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Abstract 

In this thesis. ne consider finite and infinite matrices in linear equations with 

different structures which arise niaioly in the solution of some elliptic partial 

differential equations in two dimensions. In many of the cases. the solutions 

lead to infinite systems of linear equations associated mith matrices of special 

structures like diagonal dominance. tridiagonal or having a new sign distribution. 

The regions considered are either doubly connected or semi infinite. \\é also 

= some consider the theoq- of finite and infinite tridiagonal niatrices. improvin, 

well-known classical results. Sonsingularity criteria are gii-en for matrices wi t h a 

new sign distribution. which occurs in a conforma1 rnapping problem and riscous 

fiuid flow probleni. For the semi infinite region which is hounded on the top by 

a sloping sinusoidal cunve. a theoretical solution in ternis of infinite niatrices is 

given leading to numerical evaluation and development of the software. The ahove 

problerns occur in transmission of electricity in coaxial cables. groundwater flou-. 

conforma1 niapping . recurrence relations for Bessels furictions etc. \Ve also gii-e 

an error estimate for a finite element niethod for solution of Laplace's equation 

resulting in double integrals for phpical quantities in applications. The thesis is 

mainly concerned with using estimates for solving infinite and finite systems with 

easi1-y cornputable and meaningful error estimates. The problem in groundwater 

flow in an infinite region arose from a problern suggested by industry. 
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Chapter 1 

Introduction 

The mot ivat ion for t his t hesis is t O discuss the solut ion of some mat hema t ical 

and physical problems whose solutions lead to linear systems of equations. In 

man- such problems. infinite matrices occur and the solution is often approached 

by triincation of the infinite matrix or by considering the infinite matr is  as an 

operator. The latter approach. while giring in some cases qualitative results siidi 

as esistence. uniqueness and even justification of t runcation. is of very liniiteci help 

in obtaining esplicit error bounds for approximate solutions or for computation. 

The algebra of finite matrices is often extended to  treat the analysis of infinite 

matrices. This thesis is concerned with a variety of structures for the niatrices 

which have arisen in many physical problems and in classical analysis [30]. Infinite 

matrices have a very interesting history and the excellent revielv by Bernkopf 

[XI traces the role of infinite matrices in the development of operator theory 

and integral equations. Due t o  the difficulties in treating infinite matrices. not 

much progress was achieved in the literature involving comput at ions except in 

the framework of Operator Theory. Hilbert used infinite quadratic forms to solve 

Fredholm integral equations. while in 1929. John von Xeumann demonst rated 
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that an abstract approach n-as powerful and preferable to using infinite matrices 

as a tool for the study of Operator Theory. 

This thesis continues the work of Shivakumar and his collaborators owr the 

last two decades. The problems dealt wit h in this t hesis are of a classical nature 

and do not have many recent references. -4s an example. conformal rnapping of 

specific doubly connected regions has been a long standing problem in classical 

analysis. h o t  her esample of a different classical probleni not dealt wit h in the 

literature is the solution of an elliptic equation in an infinite region. This probler~i 

was suggested by industry. Diagonal doniinance has been the main motivation in 

[33] - [37]. The topics include liiiear algebraic systems wit h matrices having struc- 

tures like diagonal dominance. tridiagonal etc. The problems discussed include 

differential equat ions. infinite systems of first order different ial equations. itera- 

tion t ethniques etc. The applications have included Mar hieu equat ions. Bessel 

equations. conformal mapping of doubly connected regions etc. 

In Chapter 2. ive consider the problem of the conforma1 niapping of a doubly 

connected region nhich is equivalent to solving a Poisson's equation in w ( r .  y )  

wit h u ( x .  y )  vanishing on the two bounding Cumes [-II]. The problem also repre- 

sents the velocity along the avis of a slow and steady viscous fluid flan-ing between 

two pipes. -1 practical applicatioii could be that of simultarieous flow of gas and 

oil in a situation where both gas and oil are found in one location. -4 matter 

of practical importance is the rate of Rorr- of the Buid betwr.eeri the pipes and to 

mavirnize this flow by varying the eccentricity of the circles. Here ive give a proof 

of our results based on analysis and cornputation. These problems occur in the 

transmission of electricity in coaxial cables and in many other applications. The 
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result we establish is that the rate of flow is not a maximum in the case of con- 

centric circles and. in fact. the opposite is true. We use conformal mapping as 

a tool to map the given doubly connected region to that of a region bounded by 

concent ric circles. 

In Chapter 3. ive continue the work of Chapter 2 and give a finite element 

method and an error estimate for ewluating double integrals over a sniooth do- 

main. The results are used to compare rates of Rom of a viscous incompressible 

fluid in a pipe-in-pipe system discussed earlier. These numerical results confirm an 

earlier conjecture that the domâin yielding the ieast flow is the case of concentric 

circles. 

In Chapter 4. we consider the flow described in Chapter 3 for the  case of 

a region bourided by an ellipse and a circle by adopting a technique of mapping 

functions used in [%]. The resulting infinite matris has a certain sigri distribution 

and has only partial diagonal dominance in its elements. For such niatrices. 

ive give a set of sufficient conditions to ensure that the finite triincated matris 

hecomes nonsingular. The criterion developed for nonsingularity is easily verified. 

We give easily coniputable upper and lower bounds for the inverse elements 

of finite diagonally dominant tridiagonal matrices [A?] in Chapter 5. \lé also 

improve the well-known upper bounds due to Ostrowski. The results are extended 

to  infinite systems. The theo- is used to evaluate Bessel functions and Mat liieu 

functions by using t heir recurrence relations. 

In the final chapter. a ground water flow problem is discussed. The problem 

reduces to solving an elliptic equation defined in a semivertical infinite region of 

finite width. The top boundary is a sloping sinüsoidal cun-e. -4 mathematical 
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analysis leading to numerical computation is given [45]. The problem is reduced 

to an infinite system of linear equations by using the method of separation of 

variables and construction of a Grammian matris. Truncation (though not jus- 

tified) yields an approxirnate solution that gives the best approximation on the 

top boundap-. This probfem arose in the discussion of contaminated groundwater 

flows and  as suggested by Atomic Energv of Canada Ltd. 

Finally. the thesis is an attempt to deal with sonie difficult problems of applied 

mat hemat ics by developing rneaningful. easily comput able solut ions ivi t h error 

bounds. The techniques used are mostly based on knorvn and dwived estimates 

concerning the given matris and its inverse. 



Chapter 2 

Conforma1 Mapping of Doubly 
Connect ed Regions 

The solution of a large nurnber of problems in modern technology such as leakage 

of a gas in a graphite brick of gas cooled nuclear reactor [Il. analysis of stresses 

in solid propellant rocker grains 151. simultaneous flow of oil and gas in concentrio 

pipes [35] tiinges cri t ically on conformally mapping a dou bly connect ed r~gion 

orito a circular ünnulus. Only a few sperific regions have bem studied and oiily 

approsimate solutions have been giwn. Hockney [l] vonsiciers the region aliere 

the inner bouridary is a circle and the outer boiiridary is a square. He obtains 

a series soltition for Laplace's equation in the region and gives an approsiniate 

solution of the problern by repiacing the outer square by a circle of equal area 

and solving the resulting one dimension radial problem: Laura [2] considers the 

region with circular external houndary and an interna1 boundary which consists 

of several axes of symmetry: Sarodetskii and Sherman [3] discuss the rnapping 

of a region bounded by an ellipse and a circle: Symm [A] considers the numerical 

mapping of a bounded doubly connected domain onto an annulus. He describes 

a technique of mapping a general ring-shaped domain onto an annulus based on 
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the use of integral equations and illustrates this method with several numerical 

examples. Fornberg [6] studies a numerical method for conformai mapping of 

doubly connected regions with discretized boundanes and develops an iterative 

approach for computation. 

More recent aork  includes the papers by Slenke [Il. [SI and the paper tg- 

Kegrnann [9]. Slenke studies confornial mapping of a doubly connected region 

bounded by the unit circle and an analytic .Jordan ciinle. He approsiniatcs riil- 

merically the conforma1 mapping of an annulus ont0 a doubly connected rr.gion 

bounded by two concentric squares. Lkgmann gives an iterative method for the 

numerical conformai mapping of a circular annulus ont0 a doubly connerted re- 

gion with srnooth boundan. Papamichael [IO] introduces a singular function tliat 

reflects the singular behaviour of the confornd mapping of a doubly connected 

region onto an annuius and demonstrates the method b -  several numerical esam- 

ples which include the conformal mapping of rings of different shapes. 

l Iost of the met hods use integrals of the Cauchy type and then use truncation 

procedures to get nunierical results. Although some estiniations of accurary are 

included. checking the numerical results using theoretical considerations is far 

from satisfactory. In this chapter. \se provide proof of our results by numerical 

nork and its analysis. In the following sections. we will describe a rnetliod of m- 

ducing the conformal rnapping problem to a problem of solring an infinitc systeni 

of linear algebraic equations. 



Conformal lfapping of Doubb- Connected Regions 

2.1 Introduction 

The mapping functions of the follon-ing form 

are 11-idelu studied[-L]. On a doubly connected region bounded bu two disjoint 

smooth ciirves Co and Ci. rhere is a mapping which is unique escept for an 

arbitrary rotation and ivhich maps the region D + aD ont0 the annulus O < n 5 

/dl 5 b < x. shere the ratio 6/a is unique and O ( - )  is regular in D. We ivill 

assume that the origin in the --plane is not included in the doubly connected 

region. and the fiinction O(:) has the following series espansion 

Hence for al1 z E Co. ire need 

log(:?) + O ( : )  + o(s) = log b2.  

and for al1 z E Cl. we need 

log(-:) + O ( ; )  + O ( - )  = log a'. 

Kithout loss of generality. ive will assume b to be unity. 

If a mapping z = fl (C) maps conformally the simply connected region enclosed 
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by Cl. to a clisk of radius 1 in the <-plane. then we have 

- 
on << = 1. 

Csing a Laurent series espansion for O ( : ) .  ive can derive a set of infinite linear 

equations for the coefficients c, and a. Similarl- if the mapping 2 = f i  (i') maps 

conforrnally the simply connected region enclosed by Co. to a disk of radius 1 

in the <'-plane. we get another set of equations for ç.,. Combining the two sets 

of equations for the  c,. the existence and uniqueness of the mapping function 

depends on the esistence and uniqueness of the solution of the infinite system for 

the c,from the idea t hat and a .  

\ké will apply the above method to Our application problern in the  follon-ing 

sections. 

2.2 Formulation of the problem 

\té consider the problem that arises when two fluids are transported with  one 

Auid inside a pipe of cross-section E bounded by C2 and the other flowing in an 

annular domain D in the xy plane bounded internally by C2 and esternally by 

CI. The flow velocity w ( x .  y )  satisfies the Poisson's equation 

( 2 2 )  C ~ ~ + U * ~ ~ = - ~  in D. P. p being positive constants. 
P 
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and the boundarp condition 

and 

(2.4) 

In the above. P represents the pressure gradient of the flow and p the viscosity 

of the Auid. The flow is assurned to be slow and steady and the fluid is assumed 

to be incompressible and viscous. We will be concerned with the rate of flow 

for cun-es CI and of gicen included ama. In [35] the following cases [vert. 

discussed: 

(a )  Cl and C2 being concentric circles. 

(b )  being a circle and CI being an ellipse. 

(c) CI and C2 being confocal ellipses. 

Denoting the respective rates of flow by Ra. Rb. Rc. numerical evidence aas 

presented which suggested that R, < Rb < Ra. In al1 the three cases. the area 

included by Ci and C2 respectively were held constant. In the following sections. 

ive will prove that ahen Ci and are both circles. R has a lower value for al1 

the cases in which Ci and C2 are concentric. To compute R. we first seek the 
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solution of (2.2) - (2.4) by using a conforma1 map n-hich niaps D in the xy plane 

ont0 a circular annulus in the <q plane. 

2.3 Conformal mapping 

For regions bounded by two eccentric circles enclosing a ring space [32]. ive take 

the  mapping funct ion 

with :'(<) # O. For the transformation to be conformal. the ring space escludes 

the  critical point 5 = 1. The mapping (2.6) in cartesian coordinates takes the 

form 

'> - 
(x2 + y-)<< = x' t !/' - 9cx + 2. 

showing t hat t he  concentric circles = p.  p = p l .  PL.  pi < f i  t ransform 

ont0 the eccent ric circles 

b s b 2 

. H e r e c = h - ' = k - -  in the z-plane where pl = a .  p2 = - h k and if d is the  
6' a- distance between the  two centers. d = k - h = , - h and & - ,LI; = $. Sote 

that h = k implies a = 6.  We can only prescribe three quantities among h. k. a. b. 

If ive fir a. b then h. k will have to satisfj- the compatibiiity condition: 
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2.4 The boundary value problem 

- 
Lking t h e  complex variables 2 = r + i y. 2 = L - i y (2.2) becomes 

which on integrating gives. for real uy 

The comples potential ~ ( i )  is of the form 

In the <-plane. we still use the notation ;(i) for conwnience. Le. &(<) = 

;(i(<)) which leads to 

where 

(2.12) 

and the boundary conditions (2.3). (2.4) reduce to 
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Substituting (2.12) in (2.11) and using = $. nre get 

a-, P 1 

n= 1 

Soiv applying the  hounda- conditions giwn by (2.13). we get 

and 

Solving uniquely for -4 and  an's. nTe obtain 

PT 
Q n  = 

- a-, - n = 1.2.3:-. 
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The solution to the boundary value problem (2.2)-(2.4) is given by (2.1 1). 

(0.12) and (2.l-I). It can be shown t hat the resulting series in (2.12) is convergent 

in t lie dornain under considcration. 

2.5 Rate of flow 

On using the complex form of the  Green's theorem 

we have 

ahere T2 and TI and respectiveely the circles = p? and ICI = p i .  

After substitut ions and some simplifications. we obtain 
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- - P*c4 p2(2 + p2)  I " + - C [ n ( a , a n  - a-,)] 
S p  ( 1  - p i ) 4  1-d 1-$,=, 1 

which yields after some calculations 

In fact. we c m  rewrite S as 
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2.6 Approximation and error analysis 

Denoting by Sv the sum of the first .L' terms of S. me can non- rewrite (2.15) as 

R = F + -11 S-\- + *\I E,. 

Here 

represents the truncation error yielding an approsimation Rv for R where R.v = 

F + -11 S.\-. Sow lett ing 

~f r = < 1 and n 
P5 

we get 

We now proceed to find 3 such that the truncation error in the evaluation of 

R is less than E. a prescribed number. Setting 
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we get 

1%- here 

Soting that ar-' < 1. ive obtain 

4c-!p;(p; - P;) :]) . [ln ($)] - l  {ln& + ln + ( I  - $)'(l - 

If ive choose .V @\-en by (2.20). ae niIl have 

2.7 Numerical results 

For cornparison purposes. we consider the following tivo cases: 

( a )  Concentric Circles. 

The region D is bounded by the two concentric circles 
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It can be easily verified chat 

I L ' ( = )  = -4 ln: + E 

where 

when substituted in (3.9) satisfies (2.2)-(2.4). Further. the rate of HOK Rc per 

unit time per unit cross-section is given by 

( b) Eccentn'c Circles. 

The region D is bounded by the eccentric circles (2 .7)  and the rate of flow 

R per unit tinie per unit cross-section is @yen by (2.15). The series in (2.19) is 

truncated to terms where -V is determined by (2.20). thus assuring the error 

to be less than E.  In al1 calculations z = 1W6 was used. .Uso. P/8p was takm to 

be 1 for al1 the calculations. 

In both the above cases. the area of Boit- and the sum of the perimeters of the 

boundaries are held constant. In Tables 1 - V. me  give the behaviour of Re as 

the inner boundary moves away from the concentric case. h and k are chosen 

such that (2.8) is satisfied. We find that R, increases as the Ih - kI increases and 
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for the same eccentricity. Re increases as the cross-section area increases. a LI-as 

chosen to be 1.0 for the calculations. 

Table 2.1: Rate of flon- Re YS R,=2.098121 

a = 1.000. b = 0.050. area = 3.134 
h-k 

0.010000 
0.060000 
0.1 10000 
O .  l6OOOO 
0.210000 
0.260000 
0.310000 
0.360000 
0.4 1 O000 
0.460000 
0.510000 
0.360000 
0.610000 
0.660000 
0.410000 
O. ï6OOOO 
0.8 1 O000 
0.860000 
0.910000 
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Table 2.2: Rate of 0ow R, vs R,=1.337667 
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Table 2.3: Rate of Roa- Re vs R,=0.955380 

a = 1.000, b = 0.300. area = 2.859 
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Table 2.4: Rate of flow Re vs Rc=0.395191 

a = 1.000. b = 0.50. area = 2.356 

Table '2.5: Rate of flow R, vs Rc=0.057145 

a = 1.000. b = 0.750. area = 1.314 

From the above five tables. we have established that  the rate of flow in the 

concentric case is less than the rate of flow in al1 the eccentric cases considered. 

Further. as the inner circle mores awvay from the concentric position. the rate of 

flow increases. 
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2.8 Conclusions and comment s 

The above results establish that the rate of flow is not a maximum in the case of 

concentric circles and. in fact. the opposite is true. For a @en area of Bon- and 

fixed circuniference lengths. the rate of flow increases as the inner circle nioves 

away from the position of concentric circles. Again. for a given area of flon but 

variable circumference lengt hs. the rate of flow decreases as the total perimeter 

increases. This suggests a boundary layer effeçt on the flow. 

The mathematical problem described above has a large number of applications. 

One esample is the sirnultzneous transport of oil and gas from oil and gas fields 

in the l rc t ic  or on an ocean floor 11-here both oil and gas are present a t  the same 

source. In such a case oil flou-s between the pipes while gas flows in the inner 

pipe. .-\lthough a nen technolog- for building a pipe-in-pipe system is needed. 

the laying of one system is cheaper than laying two different pipes. The present 

system of heating oil a t  intervals to keep it flowing c m  be avoided. since the heat 

in the inside pipe is consened and used to  its maximum advantage. Ecologically 

and environrnentally. accidents are less harmful since a burst in sections of the 

inner pipe will not lead to a spi11 mhile a burst in the outer pipe n-il1 not interriipt 

the gas flow and the oil spiIl may be recoverable. 

There are a large number of applications involving Poisson's equations in en- 

gineering. .\ notable one is simultaneous transmission of data in CO-a.xial cables. 

The problem dealt with in this chapter is part of the general problem of m a p  

ping doubly connected regions onto an annulus. h well-known existence theorem 

which will not give a method of construction states that a doubly connected re- 
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gion (with arbitra? bounding curves) can ah-ays be mapped ont0 an annulus 

with the ratio of the radii beirig unique [ll]. 



Chapter 3 

Evaluation of a Double Integral 
over a Doubly Connected Region 

In this chapter. ive give a finite element method and its error estimate for ewl- 

uating double integrals o w r  a smooth domain. The results are used to compare 

rates of flou- of a viscous incompressible fluid in a pipe-in-pipe system with differ- 

ent doubly connected cross sections. These numerical results confirm an  earlier 

conjecture regarding the rates of flow. 

3.1 Introduction 

In a number of problems in physics and engineering. measurable physical quan- 

tities depend on the evaluation of a double integral oyer a given dornain R. The 

domain may be sirnply or multiply connected and the geometry of the domain 

may not consist necessarily of commonly kno~vn cunes. The solutions of such 

problems are usually not feasible by analytical methods. In this chapter. ive give 

a finite element niethod for evaluating double integrals with smoot h boundary in 
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a plane. with an error analysis. We are interested in the double integral 

where fl is a snioot h domâin. IVe are also interested in the finite element appros- 

imation of R 

~ ~ h e r e  uh (x. y)  is the standard finite element soliit ion to the Dirichlet problem 

ii,, + ti,, = -1 in R with u G O on the two boundary curves. 

\té prepare to apply the techniques to tind the rate of Bon. of a steadj- state 

incompressible riscous Buid flow in a pipe-in-pipe configuration. The analysis 

leads to a two-dimensional Dirichlet probleni. Shi~akumar and .Ji [A'] discuss the  

case ivhere the region of cross-section of the pipes is bounded by two rccentric 

circles. They provide a proof to show tha t  the rate of flow per unit cross-section 

per unit time is a minimum in the coricentric case with the area eaclosed b- 

the bounding cun-es held constant. [Ti] @\-es estimates for sirnilar problenis for 

mult iply connected cross-seçt ions arising in the determinat ion of torsional rigidity 

of beams. 

In our numerical esperiments using the techniques of this cliapter. we discuss 

rarious doubly connected regions bounded by (a) two circles. (b)  two ellipses. ( r )  

a circle and an ellipse. and (d) an ellipse and a circle. In each case. the area 

bounded by each pair of the cun-es is kept constant. 
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3.2 

In t egral over Do u biy Conoec ted Region 

Formulation of the problem 

R é  are concerned ivith the double integral 

ivhere the domain. if sirnply connected. is bounded by a smooth ciin-e go. In 

(i3.2) u(x. y )  is the solution of the Dirichlet problem 

u,, + u , ~  = -1 in R. 

u = O  on i3R 

If the domain R is doubly connected. and bounded by two curves ail,. C)R2. 

then Dirichlet problem is given by (3.3) and 

In (3.2). R is the rate of slow and steady flow of an inconipressible viscous fluid 

in a pipe whose cross-section is given b -  0. 

For the doubly connected region. Shirakumar and J i  [42] discuss the case where 

i3RI and 8R2 are two eccentric circles. They prove that the rate of Aow is a 

niinirnurn when the circles are in the concentric position. It is conjectured that. 

in general. the  rate of fiow is a minimum in the syrnrnetric case nhen BRI and 

XI2 bound a fixed area. K e  will give numerical values for R in the follon-ing 

cases. using the finite element method: 

(a) two circles. (b) tnro ellipses. ( c )  a circle and an ellipse. (d)  an ellipse and a 
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circle. 

3.3 A finite element met hod for the double in- 
tegral 

In order to evaluate the double integrals (3.2). LI-e can solve equation (3.3) using 

the standard finite element method. and then calculate (3.2) by substituring ut,. 

the finite element solution. 

To give a brief description of the standard finite element method(FESI)[28j. 

ive first consider a decomposition rh on domain R such that 

ivhere the element a, can be a triangle. quadrilateral or their niappings. The 

diameter of e ,  is denoted by hi, and the largest diameter 

The finite element space of order k. k > O. is 

where pk represent,s the polynomials of degree k. and 

1;" = r+n  fi). 
In this chapter. HL(R) stands for the standard Sobolev space(see ['29] for details). 
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HA(R) is the closure of C,"(R) with the measure of H1(R). The semi-norm 

The FESI for (3.3) is to find the finite element solution uh E I bh satisfying 

g i w n  boundary conditions and 

where V represents the gradient operator 

We calculate the approsimate double integral 

where fi = U i ë i  and ci's are the finite elements. 

Sote that uh is a polynomial of degree k for every element e. and s e  can 

calculate Jih. If we use the quadrature with the accuracy of order k + l(for 
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instance. ive can use Gaussian quadrature with one Gaussian point at the center 

of the element for the case k = 1). then we can get the exact value of Rh. 
The error estimate for the above approximate double integral can be obtained 

a s  follo\vs. 

Theorem 3.1 Suppose u i s  the solution of (*3.3), u h  E 10 is its finite elernent 

approximation defined i n  (3.5). the double integral R and i ts  approximation Rh is 

defined in (3.2) and (3.6). R is a srnooth domazn satisfjjing 

where \' = U i  ei is  the rnesh for domain R. then 

Proof: Suppose ; is the  solution of the auxiliary problem 

Then. by[28]. for L 3 1 

and there is ;[ E L i  such that 



Double In tegral orer Dou bly Connected Region 

rvhere Rh = J'Jn uhdxdy. 

By Schwarz inequalit. ive have 

It is ml1  known[28] that  

Therefore. 

(3.10) IR - RhI -O(h'lk). k 3 1 .  
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\lé also have 

Hence. (3.7) folloxs from (3.10) and (3.11). 

Rernark: In this chapter. R is assumed to be a double integral of the  solution of 

a special Poisson equation. If u in (3.2) is a solution of a gencral elliptiç ecluation 

of second order 

a(u .  L. )  = (1. L:). VL. E H P ( Q ) .  

theri Theorem 3.1 can be estendcd witti a proof similar to the above argument. 

Here 

and 
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3.4 Numerical result s and conclusions 

For the Dirichlet problem 

u,, + uyy = - 1. in i2 

and 

ive evaluate the approximate double integral 

using the finite element solution u h -  

In the numerical experiments. ive use triangular decomposition nith h = 0.05 

and piecewise linear finite element space(first order FE space. k = 1). The quadra- 

ture is chosen to be Gaussian quadrature with one Gaussian point a t  the baryen-  

ters of elements. By Theorem 3.1. Rh is the approximation of R with t tie accuracy 

of 0 ( h 2 ) .  The condition required by the theorern. rneascrre{Q - fi} 0 ( h 2 ) .  is 

satisfied in al1 the cases in which ive apply the result in Our computation. For 

example. using uniform triangle element mesh on a unit circle gives the difference 

of t lie order 0 ( h 2 ) :  

hJ1  - h2/-l 
measure(l2 - fi} = ii - x - 7rh2/4 - 0 ( h 2 ) .  

sin-' (h l?)  

It can be similarly verified for the regions in the following computation. 
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In the case of slow and steady incompressible viscous flow in a pipe-in-pipe. 

Rh represents the approsimate rate of Bon- per unit time per unit crosssection. 

We consider the region Rith a h e d  area. (1 - $j)?r. p < 1. bounded by 

y' (x - d)'> l j 2  aR2 : + - = 1.  
62 + - = PL. 

( l /a )2  ( V I -  

CVe calculate the rates of flow for the following 9 cases in three groups. as 

- 3 - 3 3 - 3 a = l . b = l . : . , : a = z  4 - b = 1 . ; . 5 : a = 5 1 b = 1 . : . 5 .  - a n d p = 0 . 2 .  

Note that the areas enclosed between aQl and aQ2 in al1 the cases are kept 

constant. 0.9611. 

Table 3.1: Rates of Aow R,'s with t3RI : z' +.$ = 1 
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=2 
Table 3.2: Rates of flow Re's with aR1  : 

(5,412 + &!$ = 1 
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- Table 3.3: Rates of flow Re's mith 6Qi : G~.,,? + & = 1 



Dou ble In tegral or-er Do u b -  Connected Region 36 

Frorn the above tables. nre first observe that in al1 the cases. the rate of Ron per 

unit cross-section per unit time. evaluated by the double integral. increases as the 

eccentricity of the annulus increases. and attains its minimum in the concentric 

case (wheri d = O).  This conclusion agrees well with the resuits in ['r]. 
We can also notice that  for a fked eccentricity d and a fised compression 

constant pl  for dR1. the outer ellipse(p = 1 for circles). the rate of flow decreases 

as the compression constant of t3&. p2. increases. We can also get esactly the 

same information if ive switch the roles of BR, and iX2- by looking at the columns 

of the three tables for a fised d. To summarize. ive may conclude the followirig. 

i ) .  For a fixed eccentricity d and a fised ellipse(outer or inner). the rate of 

flow decreases as the compression constant of the other ellipse increases. It 

attains a maximum value nhen the latter one is a circle ( p  = 1). 

ii). For any fised eccentricity d. the rate of Bon- decreases as the sum of the 

compression constants of the two ellipses. p l  + p2 increases. For a fised value 

of pl +p2. p 1 plays more dominant role in the two. e.g.. if p ,  +pz = pi  +CL; = 

a fised number. then the corresponding rates of flow. Rh > Rh if p l  > p:. 

or else Rh < Rh. 

iii). The area enclosed by aR i  and aR2 is 0.96~.  We non- consider the rate 

of flow over a simply connected region D : 1 ~ 1  4 c. where c = dm. The 

solution of the Dirichlet problem in D c m  easily be obtained: 

W .  0) = ( r  - c ) .  r < c. 
-4 
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and the rate of flow: 

The numerical results in Table 1. column Ri,. show that the rates of flow 

over the cross section bounded by two ecceotric circles increase as the ec- 

centricity d increases. but they are bounded above by RD = 0.36191147. 



Chapter 4 

Non-singularity of Matrices of 
Certain Sign Distributions 

4.1 Introduction 

Sonsingularity of matrices plays a key role in the solution of linear systems. 

rnatris computation and numerical analysis. -4 large variety of problerns arising 

in corn put at ional mechanics. fluid dynamics and material engineering. modelled 

b -  using difference equations or finite element methods. demand the  matrices be 

non-singular for the numerical approaches to be convergent. 

Two tvpical criteria for a non-singularity test are ( i )  non-vanishing determi- 

nant: and (ii) diagonal dominance. Some disadvantages are well known: criterion 

( i )  costs too much computing time and (ii) is too strict for rnost application prob- 

lems to fit. Since a large number of matrices resulting from phpical rnodels hase 

certain structures or sign distributions. consideration of non-singularity related 

to sign distributions becomes useful and effectivi. 

Nonsingularity related to 11-matrices and positive matrices. two classes of ma- 

trices with fised sign distributions. was first studied by 11. Fiedler[l-lj . K. Fan 
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and --\.S. HousehoIder[l3]. -1. Drew and C.R. Johnson(l2j consider Hessenberg 

and Hadamard matrices. In recent years. sign-non-singular matrices have k e n  

estensively esplored. -4 matrix B is called a sign-non-singular matris if its entries 

are among { 1.0. - 1) and any ot her mat ris A wit h the same sign distribution as 

B's is non-singular. If. in addition. the sign distribution of the inverse of A is 

the same as B's for al1 A. t hen B is called a strong sign-non-singular mat ris. -41- 

t hough the sign-non-singular matrices have received considerable attention. most 

of the result s remain t heoret ical and specific sign distributions are barely st udied 

t horoughly for practical purposes. and few computable conditions are given on 

non-singularity of mat rices of certain sign distnbut ions. 

In t his chapter. we impose easily computable sufficient conditions for matrices 

of the follorving two different sign distributions: 

+ + +  + + - - -  
i + + f - - -  

Sign Distribution l (SD 1) 

+ + + + + - - -  
+ + + f + * - -  

+ 4" 
. . 
. . 

Sign Distribution 2(SD2) 

The matrices in this chapter are assumed to be square matrices of arbitrary 

but fixed size. and contain no zero entries. 

This sork is mainly motivated by the problems of viscous flow in pipes whose 

cross-sections are doubly connected regions[35] in which the velocity of the Ruid in 

the direction of the avis of the pipe satisfies Poisson's equation \vit h homogeneous 

boundary conditions. The solution of the problem can be espressed as a truncated 

infinite series mhich can be found by solving a linear system whose coefficient 

matrix has SDI. 



4.2 Main Theorem 

The sign distributions 1 and 2 can be formulated for the matrix A = (a,,),, , by 

SD1: For i 5 j .  a,, > O: For i > j .  (-1)'-Ja,, > 0. 
SD2: For i 5 j .  a,, > O :  For i > j. ( - l ) ' -~-~a, ,  > 0. 

where i. j = 1.2. .... m. \Ve \vil1 prove that. under certain stated conditions. a 

rnatris with either of the above sign distributions is non-singular. 

For convenience. we first define for the matrices of both cases SD1 and SD'L. 
the following quant ities: 

Theorem 4.1 (Sign Distributions 1 and 2 )  Let A = (ai,),,,. m > O. be a 

real matriz O/ Sign Distribution 1 or 2 satisfijng 

Then A is non-singular. 

\Cé give below an esample of a rnatrix A which satisfies the conditions in 

Theorem 4.1. 
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Let A = ( a i j ) , x ,  be given by 

It is easy to verify t hat A satisfies (-41 ) - (-44) and SD1. in Theorem 4.1. hence 

it is non-singular. although it is not diagonally dominant. 

Remarks: 

1. In Theorem 4.1. conditions ( A l )  and (-43) show a decreasing ahsolute value 

for uppcr trianglular entries of A dong the horizontal direction and of lowr  

triangfular entries along the vertical downward direction respect ivelu: ron- 

dit ions (-42) and (-44) m a -  be considered as second order distribution prop  

erties. which also reflect a sirnilar trend along horizontal and vertical direc- 

tions. Basically. conditions (-41) - (-44) describe a scattering distribution 

along the horizontal and vertical directions for any element of A. 

2 Al1 the conditions that appear in Theorem 4.1 are easily cornputable because 

the? involve only additions and logical operations. 
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4.3 Proof 

To formulate the  problem. we denote by A = (â j j )n ,n  the rnatrix obtainec 

eliminating the last row of A = ( a i j )  , n - ,  n+, ) .  in the sense that 

nhere L'"'') is a ( n  + 1) x ( n  + 1 ) non-singular lower triangular mat ris due to 

Gaussian transformation. 0' ! ~ n  is a zero row rector and I , , is a column vect or. 

The elements of A are given bu: 

' 1  n t [  a n T l  j 

a;, = a,] - i.; = 1.2. .... ri. 
Q n r i  n+ l  

-1s a consequence of elimination process. A and A are both singular or both 

non-singular. Correspondingly the quantities defined by (4.1) for A can be m i t -  

ten for Â with a Iittle modification as 

lké give a proof for Theorem 4.1 for the case of SD1 only. to illustrate the 

method based on mathematical induction. The proof for the case of SD2 can be 

similarly shown by parallel arguments. 

Proof of Theorem 4.1: (For the case of SD1) 
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(a) It is trivial that Theorem 4.1 is true for the cases of m = 1 and n2 = 2. 

(b)  C\è nonr assume that  Theorem 4.1 holds for m = n. Le.. any n x n matris 

A'") that has SD1 and satisfies conditions (-41) - (-44) is non-singular. 

( c )  For m = n + 1. n-e suppose that the matris  A("+') = (ûiJ),n-iirin-ii hiis 

SD1 and satisfies conditions (dl) - (-44). Mé will nest show that can be 

reduced to an n by n matriv that also has SDI and satifies conditions (Al) - (-44). 

using a non-singular transformation. This allows us to  conclude t hat  A(nT ') is 

nonsingular and completes the proof by induction. 

Suppose that A("+') = (a i j ) , .+  ,,,, ,+,, has SD1 and satisfies the folloiving con- 

Consider the rnatrix A'"' = (iiJnXn. produced from A("-') by Gaussian elirn- 

ination as discussed above. In order to  conclude that A("-,) is nonsingular. 

Ive need to show that  presen-es SD1 as given bu fi i j  > O for i 5 j and 

(-l)"'âij > O for i 3 j. and in addition satisfies the following conditions: 

For i > j 
(B3)  21, > O ( j  < i < 1)  
(B-4) 8:j > x;=i+, 8Lj > O ( j  < Z 5 i). 
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Recall t hat 

To prore that  SD1 is presened by A("). ive note that for i 5 j 5 n. 

Similarly. for j < i 5 n. 

Proof of ( B  1): (BI)  follows from 
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Proof of (B3): It  is easy to verib- ( B 3 )  if 1 = j + 1. From (1.3). ive have 

Evaluat ing the two quant it - I es in di j  separately. we have 

and 
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- 1 SON- combining the results. we have di, > 0. 

Proof of (BZ): XOK fiij > O since 
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Csing the positivity of ,ilij the full result follows from 
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and. 

4.4 Applications 

We non- consider the application problem of viscous steady Aow. From the optimal 

rate of flow point of view[-l-l]. we consider in this application. the region bounded 
2 , 

by the ourer circle: aR1 : x' + y' = a'. and the inner ellipse 130- : + 5 = 1. 

with n < 3 < a(as in Figure 1). instead of the physical configuration used in [35] 

whose outer curve is an ellipse and inner curve is a circle. 

The infinite series solution for the velocity of the flow in the pipe. which is 

geometrically convergent. is truncated. and the problem reduces to a linear systeni 

associated with a finite rnatris. 

For the new configuration. we derive the matrix using arguments and manip  
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Figure 1. cross-section of pipe 

ulations similar to ttiose used to generate (4.15) and (4.16) in /33]. and also k t  

b = 1 wit hout losing generalit.  The transpose of the resulting mat ris is 
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i. j = 1.2. ..... .v - 1. and the parameters 

l\è \vil1 next show t hat A satisfies the sign distribut ion as ive11 as the condit ions 

required in Theorem 4.1 for suitably chosen K 2 2 and X < f - . \\è set a = O. 13. 

.i = 0.25 and a = 1 as an esample. Correspondingly. Ive get = 5. X = I and 

the truncation size is chosen to be .V 5 300. We oniy verify conditions (-41) and 

( -43).  Conditions (-42) and (-44) can be wrified in a similar manner. 

It is evicient that  A satisfies SDI. 

To verif? (AI) of (4.1). n-e need to show. for i 5 j. that 

l\é first show tha t  uii > O. For convenience. we define 

For i = 1. 
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For i > 1. 

Notice that 

which implies that 

Hence. 

\\-e nevt show that vij > 0. for i < j .  

j + i - 3 )  - pk-l ( k + i - 3 )  
k=i+ 1 

k - i  



Csing the argument similar to (4.6). we can show t hat 

T herefore. 

To summarize. ive have u,, > 0. for i < j .  

To verif? (-43) of (4.1). ive need to show. for j < i < 1. that  

\\> first S ~ O W  tha t  lai;l - I&,, a,l > O- For convenience. ive let pi, = 
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Sote that  

s t l  

. s + l + i -  j 

) .  me have and letting f, = X (2 - 

Hence. u-e 

( - 7 )  laij( 

have 

\b-e can sirnilarly show that I Z ~ = ~ _ ,  a,, 1 - lai+, j (  > O and cornplete the verifi- 

cation of (-43). Conditions (-42) and (-44) can be verified in the same way with 

slightly more cornplicated manipulations. 

B i  the t heory developed in this chapter. we conclude that the coefficient matrix 

defined in (4.4) is non-singular and a unique solution for the system A S  = B is 

ensured. 



Chapter 5 

Upper and Lower Bounds for the 
Inverse Elements of Finite and 
Infinite Tridiagonal Matrices 

5.1 Introduction 

Tridiagonal matrices. finite or infinire occur in a large numher of applications 

including the solution of boundan value problems by finite difference rnethods. 

cubic splines. data fitting. and three term difference equations and inverses of 

Toeplitz matrices and in the theory of continued fractions. Infinite systems oc- 

cur i r i  many areas including the solution of Mat hieu's equations[39]. t hree term 

recurrence relations for Bessel functions. For an algorithm to find the solution 

of a finite linear systern or for Givens or Houseliolder methods. see [16]. Esti- 

mates for upper bounds for the inverse elements of tridiagonal matrices arising 

in some boundary value problems are given by Slattheij[lB]. Cpper bounds for a 

special tridiagonal matris is given by Kershaw[l7]. while a lower hound for the 

smallest singular value of a matrix is given by Varah(201. Considerable work has 

been done in numerical treatment of t ridiagonal mat rices. Ost rowski[l9] has @en 
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upper bounds for the inverse elements of a diagonally dominant matris. 

In the follou-ing sections. we will gise easily cornputable iipper and lower 

bounds for the inverse elements and infinit? norms for the inl-erse. The results 

improve Ostrowski's upper bounds as well as gil-e new lower bounds. The results 

are estended to the infinite case and to block tridiagonal infinite systems. In later 

sections. Ive will apply the t heory to a special matriu considered by Iiershan-. \\-e 

will also discuss the evaluat ion of Bessel functions and ,\fat hieu functions by using 

their recurrence relations and numerical results are given. 

5.2 Finite tridiagonal matrices 

W will be concerned 11-ith finite and infinite tridiagonal niatrices of the form 

denoted by -4 = {ai. bi. c, }. where b's are the diagonal elements and a's and r's 

are the off-diagonal elements. We niil use the notation A('-"). s 2 i. to represent 

the tridiagonal square submatrix of order s - r + 1 whose diagonal entry in the 

first row is b, and the diagonal entry in the last row is b,. 

We will now prore the following Lemma: 

Lemma 5.1 For the tridiagonal n x n rnatrèx -4 = {ai. bi. ci}. the cofactors .Aij 
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of -4 are given by 

/LI. i. j = 2.3. - . R .  In the above. det =l('.O). det .-L(n-L.n'. and are 

each defined to  be unity. 

Proofr Lié need only consider 1 5 i 5 j 5 n as the results for 1 5 j 5 i 5 r2 can 

be derived siniilarly. For i = J = 1 or i = j = n. the lemma is trivially true. while 

for 1 < i = 1 < n. ive can rewrite .Aii in the  form 

from which the result follon-S. For i = l. j = n. 

Similarly for 1 < i < n. j = n. the theorem is true. 
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F o r l < i < j < n .  

Lemma 5.2 [Ostrowskijl9]] Let B = (bi ,)nxn be a s t r i ~ t l y  row diagonallg domi- 

nant  matria: and 

Then for  B - L  = (&). the following hold: 

Toiv we i d 1  prove the following theorem for tridiagonal matrices. 

Theorem 5.1 Let -4 be an n x n tridiagonal matriz. ai. bi. ci # 0. and let -4 be 

diagonally dominant  in the sense pi((bil) = lai( + Ici(. i = 1. Y. - - . n. O 5 pi < 1. 
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Then we have the followzng upper and fower bounds: 

Proof: Mè o n l ~  show (5.4). The other results can be deriwd similarly. 

For i < j .  ive have from Lemnia J. 1. 

det ,_I(P"l.n) 

= (-l)'+' ( fi u k )  fi 
k ~ i -  L p=i+ L det -Wn) 

which gives on using (5 .2) .  
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and 

(5.8) reduces to (5 .4 .  C 

Comparing the above results with Ostrodci's upper bound. ive note that (3.4 

and ( 5 . 6 )  lead to (5.3) for the tridiagonal case. 

Theorem 5.2 For the matriz -4 defined in Theorem 5.1.  the following Inequalit?y 

holds for i = 1.2.. -. n 

Proof: Espanding det -4 by the i th  row. ive have 

-4, L - L  -Aii  -4i i-L 
nt - + bi- + ci- = 1. i = 1.2..  . . r z .  

det -4 det -4 det -4 

where = -4 n7-i = 0. 

By taking absolute wlues and using (5.3). the aboce reduces to 

from which (5.9) follows. 

Cornbining Theorem 5.1 and Theorem 5.2. we immediately have 
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Theorem 5.3 Let A-' = (A) be the inverse of motriz -4 defined in 

Theorem 5.1. then 

Based on Theorem 5.3. ive n-il1 noiv establish some results for 1 1  -4-L 11,. 

Theorem 5.4 Let -4 be the matni  defined in Theorem 5.1. and define 

11 = supk{pt}. h = infk{lbnl} and r = supk{Ibkl}. then 

Proofi It suffices to show that (a. E r )  511 A-' I(,& 3. 

By definition of 1 1  - 11,. 
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To show ( 1  -4-l I l r ?  a. ive have. from cond(A) =II d 11, - II -4-L I l x ?  1. 

1 1 1  -4-1 I l 2  = CL. il -4 I I ,  

For i = 1. we have. on applying (5.11). 

Csing same arguments. ive can show that for i = n. 

For 1 < i < n. 
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Combine the above results. Rie get 

To prove 1 1  -4-' / l x <  3. ive have. by Theorem 1 in [?O]. 

arid bence 

Hence. 
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5.3 Infinit e t ridiagonal mat rices 

Rë now consider infinite. tridiagonal and diagonally dominant matrices of the 

form 

and the infinite linear systems of algebraic equations associated with such matri- 

ces. Cnder some certain conditions. the infinite rnatriv A can be regarded as a 

linear operator on the t p  space. and the existence and uniqueness of the solution 

in the t, for the  above system can be established. A useful numerical approach for 

approsimating the solution by using the solution for the truncatecl system. with 

ari esplicit error bound. is suggested. The resiilts are comparable to the results 

for the general case discussed in [34] and [JO]. Iloreover. the resiilts c m  also be 

extended co the infinite tridiagonal block systems that satisfy siniilar conditions. 

To forrnulate the problerns in E,. ive first define A as an infinite. strictly row 

diagonally dominant t ridiagonal mat ris and 

where al = O and a,. bi.c* # 0. for i = 1.2.. -. 

A finite truncated system can be written out as A(")S(") = D(*).  For conve- 
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nience. we define an extended infinite tmncated system À(")S(") = D [vit h 

where B@-" is the infinite diagonal rnatriu. 

It is easp to see that the above two truncated systems are equivalent. \lé nolv 

rewrite the aboi-e systems in iterative form: 

S G S + P .  and - T ' " ) = G ( ~ ) - F ~ ) + P .  

The above leads to iteration formulas: 

and 

K e  non- prove the following theorem. 
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Theorem 5.5 Let A. D and À(") be defiPled b y  (5.13) and (5.14). -4 satisfies: 

( H l )  p. + O as n + r: (Hz) d = infk{lb,(} > O. Then there ezists a unique 

S E 1., mch that AS = D. ilbreouer. if -<-(") is a solution for  the truncated 

systrrnt (9.2). then 

where p = . supc {pk } .  

Pro0 f: 

We first show that there exists a unique -Y E E, such that A S  = D. For 

the linear transformation I' = G S  + P. and SI. ,Y2 E t,. let 1; = G S I  +- P. 

1; = G& + P.  ive have 

It turns out that  I -  = G-Y+ P is a contraction mapping ont0 l ,  . By the Schauder 

Fixed Point Theorem [XI. there exists a unique .Y E E, such that -1- = G-Y + P. 

i + e  shall use II 1 1  instead of II 11,. 

11-e first notice. for any k > 0. 

and 



Similady. we have 

l i e  aiso have 

On using 

and 

(S. 17) beconies 
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So (5 .16)  reduces to 

Bi letting k + x. ive get 

This proof gives an efficient ivay for estimating the solution for the infinite 

systern (5.13) by using a solution for the truncated system (5.14). One can even 

use an iteration formula to execute this truncation. with considerable precision 

giwn by o ( ~ " ' ) .  

Corollary 5.1 Let A and A("' be the matrices defined b y  (5.13). then for arry 

A!;' --lij 
lim -- - 

n - x  det A(,) det A' 

where the right hand side zs defined as the inverse element of A. 
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To show that for any L ~ e d  i.; 5 n. 

u e  need only choose D in (5.13). the given vector. to be the unit vector with the 

it h cornponent di = 1. and d, = 0. for j # i. i = 1.2.  . . S .  Then the result folloivs 

by Theoreni 5.5.  

5.4 Infinite block t ridiagonal mat rices 

K e  non tiirn oiir attention to an infinite block tridiagolia1 system of the form 

t 
whereeachelement o f A b  isanon-zero mxmmat r i s .  D = ((LI#. (D#. - - S .  ( D n ) t . - * . )  

X = ((Xi)! ( X 2 ) t .  - .  (SJL. - .  -)'. Dr and SI, are m x 1 vectors. 

This part of the work is motivated by solving a block tridiagonal systern arising 

in the problem of ewluating non-hierarchical netn-orks which can be modelled as 

a strictly diagonally dominant infinite susteni wit h block tridiagonal structure as 

given in the above. 

We clefine p, as the quantity for rnatris -4 in the usual sense and ok. k = 
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1.2 .  - - . m  by 

01r Il BiL /I;L=ll -& Ils + II CL Ilx . 

\lé also define an extended infinite truncated block system: 

\lé first assume that  Ab is a strictly Tou- diagonally dominant matris There- 

fore each of Bk's is strictly row diagonally dominant and lience nonsingular \\é 

also assunie t hac Ab satisfies the following condit ions: 

( B I )  II l 3 ; l  1122 d > 0. for al1 k's 

(B2) a, 5 a < 1 and on + O as n + x: 

Then ive have the fdlowing results 

Theorern 5.6 Let Ab and Âf" be defined b y  (5.18) and (5. l9) .  and  D E €,. 

Then the systern AaS = D has a unique bounded solution. Further. if S(nl is a 

bovnded solution of Àb'S(") = D. then 
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Remark: For the special case that al1 Bk's happen to be tridiagonal matrices. 

II B;' 1 1 %  may be estimated by using the results in the previous sections. 

A sketch of the proof for Theorem 5.6 parallels the proof of Theorem 3.1. with 

p k  and p replaced by o k  and a respectively. the notations standing for matris 

elements replaced by block matrices and the absolute operator replaced by infinite 

norm. 

5.5 Applications 

?Ve now give three examples for illustrating our resiilts on finite and infinite 

matrices. 

Esample 1: (Kershaw[li]) Consider matrix A of the form 

where O < a, < 1 and X i  > 1. for i = 1. '2. ... n. Cpper bounds h; For the inverse 

elements of A are given by Kershaw[l7]. which can be written as folloivs 11-it li our 

notation: 
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Csing Ttieorems 5.2 and 5.3. ive can easily get other upper bounds denoted by 

Si for -&. which ran be shonn to be hetter than Kershaw's bounds. For i 5 j .  

giving Si 5 Ici- 

It can sirniIarly be shon-n that resuit holds for i 2 J .  

From the above n-e can see Kershaw's upper bound is improved. 

Regarding the lower bound for Kershaw's matrix. we start with (5.6) and (3.8). 

for i 5 1 and Ive obtain 
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and similarly. For i > j 

r - I  

det A 

Hence ~ v e  get the lowx bounds 

Example 2 :  The Bessel functions. .I, (x). n = 0.1.2. . . .. satisf-  the  follon-ing 

well- known recurrence relation 

To find values of J J z )  at the chosen point x = L. O < IL1 < 2. one can reduce 

this problem to the solution for an 

so that 

(5.21) 

infinite system upon introducing Ln = . J n ( l . ) .  

If 1 LI 2 2. then the matrix is not strictly diagonally dominant. We can still 

manipulate the system by eliminating the first [LI r o m  of the mat r i s  so that the 
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matris can be transformed to a strictly diagonally dominant matrix. For instance. 

L = 4. the system 

which after truncating. can be reduced t o  

mhich is strictly cliagonally dominant. and ri. x2 .xn can be easily obtained once 

the infinite s'stem is estimated in terms of x3. For convenience. ive only disciiss 

the case when 1 LI < 2 for convenience. 

In matrix notation. the above system can be wit ten as A S  = D. where A 

is the resulting tridiagonal infinite matris with a, = cn = - 1 as its off diagonal 

entries and b, = as diagonal entries: S = (xl. 5 2 .  . . -)' and D = (xo. 0.0. . a ) ' .  

It is easy to check that al1 the conditions required by Theorem 5.3 are satisfied 

by this example. even though it does not satisfy the conditions required to apply 

results in [34]. 

-4s an example. we choose L = 1 and apply the results from Theorem 3.5. This 
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enables us to use the solution of a truncated system A"?!?") = D(") to estimate 

S. the solution of the infinite system. CVe can estimate as many values of . J , ( l )  as 

we wish. For illustrating the tmncation method. we let n = 4.8.1'2 respecti~ely. 

The numerical results are listed in the following tables. 

Table 5.1: Solutions for truncated system 

Truncated solutions Absolute sol. 
.Jk(l.O) 

0.-I400*50*58-58E+OO 
0.1 l-KIOX849EsOO 
0.1956335398E-O 1 
0.2416638964E-02 
0.2491577302E-03 
0.2093833500E-04 
0.1p502325818E-05 
0.9422344113E-01 
0.5249'230180E-08 
O.'26306l.? 1'24E-09 
0.1 198006146E-10 
0.4999118180E-12 
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Table 3.2: Actual errors 

Esampie 3: Mat hieu functions are encountered in physical problems involving 

elliptical boundaries. The wave equation in elliptical coordinates. when using the 

met hod of separar ion of variables. can be reduced to the Mat hieu equatiori giveii 

b'. 

I I  ( 5 . 2 2 )  y +(A-"qcos'xjy = o .  

where q is given and X is the eigenvalue parameter. 

The equation (5.22) is a nonsingular Sturm-Liouville problem and has real 

distinct eigenvalues clustering at x. The eigenwlues X k .  k = 1.2. - . can be es- 

timated by various techniques. In [39]. a simple but powerful met hod gives upper 

and lower bounds for eigenvalues. We will be concerned here with eigenfunctions 
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subject to y'(0) = y'( 3) = O. which are usually denoted by ce?, (1. q j . \\-e assume 

rhich. on substituting in (5.22).  gives for arbitra- integers p 3 1 

the first equation serving as a normalizing relation for a giveii A. 

The computation of Slathieu function ( 5 . 23 )  reduces to solving the follon-ing 

infinite tridiagonal linear sFsteni with given g and known A: 

For a giren q and a knoan value of A. it is not difficult to see that  the system 

(5.24). for a suitable choice of p. gives an infinite diagonally dominant systeni 

where the infinite matriv satisfies al1 the conditions of Theorem 5 .5 .  Also from 

Section 3. 
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From (5.15) we get an error bound. 

ahere Y = ( g p , l .  .yp+,? . yptm) and f-(m) is the solution for the m x rn trtincated 

systern of (5.24)- 

It is easy to check that the error bound @yen in (5.15) is O(n-'). To illustrate 

the theory n i t  h numerical work. we let q = 1. and the corresponding eigenvalue 

X = -0.45513860 [34] and normalize the solution nith y, = -7.5. The truncation 

size is chosen to be m = 20. From an asymptotic analysis[22], we have. for large 

The following table lists the eigenfunct ions calculated from the rn x in t runcated 

system of (5.24) and the asymptotic approsimations from ( 5 . 2 6 ) .  
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Table 3.3: Yalues for yk. ni=?O 

Truncated solutions -4syrnptot ic approsirnat ions 



Chapter 6 

An Elliptic Boundary Value 
Problem Defined on an Infinite 
Domain 

In this chapter ive give a mathematical analysis mith numerical cornputation for 

a groundwater flow problem described b -  an elliptic equation of the form 

in a semi-infinite vertical region bounded on top b -  a sloping sinusoidal cun-e. 

under @en boundary conditions. o(x. r )  represents the hydraulic head and ed' 

represents the relative hydraulic conducrivity (or permeability). \té reduce the 

problern to an infinite system of linear equations using the method of separatiori 

of variables and construction of a Grammian matris. Truncation of this systeni 

yields an approximate solution that @es the best match ou the top boundary. 

Computational results for some typical parameters are presented. 
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6.1 Introduction 

LVe consider the problem of analyzing the motion of groundwater in a small 

drainage basin. If a cross-section of this basin is taken which is normal to the 

regional topographie trend and parallel to the regional hydraulic gradient. this 

results in a tivo-dimensional s y t e m  in (x. r) coordinates. with x representing 

the horizontal coordinate. and z represents the elevation. The veloci ty potent i d .  

~ ( r .  2). satisfies the equation V.(K(:)Vo(x. 2)) = O. where K(: )  is the hydraulic 

conductivity. For reference. see the papers by Toth 1251 .[-61. 

There is a ivide variety of concepts and modelling approachcs to groiindwater 

Bow problems in the literature (see. for example. [24]). In order to produce 

a mathematical solution. the region under consideration has been taken to be 

finite. the hydraulic conductivity. A-(:). a constant or dianging only in discrete 

regions. and the boundaries and boundary values approsirnated. lloreover. it has 

been observeci that the usual approximation techniques of obtaining the solution 

including finite differences. finite elernents. and perturbation techniques do not 

give completely satisfactory numerical results for the Boa. T6th [XI. [26] hasi 

giren analyt ical solut ions for the b o u n d a ~  value problem for Laplace's equat ion 

representing a steady-state flow in a finite vertical. two-dimensional. sat urated. 

hornogeneous. isotropic region bounded on top by a sloping sinusoidal cume. wtiich 

represerits the watertable. However. he approsirnates the problem by replacing 

the semi-infinite region with a finite rectangle. and projecting the given boundary 

values ont0 the top of this rectangle. He then solws a reconstructed problem on 

this rectangle. This assumes that the solution has the same value on the top of 
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the rectangle as it did on the given boundary. 11-hich of course. is not accurate: 

this approach gives only a rough approximation. and t hen. only if hoth the angle 

of the sloping aatertahle and the amplitude of the sinusoidal curve are very small. 

In this application. ive are concerned wit h finding the hydraulic head. o. in a 

non-hornogeneous porous medium. The region considered is bounded between two 

vertical impermeable boundaries. bounded on top by a sloping sinusoidal curie 

and unbounded in depth. A mathematical analysis is developed nhich reduces the 

problern to solving an infinite system of linear equations. There are ma-- rvays 

of producing such an infinite system. Our method yields the Grammian matris 

which is posit ire definite. and the truncation of t his system yields an approsimate 

solution that provides the best match with the given values on the top sloping 

sinusoidal boundary Graphs of the equi-potential lines for O . (i.e.. the c-urves 

o = cl ) . and t heir corresponding orthogonal trajectories. the streamlines. (given 

by curves cp = Q) are given. There has been a scarcity of work in groundi-ater 

Row prohlems involving infinite regions. particularly with complicated boundaries. 

In fact. for the problern under consideration. finite difference niethods anci finite 

elernent methods gave complet el^ different descriptions of the floivs. 

6.2 Mat hemat ical mode1 

The hydraulic head. o(r. 2). mhich is the hydraulic potential divided by the con- 

stant gravitat ional acceleration. satisfies the ellipt ic partial different i d  equation 



where V = &i + gj. 2 denotes the height of a point (relative to a vertical sçale 

chosen so that 2 = O at one corner of our region). and d 3 O. The hydraulic 

conductivity is Ii = ûedz.  ahere a is a positive constant. which is in qualitative 

agreement with the generally observed decrease in conductirity with depth in a 

well. The region under consideration for equation (6.1) is given by 

Figure 6.1: Semi-infinite domain 
z 
O 

t 

1 I 
l I 

I 

where d. L. a. I - and n are real constants (parameters) wit h d 2 O. L > O. n 2 0. 

and n. is a positive integer. 

The boundary conditions are given by 
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a0 
(6.4) - + O as 2 + -x. o(x. 2) is hounded on ; 5 g(x). 

dt 

and 

(6.5) 

n-here g ( r )  is defined in (6.2). 

The solution to (6.1) represents the hydraulic head (or potentiai) and thus 

the equi-potential lines. are given by o(x. 2) = constant. Of interest also are the 

streamlines. which are the orthogonal trajectories to ~ ( x .  z )  = constant and are 

the solution of 

Therefore. we solve (6.6) ni t  h z(xo) = :o. ivhere (xo. q-J is an arbitraq- given 

point in 

(JO. = O ) -  

6.3 

t tie region: the solution is the orthogonal trajectory tliat passes through 

and will be of the form. ~ ( r t . .  z )  = constant. 

Formal solution 

Espandirig (6.1). ive obtain 

Csing the method of separation of variables. Ive set o(x. 2) = S ( x ) Z ( z ) .  Then 

(6.7) gives $ = -= z = -p. where p is the separation constant. frorn whiçh 
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we obtain 

(6-8) 

and 

(6-9) 

From (6.3). S 1 ( 0 )  = S t ( L )  = O. This. together n-ith (6.8) implies tiiat 

S ( I )  = ym COS (""). - 

2 
and p = (y) . for rn = 0. 1.2. ..: ( the  î, are arbitra- constants). 

The solution of (6.9) is given by Z(z) = pr= where r satisfies r% d r  - = 0. 

Howewr. from the boundary condition (6.4). we have 

Tlius. the solution Z is a v e n  by 

Case (1) p = O .  d = 0: Z = do +dl:. and thus. Z = do by (6.10): (the ?, are 
arbitra- constants). 

Case (2) 11 = O. d > 0: Z = do + dte-d'. and thus. Z = do by (6.10). 

Case (3) p > 0: r =  2 > O. The negative sign on the root 
would make r < O and tvould violate (6.10). Thus. 
Z(2) = 6,e". where dm is a constant. 

Thus. the most general solution of (6.1) t hat satisfies (6.3) and (6.4) is given 

X m r x  
a+. Z )  = c 3, cos epmz. 
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The remaining boundary condit ion (6.5). is equivalent to 

The main problem non is to  determine the coefficients {,dm : m = 0.1.2..} in 

(6.13). Our aim is to pursue analytical methods as far as possible. and then to 

use numerical techniques a t  the last stage. 

We make (6.13) non-dimensional by putting y = I / L .  CL, = L j m / L .  0, = pm L -  

à = a / L  and i' = L / L .  and dividing both sides by L. This gives. for O < y < 1. 

Define 

(6.15) ~ ~ ( 9 )  = cos(kxy)exp [-ak(iiy + f- s i n ( k n y ) ]  . 

X e  multiply each side of (6.16) by u k ( y )  and integrate u-ith respect to y over 
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[O. 11 to obtain 

where we assume that the series in (6.17) converges uniformly so that term-bu- 

terin integration is justified. (6.17) is of the forni 

where. for k .  m = 0. 1.2. .... 

and 

l 
= / [üy + C-sin(?nny)] uk(g)dy 

O 

(6.20) = IL [iiB + sin(2riny)] <:os(k~y)erp [-O* {oy + f-sin(2my)}] dg. 
O 

Csing (6.12). 
3m'"' . - IL 

(6.21) cr = p , L  = 
dL + d@ L? + 4rn%i2 - 

The infinite rnatrix B = [bkm]k,m=0,1,2.. as defined in (6.19) is called the Gram- 



mian of the set {uk : k = O. 1. 'L...}. B is a symmetric. positive definite (and thus. 

invertible) rnatrîx. where are assume that {ut : k = 0.1.2 ... } is linearly indepen- 

dent. 

ü We note that 00 = O .  u o ( g )  = 1 .  boO = 1 and Q = -- .> 

To evaluate the integrals in (6.17). or equivalently. in (6.19) and (6.20) ana- 

lytically ive use the following identity [23]: 

- p  sin O - - I o ( p )  + 2 C(-1)q~2q(p) COS ( 2 4 0 )  

+2 x(-1)q12q-i ( P )  sin (2q - 1 ) O .  

where the I ,  are the modified BesseI functions given by 

and using (6.23) in (6.19) and performing sorne simplifications. we obtain the 

following: 

1 QkYm (1 - ëqk.m(-~)ktm) 
( )  +, - C ( - l ) q & p ( ~ k . r n )  

q= 1 [(m f k)?i f 2qiz]* t q;., 
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for k + rn > 0. and for k > 0. 
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Remark: LVhere the * sign appears only in a denominator. we sum over two 

terms. one for each sign. or over four terms if there are a pair of i signs: where one 

or two * signs appear in both the numerator and denominator of some term. sum 

over al1 combinations of signs in the numerator and put the same combination of 

signs in the denominator. For esample. 

a * b  - a t b  a - b  - + 
( a i b ) " c  ( a + b ) - + c  ( a - b ) ? + c S  

6.4 Numerical approximation and error estima- 
tion 

The analytical solution. o(r. z ) .  to our problem is described by (6.11) and (6.1'2). 

but involves solving an infinite linear system. whicli is not readily solvable. To 

arriw at a practical solution. ne adopt a numerical approximation. K e  consider a 

truncated solution of the form ~ - ~ ( y .  2) = L xm=, n ,  cos(miiy)ePm' which satisfirs 

(6.1) and al1 the boundary value conditions except the one on 

The difference between these gives an indication of the error. Let 

e.v(y) = o,&. 2) - z .  with 2 = g(y) = -L[iiy + i'sin(27iny)j. 

i-e.. es(!/)  = o.v(y. !?(Y)) - m. 
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Substituting g(y) and o ~ ( g . g ( y ) )  into eN(y). we get 

\lé choose {a, : m = O. 1.2. .... -V} to rninimize the L2-norm of the error 

function e . ~ ( y ) .  i.e. {a,) is the solution to the minimization problern: 

min Il 4 y )  + C %dbrAy) II- 
û0.Q 1 ,.... O .y 

m=O 

where uk(y) = cos(k;iy)exp [ - o k  {àg + &in(27iny))]. and u ( g )  = àtl+i-sin(2any). 

The solution to this probleni is determined by satisfying the equation 

So a.' = (ao. ai. . . .a-~) l  is the solution to Bekr&" = c'. where Br is the .\- x -1- 

truncation of B and caV = (co. cl. .... c.\r)'. CCé note that B.v is a symmetric. posi- 

tive definite matrir. where we assume that {uo .  ul .  .... u x )  is linearly independent. 

The above procedure provides the best approximation (or the best matching on 

the top boundary) for a given N .  After {a, : m = O. 1.2. .... 3) has been corn- 

ik .~(~) l l  cari be easilv puted. ive set -11 = mauoc,<t Ilg(y)(l: then. E = mao<i<l  7 

estimated. We increase -V until E is within a required accuracy. Then the approx- 
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imation ox(y. t) is the solution to a perturbed problem. Le.. o';(y. 2) satisfies 

the differential equation (6.1) on the region (6.2). and the boundary conditions 

(6.3) and (6.4). In place of the boundap- condition ( 6 . 5 ) .  0.v (.y. z )  satisfies the 

perturbed boundac- condition: 

K e  approximate the solution of the b o u n d a -  value problem (6.1) iinder the 

boundary condition (6.3) using the numerical procedure of section 7.4 with the 

paraniet ers given by : 

Length of basin: L = SO.000. 
Slope of top boundary: a / L  = 0.1. 
Depth of humps: \ ' IL  = 0.01. 
Hydraulic conductirity: d = 0. 0.00235. and -0235 (Figures 6.2. 6.3. 6.4). 

l\,-e compute for the given setting the velocity potential ~ ( x .  2 )  at chosen points 

on the  top bouridaq- for cornparison wit h the boundary condition (6.3) at the same 

points with acttial relative errors. The equi-potential lines ( O  = constant) and 

the streamlines (c: = constant) are plotted in Figures 6.2. 6.3. and 6.4. 
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Table 6.1: Approximation and actual error on top boundary 

a / L  = 0.1. L-/L = 0.01. d = 0.00133. L = 80.000 
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Figure 6.2: Level curves for o (dotted) and i1. (solid). a /  L = 0.1. 1-1 L = 0.01. 
d = 0.0. L = 80.000. 

6.6 Conclusions and future work 

R e  have developed a method based on a combination of analytic and numerical 

techniques to solve the groundwater flow problem which is modeled by equation 

(6.1) in a semi-infinite region with sloping sinusoidal top boundary. Csing separa- 

tion of variables. Ive reduced the problern to one of matching the formai solution 

to the given values on the top boundary. which is solved numerically to a required 

acçuracy. and this yields an optimal approximation. The method is simple and 

mathematically sound. In particular. for the special case of Laplace's quat ion 

(d  = O )  (which is the subject of ('261). Our result has the same qualitative be- 

haviour as [26] .  However. Our solution is more accurate than [26]. and is valid on 

the ent ire region under considerat ion. 

For future work. Ive propose the following suggestions: 

1. Solve the problem with the hydraulic conductivity. K ( z ) .  modeled by some 
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Figure 6.3: Level curves for O (dotted) and u (solid). a / L  = 0.1. IV/L = 0.01. 
d = 0.00235. L = 80.000. 

esplicit ly given formula rat her t han the esponential funct ion: for esample. 

Ii(2) could be a rational function or a piecenise defined step function tliat 

better models the 1-r structure in the ground. 

2. Solvc. the problem for other boundary curves. The boundary curve y(x) 

çould be any esplicitly given function. or could be foiind by using cun-e- 

fitting on arbitrarily given data. Mé can use numerical integration instead 

of Bessel series. 

3. The solution could be developed. and the problem solved. for a three- di- 

mensional set ting. Le.. o = o(x. y. :). 



Figure 6.4: Level curves for o (dotted) and c (solid). a / L  = 0.1. 1-/L = 0.01. 
d = 0.0235. L = 80.000. 
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