THE UNIVERSTITY OF MANITOBA

ASPECTS OF SEQUENTIAL MACHINE SYNTHESIS

by

R. KNISPEL

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE
OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF MANITOBA
WINNIPEG, MANITOBA

October, 1977

ASPECTS OF SEQUENTIAL MACHINE SYNTHESIS

BY

RAY EDWARD KNISPEL

A dissertation submitted to the Faculty of Graduate Studies of
the University of Manitoba in partial fulfillment of the requirements

of the degree of

DOCTOR OF l’Hl‘LOSOl’HY
ev 1977
Permission has been granted to the LIBRARY OF THE UNIVER-
SITY OF MANITOBA to lend or self copies of this disscrtation, to
the NATIONAL LIBRARY OF CANADA. to microfilm this
dissertation and to lend or sell copies of the film, and UNIVERS!’I?Y '
MICROFILMS to publish an abstract of this dissertation. '

The author reserves other publication rights, and neither the
dissertation nor extensive extracts from it may be printed or other-

wise reproduced without the author’s written permission.

ACKNOWLEDGMENTS

N

T would like to acknowledge Dr. Jon C. Muzio, my supervisor,
for his valuable advice and encouragement and Dr. Douglas Lewin for
his initial guidance and continued interest. The support provided by

University of Manitoba Fellowships is also gratefully acknowledged.

DEDICATION

This thesis is dedicated to my parents.for their support and

to my wife, Deb, for her patience and understanding.

|
i
i
i
;
i
(

ABSTRACT

Sequential machine synthesis is the realization of finite state
sequential machine behaviour in terms 6f hardware components. Two
aspects of sequential machine synthesis are investigated in this thesis.
The first aspect treats the decomposition of sequential machines, while
the second explores possible medium and large scale integrated circuit

realizations of sequential machines.

Algebraic structure theory, which provides the theoretical basis for
the decompositicn of sequential machines, is examined. A method for
-systematiéally generating the nonredundant sets of substitution property
partitions (decompositions) is presented; the method is suitable for
computer implementation. Two procedures for evaluating the decompositions
generated are presented. Algebraic structure theory is also extended
to incompletely specified machines, the synthesis of multiple machines,

and asynchronous machines.

The use of transition matrices to synthesize a sequential machine
as a single integrated circuit is considered. Synthesis algorithms
for transition matrices and a new transition matrix are presented.
Sequential machines can be realized as a cascade of combinational logic.
blocks. The choice of blocks affects the length of the resulting
realizations and the complexity of the synthesis algorithm. Machine

synthesis using a new set of combinational logic blocks is investigated.

CHAPTER

[¢4]

TABLE OF CONTENTS

PAGE
Introduction v ' 1
Sequential Machine Decomposition | i3

Nonredundant Sets of Substitution Property Partitions 47

Programming and Evaluation Techniques 67
Extended Substitution Property Theory 101
Sequential Machine Synthesis with Cellular Arrays 142
Machine Synthesis using Cascaded Combinational 170

Logic Boxes

-

Discuseion and Conclusion 224

References 230

Chapter 1 Introduction

1.1 Thesis Outline

This thesis presents various methods of sequential machine synthesis.
In particular, aﬁ algorithmic method of defiving all the decompositions for
a machine is developed. (Sequential machines can be realized by a network
of interconnected submachines. A network of submachines which realizes a
machine M,band for which the cénnections between the submachines do not
form a loop is called a loop-free realization or decomposition of M.) As
the number of decompositions for a machine can be large, it is necessary to
be able to determine the "best" decomposition, in some sense. Two
different dévice independent methods of evaluating decompositions, un-
economic pairs and read only memory (ROM) evaluation, are presented. The
uneconomic pairsvtechnique eliminates decompositions which are uneconomical
with relation to the other décompositions, while ROM evaluation determines
the size of a ROM realization of each decomposition. ROM evaluation is'

-~

preferred because of the greater choice it provides the logic designer.

Decomposition theory has only been develdped for completely
specified machines. As most practical méchines are incompletely specified,
we extend decomposition theory to the incompletely specified case. A
theoretical approach is developed to overcome some of the problems en-
countered and a decomposition presented by Hartmanis [27] is adapted to
incompletely specified machines. Application of décomposition theory to

asynchronous machines and multiple machine synthesis is also examined.

Traditionally, machine realization has been done with discrete
components, logic gates and memory elements. New technology, however,
requires the use of complex, functional modules for realizations. Thus,
functional modules which can independently realize machines, or can be
interconnected to realize machines, must be developed. Two possible _
modules, derived from-the transition matrix and generator sequence concept,

are presented and synthesis techniques for each are developed.

The first module, a cellular array, is based on the tramsition
matrix concept for sequential machines. We develop a universal cellular
array which is derived from a new type of transition matrix. The new

_array can be used as a building block in realizing large sequential machines,

A novel concept in sequential machine realization, is the use of
a set of elementary generators to construct a realization of a sequential
machine. A synthesis algorithm for a generator set must be able to derive
for any machine thé most economical sequence of generators. A new
generator set is propdsed and a heuristic algorithm for obtaining generator
sequences is presented. The new generator set and its synthesis method,

provide insight into the use of a large generator set for machine realization.

‘1.2 Sequential Machines

The effective design and implementation of sequential circuits
(circuits with "memory') has become dependent on sequential machine theory.
The advantage provided by sequéntial machine theory is that it allows a
logic designer to view a sequential circuit as an abstract mathematical
concept, independent of the physical realization of the circuit. This
mathematical model provides the designer with a convenient means
of specifying the behaviour of the sequential circuit he wishes to build.
At the same time, tie formalization of the problem as a sequential machine

lends itself to various synthesis methods.

The use of sequential machine thecry tc facilitate the design of
sequential circuits was first proposed by Huffman [36]. Prior to this,
design methods for sequential circuits were applicable only to developing
special purpose circuits with specified logic components. These '
techniques were not suited for designing the circuitry required by
complex,‘digital systems. .Huffman used the flow table as a means of stating

a_designAproblem and synthesizing the required circuit.

At the same time, Moore [56] developed an abstract formulation of
" a sequential machine. This work provided the basis for the development
of sequential machine theory. Mealy [52] extended the work of Huffman

and further generalized the theory of Moore.

The sequential machine, M,-formulated by Moore can be characterized
by the following:
(1) a finite set of states, S = {sl,...,sn};

(2) a finite set of input symbols, IP = {11,...,iq};

(3) . a finite set of output symbols, OP = {Ol,...,Or};
4) a mapping 8, called the next-state function, from gxTp =+ S;
(5) a ﬁapping A, called the output function, from S - OP.

This model of sequential machine behaviour applies to both
synchtonous and asynchronous machines. The operation of a synchronous
machine is synchronized by a clock pulse; changes in the input values are
withheld from the machine until a clock pulse occurs. Thus, it appears
to the machine that all iﬁputs change on the clock pulse. An asynchronous
machine, however, is not éontrolled by a clock pulse. Any changes in the
input values are immediately received by the machine. The asynchronous
mode of operation is potentially faster than the synchronous mode, but
additional soﬁhistication is reguired in the realization to handle the
uncontrolled input changes. Throughout most of this thesis we shall be

referring to synchronous sequential machines.

Associated with the formalization of the design process was the
problem of deriving a near minimal realization of a machine. The
synthesis technique used, that based on state assignment, consisted of
assigning a set of binary variables to represent the set of states, and
then computing a set of logic equations which realized the next-state
and output functibns. (It was assumed, in most cases, that the input

and output values were fixed.)

The complexity of the resulting equations would vary, depending
on the particular state assignment used. A measure of the complexity

of a state assignment was obtained by counting the number of diodes and/or

logic gates fequired by the state assignment. A minimal assignment could
be obtained by enumerating all possible assignments. For any machine
with more than a couple of states, this is not a feasible approach because

of the vast number of possible assignments. 4

Some researchers, have subsequently taken advéntage of "intuitive"
properties of the state table repfesentation of sequential machines, to
obtain "good" state assignments. Armstrong [3] uses various types of
adjacency relationships between states to develop a state assignment
technique. This method, while providing reasonably economical
realizations, fails to generate for some machines a truly simple realization, ‘
when such a realization is possible. A second, morelcomprehensive method, |
also due to Armstrong [4], produces better results. However, this method
is more tedious to execute than the former. Dolotta and McCluskey [13]
develop a state assignment technique based on codable columné, a subset

of the possible columns for a machine. The method is effective for

machines with 8, or less, states. For machines with more than 8 states,
the number of codable columns is large and methods of reducing their
number must be introduced. With the reduction, however, the method also

loses a certain amount of efficiency.

These methods wevre oriented to finding “good" sum of products or
product of sums, equations with delay elements for memory. Consequently,

the methods must be modified if a different type of hardware is desired.

Another approach to state assignment, which will be introduced
in Section 1.4, was based on the formal algebraic structure properties of

sequential machines.

1.3 Algebraic Structure Theory

The algebraic structure theory of sequential machines was
developed by Hartmanis [24],[253,[261,[271,(28], Hartmanis and Stearns
[291,0301,[31], and Stearns and Hartmanis [63]. Certain aspects of structure
theory, namely serial and paraliel decompositions were obtained independently
by Yoeli [72]1,[73]. (As the research of Hartmanis and Stearns has been con-
solidated in Hartmanis and Stearns [31],>all subsequent references will be

£311.)

Just as most tasks can be broken down into a collection of subtasks,
some machines can be decomposed into a collection of submachines. The
order of execution of the subtasks is important to the successful execution
of the main task. Similarly, the order in which the submgchines are

 connected is important to the realization of the initial machine.

Algebraic‘structure theory supplies.a set of techniques and
results which enable the designer to determine the submachines of a machine,
how they must be connected, and also the "information flow" between the
‘interconnected submachines. Essentially, structure theory provides a
means of dividing a large sequential machine synthesis problem into a
collection of smaller synthesis problems, which can be solved separately.
The benefits of this approach are:
o) Machine synthesis tecnhiques can be applied with less difficulty
to several, small machines than one large one. In particular
state assignment techniques are more viable and efficlent when

applied to small machines.

AT S et

(2) If complex functional modules are to be used to realize machines,
it is more economical to use several small machines, than one large
one.

(3) Testing several small machines for correct operation is simpler than
tesflng one large machine.

(&) The designer gains a better understandlng of how a machine functions

when it is realized as a collection of separate, functional units.

The benefits of algebraic structure theory for machine realization
are comparable to the benefits of modular programming techniques for
computer programming. Structure theory has been developed independently
of any particular hardware implementation. Thus, changes in the type
of logic gates and memory elements available do not affect the

application of structure theory.

The submachines of a machine correspond to partitions on the set
of states, S, of a machine. (A partition.on S is a collection of disjoint
subsets of S whose union is S.) A submachine which can operate, receiving
state information only from itself, corresponds to what is referred to as
a substitution property (S5.P.) partltlon. Hartmanis and Stearns have
provided an exhaustive algorithm that generates all the S.P. partltlons
for a machine. Papers by Farr [14] and Yang [71] propose more

systematic methods for generating S.P. partitions. Both methods have a

similar purpose, namely that of eliminating, where possible, the enumerative

techniques of Hartmanis and Stearns and substituting simpler and more
efficient techniques. Sacco [60] presents a technique which simplifies the

determination of whether or not a partition has the substitution property

Using S.P. partitions, loop-free realizations or decompositions
can be constructed for sequential machines. The necessary conditions for
a collection of S.P. partitions to form a decomposition of machine M

are defined by structure theory.

‘Two submachines, one of which is dependent on state information
from the other, correspond to what is known as a partition pair. A
realization for a machine M using partition pairs must of necessity
contain state information loops. In Chapter 2, algebraic structure
theory and the background for determining loop-free realizations (de~-

compositions) and non loop-free realizations are presented.

6

Although, structure theory provides a definition of what constitutes
a decomposition, no rigorous algorithm for deriving the decompositions of
a machine has been developed. Hartmanis and Stearns indicate with
examples, how decompositions may be obtained by "inspection". Thus,
the derivation of a decomposition is dependent on the designer's ability
to apply structure theory. For small machines, minimal decompositions
cdn be found quite readily. . For large machines, however, derivation of a
minimal decomposition by inspection is tedious, time consuming. and prone
to error. An attempt at developing an algorithm for deriving decompositions;
Curtis [8], is critically examined in Chapter 2. Several inherent limitations
of the algorithm are.investigated. The major problems associated with the
algorithm are: .

(1) it is not universally applicable to all machines with S.P. partitions;

2 decompositions derived by the algorithm may contain superfluous components.

Structure theory, as developed by Hartmanis and Stearns is not
amenable to the development of a decomposition algorithm. Consequently,
it has been necessary to extend structure thecory in Chapter 3 in order to
develop such an algorithm. The algorithm developed is simple to use and
ensures the genération of all the decompositions which do not contain
superfluous components. In addition, the algorithm is applicable to all
sequential machines. Some suggestions for a computer implementation of
the algorithm are provided in Chapter 4.

A method of evaluating decompositions is vital as there may be a
great number generated for any machine. In Chapter 4, two methods of
decomposition evaluation are presented. The first method eliminates pairs
of S.P. partitions which are uneconomical with relation to other pairs
of partitions. Thus, the decompositions generated, after the uneconomic
pairs have been deleted, are the most economical decompositions for the

machine.

The second method is based on the fact that read only memories
(ROMs) can be used to realize sequential machines, Kvamme [48] and
Howard [32]. A measure of the usefulness of any decomposition can thus
be obtained by oalculating the size of a ROM realization. Even though
'fhis method is based on determining the size of a ROM implementation, it

is demonstrated that this evaluation technique is device independent.

PP ot e e L T L e et LT ST B b by e o P i T e I R A A S e T

Both methods agree as to which are the most economical decompositicns
of a machine., However, ROM evaluation is preferred, as the logic designer

has a greater number of decompositions from which to select a realization.

1.4 Structure Theory Applications

Algebraic structure theory has been applied and extended to the
study of sequential machines in many ways. An obvious application was the
use of S.P. partitions and partition pairs for state assignment,

Hartmanis [25] and Stearns and Hartmanis [63]. Kohavi [41] has introduced
the implication graph as a means of producing economical state assignments
using S.P. partitions. Partition pair theory has been used as .a basis for
state assignment by Curtis [8][9] and Weiner and Smith [70]. Karp [38]
defines a critical pair (the partition pair concept extended to in-
completely specified machines) and develops algorithms to derive state

assignments using critical pairs.

Farr [14] has investigated various properties of common sequential
machines using structure theory. In addition structure theory has been
extended to the decomposition of stochastic automata, Bacon [6], and
used for designing fault-detection experiments for sequential machines,

Das [11].

Originally formulated for synchronous machines, structure theory
has been applied to the decomposition of asynchronous machines, Tan
et al [65] and Kinney [39], and also to the state assignment of
asynchronous machines, Saucier [61]. 1In Chapter 5. we develop properties
that relate S.P. partitions on asvnchronous machines to the state
assignment requirements of Tracey [67]. The properties developed have

relevence to the work of Tan, et al [65].

A collection of p machines may have common component submachines.
Obvious saviﬁgs result if these machines can be realized as an inter-
connection of machines, where the common submachine'is realized once,
rather than p times. This possibility has been investigated for the
case where the machines have the same inputs by Kohavi and Smith [44]
and Smith and Kohavi [62] and for different inputs by Gestri [19]. The
work of Kohavi and Smith has been formalized in Chapter 5. The properties

of multiple sequential machines developed are used to provide a theoretical

basis for Kohavi and Smith's work.

Hartmenis and Stearns have formulated conditions for an auténcmous
clock (input independent machine) to be a submachine of a sequential machine.
Gryzmala-Busse [22] and Hwang {37] further examine this possibility. The
decomposition of linear sequential circuits has also been examined by Ae

and Yoshida [11} and Marino [51]

Although Hartmanis and Stearns [31] have examined the partition pair
concept for incompletely specified machines, they have not done so for S.P.
partitions. In Chapter 5, two methods by which S.P. partitions can be
extended to incompletely specified machines are developed. A new way of
connecting two S.P. partitions, using a decomposition introduced by
Hartmanis [27], is presented. While this connection is applicable to
completely specified machines, it is of more practical value when used

with incompletely specified machines.

1.5 Cellular Synthesis , .

State assignment techniques. for machine synthesis attempt to
minimize the number of logic gates and memory elements. However, with
present medium and large scale integrated (MSI and LSI) techniques the

use of discrete components is not economical. The new technologies

dictate the fabrication of more complex modules, Minnick [55]. The

reasons for this are: v

1) Less expensive; by combining multiple logic components on a single
module the cost per component decreases.

2) Greater relisbility; as the components in the module are already
interconnected, the amount of intermodule wiring is reduced,
resulting in fewer wiring errors. In addition, the reduction in

wiring permits a miniaturization of circuits.

The availability of functional modules limits the application
of minimal state assignment techniques, Lewin [49]1,[50]. (Clearly, these
techniques are still important for the design of MSI and LST modules.)
Structure theory, however, remains relevent for synthesis with the
new functional modules. In fact, for a large machine, savings result
if instead of having to realize the machine as one large module, it can

be realized as an interconnection of smaller modules.

Some of the research into sequential machine synthesis using the

new technology concerns the determination of a module that is capable of
realizing any sequential machine. If multiple coples of the module are
to be fabricated on a single integrated circuit, it is desirable that for

any machine realization the modules are comnected in a regular pattern,

A synthesis method that can be used to realize a machine with a
collection of uniform 2-state component machines is.developed by Newborn
[58]. A probiem with this methed is the irregular connection pattern
of the modules. Using the same module, and techniques developed by
Friedman [16], Arnold, Tan, and Newborn [5] present a synthesis method
which enables a machine to be realized as a regular conmnection of the
basic modules. A new module is developed in Newborn and Arnold [591,
such that the fan out of any signal in the circuit.is bounded. The
synthesis method for this module also produces realizations with regular
connection patterns. Tﬁe modules in the above [5][581[59] are intended
for binary input-binary output machines and are fairly simple. However,
for machines with multipie inputs and/or multiple feedback realizations,
the necessary modules become complex. To counteract this, Kukreja and
Chen [46] introduce a new module which can be used to realize any

machine, without the complexity of the module increasing.

Studies on machine realization using a uniform cellular array
have been done by Hu [33] and Ferrarri and Grasselli [15]. Hu prbposes
a cellular array based on the transition matrix of a sequential machine.
The array is uniform with regular interconnections between the individual
cells. In Chapter 6 we review Hu's paper and develop some techniques which
can be used to minimize the number of cellular arrays required for maqhine
realization. A new cellular array is also presented which overcomes

some of the problems associated with Hu's array.

" Haring [23] and Menger [53] have developed a unique method for
synthesizing sequential machines. The procedure is based on the fact that ;
the transformation on a set of states required by a particular input
can be implemented by a series of simple transformations or generators.
Haring uses a set of 3 generators from which any input column in a
sequential machine can be realized. Unfortunately, the method has the
disadvantage that the number of generators required increases extremely

rapidly as the number of states increases.

Menger overcomes this problem by using 2(n-1) generators, where

n is the number of states. The result is that the number of generators
required mnow becomes a linear function of n. The algorithm for
deriving generator realizations obtains realizations which are minimal

to within 2 generators.

In Chapter 7, following Menger's example, we expahd the generator
sets to n(n-1) generators and examine the properties of the new set.
Expanding the generator set creates problems with determining absolute
minimal realizations. However, a heuristic algorithm is developed

which produces '"good'" realizatioms.

Huang [34][35] and Krishnan and Smith [45] present possible cellular
implementations of Haring's and Menger's generators, respectively. The
cellular array proposed by Huang has some desirable characteristics
(identical cells and uniform intercomnections) lacking in Krishnan and
Smith's array. A new array, which implements Menger's generators and

has the desirable characteristics mentioned,is developed in Chapter 7.

1.6 Notation and Definitions

The following general notation and definitions will be used
throughout the thesis. More specific notation and definitions will be

introduced when necessary. :]

A partition on a set § will be represented using bars and semi-
colons, rather than the usual set notation. For example, for set
s = {1,2,3,4,5,6,7,8,9,10}, the partition T conmsisting of the subsets
{1,2,3}, {4}, {5,6,7,8}, and {9,10} will be denoted as
t={1,2,3; 4; 5,6,7,8; 9,10}. The partition with only one element in

each block and the partition with all elements in one block are the

0 and I partitions, respectively. Collectively they will be referred

to as the trivial partitions. For S = {1,2,3,4,5,6,7,8,9,10},

0=1{1; 2; 3; 4; 5; 6; 7; 8 9; 10} and I = {1,2,3,4,5,6,7,8,9,10}. |
Two elements u, Vv ¢ S are defined to be equivalent under partition T,
u = v(t), 1if and only if u and v are contained in the same block of T.

Note that every partition defines an equivalence relation on S, and every

equivalence relation defines a partition on S.

Partition multiplication and addition operations are defined as

follows for 1, and 1

1 29 partition on S:

(i) is the partition on S such that u = v('TZ) if and only if

172 Y1
u = V(Tl) and u = V(Tz).
(ii) T1+T2 is the partition on S such that u = V(T1+T2) if and only if

there exists a sequence in S, u = u .,u = v for which
n

R
either u, = ui+l(Tl) or u; = ui+1(T2), for 0 < i € n-1.

T,°T, can be easily computed by intersecting the blocks of Ty and Tys

while Tl+T2 requires an iterative process of successively combining blocks of T
and Ty
For example, let T

1

1 = {1,25 3,45 5,6,7; 8,10; 9} and

(1,5,7; 2,6,9; 3,4,10; 8}. Then

’L' =
2
T0Ty = {1; 2; 3,45 5,7; 6; 8; 9; 10} and
T+, = {1,2,5,6,7,9; 3,4,8,10}.
A partition Ty is said to be greater than or equal to partition
Ty» 112 Tys if and only if every block of Ty is contained in a block of Ty
> 1 1 . - = 1 1 =
Thus, 2T, if and only if 0T, T, if and only if T1+T2_ Ty

For example, if T, = {1,2,3,4: 5,6,7,8} and

= {1,2; 3,4; 5,6; 7,8} then T > T Also, T

A binary relation R on the set S is a partial ordering of S if and

9° l'Tz = T2 and T1+T2 = Tl.

only if R is:
(1) reflexive: that is, uRu for all u € S;
(ii) antisymmetric: that is, uRv and vRu implies u = v;
(iii) transitive: that is, uRv and vRw implies uRw.

For a partial ordering, we shall use the more appropriate term, '2",

to represent the relation R. A set with a partial ordering, (S,2), is

referred to as a partially ordered set. The set, U, of all partitions on

S with the relation 2 is a partially ordered set.

For a partially ordered set (S,2) and V,a subset of S, v is the

least upper bound (l.u.b) of V if and only if

v

(i) v

(i1) v' =z x for all x ¢ V implies v' 2 v,

x for all x € V;

Similarly, v is the greatest lower bound (g.l.b.) of V, if and only if

(i) v £ x for all x € V3

(11) v' < x for all x ¢ V implies vl £ v,

A lattice is a partially ordered set (S,z), which has a least upper
bound and a greatest lower bound for every pair of elements in S. Clearly,
the partially ordered set of all subsets of S, (U,z), is a lattice where:

lub (Tl,Tz) = T1+T2 and

glb (Tl,TZ) = Ty tT,e

We will denote the number of blocks in a partition 1 by #(t) and
the number of states in the largest block of T by e(t). Let
b(t) = [log2 #(t)] and e(t) = [1og2 e€(t)], where [x] represents the
smallest integer greater than or equal to x. For T, > Tj, E(TilTj)
represents the largest number of blocks of Tj contained in a block of T
Let e(TilTj)_= [log2 e(Ti]Tj)]. - Note that Curtis [8] uses the notation

kt, ut, and kTi,Tj to represent b(t), e(tr), and e(TilTj), respectively.

Chapter 2 Sequential Machine Decomposition

2.1 Introduction

In this chapter we present ‘the basic structure theory of
sequential machines and examine an early attempt at state assignment
using structure theory. A mathematical model of a sequential machine
is given and it is shown how a sequential machine can be realized by

a network of combinational logic and memory elements.

For some sequential machines, a subfunction of the machine's
behaviour can be realized by a smaller machine or submachine. The
submachine is defined by a special type of partition, known as a
substitution property partition, on the set of states of the machine.
1f a macﬁine has one or more substitution property (5.P.) partitions,
it is pbssible to synthesize the machine as an intercénnection of

the submachines defined by the S.P. partitiomns.

The two bazsic comnections of submachines, serial and
parallel, are used in various combinations to produce networks of
submachinés. A network of submachines which imitates the behaviour of
a machine M is said to be a decomposition of M. One class of net-
works can be characterized as not having any state information loops.
In a loop-free network the information flow between machines is

never circular.

The conditions which Hartmanis and Stearns have established
for determining a loop-free network are presented. The only method
provided by Hartmanis and Stearns to derive loop-free networks, is

that of inspection of the lattice generated by the S.P. partitions.

The partition pair concept is introduced. Using partition
pairs, networks with information loops can be constructed. The
application of partition pairs to incompletely specified machines
is also examined. An incompletely specified machine is a sequential
. machine for which some of the next-state and output conditions are

not specified.

There has been only one attempt, Curtis [8], at developing
a state assignment algorithm using the S.P. partition theory of

Hartmanis and Stearns. Curtis’ method attempts to produce assign-—
ments which use the minimal number of state variables. Tﬁus, only '
S.P. partitions which satisfy certain minimality reguirements are
retained for a state assignment. As a result, when an assignment

is derived for a machine, many of the S.P. partitions are noit con-
sidered. In fact, for many of the nmachines none of the S.P. partitions
satisfy Curtis"requirements° Consequently, the algorithm is not

universal for all machines with S.P. partitions.

Curtis alsc establishes conditions to test whether sets of
8.P. partitions can be used in conjunction with each other to derive
state assignments., These conditions ensure that a set of S.P. partit-

ions will never require more than the minimal number of state variables.

However, as will be shown later, the algorithm Curtis
derives from these conditions does not test for redundant partitions.
Thus, sets of S.P. partitions containing superfluous partitions are
derived by the algorithm. The state assignments resulting from these
sets consequently require more than the minimal number of state
variables. These and other problems associated with Curtis' method
will be discussed in Section 2.6. In Chapter 3 an algorithm which

overcomes the problems associated with Curtis' method is presented.

Sections 2.3, 2.4, and 2.5 are results from Hartmanis and

Stearns [31] and as such will simply be stated without proof.

2.2,) Machines and Substitution Property Partitions

Finite sequential machine theory provides an abstract
mathematical model of logical computing circuits that have memory.

The main characteristics of these circuits are:

(i) a finite set of inputs;
(ii) a memory which is used to control the operation of the
machine;

(iii) a finite set of outputs.

The machine definition, which will be used to represent the
circuits, uses a finite set of internal states in order to implement

the machine memory.

[N

T e et roh e T T Tl NNl ot PR et A o A Tt IS A i A

Definition 2.1 (Hartmanis and Stearns) A Moore finite sequential

machines is a quintuple,

M = (S,IP,0P,§,A), where

S is a finite ncnempty set of states,

IP is a finite nonempty set of inputs,

OP is a finite nonempty set of oﬁtputs,

S: SxIP+S is called the next-state function,

A S5+ OP is called the output function.

There is another type of sequential machine, the Mealy
machine. The only difference between the two machines is the output
function. TFor the Mealy machine the output function, X:SXIP+OP,' is
a function of both state and input. The theory presented in this and
following chapters deals with the next-state behaviour of sequential
machines and as such applies equally to Mealy as to Moore machines.
However for consistency we will use the Moore model.

Example 2.1 let M = (s,IrP,0P,8,)), where
S = {a,b,c,d}, IP = {0,1}, and OP = {0,1}, be a Moore machine.
The functions & and X can be represented using either a flow

table or a state diagram.

0 1 A
alb d“O
b d c 1

|
c c a l 1
d | a bjO
M
flow table

state diagram

Columns O and 1 of the flow table repfesent the next-~
state function of M under inputs O and 1, respectively. The third

column, A, represents the output function values associated with

each state.

The state diagram uses arrows, with input labels,

connecting the various states to represent the next-state function.
The output function is represented by associating an output value:

with a state.

From the state diagram and flow table representation, we can

see that 6(c,1) = a, A(c) =1, 6(b,0) = d, A(b) = 1, and so forth.

In some cases we will only be concerned with the next-state

function of a machine.

Definition 2.2 (Hartmanis and Stearns) A State machine is a triplet,

(5,1P,8), where
S is a finite nonempty set of states,
TP 1is a finite nonempty set of inputs,

6: SxIP+S is called the next-state function.

The flow table representation for a state machine will be

referred to as a state table.

Algnbralc structure theory for sequentlal machines becomes
useful for sequential circuit design when the abstract machine can be
related to a physical circuit. The following definitions describe how
one machine can be used to imitate another machine with only a re-

naming of the inputs and outputs.

Definition 2.3 (Hartmanis and Stearns) If M and M' are two

machines, then the triple {(a,B,y) 1is said to be an assignment of M
into M' if and only if

o is a mapping of S into subsets of §',

B is a mapping of IP into IP',

Y 1is a mapping of OP' into P, and the mappings satisfy

- the conditions:

(1) ¢8'[oa(s), B(1)]1 c ald8(s,i)], Vs ¢ S and 1 e IP;
(ii) y[A'(s")] = A(s), V s'e a(s).

Definition 2.4 (Hartmanis and Stearns) A machine M' dis said to be

a realization of machine M if and only if there is an assignment

(¢,8,y) of M dinto M'. If M and M' are state machines, then

we require mappings o and B satisfying condition (i).

Let M' be a realization of M through the assignment
(0,B,Y). It can be shown that M' started in a state of a(s),
behaves like M, under the interpretation of «a and B, started in

state s.

A sequential machine can be defined using binary variables.

Definition 2.5 (Hartmanis and Stearns) Input binary variables

X5 for 1 <i<m

IA
A

jsmn,

output binary variables Zyes for 1sk<r,

state binary variables yj, for 1

transition functions Yj: {(yl,...,yn,xl,...,xm)} » (0,1) ,
and output functions z, ¢ {(yl,...,yn)} + (0,1) define the

binary sequential machine, M = (S,IP,0P,5,)) where

(i) s = {(yl,e..yn)}, the set of all n-tuples on (0,1). The present
state of M is represented by the vector y = (yl,...,yn) and
Yn).

the next state by Y = (Yl,...,

(ii) IP = {(xl,...,xm)}, the set of all m-tuples on (0,1). The
input vector is X = (xl,...,xm).

(iii)oP = {(z ir)}, the set of all r-tuples on (0,1).

IEREEE
(iv) The next-state function is given by §(y,x) = Y(y,x), where
| Y(;’s;() = (Yl(§9§)s°"’Yn(§3;§))'
“(v) The output function is given by Ay) = z(y), where
2(7,%) = (2050002 ()

For any sequential machine, M, a binary sequential machine,
M*', can be devised such that M' is a realization of M. From M', it
is easy to construct a physical sequential circuit, of logic gates and .

memory elements, which imitates the behaviour of M.

Example 2.2

[N

Machine D' with the mappings (a,8,Y) is a realization

for M.
Y15, x=0 =x=1
00 014 11} O
10 forf{ 11 o
11 00 1mE 1
01 01 104 1
DI
a(l) = {00,10} g(a) = 0
a(2) = {11} B(b) =1
a(3) = {01} vy(0) =0
y(1) =1
Machine D' can be realized by the circuit in Figure 2.1.

a b A
3 2 r 0
1 2 1
3 1 1

D

$ B____q

|

_.*.;@..

o/

Figure 2.1

ks

The Boolean equations for the circuit are

Yl = f o |
‘Y2 = y2 + X y:L + xy1
Z = y2 :

Of special interest for realizing sequential machines

is the state behaviour realization.

Definition 2.6 (Hartmanis and Stearns) Machine M' is said to

realize the state behaviour of machine M if and only if M' realizes

M with an assignment (a,B,Y), such that o maps each state of M
onto a single state of M' and o is one-to-one. The mappings

satisfy_the following relations:

(i) §'[a(s), B(x)] = al8(s,x)], ¥ s € S and x € IP;
(ii) YIAT(a(s))] = A(s), V s e S.

‘State behaviour realizations ensure that only the

minimal number of states will be reQuired in the realizations.

Substitution Property Partitions

For some machines, a partition on the set of states can be
used to define a new machine, which performs a subfunction of the
original machine. The following definition provides a means of

characterizing this type of partition.

Definjition 2.7 (Hartmanis and Stearns) A partition = on the set

of states of the machine M = (S,IP,0P,§,)) 1is said to have the
substitution property (S.P.) if and only if for states s,t € S

s = t(mw)
implies that

§(s,1) = 8(t,i)(n), V¥V i e IP .

Obviously, the trivial partitions 0 and I are

S.P. partitions.

19

The submachine defined by an S$.P. partition w , is

represented as a state machine.

Definition 2.8 (Hartmanis and Stearns) Let 7w be an S.P. partition

on the set of states of the machine M = (S§,IP,0P,8,)) Then the

n~image of M is the state machine

Mwr = ({Bw},IP,87), where
Br are the blocks of partition w and § (Bw,i) = Br' if and

only if &(Bm,i) < Bw'

Example 2.3

=
[
>

0 N O W N

W s = o o e e w
w [~ W [oy oo |~
o im0 o o |lo o

M

Ty o= {1,2; 3,4; 5,65 7,8} is an S.P. partition
on machine M. Letting

B, = {1,2}, B, = {3,4}, B

| 1 3 = {5,6}, and VB4_= {7,8},
the state machine Mﬂl is defined as :
o N
Bl B2 B4
B2 Bl B3
By 1B | B
By 1B | B
Mw

For S.P. partitions, the operations of partition addition

and partition multiplication are closed.

Theorem 2.1 (Hartmanis and Stearms) If "1 and “2 are S.P.

partitions on the set of states of a sequential machine M, then

so are the partitions m; - m, and ot T,

For Example 2.3, partitions T, = {1,2; 3,4,5,6; 7,8} and
= {1,2,3,4; 5,6,7,8} are S.P. partitions.

= {1,2; 3,4; 5,6; 7,8}

!

'ﬂ'2 . TI'.3

=q is also an S.P. partition.

l .
m, = {1; 25 3,65 4,5; 7; 8} is an S.P. partition for M.

w, +

1t {1,2; 3,4,5,6; 7,8}

= T, is also an S.P. partitiom.

The binafy relation "<" forms a partial ordering of
the set of all S.P. partitions for a machine M. Since

my o+ M, = g.l.b.(my,m) and mtm, = liu.b. (m,m), the

1 1

partially ordered set (P,2) is a lattice.

N

Example 2.4 The S.P. partitions for machine M of Example 2.3 are:

™= {1,2; 3,4; 5,63 7,8}

T, = {1,2; 3,4,5,6; 7,8}

my = {1,2,3,4; 5,6,7,8}
L {1; 2; 3,63 4,5; 7; 8}
M = {1; 2; 3,63 &; 5; 7; 8}
M = (1; 23 3; 4,5; 6; 7; 8}

I

The S.P. partitions for a machine M can be calculated using an

iterative procedure:

(1) For every pair of states, x and vy, derive the smallest S.P.

partition = which identifies x and y.
3

(2) Obtain all possible pair-wise sums of the w_ . S.P. partitions.
b

(3) 1If any new S.P. partitions are produced, obtain all possible pair~

wise sums of the augmented set of S.P. partitions.
(4) Repeat step (3) until no new S.P. partitions are produced.

The T - partitions are derived by. identifying the states
b
x and y and then identifying states linked by the next-state

function &. This process is demonstrated in the following example.

Example 2.5

0 1 2
1 6 2 4
2 4 3 5
3 5 1 6
4 3 5 1
5 1 6 2
6 2 4 3

M

Calculate ﬂl,z

6(1,10) =6 and 6(2,i.) = 4, implies states 4 and 6 are

identified under input i Similarly, under input il, states 2 and 3 .

0

"are identified; under 1 4 and 5 are identified.

2’
The sets _ {1,2} and {2,3} are not disjoint. Therefore,
the next—state function identifies states 1,2, and 3. .
{1,2} v {2,3} = {1,2,3}). Similarly, states 4,5, and 6 are

identified.

Further states are identified by examining the states

implied by the sets {1,2,3} and {4,5,6}. Since {1,2,3} implies

{4,5,6} and A{1,2,3} and set {4,5,6} dmplies {1,2,3} and <{4,5,6},

no further states are identified.

The resulting partition, T, 0= {1,2,3: 4,5,6} dis an S.P.

partition for M.

Identifying states 1 and 4 produces the S.P. partition

T, = {1,4; 2,5 3,6}. No other nontrivial S.P. partitions can be

produced by identifying the states of S,

Adding and Ty producés the trivial S.P. partitiom I.

1

Thus, the only nontrivial S.P. partitions for M are Ty and T,.
; L

“2.3. Abstract Networks and Decomposition

In this section we will lock at some of the ways state machines
can be interconnected to form larger, more complex machines. Conditions
necessary for a large machine to be decomposed into a network of smaller

submachines are also presented.

Definition 2.9 (Hartmanis and Stearns) An abstract network, N, of

machines consists of:

(i) {Mi = (Si, IPi’ Si)}, i=l,...,n, a set of state machines

referred to as component machines;

(ii) IP - a non-empty finite set of inputs;

(iid) OP - a non-empty finite set of outﬁuts;

(iv) Si: (XSj)XIP+IPi, i 21, j £n, mnachine connecting rules;

(v) g = (%8,)»0P, the output function, where XSj represents a vector

cf states from the state sets of the M,.
P 1 .
There are two basic ways of connecting state machines

in .an abstract network, serial and parallel.

Definition 2.10 (Hartmanis and Stearns) For two state machines

Ml = (Sl,IPl,él) and M, = (SZ,IPZ,SZ), vhere IP2 = IPlx Sl’ a

X 8,70P,

2

set of output symbols OP with an output function A: Sl

the serial connection of M1 and MZ’ Mi<§3M2, is the machine

M= (Slx SZ,IBL,OP,é,A) where

8L(sy,s,)1] = [Gl(sl,i), 62(82,(1,51))] for

-]
all i e Ill, sl € Sl’ and s, € 82,

and A: Sl X 82 - QP.

(Gl(sl,i) and 62(52,(i,sl)) are the machine connecting rules.)

IP
A"
Y M
Sl "
My 2 i B 0P
-—-——-—-—-—-—?&-
o
Serial connection of state machines Ml and M2

Figure 2.2

Definition 2.11 (Hartmanis and Stearns) For two state machines

Ml = (Sl,IP,6l) and M2 = (SZ,IP,6), a set of output symbols OP with

an output function)\:S1 X 82 + OP, the parallel connection of Ml and

MZ’ Mllle, is the machine

M= (Sl X Sz’

6[(51’82)’i] = [Gl(sl’i)’ Gz(sz’i)]’ for

IP,0P,8,)), where

all i € IP, s, € § and s, € S

1 1’ 2 2’
and A: Sl X 82 -+ OP.
U
P A oP
N | S, o
?‘_._
¥ Mz

Parallel connection of state machine Ml and M2

Figure 2.3

A machine M has a serial decomposition of its behaviour

if MfC:DMz is a state behaviour realization of M. Similarly,
if Mllle is a state behaviour realization of M, M has a parallel
decomposition of its behaviour, The serial and parallel decompositions

of a machine are related to the S.P. partitions for the machine.

Theorem 2.2 (Hartmanis and Stearns) A séquential machine M has
a nontrivial serial decomposition of its state behaviour if and only
if there exists a nontrivial S.P. partition w on the set of states

S of M.

Example 2.6

>N W N e
o]l wis
ol w| e

"
7= {1,3; 2,4} dis an S.P. partition on M.

Representing {1,3} by a and {2,4} by b, the m-image

of M is
!
b a
a
Mm

In order to realize M as a serial decomposition using T,

another partition Tt such that = + T = 0 1is required.

Tes1T=0-= {1;5;5;2} implies that the partition information
contained in w® and T is sufficient to identify each state of

M uniquely.

To realize T, since T is not an S.P. partition, state

information from = dis required as input.

Let 1t = {1,2; 3,4; = {c; d}

(0%

d d d
d c c d c
Mt

Machines Mmr and Mt connected in serial realize M.

Theorem 2.3 (Hartmanis and Stearns) A sequential machine M has a
nontrivial parallel decomposition of its state behaviour if and
only if there exist two nontrivial S.P. partitions and 7 on M

1 2

such that ﬂl'wz = 0,

Example 2.7

S N

IiNnjfunio|wi s

Wil ddU oy

M

= {1,3,5; 2,4,6} and w, = {1,2: 3,4; 5,6} are S.P.

i
1
partitions for state machine M.

2

Let a = {1,3,5}, b = {2,4,6}, ¢ = {1,2}, d = {3,4} and

e = {5,6}.

The two m—-image machines are

io il iO i1
c e
> d c e
a e d
Mn Mw

27

Since w em, = 0, Mﬂl and sz connected in parallel

realize M.

These basic connections, serial and parallel, can be used

as building blocks to construct combinations of machine connections.

? One class of machine connections can be characterized as being ''loop-
free". That is, the flow of state information between the machines
never forms a loop, either directly or indirectly. The machine

connécting rules represent the state information flow between machines.

TP o e

IP

direct loop ‘ indirect loop z

i
|
|
i
H

Machine connections with state information loops

Figure 2.4

Hartmanis and Stearns define a class of sets of S.P.

partitions which do not contain superfluous partitions.

Definition 2.12 (Hartmanis and Stearns) A set of partitioms,

T = {ﬂi}, defined on S is nonredundant if and only if the w, are

e T,

distinct and for all T! c T and ﬂk

implies w, 2 w,, for some mw, € T'.
k i i

M{w.|w. e T'} <
J|J k

A nonredundant set of S.P. partitions can be shown to

correspond toa loop-free connection of component machines.

|

Example 2.8

H
oo
Pt
—
()
N
e
W
H
~

0 N 1w N
iV WA N
NN PN
Wik PFjwrunjo i
HiNWEPS] OV OO.
ANl oo NI M~ W

M

3
I

= {1,2,7,8; 3,4,5,6} ,

= {1,2,3,4; 5,6,7,8}, and

=
|

m, = {1,4; 2,35 5,8; 6,7} are S.P. partitions for M.

‘The set T = {ﬂl,ﬂz,w3} is nonredundant since Definition 2.12

is satisfied for 211 subsets of T.

e.g. H{wz,ﬂ3} =T, tTy

i E4 >

Ty > H{Wz,ﬂB} and Ty Z Mg,
nr

, > Hlﬂz,HB} and T, 2 Ty

Since ﬂi # H{ﬂz,WB}, it is not necessary to determine whether

oY T, = T,.

1 3

The connection of the machines is loop-free.

(0%
1?

T

=
Y

Since wl-wz-ﬂ3 = 0, the connected machines realize M.

2.4, Partitdion Pairs and Incompletely Specified Machines

Another possible way of interconnecting state machines involves
Y

the use of information loops. Decompositions of this type can be found

using the partition pair concept.

Definition 2.13 (Hartmanis and Stearns) A partition pair (w,7') on

the machine M = (8,IP,0P,8,)) is an ordered pair of partitions on §

such that

633
]

t(r) implies 6&(s,i) = &(t,i){(n') for all i e IP.

Theorem 2.4 (Hartmanis and Stearns) If (w,7') and (1,T') are

partition pairs on M, then

(1) (met, wtet') 1is a partition pair on M

(ii) (m+t, w'+1') is a partition pair on M.

Example 2.9

g 4 1, iy 2z
1fr] 2] 3} 4] 1
2 {31 4 1] 2| 1
sfe | 1] 4] 3] o
446 | 3] 2] 1] o

M

For M, (ﬂl,ﬂz) = ({1,2; 3,4}, {1,3; 2,4}) and

(mysmy) = ({1,3; 2,4}, {1,2; 3,4}) are

partition pairs.

Since = {1,2; 3,4} - {1,3; 2,4}= 0,

Tfl"ITZ

M can be realized as a non loop-free connection of Ml and M2.

IP :

M1 produces state partition Ty = {1,3; 2,4} from partition

T = {1,2; 3,4} and M

produces T from Toe

2
For a partition pair (w,m"') there is a maximal front
partition, M(m'), such that M(w') 27 and M(w"), ') is a partition

pair. Similarly, there is a minimal secend partision m(w), such

that m(w) < 7' and (w,m(m)) is a partition pair.

Definition 2.14 (Hartmanis and Stearns) If w is a partition on

S of M, let

it

m(m)

M(m)

il {ﬂil(ﬂ,ﬂi) is a partition pair on M} and

pX {nil(ﬂi,ﬂ) is a partition pair on M} .

The minimal partition, m(w), provides a means of justifying

the method of generating S.P. partitions presented in Section 2.2.

. .. o
Notation: For a partition 1 let m (1) = 1 and let

i (r) = m@m Y(r)), for 4 = 1.

Theorem 2.5 (Hartmanis and Stearns) Given a machine M with a set of
states S, there exists an integer K such that for all partitions
Ton S and k 2 K,

k

min{wr|{w =2 t has S.P.} = I mi(T) .
1=0

For some applications of sequential machines, some of the

next-state and output values may not have to be specified. Values
which do not have to be specified are known as don't-care conditions.

A machine which has don't-care conditions is said to be incompletely

specified.

Hartmanis and Stearns have applied the partition pair
concept to incompletely specified machines using two different
approaches, The first approach 1ea§es thedon't-care conditions blank
while the second arbitrarily gives each don't-care condition a unique

name.,

Definition 2.15 (Hartmanis and Stearns) If M = (S,IP,0P,8,A) is a

machine with don't-care conditions and 7 and T are partitions on §,

we say that (w,t) is a weak partition pair if and only if

szt (m) dimplies 6(s,i) = 8(t,i)(t) for all 1 e IP

such that 6(s,i) and &(t,i) are specified.

Weak partition pairs are closed under partition pair

multiplication but not partition pair addition.

Example 2.10

i, i1, i, =z
1 }4 1 3 -
2 - 2 4 0
3 |11 3 4 1
4 |2 3 - 0
M
(ﬂl,T) = ({1; 2,4; 3}, {1; 2,3; 4}) and
(nz,T) = ({1, 2,3; 4}, {I; 2,3; 4}) are weak partition pairs.

However, (wl,r) + (ﬂz,T) = ({1; 2,3,4}, {1; 2,3; 41

is not a weak partition pair for M.

The second approach uses named don't-care conditions C and
D, where next-state don't-care conditions are labelled with elements

of C and output don't-care conditions with elements of D.

Definition 2.16 (Hartmanis and Stearns) Given a machine

M= ($,IP,0P,8,A) with named don'tt-care conditions C and D, a
partition m on S and partition T On §$ U C, them (mw,T) is
called an extended partition pair if and only if s = t(m) implies

§(s,i) = 8§(t,i)(t) for all 1 ¢ ip.

Extended partition pairs are closed under both partition

'pair multiplication and addition.

Example 2.11 Naming the don't-care conditions of machine M in Example

2.10 with elements of C and D, where C = {cl,cz} and D = {dl}, gives

M‘

(ﬂl,Tl) = ({1; 2,4; 3},'ff; 2,3,c1; 4,c2}) and

(ﬂz,Tz) = ({1; 2,3; Z},'{l,cl; 2,3 Z}-E;}) are extended partition

3

partition pairs.

(ﬂl,Tl) + (ﬁz,Tz) =({1; 2,3,4}, {1,2,3,cl; 4,02}) is also an

extended partition pair for M'.

AL S ot

2.5 State Assignment Using Curtis' Algorithm

Curtis [8] develops an algorithm to derive state assignments
for sequential machines using the S.P. partitions of the machine. The
algorithm attempts to obtain an assignment that uses the smallest number
of state variables, with the least interdependence between variables.
fﬁ order to formulate rules for the algorithm, Curtis proves a theorem
which relates the ordering properties of self-dependent subsets of
states and S.P. partitions. Before stating the theorem, some notation

is introduced.

Notation: For a machine M = (S,IP,0P,8,)), we will use n to indicate
the number of states im S. Thus, the minimal number of binary state

variables needed to realize M is s = [1og2n].

Theorem 2.6 (Curtis) Let M = (S,IP,0P,8,)) be a finite state sequent-
ial machine with n internal states. There is an assigoment of the

s = [1og2n] binary state variables of M with two self-dependent

1 and SZ’ having the covering property 82 c Sl if and

only if there exists for M, partitions Ty and Ty with S.P., satisfying

subsets S

the conditions:

@) kﬂl +oumy = s; .
(2) sz + um, = 83

(3 Ty > T3

(4) kwl = kﬂz,ﬂl + kﬁz.

The rules derived from this theorem are essentially a logical
éxtension of the theorem to sets containing two or more S.P. partitions.
They are intended to ensure that only the minimal number of state
variables are used in any state assignment derived by the algorithm.

However, as will be demonstrated, this is not the case.

» To obtain assignments with the minimal number of state
variables, Curtis' algorithm first discards all S.P. partitions, m,

for which km + um > s. That is, partitions which will require more

than the minimal number of state variables are not used for state

assignment.

Next, the retained partitions are divided into groups de-
pending upon their k-value. The S.P. partitions with the lowest
k-values are termed the maximal partition candidates. Partitions with
the next lowest k-value are the first level submaximal partition
candidates, and so forth. The algorithm then selects a state assign-

ment from the various levels of partition candidates.
A brief description of the algorithm is now preéented.

(i) - Derive the set of S.P. partitions for a machine M;

(ii) Discard each partition for which km + uwm > s

(iii) 1If there are two or more retained partitions, order them
according to the size of their k-values;

(iv) From this ordered set determine the maximal partition candidates;

(v) Form a set of pairs of maximal partition candidates. Include
each pair (ﬁi,ﬂj) whose l.u.b. is I, whose g.l.b. is a member
of the retained set of partitions, and satisfies condition (4)

of Theorem 2.6,

kw,e w, = kw,, ,w,7w, + kn, = kw,,w,7w, + kw, 1
1 J i1] 1 J1r] J

(vi) Form a set of triples of maximal pértition candidates. Include
a triple (ﬂi,ﬂj,ﬂk) in the set if the pairs (ﬂi,?j),(ﬂi,ﬂk),
and (ﬂj,ﬂk) have been retained and the g.l.b. of (ﬂi,ﬂj,ﬂk) is
a member of the retained set of partitions and satisfies

condition . (4) of Theorem 2.6,

. . - . 4 = 4 3
kﬁi ﬂj T sz,ﬂi wj s kﬂz, 2 i,i,k

o

kw,emw, ,m,om, e, + kw, o,
i j°i i

J

[&S?

i

k
L] .A + T .l
wi . ﬂk kvl T

+ km.,ew
J

kw,emw
i

[
=

k,
S T Y k ' (2)
Quadruples, quintuples, etc., if they exist, are found in a

similar manner.

(vii) When no more combinations of maximal partitions can be found,

the first level submaximal partitions are determined.

Each pair of first level submaximal partition candidates

(ﬂi,ﬂj) is retained if its l.u:b. is a maximal partition
candidate and satisfies condition (4) of Theorem 2.6,

km,

i

kw,
J

its g.l.b. belongs to the set of retained partitions and

It

kw 4w, 7w, + kw47,
i j7 i i

kw 4w, 7, + kvr.+7r§. s
T 373 i]

satisfies (1).

Triples, quadruples, etc. of first level submaximal partition

candidates are determined in a similar manner.

(viii) Further levels of submaximal partition candidates are found using

‘rules (v), (vi), and (vii), with obvious modifications.

The k-value of a partition is a measure of its intervariable
dependence. Thus, by selecting the maximum number of maximal partitioms,
the algorithm derives state assignments which have the least amount of
intervariable dependence. When no more maximal partitions can be
inciuded in an assignment, S5.P. partitions with the next, least amount
of variable dependence are considered for assignment, and so on. In
this way, variables with greater variable dependence are only added if

necessary to obtain a state assignment.

Example 2.12

ISR S AR S R R~
Wl Wl O N

Mo~ W N H O
ol mirjo]l o
=l olololrlo

The S.P. partitions are

(o]
|
P
)
-
-
-
o
(O
-
ol
L
et

m, = {0,1; 25 3; 4,5}
Ty = {0,1,2; 3; 4,5}
My = {0,3; 1; 2,5; 4}
T = {0,1,%4,5; 2,3}
o = {0,1,3; 2,4,5)
T = {0,1; 2; 3,4,5}
™, = {0,1,2; 3,4,5}
I=1{0,1,2,3,4,5}

S.P. partitioms, Ty and T, are not retained since,

kr, + uyw, > 3 =8

kw, + uﬂz = 6 6

2

retained
partitions

I

m

K

m

W NN N H - O R

o A
w = N

The maximal partition candidates are L ﬂS, and ﬂ7. Since

T, + T = I, Ty * Mg = Ty and

. = + = - . .
k1r4 ﬂs kﬂ4 4 ﬂs kn4 kﬂ , ﬂs + kﬂ 2, (ﬂé,ﬁs) is a valid
pair of maximal partition candldates, Slmllarly, (ﬂ4,ﬂ) and

(ws,w7) are valid pairs.

The only possible triple of maximal partition candidates is
(HA,W5,ﬂ7). However, Curtis states that (ﬁa,ﬂs,ﬂ7) is not a

valid triple because

kﬂA'ﬁS'ﬂ7 = kﬂl = 2 + kﬁr4 4 ﬂb°ﬂ + kw4 5 =1

But 1,1, =T and ﬂ4'n M, = T

& 5 1 5 77 1

Therefore,

kﬂ4~ﬂ5,w4-ﬂ5~n7 + kﬂ4'ﬁ5 = kﬂ ™ + knl
=0+ 2
= 2
Thus, kﬂ4°ﬂ5'ﬂ kﬂ4°ﬂ5,ﬂ4'ﬂ5'ﬁ7 + kﬂa'ﬂs, contrary to

Curtis' calculations.

~ It can easily be shown that (ﬂa,ﬂ5,ﬂ7 satisfies condition

(2) and the other requirements of rule (vi)

kﬂ4’ﬂ5'ﬂ7 = kﬂA, 4‘ﬂ5 . + kﬁ4 =1+ 1=2
= kﬂs, 4'ﬂ5'ﬂ7 + kws =14+1=2
= kﬂ7,ﬂ4'ﬂ5'ﬂ7 + kﬂ7 =1+ 1=2
= k7w My oMy et Ty + k74 5 = 0+2=2
= kvr4 79Ty s T + kﬂ4 T, = 0+2=2
= k7 5°ﬂ7, /'ﬂs'ﬂ7 + kﬂs 7 =04+ 2 =2

No further sets of maximal partition canditates can be formed.

The only first level submaximal partiticn candidates sve
m and W3. The l.u.b. of LEY and Ty is Te, @ retained partition. Since,
kﬂl =2=1+1= kﬂl+ﬁ3 ﬂl+le+ﬂ3 and
kﬂ3 =2=1+1=kn +n3,w3+kﬂ 3,

_(ﬂl,ﬂB) is a valid pair of first level submaximal partitions.

As there are no more levels of partitions, the algoiithm ends

"producing a state assignment using the partitions {(Wa,NS,ﬂ7)(ﬂl,ﬁ3)}.

The lattice diagram characterizing this assignment is

Due to the miscalculation, Curtis derives two possible assign-

ments ’{(W4,ﬂ5),(ﬂl,ﬁ3)} and {(ﬂs,ﬂ7),(wl,ﬁ3)}.

The lattice diagrams corresponding to these assignments are:

The assignment .{(WA,HS,W7),(Wl,ﬁ3)} is not as economical

as either of the above assignments.
Thus, for this example, Curtis' method actually produces an
assignment with an extra partition. In the next section we will prove

that this problem is not isolated to the above example.

2.6. A Critique of Curtis' Algorithm

In Section 2.5 we indicated a problem with Curtis' algorithm.
In this section, this problem will be examined formally and.limitations
of the algorithm will be presented, The limitations-of the algorithm'
can be itemized as follows:
(1) The method cannot be applied to all machines with partitions;
(2)~‘fhe grouping of partitions is not straightforward;
(3) Some assignments produced contain supevrfluous partitions;

(4), All possible assignments for a machine are not.produced.

The first problem results from the selection criterion,

kv + un =8, used to fetain S.P. partifions., For some machines,

some or all of the S.P. partitions violate krm + pm = s.

-

T e e e

Example 2.13

i, il i, i,
1]2 3 4 1
2 _1 3 4 1
312 1 4 1
4 | 2 3 1 1
M

The S.P. partitions for M are

ﬂl.= {1,2,3; &4}
My = {1,3,4; 2}
Ty = {1,2,4; 3}
Ty = {1,2; 3; 4}
M = {1,3; 2; 4}
T = {1,4; 2; 3}

m
|
=
-
()}

Since, kwi +um, > 2 = [log24], none of the

partitions can be used to derive an assignment for M. However, the
set of partitions {Wl,ﬂz,ﬂ3} provides an assignment for M, since

e e, = 0,

T "M Ty

1
Using this assignment requires three state variables,

rather than the minimal two. However, the ability to decompose M

into three separate, smaller machines compensates for the use of an

extra state variable.

Curtis' algorithm depends upon dividing the S.P. partitions
into various groups and then selecting an optimum number of partitions
from each group. The use of the k-value of a partition to determine 1its

group -causes the second problem with the algorithm.
In formulating Rule 4 of the Algorithm, Curtis notes

"that no partition can contain a partition whose k
is of the same size."

However, a simple'counter—example demonstrates that this is

not always true.

Example 2.14 For a machine M = (S,IP,0P,8,)), where

s =1{1,2,3,4,5,6,7,8,9}, assume that = {1,2,3,9; 4,5,6; 7,8} and

= {1,2,3; 4,5,6; 7,8; 9} are S.P. ﬁartitions.

'Il'2

knl = kﬂz = 2, but m, is contained in LR As ™ _and i

are retained partitions, there is a problem as tc which groups

2

“1 and Ty belong.
Since, Ty and Ty have the same k~value, they should be
in the same group. However, =, > 7 which implies that should

1 2° 1

be in a group, one level higher than LPE
Thus, new criteria are required to group the retained partitions

of a machine.

In Section 2.5 it was shown that for the example chosen by
Curtis, the algorithm produced a decomposition with an extra S.P.
partitionn. Thus an assignment realized from this decomposition would

require more state variables than necessary.

Actually, it can be proved that whenever (ﬁi,ﬁj),(wi,ﬁk), and

(wj,ﬂk) are valid pairs, then (ﬂi,ﬁj;wk) will also be a valid triple.

Theorem 2.7 For a set of maximal partition candidates, the triple

(ﬂi,wj,ﬂk) is a wvalid triple of maximal partitions if
(wi,nj), (ﬂi,ﬂk), and (ﬂj,ﬁk) are valid pairs

aﬁd

Proof For (ﬂi,ﬁj,nk) to be a valid triple the following conditions

must be satisfied:

kﬁi°ﬂj-ﬂk = kﬂz’ni'“j.ﬂk.+ kﬂz , & =1d,j,k (L)

+ kw, ew, 2
i
= kﬂi-wk,wioﬂj-ﬂ + kwi-ﬂ_

3
k k
k,ﬂi'ﬂj'ﬂk + kwj-ﬂk

fi

km,emw, , T, W, T
i 37173 'k

(2)

= ki, T

(i) w.em,*W, = T,e¢W, T, T
i 'k i3 3k

men

=

et kT, e, oW, = kW
i j k

Since (Wi,ﬁj) is a valid pair, we have
kw,ew,= kw,,m,*n, + kw, = kn,, v, 7, + knu
i] i1 3 i jraoty T
However, this can be replaced by

km = kﬂi,ﬂ + kwi = kwj,ﬂ + kﬂj s

which in turn can be replaced by

1 L] - - L L T = o &

cwi Wj ﬂk kwi,wi ﬂj Wk + kwi kwj,wi ﬂj T + kﬂj .
Simiiarly,it can be shown that

gﬂivﬂj-ﬂk = kﬂk,ﬂi°ﬂj°ﬂk + kﬂk.
Therefore, kﬂi°ﬂj'ﬂk = kﬂz,ﬂi°ﬂj‘ﬂk + kﬁg, g2 =1,j.k.
(ii) ﬁi°ﬂj = o o= ﬂi°ﬂjfﬂk

Since, kw,m = 0
kw,em, ,w em, om, = 0.
13717
Thus, .
Ckw,em, L em, ok + kw,ew, = km,em, = k7
31 3] 1]]
and

kwi-ﬂj.ﬂk = kﬂi'ﬂj,ﬂi°ﬂj'ﬂk + kﬂi°ﬂj .

Similarly, kﬂi‘ﬁj‘ﬂ = kﬂi°ﬂk,ﬂi-ﬂj-ﬂk + kﬂi°ﬂk

k
= kwj-ﬂk,ﬂi-ﬂjfﬂk 4+ kﬁj°ﬂk .

Conditions (1) and (2) are satisfied and (ﬂi,ﬂj,wk) is a wvalid

triple of maximal partitiomns.

« 81 T, oW, = T, °W, = W,°* = ﬂ.'ﬂ.'ﬂr = 7, the triple
Since "5 PR ﬂJ ﬂk 175 M s e trip
(ﬁi,wj,ﬂk) realizes the same partition as the pairs (ﬂi,ﬂj),

(ﬂi,ﬂk), and (ﬂj,ﬂk), but at the expense of an extra partition.

Sets of S.P. partitions that do not contain extra partitions
can be characterized by the definition of nonredundant sets,
Definition 2.12. The following theorem proves that valid triples
of maximal partition candidates of the type described in the

preceding theorem are not nonredundant.

Theoxem 2.8 A valid triple of maximal partiticn candidates,

T= (n,,m,,7 for which

i k)?

3
T,oM, = W,eW = T, T, = T, is mnot a nonredundant set of
i j ik j k

S.P. partitions.

Proof

Assume that T is a nonredundant set of maximal partition
candidates.

Therefore, for (ﬂj,ﬂk)

if 7w, 2 w,°w,, then 7, 2T, o0orY W, = T, .
: i ik i j i k
Since M, oM, °W, = T, T, = T = W,*", .
13k . ik
Thus, T, 2T, Oor W, = T .
: i | i 'k

However, the partitions ﬂi,ﬂi, and Wk are distinct,

so ®w, >T®, or W, > T .
i i i k

Without loss of generality let T, ﬂj‘

Therefore, w,*m, =7
i 3

J
kw,,m,em, = kw,,m., > 0
i1 3 i’7]
kw,,m,om, = kwv,,m, =0
1.3 173
. kw,,w.em, > kT, , 7, °mW,.
i1) R |
Since kni = kﬂj = kﬂk,
kw, 4+ kw,, 7, %, > kw, + kw,,m, 7, ,
1 i" 1] 3 171 3

contradicting condition (1) in rule (v). .

Therefore, (ﬂi,ﬂj) is not a wvalid pair of maximal partitions,

contradicting our assumption that T = (ﬂi,ﬂj,ﬂk) is a nonredundant

set of partitions.

The above two theorems prove that Curtis’® algorithm will

-generate assignments with redundant partitions. In addition, it can

he shown that the algorithm fails, in a trivial way, to determine all

the valid nonredundant decompositions for a machine?

Example 2.14

W 0 N o it BN e

el
N O

[

0
2 2 3
3 4 5 The nontrivial S.P. partitions for
6 5 4 M are:
7 2 8
4 9 7 m, = {1,3,4,8,9,12; 2,5,6,7,10,11}
9 4 | 10 _
8 1] 11 m, = {1,4,12; 3,8,9; 2,6,7; 5,10,11}
2 {111 12
7 |11 1 my = {1,5,6,8; 2,4,9,11; 3,7,10,12}
1 8 2
112 9 6 T, = {1,8; 2,11; 3,12; &,9; 5,63 7,10}
6 6 9 '
1
m
i ﬂ3
2 .
T4
0

S.P. lattice for M

retained
partitions k
I 0
"
2
2
"3
"4
0 4
T is the only maximal partition candidate. The first level
. submaximal partition candidates are Ty and Ty
However, Ty and Ty do not form a first level submaximal
pair since the 1l.u.b. of Ty and ﬂ3 is not a maximal partition

candidate (rule (vii)).

That is, Ty + Ty = I and I is not a maximal partition
candidate. :

Thus, the decomposition (ﬂl,ﬂz,HB is rejected, even though
it is a nonredundant set of S.P. partitioms. Actually, (ﬂl,ﬂ9,ﬂq) is

the most economical decomposition that can be obtained for machine M.

2.7 Summary and Remarks

In this chapter we have formalized the definition of a sequential
machine and demonstrated how a machine may be realized by a sequential
circuit. The sequential machine concept is useful as it alléws us to
examine the behaviour of a sequential circuit, independently of the

physical device.

Hartmanis and Stearns' algebraic structure theory of sequential
machines is an examination of the structural properties of machines.
The properties of interest to this thesis relate to machine de-
compositions, and, in particular, to loop-free decompositions.

- Consequently, we have presented S.P. partition theory in detail.

An S.P. partition on a machine performs a subfunction of the

machine's behaviour. An S.P. partition can easily be realized as a

b

T~image, or submachine, of the machine. The submachines,

corresponding to S.P. partitions, can be interconnected in either
a serial or parallel fashion. Using these two basic connections,
a large sequential machine can be decomposed as a network of

interconnected submachines.

The problem of determining which S.P. partitions to use to
decompose a machine has been examined by Hartmanis and Stearns. They have
proved that decomposition without redundant machines can be obtained by selecting
a nonredundant set of the S.P. partitions. However, the only method
they provide for deriving nonredundant sets is inspection of the S.P.
lattice. For machines with é small number of S.P. partitions, this
is a satisfactory method. But, as the number of S.P. partitions
increase, inspection becomes a tedious and error-prone task. Also,

the inspection method does not lend itself to a computer implementation.

Curtis' attempt at developing a method for decomposing
sequential machines has been preéented. A critical examination has
revealed that problems with the algorithm restrict its usefulness for
obtaining decompositions. The difficulties in the algovithm grise
from the following sources:

(1) An attempt to obtain absolutely minimal decompositions.

(2) The imposition of an artificial structure on the

S.P. partition lattice.

In trying to derive state assignments with the minimal number
of variables, S.P. partitions which violate the condition km + U = 8
are rejected by Curtis® algorithm. As demonstrated in the previous

section, this severely limits the generality of the algorithm.

The condition, kw, = kﬂz,ﬂl + sz, where w, > 7 of

1 2 1

Theorem 2.6 is intended to ensure the minimal number of state variables

when realizing two S.P. partitions together. However, this is not a
sufficient condition when expanded to include sets of three or more

partitions. Consequently, exclusive reliance on this condition

results in inereasing the number of state variables, rather than

~ensuring the minimal number.

Grouping S.P. partitions based on their k-value is an

artificial ordering of the S.P. partition lattice. As demonstrated

in Section 2.6, there are partitions which cannot be classified
properly using this ordering. Similarly, the rule that pairs of first
level submaximal partitions are retained only if their 1.u.b. is a
maximai partition, assumes a symmetrical lattice. However, the
unsymmetrical structure of most lattices limits the application of

this rule.

It is possible to make modifications to Curtis' algorithm
to handle some of the above problems. However, it is felt that this

would further complicate an already unwieldy algorithm.

In the following chapter, a detailed algorithm for
decomposing a machine with S.P. partitions is developed. The
algorithm provides a systematic method for generating nonredundant
sets of S.P. partitions. As a result, the algorithm can be applied
to machines with a large number of S.P. partitions and is easily

automated. In addition, the problems associated with Curtis'

(.

C nectT cceur.

algorichm

Chapter 3 Nonredundant Sets of Substitution Property Partitions

3.1 Introducticn

Hartmanis and Stearns [31] have proved that a nonredundant
set of substitution property (S.P.) partitions, T = {ﬂl,‘,Q,ﬂn} for a

machine M such that I T, 0, provides a decomposition of M that does
ﬂieT

not contain any redundant submachines. The only method given by Hartmanis

~and Stearns for constructing a nonredundant set of §.P., partitions is

"inspection™ of the S.P. lattice. This is an adequate method for a logic
designer dealing with a small S.P. lattice. However, as the number of S5.P.

partitions in a lattice imncreases, an algorithmic method becomes necessary.

In the following sections we derive various properties of
nonredundant sets. These properties are then used to derive an
algorithm for obtaining the nonredundant sets of S.P. partitions of
a machine. The application of the method to sequential machine '

decomposition is demonstrated. with examples.

3.2 Properties of Nonredundant Sets of S.P. Partitions

.The definition Hartmanis and Stearns give for nonredundancy
(Definition 2.12) is more general than is fequired. Testing for non-
redundancy using their definition entails some unnecessary computations.
Consider the case where H{ﬂjlﬂj e T'} < T and T € T'., Hartmanis
and Stearns' definition requires that tests be performed to determine
whether T 2 Tos for some ™, € T'. Clearly, this test is not
necessary since T € T'.

The following theorem allows us to restate the definition

e

of the nonredundant sets more rigorously.

Theorem 3.1 A set of partitions,
T={m},
i

defined on S for machine M = (S,IP,0P,8,A) is nonredundant

if and only if the m, are distinct and for all T' ¢ T, T € T
' ' - .

and ™ ¢ T, H{njlﬂj € T'} < T implies m > 7., for some

m, ¢ TY .
i

Proof (a) Assume T = {wi} is nonredundant. Therefore, for all

. 1 \] 1 5 g >
€ T and e % T H{wjlnj e T'} < Ty implie ez T for

T' ¢ T,

1

k
t
some wi e T'.

Since m ¢ T' and the {ﬂi} are distinct

by 7w, for some W, € T'.
k + i i

Therefore, H{wj[ﬂj € T'} £ 7, implies w, > Tis for some w, ¢ T',

k k i
Assume H{w.{w., e T'} =
JI J k
; L]] ' —3 L]
o e ™ H{ﬂjlﬂj e T'} ™t
H{ﬂ,|ﬁ, e T'}l = 7,
J] 1
e ™ "M
. T < w,, which contradicts m, > w,.
i , k i

Therefore, for all T' ¢ T, ™ € T and ™ é T',
implies m, > T for some T, o€ T'.

Mo, |7, e T'} < 7
J| h k

k

(b) Assume the {vi} are distinct and for all

1}
T > T

v - ! e s s
¢ T, and m ¢ T°, K{ﬁj|ﬂj e T'} < ™, implies
€

'.'!k <~
for some w, e T'. Trivially, for all T'c T, m e T, and m ¢ T

I'LS s . > l.
n{wjlﬂj e T'; T implies T 2 Ty for some m € T

We must show, that for all T' c T, T € T and Hk e T'

~ 1 < . . >) .
H{ﬂjlﬂj e T'} < m . implies m =T, for some m, € T

This can be easily shown by observing that T = Ty for

] .
some wi e T' (i.e. ﬂk).

Therefore, the set T = {ﬂi} is nonredundant.

Definition 3.1 A set of partitions T = {ﬁl,...,ﬂn} which is not

nonredundant is said to be redundant.

Hartmanis' and Stearns' definition of nonredundancy will

- be used to prove the following theorem, which establishes a

sufficient condition for a set to be redundant. In future, however,
the definition of nonredundancy established in Theorem 3.1 will be used

in proving theorems and testing for nonredundancy.

B

Theorem 3.2 A set of partitioms,

T = {w.},
1

defined on S for machine M = (S,IP,0P,8,x) 1is redundant if for ome

T"eT, m €T, and m ¢ T,

m{m, |n, ¢ T'} =,
i .

Proof If the set T = {ﬂi} is to be nonredundant, then L zm,,
for some m € T'.
Since T = {ﬁi} is a set of distinct partitions, we must have

m, > w,, for some T, € T'.
k i i

i
=
=2

meT{w, |7, € T'}
1 J 3

i
=3
3

)
H{ﬂj]ﬂj e T'} 1M

Therefore, L > ﬂk’ which contradicts T > L Thus, the set

T = {ﬂi} is redundant.

As will be shown later, nonredundant sets of partitions can be
derived from pairs of nonredundant partitions. Initially, however, we
need a lemma establishing conditions for a pair of partitions to be

nonredundant.

Lemma 3.1 A set of two partitions T = {ﬂi,ﬂj}, for machine M is

-nonredundant if and only if the partitions L and ﬂj are distinct.

Proof The proof is obvious.

An essential result for our algorithm is proven next.

Theorem 3.3 For a set of partitions,
T={n1},
i
which is nonredundant, any subset T" ¢ T is also a nonredundant set

of partitioms.

Proof Let T' be a subset of T" such that

TV e 7" <« T,

Since T is nonredundant for w, € T and T 4 T',

k
H{ﬂjlﬁj e T'} <
7, € T'. (Theorem 3.1).

implies” w, > ni' for some

k k

Since T" ¢ T, for T' ¢ T", mw

K € " (ﬂk € T) and

e ¢ T' then

implies w, > w, for some mw, ¢ T'.

|
H{ﬂjlﬂj e T'} < K i i

k

Therefore the set T" is nonredundant.

The following theorem provides the basis for an algorithmic
method to generate nonredundant sets. Essentially, the theorem proves
that it is possible to obtain nonredundant sets by combining non-

redundant sets which satisfy certain conditions.

Before the. theorem is presented some notation is necessary.

Notation For a set T = {ﬂi,...,ﬂn}, we will use Ti to denote a

subset of T such that,

T,
i

Ty seeesTy gs TyppoeesTyd

Theorem 3.4 A set of distinct partitions,
T = {=m ..,ﬂn} ,

is nonredundant if and only if the subsets Ti’ for i=1,...,n, are

nonredundant and for each Ti’

m{n, |7, e T,} < m, implies w, > m, for some T, € T,
J°] 1 1 1 J J 1

Proof If T is nonredundant, then obviously each subset Ti’ for

i=1,...,n, is nonredundant and

1 i’ for some ﬂj € Ti .

If the Ti’ i=1,...,n are nonredundant, then by

n{n |7, € T.} < m, dimplies w, > m
R R B i

Theorem 3.3, all the subsets of the T are nonredundant. Thus, for

i

all subsets A < T, which consist of =n ~ 2 partitions or less,

T €T and w_ ¢ A, then
a a

'H{W.{W, € A} < w implies w_ > w, for some w, € A.
3 3 a a 3 J

Thus, if we have n nonredundant sets of n ~ 1 partitions
Tl,‘ﬁ;Tn, such that for i=1,...,n,
m{m. |n, € T.} < m, dmplies n, > w, for mw, € T,
‘ it i i i 3 N i
then the set T = Tl\u TZ U .. U Tn is nonredundant.
3.3. A Method to Generate Nonredundant Sets

Since, from Lemma 3.1, all sets of two distinct partitions are
nonredundant, the nonredundant sets of three partitions can be obtained
by applying Theorem 3.4. Similarly, from the nonredundant sets of three
partitions, we can derive the nonredundant sets of four partitions, and
so on. A basic algorithmic method for generating nonredundant sets is

now presented.

Algorithm

(1) For a set of partitions P, first obtain all the products of pairs

. of partitionms.

(2) Each set of three partitioms, T, is tested for nonredundancy

by testing whether

H{ﬂ,[w, € T.} < w, dimplies w, > 7, for some m,6 € T,, for i = 1,2,3.
it i i i i i i

There are four possible situations that can occur in performing the

above test:

(1) H{ﬂjle € Ti} = for some T € Ti' obviously,
if T H{ﬂjlﬂj € Ti} = T then w, > m, for some
T, € Ti(i.e., T, = ﬂk).
(ii) if H{ﬂjlﬂj € Ti} > M, then the above test need not Y

be performed.
(iii) 1f H{ﬂjlﬂj € Ti} =T, then by Theorem 3.2, the set T
is redundant..

(iv) Thus, we need to test whether T > ﬂj for some ﬂj € Ti

only if T{m |m, € T,} < m .
i3 i i

(3) The sets of four partitions, T, are tested for nonredundancy by:

(i) Ensuring that all subsets of three partitions are nonredundant.

(ii) Determining whether

H{ﬂjlﬂj € T£} <m, implies w > " for some m o€ T
for i = 1,2,3,4.
(The four possible situations mentioned in Step (2)

apply equally in this case).

(4) The sets of 5,6,...,n partitions are tested for nonredundancy

in a manner similar to Step (3).

(5) When no further nonredundant sets can be generated, the

algorithm ends.

The algorithm given above is applied to the machine used by

Hartmanis and Stearns ([311] pp. 102-103) to demonstrate nonredundancy.

Example 3.1

S T T -

1 {211l 5]813

2 {11267 |4

| 31 4 31616 |1
3 41 314l 55 |2
51516 | 31145

6 | 6 15| 4l 3|8

71 718142 1|5

8 i 81713116

A

The S.P. partitions for state machine A are:

0=m = (1; 2; 3; 4; 5; 6; 7; 8}
i, = {1,4; 2,3; 5,8; 6,7}

Ty = {1,2; 3,4; 5,65 7,8}

m, = {1,2,7,8; 3,4,5,6}

Mg = {1,2,3,4; 5,6,7,8}

Te = {1,2,3,4,5,6,7,8}

The S.P, lattice for A follows.

All sets of two partitions are nonredundant. Test whether

{nl, Tys ﬂ3} is nonredundant
™My =M
By step 2(ii), if Ty > MyeMy = T, then
Ty > M for some m_ € {wl,ﬂz}.
Similarly, for ﬁl-ﬂ3 = ni.

However, for {ﬂz,w3}, we have that
Tyelig = Ty .
Therefore, by Theorem 3.2, the set {Wl,ﬂz,ﬂB} is redundant.

Test whether {ﬂz,ﬂ3,ﬂ5} is nonredundant

ﬂ2'ﬂ3 = ﬁl < ﬂs and ﬂs > ﬂ3 and ﬂs > ﬂz

]

ﬁ2°ﬂ5 ﬂz and ﬂ3‘ﬂ5 = ﬂg.

2,ﬂ3;ﬂ5} is nonredundant and is retained in
order to generate the nonredundant sets containing four partitioms.

Therefore, the set {w

The determination of all the nonredundant sets for machine A is

illustrated below.

- 54

Ty 5T K ommymy "1 T M1
"lWB =7 X ﬂ1ﬂ2ﬂ4
"1“4 = ﬂl “1”2“5 = Wl X ﬂlﬂ3ﬂ4ﬂ5
Tyl = Ty T TyTe = Ty MMM, T = Ty
™6 T T
| . : ﬂlﬂ3W4 =T
; ﬂ2ﬂ3 = ﬂl ‘ﬂlﬂ3n5 = “l ﬂlﬂ3ﬂ5ﬂ6 = wl
Ty, = Ty M Ml = T
: Ty = T,
@ TyMe = T, MM 5Ty MM e = Ty
? MMM = T
% T3y = T3 ToM3T5Te = Mg
MaTe = Ty MMM = Ty
- "3 T T3 | - T2"4"sTe = 1
i X ﬂ2ﬂ3ﬁ4
! Vﬂéﬁs = HB ﬂ2ﬁ3ﬁ5 = ﬂl
e T Ty Mol = Ty
| BT = g Ty, T = 7
MM, Mg = T
T2Ts"6 T T2
X ﬂ3ﬂ4ﬂ5
| Ty, T = Ta
f? MMM = Ty
;? T TeTe = Mo

Sets of partitions without an "X" beside them are nonredundant.
As can be seen there are a great number of nonredundant sets of S.P.

partitions. Thus, to pick an assignment for machine A based on these

nonredundant sets would be difficult.

Fortunately, many of these sets can be discarded. Tor example, the
set {ﬂz,HB,ﬂ6} does not give us more information than the set {ﬁz,ﬂ3}.
In fact, all the sets which contain either Ty = 0 or Te = I are
superfluous and need not be considered. The theorems given in the

following section establish this.

3.4 Further Properties of Nonredundant Sets

In this section some properties of nonredundant sets are developed
which further simplify the generation of nonredundant sets. The theorem
given below proves that a partition w can be added to a nonredundant
set, T, and-the augmented set T u {w} be nonredundant, if = is greater

than all the partitions in T.

Theorem 3.5 Let P = {ﬂl,...,ﬂn} be a set of distinct S.P. partitions.

If for a nonredundant subset, ¢ P, there exists an S.P. partition

T
v 0
™ ,m € P and % T , such that ©™ > 7,
a’ a : a 0 a i

subset T = T0 U {ha} is also nonredundant.

s Vﬂi € TO’ then the

Proof We must show that for any subset T', T' ¢ T, that if

. 1
™ € T and M % T', then

implies mw, > m, for some w, € T'.
k P k i? i

(1) For T'cT and m ¢ T' (i.e. T' cTp)
o . (a) For T + ™ then T' v {Wk} cT Since T is

H{ﬂj[ﬂj ¢ T} <.w

0° 0
nonredundant, the condition holds
b For w, =T since m, =7 > 7 ¥ym e T
() k a’] k j’ 0’
mo=T {m |7, € T'} and m, > 7, for some w. e T'.
k iti 3 J

(2) For T' ¢ T and T, € T'.

Assume

H{ﬂj|ﬂj € T'} < LN for m €T and m & T
H{Trj|1rj e T'} =1 {Trj'lﬂj € (T'—{ﬂa})} » since w > m., Vm o€ T..
Since (T' - {ﬂa}) c TO and TO is nonredundant, there exists a
T, € (1T' - {ﬂa})9 LR S

Therefore, there exists K a T, € T' 3. T > .

Thus, the definition of nonredundancy holds for all cases,

and the set TO U {ﬂa} is nonredundant.

Corollary 3.5.1 For ény nonredundant set of partitions,

= 1M, 4es4,T_J, Where s the set = U is
T = { 1 n} h I¢T h T, =T {1} 4

also nonredundant.

Theorem 3.5 is used to generate nonredundant sets in the next example.

|
|

Example 3.2

Iy 4

11 3 7 S.P. partitions for m

2l 4 g L {1,2; 3,4; 5;6; 7,8}

311 | 6 m, = {1,2,3,4; 5,6,7,8}
AR ny = {13 25 3; 4,5; 63 7; 8}

5{2 4

6l 1 | 3 T, = {1,2; 3,4,5,6; 7,8}

714 4 Ty = {1, 2, 3,6; 4; 5; 7; 8}

813 > L {1; 2; 3,65 4,5; 7; 8}

M

4 2
"6
5 kb

S.P. lattice

The set T0 = {ﬂ3,ﬂ5,ﬂ6} is nonredundant.

Since T, >7,, Vm, € T the set

i i 0’

TO U {ﬂA} = {ﬂ3,ﬂ4,W5,W6} is also nonredundant.

In this case, the standard tests for nonredundancy need not be

performed as Theorem 3.5 applies.

In addition, the tests for nonredundancy need not be performed
when the partition to be added to a nonredundant set is less than the

product of all the partitions in the nonredundant set.

<

Theorem 3.6 Let P = {Wl,.‘.,ﬁnf

If for a nonredundant set TO c P, there exists an S.P. partition

T, " €P and 7 i T, such that
a’ a a 0

<

be a set of distinct S.P. partitions.

H{ﬂjlﬂj € TO} > T

then the subset T = TO U {ﬂa} is also nonredundant.

Proof (1) For all subsets of T, T' c T, such that L % T!
. T 3l
(1.e.- T ¢ 10)

Assume

{r, |7, € T'} < m,_ for
J° 3

. v
K x € T and T % T".

) ; >
(Obviously m 1 m, ~since H{ﬂj[ﬂj € TO} ﬂa)

Since TO is nonredundant, L >_ﬂi for some T, € T'.

(2) For T' ¢ T such that T, € T!
Assume

I{w.|w, ¢ T'} < =
JlJ k

. 5
Since m_ e T' and H{ﬂj[w. € TO} >
7 =T{m, |7, € T'} <=
a '3 k

e w, > mw,, for some w, € T'. i.e., 7_.
k i i a

Thus, the set T =T, U T is nonredundant.

0.

Corollary 3.6.1 For a nonredundant set

T = {7

l,...,wn},
such that H{ﬂjlﬂj € T} + 0, the set

T u {0} is also nonredundant.

Theorem 3.6 is applied in the example given below.

-

L."a1

~~d

Example 3.3

iO i] S.P. partitions for machine M
1 31 7 w, = {1,2; 3,43 5,65 7,8
2 4 8 . 71'2 = {192,334; 596:778;
3 1 6 . o
4 5 |5 Ty = {1; 25 3; 4,5; 6; 75 8}
5 2 4 L {1,2; 3,4,5,6; 7,8}
61 3 n = {13 2; 3,65 &5 55 73.8)
7 4 4 R L
8 3 3 Te = {13 2; 3,65 4,5; 7; 8}

M-
I

T, 9

T i

s 1

0
S.P. lattice

The set Ty = {ﬂ4,ﬂ6} is nonredundant.
Since Ty < H{ﬂjle € TO}, the set

TO U {ﬂS} =A{ﬂ3,ﬂ4,ﬂ6} is also nonredundant.

Obviously it is not necessary to consider the nonredundant

e

pairs containing the trivial partitions, O and I, when deriving the
nonredundant sets for a machine. Removing the partitions 0 and I,
our new derivation of the nonredundant sets for machine A,

Example 3.1, follows.

Example 3.4

“ = 77 ’ i ' T =
n2ﬂ3 11 X ﬂ2W3T4 ﬂl
T ﬂ4 = wl v2ﬂ3w5 = ﬂl
i ﬂS = ”2

Wzﬂaﬂs - ﬂl

ﬂ3ﬁ4 = w3

ﬂ3ﬂ5 = w3 X W3ﬂ4ﬂ5 = ﬂ3
4" T T3

Adding O(Wl) to those sets whose product is not 0,
we obtain: _
{“1’“2’“5}’ opsmgam, by Ampsmgomgdy dmp,m,med, sy,
{ﬂl,w3}, {ﬂl,ﬂ4}, and {ﬂl,ﬂs}.
Thus, the determination of all the decompositions of machine A

has been considerably simplified.

The following theorem permits further simplification of
the algorithm.

Theorem 3.7 Let T = {w ﬂn} be a set of =n distinect partitions

: 1000
such that the subsets Ti’ i=1,...,n, are nonredundant, If

mi{n, |7, € T.,} = =, for i=1,...,n,
J] 1

then the set T is redundant.

n
Proof Assume that T = U Ti = {ﬂl,...,ﬂn} is nonredundant.
i=]

Since N{m, |m, € T.} = m, for i=1,...,n
J] 1

then

Assume ﬁi = 9

59

Therefore, by Theorem 3.2, the set T = {ﬂl,...,ﬂn} is redundant.

. ™ >w, for di=1,...,n.

For m > o= {leﬂj € Tl}, then L Wj for some Nj 13 TI

Renaming the partitions MosewesT such that My Ty
4

Since T, > T, we must also have Ty > ﬂj for some ﬂj € TZ'

partitions Masees,T in T2 can be renamed so <that Ty > 7,
. i Y

The

This process can be continued for all ﬂi,i=l,...,n. At no

point can there be two partitions, T, and ™ such that

mT. > ﬂm, where & > m

L
since, for m < &, it has been established that 7 > 7 for
m mt1
Tkl € Tm.
Thus,
> ... > = i <
T > L Tk = Too if m L

Therefore, we have that m_ > m, and mo >, which is contradictory to
: m m

our assumption that the m, are distinct.

Thus, for all L

! > .
Ty Ty for Mgy el

However, for i = n, we cannot have

Thus, at this point m > nm, where m < n. As shown above,

when this occurs, our assumption is contradicted.

Thus, the set of partitions

T = {ﬂl,,..,ﬂn} is not nonredundant.

Note that Theorem 3.7 is an extension of Theorem 2.8 to the
tuplesd
=Pl

case where n 2 3 and the assumption of wvalid is not made.

. The usefulness of Theorem 3.7 is demonstrated in the following example.

Example 3.5

0~ O W N

i, 1
8 2
6 | 1
7 4
5 3
1 3.
3 | 4
2 1
4 2

3

The S.P. partitions are

5
§

1l

i

S.P. lattice for C

= {1,2,3,4; 5,6,7,8)

(1,4; 2,3; 5,8; 6,7}
{1,4,5,8; 2,3; 6,7}
(1,4;2,3,6,7;5,8}
{1,4,5,8; 2,3,6,7}

nlﬂz = nz ﬁlw2w3
ﬂlw3 = ﬂz Wlﬂ2ﬂ4
ﬂlWA = ﬂz “1“2"5
s = M
X ﬂlﬂ3ﬂ4
ﬂzﬂ = q X nlﬂ3ﬂ5
ﬂzﬂ = ﬂz
T ﬂS = ﬂz X ﬁlﬂ4ﬂ5
W3ﬂ4 ='ﬂ2 X ﬂ2ﬂ3ﬂ4
n3ﬂ5-= w3 v ﬂ2w3w5 = “2
W4ﬂ5 = w4 Y ﬂzﬂaﬂs = ﬂz
v ﬂ3ﬂ4ﬂ5 - ﬂz
For T = {ﬂl,WB,ﬂ4} since

H{ﬂj]wj € Ti} =, for i = 1,3,4, the set T is redundant.
Similarly, we can show that {ﬂl,ﬁz,ﬂ3}, {ﬂl,ﬂz,ﬁ4}, {ﬁl,ﬂz,HS}, and

{ﬂz,ﬂB,ﬂ4} are redundant.

3.5 Discussion and Further Examples

In this section the universality of the algorithm developed in
Section 3.3 is examined. Curtis' . algorithm was severely restricted,
as partitions for which kw + um > s were not considered. Our algorithm,
hdwever, includes all S.P. partitions when deriving loop-free decompos-

itions and does not make this restriction.

Retaining all the partitions produces a greater number of non-
redundant sets. However, as demonstrated in the example below, it is
sometimes necessary to retain all the partitions in order to produce

a decomposition.

Example 3.6

g 3 1, i,
1 (2 3 4 | 1
2 11 |3 |4 |1
3 {2 |14 |1
412 |3 |1] 1

M

The S.P. partitions and lattice for M are:

1
T, = {1,3,4; 2} I
M, = {1,2,4; 3}
™, = {1,2; 3; 4}

The generation of the nonredundant sets follows (only

nonredundant sets will be listed):

MMy = Mg TyTyTa
MMy =T LS
Ty, =T, Ty Te
"1"s T s
ﬂlﬂé =0 T Mo
‘ T 3T
M)y = T
Moy = 0 LA
MyTg = Mg
MyTe = Te LU
MMyl
3Ty T Ty
Tyl = T, TeTe
"3"6 = e
T, e
Ty = 0
L P
TeMe = 0

For machine M there are no decompositions which can be realized

with the minimal number of state wvariables.

For example, the decomposi~

tions {ﬂl,ﬂz,ﬂB} and {ﬂa,ﬂs} require 3 and 4 state variables, respect-

ively. However, if the partitions for which kw + uwm > s were not

retained, no decompositions could be found.

Next the algorithm is applied to the example used by

Curtis [8]

and presented in Example 2.12.

Example 3.7

The S.

It

o

1

I

]

I

{0,1,4,5; 2,3}

{0,1,3;2,4,5}
{0,1; 2; 3,4,5}

{0,1,2;3,4,5}

T3T5"e
T3TsTy

. partitions for the machine are as follows:

S.P. lattice

|
|
!

TyTs = ki
T = Ty
MMy =
TeMe = Ty
Mg, = My
MM, = Mg

Nonredundant sets whose product is not 0 can be augmented

with O to produce a decomposition for M.

The two solutions Curtis lists have been found by our algorithm.
These sets are {ﬂ3,ﬂ4,ﬂs} and {W3,WS,W7}, The partition m is

not included in these sets as its inclusion would make the sets

) I - © = . © = i
redundant. But LA Ty and Mgy ﬂlf Thus, m, is

5

effectively included in {ﬂs,ﬂa,ﬂs} and {ﬂ3,ﬂ5,ﬂ7}.

In Examples 3.6 and 3.7 there were many possible decompositions
for each machine. The choice of the best decomposition requires an ex-
haustive examination of all decompositions. In the following chapter
two possible algorithmic methods of evaluating decompositions are
examined.

In'deriving a decomposition for a sequential machine, two additionai
problems should be considered. These are the derivation of output functions
and the enhancement of the S.P. structure of sequential machines. These

problems and their relation to the decomposition algorithm of this chapter

are discussed briefly below.

Algebraic structure theory provides techniques whereby the state
variable dependency of the output functions can be reduced, Hartmanis
and Stearns [31], Kohavi [42]. To do this it is necessary to find
partitions on the set of states, such that the outputs for all states
in a block are the same. Partitions of this type are feferred to

as output-—-consistent partitions.

i 2BV N A o

Examplé 3.8

0 1 =z
1012 14 1‘
2 11 1380
314 114 0
4 13 124 1

M

For M, t = {1,4; 2,3} is an output—conéistent partition since the
outputs for 2 and 3 are the same. The partition w = {1,2; 3,4} is an
S.P. partition. Since mweT = 0, M can be realized using 7w and T.
Thus, a decomposition which reduces both state and output variable

dependence can be obtained.

Unfortunately for many machines there is either a conflict between
the reduction of state variable dependeﬁce and the reduction of output
variable dependence, or mno output variable dependence reduction is possiblé.
Because of this conflict, the decompdsition method has concentrated on
obtaining state variable dependence reduction and ignored the output
functions. However, once the decompositions have been derived; output
variable dependence reduction may be obtained using the techniques of

Kohavi.

For some sequential machines S.P. partitions do not exist, or if
they do their structure does not permit ecpnomical decompositions.
One reason for this is that structure can be lost as the machine is reduced.
That is, as redundant states are deleted, the structure of the machine is
destroyed. Examples. illustrating this can be found in Hartmanis and

Stearns [31] and Kohavi [43].

Subséquently, to add structure to a machine it may be necessary
to split some of the existing states. The set systems of Hartmanis and

Stearns enable us to work with multiple copies of a state.

Definition 3.2 A collection of subsets A = {Bi} of S is called a

'

=
Hh

set system on S if and only

(i) U B, = S;

.

11) B, < B. implies i = §.
(i) 1 S By P h|

For a machine with no S.P. partitions, set systems which have $.P.
can be derived. Thus, the machine can be given a structure and subsequently
decomposed. Essentially, set systems with S8.P. indicate the states of the
machine that have to be split in order to induce styucture. Once the S.P.
set systems are found, the states which appear more than once in the set
system can be split to give a machine with unique states. The decomposition

method presented in this chapter can then be applied to the new machine.

Example 3.9

*_.I
= W | o
W IN [N
= olo - In

M

For machine M, A = {1,3; 2,3} is a set system with $.P. By
splitting state 3, an equivalent machine, M', with 4 unique states

can be defined

1 =z
1 1
2 2] 0
3" |1 3" 1
N I A
. -

For M', w = {1,3"; 2,3"} dis an S.P. partition.

Chapter 4 Programming and Evaluation Techniques

4.1, Introduction

This chapter is concerned with two aspects of the method for
generating nonredundant sets. presented in the last chapter;
implementation of the method and evaluation of the nonredundant sets

produced.

One of the problems of implementation involves determining
an efficient method for representing the relatiohships between S .P.
partitions. This is because the S.P. lattice representation becomes
complicated when a large number of S.P. partitions are considered.
A tabular representation is introduced and demonstrated to be a
convenient means of representing the ">" relationships between
partitions. In addition, other useful properties of the table are

derived.

The usual method of evaluating a state assignment consists of:
(i) finding a minimal realization in terms of AND, OR, and NOT gates;
(ii) counting the number of diodes necessary and using this as a measure

of the assignment.

There are several probléms associated with this evaluation
technique. _

(1) 1t is device dependént. An assignment that is minimal with respect
to AND, OR, and NOT gates' may not be a minimal assignment when
using NAND gates.

(2) The Boolean minimization technique will not necessarily guarantee
thé minimal expression. Thus, the diode count is not just a
measure of the assignment, but also a measure of the minimization
technique.

(3) Evaluating more than a couple of assignments is a long process.

Because of this, not all possible assignments would be explored. E

We present alternate methods for obtaining the "best"
decomposition for a machine. The first method eliminates pairs of
S.P. partitions which are "uneconomical" with regard to other pairs of

paftitions. While eliminating many of the possible decompositions,

this technique is not able to evaluate the decompositions not eliminated.

The second solution is the development of a fast evaluation method,

which is'also device independent. The method presented, ROM (Read-Cnly-
Memory) evaluation determines the numper of bits necessary for a ROM
realization of a decomposition. The evaluation involves simple arith-
metic calculations which are performed as the noanredundant sets are

derived.

The number of bits necessary for a ROM implementation provides
an efficient measure of the variable dependence of a decomposition.
Since ROM evaluation measures variable dependence, it is a device

independent evaluation technique.

ROM evaluation is also able to detect the "uneconomic" pairs
of partitions mentioned in our first evaluation technique. Consequently,
it will only be nécessary to use oﬁe evaluation method rather than two.
Tn addition, decompositions which involve subtle "redundancy", as
described by Hartmanis and Stearns [31], have this 'redundancy"

reflected in their ROM sizes.

4.2 A Tabular Representation for the S.P. Lattice

In the previous chapters we have been using the lattice structure
to represent the greater than-less than relationships between S.P.
partitions. TFor a small lattice it is relatively easy to "read" the
relationships directly from the lattice. However, for a larger lattice,
obtaining the relationships requires a great deal of tedious searching.
For this reason a tabular representation of the S.P. lattice has been

developed.

Another motivation for using a tabular representation becomes
apparent when it is desired to automate the algorithm presented in the
ﬁrevious chapter. A computer representation of the S.P. lattice takes
‘the form of a list structure, while a table is represented as an array.
Searching an array is much faster and more efficient than searching a
1list of comparable size.

The tabular representation of an S.P. lattice that we will
use shows the greater than or equal relationships between the non-

trivial S.P. partitions. For a machine with n S.P. partitions, an

n ¥ n table is used. A 'l' at the intersection of row i and column j,

indicates that partition L is greater than or equal to partition ﬂj.

A '0' indicates that ﬂi is not greater than or equal to wj. Clearly,

the main diagonal of the table is all 1's. This table will be referred

to as the greater than or equal (G.E.) table.

| Notation The value at the intersection of row i and column j will be

represented as G.E (ni,wj). The vector of values for row i will be

denoted
G.E.(wi) = (G.E.(ﬂi,ﬂl),...,G.E.(ﬂi,wn)).

In addition, to indicating greater than or equal relationships,

the G.E. table can also be used to determine the product of two partitions.

Theorem 4.1 For the G.E. table, G.E.(ﬂi)-G.E.(wj) = G.E.(ﬂi°ﬂj).

Proof We must prove that

G.E.(Wi,ﬂg)"G.E.(ﬂj,ﬂ) = G.E.(ﬂi'ﬂj,ﬂz), l.f l"'ﬂ}n .

L
(i) 1If G.E.(ﬂ.,ﬂz)‘G.E.(ﬂj,ﬂg) = 1, then

i
GbE.(ni,ﬂg) =1 and G.E.(Wj,ﬂz) =1
That is, ﬂi

2 2
= Wl Iand ﬂj “2

ﬂi-wj 2 T, and G.E.(ﬂi~ﬁj,w2) = 1

Similarly, if G.E.(ﬂi-ﬂj,ﬂ) =1, then G'E‘(ﬂi’ﬂl).G'E("j’wl) = 1.

(ii) If G.E.(ﬂi,ﬂz)'G.E.(ﬂj,ﬂ) = 0 then

L
=0 or G'E'(“j’ﬂl) =0

G'E'(ﬂi’wz)

That is, ﬂi * “2 or ﬂj'*.ﬂz .

. . ﬂi-ﬂj % T - and G.E.(ﬂi'ﬂj,ﬂl) =0 .
Similarly, if 'G.E.(ﬂi‘ﬁj,ﬂg) = 0 then

G.E.(Wi,ﬂz)’G.E.(ﬂj,ﬂz) = 0.

Thus, G.E.(wi-ﬂj,ﬂl) = G.E.(Wi,ﬂz)'G.E.(ﬂj,ﬁz),2=l,...,n.

[

G.E.(ﬂi) if and only if L < nj.

Corollary 4.1.1 G.E.(ni)-G.E.(nj)

Corollary 4.1.2. G.E.(ﬂi)-G.E.(vj) (0,...,0) if and only if = 'ﬂj = 0.

i

By indexing the table inversely with G.E.(wi)*G.E.(ﬂj), the

product of the partitions " and "j

Example 4.1

=8

o]
[N

s

BecBb N B RS T S VA
BN e [N [OY joo
N [W W R = e

S.P. lattice

can

be easily obtained.

The S.P. partitions for M are

T o= {1,2,3,4; 5,6,7,8}
T, = {1,4; 2,3; 5,8; 6,7}
Ty = {1,4,5,8; 2,3; 6,7}
T, = {1,45 2,3,6,7; 5,8}
M = {1,4,5,8; 2,3,6,7}
L Ty T3 Ty L Ts
T, 1 1 0 0 Q
L
ﬂz Q 1 0 0 0
w3 0 1 1 0] Q
m,o Lol 1l ol 1] o
4
ﬂ5 0 1 1 1 1
G.E. table

The greater than or equal relationship between any partitions

can easily be found by finding their row and column intersections.

- For example, L >

row 5 and column 4.

k3

4

since there is a

lli

at the intersection of

From the S.P. lattice the product of m and 7

Using the G.E. table

il

(1,1,0,0,0)-(0,1,0,1,0)
(0,1,0,0,0)
G.E.(ﬂz).

G.E. () *G.E. (m,)

Thus from the G.E. table we also obtain wl*wa = né,

The G.E. table can also be used as a less than or equal (L.E.)
table. Because of the construction of the G.E. table, the intersection
of column i and row j indicates whether a less than or equal
relationship holds between ™ and Wj. If the intersection is

equal to 1, then L < Wj, If the intersection is 0, then T $ nj.

In order to facilitate the description of the properties of the
G.E. table when used to represent the less than or equal relationships,

the following notation is introduced.

Notation L.E.(ﬂi) = (G.E.(ﬂl,ﬂi),.....,G.E.(ﬂn,ﬂi))

L.E.(ﬂi)-L.E.(ﬂj) = (G.E.(nl,ﬁi)-G.E.(ﬂl,ﬂj),...,G.Ef(ﬂn,ﬂi)'G.E.(ﬁn,nj)).

While the G.E. table can be used to find the product of‘two

partitions, the L.E. table can be used to find the sum of two partitions.

The following theorem can be proved in a similar manner to Theorem 4.1.

Theorem 4.2 For the L.E. table, L.E.(ﬂi)-L.E.(ﬂj) = L.E.(ﬂj) = L.E.(ﬂi+ﬂj).

. , S
L.E.(ﬂi) if and only if T, 2 ﬂj.

Corollary 4.2.1 L.E.(Wi)-L.E.(wj)

Corollary 4.2.2 L.E.(ﬂi)-L.E.(wj) (0,...,0) 4if and only if ™ + ﬂj =

The use of Theorem 4.2 is demonstrated in the following example.

I.

Example 4.2

o 4
113 |7
2 |4 | 8
311 | 6
4 12 | 5
s 12 | 4
6 |1 | 3
7 14 | .4
8 |3 | 3

M

0

The S.P. partitions for M are

{1,2; 3,4; 5,65 7,8}

{1,2,3,4; 5,6,7,8}

{1; 2 3; 4,5; 6; 7; 8}

Hﬁ
i
-
o}
-
w
-
o
|
-
w
-
~J
o]
—

=oo =0 O

o IOQ ik O |
o 10 |lo o | O
o O e o 1O (O
= = OO 1O
= O (= O O O

L.E. (G.E.) table

The less than or equal relationships can be determined from the

L.E. table. For example,

G.E,(ﬂa,ﬂ6) =] indicates that Te < T,

From the S.P. lattice, the sum of and WS is LPe From

the L.E. table

L.E.(Tr3)-L.E. (15)

]

]

(G.E.(ﬂl,ﬂ3)°G.E.(wl,ﬂ5),.

3

(0,0,1,1,0,1)-(0,0,0,1,1,1)

(0,0,0,1,0,1)

L.E.(WG).

Thus, the L.E, table also gives ﬂ3+ﬂ5 = e

..,G.E.(wé,n3)-G.E.(ﬂﬁ,ns))

T AT e A N MG A S T N S e

T e L D e B I D i e

4.3 Uneconomic Pairs

In an attempt to reduce the number of S.P. partitions involved
when deriving a decomposition for a sequential machine, we introduce the
concept of uneconomic pairs. Essentially, uneconomic pairs identify

pairs of partitions which are costly in comparison with other pairs.

For some pairs of partitions (ﬂi,ﬂj) where L > wj, the
information transfer from ™ to 7, 1is not as efficient as is
possible. That is, in realizing ﬂj from T;» TnoOt all the information
available in L is used. (To realize ﬂj from LRI partition Tj
such that ﬂi-Tj = “j is required.) However, there may be another

partition wk such that wi > ﬂj > L and the partition T which

realizes ﬂk from LA has as many blocks as partition Tj.
Thus, the serial connection of (ﬂi,ﬂk) "costs" as much to con~
struct as the serial connection of (wi,ﬂj). However, (ﬂi,ﬂk) provides

more information than (wi,wj), since mw, < wj. A pair of partitions

k
which is uneconomical in comparison with another pair. is demonstrated next.

Example 4.3 Consider the pairs of partitions (ﬂs,ﬂé) and (ﬂs,ﬂz)

from Example 4.1, where T, = 11,45 2,3; 5,8; 6,71,

m, = {1,4; 2,3,6,7; 5,8}, and T = {1,4,5,8; 2,3,6,7}. To realize

a partition T such that Ty, is required.

T from w

4 5% 4 5
Let T, = {1,2,3,4,6,7; 5,8}
Me T, = {1,4,5,8; 2,3,6,7 - {1,2,3,4,6,7; 5,8} .
=m,
Let. Ty = {1,4,6,7; 2,3,5,8} Thus
ﬂS-TZ = {1,4,5,8; 2,3,6,7} - {1,4,6,7; 2,3,5,8}
=,

Since: 1T, and T4 have the same number of blocks and the
4

same inputs, the cost of realizing Ty is identical to the cost of

realizing T, contains more information than Ty To

4° 2
realize the trivial partition O from T, requires a two-block partition,

However, w

while realizing 0 from ™, requires a four-block partition. Consequently,
it 1s more economical to use the pair (ws,wz) in a decomposition . than

the pair (wS,WA).

The number 6f nonredundant sets for a machine can be reduced by
deleting all the uneconomic pairs before generating the nonredundant
sets. To facilitate this, we present a definition of uneconomic pairs

and a method for determining uneconomic pairs.

Definition 4.1 An uneconomic pair (U.P.) of S.P. partitions is a pair

of partitions (ﬂi,ﬁj) where L > ﬂj such that there exists another

pair of partitions (Wk,ﬂz), L > T and either

(i) =T ™, > and e(wi[ﬂj) = e(ﬂi[ﬂz);

k> 3 %
or
» o . o= < . =V
(ii) “j Mos Wy < M and e(nilﬂj) e(wk!ﬂj).
Trivially, the pair (ﬂi,ﬂj) is uneconomic if
e(ﬂilﬂj) = e(wiIO), since ﬂj > 0., Similarly, (ﬂi,ﬂj) is uneconomic
if e(ﬂilﬂj) = e(I|wj), since I > m_.
Applying Definition 4.1 to the pairs of partitions in Example 4.3:
(ﬂi,ﬂj) = (ﬂs,ﬂa) and (ﬂk,ﬂl) = (WS,HZ). As m, = T

i
condition (i) is applicable.

e(wi!ﬂj) = e(ﬂslwé) =1 and é(ﬂk!ﬂz) = e(ﬂslﬂz) = 1.
Therefore, by condition (i), the pair (WS,W4) is a U.P.

In determining the uneconomic pairs, separate procedures are

required for conditions (i) and (ii).

A Method for Determining Uneconomic Pairs

Uneconomic Pairs of type (i)

(1) Consider each S$.P. partition w din turn and make a list of the
S.P. partitions that it is greater than.

(2) Separate the lisE into blocks of partitions that have the same
e(wlT) value.

(3) 1If partitiomns ﬂi and ﬂj are in the same e(ﬂlT) block of

a list and “j > Tes then the pair (ﬂ;ﬂj) is a U.P.

’

Uneconomic Pairs of type (ii)

(1)

(2)

(3)

Example 4.4

m &~ W N =

Consider each $.P. partition = in turn and make a list of the
S.P. partitions that are greater than .

Seﬁarate each list into blocks of partitions that have the same
e(Tlﬂ) value.

If partitions ﬂi and nj are in the same e(rlﬂ) block of a

list and T ﬂj, then the pair (ﬂj,w) is a U.P.

The algorithm is used below to determine U.P.'s.

1o 1 2

1 4 2 The S.P. partitions for M:
L = {1,2; 35 4; 5}
1 4 2 o
5 1 3 m, = {1,3; 23 4; 5}
5 1 3 My = {1,4,5; 2,3}
M m, = {1; 2,3; 43 5}
Ty = {1} E} _; Z,S}
T = {1,2,3; 4,5}
M., = {1,2; 3; 4,5}
T, = {1,3; 5} 4,5}
8
Ty = {1; 2,3; 4,5}
1o~ {1,2,3; 4,5}

"0

S.P. lattice

In order to derive the U.P.'s we will make use of the G.E. table.

=5
H
=3
N
E
w
=
&~
=
w
E)
[eg}
=
~
=
(0]
=
O
)

10

3
H

=

=jo o

=

&2

3

3

=3
W 00~ 0 o B~ w N

3

=

=.

= 1O O O = s 1O O

= O = O OO O = O

= lolo |- |- |lo lo |o o |-
o lo lolo lo o jo |+ o lo
o e e o e o = o o
= lo jo o im lo lo |lo o o
- o |lo = oo jo lo o o
— o Ik o lo o o o o o
= o o lo |lo o lo o o |o

= O (O OO

=
=
o

. Table

[op]
t

A detailed description of the derivation of U.P.'s of type (i),

for ﬂlo‘ 10

Tl such that ™10 > My The list is then divided into blocks with the

same e(ﬂlolﬂi) value.

is given. For partition = derive the list of partitions

L 0= ({ﬂg,ﬂg,ﬂ ST s, 5T ﬂl,}, {ﬂS,O})

Since ﬂ9 and ﬂ4 are in the same block»of LlO and ﬂ9 > ﬂ4, from the
G.E. table, the pair (ﬂlo,wg) is a U.P. Similarly, since e and 0
are in the same block and ﬁs > 0, the pair (ﬂlo,ﬂs) is a U.P. All
the type (i) U.P.'s can be found in a similar fashion.
(1) 10 ({'IT TT7ST]:691T4’1T29T[1}’ {WSQO})

U'R S (10””9)’ (Trlo”n-8)’ ('"10""7)? (Trlo,'n6), ("T]_O,TTS)

L9 = ({ws,w4,0})

1 -
U.P.'s: (ﬂg,ﬂs),(ﬂg,ﬁg)
L8 = ({Tr ,'n ’O)}
g,
U.P's: (ﬂ8,w5) (ﬂ8, 5

U.P.'s: (W7,ﬁ5),(ﬁ7,ﬂl)
L, = ({ﬂ4,ﬂ2,ﬁl}, {0}, L = ({Q}), L, = (foh
no U.P.'s,
Ly = ({ng,mg}, {m,,01
~U.P.'s: (ﬂ3,ﬂ9), (ﬂ ,n4)
= ({0}), Ll = ({0}
no U.P.'s

Some of the uneconomic pairs of type (ii), involving
partition Ty will be derived in detail to illustrate the process.
For

1
divide the list into block depending on the e(wilﬂl) values.

derive the list of partitions LR such that M,y and

Gl = ({ﬂe,ﬂ7,ﬂlo}, {rh

Since ﬂ6 and - "iO are in the same block of Gl and

m, . > 6, the pair (ﬂl,ﬂ6) is an uneconomic pair.

10

All the uneconomic pairs of type (ii) are given below.
(i) G = ({ﬂ6,ﬂ7,ﬂ10}, {Ih
To.
U.P.'s: (wl,ﬂ6),(ﬂl,ﬂ7)
G2 = ({ﬂ6’ﬂ8:"10}3 {I})
to.
U.P.'s: (ﬂz,ﬂ6),(ﬂ2,W8)
6, = ({1h

no U.P.'s.

G, = Umgomgsmghs rg,1h)
U.P.'s: (ﬂ4,ﬁ6),<ﬂ4,ﬂ9){(ﬁ3,ﬂ4}
GS = ({ﬂ7,ﬂ8,ﬂ9,n3}, {ﬂlo,I})
Tae
U.P.'s: (ﬂs,ﬁg),(ﬂs,ﬁlo)

= (r 141D, 6, = (3, {1D, 65 = (In },{1D),

(]
[

[}
|

- ({7"3""10}3{1}): GlO = ‘({I})- .

no U.P,'s.

Consolidating the type (i) and type (ii) uneconomic pairs,
. ; . N
we obtain: (wl,ﬂ6), (Hl,ﬂ7), (nz,v6), (HZ,WS), (ﬂ3,ﬂ4;, (ﬂ3,ﬂ9),(ﬂ4,ﬂ6),
(5710 -
10-9

2
would be used to generate the nonredundant sets. By removing the 16

Normally, for machine M, = 45 pairs of S.P. partitions

uneconomic pairs, this number is reduced considerably. The generation

of nonredundant sets using only the economic pairs follows.

M oW = 0

172 0 17273
MMy = 0 M MaMyg =
T, = 0 710 T 0
nlﬂs = 0
MMg = 0
Mg = 0
"0 =M1
My =0 27310 T
T =0 T4 10 =
TyTg = 0
Moy = 0
Ty = 0
"2"10 T M2
ﬂ3ﬂ5 = ﬂs ' ﬂ3ﬂ5ﬂ6
TaMe T, . MMMy =
LS s
Mg = Mg
T30 T "9
ﬂ4ﬂ5 0
Ty = 0
mTg = 0
"4"10 T T4
Mg = 0
MeMy = Ty TeToTg =
Mg = 1, T
TeTg = T, TeTsg
T Mg = Te
T Ty = Te
ToTy = T

Deleting uneconomic pairs noticeably reduces the number
of decompositions derived. However, there still remains the problem
of selecting the "best" decomposition from those remaining. In the
following section an evaluation proﬁedure is presented which provides

a measure of the variable dependence of any decomposition.

4.4 Read-Only-Memory (ROM) Evaluation

Introduction

With medium scale integrated circuits (M.S.I.), Read-only-

‘memories (ROMs) have become available for use in combinational logic

[48]. Using ROMs considerably simplifies the realization of
combinational logic. The truth table for the desired functions
simply has té be entered into the ROM. Thus, the Boolean function
does not have to be simplified, saving considerable time and effort

for the logic designer.

ROMs can also be used in censtructing sequential machines,
by inserting a ROM for the combinational logic [32]." Consequently,
the complexity of the combinatienal logic is né longer a precblem in
state assignment for sequential machines. However, as the size of a
machine increases, the size of the ROM necessary to realize the

machine becomes very large.

Thus, the decomposition of a machine into a series-parallel
arrangement of submachines becomes important, not only for state
assignment, but also for comnstructing a large machine from small to

medium-sized ROMs.

ROM Size and Decomposition

The number of bits in a ROM used to realize a state machine
M= (5,I,8), can be easily calculated from the number of state

variables and the number of input variables [321].

R =S x 2P+S (0,
where S = number of state variables
P = number of input variables.

One of the objectives of the structure theory of Hartmanis
and Stearns 1is to reduce the interdependence between the state
variables used to realize a state machine. By examining (1), we

S

P+ . ;
see that the term 2 is a measure of the dependence of the state

variables upon themselves and upon the P external input variables.

Thus, the ROM evaluation formula provides us with a simple,
numerical procedure to evaluate the size, in terms of bits, of any
decomposition. By evaluating all the nonredundant decompositions
for a machine, the most economical decomposition can be determined.
Intuitively, the ROM size of a decomposition should provide an
accurate evaluation of the decomposition, regardless of the

technology used for implementation.

To demonstrate the effectiveness of ROM size in evaluating
decompositions, we will compare ROM size with the diode counting techni-
que used by'Hartmanis and Stearns. The example below is taken from

p.33 of Hartmanis and Stearns [311].

Example 4.3

!
1 14 3 0=1{T; 2; 3; 4; 5; 6}
2 |6 3 ™= {l,2,3§ 4,5,6}
3 |5 2
L |2 5 T, {1,§; 2,55 3,4}
5 |1 A I=1{1,2,3,4,5,6}
6 |3 4

- S.P. partitions for machine E

For machine E, Hartmanis and Stearns give two assignments.
The first assignment, a, is random, while the second assignment, 8, is

based on the S.P. partitions ™ and LPE

y ¥y ¥y

[« XN, B A
= = ToO O O O
[oBN eI S N = R o]
= O = o = O

¥ + ¥+ ¥ ¥y

-Assignment o

The next-state equations derived from assignment o require

38 diodes, while those derived from assignment 8 require only 10 diodes.

For machine E, S

single ROM, would require a

R

Machine E could b

partitions and T

1 2°
Eor Tys Sl =1
Ry
For Tos S2 = 2
RZ

The combined size

y Y_ y
1 - 1 1 0
2 > 1 0 1
3 > 1 0 0
4 - 0 0 0
5 -0 0 1
6 > 0 1 0

Assignment B

=3 and P = 1. 7To realize E as a

ROM with
g x 2P+S

3 x 24

48 bits .

e realized by two RCMS which rezlize

and Pl =1
P.+S

= Sl X 2 11

-1 x 2l+l

=4 .

and P2 = 1
P_+S

= 82 + 2 22

-9 x 2l+2

= 16

of the two ROMs is

9 TRy TRy
20 bits.

=2
|

il

The percentage saving indicated by the diode counting

techique 1is 747%, while ROM size shows a saving of 58%. The difference
occurs because the equations produced by Hartmanis and Stearns take

into consideration the reduced dependence resulting from using the

partition pair ({1,3,4,6; 2,5}, {1,6; 2,3,4,5}) in the assignment.
Since we have not considered this partition pair in evaluating

ROM size, our results are not as accurate.

However, ROM size evaluation can be applied faster and
easier than can diode counting, which requires a Boolean simplification
step. Except in the case of partition pairs, ROM evaluation provides
a good general measure of the variable dependence of a decomposition.
As exact minimization is no longer as important as previously,

ROM evaluation is a useful evaluation technique.

Example 4.6 illustrates ROM evaluation for serial
decompositions. Before presenting the example, some notation and

explanation is given.

Notation: Let n(IP) denote the number of inputs in IP. Then
N(IP) = [log2 n(IP)} gives the minimal number of input variables

necessary to represent the inputs.

For a single partition w, the number of state variables is
given by e(w) and the number of input variables is given by N(IP).

Substituting into (1), the ROM size for a single partition is given by

N(IP)+e (m)

Rﬂ = e(ﬂ)fZ (2)

When two S.P. partitions, LA and ﬂj, are realized
together, the ROM size may be less than the ROM size for a separate
realization of the two partitions. A reduction will generally occur
if either of the partitions is greater than the other. If L > ﬂj,
then ﬂj may be realized from Lo by a partition Tj, where
meT, = wj.

The value G(ﬂilﬂj) is the minimum number of blocks required

in the partition = ‘The number of state variables required to

y°

realize Tj, by a state machine Mj’ is e(ﬂilnj).

|
1
1

number of input variables required from T

number of input variables required f:or'Mj is e(ﬂi) + N(IP).

The machine N% also requires input information from My

ing into (1), the ROM size to realize ﬁj from ™ is

in the following example.

e(nilﬁj)-Z

Example 4.6‘

i il i i i
1 2 1 5 8 3
2 1 2 6 7 4
3 4 3 6 6 1
4 3 L1 -5 5 2
5 5 6 3 4 7
6 6 5 4 3 8
7 7 8 4 2 5
8 8 7 3 11 6

M
T

e(ﬂi)+N(IP)+e(ﬂilﬂ%)

J

EQuation (3) is used to evaluate serial decompositions

. = {T,4; 2,3; 5,85 6,7}
T, = {1,2; 3,4; 5;6; 7,8}
n3-= {1,2,7,8; 3,4,5,6}
m, = {1,2,3,4; 5,6,7,8)

S.P. partitions for M

S.P. lattice

is e(ﬂi). Thus, the total

Substitut-—

For M, S = 3 and P = 3. To realize M with a single ROM

requires a ROM with
R=g§ x 2575
3. 23+3
192 bits.

One possible serial decomposition for M is {HA’Wl’O}’

where ﬂ4 > Ty >0

e(ﬂa) =1 and N(IP) = 3.

Substituting into (2)
N(IP)+e (w
e(ﬂa) 2

1-23+l

16 bits.

)
R 4
b

Il

4

"

]

To realize ﬂl we can use state information from Ty In

order to do this a partition Tos such that TptTy = Moo is required.

= {1,4,5,8; 2,3,6,7}.

Let Tl

e(Tl) = l. and e(ﬁaiﬁl) = ;.

Substituting into (3)

L e(ﬂ4)+N(IP)+e(ﬂ4|ﬂl)
!

e(walﬂl)-z

1.21+3+l

32 bits.

Similarly, the trivial partition O can be realized from Ty

at a cost of .
e(r

)+N(IP)+e(ﬂl|0)
e(nlIO)-Z

1

ze)
]

2
= l.2“+3+l

64 bits.

i

_ The total cost for the decomposition {ﬂé,ﬂl,O} is
16432464 = 112 bits. This decomposition gives a saving of 80 bits

compared with the ROM size required when realizing M as a single ROM.

The ROM size of a decomposition consisting of 3,...,n
partitions could be calculated in a manner similar to that used above
for pairs. This would involve considering the information transfers
between partitions for each set examined. Obviously, a detailed
evaluatioﬁ of this type is time consuming. To overcome this problem,
we present a heuristic method for evaluating the size of a nonredundant
set as it is being constructed. The algorithm presented calculates the
ROM size of a nonredundant nEEBlg from the ROM sizes of its constituent,
nonrédundant n~l£22l§§n Before the algorithm is stated, a modification
is necessary to the method by which the ROM size of a pair of partitions

is calculated.

It was stated that, generally, there was a decrease in the
ROM size required for a partition ﬂj, if ﬂj was realized with P
where L > ﬂj. There is a minor exception to this rule which occurs

when (ﬂi,ﬂj) is an uneconomic pair.

For example 4.4, the S.P. partitions Te = {1 E} 3; 4,57

and m, = {1,2,3; 4,5} are an uneconomic pair. The ROM cost of Tss

by itself, is
N({IP)+e (w_)
5
= e(ﬂs).z

gy 2¥2

32 bits.

==}
il |

I

To realize Te from T, a partition Tss such that

Mo*T,. = T is required. The ROM cost of T is

7 5 5°

e (1)+N(IP)+e (n|m.)
R =e(n lﬂ Y2 7 77

Te 75

_ . lt2H2

= 64 bits.

Thus, for the pair {ﬂs,ﬂ7} it is more economical to realize
e by itself, without any information from 'ﬁ7.

Two possible ways of overcoming this problem are:

(1) delete the uneconomic pairs;

i when realized bykitself and the size when

(ii) compare the size of 7
‘ realized with another partition, and choose the smaller.

The method presented below uses the latter solutionm.

Notation: The following symbols are used to state the algorithm.

Ri ~ ROM size of L realized by itself;
Ri 1 — ROM size of L realized in conjunction with ﬂj‘
2 b
R, - ROM size of 7, realized in conjunction with 7w, ,...,7 .
i,1...,n i 1 n
Method for Calculating ROM Sizes
(i) Calculate the ROM size of each S.P. partition when realized

. by itself using (2).
(ii) Calculate the ROM size for each partition in conjunction with

each of the remaining partitioms,

(a) if the relatiom '<" does not hold between T and Wj or
ﬂj and Tos then the ROM sizes of T and ﬂj have
already been calculated in (i);

(b) if T, > ﬂj, then‘the ROM size of ﬂj is calculated by
(3) and the ROM size of T has been ca%culated in (i);

(c) 1if fpr any pair {ni,ﬂj}, Ri > Ri or R, >,Rj’ then

replace Ri,j by Ri or replaéé Rj,i by %;.
(iii) (a) If for any nonredundant triple, {ﬂi,ﬂj,ﬂk}, wj-ﬂk + T, or
ﬂj-wk =Ty £ =j or k, then Ri,j,k = min(Ri’Q), L= j,k,
(b) if ﬂj-ﬁk =Tm> T, then
o Ri ik = Riom®
(iv) Step (iii) is extended to handle nonredundant sets of
4,...,n partitions;
(v) When no further nonredundant sets can be derived, sum the

ROM sizes of the partitions in each set to obtain a measure of

the variable dependence of each set.

The algorithm is used in the following example to evaluate

possible decompositions.

Example 4.7

h 4 04
1 05| 3| 2
2 16l 3] 1
3 Is| 1] 1
4 |s| 6| 2
5 15| 4l 2
6 |s| 4| 1

M

S.P. lattice

The ROM sizes

Rl = 32? R2 = 32, R3

Calculation of ROM size for a monredundant triple is given in

detail for {ﬂl,ﬂ 1.

227
the ROM sizes are

Calculate the ROM size of each partition in the triple.

Since TytWy =Ty * Tos

..l R —

2,1,7

= 32, R

S.P. partitions for M

L {1,2; 3; 4; 5,6}
m, = {1,2,3; 43 5,6}
my = {1,4; 2; 3,6; 51}
T, = {1,2,5,63 3,4}
e = {1,2,4; 3,5,6}
T = {1,2; 3; 4,5,6}
M, = {1,2,3; 4,5,6}

partitions are

= 32, and R7

for the individual

=8, R_ =8, R

4 5 6

For the pairs {“1’“2}7 {ﬂl,ﬂ7}, and {ﬂz,w7}

= (32,32)

(Ry 52 By 1)
&, By) = (16,9)
Ry 7> By) = (16,8)

= min (R

), &.=1,7

R 2,2

16.

Similarly, 8

Ry1,2 7

ﬂz'ﬂ7 =, and R1,2,7 = R1’7. That is, R1,2’7 = 16.

‘The size of the triple is

() = (16,16,8)

Bo 7 B, Ba

Applying the evaluation technique to all the nonredundant

sets in M gives:

(32,32)
(32,32)
(16,8)
(16,8)
(32,32)
(16,8)

(32,32)
(32,8)
(32,8)
(32,32)

(16,8)

(32,8)
(16,8)
(32,32)
(32,8)

(8,8)
(8,32)
(8,8)

(8,32)
(8,8)

(16,8)

sets {w

= q (16,16,8) w wm v, = T

T2 =T 1M T T

MMy = 0 v(l6,16,8) Ty TaTe =0

T, =Ty

Wlﬂs = _

T Te = Ty (16,16,8) MMMy = T

LS A]

w2ﬂ3 =0 (32{16,8) ﬂ2n3ﬂ5 =0

Ty =M

Ty = Ty

TyMg = T (16,16.8) Moy = 0
LTy, =T,

Moty = 0 (16,8,8) MM, Mo = 0

Mals = Ty (16,8,32) MaMeTe = 0

TaTe = 0 (16,8,8) MMMy = 0

T3M7 =

MM = T

T, = T

T, =W

TsTe = M1

MMy = Ty

My = Mg

As can be readily seen from inspection of the ROM sizes, the

3,ﬂ4,ﬂ5} and {ﬂ3,ﬂ5,ﬂ7} are the smallest decompositions at

32 bits each.

The necessity. for step iii(b) is illustrated in the following

example..
Example 4.8 For a machine M with the S.P. partitions
Ty {1,2,3,4,5,6,7,8; 9510,11,12,13,14,15,16},
T, = {1,3,5,7,9,11,13,15; 2,4,6,8,10,12,14,16},
Ty = {1,3,5,7; 2,4,6,8; 9,11,13,15; 10,12,14,16}, and
T, = {1,5; 2,65 3,7; 4,8; 9,13; 10,14; 11,15; 12,16}

calculate the ROM size of the triple v{ﬂl,ﬂz,ﬂa}.

The ROM sizes for the pairs making up the triple are

Ry 50 By 1) = (16,16)
(Ry 4> B,) = (16,128)
(Ry 4> Ry p) = (16,128)

If the ROM size R4 1.9 Wwas chosen by selecting the
’ 9+
0 = ') 37 7
smallest ROM size R4,1 and R4’2, then R4’152 128. However,
Ty*Ty = s > Ty In this case information from Ty can be used to
realize Ty Thus, using step iii(b),
R4,1,2 = R4,3 = 64 bits.

In the previous section it was shown that some pairs of
S.P. partitions may be uneconomical in éomparison with other pairs. A
method was presented to determine the uneconomic pairs, which could then
be deleted prior to deriving the nonredundant sets. As demonstrated

below, ROM evaluation is also able to detect uneconomic pairs.

Example 4.9

h 4
18| 2 n, = {1,2,3,4; 5,6,7,8;
2 16 L M, = {1,4; 2,35 5,8; 6,7}
3 7 4
4 |s 5 My = {1,4,5,8; 2,3; 6,7,8}
5 11 3 T, = {1,4; 2,3,6,7; 5,8}
6 |31 & ng = {1,4,5,85 2,3,6,7)
7 2 1
8 4 9 S.P. partitions
M.

S.P. lattice

}, and

The uneconomic pairs for M are {ﬂz,ﬂ 1, {ﬂz,ﬂ4}, {ﬂ3,ﬂ

[
-

{WA,WS}. Deleting the uneconomic pairs and deriving the nonredundant

sets gives:

(4,8) T Ty T T
(4,16) MMy =T,
(4,16) T, T Ty
(4,4) mmg =,
(8;4) 1T27T5 = 'n'2
- (16,16) Tyl = T, E

No nonredundant triples can be derived using the above pairs.
From the ROM size, the best decompositions are {ﬂl,ﬂs}, {ﬂl,ﬂz}, and
{nz,ﬂs}.

Alternatively, let us derive the nonredundant sets without

first deleting the :-meconomic pairs.

(4,8)

172
(4,16) LI
(4,16) LR
(4,4) T T |
(16,16) LI (16,8,4) MyMallg = T,
(16,16) TyTy (16,8,4) Ty, Ts = T,
(8,4) L
(16,16) LEL (8,8,4) My, e = T,
(8,4) L
(8,4) m,Ts

In this case nonredundant triples can be derived. However,
»the product of each triple is only Ty Since, the product of the ' i
pair {ﬂl,ﬂs} is also LN and the ROM size of {ﬂl,ﬂs} is smaller
than any other nonredundant set, {ﬂl,ﬂs} is again the best

decomposition.

The uneconomic pairs are not specificaliy indicated by the
ROM evaluation technique. Their detrimental effect, however, appears
in subsequent decompositions. Further application of ROM evaluation

are considered in the next section.

4.5 Subtle Redundancy

Hartmanis and Stearns [31] have provided examples of non-
redundant decompositions which contain what they call subtle forms of
"redundancy". Even though superfluous components have been eliminated
from a nonredundant set, it is still possible that a partition could

be replaced or supplemented to produce a more economical decomposition.

The more subtle forms of redundancy that Hartmanis and Stearns describe
can be characterized as having an excegsive number of state variables.

This in turn indicates an excessive amount of variable dependence.

In this section we name the different types of subtle
redundancy and prove that ROM evaluation is able to detect them. In
this regard our discussion is limited to partitions Moo where
m, > @, dimpli e(m,) =e(n,) +e(n, [n.).
i ﬂJ implies (WJ) (nl) (ﬂlle)
It is possible to characterize other types of subtle redundancy.

As ROM evaluation measures variable dependence, however, it is able to

detect the new types of subtle redundancy.

Factor Redundancy

The first form of subtle redundancy considered by Hartmanis
and Stearns, concerns a decomposition where the computations of two
machines overlap. In this case, part of the computations of both
machines can be factored out and computed in a separate machine. A

machine which exhibits factor redundancy is given in-the following

example.
Example 4.9
iO 1l 12 13 14
1 2 1 5 8 3 S.P. partitions for J -
2 1 2 6 7 4
3 |4 3 6 6 1 M= {1,45 2,3; 5,8; 6,7}
i 13 |4 |5 |5 |2 n, = {1,2; 3,4; 5,6; 7,8)
CN T T T S m, = {1,2,3,4; 5,6,7,8)
6 6 5 4 3 8
7 17 8 4 9 5 m, = 11,2,7,8; 3,4,5,6}
8 8 7 3 1 6

0

S.P. lattice

. Two nonredundant decompositions for machine J are
{ﬂl,ﬂz} and {ﬂl,ﬂz,ﬂ3}.
Since, Ty =Ty + Tys T performs a subfunction of both
ﬂl and Moo Factoring out w3 and computing it separately produces

a reduction in variable dependency.

The following lemma proves that factor redundancy can be

detected by ROM evaluation.
Lemma 4.1 Let X = {ﬂi,ﬂj} and Y = {wi,ﬁj,ﬂk} be nonredundant
sets of S.P. partitions, such that L Y + ﬂj. Then

T,eW, = W,enw,*"W, = T and s : 1
i] i3k : |

< $ R, where Rx and Ry are the ROM sizes required to realize T

using the nonredundant sets X and Y, respectively.

Proof

N(IP)+e (T) l
R, = Z e(mg) 2 » |
Q,=i,j f

e(nk)+e(ﬂk\ﬂ2)
PLICEY > {e(‘ﬂk)*‘e(ﬂk‘ﬂg)}‘z
. (m |7,)
) e(m, |w E
N(IP)+e(m) e(m) N(IR)+elm o Tl ;
= e('rrk) *2 2 +2 R;:A;.:,j e(ﬂklnl) :

=13

N(IP)+e(m,) N(IP)+e(m)+e(m |m))

R, = e(m) -2 . zzzi:,f(“km)'z
e(m ITT)
N(IP)+e(ﬂk) N(IP)+e(wk) 2: e(ﬂklﬂz)-Z I 72
= e(m)2 +2 =13
| . N(IP)+e(m,) e(m |m))
| R -R = e(m)+2 2 2 -1
Xy k =1,
CE)
~since- 2 ke >1, R_>R .
=1,] oy

Therefore,the reduction in variable dependence that results
from factoring out a common machine is indicated by the ROM size

calculations.-

For machine J of Example 4.9, the decomposition X = {ﬂl,nz}
requires a ROM size of
R = 2.27%2 4 5 3?2
* = 128 bits
for the decomposition Y = {ﬂl,ﬂz,HB},
R = 1.23+1 + l.23+l+l + l.23+l+l
Y = 80 bits

Calculating Rx - Ry using the result of Lemma 4.1, with

gives

> 2
t=i,3

=
1

=~}
i

N(IP)+e(ﬁk)
e(ﬁk)-Z [

e(ﬂk]ﬂz) .]

e(m,|n,) e(m,|w,)
1.23+1[é 3im? 8l 1]

16[2 + 2 - 1]

48 bits.

Submachine Redundancy

Another form of subtle redendancy is submachine redundancy.
This redundancy is typified by the use of a machine in decomposition,
when a submachine is cheaper and just as effective. Submachine

redundancy is demonstrated by the following example.

Example 4.10

e
-

e
Lol

= {1,8; 2,65 3,7; 4,5}

=
[

= {1,2; 3,4; 5,6; 7,8}

=3
|

=]
I

= {1,2,3,4; 5,6,7,8}

S.P. partitions for K

0 N O W N -
= NN N (N

ES I S N Lot Eo o o A Ko T AV
W s N Oy [00 [
(S I Xe T BN S Re oI) N N I A B

0
S.P. lattice

Two nonredundant decompositions for machine K are

X = {nl,wz} and Y = {ﬂl,WB}.

Since T Ty = “l'“B = 0, either X or Y realizes machine
K. However, L is a submachine of ﬂz.’ Consequently, it is more

economical to realize machine K using Y. Lemma 4.2 proves that

submachine redundancy is detected by the ROM size formula.

We will use the notation uillﬂj to indicate that L } “j

and T, # T,
3 7.4
Lemma 4.2 If X = {Wi,ﬂj} and Y = {ﬂi,ﬂk} are nonredundant sets

of S.P. partitions such that T > Wj’ ﬂille, ﬂillwk, and

M, M, = W,*T

5T PR = T, -then RX > Ry.

Proof. N(IP)+e(r,) N(IP)+e(r,)
R.X = e(ﬂi)~2 . + e(ﬂj)-z |
N(IP)+e(n,) N(IP)-ke(nl)
R = e(m,)e+2 T4 e)2 N
y i c
e(r.) e(m)
RR - ZN(IP)[e(nj).z e 1;]

e(ﬂk)+e(ﬁk|ﬂj)

. e(m)
. zN(IP)Qe(nk) + e(m[7n)1-2 - etm)2 -)

; NPT i \ 1
e(w)+e(w, |m,) e(m) e(m _|m.)
LoN@Ee) T k' e (k!) J
=2 [e(wkle) 2 +e(m) 2 2 1
. e('n'kl'nj)
Sinée T > Wj, e(ﬂklﬂj) >1 and 2 > 1
Therefore, R_ > R .
_ x y

For machine K in Example 4.10,

R - 0o 22 L 5,212
= 64 bits
R, = 9.22%2 L 1.,
= 40 bits
R -R = 24 bits.
Xy

Calculating RX—Ry using the formula derived in Lemma 4.2,

with w.=r., and w =7,, we obtain:
j k 3

2
N e(n)+elr,|r.) e(m)(e(m|r))
R R N(IP) (|2 3T te(r,) 2 3 (2 3’

1+1

i

22[1°2
4T4 + 2]
24 bits.

+ 1+2¢(2 - 1)1

il

il

Alternate Machine Redunda.icy

The third type of subtle redundancy, alternate machine
redundancy, occurs when an S.P. partition, ﬂj, in a nonredundant
decomposition can be replaced by another S.P. partition, M which
requires fewer state variables. This redundancy is similar to sub-

machine redundancy. However, for alternate machine redundancy,

m |l -

Example 4.11

B 4
Lls 12 m, = {1,2; 3,4; 5,6}
2 6 1
.l j T, = {1,4; 2,5; 3,6}
o] 1 8] A
4 |2 | 5 my = {1,653 2,3; 4,5}
5 3 4 TI'4 = {153,5; 29496}
| 6 |4 | 3
: : L S.P. partitions for L

;

S.P. lattice

Let X = {wl,wz and Y = {ﬂl,ﬂ4}

to realize ﬂ4 requires 1 state variable, while Ty requires 2 state

variables.

The nonredundant sets X and Y both realize machine L. However,

97

Temma 4.3

S.P. partitions, such that wj!'ﬂk’ e(ﬂk) < e(ﬂj), ﬂillﬂj, wil[wk, and

w,ew, = W,*m, = ®, them R > R .
i 7] ik X y
Proof
N(IDP)+e(n.) N(IP)+e(m,)
R_= e(m)-2 tote(n)e2)
X 1 J .
N{(IP)+e(w,) N(IP)+e(nk)
R, = e(m,) -2 " e(m)2
e(m)
N(IP e(m, k
RX--Ry =9 ()[e(ﬂj)iZ (HJ) - e(nk)-Z]

Since e(ﬂj) > e(ﬂk) ,

e(r,) e(ﬂk)
e(nj)-2 s e(m)2
For machine L
R = 2.21F2 4 o p1*2
X = 32 bits
R = 2.25%2 4 1 01
Y = 20 bits
R -R = 12 bits.
Xy
ﬂJ =Ty
e(w,)
_ N(IP)[. 2
RX Ry 2 e(nz) 2
2
= 2[2.2°-1-2]
= 12 bits.

subtle redundancy.

and R > R
X y

Using the formula from Lemma 4.3, with

]— e(ﬂ4)72

e(ﬂ4)

If X = {ﬂi,ﬂ.} and Y = {ﬂi,ﬂk} are nonredundant sets of

and

Hartmanis and Stearns have only identified the three types
of redundancy just described. It is possible to define other types.

_ For example, uneconomic pairs could be classified as a form of

In the following example we define a new type of redundancy

and demonstrate that ROM evaluation is able to detect it.

Example 4.12

In Example 4.9, one possible decomposition is X = {ﬂl,ﬂz,ﬂ3},

where 0. There is another decomposition, Y = {ﬂ] T ﬂé}

MM My 7
for which MytMa M, = 0. The partition T, is a submachine of Moo

Subsequently, the set Y should provide a more economical decomposition
than the set X. Actually, this redundancy is submachine redundancy

applied to triples rather than pairs.

R =R *+ R, +Ry
L qup3HLEL g 3L o34
= 80 bits. ‘

R = R, + Ry + R,

L op3HIAL g 34 34
= 64 bits.

Thus,ROM evaluation is able to indicate the subtle

redundancy in decomposition X.

4.6 Discussion

In this chapter two evaluation methods for machine de-
composition have been presented. The first method, uneconomic pairs,
has not been déveloped as fully as possible. It is possible to extend
the uneconomic pair concept to include subtle redundancy. This is
demonstrated for submachine redundancy where MM = T and

J 1

™, > ﬂj. Clearly, the pair {ﬂi,ﬂj} is an uneconomic pair with

k
respect to the pair {ﬂi,vk}. Similarly, the other types of subtle

redundancy define uneconomic pairs, which can then be deleted prior
to generating the nonredundant sets. Taking this approach ensures that
only the most economical nonredundant sets will be derived by the

algorithm of Chapter 3.

However, reducing the number of possible decompositions is

not always desirable. TFor example, a logic designer may have available

a component he wishes to use in building & machine, By reducing the
number of decompositions, the possibility of using that component is
also reduced. Generating all the decompositions gives the designer

greater freedom as to how he will build the machire.

ROM evaluation permits all possible decompositions to be
generated while providing a measure of the variable dependence of each
decomposition. To further demonstrate the effectiveness of ROM evaluation,
a programmable logic array (PLA) implementation (751,761,771, of machine

E in Example 4.5 is considered.

PLAs operate in a manner similar to ROMs with the difference being
that the truth table is not specified in its entirity. Rather, the product
terms from the sum of products equations are entered into the PLA along with
‘their corrésponding output functioms. Since the number of product terms for
a set of equations is considerably smaller than the number of truth table

entries, a PLA requires fewer memory elements than an equivalent ROM.

Example 4.13 The next-state equations for the random state assignment in

Example 4.5 require 10 product terms.

i - — ——

Yl = Yly2y3x + y2y3x + y2y3x
. LYy = Y E Y YV T Y Y,

Y3 = YpR P Ypyax *TpYer VYR
‘ Tﬁus, a PLA implementation would require a PLA with at least 4
inputs'and 10 words (for the product terms). Each word requires 3 output
bits. The next-state equations derived from the decomposition

assignment has only 4 product terms.

<

it

<
w

»®

o]
w
It
~«
[ye]
«
[OV]

A PLA with 4 inputs and 4 words with 3 outputs each would suffice

to realize the above set of equations. : 3

160

h
1
i
i
|
1

Evaluating decompositions in terme of PLA size requires the
derivation of the next-state equations. Thus, as for diode counting, a
Boolean simplification step is necessary before an evaluation can be

performed.

From the above discussion and the examples presented throughout

this chapter, it is apparent that ROM evsluation is a practical and

; useful evaluation technique for machine decomposition.

.
H
H
|
i

Chapter 5 Extended Substitution Property Theory

5.1 Introduction

As indicated in Chapter 1, S.P. partition theory has been extended
to other areas of sequential machine theory. 1In this chapter we examine
some of these extensions, multiple machine synthesis and asynchronous
machine decomposition, and further extend these areas of research. In
addition, the decomposition of incompletely.specified machines is
inveétigated. This latter topic is of great importance to sequential
machine decomposition, as the majority of practical machines are in-
completely specified. Also, because of the "don't-care' conditions,
it would appear that there is a greater possibility of S.P. partitions
existing fof incompletely specified machines than for completely specified
machines. Thus, in order to facilitate the use of decomposition theory,
it is important that techniques of handling incompletely specified machines

be developed.

Hartmanis and Stearns [31] havé extended the partition pair
concept to incompletely specified machines. However, they have not
examined the problem of defining S.P. partitions for incompletely
specified machines. Some of the theory they develop for weak and extended
partition pairs can be adapted to dgrive a definition of an S.P. partition
for an incompletely specified machiﬁe. Two types of S.P. partitions are
considered for incompletely specified machines, weak substitution property

and extended substitution property partitions.

Substitution property partition theory, however, does not readily
apply to the resulting definitions. In particular, Hartmanis and
Stearns' method for deriving S.P. partitions and S.P. lattices is not
applicablé. In the next section, theory is developed which enables the
derivation of S.P. partitions and lattices for incompletely specified
machines. (The results are also applicable to completely specified

machines.)

The two basic machine connections, serial and parallel, can be used
for constructing networks of incompletely specified machines. However,

the derivation of decompositions for incompletely specified machines

101

102

is not as straightforward as for completeiy specified machines. The
problem arises because the sum of two weak (extended) substitution
property partitions is not necessarily a weak (extended) substitution
partition. Consequently, for two weak (extended) substitution property
partitions, whose sum is not I, it is not always possible to factor out

a common submachine.

Hartmanis [27] has introduced a decomposition which can be
used to reduce the state variable dependence for a serial composition.
In Section 5.4, we show that this decomposition can be adapted to
economically.realize two weak substitution property partitions whose
sum is not a weak substitution property partition. The adapted
decomposition combines features of both parallel and serial decompositions

and in terms of ROM evaluation is midway between the two.

The problem of realizing sequential machines is often not confined
to simply the problem of realizing one machine. In many cases, the logic
designer will have a collection of machines that are to be realized
together. Kohavi and Smith [441, [62] and Kohavi [43] have examined
the problem of realizing two or more machines in combination. TFor some
machines, the joint synthesis is more economical than two separate syntheses,
The approach developed involves finding common component machines for the

two machines, thus reducing duplication.

Kohavi and Smith have presented an intuitive approach to this
problem. In Section 5.5, we review the work of Kohavi and Smith and

present a theoretical basis for their work. The theory developed also

provides the base for an alternate method of multiple machine de-

composition, which utilizes the structure of the component machines.

Tan, Menon, and Friedman [65] have investigated the problem of
extending decomposition and reduced dependeﬁce theory to asynchronous
machines. In their work on the decomposition of asynchronous machines
with S.P. partitions, they héve concentrated on finding single transition
time assignments, as defined by Tracey [67]. In determining whether
Tracey's conditions can be met by an S.P. partition, Tan et al use
the usual inspection method. Properties relating S.P. partitions to

Tracey's conditions are presented in Section 5.6. Use of the properties

~ developed simplifies the determination of whether or not Tracey's

conditions are satisfied.

5.2 Weak Substitution Property

In this section, substitution property theory is applied to
incompletely specified machines using weak substitution property
partitions. The definition of weak_sdbstitution property partitions
presented parallels that of Hartmanis and Stearns for weak partition

pairs (Definition 2.3).

rd

Definition 5.1 If M = (S,IP,0P,6,)) is a machine with don't-care
conditions, a partition m on the set of states S is said to have the
weak substitution property, if and only if s = t(w) implies that
§(s,i) = G(t;i)(w) for all i ¢ IP, whenever 8(s,i) and §(t,i) are

both specified.

Example 5.1 Consider the incompletely specified machine A,
designated by the table

i i i

0 "1 2

1|-11 13

215 12 |3

311 12 -
413 15
5i- 11
A

{l 5; 2,3; 4} is a weak substitution property partltlon

for the- 1ncomp1etely specified machlne A.

Unfortﬁnately, the weak substitution property partitions for an
incompletely specified machine cannot be derived by the same method
used for deriving S.P. partitions. This is because the corollary,
which Hartmanis and Stearns use as a basis for generating S.P.
partitions, does not apply to incompletely specified machines. The

corollary (presented as Theorem 2.5) states that for any partition x,

there exists an integer K such that the smallest S.P., partition y, y =

. ~ i
can be found by calculating y = Vi = E m (x), where k = K,
| ‘ i=0

Y. T V.

Applying this corollary to the incomnletely specified machine A
of Lxample 5.1, we are -unable to derive the weak substitution property

partitions. This is illustrated by the following example.

Example 5.2 Let x = {1,3; 2; 4; 5} = mo(x).

Then ml(x) = {1,2; 3; 4; 5} and ¥y = ml(x) + mo(x) = {1,2,3; 4; 5).

n?(x) = m(nl(x))
= {1,2; 3; 4; 5}
Y, = {1,2,3; 4; 3}

Since Yy =V, ¥y = {1,2,3; %4; 5} should have the weak substitution

property. However, m(yl) = {1,2,5; 3; 4}. Thus v, = {1,2,3; 4; 5} is

not a weak substitution property partition on A.

Actually, {1,2,3,5; 4} is the smallest partition greater than
x = {1,3; 5} Z} 3}, which has the weak substitution property.

Thus, Hartmanis and Stearns' method is not capable of deriving

the weak substitution property partitions for an incompletely specified

machine. A new method, which can derive both S.P. and weak substitution

property partitions, is presented. The basis for the method is provided

by Theorem 5.1. To prove the theorem we use the following notation.

Notation For a completely or incompletely specified machine M with

a set of states S and a partition x on S, we write y. = x and

0

i >
3 j-1 + m(yj_l), for all j = 1.

Theorem 5.1 For an incompletely specified machine M, with a set of

state S there exists an integer K such that for all k 2 K and for all

partitions x on S, min{yly 2 x and y has the weak substitution property}=yk.

i : = >
Proof Since yj+l m(yj) +vy., yj+l 2 yj. However, as the set of

J
states S is finite, there exists some k such that Vb1 = Vi

Therefore, m(yk) < Yer1 T Vi and yg is a weak substitution

- property partition. To show that Vi is the minimum, let y' be a weak

substitution property partition such that y' 2 x and y' = m(y').

Thus, we must show y' 2 yj for any value of j.

|

The proof is by mathematical induction on j. 'By definition

y' 2 x = Yo which establishes the basis for the induction.

Assume for some positlve integral value n that y' 2 Yo and

<
[\

n(y') 2 m(y,).

> T >
P2 yn+l' Thus, y' 2 yj for

any value of j and y' 2 Yt It can be shown that there exists a K

Therefore, y' 2 m(yn) + Yo and vy'

such that Vg is the minimum weak substitution property partition

‘greater than or equal to x, for all x.

» The following corollary proves that Theorem 5.1 applies to
completely specified machines as expected.
. J i
Corollary 5.1.1 For a completely specified machine yj = m (x).
1=0

Proof. The proof is by mathematical induction. The basis is

established by showing that v, = Eml(x) , for j=1.
B 1)

«
It

m(yj_l) + Vi1

y, = mlr) + v,

m(x) + x

1 .
>om (x)
i=0

Assume true for j = n. . That is
o i
v, = Em (x).
1=0

It must be proven that for j = ntl
. n+l i
Vogp = 20 (X).
i=0

Va1 = BOR) * Yy

n n
=m Zml(x) + Zml(x)
i=0 i=0

n+1 1 n 5
= Em'(x) + Em (x)
i=1 i=0

106

] .
The following corollary establishes that zz:ml(x) cannot be used

to derive the weak substitution property partitions for an incompletely

specified machine.

Corollary 5.1.2 For an incompletely specified machine yj is not

necessarily equal to f;‘ ml(x).
=0

Proof This corollary is proved by observing that the proof by mathematical

induction in Corollary 5.1.1, does not apply to incompletely specified

machines, In the proof of the conclusion of Corollary 5.1.1, the following
4 n+1 :

rule is used; (Zm (x) = Z m (x). This is trwe, since for a

com91“te1y specified machine m/vl+x Y = m(x,) + m(xz). However, for an
. A

incompletely specified machine, m(xl+x) = m(xl) + m(xz).
n+l 1
Thus, Yo > Z m (x) and y }:m (x).

i=0

Example 5.3 Theorem 5.1 will be used to find the weak substitution
property partitions of a machine. Consider x = {1,3; 5} Z}'g} of
machine A in Example 5.1.

As yy = x = {1,3; 25 4; 5} and n(y,) = {I1,2; 3; 4; 5} then

yl={123 43 5}

i

{1,2,5; 3; 4} and y, = 11,2,3,5; 4}
{1,2,3,5; 4} and vy = {1,2,3,5; 4}

m(yl)
m(yz)

2

Since y, = yg, y, = {1,2,3,5; 4} is the smallest weak substitution
preperty partition greater than x.

Note that in Example 5.1

1, -2, L
E)ml(x) = Eml(x) = {1,2,3; 4; 5}.
i= i=0

2
Thus, Y, = 2:nﬁ(x), as predicted by Corollary 5.1.2.
i=0

In order to derive the weak substitution property lattice the
least upper bounds and the greatest lower bounds for the partitions must

be obtained. Lemma 5.1 follows from the work of Hartmanis and Stearns.

Lemma 5.1 If T and ﬂj are weak substitution property partitions omn
the set of states of an incompletely specified machine M, then the

partition ﬂi-nj is also a weak substitution property partition.

It can be shown by a counter-example, that for T, and ﬂj weak
substitution property partitions, LA + ﬂj is not necessarily a weak

substitution property partition.

Examplie 5.4

1 2 3 - |4
2 3 5 - | -
3 4 6 3 |-
4 5 3 - 1
5 - 6 - | -
6 |- | - |4 2
B
™, o= {1; 2,4; 3,5; 6} and Ty = {1; 2,63 3; 4; 5}
- are weak .substitution property partitions on B.
However, m, + m, = {1; 2,4,6;5 3,5} is not a weak substitution

property partition. Thus, all the weak substitution property partitions

cannot be found by simple partition addition.

Harimanis and Stearns show that the weak partition pairs for a
machine form a lattice with the bounds given by

4 v P [ERSRY

glb ((TI',TT)3<L9T)/

Tub ({wyw®),(t,t")) = (wrr,wrrtm{mte)).

It

(meT,m et ") and

For pair algebras the S.P. partitions, which are a subset of the
partition pairs, form a sublattice of the lattice of partition pairs.
Our definition of weak substitution property partitions ensures that
they are a subset of the weak partition pairs. Thus, it might be
expected that the weak substitution property partitions form a sublattice
of the weak partition pairs. Unfortunately, this is not the case. A
counter-example is given using the partitions m, and w, of Example 5.4.

1 2

Example 5.5 (ﬁl,ﬂl) and (wz,wz) are weak partition pairs.

lub((ﬂl,ﬂl),(ﬂz,ﬂz)) = (ﬂl+ﬂz,ﬁl+ﬂ2+m(ﬂl+ﬁ2))

= ({—i_; 29496; 395}3{1523'{*’6§ 3)5}>

is a weak partition pair. However, neither {1, 2,4,6; 3,5}) nor

{1,2,4,6; 3,5} is a weak substitution property partition.

Consequently, in order to form a lattice for the weak substitution

property partitions a new least upper bound must be derived.

Notation For any partition T, let
(1) = Yy o sugh that Vi = Vi1’ where Vg = T and

. = V. + m(y, for § =2 0.
Vi = Yy TR0y j

Lemma 5.2 follows directly from Theorem 5.1.

Lemma 5.2 If T and ﬂj are weak substitution property partitions on the
set of states of an incompletely specified machine M, then the partition

Y(ﬂi+ﬂj) is also a weak substitution property partition.

Thus the weak substitution property partitions for an incompletely
specified machine form a lattice with the bounds given by
glb(ﬂl,wz) = My, and_
lub(ﬂl,ﬁz) = Y(ﬂl+ﬂ2).

108

The use of Lemma 5.2 to derive weak substitution property ’

partitions is demonstrated below.

Example 5.6

o o
101 |- |-
2 |- 14 |5
3 |35 |6
4 12 |5 |3
5 11 |6 |2
6 |- |6 |-

c

mo= {1,2; 35 4; 5; 6} and T, = {1,3; 2; 4; 5; 6} are weak

substitution property partitions. Deriving the least upper bound of

= -+ .
Ty and Tys lub(ﬂl,ﬂz) Y(Trl T,

it

Yo = ﬂl+W2 and m(yo) m(jlfigz' L
m({1,2,3; 4; 5; 6})-

{1,2,3; 4,5,6}

¥ = Yyt ulyy)

{1,2,3; 4,5,6} and m(yl) = {1,2,3; 4,5,6}

ThUS, y2 = yl + m(Yl) = {19293; 4’536}

Since y, = ¥, lgb(ﬂl,ﬂz) = Y(Wl+ﬁ2) = {1,2,3; 4,5,6}

The remaining weak substitution property partitions can be found

using Theorem 5.1 and Lemma 5.2. -

Once the weak substitution property partitions have been generated,
economical decompositions can be derived using the methods of Chapters

3 and 4.

5.3 Extended Substitution Property

Following Hartmanis' and Stearn's definition of extended partition
pairs for incompletely specified machines, we give a definition for an
extended substitution property partition. First an extended sequential

machine is defined.

Definition 5.2 For an incompletely specified machine

M = (S,IP,0P,8,)), an extended machine is the machine

M' = (SuC,IP,0PUD,§,X), with each don't care state condition designated
by a distinct element from the set C and each don't-care output

condition designated by a distinct element from the set D.

Definition 5.3 For an extended machine M', a partition m on SUC is an

extended substitution property partition if and only if for all s,t € S,

s £ t(m) dimplies &§(s,i) = 6(t,i)(w) for all i e IP.

Example 5.6 An extended machine E' is derived for the incompletely

specified machine E

T A

1|1 1= 2

2 3 |4 (-10

3]2 - =12 4=

4 |- 14 1113140
E

9]

Let»E’ = (SC,1P,0P0D,56,1), where C = {Cl’CZ’CS’C4’C5} and D = {dl}

iO il i, i3 z
1411 cq 2 1
2 13 1+3 Cy 0
3 2 cy | cy 2 dl
4 Cg 4 V1 13 H0

£

An extended substitution property partition for L' is

= {1; 2,3,02,

T cqs 4,c4; cys CS}

The weak substitution property partitions can be derived

from the extended substitution property partitions.

Definition 5.4 A reduced partition, m', is an extended substitution

property partition w, from which all elements of ¢ have been deleted.

110

Lemma 5.3 A reduced partition 7' on the extended machine M', is a
weak substitution property partition on the incompletely specified

machine.

Proof The proof is obvious from the definition of weak substitution

property partitions and reduced partitions.

Thus, by finding all the extended substitution property
partitions, we can also find all of the weak substitution property

partitions.

It can be proven that the greatest lower bound of two extended
substitution property partitions is obtained by partition multiplication.
The least upper bound, however, cannot be found by partition addition,

as demonstrated below.

Example 5.7

g 1y 1y i,
1 cy 3 |5 12
2 5 e, Sy %y
3 16 |6 cg 7
4 6| ©7 2 Cg
5 cq 6 |1 4
6 13 10 2 {3
7 7 |4 i1 7
M’
™= {1,2,c4; 3,c2; 5,C1,C3; 43 63 7; E;; -g, E;} E;} E;} E;g} EII}
and
M, = {1,4,c3,c4; 2,5,c8,c9; 3,c7; 6,c2; 7 C1:Ce5 E;} E;B} Cll}
are extended substitution property partitions for M'.
However, T + T, = {1,2,4,5,cl,c3,c4,c6,c8,cg; 3,6,c2,g7; 7; E;; EIS; EII}
is not an extended substitution property partition, since
i

{3,6} =2 {3,7} .

111

In order to find the least upper bound of two extended substitution

property partitions, we would have to derive Y(ﬂl + ﬂi). Thus the use

of extended substitution property partitions does not provide any advantage
over weak substitution property partitions. The additional effort required
to manipulate the elements of C make it easier to use weak substitutiocn

property partitions.

5.4 artial Serial Decompositions

A machine decomposition developed by Hartmanis [27] as a special
form of the serial decompsitionis examined in this section. Hartmanis
used the decomposition to reduce the state variable dependence for

certain types of serial decompositions. That is, for some serial de-

compositions>not all the information available in thé front machine is
needéd to realize the tail machine. For cases where this is possible,
the tail machine is simpler to construct because of the reduced state
variable dependence. Hartmanis' Corollary 1 [271 which establishes
necessary and sufficient conditions for this decomposition is stated as

‘Theorem 5.2.

Theorem 5.2 (Hartmanis) If w is a partition with S.P. for the sequential

machine M, then we can use 7 to realize M from two concurrently operating

sequential machines connected in series, M, and M,, such that (1) Ml

1 2°
computes the block of m which contains the state of M, and 2) M2 has

q states and receives at most d different outputs from Ml,'if and only

if there exist two partitions T, and T, on the set of states of M

1 2
suqh that
’ T >,
: T2°ﬂ =‘0
<
and (Tl'Tz,Tz) is a partition pair for M.

%,
In order to facilitate discussion of this decomposition, we refer

to it as a partial serial decomposit&on. A partial serial decomposition

for a machine M is illustrated in Figure 5.1.

113

IpP

M ¥
) , = ()

Partial serial decomposition

Figure 5.1

Our interest in the partial serial decomposition is not in
reducing variable dependence for a serial decomposition, but in using
the decomposition for realizing incompletely specified machineé. It
was proven, in the previous two sections, that the sum of weak (extended)
substitution property partitions is not necessarily a weak (extended)
substitution property partition. Thus, a factored realization of two
weak (ektended) substitution property partitions is not always possible
and the partitions may have to be realized as separate machines. The
partial serial decomposition, however, enables a more economical
realization of two weak (extended) substitution property partitions.

Using the partial serial decomposition, a common partition, for the

T
l,
weak (extended) substitution property partitions can be realized in just

one of the machines, Ml’ and this state information made available to' the

other machine, M Essentially, a common machine is factored from just

9
one of the machines corresponding to the weak (extended) substitution

property partitions, instead of from both.

The following lemma proves that two S.P. partitions, whose sum is
not I, can be realized as a partial serial decomposition. The theory and
examples presented, which are for completely specified machines, apply

equally to incompletely specified machines.

Lemma 5.4 For a machine M there exists a partial serial decompositicn

1

T + TS Ty + I, ﬂ'ﬂl = 0, Ty > m, and T > R

of M if there are two S.P. partitions w and 7, on M such that g

Proof The lemma is proved by showing that it is possible to construct

partitions 7. and Tos which with w, satisfy the sufficiency conditions

1
of Theorem 5.2

Let T, = .. Therefore, T, > u.

1 2 1

Since Ty = Ty > Tys there exists a partition T, such that
TytTy = Ty.
mem, = 0
MeT T, =
As Ty > m, ﬂ°Tl'T2 =TT,
coe WeT, = 0

(nl,ﬂl) is a partition pair since ™ is an S.P. partition.
e . (ﬂl,Tz) is also a partition pair (12 > Wl).

Thus, (Tl'Tz,Tz) is a partition pair.
The conditions e(Tl) < d and e(Tz) < q can be satisfied by

definition.

In the following example, a partial serial decomposition is

obtained for machine M.

Example 5.8

Tt Fp i3 %
1{2 1314715
2|11 12 (61718
31316151817
414 17 151116
5{8 |5 1661
6|6 |3 181|514
717 14181213
8|5 18 131312

M

T =4{1,2; 3,6; 4,73 5,8} and m, = {1,8; 2,5; 3,4; 6,7} are S.P.

1

' partitions on M. Since 7w + ™ + I and wew.= 0, Lemma 5.4 can be used

1
to construct a partial serial decomposition for M.

The head machine, M

1 of Figure 5.1, is constructed using S.P.
partition w., Define 1. =7+ 7

1 1= {1,2,5,8; 3,4,6,7} = {algaz}

and 1 = {1,2,3,6; 4,5,7,8} = {”I}

E;}Esuch that T = T,

1"

211

(1,2)

(5.8)
(3,6)

(4,7)

io il i2 i, i4

?ﬁl afl afd abz gﬁz

alb2 ay azbl a bl albl

azbl 2, albz a b2 azb2

azb2 azb a3b2 a, b, azb1
Ml

Machine MZ’ of Figure 5.1, is realized using the partition T

T

(1,3,4,8)
(2,5,6,7) <,

Connecting M

l°T2 =
As proven in Lemma 5.4,

Let T

2

(Tl°T2 2

= {1,3,4,8; 2,5,6,7} = {21} E;}.

Tz) is a partition pair.,

a110 alll all2 3113 3114 a210 azll a212 3213 a214

€

“1

C

1

(o

1

“1

€2

€2

€1

€2

€1

)

€2

)

C

2

©1

c

€9

C

and M

1

t M
0

!

as in Figure 5

=

)

1

a;bic,

alblc1

aZblCl

2g9bycy

a.b

)

ajbjc,

a.b,.c

2272

a.b

(o

271

agh ¢,y

a,b,c

17271

a, b

€9

a;byey

a.b c2

asbyc,

a blcl

a,b,c

17272

a bA 1

c

a)bye,

a,b

c

171

agbyeq

a;bjc,

[od

Renaming the states

= 3,.. ..n,al

b

271

.
of M such that a_b.c

= 8, gives M.

11

1

=1, a

1P1% =

1

.1 produces the machine M'.

2,

v

Partial Serial Decomposition Evaluation

For a state machine with three nontrivial S.P. partitions,

T,,M., and 7 such that w,*m, = 0 and n,+w, = 7 there are four
1]] 13

k’ k?
possible ways to decompose the machine. This is demonstrated in

Figure 5.2.
¥ 'ni 1
IP ! r r IP o ey T N
-7 ¥ < L Lo t i ¥ j Ll
.)
P J t v
(1) . (ii)
TT, r-———""'—-'-—‘v‘—'
N |
__—.._.___-_—.P_
IP E e LR SN IP
JESSUU S —
LI m.
) S S
(iii) o (dv)

Possible decompositions for Ty and ﬁj

Figure 5.2

For decompositions (ii) and (iii), the common submachine has been
factored out of one of the partitions and computed by the other. This
reduction in variable dependency for one of the partitions should make
decompositions (ii) and (iii) more economical than decomposition (iv).
However, since the common submachine has not been factored out of both
partitions, decomposition (i) should be more economical than both
(ii) and (iii).

Evaluation of the above decompositions using the ROM size
formula, presented in Section 4.4, verifies the above assumptions. First,

some notatlon is necessary.

116

117

Notation

o)) The ROM size of the parallel decomposition, {wi,ﬂj} will be
denoted by Rl'
(2) Rl denotes the ROM size of the partial serial decomposition
i .
with m, as the head machine, while Rl denotes the ROM size
with Wj as the head machine. J
(3) The ROM size of the decomposition {ﬂi,ﬂj,ﬂk} is denoted RZ'
LEMMA 5.5 Tor the S.P. partitions ﬁi,ﬂj, and ﬂk where
ﬂi+nj = M Rl > Rl, > R2 and Rl > Rl. > R2.
1 J
Proof From Lemma. 4.1l we know that
N(IP)+e(w,) e(w IW.) e(w Iﬂ.)]
_ k . k''i . k']
Rl = 2 | e(ﬂk) 2 + e(wk) 2
N(IP)+e(mw,) e(w Iﬂ.) e(mw Iﬂ.ﬂ
k ki k']
+ 2 [e(wklﬂi) 2 + e(wklﬂj) 2
and .
N(IP)+e(m,) N(IP)+e(r,) e(m, |m.)
R, = e(m)2 vk + 2 k e(m [ﬂ)=2 +
2 k k' i
e(m |7
+ e\ﬂklﬁj)~4
The ROM size of Rl is calculated as follows
i
~ N(IP)+e(rw,) N(IP)+e(m) + e(m |7.)
R, =e(w,)°2 o4 e(m iﬂ)2 k k3
1, i k'] ‘

Thus,

and

Therefore, R, > R, > R2.

-8imilarly, R, > R >R

i
N(IP)+e(ﬂk)+e(ﬂk]ﬂi) N(IP)+e(ﬂk>+e(ﬂklﬂj)

=[e(ﬂk)+e(ﬂk|ﬂi)]'2 +e(ﬂkle)'2

N(IP)+e(m,)+e(w, |7.) N(IP)+e(m,) e(n, |7.)
Rl,=e(ﬂk)°2 k ki + 2 k [e(wklwi)-Z ki
+ e(ﬂ1|w,)
+ e(ﬂkle)-Z U
N(IP)+e(ﬂk)+e(ﬂk|ﬂ.)
- X]
Rl - Rli = e(nk) 2

N(IP)+e(nk)[ze(wk|wi)_ 1]

Rl - R2 = e(wk)°2

Corollary 5.5.1 TFor the two partial serial decompositions for the

set {ﬂi,ﬂ,}, where ﬂj+ﬂj = m, + 1, then Rli > le if and only if
s > -
Q(ﬂk‘ﬂi) > e(ﬂkfﬂj).

Example 5.9 Calculate the ROM costs for the four decompositions of

Ty and Ty of machine M, in Example 5.8.

Let 7, =7 ™, =T

K30 M3 and ﬂj=W2.
= 2_23+2 + 2 23+2
= 128 bits
R2 - l-23+l + 1-23+1+l + 1.23+1+1
-7 = 80 bits
Rj - 2'23+2 + l-23+l+l
i
» = 96 bits
.Thus,- R, > Rli > R,
Rl - Rli = 32 blts
Calculating Rl - Rl using Lemma 5.5 gives
i
o = e).ZN(IP)+e(ﬁ3)+e('n3|Tr2)
1 1i 3
3+1+1
= 1.2"*+*
= 32 bits
Since e(nklﬂi) = e(ﬂklﬂj), Rl = Rl and neither partial serial

- . S, i i
decomposition is more economical thain the dther.

Application to Incompletely Specified Machines

Partial serial deéompositions are not as economical as type (i)
decompositions when applied to completely specified machines or incompletely
specified machines, where ﬂi,ﬂj, and ﬂi+ﬂj = ﬂk are weak substitution
property partitions. However, for incompletely specified machines where
Mo Ty + 7, vis not a weak substitution property partition, it is not

possible to compute w, separately. Consequently, the partial serial

k
decomposition is the most economical decomposition that can be used in

this case.

The partial serial decomposition for incompletely specified machines
is -calculated the same way as for completely specified machines. However,
the machine realized is greatly influenced by which is chosen to be

the head machine. This 1s demonstrated by the following example.

Example 5.10

For M, 7 = {I} 2; 3,5; 4} and 7

= ﬂ+ﬂl = {1,4; 2,3,5} is not a weak substitution property partition.

Let Tl

(1)

(4)

(2)

(S,S)azb

7 as the head machine, M

2

substitution property partitions on M.

decomposition using 7 and

b &~ W =
N [N W

1°

1

The tail machine M

= {1,3,4; 2,5} =.{c1; cz}, where T

(1,3,4) ¢

(z2,5) c

172

= W

= {1,4; 2,5; 3}

However,

Since, memy = 0, machine M can be realized as a partial serial

A decomposition is constructed using

b = {1,2; 3,4,5} = {bl;

is realized using the partition

1031 1lal 12al 13a1 1082 1la2 1232 1382

i)

€1

¢

€2

€1

c

1

o

2

[

1

are weak

120

Connecting M. and M, as a partial serial decomposition produces

i 2
the incompletely specified machine M’

N L S R 3,0,y

3,010 1BaPa%1 13928 | 3PS | 3P%

80501 B1PpCy [3P0y | 2Py -

aleCl a2b2c2 aZbZCl - alblcl

a2b202 aleCl azblc2 a2b2cl - c,
"

1, a,b.c, = 2, and

. : :
Renaming the states of M' such that alblc 2P1Cy

1

so forth, gives the machine Ma.

11203114

2 13 |5 1402 |

3 14 |2 13]- |

4 15 13 |-11 |

5 14 12 |3]42,5) |
M

An obvious difference between M and Ma is that next-states

6(5,10), 6(5,i2), and 6(5,13) for Ma are not unspecified. 6(5,i0)

and 6(5,12) are specified by a single state, while 8(5,13) is
specified by a subset of states. Another difference is that
T = {ijZ} Ejgﬁ 3} is not a weak substitution property partition
for Ma'

These differences are related as will be demonstrated.

In realizing 7, implicit assumptions are made about the unspecified
next-states of M. For m to be a weak substitution property
partition on M, G(S,io) must be 4 as 3 = 5(m) and 6(3,10) = 4,
Similarly, the next-states for (5,i.) and (5,13) are determined by T.
Thus, a weak substitution property partition on an incompletely

specified machine implicitly specifies the unspecified next states.

However, specifying G(S,io) = 4, prevents ™ from being a weak

substitution property partition on Ma’ since 2 = S(Wl) and
8(2,i,) = 3 $4 = 8(5,1) (my).

This conflict Between the imﬁlicit next-state assumptions
required by w and Ty also explains why n+w1 is not a weak substitution
property partition. For 7 to be a weak substitution property partition,
7. cannot be a weak substitution property partition. Similarly, the

1

converse holds. Since 7 and ﬂl cannot be weak substitution property
partitions at the same time, it follows that their sum cannot be a

weak substitution property partition.

We may regard the "don't-care'" conditions of M as specifying that

M may enter any of the states of S = {1,2,3,4,51}.

3 iy 1 g
1 2 3 {1,2,3,4,5} 4
2 3 5 4 2
3 4 2 3 {1,2,3,4,5}
4 5 3 {1,2,3,4,5} 1
5 |{1,2,3,4,5} | 2 {1,2,3,4,5}1{1,2,3,4,5}

Thus machine Ma realizes a subset of the possible realizations
for M. The realization of a subset instead of the complete set is not
unique to partial serial decompositions. Choosing any weak substitution
property partition on M implicitly specifies the "ddh‘t—care". This in

turn only permits a subset of machines to be realized.

Thus far in this chapter we have been examining the application
of S.P. theory to incompletely specified machines. In the following
section S.P. theory is extended to asynchronous machines and the

economical decomposition of multiple machines.

5.5 Synthesis of Multiple Sequential Machines

Background

Kohavi and Smith [441,[62] and Kohavi [43] introduce the concept
of composite machines in order to synthesize multiple machines. Their
definition of composite machines is only for two machines, although

it is easily extend:d for n machines.

Definition 5.5 For two machines M., and M, with initial states s_, and r

1 2 1 1,
respectively, the composite machine, Mle, is that machine having initial
state s{Ty and all subsequent states which are implied in a chain fashion
by 8,7y and the inputs.

Notation A state, riSj’ on the composite machine is called a

composite state. The partition T, on the composite machine, formed by
placing composite states in the same block of Tso if and only if their

substates belonging to Mi are equal, is called the state-consistent

partition with respect to Mi' Note that the state-consistent partition

with respect to Mi is equivalent to Mi'

Example 5.11

We derive the composite machine for machines M

1
states T and Sl’ respectively.

) io il OP1 1O 11 OP2

rl rl T, 0 sl s3 s, 0

r2 r2 r3 1 85 s4 53 0

r3 r3 r4 1 53 s1 s4 0

r4 r4 rl 0 s4 s2 sl 1

Ml M2

" The initial states rl and Sl are combined. Under input iO’

implies that r should also be combined. Continuing in this

r.s s
171 13
~manner the composite machine is produced.

and MZ’ with initial

122

i i

0 1

r.s A5
F181 1 T8 1 2%
r.s .8 r,.Ss

3%1 1 F3%3 | %452

T4S4 r482 rlsl

452 1 %45, | T1%3
MM,

For the composite machine Mle, the state-consistent partitions

with respect to Ml and M2 are

{r }

™

1 151971537 TS0 085 T3®1073%35 1455745,

and Ty = {rlsl?TBSls r2§2,r452; rl§3,r333; r58,57,8,}

respectively.

For a composite machine MlM if a partition T exists such that

2

T, > TysTys then Ml and M2 can be realized by a cascade decomposition

of machine Mc and successor machines Mi and Mé. Machine M is
c

referred to as a common factor machine for Ml and MZ' In Figure 5.3,

MC realizes partition To and Mé realizes e k 5'1,2.
P M!
‘S .
N 1 OPl
1P i Mc
- ' o :
My ey OB,

i

Two machines with a common factor machine

Figure 5.3

Definition 5.6 A common factor machine will be said to be a

maximum common machine when it, together with the two successor

machines, is the largest machine capable of generating the required

number of states in M1M7, such that the number of internal state

variables upon which the cutputs, OPI and CP,, depend is not increased.
Kohavi and Smith show that the maximum number of state

variables, kpmax, in a maximum common machine is given by

o == | 1 -
kcmax Ky + i<, kM M

12
where kl and kZ are the number of states in Ml and M?, respectively,
and kM M is the number of states in the composite machine.
12

For some machines, the maximum common machine can be obtained

by summing the state-—consistent partitions.

Example 5.12 Summing the state-—consistent partitions of Example 5.12
produces |
ﬂc = ﬂl + ﬁz
= {rlsl,rls3,r3 835T4813 Ty8ysT08,,T,8,,T,5,
For the composite machine Mle, kMiMz = 3, Thus,
kcmax = kl + k2 - kM M
12
= 1 and k¥ = k max.
C C !
We define the successor machines
ﬂsl = {rlsl,rls3,rzsz,r234; rBSl,r3s3,r4sz,r434} and g
wsz = {rlsl,rBSl,rzsz,rész; r183,r3s3,r2s4,r4s4}. Since ﬂc°ﬂsl =y
and 7 _ew_ = m,, the outputs OP, and OP, can be realized from w_,7_ , and
: c s, 2 1 2 _ . c’sy

Ty without increasing the number of dinternal variables that they are

2 ‘
dependent upon. At the same time, the use of MC as a common factor machine

does not entail more state variables than required for the composite .

machine Mle.

However, for most machines, the maximum common machine cannot

always be obtained by simply summing the state-consistent partitions.

It may be necessary to split states of the composite machine in order

to obtain the maximum common machine.

following example.

Example 5.13

o h1
102 |a
2 (1 |3
3 |1 |4
4 |2 |3

My

The composite

2a

o
(g}

3c
2b
1b
3b
4b

This is demonstrated in the

machine is

i

0 1
2a 4e
1la 3c
2b 3c
1b 4e
la 3b
2a 4b
la 4b
2a 3b
M1M2

State-consistent partitions are T

and 7, = {la,2a; 1b,2b,3b,4b; 3c,4c}

2

[

ﬂc = ﬂl+W2

]

I.

Obviously Mc is not a maximum common machine for M

{la,1b,2a,2b,3b,3c,4b,4c}

1

= {la,1b; 2a,2b; 3b,3c; 4b,4c}

le . However,

a maximum common machine can be obtained by splitting states of M_M,.

172

This is accomplished by constructing an implication graph [41],

ldentifying composite states la and 2a.

125

i
1
Tmplication graph for MlMZ

Figure 5.4

The new partition 7' = {la,2a; 1b,2b; 3b,4b; 3c,bkc}
1

implicitly splits state b on M 2

99 giving the equivalent machine M

o t1
a Cc
a b
b bt
C C
1
M,

The new common machine factor is obtained by summing the

partitions m, and T,

™ = m 41" = {la,1b,2a,2b; 3c,3b,4b,bc).

It can easily be seen that L is the maximum common machine
for Ml and Mé. Thus with state-splitting it is possible to
economically synthesize multiple machines.

Submachine Equivalence

We now present a more formal treatment of the synthesis of
"multiple machines. The theory preéented examines the structure of
composite machines as determined by the structure of the component
machines. The results obtained provide a theoretical justification of
the methods of Kohavi and Smith and permit a more general examination

of multiple machine synthesié.

The generation of a composite machine, from machines Ml

126

127

and MZ’ associates states of Ml with states of M2, and vice versa.

Definition 5.7 For two machines Ml =_(Sl,1Pl,0Pl,6l,Al) and

M2 = (SZ,IP2,0P2,62,X2) with start States a; and g5 respectively,
the states %, € S1 and X, € S2 are said to be
Mle equivalent, x) = XZ(MlMZ) , if and only if

I

(1) x

1 al and x2 = a2, or

(ii) tl =z t2 (Mle), Sl(tl,i) =X, and

62(t2,i) = X, for some i € IP.

(For convenience we will not define Mle equivalence but instead

will use Mle equivalence to represent both.)

States from Sl and 82 may be Ml

one state of 82 and Sl’ respectively.

M2 equivalent with more than just

Definition 5.8 The equivalence set for state a on M2, aMz, a ¢ Sl

is the set

aMZ = {blb € S2 and a = b(MlMZ)}

The equivalence sets for two machines, Ml and M2, are related.

For simplicity the following results will be developed for state machines.

Theorem 5.3 For state machines Ml = (Sl,IP,Gl)

and M2 = (SZ,IP,G,), if b € 82 then
le, 1 and b ¢ aMz},

Proof Dencte {ala ¢ S

{ala € S

Al

1,and b e aMz} by Y.

(i) Let x 'e-le. ~

Theref , X € S = g
ore, x ¢ §; and x b(MlMZ).

Since b ¢ 82 and x = b(MlMZ)’ b e XMZ.

By definition of Y, x ¢ Y and lec Y.
(i1) Let x ¢ Y.

Therefore, x € S1 and b € XM2'

Since b ¢ xM,, then x = b(Mle) and x € bM

2,
 Thus, y ¢ bM, and bM, =Y = {ala € s

1
and b ¢ aMz}.

1 1

128

In the following example we demonstrate the calculation of

equivalence sets for two machines, Ml and M2'

Example 5.14

|t |7, 51|85 | 8
T, | Ty | T4 Sy |8, | 85
r, |ty | T, '83 s | s,
L R I s, 18, | 51
M M,

Since r1 and s, are the start states of Ml and MZ’ respectively,

Sl(MlMZ)' Also since r, = Sl(MlMZ)’ G(Il,lo) =1 and 62(51,10) = S35

1t

T

then r, = SB(MlMZ)' The MlMZ equivalent states for’Ml

(ry585)5 (r558,), (ry58,), (r3,85), (r3,8y), (¥,,s,), and (r,,s,).

and M2 are (rl,sl),

The Mle equivalent states can also be determined from the

composite machine.

o %
| 181 | T1%3 | 2%
T1%3 | F1%1 | T2%
2%y | 2% | T3®3
.8, t,8, | 48
T3%3 | T3 | T4
T3%1 1 T3%3 | T4S2
AT A r s,
r,s, x,8, | 1184
MlMZ
Since states r2 and r4 are associated with each other during the
formation of Mle, r, = s, (MlMZ). The other equivalent states can be

found in a similar manner.

For state ry»Ty = sl(Mle) and r, = SB(MlMZ)' Thus,

129

P - ~ L R == =
rle {sl,sBJ. Similarly, rZMZ {82’84}’ r3M2 {sl,s3}, and

r,My = {sy,8,).

Using Theorem 5.3, the equivalence sets on Ml can be determined

That is, since s, ¢ r,M, and

froem the equivalence sets on M 9 oMy

9
s, € r4M2, SZMl = {rz,r4}.

imi = { = G - = .
Similarly, SlMl ~rl,r3}, s3Ml {rl,r3}, and 4Ml {rz,r4}

Blocks of states on Ml are associated with blocks of states on M2

by the equivalence sets for the machines.

Definition 5.9 For state machines Ml = (Sl,IP,G) and M2 = (SZ’IP’éz)’ ?
a block of states, B, on Sl induces an equivalence block, C, on 82 }
where C = U a M, . |
2
: aeB

A partition on S, groups the states of S, into equivalence blocks.

1 2
The set of equivalence blocks produced are not necessarily disjoint.
We define a way of grouping the equivalence blocks, which is a

generalization of a partition.

Definition 5.10 A set of subsets of S, Bi is called a collection on S,

if and only if UBi = S.

Definition 5.11. The collection formed on S2 by partition T on S

consisting of the equivalence blocks induced by 1, is called the

l’

equivalence collection, Tee ;

We must now establish a basis for determining the common component

machines of a composite machine.

Theorem 5.4 For the state machines Ml = (Sl,IP,Gl) and M2 = (SZ’

if m is an S.P. partition on Sl’ then the equivalence collection Tee OO 82 }
|

IP’62) b4

~also has S.P..

Proof. If for x € SZ’ X, Ex (wec), then x., and x, are in the same

12%2 2 1 2

block of ﬁec as the result of one of the conditions below:

130

(1) 5%, € er, where r ¢ Sl(i.e., r = X (MlMZ)
and r = X2<M1M2)'<
(ii) Xy € rjM2 and x, € rkMz and rj = rk(ﬂ).

Assume condition (i).

t

Therefore, Sl(r,l) 62(x1,1)(M1M2) and
| | .§l<r’l) = 62(x2,1)(M1M2), } e IP.
Thus i i) - oy = .
us, 62(xl,1) and éz(xz,l) € Gl(r,l)M2 and 62(xl,1) = 62(x2,1)(wec).
Assume condition (ii)
Gl(rj,i) = Gz(xl,i)(MiMz) and
8, (r, 1) = 8,(x,,1) (4 M,), 1 € TP,
Therefore, GZ(Xl,i) € Gl(rj,i) and 62(x2,i) € Sl(rk,i).
S 5 N . . .
ince 1(rj,l) Gl(rk,l)(ﬂ), Gl(rj,l)M2 and Gl(rk,l) M2 cC

where C2 is a block of 7
ec

2’
Thus, Gz(xl,l) = Sz(xz,i)(wec) and L has S.P.

Theorem 5.4 is used to construct the common component machines for the

composite machine of

Example 5.15

0 1 0 1
11| "2 °1 %3 | %2
T2 T2 |73 ®2 1% | ®3
T, T, | T, sy |81 | 8
, T, | Ty S, |5 5

Ml M2
T = {rl,rs; rz,rA} is an S.P. partition on Ml' The equivalence
collection, Toe? induced by w on 82 is L {sl,s3; 52,54}, since

rle = {31,33}, r3M2 = {31,53}, r2M2 = {52,34}, and r4M2 = {82’84}'

By inspection of M2 it can easily be seen that oo has S.P.

It can also be shown that there exists a state isomorphism from

an S.P. partition on M1 to the equivalence collection on M The

X
isomorphism is defined by the equivalence sets.

Theorem 5.5 For state machines Ml = (Sl,IP,Gl) and M2 = (SZ,IP,SZ),

the S.P. partition m on M, and the equivalence partition Moo O M

1 2
are equivalent. That is, there exists a state isomorphism from state
machine m to state machine LA

c
Proof Define function f:B+C, where B is a block of 7 and C is a

block of Teo to be the mapping formed by the equivalence blocks

of m on SZ' (f is a 1-1 mapping by definition.)
It must be shown that
62(f(Bi),x) = f(él(Bi,x)), x € IP,
62(f(Bi),x) 62(Ci,x) |
= 62({c|c € Sz,beBi and b = c(Mle)},x)
= {d[deSz,beBi and Gl(b,x) = d(MlMZ)}.
£(8, (B,,%)) = f({él(b,x)]beBi})

¢4 ~ PR) — ws wg
= {d(deS beB, and 6. {(b,x) = AL M.)
l 25 i l\ 3) (l 2)

Thus the equivalence blocks for an S.P. partition on Ml induce

an equivalent machine on M2'

Example 5.16

1 1 2 ala b
2 3 4 blc d
3 11 2 cla b
4 |3 4 d|e d
Ml e|a d

M

The composite machine for M1 and M2 is

131

iO | il
"1la 1la | 2b
2b 3c | 4d
3c la 2b
4d | 3e | 4d
3e {la | 2d
2d j3e | 4d

Mle

Equivalence sets for the states of M, on M, are

1 2

1M2 = {a}, 2M2 = {b,d}, 3M2 = {c,e}, and 4M2 = {d}.

T

= {1,3; 2,4} is an S.P. partition on M

1

The equivalence sets define function f to be

f:{1
£f:{2

Thus,

lEC

,3} = {a,c,e}

,4} — {b,d}.

= {a,c,e; b,d}. The state machines for 7w, and =

1
ec

be seen to be equivalent.

% iy iy i
(1,3} 1,3} |{2,4} {a,c,e} |{a,c,e} | {b,a}
2,47 1,3} | {2,4} {b,d} Ha,c,e} | {b,d}
N ﬂl Ty
. ec

The equivalent partition on the composite machine is

T, = {la,3c,3e; 2b,

Since kcmax =

machine. However,

common machine can

The equivalence collection on M

o

State d occurs fwice, in separate blocks, in I

2d,44}%.
k. +k_ -k
1 72 MlMZ
=2+ 3 -3

2 and kc = l,'ﬂc is not the maximum common
the state to split in order to find the maximum

be determined by examining equivalence collections.

) for the identity partition

= {1; 2; 3; 4} is I1 = {a; b,d; c,e; dI}.

ec

i Thus by
ec

splitting state d to produce M!, there will exist a partition on Mé

equivalent to the identity partition of Ml'

o 1
a a b
b c d'

0
o+
o

[a

e d!

\
M)

The new composite machine is

iO i1
la 1a 2b
2b 3c 44’
3c la 2b
447 3e 4d!
3e la 2d
24 3e 4d'
MlM'2
The equivalence collection on Mé for the identity partition'
1, =-{1; 2; 3; 4} is I, = {a; b,d; c,e; d'} and the
equivalent partition oneglMé is

wé = {la; 2b,2d; 3c,3e; 4d'}.

= T M]
kcmax kl 4+ k2 Mle

2+3 -3
2 and k' = 2
c

It

Thus, ﬂé is a maximum common machine for HlMé.

-In this case we did not have to construct an implication graph
for the composite machine MlMZ in order to determine which states to split.
Instead an examination of the structure of the composite machine, as

determined by the component machines, Indicated which state to split.

133

134

5.6 S.P. Partition Properties on Asynchronous Machines

Tracey [671 has established conditions, which, if met, ensure a
critical~race free assignment for asynchronous machines. In this
section we present theory relating S.P. partition properties to Tracey's
conditions. First, however, asynchronous sequential machine theory is

introduced and Tracey's conditions summarized.

Background

A .
The state transitions which occur in an asynchronous machine

afe not controlled by a clock pulse, as in a synchronous machine.
Instead, transitions occur whenever one of the input variables changes.
For an asynchronous machine to detect a change, the input variables

must be continually present. Consequently, an asynchronous machine will

continue to change states until it reaches a stable state.

Definition 5.12 A state s, is a stable state, under input ik’

if 6(sa,1k) =5,

In the tabular representation of an asynchronous machine, stable

states will be circled.

Example 5.17

ollo;

M

W QE>I4 (:) -
N
N
b-(E) D~(§><:>-D‘

v B~ W N

An asynchronous machine for which no input change leads to

a sequence of state transitions is known as a normal mode machine.

Thus, for this example, M is a normal mode machine.

Definition 5.13 If during the transition from state s, to 8.> the

state variables may assume the binary values associated with state Sy,

sb is said to be an intermediate state between states sa and s .
c

If two-transitions share a common intermediate state, erroneous

results may occur during either transition.

Definition 5.14 - TFor transitions G(Sb,lk) = s, and G(Sb,lk)= Se’ sd+se,

a critical race exists if the two transitions share a common state.

State assignments for which all the state variables that
are required to change can do so simultaneously, without critical races,

are called single transition time (S.T.T.) assignments. Single

transition time assignments which have a unique coding for each state

are ¢alled unicode single transition time (U.S.T.T.) assignments.

The following definition establishes terminology necessary to
state the conditions for a unicode single transition time assignment, on

a normal mode table.

Defipition 5.15 Let ¥ and Y be dicsjoint subsets of thes states of a

machine. ‘The pair (X,Y) is called a partial state dichotomy (or partial

dichotomy) of the machine.

A state variable y; covers a partial dichotomy (U,V), if

y, =0Vs € Uand y, =1 Vs, ¢ V. TFor the transitions §(s ,i,) = %)
i k i i a]
and 6(sc,1j) = S3s if (sas ,scsd) is a partial dichotomy, then the

partial dichotomy (sas

b
b,écsd) is said to be associated with the
transitions. (When the sets U and V contain only one or two states the
notation (uiuj,vivj), without the set parenthesis, will be used to

indicate a partial dichotomy.)

The necessary and sufficient conditions for a unicode single
transition time assignment for a normal mode table, established by Tracey, ;
are:

(1) The partial dichotomy associated with every pair of transitions
occurring in any column of the table should be covered by some
sfate variable,

(2) There must be a unique coding for every state.

Properties relating S.P. partitions to partial dichotomies are

presented in the following section.

Properties

1 . o . .
The properties of S.P. partitions established provide means of
determining the partial dichotomies that can or cannot be covered by an
S.P. partition. Theorem 5.6 can be used to determine some of the partial

dichotomies that cannot be covered by a particular S.P. partition.

Theorem 5.6 For an S.P. partition w = {ﬁ;}...;ﬁ;}, if s; = Sk(ﬂ) and
G(Si,le) = sj and G(Sk,le) =85 then there is no two-block partition p,
p 2z m, which will cover the partial dichotomies associated with the

. s , _ . -)
transitions ‘ ’(Si’le) sj and 6(Sk,le) s

Proof. Since 8; = sk(ﬂ) and 7 is an S.P. partition, Sj = sm(ﬂ).
For a two-block partition p, p 2 m, to cover the partial dichotomy
(sisj, Sksm>’ we must have s = sj # 5, z sm(p)

However, since s, £ g (n) and p 2 7, s, Z s, (p).
, F e mdo 2T, s =5 6)
Therefore, there is no two-bleck partitien p,p = w, which cevers the
partial dichotomies associated with the transitions G(Si,ie) = sj and

6(sk,1e? =8 When.si = sk(ﬂ).

In the following example Theorem 5.6 is used to determine the

partial dichotomies which cannot be covered by a particular S.P. partition.

Example 5.18

i, i, i, i, i
1. Ct) A (:) 2 (:) The S.P. partitions for M are
2 1@ 5 |3 (@] 1| = =11,2,3;4,5,6
3|6 O] 2 | 1] m=1{13; 24,655
4 THICHORERIO, my = {1,4; 2,55 3,6}
5021016 O] 4 m, = {l’BJfLF; 2,5}
6 3 (:) (:) 5 4 Mo = {1; 2,3; 4; 5,6}

M e = {1,4; 2,3,5,6}

136

137

The partial dichotomy (14,36) is associated with the transitions
5(l,i2) = 4 and 6(3?12) = 6, We now try to find a two-block partition
p, P 2 w, which covers (14,36). In order for P to cover (14,36) blocks
(1,3) and (4,6) of T,
3 and 6, which must be kept separate if p is to cover (14,36). Thus,

must be joined. However, this alsc unites states

there is no two-block partition p, p 2 ﬂz,which covers (14,36).

Since 1 = 3 (ﬂz), Theorem 5.6 indicates immediately that there is
no two-block partition, greater than 7,, which covers the partial

dichotomy (14,36).

2

When realizing an S.P. partition on an asynchronous machine, not all
of the partial dichotomies need be examined to determine whether they could
be covered by the S.P. partition. Instead, it is only necessary that

representative states from the blocks of the partition be examined.

Theorem 5.7 For an S.P. partition m, m = {B,;...;B }, let
taeor e J. 4 . 1 n

s »8. € Br and s ,s
1 T2 P1 P
(s s, ,8 8) associated with the transitions 6(s ,i) = s,
P Jdn Pr ™ 1 ¢ J1
and 6(s_ ,i) = s is covered by a two-block partition p,P = 7w, if and
1 1
only if the partial dichotomy (s s, , s s), associated with the
r,”j P, Mm
2 -2 2 72
transitions 6(sr2,1e) = s.2 and 6(sp2,1e) = Smy’ is covered by p.

e_Bp, where Br + Bp. The partial dichotomy

s

Proof Assume the partial dichotomy (sr s, , 8 s) is covered by p,

J P, m
where p = . 11 1

i.e., 5 =s, =s_=s_ (p).
10091 P ™
Since m is an S.P. partition and s = s (m), then s, = s, (m).
r r 3 3
1 2 1 2
Similarly, s = s (w) and s = s (w). Since p = m,
P P m m
1 2 1 2
s 8 =s, =g, (p) and s = s = s = s G).
s B R Pp Pp M M
Thus, s = s, $ s_. = s {(p) and the partial dichotomy
r,” T3, P, m,

(s s, , 8 s_) is covered by p.
Tady Pp M
Similarly, if (s s, , s s_) is covered by p, it can be shown
T, j P, m
2 -2 2 2
that (s_ s, , s s) is also covered byop.
Trd P ™

138

Theorem 5.7 reduces the amount of work that must be done to

determine whether a partial dichotomy can be covered by an S.P. partition.

Example 5.19 | For paftition Ty in Example 5.19, the partial dichotomy

(12,45) associated with the transitions, 6(1,14) = 2 and 6(4,14) =5,

can be covered by a two-block partition p, p = Ty where P = {1,2,3; 4,5,6}.

Another partial dichotomy (32,65) associated with the transitions

6(3,14) = 2 and 6(6,14) =5, occurs under input i4.

Since 1 = 3(w2) and 4 = 6(ﬂ2), we have by Theorem 5.7 that the
partial dichotomy (32,65) is also covered by p.

The next theorem makes use of the m-image concept for a machine
introduced in Section 2.2. The w~image of a machine is the submachine
defined by an S.P. partition m on the machine. Examination of the
partial dichotomies formed by the mw-image of a machine permits the
determination. of the partial dichotomies that could be covered by the

S.P. partition 7.

Theorgm 5.8 All partial dichet@miesl(srsp,sksm) under input ie’ where
s_e€B,s €B,s €B,ands €3B re covered b two-block

r £ 5p p* 5k K n' o o are ¢ v a two c
partition p,p 2 m, if and only if there is a partial dichotomy on the

blocks of w, (B B ,B.B), associated with the transitions 6 (B ,i) = B
rp km T r’e P

and Gﬂ(Bk,le) = Bm.

Proof (i) Assume that there is a partial dichotomy (Ber, B Bm)
associated with the transitions § (B ,i) = B and § (B, ,i) B .
. T r’ e) T k’e m

Form a partition m' of the blocks of 7 putting Br and Bp in the same

=

block B' and Bk and Bm in an opposing block B'". Next form a two-block

partition p of 7', keeping B' and B" in different blocks. o = 7' = 7.

For a partial dichotomy (srsp,s sm) under input ie’ where

k

s €B ,s €eB,s €B ,ands € B, we have
k m m

T T P P k

.8 , 8 € B'" and s, ,s € B".
‘ k’m

8. F sp $ 8 = sm(p).

139

Therefore, (srsp,s sm) is covered by p, wherep 2 7.

k

sﬁ) is covered by a two block partition p, where

(ii) Assume (srsp,sk

p =,

Assume also that (Ber,B{Bm) is not a partial dichotomy.

That is (i) B

r = Bk’ oY
(ii) Br = Bm’ or
(iii) B, ='Bk, or
(iv) BP = Bm.

For (i) Br = Bk,_we have s, = sk(w)..

Therefore, there does not exist a two-block partition p, p 27 ,

. which covers the partial dichotomy (srsp,sksm). Similar contradictions

occur for (ii), (idii), and (iv).

Therefore, the partial dichotomy (srsp,s sm), associated with the

k

input ie, is covered by p, p = m, if and only if (BpBr,BkBm) is a

partial dichotomy associated with the input ie for machine Mﬂ.

Example 5.20 Consider the w.-image for machine M in Example 5.18.

L‘,
= {1; 2,3; 4; 5,6}.

s

i, i, iy i, ig

{1} a |@|c @b |@®

2,3t b ®|ada |® |® |a

{4} ¢ a (:) (:) d C)

{5,6} d b 1@ | @@ |«

M
s
The partial dichotomy (ac,bd) is associated with the transitions
‘Gﬂ (a,iz) = ¢ and éﬂ (b,iz) = d. By Theorem 5.8, the partial dichotomies

(12,25) and (14,36),5associated with input iz, are covered by a two-
block partition p, p 2 ﬂs.
Choosing p = {a,c; b,d} = {1,4; 2,3,5,6}, we obtain a two-block

partition which covers the partial dichotomies (14,25) and (14,36).

For machine M, the partial dichotomy (12,45) associated with
the transitions 6(1,14) = 2 and 6(4,14) = 5 1s covered by a two=block

partition p, p 2 L where p = {1,2,3; 4,5,6} = {a,b; c,d}.

Lemma 5.6 For two S.P. partitions w

Proof If (xlx

140

By Theorem 5.8, since lea, 2¢b, 4ec, and 5ed, (ab,cd) is a

partial dichotomy, associated with the tramsitions Sﬂ (a,i4) = b and
5

§ (c,i,) = d, for machine M_ . Examination of M confirms this.

s 4 s T

Any parital dichotomies covered by a partition ™ will also be

covered by a partition Tos where Ty < Tye

1 and Tos where ™ > Tos the set of

partial dichotomies satisfied by w, is a proper subset of the partial

1

dichotomies covered by Ty

93 ylyz) is a partial dichotomy covered by Tys then

there is a two-block partition p, p 2 Ty such that

x =% 7, 27,0

Since p > W, > T also covers the partial dichotomy

P oMy 7 Ty Ty
(2%, ¥199) -
The converse, that every partial dichotomy covered by Ty is covered
by Ty is obviously not true. Thus,the set of partial dichotomies

covered by 7., is a proper subset of the partial dichotomies covered by Ty

1

5.7 Discussion

Two possible methods of extending S.P. partition theory to
incompletely specified machines, weak and extended substitution property
partitions, have been presented in this chapter. (We shall refer to weak
and extended substitution property partitions collectively as S.P.
partitions for incompletely specified machines.) 1In both cases, the
definition of S.P. partitions parallels Hartmanis and Stearns' [31]
definitions of partition pairs for incompletely specified machines.
Unfortunately, S.P. theory does not adapt as easily to incompletely
specified machines as partition pair theory. The problems encountered
have been illustrated by a detailed examination of weak substitutioh
property partitions. Because of these difficulties, it has been
necessary to define a new operator for deriving S.P., partitions.
Fortunately, the new operator can also be used to find the greatest lower

bound of two S.P. partitions.

141

A major problem associated with weak partition palrs is that their
sum is not necessarily a weak partition pair. This problem was solved
by the extended partition pair. However, the extended substitution
property partition is not able to overcome this problem for S.P.
partitions on incompletely specifiea machines., Thus, because of the
extra set of labels required for extended substitution property partitions,

weak substitution property partitions are simpler to use.

The problem associated with obtaining the least upper bound of
S.P. partitions for incompletely specified machines, also makes the
"economic decomposition of the machine difficult. The difficulty

arises because it is not always possible”to factor out a common submachine

for two S.P. partitions whose sum is not I. To bridge the gap between a
strictly parallel and a ''cascaded series-parallel" decomposition, a
'decomposition used by Hartmanis has been adapted to this special case.

This decomposition, combining features of parallel and serial decompositions,
has been shown to be a useful tool for the economical decomposition of in-

completely specified machines.

The synthesis of multiple sequential machines has also been

[ty

investigated. As might be expected, the structure of a composite machine
has been shown to be dependent upon the structure of the component machines.

Thus, the determination of common machine factors can be accomplished

by an examination of the structure of the component machines, without
the necessity of constructing an implication graph for the composite

machine.

A brief examination of the decomposition of asynchronous machines
has been presented. The result of which is a set of properties that
simplify the determination of single transition time assignments. These
properties have immediate application to the work of Tan, Menon, and

Friedman [65] on the decompesition of asynchronous sequential machines.

i
3
P
I

Chapter 6 Sequential Machine Synthesis with Cellular Arrays

6.1 Introduction

The previous chapters have been concerned with various aspects of
the decomposition of sequential machines. It was observed that
decomposition is a tool that can be used to simpl.fy sequential machine
realization. However, for decomposed and undecomposed machines, the

problem of finding a hardware implementation still remains.

Present integrated circuit technology permits the fabrication of
large complex circuits on single .chips. Obviously, for the manufacturing

N .
process, it is more economical to produce one standard chip, which can

later be modified, than to produce an assortment of chips, each for differ-

ent applications. One possible standard chip would consist of simple

cells connected in an array configuration.

This approach has been investigated extensively for combinational
logic. (Minnick [55] provides a comprehensive review of this research.)
Only two papers, Ferrari and Grasselli [15] and Hu [33] have investigated

the use of cellular arravs for sequential machine realization.

In this chapter the cellular array and synthesis technique
developed by Hu is examined. AAneW'synthesis technique for Hu's array
is then presented. In addition, a new cellular array which overcomes

some of the limitations of Hu's array is introduced.
The main characteristics of a cellular array are:

(i) cells must be identical;
(ii) cells must be simple; that is, each cell must contain only a

few bits of memory and a small amount of combinational logic;
(iii) dintercell connections must be regular except for final synthesis

connections.

These characteristics require that a simple, regular model of
sequential machine operation be used for cellular array synthesis.
The state diagram and state table models are too complex to be

implemented directly by cellular arrays.

142

143

The model Hu bases his cellular array on, is the transition matrix,.
A transition matrix, T, for a machine M is an n x n matrix which re-

presents the transitive relationship between each pair of states.

Example 6.1
R
1] 5] 21 o0
2 | 6] 6]l 0
3 1] 511
a1 2] 44 o0 ;
510 3] 111
6 | 41 31 o

For the transition matrix, T, the entry at the intersection of

row r and column c is ik if S(Sr,ik) = g ; otherwise, the entry is 0.
e’

% 4 0 iO 0 i, 0 0
5 iO 0 il 0 4 0
6 0 0 il io 0 0 ‘
T

«

In some cases, a transition matrix is still too complex to be
-realized directly by an array of simple cells. To overcome this

problem, Hu uses ih—transition matrices, which show the transitive ;

relationships between states, for input if. In the following section
we will examine ih—transition matrices and Hu's synthesis

technique.

144

6.2 Hu's Cellular Synthesis Method

The cellular array developed by Hu for sequential machine
realization 1s based on the transition matrix concept. In order to

keep the cells simple, ih~transition.matrices are used. An ih—
transition matrix, Ti , for a sequential machine, specifies the
h

next-state relations for the input ih'

Example 6.2
i, 1, i, 1, z; z,
113 [1] 4| 2 0 1
2 {1 5 4 2 0 0
3 3 2 2 5 0 1
4 4 1 4 2 1 1
5 5 4 3 5 1 0
M
Ihe ih—transition matrix, h = 1,...,4 for M is constructed
by inserting i, at Tihgg,k) if 5(sj,ih) = 8.
3 4 5 1 2 3
1 0 i, 1 i, 0 0 0 0
2 i, 0}l 010 0 2 010 04} 0O i,
3 010 i, 0} 0 3 | 0 i, 0] 010
y . .
, {0 | O] O i, 0 4 i, 0] 0} 0] O
5 0 0 0 0 i 5 0 0 i, 0 0
Ti T
1)
2 4 2 3 4 5
1 {010} O0 i, 0 110 i4 0| 0| O
2 {01010 i, 0 2 0 i4 010} O
310 13 60]0¢}|0 3 j0]0 1070 i,
4 10 |0 (0 1,10 4 1014, 100 O
3 &4
5 10 10 13 0 |0 5 010 0 i,
T T

145

The cell, Figure 6.1, developed by Hu is capable of realizing
the state transitions represented at the row and column intersections
of the ih—transition matrices. Thus, with the proper inter-cellular
connections, an n X n array of cells can realize the behaviour of an

ih—transition matrix.

e

Hu's cell

Figure 6.1

Hu's synthesis procedure consists of determining the connections
that must be made between cells in order that an array realize an ih—
transition matrix. Rather than present the synthesis procedure, we will
describe the operation of an array which realizes a simple machine. From
this description, and accompanying diagram, the necessary steps in the

synthesis procedure will be clear.

Example 6.3

o 1 %1
1 2 1 0
1 2 1
M
The ih—transition matrices are
2 1
10 10 1 1l 0
211 0 2 0 il
T Ti
0 1

The cellular array in Figure 6.2 realizes M.

| |
J & ,—/‘L—'a-$~% GGy 1—«»«@—_\‘\‘»1
C
JCH “12] IRk | C14|
% } & | W — |
‘) c
| | %1 22 | ©23 24
c c
| % €32 il 3| 34
Figure 6.2

In addition to realizing next-state behaviour, the cellular array

also realizes the output functions.

The. Sl and 82 lines carry present-state information to the

cells; lines 0 and 1 are used in determining the output function, which

is transmitted by line Z Only one cell will have its delay "on" at

1°
any time. The "on" delay will enable one of the Sj iines, providing

the present-state information.

The array operation is demonstrated by sample state transitioms.

(i) Assume the delay in cell C,, is "on" (state 2). If inpput io

22
is applied, the AND gate in 021 is enabled, which will set the
delay in Cii to "on" (state 1). The AND gate in C31 is not

enabled, so the output-Zl is 0. (If the a terminal of C31

has been connected to the 1 line, 21 would have had a 1 output.)

147

(ii) Assume the delay in C.. is "on'" (state 1). Applying input

11
il will enable the AND gate in C13 and set the delay
in C13 to "on" (state 1). Output Zl remains at O.

The remaining two state transitions for M can be inferred in

a similar fashion.

In the above example, one cellular array was used for each ih-
transition matrix. This one-to-one relationship does not hold true
for all sequential machines. A reduction in the number of cellular

arrays needed can be effected by making use of compatible inputs.

Definition 6.1 For a machine M, two inputs ij and ik are said to be

compatible (ij'ﬁ' ik) if and only if

G(Sh,ij) + 8(s,»1,) for h=l,...,n and j + k.

Example 6.4

g 407
1l oa o
2| 3| 4 |1
3 5| 2|1
41 3] 4o
s 11 210

M

iy ~ 1, since 6(x,10) +-6(x,11), for =x=1,...,5.

Combining the iO and il—transition matrices for M, it can be

seen that there is at most one input, i

or il, at any row and column

intersection. ’
1 4
1 i, 00 i1 0 &
2 {0 |0 | i 1|0 &
310 il 0410 io
4 10 |0 io i, 0
5 iO 11 001410
Ti + Ti

Thus the next state behaviour of M for the compatible inputs,

i and i

0 could be realized with just one cellular array.

l’

Definition 6.2 A set of inputs, X = {xili =1, ..., p} is an

input compatible set if X" Xj’ for all Xj’xk e X.

Definition 6.3 An input compatible set, X, is a maximal input

compatible set if there is no other input compatible set, Y, such

that X ¢ Y.

A sequential machine can be realized from a collection of
maximal input compatible sets which cover all the m dinputs of M.
Hu's algorithm for determining a minimal cover of input compatible

sets follows.

Step 1l: Derive the input compatible pairs using an input
compatibility table.

Step 2: Obtain the maximal input compatible sets from the
input compatible pairs.

Step 3: Derive a minimal cover from the maximal input

compatible sets.

The algorithm is illustrated using machine M of Example 6.2,

Example 6.5 The input compatibility table has an entry for each

pair of inputs; an X entry indicates incompatibility, while a v

entry indicates compatibility.

2 |V

3 1x|x

holx YV
) 3y Iy

The input compatible pairs are (11,12), (12,14), and (13,14).

No further input compatible sets can be derived. Thus, a minimal

cover must be determined from the pairs.

The only minimal cover possible is {(il,iz), (13,14)}. Using
the cover derived, M can be realized using 2 cellular arrays instead

of 4.

148

149

In the following section, a new synthesis procedure for Hu's
array is presented. As will be shown, the number of arrays required
using the new procedure is less than or equal to the number required

using Hu's synthesis procedure.

6.3 Cellular Synthesis

The synthesis method for Hu's cellular array developed in this
section is based on incompatible inputs, rather than compatible

inputs.

Definition 6.4 For a machine M = (S,IP,0P,8,)), two inputs ‘ij and
o
if

in IP are said to be incompatible with respect to state s ij %s ik’

6(s,ij) = G(S,ik).

Lemma 6.1 The relation?&s is an equivalence relation on the set of

inputs of 2 machine M. _ |

Proof (i) %S'is reflexive, ij %s i,, since G(S,ij) = é(s,ij). %
(ii) 1If lj %S i then 5(3,1j) = 6(s,1k), which implies ;
i 7 i.. Thus, ¥ 1is symmetric. ' |
k "87] s
(iii) If 1j %S I and i %S ies then 6(5,1j) = G(S,lk) = 6(8,12)

Therefore, i, # i and %S is transitive.
j’'s

2

Incompatible inputs with respect to a state s can be grouped to

form sets of incompatible inputs.

Definition 6.5 A set of inputs Xg = {xl,...,xz}, XS c IP, is said to
be an incompatible set with respect to s if

X, %S X410 k=1, ..., 2-1.

Since %s is an equivalence relation the above definition
ensures that Xj %S X, for any xj,xi € XS. Subsequently, all pairs
do not have to be examined for incompatibility when determining

incompatible sets.

Definition 6.6 A maximal incompatible set of inpufs with respect

to s ds an dincompatible set with respect to s, which is not a

proper subset of any other incompatible set with respect to s.

For any state there may be more than one maximal incompatible set.

Example 6.6

S I T T e
1 1 5 8 7 4, 6 4
2 1 4 4 4 3 5 5
3 2 61 6 2 5 4 6
4 6 5 8 2 1 3 7
5 3 7 5 4.1 2 2 8
6 5 2 3 1 6 1 1
7 4 8 3 5 7 8 2
8 3 2 | 1 1 8 7 3
M

Both {12,13,14} and {16,17} are maximal incompatible sets

with respect to state 2.

Notation: Let Gj , j=1,...,r, represent all the maﬁimalAincompatible

s
sets of inputs with respect to s.

Lemma 6.2 Gk neG, = ¢ for k + 2
s s

Proof Assume Gk n Gz + ¢.
s s

Since %s is an equivalence relation, Gk U GZ is a
' © s s
maximal incompatible set of inputs with respect to s. This contradicts

our assumption that the Gj , j=1,...,r are maximal incompatible sets.

s
Thus, Gks n Gls = ¢, for k + L.

We will denote the largest maximal incompatible set of inputs

for state s by GS and the number of inputs in GS by Mg Thus,

for machine M of Example 6.6, G.2 = {12,13,14} and Hy = 3.

A new type of transition matrix, which can be implemented using

Hu's cellular array, is now presented. A single transition matrix is a

transition matrix for which there is, at most, one input entry at the
intersection of each row and column. The input entries in a single
transition matrix do not all have to be the same, nor represent all the

state transitions for a particular input.

For machine M of Example 6.6, a possible single transition matrix

follows.
1 2 4 6 7

1 i, 010 iS 610 i, 0 g
2 i, 0 ig i4 i, 0 0 0

310 il 0410 ig 01040

4 i i4 0 0 {0 il i, 0

54101011010 i, 0 i2 i,

6 1g i2 i, 0 !0 01O 16

7 0 1,11, 6 |0 0 i5 i,

8 i1 4, i7 0 0 0 i 0

Lemma 6.3 A machine M = (§,IP,0P,8,)X) is realized by a set of single
transition matrices if and only if for every next-state transition
§(s,i)=t, there is an i entry at (s,t) of one of the single transition i

matrices.

Proof The proof is obvious.

" For the minimal synthesis of a machine M, using single transition

matrices, we must determine the minimal number required to realize M. :

Notation: Let W = max {usls e S}.

Theorem 6.1 The minimal number of single transition matrices required to

realize a machine M is given by u.

Proof {Proof by construction)

Assume that My = U,8 € S.

152

For the set Gs = {gl,...,gu }, if S(S,gk) = r, then insert
. . S . . P
input 8y at row and column intersection (s,r) of single transition

matrix k, for k=1,...,us.

For the remaining state table entries, insert io at (x,y)

of one of the single transition matrices if G(X,i£)=y. If state
transition G(X,ip) = y has not been entered into one of the state
transition matrices and (x,y) of all the state transition matrices
are non-zere, then

G(X,Xl) = G(X,xz) T i iee. = S(X,Xu) = d(x,ip) = vy,

S

That is, GX = {xi,.....,xu ,ip} is an incompatible set of
' s

inputs with respect to x and ux =y This contradicts the

st+l”
assumption that u = M.

Thus, all the remaining state table entries can be inserted into
at least one of the single transition matrices and M can be realized

by u single transition matrices.

Cellular realizations of M in Example 6.6 are now given using

Hu's minimal synthesis method and synthesis using incompatible inputs.

Example 6.7 First, using Hu's method, an input compatibility table is

constructed.
12/
13 /_ X
14 XIX1X
{ v
15///
i P/ Ix I/ ix X
6
17 Xi1XIX IX | XX

153

The maximal input compatible classes are {17},{14,15},
{11,12,15},{11,13,15}, and {11,13,16}.

A minimal cover can be formed using the input compatible sets
{il’iz’iS}’{il’13’i6}’{i4’15} and {17}. Thus, four 8 X 8 cellular
arrays will be required to realize M. A simpler cover {il’iB’i6}’{iZ}’
{i4,is}, and {7}, not using the maximal input compatible classes, still

requires 4 arrays.
Now determine the maximal input incompatible sets.

maximal
state incompatible sets

1 {15,17}
{12’13’14}’{16’17}
{11,14},{12,13,17}

(SN,

~
PN
H
w
'-l

@]
—~
i

Thus yu = ué = u3 = 3 and M can be realized using three 8 x 8

cellular arrays. A possible STM realization is illustrated below.

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

il i2 14 1 ‘ 15 16 4 i7 i3
il i2 Vi i5 13 i6 2 14 i7
i i, 3 ig i3 3 i, i i,
i, i, il 4 i5 i, 4 e i,
i4 i, 5 ig il | i, 5 i i7
i4 i, ig 6 i6 i, 6 i, i
il 14 12 7 13- ig i6 7 17
12 i1 8 i3 i6 i5 8 i4 i7

Single tramnsition matrix realization of M

The cell connections necessary to realize a single transition matrix

using Hu's cellular array are similar to those for an input—traﬁsition matrix,

and as such will not be illustrated.

154

The final transition matrices used by Hu's synthesis technique
are referred to as C matrices. In the previous example, it was
possible to realize a machine using fewer single transition matrices
than C matrices. It can be shown that the number of C matrices for a
realization is an upper bound on the number of single transition

matrices necessary.

Notation: Let ¢ be the number of input compatible classes in the

minimal cover for machine M.

Theorem 6.2 For a sequential machine M, u < c.

Proof Assume u > c. That is, the number of inputs in the largest

maximal input compatible set is greater than c.

Let Bj,j=l,...,c represent the maximal input compatible

classes in the minimal cover.

Since ¢ < u, there must be at least two inputs ik’il € Bn
. L

such that N *Siz for some s € S. Thus, 6(s,1k) = 5(8,12), which

contradicts the assumption that B is a maximal compatible set.

Therefore, u < c.

Thus, input incompatibility synthesis will never require more
cellular arrays than input compatibility synthesis. Also, since input
incompatibility synthesis does not require the derivation of a

minimal cover, it is simpler than input compatibility synthesis.

Input incompatibility synthesis can easily be applied to
cellular arrays having more than one input terminal per cell. We will

"use the term incompatibility level,IL, to refer to the number of in-

compatible inputs that can be applied to a cell.

In general, the number of arrays required for input in-

compatibility synthesis is given by. [u/ILJ.

For machine M of Example 6.7, if a cell with IL = 2 is used,

‘the number of cellular arrays required is

£3/2]
2.

[u/1IL]

155

6.4 State Splitting

Another technique for reducing the number of cellular arrays
necessary to realize a machine, involves state splitting. In Chapter 5,
state splitting was seen to be a valuable tool in the economical de-
comﬁosition of machines. State splitting can also be used to reduce the
number of incompatible inputs for a machine. This in turn can reduce the

number of single transition matrices required in a realization.

Example 6.8
il i, ig 14
1 43 7 2 5
2 {1 8 1 6
3 11 6 5 1
4 2| 5| 51 5
5]2 4 8 4
6 i1 3 7 6
7 14 4 7 2
8 |3 3 8 1
M

Constructing the maximal input compatible sets with respect to

s gives:

maximal
state incompatible set Mg
1 - 1
2 {11,13 2
3 {11,14 2
4 {12,13,14} 3
5 {12,14} 2
6 - 1
7 {il’iz} 2
8 {i,,1,} 2

u=u4—3

Consequently, 3 single transition matrices are required to
realize M. Examining the set {12,13,14} it can be seen that the

input incompatibility is caused by state 5. DBy splitting state 5

to produce 5 and 5', the value of W, can be lowered to 2.

L, 4 i34,
113] 7] 2] 5.
2111 8] 1] 6
3|16l 5] 1
41251 5] 50
5124 8] 4
st2 14| 8] 4
6l1131 716
71alal 7|2
8!313ls8]1

The maximal input incompatible set with respect to 4 is now
{i,,1i,}. No new input incompatibilities have been introduced; so M’
2°%3 P

can be realized using 2 single transiiion matrices.

Splitting states necessitates using larger arrays to acccmmodate

the extra states. For the above example, two 9 X 9 cellular arrays

would be required. The number of cells is 2 x 9 x 9 = 162. Without

state splitting, three 8 x 8 arrays are needed for a total of

3 x 8 x 8 =192 cells.

Evaluating a realization by counting the number of cells used

does not give an effective measure of the realization. For example one

realization may use fewer cells than another realization, but require

larger arrays than the logic designer has available.

Consequently, state splitting should be used to accommodate

the realization to the cellular arrays available, rather than to

minimize the number of cells.

Note that state splitting can also be applied to Hu's minimal

synthesis method.

157

Example 6.9

1 M
13 |2
2 |5 |1
3061 6
4 1 2 | 5
5 11 | 4
6 | 3 | 2
M

The maximal input compatible classes are {il} and {iz}, requiring
two arrays to realize M. However, by splitting state 6 to give 6 and 6',
i1 and i2 can be made compatible. Thus, the number of arrays needed

is reduced to 1.

6.5 Problems with Hu's Cellular Array

Hu has proposed his cellular array as a general device for the
synthesis of sequential machines. However, in order to use the arrays
economically, they must be tailored to the sequential machine. That is,
the number of state and output rows in a cellular array should not
greatly exceed the number of states and outputs, respectively, in the
machine. This requirement entails maintaining an inventory of various sized

arrays.

The possibility of interconnecting arrays to form a larger array is
ruled out, because the connections betwéen all rows are not standard; the
connection between two state rows differs from the connection between a
state and output row. Thus, the largest machine that can be realized
is determined by the size of the largest cellular array that is

available.

This problem can be solved by removing all output rows from the
array. Because all inter-row connections are now regular, any large
machine can be synthesized from an inventory of small arrays. However,

the output functions will now have to be realized external to the array.

i

158

Examining Hu's cellular array 1t is apparent that each output cell
is utilized essentially as a two-input AND gate. Thus, each output
function can be realized by connecting a row of two-input AND gates to

the array.

There is another reason for not using the basic cell to realize the

output functions; the inter-row connections permit only one output function

to be realized for a sequential machine.

Example 6.10

|—.-l
s
N
=
-

M
A realization using Hu's cellular array is given.
i)
;0
1
S 4
- -l C’-‘ (}v £
€11 £12 113 14
S2
{f21 C22 23 24
| B g B 3
%o
ot & C g A
—qCBl C32 4 33 L34
1
zl
- GGt 0 -H-G—C
$C41 4€42 1%43 44
Figure 6.3

From Fig. 6.3 it can be seen that state information is not trans-
mitted beyond the first output row (row 3). Thus row 4 does not receive

any state information and cannot be used to realize output'zl.

159

4 reduced array, without any output cells, can be used more
effectively in realizing large sequential machines. Hu's minimal
synthesis procedure and the procedures developed in Sections 6.3 and 6.4
are applicable to the reduced array. However, the realizations produced

by all procedures. cannot effectively use a standard cellular array.

In Example 6.7, Hu's procedure produces the cover {il,iz,is}
{il’iS’i6}’ {14’i5}’ and {17}. If a standard 8 x 8 cellular array is to
be used, the array will require 3 input lines, even though only two
arrays will fully utilize all the input lines. Similarly, the method of
Section 6.3 will not necessarily produce single transition matrices which
use an equal number of inputs. It is difficult to predict in advance the
maximum number of input lines required for an array. Comnsequently, any

inventory would have to contain "worst-case" cellular arrays.

6.6 A New Cellular Array

A new type of cellular array, which has been standardized to
realize any sequential machine, is introduced. The evolution of the array
from an early version is presented to illustrate the design and operation

of the array.

The basis for the array is the xx transition matrix. For a
binary input variable x, the xx transition matrix is a transition
matrix which represents the state transitions that occur for input values

x and X .

Example 6.11

1%2

v~ W=
(S NV R IV | e 1%
£ I T
W | e
U iN it [N N

M

For M, the xx transition matrices are

160

1 2 3 4 5] 2 3 4 5
1 ;l Xy il Xy 1 X, 22 22 Xy
2 E] Xy Xy il 2 ;2 §2 Xy | X,
3 %y El El X1 3 X, | %, §2 22
4 ;l Xy Xy il 4 X, §2 %, §2
5 Xy §1 Xl+}_<l 5 X, | %, §2
%)%y %)%,

A cell which can be used to implement the above xx transition

-matrix is illustrated in Fig. 6.4. a

(vl
°

Figure 6.4

The method to realize an xx transition matrix using an array of
cells of the type depicted in Fig. 6.4 is similar to Hu's synthesis
method for a transition matrix. The main difference being that the
method has been adapted to handle cells with two inputs. The cellular

array in Figure 6.5 realizes the x transition matrix of Example 6.11.

X
171
The cellular interconnections are obvious from the transition matrix

diagram.

—

161

>
-

Xl .
51
- ‘ X]_J B - 4 » x]_ & 4 >
Xl 3 Xl & [[
SZ
. % ; % o
. 1) %13
53
X
l q —_— -~ ® Xl 4
Xl‘ Xl L p
S
4
B])
}-—-{_ & 1 P 14 ;{ 4 ¢
l L © ﬂ l
S % e >
; 1 ¥ —— N —
L 1 ¢ ;{ [3 _l(
« . [. l‘ N X1| R
el . ez 63 e/‘= eS

Figure 6.5

During the operation of this cellular array, more than one of the

ei,i=l,...,5, lines will be enabled for either input Xl or il' Essenti-

ally, the array indicates, for an input Xl(il) the possible next-states.

That is, if in state 3 with input Xy, the next-state is either

1 or 5. Similarly, the cellular array for the x2§2 transition matrix
indicates possible next-states for inputs X, and ﬁz. For state 3 and
input x the possible next-states are 3 and 5. 1In conjunction with the

2’
'Xlgl cellular array, the next-state for M in state 3 with input X X, is 5.

Thus, the next state can be found by ANDing the possible next-states, :
The next-state is then passed through a delay to give the present state,

"as illustrated in Figure 6.6.

in Pigure 6.6

-4

~

i 1M1
: e, e, eg
| | |
2"" By S"I""' A‘II’ a5
; eé ' e'4 eé

Figure 6.6

The cell of Figure 6.4 is not capable of realizing all sequential
machires. A problem occurs when there are incompatible inputs that are
the complement of each other. When this happens a cellular realization

will select multiple next-states.

Example 6.12

%1% 00 01 11 10

vt B~ W N
(SN A I P R e L
B e R A A
W [~ o I
L 1N [N

162

The %% transition matrices are:

3 4 5
1 xq | X il Xq 1 X, 22 §2 Xy
2 El Xy Xy El 2 §2 ;2 X, %,
3 X §l Xl’il 3 X, §2 x2,§2
4 §1 % xi §] 4 %, §2 %5 §2
5 Xy El xl,§2 5 x| %, ;2
%% %)%,

Examining the xx transition matrices it can be seen that if M is
in state 3 and received input 00, columns 4 and 5 of both transition
matrices are enabled. Using the cellular arrays of Figure 6.6, machine M
would enter two next-states instead of just one. Similarly, when the
input is 11 for state 3, columns 3 and 5 of both transition matrices

are enabled.

The above problems occur as a result of the binary complemented
inputs, 01 and 10, incompatibility with respect to state 3. That is,
§(3,01) = 6(3,10) = 5. These state transitions require that state 5 be
the next-state in the xx transition matrices for all possible values of

the inputs Xy and Xy

Similar problems would have occurred if the binary complemented

inputs 00 and 11 had been incompatible with respect to any state s.

The problem of multiple next-states for binary complemented

inputs is overcome by state-splitting.

Example 6.13. The binary complemented incompatible inputs of machine M

in the previous example can be made compatible by splitting state 5.

163

164

U e W N

2N (V- T TV T (F S FRUR PO

N [, I S, I

U TUCRNN [N TUCTE S S
N

M'

It is only necessary to split a state once in order to remove all
binary complemented input incompatibilites caused by that state. The

next—-state behaviour of the original state and the split-—state can be

made identical. This possibility will be used later when realizing M'.

The new xx transition matrices are:

1 2 3 4 5 5' 1 2 3 4 5 5"
1 El Xy gl Xy 1 %, %2 §2 X,
2 gl % X, il 2 §2 §2 X, X,
3 Xy El §1 Xy 3 X, §2 X, §2
| A x| % A x| %
»% 5 X, §1 X1’§l 5 X, Xy §2
i 5! Xy il Xl’il 5! Xy | X, §2

The Xlgl and x2§2 transition matrices realize M' without producing

multiple next-states.

A modified cell which will allow any n state machine to be realized

using n X n cellular arrays is presented.

'_,.x
N
(@]

c dl d2
N

a . 47

bl :::;\j/ S w»o{_ Pt

Figure 6.7

Essentially, the cell contains two circuits of the type found in
the original cell. The top circuit can be used to produce the next-
state sj; while the bottom circuit can be used to produce the split

next-state s' .

In a cellular realization of a machine M, the next-state is found
by .ANDing all the el(ez) outputs for state.sj(sj').' Since, the next-
state behaviour for states Sj and sj' are identical, the‘vresent state

Sj is determined by Sj = sj+sj'. Thus, it is not neceésary{to introduce

2

£ : . . .
another state when realizing machines with split states, as an n state

-

machine can be realized from an n X'n cellular arréy. The. synthesis

i

method presented demonstrates how this can be done.

Synthesis Method for Modified Cell

(1) For machine M, split all binafy complémentéd incompatible inputs.
(2) i<« 1.
(3) Find the Xigi transition matrix._
(4) For the cellular array Ci:
(a) j+«1;
(b) terminal c of each cell of row j is connected to the state line
Sj;
(c) terminal dl(dz) of each cell in row j is connected to the
el(ez) terminal of the cell above;
(d) connect xi(xi) to terminal ai(bi) in cell Ci(j,k) if entry

(j,k) in the Xiii transition matrix is Xi(ii);

{e) connect xi(;i) to terminal az(bz) in cell Ci(j’k) if entry

(j,k') in the xi§i transition matrix is Xi(;i);

(£) 3« 3+l

if j < n, where n is the number of states, go to 4(c);

otherwise go to 5;

(3) i <« i+1

if 1 £ m, where m is the number of input variables, go to 3;

otherwise go to 6,

(6) The corresponding er,r=1,2 terminals of all arrays are ANDed to

‘produce the next-state values Sj and 83,j=1,...,n

(7) The sj and sj are then ORed and passed through a delay to give Sj'

Example 6.14. The x_x. transition matrix for Example 6.13 is

11
realized using the new cellular array.

166

- " Xl-i - b Xl-—< " i
X7 %1 1612 x7] “13 L C14 L C15
. X X
— l'—q b l — -
-ty < 3 —~——t
] Ca1 !) Co3 :» o * 725
b . G- -
C b fz o X, b
 “31 {¢32 $ “33 %11 34 xi U35
‘ X — ¢ X1~—4
;{ g C l 3 C 4 C L4 }—E —
14 %41 42 43 “44 14 745
.._\’..j
g K. g X4
b l - - .-]—-4
%51 G52 § Cs3 *1 1754 *11 “ss
©1%2 €18 €18 €1%2 152

Figure 6.8

167

The x2§2 cellular array can be implemented in a similar manner.
Connecting the Xl;l and x2§2 cellular arrays togehter, following

rules (6) and (7), a cellular realization for M is obtained.

XX
vt

1 Y
Sl -————-__P- -
S XX
9 11
34 ot
55— %1 %
+ A5
=2
"2
sl .
SZ X2X2
S3
4
S
5
Figure 6.9

An important feature of the cellular array presented is that any
machine can be realized from arrays having only twe input lines. This
permits the uniform interconnection of arrays to realize any size

sequential machine.

The number of arrays to realize any machine is independent of
input compatibility and can be determined prior to the realization.
The number, N, required is given by the formula

N = [logzk], where k is number of inputs.

For a machine with 15 inputs, the number of cellular arrays would
~only be [logzlSJ = 4. Thus, the number of arrays required grows at a

relatively slow rate as the machine size increases.

168

6.7 Conclusion

The use of cellular arvays for sequential machine realization has

)

been investigated in this chapter. The wvarious arrays discussed all
incorporate the transition matrix concept in their design. Differences
in the arrays are due to the wvariant forms of transition matrices used;

that is, input or input variable transition matrices.

The cellular array presented by Hu is designed to implement the
i : state transitions from a single input, Thus an m input sequential machine
would require m cellular arrays. However, minimal covers of compatible

inputs are able, in most cases, to reduce the number of arrays required.

An alternative method of using Hu's array was also developed.

This approach, instead of requiring all state transitions for a particular

‘input to be represented in a single array, allowed the transitions for
an input to be distributed émong several arrays. It was proved that this
method used fewer, or not more, arrays than Hu's method. In addition,
this synthesis method ensured that the minimal cellular realization of a
machine could be found in a straightforward manner, whereas Hu's method
involved obtaining a minimal cover of compatible inputs. For a machine |
with a large number of inputé, the‘derivation of a minimal cover is an.

involved process.

There are several problems'attendant,qpon the use of Hu's array
£

for machine realization. First, the array cannot realize more than one

output function;. to realize even one’ output function requires irregular

inter-cell connections. This problem can only be overcome by implementing

the output functions external to the array and using the array only to |

realize state transition behaviour..

.

The second, more serious, problem concerns the standardization
of cellular arrays. As the number of inputs for a machine increases,

the number of input lines required for the cellular arrays also increases.

Consequently, it is not possible to manufacture a standard array with a é

fixed number of lines. The ability to connect arrays together to form a

169

larger array is reduced, as the resulting array will probably not have

enough input lines to realize a large machine.

A solution to this problem uses the xx transition matrices
developed in this chapter. The array presented to realize an XX
transition matrix requires only two input lines, for any size transition
matrix. Thus, a standard size array can be produced, which can easily

be interconnected to realize any sequential machine.

Chapter 7 Machine Synthesis using Cascaded Combinational Logic Boxes

7.1 Introduction

A novel approach to the problem of sequential machine realization
is presented in the work of Haring [23] and of Menger [533. The under~
__ e e s e g s - tn
lying premise in both works is that a column in the state table
representation of a sequential machine can be realized by a cascaded
connection of logic boxes called generators. The essential difference

between Haring and Menger lies in the set of generators used by each.

Haring uses the three generator set {a,b,c}, where the function

performed by each generator is represented in Fig. 7.1.

a b c

1 12 2 1

1 3 1

3 3 4 3

N i i i+l 4
n-1h-1in n-1

n n n

Haring's Generators

Figure 7.1

. . . n . :
Notation: For an n state machine, the n~ possible state columns are
referred to as maps. A map for which all possible n states occur is

a permutation map, or simply a permutation; while a -map for which some

of the n states are missing is a non-permutation map.

An algorithm to obtain a generétor realization fof any map
is developed by Haring using the operator set.{a,ﬁ,Y}. The operators
a,B and Yy corresponding to a,b, and c, respectively, manipulate states in
specified positions. For exaﬁple, 0. will interchange the states in
positions 1 and 2 of the column, regardless of which‘states are in

these positions. A graphical representation of o,B, and vy follows.

NN
y
|

//2’. | S R

/‘
P
d
%
*——tf e 6’//
d
NP

Figure 7.2

Haring proves that an operator realization for a map defines a
generator realization for that same map. The generator sequence can
be obtained by simply reversing the operator sequence and substituting

a for o, b for B, and ¢ for y, in the reversed sequence.

Since operators are easier to deal with than generators, a
generator realization is derived by first finding an operator realization,

and then reversing the operator sequence with appropriate substitutions.

The main obstacle to using the set {a,b,c} to realize a map, is
that the upper bound on the length of the generator sequence increases
rapidly as the number of states increases. This has an obvious detrimental

effect on the cost and delay time of a realization.

To circumvent this problem, Menger [53] has proposed an enlarged
set of generators. The number of generators, in this case, is not fixed,
but increases as the number of states increases. This has the effect of
allowing the length of generator realizations to grow linearly with any
increases in the number of states. Since Menger's work is relevent to the
‘new generator set we propose in Section 7.4, a detailed description is
provided in the following section. (In addition, a minor correction to

Menger [53] is given in Section 7.3.)

The new generator set proposed is similar in concept to that of

171

172

Menger and Haring; with the difference again being the size of the
generator set. Increasing the generator set creates problems with
obtaining a minimal realization of a map, in terms of the new generators.

A heuristic algorithm for deriving realizations is presented.

As Menger's generator set is a subset of our proposed set, any
realization using ~ur generators should be no worse than a realization
ﬁsing Menger's generators. In fact for all the sample maps realized,
realizations using the expanded generator set have been shorter than

~ Menger's realizations.

One method of implementing the generators is by using cellular
arrays, as demonstrated by Huang [35] and Krishnan and Smith [45].
Huang implements the three universal generators of Haring using identical
cellular arrays. (Boundary éonditions are used to set the function of the
arrays.) A cellular realization of a generator sequence has the benefit
of uniform connections between the array. As already noted, the length

of a generator sequence grows rapidly as the number of states increases.

Krishhan and Smith attempt to correct the above problem by deriving
cellular implementations for Menger's expanded generator set. However,

the cellular implementation they use has certain disadvantages:

(1) the cells in the array are not identicalj;

(2) the inter-array connections are not uniform.

Problem (1) prevents rows of array from being joined together to
form a larger row and thus prevents the array being used as a modular
building block. Problem (2) prevents the fabrication of rows of arrays
on a single chip. This is because the connections between arrays
cannot be specified until after the generator sequence for a column has
been determined. A cellular array which eliminates the above problems

is-presented in Section 7.5.

Some common notation, used throughout the following sections,

is presented next.

A cycle is a closed loop of states. Cycles will usually be

represented as a list of states enclosed in parenthesis.

For example, (3,7,5,2) where the state in position i-1 maps
into the state in position i. That is, state 3 maps into state 7,

et

7 into 5, ete. The state in the last position wraps around and maps into

the state in the first position. Clearly, a permutation is a collection

of disjoint cycles.

1 16
2 3
3 17
4 14
5 {2
6 {1
7 15
8 18

°

The permutation P can be represented by the cycles
P = (1,6), (2,3,7,5), (4), (8).

Often unit cycles are deleted when describing a permutation.
e.g., P = (1,6), (2,3,7,5). The permutation column P can also be re-
presented as P = <6,3,7,4,2,1,5,8>, which contains the information, state

1 maps into state 6, 2 into 3, 3 into 7, and so forth.

The identity permutation, E, is the permutation consisting of only

unit cycles.

E= (1),(2),...,(n) or E=<1,2,...,n>. :

A new permutation Q obtained from permutation P by interchanging

states r and s is denoted by, Q = Pe(r,s).

For example, 1let P = <5,2,6,3,4,1>.
| Q = P+(5,3)
= <3,2,6,5,4,1>,

7.2 Menger's Algorithm

Generators and Operators

Menger [53] uses a generator set consisting of 2(n-1) generators,
where n is the number of states in a machine. The generators are

illustrated in Figure 7.3.

T2
L

2 3 n "2 3 n
1 2 3 n 1 1]
2 1 2 2 1 2 2
3 3] 3 3 1 3
i i i 1 i i i
n 11 n 1 n n 1

Menger's Generator Set

Figure 7.3

A map vealization of map M is any sequence d ...dm of generators,

1
I = ¢« 'th i
di € 1b2,...gbn,c .dm M; ‘that is

2,...,cn} such that dl;..

dl...dm(s) = dm(....dl(s)) = M(s) for each state s = 1yeeee,n.

Menger defines a set of operators which correspond to the
'generators. Rather than exchanging prescribed states like the generators,
the operators exchange states in prescribed positions. The operators,

which are easier to manipulate than generators, are illustrated in Fig. 7.4.

{

82 63 een 5n Yo Y4 Cov,
s, 8y 5, 5, 4 s, 5y
s, s, s, s, sy S5 g,
S3 85 sS4 54 1 s¢ Sy

s S s s, s s s
i i i i i i i
Sn sn Sn Sl Sn Sn Sl

Operators (si represents the state in position i)

Figure 7.4

175

An operator realization of map M 1is any sequence 61....6m

of operators, Gi € {82"""Bn'Y2"“"Yn}’ which operating upon
the identity map E yields M. That is,

61....6n§E) = Gm(....dl(E)) =M.

Operators and generator realizations are related by Lemma 7.1.

'_For the operator cnd generator sequences 61...,6m and dm""dl’
61 is the image of di under the '"matural' correspondence 8k<—> bk’

Yk<—> c for each k=2,....,n .

k’

Lemma 7.1 (Menger [531). 1f 61....6m(E) = M, then dm""dl = M,

and vice versa.

Realization of Permutation Maps

Before considering non-permutation maps, Menger first develops
an algorithm for obtaining an operator realization of a permutation map P.
The algorithm developed is easy to apply and guarantees the minimal oper-

ator realization of P.

Notation: Let DO = E and Dk be the n-tuple resulting from the kth

iteration of the algorithm

Dy < By Dy
k
no

. | concatenate Bg to operator sequence

. k
select a state s for

n
° »| which P(s) 4 D ()

and set £k =g

i
i
1
i
|
b

176

Example 7.1 An operator sequence for P = <2,1,4,3> 1is obtained
using Menger's algorithm
D0 = <1,2,3,4>
-1
1= =
k=1 21 P (Do(l))
= 2
Since 21 + 1, 82 is added to the operator sequence
Dl = BZ(DO) ' : operator sequence: 82
= <2,1,3,4>
k=2
o, =P 1D (1)) =1 and D + P
2 1 1
Since Dl(3) =3 + 4 = P(s), set s=3 and 22=3
D2 = 83(D1) , operator sequence: 8263
= <3,1,2,4>
k=3
2, = PR (1) = 4
3 2
Dy = 84(D2) | ’ operator sequence: 628384
= <4,1,2,3>
k=4
%, = PR, (1) = 3
4 3
D, = B5(Dy) \
= <2,1,4,3> operator sequence: 62838483
k =
9. =Pl (1) =1
5 4
Since D4 = P, the algorifhm stops and a minimal operator rea.ization of

P is 82838483 .

Notation: A permutation P with 2 cycles will have its cycle structure

denoted by oW

v, w, .. PR
J1 39 Jo 7
denotes the number of states in cycle w,
' i

s W, is the cycle containing state 1

and

35

‘The term $(P) will be used to refer to the number of operators

required to reallze permutation P.

Theorem 7.1 (Theorem 3.2 [53]) For all n and any n-state permutation
P, the algorithm just described yields a realization for which
$(p) = (jl-l) + E(ji+1), where the * indicates that the summation is

taken over just those ji where 2 < i £ £ and ji = 2.

Realization of Non-Permutation Maps

For a given map M and any state s, let Mgl(s) denote the set of
states ti (possibly empty) satisfying M(ti)=s. The term ¢(M) denotes
the set of states si for which M—;(Si) is the null set.

Pefinition 7.1.i [53] A permutation P is compatible with map M if and

l(s) holds.

only if for each state s ¢ ¢, P—l(s) e M

Definition 7.1.ii [53] A permutation P is compatible with map M if and

only if {s|M® 1(s)) + s} = 6.

et o =3¢ .Gm be an arbitrary sequence of operators in

1o

'{82,....,Bn,Y2,....,Yn}, with the elements in o not necessarily distinct.

Denote the length of o by $(0) = m.

The number of operators in ¢ belonging to {Yz,....,Yn} is denoted
by S$y(o): let T denote the sequence of B operators (possibly empty)

which remain after all ¥y operatofs in o have been deleted.

The following lemmas and theorem provide a cost function for a

minimal realization of map M.

Lemma 7.2 (Lemma 3.1 [531) 1If sequence ¢ is a realization of map M and
Svy(o) = l¢(M)I, then Ts is the realization of a permutation that is

compatible with map M.

Lemma 7.3 (Lemma 3.2 [531) For every map M there exists at least one

minimum realization ¢ for which $y(o) = l¢(M)l.

Definition 7.2 [53] The state set A(M,P) is the set containing those

states s, s ¥ 1, for which IM—l(s)| z 2 and P(s) = s.

Lemma 7.4 (Lemma 3.4 [53]) Given map M, for every permutation P that

is compatible with map M, one can construct a realization ¢ of M

177

178

satisfying both 7 (E) = P and $(0) = [0 | + $(P) + 2+]aM,P)].

Theorem 7.2 (Theorem 3.3 [53] For any map M there exists at least one
permutation P that is compatible with map M, for which the sequence
constructed as in the proof of Lemma 7.4 is a minimum realization for M

of length $(o) = [dan | + $() + 2-|aM,P)].

Example 7.2 For map M = <4,2,2,4> permutation P = <4,2,3,1> is compatible

with map M.
oD = {1,3}
A(M,P) = {2}
8B = (3D + (D
= (2-1) + 0
=.]_

Thus, a minimum realization for M would require

$(o) = $() + [0 | + 2+]AQ1LP) |
1+ 2+ 2-1

[l

5 operators

s Yo By Y3 By

4
2
3
4

S~ W N
oW N
S~ W N
S~ N BN
SN

o= 84,Y4,82,Y3,32 is a 5 operator realization of M using the:

" permutation P; L 84,82,82 is a realization of P (Lemma 7.2).

As a result of Theorem 7.2 it is possible to obtaim a minimum

A(M,P)| for every

realization of a map M by evaluating $(P) + 2-
permutation P compatible with map M, and choosing the permutation which
minimizes this function. However, because of the great many permutations

compatible with map M, for any map M, this is not a practical approach.

179

To overcome this problem, Menger defines a new pseudo cost
function $'(M,P), based on the redefined cost function $'(P) and the
new set A'(M,P).

L
$'(P) = ;é%(ji+l), where j, = 2.
A'(M,P) = {s]P(s) = s and | ()| 2 2} .

Let $'(M4,P) = [0 | + $'(P) + 2-]|A"(4,P)].

Theorem 7.3 (Theorem 3.4 [53] For a given map M and any permutation P,

compatible with map M, $'(M,P) - $(c) = 0 or 2.

Thus, obtaining a permutation P compatible with map M, which
minimizes $'(M,P) will lead to a realization of M, at most two operators

costlier than the true minimum cost realization of M.

Definition 7.3 [53] A permutation Q compatible with map M, which

minimizes $'(M,P) is said to be minimally compatible with map M.

The following algebraic rules are used by Menger to enable

$'(M,P) to be minimized.

ARl If P is compatible with map M, then P+(u,v) is also compatible
with map M for any two states u,v € ¢(M).
AR2 If P is compatible with map M, then P-(u,p) is also compatible
with map M for any state u € ¢(M), where p = M(P—l(u)).
For a permutation P, a cycle in P is sgecial if and only if it

contains two or more states, at least one of which is in ¢(M).

The following necessary conditions must be satisfied by any
permutation P that is minimally compatible with map M. (These

conditions are proved using the algebraic rules, ARl and AR2.)

NC1 | P can have at most one special cycle.
C If u ¢ ¢(M) and P(u) + u, then
(a) P(w) ¢ QD)
(b) P(w $ MG W)
(c) M(P_l(u)) appears in the special cycle.

2
N

|

180

The conditions NC1 and NC2 are used, in turn to prove lemmas
which determine a permutation P, such that P is minimally compatible
with map M. The general form of each lemma is to state specific
conditions, which must be met, for a state p to be assigned to a posi-
tion in P. Rather than state the lemmas explicitly, they are presented
implicitly when Menger's algorithm for non-permutation map realizations
is given. A brief descriptioh of the use of the lemmas in Phase I of
the algorithm follows. (Readers interested in the statement and proof

of the lemmas are referred to Lemmas 3.5~3.9 of Menger [531.)

For $'(M,P) = |¢(M)| + $'(P)+2-IA'(M,P)[it can be seen that
only the second and third terms in the function are dependenf on the
permutation P. Thus, in order to minimize $'(M,P),$'(P) and IA'(M,P)!
must be minimized. One of the lemmas permits the set A'(M,P) to be
determined directly from the map M. Now only the term $'(P) remains
undetermined in $'(M,P). The remaining lemmas indicate how the
states, s % A'(M,P), can be assigned to positions in P (consistent

with compatibility) so as to minimize $'(P).

Menger's Algorithm

Phase T A, Ideﬁtify the states which do not appear as images under
M; i.e. QD). |
B. Each remaining state p appears one or more times as an
image under M.
(i) 1If M-l(p) contains one or more states thgt are
neither in ¢(M) nor p itself, take p~l(p\ to be
one of these states. _ /
(ii) 1If M—l(p) contains states p and possibly otherv
states which are exclusively in ¢(M), take
-P_l(p) = p. (Note that this step determines A'(M,P).)
(iii) 1If Mnl(p) contains only states that are in ¢(M), and
this must apply to all image states that did not qualify
for (i) and (ii), then Pnl(p) can be taken to be

any state in Mfl(p).

PHASE 11

PHASE 11T

PHASE IV

181

Tor each state s ¢ ¢(M) not assigned an image in

B (iii), take P—l(s) = 3.

Any states which remain unassigned as images at this point
must be members of ¢(M). These may be assigned to the

remaining vacancies in an arbitrary manner.

Denote the current permutation by R. If R has two distinct
non-unit cycles each of which contains at least one state

in ¢(M), then a new permutation R' is formed by exchanging
these two images (AR1l). Repeat Step A as long as it applies.
If the current permutation, R, has a non-unit cycle which
contains a state s ¢ ¢(M), such that M(R—l(s)) is not also
in this cycle, then these two images must be exchanged to
obtain a new permutation. Step B is repeated as long as

applicable.

An operator realization for the permutation Q, resulting

from Phase II, is derived.

For each state t, where [M—l(t)l 2 2, there either is or is
not an index i such that t = Di(l).

If such an i exists, then certain Y-operators must be
inserted in the operator realization of Q at this point.

Specifically, for each state s+t satisfying M(Q_l(s)) = t,

. .th
~an operator y_ must be inserted after the 1 B operator,
P r

where r = D;l(s).

For each state t where there is no i such that Di(l) = t,
the operator sequence obtained in A is augmented with Bt.
Immediately following Bt further vy operators are attached.
Specifically for each state s+t, such that M(Q—l(s)) = t,
attach the operator Yoo where v = Q_l(s). Finally a
second Bt is attached.

Reverse the operator realization and replace each Bk by bk
and each Y by ck,k=2,...,n, to.obtain the desired minimum

map-generator realization of M.

The following example demonstrates the application of Menger's

algorithm to a map M.

Example 7.3 M=<1,1,2,2,5,5,8,7,7,9>
PHASE T A. b = {3,4,6,10}
B. (i) M) = (1,23, M) = (73, ¥) = {10},

and M—l(7) = {8,9}
-1 -1 -1
P (1) =2,P (8) =7, and P "(9) = 10 are
forced; choose P_1(7) = 9,
(11) M_l(S) {5,6} and 6 € ¢(M). Therefore,

p"1(5) = 5 and A'(u,P) = {5}.
(iii) M T(2) = {3,4} < 0@0); choose P T(2) = 3.
C. : States 4,6 ¢ ¢(M) have not been assigned an
image; set P-l(é) = 4 and P_l(6) = 6,
D. The remaining unassigned states are 1 and 8.

Assigning the remaining images, 3 and 10,

arbitrarily, set P1(3) = 1 end P(10) = 8.

The resulting permutation R is
R = <3,1,2,4,5,6,8,10,7,9>
PHASE 1T The cyclic representation of R is
R = (1,3,2)(4)(5)(6)(7,8,10,9)
A, | Since 3 is in cycle (1,3,2) and 10 is in cycle
(7,8,10,9), apply (3,10)
R! R+ (3,10)
(1,10,9,7,8,3,2) (4) (5) (6)
Step A no longer applies.

B. Step B does not apply.
PHASE III Q = <10,1,2,4,5,6,8,3,7,9>
A minimal operator realization of Q is
By83:88:87:84,81¢
PHASE IV An operator realization of M is presented, from
which the application of Steps A and B can be
deduced.

182

183

Yig By Y, By Bg By g By Byg Bs Y By
11 2t2t3(s8l 717|911 |5]5]1
2 2 {11111 {1|1]1]1]1]|1
303 | 332222122]2]2]/|:2
4616 |4 l2l2]212l2l22 2212
595 | sls|{s|s|{s|s|sis5|t1]1]s
66 | 6|6(6|6|6|6|]6 6| 61|5]S5
717 | 71717178 |8|8:8]| 8]|8]|3
g8 | 8|8l 8l3|3|77i7 | 7]|7]|7
s {9 | 9lolojotojot7|7{717]|7

ot |1l {zrlrtrirtio] 9)9]lo9

$'Q,P) = [0 | + $1(P) + 2 |AT (4,P)]
‘ =4+ 6+ 2-1 '
=12

In proving a theorem, essential to his algorithm, Menger assumes
an irredundancy condition to hold. However, this irredundancy condition i
is inadequate. In the following section we show that an extra

irredundancy condition is necessary to prove the theorem.

7.3 Irredundancy Conditions

To establish the pseudo-cost function,
$'(M,P) = |¢(M)| + $'(P) + 2-|A'(M,P)|, for a nonpermutation map M,
Menger utilizes Lemma 7.3. The lemma is a consequence of the much

stronger theocrem.

Theorem 7.4 ([53] p.3-35) 1If sequence o = 61....6m is a realization
of map M for which $y(o) >l¢(M)|, one can construct a second realization

o' of M satisfying both $y(c') < $y(o) and $(c') < $(o) = m.

In order to prove the theorem, Menger assumes a redundancy

condition which we state formally below.

Definition 7.4 [53]1 If o = 61....6m is a realization of map M and
there exists an index k and state t such that Mk(l) = Mk(t) and -

6k+l = Yeo then realization ¢ 1is redundant.

184

Obviously, if a realization ¢ 1s redundant, then the operator

K+l which causes the redundancy condition can be deleted to give

| J—

8
o "”6k’6k+2""’6m’ which is still a realization of M.

61
The theorem is proved assuming that the operator sequence is

irredundant in the sense of Definition 7.4. That is, if an operator

sequence is not redundant and $y(o) > |¢(M)|, then

", ..there must exist an index k and state p such that both Mk(p) 4 ¢(M)

and 6k+1 = vy , for otherwise it would follow with the irredundancy

of ¢ that $v(o) =[0D|." . (p.3-35 [53])

This is not strictly true and a counter example is given below.
Later, we state another redundancy condition which makes Menger's

statement applicable.

Example 7.4 ~ M =<1,2,2,1> (@) = {3,4}
O = 81,8,,64,8,,05,8,,85 = B,,¥3:8,,:7,,B5,8,57,

114 ¢ 4) 2 21 4 1471
212 2 | 4 2 2 2 2
313141 4 41 2 2 2
41111 1114 (1
M1 M2 M3 M4 M5 M6 M7
"¢ is irredundant since 6i+1 = g implies Mi(l) + Mi(s) for all
indices 1 < i < m~1. Examining o for cases where 6k+l = Yp and

M (p) ¢ ¢n:

k=6 and p=4: 6k+l = 67 = Y4 and M6(4) =4 ¢ ¢(M)
k=3 énd p=2: 6k+1 = 54 =, and M3(2) =4 ¢ ¢(M)
k=1 and p=3: § . =68, =y, and M (3) = 3¢ o).

Thus, there does not exist an index k and a state p such that
both ¥, (p) ¢ ¢() and §, . = Y, But $y(o) = 3 > |¢@)| = 2. This

contradicts the assumption made by Menger in proving the theorem.

Consequently the sequence ¢ is irredundant and cannot be reduced

using Menger's theoren.

185

However, 6, = Yy can be removed from o to give o' such that

2
o'(E) = M,
By, By Yy By B Yli
14 2 2 3 1 1
242 4 2 2 2 2
313 {3 (32|22
411 1 1 1 3 1

'The following definition states another essential redundancy

condition for operator realizations.

Definition 7.5 If o = 61....6m is a realization of map M and

‘there exists an index k such that Mk(l) € ¢(M), Mk(t) € ¢(M), and
8

K+l = Yt’ then the realization ¢ is redundant.

B . If a realization o is redundant by Definition 7.5, then

; .6k+l can be deleted from ¢ to give o', which is still a realization
L of M.
" Definition 7.6 . The operator realization ¢ = 61....6m is irredundant if

(i) 6i+l = Yoo implies Mi(l) + Mi(s); and
(11) 8 implies M, (1) ¢ 00D and M, (s) ¢ Q).

il

i+l Yoo

7.4 A New Generator Set

In this section we propose a new set of generators for realizing

maps. The generators are:

b cev,yb .. sb

G = ... sb . .
{bl,Z’ *1,n*72,3° *>72,n’ n-1i,n ’
c veesC c ceesC . '
1,2°°°°%1,n0°%,3° % n> " n-1,n).
Generator b, ., substitutes state i for every occurrence of state j,

b
and state j for every occurrence of state i.

b, . =<1,...,i-1,j,i+l,...,j~1,i,j+1,...,n>.
1,7
Generator cy i substitutes state i for every occurrence of state j.
3 .
c = <l,...,1-1,1,i4+1,...,3-1,1,j+1,...,n>,

1,3

186

An algorithm for deriving realizations for permutation maps
using the bi 3 generators is developed. The algorithm is straight—-
b4

forward and obtains the minimal generator realization.

The derivation of a minimal xealization for a non-permutation map
is not as direct. At present we can only establish a maximum bound on
the generator length for a non-permutation realization. The reason
for this is that there are many possible ways to derive a non-permutation
realization. An exhaustive search of all possible realizations, in most

cases, is not feasible.

A heuristic algorithm, which limits the number of realizations
examined is presented. The emphasis has been placed on developing a

simple algorithm which obtains a near minimal realization quickly.

' The theoretical basis for the algorithm presented can, in some
cases, be obtained by simply extending Menger's definitions and theorems
to apply to the new generator set. For these instances the definition

and theorems are restated with acknowledgements to Menger.

Definition 7.7 (Menger [531) A map realization of a map M is any

sequence d.....d of generatecrs d. € G, such that d,...d_ =M.
1 m i i m
That is,

dl....dmﬂs) = dm(....dl)(s)) =»M(s), for

each state s =1,....,n.

Like Menger, we develop an algorithm which uses operators to

derive the generator sequence. The n-state operators are

' =
G {81,2""’Bl,n’82,3""’BZ,H""’Bn-l,n’

Yl,2""’YL,n’Y2,3""’YZ,n""’Yn—l,n}

Operator Si i interchanges the states in position i and position
b4 .
j, while \ replaces the state in position j with the state in
3

position i, as illustrated in Figure 7.5.

B2 < B 2,3"'?2,n B0 1,2 Y1,n ¥2,3" " Y20 " Yn-1,n
Sl Sz S'n Sl ’ Sl Sl Sl Sl S1 Sl Sl
SZ Sl 82 S3 Sn 82 Sl 82 S2 82 S2
S3 53 83 S2 S3 83 52 53 32 53 33
Sn—l ?n—l) Sn—l Sn-l Sn—l Sn Sn—l Sn-1 Sn-1 Sn—l Pn-1
®n | °n °1 | ®n °1 -1 (% °1 |®n . °n-1

new operator set G'

Figure 7.5

Definition 7.8 (Menger [53]) An operator realization of map M is any

sequence 61....6m of operators Gi ¢ G', which operating upon the

identity map E yields map M. That is,

61....6m(E) = Gm(....él(E)) = M.

The basic result which allows a generator realizatiom to be

obtained from an operator realization is now stated.

Lemma 7.5 (Menger [531]) If 61....6H(E) =.M, then dm....dl =M

vice versa. For each Gi = BX , substitute di =b and for each
s : s

§, = v , substitute d, = ¢ .

i X,y 1 X,y

Example 7.5 For map M = <8,8,2,6,2,4,4,4> we have the operator

sequence 8;....07 = By 557y 3285 5271 9084 ,6°76,7°76,8"

Big Y23 Bos Y12 Bie Y67 Ye,8

1] 8 g8 |8 |8 |8 8 8
2| 2 2 5 8 |8 g |8
3| 3 2 12 |2 |2 2 2
4l 4 4 |4 4 |6 6 |6
5|5 5 |2]2 2 | 2 2
6| 6 6 | 6 6 | 4 L |4
7| 7 7 7 7 7 Le | 4
8| 1 1 11 1 |1

and

187

The corresponding generator sequence is

djeverdy = cg g5 Co g5 By 6o €5 90 Py 5 S 35 Py g

(9]
(]
o
[
o
[¢]
=2

=)
o
o]
(@)
v
~J
o~
ko
[=))
}_I
he
N
[\
ke
W
N
—
(¥%)
=)
ho
o]

o N Y W N
D N Y W N

o N« N NG, T~ ORI NCR
MO D> U W N
M~ S~ >~ oo u; I
RO N W e e
MR SN O N R
M DS SN N

Parallel to Menger, we develop an algorithm which gives an operator
realization for any permutation P. Basically, a permutation is a
collection of cycles. For a cycle ¢, if i is the smallest state in the
cycle, the cycle ¢ can be derived from the identity vector E using
operatcrs of the form Bi ., Where state j is in cycle ¢-

sJ
The algorithm follows in the form of a flowchart.

400

i< i+1

k <« k+1
yes
L
+ o (D
’2k k-1
: X
concatenate B,
l’lk
to the operator
sequence
Example 7.6 P = <2,1,4,3> _
Set D0 = E = <1,2,3,4> i=1 and k=1
= p 1 ; '
k - P—l(Dk_l(l))
= P, (1)
=2 and f fi

L8y

R

operator sequence: R

Bv

i,Qk 1,2
Dl = 81’2(<1,2,3,4>)
Dl = <2,1,3,4>
k=k+1=2
~1
22 = P (Dl(l))
= 1 and lk=i
i=41i4+1=2
~1
22 = P (Dl(2))
=2 and & = 1i
k
i=41i+1=3
_ 51
22 =P (Dl(3))
= 4 and Rk + i
operator sequence: 81,2, 83’4
D2 = 83’4(<2s1’334>)
= <2,1,4,3>,
Since D2 = P, the algorithm stops and 61,2’ 83,4 is an

operator realization of P.

B2 B3
112 | 2
2| 1 1
3| 3 4
4| 4 3

In addition to using the notation (a,b,.

cycle diagrams are also used.

Example 7.7

o N O bW N
[o- 2O, I VLR "R *) T R R S R Ry v

.,X,y) to indicate cycles,

~ The cycle (1,4,6,3) of
permutation P can be represented

by the diagram

190

191

The cycle diagram also provides a method of determining an
operator realization. Starting with the smallest state in the cycle,
trace backwards through the cycle to find a realization for the cycle.

B

, £
That is, for the abovg cycle an operator realization is 81’3, 1,6’81,4

An important point to note is that, as long as the operators
for a cycle are applied in the order that they were determined, they can

be intermixed with operators of another cycle.

The operator sequence to realize P found using the algorithm is

81’3,81,6,81,4,82’5,82,7. However, the sequence

B1,3°P2,5°P1,6°B2,7°F1 4
within the cycles has not changed.

is still a realization of P since the ordering

The number of Bi 5 operators required to realize a permutation
b

map can be determined using Theorem 7.5.

As the proofs for Lemma 7.6 and Theorem 7.5 are obvious, they

will merely be stated.

Lemma 7.6 For a cycle c¢, where]cl = n is the number of states

in c¢, the length of the operator sequence to realize c¢ is n-1.

Theorem 7.5 For a permutation state column P, with m cycles,

ci,i=l,...,m, the length of a minimal operator realization of P is

m
L= E:QCi]—l)
i=1

Consequently, it is possible to find the number of operators

required to realize a permutation P by examining the cycles of P.

Example 7.8

0w N W N
=0y W NN

The length of the operat

L

An operator realization

™
fa
ho
o0
w

3,5

or sequence is

3 3
= E(lcil -l)
i=1
= (2-1) + (1-1) + (5-1)
=5

for P of length 5 follows

ko]
w

Ba6 B3y By

R ~N O N
=~y W N
B N Oy w0 NN

- N W ey N
=N U W DN
oy W N

The worst-case conditions for a permutation realization can also

be determined from Theorem 7.5. Simplifying the cost function gives

m
L=2 (el-D
i=1

. L=n-m where n

m 'EL
= E:lcil - 2J 1
i=1 '

i=1

is the number of states in the permutation and

192

193

m 1s the number of cycles.

(Note that cycles of length 1 are included in the calculation.)

Obviously, the worst-case condition occurs when there is only one
~cycle involving all the states. When this occurs the length of the
operator realization is n-1l. (The worst-case for permutations realized
_With Menger's operztors required é%- operators. Thus, the worst-case
'conditions for both operator sets are a linear function of the number

of states. For our operator set there should be a distinct saving in

operators required when dealing with large state sets.)

.As the number of cycles in a permutation increases, the number
of operators in the realization decreases. This fact is utilized when

determining operator realizations for non-permutation maps.

. ..
Non~Permutation Realizations

To develop the algorithm for non-permutation realizations, it must
first be established that the number of \f i operators in a minimal

realization is given by [$QD]. ’

Definition 7.9 (Menger [53]) A permutation P is compatible with map M
if and only if {s[M(P_l(S) + s} = ¢(M).

Notation (Menger [531): Let ¢ = 61..;.6m be an arbitrary sequence of

operators in

G={81 B B

,2"'°’Bl,n’ 2,3°°%? 2,n""’8n—l,n’

Yl,Z""’Yl,n’Y2,3""’Y2,n"'
(1) the length of ¢ is denoted by $(o) = m;

. b
(iii) the sequence of Bi i operators which remains after all Yy
b ’
operators have been deleted from ¢ is denoted mo.

(ii) the number of \f 3 operators in ¢ is denoted by $y(0);

Lemma 7.7 (Menger [531) If sequence o is a realization of map M and
Sy (o) = I¢(M)|, then m0 is the realization of a permutation that is

compatible with map M.

194

Lemma 7.8 (Menger [53]) For every map M there exists at least one

minimum realization o for which Sv(o) = |¢(M)|.

Lemma 7.8 is a corollary of a theorem by Menger ([53] p.3-35)
which states that for a realization o, of map M, for which $y(o) > |¢(M)[
a second realization ¢' can be constructed for which
Sy{(c') < $y(o) and $(o') < $(0). This theorem, however, does not
apply directly to the expanded generator set. The reason being that
the additional operators require more conditions to be examined to
prove the theorem. Before the theorem can be proved, the irredundancy

condition of section 7.3 must be established for the expanded generator set.

Definition 7.10 An operator realization ¢ is y-redundant if:

(1) there exists an index k and states r and t such that

r < t, Mk(r) = Mk(t) and 6k+1 =Y, .5 OF
5

(ii) there exists an index k and states ¥ and t such that r < ¢,
M () € 00D, M (6) ¢ §OD, and & 4 =V, .

A realization which is not y-redundant is said to be

y-irredundant.

Clearly, for cases where ¢ is y-redundant, 6k+l can be removed

= : v - .
from the operator sequence ¢ yielding o 61....6k, 6k+2"""6m’ which

is still a realization of M.

Theorem 7.6 If the sequence o = 61...6m is a y-irredundant realization

of map M for which $v(o) > |¢(M)|, then a second realization o' for M

can be constructed satisfying both $y(c') < $y(o) and $(¢') £ $(o) = m.

Proof Since ¢ 1is y-irredundant, there must exist indices k,r, and t

(where r < t) such that both Mk(t) % ¢(M) and 6k+l = Yr,t hold;
otherwise, $y(o) = |¢(M)l. For k and t as given above, define q = Mk(t)
and let j be the largest index less than or equal to k such that

§, = , or B .
J

Ys,t’ Bs,t’ Yt,p t,p

LY5

Assume that such a j does not exist. Then the operator
subsequence 61""6k' does not affect the tth position. That is,
' -1
E=M(E) = ..o = M () = and |M (q)[=....=|Mk @)y
Since ¢ is y- 1rredun?ant Mk (r) + g. As Mk+1 = Yr,t(Mk)’ it
follows that IMk+l(q) = (),

Thus, |M (q)l = 0, Dbecause a state eliminated in the course
of an operator realization cannot reappear later. However, this
contradicts Mk(t) = q ¢ ¢(M). Therefore, the index j must exist.
The remainder of the proof is divided into 4 sections. Each section

proves for one of the possible §. (y B , or B), that a
J s,t t,p

g t’ Yt 3
> P
Y operator in ¢ can either be deleted from o or replaced by a 8

operator, such that the new sequence, o', is also a realization of M.

(1) Agsume 6, = Yo £ then Gj can be deleted from ¢ and the remaining
b

sequence o' = 61,... 6 1’6'+l""’6m’ is still a realization of M.
c'"(E) = M can be shown to hold by letting Ml""’M%—l’M§+l""’M$
denote the intermediate maps associated with ¢'. Obviously,
=M, ,...,M! =M, . Let ¢ = M! =M, .(t). By definition of j
the operator sequence 6j+1"'6k does not affect the t position.
Concer v < == +Y = MM \ == = (s
Consequently, ¢ M. 1\t; 341(“es Mk(_).

For all d + t, M' (d) = M +l(d) Therefore,

M, @) - Mj+1<d>, L@ = @), 1 (@) =, (@ s
Megr = Ve, e 05 My (O = M () = M (x) = M, (6), and My =M ..

Thus, ¢'(E) = M, S$y(c') = 8y(0) -1 and $(c¢') = m-1.

(Assumption (i) is represented graphically in Figure 7.6.1.)

(ii) Assume 6j =y ; then Gj can be replaced by Bt . and the resulting

sequgnce o! = gi?"éj—l’ Bt,p6j+l""6m is also a realization of M.
Mjo= My, M= M
LU RENC
= B ,p(Mj l)
MJ!(p) = M' (t)
- Mj—l()
Moo=y ’p(Mj_l)

M (p) = M 1 (8) and M (p) = M.(P).

.. for all c¢ such that c + t, Mj(c) Mj(c) and

M;;-l-l(c) = 'j+1(°)""" K e) = M (e), Mk+l(c) =M ,,0)
Mepy = Y, O

(iii)

(iv)

Thus, Mk+l(t) = Mk(r)
' - '
M k+1 Yr,t(M k)

M'k+l(t) Mé(r) = Mk(r) = Mk+l(t)

¥ — 1
Therefore, Mk+l = Mk+l and
o' (E) = M, $y(c') = $y(0)-1, and $(o') = $(0) = m.
(Refer to Figure 7.6(ii).)
Assune Gj = R Then there must exist an £ such that

1l

s,t’

§ = o r . h .
% YU,S, YS,v, Bu,s’ ° Bs,v’ that such an index £

exists is proved by the same argument for the existence
of index j.

(a) Assume 62 = vy

u,s’
By an argument similar to (i), it can be shown thatvdz
. | - .
can be deleted from ¢ to give o 61"'62—1’62+l"'6m’

which is still a realization of M. Thus,
$Y(o') = $v(0)-1 and $(0")=m-1. (Figure 7.6.iii(a).)
(b) Assume Sz = Ys,v
By an argument similar to (ii) it can be shown that
62 can be replaced by Bs,v and that o'(E) = M,
$¥(c") = $v(0)-1 and $(c") = $(0).
(Fig.7.6.1iii(b).)
(c) Assume Sj = Bu o’ then there must exist an index

3

2', such that 6£,= Y s Y > B ., or B

. p,u u,w p,u U,w.
Eventually, case (i) or (ii) must hold; otherwise,
-1 -1
(@] = ..o = M@ = 1 so that |
-1 -1 . . .
’Mk+1(Q)’ = heee. = th (Q)! = 0, implying 9 € ¢(M),

which is a contradiction.

(d) Assume 62 = Bs,v' Proved as iii(c).

§, =B . Proved as iii.

196

Gj Gk
a_ . ’Ys,t . © L] ‘Yr,t . . .
-
(]

YSt

cén be deleted without affecting o

Figure 7.6.(1)

Y

t,p

can be replaced by Bt . without affecting o
3

Figure 7.6(ii)

L7/

198 .

5, s &,
. . . 'Yu’s . . . Bs’t . . . 'Yr’to . .
u
S &

Y can be deleted
Uu,s

2

Figure 7.6.(iiia)

| 62 6j 6k
e Yoo Bouo o By e o0 Yo L
5
v
r
: ' o

Yy, ©@p be replaced by BS

b

Figure 7.6 (i1ib)

199

Menger uses the set A'(M,P) to determine states for which B
operators, in excess of the number required for permutation P, will
be required to realize M., The set A'(M,P) can easily be determined

by examining map M.

For the expanded set of operators, the set of states for which
extra B operators will be required cannot be found as easily.
Fbllowing, some of the problems associated with this process are

illustrated.

Notation: TLet T = 61 ves Gm be a sequence of Bj ; operators which
- R

realizes P. Thgt is, 61..{6m(E) = P, Denote E = PO, Pi = 6i(Pi_l)
and Pn = P.

Definition 7.11 For.a map M and a pérmutation P compatible with map M,

a state s dis said to reset state t din P if and only if there exists

a sequence T, of length $(P), such that for one Pi, P;l(s) < P;l(t).

Definition 7.12 For a map M and permutation P compatible with map M,

if M(s) + P(s), then M(s)‘covers P(s).

It should -be observed that the set of all covered states is the

set ¢(M).

Definition 7.13 If M(s) covers P(s) and M(s) resets P(s) in P, then

M(s) replacés P(s) in P.

Example 7.9 M= <4,4,5,1,1> and P = <4,2,5,1,3>
M(2) = 4 covers P(2) = 2
M(5) = 1 covers P(5) = 3
The minimal operator realization 1T = 81 4> 83 5 realizes

permutation P.

0
P, = By 4 (<1,2,3,4,5>
<4,2,3,1,5>

Since P11(4) < Pll(2), 4 replaces 2.

For P, = <1,2,3,4,5>, Pal(l) <P 1(3)'and 1 replaces 3 in 7.

0

[

Obviously, all replaceable states

in P will not require extra

B operators, since they can be set equal to their value in M during

the realization of M. The set N(M,P) is
replaceable states in P. For each state

operator will be required to realize M.

used to denote all the non-

s, s € N(M,P), an extra B

The function, ¢(o) = [¢OD| + $(P) + |NM,P)],

féasonably approximates the mumber of operators required to realize M,

.using a permutation P compatible with map M.

No formal proof will be

given for this function. Instead, it is demonstrated that, in most

cases, the evaluation of this function is too difficult to allow the

function to be used as a tool for deriving minimal realizations.

Example 7.10

i

<4,3,2,4> and

Il

P

The sgguence T = 82 3

Thus, $(P) = 1 and é(M) = {1

Since the only minimal sequence for P is B

reset 1 in P.
_ N(M,P) = {1}
calculating ¢ (o),

]

¢ (o)
1+1+1
3

realizes P.

}

<1,3,2,4>, compatible with map M.

2,3

ldan | + $(@) + |NM,P|

, state 4 does not

An operator sequence realizing M and requiring 3 operators is

By 3 Bra Y14
11 & s
20 3 |3 |3
3] 2 |2 |2
N R .

200

201

Notation: Let the term cg denote the cycle of P which contains

state s. The smallest state in the cycle cg will be denoted by min (cs).

Lemma 7.9 For a permutation P, state s resets state t if one of
the following holds:

(1) s < t

(i) s < PTI(e)

1i1) Pi(s) < ¢

@) P(s) < PTH(E)

(v) min(cs) <t

(vi) min(cs) < P_l(t).

Preoof It can easily be seen that a minimal realization, T = Gl,.‘.Gm,

of P can be constructed such that

-1 -1 _
Pk (s) < Pk (t) for P, =26

X k(....Gl(E)), k=1,...,m .

Lemma 7.10 Conditions (i) and(iii) of Lemma 7.9 ~an be replaced by

condition (v); conditions (11) and (iv) can be replaced by (vi).
Proof Obvious.

For a permutation P compatible with map M we can determine, using
Lemma 7.10, whether there exists a sequence of Bi,j operators such that
state s resets state t. However, there may not exist a unique minimal
sequence T, such that every replaceable state can be reset in the

sequence T.

Example 7.11 Let M = <1,8,8,4,5,3,3,7> and P = <1,6,8,4,5,2,3,7>,

compatible with map M. 8 covers 6 and 3 covers 2.

o7 @@ &

202

From the cycle diagrams
min(c8) =3 < 6 and 8 covers 6

3 < P_l(2) = 6 and 3 covers 2.

min(c3)

The length of a minimal operator realization of P is

P
$(P) = 3 (Je,|-D
i=1
= (1-1) + (2-1) + (3-1) + (1-1) + (1-1)
=3

Even though there are no nonreplaceable states in P, it is not
. possible to find a realization of P such that all covered states are

replaced. The possible minimal realizations of P are

B (iii) B

(3 8,6 P37 B3g (1) B3 5 B3 58, 4 3,7 82,6 B3,8

By 6837 B3 g B3,7 B3.8 By g B3 7 B26 B33
1 1111 1]1 |1 11 |1
2| 6 | 6 | 6 2 | 2 |6 > |6 |6
3 317 |8 7 18 |8 7 17 |8
4 4 | 4 | 4 A VR A BV
51 5 |5 | s 5 15 |5 5 |5 |5
6] 2 |2 |2 6 | 6 | 2 6 | 2 |2
717 |3 |3 303 3 3 |3 |3
8| 8 |8 |7 8 | 7 |7 8 | 8 |7

Figure 7.7

For Figure 7.7.(i) 3 resets 2, but 8 does not reset 6; for Figure 7.7
(ii) 8 resets 6, but 3 does not reset 2. Neither 8 resets 6 nor 3

resets 2 in Figure 7.7(iii).

Definition 7.14 Assume for permutation P compatible with map M, there

"exists minimal realizations Ty and T, such that state s replaces state t
and state x replaces state y, but there does not exist a minimal realization
T such that both s replaces t and x replaces y. The states [s,t] and ’

[x,y] are said to be mutually nonreplaceable in P.

203

Theorem 7.7 If [s,t] and [x,y] are mutually nonreplaceable in P, then

s and x are in the same cycle c¢

Cyo c1 + Cye

1 and t and y are in the same cycle

Proof All possible cyclic combinations of s,t,x, and y are examined.
It is shown that the only possible combination for which a minimal

realization of P can be constructed such that [s,t] and [x,y] are

mutually nonreplaceable is (..,8,..,%X,..),(..,t,..,¥,..). For all

other combinations it is demonstrated that a realization such that

s resets t and x resets y can be constructed.

(1) (aysyea), Gustyed), Gooyxad), (Loyy,..)s put s and x into
position; mid(cs) and min(cx), respectively. It can be seen

that s resets t and x resets y, contradicting the assumption

of mutual nonreplaceability. (We are making use of the fact
that the cycle operators can be applied in any order, as long
as the operator order within a cycle is observed.)
(2) (vesSaeestyed)s owxy0l), (buyy,..). Clearly, an operator
sequence such that s resets t and x resets y can be derived.
(3) (58, esX,e)y (hostyen), (conyses). |
‘ min (cs) = min (cX) ilu.
Jou<t or u<P ()
u<y or uc< P_l(y)
Apply B operators for (..,t,..) and (..,y,..) if u < P“l(t) and
u < P_l(y), respectively. Put s and x into position u, alternately.
Thus, for this realization s resets t and X resets y.
(4) (eesSyenes¥yen)sy (bustyed), (coyX,y.s)

Apply B operators to place x into position min(cx).

If min(cx) < y, then x can reset y;

if min(cs) < t, then apply B operators for (..,s,..y,..) so that
s can reset t;

if min(cs) < P—l(t), s can reset t if the B operators for t are ;

applied.

(5) (..5850.), (hontyed), (ouyxy..,¥,..). This case is similar to (2).
(6) (vess8500), (axyenyt,ol), (Loyy,..). An operator sequence can be

derived in a manner similar to (4).

204

(7N (08,00, (oetyeiyy,ea), (.vyx,..). This case is similar to
(1) and an operator realization is constructed by applying
operators to place s and x into position min(cs) and min(cx).
(8) (oes8senstyens®nn), (oosysen). If min(e) <pYy), apply
B operators for (..,y,..) such that x resets y. Since s and t
are in the same cycle, s resets t. If min(cx) <y, the operators
for (..,8,..t,..,%,..) must be the first operators in the sequence.
¢ (vesSsyeestyeesyyee), (ey%,..). Any operator sequence which first
places x into position min(cx) can be used.
(10) (..,8,+ve,Xyee3Ysee)s (uty..). This case is similar to (8).
(11) (..,t,..,x,..gy,..), (..,8,..). This case is similar to (9).
(12) (vey83eestyee)y (veyXyeusYsea). Clearly, for any operator

realization, s resets t and X resets y.

(13) (ves8yeesTyee)y (eesXyuantyea). ;

Assume min(c) < min (c). First apply B operators to put x into

position mln(c). 1If m1n(c) <y, then X resets y. If
mln(cx) <P (y) apply B operators for (..,5,..,¥,..) so that
X can reset y Since min (c) < min (c), then mln(c) < t and

min(cs) <P (t) and t can be reset by s while B operators for

(.e385..,Y,..) are being applied.
A similar operator sequence can be constructed if min(cx) < min(cs).
(14) (veySyensbyensXyee,¥Y,..). Obviously, s resets t and x resets y in
any operator realization.
(15) (cv,8,00,%,00), (eeytyeesVyea).
For this case, a minimal operator realization such that s resets t

and x resets y cannot be constructed. Thus, this is the possible

combination of cycles for which [s,t] and [x,y] are mutually

nonreplaceable.

Theorem 7.8 If [s,t] and [x,y] are mutually nonreplaceable in

permutation P, then there exists a permutation Q, Q@ = Pe«(s,t)(x,y)

such that [s,t] and [x,y] are not mutually nonreplaceable in Q and

$(Q) = $(P).

205

- Proof TFor [s,t] and [x,y] to be mutually nonreplaceable in P,

P sy > pHe) and PR > Py,

Tor Q = Pe(s,t)+(x,y), Q (s) < QN(t) and QT (x) < Q ().

Thus [s,t] and [x,y] are not mutually nonreplaceable in Q.
Q is compatible with map M by application of AR2(t,y ¢ ¢(M)).

Let Q1 = Pe(s,t).
Since, s and t are not in the same cycle in P, they are in the same
cycle in Ql’

$(Q1) = $(P)+L. (Ql has one less cycle than P and thus

one more B operator than P.)

In addition x and y are in the same cycle in Ql'

Let Q = Ql-(x,y). X and y are not in the same cycle in Q.

.8 = $(Ql)—l = $(P).

Example 7.12 M = <1,8,8,4,5,3,3,7> and P = <1,6,8,4,5,2,3,7> .

In Example 7.11 it was shown that [8,6] and [3,2] are mutually non-
replaceable in P. _

Applying Theorem 7.8

- Q = P<(8,6)°(3,2)
= <1,8,6,4,5,3,2,7>
. -1 -1 -1 -1

Since Q "(8) =2 <3 =Q "(6) and Q "(3) =6 <7 =Q (2),

[8,6] and [3,2] are not mutually nonreplaceable in Q.

[PENOSIORNOZINGZ

e 8(Q) = 3 = $(P) and Q compatible with map M.

As can be seen from Examples 7.11 and 7.12 detection of mutually
nonreplaceable states is an ad hoc procedure, which requires examination of
the minimal realization of a permutation. Another problem in the

" detection of all the replaceable states is illustrated below.

206

Example 7.13 M= <4,5,3,5,5,2> and P = <4,6,3,1,5,2>

D D ¢

5 covers 6; since min(cS) <6, 5 repléces 6.
5 covers 1; but since min(cs) % 1 and mjn(CS) % P—l(l),

5 does not replace 1. Consequently, an extra 8 cperator will be

required to replace 1.

However, by first replacing 6 by 5, 1 can be replaced by 5 without
intoducing an extra operator. The replacement of a state by another

replaced state is referred to as indirect replacement. The sequence

31,4, Y5,6’ 82,6’ Y2,4 is a realization of M.

Bia Ys6 Poe Vo4
1| 4 4 4 4
2 | 2 2 5 5
3| 3 3 3 3
| 1 1 1 5.
505 5 5 5
6 | 6 5 2 2

Obviously, the concept of indirect replacement can be extended to
th e s . .
n level indirect replacement, where there exists a chain of n replaced

states.

Menger was able to determine the set A'(M,P) directly from map M. Thus,
to miniﬁize $'M,P), a permutaﬁion P compatible with map M such that $(P) was
minimal, had to be found. However, as demonstrated, to determine N(M,P)
requires each permutation P compatible with map M to be examined
separately. As there are a considerable number of compatible permutations
for any map M, examining each pefmutation is not feasible. The algorithm,
which is presented later, will not consider N(M,P) when determining

“the permutation to use in realizing M. The justification for dropping

N(M,P) from the cost formula is as follows.

207

For each state'n in N(M,P) an extra B operator will be required.
This B operator exchanges state n and a state u, where u € ¢(M) and
n = M(Pul(u)). (If there exists more than one possible state u, the

state in the lowest position of P will be chosen to ensure replaceability.)

The new permutation, Q = P(u,n) is compatible with map M, by
ARZ? of Menger. Similarly, the permutation R resulting after the
application of all B operators required by N(M,P) is compatible with map M.
_The permutation R is the minimal permutation compatible with map M for
which no nonreplaceable states exist. Consequently, our algorithm is

désigned to determine R for any map M.

The steps in Phase I of the algorithmattempt to set N(M,P) to the
null set and at the same time reduce $(P). Whenever a conflict between

the aims occurs, the algorithm opts for obtaining a minimal realization.

The reason for this is that by reducing $(P), N(M,P) may or may

not be increased. Thus, there is the possibility of reducing ¢(o).

However, by minimizing N(M,P), N(M,P)I decreases by 1, but $(P) increases

by 1 and ¢(0) remains constant.

During Phase TI the necessary |¢(L)E Y operators are found Ly
comparing M and P. Next the order in which the y operators and the
$(P) B operators must be applied to realize M is determined. Un-—
fortunately, this‘part of the algorithm has not been formalized and

considerable searching may be required to determine the correct sequence.

At this time, nonreplaceable states, if any exist, must also be
found. As demonstrated a state which appears nonreplaceable may be
indirectly replaceable. Consequently, the determination of nonreplaceable

states requires an exhaustive search.

Method B of Phase IT presents a straightforward method of deriving
an operator realization. This method, however, does not guarantee the
shortest realization. Once the reader is familiar with the operators,

improvements to the operator sequence found by Method B can easily be found.

208

Algorithm

Phase T

(1) For all states p such that [M—l(p)] 1 and M(s) = p, set R(s) = p.

2 and p € M—l(p), set

v

(2) For all states p such that [M_l(p)§
R(p) = p.

(3 For all states p such that |M-l(p)|
R(s) = p where s = min(M (p)).

2 and p & M—l(p), set

v

(4) The remaining states p € ¢(M); are assigned positions in
P arbitrarily.

(5) Menger's rules ARl and AR2 are then applied, giving permutation
P, in order to increase the number of cycles. That is, reduce

the number of B operators required to realize P. (This step

may increase the number of nonreplaceable states.)

Phase 11

Method A

(1 Determine the Y operators.

(2) Determine the nonreplaceable states N(M,P).

3 Derive a séquence realizing M using the i¢(M)} Y operators, the

$(P) B operators and the [N(M,P)[B operators.

Method B

(1) Determine the y operators and apply as many as possible to the
identity map E.

(2) Apply the first $(P) B operator. (Note the B operators are

ordered in the sequence they were determined by the permutation

algorithm.)

(3) Apply as.many Y operators as possible; if there are no more B
operators belonging to P, go to (5).

(4) Apply the next B operator; go to (3).

(5) If M = P, algorithm stops.

If M + P, then N(M,P) is not empty. Apply the necessary B and Yy
operators in order to obtain M. (Ideally ¢c(o) = |¢(M)| + $(P).)

209

Example 7.14 The algorithm will be applied to the map used in
Menger [53].

M = <1,1,1,3,3,20,7,7,10,9,9,12,14,13,13,15,1,17,17,12>
o) = {2,4,5,6,8,11,16,18,19}

Phase 1

Step 1: R = <=y~ =, ~,~,20,-,-,10,-,-,-,14,-,~-,15,~,~,—,~->
Step 2: R = <1,-,-,-,-,20,7,~,10,-,~,12,14 =, ~ 15,~,—,— >
Step 3: R = <1,-,-,3,-,20,7,-,10,9,-,12,14,13,-,15,-,17,~,~>

il

Step 4: Clearly, at this point for u ¢ ¢(M) and R(u) not assigned a state,
we should set R(u) = u in order to reduce the number of permutation
operators. However, to show that Menger's rules, ARl and AR2, apply no
matter how the states in ¢(M) are assigned, this will not be done.

R = <1,4,5,3,2,20,7,11,10,9,8,12,14,13,18,15,19,17,6,16>
Step 5: '

For cycle (2,4,3,5) states 2,4 ¢ ¢(M);
(6,20,16,15,18,17,19) 6,16 ¢ QM) ;
(8,11) 8,11 € H (1)
Applying the indicated permutations to R
Rl = Re¢(2,4)-(6,16)-(8,11)
= <1,2,5,3,4,20,7,8,10,9,11,12,14,13,18,15,19,17,16,6>

210

@@f»@@wc@
@ @8

For (3,5,4), 4,5 ¢ O()
(15,18,17,19,16), 16,18 ¢ ¢ (M)

R, = R+ (4,5)" (16,18)
= <1 2,4,3,5,20,7,8,10,9,11,12,14,13,16,15,19,17,18,6>

@?@?@3@5@@ @
PO QB

For (17,19 18), 18,19 € ¢(m)
R3 5+ (18,19)
<1 2,4,3,5,20,7,8 10,,,11 12,14,13,16,15,18,17,19,6>

v P FREDRGD PP QD
¢ &G T &

" Since no further cycles can be induced, let P = R3. The minimal

operator realization for P requires 6 operators, as determined by the

permutation algorithm:

B3,47%,20°P9,10°P13,14°P15,16°P17,18

No nonreplaceable states exist. Thus, a minimal operator

realization for M requires

W 00 ~N O B W e

R N e e e
S VN W N RO

¢(o)

i

Method B will be

[6aD] + $(P) + |N(M,P)]
9+6+0

15 operators.

used for Phase II.

The steps in the method will

not be stated explicitly, but are obvious on examination of Figure 7.8.

211

Y12 Yi,4 1,18 Y3,5 ¥7,8 Yo.11 13,16 V17,19 P34 B6,20 Y12,20 Bo,10 P13,14 Pis,16 Pi7,18
11|t 1] 1|1 1 1 1)1 1 1 1 1 1
1] 1] 1 1 1] 1 1 1 1|1 1 1 1 1 1
30 3| 3 3.3 | 3 3 3 1] 1 1 1 1 1 1
6] 1] 1 11| 1 1 1 3| 3 3 3 3 3 3
s 5] s 31 3| 3 3 3 3 | 3 3 3 3 3 3
61 6| 6 6| 6 | 6 6 6 6 | 20 | 20 20 | 20 20 20
70 7| 7 70 7|7 7 7 7 | 7 7 7 7 7 7
8| 8| 8 8 | 7|7 7 7 707 |7 7 7 7 7
s 9| 9 9| 9 | 9 9 9 9 | 9 9 10 | 10 10 10
10] 16| 10| 10| 10| 10| 10 10 101 9 | 10 9 9 9 9
1wl 1| 1| 1) 119 9 9 9 | 9 9 9 9 9 9
12] 120 12 12| 12] 12| 12 12 12 12 | 12 12 | 12 12 12
13) 13{ 13| 13| 13| 13| 13 13 13(13 | 13 13 | 14 14 14
4] 14| 16| 14| 1] 14| 14 14 14| 16 | 14 14 | 13 13 13
150 151 15| 15| 15| 15 | 15 15 15| 15 | 15 15 | 15 15 15
16 16| 16 | 16| 16| 16 | 13 13 130 13 | 13 13 | 13 15 15
7] 17 17| 17| 17| 17 | 17 17 17] 17 | 17 17 | 17 17 1
18] 18| 1 1] 1|1 1 1 1|1 1 1 1 1 17
190 19| 19| 19| 19 19| T9 | 17 17 17 | 17 17 | 17 17 17
20| 20| 20| 20] 20 20| 20 20 20| 6 12 12 | 12 12 12

Figure 7.8

For map M, method B derived a minimal realization. (Menger obtained
a realization of M which required 25 operators. Thus, for this example
there is.a considerable saving resulting from the use of the expanded

operator set.)

x
Notation: ZLet X{(}M) = {s' M

Using the set A(M), an upper bound on the number of operators
required using wethod B can be established. First, a bound on the number
of extra B operators must be found. |

For Step (5) of Method B, if M + P then extra B operators must be
applied to remove nonreplaceable states. Assume the worst case, that is
¢(M) = N(M,P). To remove all nonreplaceable states will require IA(M)] B
operators. These B operators will place each sfate s € AM(M) at
P(min(M_l(s)). From this position, s resets every state P(t), where

M(t) = s.
Thus, an upper bound on the operators required using Method B is

¢o) = [6an | + s + [ran |

Example 7.15

M = <5,5,3,1,5,2,10,10,8,9> , {0 (M)

= {4,6,7}
A() = {5,10}

Phase T . o ' =

Step 1: R = <-,~-,3,1,-,2-,-,8,9>

Step 2: R = <~,-,3,1,5,2,-,~,8,9>

Step 3: R = <-,-,3,1,5,2,10,-,8,9>

Step 4: R = <4,6,3,1,5,2,10,7,8,9>

Step 5:

213

For (7,10,9,8); 7 e O(M), MR 1(7)) = M(8) = 10 (AR2)
Applying (7,10)

Ry

1 IO RNOZNOZN GO
> &

<4,6,3,1,5,2,7,10,8,9>

ool
it

Phase 11 (Method B)

IA

[dan | + s@) + [r@D |
<3+ 4+ 2
9

¢ (o)

A

Thus, a maximum of 9 operators will be required using Method B.

B.

1,4 B B B

Ys5,6 2,6 8,3 8,10

1

I~
o~
I~
B~

O &0 ~N &8 1 b~ W N =
W 0 N Uit B~ N
=W 0 NN Ut N
W 0 N D U =
O W NN U W
~N N = W

—
o
=
o
o
—
(@]
e~
o

Step (5) is entered after the last of the $(P) B operators,
68 10° is applied. At this point M has not been realized. However,
b
applying B operators 81’2 and 87,8 and y operators Yl,2 and Y7,8

produces M.

1,2 B7.8 71,2 77,8
4 51 5] 51| s
5 41 4| 5| s
3 30 31| 313
1 101l 1 1
59 5| 5 5|5
) ol 2| 2 | 2
7 7 1 10| 10| 10
10| 10| 7| 7 | 10
8 8| 8| 8 |8
9 91 91| 9

In this example an operator realization of M uses the maximum

number of operators,

operators as allowed for in Method A.

9.

This number can be reduced by rearranging the

B

Vs 6 2.6 V2.4 P14 Bso Bg 10 By,8 V7.8
1 1] 1b1ls st os 51 s
2 2 5|5 |5 |55 5| s
3 30313 |3 /]3] 3 3| 3
4 4 &l s 111 1] 1
5 5 0515 15|51 s 51 5
6 s 1202 |2 |22 2 | 2
7 7070717 |77 10| 10
8 8 ! 8] 8 |8 |9 | 0] 7] 10
9 9 | 919 |9 | 8] 8 8 | 8
10 10| 10| 10| 10| 10 91 9

By applying 82,6 before Bl 4> State 4 can be indirectly replaced
3

by state 5 (via state 6).

replace state 7 with state 10 and an extra B.operator is required.

(A realization using Menger's operators requires 11 ocperators.) .
g g P

However, there is no way to indirectly

214

7.5 Cellular Realizations of Generators

A cellular array, which solves the problems associated with the
implementation of Menger's generators using Krishnan and Smith's array [45],
is presented in this section. The notation used to describe the trans-
position and partially reset machines is modified from that used by
Krishnar and Smith, in order to facilitate the de-wcription of the
cellular array properties. The transposition and partially reset machines

for an nt+l state machine are given below.

TOl T02 e e e TOn SOl S02 - e e . SOn

.0 1 2 : n 0 0 0
1 0 1 1 0 1 1
2 2 0 2 2 0 2
n n n 0 n n 0

‘Figure 7.9

(The transposition and partially reset machines correspond to the b and c

generators, respectively.)

We retain Krishnan and Smith's coding algorithm. However,

modifications are necessary to reflect the new notation.

Algorithm (1) Code state 0 with binary vector (0,...,0)
(2) Code the remaining states, i=2,...,n with the binary

equivalent to 21—1.

The present state of the machine will be indicated by the vector

X = (xl,...,xn) and the next-state by vector X = (Xl,...,Xn).

Control values are used to determine the operation of each cell

in the array. The basic cell is illustrated in Figure 7.10.

216

e X
N
N,
a, % — 3,
Y | SR
d - &y d
X
where, a, = a; + x,
b2 = El +—x: and—
X=xe + ab, +xed

11

Figure 7.10

A one-dimensional array of length n, to realize a transposition

machine, TOj’ cr a partialiy reset machine, SOj’ is obtained by setting

the e and d parameters of the array. A O input is provided at the left-
most ay terminal and the rightmost b1 terminal of the array. Figure 7.11

shows the cellular interconnections necessary for the array.

x
% 2 “n *n

A

AN TN e TN

|
x
|

>
b
>

Figure 7.11

The following lemmas justify the use of the cellular arrays in

realizing Menger's generators.

Lemma 7.11 The transposition machine T,., can be realized if ej =1,

03
1.

fi

e, = 0 Vi % j, and d1

Proof For i ¥ j, Xi,= X, and- Xj’= lblxj
(i) For state Sy s where S + oh and) + sj, X = 1
Thus a, = 1 or b, = 1'and X, = 0,
lj lj 3

The remaining X values are not changed so

(Xl,...,Xn) = (xl,...,xn).

(ii) TFor state Sy al.= 0 and bl, =0
J J
X, = x,
J]
=1
. (0,00.,0,...,0) = (0,...,1,...,0)
N |
(iii) For state s,, a; = 0 and b]_= 0]
g i
X, = x
J J
=0

Thus, all required permutations are realized by the array.

Lemma 7.12 The partially reset machine SOj can be realized if ej =1,
e; =0V, %3j,and d =0.
Proof X = x5, for 1 + j and Xj =0

L (Xl""’Xj"'f’Xn) = (xi,...,q,...,xn)

J

That is, for state Sk’ Sy + Sj’ the state vector X is unchanged.

For state Sj’ Xi =0, for 1 = 1,...,n. Thus the next state is SO'

217

218

The application of the cellular array to the realization of a

single column nonpermutation machine is shown in the next example.

Example 7.16

W N = O
=W =N

M

The generator sequence derived using Menger's algorithm is

To2 To3 501 To1

| o 2]2]2]2
S i 1| 1101
' 2 1 031313
3 317010 1
A cellular array realization of the generator sequence is
Xl X2 l X3 4
0 - b 1 La O —
1 = . 0 |~ - -+ - A — 0 Too
Y Y 1 |
0 + b tan ¥
T o [0 [1 0 Tos
1 > — v —
4 V Y
O |- - % -
= L 1 - 1 g O < L 0 = L O S
O —] Lt ¥ | peam—— Ol
Y Y A
0 a - p - .
1 ~4 - 1 = - 0 pet - 0 }< FO To1
r Y Y
D1 D2 D3

219

As can be seen the array uses identical cells with regular inter-
cellular connections. Consequently, a two—-dimensional array of cells
can easily be fabricated with permanent interconnections. Then by
setting the boundary and e values, any series of generators may
be produced.

An obvious realization for the proposed cell is

x
a; s . + - 8y
b, ——t . » b
d ¥ ¢ v

'y

Tigure 7.12

Using a separate line to provide the e values to each cell would
}equire an excessive number of boundary connections for integrated
circuit techmology. An alternative would be to use a programmable
array which would contain the e values in a register in each cell.

Either a linear or a coincident select technique could be used.

220

7.6 Conclusion

Mengeris synthesis method for sequential machines has been examined
in detail in this chapter. The reason for this detailed study, is that
an understanding of Menger's techniques is essential to any research into
the use of a larger generator set for machine synthesis. 1In fact, any
such studies would appear to inevitably use Menger's theory as a basis,

as indicated by our own research.

The benefit of using a larger generator set has been demonstrated
by Menger; a sequential machine synthesis will require fewer generators.
The length of a generator sequence is now a linear function (329 of
the number of states, rather than an exponential function, as with Haring's
generators. The benefit of a shorter sequence becomes apparent when
we consider the reduced cost and also the shorter delay time of a

realization.

The logical question arising from Menger's work is, "If 2(n-1)
gencrators can reduce the generator sequence length, could not a larger
generator set reduce the length even more?". Section 7.4 is an examination
of this question. Although not answering the question conclusively for
both permutation and non-permutation maps, it has provided further insight

into generator realizations.

Increasing the number of permutation generators has a measureable
effect on permutation realizations; the length of the permutatiomn

realization can be reduced. The maximum length, using the expanded

. generators, was shown to be n-1, where n is the number of states. For

small machines there is not a great difference between the length of
Menger's realizations and ours. However, as the number of states increases
there is the possibility of substantial savings using the expanded generator

set.

'The realization of a permutation, with the expanded generator set,
is straightforward and guarantees the minimal realization each time.
This is to be expected for any generator set, since a permutation
algorithm simply has to find separate realizations for each cycle of the
permutation. As the cycles of a permutation are well defined, a generator

realization should also be well defined.

The problem in using the expanded generator set occurs when
realizing non-permutation maps. The reason for the problem is the

multiplicity of opportunities for replacing a state t, t € ¢(M).

For Menger's algorithm, all states q which covered a state
t e ¢(M) but which could not replace t, were easily determined. This
was because a state could not reset another state unless it was contained
in a non-unit cycle. However, with the expanded generator set a state
g can reset other states and still be in a unit cycle. Thus, the
problem of whether or not a state q in a pefmutation P compatible with
mép M could replace ancther state t, is not resolvable by a simple
examination of map M. The solution to the problem necessitates an ex-
haustive search of all permutations P compatible with map M, in order
to find a minimal realization. Clearly, this problem can be expected
to occur in any expanded generator set, where there is more than one

position from which a state can replace another state.

Menger demonstrated that the upper bound for $'(M,P) for any map
was g%u At present we have not been able_té establish an absolute bound
for any map realization using the expanded generator set. However, from
examining some possible worst cases, it appears likely that an upper
limit on a map realization is n generators. The reasoning behind this
assumption follows: A

The cost function for a realization ¢ of a map M is

e(o) < |0aD] + $(®) + [x(M,P)].

We will consider ¢(c¢) when each of its components approaches a maximum.
It will be shown that no two components approach a maximum together.
(1) [ban| = n-1
(a) e.g., M= <10,10,10,10,10,10,10,10,10,106>
| An obvious compatible permutation is
P =<1,2,3,4,5,6,7,8,9,10>
db = {1,2,3,4,5,6,7,8,9}, $(P) = 0, A(M) = {10}

eoo¢ (o)

it

In

[dan | + $(@) + [r(1,P) |
10

A

222

(b) Increasing $(P) and/or A(M,P) decreases ¢(M), and therefore does
not increase ¢ (o).
e.g., M= <3,3,10,10,10,10,10,10,10,10>
Let P = <3,2,1,4,5,6,7,8,9,105
by = {1,2,4,5,6,7,8,9} $(P) =1, A(M,P) = {10}

bon | + $@®) + |aap) |
8+1+1
< 10

¢ (o)

IA

A

(i1) $(P) = n-1
(a) Let M = <5,1,7,10,8,4,9,2,6,8>
P = <5,1,7,10,3,4,9,2,6,8>

$(P) n-1=9
by = {3}

Since P contains just one cycle,

it

Y(M,P) is empty

) < 10aD | + $®) + [201P) |

\ <
c'b <1+9+0
< 10

(b) Increase ¢(M) and try to maintain $(P) = n-1
Let M = <5,1,7,10,8,10,9,2,6,8> and
P = <5,1,7,10,3,4,9,2,6,8>
Again $(P) = 9 and now Q(M)‘= {3,4}. However, P is not a

minimal permutation compatible with map M since 3 and 4 € ¢(M) are in the

same cycle.
A minimal permutation compatible with map M derivable from P,

using ARl and AR2, is Q = <5,1,7,10,8,3,9,2,6,4>

$(Q) =7, 0M) = {3,4}, and A(M,P) is empty.

N

lban | + $(@) +|a(,P)|
9

Instead of ¢(o) increasing, it has decreased.

Ve ¢ (o)

A

(1i1) |A@,P)| = n/2

e.g., M = <6,7,8,9,10,6,7,8,9,10>

For |A(M,P)| to be maximum, P = <1,2,3,4,5,6,7,8,9,10>

Thus, $(?) = 0, ¢ = {1,2,3,4,5}, A(M,P) = {6,7,8,9,10}

e(o) < 0| + $(@) + |A(M,P)]
< 10

Again, the maximum.length for a map realization is n.

Examining ¢(0) < |¢(M)l + $(P)+ IK(M,P)I when one of the functions
components is worst-case, it has been shown that ¢(c) < n. Trying to
increase the other components and hold the worst—case component constant
has not increased ¢(o). Actually, ¢ (o) often decreases when this is
attempted. From other examples we have examined, when all the components
¢(o) contribute to.¢(o), the.cost ¢(o) is usually less than n. Thus,
it would appear that.thé worst—-case for ¢ (o) occurs when one of the

components of. ¢(o) is worst-case.

The arguments presented above, although not conclusive, do
indicate that the maximum generator realization length for a map is n.
If this is the case, then savings will again result when using the

expanded generator set for large machines.

223

Chapter 8 Discussion and Conclusion

The results of this thesis are briefly summarized in this chapter.
However, before this summary is presented, a couple of points about the

usefulness of decompesition theory are made.

Decomposition theory is not universally applicable to all machines.

For many machines, S.P. partitions do not exist and alternate synthesis

techniques would have to be used. To alleviate this problem, Kohavi [41]
developed the implication graph as a tool to induce structure on
nonstructured machines, and to improve the structure of machines with S5.P.
partitions. The implication graph can thus be used to extend the
application of structure theory. However, Kohavi used the imblication

graph with the implicit restriction that the number of state variables

i
|
i
i
|
|
]

necessary to realize a machine was not to be increased. The usefulness
of the implication graph is enhanced if this restriction is not rigidly

observed.

N The implication graph has only been used for completely specified

§ . machines. Applying the iﬁplication graph to incompletely specified
‘machines is not as straightforward as would initially appear. 1In

Chapter 5 we demonstrated that an S.P. partition for an incompletely
specified machine made implicit assumptions about the unspecifiedAnext~
states. Using'an S.P. partition to realize a machine could destroy some

of the structutre of the machine. It would appear that uéing an implication

graph for an incompletely specified machine could induce structure on the

machine, but could at the same time nullify the existing structure.

An examination of this inter-relationship would be necessary before

implication graphs could be used for incompletely specified machines.

The concept of decomposition is relevant to the art of computer
programming, where the ability to split a large program into subprograms

simplifies the programming task. It would be of interest to examine whether

algebraic structure theory was applicable to the decomposition of a program. !

8.1 Decomposition Algorithm

Decomposition theory is available to the logic designer as one of
many methods to synthesize sequential machines. As such, it should be

possible for the designer to quickly determine whether any decompositions

exist and if so, the nature of the decompositions. The "imspection®
method of Hartmanis and Stearns for deriving decompositions 1s inadequate
for large machines. Curtis' [81 method was examined in Chapter 2 and
found to generate rvedundant decompositions and also to omit some of the
possible nonredundant decomposgitions. These and other preblems mentioned

render the method inadequate.

A simple, efficient algorithm for obtaining the decompositions of
a sequential machine was formulated in Chapter 3. The algorithm is based
on extensions made to Hartmanis and Stearns' definition of a non-
redundant set of partitions. A theoretical basis for the algorithm was
developed which guaranteed that all the nonredundant decompositioﬁs,
and only the nonredundant decompositions, were generated. In addition,
properties of nonredundant sets of partitions were developed which

simplify the application of the algorithm.

As the number of decompositions for a machine may be large, it
is necessary that any method of generating decompositions be easily
programmed. The numerous examples presented using the algoritﬂm aptly
demonstrate that the algorithm is well suited to iﬁplementation as a
program. Chapter 4 presented a new representation of the S.P. partition

lattice which could be used in a computer implementation of the algorithm.

8.2 Decomposition Evaluation

Two methods of evaluating decompositions were presenﬁed'in
Chapfer 4, The first method eliminated pairs of partitions for which a
more economical pair existed. However, for most machines there were
still a large number of decompositions after the uneconomic pairs were
deleted. It.ﬁas demonstrated that the uneconomic pair concept could
be extended to include the "subtle" redundancy indicated by Hartmanié and
Stearns. Thus, it is possible to eliminate all but the most economical.
decompositions for a sequential machine, simplifying the choice a
designer mist make. This approach, however, was decided to be
inappropriate. The reason being that this technique would severely
restrict the possible realizations for a machine; realizations which are

desirable to the logic designer may be eliminated as uneconomical.

226

The second evaluation t@chinque, which is based on the cost of a
ROM realization remedies this problem. None of the decompositions for
a machine are deleted. Instead, the ROM cost for each decomposition
is calculated as the decomposition is derived. Thus the logic designer
is able to examine all possible decompositions and at the same time

obtain a measure of the relative merit of each.

The above evaluation technique, although based on ROMs, is
device independent. This is because the ROM formula evaluates state
and input variable dependence, which is constant regardless of the
implementation hardware. We have also shown that ROM evaluation is

able to indicate uneconomic pairs and subtle redundancy.

8.3 Incompletely Specified Machines and other Applications

In Chapter 5, decomposition theory was extended to incompletely
specified machines using weak and extended substitution property
partitions. The properties of both were identical, but weak substitution

property partitions were found to be much easier to work with.

Problems that arose with determining the weak substitution nroperty
partitions were solved by the introduction of a new operator. The new
operator was also necessary in order to determine the least upper bound
of two weak substitution property partitions. As might be expected, the
operator generalized to the completely specified case and could be used to

find the S.P. partitions for a completely specified case.

For two S.P. partitions, whose sum 7 is not equal to I, a common
submachine can be factored from both partitions and computed separately.
Factoring a common submachine and realizing it separately is more
economical than realizing it in each machine. For incompletely specified
machines, where the sum of two weak substitution property partitions is
not necessarily a weak substitution property partition, this is not
always possible. As a compromise, a decomposition developed by Hartmanis (271,

was adapted to handle this possibility.

This decomposition, which we have called a partial serial decomposition,
is used by Hartmanis to obtain an economical serial decomposition of a machine

using an S.P., partition m. However, we have shown that the same decomposition

can be obtained using two S.P. partitions w, and w,, where wl+vé = ﬁ‘+ I.

1 2 _
The partial serial decomposition, when realized with 7, and T factors
from one of the partitions and realizes it in the other. - Thus the partial

serial decomposition is midway between a parallel decomposition, in which
a common submachine is not factored from either machine, and the series-
parallel decomposition, in which the common submachime Is factored from
both machines. A ROM evaluation of the three decompositions, also shows
that the partial serial decompositions is midway, economically, between
the other iwo partitions; The partial serial decomposgition, although
applicable to both completely and incompletely specified machines, is more

relevent to the incompletely specified case.

Two other aspects of machine decbmpdsition were briefly examined in
Chapter 5. A theoretical basis for the work of Kohavi and Smith [44] and
Smith and Kohavi [62 1 on the synthesis of multiple machines was developed.
The theory presented proved that the struéture of the composite machine was

dependent of the structure of the component machines.

In order for a state assignment for an asynchronous sequential
machine to be critical-race free, certain conditions, Tracey [67], must
be satisfied. Properties relating S.P. partitions to the partial
dichotomies of an asynchronous machine were developed. For asynchronous
machines, these properties simplify the determination of single transition

time assignments using S.P. partitions.

8.4 Machine Synthesis with Complex, Functional Components

The availability of MSI and LSI integrated circuits has dramatically
affected sequential circuit design. No longer is it necessary to derive
a minimal realization in terms of logic gates and memory elements. Instead
inexpensive chips, which realize complex functions, can be used to implement
sequential machineswhirectly. However, as we have indicated, algebraic
structure theory is still relevant. This is because/it enables the designer

to split a large synthesis problem into several smaller ones, thus

simplifying the implementation problem.

In this thesis we have examined two possible ways of utilizing the

new integrated circuit technologies for machine synthesis, sequential

cellular arrays and generator sequences.

Hu [33] has used the transition matrix concept to develop a
cellular array which can be used for machine realization. In Chapter 6,
minor improvements to Hu's cellular synthesis method have been suggested.
In addition, a new synthesis method for Hu'é array has been presented.
The new method derives a realization which requires fewer, or at worst
the same number of, arrayé than a minimal realization produced by

Hu's method.

Problems with using Hu's array as a component for the realization
of large machines have been presented and modifications suggested.
However, as the number of inputs for a machine increases the number of
input lines per array also increases. This further restricts the
usefulness of Hu's array as a component in realizing large machines.
Consequently, a new array, based on the xx transition matrix has been
proposed. For this array the number of input lines per array does not
increase as the number of inputs for a machine increases. Thus, any
machine can be realized by a standard array, or a collection of standard

arrays. A synthesis method was presented for the new array.

An alternative method for using complex, functional components for
machine synthesis was developed by Haring [23] and Menger [53]. Haring
has shown that a set of 3 basic generators can be used to realize any
column of a sequential machine, and thus any machine. The problem with
using only 3 generators is that the number of generators required to

realize a column increases rapidly as the number of states increases.

Menger introduced a set of 2(n-1) generators, for an n state
machine, in order to reduce the number of generators required to
realize a column. Menger's syﬂthesis methods generate realizations such
that the number of generators used varies linearly with the number of
states. In Chapter 7, Menger's algorithm was examined extensively and an

additional irredundancy condition was introduced.

Following Menger's lead we have presented a new generator set,
which is a logical extension of Menger's generators. Problems associated
with the synthesis of a machine using the new generator set have been

examined. A simple algorithm for determining a realization for a

229

permutation column was presented. The benefits of using the new generators

for permutation columns was easy to calculate. With Menger's generator

. . . , 3n .
set a realization for a permutation map requires —, generators, while a
realization using our generator set requires n-l1 generators. This

saving is significant when a large machine is being realized.

Deriving a realization algorithm for non-permutation columns is
not as straightforward. The difficulty arises because of the introduction
of non-permutation operators which reset states from more than one
position in the map. These operators, while providing greater freedom in
realizing operator sequences, also allow greater variability in the
possible sequences. Subsequently, it has only been possible to develop a

heuristic method for generating operator sequences for non-permutation maps.

The problems associated with finding operator sequences with the
proposed operator set are helpful in indicating the types of problems

that could occur with any expanded operator set.

(1)

(2)

(3)

(4)

(5

(6)

(7)

(8)

(9

(1)

230

References

T. Ae and N. Yoshida, "A Method of Synthesis and Decomposition

of Autonomous Linear Sequential Circuits", Information and

Control, vol.23, no.4, November 1973, pp. 382-392.

A. E. Almaine and M. E. Woodward,'Computer Program for S.P.

Partitions of Sequential Machines", Electronic Letters, vol.10,

no.21, October 17, 1974, pp. 445-446.

D. B. Armstrong, "A Programmed Algorithm for Assigning Internal
ques to Sequential Machines'", IRE Trans, Elec. Comp., vol.EC-11,
no.4, August 1962, pp. 466-472.

D. B. Armstrong, "On the Efficient Assignment of Internal Codes

to Sequential Machines", IRE Trans. Elec. Comp. vol.EC-11, mno.5,

October 196Z, pp. 611-622.

Thomas F. Arnold, C.-J. Tan, and M. Newborn, "Iteratively

]

\,

3

Realized Sequentiai Circuits', IEEE Trans. Elec. Comp., vol.C-1
no.l, January 1970, pp. 54-66.

G. C. Bacon, "The Decomposition of Stochastic Automata'’,

Information and Control, vol.7, September 1964, pp. 320-339.

T. L. Booth, "Sequential Machines and Automata Theory'", John

Wiley and Sons, Inc., New York, 1964.

H. A. Curtis, "Multiple Reduction of Variable Dependency of
Sequential Machines", Jour. of the Assoc. for Comput. Mach.;

vol.9, no.3, July 1962, pp. 324-344.

H. A. Curtis, "Use of Decomposition Theory in the Solution of
the State Assignment Problem of Sequential Machines', Jour.of the

Assoc. for Comput. Mach., vol.10, no.3, July 1963, pp. 386-412.

H. A. Curtis, "Tan-like State Assignments for Synchronous

Sequential Machines", IEEE Trans. Elec. Comp., vol. C-22,n0.2,

' February 1973, pp. 181-187.

(11)

(12)

(13)

(14)

(15)

(16)

a7n

(18)

(19)

(20)

231

P. Das, "Fault-Detection Experiments for Parallel-Decomposable
Sequential Machines', IEEE Trans. Elec. Comp., vol.C-24, no.8,
November 1975, pp. 1104~1108.

S. C. De Sarkar, S. Bandyopadhyay, and A. K. Choudhury, '"Unate
Cascade Realizations of Synchronous Sequential Machines",

IEEE Trans. Flec. Comp. vol.C-23, né.lO, October 1974, pp. 1008-1019.

T. A. Dolotta and E. J. McCluskey, "The Coding of Internal States of
Sequential Machines'", IEEE Trans. Elec. Comp. vol.EC-13, no.5,
October 1964, pp. 549-562.

E. H. Farr, "Lattice Properties of Sequential Machines", Jour.of the

Assoc. for Comp. Mach;, vol.10, no.3, July 1963, pp. 365-385.

D. Ferrarri and A. Grasselli, "A Cellular Structure for Sequential
Networks", IEEE Trans. Elec. Comp., vol.C-18, no.10, October 1969,
pp. 947-953,

A. D. Friedman, "Feedback in Synchronous Sequential Switching
Networks", IEEE Trans. Elec. Comp., vol.EC-15, no.3, June 1966,
pp. 354-367.

G. B. Gerace and G. Gestri, "Decomposition of Synchronous of
Synchronous Sequential Machines into Synchronous and
Asynchronous Submachines", Information and Control, vol.1l1, 1967,

pp. 568-591.

G. B. Gerace and G. Gestri, "Decomposition of a Synchronous
Machine into an Asynchronous Submachine Driving a Synchronous

One", Information and Control, vol.12, 1968, pp.538-548.

G. Gestri, "Synthesis of Multiple Sequential Machines Having
Different Inputs", IEEE Trans. Elec. Comp., vol.C-19, no.ll,
November 1970, pp. 1105-1108.

G. Gestri, "Serial Realization of the Next State and Output
Functions of a Sequential Machine", Information and Control,

vol.21, no.5, December 1972, pp. 466-475.

(21)

(22)

(23)

(24)

(25)

(26)
(27)

(28)

(29)

(30)

(31)

232

A. Gill and J. R. Flexer, '"Periodic Decomposition of Sequential

Machines', Jour. Assoc. Comp. Mach., vol.l4, no.4, October 1967,

pp. 666-676.

J. W. Grzymala-Busse, "On the Decomposition of Periodic
Representations of Sequential Machines', IEEE Trans. Elec. Comp.,

Vol.C-20, no.8, August 1971, pp. 929-933.

D. R. Haring, "Sequential-Circuit Synthesis: State Assignment

Aspects", M.I.T. Press, Cambridge, Mass., 1966.

J. Hartmanis, "Symbolic Analysis of a Decomposition of Information
Processing Machines", Information and Control, vol.3, no.2,

June 1960, pp. 154-178.

J. Hartmanis, "On the State Assignment Problem for Sequential

Machines I", IRE Trams. Elec. Comp., vol.EC-10, no.2, June 1961,
pp. 157-165.]

J. Hartmanis, "Maximal Autonomous Clocks of Sequential Machines,

IRE Trans. Elec. Comp., vol.EC-11, no.l, February 1962, pp.83-86.

J. Hartmanis, "Loop-Free Structure of Sequential Machines",

Information and Control, vol.5, no.l, March 1962, pp. 25-43.

J. Hartmanis, "Further Results on the Structure of Sequential
Machines", Jour. Assoc. Comp. Mach., vol.10, no.l, January

1963, pp. 78-88.

J. Hartmanis and R. E. Stearns, ''Some Dangers in State Reduction
of Sequential Machines", Information and Control, vol.5, no.3,

September 1962, pp. 252-260.

J. Hartmanis and R. E. Stearns, "Pair Algebras and their
Applicatioﬁ to Automata Theory", Information and Control,

vol.7, no.4, December 1964, pp. 485-507.

- J. Hartmanis and R. E. Stearns, "Algebraic Structure Theory of

Sequential Machines", Prentice-Hall, Inc., Englewocod Cliffs,

N.J., 1966.

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)
(42)

(43)

(44)

-~ 233

B. V. Howard, "Partition Methods for r.o.m. Sequential Machines",

Electronic Letters, 8, 1972, pp. 334-336.

S. C. Bu, "Cellular Synthesis of Synchromnous Sequential Machines",

IEEE Trans. Elec. Comp., vol, C;21, no.12, December 1972,
pp. 1399-1405. '

J.-C. Huang, "Cellular-Array Realization .-f Finite-State
Sequential Machines', Moore School Rept. 69-23 to U. S. Army
Research Office (Durham), D.D.C., AD 688 623, 1969.

J.~C. Huang, "A Universal Cellular Array", IEEE Trans. Elec. Comp.
v0l.C-20, no.3, March 1971, pp. 317-320.

D. A. Huffman, "The Synthesis of Sequential Switching Networks',
Jour. of the Franklin Institute, vol. 257, no.3, March 1954,

pp. 161-190, and no.4, April 1954, pp. 275-303.

K. Hwang, "Periodic Realization of Synchronous Sequential Machines",

IEEE Trans. Elec. Comp. vol.C-22. no.l0, October 1973, pp.923-927.

R. M. Karp, "Some Techniques of State Assignment for Synchronous
Sequential Machines", IEEE Trans. Elec. Comp. vol.EC-13, no.5,
October 1964, pp. 507-518.

L. I. Kinney, "Decomposition of Asynchronous Sequential Switching

Circuits', IEEE Trans. Elec. Comp., vol.C-19, no.6, June 1970,
pp. 515-529. '

R. Knispel, "Read only Memory Evaluation of Sequential Machine
Decomposition', Proc. Third Manitoba Conf. of Num. Méth.;

October 1973, pp. 253-270.

7. Kohavi, "Secondary State Assignment for Sequential Machines",

IEEE Trans. Elec. Comp., vol.EC-13, no.3, June 1964, pp.193—203.

Z. Kohavi, "Reduction of Output Dependency in Sequential Machines™,

IEEE Trans. Elec. Comp. vol. EC-12, December 1965, pp. 932-934.

7. Kohavi, "Switching and Finite Automata Theory", McGraw Hill, 1970.

7. Kohavi and E. J. Smith, "Decomposition of Sequential Machines",

Proc. Sixth Ann. Symp. on Switching Theory and Logic Design",

Ann Arbor, Michigan, October 1965, pp. 52-61.

(45)

(46)

(47)

(48)
* Design, Electronics, Jan. 15, 1970, pp. 88-95.

(49)

(50)

(51)

(53)

(54)

(55)

(56)

R. Krishnan and E. J. Smith, "A Cellular Realization for Sequential

Machines'", an unpublished paper.

S. N. Kukreja and I-Ngo Chan, '"Combinational and Sequential
Cellular Structures', IEEE Trans. Elec. Comp., vol.C-22, no.9,
September 1973, pp. 813-823.

0. P. Kuznetsov, "The Parallel Decomposition of Automata with

Separation of Inputs", Automat. i Telemekh. (U.S.S.R.), no.3,

1969, pp. 104-109, English translation Automat. Remote Control.

F. Kvamme, "Standard Read-Only-Memories Simplify Complex Logic

D. W. Lewin, "Logical Design of Switching Circuits", Nelson,

London, 1968.

D. W. Lewin, "Outstanding Problems in Logic Design', The Radio

and Elec. Eng., vol.44, no.l, January 1974, pp. 9-17.

P. J. Marino, "A Linear Decompcsition for Sequential Machines",

TEEE Trans. Elec. Comp., vol.C-19, No.1l0, October 1970, pp.956-963.

G. H. Mealy, "A Method for Synthesizing Sequential Circuits',

Bell Systems Tech. Jour., vol.34, no.5, September 1955,

pp. 1045-1079.

K. S. Menger, "Synthesis of Sequential Machines by Iterated

Combinational Logic Blocks'" in Synthesis of Sequential Switching

Networks, Electronic Systems Lab., M.I.T., AD-608881, October

1964, Chapter 3.

P. R. Menon, "On Sequential Machine Decompositions for Reducing
the Number of Delay Elements", Information and Control, vol.l5,

1969, pp. 274-287.

R. C. Minnick, "A Survey of Microcellular Research', Jour. Assoc.

Comp. Mach., vol.l4, no.2, April 1967, pp. 203-241,

E. F. Moore, "Gedanken-Experiments on Sequential Machines",
Automata Studies, 34, Princeton, N.J., Princeton University Press,

1956.

234

(57)

(58)

(59)

(60)

(61)

(62)

(63)

(64)

(65)

(66)

(67)

E. F. Moore, ed., "Sequential Machines: Selected Papers",

Reading, Mass., Addison-Wesley, 1964.

M. Newborn, "A Synthesis Technique for binary input-binary output

Synchronous Sequential Moore Machines", IEEE Trans. Elec. Comp.,

vol.C-17, July 1968, pp. 697-699.

M. M. Newborn and T. F. Arnold, "Universal Modules for Bounded
Signal Fan-Out Synchronous Sequential Circuits', IEEE Trans.

Elec. Comp., vol.C-21, no.l, January 1972, pp. 63-73.

W. J. Sacco, A Computer Technique Useful for Some Problems in
the Partitioning Theory of Sequential Machines", Ballistic

Research Lab. Memorandum Report No. 1733, March 1966.

Gabriéle Saucier, '"Next-State Equations of Asynchronous Sequential
Machines", IEEE Trans. Elec. Comp., vol.C-21, no.4, April 1972,
pp. 397-399.

E. J. Smith and Z. Kohavi, "Synthesis of Multiple Sequential

Machines'", Proc. Seventh Ann. Symp. on Switching Theory and

Logic Design, Berkley, California, October 1966, pp. 160-171.

R. E. Stearns and J. Hartmanis, "On the State Assignment Problem
for Sequential Machines II", IRE Trans. Elec. Comp., vol.EC-10,
no.4, December 1961, pp. 593-603. »

J. R. Storey, H. J. Harrison, and E. A. Reinhard, "Optimum

State Assignment for Synchronous Sequential Circuits",

IEEE Trans. Elec. Comﬁ., vol.C-21, no.1l2, December 1972,
pp. 1365-1373. '

C.-J. Tan, P. K. Menon, and A. D. Friedman, "Structural
Simplification and Decomposition of Asynchronous Sequential

Circuits', IEEE Trans. Elec. Comp. vol., C-18, no.9, September

1969, pp. 830-838.

H. C. Torng, "An Algorithm for Finding Secondary Assignments of
Synchronous Sequential Machines', IEEE Trans. Elec. Comp.,

vol.C-17, May 1968, pp. 461-469.

J. H. Tracey, "Internal State Assignment for Asynchronous
Sequential Machines", IEEE Trans. Elec. Comp., vol.EC-15,n0.4,
August 1966, pp. 551-560.

23

(68)

(69)

(70)

(71)

(733

(74)

. (75)

(76)

(77)

l\.‘
‘a
n

G. L. Tumbush and J. E. Brandeberry, "A State Assignment

Technique for Sequential Machines using J~X Flip Flops™,

IELE Trans. Elec. Comp., vol.C-23, no.l, January 1974, pp. 853-86.

J., D. Uliman and P. Weiner, "Uniform Synthesis of Sequential

Circuits", Bell Systems Tech. Jour., May-June 1969, py. 1115-1127.

P. Weiner aund E. J. Smith, '"Optimization of Reduced Dependencies
for Synchronous Sequential Machines', IEEE Trans.Elec. Comp.,

vol.EC~16, no.6, December 1967, pp. 835-847.

C.~C. Yang, "Generation of all Closed Partitions of the State
Set of a Sequential Machine', IEEE Trans. Elec. Comp., vol.(C-23,

no.1ll, May 1974, pp. 530-~533.

M. Yoeli, "The Cascade Decomposition of Sequential Machines',

IRE Trans. Elec. Comp., vol.EC-10, No.4, December 1961, pp. 587-592.

M. Yoeli, "Cascade-Parallel Decomposition of Sequential Machines™,

TRE Trans. Elec. Comp., vol.EC-12, no.3, June 1963, pp. 322-324.

T. A. Zahle, "On Coding the States of Sequential Machines
with the Use of Partition Pair", IEEE Trans. Elec. Comp. ,

vol.EC~15, no.2, April 1966, pp. 249-253.

T. R. Blakeslee, '"Digital Design with Standard MSI and LSIY,

John Wiley and Sons, Toronto, 1975.

U. Piel and P. Hollaﬁd, "Application of a High Speed Programmable
Logic Array", Computer Design, December 1973, pp. 94-96.

H. Fleisher and L. I. Maissel, "An Introduction to Array Logic",
IBM Journal of Research and Development, Vol. 19, No. 2,
March 1975, pp. 98-109.

