Exact (preciseyimilarity Indiscernibility
Almostsimilarity Tolerance

d(¢s(x), di(y)) < ¢

functions. For every element e O, the descriptive-based tolerance neighborhood o

shown WithniB’E (z) and defined as follows:

no (¢) = {y € 0| d(ds(x), ds(y)) < c}. (2.5)
The set of all tolerance neighborhoods in a tolerance spashown here witIN;:;B’E.
No™ = {no"*(x) |« € O} (2.6)

Proposition 2.1. N;:;B’E Is a covering of the se&?. Tolerance neighborhoods may have over-
lap but the union of all tolerance neighborhoods is equabtoAlso, some tolerance neigh-

borhoods may be equal to each other and hence
NG| < [0 2.7)

Definition 2.8. Tolerance Pre-class

Let (O, =p_.) be a tolerance space. The sétC O is named gre-classff Vo, y € A =
X gB,e Y.

Definition 2.9. Tolerance Class (Maximal Pre-class)

A maximal pre-class (with respect to inclusion) is naméolerance classHence, if O, =5 .
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) is a tolerance space, the s8tC O is atolerance classf:
1. Ve,yeC = ax=5.v.
2. b2 € O| CU{z}is apre-class.
The set of all tolerance classes of the tolerance spgéteé=; . ) is shown here abli“’g.

Proposition 2.2. HiB’E is a covering of the seb. Tolerance classes may have overlap but

the union of all tolerance classes is equal?o Therefore,
INo™[ < 10]. (2.8)

Example 2.1. Suppos® = {a, b, c,d, e} is a set of describable objects with 2 dimensional
feature vectors given in séty c R% Let(0,2.) be a tolerance space defined based on
the metric spacé®?, d) whered is the Euclidean distance between feature vectors and let
e = 0.25. The set of feature vectors will H&} = {¢5(a), d5(b), d5(c), ds(d), ds(e)} and is
shown in Fig.2.2 The tolerance neighborhoods and the tolerance classéS o5 ) are

listed as follows

No®* = {{a,b,c,d},{a,b,c,d,e},{d,e}}

H55e = {{a,b,¢,d}, {d, e}}

This follows from the fact that,® (a) = n,%*(b) = ny%°(¢) = {a,b,c,d}, ng® (d) =
{a,b,¢,d, e} and nis’s(e) = {d,e}. Figure 2.2 shows the set of tolerance classes circled
(left) and the set of tolerance neighborhoods circled (fjigBoth Nif”’f and Hif”’f cover the

setO of objects.
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Figure 2.2: Tolerance classes and tolerance neighbortfoods example 2D feature space
with only 5 points

Example 2.2. Covering versus partitioningFigure 2.3shows a set of 8 describable objects.
Each object is a disk where the only feature of interest is #wus of the disk. Part (A)
shows how the objects have been divided into 3 clusters basédeo description(size).
The resulting clusters are disjoint sets that partition &t of elements. Part (B) shows the
set of tolerance neighborhoods where the centre elementobf maighborhood is marked
with black circle.e = 0.21 and a disk belongs to a tolerance neighborhood if the diffege
between the radius is smaller than Part (C) shows the set of tolerance classes in the
same tolerance space. It can be seen that neighborhoodslasses can have nonempty

intersections and hence provide a covering of the set ofaisr(not a partitioning).

Note: 1
In most practical applications, the number of elementslaiwely high such that finding all
the maximal pre-classes is not feasible by an exhaustivels@athe set of subsets. Special

algorithms are needed to find all the tolerance classes. i$hastopic that has not been

31



Figure 2.3: An illustrated example of a set of objects (disksscribed by their size. (A)
partitioning into 3 different clusters, (B) sets of toleranteighborhoods and (C) sets of
tolerance classess & 2.01)

studied extensively in the literature. In few cases, wheralgorithm for finding tolerance
classes has been presented, it is either given for specias ¢d86] or is not able to findll

the tolerance classes [25] and only firedset of classes that cover the set. In this thesis, an
algorithm is proposed to find tolerance classes (AlgorifynmFigure2.4 shows an example

of a set of points in 2D euclidean space and the toleranceedabat have been identified
using this algorithm. The algorithm cannot find all the talere classes. However, it finds
a set of tolerance classes that can cover the set. In anyazdselation of tolerance classes
is extremely computationally expensive. The nearness unesn this thesis are based on
tolerance neighborhoods not tolerance classes.

Note 2: In [6], the name tolerancelasshas been used to denote a tolerance neighborhood

(see [6,67]) and the name tolerarndeckis given to a maximal preclass (what is actually
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known as tolerance class). This is contrary to the more comhyraxcepted terminology in
tolerance space theory. In this thesis, tolerance classkseighborhoods are defined in the
classical way and the teritolerance blockcan be used such that it can refer to any of the

above.
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Algorithm 1: Tolerance class calculation

Input : 1. The set of visual element$ = {z1, x2, ..., zN}.
2. Athreshold value
3. A distance functiory, between feature vectors of element€in
Output: A set of maximal pre-classd$ = {11, 15, ...} that cover the sab.
initialization: H =( (Start with empty set of pre-classes)
fori=1:N—1do
for j =i: Ndo
if dg(%;,7;) < ethen
\ H=HU{{x;,z;}}; /'l Consider {z;,z;} as a pre-class
end
end
end
Level initialization : L = 2;
while (37" € H suchthal?| = L) &L < |H| do

for T}, in H do
/1 Look in other elenments of O
C=0—-T; /1 which are not already in T
initialize: new < 0; ; /1 No new el enent is found yet
initialize: j < 1;; /[l start with the first elenment of C

while new = 0 do
allclear — 1,z; € C
for x; € T}, do
if d(zj,z;) > ethen
| allclear <+ 0

end
end
if allclear = 1 then
\ Ty =T, Uxj, /1 Add this elenent to the pre-class
end
end
end
L—L+1
end
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Figure 2.4: An example 2-D feature space (top left) and tlmeesponding tolerance classes
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2.2 New Method: Tolerance Nearness between Sets of Im-
age Visual Elements

In sectionl1.3.2 it was shown how to define a measure of dissimilarity betwdEstribable
objects using a distance metric in the feature space. T$tigrdie is named hereggmentary
distanceand it can be considered as the building block of an imagdamiityi measure. Each
image is considered as a set of describable objects (vikrakats) and the overal similarity
between images is defined as the nearness between setsalfeleuents. This is Alear
Setsapproach in which the nearness between sets is defined bagsled pearness between
elements of the sets [51]. L&t be a set of images and I&t,) € 7 be pairs of images.
Let X, Y be sets of visual elements of the images, respectively. famte measure{M)
and similarity measureS(\M) between any two images is then defined as the distanaed

nearnessV between the sets of corresponding describable objects.

DM :IxT—[0,00) VX,YeZI, DM(X,Y)=D(X,Y) (2.9)

SM:IxT—[0,1] YX,YeZ, SM(X,Y)=N(X,Y) (2.10)

A near set approach by itself just reduces the image siryilaroblem to the problem of
defining nearness between sets of visual elements. This B@ynte possible in different
ways. In this thesis, a tolerance space approach as welliez tolerance space approach
are introduced. In a tolerance space view to image corregme, nearness between sets of
describable objectX’, Y is defined by comparing the tolerance blocks.(neighborhoods

or classes) o&lmost similarobjects in a tolerance space that covers both imagesX lagtd
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Y be sets of describable objects anddet= X U Y. Let B be a set of probe functions cor-
responding to visual descriptions of describable objdots.(O, =5 .) be a tolerance space
where=;; . is defined in EquatioB.3. N,°* is the family of all tolerance neighborhoods and
HiB’E is the family of all tolerance classes in the tolerance spéceé=s..).

Figure2.5is an example of two images divided into visual elements {ongrlapping
square subimages of size 20 pixels are considered as visma¢ts). 3 contains 6 probe
functions that extract RGB and HSV color components of eashalielement. All the fea-
ture values are normalized between 0 and 1 and 0.8. EachA; represents one of the
tolerance neighborhoods Nui"”*s demonstrated in a separate plane in 3D. As one expects,
each tolerance neighborhood represents areas of imagelsatrea almost the same color.
In the next section, it is shown how these tolerance neididmms can be used to define

similarity.

2.2.1 Neighborhood distances and tolerance covering nearness measure

(tcNM)

Tolerance neighborhoods (and tolerance classes) can Heaadauilding blocks of a near-
ness measure to define similarity between sets of desceilodlpcts (visual elements). The
main idea behind using tolerance neighborhoods is the cumgethat when we look at two
images, we tend to group image elements together based darginto the element of in-
terest at the point of gaze. This conjecture can be intexgrasthe principle of similarity

in Gestalt’s theory of perceptual organizatiom psychology.! This principle states that

1Gestalt’s principle of organizations is a descriptive tiyeabout how people perceive visual components as
organized patterns. This theory is part of a school of thougpsychology.
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Figure 2.5: Tolerance neighborhoods

things with similar visual characteristics such as shajze, €olor or texture, will be seen
as belonging together as a group. A suitable mathematicdkhto describe this group of
visually similar elements can be the tolerance neighbathafoelements around the point
of gaze. The similarity is then defined here by comparing Hossé¢ neighborhoods cover
images. Figure.6for example shows a sample neighborhoba a pair of imagesX and
Y. A contains subimages from boft andY'. Part of the neighborhood that belongsiXo

andY is shown in the figure and denoted Hyh X and A NY’, respectively. The difference
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between the cardinality of the sdtn X and the sed N'Y is used as a measure of differ-
ence between the two parts. This difference can be calcuéaid averaged among all the
neighborhoods in the tolerance space to define an overahdis measure betweghandY

named here a®lerance covering distance measuyteD M ). The steps involved in defining

teD M between two images are listed as follows,

e Step 1: Divide both images into sets of visual elementandY” (visually describable

subimages).

e Step 2: Define a set of probe functiois= {¢1, ¢2, ...¢; } that can extract some visual

features of subimages. Each subimagman then be represented with its feature vector

—

¢s() = [¢1(2) ¢a(x) .. du(x)]".

e Step 3: Define a distance functiehbetween feature vectors in the feature space.
L,-norm-based distance function (Manhattan distance) actidean distance are ex-

amples of such distances.

e Step 4: Define a tolerance relatiés . between feature vectors based on a toler-
ance level of erroe to represent similarity in the subimage level. Two visu&-el
mentsz andy are similar to each other if the above distance betweenreatctors

d(¢s(x), p5(y)) is smaller than the tolerable level of error thresheld,

e Step 5: For each visual elemeny in the union of all subimages:{ € X UY), find

the tolerance neighborhood, y (z() with respect to the tolerance relatiéfy_..

e Step 6: For each tolerance neighborhood, definen#ighborhood distancbetween
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X andY with respect tary as in Equatior2.11

[n(zo) N X| — [n(xo) NY|
In(xo) N X| + [n(ze) NY|

T)Qy(f]fo) = (211)
Txy(zo) represents the normalized difference between the size(af) N X and
n(xg) NY.

In section2.3and using a probabilistic approach, it is shown Why- () can be used

as a measure of dissimilarity between images.

Step 7:tolerance covering distance meastiteD M) is defined in the following equa-
tion as an average of the neighborhood distances calcutatedl the visual elements
of both images.tcDM is a real number between 0 and 1. zero distance represents

maximum similarity (equality) and the higher values of diste represent less similar-

ity.

1
teDM(X,Y) = —=— Y Txy(xo) (2.12)
NO n(zg)eO

Where|N§B’5| is the total number of tolerance neighborhoods in the talsapace.

Step 8: Subsequentli; N M similarity measure is defined as follows,

teNM =1 — VteDM. (2.13)

Both tcDM andtcN M can be used to compare images. The former is a measure of

dissimilarity where lower values represent higher similarity. The lasea imeasure
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of similarity where higher values represent higher similarityV M is a real number

between O and 1.

The idea of tolerance covering distance measure was inlsipyranother tolerance space
based method namelglerance nearness measut® M . t N M was first proposed by Henry
and Peters and appeared in [24,53Iy.M is defined based on tolerance classes of a tolerance
space as follows,

LetO = X UY and let(O,=5.) be a tolerance space and Iéi‘**s be the family of all

tolerance classes . 2

Y T4

%B,s
INM., (X,V) =T (2.14)
ﬁ > 1
AeHig’S
~ min{|[ANX|,|[ANY]} (2.15)

T max{[ANX[,[ANY[}

where| AN X| and|ANY| are part of each tolerance class that ar&iandY’, respectively,
and7 is a measure of difference between their sizes. As one exp&tit/ value is between

0 and 1. In this thesis, a faster versiont6fM is implemented that uses tolerance neighbor-
hoods (\Ii‘*g) rather than tolerance classé‘%(g’f). The significance ofcD M (andtcN M)

compared ta/N M can be summarized as follows,

1. tNM is based on tolerance classes in a tolerance space wheféas is based on
tolerance neighborhoods. Algorithms for finding toleractasses such as the one

introduced here in Algorithmi or the method introduced in [25] have much more

2The actual set of tolerance classes which have been usefliis [fotH, % but a subset dﬂi&a that still
covers the seb.
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computational complexity than finding the neighborhoodisoAthey cannot find all

the existing tolerance classes.

2. The performance afcDM in measuring similarity is shown both theoretically and
experimentally in this thesis. A detailed probabilistigpegach on describing the cor-
respondence between distribution of feature values in @nagd their tolerance cov-

ering distance measures is derived and validated in Se2iBn

3. A complete side by side comparisontef) M with the existing methods in content

based image retrieval is provided foD M (ChapterS of this thesis).

4. The generalization of tolerance based methods to fuzeyatace based methods is

introduced fortcD M .

2.2.2 Choosing the value of tolerance threshold

The physical and mathematical reason for using a toleragle¢gion to model the limited
acuity and tolerance of human visual perception is inteimd simple. However, choosing
a proper value for the threshold levemay not seem very obvious and may depend on the
situation.

In this section a systematic method for choosing the epsitdue is presented based
on the statistical distribution of the distances betweenviBual elements in a given query
image. The method is based on the idea thahould not be large enough such that most
of the pairs of elements fall withia distance of each other. Moreover, it should not be very

small such that most of the pairs of elements are not witliistance of each other. This can
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(a) Pairs of imageX (Left) andY” (Right)

3 .
>

(b) A tolerance neighborhoad, A N X (Left) andA N'Y (Right)

Figure 2.6: Sample pair of imagées, Y and an example of a tolerance neighborhood that
covers part of each image. HdréN X | = 122 and|AN Y| = 132.

be shown using the distribution function (cdf) of the distabetween pairs of elements in an
image. Figure.7(b)shows an empirical pdf (histogram) of the distances betvedements
of a sample image where the average RGB color components ofighal elements are
considered as probe functions (feature values). ZEig(c) shows distribution of the size of
the resulting tolerance neighborhoods in the image, catledlfor different values of. It
can be seen that very small (or very large) valueswiil cause the tolerance neighborhoods
to be limited to single elements (or cover the whole imagegpectively.

Let D represent a distance metric between visual elements. Gomgid> as a ran-

dom variable for an unknown pair of elements;(d) is used to represent the cumulative
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distribution of D.

Fp(d) = Pr(D < d), de[0,+0).

Heree, is defined as the distance value at whiGh equals tor

Fp(e,)=7, 7€][0,1]. (2.16)

For a fixed and arbitrary chosen valuemgfs, can be calculated and adaptively chosen as
¢ for each query image in any image comparison. Although thiéhauestill depends on a
parameter ), the results are much less sensitive to the selectionrather thare. This
method can be used for calculation of both tolerance neididoals and tolerance classes.

The method for choosingcan be summarized as follows,

e Take the query image and divide it into visual elements (ealges)X = {x, 22, ..., zx}.

For each subimage,, calculate the feature vectéfg(:r;k) using the given probe func-

tions.

Construct a distance matri® by finding the distance between all the pairs of feature

vectors in the imageD(k, j) = d($B<Ik)7 56(%‘))

Count the numben/ of pairs of element$z, y) where the distanc® between their

feature vectors is smaller than the threshold level

For each query imagd’, the value ofc = ¢,(X) is calculated using the following
formula

e (X) = — (2.17)
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x 10—3Pdf (empirical) of the distance between visual elements
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Figure 2.7: An image (a), distribution of distances betwpains of elements (b), and distri-
bution of the size of tolerance neighborhoods at differehies of: (c)
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2.3 Mathematical basis for the new measure

In this section, a theoretical basis for the proposed methmtroduced using a probabilistic
approach to image description. Images are described asfsatial elements with visual
features that are considered as random variables with kpoalmability density functions.
The probability density function of the neighborhood distais then defined based on den-
sities of the feature values.

Let Z be a set of images and suppadsés the set of all visual elements in imagesiin
Let B = {¢1, 09, ...} be a set of probe functions defining visual features of thmetds
of V. In a probabilistic approach, the value of each probe foncit each visual element is
a random variable. Let, m,...m; represent random variables associated withp,, ...¢;.
All feature values are real numbers. L&t (.), fr(.), ..., fr,(.) be the probability density

function (pdf) of these random variables and hence by defmit

Pria<m <b)= [ fr(m)dr
b

Pria <my <b)= [ fu(7)dr
b

Pria <m <b)= [ fr(m)dn

Example 2.3.As an example, Fi®.8(a)shows probability distribution functions for feature
values in a 4 dimensional feature space. Feature values ssaraed to be normal indepen-
dent random variables with Gaussian distributions. The maahstandard deviation of the

distributions are 0.3, 0.6, 0.6, 0.7 and 0.1, 0.15, 0.0500Qdspectively. Also, Fig2.8(b)
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shows the corresponding empirical distributions (histaggd calculated for 400,000 ran-

domly generated sample feature vectors using the givendisons.
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(a) Probability distribution functions (pdf)
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Figure 2.8: An example of four random variables represgr@ature values (a) underlying
pdf and (b) empirical distribution of the randomly genedasamples.

Proposition 2.3. Let xo be an arbitrary visual element anﬁg(xo) be the corresponding
feature vector in the feature space. l@et [r; 7 ... m]7 be a random feature vector with
independent feature values whefg is the probability density function of thé&" feature.

Then,|m; — ¢;(x0)| is another random variable with the following probability ttibution
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function.

Vi f\ﬂ'i—@(woﬂ(ﬂ—) - fm(ﬂ- + sz(x())) + fm(_(ﬂ- + ¢Z(‘T0))) >0

=0 T <0

The proof directly follows from Lemniaand Lemm& in AppendixB.

Proposition 2.4. Let® = [r; m ... m]’ be a random feature vector and Ié,g(mo) be the
feature vector corresponding to an arbitrary chosen eletgnThenA =|| 7 — ¢s(z0) ||x

is another random variable with the followinpglf andcdf wherex stands for convolution.
fa(€) = fimi—1(00)1(€) * fira—g2(20)|(€) * % fim—pi(w0)i(€) (2.18)

Fa(e) =/ Siri—61 o) (T) * fima—(2o) (T) * oo % fim—gy (o) (T)T

Proof
=l

A =|| 7 — du(zo) 1= Z |m: — ¢i(x)| (according to the definition of the;-norm-based
=1

distance). Therefore, probability distribution functign is the convolution of the density

functions|m; — ¢;(x¢)| fori = 1,2, ..., and hence the proposition is provdlll.

Definition 2.10. Probability of being in a neighborhood
Let P.(z, O) represent the probability that a randomly selected elementO satisfies the
inequality | ¢s(y) — és(x0) ||< € (i.e. the distance between feature vectors:ptindy is

smaller thare).
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Proposition 2.5. Let z, be an arbitrary visual element with feature vec'@g(xo) and let
y be a visual element randomly chosen from a@edf elements with a known distribution

function of feature values.(x¢, O) (as defined above) is calculated as follows.

Pr <H o8(y) — ¢5(x0) 1< 5) :/0 S50 -5 (a0 (€)deE (2.19)

wheref%(y)_%(xo”(e) is calculated using Equatio.18in Proposition2.4.

Proof
| é5(y) — ds(x0) || is a random variable. By definition, the probability that thasidom

variable is between 0 and is calculated by integrating its pdf from 0 fol

Proposition 2.6. Probability mass function of the size of teerance neighborhoods
Let O be a finite set of randomly selected visual elements with knaalmapility density

functions and let:o () be a tolerance neighborhood of defined as follows,

no(zo) ={y € O| |dsy) — du(wo)| < e}. (2.20)

The size of the tolerance neighborho@d,(z¢)|) is a discrete random variable with the

following probability mass functiopnf ) ,

Mino(ao)|(K) = Pr([no(zo)| = k) = @O) P.(0,0)* x (1 — P.(g, 0))No "),

where Ny = |O] is the size (cardinality) of the sé and P.(z(, O) is defined as in Equa-

tion2.19
Proof
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The feature values of any elemantc O are random variables with given pdfs. For each
elementy, the probability that this element belongs to the tolerareighborhoodio (z) is
shown withP.(z, O) as defined in EquatioR.19 The size of each tolerance neighborhood
is an integer number between 1 aNg. For each value of € [1, Ny], the size of the toler-
ance neighborhood is equalkaf there arek elements irO that belong to the neighborhood
and No — k elements that do not belong to the neighborhood. The priyati the former
eventisP, = P.(xzy,O)* and the probability of the later eveniz = (1 — P.(zg, O))MNo=#),
The total probability of having a tolerance neighborhoodinék is then equal to the number

of ways one can choogeelements from a set g, elements time#; timesP,. &

Definition 2.11. Neighborhood distancé’(x): Covering of sets by a neighborhood
Let X, Y be two sets of randomly selected visual elements with featwes with known
distribution functions and leb = X U Y. Suppose;, € X U Y is an arbitrary element in
one of the sets. The corresponding tolerance neighborhoddis shown withn x y (o).

T'(x¢) is defined here as follows and namedwasghborhood distance

_ no(we) N X| = [no(xe) N Y[ [Inx (o) — [ny (o)l

Tlwo) = Ino(zo) N X |+ |ny(z0) VY| |nx(zo)| + [y (20)]

(2.21)

Theorem 1.T'(z,) is a discrete random variable with the following probabilitass function
(pnf ) assuming that the cardinality of the sefsandY” are the same. (The general formula

for the case of non equal sizes, is given in the proof secfitim®proposition)
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M1z (L) = Pr(T(zo) =1t) =

1—-t

1+t .
= Z <mnx(x0)(k‘1—_t) + m|nX(I0)(k1—_H)) m|ny(x0)‘(k) iff ¢ Z 0 (222)
k

=0 iff t<0

Proof

Since elements of the sef§ andY are randomly selected, their feature values are ran-
dom variables and hence the size of tolerance neighborhasliscrete random vari-
ables. Also, sincénx(xo)| and|ny (xo)| only take finite discrete value§;(z() only takes

discrete values and hen@&z,) is a discrete random variablel’(z,) can be written as:

Inx (z0)l
_ [Inx@o)l=Iny (zo)| | _ | Iny (o)
T(xO) T | nx (o) [+ Iny (zo)| | T %(ﬁg)))\l"'l
According to Lemma3 in Appendix B, the probability mass function of the random
variableT (z() can be written asPr (T'(z¢) = t) = Mr(a)(t) = M) jnxeol | (t)
lzﬁizg))ﬂ
ny (zg)l

— m\7zx(m0)|7l (t) +mrnx(m0)|71 (_t) Iff t Z 0
BRI
nx (g 1nmx(rg
Iny (@o)] T Iny (z0)] T

=0 iff t<0

Moreover, the probability mass function|. ., _, (t) can be re-written as follows:

Tt
nx (zg
o Iy (@) '
nx(xg)l
m (t) = Pr | o ! =t) = Pr(lxeol _ 14t) () =
‘TLX("L'O)‘71 - nx (zg) 1 - - |7‘LY(ZZ'0)‘ — 1—t¢ — [n x (o) 1—¢) —
[ny (@o)] ny @) T Tny (z0)]
\"X(ﬂvo)l_H
[ny (o)l 1 y
+
= :m\nx(m)\(—l — %K) My (w0)1 ()
k
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Therefore, substituting into the above equation,

Pr(T(zo) = 1) = mr@,)(t) =

1+t 1—t .
:E:WMAWMTj;Xkawwo +§:”%xmn1+t k) My oy (k) iff £2>0
k

=0 iff ¢t<0

For the general case pX| = |Y| = N, the equation can be simplified as

N

1+t 1—1¢ .
M) (t) = Y (mnx(xo>|(th) + My (o)) (/fl—“)) Miny 20y (k) 1ff 120
k=0
—0 iff t<0 (2.23)

The proof is completcll

In this section, it is shown how the value of the neighborhdistancel’y y (z,) depends
on distribution functions of the feature values in imageandY . For any randomly selected
pair of query and test image& (andY’) and any given and known visual element 7'(xz)
is a random variable with the probability mass function give Equation2.22above. This
value is expected to be higher when imageandY are selected from two different sets of

images with different distribution of feature values. Tisishown in the next example.

Example 2.4. Suppose there are two sets of images nargebnd 7. Images in each set
are considered as similar images with known distribution fioms of feature values. Let
(query) andy” (test) be two images (sets of visual elements) randomlytedi&omd) or T’

as shown in Fig2.9. Each visual element:§ of an image, is described with a 4 dimensional
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Query Image
; f

Data Set Q

.

Test Image Test Image

Figure 2.9: Comparing a query imag&) and a test imageY() where the query image and
the test image come from the same dataset of imaggsr(alternatively from two different
datasets@ andT).
feature vectorgg(:c) = [m my w3 m4) 7. Feature values, to m, are considered as independent
random variables with normal probability density functiofys to f,, as shown in Fig2.10
for Q andT. Now, letzy, be a sample visual element with a given known feature vector
(e.g. ¢s(zo) = [0.5 0.5 0.5 0.5]7). The neighborhood distandy y () between set&
andY with respect tar, is a random variable with a probability mass function that dan
calculated according to Equatio®.22 This function represents the nominal distribution of
the values of x y (o).

In order to verify Equatior.22in practice, 2000 pairs of set§ andY have been ran-
domly generated using the given pdfs for feature values wderk set contains 200 visual

elements simulating an image with 200 subimages. For eaahtpai deterministic value
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(b) Distribution of feature values in images in datdset

Figure 2.10: Distributions of feature values in (a) quergage and (b) testimage, an example.

of neighborhood distanc&y y (xy) has been calculated according to Equatiaril The
empirical distribution of the values @fx y (z,) has been calculated and plotted in F&y11
Also, the nominal distribution function in Equati@®2has been plotted in the same figure.
The was done for two difference cases whereXandY are randomly selected from the
same data set) and (b) X andY are randomly selected from different datas@tandT’,

respectively.

The following conclusions can be made from the above exaampdethe given results in

Fig. 2.11

e The derived equation for distribution of neighborhood aligte in Equatior2.22in

Theorem2.11conforms with the empirical distribution of values measlre
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(b) test and target sets are selected from the same sQurce

Figure 2.11: Nominal and empirical pmfs ©fz() between a query image and a test image
taken from (@) different data sets and (b) the same data setsges

e The neighborhood distan@& y () will be significantly smaller (higher similarity), if

X andY have the same distribution of feature values (selected fhensame dataset).

The overall distance measuteD M is simply the average of the neighborhood distances
calculated at different visual elements. Therefore, tlabability mass function of the ac-
tual distance measure can be further calculated by takimgahvolution of the individual

distribution functions as stated below.
Proposition 2.7. Distribution oftcD M
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Let X = {x1,29,....,2x} @andY = {1, 2s,...,xy} be sets of visual elements (images)
corresponding to two randomly selected images referred tpuasy (X) and test ') image.
Also, let(Q) and (T') represent dataset of images with known distribution funetiohthe
feature values. According to Equati@al2 tcDM is the sum of neighborhood distances
(normalized) and hence its probability mass function (psthe convolution of the pmf of
neighborhood distancescD M is a discrete random variable with values between 0 and 1

with the following probability mass function

1
Mycprr(d) = Pr(teDM = d) = v % M (e) (d) % - % Mz (d) (2.24)
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Chapter 3

Fuzzy Tolerance Spaces and Similarity

To be or not to be, that is NOT the question.

In the previous chapters, it was shown how tolerance relatan be used in modeling
the existing imprecision in human visual perception of thggical world. Two describable
objects can be consideradimostindiscernible if the difference between their descripsion
is smaller than a tolerable level of erraf)( Tolerance relations can be used as a basic
framework for modeling this tolerance level of differencediescriptions. Figur8.1shows
three different images (a),(b) and (c) where the importastdption (physical feature) is the
height of the man depicted in each picture. A first glanceairttages shows that the height
of (c) is higher than (a) and (b). Also, (a) and (b) seem to ltaeesame height. However,
the actual value of the height of (b) is slightly higher thah (The small difference in their
visual feature (height) makes us consider (a) and (l)rasstsimilar. Even if we notice the
difference, we may consider this difference insignificamtrhany purposes. In mathematical

language, we say =5 . b, that means a tolerance relatigs . exists between andb, where
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B = {Height(.)} is the only probe function and = 1cm. ({a,b,c}, =5.) is a tolerance

space. The existing tolerance in overlooking small chamgegsual appearances is one
aspect of the human perception. However, it is not cleardfdahs a sharp crisp threshold
for this tolerance. In summary, the following three obsgores can be made about human

perception of the notion of similarity.

(&) Amir (b) Ali (©
Farshid

Figure 3.1: An example: the human mind tolerance in peroa@ind description of height

e Exact equality of descriptions is not necessary in ordeptwsier two objects similar.
There is always a tolerable level of error in comparing olgjdxy their description.
Incorporating the concept of tolerance is not only allowedtlit also needed to arrive
atapproximatesolutions of problems in real world. Tolerance space thearybe used

as a framework to incorporate this idea in a computationalehof similarity.

e Transition from “similar” to “dissimilar” in human mind isrgdual not abrupt. There
is no boundary between “similar” and “dissimilar” and it issj the matter of degree
of similarity. Therefore, there is an inherent fuzzinesshis concept. Fuzzy relation
is a solution for incorporating the concept of fuzzinessngpriecision in definition of

similarity.
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e Human judgment of similarity is normally expressed in natdanguage. Expres-
sions likevery similar, almost identicaland differentare easily used by humans to
express similarity. This judgment is also highly subjegtand uncertain in nature. A
fuzzy-valued similarity/distance measure, will make ispible to utilize human do-

main knowledge andpproximate reasoninggchniques in a computational algorithm.

The objective of this chapter is to introduce a more gengoal@ach based ofuzzy
tolerance relationghat can address all the above aspects in defining the sityiteatween
objects or sets of objects.

Fuzzy setswere introduced in 1965 in a seminal paper by L. A. Zadeh [%®ihe of
the main advantages of fuzzy sets is their ability in modglire uncertainty in assigning the
degree of membership of an element in a set. The questivhether or noan element be-
longs to a set, is replaced with the questiomoiv muctthe element belongs to the set. This
is possible through adopting a so calfedzy logidn which the truth value of a statement can
be any real number between 0 and 1 representing the degnegtofThe membership of an
elementz to a setA is then defined by a membership function(x) that representdegree
of membershipf the element in the set. This property of fuzzy sets was & lhugakthrough
in computational intelligence by proper handling the utaiaty in defining the boundary of

a set.

3.1 Background on Fuzzy Sets and Fuzzy Tolerance Rela-
tions

Definition 3.1. Fuzzy Sef76, 79]
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A fuzzy se#d defined on a universe of discourses characterized by a membership function,
wa U — [0, 1] that assigns a degree of membershig(y) to any elemeny € U. A fuzzy
set may be represented as the union of all the pairs of eleadidf and their respective

membership grades id. This is shown in either of the following forms

A=Ay, pay)) |y €U, paly) €[0,1]} (3.1)

A= / Ay (3.2)

where(y, ua(y)) (alternativelyp4(y)/y) is named asingleton and the fuzzy set is defined

as the union of its constituent singletons.

Example 3.1.LetU = [0 200] represent the set of possible values for height of a person
in centimeters. Theory of fuzzy sets allows us to define theepoof “Tall” by defining a
fuzzy setTall) that represents the set of tall people. This fuzzy set isngby the grade

of membership of each person to the fuzzy set of tall peoplg asmembership function
urar © U — [0,1]. An immediate implication of this, is the subjectivity oé ttoncept.
Degree of membership of any person to the fuzzy set of tafilpe@an then be obtained
by evaluating the membership functipn,;(x) at =, wherez is the height of the person.

Figure 3.2shows an example of a membership function defined based oaigtg.h

Since fuzzy set theory is a generalization of the classieatreory, it rapidly found its
way into many areas of mathematics. Fuzzy relations (atsoduoced in [76]), were one of
the first implications of fuzzy sets. A classical relatiGrdefined on a seX is a subset of
X x X where any of the elements of the Cartesian product has a @gpel of membership

(0 or 1) in the sei?. Similarly, afuzzy relation® defined on a crisp se¥ is a “fuzzy set”
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L L L L L Il
40 60 80 100 120 140 160 180 200
y = Height (cm)

Figure 3.2: An example: Tall membership function

defined as follows where the membership function represgsee of membership of each
pair of elements in the relation.€. the degree to which, the elements are related to each

other).

R={((z,y),pp(x,y)) | (v,y) € X x X, pp(z,y) €[0,1]} (3.3)

Furthermore, many of the conventional concepts in set yhean be “fuzzified”. A con-
ventional equivalence relation is a relation thatafexive symmetricandtransitive (refer
to Chapter2, Definition 2.1). Therefore, one may defines a fuzzy equivalence relation as

follows.

Definition 3.2. Fuzzy Equivalence Relatior]56, 77]
Let R be a fuzzy relation defined oti using the membership function,(z, y). Ris afuzzy

equivalence relation iff it has all the following properties
o Reflexivity:Ve € X pp(z,z) =1

o SymmetryVz,y € X pp(x,y) = pp(y, x)
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o TransitivityVz,y,z € X pp(w,2) > pp(e,y) x pp(y, 2)

wherex represents driangular norm(t-norm). A t-norm is a commutative, monotonic and
associative binary operation defined @n1] x [0, 1] into [0, 1]. A simple common example

of such function is the “minimum” function also named asd8l t-norm.

NOTE 1: A different definition for reflexivity is also given in [10]: écording to this defini-
tion, fuzzy binary relatior?z is reflexive iffvz,y € X, 0 < pplz, ) > pple,y).

NOTE 2: The idea of using equivalence relation to represent siityjas intuitive and
natural. In fact, when Zadeh first introduced fuzzy equineterelations in 1971 [77], he
named thensimilarity relations Equivalence relations demonstrate the relation between
indiscernible objects and it is plausible to consider twaisnernible objects as similar. Fuzzy
equivalence relations generalize the idea of similarionfrabsolute to partial. This can be
done by introducing degree of similarity ranging betweem® &.

NOTE 3: There are many philosophical debates and discussions othevhe similarity
relation should require these three properties ésgér1]). Transitivity in particular, is not
always believed to be necessary for a similarity relatiosh thiat was why tolerance relations
were introduced as an extension of indiscernibility relat{Chapte®). Fuzzification of the
concept of tolerance relation leads us to the concept ofyftaierance relation as defined

in [8, 10].

Definition 3.3. Fuzzy Tolerance Relatior[8, 10]

A fuzzy tolerance relation is a fuzzy relation which is reflexand symmetric.

Example 3.2.Let X = {1,0.2,—0.5,0.3} be a set of numbers and is a fuzzy relation

defined onX by the membership functiop,(z,y) =1 — |z —y| Vz,y € X.
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| | 1 ]0.2]|-05]|0.3]
| 1| 1/02]05]03]|
| 0.2 02| 1]0.7]0.9]
-05/05] 07| 1 |03
| 0.3]/0.3[/09|03]| 1 |

Figure 3.3: Tabular view of the fuzzy tolerance relatiornegivn Example3.2

R is a fuzzy tolerance relation because it is both reflexjve(¢, ) = 1) and symmetric
pp(e,y) =1—|zr—y| =1—|y—a| = ps(y, ). R can be represented using a table shown

in Fig. 3.3

3.2 Linguistic and Fuzzy-Valued Distances

The main motivation for using fuzzy set theory in definitiohsamilarity measures in this
thesis is to allow a more humanistic natural-language caitvlpdorm of distance measures
between pairs of images. Humans do not use numbers to exginataity between images.
Instead, human-judged similarities are expressed in tefmmatural language expressions
like identical very similar, partially similar, not similar, etc. Moreover, what someone
means byery similar (for example), is highly subjective and also depends on tmgext.

In this thesis, three different forms of distance/simtlameasures can be considered as ex-
plained below.! Let X,) € 7 be pairs of images wherg is the infinite set of possible

images (or finite set of images under consideration).

e Numerical-valued Distance Measure (NVDM): A distance rueag(X,)) € R*

1The terms FVDM and LVDM are introduced here for the first time.
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where the value of distance is represented with a numenchteal positive number.

This is a classical traditional distance that may be boumdeshbounded.

d:TxT—R* (3.4)

e Fuzzy-valued Distance Measure (FVDM): Distance is represtwith a fuzzy seb.
Here, no single numerical value can represent the distdnutesach numerical value
d has a degree of membership,(d) that represents degree of truth of the statement

“Distance betwee®r’ and) is d".

DT xT — F(RY) (3.5)

D(x,Y) = {(d.pp(d) | deR", up(d)€0,1]} (3.6)

F(R") represents the family of fuzzy sets defined on the positigemembers.

e Linguistic-valued Distance Measure (LVDM): LVDM is a disize that is dinguis-

tic variable (see Definition3.4 below). LVDM can take any value from a set of fi-

nite linguistic values usually represented with a fuzzy ¢efg. Di stance = * ‘ very
small’")
D:ITxT— {"Very Small’, 'Small’, ’Large’, ’'Very Large’ } (3.7)

Definition 3.4. Linguistic Variable

A linguistic variables a variable that can take values from natural language ®[#@8, 79].
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Table 3.1: Different types of distance measures

Distance Type | Variable | Possible Values
Numerical d [0, inf]
Fuzzy Valued D F([0,1inf])

Linguistic Valued D e.g.{ 'Very Small'ySmall’,/Large’,'Very Large’ }

For example in the expressiei ght =’ Tal | ', the left hand sideHei ght ) is a linguistic
variable. The right hand side is an expression that priortie invention of fuzzy sets, existed
only in a natural language. However, one can define a fuzzyatetefines the valueral |’
using a fuzzy membership functiand. Fig. 3.2). The ambiguity in defining the concept of
tall using the actual height of a person in centimeter is nedi¢hrough allowing the grade
of membership. Other possible values for the linguistidalde ' Hei ght’ can be’ very

tall’,” Not tall’ Or’ Short’.

3.3 New Method: Fuzzy Tolerance Relations and Similar-
ity
In this section, a descriptive-based fuzzy toleranceioglas introduced as a generalization

of the perceptual tolerance relation that was defined in @napt

Definition 3.5. Perceptual Fuzzy Tolerance Relation
Let O be a set of describable objects, be a set of probe functions aref] be the set of
feature vectors corresponding to element$)ofSuppose is a distance metric 0§ that

defines the distance between feature vecterg/ =|| - |2). Lete < ¢’ € R. A perceptual
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fuzzy tolerance relatiofs . : O x O — [0, 1] is defined here as follows.

—

Zpe(z,y) =1 it p(d5(z), d5(y)) < e (3.8)

- p(f/gixg,cbzs(y) if < p(n(r),o5(y) <&

= (0 Otherwise

=~ is a fuzzy tolerance relation since it is reflexier € O, =g (x,z) = 1) and sym-

metric(Vz,y € O Zp.(x,y) = Zp.(y,2)).

Figure3.4(b)displays how the transition between similarity and non#sirity is gradual
in a fuzzy tolerance relation. This transition in a clasisprceptual tolerance relation is

sharp and crisp.

similar similar
1 1
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©
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©

partialy similar

I
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Level of similarity
o o
J‘> (o))
Level of similarity
o
[o2]

o
N
o
N

€ not similar not similar

8!
2 25 3

o
o

O —

0.5 1 15 2 25 3 0.5 1. 15
distance : p(x,y) distance : p(x,y)

O

(a) Tolerance relation with a crisp transition  (b) A fuzzy tolerance relation with gradual transition

Figure 3.4: Crisp and fuzzy tolerance relations and the ifiansbetween similarity and
non-similarity

Definition 3.6. Fuzzy Tolerance Neighborhood
Let (O, é&e) be a fuzzy tolerance space. Fuzzy tolerance neighborho@h @lement

x € O (shown here withzi‘” (x)) is defined as a fuzzy subset(dthat provides the grade
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of membership of elements in the neighborhood.

o™ () = {(y, Ko
(@]

)(y)) | ye€O0} (3.9)

where the membership value of any elemeintthe fuzzy neighborhood of can be defined

as

~

oz (1) = Zpe(T,Y) (3.10)
no X

For the sake of simplicity, i, is known, one may use the notatiég to represent
the fuzzy tolerance neighborhood. The family offaltzy tolerance neighborhoodsd the
family of all fuzzy tolerance classas the tolerance space, are shown here \Mﬁ‘? and

H, %<, respectively.

3.3.1 Fuzzy Similarity/Distance Measure between Sets of Describable
Objects
Fuzzy tolerance covering distance measure: ftcDM

A fuzzy-tolerance-covering-Distance-Measufé«D M) is proposed here as a numerical val-
ued crisp distance measure obtained using a fuzzy toleramgbborhoodftcD M between

pairs of imagest’, ) is defined by the following equation.

frepmy) = — L 3 M@= X I- oYl g4y,

X+ Y] I o () ||

ze(XUY)
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wherex is a fuzzyt-normoperation. Note thak’, ) are pairs of images an¥l, Y represent
sets of describable objects (visual elements) correspgridiimagest’, ). | X|, |Y'| are the
cardinality of setsX andY’, respectively|| . || represents the cardinality of a fuzzy set and is

defined as the sum of the membership values of all the elenmeatset (as defined in [13]).

Fuzzy tolerance covering fuzzy distance measure: ftcFDM

A fuzzy-tolerance-covering-Fuzzy-Distance-Measyfe: f' D M) is defined here as a fuzzy
valued distance measure (FVDM). Therefore, this distaweduzzy set rather than a numer-
ical value. ftcF’ DM between pairs of image¥, ) is defined as follows. Lek, Y be sets
of describable objects correspondingto) andO = X U Y. Letp be a distance function
between feature vectors whef@?, p) is a metric space. Furthermore, ﬁagﬁ be a fuzzy
tolerance relation wher@, =5 ) is a fuzzy tolerance space. Lebe at — norm operation

such asninimum. First, element-to-set fuzzy-valued distances are defined

X Y

{)(I: Y1 )

Figure 3.5: Fuzzy distance is defined based on the set of atanyeclassical distances
between an elementand all the element of a set.

Definition 3.7. Element-to-set fuzzy-valued distance

An element to set fuzzy valued distance between an eleraedta set’” is a fuzzy set defined
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on the set of positive real numbéfs oo) shown with a membership functipn_.y (d) that

has the following membership function,
:uxHY(d) = éB,E(xv argl?flnﬂd o p(l’, y)’}) de [07 OO)? v e X. (312)
ye

In other words, for a particular element membership functiom,. .y (d) at each point
d is defined as the fuzzy tolerance level of those pairs of emég,s(x,y)) that have
this distancef(x,y) = d). If no pair of elements with that value of distance exiseérttthe
closest pair distance t (which is(z, argmin, .y {|d — p(z,y)|})) is considered. Figurg.6
shows a table of pairs of values and how they are used to define. Similarly, the distance

between the elemente X and setX can be defined as:

pa—x(d) = Zp.(z, argmin {|d — p(z,s)|}) d €[0,00),2 € X

seX
d HxHY(d)
p1 = p(x,y1) | oy (p1) = pzy (d)]a=p, ‘
similar
p2 = p(z,y2) Mx—>Y(P2):Mé&E(d>|d:p2 !

0.8f

0.6f

0.4r

Memberhsip value

pi = p(2,Y;) | v (ps) = By (d)]a=p; = oaf

not similar

)
£
0 0.5 p.1 15 2 2.5 3

/ Distance : d

pa = P(,Yq) | ta—v(pg) =ty (d)]a=p,

Figure 3.6: The membership functipn_., (d) at different values ofl = p,.
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Definition 3.8. Directional fuzzy distances
Directional fuzzy distance between images is defined bydakia average (over all the

elements of an image) thormbetween element-to-set fuzzy distances.

px v (d) = ﬁ S (e (d) 5 ey () (3.13)
z,€X
py—x(d) = % S (g (d) * 1y, x () (3.14)

wherep,, . x(d)* .,y (d) is a fuzzy set that represents a fuzzy distance betweand
Y with respect to the fuzzy tolerance neighborhood centered @he overall (directional)
distance is then calculated by taking the average of alifalrztances over all the elements
in X. Finally, fuzzy valued distancgétcF DM is defined as a fuzzy set with a membership

function that is obtained by taking thenormbetween directional fuzzy distances.

JteFDM(X,Y) = A{(d, pisicrpm(d)) | d €10,00),  pierpu(d) € [0, 1]} (3.15)

preerpm(d) = px—y (d) x py—x(d) (3.16)

Example 3.3. Let X', ) be the images shown in Fi§.7(a) where each image is repre-
sented by four describable objects (squar subimages) amdtiy probe function is the
average gray scale value of a describable object. H@g&ay = {0,0.3,0.7,0.5} and
o, = {0.2,0.8,0.6,0.4} are sets of scalar features. Lgt= |.| be the Manhattan dis-
tance (L) metric between feature vectors. I_QAeg,e be a fuzzy tolerance relation defined as
in Equation3.8wheres = 0.1 ande’ = 0.45. Distance metrip and tolerance relationé,&E

between describable objects are shown in Bg.(b)and Fig.3.7(c) Here,tDM = 0.14
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andtcDM = 0.08 while ftcF’DM is a fuzzy valued measure shown with the membership

function plotted in Fig3.7(d)

Fuzzy distance measure and ordering

It is natural to think of an ordering relation with respecthe concept of distance (/nearness)
measure between images. That means some images are cleaeh twther and some images
are further apart. When distance between images is definedeas mumber, its values will
be a subset of real numbers and hence they can be viewed ateaedset with conventional
ordering relation between real numbers (shown wittind>). Therefore, ifl(.) is a distance
measure between images, th&i’,)) < d(X, Z) iff X',) are closer to each other (more
similar) thanX’, Z. This ordering relation is required in an image retrievgblagation in
which images are needed to fertedbased on their distances to a query image.

In a fuzzy valued distance/nearness measure, howeveqgrttesing relation may not be
well defined. In the case @fizzy number&onvex, normalized fuzzy sets), there are existing
methods for ranking/ordering fuzzy numbers. In a more gdmoase, a fuzzy valued measure
is represented with a fuzzy set that may or may not be a fuzeybeu In this case, one can
define apartial ordering relationbetween fuzzy valued measures by defining an inclusion
relation (being a subset of another set) between fuzzy sete, may define a fuzzy set
inclusion in different ways€.g. see [13], pages 22-24). In the original paper on fuzzy sets

by L.A. Zadeh,, the inclusion (/containment) is defined dloves.

Definition 3.9. Let A and B be fuzzy sets defined with membership functjons) and
up(x) over the universe of discourgg thenA is a subset oB3 (or A is smaller or equal to

B)iff pa(z) < pp(x) VaeU.
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This definition creates partial ordering relationbecause it is possible to have a pair of
fuzzy sets where none of them is a subset of the other. Howiewviéiis thesis, a full ordering
relation is defined between fuzzy valued nearness measunesiriy the membership value

of the fuzzy setftcFFDM atd = 0. ftcF DM, is defined as follows.

ftCFDMO = 1 — ,uftCFDM(d)|d:0 (317)

Then we sayftcFDM(X,)Y) < ftcFDM (X, Z) (or equivalentlyX’; ) are closer to each
other than’, Z with respect to the fuzzy distance measyiteF' D M), if and only if
fteFDMy(X,Y) < fteFDMy(X, Z).

The motivation for definition offtcF DM, is quite intuitive becausétcF' D My(X,)) can
be viewed as the degree of truth of the statemebDistance betwee’’” and ) is zerd or
equivalently it is the degree of truth of the statemeht&nd ) are the same (completely

similar)”.

Example 3.4. In this example, 4 different pairs of images are compared aocheother

(Fig. 3.8). LetD = ftcF DM be the fuzzy valued distance measure. In each case, mem-
bership function of D) is plotted. The plots show thdtcF DM, is zero for the first given

pair of images (pairl, identical images). The other pairsrofges (2,3 and 4 in order),
have less similarity (more distance). These results aresistant with human judgment on
the similarity between these images. However, judgment abaling of pairs 2 and 3 is

more likely to depend on human opinion.
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(@) X,Y, two sets, 4 visual ele-

ments each
o || zo | wa| ws| aa| va| w2 us| val | ssll 2y | wo| ws | za| va | 2| us| val
| 1 || 0.0/ 0.3/ 0.7| 0.5 0.2 0.8 0.6| 0.4 |z |1 |13/ 0 |0 |59 0 |0 |1/9
| 22 || 0.3) 0.0 0.4 0.2 0.1 0.5/ 0.3) 0.1 | a0 || /3 1 | /9| 5/9] 7/9] O | 1/3) 7/9|
| 25 || 0.7 0.4 0.0 0.2] 0.5/ 0.1 0.1] 0.3] | 25| O | /9] 1 | 5/9] 0 | 7/9] 7/9] 1/3]
| z4 | 0.5/ 0.2] 0.2 0.0 0.3 0.3/ 0.1} 0.1] | xs || O | 5/9] 5/9 1 | 1/3] /3| 7/9| 7/9|
| 41| 0.2/ 0.1] 0.5/ 0.3] 0.0 0.6 0.4] 0.2 |y || 5/9] 7/90 0 | 1/3] 1 | O | 1/9] 5/9
| y» || 0.8 0.5 0.1] 0.3 0.6 0.0] 0.2 0.4] |y || O | O | 7/9 1/3[ 0 | 1 |5/9 1/9
| y5 || 0.6/ 0.3 0.1] 0.1] 0.4/ 0.2/ 0.0] 0.2| | ys || O | 23] 7/9] 7/9] 1/9] 5/9) 1 | 5/9|
| ya | 0.4/ 0.1 0.3/ 0.1] 0.2 0.4 0.2] 0.0| | ya | 19| 7/9] 1/3| 7/9| 5/9] 1/9] 5/9| 1 |
(b) Distance Metric (c) Fuzzy tolerance relation

1

015 016 017 018 019 1
d
(d) Membership function of the fuzzy valued distanfee F' D M

Figure 3.7: An example of two sets of elements (a), the destanetricp between elements
(b) and fuzzy tolerance relaticHz . on X U Y (c) in Example3.3
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Chapter 4

Feature Extraction and Visual

Description of Describable Objects

Describing a describable object is possible through a setatfe functions that create a fea-
ture vector describing the object. An important questionams that which visual descrip-
tions (features) are important and how to properly extrachdeatures (the choice of probe
functions). A proper answer to this question is highly satie and depends on the applica-
tion. This chapter deals with the methodologies and algarstfor extraction of some visual
features such as color, texture and edge information. Thee foeus of this thesis, however,
is not on feature extraction but rather on new methodologiescurately define similarity
between sets of describable objects (here, subimage®prasent visual elements) based on
the given descriptions. The only contribution in this cleaps the method of defining visual

features corresponding to edges in a subimage, as explaigssttion4.1.5
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Table 4.1: Probe functions in usB:= {¢1, ¢, ..., 18}

Probe function Feature Type Description
¢1(x) Color Average gray level of pixels
oo() Texture Entropy of the gray level values
o3(x), pa(x), P5(x) Color R, G and B color components
o6(), p7(x), Pg(x) Color  H, SandV color components
¢o() Shape Average intensities of edges
®10(7) Shape Average orientation of edges
o11(x), d15(x) Texture Contrast
12(), P16() Texture Correlation
d13(x), d17(x) Texture Energy (Uniformity)
d14(), P1s(x) Texture Homogeneity

The following sections explain all visual features usechis thesis (see Tabke 1).

4.1 List of Probe Functions

The following probe functions are defined for a small subientigat contains local informa-
tion about the image content. Each subimage is named a \@trakent and is considered

here as a describable object

4.1.1 Average gray level value

The average of gray level values for all the pixels in a givebirmage ¢), is calculated as
the first feature), (). In case of color images, the image is first converted intygpale and

then is used to calculatg .
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4.1.2 Information content (entropy)

Suppose there ar¥ different gray levels possible in an imag¥ & 256 for an 8 bit digital
image). LetM be the number of pixels in a subimage. For each subimage, lbe the
number of pixels that have th€” gray level. TheShannorentropy of each subimage is

defined as follows,

N
E ==Y prlog,(ps). (4.1)
k=1

wherep,, = 7% is the normalized number of pixels that have a gray leveleséhat belongs
to the k' level. This definition is based on a probabilistic view of iheage where the
gray level of the pixels is considered as a random variahlds the probability of a pixel
havingk!" gray level and? (Shanon entropy) is a measure of the uncertainty assoaistied
the random variable. A higher value of entropy indicateserinformation content in the

subimageg,(x) is used here to represent the entropy of a subimage

4.1.3 Color features

o3(x), p4(x), ¢5(x) are the averagRed Greenand Blue color components of the pixels,
respectivelyps(x), o7(x), ps(x) are the averagdue, Saturationandintensitycolor compo-
nents of the pixels. RGB color components exist in digitalgesmand HSI components can

be obtained using the proper transformations (see [19]).

4.1.4 Texture and statistical features

Texture features in this thesis are defined based on a siatiapproach using the gray-

level co-occurrence matrix (GLCM) ( [23], see also [22, 4453LCM (also named gray-
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tone spatial-dependence matrix) can be used to define Xefatff textural measures [23].
Elements of GLCM consist of the relative frequencies with ahhiwo neighboring pixels
(separated by a given offsétr and Ay in pixels) with gray level valuesandj, occur in the

image [39].

OAx,Ay(Za]) =

=0, otherwise

For notational convenience and with the understandingthieadffset( Az, Ay) is known, let
p;.; denote(i, j)th element of the normalized GLCM matriy,{ = Ca, ay(4,7)/(m x n)).

The following texture features are used in this thesis base@LCM.

e ¢11(x) (Contrast): Intensity contrast between a pixel and its neagh (element differ-

ence moment of order 2) [19], [26]
YOS =i (4.2)
i

e ¢15(z) (Correlation): Correlation between a pixel and its neighlimidefined ( [64])

as

Z Z (U)pm‘ - Mx#y_ (4.3)
- - OOy
i J
where

Mo =322 0 Dig s My = 22027 Pij
J v ]

i

0r =200 = pa)® pi oy =007 — 1y)® - Diy
1] ]

78



e ¢13(x) (Energy/Uniformity) andp,4(x) (Homogeneity) are defined as ([19, 26])

Energy= Zp?j, (4.4)

Homogeneity= Z Z - +]|92”_ ik (4.5)

4.1.5 Edge features

Edges contain important information about the shape ofatjm an image. There are
many methods for detecting the intensity and orientatioa pbtential edge at each pixel of
an image (for example, Canny method [9] or compass edge detg&9, 60]). Here, the

wavelet-based edge detection method by Mallat [37] is uFad method can be used with
different wavelet functions at different scales to exttamth the intensity and orientations of
edges at different levels of details. In each pixel locatiory), edge intensity and orientation

at a given scale2() are defined respectively as follows,

Mas(2,y) = \/| Wh fog [2 4 | WE fuy 2 (4.6)
Wzljfa:,y

Ay (z,y) = arctan :
WQZj fw,y

4.7)

whereW), /.., andW?, f, , are 2-D discrete wavelet transforms/of, at each scalg’. Edge
informations were obtained here using MATLAB wavelet tanib

In this thesis, the highest value of edge intensity and itseesponding orientation value (in
radians) in each subimageare chosen as visual features and shown wijtlr) andoyo(x),

respectively. Fig4.2 for example, shows an image, a sample subimage in the imafje an
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Figure 4.1: Sample images (a), edges after proper thrasigold), histogram of dominant
edge intensity and orientation in subimages (c,d)

8

(a) Image (b) A subimage (c) Edge intensity

Figure 4.2: An example of an image (a), a sample visual eléifigrand the intensity of
edges at different pixels in a visual element (c)

the edge intensity of pixels in the subimage. Brighter graglerepresent higher intensity.
¢9(z) is then defined as the maximum intensity in this subimagezagd) is defined as the

edge orientation of the pixel that has the highest edge sitien
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Chapter 5

Experimental Results

In this chapter, performance of the proposed image sirtyldistance measures, is evaluated
using experiments in content-based image retrieval. Tmeamujudgment of similarity is
very subjective and depends on the problem domain. Thereéualuation of similarity
measures is not a well defined task because there is no gratthdd compare the result
with. An exception to this is the trivial requirement for slamity, taking the highest value
when an image is compared to itself.

In order to have a consistent method of evaluating the measwe need aontrolled
datasetwhere images have already been judged by a human and castsjanio groups
of similar images. The similarity measure between imagdhkiwia group is expected to
be higher compared to images between different groups. Wipamtgular given image is
compared with a set to find those that are similar, we use thedaery imagedor the given

image of interest and the tertast imageo refer to an image in the set.
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5.1 Content-Based Image Retrieval (CBIR)

CBIR is an important application of image similarity measurbsa traditionaltext-based
image retrieval system, search and retrieval are basedkaratéenformation attached to an
image (such as keywords, labels or captions). However, in &#8Bstem the search is based
on the image content €. information about the pixel values in images) to find simitaages

in a dataset.

In a query by exampleCBIR, the query is an example image and the objective is to
search in a set of test images and find those that are similae tgiven query. In this thesis,
we are dealing with a query by example CBIR problem. A measuusasl to calculate the
similarity between the query image and each test image inasd. The images are then
sorted based on their similarity to the query image.

Figure5.1shows a schematic of a CBIR system where a query image is coduead
test images in a dataset. The images are then sorted basbkdiosimilarity to the given
qguery image. Due to the subjective nature of the conceptroiiagity, it is very hard to
evaluate a CBIR system. One common approach to evaluation of R §Bltem is using a
controlled test data set of images containing differensstg(target sets). Images in each
subset are manually chosen to represent the same (or Jiobjact or concept. The subset
of test images that are similar to a query image is named Isetteetarget setof that query
image. The retrieval result for each query image is thenuatatl by counting the number
of images retrieved from the target seé(the images that belong to the same subset as the

guery image). The performance measyexisionandrecall are commonly used in CBIR

10ther types of query techniques are possible in general GRgsRems. Examples ageery by visual sketch
or query by providing semantics.
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are defined as follows [43].

Retrieved Images
Query Image

Figure 5.1: Schematic of a content-based image retrievateva query image is compared
to a set of test images.

Let ¢ represent a query imagd/q) is the set of retrieved images based on the relevance
to the query and’(q) is the set of target images (all relevant images in the datafia the
given query imagey). PrecisionP(q) and recallR(q) for this query image are defined in

Equations %.1) and 6.2), respectively.

_ |A(g)NT(q)|
_ |A(g)NT(q)|
Ba)="rr 5.2
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In other words, precisiof’(q) in (Equation5.1) is the fraction of the retrieved images(y))
that are also in the set of target images (correctly retdgaed recallR?(q) in (Equation5.2)

is defined as the fraction of the target imag&3¢)) which have been recalled and hence
exist in A(q). Higher values of precision at each particular value of liendicates more
accurate retrieval. There are three possible ways of evafuhne performance. They include
precision versus the number of images retrieved, recabssathe number of images retrieved
and precision versus recall.

When we search for images in a dataset, it is important to khewdange of variability
of images. This is something that is commonly overlookedhadtudy of image similarity
measures. An exception, is a survey paper by Smeukteral in [63] where the concept
of variability is introduced by defining two types of imagendains. Anarrow-domainset
of images has a limited and predictable variability in cohi@nd appearance andeoad-
domainset of images has unlimited and unpredictable variabikyr example, if a set of
images consists of images of automobiles, it is an exam@aafrow-domain An example
of abroad-domaircan be an online image archive such as Picasa or Flickr. $rihbsis, this
concept has been used to define the type of CBIR problem basée oartge of variability

for target and test images. Herein, CBIR problems are dividexd3 categories:

e narrow-target, narrow-domaisearch problem
There is little variability in both théarget imagesndtest imagesFor example, when
the test dataset contains images of the motorcycles asrs&ém b.2(a)and the target
images are a subset of test images that have the same shapwdeldof the query
image. Another example is searching in a dataset (test ispagduman faces where

the query image is a particular face and the target imagefaees that resemble it.
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e narrow-target, broad-domaisearch problem
There is little variability in target images but the set dfttanages has a high vari-
ability. An example of such a search problem is searchingni@ges of motorcycles
(target images) in a dataset that contains different imagegomly selected from a

picture archive or the Internet (see Fg2(b)).

e broad-target, broad-domaisearch problem
In this type of search problem bothrget imagesandtest imagesave a relatively
high variability rate. However, variability of the targehages are expected to be less
than the test images. An example of such a search problerok@pfor images of

“buildings” in an image archive of various images.

(Data Set

Query image Test image Query image Test image

(&) A narrow-domain dataset of images (b) A broad-domain dataset of images

Figure 5.2: Human judgment of similarity depends on thealality of the test data set.
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Semantic gap

It is important to note that in a CBIR system, images are conggareach other solely based
on their content (visual descriptors). However, the asdmn between images is not always
based on appearance. In other wordscthecepbehind an image may not be directly related
to the visiblecontentof the image. This existing gap between visual content aedéimantic
interpretation of the image is namsdmantic gag63]. It is important to acknowledge this
limitation in a content-based image retrieval system. tieoto have @oncept-basetnage
retrieval system, further techniques sucthasman assisted content-annotationrelevance
feedback58, 82] may be useful.

In Section®.3and5.4, the performance of the proposed measures of image sityidad
evaluated in two different types of CBIR problems. Each expent consists of a number
of trials. In each trial, one of the images in the dataset ismered a query image and is
compared to the rest of images in the dataset. Experimeméespeeformed using MATLAB.
An executable program (POINCa&Rhas also been developed with a GUI for simple CBIR

experiments (see Append.
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5.2 Target Discrimination Matrix (TDM): A new measure
for evaluation of image retrieval and classification

Precision and recall have been commonly used in CBIR as sthnuzaisures of evaluating
data retrieval. In this approach, a retrieved image eitledorigs to the set of target images
(and thus relevant to the query) or is considered irrelevahis explains why the retrieval
accuracy may change significantly if one extends the setrgétamages to a larger subset
of test images. In other words, precision and recall onlyesgnt how the “target” images
are being retrieved and hence a measure of separabilityebattarget sets and the rest of
the data set. However, if the image dataset consists ofifteclasses of similar images, it
is important to know which target sets have greater sintyléoi each other.

In this section a new method is proposed to measure how aasityimeasure may dis-
criminate between different sets of target images in an extegabase.

LetZ = {I, ..., Iy} be a set of testimages in a database.dyeCs, ..., C,, bem differ-
ent subsets of such that’; N C; = () Vi, j where eaclf; consists of visually similarimages
that represent the same object or concept. The similarityixng = s;; = s(I;, 1;) can be
defined as the similarity between imadgeand!; calculated using a similarity measure such
astcN M. A distance matrix can also be defined accordingly.

A reliable similarity measure is expected to have a high edtr pairs of images that
belong to the same set (within a target set) and low valuedos pf images selected from
two different sets (between target sets). In order to gfatitis in a statistically meaningful
manner, it is proposed here to use a statistical test to cargdhthe numerical values of

distances that belong to the same or different target se¢sTdrget Discrimination Matrix
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(TDM) is introduced here as follows:

Let C;, C; C T be sets of target images. Each target set may representsatiasages
that have been previously manually classified and can bdadamesisimilar to each other.
Let

Sij={sli,1;) |, €C;,I; € C;}

be the set of all similarity measures calculated betweeg@san a target set and
Si=A{sIp, 1y) |1, 1q € Ci}

is calculated between images from different target sete Weélch'’s t-tesbetween the two

sets of samples (distances) starts by calculating ga@ameter as follows [75].

55,
72(5) | 02(5.,)
\/z [Si] + \Sz',j\J )

WhereS; is the mean (average) of all the elementsSjrand |S;| represents the number of

t= t(Si, Sm’) =

(5.3)

elements (similarity measures) i#. The value oft represents the statistical significance of
the difference between samplesinand samples iis; ;.

the Target Discrimination Matrix (TDM) for this image datede is then defined here as

TDM(I) = [ti,j]mxm ’ti,j = t(SZ, Si,j)a Z,j € {1, 2, ,m} (54)

where each element of the matrix () is the output of thé-testbetween the samples ) and
Si.;. Thereforet; ; represents the significance level of the difference betweesimilarity

of pairs of images selected from the same ta€getnd from two separate targets,C;. The
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values of the elements of this matrix are 0 (no significarfedéince) along the diagonal of

the matrix and the value of all other elements are expectbd s high as possible.

Example 5.1. The role of the proposed TDM matrix in demonstrating theedffice between
classes of similar images is shown here through an experim&rget of 300 images are
considered that consists of 3 different groups (subsBts)s and75. The first subseti()
consists of 100 randomly selected images from “The Berk8&gmentation Dataset and
Benchmark” images [40] (available online). The second dmditsubsets of imaged¥ and
T3) consist of 100 images randomly selected from “motorbiked 8leaves” image datasets,
respectively. These images are available online at the Ctatipnal Vision Laboratory at
Caltech?. Samples of images from subs&ts 7, and 73 are shown in Fig5.3. Images in
subsetl’; are pictures of various objects or scenes with a high degre@ébility. Subsets
T, andTj; are all images of motorbikes and leaves respectively andénkave less variability
compared tdl;. All images are 400 pixels wide and the height of images vineéseen 220
to 330 pixels. Square subimages of slgex 40 pixels with 50% overlap have been used.

Color, texture and edge feautures all have been included Tabie 4.1). The experiment

= m m W§+ vidd
o b amk &l O o

(b) T3 (c) T3

Figure 5.3: An example of a dataset of images containingttitferent target sets; to 75

consists of comparing each image to the rest of the imagebeme(*)°) pairs of images are

2http://www.vision.caltech.edu/archive.html
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compared to each other and the value of th& M similarity measure has been calculated
for each pair according to Equatio.13in Section2.2.1 The similarity matrix is shown in
Fig. 5.4(a) There are 3 sets of target images (3gtl> and73) and theWelch’s t-testhas
been performed between samples of similarity measuresspmneling to images from the

same or different target sets. Figused(b)is a graphical representation of tHED M matrix

Ty Ty T3
L Jos T1
To
. I3
0

(a) Similarity Matrix (b) TDM matrix

Figure 5.4: A graphical representation of a sample sintylaniatrix and?’ D M matrix for its
3 target sets

values. Darker colors represent lower values and brightdoiorepresent higher values.
The figure clearly shows that the difference between the targdt, (corresponding to the

second row in the TDM matrix) and the other two target sets ieramnificant.
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5.3 Experiment 1: SIMPLIcity Broad-Domain, Broad-Target
Dataset

The SIMPLIcity 1000 test images dataset [1, 74] (availabledownload from [1]) is used
here in a broad-domain, broad-target CBIR experiment. Thascisntrolled test dataset and
images are numbered between 0 to 999 and divided into 10 ptually different categories
(named here as target sets CO to C9). Figubalisplays the first 8 images in each category.
Images are 384256 pixels (dimensions). Any image from the dataset can leeteel as a
guery image and compared to all images in the dataset.

The experiment consists of calculating the similarity nueas between each query image
and all 1000 test images, resulting in 1,000,000 trials aigencomparison. Subsequently,
the images will be sorted based on their similarity to thergumage. The experiment is
performed using each one of the proposed similarity measangrevious chapters. The list
of probe functions (visual features) in use is shown in Tdhlend is explained in Chaptdr
The size of subimages ¥ x 20 pixels. The value of has been selected automatically for
each query image using the method discussed in Se2iib@ All feature values have been
normalized and scaled between 0 and 1. In addition, for ehtiredlO categories a feature
selection algorithm is performed as explained in Seciidhland the results are calculated
with an optimal subset of features.

Precision and recall have been calculated for each imadeeiatabase (chosen as a
guery) and the values have been averaged among all quehese different methods were
used in this experiment to evaluate accuracy of the imagevat. In the first evaluation

method, P,y (defined as the precision of the twenty most similar imagess ealculated
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Figure 5.5: Sample images from 10 different categoriegétasets) in the SIMPLIcity image
dataset
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for each query image and the averafgg for all query images is used as a measure of
accuracy. Tablé.1 shows the averag€,, precision for all similarity measures (without
feature selection) compared with the results publishe® 29] and [33]. The tolerance
based methode N M, ftcN M andftcF' N M are shown to have better performances. Also,
a feature selection method is used in each category and deesion results forftcF' N M

are compared to those published in [33] (see Taldg

In a second method of retrieval evaluation, both precisiwh rcall were calculated at
each number of thé most similar images and the values of precision were plagainst
recall. This method is more informative than using the ayerd, measure because it eval-
uates the retrieval performance for all relevant imagesmmgust the first 20.

Figure5.6 shows an example query image (top left) and the 49 most similages to
the given query (sorted) based @V M similarity measure. Precision, recall and precision
versus recall in this example have been plotted in %i§(a)and5.6(b) respectively.

However, in order to properly evaluate these methods, thelteeare then averaged
among all query images in order to demonstrate overall pedoce regardless of the cho-
sen query image. Average precision-recall plots for eatégoay have been calculated and
plotted in Fig.5.7to Fig.5.11 Vertical bars on each plot represent the standard demiatio
of variation of precision at each recall rate. Note that thie@s are not normally distributed

and a few outliers contribute to the high values of standaxdeadion.

5.3.1 Feature Selection

Eighteen different probe functions have been defined hexettact visual features of subim-

ages (visual elements) in an image. Probe functions anddbeesponding visual features
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Figure 5.6: An example query image (top left corner), thetramsilar images and Precision-
Recall plots
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Figure 5.7: Average Precision-Recall plots for images igagasets CO and C1.
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Figure 5.9: Average Precision-Recall plots for images igagasets C4 and C5.
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Figure 5.10: Average Precision-Recall plots for imagesrgebsets C6 and C7.
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Figure 5.11: Average Precision-Recall plots for imagesrgeabsets C8 and C9.
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Figure 5.12: A visual representation of the TDM for 10 targets in Simplicity data set
(calculated for each similarity measure)
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Table 5.1: Average precisiofy,, among all query images in each category for the seven
proposed methods (feature selection not included)

CBIR results in \ CBIR results in this paper (without feature selection)

[27] [29] [33] | KdNM tNM  gMNM HANM tcNM  fteNM ftcFN My

Set
co 9 42.40 45.25 68.3059.35 66.60 69.70 36.95 73.70 71.70 76.05

[—
Cl1 * | 4455 39.75 54.0050.05 36.85 34.40 51.70 41.20 50.10 55.45
C2 W& | 41.05 37.35 56.1547.55 47.50 47.95 36.30 69.70 59.10 65.80
C3 E® |85.15 74.10 88.8075.90 57.50 89.40 38.00 62.50 81.40 74.05
C4 = | 58.65 91.45 99.2599.25 99.75 99.15 99.30 99.95 100.00 100.00
C5 s | 4255 30.40 65.8056.80 50.25 49.15 50.50 60.60 60.65 66.10
C6 - 89.75 85.15 89.1092.55 89.55 83.60 80.15 95.00 93.20 95.30
C7 ¥ |58.90 56.80 80.2581.10 83.40 79.75 67.95 89.20 87.35 94.60
Cc8 26.80 29.25 52.1546.10 34.25 41.60 44.35 43.15 50.90 54.50
C9 & | 4265 36.95 73.2557.00 70.55 76.80 34.50 78.75 72.75 75.05

Avg. | 53.24 52.64 72.70, 66.57 63.62 67.15 53.97 71.38 72.725.69

are listed in Tabl&.1 However, it is important to note that using all availablattees does
not necessarily imply better retrieval results. For anyegixpent, a subsdé C F of probe
functions can be selected and used as a sub-optimal settofdsaln this thesis, a Sequen-
tial Backward Selection (SBS) algorithm (see: [2,53, 68])dsdito find a set of sub-optimal
probe functions3 selected from all available probe functions (featuresfinThis method
starts with the set of all features and leaves one out at eaeh [The choice of feature to be
removed at each level depends on the performance functmstdefined for each specific
problem. It is important to note that in the present expenitsiethe number of possible fea-
tures (eighteen) is not very high and the purpose of featlezton is not feature reduction.
Features are removed at each level only if their removakmses the performance measure.

The algorithm is given in Algorithr2. The algorithm is performed on a user selected subset
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Algorithm 2 : Feature Selection Method
Input : 1. The full set of potential probe functiod,
2. A real valued evaluation performance functig(i3).

Output: Selected suboptimal set of probe functighs. F.

initialization : & = 0;

Start with the full seB;, = F;

AJ =0

while AJ > 0edo

¢r = arg max (J(Br —{#,})); Find the worst probe function and leave it out;

JEB;,

Biy1 = By — {¢1};
AJ = J(By —{¢}}) — J(By);
k=Fk+1,;

end

B = Bjyi1;

of images as training data. In each category, 20 images (oL®@@ were handpicked as
representatives of images for that category. Half of thoszgies were used for the feature
selection algorithm. At each level, the precision of therttyanost similar imagesit,) was
used as the performance measufd?) (refer to Algorithm2) and the average was taken
among all selected 10 query images. Tahl@shows the selected features (probe functions)
for each category. These features are selected by the SB&laig@Algorithm 2) based on
the selected subset of training images. The performange-6fN M, in each category using

only the selected features is shown in Tahl@and compared with results published in [33].
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Table 5.2: Selected features in each category
¢1‘ ¢2‘ ¢>3‘ ¢4‘ ¢>5‘ ‘156‘ ¢7‘ ¢8‘ ¢9‘ ¢>14 ¢11‘ ¢14 ¢14 ¢>14 ¢>14 ¢14 ¢1% P18

co| B || v|v|v|v]-|v|v|vlv]v|v|vlv]-]-]-]-
ori I S I O I 2 V2 I [ V2 2 O I IOV V2 IV R v
c2 @ | v|v|v|iv|vivivivivivi-lvlviv-]-|-]-
c3| B |v|v|-|v|-|v|-|v|v|v|vivlviv|-]-|-]-
cal=|-|-|-|v|v|v|viv|viv|vivliviv|i-]-1|-]-
cs || v|v|-|v|-|v|-|v|v|-|v|v|-|-|-]-|-]-
ce B |v|v|v|iviviviviviviviviviviviviviv]v
c7 W@ |- |- |v|v|-|v|v|-|-|-|-|v|-|-|v|-|-|v
ce |HlH |- |v|v|v|viv|ivivivivivivivivivivliv]v
col | v|v|v|ivivivivivivivivivivivivivliv]v

Table 5.3: Comparison of average precisify, between the best proposed methods
teNM, ftcF N M, and results published in [33]

Set Sample Results reported teNM ftcF N M, ftcF N My Accuracy
in [33] selected features selected features improvement
Co 68.30 75.48 76.05 +7.75
[—
C1 = 54.00 51.38 63.8 +9.80
c2 W 56.15 70.95 71.05 +14.90
c3 = 88.80 85.76 80.1 -8.70
C4 = 99.25 100 100 +0.75
C5 s 65.80 57.48 67.45 +1.65
Ce & 89.10 93.48 95.55 +6.45
C7 L. 80.25 90.0 95.1 +14.85
c8 52.15 50.62 55.50 +3.35
C9 L 73.25 80.67 76.8 +3.55
Avg. \ 72.70 \ 75.58 \ 78.14 +5.44%
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5.4 Experiment 2: TasviR-3x70: A Broad-Domain-Narrow-
Target Controlled Set of Test Images

In this experiment a controlled test dataset of images has beeated to test similarity mea-
sures in abroad-domain, narrow-targe€BIR problem. An HP PhotoSmart R725 point-
and-shoot camera was used to take the phatt®ed80 image size). The photos were later
downsampled to 240 by 180 pixels and a subimage si28.at0 pixels was used to define
visual elements. In order to create this database, photos taken of different subjects
ranging from objects with a clear background to natural ese indoor spaces. Therefore,
the variability of the database is very high. However, foctleaubject 3 different pictures
were taken, either from a different point of view or by takmglifferent picture in the same
area. The images can be divided into 70 different categoeish representing a different
subject where each category consists of 3 images that ayesweitar with little variability.
The target set for each query image is the set of 3 imagesasitoithe query. All proposed
similarity measures in the previous chapters have been tossort images based on their
similarity to the query image. Figuie14shows the average recall rate (out of 3) plotted for
each target set. Figute15shows the five most similar images in the dataset for the first 2
images as an example calculated usjag N M, t N M andtcN M. the TDM matrix (70x

70) was also calculated. As an example, Fid.6shows the values of" row of the TDM
matrix (¢ in the t-testcalculated between target set 4 and all the other 70 tar¢@t SEhe
plots clearly show that target set 12 and 37 are less significdifferent from target set 4.
Sample images from these target sets are shown irbFi§and their similarity compared to

other target sets is evident.
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-3x70)

Figure 5.13: A collection of 210 images with 70 target sets{Ir
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Figure 5.15: Examples of the three most similar images toeaygimage obtained using
gM N M, tN M andtcN M. Each row corresponds to one query image.
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Figure 5.16: An example of thetestvalues versus target set number representing the signif-
icance of difference between the 4th target set and therést @0 target sets in Experiment
2
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5.5 Discussion of the Experimental Results

The importance and significance of the experimental reatdtsliscussed in this section. The
benefits of the proposed methods basedodgrance relationandfuzzy tolerance relations
(namelytNM, teNM, fteNM and ftcF'N M) will be discussed here in comparison to
the classical methods that are either introduced and ingatéed here (namelyWdN M,
HdN M andgM N M) or in other literature (see [27,29,33]). Some of the higjis of these

experiments are as follow.

1. In all the experiments that have been implemented inhleisis, a near set approach has
been adopted. This means thatimages are divided into \e&raknts (subimages) and
similarity between sets of elements has been introducedaplémented. The global
spatial information of images will not be used in this apgtoaHowever, this can be

beneficial for searching in a broad domain target set of image

2. Each subimage has been described using only 18 visuairésatorresponding to
color, texture and edge information. In all the experimeeicept in Sectiorb.3.],
(where a simple feature selection has been implementet)réeaelection was not

used.

3. The adaptive selection of epsilon valagrfakes the proposed methods parametric but

automatic and adaptive. The value=a automatically selected for each query image.

4. Experimental CBIR results in Experiment 1 on a stant@odd-domain, broad-target
dataset demonstrates a significant improvement in accofdlog image retrieval using

tolerance based near set methods compared to classicadeaihdistance between
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sets.
. teN M outperformg N M.

. Comparison of the proposed methods with other existindnoakst has been shown in
Table5.1and5.3. The performance measure that is used heregjgthe precision of
the twenty most similar images). This measure is used to haside by side com-
parison between the new results and the ones published j29233]. According to
this table, the new results are significantly more accutaa the two older methods
published in [27,29]. On average, the new results are algerttban the most recent

method published in [33].

. It is important to note that the proposed methods in thesigh(both tolerance based
methods and classical distance based methods) are colyplesupervised and re-
quire no prior information about the images in the datasetvévVer, as is stated in [33],
their method relies on clustering the pixels of all the inmyethe database using a K-

means clustering algorithm to be used for calculation obicbistograms.

. Using a simple feature selection method, improved theltseas shown in Tablg.3.
However, feature selection requires training the systeth witraining set of images
from each category and thus it will depend on the trainingldigh variability of target
images in this dataset makes it less robust to the choiceasfgnage. The advantage
of the proposed methods in this thesis is their competiterdgpmance even without

any feature selection in a completely unsupervised setting

. The proposed classical distance based measures are roorisipg when the target

set has low variability€.gtarget sets C4 (dinosaurs) C6 (flowers) C7 (horses) and C3
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10.

11.

12.

13.

(buses) in Experiment 1). In one exampjé/ N M outperforms all the other methods

for target set C3 (buses).

The performance of fuzzy tolerance methads (ftcF N My, ftcN M) show an im-
provement ovetcN M. However, it is important to note that the reason and the impo
tance of introducing fuzzy tolerance relations is to inseeebustness when choosing
the epsilon value. The epsilon value is in fact a threshotd/éen similarity and dis-
similarity of visual elements based on their distance inueaspace. Defining a fuzzy
threshold (gradual transition from similar to non-simjlarakes the methods more ro-
bust to changes in parameters. The automatic method otisejebis threshold (for
both tolerance and fuzzy tolerance) makes it adaptive andehalso more robust to

changes in the query image.

Plots of averagprecision versus recalh Fig. 5.7 to Fig.5.11show the full range of
precision averaged for all the queries along with the stahdaviation of changes in
precision. When the target set has high variability, (brdadiain, broad-target CBIR)
precision rate drastically drops at high rates of recallisTan be attributed to very

high semantic gafpetween some of the target images in each category.

Category C4 (dinosaurs) is a very narrow-domain targearsgéthence can be easily
retrieved in broad-domain sets of images. The precisioatr@lots show that the
average precision for all the methods is very close to 10086. Standard deviation of

values is much lower foftcN M and ftcF' N M,.

Precision and recall plots demonstrate the performaiite methods in retrieving the

target images corresponding to a query image. As long agattanage is ranked in
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14.

similarity above a non-target test image, it is not impari&athe difference between
target and non-target is significant. The new propdséd\/ matrix provides more
information about the separability of target sets. Thisosalby calculating the statis-
tical significance of the difference between similarityues of different subsets of a
test dataset. Figu®12gives more insight about this, by visualizing TDM using gray
color coding. It can be seen that target sets C1 and C8 are thechmilenging target
sets to be retrieved. For example, if the query image is tldoom category C1, the

most similar results are more likely from not only targessef but also C2 or C8.

The performance of the new methods has also been venifi@dimwad-domain, narrow-
target CBIR experiment (Experiment 2). In this experimengr¢his almost zero se-
mantic gap between images of the same target set. Howewsg #ne occasional

strong visual similarities between images that are semahtidifferent.
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Chapter 6

Conclusions and Future Work

“The whole is greater than sum of its parts”.

Different similarity measures were introduced in this egst to quantify the level of
similarity between two images based on their content usisgaVy descriptions. This is an
example of a task that is very challenging for computers atdaybasic task for humans.
Therefore, the main motivation for this research was to@epethodologies which are in-
spired by the visual perception of the human mind. The exadh@anism and the neurosci-

entific basis of the perception especially perception oflanity is not well known. However,
we may be able to use some of the intuitive models that can pethgsized about the way
information is perceived in our brain. The following listastis how different mathematical

methods were used here inspired by conjectures about tharhparception.

e Visual perception has limited resolution. Objects that al@se enough in terms of
their visual features, are seen as almost simild@his hypothesis (that can be easily

verified) is the basis for using tolerance space theory inetiogl similarity between
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images at an elementary level.

Similarity is not a black and white concept. Human perceptibsimilarity is approx-
imate with no sharp threshald his hypothesis was the basis for using fuzzy tolerance

relations to improve upon tolerance relations.

Human perception in viewing an image is formed by groupinglairparts of the im-
age(s) together This conjecture (which is based on the second principle edté&t
theory of visual perception) [30] as well as the work of Ewdo@ska [45,46] is the
motivation behind using tolerance classes and toleranighinerhoods agroupsof
similar elements. Therefore, we can group similar percdmlements based on their
visual descriptions allowing for imprecision and smalladepancies between descrip-

tions.

Tolerance classes and tolerance neighborhoods can botisée to group elements of
an image togetherlin this research, tolerance neighborhoods were used. ddwa
panying hypothesis is when looking at an image, the elentbatsare visually similar
to the point of gaze will be grouped together based on theiilaiity to the point of
focus. Therefore, the similarity between a given elemedtthe centre is important.
Also, using tolerance neighborhoods has significant coatjoual advantages over

tolerance classes.

The purpose of using fuzzy set theory is twofold. The firssogais to eliminate the
need for a sharp boundary when forming setsiafilar elements, allowing a grad-
ual transition between the conceptssahilar anddissimilar. The second reason is to

emulate how humans describe similarity between visualwtinAn automatic com-
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puter algorithm may generate a numerical valued measutiendasty represented by

a real number that reflects degree of similarity. Humans gvew can easily recognize
similarity and describe it in the form of natural languagateients. The fuzzy val-
ued nearness/distance measure proposed in this researt@nded to provide a more

human interpretation through generating a fuzzy set idstéa numerical value.

The above methodologies were employed to introduce newasitgimeasures between
images that are considered as sets of visual elements. iffilarly measures were also
tested in CBIR experiments to retrieve images based on sityil&ince the image similarity
problem is subjective by nature, there is no direct way ofuating a nearness measure.
However, a content-based image retrieval task using aatedrtest dataset of images was
used to evaluate the performance of the similarity measusese, the final results of the
experiments on broad-domain sets of images have an aveeafggrpance that is higher
than the latest published results even without featurecBefe This is the main points of
strength relating to CBIR in this thesis. The experiments vperdormed in a completely
unsupervised system using some arbitrary chosen visuarésasuch as color and texture.
The methods presented in this thesis are universal. Forafispenage retrieval problem,
feature selection will lead to better results.

Also it is important to note that in all the experiments irstthesis, images are compared
only based on their content. There are significarhantic gapbetween some of the images

in Experiment 1 which will contribute to lower precisioneatat very high recall values.
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6.1 Future Work

Future avenues of this research:

1. To improve upon and expand a region-based distancedsitpimeasure between a
region of interest in one image and another. The method head been introduced
and published by the author [55] introducing a rough seetdmundary (upper and
lower approximations) for the region of interest in the talece space. This method

has not been included in this document because furtheriexpatal work is required.

2. To use proposed similarity measures for iflnage classificatioproblem. Having a
distance/similarity measure between each pair of imagables us to implement a
completely unsupervised two-class classification proliteahdivides pairs of images
into similar or dissimilarclasses. One such experiment has already been presented by

the author to be published in [41].

3. Development of a new form dfizzy metric spacesith fuzzy membership functions
that are defined aizzy numberand studying the topology that may be induced by

this new kind of fuzzy metric space.

4. Exploring partial or full ordering relations betweenZyzsets (or fuzzy numbers) used

in ranking images based on fuzzy valued distances.

5. Using the proposed fuzzy valued similarity measure inl&howledge-based system

that involves online or offline human interaction.

6. To implement more visual features (probe functions) fmmparing images and to

incorporate more powerful feature extraction/selecti@thuds.
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7. To expand the capabilities of the image retrieval systeimlude concept based image

retrieval.
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Appendix A

Psychological Views of the Perception of

Similarity

Some of the psychophysical models of similarity have iregpiresearchers in computer sci-
ence and artificial intelligence to develop mathematicathmés to measure the similarity
using the visual information available in images. One of ¢aeliest quantitative studies
in psychophysics of perception goes back to 1850 when Giésteliner [17] hypothesized

that physical quantities and their corresponding psyaiosd experiences are mathemati-
cally related. [42]. His one dimensional logarithmic motletween the physical intensity
and perceived intensity was later challenged by Thurstord®27 [69] with a more complex

statistical model that is based on discriminal differenocesveen a pairs of stimuli. These
studies were limited to the special case of a one dimenssgtimalili. Visual perception how-

ever, (like many other real situations) requires a commnaif stimuli from a set of separate

dimensions to achieve a full perception. In 1950, Attneawieliphed a seminal paper [5],
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in which he studied judgment of similarity between stimultwmultiple dimensions. He
was one of the first people who proposed a view of (dis)siitylas distance in a mental
space. This mental distance approach (or geometric agpredich was further elaborated
by Shepard in 1962 [62], is still one of the basic assumptiged in many of the compu-
tational methods for image similarity in computer sciendéis approach (as was further
studies in [7]), assumes a metric structure for the men@tespvhere a similarity function
has to satisfy the metric axioms hamslymmetrypositivityandtriangle equality

However, metric assumptions have been challenged by lpproaches such as featural ap-
proach by Tversky in 1977 [70, 71] or recent transformati@pgoroach [21]. Theontrast
modelas proposed by Tversky assumes a feature matching procedssiribing similarity
rather than a geometric representation. Tversky’s modebeaviewed [61] as a set-theoretic
model in which stimuli has binary features or attributesgi2e of similarity is then defined
based on the linear function of their common features. Aeyof similarity models from

a psychological and computer-science point of view can beddn [42] and [61], respec-
tively. In the present research, the so called mental distapproach is used only to describe
the similarity /distance between visual elements whiledierall distance between images

is defined using a Near Set approach.
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Appendix B

Mathematical Proofs

Lemma 1. Absolute value of a random variable
If X is a continuous random variable with probability density dtion (pdf ) defined as
fx(z) and (cumulative) distribution functiof’x (z), then|X| is another random variable

with the following probability distribution function:

fixi(@) = fx(2) + fx(—2) iff >0

fix|(x) =0 iff <0

Proof

Starting with CDF of X| andvz > 0

Fix|(z) =Pr(|X|<xz)=Pr(—2 < X <) = Fx(x) - Fx(—x)
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Taking derivative of both sides

fix|(@) = fx () = (1) x fx(=2) = fx(2) + fx(—2z) (B.1)

Vz <0, Pr(]X|<z)=0andhencé|x|(z) = fix|(z) = 0. Lemma is provedll

Lemma 2. If X is a random variable with probability density functigpdf ) defined as
fx(z) and (cumulative) distribution functiof'y (x), and ifa is a constant, thetX’ — a is

another random variable with the following probability disution function:

fox—a)(@) = fx(z +a) (B.2)

Proof

Starting with CDF,

Fix_o(z)=Pr((X —a) <z)=Pr(X <z+a)=Fx(z+a)

Taking derivative of both sidegx_.)(z) = fx(z + a). Proof is completed

Lemma 3. Operations on discrete random variables
Let X and Y be independent discrete random variables with probabiligssnfunctions

mx (z) andmy (y). Then

1. The absolute value of the random variabl& |) is another random variable that has
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the followingpnf :

myx|(z) = mx(x) + mx(—x) iff z>0 (B.3)

=0 iff <0

. The sum of the above random variablgs X + Y') has the followingnt ; wherex

stands for convolution.

mz(z) = mx(z) *my(z) = me(xk)my(z — ) (B.4)

Tk

. The difference between the two random variables-(X —Y") has the followingnf :

mz(2) =Y mx(zp)my (- 2) (B.5)

Tk

. The absolute difference between the two random varialjlés= |X — Y'|) has the

following pnf :

mix_y|(z) = me(xk)my(xk —z) + me(xk)my(xk +2z) iffz>0 (B.6)

Tk Tk

=0 iff 2<0

. The ratio of two discrete random variables = % has the followingnf

m(§>(z) = me(z X T )my (xy) (B.7)

Tk

122



Proofs

1. Using the definition of pmf and absolute value function:

Ve >0 mx|(z)=Pr(|X|=2)=Pr(X=2)V(X=—-x)
=Pr(X=z)+Pr(X =—-x)=mx(z) +mx(—1)

Ve <0 mx|(z)=Pr(|X|=2)=0

Proof is completdl

2. Using the formula for total probability based on condiibprobabilities:

my(z)=Pr(Z=z2)=Pr(X+Y =2)

=Y Pr(X+Y =z|X=um)x Pr(X =)

Tk

= ZPr (xp+Y =2) x Pr(X =ay) = Zmy(z — xp)mx (Tk)

T T
Proof is completell

3. Similarly, forZ = X - Y

my(z)=Pr(Z=z)=Pr(X—-Y =2z2)

=Y Pr(X-Y =z|X=u)xPr(X =)

= ZPT (zp =Y =2)x Pr(X =ux) = Zmy(mk — z)mx (zy)

Tk
Proof is completell
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4. Using parts 1 to 3 (above) of this lemma,

Vz>0 mx-_y|(2) = mx_y(z) + mx_y(—2)

= Zmy(ﬂ% — z)mx(xy) + ZmY(Z — x)mx (T

Tk Tk
Vz <0 mx_y|(z) = Pr(]X —Y]| < 0)=0Proof is completell

5. Using the formula for total probability based on condiibprobabilities:

mz(z):Pr(Z:z):Pr(§:z> :ZPr(ézsz:yk) x Pr(Y =)
=> Pr (%:z) X Pr(Y =y,) =Y Pr(X=zxy)xPr(Y =y

- me(zyk) X my (Yg)

Yk

Proof is completell
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Appendix C

POINCaRe

POINCaRe is a computer application developed for image gityilanalysis and content
based image retrieval. A simplified executable version ofN&aRe can be downloaded
from the Computational Intelligence Laboratory web site mitAdrsity of Manitoba. POINCaRe
was originally written in MATLAB but is also available as aastlalone executable program.
POINCaRe is named after Jules Henri Poincar (1854 - 1912),ewvosk on the philosoph-
ical aspects of the contrast between the mathematical aysigaihcontinua laid out the idea
of tolerance space theory. POINCaRe can be also read as fhksifot: Program for Object

and Image Nearness Comparison and Recognition.

C.1 Program Features

The current released version of POINCaRe (beta 0.1) has tloeving capabilities:

e Calculating 8 different similarity measures between digiteages based on the visual

features.
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e CBIR: Calculating the similarity between a given query imageasdlected directory

of images and sorting the images in an HTML file, based on anityl to the query

image.

e Specifying a region of interest (ROI) in a query image and garmg the ROl with the

test image(s).

¢ Individual analysis of images such as edge detection,ipipthe histogram of local

feature values, and finding tolerance neighborhoods inésag

FigureC.1shows a snapshot of the graphical user interface (GUI) gbtbgram.

FEile  Poincare Help

— Image Data Base-
e ooy ==

[caNeanERctonmizone

—Image 1 Pannel

eiPo,

Beta v.0.1

{c)2011- CILab—l{niVersity pf Manitoba

180 x240 -029.02.JPG Tol. class Tol. class on the image
ﬁ@1 ﬂ@‘z Granularty, Overlap
[0 | [on |
~ L= . .
R m oo AR dofl
. Find Tolerance s | | 1 1
§ e = o F
-
5
Wb anel Tol. class Tol. class on the image
Wi e
Clandirey, OVetian
ey - - Y
fos- 05 ]
Find Tolerance NBs.
=

Histogram Bins [ (0:0021] | | oo on — = -
Gamma  Norm tvoe feue s — Texture Features (2 directions: Offscts)— | — Mearness and Di
= I 1 | [Z1F1; gray level Nearness  Distance
L2kt o T | [ F2 ttrony [0 | [0 | Texture Offsels A
(— Edge Detection i [ JFIF1 [1 ] FIF15 Contrast WdNM : :
[ bl 11 |@lFz 1 [ZIFiE correlation tNM 0.84392  0.15608
'ueﬂu;k‘:\faveletfhi ] ([ 2 [ Fs: R onlor) [ @IF13 [1 | @IF17 Enerav [V gMNM  0.79937  0.25098
s Gl 55 g ionen || CwF L1 @175 Homoaonoty HdNM  0.33675  1.9696
|bior1.1 x| o005 1 ] [¥] F5: 8 (color}
O [1_| [¥] F&:H (Hue) — Edge Features | fHdNM NalN NaN —
= 1| [FFrS (sat) 1| [¥] F9: Edge Intensity (Wavelet) tcNM 0.909 0.30167
— Fuzzy Par [[1] [¥] F&: W (Value) | [] F10: Edge Orient. (Wavelet) [V fteNM 0.9883 0.10814
"1 | [F] F19: Edge Fittering
Fuzyeps  (paz] ||| | I Fis: Edge Fitering FNM1  0.61006  0.18994
dronge [ mor | || Messapebomrs
’7>>Ready

Figure C.1: A snapshot of the GUI of POINCaRe beta version 0.1
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C.2 POINCaRe Download and Install Instructions

POINCaRe is a standalone executable application that hasroptmented with MATLAB
but does not need MATLAB to run. However, you need to have topgr version of MAT-
LAB Compiler Runtime (MCR) installed on your computer. You caad@bout MCR from
Mathworks web site. Follow the following steps to install M@Rd POINCaRe. If a recent
version of MATLAB is installed on your computer, then youesldy have MCR installed.
You can check the version of your MCR and go directly to stepl@vadf there is an MCR

problem, you can always come back to step 1 and install a pMg&.

Step 1. Download and Install MATLAB Compiler Runtime (MCR): Skip this step if an
updated version of MATLAB or MCR has already been installedyoar computer. You
need MCR version 7.15 or higher to run version 0.1 (beta) oNT2aIRe. If MATLAB is
installed on your computer, you can tygemaj or, m nor] = ntrversion at your
MATLAB command prompt to see what is the version of MCR on yooimputer. If you
don’t have MATLAB or an updated version of MCR, you need to ih$8CR on your com-
puter (only once). MCRInstaller.exe will install MCR on youmaputer. Due to licensing
issues, MCRInstaller.exe file cannot be uploaded with opeesacdiowever, you can obtain
this file from any licensed MATLAB distribution that comestwiMATLAB compiler. In
MATLAB 7.5 (R2007b) and newer, the commamtf i nst al | er) can be used to deter-

mine where the installer is located. You can copy the file yaor computer and run it.

Step 2: Download and Install POINCaRe

Currently, there is only a 64 bit version of POINCaRe availalole Microsoft Windows.
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Check the web sitéor contact us for updates and new versions. Download theegelf
tracting executable file. Copy the file into a directory in y®€. Double click on the file
and the contents will be extracted into the same directorguldle click on the main file

Poi ncare_wi n64_b01. exe to run the program.

C.3 Using the Program

Follow the following steps to use the program

C.3.1 Selecting images

— Image Data Base ——————— — barameters
Image directory Browse

T == - Histogram Bins [ﬁ:ﬂ.ﬂZ:‘lI
C:\NearElectron\m\poincarexe\Po. 3

. = - Gamma Horm tvoe
- I — Edge Detecton———————————
- = o 14 e
m | Method-1 Wavelet -
<e s ?DB Wavelet Name : Threshold
] WS bior1.1 = 0.05

Edge Fitter |zohel - ]

— Fuzzy Parameters

Fuzzy Eps | 10.12]
dRange |  [0:0.1:1]
Clear Selections
Figure C.2: Image Directory Figure C.3: Parameters

You can browse and select a directory that contains your@saging the controls shown
in Fig. C.2 This directory should contain only images. Most of the camnmage file
formats are supported. The images do not have to be the same lHowever, since the

granularity parameter (subimage size) will be the samelfanages, it is strongly suggested

http://wren.ece.umanitoba.ca
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to avoid using images with significantly different sizes Isattthe ratio of the subimage size
to the image itself has little variations for the sake of ¢stency. There is a default directory
with 30 sample images located in the same path that the progranstalled. These images
are selected from Tasvir3x70 dataset. There is no limitémiimber of images. However, a
thumbnail view of the first 12 images in the directory are shawthel nage Dat a Base

panel. Pairs of images can be selected from this panel tornpa@d.

C.3.2 Selecting Parameters

All of the methods implemented in POINCaRe are based on diyigitages into subimages
and calculating the local features at each subimdgeanularity (in pixels) is the size of
square subimages a@Verlap is a number between 0 and 1 that represents degree of overlap
between subimages. Default value of overlap is zero. FiQudeshows where to enter the
parameters. The current implemented methods require pstloe values for image 1 and 2
to be the same.

Note that the value of granularity depends on the size of @ésad\s a suggested com-
promise between accuracy and speed, it is recommended éselioe sub image size such
that there are no more than approximately 500 subimage<igege. The Epsilon value
(¢) for tolerance based methods can be selected as a fixed Valeenethod for adaptive se-
lection of epsilon value based on the image data has not bg@damented in this simplified
version of POINCaRe. Other parameters can also be selectedaashe seen in Figc.3as

follows:

e Histogram Bins: This is a vector with values between 0 and 1 representingdine

malized histogram bins in any method that is based on histogalculationsK d /N M
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— Image 1 Pannel

Tol. class Tol. class on the ima
180 x240 023-02.1PG Select 1 ge

Granularity, Overlap
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Find Tolerance NBs
Find Edges =
=
— Image Panel 2 Tal. class Tol. class on the image
180 x240 -029-03.JPG

Salect image 2
O O ST
Eps= 08

Figure C.4: POINCaRe: Image Panels
or WdN M)

e Gamma (y): This parameter is a scaling parameter in converting distameasure to
similarity measure. ifD is a distance measure, similarity or nearness measué)(
is calculated using the mappingM = 1 — D7 if D € [0,1] or NM = 5 if

D € [0,+00).

e Norm Type: The norm type is the type of the vector norm used in calautedif the

distance between visual elements. Defaultisrorm or Manhattan distance.

¢ Wavelet NameandThreshold: Wavelet functions of typ&/avelet Namewill be used
for calculating the edge intensity and edge orientatiorsetdaon the edge detection
method in [37]. The threshold valukhreshold is used to detect an edge if the edge
intensity is above the threshold. The paraméidge Filter is the type of filter for

another method of edge detection base on the gradient ofrtage using different
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operators such aobelor prewitt ( [19]). This method will be used if the 19th feature

(Edge filtering) is selected (see Fi@.5).

e Fuzzy EpsanddRange The parameteFuzzy Epsis a vector that contains the two
corner parameters of the fuzzy tolerance relatipande, as is shown in Fig3.4(b)
dRangeis a vector of values where the membership function of theyfudistance

Lrerpy 1S Calculated.

— Features (Probe Functions) -
" Texture Features (2 drections: Offssts)| — Nearness Methods and Distances

L1 | [] F1: gray level Nearness Distance [iismdes bl
[ 1 ][] F2: entropy L E10] | Texure Offsets o e T
Color: 4 |:,;:| 2 1_ @ F15 Contrast |:.
e [ |[@F2 [1_| [ZIF16 correlation Wi tNM 0.84392  0.15608
b |_ﬂ_| IR (1 | F3 [1 | F7 Eneray ¥ aMNM 0.79937 | 0.25098 =
- 1 %:gf(;::::}} | 1 |[¥IF14 | 1 | [¥] F18 Homogeneity [ HdNM 0.33675  1.9696
1| [V] F8: H (Hue) — Edge Featur [ fHdNM NaN NaN Statiie Bar
[ ] [#F7: 5 (3at) 1| [7] Fe: Edge Intensity (Wavelet) V] tcNM 0.909 0.30167
1| [V Fa:v (value) 1| [¥] F10: Edge Orient. (Wavelet) 7] ftcNM 0.9883  0.10814
1_| [7] F19: Edge Fitering 7 FNMA4 0.81006  0.18994

Figure C.5: POINCaRe: Features and Methods Panel

C.3.3 Choosing the features (probe functions) and methods

The user can select up to 19 different features to be usee ife#ture vector for each visual
element (subimage). Features will be later normalized éetw) and 1. For more informa-
tion on how each feature is calculated, you can refer to Chdpt&€hese features describe
average color, texture and edge information in each sulemidgte that POINCaRe ver 0.1
does not have the ability to automatically choose the talsrdahresholds). Therefore, the

user is advised to choose the fixed epsilon value accorditigetmumber of selected fea-

tures in each experiment. Each normalized feature has & m@ingariation between 0 and

131



1. Therefore, the range of variation éfz, y) =|| és(z) — é5(y) |1 (assuming arL., norm

distance is used) is between 0 andwhere M is the number of features.

C.4 Types of Analysis

There are 3 different types of analysis possible in POINCaRwe fifst type is individual
analysis on the image content of each single image. The ddygpa is pairwise comparison
of a pair of images and calculating the similarity and/otatise between images. The last
type of analysis is CBIR image analysis by calculating the lsinty/distance between a
guery image and all the images in a directory and sortingtfages based on similarity. The

program can perform all the above analysis types as follows:

C.4.1 Pairwise image comparison

A pair of images loaded into Image Panel 1 and Image Panel Deatirectly compared

to each other. Each image can be selected by using$eéect | nage] button in each
panel or by choosing the corresponding thumbnail image ftefil nage Dat a Base]
panel. Similarity between images is calculated using thergparameters in the GUI after
the user clicks off Conpar e | mages] button in theg Anal ysi s Type] section of the
program as shown in Fi@.5. Selected nearness and distance measure will be showsin thi
panel. Nearness is a normalized number between 0 and 1 @ada#iss a non-normalized

positive real number.
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C.4.2 Histogram of features

Clicking on[ Di spl ay Hi st ograns] will open a new window where the histograms
of all the selected feature values for the subimages in eaelge will be displayed. The
histogram bins are used as mentioned earlier. Figuésshows an example of histograms
generated by the program when only average R, G and B color@muemps are selected as
the features.

POINCaRe: Image 1 - Featurel POINCaRe: Image 1 - Feature2 POINCaRe: Image 1 - Feature3

40 40 30

30 30
20

20 20
10

10 10
0 0 0

0 100 200 300 0 100 200 300 0 100 200 300

POINCaRe: Image 2 - Featurel POINCaRe: Image 2 - Feature2 POINCaRe: Image 2 — Feature3

30 30 30
20 20 20
10 10 10

0 0 0

0 100 200 300 0 100 200 300 0 100 200 300

Figure C.6: POINCaRe: Histograms of the subimage average R,@dnd the pair of
images shown in FigC.1

C.4.3 Findingtolerance neighborhoods and manual selection of a neigh-
borhood

Clicking onFi nd Tol erance NBs for each image, calculates the tolerance neighbor-
hoods and the number of tolerance neighborhoods and a gedpbpresentation of the size

of each neighborhood is shown in each image panel. Morebyetlicking on any point
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on an image in the image panel, the corresponding toleragichlmorhood around the se-
lected subimage will be calculated and displayed on eaclyenpanel. FigureC.4 shows

sample tolerance neighborhoods selected this way aftddirdj on the centre of each image.
Note that in this example, only R, G and B features are seleutddhe resulting tolerance

neighborhoods represent parts of the images with almosttime color.

C.4.4 Edge detection

After clicking onFi nd Edges, edge intensity and orientation is calculated at each point
and edge intensity id thresholded by the given thresholel levproduce a binary image of

detected edges shown in the last image window of the imagel pan

C.4.5 Selecting a region of interest (ROI)

Instead of image comparison between a query image (imagedly &est image (image 2),
the program can compare part of image 1 (a region of intesastjaery image) with image 2.
After clicking on[ Sel ect RO ] inimage panel 1, the user can select a region of interest
by clicking on the top left and bottom right corner of a regadnnterest in the image and the
ROI will be selected as a set of subimages. Fighréshows the steps needed to select an

ROL.

Upper and lower approximation of ROI using tolerance neightorhoods

After selection of an ROI, lower and upper approximationshie tolerance space will be
automatically calculated and displayed on GUI. Roughly kimeg lower approximation of

an ROl is defined here as the union of all the tolerance nerffldnals (/tolerance classes)
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which are a proper subset of the ROI. Moreover, upper appratkon of an ROI is defined

as the union of all the tolerance neighborhoods (/toleratagses) which have a non-empty
intersection with the ROI. Therefore, visual elements mltwer approximation, have very
similar descriptions to ROI and objects that do not belongpper approximation have very
different description from ROI. The exact definitions of¢$beapproximations and some ex-

amples are as follow.

Definition C.1. Lower ApproximationB,.(ROI) and Upper Approximatio®*(ROT)

Let ) be the set of subimages in a query image &nhte the set of subimages in— a test
image. O = Q UY is the set of all subimages. L&OI C () be a region of interest in
guery image ancNiB’E be the set of all tolerance neighborhoods in the union of yaed

test image. Then:

B.(ROI) = | J {A e N5 suchthat (ANQ)C RO[} (C.1)

B (ROI) = J{4 € Ng* suchthat (4nQ)n ROI # 0} (C.2)

Nearness between ROI and a test image

Region of interest (ROI) can be selected to show an objectefast for example in a query
image where the rest of image is not important for image corsqa problem. After an ROI
is selected and displayed as a query itself, the user cdnari¢Conpar e two i mages]
button to compare the ROI with the test image.

NOTE: Many nearness measures need a relatively large numberiaiagés in each image

for the comparison to be meaningful. Therefore, selectisigall ROI that contains very few
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number of subimages, yields a nearness measure which mésangful because the set of

subimages is not a good representative of the image anymore.

C.4.6 Content-based image retrieval

In an image retrieval experiment, a query image (or a regfonterest in the query image)
is compared with all the images in an image dataset. The pdtietdirectory of images in
image dataset is specified blyrfage di r ect or y] edit box in the top left corner of the
GUI. After choosing the path and selecting the query imagenage panel 1, choosing
the required parameters and probe functions, the useradmsage retrieval by clicking on
[ mge Retri eval ] button. All the images in image directory will be compareghst
the given query and the results will be stored and saved in B¥lHfile. Depending on
the number of images and the size of subimages, image @tnexy take some time to
complete. A status bar and sand-watch icon in the bottont dgimer of GUI update the
user about the status of the experiment and the time to coiompléAfter all the images are
compared, the program automatically opens the defaultriatdorowser and displays the
data. The program is tested with Google chrome. If you casaetthe images or if the
HTML output file has not been opened for any reason, go to thgrpm directory and open
the file: (Poi ncare-CBI R ht i ) using a different web browser. Figu@8is an example
of an output file generated after the given query image is esatpwith 210 test images in
Tasvir-3x70 data set. Images are ranked based on theiasityilo the query image and the

values of nearness and distance are displayed for each.image
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Figure C.7: Steps in selecting an ROI and rough set approximat ROl with tolerance
neighborhoods
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7@ Poincare-CBIR. html

cf O

Poincare-CBIR.html g B A
Query image =
Query File: C\Near'my Image Database' Tasvir-370-small\020-02 JPG
Dataset Files: C:Near'my Image Database' Tasvir-370-small\
Analysis Name: Poincare-CBIR
Rank: tNM tcNM
Rank Image File Name||Nearness||Di Image File Name|Nearness|[Di
020- 020-
02.JPG ! 0 02.JPG ! 0
021- 021-
021PG 0.59201 || 0.40799 02.1PG 0.78374 || 0.46503
021- 021-
5 r
0LIPG 0.52508 || 0.47492 01IPG 0.75385 || 0.49614
047- 020-
5 sllos
03.JPG 04573 || 0.5427 03.JPG 0.65915 || 0.58382
028- 047-
444 5552
0LIPG 0.44453 || 0.55547 02.JPG 0.64025 || 0.5998

Figure C.8: An example of an output file generated by POINCake @BIR
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