THE UNIVERSITY OF MANITOBA
SOME FINITE AND INFINITE MATRICES, THEIR
COMPUTATIONS AND APPLICATIONS

BY

CHUANXIANG JI

DISSERTATION
PRESENTED TO THE FACULTY OF GRADUATE STUDIES
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

WINNIPEG. MANITOBA
JANUARY 1998



i~l

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et )
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada

Your file Votre reférence

QOur tile Notre référence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyrnight in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it  Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimes
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canadi

0-612-31992-x



THE UNIVERSITY OF MANITOBA
FACULTY OF GRADUATE STUDIES

ek ok &

COPYRIGHT PERMISSION PAGE

SCME FINITE ARD INFINITE MATRICES,

THEIR COMPUTATIONS AND APPLICATIONS

BY

CHUANXIANG JU

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University
of Manitoba in partial fulfiliment of the requirements of the degree
of

DOCTOR OF PHILOSOPHY

Chuapxiang Ju ©1998

Permission has been granted to the Library of The University of Manitoba to lend or sell
copies of this thesis/practicum, to the National Library of Canada to microfilm this thesis
and to lend or sell copies of the film, and to Dissertatious Abstracts International to publish
an abstract of this thesis/practicum.

The author reserves other publication rights, and neither this thesis/practicum nor
extensive extracts from it may be printed or otherwise reproduced without the author’s
written permission.



Abstract

In this thesis. we consider finite and infinite matrices in linear equations with
different structures which arise mainly in the solution of some elliptic partial
differential equations in two dimensions. In many of the cases. the solutions
lead to infinite systems of linear equations associated with matrices of special
structures like diagonal dominance. tridiagonal or having a new sign distribution.
The regions considered are either doubly connected or semi infinite. e also
consider the theoryv of finite and infinite tridiagonal matrices. improving some
well-known classical results. Nonsingularity criteria are given for matrices with a
new sign distribution. which occurs in a conformal mapping problem and viscous
fluid flow problem. For the semi infinite region which is bounded on the top by
a sloping sinusoidal curve. a theoretical solution in terms of infinite matrices is
given leading to numerical evaluation and development of the software. The above
problems occur in transmission of electricity in coaxial cables. groundwater flow.
conformal mapping . recurrence relations for Bessels functions etc. We also give
an error estimate for a finite element method for solution of Laplace’s equation
resulting in double integrals for physical quantities in applications. The thesis is
mainly concerned with using estimates for solving infinite and finite systems with
easilv computable and meaningful error estimates. The problem in groundwater

flow in an infinite region arose from a problem suggested by industry.
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Chapter 1

Introduction

The motivation for this thesis is to discuss the solution of some mathematical
and physical problems whose solutions lead to linear systems of equations. In
many such problems. infinite matrices occur and the solution is often approached
by truncation of the infinite matrix or by considering the infinite matrix as an
operator. The latter approach. while giving in some cases qualitative results such
as existence. uniqueness and even justification of truncation. is of veryv limited help
in obtaining explicit error bounds for approximate solutions or for computation.
The algebra of finite matrices is often extended to treat the analysis of infinite
matrices. This thesis is concerned with a variety of structures for the matrices
which have arisen in many physical problems and in classical analysis [30]. Infinite
matrices have a very interesting history and the excellent review by Bernkopf
[31] traces the role of infinite matrices in the development of operator theory
and integral equations. Due to the difficulties in treating infinite matrices. not
much progress was achieved in the literature involving computations except in
the framework of Operator Theory. Hilbert used infinite quadratic forms to solve

Fredholm integral equations, while in 1929, John von Neumann demonstrated
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Introduction

that an abstract approach was powerful and preferable to using infinite matrices
as a tool for the study of Operator Theory.

This thesis continues the work of Shivakumar and his collaborators over the
last two decades. The problems dealt with in this thesis are of a classical nature
and do not have many recent references. As an example. conformal mapping of
specific doubly connected regions has been a long standing problem in classical
analvsis. Another example of a different classical problem not dealt with in the
literature is the solution of an elliptic equation in an infinite region. This problem
was suggested by industry. Diagonal dominance has been the main motivation in
[33] - {37]. The topics include linear algebraic systems with matrices having struc-
tures like diagonal dominance. tridiagonal etc. The problems discussed include
differential equations. infinite svstems of first order differential equations. itera-
tion techniques etc. The applications have included Mathieu equations. Bessel
equations. conformal mapping of doubly connected regions etc.

In Chapter 2. we consider the problem of the conformal mapping of a doubly
connected region which is equivalent to solving a Poisson's equation in w(r. y)
with w(z.y) vanishing on the two bounding curves [41]. The problem also repre-
sents the velocity along the axis of a slow and steady viscous fluid flowing between
two pipes. A practical application could be that of simultaneous flow of gas and
oil in a situation where both gas and oil are found in one location. A matter
of practical importance is the rate of flow of the fluid between the pipes and to
maxirmize this flow by varving the eccentricity of the circles. Here we give a proof
of our results based on analysis and computation. These problems occur in the

transmission of electricity in coaxial cables and in many other applications. The
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result we establish is that the rate of flow is not a maximum in the case of con-
centric circles and. in fact. the opposite is true. We use conformal mapping as
a tool to map the given doubly connected region to that of a region bounded by
concentric circles.

In Chapter 3. we continue the work of Chapter 2 and give a finite element
method and an error estimate for evaluating double integrals over a smooth do-
main. The results are used to compare rates of flow of a viscous incompressible
fluid in a pipe-in-pipe svstem discussed earlier. These numerical results confirm an
earlier conjecture that the domain vielding the least flow is the case of concentric
circles.

In Chapter 4. we consider the flow described in Chapter 2 for the case of
a region bounded by an ellipse and a circle by adopting a technique of mapping
functions used in [35]. The resulting infinite matrix has a certain sign distribution
and has only partial diagonal dominance in its elements. For such matrices.
we give a set of sufficient conditions to ensure that the finite truncated martrix
becomes nonsingular. The criterion developed for nonsingularity is easily verified.

We give easily computable upper and lower bounds for the inverse elements
of finite diagonally dominant tridiagonal matrices [42] in Chapter 5. We also
improve the well-known upper bounds due to Ostrowski. The results are extended
to infinite systems. The theory is used to evaluate Bessel functions and Mathieu
functions by using their recurrence relations.

In the final chapter. a ground water flow problem is discussed. The problem
reduces to solving an elliptic equation defined in a semivertical infinite region of

finite width. The top boundary is a sloping sinusoidal curve. A mathematical
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analysis leading to numerical computation is given [43]. The problem is reduced
to an infinite system of linear equations by using the method of separation of
variables and construction of a Grammian matrix. Truncation (though not jus-
tified) vields an approximate solution that gives the best approximation on the
top boundary. This problem arose in the discussion of contaminated groundwater
flows and was suggested by Atomic Energy of Canada Ltd.

Finally. the thesis is an attempt to deal with some difficult problems of applied
mathematics by developing meaningful. easilv computable solutions with error
bounds. The techniques used are mostly based on known and derived estimates

concerning the given matrix and its inverse.



Chapter 2

Conformal Mapping of Doubly
Connected Regions

The solution of a large number of problems in modern technology such as leakage
of a gas in a graphite brick of gas cooled nuclear reactor [1]. analvsis of stresses
in solid propellant rocket grains [3]. simultaneous flow of oil and gas in concentric
pipes [33] hinges critically on conformally mapping a doubly connected region
onto a circular annulus. Only a few specific regions have been studied and only
approximate solutions have been given. Hockney [1] considers the region where
the inner boundary is a circle and the outer boundary is a square. He obtains
a series solution for Laplace’s equation in the region and gives an approximate
solution of the problem by replacing the outer square by a circle of equal area
and solving the resulting one dimension radial problem: Laura [2] considers the
region with circular external boundary and an internal boundary which consists
of several axes of symmetry: Narodetskii and Sherman [3] discuss the mapping
of a region bounded by an ellipse and a circle: Symm [4] considers the numerical
mapping of a bounded doubly connected domain onto an annulus. He describes

a technique of mapping a general ring-shaped domain onto an annulus based on
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the use of integral equations and illustrates this method with several numerical
examples. Fornberg [6] studies a numerical method for conformal mapping of
doubly connected regions with discretized boundaries and develops an iterative
approach for computation.

More recent work includes the papers by Menke [7]. [8] and the paper by
Wegmann [9]. Menke studies conformal mapping of a doubly connected region
bounded by the unit circle and an analytic Jordan curve. He approximates nu-
merically the conformal mapping of an annulus onto a doubly connected region
bounded by two concentric squares. Wegmann gives an iterative method for the
numerical conformal mapping of a circular annulus onto a doubly connected re-
gion with smooth boundarv. Papamichael [10] introduces a singular function that
reflects the singular behaviour of the conformal mapping of a doubly connected
region onto an annulus and demonstrates the method by several numerical exam-
ples which include the conformal mapping of rings of different shapes.

Most of the methods use integrals of the Cauchy type and then use truncation
procedures to get numerical results. Although some estimations of accuracy are
included. checking the numerical results using theoretical considerations is far
from satisfactory. In this chapter. we provide proof of our results by numerical
work and its analysis. In the following sections. we will describe a method of re-
ducing the conformal mapping problem to a problem of solving an infinite system

of linear algebraic equations.
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Conformal Mapping of Doubly Connected Regions
2.1 Introduction
The mapping functions of the following form

(2.1) o(z) =elogselal s = iy = retf.

are widely studied[4]. On a doubly connected region bounded by two disjoint
smooth curves Cy and (). there is a mapping which is unique except for an
arbitrary rotation and which maps the region D + 38D onto the annulus 0 < a <
lw| < b < . where the ratio b/a is unique and o(z) is regular in D. We will
assume that the origin in the :z-plane is not included in the doubly connected

region. and the function o(z) has the following series expansion

Hence for all = € Cy. we need
log(:3) + o(z) + o(z) = logb~.
and for all = € C;. we need
log(=3) + o(z) + o(z) = loga®.

Without loss of generality, we will assume b to be unity.

If a mapping z = f,(¢) maps conformally the simply connected region enclosed
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by C,. to a disk of radius 1 in the {-plane. then we have

log[f1(Q) Fi(C) + o(f1(¢)) + o(F1(C))] — loga® = 0.

on (¢ = L.

Using a Laurent series expansion for o(z). we can derive a set of infinite linear
equations for the coefficients ¢, and a. Similarly. if the mapping = = f,(¢') maps
conformally the simply connected region enclosed by Cjy. to a disk of radius 1
in the ¢’-plane. we get another set of equations for ¢,. Combining the two sets
of equations for the c,. the existence and uniqueness of the mapping function
depends on the existence and uniqueness of the solution of the infinite system for
the c,from the idea that and a.

We will applyv the above method to our application problem in the following

sections.

2.2 Formulation of the problem

\We consider the problem that arises when two fluids are transported with one
fluid inside a pipe of cross-section E bounded by C, and the other flowing in an
annular domain D in the ry plane bounded internally bv C» and externally by

Ci. The flow velocity w(.r. y) satisfies the Poisson’s equation

2.2 Wer +Wyy =—— in D. P. being positive constants.
vy Iy K g
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and the boundary condition

(2.3) w=0 on C
and
(2.4) w=0 on

In the above. P represents the pressure gradient of the flow and g the viscosity
of the fluid. The flow is assumed to be slow and steady and the fluid is assumed

to be incompressible and viscous. We will be concerned with the rate of flow

(2.5) R= /D/w(r.y)drdy.

for curves C, and C» of given included area. In [33] the following cases were

discussed:
(a) C, and C, being concentric circles.
(b) C, being a circle and C, being an ellipse.
(¢) C, and C, being confocal ellipses.

Denoting the respective rates of flow by R,. R,. R.. numerical evidence was
presented which suggested that R, < R, < R,. In all the three cases. the area
included by C; and C, respectively were held constant. In the following sections.
we will prove that when C| and C, are both circles, R has a lower value for all

the cases in which C; and C, are concentric. To compute R. we first seek the
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solution of (2.2) - (2.4) by using a conformal map which maps D in the ry plane

onto a circular annulus in the £n plane.

2.3 Conformal mapping

For regions bounded by two eccentric circles enclosing a ring space [32]. we take

the mapping function

(2.6) c=r+iy. (=&+1in. c¢ real

[¥]

with () # 0. For the transformation to be conformal. the ring space excludes
the critical point ¢ = 1. The mapping (2.6) in cartesian coordinates takes the
form

(2 + =12+ y® = 2cx + .

showing that the concentric circles |(| = p. p = p1-p2. p1 < po transform

onto the eccentric circles

2

(2.7) (r—hP+y'=a" (t-kP+y"=b". a<h

in the z-plane where py = 7. p» = % Herec = h - % =k - bk—' and if d is the

fetar e y . _ _ b a . 2 2 _ cd N\
distance between the two centers. d = k —h = T — % and p; — p; = - Note

that A = k implies a = b. We can only prescribe three quantities among h. k.a.b.
If we fix a.b then h. k will have to satisfv the compatibility condition:
b? a’l

2.8 —h=_2
(2.8) k—h=—— 1
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2.4 The boundary value problem

Using the complex variables : = r + iy. T = z — iy. (2.2) becomes
Fw P
dz0 dp

which on integrating gives. for real w

(2.9) w = —ﬁzf +w(z) +w(z).

(2.10) 2(z)=Blnz+ Y b2"

In the (-plane. we still use the notation «({) for convenience. i.e. w(¢) =

<(2(¢)) which leads to

Pc2 1 -
2.11 C= - — + 2{C).
(211) o= T 0+ 20

where

(2.12) 2(¢)=4 In¢+ > a.l™
and the boundary conditions (2.3). (2.4) reduce to

(2.13) w=0 on [(l=p. p=pr.p pm<p<l
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Substituting (2.12) in (2.11) and using ({ = p*. we get

x
+AInp® + > a. (" +

-

()5

2a0 + Alnp® — —

x

0]

Pc?
BYTA |

a_, Pc

()

n

p

~n

x
2_an
-x

1

P
1

x<
+y [an +
n=1

Now applying the

p2n

dp 1 —

s

boundary conditions given by (2.13). we get

N P 1
Alnp” + 200 — — 5=0. on p=p.p p<pa
1pu 1 —p°
and
2n PCZ p‘ln
anp " +ap — — 5=0. on p=p.p p<po
4p 1 —p-
Solving uniquely for 4 and a,’s. we obtain

P 1 1] )

4= == - > /1n<&).
8u |1—p2 1-—pi] P
PR 1 1 ] 2

0, = c np;»2 _ nPl2 /In (g._)
16p |1 —p3 1 —pi] 4

(2.14)

PET @ ) m

A, = - — 5 Pyt —pt). n=123
e |1 —ps l—p-”/( 1)
Pl 1 1] ) 9

A_p = . /(p3" = pi" n=123..--.
" dp [1-p3  1-pi] Gy
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The solution to the boundarv value problem (2.2)-(2.4) is given by (2.11).

(2.12) and (2.14). It can be shown that the resulting series in {(2.12) is convergent

in the domain under consideration.

2.5 Rate of flow

On using the complex form of the Green’s theorem

[/ %

Fd-.

Ca~Cy

we have

/D [ wds

= 5 Jec, 2z <§7— .u'(:)) dz
= 5ife gi eI
- -zle raory (1 - &1 g ow
where ['» and I'; and respectively the circles || = ps and || = p1.

After substitutions and some simplifications. we obtain

Pct 1 1
R = dc¢
8/1 21. /[‘.—[‘1 1— )3(1 — ) (.
2 1 { . }
= + nanC" -—(n--l)
2iJr-r (1= Q)1 - & Z Bl 2 e
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1209 4 2 S 1 & 2
Prct P2+ 7)1 _nf[ Lt S ln(ens” ~ o)

gu (L—p2)t lr=» -7 1-25

which vields after some calculations

(2.13) R=F+\MS
where
2.16) F = £7¢ { PP (p3 — p1)?
S8 \(1—p)t (1—p))*  (L—pD)21L = p3)In(p/pa)

and

_ x npi"
2.1 S = :
(2.17) HZ; L~ (p/p)"
where

ot 2 22

(2.18) =P ;)
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2.6 Approximation and error analysis

Denoting by Sy the sum of the first .V terms of S. we can now rewrite (2.15) as
R=F+MSyv+\MEy.

Here

represents the truncation error vielding an approximation Ry for R where Ry =

F + M Sy. Now letting

r=;<1 and a = pj.
2
we get
b ark
Eyv = Y
) kg\ (1 — ark)?
x<
a k
< - r
(1 -arV)? ;;\.
e rv

We now proceed to find NV such that the truncation error in the evaluation of

R is less than . a prescribed number. Setting

( M ) ar™ <
1-r/) (1 —arV)?

(y
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we get
(ar¥)2 — (2 +p)arV)+1>0
where
M
P= H(l=r)
Noting that ar" < 1. we obtain
9
rYo> —
a(2+p+\/(2+p)?-1)
S 1
a(2 + p)
giving
(2.20) V>

237~ 420 2 2

P 2 : ic'p3(pz — )

In| =5 In +1In |2+ - 5
(m)] { o [ (1= pi)*(1 = p3)

If we choose .V given by (2.20). we will have

Ry —-:<R< Ry +:.
2.7 Numerical results

For comparison purposes. we consider the following two cases:

(a) Concentric Circles.

The region D is bounded by the two concentric circles

1""-{-y :a‘, _r2+y2=bz. O<acx<hb

i

16
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It can be easily verified that

w(z)=A In:+ F

where

L PE-a

’ 1 In(b?/a?)

E - ﬁ a’lnb — b'z‘ln a’
8y in b2/a?

when substituted in (2.9) satisfies (2.2)-(2.4). Further. the rate of low R, per
unit time per unit cross-section is given by
%Rc=b4—a'—T‘
a

(b) Eccentric Circles.

The region D is bounded by the eccentric circles (2.7) and the rate of flow
R per unit time per unit cross-section is given by (2.13). The series in (2.19) is
truncated to .V terms where .V is determined by (2.20). thus assuring the error
to be less than =. In all calculations = = 107® was used. Also. P/8y was taken to
be 1 for all the calculations.

In both the above cases. the area of flow and the sum of the perimeters of the
boundaries are held constant. In Tables I - V. we give the behaviour of R, as
the inner boundary moves away from the concentric case. h and k are chosen

such that (2.8) is satisfied. We find that R, increases as the |h — k| increases and
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for the same eccentricity. R, increases as the cross-section area increases. a was

chosen to be 1.0 for the calculations.

Table 2.1: Rate of low R, vs R.=2.098121

a = 1.000. b = 0.030. area = 3.134

h-k h k R, N
0.010000 | 99.749959 | 99.739959 | 2.098296 | 1
0.060000 | 16.624848 | 16.564848 | 2.104425 | 1
0.110000 | 9.067902 | 8.957902 | 2.119244 | 2
0.160000 | 6.233963 | 6.073963 | 2.141784 | 2
0.210000 | 4.749449 | 4.339449 | 2172815 | 2
0.260000 | 3.835839 | 3.575839 | 2.211598 | 2
0.310000 | 3.216882 | 2.906882 | 2.257676 | 2
0.360000 | 2.769796 | 2.409796 | 2.310489 | 2
0.410000 | 2.431690 | 2.021690 | 2.396373 | 2
0.460000 | 2.167014 | 1.707014 | 2.433556 | 2
0.510000 | 1.954151 | 1.444151 | 2.502152 ; 2
0.560000 | 1.779199 | 1.219199 | 2.574133 | 2
0.610000 | 1.632802 | 1.022802 | 2.648427 | 2
0.660000 | 1.508417 | 0.848417 | 2.723702 | 2
0.710000 | 1.401313 | 0.691313 | 2.798397 | 3
0.760000 | 1.307937 | 0.547v937 | 2.871129 | 3
0.810000 | 1.225464 | 0.415464 | 2.939994 | 3
0.860000 | 1.151302 | 0.291302 | 3.002909 | 3
0.910000 | 1.081584 | 0.171584 | 3.057576 | 4




Table 2.2: Rate of flow R, vs R.=1.337667

Conformal Mapping of Doublyv Connected Regions

a = 1.000. b = 0.200. area = 3.016

TR - &| h k R. | N
0.010000 | 95.999583 | 95.989583 | 1.337857 | 2
0.060000 | 15.997490 | 15.937490 | 1.346150 | 3
0.110000 | 8.722628 | 8.612628 | 1.366210 | 3
0.160000 | 5.993143 | 5.833143 | 1.397838 | 4
0.210000 | 4.562238 | 1.352238 | 1.440719 | 4
0.260000 | 3.680614 | 3.420614 | 1.494418 | 4
0.310000 | 3.082346 | 2.772346 | 1.558385 | 4
0.360000 | 2.649193 | 2.289193 | 1.631946 | 4
0.410000 | 2.320527 | 1.910527 | L.714312 | 3
0.460000 | 2.061988 | 1.601988 | 1.804572 | 5
0.510000 | 1.852559 | 1.342539 | 1.901696 | 5
0.560000 | 1.678524 | 1.118524 | 2.004535 | 3
0.610000 | 1.530307 | 0.920307 | 2.111826 | 6
0.660000 | 1.400530 | 0.740530 | 2.222197 | T+
0.710000 | 1.282208 | 0.572208 | 2.334175 | 8
0.760000 | 1.161196 | 0.401196 | 2.446191 | 12
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Table 2.3: Rate of flow R. vs R.=0.955380

Conformal Mapping of Doubly Connected Regions

a = 1.000. b = 0.300. area = 2.859

h— k| h k R, |~
0.010000 | 90.999011 | 90.989011 | 0.955586 | 3
0.060000 | 15.160707 | 15.100707 | 0.964233 | 4
0.110000 | 8.261687 | 8.151687 | 0.985154 | 3
0.160000 | 5.671170 | 5.511170 | 1.018156 | 5
0.210000 | 4.311390 | 4.101390 | 1.062930 | 5
0.260000 | 3.471980 | 3.211980 | 1.119054 | 6
0.310000 | 2.900745 | 2.390745 | 1.185996 | 6
0.360000 | 2.485433 | 2.125433 | 1.263111 | 6
0.110000 | 2.168327 | 1.758327 | 1.349648 | T
0.160000 | 1.916468 | 1.456468 | 1.444751 | T
0.510000 | 1.709268 | 1.199268 | 1.547465 | 8
0.560000 | 1.532450 | 0.972450 | 1.656741 | 9
0.610000 | 1.374003 | 0.764003 | 1.771440 | 11
0.660000 | 1.217293 | 0.557293 | 1.890348 | 16




Table 2.4: Rate of flow R, vs R.=0.395791

Conformal Mapping of Doubly Connected Regions

a = 1.000. b = 0.30. area = 2.356

lh — ki h k R, N
0.010000 | 74.996653 | 74.986653 | 0.39601+4 | 7
0.060000 | 12.479870 | 12.419870 | 0.403840 | 8
0.110000 | 6.780704 | 6.670704 | 0.422783 | 9
0.160000 | 4.631591 | 4.47v1591 | 0.452693 | 10
0.210000 | 3.495333 | 3.285333 | 0.493331 | 11
0.260000 | 2.785630 | 2.525630 | 0.544372 | 12
0.310000 | 2.293302 | 1.983302 | 0.605412 | 14
0.360000 | 1.923428 | 1.563428 | 0.675965 | 16
0.410000 | 1.623202 | 1.213202 | 0.755475 | 22
0.460000 | 1.349322 | 0.889322 | 0.843315 | 31

Table 2.5: Rate of flow R, vs R.=0.057245

a = 1.000. b = 0.750. area = 1.374

= h k R, | N
0.010000 | 43.737136 | 13.727136 | 0.057481 | 13
0.060000 | 7.213020 | 7.153029 | 0.062247 | 20
0.110000 | 3.825896 | 3.715896 | 0.073784 | 24
0.160000 | 2.493300 | 2.333300 | 0.092024 | 30
0.210000 | 1.707777 | 1.497777 | 0.116849 | 43

From the above five tables. we have established that the rate of flow in the
concentric case is less than the rate of flow in all the eccentric cases considered.
Further. as the inner circle moves away from the concentric position. the rate of

flow increases.
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2.8 Conclusions and comments

The above results establish that the rate of flow is not a maximum in the case of
concentric circles and. in fact. the opposite is true. For a given area of flow and
fixed circumference lengths. the rate of flow increases as the inner circle moves
away from the position of concentric circles. Again. for a given area of flow but
variable circumference lengths. the rate of flow decreases as the total perimeter
increases. This suggests a boundarv layver effect on the flow.

The mathematical problem described above has a large number of applications.
One example is the simultzneous transport of oil and gas from oil and gas fields
in the Arctic or on an ocean floor where both oil and gas are present at the same
source. In such a case oil flows between the pipes while gas flows in the inner
pipe. Although a new technology for building a pipe-in-pipe system is needed.
the laying of one system is cheaper than layving two different pipes. The present
system of heating oil at intervals to keep it flowing can be avoided. since the heat
in the inside pipe is conserved and used to its maximum advantage. Ecologically
and environmentally. accidents are less harmful since a burst in sections of the
inner pipe will not lead to a spill while a burst in the outer pipe will not interrupt
the gas flow and the oil spill may be recoverable.

There are a large number of applications involving Poisson’s equations in en-
gineering. A notable one is simultaneous transmission of data in co-axial cables.

The problem dealt with in this chapter is part of the general problem of map-
ping doubly connected regions onto an annulus. A well-known existence theorem

which will not give a method of construction states that a doubly connected re-
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gion (with arbitrary bounding curves) can always be mapped onto an annulus

with the ratio of the radii being unique [11].



Chapter 3

Evaluation of a Double Integral
over a Doubly Connected Region

In this chapter. we give a finite element method and its error estimate for eval-
uating double integrals over a smooth domain. The results are used to compare
rates of flow of a viscous incompressible fluid in a pipe-in-pipe svstem with differ-
ent doubly connected cross sections. These numerical results confirm an earlier

conjecture regarding the rates of flow.

3.1 Introduction

In a number of problems in physics and engineering. measurable physical quan-
tities depend on the evaluation of a double integral over a given domain €. The
domain may be simply or multiply connected and the geometry of the domain
may not consist necessarily of commonly known curves. The solutions of such
problems are usually not feasible by analytical methods. In this chapter. we give

a finite element method for evaluating double integrals with smooth boundary in
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a plane. with an error analvsis. We are interested in the double integral

(3.1) R = /L u(r. y)drdy

where (Q is a smooth domain. We are also interested in the finite element approx-

imation of R

R, =//Q up(r. y)drdy

where u,(z. y) is the standard finite element solution to the Dirichlet problem
Ury + Uy, = —1in Q with v = 0 on the two boundary curves.

We prepare to apply the techniques to find the rate of fAow of a steady state
incompressible viscous fluid flow in a pipe-in-pipe configuration. The analysis
leads to a two-dimensional Dirichlet problem. Shivakumar and Ji [42] discuss the
case where the region of cross-section of the pipes is bounded by two eccentric
circles. Thev provide a proof to show that the rate of flow per unit cross-section
per unit time is a minimum in the concentric case with the area enclosed by
the bounding curves held constant. [27] gives estimates for similar problems for
multiply connected cross-sections arising in the determination of torsional rigidity
of beams.

In our numerical experiments using the techniques of this chapter. we discuss
various doubly connected regions bounded by (a) two circles. (b) two ellipses. (¢)
a circle and an ellipse. and (d} an ellipse and a circle. In each case. the area

bounded by each pair of the curves is kept constant.
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3.2 Formulation of the problem

We are concerned with the double integral

(3.2) R://Q w(z. y)dzdy

where the domain. if simply connected. is bounded by a smooth curve d€). In

(3.2) u(r.y) is the solution of the Dirichlet problem

(3.3) Urr + Uyy = —1 in €.

u=>0 on o0

If the domain © is doubly connected. and bounded by two curves 9Q2,. d€2,.

then Dirichlet problem is given by (3.3) and
(3.4) u=20 on dQ,. 9.

In (3.2). R is the rate of slow and steady flow of an incompressible viscous fluid
in a pipe whose cross-section is given by €.

For the doubly connected region. Shivakumar and Ji [42] discuss the case where
0y and 0%, are two eccentric circles. They prove that the rate of flow is a
minimum when the circles are in the concentric position. It is conjectured that.
in general. the rate of fiow is a minimum in the svmmetric case when 99, and
dQ, bound a fixed area. We will give numerical values for R in the following
cases, using the finite element method:

(a) two circles. (b) two ellipses. (c) a circle and an ellipse. (d) an ellipse and a



Double Integral over Doublyv Connected Region 2
circle.

3.3 A finite element method for the double in-
tegral

In order to evaluate the double integrals (3.2). we can solve equation (3.3) using
the standard finite element method. and then calculate (3.2} by substituting us.

the finite element solutiomn.

To give a brief description of the standard finite element method(FEM)[28].

we first consider a decomposition [’y on domain €2 such that
Q=a=_Ja e[ e, = o. i # .

where the element e; can be a triangle. quadrilateral or their mappings. The

diameter of e, is denoted by h;. and the largest diameter
= mlax{ hi}.
The finite element space of order £. k > 0. is
= (v e Cf Q): vle € PF. Ve € Ty}.
where P* represents the polynomials of degree k. and
V= 1R (N HY(

In this chapter. H!(f2) stands for the standard Sobolev space(see [29] for details).
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H} () is the closure of C3*(f) with the measure of H'(Q2). The semi-norm

con= ([, Z gt

lal=

with o = (a,.an). |a] = o) + @2.  a;.o; are non-negative integers. and

1
s 3
lellon = (Z Lal;-’.ﬂ)
(=0

The FEM for (3.3) is to find the finite element solution u, € 1§ satisfving

given boundary conditions and
(3.5) / L Vu,Vedrdy = / /Q vdzdy. Ve € Ui
where V represents the gradient operator
Ve = (unty).
We calculate the approximate double integral
(3.6) Ry = / /Q undrdy.

where Q = U; & and e;’s are the finite elements.
Note that u, is a polvnomial of degree k& for everv element e. and we can

calculate Rj,. If we use the quadrature with the accuracy of order k + 1(for
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instance. we can use Gaussian quadrature with one Gaussian point at the center
of the element for the case k = 1). then we can get the exact value of Rj.
The error estimate for the above approximate double integral can be obtained

as follows.

Theorem 3.1 Suppose u is the solution of (3.3). up € VJ is its finite element
approrimation defined in (3.5). the double integral R and its approrimation Ry is

defined in (3.2) and (3.6). Q is a smooth domain satisfying
measure(Q — Q) ~ O(h?).

where Q = U, e; is the mesh for domain Q. then

(3.7) |R — Ru| ~ O(h?)

Proof: Suppose - is the solution of the auxiliary problem

Frr+ vy = — L in Q.
< =0. on JS2.

Then. by[28]. for A > 1

l¢lkara < Cilllk-1.0 < Ciy/measure(Q) = Cy,

and there is oy € 1} such that

le — orlua < Cah¥lolkrra < CCLAE.
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Note that o € V, C H§(Q).
//Q V(u — up)Vyedrdy = 0.

\We consider

IR — Ry| < |R — Ry|+ |Ry — Rhl-

where R, = [ [q updrdy.

By Schwarz inequality. we have

R—Ry| = fLm—%mmﬂ
= [ (= w)= s — )y
(3.8) = [Lvm-u“vgum4
_ [LVW—umVW”wﬂiwy

IN

lw = unllulle — 2l

S _C_lC'-_;h"Hu - uh||1.
It is well known[28] that
(3.9) lu — unlly < Ju = wrlly < Coh¥fullx-1.

Therefore.

(3.10) IR — Ry| ~ O(h%). k>1.
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We also have

Ry — Rp| = l/./;z-n uhdrd’y'

[, lusldzdy

< measure{Q — Q}unll<

[N

(3.11) ~ O(h?).

Hence. (3.7) follows from (3.10) and (3.11).
Remark: In this chapter. R is assumed to be a double integral of the solution of
a special Poisson equation. If u in (3.2) is a solution of a general elliptic equation

of second order

a(u.v) = (f.v). Yrv € H?(Q).

then Theorem 3.1 can be extended with a proof similar to the above argument.

Here

a(u.v) = //Q (2 a;;0;udjv + ibia,-uu + -,uv) drdy.
=1

t.y=1

and

(f.v) = //Q Frdzdy.

. 3 = 2 - 9
where &, = 5=. 0 = 35
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3.4 Numerical results and conclusions

For the Dirichlet problem

Urz + Uyy = —L. in Q

and

u=0 on OQI. C)Qg

we evaluate the approximate double integral

Ry = //Q updzrdy

using the finite element solution uy.

In the numerical experiments. we use triangular decomposition with A = 0.05
and piecewise linear finite element space(first order FE space. £ = 1). The quadra-
ture is chosen to be Gaussian quadrature with one Gaussian point at the baryvcen-
ters of elements. By Theorem 3.1. Ry is the approximation of R with the accuracy
of O(h?). The condition required by the theorem. measure{2 — Q} ~ O(h*). is
satisfied in all the cases in which we apply the result in our computation. For
example. using uniform triangle element mesh on a unit circle gives the difference

of the order O(h?):

h/1 — h2/1 , \
/ ~ Th?/4 ~ O(h?).

measure{Q — Q} =7 — WW

It can be similarly verified for the regions in the following computation.
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In the case of slow and steady incompressible viscous flow in a pipe-in-pipe.

Ry, represents the approximate rate of flow per unit time per unit cross-section.

We consider the region with a fixed area. (1 — p?)w. p < 1. bounded by

6Q.

.L' 2

(l/a)"_

We calculate the rates of flow

a=1.b=1.

= [N
.
(8102

.a=

=t

=1,

s LY

IJIG

aQ') .

(r —d)?

R

Y

b2

TameE T

for the following 9 cases in three groups. as

lvluJ

b=

aL-I-.u
!il“

.and p=0.2.

Note that the areas enclosed between 99, and 92, in all the cases are kept

constant. 0.967.

Table 3.1: Rates of flow R,’s with JQ; :

=1

0, (£ —d)? + 4> = 0.2 el s =027 L+ S =027
d Riq Ry R,
0.0000 0.16601048 0.16421933 0.16025561
0.0500 0.16674468 0.16493076 0.16094677
0.1000 0.16893996 0.16705783 0.16301312
0.1500 0.17257436 0.17057884 0.16643316
0.2000 0.17761125 0.17545760 0.17117111
0.2500 0.18399926 0.18164343 0.11717692
0.3000 0.19167224 0.18907110 0.18438624
0.3500 0.20054919 0.19766094 0.19272067
0.4000 0.21053419 0.20731875 0.20208782
0.4500 0.22151642 0.21793610 0.21238177
0.5000 0.23337013 0.22939046 0.22348365
0.5500 0.24595493 0.24154589 0.23526268
0.6000 0.25911599 0.25425380 0.24757783
0.6500 0.27268466 0.26735440 0.26028022
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Table 3.2: Rates of flow R,’s with 99, : (57—4)_ + (35‘5—)- =1
a0, (r — d)? + y? = 0.2 o + b =022 el + S =022
d R"_’a R‘_’c
0.0000 0.16243616 0.13879773 0.15335999
0.0300 0.16289040 0.15924697 0.15380700
0.1000 0.1642:4981 0.16039133 0.15314500
0.1500 0.16650-126 0.16282079 0.15736300
0.2000 0.16963698 0.16591857 0.16044500
0.2500 0.17362440 0.16986127 0.16436701
0.3000 0.17843620 0.17461875 0.16909900
0.3500 0.18403541 0.18015414 0.17460400
0.4000 0.19037817 0.18642393 0.18083800
0.4300 0.19741397 0.19337787 0.18779199
0.5000 0.20508543 0.20095906 0.19528700
0.5500 0.21332847 0.20910391 0.20338200
0.6000 0.22072257 0.21774232 0.21196499
0.6500 0.23123926 0.22679769 0.22096001
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Table 3.3: Rates of flow R,’s with 9 :

(372)

99, (x ~d)? +y*> = 0.2 a4 ey =0.22 =t + m =02
d Raa R Rs.
0.0000 0.15169299 0.14767602 0.14240605
0.0500 0.15193447 0.14791816 0.14265074
0.1000 0.1526577 0.14864333 0.14338353
0.1500 0.15385883 0.14984769 0.14460056
0.2000 0.15553147 0.15152489 0.14629541
0.2500 0.15766667 0.15366602 0.14845908
0.3000 0.16025296 0.15625958 0.15107997
0.3500 0.16327621 0.15929151 0.15414388
0.4000 0.16671972 0.16274512 0.15763308
0.4300 0.17056416 0.16660117 0.16153079
0.5000 0.17478755 0.17083767 0.16581215
0.5500 0.17936523 0.17543077 0.17045322
0.6000 0.18426988 0.18035106 0.17542642
0.6300 0.18947136 0.18557061 0.18070145




Double Integral over Doubly Connected Region 36

From the above tables. we first observe that in all the cases. the rate of flow per
unit cross-section per unit time. evaluated by the double integral. increases as the
eccentricity of the annulus increases. and attains its minimum in the concentric
case (when d = 0). This conclusion agrees well with the results in [27].

We can also notice that for a fixed eccentricity d and a fixed compression
constant g for 9€2,. the outer ellipse(u = 1 for circles). the rate of flow decreases
as the compression constant of d€,. u,. increases. We can also get exactly the
same information if we switch the roles of 92, and 9, by looking at the columns

of the three tables for a fixed d. To summarize. we may conclude the following.

e i). For a fixed eccentricity d and a fixed ellipse(outer or inner). the rate of
flow decreases as the compression constant of the other ellipse increases. It

attains a maximum value when the latter one is a circle (u = 1).

e ii). For any fixed eccentricity d. the rate of flow decreases as the sum of the
compression constants of the two ellipses. y; + u» increases. For a fixed value
of py+pa, py plays more dominant role in the two. e.g.. if ) +p» = pj+p5 =
a fixed number. then the corresponding rates of flow. R, > R;, if p; > puj.

or else R, < Rj.

e iii). The area enclosed by d€2; and 9, is 0.967. We now consider the rate
of flow over a simply connected region D : |z| < ¢. where ¢ = v0.96. The

solution of the Dirichlet problem in D can easily be obtained:

L

w(r.f) = —7(r* =c*). r<e
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and the rate of flow:

e = 0.36191147.

The numerical results in Table 1. column R,,. show that the rates of flow
over the cross section bounded by two eccentric circles increase as the ec-

centricity d increases. but they are bounded above by Rp = 0.36191147.



Chapter 4

Non-singularity of Matrices of
Certain Sign Distributions

4.1 Introduction

Nonsingularity of matrices plays a kev role in the solution of linear syvstems.
matrix computation and numerical analysis. A large variety of problems arising
in computational mechanics. fluid dvnamics and material engineering. modelled
by using difference equations or finite element methods. demand the matrices be
non-singular for the numerical approaches to be convergent.

Two typical criteria for a non-singularity test are (i) non-vanishing determi-
nant: and (ii) diagonal dominance. Some disadvantages are well known: criterion
(i) costs too much computing time and (ii) is too strict for most application prob-
lems to fit. Since a large number of matrices resulting from physical models have
certain structures or sign distributions. consideration of non-singularity related
to sign distributions becomes useful and effective.

Nonsingularity related to M-matrices and positive matrices. two classes of ma-

trices with fixed sign distributions. was first studied by M. Fiedler{l4] . K. Fan

38
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and A.S. Householder[13]. J. Drew and C.R. Johnson[12] consider Hessenberg
and Hadamard matrices. In recent vears. sign-non-singular matrices have been
extensively explored. A matrix B is called a sign-non-singular matrix if its entries
are among {1.0. —1} and any other matrix A with the same sign distribution as
B's is non-singular. If. in addition. the sign distribution of the inverse of A is
the same as B’s for all A. then B is called a strong sign-non-singular matrix. Al-
though the sign-non-singular matrices have received considerable attention. most
of the results remain theoretical and specific sign distributions are barely studied
thoroughly for practical purposes. and few computable conditions are given on
non-singularity of matrices of certain sign distributions.

In this chapter. we impose easily computable sufficient conditions for matrices

of the following two different sign distributions:

+ + + + + + + + + +
- + + + + + + + + +
+ - + + o+ - + + + +
-+ - + + + - + + +
+ - + - + - + - + +
Sign Distribution 1(SD1) Sign Distribution 2(SD2)

The matrices in this chapter are assumed to be square matrices of arbitrary
but fixed size. and contain no zero entries.

This work is mainly motivated by the problems of viscous flow in pipes whose
cross-sections are doubly connected regions[33] in which the velocity of the fluid in
the direction of the axis of the pipe satisfies Poisson’s equation with homogeneous
boundary conditions. The solution of the problem can be expressed as a truncated
infinite series which can be found by solving a linear system whose coefficient

matrix has SD1.
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4.2 Main Theorem

The sign distributions 1 and 2 can be formulated for the matrix A = (a;;)mvm by

SD1: Fori< j.a; >0: Fori>j. (—1)"a; > 0.
SD2: Fori<j.a,>0: Fori>j (—1)"7"'aq; >0.

where i.j = 1.2.....m. We will prove that. under certain stated conditions. a

matrix with either of the above sign distributions is non-singular.
For convenience. we first define for the matrices of both cases SD1 and SD2.
the following quantities:

vij = 4y — ZZ;[,Tla,vk. fori<j.

Bij = ay =3 k. fori <

“ = min{ja,~1| _lZim*la’U’j- ’Z‘kziélakjl—'a{‘*ljl}- forj<i<l<im.
. . . '

otlj = 'Zk:_,-»—l aik! —lai|. forjy <l <i

Theorem 4.1 (Sign Distributions 1 and 2) Let A = (a;)m«m. m > 0. be a
real matriz of Sign Distribution I or 2 satisfying

Fori<j. (Al) v >0 (A2) py > TR o sk > 0

Fori>j. (A3) wi>0(<i<l) (A4) ;>0 ok, >0 <[<i).

(4.2)

Then A is non-singular.

We give below an example of a matrix A which satisfies the conditions in

Theorem 4.1.
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Let A = (a;j}mxm be given by

l . .
2] =t ISJ
a;; =
¥ ) —j
(-5 >
ie.
1 L 1 1
1 1 1
—3 L 3 =
1 I
A= Ee -3 L 3

~
|
0 |
~ P
3
|
—
|
(M
p—

[t is easy to verify that A satisfies (A1) — (A4) and SD1. in Theorem 4.1. hence

it is non-singular. although it is not diagonally dominant.

Remarks:

1. In Theorem 4.1. conditions (A1) and (A3) show a decreasing absolute value
for upper trianglular entries of A along the horizontal direction and of lower
trianglular entries along the vertical downward direction respectively: con-
ditions (A2) and (44) may be considered as second order distribution prop-
erties. which also reflect a similar trend along horizontal and vertical direc-
tions. Basically. conditions (A1) — (44) describe a scattering distribution

along the horizontal and vertical directions for any element of A.

!\D

All the conditions that appear in Theorem 4.1 are easily computable because

they involve only additions and logical operations.
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4.3 Proof

To formulate the problem. we denote by A = (4;;),,, the matrix obtained by

eliminating the last row of A = (a;;) in the sense that

tn+lixtn+1)"°

A U _ (nr1)
(4 G Yoare

lxn an-'—lnvl

where L("*! is a (n + 1) x (n + 1) non-singular lower triangular matrix due to
Gaussian transformation. O'_ is a zero row vector and 1], is a column vector.

The elements of A are given by:

~ I"",-lan+l}

a =aq — 472 i.)=1.2.....n
n+ln+l

As a consequence of elimination process. A and A are both singular or both
non-singular. Correspondingly. the quantities defined by (4.1) for A can be writ-

ten for A with a little modification as

Vij = Qi — Zz=[7-+1 aix. fori < j.

By = Qi = Yo Grye for L <

- - - - 1 - - . .

o o= m1n{|a,~j| - lzi-:.-i—:l akj, . ]ZZ:iH akj\ - |al+11|}. for j<i<l
N { - - . .

ij = lzkzﬁ_laikt —lag|. for j <l <L

(4.3)

We give a proof for Theorem 1.1 for the case of SD1 onlv. to illustrate the
method based on mathematical induction. The proof for the case of SD2 can be

similarly shown by parallel arguments.

Proof of Theorem 4.1: (For the case of SD1)
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(a) It is trivial that Theorem 4.1 is true for the cases of m =1 and m = 2.

(b) We now assume that Theorem 4.1 holds for m = n. i.e.. any n x n matrix

A that has SD1 and satisfies conditions (.41) — (A4) is non-singular.

(c) For m = n + 1. we suppose that the matrix A" = (q;;) has

(n+=lixin=1}

SD1 and satisfies conditions (A1) — (.44). We will next show that A™*! can be
reduced to an n by n matrix that also has SD1 and satifies conditions (.41) — ( 44).
using a non-singular transformation. This allows us to conclude that A"™D is
nonsingular and completes the proof by induction.

Suppose that A*+Y) = (a;) has SD1 and satisfies the following con-

(r+l)x(n+1)
ditions:
Fori<j
(A1) v; >0
(A2) gy > TR k> 0.

Fori>j
(43) =, >0 (J<i<])
(A4) 05 > SRZ) 0, >0 (<l <)

Consider the matrix A™ = (a,;) produced from A*7! by Gaussian elim-

nxn'

ination as discussed above. In order to conclude that A‘*~Y is nonsingular.
we need to show that A" preserves SD1 as given by a;; > 0 for i < j and
(—1)**a;; > 0 for { > j. and in addition satisfies the following conditions:

For: <
(B1) ;>0
(B2)  fli; > S pojur Bix > 0.

Fori > j
(B3) ‘i:'fi>0 (J<i<l)
(B) 0> SR 10, >0 (<<
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Recall that

- Qin+1Qn+1;
a;; =0y — ——————— -
Qn+ln+l

To prove that SD1 is preserved by A we note that for : < j < n.

An+1

Q;; 2 Qj — Qins|
Apni+in+1

> Qij — Qin+1 by (A4)

> 0 by (Al).

Similarly. for j < i < n.

4~ e =~ Ain+1
(=1)a; > (=1)a; — (=1 ansyj =
Up+in-1

> (_I}i?jaij - (_l)‘?jarn+lj by (-"-2)

> 0 by (43).

Proof of (B1): (B1) follows from

n
v = @y — ) G
k=j+1

n n
Qin+i
= a; — Z Qi — —— | Qn+1j — Z Qn+1k
k=j+1

k=j+1 Qn+1n+1 =j+
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n+1

> ay— Y ax by (A4)

k=j3-+1

= v, >0 by (Al).

Proof of (B3): It is easy to verifv (B3) if / = j + 1. From (.3). we have

- !dl+ljl}‘

Evaluating the two quantities in .2t ; separately. we have

i

Y

k=i+1

{
A a

k=i+1

“‘-"x(_} = min {ldul -

l
Z ko

k=1+1

idul -

{
— (_Ux«‘-Jdlj _ (_l)l-r]+l Z dk}
k=1+1

¢
= (_I)I?Jaij - (-I)H.J*l Z Ag,; ~— (_I)H-Janvl_)

k=1 An—-1n~i

(
> (=1)" Zakj = |@no1 i by (A2)
k=

!
> (=1 Y a; — lar by (A4)
k=1

>u>0 by (43)

and

{
D

k=i+1

- '&l+lj|

{
7 Zk:; A =1
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— z+]+l Z ak] l-1-j+ldl+lj
k=1+1
= 1"]1-1 Z ag; — l+j+lal4-lj _
k=1+1
{_l)i‘r‘j'.‘l ch:x—j-[ akn"f-l - (_1)[-5‘]‘[(1[“_1".‘1
An.y
An-tn+1
[+1
~1)FE S ag — |ansa by (A2)
k=1+1
_ (+1
> (=1)It Z ax, — laj—a,i by (A4)
k=i+1

> >0 by (43).

4

Now combining the results. we have ! ;> 0.

Proof of (B2): Now ;; > 0 since

fuj = @y — ) ag
k=1

Ansi i-1

— _ontly

= Zak] Qin+1 — Zakn:—l)
An+1n+l k=1

> Mij = Hin+1 by (A2). (A44)

> 0 by (42).



Non-singularity. sign patterns

Using the positivity of f;;. the full result follows from

k=j+1

i—1 n i—1
= (o) - T (o= Tam

n n

n+1) — Zk=’+1 Qn+1k

= Hij— Z Hik — HinsL - ]

k=j+1 Qnylin+l

n+l
> gy — 3w by (A42). (A4)

k=j+1

> 0 by (A2).

Proof of (B4):

Lo
:[ _ -
8, = gz

k=j)~1 k=3+1
{
2 ( l)t*l Z a:k_(“l)l+JaxJ
k=j+1
l

_ | _G&nn (#1)n+l+l Z a _(_1)n+j+1 ,
n+1lk Qn+1;

Qne1n+t k=j+1

> & = 0ha, by (42).(44)



and.

{

Z Gxp

p=j+1
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!
> aw

"
k=j+1

{ n {
= ((-1)"*‘ 3 dik—(—l)"“au) - (H)"*’ Y. c‘zk,,—(—n"‘fak,)

~agl - 3 (

k=i+1

kz:3+1 k=1-1 p=j+1
n n+k+1 ~i~1
= 9 Z kj = 9n+1j” a ‘
k=i+1 n—ln+l

> 0 by (A4).

4.4 Applications

We now consider the application problem of viscous steady flow. From the optimal
rate of flow point of view([44]. we consider in this application. the region bounded
bv the outer circle: 99, : % + y? = @°. and the inner ellipse 98, : (—f% + g— =
with a < 3 < a(as in Figure 1). instead of the physical configuration used in {33]
whose outer curve is an ellipse and inner curve is a circle.

The infinite series solution for the velocity of the flow in the pipe. which is
geometrically convergent. is truncated, and the problem reduces to a linear system

associated with a finite matrix.

For the new configuration. we derive the matrix using arguments and manip-
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Figure 1. cross-section of pipe

ulations similar to those used to generate (1.13) and (4.16) in [33]. and also let

b = 1 without losing generality. The transpose of the resulting matrix is

cdyy— . 2 —
), = lOg[\—. a,; = Li'/j\:#‘ a;; = (—l)l_l/\‘—l ( -(il- 11) ) .

( ~if 4=
@7 (755°) <

1- (&) = ke =]

It

(4.4) a;j e

i—J

- | , ofi _
(=1)" I NI R-HG-0 (1 4 \20-1) ( "(.l ‘}) ) i > .

.
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i.j=1.2,...N — 1. and the parameters
_ J-—a a+J .
(-l.a) A= 3 Ta Cc = 5 A =-

We will next show that A satisfies the sign distribution as well as the conditions
required in Theorem 4.1 for suitably chosen K" > 2 and \ < 3. We set a = 0.15.
3 = 0.25 and a = 1 as an example. Correspondingly. we get A" = 5. \ = % and
the truncation size is chosen to be .V < 500. We only verifv conditions (41) and

(A43). Conditions (A2) and (A4} can be verified in a similar manner.
It is evident that A satisfies SDI1.

To verifv (A1) of (4.1). we need to show. for { < j. that

Al
Vi, = a4 — Z ag > 0. 1< gty =1.2...\V.
IC:_j-.-l

We first show that v; > 0. For convenience. we define

A (1+2-3

For i = 1.
N A% pL-l
vy = all_zalk = log[{—zk—l
k=2 k=2
¢ pl—l p
> loghh—p) — = logh — = > 0
; ! (1-p)?
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For i > 1.

N
Vii = Qiu — z Qik
k

=i+1

= 1= pz-l,\i—l _ pi—l//\z—l _ Z p

k=141 k-
1 N— .
_ 1_pt—l (/\l-[_i—-i—_—)— pq
/\ ! =1 ’
Notice that
[+2i—2

{+1 —
(4.6) p g, = [ [+ 1

which implies that

Nt x 1 . x 1
Zplql<zgp(b<zyz
=1

=1 =1 "

| =

Also. p*~! (,\’“1 + »1_1) < ,\—43-1, < 1
Hence.

‘ 1
i—1 =1
- p (/\ =+ /\I_—l_) > 0.

N | =

UVig >

We next show that v;; > 0. for i < J.

N
vij = Q= Y G
k=j+1

(i3 o ki k+i-3
g ( ) le ( k—i

j—i

al k_l(k‘f'l—g

, 1
p] pa, <[Vele'q, < 364,



[W]]
V]
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il i+i-3Y & fl+j+i-3
- |(r)-E ()

=1

Using the argument similar to (4.6). we can show that

N—y . . N—j . . . .
[+j+i-3 L (j+i-3 1 j+i-3
! -
Ep([j£)<§3‘(ji <.2 j-i )

(=1 (=1

Therefore.

| J+i=3 1 j+:-3
l/u>pl l:( _}—l )—5( _]—l > 0.

To summarize. we have v;; > 0. for i < j.
To verifv (A3) of (4.1). we need to show. for j < ¢ < /. that

l

! !
{ .
wi, =min{ la;]| — | D agl. > ak| — la,l ) > 0.
k=i+1 k=i1+1
We first show that |a;j| — lZinHakj‘ > 0. For convenience. we let p;; =
- - 2 -
(1 + A=A R 0= and r, = ( (S+_l .J) )

s+t1— )

!
D a;
k=i+1

:pﬁ(%tj))_
NN

|(l.i]‘| —

Ii
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[ 2(i—J
= pij ( (Ll—JJ))—

-

& s 2As+i— )
Z(_”( R )H

s=1

= Piy|To—
L s=1
Note that
Nt = [A (2 - ;—IT%L_:)] A'ry.
and letting f, = A (‘2 — s-r-l-lj—i-j)' we have

-
Y (=A)r,

= A=A+ A+ = (D)7

[—i—1 k

1
= ’\rl Z (—1)kas < Arl- (fol <fs < ;)
k=0 s=1 =

Hence. we have

I

Z Ak,

(-Ll-) la,-jl -

. 1
> pij(ro — riA) > pij(ro = fire) = pijro5 >0

Ve can similarly show that IZLHL akjl — |lai+1;| > 0 and complete the verifi-

cation of (43). Conditions (A2) and (A4) can be verified in the same way with

slightly more complicated manipulations.

By the theory developed in this chapter. we conclude that the coefficient matrix

defined in (4.4) is non-singular and a unique solution for the system AX = B is

ensured.



Chapter 5

Upper and Lower Bounds for the
Inverse Elements of Finite and
Infinite Tridiagonal Matrices

5.1 Introduction

Tridiagonal matrices. finite or infinite occur in a large number of applications
including the solution of boundary value problems by finite difference methods.
cubic splines. data fitting. and three term difference equations and inverses of
Toeplitz matrices and in the theory of continued fractions. Infinite systems oc-
cur in many areas including the solution of Mathieu's equations{39]. three term
recurrence relations for Bessel functions. For an algorithm to find the solution
of a finite linear system or for Givens or Householder methods. see [16]. Esti-
mates for upper bounds for the inverse elements of tridiagonal matrices arising
in some boundary value problems are given by Mattheij{18]. Upper bounds for a
special tridiagonal matrix is given by Kershaw[17]. while a lower bound for the
smallest singular value of a matrix is given by Varah[20]. Considerable work has

been done in numerical treatment of tridiagonal matrices. Ostrowski[19] has given

24



(1}
Ut

Upper and Lower Bounds

upper bounds for the inverse elements of a diagonally dominant matrix.

In the following sections. we will give easily computable upper and lower
bounds for the inverse elements and infinity norms for the inverse. The results
improve Ostrowski’s upper bounds as well as give new lower bounds. The results
are extended to the infinite case and to block tridiagonal infinite svstems. In later
sections. we will apply the theory to a special matrix considered by Kershaw. \We
will also discuss the evaluation of Bessel functions and Mathieu functions by using

their recurrence relations and numerical results are given.

5.2 Finite tridiagonal matrices

We will be concerned with finite and infinite tridiagonal matrices of the form

denoted by 4 = {a;.b;.¢;}. where b's are the diagonal elements and a’s and ¢'s
are the off-diagonal elements. We will use the notation A*) s > r to represent
the tridiagonal square submatrix of order s — r + 1 whose diagonal entry in the
first row is b, and the diagonal entrv in the last row is b;.

We will now prove the following Lemma:

Lemma 5.1 For the tridiagonal n x n matriz A = {a,.b;. c;}. the cofactors A,
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of 4 are given by

D A { (—1)i* Enﬂﬂﬂak)det A0 deg AUTEM <
. T

(~1)* (T2, k) det ACI=D det AGFIR > .

fer ioj = 2.3.--7in. In the above. det A9 det A1) and (['[;c:Hlpk) are

each defined to be unity.

Proof: We need only consider 1 < i < j < n as the results for 1 < j < : < n can
be derived similarly. For i = j = 1 or { = j = n. the lemma is trivially true. while

for 1 </ =j < n. we can rewrite .4;; in the form

{(Li=1) 0
.‘11'1* = det ( 0 __1(i~.-l.n) )

from which the result follows. For : = 1. j = n.

an

Similarly for 1 < { < n.j = n. the theorem is true.
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Forl <i<j<n.

‘_l(l.z—l) Ci1
0 i1 bis1  Civy
0 ai-2 bhizy G2

4, =(-1)"det
0 aj; ¢,

0 .-Uj’l‘n)
= (—=1)""7 det A~ det AUTLM T ax. a

Lemma 5.2 [Ostrowski[19]] Let B = (bi;)n<n be a strictly row diagonally domi-

nant matriz and

1 n .
ﬂizrb_ 'bijl' OSﬂ,’<1. t=1.2.---.n.
! iilj:l._)#i

Then for B™' = (d—fﬁ;). the following hold:

1 B.. 1
(52 <=5 <5
) b, (1 + ;) = Idet Bl = Jbj;1(1 — pj)
and
(5:3) [Bij| < ;] Biil-

Now we will prove the following theorem for tridiagonal matrices.

Theorem 5.1 Let 4 be an n X n tridiagonal matriz, a;.b;.c; # 0. and let A be
diagonally dominant in the sense p;(|b;]) = lail + il i =1,2.---.n. 0 < p; < 1.
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Then we have the following upper and lower bounds:

/ || Y
. — = V1Ai <A < Al
(5.4 (n ey | 4l < 1l < | TT e

k=i+1

!

=1 -1
. |ck|
. — | |Au] £ |445] £ Al

( H #k) |"11_)|e
k=j+1

]

i
i H |ck|
. —_— < "z <
(&7 ( bkl (1 + px) il < 1l

Ci

-1
(H i ) il < 14l < |2 (guk 1451

i<

i< j

Proof: We only show (5.4). The other results can be derived similarly.

For i < j. we have from Lemma 5.1.

-'lij _ i) J det .“(‘H-l'")
) J J det ._l(p-tvl.n)

— (__1\it+J wea

= (-1) ( II ak) II Jot 10

k=i+1 p=t—+1

which gives on using (5.2).

k=1+ p=i+1

(5.8) fI a f[ L < | -hj
2. k —_—<
k=i+1 =t+1 'b l + [Cp' u

Now using pplby| = |a,| + |c,| and

1 Hp < P
|b I |Cp| lapl + |Cp|(1 - .Up) - Iapl‘

1

J 7
<(MLo) Bt
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and
1 1

- > .
Ibpl + Ecpl lbp|(1 + tp)

(5.8) reduces to (5.4). c

Comparing the above results with Ostrowski's upper bound. we note that (5.4)

and (5.6) lead to (5.3) for the tridiagonal case.
Theorem 5.2 For the matriz 4 defined in Theorem 5.1. the following inequality
holds for i = 1.2.---.n

1 <' A l< 1
|b:] + |ag|peicy + |eijpivr ~ Idet AL 7 0] — |aiptior — el part

(3.9)
where g = ptn.1 = 0.

Proof: Expanding det 4 by the ith row. we have

a 40 b Az + A -1
‘det 4 @ detd T “detd

Il
—
:
3]

- n.

where :‘11‘0 = _-1,' nel = 0.

By taking absolute values and using (5.3). the above reduces to

A l
det 4

A i

1-0
l det A

< (lailpi-1 + ICilﬂiﬂ)(

from which (5.9) follows. C

Combining Theorem 5.1 and Theorem 3.2, we immediately have
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Theorem 5.3 Let A~! = (d—:h) be the inverse of matriz A defined in

Theorem 5.1. then

J , J
(5.10) Memien la < l Ay < k=i1+1 Hk L i<
fc:z‘ bk (1 + pix) |det A [6:} — {as| iy — |ei|ptisa
T = R .V M e s
H;€=J 1cl(1 + pue) ~ Idet AL T [be] — @it — szl.ui.-l. -

Based on Theorem 5.3. we will now establish some results for | A7" [|«.

Theorem 5.4 Let A be the matriz defined in Theorem 3.1. and define

i =sup{p}. 6 = infi{|be]} and 7 = sup, {|bk|}. then
max{a.a} <[| A7 ||=< 3.

where o' = sup; {|be| + lagl + |exf}. 671 = 37(1 + p) and ™' = 46(1 — p).

Proof: It suffices to show that (a. &) <|| A7 || < J.

By definition of || - || x-

n

A = sup {Z

=

."lj,‘
det 4

} |



Upper and Lower Bounds 61
To show || A~! || <> a. we have. from cond(A) =|| 4 ||x - || A7 [|x> L
1
AN x> ——— =
I =2
To show || A7! j[x> &. let w = infe{|a|. |ck[} and » = 7%5. We now
consider. for n > 0.
n -'1ji
= 19
(5-12) E d Z!de
For i = 1. we have. on applying (5.11).
zn: -’111 > 1 - I_I.Ilc—l[ 'Cki
soldet AT by [(1 + ) f 1k (1 + )]
> i S o
— ,.'n—-l 9
>+ (11 )=
— T(l+ ) 1 —~ (14 p)
Using same arguments. we can show that for | = n.
n -
Z T(1+p)
Forl < i< n.
i- i —1
o oF Migaled ¢ Ml

7=1

ITi=; 16k (X + 1)

J=i+l

[Thms 1B61(1 + p2e)
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1 -t it n i—iml
> —— + — — + _ _
T 1L+ ) Jzzl Ti=i(1 4 p)i-i jgl 1 + )it

1 - 3
= 1+ -l P Il [
ri+n Z .Z+ H(1+ )

Combine the above results. we get
| A7 x> —— =a.
i

To prove || A7! [|x< J. we have. by Theorem 1 in [20].

1
infe {{bei — lak] — |ckl}

A7 <

and hence

1
| A7 oL =—— = 4.

Hence.

max{a.a} <[] A7 =< 3.
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5.3 Infinite tridiagonal matrices

We now consider infinite. tridiagonal and diagonally dominant matrices of the

form
b1 Cy
(45} b<_) C»

and the infinite linear svstems of algebraic equations associated with such matri-
ces. Under some certain conditions. the infinite matrix A can be regarded as a
linear operator on the ¢, space. and the existence and uniqueness of the solution
in the ¢, for the above system can be established. A useful numerical approach for
approximating the solution by using the solution for the truncated system. with
an explicit error bound. is suggested. The results are comparable to the results
for the general case discussed in [34] and [40]. Moreover. the results can also be
extended to the infinite tridiagonal block systems that satisfy similar conditions.

To formulate the problems in €. we first define A as an infinite. strictly row

diagonally dominant tridiagonal matrix and

A= {ai.bi.ci}[-=1_2,.... D= (d[.d-g. v ')t € €x-

(5'13) A(n) = {ais bis C‘i}i:l.Q,"-.ne D(nj = (dlv d2~ MY dn),-

where a; =0 and a;.b;,c; #0. for: =1.2,.--.

A finite truncated svstem can be written out as A™ X® = D For conve-
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nience. we define an extended infinite truncated system A X® = D with

-~ 3 (n A(n) 0 -(n -in dn-;-l dn-:—'.! ‘
(5.14) A ’:( PR ) X = ((.\‘ ’)‘.b . ) :

n-+1 bn-?l

where B(*~1!) is the infinite diagonal matrix.

64

It is easy to see that the above two truncated systems are equivalent. \We now

rewrite the above systems in iterative form:

X=GX+P. and X"=GWI"ip

The above leads to iteration formulas:

N = QXYW 4 P and XD = GO 4 P,

where
e V(0
-5 0 -8 —m 0 -3
G = ' G\ =
0 -
\ . \
and
d, d» - dp-
Pz(ag)t -\(”)=(x1.r2.---.rn.b—n+‘—:.---)'

We now prove the following theorem.
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Theorem 5.5 Let A. D and A™ be defined by (5.13) and (5.14). A satisfies:
(H1) pn — 0 as n — x: (H2) § = infi{|ba|} > 0. Then there erists a unique
X € by such that AX = D. Moreover. if X" is a solution for the truncated

system (3.2). then

sup;so it} Il D ll< o

5.15 X — XM < - -
(5.13) I [l < 51— )

where yu = supe{p}.

Proof:
We first show that there exists a unique X € ¢ such that AX = D. For
the linear transformation ¥ = GX + P. and X,. \h € €. let }] = G\, + P.

15 = GX, + P. we have
“ Yz - Yl “xS“ G “x“ ‘\"2 - ~\'I ”x= H “ ‘\-‘2 - -\—I “x (l—l < 1)-

It turns out that ¥” = G.\'+ P is a contraction mapping onto {.. . By the Schauder
Fixed Point Theorem [21]. there exists a unique X' € ¢, such that X = G\ + P.

We shall use || || instead of || - ||x-
We first notice. for any k£ > 0.

(5.16) | X — X IS[| X — XOF || + || XU = R | 4w _ gOnk) g

and

I X = XM <) G A X = XY G AL X = P G IF 1

LGPl
-lGI

<IGIENIT-@)~ I-1Pl<
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Recalling that || G ||= sup, {2 + :%’ﬁ =pand || P||[<07' | DJ. we get

ibnl
|x - xw g 121
o(1 — p)
Similarly. we have
B D

.\"(n) _ -'{’(n..k) < =
] < Sa—0

We also have

” _\—(.k) - '\-'(n.k) ||§” G‘\-(.k) _ G(n)_{-(n.k) H
S” G.\'(.k) _ G,‘{'("'k) ” + ” G- G(n) H . “ ‘{'(n.k) l|

(5.17) NG| X =X ]G =G |- X

On using

| G — G™ ||= sup{u}.
{>n
and

” .‘;'("'k) H=” é(n)_{’(n.ls) + P ”S“ P ” + H G “ . ” .i'(n.k) H

k P | Dl
<| P G ‘) < “ <z ~
| P | (g Gl 1- |G| ~ o(l—p)

(5.17) becomes

sup;s, {} || Dl
o(1 — p)

| X0 - X0 <) G- ] X - X0 | 4
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ko vEY Sup[>n{,lt[} |l D] £ !
<lG ) xo - P + 2R 2] 6

< u’i*‘ I| D N Supl?n{ﬂl} Il_)D II_
- (1 -p) (1 — p)?

So (5.16) reduces to

. e 3us~'iI D || sups.{m} |l D
XN - X< 25 + 2n ‘ i
I < (1 — ) o1 — p)?

By letting £ — >c. we get

sup;s.{tu} | D |

- — 0. n— oc. O
O(1 — p)?

| X - X" <

This proof gives an efficient way for estimating the solution for the infinite
svstem (5.13) by using a solution for the truncated system (5.14). One can even
use an iteration formula to execute this truncation. with considerable precision

given by O(u**1).

Corollary 5.1 Let A and A'™ be the matrices defined by (5.13). then for any

fized i.
A(n) -'{ij

. 1} _
A et AT detA”

where the right hand side is defined as the inverse element of A.
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To show that for any fixed i.j < n.

A 1
. 2] _ -~ L1
A T AT~ detA

we need only choose D in {3.13). the given vector. to be the unit vector with the
ith component d; = 1. and d; = 0. for j #i. i = 1.2...-. Then the result follows

by Theorem 5.3.

5.4 Infinite block tridiagonal matrices

\We now turn our attention to an infinite block tridiagonal syvstem of the form

Bl C[
A, B-_) C-g
(5.18) AN =D. A,= '
1. B, C,
where each element of A is a non-zero mxm matrix. D = ((D})% (D))" --- . (D)t - --

X = (X)L (Xa)b o, (Xp)t - )f. Dg and Xy are m x 1 vectors.

This part of the work is motivated by solving a block tridiagonal system arising
in the problem of evaluating non-hierarchical networks which can be modelled as
a strictly diagonally dominant infinite system with block tridiagonal structure as
given in the above.

We define u, as the quantity for matrix A in the usual sense and oy. £ =
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1.2.---.m by

oc || Bet Iz =l Ak llx + 11 Ci llx -
\We also define an extended infinite truncated block system:

B, C, \
.-12 B-_w_ Cg

Al()n)_{'(n) = D. A,(J") — A,

(519) K™ = (X' (o) o (X) (Bar ) Daa)es )

where B’'s are diagonal matrices and O is the zero matrix
\We first assume that A, is a strictly row diagonally dominant matrix There-
fore each of Bi’s is strictly row diagonally dominant and hence nonsingular e
also assume that A, satisfies the following conditions:
(B1) || BF' ||Z'> 6 > 0. for all k's

(B2) o, <o<lando, - 0asn— x
Then we have the following results

Theorem 5.6 Let A, and Af,") be defined by (5.18) and (3.19). and D € (.
Then the system Ay X = D has a unique bounded solution. Further. if .\_'(,,) IS a

bounded solution of AJ X™ = D. then

supgsa{o} I D ll=

~_ vin) <
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Remark: For the special case that all Bx's happen to be tridiagonal matrices.
| B! || may be estimated by using the results in the previous sections.

A sketch of the proof for Theorem 5.6 parallels the proof of Theorem 3.1. with
pr and p replaced by o and o respectively. the notations standing for matrix
elements replaced by block matrices and the absolute operator replaced by infinite

normi.

5.5 Applications

We now give three examples for illustrating our results on finite and infinite

matrices.

Example 1: (Kershaw([17]) Consider matrix A of the form

//\1 ].—Q[ 0 0 0
(8] /\2 o 0 0
a0
0 0 0 et /\n—l l—an_[
\ 0 0O 0 -+ ap An )

where 0 < a; < l and A\; > 1. for i = 1.2....n. Upper bounds A, for the inverse
elements of A are given by Kershaw[17]. which can be written as follows with our

notation:
{» ~1
Vi Hz::l A

Vi"’]-

Ay
det A

(5.20) 0< =R, i#]

where /; = min{i. j}. o = max{:.j} and v, = min{A,_ ;. A A1} with oy = A\

and v, = A\, _ 1 \s.
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Using Theorems 3.2 and 5.3. we can easily get other upper bounds denoted by

S; for d:—fx which can be shown to be better than Kershaw’s bounds. For : < j.

noting that |b| = M. iy = . &t = oy and ¢ = 1 — oy. we have
oAy 1
_j H B
det A 1= Ai — ooy — (1~ ag)ptin
= - .
= ],_I/\l_l 1=
1 — —& _ l-a
_[=1 /\._1/\. /\xAn-I
[ ] 1 J v
-1 _ -1 3 -
S l]:[)‘l 1 o l—a - lr[’\[ v 1 - [\t
=1 ] v, v, =1 z

giving S; < KA.

[t can similarly be shown that result holds for ; > ;.
From the above we can see Kershaw’s upper bound is improved.
Regarding the lower bound for Kershaw’s matrix. we start with (5.6) and (5.8).

for i < j and we obtain

J

A
det A| —

lae| 1
weing 106l (L + i) 16a] + @il pioy + feilpia
f[ (873 1

T o (T + AL Y ’\(1+ N lA.+fIfll)




-1
(V]
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_ (873 vy
>\t . .
- k::IIfll""\k 1+ v
and similarly. for i >
1—1
Ay 2’\;11-[1_0‘". “i
det A L+ A 14w

k=)

Hence we get the lower bounds

-1 11J ar v : :
Al =i 1o 1o S0

° MU e 020
Example 2: The Bessel functions. J,(z).n = 0.1.2.--- satisfv the following

well-known recurrence relation

2n
']n+l(-r):’;Jn(l')—-n—l(x)~ n=0.12---

To find values of J,(z) at the chosen point £ = L.0 < |L| < 2. one can reduce
this problem to the solution for an infinite system upon introducing £, = -Jo(1).
so that

. 2n
(5.21) Tnet =T.L'n —ZLn_y. n=172...
where ry = Jy(L) is assumed to be given.
If |L| > 2. then the matrix is not strictly diagonally dominant. We can still

manipulate the system by eliminating the first [L] rows of the matrix so that the
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matrix can be transformed to a strictly diagonally dominant matrix. For instance.

L = 1. the system

% —1 Iy Lg
-1 1 -1 I 0
-1 % -1 I3 0
-1 2 -1 ry =0
12 -1 || o 0
which after truncating, can be reduced to
[ 2 -1 1T Iy ] i I3 ]
-1 3 -1 Iy 0
-1 3 -1 Ie = U
-1 l_;' IT 0
i I R

which is strictly diagonally dominant. and r,. r» .r3 can be easilv obtained once
the infinite system is estimated in terms of r3. For convenience. we only discuss

the case when L] < 2 for convenience.

In matrix notation. the above syvstem can be written as A.X = D. where A
is the resulting tridiagonal infinite matrix with a, = ¢, = —1 as its off diagonal
entries and b, = -’T" as diagonal entries: .\ = (&£y. 23, --)" and D = (z4.0.0. - )"

It is easv to check that all the conditions required by Theorem 5.5 are satisfied
by this example. even though it does not satisfy the conditions required to apply

results in [34].

As an example. we choose L = 1 and apply the results from Theorem 3.5. This
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[E!

enables us to use the solution of a truncated system A X = D o estimate

X. the solution of the infinite system. We can estimate as many values of .J,(1) as

we wish. For illustrating the truncation method. we let n = 4.8. 12 respectively.

The numerical results are listed in the following tables.

Table 5.1: Solutions for truncated system

Truncated solutions

n=+4

n==8

n=12

Absolute sol.
Je(1.0)

o = D © =1 O Ul W |

0.4400497878E+00
0.1149018890E.+-00
0.1955776835E-01
0.2444721043E-02

0.4400505838E+00
0.1149034849E+00
0.1956335398E-01
0.2476638964E-02
0.2497577300E-03
0.2093833601E-0+4
0.1502302135E-05
0.9389388347E-07

0.4400505858E+00

0.1149034849E+00
0.1956335398E-01
0.2476638964E-02
0.2497577302E-03
0.2093833800E-04
0.1502325818E-05
0.9422344173E-07
0.5249250180E-08
0.2630615105E-09
0.1198003084E-10
0.4991679517E-12

0.4-400505858E+00
0.1149034849E+00
0.1956335398E-01
0.2476638964E-02
0.2497577302E-03
0.2093833800E-04
0.1502325818E-05
0.9422344173E-07
0.5249250180E-08
0.2630615124E-09
0.1198006746E-10
0.4999718180E-12
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Table 3.2: Actual errors

Actual errors: |rx — J¢(1.0)]

n=4

n==8

n=12

0.7979480199E-06
0.15958960-40E-05
0.5385636139E-05
0.3191792080E-04

0.6441113105E-15
0.1288222621E-14
0.4508779174E-14
0.2576445242E-13
0.2016068402E-12
0.1990303949E-11
0.2368204055E-10

0.1256134054E-25
0.2512308107E-25
0.8793078378E-25
0.5024616216E-24
0.3931762189E-23
0.3881516027E-22
0.4618501610E-21

0.6427087094E-20
0.1023715433E-18
0.1836260693E-17
0.3662281232E-16
0.8038662703E-15

0.3295582638E-09

NI D © W~ Ul Y|P
!

Example 3: Mathieu functions are encountered in physical problems involving
elliptical boundaries. The wave equation in elliptical coordinates. when using the
method of separation of variables. can be reduced to the Mathieu equation given
by

(5.22) y" + (A —2qcos2r)y = 0.

where ¢ is given and \ is the eigenvalue parameter.
The equation (5.22) is a nonsingular Sturm-Liouville problem and has real
distinct eigenvalues clustering at o>c. The eigenvalues A\¢. A =1.2.-+-. can be es-

timated by various techniques. In [39]. a simple but powerful method gives upper

and lower bounds for eigenvalues. We will be concerned here with eigenfunctions
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subject to y'(0) = y'(%£) = 0. which are usually denoted by ces,(r.q). We assume

x<
= . _ Y 5.
(3.23) y(r) = 5t E Yo cOs2nr.

n=1

which. on substituting in (3.22). gives for arbitrary integers p > 1

A
Y= qy = 0.
_ 1n? — \
(5.24) Yn—1 + —q———y,, + Yo = 0. n=12..p.
4n? -\

Yn-1 + fy,, +Yypo1=0. n=p+1l.p+2 ....x.
(

the first equation serving as a normalizing relation for a given A.
The computation of Mathieu function (5.23) reduces to solving the following

infinite tridiagonal linear system with given g and known A:

=L 1 - A - .
q 2 Y Yo
I S EERE 0

For a given g and a known value of A. it is not difficult to see that the system
(5.24). for a suitable choice of p. gives an infinite diagonally dominant system
where the infinite matrix satisfies all the conditions of Theorem 35.5. Also from

Section 3.

- e |an| + |C'n| 2q q _»
2; - = q -2
(5.25) fn ™ e
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From (5.15) we get an error bound.

I‘ Vv _ {’(m) ” < Supl>m{iul} H D ”‘JC
I = N 5 .
(1 — p)?
where Y = (ypw1- Yp+2. = Yp+m) and Y (™) is the solution for the m x m truncated
svstemn of (5.24).
It is easv to check that the error bound given in (3.15) is O(n~2). To illustrate
the theory with numerical work. we let ¢ = 1. and the corresponding eigenvalue

A = —0.45513860 [34] and normalize the solution with yo = —7.5. The truncation

size is chosen to be m = 20. From an asymptotic analysis{22], we have. for large

(5.26) 4o = (“62‘1)" 2 o).

in?

The following table lists the eigenfunctions calculated from the mxm truncated

svstem of (3.24) and the asymptotic approximations from (3.26).
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Table 5.3: Values for y,. m=20

Truncated solutions

Asyvmptotic approximations

—

O 00 ~1 O Ut e W2~

o

-0.1713596846E+01
0.1043114538E4-00
-0.2862583347E-02

0.4141888755E-04
-0.14422068347E-06
0.3061313166E-08
-0.1558306875E-10
0.6076406233E-13
-0.1872817619E-15
0.4676746761E-18

-0.1849600000E+01
0.1069068800E+00
-0.2893241375E-02

0.4464484762E-04
-0.4433217470E-06
0.3065495235E-08
-0.1559818680E-10
0.6082648984E-13
-0.1875394644E-15
0.4685739788E-18




Chapter 6

An Elliptic Boundary Value
Problem Defined on an Infinite
Domain

In this chapter we give a mathematical analysis with numerical computation for

a groundwater flow problem described by an elliptic equation of the form
V- (e“Vo(z. 5))=0. d>0

in a semi-infinite vertical region bounded on top by a sloping sinusoidal curve.
under given boundary conditions. o(z.:) represents the hyvdraulic head and e
represents the relative hydraulic conductivity (or permeability). We reduce the
problem to an infinite system of linear equations using the method of separation
of variables and construction of a Grammian matrix. Truncation of this syvstem
vields an approximate solution that gives the best match on the top boundary.

Computational results for some tvpical parameters are presented.
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6.1 Introduction

We consider the problem of analyzing the motion of groundwater in a small
drainage basin. If a cross-section of this basin is taken which is normal to the
regional topographic trend and parallel to the regional hvdraulic gradient. this
results in a two-dimensional system in (z,:) coordinates. with r representing
the horizontal coordinate. and z represents the elevation. The velocity potential.
o(r. z). satisfies the equation V- (A (z)Vo(z. z)) = 0. where A'(z) is the hydraulic
conductivity. For reference. see the papers by Téth [25].[26].

There is a wide variety of concepts and modelling approaches to groundwater
flow problems in the literature (see. for example. [24]). In order to produce
a mathematical solution. the region under consideration has been taken to be
finite. the hvdraulic conductivity. K'(z). a constant or changing only in discrete
regions. and the boundaries and boundary values approximated. Moreover. it has
been observed that the usual approximation techniques of obtaining the solution
including finite differences. finite elements. and perturbation techniques do not
give completely satisfactory numerical results for the flow. Toéth [25]. [26] has
given analytical solutions for the boundary value problem for Laplace’s equation
representing a steadv-state flow in a finite vertical. two-dimensional. saturated.
homogeneous. isotropic region bounded on top by a sloping sinusoidal curve. which
represents the watertable. However. he approximates the problem by replacing
the semi-infinite region with a finite rectangle. and projecting the given boundary
values onto the top of this rectangle. He then solves a reconstructed problem on

this rectangle. This assumes that the solution has the same value on the top of
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the rectangle as it did on the given boundary. which of course. is not accurate:
this approach gives only a rough approximation. and then. only if both the angle
of the sloping watertable and the amplitude of the sinusoidal curve are very small.

In this application. we are concerned with finding the hydraulic head. o. in a
non-homogeneous porous medium. The region considered is bounded between two
vertical impermeable boundaries. bounded on top by a sloping sinusoidal curve
and unbounded in depth. A mathematical analysis is developed which reduces the
problem to solving an infinite system of linear equations. There are many ways
of producing such an infinite system. Our method vields the Grammian matrix
which is positive definite. and the truncation of this system vields an approximate
solution that provides the best match with the given values on the top sloping
sinusoidal boundary. Graphs of the equi-potential lines for o . (i.e.. the curves
o = c¢1). and their corresponding orthogonal trajectories. the streamlines. (given
by curves v = ¢y) are given. There has been a scarcity of work in groundwater
flow problems involving infinite regions. particularly with complicated boundaries.
In fact. for the problem under consideration. finite difference methods and finite

element methods gave completely different descriptions of the flows.

6.2 Mathematical model

The hvdraulic head. o(.r. z). which is the hvdraulic potential divided by the con-

stant gravitational acceleration. satisfies the elliptic partial differential equation

(6.1) v. (eszab(.r. :)) =0
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where V = %i + (.;"—yj. = denotes the height of a point (relative to a vertical scale
chosen so that z = 0 at one corner of our region). and d > 0. The hydraulic
conductivity is K = ae®. where a is a positive constant. which is in qualitative
agreement with the generally observed decrease in conductivity with depth in a

well. The region under consideration for equation (6.1) is given by

Figure 6.1: Semi-infinite domain

0 X
\/_\/_\_/_\—/_\L

. d7nr
6.2) O0<r<UL. and —:x:<:<g(.r)=-(il~+l'sin il .
L L

where d. L. a. 1" and n are real constants (parameters) withd > 0. L > 0. a > 0.
and n is a positive integer.

The boundary conditions are given by

_ do do
(6'3) % I.L':O - a—l' !x:L = 0.
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{6.4) g—? -0 as z— —x. o(zx.z) is bounded on :<g(r).
and
(6.3) o(r.z) =z on :z=g(I).

where g(r) is defined in (6.2).

The solution to (6.1) represents the hydraulic head (or potential) and thus
the equi-potential lines. are given by o(x. z) = constant. Of interest also are the
streamlines. which are the orthogonal trajectories to @(x.:) = constant and are

the solution of

dz 0Oo do

(6.6) =353

Therefore. we solve (6.6) with z(zg) = z¢. where (x¢. 20) is an arbitrary given
point in the region: the solution is the orthogonal trajectory that passes through

(ro. 20). and will be of the form. w(r.z) = constant.

6.3 Formal solution
Expanding (6.1). we obtain

d%o

dz?

d*o do
+E§+d—=0

(6.7) 57

Using the method of separation of variables. we set o(r.:) = X(x)Z(z2). Then

- . -1t 7] r . . R
(6.7) gives &~ = —£242" — _;; where p is the separation constant. from which
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we obtain

(6.8) X"+puX =0.
and

(6.9) Z"+dZ2' - puzZ =0.

From (6.3). X'(0) = X'(L) = 0. This. together with (6.8) implies that

X(r) = v cos (mfu')

2
and p = (%1) . for m = 0.1.2...: (the ~,, are arbitrarv constants).

The solution of (6.9) is given by Z(z) = " where r satisfies r*> +dr — 1 = 0.

However. from the boundary condition (6.4). we have
(6.10) Z(z) is bounded as :— .

Thus. the solution Z is given by

Case (1) p=0.d=0: Z = 99 + d,z. and thus. Z = dy bv (6.10): (the ~, are
arbitrary constants).
Case (2) p=0.d>0: Z =0 +de"%. and thus. Z = Jy by (6.10).

Case (3) 1 > 0: r = _—d@ > 0. The negative sign on the root
would make r < 0 and would violate (6.10). Thus.
Z(z) = dme™. where 4,, is a constant.

Thus. the most general solution of (6.1) that satisfies (6.3) and (6.4) is given
by

(6.11) o(r.z) = > Imcos (mzr) efm*,
m=0
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Am?72 .
[——d-ﬁ-\/d'z—i- n;; l >0. Im = “mOm.

The remaining boundary condition (6.3). is equivalent to

where

| —

(6.12) Pm =

Ead mnr ar .. [2@nr
(6.13) ZJ,,.(OS( 7 )erp[—pm{fﬁ-{ sm( 3 )}]

The main problem now is to determine the coefficients {3, : m =0.1.2..} in
(6.13). Our aim is to pursue analyvtical methods as far as possible. and then to

use numerical techniques at the last stage.
We make (6.13) non-dimensional by putting y = z/L. am = /L. 0 = pm L.
a=a/L and V" = 17/L. and dividing both sides by L. This gives. for 0 < y < 1.

o

(6.14) — [&y +V sin('27rny)] = Z am cos{(mmy)erp [—am(éy +V sin(Qﬂ'ny)] .
m=0
Define
(6.15) ur(y) = cos(kwy)erp [—ak(&y +V sin(2ﬂny)] .

Then (6.14) can be written as
(6.16) — [&y + f'sin('.?ﬂ'ny)] = z anum(y). 0<y< 1.
m=0

We multiply each side of (6.16) by ux(y) and integrate with respect to y over
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[0. 1] to obtain

< 1
(6.17) S a,,,/o tem(y)ue(y)dy. k=0.1.2. .

m=0

where we assume that the series in (6.17) converges uniformly so that term-by-

term integration is justified. (6.17) is of the form

¢
(6.18) > bkm@m =ck. k=0.1.2.....

m=0

where. for k.m =0.1.2. ....

I
bim = /0 () () dy

1 -
(6.19) = /0 cos(mmwy) cos(kmy)exp [—(om + o) {c‘zy + I'sin('_)rrrzy)}] dy.
and

1 -
= /O[dy+l'sin(‘2ﬂny)] up(y)dy

ay+ sin(27rny)] cos(kwy)exp [—Gk {Ezy + 1 sin(?wny)}] dy.

~~
[@2)
N
e
Il
c\'__
| |
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mian of the set {ux : £ =0.1.2...}. B is a symmetric. positive definite (and thus.
invertible} matrix. where we assume that {u; : £ = 0.1.2...} is linearly indepen-
dent.

We note that g = 0. ug(y) = 1. bgo =1 and g = - &

To evaluate the integrals in (6.17). or equivalently. in (6.19) and (6.20) ana-

Iytically. we use the following identity [23]:

(6.22) e™Psinl — I (p Z 1)715,(p) cos (2¢8)

Z 1)9q-1(p) sin (2¢ — 1)6.
where the [, are the modified Bessel functions given by

(6.23) Iz ( )mi (2/:_ S m=0.L2.

Defining pg.m. qx.m and « as

t
il
™
S
=

Pkm =V (0k +Om). Qem = @0k + ).

and using (6.22) in (6.19) and performing some simplifications. we obtain the

following:

Gk.m (1 — e%m )k+"’)
(m * k)27‘_— + Qk.m

1= Gk,m (1 _ e—q’c‘m(_l)kﬂn)
9 — —1)¢ 9 :
624) 45 2 ) e [ e DR

1
blc.m = _)'ID (pk.m)
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[(2¢ — V)w £ (m £ k)7] (1 — e“‘“~.m(__1)k+m)

P qgl(_l)qI‘Zq—l(pk.m) [(2q _ l)w + (m + k)ﬂ"]z + qz‘m

] —

-+

for k+m > 0. and for k£ > 0.

(6.23) ce=— (T +1+1;).

where

(6.26)

_ - - [ ora-e-i(—1)k[(oka)® — (k7)?] (1 — (—1)keo:2)
I, = a[()(O’k“ ){_ (O,k&)g+(kﬁ)2 {(Uk&) - ;

’ - (w k7)1 — e o (_1)k)
+5 (ol (= & k)2 + (oxa)?

o

Ok - e7kE(— 1)k
(0xa)? + (k7 £ 2q)?

B==&ZPM”MQW{

- x> . kT £ 2quw + ] (1 - (—l)ke“”*"‘)
(A7 + 2qw + w]? + (oka)?

&= -, 29 — 1)w £ kx| - e 7%8(—-1)¥
Iy = a)y (=1)x-(ol) {—[((5ka)2)-|— [(Qq_] 1‘;,; i(kn-]?)

204d[(2g — 1)w % kn] (1 = (~1)*e™)
T ok + (g - Y £ k)P

[(2¢ — 2)w % k7] + (0xa)?

- { o (1 — (—1)keos2)
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oxi (1 — (—1)ke™ee }

Rquw + k7|? + (oxa)?

Remark: Where the * sign appears only in a denominator. we sum over two
terms. one for each sign. or over four terms if there are a pair of % signs: where one
or two = signs appear in both the numerator and denominator of some term. sum
over all combinations of signs in the numerator and put the same combination of

signs in the denominator. For example.

axtb _ a+b N a—-b
(@axb)?+c (a+b2+c (a—0b2+c

6.4 Numerical approximation and error estima-
tion

The analvtical solution. &(r. z). to our problem is described by (6.11) and (6.12).
but involves solving an infinite linear system. which is not readily solvable. To
arrive at a practical solution. we adopt a numerical approximation. We consider a
truncated solution of the form oy (y.2) = L Z;};zo ., cos(mwy)eP™* which satisfies

(6.1) and all the boundaryv value conditions except the one on

= g(y) = —L[ay + V sin(27ny)|.

The difference between these gives an indication of the error. Let
ex(y) = ox(y. 2) — . with z = g(y) = ~L[ay + V" sin(27ny)].

ie..ev(y) = o~x(y.9(y)) — g(y).
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Substituting ¢(y) and ox(y.g(y)) into ex(y), we get

A%

ex(y)/L = ay + Vsin(27ny) + Z a,, cos(mmy)exp [—G'm {&y + 1'sin(?.r.ny)}] .
m={

We choose {am : m = 0.1.2..... NV} to minimize the L,-norm of the error

function ey (y). i.e. {@m} is the solution to the minimization problem:

AY
womin flu(y) + 37 amum(y) |l
m=0
where u,(y) = cos(kmy)exp [-—ak {&y +V sin(QWny)}]. and u(y) = ay+V sin(27ny).
The solution to this problem is determined by satisfving the equation
N

(ug. u+ Z Omit,) = 0.

m=(0

i.e.

v
Z bkmam = Cg.

m=0

So aV = (ag. ai. ...ay)! is the solution to ByaY = ¢V. where By is the N x .\’
truncation of B and ¢V = (cg.¢y. ....cy)t. We note that By is a symmetric. posi-
tive definite matrix. where we assume that {ug. u;. .... ux} is linearly independent.
The above procedure provides the best approximation (or the best matching on
the top boundary) for a given N. After {a,, : m =0.1.2..... V} has been com-

flex (¥l

puted. we set M = maXo<y<: [|g(y)]]: then. ¢ = maxecy<) =5 can be easily

estimated. We increase .V until £ is within a required accuracy. Then the approx-
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imation oy (y. z) is the solution to a perturbed problem. i.e.. ox(y.:z) satisfies
the differential equation (6.1) on the region (6.2). and the boundary conditions
{6.3) and (6.1). In place of the boundary condition (6.3). oy (y. z) satisfies the

perturbed boundary condition:

ox(y.g(y)) = gly) +ex(y).

with

llex (¥l < £ max {lg(y)]l-
=y

6.5 Numerical results

\We approximate the solution of the boundary value problem (6.1) under the
boundary condition (6.3) using the numerical procedure of section 7.4 with the

parameters given by:

Length of basin: L = 80.000.
Slope of top boundary: a/L =0.1.
Depth of humps: V/L =0.01.

Hydraulic conductivity: d = 0. 0.00235. and .0235 (Figures 6.2. 6.3. 6.4).

We compute for the given setting the velocity potential o(r. =) at chosen points
on the top boundary for comparison with the boundary condition (6.3) at the same
points with actual relative errors. The equi-potential lines (0 = constant) and

the streamlines (v* = constant) are plotted in Figures 6.2. 6.3. and 6.4.
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Table 6.1: Approximation and actual error on top boundary

a/L=0.1. V/L =0.01. d = 0.00235. L = 80,000

z/L g(x) o(zr. g(z)) ey
0.00000000E+00 | 0.00000000E+00 | -0.23232376E+02 | 0.29027970E-02

0.50251256E-01

0.10050251E+00
0.13075377E+00
0.20100502E+-00
0.25125628E+00
0.30150753E+00
0.35175879E+00
0.40201005E+00
0.45226130E+00
0.50251256E+00
0.55276381E+00
0.60301507E+00
0.65326632E+00
0.70351758E+00
0.75376884E+00
0.80402009E+00
0.85929647E+00
0.90452260E+00
0.95477386E+00
0.99999999E+00

-0.12019851E+04
-0.79139113E+03
-0.40625443E+4-03
-0.16332950E+04
-0.28094272E+04
-0.23741860E+04
-0.20152912E+04
-0.32665648E+04
-0.44160725E 404
-0.39570186E+04
-0.36251242E+04
-0.48997842E+04
-0.60219224E+-04
-0.55399140E+04
-0.52357517E+04
-0.65329283E+-04
-0.76404946E+04
-0.71228975E4-04
-0.68471710E+04
-0.79999996E +04

-0.12013125E+04
-0.79113371E+03
-0.40633264E+03
-0.16333726E+04
-0.28096043E+-04
-0.23741626E+04
-0.20154705E+04
-0.32664682E+04
-0.44162223E+-04
-0.39570276 E+0-4
-0.36253286 E+04
-0.48997991E+04
-0.60220771E+04
-0.55396664E+04
-0.52357205E+04
-0.65331829E+04
-0.76408081E+04
-0.71236262E+04
-0.68488603E+04
-0.79545852E4-04

0.84075569E-04
0.32176654E-04
0.97767583E-05
0.96980908E-05
0.22126669E-04
0.29233124E-05
0.22414179E-04
0.12075630E-04
0.18718764E-04
0.11361335E-05
0.25542214E-04
0.18538393E-05
0.19336656E-0-4
0.30950067E-04
0.39036886E-05
0.31828135E-04
0.39178008E-04
0.91096264E-04
0.21116008E-03
0.56768093E-02
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Figure 6.2: Level curves for o (dotted) and v (solid). a/L = 0.1. V'//L = 0.01.
d = 0.0. L = 80. 000.

O

6.6 Conclusions and future work

We have developed a method based on a combination of analvtic and numerical
techniques to solve the groundwater flow problem which is modeled by equation
(6.1) in a semi-infinite region with sloping sinusoidal top boundary. Using separa-
tion of variables. we reduced the problem to one of matching the formal solution
to the given values on the top boundary. which is solved numerically to a required
accuracy. and this vields an optimal approximation. The method is simple and
mathematically sound. In particular. for the special case of Laplace’s equation
(d = 0) (which is the subject of [26]). our result has the same qualitative be-
haviour as [26]. However. our solution is more accurate than [26]. and is valid on
the entire region under consideration.

For future work, we propose the following suggestions:

1. Solve the problem with the hydraulic conductivity, K'(z). modeled by some
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Figure 6.3: Level curves for o (dotted) and v (solid)., a/L = 0.1. 1'//L = 0.01.
d = 0.00235. L = 80.000.

explicitly given formula rather than the exponential function: for example.
A'(z) could be a rational function or a piecewise defined step tunction that

better models the layver structure in the ground.

N

Solve the problem for other boundary curves. The boundary curve g(r)
could be any explicitly given function. or could be found by using curve-
fitting on arbitrarily given data. We can use numerical integration instead

of Bessel series.

3. The solution could be developed. and the problem solved. for a three- di-

mensional setting, i.e.. @ = o(r, y. z).
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Figure 6.4: Level curves for o (dotted) and v (solid). a/L = 0.1. V//L = 0.01.
d = 0.0235. L = 80.000.

O _ U2
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