THE UNIVERSITY OF MANITOBA

DOWNSLOPE MOVEMENTS AT SHALLOW DEPTHS

RELATED TO DRAINED CYCLIC PORE PRESSURE

CHANGES

by

Jean Paul Burak

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

DEPARTMENT OF CIVIL ENGINEERING

WINNIPEG, MANITOBA

JULY, 1986

Permission has been granted to the National Library of Canada to microfilm this thesis and to lend or sell copies of the film.

The author (copyright owner) has reserved other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without his/her written permission. L'autorisation a été accordée à la Bibliothèque nationale du Canada de microfilmer cette thèse et de prêter ou de vendre des exemplaires du film.

L'auteur (titulaire du droit d'auteur) se réserve les autres droits de publication; ni la thèse ni de longs extraits de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation écrite.

ISBN Ø-315-33996-9

DOWNSLOPE MOVEMENTS AT SHALLOW DEPTHS RELATED TO DRAINED CYCLIC PORE PRESSURE CHANGES

BY

JEAN PAUL BURAK

A thesis submitted to the Faculty of Graduate Studies of the University of Manitoba in partial fulfillment of the requirements of the degree of

MASTER OF SCIENCE

© 1986

Permission has been granted to the LIBRARY OF THE UNIVER-SITY OF MANITOBA to lend or sell copies of this thesis. to the NATIONAL LIBRARY OF CANADA to microfilm this thesis and to lend or sell copies of the film, and UNIVERSITY MICROFILMS to publish an abstract of this thesis.

The author reserves other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without the author's written permission.

ABSTRACT

This thesis investigates the effect of cyclic pore pressures on soil with regards to its deformation behavior. The observed behaviour is then correlated to actual field conditions in which shallow, slow ground movements have been measured.

The effect of fluctuating porewater conditions on slow ground movements has been studied by subjecting triaxial speciments to cyclic pore pressure changes. These changes were applied through a back pressure burette with full drainage being permitted throughout the duration of the tests. The tests were performed at constant total loads, and a total of 11 tests was completed.

Results from the laboratory tests showed permanent changes in volume and shape during the cyclic pore pressure changes. The deformation rates reached approximately constant values in the range of 30 cycles and were dependent on the magnitude of the pore pressure changes. The strain rates also increased linearly with an increase in the ratio $\Delta u/\Delta u_{f}$.

Correlations between the laboratory test results and the field soil behavior show that the displacements pattern

iii

can be predicted from the cyclic pore pressure changes. The new analysis, however, seriously underpredicts the downslope movements, as the magnitude of the field displacements is much larger than those predicted.

ACKNOWLDEGEMENTS

The author greatly appreciates the help of all those who contributed to the completion of this thesis and wishes to express his sincere gratitude.

Special mention goes to Dr. K.D. Eigenbrod for suggesting this topic of research and for this invaluable advice and guidance during all stages of this study.

The author is grateful to Dr. J. Graham for his guidance and suggestions.

The author thanks his collegues for being available to discuss problems and assist during the preliminary testing.

Cominco Mines generously permitted access to the test site, and special thanks go to on-site personnel, Frank Mintert and Scotty Trotter for their logistic support and for obtaining instrument readings during the year.

The author thanks Rhonda Kelly for her time and effort in typing out the manuscript.

Thanks go to Lakehead University for their support

during the research.

Finally, thanks go to the National Science and Energy Research Council of Canada, the Northern Training Program, Summer Canada 84 and Summer Canada 85, Government of Canada for providing financial assistance.

TABLE OF CONTENTS

TIT	LE PAGE		i
APP	ROVAL SHE	ST	ii
ABS'	FRACT .	· · · · · · · · · · · · · · · · · · ·	iii
ACKI	WUEDGEM	INTS	
TABI	LE OF CON	ENTS	• • •
LIST	COF SYMBO	DLS	
LIST	OF TABLI	S	ıx
LIST	OF FIGIR	ES	xi
Char	tor		ii
cnar			
Ι	INTRODUC	TION	1
II	SLOPE AT	BLUEFISH LAKE	4
	2.1 Gen 2.2 Geo 2.3 Fie 2.4 Fie 2.5 Sta 2.5 2.5	eral Description logy ld Investigations ld Observations bility Analysis .1 Infinite Slope Analysis-Seepage Slope .2 Infinite Slope Analysis-Thaw Slope	4 5 8 11 11
III	OTHER RE SLOW SOI	PORTS ON CONTINUOUS, L MOVEMENTS	16
	3.1 Int 3.2 Slo 3.2 3.2 3.2 3.2 3.2 3.3 Fro 3.4 Seas (Tay	roduction . Des at Schefferville, P.Q. (P.J Williams, 1966) 1 General . 2 General Description of Area and Slopes 3 Field Observation . 4 Conclusions 5t Creep and Gelifluction (Washburn, 1973) 5onal Creep Due to Fluctuating Groundwater Table (Yenas and Leroueil 1981)	16 16 17 18 19 20
	3.5 Sha Pres	Low Slope Movements Caused by Excess Pore sures Due To Thaw-Consolidation (McRoberts and repstern, 1974)	21
	3.6 Deep	Seated Movements in Clay Slopes (Mitchell and	22
	3.7 Arte (Cha	sian Pore Pressures in Shallow Slopes ndler, 1972)	24 26

	3.8 Summary	8
IV	LABORATORY TESTING PROGRAM	0
	 4.1 Concept of Laboratory Program	0 0 0 3
	 4.3 Drained Triaxial Tests with Cyclic Pore Pressures at Constant Total Load (DTTCP Tests)	77899112
V	RESULTS OF THE DTICP TESTS	4
	5.1Introduction<	4 4 5
VI	CORRELATION BETWEEN DITICP TEST OBSERVATIONS AND OBSERVED MOVEMENTS IN THE FLELD	7
	6.1 Introduction	7
	Plane Strain Field Conditions 5 6.2.1 General 5 6.2.2 Axial Symmetry (Triaxial Test) 6 6.2.3 Plane Strain 6 6.2.4 Discussion 6 6 2 Formulation of Failure Criteria for Slope	9 9 0 1 2
	 at Bluefish Lake	3 6 9 2
VII	CONCLUSIONS AND SUGGESTION FOR FURTHER RESEARCH	5
	7.1 Conclusions	5 6
LIST	OF REFERENCES	8
APPE APPE APPE	NDIX A FURTHER NOTES REGARDING LABORATORY TESTING 14 NDIX B FIELD PROGRAM	+0 '6

LIST OF SYMBOLS

A f	Porewater pressure coefficient at failure ($A_f = \Delta u / \Delta \sigma$ for $B = 1.0$)
В	Skempton porepressure parameter
°,	Coefficient of consolidation
Е'	Young's modulus in terms of effective stresses
F s	Factor of safety against catastrophic slope failure
к _А	Coefficient of active earth pressure
ĸ	Coefficient of earth pressure at rest (σ_3^2/σ_1^2)
R	Thaw consolidation ratio = $(\alpha/2\sqrt{C_V})$
v	Specific volume
c'	Cohesion with respect to effective stresses
đ	Depth of thaw
е	Void ratio (V_v/V_t)
p '	Effective octahedral stress = $(\sigma_1 + 2\sigma_3)/3$
q	Deviator stress = $(\sigma_1^{\dagger} - \sigma_3^{\dagger})$
q _f	Deviator stress at failure
ru	Porewater pressure ratio = $(u/\gamma z)$
t	Time
u	Porewater pressure
Δu	Change in porewater pressure
Δu_{f}	Change in porewater pressure required to bring sample to failure
v, v	Volumetric strain, strain rate
z	Depth below ground surface
CIU	Consolidated, isotropically, undrained triaxial test

ix

LIST OF SYMBOLS (cont'd)

Υ,Υ'	Specific weight of soil, effective
θ	Inclination of natural slope
Υ _w	Specific weight of water = 9.81 kN/m^3
α	Constant
σ1,σ3	Major, minor principal stresses
σ1,σ3	Major, minor effective principal stresses
$\sigma_{1_c}^{\prime}, \sigma_{3_c}^{\prime}$	Major, minor principal effective consolidation stress
$\sigma_{\mathbf{v}}^{\mathbf{r}}$	Vertical effective stress
σ ' VC	Vertical effective preconsolidation pressure
ε ₁₃ ,έ ₁₃	Major, minor principal strains, strain rates
ε, έ _s	Shear strain, strain rate
λ	Slope of normal consolidation line (negative)
к	Slope of overconsolidation line (negative)
φ "	Angle of shearing resistance w.r.t. effective stresses
ν	Poisson's ratio

LIST OF TABLES

Table		Page
4-1	Summary of Standard Soil Tests	. 80
5-1	Summary of DTTCP Tests	. 81
5-2	Conditions at Failure for DTTCP Tests	. 82
A-1	Summary of Failure Conditions for CIU Tests	151
A-2	Summary of DTTCP Tests	159
A-3	Summary of 1984 Field Drilling Program	182

LIST OF FIGURES

|--|

2-1	Site Location
2-2	Site Layout
2-3	Slope Profiles for Bluefish Site 85
2-4	Section C-C for Bluefish Site
2-5	Height of Water Above Standpipe Tips
	versus Time of Year
2-6	Piezometric Variation of Sand Aquifer
2-7	Pore Pressure Variation Versus Depth
	for Bluefish Slope 89
2-8	Slope Indicator Readings for SI-1 90
2-8	(continued) Slope Indicator Readings for SI-1 91
2-9	Slope Indicator Readings for SI-2
2-10	Slope Indicator Readings For SI-3
2-11	Slope Indicator Readings for SI-4
2-12	Ground Temperature Extremes for TH-1 95
2-13	Ground Temperature Extremes for TH-2 96
2-14	Ground Temperature Extremes for TH-3 97
2-15	Infinite Slope Analyses
3-1	Layout of Tubes at Site 1 and Slope
	Profiles for Sites 1, 2 and 3
3-2	Shapes of Buried Tubes at Site 1
	Over a One Year Period

Figure

3-3	Shape of Tube at Site 3 Over a One
	Year Period
3-4	Total Displacement of Tube C at Site
	l for a One Year Period
3-5	Schematic of Frost Creep Mechanism
3-6	Schematic of Combination of Frost Creep
	and Gelifluction Mechanism
3-7	Pore Pressure Readings in a Thawing Slope 105
3-8	Site Layout for Slope 2
3-9	Piezometer Readings Plotted Against Time
	for Location 2
3-10	Summary of Maximum Piezometer Readings,
	Location 2
4-1	Results of Grain Size Analyses
4-2	Plasticity Chart
4-3	Compression Test Results
4-4	Isotropic Consolidation Curve
4-5	One-Dimensional Consolidation Curve
4-6	CIU Test Results - q vs ε_1
4-7	CIU Test Results - q vs p' 115
4-8	CIU Test Results - q vs p' Low Stress Range 116
4-9	Schematic of Definition for $\Delta u / \Delta u_f$

Figure

4-10	Equipment Set-Up 118
5-1	Typical Consolidation Curves From DTTCP Test 119
5-2	Detailed Sample Behavior Over Two Complete Cycles 120
5-3	Typical DTTCP Test Result
	ϵ_1 and ϵ_v vs Cycle Number
5-4	Composite Plot of ϵ_1 vs Cycle Number for
	all DTTCP Tests
5-5	Typical DTICP Test Results Showing
	ε_3 vs Cycle Number
5-6	Behavior of Sample B-5 During Cycling
	and Failure
5-7	Behavior of Sample B-8 During Cycling
	and Failure
5-8	Behavior of Sample B-4 During Incremental
	Pore Pressure Increases to Failure
5-9	Composite Plot of DTICP Test
	in q, v, p' Stress Space
5-10	Typical Stress Path Follwed in DTTCP Test 128
5-11	v log p' Plot of DTTCP Failure Conditions 129
5-12	$\dot{\epsilon}_1$ vs $\Delta u/\Delta u_f$ for DTICP Tests
5-13	$\dot{\epsilon}_3$ vs $\Delta u/\Delta u_f$ for DTICP Tests
5-14	$\dot{\epsilon}_v$ vs $\Delta u / \Delta u_f$ for DTTCP Tests

Figure Page 5-15 133 6-1 Relationship Between ε_3 (plain strain) 134 Pore Pressure Variation, Shear Strain and 6-2 Displacement Profiles for Location SI-1 Due to Groundwater Fluctuations 135 6-3 Recorded Pore Pressures in Thawing Slopes 136 6-4 Pore Pressure Variation, Shear Strain and Displacement Profiles for Location SI-1 Due to Thawing 137 6-5 Relationship Between Pure Shear Strain and Engineers' Shear Strain 138 6-6 Combined Displacement Profile for One-Year 139 A-1 Equipment Set-up for Transducer Calibration 150 DTICP Stress Paths A-2 155 Definition of $\Delta u/\Delta u_f$ A-3 160 A-4 161 A-5 A-6 έ versus Δu/Δu_f 164 A-7 $\dot{\epsilon}_{s}$ versus $\Delta u/\Delta u_{f}$ A-8 165

xv

B-1	Instrumentation Installation	183
B-2	Total Pressure Cell Installation	184
B-3	Temperature Profiles for Thermistor No. 1	186
В-4	Temperature Profiles for Thermistor No. 2	187
B-5	Temperature Profiles for Thermistor No. 3	188

I INTRODUCTION

Shallow, slow, irregular ground movements have been frequently observed in natural slopes of less than $10^{
m O}$ (Skempton and Delory, 1957, Williams, 1966)as well as in steeper slopes. It has been suggested that slow movements of this kind may at times result in slope failures (Yen, 1969), or may continue for long periods without leading to failure (Kojan, 1967). These movements may be of significant concern to engineers when they interfere with construction works or engineered structures (Eigenbrod, 1984, Chandler and Pochakis, 1973). In periglacial areas, continuous ground movements are referred to as solifluction The moving soil layer is saturated with (Bloom, 1978). water and many of the observed movements occur on slopes with angles as low as 2-5⁰ (Carson and Kirkby, 1972). Movements may also be due to the effects of frost: observed as heave of the soil during freezing followed by subsequent consolidation on thawing (Williams, 1966, Washburn, 1973). This phenomenon causes a step like behavior of the soil particles downslope.

Tavenas and Leroueil (1981) and McRoberts and Morgenstern (1974) suggest that these slow movements could also be related to fluctuating porewater pressure conditions. Tavenas and Leroueil (1981) stated that the

"cyclic creep deformation behavior of natural slopes has not been investigated in detail."

In order to study the effect of fluctuating porewater conditions on slow ground movements a laboratory testing program was undertaken in which soil specimens were subjected to cyclic pore pressures, and an instrumentation program of a slope at Bluefish Lake N.W.T. initiated where slow shallow soil movements had been reported (Eigenbrod, 1984).

This thesis presents the results of the laboratory program and additional field observations obtained for the instrumented slope. The data is then related to results reported by other authors (eg. Williams, 1966, Tavenas and Leroueil, 1981, Washburn, 1973, McRoberts and Morgenstern, 1974).

Chapter II describes the site investigation which was carried out at the Bluefish Slope as well as the observations obtained from the instrumentation which was installed. A subsequent stability analysis is also presented. Chapter III presents brief summaries of other reports on continuous, slow soil movements as well as their respective field observations and discussions on the possible mechanisms causing the movements. The laboratory programs undertaken, their results and respective discussions are given in Chapters IV and V, while Chapter VI attempts to correlate the laboratory test results with the actual field observations. Conclusions and recommendations for further study are given in Chapter VII.

II SLOPE AT BLUEFISH LAKE HYDRO

2.1. General Description

Bluefish Lake Hydro Electric Plant is located on the Yellowknife River System approximately 50 km north of Yellowknife, N.W.T. The wooden penstock of the hydro plant runs in a north-south direction along a south east facing slope (see Fig. 2.1). It is partly located on rock and partly on a slope underlain by clay and silt.

Slow, continuous slope movements have occurred over the years on the clay - silt slope, necessitating on two occasions within a period of 50 years, the removal and replacement of a section of the penstock. The piles on which the penstock was supported had tilted downhill. The only indication of downhill slope movements was soil having been pushed up against a series of piles on their uphill sides, while a gap had formed on their downhill sides. Tilting of the piles caused excessive distortion of the penstock leading to numerous leaks. Excessive movements of the piles became a concern approximately twelve years after their reconstruction in 1968. Eventually a portion of the pipe and its supports had to be replaced in 1983.

2.2 Geology

The topography in the vicinity of the site consists of smoothly rounded bedrock hills separated by valleys with maximum differences in elevation of up to 70 meters. According to Aspler (1984), the bedrock was exposed during advances of the Laurentide ice sheet. The local sequences of tills resting on glaciofluvial material are interpreted as the result of basal meltout coincident with deposition by streams flowing through the icesheet. Following deglaciation the area was subaerially exposed and sands and gravels were deposited in some of the deeper valleys.

The area was then inundated by glacial Lake McConnell which deposited silts and clays on topographic lows, but sands on topographic highs. Ice rafting resulted in various size clasts being incorporated into the sediments. Permafrost in the area is believed to have started to form as recently as 4000 BP.

2.3 Field Investigations

Conditions on the site seem to indicate that groundwater may be an important factor in the slope movements. Since its construction, the penstock has consistently leaked, contributing water to the groundwater

regime. There is also an indication that groundwater from higher up in the slope flows down an access road then down a trough-like path on the slope under the section of penstock recently replaced. This is evident by an area of the access road which is constantly wet, even during the driest part of the summer, and by a spring which exits downslope of the penstock and just below the former alignment. The locations of these observations are indicated on Fig. 2-2 which shows the site layout as well as the locations of test holes, instruments installed and test pits.

Downslope of the penstock, the lower section of the slope consists of a permafrost feature in which massive ground ice was found between the depths of 2.0 and 8.5 m (Eigenbrod, 1984). It is believed that the degradation of this ice feature due to the water leaking from the penstock is initiating the slope movements. A marshy area is located at the toe of the slope where further degrading permafrost is evidenced by surface slumping and surface slope movements. A complete profile of the slope is given in Fig. 2-3. Fig. 2-3a shows the overall extent of the slope while Fig. 2-3b shows a more detailed profile of the instrumented area. The average slope angle is approximately 7^o.

The site was investigated by a total of 18 boreholes: five drilled in the fall of 1982 (Eigenbrod, 1984) and

thirteen drilled in the summer of 1984. Two test pits were also excavated in the summer of 1984 and their locations are shown on Fig. 2-2. A total of six open standpipes was installed at the locations indicated in Fig. 2-2, as well as three electro-piezometers, with their tips located in the sand-gravel layer overlying the bedrock. Four slope indicator casings were also installed on the site in the summer of 1984. These installations provided information regarding the magnitude of slope movements and the fluctuations in the groundwater pressures in the sand and gravel layer underlying the clay deposit. A summary of the 1984 Field Drilling Program is given in Appendix B.

Two pressure cells were installed in Test Pit No. 1 against the foundation pier in order to measure the soil pressure exerted on them due to the movements. The data obtained from these pressure cells to date are not sufficient to permit their evaluation and therefore will not be discussed in the context of this study.

Three thermistor strings were installed; one in 1982 and two in 1984, and have provided pertinent information with regards to the ground temperature profile and the uphill extent of the permafrost feature. A description of the instruments installed as well as their installation procedures are given in Appendix B.

2.4 Field Observations

The site stratigraphy as shown in Figs. 2-3 and 2-4, is interpreted from the borehole logs and the laboratory classification test results presented in Appendix B; and from the site investigation performed previously (Eigenbrod, 1984).

A silty clay is found overlying sand and gravel deposited directly on the bedrock. The overburden ranges in thickness from 2.0m uphill of the penstock to 12.5 m downhill of the penstock. The clay is often varved, and contains ice-rafted pebbles and stones randomly deposited throughout. The top 0.5m of soil commonly contains boulders to a maximum size of 0.5m. At the location of Test Pit No. 2, the silty clay was only approximately 0.5m thick and below changed to a silt to a depth of 2m. The clay observed through-out most of the site was a light brownish-grey silty clay, nuggety, moist to wet at some locations, soft, and contained some organics. Pocket penetrometer readings taken at 1.35m depth in Test Pit No. 1 gave an average undrained shear strength of 200 kPa while torvane readings taken at the same depth gave an average result of 70 kPa.

The water tables observed in the standpipes varied

throughout the year. Seasonal variations of the water pressure in the sand and gravel zone below the clay are indicated in Figs. 2-5, 2-6and 2-7. Figure 2-5 presents the height of the water in the standpipes, with respect to their tips, as observed at various times through the year. Figure 2-6 shows the piezometric levels for these readings as plotted on the slope profile, while Fig. 2-7 shows the change in r, and the change in u, versus depth, for different locations, for the maximum level of water recorded (see List of Symbols page vi). The magnitude of the groundwater fluctuations in the slope is different for each location as shown in Fig. 2-7. With reference to a depth of 2.0m, the fluctuation is zero in the upper part of the slope, while further down in the area of STP-1 , the fluctuation is approximately 2.5m. The highest water levels were recorded in August, 1984 and September 1985.

The slope movements recorded from the slope indicator casings installed are shown in Figs. 2-8 to 2-11. The total deflections are plotted versus depth using the original set of readings obtained on August 16, 1984, soon after they were installed, as the reference line. Total deflections shown are deviations from this original profile. Each casing is oriented with the A+ axis pointing upslope (west), with the exception of installation SI-3 in which the A+ axis is pointing in the N.W. direction. The B+ axis corresponds

to the groove which is 90° clockwise from the A+ groove.

The slope indicator readings as indicated in these figures show movements of the soil concentrated in the top 2m of the overburden. The rates of surface movements vary from 5mm/yr. for SI-4 at the upper margin of the slope, to 32 mm/yr for SI-2 in the upper centre of the slope area. For installation SI-1 downslope of the penstock in the centre portion a rate of 20 mm/yr was recorded and for SI-3 a rate of 14 mm/yr was recorded. These rates of movements are in the same range as those reported by Williams (1966) for a shallow slope located at a sub-artic location. He observed movements up to 18.7 mm/yr with flexible tubes inserted into the ground.

The temperature profiles obtained from the thermistor installations are shown in Appendix B, while, Figs. 2-12 to 2-14 show the yearly extremes of the temperatures variations. All thermistors show relatively stable ground temperatures below 5m depth. Thermistors TH-1 and TH-3 show an active zone of approximately 1.5m whereas thermistor TH-2, which was installed at a location which was believed to be at the boundary of the permafrost feature, showed an active zone of almost 5m thickness.

The average temperatures of the permafrost below 5.0m

depth were -1.3° C for the thermistor TH-3, -1.0° C for thermistor TH-1, and -0.2° C for thermistor TH-2.

2.5 Stability Analysis

2.5.1 Infinite Slope Analysis - Seepage Slope

The slope at Bluefish Lake is a fairly uniform slope of relatively large extent in which the movements are shallow and may be assumed to be parallel to the ground surface. The appropriate way to analyse this slope with respect to its stability is by using "infinite slope" analysis with the assumption that the soil properties and pore water pressures at any given distance below the ground surface are constant. The factor of safety F_s for the condition of limit equilibrium using an effective-stress analysis (c' ϕ ') becomes

$$F_{s} = \frac{c' + (\gamma - m\gamma_{w}) z \cos^{2} \theta \tan \phi'}{\gamma z \sin \theta \cos \theta}$$
(2-1)

where the groundwater flow is parallel to the slope and the groundwater table is at a vertical height mz above the slip surface (ref. Fig. 2-15a). For no cohesion and the groundwater table at the surface, Eq. 2-1 reduces to

$$F_{s} = \frac{\gamma' \tan \phi'}{\gamma \tan \phi}$$
(2-2)

where γ'/γ is the ratio of effective total unit weight of the soil and is usually taken as approximately 0.5, ϕ' is the angle of shearing resistance in terms of effective stress and 0 is the slope angle. Using $\gamma'/\gamma = 0.5$, the slope angle 0 = 7^o and $\phi' = 31^o$ determined from CIU tests described in section 3.2.1, in Eq. 2-2, the factor of safety F_s is calculated to be 2.4.

From this simple calculation, it can be seen that the slope apparently has a very high factor of safety against catastropic failure, yet it is definitely experiencing movements.

Eq. 2-1, written in terms of r_u , where $r_u = u/\gamma z$ and c' = 0, yields

$$F_{s} = \frac{(\cos^{2}\theta - r_{u}) \tan \phi'}{\sin\theta\cos\theta}$$
(2-3)

Using a safety factor of unity indicating failure conditions, and the parameters relevant to this slope, we find that the r_u required for failure is approximately equal to 078. This value is greater than the approximate value of 0.5 which correlates to the condition of the ground water table being at the ground surface. 2.5.2 Infinite Slope Analysis - Thaw Slope

McRoberts and Morgenstern (1974) have applied the thaw-consolidation theory to the prediction of slope stability on thawing slopes (Fig. 2-15b), contending that excess pore water pressures can be set up in thawing soils and that they are consequent upon thaw-consolidation. Solving the one-dimensional thaw-consolidation problem using the Newmann solution

$$d = \alpha \sqrt{t} \tag{2-4}$$

where: d = depth of thaw t = time

 α = a constant

the solution is formulated in terms of a thaw consolidation ratio R, where:

$$R = \frac{\alpha}{2\sqrt{C_v}}$$
(2-5)

where α is defined by Eq. 2-4 and c_v is the coefficient of consolidation. This ratio expresses the relative influence of the rate at which water is produced by thaw and the rate at which it may be squeezed out of the thawed soil overlying the moving thaw interface.

For an infinite soil mass thaw-consolidating under self weight conditions the excess pore presssure has been found to be

$$= \frac{\gamma^{*}d}{(1 + \frac{1}{2R^{2}})}$$
(2-6)

where $\gamma^{\prime}\,d$ is the effective stress after complete dissipation of excess pore pressures.

Considering a slope, Fig. 2-15b, where the thaw front is at depth d, the effective stress on plane A-A would be γ 'd cos θ , and the pore pressure would be

$$u = \gamma_{w} d\cos\theta + \gamma' d\cos\theta \left(\frac{1}{1 + \frac{1}{2R^{2}}}\right)$$
(2-7)

and applying a statical balance of forces, the factor of safety becomes

$$F_{s} = \frac{\gamma'}{\gamma} \left(1 - \frac{1}{1 + \frac{1}{2R^{2}}}\right) \frac{\tan\phi'}{\tan\theta}$$
(2-8)

for a thaw slope.

ŧ1

Applying the relevant slope parameters and a value of R of 0.65, the factor of safety against failure for this thawing slope becomes 1.12. It should be noted that the value of R was selected using $\phi' = 25^{\circ}$, $G_{_{\rm S}} = 2.70$ and a

water content of 31%, because the solution for R was presented for these parameters only in the original publication. This value used for ϕ' is less than that actually measured for this soil, and the value $\phi' = 31^{\circ}$ would give an even more conservative factor of safety.

Again using $r_u = u/\gamma z$ and the expression given for u in Eq. 2.7, we find that

$$r_{u} = \frac{\gamma_{w} \cos^{2}\theta + \gamma' \cos^{2}\theta}{\gamma} \left(\frac{1}{1 + \frac{1}{2B^{2}}}\right)$$
(2-9)

Using values of $\gamma_w = 9.81 \text{ kN/m}^3$, $\gamma' = 10 \text{ kN/m}^3$, $\gamma = 19.8 \text{ kN/m}^3$ and R=0.65, an r_u value of 0.72 can be obtained, which is in the same order of magnitude as the value of 0.78 necessary for failure of this slope. The factor of safety obtained from the thaw slope analysis seems to indicate that excess pore pressures due to thaw consolidation may be an important factor to consider in the causes of slope movements.

OTHER REPORTS ON CONTINUOUS, SLOW SOIL MOVEMENTS

3.1 Introduction

III

Several articles are summarized in this chapter which deal with shallow, slow movements in soil as well as the possible mechanisms which cause them. These summaries present the various mechanisms causing slope movements as well as presents quantitative data regarding shallow slope movements. Actual slope movements are recorded as well as pore pressures observed in thawing slopes. Subsequently, the movements and pore pressures recorded for these slopes, as well as the possible mechanisms causing the movements are summarized. These are later used in determining the correct analysis to use and in comparing results.

3.2 Slopes at Schefferville, P.Q. (P.J. Williams, 1966)

3.2.1 General

Downslope movements of a soil in a subarctic location were observed and reported by Williams (1966). Three sites near the town of Schefferville, P.Q. were selected in which 2.22 cm diameter polyethylene tubes up to 2 m long were inserted vertically in holes prepared with an auger in order to record the slope movements. The deformation of the tubes was measured using a probe which was lowered into each tube. The tubes were placed in 1958 and investigated in 1959, 1960 and 1961. The sites selected showed no indication of catastrophic instability.

3.2.2 General Description of Area and Slopes

The three sites investigated are in areas in which permafrost occurs discontinuously with their respective active layers generally 1.5 to 3.0 m deep.

Site 1, located 20 km northwest of Schefferville, is a terraced slope feature in which the terrace surface is sloped at an angle of varying from 4° to 9° , with a much steeper bluff of up to 30° . Six tubes were placed on this site (Fig. 3-1).

Site 2 is located 5 km northeast of the townsite. Overburden here varies between lm to 2m depth and surface vegetation consists of older scrub and isolated spruce. The slope angle varies between 5[°] and 23[°], and water reaches the surface at the foot of the slope. Six tubes varying in length from 0.4m to 1.2m were installed at the site (Fig. 3-1). Site 3 is a vegetation-free slope with an angle of about 20⁰ covered with small stones and located 300m southeast of Site 1. One tube was installed at this site.

Profiles showing the location of each installation relative to the slope are given in Fig. 3-1.

A composite curve presenting the grain size analysis of the three sites shows that the soil contains from 10-25% sand, 44-60% silt and 15-35% clay. A breakdown for each site shows that the site 1 is 25% sand, 60% silt and 15% clay; site 2 has 20% sand, 55% silt 25% clay; and site 3 has 12% sand, 44% silt and 34% clay.

3.2.3 Field Observations

Surface movements of up to 10cm were recorded for the slopes at site 1 and site 3. The movements decreased in depth, varying in intensity from year to year. Profiles showing the shape of the tubes in two sites is shown in Figs.3-2 and 3-3. Tubes B and C show a "concave" tube profile and movements downhill, while tubes A and D show a slight "concave" shape uphill (Williams, 1966). This was attributed to the tube's tendency to take on this form because of their transport to the site in a coil. Fig. 3-4 shows a profile of average slope movements, per year for tube C at site 1. Site 2 showed very little movements, although deformations of the woody vegetation on the site seemed to indicate some.

3.2.4 Conclusions

Williams stated that "the concave downslope form assumed by the tubes shows that not only is the absolute displacement of the upper layers greater than that of the lower layers, but the differential movement within each layer increases towards the surface". A stability analysis utilizing Eq. 4-2 with $\gamma'/\gamma = 0.5$ shows that for failure the angle of internal friction (ϕ') on site 1 would have to be less than 18° (for $\theta = 9^{\circ}$), and less than 8° (for $\theta = 4^{\circ}$). For site 3, ϕ' would have to be less than 36°, which seems to indicate that the slope is at or close to failure. Because of the silty nature of the soil, it is evident that the angle of internal friction will be fairly high, and thus it was concluded that the movements (in site 1 anyway) are not susceptible to conventional stability analysis and require further explanations.

Considerations were then given to the possibility of movements due to freeze-thaw activity, the frost heave due to freezing being normal to the slope and the soil settling
vertically due to gravity upon thawing (see Fig. 3-5). Using the equation $L = E \tan \theta$ (where L = downslopecomponent of movement, $\theta = slope$ angle and E = frost heave), Williams found that the magnitude of frost heave required to cause the observed downhill movements was improbable for this case. He concluded that consolidation following frost heave is unlikely to be by itself responsible for the movements.

3.3 Frost Creep and Gelifluction (Washburn, 1973)

Washburn (1973) considers two processes by which a soil slope may move downhill; frost creep and gelifluction. He describes frost creep as "the ratchet like downslope movement of particles as the result of frost heaving of the ground and subsequent settling upon thawing, the heave being predominantly normal to the slope and the settling more nearly vertical." Gelifluction is presented as solifluction (movement of ground mass saturated with water) associated with frozen ground. Since the predominant characteristic of gelifluction is its dependency on moisture, it is contended that the reasons for the prominence of gelifluction in cold climates are two-fold: (1) the role of the frost table (permafrost table) in preventing the downward movement of moisture and creating saturated soil conditions and (2) the role in thawing ice and snow in providing moisture to the

ground.

Rates of frost creep and gelifluction were reported for various locations including Greenland, Lapland, and Spitsbergen. The slopes varied from 5° to 17° and the rates recorded ranged between 9.0 mm/yr and 120.0 mm/yr. Washburn observed that the ratio of gelifluction to frost creep differed in successive years and thereby contended that both processes occur simultaneously, Either process can predominate in any given year. This combined process is illustrated in Fig. 3-6.

3.4 Seasonal Creep Due to Fluctuating Groundwater Table (Tavenas and Leroueil, 1981)

Tavenas and Leroueil (1981), in approaching the topic of seasonal soil creep of slopes, related the soil movements to the groundwater regime in the slopes. It was suggested that groundwater fluctuations can occur in the clay crust, or in surficial aquifers, or due to variations of artesian pressure in interval or underlying granular layers.

As a result of yearly and seasonal variations of the pore pressures in the slope, the effective stress conditions fluctuate. During periods of high pore pressures, the effective stresses are reduced towards failure (and higher creep rates). During periods of low-pore pressures, the effective stresses are higher and thus the slope is more stable. Although they referred to the creep rates reported by Mitchell and Eden (1972), they state that this 'cyclic creep deformation behavior of a natural slope has not been investigated in detail'.

3.5 Shallow Slope Movements Caused by Excess Pore Pressures due to Thaw-Consolidation (McRoberts and Morgenstern, 1974)

McRoberts and Morgenstern investigated several case studies which dealt with observations on slopes with inclinations ranging from 3° to 9°. Using infinite slope analysis, and pertinent soil data such as residual shear strength parameters, it was found that these slopes should all be stable for slope angles below 12.5°. They concluded that excess pore pressures are required to account for these low angle movements. By solving for the pore pressures required to cause failure, the pore pressures were expressed in terms of r_u and were recorded to vary from 0.6 to 0.86, as compared to an r_u of about 0.50 for hydrostatic conditions.

They associate these excess pore pressures to two

possible mechanisms; thaw consolidation, and ice-blocked drainage. Thaw-consolidation refers to the release of water as frozen ground thaws and the subsequent settlement of the ground. If the rate of water generation exceeds the discharge capacity of the soil, excess pore pressures will develop (Andersland and Anderson, 1978).

Ice-blocked drainage results when a freezing front advances into a slope forming on impermeable frozen soil blanket. This blanket can then block or back-up the water flow and may produce excess pore pressures. McRoberts and Morgenstern contended that ice-blocked drainage, even though observed in the laboratory seems unlikely in the field since water will always be attracted to an advancing freezing front and 'pore water sub-pressures would be more reasonably expected'.

Two case records are presented in which excess pore water pressures were recorded during studies on thawing slopes. The first was in the Mackenzie River Valley near Fort Norman, N.W.T. The piezometers were installed in areas of silt-runs where free water was ponded at the surface. The measured pore pressures, expressed in terms of the r_u ratio, ranged from 0.88 to 1.09 as compared to an r_u of 0.52 for hydrostatic conditions. Thus the excess pore pressure ratios ranged betwen 0.36 to 0.57. The values of u and r_u

versus depth are plotted in Fig. 3-7.

The second case is referring to a study done by Chandler (1972) in which thawing slopes in Vestspitsbergen were investigated. Measurements were made at the base of the active layer as well as at intermediate depths. The pore pressures measured ranged from r_u values of 0.65 to 0.84, as compared to 0.50 for hydrostatic conditions. This gives excess r_u values ranging from 0.15 to 0.34. (See Figs. 3.9 and 3.10)

For both of these cases, it is suggested that the excess pressures are due to thaw-consolidation processes.

3.6 Deep Seated Movements in Clay Slopes (Mitchell and Eden, 1972)

Mitchell and Eden present measurements from inclinometer installations in three slopes in the Ottawa area. The slope angles ranged from 20[°] to 28[°], with one installation on a 35[°] slope. All the slopes are along rivers or creeks and are subject to toe erosion. Three inclinometers were installed in slopes that were similar to adjacent ones where recent landslides had occurred, and three were chosen because particular environmental factors were prevalent (eg. graded slope, outcropping marine clay and a natural slope subjected to unusually rapid erosion).

Three years of slope movement observations showed significant deep-seated movements in which the time of maximum movement for four of the installations was during the Spring. It is also believed that most of the movement occured during this time. The maximum rates of movements varied from 2 to 6 mm/month (during the Spring thaw) while the average movements over the three year period was 0.11 to 27 mm/yr.

In order to investigate the influence of changes in groundwater level on the deformation in the slopes, a sample of clay from one of the slopes (Rockcliffe Clay), was subjected to a normal drained compression test until the sample was at equilibrium under approximately 90% of its' The pore pressure was then cycled to simulate failure load. a 0.5 m variation in the goundwater level. The time intervals between the various cycles ranged between 1 min. and 4 min. After several cycles (number not mentioned), the sample had undergone about 3.5% axial strain without failure. No volume changes were mentioned. From this, Mitchell and Eden conclude that this test definitely supports the concept that slope movements are associated with seasonal high groundwater levels.

3.7 Artesian Pore Pressures in Shallow Slopes (Chandler, 1972)

Chandler (1972) investigated two slopes in Vestspitsbergen with inclinations in the range of $8\frac{1}{2}^{\circ}$ to 12° on which mudflows frequently occur in silty materials. Pore pressure measurements were obtained at the base of the thawing soil as well as at mid-depth of the thawing layer. Slope 1 was at the base of an abandoned cliff and consisted of a series of broad raised beach terraces of tertiary sediments. The overall slope from the crest of the rear scarp to the foot of the toe, was 10° . Slope 2 was at a site in which a number of small scale shallow mudslides had developed on the slope. Silt seeps were evident where emerging groundwater had brought the silt to the surface, indicating locally high water pressures.

The soil found at slope 1 was a relatively uniform silty sand with approximately 8% clay, 32% silt, 40% sand and 20% gravel. No grain size analysis was performed on soil from slope 2. Only slope 2 was investigated for slope movements, pore water pressures and ground temperatures. Three lines of pegs were set out across the slope to determine any surface movements. Over the two week observation period, none of the pegs showed any measurable movements.

Most of the piezometers installed (1 to 12, 20, 21) were simply open ended ½" diameter PVC tubes, while the remaining were electrical piezometers. The stand pipe piezometers were installed by pushing to refusal, presumably to the thawing depth. At four locations, pairs of piezometers (1,2; 3,4; 5,6 and 21,21) were installed, one tube to refusal, the other to a shallower depth. Figure 3-8 shows the locations of all piezometer installations as well as the general site layout.

Water pressures were recorded only by piezometers 1,2; 3,4; 20 and 21, while the remaining tubes were dry. Those piezometers which recorded water pressures were all sited in an area of the slope where there was a thin film of water flowing down the slope. The readings given by the electrical piezometers plotted against time are shown in Fig. 3-9. Fig. 3-10 gives a summary plot in which the maximum observed heads of water above the piezometer tip are plotted versus the depths of piezometers. The data show a consistent record of artesian pressures.

Soil temperatures were measured at two points by driving to refusal a ½ inch bore metal tube into which a soil thermometer was lowered. The soil temperature profiles thus obtained indicate primarily the effect of air temperatures and thus are of little value.

After performing a stability analysis, Chandler showed that for the occurence of mudslides for the range of the slope angles at which they were observed, the pore pressures must have been considerally in excess of the hydrostatic condition. He concluded that the artesian pressures "are believed to be generated by layers of soil of contrasting permeability dipping downslope parallel to the ground surface. The presence of permafrost at a shallow depth prevents the movement of meltwater in any direction other than parallel with, or upwards towards the ground surface, and consequently the blanketing effect of the layers of lower permeability material results in the generation of artesian presures".

Another possible cause mentioned for the observed artesian pressures was overnight freezing of the surface. Chandler contends that surface freezing will be most likely to generate artesian pressures in the spring when the shallow depth of thaw ensures that melt water remains at or close to the ground surface.

3.8 Summary

The possible mechanisms mentioned which may be responsible for the observed shallow slow movements in natural slopes are: consolidation following frost heave

(Williams, 1966), frost creep and/or gelifluction (Washburn, 1973), seasonal variations of the pore pressures in the slope (Tavenanas and Lerouiel, 1981, and Mitchell and Eden, 1972), excess pore pressures due to thaw-consolidation and/or ice-blocked drainage (McRoberts and Morgenstern, 1974) and artesian pressures resulting from thawing (Chandler, 1972).

The observed slope movements ranged from 9.0 to 27.0 mm/yr for slopes in the range of 4° to 23° while one slope had movements as large as 120 mm/yr.

The measured pore pressure ratio in the thawing slopes investigated ranged from $r_u = 0.5$ to $r_u = 1.08$.

The types of mechanisms listed will be taken into consideration in the analysis chapter (Chapter VI) as well as the range of r_u observed. Chapter IV however, deals with the laboratory testing program performed using soil samples from the Bluefish Slope.

IV LABORATORY TESTING PROGRAM

4.1 Concept of Laboratory Program

The clay affected by the shallow slope movements at Bluefish Lake was tested using standard identification tests as well as specially designed Drained Triaxial Tests with Cyclic Pore Pressure Changes at Constant Total Load (DTTCP).

The DTTCP tests were undertaken in order to investigate the effects of cyclic pore water pressure changes on the behavior of soil, particularly with respect to related deformations.

4.2 Standard Soil Tests

4.2.1 Results

Water contents, Atterberg limits, grain size distributions and X-ray diffraction tests were determined for soil identification. In addition, consolidation tests (one-dimensional and isotropic) and consolidated isotropically undrained triaxial tests (CIU) with pore pressure measurements, were used to measure geomechanical properties. A summary of these tests and their results is presented in Table 4-1. Shelby-tube sample locations as indicated by borehole numbers and depth intervals are also shown.

The moisture contents obtained for the shelby tube samples ranged from 19% to 27% while those for a block sample that was taken from Test Pit No. 1 averaged 31%.

Two grain size analyses were performed by hydrometer method according to ASTM Standard D421-58. Their results are plotted in Fig. 4-1 and show average fractions of 73% clay, 26% silt and 1% sand.

Liquid and plastic limits tests were performed according to ASTM Standard 423-66 and D424-59. For the tube samples, liquid limits ranged from 29% to 35% and the plasticity indices from 11% to 14%; for the block sample, the average liquid limit was 43% and the plasticity index was 18%. The Atterberg Limits for the soil are plotted on Casagrande's plasticity chart presented in Fig. 4-2, and indicate a low plastic clay (CL).

X-ray diffraction tests were conducted on material from the block sample in order to identify the clay mineralogy of the soil. The diffractograms from these tests are included in Appendix B, along with the procedure used for the identification. The clay mineralogy, expressed as a percentage of the clay fraction was found to be:

Illite	48%
Chlorite	25%
Kaolinite	27%
Smectite	18

Expressed as a percentage of the total soil sample in which 73% is clay we find that 35% is Illite, 18% is Chlorite, 20% is kaolinite and there is a trace of smectite.

Two types of compression tests were undertaken on one of the shelby tube samples (BH P-2, 1.8-2.0m depth). The first type of test was a one-dimensional test using a conventional oedometer ring, while the second type was an isotropic test utilizing a triaxial cell. Consolidation tests were also performed in the context of the CIU tests as well as the DTTCP tests. All of the consolidation tests, except the first three CIU tests, and the simple (one-dimensional) oedometer test, were performed against a back pressure. The back pressure ensured that the samples were saturated and any excess air was dissolved into solution, thus ensuring accurate volume readings. Sample preparation for the isotropic compression test was the same as for the CIU tests and the DTTCP tests and is described in detail in Appendix A. The results of both types of compression tests were plotted on a V-ln σ'_v diagram, and a

 $V - \sigma_V'$ diagram as shown in Fig. 4-3. The consolidation stages from these tests, including those from the CIU and DTTCP tests, are compiled in Appendix C. It is common that the isotropic consolidation values should be above the oedometer values in Fig. 4-3. The mean pressures are higher. Typical time-consolidation results from the isotropic consolidation tests and one-dimensional consolidation tests are shown on Figs. 4-4 and 4-5 respectively.

Four CIU tests with porewater pressure measurement were performed at confining pressures of 15kPa, 27kPa, 40 kPa, and 300kPa, respectively. The results of these CIU tests are summarized on Figs. 4-6, 4-7 and 4-8 as well as in Appendix C (Fig. 4-8 shows the low-stress region of Fig. 4-7 to an enlarged scale). For the series of CIU tests undertaken in this study, failure was interpreted as the points at which the stress path, when plotted in q-p'space, intersected the Hvorslev surface. Further discussion regarding the definition of failure is presented in Appendix A.

4.2.2 Discussion of Standard Soil Test Data

For the majority of the tested samples as listed in Table 3-1, the water contents were close to their respective liquid limits resulting in Liquidity Index values around

unity. This indicates a soft to very soft deposit. In this state the soil may be deformed or remolded without the formation of cracks and without any change in volume.

The clay mineralogy characterized by the high count of illite, chlorite and kaolinite, indicates a soil which has been affected by little chemical weathering. This is typical for clay deposits sedimented in a cold climate. The clay is relatively inactive and not susceptible to swelling.

The compression curves for both the isotropic and the one-dimensional consolidation tests are both shown in V- σ and V-ln $\sigma_{\rm V}^{*}$ diagrams in Fig. 4-3. Very gentle curves with little change in curvature in the range of the expected preconsolidation pressure, can be recognized. This shape may indicate sample disturbance (Holtz and Kovacs, 1981), and can be contributed to the soft nature of the soil in the tube samples (This will be presented later in section 3.3.1). The preconsolidation pressure was estimated to be between 200 and 250 kPa. A description of the method used of determining the preconsolidation pressure can be found in Appendix A. The slopes of the normal consolidation line $(\lambda$) and of the swelling line (κ), which are also shown on Fig. 4-3, were obtained from the one-dimensional compression curve and were found to be $\lambda = 0.388$ and $\kappa = 0.044$.

The pressure range which was utilized during the isotropic compression test was not quite adequate to obtain the virgin curve portion. It appeared appropriate however, to estimate the location of the isotropic virgin curve by drawing a line through the last point of the isotropic consolidation curve parallel to the virgin curve portion obtained from the one-dimensional test (see Fig. 4-3).

The two compression tests were performed from the same shelby tube sample. Therefore, it can be assumed that the samples were almost identical and that the two tests can be well compared. In fact, for most samples, during the consolidation stages, a similar behavior was observed in the volume readings of the isotropic compression test (see Fig. 4-4). During the initial stages of consolidation, pore water was expelled, indicating a reduction in volume. At a certain stage, however, when the test was in the secondary compression stage, the sample started to take water back in, apparently indicating an increase in volume. The net changes in volume neverthless showed a volume reduction.

The most likely reason for this behavior appears to be the presence of organic gases in the samples tested. Methane gas was indicated by its typical odour and by organic inclusions (rootlets) found in several samples. Methane gas was further observed during the preliminary

DTTCP test performed without back pressure in which the sample had to be continuously deaired on a daily basis. А volume of air (or gas) up to 4cm³ was removed each time. It can be visualized that as consolidation proceeds, the pore water pressure decreases and gas originally dissolved in the pore water will be released at lower pressures. The resulting gas voids will be filled by water which is drawn into the sample, indicating an apparent volume increase. The net volume increase was determined as the difference between the actual final volume reading and the volume reading at time zero extrapolated from the consolidation curve. Full equilibrium was accomplished in 24 hrs. for this fissured clay.

The load-deformation curves for the CIU tests, together with the related pore pressures are presented in Fig. 4-6. A strain hardening behavior is shown for the samples tested at low stress levels (p' varying between 15 and 40kPa) while slight strain softening is evident towards the end of the the CIU test at the higher stress level (p ' = 300 kPa). This strain-hardening behavior at the low stress levels may be due to the interaction of individual peds in the clay fabric resulting in a 'granular' behavior similar to a loose sand. The strain-softening observed for the high stress level however, is typical for over-consolidated clays. The u vs ε_1 , plots for all four tests in Fig. 4.6 show that

positive pore pressures were initially generated, but later became negative as the test progressed. For the test at the high stress level, positive pore pressures were generated initially which were considerably higher than for the tests at the low stress levels.

In Fig. 4-7 and 4-8, the stress paths of the test samples are plotted in a q-p' diagram. The overconsolidated strength envelope in the Hvorslev surface can be established as the tangent to the various stress paths. It was found to have a slope M = 1.25. The resulting effective strength parameters were calculated to be $\phi' = 31^{\circ}$ and c' = 12 kPa.

4.3 Drained Triaxial Tests with Cyclic Pore Pressures Changes at Constant Total Load (DTTCP test)

4.3.1 Introduction

The drained triaxial tests with cyclic pore pressure changes at constant total load (DTTCP tests) were undertaken in order to examine soil behavior due to cycling pore pressures. The concept of the test is shown schematically in Fig. 4-9. The sample was placed into a triaxial cell and consolidated anisotropically, using a dead weight system for the axial load and an air pressure system for the confining pressure. It was then subjected to a cycling pore pressure, Au. The term $\Delta u/\Delta u_f$ used throughout the remaining thesis, represents the change in pore pressure, $\Delta u=(-\Delta p')$ as a fraction of the total pore pressure change measured which produced failure (see Fig. 4-9). The axial strains and volumetric changes were recorded and plotted during the test, from which the radial strains were also determined and plotted.

The following sections present the procedures followed for each test and contain discussions on the sample preparation and the test procedures (which includes a brief description of the apparatus, the consolidation stage, the cyclic pore pressure changes and the application of the failure loads). Because of the quantity of results and observations made, the following chapter is devoted to presenting and discussing the test results.

4.3.2 Sample Preparation

All the soil specimens were carved from the same block sample which was collected from a depth of approximately 2.0m below the ground surface in Test Pit No. 1. Because the clay was soft, nuggetty, and contained occasional pebbles and rootlets, it was very difficult to handle, and great care had to be taken during the trimming process. Handling procedure for the trimming and sample set-up stages of testing are described in Appendix A. These procedures were followed for all the clay samples prepared for the Drained Triaxial Tests with Cyclic Pore Pressure Changes (DTTCP).

4.3.3 Test Procedure for the DTTCP Tests

4.3.3.1 Equipment Set Up

The equipment setup for the DTTCP tests is shown schematically on Fig. 4-10. The sample specimen was enclosed in two rubber membranes which were lubricated with silicone oil, and placed inside the triaxial cell which was subsequently filled with water. Constant axial loading was applied by deadweights on a hanger, sitting on the piston which passed through the top of the cell. The cell was equipped with a rotating bushing to minimize the friction between the cell top and the piston.

Compressed air was used to provide the pressure required for cell and pore pressures. The air supply lines were rerouted through a pressure container to minimize fluctuations in the air pressure supply.

Volumetric changes in the sample were measured by means of a backpressure burette. This consisted of a cylinder which was enclosed within a clear plastic chamber which could be pressurized to the level of the required sample pore pressure.

Vertical displacements of the sample top were measured by means of a dial gauge, as well as a Linear Variable Differential Transformer (LVDT). Pore pressures were measured by pressure transducers and were recorded at fifteen minute intervals by an automatic data-logger along with the vertical displacements. The volumetric readings as well as the dial gauges for displacement readings were recorded manually at 2 hour intervals during daily working hours.

The sample specimens were consolidated anisotropically at total stress conditions similar to those estimated for the field conditions. Cell and pore pressures were applied simultaneously by opening the valves connected to the cell base, while the hanger load was applied slowly to the top of the specimen by gently releasing a mechanism holding the hanger in place. Pore pressures were cycled by using two bleeding air pressure valves set to the upper and lower stress levels of the load cycles and a solenoid switch connected to a timer set to change the pressure at specified intervals.

4.3.3.2 Consolidation Stage

The samples were consolidated at stresses equivalent to the site stress levels found at depths of 1.5m, 2.0m, and 3.0m using coefficients of lateral earth pressures between 0.3 and 0.6. This range was selected because the estimated K_A is 0.3 for this soil and the estimated K_O value was 0.6. All tests were consolidated against a backpressure of 240 kPa. Durations of the consolidation stages of the tests ranged between 3840 min and 4320 min. This included some secondary consolidation. At the end of each consolidation stage, change in length and the total volume change were recorded.

4.3.3.3 Cyclic Pore Pressure Changes

After completion of the consolidation stage, the samples were subjected to cyclic pore pressure changes. These changes were selected such that they were in the same order of magnitude as the seasonal pore pressure changes which were estimated for the field conditions, and varied between 0 and 30kPa. A second criterion which was applied for choosing the magnitude of the pore pressure changes was related to the proximity of the stress points to the no-tension line on the q -p' plot shown in Fig. 4-8. This was done in order to determine if there was different soil

behavior for those samples consolidated to different K_o values. Each pore pressure change was held for two hours to ensure pore water pressure equalization, even though it appeared that pore pressure equalization was practically completed within half an hour after the pore pressure change. Thus, the time required for a full cycle was four hours.

Values for cell pressure, pore pressure and vertical displacement were recorded automatically every fifteen minutes by means of a data logger, and every two hours manually during the day hours. For each test, between 60 and 100 cycles were applied, resulting in a total test duration of approximately three weeks for each test. A total of 11 DTTCP tests was completed during the testing program, plus one additional preliminary test.

4.3.3.4 Application of Failure Loads

At the end of each test series, the samples were brought to failure by increasing the pore pressure in increments of 1.0 to 2.0 kPa, allowing adequate time (2 hrs.) for pore water pressure stabilization for each increment (see Fig. 4-8). This provided additional data for failure values in the low stress no tension region. After failure, the final values of pressure, height and volume of

the samples were recorded and the apparatus disassembled. The samples were visually inspected, photographed (samples B-9, B-10, B-11 and B-12) and final moisture contents were taken.

RESULTS OF THE DTTCP TESTS

5.1 Introduction

V

A total of 11 DTTCP tests was completed during the testing program, in which the specimens were subjected to cycling pore pressures. For each test, between 60 and 100 cycles were applied, resulting in a duration of approximately three weeks for each test. The results obtained from these tests are presented, discussed and then summarized.

5.2 Presentation and Discussion of Test Results

Figures 5-1 to 5-7 present typical data from the DTTCP tests. The complete set of test data can be found in Appendix C. Figure 5-1 shows plots of the volume changes and the axial deformation changes versus log-time for a typical consolidation stage on sample number B-4. The same anomaly described before for the routine consolidation tests (water being apparently absorbed into the sample during the later stages of the test) was also evident during each of these tests. Consolidation was complete after one day, but was continued both for convenience and to ensure sample saturation for three days (over a weekend period). Similar plots are presented for each DTTCP test in Appendix C.

Figure 5-2 presents the change in height which was measured during cycling for a typical test (test sample B-4). Upon pore pressure increase, the sample would increase in height (dial gauge reading reducing) and when this pore pressure was released, the sample would consolidate to a height less than prior to the increase. As cycling continued, the sample reduced in height. The permanent axial deformation is shown on this figure. A large portion of the total change in height occured within the first twenty minutes of the pressure change. The permanent axial and volumetric deformations were recorded and were plotted versus the number of cycles as shown on Fig. 5-3. The complete set of plotted results can be found in Appendix C.

On Fig.5-3a and 5-3b, the permanent axial strain (ε_1) and permanent relative volumetric strains (ε_v) after each full cycle are respectively plotted versus the number of cycles for a typical test. The rate of axial strain $\dot{\varepsilon}_1$, is the fastest at the beginning of the cycling, decreases with increasing cycling, and reaches a constant rate of deformation after approximately 30 cycles. The permanent relative volumetric strain as plotted in Fig. 5-3b versus number of cycles, although very small, show a similar behaviour as the axial strains. Logarithmic plotting of ε_1 and ε_v versus log (No. cycles) do not yield a straight line.

The volumetric strains recorded during cycling (see complete set of data in Appendix C) were very small, generally less than 0.8%, but never more than 1.2%.

The curves suggest that changes in strain occur in a step-like fashion. The plots of permanent volumetric strain (ε_v) versus cycle (Fig. 5-3b) typically shows that the ε_v remains constant at a certain value for a few cycles then suddenly increases for a few cycles until again a constant value is reached for several more cycles. This sequence continues in this way throughout the test. The same step-like behavior is also evident for the axial strains (ε_1) . An observation made during the testing was that as the test progressed, a step-like increase in the sample volume would result in a step-like increase behavior in the sample length. As the volume then remained constant, the sample would continue to decrease in length.

A composite plot of all tests, cycled at different $\Delta u / \Delta u_f$ values ranging between 0 and 1.0 is presented in Fig. 5-4. The smaller the ratio of pore pressure change, the smaller are the axial strains and the lower the strain rate.

For the sample which failed during cycling (test B-8), failure was very quick, thus having a very high strain rate. For those tests with intermediate ratios of $\Delta u / \Delta u_f$, the

steady state strain rate falls between the two extremes It can be seen that these curves resemble those from shown. typical constant stress creep tests in which the stresses are kept constant and the axial strain is measured. These constant stress creep curves typically show a primary creep zone in which the creep rate decreases, a steady state creep zone where the creep rate remains constant and a tertiary creep zone where the creep rate increases to failure (Nelson and Thompson, 1977). The curves from this investigation include the first two zones, primary and constant rate, while no observations were made to suggest that the tertiary zone had been reached. However, it should be noted that these are not typical creep curves since displacements were not taking place at constant effective stresses.

In Fig. 5-5, radial strains, ε_3 , are plotted versus the number of cycles for test sample B-9. The values of ε_3 for each cycle were determined from the permanent axial deformation and the volume changes at the end of that cycle. These were related to obtain the change in diameter using the relationship:

$$\Delta D = D - 2 \sqrt{\frac{V - \Delta V}{\pi (H - \Delta H)}}$$

where:

D = original sample diameter V = original sample volume H = original sample height ΔD = change in sample diameter ΔV = change in sample volume ΔH = change in sample height.

A detailed derivation of this relationship is given in Appendix A. The radial strain ε_3 was determined by dividing the original sample diameter by this change in diameter after consolidation. The same behavior can be observed in this plot as for the measured deformations: the rate of radial strain $\dot{\varepsilon}_3$, decreases with the number of cycles and reaches a constant value at approximately 30 cycles. A complete set of plotted results can be found in Appendix C.

Two samples (B-5 and B-8) which were cycled too close to the failure line failed during the cycling. Figures 5-6 and 5-7 show the axial deformations plotted versus number of cycles for these tests. It can be observed that once failure was initiated, both samples failed in step like fashion. For sample B-8, part of this behavior, however, may be attributed to the cycling of the pore pressure because the decrease in pore pressure stabilizes the soil. A similar step-like deformation behavior had also been observed during cycling of the other tests, as mentioned, however, it was not as pronounced as in these cases. Test B-8 on Fig. 5-7 was interrupted when the load ram began to rest on a support, although once the support was lowered, it continued to fail.

The stress conditions for each test, the magnitude of the pore pressures cycles, and the rate of strains obtained from the above plots ($\dot{\epsilon}_1$, $\dot{\epsilon}_v$, $\dot{\epsilon}_3$ and $\dot{\epsilon}_s$) are summarized in Table 5-1, where $\dot{\epsilon}_s$ is the shear strain rate and was determined from the values of $\dot{\epsilon}_1$ and $\dot{\epsilon}_3$ in the same test using the relationship $\dot{\epsilon}_s = 2/3$ ($\dot{\epsilon}_1 - \dot{\epsilon}_3$), (see List of Symbols).

Figure 5-8 shows for sample B-4 the vertical displacements observed during the incremental pore pressure increases which were applied, subsequent to the cycling tests, until the samples failed, in a settlement versus time plot. With each pore pressure increment, the sample increased in length. As the stress conditions approached failure, the rate of increase in length decreased. Eventually the sample length decreased slowly (pt. A), until with a further pore pressure increment sudden total failure occurred. Table 5-2 summarizes the failure stresses for each DTTCP test together with the volume changes observed immediately before failure.

The results of these test series are further summarized by using the invariant effective stress q, p', V space commonly associated with critical state soil mechanics, where $q = \sigma_1' - \sigma_3'$, $p' = (\sigma_1' + 2\sigma_3')/3$, and V = 1 + e(Schofield and Wroth, 1968). This method presents clearly the stress paths followed in each test and gives a proper understanding of the soil behavior. The test results are presented in this manner in Figs. 5-9, 5-10 and 5-11 and are also listed in Tables 5-1 and 5-2. Figure 5-9 presents a composite plot of the stress paths at initial cycles for each DTTCP test in a q-p' diagram. The theoretical no-tension line and the Hvorslev failure line are also shown on this plot. The proximity of each test cycle to the theoretical failure line can be recognized. The failure points line up close to the theoretical 'no tension' line, although a majority of them fall slightly to the left of the line, indicating negative σ'_3 values at failure and implying a positive value of c' in this region. This indicates, according to Atkinson and Bransby (1978), that the soil can sustain tensile effective stresses. Failure point B-9 shows a high cohesion intercept, which may be related to the reinforcing effect of rootlets which were found in the sample, different from the other samples. As well Fig. 5-9 shows a plot of the failure points in V-p' space along with the estimated failure line parallel to the isotropic consolidation line obtained from the isotropic compression

tests.

The stress paths during pore pressure cycling can be presented in more detail in q-p' plots and V-p' plots as shown for a typical test (B-6) in Fig. 5-10. The sample was consolidated to point A, then cycled to point B by increasing the pore pressure, Δu , then subsequently decreasing the pore pressure by Δu back to the area of pt. Because the total stresses were kept almost constant, Α. the effective stresses changed only as the pore pressures changed. During each cycle, changes in volume and shape occurred due to the changes in effective stress which were not reversible. Subsequently, the sample never returned to its original shape and volume. Thus, as cycling continued, the sample decreased in height, increased in volume and accordingly increased in diameter. Therefore, because the sample diameter increased, while the axial load remained constant, the major principle stress decreased. This slight decrease in σ_1 is shown in the q-p' plot and the V-p' plot in Fig. 5-10 by the migration of points A and B at the beginning of the test to points C and D for the final The incremental pore pressure increase applied to cycles. fail the sample subsequent to cycling is indicated by pt. E. Similar stress paths are plotted for each of the DTTCP test and are presented in Appendix A.

The failure points were further plotted in a V-log p' stress space as shown in Fig. 5-11. The slope of the resulting failure lines is theoretically about the same as the slope of the isotropic plastic compression line plotted in the same stress space. Because of the scatter of the failure points in the low stress region, the failure point from the CIU test performed at a confining pressure of 300 kPa was utilized in order to establish more clearly the location of the failure line in q-log p' space.

All the samples bulged at failure and for some samples failure zones rising at approximately 55° from the horizontal were indicated (For example B-3, B-5, B-6, B-7, B-8, B-9, B-10, B-11 and B-12). Total failure for all of the samples happened suddenly, mainly indicated by rapid compression after the failure stresses were exceeded. Failure for all of the tests was defined as the point at which a change in soil behavior occurred, and not by a predetermined strain. Sudden axial compression was also accompanied by an increase in volume. For the tests in which the stresses were increased to negative σ'_3 values, however, the sudden change in volumetric reading is not indicative of a corresponding increase in sample volume, as much of the measured water inflow was due to water accumulating between the membrane and the sample. In order to obtain the correct stress state of the sample at failure, the cell pressure was momentarily increased so that $\sigma'_3 = 0$, and the correct volume reading was taken.

The results from the DTTCP tests show that a constant strain rate ($\dot{\epsilon}_1$, $\dot{\epsilon}_3$ and $\dot{\epsilon}_v$ and $\dot{\epsilon}_s$) is attained after a linear behavior of the sample is reached, usually around 30 cycles. The rate of deformations after 30 cycles was estimated from the slopes of the ϵ_1 , ϵ_3 and ϵ_v plots after this point of cycling. These rates of deformations, $\dot{\epsilon}_1$, $\dot{\epsilon}_v$ and $\dot{\epsilon}_3$ and $\dot{\epsilon}_s$ are summarized in Table 5-1 and are also plotted in Figs. 5-12, 5-13, 5-14 and 5-15 versus the change of pore pressure ratio $\Delta u/\Delta u_f$, in which Δu_f is the total pore pressure required to produce failure at the theoretical failure line. These strain rates are also plotted versus $\Delta u/\Delta u_f$ in Appendix A. For all the strain-rate versus $\Delta u/\Delta u_f$ plots, an almost linear rate increase with $\Delta u/\Delta u_f$ ratio can be seen.

The relative scatter of data points in the plots of the strain rates vs $\Delta u/\Delta u_f$ may be related to the method of obtaining the slope from the strain curves in the steady state region. The strain rates were determined from the slopes of an average line drawn through the stepped portions of the curves, believed to represent the general, overall behavior of the sample. Thus the rates obtained depend very much on the selection of the slope of the average curve:

whether to take the slope along individual 'steps' or the slope of the line averaging a larger portion of the curve (see Fig. 5-3b and diagrams in Appendix C.). There is also the possibility that the steps did not reflect soil behavior, but were due to disturbances during the duration of the tests, such as power failures and careless movement around the apparatus, or to insensitivity in the instrumentation.

A value of $\Delta u / \Delta u_f$ equal to unity represents pore pressure changes up to the theoretical no-tension line and thus theoretically constitutes the limit to which the porewater pressure can be cycled without causing failure. The strain rates for the tests cycled to this limit could not be clearly defined because the samples which failed when cycled to this level, did so at different rates. This may be an indication of uncontrolled rates in this area. It was evident however that the strain rates developing during cycling increased rapidly when the stresses were cycled close to, or at the failure line. For the lower Δu_f values, however, strain rates increased almost linearly with number of cycles. The best correlation was obtained for the volumetric strain rate $\dot{\epsilon}_{v}$ (Fig. 5-14). Failure occurred only when the pore pressure changes reached the failure line.

It is possible that the ratio $\Delta u/\Delta u_f$ may not be the most convenient way of presenting the test results. The reason being that at different stress levels q, the same $\Delta u/\Delta u_f$ ratio is possible and different behavior may be evident. A third parameter that may take this into account is K, which more precisely indicates the stress state.

5.3 Summary of Experimental Results

The most important results from the DTTCP tests appear to be the following points:

- During cycling of pore pressures, permanent change of volume and shape can be achieved.
- The smaller the ratio of pore pressure change, the smaller the axial strains.
- 3) Deformation rates expressed in terms of strain rates increased with the number of cycles but reached a constant value after approximately 30 cycles.
- The strain rate is dependent on the magnitude of the pore pressure changes.
- 5) The strain rates $(\dot{\epsilon}_1, \dot{\epsilon}_3, \dot{\epsilon}_v, \dot{\epsilon}_s)$ increase linearly with
an increase in the ratio $\Delta u / \Delta u_f$ almost up to $\Delta u / \Delta u_f = 1.0$

- 6) An abrupt change of conditions from constant rate of strain to failure is indicated at the point $\Delta u / \Delta u_f = 1.0$.
- 7) Failure at low stress levels is defined by a curve slightly left of the theoretical no-tension line.

VI CORRELATION BETWEEN DTTCP TEST OBSERVATIONS AND OBSERVED MOVEMENTS IN THE FIELD

6.1 Introduction

This chapter deals with correlating the results obtained from the DTTCP test and the actual measured movements in the Bluefish Slope.

Firstly, the relationship between triaxial test conditions and plane strain field conditions is discussed to determine the corrections required for the DTTCP test results so they can be compared with the field plane strain condition.

Secondly, because the deformation characteristics obtained from the DTTCP tests were related to the pore pressures at failure, the failure conditions in the slope must also be expressed in terms of pore pressures. The pore pressures at failure are expressed as a function of depth D for the Bluefish Slope using relevant slope parameters such as slope inclination θ , angle of friction ϕ' of soil and the unit weight γ of the soil. The difference between the pore pressures at failure u_f and the lowest existing pore pressures u in the slope defines the pore pressure change Δu_f required to cause failure. The ratio $\Delta u/\Delta u_f$ is plotted versus depth and related to the strain rates observed from the DTTCP tests, where Δu is the change in pore pressure observed for a particular depth.

Thirdly, the pore pressure changes in the surficial portions of the Bluefish Slope affected by movements must be The pore pressure readings obtained in the estimated. Bluefish Slope were not measured directly in the surface zones affected by movements but in the silty sand zone at the very base of the clay deposit. Pore pressure changes in the surface zones must therefore be estimated from these readings as well as from other data reported for surficial soil layers. The estimated pore water fluctuations Δu are then used to calculate $\Delta u / \Delta u_f$ values at various depth levels below the ground surface. By relating the ratio of $\Delta u / \Delta u_{f}$ to the shear strain rate $\dot{\epsilon}_{_{
m S}}$ from the lab testing program, data are obtained which show the shear strain distribution versus the depth. Thus, soil movements can be calculated for these cyclic pore pressure values. The calculated movements are then compared to those obtained from the slope indicators installed in the slope.

6.2 Correlation Between Triaxial Test Conditions and Plane Strain Field Conditions

6.2.1 General

In this section the correlation betwen the triaxial test conditions in the DTTCP tests and the plane strain conditions assumed for the field will be discussed. Generalized stress strain relationships are presented, and then using the conditions for each case, a relationship is obtained between the strains ϵ_1 , ϵ_v and ϵ_3 and ϵ_s and the pore pressure ratio $\Delta u / \Delta u_f$. The two relationships will be compared in order to determine the correction factor required to transfer the results obtained in the triaxial DTTCP tests to field conditions. Because the actual behavior of soil is non-elastic, it should be noted that the relationship derived for purely elastic behavior is not in full agreement with the results of the testing program.

The stress-strain behavior of an ideal elastic material is given by the generalized form of Hooke's Law:

$$\delta \varepsilon_{\mathbf{x}} = \left[\delta \sigma'_{\mathbf{x}} - \nu' \delta \sigma'_{\mathbf{y}} - \nu' \delta \sigma'_{\mathbf{z}} \right] / \mathbf{E}'$$

$$\delta \varepsilon_{\mathbf{y}} = \left[\delta \sigma'_{\mathbf{y}} - \nu' \delta \sigma'_{\mathbf{x}} - \nu' \delta \sigma'_{\mathbf{z}} \right] / \mathbf{E}'$$

$$\delta \varepsilon_{\mathbf{z}} = \left[\delta \sigma'_{\mathbf{z}} - \nu' \delta \sigma'_{\mathbf{x}} - \nu' \delta \sigma'_{\mathbf{y}} \right] / \mathbf{E}'$$
(6-1)

where E' and v' are the Young's Modulus and Poisson's ratio, appropriate for the stress strain correlation in terms of effective stresses. The values of E' and v' for soils can be assumed to remain constant over small increments of stress and strain only. That is, when the stress and strain changes considered are small, and the stresses are generally clearly below failure, almost linear elastic conditions can be assumed. In this case, the above equations (6-1) can be written:

$$\Delta \varepsilon_{\mathbf{x}} = [\Delta \sigma_{\mathbf{x}}^{\dagger} - \nu^{\dagger} \Delta \sigma_{\mathbf{y}}^{\dagger} - \nu^{\dagger} \Delta \sigma_{\mathbf{z}}^{\dagger}] / E^{\dagger}$$

$$\Delta \varepsilon_{\mathbf{y}} = [\Delta \sigma_{\mathbf{y}}^{\dagger} - \nu^{\dagger} \Delta \sigma_{\mathbf{x}}^{\dagger} - \nu^{\dagger} \Delta \sigma_{\mathbf{z}}^{\dagger}] / E^{\dagger}$$

$$\Delta \varepsilon_{\mathbf{z}} = [\Delta \sigma_{\mathbf{z}}^{\dagger} - \nu^{\dagger} \Delta \sigma_{\mathbf{x}}^{\dagger} - \nu^{\dagger} \Delta \sigma_{\mathbf{y}}^{\dagger}] / E^{\dagger}$$
(6-2)

In terms of effective principal stresses and strains, the equations become:

$$\Delta \varepsilon_{1} = [\Delta \sigma_{1} - \nu' \Delta \sigma_{2}' - \nu' \Delta \sigma_{3}'] / E'$$

$$\Delta \varepsilon_{2} = [\Delta \sigma_{2}' - \nu' \Delta \sigma_{1}' - \nu' \Delta \sigma_{3}'] / E'$$

$$\Delta \varepsilon_{3} = [\Delta \sigma_{3}' - \nu' \Delta \sigma_{1}' - \nu' \Delta \sigma_{2}'] / E'$$
(6-3)

6.2.2 Axial Symmetry (Triaxial Test)

For the case of axial symmetry as it applies for the triaxial test, the following conditions are valid: $\sigma'_2 = \sigma'_3$ and $\varepsilon_2 = \varepsilon_3$. Substituting these conditions into Eq. 6-3,

 $\Delta \varepsilon_1 = [\Delta \sigma'_1 - 2\nu' \Delta \sigma'_3] / E'$

and

 $\Delta \varepsilon_2 = \Delta \varepsilon_3 = [\Delta \sigma'_3 (1-\nu') - \nu' \Delta \sigma'_1]/E' \qquad (6-4)$ For the DTTCP tests, $\Delta \sigma'_1 = \Delta \sigma'_3 = \Delta u$. Therefore, we can express the axial and radial strain changes in terms of pore pressure changes Δu :

$$\Delta \varepsilon_{1} = \Delta \varepsilon_{2} = \Delta \varepsilon_{3} = [(1-2\nu')\Delta u]/E'$$
 (6-5)

and for the shear strain changes:

$$\Delta \varepsilon_3 = 0$$

6.2.3 Plane Strain

For plane strain conditions as they apply approximately for the slope in question, the lateral strain parallel to the slope ε_2 is zero; hence from Eq.6-3,

$$\Delta \varepsilon_{2} = 0 = \left[\Delta \sigma_{2}^{\prime} - \nu^{\prime} \Delta \sigma_{3}^{\prime} - \nu^{\prime} \Delta \sigma_{1}^{\prime} \right] / E^{\prime}$$

or

$$\Delta \sigma_2' = \nu' [\Delta \sigma_1' + \Delta \sigma_3'] \tag{6-6}$$

and substituting this into Eq. 6-3,

$$\Delta \varepsilon_{1} = \Delta \varepsilon_{3} = [\Delta \sigma'_{1}(1-\nu^{2}) - \Delta \sigma'_{3}(\nu' + \nu'^{2})]/E' \qquad (6-7)$$

Substituting $\Delta \sigma'_1 = \Delta \sigma'_3 = \Delta u$ into Eq. 6-7, we get for lateral and vertical strain changes due to pore pressure changes Δu :

$$\Delta \varepsilon_1 = \varepsilon_3 = [\Delta u'(1-v'-2v'^2)]/E'$$
(6-8)

and for the shear strain changes:

6.2.4 Discussion

By comparing the stress strain conditions for plane strain and axial symmetry (Eqs. 6-5 and 6-8, respectively) it is evident that the ratio $\Delta \varepsilon_3$ (plain strain)/ $\Delta \varepsilon_3$ (triaxial) increases as ν increases for values between 0 and 0.5 (Fig. 6-1). For example, for a value of $\nu = 0$, the ratio is equal to one and for a value of $\nu = 0.25$, the principal strain at plane strain conditions will be approximately 25% larger than for the axial symmetric conditions.

For dense soils and solid granular materials such as concrete or sandstone, Poisson's ratio increases from small

values of the order of 0.2 at low stress to more than 0.5 at very high stresses (Terzaghi, 1942). A value of v = 0.5applies also for materials in which no volume changes occur, for example, for clay soils at undrained conditions. For the case of the DTTCP tests, the stress range used is very low, therefore it can be assumed that Poisson's ratio might be v = 0.2 to 0.3. Thus, for relating the plane strain field situation to the triaxial test results which were obtained from the DTTCP tests, the data will be corrected accordingly by a factor of 1.25 using the assumption that v = 0.25. This factor applies for all the strains (ϵ_1 , ϵ_3 and ϵ_s).

6.3 Formulation of Failure Criteria for Slope at Bluefish Lake

The pore pressure at failure is obtained from a stability analysis of the slope at Bluefish Lake by using the infinite slope method with ground water flow parallel to the slope. The factor of safety Fs for the condition of limit equilibrium of a shallow slope in terms of effective stresses is:

$$F_{s} = \frac{c' + z\cos^{2}\theta (\gamma - m\gamma_{w}) \tan \phi'}{\gamma z \sin \theta \cos \theta}$$
(6-9)

where the groundwater table is at a vertical height mz above the slip surface. The total unit weight of soil is γ , and

 γ_w is the unit weight of water. The slope angle is θ , and ϕ is the effective angle of internal friction of the soil and c' is the effective cohesion value for the soil. Because the cohesion in weathered soils can reasonably be assumed close to zero (Rivard and Lu, 1974), Eq. 6-9 can be written in terms of the pore pressure ratio r_u as follows;

$$F_{s} = \frac{(\cos^{2}\theta - r_{H}) \tan\phi'}{\sin\theta\cos\theta}$$
(6-10)

where $r_u = \frac{u}{\sigma_v} = \frac{u}{\gamma z}$

For a slope inclination of 7° and an angle of friction of 31° in the clay, the pore pressure ratio required for failure r_{u_f} for the Bluefish Slope becomes:

$$r_{\rm uf} = \frac{u_{\rm f}}{\gamma z} = 0.78$$
 (6-11)

Now substitute H for Z, and $\gamma_w^H{}_{wf}$ for u_f , where H is the depth of soil element and H_{wf} is the height of the water level at failure above the soil element. If we then assume $\gamma_w^/\gamma$ approximately equal to 0.5,

$$r_{uf} = \frac{\frac{0.5H}{Wf}}{H} = 0.78$$
 (6-12)

or

$$H_{Wf} = 1.57H$$
 (6-12)

That is, the height of water above the soil element at depth H required to give an r_u value of 0.78 is a function of the depth H. Using the relationship $u_f = H_{wf} \cdot \gamma_w$, the pore pressure required for slope failure can also be expressed as a function of depth below the ground surface. Using $\gamma_w = 9.81 \text{ kN/m}^3$;

$$u_f = 15.38H$$
 (6-13)

Thus, the change in pore pressure required to produce failure in the slope is

$$\Delta u_{f} = 15.38H - \gamma_{u}H_{u} \quad (kPa) \tag{6-14}$$

where $\gamma _{W}^{}H_{W}^{}$ is the lowest pore pressure in the slope at the depth H.

It should be noted that this relationship was formulated for the Infinite Slope in which the seepage flow is parallel to the slope. This is in fact contrary to the thaw slope analysis criteria stated by McRoberts and Morgenstern in which the flow direction is horizontal, out of the slope. Nevertheless, in order to keep the analysis simple, the same relationship (Eq.6-14) will be used for both conditions of pore pressure changes; due to groundwater level changes and due to thawing. For the field situation, the ratio $\Delta u / \Delta u_f$ will be expressed in terms of the range of pore pressures Δu observed in the field, and the change of pore pressure required for failure, Δu_f , calculated using Eq. 6-14. For values of $\Delta u / \Delta u_f = 1.0$, failure conditions already exist in the slope, and the soil behavior described by the DTTCP tests is not valid.

6.4 Estimate of Cyclic Pore Pressure Changes in the Field

The measurements of pore pressure fluctuations in the Bluefish Lake Slope were obtained in the sand layer at the very base of the clay deposit as presented in Chapter II, Fig. 2-6.

In the following two different sources of pore water pressure changes will be discussed; a) those due to groundwater level changes, and b) those due to thawing processes.

In some areas of the Bluefish Slope there is an indication that the deposit is either silt or a silty clay which is extensively fissured. These soil conditions would allow seepage of the groundwater from the lower sand layer to the upper zones of the clay deposit. It would seem then, that the pore pressure changes observed at the bottom of the clay deposit are approximately the same throughout the clay deposit up to the very top. This assumption is subsequently used when analyzing the fluctuations in pore pressures in the Bluefish Slope with regards to the estimated strain profile.

The groundwater variations measured near location SI-1 in the Bluefish Slope will be considered and compared to the slope indicator profile obtained at that location.

As indicated on Fig. 2-6, the piezometric elevation ground water levels at the location of SI-1 varied from a depth of 2.2m below the ground surface in June to 0.2m below the ground surface in September. It can be seen that this variation in H_w is well lower the piezometric elevation that would be required to cause failure. The pore pressure variation over the depth of the clay zone at this location is shown on Fig. 6-2, where line AB shows the pore pressure distribution for the lowest groundwater level and line CD shows the pore pressure distribution for the highest groundwater level. The pore pressure change Δu is the difference between the two lines.

For thaw-effects; pore pressures at very shallow depth have been previously observed in thawing silt and clay

slopes by McRoberts and Morgenstern (1974a) and by Chandler (1972). The reported data are plotted in Fig. 6-3 in terms of head of water above the piezometer tip versus depth of piezometer tip. In terms of pore pressure ratio r_u , the r_u values vary from 0.5 to 1.08 in which $r_u = 0.5$ represents a water level at ground surface. Relating these data to the thawing surface zones of the Bluefish Slope, it can be stated that r_u is definitely less than the pore pressure ratio $r_{u_f} = 0.78$ which is required to cause failure, since no slope failure has occurred.

It is doubtful that the high thaw pore pressures observed in the upper 1.0m by McRoberts and Morgenstern and Chandler, are also valid for greater depths; mainly because thaw at greater depths occurs more slowly, permitting the dissipation of pore pressures as they develop.

For the thaw analysis, a thaw pore pressure distribution to a depth of 2m will be used as shown on Fig. 6-4(a). The pore pressure change Au is obtained by relating these pore pressures to zero as the minimum value. Zero pore pressures can be accepted as a lower bound as zero pore pressures are likely to occur at freezing conditions for fine-grained soils at low stress levels (McRoberts and Morgenstern, 1974b).

Maximum pore pressure changes due to thaw and due to water pressure at the base of the clay zone do not occur simultaneously, the first probably in early June and the second in late August. Thus, both cases will be considered separately. For each case the cycle length is assumed equal to one year.

6.5 Correlating Pore Pressure Changes to Strain Rate

The possible deformation profiles for the slope will be determined from the above pore pressure changes due to the variation in ground water level and subsequently will be compared to the deformation profile obtained from the slope indicator at the location of SI-1. In order to make the correlation, it is assumed that the slope is at a plane strain condition in which downhill lateral stress release is occurring - enabling downhill movements to take place. It is also assumed that cycling of the porewater pressures has been an on-going process and thus the lateral strain rates determined from the DTTCP tests can be utilized in this correlation, which implies that the lateral strains are continuing at a constant rate with continued pore pressure cycling.

The effect of the pore pressure fluctuation at the location of SI-1 (shown in Fig. 6-2a) on the shear strain

with depth, is shown in the same figure, by plotting ε_s and $\Delta u/\Delta u_f$ versus depth using Eq. 6-14 for the determination of Δu_f , and recalling the relationship obtained between $\dot{\varepsilon}_s$ and $\Delta u/\Delta u_f$ from Fig. 5-15 in Chapter V. The shear strain rate ε_s , can be converted to shear strain, ε_s , by multiplying $\dot{\varepsilon}_s$ by one cycle.

Fig. 6-5 shows the relationship between pure shear strain ϵ_{zx} (equivalent to ϵ_{s}) and engineers shear strain γ_{zx} . From Fig. 6-5(a) we can see that γ_{zx} is the change in angle between two fibres in the x:z plane which were originally at right angles to one another and is equal to

$$\gamma_{zx} = \lim_{\delta z \to 0} \frac{\delta x}{\delta z}$$
(6-15)

By rotating the strained element in Fig. 6-5(b) counterclockwise about O', the element in Fig. 6-5(c) is obtained similar to Fig. 6-5(a). Comparing Figures (a) and (b), it is evident that $\gamma_{zx} = 2\epsilon_{zx}$, or in other words, engineers' shear strain is simply twice the pure shear strain. From Fig. 6-5(a), it can be seen that for any element of height Δz , the displacement

$$\Delta \mathbf{x} = \gamma_{z\mathbf{v}} \cdot \Delta z \tag{6-16}$$

but

 $\gamma_{zx} = 2\varepsilon_{zx} \tag{6-17}$

therefore,

 $\Delta \mathbf{x} = 2\varepsilon_{z\mathbf{x}} \cdot \Delta z$

or with

 $\varepsilon_{zx} = \varepsilon_{zx} : \Delta x = 2\varepsilon_{z} \cdot \Delta z$ (6-18)

Therefore, in order to obtain the horizontal displacements for layer of thickness Δz , Eq. 6-18 is utilized. For a layer of soil of greater thickness, such as in Fig. 6-2 for location SI-1, an infinite number of layers must be taken, and the displacement of each summed up. For example, the shear strain profile in Fig. 6-2(b) must be integrated from the bottom up in order to obtain the displacement profile shown in Fig. 6-2(c).

A similar shear strain profile and displacement profile can be constructed for the deformations due to pore pressure changes due to thaw, using the pore pressure distribution shown in Fig. 6-4(a). These ϵ_s and Δx profiles are shown in Figs. 6-4(b) and (c) to a depth of 2.0m.

The individual displacement profiles as shown in a composite plot in Fig. 6-6(a) were added together in Fig. 6-6(b) to give the combined displacement profile for the two conditions.

6.6 Discussion

The displacement profile due to the cycling pore pressures related to the water pressure in the sand layer shown in Fig. 6-2(c) indicates a similar shape as the slope indicator profiles measured in the bluefish Slope (Chapter II) and those reported by Williams (1966) as presented in Chapter III. From Fig. 6-2(c) it can also be seen that the maximum surface movements are approximately 0.45 mm as estimated for one cycle, assumed to be over a one-year period.

The displacement profile shown in Fig. 6-4(c) due to pore pressure cycles related to thaw also shows a similar shaped curve as described above, with maximum surface displacements in the order of 0.2 mm for one cycle assumed to be over a one-year period.

The displacement profile shown in Fig. 6-6(b) again represents the sum of the two sets of data indicating a similar shape as before with maximum total surface displacements for approximately 0.6 mm over a one year period.

When comparing to the slope indicator profile for installation SI-1 shown in Fig. 2-8, it can be seen that the

maximum displacement measured is 22 mm for a one year period and is thus considerably greater than the predicted maximum displacement of 0.6 mm. The discrepancies between the calculated and the measured displacements over the one-year period may be the result of deficiencies in the assumptions used for the analysis.

Firstly, only one cycle was assumed to occur within a one year time period for each of the conditions the cycling pore pressure related to the water pressure in the sand layer and the pore pressure changes due to thaw. It may be possible that more than one cycle for each condition can occur in one year.

Secondly, for the determination of pore pressures to failure an infinite slope analysis was used with flow parallel to the slope even though the actual flow direction of the porewater may be horizontal out of the slope as suggested by McRoberts and Morgenstern (1974) for thaw slope.

Thirdly, it is possible that the range of pore pressures utilized at location SI-1, related to the water pressure in the sand layer may not truly represent actual field conditions. It may be that the maximum height of water is greater than those recorded, as well, the water pressure may fall lower than the minimum value measured or assumed. This would have a significant affect on the shear strain profile, especially at the shallower depths, and subsequently on the displacement profile.

Fourthly, other mechanisms are at work which cause further displacements, such as frost-creep described by Washburn (1973). From the slope indicator profiles measured at the Bluefish Slope, it is evident that a majority of the displacements occurred between the October 1984 to June 1985 time period. It is possible that some of the displacements are a result of the slope indicator casing 'setting', however, this can only be verified by further monitoring to establish a more consistent data base for the slope movements. It was also observed during the June 1985 readings of the slope indicators at the Bluefish Slope that the casings had experienced heaving of up to 3 cm during the time interval mentioned above, which would result in a horizontal deformation of 4 mm.

Despite the discrepancies, it can be seen that the methods used to estimate the displacment profiles does produce profiles similar in shape at least to the actual field displacments.

7.1 Conclusions

The following conclusions can be drawn from this study:

- Permanent changes in volume and shape are experienced in clay samples during cyclic pore pressure changes.
- 2) Deformation rates expressed in terms of strain rates/cycles decrease initally with the number of cycles but reach approximately constant values in the range 30-80 cycles.
- 3) The constant strain rate reached in each DTTCP test is dependent on the magnitude of the cyclic pore pressure changes.
- 4) The strain rates $(\dot{\epsilon}_1, \dot{\epsilon}_3, \dot{\epsilon}_v, \text{ and } \dot{\epsilon}_s)$ increase linearly with an increase in $\Delta u / \Delta u_f$ almost up to $\Delta u / \Delta u_f = 1.0$, where Δu is the magnitude of the cyclic pore pressure changes; Δu_f is the magnitude of the pore pressures required to obtain failure.
- 5) An abrupt change of conditions from a constant rate of strain to failure is indicated at the point $\Delta u/\Delta u_f = 1.0$

- 6) Failure at low stress levels is represented by a failure line close to the theoretical no-tension line but it does indicate some cohesion (c' = 12 kPa)
- 7) Observations of a slope exhibiting shallow soil movements shows movement to a depth of approximately 2m, with no clearly defined failure zone. The absolute displacement of the upper layers is greater than that of the lower layers and the movements increase from the lower layers to the upper layers at an increasing rate.
- 8) Correlations between the laboratory test results and the field soil behavior show that the displacements pattern can be predicted from the cyclic pore pressure changes. The magnitude of displacements depends on the number of cycles, the surface zone is exposed to.
- 9) The new analysis underpredicts the downslope movements. The magnitude of the field displacements is much larger than those predicted using this analysis.

7.2 Suggestions for Further Research

The DTTCP test results show that a constant rate of strain is reached after approximately 30 cycles, and remain

unchanged until about 80 cycles. Further research is suggested for a larger range of cycles in order to find out if the strain rates remain constant. Further research is also recommended using a similar laboratory testing program in order to enlarge the data base for this type of soil testing.

The failure points in the low stress range indicated a small cohesion intercept (c' =12kpa). It is recommended to expand the testing program for low stress ranges in order to define more clearly the low-stress failure envelope.

Different soil types which may be subject to cyclic pore pressures should be investigated in a similar testing program in order to determine if the behavior in other soils is similar to the behavior found for the Bluefish clay.

The field program should be expanded in order to obtain a broader data base for shallow slope movements, over a longer time period, along with continuous measurements of the field pore pressures at these shallow depths. This is important to determine the number and magnitude of pore pressure cycles occurring throughout the year.

LIST OF REFERENCES

- Andersland, O.B. and Anderson, D.M., 1978. Geotechnical Engineering for Cold Regions. McGraw-Hill Inc., U.S.A.
- Aspler, L.G., 1984. Surficial Geology, Permafrost and Related Engineering Problems, Yellowknife, N.W.T. Internal Report, D.I.A.N.D., Geology Office, Yellowknife, N.W.T., pp. 119-135.
- Atkinson, J.H. and Bransby, P.L., 1978. The Mechanics of Soils - An Introduction to Critical State Soil Mechanics. McGraw-Hill, London.
- Berre, T., 1983. Triaxial Testing at the Norwegian Geotechnical Institute. Norwegian Geotechnical Institute Publication, Vol. 81, No. 95936, pp. 1-17.
- Bishop, A.W. and Henkel, D.J., 1962. The Measurement of Soil Properties in the Triaxial Test. Edward Arnold, London, 2nd edition.
- Bloom, A.L., 1978. Geomorphology A Systematic Analysis of Late Cenozoic Landforms. Prentice-Hall, Inc., New Jersey.
- Budynas, R.G., 1977. Advanced Strength and Applied Stress Analysis. McGraw-Hill, New York.
- Carson, M.A. and Kirkby, M.J., 1972. Hillslope Form and Process. Cambridge University Press, London, England.
- Chandler, R.J., 1972. Periglacial Mudslides in Vestspitsbergen and Their Bearing on the Origins of Fossil 'Solifluction' Shears in Low Angled Clay Slopes. Q.J Engineering Geol., Vol. 5, pp. 223-241.
- Chandler, R.J. and Pachakis, M., 1973. Long-Term Failure of a Bank on a Solifluction Sheet. Eighth International Conference on S.M.F.E., Moscow, Vol. 2.2, pp. 45-41.

Eigenbrod, K.D., 1984. Personal Communication.

- Graham, J., Pinkney, R.B., Lew, K.V. and Trainor, P.G.S., 1982. Curve-Fitting and Laboratory Data. Canadian Geotechnical Journal, Vol. 19, pp. 201-205.
- Holtz, R.D. and Kovacs, W.D., 1981. An Introduction to Geotechnical Engineering. Prentice-Hall, New Jersey.

- Hutchinson, J.N., 1974. Periglacial Solifluxion: An Approximate Mechanism for Clayey Soils. Geotechnique 24, pp. 438-443.
- Kojan, E., 1967. Mechanics and Rates of Natural Soil Creep. 5th Annual Eng. Geol. and Soils Eng. Symposium, Pocatello, Idaho, pp. 233-253.
- McRoberts, E.C. and Morgenstern, N.R., 1974. The Stability of Thawing Slopes. Canadian Geotechnical Journal, Vol. 11, No. 4, pp. 447-469.
- McRoberts, E.C. and Morgenstern, N.R. 1974. Pore Water Expulsion During Freezing. Canadian Geotechnical Journal, Vol. 12, pp. 130-138.
- Mitchell, R.J. and Eden, W.J., 1972. Measured Movements of Clay Slopes in the Ottawa Area. Canadian Journal of Earth Sciences, Vol. 9, pp. 1001-1013.
- Schofield, A.N. and Wroth, C.P., 1968. Critical State Soil Mechanics, McGraw-Hill, London.
- Skempton, A.W., and DeLory, F.A., 1957. Stability of Natural Slopes in London Clay. Forth International Conference on S.M. & F.E., London, England, Vol. 2, pp. 378-381.
- Tavenas, F. and Leroueil, S., 1981. Creep and Failure of Slopes in Clays. Canadian Geotechnical Journal, Vol. 18, pp. 106-120.
- Terzaghi, K. and Peck, R.B., 1968. Soil Mechanics in Engineering Practice. John Wiley and Sons, Inc., New York, 2nd edition.
- Terzaghi, K., 1942. Theoretical Soil Mechanics. John Wiley and Sons, New York.
- Washburn, A.L., 1973. Periglacial Processes and Environments, St. Martin's Press, New York, pp. 170-191.
- Williams, P.J., 1966. Downslope Soil Movement at a Sub-Arctic Location with Regard to Variations with Depth. Canadian Geotechnical Journal, Vol. 8, No. 4, pp. 191-203.
- Yen, B.C.Y., 1969. Stability of Slopes Undergoing Creep Deformation. Journal of the Soil Mech. and Foundations Div., Proc. of ASCE, pp. 1075-1096.

													only													ſ
SOIL DESCRIPTION		C1U-2	CL - CLAY	CIU-1 CL - CLAY	CL - CLAY			- ML - SILT			C10-4 CT - CTAY	CIU-4 limits on clay fraction			35% Illite,18% Chlorite,	20% Kaolinite,tr.Smectite						•				
	GRAV	%														tr.										
SIZE BUTION	SAND	%														2	1									
GRAIN	SILT	%														23	29									
_	CLAY	%											-			75	70									
S	d	96	11	14	14	11			7			14	14			18										
LIMIT	dM	%	22	21	20	18			20		N/P	18	21			25										
A		36	33	35	34	29			27		22	32	35			43										
BULK	DENS.	Mq/m	2.02		2.03																					
MOIST.	CUNI.	*		19	24	27	27		27	20	26	27				32	32	31	31	30	32.	32	31	31	32	
DEPTH		metres	1.3 - 1.6	1.3 - 1.6	1.3 - 1.6	1.85	1.85	2.0	1.5 - 1.8	1.5 - 1.8	1.8 - 2.0	1.85	1.85	1.8 - 2.0	2.4	1.8										
BOREHOLE	NUMBER		STP-2						S - 2					P-2		PIT 1										

:

TABLE 4-1 SUMMARY OF STANDARD SOIL TESTS

TABLE 5-1 SUMMARY OF DTTCP TESTS

-

TEST	^d lc (kPa)	σ ₃ c (kPa)	k cons	q (kPa)	p' (kPa)	Δu (kPa)	^{Δu} f (kPa)	∆u/∆uf	Ê ₁ (cycle ⁻¹)	^č 3 (cycle ⁻¹)	ڈر (cycle ⁻¹)	ės (cycle ⁻¹)
B-2*	48.0	28.6	0,60	19.4	35.1	15.0	28.6	0.52	0.5×10 ⁻⁵	-8.04×10 ⁻⁵	-15.83×10 ⁻⁵	5.69×10 ⁻⁵
B-3	48.0	28.6	0.60	19.4	35.1	18.7	30.6.	0.61	1.09×10 ⁻⁵	-3.57×10 ⁻⁵	-6.70×10 ⁻⁵	3.11×10 ⁻⁵
B-4	48.0	28.6	0.60	19.4	35.1	22.9	31.7	0.72	1.48×10 ⁻⁵	-0.86×10 ⁻⁵	-0.0	1.56×10 ⁻⁵
B-5	38.2	10.1	0.26	28.1	19.5	10.1	10.8	46.0	1.77×10 ⁻⁵	-7.27×10 ⁻⁵	-9.84×10 ⁻⁵	6.03×10 ⁻⁵
B-6	62.0	20.7	0.33	41.3	34.5	10.5	20.3	0.52	0.70×10 ⁻⁵	-3.80×10 ⁻⁵	-5.10×10 ⁻⁵	3.00×10 ⁻⁵
B-7	52.2	26.0	0.50	26.2	34.7	16.7	28.0	0.60	1.00×10 ⁻⁵	-4.44×10 ⁻⁵	-7.40×10 ⁻⁵	3.63×10 ⁻⁵
B-8	59.2	16.8	0.28	42.4	30.9	16.7	17.0	0.98	ı	150000	ı	ı
B-9	30.4	18.3	0.60	12.1	22.3	16.7	22.7	0.74	0.49×10 ⁻⁵	-3.33×10 ⁻⁵	-4.90×10 ⁻⁵	2.55×10 ⁻⁵
B-10	44.9	18.0	0,40	26.9	27.0	5.8	19.6	0.31	0.80×10 ⁻⁵	-1.40×10 ⁻⁵	-2.50×10 ⁻⁵	1.45×10 ⁻⁵
8-11	34.5	14.5	0.42	20.0	21.2	5.8	16.7	0.35	1.30×10 ⁻⁵	-2.69×10 ⁻⁵	-4.50×10 ⁻⁵	2.66×10 ⁻⁵
B-12	59.6	35.0	0.58	24.6	43.2	33.0	36.8	06.0	3.30×10 ⁻⁵	-6.20×10 ⁻⁵	-10.0×10 ⁻⁵	6.33×10 ⁻⁵
*	note:	Test B- are subs	2 was a sequent1	prelimin y not u:	nary tes sed	t and t	these re	sults				

TEST NO.	^{σl} f (kPa)	σ _{3f} (kPa)	^u f (kPa)	^{p'} f (kPa)	q'f (kPa)	^{∆v} f (cm ³)	V f
B-2		-	_	-	-	-	-
B-3	288.1	269.1	270.9	4.5	19.0	2.7	1.842
B-4	287.1	269.1	271.7	3.4	18.0	4.0	1.928
B-5	277.6	251.4	251.4	8.7	26.2	1.9	1.878
B - 6	301.6	261.7	260.8	14.2	39.9	2.0	1.883
B-7	299.2	276.0	277.0	6.7	23.2	3.0	1.887
B-8	297.2	255.8	255.7	13.9	41.4	1.1	1.840
B-9	269.1	257.3	261.6	-0.4	11.8	1.9	1.850
B-10	284.2	257.5	258.0	8.4	26.7	1.1	1.850
B-11	273.6	254.0	256.0	4.5	19.6	1.45	1.877
B-12	298.1	275.0	276.3	6.4	23.1	3.10	1.899

TABLE 5-2 CONDITIONS AT FAILURE FOR DTTCP TESTS

FIG.2-1 SITE LOCATION

SILTY CLAY SAND AND GRAVEL

SECTION C-C

FIG. 2-4 SECTION C-C FOR BLUEFISH SLOPE

FIG. 2-5 HEIGHT OF WATER ABOVE STANDPIPE TIPS VERSUS TIME OF YEAR

∆ru

FIG. 2-7 PORE PRESSURE VARIATION VERSUS DEPTH FOR BLUEFISH SLOPE

DEPTH (m)

FIG. 2-8 SLOPE INDICATOR READINGS FOR SI-1

FIG. 2-8 (cont'd) SLOPE INDICATOR READINGS FOR SI-1

FIG. 2-9 SLOPE INDICATOR READINGS FOR SI-2

FIG. 2-10 SLOPE INDICATOR READINGS FOR SI-3

FIG. 2-11 SLOPE INDICATOR READINS FOR SI-4

FIG. 2-13 GROUND TEMPERATURE EXTREMES FOR TH-2

. . .

(a) Case 1: seepage slope. On plane A-A, pore pressure $= \gamma_w d \cos \theta$, total stress $= \gamma d \cos \theta$, effective stress $= (\gamma - \gamma_w) d \cos \theta = \gamma' d \cos \theta$, $F_s = (\gamma' \tan \phi')/(\gamma \tan \theta)$.

(b)

(b) Case 2: thaw slope. On plane A-A, pore pressure = $\gamma_w d \cos \theta + y' d \cos \theta [1/(1 + 1/2R^2)]$ effective stress = $\gamma d \cos \theta - \gamma_w d \cos \theta - \gamma' d \cos \theta [1]/(1 + 1/2R^2)]$,

$$F_s = \frac{\gamma'}{\gamma} \left(1 - \frac{1}{1 + 1/2R^2} \right) \frac{\tan \phi'}{\tan \theta} \quad \text{where } R = \frac{a}{2(c_r)^{1/2}}$$

(After McRoberts and Morgenstern, 1974a.)

FIG. 2-15 INFINITE SLOPE ANALYSES

SITE 1

(Williams 1966)

SITE 3

SITE 2

FIG. 3-1 LAYOUT OF TUBES AT SITE 1, AND SLOPE PROFILES FOR SITES 1,2 and 3

DISPLACEMENT (cm)

(Williams 1966)

FIG. 3-6 SCHEMATIC OF COMBINATION OF FROST CREEP AND GELIFLUCTION MECHANISM (Washburn 1973)

FIG. 3-7 PORE PRESSURE READINGS IN A THAWING SLOPE (McRoberts and Morgenstern 1974)

FIG. 3-9 PIEZOMETER READINGS PLOTTED AGAINST TIME FOR LOCATION 2 (Chandler 1972)

FIG. 4-3 COMPRESSION TEST RESULTS

FIG. 4-5 ONE-DIMENSIONAL CONSOLIDATION CURVE

C1U-4 (k^pa) 300 с C I U-1 CIU-2 CIU-3 AXIAL STRAIN , (e₁) (kPa) •CIU-4 J -**°** C1U-2 -50 • c1U-1 -100

FIG. 4-6 CIU TEST RESULTS - q vs ε_1

FIG. 4-7 CIU TEST RESULTS - mg vs. p'

FIG. 4-8 CIU TEST RESULTS - q vs. p' - LOW STRESS RANGE

FIG. 4-9 SCHEMETIC OF DEFINITION FOR $\Delta u / \Delta u_f$

FIG. 5-1 TYPICAL CONSOLIDATION CURVES FROM DTTCP TEST

(mmS00.0 ×) DNIQA3A 30UAD JAIG

FIG. 5-3 TYPICAL DTTCP TEST RESULT - ϵ_1 and ϵ_v vs. cycle number

FIG. 5-4 COMPOSITE PLOT OF $\epsilon_{\rm l}$ vs. CYCLE NUMBER FOR ALL DTTCP TESTS

FIG. 5-7 BEHAVIOR OF SAMPLE B-8 DURING CYCLING AND FAILURE

FIG. 5-9 COMPOSITE PLOT OF DTTCP TEST IN q,V,p' STRESS SPACE

FIG. 5-10 TYPICAL STRESS PATH FOLLOWED IN DTTCP TEST

FIG. 5-12 &1 vs. Au/Auf FOR DITCP TESTS

FIG. 5-13 & s. Au/Au_f FOR DTTCP TESTS

FIG. 5-14 e. vs. Δu/Δuf FOR DTTCP TESTS

PORE PRESSURE VARIATION; SHEAR STRAIN AND DISPLACEMENT PROFILES FOR LOCATION SI-1 DUE TO GROUNDWATER FLUCTUATIONS

FIG 6-3 RECORDED PORE PRESSURES IN THAWING SLOPES

PORE PRESSURE VARIATION , SHEAR STRAIN AND DISPLACEMENT PROFILES FOR LOCATION SI-1 DUE TO THAWING FIG 6-4

(c)

FIG 6-5 RELATIONSHIP BETWEEN PURE SHEAR STRAIN AND ENGINEERS' SHEAR STRAIN

APPENDIX A - ADDITIONAL NOTES

REGARDING LABORATORY TESTING PROCEDURES

Table of Contents

A.1	Sample Preparation
	A.l.l Sample Trimming and Handling 142
	A.1.2 Sample Set-Up
A.2	Load Application
A.3	Calibration Procedure for the Pressure and
	Displacement Transducers
A.4	Failure Criteria for CIU Tests
A.5	Method for Determining σ_{vc}
A.6	Method for Calculating the Change in Sample
	Diameter
A.7	DTTCP Stress Paths
A.8	Strain Rate versus ∆u/∆u _f using ∆u _f as the Pore
	Pressure Change Required to Produce Failure on the
	Theoretical No-Tension Line
A.9	Identification of Soil Minerals by X-Ray
	Diffraction

Page

A.1 Sample Preparation

A.1.1 Sample Trimming and Handling

A 2" x 2" x 6" piece of clay was cut from the block sample obtained at the 1.8m depth from TPl and placed into a trimming frame between two end platens which rotated as well as held the sample in place. With a wire saw, thin slices were cut off the sample while the sample was rotated, until the final diameter of 1.4" (3.6 cm) was reached.

Care had to be taken when rotating the sample as well as during trimming. When rotating the sample, both the top platen as well as the bottom platen had to be turned at the same time to prevent any twisting of the sample. An alternate method would be to use a frame which rotated while the sample remained stationary. When lowering the top platen onto the sample care also had to be taken so no excess pressure would be exerted which would consolidate the sample or disturb it.

When trimming, the wire saw was run in an upward direction (bottom towards top) while being moved back and forth in a sawing motion. This had to be done slowly, otherwise, because of the fissured structure, the clay would tear off and leave an uneven surface with pits and holes in it. The trimming was done in an upward motion to prevent consolidation of the sample. However, in order to prevent upward tearing and distortion, the sample was held gently with two fingers immediately over the area being trimmed. This provided a force equal to that created by the saw and prevented further disturbance.

Because of the care which had to be taken during the trimming process, the total trimming time ranged from one-half to one hr. No surface, though, was exposed longer than 10 minutes, since thin slices were removed as the sample was rotated.

Once trimmed to an even diameter, the sample was removed from the trimming frame and the ends were trimmed off to provide a sample length of approximately 3". The sample was then wrapped in plastic foil and stored in a moist room till needed for the testing program.

A.1.2 Sample Set-Up

Initially, the cell pedestal and attached valves were deaired by flushing water through the lines by means of burettes attached to the pedestal drainage leads (L&M on Fig. 4-9). Water was flushed through the pedestal until no more air was detected (evidenced by bubbles). A saturated porous stone disc was then slid on to the pedestal after which filter paper was placed on the porous stone to protect the porous disc from fines of the soil sample. The sample was weighed and measured for its length and diameter then placed on the pedestal. A thin coat of silicone grease was applied to the sides of the pedestal and the load cap (subsequently placed on the top of the sample) to reduce the possibility of leaks. Water saturated filter paper drains were carefully placed in position around the specimen, ensuring overlapping of the porous disc to provide adequate drainage. A thin rubber membrane was placed over the sample using a membrane stretcher, and the lower section sealed against the pedestal using one o-ring.

The space between the sample and the membrane was deaired by raising the wash burette (on Fig. 4-9), creating a small hydrostatic head sufficient for the water to flow upwards in this space. A small, plastic coated wire was inserted between the membrane and the top cap in order to allow the water and air to escape while the sample was gently stroked with an upward motion.

A layer of silicone oil was then applied to the outside of the first membrane, and again using the membrane stretcher, a second membrane was placed to reduce the possibility of leaks during the long duration of the tests.

The second membrane was sealed at both the base and top with 2 o-rings each.

A thin coat of silicone grease was applied to the cell base before the cell top was fitted to the base and screwed down. Water was then placed into the cell until nearly full. In order to reduce leakage along the load piston, a layer of oil (about 10mm) was poured into the cell from the top. The loading ram, with displacement transducer and dial gauge already attached, was then slowly lowered until it just made contact with the sample. After the loading ram was locked in place, filling of the cell was continued until no more air was evident.

Subsequently, the drainage lead to the wash burette was sealed off and the level in the back pressure burette was set at midheight of the sample (during calibration the water level in both the cell and the back-pressure burette was set at this height and these readings taken as the 'zero' readings). The back pressure was then hooked up to the air supply line, and the hanger placed on the piston with the correct amount of weight applied. The hanger which was used to apply constant axial loads was allowed to hang freely and was protected against disturbances. The weights were added to the hanger while the piston was supported by an arm to prevent any uncontrolled load applications. With the valves to the cell base in the off position, both the cell and back pressures were applied.

The test specimen was then ready for the first stage of testing which was the anisotropic consolidation.

A.2 Load Application

During the anisotropic consolidation of the samples, the water level in the back pressure burette (for volume changes) was recorded manually whereas, the height of the sample was recorded manually using a dial gauge as well as automatically using a displacement transducer connected to the data acquisition centre. Two tests were run simultaneously, both utilizing the same backpressure line and subsequently the same pore pressure variations.

At the beginning of the consolidation stage, initially, it was difficult to apply all three stresses simultaneously; σ_3 , σ_1 and back pressure. Originally, when the piston and weight were not supported by an arm, a second person was required to add the weights onto the hanger while the pore pressure and the cell pressure were applied. This method was found to be awkward and unsatisfactory because when the cell pressure was added, the piston was forced upwards and lost contact with the sample. Subsequently, when the weights were added, the piston was forced back into contact with the sample, sometimes causing a slight jolt to the sample.

This method was modified during the early stages of the test series: the piston, and hanger with weights applied, were supported by an arm with the piston just making contact with the sample. At the start of the test the cell pressure was applied shortly before the back pressure, and immediately after, the arm supporting the axial load was released and slowly lowered, thus transferring the weight onto the sample. This procedure had the additional advantage that only one person was required to perform it. The two tests could not be initiated exactly at the same time but had to be started about one hour after each other. The cycling of the pore pressure however, occurred simultaneously.

A.3 Calibration Procedure

The final calibrations for both the cell and pore pressure transducer was accomplished by filling the triaxial cell with water to approximately mid-height sample depth. Pressure lines from an air pressure source were connected to the top of the triaxial cell as well as to one end of a mercury monometer (Fig.A-1). Air pressure was applied in

steps of 5 psi and the voltage readings from the pressure transducers was recorded, by opening values A and B while keeping valves C and D closed, along with the corresponding height difference in the mercury monometer. This gave a relationship between pressure as determined by the height of mercury, and voltage output for each transducer which was subsequently used in the data logger. This calibration, however, had to be completed twice for each test, because the transducers had a tendency to 'drift' during the testing. In order to determine the exact pressures at failure, the calibration was performed immediately after the sample was brought to failure. From this calibration, it was possible to determine the condition at failure by back calculations using the previous calibration to determine the voltage output, then inputing this voltage reading into the new calibration to obtain the correct pressure reading. The transducer used for the second cell drifted considerably and was subsequently not used in the latter tests. The cell pressure was determined using the pore pressure transducer which was connected to the same cell. Once this pressure was set, the line was switched back to the cell access valve.

The displacement transducer was calibrated using a triaxial loading frame and a dial gauge connected to the transducer. The platform of the loading frame was raised

manually, with the known displacement measured off the dial gauge. The corresponding voltage output was recorded for each movement and a calibration formula was determined from this. The displacement transducers were found not to drift at all but remained stable throughout the testing program.

A.4 Failure Criteria for CIU Tests

The criteria for selecting the failure points for the CIU Tests were based on the condition for overconsolidated clays that the stress path, when plotted in q-p' stress space, will approach the Hvorslev surface and then proceed along the surface until critical state is reached. Atkinson and Bransby (1978) state that "...there is the possibility that failure of a triaxial sample occurs prematurely, probably soon after the sample reaches the Hvorslev surface...". This is considered to be the result of inhomogeneities within the sample.

Using this, all the values for the failure conditions were obtained by approximating when the stress path of each of the tests intercepted the Hvorslev surface, or when the stress path at least continued at a slope approximately parallel to the surface. A summary of these values are presented in Table A-1 for each test and the individual test data are presented in Appendix C.

TEST	CIU-1	C1U-2	CIU-3	C1U-4
σ' (kPa) 1c	15	27	40	300
σ' (kPa) 3c	15	27	40	300
ε _f (%)	4.53	5.84	4.22	5.05
σ¦ (kPa)	121.5	153.0	162.0	676.8
σ¦ (kPa) 3f	29.0	30.0	38.0	198.0
q _f (kPa)	92.5	123.0	124.0	478.8
p¦ (kPa)	59.0	71.0	79.3	357.6
u _f (kPa)	196.0	204.0	201.0	302.0
A _f	-0.15	-0.02	0.01	0.19

TABLE A-1 SUMMARY OF FAILURE CONDITIONS FOR CIU TESTS

Method for Determining o've

A.5

The value for the preconsolidation pressure cannot be easily determined, since due to the lack of clarity in the curvature, the Casagrande method cannot be applied. According to Graham, Pinkney, Lew and Trianor (1981) "Unthinking application of the Casagrande construction can apparently produce values for σ' even though the samples do not yield in the sense that the compressibility increases at some identifiable limit stress." It was further stated that "...care should be taken that the plotting technique does not imply behavior that is absent from the original data." For this reason, results from both consolidation tests were plotted on an arithmetic scale, in a ln scale for σ'_v and in a ln scale for p'. The values for p' for the onedimensional consolidation were determined by estimating K using the correlation $K_0 = 1 - \sin \phi'$. From the $V - \ln \sigma'_V$ diagram, σ'_{vc} was estimated to be between $\ln \sigma'_{v}$ = 5.25 to 5.50, resulting in a $\sigma'_{\rm VC}$ = 190 kPa to 245 kPa. This selection was also based on observations on the effect of sample disturbance presented in Holtz and Kovacs (1981).

A.6 Method for Calculating the Change in Sample Diameter

The method used for calculating the change in diameter is shown below, with the assumption that the sample diameter changes are uniform throughout the length of the sample.

Starting with the formula for volume of a cylinder,

$$V = \frac{\pi D^2}{4} \times H$$

any increase in both diameter and height will reflect an increase in volume.

Therefore

$$\nabla + \Delta \nabla = \pi (D + \Delta D)^{2} (H + \Delta H) / 4$$
(1)

rearranging,

$$\Delta D = 2 \sqrt{\frac{V + \Delta V}{(H + \Delta H)\pi}} - D$$
(2)

This is for a cylinder increasing in size. In soil mechanics, it is common to assign compression values as positive, therefore, Eq. 2 changes to

$$\Delta D = D - 2 \sqrt{\frac{V + \Delta V}{(H + \Delta H) \pi}}$$
(3)

in which a positive value of D denotes a reduction in sample diamter.

A.7 DTTCP Stress Paths

The stress paths presented on the following pages were obtained using the stress conditions from each test as well as the average initial moisture content calculated for the block sample and the samples' actual unit weight. Using the relationship

$$\frac{\gamma}{\gamma_w} = (1 - \frac{1}{v}) (\frac{1}{w} + 1)$$

where γ = unit weight of the soil

 γ_W = unit weight of water (9.81 kN/m³) V = specific volume (V = 1 + e) w = water content (31%)

the value for V was obtained for the sample prior to consolidation. From the volume readings taken during the consolidation and DTTCP testing, and the stress conditions on the sample, it was possible to calculate the samples' position in q-p'-V space at any time during the testing. For the plots on the following pages, q, p' and V were determined for the first and the last cycles as well as for the condition just prior to failure.

FIG. A-2 DTTCP STRESS PATHS

FIG. A-2 (con't) DTTCP STRESS PATHS

FIG. A-2 (con't) DTTCP STRESS PATHS

A.8 Strain Rates versus $\Delta u / \Delta u_f$ using Δu_f as Pore Pressure Change Required to Produce Failure on the Theoretical No-Tension Line.

This section presents the individual plots of $\dot{\epsilon}_1$, $\dot{\epsilon}_3$, $\dot{\epsilon}_s$ and $\dot{\epsilon}_v$ versus $\Delta u/\Delta u_f$ in which the ratio $\Delta u/\Delta u_f$ represents the change in pore pressure, Δu , as a fraction of the total pore pressure required to produce failure at the theoretical failure line, at the respective stress level q_o (see Fig. A-3. The total pore pressure required to produce failure is expressed as the difference between p'cons and p'nt where p'cons is the octahedral stress at which the sample was consolidate to and p'nt is the octahedral stress at the no tension line which corresponds to the stress level q_o . Table A-2 presents the summary of all the DTTCP tests using this ratio and the following figures show the composite plot of ϵ_1 versus cycle number as well as the respective plots of $\dot{\epsilon}_1$, $\dot{\epsilon}_3$, $\dot{\epsilon}_s$ and $\dot{\epsilon}_v$ versus $\Delta u/\Delta u_f$.

TABLE A-2 SUMMARY OF DTTCP TESTS

6.33×10 ⁻⁵	-10.0×10 ⁻⁵	-6.20×10 ⁻⁵	3.30×10 ⁻⁵	46.0	35.0	33.0	43.2	24.6	0.58	35.0	59.6	B-12
2.66×10 ⁻⁵	-4.50×10 ⁻⁵	-2.69×10 ⁻⁵	1.30×10 ⁻⁵	0,40	14.5	5.8	21.2	20.0	0.42	14.5	34.5	B-11
1.45×10 ⁻⁵	-2.50×10 ⁻⁵	-1.40×10 ⁻⁵	0.80×10 ⁻⁵	0.32	18.0	5.8	27.0	26.9	0,40	18.0	44.9	B-10
2.55×10 ⁻⁵	-4.90×10 ⁻⁵	-3.33×10 ⁻⁵	0.49×10 ⁻⁵	0.91	18.3	16.7	22.3	12.1	0.60	18.3	30.4	B-9
1	ŧ	150000	ł	1.00	16.8	16.7	30.9	42.4	0.28	16.8	59.2	B-8
3.63×10 ⁻⁵	-7.40×10 ⁻⁵	-4.44×10 ⁻⁵	1.00×10 ⁻⁵	0.64	26.0	16.7	34.7	26.2	0.50	26.0	52.2	B-7
3.00×10 ⁻⁵	-5.10×10 ⁻⁵	-3.80×10 ⁻⁵	0.70×10 ⁻⁵	0.51	20.7	10.5	34.5	41.3	0.33	20.7	62.0	B-6
6.03×10 ⁻⁵	-9.84×10 ⁻⁵	-7.27×10 ⁻⁵	1.77×10 ⁻⁵	1.00	10.13	10.1	19.5	28.1	0.26	10.1	38.2	B-5
1.56×10 ⁻⁵	-0.0	-0.86×10 ⁻⁵	1.48×10 ⁻⁵	0.80	28.6	22.9	35.1	19.4	0.60	28.6	48.0	B-4
3.11×10 ⁻⁵	-6.70×10 ⁻⁵	-3.57×10 ⁻⁵	1.09×10 ⁻⁵	0.65	28.6	18.7	35.1	19.4	0.60	28.6	48.0	B-3
5.69×10 ⁻⁵	-15.83×10 ⁻⁵	-8.04×10 ⁻⁵	0.5×10 ⁻⁵	0.52	28.6	15.0	35.1	19.4	0.60	28.6	48.0	B- 2
ės (cycle ⁻¹)	ڈر (cycle ⁻¹)	[£] 3 (cycle ⁻¹)	ë ₁ (cycle ⁻¹)	Δυ/Δυ _f	Δu _f (kPa)	Au (kPa)	p' (kPa)	q (kPa)	k cons	^{d 3} c (kPa)	^ơ 1 _c (kPa)	TEST

FIG. A-3 DEFINITION OF $\Delta u / \Delta u_f$

161

. . . .

FIG. A-5 ė₁ vs. ∆u/∆u_f

A.9 IDENTIFICATION OF SOIL MINERALS BY X-RAY DIFFRACTION

OBJECT: To identify the minerals present in samples of soil by using X-ray diffraction techniques.

<u>THEORY</u>: Most soils consist primarily of fragments of mineral matter which are highly crystalline in nature. Crystals have orderly arrangements of atoms in their structure. Because of the orderly arrangement of the atoms, the atoms in a crystal can be considered to lie in families of planes having interplanar spacing of 'd'. These planes are responsible for the diffraction of X-rays when a ray strikes a plane at an incident angle θ . The ray will leave the plane (be diffracted) in a manner similar to light rays reflected from a mirror, at an angle equal to the incident angle.

Other X-rays will penetrate into deeper planes of the same family, and also be diffracted. The intensity of all the diffracted rays will be a maximum, when the diffracted rays are all in phase. When this happens, the interplanar spacing 'd' of that family of planes can be determined from Bragg's law:

$$d = \frac{\lambda}{2 \sin \theta}$$

where: λ is the wave length of the particular X-ray used. (For a copper target X-ray tube $\lambda = 1.54050$ Å)

By rotating a crystal in a goniometer, so that the incident and diffracted angles are varied, it is possible to get several 'd' distances for a given mineral. The 'd' distances so obtained and the corresponding relative intensities of the diffracted rays constitute a unique "fingerprint" by which the mineral can be identified.

Bragg's law applies to single crystals and to powders of crystals. A fine powder with particles in statistical random orientation, contains sufficient particles in any given orientation to produce the diffraction intensities corresponding to given 'd' distances.

When a powder contains more than one mineral, the families of 'd' distances and relative intensities are superimposed. They can, however, be separated by inspection using a simple trial and error procedure, and the various minerals identified.

With clay minerals, different treatments of the powder, are required to distinguish between clays having similar 'd' distances and intensities. These treatments include:

- (1) Using specimens where the particles are oriented by sedimentation on a glass slide.
- (2) Using heat treatment of oriented samples on glass slides, to cause identifying changes in 'd' distances.

* taken from the University of Manitoba laboratory manual.

(3) Using organic solvents, e.g. ethelene glycol to cause identifying changes in 'd' distances.

SAMPLE PREPARATION: About 50 gm of air-dried sample are crushed to a fine powder using an agate mortar and pestel. Samples should not be oven-dried as heating can cause mineral changes.

PREPARING A POWDER MOUNT:

- (1) Take a powder mount holder and cover the back of the windows with cellulose (Scotch) tape, so as to form a container. (The back side is without the center notch).
- (2) Fill the container, open side up, with the powder sample, and strikeoff the excess powder with a straight edge. Clean-off any excess powder that may be around the edge of the window.
- (3) Place the flat face of a glass slide over the open window containing the powder. With fingers, gently squeeze the sample between the cellulose tape and glass slide so as to press the powder against the glass slide. This will smooth the top surface of the powder. Gently slide the glass slide off the container. Again clean off any excess powder that may be around the window.
- (4) The powder mount is now ready for placing in the goniometer. The center notch (on the top side) goes in first. Press the sample holder so as to open the spring retaining clips. Push the holder in sufficiently to hold the powder mount but not to cover the window.

PREPARING AN ORIENTED (GLASS SLIDE) MOUNT:

- (1) Standard microscope glass slides, 25 x 75 mm, are scored with a glass cutter and cut into two equal lengths. The halves are then wiped clean with cleaning tissue moistened in alcohol. (The alcohol removes any grease which could later interfere with the sample sticking to the slide).
- (2) Prepare a thin slurry of the ground-up soil by adding distilled water to the sample ground-up in the agate mortar. (The slurry should be thin enough so that clay particles can sediment and orient flat side onto the glass, when the slurry is applied onto a glass slide). Mix the soil and water with a spatula until the slurry is smooth and free of any lumps.
- (3) Immediately after mixing the slurry, place some slurry on a prepared glass slide to form a dab about 5 mm by 10 mm, centered on the slide. Repeat the procedure on three more glass slides to make a total of 4 slides. Keep the slides horizontal.
- (4) Allow the slurry to dry. Drying may be hastened by gentle heat by shining an electric lamp on the sample, or alternatively by placing it in a vacuum oven at a setting of about 40°C. While drying, care should be taken to prevent dust, etc. from falling on the sample.

(5) Once dry, the oriented (glass slide) mount is ready for placing in the goniometer, or for further treatment. The glass slide, with dried slurry side up is inserted into the goniometer. Press the glass slide so that the edge pushes open the spring retaining clips of the goniometer. Push the glass slide in sufficiently to hold the slide, but not to cover the dried dab of slurry.

TREATMENT OF ORIENTED MOUNTS:

(a) <u>Glycolation</u>

Take one of the oriented mounts that has been dried. Place a drop at a time, of ethelene glycol on the glass slide along the perimeter of the dab of dried soil. As the glycol is adsorbed by the dab, add more glycol until no further adsorption takes place. Keep the sample in a covered dish for 1 hour. It is then ready to be inserted in the goniometer.

(b) Heat Treatment

- 1. Place the oriented mount, with soil dab up, onto an oven tray, and insert into heat treatment oven.
- Heat the oriented mount in oven at required temperature (325°C) for at least one hour.
- 3. Remove tray with mount from oven, and place in covered desiccator to cool.
- 4. Once cool, the oriented mount is ready for insertion in the goniometer.
- 5. Repeat with a second oriented mount. Use an increased temperature of 550°C. (It is possible to re-use the oriented mount previously heated to 300°C after that mount has been scanned in the goniometer).

OPERATING THE GONIOMETER;

The following instructions are for a Philips PW1096/10 Goniometer attached to a Philips PW1011/80 X-ray Generator. It is assumed that the X-ray equipment has been set with the goniometer ready to operate. It is also assumed that an X-ray tube with a copper target is being used in conjunction with a Flow Counter detector. Reference should be made to the equipment manual to confirm the above before commencing. If changes are necessary follow manual procedures carefully or ask for assistance.

- 1. Make sure the goniometer is attached to X-ray, Port l.Rotate the filter selector over Port 1 so that the Ni. filter covers the port. Check that Ports 2,3 and 4 are closed.
- 2. Turn on water supply. Valve is on wall.

- 3. Switch wall mounted electric main switch to ON.
- 4. On generator front panel, turn rotary switches marked volts and amps to lowest position. Press ON switch and allow 10 to 15 minutes warmup time. Proceed with following steps while warm-up is taking place.
- Check that the appropriate slits are inserted in the goniometer. For 5. routine testing, a 1° divergence slit, a 0.2° receiving slit and 1° scatter slit, may be used. Goniometer switches should initially be set at:

Step scan - off Line - off Limit - OSC. (Oscillate) Clutch - disengaged (to right) Initial $2\theta - 3^{\circ}$

Select appropriate goniometer gears for controlling 20 scanning rate. 6. A satisfactory speed for 20 is 1° per min for routine work. See table on goniometer for gears to be used.

Check recorder. Initially the chart motor should be disengaged. Check that there is sufficient paper on roll. (Place new roll if required. See equipment manual for instructions). Similarly check ink supply for two recording pens. Suitable settings on the recording equipment are as follows. Asterisks indicate settings which may require resetting. The other settings are normally not altered.

- PW1375 High Voltage Supply (a) ∿ – 0n Flow counters - 1700, and 70
- (b) PW4237 Counter Timer ∿ - 0n Present count - $1 \times \infty$ Present time - 1 x ∞ Start - Ext. Operate - Up

(c) PW1362 Ratemeter

* Range - select suitable range to maintain chart peats on graph - 4×10^2 cps usually satisfactory for oriented slides

 -2×10^3 cps may be required for powder mounts *Time constant - 4 sec usually satisfactory for scan speed 1° of 2θ per min Goniometer supply - ON. Aut. Mains switch - inc. gen.

- FLC

(d) PW4280 Amplifier/Analyser Attenuation -z = 3Lower level -0.50Window - 1.30 x Thr.

Switch to

169

7.

- 8. Remove cover plate from goniometer sample holder. Insert sample. Make sure sample is centered and soil not covered by holder. Replace cover plate. (Note safety switch which will turn off X-ray if cover plate removed during a test. X-rays used for diffraction work are dangerous, and no part of the body should be exposed to the radiation).
- 9. By this time the warm-up of X-ray Generator should be completed. Voltage should read 20 KV. First turn voltage slowly to 40 KV. Then turn Amps slowly to 20 ma. (Note at no time should voltage x amps be permitted to exceed 1000). Turn AB switch for Port 1, to ∿ and KV to 1. Press Port 1 button.
- 10. Switch Goniometer Line to ON.
- 11. Simultaneously engage goniometer drive clutch and chart drive. A suitable chart speed is 300 mm/hr, when a 2θ scan of 1°/min is used. Mark starting angle on the chart.
- 12. Allow goniometer to turn through required 20 angle. For the powder mount use a 20 range from 3° to 63°. For the oriented mounts, the changes caused by glycolation and heat treatments can be observed in the range of 20 3° to 21°.
- 13. When the goniometer has turned through the angles noted in Step 12, turn Port 1, AB switch to OFF. Disengage goniometer drive clutch, turn chart drive OFF. Sample may then be removed.
- 14. Manually rotate goniometer crank to initial $2\theta = 3^{\circ}$. At this time another sample may be inserted in the goniometer and steps 11 to 14 inclusive repeated for as many times as there are samples. Between samples, the paper in the chart may be manually advanced to give some space between diffractograms. If testing is complete, proceed to step 15 to turn equipment off.
- 15. First turn Amps to lowest setting. Then turn Volts to lowest setting. Wait at least 10 sec. before pressing red OFF button.
- Switch wall switch to OFF. Turn off water.

<u>NOTE</u>: During the operation of the X-ray equipment, the power may automatically trip off. This may be caused by:

(a) The goniometer reaching the high or low limits. Should this happen, the goniometer will operate in reverse direction when the equipment is next turned on.

- (b) A safety switch has been tripped. Switches on the X-ray ports will turn the equipment off if for example the cover is removed from the sample holder, or the door is opened to the high voltage supply during operation.
- (c) The water pressure drops.

If the power automatically trips off, check to determine the cause. If this can be corrected, recommence at Step 4. If the equipment automatically trips off again, follow steps 15 and 16. Notify the technician.

ANALYSIS

- A. The following analysis is made on the diffractogram of the power mount or oriented slide scanning the range $2\theta = 3^{\circ}$ to 62° .
 - 1. Mark the 2θ angle opposite each peak obtained on the chart. Convert the angle to 'd' spacing using Bragg's Law, and record these opposite each peak. Conversion tables may be used or computations made with a calculator.
 - 2. Examine the peaks for quartz. Often 6 of the 10 or more prominent peaks are visible. When less than 10% quartz is present, only 2 peak may show at 4.26Å and 3.343Å. This peak is an excellent one to check the calibration of the 2θ angles. Mark the quartz peaks.
 - 3. Examine and mark the peaks for other more common non-clay minerals including: feldspar; amphibole 8.4Å and 3.12Å; pyroxene 2.9Å, 2.94Å, and 1.62Å; calcite 3.03Å; dolomite 2.89Å; and gypsum 7.56Å. To verify the pressure of these minerals two or more secondary peaks should also be checked. Refer to Table I, or diffraction tables edited by Brown (1972).
 - 4. The remaining peaks may be checked using Table I and mineral present confirmed by reference to diffraction tables.
- B. Identification of the clay minerals requires comparison of diffractograms of the treated and non-treated specimens.

The following analysis is made by comparing treated and non-treated oriented mounts, and powder mounts.

- If the untreated oriented mount shows increased 14Å, 10Å or 7Å peaks (relative to quartz peaks) when compared to the powder mount, the effect is due to the orientation of clay particles.
- 2. A 15Å peak that shifts to 17Å on glycolation, and collapses to 9Å on heating to 300°C indicates smeatite (montmorillonite group).
- 3. A 14Å peak that does not change on glycolation, and becomes slightly to noticeably more intense on heating to 550°C indicates chlorite.

- A 14Å peak that is unaffected by glycolation, and dehydrates in steps when heated indicates vermiculite. Further heat treatment (1 hour at 700°C) causes collapse of the 14Å peak to broad 9Å peak.
- 5. A 10Å peak that does not change on glycolation, and becomes more intense on heating indicates illite. Mica reacts similarly but shows a 5Å peak as well.
- Peaks at 7.15Å and 3.75Å which do not change on glycolation or heat to 300°C indicate kaolinite. Kaolinite becomes amorphous (no peaks) when heated to 550-600°C.

For further identification, the procedures of Warshaw and Roy (1961), and Carroll (1970) may be used.

CONCLUSION

Make sure all the identifying data; sample description, sample number, type of mount and treatment used, are shown on the diffractogram. Include data on X-ray radiation used, filter, slits, Volts, Amps, 20° and paper speed used. Include data of tests, name of person testing, and acknowledge University of Manitoba facilities.

List the minerals present. A rough quantitative comparison of the clay minerals present can be made by reference to the following relationship of peak intensities for oriented mounts:

- (a) For equal amounts of illite and chlorite, the 14Å chlorite peak approximately equals the 10Å illite peak.
- (b) For equal amounts of illite and chlorite, the 7Å chlorite peak is 2 to 3 times larger than the 10Å illite.
- (c) For equal amounts of illite and kaolinite, the 7Å kaolinite peak is 2 to 3 times larger than the 10Å illite peak.
- (d) For equal amounts of kaolinite and chlorite, the 7Å and 3.5Å kaolinite peaks are about equal to 7Å and 3.5Å chlorite peaks.
- (e) For equal amounts of illite and smectite, the 14Å smectite peak is 3 to 4 times larger than the 10Å illite peak.
- (f) For equal amounts of illite and smectite after heat treatment at 300°C, the 10Å smectite peak equals the 10Å illite peak.

A comparison of the actual peak height ratios, can be used to estimate the relative quantities of the clay minerals present. If the percentage of clay is known from a hydrometer analysis, the percentage of the total sample for each clay mineral may be estimated.

Swelling, shrinking, etc. characteristics can be predicted for the soil sample considering the properties of the minerals present.

REFERENCES

- Brown, G. (Editor) 1972. X-ray identification and crystal structure of clay minerals. Mineral Soc. London.
- Carroll, D. 1970. Clay Minerals: A guide to their X-ray identification. Geol. Soc. Amer., Special Paper 126.
- Klug & Alexander, 1954. X-ray diffraction procedures. John Wiley & Sons, New York.
- Mitchell, James K. 1976. Fundamentals of Soil Behaviour. John Wiley & Sons, pp. 87-94.

Warshaw, C.M. and Roy, R. 1961. Classification and a scheme for the identification of layer silicates. Geol. Soc. Amer. Bull. 72(10) pp. 1455-1492.

DIAGNOSTIC d (Å) SPACINGS, AND $2\theta^{O}$ FOR COMMON SOIL MINERALS X-RAY DIFFRACTION, COPPER TARGET

d spacing Angstrom	<u> </u>	2 theta Degrees	<u>Mineral</u>	Notes
15.0-12.5 14.5-13.5 14.5-13.5 12.5-12.0 10.5 10.1 10.1-9.9	VS VS VS VS S VVS	5.9-7.1 6.1-6.5 6.1-6.5 7.0-7.4 8.4 8.8 8.8-8.9	Smectites Chlorites Vermiculite Vermiculite Attapulgite Illite Micas	varying degrees of hydration fully hydrated partially hydrated (Palygorskite) Muscovite, Biotite, Phlogopite
9.3 8.5-8.4 7.56 7.36 7.5-7.2 7.15 7.2-7.0 7.2-6.8	S VS VS MW S VS VS VS	8.9 10.4 11.7 12.0 11.8-12.3 12.4 12.3-12.6 12.3-13.0	Talc Amphibole Gypsum Serpentine Halloysite Kaolinite Chlorite Chlorites	Hornblende, Actinolite Antigorite, Chrysotile Metahalloysite (2H ₂ 0) iron rich
6.65 6.46 6.55-6.38 5.61-5.57	M M M MW	13.3 13.7 13.5-13.9 15.8-15.9	Orthoclase Microcline Plagioclase Analcite	"high" K-feldspar "low" K-feldspars Anorthite to Albite
4.85 4.79-4.69 4.50-4.45 4.37 4.27 4.26 4.24-4.21	S MS M S S S	15.9 18.5-18.9 19.7-19.9 20.3 20.8 20.8 20.9-21.1	Gibbsite Chlorite Clays Gibbsite Gypsum Quartz K-feldspar	Kaolinite and Smectites
4.18 4.04 4.04-4.02 3.97-3.84 3.83-3.79 3.77-3.74 3.66-3.61 3.66-3.64 3.57 3.59-3.52	vs vs mw s ms s s s s s s	21.2 22.0 22.0-22.1 23.2-23.5 23.6-23.8 24.3-24.6 24.3-24.4 24.9 24.8-25.3	Goethite Cristobalite Plagioclase Feldspars K-feldspars Plagioclase Plagioclase Serpentine Kaolinite Chlorite	Microline & Orthoclase
3.48-3.46 3.43 3.37-3.36 3.343 3.33 3.23 3.21-3.19 3.18 3.17-3.16	M S VVS VVS VVS VVS VVS S	25.6-25.7 26.0 26.4-26.5 26.64 26.8 27.5-27.6 27.8-28.0 28.0 28.1-28.22	Feldspar Analcite Micas Quartz Orthoclase Microline Plagioclase Plagioclase Plagioclase	Muscovite and Biotite and Orthoclase Albite to Anorthite only Albite & Oligclase only Andesine to Anorthite

DIAGNOSTIC d (Å) SPACINGS, ∴ND 20° FOR COMMON SOIL MINERALS X-RAY DIFFRACTION, COPPER TARGET

d spacing Angstrom	I	2 theta Degrees	Minoral	Notos
		0091000	<u>rineral</u>	Notes
3.13-3.1	1 wm	28.5-28.7	Plagioclase	only Andesine to Anorthite
3.13-3.09	9 s	28.5-28.9	Amphibole	Horneblende & Actinolite
3.10	VS	28.8	Talc	
3.09	VS	28.0	Jarosite	
3.00	S	19.2	Gypsum	
3.03-3.02	2 VVS	29.5-29.6	Calcite	
3 01 2 05	VS mc	29.7	Alunite	
5.01-2.93) 1115	29.7-30.3	Feldspars	131 peak
2.99	S	29.9	Augite	
2.94-2.91	mw	30.4-30.7	Feldspars	
2.89	VS	30.9	Dolomite	
2.01-2.82	mw	31.1-31.7	Chlorite	
2.00-2.02	IIIW	31.3-31./	Feldspars	131 peak
2 75	VS C	31.7	Halite	
2.74	5	32.5	limenite	
2.71-2.69	43 C	32.1	Magnesite	
2.69	sh	22.2	Amphibole	Hornblende & Actinolite
2.56	50	35.0	Augito	and Goethite
2.56-2.51	md	35 0-35 7	Foldenand	and Mat
2.53	S	35 45	Magnotito	and Micas
2.51	S	35.7	Augita	and llomatic
2.50-2.44	mw	35.8-36.8	Feldspars	Albito to Labradouita
			i cruspui s	Albite to Labradorite
2.48	m	36.2	Cristobalite	
2.458	mw	36.52	Quarta	
2.33	m	38.6	Kaolinite	
2.282	mw	39.45	Quartz	and Calcite
2.19	ms	41.2	Dolomite	
2.10	mw	43.0	Calcite	
2.01-1.99	111	45.1-45.5	Micas	Muscovite & Biotite
1.99	S	45.5	Halito	
1.91	mw	45.6	Calcite	
1.87	mw	48.7	Calcite	
1.817	mw	50.16	Quartz	and Dolomite
1.82-1.80	mw	50.1-50.7	Feldspars	
1.78	mwb	51.3	Dolomite	
1.62	mw	56.8	Magnetite	j.
1.56	MS	59.2	Septichlorites	especoally Chamosite (060)
1.55-1.53	W	59.6-60.5	Chlorites	060 peak
1.541	ШM	59.98	Quarta	211 peak
1.54	mw	60.0	Biotite	060 peak
1.54-1.53	W	60.0-60.45	Vermiculite	and trioct. Smectite (060)
1.53	mw	60.5	Serpentintes	and talc (060)
1.53-1.52	W	60.5-60.9	Phlogopite	060 peak
1.52-1.49	W	60.9-62.3	Smectite	dioct.(060)
1.50	m	61.8	Muscovite	& Illite & Attpulaite (060)
1.49	m	62.3	Kaolinite	& Halloysite (060)

APPENDIX B - Field Program

Table of Contents

																	P	age
B.1	Instru	mentation	Insta	allat	cior	ıs	•	•	•	•	•	•		•	•	•		178
	B.1.1	Open Star	npipe	Inst	all	at	io	n	•	•	•	•	•	•		•		178
	B.1.2	Piezomete	er Ins	stall	ati	on	•	•	•	•	•	•	•	•	•		•	179
	B.1.3	Slope Ind	dicato	or In	nsta	11	at	ioı	n	•	•	•		•	•	•		179
	B.1.4	Thermisto	or Cab	le I	Inst	al	la	tic	on	•	•	•		•		•	•	180
	B.1.5	Earth Pre	essure	e Cel	.l I	ins	ta	11;	at:	io	n	•	•				•	180
в.2	Summary	y of 1984	Field	l Dri	.11i	ng	P	rog	gra	am	•	•	•	•	•	•	•	182
в.3	Tempera	ature Prof	iles	• •			•	•	•	•	•	•		•	•	•		185
	B.3.1	Thermisto	or No.	1		•	•			•	•				•	•	•	186
	B.3.2	Thermisto	or No.	2			•		•			•				_		187
	B.3.3	Thermisto	or No.	3				•	•		•							188
													-	-	-	•	•	100
в.4	Borehol	e Logs .	•••	• •									_					189
		-									-	2	-	-	-	-	•	107
в.5	Instrum	entation	Speci	fica	tio	ns	-	•	•		•				•		•	205

B.1 Instrumentation Installations

B.1.1 Open Standpipe Installation

Four open standpipes were installed in the sand and gravel (see Fig.2 -2), in order to confirm the observations obtained from the piezometers and therefore are alternately located between them.

A typical standpipe installation is illustrated in Fig. B-l(a). The tip was covered with a filter cloth in order to prevent fines from plugging up the tube. After being lowered into the borehole, Ottawa sand was placed around the standpipe tip. Above the sand, a clay seal was formed by pouring bentonite balls down the borehole. This seal was generally 30-40cm thick. The rest of the boring around the tube was subsequently backfilled with available fill on the site.

The standpipes above the penstock were installed without the use of a drill casing as the soil stood open long enough to allow complete installation. The one standpipe (STP-1) below the penstock however, had to be installed through the annulus of the hollow stem drill rod because of the tendency of the hole to slough in before the standpipe was installed. A bentonite plug was formed approximately 6m above the tip and above this, clay backfill was placed.

B.1.2 <u>Piezometer Installation</u>

Three semiconductor type electrical piezometers were installed on the site (Model 45005 of Geokon Inc.)

The piezometer installation is similar to that used for the standpipe. The piezometer was lowered into the borehole and Ottawa sand then poured till it was 20 cm above the piezometer. Bentonite pellets were then placed above this to form a seal of about 40cm thick. The remainder of the borehole was then backfilled with clay. A typical installation is also presented in Fig. B-1(b).

B.1.3 <u>Slope Indicator Installation</u>

Four slope indicator casings were installed, three uphill from the penstock and one downhill of it, using ABS plastic 84.8 mm OD x 72.9 mm ID x 3.05 m long casing.

Once the borehole was completed, the casing was lowered into the hole, with each joint being glued as the lowering commenced. Once in position, cement grout was poured into the borehole (around the SI casing) and allowed to set while the SI casing was held down to counter the bouyancy. A schematic of the installation is shown in Fig. B-l(c).

B.1.4 Thermistor Cable Installation

Two thermistor cables were installed to record the temperature regime of the ground. An earlier installation completed by EBA Engineering (1982) indicated a permafrost area downslope of the penstock. All three installations are shown on Fig. 2-2.

Installation of a thermistor cable involved inserting the cable inside a 50 mm diamter PVC access tube which had been placed in the borehole. This access tube was then filled with dry Ottawa sand and the borehole was backfilled with available fill material. Because the thermistor cables were manufactured to predetermined lengths, both had to be folded back in order to conform to the borehole depths limited by the depth of bedrock in each location. A typical installation is shown in Fig. B-1(d).

B.1.5 Earth Pressure Cell

Two earth pressure cells were installed against the pier support on the west side of the penstock in Test Pit No. 1, whose location is shown in Fig. 2-2. They were installed to depths of 1.45m and 1.70m. The pressure cells used were manufactured by Geokon Inc. and consist of two circular stainless steel plates (23 cm dia.) welded together around their periphery, with a cavity between them. This cavity is filled with anti-freeze, which transfers the soil pressure to a pressure transducer. The pressure transducer is of the semi-conductor type and the accuracy of the system is 0.25% of the full scale. Further specifications are presented at the end of this Appendix.

The earth pressure cells were placed against a 3/4" piece of plywood which again was supported by 8" x 8" blocks of wood against the pier in order to balance out the difference between the pier and the pile cap. Both cells were then covered with fine sand in order to protect them from damage by the gravel fill which was used for backfilling the excavation. The fill was placed carefully in layers of 10cm thickness till the cells were completely covered. The remainder of the pit was backfilled with the excavated clay material. Figure B-2 shows schematically backfilling and installation details. Both pressure cells were eventually connected to the continuous data logger.

bene-t			,
BOREHOLE	DEPTH (m)	INSTRUMENT INSTALLED	DEPTH OF INSTALLATION (m)
TH-1	6.7	Thermistor String	6.7 (1.3m foldback)
TH-2	5.6	Thermistor String	5.6 (2.3m foldback)
P-1	5.0	Electro - Piezometer	4.8
SI-1	8.5	Slope Indicator Casing	7.3
STP-1	7.9	Standpipe	7.8
STP-2	2.1	Standpipe	2.0
SI-2	2.4	Slope Indicator Casing	2.4
P-2	4.8	Electro - Piezometer	4.7
SI-3	4.0	Slope Indicator Casing	3.4
SI-4	3.7	Slope Indicator Casing	3.65
STP-3	4.0	Standpipe	4.0
P-3	2.9	Electro - Piezometer	2.4
STP-4	2.4	Standpipe	2.3

B.1 SUMMARY OF 1984 FIELD DRILLING PROGRAM

FIG. B-1 INSTRUMENTATION INSTALLATIONS

FIG. B-2 TOTAL PRESSURE CELL INSTALLATION

B.3 Temperature Profiles

B.3.1	Thermistor	No.1
B.3.2	Thermistor	No.2
в.3.3	Thermistor	No.3

FIG. B-3 TEMPERATURE PROFILES FOR THERMISTOR NO.1

FIG. B-5 TEMPERATURE PROFILES FOR THERMISTOR NO.3

B.4 Borehole Logs

EPTH etres)	SOIL DESCRIPTION	AMPLE	COMMENTS	мот	STUR	E CONTENT					
<u> </u>		St I		P _L (%	5) h 10	1 (%) 30 1	40 ^L	(%) 50			
	SILT - clayey, organics grey	,	unfrozen			$\frac{1}{1}$	1-	Ĥ			
	$\Gamma(\Delta V = silty lt brown$										
-1-	STILY, IL. DIOWI) <u> </u>		┼╌┼╴		┝╌┼╴			
+ -											
			frozen				+				
			V× 20%			+					
			•								
	•								+-		
- 3 -											
[]			•						┽╾┦		
$\begin{bmatrix} 1 \end{bmatrix}$											
- 4 -											
[]				$\left - \right - \left - \right $		$\left - \right $	$\left - \right $		+		
			•	$\left - \right - \left - \right - \left - \right $		┝╌┝╌	$\left\{ - \right\}$		+		
$\left \begin{array}{c} 1 \\ 1 \end{array} \right $									凵		
			e l	┝╾┼╾┼╾┼╾┼			┝╴┦		+		
$\left \right $											
								+-	+		
┠┤	BEDROCK										
	End of hole 6.7m Thermistor no.1 installed		<u> </u>				┝─┼		$\left \cdot \right $		
<u>- 7 -</u>	(1.3m foldback)										
SFC.	ELEVATION (m) 164.555	DATE D	RILLED Aug 8	3,1984	В	OREHO)LE	NO.			
COMPLETION DEPTH (m) 6.7			BY JPB			TH-	I				
DRIL	LING RIG	LOCATI	ON Bluefish L	Jefish Lake PAGE 1 of 1							

DEPTH (metres)	SOIL DESCRIPTION	SAMPLE	COMMENTS		P 10	MOIS H L (%)	STUR	E C	ONT 	ENT	<u>}</u>				
·	CLAY - silty, lt.brown		unfrozen		Ť	ŢŢ		Ĩ	Ĩ	Ţ	Ĩ				
				$\left - \right $											
- 1 -						┼╌┼					\square				
						┼╌┼				+-	┼╌╏				
			l d												
				$\left - \right $			+-	+			┝╌┤				
											$\left \right $				
			frozen?	┝─┼					_	\bot	\square				
						┼┼				+-	$\left \right $	\neg			
- 3 -				\square											
			•	\vdash		$\left - \right $		$\left \right $			┝╌┼	\neg			
				┝─┼		┝╌┝		┼╍┤		+	┝─┼	_			
\mathbf{F}				┝──┼				┞╌┨				_			
								$\left - \right $		+		┥			
- 5 -			٩Ï												
	SAND & Gravel							$\left \cdot \right $		+		-			
┝╺┟	BEDROCK		U												
E,	Thermistor no.2 installe	d						┝╌┼		┿┥		_			
	(2.3m foldback)				+					┼┤		\dashv			
F 4											1				
							-	$\left - \right $		╀┤	-+	-			
- 7 -	- 7 -								1						
SFC.	SFC. ELEVATION (m) 165 235 DAT			109											
СОМР	COMPLETION DEPTH (m) 5.6 LOG		BY JPR	190	>		a l	UKE	TH-2						
DRIL	LING RIG	LOCATIO	ON Bluefish	Lake	3		P	AGE	_1 (of 1		-			

DEPTH (metres)	SOIL DESCRIPTION	SAMPLE	COMMENTS	10	MOIS [.] ⊢ P _L (%)	TURE W (CONTI 1 %)	ENT L, (%)	
	GRAVEL and BOULDERS - so silt and clay CLAY TILL - silty,br.gre	me y	unfrozen						
 - 2 -	tr. gravel								
 - 4	• •								
	tr. sand and gravel BEDROCK		84/08/16 🗷						
	End of hole 5.0m Install electro-piezo to	4.8m							
- 6 -									
SFC. COMPI	ELEVATION (m) 165.410	DATE DI	RILLED Aug 10	, 1984		BOR	EHOL	E NO.	
DRIL	LING RIG	LOCATI	DN Bluefish	Lake		PAG	<u> </u>	of <u>1</u>	-

DEPTH netres)	SOIL DESCRIPTION	AMPLE	COMMENTS	MOISTURE CONTENT $P_{1}(x) = V_{1}(x)$									<u> </u>			
<u> </u>					10	'L'	20	W	30 30	5) 4(ירו כירו	- (% - 5) 0			
╞╶╡	CLAY - silty,soft,wet,b	r.	unfrozen											_		
+ -	grey					_			·							
+ -				$\left - \right $					-							
				$\left - \right $		+-				-						
				$\left - \right $		┿	+-	+						-		
[]							-†-	+	┼──					<u> </u>		
				H		+	+	+								
								1					-+-	1		
- 2 -																
+																
+								<u> </u>								
+ -	<u>_</u>			\vdash												
				\vdash		+										
- 3 -				┝─┼							_			_		
				\vdash				+	$\left - \right $					_		
1				\vdash		+		+						-		
[]						╋		+			-	\neg		-		
				\vdash	+		+	+				\neg		-		
						T	1					-		٦		
				\square								+	+	-		
						Τ							1	٦		
+ $+$							_									
- 5 -						4-					_			_		
+				┝──┼			—			_		_		_		
\mathbf{F}				┝─┼╸			<u> </u>			_	-	\dashv		_		
$ \uparrow \uparrow$						╉	–			_	-	\dashv		_		
				┝╍┼╸	+-			$\left - \right $			-	+		-		
[°]				┝╼╌┼╸		╈	+	\square			-+	+		-		
[]	SAND and GRAVEL overlyin	g				+-	1		\neg	+	-+	+		+		
	BEDROCK at 8.2m								-	\neg	-1	+	1	1		
	Slope Indicator casing											\uparrow		1		
<u>F1-</u>	mistarieu to /.3m							\square	\square]		
SEC	ELEVATION (-) 166 22			•			ייי	4	L					ור ר		
sru.	ELEVATION (M) 100.52	DATE DRILLED Aug 10-11,1984							BOREHOLE NO.							
СОМР	LETION DEPTH (m) 8.5	LOGGED BY JPB SI-1														
DRIL	DRILLING RIG		LOCATION Bluefish Lake PAGE							<u> </u>	1 of 1					

DEPTH (metres)	SOIL DESCRIPTION	SAMPLE	COMMENTS			1	P 0	101 L (% 2	ST 	URE W	E C •	ON ⁻		IT (%)	
	CLAY - silty,soft,wet, br.grey	U C	not frozen							<u> </u>			Ĭ	Ĺ		
						 										
															\neg	
+ -															\square	
													_		-	
- 2 -					_											
	· · · · · · · · · · · · · · · · · · ·														_	_
+																
					_	_							_			_
												_			+	
+						-						_	_	-		
				ł	-		-							+	_	-
- 4 -				F								_				
			•	┢	-		-	-+	_			-			+	_
[]				Ţ									\neg	-+		-
$\left \right = \left \right $			2	1			_		_	_		-		_		\square
				$\left \right $			-	-			-+	\neg	-			\neg
┠┨																
E 1				$\left \right $	-	-	\neg	+			_		-	-		_
- 6 -				┢							+	+	+	╉	╈	-
╞╶┥				1	_	_			_		_				1	
[]			44	4		\neg	-	+	-+	-+	+	-+	+	╉	+	┥
╞╶┥	SAND and GRAVEL		llod		_			1						1		1
				<u> </u>				_								_
SFC.	ELEVATION (m) 166.675	DATE DRILLED Aug 11,1984					٦	Γ	BC	ORE	HOI	LE	NO	•	7	
COMPI	ETION DEPTH (m) 7.9	LOGGED	OGGED BY JPB						STP-1							
DRIL	LING RIG	LOCATION Bluefish Lake PAGE 1 C						of	of 1							

PTH :res)		PLE	COMMENTS		i	моі	STUR	E C	ONT	ren'	T	
DE (met		SAM	COMMENTS		P 10	L (2	5) V	• / (\$ 30	≹) 4(۱ ۲	(%) 50	1
 	CLAY - silty,organics, br.grey,surface c with organics	overed										
	SAND and GRAVEL - silty											
	BEDROCK										+	_
- 3 -	End of hole 2.4m Standpipe installed to 2	• 3m										
- 4 -												
- 5 -												
			-									
- 6 -			- - -									
 - 7 -												
SFC.	ELEVATION (m) -	DATE DE	RILLED Aug 14,1	1984			В	ORE	HOL	.E 1	NO.	
COMPI	ETION DEPTH (m) 2.4	LOGGED	BY JPB					Ś	STP	-4		
DRIL	DRILLING RIG LOCATION Bluefish Lake PAGE1 of 1											

	· · · · · · · · · · · · · · · · · · ·										
EPTH tres)	SOIL DESCRIPTION	1PL E	COMMENTS		ł	10 I S T	URE	СОИТ	ENT		
D D D		SAM			۹ 10	(%) 20	W (30	%) 4(ٔ ۱	(%) 50	
	CLAY - silty,moist to we soft,br.grey	et,	not frozen							$\overline{+}$	H
										+	
- 1 -											
											┝┤
								$\left\{ -\right\}$	_	$\overline{-}$	\square
- 2 -	tr. gravel	I	-							+	
[]		- G-	і 1 с								
	•										
- 3 -	sand sloughed up to 3.Or while installing piezome	n eter				_		$\left\{ \begin{array}{c} \\ \\ \end{array} \right\}$	+		$\left - \right $
								$\left \right $	-		
	BEDRUCK		84/ 08/ 16 💻 🖗						\pm		
- 5 -	End of hole 4.8m		<u>1?</u>								
	Electro-piez. no.103 ins to 4.7m	talled			╺╂╍╂				+	╂╌╉	_
╞╶┨									1		
- 6 -									1		
$\begin{bmatrix} 1 \end{bmatrix}$									\pm	╊╋	
									+	\square	
<u>E7-</u>									<u></u>		
SFC.	ELEVATION (m) 168.225	DATE DI	RILLED Aug 13	,198	4][BORI	EHOL	EN	0.	7
DRIL	LING RIG		BY JPB	ake		┥┝		-2 	<u>_</u>	1	
L	· · · · · · ·					11	r Aul	C '	01	•	1

DEDTH	(metres)	SOIL DESCRIPTION		SAMPLE	COMMENTS			۲ P ₁	1019 	TURE CONTENT						
ļ	-	CLAY - silty,moist,soft	to		not frozen			Ľ	Ĺ	Ĺ	Î	Ī	Ī	Т	1	
ŀ	1	TIRM, DR. grey									_	_		\square	\Box	
f	1					$\left - \right $			┝╌┝		╀					
	1							-	┝╼╌┼		╋			┿	┿	+
ŀ			ĺ											\pm	\uparrow	
ł	1					$\left - \right $					_	_			L	
ŀ						\vdash	-							+-	+	
	2 -										+-	+		╋	┢	+
ŀ	-					\Box										
ł	-					┝─┼	-			_						
ľ]					┝━┼					╋		╉	╀╴	┼─	$\left - \right $
F	3 -												+-	+	\vdash	$\left - \right $
\mathbf{F}	-	SAND and GRAVEL				┣━-┼	-			_	-			L	L	\square
t	1				·	┝╍┼	-	_	+			+		+		\vdash
]						\neg		\neg	+		╋	+	+	┢─	$\left - \right $
	4 -	End of hole 4.0m					\square									
ŀ	1	Slope Indicator casing	1			-					-			_	<u> </u>	$\left \right $
Ĺ]	installed to 3.4m					-	\neg			╋		+	┢	-	$\left - \right $
ŀ	4													+		
- :	5 -						_			_						
ŀ	1						+			+-	+-	+		+		
	1				·		-	-+	+	╉	╋	+	+	\vdash	\vdash	$\left - \right $
\mathbf{F}	-										Ĺ					
+ (5 -						_	-			-	+-		$\left - \right $		
Ţ	1						+	-+	+	┿	┢	╋	+	\vdash		
ŀ	4												\pm			
F .	-						_	_	_					\square		
E	7-1										<u> </u>					
SI	FC.	ELEVATION (m) 168.018	DATE DRILLED Aug 13, 1984 BORFHOLF NO).).	٦				
co	COMPLETION DEPTH (m) 4.0			LOGGED BY JPB SI-3												
DRILLING RIG			LOCATION Bluefish Lake PAGE1_ of 1_													

DEPTH metres)	SOIL DESCRIPTION	SAMPLE	COMMENTS		۲ P	10 I S⊺ ⊢ (%)	STURE CONTENT								
	CLAY - silty,moist,br.gr	·ey	not frozen		10	20		30	40						
				┝╌┼╸		$\left - \right $		╉╍┦			┼─┤				
<u></u>															
- 1 -				┝─┼─		 	+-	$\left \right $		+	$\left - \right $				
<u></u>															
<u> </u>				┝╾┽╾							$\left - \right $	_			
- 2 -										1					
								$\left\{ -\right\}$		+	$\left - \right $	_			
+ -															
	· •				┼─┤			$\left - \right $				_			
´ -															
	End of hole 3.7m						+	┝╌┼		+		-			
-	BEDROCK														
- 4 -	installed to 3.65m									$\left \right $		-			
+ -					$\left - \right $										
										$\left \right $		-			
- 5 -					┥							7			
			-							╏╴╏	+	-			
					$\left - \right $				_	$\left[- \right]$					
- 6 -			. 1												
					┝─┼		$\left - \right $	_		$\left - \right $		-			
$\begin{bmatrix} 1 \\ - \end{bmatrix}$															
							$\left - \right $			$\left \cdot \right $	+	-			
SFC.	ELEVATION (m) 168,45			1984	L						<u>_</u>	E T			
Сомр	LETION DEPTH (m) 3.7	LOGGED	-	SI-4											
DRIL	LING RIG	LOCATION Bluefish Lake						PAGE 1 of 1							

-													
TH res)				MOISTURE CONTENT									
DEP (met)	SOIL DESCRIPTION	SAMP	COMMENTS		P	⊢ (%)	• W (%	(2)					
<u> </u>						20	30	<u>40 - 1</u>	- 50				
+	CLAY - silty,br.grey		not froz	en			$\left - \right $						
F					┝━┥┥┥		┼╌┼╌┤		 	┞╌┨			
F .					┝━┼╾┼╾┤		┼╌┼╌┤			\vdash			
f . '					┝╾┽╍╂╾┤		╉╾┠╾╂			\square			
- ' -	1				┝╍┽╍┼╸┼		┼╌┼─┼			$\left - \right $			
[1				┠━╍╂╍╌╂╼╍╂		┼╌┼╾┼			$\left - \right $			
					┝─┼╍┼╍┤		┼╌┼─┤			┝─┤			
							╂╌┠╍╂						
L 2 -							+++			\vdash			
ļ										\square			
<u></u>													
ŀ .			84/08/16										
+ •													
- 3 -				40	┝╍╍┝╍╍╿╌╌╿								
	SAND and GRAVEL - Wet			44	┝━╌╎──┤		╏──┤──┤						
	-			貓音			┝╍┝╸┝						
F •				制			┦╾┤╾┼						
f . '	End of hole 4.0m				┝╍┼╍┽╸┼		┝╾┠╾╀						
- 4 -	REDBOCK			-11-	┝╼┼╼┼╾┼		┨━╾┼╼╌┼						
ſ.	Standpipe installed to 4	Om	•		┝╌┼╌┼╼┼		┠╾╂╾╊						
		• 0111					┠─┼─┼						
							┠╌┼╼┼	╶┼╌╁					
				Ì						\neg			
ļ ,				ĺ						-			
				Γ									
				ľ				-1-1	- -	-			
				[
- 6 -				ļ									
┠┥				ļ				_					
+						_	- -						
F -			×	╞	╶╌┼╌┼╴┼		┝╾╉╾╄						
<u> </u>				┝			┝╾╂╾╂						
<u>-7-</u>			ŀ										
SFC.	ELEVATION (m) 168.41		RILLED Aug	12	1984	ר ר	RODE		NO	-			
COND			and the	-	DUNEHULE NU.								
	CETION DEPTH (m) 4.0	LUGGED	BA 15R		SIP-3								
DRII	LING RIG	LOCATI		PAGE 1 of 1									
P			•										
---	---------------------------------	------------------------------------	--------------	------------------	------------------	-------	-----	------------------------	--------------	--	--	--	--
oTH res)	SOLL DESCRIPTION	PLE	COMPLETE	мо	ISTURE CONTENT								
DEF (met	SULL DESCRIPTION	SAMI	COMMENTS	P _L (₩ %) 20	W (%)		L ^(%)					
	CLAY - silty,br.grey		not frozen		Ĩ								
<u>}</u>	boulders on surfa	ce						$\left - \right _{-}$					
					╉╾┨			┼╌┼╴					
- 1 -													
F 1					┼╌┼			┼╌┼-					
					╂╼┼	-+-+		┼╌┼╴	┽╾┨				
- 2 -													
	SAND and GRAVEL ?				╉╾╂				+				
			no rdg.						+				
$\left \right $	End of hole 2.9m		84/08/16		 				\square				
<u>-</u> 3 -	BEDRUCK Electro-piezo po 102			╏╍┠╺┠╍┠╸	++			┠╍┠╸					
	installed to 2.4m												
$\left - \right $	· · ·				┨──┦								
Ľ, j					┼╌┼			┠──┠─	+ - 1				
									+-1				
					$\left \right $								
F 1					╂─┼			┣┠	┼╌┨				
						-+			+ -1				
$ \begin{bmatrix} 1 \\ -1 \end{bmatrix} $													
			•				_		+				
[]				<u>├</u>	\vdash	╾┼╾┼			┼╌┨				
- 6 -													
				┠┈┼╾┼╼┼╼	┠━╾┞╸				\downarrow				
				┠╾┼╌┼╶┼╸	┟─┼╴	-+-+-			┼┦				
]			×										
- 7 -													
SFC.	ELEVATION (m) -	DATE DI	RILLED Aug 1	3,1984	BOREHOLE NO								
COMP	LETION DEPTH (m) 2.9	LOGGED	BY JPB				P-3						
DRIL	LING RIG	LOCATION Bluefish Lake PAGE 1 of 1						f 1					

DEPTH (metres)	SOIL DESCRIPTION	SAMPLE	COMMENTS		1/	M PL	101S + (%)	(%) W (%) L, (%)								
	CLAY – some silt and sand moist,br,grey	d,	not frozen _.						30	4		· 50				
- 1 -	laminations of clay and		pp=2.5 tsf tv=0.9 tsf	1	4/	08	/11									
- 2 -	some ice-rafted pe-bles, size 12mm,some organics, breaks along laminations End of hole 2.1m	max T	pp=3.3 tsf tv=0.6 tsf				•••	•								
	BEDROCK Standpipe installed to 2.	. Om	ii													
- 3																
4			. .													
- 5																
- 6 -																
- 7 -																
SFC.	ELEVATION (m) 167.67	DATE DR	ATE DRILLED Aug 11,1984					BOREHOLE NO.								
DRIL	LETION DEPTH (m) 2.1 LING RIG	LOGGED	LOGGED BY JPB STP-2 LOCATION Bluefish Lake PAGE 1 of						2 	1						

DEPTH (metres)	SOIL DESCRIPTION	SAMPLE	COMMENTS	мо Р _L (1 STUF 1 %) 1 20	RE CON	HTEN	T (%)
	CLAY - silty,some gravel and cobbles,br.gr	еу	not frozen					
- 1 -	silt.tr.clay and pebble max.size 25mm,moist to some organics,iron oxid stains,horz.laminations silt and clay,soft sandy and gravelly End of hole 2.4m	s, wet, e T of T	pp= 2.0 tsf		}			
- 3	BEDROCK Slope Indicator casing installed to 2.4m							
SFC.	ELEVATION (m) 168.107	DATE DR	RILLED Aug 13,	E	OREHO		<u>1 1</u> NO.	
DRILLING RIG LOCATION Bluefish Lake PAGE1 of 1						1		

oTH res)		PLE	COMMENTS			М	101	STL	JRE	С	ON ⁻	TEN	IŢ		
DEI (met	SOLE DESCRIPTION	SAM	COMMENTS		1(PL	(%)) 0	W	و۔۔۔ (کا	;) 	۱ م ^ل ا	_ (%)	
	CLAY TILL - silty,weather	ed				Ľ				Ľ		Ľ			
	organics throughout														
	SILT - gravish vary wat		frozen 06/13	181	-			_							
- 1 -	Sill greyish, very wet		.,												
															_
	End of hole 2 Dm					_		_						_	_
								-		_				-+	-
-															
					-	-	-							-	_
														-	\neg
$\left \right $								_		_					
[]	· · · · ·						-+	-	-				-+	-+	\neg
$\left \right $															
- 4 -						-	-	_	-	4		-	_	_	
[]					-+	\neg	-	+	-				-+		\dashv
$\begin{bmatrix} 1 \\ -1 \end{bmatrix}$			ļ												
				-+	_	-	-+	-+	-+			_			
[2]														-+	\dashv
					_										
┠┥					-+	-	-+	-	\dashv				-	_	_
[6]							╈		+					+	-
╞╶┨			F	\neg		\square	\square]
╞╶┥					+	-+	+	+	-+	+	-	-	+	+	4
[]															┨
- 7 -							\square	-	Ţ	\square					
SFC.	ELEVATION (m) _ D	ATE DE	RILLED Oct 192	198	35		٦	Г	ВС)RF	НО	LF	NO		7
СОМР	LETION DEPTH (m) 2.0 L	OGGED	BY JPB				-		- •	1	Г Р -	2		•	
DRIL	LING RIG	LOCATION Bluefish Lake PAGE 1 of 1							4						

B.5 Instrumentation Specifications

geokon

Models 2510, 3500, 3650, 4800E and 4800EC

206

Models 2520, 3600, 3660 and 4800C

FEATURES

- Long-term stability.
- High sensitivity.
- High pressure range.
- Post-stressing tube for
- re-inflation in concrete. Low volumetric displacement.
- Suitable for remote monitoring over long time periods.

Geokon Earth Pressure Cells are designed to measure total pressure in earth fills and embankments as well as pressures on the surface of retaining walls, buildings, bridge abutments, sheet pilings, tunnel linings etc. Concrete stress cells are designed to measure stress in mass concrete.

All cells consist of two circular stainless steel plates welded together around their periphery and spaced apart by a narrow cavity filled with either an antifreeze solution (Earth Pressure Cells) or mercury (Concrete Stress Cells). A length of high-pressure stainless steel tubing connects the cavity to a pressure transducer. External pressures acting on the cell are balanced by an equal pressure induced in the internal fluid. This pressure is converted by the pressure transducer into an electrical signal which is transmitted by a four-conductor shielded cable (direct burial type) to the readout location. A readout box is used to read the cells, and calibrations are provided to enable the observed readings to be converted to units of pressure or stress. (Models 2510 and 2520 have a pneumatic transducer which connects to the readout location by means of polyethylene twin tubes in an outer PVC wrap).

In all systems the internal fluid is degassed to a maximum dissolved gas content of 2.0 ppm. This ensures that the volumetric displacement of the cells is a minimum and that their response characteristics are linear and highly sensitive. Concrete stress cells have a 24-inch long "pinch" or "post-stressing" tube to allow mercury to be forced back into the cell after the concrete cures. This ensures good physical contact between the cell and the surrounding concrete. Concrete stress cells may be pre-encapsulated in concrete to simplify the post-stressing operation.

Thermistors may be included in the transducer housing to measure temperatures. Cables can be routed inside flex conduit for added mechanical protection.

COKOL

Geokon offers the following four basic types of transducers:

Pneumatic (Models 2510 and 2520). This transducer is a Petur Model P-100 and is connected to the readout location via twin pneumatic tubes (Model T-102). It is read out using the Petur Model C-102 Readout Box.

Semiconductor Strain Gage — Conventional style pressure transducer compatible with many existing dataloggers where 5 volt DC or AC excitation is provided. The signal output is large enough to be scanned directly without further amplification. They may also be read remotely using the Geokon Model RB-101 Readout Box.

SPECIFICATIONS

Resistance Strain Gage – These transducers are compatible with other resistance strain gage systems such as load cells, borehole deformation gages etc. They may be read out using conventional strain indicator or readout boxes (Vishay P350A, Vishay P3500 etc.).

Vibrating Wire (Model 4500H). This transducer is compatible with the rest of the Geokon line of vibrating wire instruments and is recommended for use with the Model GK-4 Datalogger or GK-401 Readout Box. It incorporates all of the advantages of the vibrating wire system of measurements.

Model Number	EP Cell	2510		3500		3650		4800E	
	CS Cell		2520		3600		3660		4800C
Transducer type	-	Pneumatic		Semico strain	nductor gage	Resista strain	ance . gage	Vibrat	ing wire
Typical ranges available	psi	15 to 3	000*	25,100,5	500 100,5000	25,100,50	00 0.5000	50,100,	500 00.5000
Over-range capacity	% F.S.	3000 ps	i max.	20	ю́	200)	15	0
Accuracy	% F.S.	0.4	k 🛛	1	ļ.	0.5	;	0.	25
Resolution	% F.S.	0.4*	k 🛛	infir	nite	infini	te	0.	1
Thermal effect on zero	% F.S./°F	zero) ·	<0.	05	<0.0	2	<0.	.05
Excitation voltage	V	-		max (DC o	6v r AC)	max.1 (DC or	l0v AC)	Sv sq	.wave
Signal output	mv/v			2	0	3		1200-2 frequ	000Hz ency
Bridge resistance	ohms			150in 1	115out	350)	coil	150
Transducer housing dia.	in.	1.5		1.6	25	2.2	5	1	
Transducer housing length	in.	6		e	5	. 6		é	5
Weight (less cable	lbs.	5	7	5	7	5	7	5	7
Connecting leads	-	Polyethy twin tu	/lene ibes	4-co shiel	nd. ded	4-con shield	ıd. ed	2-cc shie	ond, Ided
Readout box	-	Petur C	102	Geokon	RB-101	Vishay P	350A	Geokon	GK-401
	*Deper	nds on pres	sure gag	e in reado	ut box.				
•									

Accessories GK-401 Readout Box. Thermistor Readout. RB-101 Readout Box. P350A Readout Box. Petur C-102 Readout Box.

1.1

Options Thermistors. Flex Conduit Cable Protection.

Ordering Information Specify: 1.Model Number. 2.Range. 3.Cable Length. 4.Accessories Required. 5.Options Required.

For further information contact us

geokon

7 CENTRAL AVENUE WEST LEBANON, N.H. O3784

603/298-5064

時には

「「おおけ」の語言語

Geokon Vibrating Wire Piezometers and Pressure Transducers are designed to measure fluid pressures (e.g. ground water elevations, pore pressures) in boreholes, embankments, foundations, pipelines, wells and pressure vessels. Long term stability in difficult environments.

- Hermetically sealed.
- Small size.
- Stainless steel construction.
- Lightning protected.
- Heavy duty cable.

The transducer employs a sensitive diaphragm, coupled to a vibrating wire, that converts the fluid pressures to be measured into an equivalent frequency signal. Transmitted through a cable to the readout location, the frequency signal is there displayed on a portable readout box. Alternatively, a Datalogger can be used to record the data automatically. Several different models and options are available. The standard sensor is dimensionally small enough to be installed into fills, embankments, boreholes, standpipes or observation wells. A drive-in version is available for pushing directly into soft ground on the end of diamond drill rods. For use in critical

Several different models and options are available. The standard sensor is dimensionally small enough to be installed into fills, embankments, boreholes, standpipes or observation wells. A drive-in version is available for pushing directly into soft ground on the end of diamond drill rods. For use in critical locations another model has been developed with a pneumatic back-up system to provide confirmation of gage accuracy and stability. One model is available for use where fluctuating temperatures are a problem and another for use in typical pressure transducer applications where a hydraulic pressure tanks, inpelines, earth pressure cells, etc.

pressure commection is required to permit easy coupling to pressure commection is required to permit easy coupling to pressure cells, etc. All models of transducers may be obtained with a built-in thermistor for measuring temperatures at the sensor location. Construction: Geokon piezometers utilize the latest developments in vibrating wire pressure transducer technology. The transducer is fabricated entirely from stainless steel components, selected to minimize temperature effects and welded together to create a hermetically sealed chamber for the vibrating wire element. The ends of the vibrating wire are clamped using a patented swaging technique that ensures high stability while allowing miniaturization of the components. An electromagnetic coil, located close to the wire, is used to both pluck the wire and to convert the wire vibrations so produced into an electrical output current whose frequency is identical to the natural resonant frequency of the wire. Changing pressure causes deflection of the diaphragm thereby altering the tension of the wire and its resonant frequency of vibration. Thus for each pressure there is a corresponding frequency output.

quency output. The cable used to transmit the frequency signals is designed for direct burial in the ground. It has two thick outer wraps of tough high-density polyethylene separated by a metallic armored sheath. The cable is grease filled to discourage water wicking along it in the event that it is cut. Both cable and coil are protected from lightning damage. It should be noted that lead wire resistance changes brought about by water penetration, temperature variations and contact resistance do not affect the frequency of the output signal. This factor, coupled with excellent zero stability, makes the Geokon Vibrating Wire Transducer more preferable than conventional strain gage transducers for long-term measurements in difficult environments.

In geotechnical environments it is necessary to use a filter stone to prevent soil particles from impinging directly on the diaphragm. The standard filter stone is made from sintered stainless steel with a 50 micron pore size. In partially saturated soils, where air is to be excluded from the piezometer cavity, a high air entry filter stone may be specified. Note that negative pressures (suction) can be measured.

MODELS AVAILABLE

Model 4500S STANDARD MODEL

This model is designed for direct burial in embankments, fills, etc. Also for installation inside boreholes or obser-vation wells. Its small size allows for its installation in conventional standpipe piezometer riser pipe (minimum I.D. is ¼").

Model 4500DP DRIVE POINT MODEL

This transducer is located inside an EW drill rod coupling with a pointed nose cone attached. When screwed onto the end of EW drill rods the unit can be pushed directly into soft ground with the signal cable located inside the drill rod. This model is recoverable at the end of the job.

Model 4500PN VIBRO/PNEUMATIC MODEL

To be used in very critical applications needing verification of readings. A pneumatic transducer packaged in tandem with the vibrating wire transducer permits a second eval-uation of the measured pressures. The signal cable is supplemented with two pneumatic tubes.

Model 4500T TEMPERATURE STABLE MODEL Where temperatures fluctuate markedly this model is useful since it is only minimally affected by these changes (.01%) F.S./°F,-compared to 0.1%F.S./°F for standard models). Note: All models can be supplied with thermistors built into the transducer to measure the temperature at the transducer location.

Model 4500H PRESSURE TRANSDUCER MODEL This model is supplied with a ¼" male pipe thread fitting to permit the transducer to be coupled directly into hy-draulic or pneumatic pressure lines. For laboratory use a lighter, more flexible signal cable should be specified

Diaphragm

n L

Plucking and Pickup Coils

Readout Instrumentation:

All models can be read using the Geokon Model GT1174 Portable Readout Box. The box displays the reading on a 5-digit liquid crystal display (LCD). The displayed readings can be converted into psi by using the calibration data supplied with the piezometer. The pneumatic half of the Model 4500PN Piezometer can be read using the Petur Model C-102 Readout Box. Junction boxes and terminal boxes are available to protect cable splices and electrical connectors. Automatic and remote recording can be accomplished using the Geokon Model GT1172 Portable Datalogger.

GENERAL SPECIFICATIONS

Standard ranges (lbs./sq. in.)	50, 1	00, 250, 500, 1000, 5000	
Over range	a. [1] [1] [1] [1] [1] [1] [1] [1] [1] [1]	2X rated pressure	
Resolution		0.1% F.S. minimum	A State of the second sec
Accuracy	範疇になり、シャル・	±0.5 % F.S.	
Operating temperature		-20° to 150° F (-29° to 65°C)	
Thermal zero shift	0.1%F.S.	/°F (Model 4500T - 0.01%F.S./°F)
Diaphragm displacement		.01 cc at F.S.	
Cable	4 condu	ctor direct burial type — 22 ga.	
Filter	standard: 50 high air entry	micron sintered stainless steel : Coors Alumina - approx. 2 micro	ns
EIGHTS AND DIMENSIONS			The second s
Model No. 4500	DP	PN	Н
iameter in (mm) 0.75 (19)	1.312 (33.3)	0.75 (19) 0.75 (19)	1.0 (25.4)
ength in (mm) 5.125 (130)	6.75 (171)	7.125 (181) 5.125 (130)	6 (152)
eight lbs (kg) .26 (.12)	1.0(.45)	.5(.23) .26(.12)	1.0(.45)
Ordering Information Specify: 1.Model No. 2.Pressure range 3.Cable length		Optional Accessories Thermistor High-entry filter stone Light-duty cable Terminal houses	
4.Options required	能够为了自然的	lunction boxes	

For further information contact us . . .

7 CENTRAL AVENUE WEST LEBANON, N.H. O3784

603/298-5064

GENERAL PURPOSE PRESSURE TRANSDUCER

IPT-1100 SERIES

- III High Unamplified Output
- Rugged All Welded Construction
 High Overload Capabilities
 Excellent Long Term Stability

The ingenious application of modern solid state technology to transducer sensing is the main reason for making the IPT-1100 Series the most advanced general purpose pressure transducer available. Designed to measure liquid or gas pressure, the transducers are of all-welded stainless steel construction, with integral pressure port and diaphragm. The IPT-1100 provides an extremely rugged, accurate and inexpensive means for pressure-to-voltage conversion. The IPT-1100 Series are ideally suited for a large number of applications in Industry, Process Control, Marine, Automation, Hydraulics, and Aerospace.

INPUT Pressure Ranges Operational Mode	0-5 10 25 50 100 250 500 1000 2500 5000 PSI 0-0.34 0.68 1.72 3.4 6.9 17.2 34.5 69.0 172.0 345.0 BAR Sealed Gauge, Vented Gauge.
Burst Pressure Pressure Media Rated Electrical Excitation Max. Electrical Excitation Input Impedance	2 Times Rated Pressure Range. 5 Times Rated Pressure Range to Max. of 20,000 PSI. (1379 BAR.). Any Liquid or Gas Compatible with 17-4PH SS (H 900 Condition). 10 VDC/AC (RMS) 12 VDC/AC (RMS) 1800 Ohm (Nominal)
OUTPUT Output Impedance Full Scale Output (FSO) Residual Unbalance Combined Non-Linearity, Hysteresis, and Repeatability Hysteresis Repeatability Resolution Natural Frequency (Nom.) Insulation Resistance	650 Ohm (Nominal) 100 mV (Nominal) 5% FSO 0.5% FSO Max. 0.25% FSO Max. 0.1% FSO Max. 0.1% FSO Max. Infinite 12 KHz for 50 PSI Range to 50 KHz for 5000 PSI Range 12 KHz for 50 PSI Range to 50 KHz for 5000 PSI Range 100 Megohm Min. at 50V DC
ENVIRONMENTAL	
Operating Temperature Range Compensated Temperature Range Thermal Zero Shift Thermal Sensitivity Shift Steady Acceleration and	- 40 °F to + 250 °F (- 40 °C to + 120 °C). 80 °F to 180 °F (27 °C to 80 °C). 2% FSO/100 °F (55 °C). 2% FSO/100 °F (55 °C).
Altitude Submersion Humidity Mechanical Shock	Not Greater Than 0.02% FSO/g. Frequency Range 0-2000 Hz Max. Acceleration 50g (100g with no damage) - 150 ft. to + 70,000 ft. Will not Damage Sensor. To 50 ft. Without Damage. 100% Relative Humidity. 100g half Sine Wave 1 m. sec. Duration.
PHYSICAL Pressure Port Electrical Connection Weight	A33856/E4 %20 UNF-3A *B%*-18 NPT Male Available at Extra Cost Sealed Cable Assembly in lengths up to 30 ft. (9 meters) 110 Grame Approx.
	ORDERING INFORMATION: IPT-1100-XXXX-XX-X-XXX Pressure Range in PSI Operational Mode (VG or SG) Pressure Port Thread Size (A or B) Cable Length

HR SERIES—GENERAL APPLICATIONS

- OPTIMUM PERFORMANCE FOR THE MAJORITY OF APPLICATIONS
- LARGE CORE-TO-BORE CLEARANCE 1/16 INCH (1.6 mm) RADIAL

GENERAL SPECIFICATIONS

The HR high reliability series of LVDT's is suitable for most general applications. The HR series features large core-to-bore clearance, high output voltage over a broad range of excitation frequencies, and a magnetic stainless steel case for electromagnetic and electrostatic shielding.

Input Voltage Frequency Range Temperature Range	3 V rms (nominal) 400 Hz to 10 kHz -65°F to +300°F (-55°C to +150°C)	Vibration Tolerance . Coll Form Material Housing Material	20 g up to 2 kHz High density, glass- filled polymer AISI 400 series stainless steel
Null Voltage Shock Survival	Less than 0.5% full scale output $1000 g$ for 11 milliseconds	Lead Wires	28 AWG, stranded copper, Tef- lon-insulated, 12 inches (300 mm) long (nominal)

PERFORMANCE SPECIFICATIONS AND DIMENSIONS (2.5 kHz) METRIC DIMENSIONS IN BLUE

LVDT Model Number	NOMIN Line/ Rani	VAL Ar Ge		LINE ±PE FULL	ARITY RCENT RANG	É	SENSITI' mV Ou Volt In	VITY at/ Per	IMPEC ON	ANCE	PHASE SHIFT	WEI Gri	GHT Ims	C A (Ba	IMENS dy)	IONS B (C)) (910
	Inches		50	100	125	150	.001 In.	E.P.	Pri.	Sec.	Degrees	Body	Core	Inches	me	Inches	min
050 HR	±0.050		0.10	0.25	0.25	0.50	6.3	250	430	4000	-1	32	4	1.13	28 5	0.80	20
100 HR	±0.100		0.10	0.25	0.25	0.50	4.5	189	1070	5000	-5	48	6	1.81	46	1,30	33
200 HR	±0.200	÷ '	0.10	0.25	0.25	0.50	2.5	100	1150	4000	-4	60	8	2.50	63.5	1.65	42
300 HR	±0.300	•	0.10	0.25	0.35	0.50	1.4	51	1100	2700	-11	77	10	3.22	8.2	1.95	50
400 HR	±0.400		0.15	0.25	0.35	0.60	0.90	36	1700	3000	-18	90	15	4.36	111	2.95	75
500 HR	±0.500		0.15	0.25	0.35	0.75	0,73	75	460	375	-1	109	18	5.50	145	3.45	- 80
1000 HR	±1.000		0.25	0.25	1.00	1.30+	0.39	٩f	460	320	-3	126	21	6.63	168	4.00	102
2000 HR	±2.000		0.25	0.25	0.50+	1.00•	0.24	9.6	330	330	+5	168	27	10.00	254	5.30	135
3000 HR	±3.000	••	0.15	0.25	0.50+	1.00-	0.27	n	115	375	+11	225	28	12.81	325	5.60	142
4000 HR	±4,000	100	0.15	0.25	0.50+	1.00+	0.22	8.8	275	550	· · · +1 ·	295	36	15.64	397	7.00	178
5000 HR	±5.000	121	0.15	0.25	1.00+		0,15	6.1	310	400	+3	340	36	17.88	454	7.00	178
10000 HR	±10.00	1250	0,15	0.25	1.00•	-	0.08	3.0	550	750	5	580	43	30.84	783	8.50	216

*Requires reduced core length

ORDERING INFORMATION

CONNECT GRN TO BLU FOR DIFFERENTIAL OUTPUT

SEE SCHAEVITZ SERIES 70 BULLETINS FOR COMPATIBLE SIGNAL-CONDITIONING AND READOUT EQUIPMENT
7

APPENDIX C - Test Results

Table of Contents

																			Ē	age
C.1	. Consol	idati	on Te	st Re	sul	ts	•	•	•	•	•	•	•	•	•	•	•	•	•	214
	C.1.1	CIU	Conso	lidat	ion	C	ur	ve	s	•	•	٠	•	•	•	•	•		•	215
	C.1.2	Isot	ropic	Cons	oli	da	ti	on	С	ur	ve	s	•	•	•	•	•	•	•	218
	C.1.3	One-	Dimen	siona	1 C	on	so.	li	da	ti	on	C	ur	ve	S	•			•	226
	C.1.4	DTTC	P Con	solida	ati	on	С	ur	ve	s	•	•	•	•	•	•	•	•	•	237
C.2	DTTCP	Test	Data	• •	•••	•	•	•		•	•	•	•	•	•		•	•	•	249
	C.2.1	в-2	Test	Resu.	lts	•	•	•	•	•	•	•	•	•	•	•	•	•		250
	C.2.2	в-3	Test	Resul	lts	•	•	•	•	•	•	•	•	•		•		•	•	254
	C.2.3	B-4	Test	Resul	lts	•	•	•	•	•	•			•			•		•	258
	C.2.4	B-5	Test	Resul	lts		•	•	•	•	•	•	•	•	•	•	•	•	•	262
	C.2.5	B-6	Test	Resul	lts		•	•	•	•	•	•	•	•	•	•	•			268
	C.2.6	B-7	Test	Resul	lts	•	•	•	•	•	•	•	•	•	•	•	•	•	•	274
	C.2.7	в-8	Test	Resul	ts	•	-	•	•	•	•	•	•		•			•	•	280
	C.2.8	B-9	Test	Resul	.ts	•	•	•	•	•	•	•								284
	C.2.9	B-10	Test	Resul	ts	•	•	•		•	•		•	•	•				•	290
	C.2.10	B-11	Test	Resul	ts	•	•	•			•		•			•	•		•	294
	C.2.11	B-12	Test	Resul	ts	•		-	•		•	•	•			-	•	•	•	298
C.3	CIU Tes	st Res	sults	••••	•	•	•	•		•	•		•	•		•	•	•	•	302
C.4	X-Ray D)iffra	action	Resu	lts		•	•	•	•		•	•	•	•	-	•	•	•	311

C.l Consolidation Test Results

Load inc.	Load p'	ΔV	Vv	e	V .
no.	(kPa)	cm ³	cm ³		
1	10	0.16	34.28	0.8190	1.8190
2	20	0.40	34.04	0.8132	1.8132
3	40	1.05	33.39	0.7977	1.7977
4	80	1.90	32.54	0.7774	1.7774
5	160	3.09	31.35	0.7490	1.7490
6	320	4.35	30.09	0.7189	1.7189
7	160	3.80	30.64	0.7320	1.7320
8	80	3.10	31.34	0.7487	1.7487
9	40	2.30	32.14	0.7678	1.7678
10	20	1.59	32.85	0.7848	1.7848

en Second

VOLUMETRIC READING - cm³

C.1.3 One-Dimensional Consolidation Curves

ONE-DIMENSIONAL CONSOLIDATION TEST DATA

Load	α _v	ΔH	Δe	е	V
inc.	(kPa)	cm			
1	27.4	0.021	0.0191	0.7809	1.7809
2	54.7	0.0366	0.0348	0.7652	1.7652
3	109.5	0.0627	0.0595	0.7405	1.7405
4	219.0	0.0876	0.0832	0.7168	1.7168
5	437.8	0.1226	0.1164	0.6836	1.6836
6	219.0	0.1208	0.1147	0.6852	1.6852
7	109.5	0.1158	0.1100	0.6900	1.6900
8	54.7	0.1002	0.0952	0.7048	1.7048
9	109.5	0.1074	0.1020	0.6980	1.6980
10	219.0	0.1214	0.1153	0.6847	1.6847
11	438.0	0.1392	0.1322	0.6678	1.6678
12	876.0	0.1748	0.1660	0.6340	1.6340
13	1751.0	0.2190	0.2080	0.5920	1.5920
14	3502.0	0.2516	0.2390	0.5611	1.5611
15	1751.0	0.2490	0.2365	0.5635	1.5635
16	438.0	0.2260	0.2146	0.5854	1.5854
<u>17</u>	27.4	0.1900	0.1804	0.6196	1.6196

C.1.4 DTTCP Consolidation curves

· .

....

C.2 DTTCP Test Data

TEST : B2

Date Tested : 051085

Sample Length After Consolidation : 7.787 cm $\sigma_1^{!}$ =48.0kPa Sample Diameter After Consolidation : 3.754 cm $\sigma_3^{!}$ =28.6kPa Sample Area After Consolidation : 11.069 cm² Δu =15.0kPa Sample Volume After Consolidation : 86.196 cm³ Void Ratio After Consolidation : 0.8313 Water Content Before Consolidation : Water Content After DTTCP Test :

END of	Δ L	E1	${\scriptstyle \Delta}$ V	Ev	$\Delta \mathbf{D}$	E3
Cycle	(cm)	(cm/cm)	(cc)	(cc/cc)	(cm)	(cm/cm)
1	.00032	.00004	-0.06	00070	00160	00043
2	.00040	.00005	-0.16	00190	00370	00099
3	.00070	.000090	-0.26	00300	00599	00160
4	.00106	.00014	-0.26	00300	00610	00163
5	.00080	.00010	-0.36	00420	00820	00218
6	.00130	.00017	-0.36	00420	00830	00221
7	.00108	.00014	-0.42	00490	00956	00255
8	.00124	.00016	-0.46	00530	01050	00280
9	.00134	.00017	-0.46	00530	01050	00280
10	.00128	.00016	-0.52	00600	01180	00310
11	.00146	.00019	-0.54	00630	01230	00328
12	.00148	.00019	-0.56	00650	01270	00338
13	.00162	.00021	-0.62	00720	01400	00373
14	.00168	.00022	-0.66	00770	01480	00394
15	.00168	.00022	-0.71	00820	01600	00426
16	.00204	.00026	-0.71	00820	01610	00429
17	.00176	.00023	-0.82	00950	01840	00490
20	.00188	.00024	-1.01	01170	02260	00602
22	.00230	.00030	-1.06	01230	02370	00631
27	.00200	.00026	-1.12	01300	02500	00666
28	.00226	.00029	-1.11	01290	02500	00666
29	.00202	.00026	-1.21	01400	02700	00719
32	.00222	.00029	-1.21	01400	02700	00719
33	.00288	.00037	-1.21	01400	02700	00719
34	.00252	.00032	-1.24	01440	02770	00738
38	.00322	.00041	-1.26	01460	02830	00754
40	.00286	.00037	-1.31	01520	02930	00781
44	.00288	.00037	-1.41	01640	03140	00836
45	.00308	.00040	-1.41	01640	03150	00839
50	.00314	.00040	-1.46	01690	03260	00868
51	.00322	.00041	-1.48	01720	03300	00879
52	.00332	.00043	-1.51	01750	03370	00898
53	.00332	.00042	-1.51	01750	03370	00898
56	.00330	.00043	-1.51	01750	03370	00898
57	.00350	.00045	-1.51	01750	03380	00900
58	.00332	.00043	-1.56	01810	03480	00927
62	.00340	.00044	-1.61	01870	03600	00959
68	.00360	.00046	-1.66	01930	03700	00986

TEST : B2

Date Tested : 051085

Sample Length After Consolidation : 7.787 $\sigma_1^{\dagger}=48.0$ kPa сm 03 = 28.6kPa Sample Diameter After Consolidation : 3.754 сm : 11.069 cm² Sample Area After Consolidation ∆u=15.0kPa Sample Volume After Consolidation : 86.196 cm³ Void Ratio After Consolidation : 0.8313 Water Content Before Consolidation 2 Water Content After DTTCP Test 2

Middle of	Δ L	E1	Δ٧	Εv	$\Delta \mathbf{D}$	E3
Cycle	(cm)	(cm/cm)	(cc)	(cc/cc)	(cm)	(cń/cm)
1	0011	00021	-0.35	00406	00816	00218
2	0008	00010	-0.35	00406	00760	00202
3	0018	00023	-0.45	00522	00952	00254
4	0006	00008	-0.45	00522	00981	00261
5	0004	00005	-0.45	00522	00986	00263
6	0007	00009	-0.65	00754	01413	00376
7	0004	00005	-0.65	00754	01420	00378
8	00012	00002	-0.65	00754	01401	00373
9	0.0	0.0	-0.75	00870	01646	00439
10	0.0002	.00003	-0.75	00870	01651	00440
11	0.0004	.00005	-0.75	00870	01656	00441
12	0.00046	.00005	-0.85	00986	01875	00526
13	0.00058	.00007	-0.85	00986	01877	00500
14	0.00022	.00003	-0.90	01044	01977	00527
15	0.00018	.00002	-0.95	01102	02094	00555
16	0.00058	.00007	-1.00	01160	02202	00587
17	0.00040	.00005	-1.10	01276	02414	00643
21	0.00092	.00012	-1.30	01508	02859	00762
22	0.00078	.00010	-1.30	01508	02856	00761
24	0.00170	.00022	-1.30	01508	02878	00767
28	0.00142	.00018	-1.40	01624	03090	00822
33	0.00150	.00019	-1.45	01682	03200	00852
34	0.00180	.00023	-1.45	01682	03200	00854
51	0.00246	.00032	-1.70	01972	03760	01000
57	0.00256	.00033	-1.75	02030	03970	01030
58	0.00260	.00033	-1.80	02088	03980	01060

100 ė₃=3.04×10⁻⁵ cycle⁻¹ 90 80 TEST B-2 70 60 CYCLE NUMBER 50 0t7 30 20 10 0 0.0 -0.002 -0-008 -0.010 -0.012

Sample Length After Consolidation : 8.585 cm σ_1^1 =48.0kPa Sample Diameter After Consolidation : 3.929 cm σ_3^2 =28.6kPa Sample Area After Consolidation : 12.184 cm ² Δu =18.6KPa Sample Volume After Consolidation : 104.058 cm ³ Void Ratio After Consolidation : 0.795 Water Content Before Consolidation : 31.5 % Water Content After DTTCP Test : 32.6 %								
End of Cycle	 ∆ L	E1	 ۷۵	Ev	ΔD	E3		
	(cm)	(cm/cm)	(cc)	(cc/cc)	(cm)	(cm/cm)		
5 6 7 11 12 13 17 18 19 23 24 25 30 35 41 43 49 55 59 60 61	.00296 .00926 .00956 .01196 .01240 .01296 .01356 .01462 .01462 .01438 .01506 .01618 .01626 .01698 .01746 .01846 .01896 .01946 .02016 .02016 .02016	. 00034 . 00108 . 00111 . 00139 . 00144 . 00151 . 00158 . 00170 . 00168 . 00175 . 00188 . 00175 . 00188 . 00189 . 00198 . 00200 . 00215 . 00221 . 00227 . 00235 . 00235 . 00235	$\begin{array}{c} 0\\ 0\\ -0.05\\ -0.05\\ -0.10\\ -0.10\\ -0.10\\ -0.20\\ -0.20\\ -0.20\\ -0.20\\ -0.20\\ -0.30\\ -0.30\\ -0.30\\ -0.30\\ -0.35\\ -0.40\\ -0.40\\ -0.30\end{array}$	0 0 00048 000948 000946 000946 000946 000946 00192 00192 00192 00192 00192 00192 00288 00288 00288 00288 00288 00384 00384 00384 00288	00067 00212 00219 00368 00378 00486 00499 00524 00518 00723 00748 00748 00750 00766 00766 00967 00990 01001 01013 01156 01217 01220 01029	00017 00054 00055 00093 00096 00124 00127 00133 00132 00184 00190 00191 00195 00246 00252 00255 00258 00258 00258 00258 00294 00310 00310 00310		
65 66 83 84 89 90 91 95	.02006 .02216 .02276 .02286 .02298 .02256 .02256	.00234 .00234 .00258 .00265 .00265 .00268 .00263 .00263	-0.40 -0.50 -0.55 -0.60 -0.60 -0.65 -0.70	00384 00384 00481 00529 00577 00577 00625 00673	01215 01215 01452 01560 01657 01660 01744 01838	00309 00309 00370 00397 00422 00423 00444 00468		

Date Tested : 053085

Middle Of	AL ∆L	E1	$\Delta \mathbf{V}$	Ev	$\triangle \mathbf{D}$	E3
Cycle	(cm)	(cm/cm)	(cc)	(cc/cc)	(cm)	(cm/cm)
0	00070	00008	0.30	0048	00727	00238
	.00120	.00015	-0.50	0048	007/2	00247
12	.00470	.00055	-0.55	0053	01145	00292
13	.00510	.00059	-0.60	0058	01248	00318
18	.00670	.00078	-0.60	0058	01285	00327
19	.00710	.00082	-0.65	0052	01387	00353
25	.00840	.00098	-0.70	0057	01512	00385
30	.00920	.00107	-0.70	0057	01530	00389
43	.01090	.00127	-0.80	0077	01758	00447
49	.01390	.00162	-0.75	0072	01733	00441
55	.01200	.00140	-0.85	0082	01977	00478
61	.01320	.00154	-0.90	0086	02000	00509
66	.01330	.00155	-0.90	0087	02000	00509
84	.01580	.00184	-1.00	0096	02246	00572
90	.01550	.00181	-1.10	0106	02428	00618

-

Sample Length After Consolidation : 8.909 ⊂m $\sigma_1 = 48.0 \text{kPa}$ Sample Diameter After Consolidation : 3.918 σ3=28.6kPa cm Sample Area After Consolidation : 12.034 cm² $\Delta u = 22.9 kPa$ Sample Volume After Consolidation : 107.397 ⊂ m³ Void Ratio After Consolidation : 0.859 Water Content Before Consolidation : 31.5 % Water Content After DTTCP Test : 30.9 %

End of	ΔL	E1	Δ Υ	Ev	∆D	E3
Lycie	(50)		()	(((
	(= 111 7		()		(Cm)	
~			 ^		~~~~~	
4	.00470	.00052	0	0	00100	00027
0	.00900	.00101	0	0	00198	00051
2	.00980	.00110	0	0	00216	00055
8	.01076	.00121	0	0	00237	00081
12	.01228	.00138	0	0	00270	00069
13	.01302	.00146	0	0	00287	00073
14	.01358	.00152	0	0	00299	00076
18	.01450	.00163	0	0	00319	00082
20	.01540	.00173	0	0	00339	00087
24	.01640	.00184	O	0	00361	00093
25	.01660	.00186	O	Q	00366	00093
26	.01700	.00191	0	0	00375	00096
30	.01780	.00200	0	0	00392	00100
36	.01880	.00211	0	Q	00414	00106
37	.01880	.00211	0	0	00414	00106
Power	failure	- sample re	consoli	dated to :	V = 108.4	197 ⊂m ³
					L = 8.697	⁷ cm
					D = 3.985	5 cm
51	.02040	.00229	0	0	00471	00120
52	.02042	.00229	0	0	00471	00120
53	.02062	.00231	0	0	00476	00122
57	.02320	.00260	0	0	00535	00136
58	.02380	.00267	0	0	00549	00140
59	.02400	.00269	0	0	00554	00141
60	.02450	.00275	0	0	00565	00144
63	.02444	.00274	-0.10	00093	00340	00097
64	.02470	.00277	-0.10	00093	00386	00099
65	.02480	.00278	-0.10	00093	00388	00099
69	.02550	.00286	-0.10	00093	00404	00103
72	.02540	.00285	-0.10	00093	00402	00103
77	.02640	.00296	-0.10	00093	00425	00108
78	.02650	.00297	-0.10	00093	00427	00109
81	.02650	.00297	-0.10	00093	00427	00109

TEST : B4

Date Tested : 062085

Sample Length After Consolidation: 8.909 cm $\sigma_1^{!}=48.0 \text{ kPa}$ Sample Diameter After Consolidation: 3.918 cm $\sigma_3^{!}=28.6 \text{ kPa}$ Sample Area After Consolidation: 12.034 cm² Δ u=22.9 kPaSample Volume After Consolidation: 107.397 cm³Void Ratio After Consolidation: 0.859Water Content Before Consolidation: 31.5%Water Content After DTTCP Test: 30.9%

Middl∈ Ωf	e ∆L	E1	ΔV	Ev	∆ D	E3
Cycle	(cm)	(cm/cm)	(cc)	(cc/cc)	(cm)	(cm/cm)
1 2 8 13 14 20	00920 00820 00220 .00040 .00080 .00260	00103 00092 00025 .00004 .00009 .00029	0.70 0.80 0.85 -0.80 -0.90 -0.90	0065 0074 0079 0074 0084 0079	01073 01276 01499 01465 01660 01600	00274 00326 00383 00374 00423 00410
Power	failure ·	- sample re	consoli	dated to :	V = 108.49 L =8.697 D = 3.985	7 cm ³ cm cm
52 53 58 64 65	.01020 .01020 .01300 .01260 .01280	.00114 .00114 .00146 .00141 .00144	-0.95 -1.00 -0.95 -0.90 -0.90	0088 0092 0088 0083 0083	01979 02070 02043 01940 01947	00505 00528 00522 00496 00497

Sample Length After Consolidation : 8.031 cm σ_1^{+} =38.2kPa Sample Diameter After Consolidation: 3.575 cm σ_3^{+} =10.1kPa Sample Area After Consolidation : 10.086 cm² Δ u=10. kPa Sample Volume After Consolidation : 80.602 cm³ Void Ratio After Consolidation : 0.834 Water Content Before Consolidation : 27.0 % (air dry) Water Content After DTTCP Test : 33.0 %

End of	ΔL	E1	ΔV	Ev	∆D	E3
Cycle	(cm)	(cm/cm)	(cc)	(cc/cc)	(cm)	(cm/cm)
، میں میں میں بین میں جو	بر حديد حديد حديد وعند خلية قابل					
1	00770	00094	0	0	- 00174	- 00049
5	01570	.00070	~~~~	~~~~	.001/4	.00047
5	.01750	.00718	-0.10	00124	00566	00138
7	.02010	.00250	-0.10	- 00124	- 00673	00188
11	.02680	00334	-0.20	- 00748	- 01045	- 00797
17	02900	00361	-0.20	- 00248	- 01090	- 00304
17	03000	.00374	-0.20	-00240	- 01120	- 00312
17	.03000	.00374	-0.20	- 00248	- 01120	- 00372
19	03290	.00410	-0.20	- 00248	-01107	- 00331
19	03240	.00416	-0.20	- 00240	01102	00331
17 77	03440	.00410	-0.20	- 00240	01173	- 0034
20	.03440	.00426	-0.20	00248	01213	00340
25	.03520	.00438	-0.20	00248	-01233	- 00345
29	.03570	00445	-0.20	- 00248	-01244	- 00349
<u>4</u> 1	04900	00410	-0.40	- 00494	- 01097	- 00554
47	05040	.00678	-0.40	- 00496	- 02020	- 00545
42 ·	.05070	.00628	-0.40	- 00496	- 02020	- 00570
40	05120	-00000	-0.40	- 00496	- 02040	- 00570
45	05120	.00030	-0.40	- 00496	- 02040	- 00570
45	05140	-00000 00443	-0.40	- 00494	- 02050	- 00572
40	-05180	00645	-0.40	00496	02030	00572
47	05740	.00040	-0.40	- 00496	02030	- 00579
40	05270	.00655	-0.40	- 00494	- 02070	- 00579
50	.05270	.00660	-0.40	- 00496	02070	00579
51	.05270	.00660	-0.40	- 00496	02070	- 00579
52	05280	.00660	-0.40	- 00494	02070	- 00579
53	05340	00665	-0.40	- 00494	- 02090	- 00584
54	.05330	- 00664	-0.40	- 00496	- 02094	- 00583
54	05360	00667	-0.40	- 00496	- 02091	- 00585
56	05360	00667	-0.40	- 00496	- 02091	- 00585
57	05350	00666	-0.40	- 00496	- 02088	- 00584
58	- 05360	. 00667	-0.50	00620	02310	00647
59	. 05370	- 00669	-0.50	00420	- 02315	- 00449
<u> </u>	.05450	- 00679	-0.50	- 00420	- 02330	00453
61	.05480	- 00682	-0.50	- 00620	- 02340	- 00455
62	.05490	- 00482	-0.50	- 00420	- 02340	- 00455
5 <u>2</u> 47	05440	00480	-0.50	- 00420	- 07775	- 00453

TEST : B5 (cont'd)

End of Cvcle	<u>۸</u> ۲	E1	${}_{\Delta} \mathbf{V}$	Ev	$\Delta \mathbf{D}$	E3
-,	(cm)	(cm/cm)	(cc)	(cc/cc)	(cm)	(cm/cm)
			میں میں درب ہیں ہیں ہیں			
	05470	00/01	0 E0			- 00454
64	.03470	.00681	-0.30	00820	02340	00634
65	.05500	.00685	-0.50	00620	02340	00654
66	.05550	.00691	-0.50	00620	02360	00659
67	.05610	.00699	-0.55	00682	02480	00694
78	.05660	.00700	-0.70	00868	02824	00790
83	.41770	.05200	-1.90	02357	13990	03910
84	.42568	.05303	-2.00	02481	14400	04028
86	.47308	.05891	-2.10	02605	15790	04417
89	.68910	.08581	-2.45	03040	22042	06166
95	.76930	.09579	-2.30	02854	23788	06654

TEST : BS

Date Tested : 071985

Sample	Length	After Conso	lidatio	n : 8.0	031 ⊂m	σ ¦=38.2kPa
Sample	Diamete	er After Con	solidat	ion : 3.5	575 cm	σ] =10.1kPa
Sample	Area Af	ter Consoli	dation	: 10,	.086 cm ²	∆u=10.1kPa
Sample	Volume	After Conso	lidatio	n : 80,	.602 cm ³	
Void R	atio Aft	er Consolid	ation	: 0.8	834	
Water (Content	Before Cons	olidati	on : 27.	.0% (air	dry)
Water 1	Content	After DTTCP	Test	: 33.	.0%	•
			للابت ذهبه هجور جمعه ونبعة معده فلند			
Middle	ΔL	E1	$\Delta \mathbf{V}$	Ev	$\Delta \mathbf{D}$	E3
Of						
Cycle	(cm)	(cm/cm)	(cc)	(cc/cc)	(cm)	(cm/cm)
1	.00100	.0001	-0.60	0074	01353	00379
6	.01530	.0019	-0.60	0074	016/3	00468
12	.02670	.0033	-0.65	0081	02040	005/1
13	.02770	.0034	-0.70	0087	021/3	00608
18	.03150	.0039	-0.70	0087	02260	00632
19	.03180	.0040	-0.70	0087	02260	00634
20	.03250	.0041	-0.70	0087	02290	00638
21	.03350	.0042	-0.70	0087	02300	00644
22	.03350	.0042	-0.70	0087	02300	00644
23	.03290	.0041	-0.70	0087	02290	00640
24	.03330	.0042	-0.70	0087	02300	00640
25	.03400	.0042	-0.70	0087	02310	00650
36	.03920	.0049	-0.80	0099	02650	00740
42	.04860	.0061	-0.90	0112	03090	00860
43	.04950	.0062	-0.90	0112	03110	00870
44	.05040	.0063	-0.90	0112	03130	00870
45	.05060	* 0063	-0.90	0112	03130	00876
46	.05080	.0063	-0.90	0112	03140	00877
47	.05100	.0064	-0.90	0112	03140	00878
48	.05090	.0063	-0.90	0112	03140	00878
49	.05170	.0064	-0.90	0112	03160	00883
50	.05170	.0064	-0.90	0112	03160	00883
51	.05180	.0064	-0.90	0112	03160	00883
52	.05200	.0065	-0.90	0112	03162	00885
53	.05210	.0065	-0.90	0112	03165	00887
54	.05260	.0066	-0.90	0112	03176	00889
55	.05280	.0066	-0.90	0112	03181	00890
56	.05280	.0066	-0.90	0112	03181	00840
57	.05290	.0066	-0.90	0112	03183	00840
58	.05310	.0066	-0.95	0118	03300	00923
59	.05320	.0066	-1.00	0124	03410	00954
60	.05350	.0067	-1.00	0124	03418	00856
61	.05380	.0067	-1.00	0124	03424	00958
62	.05430	.0068	-1.00	0124	03436	00961
63	.05440	.0068	-1.00	0124	03550	00993
64	.05460	.0068	-1.05	0124	03550	00994
65	.05460	.0068	-1.10	0136	03664	01025

TEST : B5 (cont'd)

Middle of	ΔL	E1	$\Delta \mathbf{V}$	Ev	$\Delta \! \mathbf{D}$	E3
Cycle	(cm)	(cm/cm)	(cc)	(cc/cc)	(cm)	(cm/cm)
66	.05440	.0068	-1.10	0136	03654	01024
67	.05570	.0069	-1.10	0136	03675	01028
68	.05550	.0069	-1.10	0136	03684	01031
69	.05550	.0069	-1.10	0136	03684	01031
70	.05560	.0069	-1.10	0136	03686	01312
71	.05570	.0069	-1.15	0143	03799	01063
72	.05570	.0069	-1.15	0143	03794	01063
73	.05580	.0070	-1.15	0143	03901	01063

TEST : B6

Sample Length After Consolidation : 7.810 cm σ =62.0kPa Sample Diameter After Consolidation : 3.615 cm σ_3 =20.7kPa Sample Area After Consolidation : 10.262 cm² Δ u=10.5kPa Sample Volume After Consolidation : 80.142 cm³ Void Ratio After Consolidation : 0.837 Water Content Before Consolidation : 26.3 % (air dry) Water Content After DTTCP Test : 30.1 %

End of Cvcle	Δ	E1	Δν	Εv	ΔD	E3
	(cm)	(cm/cm)	(cc)	(cc/cc)	(cm)	(cm/cm)
1	.00020	.00003	-0.05	00062	00118	00032
5	.00050	.00006	-0.10	00125	00237	00066
6	.00070	.00009	-0.20	00250	00467	00129
7	.00090	.00011	-0.20	00250	00472	00131
11	.00050	.00006	-0.20	00250	00462	00128
12	.00210	.00027	-0.30	00374	00725	00200
13	.00210	.00027	-0.30	00374	00725	00200
17	.00160	.00021	-0.30	00374	00713	00197
18	.00200	.00026	-0.30	00374	00722	00200
19	.00230	.00029	-0.30	00374	00729	00202
23	.00240	.00031	-0.35	00437	00944	00234
24	.00290	.00037	-0.35	00437	00856	00267
25	.00290	.00037	-0.35	00437	00856	00267
26	.00270	.00035	-0.35	00437	00851	00235
27	.00280	.00036	-0.35	00437	00854	00236
28	.00280	.00036	-0.40	00499	00966	00267
29	.00270	.00035	-0.40	00499	00964	00267
41	.00320	.00041	-0.50	00624	01200	00332
42	.00390	.00050	-0.45	00562	01100	00305
43	.00390	.00050	-0.45	00562	01100	00305
44	.00370	.00047	-0.45	00562	01100	00304
45	.00370	.00047	-0.45	00562	01100	00304
46	.00380	.00049	-0.50	00624	01210	00336
47	.00360	.00046	-0.50	00624	01210	00335
48	.00400	.00051	-0.50	00624	01220	00337
49	.00410	.00052	-0.50	00624	01220	00338
50	.00420	.00054	-0.50	00624	01224	00338
51	.00390	.00050	-0.50	00624	01220	00337
52	.00390	.00050	-0.50	00624	01220	00337
53	.00390	.00050	-0.50	00624	01220	00337
54	.00400	.00051	-0.55	00686	01331	00368
55	.00410	.00052	-0.55	00686	01334	00369
56	.00400	.00051	-0.55	00686	01331	00368
57	.00390	.00050	-0.60	00749	01444	00399
58	.00390	.00050	-0.60	00749	01444	00399
59	.00380	.00049	-0.60	00749	01439	00398
60	.00400	.00051	-0.60	00749	01444	00399

TEST : B6 (cont'd)

End of Cycle	ΔL	E1	ΔV	Ev	$\Delta \mathbf{D}$	E3
	(cm)	(cm/cm)	(cc)	(cc/cc)	(cm)	(cm/cm)
					، میں سے بنے جے سن من من سے لیے ایے	
61	00390	. 00050	-0-60	00749	- 01441	00399
62	00380	00049	-0.60	- 00749	- 01439	- 00398
63	.00320	.00041	-0.60	00749	01425	00394
64	-00370	.00047	-0.60	00749	01437	00398
65	.00400	.00051	-0.60	00749	01444	00399
66	.00430	.00055	-0.60	00749	01451	00401
67	.00450	.00058	-0.60	00749	01455	00403
78	.00420	.00054	-0.70	00873	01673	00463
79	.00540	.00069	-0.70	00873	01701	00471
80	.00500	.00064	-0.70	00873	01692	00468
81	.00500	.00064	-0.70	00873	01692	00468
82	.00520	.00067	-0.70	00873	01676	00469
83	.00530	.00068	-0.70	00873	01699	00470
84	.00590	.00076	-0.70	00873	01713	00474
85	.00590	.00076	-0.70	00873	01713	00474
86	.00580	.00074	-0.70	00873	01710	00473
87	.00580	.00074	-0.70	00873	01710	00473
88	.00580	.00074	-0.70	00873	01710	00473
89	.00600	.00077	-0.70	00873	01715	00474
90	.00640	.00082	-0.70	00873	01724	00477
91	.00700	.00090	-0.70	00873	01738	00481
92	.00680	.00087	-0.70	00873	01733	00480
93	.00670	.00086	-0.70	00873	01731	00479
94	.00680	.00087	-0.70	00873	01733	00480
95	.00690	.00088	-0.70	00873	01736	00480

Date Tested : 072085

Sample Length After Consolidation : 7.810 σ**] =62.0kPa** сm $\sigma_{3}^{\dagger} = 20.7 \text{kPa}$ Sample Diameter After Consolidation : 3.615 cm $cm^2 \Delta u=10.5kPa$ Sample Area After Consolidation : 10.262 Sample Volume After Consolidation : 80.142 cm³ Void Ratio After Consolidation : 0.837 Water Content Before Consolidation : 26.3% (air dry) Water Content After DTTCP Test : 30.1%

Middle	∍ ∆L	E1	۵v	Eν	ΔD	E3
Cycle	(cm)	(cm/cm)	(cc)	(cc/cc)	(cm)	(cm/cm)
			<u> </u>			
1	00180	0002	-0.20	0025	00414	00114
17	00130	0002	-0.30	0037	00848	00179
12	00030	0000	-0.40	0050	00890	00247
10	.00210	.0027	-0.40	0050	00950	00263
18	.00060	.0001	-0.45	0056	01030	00284
19	.00050	.0001	-0.45	0056	01030	00284
20	.00050	.0001	-0.45	0056	01030	00284
21	.00010	.0000	-0.45	0056	01020	00281
22	.00050	.0001	-0.50	0062	01140	00315
23	.00100	.0001	-0.50	0062	01150	00318
24	.00110	.0001	-0.50	0062	01152	00319
25	.00170	.0002	-0.50	0062	01170	00322
36	.00150	.0002	-0.50	0062	01161	00321
42	.00220	.0003	-0.60	0075	01400	00390
43	.00250	.0003	-0.60	0075	01410	00390
44	.00220	.0003	-0.60	0075	01410	00390
45	.00200	.0003	-0.60	0075	01400	00387
46	.00190	.0002	-0.60	0075	01390	00386
47	.00210	.0003	-0.60	0075	01400	00387
48	.00250	.0003	-0.60	0075	01410	00390
49	.00280	.0004	-0.60	0075	01420	00392
50	.00240	.0003	-0.60	0075	01410	00389
51	.00250	.0003	-0.60	0075	01410	00390
52	.00270	.0003	-0.60	0075	01413	00391
53	.00270	.0003	-0.60	0075	01413	00391
54	.00250	.0003	-0.60	0075	01410	00390
55	.00310	.0004	-0.60	0075	01423	00394
56	.00260	.0003	-0.60	0075	01411	00390
57	.00250	.0003	-0.60	0075	01410	00390
58	.00240	.0003	-0.60	0075	01410	00389
59	.00180	.0002	-0.70	0087	01617	00447
60	.00240	.0003	-0.70	0087	01631	00451
61	.00270	.0003	-0.70	0087	01638	00453
62	.00250	.0003	-0.70	0087	01633	00452
63	.00270	.0003	-0.70	0087	01638	00453
64	.00300	.0004	-0.70	0087	01645	00455

TEST : B6 (cont'd)

Middle of	ΔL	E1	Δ٧	Ev	$\Delta \mathbf{D}$	E3
Cycle	(cm)	(cm/cm)	(cc)	(cc/cc)	(cm)	(cm/cm)
66	.00250	.0003	-0.75	0094	01746	00483
67	.00350	.0004	-0.75	0094	01764	00488
68	.00380	.0005	-0.75	0094	01776	00491
69	.00320	.0004	-0.75	0094	01762	00488
70	.00320	.0004	-0.75	0094	01764	00488
71	.00320	.0004	-0.80	0100	01874	00519
72	.00320	.0004	-0.80	0100	01874	00519
73	.00300	.0004	-0.80	0100	01870	00517
74	.00350	.0004	-0.80	0100	01881	00520
75	.00330	.0004	-0.80	0100	01877	00519
76	.00340	.0004	-0.80	0100	01879	00520
77	.00370	.0005	-0.80	0100	01886	00522
78	.00380	.0005	-0.80	0100	01888	00522
79	.00300	.0005	-0.80	0100	01888	00522
80	.00410	.0005	-0.80	0100	01900	00524
81	.00380	.0005	-0.80	0100	01888	00522
82	.00370	.0005	-0.85	0106	02000	00553
83	.00380	.0005	-0.85	0106	02000	00553
84	.00440	.0006	-0.85	0106	02014	00557
85	.00460	.0006	-0.85	0106	02019	00559
86	.00460	.0006	-0.85	0106	02019	00559
87	.00450	.0006	-0.90	0112	02130	00589
88	.00470	.0006	-0.90	0112	02134	00590
89	.00470	.0006	-0.90	0112	02134	00590
9 0	.00490	.0006	-0.90	0112	02138	00519

Date Tested : 080985

Sample Sample	Length Diamete	After Consol er After Cons	lidatic solidat	n : 7.598 ion: 3.558	c m ⊂ m	$\sigma_1' = 52.2 \text{kPa}$ $\sigma_3' = 26.0 \text{kPa}$
Sample	Area Ai	fter Consoli	dation	: 9.943		∆u=16.6kPa
Sample	Volume	After Conso	lidatio	n : 75.54	-7 ⊂m ⁻³	
Void Ra	atio A+1	er Consolida	ation	: 0.813		
water (Content	Betore Lons	JIIOATI	on: 27.7%		
water (Jontent	Atter DITCP	lest	: 33.27	•	
End Of	AL	El	ΛV	Ev	۸D	F3
Cvcle	<u></u>		<u> </u>		4 -	
_/	(cm)	(cm/cm)	(cc)	(cc/cc)	(cm)	(cm/cm)
1	.00040	.00005	0	0	00006	00002
2	.00070	.00009	0	0	00013	00004
6	.00080	.00011	-0.10	0013	00251	00070
7	.00020	.00003	-0.10	0013	00237	00067
12	.00120	.00016	-0.30	0040	00730	00205
13	.00110	.00014	-0.30	0040	00728	00205
14	.00110	.00014	-0.30	0040	00728	00205
18	.00140	.00018	-0.40	0053	00970	00273
19	.00150	.00020	-0.40	0053	00972	00273
20	.00210	.00028	-0.40	0053	00986	00277
24	.00140	.00018	-0.50	0066	01205	00339
25	.00180	.00237	-0.50	0066	01214	00341
26	.00170	.00022	-0.50	0066	01212	00341
27	.00140	.00018	-0.50	0066	01205	00339
28	.00130	.00017	-0.50	0066	01202	00338
29	.00140	.00018	-0.50	0066	01205	00339
30	.00140	.00018	-0.50	0066	01205	00339
31	.00140	.00018	-0.50	0066	01205	00339
32	.00150	.00020	-0.50	0066	01207	00339
33	.00140	.00018	-0.50	0066	01205	00339
34 	.00160	.00021	-0.50	0066	01220	00340
35 7/	.00180	.00024	-0.50	0066	01214	00341
36 77	.00180	.00024	-0.50	0066	01214	00341
<i>ও।</i> उठ	.00180	.00024	-0.50	0066	01214	00341
১৪ 70	.00280	.00037	-0.50	0066	01238	00348
37	.00270	.00036	-0.50	0088	01235	0034/
40	.00290	.00038		0066	01240	00349
41	.00300	.00040		0066	01242	00349
42 13	.00290	.00038	-0.50	0066	01240	00349
-т-) ДД	00750	00033	-0.50	- 0044	- 01254	- 00355
45	003200	.00046	-0.50	- 0044	- 01234	- 00353
44	04700	.00047	-0.50	- 0066	- 01257	- 00353
47	.00300	.00051	-0.50	0044	01744	- 00355
48	.00440	.00058	-0.50	0044	- 01275	- 00350
49	.00460	- 00061	-0.50	0066	01280	00360
50	.00450	.00059	-0.50	0066	01278	00359

.

TEST :B7 (cont'd)

End of Cycle	<u>۸</u> ۲	E1	Δ٧	Ev	∆ D	E3
	(cm)	(cm/cm)	(cc)	(cc/cc)	(cm)	(cm/cm)
51	.00450	.00059	-0.50	0066	01278	00359
52	.00440	.00058	-0.50	0066	01275	00358
53	.00430	.00057	-0.50	0066	01273	00358
54	.00430	.00057	-0.50	0066	01273	00358
56	.00530	.00070	-0.60	0079	01531	-:00430
57	.00530	.00070	-0.60	0079	01531	00430
58	.00530	.00070	-0.60	0079	01531	00430
59	.00530	.00070	-0.60	0079	01531	00430
60	.00520	.00070	-0.60	0079	01529	00430
61	.00560	.00074	-0.60	0079	01538	00432
62	.00620	.00082	-0.60	0079	01552	00436
63	.00660	.00087	-0.60	0079	01562	00439
64	.00710	.00093	-0.60	0079	01574	00442
67	.00680	.00090	-0.60	0079	01566	00440
68	.00720	.00095	-0.60	0079	01576	00443
69	.00780	.00103	-0.60	0079	01590	00447
70	.00800	.00105	-0.60	0079	01595	00448
74	.00900	.00119	-0.60	0086	01736	00489
76	.00740	.00100	-0.70	0093	01915	00510
81	.00680	.00100	-0.75	0099	01918	00539
83	.00690	.00091	-0.80	0106	02038	00573
86	.00680	.00100	-0.80	0106	02036	00572
90	.00730	.00100	-0.80	0106	02047	00574
92	.00750	.00100	-0.85	0113	02169	00610
96	.00730	.00100	-0.90	0119	02282	00641

Sample Length After Consolidation : 7.598 cm $\sigma_1^*=52.2$ kPa Sample Diameter After Consolidation : 3.558 cm $\sigma_3^*=26.0$ kPa Sample Area After Consolidation : 9.943 cm ² Sample Volume After Consolidation : 75.547 cm ³ Void Ratio After Consolidation : 0.813 Water Content Before Consolidation : 27.7% Water Content After DTTCP Test : 33.2%							
Middl of	e AL	E1	ΔV	E∨	Δ D	E3	
Cycle	(cm)	(cm/cm)	(cc)	(cc/cc)	(cm)	(cm/cm)	
1	00230	0003	-0.30	0040	00648	00182	
2	00220	0003	-0.30	0040	- 00451	- 00183	
3	00200	0003	-0.30	0040	00455	- 00184	
4	00210	0003	-0.30	0040	00453	- 00184	
5	00340	0004	-0.30	0040	00622	00175	
6	00230	0003	-0.35	0050	00766	00215	
7	00160	0002	-0.35	0050	00782	00220	
8	00230	0003	-0.35	0050	00766	00215	
13	00270	0004		0070			
14	00280	0004	-0.65	0070	01226	00344	
15	00270	0004	-0.65	0090	01458	00410	
16	00210	0003	-0.65	0070	01474	00414	
17	00230	0003	-0.65	0070	01470	00413	
18	00230	0003	-0.65	0090	01470	00413	
19	00210	0003	-0.65	0090	01477	00415	
20	00140	0002	-0.70	0090	01608	00452	
21	00140	0002	-0.70	0090	01608	00452	
22	00140	0002	-0.70	0090	01608	00452	
23	00130	0002	-0.70	0090	01610	00453	
24	00120	0002	-0.70	0090	01613	00453	
25	00130	0002	-0.70	0090	01610	00453	
26	00130	0002	-0.75	0100	01728	00486	
27	00150	0002	-0.75	0100	01723	00484	
28	00180	0002	-0.75	0100	01716	00482	
29	00140	0002	-0.75	0100	01725	00485	
30	00140	0002	-0.75	0100	01725	00485	
31	00160	0002	-0.75	0100	01721	00484	
32	00190	0002	-0.75	0100	01735	00482	
33	00130	0002	-0.75	0100	01728	00486	
34	00110	0001	-0.75	0100	01732	00487	
35	00100	0001	-0.75	0100	01735	00488	
36	00080	0001	-0.75	0100	01739	00489	
37	00080	0001	-0.75	0100	01739	00488	
38	00010	0000	-0.75	0100	01756	00494	
39	.00060	.0001	-0.75	0100	01772	00498	
40	.00070	.0001	-0.75	0100	01775	00499	
41	.00070	- 0001	-0.75	0100	- 01779	- 00500	

TEST : B7 (cont'd)

Middle of	ΔL	E1	$\Delta \mathbf{V}$	Ev	$\Delta \mathbf{D}$	E3
Cycle	(cm)	(cm/cm)	(cc)	(cc/cc)	(cm)	(cm/cm)
42	- 00080	. 0001	-0 75	- 0100	- 01777	
43	.00130	.0002	-0.75	- 0100	- 01800	00499
44	.00220	.0003	-0.75	- 0100	- 01810	00503
45	- 00180	- 0002	-0.75	- 0100	- 01801	00509
46	.00200	.0003	-0.75	- 0100	01801	00508
47	.00200	- 0003	-0.75	- 0100	01805	00507
48	.00210	0003	-0.75	- 0100	01803	00507
49	.00240	.0003		- 0100	01808	00508
50	00260	.0003	-0.75	0100	01819	00511
51	.00260	.0003	-0.75	0100	01819	00511
52	.00250	.0003	-0.75	0100	01819	00511
57 57	.00250	.0003		0100	01817	00511
54	.00230	.0003	-0.75	0100	01817	00511
54	.00230	.0003	-0.75	0100	01812	00509
54	.00230	.0003	-0.75	0100	01812	00509
57	.00220	.0003	-0.80	0110	01927	00542
50	.00220	.0003	-0.80	0110	01927	00542
10 50	.00290	.0004	-0.80	0110	01944	00546
40	.00280	.0004	-0.80	0110	01941	00546
4U 41	.00270	.0004	-0.85	0110	02056	00579
61 4 7	.00270	.0004	-0.85	0110	02056	00579
62	.00370	.0005	-0.85	0110	02080	00584
63 -	.00450	.0006	-0.85	0110	02099	00590
64	.00400	.0005	-0.85	0110	02090	00586
6/	.00510	.0007	-0.85	0110	02112	00594
68	.00520	.0007	-0.85	0110	02115	00594
67	.00460	.0006	-0.85	0110	02101	00590
70	.00350	.0005	-0.85	0110	02075	00583
/ 7	.00260	.0003	-1.05	0140	02522	00709
92	.00210	.0003	-1.15	0150	02751	00773

TEST	: B8
------	------

Sample Sample Sample Sample Void R Water Water	Length A Diameter Area Aft Volume A atio Afte Content B Content A	fter Conso After Con er Consoli fter Conso r Consolid efore Cons fter DTTCP	lidatio solidat dation lidatio ation olidati Test	n : 7.462 ion: 3.603 : 10.19 n : 76.05 : 0.810 on : 29.5% : 30.0%	см см 3 см ² 9 см ³	σ¦ =57.2kPa σ₃ =16.8kPa ∆u=16.7kPa
End O f Cycle	∆L. (cm)	E1 (cm/cm)	۵۷ (دد)	Ev (cc/cc)	∆D (⊂m)	E3 (cm/cm)
1	.01180	.00158	0	0013	00283	500080
2	• 0 2350	.00315	-0.10	0013	00904	00223
6	.08020	.01075	-0.30	0039	02660)00739
7	.10390	.01392	-0.30	0039	03248	300902
8	.12310	.01650	-0.40	0053	03961	01100
12	.46330	.06210	-1.10	0145	01441	04000
13	.57880	.07760	-1.40	0184	01828	05070

IEST :	88			Date	Tested :	080985
Sample Sample Sample Sample Void Ra Water (Water (Length (Diameter Area Af Volume (atio Aft Content) Content (After Conso r After Con ter Consoli After Conso er Consolid Before Cons After DTTCP	lidatio solidat dation lidatio ation olidati Test	n : 7.4 ion : 3.6 : 10. n : 76. : 0.8 on : 29. : 30.	62 cm 03 cm 193 cm ² Δ 059 cm ³ 10 5% 0%	a₁=59.2kPa a₃=16.8kPa u=16.7kPa
Middle Of	ΔL	E1	∆_َ۷	Ev	$\Delta \mathbf{D}$	E3
Cycle	(cm)	(cm/cm)	(cc)	(cc/cc)	(cm)	(cm/cm)
1 2 7 8 13	.00610 .01770 .09880 .11370 .54560	.0008 .0024 .0132 .0152 .0731	-0.50 -0.70 -0.85 -1.10 -3.50	0070 0090 0110 0140 0460	01330 02080 04430 05390 22450	00369 00578 01229 01496 06230

100 g 80 TEST B-8 70 60 CYCLE NUMBER 50 40 **ė**₃= 15000×10⁻⁵ cycle ⁻¹ 30 20 10 ° 0 -0.002 -0.004 -0.006 -0.010 -0.008 -0.012 ⁵ - ИІАЯТС ЈАІДАЯ

Sample Length After Consolidation : 7.957 cm σ_1^{*} =30.4kPa						
Sample Diameter After Consolidation : 3.563 cm σ_3^{i} =18.3kPa						
Sample	Area Af	ter Consoli	dation	: 9.9	70 cm² ∆u=	=16.7kPa
Sample	Volume	After Conso	lidatio	n :79.	338 cm ³	
Void Ra	atio Aft	er Consolid	ation	: 0.8	06	
Water (Content	Before Cons	olidati	on : 29.	9%	
Water (Content	After DTTCP	Test	: 32.	3%	
End Uf		El	${}^{\wedge}$	Ev	$\Delta \mathbf{D}$	E3
Cycle						
	(cm)	(cm/cm)	(66)	(cc/cc)	(cm)	(cm/cm)
····· ···· ···· ···· ···· ···· ····						
д	00440	00055	-0.05	- 0006	- 00211	- 00088
	00540	.00033	-0.05	- 0006	- 00279	- 00047
<u>ل</u>	.00380	.00070	-0.00		00238	0008/
- () - 1 - 1	.00370	.00074	-0.10	0013	00357	- 00100
17	.00730	.00072	-0.13	0017	00101	00141
10	.00300	.00101	-0.20	0025	00627	00178
18	.00830	.00104	-0.20	0025	00635	00178
17	.00850	.00107	-0.20	0025	00840	00180
20	.00850	.00107	-0.20	0025	00640	00180
21	.00870	.00109	-0.20	0025	00644	00181
22	.00860	.00108	-0.20	0025	00642	00180
28	.00910	.00114	-0.25	0032	00765	00215
29	.00880	.00111	-0.30	0038	00871	00244
30	.00890	.00112	-0.30	0038	00873	00245
31	.00860	.00108	-0.30	0038	00866	00243
32	.00850	.00107	-0.30	0038	00864	00243
33	.00870	.00109	-0.30	0038	00869	00244
34	.00880	.00111	-0.30	0038	00871	00244
35	.00890	.00111	-0.30	0038	00873	00245
36	.00890	.00112	-0.30	0038	00873	00245
37	.00890	.00112	-0.30	0038	00875	00245
38	.00900	.00113	-0.30	0038	00875	00246
39	.00910	.00114	-0.30	0038	00878	00246
40	.00920	.00116	-0.30	0038	00880	00247
41	.00950	.00119	-0.31	0039	00909	00255
42	.00990	.00124	-0.31	0039	00918	00258
43	.00990	.00124	-0.31	0039	00918	00258
44	.01010	.00127	-0.31	0039	00923	00259
45	.01010	.00127	-0.31	0039	00923	00259
46	.01030	.00129	-0.31	0039	00927	00260
47	.01030	.00129	-0.31	0039	00927	00261
48	.01050	.00152	-0.31	0039	00932	00261
49	.01020	.00128	-0.31	0039	00925	00260
50	.01010	.00127	-0.31	0039	00923	00259
51	.01020	.00128	-0.31	0039	00925	00259
52	.01030	.00129	-0.31	0039	00927	00261
59	.01010	.00128	-0.40	0050	01124	00355

TEST :B9 (cont'd)

End of Cvcle	Δ∟	E1	$\Delta \mathbf{V}$	Ev	Δ D	E3
oyere	(cm)	(cm/cm)	(cc)	(cc/cc)	(cm)	(cm/cm)
61	.01000	.00126	-0.40	0050	01122	00315
62	.01030	.00129	-0.40	0050	01129	00317
64	.01030	.00129	-0.45	0057	01241	00348
67	.01020	.00128	-0.40	0050	01127	00316
68	.01020	.00127	-0.40	0050	01124	00316
70	.01000	.00126	-0.40	0050	01122	00315

Date Tested : 081485

Sample	e Length	After Conso	lidatio	n : 7.9	57 cm	$\sigma_1^{1} = 30.4 \text{kPa}$
Sampie	e Diamete	r Atter Lon	solloat Jotina	10n : 3.3	53 ст 70 — 2	03 = 18. SKPA
Sample	e Area At	ter Consoli	dation	1 9.9	70 cm ⁻	$\Delta u = 16.7 \text{ kPa}$
Sampie	e volume	Atter Lonso	110atio		338 cm	
V010 1	ATIO ATT	er consolia Defese Ceee	ation	: 0.0	55	
water	Content	Betore Cons	olioati	on : 29.9	77.	
water	Content	Atter DIICP	lest	.يرن :	37.	
Middle	⇒ ∧I	F1	۸V	Fv	ΛD	E3
Df		Les A	<u>ل</u>			
Cvcle	()	((66)		(cm)	(
_,						
1	00980	0012	-0.60	0080	01125	00316
2	00810	0010	-0.60	0080	01163	00327
3	00730	0009	-0.60	0080	01191	00332
4	00680	0008	-0.65	0080	01309	00367
5	00620	0008	-0.65	0080	01318	00370
6	00600	0008	-0.65	0080	01322	00371
7	00500	0006	-0.65	0080	01345	00377
8	00400	0006	-0.65	0080	01351	00379
9	00440	0006	-0.70	0090	01470	00412
10	00410	0005	-0.70	0090	01476	00414
11	00380	0005	-0.70	0090	01482	00416
12	00410	0005	-0.70	0090	01476	00414
13	00310	0004	-0.70	0090	01499	00421
14	00290	0004	-0.70	0090	01503	00422
15	00290	0004	-0.70	0090	01503	00422
16	00270	0003	-0.75	0090	01620	00455
17	00250	0003	-0.75	0090	01624	00456
18	00240	0003	-0.75	0090	01626	00457
19	00220	0003	-0.80	0100	01/43	00489
20	00200	0002	-0.80	0100	01/4/	00490
21	00210	0002	-0.80	0100	01/4/	00490
22	00190	0002	-0.80	0100	01749	00491
23	00320	0004	-0.80	0100	01720	00483
24	00210	0003	-0.80	0100	01745	00490
20	00270	0003	-0.80	0100	01/31	00486
20	00230	0003	-0.85	0110	01848	00519
27	00240	0003	-0.83	0110	01850	00519
20	00240	0003	-0.83	0110	01850	00519
27	00230	0003	-0.90	0110	01737	00530
 ব	- 00280	- 0004	-0.90	0110	- 01952	
31 77	- 00230	0004	-0.70	-0110	- 01952	
<u>७८</u> रर	- 00270	- 0003	-0.70		- 02044	- 00590
33	- 00270	- 0003	-0.75	- 0120	- 02044	- 00580
	- 00220	- 0004	-1 00	- 0130	- 02000	- 00411
33	- 00200	- 0004	-1 00	- 0130		- 00409
30	- 00310	- 0004	-1 00	- 0130	- 02169	

TEST : B9 (cont'd)

Middle of	ΔĽ	E1	Δ٧	Ev	$\Delta \mathbf{D}$	EЗ
Cycle	(cm)	(cm/cm)	(cc)	(cc/cc)	(cm)	(cm/cm)
38	00300	0004	-1.00	0130	02171	00609
39	00290	0004	-1.00	0130	02173	00610
40	00280	0004	-1.00	0130	02176	00611
41	00250	0003	-1.00	0130	02182	00610
42	00210	0003	-1.00	0130	02194	00615
43	00160	0002	-0.95	0120	02091	00587
44	00120	0002	-0.95	0120	02100	00589
45	00090	0001	-0.90	0110	01995	00560
46	00070	0001	-0.90	0110	02000	00561
47	00060	0001	-0.90	0110	02002	00562
48	00180	0002	-0.90	0110	01975	00554
49	00120	0002	-0.90	0110	01989	00558
50	00100	0001	-0.90	0110	01993	00559
51	00090	0001	-0.90	0110	01995	00560
52	00100	0001	-0.90	0110	01995	00559
53	00100	0001	-0.95	0120	01995	00559
54	00070	0001	-0.95	0120	02110	00593
55	00060	0001	-0.95	0120	02114	00593
56	00050	0001	-0.95	0120	02116	00594
57	00020	0000	-1.00	0130	02234	00627
58	00040	0001	-1.00	0130	02230	00626
59	00040	0001	-1.00	0130	02230	00626
60	00040	0001	-1.00	0130	02230	00626
72	00260	0000	-1.20	0150	02626	00737

Sample Length After Consolidation : 7.776 cm σ_1^2 =44.9kPa Sample Diameter After Consolidation : 3.574 cm σ_3 =18.0kPa Sample Area After Consolidation : 10.031 cm² Sample Volume After Consolidation : 77.996 cm³ Void Ratio After Consolidation : 0.825 Water Content Before Consolidation : 30.2%

Water Content After DTTCP Test : 31.9%

End Of Cvcle	∆Ld	E1	ΔV	Ev	<u>∆</u> D	E3
	(cm)	(cm/cm)	(cc)	(cc/cc)	(cm)	(mc/mc)
1	.00010	.00001	0	0	00002	00001
2	.00050	.00006	0	0	00007	00002
3	.00070	.00009	0	0	00012	00003
4	.00080	.00010	0	0	00014	00004
5	.00100	.00013	0	0	00012	00005
6	.00140	.00018	0	0	00028	00008
7	.00180	.00023	0	0	00037	00010
12	.00230	.00030	-0.05	0006	00163	00046
13	.00250	.00032	-0.05	0006	00168	00047
14	.00260	.00033	-0.05	0006	00170	00048
18	.00280	.00036	-0.10	0013	00289	00081
19	.00290	.00037	-0.10	0013/	00292	00082
20	.00330	.00042	-0.10	0013	00301	00084
21	.00280	.00036	-0.10	0013	00289	00091
22	.00300	.00039	-0.10	0013	00294	00082
23	.00300	.00040	-0.10	0013	00294	00082
24	.00310	.00040	-0.10	0013	00296	00083
37	.00420	.00054	-0.10	0013	00322	00090
42	.00460	.00059	-0.13	0017	00399	00112
43	.00500	.00064	-0.15	0019	00454	00127
44	.00500	.00064	-0.15	0019	00454	00127
48	.00500	.00064	-0.15	0019	00454	00127
49	.00460	.00059	-0.15	0019	00445	00125
50	.00480	.00062	-0.15	0019	00450	00126
54	.00510	.00066	-0.15	0019	00457	00128
55	.00520	.00067	-0.15	0019	00459	00128
56	.00520	.00067	-0.15	0019	00459	00128
60	.00560	.00072	-0.15	0019	00468	00131
66	.00620	.00080	-0.17	0022	00528	00148
68	.00640	.00082	-0.15	0019	00487	00136
72	.00620	.00080	-0.20	0026	00597	00167
79	.00630	.00081	-0.25	0032	00713	00200
84	.00670	.00086	-0.20	0026	00608	00170

Sample Length After Consolidation: 7.776 cm $\sigma_1^1 = 44.9 \text{kPa}$ Sample Diameter After Consolidation: 3.574 cm $\sigma_3^1 = 18.0 \text{kPa}$ Sample Area After Consolidation: 10.031 cm² $\Delta u = 5.8 \text{kPa}$ Sample Volume After Consolidation: 77.996 cm³Void Ratio After Consolidation: 0.825Water Content Before Consolidation: 30.2%Water Content After DTTCP Test: 31.9%

Middle Of	<u>∧</u> L	E1	$\land \mathbf{V}$	Ev	$\Delta \mathbf{D}$	E3
Cycle	(cm)	(cm/cm)	(cc)	(cc/cc)	(cm)	(cm/cm)
	000/0	0004	0 4E	0000		
1	00080	0001	-0.15	0020	00326	00091
2	00090	0001	-0.20	0030	00433	00121
د م	.00010	.0000	-0.20	0030	00456	00128
4	.00030	.0000	-0.20	0030	00461	00129
э ,	.00050	.0001	-0.20	0030	00465	00130
6	.00070	.0001	-0.20	0030	004/0	00132
/	.00080	.0001	-0.20	0030	00472	00132
8	.00100	.0001	-0.20	0030	00477	00133
4	.00100	.0001	-0.20	0030	00477	00133
10	.00090	.0001	-0.20	0030	00474	00133
11	.00110	.0001	-0.20	0030	00479	00134
12	.00140	.0002	-0.20	0030	00486	00136
13	.00150	.0001	-0.20	0030	00488	00137
14	.00170	.0002	-0.20	0030	00493	00138
15	.00230	.0003	-0.20	0030	00507	00142
16	.00210	.0003	-0.20	0030	00502	00141
17	.00230	.0003	-0.20	0030	00507	00142
18	.00220	.0003	-0.20	0030	00505	00141
19	.00230	.0003	-0.20	0030	00507	00142
20	.00240	.0003	-0.20	0030	00509	00142
21	.00270	.0003	-0.20	0030	00516	00144
22	.00250	.0003	-0.20	0030	00511	00143
23	.00260	.0003	-0.20	0030	00514	00144
24	.00260	.0003	-0.20	0030	00514	00144
25	.00280	.0004	-0.20	0030	00518	00145
33	.00340	.0004	-0.20	0030	00532	00149
43	.00350	.0004	-0.25	0030	00649	00182
49	.00420	.0005	-0.25	0030	00665	00186
50	.00420	.0005	-0.25	0030	00665	00186
55	.00490	.0006	-0.25	0030	00681	00191
56	.00460	.0006	-0.25	0030	00674	00189
61	.00490	.0006	-0.25	0030	00681	00191
62	.00480	.0006	-0.25	0030	00679	00190
67	.00520	.0007	-0.27	0030	00734	00205
82	.00580	.0007	-0.30	0040	00816	00228

σ¦ =34.5kPa σ₃ =14.5kPa Sample Length After Consolidation 7.594 ⊂m : Sample Diameter After Consolidation : 3.584 ⊂m j ⊶•.5kPa n [∠] ∆u=5.8kPa ⊂m³ : 10.088 cm² Sample Area After Consolidation Sample Volume After Consolidation : 74.593 Void Ratio After Consolidation : 0.842 Water Content Before Consolidation : 30.9% Water Content After DTTCP Test : 33.7%

End Of Cycle	۵ L	E1	Δ٧	Ev	ت ۵	E3
	(mm)	(mm/mm)	(cc)	(cc/cc)	(mm)	(mm/mm)
			·····			
1	.00010	.00001	ò	0	00003	00001
2	.00010	.00014	0	0	00024	00007
ن م	.00150	.00022	0	0	00039	00011
4	.001/0	.00023	0	0	00042	00012
5	.00160	.00022	0	0	00039	00011
	.00220	.00030	0	0	00054	00015
	.00270	.00037	0	0	00066	00018
12	.00310	.00042	-0.05	0007	00196	00055
13	.00440	.00050	-0.05	0007	00227	00063
14	.00430	.00058	-0.05	0007	00225	00063
18	.00380	.00051	-0.10	0013	00249	00069
19	.00420	.00057	-0.10	0013	00342	00096
20	.00440	.00050	-0.10	0013	00347	00097
24	.00400	.00034	-0.15	0020	00458	00128
20	.00470	.00082	-0.15	0020	00480	00134
37	.00520	.00070	-0.20	0027	00607	00169
42	.00580	.00078	-0.23	0031	00688	00192
43	.00380	.00078	-0.20	0027	00621	00173
 10	.00680	.00087	-0.20	002/	00841	00179
40	.00620	.00084	-0.23	- 0031	00703	00198
47 50	.00640	.00087	-0.23	0031	00708	00198
51	.00670	.00093	-0.25	- 0034	00768	00214
54	.00870	.00073	-0.25	- 0034	00788	00214
55	.00700	.00075	-0.25	- 0034	00770	00215
55	.00870	.00170	-0.25	- 0034	00812	00227
40	.00870	.00120	-0.25	0034	00817	00228
44	.00710	.00123	-0.25	0034	00822	00229
60 47	.00700	.00122	-0.25	0034	00819	00229
0/ 77	.00070	.00120	-0.23	0034	00817	00228
70	.00830	.00110	-0.30	0040	00927	00239
77 07	.00870	-00174	-0.33	0047	01052	00293
07	.00720	.00124	-0.00	004/	01084	00297

Sample Length After Consolidation : 7.594 сm $\sigma_1 = 34.5 \text{kPa}$ σ₃=14.5kPa Sample Diameter After Consolidation : 3.584 сm : 10.088 cm² Sample Area After Consolidation ∆ u=5.8kPa **c**m³ Sample Volume After Consolidation : 74.593 Void Ratio After Consolidation : 0.842 Water Content Before Consolidation : 30.9% Water Content After DTTCP Test : 33.7%

Middl	e <u>A</u> L	E1	Δ٧	Ev	∆D	E3
Cycle	e (cm)	(cm/cm)	(cc)	(cc/cc)	(cm)	(cm/cm)
1	00150	0002	-0.15		00324	00090
2	00150	0002	-0.20	0020	00444	00124
3	00170	0002	-0.20	0027	00439	00122
4	00080	0001	-0.20	0027	00401	00129
5	00040	0001	-0.20	0027	00471	00131
6	00050	0001	-0.20	0027	00468	00131
7	.00040	.0001	-0.20	0027	00490	00137
8	.00070	.0001	-0.22	0029	00545	00152
13	.00190	.0002	-0.25	0034	00647	00100
14	.00230	.0003	-0.25	0034	00656	00183
15	.00260	.0004	-0.25	0034	00664	00185
16	.00210	.0003	-0.25	0034	00651	00817
17	.00210	.0003	-0.25	0034	00651	00182
18	.00200	.0003	-0.25	0034	00649	00181
25	.00300	.0004	-0.33	0044	00865	00241
26	.00410	.0006	-0.30	0040	00820	00229
33	.00340	.0004	-0.35	0047	00923	00258
43	.00480	.0006	-0.35	0047	00957	00267
49	.00480	.0006	-0.40	0054	01076	00300
50	.00520	.0007	-0.40	0054	01086	00303
55	.00600	.0008	-0.38	0051	01106	00309
56	.00750	.0010	-0.40	0054	01142	00319
61	.00730	.0010	-0.45	0060	01257	00351
62	.00720	.0010	-0.45	0060	01255	00350
67	.00700	.0009	-0.45	0060	01250	00349
81	.00740	.0010	-0.47	0063	01308	00365
85	.00780	.0011	-0.47	0063	01317	00368

Sample Length After Consolidation σ**1**=59.6kPa : 7.511 cm $\sigma_3^{\dagger}=35.0$ kPa Sample Diameter After Consolidation : 3.562 cm : 9.965 cm² Sample Area After Consolidation $\Delta u=33.0$ kPa : 74.852 cm³ Sample Volume After Consolidation Void Ratio After Consolidation : 0.824 Water Content Before Consolidation : 31.9% Water Content After DTTCP Test : 34.2%

	<u>۸ ل</u>	E1	Δ٧	Ev	 _\D	E3
	(cm)	(cm/cm)	(cc)	(cc/cc)	(cm)	(cm/cm)
1	.00610	.00081	o	0	00146	00041
2	.01010	.00135	0	0	00241	00068
3	.01340	.00178	0	0	00319	00090
6	.01980	.00264	0	0	00472	00132
7	.02050	.00273	0	0	00488	00137
8	.02260	.00301	0	0	00538	00151
12	.02560	.00341	0	0	00610	00171
13	.02750	.00366	0	0	00655	00184
14	.02840	.00378	0	0	00677	00190
18	.03130	.00417	0	0	00746	00209
20	.03250	.00433	-0.05	0007	00994	00251
24	.03480	.00463	-0.10	0013	01068	00300
27	.03500	.00466	-0.10	0013	01073	00301
30	.03640	.00485	-0.20	0027	01344	00377
31	.03660	.00487	-0.20	0027	01350	00379
36	.03750	.00499	-0.30	0040	01609	00452
42	.03980	.00530	-0.30	0040	01664	00467
43	.04020	.00535	-0.30	0040	01673	00470
49	.04140	.00551	-0.40	0053	01940	00545
50	.04200	.00559	-0.40	0053	01954	00549
54	.04260	.00567	-0.40	0053	01969	00553
55	.04340	.00578	-0.40	0053	01990	00558
61	.04340	.00578	-0.45	0066	02110	00592
62	.04350	.00579	-0.50	0067	02230	00626
67	.04450	.00592	-0.50	0067	02250	00632
68	.04450	.00592	-0.50	0067	02250	00632
72	.04560	.00607	-0.60	0080	02520	00700
78	.04830	.00643	-0.60	0080	02581	00725
85	.05040	.00671	-0.60	0080	02632	00739
91	.05180	.00690	-0.70	0094	02900	00815

Middle Of	e AL	E1	$\Delta \mathbf{V}$	Ev	$\Delta \mathbf{D}$	E3
Cycle	(cm)	(cm/cm)	(cc)	(cc/cc)	(cm)	(cm/cm)
		**** ***** ***** ***** ***** ***** ***** ***** ****				
1	00980	0013	-1.00	0134	02140	00601
2	00520	0007	-1.05	0140	02367	00664
4	00070	0001	-1.05	0140	02470	00695
7	.00660	.0009	-1.00	0134	02530	00710
13	.01250	.0017	-1.05	0140	02790	00785
14	.01430	.0018	-1.00	0134	02710	00762
20	.01850	.0025	-1.00	0134	02820	00790
25	.02130	.0028	-1.10	0147	03119	00876
26	.02160	.0029	-1.10	0147	03130	00878
31	.02380	.0032	-1.10	0147	03180	00892
37	.02500	.0033	-1.30	0174	03680	01033
38	.02480	.0033	-1.45	0194	04030	01130
43	.02730	.0036	-1.40	0187	03970	01115
44	.02720	.0036	-1.45	0194	04088	01148
49	.02850	.0038	-1.45	0194	04119	01156
50	.02920	.0039	-1.45	0194	04140	01161
55	.03020	.0040	-1.50	0200	04280	01200
56	.03020	.0040	-1.50	0200	04250	01200
61	.03060	.0041	-1.50	0200	04290	01200
62	.03120	.0042	-1.50	0200	04300	01210
67	.04430	.0059	-1.50	0200	04620	01300
68	.03290	.0044	-1.50	0200	04340	01220
73	.03390	.0045	-1.80	0240	05070	01425
79	.03710	.0049	-1.80	0240	05150	01446
85	.03860	.0051	-1.85	0247	05310	01490
91	.04040	.0054	-1.90	0254	05470	01540
92	.04070	.0054	-1.90	0254	05475	01540

C.3 CIU Test Results

UNIVERSITY OF MANITOBA SOIL MECHANICS LABORATORY

						ХТП АГП ТГТТ	๚ ึ่งเป็นเป็นเป็น 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
						EFFECT OCT STRESS KPA	
.60 METRES	1					DEV Stress KPA	ФФФЛС+УЛФСРАЙФФ ИЛФЯООДФЪИЛ исслилатиоилиин ССФФФИФ илмииннословавал Аффийа инненерг
ES TO I						HALF DEV STRESS KPA	14+2000000000000000000000000000000000000
L. 30 METR	S IMETRES FIMETRES	LINETRES				EFFECT SIGNA3 KPA	н нннннимимимимими 44.00 Фароососососососососососососососососососо
PTH *	INTIMETRE	I	SNDISIA	10023		EFFECT Sighal Kpa	№ № 40-40-20-20-20-20-20-20-20-20-20-20-20-20-20
2 DE	7.655 CE 83.930 CU 10.957 SC	1.2576 N 1.2576 So	10 0.0	END		PER CENT PCSTRN	20000000000000000000000000000000000000
	H H NOIL	ы н н	11	90285	AL TEST	PORE PRESS	00000000000000000000000000000000000000
ноге	CONSULIDA CONSULIDA VSULIDATI			START	D TRIAXI	PRING DIAL RDG	0.000000000000000000000000000000000000
1	HT AFTFR ME AFTFR AFTER CON	AD G FACTOR	READING	RESULTS	UNDKAINE	DISPL DIAL RDG	
LE ND.	LE HEIG LE VOLU	ING RIN ON AREA	IAL DIA	IR TEST	OLIDATE :::::::	1 M L	нннннннн ннннннн олоооооооооооооооооооо
SAMF	SAME	PISI	LINI	SHE 4	SN02	1 d	のらやをえてのむめとのらやをさてのもぬとのらやをえて そころろろろで下下下下下下下下

	A	00000000000000000000000000000000000000
	RATIO DE Eff Sigmai Eff Sigmai	๚๚๗๗๗๗๗๗๗๙ ๙ ๙ ๕ ๕ ๕ ๕ ๕ ๙ ๓๓๓ ๓๓๓ ๗๏๗๓๓๏๏๏๏๏๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛ ๛๛๛๛๛๛๛๛๛๛
	EFFECT OCT STRESS KPA	ЧЧИИИИМШФ44ФИЙИФФССФООО 0 ФФСБВФЛЧФСЙИЙФ440000000 0 СОЛИРНИСТОВООООВСССССССССССССССССССССССССССССС
	DEV STRESS KPA	𝑘 𝔤 𝑘 𝑘 𝑘 𝑘 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅
	HALF DEV STRESS KPA	
	EFFECT SIGMA3 KPA	н нннннимимимими44440 Фаароонимее имаариало Фаароонимее имаариало Фаароооооооооооооооооооооооооооооооооо
	EFFCT SIGHAL KPA	HUHHHHHHHH 40000000000000000000000000000
	PCSTRN	ををままなたのうなををしてくなっている。 それてつていなせいとものでもでいるのでもをつい ものでしょう。 のいろしているでもでんでいる。 しているのでした。 したい。 しているのでした。 したい。 したい。 したい。 したい。 したい。 したい。 したい。 し
	PORE PRESS	00000000000000000000000000000000000000
• • •	PRING DIAL RDG	
	DISPLDIALROG	н 400ллл44400000000000000000000000000000
	TIME	11111111111111111111111111111111111111

303

1.60 YETRES IETRES TO

UNIVERSITY DF MANITOBA Soil Méchanics Laboratory

						٩	00000000000000000000000000000000000000
						RATIO OF EFF SIGMAL EFF SIFMA3	<i>Сшараар-гаарийийийи</i> 444ш 9 таариаларийи 9 таариаларийи 9 таариалариалариал 9 таариалариа 9 таариалариалариа 9 таариалариалариалариалариалариалариалари
						EFFECT OCT STRESS KPA	ч милимша4440000000000000000000000000000000000
.50 METRES						DEV Stress KPA	№ ФФФЛФИЛИНО СФФФНФИЛИНО СФФФНФИЛИНО СФФФНФИЛИНО СФФФНФИЛИНО СФФФОЛИНО СФФФОЛИНО СФФФОЛИНО СФФФОЛИНО СФФФОЛИНО СФФФОЛИНО СФФФОЛИНО СФФФОЛИНО СФФФОЛИНО СФФФОЛИНО СФФФОЛИНО СФФФОЛИНО СФФФОЛИНО СФФФОЛИНО СФФФОЛИНО СФФФОЛИНО СФФФОЛИНО СФФФОЛИНО СФФОЛИНО СФФОЛИНО СФФОЛИНО СФФОЛИНО СССОО СФФОЛИНО СССОО СССОО СО СССОО ССО
ES TO 1.						HALF DEV STRESS KPA	
1.30 METR	S IMETRES TIMETRES	TIMETRES		0		EFFECT SIGMA3 KPA	иннннннннчимимитт 00000000000000000000000000000000
EPTH =	ENTIMETRE UBIC CENT QUARE CEN	N ./DIV DUARE CEN	IVISIONS			EFFECT KPA KPA	01000000000000000000000000000000000000
2 D	7.546 C	1.2663 1.2670 S	18.4ú D	END		PER CENT PCSTRN	00000000000000000000000000000000000000
# • O7	H H H NON	N 18 16	н		4L. TEST	PDRE KPASS	00000000000000000000000000000000000000
HOLE	ON SOL I DA ON SOL I DA SJL I DATI(START	D TRIAXI/ :::::::::	PRING DIAL RDG	00000000000000000000000000000000000000
T 2	F AFTER C E AFTER C AFTER CON	FACTOR	READ ING	SULTS	UNDRAINE	015PL D1AL RDG	
LE NO. =	LE HEIGH	TANT LOAI ING RING DN AREA	IAL DIAL	R TEST R	DL IDATED	TIME	11111111111111111111111111111111111111
SAMP	SAMP	PIST	IINI	SHEA	CONS	L d	ろていめ終くのられをえている後くのられをえて ろろんてててててててて

I.

NRML 20 DCT STRESS	00000000000000000000000000000000000000
EFFECT RATIO SIGMAL SIGMAJ	ОшшФФФГ Г ФСФИЙИЙИЙ4444W 9 шашелибишиг 4иносерг Г Ф 9 шашелибишиг 4иносерг Г Ф 9 шаго 2010 айшг 900 200 г 9 айи 9 и 4 чо чи 4000040 гор 1 800 010
NRMLZD HALF DEV STRES KPA	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
PER CENT PCSTRN	иафффффостькидица 336-1-400-400-40-400 100-1-400-40-40-40-40-40-40-40-40-40-40-40-40

UNIVERSITY OF MANITOBA Soil Méchanics Laboratory

	1												
AMPL	E %0. ⊨	۳.	носғ	NO. =	2	DEPTH	-	. 45 METI	RFS TO	1.35	METRES		
AMPL AMPL	E HEIGHI F VOLUME E AREA A	E AFTFR AFTFR AFTER CO	CONSULIDA CONSULIDA NSULIDATI	I NO I L NO I L NO NO	101.70C 12.387	CENTI CUBIC SQUAR	METRES CENTIS	METRES Imetres					
0NST R0VI 1ST0	ANT LUAD NG RING N AREA	FACTOR		4 H H	1.0006 1.2576	SOUAR	DIV E CENT	IMETRES					
NITI	AL DIAL	READ ING		Ħ	1.90	0 1 V T S	SNOI						
HEAR	TEST RE	SULTS	START	13028	5 EN	0	130295						
0NS0	LIDATED :::::::	UNDRAIN	ED TRLAXI	AL. TEST									
H d	TIME	DISPL DIAL RDG	PRING DIAL RDG	PORE KPAESS	PCP CER CSTR	Z T T T T T	AGE AGE AGE AGE AGE AGE AGE AGE AGE AGE	EFFECT Stgma3 KPA	HALF Dev Stres	S S S S S S S S S S S S S S S S S S S	EV ERESS	EFFECT DCT STRESS	
-	952	1.6	74.0	200-0	ç		c		•				

	4	NHN 1044940 CCCCCHHNMD I I I I I I I I I I I I I I I I I I I
	RATTO UF EFF SIGMAL EFF SIFMA3	000044444444 0000000000000000000000000
	EFFECT DCT STRESS KPA	шшшно оочо оо • • • • • • • • • • • • • • • • • •
	DEV Stress KPA	400-400-500 0.000-000 0.000-00 0.000-00 0.0000 0.000 0.0000 0.000000
	HALF DEV STRESS KPA	10044400099 0040404000 00000000000000000
	EFFECT Stgma3 KPA	40000000000000000000000000000000000000
·	EFFECT SIGMAL KPA	030074064960 004400400 004400400 104440400 10444040 104444
	PER CENT PCSTRN	000H-HNNMM44 044H0M0M0M44 000H-ANN0 000H-ANN0
	PDRE KPAESS	000000000000 0000000000000000000000000
	PRING DIAL RDG	00000000000000000000000000000000000000
	DISPL DIAL RDG	нччилищи444
	TIME	90000000000000000000000000000000000000
	Γd	ての484954824

į r
SAMPL	E NO. = T	m	HOLE NJ.	#	~	DEPTH ≖	1.35	METRES	1U
CONSO RECO NORMA	LIDATION AX NSOLIDATION LIZING STRE	IAL STRE PRESSUR SS	E SS	11 El M	243.36 100.36 243.00	A P A P A P A A A A A A A A A A A A A A			
40KMA	LIZED SHEAR	TEST RE	SULTS	STAI	RT L	30285	CNB	130235	
Id	PER CENT PCSTRN	NRMLZU HALF DEV STRESS KPA	EFFECT RATIO SIGMAL SIGMAL		NRML 2D DCT STRESS KPA	NRMLZO CHANGE IN PNP			
下の4840048221	9000-10000 4100-000-41-000 4100-000-41-000 4100-000-400-000	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	42440444444444444444444444444444444444	20020000000		00000000000000000000000000000000000000			

1.35 HFTRES

L.85 METRES			
METRES TO 1	160285		
L• 85	GN 3		
06744 Кра Кра Кра	ü285	NRMCZO Chang Zo In Puge KPA	00000000000000000000000000000000000000
2 500.00 500.00 500.00	TART 15	NRMLZD DCT STRESS KPA	00000000000000000000000000000000000000
DLE NO.	ULTS S'	EFFECT RATIO Sigmai Sigmai	10000000000000000000000000000000000000
4 H IAL STRES PRESSURE	TEST RESI	NRMLZD HALF DEV STRESS KPA	00000000000000000000000000000000000000
E NO. = T IDATION AX VSOLIDATION IZING STRE	-IZED SHEAR	PCENT	л леоблыбоосонеос лолооосонеос лолооосонеос лолооосонеос лолоосонеос лолоосонеос лолоосонеос лолоосонеосонеосоне лолоосонеосонеосоне лолоосонеосонеосонеосоне лолоосонеосонеосонеосоне лолоосонеосонеосонеосонеосонеосоне лолоосонеосонеосонеосонеосонеосонеосонео
SAMPLI SUNSOL	IDRMAL	PT	してしていらのくらくなってで、 してしてしている。

UNIVERSITY DF MANITOBA Soil Mechanics Laboratory

SAMPLI	= • ON =	4	DN 370H	H _•	~	DEPTH =	1.85 METRE	1 01 23	L.35 YFTRE	5
SAMPLESAMPLE	E HEIGHT VOLUME AREA AF	AFTER CO AFTER CONSI	NSOLIDATI NSOLIDATI NSOLIDATION	8 8 8 22 CO	7.926 93.900 11.846	CENTIMETRE CUBIC CENT SOUARE CEV	S IMETRES TIMETRES			
PROVIN PROVIN	ANT LOAD VG RING F V AREA	* ACTOR		N H H	1.2571 1.2576	N . / DIV SQUARE CEN	TIMETRES			
INITI	AL DIAL R	READ ING		H	1.06	SNDISINIO	•			
SHEAR	TEST RES	SULTS	START	150285	EN	0 163235	10			
consol	.IDATED U	INDRAINED	TRIAXIAL ::::::::::	TEST						
F 14	I ME	DISPL DIAL RDG	PR ING DIAL RDG	PDRE PRESS	CERT CENT PCSTR	EFFECT SIGNAL XPA	EFFECT SIGHA3 KPA	HALF STRESS	DEV STRESS KPA	ACCE TCTE TCTE TCTE TCTE TCTE TCTE TCTE
	955	0.4 • • •	2 7 7 • 0	209• 0 304• 0	0.50	292.1 377.7	291•0 196•0	9 0 06	181.7	291.

۷. SI CHAN Ann Trrr Trrr 5 5 444*№№№№* Очшосимио Осточимио Осточимио Осточими Осточи Осточи Осточими Осточи ŧ

Y

でらやをそすいんのようらすをそててしてした。

C.4 X-Ray Diffraction Results

60° ATEL 24/85 TPBULAK t +----45.4 20 445.4 20 449.6 2.03, Micao 0 ----142.4 2.18 Coleite Į. -----40.2 2.24 40 39.4 2.28 Overty 36.6 245 Feldspore ł 35.0 2.56 Feldspore 1----------÷ л. 30.3 2.95 Feldsport - 30 27.8 - 3.21 Plasioclose 26.6 3.35 Querte_ _ . ż 23.6 7.48 Feldstor 5(24.2 3.67 : abgin Sour 10 30 -22.0-4.04 ł titato 20.8 4.27 Gypun 188 4.7 Glouto . . -20 Ē i 12.4 6.6 Orthuclose ... 10* • • B.8, 10.0 Micas 6.1 . 1478 Chlorite 76

12.