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Abstract 

The agriculture industry experiences severe economic losses each year when wheat crops 

become infected with Fusarium and its associated mycotoxin Deoxynivalenol (DON). At 

the moment, the Canadian agriculture industry uses detection methods that are slow and 

labor intensive. This research investigated the feasibility of using near infrared 

hyperspectral imaging to detect Fusarium damage and its toxic by-product DON in 

Canadian Western Red Spring (CWRS) wheat. Four samples were selected from each 

grain grade resulting in a total of 16 samples and 240 hyperspectral data cube images 

were acquired by imaging kernels piled 1-2 layers thick. The data cubes were calibrated 

to the system and organized into 15 groups of 16 cubes. Consistent spectra from the 

groups were found and used to generate a 1- nearest neighbour classifier that could be 

used to find the percentages of spectra classified as each grade for all 240 data cubes. The 

percentages were used to generate two 3-nearest neighbour classifiers, one for identifying 

Fusarium damage and the other for identifying DON in a sample. The Fusarium damage 

classifier had an accuracy of 85%, a specificity of 65% and a sensitivity of 92%, while 

the DON content classifier had an accuracy of 80%, a specificity of 83% and a sensitivity 

of 77%. While a single sample image classification will not replace manual testing, the 

use of multiple samples from one harvest could reduce manual inspections.    
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1 Introduction 

This research investigated the feasibility of using near infrared (NIR) spectroscopy to 

detect a fungal infestation and its toxic by-product in wheat. As a key crop in Canadian 

agriculture the current reliance on human visual assessment and protracted destructive 

testing is a weakness in a multi-billion dollar industry. The feasibility of measurements 

for automatic quality classification of wheat is a possibility to augment or possibly 

replace the most fallible portion of the assessment process. 

1.1 Motivation 

In the world, Canada is a major producer and exporter of grain. In the 2011-12 crop year, 

Canada produced over 96.1 million tonnes of grain and exported 32 million tonnes of 

grain and wheat flour to other countries (Canadian Grain Commission, 2012; Statistics 

Canada, 2013).  Current grains produced in Canada include wheat, oats, barley, rye, 

flaxseed, canola, soybeans, peas and corn. Wheat is the most abundantly grown grain 

across Canada (i.e. 27.2 million tonnes in 2011) and is the most exported (i.e. 13.3 

million tonnes in 2011). Upon harvesting, crops are either stored in silos or transported to 

local elevators. At the elevators crops are received, inspected for grade (i.e. quality), 

weight, protein, moisture content and dockage, and stored. When grain is sold, it is 

transported by railcars to a main elevator and exported across the world.  

 Increased competition in today’s markets is the driving force behind Canada’s 

exportation of top quality grain (Agriculture and Agri-Food Canada, 2013). This 

reputation is maintainable only if large quantities of grain are produced at consistent 
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qualities. A higher quality of the harvested grain equates to a higher grade during 

inspection and to higher revenue for producers. The Canadian Grain Commission has 

implemented strict guidelines and regulations to maintain a high standard for grain 

(Justice Laws, 2013). At the moment, grain is assessed based on a visual method. An 

inspector examines a representative sample of the grain for weight, kernel vitreousness, 

protein and degree of soundness (i.e. does the grain exhibit damage due to frost, insects 

or fungi). The grain is then graded based on these criteria and that determines the 

potential revenue/profit. This grading system is subject to error, is slow and can result in 

misclassification of grain (Dowell et al. 1999). To correct these problems, research has 

focused on discovering techniques that are fast, portable, reliable and consistent for grain 

quality evaluation.  

1.2 The Problems Faced In Industry 

Grain is susceptible to numerous threats while in the field and afterwards in storage. It is 

vulnerable to damage inflicted by the weather (i.e. extreme heat or cold, draught and 

excess moisture), pest and fungal development infestations. Focusing on potential fungal 

threats, wheat kernels are examined for the presence of a particular fungal species in the 

genus Fusarium. This genus of fungus consists of different species including: F. 

culmorum, F. graminearum and F. avenaceum. Of these species F. graminearum is of 

interest because it is most prevalent in North America. It causes permanent damage to 

kernels through an infection known as Fusarium head blight (FHB), which creates a 

significant decrease in crop yields by affecting up to 50% of kernels and lowers the 

grain’s grade (Dowell et al. 1999). The kernels undergo a reduction in weight and an 

alteration in the colour from golden to white bleached. In addition, kernel damage lowers 
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the quality of flour colour, ash content and baking performance of wheat products 

(Shahin & Symons, 2011). The constant occurrence of FHB creates the requirement for 

inspection and separation of sound kernels from damaged kernels in grain crops. The risk 

of consuming FHB infected kernels decreases by limiting the amount of damaged kernels 

allowed in crops. The current method of grain inspection relies on manual assessment of 

each kernel from a sample group and checks for signs of damage. The entire yield is 

downgraded when the percentage of damaged kernels exceeds a predetermined threshold 

(Delwiche, 2003). Another concern is that kernel inspection is subject to the inspectors’ 

judgments, which are influenced by experience, fatigue and their work environment. 

These factors can cause the inspector to miss crucial characteristics of kernels resulting in 

misclassification (Dowell et al. 1999). Furthermore, manual inspection can miss early 

stages of infection when there is no visual damage to the kernels (Shahin & Symons, 

2011; Clear and Patrick, 2010). For these reasons, the current technique of kernel 

observation by inspectors is slow, time consuming and prone to error. An ideal 

replacement is an accurate and objective assessment technique that can be implemented 

at various levels of grain handling.  

 A further issue with Fusarium infected wheat kernels is an increased risk of 

mycotoxin development. Mycotoxins are secondary metabolites produced by fungi and 

some well known examples are aflatoxins, citrinin, ergot alkaloids, fumonisins, patulin, 

zearalenone and trichothecenes (Bennett & Klich, 2003). Trichothecenes, such as 

deoxynivalenol (DON), are associated with Fusarium in wheat kernels and are toxic upon 

consumption. Kernels with higher Fusarium damage increase the occurrence of DON 

content, but it is difficult to correlate because DON content can occur with lower 
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Fusarium damage as well (Dowell et al. 1999). The problem with mycotoxins, like DON, 

is it causes harmful effects in animals and humans. The desire to avoid the occurrence of 

nausea, vomiting, diarrhea and reproductive abnormalities creates a demand to detect 

DON and prevent the infected kernels from being processed and consumed.  

1.3 Research Objectives 

The focus of this thesis is to determine the validity of applying near infrared 

hyperspectral imaging (NIR HSI) as a detection method for Fusarium damage and DON 

content. As a whole, NIR HSI possesses the required qualities to be successful and has 

numerous applications in similar areas of research. The specific objective for this 

research was to create two classifiers that utilize NIR HSI: one for determining the 

presence of Fusarium damage and the other for determining the presence of DON content 

in a given sample.   

 The remainder of this thesis includes the literature review, materials and methods, 

results and discussion, conclusion and recommendations. The literature review describes 

the background and theory on NIR HSI, instrumentation, calibration techniques and the 

information on Fusarium, The materials and methods section outlines the NIR HSI 

system specifications & system setup, camera temperature distribution, the reflectance 

standards and the procedures for calibration, outlier determination, data acquisition and 

data analysis. The results and discussion section provides the results and explains how the 

results are meaningful. The conclusion section summarizes the research that was 

accomplished through this thesis and concludes on the results found. Finally, the 

recommendation section suggests potential areas that require future work. 
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2 Literature Review 

2.1 Background on Near-Infrared Hyperspectral Imaging 

NIR HSI is a combination of spectroscopy that uses the NIR portion of the 

electromagnetic spectrum and hyperspectral imaging which collects a spectrum at each 

pixel of an image. The electromagnetic spectrum is composed of a wide range of 

electromagnetic radiation at various wavelengths creating an overlap of regions 

(Gonzalez & Woods, 2008). On one extreme of the spectrum is gamma ray radiation, 

which has the shortest wavelengths (e.g.>10 pm) and the highest energy levels. 

Following gamma rays is x-rays (e.g. 10 pm to 10 nm), ultraviolet radiation (e.g. 10 nm 

to 400 nm), visible radiation (e.g. 400 nm to 750 nm), infrared radiation (e.g. 750 nm to 1 

mm), microwave radiation (e.g. 1 mm to 10 cm), and then finally radiofrequency 

radiation (e.g. 10 cm to 10 km) (Mortimer, 1993). Infrared radiation is the radiation of 

interest for this research and it is subdivided into near-infrared (e.g. 750 nm to 2500 nm), 

mid-infrared (e.g. 2500 nm to 5000 nm), and far-infrared (e.g. 5000 nm to 1 mm) (Bosco, 

2009). In summary, the spectrum increases in wavelength from gamma radiation to 

radiofrequency radiation while decreasing in frequency and energy (Figure 2.0). 
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The NIR region was first discovered in 1800 by the astronomer Sir William 

Herschel when examining the development of heat on a telescope (Bosco, 2009). The 

next substantial contribution occurred 100 years later with the collection of spectra 

compounds using NIR spectroscopy by W.W. Coblenz. In 1940, Sir Thomas Ralph 

Merton developed a “way of ruling diffraction grating of high optical quality”, which led 

to the collection of high resolution spectra. Ten years later, William Kaye described the 

aspects of NIR, such as the spectra, the applications and the instrumentation. In the 

1960’s, new interest in NIR developed with Karl H. Norris predicting the moisture 

content of wheat flour using NIR wavelengths (Bosco, 2009). In the 1970’s, Phil 

Williams suggested that NIR spectroscopy could be applied to inspecting protein in 

wheat kernels when unloaded from rail cars. Williams realized that NIR spectroscopy 

was a fast technique that replaces the slow chemical tests and brought this knowledge to 

the attention of the Grain Research Laboratory. By the late 1970’s NIR spectroscopy was 

accepted as an international standard procedure and used by major grain companies to 

verify grain quality. Finally, with the development of NIR whole grain analyzers, NIR 

spectroscopy was brought into focus and gained world-wide acceptance.  

Wavelength (nm) 

700       600        500          400 

            102             104            106            108            1010          1012           1014           1016           1018          1020            1022          1024                  

108             106            104           102              1              10-2          10-4            10-6             10-8           10-10           10-12         10-14               10-16            

Long waves           Radio waves       Infrared Ultraviolet   X-rays Gamma  

Visible 
Wavelength(m) 

Frequency (hz) 

Figure 2.0 Electromagnetic Spectrum. Source: Vandergriff, 2013. 
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NIR spectroscopy has many qualities that make it an excellent technique, but NIR 

has a drawback (Wang & Paliwal, 2007). NIR spectroscopy collects spectra that are one 

dimensional, which means the spectral distribution of chemical compounds is lost. A 

solution to this problem is to combine near-infrared spectroscopy with the hyperspectral 

imaging technique. Hyperspectral imaging creates a three dimensional data cube of 

information, allowing no loss of spectra. Between 1960 and 1990, the applications for 

spectral imaging consisted of “astrophysics, remote sensing and terrestrial military” 

(Fischer & Kakoulli, 2006). Multispectral imaging was the first name given to the 

technique, but with the development of hardware to collect continuous or large number of 

spectral bands, it was renamed hyperspectral imaging. Within the past 20 years, semi-

conductors and focal plane arrays have added to the development of this technology. 

Hyperspectral imaging has spread into other fields, such as medicine, pharmacology, 

environmental sciences, food engineering, agriculture and the management of natural 

resources (Fischer & Kakoulli, 2006). 

2.2 Near-Infrared Hyperspectral Imaging Theory 

Spectroscopy is the study of how electromagnetic radiation interacts with matter through 

absorbance and reflectance (Mortimer, 1993).  Reflectance is the resulting radiation that 

either travels through a sample and is reflected back through the sample or contacts the 

surface of a sample and behaves as a mirror reflecting the radiation. It is represented by:  

  
 

  
 

 

  
 

(2.1) 

where P is the radiant power (i.e. the radiation measured coming from the sample) and    

is the incident power (i.e. the radiation first coming in contact with the sample) (Banwell 
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& McCash, 1994; Osborne et al., 1993). Reflectance can also be represented in terms of 

intensity, where   is the radiation intensity exiting the sample and    is the radiation 

intensity entering the sample (Banwell & McCash, 1994). Reflectance occurs when 

radiation contacts the surface of a sample and behaves as a mirror reflecting the radiation. 

This behavior follows the law of reflection that states the incident ray, the reflected ray 

and the line perpendicular to the mirror surface all occur in the same plane (i.e. the plane 

of incidence). Furthermore, the law states that the reflected ray angle will be equal to the 

incident ray angle. The type of sample determines how the radiation reacts with the 

sample. The radiation can either experience spectral reflectance (i.e. the light experiences 

reflection) or diffuse reflectance (i.e. the light experiences a combination of reflectance, 

refraction and scatter due to complex interfaces at and inside the sample) (Osborne et al., 

1993). 

Absorbance is achieved by shining a beam of radiation onto a sample causing the 

atoms to absorb the photon energy. The atoms translate the infrared energy into kinetic 

energy becoming excited and moving from the ground energy state to higher energy 

levels. When the atoms drop back down to the ground energy state, photon energy is 

released and this is called spontaneous emission. A stimulus of radiation is required if the 

atoms do not release the energy, which results in a stimulated emission and an 

amplification of radiation (Pedrotti, 2013). Absorbance can be denoted as:  

      
  
 
       

  
 
       

 

 
  

(2.2) 

where absorbance can be represented in terms of power and radiation  intensity (Osborne 

et al., 1993). 
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 Hyperspectral imaging works by creating a data cube or “hypercube” of spectral 

information. When the NIR equipment operates, the amount of reflection from the sample 

at each wavelength is recorded and stored as one slice. The slices continue to accumulate 

until all the reflections at each wavelength are accounted for and results in a cube of data. 

The data cube consists of two spatial dimensions i   j that represents each pixel of the 

image and one spectral dimension   that represents the wavelengths. The hypercube can 

be queried and observed in multiple ways to extract information on the chemistry of the 

sample (Feng & Sun, 2012).  

2.3 Instrumentation 

The instrumentation involved with the NIR HSI system used in this research has four 

main components: the illumination source, the filters, the optics and the detector. The 

system operates by shining the illumination source onto a sample, causing the sample to 

absorb and reflect the radiation. The radiation reflected by the sample is directed towards 

the filters above the sample. The filter allows a particular band of wavelengths through 

for a specific exposure time and that radiation passes to the lens of the camera. The lens 

converges the radiation towards the photodetector, which detects and records the amount 

of radiation coming in contact with it. 

The purpose of the illumination source is to provide the electromagnetic radiation 

in the desired range to the sample. The illumination source acts as an excitation source 

and causes the molecules in the sample to vibrate enough for the photodetector to detect 

the energy. Without the illumination source the subject would produce weak radiation, 

which is not practical for measurement. Illumination sources are generally divided up 

into two categories: thermal sources and non-thermal sources. Thermal sources are 



10 

 

incandescent bulbs that produce broadband energy covering the visible and entire NIR 

region, which is ideal for instruments operating in the NIR range. The majority of NIR 

instruments utilize tungsten filament bulbs as a thermal illumination source because of 

the bulbs’ long lifetime. Quartz halogen bulbs are an alternative option to the tungsten 

filament bulbs and allow the bulbs to reach higher temperatures, but are brittle and can 

become vulnerable to mechanical shock. Non-thermal sources produce narrow bands of 

energy and examples are discharge lamps, light-emitting diodes, laser diodes and lasers. 

The main advantage of non-thermal sources is their higher efficiency when compared to 

thermal sources (Osborne et al., 1993).  

The filter’s purpose is to narrow the broad bands of radiation down to a specific 

wavelength in the NIR HSI system. By narrowing and isolating the radiation, the filters 

allow the system to record the sample’s reaction to the NIR radiation localized to a 

wavelength. Multiple types of filters can be chosen when designing a system, including 

fixed filters, wedge filters, prisms and tunable filters (Ozaki et al., 2007). Tunable filters 

are generally of two types: acousto-optical tunable filters (AOTF) and liquid crystal 

tunable filters (LCTF). AOTFs have a high efficiency and separate wavelengths quickly 

without any moving parts. LCTFs are a stack of polarized plates that determine the speed 

of transition between wavelengths based on the relaxation time of the plates (Ozaki et al., 

2007). While the mechanisms of operation for AOTF and LCTF are different, the end 

result is similar with the radiation separated for contact with the lens. 

The lens operates by either converging or diverging the incoming radiation based 

on the material it is made of and its shape. The type of material composing the lens can 

affect how the waves of radiation interact because different materials have different 
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refractive indexes. Lenses come in multiple different shapes like, biconvex, plano-

convex, plano-concave and biconcave. The shape of a lens determines if the lens is 

considered a positive lens (i.e. converging) or a negative lens (i.e. diverging). If the lens 

is positive it focuses the wavelengths towards a focal point and if the lens is negative it 

directs the wavelengths outwards (Pedrotti, 2013). 

The photodetector detects the reflected radiation that comes into contact with it, 

converts it into an electrical signal and stores the information into an array. 

Photodetectors are composed of individual sensors that vary in material because of the 

wide ranges of wavelengths detected. Silicon based materials called charge coupled 

devices (CCDs), detect in the 700-1000 nm range and are known for their high efficiency 

(Osborne et al., 1993). CCDs are semiconductors composed of a p-n junction that has a 

bandgap separating the conduction band from the valence band. Upon contact with the 

semiconductor, the radiation is absorbed causing the excitation of an electron to jump 

from the valence band to the conduction band. When the electron falls back down to the 

valence band the radiation is emitted and recorded (Osborne et al., 1993). Another sensor 

material is indium gallium arsenide (InGaAs), which detects in the optimal range of 

1000-1800 nm for NIR radiation.  

2.4 Calibration  

Calibration of the NIR HSI equipment is instrumental in collecting accurate and reliable 

data. Thorough research in the area of NIR HSI calibration resulted in finding two papers 

on the topic. Geladi et al. (2004) and Burger & Geladi (2005) reported a calibration 

technique for a hyperspectral imaging machine operating in the NIR spectral range using 

liquid crystal tunable filters combined with an InGaAs photodetector. Their 
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recommendation is to calibrate with certified Spectralon tile standards from Labsphere 

because the standards have known reflectance values. The standards reflect the desired 

amount of radiation towards the photodetector that are recorded as A/D counts. These 

reflected values are used to determine the calibration coefficients for each pixel at each 

frequency. There are three calibration models to choose from: one-point, linear and 

quadratic calibration. A one-point calibration equation is: 

                  (2.3) 

where X is the hyperspectral image in percent reflectance, S is the sample data cube, B is 

the dark current image and W is the 100% reference image (i.e. the 99% standard is used 

because it is closest to 100%). A linear calibration equation is:  

                         (2.4) 

where      is the calibrated reflectance vector,      is the slope,      is the constant,      

is the dark current corrected measured reflectance signal, and      is the residuals. A 

similar quadratic calibration equation is represented by: 

                           
       (2.5) 

where      is the quadratic coefficient. 

Geladi et al. (2004) and Burger & Geladi (2005) both recommended blurring (i.e., 

de-focusing) the image before data acquisition of the reflectance standards to remove the 

risk of the camera picking up the textures, local imperfections, on each standard’s 

surface. By blurring the image it allowed for homogenous images. Also, through testing it 

was seen that quadratic calibration models performed the best over one point and linear 
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calibration. For better results with the quadratic calibration equation, more than four 

reflectance standards should be selected. 

2.5 Near-Infrared Hyperspectral Imaging as a Detection Method for 

Fusarium  

2.5.1 Background on Fusarium 

The fungal disease FHB causes dramatic changes to the kernels of wheat, barley, rye and 

maize (Goswami & Corby Kistler, 2004). FHB is caused by species belonging to the 

Fusarium genus, which consists of numerous species across the world. From the entire 

genus, the species of interest are F. culmorum, F. graminearum and F. avenaceum 

because of their direct involvement with infecting grain (Booth, 1971). In North America, 

F. graminearum is the most prevalent cause of FHB. During the winter months the 

fungus lays dormant in the crop debris until spring when the weather becomes warm and 

moist. The fungal structure matures with the crop and releases ascospores by means of 

rain, wind or insects when the grain begins to flower (Figure 2.1).  

 

Figure 2.1 An infected field of wheat  
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In the case of wheat, the spores come in contact with the plant spikes and either penetrate 

the epidermis or extend around the outside. The fungus spreads from floret to floret 

inside a spikelet and then from spikelet to spikelet until it takes over the kernels 

(Goswami & Corby Kistler, 2004). The infected kernels are known as scab or tombstone 

because of the altered appearance of the kernels. The characteristics of FHB vary due to 

infection intensity, but the standard appearance is shrunken shriveled kernels with a 

reduction in weight and a colour change to bleached white/pink (Delwich, Kim, & Dong, 

2011) (Figure 2.2). 

 

Figure 2.2 Fusarium infected wheat kernels 

The kernels are considered undesirable because processed infected kernels have negative 

effects on flour colour, ash content and baking performance (Dexter et al., 1996). As the 

FHB causes physical changes to the kernels it also causes a reduction in crop yields. 

The infection of FHB on grain causes a severe economic impact on the agriculture 

industry with up to $3 billion in losses to American farmers and $200 million in losses to 

Canadian farmers of wheat and barley since the 1990s (Windels, 2000). The more 

infected the grain crop becomes, the greater the economic losses to the farmer because 

less viable grain is being produced. This causes a hardship on the industry when FHB 
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spreads across the North American plains and creates an epidemic. From 1993 to 1999, 

FHB epidemics occurred and increased in intensity each year. Furthermore, FHB has 

spread across North Dakota into South Dakota and Minnesota and from southern 

Manitoba into Saskatchewan. The trend of FHB spreading across North America has 

motivated funding towards bringing awareness to increasing tillage of fields, alternating 

planted crops and spraying fungicides at peak times for disease (Windels, 2000). The 

goal is to hinder the opportunities for fungus growth and reduce the risk of another 

epidemic outbreak.   

In Canada there are two wheat classes based on harvest location, eastern and 

western. The eastern Canadian wheat is subdivided into seven subclasses, while the 

western Canadian wheat is subdivided into eight subclasses. Each subclass is specific to a 

type of wheat and holds true to specific characteristics (Canadian Grain Commission, 

2012). A wheat class of interest in this research is Canadian Western Red Spring 

(CWRS) and is characterized by being translucent red in colour, small to midsize in size, 

oval to ovate in shape and possesses a round, midsize to large germ (Canadian Grain 

Commission, 2012). Also, the CWRS wheat has superior milling and baking qualities and 

is for making multiple types of bread and pasta (Canadian Grain Commission, 2008). 

When a crop is harvested it is placed into storage on farms until it is ready for sale and 

loaded into railcars to be transported to stations, where representative samples are taken 

for grading and testing (Bosco, 2009). Grading procedures have been implemented by the 

Canadian Grain Commission (CGC) in order to reduce the amount of damaged kernels 

unexpectedly entering production lines (Shahin & Symons, 2011). Each type of grain is 

divided into grades and for CWRS there are five grades: No. 1 CWRS, 2 CWRS, 3 
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CWRS, 4 CWRS and CW feed. The best grade is No.1 CWRS and under the guidelines, 

as seen in Appendix C, the grade decreases to the lowest grade CW feed. Visual 

examinations are performed by inspectors using a 10* magnifying glass to determine 

Fusarium damage on sample kernels (Shahin & Symons, 2011). This process is time 

consuming because low levels of Fusarium damage on the kernels do not express the 

known characteristics. Inspection times are improved for higher infection levels because 

the kernels exhibit the FHB characteristics. Another method for detecting Fusarium 

damaged kernels is to run the samples through a gravity table, which separates the 

kernels based on density. This method operates by combining air flow, deck incline and 

the oscillation frequency together to separate the kernels (Tkachuk et al., 1991; Dexter et 

al., 1996). 

In addition to causing permanent changes to kernels and economic losses to 

farmers, FHB has been linked to mycotoxins. This secondary metabolite of fungi has 

toxic effects on humans and animals upon consumption (Peraica et al., 1999). The 

intensity and kind of symptoms developed depend on the type of mycotoxin being 

produced. The major mycotoxins are aflatoxins, citrinin, ergot alkaloids, fumonisins, 

patulin, zearalenone and trichothecenes (Bennett & Klich, 2003). In addition, each fungus 

produces certain mycotoxins and each mycotoxin can be produced by different fungi. 

This makes the identification of the fungus more difficult. Of these seven toxins, 

fumonisins, zearalenone and trichothecenes are produced by Fusarium (Krska et al., 

2007). Fumonisin has been detected in corn and can cause severe problems in animals 

and is linked to esophageal cancer in humans. Zearalenone is found in wheat, sorghum, 

barley and maze, and causes infertility and reproductive problems in animals. Finally 
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there are trichothecenes, which are the mycotoxin of interest because DON belongs to 

this mycotoxin family and is the primary mycotoxin produced by F. graminearum 

(Bennett & Klich, 2003). 

Trichothecenes are found in mold-infected grains (i.e. wheat, oats, barley and rye) 

and cause less lethal symptoms when consumed than other mycotoxins (Bennett & Klich, 

2003; Childress et al., 1990; Peraica et al., 1999). In the case of DON, the symptoms are 

typically less harmful than other trichothecenes, but still cause health hazards when 

ingested in large quantities (Bennett & Klich, 2003). In humans, DON causes symptoms 

of vomiting, headaches, dizziness, diarrhea and nausea (Pieters et al., 2002). In animals, 

DON consumption at low quantities causes food refusal and weight loss. The 

characteristic symptoms of DON ingestion has given rise to alternative names, such as 

vomitoxin and food refusal factor (Bennett & Klich, 2003). Overall, the combination of 

negative affects and ease of occurrence makes DON detection a priority. The methods of 

DON detection are different from Fusarium detection methods because DON is 

miniscule. DON detection methods involve chemical testing, like enzyme linked 

immunosorbent assay (ELISA), gas chromatography, high performance liquid 

chromatography, thin layer chromatography and mass spectrometry (Childress et al., 

1990; Shahin & Symons, 2011). These methods are slow and tedious because samples are 

sent for testing. The agriculture industry wants a method that detects Fusarium damage 

and DON content with immediate results, in order to isolate and remove contaminated 

grain.  
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2.5.2 Suitability of Near-Infrared Hyperspectral Imaging 

Currently simple, but tedious techniques exist for detecting Fusarium and DON infected 

kernels. These tests are accurate, but are not fast or portable. Since the approaches are 

also tedious, research, including this thesis, is underway to find faster solutions to the 

task. A variety of research has been performed to detect Fusarium damage and DON in 

kernels. Examples of techniques include hyperspectral imaging (Bauriegal et al., 2011), 

Fourier transform infrared microspectroscopy (Starr, 2011), PCR array (Parry & 

Nicholson, 1996), immunoassay (De Saeger & Van Peteghem, 1996) and mid-infrared 

spectroscopy (Kos et al., 2003). The techniques lack the ideal qualities (i.e. fast, portable, 

reliable and works well with biological samples) and resulted in limited successes for the 

detection of Fusarium damage and DON content in the kernels. The previously described 

difficulties have led to continued research exploring the use of NIR HSI as a novel 

detection procedure.  

NIR HSI has multiple advantages that make it an excellent choice for detecting 

Fusarium damage and DON in grain. NIR HSI is fast, non-destructive to samples, yields 

great results with biological samples, is portable and inexpensive (Bosco, 2009; Wang & 

Paliwal, 2007). NIR HSI is fast because it produces spectra at a fast pace, requires no 

sample preparation before data acquisition and could be applied in the field (Blanco & 

Villarroya, 2002). NIR HSI is non-destructive to samples because the NIR radiation 

penetrates into the sample, resulting in no sample preparation (Blanco & Villarroya, 

2002). Also, NIR HSI produces spectra from biological samples that provide chemical 

and physical information ideal for analyzing such samples. A variety of advancements in 

NIR HSI technology has led to portable instruments that can go to the field for multiple 
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applications and can even be mounted on a truck (Blanco & Villarroya, 2002; Bosco, 

G.L, 2009). Finally, NIR HSI is an inexpensive technique because it has almost no 

moving parts, resulting in fewer break downs less maintenance (Blanco & Villarroya, 

2002). Overall, NIR HSI possesses all of the desired characteristics and has applications 

in many different fields making it a natural choice for detection of fungi and mycotoxins. 

2.5.3 Near-Infrared Applications Related to Detection of Fusarium  

NIR technology can be used in numerous fields, resulting in a wide range of applications. 

NIR is used in the agricultural industry by examining the composition of food, such as 

grain moisture content and protein quality, milk and dairy products, and fruits and 

vegetables (Blanco & Villarroya, 2002). Also, NIR can assess the quality of meat, fruit 

ripeness, handling defects, the level of caffeine in coffee, farm feed contamination and 

crop infections (Blanco & Villarroya, 2002; Bosco, 2009; Wang & Paliwal, 2007). 

Furthermore, NIR has applications in the pharmaceutical, environmental and 

petrochemical industries (Blanco & Villarroya, 2002). Focusing on the agricultural 

industry, researchers have experimented with different combinations of spectral ranges 

and analysis tools to optimize the quality of results. Samples for the experiments can be 

tested as individual kernels or in the field as entire ears of wheat. The goal is to find 

which wavelengths, analysis approaches, and sampling techniques work well together to 

detect Fusarium damage and then subsequently DON content. Successes in these 

experiments will lead to further development of faster, more effective techniques for 

detection.    

One approach to detecting Fusarium damage and DON is to harvest the kernels. 

Dowell et al. (1999) collected 10 samples of hard red spring wheat kernels and selected 
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45 kernels from each sample. They performed NIR imaging in the range of 400-1700 nm 

and the data cubes were analyzed with partial least squares regression. Chemical testing 

was performed on each ground kernel to determine levels of ergosterol and DON. It was 

found that in kernels with Fusarium symptoms had levels of DON and ergosterol. Even 

kernels with no visible signs of Fusarium damage had small levels of DON and 

ergosterol. The researchers created a calibration equation with six factors and it was 

found that they correctly classified damaged kernels that were confirmed by visual 

inspection. Also, their calibration accounted for more kernels with DON content than 

observed. Dowell et al. (1999) noted that calibration is good at identifying kernels not 

visible with damage, but still high in DON. It was found that as the weight in kernels 

decrease, the levels of DON and ergosterol increases. This can occur either because 

smaller kernels have more DON and ergosterol inside or damaged kernels are less dense. 

Important wavelengths for O-H absorbance were 750, 950 and 1400 nm, C-H absorbance 

were 1200, 1400 and 1650 nm, and N-H absorbance were 1050 and 1500 nm. They 

concluded that NIR can detect Fusarium damage, DON and ergosterol in single kernels. 

Polder et al. (2005) selected 96 wheat kernels that were artificially infected with F. 

culmorum and tested in the visible (430-900 nm) and NIR (900-1750 nm) spectral ranges. 

The researchers chose to examine the transmitted spectra instead of the reflected spectra 

since Fusarium is found on the inside and outside of the kernels. Masks were applied to 

the data cubes to obtain better images by taking into account the dark and saturated 

pixels. They used TaqMan, a real-time polymerase chain reaction (PCR) analysis, to 

detect Fusarium on individual ground kernels. Finally, data preprocessing and partial 

least squares were the supervised methods performed, while fuzzy c-means clustering 
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was the unsupervised method performed on the data cubes. The researchers discovered 

that the kernels with high levels of Fusarium absorb more light than kernels with lower 

levels. The partial least squares regression performed better on the NIR images than the 

visible images and the fuzzy c-means identified infected kernels with about 6000 pg of 

Fusarium. They concluded that higher levels of Fusarium are easier to detect than lower 

levels in kernels. 

Shahin & Symons (2011) performed an experiment on 400 CWRS kernels in the 

visible to NIR spectral range (400-1000 nm). All the kernels were inspected and graded 

into two categories, good and Fusarium damaged kernels (FDK). The FDK were further 

classified as either mild or severely damaged. They employed a pushbroom hyperspectral 

imaging system and upon scanning created data cubes 800 400 218. The cubes contain 

images of kernels lined up in three rows of good, mild and severe. A mask was created to 

help remove the distraction of the background in the images and then principle 

component analysis (PCA) was applied to the cubes. Six wavelengths were selected 

based on the PCA results and PCA was run again on those wavelengths. Linear 

discriminant analysis was applied to the results to create classification models. These 

models distinguish between good and severe and then severe and mild kernels. They 

concluded that the spectral range of 400-1000 nm was able to detect levels of Fusarium 

damage in the kernels and distinguish between them.    

Delwiche et al. (2011) selected eight wheat subsamples from larger sample sets and 

acquired images of the samples using NIR HSI. For each subsample, kernels were ranked 

from most infected to most healthy. Eight of the most infected were placed into a row and 

then eight of the healthiest were placed in a row below the infected kernels. Once the data 
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cubes were created masks were utilized to remove the effect of the background on the 

images. A t-test was performed to confirm that the pixels have different levels for healthy 

and damaged kernels and the pixels were averaged for each kernel. Also, they 

distinguished between the endosperm and germ of the kernels using the pixels. Models 

were created from the wavelengths using linear discriminant analysis and cross-validated 

with the high contrast models. Their conclusion was that, NIR was better at identifying 

damage over visible light using wavelengths 1200, 1420 and 1560 nm. 

Overall, considerable time and effort has been put towards finding a detection and 

analysis method that is consistent and successful. Each study has yielded limited success 

in Fusarium detection and concluded that further research needed to be performed. This 

thesis continues the research and aims to detect Fusarium damage and DON content with 

an NIR HSI system.  
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3 Material and Methods 

3.1 System Specifications and Setup 

The NIR HSI system used to conduct this research was composed of four main 

components: the illumination source, the filters, the optics and the detector. The 

illumination source employed was two halogen incandescent bulbs located on either side 

of the camera (Figure 3.0). The bulbs (model No. M40189, Bencher Inc., Antioch, IL) 

had a power rating of 300 W. The filters involved were two automatic VariSpec (Perkin 

Elmer, Waltham, MA) LCTFs with an aperture of 20 mm and a full width at half 

maximum bandwidth of 10 nm. To cover the entire spectral range required one filter 

operates between 650-1100 nm and the other operates between 850-1800 nm. Following 

the filters was a silica glass lens with an antireflective coating made of MgF2. The lens 

(model No. L25F0.95, Electrophysics Inc., Fairfield, NJ) had an aperture of F1.4 and a 

focal length of 25mm. The detector was an InGaAs FPA (Sensors Unlimited Inc., 

Princeton, NJ) that consisted of 640*477 detectors, where each detector was 27*27µm 

and operated in the 900-1700 nm spectral range. The camera had a power supply, a PCI 

data acquisition board with 12 bit resolution and was controlled by a desktop computer. 

The computer was a Dell Optiplex GX280 with a 3 GHz Intel Pentium 4 processor 1GB 

of RAM. 

The camera, lens and filters were attached as a unit in a vertical position off of the 

main stand, where each were stacked facing downwards with the camera being the 

farthest from the platform and the filters being the closest. The problem with this set up 

was the filters had an aperture of 20 mm, while the camera had an aperture of 25 mm. 
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This means that the aperture of the filters limits what was detected by the camera because 

the filter comes into contact with the radiation off the sample first. The camera was 

attached to the main stand by an adjustable crank and that allows for changing the height 

between the unit and the platform. Also, at that same attachment there was the option of 

moving the unit forward or backwards over the platform and to tilt the unit. This was 

ideal because it allows for control over where the camera rests over the platform, as well 

as what is seen by the camera. For this thesis the LCTF was positioned 54.0 mm 

vertically over the platform, the backside of the LCTF was 174.6 mm away from the 

main stand and the tilt is set at 0º. In addition, the f-stop on the lens was set to the option 

1.4, which was the maximum setting and had the largest aperture. The f-stop, also known 

as the focal ratio, f-number and relative aperture, was the ratio of the focal length to the 

aperture and controls the light passing towards the camera.  

 

Figure 3.0 Near-Infrared Hyperspectral Imaging system configuration 

 Before operating the NIR HSI system, each component must be turned on and 

allowed to stabilize for 60 minutes. As the system warms up the computer was turned on 

and the program UofMInGaAs.vi was loaded (Figure 3.1).  

Sample location 

InGaAs FPA 

LCTF 

Camera lens 

Illumination source 
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Figure 3.1 Screen shot of the UofMInGaAs computer program 

There are options that can be adjusted to create the desired experiment conditions. The 

align wavelength was set to 1350 nm to ensure a central wavelength was focused, the first 

wavelength was set to 960 nm and the last wavelength was 1700 nm. The number of 

slices was the number of wavelengths to be examined and set to 100. Finally the number 

of co-additions was set as 10 to improve the signal-to-noise ratio (SNR) in areas where 

the detectors were less sensitive. Data acquisition began once the system warmed up and 

the filters initialized.  

3.2 Camera Temperature Distribution  

The halogen illumination bulbs produce the illumination source for the system, but they 

also lose a great deal of energy as heat. This additional heat warms up the LCTF, the lens 

and the camera. The temperature distribution and peak temperature were monitored to 

ensure the temperature does not exceed the 40°C operating temperature of the camera. If 

the temperature were to exceed the maximum temperature of the camera, it could 

interfere with the results or even damage the camera. Furthermore, the temperature was 

monitored to verify that the system was operating at a uniform temperature and there 
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were no irregularities that could influence results. The length of time for the system to 

reach a constant temperature was measured and provides the required warm up time 

before data acquisition. Two k-type thermocouples were hooked up to a 34972A LXI 

data acquisition system from Agilent to monitor the temperature change. The results were 

recorded and displayed using the BenchLink data logger software on a laptop computer. 

Each thermocouple was taped flush against the camera of the NIR system, where one 

thermocouple was placed on the right side of the camera and the second thermocouple 

was placed on the left side and the temperature change was recorded from initial system 

turn on until the temperature plateaus. To simulate working conditions the NIR system 

scanned a 99% reflectance standard while the data logger recorded the increasing 

temperature. After the scan was complete the data logger was stopped for an interval of 

five minutes and then started again for a new scan. This process repeated until there was 

no notable change in the temperature. Upon reaching a plateau the NIR system 

components were turned off and then monitored in five-minute intervals for the length of 

time required to reach room temperature again. Once the NIR system cooled down the 

thermocouples were moved to a new position on the camera and a new temperature 

acquisition began. The three thermocouple locations can be seen in Figure 3.2. 
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Figure 3.2 Thermocouple locations on the camera 

 Also, the light source had two intensity options of high and low, both were monitored to 

determine the temperature difference. The system was allowed to heat up and cool down 

twice on the low setting. Finally, the system was warmed up once more at the low setting 

and once its temperature plateaued the lights were switched to high. The focus was to see 

how much warmer the hot light setting can make the camera compared to the low setting. 

Results of this process are presented in Section 4.1. 

3.3 Reflectance Standards 

To calibrate the NIR HSI system, Spectralon Diffuse Reflectance Standards were selected 

from Labsphere. These standards were durable, range from 2 to 99% and were spectrally 

flat across the UV-VIS-NIR electromagnetic spectrum. The specific standards selected 

were URSS-04-010 and include nominal reflectance factors of 2, 50, 75 and 99% (for the 

remainder of this thesis the standards are referred to using their nominal reflectance 

values). The dimensions of each standard are 38.1 mm in diameter and 12.7 mm in 

1 

2 

3 
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height, with a reflective area of 31.8 mm in diameter. It was noteworthy that the nominal 

reported reflectance values were not precise because the reflectance values change at 

different wavelengths. In order to use the reflective standards to calibrate at each 

wavelength, the true reflectance values must be determined. 

The options for Spectralon reflectance standards range from 2 to 99% depending on 

the set selected and the percentages were calculated based on how well the standard 

reflects the radiation. The true reflectance values for each standard were verified based on 

the guidelines from the National Institute of Standards and Technology (NIST). An 

8°/hemispherical apparatus measured the true reflectance values of each standard and the 

results were represented in a graph from wavelengths 250- 2500 nm (Appendix H). 

3.4 Calibration 

Calibration of the NIR HSI system first required turning on the components of the 

system, starting the computer and allowing the system to stabilize. Using the results of 

Section 4.1 it was decided that stabilization required 60 minutes. Next the lens was 

rotated counterclockwise until the image seen on the computer was blurry. This was 

accomplished by placing a wooden target, with a height equal to the reflectance 

standards, under the view of the camera. The image was deemed unfocused when the 

bull’s-eye image was no longer recognizable. Both the halogen incandescent bulbs were 

replaced, which means they were operating under optimal conditions. As mentioned 

earlier, there were four reflectance standards available, but to properly calibrate the 

machine more standards were required. The solution was to employ an optical chopper 

(model No. MC2000, Thorlabs, Newton, NJ)  because selecting the 10 slot chopping 

blade reduced the amount of light passing through the blade by half as it spun. Placing 
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the chopper between a standard and the LCTF allowed for the detection of half the 

amount of reflected light and therefore provided nominal reflectance of 1%, 25%, 37.5% 

and 49.5% better filling the gap between 2% and 50% nominal standards.  

 The calibration consisted of imaging the reflectance standards, the reflectance 

standards mechanically reduced by 50% and the dark current as a data cube in a random 

order. The dark current data cube was created by placing a piece of black cardboard up 

against the LCTF for the full 3.5 minutes and thereby filling a data cube with the dark 

current. The full value standards were scanned the usual way, while the half scans were 

obtained by placing the standards below the LCTF with the chopper mounted on a brace 

(Appendix B). The chopper was suspended right below the LCTF and blocked almost the 

entire standard. When everything was set up the optical chopper was turned on at 1000 

Hz and data was acquired. The process of imaging each option was repeated three more 

times with a different sequence.  

 The data cubes were loaded into Matlab and the spatial dimensions of the cubes 

were reduced from 640 477 to 200 200 to focus on the area of interest. Each cube of 

the same reflectance value was organized together as 4D matrices and then all the 

matrices were organized as a 5D matrix going from lowest reflectance to highest 

reflectance (i.e. dark current to 99% reflectance). The true reflectance values are obtained 

from the calibration graph from Labsphere and placed into a matrix cube the same size as 

the large data cube. The calibration equation used was quadratic (Geladi et al., 2004; 

Burger & Geladi, 2005) and was determined by running a Matlab function called regstats. 

The function allowed for the specification of the calibration model (i.e. quadratic) and 

outputs a number of statistics (i.e. estimated y (here after referred to as   ), adjusted R
2
, 



30 

 

mean squared error and betas).    are the predicted values and the residuals can be 

calculated by subtracting the    from the known values y (Wilcox, 2012). The adjusted R
2
 

was the adjusted coefficient of determination and explains from 0 to 1 how well the data 

fits the created line. The larger the number means there was a higher correlation in the 

variance between the expected and predicted lines (Salkind, 2008). Mean squared error 

(MSE) was another way to examine the error between the predicted and expected 

calibration lines. The betas (i.e.                 ) were the coefficients of regression, 

which were used as the coefficients in the quadratic equation. Each pixel in the data cube 

was treated individually as the x of the quadratic equation and resulted in the calculation 

of the predicted new value.  

3.5 Outlier Determination 

Upon completing the calibration, a mask was applied to the data cube to take into account 

the outlier pixels and frequencies. The outlier frequencies were determined and removed 

based on plots displaying the variation at each wavelength, as well as based on previous 

experiences of what was an outlier frequency. To create a mask for the pixels, the first 

step was to determine what constitutes an outlier. The residuals of the    were calculated 

by subtracting the true reflectance cube from the   . The residuals were searched for 

outliers by using the MAD-Median rule: 

      

   
      

   
(3.1) 

where    was the    at a frequency,   was the median value of the    at a frequency,     

was the mean absolute deviation of the    at a frequency and K distinguishes whether a 

value was an outlier or not (Wilcox, 2012). A pixel was an outlier if its value was greater 
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than the K value of 2.24 or had a value of not a number (NaN). The number of outliers in 

each dimension was the result of summing the outliers per frequency, per pixel and per 

regression. It was expected that the outliers per regression were a hypergeometric 

distribution and not a binomial distribution. The difference being that binomial 

distributions are the probability of x events (e.g. outliers) occurring in n draws with 

replacements after every draw, while hypergeometric distributions are the probability of k 

events (e.g. outliers) occurring in n draws without replacement. The probabilities 

associated with hypergeometric distributions are expressed in the following equation: 

     
  
 
     

   
 

  
 
 

 
(3.2) 

where p(x) was the probability of having exactly x outliers in a regression, K was the 

total outliers in the population, x was the number of outliers in a regression, N was the 

population size and n was the number of draws. A Matlab function called hygepdf 

performed the hypergeometric distribution and calculated the expected number of outliers 

per regression. It can be seen in Figure 3.3 that the expected number of outliers did not 

match what was observed. 
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Figure 3.3 Number of outliers/regression 

In addition, the expected number was compared to the observed number of outliers per 

regression by means of a chi squared test. The test resulted in a chi square value of 

4.3171e55 and a p-value of 0. This means the null hypothesis was rejected (i.e. the 

outliers are hypergeometric) and therefore the outliers were not random (Duda et al. 

2001). This confirmation justified masking the outliers that occur in the regressions. A 

bar plot was created to display that the outliers per regression were not hypergeometric, 

as well as to show a cutoff for outliers. The cutoff separates the acceptable outliers from 

the true outliers and was identified by the substantial drop in the bars from 359 to 51 

outliers per regression (Figure 3.4). 
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Figure 3.4 Outliers per regression 

 If the number of outliers per regression was greater than the cutoff, the regression was 

designated with the value of one in a matrix full of zeros. This allows for the 

identification of which regressions required masking.  

 The mask process consists of taking a sample data cube and replacing each outlier 

location in the cube with the median value at its specific frequency. This reduced the 

impact each outlier had on its neighbour. Each pixel and its’ neighbours are averaged 

together and used to replace the original value. The locations of the outliers determined 

earlier were used to index this new cube and the values were placed into the original data 

cube at the outlier locations. The end result is a data cube with 2,619,188 fewer outliers. 

After the calibration and masking code were completed, the data acquisition began.   
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3.6 Data Samples and Data Acquisition  

The wheat samples were collected from numerous grain elevator locations across the 

Canadian prairies and provided for this thesis by Cargill Limited. The samples were from 

the black soil zone of Manitoba and Saskatchewan and stored inside a freezer at zero 

degrees Celsius. The sample documentation was recorded into excel based on soil zone, 

station, grade, Fusarium damage percentage, vomitoxin percentage, protein, moisture 

content and general comments. After examining the samples it was decided that two bags 

per grain grade, each sampled twice, would suffice for the samples. 

 The data acquisition was broken up into three parts: density determination, wheat 

kernel imaging by NIR HSI and moisture content determination. A multivolume 

pycnometer (Model No. 1350, Micromeritics, Norcross, GA) was used to determine the 

unknown density of a sample. The pycnometer works by filling up a specific cup with a 

sample and measuring the changes in gas pressure as helium is added and removed. The 

volume of the sample can be determined by solving the following equation: 

             
    

 
  
  
   

  

(3.3) 

 where       is the sample volume,       is the empty volume of the sample cell with the 

empty sample cup in the place,      is the expansion volume,    is the charge pressure 

and    is the pressure after expansion. The density can be calculated by the following 

equation:  



35 

 

      
     

     
 

                       

     
 

(3.4) 

where       is the density of the sample and       is the sample weight. The density 

determination procedure began by performing the initial calibration of the pycnometer. 

Calibration consists of recording the    and    for all three of the sample cup sizes each 

of which is initially empty and then filled with a metal ball of known mass. Simple 

calculations result in the determination of       and     , which are required for the 

sample volume calculation (Equation 3.3).  

After calibration a bag was selected at random for a desired grain grade, and then 

the contents were poured into a plastic bin and shaken by hand. The 150 cm
3
 sampling 

cup was filled with 50g of kernels and the contents were stored in a freezer within a 

plastic bag. Each bag was selected at random and allowed to warm at room temperature 

20 minutes before use. The temperature of grain is important in density calculations as 

cold grain occupies a smaller volume than the grain at room temperature resulting in a 

higher density value. The grain was placed into the pycnometer, where the air that 

entered with the kernels was purged and replaced with the working helium gas. Three 

replications of    and    were measured and averaged. The sample was weighed on a 

digital scale and returned to the freezer. This process was repeated for the second 

sampling of a bag and for each grain grade. The end result was a total of 16 samples. In 

addition, to confirm that the pycnometer results were consistent and reliable a second 

replication was performed (see Appendix E). Upon completing the density 

determination, the samples remained in the freezer to await NIR HSI imaging.  
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To maintain consistency in the experiments, one fixture/ locating jig was designed 

and included in the experiment setup. The fixture (Appendix A) was designed to fit on 

top of the NIR imaging area and aligned the imaged petri dish with the LCTFs. Upon 

setting up the machine, the 99% reference was captured and the lens was refocused with a 

bulls-eye image. Since the camera has limited area to view a sample, the kernels were 

arranged on the petri dish with tweezers into a layer that was approximately 1-2 kernels 

thick. The petri dish was placed on the fixture and the sample was imaged. This process 

was repeated until all the kernels from the sample bag were imaged. Afterwards the 

sample was placed back into the freezer and a new sample was selected.  

Moisture content of the samples was determined by drying 10g whole kernels at 

130°C for 19 h in quadruplicate (ASAE Standards S352.2, APR 1988).The following 

equation was used to calculate the moisture content: 

     
      

    
     

(3.5) 

where      was the moisture content as wet basis,        was the mass of the water 

evaporated and      was the mass of the initial kernels before drying. Once all of the 

data acquisition was completed, the next step was data analysis. The goal was to examine 

the data and determine what trends and patterns exist that can help identify Fusarium 

damage and DON content in the wheat kernel samples. 
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3.7 Data Analysis 

3.7.1 Near-Infrared Hyperspectral Imaging Analysis 

The sample data cubes were processed into the correct size of 76 200 200 and then the 

calculated calibration equation and outlier mask were applied. Afterwards the data cubes 

pertaining to a sample were stored together into a 4D matrix. The first approach for 

analysis was to separate the data into testing and training. The samples ranged from 15 to 

20 data cubes and to create consistency 15 samples were selected. The cubes for each 

sample were randomized into four groups (i.e. three groups of four and one group of 

three). There were four samples for each grade, totaling 16 groups and 60 data cubes, to 

create a training group of 45 and a testing group of 15. The final training group of 180 

was created by organizing samples of all of the grades together, the remaining 60 samples 

were organized into an additional final testing group. This research originally focused on 

creating a classifier with the 180 cubes to recognize distinctions between the four grain 

grades in this research and then test the classifier with the remaining 60 cubes. This 

approach was not feasible because a regular computer cannot handle the massive size of 

the data. The alternative second approach was to create 15 groups of 16 data cubes, 

where the groups contain one data cube from each sample. The data cubes were selected 

from random groupings of each sample created from the first approach. 

 To test the validity of the 15 groups, each was used as a training set and applied 

for the prediction of four random groups testing sets. The model for each group was the 

result of applying a k-nearest neighbour classifier with k=3 to the training set using 

Matlab’s implementation of a kd-tree. K-nearest neighbour classifier is a prototype 

classification method, where it consists of training data and class labels. This method 



38 

 

uses a model with m prototypes (training points   , r = 1, . . . , m) each from one of the 

classes. To classify the point   ,  k-nearest neighbour classifier selects the k-closest 

prototypes in the set of training data within the Euclidean distance to   . It classifies by 

using the majority vote of the k neighbours closest to it and ties are broken at random. K- 

nearest neighbour classifier is successful in many classification problems because it is 

simple, powerful and performs well (Friedman, et al., 2008). A random order was created 

based on the criteria that no group tested against itself, each group tested four different 

groups and all groups were tested four times (Table 3.0). 

Table 3.0 Randomized testing order 

Group # 

Test 1 

Group # 

Test 2 

Group # 

Test 3 

Group # 

Test 4 

Group # 

1 5 13 8 11 

2 14 9 12 7 

3 8 7 11 14 

4 7 1 15 13 

5 13 12 14 1 

6 1 14 4 10 

7 10 4 6 12 

8 9 3 13 2 

9 12 15 10 5 

10 11 6 2 4 

11 15 2 5 9 

12 3 11 7 6 

13 4 8 3 15 

14 6 10 1 3 

15 2 5 9 8 

 

The size of the data became an issue based on the length of time to test one group when 

the training model exceeded a reasonable time duration. To solve this problem a sample 

of 1000 pixels out of 40000 were chosen at random from each data cube from within that 

group and used to create a 1-nearest neighbour classifier training model for the group. 
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Each group was classified by four different classifiers. The results were examined for the 

cube of spectra that was consistently predicted to be the same grade as the cube they 

came from. The consistent spectra were then used to create a new model with k=1 and 

applied to predict the grades for each of the 15 groups. The model classifies grades at a 

pixel level for each sample in the group. The occurrence of each grade was totaled and 

used to create percentages of how often the grades occurred per sample in each group. 

Observing the results of the percentages made it clear that it would be difficult to predict 

a specific grain grade in a sample.  

A different approach was used to identify the existence of either Fusarium or 

DON in a sample. New labels were created for Fusarium damage and DON content that 

corresponded to their respective presence in the samples. The labels were filled with 

zeros and ones, where zero represented no presence and one represented presence. Based 

on the sample bags, samples 1-4 had negligible levels of Fusarium damage and no DON 

content, samples 5-8 had Fusarium damage and no DON content and samples 9-16 had 

both Fusarium damage and DON content. Two models were created from the percentages 

using a k=3 nearest neighbour classifier, one for Fusarium damage prediction and another 

for DON content prediction. A cross validation with a k-fold of 5 was performed on each 

model and used to create predictions for both. A k-fold cross validation divides the data 

up into k portions (e.g. 5), trains with a portion of the data (e.g. 4/5) and then uses the 

results to test the remaining data (e.g. 1/5). This process repeats k times with a different 

portion selected for testing (Friedman, et al., 2008). After each k-fold the predictions 

were totaled and then a summary table (Table 3.1) was created to display the results.  
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Table 3.1 Configuration of the summary table 

  
Predicted - + 

  

Actual 
- 

TN  FP Specificity 

  

+ 
FN TP Sensitivity  

  

  Negative 

Predictive 

Value 

Precision  Accuracy 

 

The summary table displays how often a data cube was classified as true 

negatives (TN), true positives (TP), false positives (FP) and false negatives (FN) (Kohavi 

& Provost, 1998). In the case of testing for Fusarium damage, the true negatives mean 

how many of the 240 data cubes were correctly classified as having no Fusarium damage, 

true positives mean how many were correctly classified as having Fusarium damage and 

false positives and false negatives mean how many were misclassified as one or the other. 

Also the table displays the sensitivity, specificity, precision, negative predictive value 

(NPV) and accuracy. The classifications are defined as: 

             
  

     
 

(3.6) 

             
  

     
 

(3.7) 

           
  

     
 

(3.8) 

     
  

     
 

(3.9) 
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(3.10) 

These five classifications display how well the predictive classifiers for Fusarium damage 

and DON content are performing. As well, the classifications provide different ways to 

interrupt and understand the results seen in Section 4.3. Overall, the higher the values 

seen equates to the better performance of the predictive classifiers. 
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4 Results and Discussion 

4.1 Temperature Distribution 

The halogen bulbs performed well at the low light setting and the three positions for the 

thermocouples displayed similar results. The temperature started at the room temperature 

of 27ºC and for 49 minutes the temperature continued to rise until it plateaued out at 34ºC 

(Figure 4.0).  

 

Figure 4.0 Warming up rate with thermocouples at location 1 (low light setting) 

 

At each location, the two thermocouples behaved similarly, with thermocouple one 

reporting about half a degree warmer than thermocouple two. This may have been caused 

by a small relative tilt between the two lamps. A further explanation was that the left 

thermocouple had pulled away from the camera under the tape and although new tape 

was applied at each location the problem persisted. Furthermore, the time required for the 

temperature to reach steady state differed between the three locations. Location one took 
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49 minutes to plateau, location two took 58 minutes and location three took 53 minutes. 

Results indicated that the first location of the camera reached steady state first, the third 

and the second required the longest amount of time. This disparity was not deemed to be 

significant. As well, in all cases there was a period of fluctuation near the end where the 

temperature climbed by a tenth of a degree every other minute and then dropped by the 

same amount in between each increase. The temperature was deemed to have reached 

steady state when the temperature changed by less than a tenth of a degree. It took five 

minutes of observing the fluctuation for the cut off to be reached.  

 After the temperature reached a plateau for the first location the lamps are turned 

off and allowed to cool. The rate of temperature decrease is monitored to gain an 

understanding of how long the camera requires reaching room temperature again. The 

temperature started at 4°C below the plateau temperature and decreased by 1.5ºC 

between ten minute intervals. The starting temperature is different because there is a five-

minute gab between when the lamps are turned off and when the data logger starts 

recording temperatures. After half an hour the temperature fluctuation started and then 

leveled out (Figure 4.1).  
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Figure 4.1 Cooling down rate with thermocouples at location 1 (low light setting) 

 

The temperatures recorded by the two thermocouples followed each other very 

closely. As well, after the third location reached a plateau, the light setting was switched 

to high to determine how much higher the temperature on the camera can reach. The goal 

was to see how much the temperature climbed with the new setting (Figure 4.2). 

The temperature began at the plateau value of the low lamp setting and over the 

course of 20 minutes increased to a final temperature of 35°C. This was good to know 

because it was well below the maximum operating temperature of 40°C for the camera. It 

was decided that the warm up time for the system was 60 minutes. The length of time 

was based on the fact that the low lamp setting took about an hour, but the high setting 

produces more heat and therefore heated up fast. In addition, Castorena-Martinez (2009) 

operated the same NIR HSI system at the 60 minute warm up time with no reported 

problems. 
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Figure 4.2 Warming up rate with thermocouples at location 3 (high setting) 

 

Likewise, there had been two verbal confirmations that the system requires 30 minutes to 

warm up. Overall, the 60 minute warm up provided enough time for the system to have a 

uniform temperature and no irregularities were observed that could influence results. 

4.2 Density and Moisture Content 

The kernel density of wheat ranges between 1430 and 1449
  

   (Grabowski et al. 2012).  

The measured densities of the samples ranged between 1424 and 1442
  

   (Appendix E). 

The measured results fell within the expected range, as well were mildly lower since 

Fusarium damaged kernels have lower densities (Tkachuk et al., 1991). Examining the 

two replicates for each grain grade, it can be seen that the pycnometer was consistent 

with the density measurements. In some instances there were slight differences, but the 

consistency was evident by looking at the variances and inter quantile range (IQRs). The 

second sample for each bag displayed similar densities to the first sample with small 
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variation and IQR. A larger difference was seen between the two bags of each grain 

grade. The average, variance, median and IQR are calculated in regards to each bag to get 

a better understanding of how the bags were different and display how it affects the 

results (Table 4.0).  

Table 4.0 The average, variance, median and IQR of the measured densities/grade 

 Grade   Average Variance Median IQR 

No. 1 CWRS           

  
Samples 

1 & 2 
1441.54 12.25 1439.88 5.885 

  
Samples 

3 & 4 
1438.87 11.77 1439.51 5.304 

  
All  

samples 
1440.21 13.35 1439.47 5.007 

No. 2 CWRS           

  
Samples 

5 & 6 
1437.79 7.179 1437.17 2.383 

  
Samples 

7 & 8 
1440.01 14.59 1438.26 5.714 

  
All 

samples 
1438.90 11.69 1437.94 4.421 

No. 3 CWRS           

  
Samples 

9 & 10 
1439.75 13.51 1440.12 3.848 

  
Samples 

11 & 12 
1414.30 5.730 1421.37 1.346 

  
All 

samples 
1427.02 178.1 1425.88 25.66 

CW Feed           

  
Samples 

13 & 14 
1440.92 3.712 1440.78 2.605 

  
Samples 

15 & 16 
1430.92 7.393 1432.02 3.031 

  
All 

samples 
1435.92 31.40 1436.84 10.15 
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The two bags for No. 1 CWRS and No. 2 CWRS were similar to each other with a 

difference of 3
  

   for average and an even smaller difference for median. Grade No. 3 

CWRS had a difference of 25
  

   for the average and the median was a difference of 19
  

  . 

CW Feed had a difference of 10
  

   for the average and 5
  

   for the median. It was 

observed that the density started to decrease with an increase in Fusarium damage, but 

this cannot be confirmed with the samples measured here given the inconsistencies 

between the No. 3 CWRS and CW Feed bags. Alternatively, by ignoring grades No. 2 

and No. 3 the expected drop in density was observed between the healthy grain of grade 

No. 1 and the Fusarium damaged grain of CW Feed. 

The expected moisture contents were the reported values at the time of harvest 

and recorded on the original sample bags along with the other information (Appendix D). 

In all cases the expected and measured moisture contents are similar to each other. In 

most of the samples the measured value was below the expected with the exception of 

samples 2 and 15. The corresponding samples of a bag had similar moisture contents, 

which were expected from samples of the same bag. Comparison of the moisture contents 

shows that most were similar with the exception of sample 9 and 10 with high values. 

Examining the comparison tables, the small values for variance and IQR confirms that 

the moisture content procedure was consistent across the replications (Appendix F). As 

seen with density, the moisture content between the bags of each grade showed larger 

differences. This confirmed that the bags were different from each other. The average, 

variance, median and IQR are calculated to display the trends (Table 4.1). 
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Table 4.1 The average, variance, median and IQR of the measured moisture 

contents/grade 

Grade   Average Variance Median IQR 

No. 1 CWRS           

  
Samples 

1&2 12.42 0.015 12.42 0.173 

  
Samples 

3&4 13.08 0.026 13.03 0.228 

  
All  

samples 12.75 0.133 12.75 0.572 

No. 2 CWRS           

  
Samples 

5&6 12.08 0.014 12.06 0.036 

  
Samples 

7&8 12.16 0.005 12.14 0.034 

  
All 

samples 12.12 0.010 12.11 0.108 

No. 3 CWRS           

  
Samples 

9&10 13.89 0.003 13.92 0.095 

  
Samples 

11&12 12.44 0.004 12.46 0.074 

  
All 

samples 13.17 0.555 13.16 1.455 

CW Feed           

  
Samples 

13&14 12.50 0.010 12.49 0.162 

  
Samples 

15&16 12.13 0.019 12.10 0.129 

  
All 

samples 12.31 0.049 12.38 0.400 

 

Differences between the average and median existed between all bags for each grade. 

Grade No. 1 CWRS had a difference of 0.6% for both average and median, while No. 

CW Feed had a similar difference of 0.3% for both. Grade No. 3 CWRS had the largest 

difference of 1.4% and No. 2 CWRS had the smallest difference of 0.08% for both. In all 
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cases the average and median were almost the same, which showed that no outliers 

existed. If there were any outliers, the average would have been different from the 

median. As with the density, a pattern was difficult to determine with the moisture 

content. It was expected that with increased Fusarium damage the moisture content 

would decrease. This was true for No. 1 CWRS and 2 CWRS, but higher moisture 

content values for 3 CWRS and CW Feed made it difficult to confirm a pattern. The high 

moisture content of samples 9 and 10 increased the average for grade 3, but the average 

for CW feed was still higher than 2 CWRS. Disregarding grades 2 and 3, the expected 

moisture content drop was observed between grade 1 and the feed grain.  

The differences observed in the densities and moisture contents can result from 

different climatic conditions during the time of harvest. It was expected that similar grain 

grades would have similar densities and moistures, but sample 11 and 12 were harvested 

from Nicklen Siding, Saskatchewan, while sample 9 and 10 were from Elva, Manitoba. 

With the exception of sample 11 and 12, the rest of the samples were all from locations in 

Manitoba. All samples had the same soil zone of black, but a different province might 

have had different weather and moisture. On the other hand, samples 13, 14, 15 and 16 

were all from Elva, MB and there were differences between the bags. Also, the two 

grades had higher moisture contents than expected to observe a trend. It was expected 

that wheat kernels with lower density and moisture content would have more Fusarium 

damage. Another issue was the age of the wheat kernels. The No. 1 CWRS and 2 CWRS 

were fresher, while No. 3 CWRS and CW Feed were older. That could account for the 

irregularities observed between grades.  
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4.3 Near-Infrared Hyperspectral Imaging 

Consistent spectra were found by classifying each group with four different classifiers 

and selecting the spectra that performed the best. It was important to find consistent 

spectra because it made the classifier more accurate and its predictions consistent. The 

results of spectral consistency can be seen in Table 4.2 & Table 4.3.  

Table 4.2 Consistency of spectra 

Times Correctly 

Predicted 

Number of 

Such Spectra 

% of Spectra 

in This Class 

0 4684306 48.8 

1 3756281 39.1 

2 972734 10.1 

3 166485 1.8 

4 20194 0.2 

 

Table 4.3 Breakdown of grades in the consistent spectra 

Grade 
Number Consistent from 

this Grade 

1 14027 

2 956 

3 779 

Feed 4432 

Total 20194 

 

Results show that the majority of the spectra was either correctly predicted once or not at 

all. A smaller portion of the spectra was predicted correctly twice or three times. The 

spectra of interest were the 20194 out of 9,600,000 spectra that were correctly predicted 

all four times. Examining the consistent spectra in Table 4.3, over two thirds were No. 1 

CWRS, while the remaining was divided amongst the other three grades. It seems it was 
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difficult to detect the subtle differences between grades No. 2, No. 3 and feed grade in the 

spectra. These 20194 spectra were selected for the creation of a prediction model that 

classified the 15 groups by percentages of grade occurrence. The average of the 

consistent spectra can be seen in Figure 4.3. 

 

Figure 4.3 Average of consistent spectra 

The purpose of creating percentages of grade occurrence per sample in each group 

was to see if it reflected the expected outcome. Since the samples were organized in order 

with grades grouped together it was expected that the first four would have a higher 

percentage for No. 1 CWRS. The next four were No. 2 CWRS and would have a higher 

percentage for grade two than the others. This expected outcome would continue on for 

the No. 3 CWRS and CW Feed samples. After examining the percentages for each group 

it can be seen that the expected trend was not achievable. An example of the percentage 
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results is displayed in Table 4.4, where the predicted grades are tabulated for each sample 

in group 15.   

Table 4.4 Predicted grades of samples in group 15 

Sample 

# 

No. 1 

CWRS 

No. 2 

CWRS 

No. 3 

CWRS 

CW 

Feed 

1 0.8104 0.0560 0.0330 0.1006 

2 0.8931 0.0469 0.0387 0.0213 

3 0.2709 0.1021 0.0326 0.5944 

4 0.8289 0.0549 0.0420 0.0743 

5 0.1952 0.1160 0.0362 0.6527 

6 0.8552 0.0724 0.0454 0.0270 

7 0.8247 0.0772 0.0604 0.0377 

8 0.2478 0.1424 0.0475 0.5624 

9 0.4457 0.0803 0.0695 0.4045 

10 0.8689 0.0571 0.0348 0.0392 

11 0.1401 0.1315 0.1483 0.5802 

12 0.6259 0.0969 0.2390 0.0384 

13 0.1203 0.1089 0.0607 0.7102 

14 0.1650 0.1025 0.0558 0.6767 

15 0.1572 0.1276 0.0539 0.6613 

16 0.1624 0.1262 0.0439 0.6676 

 

Samples 1, 2 and 4 had the highest percentages for No. 1 CWRS, which was expected to 

occur. The exception being sample 3 because it had a higher predicted percentage of CW 

Feed than No. 1 CWRS. Samples 5-12 displayed an inability to have reliable predictive 

results. In these samples the prediction was either high for No. 1 CWRS or CW Feed, but 

never No. 2 or 3 CWRS. Samples 13-16 showed a consistent ability to predict high 

percentages for CW Feed, which was expected. The same trend was observed in the other 

14 groups that the prediction classifier was accurate for distinguishing between No. 1 

CWRS and CW Feed, but inaccurate for the other two grades (Appendix G). The ability 

to positively identify one or the other lead to the application of creating a new model 
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focused on determining the existence of Fusarium damage and DON content in samples. 

If the model can detect that a sample was CW Feed then that should be a good indication 

that it can detect the presence of Fusarium damage and/or DON content in the sample.  

 The creation of two new labels, one for identifying Fusarium damage and the 

other for identifying DON content, allowed a way to confirm the presence of the fungus 

or mycotoxin in a sample. After performing the cross validation the results were 

displayed in summary tables (Table 4.5 & Table 4.6).  

Table 4.5 Summary table of Fusarium damage 

  Predicted - +   

Actual - 39 21 65 

  
+ 14 166 92  

    74 89  85 

 

Table 4.6 Summary Table of DON content 

  Predicted - +   

Actual - 99 21 83 

  + 28 92 77  

    78 81  80 

 

It can be seen that of the 240 data cube samples, 53 were classified as negative for 

Fusarium damage and 187 were classified as positive for Fusarium damage. Breaking it 

down, 39 were correctly classified as negative for Fusarium damage, 21 were 

misclassified as positive for Fusarium damage, 14 were misclassified as negative for 

Fusarium damage, and the remaining 166 were correctly classified as positive for 

Fusarium damage. As well of the 240 samples, 127 were classified as negative for DON 
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content and 113 were classified as positive for DON content. Looking at it individually, 

99 data cubes were correctly classified as negative for DON content, 21 were 

misclassified as positive for DON content, 28 were misclassified as negative for DON 

content and 92 were correctly classified as positive for DON content. In all categories, 

the prediction classifier for Fusarium damage performed well, with the exception of the 

65% specificity. The high accuracy value of 85% demonstrates the model had promise 

for success. As well, the DON content prediction classifier had similar results as the 

Fusarium damage model and performed well in all areas with an accuracy of 80%. These 

results are promising and display potential for future applications.  

 The final application of these results would be to repeat the sampling procedure 

on the original samples for another 240 data cube samples. The new samples would be 

tested with the same prediction classifiers and the results would be compared. The data 

cubes with a double prediction would be deemed that classification, while the remainder 

would be manually inspected by an inspector. The five-fold cross validation rates from 

the prediction classifier would reclassify the data cubes seen in Table 4.7 & Table 4.8. 

Table 4.7 Reclassification confusion matrix of Fusarium damage  

  Predicted - + 
 

Actual - 74 11 87 

 
+ 26 89 77 

  
 

74 89 82 
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Table 4.8 Reclassification confusion matrix of DON content 

  Predicted - + 
 

Actual - 78 19 80 

 
+ 22 81 79 

  
 

78 81 80 

 

The remaining samples without the double confirmation would require individual 

inspection. The end result would be the ability to acquire two NIR HSI images of wheat 

kernels in petri dishes and predict the presence of Fusarium damage and DON content by 

running the analysis code.  
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5 Conclusions 

NIR HSI technology was used to image and create data cubes containing the spectral 

information about samples of wheat. Wheat samples were organized based on 

predetermined industry grading standards for wheat and this provided the basis for the 

sample selection of four grades. The NIR HSI system was monitored with thermocouples 

to observe the duration of time required to reach the optimal temperature. It was 

determined that at the highest light setting, the system does not exceed the cameras 

operating temperature and required 60 minutes to warm up. This initial finding was 

instrumental because the warm up time was applied to the data acquisition methodology.  

Upon acquiring the data cubes, the illuminated region of the focal plane array was 

isolated by reducing the size of the cubes down from 640 477 to 200 200. This 

provided the ability to focus on the area of interest and not the areas of dead space or 

shadows. The NIR HSI system was successfully calibrated by using reflective standards 

of 2, 50, 75 and 99% and an optical chopper, which provided extra information in the gap 

of the 2 and 50% standards. The reflectance standards allowed the determination of how 

the NIR HSI system performed under known values and through regression techniques 

created a quadratic equation for each pixel in a regression. This calibration provided 

assurance that the resulting data cubes of the samples would be accurate and reliable.   

All the samples selected were measured for density and moisture content. It was 

expected that a sample with a lower grade would have more Fusarium damage and DON 

content in it and therefore would have a lower density and moisture content. This would 

occur because when Fusarium consumes the wheat kernel, the kernel takes on a shrunken 
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appearance, which would have a lower density and moisture content. The measured 

values for both density and moisture content showed the potential to exhibit the expected 

trend, but differences between samples of a given grade made it difficult to determine a 

trend. More samples would solidify the results and determine if outliers were present in 

the samples or if it was an expected occurrence.   

Through the application of the k-nearest neighbour classifier two classifiers were 

achieved, where one predicted the existence of Fusarium damage and the other DON 

content in a given sample of wheat kernels. It was determined that the Fusarium damage 

prediction classifier had an accuracy of 85%, a sensitivity of 92% and a specificity of 

65%, while the DON content prediction classifier had an accuracy of 80%, a sensitivity 

of 77% and a specificity of 83%. These results establish that the prediction classifiers can 

be successful in distinguishing if a given sample has Fusarium damage and/or DON 

content present. Overall, through more research the two prediction classifiers could be 

introduced into the agriculture industry as a means to identify Fusarium damage and/or 

DON content in a given wheat sample. The entire manual inspection would not be 

eliminated, but the classifiers would reduce the time and labor currently being utilized in 

this process.   
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6 Recommendations 

NIR HSI had success as a detection method for Fusarium damage and/or DON content in 

a wheat sample. To confirm the reliability of the two classifiers, future work would 

involve acquiring another set of 240 data cubes from the original samples and applying 

the prediction classifier. The second prediction on the new data cubes would validate the 

calculations and results seen in this thesis. As well, the additional new data cubes would 

provide more data for the analysis on the samples. This would confirm what was 

observed and solidify the expected trends in moisture content and density. 

 Along with re-sampling, it would be of interest to acquire a complete new set of 

samples to determine the existence of similar trends for density, moisture content and 

prediction classifiers. This thesis displayed the beginnings of a trend and additional data 

would further help prove the claim that an increase in Fusarium damage and DON 

content causes a decrease in density and moisture content. As well, differences were 

observed in density and moisture content values among samples of the same grade. That 

occurrence was unexpected because samples of the same grade would have similar 

infection levels and therefore similar density and moisture content levels. More samples 

would strengthen the results and make it clear whether previously observed values are 

outliers or general occurrences.    

Acquiring images in the visible spectrum after each NIR HSI image would provide 

further verification and insight into detecting Fusarium damage and/or DON content in 

wheat samples. The idea would be to use a segmentation technique to group similar 

characteristics in the image together. Each image would be examined and have k-means 
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clustering applied to segment the images. The k value equates to the number of groups 

the image would be broken up into. The correct number of groups is necessary to identify 

the visible kernels from the background and shadows. Too many or too few groups make 

the image difficult to interpret. Upon distinguishing between the kernels of interest and 

the background, the kernels would be examined for the cluster of groups within that 

image. The interest would be to determine if the groups differentiate between healthy and 

infected parts of the kernel. The goal would be to apply the segmentation to a sample 

image and have a result of whether Fusarium damage and/or DON content are present. 

Finally, the economics behind applying the prediction classifier as a means for grain 

inspection would need to be investigated. At the moment, the costs for solely performing 

manual inspections of grain are unknown. The application of the prediction classifiers 

would allocate less time towards manual inspection with the technique taking over the 

majority of the responsibility for identifying the fungus and toxin in grain. This would 

reduce the amount of time and money required for manual inspection. On the other hand, 

the cost of misclassifying a sample is unknown. False classification of a sample could 

result in healthy grain being disposed of or infected grain being consumed. This could 

cause unnecessary loss to the agriculture industry and requires further research. 
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Appendix A: DESIGN OF NIR HSI FIXTURE 
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Appendix B: DESIGN OF CHOPPRER BRACE 
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Appendix C: CANADIAN GRAIN COMMISSIONS GRAIN GRADING GUIDE - CWRS 

  
Standard of Quality 

    

Foreign material 

  Grade 

name 

Minimum 

test weight 

kh/hl (g/0.5 

L) 

Variety Minimum 

hard 

vitreous 

kernels 

Minimum 

protein  

(%) 

Degree of 

soundness 

Ergot 

(%) 

Excreta 

(%) 

Matter 

other 

than 

cereal 

grains 

(%) 

Sclerotinia 

(%) 

Stones 

(%) 

Total 

(%) 

No. 1 

CWRS 

75 (365) Any variety 

of the class 

CWRS 

designated 

as such by 

order of the 

Commission 

65 10 Reasonably 

well matured, 

reasonably 

free from 

damaged 

kernels 

0.01 0.01 0.2 0.01 0.03 0.6 

No. 2 

CWRS 

72 (350) Any variety 

of the class 

CWRS 

designated 

as such by 

order of the 

Commission 

No 

minimum 

No 

minimum 

Fairly well 

matured, 

maybe 

moderately 

bleached or 

frost-

damaged, 

reasonably 

free from 

severely 

damaged 

kernels 

0.02 0.01 0.3 0.02 0.03 1.2 
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Standard of Quality 

    

Foreign material 

  Grade 

name 

Minimum 

test weight 

kh/hl (g/0.5 

L) 

Variety Minimum 

hard 

vitreous 

kernels 

Minimum 

protein 

(%) 

Degree of 

soundness 

Ergot 

(%) 

Excreta 

(%) 

Matter 

other 

than 

cereal 

grains 

(%) 

Sclerotinia 

(%) 

Stones 

(%) 

Total 

(%) 

No. 3 

CWRS 

69 (335) Any variety 

of the class 

CWRS 

designated 

as such by 

order of the 

Commission 

No minimum No 

minimum 

May be frost-

damaged, 

immature or 

weather-

damaged, 

moderately 

free from 

severely 

damaged 

kernels 

0.04 0.015 0.5 0.04 0.06 2.4 

No. 4 

CWRS 

68 (330) Any variety 

of the class 

CWRS 

designated 

as such by 

order of the 

Commission 

No minimum No 

minimum 

May be 

severely 

frost-

damaged, 

immature or 

weather-

damaged, 

moderately 

free from 

other 

serevely 

damaged 

kernels 

0.04 0.015 0.5 0.04 0.06 2.4 
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Standard of Quality 

    

Foreign material 

  Grade 

name 

Minimum 

test weight 

kh/hl (g/0.5 

L) 

Variety Minimum 

hard 

vitreous 

kernels 

Minimum 

protein 

(%) 

Degree of 

soundness 

Ergot 

(%) 

Excreta 

(%) 

Matter 

other 

than 

cereal 

grains 

(%) 

Sclerotinia 

(%) 

Stones 

(%) 

Total 

(%) 

CW 

Feed 

65 (315) Any class or 

variety of 

wheat 

excluding 

amber 

durum and 

General 

Purpose 

No minimum No 

minimum 

Reasonably 

sweet, 

excluded 

from other 

grades of 

wheat on 

account of 

damaged 

kernels 

0.1 0.03 1 0.1 0.1 10 

Grade, if 

specs for 

CW 

Feed not 

met 

Wheat, 

Sample CW 

Account 

Light Weight 

  

    

  Wheat, 

Sample 

CW 

Account 

Ergot 

Wheat, 

Sample 

CW 

Account 

Excreta 

Wheat, 

Sample 

CW 

Account 

Admixture 

Wheat, 

Sample 

CW 

Account 

Admixture 

2.5% or 

less-

Wheat, 

Rejected 

grade, 

Account 

Stones 

Over 

2.5%-

Wheat, 

Sample 

Salvage  

See 

Mixed 

grain 
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Grade 

name 

Contrasting 

classes (%) 

Total (%) Artificial 

stain, no 

residue 

(%) 

Dark 

Immature 

(%) 

Degermed 

(%) 

Fireburnt Fusarium 

damage 

(%) 

Grass 

green 

(%) 

Grasshopper, 

army worm 

(%) 

Binburnt 

severely 

mildewed 

rotted, 

mouldy 

(%) 

Total 

No. 1 

CWRS 

0.75 2.3 Nil 1 4 Nil 0.25 0.75 1 0.005 0.05 

No. 2 

CWRS 

2.3 4.5 0.05 2.5 7 Nil 0.8 2 3 0.02 0.4 

No. 3 

CWRS 

3.8 7.5 0.1 10 13 Nil 1.5 10 8 0.03 1 

No. 4 

CWRS 

3.8 7.5 0.1 10 13 Nil 1.5 10 8 2.5 1 
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Grade 

name 

Contrasting 

classes (%) 

Total (%) Artificial 

stain, no 

residue 

(%) 

Dark 

Immature 

(%) 

Degermed 

(%) 

Fireburnt Fusarium 

damage 

(%) 

Grass 

green 

(%) 

Grasshopper, 

army worm 

(%) 

Binburnt 

severely 

mildewed 

rotted, 

mouldy 

(%) 

Total 

CW Feed No limit-but 

not more 

than 10% 

amber 

durum 

and/or 

General 

Purpose 

No limit-but 

not more than 

10% amber 

durum and/or 

General 

Purpose 

2 No limit No limit 2 4 No 

limit 

No limit 

 

2.5 

Grade, if 

specs for 

CW Feed 

not met 

Over 10% 

amber 

durum 

and/or 

General 

Purpose- 

Wheat, 

Sample CW 

Account 

Admixture 

Over 10% 

amber durum 

and/or General 

Purpose- 

Wheat, Sample 

CW Account 

Admixture 

Wheat, 

Sample 

CW 

Account 

Stained 

Kernels 

  

  

Wheat, 

Sample 

CW 

Account 

Fireburnt 

Wheat, 

Sample CW 

Account 

Fusarium 

Damage 

Over 10%- 

Wheat, 

Commercial 

Salvage 

    Wheat, 

Sample 

CW 

Account 

Heated 

Wheat, 

Sample 

CW 

Account 

Heated 
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Grade 

name 

Natural 

stain (%) 

Pink (%) Sawfly 

midge 

(%) 

Shrunke

n (%) 

Broken 

(%) 

Total 

(%) 

Smudge 

(%) 

Total 

(%) 

Severely 

sprouted 

(%) 

Total 

(%) 

No. 1 

CWRS 

0.5 1.5 2 4 5 7 0.3 10 0.1 0.5 

No. 2 

CWRS 

2 5 5 4 6 8 1 20 0.2 1 

No. 3 

CWRS 

5 10 10 4 7 9 5 35 0.3 3 

No. 4 

CWRS 

5 10 10 4 7 9 5 35 0.5 5 

CW Feed No limit No limit No limit No limit 13 No limit 

within 

broken 

tolerances 

No limit No limit No limit No limit 

Grade, if 

specs for 

CW Feed 

not met 

        Sample 

Broken 

Grain 
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Appendix D: SAMPLE GRADE, LOCATION, SAMPLING NUMBER, PERCENTAGE OF 

FUSARIUM DAMAGE AND BAG MOISTURE CONTENT 

     

   

Sample 

Number 

Sample 

Grade 

Sample 

Location 

Bag 

Number 

Sampling 

Number 

Fusarium 

Damage 

(%) 

Vomitoxin (%) Bag Moisture 

Content (%) 

1 No. 1 CWRS Nesbitt 87629 1st 0.256 0 12.5 

2 No. 1 CWRS Nesbitt 87629 2nd 0.256 0 12.5 

3 No. 1 CWRS Elm Creek 87869 1st 0.208 0 13.5 

4 No. 1 CWRS Elm Creek 87869 2nd 0.208 0 13.5 

5 No. 2 RS Oakner 86223 1st 0.6 0 12.3 

6 No. 2 RS Oakner 86223 2nd 0.6 0 12.3 

7 No. 2 RS Oakner 86224 1st 0.35 0 12.4 

8 No. 2 RS Oakner 86224 2nd 0.35 0 12.4 

9 No. 3 CWRS Elva 59508 1st 1.1 1.72 15.2 

10 No. 3 CWRS Elva 59508 2nd 1.1 1.72 15.2 

11 No. 3 CWRS Nicklen Siding 59288 1st 1.2 1.95 12.5 

12 No. 3 CWRS Nicklen Siding 59288 2nd 1.2 1.95 12.5 

13 CW Feed Elva 59281 1st 2.8 1.9 13.0 

14 CW Feed Elva 59281 2nd 2.8 1.9 13.0 

15  CW Feed Elva 59515 1st 1.6 1.07 12.2 

16 CW Feed Elva 59515 2nd 1.6 1.07 12.2 
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Appendix E: DENSITY COMPARISON TABLES 

 

No. 1 

CWRS Sample Test 1a Test 2a Test 3a Test 1b Test 2b Test 3b Average Variance 

 
1 1438.62 1440.03 1439.15 1437.21 1439.72 1439.41 1439.02 1.022 

 
2 1444.57 1445.90 1437.86 1446.44 1443.22 1446.35 1444.06 10.74 

 
3 1434.75 1433.85 1434.25 1438.41 1441.86 1443.71 1437.81 17.87 

 
4 1437.16 1438.91 1438.68 1443.45 1439.54 1441.86 1439.93 5.313 

 
Average 1438.77 1439.68 1437.49 1441.38 1441.09 1442.83 

  

 
Variance 17.49 24.45 4.94 18.69 3.143 8.617 

  

          No. 2 

CWRS Sample Test 1a Test 2a Test 3a Test 1b Test 2b Test 3b Average Variance 

 
5 1434.58 1438.33 1434.91 1439.84 1437.36 1441.16 1437.70 6.920 

 
6 1443.61 1436.78 1434.96 1436.97 1438.06 1436.99 1437.89 8.851 

 
7 1436.82 1438.49 1436.86 1446.68 1444.50 1442.73 1441.02 17.68 

 
8 1437.83 1433.94 1437.45 1443.87 1439.31 1441.60 1439.00 11.98 

 
Average 1438.21 1436.88 1436.04 1441.84 1439.81 1440.62 

  

 
Variance 14.79 4.442 1.709 18.42 10.45 6.304 
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No. 3 

CWRS Sample Test 1a Test 2a Test 3a Test 1b Test 2b Test 3b Average Variance 

 
9 1433.23 1435.93 1437.41 1440.57 1438.15 1441.17 1437.74 8.741 

 
10 1440.30 1441.45 1437.33 1445.51 1445.95 1439.94 1441.75 11.36 

 
11 1413.93 1414.12 1411.74 1415.55 1416.76 1414.48 1414.43 2.852 

 
12 1415.16 1414.12 1418.54 1413.86 1414.45 1408.85 1414.16 9.710 

 
Average 1425.65 1426.41 1426.26 1428.87 1428.83 1426.11 

  

 
Variance 173.1 206.3 172.5 272.2 244.2 283.8 

  

          CW Feed Sample Test 1a Test 2a Test 3a Test 1b Test 2b Test 3b Average Variance 

 
13 1443.04 1442.29 1440.65 1440.91 1441.13 1442.11 1441.69 0.872 

 
14 1439.39 1437.34 1439.55 1444.64 1439.54 1440.49 1440.16 5.891 

 
15 1431.47 1430.76 1431.42 1436.34 1433.37 1434.87 1433.04 4.930 

 
16 1429.99 1429.31 1429.09 1427.93 1428.18 1428.36 1428.81 0.617 

 
Average 1435.97 1434.93 1435.18 1437.46 1435.56 1436.46 

  

 
Variance 39.26 36.29 33.40 51.86 35.39 38.76 

   

No. 1 

CWRS Sample Test 1a Test 2a Test 3a Test 1b Test 2b Test 3b Median IQR 

 
1 1438.62 1440.04 1439.15 1437.21 1439.72 1439.41 1439.28 0.890 

 
2 1444.57 1445.90 1437.86 1446.44 1443.22 1446.35 1445.24 2.678 

 
3 1434.75 1433.85 1434.25 1438.41 1441.86 1443.71 1436.58 6.626 

 
4 1437.16 1438.91 1438.68 1443.45 1439.54 1441.86 1439.23 2.537 

 
Median 1437.89 1439.47 1438.27 1440.93 1440.79 1442.784 

  

 
IQR 3.553 3.854 1.842 6.089 2.529 3.130 
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          No. 2 

CWRS Sample Test 1a Test 2a Test 3a Test 1b Test 2b Test 3b Median IQR 

 
5 1434.58 1438.33 1434.91 1439.84 1437.36 1441.16 1437.84 3.943 

 
6 1443.61 1436.78 1434.95 1436.97 1438.06 1436.99 1436.98 0.970 

 
7 1436.82 1438.49 1436.86 1446.68 1444.50 1442.73 1440.61 6.793 

 
8 1437.83 1433.94 1437.45 1443.87 1439.31 1441.60 1438.57 3.481 

 
Median 1437.32 1437.55 1435.91 1441.86 1438.69 1441.38 

  

 
IQR 3.009 2.299 2.065 5.448 2.722 1.763 

  

          No. 3 

CWRS Sample Test 1a Test 2a Test 3a Test 1b Test 2b Test 3b Median IQR 

 
9 1433.23 1435.93 1437.41 1440.57 1438.15 1441.17 1437.78 3.662 

 
10 1440.29 1441.45 1437.33 1445.51 1445.95 1439.94 1440.87 4.465 

 
11 1413.93 1414.12 1411.74 1415.55 1416.76 1414.48 1414.30 1.306 

 
12 1415.16 1414.12 1418.54 1413.86 1414.45 1408.85 1414.28 1.054 

 
Median 1424.19 1425.03 1427.94 1428.06 1427.46 1427.21 

  

 
IQR 20.143 23.187 20.514 26.677 23.913 27.177 

  

          CW Feed Sample Test 1a Test 2a Test 3a Test 1b Test 2b Test 3b Median IQR 

 
13 1443.04 1442.29 1440.65 1440.91 1441.13 1442.11 1441.62 1.275 

 
14 1439.39 1437.34 1439.55 1444.64 1439.54 1440.49 1439.55 0.829 

 
15 1431.47 1430.76 1431.42 1436.34 1433.37 1434.87 1432.42 3.060 

 
16 1429.99 1429.31 1429.09 1427.93 1428.18 1428.36 1428.73 1.028 

 
Median 1435.43 1434.05 1435.49 1438.63 1436.46 1437.68 

  

 
IQR 9.205 8.181 8.987 7.603 7.869 7.655 
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Appendix F: MOISTURE CONTENT COMPARISON TABLES 

No. 1 

CWRS Sample Test 1 Test 2 Test 3 Test 4 Test 5 Average Variance 

 
1 12.33 12.37 12.38 12.26 12.23 12.31 0.005 

 
2 12.51 12.59 12.53 12.52 12.46 12.52 0.002 

 
3 12.95 12.99 12.91 12.95 12.93 12.94 0.001 

 
4 13.35 13.30 13.19 13.12 13.08 13.21 0.013 

 
Average 12.79 12.81 12.75 12.71 12.67 

  

 
Variance 0.206 0.171 0.136 0.156 0.158 

  

         No. 2 

CWRS Sample Test 1 Test 2 Test 3 Test 4 Test 5 Average Variance 

 
5 12.24 12.32 12.08 12.06 12.06 12.15 0.015 

 
6 12.06 12.05 12.03 12.00 11.91 12.01 0.004 

 
7 12.31 12.20 12.23 12.14 12.10 12.20 0.006 

 
8 12.13 12.12 12.14 12.16 12.09 12.13 0.001 

 
Average 12.19 12.17 12.12 12.09 12.04 

  

 
Variance 0.013 0.014 0.008 0.005 0.008 
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No. 3 

CWRS Sample Test 1 Test 2 Test 3 Test 4 Test 5 Average Variance 

 
9 13.95 13.92 13.88 13.82 13.79 13.87 0.004 

 
10 13.94 13.94 13.93 13.92 13.83 13.91 0.002 

 
11 12.52 12.52 12.41 12.44 12.35 12.45 0.005 

 
12 12.47 12.49 12.42 12.47 12.34 12.44 0.004 

 
Average 13.22 13.22 13.16 13.16 13.08 

  

 
Variance 0.700 0.677 0.740 0.668 0.714 

  

         

CW Feed Sample Test 1 Test 2 Test 3 Test 4 Test 5 Average Variance 

 
13 12.41 12.42 12.39 12.38 12.41 12.40 0.000 

 
14 12.61 12.63 12.57 12.57 12.56 12.59 0.001 

 
15 12.48 12.19 12.20 12.13 12.07 12.21 0.025 

 
16 12.09 12.04 12.10 12.01 12.02 12.05 0.002 

 
Average 12.40 12.32 12.31 12.27 12.27 

  

 
Variance 0.048 0.068 0.043 0.064 0.070 
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No. 1 

CWRS Sample Test 1 Test 2 Test 3 Test 4 Test 5 Median IQR 

 

 
1 12.33 12.37 12.38 12.26 12.23 12.33 0.114 

 

 
2 12.51 12.59 12.53 12.52 12.46 12.52 0.012 

 

 
3 12.95 12.99 12.91 12.95 12.93 12.95 0.023 

 

 
4 13.35 13.30 13.19 13.12 13.08 13.19 0.179 

 

 
Median 12.73 12.79 12.72 12.73 12.69 

   

 
IQR 0.577 0.530 0.488 0.539 0.564 

   

          No. 2 

CWRS Sample Test 1 Test 2 Test 3 Test 4 Test 5 Median IQR 

 

 
5 12.24 12.32 12.08 12.06 12.06 12.08 0.183 

 

 
6 12.06 12.05 12.03 12.00 11.91 12.03 0.047 

 

 
7 12.31 12.20 12.23 12.14 12.10 12.21 0.091 

 

 
8 12.13 12.12 12.14 12.16 12.09 12.13 0.027 

 

 
Median 12.19 12.16 12.11 12.10 12.08 

   

 
IQR 0.149 0.135 0.099 0.099 0.070 

    

 

         No. 3 

CWRS Sample Test 1 Test 2 Test 3 Test 4 Test 5 Median IQR 

 

 
9 13.95 13.92 13.88 13.82 13.79 13.88 0.099 

 

 
10 13.94 13.94 13.93 13.92 13.83 13.93 0.025 

 

 
11 12.52 12.52 12.41 12.44 12.35 12.44 0.106 

 

 
12 12.47 12.49 12.42 12.47 12.34 12.47 0.055 

 

 
Median 13.23 13.22 13.15 13.15 13.07 

   

 
IQR 1.437 1.412 1.475 1.383 1.449 
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CW Feed Sample Test 1 Test 2 Test 3 Test 4 Test 5 Median IQR 

 

 
13 12.41 12.42 12.39 12.38 12.41 12.41 0.025 

 

 
14 12.61 12.63 12.57 12.57 12.56 12.58 0.040 

 

 
15 12.48 12.19 12.20 12.13 12.07 12.19 0.067 

 

 
16 12.09 12.04 12.10 12.01 12.02 12.04 0.070 

 

 
Median 12.44 12.30 12.29 12.25 12.24 

   

 
IQR 0.179 0.319 0.260 0.328 0.395 
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Appendix G: PERCENTAGES OF GRADES PER GROUP (1-14) 

Predicted grades of samples in group 1 (left) & group 2 (right)  

Sample 

# 

No. 1 

CWRS 

No. 2 

CWRS 

No. 3 

CWRS 

CW 

Feed 

 

Sample 

# 

No. 1 

CWRS 

No. 2 

CWRS 

No. 3 

CWRS 

CW 

Feed 

1 0.8865 0.0546 0.0402 0.0187 

 

1 0.8836 0.0511 0.0455 0.0198 

2 0.8785 0.0494 0.0456 0.0265 

 

2 0.8627 0.0540 0.0404 0.0429 

3 0.2796 0.0935 0.0447 0.5823 

 

3 0.2696 0.1232 0.0390 0.5682 

4 0.8829 0.0491 0.0487 0.0193 

 

4 0.8752 0.0521 0.0470 0.0258 

5 0.2322 0.1426 0.0552 0.5701 

 

5 0.1976 0.1007 0.0291 0.6726 

6 0.8356 0.0960 0.0416 0.0268 

 

6 0.8632 0.0611 0.0543 0.0214 

7 0.7163 0.0993 0.0783 0.1060 

 

7 0.7927 0.0851 0.0689 0.0533 

8 0.2066 0.1664 0.0417 0.5853 

 

8 0.1837 0.1282 0.0467 0.6414 

9 0.4183 0.0851 0.0549 0.4417 

 

9 0.3523 0.0983 0.0746 0.4748 

10 0.8419 0.0572 0.0540 0.0469 

 

10 0.8448 0.0584 0.0402 0.0567 

11 0.2001 0.1322 0.1042 0.5635 

 

11 0.1740 0.1221 0.1113 0.5927 

12 0.5297 0.0958 0.2511 0.1234 

 

12 0.6702 0.0910 0.1678 0.0710 

13 0.1338 0.0894 0.0336 0.7432 

 

13 0.1655 0.1125 0.0413 0.6808 

14 0.1685 0.0907 0.0223 0.7185 

 

14 0.1418 0.0937 0.0369 0.7275 

15 0.1464 0.0949 0.0524 0.7063 

 

15 0.1651 0.1224 0.0356 0.6769 

16 0.1902 0.0985 0.0496 0.6617 

 

16 0.1777 0.0973 0.0440 0.6810 
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Predicted grades of samples in group 3 (left) & group 4 (right) 

Sample 

# 

No. 1 

CWRS 

No. 2 

CWRS 

No. 3 

CWRS 

CW 

Feed 

 

Sample 

# 

No. 1 

CWRS 

No. 2 

CWRS 

No. 3 

CWRS 

CW 

Feed 

1 0.8910 0.0526 0.0323 0.0241 

 

1 0.8573 0.0579 0.06123 0.0236 

2 0.8652 0.0588 0.0388 0.0372 

 

2 0.9130 0.0446 0.0252 0.0173 

3 0.2555 0.1209 0.0412 0.5824 

 

3 0.2335 0.1094 0.0263 0.6309 

4 0.8489 0.0608 0.0556 0.0347 

 

4 0.8930 0.0450 0.0391 0.0229 

5 0.1956 0.1190 0.0524 0.6330 

 

5 0.1441 0.1319 0.0460 0.6780 

6 0.8356 0.0671 0.0744 0.0230 

 

6 0.6509 0.0903 0.0489 0.2099 

7 0.6509 0.1068 0.1253 0.1171 

 

7 0.7191 0.0903 0.1257 0.0649 

8 0.2063 0.1244 0.0403 0.6290 

 

8 0.2243 0.1265 0.0428 0.6064 

9 0.2781 0.1305 0.0301 0.5613 

 

9 0.3189 0.1098 0.0580 0.5133 

10 0.7373 0.0699 0.0657 0.1271 

 

10 0.8518 0.0575 0.0583 0.0325 

11 0.1365 0.1303 0.1243 0.6089 

 

11 0.1509 0.1318 0.1942 0.5232 

12 0.6792 0.0827 0.1991 0.0391 

 

12 0.5610 0.1023 0.1922 0.1445 

13 0.1543 0.1294 0.0371 0.6791 

 

13 0.1923 0.0965 0.0394 0.6718 

14 0.1665 0.1046 0.0485 0.6804 

 

14 0.1991 0.1092 0.0441 0.6477 

15 0.2069 0.0961 0.0294 0.6676 

 

15 0.1616 0.1261 0.031 0.6813 

16 0.1426 0.1187 0.0657 0.6731 

 

16 0.1870 0.1170 0.0315 0.6646 
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Predicted grades of samples in group 5 (left) & group 6 (right) 

Sample 

# 

No. 1 

CWRS 

No. 2 

CWRS 

No. 3 

CWRS 

CW 

Feed 

 

Sample 

# 

No. 1 

CWRS 

No. 2 

CWRS 

No. 3 

CWRS 

CW 

Feed 

1 0.8459 0.0638 0.0411 0.0493 

 

1 0.9221 0.0422 0.0214 0.0143 

2 0.8931 0.0473 0.0326 0.0270 

 

2 0.8812 0.0475 0.0287 0.0427 

3 0.2406 0.1175 0.0335 0.6084 

 

3 0.2720 0.0960 0.0290 0.6031 

4 0.8373 0.0623 0.0443 0.0562 

 

4 0.8851 0.0627 0.0312 0.0210 

5 0.1570 0.1289 0.0373 0.6768 

 

5 0.1782 0.1184 0.0635 0.6399 

6 0.8682 0.0610 0.0430 0.0279 

 

6 0.7251 0.0907 0.1161 0.0681 

7 0.7263 0.0888 0.0943 0.0907 

 

7 0.7885 0.0823 0.0765 0.0528 

8 0.1940 0.1320 0.0398 0.6342 

 

8 0.1852 0.1352 0.0486 0.6311 

9 0.2611 0.1229 0.0416 0.5745 

 

9 0.4234 0.0894 0.0654 0.4219 

10 0.8541 0.0562 0.0424 0.0474 

 

10 0.8450 0.0617 0.0512 0.0422 

11 0.1679 0.1232 0.1505 0.5585 

 

11 0.1685 0.1270 0.1145 0.5900 

12 0.6240 0.0837 0.2343 0.0580 

 

12 0.6374 0.0818 0.2331 0.0477 

13 0.1343 0.1017 0.0486 0.7155 

 

13 0.1838 0.1131 0.0307 0.6724 

14 0.2225 0.1053 0.0486 0.6236 

 

14 0.1352 0.1102 0.0422 0.7124 

15 0.1695 0.1102 0.0364 0.6839 

 

15 0.2052 0.0879 0.0365 0.6705 

16 0.1698 0.1044 0.0381 0.6877 

 

16 0.1740 0.1123 0.0351 0.6786 
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Predicted grades of samples in group 7 (left) & group 8 (right) 

Sample 

# 

No. 1 

CWRS 

No. 2 

CWRS 

No. 3 

CWRS 

CW 

Feed 

 

Sample 

# 

No. 1 

CWRS 

No. 2 

CWRS 

No. 3 

CWRS 

CW 

Feed 

1 0.8888 0.0508 0.0376 0.0229 

 

1 0.8705 0.0516 0.0331 0.0448 

2 0.8573 0.0556 0.0539 0.0334 

 

2 0.9024 0.0501 0.0272 0.0203 

3 0.3188 0.0887 0.0216 0.5710 

 

3 0.2501 0.1109 0.0350 0.6040 

4 0.6163 0.0751 0.0402 0.2684 

 

4 0.6647 0.0810 0.0488 0.2055 

5 0.1923 0.1054 0.0590 0.6433 

 

5 0.2107 0.1128 0.0328 0.6438 

6 0.7991 0.0801 0.0868 0.0341 

 

6 0.8827 0.0630 0.0350 0.0194 

7 0.6965 0.1015 0.1383 0.0638 

 

7 0.6856 0.1024 0.1360 0.0750 

8 0.1998 0.1190 0.0405 0.6407 

 

8 0.1736 0.1317 0.0396 0.6552 

9 0.2809 0.1088 0.0405 0.5699 

 

9 0.4264 0.0919 0.0432 0.4386 

10 0.8463 0.0612 0.0503 0.0422 

 

10 0.8951 0.0474 0.0359 0.0217 

11 0.1539 0.1220 0.1288 0.5953 

 

11 0.1368 0.1245 0.1217 0.6171 

12 0.7489 0.0770 0.1562 0.0181 

 

12 0.6487 0.0898 0.2273 0.0342 

13 0.2007 0.1058 0.0570 0.6366 

 

13 0.1491 0.1192 0.0486 0.6832 

14 0.1656 0.0988 0.0484 0.6873 

 

14 0.1907 0.1079 0.0459 0.6555 

15 0.1789 0.1143 0.0446 0.6622 

 

15 0.1691 0.1154 0.0396 0.6760 

16 0.2041 0.1059 0.0371 0.6530 

 

16 0.2072 0.1036 0.0571 0.6320 
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Predicted grades of samples in group 9 (left) & group 10 (right) 

Sample 

# 

No. 1 

CWRS 

No. 2 

CWRS 

No. 3 

CWRS 

CW 

Feed 

 

Sample 

# 

No. 1 

CWRS 

No. 2 

CWRS 

No. 3 

CWRS 

CW 

Feed 

1 0.6571 0.0720 0.0340 0.2370 

 

1 0.8892 0.0504 0.0361 0.0245 

2 0.8664 0.0554 0.0419 0.0363 

 

2 0.9089 0.0503 0.0248 0.0161 

3 0.1843 0.1138 0.0247 0.6773 

 

3 0.3213 0.1101 0.0331 0.5355 

4 0.8040 0.0679 0.0579 0.0702 

 

4 0.8980 0.0481 0.0312 0.0229 

5 0.2056 0.1196 0.0340 0.6409 

 

5 0.1635 0.1194 0.0549 0.6622 

6 0.7760 0.0805 0.0873 0.0563 

 

6 0.8706 0.0611 0.0382 0.0302 

7 0.7446 0.0802 0.1166 0.0586 

 

7 0.7432 0.0893 0.0997 0.0678 

8 0.1713 0.1207 0.0369 0.6711 

 

8 0.1960 0.1197 0.0320 0.6524 

9 0.3067 0.0966 0.0436 0.5532 

 

9 0.3639 0.0938 0.0606 0.4818 

10 0.8762 0.0652 0.0276 0.0310 

 

10 0.8971 0.0528 0.0276 0.0226 

11 0.1211 0.1260 0.1324 0.6205 

 

11 0.1325 0.1199 0.1185 0.6291 

12 0.6284 0.0872 0.2381 0.0463 

 

12 0.7041 0.0811 0.1853 0.0295 

13 0.1280 0.1200 0.0332 0.7189 

 

13 0.1760 0.1005 0.0349 0.6886 

14 0.2105 0.0930 0.0234 0.6731 

 

14 0.1421 0.1070 0.0340 0.7169 

15 0.1535 0.1059 0.0344 0.7063 

 

15 0.1477 0.1175 0.0684 0.6664 

16 0.1578 0.1209 0.0467 0.6746 

 

16 0.2190 0.1224 0.0489 0.6098 
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Predicted grades of samples in group 11 (left) & group 12 (right) 

Sample 

# 

No. 1 

CWRS 

No. 2 

CWRS 

No. 3 

CWRS 

CW 

Feed 

 

Sample 

# 

No. 1 

CWRS 

No. 2 

CWRS 

No. 3 

CWRS 

CW 

Feed 

1 0.9297 0.0333 0.0222 0.0148 

 

1 0.8795 0.0429 0.0249 0.0527 

2 0.9386 0.0299 0.0213 0.0102 

 

2 0.9228 0.0393 0.0204 0.0176 

3 0.3150 0.1016 0.0216 0.5618 

 

3 0.2324 0.1173 0.0550 0.5953 

4 0.9121 0.0392 0.0317 0.0170 

 

4 0.8622 0.0599 0.0506 0.0274 

5 0.1472 0.1693 0.0407 0.6428 

 

5 0.1374 0.1170 0.0668 0.6788 

6 0.8354 0.1098 0.0348 0.0200 

 

6 0.8381 0.0686 0.0593 0.0342 

7 0.6990 0.1512 0.0971 0.0527 

 

7 0.7812 0.0819 0.1035 0.0334 

8 0.2235 0.1818 0.0623 0.5323 

 

8 0.2149 0.1237 0.0455 0.6159 

9 0.3795 0.0829 0.0628 0.4749 

 

9 0.3626 0.1021 0.0777 0.4577 

10 0.8801 0.0516 0.0457 0.0218 

 

10 0.8841 0.0537 0.0368 0.0253 

11 0.1656 0.1299 0.1770 0.5274 

 

11 0.1474 0.1129 0.1632 0.5765 

12 0.5200 0.0773 0.3185 0.0842 

 

12 0.6613 0.0824 0.2093 0.0471 

13 0.1261 0.0944 0.0272 0.7523 

 

13 0.1420 0.1256 0.0361 0.6963 

14 0.1575 0.0946 0.0487 0.6993 

 

14 0.1606 0.1029 0.0471 0.6894 

15 0.1094 0.1009 0.0435 0.7463 

 

15 0.1343 0.1092 0.0854 0.6711 

16 0.1287 0.1084 0.0374 0.7255 

 

16 0.1705 0.0882 0.0443 0.6971 
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Predicted grades of samples in group 13 (left) & group 14 (right) 

Sample 

# 

No. 1 

CWRS 

No. 2 

CWRS 

No. 3 

CWRS 

CW 

Feed 

 

Sample 

# 

No. 1 

CWRS 

No. 2 

CWRS 

No. 3 

CWRS 

CW 

Feed 

1 0.9167 0.0484 0.0209 0.0140 

 

1 0.9183 0.0465 0.0198 0.0155 

2 0.8887 0.0500 0.0438 0.0176 

 

2 0.8934 0.0494 0.0410 0.0162 

3 0.2621 0.0868 0.0338 0.6172 

 

3 0.2558 0.1056 0.0269 0.6117 

4 0.8813 0.0590 0.0336 0.0263 

 

4 0.8781 0.0533 0.0393 0.0293 

5 0.2269 0.0963 0.0339 0.6429 

 

5 0.1792 0.1055 0.0457 0.6696 

6 0.7828 0.0725 0.0660 0.0787 

 

6 0.8667 0.0716 0.0387 0.0231 

7 0.8378 0.0732 0.0584 0.0306 

 

7 0.7132 0.0978 0.1077 0.0814 

8 0.1952 0.1259 0.0264 0.6525 

 

8 0.2287 0.1333 0.0267 0.6113 

9 0.4010 0.0925 0.0675 0.4391 

 

9 0.3174 0.1177 0.0538 0.5112 

10 0.8965 0.0446 0.0375 0.0215 

 

10 0.9085 0.0445 0.0292 0.0179 

11 0.1945 0.1299 0.1208 0.5549 

 

11 0.1508 0.1315 0.1195 0.5983 

12 0.7693 0.0716 0.1188 0.0403 

 

12 0.6787 0.0861 0.2019 0.0334 

13 0.1471 0.1009 0.0306 0.7215 

 

13 0.1566 0.1196 0.0501 0.6737 

14 0.1616 0.1006 0.0645 0.6733 

 

14 0.1822 0.1032 0.0339 0.6808 

15 0.1748 0.1090 0.0405 0.6758 

 

15 0.1688 0.1349 0.0373 0.6590 

16 0.2158 0.1023 0.0389 0.6431 

 

16 0.1628 0.1084 0.0368 0.6921 
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Appendix H: TRUE REFLECTANCE VALUES 
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